RAMP-TS Guide

Rapid Application Modernization Process for
Terminal Server Guide

How to Get Started with RAMP
What's New

Licensing Requirements
Installation and Configuration
Starting RAMP

Concepts

Modernization Issues

Tutorials for RAMP Windows
Scripting

Screen Enrichment

Screen Wrappers

Programming Techniques
Multilingual RAMP Applications
Troubleshooting

Frequently Asked Questions
Appendix

Please send your comments and suggestions to LANSA Support at:
lansasupport@lansa.com.au.

Disclaimer: While every effort has been made to ensure that the information in
this material is accurate, in no event shall LANSA be liable for any damages
arising from its use. LANSA MAKES NO WARRANTIES, EXPRESSED OR
IMPLIED.

Edition EPC130100

mailto:lansasupport@lansa.com.au

Edition Date November 14, 2012
© 2012 LANSA

How to Get Started with RAMP
This is the recommended 5 step plan for getting started with RAMP:

1. Review the introductory section What is RAMP?

2. Comprehend how modernization will change the nature of a 5250
application by reviewing:

5250 Application Before Modernization

5250 Application After Using RAMP

3. Comprehend how the modernization process is performed by reviewing:

Stage 1: Creating a Modernization Framework
Stage 2: Incrementally Modernizing the 5250 Application
Stage 3: Removing IBM i Platform Dependencies

4. Install and Configure RAMP software (see Installation and Configuration).

5. Complete the essential Tutorials for RAMP Windows.

Once you have completed these steps you should be well positioned to start to
plan and implement your own modernization project using RAMP.

What is RAMP?

RAMP is a staged process for the rapid modernization of IBM i (or) i5 based
5250 applications. It is an extension to the Visual LANSA Framework.

The Modernization Journe
J y Mont h\s
4 3
S [Stage 3 Delivers:
A 2 Web browser and
> Windows Rich-client
applications ready for
any server
\ Stage 2 Delivers:
DEX?_I ¥ iSeries, Web browser
. and Windows Rich-client
applications ready for
iSeries servers
Stage 1 Delivers:
A true modernization
framework that evolves
through Steps 2 and 3
e ——————————

RAMP Stage 1 involves prototyping what your modernized application will
look like when it is finished.

RAMP Stage 2 involves re-animating the existing 5250 application in the
Framework and incrementally modernizing it.

RAMP Stage 3, which is optional, may involve you in re-engineering your
application so as to remove any specific IBM i platform dependency that it
has.

To understand what the end result will be, have a look at A Modernized
Application.

The RAMP process has been designed to support rapid and incremental
deliveries of your modernized applications. It is not an approach where you
have to work for years until the result comes out in one big bang. If you have

been involved in big bang projects before you will know of the pitfalls that this
entails. This RAMP approach allows you to modernize at your own pace, thus
allowing you to manage risk in a sensible manner. See Key Benefits.

RAMP Stage 1

Day\s1

Stage 1 Delivers:
A true modernization
framework that evolves
through Steps 2 and 3

RAMP stage 1 creates a prototyped modernization
framework.

The purpose of this step is to create an unencumbered
vision of what "could be" rather than just "what is", in
other words the prototype is produced to be a vision of
the future rather than just a reflection of the application
the way it is today.

This prototyping framework is important because:

e It defines where and how your 5250 screen panels will

be reused

e It allows all stake-holders, be they developers or end

users, to understand and review what they are going to
get and what they are going to have to give to complete
the modernization project.

¢ It is not thrown away, but will evolve into the real

executable application framework.

You use the Instant Prototyping Wizard to create the
prototype. This tool is especially useful for people with
a 5250 background because it bridges the gap to
Windows and web browser application design.

It should only take a few days to deliver a
modernization framework for even a very large
application. The prototyping process may be so rapid
that multiple prototypes can be produced for
comparison and review by the stakeholders.

At the end of this stage a real executable application
framework is delivered. Not only does this ensure
everyone knows what they are getting and what they
have to do, it also makes it easy to define and manage
the rest of the project and to assign the various
deliverables to the project participants.

The application framework will be evolved into a real
application by gradually snapping out the prototype

parts and snapping in real application parts which will
be either reanimated 5250 screens or new functions.

For more information, see Modernization Process
Overview.

RAMP Stage 2
In RAMP stage 2 you snap in your 5250 application to

-

k 2] the Framework and incrementally modernize it:
RAMP Stage 2A
Stage 2 DB In this step you rapidly modernize infrequently used
ISeries., Web BoeeE complete application segments by simply snapping their
and T"dtf*f- Fid"t'::"t entry screen (typically a menu) into the Framework. You
apﬁ;ﬂ;" :;;;:: ' should do this with all infrequently used segments of

your application.

The major benefit of this approach is to give your 5250
screens a Windows user interface and to make them
accessible from the Framework in very little time.

It is very important to understand that you do not have
individually modernize every single 5250 screen in your
application as in stage 2B. For more information, see
RAMP Stage 2A: Rapidly Modernizing Complete
Application Segments.

RAMP Stage 2B

In this step you individually modernize specific
application areas and screens. You use this approach
with key parts of your application.

You record the navigation to the destination screens in
the 5250 application and snap them in the Framework.
You then create filters to provide the end-users with
efficient access to the data.

The enhanced navigation and data access provide
significant usability benefits and are the core of the
modernized application. For more information, see
RAMP Stage 2B: Individually Modernizing Frequently
Used Screens.

RAMP Stage 2C

In this step you can selectively enrich your existing 5250
application by adding new or enhanced functionality
such as video, voice, e-mail, improved desktop
integration, etc.

How much you add depends on how much time you
have available. For more information, see RAMP Stage
2C: Adding Value.

RAMP Stage 3

Monthg

A 3/" In RAMP stage 3, which is optional, you can create an
application that can execute using server platforms other

than the IBM i, for example Windows or Linux servers

Stage 3 Delivers: are possible.
Web browser and ..
Windows Rich-client If you are an ISV then your existing or new customers
’FP”‘::;"::”':‘?’“’ will probably welcome the new options that this opens
up for them.

Your application can be generated into various 3GL
languages to ensure maximum execution efficiency on
the various server platforms such as .NET or WebSphere.

The re-engineering process may use any technology, for
example you might choose to use an:

SOA (Service Orientated Architecture) approach or
e MVC (Mode-View Controller) approach.
It’s up to you.

r
e

This stage completely frees you from the limitations of
the 5250 world.

For more information, see Stage 3: Removing IBM i
Platform Dependencies.

A Modernized Application
This is a 5250 Personnel application modernized by RAMP. It does not look
anything like a 5250 application, but it is:

2 Employees ['Z| @@ |

File Edit Wiew Actions Help ‘Windows (Framework) (Administration)

B Spooled Files %’ Sign QFf Feparks [Details Using SETCURSOR,

This is a reused 5250 screen.

[x] %
The user can access this screen simply by fate of Birth | —1BySalary | || 4, & ENeR=!
selecting an employee in the list on the =
top right. All the navigation required to | Search) Employes | Description
access this screen is completely invisible A1001 JOHES BEM
(and immaterial) to the user of this AlZ34 JACKSOM STEPHEN
modernized application.
~

W favodtes, - # Emplopee - Details [A1234-JACKSON STEPHEN)
i HR Demo Applica :

IPA Test N L Detals y Events 0 Skils | [Documents | (=) Emal - &video
Notes CA App Browse,/Maintain Employee and 5kill File
NTreeTest Enter
= Personnel Employee Number : Al234
Code Tables Employee Surname« . .0 . pACKSON You can easily add
g Employees Employee Given Name(s) STEPHEN value to your
| Proc_And_Close Street No and Name & Melissa Place modernized
1 RAMP Test S b ueh o T ORI T T West Pennant Hi1lg application by
) SubType Test State and Country NSW Australia integrating advanced
"1 Tst Conn Home Phone Number (02) 9871 7773 features into it.
] VisualStyle Repartment Code . . o o0 W e oW owe . o |+ ;)
0] ¥I Spreadsheet S O O e e eI ES +
ﬁ Programming Techn Stapt Dabe REMMEYIE L L 14,/08,/96 +
¢ | 5 Termination Date (DDMMYY) 0/00,/00 +
Messages Ready | VLFPGMLIE | ENG | VWLFPGMLIE | 20/03/09 | 13:29 i)

To move from, for example, the Details tab of an employee to the Skills tab the
user simply clicks on the tab and the Skill 5250 screen appears. The fact that
behind the scenes the 5250 application needs to press F12 twice, key in an
employee number and then press enter is completely invisible to the user.

Notice tabs named Video and Email. Facilities like video and email are not
things normally available in 5250 applications, but they can easily be added to a
modernized application to enhance its functionality and usability.

Key Benefits

Uses one tool
and one skill
set

Framework
defines and
drives
modernization
path

Non-intrusive
- no changes
to existing
5250
applications

Supports all
5250
applications -
even without
DDS

Not a "step
sideways" or
"ignore the
problem"
solution

Incremental
approach
lowers

RAMP is part of LANSA. One of LANSA’s great strengths is
that it allows developer to use a single tool and single skill set
to solve all their commercial IT problems. A single developer
with a single skill set can produce solutions ranging from
Windows Rich Client applications, to Web Browser
applications to creating an XML based document integration
solution

Uniquely RAMP uses a framework driven approach to
application modernization. No one else does this. The
framework defines and then manages the complete
modernization process. It is the primary vehicle for managing
expectations and communications among the various
modernization project stakeholders.

No change at all is required to your existing 5250 applications
to use RAMP.

RAMP can modernize any 5250 based application, even the
application and operating system components that you have no
DDS for (eg: Query, DFU and IBM i commands).

RAMP provides an immediate short term solution (in stage 2)
and then provides a clear path to move further forwards from
there (in stage 3) to platform independence. Using RAMP is
not a "step sideways" or "a band-aid" screen scraping solution
that ignores your need to produce both a short term tactical
solution for modernization and at the same time implement a
longer term strategic direction for platform independence.

RAMP is not a big bang approach. It has been designed to
accommodate rapid incremental deliveries of your modernized
application. This minimizes your risk and time to market.

delivery time

Should not
require
hardware or
O/S upgrades

Delivers IBM
i solution in
short time

RAMP will run on any platform that LANSA supports.
Currently LANSA requires IBM i V5R1 or later. You, and if
your are an ISV, your own customers, do not need to upgrade
your hardware to support your RAMP modernized
applications.

The entire focus of RAMP stage 2 is on the delivery of
modernized IBM i applications in the shortest possible time.
We understand that getting your application modernized and
back out into the world in the shortest possible time is vitally
important to you.

How the 5250 Application Will Change

The sample application shown in this section is part a 5250 ERP (Enterprise
Resource Planning) application containing more than 3000 5250 screens.

It is a LANSA 5250 application. However, RAMP is not limited to LANSA
applications and may be used on any IBM i 5250 application written in any
language such as RPG or COBOL. RAMP may also be used on applications for
which DDS does not exist such as DFU, Query and IBM i command 5250
screens.

No change to the 5250 application is made during the modernization process.
5250 Application Before Modernization

5250 Application After Using RAMP

5250 Application Before Modernization

Think for a moment of a 5250 or green screen application with classic
navigation techniques in action: The users sign on and are greeted by a menu.

They then navigate through several menus by selecting options until they are
required to identify the item they want to work with:

The users sign on
and are greeted by a
classic S=2Z5S0 mernu.

They select option 12
to display the
rMaim FMer Inventory
Marnagement HMenu.

Entryg Mer
P D

Maintenance
e

5250 Application After Using RAMP

Here is the same 5250 ERP application as a Windows rich client application
after RAMP has been used over it:

Inventory Dbjects

The filter has built a list of inventory

Fle Edt Vew Acuns Tods Help (Framewsk _Ihe u;er hss sgarchid mventt;ry items that match the search criteria,
. items based on inventory number
Ghew = Rsgof | [etas SHhiy kr;fre
SEEEY e AR The end-user selects an item in the
e : list to work with,
I On Tool B] _JFrd by Key |] Fnd by Othes [em Desmphon
5] inwentory (Classic) - . % AMDBALLS AICBALLS - Infinti ol Bal y
=) ttems S ®||& an ANIOCA? -Infint GalfCap
& iventory Objects Ttesm bhumber + Al AMOCAPBOR - Infint Golf Cap with Bab Logo
B ‘ Primary A 100 # AMOCOH AMOCOVER - Infinit Head Covers
@ Tems H ANOGE AM0GE - Infintit 9" Staff Bag
@ Transactions F AMPLAQUE AMOPLAGLE - Irfinit Golf Plague
Trarsfer Orders + AJDOSHRT AOSHIRT A, - Infiniti Gcifihd..r;
gLou | Clear List
Location [tems
ﬂm.m_m&mmn - Infirit Golf alls)
Plnts [loetais| & Edt | % Inventory Baiances | (- Inventory Parnng | 0 MUtingual Cantons | % Nates
‘Warehousss
ore
e OWE
Tnerm MNusiber A J008ALLS
Desrpton i Gof ks \I
Exfra Dessr Exfra Desoiphon ftest
S p— Short Desr The shapped-in 5250 screen
? i mbenu Tiers Class Qs Ttem Type PR Ttem Group Code is used to to maintain the
Sl atEl s Ce Rl meDson | Cniry of Origh details of the inventory item,
replaced by an Tax Class
application tree Meufeneed? 0] (/) NenSklew? [0 | (Of)
which is used to (iroup Tech Code
navigate between | B I
different parts of :"“"“’m : . i
d . ebates hem Statu 1 t Web
the application, dad Bl '
Shig-From Pant ||
UitofMessre EA Dét Purchase M a Dft Sales LM 02
\ || priangum i | Itm CatalagNo
Res, Tre Fence |
L Prod Code
Ready | Yoo [m6 | cUPc |rjiss[10|

Accessing Data in the Modernized Application

Framework filters provide one of the most powerful ways of adding value to a
modernized application because they offer the end-users efficient and flexible
access to the data in the application.

—IFrdby¥ey | rndby o
The filker allows

Jtem Code g
== the user to build
Ttem humber 3 :
™ lists of inventory

items.

5
The fitter in this application allows
the user to build lists of inventory
Search iterns in more than 20 different ways,
For example, the filtker allows the
TR end-user to locate invertary items by
iniind Ttem Code, Byer, Shipment: etc.,
by ltem o])
by [tem Caw
by Ttem Type
by Ttem Group
by Buyer
by Planner
by Shipment configuration code
by Lint of Measure ¥ o i

The fitter builds a list of inventaory items which is
displayed as atree. The user can drill down through it
or sort it by any of the displayed columns,

To wark with an inventory item, the user simply clicks

on the item in the list,

— _ (ﬁ/

AN0GBALLS - Infivh Golf Balls

M AMDCAP - Infirt Golf Cap
Tteee Number A10DCARBOR - Infril Gof Cap with Bob Logo
Al AMOCOVER - Infinti Head Covers

AMDGE - Infintt 3" Staff Bag

ASDIPLAQUE - Il Gof Plague:
AR00SHIRTA, - Infirit Goif Shirt Large
A00SHIRT-M - Infinit Golf Shrt Medum
ASOOSHIRT-S - Infint Golf Shirt Small
A00SHIRT-L - Infriti Golf Shirt Extra Large
ATDOSHIRT-04L - Infniti Golf Shrt ExtraExira L
A0V « Infin Goff Bals

Ciear List

Navigation in the Modernized Application

In RAMP applications the Windows interface is driving the 5250 panels, rather
than the 5250 screens driving the Windows application.

The difference in who is driving - the Windows application or the 5250
application - is what makes RAMP different to, and so much more powerful
than, any traditional form of 5250 screen scraping technology.

Inventory Objects

Fle Edt Vew Actons Toos Hep (Framewark) (Administraton)
O ten = Ko | [
|I On ToolBa) Descroton
5] imentory (Cassd When the user clicks on an AMCEALLS ANCBALLE - Infit Gof Bals
= rtens inventory itemn, the 5250 panel at e ALOCAP - Infinis Gof Cap
=) iventory Obpects the bottom of the window S
54 Primary g ALOOCOVER. - Infiih Head Covers
" & e cthanges ta d|5pl§|1.r the relevant AL00GE - gt 3 512 52
@ Transactons details, ADCPLAQUE - Infirt Golf laues
Transfar Orgers AWOSHIRTA, - Infiniti Golf Shirt Large b
g Lois Clewr Lit]
Licanon [hems
Linanons LY B
Plans [petals| & Edit | % inventory Balances | & Inventory Plannng | Y Mutingual Captions | &' ates
‘Warehousss
i 4 Other
Screen Mode CHANGE
Tners MNusnber i SIOCOVER
Desmiption Infin Haad Covers
Exira Dessr st 12345678
Short Desor
e Clags ("_.\\SS [hesm Type -'-Ul [hem Group Code ACCESS
Tem Drvigion Critry of Origin
Tax Class |
Meruschred? 0 (Oft) Nor-Stack Ttem? 0|
GoplehCoe | |
Buyes Blarner
Supplier ID i
Febates Flag | | L(THH] Ttem Status 1 Cemit from Web
Ship-From Plant ||
UnitofMessae EA Dt Purchase LM EA | Dt Sales LM A
Pricing UM = Tt Catalog Mo AP
Res. Time Fence
Unre Prod Code
Ready | e | BG [cIpC [t/isos| i@

Fle Edt View Actons Tools Help (Framesark) (Adsinisiration

O e+ snoff (] Detas f# Caladetor |
| If the users want to see the Notes associated with fen Desrpten
ANIGBALLS ABOBALLS - nfit GolF Balls
the selected inventary item, they pl|ck on the Notes by it
=@ tab and the 5250 screen showing the notes g AMOCAPBOR A2OCAPBOR - Infirit Golf Cap with Bob Logo
E appears, ANOCOVER AMOCONER - Infivt Head Covers
| ANOGE - Infintt 3" Staff Bag
i 2 . A 100PL - Irifriti Golf
In an unmodernized 5250 application they would el v Gdfm, v
have had to use F12 twice, chosen an item from a Clear List]
menu and then entered the item number again to o
accomplish this,
(R S

- ADICOVER " Infint Head Covers
Attenton Cede ;

S
Language Code i

Acon: J=Change 3=Dates 4=0elete 10=Attach P4

.m = -

ACt] codk | Note 14 DeSCToen

DESC .]IFIHI‘ITI'EADCO\ERS

Plyng in style, These logo headoovers wil keep your
INFINIT] equipment looking its best.
Mypiabie: ¥, 1,3, 5
HBC
DEF
GHl

WEB DESC INFINITI HEADCOVERS

WEE Playing in style. Thess logo headcovers wil keep your

l‘n'l'EB l]IFIM'I'[equipment looking its best,
WEB Mvplable: ¥, 1,3, §
WEE MBC

3

TS o cpc ammsn 9
—

Add hate

3
Elile

|nventory Objects

Fie Edt View Actons Tools Help (Framework) (Administration)

Grews HWspof | [Joeas (# oot |
On | ltem Desripbion F
5] Iweniory || & AK0BALS ATICBALLS - Infinit Goif Balls

] Items # 400040 AMOCA? - Infirve Golf Cap
= ﬂ Tvenor The users can create new ANIOCAPBOB - Infiniti Golf Cap with Bob Logo

B fmsl inventary items by copying an ol
tit 8" Staff Sag

e IT“ existing item using a context b
1 i ; 3
o menu Jgst as they u_w:uulld in any 2 et it Golf St Larce "]
L Windows application, Invenitory Balances Clear List
LLE - Infirit Head Cover) ¥ Investtory Flanning fal
= —_—
Ay)a'u:s [menmﬁa'm;ﬁ 0l ol Mabes
Wh, G ten v
& § ore § ot o]
: tals
Tt Plamber AI0COMER wiised = E
Attenton Cade Positon v
R PR

Achon: 2=Change 3=0ates d=0elete 10=Attach FjA

Act E::k :&:u Desaription
IDESC INFIMITL HEADCOVERS 10|

Piayng in style. These logo headoovers wil keep your
INFINITI equipment locking its best.
Avalabis: X, 1,3, 5
AEC
DEF
= J

WEB [DESC INFIMITI HEADCOVERS

WEB Playing in style. Thess logo headcovers wil keep your

VEE TNFINITT equigment locking its best,

WEB | AvalaberX, 1,3,

WEE ABC x|

Ready | o> | B | CIPC |i2/isios]igiiiliQ)

RAMPed applications do not just look better, they are easier and more
productive to use and move around in, and easier to teach someone new to use.

You can easily extend the modernized application by adding in new features
such as e-mail, voice, video, web browser interfaces, desktop integration
features, etc. that are not possible using the 5250 interface.

Modernization Process Overview
Stage 1: Creating a Modernization Framework

Stage 2: Incrementally Modernizing the 5250 Application
Stage 3: Removing IBM i Platform Dependencies

Stage 1: Creating a Modernization Framework

To use RAMP the first step is always to produce an executable prototype of
what your modernized application will be like when it is completed. The
prototype is very important because it helps to make sure that all stake-holders,
be they developers or end-users, understand what they are going to get and what

they are going to have to give before any significant investment is made in the
result.

Fortunately RAMP makes application prototyping very simple and rapid.

The prototype forms a foundation from

which the modernized application can be stration)
visualized, understood, discussed and
' i : 0 g Guick Find ...
changed before a single line of code is
M I« x
= ﬁ ERP Prototype 1 This filter will allow searching for products by 06 §& & m
a Code Tables prcu_duu:.'t name, number, description, customer, —
a Customers delivery date etc. Product | DEs |+:
a Orders PRODUCTOOOL Pr... =
a Products PRODUCTOOOZ Pr...
T . Favorites F = '
"55 HR Demo Application Program Coding Assistant Images Palette Emulate Search _F :g!] e
-[E} Programming Techniques 5| Motes
@ % Administrati . Print
AL ibratian # Product : Details (PRODUCT0003-Product number 3) ikl
ﬁ RAMP Examples : : B Sales
I:]DetaHS_ . MNotes | (= Print | [E Sales =
Thiz panel will show the basic product details
by reusing the 5250 screen Pasition »
Windows
Send ko M5-Excel

< |5 Show Details Program Coding Assistant Images Palette
1
Messages| Ready | YLFPGMLIE | ENG | VLFPGMLIE |29/03/03 | 11:12 ()

Who Should Be Involved?
Creating the Prototype
Executing and Refining the Prototype

Who Should Be Involved?

Prototyping requires effective communication between management, users and
IT.

The classic idea of having management and user project champions still holds
strongly. Without project champions IT groups will always struggle with
identifying and adding real value to any project.

Asking the project champions to identify and then design the top five (say) most
important real value additions, then fully implementing them, will sometimes
get their complete commitment to a project and reinforce the benefits of
thinking clearly, as a group, about real value, as opposed to getting lost in a
maze of trivial value items like radio buttons, drop downs and trees.

At this stage you should review the topic What Adds Value?

Creating the Prototype

The prototyping process is so rapid that is feasible to produce multiple
prototypes that may be compared and discussed.

M VF_T53
File Edit “iew Help Windows (Framework) (Adminiskration)
Dren | Sl H 0 AN OO O 858G 2 Quick Find ...
VF_TS3
[] A
@ {7 Favorites Visual - LANSA - Framework 2

&3] % HR Demo Application
=] -[E} Programming Techniques
% Administration

[+ RAMP Examples ‘(: E
. ¥ % Advanced Software °*

-~

@ We
Made Simple
The prototyping process starts
on this form which is the Visual
LANSA Framework.
Y,
}? Application Prototyping
Developers can be uncertain of what a commerdal-grade application should look like and how
code. And end-users are notoriously bad at defining what they want, but they know what t
remave the auesswark by annlvina nroven standards. Protrtvnes can he defined in minotes
£ | >
Messages| Ready | VLFPGMLIE | ENS | VLFPGMLIE | 25/03/09 | 13:54 ()

The Visual LANSA Framework is a framework for defining and executing
commercial applications.

The main window is laid out in a MS-Outlook or "dashboard" style. For more
information refer to Key Concepts in the Framework Guide.

Where these various form areas are and how they are laid out can be changed in
many ways by the designer and even the end user according to individual
preference. See Tailoring the Window Layout in the Framework Guide.

mk:@MSITStore:lansa048.chm::/Lansa/key_concepts.htm
mk:@MSITStore:lansa048.chm::/Lansa/lansa048_0270.htm

Favorites

File Edit Yiew Help ‘Windows

Mew

Favorites

L7 Favorites

Q; HR Demo Application
-IE} Programming Technique
2%, Administration

ﬁ. RAMP Examples

{ Framework) | { Administration)

[Mew)
Properties..,)

Applications)

!

!

[Commands...)
([Menus...)

!

Design Code Tables,..)

{ Program Coding Assistant,..)

4 F} B Cousick Find ...

To start prototyping the
designer selects the
Instant Prototyping

Assistant menu option.

(. Inskant Protokyping Assistant,..) | /

[RAMP Tools ...)
{ wirtual Clipboard)
{ Merge Tool ...)

[Sawve)

[Save s,)

{ Sawe and Restart)
{

Save and Exit)

{ Execute as Web Application...) k

{web Consales)

[Assiskance)

{ Tracing)

P OENG | WLFPGMLIE | 25/03/09 | 13:56)

Main Business Objects: fCustomers, Products, Orders, Code Tahles|

7

Restore previous valugs

el
N

@ Customers
a Products

a Crders

a Code Tables

In the Instant Prototyping Assistant the designer first

specifies the business objects that will be part of the

application {in this case an ERP application).

Business objects are the things that end-users work with
(not some special 00 or IT term), Here they are Customers,
Products and Crdars,

Next =3

Cancel

Actions:

Detals , Mew , Notes , History, Sales, Contacts, Print, Approval

Step 3. Drag and drop the actions from the lis

The same action can be used with many business o

the list on the right

Newt the Assistant asks what actions will the end-
users be taking against these business objects,

" Details
T hew There are predefined actions and the desiger adds
1 Motes some more, so the final list is: Details, New, Notes, [sts aeady)
" History ﬁ History, Sales, Contacts, Print and Approval, on: Details Orders (exsts aeady)
1, Seles o Address Orders (exists already)
oLt on: Bookings Orders (exists already)
Birt L _jon: Charges Orders (exists already)
" approval

<< Batk Met 22 Caniel
Actions: Details , New , Nokes , History, Sales, Contacts, Prink, Approval -

Then the designer associates the actions with the

Step 3. Drag and drop the actions from the list below, onto all the

business objects by drag-and-drop.

The same action can be used with many business objects. - // o

" Detalls = Customers - A

" Mew " Detalls Action: Details Customer

" pakes T New Action: Mew Customer

Histary Hotes Action: Mates Custaomer

sales Histary Action: Histary Cuskomer LY

" Contacts 8 a I?rnducts

bt " Detalls fiction: Details Product

i i T New Action: Mew Product

gt . Motes fiction; Motes Product v
<< Back Mext 22 Cancel

Applications;

Programming Techniques , Favorites , HR Demo Application , Administration , RAMP Examples {ERP Protobype 1

Finally the designer enters a name for the
application to be created, £8P Prototype 1,
and drags and drops the business objects
into the application,

Step 5. Now decide which application each business object belongs to.

Use drag and drop to put your business objects on the left into the appropriate applications on the right.
Every business object must be put in an application.

@ Programming Techniques Application (exists already)
@ Favorites Application (exists already)
@ HR. Dema Application Application (exists already)
@ Administr ation Application (exists already)
1 RAMP Examples Application (exists aleady)
:':_...‘-- = m ERP Protobype 1 Application

d‘j Custamers Business Object

{‘j Orders Business Object

ﬂ Products Busingss Object

dﬁ ode Tables Business Object

<< Back Cancel

The user then clicks on the Finish button and the prototype application is
generated. The Instant Prototyping Assistant closes and the Visual LANSA
Framework main windows reappears.

Executing and Refining the Prototype

The prototype ERP application has now been created and inserted into the
framework.

7 Customers
File Edit Wiew Help ‘Windows Framewgeeiffdminickeabiont

© new | T =it | 75 &5 | The prototype can [g | Quick Find ...
- bie instantly
executed,

%]
= iy ERP Prototype 1 or Customers. Al =y G
Code Tables »” = :
Customers This is a prototype of a filter program used to get Customer | D
Orders the Customers to be displayed.
Products
7 Favorites The user would normally enter search values here.

% HR Demo Application
{E:} Programming Techniques | | To see what a filter does, click on the "Emulate
5 Administration Search” butten.

ﬁ. RAMP Examples

Then select one entry in the list of Customers to
see how you work with detailed information.

You can Edit_this_ panel and add notes and images to

Program Coding Assistant. Images Palette Emulate Search

Messages| Ready | VLFPGMLIE | ENG | YLFPGMLIE |25/03/09 |14:56 ()

 Products

Ele Edit Yiew Help MWindows (Framework) (Add vYou enhance the prototype filters by adding notes to
@ Mew 2 prine | = oy 4 | describe what they dao to communicate your design tao
the application stakeholders,

Eﬁ ERP Prototype 1 This filter will allow searching for products by @ % = @
Code Tables product name, number, description, customer, e o
Custamers delivery date etc| Product ..
Orders
Products

125‘ Favorites

'& HR Demo Application

@ Programming Techniques
i Administration

ﬁ RAMP Examples

Program Coding Assiskant Images Palette Emulate Search

Messages Ready | VLFPGMLIE | ENG | VLFPGMLIE |25/03/09 | 1::13 ||

Products

File Edit Wew Help Windows (Framework) (Administration)

@tew | T et [Ty R[] A K E : o g Quick Find ...
[4] [x] %

El_ﬁ. ERP Prototype 1 This filter will allow searching for products by = @ S e [

Code Tables product name, number, description, customer, o e

Custamers delivery date etc. Product | Description

Orders PRODUCTO001 Product numb. ..

Products PRODUCTO00Z Product numb. ..
17 Favorites = PRODLICTOOOZ Product numb,..,
£, HR Demo &p PRODLICTOO04 Product numb,.,

PRODUCTO00S Product numb. ..
PRODUCTO006 Product numb. ..
PRODUCTO007 Product numb. ..
PRODUCTOO02 Product numb. ..
PRODUCTO009 Product numb. ..
PRODUCTOOL0 Product numb...

-@- Programmin
% Administrati
£ RAMP Exam

The application can be executed in
prototype mode by clicking on the
Ernulate Search button,

The filter performs an emulated search
: ; . Emulate Search
that l':lL,llleS a ||St |:|1: |tE|T|5 fDr thE W’! ..

-

business object (here products), i []

¢ || ¥
Messages | Ready | WLFPGMLIE | ENG | VLFPGMLIE |29/03/09 | 11:18)

EBX

File Edit Wew Help ‘Windows (Framework) (Administration)
Orew | =5 Speit | PR AK OO Q@ | Quick Find ...
H ERE Right-clicking a product in the prototype list displays a x| =
cl context menu of actions that can be taken againstit. | 0O & & m
)
g ol & set of tabs appear on the bottom showing the Praduct | Diescripkion |g
4 Pr{ command handiers for the various actions. The FRODUCTO001 Product numb...,
7 Favol command handlers will be your 5250 screens or, for | T E——
£ HRDq advanced functionality, Visual LANSA companents, e Mew I_
{5} Prog F % MNotes
5 Admi 7 Fis print
Program fssistant Images Palette Emulate Search || ¢ "
ﬁ RAMP Examples | (\‘ 1 _F B Soles 4
; { Details |
' Product : \etails [PRODUCT0002-Product number 2] jummel
[JDetals | % Motes /=jPrint [Sales Positian '
Windows 1
))) Send to M3-Excel
This panel will handle the action (or command) named O
object named Products.
At the moment this panel is a prototype. When you have validated your prototype
you would replace this panel with a real program.
o ¥
¢ | B Show Detals Program Coding Assistant Images Palette
Messages Ready | VLFPGMLIE | ENG | WLFPGMLIE |25/03/09 | 1::15 ||

Products

File Edit Wew Help ‘Windows (Framework) (Administration)
@new | = St | TR D AR OO E@| QuickFind ...
[x] [=] X
= ﬁ ERP Prototype 1 This filter will allow searching for products by = @ A=)
Code Tables product name, number, description, customer, s
Cuskomers delivery date etc. Praduck | Description |ﬁ
Orders i) PRODUCTO0O! Product numb. ..
Praducts You can add notes to your prototype PRODLCTO00Z Praduct numb...
7 Favorites command handlers to indicate what will PRODUCTOO03 Product rumbn..
£, HR Demo Application actually be on the tab when it is changed PRODUCTON04 Product numb. .
G} Programming Technid fmm_ be'_”g a prototype into a real PRODUCTOO0S Product numb,..
% Administration Pl application. PRODUCTOO06 Produck numb,., %
ﬁ RAMP Examples

¥ Product - Deteee = UDUCT0002-Product number 2]

[IDetals | . motes (= Print [E Sales

|Thi5 panel will show the basic order details by reusing the 5250 screen

¢ | 3 Show Detals Program Coding Assistant Images Palette

= Messages Ready | VLFPGMLIE | ENG | WLFPGMLIE |25/03/09 | 15:17 ||

S=lES

File Edit Miew Help Windows {Framework) § Administration)

) Hew | (= Print ful | @ Cuick Find ..
The Details, Motes and Print tabs might all be for reused =
Eﬁ ERP Prototype 1 e SlsteEns & & m
Code Tables If the Sales Tab was meant to incorporate a new feature i
Customers which cannot be created using a 5250 interface, we might | Description |ﬁ
Orders add some nates and images to the prototype to enhance 0001 Product rumber 1 =
Products its ahility to communicate a design intention to other ro00z Product number 2
£ HR Demo Applicati{ developers and end-users, [0003 Product number 3
{E} Programming Tech 0004 Product number 4 %
. Administration
+ RAMP E I 3
= B SRS 7 Product : Sales (PRODUCTNJ2-Product number 2)
[] Details | K;\ |Motes | (= Print | 2 Sales
| This panel will show a sales graph, something that cannot be dene in 5250 ~
applications =
1]
1]
]
ol
E1] mTaal
L] (" k=Tl
1 OMorn
k-]
n
i e
o hd A W
¢ | & Show Details Program Coding Assistant Images Palette
Messages| Ready | VLFPGMLIE | ENG | YLFPGMLIE |25/03/09 |15:22 |)

When you are happy with the prototype application, you can proceed to
implement the various parts of it as a real application, gradually snapping out
the prototype parts and snapping in the real application parts, so over time the
prototype evolves into a real application.

 Products

.'J Business Object Properties - Products B@”X| :|

File Edit View Identification | Icans | Visual Styles | Filkers | Filker Sattings | Commands Enabled | Cammand Display | Custom| 4 (P
& New | Caption aducts Ff‘r‘u:uu should note that all characteristics of the
o application and the business objects can be
Capkion {Singular) 2 ;
Products il changed and tailored to handle the requirements
Hinit: of real commercial applications.
=] ﬁ ERP Protok
a Customel SE9UEnCe i You can add or change:
@ Orders | gnternal Identifier: e I identification, security and authority details
A 4 Product . multilingual details
1./ Favorites | Lnique Identifier: 130
£, HR Demo . filters
= 4k P i - -
{;ﬂ' Azﬁ:‘:i::r_ User Object Name | Type FRODUCTS | customized properties
L= =
) RAMP Exan [] Restricted Access . icons and images
7 Allow an Web . commands (or "actions") being used
7 allowinWindows . hiow the forms and panels are laid out
o Allow Selection from Mavigation Pane - fant and color schemes being used.
Allow this Object to be Opened in & Mew Window |\. the way the instance list is displayed
Last Changed 20090325-145453-YLFPGMLIE
Close
T R T g T e e
4 E ||
Messages| Ready | VLFPGMLIE | ENG | YLFPGMLIE |25/03/09 | 15:24)

For detailed instructions for how to prototype an application, refer to the tutorial
RAMP-TS001: Creating a Basic Prototype of the Modernized Application.

Stage 2: Incrementally Modernizing the 5250 Application

RAMP has been designed to provide a realistic way to manage risk and time to
market issues by using an incremental and evolutionary approach to producing
the next generation of an application. In other words, because the RAMP

architecture is not a “big bang” approach, it gives the developer the choice of
shipping multiple small incremental versions of their application to minimize
risk and the time to market.

£ Products In R&MP Stage 2 you name the 3250 screens that you want “

Fle Edit Yiew Help Windows { Framework)

(&

i.'_j Mew Prink

[%]

= {iJ ERP Protatype 1
Code Tables
Sah Customers
Orders
[Products
17 Favorites
ﬁ; HR Demo Application
@ Programming Technigques
{5 Administration
ﬁ RAMP Examples

to reanimate and choreograph them into the Framework,

You then incrementally add value to the application by
introducing features such as filkers, email, video, improved

desktop integration etc,

L. o
:| B Delivery Date :| By Cuskomer ﬁ"’f @
1By Product Name |) By Description
Cuskomer | J_\
Product Name Search IMFINITI GOLF BALLS
I - o IMFINITI GOLF CAP
IMFINITI GOLF CAP WITH EALL LOGO
7| clear List IMFINITI HEADCOYERS
IMFINITI 9" STAFF BAG
[]

&

7 Product : Notes INFINITI GOLF CAP WITH BALL LOGD I

[Dekails | 7| Motes | = Print [Sales
Status| Cateqgary | I| Mate: (Plain 3
] t Save
B CORRES. 1 Cstomr | Tt
P "\
l=/C REMINDERS 2 Check orde [_C(ategorv CORRESPONDENC | BF M
—kkachments Delete
lekter
23454.doc
£ | > J
Messages| Ready | WLFPGMLIE | ENG | VLFPGMLIE | 29/03(09 | 13:30)

Naming the 5250 Screens
Tracking and Classifying the Screens
RAMP Stage 2A: Rapidly Modernizing Complete Application Segments
RAMP Stage 2B: Individually Modernizing Frequently Used Screens

RAMP Stage 2C: Adding Value

Naming the 5250 Screens

The first step in snapping in 5250 screens into the Framework is to name them:

Favorites

File Edit Wiew Help Windows

[

Favorites

1.7 Favorites.

5& HR. Demo Application
{E} Programming Technique
i, Administration

[Framewaork.) | { Adminiskration)

{ Mew)
Properties,..)

Applications)

{

{

{ Commands...
{ Menus...)

{

Design Code Tables,..)
{ Program Coding Assistant,.,)
{ Instant Prokokyping Assiskant,..)
{ RAMP Tools ...)
{ Wirtual Clipboard)
{ Merge Tool ...)

{ Save)

{ Save As,..)
{ Save and Restart)
I

Save and Exit)

{ Execute as Web Application. ..)
{ Web Consoles)

{ Assistance)

{ Tracing)

Quick Find ...

3
To start naming the 5250
screens, the developer
starts RAMP Tools.
1./
3
3
3
3
' | ENG | wIFPGMLIB |28/03j09 | 11:42 |

B RAMP Tools Default Session (RAMP-TS)

Save

Marne

| Grouping | Las...|

Sessian

| RAMP-TS 5250 Session | Details |

Click on ant messages below to see available actions
/1 Click. on this line ko skart a 5250 identification and classification session |

N

In the RAMP Tools window he then
starts the RAMP-TS session by clicking
on this message.

4 L YWhen the session starts, he signs in.

I RAMP Tools Default Session (RAMP-TS)

Defaulk Sessi 4k

Save

Marne ;3

=l Session

= [] :

.
5
5
5
1 @

RAMP-TS 5250 Session || Details

Click. on any messages below to see available actions

1, This Form has no name that can be used to uniquely identify it,

1 Use the RAMP-T3 identification Fadility to identify this Form and elements
1 Please refer ko product documentation For information and tukarials,

To name the screen, the
Probe developer clicks on the [tion Scripks
arrow button.

i5/05 Main Menu

~

The i5/05 Main Menu is the

first screen to be named.

Motice that the Tracking
Information indicates the
form is not known.

>

g OVR

Tracking Info

I RAMP Tools Default Session (RAMP-TS) E]@@

De 4 b RAMP-TS 5250 Session | Details

| Click on ary messages below ko ses available actions ”
£ This Form iz named ISCSMainMenuu
1 It has not vet been classified as a Junction, Destination or Special form
Click here to classify this form as a JUMCTION

N4 Click here to TMATION w
=] < >
The developer [
Probe Rest names the igation Scripks
screen. .
€¢| Seszion Display Help Tracking Info

A W

QDUIL3Z.USRRC y ~ ,@ -Auto - ¥ ‘:{ £

Ndine:

lis0SMainkenu (1D = 11)

Variant Name:

Description:

Subfiles:

And the command
Fields: line field.

EleCTion or comma

[utxtSelectionCrCmd 20 7

bl O | il v O® e %) E ovR

I RAMP Tools Default Session (RAMP-TS)
De 4k RAMP-TS 5250 Session || Details

£ This Form is named ISCSMainMenuu
1 It has not vet been classified as a Junction, Destination o
Click here to classify this form as a JUMCTION

Click on any messages below to see available actions r

A

information, he closes the

EBIX]

After saving the name

screen naming area by
clicking on the button.

«

Ee=zion Dizplay Help

[
__N'_{__ Click here to classify this form as a DESTINATICN
= <
Probe Restart | Auto Update Mavigation Scripks
Screens

QDUILZZ2.USRRCD A
Name:

|iE-05r.1ﬂinl.1enu (1D = 11)

Variant Name:

Description:

Subfiles:

Auto Select On
Fields:

Name Row Col Sfl
£l2Ction of Commana

[20 2

>
[utxtSelectionCrCmd 20 7
€[> [22 2

E -

}9 - Auto- = '&l\&a

lsa v Q& e %| = ovr

Tracking Info

I RAMP Tools Default Session (RAMP-TS)

Ded b RAMP-TS 5250 Session | Details

- L
i The 5250 sign on screen is now named, and the
developer can proceed to the next screen.
1. Screens and fields can be named at any time in any o
= order. However, naming must be complete before 3
screens can be classified.
akion =
.
{| Se=sion Dizplay Help ';/i_') - Auto - ¥ S Tracking Info

15/05 Main Meru

(C) COPYRIGHT IEM CORP. 1980, 2005.

NG TSI -] (%] & ovr

For more detailed information about naming screens, refer to the tutorials
RAMP-TS002: Rapidly Modernizing Complete Application Segments and
RAMP-TS004: Naming and Classifying the Employee Screens.

Tracking and Classifying the Screens

Once the screens and fields to be reused in the modernized application have
been named, we can then proceed to classify them and to track the navigation
between them:

B RAMP Tools Default Session (RAMP-TS) M=

Defz 4 b | RAMP-TS 5250 Session i : : o -
.: = The developer is now going to "demonstrate” to
. Click on any messages below to see avalable actions RAMP h':'"'_" to reach the screen that will be
3 - This Farm is named MainLogin snapped into the Framework.
It is defined as a To do this he has to navigate through various
There are no named items an this Farm 5250 screens, classifying each of them as they
N.. | The screens that can navigate ko this screen are| are encountered in order to tell the Framework
= The screens thak this screen can navigate to are ... | how they will be used within the modernized
I application.
¢ The 5250 sign on screen is is the only exception
to this rule, it has been preclassified as a junction
| Probe Snapshot (B22x334) Festart \EEI’EEH. d
"4 A
«¢| Session Display Help //ﬁ Gk !.3 Tracking Info
' g ﬁ
|
User:
Password:
Reconnect: [
Cancel | | Login |
| Advanced |
Y
-. £ | B
5 o | |@|| aXe=TS Signon- Terminal closed LI || & ovr

I RAMP Tools Default Session (RAMP-TS)

Defz 4 b || RAMP-TS 5250 Session | Details
. Click. on any messages below to see available actions ~
: £ This Form is named OSMainienu When the developer reaches the
1 It has nat vet been classified as 8 Junction, Destination or Sped {5/0S Main menu, he classifies it as a
| Click here ko classify this form as a JUNCTION junction screen by clicking on the
L Click here to dassify this form as a DESTINATION message.
= : Click here ko classify this form as a SPECTAL
The named items on this form are:
commandling {input) bl
£ >
Probe Restart V| Auto Update Mavigation Scripks
{¢| Session Dizplay Help)@ - Auto - = '5{‘ (=] Tracking Info
A i5/05 Main Menu B Mo oo
CHT IBM CORF. 1980, 204
£ >
Q0 | (%=1 ovr

B RAMP Tools Default Session (RAMP-TS)

Defz 4 b

RAMP-TS 5250 Session || Details

Click. on any messages below to see available actions
D This Form is named CSMainMeny
It is defined as a Junction

Si

The named items on this form are:
commandling {input)

E The screens that can navigate to this screen are ...

The screens that this screen can navigate to are ...

MainLogin - Login Farm

Probe Snapshot (B22x334) Restark

Dizplay Help

i5/05 Main Menu

V' Auto Update Mavigation Scripts

j@ - Auto- = L:.L (=]

He then enters a command to

move to the next screen.

~||®|EIovr

Tracking Info

I RAMP Tools Default Session (RAMP-TS)

Defz4 b || RAMP-TS 5250 Session | Details
. Click. on any messages below to see available actions { N
y 1. This Form is named CodeTableMainMeanu This is the main menu of the
1 It has not et been classified as a Junction, Destination or Special For Code Tables application
Click here bo dassify this form as 8 JUMCTION segment.
_N" |Click here ko classify this form as a DESTINATION
= : Click here o dassiFy this Form as a SPECIAL Because this part of the
The named items on this Form are: application is seldom used, the
undefined {output) developer is not going to w
£ modernize the screens in this |»
Probe Restart || Auto Update Mavigation Scripks SEgmer'!t individually. Therefore
he classifies the menu screen as
a destination screen.
{{| Session Dizplay Help [nfo
ct Code Table
£ >
(I | (%] ovr

I RAMP Tools Default Session (RAMP-TS)

Defz 4 b

Si

RAMP-TS 5250 Session || Details

Click on any messages below to see available actions
@ This Form is named CodeTableMainienu
It is defined as a Destination
The named items on this form are:
undefined {output)

The screens that can navigate to this screen are ...
The screens that this screen can navigate to are ...

QSMainMeny -
£
Probe Snapshot (B22x334) Restark
£{ | Session

Dizplay Help

| Buto Update Mavigation Scripts

_)@ - Auto- ¥ ELE-'..;I

The developer now needs to
demonstrate to RAMP how to
navigate away from the destination

screen, so he presses F12, to return

to the i5/05 Main Menu and then

signs off.

~||®|EIovr

Tracking Info

I

+ Enter

I...iﬁ"i Irﬂ-

+ Enter

CodeTabIeMainl

B RAMP Tools Default Session (RAMP-TS)

| Def 4 k| RAMP-TS 5250 Session | Dekails
] Click on any messages below to see available actions ~
i This Form is named MainLogin
It is defined as & Junction
There are no named ikems on this form
M. | | The screens that can navigate ko this screen are ..
=) Q5MainlMeny -
The screens that this screen can navigate to are ...
05Mainfenu - il
£ I >
Probe Snapshot (B27x334) Restark
The tracking and classification
(¢¢| Session Display Help step is now complete, Tracking Info
o . A s
The tracking information = PR
shows the navigation path T
RAMP has recorded, \ T
User || ™
N A ~ Enter
st | i
Reconnect: [3 e
O5MainMenu
" cancel | Login |
~ Enter
[Advanced | MainLogin
it
- ¢ | ¥
Q [@l aX¥esTs Signon- Terminal closed || E ovr

B RAMP Tools Default Session (RAMP-TS)

: Default Session | ::F'\I.ﬁ.MP-TS 5250 Session E! Details |
i] Click. on any messages below to see available actions ~
BRE i = hict pon i mamnad Mainl ogin
— The screen and script list shows 0 this form
: the screens grouped into ste to this screen are ...
= 535” _ Junctions and Destinations. -
= [Junctions (2) b can navigake b are ...,
MainLogin g 2| v
O5MainMeny Jk_/{.f | 5
[= B Diestinations (1) -
CodeTableMainMeny Probe Snapshot (44%:334) Restart

| | Specials (2} = -
= [@] Scripts (5) |€€| Session Display Help ﬁ)i __| B Gk E% Tr?:?;g
My

FORMSCRIPT_1

FORMSCRIPT 4 MainLogin
FORMSCRIPT 14
FORMSCRIPT 1S « Enter

FORMSCRIPT 16 User: I DSMainMen
u

Password: I « Enter

Reconnect: [3 w

~F12
_— = D5MainMen
| Cancel | | Login |
[~ Advanced | ~ Enter
MainLogin

b

< |

»
. o @l axesTS Signon- Terminal closed ;I El ovR

B RAMP Tools Default Session (RAMP-TS) FEX

Default Session R{™ RAMP has generated a script for all the screens which)
- A control what happens when the screen is displayed and |——
Save -7 when the user navigates away from the screen.

R

The scripts are written in Javascript. Javascript was

Marme chosen as a the scripting language for RAMP because it is
= Session powerful, simple and easy to learn.
= Junctions (2)
[= MainLogin
=] @ Scripts

FORMSCRIPT 14
= O5MainMenu

A% Handle arriwal at this Destination */

= [oripts /% oPayload: The payload supplied by the event
RORMSCRIT L5 /% oPreviousForm: Reference to previous ohject
[|| Destinations (1)
= CodeTableMainMeny wHandle_arRRIVE: function{orayload, oPreviousFor
H @Fmpts var bReturn = true;
FORMSCRIPT 16
| Specials (2) SHOW_CURRENMT_FORM(truel; /% show the Torm in
= [s@% Seripts (5) HIDE_5250_BUTTONS(); A% Hide any 5250 sty
FORMSCRIFT 1 GET_FORM_MESSAGE(Z2); S¥ Extract messages
i : o :]
FORMSCRIPT 4 SETEUSY (Falsel; A% Last th'lﬂg done
FORMSCRIPT_14 J% <ARRIVE /> - DO not remowve or alter this 1
FORMSCRIPT_1S
FORMSCRIPT_L6) returnihreturn];
)
BUTTOMCLICK
A% sButton: The button that was <licked */ "
< | 3

RAMP Stage 2A: Rapidly Modernizing Complete Application

Segments

During the prototyping stage you will have identified those segments of the
application which are used infrequently, and you have named and
choreographed the navigation to the entry point screens of those segments. Now

you snap them in the Framework.

"E Code Tables
File Edit Wew Help Windows (Framework)

{ Administration)

e Print | g
Code Tables

El_ﬁ ERP Prototype 1 7 Code Table

Code Tables

In RAMP stage 24 you snap the entry
point screens of infrequently used
application segements directly into the
Framework without modernizing the
individual 5250 screens,

J Customers

i Orders

J Products

‘;ff Favorites

1&, HR Demo Application

@ Programming Techniques
2% Administration

ﬁ RAMP Examples

Enter number of function required or place cursor on same 1ine.

Lol SR R GRS

Code Table Maintenance Menu

Review/maintain/print product code table
Review/maintain/print section table
Review/maintain/printitem codes
Display HELP Text

Exit from Application

BEEa

Messages| Ready | VIFPGMLIB | ENG | WLFPGMLIB

How to Do It?

How to Do It?

After the 5250 entry point screens have been named and the navigation to and
from them has been recorded, they are simply snapped in the Framework:

I RAMP Tools Default Session (RAMP-TS)

Defaulk Session RAMP-TS 5250 Session | Details
7 ' [l CodeTableMainMenu
Save = — -
Zapkion To display the Code Tables Main Menu
Mame Erouping 5250 screen in the Framework, the
= Session developer selects the Details command

handler of the Code Tables business object a5
from the list of available command handlers
and saves the RAMP definition.

Junctions (4)
= :] Destinations (1)
= CodsTableMaintenu |

@ Sicripks L
@ Command H 'E' eSS '_\ I||<.?|}.rl.|l.|l. T r_I{W Layouk
Ij Specials (2} b
Scripts (7) a—Targe.ts II5;tn3u:| By
D5MainMenu Menu
Save Save
~Function key Enablement 5 r.ﬁ.ssnciated Command Handler(s1—
fey |Ca|:utic:n |Enal:||e P|Ena|:ule | Seq A Link ko Com,., | in Object a
Enter Enter I Mokes Orders
F1 Fl F B z /| Dietails Code Tables |,
F2 Rz F ©H 3 < | i
F3 Exit q
F4 F4 O] c Refresh
F5 FS F H Ew
£ | [Session [d “SESSION A I

£ > 2

See tutorial RAMP-TS002: Rapidly Modernizing Complete Application
Segments.

RAMP Stage 2B: Individually Modernizing Frequently Used

Screens

During the prototyping stage you will have identified those segments of the
application which are used often, and you have named and choreographed the
navigation to the destination screens of those segments. Now you snap them in
the Framework, and create filters to provide flexible and efficient access to the

data.

Fle Edit Yiews Help ‘Windows { Frame

In RAMP step 2B you individually modernize specific areas and
screens in key parts of your application,

E.'_j Mew Prink

After recording the navigation to the destination screens in the

[%]

[Code Tables
% Customers
Orders

[Products
1.7 Favorites
=] ﬁ&; HR Demo Application
[+ @ Programming Technigques
® =5 Administration
[+ ﬁ RAMP Examples

5250 application, you snap them in the Framework. You then create
Miltem to provide the end-users with efficient access to the data.

[S

j B Delivery Date :| By Cuskomer @
1By Product Name |) By Description

Cuskomer | »
Product Hlame - Search | || INFINITI GOLF BALLS

I e — INFIMNITI GOLF CAP

INFIMITI GOLF CAP WITH BALL LOGO
7| Clear List INFINITI HEADCOVERS

IMFINITI 9" STAFF BAG

.-"'F Product : Motez INFINITI GOLF CAP WITH BALL LOGO
[] Details

U1 &l Details | % | Mokes

Browse Maintain Product Information Details

ErEElEE @R s o o o o aigie o o I ADOSOD
Product Division . . « « + & « . . . (4545
[ELR AP 5 e & T ooi0io B o
S il e R R e

Description
Extra Description

+ [344-2234454545

Prieang S LMEEE e e
Univ Product Code FLT [+
Pl S | =kl anle =

Messages| Ready | WLFPGMLIE | ENG | VLFPGMLIE | 29/03(09 | 13:30)

How to Do It?

How to Do It?

See tutorials:

RAMP-TS003: Creating a Data Filter for Employees
RAMP-TS006: Snapping in a Basic Inquiry Screen
RAMP-TS007: Snapping in a Data Entry Function
RAMP-TS008: Changing Inquiry Screen to Update Mode

RAMP Stage 2C: Adding Value

In this step you selectively enrich your existing 5250 application by adding new
or enhanced functionality such as video, voice, e-mail, improved desktop
integration etc.

- EX

File Edit Yiews Help ‘Windows (Framework) (Administration) —

= : In RAMP step 2C you add value to
M Prink B s

B e 4 @ your existing 5250 application by

. including new or enhanced
Products functionality such as graphs, video,

[] yoice, e-mail, improved desktop
El_ﬁl ERP Prototype 1 1By Delivery Date | | By Customer integration, etc,
Code Tables By Praduct Name |) By Description | _
Custaomers s 7 pd]
Orders Product Name | Search | || INFINITIGO
Products I - INFINITI oF ap
<% Favorites INFIMNIT AP WITH BALL LOG0D
__— 7| Clear List INFINIY ZADCOVERS
ﬁ HR Demo Application INFIY #5" STAFF EAG
'@' Programming Technigues
. Administration

fi raMP Examples £ Product : Sales INFINITI GOLF CAP WITH

L3000

1ooon
Joon

]

Messages| Ready | WLFPGMLIE | ENG | VLFPGMLIE | 29/03(09 | 13:30)

| %

Adding new Visual LANSA components opens up a whole new range of ways
that modern IT technologies can be applied to improving business processes.

What Adds Value?
How to Do It?

What Adds Value?

If you do not add real business value to your modernized application, your
project may not succeed.

Things that make or save money for the business add value. They range from
business process and productivity improvements, lower training costs to happier
staff. Similarly, things that allow end-users to do their jobs faster, better and
smarter, with a higher level of personal satisfaction add value.

Introducing trivial value items such as using a tree to replace 5250 menu
navigation with a few radio buttons and drop downs may be nice to have, but to
an end-user they might even have a negative value.

Some of the ways to add real value to an existing 5250 application are:

Using smart and powerful Filters add value because they can easily do things

filters to access data that the existing 5250 application cannot do, and
because they can be tailored to exactly match
common end-user business processes.

For example, if you take a basic product enquiry
5250 screen and add a powerful filter over the
product master and order details files, you can add
a lot of value to an end-users working life, for
example by making it possible to find all products
on order today, or on back order, search by name,
search by category, etc.

Filters that allow end users to define their own
repetitive custom searches (for example every
Monday I want to see all products sold last week)
or dynamically create commonly used lists (for
example all products marked as hazardous) also
add significant real value.

If your filters simply mimic the 5250 application
you will not be adding much value.

Consolidating information Often 5250 applications require people working in
warehouses and offices to extract information
from multiple sources and consolidate it into
management reports or use it for input to disparate

and non-integrated applications.

If you can consolidate these tasks on a single form
with a single click or two, you will add real value
to management and to users.

Integrating with desktop ~ Add value by integrating functionality such as e-

applications mail that aids communications between users and
customers, and MS-Excel that aids in reporting
and analysis tasks.

Reducing repetition and Lots of 5250 applications still require users to
rekeying rekey information because the underlying 5250
applications are not integrated.

If you can reduce or eliminate this you will add
value to management and users. Smart prompting
and pre-filling 5250 screens, sometimes from a
user-definable list of templates, are also good
ways to add value.

The things listed above are simple examples of what is at the root of most
effective business process re-engineering. It is about what you already have and
then reusing it in a new improved way.

You need to consider all this at Stage 1: Creating a Modernization Framework.

How to Do It?

See tutorials:

RAMP-TS010: Using Special Field Handlers

RAMP-TS011: Snapping in Shipped Documents Command Handler
RAMP-TS012: Snapping in Shipped Notes Command Handler
RAMP-TS014: Snapping RAMP Screens into the HR Demo Application
RAMP-TSADO1: Using Buttons to Add Value to an Application
RAMP-TSADO3: Special Field Handling

Stage 3: Removing IBM i Platform Dependencies

RAMP Stage 3 is an optional stage if you do not need to support server
platforms other than the IBM i. The final objective of this stage is to replace all
the 5250 destination screens with platform independent Visual LANSA
components, in other words it involves re-engineering your existing 5250
application.

File Edit Yiews Help ‘Windows (Framework) (Administration) In RAMP Stag? 3 all 5230 screens are
replaced by Wisual LAMSA components ——
3 Mew Pririk thus removing any IBM i platfarm
dependencies. ==
B The application now makes use of the full ;
= fi [ERP Prototype 1 By DeliveryDate | Jeyq _ POWE Dkf e (15 ”*35“5" i
E Code Tahles = By Product Name |)y L Framework and the Windows desktop, L
Sah Customers p— |*‘_\
Orders Product Hame | Search | WGOLF BALLS
G‘Eﬂ Products I T = TMITI GOLF CAP
@ 1 Favorites INFINITI GOLF CAP WITH BALL LOGO
£ HR Demo Application V| Clear List mimgi ;"FEE.EIE::HBEE
[+ @} Programming Technigques

5 Administration

ﬁ RAMP Examples Y= Product : Details INFINITI GOLF CAP WITH BALL LOGD
[IDetails . Motes (= Print [E8 Sales
Product Code AO07 Save
Produck ISKD 366 5 Delete
Category AC/ES
Praduct Division IMFINITI
Supplier 5P 45
Uriy Product Code
Extra Description L0 PER ORDER.
Pricing LIk 0
Messages| Ready | WLFPGMLIE | ENG | VLFPGMLIE | 29/03(09 | 13:30)

This brings some significant benefits:

The first is that their entire application is no longer dependent upon RPG.
COBOL, DDS, or for that matter executing using an IBM i or i5 server. This
may be of critical importance if you need to sell your application to customers
who want to use Windows or Linux servers.

The re-engineering exercise may be undertaken using any technology or

approach that LANSA supports. (eg: SOA,MVC).

Stage 3 supports a rapid multiple incremental delivery approach that lowers time
to market and risk.

Stage 3 opens up the full power of LANSA, the Visual LANSA Framework, the
Windows desktop and the web browser to your applications.

Stage 3 is what makes RAMP a long term strategic approach to application
modernization. It provides a clearly defined path forward into the future rather
than a tactical “step-sideways” solution.

Prerequisite Skills

To use RAMP you need to have some basic knowledge of how LANSA and the
Visual LANSA Framework are used for application development. You may
want to review some of these tutorials (these links are to other guides):

Framework tutorials

Visual LANSA tutorials - you will need to know how to create, compile and
check programs into your System i server using the Visual LANSA editor.

Subject Matter Expertise

To modernize applications with RAMP you need to have access to someone
who has an in-depth knowledge of the business application being modernized
and the industry in which the application runs. This person should also know
what your business is wanting to achieve as a modernized output.

Without access to a subject matter expert you are unlikely to be able to
successfully modernize any application using any tool because:

Nobody would know how the existing functionality is used (as opposed to just
understanding how it works, which is different)

Nobody would be able to envision how the modernized version would be used
(as opposed to how it should work).

mk:@MSITStore:lansa048.chm::/Lansa/tutorials.htm
mk:@MSITStore:lansa095.chm::/lansa095_begin.htm

Warnings and Disclaimers

The Clever versus Risk Dilemma

As you progress with RAMP-TS you will probably notice that the VLF and the
RAMP-TS server use internal processing models that are exposed in JavaScript,
the HTML DOM, etc. You can do this by looking at the shipped code or by
using all sorts of tools explore the models.

This will lead you to the "Clever versus Risk" dilemma, which is this

You can probably write clever logic to traverse, modify, reuse or alter the
internal processing model of the framework or RAMP-TS. You may have
perfectly valid reasons for doing this and you may be able to produce some very
useful and powerful results.

However, in doing this you are taking a very clear risk. The risk is that in a
future version of the framework or RAMP-TS the internal models may change
in behaviour or content. These changes may render your use of the internal
model useless, malfunctioning or even damaging.

From the product support and maintenance perspective LANSA will support
published interfaces (ie: things documented in this, or the VLF guide).

If you traverse, modify, reuse or alter the internal processing model of the
framework or RAMP-TS you need to be aware that you are taking a risk, the
cost of which must be borne by you or the organization you work for.

There is no issue with your right to take such actions, but you need to be very
clear about the risk involved and about who will pay for any subsequent
consequences.

What's New

This version of RAMP supports LANSA Version 13.

To review new features in previous RAMP versions, see:
New Features in EPC 868 Version of RAMP
New Features in EPC 843 Version of RAMP

New Features in EPC 868 Version of RAMP

This section outlines new features in EPC868 version of RAMP-TS:

More Information is Now Accessible in In RAMP-TS and RAMP-NL
Scripts

The objCommand object now contains details about the optional arguments
associated with the current command and the reason that the command is
being executed (ie: you can now distinguish between a command execution

and a command activation). Refer to the objCommand definition for more
details.

New Functions

LOCK_FRAMEWORK Function
UNLOCK_FRAMEWORK Function
RESTART _LAST_NAVIGATION Function

To review new features in previous RAMP versions, see:
New Features in EPC 843 Version of RAMP

New Features in EPC 843 Version of RAMP
This section outlines new features in EPC843 version of RAMP-TS:

SSL Support for RAMP-TS

SSL (Secure Socket Layer)
support can now be added to
RAMP-TS. Check the

See the Use HTTPS option in
the Framework server options.

Note: To use SSL with RAMP-
TS from VLF-WEB or VLF-
NET applications, the VLF Web
server also has to operate under
SSL.

Stop Values Saved to the
Virtual Clipboard Persisting
Beyond the Current Execution

A new parameter for the
AVSAVEVALUE Function has
been added so that, when set to

Switch From RAMP-TS Command
Handlers to Other Business Objects

The new AVSWITCH Function enables a
switch from the current screen to another
business object and executes a nominated
command once there. This is a basic
implementation of the VLF Switch method.

Private Version of the SHARED Object

A private version of the SHARED Object
can now be used when RAMP-TS screens
are kept in a Private Definition Folder.
Check the Contains SHARED Object option
in the RAMP-TS (Terminal Server) group

FALSE, values saved to the VLF box to indicate to RAMP-TS that the

Virtual Clipboard can be
stopped from persisting to
further invocations of a RAMP-
TS application. The default
value is TRUE.

Control when to recognize
subfiles as tables

The new OVRSFLAUTOGUI
Function allows you to turn the

SHARED Object file is in the Private
Definitions Folder. See Contains SHARED
Object.

Note: If a Private Definition Folder is not
nominated then the SHARED Object file is
loaded from its default location.

mk:@MSITStore:lansa048.chm::/Lansa/lansa048_4990.htm
mk:@MSITStore:lansa048.chm::/Lansa/lansa048_4995.htm

Axes system flag Recognise
subfiles as tables on and off on a
screen-by-screen basis.

Licensing Requirements

Developer Quick Check List
If you are RAMP developer then use this quick check list:

Checked Type of What does it How to check it
License allow you to
do
VL-IDE To develop Can you create, compile and execute
dongle or Visual Visual LANSA (VL) applications and
Softkey LANSA check them into your System i
license applications server?
RAMP To Use LANSA REQUEST(LICENSE)
choreographer choreograph on your System i server and look for
license RAMP a valid "AXX" or "Ann" license.
screens
Axes-TS To display Use the IBM i command
license 5250 sessions WRKLICINF PRDID('TAXES*").
via the Axes- Note the asterisk.
TS server

Depending on what features have
been installed, the resulting screen
may will show these features: Base,
Terminal Server, Application Server,
Spooler File Server, Intersession,
Terminal Server etc.

LANSA To access Use LANSA REQUEST(LICENSE)
Super Server remote data on your System i server and look for
license and programs a valid "LXX" or "Xnn" license.

on your

System i via

non-5250

interfaces.

To obtain any type of license contact your LANSA product vendor.

Installation and Configuration
Installation on the Server

Backup Strategy

Configuration

When Many Developers Work on the Same Application

Installation on the Server
See the Framework Guide for detailed instructions for installing the Framework.
You need to:

First Install the Framework software on the System i Server. Note that you only
need to perform this step and none of the other steps described in the Framework
Guide because you are not installing LANSA for the Web.

Next Install and Configure the Framework on Visual LANSA Workstations.
Then Install and Configure RAMP-TS / aXes-TS on your IBM i Server.
Lastly Verify your RAMP-TS/aXes-TS Installation

Backup Strategy.

If you have used RAMP-NL (newlook), you may be interested in the frequently
asked question How is a Framework associated with RAMP-TS or RAMP-NL?

mk:@MSITStore:lansa048.chm::/Lansa/lansa048_2225.htm
mk:@MSITStore:lansa048.chm::/Lansa/lansa048_0745.htm

Install and Configure RAMP-TS / aXes-TS on your IBM i Server
Before you can use RAMP-TS you need to install and configure aXes terminal
server on your IBM i server.

Before Installation

Before starting the installation, please read the planning section in the
aXesQuick Start guide.

1. If this product is already installed, refer to aXes Quick Start guide for how to
upgrade, or contact your vendor. (To check if it aXes is installed, run the
command GO LICPGM, display installed license programs and look for
product — 1AXESO1).

2. If aXes it not installed, download it from www.axeslive.com and click on
download.

3. Install aXes following the instructions in the aXesQuick Start guide.

http://www.axeslive.com

Verify your RAMP-TS/aXes-TS Installation

After installing RAMP-TS/aXes on your IBM-I server you should verify the
installation.

Please do not proceed any further with using RAMP-TS until you can
successfully complete the following verification steps:

1. Open a browser window and enter a URL like this, specifying the host and
port of your aXes-WS server:

http://<host>:<port number>

The resulting screen should look like this:

Default Page

This is the default page provided by the axes transaction server.

Proceed to the axes home page.

2. Click on the aXes home page link.
The result should look like this:

Application Server Terminal Server Terminal Sessions

Server administration

it T3 terminal session

This application provides valuable information to your iSeries server administrators such as:

o view real time server statisfics i Data explorer session

+ Close one or multiple user sessions

By default, the usermame/password combination for the menu options above is admin/admin, and devidev for the TS development ——

session link_ It is recommended that you change these values using the instructions in the axes user quide in section 2, "Managing axes ¢ Testapplication server
securty’ L2 O RN 1
To view and manage user sessions, click on the "TS administration” ink above, then click on "TS sessions”. Click on a users name to
view their session. To close all sessions, click the "All" text above the list of checkboxes, then press the close button at the bottom of the
streen. iR

*+ Quickstart guide
Documentation Wi =

Follow the links on the right to access valuable axes technical documents.

3. Click on the TS terminal session option on the right hand side, in the launch
aXes session's group. A separate window should appear that allows you to
sign on to your IBM i server using your normal user profile and password:

User:
Password:

Reconnect: [

Cancel | | Login

| Advanced |

4. After verifying you can sign on and access your IBM i server signoff and
close the window.

5. Now click on Click on the TS development session option on the right hand

side, in the launch aXes session's group.

6. When the web logon dialog appears sign on as user dev with password dev.

The resulting screen should look like this.

User:
Password:

Reconnect: [

Cancel | | Login

I Advanced]

7. Verify that you can log on to your IBM i server, using your user profile and
password.

Backup Strategy

The library AXES and the IFS folder aXes and all its subfolders must be

included into your daily backup cycle. Failure to do this could lead to a
significant or total loss of developer work.

See Where and how are my RAMP-TS screen identifications kept?

Configuration

Verify Browser Security Settings
Configure RAMP

Verify Browser Security Settings

To use RAMP-TS it is necessary to bypass browser cross-domain security
(security relating to documents accessing documents from a different domain).

In Internet Explorer cross-domain security is bypassed by specifying the same
Host name in the VLF and Axes URL. For example, let's say hostabc resolves to
10.10.2.181.

This URL is OK because both refer to hostabc regardless of reverse proxy
configuration and hostabc added to the trusted sites:

http://hostabc:81/images/privatefolder/EX1_Test. ENG_BASE.HTM?
Developer=Y +TSIPAddress=hostabc+TSPortNumber=8080

This URL is also OK because both refer to 10.10.2.181 regardless of reverse
proxy configuration and 10.10.2.181 added to the trusted sites:

http:// 10.10.2.181:81/images/privatefolder/EX1_Test_ ENG_BASE.HTM?
Developer=Y+TSIPAddress=10.10.2.181+TSPortNumber=8080

These URLSs are NOT OK:

http://10.10.2.181:81/images/privatefolder/EX1_Test_ ENG_BASE.HTM?
Developer=Y +TSIPAddress=hostabc+TSPortNumber=8080

http://hostabc:81/images/privatefolder/EX1_Test. ENG_BASE.HTM?
Developer=Y+TSIPAddress=10.10.2.181+TSPortNumber=8080

For other browsers this is done by setting up a reverse proxy:
Set Up Reverse Proxy for Chrome, Safari and Firefox

Set Up Reverse Proxy for Chrome, Safari and Firefox
Perform this step on every PC from which RAMP-TS used.

Domain refers to the Host:Port combination. For example if the VLF uses a host
MyHost in port 81, the VLF domain is MyHost:81 and if RAMP-TS (aXes) also
uses MyHost but in port 8080, the RAMP-TS domain is MyHost:8080.
Therefore the VLF and RAMP-TS are accessing different domains.

Therefore it is necessary to use the web server Reverse Proxy feature to bypass
cross-domain security. The Reverse Proxy settings for the sample host names

look like this in the IBM i Admin instance:

Proxy

S55L Proxy | SSL Proxy Advanced FRCA Reverse Proxy Cache

General Settings | Forward Proxy | Reverse Proxy | Proxy Chaining

Reverse proxy capabilities: Enabled -

Proxy requests to remote servers:
Request type

Example Client requests
Example KRedirected requests
Client reguests
Client requests
Client requests
[Add |

Proxy action for Via headers:
Cutgoing connection buffer size:
Owerride remote error information:
Presernve host headers:

Femote senver timeout:

Local virtual path

dmirrorffoo
/mirmor/foo
ftsf

fagif

faxests/

Remote server URL
hitp Afwww myserver. com/’
hitp Awww. myserver. com/
http://MyHost:8080/ts/
http://MyHost:8080/aqgif

http://MyHost-8080/axests/

Preserve existing Via header lines -
0 Bytes ¥ Of.. -
Disabled -

Disabled ~

30 Seconds v

To set up your reverse proxy, replace MyHost:8080 with your host details. Once
you've set up the Reverse Proxy you should:

1 Restart the web server

2. Clear the browser's cache

3. Start Fiddler!

4. Try first serving the equivalent of MyHost:8080/ts/ts2/index.html and then
MyHost:81/ts/ts2/index.html.

MyHost:8080 is the RAMP-TS (aXes) domain therefore
MyHost:8080/ts/ts2/index.html should work straight away and you should see a
page like this:

» Session Display Tools Help 2 100% E| A

aX.eS Terminal Session

User .
Password
[[1 Reconnect
| Cancel | | Login | | >> |
Version 2.10.001 - Copyright @ 2009-2011 LANSA Group. All Rights Reserved.
(s 1) -|[5¢]

If you cannot see this screen, you may not have aXes installed or there is a
problem with your configuration.

MyHost:81 is the VLF domain. If you can serve the same page using the VLF
domain it means the change to the web server configuration is working.

http://support.lansa.com:2111/ts/ts2/index.html
http://support.lansa.com:2111/ts/ts2/index.html
http://support.lansa.com:2111/ts/ts2/index.html

Configure RAMP
Perform these steps to configure RAMP in the Framework:
If You Have Used RAMP-NL, Read This

Ensure Your Framework Has an Overall Visual Style Theme
Specify RAMP-TS Server Details
Set up Super-Server Session

Optionally Set up Framework Users and Security

If You Have Used RAMP-NL, Read This

If you start up a Framework that is already using RAMP-NL, it will continue to
use RAMP-NL. So to get started with RAMP-TS you need to start with a
Framework that has no RAMP-NL details associated with it.

This means that the easiest way to get started with RAMP-TS is to:

Start VLF using the Latest Shipped Demonstration System (lastshipped.xml file)
so you are using a default configuration.

You also need to ensure there is only one server defined and set it type “LANSA
iSeries + RAMP TS”.

Remove any existing RAMP-NL server definitions.
Ensure the existing vf_sy001_nodes.xml file is renamed or removed.

Ensure you are using a unique set of XML file names to store your framework
details in (on the Framework -> Properties -> Framework Details tab).

Use the “Save As” option to save this Framework with a different name.

When you have successfully configured to use RAMP TS,
when opening the RAMP Tools you should see this:

B RAMP Tools Default Session (RAMP-TS)
Default Session | Backup RAMP-TS 5250 Session| | Details

To understand more, see How is a Framework associated with RAMP-TS or
RAMP-NL?.

Ensure Your Framework Has an Overall Visual Style Theme

When using RAMP-TS you must use an overall theme for your Framework. The
use of overall theme None is not valid in RAMP-TS applications.

B Framework E|@|E|

Web Details - Developer Preferenc

st Developer Preferences - LANSADZ-YLFPGM | User Administration Settings | Instance List Relationships Summary

Identification | Custom Properties ¢ Y s { Icons | Startup | Commands Enabled | Framework Details | Command Display | Export Design | Help About

Aisual Styles

Base Style Default for Base Style - WF_45101 b2 Default
Protected Figlds | Areas Default for Protected Figlds | Areas - YF_YS106 i Defaulk
Dark Background (Small Font) Default For Dark background (Small Font) - ¥F Y5107 x Default
Dark Background (Large Font) Default for Dark background (Large Font) WF_YS104 - Default
Status Bar Fields Default for Status Bar Fields - YF_¥3111 * Defaul
LIRLs Default for URLs - WF_Y¥5105 T Defaul

~Owerall theme

Crveral theme 2007 Blue >

¥ End user can change theme

Close

In aXes there are special autoGUI subfile handling options which must be
turned off in RAMP:

Subfiles

E| Recognize subfile tables
Create subfile scrollbar
Search in all rows

Start row: |© End row:

They are not supported by RAMP-TS. In RAMP-TS many screens are hidden,
in which case how subfiles are presented is irrelevant. Where a screen is made
visible (ie: a destination) you can usually enhance the subfile in better way
using eXtensions and other RAMP-TS techniques.

Specify RAMP-TS Server Details
1. Start the Framework as a Designer.

2. In the (Administration) menu of the Framework select the (Servers...)
option.

3. Select the server named MY/AS400, or create a new server by clicking the
New button.

4. On the Identification tab enter a Caption that describes your server.

5. On the Server Details tab, enter a Name for the server and select LANSA for
System i + RAMP-TS as the Server Type.

6. Inthe RAMP-TS (Terminal Server) section of the screen enter the host and
port number of your RAMP-TS/aXes-TS server like this:

RAMP-TS (Terminal Server)

Save as deployment server 7

IP Address <host>
Part Mumber <port=
Execution Mode Load Path .ﬁEfSij'IS,I"
RAMP Tools Mode Load Path Jsfdevf

Private Definition Folder

Test RAMP-TS Tools Installation and Configuration

7. Save and restart the framework.

8. Start the Framework as a Designer again. Use the (Administration) menu
(Servers...) option again.

9. Select the server you just defined and switch to the Server Details tab.
10. Click the Test RAMP Tools Installation and Configuration button.
11. On the resulting web sign on dialog sign on as user dev, password dev.

The resulting screen should look like this:

D&a

Please do not proceed with using RAMP-TS until this verification test

can be completed successfully.

Set up Super-Server Session

When using RAMP you need a super-server session to sign on to the System i
server. To specify the sign-on option:

Start the Framework.

Display the Framework menu and select the Properties option.

In the Framework Properties, select the User Administration Settings tab.
Select the Users Sign on to a Remote Server to Use the Framework option in
Sign on Settings.

Close the dialog and save the Framework.

Help About | Web Details | Developer Preferences - iSeries Server | Developer Preferences - Web Server 2 | User Administration Settings §|
Authority Settings
[] use Framework Users and Authority

[] Store Usersin DEMS Tables YFPPFOGS/7
Store Users in XML File Mamed ;"."f_S";":l':l 1_Users,xml

Import Users Imbedded Interface Point

Sign on Settings
End Users must Signon to this Framework in both MS-Windaws and Web Browser Applications |

{7) Users Sign on Locally to Use the Framework Maximum Signon Attempts Allowed

If Maximum Allowed Sign on Attempts Exceeded

{(®) Advise User with a Message

@ Users Sign on to a Remote Server to Use the Framework

Isers May Work Offine if the Remote Server Is Mot Available © Framenork Fatal Errar

Optionally Set up Framework Users and Security
You can optionally use Framework users and security:

Display Framework properties. In the User Administration Settings tab select the
Use Framework Users and Authority option. Also select the option Store Users
in DBMS tables VFPPF(06/07. Save and restart the Framework.

Help About || Web Details | Developer Preferences - iSeries Server || Developer Preferences - Web Server 2 | User Administration Settings

Authority Settings
{sze Framework Users and Authority :

Store Users in DBMS Tables WFPPFOE/T

Mame of User Set to be Used SYSTEM

Import Users Imbedded Interface Point

In the Administration menu select the Users option.

Specify the user profile details and their authorities. For more information use
the context-sensitive help by pressing F1.

When Many Developers Work on the Same Application

When modernizing large applications, it may be necessary that several
developers share the work.

Handle Multiple Framework Versions
Script Naming Convention

Handle Multiple Framework Versions

See Framework Versions.

mk:@MSITStore:lansa048.chm::/Lansa/L4wVLF08_0040.htm

Script Naming Convention

RAMP scripts are assigned names like FORMSCRIPT_137.The name reflects
their purpose and the numerical suffix makes them unique within the current
Framework, but they have no real programmatic purpose.

Where multiple developers are working on independent Frameworks with an
intention to merge their work together at some later date, the possibility of
duplicated script names exists. While this situation does not present a technical
problem for RAMP, it can be confusing for developers trying to identify unique
scripts.

Developers can change the names of the scripts in the Script Area. The
recommend way to do this is to append a short suffix to the generated script
name, possibly relating to the 5250 screen or application that the script is
associated with.

Also see xxxxxxx is an orphan script and should be deleted.

Starting RAMP

This section summarizes how you start LANSA and the features inside LANSA
you will need when modernizing an application.

Start LANSA

Start the Framework

Start RAMP

Start the Instant Prototyping Assistant
Start the Program Coding Assistant

Start LANSA
To start LANSA:

Use the Start menu and display the Programs folder.

Select LANSA.

Select the Development Environment option

Windows Catalog
Windows Lpdate

‘WinZip

Yaulk Client

Shortout to Inkernet Explorer

Programs

‘_E“ LJ" Docurments
5

% E, Settings
. .

= j—) Search
& t)z' Help and Suppart
5 ¥

=

[=]

=

E

Launch Internet Explorer Browser

M Lansa
LANSACHTuUEorials
LANSASPS
LANSACpen
looksoftware suite 8.0
Microsoft JMET Framework SDK 2,0
Microsoft Developer Metwork,
Microsoft FxCop 1,35
Micrasoft Office
Microsaft S0 Server 2005
Microsoft Visual Studia 2005
Microsoft Web Publishing
» Modemn Diagnostic Tool
. Mozilla Firefo:

Mera
v |7 Mettwaiting
PYWiZ3 Yersion Manager Workstation
Roxio Creatar DE
Skype
Snaglt &
SOL Arwhere 9
Startup

fi Svmantec Client Security

Documentation

ENE]

-

Settings and Administration

-

Jeyvelopment Environment

-

Exec Form

-

Exec Process

LANSA Configuration Tool

Exec Form (o ROML Swstem i)
Exec Form (bo ROMLY System i)
Exec Process (ko RDML Syskem i)
Exec Process (ko RDMLY, Syskem i)

- v

-

-

MCH Software Suite

0
=
(&
&
&
=)
&

-

Swikch Sound File Converter

-

The LANSA development environment is displayed

Start the Framework

You start the Framework from the LANSA development environment:
Display the Tools menu.

Select the VL Framework - as Designer option.

E.icu:ul.s | Window Help

Zonfigure

Deplovment Toal, .,

Logical Modeler. ..

WL Framework - as Designer
WL Framework - as Developer
WL Framework - as Administrator

WL Framework - as User

#%| Misual LAMNSA Error Log

i Web Runtime Error Log

B | Lansa/Client
{5 | Integrakor Studio

gl LANSA Impart, .,

[Text Search

Start RAMP

You start RAMP from the Framework window:
Display the Framework menu.
Select the RAMP Tools... option.

LY De

O ADD dllo

File Edit View Actions Tools Help o { Administration)

(Mew)

9@ signoff D v | 4

{Properties...)

Demo Application
On Tool Bar

(Applications)
(Commands...)

(Menus...)

(Design Code Tables...)

-@- Programming Technigues

(Program Coding Assistant...)

(Instant Prototyping Assistant,

o)

(RAMP Tools ...)

(Save)
(Save As...)
(Save and Restart)

(Save and Exit)

(Execute as Web Application. .,

{Web Consoles)

) 3

LEUEL

[Assistance)

(Tracing)

r More Information

Local

[Messaqes "

| Enc | Dcxuser | 32206 | 15:03 |

The RAMP Tools window is displayed.

Start the Instant Prototyping Assistant

The tutorial RAMP-TS001: Creating a Basic Prototype of the Modernized
Application shows how to use the Instant Prototyping Assistant.

Use the Instant Prototyping Assistant to quickly prototype your application or to
modify an existing prototype

To start the Instant Prototyping Assistant, use the Instant Prototyping Assistant...
option in the Framework menu.

© Demo Application A=

File Edit VYiew Actions Tools Help BlGcuEud8 | Administration) |
€ signoff D New | = (Mew) 4 | w 7 Transfe | @l Calculator ‘

[i] [(Applications) *

i "
ERCIE D=mo Application (Commands...)
] s e (Menus,..)
: @] Web Sites { Design Code Tables...)
-I@:} Programming Technigues
(Program Coding Assistant...)

({ Instant Prototyping Assistant...]
(RAMP Tools ...)

r = .
{Save)

r : "

{Save As...)
(Save and Restart)

(Save and Exit)

(Execute as Web Application...) F
{Web Consoles) r
r More Information
[Assistance) r
(Tracing) ¥
[Messages || Local | ENG | Dcxuser | 3f22j06 | 15:06 |

Alternatively, select the New Application or New Business Object options from
the popup menu in the navigation pane:

“® Human Relations

File Edit Vew Actions Tools Help {Framewark

9 Sionoff D New w | (=) Emall =
| Human Relations
On Tool Bar]

23 i Human Relations
B8} Demo Application
-@- Programming Technigues

: (New Application...)

| ([Mew Business Object...)
{ Properties...)
(Delete)

Position 4

And then respond Yes to the message that appears:
VF_AC005 [X]
\i:) Click Yes to use the Instant Prototyping Wizard to create a new application.

-

Click Mo to create this new application manually.

Click Cancel to cancel this action.

| fes :l[Mo][Cancel J

The Instant Prototyping Assistant is displayed:

M Instant Prototype Assistant 3(

~
M
@MMMSDH-H ut business objects In groups -4—— |

What actions can users do with "business objects"” ?

Step 2. Enter the names of all the actions below: (separated by commas)

Windows designs uze the Object-=Action approach.
- {i.e. select the object you want to wark with, and then choose what you want to do with it.)
The actions should be described in end user termes, not in IT terms.

Wery concise words are used to describe "actions", because the object being worked with is already knowr
If vou =elect an object in M5-Powerpoint and use the right mouse there is a concise menu option "Copy".
- It does not say "Copy this text box to the Clipboard”.

Short verbs tend to be used to describe actions.

- (e.qg. Copy, New, Edit, Print, Approve, Transfer, Reply, Renew)

Short nouns are also used to refer to things that directly relate to the business object.

- (e.g. Details, History, Charges, Claims, Attachments, Schedule, Contacts, Documents, Expenses)

For example: If there iz a "business ohject” called Customers, vou could do theze things with a Customer; 3

EAdit Drint Nalota Arccncntc Dorant Trancactinne Carracnnndancs Vfarifs —

£ | »

Actions: Details , New , Motes |

~

Step 3. Drag and drop the actions from the list befow, onto all the appropriate business i
objects in the list on the right
The =ame action can be used with many businessz objects. w
s Details EI--a employee (exists already)
e pew il Video Action: Video emp...
s Notes i flle Email Action: Email emgl. .,

- Edit Action: Edit emplo...

=

Start the Program Coding Assistant

The tutorial RAMP-TS003: Creating a Data Filter for Employees shows how to
use the Program Coding Assistant.

Use the Program Coding Assistant to quickly create the code for Framework
filters and RAMP screens.

To start it, use the Program Coding Assistant option in the Framework menu:

© Demo Application
File Edit VYiew Actions Tools Help BlGcuEud8 | Administration)

: e ; ' ;
& sgnoff D new v | =4 | (Mew) g l > ! Transfe | @ calculator ‘
On Tool Bar i {

& |
EREIY Demo Application e

- B R (Menus...)

E -4 Weh Sites (Design Code Tables...)
@ Programming Technigues

{ Program Coding Assistant...)

(Instant Prototyping Assistant...)

(RAMP Tools ...)

(Save)
(Save As...)
(Save and Restart)

(Save and Exit)

(Execute as Web Application...) F LLisR
{Web Consoles) r

or More Information
[Assistance) r
(Tracing) ¥

[Messages || Local | ENG | Dcxuser | 3f22j06 | 15:13 |

Concepts

Steps Involved in Using RAMP
Framework Window

RAMP Window

Types of Screens

Naming Conventions
OBJECT-ACTION User Interfaces

Steps Involved in Using RAMP

You need to complete these steps:

Step Comments Modernization Application
of Infrequently Modernization
Used
Application
Modernization
1. Create a The prototype will
prototype of your evolve into the final
application. application.

You need access to
the subject matter
expert at least during

this stage.
2. Identify the Identify only Identify all 5250
5250 screens in entry point screens that need
the existing 5250 screens to be modernized
application. as well as

significant fields

3. Record the The Framework
5250 entry point needs to know how to
screens and snap access and display the

them into the screens.

Framework.

4. Create the Using powerful filters Not necessary.
required is the basis of reusing

Framework filters the 5250 screens in
new modernized
ways.

5. Optionally add For example you may
new features want to add advanced
making use of screens for for

Windows instance email, video,

functionality graphing.

6. Deploy Deploy your
application

Framework Window

© Demo Application

File Edit View Actions Tools Help

(Framework) (Administration)

92 sign Off

& New | @ Emal (= Print [[7] Details

v (@ Transfer ‘ [l Caloulator |

Employees

L, Sections
(% Maonthly Reports

------ E;' (Online Reports

{'_,_"r Anruzl Reports

.....] newlook 5250

@@ Web Sites

On Tool Bar] L[i]‘ by skill | €}, Other humber
:| DEM HR &) by Name | @ by Location | A3564
=-{5) Demo Application ; E AD0S0
B% R Specify a full or partial employee name, ADOT0
i Employees Employee Surname I:I Ll
4 sk
- Departments

Mame Phone

FREDDY BROWN (02) 567-6753
FRED JOHM ALAM... 344-2234454545
VERCNICA BROWN (02) 9609 4627
JOHN BLAKE (02) 9668 9235

Filters

Use filters to specify
selection criteria for the
objects to work with

Clear the current list ¢

Instance List

This list shows the objects that meet the
filtering criteria. Select from it the object
you want to work with.

£

[]--‘@ Programming Techniques

Navigation Pane

Use this area to move
between applications
and business objects

& Employee : Basic details (AD070-VERONICA BROWN)

| Basic details | s skills || & Transfer || ﬁ Email || = Video || |} 4l Details || E Documenis|

Employee Number
Employes Surname
Employee Given Name(s)
Street Mo and Mame

Suburb or Town

|BROWN

| VERONICA

Command Handlers

The programs you use

| 12 Railway Street

| to work with objects.

|Baulkham Hills

| They can be RAMP
iSeries screens or

State and Country NSW Australia | |LANSA components.
Post / Zip Code
Home Phone Number |(02) 9609 4627

""""""""""""] Ready | Lol | ENG | DCxuseR [10/10f08 | 15:42 i@

RAMP Window

B RAMP Tools Default Session (RAMP-TS)

Default Session | Backup RAMP-TS 5250 Session | Details
Click, on any messages below to see available actions ~
il) [e TR .ﬂ This Form is named iS05MainMenu . -
- Find Tt is defined as a Junction HEene e
The named ikems on this form are;
.Name | Last ... | Caption ukxkSelectionOrCmd {input)
=l Session Default Se... There are 3 Forms that can Mawigate to i505MainMenu
= |:| Junckions (4) MainLogin
+ MainLogin 200... pel SYSMAn w
+ i205MainMeny 200, 4 b

+ PALS¥SMain 200...
+ FindEmploves 200..,

+ Q Destinations... :
ey : B Autn - = Tracking Info
- Speciaks (2) {{| Sesszion Display Help p Auto- * CL&E et

Probe Snapshot (493x331) * Restart |V Auko Update Mavigation Scripts

3 =UNKNOWN.., 200... The spedia... jesisiee
: ¥ RAMP-TS 5250 Session
+ DisplayMess,.. 200..,

] Scripts)]

Screen
Tracking
Area

Screen and Script List

Q¥ ~|[%|E owR

Message Area

Screen Tracking Area

RAMP-TS 5250 Emulator Session
Screen and Script List

Details Area

Message Area

RAMP Screen RAMP-TS 5250 Screen and Details
Window | Tracking Area | Emulator Session Script List Area

The RAMP message area shows messages about where you are and what you
should be doing.

Messages are shown for the screen selected in the Screen Tracking Area. You
use this area also to classify screens:

Click on any messages below to see available actions
D This Farm is named MainLogin
It is defined as a Junction
There are no named items on this Form
There are 1 Forms that can Mavigate to MainLogin

iSO5MainMenu
There are 1 Forms that MainLogin can Mavigate to
iS05MainMenu
£ >
Probe Snapshok (425x245) * Restart

The message area has buttons you can use when tracking screens:

Probe Use the Probe button to examine the layout of the current 5250
screen and produce an online report. It is used for problem

analysis and to determine the rows and columns used in a
subfile.

Snapshot Use the SnapShot button to take a snapshot of the current 5250
form in GUI or 5250 mode and save it as bitmap. These
images:

¢ |Can be dragged and dropped onto RAD-PAD prototype
command tabs to enhance communications during design
sessions with other developers or end-users.

e |Are useful for producing system documentation

e |Are an aid to remembering exactly what 5250 screen is
associated with a junction, destination or special screen.

The (nnn x nnn) numbers on the button indicate the pixel size
of the snapshot that will be saved. These numbers will change
as you change the layout of the RAMP Tools window.

Restart Use the Restart button to erase the tracking information and
restart tracking.

Auto update | Use this option to turn the automatic generation of navigation
Navigation | scripts on or off. When this option is selected, a red indicator
Scripts light is shown next to the check box.

Screen Tracking Area

RAMP Message | RAMP-TS 5250 Screen and Details
Window | Area

Emulator Session Script List Area

The Tracking area displays the screens you have displayed in the current
RAMP-TS session. When you end the session, the tracking information is

cleared.

Colors used in the Tracking area for screens indicate their status and type you
have assigned to the screen:

The screen has not been identified.

[RR———

The screen has been named, but it has not been
defined in RAMP.

You need to define the screens in your application
according to their purpose:

Destination Screens are screens where the end-user
works

Junction Screen s are used for navigation only
Special Screens are used for messages etc.

e—

The screen is a junction screen.

DisplayMessages

The screen is a special screen.

PSLTABMain

The screen is a destination screen.

RAMP-TS 5250 Emulator Session

RAMP Message Screen Tracking Screen and Script Details
Window Area Area List Area

The RAMP-TS emulator session shows the 5250 session screens with action
tabs shown on the left. The Screens tab is where you specify the name of the
screen and any fields you need to name:

Sereens {{| Session Display Help J@ -Autn- ¥ @\‘ 5;}
Possible Matches A
ID Name [
i1 i305MainMenu 0

<new definition=

Current Winner: iS0OSMainMenu [11)

Screen Definition

‘ ‘ BEIE’[B‘ ‘ 6. Communications

Signature:
QDUIL3Z,.USRRCD

Name:
i503Mainkenu (Ip=11)

Variant Name:

it

Description:

Subfiles:
Start End Name

I : 2 T P, 1080, 2005,
| When this option is selected, dicking N e

links or buttons will not display the next
sCreen,
.|-""-.F'-'-‘-F |

Fialds: [Lock Screen 3 D 2o | J % e

When the Lock Screen option is selected, the current screen will remain
displayed when you click on links or buttons that would bring up other screens.

You can hide the action tabs by clicking on the Show/Hide button:

{{ | Session Display Help J@ T '5,{ =]

i5/05 Main Menu

ET [(1d enu
(C) COPYRIGHT IEM CORF. 19B0, 2005.

You should use the menus(Session, Display and Help) in the RAMP-TS session
window only when asked by your product vendor.

Screen and Script List

RAMP Message | Screen RAMP-TS 5250 Details
Window | Area Tracking Area | Emulator Session Area

The screen and script list shows all the 5250 screens defined in the Framework
and the associated scripts:

Default Session

. Fird Fird Mexk In Scripts
Marme Grouping Last Chan... | Caption a
= Session Default Session
= E| Junctions (2)
+ MainLogin 20090220,
+ iSO5MainMenu 20090220,..
= El Destinations. ..
+ PSLTAEMaIn 20090220,
= Specials (2)
+ =LINEMOWHN, . 20090218... The special UNEMNG, .,
1 DisplavMess. ., 20090220, 3
[e S Pl o
Save * Mew 5250 Application Session Delete newlook Designer

Select the screens and scripts you want to work with.

You can use the Find field on the top of the list to locate screens and scripts. If
you want to search the contents of scripts, tick the In Scripts check box.

There are two ways you can save your changes to the Framework in the RAMP
window:

Full |Performs a full Framework save including the generation of all
Save | scripts for execution in end-user mode and the uploading of web
server details.

You would normally do a full save before you want to test your
application in end-user mode.

Partial | Performs a partial Framework save so that your work is fully
Save |recoverable, but does not generate run-time scripts or upload server

details.

You will need to do a full Framework save to deploy your
application or execute it in end-user mode.

You can use the New 5250 Application Session button to organize screens and
scripts into distinct 5250 Application Sessions (see Organizing Screens and
Scripts).

Organizing Screens and Scripts

If your applications are large and complex, you may want to divide the screens
and the associated scripts into separate groups along application lines. You can
do this by creating separate 5250 application sessions for them in the RAMP
window.

Developing applications with hundreds of screens becomes increasingly
complex to manage because of the number of objects they contain. Also, the
initial start up time of an application increases in a linear manner according to
the number of objects it contains.

In this example a Personnel Application session has been created in addition to
the Default Session:

Personnel Application | Default Session

x. Fird Fird Mexk In Scripk:
Marne Grouping Last Chan... | Caption
= Session Default Session
= D Junctions (2)
+ MainLogin 20090220,,.
+ iSO5MainMenu 20090220,..
+ [El Destinations ...
+ Specials (2}
+ !g acripks (6
Save * Mew 5250 Application Session Delete

To create a new application session, click the New 5250 Application Session
button. To delete an application session, select Session in the screen and script
list and click Delete.

Note that the 5250 application sessions are completely independent of each
other and have no knowledge of each other's existence. This means that a script
in one session cannot navigate to an object in another application session and
that you will most likely have to duplicate some common scripts such as logon
and logoff and messages.

A separate session will be started for each 5250 Application Session.

To create a new grouping, click on the New 5250 Application Session button in
the RAMP window. You can edit its caption in the Session Details area.

Only one 5250 Application Session can be active at any time. To change the
application session, simply display the tab for that session. All screens that you
define and scripts you create are stored in the current 5250 Application Session.

Details Area
Session Details

Destination Screen Details
Script Area

Session Details

RAMP Message | Screen RAMP-TS 5250 Screen and
Window | Area Tracking Emulator Session Script List
Area

Use the Session Details to specify various settings for your 5250 Application
Session:

RAMP-TS 5250 Session | Details

—Gession - Default Session

Caption Default Session
User Object Name [Type RAMP_DEFALLT SESSION Verify Name
~Default RAMP Layout Dimensions

Height 412 Width 710 Top Left

Top Mask Height Bottom Mask Height

-RAMP Screen Lavout Style :
[# | Fixed Layout [| Flow Layout |
~Scroll Bars o
[Display Horizontal Scroll Bars Display Vertical Scroll Bars

| Lock framewark when unknown 5250 form is displayed
Reuse existing connection's user profile and/or password

Always link this session to a server with User Object Mame [Type

FLAMP-TS Maximum Logoff Wait Time {seconds) 10
~Spedial Field Handing
5250 Field Name Function Key l'l.-'L Handler (dass VF_AC017 object) &

1 | DEPTMENT F4 DF_PRM04 L4
2 |SECTION F4 DF_PRMO4
3 |DATE_* F4 DF_PRMOY
4 F4
5 | F4 | x
14 m 3

Caption The caption of the RAMP 5250 Application Session.

User See Object Type in the Framework Guide.

Object

Name /

Type

Height The default height of 5250 screens when displayed in the
Framework.

Width The default width of 5250 screens when displayed in the
Framework.

Top The default distance between the top of the RAMP screen tab
and the 5250 screen.
You can use this option to Hide screen titles in individual RAMP
Screens

Left The default left indentation of the 5250 screen when displayed in

the Framework.

Top Mask | The default height of a mask you can use to hide the top of the
Height 5250 screen.

You can use this option to Hide screen titles in individual RAMP
Screens

Not applicable to RAMP Web.

Bottom The default height of a mask you can use to hide the bottom of
Mask the 5250 screen.

Height

RAMP If RAMP Screen Layout Style is set to Flow, RAMP screens
Screen will be automatically resized to fit into the space available to
Layout display them.

Style If Flow is used:

e |Specific positioning and sizing of screens is not supported,

¢ [Top and bottom masking of screen areas cannot be used to hide
screen content.

¢ [You cannot use or show the function key blue bar.

e |Display Horizontal Scroll Bars and Display Vertical Scroll
Bars options cannot be used for the obvious reasons.

Fixed means the RAMP screens are not resized to fit into the

mk:@MSITStore:lansa048.chm::/Lansa/vlf0485.htm

space available to display them.

Scroll Bars

If the Display Horizontal Scroll Bars option is checked,
VLF.WIN applications will display horizontal scroll bars when a
Fixed size 5250 screen will not fit in the display area. VLF-
WEB/NET applications always act as if the Display Horizontal
Scroll Bars option is checked.

If the Display Vertical Scroll Bars option is checked, VLE.WIN
applications will display vertical scroll bars when a Fixed sized
5250 screen will not fit in the display area. VLF-WEB/NET
applications always act as if the Display Vertical Scroll

Bars option is checked.

Lock This option applies a lock to the Framework when an unknown
Framework | 5250 screen is encountered.
when When a lock is applied, the user cannot move around within the
unknown | Framework until they navigate to a defined 5250 screen.
5230 fi) rm d They can exit from (for example, shut down) the Framework
15 AISPIAYEC when such a lock has been applied.
Typically this option is used to trap unknown and/or unexpected
5250 screens.
In highly defined and managed sessions, where every 5250
screen should have been defined to RAMP, set this option on. In
unmanaged sessions always set this option off.
Reuse Use this option to indicate that when this 5250 application
existing session needs to connect to a server it should reuse the same user
connections | profile and/or password details as were used to establish the last
user profile | successful server connection.
and/or This option can be used to prevent the user from being prompted
password | to input their user profile and/or password repeatedly for each

new 5250 application session that needs to be started. Typically
they are only prompted for the first application session they
establish.

This option can be automatically overridden by individual user
profile options or by super-server connection values.

The Framework remembers the last user profile and/or password
used to establish a server connection only until the user exits
from the Framework, at which point the details are lost.

Always
link this
session to a
server with
User
Object
Name /

Type

Normally when a user needs to connect a 5250 application
session they will be asked to choose which server they want to
connect to.

Use this option to prevent the user from having to, or being
allowed to, making this server connection choice.

Using it unconditionally links a 5250 application session with a
server.

To use this option first assign an unique User Object Name /
Type to the server.

Use the Framework Administration menu Servers option to do
this.

For example, this server has been assigned the User Object
Name / Type SERVER_2.

Server Detaly | 10enDACAtN | Jeone
LadSa0?
Lozl Host

Caohon LANSAOT

L1% E

Hnt:

Sequenoe

Irvterrl demitifer s SERVER_2
Uirsguse Tdentfer: 45
User et Mame [Tyoe O | |_':i-d"‘!_:
[Restrcted Access
— Last Changed

| Oeiele |

| Mew | J

LAKNSA Comms, Admin] i Cloge

Next, set the 5150 application session to use the same name (eg:
SERVER_2).

Now the 5250 application session and the server with user object
name/type SERVER_2 are unconditionally linked.

The user can no longer choose which server to associate the
5250 application session with.

To remove this option from a session set it back to the default
value of blank.

RAMP-TS | When a RAMP-TS session needs to be logged off (signed off)
Maximum | this values specifies in seconds the maximum time that the
Logoff framework should wait for asynchronous time log off operation
Wait Time |to complete. The default value is 10 seconds. Specify any
(seconds) |integral value in the range 0 to 120. The value is in seconds.

Special Advanced prompting facility for fields.

Field . You specify the name of the field to be prompted, the function
Handling key to be used and the Visual LANSA form that is used as the
prompter.

For more information refer to Advanced Prompting

Destination Screen Details

RAMP
Window

Message
Area

Screen RAMP-TS 5250
Tracking Emulator Session
Area

Screen and
Script List

When a Destination Screen is selected in the Screen and Script List, the details

of the destination screen are shown:

&) PELTAEMain

Caption
Grouping
efault newlook Layout Dimensions

Height | 412 Width | 710

Top Mask Height

Top Left

Bottom Mask Height

AMP Screen Layouk Style
'- Session

[Fixed Layout [| Flow Layaut

~Targets

Targeted By

SOEMainMenu

S05MainMeny

Save

Save

~Function Key Enablement

~fasociated Command Handler(s)

Key |Ca|:utiu:un |Ena|:u|e 5:|Ena|:u|e| 3eq |"§
Enter Enter 1
F1 F1 Fl F z
Fz Fz Fl F 3
Fa Exit Fl F 4
F4 F4 Fl F 5
F5 F5 Fl F &
F& F& Fl F 7
F7 F7 Fl F 8
F& F& Fl F q ™

Link ko Command {Tak) | in Object User Object T... |4
Details T5_Test T5_TEST
New TS Test T5_TEST
MNotes T5_Test T5_TEST

¥ | Details Personnel Tables PERSOMMEL ...

v

Refresh
Session Id *ALTO b

You can specify these details for the destination screen:

Caption

Grouping

Optionally type a grouping name for this screen.

You can use this option to enter the same grouping name to
related screens so that they can be sorted together in the Screen
and Script List.

For more fundamental organization of screens and scripts, see
Organizing Screens and Scripts.

Default
RAMP
Layout
Dimensions

Use these properties if you want to permanently override the
default layout dimensions set in Session Details for this screen.

RAMP
Screen
Layout
Style

If RAMP Screen Layout Style is set to Flow, RAMP screens
will be automatically resized to fit into the space available to
display them.

If Flow is used:
Specific positioning and sizing of screens is not supported,

Top and bottom masking of screen areas cannot be used to hide
screen content.

You cannot use or show the function key blue bar.

Display Horizontal Scroll Bars and Display Vertical Scroll
Bars options cannot be used for the obvious reasons.

Fixed means the RAMP screens are not resized to fit into the
space available to display them.

Session means the value is inherited from the Session's
properties.

Targets

This list shows the screens this screen can navigate to.

The first screen in the list is the exit junction, that is, the screen
to which this screen navigates to by default. You can override
the exit junction in your script using the vOverrideExitJunction

property.

Targeted
By

This list shows the screens that can navigate to this screen.

Function

This is a list of all the available function keys in 5250 screens.

Key
Enablement

You can use the list to enable or disable function keys in the
5250 screen and also to enable or disable the runtime
appearance of push buttons in the RAMP screen that have the
same functionality as the corresponding function key.

Note that function key enabling is only valid for those function
keys already present in the 5250 screen.

For example, if a 5250 screen is designed to have function keys
F1, F3, F6 and F12, enabling the F10 key will have no effect in
the application since that key has no functionality in the
original screen. However, you can still enable the F10 in the
RAMP screen if you add your own script for it in the button
script of the destination screen.

To enable a function key, tick the check box in the Enable Key
column.

To display the function key as a button, tick the check box in the
Enable Button column.

The captions of the buttons can be changed in the Caption
column.

The function keys and buttons can be overridden at execution
time using the SETKEYENABLED Function.

Associated
Command
Handlers

The command handler tab where the RAMP screen will be
attached.

The command handler tabs are created when you prototype
your application.

Session ID

Specifies what System i 5250 session (ie: job) should be started
for the screen.

*AUTO : is the default value and indicates that the Framework
should manage the required 5250 session(s) automatically. This
type of session is a managed session. It is fully integrated with
the Framework, applications, business objects and instance lists
and all scripting facilities are available.

SESSION_A -> SESSION_Z: allow you to specify that an
unmanaged session is to be started for the command handler or
tab. Unmanaged sessions are primarily used to log the user on
and then drive them to a specific starting point. From that point
forward the user can move around inside the 5250 application

in an unmanaged way. Since the session is unmanaged only
very limited scripting capabilities exist. For example, a script in
an unmanaged session can not access the business object
instance list. Equally, when a user returns to an active command
handler / tab that uses an unmanaged session it is simply
redisplayed as it was when they last left it. No attempt to
navigate them or execute any scripts is attempted (because it is
unmanaged).

Unmanaged sessions are useful because they allow large pieces
of an existing application to be reused in the Framework very
rapidly.

For example, an unmanaged session might be used as the only
command associated with a business object named "System
Tables". When the user clicks on "System Tables" in the
Framework menu, a full screen 5250 session appears that logs
the user on and then drives them to the 5250 menu that
manages the maintenance of 50 (say) system tables. The entire
"System Tables" facility composed of hundreds of 5250 screens
(say) are now accessible in an unmanaged fashion, without the
need to identify and enroll them in the Framework. If the users
goes away from the "System Tables" tab and then come back
again later the current 5250 session screen, whatever it is, is
just redisplayed. No attempt is made to navigate the screen (ie:
manage it) because in all likelihood they will have left it on an
undefined or unknown 5250 screen.

In short, you should always use *AUTO unless you have a
specific need to log a user on, drive them a defined starting
point in the application, and then allow them to move around
wherever they like within the 5250 application area.

Script Area

RAMP Message | Screen RAMP-TS 5250 Screen and
Window | Area Tracking Emulator Session Script List
Area

The Details area shows the details of the script selected in the Screen and Script
List.

The scripts are generated automatically as you track your application, but
sometimes it is necessary to edit the scripts.

[=] FORMSCRIPT 83

Role : Unknown operation using and

Scripk FORMSCRIPT_SS
Caption MewEmployees - Invaoke this Form From anyhwere
Grouping
i 5 | s “'-‘6. G =@ B a e] e & &8 Screen Mame Finder
Qoool A
ooooz {
Qoan0s i
0oood vHandle_aRRIVE
Qaa0s B e L e e e e
oo0oeG A¥ Handle arrival at this Destination ¥/
Qooo7 A% oPayload: The payload supplied by the event initiator */
Qo008 A% oPreviousForm: Reference To previous object Form*/
Qoo0s
oooLo0 yHandle_arRRIVE: function(orayload, oPreviousForm)
Qooll
oooL2 var bReturn = true;
Qools
o014 if (oPreviousForm.viame == "HewEmployee"
Qools
Qoola
oooL17 A% Get the currently showing EMPRNO %/
0oo1s var strcurrEmpno = GETVALUE%“txtEmpND“j;
00019 Ef (Cthis.uTrim(strCurrempno) == """ && (this.uTrim{oPayloac
QOo20
ooonz2l A% Insert was sucessful %/
oonz2 A% Issue a message ¥/
00023 MESSAGEC 'Employee ", oPayload.empno ," created");
00024 AVCLOSEFORME Y ;
QOa2s 1
Qooa I
QoOozy
ooon2s SHOW_CURREMT_FORM{truel; /% show the form in the framework and :
Qo029 HIDE_S5250_BUTTONSE); A% Hide army 5250 style buttons displaye
ooon30 GET_FORM_MESSAGELZ2]; A% Extract messages and hide the messarc
ooon3l SETBUSY(false]; A% Last thing done - turn off the busy
Qoas2 ¥
< >
Cornmit Changes Check Scripk

The scripting toolbar has buttons to assist you when working with scripts. From
left the buttons are:

Copy
H Paste
v Cut

Undo

c Redo
Select All

@ Find

2 Replace

& Increase Font Size

i} Reduce font size
Show/Hide line numbers
Comment out lines
Uncomment out lines

e Indent lines

G Unindent lines

g Print Code

& Commit Changes

Check Script

Screen Mame Finder

which you can use to rapidly locate a screen name,
click on name to get the name of the screen pasted
into your code at current insertion point.

You can use the Scripting Pop-up Menu to help you to format and edit your
scripts.

Screen Name Finder

When writing RAMP-TS scripts you often need to type in long and case
sensitive screen names. To make this process easier you can use the screen name
finder which appears at the top of the script editor frame like this:

YA *‘j} G =@ D u & [e 7 iﬁilﬁcreen Marne Finder |

To use it, type in your script up to the point you need to input the screen name.
For example:

it (oPreviousForm.vHame == |

With the editor insert point caret where you want the screen name to be inserted.

Move up and click in the screen name finder. Use it to rapidly locate the name
of the screen you want to use by typing in a string that would be found in its
name eor caption (for example emp) and then select the screen from the list that
is displayed.

The screen name, surrounded by double quotes will be pasted into your script,
like this:

if (oPrewviousForm.wvhame == "DisplayEmployes"

To cancel the screen name finder without selecting a screen name, click back
into your script.

Types of Screens

Classifying the screens in your 5250 application is the starting point in
modernizing your application:

A Destination Screen is the 5250 screen where the end-user performs actual
work. These screens are snapped into the Visual LANSA Framework without
any modification.

A Junction Screen is used for navigation only. They are hidden in your
modernized application.

A Special Screen is a messages or other similar screen that does not fit the above
two categories.

Destination Screen

A destination screen is a screen in which the end-user works with an object.

Typically it is a maintenance screen:

£{ Seszzion Dizplay Help

pate sk1 sSkill Skill
Acquired Description

Pl =14 @

Comment Grade

MET requlrement D

But it can also be a menu (see RAMP-TS002: Rapidly Modernizing Complete

Application Segments):

{{ Session Dizgplay Help ;:I':' - Auto- 'i{f ,_:,:4

Personnel Table Maintenance Menu
Enter number of function required or place cursor on same 1ine.

Leview/Maintain/Print Department Table
iaintain/print section table

d iaintain/print skill table

Jisplay HELP Text

¥xit from Application

e
4.
5.

Fl=Help 3=EXi Flz=Cancel Fl4=Msgs

Qi o (%] = ovr

Destination screens can be reused without any modification in RAMP
applications:

2 Employees

EEX

File Edit ‘Miew Actions

Help Windows (Framework) Administration)

Spooled Files % Sign OFf Reports [Details Using SETCURSOR

Employees

NEEEEE BB EEEEE

ﬂf‘ Favorites
@; HR Demo Applics

Ajax Test
CmhSort
ColHdg Test
Englis App
Encel
Expand-Shrink

[x] [%] x

2% Administration

By Mame | "By Date of Bith | evsadary | || 4. © & B R =

A
Employee Surname - Search Emnployes | Description |A
] b Aloot JONMES BEN -
S ? iB1234 JACKS0ON STEPHEN {ia

7" Employee : Details [A1234-JACKSON STEPHEN)
[Detals | § Events skils Documents | () Emal - &video

IPA Test
Notes CA App Save
NTreeTest Employee Number o . &« . MIN
Prarnpk
Personnel Employee Surname - . . ! JACKSON
Code Tables Employee Given Name{s} : STEPHEN Probe Screen
Emplovess Street No and Mame ! B Melissa Place
“| Proc_And_Close| | Suburb or Town & West Pernant Hills Show Snapshok
| RAMP Test State and Country : N5W Australia)
1 SubType Test Home Phone Number : (02) 3871 7773 Resnentabioy
| Tst Conn De pBI:‘ e I o e . = = ST Turn Trace O
] visualStyle FE T S0k e R e e . e B e s
] %1 Spreadsheet Start Date (DDMMYY) : 14/08/96 +
Programming Te Termination Date (DDMMYY) : 0/00/00 +
Date 5kl Ska11 Skill
Acquired Code Description Comme nt
25/03/98 ADMIN1 Administratn Part 1 Met requiremen
3708/ ADMINZ Administratn Part 2
5/ ECD Ecochnomics Degree
5/06./94 ENG English Degree With distincti
< >
Messages| Ready | VIFPGMLIE | ENS | YLFPGMLIE | 24/03/09 | 14:05)

Junction Screen

The end-user uses a junction screen to move to destination screens.

{{ Session Dizgplay Help J«‘I':' - Auto- = :1\ B

MAIN i5,/05 Main Menu
SystTem: LANSADZ
Select one of the Tollowing:

. User tas
., DFFice

4. Files, Tibraries, and Tolders
. Communications
. Problem handling

9. Display a menu
. Information A stant options

. iSeries Access

. 5ign ofT

Selection or command

Fa=Retrieve Flz=Cance]l F13=Information Ass

Q & o [|%]| =1 ovr

These navigation-only 5250 screens a become invisible to the end-user in a
RAMP application.

Typical junctions are:
5250 menus
5250 "work with" style screens, which are really just data driven menus.

Most 5250 screens where keys such as order numbers, customer numbers,
product numbers etc. are entered to display or action detailed information.

Special Screen
Special screens are message and other screens that do not fit in the category of
either navigation or destination screens.

{{ Session Dizgplay Help }5 - Auto- = 'ﬂ\f ﬁ,:;

Display Program Messages

Job 036797 /VLFPGMLIE/QPADEVOOOE& started on 20/02/09 at 11:23:24 in subsystem
Message queue VLFPGMLIE is allocated to another job.

Press Enter teo continue.

F3=ExXit Flz=Cancel

Q & e [[%]| =1 ovr

These screens may appear unexpectedly at anytime in a 5250 screen flow. For
example:

The 5250 display message screen that appears at sign-on time
The 5250 break message screen that may appear at any time
Fatal error message screen(s) in your own applications.

The 5250 resume interactive session screen.

Special screens usually have a script associated with them. The script is called
an elimination script because this type of script usually sends a key or performs
an action so as to eliminate the screen from the 5250 screen flow.

Naming Conventions

The following standards are very strongly recommended for RAMP-TS
projects:

Use characters from the English alphabet (A->Z, a-z) and numbers (0 — 9) only
in names. The names are then code page invariant.

Never use imbedded blanks in names.

Limit name length to around 30 characters or less. Long names can be confusing
and are error prone when scripting and debugging.

Generally names are case sensitive.

Never implement a case based naming standard that uses duplicate names. For
example, a naming standard that used "EmployeeNumber" for a field on a screen
and "EMPLOYEENUMBER" for the same field in a subfile on that screen will
surely end up in a tangle at some stage. Names should be unique, regardless of
their case.

Naming Prompters

RAMP-TS allows prompters to be automatically associated with named fields
on 5250 screens.

When these prompters are defined, they may associate themselves with screen
fields by using a specific name like StartDate or generic name like Date_*
(meaning that any field whose name starts with Date_ should be associated with
this prompter).

If you intend to use the automatic prompt capability with generic names it will
probably influence your chosen naming standard.

OBJECT-ACTION User Interfaces

System i and Windows applications, including the Framework, share the same
basic design for user interaction: Object-Action interfaces.

In these interfaces the user first selects and object and then the action to be
performed on the object, as opposed to Action-Object interfaces (such as
command line applications) where the command is specified first and its target
object second.

Because of this fundamental similarity, System i applications fit naturally in the
Framework model:

The navigation screens of a System i application are replaced by graphical
elements in the Framework, such filters and instance lists, which the user can
use to quickly locate the object they want to work with.

The options and associated screens in a typical Work with screen become a set
of command tabs.

In the Framework the Object-Action model is expressed as a powerful graphical
user interface (GUI).
System i and Framework Applications Share the Basic Model

The basic Framework concepts of business objects, filters and command
handlers (screens) can be visualized in a System i application like this:

Filter

mands

| A e o el

Business Object Instance List

“Display Attrbutes”
Command Handler B

Here you have a:

Filter Where the Work with... command provides you with options to
filter the list of objects that are displayed. (Many "Work with
xxxx" interfaces allow you to filter inside the main display as

well).
Bus.iness The list of links that match your filter's search criteria. These links
Object are your business objects.
Instance
List
Bus.iness The Options such as 2=Edit, 7=Rename, 8=Display that you can
Object execute against an individual business object.
Commands

Command The programs that execute when you execute a command
Handlers (7=Rename or 8=Display attributes examples are shown).

In the Framework, the same concepts are visualized as a graphical user interface

(GUI) like this:

P Dt Ves Ao

Filter M Bysiness Object Instance List

L]

23 et by Coipebr et S

SR ik

] S et et Wl g e

=

e

B el

R ovinls | 1 ol | % Trarwter | 5 | e | 1

D=t Sne LY.

Lepirers br-ae ETHE
Eegiapre Georn Nare] Snbert

Lresd e e b 0 P Bl
Talnrty o Ty B v

el el Cordy L

P [T ol 2000

e P e ATT 4204

“Basic” Command Handler

b Pam W oo 52
I[] = Lerves

Brvytumn | % iy Locaton (i ty 5| Ll Omwr tamba tama -
L Lttt et

) S by Pl o Pl Lt ey L WD 0w RN BCET

. ALY R TN

) Salect ol mplryess ADGET AN MO SRR
OB PR

) Bt e Dmpicrpns falars & reaier P Teiecon rabe e Wora ST

Business Object Commands

-

)

“All Details™ Command Handler
|
“Transfer ~ Command Handler

| coumm | 5eies |12 @

Modernization Issues

The most important and complex 5250 program in an application can become a
modernization trap

How long will it take to RAMP my application?
Reuse, Reface or Rewrite?

The most important and complex 5250 program in an application
can become a modernization trap

The biggest and meanest modernization trap involves the most important and
usually most complex 5250 program in an application. In an ERP application
this program handles Order Entry, in an Insurance application it is the Policy
Master Update.

Every 5250 application has at least one of these big and mean 5250 programs.

It is attractive and logical to involve this type 5250 program in any
modernization proof-of-concept exercise on the simple basis that "if RAMP can
handle this program then it can handle anything".

As aresult a lot of time may be spent understanding the peculiarities of this
program and scripting for them. This is okay ... unless handling it consumes
excessive amounts of time and diverts all attentions away from the hundreds (or
thousands) of other important 5250 programs that also need to be modernized.
In this case it can become a trap.

An ISV site should consider: Which program would be the very first one you
would change to a new Visual LANSA component so as to best show off your
modernized product to potential customers?

An in-house development site should consider: Which program would the end-
users gain the highest productivity and usability improvements from if it was
changed to a new Visual LANSA component? What program, if it was replaced
by something better, would garner the most management and end-user support
for the modernization project?

The answer in both cases is quite probably the biggest and meanest 5250
program.

Why not consider replacing it with something better?

If this is true, then the next question should be: "Why are we spending all this
time and effort trying to reuse it, instead of just starting to replace it with
something better?"

The reason is obviously to avoid the time and cost involved in replacing it.

However, if the commercial reality is that for various marketing, business and
political reasons it will need to be replaced sooner rather than later, you should
seriously consider doing it now, instead of spending an unreasonable amount of

time trying to reuse it and allowing it to become the complete center of attention
to the detriment of all the other 5250 programs that also need to be modernized.

How long will it take to RAMP my application?

Important Note: This answer refers to RAMP stage 2 only - reusing

your existing 5250 screens. It has nothing to do with RAMP stage 3 -
replacing your 5250 screens with Visual LANSA components.

It depends on the approach you use.

Imagine a simple 5250 application made up of four menus (or some other
common access points) and 36 other screens like this:

WAL

We recommend you use this approach:

1. Initially Perform a Rapid Navigation Modernization

In this example you would identify and define the four menus (or access points)
A, B, C and D only, and snap them into RAMP as full screen destinations.

The entire 5250 application, with its modernized navigation, could now be
deployed to your end users.

Normally you would also fully modernize at least some part of the application
itself, to add more value to it.

At this stage answering the question "How long will it take to RAMP my
application?" is easy: Allow 15 minutes per menu (or common access point).
So for this example, allow 4 x 15 minutes = 1 hour.

2. Now Perform Selective and Incremental Application
Modernization

Now assess application areas A, B, C and D:

How frequently are they used?

Will full modernization increase end user productivity? How? What needs to be
done?

Will full modernization improve the end user experience? How? What needs to
be done?

Will full modernization aid the demonstration and marketing of your product?
How? What needs to be done?

Based on these assessments you might decide to:
Modernize application area A and deliver it to your users as an initial release.

Later modernize 60% of application area C and deliver it to your users as a new
version.

Not fully modernize application area D at all, because it does not add business
value.

Finally, modernize 25% of application area B and deliver a final version to your
users.

So answering the question "How long will it take to RAMP my application?"
depends upon how you approach this step.

The question cannot be answered until you decide what parts need to be fully
modernized, how much work needs to be done, and in what order.

Key Points
Navigation modernization is very rapid.
Application modernization takes longer, but adds significantly more value.

You can deliver a modernized 5250 application incrementally. You don't have to
do it all in one go.

You are not forced to fully modernize all of a 5250 application just to use it in
RAMP.

Some parts of an application may never be fully modernized before they are
replaced with new Visual LANSA components instead.

Reuse, Reface or Rewrite?

In the RAMP context the decisions about Reusing (5250 screens) versus
Refacing (using Screen Wrappers) versus Rewriting (new VL component) are
complex.

Next time you hear someone say “I could rewrite that in a week”, you need to
ensure that they have accounted for:

1. Time to discover and understand all the existing functionality and interfaces.
2. Time to redesign with a modernized UI.

3. Time to code and unit test (this step might actually be a week, as stated).

4

Time to (re)test all the existing functionality and interfaces.

When you hear people say “I can rewrite that in a week” you will often mentally
double or triple that to allow for testing, etc. Any x2 or x3 factor you apply
might actually need to be x10 or more in rewrite situations (ie: step 3 may be
less that 10% of the whole job).

The chum/wrapper solution is useful because it radically reduces the time
required to complete steps 1 and 4.

Also, if you are looking at using some sort of template/wizard/code generation
techniques, remember that you are only likely to speed up step 3.

ie: If step 3 is only 10% of the job, and you do it twice as fast, you will only
have improved the whole project by 5%, not by 50%.

Tutorials for RAMP Windows

A RAMP modernization project should progress like this. You will use an
iterative release cycle, repeatedly improving your application as time and
resources permit:

RAMP Stage1 | prototype RAMP-TS001: Creating a Basic
Prototype of the Modernized
Application

RAMP-TS005: Reviewing
Design

| Set Standards Create project standards.

| Decide on Security Decide on security/authority
policy.

| Name screens RAMP-TS002: Rapidly
Modernizing Complete
Application Segments

RAMP-TS004: Naming and
Classifying the Employee Screens

| Classify screens RAMP-TS002: Rapidly
Modernizing Complete
Application Segments

RAMP-TS004: Naming and
Classifying the Employee Screens

RAMP Stage 2A | Rapidly modernize =~ RAMP-TS002: Rapidly
Modernizing Complete
Application Segments

RAMP Stage 2B | 1ndividually RAMP-TS006: Snapping in a
modernize Basic Inquiry Screen
RAMP-TS007: Snapping in a
Data Entry Function
RAMP-TS008: Changing Inquiry
Screen to Update Mode
RAMP-TS009: Tracing

RAMP Stage 2C | Add value

RAMP Stage 3

See What Adds Value?

| Remove platform
dependencies

| Test

| Deploy

— Repeat

Navigation

RAMP-TS015: Understanding
and Handling Screen Variations

RAMP-TS003: Creating a Data
Filter for Employees

RAMP-TS010: Using Special
Field Handlers

RAMP-TSO011: Snapping in
Shipped Documents Command
Handler

RAMP-TS012: Snapping in
Shipped Notes Command
Handler

RAMP-TS013: Sending Instance
List Data to Excel

RAMP-TS014: Snapping RAMP
Screens into the HR Demo
Application

RAMP-TSADO04: Redesigning
the Screen Using aXes

Optionally remove any IBM i
platform dependencies.

Test the finished application.

Deployment Check List for
RAMP-TS

In every cycle you will move
more and more application
components from stage 2A to 2B
to 2C to 3.

The mix/ratio of stages is critical
because it impacts on how long
your project will take, and it is
dictated by how much time and
resource you have available.

Also see Advanced Tutorials.

Before You Use the Tutorials
Who Should Use the Tutorials?

Tutorials can be used by novice or experienced LANSA developers who wish to
learn how to use RAMP-TS. No advanced Visual LANSA knowledge is
required. LANSA for the Web training is required if you are using the
Framework for Web development.

How Do I Use the Tutorials?

It is recommended that you complete the Tutorials in sequence. Complete the
exercises related to the style of application that you are creating. If you are only
creating Windows applications, you may wish to skip the WEBEVENT and
WAM related exercises.

To allow for more than one developer to use the tutorials, all LANSA object
names will be prefixed with iii. You may use any three characters, such as the
initials of your name, for the iii characters. For example, if you name is John
David Smith you can use the characters JDS. When asked to create a
component named iiiCOMO01, you will create a component named JDSCOMO1.
Always remember to replace iii with your unique 3 characters.

If you are using an unlicensed or trial version of Visual LANSA, you must use
DEM to replace iii. When asked to create a component named iiiCOMO1, you
will create a component named DEMCOMO1.

What Partition Should I Use?

You need to use an RDML X-enabled partition.

It is recommended that you use the DEM partition for the tutorial. The DEM
system contains the Personnel System demonstration and all required files used
by the tutorial.

If you want to create a WEBEVENT application, do not RDML X-enable your
functions.
Tutorial Installation

In order to use the Tutorials, you must have the Visual LANSA Framework and
RAMP-TS installed. See Installation and Configuration.

The tutorials require the Personnel Demonstration System files (installed by
Partition Initialization).

How Many Developers Can Use the Training?

There is no limit on the number of developers who may use the training at the
same time. However, it is important that each developer has a unique iii
identifier for their work.

Your Feedback

Your feedback regarding these tutorials will help us improve the overall quality
of the LANSA documentation and training. Please e-mail your comments to
lansatraining@LANSA.com.au

RAMP-TS001: Creating a Basic Prototype of the Modernized
Application

Creating a prototype of the modernized application is the first step you need to
perform in using RAMP. A vision of how the completed result will look, act and
feel can be formed and executed before any actual modernization steps are
taken.

This process acts as a way of rapidly validating your design and uncovering any
new or hidden business requirements.

Objectives
To understand how vital this step is in successfully modernizing applications
To learn how to use the Framework prototyping tools

nloves
File Edit Wiew Help Windows [Adrninistra
[Spooled Files € Sign off [Details

Employees

{ Framework)

Reports

In this tutorial you will learn how to quickly create a
prototype showing what the modernized application
will be like.

You will use this prototype to elicit feedback from the

application's stakeholders and to validate your design.

[x] ¥
i, Administration "] By Mame By Date of Birth "] By Salary .ﬁ B i @
Ajax Test T o —
Cmh5ort : — || Employes | Diescription
ColHdg Test) EMPLOYEEDDOL Employes number 1
Englis App o Birthday next week EMPLOYEEODOZ Emploves number 2
Excel EMPLOYEEDDD3 Employves number 3
Expand-Shrink I2?JAN1 354 E EMPLOYEEDDD4 Employvee number 4
<" Favorites 0 Date EMPLOYEEODDS Emploves number 5
HR Demo Application EMPLOYEEDDDE Employvee number &
IPA Test IEFJAN1 964 5 |2?JANE4 5 || EMPLOYEEOOD? Emplayee number 7
Notes CA App 0 Date range ||| EMPLOYEEODDS Emploves number &
NTreeTest]) || EMPLOYEEOODY Employes number 9
= fsesy Program Coding Assistant Images Palette Emulate Search EMPLOYEEODLN Employee numbe. .

Code Tables

$

Emplovess

! Proc_And_Close

| RAMP Test D Dietails B Diocuments
"] SubType Test

| Tst Conn

"] YisualStyle

:". XL Spreadsheet named Employees.
Programming Techni

L Employee : Details [EMPLOYEEQOO05-Employee number 5]

l Events

Thiz panel will handle the action (or command) named Details for the business object

|

W

¢ | 3 Show Details Program Coding Assistant Images Palette
Messages| Ready | VLFPGMLIE | ENG | YLFPGMLIE |27/02/09 | 11:09)

To achieve this objective, you will complete the following steps:
RAMP-TS001 Step 1. Create the Application Prototype
RAMP-TS001 Step 2: Modify the Code Tables Prototype
RAMP-TS001 Step 3: Examine the Employees Prototype

RAMP-TS001 Step 4: Prototype End-User's Access to Employee Information

RAMP-TS001 Step 5. Visualize the Filters
RAMP-TS001 Step 6. Validate the Basic Prototype

Application before Modernization

In this tutorial you will be modernizing the Personnel Tables (code tables) and
the Personnel System maintenance application.

The Personnel Tables application consists of the Personnel Table Main Menu
and various table maintenance functions:

aintain/Print Department Table

Personnel Table Haintenance Henu

Review/maintain/print sect

Review/maintain/print skill table

The Personnel Tables application is seldom used, so we plan to modernize it
simply by snapping its main menu into the Framework.

The parts of the Personnel System application you will be modernizing are
employee skills maintenance and enrolling a new employee:

. Full Employee Listing

The Personnel System is used frequently, so we will be concentrating the
modernization effort in this application.

RAMP-TS001 Step 1. Create the Application Prototype

The first step in modernizing your application is always to create a prototype for
it. In order to create the prototype you need to identify the business objects the
application deals with. To do this see what words the end-users use to describe
what the system works with. These words are often reflected in the application
menus and screen titles.

In our sample application the users work with Code Tables and Employees, so
we will create a Code Tables and an Employees business object.

1. Log on to the LANSA Development Environment:

M LANSA I Documentation v

u‘j LAMSACHTukorials r .Ij Settings and Adminiskration r
) LANSASPS A |=| Development Ervironment

u‘j LANSACDER L4 E'] Exec Farm

I locksoftware suite 5.0 # 5] Exec Process

u‘j Microsoft MET Framework SOE v2.0 » [5] LaMSA Configuration Tool

dj Microsoft Developer Metwork, r E—] Exec Form (ko RDML Sywskem i)

[T Microsoft FxCop 1.35 ¥ |5 Exec Form (ho RDMLY System i)

dj Microsoft Office r @] Exec Process (ko ROML System i)

u‘j Microsoft 30U Server 2005 r @] Exec Process (ko ROMLY Swskem i)

2. In the LANSA Editor, start the Framework as a Designer:

Tools | Window Help

Zonfigure

Deplovment Toal, .,

Logical Modeler. ..

WL Framework - as Designer
WL Framework - as Administrator

WL Framework - as User

#| Misual LAMNSA Error Log

8 Web Runtime Error Log

B Lansaicient

& | Integrakor Studio

! LAMNSA Impart, .,

[# Text Search

3. Start the Instant Prototyping Assistant to create the new business objects and
application to contain them:

| ¢ Framewark) | { Administration)

{ M v |

{ Properties...)

{ Applications) 4
{ Commands. ..)

[Menus...)

{ Design Code Tables...)

{ Program Coding Assistant,.,)

{ Instant Protoktyping Assiskant, .,)

[RAMP Tools ...)

{ Wirtual Clipboard) ¥
{ Merge Tool ...)

[Save)

[Save As...)

{ Save and Restart)
{ Sawve and Exit)

{ Execute as Web Application. ..) r
{web Consoles) 4
[Assistance) ¥
{ Tracing) 4

4. Create two new business objects with the name Code Tables and Employees
(separate the names with a comma):

Main Business Dbjects: Code Tables, Emplovees|

Restore previous values

& Code Tables
& Emplovees

Mext == Zancel

5. Click Next.

6. Associate the Details command with Code Tables by dragging it to the
business object:

7. Create two new commands Documents and Events by typing them in the
Actions field (separate them with commas):

8. Associate the Details, New, Documents and Events commands with
Employees:

Dietails = i Code Tables

Mg Dekails Action; Details Code Table

Nates = i Employees

‘Documents Dekails Action: Details Employee

ol | [> New Action: New Employes
Documents Action: Documents Emploves
Events Action: Events Emploves

7. Click Next.

8. Create a new application called Personnel by typing it in the list of
applications:

Lastly add Code Tables and Employees to the Personnel application:

9. Drag the Code Tables and Employees business objects and drop them onto
the Personnel application :

'EJ Expand-3hrink. Application (exists alr... A
ﬁ; WisualStyle Application (exists alr...
ﬁ; Zmh3ork Application (exists alr...
ﬁ; Englis App Application (exists alr...
ﬁ; Motes CA App Application (exists alr...
ﬁ; Proc_and_cClose Application (exists alr...
ﬁ; ¥L Spreadshest Application (exists alr...
ﬁ; Tst Conn Application (exists alr...
= ﬁ; Personnel Application
d'lﬂ Zode Tables Business Object
{'ﬂ Emplovees Business Object a2

10. Click Next.
11. Click Finish.

The Personnel application is now created in your Framework:

£ Code Tables

File Edit Wew Help Windows {Framework)

{ Administration)

[spocled Files 2 Sign off

—| Reports 7] Detalls Using SETCURSOR .

Code Tables

[%]

% Administration

Ajax Test

CmhSort

ColHdg Test

Englis App

Excel

Expand-Shrink
1:? Favorites
Q, HR. Demo Application
IPA Test
Notes CA App
PITI‘EETESI:

NEEEEEEEEEEEERE

F Code 'I:gl:ules
Employees

Proc_And_Close
RAMP Test

SubType Test

Tst Conn

Yisualstyle

¥L Spreadsheet
Programming Techniques

HEEEEBEEERE

Search" button.

Program Coding Assistant

Filter for Code Tables.

the Code Tables to be dizplayed.
The user would normally enter search values here.

To see what a filter does, click on the "Emulate

Then select one entry in the list of Code Tables to
see how you work with detailed information.

You can edit this panel and add notes and images
to explain how it will worl:.

Images Palette Emulate Search

X

I

Thizs is a prototype of a filter program used to get Code Table | Diescrip. .

b

Messages |

Feady

| YLFPGMLIE | ENG | WLFPGMLIE | 25/02/09 | 14:37 i)

RAMP-TS001 Step 2: Modify the Code Tables Prototype

In this step you will modify the properties of the Code Tables business object by
removing the default filter created for it. When you are rapidly modernizing an
application segment by simply attaching an existing 5250 screen to the
Framework, you do not need filters.

1. Double-click Code Tables to display its properties.
2. Display the Filters tab.
3. Delete the New Filter created by default by selecting it and clicking Delete.

1" Business Object Properties - Personnel Tables

Identification | Icons | Wisual Styles | Filkers | Fiker Settings | Commands Enabled | Command Display | Cuskom Properties | SubT 4k

— I Mew Filter {| Identification | Icons | Filker Snap-in Settings
aption Mew Filker {EME
Hint: (EmG
Sequence: 1
Internal Identifier: 25997 1F34654335552260BE951 2Fa31
User Chiject Mame | Type 25997 1F34654335552260BE951 2Fa31 We
| Alow on web

o Allow in Windows

Last Changed 200902 13- 151 637-YLFPGMLIE
RAD-PAD File Name CPROGR A~ 1ILANSAS~21%_WINGS|Y LANSAL: exllexecute

M Delete

Close

Because there is no filter (and therefore no instance list), you also need to
modify the definition of the Details command:

4. Display the Commands Enabled tab.

5. Select the Details command and make its command type Business Object
Command.

1" Business Object Properties - Personnel Tables [':I@[‘S__(I

Identification | Icons | Wisual Styles | Filkers | Filker Settings | Commands Enabled | Command Display | Custom Properties | SubT 4k
To enable and disable commands drag them
between these lists ., [Details (DETAILS)

Mok Enabled | # || Enabled H_C_hc":'se Command Type _

About [IiDetails | #) Business Object Command [Instance Command

@ About Fr,,, — b

= Accounts [Sequence: 1]
Address - : :

) all Dekails ~Cormmand Options o~ Window Size _ .

2) Stay Active Defaulk = width Height

I &l Entries wWindaws

B Defaulk Command — Yes -

— F'.mu:u.unt Weh Browser

Aok o Allow on Web

Q:’/-’ Approve T i

] Aseqd 2 LTS ~Optional Arguments
7 hissess o Show an Popup Menus filpha Argument 1;

1.7 Assistant o Show on Instance List Tool Bar Alpha Argument 2

.7 Assistant, ., _

,I.-:r Ahtart Hide all Cther Command Tabs humeric Argument 1:

7 Assistant. .. Restricted Access Murmeric Argument 2:

B

Ef Attach Execute as Hidden Command
1= Atkachme. ..

9 nuthorities ¥ Menus Command Definitions

Close

A message will be displayed asking if you want to restart the Framework.

Please Mote

The design change you have just made may || Close
require vour framework, to be zaved, shut
down and then restarted befare it becomes Save and Restart
fully effective.

Afam me whenever | make this tpe of change.

6. Uncheck the message box Warn me whenever I make this type of change
and click on the Close button.

7. Close the properties window.

8. Save the Framework.

RAMP-TS001 Step 3: Examine the Employees Prototype

In this step you will examine the prototype of the Employees business object.

1. Click on Employees in the Personnel application to display your prototype:

g Employees : E' @

File Edit Wew Help “Windows {Framework) (Administration)
D Spooled Files ‘}'A? Sign Off Feports Diekails Using SETCURSOR,
Employees Instance List
[] [] x
%, Administration Filter for Employees. L) I / 7]
Ajax Test !
CmhSort This is a prototype of a filter program used to get E""ID"W#’ | Descrip...
ColHdg Test the Employees to be displayed.
Englis App
Excel The user would normally enter search values here.
Expand-Shrink
7 Favorites To see what a filter does, click on the "Emulate
£, HR Demo Application Search” button.
IPA Test
Notes CA App Then select one entry in thE_Iist pf Emplcul',rees to
NTreeTest see how you work with detailed information.
- Eetaomne You can edit thiz panel and add notes and images
g to explain how it will worl:.

- : v
i Proc_And_Close ==
) RAMP Test Program Coding Assistant Images Palette | Emulate Search
L} SubType Test :
o} Tst Conn %
" VisualStyle
| XL Spreadsheet
Programming Techniques
Messages| Ready | WLFPGMLIE | ENG | VLFPGMLIE |25/02/09 | 15:03)

2. Click on the Emulate Search button on your filter to fill the instance list with
sample data.

3. Click on one of the sample employees in the instance list to display the
command handlers associated with it.

2 Employees

File Edit Wew Help “Windows {Framework) (Administration)

Spooled Files % Sign Off Feports [Details Using SETCURSOR
Employees
25 Administration Filter for Employees. 5 0O R A @
Ajax Test o
CmhSort This is a prototype of a filter program used to get Emplayee | Diescription |‘“_
ColHdg Test the Employees to be displayed. EMPLOYEEODDL Emplovee ru...
Englis App EMPLOYEEDDDZ Emploves nu.,.
Excel The user would nermally enter search values | FEMPLOYEEDDOD3 Emplovee ..,
= here. EMPLOYEEOOD4 Emplovee ru...
‘:i‘ EMPLOYEEDDDS Emploves nu,..
% Command To see what a filter does, click on the "Emulate EMPLOYEEDDDE Emploves ru. .
Handlers et o || EMPLOYEEDOD? Employee nu...
|| EMPLOYEEDOOS Emploves nu. ..
Program Coding Assistant ~ Images Palette | Emulate Search | | EMPLOYEEOODY Emplovesnu,..
= Personnel
a Code Tables 2 .
a Epaae I Employee : Detail: [EMPLOYEEDO03-Employee number 3)

Proc_And_Close N Detals | || Documents 1 Events
RAMP Test ¥ 3
SubType Test =
Tst C
- s 'Imnl This panel will handle the action (or command) named Details for the business
VisualStyle object named Employees.
¥L Spreadsheet
@' Programming Techniques At the moment this panel is a prototype. When you have validated yvour prototype

vou would replace this panel with a real program.

R e e e e e e e e e e

Show Details Program Coding Assistant Images Palette

Messages| Ready | VLFPGMLIE | ENG | VLFPGMLIB |25/02/09 | 15:07)

Notice that the command handler for the New command is not displayed with
the other command handlers. This is because it is by default set to be a business
object command.

4. Right-click one of the employees in the instance list to display the context
menu and select the New command:

2 Employees

File Edit Wew Help “Windows {Framework) (Administration)
D Spooled Files % Sign Off Feports [Details Using SETCURSOR
Employees
[3] [] x
% A.n_iministratiun Filter for Employees. B 0O R A &
Ajax Test
CmhSort This is a prototype of a filter program used to get Emplayee | Deescription |ﬁ
ColHdg Test the Employees to be displayed. EMPLOYEEOODL Emplovee ru...
Englis App EMPLOYEEDDDZ Emploves nu.,.
Excel The user would normally enter search values | EMDIAVEENNTR - Framlovas ni
Expand-Shrink here. Bt [Documents
‘;ff Favorites EN 4. | Everts
& —_— To see what a filter does, click on the "Emulate =
HR Demo Application J EN
= iz Search" button. @ Mew
IPA Test w | | EP)
Notes CA App =gy L Detals
NTreeTest Program Coding Assistant, - Images Palette Emulate Search | | Ep -~)
= Personnel — i
Code Tables Y ;
g s " Emplopee - Details (EMPLOYEED003-Employee number Windaws
Proc_And_Close [JDetals | [Documents 1 Events Send to M5-Excel
RAMP Test ¥
SubType Test =
Tst C
= s 'Imnl This panel will handle the action (or command) named Details for the business
YisualStyle object named Employees.
XL Spreadsheet L
'@' Programming Techniques At the moment this panel is a prototype. When you have validated yvour prototype
vou would replace this panel with a real program.
L e e R e e e e e e e e S
Show Details Program Coding Assistant Images Palette
Messages| Ready | VLFPGMLIE | ENG | VLFPGMLIB |25/02/09 | 15:14)

The command handler for New Employee is displayed.

Typically you want business object commands to appear in separate windows
unrelated with the instance list, so you will change the definition of the New
command so that it is displayed in a separate window.

5. Double-click the Employees business object to display its properties.

6. In the Command Display tab change the Object Command Presentation to
Separate normal window:

7" Business Object Properties - Employees

Identification | Icons | Wisual Stvles | Filkers | Filker Settings = Commands Enabled iCDmmand DisplayE

Command Tab Style: Tabs >
Command Tab Show All: Aukornatic >
Command Tab Location: Top x
Object Command Presentation Separate normal window x.
Instance Command Presentation Ise part of the window .

| Multiline Tab sheet Captions

| Allow Float

7. Close the Employee properties.

8. Select the New command. It is now displayed in a separate window:

Employee EBX]

This panel will handle the action (or command) named New for the business
object named Employees.

At the moment this panel is a prototype. When you have validated your
prototype you would replace this panel with a real program.

This panel is input capable. You may erase this text and add your own notes
(and even pictures or images from the images palette).

Any notes you add here are saved and may be used to help you flesh out your
prototypes design and/or describe its functioning to others.

Program Coding Assiskant Images Palette

Hi327 w490 Messages Record Size

9. Close the Employee window.

In the next step you will develop the initial prototype to make it understandable
to all stakeholders.

RAMP-TS001 Step 4: Prototype End-User's Access to Employee
Information

In this step you prototype different ways the employee information can be
accessed by creating filters.

You need to provide prototype filters that search the data in various ways that
your end users might find useful (regardless of what logical files are defined) in
order to elicit their input of how they would like to retrieve employee
information.

This step is critical in modernizing your application in a way that will add value
to the end users.

Double-click the Employees business object to bring up its properties.
Display the Filters tab.

Use the New button to create two more filters.

Make the caption of the first filter By Name.

Make the caption of the other filters By Date of Birth and By Salary.

SR T o

Close the Employee properties.

The filters for Employee are now visible:

7 Employees

File Edit Yew Help Windows

[spocled Files 2" Sign off

Employees

N BB B EERE

8

BEEEEBEEBEE

. Administration

Ajax Test
CmhSort
ColHdg Test
Englis App
Excel
Expand-Shrink

IPA Test
MNotes CA App
NTreeTest
Personnel

Proc_And_Close
RAMP Test
SubType Test
Tst Conn
Yisualstyle

¥L Spreadsheet

Programming Techniques

{ Framework) { Administration)
. | Reparts [] Dwekails Using SETCURSOR, [
K x
| By Name | "By Date of Birth | | By Salary loR & &
This is an emulated RAD-PAD filter. % Employes | Description |A
EMPLOYEE,.. Emploves nu...
Type your text here. EMPLOYEE... Emploves ru...
EMPLOYEE,.. Emploves nu...
The purpose of this emulated filter is to help you EMPLOYEE... Emploves ru...
(and others) to rapidly prototype and visualize how EMPLOYEE... Eml
vour application will look and feel. AR E L
EMPLOYEE,.. Emploves nu...
| ater nn vou can rerlace it with a real filter. b EMPLOYEE... Employee nu... Lt
i] EMPLOYEE.., Employes nu,..
Program Coding Assistant Images Palette Emulate Search EMPLOYEE... Employeenu... |
g Employee : Detailz [EMPLOYEEOD05-Employee number 5]
[JDetals | [Documents ¢ Events
~
This panel will handle the action (or command) named Details for the business
object named Employees.
At the moment this panel is a prototype. When you have validated your prototype
vou would replace this panel with a real program.
L e D e e R e e S e
Show Details Program Coding Assistant Images Palette
Messages| Ready | WIFPGMLIE | ENG | VLFPGMLIE |27/02/09 | 10:11)

RAMP-TS001 Step 5. Visualize the Filters

In this step you will start to develop the initial prototype to make it
understandable to all stakeholders. You will use the RADPADs on the filters to
roughly visualize what the filters will look like.

1. Display the By Date of Birth filter.
2. Select all the text in the filter:

o Employees

File Edit Wew Help Windows {Framework) (Administration)
m Spooled Files % Sign Off | Reports [Details Using SETCURSOR
Employees
: [3] [x] x
%, Administration] By Mame :[ByDatenFBlrth "y Salary OB 4 &
Ajax Test o o
- = — 1| Empl Descripti A
LI Sort e purpose of this emulated filter is to help REHEE | =z | =
':"""_dg Test ou (and others) to rapidly prototype and EMPLOYEE... Employee nu...
Englis App isualize how your application will look and feel, EMPLOYEE... Emplayee nu...
Excel EMPLOYEE,.. Emploves nu...
j§ Expand-Shrink Later on you can replace it with a real filter. EMPLOYEE... Employee nu. .
7./ Favorites EMPLOYEE,.. Emploves nu...
@; HR Demo Application o learn more about the things you can do with BB EMPLOYEE,.. Emploves nu...
IPA Test please use the Help Assistant. ||| EMPLOYEE... Employes nu...
MNotes CA App _) EMPLOYEE... Employesnu..
NTreeTest Program Coding Assistant | Images Palette | Emulate Search EMPLOYEE... Employeeru... |
= Personnel
Code Tables S : .
Erpiees . Employee : Detailz [EMPLOYEEDQ05-E mployee number 5]
)} Proc_aAnd_Close [JDetals | [Documents 1 Events
[} RAMP Test 2
| SubType Test =
+ fil TstC
E ‘ s 'Imnl This panel will handle the action (or command) named Details for the business
VisualStyle object named Employees.
(i 3L Spreadsheet 8
Programming Techniques At the moment this panel is a prototype. When you have validated yvour prototype
vou would replace this panel with a real program.
R e L e e S e e
Show Details Program Coding Assistant Images Palette
Messages| Ready | WIFPGMLIE | ENG | VWLFPGMLIE |27/02/09 | 10:12 ()

3. Delete the text.

4. Prototype the filter by typing in text inserting pictures using the Images
Palette. For example:

By Mame | By Date of Birth =~ By Salary
This filter searches employees by date of birth.

It can be used to, for example, identify all employees who's birthday is
coming up.

Search:

o Birthday next week

I2TJAN1 964 a
o Date Z

I2TJAN1 964 a I2T.JANE4 a
o Date range : :

Program Coding Assiskant Emulate Search

5. Quickly prototype the other two filters.

6. Save and restart the Framework.

RAMP-TS001 Step 6. Validate the Basic Prototype

The first stage of prototyping your modernized application is now complete.
The prototype shows the basic structure and functionality of the application
once it is modernized:

' Employees '-_I 'E| El
File Edit Miew Help ‘Windows {Framework) § Administration)

_NTr
Per

I

EMPLOYEEDDDS Employves number 9
EMPLOYEEDDLIO Employvee numbe. ..

D Spooled Files %’ Sign QFf Reporks [Dekails Using SETCURSOR
Employees

: [«] [%] %
2%, Administration By Mame | | By Date of Birth |~ By Salary OB 4 6
Ajax Test o A .
Cmh5ort : — || Employes | Diescription
ColHdg Test . EMPLOYEEDDOL Employee number 1
Englis App o Birthday next week EMPLOYEEODOZ Emploves number 2
Excel EMPLOYEEDDD3 Employves number 3
Expand-Shrink I2?JAN1 354 5 EMPLOYEEDDD4 Employvee number 4
. Favorites 0 Date EMPLOYEEODDS Emploves number 5
HR Demo Application EMPLOYEEDDDE Employee number &
IPA Test IEFJAN1 964 5 |2?JANE4 E - || EMPLOYEEDDO? - Employee number 7
Notes CA App 0 Date range ||| EMPLOYEEODDS Emploves number &
=]

Program Coding Assiskant Images Palette Emulate Search

e =

a Emnplovess 5 : .
Proc_And_Close I Employee : Details [EMPLOYEEQO05-Employee number 5]
) RAMP Test [Details | [Documents 1 Events
) SubType Test =
) Tst Conn =
fl YisualStyl T
N . s rdEh Thiz panel will handle the action (or command) named Details for the business object
[XL Spreadsheet named Employees.
Programming Techni v
¢ I 3 Show Details Program Coding Assistant Images Palette

Messages Ready | VLFPGMLIE | ENG | YLFPGMLIE |27/02/09 | 11:24)

In real life situations at this point you need to show your basic prototype to the
stakeholders of the application to ensure that:

Your choice of business objects is understandable and acceptable to them
That the commands you have associated with the business object reflect the

ways they work with the information
That the access to the information that the filters provide is useful and adequate

When prototyping a real application this would be the time to let the end-users
try out the prototype. Users typically find it easy to give their input when they
have a concrete sample of the system available.

After collecting the feedback, adjust the initial prototype.
The prototype will be refined in step RAMP-TS005: Reviewing Design .

Summary

Important Observations

You have now completed the basic prototype of the modernized application.
Using the prototype you can:

Validate your design.

Show it to end-users and others to obtain feedback.

Quickly rework your design until it matches all the requirements.
Create alternative solutions.

What You Should Know

How to create an application and a business object in the Framework and how to
associate command handlers with the business object.

How to set Framework properties
How to use RADPADs and the Images palette to visualize your prototype.

RAMP-TS002: Rapidly Modernizing Complete Application
Segments

You do not have to use RAMP on every single 5250 screen in your application.
Often whole application segments are rarely used, and typically these can be
snapped into a Framework in a very short time

Understanding when and how to use this approach will impact how long it takes
you to complete your RAMP project.
Objectives

To show you how to quickly modernize parts of your application which are not
frequently used.

To become familiar with the basic steps in RAMPing an application.
To introduce some key concepts used by RAMP-TS.

-3

£ Personnel Tables In this tutorial you will use RAMP to modernize the menu screen of an
application and attach it to the Framewaork, This single RAMPed screen
provides access to the rest of the application,

File Edit Wiew Help Windows (F

[spocled Files S sign off

The purpose of this tutorial is to show how you can very quickly
modernize complete application segments. We recommend you do this
with all infrequently used parts of an application,

Personnel Tables

1 ‘2% Administration

t Ajax Test Personnel Table Mainter

+ CmhSort Enker

= Coltidg Test Enter number of function required or place ¢ Msgs

£ Englis App

= bcel i [s Feview/Maintain/Print Department Table Probe Screen
& E:-:pan_d—Shrlnk 2 Review/maintain/print section table .

E- Favorites 3. Review/maintain/print skill table Docurnentation
+ HR Demo Application 4. Display HELP Text

¥ IPA Test 50 Exit from Application Turn Trace On
+ Motes CA App

+ MTreeTest

Personnel

@ Code Tables
& Employees
Proc_And_Close
RAMP Test
SubType Test
Tst Conn
¥isualStyle

¥L Spreadsheet

+

[| STTTeT 2 oSueee

@ Messages | Ready VLFPGMLIE | EMG | WLFPGMLIE 13/02j09 | 13:47 IJ

&

To achieve this objective, you will complete the following steps:
RAMP-TS002 Step 1: Name the Screens

RAMP-TS002 Step 2: Classify the Screens and Track Navigation
RAMP-TS002 Step 3: Remove Cancel and Exit buttons
RAMP-TS002 Step 4: Snap the Application into the Framework

Before You Begin

You need to have your RAMP system set up, for more information see
Installation and Configuration.

In order to complete this tutorial, you must have completed the following:
RAMP-TS001: Creating a Basic Prototype of the Modernized Application

Before You Start

There are some important things you need to bear in mind before you start using
RAMP-TS:

Remember Everything is Case Sensitive!

Because RAMP-TS uses Javascript which is case-sensitive, you need to watch
your capitalization closely when you name screens and fields, create or call
variables, objects and functions.

When you encounter a problem, the first thing you should do is to check the
capitalization.

Using a RAMP-TS 5250 Session
A RAMP-Tools 5250 session is heavily tracked and monitored. This means that:

A RAMP-TS 5250 session may execute significantly more slowly than an
execution (run time) 5250 session.

You should always wait for 5250 design time screens to respond. Avoid typing
ahead. Be slow and precise in your screen actions.

Axes developer mode 5250 sessions are designed to perform Axes development
work only. This means you should not use Axes developer mode 5250 sessions
to do other non-Axes development work (eg: editing your RPG programs).

You should never use Axes developer mode 5250 sessions in end user
environments.

Understand How the 5250 Application Works

When RAMPing screens you generate scripts that deal with the way the 5250
application behaves.

Typically 5250 applications exhibit patterns of behavior, because they were
created by people who (hopefully) followed design rules and were trying to
produce a consistent 5250 UI. So, in a RAMP project:

You will need to discover these application behavioral patterns and
accommodate them in your scripts.

The thing to most avoid is discovering “surprising” or “unexpected” behaviors
after you have created 200 scripts (say) because this may mean you have to go
back and alter them all.

After RAMPing 10 typical 5250 screens (say) you should test them very
thoroughly to try to minimize the chance that something surprising or
unexpected will be uncovered later in the project.

What you know will not harm your project — the worst it can do is make the
project more complicated — it’s what you don’t know that will — so you need to
try to minimize what you don’t know.

RAMP-TS002 Step 1: Name the Screens

In this step you will name the screens in your application. Naming the screens
and the fields used for navigation (if any) is always the first step you need to
perform when modernizing applications with RAMP (do not try to track
navigation and name screens at the same time).

1. If the Framework is not running, start it.

2. Start the RAMP Tools by selecting the RAMP Tools... option in the
Framework menu:

I:.Framewcurk.]l | (Administration)
{ M b

{ Properties...)

{ Applications) ¥
{ Commands. ..)

[Menus...)

{ Design Code Tables...)

{ Program Coding Assistant,.,)

{ Instant Protokbyping Assiskant, .,)

[RAMP Tools ...)

{ Wirtual Clipboard) ¥
{ Merge Tool ...)

[Save)

[Save As...)

{ Save and Restart)
{ Sawve and Exit)

{ Execute as Web Application. ..) r
{web Consoles) ¥
[Assistance) ¥
{ Tracing) 4

The RAMP Window is displayed.

3. In the message area click on the message indicating that RAMP Tools has
not been started and choose the option to start it:

RAMP-TS 5250 Session | Details

Click. on any messages below ko see available actions
/1 Click, on this line ko skark a 5250 identification and classification session

| Start a 5250 identification and classification session |

Display Online Guide

£

2|

4. When the RAMP session starts, connect to your server system (the default
RAMP-TS developer authentication userid and password are dev and dev, but
your system values may have been changed.)

Connect to

The server ¢ requires a username and
password,

Warnming: This server is requesting that wour username and
password be sent in an insecure manner (basic authentication
without a secure conneckion),

Lser name: | | 5§ w |

Password: | |

[]remember my password

[(8] 4 l [Cancel

The RAMP-TS 5250 Emulator Session window is displayed:

B RAMP Tools Default Session (RAMP-TS) M =13
Default Session | Backup RAMP-TS 5250 Session | Details

Click. on any messages below ko see available actions |
Save 5) . . ; =
E] This Form is named MainLogin
It is defined as a Junckion
There are no named ikems on this Form
Mame

The screens that can navigate ko this screen are ...,

= Session iS0SMainMeny -
E] Junctions

@ Destinations
= ; £ | »

[] Spedals

Scripts Probe Snapshaot (529x283) Restart W Auto Update Mavigation Scripks

Keymaps || AutoGLI || Screens (€¢| Session Display Tracking Info
~ Possible Matches - L~ HP.I;J
T + =]

MainLagin Q @

|<

Current Winner:
~ Screen Definition
] | el ‘ T I User:]r_
Signature: Password: [_

Name: Reconnect [

Variant Name: 3
Cancel | Leain ¥

| & >
¢ 2 | Description: | 0 |§| i@lﬂ I@ EloVR

In the Tracking Info area you will notice that the login screen of your server is

named by default MainLogin. This is the only screen that has a default RAMP
name.

5. Click on the Show/Hide Action tabs button to hide the tabs.

Screens £¢|| Se=sion Display Help Tracking Info

Possible Matches N ?:;:1““'-5_)ﬂ T{‘ F,E_;

% Manme etickes | Show/hide action tabs button |
MainLagin . !
Current Winner Uszer:
Screen Definition Password:
| | ‘ Reconnect

6. Log on to your server system.

The first screen you may encounter is a program message:

{{| Session Dizplay Help ,,-&:I - Auto- 'il RQ

Display Program Messages

Job 03579 8/VLFPGMLIE /OPADEVOO04 started on 18/02/09 at 14:26:56 in subsystem
Message queue VLFPGMLIE is allocated to another job.

Qi o (%] = ovr

Notice that the Screen Tracking Area indicates the screen has no name
(Unknown Form).

You will now also see another window floating on the left on top of the RAMP
Tools window, the aXes Designer:

A aXes Designer -- Webpage Dialog

ﬁ Start Customizing This Screen -_'__i___n

This screen has not been customized

E View Application Properties

You will use the aXes Designer window in tutorial RAMP-TSADO04:
Redesigning the Screen Using aXes . For now, just size it as small as you can
(do this in the subsequent tutorials as well):

2 aXes Designer -- Webpage Di... @

B View Application Properties

6. To name the screen, click on the Show/hide action tabs button the top-left
corner of the RAMP-TS 5250 window:

Il RAMP Tools Default Session

Identification Layouk | Scripting Layouk

zzion Dizplay Help
Displ

Job 03573 8/VLFPGMLIE /OP AD EVO004

Message queue VLFPGMLIE s alle

7. Select the Screens tab in the tab folder that appears:

Il RAMP Tools Default Session

Identification Layouk Scripting Layouk User-Defined Script Fu

Keymaps C £{ Sess=ion

h\;’* Keyboard Maps

Current map: | Windows Keyboard ﬂ

A
@ Function Keys
F1 | F2 | F3 | F4 | F3 |
F& | Fr | F& | Fa | FH]I|

Fi1 | Fi2 | F13 | Fi4 | Fi3 |

Fi& | FAT | Fi8 | F13 | F20 |

F24 | F22 | F23 | F24 |

8. Name the screen DisplayMessages:

Keymaps | AutozUl || Screens |

— Possible Matches |

1 DisplayMessages o

<new definiticn=

Current Winner: DisplayMessages [1)

— Screen Definition

Sa el Cance | Deletel Sugge=t =
Signature:

QDDSPEXT.HEADER.SCREEM1.INFFMT

Name:

DizplayMeszages (ID = 1)

Variant Name:

Description:

Subfiles:

Start End Name Lines/Entry

9. Click the Save button:

| Keymaps | AutozUl || Screens |

— Possible Matches |

1 DisplayMessages o

<new definiticn=

Current Winner: DisplayMessages [1)

— Screen Definition
Save || Cancel | Delete | Suggest

Signature:
QDDSPEXT HEADER,SCREEMN1.INFFMT

The tracking information now shows the name of the screen:

Tracking Info

10. Move the focus to the Session window and press Enter to dismiss the
message. The i5/0S Main Menu is displayed. The tracking information
indicates that the screen does not have a name.

11. Name it i50SMainMenu in the same way as you named the messages
screen.

You will also need to name the command line field on this screen so that any
commands entered can be tracked:

12. Scroll down the list of fields in the Screen tab.

13. Locate the command line field:

Sereens {{| Session Display Help Jk.‘B -Autn- * @.\ 57'54

15/05 Main Menu

Uescription:

Subfiles:

[Auto Select

Row Col Sfl

Sign off

r 1912

Selection or command

===
20 7
| | | b etrieve
2 2 Fii=5et 1mtiz -
(C) COPYRIGHT IEM CORP. 1980, 2005.
F3=Exit

r 22 12

Fd=Brompt

r 22 24

v Qo ~|[%]E owR

14. Name the field txtSelectionOrCmd and click Save.

Screens

Y
Subfiles:
Start End Name Lines/Entry
Auto Select
Fields: |} Fimtereler
Name Row Col Sfl
o | 17 10 ~
Sign off
| 192
Selection or command
1 | 20 2
[~ | tetSelectionOrCmd 20 7
| 22 2

F3=Exit

15. Display the Personnel Table Main Menu by typing this command on the
command line on the i5/05 Main Menu screen:

lansa run psltab partition(dem)

16. Identify the screen with the name PSLTABMain.
17. Click on the arrow button to hide the tab folder.

You have now finished naming your screens.

RAMP-TS002 Step 2: Classify the Screens and Track Navigation

In this step you will classify the screens and track the navigation in your
application. When you classify a screen a script that records its navigation route
is created for it.

Before this step you might want to read this FAQ: I have made a mistake in
classifying a screen. How do I change the classification?

When navigating remember to choose menu options by typing in the number
and pressing Enter (if you click on a menu option with the keystroke, tracking
can't follow this).

1. Exit from the Personnel Table Main Menu.
2. Sign off.

3. Restart navigation tracking by clicking on the Restart button under the
Message Area:

>
Probe Snapshot (G6Zx424) = Restart

Notice that the Message Area indicates that the login screen has already been
classified as a junction:

Click on any messages below to see available actions
E' This Farm is named MainLogin

|1t is defined as a Junction|

There are no named items on this Form

There are 1 Forms that can Mavigate to MainLogin
iSO5MaintMenu

There are 1 Forms that MainLogin can Mavigate to
i205MainMenu

4. Log on to your system.

5. Classify the message screen as a Special form. Depending on your system
this may take a while, please wait until RAMP has assigned the screen type.

Click on any messages below to see available actions
1", This Form is named DisplayMessages
1. It has not vet been classified as a Junction, Destination or Special Form
lick here ko classify this Form as a JUMCTION
Zlick here to classify this Form as a DESTIMNATION
| lick here ko classify this Form as & SPECIAL |
There are no named items on this Form

6. Dismiss the message and classify the i5/0S Main Menu as a Junction.

7. Navigate to the Personnel Table Main Menu by entering this command:

lansa run psltab partition(dem)

8. Classify it as a Destination screen.

9. Now retrace your steps to track the navigation away from the destination
screen:

Press F12 To return to the i5/0S Main Menu

Enter 90 on the command line To sign off

You have now completed classifying your screens and tracking the navigation in
the application.

RAMP-TS002 Step 3: Remove Cancel and Exit buttons

In this step you will remove the Cancel and Exit buttons from the Personnel
Table Main Menu screen so that users cannot navigate to other parts of the
application from this screen.

1. Display the Default Session tab.
2. Select PSLTABMain in the list of Destination screens:

Default Session

> Find Find Mesxk In Scripks
Mame Group...| Last Changed Zaption
= Session Default Session
= EI Junctions (2)
+ MainLogin 20090218-145616-VLF. ..
+ iI505MainMenuy 20090218-150356-YLF. ..
= |E| Destinations (1)
+ PSLTAEMain 20090218-150542-YLF, ..
= Specials (2}
+ =LMNEMOWN_FOR., ., 20090218-111917-YLF... The special UMEROWM Farm
1 DisplayMessages 20090218-145511-VLF. ..
= [Scripts (5)
FORMSCRIPT_1 20090218-111918-YLF.., =UMEMOWMN_FORM= - Handle an unk...
FORMSCRIPT_Z 20090218-145616-YLF,.,, MainLogin - Invoke this Form From an. ..
FORMSCRIPT 3 20090218-1455811-YLF.., DisplavMessages - Automatically elimin. ..
FORMSCRIPT 4 20090218-150355-YLF,,, iS03MainMenu - Invoke this Form From. .
FORMSCRIPT_S 20090218-150542-YLF.., PSLTAEMain - Invake this form From a...
Save * Mew 5250 Application Session Delete newlonk Designer

The PSLTABMain screen details are shown on the right (you may have to
rearrange the RAMP window to see all the details).

3. In the PSLTABMain Function Key Enablement list, deselect the Exit and
Cancel keys:

[psiTagmain |

i

Caption
Grouping
efault newlook Lavout Dimensions
Height 412 Width 710 Top Left
Top Mask Height Bottom Mask Height
AMP Screen Layvout Skyle
[# Session || Fixed Layout
~Targets Targeted By
o4 00rmain o=400rmain

Save Save
~Function Key Enablement - | ~Associaked Commar
Ky Zaption |Enal:u|e 5:|Ena|:ule | Seq |) Link, to Command §
F3 Exit [1 11 4 " ew
F4 F4 O] . 5 [|Makes
F5 F5 EH KB 6 " |Details
F& Fé B K 7 = ||l |Fnew
F7 F7 | Fl g FlNotes
F8 F8 0 0 9 W Details
Fa Fa F F 10
F10 F10] F 11
F11 F11] F 12
Eig ,Ef;cd E E] ij Session Id Al
"

RAMP-TS002 Step 4: Snap the Application into the Framework

In this step you will snap your application into the Framework. You will also
specify that an unmanaged session is to be started for the PSLTABMain screen.

Unmanaged sessions are primarily used to log the user on and then drive them
to a specific starting point. From that point forward the user can move around
inside the 5250 application without being managed by the Framework.

So, when the user clicks on Code Tables in the Framework menu, the 5250
session logs the user on and then drives them to the menu screen. The entire
Code Tables facility (which could be composed of hundreds of 5250 screens) is
now accessible without the need to name, classify and track the screens. If the
user goes away from the command handler and then comes back again later, the
current 5250 screen, whatever it is, is just redisplayed.

1. In the PSLTABMain screen details scroll the list of available commands in
the Associated Command Handler(s) list and locate the Details command of
the Code Tables business object (note that you can sort the columns in the list
when looking for the command). Select the command:

[PeLTABMain |

-

Captian
Grouping
efaulk newlook Layvout Dimensions
Height 412 Width 710 Top Left
Top Mask Height: Botkom Mask Height
AMP Screen Layout Style
[#) Session || Fixed Layout [Flow Layout
~Targets Targeted By
SC5MainMeny S05Mainkeny
Save Save
~Function Key Enablement -, | ~hesnciated Command Handler(s)
Key Caption |Ena|:u|e KE|EnaI:|Ie | Seq | ~ Lirk to Command (Tab) | in Object | Us,., |ﬁ
Enter Enber 1 I |Detals TS _Test T
F1 F1 F] z I Mew TS Tesk Tow,
Fz Fz F L 3 [Motes T5_Test Tovi
F3 Exit O O 4 (B8 i/ iDetals Code Tables B
F4 F4 | [3 [Details Employees B
F= F= O] O] & " Mew Employees E...
Fé Fo [[7 | Documents Employees Eii
i e O O 2 | Events Employees E.,, mm
Fa F& F] g w
Fa Fo 10
O O Refresh
FI0 Fl0 F] 11
Fl1 F11 F] 1z
Session Id FAUTO
Fiz Cancel Fl F 13 | | 255" -

2. In the PSLTABMain screen details, set the Session Id to Session A:

Session Id (SESSION_A iw

3. Save your RAMP definitions by clicking the Save button and select Partial

Save:

Mew 5250 Application Session
Partial Save
f;.‘r' start ',r'-? Full Save [

When working in RAMP Tools, you typically do a Partial Save of your work.
Only when you are ready to test your application in end-user mode, you need to
do a Full Save of the RAMP definitions.

4. Display the Framework and select the Personnel application and then Code
Tables business object. The Personnel Table Main menu is displayed.

£ Code Tables
File Edit Wiew Help ‘Windows (Framework) (Administration)

B Spooled Files % Sign Off Reports [Details Using SETCURSOR
Code Tables
: [
. Administration * Code Table
Blaxest Personnel Table Maintenance Me
CmhSort Enter
ColHdg Test . .
Enter number of function required or place cursor c
Englis App d . Msgs
Excel :
= = = : Probe Screen
Expand-Shink [1 2- R.E\-"! ew,f.h'la'! nta1_ n,:f F'r"! nt Dgpar_' tment Table
‘;f;’ Favorites 2 Rew_ en/ 'na_'|_ nta1_n,f pr'|_ nt se;t1 on table B
A N 3. Review/maintain/print skill table
i HR Demo Application 4. Display HELP Text
IPA Test 5. Exit from Application e
MNotes CA App
NTreeTest
[= Personnel

Code Tables
Emplovees

Proc_And_Close
RAMP Test
SubType Test
Tst Conn
YisualStyle

0

XL Spreadsheet
Programming Techniques

EEEEBEEEE

£ | ¥
Messages| PReady | VIFPGMLIE | ENG | VLFPGMLIE |27/02/09 | 14:44)

5. Select one of the options in the menu to access the code tables.

“' Code Tables |Z| |E| [z|

File Edit Wiew Help ‘Windows (Framework) Administration)
D Spooled Files % Sign Off Reports [Details Using SETCURSOR
Code Tables
: []
2%, Administration # Code Table
Ajax Test . . . "
Review/Maintain/Print Department
CmhSort Probe Screen
ColHdg Test
£ Dept Depart Docurnentation

Englis A
- E - I £ sel Code Descri
alild dShrink ADM ADMINISTRATOR DEPT Turn Trace O
E:-:pan_t—ﬁ L ALD INTERNAL AUDITING
- H:v;:n'?:ﬂ lication FLT FLEET ADMINISTRATION
= IPA Test pp GAC GROUP ACCOUNTS
+ esl
Notes CA App INF INFORMATION SERVICES
NTreeTest LEG LEGAL DEPARTMENT
= Personnel MIS MAMAGEMNT INFORMATIO

a Code Tables MET MARKETING DEPARTMENT

a Emplovess S0 SALES & DISTRIEBUTION
Proc_and_Close TRVL TRAVEL DEFARTMENT
RAMP Test TsT TESTING
SubType Test
Tst Conn
YisualStyle
XL Spreadsheet
ﬁ:} Programming Techniques
£ | ¥ | select department to review/change/delete or use AD
Messages| PReady | VIFPGMLIE | ENG | VLFPGMLIE |27/02/09 | 1446)

Note that your screen may look slightly different depending on how your system
is set up.

The code tables maintenance application segment is now modernized and fully
functional in the Framework. Note that depending on your RAMP-TS
configuration your modernized screen may look slightly different.

Summary

Important Observations

You do not have to use RAMP on every single 5250 screen in your application.
Often whole application segments are rarely used, and typically these can be
snapped into a Framework in a very short time

You need to carefully consider how much time and resources you want to spend
modernizing parts of an application.

You can do the naming at any time in any order and you don't have to name all
the screens and fields used in navigation in a single session. However, you need
to name all screens and fields before you classify them and track the application
navigation.

What You Should Know

How to create an application and a business object in the Framework and how to
associate command handlers with the business object.

How to name screens

How to classify screens and track navigation
How to enable and disable buttons on a screen
How to snap your screen into the Framework.

RAMP-TS003: Creating a Data Filter for Employees

In this tutorial you will create a functional By Name filter for the Employees
business object. You will use the Program Coding Assistant to create the filter.
Objectives

Understand how fundamentally filters add value to a modernized application

Learn how to quickly create filters to provide different ways of accessing
information in the application

°
In this tutorial you will create a filker which]
Fle Edit View Help ‘windows (Framework) (Admiistration) locates employees by name.
D Spooled Files %‘ Sign Off Reports Dietails Lsing SETJ Filters provide one of the most powerful ways to
Employees add value when modernizing an application.
r - |
) [] [] y ¢
5 Administration A1 “lByMName |~)ByDateofBirth || By Salary 7
Ajax Test
CmhSort Employee Surname Emplo... | Description
ColHdg Test 5 &0193 SMITHSON FRED
Englis App , A1002 SMYTHESON JOHN
W | Clear List
Excel 41003 SMITHEY ROBERT
Expand-Shrink A1004 SMITHSON PALL
‘:'_I‘ Favorites &1005 SMITHS PETER. WILLLAM
‘% HR Demo Application A1006 SMITHERS JACK
IPA Test &1007 SMELL GEORGE
MNotes CA App 41003 SMEDDOM ALLAN
NTreeTest A1009 SNASHALL DAMIAN
= Personnel 41089 SAMDERS MIKE
@ Code Tables ®
ﬁ Employees
Proc_And_Close
RAMP Test
SubType Test
Tst Conn
Yisualstyle
¥L Spreadsheet
@} Programming Techniqu o
£ |
Messages Ready | VLFPGMLIE | ENG | WLFPGMLIE | 27/02/09 | 14:47 |

To achieve this objective, you will complete the following steps:
RAMP-TS003 Step 1. Creating Your Real By Name Filter
RAMP-TS003 Step 2. Snapping In the By Name Filter
RAMP-TS003 Step 3. Filter Code

Before You Begin

In order to complete this tutorial, you must have completed the following:
RAMP-TS001: Creating a Basic Prototype of the Modernized Application
RAMP-TS002: Rapidly Modernizing Complete Application Segments

RAMP-TS003 Step 1. Creating Your Real By Name Filter

In this step, you will create a real filter which searches the PSLMST file by
employee surname. You will also learn how to use the Program Coding
Assistant.

1. Click on the Program Coding Assistant button in the By Name filter.

2 Employees -_ E”X'
File Edit Wiew Help Windows {Framework) (Administration)

Spooled Files % Sign OFf Reports Details Using SETCURSOR,

[] Fi x

% Administration “IByMame | "By Datecf Birth | By Salary)
Ajax Test
CmhSort
ColHdg Test
Englis App
Encel
Expand-Shrink

77 Favorites . e

i Aoplicati The purpose of this emulated filter is to help you

& emo Application {and others) to rapidly prototype and visualize how

IPA Test your application will look and feal,

Notes CA App v

NTreeTest =
Ersunnel
PrdE_ _
RAMP Test

SubType Test

Tst Conn

Yisualstyle

¥L Spreadsheet

o} Programming Techniques

~
— || Emplovee

This is an emulated RAD-PAD filter.

Type your text here.

Program Coding Assistant | Images Palette Emulate Search

(= e e = I e =

PEEEE B @
SETTTeT 2 oTee

Messages| Ready | VLFPGMLIE | ENG | VLFPGMLIE |27/02/09 | 13:21 ()

The Program Coding Assistant window is displayed. It allows you to create
different types of components that can be plugged into your filters, instance
lists and command handlers. It is highly recommended to use the program
coding assistant when you first start using the Framework.

Initially you will most likely use filters that generate a component that can be
executed (e.g. CRUD Filter (Create/Read/Update/Delete), Filter that searches
a file or view). As you progress you might only use a skeleton filter or
simply copy from one that is similar to one that you want to create.

If you are using a non-English system, click on Framework -> Your
Framework in the top-left tree view. The Set LANSA code generation
preferences option appears at the bottom. Select this option and set your
preferences.

. In the list on the top left, ensure the Personnel application, Employees and
the By Name filter are selected.

Underneath it, select Native MS Windows as the platform.

As the type of code you want to generate, select Filter that searches using a
file or view.

M Program Coding Assistant

Gelect the object vou want to generate code For

Application-=Tsk Conn

= Application- =Personnel
Business Object-=Code Tables
= Business Cbject- >Employees
[Command Handler-=Details
(& Command Handler-»New
[Command Handler- >Documents

1, Command Handler- =Events

—_ Fier-3By Name
"1 Filter-=By Date of Birth
1 Filker-By Salary

182

Refresh

glict the platform wou want bo generate for
(8] Plative M5 Windows
|| Web - using *\WEBEVENT Functions

| | Web - using \WAM components

(] Weh - using AJAY stvle components

Select the bype of code you want to generate

Filter that searches by all logical views of a file
i"DLIC Eilka

1
Filter that searches using a file or view |

& sheleton filker
Search button event handling routing (code fragment)
Invoke #avlistManager, AddtoList (code Fragment)

6. Click the Next button.

| s

FEX

Filker that searches using a file or view

A
What? This assistant produces the code for a filter that searche:
information using a specified physical file or logical view.
Filters are used to dynamically create business object inst
lists (e.q. lists of Customers, lists of Products, lists of Ord
lists of Employees, etc).
Typically Visual LANSA Framework filters are presented liks
example (in the area circled in red):
¥ Demwenlirale b alion
B Gl Yew gctions Tode Hep (Wied) [Adveriration)
o Miw | [Eral "J!_.'IM ¥ Tamia ﬂl:d:nhn
T A it BL0G0
- [l emniteatin Appk: G1GT a0 AR
0 Engloses 4T FREODT BATWH
£} Duparreerer
B Saction
8 L
ol H
ﬁm“ Daalin
<] Dndres fgperts 8 i, e GNP FCR
e L [e e e
e oriralll D [
o) Hos 2 Ervciopss S uname BATWN
Errglcyan G Narmalz] WERDHICA
ot Ho e Mlarm 12 Ribasy Stioi
bty i Tiwmt By Hiti
b g Coamiiy e sl
Post i Tp e Fil:) v
Hrwrwn P Flarbat A W AR -
—
Mt =3 Cancel

7. On the next page specify PSLMST as The physical file that most closely

resembles this business object.

M Program Coding Assistant

Belect the object vou want to generate code for

= @ Busingss Object- >Emplovess
[Command Handler-=Details
(& Command Handler->Hew
[command Handler->Documents
1\, Command Handler- =Events
" Filter- =By Mame
"] Filter-»By Date of Birth
" Filter-»By Salary
[@ Command Handier-=About Framework
% Command Handler- »Exit
5€ Command Handier-5ign OFf

Command Handler- =Assistant Example 1
7 Carmmand Handlsr- = 4zzickant Frarmnla 2

Refresh

Select the platform vou wank bo generate for
o) Mative M5 Windows

Filter that searches using a file or view

Specify the identification protocol you have decided to use for this busingss object, IF a physical file
resembles this business object specify its name and the assistant will attempt to automaticall deduce a

basic identification protocol For vau,

The: physical file that most closely

resembles this busingss object is; PSLMST

Personnel

ATSUAL IDENTIFIERS (For building YisuallDl and YisuallDZ values)

Field Narne Type Description S Drop Selected
1 [EMPHO ALPHA Emplawee Mumber
2 SURMAME |ALPHA |Employee Sumame el
3 | GIVEMAME ALPHA Emplovee Given Name(s)
4
c W
#dd fields From this Physical File Add Kews fdd Al

~PROGRAMMATIC IDENTIFIERS (For building Akevl,2,3,4,5 and MKewl,2,3,4,5 valugs)

Weh - using *WEBEVENT functions . Ficld Name TS DR A Drop Sekcted

ek - using WAN components 1 |EMPND ALPHA |Emploves Mumber

Web - using AJAY style components 2 Drap Al

Select the type of code you wank to generate 3 3
Filter that searches by al ogical views of a file '
CRUD Fiker Add fields fram this Physical Fil Add Keys Add 4l
Filter that searches using a file or view
skeleton filker
Search buttan event handing routine (code fragment) ~ADDITIONAL COLUMNS (For buildng ACalumn< > and MCalumn< = values)
Trwoke #avListManager Addtolist (code fragment)
‘ Field Hame | Type ‘ Description Drop Selected
L4
<< Back 3l Canicel

The Program Coding Assistant detects the Visual and Programmatic Identifiers

required:

A Visual Identifier is the field or fields that a user would use to identify a unique

instance of the business object.

A Programmatic Identifier is the field(s) that the program would use to identify a

unique instance of the business object. Typically these would be the primary
keys of the file or files that make up the data in the instance list.

The additional columns represent the additional columns in your instance list
that you may have added during the prototyping phase.

8. Click the Next button.

9. On the next page specify PSLMST?2 as the view to be used for
filtering/searching operations. It is logical view of the PSLMST file keyed by
the SURNAME and GIVENAME fields.

Note that you need an appropriate logical file for each filter that you want to
create. Before implementing all your filters, review your data model to
confirm that all the logical files exist. Doing so will speed up the process of
implementing your prototype.

10. Select the SURNAME field as the key of the view to be used for search
operations.

B Program Coding Assistant

elect the object you wank to generate code for Filter that searches using a file of view
- Application->Crohsort ¥ Specify the physical file that wil underpin the search made by this fiter, Then select the required view,
. Agplicaton- >Engls Agp kews and search options as they appear,
+ Application- =hotes CA App
+ Application-=Proc_snd_Close : : Y
G ik Specify the underlying physical file that
t Application- =¥\ Spreadsfest will be searched by this filer FLT e
+ Application-=Tsk Conn
= Application- =Personngl
Business Cbject-=Code Tabl
. @ us!ness b].ec : T i Select the view to be used For fikering | searching Select the key(s) of the selected view to be used For
= @ Business Cbject-=Employees operations: search operations:
[Command Handler-=Details
12 Command Handler-»hew . | — | | | — |
D Command Hardiet-»Dacuments . View Mame | Description KPTy Name Tvpe Description :
PSLMST Personnel [VEURMAME ALPHA Employee Sumame | :

1, Command Handler- =Events ’
= Eilker- GIVEMAME ALPHA Employee Given M.,
| Filter-By hame |PSLMST2 Personnel by Surname, Given Mame | it

" Filter-By Date of Birth
1 Filker-By Salary M
Refresh

~elect the: platform you want bo generate For
o | flative M3 Windows
Wieh - using *WEBEVENT Functions

Wieh - using WAM components

Iser musk specify all chosen kews
¥ Allow generic searching

el e e | Remember key values between filker executions

J Bllow user bo clear instance list
Select the tvpe of code you want to generate

Filter that searches by al logical views o a file

CRUD Filker

Filter that searches using a file or view

& skeleton Filker ¢ 3

search button event handing routing (code fragment)

Trwioke #avListManager, Addtolist (code fragment) << Back Mext = Cancel

11. Click the Next button.

12. Select the option Routine to listen for signals to update the instance list.
13. Click the Generate Code button.

The next page, Generated Code, displays the source code for your filter. You
now need to create the component that will contain this code:

14. Specify iiiRMPO1 as the name of your real filter and By Name Filter as the
description. (iii are your initials If you are using an unlicensed or trial version
of Visual LANSA, you must always use the 3 characters DEM to replace iii).

15. Click on the Create button to create the component.

B Program Coding Assistant Ewﬁl@

elect the object you wank to generate code for Gzenerated Code
*
A
T ¥ Type + BUSINESS OBJECT FILTER
£ [y Application- »Croh3ort Al F1atform § MS-WINDOWS (Visual LANSA)
+ Application- =Englis App ¥ ANCEstor T WF_ACOOT
i ¥ Written By v WLFPGMLIE
[Appiication-=Notes CA App * Written on ! 27th FEBRUARY 2009 at 13:27:21
t Application-=Proc_snd_Close ¥ Copyright 1 (C) Copyright
IS * Framework v WF3 - DEM RAMP-TS
¥ .ﬁ.ppl!cat!nn =)L Spreadsheet e application | Fpnosy
+ Application-=Tsk Conn * Business Object : Employees
- il application-=Personnel i Filter ¢ By Name
+ @ Business Cbject-=Code Tables Function Options(*DIRECT)
= @ Business Object->Emplovees Begin_Com Role(*EXTENDS #VF_ACOO7) Height{182) wWidth(3z&) LayoutManager(#MAIh
*
[Command Handler-=Details * Simple Field, Group and Condition Defimitions
13 Command Handler-»hew % :
D c A Harkosh i Group_By Name[#xG_Keys) Fields(#5URNAME)
mmand:andiet: sUaCLIMErLs Group_By Name(#xG_Ident] Fields(#EMPNO #5URNAME #GIVENAME)
1, Command Handler- =Events Def_List Name(#Save_keys)] Fields(#£xG_Keys) Type(*Working) Entrys(1)
: Filer-»By Name Eef_cond Name(*Searchok) Cond(' (#SURNAME *ne *Blanks) ')
" Filter-3By Date of Birth * Component definitions
| Filker-By Salary ||
Refresh * Body and Button arrangement panels
Select the platForm you want ko generate for Define_Com Class (#PRIM_PANL) Name(#BODY_PANEL) Displayposition(l) Height(182)
o Native M5 Windaws Define_Com C1ass (#PRIM_PANL] Mame(#BUTTON_PANEL) Displayposition(2) Height(ls
Web - using *WEBEYENT functions * attachment and flow layout managers
Web - sing WM conponerts Define Com Class (#RRIU_ATU) Name(amaTv L0y @
Web - using AJ&X skyle components ¢ ?
T " ; To create 3 Reusable Part
glect the type of code you want to generate ; o
i Lt 9 Specify Name(Description EOMRMPOL | By Mame Filker
Filter that searches by al logical views o a file
CRUD Filker
Filter that searches using a file or view
& skeleton fiter Create
search button event handing routing (code fragment)
Trwioke #avListManager, Addtolist (code fragment) Copy Cade to Clipboard

After a brief delay the Filter component is displayed in the Visual LANSA
editor.

16. Compile the component.

RAMP-TS003 Step 2. Snapping In the By Name Filter

Now that you have compiled your filter and are ready to test it, you need to snap
it into the Framework.

In the Framework, close the Program Coding Assistant.
Double-click on the Employees business object to display its properties.

Display the Filter Snap-in Settings tab.

o=

Specify iiiRMPO1 as the Windows filter handler component.

Business Object Properties - Employees ['._I['E|E|
Identification | Icons | Wisual Styles | Filkers | Fiter Settings | Commands Enabled Command Display | Custom Properties | SubTypes | Instance 4 F
j By Mame Identification | Icons | Filker Snap-in Settings
:: By Date of Birth Stay fctive Default =
__|By Salary
~Filker Handler
~indows 5
« | Companent |EOMRMPEI1| | Q
Mock Up - RAD-PAD __RADPAD_ 7A9DBADOZZED4AEIBOFEA036A 1358507 HTM
~\Web Browser -
WEREYEMT [Hidden Funckion YFLINZ01 Frocess: YF_PROO3
WAM YFUIOS01
A4 HTML Page Module
#| Mock Up - RAD-PAD __RADPaD_ 7A9DBADOZZED4AEIBOFEA036A 1358507 HTM
Mew Delete
Close

5. Close the Employees business object properties and display the By Name
filter. You can now see your real filter.

6. Type in a letter in the Surname field and click on the Search button to verify

that your real filter has been snapped in the Framework and is usable.

g Employees

File Edit “ew Help ‘Windows {Framewark) (Administration)

D Spooled Files % Sign Cff | Reports Dietails sing SETCURSOR
Employees

: [x] [+ x
£ Administration " IByMame |)y Date of Birth | | By Salary AR
Ajax Test 3 5 ;
CmhSort Employes Sumanme Searchi Emp... | Description
ColHdg Test 5 A0193 SMITHSON FRED
Englis App] A1002 SMYTHESON JOHM

o Clear List
Excel A41003 SMITHEY ROBERT
Expand-shrink A1004 SMITHSON PALIL
i_“_f Favorites A1005 SMITHS PETER WILLL ..
i&, HR Demo Application A1006 SMITHERS JACK
IPA Test A1007 SMELL GEORGE
Notes CA App A1008 SNEDDOM ALLAN
NTreeTest A1009 SMASHALL DAMIAN
=] Personnel A1059 SANDERS MIKE
ﬁ Code Tables 0
Employess

Proc_And_Close
RAMP Test

SubType Test

Tst Conn

YisualStyle

¥L Spreadsheet
Programming Technic

EEEHBEBEBRBE

£ | ¥
Messages| Ready | VLFPGMLIE | ENG | WLFPGMLIB |27/02j09 | 13:%7 i@

RAMP-TS003 Step 3. Filter Code

Even though you can create most filters simply by using the Program Coding
Assistant, you should understand how they are coded.

1. Switch to the Visual LANSA editor where the iiiRMPO1 reusable part is
open.

2. Review the generated source code in the Source tab to see how the filter is
coded to add data to the instance list:

The Framework is notified that an update is about to occur.

Invoke #avListManager.BeginListUpdate

Next, the list is cleared of any existing items.

Invoke #avListManager.ClearList

Next, data is selected. You can use one the techniques you learnt in the Visual
LANSA Fundamentals tutorials to do this. For example:

Select Fields(#XG_Ident) From_File(PSLMST?2) With_key(#XG_Keys)
Generic(*yes) Nbr_Keys(*Compute)

Next, the visual identifiers are set up:
Change #UF_VisID1 #EMPNO

Change #UF_VisID2 #SURNAME

Then the data is added to the list.

Invoke #avListManager.AddtoList Visualid1(#UF_VisID1)
Visualid2(#UF_VisID2) AKey1(#EMPNO)

Visualld1 will be shown in column one of the instance list and Visualld2 will be
shown in column two of the instance list. Akeyl1 is the key that uniquely
identifies an employee (in this case the field is alphanumeric, so its Akey1, not
Nkey1).

Finally, the Framework is notified that the instance list update is complete.
Invoke #avListManager.EndListUpdate)

3. Next click on Details tab in the editor to display the properties of your
component.

* HarizonkalScrol False
* HarizontalScrolllne 1
* HevizantalSserallEas 0 b
i Cutline
& Details
Repository

You need to ensure that all properties are displayed:
4. Select the Settings option in the Options menu.

5. Click on Details and make sure the Show Advanced Features option is
selected.

" LANSA Settings

v

@
a1}
)
3)

N

=l Features
Y| show Advanced Features

Assiskant Reset

Reset all

2
[a1]
Fib
[l
=]

Reset Editar

i

[

etails

?

2utline

w

6. Notice that the Ancestor property of the component is #VF_AC007. All
filters inherit from this base class which provides a set of predefined
behavior.

P LANSA Editor - EOMRMPO1 (Reusable Part) - By Ma
File Edit Miew Options Yerify Web Debug Tools Windo

RBwn v | *AD| XD D] D@

Details %

ECMRMPOL i

Properties | Everts = Methods _

| = ancestor #YF_ACOOT [
: L"-"BusyLlpdates Wi it

L*-“BusyLlpdatesOFParent False

L*“CDmpDnentClassName ECMRMPOL

| L-\CcumpunentDescriptiDn By Mame Filker

|

7. Click on the Outline tab in the editor to see what components you inherit
from the VF_ACO007 ancestor component.

P LANSA Editor - EOMRMPO1 (Reusable Part) - By Nar

File Edit Miew Options Yerify Meb Debug Tools bindow

i RBuew v | TAD| XOB| D@

Outline (% il
= € EOMRMPOI ~
¥ avFilterisActive
avFrameworkMariager
[T] avMiniFilterPane
@ avaystem

[T] BODY_PAMEL
[T] BUTTON_PAMEL
[[3 FikerTabsheet
£ FIM
* FIM_AssignedObjectId
* ipForcelnactive
£ LISTMANAGER
¥ PTY_avHIDDEMFILTER
¥ PTY_avMFEUtEon1
¥ PTY_aYMFEUEtOnZ

8. Right-click the avLISTMANAGER component and select the Features
option.

= € EOMRMPOI
* avFilterisActive

= :avMiniFiIterF‘anug Reusable Part: AYLISTMANAGER * Inskance of WF_LMOO2 »

@ avaystem
[T] BODY_PAMNEL Deleke Component | Eeatures Fz [
D BUTTON_PAMEI Copy Component. ..
[[3 FiterTabsheet Cut Component
£ FIM
H FIM_Assignedd Goko Definition
R pCorcolnacivg Save Definition 3
£9 LISTMANAGER |

9. Expand the methods of the component and examine them.

Features

@-»- 28| QP&

= Reusable Part
AVLISTMAMAGER.

= Definition
= Class
= & yF_LMoonz
[& Extends
= f Events
= | Methods
| AddeoList
[AlterColumnHeadings
| BeginListUpdate
& | CheckSaveError
[ClearList
& | DisplaySorted
f™ EndListUpdate
& | EnumListEntries
By GetAColumnl
" GetAColumnlo
H " GetAColumnz
H " GetAColumnd
H " GetAColumnd

10. Close the iiiRMP0O1 component.

You may want to read Filter and Command Handler Anatomy in the Framework
guide to see how these components are structured.

Summary

Important Observations
Filters are one of the main ways of adding value in a modernized application.

Tips & Techniques

The source code for the filters used in the demonstration application can be
found in the repository in components named DF_*.

What I Should Know

What you need to do to create your own filters.
How you snap them in the Framework.

How to use the Program Coding Assistant.

RAMP-TS004: Naming and Classifying the Employee Screens

In this tutorial you will name and classify the Personnel System screens that will
be used in the Employees business object.

Objectives
Learn more about naming and classifying screens.

Tracking Info it ™
In this tutorial you will track the basic navigation in
the Personnel System application segments you are
- Enter going to modernize.

You will also classify the screens and take
snapshots of the destination screens which will be
W used to refine your prototype in the next tutorial.

~ Enter

PSL5YSMain ~ -
~ Enter //

~F12
PSLEYS5Main

~ Enter
FindEmployee

~ Enter

[o= |

To achieve this objective, you will complete the following steps:
RAMP-TS004 Step 1. Name the Screens

RAMP-TS004 Step 2. Classify Screens

RAMP-TS004 Step 3. Track Navigation

RAMP-TS004 Step 4. Take Snapshots of Your Destination Screens

Before You Begin
In order to complete this tutorial, you must have completed the following:

RAMP-TS001: Creating a Basic Prototype of the Modernized Application
RAMP-TS002: Rapidly Modernizing Complete Application Segments
RAMP-TS003: Creating a Data Filter for Employees

RAMP-TS004 Step 1. Name the Screens

In this step you will name the screens and the required fields in your
application.

1. Start the Framework.
2. Start RAMP.

3. Connect to the server.
4

Start the PSLSYS application by entering the command:

lansa run pslsys partition(dem)

5. Name the main menu PSLSY SMain and the option field txtOption:

| Screens
LS
Screen Definition - =i 1 —

| Name:
PSLSYSMain (1D =5)

| Keymaps || Cutput || AutoGUl

| variant Name:

Description:

Subfiles:
Start End Name Lines/Entry
= 19 SFLOO45SF I

Fields: [EI
U ET Y Row Col Sfl
| 1 20
Personnel System Main Menu
O | 3 2
Enter number of function required or place
|tetOption 5 2 ¥
mER R
1.
| 5 9 ¥
Full Employee Listing
|| e | - B W

Note that you should not select the check the box in front of a field. The
checkbox is used to use the field to differentiate between otherwise identical
screens.

In the following steps, whenever a message appears asking you if you want to
save the changes you have made, click OK.

Windows Internet Explorer,

9

‘___‘/,r Do wou want bo save your definition changes First?

[ok | [Cancel

6. Select option 2 in the menu to display the Enrol a New Employee screen.
Name it NewEmployee

Name the Employee number field txtEmpno and click Save.

Identification Layout - Scripting Layout

Screens 4{ Session Dizplay Help ﬁ-) m @«.)
Screen Definition T 2 68 Gachion

Mames
NewEmployee (ID=8)

Variant Name:

Description:

Subfiles:

Enrol 2 New Employee

r 3 2

Employee Number. Fl=Help F3=Exit F4=Prompt Fl2<

Crmnlaimn Curnmrmes VO‘;}?‘3 a| J% VR

9. Press F12 to return to the Personnel System Main Menu.
10. Select option 3 in the menu to display employee and skills details.
11. Name the employee search screen FindEmployee.

12. Locate the Employee Number field and name it txtEmpno:

Screens {{ Session Dizplay Help 3:9 -Auto- - ':q,l\, 53,_.’3

Y Browse,Maintain Employee and Skill Files

|

Name:

|Fin:IEmpIcyss (ID =6)

Variant Name:

Description:

Subfilas:

&)

Fields:
Name Row Col Sfl

r . 20 =Help Fi=Exit Fd=Prompt FL

Browse/Maintain Employee and Skill Files

H 3 2

Employze Number.

| tctEmpno 3 2
B | 3 33
M 294

Fl=Help F3=Exit F4=Frompt F12=Cancel

v Q¥ 0l -] (%|E1ovR

13. Click Save.

14. Type in any employee number, for example A1234, and press Enter to
display the Browse/Maintain Employee and Skill Files screen.

15. Name the screen DisplayEmployee.
16. Click on the Save button.

17. Press F21 to display the screen in update mode so that you can name fields.

18. Name the Surname field on the screen txtSurname.

Screens €(| Session Display Help @ - Auto- ¥ t:,‘;v =]
Screen Definition A

| DizplayEmploves [| D=7 E TEET

Variant Name:

s

Description:

Subfiles:

Start End Mame Lines/Entry
18 21 R@FO00032 i

Employee Given Name(s]......

r 3 37

You have now finished naming your screens:

Tracking Info Click. on any messages below ko
/1 This Farm is named DisplayEmy

1305MainMenu
A1 I has not vet been classified
A Enter lick. here to classify this F
PSLEYSMain Zlick here to classify this F
lick here to classify this F
~ Enter

The named items on this Form
ukbxtEmployvesCode (outpl
LF1z undefined {output)
PSLSYSMain

MewEmployee

-« Enter
FindEmployee

~ Enter

DisplayEmployee

19. Do a partial save of your RAMP definition.
20. Return to the i5/0S Main Menu by pressing F3.

RAMP-TS004 Step 2. Classify Screens

In this step you will classify the screens as Junction Screen , Special Screen or
Destination screen.

1. Deselect the Auto Update Navigation Scripts check box (you will track
navigation in the next step, now you are just classifying the screens) and
ignore any messages about auto navigation for the moment:

ko Lpdake Navigation Scripks

2. Log on to your system in the RAMP-TS 5250 session.
3. If the messages screen is displayed dismiss it.

4. In the i5/0S Main menu, enter this command:

lansa run pslsys partition(dem)

5. Select option 2 to enrol a new employee.

6. When the Enrol a New Employee screen is displayed, press F12 to return to
the Personnel System main menu.

7. Select option 3 to browse employees.

8. In the Find Employee screen type any employee number, for example
A1234.

The Browse/Maintain Employee and Skill Files screen is displayed.

You now have a list of all the screens in the Personnel System application about
to be modernized ready to be classified (you can do the classification either
while you are tracking the navigation as in RAMP-TS002 Step 2: Classify the
Screens and Track Navigation or you can do it as two distinct steps as in here).

It is usually preferable to make the classification of screens a distinct task.
When you are ready, you can use your spreadsheet or whatever document you
have and methodically track the movement through the junctions to your
destinations. Doing it this way should produce the least amount of rework later.

Now you can start classifying the screens:

9. Click on the MainLogin screen in the Tracking Info area. Notice that it is
predefined as a Junction (it is automatically classified).

10. Using the Tracking Info area, classify the rest of the screens like this:
PSLSYSMain Junction
NewEmployee Destination
FindEmployee Junction

DisplayEmployee Destination

You have now completed classifying the screens.

Tracking Info
MainLogin

~ Enter

« Enter
1505MainMenu

~ Enter
PSLSYSMain

~ Enter
-~ F12
PSLSYSMain

~ Enter
FindEmployee

~ Enter

RAMP-TS004 Step 3. Track Navigation

In this step you will track the navigation in the application.
1. Cancel back to the i5/0S Main Menu and sign off.
2. Clear the tracking information by clicking the Restart button:

>

Probe Restart

3. Select the Auto Update Navigation Scripts check box.

i | Auto Update Navigation Soipts;

4. Log on to your system in the RAMP-TS 5250 session.
5. If the messages screen is displayed dismiss it by pressing Enter.

6. In the i5/0S Main menu, enter this command:

lansa run pslsys partition(dem)

7. Select option 2 to enrol a new employee.

8. When the Enrol a New Employee screen is displayed, press F12 to return to
the Personnel System main menu.

9. Select option 3 to browse employees.

10. In the Find Employee screen type any employee number, for example
A1234.

11. Return from the Browse/Maintain Employee and Skill Files screen to the
Personnel Main menu by pressing F12.

12. Press F12 to return to the i5/0S Main menu.
13. Sign off.

You have now tracked the basic navigation in the Personnel System application

segments about to be modernized.

14. Deselect the Auto Update Navigation Scripts check box.

RAMP-TS004 Step 4. Take Snapshots of Your Destination
Screens

In this step you will take snapshots of your two destination screens
NewEmployee and DisplayEmployee. These snapshots will be used in the next
tutorial to enhance your prototype.

1. Logon and navigate to the NewEmployee screen.

2. Make sure that the tab sheet (Screens, AutoGUI, Keymaps) on the left of the
RAMP-TS 5250 emulator is hidden.

3. Click on the Snapshot button:

<

Snapshok (915x514) Restart futo Update Mavigation Scripts

Probe

4. Note the message indicating that the snapshot is saved in your partition
execute directory:

Snapshot Saved

Snapshot saved as bitmap image in file CPROGR A~ LANSAS~Z10_WINIS_LANSA: exl|executelSMAPSHOT _GUT_ DisplavEmploves,bmp (362x424)

5. Take a snapshot of the DisplayEmployee screen.
6. Do a partial save of the RAMP information.

Summary

Important Observations

Before you track navigation, you need to name all the screens in your application
and all the fields used for navigation.

You can classify screens either at the same time as you track navigation or when
you have finished tracking.

You can take snapshots of your 5250 screens to be used in the prototype.

What You Should Know

How to name screens and navigation fields.
How to track navigation and classify screens.

RAMP-TS005: Reviewing Design

In this tutorial you will use snapshots of your destination screens to enhance
your prototype.

Objectives
Learn how to add snapshots to the prototype

0 Employees

File Edit Wiew Help ‘Windows (Framework) (Administration)

D Spooled Files %ﬁ' Sign OFf Feparts [Dekails Using SETCURSOR,
Employees
s Z [«] [
e i ame | "By Date of Eirth | | By Salary T D 7
p you will 2
snapshots of the 5250 E SLmame | search | || Employee | Description |
destination screens to your \ “aoies sMITHSOM FRED]
prototype to make it more AO0Z SMYTHE JOHN ALBERT
realistic and easier for the end- A1003 SMITHE ROBERT TIM
users to understand. finnd CMITHSAM DAL DETED af

4 NTreeTest
'l Personnel
@ Code Tables
@ Emplovees
;! Proc_And_Close
[l RAMP Test
;! SubType Test
;! Tst Conn
il VisualStyle
! XL Spreadsheet
{5} Programming Technique

+ [B O OE

£ ¥

Show Dekails Program Coding Assistant Images Palette

<
BEEA Messages| Ready | WLFPGMLIB | ENG | WLFRGMLIE | /0309 [14:57 |

To achieve this objective, you will complete the following steps:
RAMP-TS005 Step 1. Place Snapshots on Mock Up Command Handlers
RAMP-TS005 Step 2. Review the Prototype

Before You Begin

In order to complete this tutorial, you must have completed the following:
RAMP-TS001: Creating a Basic Prototype of the Modernized Application
RAMP-TS002: Rapidly Modernizing Complete Application Segments
RAMP-TS003: Creating a Data Filter for Employees

RAMP-TS004: Naming and Classifying the Employee Screens

RAMP-TS005 Step 1. Place Snapshots on Mock Up Command
Handlers

In the initial prototype, you created an executable model of the modernized
application, with the main focus on how the end-users would access
information. Now that you have named and classified the screens in the 5250
application, you can attach snapshots of your destination screens to the
prototype to make it more visually complete.

In this step you will place snapshots of the 5250 destination screens on the
command handlers.

1. Inthe Framework, select an employee in the instance list to display the
command handlers associated with employees:

"'E Employees E| [E| ['5__(|

File Edit Wiew Help ‘Windows (Framework) (Administration)
D Spooled Files % Sign OFf Feparts [Dekails Using SETCURSOR,
Employees

: [4] [4] x
5 Administration By Name | By Date of Birth | | By Salary OB 4 &
Ajan Teskt =
CmhSort Emplayes Surname - Search | Employee | Description |-‘_\
ColHdg Test 3 A0193 SMITHSON FRED
Englis App _ 1002 SMYTHE JOHN ALBERT

' Clear List
Excel A1003 SMITHE ROBERT TIM
Expand-Shrink A1004 SMITHSOM PALL PETER. |
f:." Favarites A1005 SMITHS PETER TIM
&, HR Demo Application 3 | > ADDE SMITHERS JACK 3
IPA Test | =
Notes CA App =
NTreeTest I"E Employee : Details [A1004-5MITHS0ON PAUL PETER]
= B¢ Personnel []Detais | [Documents /1, Events
@ Code Tables
1 ~

2 @ Employess Thiz panel will handle the action (or command) named Documents for the business
44 Proc_And_Close chiect named Employees.
| RAMP Test
) SubType Test At the moment this panel is a prototype. When you have validated your prototype
"1 Tst Conn you would replace this panel with a real program.
1 YisualStyle —
| ¥L Spreadsheet Thiz panel is input capable. You may erase this text and add your own notes (and
Programming Techniques even pictures or images from the images palette). v

Show Dekails Program Coding Assistant Images Palette

=] Messages| Ready | VLFPGMUIE | ENG | WLFPGMLIE | 8/03/09 | 13:30 ()

2. Like the prototype filters, the prototype command handlers are editable.

3. Select all the text in the command handler for the Details command and
delete it.

g Employees |-_||E|E|
File Edit Wiew Help ‘Windows (Framework) (Administration)

D Spooled Files % Sign OFf Feparts [Dekails Using SETCURSOR,
Employees

i [3] [] x
5 Administration By Hame | "Gy Date of Bith | By Salary OR A ©
1 Ajax Test : =
il CmhSort Emplayes Surname Search Emploves |Descriptinn |ﬁ
| ColHdg Test 5 A0193 SMITHSON FRED
i1 Englis App : _ 1002 SMYTHE JOHM ALBERT
] Excel £l (0Tl AL003 SMITHE ROBERT TIM
| Expand-Shrink A1004 SMITHSON PALL PETER
‘;i{‘ Favorites A1005 SMITHS PETER TIM
£, HR Demo Application £ ¥ AL006 SMITHERS JACK v
(] IPA Test = = .
" Notes CA App :
7] NTreeTest ' Employee : Details (A1004-SMITHSON PAUL PETER)
= [Personnel []Detals | [Documents 1 Events

Code Tables
Emplovees |

| Proc_and_Close
1 RAMP Test
| SubType Test
1 Tst Conn
1 YisualStyle
| ¥L Spreadsheet
Programming Techniques
Show Dekails Program Coding Assistant Images Palette
Messages| Ready | VLFPGMLIB | ENG | VLFPGMLIE | 6/03/09 | 13:34 ()

4. Click on the on the Images Palette button.

5. In the Images Palette window click on the Snapshots Only radio button.

B Images Palette

Fl=Help F3=Exit F12=Cancel Fld=Mzgs

Qe

{{ Sesson Dsply Hep

-- Settings

Show all

Exclude snapshots

Filker File names skarting with
IMiG Path CAPROGRA~TLAMNSAT~Z K _ Browse, ..
|Jsage Moke: where protokyping images are to be used in Web applications or deployed

ko other developer deskkops, it is best to place them inko the partition execute Folder
CHPROGRA~TILANSAS~ZYE WINISE LANSAL: exliexecute)

Refresh

6. Locate the snapshot of the Browse/Maintain Employee and Skills Files
screen and drag it to the command handler.

7. Resize the snapshot on the command handler if necessary.

& Employees

File Edt Wiew Help Windows (Framework) (Administration)

[spooled Files € Sign Off Reports [Details Using SETCURSCR
Employees
[+] [x] [x]

i ¢ Administration "By Mame | "By Date of Bith | By Salary OB A6
+ ﬂ Ajax Test
fiJ CmhSort Emplayee Surname | Search | || Employes i Description _iA
7) ColHdg Test 5 | an1g3 SMITHSOM FRED
{4} Englis App , A1002 SMYTHE JOHK ALBERT
£ Excel 2k A1003 SMITHE ROBERT TIM
{4} Expand-Shrink 1004 SMITHSON PALIL PETER
7.7 Favorites A1005 SMITHS PETER TIM
£ HR Demo Application - 2 A1006 SMITHERS JACK
£ 1PA Test A1007 SMFLL GFORGE bt
+ ﬂ Notes CA App
[NTreeTest 7 Emplopee : Details (A1004-SHITHSON PAUL PETER)
- fJ Personnel .

@ Code Tables

@ Emplovess ¢ Files

? Proc_And_Close
| &l RAMP Test

] ﬂ SubType Test
? Tst Conn

| &l visualStyle

| {} %L Spreadsheet

5
5
5
4
5
F
+ {5} Programming Techniques

£ ¥

Show Details Program Coding Assiskant Imanges Palette

BEE Messages| Ready | WLFPGMLIB | ENG | WFPGMLIE | &/03/09 | 13:50 ()

Notice how much easier it is to envisage what the modernized application will
look like when the command handlers show a snapshot of the screen to be
snapped in.

8. Display the command handler for the New command and click the Images
Palette button.

9. Locate the Enrol New Employee screen and right-click to bring up the
context menu and select Copy.

10. Click on the Employee window and paste the image.

11. Resize the image if necessary.

o Employee

Shiow Details Program Coding Assiskant

Hi485 w1583 Messages Record Size

RAMP-TS005 Step 2. Review the Prototype
When the prototype is visually complete, it is recommended you reviewit with
the end-users to ensure the design corresponds to their expectations.

The most successful RAMP solutions have all been created on the basis of
careful prototyping.

Summary

Important Observations

Showing your end-users a realistic prototype will ensure they are able to
understand your design and can provide meaningful feedback.

For command handlers that will use screen wrappers or Visual LANSA
components, use text and the images palette.

Snapshots are useful also after the prototyping stage. You can use them in project
documentation and as a reference point if you change your screens as part of the
modernization process. When you have snapped the actual screens to the
Framework you can display the snapshots using the Show Snapshot button.

What You Should Know

How to make your prototype visually complete.

RAMP-TS006: Snapping in a Basic Inquiry Screen

In this tutorial you will snap the Browse/Maintain Employee Details and Skills
File screen to the Framework. It is a typical basic 5250 inquiry screen.

Objectives
Learn how to associate your snapped in screen with the instance list

& Employees D[E| E'

File Edit Mew Help ‘Windows (Framework) (Administration)

D Spooled Files % Sign OFf Reporks [Details Using SETCURSOR,

Employees

[x] [] x
1By Date of Birth | | By Salary = D i @
In this tutorial you will learn how to pame | Search | Employes | Diescription |f_
link a snapped in screen with the A0103 SMITHSOM FRED |
instance list. A1002 SMYTHESOM JOHH
A1003 SMITHEY ROBERT
When the end-user selects an £1004 SMITHSOM PALL “
employee from the instance list, the 5
screen will display the details for . x
the selected employee. : - Details [AD193-SMITHS0M FRED]
D Documents 1 Events
------- T Browse /Maintain Employee and Ski11 Fi
= Personnel Enter
J Code Tables Employee Number !|a0193
J Employees Employee SUFmame = !|MITHSON Prompt
“| Proc And Close Employee Given Name(s) :|FRED
g L Probe Screen
“ ! RAMP Test Street Mo and Name : 121 Cutler Ave
] SubType Test Suburb: or ToBM & o o e e e BRndsor Shaw Snapshiot
1 Tst Conn Stabeand Eountry. o i cin n e aareee NGM
1 ¥isualStyle Home Phone Number : (02) 546-4657 Docurmentation
£l L Spreadsheet Department Code « .« o &« « o= ADM &+
' . ; Section Code n « . b oale e s woes 050 Turn Trace On
{0} Programming Technic
¢ | 3 Start Date (DDMMYY) : 3/07/39 +
Messages| Ready | VIFPGMLIE | ENG | VLFPGMLIE | 1/03/09 | 13:49 ()

To achieve this objective, you will complete the following steps:
RAMP-TS006 Step 1. Snap a Basic Inquiry Screen into the Framework
RAMP-TS006 Step 2. Change the Script to Use the Current Instance List Entry
RAMP-TS006 Step 3. Disable Function Keys

Before You Begin

In order to complete this tutorial, you must have completed the following:
RAMP-TS001: Creating a Basic Prototype of the Modernized Application
RAMP-TS002: Rapidly Modernizing Complete Application Segments
RAMP-TS003: Creating a Data Filter for Employees

RAMP-TS004: Naming and Classifying the Employee ScreensRAMP-TS005:
Reviewing Design

RAMP-TS006 Step 1. Snap a Basic Inquiry Screen into the
Framework

In this step you will snap in the Browse/Maintain Employee Details and Skills
File screen to the Framework and test it.

1. Inthe RAMP Tools window, select the DisplayEmployee destination screen
in the Screen and Script List.

Emplovees Application Session | Backup | Personnel Tables Session

b Fird Fird Mexk

Marne
E Session

+ E| Junctions (4)

= [g Destinations (2)
1 MewEmploves
1 DisplavEmploves

+ Specials (2}

+ @ Scripks (3

2. In the DisplayEmployee details, snap the screen into the Details command
handler of the Employees business object:

[DisplayEmployee .'! i5UI Screen Snapshaok |
Caption
Grouping
efault RAMP Lavout Dimensions
Height 330 Width 700 Top Left
Top Mask Height Bottom Mask Height
AMP Screen Layvout Skyle
[#] Session || Fixed Layout || Flow Layout]
~Targets Targeted By
FindEmployves
Save Save
~Function Key Enablement - | ~fssociated Command Handler(s) -
Ky Zaption |Enal:u|e K||Enal:|le | Seq | ~ Link ko Command (Tab) | in Object i
Enter Enter 1 I"5end to M5-Excel Cutput Fields &,
F1 F1] F 2 [Details Test Connection
Fz Fz ¥l F] 3 | Mew Test Connection
F3 Exxit 4 [|Mates Test Connection
F4 Prompt 5 | Details TS _Test
Fs Fs]] & | Mew T5_Test
F& F& F W ; Notes T5_Test
F7 F7 F Ll & = ;
Details Code Tables
Fa Fa] il 9 = ;
= = B F i | Dekails Emplovees |
I Empl
FIO Fi0 Fl F 11 : DEW : Emplwees
F11 F11 O O 12 = ocuments mployees L
F1z Cancel 13 Events Emplovees v
F13 Fi3 A 14 < | 2]
L W
Fl4 Messages 15 S
F15 F15] F 16
Rl Bl 4 4 i Session Id AT -
F17 F17 [] F 15 ¥

3. Do a partial save.

4. Display the Framework and select an employee from the instance list to test
the command handler:

I Employees |'-_||'E|@
File Edit Wew Help ‘Windows (Framework) (Administration)

D Spooled Files %‘ Sign OFf Reporks [Details Using SETCURSOR
Employees
5 Administration By Mame | By Date of Birth | By Salary OB 48
Ajax Test =
CmhSort Employee Surname |_Searu Emploves | Description | A
ColHdg Test 5 0193 SMITHSON FRED
Englis App 1002 SMYTHESCIN JHM [
Excel 1003 SMITHEY ROBERT
4 Expand-Shrink A1004 SMITHSON PALL {u
17 Favorites

l&; HR Demo Application
[} IPA Test

N Emplovee - Details [A1004-5MITHSON PAUL]

(I == = 2 == I = 2 = 2 = == O
L ot e R e i i

'} Notes CA App [JDetals | [Documents 1 Events
?" NTreeTest EBrowse /Maintain Employee and 5kil11 Files
.} Personnel Enter Turn
Code Tables Employee Number @ Ml234 Exit
Emplovess Employee Surname & JACKSON
i} Proc_And_Close Employee Given Name(s) : STEPHEN Prampt
.} RAMP Test Street No and Name : & Melissa Place
;:T'! SubType Test Suburb or Town ! West Pennant Hills Cancel
;:T'! Tst Conn State and Country : NSW Australia
] ¥Yisualstyle Home Phone Number : (02) 9871 7773 fleseanes
;:1-! %L Spreadsheet Depar_‘trlent o e L O = e (=) Prohe Screen
{E} Programming Technic e s B s S A oo (8 ol oot (25
Start Date (DDMMYY) : 14/08/96 + Show Snapshiot
Termination Date (DDMMYY) : 0/00/00 +
Change
Delete
Date Skl Ska11 Ska11
Acquired Code Description Commen o bt
75/03/38 IDMINL | Administratn Fart 1 Met requir - oo-mEmHELOn
3/05/98 ADMINZ | Administratn Part 2
% | ¥ 5/05/98 ECD Economics Degree
Messages| Ready | VLFPGMLIB | ENG | VLFRGMLIE | 1/03/09 [13:14 Q)

If you have correctly named and classified the screens and tracked the
navigation, the Browse/Maintain Employee and Skill Files screen is now
functional in the Framework.

However, notice that if you select an employee in the instance list, this change is
not reflected in the command handler. This is because the script which was
generated to display the screen has recorded the employee number you used
when tracking the screens.

RAMP-TS006 Step 2. Change the Script to Use the Current
Instance List Entry

In this step you will change the script that displays the employee details by
replacing the hardcoded employee number with the employee number of the
currently selected instance list entry.

As you are completing this exercise you may want to refer to Javascript
Essentials.

1. Select the FindEmployee junction screen in the screens and scripts list.
2. Expand it to display the script associated with it.
3. Select the script in the list to display its contents:

Emplovees Application Session | Backup | Personnel Tables Session

b Fird Fird M
Mame Srouping | Laskt C... #
= Session
= E| Junctions (4)
+ MainLogin 2009,
+ i505MainMenu 2009,
+ PSLSYSMain 2009,
= FindEmployes 2009,
= .iﬂ Scripks
FORMSCRIPT_S8 2009, .,

= |E| Destinations (2)

4. Locate this statement in the NAVIGATETO function:

SETVALUE("txtEmpno","A1234");

5. Select the Employee Number and the quotes surrounding it and right-click
to bring up the context menu.

6. Select the Current Instance List Entry option in the menu.

7. Select Alpha Key 1 in the submenu:

Scripk FORMSCRIPT 85
Caption FindEmplovee - Invoke this form From anyhwere
Grouping

1

/% sToForm: Farm to navigate
A% oPreviousFarm: Reference to prev

vHandle_NAVIGATETC: function{sToFor
var hbReturn = true;

HIDE_CURRENT_FORME;
SETBUSY(truel;

switch {sToForm)

SH <NAVIGATESWITCH> - Do hot r
case "DisplayEmployee”:

J% set up data fields on fo

SETVALUE("txTEMPNO", "AL1234"

The statement is changed to:

copy

Paste

Unda

Redo

Upper Case

Lower Case

Larger font

Smaller Font

Shaow Line Murnbers

Current Framework,

Current Application

Current Business Object
Current Cornrnand

Currenk Instance Lisk Entry
Session Contral

Function key overrides
SENDKEY - Common Function Keys
Common RAMP Scripk Functions

My user defined options

SETVALUE("txtEmpno",objListManager.AKey1[0]);

Alpha Key 1

flpha Key 2

flpha Key 3

flpha Key 4

flpha Key 5

Numeric Key 1

Numetic Key 2

Numetic Key 3

Numetic Key 4

Numetic Key 5

Wisual Identifier 1

Wisual Identifier 2
Additional Alpha Column 1
Additional Alpha Column 2
Additional Alpha Column 3
Additional Alpha Column 4
Additional Alpha Column 5
Additional Alpha Column &
Additional Alpha Column 7

This special value will contain the identifier of the employee that the end-user

has selected in the instance list.

8. Commit the changes to the script by clicking the Commit Changes button:

el @ @Y le i

9. Do a partial save of the RAMP information

o o i;@ [49] & screen Mame Finder

10. Display the Framework and select an employee in the instance list.

Notice that the correct details for the selected employee are now shown. If for
some reason, you cannot display the employee details correctly, restart the

Framework.

RAMP-TS006 Step 3. Disable Function Keys

In this step you will disable the 5250 keys used for navigation because in the
Framework you can move wherever you want with a few mouse clicks so the
use of function keys and buttons for navigation purposes is now superfluous.

You should aim to eliminate the 5250 navigation buttons in your modernization
project because it makes your application more familiar and comfortable to
people who are used to the Windows interface.

1. Display the RAMP Tools window.
2. Select the DisplayEmployee screen in the Screen and Script List.

3. In the Function Key Enablement list disable the Exit, Cancel and Messages
keys and buttons.

~Function Key Enablement

Key |Eapl:iun !Enal:ule K||Enal:|le | Seq | ~
Enter Enter 1
F1 F1 F] z
Fz Fz F] 3
E Exit r Bl] +
F4 Prarmpk [+] [+] 5
Fg Fg F] &
F& F& F] 7
F7 F7 F] g
Fa Fa F] 9
Fa Fa F] 10
F10 F10 F] 11
i N F 12
[F12_ Cancel [] E] 13
F13 __ F13 [1] FI 14
I Fl4 Messages |:| g_l 15
cCic cCic H 1L v

4. Do a partial save of the RAMP definition.

5. Switch to the Framework and display the details of an employee to verify
the buttons are no longer displayed and that the keys do not work.

o Employees

File Edit Yew Help SWindows (Framework) § Administration)

B Spooled Files % Sign OFF | Reports [] Detfails Using SETCURSOR. |
Employees
: [«] [x] x
% Administration "By Mame | By Date of Birth | | By Salary 0 i 68
. Ajax Test —
" CmhSort Employee Surname Searu Employee | Description |A
| ColHdg Test 5 A0193 SMITHSOMN FRED
] Englis App _ B1002 SMYTHE JOHN. .
] Excel Uickals A1003 SMITHE ROBE. .
.\ Expand-Shrink al004 SMITHSOMN P&, ..
17 Favorites AL00S SMITHS FETE...
‘a&, HR Demo Application ¢ N a1006 SMITHERS JACK
. IPA Test 41007 SMELL GEQRGE ¥
" Motes CA App
go NTreeTest 7 Employee : Details (A1003-SMITHE ROBERT TIM)
= ¥ Personnel
' Code Tables [Detais Documents | /1 Everits
g Emplovees Browse /Maintain Employee and 5kil e
! Proc_And_Close
1 RAMP Test Employes Nusher ... oo AIADA Prompt
] SubType Test Employee Surmame SMITHE
1 Tst Conn Employee Given Name(s) ROBERT Probe Screen
] visualStyle Street No and Name Z5 Arthur
- Suburb or Town DEE WHY Shaw Snapshat
.} L Spreadsheet B i
o H a a oURNTF T T - T o e L - 3
ﬁ Programiningfechnlques Home P hone Nu-he}: e e et T [EY K Biapentolian
Department Code + . « « « . . FLI + o e
SectionCode+ « & « . . D0Z+
Start Date (DDMMYY) o .. 18/D3/D9
Messages| Ready | VIFPGMLIE | ENG | YLFPSMLIE | 4/03/09 [12:43)

The Probe Screen, Show Snapshot, Documentation and Turn Trace On buttons
are RAMP design-time only buttons.

Summary

Important Observations

Automatically generated scripts contain the hard coded number of the value you
chose when tracking navigation. You need to make a change to the script to
make the screen respond to the currently selected entry in the instance List.

Use the Scripting Pop-up Menu to change your scripts.
What You Should Know

How to make the screen interact with the instance list.

RAMP-TS007: Snapping in a Data Entry Function

In this tutorial you will snap the Enrol a New Employee screen to the
Framework. It is a typical 5250 data entry screen.

Objectives

Learn how to snap a data entry function into the Framework.
Understand the different functions in a screen's script.

Learn how the screen can signal events to the Framework filter.
Learn how to create basic error handling for a screen.

& Employee E]@@

Enrc]l a New Employee
Save

Employee Number & . « &« « & & Prompt

Employes SWrmame: s o .fe o oecis e e e
Employee Given Name(s) r

Street Mo and Name]))
T T s Ty S e In this tutorial you will snap

State and Country . . . « « « « « . o . in a basic data entry screen
Post / Zip Code .+ v v v v v e e e e 0 : to the Framew ork.

Home Phone Number

You will then modify the

Business Phone MNumber
screen's script to signal to

Department Code « + + « « & +

Section Code « v v v v+ v e o w e e e . + the Framework filter that a
Employee Salary ioh & eie v e o oo s .00 new employvees is created so
Start Date (BDMMYYX: © . & i oo o 0,/ 00/ 00 + that the filter can update
Termination Date (DDMMYY) 0,/00,/00 + the instance list.

You will also add some
basic error handling for the
SCreen.

\

H:404 w651 Messages Record Size

To achieve this objective, you will complete the following steps:

.

RAMP-TS007 Step 1. Snap a Basic Data Entry Screen into the Framework
RAMP-TS007 Step 2. Change the Script to Signal the New Employee Number
RAMP-TS007 Step 3. Add Error Handling

RAMP-TS007 Step 4. Change the Script to Update the Instance List
RAMP-TS007 Step 5. Disable Function Keys

Before You Begin

In order to complete this tutorial, you must have completed the following:
RAMP-TS001: Creating a Basic Prototype of the Modernized Application
RAMP-TS002: Rapidly Modernizing Complete Application Segments
RAMP-TS003: Creating a Data Filter for Employees

RAMP-TS004: Naming and Classifying the Employee Screens
RAMP-TS005: Reviewing Design

RAMP-TS006: Snapping in a Basic Inquiry Screen

RAMP-TS007 Step 1. Snap a Basic Data Entry Screen into the
Framework

In this step you will snap in the Browse/Maintain Employee Details and Skills
File screen to the Framework and test it.

1. In the RAMP Tools window, select the NewEmployee destination screen in
the Screen and Script List.

2. In the NewEmployee details snap the screen into the New command handler
of the Employees business object.

(e MewEmployes | GUT Screen Snapshok
Capkian
Grouping
efault RAMP Layouk Dimensions
Height 330 Width 700 Top Left
Top Mask Height Bioktom Mask Height
AMP Screen Layout Style
() Session [| Fixed Layaout [Flow Layouk]
~Targets Targeted By
PSLSYSMain
Save Save
~Function Key Enablement ~Azsociaked Command Handleris) -
Key |Caption |Enable KiEnable | Seq | # | | || Linkto Command (Tab) | in Object [u.]»
Enter Enker 1 Makes Test Connection iz
F1 F1 Fi] z Dietails TS Test Tt
Fz Fz F O 3 Mew TS Test T.
F3 Exit 4 Notes T5 Test T
F4 Prompk 3 Details Code Tables i
Fa Fa l] & Dietails Employees E.
Fé Fé H H 7 o Mew Employees E::
g 2 D D = Documents Employees E::
Fa F3 O O g =
Events Employees E. [+
Fo Fo F] 10
FI0 Fl10 Fl F 11 Refresh
F11 F11 Fi] 1z
Flz Cancel 13 g Session Id *ALTO -
= - 1 1 aa

3. Do a partial save.

4. Display the Framework and select the Employees business object in the
navigation pane, use the filter to fill the instance list and then right-click the
Employees business object or an individual employee in the instance list to
display the context menu.

5. Select New.

= fi} Personnel

@ Code Tables
+ Proc_and &¥ Mew
+ RAMP Tes o
o SubType 1 [Mews Application,..)
¥ Tst Conn [Mew Business Object...)
& ¥isualStyl { Properties...)
=y XL Spread { Delete |
+ {2} Programn N

Position 4

@ Open Emplovees in a new Window

Windows

The Enrol New Employee screen is displayed in the Framework.

7 Employee

Enrc]l a New Employee

Employes-Number s of Gon o w ee @
Employes Surname: s o e s esie w e @
Employee Given Name(s)
Street No and Name . . . & . . & « « =« =
S e T M e s s B T T
State and-CowmEry: o o cin e e e e .
Posk 307 potode e e e 0
Home Phorne Number

Business Phone Number

Department Code+ .« « .« . +
Section Code &« & & & & & « &« +
Employes Salary S5 5 o b el e ol e

Start Date DDMMYY) ¢« « & & &« & 0,/00,/00 +
Termination Date (DDMMYY) 0,/00,/00 +

Enker
Exit
Prormpk
Cancel
Messages
Probe Screen

hange

.00 Show Snapshok

Delete

Docurmentation

Turn Trace On

H:404 w651 Messages Record Size

6. Enter the details for a new employee and press Enter to save.

7. Search for the newly added employee using the By Name filter.

In the next step you will change the New Employee screen to update the

instance list automatically.

RAMP-TS007 Step 2. Change the Script to Signal the New
Employee Number

In this step you will add code to your screen script signal the new employee
number when a new employee is created.

1. In the RAMP Tools window, locate the script for the NewEmployee screen.

FORMSCRIPT _59 2009030,.. FindEmplovees - In...
= |E| Destinations (2)
= MewEmploves 2009022, ..
= Eﬂ Scripks
FORMSCRIPT 85 Z008022... MNewEmployee - L.
+ Cammand Handler

2. Locate the BUTTONCLICK function, then the statement declaring bReturn
variable.

3. Add this statement to declare an oEmp object which will be used to pass the
employee number:

var oEmp = new Object();

Your code should look like this:

wHandTe_BUTTONCLICK: function(sButton)

war hRPTIJr‘H = Trie:
[var oEmp = new object();]

if (HAMDLE_PRCOMPTED]) returnihbreturn); /% If the focus element is au

4. Then locate the statement handling the pressing of the Enter key (KeyEnter).

5. Add this statement before the SENDKEY statement to retrieve the value of
the employee number of the new employee to the oEmp object:

oEmp.empno = GETVALUE("txtEmpno");

6. Change the SENDKEY function to pass the employee number payload:
SENDKEY (KeyEnter, oEmp);

Your code will look like this:
wHandTe_BUTTONCLICK: function(sButton)

war hRPTIJr‘H = Trie:
|var OEmMp = new Object(j;l

if (HAMDLE_PRCMPTED]) returnihbreturnl); /% If the focus element is au
A¥ <BUTTOMCLICEKE > - Do not remove or alter this Tine %/

A% Handle function keys and buttons */

switch (sButton)

case KeyEnter:
OEMp. empno = GETWALUE(txTEMpNO J;
SEMDKEY (KeyEnter, oOEmMp);
break:
case KeyFs:
SENDKEY (KeyF3];
break;

7. Commit the changes.

You will use the employee number payload in the following steps.

RAMP-TS007 Step 3. Add Error Handling

In this step you will add code to your script to issue a message if the new
employee insertion was successful.

After any attempted insert (whether successful or not), the NewEmployee
screen is redisplayed. Therefore you can place the error handling code in the
ARRIVE script of the screen. You will then add code to close the New
Employee window if a new employee has successfully been added.

For the error handling you will need a Javascript function to trim the employee
number.

1. Add this function code to the end of your script, just before the SYSINFO:

/* sStringToTrim: The string to be trimmed left and right */

uTrim : function (sStringToTrim) {
return sStringToTrim.replace(/A\s+|\s+$/g,"");

5

}’

Your code will look like this:

A 2 NAVIGATESWITCH> — Do not remove or alter this Tine %/

returnibrReturnl;
1
s s s s s s s s s s s s s s s s s e W
¥ =================== |JTriM ========================== %/
M S S S S S e e e e e e S e S e e S e S iy

A% sstringToTrim: The string to be trimmed left and right */

utrim : function (sstringToTrim) {

return sstringToTrim.replace(/ANs+|Ys+% g, " "0,

¥
S ACSYSINFOR
whame : "NewEmployee",
YGEUID : "BZSELD05125924940A595417625362687",

You will only want to execute the error handling code when the NewEmployee

screen is redisplayed, so you will first need to check what the previous screen
was:

2. Add this statement after the declaration of the bReturn variable in the
vHandle_ ARRIVE function:

if (oPreviousForm.vIName == "NewEmployee")
{
}

To differentiate between a successful insert and a validation error add code to
check whether the employee number has been set to blank by the operation. If it
is not blank, close the window:

3. Add this code to the if statement:

/* Get the currently showing EMPNO */
var strCurrEmpno = GETVALUE("txtEmpno");
if ((this.uTrim(strCurrEmpno) == "") && (this.uTrim(oPayload.empno) !
{
/* Insert was sucessful */
/* Issue a message */
MESSAGE("Employee ", oPayload.empno ," created");
AVCLOSEFORM();

}

Your code will look like this:

vHandle_aRRIVE: function(orayload, oPreviousForm)

war bReturn = true;

if (oPreviousForm.viame == "nNewEmployee")

A% Get the currently showing EMPHNO %/
var strcurrempno = GETVALUE%"txtEman”);
if CCthis.uTrim(strcurrEmpno) == ") && (this.uTrim{orayload. empnol = ""71 3

Y Insert was sucessful %/

S Issue a message W/

MESSAGEC "Employee ", oPayload.empno ,
ANVCLOSEFORMET;

created");

¥
¥

SHOW_CURREWT_FORM{Ttruel; % show the form in the framework and show VLF buttons %/

4. Click on Commit Changes and then do a partial save.

S.

In the Framework add a new employee. Notice that after you have
successfully added an employee, the message is displayed and the window is

closed.

Employee

RAMP-TS007 Step 4. Change the Script to Update the Instance
List

In this step you will add code to your screen script to update the instance list
when a new employee is created.

1. Add this statement after the MESSAGE function in the error handling code

to send a signal to your filter to update the instance list after an employee has
been successfully created:

AVSIGNALEVENT("Add_List_Entry","BUSINESSOBJECT",
oPayload.empno)

Your code will look like this:

vHandle_ARRIVE: functionf{oPayload, oPrevicusFarm)
var BReturn = true;

if (oPreviousFaorm.wiame == "nNewemployee')

A% Get the currently showing EMPHO %/

war strourreEmpno = GETVALUE%“txtEmpND”j;

if ((this.uTrim(strCurrempno) == ""J && (this.uTrim{oPayload.empnao) '= ""71 3
d

A% Insert was sucessful ./

J% Issue a message ¥/

MESSAGE("Employes ", oPayload.empno " created'’;
LAVSIGHALEVENTC Add_L1st_Entry , BUSINESSOBIECT |, oPayload. empno)|
AVCLOSEFORME),

¥

SHOW_CURRENT_FORM(truel; /% show the form in the framework and show WLF buttons %/

When you created your filter in RAMP-TS003 Step 1. Creating Your Real By
Name Filter, you specified that the filter should contain code to listen for signals

to update the instance list, so the code to listen for this signal already exists in
the filter.

2. Save the code changes by clicking on the Commit Changes button.
3. Do a partial save of the RAMP definition.
4. Display the Framework.

5. Use the filter to locate all employees whose surname starts with S.

6. Enter the details for a new employee whose name starts with S.

7 Employee
Enrc]l a New Employee
Enter
Employes Humber &« & « & & « « = 43345 Exit
Employes Surname . . « . .« « « & & & & = SALINGER
Employee Given Name(s) BETTY Prampt
Street No and Name 52 Surrey St
S el e Tl it o Gen on adio o dido o Morth Sydney Cancel
St akeand - EoUME RN i e e NSW Australia
Fost - ZapiGode oo et e e 2001 biesn e
HDI‘I? B e e e e e 388340343 Biaraca
Business Phone Number 3433098767
Department Cade « « + .« . ADM | + Change
Section Code &« .+ &« & & & . o[+
Empilioye eSS alarpeeai i e 100.00 Show Snapshot
Start Date (DDMMYY} 010101 + Delet
Termination Date (DDMMYY) 020202| |+ plEs
Documentation
Turn Trace On
H:418 W:702 Messages Record Size

7. Click Enter. Notice that the newly created employee is displayed in the
instance list.

Emploves Description

0193 SMITHSOMN FRED
Al00z SMYTHE JOHM ALBERT
A1003 SMITHE ROBERT TIM
A1004 SMITHSOMN PALL PETER
A1005 SMITHS PETER. TIM
A1006 SMITHERS 14CK

aloo7 SMELL GECRGE

A1005 SMEDDOM ALLAN
A1009 SMASHALL DaMIAN
AZ2367 SALIMGER TIM

43145 SMCWY BRIDGET

A3876 SAUMDERS JAMES
A4709 SMCAY DN ECWARD

| AG345 SALIMGER BETTY |
AG966 SMCAWDEN PETER.

A9500 SPRESSER DF

RAMP-TS007 Step 5. Disable Function Keys

In this step you will disable function keys which are not required in the
modernized application. You will also hide the corresponding buttons.

1. In the RAMP Tools window, select NewEmployee in the screens and script
list to display its details.

2. In the Function Key Enablement list disable all keys/buttons except Enter
and Prompt.

3. Change the caption of Enter to Save.

~Function Kew Enablement

Key |Caption _|Enable kiEnable | Seq | &

Enter ;_'S._a_ve 1
F1 F1 F F 2
Fz Fz F F 3
F3 Exxit F F 4
F4 Prampt 5
Fg Fg F F &
F& F& F F 7
F7 F7 F F g
Fa Fa F F 9
Fa Fa F F 10

4. Do a partial save of the RAMP definition.

5. Display the Framework, click to add a new employee and check that the
correct buttons are shown.

Employee

The four bottommost buttons are only shown when running the Framework in
Design mode.

Summary

Important Observations

The SENDKEY function has an optional Payload parameter you can use to pass
information

To signal events to the Framework filter, use the AvSignalEvent function.

What You Should Know

How to snap a data entry function into the Framework.
What are the different functions in a screen's script

How the screen can signal events to the Framework filter.
How to create basic error handling for a screen.

RAMP-TS008: Changing Inquiry Screen to Update Mode

In this tutorial you will change the EmployeeDetails screen to update mode to
allow changes.

Objectives

Learn how to change an inquiry screen to an update screen.

Learn how to handle navigation between the update screen and its nearest
junction.

Understand more about the structure of scripts.

g Employees

File Edit Wew Help ‘Windows {Framework) { Administration)

D Spooled Files % Sign OFf Reporks [Details Using SETCURSOR

Employees

! [4] x
—ByName |~ |ByDate of Birth | By Salary OR.4A-8
Employves Surname Search J Employes | Description | A
In this tutorial you will learn | SALIMGER. || a0 SHELL GEORGE
how to show the . A1008 SMEDDON ALLAN
DisplayEmployee screen in | ¥ CEarlist 41009 SHASHALL DAMIAN FETER
update mode to allow B2367 SALINGER. TIM
changes, and how to handle 3145 SHOW BRIDGET
the interaction between the 3211 535 DaF 3

screen and its nearest . —
junction after a save.

A"
5 Emplayees Save
Proc_And_Close Employee Number : ALODA Prompt
s RAME et Employee Surname« . « & .05 & . . MASHALL
' SubType Test Employee Given Name(s) DAMIAN PETER Frobe Screen
' Tj’—t Conn Street No and Name 101 Sackville Road
¥isualStyle S b o e o R S INGLEE LRN. Show Snapshot
e XL 5Pread5_hEEt) 5tateiand iEountry st T NSW . b i
{3} Programming Techniques Home Phone Number 605 8686 prumentaten
Department Code . . o o on v o sl @ owi AUD |+ R RTt e
e = T e e e e 02| +
Start Date (DDMMYY) 1/12/83 +
Termination Date (DDMMYY) 0/00,/00 +
B 1] Messages| Ready | VLFPGMUE | ENG | WLFPGMUE | 10/03/03 | 12140 |\

To achieve this objective, you will complete the following steps:

RAMP-TS008 Step 1. Make Display Employee Screen Input Capable
RAMP-TS008 Step 2. Redisplay DisplayEmployee After Save
RAMP-TS008 Step 3. Change Button Caption

Before You Begin

In order to complete this tutorial, you must have completed the following:

RAMP-TS001:
RAMP-TS002:
RAMP-TS003:
RAMP-TS004:
RAMP-TS005:
RAMP-TS006:
RAMP-TS007:

Creating a Basic Prototype of the Modernized Application
Rapidly Modernizing Complete Application Segments
Creating a Data Filter for Employees

Naming and Classifying the Employee Screens
Reviewing Design

Snapping in a Basic Inquiry Screen

Snapping in a Data Entry Function

RAMP-TS008 Step 1. Make Display Employee Screen Input
Capable

In this step you will display the DisplayEmployee screen in update mode.

The tutorial RAMP-TS006: Snapping in a Basic Inquiry Screen showed how to
snap in a basic read-only inquiry screen to the Framework just to demonstrate
some basic steps, but in real-life modernized applications you would as a rule
display the screens as input capable.

In RAMP-TS004 Step 1. Name the Screens you named the txtSurname field on
the DisplayEmployee screen. The field is only displayed when the screen is in
change mode so you can use it to determine and set the mode of the screen.

1. In the RAMP Tools window select the DisplayEmployee screen in the
Screen and Script List.
2. Expand it to display the script associated with the screen.

3. Inthe vHandle ARRIVE function add this code after the definition of
bReturn to see if the txtSurname field exists, and if it does not, to set the
screen to change mode:

if (CHECK_FIELD_EXISTS("txtSurname"))
{

}

else

{
SENDKEY (KeyF21);

}

Your code should look like this:

S¥ Handle arrival at this Destination */
/% oPayload: The payload supplied by the event initiator */
A% opreviousForm: Reference to previous object Form*/

vHandle_arRIVE: function(oPayload, oPrewicusForm)
var bReturn = true;
if (CHECK_FIELD_EXISTS("txtsurname"l)

SHOW_CURRENT_FORM{Truel; /% show the form in the framework and show VLF buttons %/
H

HIDE_5250_BUTTONS(); A% Hide any 5250 style huttons displayed Ly
GET_FORM_MESSASECZ2Z]); A% Extract messages and hide the message 1ine LY
SETBUSY(Talsel; /% Last thing done - turn off the busy state L
glse

{

?ENDKEY(KE}-’FEI] .

S¥ <ARRIVE /» - Do not remove or alter this 1ine %/

returnibReturn);

Commit the changes.
Do a partial save of the RAMP definition.
Display the Framework.

N Uk

Select an employee in the instance list. Notice that the Browse/Maintain
Employee and Skill Files screen is now displayed in change mode.

8. Make a change to the name of the employee.
9. Press Enter.

Notice that after the save the FindEmployee screen is shown.

& Employees __ E|r>__< |
File Edit Wew Help ‘Windows {Framework) { Administration)

D Spooled Files % Sign OFf Reports [Details Using SETCURSOR
Employees
) [} [] %
5 Administration "IByMName | By Date of Birth | By Salary OB A 6
Ajax Test o
CmhSort Employee Surname Search Emploves | Description | ~
ColHdg Test SALINGER A1007 SMELL GEQRGE
Englis App , A1008 SHECDCR ALLAK
| Clear List
Excel &1009 SMNASHALL DAMIAN
Expand-Shrink B2367 SALINGER. TIM ALAN
‘* Favorites £3145 SNOWY BRIDGET MARY
@ HR Demo Application ¢ | y f3z11 335 DSF o
IPA Test - =
Nates CA App .
NTreeTest o Employee : Details [A2367-SALINGER TIM]
= fiy Personnel [Detals | [Documents 1 Events
Code Tables i . .
Browse,/Maintain Employee and Ski1l Files
Employees Enter
"} Proc_And_Close
‘ e Employee Number [A2367 +
s RAMP Test . Prampt
"1 SubType Test
B T Conn Probe Screen
" ¥isualStyle Shaw Snapshat
1 %L Spreadsheet
Programming Techniques Documentation
Turn Trace Cn
Messages| Ready | VIFPGMLIE | ENG | VLFPGMLIE |10/03/09 [13:02 ()

This is typical 5250 behavior which needs to be changed to fit the Framework
navigation model. In the next step you will make the FindEmployee script to
redisplay the Browse/Maintain Employee and Skill Files screen after employee
details have been saved.

RAMP-TS008 Step 2. Redisplay DisplayEmployee After Save

In this step you will change the script for the FindEmployee screen to navigate

back to the Browse/Maintain Employee and Skill Files screen after the details of
an employee have been saved.

1. Locate the vHandle_ ARRIVE function in the script for FindEmployee.

2. Under the declaration var bReturn = true; create a new object:

var oEmp = new Object();

3. Below the statement /* <ARRIVE /> - Do not remove or alter this line */
add code to check if the previous screen is DisplayEmployee:

if (oPreviousForm.vName == "DisplayEmployee")

{
}

4. In the if statement signal to the Framework that that the filter needs to

update the instance list with the new employee:

oEmp.empno = GETVALUE("txtEmpno");
AVSIGNALEVENT("Update_List_Entry","BUSINESSOBJECT", oEmp.

5. And add this code to navigate back to the DisplayEmployee screen:

NAVIGATE_TO_SCREEN("DisplayEmployee");

Your code will now look like this:

A% Handle arriwval at this JUNCTION ./
A% oPayload: The payload supplied by the event initiator %/
A% oPreviousForm: Reference To previous object Form */

vHandle_arRIVE: function(orPayload, oPreviousForm)
1

war hoatirn = tries

[var oEmp = new object);)

A% <ARRIVE /> - DO not remove or alter this 1ine %7

it (oPreviousForm.whame == "DisplayEmployees"]

OEMp. empno = GETWALUE("t xTEMPNO") ;

AVSIGHALEVENT ("Update_List_Entry", "BUSINESSOBIECT", OEMp. empnol;
MAVIGATE_TO_SCREENMC"DisplayEmployees"];

¥

returnibrReturnl;

T

6. Commit changes and then do a partial save.

7. In the Framework update the details of an employee. Notice that the

DisplayEmployee screen is now redisplayed and the instance list reflects the
changes to the employee details:

2 Employees |Z| |E| f'5__<|

File Edit Wew Help ‘Windows {Framework) { Administration)
B Spooled Files % Sign OFf : ~| Reports] Details Using SETCURSCR
Employees
) [} [] x
5 Administration By MName | By Date of Birth | By Salary OB 0
Ajax Test 2 =
CmhSort Employee Surname Search Emploves | Description | »
ColHdg Test SMYTHE A0193 SMITHSON FRED =
Englis App , A1002 SHYTHE JOHH |
| Clear List
Excel &1003 SMITHE ROBERT ALAN
Expand-Shrink &1004 SMITHSON PALL
1./ Favorites &1005 SMITHS PETER. TIM v
@; HR Demo Application !
IPA Test), .
Notes CA App Employee : Details [A1002-5MYTHE JOHN ALBERT)
NTreeTest [Detals | [Documents 1 Events
= Personnel Bruwse,n‘l’lla'intailn Eli:n'lluyee and Sk'i'l'i F.i'les
g Code Tables Enter
Employees Employee Number o o o v W o2 AOO2 P i
Proc_And_Close Employee. Surname =it e R E SMYTHE il
RAMP Test Employee Given Name(s} JOHN Frobe Screen
SubType Test Street No and Nameo v 0. . . 35 kb Ty Meremue
Tst Conn Suburb oF TOWA « . v v e e e e e e e e WERRINGTON. Show Snapshot
¥isualStyle St e and SEouirE ey e el i NSW. ;
%L Spreadsheet Home Phone Number o 047 629 0442 Documentation
@} Programming Techniques Department Code . .. ol oo L a. ADM |+ S
Secion ade) e S iinl e e [02] +
Start Date DOMMYY) & oo o oo L. 1/0/77+
Termination Date (DDMMYY) 0/00/00 +
[~]-] Messages| Ready | VLFPGMLIE | ENG | WLFPGMLIE |10/03/09 [1143 Q)

RAMP-TS008 Step 3. Change Button Caption

In this step you will change the caption of the Enter button to Save.

1. In the RAMP Tools window, select the DisplayEmployee screen.
2.

In the Function Key Enablement list, select the caption of the Enter button
and change it Save.

-

~Function Key Enablement

|
ke il:apl:iun EEnaI:uIe Ky iEnaI:uIe Buttan i Seq | ~
[Enter [Save | 1]
F1 Fl] | 2
F2 F2 O] 3

3. Hide and disable the Change and Delete buttons.
4. Do a partial save of the RAMP definition.

5. Switch to the Framework display the details of an employee and verify the
function key caption.

Summary

Important Observations

You can create an input capable screen simply by tracking navigation, RAMP
will automatically update the associated script.

After a successful save, the previous junction screen is displayed. You can add
code in the vHandle_Arrive function in the script associated with the junction
screen.

What You Should Know

How to snap in a screen in update mode.

How to handle navigation between the destination screen and its nearest junction
after a save.

RAMP-TS009: Tracing Navigation

In this tutorial you will use application tracing to understand what happens
when you move from a destination screen to another.

Objectives
Learn how to use application tracing

Understand the functions and commands used in navigation scripts

P
_Employees

File Edit %ew Help ‘Windows (Framework) (Administration)

B Spooled Files % Sign Qff Reports [Details Using SETCURSOR. |

In this tutorial you will learn how
to use an application trace to
understand in detail what
happens when maoving from one

AP LRt L ey = es UL U destination screen to another.,
Component | Window Event |
YF_CHOOB MAIN Posting screen. Current Form is DisplayvEmplovee (13: y : /,@r""
YF_CHOOB MATN Exwecution of script associabed with DisplayEmplaoy: — L=
WF_CHOOB MEIN SEN.DKEV le. cnmpletled. Ser.ver response will b asyl Employes | Description
.'-JF_CHDDS MAIN Exeu;utlnn of icrllpt assoriated '.:.'Ith D|splayEmployee con A0070 EROMIN VERONICA
MF CHODR MATH Form with name "DisplayEmployee” has arrived, (13:12:46:5 40090 BLACK FRED 10
YF_CHOOB MATN Executing vHandle_ARRIVE function in Form DisplavEmpl . —
WE_CHODE MAIN CHECK_FIELD_EXISTS named bxtSurname is present, AL031 BLOGGS JOHN
WF_CHOOE MAIN CHECK_FIELD_EXISTS returned true (13:12:46:533) Az005 BURGESZKEVIN - &
YF_CHOOB MATN SHOW _CURREMT_FORM executed to show the currel ¥
i > L
1
Save Trace to File Clear Trace
NTreeTest - =
= Personnel Shaw Menu Bar
Code Tables ;
ﬁ o Employee- Numbher: . . o oon wienis s b M]ﬂﬂi.] Show Snapshat
. EITHEES Employee: SUrname’ .. . o oeie e eenie s BLACK
! Proc_And_Close Employee Given Name(s) FRED JOHN - Documentation
: RAMP Test Street No and Name « « « « & 70 MAIN €
; SubType Test B e T oan i i NEWTOWN n - Turn Trace OfF
gg Tst Conn State and Coumtry . « & v v v v 0 0o [TELYYET. [—
) ¥isualStyle Home Phone Number « & + + o . . (344 -22344
e XL Spreadsheet BeparEment: Codeme i e e FLT B
Programming Techniques 50 o1 0 MG L e B O e S N S 03|+
Start Date (DOMMYY) < « « o« « 3/08/92
Termination Date (DDMMYY) 0,/00/00

Messages| Ready

| WFPGMLIE | ENG | VLFPGMLIE | B/D4/09 | 14:40 ()

To achieve this objective, you will complete the following steps:
RAMP-TS009 Step 1. Starting the Trace and Redisplaying the Destination

Screen

RAMP-TS009 Step 2. Examining the Trace

Before You Begin
In order to complete this tutorial, you must have completed the following:

RAMP-TS001:
RAMP-TS002:
RAMP-TS003:
RAMP-TS004:
RAMP-TS005:
RAMP-TS006:
RAMP-TS007:
RAMP-TS008:

Creating a Basic Prototype of the Modernized Application
Rapidly Modernizing Complete Application Segments
Creating a Data Filter for Employees

Naming and Classifying the Employee Screens
Reviewing Design

Snapping in a Basic Inquiry Screen

Snapping in a Data Entry Function

Changing Inquiry Screen to Update Mode

RAMP-TS009 Step 1. Starting the Trace and Redisplaying the
Destination Screen

In this step you will start an application trace and then redisplay the destination
screen in order to understand what happens when a destination screen is
displayed.

1. Select an Employee in the instance list of the Personnel application.

2. When the details for the employee are displayed, start an application trace
using the Framework menu:

| [Framework,) | [Adrministration)

[Mew) »
{ Applications) [i m T
[Commands...) e @
[Menus...) — - |
b | || Empl Dest
[Design Code Tables.,,) F I MEOYES
A0070 BRO
[Program Coding Assistant...) AOD30 BLAL
A1031 BLCn
i Instant Protatyping Assistant, ..) A2005 BLR.
[RAMP Tools ... 3
{ED JOHM ALAN]
{ Wirtual Clipboard) 4
{ Merge Tool ...) Show [+
{ Save) IR Show 5
« BLACK
foareAs) FRED JOHh Docum
[Save and Restart) |70 MAIN =
i Save and Exit) NEwTOwn n TurnTi
» AUSTRALIA Probe
[Execute as Web Application...) Bl s o« o« 344-22344
{ Wweb Consoles) - @ das
. |03+
[Assistance) . K .-'.I}E-.-'.S 2
[Tracing) k|| w Application Level |
T v P
Messages Real:_ly | YLFPGMLIE Syskem Level

3. Now select another employee in the instance list. Notice that the trace
details are shown in the window.

4. Click on the Save Trace to File button to save the trace details to a file and

then open it in Notepad.

B Application Level Trace Details |T”'|:|]r5_<|
Component | wWindow Event s
WF_CHOOG MaIN SETEUSY executed to set busy stake to true (14:56:58:221)

WF_CHOOG MaIN SEMDEEY F12 requested, Current Form is DisplayEmploves (14:56:58: 2
WF_CHOOG MaIN Posting screen, Current Form is DisplavEmploves (14:56:58:221)
WF_CHOOG MaIN Execution of script associated with DisplavEmployee completed. Mo
WF_CHOOG MaIN SEMDEEY F12 completed, Server response will be asynchronous, Your s
WF_CHOOG MaIN Q_CHECK_CURREMT_FORM request queued, Check For screen name is
WF_CHOOG MaIN Execution of script associated with DisplayEmployes completed, Mo error ¢
WF_CHOOG MaIN Form with name "MainLogin” has arrived, MOTE: This is the logonsignon Farm,
WF_CHOOG MaIN RAMPTSINterface: DISCOMMECT signal received (14:56:59:909)

WF_CHOOG MaIN Zonnection status changed from 1 ko 3 (14:56:59:909)

WF_CHOOG MaIN Server has signalled disconnected (14:56:59;909)

WF_CHOOG MaIN RAMPTSINkerface: DISCOMMECT signal processed (14:56:59:909) 3
£ | >

Save Trace to File

—_—
e

RAMP-TS009 Step 2. Examining the Trace

In this step examine the trace:

~ .
Command Handler - UExecute executed When the Details command handler for the

GetCurrentInstance returns visualIDL(A00907 VisualID2(BLACK FRED JOHN ALAM] A selacted emploves is executed. RAMP starts pel BMPLOY
Script manager handling request |STARTNAVIGATION] The current form is DisplayE s : P .ﬁ‘f TG
Preparing a havigation plan to get Lo screen MsplayEmployee [15:2:11:921) building a navigation plan to display the requested

Imitial navigation wlﬂ request that the cur"rent]y d15p1ayed destination scree 5950 screen. PSLSYSMZ
Preparation of _finha 03 avEmnlovee has bee 1321)
Executi MIMMWIWMMMEM (o2

HIDE_CURREMT_FIRM exgcuted to hide the current 5250 screen (15:2:11Y The yHandle NAVIGATETO function inthe current
SETBUSY executed to set busy state fo true](15:2:11:9213 it : g
SENDKEY F12 requested. Current form is OisplayEmployvee [15:2:11:921 screen is executed fo exit ta the PSLSYSMain
Posting screen. Current form is DisplayEmplovee (15:2:11:921) SCreem.

Beecution of script associated with DisplayEmployee completed,
SENDKEY F12 completed. Server resporse will be asynchronous. Your script snolld end nnwé% —e=TOPM 15 D15 [3yEMpTOyEE (1552311293
Q_CHECK_CURRENT_FORM request queued. Check for screen name is PSLSYMain Current for splayEmployes (15:2:11:937)

Execution of script associated with DisplayEmplovee completed, No error detected. [15:2:11:937)

o5 =
(18:2:12:224) The PSLSYSMain screen arrives, First its

Execution of script associated with PSLSYMain completed. Mo error detect wHandle ARRIVE function is executed and a
CHECK_CURRENT_FORM check passed. Current form is PSLSYSMain (15:2:12:234) =

Form with name "PSLSYSMain” has arrived. (15:2:12:234)

Freparing a navigation plan to get to screen DisplayEmployee (15:z:12:234) navigation plan to reach the DisplayEmployes
An optimized pre-existing navigation plan from PSLSYMain to 0isplayEmployee wi screen is created.
The navigation plan from screen PSLSYMain to DisplayEmployee is ..., (1§

-» Initially, request that screen PSLSYSMain navigates to screen "Finde

-» Finally, request that screen Findemployee navigates to screen Displ The yHandle MAVIGATETO function is then
End of nawigation nlan (15:2:12:274) i

Executing [vhandle, NAVIGATETD function in form PELovaMain |(l5:2:12:234) executed to display the FindEmployee screen,
HIDE_CURRENT_FRM executed to Mide the current 5250 screen (163251212 >y
SETBUSY executed to set busy state to true (15:2:12:234)

SETYALUE of txtdption index = 1 to wvalue 3 (type = string) .Current form is PSLSYSMai T12:234)

SETVALUE of txtdption completed. Current form is PSLSw¥Main (15:2:12:234)
SENDKEY Enter requested. Current form is PSLSYSMain (15:2:12:234)
Posting screen, Current form is PSLSYRMain (15:2:12:234)
Execution of script associated with PSLSYSMain completed. No errar dete v (1522 121234)
SENDKEY Enter completed. Server response will be asynchronous. Your script sfiould end now.Current form is PSLSYMain (15:2:12:249)
[CHECK_CLRRENT_FCRM request queued. Check for screen name is FindEmployee Current form s PSLSYSMain ([15:2:12:249)
Execution of script associated with PSLSYMain completed. No error detected, (15:2:12:243)

Farm with name "Findemployee" has arrived. (15:2:12: 624)

~
Executing wHandle ARRTVE function in form Findemployee [15:2:121624) The FindEmployee screen arrives and the
BCUTTION O SCI"'I[J assoc1a ed W n Be C

[EM £ =i

o e oo T vHandle_NAVIGATETO function sets the

function in form Findemployee (15:2:12:624) employee number and then navigates to the
R Execy ed to h1de the current 5250 screen (1532112162 DisplayEmployee screen

curren
NO comp TFEd. CUrrent Tom 1t m roloyee [15:2:12: 6oy
SENDKEY Enter requested Current form s Findemplayee (15:2:12:640)
Posting screen. Current fomm is Findemployes I515 2:12:640)
Execution of script associated with Findemployee completed. No error detect 12i12:1640)
SENDKEY Enter completed. Server response will be asynchronous, Your script shol nd now.Current form is FindeEnployee (15:2:12:64C
QCHECK_CURRENT_FORM request queued. Check for screen name is DisplayEmployee Current form is Findemployee (15:2:12:655)
Execution of script associated with Findemployes completed. No error detected. (15:2:12:655)

n n _“\
AL msmaﬁmﬂee s amm [1 il When the DisplayEmployee screen arrives, its

HECKjIELD E><ISTS EL txtsurneme 15 present on the current 5 Creen yHandle ARRIVE Script thecks to see f the

HECK_FIELD_EXISTS returned false (15:2:13:155 i :

SENDK{Y F71 requested. Current farm[-is D95l 2) tatSurname field is present on the screen. Itis
nat, because the screen is in display mode, so

FOSTINg SCreen. Bl ay e
Execution of script associated with D15p1ayEmp1oyee completed, No er . .
SENDKEY F21 completed. Server response will be asynchronous, your script s the script sends fulmt'U.” key 21 to set the TR
Execution of script associated with DisplayEmplovee completed. No error detect screen in edit made.,

. -

Form with name "DisplayEmployee” has arrived. (15:2:13:718)

Brecuting vHandle_ARRTVE function in form DisplayEmployee (15:2:13:718) 2 I
CHECK_FIELD ExISTS hamed txtsurhame 15 present oh the current screen (D The DisplayEmployee screen arrives again in

CHECK_FIELD ExISTS returned true (15:2:13:718) : : ; il
SHOW_CURRENT FCRM Jexecuted to show the current 5250 screen area and any as| edit mode. The vHandle_Arrive script verifies

omm named DsplayEmloyes is defined and classified to RAMP so function k P
Form named DisplayvEmplovee has defined function key control. The wFKC arra the txtSumame field is present and then
Enﬂ eg as Euttens T :[2:13:?18] : shows the screen and sets the buttons and
Enabled as keys vOF2 [1Gi2ildiTLE
HIOE_G250_BUTTONS executed, (15:2:13:71%) keys for the screen.
Message ;l‘«JJIJEIJé| WIRE RECERDS = fa]sef[115:2:[13:?18] ;
SETEUSY executed to set busy state to false (15:2:13:718 B
Execution of script associated with DisplayEmplovee completed, No error detect The navigation is now complete.
CHECK_CURRENT_FORM check passed. Current form is DisplayEmployes (15:2:13:718) -

Summary

Important Observations

You can use tracing to learn to understand how RAMP navigates from one
screen to another.

If you encounter a problem, start by using a tracing to resolve it. See Debug and
Diagnostics.

The shipped Java Script function TRACE() allows you to add your own trace
statements. See Tracing.

You might sometimes find that the easiest and quickest way to debug a problem
is to put up a message box. See Using ALERT_MESSAGE in Your Scripts.

What You Should Know

How to trace your application.

RAMP-TS010: Using Special Field Handlers

You can easily provide advanced prompting in your 5250 RAMP screens by
associating simple Visual LANSA forms with fields. In this tutorial you will add
a special field handler to the Department Code field to let the user choose the
code from a list of departments.

Objectives

Learn the basics of using special field handling.

Learn how to add value to your 5250 screens

_Employees

File Edit Wiew Help Windows (Framework) { Administration)

[Spocled Fles 9€ SionOFf |~ | Reports [] Details Using SETCLURSOR |

Employees

: [x] ,. [x] x
2, Administration | By MName | "By Dateof Birth | By Salary 01 4 O B
Ajax Test R =
CmhSort Employes Surname & Search Employes | Description |-£.
ColHdg Test 4 L'll__\| l i A0070 BROWHMN YEROMICA v

In this tutorial you will add a
special field handler to the -
Department Code field to show a | /2 Events || Documents
list of departments the end-user
can choose from, Save

LT A e e 5 T
............ BLOGES | Prompt

S— Surname |

1 Personnel Employes Given Name(s) |[JOHN |
g Code Tables StreetNol and :Namelsss s oansT LT 3 Woodbu ry Road | bioke Seeen
i Emplayees S B or S Tomms e S e [Winston Hills Show Snapshot

Proc_And_Close State and Country = = = = = . - |NSW Australia

:e : Details (A1031-BLOGGS JOHN]

r 4

XL Spreadsheet Termination Date (DDMMYYY :“ 0
ﬂ Programming Technig

;
) RAMP Test me Phone Number [(02) 9668 9235 | Dacumentation
1 SubType Test [Department Code . . v . v . ouw ... TS T —
. Tst Conn Section Code & .+ & v v v v v obowow oa e -
1 ¥isualStyle Start Date (DDMMYY) PLREIASTIG

; ACCOUNTING

GROUP ACCOUNTS
= INFORMATION SERVICES

Date Skl 5kill skiTl DEVELOPMENT
Acqu1 red Code _Description ADMINISTRATION 2
Laowmy | ::"”.”Tst”t” s PLRCHASING 1
| 7 [apMINz | Administratn Par
I i | 3 3g 06 / 95 AD‘-"E"!':!-'I | Adwvanced Prograsming ACCOUNTING =,
: > : DEPARTMENTO LEGAL
Messages| Ready | VLFPGMLIE | EI & MANAGEMNT INFORMATIO k|

—

To achieve this objective, you will complete the following steps:
RAMP-TS010 Step 1. Naming the Field

RAMP-TS010 Step 2. Associating the Field with the Handler
RAMP-TS010 Step 3. Test the Special Field Handler

Before You Begin
In order to complete this tutorial, you must have completed the following:

RAMP-TS001:
RAMP-TS002:
RAMP-TS003:
RAMP-TS004:
RAMP-TS005:
RAMP-TS006:
RAMP-TS007:
RAMP-TS008:
RAMP-TS009:

Creating a Basic Prototype of the Modernized Application
Rapidly Modernizing Complete Application Segments
Creating a Data Filter for Employees

Naming and Classifying the Employee Screens
Reviewing Design

Snapping in a Basic Inquiry Screen

Snapping in a Data Entry Function

Changing Inquiry Screen to Update Mode

Tracing Navigation

RAMP-TS010 Step 1. Naming the Field

In this step you will name the Department Code field on the DisplayEmployee
screen so that you can add special field handling to it.

1. In the RAMP Tools window start a RAMP-TS 5250 session.
2. Navigate to the DisplayEmployee screen and put it in Change mode.

3. Display the Screen naming area, locate the field showing the Department
Code and name it utxtDepartment.

4. Also name the Section Code field SECTION.

Sereens {{| Session Display Help ,@ -Auto- ¥ 'a\v (3=
ChangeMode A e g
Description:
Subfiles:
Start End Name Lines/ Head

Entry Lines

18 21 Rerooooz |1 [

[v Auto Select
pate 5k1 Skill 5ki11
Acquired Code Description Comment

Name Row Col Sfl

W |.D<t|35:-s't"5't 10 43

B 10 48
W 11 2

SectionCode v vvvvi

N 11 37

B SECTION 11 43
N 11 46
+ v Q¥ 0l (%] = ovr

5. Click on the Save button to save the screen definition.

RAMP-TS010 Step 2. Associating the Field with the Handler

In this step you will associate the Department Code field with the special
handler.

1. Select Session in the screens and scripts list. The session object is where you
associate fields and special field handlers for all the screens in your session.

2. In the Special Field Handling table, specify the utxtDepartment field and a
special handler named DF_PRMO04. Use F2 as the key to invoke the handler.

FBX

B RAMP Tools Default Session (RAMP-TS)

Default Session || Backup RAMP-TS 5250 Session | Details
r ~5ession - Default Session
Save e Captian Default Session
x User Object Mame | Type 1SB74640B7EPATOFEABZATRZDAF114C | Verify Name
Marme e efault RAMP Layout Dimensions
= {Session Height 320 ‘Width 700 Taop Left
= [_] Junctions (4) Top Mask Height 25 Bottom Mask Height
[+ MainLogin 20
& E0SMainM. . 3 [—RAMP Screen Layout Style
@ PSLSYSMain 2. # | Fixed Layout Flow Layout]
[FindEmplayes 2 Scroll Bars
=l (& Destinatio... (Display Horizankal Serall Bars Display Yertical Scroll Bars]
MewEmpla... 2.
[# P3LTABMain 20 | Lock Framework when unknown 5250 Form is displayed
= [E_I:ISDETE;:T"' £ ¥ Reuse existing connection's user profile andfor password
- FOIIIIII o Always link Ehis session ko a server with User Object Mame | Type
2 | @ Co. RAMP-T3 Maximum Logaff \Wait Time (seconds) 10
B [Specials (2) ~Special Figld Handing
[+ =LMENCW, ., e
@ DisplayMes. .. 3 5250 Field Mame |[Function Key ¥L Handler {class ¥F_AC017 object) Wb
& @ Scripts (9) 1 |ubxtDepartment |F2 DF_PRMO4 I
2 F4
3 F4
4 F4
5 F4 hd
£ [[®

3. Select the DisplayEmployee screen in the screens and scripts list.
4. Enable the F2 key.

B RAMP Tools Default Session (RAMP-TS)

Defaulk Session _Bau:kup | RAMP-TS 5250 Session Details
- - || | DisplayEmplovee | GUT Screen Snapshat |
Save A Il B
Caption
Mame Grauping
S seesion efault RAMP Lavout Dimensions y
[Junctions (4) Height 380 width 700 Tap Left

=l [E Destinations (3)
MewEmployes
PSLTAEMain AMP Screen Layouk Skyle
|# DisplayEmployes | [_:1

Ij Specials (2)

: ~Targets Targeked By
Scripts (3) PSL5YSMain

Top Mask Height 25 Bottom Mask Height J

* Session || Fized Layout [| Flow Layout]

Save Save

i

~Function Key Enablement

Ky Zaption |Enahle Key |Enal:||e Butkon | Seq | e
Enter Enter |:| 1 L&
F1 F1] il z

F2 F2 ivi L] 31
Fa Exit | Fl 4

F4 Prompt F] 5

Fg5 Fg F] & 3
- - [| [| -

5. Do a partial save of the RAMP definition.

RAMP-TS010 Step 3. Test the Special Field Handler

In this step you will test the special field handler.
1. Switch to the Framework.

2. In the Personnel application, display the details of an employee.

3. Put the cursor on the Department Code field and press F2 to display the

special field handler:

_‘: Employees
File Edit Mew Help Windows Framework) (Administration)

- [D]X]

El

[spooled Files $€ Signoff | | Reporks [Details Using SETCURSCR

Employees

o
=]
=]
0 -
| .

; Administration || "By Mame | | By Date of Birth | By Salary i @ B

Ajax Test ™1

CmhSort Employee Surname - Search Employee | Description |ﬁ

ColHdg Test ¢ | » /0070 BRCWI VERONICA .

Englis App — : —

Encel :

Expand-Shrink " Employee : Details [AD0D70-BROWN YERONICA)

17 Favorites [JDetsils | 5 Events || Documents |

% HR Demo .ﬂ.pplil: Bl Ll Bl

IPA Test Show Menu Bar

Notes ChApp Employee Number ! ADOTO Show Snapshak

HIree et Employes SurnEme: cs snten it s ot o BROWN

= Personnel Employes Given Name(s) |VERON ICA Diocumentation

g Code Tables Strest Mo and Name . . Lo oL L . 12 Railway Stre
4 Employees Subiurh o Tomm d-aia e des s aEa s Baulkham Hills 1ufn Trace On

by Proc_And_Close | siate and U e o ey e s e NSW Australia

) RAMP Test bome Mumber: . o wiee el s 34 e

)} SubType Test |g:ﬂzr:rle nt Code ;3,3:451

1 Tst Conn Se:t-| s e e e | DV[+ ADMINISTRATOR DEPT %

"l YisualStyle Start Date (DOMMYY) . v + + v v v 4 o . | SR o L ARG

| ¥L Spreadsheet|| Termination Date (DOMMYY) | a/00/ FLEET ALTITNISTRATION

Programming T .GF'\OUF' ACCOLNTS .
(=1 IMFORMATION SERVICES

Date sk1 skill ski1l DEMEL PHELT
| Acquired Code Description ADMINISTRATION
30/ 06 /96 ADMINI Ad'n'!n'!str'atn Part 1 FLURCHASING
{ 1/ [03/98 ADMINZ | Administratn Part 2

£ | 5 [10/12 /95 ADVFGM | Advanced Pregramming ACCOUNTING B
DEPARTMEMNTO LEGAL -

Messages| Ready | WLFPGMLIE | ENG | Wil MANAGEMNT INFORMATIO

4. Double-click on a tree entry. The selected department code is inserted back
into the field on your 5250 screen instantly. Because you have a field named

SECTION on your 5250 screen, it is also updated. This is because the
sample field handler DF_PRMO04 has code to handle a field named SECTION
(you might want to have a look at the source code of this form).

5. Select items in the tree, without double-clicking. Notice that they are
immediately updated back into your 5250 form.

6. Click back somewhere on your 5250 form to make DF_PRMO04 go away.

7. Type "M" when the field handler is displayed. Notice the handler tries to
guess the closest matching department.

Note: DF_PRMO04 is a classic F4 prompter. How it behaves it is entirely up to
you. By using it (and the other DF_PRMnn shipped examples) you can try out
and modify various types of prompting so that you will know how to create
your own special field handling components.

Summary

Important Observations
Special field handling is an advanced prompting facility for fields.

You specify the name of the field to be prompted, the function key to be used
and the Visual LANSA form that is used as the prompter.

Unlike System i prompting, Visual LANSA prompter forms do not necessarily
cause any interaction with the System i server which makes them fast.

Special field handling can be used to provide functionality that is not possible on
a 5250 device.

For a more detailed tutorial about special field handling refer to RAMP-
TSADO3: Special Field Handling .

Also see the topic Advanced Prompting.
What You Should Know

How to associate special field handling with fields on modernized 5250 screens.

RAMP-TS011: Snapping in Shipped Documents Command

Handler

In this tutorial you will learn how to snap in a shipped generic Documents

command handler to your RAMP application.
Objectives

Learn to use a generic shipped command handler to your application

Understand how easily you can add value to a modernized application

£ Employees

File Edit Yiew Actions Help ‘Windows (Framework) (Administration)

(=13

Reports [] Details Using SETCURSCR

[spooled Files € sign OfF

In this tutorial you will snap in a

shipped generic Documents command
handler to the Employees business
object,

ate of Birth | By Salary

This command handler is used to store
docurments for an employes in a
database on the server. You can create,

i_SearchJ

[=] %
O04A0 ¢ ER=
Emploves | Description
A1001 JCMES BEN
A1234 JACKSOMN STEPHEM

copy, rename and delete documents

and open them for editing,

e []Detaik | /i, Events | | Dorments |
_; Notes CA App s EReh f.;-,;c",-a'lzgq ... :
=4 NTreeTest
= £ Personnel Mame | Size | Status =

' Code Tables lw/Confidentialiy_Agreement pdf 30,443 ||

g Employess | /DF_DET34_Employee_Photo, b 281,708 on Server Canfidential. .

Proc_and_Clos {1 Job Offer 10,495 on Server
RAMP Test ILeave Reguest Form,doc 27,645 on Server
SubType Test
Tst Conn
YisualStyle
YL Spreadsheel
{2} Programming 1% Save Pending Changes
L4 | ¥ J
Messages| Ready | WFPGMLIE | ENG | WIFPGMLIE |27/03/09 | 10:47 ()

To achieve this objective, you will complete the following steps:
RAMP-TS011 Step 1. Snapping in the DX_DOCS Command Handler

RAMP-TS011 Step 2. Adding Documents
RAMP-TS011 Step 3. Working with Documents

Before You Begin
In order to complete this tutorial, you must have completed the following:

RAMP-TS001:
RAMP-TS002:
RAMP-TS003:
RAMP-TS004:
RAMP-TS005:
RAMP-TS006:
RAMP-TS007:
RAMP-TS008:
RAMP-TS009:
RAMP-TSO010:

Creating a Basic Prototype of the Modernized Application
Rapidly Modernizing Complete Application Segments
Creating a Data Filter for Employees

Naming and Classifying the Employee Screens
Reviewing Design

Snapping in a Basic Inquiry Screen

Snapping in a Data Entry Function

Changing Inquiry Screen to Update Mode

Tracing Navigation

Using Special Field Handlers

RAMP-TS011 Step 1. Snapping in the DX_DOCS Command

Handler

In this step you will snap the shipped Documents command handler DX_DOCS

to the Employees business object.

1. In the Framework window double-click the Employees business object to

display its properties.
2. Display the Commands Enabled tab.

3. Specify DX_DOCS as the command handler for the Documents command:

Enabled | hoose Command Type
f Business Object Command # | Instance Command
| |Documents |
[Email [Sequence: 3
' Events - : :
@ News ~Zommand Qptions - —onm Window Size : ;
; Skay Active Defaulk = Width Height
Skills o J YWindows
: efaulk Comman Mo -
P idea Web Browser
| Allow on Web
i (T e ~ptional Arguments
o Show on Popup Menus Alpha Argument 1:
| Show on Instance List Tool Bar Alpha Argument 2:
Hide &ll Cther Command Tabs humeric Argument 1;
Restricted Access Murnetic &rgurnent 2;
Execute as Hidden Command
~Command Handler
i 5
| Componert Di_DOCS Y

Mack Up - RAD-FAD

__RADPAD__5FDE3724354241 1BEAFSBECAASOEA0 1 HTM

4. Close the properties of the Employees business object.

5. Select an employee in the instance list and display the Documents tab. The
shipped documents command handler is snapped in and usable:

g Employees

File Edit Wew Actions Help Mindows (Framework) Administration)

[spooled Files $€° Sign off ! “ Reports [] Detals Using SETCURSOR |

Employees

: [x] [%] x
25, Administration] By Name - _|ByDateof Bith | By Salary | 0046 % B @ =
Ajax Test == =
CrmhSort Employes Surname Search Employes | Descripion
ColHdg Test] A1001 JONES BEN
Englis App a1234 JACKSOM STEPHEM
Exncel ¢ 3
Expand-Shrink — —
17 Favorites #
\E, HR Demo Applicat ployee : Do ; ATO0T-J0 i
IPA Test ClDetads | /i Events | |3 Bocumenis |
:?::le'::stnpp ~Documents for 41001 -
=] Personnel Mame Size Status

Code Tables
Employees
Proc_And_Close
RAMP Test
SubType Test
Tst Conn
YisualStyle
XL Spreadsheet
Programming Tec

HEEEEERE

Save Pending Changes
£ | *- y

Messages Ready | VLFPGMLIB | ENG | WLFPGMLIE |27/03j09 | 11:04 |)

RAMP-TS011 Step 2. Adding Documents

In this step you will learn how to use the shipped Documents command handler.

1. Copy a document (for example a Word document or a PDF) in Windows
Explorer:

B C:\a3 '

File Edit Miew Fawvorites Tools Help
@ Back - _.)l lﬁ /'i—] Search ‘[{f_“ Folders |'$ Ij x n v
: Address |[E| Ciha3
Folders X Mame Size Twpe
= = Lu:u:a.l Disic; {t.:} ~ 27 KR Mirenzaft Mo
) @LANSADOC T gpen
3 ant 2l
I a1 hies
E:l az Prink
E} a3 Save As...
0 altl Scan fFor Yiruses, .,
D at112 Open With "
D ab) winZip »
H [abe itk Famedlar st
I abcd a g
) abede Send To r
[AS400Help cuk
I atest H
I beniot
[C) BEM_10_SEASOM_1 DISC 7 Create Shortout
) bin Delete
E:l Bridge Renarme
[E' bup Properties
I ccs

2. Display the Documents tab in your Framework.

3. Right-click the area on the right of the Documents command handler and
select Paste from the context menu:

g Employees

File Edit

Yiew Actions Hel

p Windows (Framework) f Administration)

[Spooled Files ¢ sign Off

! ‘: Reparts [Details Using SETCURSCR. !

Employees
: [x] [%] x

“ Administration 1 By Hame | By Date of Bith | 1By Salary | |[[] A4, Q@ 0 R =
Ajax Test = x
CmhSort Employes Surname Search Employes | Descripkion
ColHdg Test] A1001 JONES BEN
Englis App a1234 JACKSOM STEPHEM
Excel s | »
Expand-Shrink = =
ﬂr Favorites -
@ HR Demo Applicat ' Employee : Documents [A1001-JONES BEN)
IPA Test [] Details | 1 Ewents |:JCIIZUI'ITEI'||:SI
Notes CA App L FDTF'.IEIEII 0
NTreeTest 1
=] Personnel Name | Size | Status ‘ Wigw k

g Code Tables Arrange Icons By 4

: Employess P
! Proc_And_Close
=l RAMP Test ‘ Customize This Folder...
| SubType Test
=1 Tst Conn
] visualStyle Paske Shortcut
| %L Spreadsheet ‘ M '
¢ Programming Tec
‘ Properties
Save Pending Changes I

£ | L3 IR)
Messages| Ready | VLFPGMLIE | ENG | WLFPGMLIE |27/03/09 | 11:17 |)

The document is added to the command handler:

Employees

File Edit Wiew Actions Help Mindows (Framework) Administration)

[Spooled Files $2 sign off

“ Reports [Details Using SETCURSOR

Employees

[x]

;, Administration
Ajax Test
CmhSort
ColHdg Test
Englis App
Excel
Expand-Shrink

ﬂr Favorites

1& HR. Demo Applicat

IPA Test

MNotes CA App

NTreeTest

Personnel
Code Tables
Employees

Proc_And_Close

RAMP Test

SubType Test

Tst Conn

YisualStyle

i %L Spreadsheet

Programming Tec

N @ @B EEEE

EEEEEEE

(%]

By Name "By Date of Birth - | By Salary

Employee Surname Search

]

< | >

X
DAG?BR=

Employee | Descripkion

A1001 JONES BEM

A1234 JACKSON STEPHEN

[Details | /1 Events , e

i Employee : Documents [(A1001-JONES BEN)

~Documents for A1001 -
Mame | Size | Skatus
ueave Request Form,doc 27,648 SANE PEMND

Save Pending Changes
L | - | RS y
Messages Ready | VLFPGMLIB | ENG | WLFPGMLIE |27/03j09 | 11:22 |)

4. Click on the Save Pending Changes button to store the document in the

shipped database file DXDOCS on the server.

5. Add another file, for example a photo or another image to the command
handler and save it.

Note that you can also use drag-and-drop to add documents, or use the context
menu to create new documents..

RAMP-TS011 Step 3. Working with Documents

In this step you will learn how to edit and delete documents in the Documents
Command handler.

1. Select a document from the list of documents. Notice that it is displayed on
the area on the right where you first dropped it.

- BEX

¢ Employees

File Edit Wiew Actions Help Mindows (Framework) Administration)

[¥] Spooled Files 5§ sign off

Reparts [Details Using SETCURSCR.

Employees
: [x] [%] x
% Administration ||| —16y Name | ~1ByDateof Bith | “IBySdary | || 4. @ 2 B Q =
Ajax Test =
CmhSort Employes Surname Search Employes | Description
ColHdg Test] A1001 JONES BEN
Englis App a1234 JACKSOM STEPHEM
Excel s | 3

Expand-Shrink

ff Favorites .
Q] HR Demo Applicat # Employee : Documents (A1001-JONES BEN)

IPA Test

N BB EEEE

STl [Detais | /1, Events
otes pp :
NTreeTest ~Dacuments for 41001 5
Personnel Mame | Size | Skatus @
Code Tables {_ JEmplayes_Phato, b 281,708 0n Server
Employess s/ Leave Request Form,doc 27,645 Leave

Proc_And_Close Reque. ..

RAMP Test

SubType Test

Tst Conn

YisualStyle

XL Spreadsheet

{E} Programming Tec

Save Pending Changes

£ | -)

Messages| Ready | VLFPGMLIB | ENG | VLFPGMLIB |27j03/09 [11:39 | Q)
2. Double-click the document to open it.
3. Close the document and display the Framework if it is not showing.
4. Select the document and right-click to display the context menu.
5. Choose Delete. Notice that Documents command handler indicates that the

delete is pending.

i Employees

File Edit Wiew Actions Help Mindows (Framework) Administration)

D Spooled Files % Sign Qff |

!] Reports [] Details Using SETCURSOR !

Employees

[x]

;, Administration
Ajax Test
CmhSort
ColHdg Test
Englis App
Excel
Expand-Shrink

ffr Favorites

Q, HR. Demo Applicat

IPA Test

MNotes CA App

NTreeTest

Personnel
Code Tables
Employees

Proc_And_Close

RAMP Test

SubType Test

Tst Conn

YisualStyle

XL Spreadsheet

Programming Tec

N @ @ B EEEE

EEEEEEE

£ | ¥

[%]

=

—IByName | By Date of Bith | By Salary

DAL ER=

Employee Surname

Employee | Descripkion

Search

]

< | >

#1001 JOMES BEM
f1234 JACKSOMN STEPHEM

Documents for AL001

i Employee : Documents [(A1001-JONES BEN]

[Detals | 1 Events | | | Documents |

Name | Size

| Status

__Emploves Photo.tif 781,708

on Server

;I:E;;ve Request Form,doc 27,648

DEL PEND

Save Pending Changes

i

Messages | Feady

| VLFPGMLIE | EMG | WLFPGMLIE |27/03j03 | 11:44 ()

6. Click on the Save Pending Changes button to delete the document.

Summary

Important Observations

Reusing shipped command handlers may add significant value to any 5250
application that is being RAMPed.

The Documents command handler can be used with any business object.

In the Documents command handler you can create, delete, rename and copy
documents and open them for editing.

You can use copy and paste or drag-and-drop to add documents.

An icon next to the list entry in the Documents command handler indicates the
status of the document.

What You Should Know
How to use the shipped generic Documents command handler DX_DOCS

RAMP-TS012: Snapping in Shipped Notes Command Handler
In this tutorial you will learn how to use the shipped generic Notes command
handler.

Objectives

To see another example of how easy it is to quickly add value to a modernized
application

To start thinking of how to extend the use of generic command handlers to other
business objects.

L Employees

File Edit %ew Help ‘Windows (Framework) { Administration)

[spooled Files 9 Signoff | 7 Reports [Details Using SETCURSCR |

i I

In this tutorial you will snap in the shipped B =
generic Notes command handler to the O _ —
Events tab to record events for an employee. [ith| JBySdary| |/ 4 @ [§

. . Py Search Employvee Description
Like the previous tutorial, it shows how you |
ickl d O a1001 JOMES BEN
LA Oy e CE e e alz34 1ACKSON STEPHEN

modernized 5250 application.

k-_ -
1./ Favorites -
'&3 HR Demo Applicati| e woee - Events (AT001-JONES BEN)
il [Detals | /1 Events | [Documents
Notes CA App | | | ;
NTreeTest Status Categnry Instance Mote F'Ialn Tex TR ==
=1 Personnel '-'C AGREEMENT 1 Confirmation of| |

ﬁ Code Tables '-'C AGREEMENT 2 Promation to 58 e

@ Employess '-EC TRAYEL 3 Wisit ta Melbour
Proc_And_Close '-'C TRAYEL 4 Conferencein k| Delete
RAMP Test ategaory o
SubType Test Category TRAVEL priority
o ~Attachments
Yisualstyle A
XL Spreadsheet @
@ Programming Tech

Flight &Y233
Reservatio...

£ Y 1A | »
£ Messages Ready | VLFPGMLIB | ENG | WLFPGMLIE |27/03j09 |13:29 |)

To achieve this objective, you will complete the following steps:
RAMP-TS012 Step 1. Snapping in the DF_T3201 Command Handler
RAMP-TS012 Step 2. Adding Notes

Before You Begin

In order to complete this tutorial, you must have completed the following:
RAMP-TS001: Creating a Basic Prototype of the Modernized Application
RAMP-TS002: Rapidly Modernizing Complete Application Segments
RAMP-TS003: Creating a Data Filter for Employees

RAMP-TS004: Naming and Classifying the Employee Screens
RAMP-TS005: Reviewing Design

RAMP-TS006: Snapping in a Basic Inquiry Screen

RAMP-TS007: Snapping in a Data Entry Function

RAMP-TS008: Changing Inquiry Screen to Update Mode

RAMP-TSO009: Tracing Navigation

RAMP-TS010: Using Special Field Handlers

RAMP-TS011: Snapping in Shipped Documents Command Handler

RAMP-TS012 Step 1. Snapping in the DF_T3201 Command
Handler

In this step you will associate the generic Notes command handler with the
Events command of the Employees business object.

1. Display the properties of the Employees business object.

2. In the Commands Enabled tab, associate the Events command with
command handler DF_T3201.

3. Close the properties of the Employees business object.

4. Select an employee from the instance list and display the Events tab. The
shipped notes command handler is snapped in and usable:

g Employees -_ E| @
File Edit %ew Help ‘Windows (Framework) { Administration)

D Spooled Files % Sign Qff | Reports [C] Details Using SETCURSOR
Employees
: [4] [¥] x

4} Administration "Iy Name | "By Date of irth | By Salary | || [] 4 @ [
Ajax Test —
CrmhSort Emploryes Surmame Search Employes | Description
ColHdg Test il &1001 JOMNES BEN
Englis App f1234 JACKSOM STEPHEM
Excel ¢ | b3
Expand-Shrink = =
ﬂ;’ Favorites .
&% HR Demo Applicati [Employee : Events [A1234-JACKS0N STEPHEN]
RhTest [Detals | /& Events | [] Documents
MNotes CA App - — -
NTreeTest lStatus | Cateqory | Instancel Moke (Plain Tex e
= Personnel | : -

a Zode Tables e

a Employees
Proc_and_Close Delete
RAMP Test ategary "
SubType Test [_Ccategﬂr‘é" pricrity
T?t wonn ~htkachments
YisualStyle
XL Spreadsheet
@'- Programming Tech
£ | s | »

Messages Ready | VLFPGMLIB | ENG | WLFPGMLIE | 27/03j09 |13:50 |

RAMP-TS012 Step 2. Adding Notes

In this step you will learn how to add notes for an employee. You can optionally
also attach documents to the notes, categorize them and set their priority.

1. Add a few notes for an employee using the Save and New buttons.

2. Add an attachment to a note by cut-and-paste or drag-and-drop as in the
previous tutorial.

3. Create categories for the notes and set their priority. For example:

o Employees

File Edit Mew Help ‘Windows (Framework) (Administration)
[spooled Files %2 Sign off | Reports [C] Details Using SETCURSOR.
Employees
) [} [x] x
5 Administration || By Name | Ty Datecfith By Sdary | || 4 @ [}
Ajax Teskt —
CmhSort Employee Surname Search Employes | Descripkion
ColHdg Test i) A1001 JOMES BEM
Englis App al1234 JACKSON STEPHEM
Excel ¢ 3y
Expand-Shrink = =
‘i':f Favorites :
@ HR Demo Applicati i Employee : Events [A1001-JONES BEN]
=]

AT [IDetals | /1 Events | [Documents
Notes CA App - | | — | I
Status | Categar Instance | Mate (Plain Text
NTreeTest ooy _(: L isit o Melhourne
personnel - AGREEMENT 1 Confirmation of E
Code Tables (@/C AGREEMENT 2 Promatian to Sale
Employess =iC TRAVEL 3 Yisit bo Melbourne |
&) Proc_And_Close || /2. TRAYEL 4 Conference in the |
"] RAMP Test Led »
] SubType Test Categary TRAVEL pioity
T_St L ~httachments
" VisualStyle
] %L Spreadsheet @
Programming Tech

Flight AY393
Reservatio...

4 | | >
Messages| Ready | WLFPGMLIE | ENG | VLFRGMLIE [27/03/09 | 13:54 |

Summary

Important Observations

Reusing shipped command handlers may add significant value to any 5250
application that is being RAMPed.

The Notes command handler can be used with any business object.

The command handler makes it possible for the end-user to enter a number of
notes against any instance of the business object

The note is saved as a string field on database file FPNOTE
The attachment documents are saved on database file FPDOC
Attachment documents can be added to a note

A category value can be specified for the note to allow the user to sort the notes
according to their own criteria

User Created/Updated and Date/Time Created/Updated are automatically
recorded on the list

What You Should Know

The ideas presented in this tutorial can easily be extended to other business
objects.

For example a Product business object might have a press release, a brochure, a
price list associated with it. It might also have many events associated with it,
such as launch, customer complaints, recalls, end of life, etc., each of which may
have many documents associated with it.

There is also a shipped generic Command Handler for spool files, DF_T3101.

RAMP-TS013: Sending Instance List Data to Excel
This tutorial will show how to integrate your application with Microsoft Excel.

Objectives
Learn how to create a command handler that sends data to Microsoft Excel.

;. M ployee BE

Eile Edit Wew Help MWindows {Framework) § adminiskration)

[7] spocled Files 2 Sign OFF | Reporks [Details Using SETCURSOR
—
In this tutorial you will create a Spreadsheets ?
command handler for the Employees business e 2
ohject to let the end-user send employee data to a [of Bith | "By Salary | | [[4. @ [
MS-Excel spreadsheet, .
Search Employves | Diescripkion
The end-user can choose to send data for all or A0070 BROMWM VEROMNICA,
just the selected instance list entries and to specify ADDS0 BLACK FRED JOHN ALAN
which fields will be be sent. A1031 BLOGGS JOHN
Az2005 BURGESS KEVIMN
e — sy AZ006 ERYERS MIKE
=~ HR Demo Application R ki T Lol
IPA Test * Employee : SpreadSheets ._ ’E|g|
Motes CA App T
NTreeTest [| Spreadshests .
= Personnel Drescripkion | ~ send o M5-Excel
a Code Tables W Employes Mumber o . =
a Emplovees 7| Employes Surname | all Instance List entries
[Proc_And_Close o [Employes Given Mame(s) |) Just the selecked instance lisk entries:
i RAMP Test W Street Mo and Mame
i SubType Test W suburb or Town
; T_St Ly W |5tate and Counkry
iy YisualStyle W Post [Zip Code
% XL Spreadsheet
3 | % Home Phone Mumber
{5} Programming Technid z
W Business Phone Mumber
W Start date (YYMMDD) —
W Termination Date (¢YMMOD)
W Department Code
¥ Section Code
W Fronlosees Salar B

H:356 Wh553 Messages Record Size |

B3 Microsoft Excel - EOMRMPOZ2_20090415135202.csv

@] Eile Edit Wiew Insert Format Tools Data Window Help

ed el -0 - B U|EEEES % 0 %
Lig deg B ooy 2% RS W W @_{ |, ¥4 Reply with Changes... End Review. .. !
} & snaglt = | window - !
A1 - = Employee Mumber
A B | E [D | B] F | 6 | HF

1 |EmployeelEmployee Surname Employee Given Mame Street Mo and Marr Suburb or [State and [FPost /£ fip Home —
2 |AZ007 BERESFORD BRUCE B/ BERRY St Marth Sydr MSWW Aust 20687 9877 §

3 |AZ005 BURGESS KEWIN B/ Green St Blues Pair MSWW Aust 20709877 °

4 |A0090 BLACHK FRED JOHM ALAM 70 MAIMN STREET MEWTOWW ALISTRALI 2220 344-2

=]

5]

7

g

9

10

11

12

13 L
14

15

16

HE : v
M4 » W NEOMRMPO2_20090415135202 / I< I el
Ready LI

To achieve this objective, you will complete the following steps:
RAMP-TS013 Step 1. Creating the Command Handler
RAMP-TS013 Step 2. Snapping in and Testing the Command Handler

Before You Begin

In order to complete this tutorial, you must have completed the following:
RAMP-TS001: Creating a Basic Prototype of the Modernized Application
RAMP-TS002: Rapidly Modernizing Complete Application Segments
RAMP-TS003: Creating a Data Filter for Employees

RAMP-TS004: Naming and Classifying the Employee Screens
RAMP-TS005: Reviewing Design

RAMP-TS006: Snapping in a Basic Inquiry Screen

RAMP-TSO007: Snapping in a Data Entry Function

RAMP-TS008: Changing Inquiry Screen to Update Mode

RAMP-TSO009: Tracing Navigation

RAMP-TS010: Using Special Field Handlers

RAMP-TS011: Snapping in Shipped Documents Command Handler
RAMP-TS012: Snapping in Shipped Notes Command Handler

RAMP-TS013 Step 1. Creating the Command Handler

In this step you will use the Program Coding Assistant to create the

Spreadsheets command handler that can be used to send data to Microsoft
Excel.

1. In the Framework window, display the properties of the Employees Business
object.

2. Display the Commands Enabled tab.

3. Enable the Spreadsheets command.

Mot Enabled [|| Enabled
About [petails
@ About Framework, |__| Documents
Accounts I Events
Address L Ml
L All Details
% all Entries
‘ Arnounk
] A0hi4

4. Close the properties of Employees.
5. Start the Program Coding Assistant from the Framework menu.

6. Select the Employees business object and the Spreadsheets command
handler.

7. Select Native MS Windows as the platform.

8. Select Send data to MS-Excel as a CSV file as the type of code you want to
generate.

9. Click Next.

10. Select PSLMST as the physical file and accept the default visual and
programmatic identifiers.

M Program Coding Assistant

Felect the object you want to generate code fior

= .ﬁ Business Object- >Employees
[Command Handler-=Details
(&) Command Handler-»Mew
[Command Handler-»Documents
/0 Command Handler- Events
' Command Handler- =3preadsheets

] Filker- =By Mame

"] Filter- =By Date of Birth

] Filter- =By Salary
& command Handler- =About Framework
% Command Handler- =Exit

Refresh

Select the platform wou want bo generate for

| Mative M3 Windows

Web - using *WEBEVENT functions
Web - using YWAM components
Web - using AJAY skyle components

Select the tvpe of code you want ko generate

CRUD Comrnand Handler

Command Handler that maintains a list

Basic Command Handler

ISend data to M5-Excel as a CSWFile |

Single Instance UExecute Routing (code fragment)
Multiple Instance uExecute Routing (code Fragment)

11. Click Next.

Send data ko M5-Excel as a C3Y file
Specify the identification protocol vou have decided to use For this business object, If a physical Fil
resembles this business object specify its name and the assiskant will attempt to automatically ded
basic identification protocal for you,
A
The physical file that most closely -
resembles this business object is: B P
AWTSUAL IDEMTIFIERS (For building VisuallD! and YisuallDZ values)
Figld Mame Type Description L Drop Selecke
1 |EMPNO ALPHA Employee Number
Drop All
2 |SURNAME ALPHA Employee Surname
3 |GIVEMAME ALPHA Employee Given Mame(s)
4
c v
Add Fields From this Physical File fdd Kevs Add al
~PROGRAMMATIC IDENTIFIERS (For buiding Atey1,2,3,4,5 and NKeyl,2,3,4,5 values)
Figld Mame Type Description L | Drop Selecke
1 |EMPNO ALPHA Employee Number
Drop All
2
3 Z |
Add Fields From this Physical File fdd Keys Add al
v
£ ¥
<< Back Cancel

12. Select to include all the fields from the PSLMST file on the top of the

command handler.

M Program Coding Assistant

Felect the object you want ko generate code fior

= {'j Business Object- =Emplovees
[command Handler-»Dekails
(& Cammand Handler- =hew
[Command Handler- »Documents
1. Command Handler- =Events
Command Handler- =Spreadsheets
Filker- =By Mame
Filter-»By Date of Birth
Filker- =By Salary
@ Command Handler-=Ahaut Framewmark
& Command Handler- =Exit

Refresh

LILIL)

£

Select the platform wou want to generate For
| Mative M5 Windaws
W'eh - using *WEBEVENT Functions
W'eh - using 'WAM components
W'eh - using AJAY styvle components

Select the bvpe of code vou wank to generate

CRUD Command Handler

Caommand Handler that maintains a list

Basic Command Handler

Send data to M3-Excel as a C5Y file

Single Instance uExecute Routing (code fragment)
Multiple Instance uExecute Routing (code fragment)

Send data to M3-Excel as a C5V file

Specify in the top area all the fields that wou want to allow the end user to select from, The

be able to choose which of these Fields they want to send to a spreadshest, DO MOT specilf

in the list area,

A

~Figlds that you want ko appear on the top of vour command handler
. Field Mame Type Diescription | Drop Selec

1 |EMPNO ALPHA Employes Number
I Drop Al

2 |SURNAME ALPHA Employee Surname

3 |GIVEMAME | ALPHA Employee Given Mame(s)

4 [ADDRESS) ALPHA Street Mo and Mame

5 |ADDRESSZ | ALPHA Suburb or Tawn |
| A LAMMDESS Al DHA Skatbe amd Cromkbeu A 1
Add Fields From this Physical File PSLMST Add Kevs

~Figlds that you want ko appear in a list at the bottom of your handler

. Field Mame Type Diescription Drop Selec

: Drop &l
= rap

<)

W
>
<< Back Generate Code Cancel

13. Click Generate Code.

The next page, Generated Code, displays the source code for your command
handler. You now need to create the component that will contain this code:

14. Specify iiiRMPO02 as the name of your command handler and Spreadsheet
Command Handler as the description. (iii are your initials).

15. Click on the Create button to create the component.

After a brief delay the command handler component is displayed in the Visual

LANSA editor.

16. Compile the component in the Visual LANSA editor.

RAMP-TS013 Step 2. Snapping in and Testing the Command
Handler

In this step you will snap in the Spreadsheets command handler to the
Framework and test it.

1. In the Framework window, display the properties of the Employees business
object.

2. Display the Commands Enabled tab.
3. Select the Spreadsheets command handler.

4. Select the option Business Object Command (the command handler can be
used for all employees, not just one employee instance).

5. Select the Hide All Other Command Tabs option to ensure that the
command tab for New is not displayed in the window.

6. Specify the name of your command handler (iiiRMP02) as the Windows
component.

£ Business Object Properties - Employees

Identification | Icons

Mok Enabled | ~

Enabled

About
@ About Fram, .,
= Accounts
B4 address
LAl Details
IEI All Entries
'L? Amaunt
T aobi4
Qf? Approve
j A5eqd
.-/3 Assess
Assistant
7 Assistant ...
Assistant E. ..
7 Bssistart E...
& attach
{E“ Attachments
%Authnrities
| | Backup
.| Basic details
“IBobi
*/ | Bookings
7] Baeq4
_@'Falrl latar b°

[Details
D Documents
/I Events

i @New

& Spreadshests

&/ Spreadshests (SPREADSHEET)

~Choose Command Twpe

CEIX

Yisual Styles | Filkers | Filker Settings | Commands Enabled | Command Display | Cuskom Properties | SubTvpes | Ind b

To enable and disable commands drag them
between these lists ..,

| # | Business Object Command _ | Instance Command]
Sequence: 1]
~Command Options O iindow Size ; ;
Stay Ackive Defaulk = Width Height
Windows
Defaulk Command Mo -
Wb Browser
7 Allow on Wweb
el g ~Optional Arguments
| Show on Popup Menus fAlpha Argument 1:
| show on Instance List Tool Bar fAlpha Argument 2
Hide: &ll Other Command Tabs Nurneric Argument 1
Restricked Arcess Mumneric Srgument 2;
Execute as Hidden Command
~Command Handler
Windows
«! Comporient EQMRMPOZ | Q

| Mack Up - RAD-PAD

__RADPAD_ CFS04D&453FF431 1855295306:3C951 54, HTM

Menus Command Definitions

Close

7. Close the properties of the employees business object.

8. Save and restart the Framework.

9. Use the filter of the Employees business object to select employees.

10. Select some employees in the instance list (hold the Ctrl key down and
click with the mouse).

11. Then right-click Employees in the navigation pane or right-click an
employee in the instance list and select Spreadsheets from the context menu.

Q Zode Tables

=l ﬁ Personnel H
é Emplu:u“’

Proc_am &8 MNew
RAMP Te|[Jf Spreadsheets
SubType
Tst Conn [Mew Application, ..)
¥isualSty { Mew Business Ohject,.,)
Shobreq { Properties...)
{5} Program
[Delete)
Pasition L4

é Open Emplovees ina new Window

Windows

12. In the command handler, select the fields to be sent to Excel and the option
Just the selected instance list entries.

. Employee : SpreadSheets

& Spreadsheets

Description "
' |[Employes Number
 |Emploves Surname
¥ |Emplayee Given Mame(s) # | ust the selected instance lisk entries
o | Street Mo and Mame -
o | Suburb ar Town
State and Counkry
Post [Zip Code
+ Home Phone Mumber
' Business Phone Mumber
Start dake (YMMDD)
Termination Date (YMMDD)
| Department Code
W Section Code
' |[Employves Salary
¥ Start Date (COMMYY)
| Termination Date (DDMMYY)
 |Monthly Salary

=

Send to M3-Excel

| 8l Instance List entries

" -

Hid47 w551 Messages Record Size

13. Click the Send to MS Excel button.

An MS Excel spreadsheet with the selected employee data is displayed:

B3 Microsoft Excel - EOMRMPOZ_20090417102459.csv =8
E_] File Edit ‘iew Insert Format Tools Data Window Help Type aquestion For help = 2 & X
| [-0 -/BruUlSESE|S % B3 =E 5-0-A-H
iy 4 9 _j-;_ﬂ 5 | (4 By 4 | ¥4 Reply with Changss... Engeview...H

{ S Snaglt |2 | window vE

A1 - #& Employee Number
A B | ¢ | b | E | F Il 6 | H | 01 | 3| k=

1 |EmployeelEmployee Employee Street Mo i Suburb or 'THome Pho Business FDepartmer Section CoEmployee Start C—
2 |A1031 BLOGGS JOHM 3 WoodbuWinston H (02) 9665 & (02) 9922 EMIS El BO725000 180
3 |A2006 |BRYERS MIKE 14 Napier tMorth Sydr 38535353 9289353 ADM 2 50000 80

4 |AD070 |BROWN WERONICA12 Railway Baulkham TRMN (02) 9647 INF DY 50112500 280

5 L
E

7

g8

g

10 v
M 4 » M\ EOMRMPOZ_20090417102459 / p! | s
Ready MUM

You can now work with the employee data in Excel.

Summary

Important Observations

Integrating the application with desktop tools such as Excel adds real business
value to the 5250 application because it provides new information and
capabilities to the application users - unlike, for example, a drop down, which
adds very little real business value to a 5250 application.

This feature allows you to easily leverage the power of MS-Excel. Once a user
has information in MS-Excel they can do what they please with it — draw graphs
and charts, produce pivot tables, save it to their hard drive, print it, send it vie
e-mail to others. MS-Excel provides a gateway for using valuable information
locked up in your IBM i data base. MS-Excel is also a great springboard for
generic reporting activities.

The spreadsheet data extraction is implemented by software developers - rather
than by end users with ad-hoc tools - so more it is more secure and its
performance has been verified.

What You Should Know

How to create a command handler that sends data for all or selected instance list
entries to MS Excel.

RAMP-TS014: Snapping RAMP Screens into the HR Demo
Application

In this tutorial you will add your newly created RAMP screens to the HR Demo
Application.

Objectives

Learn how to integrate RAMP screens and Framework components in an
application.

Understand more about how the instance list and RAMP command handlers
interact.

T
#% Resources

File Edit Wiew Help Windows (Framework) (Administration)

[spooled Files S sign oFf] Reparts [] Details Using SETCURSOR

Enter an employee number, a full or partial name or telephone number, or select a skill type, then press enter :

In this tutorial you will snap in your I@ Q R = L“D %

A TAI\:P Spreen; tntthe HF‘;TDEFHU | | Ccu:le,l'...| Addre, . | Addre, .. | Addre, |Zip Code | Busine...| Home ... | D| 5| L
EODL:C;:_IU:]“;: ;jr:derrna:cfwerin;;n?za:éy CA AOO7D 12Ra.. Badl.. MNESW ., 2153 (02)... TRN L. v
P TR CEE S A, AOO90 FOM... MNEW.. AUST. 2220 6546, M4-2.. F. 03 -
components. A1001 144 F... PY¥ME... NSW. 2001 7980, 7995. A, 01
A41003 294r.. DEE.. [NSW. 2000 406 6. 9776.. F. 02
LY Al01S 590a.. BERLEY., MNSW. 2030 7894, 4501.. A, 01
= % HR Deno Apj q IROBINSON.MP.F{\" 81025 14W., STIW., [SW, 2005 4561, 1263, A, 01 b
OR Organizations
= v Aesource : Detaills BAMP-TS [JONES BEN-A1001]
4 IPA Test
Notes CA App Mls || Documents 1 Events [0 Images . Motes [TimeShests T Details RAMP-TS
NTreeTest Browse/Maintain Employee and Skill Files
"} Personnel hare
. Proc_and_Close Employee Number ! MO0 .-
RAMP Test Employee Surname « . 2 2 o 2 .o JONES
] SubType Test Employee Given Name(s) BEN Probe Screen
1 Tst Conn Street Mo and Name . . = o & & o & w o & 144 Frog
] visualStyle SUB LB OE TONM e e e S PYNELE. Show Snapshot
¥L Spreadsheet Stabe and CoumEry oo o o = e o s I:S'J.'. e
{E} Programming Technig Home Phone Number + & + « + W 7953 5268
Department Code . . .+ . v « & « &« « & ADM | + T ——
< I Section Code & v v & + & & oLl +
B B E|:| Messages| PReady | VLFPGMLIE | ENG | VWLFPGMLIE | 10/03j09 |14:35 ()

To achieve this objective, you will complete the following steps:

RAMP-TS014 Step 1. Snap in RAMP Screens to the HR Demo Application
RAMP-TS014 Step 2. Modifying the SETVALUE Statement

Before You Begin
In order to complete this tutorial, you must have completed the following:

RAMP-TS001:
RAMP-TS002:
RAMP-TS003:
RAMP-TS004:
RAMP-TS005:
RAMP-TS006:
RAMP-TS007:
RAMP-TS008:
RAMP-TS009:
RAMP-TSO010:
RAMP-TSO011:
RAMP-TS012:
RAMP-TS013:

Creating a Basic Prototype of the Modernized Application
Rapidly Modernizing Complete Application Segments
Creating a Data Filter for Employees

Naming and Classifying the Employee Screens
Reviewing Design

Snapping in a Basic Inquiry Screen

Snapping in a Data Entry Function

Changing Inquiry Screen to Update Mode

Tracing Navigation

Using Special Field Handlers

Snapping in Shipped Documents Command Handler
Snapping in Shipped Notes Command Handler
Sending Instance List Data to Excel

RAMP-TS014 Step 1. Snap in RAMP Screens to the HR Demo
Application

In this step you will snap in the New Employee and DisplayEmployee screens
to the HR Demo Application.

1. In the Framework, select the HR Demo Application and then the Resources
business object.

2. Display the properties of the Resources business object.
3. Display the Commands Enabled tab.

4. Click on the Command Definitions button to add a new command:

Process: YWF_PROOS

Q

Menus Zommand Definitions

Close

5. In the Commands window click New to create a new command.
6. Make the command caption Details RAMP-TS.

B Commands ['._| |'E| FZ|
Commands Sequence | | Identification | Toolbar and Menus | Bitmaps and Icons | Other Options | Usage
Dates 1 :
& Caption Detals RAMP-TS ‘ (ENG)
%Delete 1
.:fgg Delete profile 1 Hink: (EME)
B Delivery add.., 1
& SEqUEnCE: 1
7 Departments 1
Destination 1 Internal Identifier: 118DE7S705EC4BAGEI73FFABA42BDEIC
[Details 4
IDetails RAM... 1 User Object Hame | Type 1 18DE7S705EC4BAGES7 FF ABAZEDEIC Werify Name
D Dectiicns : Caption with Accelerator; Details RAMP-TS (ENGE)
@? Download 1
A Edi 1 Shortcut: Nore
() Emai 1
Lf'_,} Employees 1 7 Bllow on Web
s e 1 7 Allow in Windows
& Equipment 1 2
e + Last Changed 20090310-15041 3-YLFPGMLIE
Delete Mew
Close

7. Close the Command Window.

8. Back in the Commands Enabled tab Drag the Details RAMP-TS command
to the Enabled list.

#% Business Object Properties - Resources

Identification | Icons | Wisual Skvles | Filkers | Filker Settings
To enable and disable commands drag them between these
lists ...

Mot Enabled | # | | Enabled

‘}“ Departments [Details

Destination :EDetaiIs RAMP-TS

'@? Diownload D Documents
A7 Edit A Everts
@ Email Images

E\ Emplovees T | Motes

= Enkties Reports

O Equiprment I_=|i| Timesheets

2 Example 1

9. Drag the New command to the Enabled list.

10. Save and restart the Framework.

11. Start RAMP Tools. You do not need to start a 5250 identification session.

12. In the RAMP Tools window select NewEmployee in the screens and script
list.

13. In the Associated Command Handlers associate the screen with the New
command for the Resources business object.

Associated Command Handleris)

Link to Command (Tab) in Object User Object Tyvpe ||
Docurments Resources DEM_ORG_SEC_EMP
Timesheets Resources DEM_ORG_SEC_EMP
Images Resources DEM_ORG_SEC_EMP
Reports Resources DEM_ORG_SEC_EMP
Details RAMP-TS Resources DEM_ORG_SEC_EMP

o ENEW Resources DEM_ORG_SEC_EMP]
About Administration 36C185EACOED4CCIAR,, .
Details Users and Autharities WF_IISER_OBIECT
Authorities Users and Autharities WF_IISER_OBIECT
Zuskom Properties Users and Authorities WF_IISER_OBIECT
Mew User Users and Autharities WF_IISER_OBIECT &

Refrash

14. Then associate the DisplayEmployee screen with the Details RAMP-TS
command of the Resources business object.

15. Do a partial save.

16. In the Framework window select HR Demo Application and the Resources
business object.

17. Right-click and select New from the context menu to display the
NewEmployee screen:

+ Favorites
., HR Demo Application
5 Organizations

[i
e =
en RESOUNCE

IPA Test ||&F MNew

#

¥
+ MNotes CA A Reports

+ MTreeTest About...

+ Personnel N

+ Proc_And_| { Mew application..,)

+ RAMP Test { Mew Business Object,.,)

+ SubType Te

2 Eepe { Properties...)

re YisualStyle (Delete)

+ XL Spreads Pasition 4
¥

iz} Programmi
[& q f
S8 Dpen Resources ina new Window

Windows

18. Close the NewEmployee screen.
19. Use the filter to display employees in the instance list.

20. Select an employee and click on the Details RAMP-TS command handler.
You will get an error Unable to navigate to DisplayEmployee.

'y
#% Resources

Fle Edit Yew Help ‘Windows (Framework) (Administration)

[spooled Files %2 Sign off

[Reports [] Details Using SETCURSOR

Enter an emplovee number, a full or partial name or telephone number, or select a skill type, then prezs enter :

{25, Administration
| Ajax Test

] CmhSort

| ColHdg Test

| Englis App

| Excel

.| Expand-Shrink

17 Favorites
= @, HR Demo Application
(%, Organizations
58 Resources
] IPA Test
Notes CA App
NTreeTest
Personnel
Proc_And_Close
RAMP Test
SubType Test
Tst Conn
Yisualstyle
¥L Spreadsheet
Programming Techniques

EEEHEHEEEEBEBEHBEBE

J; Resource : Detail: RAMP-TS [JOMES.BEN-AT001)

[|Detals || Documents 1 Events [0)|Images . Motes [T TimeShests T} Details RAMP-T3

Show 5250 Form and Turn OFF Busy State (this butkon only shown in Design mode)

ORABOGNMERB

Marme | Code J'| Addre,., | fddre,., | Addre, ., |Zip Code | Busine...| Home ... | D| 5| i
BROWMN,YERONICA ADO70 1Z2Ra.. Bauk.. MNaWw .. 2153 (02)... TRN L. W

BL&CK,FRED JOH... ADO9O0 70M... NEW.. AUST.. 22200 6546,., 3442, F. 03 L
JOMES,BEN A1001 144F... PYMB... Mo, 2001 7950, 7995, &, 01
SMITHE,ROBERT a1003 294, DEE... Now, 2000 4086, 9776, F. 02
WOODS,ERADLEY AIDIS 59Da.. BEWLEY. NoW, 2050 7a94.., 4501, &, 01
ROBIMSOM.MARY A1025 14W,., STIV,., MNoW, 2005 4561, 1263, &, 01 b

[Unable to navigate ta Form DisplayEmploye Messages Ready | VLFPGMLIE | ENG | WLFPGMLIE |10j03(09 15:31 ()

21. Click on the Show 5250 Form and Turn Off Busy State button to display

the screen where

the navigation has stopped.

n'r; Reszource : Details BAMP-TS [JONES BEN-A1001]
[|Details || Documents | 1 Events [0 Images . Maotes [T TimeSheets ' Details RAMP-TS

Browse /Maintain Employee and Skil1l Files

Probe Screen

Employee Number [ADM |+ Shaw Snapshak

Docurnentation

Turn Trace On

It is the FindEmployee screen. Notice that the Employee Number field has a
department code as its value. In the next step you will change your script to
retrieve the employee number from the instance list.

RAMP-TS014 Step 2. Modifying the SETVALUE Statement

In this step you will examine the filter of the HR Demo Application and modify
the script associated with the FindEmployee screen so that it can be used in
multiple locations in the Framework.

1. Display the properties of the Resources business object.

2. Select the Filters tab and then the Filter Snap-in Settings tab. Notice that the
filter is DF_FILTO. The filter determines the Akey values used to fill the
instance list.

Filters | Filter Settings | Commands Enabled | Command Display | Cuskom Properties | SubTypes | Inst

Identification | Icons | Filker Snap-in Settings

Skay Ackive Default =
~Filter Handler
~indows-
«| Component DF_FILTS Y
Mock, Up - RAD-PAD _ RaDPal 84255E559FCD4 7 CSEFCEYEL 3DCESS9S . HTM

3. Close the properties of Resources.
4. Close the Framework.

5. Switch to the Visual LANSA editor and locate and open reusable part
DF_FILTO.

6. Search for the AddtoList method in the filter source:

Invoke Method{#avlistManager Addtolist) BusinessObjectType(DEM ORG SEC EMP) Visualidl (#FULLNAME)
Vizualid?2 (#EmpHo) Akevl (#deptment) Akevi(#=zection) |Akevi(#Enpno)| HColumnl (#PostCode)
AColumnl (#ADDEESS1) AColumn? (#hddress=2) AColumnd(#iddre=ssd] AColumnd (#FhoneBus)

AColumnS (#FhoneHne) AColumnb (#Deptment) AColumn? (#Section) NColumn?(#idditionTotal)
SetazCurrent (#additionOption) ExecutelefaultCnd{#AdditionOption)

7. Examine the Akey values in the method. Notice that the Empno field is
Akey3.

Remember that the script associated with the FindEmployee screen uses the
Akey1 value to get the employee number from the instance list (because it is the
Akey value used in the By Name filter).

8. Close DF_FILT9.

9. Start the Framework.
10. Start the RAMP Tools.

11. Locate the script associated with the FindEmployee screen in the screens
and scripts list.

11. Change the SETVALUE statement to:

var wBusinessObject = objBusinessObject.uUserObjectType;
if (wBusinessObject == 'EMPLOYEES")
SETVALUE("txtEmpno",objListManager.AKey1[0]);
if (wBusinessObject == 'DEM_ORG_SEC_EMP")
SETVALUE("txtEmpno",objListManager.AKey3[0]);

This statement sets the AKey value according to the name of the business object
that is invoking the screen.

12. Commit changes and do a partial save.

13. Display the Framework.

14. Select Resources in the HR Demo Application and fill the instance list.
15. Display the Details RAMP-TS command handler:

o
#% Resources

Fle Edit Yew Help ‘Windows (Framework) (Administration)

[spooled Files 2 sign off [Reports

[] Details Using SETCURSOR

Enter an emplovee number, a full or partial name or telephone number, or select a skill type, then prezs enter :

!:‘g Resources
) IPA Test
Notes CA App
NTreeTest
Personnel
Proc_And_Close
RAMP Test
SubType Test
Tst Conn
Yisualstyle
¥L Spreadsheet
Programming Techniques

Street No and

EEEHEHEEEEBEBEBEBE

Section Code

Employee Number
Employee Surname
Employee Given Name(s)

Suburb or Town
State and Country
Home Phone Kumber
Department Code

Start Date (DDMMYY)
Termination Date (DODMMYY)

Browse/Maintain Employee and

uf; Resource : Details RAMP-TS [SMITHSON, FRED-A0193)

[|Detals || Documents 1 Events [00|Images . Motes [T TimeShests '} Details RAMP-T3

5k111 Files

Save
e e R e R A 0
Prampk
............ SMITHSON
......... FRED Probe Screen
WE Tinms oioni o dis b o 121 Cutler Ave
_____________ Windsor Show Snapshat
........... NSW
Documentation
........... (02) 546-4657
............ ADM |+ Turn Trace 0n
.............. 050+
.......... 3/07/89) +
....... 0/00/00 +

oY m_iministratiun OB A4A06 8568

Ajax Test

CmhSort Mare | Code J'| Addre,., | fddre,., | Addre. ., |Zip Code | Busine...| Hame ..., | D| 5| #

ColHdg Test SMITHSOM,FRED A0193 121 C... ‘Windsor BSW 2034 (02),. (02)., 4. 05 =

Englis App TEST,TEST A0234 test test kest 2000 34324 32432 &, 01

Excel MISS SIMPSCM A, AD907 33an.,. anne.. annes 2145 090909 090909 &, 03

Expand-Shrink JOMES,BEN A1001 144F... PYMB... NoW, 2001 7950, 7995, &, 01

‘;f;’ Favorites SMYTHE, JOHN a1002 20Co... WER... NoW, 200 7954.., 0476, &, 02

=] ﬁ; HR Demo Application SMITHE.ROEERT alo0s 29fr,, DEE.., MNoW, 2000 4086, 9776, F,. 02 b/
& Organizations

Date Sk1 Skall Skl
Acquired Cade Descriptian Comment
25/03/38 [[ApuIy1 || Administratn Part 1 Met reouiremes
[+T=] Messages| Ready | VLFPGMLUIB | ENG | WFPGMLIE | 10/0309 [16:03 Q)

The HR Demo Application now consists of a mix of modernized 5250 screens

and Framework components.

16. Verify that the Details command tab on the Employees business object is

also still functional.

Summary

Important Observations

You can easily mix RAMPed 5250 screens with command handlers created with
Visual LANSA

The filter determines which AKey values need to be used to link your screens
with the instance list.

What You Should Know
How to combine RAMP screens and Visual LANSA command handlers
How the AKey values are established.

RAMP-TS015: Understanding and Handling Screen Variations
In this tutorial you will learn to understand concepts behind screen signatures
and screen identification.

Objectives

Understand what screen signatures are.

Learn how to create a single screen definition for two screens with different
signatures

Learn how to uniquely identify screens that share the signature with other
screens.

Learn how to use screen name Variants.

Sereens {{ Session Display Help ﬁ') -Auto- - I.:)“«. E:‘a
Possible Matches ~ REEaE Fersoane] 26 /04/00 14:32:54
ID Hame
£ PSLSYSMain 1
<new definition> Sy [N this tutarial you will leam to
A understand concepts behind
Current Winner: BSLSYSMain [3) SCreen Signatureg and screen
Screen Definition identification.
| | Delee | |
Signature:
|PSLSSHain (1D =)
Variant Name:
Description:

To achieve this objective, you will complete the following steps:
RAMP-TS015 Step 1. Assigning the Same Name to Two Screen Variations
RAMP-TSO015 Step 2. Handling Different Screens with the Same Signature
RAMP-TSO015 Step 3. Creating Screen Variants

RAMP-TSO015 Step 4. Using Screen Variants in the Script

RAMP-TSO015 Step 5. Creating a Set of Screens (Advanced)

Before You Begin
In order to complete this tutorial, you must have completed the following:

RAMP-TS001:
RAMP-TS002:
RAMP-TS003:
RAMP-TS004:
RAMP-TS005:
RAMP-TS006:
RAMP-TS007:
RAMP-TS008:
RAMP-TS009:
RAMP-TSO010:
RAMP-TSO011:
RAMP-TS012:
RAMP-TS013:
RAMP-TS014:

Creating a Basic Prototype of the Modernized Application
Rapidly Modernizing Complete Application Segments
Creating a Data Filter for Employees

Naming and Classifying the Employee Screens
Reviewing Design

Snapping in a Basic Inquiry Screen

Snapping in a Data Entry Function

Changing Inquiry Screen to Update Mode

Tracing Navigation

Using Special Field Handlers

Snapping in Shipped Documents Command Handler
Snapping in Shipped Notes Command Handler

Sending Instance List Data to Excel

Snapping RAMP Screens into the HR Demo Application

What is a 5250 Screen?
The question "What is a 5250 screen?" is subjective.
Is this 5250 screen...

I"f' Telephone Search
Enter
Employee Surpame Show Menu Bar
Drocurmnentakion
Turn Trace COn
Probe Screen
the same as this 5250 screen?
I

."_‘r' Telephone Search

Enter

Employee Surname =] Show Menu Bar
Emp1oy Dacurnentation
Surname Given name(s) Number
BENTLEY ERIDGET A7E5 8 Turn Trace Gn
EERESFORD BRUCE C AZ2007
BELACK FRED ADD30
BLACKMORE RICHIE ABE63 Probe Screen
BELOGGS JOHN Al1031
EROWN FR.EDDY AZS 64
EROWN ANN VERONICA ADOFO
ERYER.S MIKE JOHN AZ2006
EURGESS KEWVIMN AZ005

On appearance, you might say "No they are different - you can see that just by
looking at them".

However, if you know how the RPG program displaying them works you might
say "Yes, these are the same screen" because there is only one point in the
program that actually displays a 5250 screen, so logically they must be the same

screen.

Screen Signatures

RAMP-TS assigns a signature to every 5250 screen based on the name of the
record formats displayed on the screen. You can see the signature when using
RAMP-Tools.

SCreens £{| Se=zion Dizplay Help
Possible Matches ~ 21 ephone Number Search
I MName

12 TelephoneSearch 0
<new definition=

Current Winner: TelephoneSearch [12)

Screen Definition

| | Dekte | |

Signature:
@SMNAME MSGESFLC.PEHDO0L4.REF00001...,

Hl@SN#ME.MSG@SFLC.P@HDDD14.R@FDDDDI [SGISFL P@FOOTER,

TelephoneSearch [0z 13

Variant Name:

The preceding example screens have different signatures because the second
screen displays a subfile control record and some subfile records. This means
RAMP-TS will consider them to be different screens.

The same sort of different signature situation can happen on other non-subfile
screens.

For example, an order details display may display a record format called
ADDINFO (say) that shows addressing details, but it only does this when the
delivery address is different to the postal address. This means that what you
think is a single screen named OrderDetails (say) actually comes two variations
(ie: it has two distinct signatures).

The key to this tutorial is understanding that 5250 screens have different
signatures and how you can use these to handle different situations.

Handling the same screen being displayed with different
signatures

If RAMP gives different signatures to two screens that you think should actually
be the same screen, you can easily resolve this by giving both screens the same
screen name.

This means that there will be a single screen script handling both the screen
variations.

Sometimes you also apply a variant name to each different screen signature so
that the single screen script can tell which screen it is actually handling.

See RAMP-TSO015 Step 1. Assigning the Same Name to Two Screen Variations
to learn how to handle this situation.

Handling different screens being displayed with same signature

Sometimes what you consider to be different screens will have the same
signature.

Typically this is the case with i5/0S system command screens (all have the
signature QDUI132.USRRCD).

You can uniquely identify these screens by selecting additional details on the
screen as ID fields. For example, the title of the screen. Once you do this you
each screen is assigned a different screen name, and thus has its own unique
screen handling script.

See RAMP-TSO015 Step 2. Handling Different Screens with the Same Signature

Handling different screens as group or set of screens

Sometimes a whole set of different screens have very similar behavioral
characteristics (for example, code table maintenance programs).

Each screen would have a different signature, but if you assign the same screen
name to them all, you have will have a single screen script managing them all.
This is productive because a single screen script can handle many different
screen variations.

Typically you also assign each different screen a different variant name so that
your single screen script can tell which one it is actually handling.

See RAMP-TSO015 Step 5. Creating a Set of Screens (Advanced).

RAMP-TS015 Step 1. Assigning the Same Name to Two Screen
Variations

In this step you will give the same name to two variations of a screen (with
different signatures), one with an empty subfile and one with a subfile with
entries.

By defining the two variations as the same screen, there will only be one script
to control the navigation to and from the screen.

The function used in this step is the Telephone Search function in the Personnel
System, which contains a single REQUEST statement display the screen:

363636 36 36 36 3 336 3636 36 36 3 3363636 3636 36 3 36363636 336 36 3 36363636 36 36 36 3636363636 36 3 36 363636363636 3 3 X

Proce=zsz : PSLSYS (Perszonnel system)
Function : SHAME (Search for emploves by name)

*
*
*
3 36363636 3 36 36 3363636 36 3 36 3633636 36 36 3 36 3363636 36 36 36 3 3363636 3 36 I 3363036 36 3 36 I 336363636 3 3 X

*

Define all groups. lists and work fields used

FUNCTION OQFTIONS(*HOMESSAGES *DEFERWRITE *DBOPTIMISE #DIFECT *LIGHTUSAGE *MLOPTIMISE)
DEFINE FIELD{#$SURNAME) REFFLD{#SURHAME)
DEF_LIST WAME(#PSLHAM) FIELDS(#SUENAME #GIVENAWE #ENWFNOQ #PHONEEUS) ENTRYS(0000100)
#* Program mainline
=FEEGIN LOQF
* Hequest next ssarch name ~ display previous list
REQUEST FIELDS{A#SURNAME) IDENTIFV(*#DESC) ACROSS SEP(0013 BEOWSELIST (#PSLNAK
CHAHGE FIRELD(#3SURNAKE) TO{ASUEHAME)
* Build new lizt of enployees with reguested partial name
CLE_LIST HAMED({#PSLHAM)
=FSELECT FIELDS({#PSLHAM) FROM_FILE(PSLMST2) WITH_KEY (#SUENAME) GEWNERIC({*YES)
ADD_ENTEY TO _LIST(#PSLNAM)
ENDSELECT
CHANGE FIELD(#SURNAHE) TO({#$SURNAME)
—END_LCOF

When the screen is initially displayed, it has a different signature to when the it
is displayed with a list of employees and phone numbers because the record
formats are different.

In RAMP Tools, start the RAMP-TS 5250 emulator session.

2. Navigate to the Personnel System main menu:

LANSA run pslsys partition(dem)

3. Select option 7 Telephone Number Search.

Name the screen TelephoneSearch and click the Save button on the Screens

tab:

Grreens {{| Seszzion Display Help ﬁ) ITL‘ ':l E“".j
Possible Matches ~ CEE § anes MR Cimer

I Hame
=new definition=

Current Winner

Screen Definition

Save | Cancel | Suggest
Signature:
@SNAME.MSG@SFLC.PEHD0014.REF00001...,
Name:
|'&Iephcne$sarch|

Variant Name:

Description:

Subfiles:
Start End Mame

[~ Auto Select

Fields:
Name Row Col Sfl

H 1 20

Telephene Number Search I O o @ | J #| = ovR

5. Enter a letter in the Employee Surname field and press Enter. Note that the
screen is redisplayed with the subfile and another signature, so RAMP shows
the screen as Unknown Form.

6. Give the screen the same name TelephoneSearch and save the name.

Sereens {(| Session Display Help ,® Ao -|E @x) Tracking Info

Possible Matches A

ID Name
<new definition=

« Enter

Emp Toy Business Phone
Wumber Number

Current Winner:

Screen Definition

Sa'.fe‘ Cancel‘ ‘ Suggest ‘

Signature:
@SNAMEMSG@SFLC.P@HD0014.REFOO00L..,

Name:
Telephones earch|

Variant Name:

it ___

Description:

7. Define the TelephoneSearch screen as a destination.
8. Cancel out of the screen and select option 7 again.

9. Enter a letter in the Surname field and press Enter. Notice that both
TelephoneSearch screens are now defined as a destination and that they are
shown as one screen in the screens and script list:

Marme

= Session

+ D Junctions (4)

= IE] Destinations (4]
1 MewEmploves
+ PSLTAEMaIn
1 DisplavEmploves
|® TelephoneSearch |

+ Specials (2}

+ g Scripks (10)

10. Do a partial save of the RAMP definition.

Next you need to create a business object with which to associate the
TelephoneSearch screen:

11. In the Framework window, use the Instant Prototyping Assistant to create a
new business object Telephone Search, add the Details command to it and
then associate it with the Personnel application.

12. When the Telephone Search business object has been created:
Open its properties
Delete the New Filter created by default

Make the command a Business Object Command in the Commands Enabled

tab
Click the Close button to the message asking to Restart the Framework

Close the properties.

13. Display the RAMP Tools window.

14. Select the TelephoneSearch destination screen in the screens and script list
and display its details.

15. Refresh the Associated Command Handlers list.

16. Select the Details command handler of the Telephone Search business
object as the command handler.

~fssociaked Command Handler(s)-

Link ta Comnmand (... | in Object User Obj... | &
Mokes Test Connection TEST_C...
Details T5_Teskt TS_TEST
Mew T5_Test T5_TEST
Mokes T5_Teskt TS_TEST
Details Zode Tables CODE_T...
Details Emplovees EMPLOY, .,
T Emplovees EMPLOY, .,
Docurmnents Emplovees EMPLOY...
Events Emplovees EMPLOY, .,
Spreadshests Employvees EMPLOY, .,

| Dekails Telephone Search TELEPH...

w

Refresh

17. Disable all function keys and buttons except Enter.

18. Switch to the Framework window and select the Save and Restart option
from the Framework menu.

19. When the Framework window restarts, select the Personnel application and
the Telephone Search business object.

20. Test the command handler:

" Telephone Search ._ E|E|
File Edit Wew Help ‘Windows (Framework) (Administration)
D Spooled Files % Sign QFF Feports [Details Using SETCURSOR
Telephone Search
- [x]
25, Administration @l ' Telephone Search
Ajan Test e —
CmhSort Enfer:
ColHdg Test
Employee Surname B
Englis App Show Menu Bar
Excel . Employ Docurnentation
Expand-Shrink Surname Given name(s) Number
7 Favorites BENTLEY BRIDGET ATESE Turn Trace On
- T EERESFORD BRUCE C A2007
t= HR Demo Application BLACK FRED AD030
IPA Test ELACKMORE RICHIE AGGE3 Probe Screen
ELOGGS JOHN AlD31
hates L& ApD BROWN FREDDY A35E4
NTreeTest BROWN ANN VERONICA ADO7O0
ERYERS MIKE JOHN AZD0&
= { Personnel —1|| BURGESS KEVIN A2005
Code Tables
Employees
Telephone Search
E Proc_And_Close
] DaMMD Tack :
£ |
Messages| Ready | VLFPGMLIE | ENG | VLFPGMLIE |25/04/09 | 15:25 i)

Note that if you want to name any fields on the TelephoneSearch destination,
you must do it on both screen variations.

RAMP-TS015 Step 2. Handling Different Screens with the Same
Signature
In this step you will give different names to two i5/0S system command screens

which have the same signature (all i5/0S system command screens have the
same signature), the System i Main Menu and Work with Active Jobs.

You will uniquely identify these screens by selecting additional details on the
screen as ID fields.

1. Navigate to the System i Main Menu screen in the RAMP-TS 5250 emulator
session.

You have already named the screen i5OSMainMenu, but because this screen has
the same signature as other i5/0S screens, you need to add more information
to its definition to uniquely identify it.

2. Add the title of the screen to the definition by checking the check box in
front of it.

e L Lt

SCreens {{| Seszsion Dizplay Help }‘B -Auto- * @& ﬂa

[V Auto Select

Name Row Col Sfl

Select one of the fellowing

~

1.

- 5 10 o

v Q&0 | [®|EIms

3. Click on the Save button on the Screens tab.

Next name the Work with Active Jobs screen:

4. Navigate to the Work with Active Jobs (WRKACTJOB) screen in the
RAMP-TS 5250 emulator session.

5. Add the title area to the screen definition by checking the check box for the
title in the Screens tab.

6. Enter WrkActJob as the screen name.

Gereens 44| Se=zion Display Help J@ ITL‘ ':;1. '5;53‘
be Bl Beaais | A ork with Active Jobs LANSAD?
Signature: LA
QDUIL132.USRRCD
Name: .
|'f"'"”b':'\d-|'3b (ID=11) S ith G=Release

Variant Name:

| it S f1ob] % Function

Description:

Subfiles:
Start End MName

= el

Name Row Col Sfl

v 1 30

Wark with Active Jobs

| s v Qe BICELE

7. Click on the Save button.
8. Classify the WrkActJob screen as a destination.

Note that now the two screens have their own definitions with associated
scripts:

Marme

= iSession
= E] Junctions (4)
+ MainLogin
= iSOEMainMenu
= @ Scripks
FORMSCRIPT_S3
+ PSLSYSMain
1 FindEmployes
= [g Destinations (&)

1 MewEmploves
PSLTAEMaIN
DisplavEmployes
Telephonesearch
WrkAckJob
= @ Scripks

FORMSCRIPT_135
+ lgg ommand Handler
+ ReviewMaintPrink

B E

9. Next track the navigation to and from the Work with Active jobs screen.
10. Do a partial save of the RAMP definition.

RAMP-TS015 Step 3. Creating Screen Variants

In this step you will identify the different views of the Work with Active Jobs

screen as variants, so that your script can handle the view being shown.

1. Enter the Variant name Status for the first view.

2. Add the Status column heading to the screen definition.

&{ GSession Dizplay Help
Work with Active Jobs

Screens
wdines

|WrkActlob

[ID=18)

Variant Name:
|Statu3

Description:

Opt Subsystem/Job User

ype (PU % Function

Subfiles:
Start End Name

[~ Auto Select

Fields:

Mame Row Col Sfl

CPU %)
B li 3 4

Function

] 9 83

Status

= 10 2

v Q¥ (0|

(%

VR

3. Click on the Save button on the tab.
4. Press F11 on the Work with Active jobs screen to display the next view.

5. Add the screen's title and the Elapsed column heading to the screen
definition.

Sereens {{ Session Display Help }‘B -Auto- ¥ 'SL =]

IV Auto Select

Mame Row Col Sfl T
A] am/3 ype Pool Pty U Int Rsp AuxiD CPU &

6=Release

H & =58

7=Dizplay message

o B

S=Work with spooled files

[732

13=Discennect...

v 8 48

Enter the name of the screen (WrkActJob) and the Variant name Elapsed.
Click on the Save button on the Screens tab.

Press F11 on the Work with Active jobs screen to display the next view.

o L N D

Add the Threads column heading to screen definition by checking the field
corresponding to the title ---- Threads ----.

10. Enter the Variant name Threads.

11. Click on the Save button on the tab.

12. Press F11 to verify the different views have variant names.
13. Do a partial save of the RAMP definition.

Next you will create an application and business object you can use to snap the
Work with Active Jobs screen into the Framework.

14. In the Framework window, use the Instant Prototyping Assistant to create a
new application System i Server:

Create business object Active Jobs
Associate Active Jobs with a Details command handler

Create application System i Server
Add Active Jobs to the new application.

15. Delete the filter for Active Jobs and make Details a business object
command.

16. Save and restart the Framework and start RAMP Tools.

17. In the RAMP Tools window associate the WrkActJob screen with the
Details command handler of the Active Jobs business object.

18. Disable the Cancel key and button.

19. Select the Session option SESSION_D to execute the destination screen in
a separate session.

20. Do a partial save of the RAMP definition.

RAMP-TSO015 Step 4. Using Screen Variants in the Script

In this step you will use the screen variants to set the caption of the button
corresponding to the F11 key according to the view shown.

1. In the Framework window, select the System i Server application and the
Active Jobs business object to Display the Work with Active Jobs screen.

2. Press F11 to display the different views of the screen.

3. Notice that the Caption of the button corresponding to the F11 key has a
static caption Display Elapsed Data.

To set the appropriate caption on the button depending on the view shown, you
need to check which variant is being shown and then use the
OVERRIDE_KEY_CAPTION_SCREEN function to set the button caption:

4. Switch to the RAMP Tools window and display the script for the WrkActJob
screen.

5. In the vHandle ARRIVE function add an IF... ELSE IF... ELSE statement
after the bReturn variable declaration to check which screen variant is shown
and to set the caption of the button:

if (this.vLatestVariant == "Status")

{
OVERRIDE_KEY_CAPTION_SCREEN("WrkActJob", KeyF11, "Show

}

else if (this.vLatestVariant == "Elapsed")

{
OVERRIDE_KEY_CAPTION_SCREEN("WrkActJob", KeyF11, "Show

}

else

{
OVERRIDE_KEY_CAPTION_SCREEN("WrkActJob", KeyF11, "Show

}

Your script will look like this:

A% Handle arrival at this Destination L
/% oPayload: The payload supplied by the event initiator */
J¥ oPreviousForm: Reference to previous Form object W

vHandle_arRRIVE: functionforayload, oPreviousForm)

var bReturn = true;

if (this.vLatestwvariant == "status")

OVERRIDE_KEY _CAPTION_SCREENM("wrkactlob", KeyFll, "show Elapsed Dpata"};

else if (this.vLatestvariant == "Elapsed")

OVERRIDE_KEY_CAPTION_SCREEN{"wrkactloh", KeyFll, "show Thread Data");

else

OVERRIDE_KEY_CAPTION_SCREEN("wrkactloh", KeyFll, "show Status");

SHOW_CURRENT_FORM{true); /% show the form in the framework and show VLF buttons *I

HIDE_5250_BUTTOMS(]; A% Hide any 5250 style buttons displayed
GET_FORM_MESSAGE(Z22); A% Extract messages and hide the message 1ine L4
SETEBUSY(Talsel; A% Last thing done - turn off the busy state bt

A% O<ARRIVE #» - Do not remove or alter this Tine %/

6. Commit the changes and do a partial save of the RAMP definition.

7. Switch to the Framework window and test your changes. The button caption
will change depending on the screen variant shown:

£ Active Jobs

File Edit %iew Help Windows (Framework) (Administration)

Spocled Files 5 Sign OFf

Reports

[] Details Using SETCURSOR

Active Jobs

[¥]

2 Administration
Ajax Test
CmhSort
ColHdg Test
Englis App
Excel
Expand-Shrink

HR Demo Application
IPA Test

Notes CA App
NTreeTest

Personnel
Proc_And_Close
RAMP Test

SubType Test
System i Server

a Active Jobs

Tst Conn

Yisualstyle

XL Spreadsheet

@ Programming Techniques

é
#
.l
#
#
#
#
#
#

DIEEFEEHE BB EEE BB

B EBEBEB

7 Active Job

CFU %: .0

Type options, press

2=Change 3=Hold
g=work with spool

opt subsystem/Job

AXESIVAN
AXESIVAN

Parameters or cComma
—

Enter
Y
Elapsed time: 00:00:00 Active jobs: 21 Refresh
Enter. Find
4=End S=Work with 6=Release 7=Display Restart shatistics
ed files 13=Disconnect ..
________ Sllisi e | Show Thread Data
Type Pool Pty CPU Int Rsp AuxIO
SBS 2 0 .0 0 More options
BCH 2 20 alal 1]
BCI : 2 .0 0 More keys
e ER e o Shiow Menu Bar
BCI 2 20 o 1]
BCI 2 20 =3 0 Documentation
BCI 2 20 il 1]
BCH 3 20 6 0 Turn Trace On
BCI 2 20 .0 1]

nd

Probe Screen

[F3=ExitFS=RefreshF7=Find10=Restart st:

Messages| Ready

| YFPGMLIE | ENG | WLFPGMLIE | 5/05/09 |11:58 ()

RAMP-TS015 Step 5. Creating a Set of Screens (Advanced)

In this tutorial you will create a set of screens with very similar behavioral
characteristics (even though each screen has a different signature) by giving
them the same screen name. In this way you will have a single screen definition
and script managing them all.

The screens used in this tutorial are the screens accessed from the Code Tables
business object in the Personnel application in Framework in RAMP-TS002:
Rapidly Modernizing Complete Application Segments:

Review/Maintain/Print Department Table
Review/Maintain/Print Section Table
Review/Maintain/Print Skill Table

You may want to review these screens first.

1. In the RAMP Tools window ensure that the Auto Update Navigation Scripts
option is selected.

2. Use the RAMP-TS 5250 emulator to navigate to the Personnel Table Main
Menu (PSLTABMain).

3. Select option 1. Review/Maintain/Print Department Table.

4. Name the Review/Maintain/Print Department Table screen
ReviewMaintPrint.

5. Also give it the Variant Name DepartmentTable in case you might want to
handle this particular screen in the script. (This is optional, you would
normally only give a variant name if you knew you would need it).

Screens
Possible Matches

ID Hame
18 ReviewMaintPrint
<new definition=

Current Winner: ReviewMaintPrint [18)

Screen Definition

Sa'.fe‘ Cancel‘ Delete|

Signature:

@MOEPTABMSG@SFLC. PEHDO020.R@F0O000..,
Name:

|RE'.fiewr.1aintPrint (1D = 18)

Variant Name:

|DepartmentTabIe

Description:

Subfiles:
Start End MName

£{| Session Display

Dept Depa

Code

t department to

v O

Help)@ -Auto- * Q E:a

OvR

6
7.
8.
9

Save the screen definition and cancel out of the screen.

Select option 2. Review/Maintain/Print Section Table

Name the screen ReviewMaintPrint.

Optionally give it the Variant Name SectionTable.

10. Save the screen definition and cancel back to the main menu.
11. Select option 3. Review/Maintain/Print Skill Table

12. Again name the screen ReviewMaintPrint and optionally give it the Variant

Name SkillTable.

13. Save the screen definition.

14. Check in the Tracking Info that all the three screens have the same name.

15. Classify the screen as a destination.

Note that in the Screens and Scripts List there is a single screen definition for
ReviewMaintPrint with a single script that controls it:

= [g Destinations (&)
[+ DisplayEmployes
[+ MewEmployee

[# PSLTAEMain

= ReviewMaintPrint
= @ Scripks

FORMSCRIPT_136
Telephonesearch
[WrkactJob

Because there is a common screen definition, any changes you make to it affects
all the three screens.

16. Disable the Exit key and button.

B P LS I USUR LRI By o=y SR L | R Ll B L B LY =y
+ ReviewMaintPrink]

4 TelephoneSearch] key |Capti|:|n |Enal:u|e K||Enal:|le| Seq |A
Wrkacklob] Enter Enter 1
=[] Junctions (4) F1 F1 F F 2
1 FindEmployes] 'I:E Fz E E | 3
4 i525MainMenu 1 3 Exit 4
+ MainLogin] F4 Prompt 5
PSLSYSMain] FS FS Ll O] &
+ [Scripts (12) F& addCreate 7
= Specials (21 F7 F7]] g
H =UMKMOWN_FORM=] Fg Fag]] 9
1 DisplayMessages] Fa Fo F] 10
F10 F10]] 11

F11 F11]] 12 g
> — = 1 — — =

17. Do a partial save of the RAMP definition.
18. Restart the Framework.

19. Switch to the Framework window and choose the Code Tables business
object created in an earlier tutorial.

20. Select the Review/Maintain/Print options and verify that the Exit key and
button are not enabled in any of the three screens:

Code Tables |Z| |E| E|

File Edit Miew Help ‘Windows (Framework) (Administration)
[spooled Files 5% sign off ! “ Reports [Details Using SETCURSCR !
Code Tables
[x]

%%, Administration 2l 7 Code Table
Ajax Test
CmhSort Enker
ColHdg Test

. : - - Prarmpk
Englis App Dept section Section
Excel sel code Code Description AddCreate
Expand-Shrink [] ADM 01 INTERNAL ADMIN SRVZ
=i RCHSTIC TN |
& HR Demo Application ADM 04 SALES & MARKETING T—
Tha Test [] ADM 05 MAINTENANCE
Notes CA App [] DM 06 PERSONNEL SECTION Pint
NTreeTest ADM 09 VEHICLE MAINTENANCE
= Personnel ALD 01 ADMINISTRATION Show Menu Bar

] AuD 0z PURCHASING

Employees i AlUD 0z ACCOUNTING Dacumentation

Talnhons Searth FLT o1 ADMINISTRATION

|:| 8 FLT 0z PURCHASING Turn Trace On

Proc_And_Close [] FLT 03 ACCOUNTING
RAMF Test [] GAC FC FINANCIAL CONTROL Probe Screen
SubType Test GAC 01 ADMINISTRATION
System i Server " GAC 0z PURCHASING
< | @
|l Select section o review|chal Messages Ready | VLFPGMLIE | ENG | WLFPGMLIE | 8/05(09 | 14:30)

Summary

Important Observations
RAMP assigns signatures to screens based on the record formats on the screen

You can give two or more screens with different signatures the same name.
When you do this, the screens are defined in a single screen definition and there
is only a one script that handles them.

You have the option of identifying different variations of a screen if you want to
handle them in a different way in the script.

Minimizing the number of screen definitions and scripts you create and maintain
can be very productive.

Conversely, you can give different names to screens with the same signature. In
this case you will need to add a screen element that uniquely identifies the
screens to the screen definitions. This is something you would typically do for
the i5/0S system command screens which all have the same signature.

What You Should Know

What screen signatures are.

How to give screens with different signatures the same name.

How to identify screens that share the signature with another screen.
How to create and use screen name variants.

Advanced Tutorials

These advanced tutorials demonstrate RAMP-TS concepts and techniques.
RAMP-TSADO1: Using Buttons to Add Value to an Application
RAMP-TSADO02: RAMP-TS Event Handling Basics
RAMP-TSADO3: Special Field Handling

RAMP-TSADO04: Redesigning the Screen Using aXes
RAMP-TSADO5: Using SHARED Properties and Functions
RAMP-TSADO06: Handling Multiple Screens on Multiple Tabs
RAMP-TSADOQ7: Handling Multiple Screens on a Single Tab
RAMP-TSADO08: Screen Wrapper Basics

RAMP-TSADO09: Screen Wrapper with a Subfile

RAMP-TSADO01: Using Buttons to Add Value to an Application

This tutorial will demonstrate how to add useful functionality to a modernized
5250 application by using framework buttons.

Objectives
Learn how to add functionality to your modernized screen using buttons
Understand that clicking a button (or pressing a function key) on a modernized

screen does NOT have to interact with the 5250 application. You can capture
button or function key on the client to add functionality.

Learn how to copy data from a RAMP command handler to the Windows
clipboard

[Detals | [Documents 1 Events
Enter
Employee Mumber :|AOD2D
Employee SUFREME . . < « @ v & & & & & = ELACK
Employee Given Name(s) FRED Show Menu Bar
Street Noo and Name 70 MAIN STREET
Show Snapshiok
SUbEE DEE R amn T NEWTOWN NSW
State and COURNERY o @ ot a wcane AUSTRALIA Documentation
Home Phone Mumber 344-2234454545
HeparEment;Epde s L e FLT [+ Turn Tre= ~
SHENEDUEL S oiei § gt 4 ooged & o 03 + — In this tutorial you will add a
Star‘u_: Da1_:e EAEERER 6 aiaE 5 aiE s a o 3/08/92 + hutton to 3 modernized 5250
Termination Date (DDMMYY) 0/00,/00 + screen to copy the screen
contents to the Windows
clipboard.
Date skl Skill Skill
Acguired Code Description Comment ;

25 /03798 ADMINL Administratn Part 1 Mel requirement The clipboard contents can then
1/05/98 ADMINZ Administratn Part z G be pasted to ather applications.,
4705 /98 COM Communications Degre \ -
c /05 /98 cs Computer Science Deg I

£ Microsoft Excel - Book1 £ Untitled - Notepad W &l Document8 - Microsoft Word

@_1 File Edt iew Insert Format Tools D | File Edit Format View Help File Edit Yiew Insert Format Tooks Table|
Him | v &l B AD00 FRED BLACK = i
1 HE el ZouEY 5 8498 B
R B | J',‘Jl |2 By | fa @ Favortes - | Go
. s ,
P S snaglt [| window £ T ...§-|-1-.-2-|-3-|-4-,’
Al e A ADDED |
LlE R D | :
1]A0080 FRED BLACK P AN0R) FRED BLACK
2|
3 i

To achieve this objective, you will complete the following steps:
Read About Buttons
RAMP-TSADO1 Step 1. Enable Framework Buttons

RAMP-TSADO1 Step 2. Name Fields to Be Copied on the DisplayEmployee
Screen

RAMP-TSADO1 Step 3. Add a Function to the Script for the DisplayEmployee
Screen

RAMP-TSADO1 Step 4. Call the Function in the ButtonClick Function
RAMP-TSADO1 Step 5. Test the Buttons

Summary

Before You Begin

In order to complete this tutorial, you must have completed the core tutorials
RAMP-TS001 - RAMP-TS015..

About Buttons

There are two kinds of buttons in a RAMP application, Framework buttons and
5250 buttons.

Framework Buttons

Framework buttons are set for destination screens in the screen's RAMP
definition:

~Function Key Enablement

|Key |Captiu:un |Enal:u|e Ky |Enal:u|e Button | Seq | b
Enter Enter [v] [+]] 1
F1 F1 F F z
Fz Fz F 3
F3 Exxit F F 4
F4 Prampt F F 5
Fg Fg F F &
F& Copy | [+] 7 e
F7 Retrieve F g
Fa = P 3
Fa Fa F F 10
F10 F10 F F 11
F11 F11 F F 12
F1z Cancel F F 13
F13 F13 F F 14
Fl4 Messages |:| |:| 15
F15 F15 F F 16 =
— — 1 1 -

12 Railway Street
Baulkham Hills
NSW Australia
TR.N

Date skl i Skill
Acquired Description
- Administratn Part 1

Administratn Part 2
Advanced Programming
Communications Degre

You should use Framework buttons on all destination screens. Button display on
junction and special screens is irrelevant because these screens are not shown.
When executing the Framework as a Designer, design-time buttons are also
shown to help with development tasks:

Framew ork buttons

12 Railway Street
Baulkham Hills
NSW Australia
TR.M

Design-time buttons

Date skl i Skill
Acquired Description
- Administratn Part 1

Administratn Part 2
Advanced Programming
Communications Degre

5250 Buttons
5250 buttons are the buttons which are part of the modernized 5250 application:

Employee : Details (42007-BERESFORD BRUCE C]

| Dloetas |

NSW Australia
9877 B98Y

Date skl Skill Skill
Acquired Code Description

0/00/00

By default on all destination screens the 5250 buttons are hidden. The display of
the 5250 buttons is controlled by the SHOW_5250_BUTTONS() and

HIDE_5250_BUTTONS() functions:

wHandle_ARRIVE

A% Handle arriwval at this Cestination %7

A% oPayload: The payload supplied by the event initiator %/

A% oPreviousForm: Reference to previous object Farm®/

vHandle_arRIVE: function(oPayload, oPreviousForm)
war bReturn = true;

if (CHECK_FIELD_EXISTS("txtsurname"l)
SHOW_CURRENT_FORM{truel; /% show the form in the framework and show
GET_FORM_MESSAGE(Z27: é* Extract messages and hide the message 7|
HIDE_ 5250 BUTTOMNSE J; W Hide amy 3250 stywle buttons displaye

SETEUSY(Talse); A% Last thing done - turn off the busy sta

else

SENDKEY (KeyF21);
I

By default the 5250 buttons are shown in unknown and undefined screens. This
behavior is controlled by the special Unknown form definition:

M RAMP Tools Default Session (RAMP-TS)

Default Session | Backup RAMP-T5 5250 Session | Detalls
[0 FORMSCRIPT 77

Save T Mew 5250 Application Session Delete Rk £ Uinknowin oper tien Ushg and

& Find Find e Script FORMSCRIPT 77
: | Caption =LINEMCWN_FORM= - Handle an unknown Farm
Mame: Grouping | Last|
[= Session Grouping

] E] Junctions (4)
] [g Destinations (3)

= [| Specals ()
{5 =UNKNOWN_FORM= | 200
= @ Siripks
 HREREER 20 /¥ Handle arrival at_an UNKNOWN ¥/
[t DisplayMessages 200 /* orayload: The payload supplied by the event
[[Scripts (9) /% opreviousForm: Reference to previous ohject

vHandle_aRRIVE: function(oPayload, oPreviousFor
var bReturn = true;

SHOW CURRENT EQ_EMLD.{SE];
SHOW_5250_BUTTONS();

SETBUSY(Talse);

hd

Sl cammTae S Fim e mmmamaen mm s e S~ T

£ | b4

RAMP-TSADO1 Step 1. Enable Framework Buttons

In this step you will add a Copy to Clipboard button to the DisplayEmployee
screen.

1. In the RAMP Tools window, open the details of the DisplayEmployee
destination screen

2. Check the Enable Button column for function key F6 (you could use any
unused key/button).

3. Change the caption to Copy to Clipboard.

~Function Key Enablement

Ky iCaptiDn iEnaI:uIe Ky |Enahle Button | Seq | ~
Enter Enter 1
F1 F1 F F z
Fz Fz F 3
F3 Exxit F F 4
F4 Prampt F F 5
F5 F5 F D_I &
[Fs Copy ko Clipboard IF| [+] 7
F7 F7 O] I} 8
Fa Fa F F 9
Fa Fa F F 10
F10 F10 F F 11
F11 F11 F F 12
F1z Cancel F F 13
F13 F13 F F 14
Fl4 Messages |:| |:| 15
F15 F15 F F 16
F16 F16 F F 17
F17 F17 F F 15
F1g F1g F F 19
F19 F19 F F 20
Fzi Fz0 F [21 b

A button with this caption will appear on the destination screen but the
keystroke for F6 will not be sent to the 5250 application because the key has not
been enabled. Note also that even if the F6 key had been enabled here, but was
not present in the 5250 screen, it would have no effect in the 5250 application.

RAMP-TSADO1 Step 2. Name Fields to Be Copied on the
DisplayEmployee Screen

In this step you will name the fields to be copied on the DisplayEmployee
screen.

1. Start a RAMP-TS emulator session in RAMP Tools.

2. Ensure that the Auto Update Navigation Scripts check box is not checked.

3. Navigate to the DisplayEmployee screen and press F21 to put it in edit
mode.

4. Name the Employee number and Given Name fields txtEmpno and
txtGivename. The Surname field should have been named txtSurname in a

previous tutorial:

SCreens {{ GSession Display Help

_ _-_- -Auto- - 'E{ E-E}

Subfiles: ~

Start End MName Lines/Entry
18 21 R@FODODZ |1

v Auto Select

Comment

« Q& |[%|E1ovr

Bear in mind that the field names are case sensitive.

5. Click on the Save button on the Screens tab.

RAMP-TSADO1 Step 3. Add a Function to the Script for the
DisplayEmployee Screen

In this step you will a function in the script for DisplayEmployee to copy the
contents of the Employee, Givename and Surname fields to the Windows
clipboard.

1. Locate the script for the DisplayEmployee destination screen.

2. Copy and paste the following function to the script after the NavigateTo
function, before the //<SY SINFO> block:

M S e e e e S S S = e e === === === === === === ===
RS =SS e S S S = —— uCOpyEmpDetails =S===c—=—=—=—==—=—=—=c——&/,
M S e e e e S S S = e e === === === === === === ===
/* Copies Employee Details to the Windows Clipboard */

uCopyEmpDetails : function () {

/* Get details from 5250 screen */
var TAB_Char = "\x09" ;
var End_Of Line Char = "\xOD\x0A" ;

var sttEmpno = GETVALUE("txtEmpno");
var strGName = GETVALUE("txtGivename");
var strSName = GETVALUE("txtSurname");

/* Write details to clipboard */
var MyString = "";

MyString = sttEmpno + TAB_Char + strGName + TAB_Char + strSName +
COPYTOCLIPBOARD(MyString);

/* Issue a message */
MESSAGE("Details for employee ", strEmpno," sent to the clipboard");

}’

3. Use the Commit Changes button to commit the changes to the script.

RAMP-TSADO01 Step 4. Call the Function in the ButtonClick

Function

In this step add code to call the Copy to Clipboard function from the

ButtonClick function.

1. Add a case statement for F6 key (KeyF6) in the Switch command of the
ButtonClick function of the DisplayEmployee script.

2. In the statement for the F6 key add a call to the uCopyEmpDetails function:

case KeyF6:
/* Call copy function */
this.uCopyEmpDetails();
break;

3. Use the Commit Changes button to commit the changes to the script and
then do a partial save.

RAMP-TSADO01 Step 5. Test the Buttons

In this step you will test the Copy to Clipboard button.
1. In the Framework window, locate the Personnel Application.

2. Select the Employees business object and use the filter to fill the instance
list.

3. Select an employee to display its details.
4. Click on the Copy to Clipboard button.

[JDetals [Documents | 1 Evenks
Enter
Emplovee Number @ ADDSD !Cu:up}-'tu:ucllpl:unard
EMplGyYee: SUENDME .. o e o s anse e e s ELACK
Employvee Given Name(s)« . FRED Show Menu Bar
SEreet NoC o Name 5. ooow o e e e e 70 MAIN STREET
Show Snapshok
Lot i o Tl o e o o, | St e e e O NEWTOWN NSW
SEACE and EaUNERENT o e e e e e s AUSTRALIA Documentatian
Home Phone Number+ & & .« & . 344-2234454545
Department COME: o o0 e oo e et ek s e FLT | + Turn Trace On
LT o e P e o [T e 03 + b
start Date (DDMMYY) . . « « « « « . . . 3/08,/92 + BygkeSezen
Termination Date (DDMMYY) o/00/00 +
Date Skl Skill skill
Acquired Code _Description Comment
25/03/98 ADMINL Administratn Part 1 Met reaquirement

1/05 /98 ADMINZ Administratn Part 2 G

4/05 /98 COM Communications Degre

t /05 /95 S Ccomputer Science Deg

Notice the message indicating the employee details have been copied to the
clipboard.

[[[Details for emplovee 40090 sert to the cipboard

5. Start another application to which you can paste the contents of the
clipboard, for example MS Word or Excel.

6. Paste in the employee details (Ctrl + V):

E3 Microsoft Excel - Book1

(] Fle Edt Wiew Insert Format Tools Data Window Help -8 %
EHEEF‘”E' -0 - B I U|S == E| ,&,E
...] e B _J:;J | i | 2] E"‘j @j| ¥4 Feply with Changes... End Rewview, ., !
& Snaglt &' | Window - !
Al i A ADDSO

R O PR e F N e
1 |A0090 FRED BLACK
2
3
4
5 ——
B
7
8
9
10 -

M 4 » v Sheetl / Sheet2 / sheets / < | >
Feady LM

Summary

Important Observations

A function key with the Enable Button checkbox checked but not the Enable
Key checkbox functions as a Framework only button. The action of Framework
buttons is handled entirely on the client and no keystrokes are sent to the 5250
application. See Function Key Enablement.

The case statement for a function key controls what happens when the key is
used from the keyboard or its button is clicked.

You can use the SETKEYENABLED Function to dynamically enable and
disable buttons and function keys.

You can use the OVERRIDE _KEY CAPTION_SCREEN Function or the
OVERRIDE_KEY_CAPTION_ALL Function to dynamically change the text on
Framework buttons. The OVERRIDE_KEY_ CAPTION_ALL function can also
be used to set all function key captions to another language in a multilingual
application.

What You Should Know

How to add value to a modernized 5250 application using Framework buttons.

How to enable a Framework button and modify the ButtonClick function to
provide actions when the button is clicked.

How to add functions to a form script that are available from anywhere inside
the form script.

RAMP-TSAD02: RAMP-TS Event Handling Basics

This tutorial demonstrates how a RAMP script may signal an event to
Framework component and vice versa.

Objectives

Learn how RAMP screens signal events to the Framework

Learn how the Framework listens to RAMP signals

Learn how the Framework signals events to the RAMP screen

Learn how the RAMP screen listens to Framework signals

_': Employees

File Edit W¥iew Help Windows (Framewaork) (Administration)

[spooled Files 92 Sign off | “ Reports [Details Using SETCLRSOR.
Employees
r S g ‘
—IByMame |~ |ByDate of Birth | By Salary OB 4 & @
In this tutorial you ¥ Clear List | Search | | Employee | Description |~
will learn more about AOO7D BROW/N ANN YERONICA
signalling events Emploves Surname Annan BLACK FRED
bEthii?Pa S'Ei;?,nd B A1031 BLOGGS JOHN
a e
screen "Ll Send Signal ko RAMP screen A2 FLHEEES L i
L A2006 BRYERS MIKE JOHMN
- = BERESFORD BRUCE C
MWindows Internet Explorer b3 BROWH FREDDY v
MNotes CA App
NTreeTest _;- RAMP script received signal FILTER_SIGMAL 1
; ! Sender = EOMRMPOL
Personnel WithaInfol = EMPLOYEES
Code Tables L] WithaInFa2 = AZ005
Epiby e WithAlnfa3 = BURGESS KEYIM
Telenhone Search WiithAInfo4 = textl Enker
: i d””el S5 WithATrfoS = text?
[} Proc_and_Close E WithNInfol = 1.1 = Copy to Cliphoard
| RAMP Test E WithMInfoZ = 2.2 GESS
| SubType Test E WithNInfod = 3.3 TN Send Signal ko Filker
| System i Server st mmm”;ng 7 gg Gree
£ 1<t Conn = ithMInfoS =5, e Show Menu Bar
) VisualStyle st AUST Show Snapshat
i} XL Spreadsheet Hol 7 787
Programming Techn | Del |+ Documentation
Section Code & .« & & = o o= . W -
Start Date (DDMMYY) « « & « . . [3/03/0) ISR
Termination Date (DDMMYY) | 0/00/00 e

Messages| FReady | YLFPGMLIE | EMG | WIFPGMLIE | 11j05/09 | 12:35 ()

To achieve this objective, you will complete the following steps:
RAMP-TSADO2 Step 1. Add a Signal Button to the By Name Filter
RAMP-TSADO2 Step 2. Make Your 5250 Screen Listen to the Signal
RAMP-TSADO2 Step 3. Test Signaling from Filter to RAMP Screen
RAMP-TSADO2 Step 4. Add a Signal Button to the RAMP Screen
RAMP-TSADOQ2 Step 5. Make the Filter Listen to the Signal
RAMP-TSADOQ2 Step 6. Signalling from a RAMP script to a VLF component
Summary

Before You Begin

In order to complete this tutorial, you must have completed the core tutorials
RAMP-TS001 - RAMP-TSO015.

RAMP-TSADO02 Step 1. Add a Signal Button to the By Name
Filter

In this step you will modify the filter you created in RAMP-TS003: Creating a
Data Filter for Employees so that it has an additional button which sends a
signal to a RAMPed 5250 screen.

1. Open the filter reusable part iiiRMPO1.

2. Drag a button from the Common Controls tab to the filter and make its
caption Send Signal to RAMP Screen.

EOMRMPO1 - By Mame Filter
Clear Lisk Search

Emploves Surname
ABCDEFGHIIKLMMOPOQRST

Send Signal ko RAMP screen

2. Add this code to the filter source to handle the click event of the button:

* Handle the signal 1 button by broadcasting FILTER_SIGNAL_1 with 5
alpha and 5 numeric payload items

EVTROUTINE HANDLING(#PHBN_1.Click)

Invoke #avListManager.GetCurrentInstance AKey1(#vf_elxak1)
AKey2(#vf_elxak?2) AKey3(#vf_elxak3) AKey4(#vf_elxak4)
AKey5(#vf_elxak5) NKeyl(#vf_elxnk1) NKey2(#vf_elxnk?2)
NKey3(#vf_elxnk3) NKey4(#vf_elxnk4) NKey5(#vf_elxnk4)
Found(#vf_elBool) Visualld1(#VF_ELXVI1) Visualld2(#VF_ELXVI2)
BusinessObjectType(#vf_elidn)

Invoke #Com_Owner.avSignalEvent withId(FILTER_SIGNAL_1)
To(FRAMEWORK) SendAlInfol(#com_Owner.avObjectType)
SendAlInfo2(#vf_elxak1l) SendAInfo3(#VF_ELXVI2) SendAlnfo4("text1")
SendAlInfo5("text2") SendNInfo1(1.1) SendNInfo2(2.2) SendNInfo3(3.3)

SendNInfo4(4.4) SendNInfo5(5.5)

ENDROUTINE

Your code will look like this:

Handle the =ignal 1 button by broadcasting FILTER SIGHAL 1 with 5 alpha and & numeric payvload items
C-EVTROUTINE HANDLING(#PHEN_1.Click)

Invoke #avlistManager GetCurrentInstance AMevl(dvi elmakl) AKey2(#vi_elmakl) AKevd(#vi_elmakid)
Aevd (#vi_elxakd) AMevS(dvi_elzakb) WEevl(d#vi_elmnkl) HEey?(#vi_elunk:?) Hevld({#vi_elznki)
WEeyd (dvi_elunkd) HEeyS{dvi_elunkd) Found(#vi_elBool) Visualldl(#VF_ELIVI1) Visualld2({#VF_ELXVIZ)
BuzinessChbjectType(#vi_eslidn)

Invoke #Com_Cwner . avSignalEvent withId(FILTER_SIGHAL 1) To{FRAMENORE)
SendAInfol (#com_Cwner . awlbjectType) SendAInfol (#vi_elwakl) SendAInfol(#VF_ELIVIZ)
SendAInfod("textl") SendAInfob{"text2") SendNInfol(l.1) SendNInfol(2.2) SendNInfod(3.3)
SendNInfod(4.4) SendNInfoh(5.5)

—ENDROUTINE

—End_Con

The GetCurrentInstance statement retrieves information of the currently selected
entry in the instance list. The avSignalEvent then signals this information to the
Framework.

Note that some of the values passed by the avSignalEvent are just static text or
numbers. This is just to demonstrate that the command can pass five strings and
five numeric values.

3. Compile the filter. (If the compile fails, it may be because the filter is being
used in the Framework. If this is the case, restart the Framework).

RAMP-TSADO02 Step 2. Make Your 5250 Screen Listen to the
Signal

In this step you will modify the script associated with the DisplayEmployee
screen to listen for the FILTER_SIGNAL_1 and to display a message when the
signal is received.

You will use the vHandle_ AVEVENT function which listens for events coming
from other components

1. If the Framework is not running, start it.

2. Start RAMP Tools and locate the script associated with the
DisplayEmployee screen.

3. Add this code just above the SYSINFO block:

&
vHandle_ AVEVENT: function(Withld,Sender,WithAlnfol,WithAInfo2,WithA
{

var sText ="";

if (Withld == "FILTER_SIGNAL_1")

{

sText += "RAMP script received signal " + Withld;
sText += "\r Sender = " + Sender;

sText += "\r WithAInfol =" + WithAlInfol;

sText += "\r WithAInfo2 =" + WithAlInfo2;

sText += "\r WithAInfo3 =" + WithAlInfo3;

sText += "\r WithAInfo4 =" + WithAlInfo4;

sText += "\r WithAInfo5 =" + WithAlInfo5;

sText += "\r WithNInfol =" + WithNInfo1.toString();
sText += "\r WithNInfo2 =" + WithNInfo2.toString();
sText += "\r WithNInfo3 =" + WithNInfo3.toString();
sText += "\r WithNInfo4 =" + WithNInfo4.toString();
sText += "\r WithNInfo5 =" + WithNInfo5.toString();
alert(sText);

}

return(true);

},

Your code should look like this:

/¥ show details from cliphoard %/
ALERT_MESSAGE("Employee Details from the Clipboard are: ", "Employee Number:

, STrEmpno, "Mame: ", strGia

/¥ ===sm=== = AVEVENT ==

wHandTe_avEVENT: function(withid, sender,withalnfol, withainfoz, withalnfos,withalnfod, withaInfos, withnInfol, wi

war sText =

if (withId == "FILTER_SIGNAL_1")

STExt += "RAMP script received signal " + withId;
sText += " Sender = " + Sender

sTEXE 4= \r withainfol = " + W1thAInf01

sText += v withaInfo?z = " + withainfoZ;

sText += " withaInfos = " + withAInfDE;

sText += v WithaInfod = " + withaInfod;

sText += " WithaInfoS = " + withainfos;

sText += " WithwInfol = " + withwInfol.tostring();
sText += "¢ WithnInfoz = " + withwInfoZ.tostring();
sText += "¢ WithwInfo3 = " + withwnInfo3.tastring();
sText += " WithnInfod = " + withnInfod. tostring();
sText += "y WithnInfoS = " + withwInfod. tastring();

alert(sText);
return{truel;
J/CSYSINFO
vhame 1 "DisplayEmployes”
VGEUID : "63005AE2681E4 SE4AD4CE1HRDADDSEE",

4. Commit the changes and do a partial save of the RAMP definition.

RAMP-TSADO2 Step 3. Test Signaling from Filter to RAMP
Screen

In this step you will test the button you have added to the filter.

1. Switch to the Framework window.

2. Select the Employees business object in the Personnel application.

3. In the By Name filter, click on the Send Signal to RAMP Screen button.

Notice that nothing happens. This is because there is no RAMP screen visible to
receive the signal.

4. Use the filter to populate the instance list and select an employee in the list
and wait for the Browse/Maintain Employee and Skill Files screen to appear.

5. Now click the Send Signal to RAMP Screen button again.

The filter fires off a Framework-wide signal. The DisplayEmployee screen’s
vHandle_ AVEVENT function hears this signal and displays a message box
indicating that it has received the signal and what the payload was.

Employees : [[X]

File Edt Yiew Help ‘Windows (Framework) (Administration)

Spocled Files $€ Sign OFf | “ Reports [Details Using SETCLRSOR ‘

[3] [x] x

Windows Internet Explorer
IPA Test

Notes CA App RAMP script received signal FILTER_SIGMAL_L
MTreeTest ' Sender = ECMRMPOL

A [WA AR AW el =] o =Y =1 P

5 Administration ; By Name . _ByDateofBith | By Salary | OB A &

Ajax Test =5

CmhSort W Clear Lisk Search Empla... | Diescription |ﬁ
ColHdg Test A0070 BR.OWYN ANMN YEROMICA

Englis App s ADD90 BLACK FRED
Excel B A1031 BLOGES JOHN

Expand-Shrink | Send Signal ko RAMP screen | A2005 BURGESS KEVIN ¥
1./ Favorites BRYERS MIKE JOHN

Q, HR Demo Application BERESFORD BRIICE

=

Personnel WithAlnfol = EMPLOYEES
Cods Tablas HithAlnfoz = ADD0
Ernal WithaInfo3 = BLACK FRED
Ul S WithAlnfod = text1 Enter B
Telephane Search WithaInfoS = text?
! Proc_aAnd_Close WithiInfol = 1.1 Copy bo Clipboard
S RAMP Test WithMInfoz = 2,2 ELACK
: WithMInfo3 = 3.3 FRED Send Signal to Filker
Q¢ SubType Test WithMInFod = 4.4 ErTErRE
i SystemiServer WithMInfoS = 5.5 |- show Menu Bar
=1 Tst Conn [NEWTOWN NS
] visualStyle [AUSTRALIA | Show Snapshat
i1 ¥L Spreadsheet . 3. 2304, D -
Programming Technigy FLT B i
Section Code & 2 D3
& i | || start Date OMMYY) 3/08/04+ TumTraceon

= Messages Ready | YLFPGMLIE | ENG | VLFPGMLIE |12/05/09 | 11:14 i)

RAMP-TSADO02 Step 4. Add a Signal Button to the RAMP Screen

In this step you will modify the DisplayEmployee screen so that it has a button
that sends a signal to the Framework.

1. In the RAMP Tools window display the details of the DisplayEmployee
screen.

2. In the Function Key Enablement section enable the F17 button and make its
caption Send Signal to Filter.

~Function Key Enablement-

Key. 'Ce!ptiu:un Enal:ul,a_Ke__}.-' |Enable | Seq | ~
F7 F7 F] g

Fa Fa F] 9

Fa Fa F] 10

F10 F10 F] 11

F11 F11 F] 12

F1z Cancel F] 13

F13 F13 F] 14

Fl4 Messages |:| |:| 15

F15 F15 F] 16

Fig Fig F F 17

[F17 Send Signal ta Filker] 15 |
Fig Fig F F 19

F19 F19 F] 20

Fz0 Fz0 F] 21

Fz1 Fz1 F])

Fzz Fzz F] 23

Fz3 Fz3 F] 24

Fz4 Fz4 F] 75
Clearacreen Clear F] 26
Pagellp Page Up |:| |:| 27

F [] ¥

| [PageDown Page Down

Next you need to add the signal code to the button script:

3. In the vHandle. BUTTONCLICK function add this Case statement for the
F17 key:

case KeyF17: /* Send RAMP_SIGNAL_1 */
objGlobal.txtEmpno = GETVALUE("txtEmpno");
objGlobal.txtGivename = GETVALUE("txtGivename");
objGlobal.txtSurname = GETVALUE("txtSurname");
AVSIGNALEVENT("RAMP_SIGNAL_1","FRAMEWORK",0bjG
break;

Your code will look like this:

case KeyFld:
SENDKEY (KeyFld);
break;

case KegFl?: S send RAMP_SIGMAL_1 */
ohjclobal.txtEmpno = GETVALUE("txTEmpNO™);
ohjclobal.txtGivename = GETVALUE("txtGivename");
ohjGlobal.txtsurname = GETVALUE("txtsurname");
QVSIENALEVENT(”RAMP_SIGNAL_l”,"FRﬂMEwDRK”,DbjGTuba1.txtEmpnu,nbjG]ubaT.txtGivename,ubjG]n
reak;

detault:
SEMDKEY(sBUtton);
break;

The code retrieves the value of the txtEmpno, txtGivename and txtSurname
fields on the screen (you have named them in earlier tutorials) and sends a
signal with this payload to the Framework.

It also sends some static text and numeric strings just to demonstrate that the
AVSIGNALEVENT function can pass five strings and five numbers in its
payload.

4. Commit the changes and do a partial save of the RAMP definition.

5. Save and restart the Framework.

RAMP-TSADO02 Step 5. Make the Filter Listen to the Signal

In this step you will add code to the filter to listen for the RAMP_SIGNAL_1
and to display a message showing the signal payload.

1. Open the iiiRMPO1 reusable part in the Visual LANSA editor.
2. Locate the EvtRoutine #Com_owner.avEvent event routine.

3. Add this code before the Endcase statement to listen for RAMP_SIGNAL_1
and issue a message with the signal payload:

when '= RAMP_SIGNAL_1'

Use message_box_add ("VLF Filter received signal ' #Eventld.Value)
Use message_box_add (' WithAlnfol =' #AInfo1)
Use message_box_add (' WithAlnfo2 =' #AInfo2)
Use message_box_add (' WithAInfo3 =' #AInfo3)
Use message_box_add (' WithAlInfo4 =' #AInfo4)
Use message_box_add (' WithAInfo5 =' #AInfo5)
Use message_box_add (' WithNInfol =' #NInfo1)
Use message_box_add (' WithNInfo2 =' #NInfo2)
Use message_box_add (' WithNInfo3 =' #NInfo3)
Use message_box_add (' WithNInfo4 =' #NInfo4)
Use message_box_add (' WithNInfo5 =' #NInfo5)

Use MESSAGE_BOX_SHOW

Your code will look like this:

—when '= Delete List_Entrv'
Invokese Method(#avlistManager Beginli=tUpdate)

* Femove instance details from the instance list

Invoke #avlistHanager RemoveFromlList AKevl (#EMFHO)
Invokese Method(#avlistManager EndLi=tUpdate)

—when '= RAMP STGHAT 1°'

Tz mes=szage_box_add ('VLF Filter receiwved =ignal
T=z2 mes=szage_box_add (' WithAInfol =' #AInfol)
Tz mes=szage_box_add (' WithAInfo: =' #AInfo2)
Tz mes=szage_box_add (' WithAInfo3d =' #AInfod)
Tz mes=szage_box_add (' WithAInfod =' #AInfod)
T=z2 mes=szage_box_add (' WithAInfob =' #AInfob)
Tz mes=szage_box_add (' WithHInfol =' #HInfol)
Tz mes=szage_box_add (' WithHInfo: =' #HInfo2)
T=z2 mes=szage_box_add (' WithHInfo3d =' #HInfo3)
T=ze mesz=szage_box_add (' WithHInfod =' #HInfod)
T=z2 mes=szage_box_add (' WithHInfob =' #HInfob)

Us== MESSAGE BOX SHOW

#EventId. Valus)

—endcaze
—Endroutine

4. Compile the filter.

RAMP-TSADO02 Step 6. Signalling from a RAMP script to a VLF
component
In this step you will test signaling from the RAMP script to the filter.

1. Inthe Framework select an employee from the instance list to redisplay the
DisplayEmployee screen with the new button.

2. Click on the Send Signal to Filter button:

._'_'"" Employee : Details (AD090-BLACK FRED]

| [JDetsils | [pocuments | 1 Events
Enkter
Employee Number « « « « . . : ADDSD Copy to Clipboard
Employee SUrname « = = « = « = ELACK
Employee Given Nameis) FRED Send Signal to Filker
Street No and Name & .« . . . 70 MAIN STREET - h -
Suburb or Town NEWTOWN MNSW EnauhlenEEz)
State and CounEry « « o « o « = AUSTRALIA Show Snapshok
Home Phone Number 344-2234454545
Department Code ¢« ¢« « & & = = & FLT | + Documentation
Section Code & « & & &« & = 03 +
start Date (DOMMYY) « & « « . . 3,/08,/92 + AR
Termination Date (DDMMYY) 0/00/00 + At e o
Date sk1 skill Skill

The RAMP script fires off a framework wide signal. The filter hears this signal
in its EVTROUTINE HANDLING(#Com_Owner.avEvent) routine and displays
message box indicating that it has received the signal, and what the payload
was.

r Employees
File Edit “iew Help wWindows

{ Framework) Administration)

[spocled Files $€ Sign Off ‘ “ Reports [Details Using SETCURSOR. |

2% Administration
Ajax Test
CmhSort
ColHdg Test
Englis App
Excel
Expand-Shrink
Favorites

HR Demo Application
IPA Test

Motes CA App
NTreeTest
Personnel

ki
Code Tables
Emplovees

Telephone Search

Proc_And_Close
RAMP Test

DEEHEEBREEEHERBBEBE

SubType Test
System i Server
Tst Conn
Yisualstyle

¥L spreadsheet
Programming Technigy

BEEHEHEBRBEBEB

£ | &

—IBy Name | | By Date of Birth By Salary |

[4] [x] >

W Clear Lisk

Emploves Surname

§ By Hame Filter

Withalnfol = A0D090

0 With&InfoZ = FRED
WithaInfod = BLACK
Withalnfod = R51_Infod
With&InfoS = R51_InfoS
WithMInfol = 111,100000000
WithInfoZ = 122,100000000
WithMInfod = 133, 100000000
EMY withNInfod = 144100000000
5t WithMInfoS = 155, 100000000

s
I-Iﬂll

OB A Q&

I Search I

Empla... | Diescription

A0070 BROMWHN ANM YERONICA
#0090 BLACK FRED
#1031 BLOGES JOHM

#2005 BURGESS KEVIN

YLF Filter received signal RAMP_SIGMAL_1

Department Code

Section Code .

start Date (DDMMYY)
Termination Date (DDMMYY)

Enter
: _Amgu Copy to Clipboard
- | BLACK
FRED Send Signal ko Filker
70 MAIN 5T — B
[NEwrowN 51| oo Menu Bar
';_UEE’“‘_LI_{ ' Shaw Snapshot
|344-223445
SFLT Documentatian
SER
; rim - Turn Trace Cn
o, g
: I_D,u"DD;'DI:q & Probe Screen

BEEa

Messages | Ready

| VLFPGMLIE | ENG | VLFPGMLIE |12f05/09 | 11:10 ()

Summary

Important Observations

Signals are asynchronous. When you fire them and when they are received and
actioned are not synchronous events. Sometimes they are synchronous,
sometimes they are not. You should always code your applications as if they are
asynchronous.

You should develop a naming standard for your signal identifiers and document
all signals used and their associated payloads.

Signals are relatively expensive requests. They should action high level things
like EMPLOYEE_UPDATED or LIST DATA_CLEARED, rather than low
level things like MOUSE_MOVED.

A RAMP destination screen’s vHandle_ AVEVENT function only listens for
signals when it is the currently displayed 5250 screen (ie: only the current
RAMP screen can listen for signals).

The second parameter (Sender) passed to vHandle_ AVEVENT functions is only
available in WIN applications. In WEB and .NET applications this parameter is
not available and is always passed as an empty string.

Any RAMP destination screen may have its own unique vHandle_ AVEVENT
function.

What You Should Know

How to signal events between filters and RAMP command handlers

RAMP-TSADO03: Special Field Handling

RAMP’s special field handling (prompting) allows you to add features and
value to your existing 5250 screens. The special field handlers are Visual
LANSA forms which execute on the PC allowing you to create functionality
that would not be possible in a 5250 application.

Typically features can be added to many different 5250 screens by a just a single
definition and naming standard.

Objectives
Demonstrate the features of automated prompting

[] Details
7

In this tutorial you will learn
more about the special
handling of fields on your 5250
SCresns.

D Documents 1" Events

N
Save

: ADOS90

= |[BLACK

= |FRED

70 MAIN STREET

= NEWTOWN NSW

= AUSTRALIA

= 344-2234454545

SN FLT [Documentation
& D3 .
. i 1zo509 pecen

Zopy to Clipboard

Send Signal to Filker

You will see what shipped field S T

handlers are available (you can
also create your own), learn
how to create generic
field/handler associations and

Show Snapshok

how to assign a field handler
dynamically. e o/00/00 * * % c00 i CreEn
A V.
1 2 3
Date sk1 sSkill Skill 4 5 & F &8 9 10
Acquired cCode Description cof 11 12 713 14 15 16 17
25,/03/98 |ADMINL Administratn Part 1 me 18 19 20 21 22 23 24
1,05 /98 |ADMINZ Administratn Phrt 2 |G | 2@ 6 27 28 29 30 31
4,/05 /958 COM Communications|Degre
5/05,/98 C5 Computer Science Deg

To achieve this objective, you will complete the following steps:
RAMP-TSADO3 Step 1. Understand What Makes the Prompter Appear
RAMP-TSADO3 Step 2. Being smarter with HANDLE_PROMPT()
RAMP-TSADO3 Step 3. Handler Styles
RAMP-TSADO3 Step 4. Generic Handler Association

RAMP-TSADO3 Step 5. Generically Associating Date Fields with Date Picker

RAMP-TSADO3 Step 6. Dynamic Handler Association
RAMP-TSADO3 Step 7. Communicating with a Handler

RAMP-TSADO3 Step 8. What to Do When Things Do Not Work
Summary

Before You Begin

In order to complete this tutorial, you must have completed the core tutorials
RAMP-TS001 - RAMP-TSO015.

RAMP-TSADO03 Step 1. Understand What Makes the Prompter
Appear

As you learnt in RAMP-TS010: Using Special Field Handlers, automated
prompting is set up in a table associated with a RAMP-TS session.

1. Open RAMP Tools and click on the Session node in the Screen and Script
List on the left.

2. Locate the Special Field Handling table in the session details. You have
defined in the table that if a field named utxtDepartment is on any 5250
screen, and the user presses F2, the special field handler DF_PRMO04 is
invoked.

B RAMP Tools Default Session (RAMP-TS) A=
Default Session || Backup RAMP-TS 5250 Session | Details
r ~Session - Default Session
Save e Captian Default Session
x User Object Mame | Type 1SB74640B7EPATOFEABZATRZDAF114C | Verify Name
Marme e efault RAMP Layout Dimensions
= {Session Height 320 ‘Width 700 Taop Left
= [_] Junctions (4) Top Mask Height 25 Bottom Mask Height
[+ MainLogin 20 ,
E EOSMainM... 2. AMP Screen Layout Stvle
@ PSLSYSMain 2. | Fized Layout Flovs Layaut
[FindEmployes 2o, Scral Bars
=l (& Destinatio... (Display Horizankal Serall Bars Display Yertical Scroll Bars]
MewEmpla... 2.
[+ PSLTABMain 20 | Lock Framework when unknown 5250 Form is displayed
= DisplavEmp... 20] A '
2 L_I:ISDEE" ;?:pr | Reuse existing connection's user profile andfor password
B o, o Always link Ehis session ko a server with User Object Mame | Type
2 | @ Co. RAMP-T3 Maximum Logaff \Wait Time (seconds) 10
B [Specials (2) ~Special Figld Handing
[+ =UMNENOW, ., 20
@ DisplayMes. .. 3 5250 Field Mame |[Function Key ¥L Handler {class ¥F_AC017 object) A
[+ Scripks (9) 1 |ubxtDepartment F2 DF_PRMO4
2 F4
3 F4
4 F4
5 F4 hd
£ [¥

DF_PRMO04 is a Visual LANSA component. It is present, with source code, in

your VL environment.

In this case the function key you have chosen, F2, is not allowed by the 5250
screen. When the user presses the key, the request is intercepted and handled
entirely on the client PC.

However, even if you use a key/button that is allowed by the 5250 screen, and
you associate a special handler for the field with this key, the request will be
intercepted and handled on the client PC. To understand why this is so:

3. Open the script associated with the DisplayEmployee screen.
4. Locate the vHandle BUTTONCLICK function:

/¥ =====================szz=z====sszsz=====sszzz=ss=sz==z W/
/¥ ================== BUTTONCLICK ===================== ¥/
W ==========z== W/

A sButton: The button that was clicked ¥/

|vHandTE_BUTTONCLICK: function(sEutton)
1

var bReturn = true;

ifl(HANDLE_PROMPT()b return(breturn); /% If the focus element is automatically prompted finish now */

/% <BUTTOMCLICK /» - Do not remove or alter this line ¥/

The HANDLE_PROMPT() function call invokes a RAMP supplied function.
Using the name of the focus field on the 5250 screen and the function key used,
it works out whether it should call a special field handler:

If it does, HANDLE_PROMPT() returns true — it handled the request — which is
why the button script immediately terminates via return operation.

If HANDLE_PROMPT() did not invoke a special field handler it returns false,
the button script continues to process the button click using its own logic.

In most cases the prompt request will be sent on to the 5250 screen for handling
by the server because there will be no special field handler.

5. To test this out, disable the F2 key and enable the F4 key in the
DisplayEmployee screen.

~Function Key Enablement

Ky |Captiu:un |Enahle Key |Enal:u|e | e
Enter Save

Fi Fi O] F
|F2 Fz |_| |_|J

Ea Exit F D]

[E4 Prompk vl [F

FS FS O] ¥

6. Save your changes and restart the Framework.

7. Locate the Employees business object in the Personnel application and
display the details of an employee.

8. Press F4 on the Department Code field. Notice that the 5250 prompter is
displayed.

9. Start the RAMP Tools and change the special field handling for the
utxtDepartment field to use F4.

~apecial Field Handing

5250 Field Mame Function Key [vL Handler (class WF_ACO17 object) i
1 |ukxtDepartment F4 DF_PRMO4
2 F4
3 F4
4 F4
= F4 W
< >

10. Save the RAMP definition and restart the Framework.

11. Display the details of an employee in the Personnel application and press
F4. The special field handler is displayed.

PURCHASIMNG
ACCOUMTING

[+ GROUP ACCOUMNTS

[=) INFORMATION SERVICES
DEVELCPMEMNT
ADMINISTRATION
PURCHASIMNG
ACCOUMTING

RAMP-TSADO03 Step 2. Being smarter with
HANDLE_PROMPT()

Note: This step simply demonstrates a technique. Please do not make this
modification in your script.

In the preceding example HANDLE_PROMPT() was executed at the start of
every button click.

However, if you know that all prompting on this 5250 screen will be done by
using F4, you can make the logic faster and smarter like this:
vHandle_ BUTTONCLICK: function(sButton)
{

var bReturn = true;
/* <BUTTONCLICK /> - Do not remove or alter this line */
/* Handle function keys and buttons */

switch (sButton)

{
case KeyF4:
if (THANDLE_PROMPT()) ALERT_MESSAGE("Position the cursor i
break;

case KeyEnter:
SENDKEY (KeyEnter);

etc, etc, etc

Here the HANDLE_PROMPT() request has been moved from the start of the
button click function to the KeyF4 case statement so that it is only called when
F4 is used, because we know that is the only time it is required.

Logic has also been added so that if HANDLE_PROMPT() does not handle the
request (note the "!" in front of the function call) then a message box will appear
saying "Position the cursor in a promptable field when using F4".

We can do this because we know that F4 is going to be handled exclusively on
the client and not by the 5250 RPG program on the server.

This contrasts with default behavior in the preceding step that passed unhandled
F4 requests on to the 5250 application to see if it wanted to handle them.

RAMP-TSADO03 Step 3. Handler Styles

The way that a special field handler looks and acts is entirely up to you because
you code them as Visual LANSA forms to do whatever you want.

Example handlers named DF_PRMO01 — DF_PRMO7 are shipped with the
Framework. They demonstrate various handler behaviors that you might want to
use as a basis for building your own handlers:

D DF_PRMO01
ALABAMA - Al A simple list of
ALABAMA - AL a o .
ALASKA - AK Classic "code" ¢
AMERICAN SAMOA - AS
ARIZONA - AZ
ARKANSAS - AR
CALIFORNIA - CA b

DF _PRMO02
Item Sizes . _
Small - SML Selection of a c
Medium - MED code from a list
® Large - LGE| buttons.
Extra Large - XL Classic "code" ¢
Extra Extra Large - XXL
DF PRMO03

Locate an empl

Classic "key" Ic
Product Numbe
Number) used v
data exists to us
box or radio buf

¥ ° DF_PRMO2 - Prompting Example 3

VEHICLE MAINTENANCE
@ INTERNAL AUDITING
[FLEET ADMINISTRATION
! [GROUP ACCOUNTS

m

- art 2
AC - Accountancy Degree
ADMIN1 - Administratn Part 1

ADVPGM - Advanced Pkogrﬁmﬁ
CL - CL Programming
COM - Communications Degre

L

-

-

Employee Surname | | Search |
Employ... | Employee S... | Employee Given Name(s) | Post/Zp... |4
A1089 SANDERS MIKE 0

A1006 SMITHERS JACK 0
A1003 SMITHEY ROBERT 0

A1005 SMITHS PETER 0

AD193 SMITHSON FRED 0

A1004 SMITHSON PALL 0

A1002 SMYTHE JOHN 0

A1005 SNASHALL DAMIAN 0
A1008 ___ SNEDDON 0

Often supports !
multiple ways (
phone number,

description, etc

DF_PRM04
Selection of twt

Slightly more a
"code" selector.

DF_PRMO05

Like DF_PRM(
values are sent |
5250 form as th
selected. Shows
behavior of a he
customized to v
prefer most.

DF_PRMO6 - Prompting Example 6

Value to send back to 5250 screen (press Enter to send)
Prompting Information

DATA

The field being prompted is named SALARY

The value of the field is .00

The field is not in a subfile.

The prompt key used was F4

Handler information block 1 contains

Handler information block 2 contains

Handler information block 3 contains

The other fields passed to the handler are:
Field ADDRESS 1 was also passed with value
Field ADDRESS2 was also passed with value
Field ADDRESS3 was also passed with value
Field BUSPHOME was also passed with value
Field DEPTMENT was also passed with value ADM
Field EMPNO was also passed with value
Field GIVENAME was also passed with value
Field HOMEPHOME was also passed with value
Field POSTCODE was also passed with value 0
Field SALARY was also passed with value .00
Field SECTION was also passed with value ADMINZ
Field STARTDATE was also passed with value 0/00/00
Field SURNAME was also passed with value
Field TERMDATE was also passed with value 0/00/00

2 3 4 5 & 7 &
9 10 11 12 13 14 15
16 17 18 19 20 21 22
D25 26 27 8

<) Today: 24/02/2009

DF_PRMO06
Generic debugg

Displays details
information pas
handler.

Useful to run in
problematic spe
handler you are
check that the v
input to the han
you expect.
Use with applic
tracing.

DF_PRM07

Is a classic date
example is desi;
to 5250 fields n
DATE_ nnnnnn
nnnnn is a field
ftfftff is the forr
should be proce

As shipped it sk
these date form.

CCYYsDDsMNM
CCYYsMMsDI
CCYYDDMM
CCYYMM

CCYYMMDD
DDsMMsCCY"
DDsMMsYY
DDMMCCYY
DDMMYY
MMsDDsCCY"
MMsDDsYY
MMCCYY
MMDDCCYY
MMDDYY
MMYY
SysFmt6
SysFmt8
YYsMMsDD
YYMM
YYMMDD

Sample field na
work with are
DATE_Start_D.
and
DATE_ORDER

Remember that you can apply whatever look and feel you like to your handlers.
These are just shipped examples to help you get started. If you don’t like the
look or the behavior, change it.

RAMP-TSADO03 Step 4. Generic Handler Association

In the initial step of this tutorial you created a specific association between your
5250 field and the special field handler DF_PRMO04 like this:

~apecial Field Handing

5250 Field Mame Function Key |vL Handler (class WF_ACO17 object) i
1 |ukxtDepartment | F4 DF_PRMO4
2 F4
3 F4
4 F4
= F4 W
< 5

This means that on any 5250 screen containing a field with this name the
handler DF__PRMO04 is called.

So by using a naming convention you can instantly add prompting to any 5250
screens that have a field with this name on them.

This type of specific association is most useful on key fields (like
CustomerNumber, ProductNumber, etc) and code fields (like StateCode,
CurrencyCode, etc). For key fields you can often associate a handler that allows
the user to search in many different ways to locate a customer or product. For
code fields you can often display the code/decode table allowing the user to
select the code they want to use.

You can also create generic associations:

Spedcial Field Handing
5250 FieldName FunctonKey VL Handler (class VF_AC017 object) | -
1 | deptment F4 :IF-P‘F',HIJ-‘l
2 DATE_* Fa HANDLER 1
3 |CODE_" F4 HANDLER2
4 CusT_* F4 HANDLER 1
5 F4 -
4 14 L]
Here:

Fields starting with the name DATE_ will cause HANDLERI1 to be invoked

when F4 is used.

Fields starting with the name CODE_ will cause HANDLER? to be invoked
when F4 is used.

Fields starting with the name CUST_ will cause HANDLERS3 to be invoked
when F4 is used.

If HANDLER1 was a date picker, then you can see how by using a naming
standard for your fields you can instantly associate HANDLER1 with any date
fields on your 5250 screen.

(Note that you can also create date handlers, drop-downs etc. using aXes
eXtensions. For an introduction to aXes, see RAMP-TSADO04: Redesigning the
Screen Using aXes).

Likewise, HANDLER?2 might substring off the rest of the prompted field name
(eg: CODE_STATE, CODE_CURRENCY or CODE_AIRPORT) and be able to
work out which code table (States, Currencies or Airports) it should display for
selection. This type of "super-prompter" is commonly used because, while the
data source changes (ie: which code table is displayed) the method of displaying
and selecting the code is usually identical.

In the final example, CUST_* demonstrates a generic type of special field
handler that does something special, presumably with a "CUST" (customer).

The things it does could range from name searching, to printing details, to
pasting screen values to the clipboard, to mapping customer into a MS-Excel
document, to preparing an e-mail to the customer. This is why special field
handling is a lot more than simple F4 prompting.

Special field handling is about attaching new behaviors to existing 5250
screens. By combining the special field handling table with a judicious naming
standard you can attach new behaviors to many 5250 screens with no coding.

In these examples the naming standard chosen is used to communicate intention
and information to the handler. There are also more precise ways of
communicating intention and information to handlers. These are discussed in
the later steps of this tutorial.

RAMP-TSADO03 Step 5. Generically Associating Date Fields with
Date Picker

In this step you will generically associate date fields with the shipped date
picker DF_PRMO0?7. To test this, you will name the Start Date and Termination
Date fields on the DisplayEmployee screen with a name starting with Date*.

1. Start the RAMP-TS 5250 emulator session in the RAMP Tools window.

2. Navigate to the Maintain/Browse Employee and Skill Files screen and press
F21.

3. Name the Start Date field Date_Start DDMMY'Y and save.
4. Name the Termination Date field Date_ Termn_ DDMMY'Y and save.

SCreens «{ Seszsion Dizplay Help

‘_’L‘B -Auto- - "9{‘ 5;4

ChangeMode

Description:

Subfiles:
Start End MName Lines/ Head
Entry Lines

18 21 ReFooooz |1 [

- N -

IV Auto Select

Fields:

skiT1

Description Comment

v Q¥ @] (%] = ovr

5. Display the Session details and associate fields named Date* with the
DF_PRMO07 date picker component.

special Field Handing

5250 Field Mame |Function Key WL Handler {class YF_AC017 object) .
1 |ukxtDepartment F4 DF_PRMO4
2 | Date® F4 DF_PRMO7
3 F4
4 F4
5 F4 W
£ >

6. Save the RAMP definition and restart the Framework.

7. Display the details of an employee and prompt for the Start Date and
Termination Date fields. The special field handler DF_PRMO0?7 is displayed
for both fields (and for any other field named Date_nnnnnn_ ffffffff).

[Details | [Documents 1 Events
Save
Employee Mumber ! A2005 Copy ko Clipboard
Employee SUurname « = « = « = « . |BURGESS
Employee Given Name(s)] KEVIN Send Signal ko Filker
Street Mo and Mame (67 Green St
Suburbbar TowR [Blues Point Show: Menu Bar
State and COUNEFY .- - - = = = = = = = = |NSW Australia Show Snapshot
Home Phone Mumber |9877 7877
DEeparEmenE Eoe R ADM [Dacurnentation
SO E A EIELS e (2 aran wo of Goen o O Goed o o coao (bR i
start Date (DDMMYY) e =R AR 1 () (0D
Termination Date (DOMMYY) | 0700700 shl 4] May 2009 P p—
1 2z 3
pate Sk1 sSkill Skill 4 5 6 7 & 9 10
Acquired Code Description cor) 11 12 713 14 15 16 17
0,/00/00 15 19 20 21 22 23 24
0,/00,00 25 26 27 23 29 30 31
o/00/00

0;/00,/00

RAMP-TSADO03 Step 6. Dynamic Handler Association

In the preceding steps you learnt how to permanently define a special field
handler via RAMP Tools.

You can also dynamically define, modify and delete special handlers in your
RAMP scripts. Typically this is done in your logon screen script so that it
happens just once. However, this feature may be used in individual screen
scripts for specialized purposes.

To dynamically define or redefine a special field handler use the
SET_SPECIAL_FIELD_HANDLER() function. To dynamically remove a
special field handler use DROP_SPECIAL_FIELD_HANDLER();

Note that dynamically removing a handler will not impact it if is currently
displayed. It will just prevent it from being displayed again.

1. Start RAMP Tools and locate the script for the DisplayEmployee screen.

2. In the vHandle_ ARRIVE function for the screen dynamically attach a new
handler to the utxtDepartment field like this:

SET_SPECIAL_FIELD_HANDLER("utxtDepartment",KeyEnter,"DF_PRMO0

Your code will look like this:

vHandle_aRRIVE: function{oPayload, oPreviousForm)
var bReturn = true;
if (CHECK_FIELD_EXISTS("txtsurname"’)y

{

[EET_SPECIAL_FIELD HAMDLER(UtxtDepartment KeyEnter, "DF_PRMOG™) /% Attach an Enter Key handler %/
SHOW_CURRENT_FORM(true); /% show the Torm 1n the Tramework and show YLF buttons *I
GET_FORM_MESSAGE(Z2); ¥ Extract messages and hide the message 1ine

HIDE_5250_BUTTONS(); /¥ Hide any 5250 style buttons d1sE1ayed

SETBUSY(false); /¥ Last thing done - turn off the busy state *I
else

{

?ENDKEY(KeyF21);

AHO<ARRIVE /» - Do not remove or alter this Tine ¥/

The DF_PRMO06 handler will be invoked when the Enter key is pressed.
3. Commit the changes and do a partial save of the RAMP definition

4. Display the details of an employee in the Personnel application to show the
screen with the modified script.

5. Press F4 on the Department Code field to cause the DF_PRMO04 handler to
be invoked from the field.

6. Press Enter on the Department Code field to cause the DF_PRMO06 handler
to be invoked from the field:

[Detals 7] Documents 1 Events

Save
Employee Number : Al031 Copy to Cliphoard
Emplayee SUrname « « = « = & s BLOGGS
Employee Given Name(s) JOHN Send Signal ko Filker
Street:No and: Name i L i w e 3 woodbury Road
Suburh-ORSTOMDT L G i i e e e winston Hills ShareMenu oy
State and Country o « & « o .« . NSW Australia 2100 Shiw Snapshok
Home Phone Number {02) 9668 9235
Hepartment Ead e i WS E DR MOE - Prompting Example
SR e B e EI +
Shart Date oy . 18/0 Yalue to send back to 5250 screen (press Enter to send)| MIS

Termination Date (DOMMYY) o,/off_Prompting Information _ I
The field being prompted is named UTXTOEPARTMENT

The value of the figld is MIS
The field is not in a subfile,

hate ; gkl g kit Sl L The prompt key used was Enter
Acguired Code Description Handler information block 1 contains
10,/12/95 |ADMIN1 Administratn Part 1) Hander information black 2 contains
1/02/98 |ADMINZ Administratn Part 2| Handler information block 3 contains
30/06/96 |ADVPGH advanced Programming The other fields passed to the handler are:
5/06,/90 |COM Communications Degrf Field DATE_START DOMMYY was also passed with value 18/05/96

Field DATE_TERMM_DDMMYY was also passed with value 0/00/00
Figld SECTION was also passed with value EI

Figld TXTEMPMO was alsn passed with valug 81031 b/
Lo o e 3 1 e = ey e -J

Note that his means you can attach multiple handlers to the same field,
differentiated by the function key used.

7. Next drop the F4 handler associated with the field by adding this code to the
vHandle_ ARRIVE function:
DROP_SPECIAL_FIELD_HANDLER("utxtDepartment",KeyF4);

Your code will look like this:

Wdlm HRELUNTT = LIUdg;

i (CHECK_FIELD_EXISTS("txtsurname"))

SET_SPECIAL_FIELD HANDLER(”utxtDEDathent”.KEVEntEF.”DF PRMOG"); /% artach an Enter Key handler */
|DROP_SPECIAL_FIELD_HAWDLER(UtxtDepartment , KeyFd); S Drop the F4 handler | v/
SHOW_CURRENT_FORM{true); /% Show the tarm n the Tramework and show VLF buttons *f
GET_FORM_MESSAGEL22]; /¥ Extract messages and hide the message line

HIDE_5250_BUTTONSL); /% Hide any 5250 style huttons d1sE1ayed W/

SETBUSY (false); /¥ Last thing done - turn off the husy state W/
else

{

?ENDKEY(KeyF21);

8. Try this by selecting another employee from the list, and confirm that F4 on
the Department Code field no longer brings up the DF_PRMO04 special
command handler (it shows the 5250 prompter instead).

9. Confirm that you can use Enter to activate the DF_PRMO06 handler.

Remember that it is unusual (ie: specialized) to do this in a destination arrival
script. Most dynamic attachment is done just once, in the logon script, and it
persists for the entire session.

RAMP-TSADO03 Step 7. Communicating with a Handler

There are two ways to communicate additional intent and information to a
handler.

The first involves passing information on the
HANDLE_PROMPT() request.
1. Start RAMP Tools.

2. In the script for the DisplayEmployee screen locate the button script's
HANDLE_PROMPT() function call and add string parameters to the call like
this:

HANDLE_PROMPT("My Parm1","My Parm2","My Parm3")

Your code will look like this:

wHandle_BUTTOMCLICK: function{sButton)

var bReturn = true;

i |(HAND|_E_PROMPT("My Parml', "My Parmz", "My Parma“j]j| return(hreturnd; /% If tt

A¥ O CBUTTONCLICK /> - Do not remove or alter this 1ine %/

3. Commit the changes and do a partial save of the RAMP definition.

4. In the Framework window, display the details of an employee to run the
modified script for the screen.

5. Prompt the Department Code field by pressing Enter to display the
testing/debugging handler DF_PRMO06. The result you see looks like this:

DF_PR™MOG - Prompting Example 6
Yalue ko send back to 5250 screen (press Enter ko send)| ADM -

Prompting Information | e
The other fields passed ko the handler are:

Field DATE_START_DDMMYY was also passed with value 13/05/09

Field DATE_TERMM_DDMMYY was also passed with value 13/05/09

Field SECTION was also passed with walue 02

Field TETEMPMNO was also passed with value 42005

Field TXTGIVEMAME was also passed with walue KEYIM

Figld THTSURMAME was also passed with value BURGESS

Field UARGL was also passed with walue My Parmi
Field UARGE was also passed with value My Parmz
Field UARGS was also passed with value My Parm3
Field UTATDEPARTMEMT was also passed with walue ADM

The arguments passed to the HANDLE_PROMPT() function are passed on to

the handler with the symbolic names UARG1, UARG2, UARGS3, etc. The
Visual LANSA handler can retrieve these values by using method calls like this
in its code:

Invoke Method(#Com_Owner.uGet5250Field) Name(UARG1) Value(#Std_Te

This technique is fine when you know what handler you are talking to, or are
talking to all handlers generically. This technique also means you probably need
a convention for what UARG1, UARG?2, etc are used for.

To communicate with a specific handler, use the next technique.

The second communication involves attaching information to the
handler via the SET_SPECIAL_FIELD_HANDLER() function.
This is done by using the three optional parameters at the end of the function
call.

6. Change the SET_SPECIAL_FIELD_HANDLER statement you created in
the previous step to:

SET_SPECIAL_FIELD_HANDLER("utxtDepartment",KeyEnter,"DF_]
"Other 1","Other 2","Other3");

7. Commit your changes and do a partial save, then select an employee to run
the script for the screen again.

8. Cause the VF_PRMO06 handler to be invoked. You will see this:

DF_PR™MOG - Prompting Example 6
Yalue ko send back ko 5250 screen (press Enter ko send)| ADM

Prompting Information] A
The Field being prompted is named UTXTDEPARTMEMNT
The value of the Field is ADM
The Field is not in a subfile,
The prompk key used was Enter
Handler information block 1 contains Other 1
Handler information block 2 contains Other 2
Handler information block 3 contains Other3
The other Fields passed to the handler are:
Field DATE_START_DDMMYY was also passed with value 9/04/09
Field DATE_TERMM_DDMMYY was also passed with value 070000
Field SECTION was also passed with walue 02
Figld TTEMPMO was also passed with value 42006

These three information blocks allow you to communicate with a precise
handler. The Visual LANSA handler can retrieve these values as properties, like
this example:

#Product := #Com_Owner.uHandlerInfol
#Customer := #Com_Owner.uHandlerInfo2
#ZipCode = #Com_Owner.uHandlerInfol.toNumber()

RAMP-TSADO03 Step 8. What to Do When Things Do Not Work
If you have a problem with special field handlers you will need to debug them.

Trying to debug them with ALERT_MESSAGE(), alert() or
MESSAGE_BOX_SHOW operations will probably just confuse you.

There are two reasons for this.

First, ALERT_MESSAGE is asynchronous, so when it displays may not be
when you think it does.

Secondly, using these operations presents a windows message box. These
usually take focus. Most handlers hide themselves when they lose focus or
become deactivated, so typically every time you show a message box your
handler will disappear. The same may be true of using the VL code debugger.
Debugging focus and activation sensitive applications can be tricky.

The best solution is to use the framework application level trace facility,
positioned so that it does not overlap you framework window. If you just turn it
on a great deal of special field handling trace information will appear.

If this does not resolve the problem then start adding TRACE() calls to your
RAMP scripts and #AvFrameworkManager.AvRecordTrace in your VL code.

Another useful debugging feature is to plug in the shipped DF_PRMO06 handler
in place of your handler. When invoked is reports on a lot of information about
what information was passed to the handler, which my help you to identify your
problem.

Summary

Important Observations

Special field handlers can do F4 type prompting very easily. The results usually
look better, work faster, and place less load on your 5250 server.

Special field handlers can do a lot more than F4 prompting because they allow
you to attach behaviors to fields on your 5250 forms in many ways and at many
levels.

Application tracing is the tool you should use to debug handler issues

If you write down a list of all the "key" and "code" fields in your 5250
application and use a judicious field naming standard, you can automatically
attach a prompting capability to all your 5250 screens.

Also see Advanced Prompting.

What You Should Know
How to use special field handling to add value to your 5250 application

RAMP-TSADO04: Redesigning the Screen Using aXes

You can use the aXes Designer to freely redesign your 5250 screens. You can
move and hide content, change labels, apply styles and use visual elements such
as lines and group boxes.

Using aXes eXtensions, you can also display your content as drop-downs,
calendar drop-downs, check boxes or radio buttons and add new elements such
as buttons, images, tooltips, hyperlinks and Google maps.

You will notice that what you can do with aXes eXtensions partly overlaps with
what you can do with, for example, special field handlers. It is up to you which
of these approaches you adopt to enhance your screens.

Objectives

Learn how to use aXes Designer to redesign your screen.

[IDetals | [pocuments | '+ Events
In this tutorial you will use the

Datas . .
ldentnication a¥es Designer to redesign the
Ermployes Surname BROWN Start Date (DOMMYY) look and feel of the Display
Employees Given Name(s] [VERONICA AN Termination Date [DOMMYY) Employee screen.
Contact and Location PHoto

Street Mo and Name |13 Railwav Street Show Menu Bar

Suburb or Town Baulkham Hills Shaw Sriapshit
State and Country Alaska || 2153
Home Phone Number |Try Documentation
Depaciyent Cofle L1z o Turn Trace On
Section Code DV + Emplovment Contract
Probe Screen
Skills
Date 5K Skdll 5kdll
Acqguired Code Diescription Comment Grade
30/06/96 | |ADMINL Administratn Part 1 Met reguirement E
1/03/98 | [ADMINZ Administratn Part 2 =
10/12/95 | |ADVEGM Advanced Prograrmming H 3|
4/05/98 | |CcOM Communications Degre gz

To achieve this objective, you will complete the following steps:
e RAMP-TSADO4 Step 1. Get Started with aXes Designer

e RAMP-TSADO4 Step 2. Set up Styles

e RAMP-TSADO4 Step 3. Hide Repetitive Information

e RAMP-TSADO4 Step 4. Add a Tooltip

RAMP-TSADO04 Step 5. Add a Drop-Down

RAMP-TSADO04 Step 6. Organize Fields inside Group Boxes
RAMP-TSADO04 Step 7. Add Up and Down Buttons to Subfile
RAMP-TSADO04 Step 8. Hide Function Keys and Add a Picture
RAMP-TSADO04 Step 9. Add a Hyperlink

RAMP-TSADO04 Step 10. Test the Redesigned Screen
RAMP-TSADO04 Step 11. Remove the Screen Customization

Before You Begin

In order to complete this tutorial, you must have completed the core tutorials
RAMP-TS001 - RAMP-TSO015.

RAMP-TSADO04 Step 1. Get Started with aXes Designer

In this step you will learn how to start redesigning a screen using the aXes

Designer window. You will also learn how to set the properties of elements on
the screen.

1. In RAMP Tools, display the details of the DisplayEmployee screen.

2. In the Default RAMP Layout Dimensions section, ensure that the Top Mask

Height is 0 or blank.

RAMP-TS 5250 Session | Details
] DisplayEmployee | GUT Screen Snapshot

Caption

Grouping
efault RAMP Lavout Dimensions
Height 330 Width 700 Top

Left

|T|:||:| Mask, Height Bottom Mask Height

[—R.ﬁ.MF‘ Screen Layvout Skyle

| Session Fixed Layout Flow Layouk]

The top mask is used to hide the screen title in RAMP. In this tutorial you want
the title displayed because you will learn how to hide it using aXes.

3. Start a RAMP-TS 5250 emulator session.

4. Navigate to the DisplayEmployee screen and display it in change mode.

5. In the aXes Designer window, click on Start Customizing This Screen.

2 aXes Designer -- Webpage Dialog E'

E Start Customizing This Screen 4

This screen has not been customized

The screen is now displayed without the 5250 emulator style. Notice that the

boundaries of the 5250 screen are indicated by a thin red line.

Erow=ze/Maintain Employee and Zkill Files

Employee Bumber :z RlZz34
Emplogese Surmame JACKSON
Employee Given Hameis) ETFRHEN
3treet Ho and Hame |BEMeliccs Plare
Zuburb or Town |\WestPennant Hills
Ztate and Commtry |MEW Austalis (2125
Home Phone Humber I S I || | vl 1 - T
Department Code . . - . . . - . . . - . E +
Jection Code' o S olrs Ssohonnl Ssltand By
Start Date (DDMMYY) S [[|17, i B o
Termination Date (DDMMYY) N 11 # 1Lk] +
Date Skl Skill Skill
Aoquired Code Description Comment Grade
FRMTLIGR AN Administratn Part 1 M=t remuirement I]
I05SE | [ADMINZ Administratn Part Z I]
e FCny Economics Degree H
i k=T = e Erglizh Degree With o stinrticn +

Fl=Help F3=Exit F4=Prompt FlZ=Cancel Fld-Me=z=zages=

You can change the boundaries of the screen by moving the red line. Refer to
the aXes tutorials to learn how.

6. Click on the screen title to select it. Notice that the aXes Designer window
now shows the properties of the screen title.

7. Set the Visible property of the title to False:

2 aXes Designer -- Webpage Dialog

[save {5 Cancal (i)

This screen has been customized

Selected Object Information

Type Cutput

Row 1

Column 20

Properties

0

style

tabIndex a

visible -1 7
enabled True ?

tooltip }

8. Click on the Save button on top of the aXes Designer window:

E Save [=] Cancel

This screen has been customized

A message indicating that the screen customization has been saved is shown:

Message from webpage

L] E The screen has been saved successfully,
L

Notice the title is no longer displayed:

|€¢| Session Display Help

Employes Humber I PRI I 1]
Employee Surnmame . . . - - - - - |JACKSOM
Employee Given Hame (=)

RAMP-TSADO04 Step 2. Set up Styles

In this step you will set up a font style for all your screens.

You need to use styles in your application (as opposed to formatting individual
screens or elements manually) because styles produce a common look and feel
and prevent unconstrained style evolution. They also provide a single point of
change so you can, for example, change the font of all screens by changing the
style.

Even though you can freely customize screens using aXes, you should bear in
mind that the look and feel of your application should be primarily controlled by
the standard Framework themes, and that any customization needs to fit in with
them.

For example, you should not use aXes styles to set up screen background colors,
because the Framework automatically sets the background color of all RAMP
screens.

1. Click on View Application Properties on the bottom of the aXes Designer
window to display the properties of the application:

[push Butten

I Quick Pick Menu ™
|
Actions

E! View Application Properties

2. To edit the properties, click on Edit Application Properties on the top of the
aXes Designer window:

2 aXes Designer -- Webpage Dialog @

% | Edit Application Properties i

Selected Object Information

Type Application

3. Click on Styles in the Styling group.

spaceBetweenColumns | 0

| Styling

styles 0 items

The Styles editor is displayed:

A List Editor - styles -- Webpage Dialog

ﬁ-!—‘xdd fu| tnsert 27 Delete

Selected Item Properties

4. Click on the Add button to add a style:

Specify BasicFont as the name of the style
Select All as the value for StyleFor property
Leave the htmlTag property blank

Selected Item Properties

name BasicFont
styleFor s, -
htmlITag

style

theme

5. Click on the Style property. A window showing all style properties is
displayed.

6. Locate the font-family attribute and specify Verdana.
7. Locate the font-size property and specify 9pt:

e | Style Editor - style -- Webpage Dialog

Base Style

Select a style that acts as a base for this style:

| =

|| Display Used Attributes Only

cursor
direction
display
empty-cells
float

font

font-family Verdana

font-size Spt

font-size-adjust
font-stretch
font-style
font-variant
font-weight

height

8. Now double-click Styles in the aXes Designer to view the style you have
added:

2 List Editor - styles -- Webpage Dialog

laﬁ'«dd fu| Imsert Z] Delete

BasicFont

Selected Item Properties

name BasicFont

styleFar All

htmliTag

style font-family:Verdana;font-size: 9pt;
theme

When setting font sizes, please note that the screens shown in a RAMP
application are automatically sized to fit the available space. This may mean
that the font size displayed may be smaller than what you have specified.

10. To understand what the Style properties are, click on the i icon in front of
the Styling heading in the aXes Designer window to bring up the context
sensitive help:

[| stvimg

11. Read the description for the StyleFor property:

& http:fivifteam: 8080/docs/Extension_axApplicationStyleCollection. pdf - Windows Inter... |:||E|r5__<|

B0 & e[NG (O 8 [5] i P

Properties
Name Description and Comments JavaScript Shipped
default
styles Style collection. Each style in the collection has their Ne. Nane.
awn proparties (see next table).
Properties of Style Item
Name Description and Comments JavaScript Shipped
default
name The symbolic narme of the application style. Mo, Mane.
styleFor IF specified this style will aubormatically be applied to the Mo Mane.
specified elarmant.

Poszible values for this proparty:

* Blank - the style will not be applied automatically
to an element. To apply thiz style to an elament
you need to refer to this style from that element.

= All - the style applies to everything unconditionally.
Thiz is useful for specifying things such a= font
styles that should be consistent across the whale
applicaticn,

= Application Window - the style applies to the
main browser window. Most common use of this is
to change the window background color or image.

* Specified HTHL Tag - the style applies to the

The value All for the StyleFor property of the BasicFont style means it applies
to all text in all screens which have been defined in aXes (when you edit a
screen and save it in aXes Designer, a screen_xxxxx.js file is created for it in the
aXes screens folder).

12. Click Save on top of the aXes Designer window to save the style you have
created:

/3 aXes Designer -- Webpage Dialog.

=1 Cancel

Selected Object Information

Type Application

Properties

-
defaultTheme //" 1

onApplicationStart

Note that the font of the screen is now Verdana 9pt:

|€¢| Session Display Help

Pl =1

Employ=e Number
Employ=e Surname

Stre=t No ard Mame
SwbueorTown
State and Country

Department Code
SedtionCeode
Start Dat= (DDMMYY)

Dat= Ski
Aoguired
L5 inE B R
LEDEEE
S/05/58
SDEMSd

Skill

Code
LADMINL |
LADMING |
ECD
EMG

Employ=e Ghven Name({s].

Home Phone Numbear

Temination Date (DDMMYY) . ..

Skill

De=cription
Administratn Part 1
Administratn Part 2
Economics Degree=
Englizh Degr==

Brow ==/Maintain Employ== and Skill Fil=s

81234
AACKSON |
STEPHEN
|6 Melisss Plage |
|Wesi Peonant Hills
NSW Sustralis 2125
so |+
+
L4 DESE| +
QrppAng | +
Comment Grade=
= i

Fl=Help F3=Exit F4=Prompt Fl2=~Canczl Fld=Mezzag==x

RAMP-TSADO04 Step 3. Hide Repetitive Information

In this step you will hide the Employee Number field on the screen because the
employee number is visible in the instance list and the instance bar in the
Framework and it cannot be changed on this screen.

When modernizing 5250 screens, you should always consider:

Hiding 5250 screen identifiers and titles. Use Framework tabs and hints instead.
Leaving this information on a 5250 screen is a dead giveaway that the
underpinning screen is a 5250 screen. Always ask yourself what value the
information has. If it has none or little value then hide it.

Hide screen dates and times. The Framework window shows the date and time.

Hide repetitive and key information that is already displayed on the instance bar,
instance list or in some other place. Again, question the value of repetitive
information in the large framework context.

Hide any application version details. The Help menu's About option is the
Windows way to do this.

Don’t use aXes screen title bars or stripes. They draw the users eye way to
information that is often redundant and has no value add.

1. Click on Edit Screen on top of the aXes Designer.

e

% | Edit Screen

2. Select the Employee number label.

Employ== Number s 51334

Employ== Surname 18 CKS0ON
Employ=e=
Stre=t No

Burh or

A

vzn Name(s)...... STEPHENM
md Name= & Mmlizza Flace

[Ty
-
— o

ownm.......... Weet Perrani Hills

3. Set its Visible property to False.
4. Then select the dots after the label that have become separated from the

label with the font change and set the Visible property to False.
5. Lastly set the Visible property of the Employee Number field to False.
6. Save the screen customization.

The employee number label and field are no longer visible on the screen.

RAMP-TSADO04 Step 4. Add a Tooltip

In this step you will add a tooltip for the Department Code field. You can use
tooltips to provide longer labels and context sensitive help in your screens.

1. Click on Edit Screen in the aXes Designer window.
2. Select the Department Code field.
3. Locate the Tooltip property of the field and copy and paste in this text:

This code is the Department that the employee currently works for. It is often
referred to as their "DC" code. Their id badges must always display this code or
they may be refused admittance to company premises.

Selected Object Information
Type Input
Name utxtDepartment
Row 10
Column 43
tabIndex U P
visible True g
enabled True
tooltip This code is the Departm
i Default Visualization

4. Save the screen customization.

5. Test the tooltip by hovering the cursor on the Department Code field:

Employee Surname ... oo vun s
Ermployes Given Mame(s)
Street NoandName
Suburbor Town .. .o nus
Stateand Country
Horme Phone Nurmber

Start Date (DOMMYY]
Termination Date (DDMMYY)

JACKSON

STEPHEN

f

West Pennant Hills
NSW Australia [2125]

d

+

S

refused admitkance to company premises,

This code is the Department that the emploves currently
works For, Ik is often referred to as their "DC" code, Their id
badges must always display this code or they may be

RAMP-TSADO04 Step 5. Add a Drop-Down

In this step you will make the State and Country field a drop-down which shows
states in the US. The data for the drop-down comes from a static table which is
shipped with aXes eXtensions.

1. Click on Edit Screen in the aXes Designer window.
2. Select the State and Country field on the DisplayEmployee screen.

3. In aXes Designer, change its extension from Default Visualization to Drop-
Down:

LS
Default Visualization

Checkbox
Date

Dropdown

HyperLink
Push Button

1 01 T =1 1

Quick Pick Menu 4

4. Change the dataSourceType of the drop-down to Static Table.
5. Specify USState as the tableName.

I Dropdown

»

dropDownStyle

dataSourceType Static Table & F d
tableMame USState »
W

6. Save the screen customization.

7. Test the drop-down:

|€¢| Session Display Help __;‘Blmun,{, 'I@.@

Emcioyee Mmmber_A123d Browse/Maintain Employee and Skill Files
Employee Surname e JACKSON
Employee Given Name(s) nin STEPHENM
Street No and Name iy & Melissa Place
Suburb or Town S West Pennant Hills
State and Country - Alaska (#2125
Home Phone Mumber "
Department Code oo il?{bama
: rkansas
SectionCode S e s
Start Date (DDMMW) Coon Arizona
Termination Date (DODMMYY) " California
Colorado i
Connecticut
_ _ District of Columbia
Date Skl skill Skill Delaware
Acquired Code Description E'U”da Grade
25/03/98 | [ADMIN1 Administratn Part 1250 93 | v
< i Haw aii | ¥
—_—

You can set the values displayed in the drop-down also by entering fixed values
or by using a dynamic table. The aXes tutorials contain detailed information
about how to do this.

RAMP-TSADO04 Step 6. Organize Fields inside Group Boxes

In this step you will logically organize the fields on the screen by putting them
into group boxes.

1. Click on Edit Screen in the aXes Designer window.
2. Set the removeCUADots property to True for all elements on the screen that
have dots.
i Default Visualization
value

style

removeCUADots -

maxInputLength |0

3. Save this change and put the aXes Designer back in edit mode.

2. Add a new element to the screen:

i

'Ea Add A New Element

3. Make it a Group Box extension:

Default Visualization

Checkbox

Dropdown

&
5
[] Date
B
&

Google Chart

v Group Box

|| HyperLink ™

4. Make the Caption of the group box Identification.

Identification|

5. Initially size it like this:

Identification

Employes Surname JACKSON
Ermployes Given Mame(s) STEPHEN
Street Noand Name & Melissa Place

6. Then resize the fields and move them inside the group box like this (leave
some room above the group box):

Identification

Employees Surname JACKSON

Employee Given Name(s) | STEPHEN

Street No and Name & Melissa Place

When aligning the fields you may want to use the screen graph paper:
7. Click on an empty space on the screen.

8. Select the Screen Graph Paper option on in the aXes Designer window.

| | Auto Zoom Screen Size

Screen Graph Paper (developer mode only) |

'@ Add A New Element

It looks like this:

BEKSON
STEPHEN
Str = el Na e [T [=
= i o Powren Yot Pepnant Hilks
st arid Country M 2125
He o ree: Muimibe
D it Code
Sa d
Gta [CICEMMEYY)
T=maralen. Bale D DMMYY) Cprign. |+
Sk
Dezicrigtion Commaal Grade
dma s iate Fant 3 M=t = mrm it
HaminEtratn el 2
B il e Dons i abas
Englidh Degpee Wit of festin b

9. Turn the Screen Graph Paper option off.

10. Set the look property of the group box to Modern:

caption Identification 47

style f

look [IEEa—— -
Identification -

Employ== Surnam= ACKSON

Employ=e Ghen Name{x]) [STEFPHEN

Stre=t Mo and Name 5 M=linsa Plag=
Suburb or Town met Pmr t Hills

11. Save this change and put the aXes Designer back in edit mode.
12. Add another group box with the Caption Dates and look Modern.
13. Place it next to the Identification group box.

14. Put the Start Date and Termination dates in the group box like this:

Identification Datas
Employee Sumame Start Cate [DOMMYY) 1408/96| +
Employee Gven Mame(s)|sTERHEN | Termination Ciate [DOMMYY) ooofoo |+
Street No and Name & Melissa Place
Suburb or Town \West Pennant Hills
State and Country W[2125
Home Phone Number (0219871 7773
Department Code Sn - | +
Section Code o +

15. Add another group box with the caption Contact and Location and look
Modern (again leave some space around the group box so that it will be
surrounded by the screen's background color).

16. Place it under the Identification group box and put the remaining fields
except for the skills details in it:

(€€ Session Display Help ﬁl_gutu_ vl (;1 @

Identfication. o i 5 Datas
Employee Sumame [aoson | Start Cate [DOMMYY) 140895 +
Employee Gven Mame(s)|sTERHEN | Termination Date [DOMMYY) o'oo/oo |+

(Contact and Location

Street Mo and Mame |g Melissa Place
Suburb or Town West Pennant Hills
State and Country v| 2125

Home Phone humber |/oz) 9871 7773
Department Code El +

Section Code = | + Employment Contract
Date SH Skill Skill
Acquired Code Description Comment Grade
25/03/98| |ADMIN1 Administratn Part 1 Met reauirement E
3/05/98 | |LADMINZ Administratn Part 2
s/o5/98 | [ECD Economics Degree Id
s/06/94 | [ENG English Degree with distinction Id +

Fl=Help F2=Exit F4=Frompt Fl12=Cancel Fld4=Messages

17. Finally, add a group box for the skills information with the caption Skills,
again leave some room around the group box:

Identication patss
Employee Sumame [3aoson | Start Cate [DOMMYY) 140895 +
Employee Gven Mame(s)|sTERHEN | Termination Date [DOMMYY) ofoofoo |+
(Contact and Location

Street Mo and Mame |5 Melissa Place
Suburb or Town West Pennant Hills
State and Country v| 2125

Home Phone humber |/oz) 9871 7773
Department Code [sp_| +

Section Code = + Employment Contract
Skills

Cate S Skill Skill

Amuired Code Desdiption Comment Grade
25/02/98(| ADMINL Administratn Part 1 Met reauirement E
z/0s/9g | lADMmz | Administratn Part 2
50598 | | B Ecenomics Degree E
Si06/54 | | ENG English Degre= with distinction d +

Fl=Help FE=Exit F=Prompt Fl2=Cancel Fld4=Messages

18. Save the screen customization.

RAMP-TSADO04 Step 7. Add Up and Down Buttons to Subfile

In this step you will name replace the plus sign indicating more entries exist in a
the subfile with up and down keys.

1. Select the plus indicator for the subfile.

Skdll
Description Comment Grade
Administratn Part 1 Met requirement

Administratn Part 2
Advanced Programming

Communications Degre

= mmm]

2. Name it moreindicator on the Screens tab.

| Keymaps | AutoGUl || Screens |
IChﬂngEMudE 2
Description:
Subfiles:
Start End Mame Lines/ Head
Entry Lines
18 21 R@FOO003 I'. I
Fekds [T Lock Screen
Name Row Col Sfl
r 17 70 7
Grade
I_ : 18 7 L
r | 18 16 ¥
. 18 28 ¥ N
Administratn Part 1 g
r) 18 49 ¥
r | 18 73 ¥
| |mereindicatod 2L 79 ¥
=
r | 23 2
Fl=Help F3=Exit F4=Prompt F12=Cancel %

<

3. Save the screen.

Screens
Possible Matches i
I Name Score
7 DisplayEmployes 1 ES
14 DisplayEmployee 0

=new definiticn=

Current Winner: DisplayEmployee [7]

Definition
| Sﬂ'.fe| Cancel | Delete |

Signature:
AEINQUIRE.MSG@SFLC,PE@FOOTER.P@HDO...
Name:

|Disp|ﬂyEm|:|Iny5-:— (ID =T}

4. In aXes Designer, uncheck the default visualization of the + sign so that it
disappears

i Default Visualization

| cCheckbosx
[Cate

5. Add a new element, and make its type Subfile Scroller.

Raw HTML =
Simple Box

Simple Line

Simple Push Button

Simple Stripe

Subfile Scroller

LR R]C IR I8 I8

Timer

6. Specify moreindicator as the markerFieldName.

markerFieldMame

scrollerStyle

7. Position and size the subfile scroller.

height: 17 pxiwidth: 17 px;

4

8. Save the screen customization.

9. Do a partial save of the RAMP definition.

10. Test the up and down buttons on the subfile.

Skills
Diat= Ski Skill Skill
Aoguired Code De=cription Comment Grade=
INDELE | |IMANAGEZ | Mamageme=nt Courze 2 Mat rmouirement I]
104227 ManagEs | Management Cowrse 3 Mt mouiremert [4
1/03/95 | [MANAGES | Manag=ment Cowrsed [Gocd atto | H E
10:12/25 | | MARKETL Marketing Course 1

RAMP-TSADO04 Step 8. Hide Function Keys and Add a Picture

In this step you will hide the function key text shown on the bottom of the
screen and you will add a picture of an employee.

When you edit a screen with the aXes Designer, the function key text line on the

screen becomes visible, even though it was previously hidden by RAMP. To
hide the line:

1. Click on Edit Screen in aXes Designer.
2. Select the function key text line on the bottom of the screen.

3. Set its Visible property to False.

Next you will add an image to the screen:

4. Add a group box with the caption Photo and with Modern look:

Identification Datas
Employese Sumame RSO Start Cate [DOMWYY) 14/08/96
Employes Gwen Mame{s)| sTERHEN Terminaticn Date [DOMMYY) o/oofon |+
T~ I"‘u_-L"I
Street Mo and Mame [Melissa Place :
Suburb or Town West Pennant Hills
State and Country w| [2125 i
Home Phone Mumber (g2} 9871 77732 I- A
Diepartment Code oo + i
Sedion Chde == + Emplovment Contract
— e ol
Skills
Cate SH Skl Skl
Amuired Code Desmiption Comment Grade
25/02/98/ | ADMINL Administratn Part 1 Met reauiremesnt i
3/05/98 | [ADMINZ Administratn Part 2 C
5/05/98 | | B Emnomics Degree i
S/06/94 | | ENG English Degree With distinction i -

Fl=Help FE=Exit F=Frompt Fl2=Cancel Fld4=Messages

5. Then add a new element and make it an Image extension inside the group
box:

Identification Dates

Employee Sumame Start Cate [DOMMYY)
Employee Gwen Mame(s)|sTERHEN | Termination Ciate [DOMMYY)
Contact and Location Ph
Street Mo and Mame |5 Melissa Place p S =
Suburb or Town west Pennant Hills i]
State and Country v| 2125
Home Phone Mumber |i0z) 5871 7772 H
Department Code Ep 1 =+
Section Code =1 + Employment Contract
Skills
Cate SH Skl Skill
Amuired Code Desaiption Comment Grade
25/02/98(| ADMINL Administratn Part 1 Met reauirement E
3/0s/9g | lADMmz | Administratn Part 2
5/05/98 | | B Econemics Degree [d
Si06/54 | | ENG English Degre= with distinction d +
Fl=Help FE=Exit F=Prompt Fl2=Cancel Fld4=Messages

6. Change its imagePath to /ts/skins/images/ and imageName to
examplephoto.gif:

style

imagePath [ts/skins/images/
imageName examplephoto.gif
onClick

7. Click Save. The image is displayed in its full size.

8. To shrink it, click on the Style property of the image extension and change

the style's height and width to 100% (be careful to select the Style property in
the Image group):

Selected Object Information

Type Input

Properties

{1]

name

style left:510px;top: 1 10px;width: 1

type Input

tabIndex 0

visible True y

enabled True &’

tooltip f
meee

style height: 100%;width: 100%:

imagePath fts/skins/images/ ﬂ

w

The screen will now look like this:

Identification Datas

Employee Sumame Start Cate [DOMMYY)

Employee Gven Mame(s)[sTERHEN | Terminaton Date [DOMMYY)

Contact and Location

Street Mo and Mame |5 Melissa Place
Suburb or Town West Pennant Hills

14/08/96| +
00000 |+

State and Country v| 2125

Home Phone humber |{oz) 9871 7773

Department Code Ep 1 =+

Phioto

Sedion Code =1 + Employment Contract
Skills

Cate SH Skl Skl

Amuired Code Desmiption Comment Gra
23/03/38 | ADMINL Administram Part 1 \Met reguirement
305798 | |laADMINZ | Administratn Part 2
5/05/98 | [BECD Emnomics Cegree
S/06/94 | | ENG English Degree With distinction

Fl=Help FE=Exit F=Prompt Fl2=Cancel Fld4=Messages

9. Save the screen customization

RAMP-TSADO04 Step 9. Add a Hyperlink

In this step you will add a hyperlink to the screen to open a PDF document that
resides on the server.

1. Put the screen in edit mode by clicking Edit Screen in the aXes Designer.
2. Add a new element to the screen.

ﬁ. Add A New Element

[——— . =
';]I'r start E e = Ir||:u:|::-::-...

3. Make it Hyperlink extension.

4. Size and position it like this:

Idlentification Dates
Employee Sumame Start Cate [DOMMYY) 140895 +
Employee Gven Mame(s)|sTERHEN | Termination Date [DOMMYY) ofoofoo |+

Caontact and Location
Street Mo and Mame |g Melissa Place
Suburb or Town West Pennant Hills

State and Country v] [2125
Home Phone Mumber g2} 9871 77732

Photo

Department Code Ep 1 =+
. s pespisas smmmnnnssalassnanns ssaaaaa ol
e e oy BRI
Skills
Cate SH Skl Skl
Amuired Code Desmiption Comment Grade
25/03/98/ | ADMINL Administratn Part 1 \Met reguirement E
205/98 | |laDMmz | Administratn Part 2
5/05/98 | | B Economics Degree [d
5/06/94 | [ENG English Degree with distinction o -

Fl=Help FE=Exit F=Prompt Fl2=Cancel Fld4=Messages

5. Set its Caption to Employment Contract.
6. Change the onClick property to:

window.open('/ts/skins/images/examplecontract.pdf’, '_blank");

7. Save the screen customization.
8. Click on the Employment Contract hyperlink on the screen.

A browser window containing the contract PDF on the server is shown:

Ty Favorites | (@ hitp: /vifteam: S060/ts/sk. . | | i M B) e - Page- Safety - Tooks- @ 53 O

*

BRAEE e[O g eorn] Lo

Employment Contract

Name o000 no0nOnoonon: a0
Photo
Id

Address x000000CCO0OCCONEOOOON0CON00OCCN0CO0L

Lorem ipsum delor sit ames, consactetur adipiscing elt, Phasellus quis nisi lec. Ut 2c metus eu est
ultrices pharetra. Cras quis rizus telus. Mullam mattis nisi eger dui pharetra et lacreet ante dignissim,
Mulla rhoncus varius lectus, vel commaode umna rhoncus vel, Nunc vehiculz ante sit amet Fbems
volutpat suscipt. Sed mellis justo quis ante fringilla non luctus turpis fringilla. Maecenas imperdiet
vehicula justo a tristique. Aesnean dictum velutpat doler vitae condimentum, &liguam erat velutpat,
Donec a elit sed sem congue witricies. Ut posuere placerat risus, vel elementum purus convallis in.

Cmal -

J Urknown Zone i -

RAMP-TSADO04 Step 10. Test the Redesigned Screen

In this step you will test the redesigned screen and make sure it works with the
Framework themes.

1. Log off in the RAMP-TS 5250 emulator.
2. Restart the Framework to restart aXes.
3. Display employee Veronica Brown in the Personnel application.

The Details command handler now looks like this:

"" Employee : Details [A0070-BROWN YERONICA ANN]

[JDetails [Documents 1 Events

Identification Dates Save
Ermployee Surname ERCWN Start Date [DDMMYY) |-2_3p'|:| ifa0| + Prampt
Employee Given NarrE[s:IEER[ﬂICA AN Termination Date [DOMMYY) ofoodon |+

Copy to Clipboard
Contact and Location Photo
Strest No and Name |12 Railwav Street |

Show Menu Bar

Suburb or Town Baullham Hills Show Snapshok
State and Country Alaska || 2153 |
Home Phone Number |ry Docurnentation

Department Cod 1+
epartmen a INF_-| Turn Trace On

Section Code Ig_,r__| 1 Employment Contract
Probe Screen
Skills
Date 5K Skl Skdll
Acquired Code Description Comment Grade
30/06/96 | [ADMINI Administratn Part 1 Met requirement [
1/03/98 | | ADMINZ Adrrinistratn Part 2]
10/12/95 IDVPGM Advanced Programming H
4/05/98 | [com Communications Degre 0 +

4. Now change the theme of the Framework using the Overall Theme option of
the Windows menu to check what the customization looks like with different
themes.

This is what the screen looks like with 2007 Olive theme:

[Dekails

Identification

LAl

Ermployee Surname

Employee Given Name(s) VERONICA AN

Details | | Details wrapper || Mame Address | | HR Details | /8. Events D Documents
Datas Save
BROWN Start Date [DOMMYY) [ze/01/90] + Prompk
Termination Date (DOMMYY) DIDDIDD. 1

Contact and Location

Street Noand N

Suburb or Town

State and Country
Home Phone Number
Department Code

Section Code

Skills
Date Sk
Acquired .
30/06/96
1/03/98
10/12/95
4/05/98

b

ame 12 Railwav Strest

Baulkham Hills

Alaska

TRN

INF T

DV + Link
Shdll Skl
Code Crescription
ADMINL Administratn Part 1
ADMINZ Administratn Part 2
|ADVPGM Advanced Programming
COomM Communications Degre

Copy to Clipboard

Photo
Showe Menu Bar
Show Snapshok
2153 |
Diocurnentation
Turn Trace Cn
Probe Screen
Comment Grade
Met reguirement E
H
H
] +

Note that here the aXes group boxes are all using a bluish color gradient. They
can also be modified to follow the VL theme. Refer to the aXes USERENYV file
for details of how the color gradients are set up for group boxes. Refer to Axes
Tutorial 10 for details of how to find out the current VL theme in aXes scripts.

RAMP-TSADO04 Step 11. Remove the Screen Customization

In this step you will remove the aXes screen customization by renaming the
screen_xxxx.js file. You can later reapply the extensions by renaming the file

back.

1. Shut down the Framework.

2. In Windows Explorer, locate the axes\ts\screens\ directory (you will need to
be mapped to your server's IFS drive) or your private definition folder if you

are using one.

4. Then locate the screen_displayemployee.js file and rename it

screen_displayemployeeX.js.

% 7:\axes\ts\screens\eevatutorials

Wigw Favortes Tools Help

. Fle Edi

OBack -

 hddress ||2) 22\ aves\tsiscreensteevatutorials

Folders

5. Restart the Framework.

ir /) Search u Folders

(= 10 eevatutorials

|2 Sereenversions
) hrts
[) Mark_Ex1
[#) markdale
[#) markdale_dem
[markdale_ex1
) markdale_jpn
[#) markdale_tmp
[) markdale_tut
+ |) MIDTesting
[) mjdtestingz
[# |2 Mvipplicationd
[# [MvProject]
¥) myproject?
[[myprojectd
[# [myvprojects

X | Name

X 19 @

Fy screen_displayemployeeﬂ]'s ||

| =] screens. jsn
4.50M

d.stn

2.5

E’| counk,bxt

B.scn

L.stn

3.8
application_definition s
project_attributes s
Ei LUSErEnY, js

] Tables_static bxt

E’| Tables_Dynamic.bxt
uF_sy420_rts Js

|C)5creenyersions

Size
1 kB
2B
1kB
1kB
1kB
1kB
1kB
1 kB
1kB
1kB
1kB
7B
228
1kB
21 KB

Type

Jactipt Script File
J3M File

SCN File

SCN File

SCN File

Text Dacument
SCN File

SCN File

SCN File

Jactipt Script File
Jactipt Script File
Jactipt Script File
Text Dacument
Text Dacument
Jactipt Script File
File: Falder

6. Verify that your screen customization has been removed.

Date Modffied
13/10/2009 1:27 FM
13/10/2009 1:17 FM
13/10/2009 1;16 FM
13/10/2009 1;16 FM
13/10/2009 1;07 FM
13/10/2009 12:53 PM
13/10/2009 12:53 PM
13/10/2009 12:53 PM
13/10/2009 12:54 PM
13/10/2009 12:36 PM
13/10/2009 11:46 AM
£/10/2009 339 P
£/10/2009 339 P
£/10/2009 333 P
4/09/2009 5:43 P
13/10/2009 1:27 FM

When you want to reapply the extensions, remove the X from the file name.

Note also that every time you click Save in the aXes Designer, a copy of the
customized screen is stored in the subfolder ScreenVersions in the screens
directory or your private definition folder with a name like
Screen_xxxxxxxxxx_YYYYMMDD_HHMMSS_mmmmmmm.js.

You can revert to an earlier design by locating the version you want, deleting the
existing Screen_xxxxxxxxxx.js file, and then copying the screen version file
into your definition set folder. Rename it to Screen_xXxXXXXXXX.jS.

Remember to end all aXes developer sessions before doing this.

Summary

If you are planning to use aXes to redesign your screens, you should complete
the aXes tutorials which can be accessed from the aXes home page.

To launch aXes from your browser, use this url:
http://hostname:80/wba/home.html (replace hostname with the name of your
host, and if necessary change the default port 80). Click on the Tutorials link on
the right of the aXes home page and then the Tutorial 0 — Getting Started

link.

Important Observations

There are sometimes alternative ways of creating a screen enhancement. For
example, you can visualize a date field as a calendar drop-down either by using a
special field handler or by making it a Date extension in aXes.

You can use aXes from the aXes home page to name and redesign screens
without using RAMP Tools. You need to use RAMP Tools for classifying
screens and scripting.

Tips

aXes also supports themes. They can directly map to VLF themes. In a nutshell
this means that when you define a role-based style in aXes named "KeyDetails"
(say) that says key text should be emphasized and bolded - you can actually
theme the style so that for VLF theme Blue the text color is dark blue, for theme
Silver the text color is black, for theme Olive the text color is dark green, etc.

Don't use bright primary colors and large or fancy fonts. Using large fonts, fancy
fonts and bright primary colors may work in web page displayed enhanced 5250
screens. However, the VLF tends to produce more low key screens - so these
types of things will stand out unnecessarily and often quite badly.

What You Should Know

How to use aXes eXtensions to enhance the screens in your RAMP application.

http://hostname/wba/home.html

RAMP-TSADO05: Using SHARED Properties and Functions

Once you start RAMP scripting you will see patterns and repetitions in your
logic. By moving this logic into shared object you can invoke this logic from
any RAMP script. The reuse and maintenance benefits of using this feature are
obvious.

Objectives
Learn how to use shared properties and functions

_":' Employees

File Edit Yiew Help ‘Windows (Framework) (Administration)

[spodled Files € Signoff |~ Reports [C] Details Using SETCURSOR.
Employees
: [x] [] x
% Iilu_jministratirun "By Salary OB 46 &
fan Test 1By Mame | By Date of Bith ==
CrmhSort - Emploves | Description |ﬁ
ColHdg Test ML claze lisk | Seach | |[ADD7D BROWN ANNYERONICA
Englis App A0090 BLACK FRED
Excel . : . AlDE BLOGGS JOHN
EHDEI’Id-ShI’iI’I In this tutorial You will learn hUW to AZ005 BURGESS KEYIN |8
17 Favorites | USE and create shared properties A2006 BRYERS MIKE JOHN
&, HR Demo Ap| @Nd functions to simplify your scripts A2007 BERESFORD BRUCE C
IPA Test and make them easier to maintain. & Anred Frs LR L CE ECs b
Notes CA Apf
NTreeTest
= Personnel

Code Tables
Emplovees
Telephone Search

Proc_aAnd_Close

RAMP Test

SubType Test

System i Server

Tst Conn

Yisualstyle

. XL Spreadsheet
Programming Techniques

Windows Internet Explorer, E|

! E Result = 436
L]

BEEBEBEBEBEBE
- P T S

Show 5250 Form and Turn OFF Busy State (this butkon only shown in Design mode)

Messages| Busy | WLFPGMLIE | ENG | YLFPGMLIE |15/05/09 16:14 (@)

To achieve this objective, you will complete the following steps:
Read What are Shared Scripts?
RAMP-TSADOS Step 1. Optional - Creating Your Own Copy of the Shared

Scripts File

RAMP-TSADOS Step 2. Accessing SHARED properties and functions
RAMP-TSADOS5 Step 3. Creating your own SHARED properties
RAMP-TSADOS Step 4. Creating your own SHARED functions
Summary

Before You Begin

In order to complete this tutorial, you must have completed the core tutorials
RAMP-TS001 - RAMP-TSO015.

What are Shared Scripts?
The shared scripts file uf_sy420_rts.js can be used to store common JavaScript
properties and functions that can be accessed from all your 5250 screen scripts.

This file is normally stored in the RAMP-TS skins folder. However, a private
version of the file can also reside in the nominated Private Definitions Folder
(see RAMP-TSADOS Step 1. Optional - Creating Your Own Copy of the Shared
Scripts File).

To see what the shared scripts file is like:

1. In Windows Explorer set up a mapped drive so that you can access folder
\axes\ts\skins.

2. Using Notepad or a text editor locate file uf_sy420_rts.js and open it. It
looks like this:

/* e
/* Note that this file is used when using RAMP-

TS as the RAMP 5250 server &

/* e

/* This file is for common JavaScript properties and functions you want to acct
/* from all your 5250 screen scripts. To provide an unlimited name space your
/* properties and functions MUST be encapsulated inside an object named SH:

/* Typically is reside in the \axes\ts\skins folder */
[*/
/* The SHARED object contains all customer defined shared scripts and prope
S */
var SHARED =
{
e */
/* Properties defined as part of the shared object */
e */

myProperty1 : "a",
myProperty?2 : 42,

I */

/* myFunctionl is a test function */

myFunction]1 : function(a,b,c)

{
alert("myFunctionl executed with parameters " + a.toString() + " " + b.toSi
return;

}’ /* <======= Note the COMMma =========== %/

/* myFunction? is another test function */

myFunction? : function(a,b)

{
var sResult = "myFunction2 was executed with parameters " + a.toString()
return(sResult);

}’ /* <======= Note the COMMma =========== %/

/* Dummy last property that does not have a comma, leave here. All preceed
myEndProperty : true

}; /* End of SHARED object definition */

The structure of this file is simple:

The line var SHARED = defines the start of a JavaScript object named
SHARED (you must use the name SHARED).

Within the SHARED object are 2 properties named myProperty1 and
myProperty?2.

There are also 2 functions called myFunction1 and myFunction?2 that receive 3
and 2 parameters respectively.

These properties and function serve no purpose other than to demonstrate how
they are defined inside the SHARED object. Note especially the comments
indicating the use of commas to separate the functions.

This object format is pure JavaScript. It is not unique to RAMP.

By using this technique you will create a preserved namespace for your code
that will never conflict with anything else.

RAMP-TSADO05 Step 1. Optional - Creating Your Own Copy of
the Shared Scripts File

Shared scripts are normally stored in the RAMP-TS skins folder in a file named
UF_SY420_RTS.JS. However, you can make a private version of the SHARED
scripts file in your Private Definition Folder.

Note: If you are completing these tutorials in a classroom setting, there will be a
Private Definition Folder set up for every user. However, in a real project you
should never do this. Projects should be set up on a discrete project basis
because work done in a project folder cannot be merged with work done in
another project folder. It is normal for multiple developers to be working on the
same project with the same definition set.

To create a private version of the shared scripts file in your Private Definition

Folder:

1. In Windows Explorer set up a mapped drive so that you can access the
folder \axes\ts\skins\.

2. Copy uf_sy420_rts.js and paste it into your private definition folder
\axes\ts\screens\MyPrivateDefinitionFolder

3. In the Server Details in the Framework, check the Contains SHARED
Object option in the RAMP-TS (Terminal Server) group box to indicate to
RAMP-TS that the SHARED Object file is in the Private Definitions Folder.

RAMP-TS (Terminal Server)
Save as deplovment server

IP Address YLFTEAM

Port Murnber a0a0

Execution Mode Load Path [tsiskins) se HTTPS

RAMP Tools Made Load Path fes e IUse HTTPS

Private Definition Folder eeva [/] Contains SHARED Object

Tesk RAMP-TS Tools Installation and Configuration

4. Save the Framework.

In order for RAMP-TS to recognize the file, you must ensure that it only has
*PUBLIC *R user authority. To check this:

mk:@MSITStore:lansa048.chm::/Lansa/lansa048_4995.htm

5. Inyour IBM i, use the WRKLNK command:

System 1 Main Meru

] !‘dlll I.
Sat iniial menn

(C) COPYRIGHT IEM CORP. 1980, 2007.

6. Navigate to your private definition folder and view the authorities of
UF_SY420_RTS.JS.

work with Object Links

object Tink

7. Ensure that *PUBLIC user only has *R authority:

work with Authority

Data --Object Authorities--
Authority Exist Mgt Alter Ref

You are now ready to start using your private copy of the shared scripts file.

RAMP-TSADO5 Step 2. Accessing SHARED properties and
functions

In this step you will learn how to access shared properties and functions.

1. Locate the two test properties in your shared scripts file to see what they are:

L R S g Ty S B LI LIy UL i JUILIL Sy JUSU B Ty JUSU S g JCILIE Sy U B T e JUILIL -y U S T by S SUU S T Py S *’,ﬁ'
/¥ The SHARED object contains all customer defined shared scripts and properties * 7
. e T T T e e e e D L e ey e T i it g *’,ﬁ'
war SHARED =
e b

myPropertyl @ "a",
myFropertyz : 4z,

2. Open the RAMP script for the DisplayEmployee screen and add this code to
the vHandle_ ARRIVE function to display the values of the properties:

alert(SHARED.myPropertyl + " " + SHARED.myProperty?2);

Your code will look like this:

else

1

window. alert(SHARED.myPropertyl + " " + SHARED.mMyProperty2);
SHOW_CURRENT_FoORM{true); /% show the form in the framework and show VLF buttons */
GET_FORM_MESSAGE(LZ227; J% Extract messages and hide the message 1ine hd
HIDE_5250_BUTTONSE); A% Hide any 5250 style buttons disETayed L
SETEBUSY(Talsel; /% Last thing done - turn off the busy state gl

S¥ <ARRIVE /> - DO not remowve or alter this Tine */

3. Commit changes, do a partial save and then display the details of an
employee so as to execute the arrival script. You will see a message box like
this appear:

[=]
—IByName | "By Dateof Bith _BySalary | | [4. @ &

| Clear Lisk Search Emploves | Description
A0070 ER.OWYN AMM VEROMICA
B S ST A0090 BLACK FRED
B A1031 ELDiEES JOHN
Send Signal ko RAMP screen A2005 BURGES S KEVI
L2006 ERYERS MIKE JOHM
Fy | S L2007 EERESFORD BRICE C
" Employee - Details (A0070-BROWHN ANN YERONICA] .

[Details [Documents | 1. Events

Windows Internet Explorer, [X|

_!A adz

The message box is displaying the values of the properties
SHARED.myPropertyl and SHARED.myProperty?2.

4. Locate the test function Function1 in your shared scripts file to see what it
does:

) e e e e e o L e e e e S e o = e B *®

myFunctionl : function(a,b,c)

window, alert("myFunctionl executed with parameters " + a.tostring() + " " + b.tastring() + " '
+ C.tostringll) J;
return;
I TR ARE Mote the comma —— %/

5. Now add this code to the arrival script:

SHARED.myFunction1("1",2,"3");

6. Commit changes, do a partial save and then display the details of another
employee. You will see another message box appear like this, indicating you

have executed function myFunction1 in the SHARED object:

| =

By Name | By Date of Birth | | By Salary || [] B 46 @

 Clear Lisk Search Emploves | Description
A0070 BROAWHN AMNMN YERONICA

Sislyzs Sielis A£0090 BLACK FRED

B 41031 BLOGES JOHM

Send Signal ko RAMP screen A0l gl el

L2006 ERYERS MIKE JOHM

Fy , 5 42007 BERESFORD BRUCE

[Details

/1 BEvents

Windows Internet Explorer,

L] E myFunctionl executed with parameters 1 2 3
L)

r‘"' Employee : Details [A1031-BLOGGS JOHN]

D Documents

7. Finally, add this code to your RAMP script:

var sMessage = SHARED.myFunction2("Hello","World");
alert(sMessage);

You will see another message box appear like this:

| X
By Mame | By Date of Birth | By Salary O w4 e
| Clear Lisk ' Search | Emploves | Description
A0070 BROAWHN AMNMN YERONICA
Eilevize SUElis £0090 BLACK FRED
B 41031 BLOGES JOHM
Send Signal ko RAMP screen 500 BURGE R EVIN
42006 ERYERS MIKE JOHM
Fy | 5 42007 BERESFORD BRUCE
o Employee : Details [AD090-BLACK. FRED]

[JDetails | [Documents | 1 Events

Windows Internet Explorer,

L] E myFunction? was executed with parameters Hello World
L

You now know how to access shared properties and shared logic defined in the
SHARED object.

RAMP-TSADO5 Step 3. Creating your own SHARED properties

1. Modify file uf_sy420_rts.js using Notepad by defining a new property
named MessagelLineNumber:

messagel.ineNumber : 22,

Your code will look like this:

M o v i e vl S S s e v o Sy rh TR v e S s e vl e S rh e v e Sy r e i e S s e v e S rh T v e S s e v e iy pih v e b 'R-’,*'
f* The SHARED object contains all customer defined shared scripts and properties E A
__ 11-‘_,—’
war SHARED =
Pyt v Rats Eaed ruiftin wlont OB st SR ass Eaed i ralf S ve Rtk EOst i st Aokt Oy ral e e et b i b

myFropertyl @ "a",
HEropertys 3 o4z,
| messageLineNumber @ zz, |

R s TRy R o S A e i e S s e v o S i T i o S s e v e S i e e o L

f* Functions defined as part of the shared object =/
=/

2. Save and restart the Framework.

3. Now in the vHandle_ ARRIVE function of the DisplayEmployee screen's
script, remove the code you added in the preceding steps and add this line of
code:

alert(SHARED.messageLineNumber);

4. Execute the DisplayEmployee screen. You will see a message box like this
appear.

[=]
—IByMame | By Date of Birth | By Salary OB A @

' Clear Lisk Search Emploves | Description
A0070 BROMWN AMNMN YERONICA
il Ee SUens £0090 BLACK FRED
B 41031 BLOGES JOHM
Send Signal ko RAMP screen &005 BURGES Sk BN
42006 ERYERS MIKE JOHM
42007 BERESFORD BRUCE

< |

[

A A [WA R LY el Y e =} =AY

r" Employee : Details [A1031-BLOGGS JOHN]

[JDetails [Documents | 1 Events

Windows Internet Explorer, |z|

SHARED properties like this are useful for centralizing definitions, making
them easy to change. For example, when using the RAMP function to extract
details from your screen, using SHARED.messageLLineNumber would be better
than using the literal 22 (say).

RAMP-TSADO5 Step 4. Creating your own SHARED functions

1. Modify the file uf_sy420_rts.js by adding a function named Add to it like
this:

/* Add adds 3 numbers together */

Add : function(a,b,c)
{
return(a + b + ¢);
}, /* <======= Note the COMMma =========== %/

2 R T I E ol e S St S i T i S S A M B ol S L S M S ol S L S M L ol P S M oS ol o L b

| | /% add adds 2 numwbers together *f
Add @ functionla,b,c)
{

returnifa + b + c©J;
j AR Note the comma —m————= ¥/

2. Now in your RAMP destination screen script, remove the code from the
preceding steps and add these lines of code:

var iResult = SHARED.Add(100,200,136);
alert("Result = " + iResult);

3. Close and restart the Framework.

4. Execute your RAMP 5250 destination screen. You should see a message box

[x]
—IByMame | | By Date of Birth | By Salary OB A8 2

+ Clear Lisk ' Search | Emploves | Description

A0070 BROW AMM VEROHICA

Emploves Surname

A0090 ELACK FRED
B A1031 ELOiEES JOHN
Send Signal ko RAMP screen AL BURGE 55 KE vIN
AZ2006 ERYERS MIKE JOHM
AZ2007 EERESFORD BRICE C

< |

[

A A [= WA R LY el Y e =} =AY

" Employee : Details (A2006-BRYERS MIKE JOHN)

[JDetails | [Documents | 1 Events

Windows Internet Explorer, ['X|

' E Result = 436
P]

That’s it. You have passed arguments to your "Add" function and received back
its result. Knowing how to do this is all you need to do to start sharing script
logic across all your RAMP scripts.

Summary

Important Observations

JavaScript is a very powerful programming language. The more you understand
its capabilities the more you can leverage them in your day to day work.

JavaScript knowledge, in an AJAX WEB 2.0 world, is also an increasingly
essential IT skill.

There are many free online courses that offer JavaScript training. For example,
see http://www.w3schools.com/

What You Should Know
How to use and create SHARED properties and functions

http://www.w3schools.com/

RAMP-TSADO06: Handling Multiple Screens on Multiple Tabs

RAMP-TS 5250 destination screens are displayed on framework command
handler tabs. Typically just one screen is displayed on a command handler tab.
However it is possible to split multiple screens up across multiple tabs. This
tutorial covers the concepts and skills required to do this.

Objectives

Learn how to attach a destination which has been spread across multiple screens
to multiple tabs.

[=]
—IByMame | By Date of Birth | By Salary ,‘—1\;‘. o = B ,‘—1\;‘. 1
| Clear Lisk |_ Search J Emploves | Description
A1031 ELOGEES IOHM ALARN
2 ST S 2005 BURGESS KEVIN
B AZ2006 ERYERS MIKE PETER
: AZ007 EERESFORD BRIUCE C
" | > A3451 BOSS SHEILA
olovee - Address [A1031-BLO In this tutorial you will learn how you can]

AR— . attach a 5250 employee function which is
—Inizme ;[Address | T R Details spread across multiple screens to multiple
UFRTS03_D2 UFRTSD03_D2 - E tatlS.
EREiaiE End-users can move between the tabs in one
RS deen s DRl R click and use filters to build lists of employees
Address Z...... winston Hills thE'y’ want to work with.
Country NSW Australia A

To achieve this objective, you will complete the following steps:
RAMP-TSADOG6 Step 1. A Multiple 5250 Screen Scenario
RAMP-TSADOG6 Step 2. Name the Screens

RAMP-TSADOG6 Step 3. Classify the Screens

RAMP-TSADO6 Step 4. Review and Understand the Targets List
RAMP-TSADOG6 Step 5. Using Multiple Command Handler Tabs
RAMP-TSADOG6 Step 6. Review and Alter Buttons and Function Keys

RAMP-TSADOG6 Step 7. Review the value you have added to the 5250
application

RAMP-TSADO06 Appendix: Function UFRTS03

Before You Begin

The following are assumed knowledge for the commencement of this tutorial.
You need to:

Understand the basic structure and mechanics of RAMP scripting.

Understand the concept of 5250 screens classified destinations, junctions or
specials.

Understand how to snap a destination screen onto a framework command
handler tab.

e [f you attempt this tutorial without this assumed knowledge you will probably
not be able to understand it.

RAMP-TSADO06 Step 1. A Multiple 5250 Screen Scenario

This tutorial uses a classic four screen 5250 Key -> Data inquiry sequence as its
main scenario.

However, the Data part is too much to fit onto a single 5250 screen, so it has
been spread across three 5250 screens like this:

‘ Request “Key”

‘ Display “Data” Screen 1

‘ Display “Data” Screen 2

Display “Data” Screen 3

Enter/F12

These sample screens do not have much information on them. This is a
deliberate choice to avoid blurring the objective of this tutorial.

You need to imagine that each of the 5250 "data" screens is packed full of
information which is usually why it has been split across three 5250 screens.

Note how the function keys Enter and F12 have been used to perform classic

5250 style navigation. Also note that if you are on Data Screen 3, you cannot
return to Data Screen 2 without going via the Request screen again. A minor
design flaw which could possibly be quite irritating to people who use this 5250
application all the time.

If you are completing this tutorial as part of classroom training, the
function for the displayed LANSA 5250 screen will exist in your
system in process UF_RTS, function UFRTSO03.

If you are completing this tutorial as self-study, note that the source

code is available in a function named UFRTSO03 which can be found in
RAMP-TSADO6 Appendix: Function UFRTSO03. It is recommended
that you create a 5250 LANSA process named UF_RTS, and in it a
RDML function named UFRTS03 to which you copy the code. Then
check the process and the function into your 5250 server so you can
try out these scenarios in detail.

RAMP-TSADO06 Step 2. Name the Screens

In this step you will use RAMP Tools name the process menu and the four
screens.

If you do not understand how to do this you should stop doing this

tutorial and complete one of the core tutorials instead.

1. On the System i Main menu enter this command:

lansa run uf_rts partition(dem)

2. Name the screens:

Screen Name You Should Use

RAMP UF_RTS

Testing Also name the option field txtOption.
Functions

If you are completing this tutorial in a classroom setting, you
will need to select option 3 in the RAMP Testing Functions menu
to bring up the correct screens:

menu

Request UFRTS03_R1

"Key" Also name the employee number field used in navigation as
Screen txtEmpNo

Display UFRTS03_D1
"Data"
Screen 1

Display
"Data"
Screen 2

Display
"Data"
Screen 3

UFRTS03_D?2

UFRTS03_D3

RAMP-TSADO06 Step 3. Classify the Screens

1. After identifying all the required screens and naming the required fields on
them, you should classify the screens.

Name You Used Classification of this Screen
UF_RTS Junction

UFRTS03_R1 Junction

UFRTS03_D1 Destination
UFRTS03_D2 Destination
UFRTS03_D3 Destination

RAMP-TSADO06 Step 4. Review and Understand the Targets List

You should now have a junction screen (UFRTS03_R1) and three destination
screens (UFRTS03_D1, UFRTS03_D2 and UFRTS03_D3) defined and scripted.

Open RAMP Tools and click on each of the screen definitions to review their
Targets lists.

Their respective Targets lists will look like this:
Screen Name Type of Screen Targets
UFRTS03_R1 Junction UFRTS03 D1

UFRTS03 D1 Destination UFRTS03_R1
UFRTS03_D2

UFRTS03_D2 Destination UFRTS03_R1
UFRTS03_D3

UFRTS03_D3 Destination UFRTS03_R1

If your target lists do not look like this, you should continue to manually
demonstrate screen navigations via RAMP Tools until they do.

The Targets associated with a screen definition are very important. They tell the
RAMP navigation planner what screens a particular screen can navigate to (ie:
target). Normally the Targets are automatically updated when you manually
demonstrate a navigation to the RAMP Tools editor.

As you become more experienced with RAMP you may decide to just
update the Targets list manually and add the appropriate code to the

screen's navigation handler function. In effect this is exactly what
demonstrating a navigation via RAMP Tools does.

The Targets lists used here are simple to understand:

The junction UFRTS03_R1’s target list effectively says "My
vHandle_ NAVIGATETO function contains scripts that can navigate to
destination UFRTS03 _D1".

The destination UFRTS03_D1’s target list effectively says "My
vHandle_ NAVIGATETO function contains scripts that can navigate to junction
UFRTS03_R1 or to destination UFRTS03_D2".

The presence of junction UFRTS03_R1 in the target lists of all 3 destinations is
significant. The first junction in a destination’s target list is called the exit
junction. The exit junction is used to get out of the destination and back on to the
junction "freeway or motorway" (ie: the network of identified junctions that are
used to rapidly move between destinations). If a destination screen is on display,
it will be asked to navigate to its nominated "exit junction" before a navigation
to another destination (including itself).

RAMP-TSADO06 Step 5. Using Multiple Command Handler Tabs

In handling this type of scenario the first option you have available is to put
each of the destination screens onto its own command handler tab.

This adds value to the 5250 application in which the user cannot immediately go
to data screen 3 (say) without having to go through data screens 1 and 2. Now
they can move freely among all 3 data screens without having to cancel and go
back to the key screen.

1. Inthe Framework, add three new instance level commands to the Employee
business object: Name, Address and HR Details.

2. Make Name the default command and set the sequence of the commands to
1, 2 and 3. Resequence the other commands associated with Employee to that
they come after these three commands.

3. In RAMP Tools link the destination screens with the commands:
UFRTS03_D1 Name
UFRTS03 D2 Address
UFRTS03_D3 HR Details

4. Modify the script of the UFRTS03_R1. You need to change the SETVALUE
so that the commands will be shown for the employee selected in the instance
list.

case "UFRTS03 D1":
{

/* Set up data fields on form UFRTS03_R1 */

SETVALUE("EmpNo",objListManager.AKey1[0]);
SENDKEY (KeyEnter);

/* Check for arrival at UFRTS03_D1 */

Q_CHECK_CURRENT_FORM("UFRTSO03_D1","Unable to navigate
to form UFRTS03_D1");

}
break;

You may want to review RAMP-TS006 Step 2. Change the Script to Use the
Current Instance List Entry.

5. Save and restart the Framework.

When you display an employee the command tabs should now look like this:

B B

B Salary ,‘-1\.,.. .,\,_'i,; = D ,‘-1\.,.. Y
By Mame |] By Date of Birth —

Emploves | Description |A
W Clear Lisk Emnploye: Search 41031 BLOGES JOHM ALAN

B : " azoos BLURGESS KEVIN

WBE006 ERYERS MIKE PETER

42007 BERESFORD BRUCE
A bd A3451 BOS5 SHEILA v

.':' Employee : Name [AZ2006-BERYERS MIKE PETER]

— — o & "
__| Mame Address | HR Details | [] Details 1 Events | | Documents
UFRTS03_D1 UFRTS03_D1 - Employee Detalls - 1 16,10

Enter
Employee no.... A2DDG

Cancel
SUFNEME. .. v v s s ERYERS
Given names.... MIKE PETER Messages

Show Menu Bar
Docurnentation
Turn Trace On

Probe Screen

Notice that you can display the three 5250 screens in any combination.

You may have to trace and modify your scripts, or even demonstrate new
navigations to get this example to function correctly. This is a normal part of
scripting 5250 screen interactions. You should persist with doing this until all
three screens function correctly. Previously completed tutorials should have

equipped you with the skills required to debug your scripts until they function
correctly.

RAMP-TSADO06 Step 6. Review and Alter Buttons and Function
Keys

All the 5250 function keys are related to navigation activities and you have
replaced all the navigation with something better. The 5250 Enter to go

forward, and F12 to Cancel, operations are largely nonsensical in a windows
application.

For example: You do not "cancel" an inquiry about the Address of employee
A0090, you simply move on to what you want to do next — display the Name
details of employee A0070 (say). You should strive to achieve this in your
modernization project because it makes your application more familiar and
comfortable to people who are used to the Windows interface.

1. In RAMP-Tools change destination screens UFRTS03_D1, UFRTS03_D2
and UFRTS03_D3 so that no function keys or buttons are enabled.

2. Do a partial save.

3. In the Framework, display another employee. Only the design-time buttons
are now shown:

.."" Employee : Address [A1031-BLOGGS JOHN ALAN]

I Mame m.ﬂ.ddress T IHR Detalls []Detals 1 Events || Documents
UFRTS03_D2 UFRTS03_DZ - Employee Detalls - 2 16/10/00 15:4¢

Shows Menu Bar
ERFROVER Atz ce S MINL Documentation
Address 1...... 3 Woodbury Road
Address 2...... winston Hills Turn Trace On

country N5W Australia
Probe Screen

RAMP-TSADO06 Step 7. Review the value you have added to the
5250 application

You started with a very simple 5250 four screen inquiry that could only do this:

‘ Request “Key”

‘ Display “Data” Screen 1

‘ Display “Data” Screen 2

Display “Data” Screen 3

Enter/F12

Now it looks like this:

[«]
By Mame | By Date of Birth | B Salary ,‘-1\.,.. @ | B ,‘_1? -
W Clear Lisk Search Emploves | Description

Eirei c 41031 BLOGES JOHM ALAN
RS e £2005 BURGESS KEVIM
B 42006 ERYERS MIKE PETER
42007 BERESFORD BRUCE
< | > £3451 BOSS SHEILA
f“' Employee : Address [A1031-BLOGGS JOHN ALAN]
I Mame @.ﬁ.ddress " HR Details | [_] Details L Events B Documents
UFRTS03_D2 UFRTS03_DZ - Employee Details - 2 16/10/09 15:49:09
Employee no.... AlD31
Address 1...... 3 woodbury Road
Address Z...... winston Hills
Country NSW Australia

The user can now build lists of the employees they want to work with.

They can move from displaying the Name details of employee A0070, to their
HR details in one click, and then go back again in one click.

They can move from displaying the Name details of employee A0070 to the HR
Details of employee A1031 in two clicks.

RAMP-TSADO06 Appendix: Function UFRTS03
FUNCTION OPTIONS(*DIRECT)
BEGIN_LOOP

* Get the key details
* A classic junction
* Cancel key goes back to process menu or caller program

RQ1: DOUNTIL COND(#IO$STS = OK')

REQUEST FIELDS(#EMPNO) EXIT_KEY(*NO) PANEL_ID(UFRTS03_R1
FETCH FIELDS(*ALL) FROM_FILE(pslmst) WITH_KEY(#EMPNO) ISSU!
ENDUNTIL

* Display details screen 1
* Cancel key goes back to request next employee number
* Enter goes forward to Details screen 2

DISPLAY FIELDS(#EMPNO #SURNAME #GIVENAME) EXIT_KEY(*NO
* Display details screen 2

* Cancel key goes back to request next employee number

* Enter goes forward to Details screen 3

DISPLAY FIELDS(#EMPNO #ADDRESS1 #ADDRESS2 #ADDRESS3) EX
* Display details screen 3

* Cancel key goes back to request next employee number

* Enter goes forward to request next employee number

DISPLAY FIELDS(#EMPNO #SALARY #DEPTMENT #SECTION) EXIT_}

* Loop around and ask for the next employee number

END_LOQOP

RAMP-TSADO07: Handling Multiple Screens on a Single Tab

RAMP-TS 5250 destination screens are displayed on framework command
handler tabs. Typically just one screen is displayed on a command handler tab.
However it is possible to display multiple 5250 screens on a single tab. This
tutorial covers the concepts and skills required to do this.

Objectives

Learn how to attach a destination which has been spread across multiple screens
to a single tab and how enable buttons to navigate between the screens.

| A

In this tutorial you will learn how you 1.]
can attach a 5250 employee function [€ ﬁ.- & = ﬁ.- [N
which is spread across multiple screens : — —1
to a single tab. | Empla. .. | Description IA_
A0070 BROMWHN WERONICA AMN
End-users can move between the Gl S I AR
screens using Mext and Previous |l REn G R ALAN 3
buttons and use filters to build lists of LANS BIRGERS KFVIM :
employees they want to work with. B3
L Al Details | ™ Address _ |HR Details [| Details ¢ Events | | Documents
UFRTSD3_DO2 UFRTS03_DZ2 - Employee Detaills - 2 | ...
et |
Employee no.... AlZ34 ; e
Address l...... 6 Melisza Place
Address 2...... west Pennant Hills Shows Menu Bar
Country HSW Australia
Dacurnentation

Turn Trace On

Probe Screen

To achieve this objective, you will complete the following steps:
RAMP-TSADOQ7 Step 1. A Multiple 5250 Screen Scenario
RAMP-TSADOQ7 Step 2. Making a Plan

RAMP-TSADOQ7 Step 3. Putting the Screens on a Single Tab
RAMP-TSADO7 Step 4. Enable Function Keys/Buttons and Add Required
Scripting

e RAMP-TSADO7 Step 5. Defining the Exit Junctions and

vHandle_ NAVIGATETO scripting

e RAMP-TSADOQ7 Step 6. Testing and Debugging
e RAMP-TSADO7 Step 7. Fine Tuning

Before You Begin

The following are assumed knowledge for the commencement of this tutorial.
You need to:

Have completed the preceding mini-tutorial RAMP-TSADO06: Handling Multiple
Screens on Multiple Tabs . If you attempt this tutorial without this assumed
knowledge you will probably not be able to understand it.

RAMP-TSADO07 Step 1. A Multiple 5250 Screen Scenario

This tutorial continues to use the same classic four screen 5250 Key -> Data
inquiry function UFRTSO03 as its scenario as the previous tutorial. See RAMP-
TSADOG6 Step 1. A Multiple 5250 Screen Scenario .

RAMP-TSADO07 Step 2. Making a Plan

In the RAMP-TSADO06: Handling Multiple Screens on Multiple Tabs

tutorial

these screens were identified and made to function on three command handler

tabs.

Now we are going to make all three destination screens appear on a single
command tab named All Details and allow the user to move between them with
Previous and Next buttons. To do this, we need to make a plan, something like

this:
Screen Associated with Enabled Buttons / Targets
Command Tab Function Keys

UFRTS03_D1 | All Details Next/Enter -> UFRTS03_R1
UFRTS03_D2

UFRTS03 D2 |- Previous/F12 - > UFRTS03_R1
UFRTS03_D1
Next/Enter ->
UFRTS03_D3

UFRTS03_D3 | - Previous/F12 -> UFRTSO03_R1
UFRTS03_D2

Looking at this plan in more detail, you should be able to answer these

questions:
Question Notes
Why is only There is going to only be one command now, All Details
UFRTS03_D1 |and when the user executes it the screen UFRTS03_D1 will
linked to a be displayed on a command tab.
command
handler tab?

Why are
UFRTS03_D2
and
UFRTS03_D2
not linked to
any command
handler tabs.

They are not linked to any commands themselves. The only
way to get to screens UFRTS03_D2 or UFRTS03_D3 is to
go via UFRTS03_D1, then used the Next button(s) to
advance to them. If you want them to be independently and
directly accessible put them on their own command tabs.

When screen
UFRTS03_D1
is displayed
what function
keys / buttons
will be enabled
and what will
they do?

It will have a Next button and the Enter key enabled.

When used they will cause screen UFRTS03_D2 to
display.

When screen

It will have a Previous button and the F12 key enabled.

UFRTS03_D2 | when used they will cause screen UFRTS03_D1 to

is displayefi (re)display.

what function It will have a Next button and the Enter key enabled.
keys / buttons .

will be enabled When used they will cause screen UFRTS03_D3 to
and what will | display.

they do?

When screen | It will have a Previous button and the F12 key enabled.
UFRTS03_D3 | when used they will cause screen UFRTS03_D?2 to

is displayed (re)display.

what function

keys / buttons

will be enabled

and what will

they do?

Why do all 3 | Any displayed destination needs to have an exit junction
destination specified and the appropriate code in its

screens have | vHandle_ NAVIGATETO script to navigate to that

an exit junction.

junction?

How is the exit | When a destination screen is displayed it can at any time be
junction used? |replaced by another destination, possibly for another
business object or business object instance (ie: another
order, product or customer, say). To allow this to happen it
should have an exit junction that allows the RAMP
navigator to exit from it and get back onto the junction
freeway/motorway and plan the fastest route to the next
destination.

The next few steps in this tutorial will cover implementing this plan and
testing/debugging it.

RAMP-TSADO07 Step 3. Putting the Screens on a Single Tab
In this step you will attach the screens to a single command handler tab.

1. Inthe Framework, associate the All Details command with the Employee
business object.

2. Make it the Default command.

£ Business Object Properties - Employees

Identification | Icons

lists ...

[Bssistant Example 1
L[Assistant Example 2
: -, Assistant Example 3
_/ Attach

{2h pttachments

| S Butharities

| rhonse Command Tvpe

. Al Details (ALL_DETAILS)

Wisual Styles | Filkers | Filker Settings | Commands Enabled | Command Display | Custom Properties | SubTypes | Instance Lis
To enable and disable commands drag them between these

Business Object Command

#| Instance Command

Mot Engbled | # || Enabled
| About '.- Address
@ About Framework P.II Details
= Arcounts || Details
"ol Details | D Documents
lE.'!'.II Entries | /1 Events
'; _?.ﬁ.mount | —IHR Details
Tlachi+ "I hame
o hpprove z-_d M
: A5eqd
" hssess
Assistant

o Allow on Web
Alloe in Windows

v
o 3how on Popup Menus
v

Restricted Access

Show on Instance List Tool Bar

Hide &ll Cther Command Tabs

[] Execute as Hidden Command

[Sequence: 1
| ~Command Cptions ~On Window Size : -
Skay Active Defaulk = Width Height
Windows
Default Command | ves -
‘Web Browser

~Optional Arguments
Alpha Argument 1:

Alpha Argument 2:
Numetic Argument 1:

Numetic Argument 2

3. In RAMP Tools locate the details of the UFRTS03_ D1 screen and remove

the association with the Name command, then associate the screen with the
All Details command.

4. Remove the command handler associations from UFRTS03_D2 and
UFRTS03_D3.

5. Do a partial save of the RAMP definition.

6. Save and restart the Framework.

You now have a command handler tab captioned All Details which you can use
to display the basic details (screen UFRTS03_D1) for any selected employee:

[2]
: By Mame | By Dateof Birth | By Salary | [, ,‘-1\.,.. o = ,‘_1? o
| Clear List Search Emploves | Description
A0070 ER.OWN VERONICZA ANM
Al 2 L A0090 BLACK FRED
B A1031 ELDiEES IOHM ALARN
L2005 ELURGESS KEYIN
L2006 ERYERS MIKE PETER
L2007 EERESFORD BRUCE C
A3451 BED55 SHEILA
L3487 EEMTLEY BRIDGET
L3564 ER.OWN FREDDY
A4567 ELACE MAY
i i | l BEE63 ELACKMORE RICHIE

" Employee : All Details (A2005-BURGESS KEVIN)

| | &l Details | Tmame [Address . IHR Details | [] Detalls 1 Everts | | Documents |

UFRTSD3_D1 UFRTS03_D1 - Employee Detaiis - 1 20/10/009 12:59:21
f P loy

Employee no.... AlZ34

SUMNEME. v v wwua JACKSON

GivVEn Names.... STEPHEN

RAMP-TSADO07 Step 4. Enable Function Keys/Buttons and Add

Required Scripting

In this step you will enable Next and Previous buttons on the screens to allow
the end-user to navigate between the screens in the function. You will also make

some changes to the scripts.

1. Review the properties of screens UFRTS03_D1, UFRTS03_D2 and
UFRTS03_D3 and enable buttons/function keys as previously planned.

UFRTS03_D1 should look like this:

Function Key Enablement
Key Caption Enable 5250
Enter MNext V|
F1 F1

- .

UFRTS03_D?2 should look like this:

Function Key Enablement

Key Caption Enable 5250
Enter Mext v
F12 Previous J

UFRTS03_D3 should look like this:

Function Key Enablement

Key Caption Enable 5250
F12 Previous v
Enter Enter

Enable seq -
(¥ 1
' 2

Enable |Seq -
J 1
v 2

Enable VLF Seq =

W 1

2. Save your changes and restart the Framework.

Next, review and alter the vHandle_ BUTTONCLICK scripts of each of these
screens to correctly handle the button navigations.

3. First, refer to the 5250 navigation picture in RAMP-TSADO6 Step 1. A

Multiple 5250 Screen Scenario .

4. From this navigation picture you can see pretty easily what needs to be

done:

Screen Button/Function What screen

Key

UFRTS03_D1 Next/Enter

UFRTS03_D2 Next/Enter

UFRTS03_D2 Previous/F12
(see note)

UFRTS03_D3 Previous/F12
(see note)

should result?

UFRTS03_D?2

UFRTS03_D3

UFRTS03_D1

UFRTS03_D?2

What

vHandle BUTTONCLICK

needs to do

Send enter key.

The default button script
should handle this.

Send enter key.

The default button script
should handle this.

Send F12 to get to
UFRTS03_R1 (junction).

Send Enter to advance to
UFRTS03_D1.

The default button script
will not handle this.

Send F12 to get to
UFRTS03_R1 (junction).

Send Enter to advance to
UFRTS03_D1.

Send Enter to advance to
UFRTS03_D2.

The default button script
will not handle this.

Note the addition of the Previous/F12 operations to UFRTS03_D2 and to
UFRTSO03_D3. In the underlying 5250 application no such direct navigations
exist (ie: you cannot actually go from UFRTS03_D2 to UFRTS03_D1 in one

operation).

However, with some simple scripting you can make it appear to the user as if

this feature actually exists. This is another simple example of adding value to an

existing 5250 application.

5. Change your vHandle_ BUTTONCLICK functions. No changes is required
to the UFRTS03_D1 script.

In UFRTS03_D2 use a button click switch construct like this:

switch (sButton)
{
case KeyEnter: /* Enter-
Next means move forward to UFRTSD03_03 */
SENDKEY (KeyEnter);
break;
case KeyF12: /* F12-Previous means go back to UFRTSD03_01 */
Q_SENDKEY("",KeyEnter);
SENDKEY (KeyF12);
break;
default:
ALERT_MESSAGE("Invalid function key used");
break;

In UFRTS03_D3 use a button click switch construct like this:

switch (sButton)
{
case KeyF12: /* F12-Previous means go back to UFRTSDO03_02 */
Q_SENDKEY("",KeyEnter);
Q_SENDKEY("",KeyEnter);
SENDKEY (KeyF12);
break;
default:
ALERT_MESSAGE("Invalid function key used");
break;

Note:

These RAMP scripts have been changed to reinterpret what using F12 actually
means. On a RAMP tab showing the 5250 screen UFRTS03_D3, the F12
function key now means send F12, Enter, Enter to the 5250 server. This

reinterpretation has added value to the underpinning 5250 application because it
has enabled the user to move directly to the previous screen from this screen. A
lot of quite valuable business process improvement is underpinned by very
simple strategies like this.

All invalid function keys now result in an alert message. This is a fail safe only.
RAMP should prevent the keys from being used anyway.

The use of the Q_SENDKEY () functions. RAMP-TS SENDKEY/() operations
are asynchronous, so only the first SENDKEY () request can be sent
immediately. The subsequent requests need to be queued up and handled when
the resulting screen(s) arrive back asynchronously.

7. Save your script changes and do a partial save of the RAMP definition.
Don'’t test your changes until you complete the next step. Without them your

application’s navigation may become "stuck", requiring you to cancel the
application.

RAMP-TSADO07 Step 5. Defining the Exit Junctions and
vHandle_NAVIGATETO scripting

The final thing you need to do is make sure that all three destinations have an
Exit Junction specified and that their vHandle_ NAVIGATETO functions can
navigate to the exit junction when requested.

1. Open RAMP Tools and review the properties of the 3 destination screens
UFRTS03_D1, UFRTS03_D2 and UFRTS03_D3.

2. In each destination screen, edit the Targets list displayed so that it only
contains the name of the junction UFRTS03_R1. Remember to click the save
button after making your changes to each Targets list.

-Targets
FRTS03_R1

Save

Technical Note about Exit Junctions: When a destination screen is on display
and a navigation to another screen needs to be performed, the destination screen
will be asked to navigate to its exit junction before the navigation route to the
target screen is calculated. By default a destination screen’s exit junction is the
first junction defined in its Targets list.

3. Now review the script associated with each of the destination screen.

4. Locate its vHandle_NAVIGATETO function and ensure it contains a script
that can handle a request to navigate to the junction named UFRTS03_R1.

Your scripts probably contain this code already from the previous tutorial.
However, it’s important you understand that you can (and sometimes do)
manually edit the Targets list and add the associated implementation logic to the
vHandle_ NAVIGATETO function.

It their trimmest form, the vHandle_ NAVIGATETO functions for all of the
destination screens should now look like this:

switch (sToForm)

/* <NAVIGATESWITCH> - Do not remove or alter this line */

case "UFRTS03_R1": /* Navigate back to the exit junction */

{
SENDKEY (KeyF12);
Q_CHECK_CURRENT_FORM("UFRTSO03_R1","Unable to navigate t

}
break;

default: /* Handle an invalid request */
alert("Form " + this.vName + " cannot navigate to form " + sToForm);
bReturn = false;
break;

RAMP-TSADO07 Step 6. Testing and Debugging

The final step involves some extensive testing of the navigation defined in your
code.

Check that your All Details command handler tab can handle these situations.

Repeats the Next->Next->Previous cycle around the 3 different destination
screens in different variations and combinations.

Selecting different employees down the instance list with UFRTS03_D1 on
display.

The Employee Details 1 screen (UFRTS03_D1) returns to its nearest junction,
Input Employee Number screen (UFRTS03_R1). The NAVIGATETO script for
UFRTSO03_R1 navigates back to UFRTS03_D1 by setting Employee Number
from the instance list and sending the Enter key.

Selecting different employees down the instance list with UFRTS03_D2
displayed initially.

The Employee Details 1 screen (UFRTS03_D1) is displayed for each employee
selected in the instance list. This happens because screen UFRTS03_D1 is
associated with command handler “All Details™.

Selecting different employees down the instance list with UFRTS03_D3
displayed initially.

This action will once again displayed the first Employee Details screen
(UFRTS03_D1) for the employee selected from the instance list.

Navigating to other business objects and back again with UFRTS03_D1
displayed.

When you select a different business object, RAMP exits the current screen to
return to its nearest junction. From here, RAMP creates a navigation plan to
reach the requested command handler for the currently selected business object.
i.e. a different 5250 screen.

When you reselect the All Details tab, the opposite navigation occurs. The
current screen exits to its nearest junction and a RAMP generated navigation
plan returns to the first All Details screen (UFRTS03_D1).

Navigating to other business objects and back again with UFRTS03_D?2
displayed (should come back to UFRTS03_D1)

The navigation is similar to the previous example. Once again when you reselect
the All Details tab for the Employees business object it is the first Employee
Details screen (UFRTS03_D1) which is displayed since it is this screen which is
associated with All Details.

Navigating to other business objects and back again with UFRTS03_D3
displayed (should come back to UFRTS03_D1).

The logic here is the same as the previous example.

If you have problems you should use application level tracing to see what is
happening as your scripts execute.

RAMP-TSADO07 Step 7. Fine Tuning

While testing your Next -> Next -> Previous button processing you may have
noticed a flicker as RAMP-TS navigates through intermediate screens.

This may be particularly noticeable when using the Previous button on screen

UFRTS03_D3, because the underlying 5250 application design means that you
need to do this:

switch (sButton)
{
case KeyF12: /* F12-Previous means go back to UFRTSDO03_02 */
Q_SENDKEY("",KeyEnter);
Q_SENDKEY("",KeyEnter);
SENDKEY (KeyF12);
break;
default:
ALERT_MESSAGE("Invalid function key used");
break;
}

The flicker is because you started this button handling sequence with the current
5250 screen visible.

Your script is not quite complete yet and needs to be fined tuned. Change it to
this:

switch (sButton)
{
case KeyF12: /* F12-Previous means go back to UFRTSDO03_02 */
HIDE_CURRENT_FORMY();
Q_SENDKEY("",KeyEnter);
Q_SENDKEY("",KeyEnter);
SENDKEY (KeyF12);
break;
default:
ALERT_MESSAGE("Invalid function key used");
break;
}

The HIDE_ CURRENT_FORM() function call causes the current RAMP-TS

screen to be hidden, preventing the intermediate screen navigations from being
seen (ie: the flashes).

The RAMP_TS screen becomes visible again when the SHOW_FORM function
in the vHandle_ ARRIVE script of the ultimate destination is executed.

RAMP-TSADO08: Screen Wrapper Basics

This tutorial shows the basic steps in creating a screen wrapper.

A screen wrapper is a Visual LANSA reusable part which can navigate to one or
more 5250 screens and get and set values on the screens. The wrappers offer a
way to enhance the existing 5250 application without having to rewrite it.

The screen wrapper becomes the user interface, but underneath the existing
5250 application is still being used.

This is simply an introductory exercise. There would be no real reason to create
a screen wrapper over this 5250 screen.

Objectives
Understand the basics of creating screen wrappers

"'E Employees |'-_||E|fz|
File Edit Wiew Help MWindows (Framework) (Administration)

D Spooled Files ?{’ Sign OFf Feports [Details Using SETCURSOR
Employees
. x| B x
09 An_iministral:iun ' o . . . OR A 6 2
Ajax Test In this introductory tutorial you will
CmhSort create a screen wrapper around the Emplo. .. | Drescription |’_‘
ColHdg Test Browse/Maintain Employee and Skill ADO7O BROWHN YERONICA ANM
Englis App Files screen. A0090 BLACK FRED
Excel a1031 BLOGGES JOHN
Expand-Shrink The purpose of this tutaorial is to show A2005 BURGESS KEWIM
1.7 Favorites the basic steps of creating a screen AZ006 BRYERS MIKE JOHM B
2. HR Demo Applicatios wrapper. £7007 BERESFORD BRUCE C
IPA Test \ y 3564 BR.CwM FREDDY b
MNotes CA App
et - Details (AD090-BLACK FRED)
= Personnel :
4l Code Tables | [] Details | Details Wrapper | [4] Documents
E b1
é. Eniployees Employes Mumber A0090 Save
ﬁ Telephone Search
©1 Proc_And _Close Employes Surnane BLACK
RAMP Test Employee Given Mame(s) FREL
. SubType Test
] System i Server Street Mo and Mame 70 MAIN STREET
[Tst Conn Suburb ar Town MEMTOMWM MW
o Visualstyle Skak d Count AUSTRALIA
" %L Spreadsheet i R
'} Programming Technid | Post | Zip Code 2220
Horne Phone Mumber 344-2234454545
£ |
Messages| PReady | VLFPGMLIE | ENG | WLFPGMLIE | 2/08/09 | 15:33 i)

To achieve this objective, you will complete the following steps:
RAMP-TSADO8 Step 1. Name the Fields to Be Used in the Wrapper
RAMP-TSADO8 Step 2. Create and Snap in the Screen Wrapper
RAMP-TSADO8 Step 3. Understanding the Screen Wrapper Code
RAMP-TSADO8 Step 4. Test Updating the Screen from the Wrapper

e Summary

Before You Begin

In order to complete this tutorial, you must have completed the core tutorials
RAMP-TS001 - RAMP-TSO015.

RAMP-TSADO08 Step 1. Name the Fields to Be Used in the
Wrapper

In this step you will name all the fields on the DisplayEmployee screen so that
they can be used in a screen wrapper.

1. Start RAMP Tools.
2. Start the RAMP-TS 5250 emulator.

3. Navigate to the Browse/Maintain Employee and Skill Files screen.

LANSA run pslsys partition(dem)

4. Select option 3 in the Personnel System main menu.
5. Specify an employee number, for example A1234.
6. Press F21 to put the screen in input mode.
7. Name the fields on the screen (you have named some of them in the
previous tutorials). The fields should be named like this:
Employee Number txtEmpno
Employee Surname txtSurname
Employee Given Name(s) | txtGivename
Street No and Name txtAddress1
Suburb or Town txtAddress2
State and Country txtAddress3
Post Code txtPostcode
Home Phone Number txtPhone
Department Code utxtDepartment
Section Code SECTION
Start Date Date_Start DDMMYY
Termination Date Date_Termn_ DDMMYY

You need to also name the subfile columns in the skills table:

8. Select the Date Skl Acquired column (not the column heading) and name it
subDateacq.

Fields: ¥ Auto Select
Name Row Col Sfl
[17 70 3

Date sk1 Skill Skill
Y Acquired Code Description Comment

25/03/93 ! A tn Part 1 Met requirement
2 N rt 2

Fl=Help F3=Exit F4=Prompt F12=Cancel ¥

9. Name the rest of the columns like this:

Skill Code subSkillcode
Skill Description | subSkilldesc

Comment subComment

Grade subGrade

the plus indicator | moreindicator

Note that you will not use all the fields you have named in the first part of the
tutorial.

10. Save the screen definition.

Now that you have named all the fields on the screen, you are now ready to put
it inside a screen wrapper.

RAMP-TSADO08 Step 2. Create and Snap in the Screen Wrapper

In this step you will copy the code for your first screen wrapper and then snap
the screen wrapper to the Framework.

1. Inthe Visual LANSA editor, create a new reusable part with the name
iiiRMPO03. Make the description DisplayEmployee Wrapper.

2. Replace the code in the reusable part with this code:

Function Options(*DIRECT)
BEGIN_COM ROLE(*EXTENDS #VF_AC010) HEIGHT(227)
LAYOUTMANAGER#MAIN_LAYOUT) WIDTH((497)

Group_By Name(#XG_HEAD) Fields(#MPNO #SURNAME #GIVENAME
#ADDRESS1 #ADDRESS2 #ADDRESS3 #POSTCODE #PHONEHME
#DEPTMENT #SECTION)

* Body and Button arrangement panels

DEFINE_COM CLASS#PRIM_PANL) NAME#BUTTON_PANEL)
DISPLAYPOSITION(2) HEIGHT(227) HINT(*MTXTDF_DET1)
LAYOUTMANAGER#BUTTON_FLOW) LEFT(409)
PARENT(#COM_OWNER) TABPOSITION(3) TABSTOP(False) TOP(0)
WIDTH(88)

DEFINE_COM CLASS(#PRIM_PANL) NAME(#BODY_HEAD)
DISPLAYPOSITION(1) HEIGHT(227) HINT(*MTXTDF_DET1)
LAYOUTMANAGER#BODY_HEAD_FLOW) LEFT(0)
PARENT(#COM_OWNER) TABPOSITION(2) TABSTOP(False) TOP(0)
VERTICALSCROLL(True) WIDTH(409)

* Attachment and flow layout managers

DEFINE_COM CLASS(#PRIM_ATLM) NAME#MAIN_LAYOUT)
DEFINE_COM CLASS(#PRIM_FWLM) NAME#BUTTON_FLOW)
DIRECTION(TopToBottom) FLOWOPERATION(Center)
MARGINBOTTOM(4) MARGINLEFT(4) MARGINRIGHT(4)
MARGINTOP(4) SPACING(4) SPACINGITEMS(4)

DEFINE_COM CLASS(#PRIM_FWLM) NAME(#BODY_HEAD_FLOW)
DIRECTION(TopToBottom) MARGINBOTTOM(4) MARGINLEFT(4)

MARGINRIGHT(4) MARGINTOP(4) SPACING(4) SPACINGITEMS(4)
DEFINE_COM CLASS(#PRIM_FWLI) NAME#FWLI_EMPNO)
MANAGEM#EMPNO) PARENT(#BODY_HEAD_FLOW)

DEFINE_COM CLASS#PRIM_FWLI) NAME(#FWLI_SURNAME)
MANAGE#SURNAME) PARENT(#BODY_HEAD_FLOW)
DEFINE_COM CLASS(#PRIM_FWLI) NAME#FWLI_GIVENAME)
MANAGE#GIVENAME) PARENT(#BODY_HEAD_FLOW)
DEFINE_COM CLASS(#PRIM_FWLI) NAME(#FWLI_ADDRESS1)
MANAGE#ADDRESS1) PARENT(#BODY_HEAD_FLOW)
DEFINE_COM CLASS(#PRIM_FWLI) NAME(#FWLI_ADDRESS?2)
MANAGE#ADDRESS2) PARENT(#BODY_HEAD_FLOW)
DEFINE_COM CLASS(#PRIM_FWLI) NAME(#FWLI_ADDRESS3)
MANAGE#ADDRESS3) PARENT(#BODY_HEAD_FLOW)
DEFINE_COM CLASS#PRIM_FWLI) NAME#FWLI_POSTCODE)
MANAGE(#POSTCODE) PARENT(#BODY_HEAD_FLOW)
DEFINE_COM CLASS(#PRIM_FWLI) NAME#FWLI_PHONEHME)
MANAGE#PHONEHME) PARENT(#BODY_HEAD_FLOW)
DEFINE_COM CLASS(#PRIM_FWLI) NAME#FWLI_SAVE_BUTTON)
MANAGEM#SAVE_BUTTON) PARENT(#BUTTON_FLOW)

* The save button

DEFINE_COM CLASS(#PRIM_PHBN) NAME#SAVE_BUTTON)
CAPTION(*MTXTDF_SAVE) DISPLAYPOSITION(1) LEFT(4)
PARENT(#BUTTON_PANEL) TABPOSITION(1) TOP(4)

* Collection for detail fields

DEFINE_COM CLASS(#Prim_ACol<#prim_evef>) NAME(#PanelFields)

* Fields in the head area

DEFINE_COM CLASS(#EMPNO.Visual) DISPLAYPOSITION(1)
HEIGHT(19) HINT(*MTXTDF_DET1) LEFT(4) PARENT(#BODY_HEAD)
READONLY (True) TABPOSITION(1) TOP(4) USEPICKLIST(False)
WIDTH(209)

DEFINE_COM CLASS(#SURNAME.Visual) DISPLAYPOSITION(2)
HEIGHT(19) HINT(*MTXTDF_DET1) LEFT(4) PARENT(#BODY_HEAD)
TABPOSITION(2) TOP(27) USEPICKLIST(False) WIDTH(324)
DEFINE_COM CLASS(#GIVENAME.Visual) DISPLAYPOSITION(3)
HEIGHT(19) HINT(*MTXTDF_DET1) LEFT(4) PARENT(#BODY_HEAD)
TABPOSITION(3) TOP(50) USEPICKLIST(False) WIDTH(324)
DEFINE_COM CLASS(#ADDRESS1.Visual) DISPLAYPOSITION(4)
HEIGHT(19) HINT(*MTXTDF_DET1) LEFT(4) PARENT(#BODY_HEAD)
TABPOSITION(4) TOP(73) USEPICKLIST(False) WIDTH(363)

DEFINE_COM CLASS(#ADDRESS2.Visual) DISPLAYPOSITION(5)
HEIGHT(19) HINT(*MTXTDF_DET1) LEFT(4) PARENT(#BODY_HEAD)
TABPOSITION(5) TOP(96) USEPICKLIST(False) WIDTH(363)
DEFINE_COM CLASS(#ADDRESS3.Visual) DISPLAYPOSITION(6)
HEIGHT(19) HINT(*MTXTDF_DET1) LEFT(4) PARENT(#BODY_HEAD)
TABPOSITION(6) TOP(119) USEPICKLIST(False) WIDTH(363)
DEFINE_COM CLASS(#POSTCODE.Visual) DISPLAYPOSITION(7)
HEIGHT(19) HINT(*MTXTDF_DET1) LEFT(4) PARENT(#BODY_HEAD)
TABPOSITION(7) TOP(142) USEPICKLIST(False) WIDTH(216)
DEFINE_COM CLASS(#PHONEHME.Visual) DISPLAYPOSITION(8)
HEIGHT(19) HINT(*MTXTDF_DET1) LEFT(4) PARENT(#BODY_HEAD)
TABPOSITION(8) TOP(165) USEPICKLIST(False) WIDTH(286)
DEFINE_COM CLASS(#PRIM_ATLM) NAMEM#ATLM_1)

DEFINE_COM CLASS(#PRIM_ATLI) NAME#ATLI_1)
ATTACHMENT(Center) PARENT(#ATLM_1)

DEFINE_COM CLASS(#PRIM_ATLI) NAME#ATLI_2)
ATTACHMENT(Center) MANAGE(#BODY_HEAD)
PARENT(#MAIN_LAYOUT)

DEFINE_COM CLASS(#PRIM_ATLI) NAME#ATLI_3)
ATTACHMENT(Right) MANAGE(#BUTTON_PANEL)
PARENT(#MAIN_LAYOUT)

* A screen wrapper is a VL reusable part of class VF_SY122. You must define
it globally scoped as opposed to inside any type of routine.

DEFINE_COM CLASS(#vf_sy122) NAME(#myscreen_wrapper)
DISPLAYPOSITION(3) HEIGHT(227) PARENT(#COM_OWNER)
WIDTH(409)

DEFINE_COM CLASS(#PRIM_ATLI) NAME#ATLI_4)
ATTACHMENT(Center) PARENT(#MAIN_LAYOUT)

DEFINE_COM CLASS(#PRIM_ATLI) NAME#ATLI_6)
ATTACHMENT(Center) MANAGE(#myscreen_wrapper)
PARENT(#MAIN_LAYOUT)

Mthroutine Name(ulnitialize) Options(*REDEFINE)

Define_Com Class(#Prim_evef) Name(#FormField) Reference(*dynamic)
Invoke Method(#Com_Ancestor.ulnitialize)

For Each(#Control) In(#Body_Head.ComponentControls)

If_Ref Com(#Control) Is(*INSTANCE_OF #prim_evef)

Set_Ref Com(#FormField) To(*dynamic #Control)

Invoke Method(#PanelFields.Insert) Item(#FormField)

Endif

Endfor

* In the command's ulnitialize method routine, set the screen wrapper's
uCommand property to #com_owner

Set Com(#myscreen_wrapper) Ucommand(#com_owner)

Endroutine

* Handle Command Execution
sk

* You may also disable the entire form to prevent any input while RAMP is
navigating

Mthroutine Name(uExecute) Options(*REDEFINE)
Invoke Method(#Com_Ancestor.uExecute)
#myscreen_wrapper.makerampTSavailable

Set Com(#Save_Button) Enabled(False)
#com_owner.enabled := false

Endroutine

* RAMP has signalled it's ready. Invoke your navigation here.

* Once the navigaton starts, processing resumes in the vHandleArrive event
handler.

Evtroutine Handling(#myscreen_wrapper.RampTSAvailable)

Invoke Method(#myscreen_wrapper.navigatetoscreen)
Name('DisplayEmployee")

Endroutine

Evtroutine Handling(#myscreen_wrapper.vHandleArrive)
Arrivedscreen(#CurrentScreen) Previousscreen(#PreviousScreen)
Arrivedpayload(#Payload)

Case (#CurrentScreen)

When Value_Is(= 'DisplayEmployee")

Set Com(#SAVE_BUTTON) Enabled(false)

* Error handling: Payloads are destroyed when the ARRIVE script finishes
executing. Therefore, a payload of UPDATE_EMPLOYEE would most likely
mean there was a validation error.

If (#Payload = UPDATE_EMPLOYEE)

Use Builtin(message_box_show) With_Args(ok ok info "Validation Error"
"Please correct any errors")

Else

* Unlock the framework

Set Com(#avFrameworkManager) Ulocked(false)
#myscreen_wrapper.getvalue From('txtEmpno') Value(#empno.value)
#myscreen_wrapper.getvalue From('txtSurname') Value(#surname.value)
#myscreen_wrapper.getvalue From('txtGivename') Value(#givename.value)
#myscreen_wrapper.getvalue From('txtAddress1') Value(#address1.value)
#myscreen_wrapper.getvalue From('txtAddress2") Value(#address2.value)
#myscreen_wrapper.getvalue From('txtAddress3') Value(#address3.value)
#myscreen_wrapper.getvalue From('txtPhone') Value(#phonehme.value)
#myscreen_wrapper.getvalue From('txtPostcode") Value(#POSTCODE.value)

#com_owner.enabled := true
Endif

Endcase

Endroutine

Mthroutine Name(Save)

* Set the 5250 field values to the values from this panel
#myscreen_wrapper.setvalue Infield('txtSurname') Value(#surname.value)
#myscreen_wrapper.setvalue Infield('txtGivename') Value(#givename.value)
#myscreen_wrapper.setvalue Infield('txtAddress1') Value(#address1.value)
#myscreen_wrapper.setvalue Infield('txtAddress2') Value(#address2.value)
#myscreen_wrapper.setvalue Infield('txtAddress3') Value(#address3.value)
#myscreen_wrapper.setvalue Infield('txtPhone') Value(#phonehme.value)
#myscreen_wrapper.setvalue Infield('txtPostcode") Value(#POSTCODE.value)
* Send the Enter key with the payload

#myscreen_wrapper.sendkey Key(#myscreen_wrapper.KeyEnter)

Payload(UPDATE_EMPLOYEE)
Endroutine

* Listen to messages from RAMP and the 5250 application

Evtroutine Handling(#myscreen_wrapper.RampMessage)
Umessagetype(#MsgType) Umessagetext(#MsgText)

Case (#msgtype.value)

When Value_Is('= VF_ERROR")

* Fatal messages reported by Ramp (e.g. Navigation request failed, etc). If in
design mode, show the underlying 5250 screen. Otherwise, make the error
message appear in a message box on top of the command

If (#usystem.iDesignMode = true)

Set Com(#myscreen_wrapper) Visible(True)

Else

Message Msgid(dcm9899) Msgf(dc@mO01) Msgdta(#msgtext.value)
#com_owner.avshowmessages

Endif

* Messages sent by the System i application or unknown form was
encountered

When Value_Is('= VF_INFO' '= VF_UNKNOWN_FORM)

Message Msgid(dcm9899) Msgf(dc@mO01) Msgdta(#msgtext.value)

* Failure to initialize RAMP. Could occur for mainly one of two reasons
When Value_Is('= VF_INIT_ERROR')

Message Msgid(dcm9899) Msgf(dc@mO01) Msgdta(#msgtext.value)
#com_owner.avshowmessages

Otherwise

Use Builtin(message_box_show) With_Args(ok ok info *Component
('Unknown message type ' + #MsgType + 'encountered'))

Endcase

Endroutine

Evtroutine Handling(#PanelFields<>.Changed)

* Enable the save button

Set Com(#SAVE_BUTTON) Enabled(True)

* Lock the framework and set a message for the user

Use Builtin(bconcat) With_Args('Changes made to employee' #GiveName
#Surname 'have not been saved yet.' 'Do you want to save them before

continuing?') To_Get(#sysvar$av)

Set Com(#avFrameworkManager) Ulocked(USER)
Ulockedmessage(#sysvar$av)

Endroutine

Evtroutine Handling(#PanelFields<>.KeyPress)
Options(*NOCLEARMESSAGES *NOCLEARERRORS)
Keycode(#KeyCode)

If Cond('#KeyCode.Value = Enter")

* If there no changes have been made issue message and ignore enter
If Cond('#SAVE_BUTTON.Enabled *EQ True")

Invoke Method(#Com_Owner.Save)

Else

* Issue 'There are no changes to save' message

Use Builtin(Message_box_show) With_Args(ok ok Info *Component
*MTXTDF_NO_SAVE)

Endif

Endif

Endroutine

Evtroutine Handling(#SAVE_BUTTON.Click)
#com_owner.Save
Endroutine

Mthroutine Name(uTerminate) Options(*REDEFINE)
* Clean up the colelction of fields on the panel
Invoke Method(#PanelFields.RemoveAll)

* Do any termination defined in the ancestor

Invoke Method(#Com_Ancestor.uTerminate)
Endroutine

End_Com

3. Display the Design tab of the component to see the screen wrapper user
interface:

EOMRMPO3 - DisplayEmployee Wrapper

Employes Number ABCDE Save
Emploves Surname ABCDEFGHIIKLMMOPOQRST
Emplovees Given Mame(s) ABCDEFGHIIKLMMOPORST
Street Mo and Mame anbBcCdDeEFFgGEhHITikEILm
-Sul:uurl:u ar Town anbBcCdDeEFFgEhHITikEILm =
State and Counkry anbBcCdDeEFFgEhHITikEILm
Post [Zip Code 123456
Home Phone Mumber ABCDEFGHIIKLMMO

4. Compile the screen wrapper.
5. In the Framework, display the properties of the Employees business object.

6. Create a new command Details Wrapper, enable it for the Employees
business object and associate the iiiRMPO03 screen wrapper with it.

Enabled [Chu:u:use Command Type

[loetails | Business Object Command [#) Instance Command
Details Wapper

. Documents [Sequence: 1
/1 Events . _ :
9 new ~Command Cptions . ~on Window Size e
g Skay Active Default Width Height
[Spreadsheets i Ll Windows

Defaulk Command Mo -

Wb Browser

o Allow on ek

i dednhindon ~Optional Arguments

| Show on Popup Menus Alpha Argument 1;

| Show on Instance List Tool Bar Alpha Argument 2;

Hide &ll Other Command Tabs humeric Argument 1:

Restricted Arcess Mumeric Argurnent 2:

Execute as Hidden Command

~ommand Handles

Windows
|=| Companent IEOMRMPDGII | Q
() MockUp - RAD-PAD _ RADPAD_ DSASS14B11B0444289963119891C0207, HTM

7. Save and restart the Framework.

8. Test your screen wrapper by selecting an employee and displaying the
Details Wrapper command handler for an employee:

7 Employees

File Edit Wiew Help ‘Windows Framework) § Administration)
B Spooled Files % Sign QffF Reporks [Dekails Using SETEURSOR
Employees
: [«] [«] ><
N :q_jmi?ist:atinn | By Salary 0 i\? E N RF
iy Ajax Tes "By Name | "By Date of Birth =
"1l CmhSort Empl... | Diescription |ﬁ
"] ColHdg Test Flclear List e A0070 BROWN VERONICA ANM
] Englis App £0090 ELACK FRED
| Excel Employee Surname Al031 BLOGGS JOHM 8
.} Expand-Shrink B 82005 BURGESS KEVIM
‘;fl’ Favorites 42006 BRYERS MIKE JOHN
£, HR Demo Application ¢ 3 42007 BERESFORD BRUCE C
1 1pa Test - - 47451 BNSS SHETLA
. Motes CA App
iy NTreeTest i Employee : Details Wrapper [AD070-BROWMN YERONICA ANN]
= ¥t Personnel

[| Details | | Details Wrapper | [Documents 1 Events

Zode Tables

Employees Employes Mumber A0070 Em—
Telephone Search [ERE——

1 proc And Close Emploves Surname BROW
" RAMP Test Emploves Given Mame(s) YERCMICA AMN
g cubType Test Street Mo and N 12 Railway Street
B GystemiServer reet Mo and Name ailvaay Stres
! Tst Conn Suburb or Town Baulkham Hills
: Wisualstyle State and Countey NSy Australia
e XL Spreadsheet
{5} Programming Techniques Post | Zip Code 2153
Home Phone Mumber TRM

Messages| Ready | vIFpamibML | ENG | VIFPGMLIE | 10/08/09 | 9:59 ()

RAMP-TSADO08 Step 3. Understanding the Screen Wrapper Code
In this step you will examine the code in the screen wrapper.
1. Display the screen wrapper source code in the Visual LANSA editor.

2. The screen wrapper is a command handler, therefore it's ancestor has to be
#VF_ACO010:

Design | S0Urce | Multlingual Detals - Repository Help - Cross References

ooool Function Options{*DIRECT
aoooz T-BEGIN_COM ROLE[*EXTENDS #VF_ACO10) HEIGHT(380) LAYOUTHANAGER({#MAIN LAYOUT) WIDTH{&14)
ooona B oD o o L e L L DS i C i iiiiiiiiiiiiiioiiiiiCiiiiifioiiiiiioiss

3. The first thing to note is in the DEFINE_COM statement which defines the
screen wrapper component which enables the command handler to
communicate with the underlying 5250 screen:

PARENT (#MAIN_LAYOUT)

DEFINE COM CLASS(#PRIM ATLI) NAME({#ATLI_3) ATTACHMENT(Right) MANAGE{#BUTTON_PANEL)
PARENT (#MAIN_LAYOUT)

A zmcreen wrapper iz a VL reusable part of class WVE_SY127. You must define it globally
zcoped A= oppozed to inside any type of routine.

DEFINE COM CLASS(#vi =vl122) HAME(#myscreen_wrapper) DISPLAYPOSITION{3) HEIGHT({2:Z7)
PARENT (#CONM CWNEE) WIDTH(409

DEFINE COM CLASS{#PRIM ATLI) NAME(#ATLI_d4) ATTACHMENT{Center) PARENT(#MAIN_ LAYOUT)

DEFINE_COM CLASS(#PRIM_ATLI) NAME(#ATLI_6) ATTACHMENT(Center) MANAGE(#myscreen_wrapper)
PARENT (#MAIN_LAYOUT)

4. Next, in the ulnitialize even routine, note the statement that sets the screen
wrapper's uCommand property to #COM_OWNER :

*

Handle Initialization
3*
EMthroutine Name(ulnitialize) Optionz(*REDEFINE)
Define Com Class(#Prim_evef) Hame(#FormField) Reference(*dynanic)
Invoke Method(#Con_dncestor.ulnitialize)
=FFor Each(#Control) In(#Body_Head.ComponentControls)
=F1f Ref Com{#Control) I=(*INSTAHCE OF #prim_evef)
Set_Fef Comn{#FormField) To(*dynamic #Control)
Invoke Method(#PanelFields Inzert) Item(#FormField)
Endif
Endfor
In the command's ulnitialize method routine, =et the screen wrapper's uCommand property
to doom oyper
|Set Con(#nyscreen_wrapper) Ucammand(#cam_awner)l

—Endroutine
3*

You must always set utCommand to #com_owner, otherwise an error message of

type VF_INIT_ERROR will be issued because the screen wrapper will not have
access to the command handler.

5. Then notice that RAMP execution is kicked off by the
MakerampTSavailable method in the uExecute method routine:

sFMthroutine Name{uExecute) Options(*EEDEFINE)

Invoke MethDdE#CDm Ancestar.uExecuteE

Set Com(#Save_Button) Enabled(Falsze)
foom_owner . enabled (= false
Endroutine

6. When RAMP is available, you specify the destination screen to which you
want the wrapper to navigate in the #myscreen_wrapper.RampTSAvailable
event routine:

—FEvtroutine Handling{#myscreen wrapper . FampTSAwailable)
Invoke Hethod{#myscreen wrapper . navigatetoscreen) Hame('DisplavEmployes')
Endroutine

7. The vHandleArrive event routine first checks that the screen that has arrived
is DisplayEmployee. For error handling, it checks if there is an
UPDATE_EMPLOYEE payload (issued when the user clicks the Save
button). If there isn't, the wrapper retrieves the values from the fields on the
screen and displays them:

FrEvtroutine Handling(#nyscreen_vrapper.vHandleArrive) Arrivedscreen(#CurrentScreen)
Previousacreen(#PreviousScreen) Arrivedpavload(#Payload)

Caze (#CurrentScreen)
Fhen Value I=(= 'DisplavEmploves')

Set Con{#SAVE_BUTTON) Enabled(false)

Error handling: Payloads are destroyed when the ARRIVE =script finishes executing. Therefore, a payload

of UFDATE_EMPLOYEE would most likely mean there waz a wvalidation error.
=If (#Payload = UPDATE EMPLOYEE)
U=ze Builtin(message box_show) With_drgs(ok ok info "Validation Error" "Flease correct any errors")
rElze
Mnlock the framevork
Set Com(davFransworkManager) Ulocked(falsze)
fnyscreen_wrapper.getvalue From(tztEnpno’) Value(¥enpno.value)
tnyscreen_wrapper.getvalue From('tztSurname') Value(#surname. value)
tnyscreen_wrapper.getvalue From('tztGivenane') Value(#givename. valug)
tnyscreen_wrapper.getvalue From('txztdddressl') Value(#addressl value)
tnyscreen_wrapper.getvalue From('txztdddress?') Value(#address? value)
i)
("

("

tnyscreen_wrapper.getvalue From{'tztdddressd') Value(#addressd value
tnyscreen_wrapper.getvalue From('tztPhone') Value(#phonehme value)
tnyscreen_wrapper.getvalue From('txztPostocode') Value(#POSTCODE. value)

toom_owner . enabled (= true
—Endif
—Endcaze
—Endroutine

8. Locate the event routine handling the Save button on the screen wrapper
which assigns the values on the fields on the wrapper to the fields on the
screen and then emulates the pressing of the Enter key:

*

#* Handle Save
*

EFMthroutine Hame(Sawve)
* St the 0200 field walues to the values fron thiz papel
#myscreen_wrapper.setvalue Infield('tztSurname') Yalue(#zurname. value)
#my=creen_wrapper.zsetvalue Infield('tztGivename') Value(#givename. valus)
tmy=creen_wrapper.zsetvalue Infield('tztAddressl') Value(#addres=l. value)
))
b

fmy=creen_wrapper.setvalue Infield('tztAddress?') Value(#address? wvalues
fmyscreen_wrapper.setvalue Infield('tztAddres=3') Value(#address3d value
#my=creen_wrapper.setvalue Infield('tztPhone') Value(#phonshmne value)
#my=creen_wrapper.zsetvalue Infield('tztPostcode') Value(#POSTCODE . value)

Send the Enter key with the pavload

tmy=creen_wrapper . sendkey Key(#myscreen wrapper. KevEnter) Payload(UPDATE_EMFLOYEE)
—Endroutine

s e

9. Lastly have a look at the routine handling the
#myscreen_wrapper.RampMessage event to see how RAMP-TS can handle
different types of errors in a screen wrapper:

Lizsten to nessages from RAMP and the 5250 application
EFEvtroutinge Handling(#nyscreen_wrapper Ranpliessage) Tneszagetype(dMsqType) Unessagetext (#MsgText)
rCaze (#nsgtype.value)
When Value Is('s VF_ERROR')

Fatal nessages reported by Ranp (e.g. Navigation request failed, etc). If in design mode, show the
underlyving 5250 screen. Otherwise, nake the error nessage appear in a nessage box on top of the
commnand

If (#usystem.iDesigniiode = true)

Set Com(#myscreen_wrapper) Visible({True)
Elze
Mes=sage Magid(docn9899) M=gf (do@nll) Msgdta(dnsgtext. value)
foom_owner . avshovnessages
Endif
Me==ages sent by the System 1 application or unknown form was encountered
When Value_Is('= VE_INFCQ' '= VF_UNKNOWH_FORM')
Message Magid(dcn9899) Msgf (do®nll) Megdta(#nsgtext value)
Failure to initialize RAHP. Could occur for mainly one of two reasons
When Value_Is('s VF_INIT_ERROR')
Message Magid(docn9899) Msgf (do®nll) Megdta(dnsgtext value)
foon_owner . avshownessages
rOthervize

llze Builtin(nessage box_show)

With Arg=(ck ok info #*Component ('Unknown message type ' + #H=gType + 'encountersd'))

The result of executing expreszion ('Tnknown nessage tvpe ' + #M=gType + 'encountered') will be checked to

—Endcasze
—Endroutine

RAMP-TSADO08 Step 4. Test Updating the Screen from the
Wrapper

In this step you will

1. Display the details of an employee in the Details Wrapper in the Framework.

2. Turn the application trace on from the Framework menu

3. Make a change to, for example, the employee surname and press the Save
button.

4. Examine the trace. Notice how the screen wrapper first assigns the field
values on the wrapper to the fields on the underlying 5250 screen and sends
the Enter key. RAMP then navigates to the FindEmployee screen which
updates the instance list and then navigates back to the DisplayEmployee
screen.

B Application Level Trace Details g@@

Component ‘ Wfindow ‘ Event M

EOMRMPOZ MAIN SETYALLE of bxkaurname index = 0 ko value BLOGGES (kvpe = string) . Current Form is DisplavEmplovee (15:38:20:18)

EQMRMPO3 MAIN SETYALLE of txtSurname completed, Current Form is DisplavEmplovee (15:38:20:18)

EQMRMPO3Z MAIN SETYALLE of txtGivename index = 0 to valug JOHM ALAM (kvpe = string) .Current Form is DisplayEmployes (15:38:20:33

EQMRMPO3 MAIN SETYALLE of txtGivename completed, Current Form is DisplayEmploves (15:38:20:33)

EQMRMPO3 MAIN SETYALLE of txtAddress] index = 0 ta value 3 Woodbury Road (tvpe = string) .Current Form is DisplayEmploves (15:38:

EQMRMPO3 MAIN SETYALLE of txtAddress] completed, Current Form is DisplayEmplovee (15:35:20:49)

EQMRMPO3Z MAIN SETYALLE of txtAddressZ index = 0 ta value Winston Hills (type = string) Current form is DisplayEmploves (15:35:20:4¢

EQMRMPO3 MAIN SETYALLE of txtAddressZ completed, Current Form is DisplayEmploves (15:35:20:49)

EQMRMPO3 MAIN SETYALLE of txtAddress3 index = 0 ta value NSW Australia (tvpe = string) . Current Form is DisplavEmplovee (15:38:200

EQMRMPO3Z MAIN SETYALLE of txtAddress3 completed, Current Form is DisplayEmplovee (15:35:20:64)

EQMRMPO3 MAIN SETYALLE of txtPhone index = 0 to value (02) 9668 9235 (type = string) . Current Form is DisplayEmploves (15:38:20:64

EQMRMPO3 MAIN SETYALLE of txtPhone completed. Current Form is DisplayEmployes (15:38: 20:50)

EQMRMPO3 MAIN SETYALLE of txtPostcode index = 0 ko value 2100 (type = string) .Current Form is DisplayEmploves (15:35:20:80)

EQMRMPO3 MAIN SETYALLE of txtPostcode completed. Current Form is DisplayEmploves (15:38:20:80)

EQMRMPO3Z MAIN SEMDKEY Enter requested, Current form is DisplayEmploves (15:38: 20:96)

EQMRMPO3 MAIN Mote =3 A payload accompanied this SENDKEY operation, The value was UPDATE_EMPLOYEE {15:38:20:96)

EQMRMPO3 MAIN Posting screen, Current Form is DisplayEmploves (15:38:20:96)

EQMRMPO3 MAIN Executing vHandle_DEPART Function in Form DisplayEmplovee {15:38:20:96)

EQMRMPO3Z MAIN Execution of script associated with DisplayEmplovee completed, No error detected, (15:38:20:96)

EQMRMPO3 MAIN SEMDKEY Enter completed, Server response will be asvnchronous, Your script should end now, Current Form is DisplavEmp

EQMRMPO3 MAIN Form with name "FindEmployee” has arrived, (15:38:20:439)

EQMRMPO3 MAIN Executing vHandle_ARRIVE Function in form FindEmploves (15:38:20:439)

EQMRMPO3Z MAIN Mote =3 A payload accompanied this request, The valug was UPDATE_EMPLOVEE (15:38:20:439)

ECMRMPOZ MAIN ASIGNAL executed with WithId= Update_List_Entry To= BUSINESSOBIECT SendAlnfol= A1031 Sendalnfoz= S

ECMRMPOZ MAIN Signalling avEvent Withld= Update_List_Entry Wait= FALSE To= BUSINESSOBIECT Sendalnfol= A1031

EQMRMPO3 MAIN MAYTGATE_TO_SCREEM invoked ko navigate to screen DisplavEmploves (15:38:20:439)

EQMRMPO3Z MAIN Prepating a navigation plan to get to screen DisplayEmploves (15:38:20:439)

ECOMRMPOZ MAIM #in ootimized ore-existing navigation olan from FindEmoloves to DisolavEmoloves will be used, (15:38:20:439) b

L b
Save Trace ko Fila Clear Trace

Summary

Important Observations

Before you create a screen wrapper, name all the fields on the 5250 screen(s)
that will be used in the wrapper

You also need to ensure there is a navigation path to and from the destination
screen to be wrapped.

A screen wrapper is a Visual LANSA reusable part with Ancestor #VF_AC010
(command handler) which defines class #VF_SY122.

In the screen wrapper, you start RAMP execution by invoking the
MakerampTSavailable event. Once RAMP is running, you specify the
destination screen the wrapper is to navigate to in the routine handling
RampTSAvailable event.

You use the ScreenWrapper.GetValue and ScreenWrapper.SetValue methods to
pass values between the 5250 screens and the wrapper.

You snap the screen wrapper into the Framework as you would snap in any non-
RAMP command handler (using the business object properties, not RAMP
Tools)

What You Should Know

How to create a basic screen wrapper

RAMP-TSADO09: Screen Wrapper with a Subfile
In this tutorial you will enhance your screen wrapper to include a photo of the
employee and the skills subfile presented as a list view.

Objectives
Learn how to handle subfiles as a list view in screen wrapper

Learn how easy it to wrap a screen in a more intuitive interface

£ Employees

File Edit Yiew Help Windows (Framework) ({ Administration)

D Spooled Files % Sign Off) Reports [Dekalls Using SETCURSOR.

Employees

[4]]

Ajax Test
CmhSort
ColHdg Test
Englis App
Excel
Expand-Shrink

17 Favorites

‘é‘g HR Demo Applic
IPA Test
Notes CA App
NTreeTest
Personnel
@ Code Tables

@ Emplovees

D EHEHEHEHBEHBEHRRRBBE

. Administration [~

In this tutorial you will enhance

screen wrapper to show a photo
and the skills subfilz as a list view.

If you compare this simple wrapper
with the RAMPed 5250 screen (the

Details tab), you can see how easy
it is to make a basic screen more

informative.

~
the

Search |

OB A O

Empla.. | Description

A0070 BROWN YERONICE ANM
#0090 BLACK FRED

A1031 BLOGE3 JOHM

#2005 BURGESS KEYIM

#2006 BRYERS MIKE JOHN

' [AD070-BROWN YERONICA ANN]

O DW Wrapper | || Documents | 1 Events
Employes Number A0070 Save

Employee Surname

@ Telephone Search

RAMP Test
SubType Test

HEHEHBEEBEBB

Proc_And_Close

System i Server

Emplovee Given Mamels)
Street Mo and Mame

Suburb or Town

BROWH

YERONICA AN

12 Railway Street

Baulkham Hils

Tst Conn State and Country WS Australia
el Post | Zip Code 2153
¥L Spreadsheet
Programming Techniqueg Home Phone Mumber TRN
Acquired | Skill Code | kil Carmment | G, | lad
30f06/%6 ADMIMI Administra... Meftrequire.. P
10398 ADMINZ Administra,.. P
10{12/35 ADWPGM Advanced .., P
4/05/98 oM Communic. .]
5/06/90 5 Computer ... Verygoodre,.. D
20/02/90 INDUCT Compan L. P
5/0z/98 INTRO Company I,.. Metrequire.., P
5/0z/98 KEY fevboard ... Metrequire... P
10/12/37 MAMAGEl Manageme... Good result M
10398 MANAGEZ Manageme... Metrequire.. P
10/12/37 MARKET! Marketing... Execelent]
Tinat Lo MARKFTZ _ Marketinn P &
v | Messages| Ready | vfpomibhl | ENG | VLFPGMLIB | 10/08/09 | 13:16 ()

To achieve this objective, you will complete the following steps:
e RAMP-TSADOQ9 Step 1. Add an Image to the Screen Wrapper
e RAMP-TSADO9 Step 2. Add Skills List View to the Wrapper
e RAMP-TSADO9 Step 3. Add Code to Populate the List View

e Summary

Before You Begin

In order to complete this tutorial, you must have completed RAMP-TSADOS:
Screen Wrapper Basics.

Note About This Tutorial

On some systems the screen wrapper created in this tutorial causes a 'multiple
sendkey' error. The problem is currently being investigated. A work-around is to
name the screen with a different name when it is in update mode, for example
'UpdateEmployee' instead of using the F21 keypress in the arrival script to
distinguish the screen in display and update mode.

RAMP-TSADO09 Step 1. Add an Image to the Screen Wrapper
In this step you will add an image to the Browse/Maintain Employee and Skill
Files screen wrapper.

In this example you will be using a standard .gif file shipped with the
Framework, in a real application you would have the employee photos stored in
a file on the server and you would retrieve them with the other employee details.

1. Display the iiiRMPO3 screen wrapper in the Visual LANSA editor.
2. Display the Design tab.

3. Drag an image control from the Common Controls tab in Favorites to the
screen.

Notice that it is automatically placed under the fields in the screen wrapper by
the layout manager that manages the screen. In this exercise you want to
position the image manually.

4. Display the Source tab and locate the DEFINE_COM statement for the
image, and the layout item created for it.

5. Comment out the statement defining the flow layout item.

- DEFINE_COM CLASS(4PRIM_IMGE) NAME(#IMGE 1) DISPLAYPOSITION(9) HEIGHT(117) LEFT(4) PARENT(#BODY_HEAD) TABPOSITION(Y)
ToPdacy TTNTH{I0Y

|*DEFINE_COM CLASS(APRIM_FULI) NAME(AFWLI_1) MANAGE(HIMGE 1) PARENT(#BODY_HEAD_FLOH)'

6. Switch to the Design tab and move and position the image like this:

a Design | Source | Muliingual Detals | Repository Help | Crass References

Favorites

BHew v | 2 ¥| & i x|

Emplotee Nurber BECDE i ' .

i ‘Weblet Templates p e

D Last Cperied Emploves Surmame ABCDEFGHIKLMMOPORST

D Common Contrals Employee Given Name(s) ABCDEFGHIIKLMNORGRST ! .

Ttem Diescrip Strest Mo and Mame afbBcCdDeEfFaGhHIT kLM

[v/] Check box Check Suburb or Town ahbBcCdDEErFoGhHIT KLY

B Combo box List it

5 Explorer Shoms State and Country afbBCdDeEfFgGhHIIkLm . L i

Al Graph Data r Fast | Zp Code 123456

[] arid Datair

[Group box Gron Hame Phone Mumber ABCDEFGHIIKLMNG

.| iImage Shows

Q-l ¥eved collection fi set ¢

7. Display the Source tab and add this statement to assign an image file to the
image control after the values for fields on the screen wrapper have been
retrieved:

Set Com(#imge_1) Filename('C:\Program
Files\LANSA\LANSA\Imports\VLFRAMEWORK\df_im001.gif")

You need to replace the path information with the path in your system where
df_im001.gif is located. Your code should look like this:

—El=ze

#focom_owner . enabled = true

fnyscreen_wrapper.getvalue From
fnyecreen_wrapper . getvalue From
fnyacreen_wrapper.getvalue From
fnyacreen_wrapper.getvalue From
fnyscreen_wrapper.getvalue From
fnyecreen_wrapper.getvalue From
fmyscreen_wrapper . getvalue From
fnyecreen_wrapper.getvalue From

"tEtEnpno') Value(#empno. value)
"tEtSurnamne') Value(#=zurnane. value)
"tEtGivenans') Valuesi(d#givenane. value
"tEtAddres=1') Valuesi{#addres=l value
"tEtAddres=2') Valuesi{#address=2 value
"tEtAddres=3"') Valuesi{#addres=3l value
"tztPhone') Value(#phonehne. wvalue)
"tEtPostocode’) Valus(#FPOSTCODE walue)

)
)
)
)

A i i Sl S i i

Set Com(#imge 1)
Filename('C:“Progran Files“LANSASPEFinalfLANSAInmports VIFRAMEWORE df im001.gif')

—Endif

8. Compile the screen wrapper. If the compile fails because the wrapper is
being used, restart the Framework.

9. In the Framework, display the Details Wrapper for an employee:

i Employee : Details Wrapper [A0070-BROWHN YERONICA ANN]

[Details | | Details ‘Wrapper B Documents ¢ Events

Employes Number A0O70 Save
Emploves Surname BROAW T D
Emplovees Given Mame(s) YEROMICA AMNMN

Street Mo and Mame 12 Railway Street

Suburb or Town Baulkharn Hills

State and Counkry MW Australia

Post | Zip Code 2153

Home Phone Mumber TRM

10. Shut down the Framework.

RAMP-TSADO09 Step 2. Add Skills List View to the Wrapper

In this step you will add a list view to the screen wrapper that shows the skills
subfile on the Browse/Maintain Employee and Skill Files screen.

Note that you named the subfile columns and the plus sign in RAMP-TSADO08
Step 1. Name the Fields to Be Used in the Wrapper.

1. Display the screen wrapper user interface in the Visual LANSA editor.

2. Drag a list view control to the screen wrapper and size it like this:

EOMRMPO3 - DisplayEmployee Wrapper [

Employes Number ABCDE Save
Emploves Surname ABCDEFGHIIKLMMOPOQRST

Emplovees Given Mame(s) ABCDEFGHIIKLMMOPORST

Street Mo and Mame anbBcCdDeEFFgGEhHITikEILm

Suburb or Town anbBcCdDeEFFgEhHITikEILm

State and Counkry anbBcCdDeEFFgGEhHITikEILm

Post [Zip Code 123456

Home Phone Mumber ABCDEFGHIJKLMMO

| B L] Ly
| u
r - 1

3. Name it Skills.

Details 1%

Skills >.

Properties | Events | Methods

* Height 175 ~
“ Hink

 HinkShaw True
 HinkShowCfParent True

* Icontlignment Left

P KevboardPositioning SortColurmn

“ Left 4

* MadifiedRules

* hame skilld

* WatificationStyle Crefault
 Owvner #EOMRMPOS
*Parent #BODY_HEAD
* Popuphenu #LILL

P PopupMenuFocusselect True

* SelectedRowCount 0

* Selectionstyle Mulkiple

4. Locate the PSLSKL file in the repository, and drag the DATEACQ and
SKILCODE fields in the file to the list view.

5. Locate the SKLTAB file in the repository and drag the SKILDESC field to
the list view.

6. Lastly add the COMMENT and GRADE fields from the PSLSKL file to the
list view.

Your list view should look like this:

EOMRMPO3 - DisplayEmployee Wrapper

Emplovees Mumber
Emploves Surname
Emplovees Given Mame(s)
Street Mo and Mame
Suburb or Town

State and Counkry

ABCDE
ABCDEFGHIIKLMMOPORST
ABCDEFGHIIKLMMOPORST
afbBcCdDeEfFgEhHITIkEILM
afbBcCdDeEfFgEhHITITkEILm
afbBcCdDeEfFgEhHITTkEILm

Save

Post [Zip Code 123456
Home Phone Mumber ABCDEFGHIIELMMO

Acquired | Skill Code | Skill Comrment i3rade Cbt
\/E|1 AB... ABCDE... ABCDEFG... afbBocCdDeEfFg... A

£ >

7. Save the wrapper.

RAMP-TSADO09 Step 3. Add Code to Populate the List View

In this step you will add the code to populate the list view.
1. Display the source code of the screen wrapper.

2. Locate the #myscreen_wrapper.RampTSAvailable event routine and add this
code to clear the fields and the subfile on it when the screen arrives:

Clr_List Named(#skills)
#XG_HEAD :=*null

Your code should look like this:

=FEvtroutine Handling(#nvecreen wrapper . RampTSAwailable)
Clr_List Hamed({#skills)
#EG HEAD := #null

[[nvoke Hethod{#nyscreen vrapper navigatetoscreen) Fame! 'DisplayEnployes')
Endroutine

3. Add the following method routine to the end of your screen wrapper source:
Mthroutine Name(uGetSubfilePage)

Define_Map For(*result) Class(#prim_boln) Name(#NextPage)
Define Field(#MoreVal) Type(*char) Length(1)

#listcount := 1
#NextPage := false

Dowhile (#myscreen_wrapper.check_field_exists("dateacq" #listcount))

#myscreen_wrapper.getvalue From("dateacq") Value(#vf_eltxts)
Defaultvalue(#ddmmyy) Index(#listcount)

#myscreen_wrapper.getvalue From("skillcode") Value(#skilcode)
Index(#listcount)

#myscreen_wrapper.getvalue From("skilldesc") Value(#skildesc)
Index(#listcount) Defaultvalue("Defalt value™)

#myscreen_wrapper.getvalue From("comment") Value(#comment)
Index(#listcount)

#myscreen_wrapper.getvalue From("grade™) Value(#grade) Index(#listcount)

* You can put some tracing
#com_owner.avframeworkmanager.avRecordTrace Component(#com_owner)
Event("Adding entry = " + #vf_eltxts + ", " + #skilcode + ", " + #skildesc + ",
" + #grade)

Add_Entry To_List(#skills)

#listcount += 1

Endwhile

* when identifying this screen we set the name of the "+" sign =
"moreindicator”. The presence of that field in the last row of the subfile tells
us whether there is another page. The last row is one less than the current
value of #listcount.

#listcount -= 1

If (#myscreen_wrapper.check_field_exists("moreindicator" #listcount))
#myscreen_wrapper.getvalue From("moreindicator") Value(#MoreVal)

Index(#listcount)

#NextPage := (#MoreVal.trim *NE "")
Endif

Endroutine

This code traverses the skills subfile by first checking if the first column
corresponding to the DATEACAQ field exists. If it is present on the screen, the
routine gets the values for all the subfile columns.

Fields in RAMP-TS subfiles are indexed starting from 1. A subfile page with 7
rows will have 7 instances of each of the fields in the subfile. Here we increase
#listcount and use it to get the value of a field.

Note that you can specify a default value when using the getvalue method.
The moreindicator is the name you gave to the plus sign on the screen.

4. Now locate the #myscreen_wrapper.vHandleArrive event routine.

5. Define a Boolean class #MoreRecords which will be used by the wrapper to
determine if there are more records in the skills subfile.

Define_Com Class(#prim_boln) Name(#MoreRecords)

6. Then add this code to check value returned by the uGetSubfilePage method,
and if there are more records, to send a PageDown keystroke to get to the
next subfile page.

#MoreRecords := #com_owner.uGetSubfilePage

If (#MoreRecords)

if (#previousscreen = 'DisplayEmployee")

#myscreen_wrapper.sendkey Key(#myscreen_wrapper.KeyPageDown)

(The check for the previous screen is there simply to slow the screen wrapper
down so that repeated SENDKEY requests on fast machines get queued
properly.)

Your code should look like this:

=FEvtroutine Handling(#myscreen_wrapper.vHandledrrive) Arrivedscreen(#CurrentScreesn)
Previousscreen (#PreviousScreen) Arrivedpayload(#Pavload)
Define Com Class(fprin_boln) Name(#MoreRecords

=FCaze (#CurrentScreen)

~When Value_Is{= 'DizplavEmploves')
Set Com(#SAVE_BUTTON) Enabledifalse)
=F1f {#Payload = UPDATE_EMPLOYEE)
Uze Builtin(mes=zage box_show)
With Args(ok ok info "Validation Error" "Please correct anvy errors")

—hl=ze
tHoreRecords = #com_owner . uGetSubfilePage
=If (#MoreRecords)

=Fif (#previousscreen = 'DisplavEmploves')
fnyscreen_wrapper . sendkey Kev(#myscreen wrapper . KeyFPageDown) Payload({UFDATEMODE)

Felze
Set Com(favFrameworkManager) Ulocked(false)
fcom_owner . enabled ;= true

fnyscreen_wrapper . getvalue From
fnyscreen_wrapper . getvalue From
fnyscreen_wrapper . getvalue From
fnyscreen_wrapper . getvalue From
fnyscreen_wrapper . getvalue From
fnyscreen_wrapper . getvalue From
fnyscreen_wrapper . getvalue From
fnyscreen_wrapper . getvalue From

"tEtEnpno') Values(#enpno. value)
"tEtSurnamne') Value(#surname. value)
"tEtGivenane') Value(#givenams. value
"tEtAddressl') Value(#addressl value
"tEtAddressZ') Value(#address? value
"tEtAddres=3') Value(#address=3 value
"tEtPhone') Value(#phonehmne. value)
"tEtPostcode') Value(#POSTCODE . value)

)
)
)
)

e e e e e

Set Com(#imge_1)
Filename('C:“~Frogram Files~LANSASPSFinal-~LANSAInports VLFRAMEWORE Af_ im001.gif')

—Endif

—endif
¥con_owner enabled = true

—Endif

—Endcasze

—Endroutine

7. Compile the screen wrapper.

8. Start the Framework and display the Details Wrapper command handler for
an employee.

"‘ Emplovee : Details Wrapper [A0070-BR0OWMN YERONICA ANN]

[Details | Details Wrapper =[] Documents 1 Events

Employes Mumber
Employves Surname
Employves Given Mame(s)
Street Mo and Mame
Suburb or Town

State and Country

A0070

BROWHN
VEROMICA AMN
12 Railway Street
Baulkharn Hills
MSW Australia

Post | Zip Code 2153
Home Phone Murnber TRM
Acquired | Skill Code | Skill Comrent | Grade Obtai,.. .i;

Administratn ... Metreq...
Administratn ... G
Communicati. .

Compuker 5ci...,

Administratn ... Metreq...
Administratn ...

Advanced Pr...

i orarnmic ki

il R T e W B -

Summary

Important Observations

You can make the screen wrapper to show subfile records in a list view to
eliminate the need to page down.

What You Should Know

How to enhance your screen wrapper by adding components such as images
How to display a subfile as a list view on a screen wrapper.

Scripting

RAMP manages the 5250 screens in the modernized application with scripts.
Learning

Using

Debugging

Learning
Anatomy of Scripts introduces you to RAMP scripts.

Javascript Essentials teaches you some basic techniques you will often use when
writing scripts.

Application level tracing

Use the Tracing option in the Framework menu to start Application Level
Tracing

Anatomy of Scripts

Every classified screen has a single script associated with it. The script is
always structured like this:

{ « Starts with an { to define a JavaScript object

{ontains a series of functions that you may
modify, They describe how this screen should
behave in different situations.

£l

<< Your scripting code »»

Contains a system information block.,

F/<SYSINFD %
vHame : "whatever" L i i
s A Mever change code in this block
VFKC : ol Mever put code after this block
VFKERTS : null,
VFKEVLF : null,
wFKSND : null,
wFKSEQ 2 nul
vTargets ay("something"),

VTYPE
FieY

1+ Ends with an }

Special Screen Script

Junction Screen Script

Destination Screen Script

vHandle_ ARRIVE Function

Your RAMP-TS Screen Script Defines a JavaScript Object

Special Screen Script
The script associated with a SPECIAL screen is typically structured like this:

[Starts with an { to define a JavaScript object
vHandle ARRTVE: function(oPayload, ofreviowsForm) <——— Contains a function named vHandle_ARRIVE.
{

The logic that is generated, or that you code,

<< logic - discussed in detail later >» inside this function defines what happens

. when the special screen arrives,

Typically special screens send a key to make
the special screen disappear immediately,
For example, the 5250 Display Messages
screen that appears when users log on is often
treated as a special screen and made to
disappear by sending an Enter key to the 5250
server,

F/<SYSINFD> < Do not change code in this block

etc, etc
F/</SYSTNFO>
1« Ends with an }

Junction Screen Script
The script associated with a JUNCTION screen is typically structured like this:

Starts with an 4 to define a JavaScript object

.

T Contains a yHandle_ NAVIGATETO function.
{ The logic that is generated, or that you code,
inside this function defines what happens
when the junction screen is requested to

1, navigate to another screen,

<< logic - discussed in detail later >»

vHandle ARRIVE: function(oPayload, oPreviousForm)+— Contains a function named vHandle_ ARRIVE.

{

The logic inside this function defines what
<< logic - discussed in detail later >» happens when the junction screen arrives,

i Itis relatively rare for junction screens to have
arrival logic,

Jf<SYSTHFD: Do not change code in this block

etc, etc
A< /SYSINFD

} Ends with an }

Destination Screen Script

The script associated with a DESTINATION screen is typically structured like
this:

{ = Starts with an { to define a JavaScript object

vHandle_fRRIVE: function{oPayload, oFreviousForm) Contains a function named vHandle_ ARRIVE.

L The logic inside this function defines what
<< logic - discussed in detail later »» happens when the destination screen arrives,

1,

vHandle_BUTTONCLICK: function(sButtom) Contains vHandle_BUTTONCLICK function,

! The logic inside this function defines what
happens when the user cdicks buttons or uses

<¢ logic - discussed in detail later »» ; ; R
function keys on this destination sareen,

1

-.{manmunu-mm: function(sToForm, oPrevioysForm) [Contains & vHandle NAVIGATETO function.
The logic that is generated, or that you code,

<< Togic - discussed in detail later »» inside this function defines what happens

when the destination screen is regquested to

b navigate to another screen,

J/<SYSINFD> + Do not change code in this block

etc, etc
J </ SYSINFO-

1+ Ends with an }

vHandle NAVIGATETO Function

This is the vHandle_NAVIGATETO function for an example screen named
"JUNCTION_A". It services navigation requests made to it by the RAMP
framework. Imagine "JUNCTION_A" can handle requests to navigate to
"DESTINATION_B" and to "JUNCTION_C":

{

{

1

1,

vHandle_MAVIGATETD: function(sToForm, oPreviousForm)

var breturn = true;

HIDE_CURRENT_FORM(¥4
SETBUSY (true];

switch (sToForm)

return{breturn) ;

FE <NAVIGATESWITCH> — Do not remove or alter this 1in

case "DESTINATION_B"#

L~ Hide the current framework form to make any
navigations invisible and set the framework in a
busy state

- Mewer remove or reposition this special tag line,
It tells RAMP Tools where to inject new
navigations into this script,

xS

{

SETVALUE ("menuoption™,"2");

SEMDKEY (KeyEnter);

0Q_(HECK_CURRENT_FORM ("DESTINATION B", ..
1
break;

SBtCi:l)

case "JUNCTIDN (™

Handle a request to navigate to the screen
named *DESTINATION_B by setting the menu
option to 2, sending key enter and checking
that the correct form arrives as a result,

{

SETVALUE ("menuoption™," 47"];

SEMDKEY (KeyEnter);

0 _(HECK_CURRENT_FORM("JUNCTION C", ..
1
break;

o o R |

<etc, etocr

Handle a request to navigate to the screen
named *JUNCTION_C* by setting the menu
option to 47, sending key enter and checking
that the correct form arrives as a result,

Return the a boolean value back to the RAMP
framework indicating success or failure

vHandle_ ARRIVE Function

This is the vHandle_ARRIVE for an example screen named
"DESTINATION_B". It executes whenever "DESTINATION_B" is displayed:

vHandle_RRIVE: function(oPayload, oPreviousForm) *—— ¥Handle_ARRIVE functions receives an optional
[payload and a reference to the previously
var bReturn = true; displayed screen, More about these later,
Show the current framework RAMP screen and
SHOW_CURRENT_FORM(iTue); shiow the function keys as buttons in the
framewark,
HIDE_5250_BUTTONS(); * Hide any buthons visible on the 5250 scresn
SETBUSY(Talse); « Crop the busy state, allowing user interaction

/7 <ARRIVE /> — D0 not remove or alter this line $7 +— Mever remaove or reposition this special tag line. It
tells RAMP Tools where to inject new code into this

script,

rewrn(bRetwrn); < Return the a boolean value back to the RAMP
I8 framework indicating success or failure

Your RAMP-TS Screen Script Defines a JavaScript Object
The script you create for each RAMP-TS screen defines a JavaScript object.

Like any JavaScript object it has functions and properties.

The standard shipped RAMP-TS functions and properties are as follows
(commonly used features are shown in bold):

Name

vEFKC

vFKERTS

VFKEVLF

vFKSEQ

vFKSND

vGUID

vHandle_ ARRIVE

vHandle AVEVENT

vHandle BUTTONCLICK

Type Modifiable Description/Co!

by your
scripting?

String No
Array

String No
String No
String No
String No
Array

String No

Function N/A

Function N/A

Function N/A

Function key ca

Function key
enablement for
screen

Function key/bt
enablement for
RAMP-TS

Function key se
numbers

Function keys t(
to 5250 server

GUID of the sa
definition
Screen arrival

handling functic

Screen VLF eve
handling functic

Screen button c
function key ha
function

vHandle_ DEPART Function N/A Screen departur
handling functic

vHandle_NAVIGATETO Function N/A Screen navigati
handling functic
vHandle USER_NAVIGATION PLAN Function N/A Screen navigati
override functic
vLastMessage String No Latest message
have arrived on
screen
vLatestVariant String No Latest screen ve
to have arrived
vName String No Name of the scr
vOverrideExitJunction String Yes Override of exit

junction associa
with this screen

vTargets String No Screens that thi:
Array screen can navi
VvIYPE String No Type of screen

You can add your own functions and properties.

Note: Do not prefix your own functions and properties with "v" (lowercase) or
"V" (uppercase). The v*/V* namespaces are reserved by the RAMP-TS product
to allow for the future expansion of the standard shipped functions and
properties.

Scripts in a Classic Details Display

This example shows how two very simple 5250 screens are modernized in
RAMP.

The first screen GETORDER asks for an order number to be input and the
second screen SHOWORDER displays the order details:

Enter 1 N F12

The user repeats order inquiries by using the F12 function key.
Modernized Version

To modernize the application we identify the 5250 screens and script their
interaction to RAMP:

The GETORDER screen becomes a junction screen. It will not be displayed.
The SHOWORDER screen becomes a destination screen.

GETORDER
JUNCTION 5250 SCREEN

l

@ Order - Detals [ORDERO00 S Order rumber 1)
5250 Display Order Screen

Thes panel will dapley the 529

o order

ORDERNUMBER field

SHOWORDER
DESTINATION 5250 SCREEN

In the modernized application the user selects orders from the instance list and
the SHOWORDER screen shows the details of the selected order.
GETORDER has a script with a vHandle_NAVIGATETO Function which
shows the SHOWORDER screen.

The SHOWORDER screen has a script with a:

vHandle NAVIGATETO Function which contains code to cancel out of the
SHOWORDER screen.

A vHandle. BUTTONCLICK function which will not be executed for
SHOWORDER because all function keys are hidden and disabled in this screen
(the user just clicks on different orders up in the instance list to display the
details of a different order.)

Every time a user clicks on an order in the instance list, the SHOWORDER's

vHandle_ NAVIGATETO function is executed to return to the navigation
network. Once there, the navigation path to display the SHOWORDERS screen

with the details of the selected order is built.
See the tutorial RAMP-TS009: Tracing Navigation for details of this type of
navigation.

Javascript Essentials

RAMP manages the 5250 screens in the modernized application with JavaScript
scripts.

JavaScript is the most commonly used scripting language in the world. You can
also use Microsoft's JScript extension. Note that JavaScript skills can be used in
many other contexts such as LANSA for the Web and HTML manipulation.

This section describes some Javascript essentials:
External JavaScript Documentation
Basic Javascript syntax

Reading, Writing and Storing Values
alert()

Converting Numbers to Strings
Converting String to Numbers
String Manipulation Functions

Is This Variable Number or String?
JavaScript Coding Styles

Using the objGlobal Object

External JavaScript Documentation
Click here to access formal JavaScript documentation:
http://www.w3schools.com/jsref/

There are also many good books available (such as JavaScript Bible by Danny
Goodman, ISBN 0-7645-3188-3).

Basic Javascript syntax

Comments are marked with /* */

Lines are ended with a semicolon (;)

Literals are enclosed in double-quotes (")

There are Framework Objects that Scripts Can Refer To
The structure of the conditional switch statement is:

switch(n)

{

case 1:

execute code block 1
break

case 2:

execute code block 2
break

default:

code to be executed if n is
different from case 1 and 2

}

Reading, Writing and Storing Values
Reading values

Scripts can read values from the instance list like this:
my Variable = objListManager.Akey3[0];

See Visual and Programmatic Identifiers.

If the user has selected several entries in the instance list, you can read all the
values in a loop like this:

vari = 0;

var strMessage = "";
for (i = 1; i <= objListManager.TotalSelected; i++)
{

strMessage += "Selected Employee " + objListManager.AKey3[i] + " ";
}

alert(strMessage);

Or from a field defined on a 5250 screen like this:
My Variable = GETVALUE("utxtEmployeeCode");

Writing values

The script can put values on the screen like this:
SETVALUE("utxtEmployeeCode", "myText");

Storing values

You can store values in Javascript variables and then read and write from them:
Var MyString = "";
MyString = objListManager.Akey3[0];

These variables exist only while the script is running. To share information
between scripts, you need to create and set a property for objGlobal :
objGlobal.uLastValue = "anything";

Then another script can read this value:
my Variable = objGlobal.uLastValue;

Getting script pieces quickly
Scripting Pop-up Menu

alert()

The alert() function is your most useful tool for debugging errant scripts.
For example:

alert("About to send the enter key");

alert("The value of x is " + x.toString());

alert("The customer number is " + objGlobal. CustomerNumber);
Also See
Strange behavior in scripts

Object expected

Converting Numbers to Strings

If you have a number in JavaScript variable and you want to convert it to a
string use the toString() function. For example:

var number = 5.65;
var stringnumber = number.toString();

alert(stringnumber);

SETVALUE("Amount",stringNumber);
SETVALUE("Amount",number.toString());

Converting String to Numbers

If you have a string and want to convert it to a number then use the parselnt()
method. For example this script returns integer values containing 1234 and 43
respectively into X:

X = parselnt("1234",10);
X = parselnt("34abc",10);

The second argument (10) specifies you want to use a base 10 numbering
system. It's unusual to use anything for this parameter except 10 and you should
always specify it as the default is a bit unpredictable. (See, for example,
http://www.w3schools.com/jsref/jsref_obj_global.asp if you are interested as to
why)

If you need to have decimals then use parseFloat(). For example this script
returns floating point values 1234.345 and 34.7 respectively into X:

X = parseFloat("1234.345");
X = parseFloat("34.7abc");

Remember that these are floating point values so they are not always as accurate
or as predictable as signed or packed decimals numbers.

http://www.w3schools.com/jsref/jsref_obj_global.asp

String Manipulation Functions

String variables in JavaScript have a number of very useful string functions.

Here's a sample of the most commonly used:

Operation / Function

Concatenation (+)

IndexOf — finds first occurrence of a string
in a string

lastIndexOf - finds last occurrence of a
string in a string

charAt — returns the character at a specific
position in a string

Example

var S1 = "Customer";
var S2 = "123456";

var S3=S1+""+S2+
"could not be found";

puts Customer 123456could not
be found in variable S3.

/* 012345678901 */
var S1 =
"ABCDHELLOABC";
var pos =
S1.indexOf("HELLO");

will put the number 4 into
variable pos.

/* 012345678901 */
var S1 =
"ABCDHELLOABC";
var pos =
S1.lastindexOf("AB");

will put the number 9 into
variable pos.

/* 012345678901 */
var S1 =
"ABCDHELLOABC";
var S2 = S1.charAt(4);
var S3 = S1.charAt(9);

will put "H" into S2 and "A"

into S3.

length — returns the length of a string r* 012345678901 */
var S1 =

"ABCDHELLOABC";
var I = S1.length;

will put the number 11 into
variable I.

substring — returns the substring of string /* 01234567789 */

using a starting and ending point. var a = "Hello World";
var b = a.substring(4,8);

will put "o Wor" into b.

substr — returns the substring of a string /= 01234567789 */

using a starting position and a length var a = "Hello World";
var b = a.substr(2,3);

will put "llo" into b.

toLowerCase — returns the lowercase of var a = "Hello World";
string var b = a.toLowerCase();

will put "hello world" into b.

toUpperCase — returns the uppercase of a var a = "Hello World";
string var b = a.toUpperCase();

will put "HELL WORLD" into
b.

There are more string functions like these available. See:
http://www.w3schools.com/jsref/jsref_obj_string.asp for more details.

Is This Variable Number or String?

Sometimes you have a variable in Javascript and do not know whether it is a
number or a string. You can test the type of a variable by using the typeof()
operator like this:

Varx =1.234;
Vary ="Hello";
Var Typel = typeof(x);
Var Type2 = typeof(y);

Alert(Typel + " and " + Type2);
This code displays the message "number and string".

mon

There are six possible values that typeof returns: "number," "string," "boolean,"
"object," "function," and "undefined." The most useful are "number", "string"

and "undefined".

"undefined" is useful because it tells you that something does not exist yet (ie:
it's undefined) so sometimes you see code like this:

if (typeof(objGlobal.CustomerNumber) = "undefined"))
objGlobal.CustomerNumber = "12345";

JavaScript Coding Styles

In coding RAMP-TS scripts in JavaScript these code fragments are all standard
and equivalent:

x = new Object();
x.a=1;
x.b = "Hello";

x={"a":1,"b": "hello" } <========= which is the JavaScript
format that was chosen for use in AJAX-JSON strings.

x=1{}
X["a"] — 1;
X[Ilb"] — Hhelloll;

x = new Object();
X["a"] — 1;
X[Ilb"] — 'Ihelloll;

Using the objGlobal Object

objGlobal is one of the Framework objects that scripts can refer to. Its purpose
is to store your own properties.

This section shows some techniques in using it:
Getting Organized

Using objGlobal to pass optional parameters

Using objGlobal to define commonly used functions

Getting Organized

If you make a lot of use of the objGlobal object then you should look to
organizing its use in some way. One way is to divide it up into multiple sub-
objects by application or usage.

For example, if you did this in you logon script:

objGlobal.AppA = new Object();
objGlobal.AppB = new Object();
objGlobal.AppC = new Object();

Then in your scripts you could make sure your references do not accidentally
interfere with each other.

For example objGlobal. AppA.CurrentCustomer is a different variable to
objGlobal.AppB.CurrentCustomer and objGlobal. AppC.CurrentCustomer.

Using objGlobal to pass optional parameters

Extending the idea in the previous section slightly, you can introduce the
concept of optional parameters being passed into scripts. In a script that needs to
pass some optional parameters into another script you might find code like this:
objGlobal.OptParms = new Object();
objGlobal.OptParms.CustNumber = "12345";
objGlobal.OptParms.CustName = "ACME ENGINEERING";
NAVIGATE_TO_SCREEN("uShowCustomer");

and the script that receives the optional parameters you would find code
possibly structured something like this:

var CustNumber = "some default value";
var CustName = "some default value";

if (objGlobal.OptParms != null)

{

CustNumber = objGlobal.OptParms.CustNumber;
CustName = objGlobal.OptParms.CustName;
objGlobal.OptParms = null;

}

/* Now we proceed to use the values in CustNumber and CustName */

The line objGlobal.OptParms = null; line is very important to this style of
processing because it destroys the temporary OptParms object.

Using objGlobal to define commonly used functions

If you want to create a JavaScript function that is reused in many places you
could do something like this in your sign-on script:

objGlobal.Mult = function (x,y) {
varz =X *y;
return(z); }

objGlobal.Add = function (x,y) {
varz=x+yj;
return(z); }

These operations define 2 functions in objGlobal named Mult and Add and the
code that they contain.

Once this has been done the functions objGlobal.Add and objGlobal.Mult can
be executed in other scripts like this:

var q = objGlobal.Add(222,3);
alert(g.toString());

q = objGlobal.Mult(22,33);
alert(g.toString());

which would display the results 225 and 726 respectively.

Using

Interacting with Instance Lists in Scripts
Scripting Pop-up Menu

Updating the Instance List from RAMP screens
Subfiles/Browselists

Script Skeletons

Script Functions

Framework Objects that Scripts Can Refer To
User-Defined Script Functions

When Are Scripts Reloaded so That Change Can Be Tested?
Switching Off Recursion Checking

Advanced Scripting

Interacting with Instance Lists in Scripts

The instance list is the list of business object instances typically displayed in the
upper right corner of the Framework window. For example, the shipped
demonstration system uses an Employee business object that has an instance list
that looks like this (outlined in red):

& by Name | @ by Location | [by Skl | (1. Other Number | Mame Phone Address #

e e o 41001 BEM JONES 799 5268 144 Frog
Al012 PATRICK PALL 687 1717 & Camilla

e AI013 GEORGE PATTISON 750 2562 12 Augu
A1015 BRADLEY WOQODS 450 1236 53 Diarle
41020 ADAM PETER. DOUGLAS 6745310 & Readir
A1021 DAVID MCCULLY 762 1321 15 Baker

e N otk o el A1025 MARY ROBINSON 126 3598 14 Whitt v
£ »

Many scripts need to interact with the instance list. These topics explain how to
do it:

The List Manager
Visual and Programmatic Identifiers
Working with All Selected Entries

The List Manager

Script interactions with an instance list are done by accessing properties of the
Framework JavaScript object named objListManager (the list manager).

For example a script that displays a screen showing the details of an employee
uses the objListManager in the SETVALUE command to set the employee to
the selected entry in the instance list:

/* Check for arrival at uFindEmployee */

if (/(CHECK_CURRENT_FORM("uFindEmployee","Unable to navigate to
form uFindEmployee"))) return;

/* Set the employee to be displayed to the employee selected in the */
/* instance list (which is identified by the programmatic identifier AKey3) */
SETVALUE("utxtEmployeeCode",objListManager.AKey3[0]);

/* Send the key required to navigate to uDisplayEmployee */
SENDKEY (KeyEnter);

Also See
objListManager

Replacing Hardcoded Employee Number with Current Instance List Entry

Visual and Programmatic Identifiers

Instance list entries always have an identification protocol that defines their
visual and programmatic identification. You set these identifiers when you
create the filter that controls the instance list.

(Refer to the section List Manager in the Framework guide if you want detailed
information about the identification protocol.)

For example this LANSA command in a filter for employees adds entries to the
instance list and sets programmatic and visual identifiers and additional
columns for them:

Invoke Method(#avListManager.AddtoList) Visualid1(#Empno)
Visualid2(#FullName) Akey1(#Deptment) Akey2(#Section) Akey3(#Empno)
AColumn1(#PhoneHme) AColumn2(#Address1) nColumn1(#PostCode)

In this identification protocol:

The third programmatic identifier (called AKey3) contains the employee
number.

The second visual identifier (called Visualld2) contains the employee's name.

When you know the identification protocol, you can create a JavaScript that
displays the number and name of the currently selected employee in the instance
list:

/* Get the current instance list details */
{

var strEMPNO = objListManager.AKey3[0]; /* 3rd Akey is the number
&

var strtNAME = objListManager.Visualld2[0]; /* 2nd Visualld is the name
&

alert("Current employee number is " + sttEMPNO);
alert("Current employee name is " + sttNAME);

}

Like this:

mk:@MSITStore:lansa048.chm::/Lansa/listmanager.htm

Microsoft Internet Explorer [Z|

L] ': Current employee number is A1020
F—)

Working with All Selected Entries

More than one entry can be selected in the instance list. This script displays the
number and name of all selected employees in a message:

/* Get all the selected employees */

{
vari = 0;
var strMessage = "";
for (i = 1; i <= objListManager.TotalSelected; i++)
{
strMessage += "Employee " + objListManager.AKey3[i];
strMessage +=" - " + objListManager.Visualld2[i] + "\x0D";
}
alert(strMessage);
}

So if this script was used with three selected instance list entries like this:

Mumber Mame Phone Address #
Al1001 BEM JOMES 799 5268 144 Frog
AlD12 PATRICK PALIL B87 1717 & Camillc

A1013 GEORGE PATTISON 750 2562 12 Augu —
AR s -~ s
ADAM PETER DOU

le

DAVID MCCULLY 762 1321 15 Bake
Al1025 MARY ROBINSOMN 126 3598 14 Whitt %
£ [*

It would display this alert message:

Microsoft Internet Explorer

Employee A1020 - ADAM PETER DOUGLAS

'T Employee A1015 - BRADLEY WOODS
Employee 41021 - DAVID MCCULLY

Scripting Pop-up Menu
You can use the scripting pop-up menu to format and edit your scripts. To
display the menu, right-click the Script Area.

Cut

Copy

Pasie

Undo

Redo

Upper Case

Lower Case

Larger font

Smaller font

Show Line Mumbers
Current Framework
Current Application
Current Business Object
Current Command
Current Instance List Entry
5250 Subfile Handling
Session Control

o v v v vy v v

The first set of options Cut, Copy, Paste, Undo and
Redo are commonly used options in many editors and
are self-explanatory.

The Upper Case and Lower Case options will change
the case of any text currently selected in the script
editor. Note that Javascript is case-sensitive.

The Lower font and Larger font options allow you to
change the size of the font being used by the text
editor.

The Show Line Numbers option displays (or hides)
line numbers in the text editor.

Use The Current... options to insert properties for
various Framework objects into your script. Use:

Current Framework to enter properties of
objFramework

Current Application to enter properties of
objApplication

Current Business Object to enter properties of
objBusinessObject

Current Command to enter properties of objCommand

Current Instance List Entry to enter properties of
objListManager

Use the 5250 Subfile Handling options to insert code
for Subfiles/Browselists.

Use the Session Control options to enter commonly
used functions and objUser parameters to your script.

Examples:

Replacing Hardcoded User Name with Current Framework User
Replacing Hardcoded Employee Number with Current Instance List Entry
Adding Your Own Options to the Scripting Pop-Up Menu

Replacing Hardcoded User Name with Current Framework User

To replace the hardcoded user name "QPGMR" in this line of script with the
name of the current framework user:

SETVALUE("utxtUserName", "QPGMR");

Select "QPGMR" (including the quotes), right-click and select the Session
Control and then User Name option:

Cut
Copy
Paste
Undo
Redo
Upper Case
Lower Case
Larger font
Smaller font
Show Line Mumbers
Current Framework
Current Application
Current Business Object
Current Command
Current Instance List Entry
5250 Subfile Handling
Mavigate to a Junction
Mavigate to a Destination
Mavigate to a Previous Destination

|Jzer Password

4
4
4
4
4
4

Send a function key
Set a form field value
Handle Prompt

The constant "QPGMR" is now replaced with the substitution value for the
current Framework user:

SETVALUE("utxtUserName", objUser.Name);

Replacing Hardcoded Employee Number with Current Instance
List Entry

When you automatically generate scripts using tracking information, the scripts
will contain the hardcoded field values you typed. To make the script to work
with any selected object, you need to replace the hardcoded value with the
appropriate identifier.

To replace the hardcoded employee number "A1234" in this line of script with
the name of the employee currently selected in the instance list:

SETVALUE("uEmpNo","A1234");

First find out the Visual and Programmatic Identifiers used to identify the
employee. Then highlight the hardcoded number "A1234" (including the
quotes) in the script, right-click to bring up the pop-up menu, select the Current
Instance List Entry option and select the appropriate identifier:

Alpha Key 1

Alpha Key 2

Alpha Key 4

Alpha Key &

Mumeric Key 1

Mumeric Key 2

Mumeric Key 3

Mumeric Key 4

Mumeric Key 5

Visual Identifier 1

Visual Identifier 2
Additional Alpha Column 1
Additional Alpha Column 2
Additional Alpha Column 3
Additional Alpha Column 4

Cut Additional Alpha Column 5
Copy Additional Alpha Column &
Paste Additional Alpha Column 7
Undo Additional Alpha Column &
Redo Additional Alpha Column 9
|pper Case Additional Mumeric Calumn 1
Lower Case Additional Mumeric Calumn 2
Larger font Additional Mumeric Calumn 3
Smaller font Additional Mumeric Calumn 4
Show Line Mumbers Additional Murneric Column 5

Current Framewark Additional Mumeric Column &
Current Application
Current Business Object

3

» Additional Mumeric Calumn 7

3
Current Command » Additional Murneric Column 9

3

3

3

Additional Mumeric Column 3

Current Instance List Entry Additional Mumeric Column 10
5250 Subfile Handling

Session Control

The constant "A1234" is now replaced with the programmatic identifier of the
employee number:

SETVALUE("uEmpNo", objListManager.AKey3[0]);

Adding Your Own Options to the Scripting Pop-Up Menu

You can add your own options to the scripting pop up menu by creating an xml
file called uf_um835.xml, and putting it in the partition execute directory. You
can do this using notepad.

This is an example of uf_um835.xml that you could create:

<?xml version="1.0"?>
<EXTRACT>
<MENUITEM>
<PROPERTY NAME="CAPTION" VALUE="My user defined options" />
<SUBMENUS>
<SUBMENUITEM>
<PROPERTY NAME="CAPTION" VALUE="My caption for option 1"
/>
<PROPERTY NAME="STRING" VALUE="My returned text for option
1" />
</SUBMENUITEM>
<SUBMENUITEM>
<PROPERTY NAME="CAPTION" VALUE="My caption for option 2
(multiple lines returned)" />
<PROPERTY NAME="STRING" VALUE="My returned line 1 for option
2" />
<PROPERTY NAME="STRING" VALUE="My returned line 2 for option
2" />
<PROPERTY NAME="STRING" VALUE="My returned line 3 for option
2" />
</SUBMENUITEM>
<SUBMENUITEM>
<PROPERTY NAME="CAPTION" VALUE="My caption for option 3
(handling quotes in the text)" />
<PROPERTY NAME="STRING" VALUE="Quotes and greater than and
less than need special handling" />
<PROPERTY NAME="STRING" VALUE="Quote - "" />
<PROPERTY NAME="STRING" VALUE="Less than - <" />
<PROPERTY NAME="STRING" VALUE="Greater than - >" />
</SUBMENUITEM>
</SUBMENUS>

</MENUITEM>
</EXTRACT>

If you create a file called uf_um835.xml and paste this text into it and then put
uf_um835.xml into your partition execute directory, you will be able to see

these new options when you are editing RAMP scripts:
|
Cut
Copy
Paste
Undo
Redo
Upper Case
Lower Case 1
S Larger font
Rol Smaller font
g Show Line Mumbers
Ca Current Framewaork
Current Application
Current Business Object
Current Command
/1 Current Instance List Entry
5250 Subfile Handling
Session Control
/| Function Key overrides
SEMDEKEY - Common Function Keys
Common RAMP Script Function

nu === uSignion

mmand™, "signoft™);

|

navigate to usignon */

gnon */

"usignon”, "unable to display

L v " W W W ¥ ¥ vy v w

My iiser defined options

My caption for option 1
(My caption for option 2 (multiple lines returned)
J\ My caption for option 3 (handling quotes in the text)

W

£ | ¥
[Commit Changes] [IUse Tracking Info to prototype a script to to 1]

If you choose option 1, this will be added to your script:

My returned text for option 1

If you choose option 2, this will be added to your script:

My returned line 1 for option 2

My returned line 2 for option 2
My returned line 3 for option 2

If you choose option 3, this will be added to your script:

Quotes and greater than and less than need special handling
Quote - "

Less than - <

Greater than - >

In the xml above, you can see that the caption displayed for the first submenu
comes from the caption property, and the value returned to the script when the
user clicks on this submenu comes from the String property:

<SUBMENUITEM>
<PROPERTY NAME="CAPTION" VALUE="My caption for option 1" />
<PROPERTY NAME="STRING" VALUE="My returned text for option 1"
/>
</SUBMENUITEM>

From option 2, you can see how to return multiple lines when the user clicks on
a submenu:

<SUBMENUITEM>

<PROPERTY NAME="CAPTION" VALUE="My caption for option 2
(multiple lines returned)" />

<PROPERTY NAME="STRING" VALUE="My returned line 1 for option
2" />

<PROPERTY NAME="STRING" VALUE="My returned line 2 for option
2" />

<PROPERTY NAME="STRING" VALUE="My returned line 3 for option
2" />
</SUBMENUITEM>

And from option 3, you can see the special handling if you want quotes (or
greater than or less than) in the value returned to the script:

<SUBMENUITEM>

<PROPERTY NAME="CAPTION" VALUE="My caption for option 3
(handling quotes in the text)" />

<PROPERTY NAME="STRING" VALUE="Quotes and greater than and
less than need special handling" />

<PROPERTY NAME="STRING" VALUE="Quote - "" />

<PROPERTY NAME="STRING" VALUE="Less than - &It;" />

<PROPERTY NAME="STRING" VALUE="Greater than - >" />
</SUBMENUITEM>

As long as your xml is valid xml, and keeps to the structure of the example
above (EXTRACT, MENUITEM, SUBMENUS and SUBMENUITEM) it
should work.

Note: Ensure that your version of UF_UMS835.xml is backed up.

Updating the Instance List from RAMP screens

The tutorial RAMP-TS007: Snapping in a Data Entry Function covers this topic
in detail.

A filter manages its associated instance list. When a RAMP screen deletes, adds
or changes business object instances, it needs to notify the filter that a change
has occurred.

Create the Filter with Program Coding Assistant

To create a filter that listens for changes from RAMP screens use the Program
Coding Assistant and select the option Routine to listen for changes and update
the instance list:

Belect the object you want to generate code for Filter that searches using a file or view
=4 Framework->Your Framewark L
= Tg::_ Application-=Dema Application Choose any other options you may want,
= k- Business Chject-=Employes
Filter-=by MName

I Command Handler-=Mew
IF Command Handler-=Yideo
I Command Handler->Transfer SelETE s s
IF Command Handler-=5kills
IF Command Handler->Email
Filter-=by Location

Routine to listen for signals to update the instance list

This option creates Filter Code which Automatically Handles Changes to
Instance List.

Add AVSIGNALEVENT Function to the Button Script

Add an AVSIGNALEVENT Function in the button script of your RAMP
destination screen for the button that handles the change (typically Save or
Delete) to signal to the filter that the instance list needs to change.

For example, in a RAMP screen that updates an object, add this statement to its
SAVE button script:

AVSIGNALEVENT("Update_List_Entry", "BUSINESSOBJECT",
objListManager.AKey1[0]);

The event being signaled is named Update_List_Entry, and the value being

passed is the identifier of the instance that has been updated.

To handle the saving of a newly created object, you must pass to the filter the
identifier of the object. For example, to add a new employee with employee
number, you would first capture the employee number on the screen using the
GETVALUE Function and store it as a property of the objGlobal object, and
then pass it to the filter:

objGlobal.utxtEmployeeCode = GETVALUE("utxtEmployeeCode");
SENDKEY (KeyEnter);

AVSIGNALEVENT("Add_List_Entry", "BUSINESSOBJECT",
objGlobal.utxtEmployeeCode);

(The utxtEmployeeCode field is the employee number field that has been
defined as a text field on the destination screen.)

The standard event names you can use to update the instance list are:
Refresh_Instance List

Update_List_Entry

Add_List_Entry

Delete_List_Entry.

Filter Code which Automatically Handles Changes to Instance
List
This RDMLX code which is created by the Program Coding Assistant

automatically handles events signaled by the RAMP screen (it is shown here
just for your reference, you do not need to modify it):

R e e e e e e e e e e e ————

T ————

EvtRoutine #Com_owner.avEvent Withld(#Eventld) WithAInfol(#Alnfol)
WithAlnfo2(#AlInfo2) WithAlnfo3(#AlInfo3) WithAlnfo4(#AlInfo4)
WithAlnfo5(#AlInfo5) WithNInfol(#NInfol) WithNInfo2(#NInfo2)
WithNInfo3(#NInfo3) WithNInfo4(#NInfo4) WithNInfo5(#NInfo5)

* put the received values into fields

Change #vf_elldn #Eventld.Value

* Map the Alnfo and NInfo values passed, into the key fields - #EMPNO

Change #DEPTMENT #AlInfol

Change #SECTION #AlInfo2

Change #EMPNO #AlInfo3

Case #vf _elIDN

when '= Refresh_Instance List'

* Reload the Instance List

Invoke #Com_Owner.uSelectData

when '= Add_List_Entry'
* Add an entry to the list view

fetch FIELDS(#XG_Ident) FROM_FILE(PSLMST) WITH_KEY (#EMPNO)
if status *OKAY

* Start an instance list update
Invoke Method(#avListManager.BeginListUpdate)

* Set up the visual Identifier(s)

Change #UF_VisID1 #EMPNO
Change #UF_VisID2 #GIVENAME
Use BConcat (#UF_VisID2 #SURNAME) (#UF_VisID2)

* Add instance details to the instance list

Invoke #avListManager.AddtoList Visualid1(#UF_VisID1)
Visualid2(#UF_VisID2) AKeyl(#DEPTMENT) AKey2(#SECTION)
AKey3(#EMPNO) ACOLUMN1(#PHONEHME)
ACOLUMN2(#ADDRESS1) NCOLUMN1(#POSTCODE)

* Instance list updating has been completed

Invoke Method(#avListManager.EndListUpdate)

endif

when '= Update_List_Entry'
* Update an entry that already exists in the instance list

fetch FIELDS(#XG_Ident) FROM_FILE(PSLMST) WITH_KEY (#EMPNO)
if status *OKAY

* Start an instance list update
Invoke Method(#avListManager.BeginListUpdate)

* Set up the visual Identifier(s)

Change #UF_VisID1 #EMPNO
Change #UF_VisID2 #GIVENAME
Use BConcat (#UF_VisID2 #SURNAME) (#UF_VisID2)

* Add instance details to the instance list

Invoke #avListManager.UpdateListEntryData Visualid1(#UF_VisID1)
Visualid2(#UF_VisID2) AKeyl(#DEPTMENT) AKey2(#SECTION)
AKey3(#EMPNO) ACOLUMNI1(#PHONEHME)
ACOLUMN2(#ADDRESS1) NCOLUMN1(#POSTCODE)

* Instance list updating has been completed

Invoke Method(#avListManager.EndListUpdate)

endif

when '= Delete_List_Entry'

Invoke Method(#avListManager.BeginListUpdate)

* Remove instance details from the instance list

Invoke #avListManager.RemoveFromList AKeyl(#DEPTMENT)
AKey2(#SECTION) AKey3(#EMPNO)

Invoke Method(#avListManager.EndListUpdate)

endcase

Endroutine

End_Com

Subfiles/Browselists

From time to time you will need to create scripts that access 5250 subfiles. Here
are some techniques may be useful to you in different situations:

Subfile Lines per Entry

Identifying Subfile fields

Referencing Subfile fields

Iterating Subfile Rows

Paging down or up a subfile

Locating a specific value in a Subfile and making the selection

Subfile Lines per Entry

When a Subfile uses more than 1 line per entry you must set the appropriate
value in this setting:

Subfiles:
Start End ETEY Lines/Entry

i8 21 R@FOO003 1 -

If not, the result of the SETVALUEs and GETVALUE:s of Subfile fields will be
incorrect.

Identifying Subfile fields

There is no difference between naming Subfile fields and naming any other
fields. Conceptually though, when you are setting the name of a field in a
Subfile you have to think that you are actually setting the name of a Subfile
column.

In this picture the focus is on the Selection field. Notice how the entire column
is highlighted in the 5250 screen:

Focus on Sel field column All fields in column selected

ADMINISTRATOR DEPT
r | 2z =z

Select department to review/change/delet

I_ | = s
cel Department
- | 4 11
= [|
ode l
il 4 20 B
Diescription .
| |sFL_sELECT 5 5 ¥]
[|
| 5 13 ¥
ADM =
[|sF_DEPTDESC 5 20 ¥ B
[|
[|

Referencing Subfile fields

To reference a field in a Subfile the field name by itself is not enough because
the name only resolves to a column in the Subfile. To reference a field in a

column and row you must also specify a row Index. The index is an integer
starting from 1.

For example, to set the value of the selector field in the third row to "X":

SETVALUE("SFL_SELECT","X", 3);

See SETVALUE Function.

To get the department description in the seventh row (note we named this field
as SFL._DEPTDESC):

var sDeptDesc = GETVALUE("SFL_DEPTDESC", 7);

See GETVALUE Function.

Iterating Subfile Rows

To iterate subfile rows you need to know when you have reached the last row in
order to stop your logic. To do this use the CHECK_FIELD_EXISTS Function:

while (CHECK_FIELD_EXISTS(sFindField,ilnd))
{

<your logic>

}

where sFindField is any of the named subfile fields.

Paging down or up a subfile

To make the Subfile page to the next or previous screen you should set a name
to the Subfile indicator that tells you whether there is another page to show.

This is usually a plus sign ("+") but may vary.

r 18 16 Y Date Sk1 Skill
INDUCT Acquired Code) iption Comment

r 18 28 ¥

Company Induction

r 1873Y

P

r 19 49 Y
Met requirement Fl=Help F3=Exit F4=Prompt F12=Cancel Fl4=Msgs F21=Change F22=Delete

N SFL_MORE e L J

I 23 2
Fi=Help F3=Exit F4=Promp =Cance| T

If the field is present we can assume there is another page:

if (CHECK_FIELD_EXISTS("SFL_MORE"))

{
SENDKEY (KeyPageDown);

}

Locating a specific value in a Subfile and making the selection

Case A: when a selection is found, set the cursor on the appropriate row and
press Enter.

uSubfileSearch: function(sToForm, sFindValue, sFindField, sMoreRecsField)
{

/* Subfile indexed fields are one based */

var ilnd = 1;
var bFound = false;

while((CHECK_FIELD_EXISTS(sFindField,ilnd)) && !(bFound))
{
/* Found, set the flag to true to cause the loop to end */
if (sFindValue == GETVALUE(sFindField,iInd))

{
bFound = true;
}
else /* Increase field index */
{
ilnd++;
}

}

/* If found, position the cursor to the field and index and send an Enter
key to cause that entry to be selected */
if (bFound)
{
SETCURSORTOFIELD(sFindField,iInd);
SENDKEY (KeyEnter);
Q_CHECK_CURRENT_FORM(sToForm,"Unable to navigate to " +
sToForm);
}
/* If not found, check whether the nominated more records indicator field
is present on the screen. If it is we can page down. */
/* Note the payload accompanying the Sendkey. It is used in the
vHandleArrive function to decide whether we have to repeat this logic. */

else if (CHECK_FIELD_EXISTS(sMoreRecsField))

{
SENDKEY (KeyPageDown, "Next_Page");

}
}

Case B: when a selection is found, set the cursor on the appropriate row, set the
value of the selector field "SFL_SELECT" to "2" and press Enter.

This case is almost the same as the prior one except for the SETCURSOR call.
Replace the SETCURSOR with

SETVALUE("SFL_SELECT", "2", ilnd);

Script Skeletons

Scripts for Destinations, Junctions and Special are created based on specific
skeleton files located in your partition execute folder. These files are called:

vf_fpm030_D.dat — skeleton for Destinations
vf_fpm030_J.dat — skeleton for Junctions
vf_fpm030_S.dat — skeleton for Specials
vf_fpm030_U.dat — skeleton for Unknowns

The skeletons lay out the basic script sections but also include some default
behaviour.

You can change the skeletons if the default behaviour doesn’t accommodate
your specific needs. Edit the skeleton files with any text editor like Notepad.

For example, the skeleton for a Destination has this line:

GET_FORM_MESSAGE(22)

Because most 5250 applications use line 22 to send their messages. If you
application sends messages to a different line you may want to change the
skeleton.

Note that the skeleton is only used when a script is created. Skeleton changes
will have no effect on existing scripts.

Warning: Product upgrades or reinstallations will overwrite these skeleton files.
You must reapply any changes you make after each upgrade or reinstallation.

Script Functions

This section describes the shipped RAMP JavaScript functions you can use in
your Scripts.

Note that these functions are case sensitive, so be careful to use exactly the
same case as shown when writing scripts!

ADD_STRING Function

ADD UNKNOWN_FORM_GUESS
Function

ALERT MESSAGE Function
AVCLOSEFORM Function

AVRESTOREAVALUE and
AVRESTORENVALUE Function

AVSAVEVALUE Function

AVSIGNALEVENT Function

AVSWITCH Function

CHECK_CURRENT_FORM Function

CHECK_FIELD_EXISTS Function

CLEAR_MESSAGES Function

Defines a string by a unique
number for use by other scripts

Function keys to send when an
unknown form appears during
RAMP navigation

Issue a message as an alert

Signal to the Framework to close
the current screen

Restores an alphanumeric or
numeric value from the Framework
virtual clipboard

Save an alphanumeric or numeric
value in the Framework virtual
clipboard.

Signal an event to filters and
RAMP screens

Requests a switch to another
business object and optionally the
execution of a nominated
command.

Check that RAMP is showing a
screen

Checks whether a field is present in
the current screen

Clear all messages currently in the
stack

COPYTOCLIPBOARD Function
CURRENT_FORM Function

DROP_SPECIAL_FIELD_HANDLER

Function
FATAL_MESSAGE Function
FATAL_MESSAGE_TYPE Function

GET_FORM_MESSAGE Function

GETVALUE Function

HANDLE_PROMPT Function

HIDE_5250_BUTTONS() Function

HIDE_CURRENT_FORM Function

LOCK_FRAMEWORK Function
MESSAGE Function
NAVIGATE_TO_SCREEN Function

OVERRIDE KEY CAPTION ALL
Function

OVERRIDE_KEY_CAPTION_SCREEN

Function

Copy a string to the user's clipboard

Get the Form Name of the current
RAMP screen

Removes the definition of a 5250
special field handler

Issue a fatal message

Stop the Framework from shutting
down when a fatal navigation error
occurs

Get the 5250 message text at a
specified row number and
optionally route as a Framework
message.

Get the value from a field on a
RAMP screen

Show a user defined prompter form
for a field

Use in the ARRIVE script to hide
the function key buttons in the 5250
screen

Hide the current screen with an
optional message

Locks the framework
Issue a message
Navigate to a screen

Assigns a new caption for a
function key on any screen

Assigns a new caption for a
function key on a particular screen

OVRSFLAUTOGUI Function

Q _CHECK_CURRENT_FORM
Function

Q_NAVIGATE_TO_SCREEN Function

Q_SENDKEY Function

Q_SETVALUE Function

RESTART LLAST NAVIGATION
Function

SCREEN Function

SENDKEY Function
SET HANDLER CAPTION Function

SET SPECIAL_FIELD HANDLER
Function

SETBUSY Function

SETCURSORTOFIELD Function

Allows you to turn the Axes system
flag Recognise subfiles as tables on
and off on a screen by screen basis.

Check that RAMP is showing a
screen, the request is queued up and
processed when the next screen
arrives

Navigates to a nominated 5250
screen, the request is queued up and
processed when the next screen
arrives

Emulates the pressing of a key, the
request is queued up and processed
when the next screen arrives

Set the content of a field on a 5250
screen to a value, the request is
queued up and processed when the
next screen arrives

Restarts to the last navigation plan
when the next screen arrives.

Returns the screen object for a
specified screen name

Emulate pressing a key.

Set the current command handler
caption to a new value

Sets or resets the current definition
of a 5250 special field handler

Moves the cursor to the specified
field, or piece of text, or subfile cell

Moves the cursor to the specified
field, or piece of text or subfile cell

SETCURSORTOROW Function

SETKEYENABLED Function

SETVALUE Function

SHOW_5250_BUTTONS() Function

SHOW_CURRENT FORM Function

SHOWSTATUSBAR Function

STRING Function

STRIP_LEADING_NUMBERS Function

TONUMBER Function

TOSTRING Function

TRACE Function

TRIM_LEFT Function

TRIM_RIGHT Function
UNLOCK_FRAMEWORK Function

Moves the cursor to the specified
row and column on the screen

Dynamically enable or disable a
Destination’s button or 5250
function key

Set a field on a RAMP screen to a
value

Use in the ARRIVE script to show
the function key buttons in the 5250
screen

Show or hide the current screen.

Show/Hide the 5250 terminal status
bar for the end user

Returns the string for a given string
identification number

Returns the leading numbers from a
string

Makes a string or other JScript
object into a number.

Makes a number or null or other
JScript object into a string.

Add run time information to the
trace panel

Trim preceding (left) spaces from a
string
Trim trailing spaces from a string

Unlocks the framework

LOCK_FRAMEWORK Function

Locks the framework and specifies the locking message to be displayed.

Equivalent to using Set #avFrameworkManager

uLocked(USER|PROGRAM|PROGRAM_EXIT) uLockedMessage('message")
in a VL component.

Only valid in VLF-WIN environments — ignored in other environments.
Syntax
LOCK_FRAMEWORK(lock type, lock message)

Parameters
Lock Required. A string containing the type of lock required as "USER",
type "PROGRAM" or "PROGRAM_EXIT".

USER means that the Framework is locked, but that the user can
elect to end the lock.

PROGRAM means that the Framework is locked and only a program
can unlock it.

PROGRAM_EXIT means that the Framework is locked except when
exiting or closing down and only a program can unlock it.

Lock Required. A string containing the message to be shown to the user if
message they attempt to do something that would violate the lock state.

Return Value
None

Example

LOCK_FRAMEWORK("PROGRAM", "You need to return to the details
screen before attempting this action");

UNLOCK_FRAMEWORK Function

Unlocks the framework and clears the current locking message.

Equivalent to using Set #avFrameworkManager uL.ocked(FALSE)
uLockedMessage(" ") in a VL component.

Only valid in VLF-WIN environments — ignored in other environments.

Syntax
UNLOCK_FRAMEWORK()

Parameters
None.

Return Value
None.

Example

UNLOCK_FRAMEWORK();

RESTART_LAST_NAVIGATION Function

Restarts to the last navigation plan when the next screen arrives.

Syntax
RESTART_LAST_NAVIGATION()

Parameters
None.

Return Value

mn

(null string) or the last function key used.

Remarks

This function is used to restart the last navigation performed or to resend the last
key.

Typically it is used in the arrival script of an unknown or special screen that
needs to be logically eliminated from the screen flow during a navigation — for
example a break message screen.

A call to this function needs to be followed by a SENDKEY () function call to
cause the current screen to be removed from the screen flow.

When the break message screen appears while navigating between two screens,
the function should return "" (null string). When the next screen arrives the
navigation plan that was in progress is restarted and replanned to resume the
screen flow.

If it appears during a user initiated action like pressing a function key or button,
the function returns the last function key that was used before the break message
screen appeared. This allows the user to re-send the last key to continue the
screen flow.

Example
var lastFkey = RESTART_LAST_NAVIGATION();
SENDKEY (KeyF3);

if (lastFkey !="") Q_SENDKEY("",lastFkey); /* queue sending of the last
function key before the break message screen appeared */

Note that this function should only be invoked from an arrival script and would

almost always need to be immediately followed by a SENDKEY() function call
to cause the current screen to be removed.

OVRSFLAUTOGUI Function

Allows you to turn the Axes system flag Recognise subfiles as tables on and off
on a screen by screen basis.

You need to be on aXes 2.1 or later to use this scripting function.

Syntax
OVRSFLAUTOGUI(sScreenName, bOvr)

Parameters
sScreenName Required. An string that specifies the name of the screen.

bOvr Optional. Boolean.

true will cause the subfiles to be recognised as.

false will turn the setting off

For any other value including no value, the behaviour will be
according to the current subfile AutoGUI setting.

Remarks

The only valid place to put a call to this API is in the Navigate_TO section of
the Login script for example:

vHandle_ NAVIGATETO: function(sToForm, oPreviousForm)
{

var bReturn = true;
HIDE_CURRENT_FORMY();

SETBUSY (true);
OVRSFLAUTOGUI("Employee_Skills", false);
etc

AVSWITCH Function

Requests a switch to another business object and optionally the execution of a
nominated command.

Syntax

AVSAVEVALUE(sTo, sNamed, sExecute, sTargetWindow)

Parameters
sTo

sNamed

sExecute

sTargetWindow

Return Value
None.

Remarks

Specify as FRAMEWORK, APPLICATION or
BUSINESSOBJECT indicating the object to which control is
to be switched.

Specifies the User Object Name/Type of the APPLICATION
or BUSINESSOBJECT that control is to switch to.

Specify the User Object Name/Type of any command that is
to be executed in the target FRAMEWORK, APPLICATION
or BUSINESSOBJECT.

Specifies the target window in which the switch operation
should be performed. Allowable values are CURRENT (the
current window), MAIN (the main window) or specific
window name. The default value is MAIN.

It is the function callers responsibility to ensure the RAMP-TS session is not
busy when the call to AVSWITCH is made. In development mode this will result
in the RAMP Session Busy message.

Examples

/* Switch to the Combobox Fast Part examples and run Example 1 */
AVSWITCH("BUSINESSOBJECT","C0846821929747C295C29FF1E518CC,

/* Switch to a business object in the same additional window and */
/* run the details command. */

AVSWITCH("BUSINESSOBJECT","EMPLOYEES","DETAILS","CURREN

TRIM_RIGHT Function

Trim trailing spaces from a string.

Syntax
var sTrimmed = TRIM_RIGHT(sString);

Parameters
sString Required. The string to be right trimmed.

Return Value
String. Returns the right trimmed string.

Example
var myString = GETVALUE("PageMarker");
var sTrimmed = TRIM_RIGHT(myString);

TRIM_LEFT Function

Trim preceding (left) spaces from a string.

Syntax
var sTrimmed = TRIM_LEFT(sString);

Parameters
sString Required. The string to be left trimmed.

Return Value
String. Returns the left trimmed string.

Example:
var myString = GETVALUE("PageMarker");
var sTrimmed = TRIM_LEFT(myString);

SHOW_CURRENT_FORM Function

Show or hide the current screen.

Syntax
SHOW_CURRENT_FORM(bShow)

Parameters

bShow Required. A boolean value that indicates whether to show the current
screen.

Return Value
None

Example
Show the current screen (in an arrival script):
vHandle_ ARRIVE: function(oPayload, oPreviousForm)
{

var bReturn = true;
SHOW_CURRENT_FORM(true);

SHOWSTATUSBAR Function
Show/Hide the 5250 terminal status bar for the end user.

Syntax
SHOWSTATUSBAR(bShow)

Parameters

bShow Required. A boolean value that indicates whether to show the 5250
terminal status bar.

Return Value
None

Remarks
The 5250 terminal status bar looks like this (in red)

PETER WILLIAM
72 Mullane Avenue,
BAUL KHAM HILLS.

Administratn Part 1
5 /05/98 Computer Science Deg
5/02/98 Company Introduction
5/02/98 keyboard skills

| D) ¥ |@|[Couldnt process the keystroke, the terminal did not have the focus. Try again. +||% & ovr

It allows the end user to carry out a variety of functions, such as stopping or
refreshing the page and displaying messages from the terminal

Example
Show the end user the 5250 terminal status bar (in an arrival script):

vHandle_ ARRIVE: function(oPayload, oPreviousForm)
{
var bReturn = true;
SHOW_CURRENT_FORM(true);
HIDE_5250_BUTTONS();
SHOWSTATUSBAR(true);

TOSTRING Function
Makes a number or null or other JScript object into a string.

Syntax

myString =

TOSTRING(0Object);

Parameters

oObject

Required. A JScript object. Usually it would be a number, that
needs to be converted to a string. It can also be a string or other
JScript object.

Return Value

String | The returned string

Example

Convert the number 12.5 into a string

var myString = TOSTRING(12.5);

TONUMBER Function

Makes a string or other JScript object into a number.

Syntax
myNumber = TONUMBER (0Object);

Parameters

oObject | Required. A JScript object. Usually it would be a string, that needs
to be converted to a number. It can also be a number.

Return Value

Number | Required. The returned number

Example
Convert the string "12.5" into a number

var myNumber = TONUMBER("12.5");

SETBUSY Function

Enables/Disables the system busy state. When SETBUSY is set to true, the
status light will change to red and all user interactions are ignored.

Syntax
SETBUSY (fState)

Parameters

fState Required. A boolean value that indicates whether the system should go
into the busy state.

Return Value
None

Remarks
Setting SETBUSY (true) indicates that:

The system is busy doing something
Things the user does should be ignored while the system is busy.

There is nothing the user can or should do to release the busy state - it will be
released automatically when the busy activity completes.

It should not be enabled when interaction is required from the user.

If a script sets busy to true, it should ensure that it is set to false after
the processing is finished. Otherwise the user will not be able to interact with the
aXes screen.

Example

Turn off the busy state to allow user interaction, and indicate that the system is
not busy

SETBUSY (false);
Turn on the busy state to ignore user interaction, and indicate that the system is
busy

SETBUSY (true);

CHECK_FIELD_EXISTS Function

Checks whether a field is present in the current screen. Use the optional ilnd
parameter to refer to the instance of a field in a subfile.

Syntax
CHECK_FIELD_EXISTS(sFieldName, [iInd])

Parameters

sFieldName | Required. A string that contains the name of the field to check.

ilnd Optional. Integer, must be greater than zero. For subfile fields
this is the specific instance of the field.

Return Value
Boolean. Returns one of the following possible values:

true | The field was found in the current screen.

false | The field was not found in the current screen.

Remarks

For subfile fields you may choose not to pass ilnd. When passed, ilnd must be
greater than zero or else it will return false.

Example
Check that that the field named PageMarker is present on this screen:

if (CHECK_FIELD_EXISTS("PageMarker"))

Read every subfile entry on the page

for (Index = 1; CHECK_FIELD_EXISTS("ColGivename", Index); Index++)
{

var Givename = GETVALUE("ColGivename",Index);

var Empno = GETVALUE("ColEmpno", Index);

DROP_SPECIAL_FIELD_HANDLER Function

Removes the definition of a 5250 special field handler. You should complete the
RAMP-TSADO3: Special Field Handling tutorial before using this function.

If the handler definition does not exist the request is ignored and no error

results. Removing the definition of a displayed handler will not impact it until it
needs to be displayed again.

Syntax
DROP_SPECIAL_FIELD_HANDLER(sName,sKey)

Parameters

sName Required. The 5250 name of the field associated with this special
field handler.

sKey Required. The function key that causes the handler to be invoked. Use
the same keys names as used in SENDKEY () operations.

Return Value
None

Examples
See the RAMP-TSADO3: Special Field Handling tutorial for examples.

SET_SPECIAL_FIELD_HANDLER Function

Sets or resets the current definition of a 5250 special field handler. You should
complete the RAMP-TSADO3: Special Field Handling tutorial before using this
function.

Syntax
SET_SPECIAL_FIELD_HANDLER(sName,sKey,sHandler,sInfo1,sInfo2,sInfo:

Parameters

_sName Required. The 5250 name of the field associated with this special
field handler.

sKey Required. The function key that causes the handler to be invoked.
Use the same keys names as used in SENDKEY () operations.

sHandler Required. The name of the VL component special field handler. The
VL component must be a class VF_AC017 object.

sInfol — Optional. Additional string information to be passed to the handler if
sInfo3 it is later invoked.

Return Value
None

Examples
See the RAMP-TSADO3: Special Field Handling tutorial for examples.

GET_FORM_MESSAGE Function

Get the 5250 message text at a specified row number and optionally route as a
Framework message.

Syntax

var bMoreRecords = GET_FORM_MESSAGE([iRow,] [sMorelndicator,]
[bRoute])

Parameters

iRow Optional. An integer specifying the message row number.
Defaults to the last row.

sMorelndicator | Optional. The string used by the Application to denote
whether there are more messages available. Defaults to "+".

bRoute Optional. A Boolean to specify whether the message is to be
routed to the Framework message area. When true, the text
of the message in the screen will be removed. Defaults to
true.

Return Value
Boolean. Returns one of the following possible values:

true | The more indicator was found in an element displayed on the message
line

false | The more indicator was not found in an element displayed on the
message line

Remarks
Additionally, RAMP will set a property called vLastMessage in the current form

object that will contain the text of the last message retrieved. To use this
property in your script use:

var sLastMsg = this.vLastMessage;

Note that the use of the this pointer is only valid within the current script.

Examples
GET_FORM_MESSAGE(22); /* Extract messages and hide the message lin
if (this.vLastMessage !="") ALERT_MESSAGE("ERROR:" + this.vLastMess
GET_FORM_MESSAGE(22, "More");

The following example shows using GET_FORM_MESSAGES in an Arrival
Script to rout all 5250 messages to the Framework

The GET_FORM_MESSAGE retrieves the text visible on the 5250 screen at
the nominated line.

If the 5250 screen indicates that there are more messages available the function
will return a result of true. For the other messages to be read they must be made
visible. This is achieved by setting the cursor to the line displaying the message
and sending a Page Down key to the 5250 screen. When the 5250 screen arrives
the new message is retrieved. Note that this is an expensive exercise.

/* Handle arrival at this Destination */
/* oPayload: The payload supplied by the event initiator */
/* oPreviousForm: Reference to previous object Form*/

vHandle_ ARRIVE: function(oPayload, oPreviousForm)
{

var bReturn = true;

SHOW_CURRENT_FORM(true);
HIDE_5250_BUTTONS();
SETBUSY (false); /* Turn off the busy state to allow user interaction */

/* Get the 5250 message text from the message area */
var flagMoreRecords = GET_FORM_MESSAGE(22);

/* If there are more messages */
if (flagMoreRecords == true)
{

/* Move the cursor to the line displaying the Messages */
SETCURSORTOROW(22);

/* Bring up the next message */
SENDKEY (KeyPageDown);

}
/* <ARRIVE /> - Do not remove or alter this line */

return(bReturn);

}’

SCREEN Function

Returns the screen object for a specified screen name.

Syntax
var oScreen = SCREEN(sName)

Parameters

sName | Required. String that specifies the name of a screen.

Return Value

oScreen | Object. A reference to a screen object.

Remarks
Useful to access the properties of a specific screen at any point in time during
your navigation.

Examples
See Using Screen References .

HIDE_5250_BUTTONS() Function
Use in the ARRIVE script to hide the function key buttons in the 5250 screen.

Syntax
HIDE_5250_BUTTONS();

Parameters
None

Example

HIDE_5250_BUTTONS();

SHOW_5250_BUTTONS() Function
Use in the ARRIVE script to show the function key buttons in the 5250 screen.

Syntax
SHOW_5250_BUTTONS();

Parameters
None

Example

SHOW_5250_BUTTONS();

COPYTOCLIPBOARD Function
Copy a string to the user's clipboard.

Syntax
COPYTOCLIPBOARD(sString);

Parameters

sString Required. String that contains the data to be copied to the user's
clipboard.

Return Value
None

Examples

COPYTOCLIPBOARD("ABC");

COPYTOCLIPBOARD(MAKESUBFILEINTOSTRING("uDataGrid", true,
true , "0,2,3,4,5" , "1,2,3,4,6"));

/* Copy to a spreadsheet */

var MyString = "";

var TAB_Char = "\x09" ;

var End_Of Line Char = "\xOD\x0A" ;

MyString = "Line 1 Cell 1" + TAB_Char + "Line 1 Cell 2" +
End_Of _Line Char;

MyString += "Line 2 Cell 1" + TAB_Char + "Line 2 Cell 2" +
End_Of _Line Char;

COPYTOCLIPBOARD(MyString);

Notes

This function can be used to allow the user to copy data to their real clipboard,
for pasting into Word documents or spreadsheets

FATAL_MESSAGE_TYPE Function

Use this function when you don’t want the Framework to shut down when a
fatal navigation error occurs.

Syntax
FATAL_MESSAGE_TYPE(sType)

Parameters

sType Optional. String that contains the message type:
FATAL (default) — in end user mode, the framework will shut down.

HIDE — the RAMP command tab will hide the 5250 screen and show
the error.

INFO - the error message will be routed to the Framework message
area.

Return Value
None

Example

FATAL_MESSAGE_TYPE("HIDE");

SETKEYENABLED Function

Dynamically enable or disable a destination’s button or 5250 function key.

This function overrides the destination’s function key enablement, for the
duration of the logged on 5250 session. The override will impact all future
displays of the destination screen.

Syntax
SETKEYENABLED (sDestinationName,sKeyName,bEnableVLF,bEnableNL)
Parameters

sDestinationName Required. A string that contains the name of a Destination.

sKeyName Required. String that contains the name of the key. See
Function Key Names for SENDKEY Function.

bEnableVLF Optional. Boolean. Set to true to show the button, false to
hide it, null to ignore.

bEnableNL Optional. Boolean. Set to true to enable the 5250 function
key, false to disable it, null to ignore.

Return Value
None

Remarks

To be immediately effective, SETKEYENABLED needs to occur prior to
SHOW_CURRENT_FORM(true) in an arrival script:

SETKEYENABLED("DisplayEmployee",KeyF5, false, false);
SHOW_CURRENT_FORM(true);

Example

The Destination named uDisplayEmployee was set up to Show the prompt
button but disable the F4 5250 function key.

To override those settings to the reverse:

SETKEYENABLED("uDisplayEmployee", KeyF4, false,true);

To leave the original setting for the button but enable the F4 function key as
well:

SETKEYENABLED("uDisplayEmployee", KeyF4, null,true);

SETVALUE Function

Set the content of a field on a 5250 screen to a value. The field may be
identified by name or by its order on the screen.

Syntax
Setting by Name - SETVALUE(sVariable , sValue, iIndex)

Parameters
Setting by Name:

sVariable Required. String that contains the RAMP field name.
sValue Required. String that contains the value to set the field to.

ilndex Optional. An Integer that specifies the subfile row of the field, for
fields that are part of a subfile.

Note: the specified row index must exist in the current subfile
page. CHECK_FIELD_EXISTS can be used to check whether a
particular row exists in the subfile.

Return Value
None

Remarks

To set a value of a field on a screen by name, the field must have been given a
name.

The use of field identification by order is more likely to be impacted by form
layout changes than by using a name.

The initial setting of a field by order is more expensive to execute than by name,
however screen field order details are cached so that the subsequent access is
faster. The caching logic assumes that the relative order of a field on any
particular screen will not change within a signed on 5250 session.

Examples

SETVALUE("utxtSignOn", objUser.Name);
SETVALUE("utxtPassword",objUser.Password);
SETVALUE("utxtSelectionOrCommand","90");

SETVALUE("utxtTransaction","MOV");

Q_SETVALUE Function

Set the content of a field on a 5250 screen to a value, the request is queued up
and processed when the next screen arrives. The field may be identified by
name or by its order on the screen.

Syntax
function Q_SETVALUE(argCondition, sVariable, sValue, iIndex)

Parameters

argCondition Optional. May be passed as:

mn

e null or ", indicating that no condition applies

e "=<<screen name when the queued instruction is executed>>"
indicating that the resulting SENDKEY/SETVALUE should only
be performed if the next screen is as named.

e "l=<<screen name when the queued instruction is executed>>"
indicating that the resulting SENDKEY/SETVALUE should only
be performed if the next screen is not as named.

The screen name condition is tested when the next or resulting
screen arrives. The name specified does not have anything to do
with the current screen name.

sVariable Required. String that contains the RAMP field name.
sValue Required. String that contains the value to set the field to.

ilndex Optional. An Integer that specifies the subfile row of the field,
for fields that are part of a subfile.
Note: the specified row index must exist in the current subfile
page. CHECK_FIELD_EXISTS can be used to check whether a
particular row exists in the subfile.

GETVALUE Function

Get the value from a field on a RAMP screen.

Syntax
GETVALUE(sVariable)

Parameters
sVariable Required.String that contains the field name.

sindex Optional. Specifies the row for fields used as columns in subfiles.

sIndex Optional. An Integer that specifies the subfile row of the field.

Note: the specified row index must exist in the current subfile
page

Return Value
String. Returns the value of the field as a string.

Example

MyString = GETVALUE("utxtSignOn") ;

SENDKEY Function
Emulates the pressing of a key.

Syntax
SENDKEY (sKeyName, oPayload)

Parameters

SKeyName Required.String that contains the name of the key. See Function
Key Names for SENDKEY Function.

oPayload Optional. Object that is passed with the function.

Return Value
None

Remarks

This function typically initiates an asynchronous 5250 server side operation.
Your RAMP-TS script(s) should end all processing immediately after invoking
this function and then do nothing more until the asynchronous operation
completes.

The completion of the asynchronous operation is typically indicated by the
execution of the arrival script of the resulting 5250 screen display. (Any queued
script functions should be queued prior to executing this script function).

Examples

SENDKEY (KeyEnter);

The next example shows how to use the Payload Parameter with the SENDKEY
and Q_SENDKEY functions.

An object is created and loaded with values in the Enter key BUTTONCLICK
event and then the object is passed as the oPayload parameter of the SENDKEY
function:

/* sButton: The button that was clicked */

vHandle_ BUTTONCLICK: function(sButton)
{

var bReturn = true;

if (HANDLE_PROMPT()) return(bReturn); /* If the focus element is auton

/* <BUTTONCLICK /> - Do not remove or alter this line */
/* Handle function keys and buttons */

switch (sButton)
{
case KeyEnter:
var objEmp = new Object();

objEmp.strEmpno = GETVALUE("empno");
objEmp.strGName = GETVALUE("givename");
objEmp.strSName = GETVALUE("surname");
SENDKEY (KeyEnter, objEmp);
break;

case KeyF3:
SENDKEY (KeyF3);
break;

case KeyF4:
SENDKEY (KeyF4);
break;

case KeyF12:
SENDKEY (KeyF12);
break;

case KeyF14:
SENDKEY (KeyF14);
break;

case KeyF21:

SENDKEY (KeyF21);
break;
case KeyF22:

SENDKEY (KeyF22);
break;

default:
SENDKEY (sButton);
break;

}

return(bReturn);

}’

Then the vHandle_Arrive function of the resulting screen gets the values from
the payload if one is passed:

/* Handle arrival at this Destination */
/* oPayload: The payload supplied by the event initiator */
/* oPreviousForm: Reference to previous object Form*/

vHandle_ ARRIVE: function(oPayload, oPreviousForm)
{

var bReturn = true;

SHOW_CURRENT_FORM(true); /* Show the form in the framework and
HIDE_5250_BUTTONS(); /* Hide any 5250 style buttons displayed

GET_FORM_MESSAGE(22); /* Extract messages and hide the message
SETBUSY (false); /* Last thing done - turn off the busy state */

/* if there is something in the payload */
if (oPayload != null)
{
ALERT_MESSAGE("Employee Details from the payload are: Employee

}

/* <ARRIVE /> - Do not remove or alter this line */

return(bReturn);

},

Q_SENDKEY Function

Emulates the pressing of a key, the request is queued up and processed when the
next screen arrives.

Syntax
Q_SENDKEY (argCondition,sKeyName, oPayload)

Parameters

argCondition Optional. May be passed as:

mn

e null or ", indicating that no condition applies

e "=<<screen name when the queued instruction is executed>>"
indicating that the resulting SENDKEY/SETVALUE should only
be performed if the next screen is as named.

e "l=<<screen name when the queued instruction is executed>>"
indicating that the resulting SENDKEY/SETVALUE should only
be performed if the next screen is not as named.

The screen name condition is tested when the next or resulting
screen arrives. The name specified does not have anything to do
with the current screen name.

sKeyToSend Required.String that contains the name of the key. See Function
Key Names for SENDKEY Function.

oPayload Optional. Object that is passed with the function.

Example

Q_SENDKEY("",KeyF12); /* Unconditionally send F12 aginst the resulting
SENDKEY (KeyEnter); /* Send enter against the current screen */

Or

Q_SENDKEY ("=Confirm",KeyEnter); /* If the resulting screen is named Ci
Q_SENDKEY("!=Confirm",KeyF12); /* else send F12
SENDKEY (KeyEnter); /* Send enter against the current screen */

Also see SENDKEY Function.

CHECK_CURRENT_FORM Function
Check that RAMP is showing a screen.

Syntax

CHECK_CURRENT_FORM(sFormName [, sMessageText1] [,
sMessageText?] ...)

Parameters

sFormName Required. String that specifies the Name of the Form

sMessageText1 | Optional. String that contains the first message to be
issued.

sMessageText2 | Optional. Other strings that are to be concatenated with the
first message string (a separator space is automatically
added between each string).

Return Value
Boolean. Returns one of the following possible values:

true | The form currently shown has the form name specified.

false | The form currently shown does not have the form name specified.

Remarks

Used for checking whether the script or user has progressed to a particular
screen, or has stopped at an earlier screen.

If the CHECK_CURRENT_ FORM returns false, the function will also
automatically hide the Current RAMP screen and display the message provided.

If the script wants to test that the expected screen has arrived, and yet still
display the current screen if it hasn't, it should not use function
CHECK_CURRENT FORM, but instead use

if (CURRENT_FORM() == "My_Form");

When you are writing scripts that handle validation errors on a screen, you
usually want the current screen to be displayed even if a validation error
occurred and the user has not progressed to the expected next screen. So in this
situation you should not use CHECK_CURRENT_FORM.

Example

if (/(CHECK_CURRENT_FORM("ultemMasterBrowse","Unable to
navigate to form ultemMasterBrowse"))) return;

Q_CHECK_CURRENT_FORM Function

Check that RAMP is showing a screen, the request is queued up and processed
when the next screen arrives.

Syntax

Q_CHECK_CURRENT_FORM(sFormName [, sMessageText1] [,
sMessageText?] ...)

Parameters

sFormName Required. String that specifies the Name of the Form

sMessageText1 | Optional. String that contains the first message to be
issued.

sMessageText2 | Optional. Other strings that are to be concatenated with the
first message string (a separator space is automatically
added between each string).

Return Value
Boolean. Returns one of the following possible values:

true | The form currently shown has the form name specified.

false | The form currently shown does not have the form name specified.

Remarks

Used for checking whether the script or user has progressed to a particular
screen, or has stopped at an earlier screen.

Example

AVCLOSEFORM Function

Signals to the Framework to close the current form.

Syntax
AVCLOSEFORM)()

Parameters
None

Return Value
None

Remarks

If a RAMP screen is running as a separate form, and needs to be closed
automatically after completing, use AVCLOSEFORM.

Ensure that the current form is a form known to the Visual LANSA Framework,
at the point the AVCLOSEFORM is issued, and that there is a valid

vHandle NAVIGATETO function for this Junction or Destination. This will
allow the Framework to navigate back to sign off and end the session cleanly.

This request may be handled asynchronously. The consequences of invoking it
may not be visible or useable until your currently active RAMP-TS script(s)
complete executing and yields control back to the RAMP-TS manager.

Example
/* Close this command handler, since the Delete is now done */
/* We should ensure we are on a Junction or Destination at this point */
/* so that the Framework can cleanly navigate the session to sign off */
AVCLOSEFORM();

HIDE_CURRENT_FORM Function

Hides the current form and displays an optional message.

This function is used to hide the current 5250 screen from the users and to
prevent them from manually interacting with it.

For example, a script that performed a 5250 sub-file search and failed to find an
expected product number might do this:

HIDE_CURRENT_FORM("Product number", strProductNumber, "could not
be found. You may not be authorized to view it.");

This presents an error message to the user and hides the current 5250 form,
which can then only be interacted with by other script controlled actions.

Syntax

HIDE_CURRENT_FORM([sMessageText1] [, sMessageText2] ... [,
sMessageTextN])

Parameters

sMessageTextl Optional. String that contains the first message to be issued.

sMessageText2 Optional. Strings that are to be concatenated with the previous
>N message text (a separator space is added).

Return Value
None

Notes

This request may be handled asynchronously. The consequences of invoking it
may not be visible or useable until your currently active RAMP-TS script(s)
complete executing and yields control back to the RAMP-TS manager.

Example

HIDE_CURRENT_FORM("Inventory item", objListManager.AKey1[0] ,
"was deleted.");

CURRENT _FORM Function

Gets the Form Name of the current RAMP screen.

Syntax
CURRENT_FORM()

Parameters
None

Return Value
String. Returns the Form name of the current screen, as a string;:

Example

MyString = CURRENT_FORM() ;

SETCURSORTOROW Function

Moves the cursor to the specified row and column on the screen.

This function is intended to programmatically manipulate the coordinates (5250
row and column) of the underpinning 5250 screen cursor - rather than anything
visual on the currently displayed web page. Typically a call to this function is
immediately followed by a SENDKEY function call.

Syntax
SETCURSORTOROW!(iRow, iColumn)

Parameters

iRow Required. Integer for the row on the screen. Starts at the top with
row 1.

iColumn Optional. Integer, for the column on the screen. Must be greater than
zero. Defaults to 1.

Return Value
None

Remarks

The cursor can be set to anywhere on the screen.

Example

Set the cursor to the 9" row down, 43" column across

SETCURSORTOROW(9, 43);

SETCURSORTOFIELD Function
Moves the cursor to the specified field, or piece of text or subfile cell.

This function is intended to programmatically manipulate the coordinates (5250
row and column) of the underpinning 5250 screen cursor - rather than anything
visual on the currently displayed web page. Typically a call to this function is
immediately followed by a SENDKEY function call.

Syntax
SETCURSORTOFIELD(sFieldName, ilnd)

Parameters

sFieldName Required. A string that contains the name of the field to set the
cursor to. This can be any named field or text or subfile column.

ilnd Required for subfiles. Integer, must be greater than zero. For
subfile fields this is the specific instance of the field (the row
within the column).

Return Value
None

Remarks
The cursor can be set to any named field or text or subfile column on the screen.

Example
Set the cursor to the field named as givename, in RAMP-TS

SETCURSORTOFIELD("givename");

Set the cursor to the field named ColDepartment in a subfile, fifth row down

SETCURSORTOFIELD("ColDeptment", 5);

ALERT_MESSAGE Function

Issue a message as an alert.

Syntax
ALERT_MESSAGE(sMessageText1 [, sMessageText2] ...)

Parameters

sMessageTextl Required. String that contains the first message to be issued.

sMessageText2 Optional. Other strings that are to be concatenated with the
first message string (a separator space is automatically added
between each string).

Return Value
None

Notes

This request may be handled asynchronously. The consequences of invoking it
may not be visible or useable until your currently active RAMP-TS script(s)
complete executing and yields control back to the RAMP-TS manager.

Example

ALERT_MESSAGE("Inventory item", objListManager.AKey1[0] , "was
deleted.");

CLEAR_MESSAGES Function

Clears all messages currently in the stack.
Syntax

CLEAR_MESSAGES()

Parameters

None

Return Value
None

Notes

This request may be handled asynchronously. The consequences of invoking it
may not be visible or useable until your currently active RAMP-TS script(s)
complete executing and yields control back to the RAMP-TS manager.

Example

CLEAR_MESSAGES() ;

FATAL_MESSAGE Function

Issues a fatal message and causes the entire VLF application to terminate
(unless it is being executed in design mode).

In design mode the message details are presented in the center of the RAMP

panel area and the application continues to execute. In execution mode the
entire VLF application terminates.

Syntax

FATAL_MESSAGE(sMessageTextl [, sMessageText2] [, sMessageText3]...)
Parameters

sMessageTextl Optional. String that contains the first message to be issued.

sMessageText2 Optional. Other strings that are to be concatenated with the

first message string (a separator space is automatically added
between each string).

Return Value
None

Notes

This request may be handled asynchronously. The consequences of invoking it
may not be visible or useable until your currently active RAMP-TS script(s)
complete executing and yields control back to the RAMP-TS manager.

Example

FATAL_MESSAGE("Inventory item", objListManager.AKey1[0] , "was
deleted.");

MESSAGE Function

Issue a message.

Syntax
MESSAGE(sMessageText1 [, sMessageText2] ...)
Parameters

sMessageTextl Required. String that contains the first message to be issued.

sMessageText2 Optional. Other strings that are to be concatenated with the
first message string (a separator space is automatically added
between each string).

Return Value
None

Notes

This request may be handled asynchronously. The consequences of invoking it
may not be visible or useable until your currently active RAMP-TS script(s)
complete executing and yields control back to the RAMP-TS manager.

The maximum length of the message strings when concatenated must be no
more than 130 characters.

Example

MESSAGE("Inventory item", objListManager.AKey1[0] , "was deleted.");

AVSIGNALEVENT Function

Signal an event to the Framework filters and RAMP screens.

Syntax

AVSIGNALEVENT([sId] [,sTo] [,sAlnfol] [,sAInfo2] [,sAlnfo3] [,sAlnfo4]
[,sAInfo5] [,nNInfo1] [,nNInfo2] [,nAlnfo3] [,nNInfo4] [,nNInfo5])

Parameters

SId Required.String containing an identifier of the Event.

STo Valid values are:
FRAMEWORK = The signal is broadcast to the whole framework
BUSINESSOBJECT = The signal is only broadcast to filters and
RAMP screens in the current business object

sAlnfol Optional. String containing additional information that the object
listening for the signal can use.

sAlnfo2 Optional. String containing additional information that the object
listening for the signal can use.

sAlnfo3 Optional. String containing additional information that the object
listening for the signal can use.

sAlnfo4 Optional. String containing additional information that the object
listening for the signal can use.

sAlnfo5 Optional. String containing additional information that the object
listening for the signal can use.

nNInfol Optional. Number containing additional information that listening
object may use.

nNInfo2 Optional. Number containing additional information that listening
object may use.

nNInfo3 Optional. Number containing additional information that listening
object may use.

nNInfo4 Optional. Number containing additional information that listening

object may use.

nNInfo5 Optional. Number containing additional information that listening
object may use.

Return Value
None

Example
This example signals that an entry has been deleted in the instance list:

AVSIGNALEVENT("Delete_List_Entry", "BUSINESSOBJECT",
objListManager.AKey1[0]);

Also see Updating the Instance List from RAMP screens.

TRACE Function

Allows the user to add run time information from the script to the application
trace panel.

Syntax
TRACE(sTraceTextl [, sTraceText2] ...)

Parameters

sTraceTextl Required.String that contains the trace information to be shown.

sTraceText2 Optional. String that is concatenated with the previous trace text
(a separator space is added).

Return Value
None

Notes

This request may be handled asynchronously. The consequences of invoking it
may not be visible or useable until your currently active RAMP-TS script(s)
complete executing and yields control back to the RAMP-TS manager.

Example

TRACE("Inventory item", objListManager.AKey1[0] , "was deleted.");

HANDLE_PROMPT Function

Causes an associated prompter form (VL Handler) to appear next to a field. The

fields and the prompter forms are specified in the Special Field Handling area as
described in Advanced Prompting.

Optionally additional information can be passed to or retrieved from the
prompter form.

Syntax
HANDLE_PROMPT(sArgument1 [, sArgument?] [, sArgument3]...)
Parameters

SArgumentn Optional. String that contains any value the user defined
prompter may require. Note that by default the user defined

prompter has bi-directional access to all named fields in the 5250
screen.

Return Value
None

Example

if (HANDLE_PROMPT()) return;

Accessing the values passed as sArgumentl1, sArgument2, etc., in

the prompter form

A function like this in a RAMP script:
HANDLE_PROMPT("HELLO","THERE",123);

Is accessed like this in the prompter form:

Invoke Method(#Com_Owner.uGet5250Field) Name(UARG1)

Value(#Arg1Value) ... returns "HELLO" in #Arg1Value.
Invoke Method(#Com_Owner.uGet5250Field) Name(UARG2)
Value(#Arg2Value) ... returna "THERE" in #Arg2Value.
Invoke Method(#Com_Owner.uGet5250Field) Name(UARG3)
Value(#Arg3Value) ... returns "123" as a string in #Arg3Value.

There is no limit on how many arguments you can pass.

Numeric values can be passed, but they will turn up as strings in the VL
component, so they need to be converted back to a number again.

Referencing an un-passed argument does not cause a problem. This code:

#Argl5Value := "TEST"
Invoke Method(#Com_Owner.uGet5250Field) Name(UARG15)
Value(#Arg15Value)

Would execute and leave #ARG15Value unchanged as "TEST", but you can
actually tell whether the value was passed by doing this:

Invoke Method(#Com_Owner.uGet5250Field) Name(UARG15)
Value(#Arg15Value) Found(#Found)

If (#Found = TRUE) /* 15™ argument was passed to HANDLE_PROMPT */
Else /* 15" argument was not passed)

As an example, you can use the additional arguments in a HANDLE_PROMPT
function if you need access to values which are not on the screen from which
the prompter form is invoked.

For instance, this could be used in a situation where customer information is
entered on the first screen and an invoice number is prompted for on the second
screen. If this invoice number is dependent on the customer information
initially entered on the first screen and the information is not available to you on
the second screen, you could store the required customer information in an
objGlobal variable and pass it as HANDLE_PROMPT() parameters for proper
select criteria in the prompter form code.

NAVIGATE_TO_SCREEN Function

Navigates to a nominated 5250 screen.

Note that if you specify the name of the current destination the request will be
ignored.

Syntax
NAVIGATE_TO_SCREEN(sScreenName, ForAction)

Parameters

SScreenName Required. A string that contains the name of a screen.

ForAction Char 256 — Optional.

String that contains a user defined value. This value will be
returned to the Screen Wrapper in the vHandleArrive event.

Return Value
None

Remarks

This function typically initiates an asynchronous 5250 server side operation.
Your RAMP-TS script(s) should end all processing immediately after invoking
this function and then do nothing more until the asynchronous operation
completes.

The completion of the asynchronous operation is typically indicated by the
execution of the arrival script of the resulting 5250 screen display. (Any queued
script functions should be queued prior to executing this script function).

Example

NAVIGATE_TO_SCREEN("Enrol Employee");

Q_NAVIGATE_TO_SCREEN Function

Navigates to a nominated 5250 screen, the request is queued up and processed
when the next screen arrives.
Syntax

Q_NAVIGATE_TO_SCREEN(argCondition, sScreenName)
Parameters

argCondition Optional. May be passed as:

mn

e null or ", indicating that no condition applies

e "=<<screen name when the queued instruction is executed>>"
indicating that the resulting SENDKEY/SETVALUE should
only be performed if the next screen is as named.

e "l=<<screen name when the queued instruction is executed>>"
indicating that the resulting SENDKEY/SETVALUE should
only be performed if the next screen is not as named.

The screen name condition is tested when the next or resulting
screen arrives. The name specified does not have anything to
do with the current screen name.

SScreenName Required. A string that contains the name of a screen.

Return Value
None

Example
Q_NAVIGATE_TO_SCREEN("=WorkwithCustomers","WorkwithCustomers_

Note that this function should only be invoked from a button script.

STRIP_LEADING_NUMBERS Function

Returns the leading numbers from a string to the caller.

Syntax
STRIP_LEADING_NUMBERS(sSourceString)

Parameters

sSourceString String. Required. The string from which the numbers are to be
stripped.

Return Value
String. The stripped numbers.

Example
This code causes the message "String returned was 15" to be displayed:

var strResult = STRIP_LEADING_NUMBERS("015. Office Tasks");
alert("String returned was " + strResult);

ADD_STRING Function

Defines a string by a unique number for use by other scripts. This function is
especially useful in multilingual applications.

Syntax
ADD_STRING(iStringNumber , sText)

Parameters

iStringNumber The number to be assigned to the string

sText The string text

Return Value
None

Examples
See the STRING Function definition.

STRING Function

Returns the string for a given string identification number. This function is
especially useful in multilingual applications.

Syntax
STRING(iStringNumber)

Parameters

iStringNumber The identification number of the string

Return Value

The string previously defined by ADD_STRING with the specified
identification number or a string containing the text "String number n not
found.".

Examples
If your sign-on function used the ADD_STRING() function to define
multilingual strings like this based on different language codes:
ADD_STRING(1,"OK");
ADD_STRING(2,"Cancel");
ADD_STRING(3,"Customer not found");

Then all other scripts that needed to access a multi-lingual string would
reference the function STRING(n) in their code in a language independent way.
For example this code:
for (1=0;i<=4;it+)
{
alert(STRING());
}

Would display the strings:

String number 0 not found.

OK
Cancel
Customer not found

String number 4 not found

Similarly, if your sign-on script had defined two strings like this:

ADD_STRING(1,"Customer number ");
ADD_STRING(2," could not be found or you are not authorized to view
them.");

Then you could dynamically build a multi-lingual message in another script like
this:

var strMessage = STRING(1) + CustomerNumber.toString() + STRING(2);
alert(strMessage);

OVERRIDE_KEY_CAPTION_SCREEN Function

Assigns a new caption for a function key on a particular screen.

Syntax

OVERRIDE_KEY_CAPTION_SCREEN
(sDestinationName,sKeyName,sOverrideCaption)

Parameters

sDestinationName Required. A string that contains the name of a Destination.

sKeyName Required. String that contains the name of the key. See
Function Key Names for SENDKEY Function.

sOverrideCaption Required. The new caption that will be used for the button

Return Value
None

Example

OVERRIDE_KEY_CAPTION_SCREEN("uDisplayEmployee", KeyF1,
"Aide");

Notes
This function can also be used in a sign-on script.

OVERRIDE_KEY_CAPTION_ALL Function

Assigns a new caption for a function key on any screen.

Syntax
OVERRIDE_KEY_CAPTION_ALL (sKeyName,sOverrideCaption)
Parameters

sKeyName Required. String that contains the name of the key. See

Function Key Names for SENDKEY Function.

sOverrideCaption Required. The new caption that will be used for the button

Return Value
None

Example

OVERRIDE_KEY_CAPTION_ALL(KeyF1, "Aide");

Notes

This function is usually used in a sign-on script. It can be used for multilingual
applications to set all function key captions to another language.

AVSAVEVALUE Function

Saves an alphanumeric or numeric value onto the VLF virtual clipboard.

Syntax

AVSAVEVALUE(vValue, sID1, sID2, sID3, ilnstance, sLanguage, bPersist)

Parameters

vValue

sID1
sID2
sID3

ilnstance

sLanguage

bPersist

Required. Alphanumeric or numeric value to save to the virtual
clipboard.

If this parameter is a JavaScript variable of type string, then the
value is posed to the clipboard as an alphanumeric value and can
therefore can only be sensibly be retrieved using the
AVRESTOREAVALUE function (or equivalent).

If it is of type number it is posted as type numeric to the clipboard
and can only be sensibly retrieved using the
AVRESTORENVALUE function (or equivalent).

Required. String that contains the Virtual Clipboard identifier 1.
Optional. String that contains the Virtual Clipboard identifier 2.
Optional. String that contains the Virtual Clipboard identifier 3.

Optional. Integer that contains the instance number. Defaults to 1
when not specified. Instances are typically used to create lists of
clipboard values and usually accompanied by another clipboard
value that indicates how many entries currently exist in the list.

Optional. String that contains the language code. Defaults to ALL
languages when not specified.

Optional. Boolean value that indicates whether or not a saved
value should persist beyond the current execution of the RAMP
application. Defaults to true. This parameter has no meaning for
VLF-WEB RAMP applications because VLF virtual clipboard
values never persist in WEB applications.

Return Value
None

Remarks

Use AVSAVEVALUE in your RAMP scripts to save value in the VLF virtual
clipboard. More information about the Virtual Clipboard can be found in The
Virtual Clipboard in the Framework guide.

For information about the parameter lengths, please refer to VF_SAVEVALUE
and VF_SAVENVALUE.

The posting of clipboard values from RAMP scripts is asynchronous. When you
post values they are not physically processed onto the clipboard until your
RAMP script completes execution and yields control back to the framework.

The virtual clipboard is primarily designed to pass information between RAMP
scripts and RDML(X) code executing in filters, command handlers, etc.

The virtual clipboard is not primarily designed to pass information between
RAMP scripts. The JavaScript objGlobal object is a more efficient way to pass
information exclusively between RAMP scripts.

When a RAMP script executing in a web browser application posts values onto
the virtual clipboard, they need to be sent to the server for subsequent access by
RDML(X) code executing in filters or command handlers (because they are
executing on the server). This means that the volume of information you place
onto the clipboard will impact the amount of information that needs to be
transmitted between the client and the server.

This request may be handled asynchronously. The consequences of invoking it
may not be visible or useable until your currently active RAMP-TS script(s)
complete executing and yields control back to the RAMP-TS manager.

Examples
RDMLX code in a filter or command handler to save/restore clipboard values:
* Save values onto the clipboard

Invoke #avFrameworkManager.avSaveValue WithID1(Test)
WithID2(EMPNO) FromAValue(("A0090")

Invoke #avFrameworkManager.avSaveValue WithID1(Test)
WithID2(SURNAME) FromAValue("FRED")

mk:@MSITStore:lansa048.chm::/Lansa/lansa048_0840.htm
mk:@MSITStore:lansa048.chm::/Lansa/lansa048_1780.htm

Invoke #avFrameworkManager.avSaveValue WithID1(Test)
WithID2(GIVENAME) FromAValue("BLOGGS")

Invoke #avFrameworkManager.avSaveValue WithID1(Test)
WithID2(POSTCODE) FromN Value(2150)

Invoke #avFrameworkManager.avSaveValue WithID1(Test)
WithID2(SALARY) FromN Value(123456.78)

* Restore values from the clipboard

Invoke #avFrameworkManager.avRestoreValue WithID1(Test)
WithID2(EMPNO) ToAValue(#EMPNO) UseAValueDefault("INA")

Invoke #avFrameworkManager.avRestoreValue WithID1(Test)
WithID2(SURNAME) ToAValue(#SURNAME) UseAValueDefault("NA")
Invoke #avFrameworkManager.avRestoreValue WithID1(Test)
WithID2(GIVENAME) ToAValue(#GIVENAME) UseAValueDefault("INA")
Invoke #avFrameworkManager.avRestoreValue WithID1(Test)
WithID2(POSTCODE) ToN Value(#PostCode) UseN ValueDefault(0)

Invoke #avFrameworkManager.avRestoreValue WithID1(Test)
WithID2(SALARY) ToNValue(#Salary) UseN ValueDefault(0)

RAMP JavaScript code to perform the equivalent operations:

/* Save values onto the clipboard — note POSTCODE and SALARY are
numeric */

AVSAVEVALUE("A0090","TEST","EMPNQ");
AVSAVEVALUE("FRED","TEST","SURNAME");
AVSAVEVALUE("BLOGGS","TEST","GIVENAME");
AVSAVEVALUE(2150,"TEST","POSTCODE");
AVSAVEVALUE(123456.78,"TEST","SALARY");

/* Restore values from the clipboard */

var VEMPNO = AVRESTOREAVALUE("NA","TEST","EMPNQO");
var VSURNAME = AVRESTOREAVALUE("NA","TEST","SURNAME");
var vVGIVENAME =

AVRESTOREAVALUE("NA","TEST","GIVENAME");
var VPOSTCODE = AVRESTORENVALUE(O,"TEST","POSTCODE");
var VSALARY = AVRESTORENVALUE(O,"TEST","SALARY");

AVRESTOREAVALUE and AVRESTORENVALUE Function

Restore an alphanumeric or numeric value from the VLF virtual clipboard.

Syntax

AVRESTOREAVALUE/AVRESTORENVALUE(Default, sID1, sID2, sID3,
ilnstance, sLLanguage)

Parameters

Default = Required. String/Number that contains the default value to return
if the value is not found .

sID1 Required. String that contains the Virtual Clipboard identifier 1.
sID2 Optional. String that contains the Virtual Clipboard identifier 2.
sID3 Optional. String that contains the Virtual Clipboard identifier 3.

ilnstance Optional. Integer that contains the instance number. Defaults to 1
when not specified

sLanguage Optional. String that contains the language code. Defaults to ALL
languages when not specified.

Return Value
None

Remarks

Use AVRESTOREAVALUE/AVRESTORENVALUE in your RAMP scripts to
restore a value from the VLF virtual clipboard. More information about the
Virtual Clipboard can be found in The Virtual Clipboard in the Framework
guide.

For information about the parameter lengths, please refer to
VF_RESTOREAVALUE and VF_RESTORENVALUE in the Framework guide.

Examples

mk:@MSITStore:lansa048.chm::/Lansa/lansa048_0840.htm
mk:@MSITStore:lansa048.chm::/Lansa/lansa048_1785.htm

var sSavedSurname = AVRESTOREAVALUE("Not Found",
"NewEmployee", "Surname", "", 1, FRA);

var sSavedPostcode = AVRESTOREAVALUE(9999, "NewEmployee"
"Postcode™);

ADD_UNKNOWN_FORM_GUESS Function

Function keys to send when an unknown form appears during RAMP
navigation. Only available in Windows.

Syntax
ADD_UNKNOWN_FORM_GUESS(sKeyName)

Parameters

SKeyName Required.String that contains the name of the key. See Function
Key Names for SENDKEY Function.

Return Value
None

Remarks
Use this function call in the session's sign-on script.

When an unknown 5250 screen is encountered, the Framework goes into a
locked state if the Lock Framework when an unknown 5250 form is displayed
property is turned on. The user will not be able to move around within the
Framework until they navigate to a defined 5250 screen.

The ADD_UNKNOWN_FORM_GUESS function can help to work around
such situation by specifying function keys to send as the user tries to execute a
different Framework action (for example click on a different Application or
Business Object, Command, etc.) without having to navigate to a defined 5250
screen. Before getting into a locked state, the Framework will send the added
keys in the sequence they were added.

For example, your RAMP application may have many undefined F4=Prompt
pop-up windows that are all closed by using F12=Cancel. You can instruct
RAMP that when an unknown screen is on display (for example an F4=Prompt
window) it should first try F12 (to see if it can close the window) before
displaying the lock message.

It's up to the unknown 5250 screen to support the usage of the sent function
keys and to the screen arriving after sending the keys to be defined for this

functionality to work. This responsibility is up to the designer.

Care should be taken when using this function as it applies generically to all
undefined screens.

Examples

ADD_UNKNOWN_FORM_GUESS(KeyF3);
ADD_UNKNOWN_FORM_GUESS(KeyF12);

SET_HANDLER_CAPTION Function

Set the current command handler caption to a new value.
Syntax

SET_HANDLER_CAPTION(sCaption)

Parameters
Setting by Name:

sCaption Required. String that contains the new caption for the current
command handler.

Return Value
None.

Remarks

Using SET_HANDLER_CAPTION overrides the default command handler

caption shown by the Framework. This function can be invoked at anytime in
any script.

This function is available to be used in Windows and Web RAMP applications.

Examples

SET_HANDLER_CAPTION("New Command Handler Caption")

Framework Objects that Scripts Can Refer To

A number of RAMP provided JavaScript objects make standard information

accessible to all scripts. For example the JavaScript object objUser publishes
properties Name and Password.

This means that you can access and pass around the name and password of the
current user in your scripts like this:

if (objUser.Name == "QSECOFR") alert("Your are signed on as the security
officer!");

Note that these names are CASE SENSITIVE. Be careful to use exactly the
same case as shown when writing scripts.

objGlobal
objFramework
objApplication
objBusinessObject
objCommand
objListManager
objUser

To find out how you can quickly enter these objects and their properties in your
scripts, see Scripting Pop-up Menu .

objGlobal

objGlobal can be used to store your own properties.

This can be useful if you need to store information from one script and use it
later in another script.

The information could be field values from a screen that need to be referred to
by a later script.

Or it could identify which path a script is on, so that when the same screen is
used by two paths, the script can determine which path it is on.

Property Type Description

<<any property name>> string Any property you want to assign to

Example

Save the path the user is on, and the item the user is working with (On Screen
1).

/* Store the Item number that the user entered - this field has to be defined on

this form*/

objGlobal.utxtitemNumber = GETVALUE("utxtltemNumber");

/* Store the action that is being performed (so that shared screens can know

whether its an add or a copy) */

objGlobal.uLastAction = "COPY";

Remember the path the user is on, and the item the user is working with (On

Screen 4).

/* Get the action that is being performed */

if (objGlobal.uLastAction == "COPY")

{

ALERT_MESSAGE("Inventory item", objGlobal.utxtltemNumber, "was

copied from " , objListManager.AKey1[0]);

}

else

{

ALERT_MESSAGE("Inventory item was added.",
objGlobal.utxtltemNumber , "has been saved.");

Note that objGlobal is global within a 5250 session. Each 5250 session has its
own unique instance of objGlobal.

For more information refer to Using the objGlobal Object.

objFramework

objFramework contains read only properties that provide information about the
current framework to your scripts:

Property Type Description

uCaption string The caption of the current framework

ExecutionEnvironment string Identifies the execution environment as
"WIN" or "WEB"

flagDesignMode boolean Identifies whether the Framework is
executing in design mode. Boolean value
containing true or false.

Language string Identifies the current LANSA language code
(eg: "ENG", "FRA", etc)

Partition string Identifies the current LANSA partition (eg:
IVDEMH’ "SYSH)

TraceMode string Identifies whether the Framework is

executing in Trace mode as "TRUE" or
"FALSE"

objApplication

objApplication contains read only properties that provide information about the
current application to your scripts:

Property Type Description

uCaption string The caption of the current application.
uUserObjectType string The User Object Name / Type of the current
application.

objBusinessObject

objFramework contains read only properties that provide information about the
current business object to your scripts:

Property Type Description

uCaption string The caption of the current business object.

uUserObjectType string The User Object Name / Type of the current business
object.

objCommand

objFramework contains read only properties that provide information about the
current command to your Scripts:

Property Type Description

uCaption string The caption of the current command.

uUserObjectType string The User Object Name / Type of the current
command.

uAlphaArgl String The optional alpha argument 1 of the current VLF
command handler

uAlphaArg?2 String The optional alpha argument 2 of the current VLF
command handler

uNumArg1 Integer The optional numeric argument 1 of the current
VLF command handler

uNumArg2 Integer . .
The optional numeric argument 2 of the current VLF

command handler

uExecReason String
The reason that the current command handler was

executed. This string contains “EXECUTE” or
“ACTIVATE” indicating why the current RAMP
command was executed. The value “ACTIVATE” is
only applicable to visible VLF-WIN application
scripts. In all other contexts, including screen
wrappers, the value “EXECUTE” is always used.

objListManager

objListManager contains read only properties that provide information about the
instance list to your scripts.

Array properties

Array entry [0] is the value for the current entry in the instance list. (the entry
that has focus)

Array entries [1], [2], [3] ... are the values for the selected entries in the instance
list

Property Type |Description

AKeyl1[0] - string | The 5 Alpha identifying key values of the

AKey5[0] current instance of the instance list

NKey1[0] - String | The 5 Numeric identifying key values of the

NKey5[0] current instance of the instance list

Visualld1[0] String | Visual Identifier 1 of the current Instance List
entry

Visualld2[0] String | Visual Identifier 2 of the current Instance List
entry

AColumn1[0] — String | The 10 Alpha Additional Column values of the

AColumn10[0] current instance list entry

NColumn1[0] — String | The 10 Numeric Additional Column values of

NColumn10[0] the current instance list entry

Single value properties

Property Type |Description

TotalSelected integer | The number of selected entries in the instance
list.

For information about how to use the list manager object, see how to Interacting
with Instance Lists in Scripts.

objUser

objUser contains read only properties that provide information about the current
user to your Scripts:

Property Type Description

Name string The profile of the current User.

Password string The password of the current User.

Function Key Names for SENDKEY Function

This table shows the function key names you need to use in the SENDKEY
function and the corresponding 5250 and Windows key names.

Note that the key names are case sensitive and you must enter them exactly as
shown here in the SENDKEY function.

SENDKEY Windows 5250 Key action Button Text
Name Keyboard description
KeyAttn Esc Sys attn "Attn";
KeyClear Shift Enter Field Exit "Clear";
KeyEnter Enter Enter "Enter";
KeyHelp alt F1 help "Help";
KeyPageDown Page Down Page Down "Page Up",;
KeyPageUp Page Up Page Up "Page
Down";
KeyPrint ctrl Pause host print "Print";
KeyReset ctrl reset "Reset";
KeySysReq shift Esc Sys req "Sys Req";
KeyTestReq alt Pause test req "Test Req";
KeyF1 F1 F1 "F1";
KeyF2 F2 F2 "F2";
KeyF3 F3 F3 "F3",
KeyF4 F4 F4 "F4";
KeyF5 F5 F5 "F5";
KeyF6 F6 F6 "F6",
KeyF7 E7 E7 "F7";
KeyF8 F8 F8 "F8",

KeyF9

KeyF10
KeyF11
KeyF12
KeyF13
KeyF14
KeyF15
KeyF16
KeyF17
KeyF18
KeyF19
KeyF20
KeyF21
KeyF22
KeyF23
KeyF24
KeyPA1l
KeyPA2
KeyPA3

Example

F9

F10

F11

F12
shift F1
shift F2
shift F3
shift F4
shift F5
shift F6
shift F7
shift F8
shift F9
shift F10
shift F11
shift F12
Esc 1
Esc 2
Esc 3

SENDKEY (KeyEnter);

F9 "F9";

F10 "F10°;
F11 "F11";
F12 "F12";
F13 "F13";
F14 "F14";
F15 "F15";
F16 "F16";
F17 "F17";
F18 "F18";
F19 "F19';
F20 "F20°;
F21 "F21";
F22 "F22";
F23 "F23";
F24 "F24";
program attention 1 "PA1";
program attention 2 "PA2";
program attention 3 "PA3";

User-Defined Script Functions
See RAMP-TSADO5: Using SHARED Properties and Functions .

Switching Off Recursion Checking

Each time a RAMP script is executed, the Framework checks if the script has
been called recursively and flags an error if it has.

However, situations may arise where a script may appear to be called
recursively, for example if a special screen appears two or more times in
succession. In these cases the GLOBAL_flagRecursionCheck property can be
used to switch off the recursion checking and avoid applications ending in error.

The property can be used in scripts in this way:

var flagSaveCheckState = GLOBAL_flagRecursionCheck;
GLOBAL._flagRecursionCheck = false;
SENDKEY (KeyEnter);

GLOBAL_flagRecursionCheck = flagSaveCheckState;

Saving and restoring the state like this, rather than simply setting the global
property to TRUE or FALSE is the best solution because this is a recursive
situation. The Framework will handle three or four levels of recursion
(depending on script size and system resources available) if a special screen
appears this many times. Only the top recursion level will finally set the
GLOBAL._flagRecursionCheck property back to TRUE again.

When Are Scripts Reloaded so That Change Can Be Tested?

Destination, Special and Junction (Screen) scripts

They are reloaded into the execution environment when your click the commit
button.

This means you can normally test script changes dynamically by just be causing
the modified script to re-execute (for example by clicking on another object in
the instance list to re-execute an arrival script). You do not normally have to
save and restart your VLF-RAMP sessions to test most modifications to screen
scripts.

SHARED scripts in uf_sy420_rts.js

These scripts are loaded once when the VLF-RAMP session is opened.

Changing these scripts will have no impact until you open another VLF-RAMP
session.

Tip: When testing SHARED scripts, open the business object you are using for
testing them in an independent window.

When you change a SHARED script, save it to the server, close the independent
window and then launch it again. This will close and reopen the VLF-RAMP
session in the independent window, picking up the modified SHARED script.

Advanced Scripting

Creating your own navigation planner
Using Screen References

Using a vHandle_ DEPART function

Arrival Scripting and Inter-Screen Communication

Creating your own navigation planner

When a framework users executes a command that is associated with a RAMP
destination screen a plan is always made of how to navigate from the current
5250 screen to the required destination 5250 screen.

Normally this plan is constructed automatically by the RAMP framework. In
specialized cases you can define your own navigation planning logic.

Imagine that destination screen DestinationA needs to take over the planning of
how to best navigate to it.

To do this a function named vHandle USER_NAVIGATION_PLAN is added to
the script associated with screen DestinationA, like this:

vHandle_USER_NAVIGATION_PLAN: function()
{

var bReturn = true;
// your alternate navigation planning logic goes here
return(bReturn); /* § Remember to return a Boolean success/fail value */

}, /* K Remember to separate this function from the others with a comma */

When the user executes a VLF command that is associated with DestinationA,
instead of making its own plan, the RAMP framework will invoke function
vHandle_ USER_NAVIGATION_PLAN in DestinationA.

Typically the function NAVIGATE_TO_SCREEN("screen name") is used by
this type of navigation planning function to initiate its own navigation plan.

Before using this feature, consider a screen named Destination]1 that contains its
own navigation planner coded like this

vHandle_USER_NAVIGATION_PLAN: function()

{
NAVIGATE_TO_SCREEN("Destination1");

return(true);

},

If you cannot see why this code could never possibly work you should not
attempt to use this feature.

Using Screen References

The script associated with a screen definition in RAMP-TS defines a JavaScript

object. In effect, the screen script is the object that defines the screen and what it
can do.

By now you should have encountered the concept of adding properties to the

definitions of your screens. Typically these are defined at the start of the script
like this example:

/* Properties of screen Destinationl */

sCurrentOrder :"",
fSkipIntroduction : false,
fScrolling : true,

The various functions in this screens definition would refernce them as
this.sCurrentOrder, this.sSkipIntroduction and this.fScrolling.

They are useful for maintaining state within a screen definition and for
communicating between different functions within the script.

By using the SCREEN("Screen Name") function you can obtain a reference to
the named screens definition object.

For example, a junction Junction1 might have this code in its navigation script:

var oDestl = SCREEN("Destination1");

oDest1.fSkipIntroduction = true;
oDest1.fScrolling = false;

This allows junction1 to directly access properties and even methods defined
with destination screen Destination1.

This could have been coded:

SCREEN("Destination1").fSkipIntroduction = true;

SCREEN("Destination1").fScrolling

But this is not the best solution for two reasons:

SCREEN() will return a null reference if for some reason the definition of screen
"Destination1" cannot be found, causing your script to fail.

The string "Destination1" needs to be converted to an object reference twice, so
it is less efficient.

The most proper form of this code is therefore:
var oDestl = SCREEN("Destination1");

if (oDest1 != null)
{

oDest1.fSkipIntroduction = true;
oDest1.fScrolling = false;

}

Using a vHandle_DEPART function

You are probably familiar with screen scripts containing a vHandle_ARRIVE
function that is executed when a 5250 screen arrives.

Any screen script can also, optionally, contain a vHandle_ DEPART function.

If it exists it will be invoked when a screen is being departed from, which is
usually caused by a SENDKEY operation.

If you need to use one, add it to your screen’s script like this example:

vHandle_ DEPART: function()
{

var bReturn = true;
/I your departure logic goes here
return(bReturn); /* § Remember to return a Boolean success/fail value */

}, /* K Remember to separate this function from the others with a comma */

There are some things you should know about using vHandle_ DEPART
functions:

Using them is unusual. If you are using them a lot then it could be you are
solving a problem using the wrong approach.

They are invoked when the current 5250 screen is submitted to server, usually as
the result of SENDKEY operation. This means that they may activate when one
of your other scripts is active (eg: the one that did the SENDKEY).

Using a SENDKEY operation in a departure script would be expected to fail or
cause strange results. You should not do this.

They cannot cancel the submission of the screen. They are being informed that
the screen is being submitted and allowed to perform any relevant close or
cleanup actions. Returning false indicates that the vHandle_ DEPART script
failed. It does not indicate that the screen submission should be cancelled.

They are invoked every time a screen is submitted.

Arrival Scripting and Inter-Screen Communication

All screens have an arrival function.

Typically the arrival script of a screen defines a single default behaviour.
Typical single default behaviours are:

Junction screens — do nothing

Special screens - send key(s) to make the screen disappear

Destination screens — display the underlying 5250 screen

However, you will from time to time need to alter an arrival script in a junction,
special or destination screen to make it support multiple different behaviours.
The most structured way of doing this is to first decide what behaviours you

want your arrival script to support, and then to clearly define and document
them at the start of you screen’s script like this example:

RequestedArrivalBehaviour : 0,

ArrivalBehaviours :

{
Default : 0, /* Default behaviour)
SearchNext : 1, /* Handle scroll up request */
SearchLast : 2, /* Handle scroll down request */

ForcedNavigation : 3, /* Handle a forced navigation */
AutoConfirmation : 4 /* Handle auto confirnmation */

}’

This very formally defines that this screen can support 5 different arrival
behaviours.

Note 1: You do not have to define the behaviours this way and can use
different names. This is an example of formal way to do this. This
approach has documentation and debugging advantages. See the end

|| of this section form notes about using simpler approaches. ||

Note 2: These behaviours and their names are mythical examples. You

can have as many behaviours as you like with any names.

Next, you actually need to change your screen’s arrival script to handle these
multiple behaviours. Again this can be done in a structured way, like this
example arrival script for a destination screen:

vHandle_ ARRIVE: function(oPayload, oPreviousForm)
{

/* Extract a copy of the requested behaviour */

var RequestedBehaviour = this.RequestedArrivalBehaviour;

/* Reset the requested behaviour back to the default behaviour */
this.RequestedArrivalBehaviour = this.ArrivalBehaviours.Default;
/* Now preform the requested behaviour */

switch (RequestedBehaviour)
{
case this.ArrivalBehaviours.Default:
SHOW_CURRENT_FORM(true);
HIDE_5250 BUTTONS();
SETBUSY (false);
break;

case this.ArrivalBehaviours.SearchNext:

/* Logic to handle search next page behaviour*/
break;

case this.ArrivalBehaviours.SearchLast:

/* Logic to handle search last page behaviour*/
break;

case this.ArrivalBehaviours.ForcedNavigation:
/* Logic to handle a forced navigation, whatever that may be */
break;

case this.ArrivalBehaviours. AutoConfirmation:
/* Logic to handle a an auto confirmation, whatever that may be */
break;

default:
ALERT_MESSAGE(this.vName,"arrival script —
invalid behaviour requested”,RequestedBehaviour.toString());

}

/* <ARRIVE /> - Do not remove or alter this line */

return(true);

}’

Okay, you have now formally defined the different arrival behaviours that your
screen supports and the code required to implement them.

How are they used?

Well first, you might use them within the screen’s own script instead of using
payloads.

Imagine a button click that requests a page search operation like this ...

SENDKEY (KeyPageUp,"'SEARCHNEXT");

Classically this sends the key stroke to the server and includes a payload so that
the arrival script knows what to do with when the form arrives back again.

Note: If you have done this you probably already have an arrival script
exhibiting at least two different behaviours.

Now you would code this instead:

this.RequestedArrivalBehaviour = this.ArrivalBehaviours.SearchNext;
SENDKEY (KeyPageUp);

Note: Why do this? It seems like more work. Well you have already gained one
advantage. Say you coded SENDKEY (KeyPageUp,"SEARCHNET")
accidentally using the payload technique. It would take you a while to debug
your program to find that "SEARCHNET" is wrong and it should be
"SEARCHNEXT". If you coded ArrivalBehaviours.SeachNet your script will
fail when you execute it, telling you something is wrong instantly.

The second place you would use this is in other screens.

Say another screen (named "AnotherScreen") is going to set in motion a set of
events that it knows will ultimately arrive at, or pass through, your multi-
behavioural screen (named "MultiScreen").

Imagine that it also needs to make sure that "MultiScreen" performs the "auto
confirmation" behaviour when it arrives.

"AnotherScreen" can contain this code:

var oMS = SCREEN("MultiScreen"); /* Get a reference to "MultiScreen" */

oMS.RequestedArrivalBehaviour =
oMS. ArrivalBehaviours.AutoConfirmation;

<< Now execute code to start events that will go to/though "MultiScreen" >>

In other words, "AnotherScreen" is setting a property in "MultiScreen" (named
RequestedArrivalBehaviour) that says "When you arrive, I want you to perform
the auto confirmation behaviour, instead of the usual default behaviour".

Note the "MultiScreen" does not have to be a destination screen. It could
equally be a junction of special screen. All it needs to be is a screen whose
arrival script needs to be capable of performing different behaviours.

This technique demonstrates a very formal and structured way for screens to
communicate intention between themselves. You do not need to be so formal or
structured, nor to use the long names suggested.

You could simply declare this in "MultiScreen":

Action : 0, /* Declare the action code for arriving scripts */

And structure the arrival script like this:
Switch (Action)

Case: 0
Case: 1
Case : 2
Case : 3

Other code would use this.Action = 2 or SCREEN("MultiScreen").Action = 3
You could even use strings like this:

Action : "Default", /* Declare the action code for arriving scripts */

And structure the arrival script like this:

Switch (Action)
Case : "Default”
Case : "Up"
Case : "Down"
Case : "Jump"

Other code would do this.Action = "Up" or SCREEN("MultiScreen").Action =
llJumpH.

The declaration technique you use is immaterial and long it is structured and
documented. The advantage of the formal declaration (enumeration) technique
is simply that it is a very formal documentation of capabilities and that code will
always fail if an incorrect value is used.

Debugging

Debug and Diagnostics
Common Scripting Errors
Tracing

Using ALERT_MESSAGE in Your Scripts

Debug and Diagnostics

Switch on Tracing

Tracing is the first thing you need to do when debugging. Inspect the trace and
look for screens that have not been recognized or that have a blank name.

Add Alert statements
An easy way to debug scripts is to add alert() statements to display values in a
pop-up window at run-time.

Add Alert_Message functions
Similarly, you can use the ALERT_MESSAGE Function to display values in
pop-up windows.

Add Trace functions

If you do not want to interrupt application execution, but instead record values
in the trace, use the TRACE Function in your script.

Debug Your filters
If you want to debug your filters, you can use the avRecordTrace method in
your filter program:
Invoke avFrameworkManager.avRecordTrace Component(#Com_Owner)
Event('Search Button click handler started")

For more information see Basic Tracing Service.

Click on the Show 5250 Form and Turn off Busy Statebutton

If the Framework ends on a screen it does not expect to be on, and you get a
blank screen with an error message Unable to display form .

Use the Probe Screen button in Design mode

mk:@MSITStore:lansa048.chm::/Lansa/lansa048_0845.htm

To find out what is know about the current screen.

Common Scripting Errors
Unable to display form

Could not complete the operation due to error 80020101
Object expected

Strange behavior in scripts
Your script does not execute at all

Unable to display form
The execution of a RAMP screen results in a screen that looks like this:

Unable to navigate ko Form DisplayEmployes

What does this error mean?
The Framework has created a valid navigation path.

Most scripts check that the screen being shown is the one expected. That's why
at the end of most scripts there is a line like this one:

/* Check for arrival at <form name> */

if (/(Q_CHECK_CURRENT_FORM("<form name>","Unable to display form
<form name>"))) return;

The message Unable to display form suggests that at one stage during the

navigation, a the identified screen was expected but another screen was
received.

The message Unable to navigate is sent by the Destination's

vHandle_ NAVIGATETO function. It is a check to ensure that before running
the Destination's script, the application is showing the proper screen. This
avoids typing or sending key strokes in unwanted screens.

Sometimes you may not able to reach the undefined screen. This can happen
when the screen which showed up unexpectedly was one that needs to be
eliminated to allow the navigation to continue, typically a break message.

Solution

Press the Show 5250 Form and Turn off Busy Statebutton to see the currently
active screen. The screen shown is the unexpected one.

Select the RAMP Tools option in the Framework menu and manually perform
the navigation that the RAMP screen was supposed to perform.

As you navigate through each one of the screens, answer the following
questions:

Has the screen been defined?

Looking carefully at the scripts for the screen, does the script match what you
do on the screen?

You should be able to manually reach the unexpected screen because you know
what to do, what to type and what keys to press in each screen.

Could not complete the operation due to error 80020101
You execute one of your scripts and see an error message like this:

Could not complete the operation due to error 80020101,
Error Could not complete the operation due to error 30020101, detected in script INVOKE_SCRIFT _1

What does this error mean?

Your script has a structural defect that prevents any attempt to execute it. For
example, put this code:

if (1==2)
{

into a script and fail to add the required closing }. The RAMP editor will warn
you about the missing }, but ignore the warning and go ahead and execute the
script anyway. This will cause a 80020101 error because the script has a missing

}
The missing } means the whole script does not make any sense at all.

Similarly, this code causes an error because of the double closing square
brackets:

SETVALUE("utxtBankAccountID",objListManager.AKey3[0]])

Solution

Look for "unbalanced" things in your script such as:

An (without a closing/matching)

An { without a closing/matching }

An [without a closing/matching]

A " or " without a closing/match " or ' (an un-terminated string constant).
An /* without a closing/matching */ (an un-terminated comment)

Other JavaScript constructs that are structurally incorrect.

Object expected
You execute one of your scripts an get an "Object Expected" error like this:

Object expected
Error Object expected detected in script INVOKE_SCRIPT _1

What does this error mean?

You have probably referred to something in your script that does not exist. The
most common cause of this error is simple typographic errors or even case
errors.

These script lines:

NaVIGATE_TO_JUNCTION("uOS400MainMenu");

NAVIGATE_TO_JUNCTIN("uOS400MainMenu");

will both produce an "object expected" error. The reason is that no object named
NaVIGATE_TO_JUNCTION or NAVIGATE_TO_JUNCTIN actually exists.
The correct JavaScript function name is NAVIGATE_TO_JUNCTION

(remembering that JavaScript is case sensitive).

Solution

When you get an "Object expected Error" try:

Checking the spelling of the name of object you are referencing.

Checking the case of the name of the object you are referencing (eg: Userprofile
or UserProfile).

Sometimes it is hard to tell exactly which line in your script is producing an
error.

The easiest way to resolve this is to make liberal use of the JavaScript alert
function. For example:

alert("About to navigate");
NaVIGATE_TO_JUNCTION("uOS400MainMenu");

alert("Navigation finished");

Would fairly quickly isolate that the NaVIGATE_TO_JUNCTIONY() line was
the one causing the script failure.

Strange behavior in scripts

A very common cause of strange behavior in scripts comes from not using the

"==" comparison correctly. This simple script demonstrates a very common and
time wasting scripting problem:

var X = 1;

alert ("X is " + X);

if (X =2)
{

alert("X is 2");
}

If you execute this script this first alert message will show X is 1 and the second
will show shows X is 2 ... which is not possible.

The cause of this problem is of course that the if statement should have been

if (X ==2)
{

alert("X is 2");
}

Your script does not execute at all
Sometimes your script does not seem to execute at all.

Typically this is because it is because it is not being invoked in a 5250 screen
navigation in the way that you thought it would be.

Use the Framework) -> (Tracing) -> Application Level menu options and trace
the flow of control in your application to understand the navigation in detail.
Generally this will reveal why your script is not being invoked.

Tracing
You can start tracing at any point in time during the execution of the Framework
in design mode.

Use the Application Level trace facility to trace RAMP execution. To start
tracing, click on the (Framework) menu, select (Tracing) -> Application Level.

Trace statements will appear in the Trace Window.

RAMP execution might produce a large number of statements. It will also
produce long statements that will make it difficult to view in its entirety unless
the window is enlarged.

Component | Event

WF_CHOO& Script manager handling request 57...
WF_CHODE Executing script INVOKE_SCRIPT...
WF_CHODE Executing script MAVIGAT...
WF_CHOOG SETWALLE of userid ko ..,
WF_CHOOG SETYALUE of userid co...
WF_CHOD&E SETYALUE of psw bova..,
VF_CHODE SETYALUE of psw comp. ..
YF_CHOD&E SENDEEY Enter request, ..
WF_CHOD&E acreen named ulogin M.,
WF_CHOO& Signal ML_Sigrion is bei. ..
WF_CHOOG Signal ML_Signon has b...
WF_CHOOG Session has now been ...
VF_CHOD&E acreen named ulogin M.,
WF_CHOD&E Executing script ELI...
WF_CHOOG SEMDEEY Enter r...
WF_CHOOG Screen named u...
WF_CHOOG Screen named u...
WF_CHOOG Screen named u. .,
WF_CHOOG SEMDEEY Enter c...
VF_CHODGE Execution of script E...
VF_CHOD&E acreen named udS400., .
WF_CHOD&E SEMDEEY Enter complet. ..
WF_CHODE Execution of script NAYIG. .,
VWF_CHOD& Executing scripk MAVIGAT...
WF_CHOOG SETWALLE of Crndline £, ..
WF_CHOOG SETWALLE of Crndline c...
WF_CHOD&E SENDEEY Enter requesk,.. s

Clear Trace

For RAMP execution tracing, we recommend to use the Save Trace to File
button to save the trace into a text file in your temp directory. The exact location
and file name of the trace file produced will appear in a message.

Press the Messages button to find out about the location of the trace file.

B hessages

Trace saved in C:\DOCUME~11PABLO~1.LANILOCALS~1\Temp\¥F_SYOO1_APPTRACE.TXT s

general

purpse
“text"
MESSA0E ...
see first level
bext For
details

Close

Adding Your Own Tracing Statements

The shipped Java Script function TRACE() allows you to add your own trace

statements to the Application Level trace and the output of the trace statements
is directed to the Application Level trace window.

For example, this trace statement:
TRACE(");

TRACE("Value of AKEY1 is =>" + objListManager.AKey1[0] + "<=");
TRACE(");

Generates this tracing:

Component Event &
WF_CHOD&E Execution of script MAVIGATE_SCRIPT_7 - Ma...
WF_CHODE Executing script MAVIGATE_SCRIPT_3 - Mavi...
WF_CHOOG SETYALUE of CrdlInE ko value lansa runp...
WF_CHOOG SETYALUE of CrdlInE completed

VF_CHOD&E SEMDEEY Enter requested,

WF_CHOOG screen named pslsys_menu has arrived an..,
WF_CHOOG acreen named pslsys_menu has identified ...
WF_CHOOG screen named pslsys_menu is not a destin, ..
WF_CHOOG SEMDKEY Enter completed.

WF_CHOD&E

VF_CHODE [Walue of AKEY1 is ==AllD <=]
YF_CHODE

VF_CHOD&E Execution of script MAVIGATE_SCRIPT_3 - Ma...
WF_CHOOG SETYALUE of Pslsws_Opt bo walue 3 { tvpe = stri.,,
WF_CHOOG SETYWALUE of Pslsws_Opt completed

VF_CHODGE SEMDEEY Enter requested,

WF_CHOOG acreen named Type Empno has arrived and is be. ..
WF_CHOOG screen named Type Empnoin a form nok defined. .
WF_CHOOG Signal LockFramewark, is being queued.

WF_CHOOG Signal LockFramewark has been queued.

WF_CHOOG acreen named Type Empno is nok a destination d... =
WE HONEA SFRINVFY Frkar caranlakad -

Save Trace to File

The blank lines before and after the actual trace statement are generated by
TRACE(""); simply to make it easier to read.

For more information about the trace statement refer to Script Functions.

Using ALERT_MESSAGE in Your Scripts
You might sometimes find that the easiest and quickest way to debug a problem
is to put up a message box.

Using ALERT_MESSAGE() in your scripts causes a dialog box with a
predefined message to appear.

ALERT_MESSAGE() can also display a mixture of text and variable values.

For example, if in one of your scripts you wanted to display the value of an
Akey that is passed into the script, ALERT_MESSAGE() would look something
like this:

ALERT_MESSAGE("The value of AKEY1 is =>" + objListManager.AKey1[0]
+ H<:H);

and during the execution a message box like this would be displayed:

" Empno - Example 1 (A1008-ALLAN SNEDDON)

The value of AKEY] is === AlID ===

Screen Enrichment

You may want to change the appearance of the modernized 5250 screens in your
application to make them look better and more Windows-like.

You can do simple things like hiding the screen title using RAMP layout
dimensions (see Hide screen titles in individual RAMP Screens), or you can
freely redesign the screens using aXes eXtensions (see RAMP-TSADO04:
Redesigning the Screen Using aXes) using dropdowns, checkboxes, radio
buttons, calendars, charts, hyperlinks, images and a full color palette.

There is also The HTMLAPI Scripting Object which can be used to enhance
RAMP command handlers. It predates aXes eXtensions and using it requires
solid JavaScript and HTML DOM skills.

When enriching screens, please bear in mind that the space on the command
handler is limited and that creating another command handler tab for additional
content is easy and fast and usually a better option than trying to squeeze
images, google maps or such like onto already crowded 5250 screens.

Hide screen titles in individual RAMP Screens

In most cases 5250 screen titles are redundant in RAMP screens because the
navigation elements in the Framework Window clearly indicate the object being
worked with and the command being executed:

* Human Relations

File Edit View Actions Tools Help (Framework) ({Administration)
% signoff D - | () Emal = Pt B4 B v 5 Transfe | @ Calculator ‘
On Tool Bar Specify a full or partial employee name, Employee | Description
BE; Human Relations A3564 FREDDY BROWM
.4l Document | Employee Surname |:| A0S0 FRED JOHM ALAN BLOGGS
Employee VEROMICA BROWN
Invoices JOHM BELAKE
Payment Clear the current lis Clear List
P Report
"@ Dema Application) o Emplayee : Edit (ADO70-VERONICA BROWIN)
@ Programming Ted ———
& Edit | (=) Email | =2 video |
Browsse/Maintain Employee and Skill Files
Employee Mumber A0070
Employee Surname BROWN
Employee Given Mame(s) YVERCMICA ANM
Street No and Mame 12 Railway Stre
Suburb or Town Baulkham Hills
State and Country MSW Australia
Home Phone Mumber (02) 639-4627
Department Code E]
Section Code E]
Start Date (DOMMYY) 23/01/20
Termination Date (DOMMYY) 0fon/a0
Diate Skl | Skil Skill
Acquired | Code Description RENE Ta
0/00/00| | |
0/o0joo| | |
4 | ¥ 0/00/00/| | | |
Messages | Ready | Local | ENG | DCxUSER | 3/14/05 | 9:20 |

Therefore RAMP screens look more natural without titles in the Framework:

* Human Relations

File Edit View Actions Tools Help (Framework) ({Administration)
9 signOff D Hew v | @ Emal {=y Frint 7] Details v 5 Transfer | @ Calculator ‘
Employee
On Tool Bar Specify a full or partial employee name, Employee | Description

2§ Human Relations A3564 FREDDY BROWN

: Document | EmPloyee Surname |:| A0S0 FRED JOHN ALAN BLOGGS

.4} Employes 40070 VERONICA BROWN

~-Jfl Invoices A103 JOHM BLAKE

""" Payment Clear the current lis Search [Clear List

e Report
{5) Demo Application 44l Employee : Edit (A0D70-VERONICA BROVIN) O
[3--@ Programming Ted

& Edit | (=) Email | =2 video |
Employee Mumber A0070

Employee Surname
Employee Given MName(s)
Street Mo and Mame

Suburb ar Town

State and Country

Home Phone Mumber
Department Code

Section Code

Start Date (DOMMYY)
Termination Date (DOMMYY)

e 0
510
s

Date 5k
Acquired

Skill
Code

Skill
Description

Comment

Grade

0/00/00

0/00/00

0/00/00

0/00/00

| Ready

Local

| Enc |

DCXUSER

| 371406 | %:23 |(@

There are Two Ways to Hide the Title.

Two Ways to Hide the Title

You can hide the screen title either by moving the RAMP screen up so that the
title is hidden or by applying a mask on the title to hide it.

You set the RAMP screen position and mask in the Session details of the
Default Session in the RAMP Tools window:

RAMP-TS 5250 Session | Detals

Session - Default Session

Zaption Default Session
User Object Name | Type 15E74640BTE747OFEAGZATRZDIF114C Werify Name
Default RAMP Layout Dimensions
Height 330 Width 700 Top 25- Left
Top Mask Height Bottom Mask Height
FAMP Screen Layouk Style
| Fixed Layouk Flow Layouk
Scroll Bars
Display Horizontal Scroll Bars Display Yertical Scroll Bars

You can override these settings for individual destination screens by changing
the Layout Dimensions in the Destination Screen Details.

Moving the Screen

To move the screen up so that the title is hidden, set the Top property to a
negative value:

RAMP-TS 5250 Session | Detals

Session - Default Session

Zaption Default Session
User Object Name | Type 15E74E40BTE747OFEAGZATRZDIF114C Yerify Name
Default RAMP Layout Dimensions
Height 330 Width 700 Top 25- Left
Top Mask Height Bottom Mask Height
FAMP Screen Layouk Style
| Fixed Layouk Flow Layouk
Scroll Bars
Display Horizontal Scroll Bars Display Yertical Scroll Bars
Masking the Title

To mask the title, set the Top Mask Height property to a height that covers the

title:

* RAMP-TS 5250 Session | Details

~aession - Default Session

Zaption Default Session
User Object Name | Type 15E74640BTE747OFEAGZATRZDIF114C | Werify Name
~Default RAMP Layout Dimensions

Height 330 Width 700 Top

Top Mask Height 25 Bottom Mask Height

AMP Screen Layout Skyle

[# Fixed Layout [| Flow Layout

Scroll Bars

(Display Horizontal Scroll Bars Display Yertical Scroll Bars

Not applicable to RAMP Web.

The HTMLAPI Scripting Object

The HTMLAPI scripting object can be used to dynamically modify the visual
content of 5250 screens.

When RAMP-TS displays a 5250 screen, it is actually rendering a HTML
document. The HTML document that represents the 5250 screen is like any
other HTML document. Since it is HTML based it provides a DOM (Document
Object Model) that you can access and modify from your RAMP scripts.

The HTMLAPI scripting object provides a small set of methods that allow you
to access the HTML DOM of the currently displayed 5250 screen.

By using the HTML DOM you may choose to modify the appearance and
behaviour of displayed 5250 screen.

Employee Number Al004
Employee Surname {SMITHSON
Employee Given Hame(s} FaUL
Street No and Name 41 William Rd.
Suburbor Town St lves
State and Country MEW 2144
Home Phone Number 415 5658
Department Code AUD |l
Section Code o3 | A
Start Date (DDMMYY) 1/05/80 A
Termination Date (DDMMYY) V000D A
Date Sk Skil Skil
Acguired Code Description Comment Grade
250358 ADMINT Administratn Part 1 Ket reouirement n)
Ei02/58 ADMINZ Administratn Part 2 Mt reguirement P
4/05/58 COM Communications Degre)
Eii5/ 98 s Computer Science Deg P

M
14

What do you need to know to use the HTMLAPI Scripting
Object?
You need to have solid JavaScript and HTML DOM skills.

What are some of the risks involved in using the HTMLAPI
Scripting Object or accessing 5250 Screen’s HTML DOM?

Some of the risks you take in using the HTMLAPI Scripting Object or accessing
the 5250 screen’s HTML DOM include:

Future changes in the content or behaviour of the IE HTML DOM model

Future changes in the content or behaviour of the aXes 5250 HTML document
layout

Upsetting or altering the behaviour of the aXes client side logic.

If you are prepared to accept, test for and manage these risks, then the
HTMLAPI allows for dynamic and efficient changes to be made to the content
and behaviour of 5250 RAMP-TS screens.

HTMLAPI Usage Examples

Using The HTMLAPI Scripting Object

The recommended approach to dynamically altering the visual content of 5250

screens is as follows:

Whenever possible create SHARED functions that implements generic content
changes so that they can be reused from other RAMP-TS scripts. By doing this
you are also somewhat minimizing the impact that any future changes to the
HTML or aXes DOM models might have on you.

When content changes apply to a specific 5250 screen only, implement them in a
single function inside the screens scripting object with a well defined name. By
doing this the logic that alters a specific screens layout becomes somewhat
standardized, easy to recognize and consolidated in one place

For example:

Example Function Name

What it might do?

SHARED.ApplyStandardLayout() Apply generic application layout rules to

SHARED.AttachPromptImages()

thisScreen.ApplySpecificLayout()

any destination screen. Most destination
screens would invoke this function in their
arrival script, just before making the screen
visible.

Accepts an array of screen field names. It
creates a small clickable image beside each
named field. 5250 screens that display
promotable fields would use this function
generically.

Defined as a function within the definition
of a specific 5250 destination screen.
Applies layout changes that are specific to
this screen.

HTMLAPI Usage Examples

The following examples use this 5250 destination screen which is shipped with
LANSA as process PSLSYS function INQUIRE. It allows the details of an
employee to be displayed and updated. It initially has an arrival script like this:

vHandle_ ARRIVE: function(oPayload, oPreviousForm)
{

/* 1f the department input field exists on the screen, display it */

if (CHECK_FIELD_EXISTS("DEPTMENT"))
{
SHOW_CURRENT_FORM(true);
HIDE_5250_BUTTONS();
SETCURSORTOFIELD("SURNAME");
SETBUSY (false);

}

/* Otherwise send an F21 key to make the screen input capable */
else
{
SENDKEY (KeyF21);
}
/* <ARRIVE /> - Do not remove or alter this line */

return(true);

}’

And it looks like this:

Browse/Maintain Employee and Skill Files

Employee Number e L Ly
Employee Surname « « . [EMYTHESON
Employee Given Mame(s) S O HN
Street Mo and Mame » . . |20 Cobbitty Avenue,
Suburb or Town . . . « . « & . . - = « « WERRIMGTON.
State and Country |NSW 2100
Home Phone Number =« . D47 629 0442
Department Code S ADM [
SeCE o EDEe T e S L
start Date (DDMMYY) SN 1/01/7 7
Termination Date (DOMMYY) | 0o/o0/00 +
Date Skl Skill Skill
Acquired Code Description comment Grade
25/03/98 ADMINL Administratn Part 1 Met reguir ement o
2/05/98 ADMI NZ Administratn Part 2 F
t /05 /98 cs Computer Science Deg P
4/05/98 ENG English Degree D

These fields have been named on this 5250 screen:

SURNAME Employee Surname
GIVENAME Employee Given Name(s)
ADDRESS1 Street No and Name
ADDRESS?2 Suburb or Town
ADDRESS3 State and Country
DEPTMENT Department Code
SECTION Section Code

DATE_START_DDMMYY Start date
DATE_END _DDMMYY Termination Date
DATE_ACQ_DDMMYY Date Skill Acquired (Subfile Column)

PageDownMarker The "+" sign indicating more data in the subfile

Note that what follows are examples only. What you do and how you work with
your 5250 screens will be different. You need to adjust the approach you use to
match your requirements.

Implementing a Basic Standard Layout function

Generically Modifying a Screen via the Standard Layout function
Specifically Modifying a Screen via a Specific Layout function
Adding More Capability to the Standard Generic Handler
Modifying Subfile Headings

Modifying Fonts

Adding Images

Things to watch out for

What HTMLAPI functions are provided?

Implementing a Basic Standard Layout function

First this following function is added to the uf_sy420_rts.js file as part of the
SHARED scripting object:

var SHARED =

{
e */
/* Apply standard layout changes to arriving screens */
e */

ApplyStandardLayout : function()
{

/* Use the HTMLAPI to hide lines 1 and 2 on all screens */

HTMLAPILhideRow(1);
HTMLAPILhideRow(2);

}’

Etc, Etc

We now have a standard function named SHARED,ApplyStandardLayout that
can be invoked from any RAMP screen’s arrival script.

For example, the arrival script of the example destination screen would be
modified like this to use this new function, just before it causes the 5250 screen
to be displayed:

vHandle_ ARRIVE: function(oPayload, oPreviousForm)
{

/* If the department input field exists on the screen, display it */

if (CHECK_FIELD_EXISTS("DEPTMENT"))
{

SHARED.ApplyStandardLayout();

SHOW_CURRENT_FORM(true);
HIDE_5250_BUTTONS();
SETCURSORTOFIELD("SURNAME");
SETBUSY (false);

}

/* Otherwise send an F21 key to make the screen input capable */
else
{
SENDKEY (KeyF21);
}
/* <ARRIVE /> - Do not remove or alter this line */

return(true);

}’

When executed now, the resulting screen looks like this:

121 Cutler Ave
windsor

NaW

(02) 546-4657

Date Skl skill Skill
Acquired Description Comment

Administratn Part 1 | Met _reauirement

Communications Degre |
Computer science Deg |
History Degree

Note that lines 1 and 2 on the screen are now invisible.

This is a fairly trivial generic layout rule, but you have now lain a base on which
much more important rules can be generically implemented across many
different 5250 screens.

Generically Modifying a Screen via the Standard Layout function

Another generic thing we might do is remove all the "+" prompt fields from the
screen and strip the trailing dots from all the field labels.

To do this you could add code like this to the SHARED, ApplyStandardLayout
function:

/* Get all elements between lines 3 and 22 */
var aH = HTMLAPI.getElementsinRowRange(3,22);

/* Hide all fields containing "+" signs and strip trailing dots from others */

for (i = 0; i < aH.length; i++)
{
var oH = aH]Ji];

if ((oH != null) && (typeof(oH.tagName) != "undefined"))
{

var fIsSINPUTField = ((oH.tagName == "INPUT") || (oH.tagName == "TE

if (!(fIsINPUTField)) /* This NOT an input field on the screen */
{
if (oH.innerText == "+") HTMLAPILhideElement(oH);
else HTMLAPLstripTrailingDots(oH);
}
}
}

When executed the example 5250 now looks like this:

Date 5kl

skill

Acquired
A 95

Description
Administratn Part 1

Administratn Part 2
Communications Degre
Computer Science Deg

Specifically Modifying a Screen via a Specific Layout function

A 5250 screen specific thing we can do is to add scrolling buttons to a subfile it
displays.

In the script associated with this example screen, three new functions could be
added like this:

/* Apply layout changes specific to this screen */
ApplySpecificLayout : function()

{
if (CHECK_FIELD_EXISTS("PageDownMarker"))

HTMLAPIL.insertSubFileScrollers("/ts/skins/images/pageup.gif",this.HandlePa
else

HTMLAPIL.insertSubFileScrollers("/ts/skins/images/pageup.gif",this.Han
i

/* Handle clicks on the subfile scroller images images */
HandlePageDown: function() { EXECUTE_BUTTON_SCRIPT(KeyPageDc

HandlePageUp: function() { EXECUTE_BUTTON_SCRIPT(KeyPageUp);

And the arrival script part of the screen definition is modified to invoke this new
logic every time a screen arrives:

vHandle_ ARRIVE: function(oPayload, oPreviousForm)
{

var bReturn = true;

/* 1f the department input field exists on the screen, display it */

if (CHECK_FIELD_EXISTS("DEPTMENT"))
{

SHARED.ApplyStandardLayout();
this. ApplySpecificLayout();

etc, etc

When executed the example 5250 screen now looks like this:

Employee Number Al1004
Employee Surname SMITHSON
Employee Given Name(s) PAUL
Street No and Name 41 William Rd.
Suburb or Town St Ives
State and Country NSW 2144
Home Phone Number 419 GS&E5 &
Department Code AUD
Section Code 03
Start Date (DDMMYY) 1,/058/80
Termination Date (DDMMYY) 0/00/00
Date Skl Skill skill
Acquired Code Description Comment Grade
25/03/98 ADMINL Administratn Part 1 Met_reguir ement o
5/02/98 ADMINZ SRR BRI BaR T o Met_reguir ement P
4/05 /98 COM Communications Degre o
t /05 /98 cs Computer Science Deg p

H
L]

Note the page up and down clickable images appearing at the bottom of the
subfile. When clicked they invoke the handler functions HandlePageUp and
HandlePageDown, which then send page up / down keystrokes to the server.

Note: They do this by executing the vHandle_ BUTTONCLICK function, so you
need to make sure that it can handle the page up and page down keys correctly.

Adding More Capability to the Standard Generic Handler

The RAMP-TS session used in this example has a special fields handling table
like this:

Spedial Field Handing

5250 FieldName |FunctionKey |VL Handler (dass VF_AC017 object) | =
1 | DEPTMENT |Fa ~ |oF_Prmos o '
2 |sECTION F4 DF_PRMO4
3 [DATE_* F4 DF_PRMO7
4 F4
5 | F4 -
q n 3

If you do not understand what this means you should complete the special field
handling tutorial.

The special field handling table enables automatic prompting of these fields on
the example screen like this:

Employee Number A1008
Employee Surname SKEDDON
Employee Given Name(s) ALLAN
Street No and Name 22 Railway Parade,
Suburb or Town KOGARAH
State and Country NSW. 2160
Home Phone Number 476 2198
Department Code AUD
Section Code o1
Start Date (DDMMYY) 200309 4 A March 2009 LA
Termination Date (DDMMYY) o/o00/
1
2 3 4 5 &5 7 B8
2235'{?2; Sguju:-llg DescSrk'ljp-rlg'l'Dn s S % =
2C /032798 ADMT N1 Au:l'n'{n'{stratn Part 1 E ; ;g ;2 27 ;; ié
1,/0E5 /98 ADMI N2 Admi r1'|5tratr_1 Part 2 0 31
t /05 /98 cs Computer Science Deg
S /02/98 INTRO Company Introduction | < Today: 20/03/2009

H
L]

Here the user has pressed F4 when the cursor was positioned in the Start Date
field. The special field handler DF_PRMO07 causes a calendar to appear,

allowing the user to select a date.

This only happens when the user positions into the promptable field and uses
the F4 function key.

The F4 prompt logic can be generically extended further via the HTMLAPI and
by using your generic SHARED.ApplyStandardLayout function.

First, modify SHARED.ApplyStandardLayout to receive an optional parameter
like this:

ApplyStandardLayout : function(aPromptFields)

Then add code like this example to the ApplyStandardLayout

/* Insert prompting images */

if (aPromptFields != null)
{
for (i = 0; i < aPromptFields.length; i++)
{
oH = HTMLAPI.getElementbyName(aPromptFields[i]);
if (oH != null)
{
ol = HTMLAPILinsertImage(oH,"/ts/skins/images/zoom_in_18x18.g
ol.PromptFieldName = aPromptFields[i];
}
}
}

By checking aPromptFields == null you rdesign allows for the parameter to be
optional. Callers do not need to pass it.

The SHARED object also needs to have a function added to handle clicking on
the images created, like this example:

/e */

HandlePromptImageClick : function(oE)
{

var ol = oE.srcElement;
if (typeof(ol.PromptFieldName) != "undefined")

{
SETCURSORTOFIELD(ol.PromptFieldName);

EXECUTE_BUTTON_SCRIPT(KeyF4);
}
b,

Finally, the example 5250 destination screen that is using
SHARED.ApplyStandardLayout needs to be modified to pass an array of
promptable fields.
First the array is declared like this (at the start of the scripting code):
aPromptFields :
Array("DEPTMENT","SECTION","DATE_START_DDMMYY","DATE_EN
The call to SHARED.ApplyStandardLayout is modified

SHARED.ApplyStandardLayout(this.aPromptFields);

The resulting 5250 screen looks like this:

20 Cobbitty Avenue,
WERR INGTOMN .

NaW

047 629 0442

Date skl skill Skill
Acquired Description

38 » Administratn Part 1
Administratn Part 2

Computer Science Deg
English Degree

Note the small images now appearing beside the promptable fields.

The user can click on the image to prompt the field, or they can position into the
field and press F4. The result is the same.

Clicking on the image actually executes the current screen’s
vHandle_ BUTTONCLICK function, so it needs to be able to handle the F4 key.

Modifying Subfile Headings
One other feature that the HTMLAPI provides dynamically alters subfile
headings. Typically it can be used in a generic fashion for any 5250 screen.

If code like this is added to the standard SHARED layout function
ApplyStandardLayout:

/* Adjust the subfile headings */

HTMLAPI.adjustSubFileHeadings(" Arial","8pt");

Then the resulting 5250 screen now looks like this:

Employvee Number A1007
Employee Surname |ENEL L
Employee Given Name(s) GEOR.GE
Street No and Name & Anthony Avenue,
Suburb or Town PADSTOW.
State and Country NSW. 2164
Home Phone Number 764 3562
Department Code AUD | &l
section Code o1 ;4
Start Date (DDMMYY) 1/03/85 &
Termination Date (DDMMYY) D;‘DD;‘DD_‘E"
Date Skl Skill Skill
Acquired Code De=scription Comment Grade
25 /03 /98] ADMINI Administratn Part 1 Met_reguir ement o
1,/05 /98] ADMINZ Administratn Part 2 P
c /ot /a8l cs Computer Science Deg P
5/02/98] INTRO Company Introduction Met_reguir ement P
7 s

By making this change in your SHARED.ApplyStandardLayout:

/* Adjust the subfile headings */

HTMLAPI.adjustSubFileHeadings("Arial","8pt","orange",'left'," 1px solid |

You could cause 5250 subfile to look like this

41 william Rd.
5T Ives

NSW

419 5656

| 25/03/98] ADMINL | Administratn Part 1
34 Administratn Part 2

0 4
1 /0C /98) Communications Degre
0 Computer Science Deg

Note: The ‘shipped’ intention with sub files is to make them look somewhat like
list views or grids, which is exactly what this orange example does not do.

Modifying Fonts

Finally, here is an example of a modified SHARED layout function that changes
the font of all fields on the form to use 8pt Arial. The example loop used earlier
in SHARED.ApplyStandardLayout could be changed to be like this example:

/* Get all elements between lines 3 and 22 */
var aH = HTMLAPI.getElementsinRowRange(3,22);

/* Hide all fields containing "+" signs and strip trailing dots from others */

for (i = 0; i < aH.length; i++)
{
var oH = aH][i];

if ((oH != null) && (typeof(oH.tagName) != "undefined"))
{

var fIsSINPUTField = ((oH.tagName == "INPUT") || (oH.tagName == "TEX

if (fISINPUTField) HTMLAPI.applyFont(oH,"Arial","7pt");
else

{

if (oH.innerText == "+") HTMLAPIhideElement(oH);
else

{
HTMLAPLstripTrailingDots(oH);
HTMLAPI.applyFont(oH, "Arial","8pt");
}
}
}
}

The resulting 5250 screen now looks like this:

It started out as:

20 Cobbitty Avenue,

WERF. INGTON .

NSW
047 629 0442

Date 5kl Skill Skill

Acquired Description
33 Administratn Part 1

Administratn Part 2

Computer Science Deg

English Degree

Adding Images

To add an image to your RAMP command handler, put this example generic
code into your SHARED object:

var SHARED =

{
/e */
/* Handle clicking on a prompt image */
/e */

oFloatingImage : null,

Insertlmage : function(sBesideField,sSource,iHeight,iWidth,iHOffset,iVOffs

{
var oE = HTMLAPI.getElementbyName(sBesideField);

if (oE == null) return;
var oC = HTMLAPI.getcontainerDIV(oE);
if (oC == null) return;

if (this.oFloatinglmage == null)
{
this.oFloatingImage = oC.ownerDocument.createElement("
");
oC.ownerDocument.body.insertAdjacentElement("beforeEnd",this.oFloc

}

this.oFloatinglmage.src = sSource;
this.oFloatinglmage.style.pixelTop = oC.style.pixelTop + iVOffset;
this.oFloatinglmage.style.pixelLeft = oC.style.pixelLeft + oC.style.pixel\
this.oFloatinglmage.style.pixelHeight = iHeight;
this.oFloatinglmage.style.pixelWidth = iWidth;
this.oFloatinglmage.style.visibility = "visible";
this.oFloatinglmage.style.display = "inline";

return;

},

And add a new line to your standard layout function to make sure the image

dispappears as new screens arrive:

ApplyStandardLayout : function(aPromptFields)

{

/* Drop any floating images left around from before */

if (this.oFloatinglmage != null) { this.oFloatinglmage.style.visibility = "hic

You have now added you own completey generic Insertimage capability to any
RAMP-TS 5250 screen.Try it out by adding this line to the arrival script of a

screen:

SHARED.InsertImage("SURNAME","/ts/skins/images/TestImage1l.gif",123,1(

And you get this:

Employee Number Al004
Employee Surname {SMITHSON
Employee Given Hame(s} PALL
Street No and Name 41 William Rd.
Suburbor Town St lves
State and Country MEW 7144
Home Phone Number 413 5858
Department Code AUD |l
Section Code 3 [
Start Date (DDMMYY) 1/05/80 A
Termination Date (DDMMYY) V000D A
Date Skl Skill Skill
Acguired Code Description Comment Grade
2R3 /S8 ADMIN Administratn Part 1 Wt requirement O
Ei02/58 ADMINZ Administratn Part 2 Mt reguirement P
4/05/58 COM Communications Degre)
Eii5/ 98 s Computer Science Deg P

M
14

The SHARED.Insertimage() can now be reused anywhere in your application.
Do not forget to set authority correctly on an new files in Axes folder.

Remember that adding a new command handler tab for the image would be a
quicker and easier solution.

Things to watch out for
Here are some things to watch out for:

Understand and accept the risks that low level access to a DOM structure
inherently involves (see the preceding section for more about this).

Check that you are not impacting the performance of your application. Doing
such a check is easy. Comment out or disable your logic. Do some timing tests
using a PC that has a performance profile like a typical end user’s PC. Then
repeat the tests with your logic enabled.

Do not become over-focused on a 5250 screen. For example, imagine you have a
customer inquiry 5250 screen. You want to add a Google Maps image to your
application to show the customer’s location. There are two ways to do this:

Add an IFRAME to your 5250 screen with the required JavaScript logic.
Simply add another tab called "Map Location" to your VLF application.

Of these, the latter would be simpler and easier to implement. It is also ‘on
demand’ rather than cluttering up your screen with information that most people
do not need to see most of the time.

What HTMLAPI functions are provided?
HTMLAPI.getElementbyName

Parameters:
Description Type Optional/Mandatory Default Value
Element Name String Mandatory

Index Integer Optional 0

Returns: A reference to the HTML element or null if not found.

HTMLAPI.getElementbyl.ocation

Parameters:
Description Type Optional/Mandatory Default Value
Row Integer Mandatory

Column Integer Mandatory

Returns: A reference to the HTML element or null if not found.

HTMLAPI.getElementsinRowRange

Parameters:
Description Type Optional/Mandatory Default Value

Low Row Integer Mandatory

High Row Integer Optional Low Row

Returns: An array of references to the HTML elements.

HTMLAPI.getElementsinColumnRange

Parameters:

Description Type Optional/Mandatory Default Value

Low Column Integer Mandatory

High Column Integer Optional

Low Column

Returns: An array of references to the HTML elements.

HTMLAPI.showElement

Parameters:

Description Type

HTML HTML element
element reference

Returns: null.

HTMLAPILhideElement

Parameters:

Description Type

HTML HTML element
element reference

Optional/Mandatory Default
Value

Mandatory

Optional/Mandatory Default
Value

Mandatory

Returns: null.

HTMLAPILhideRow

Parameters:
Description Type Optional/Mandatory Default Value

Row number Integer Mandatory

Returns: null.

HTMLAPILinsertImage
Parameters:
Description Type Optional/Mandatory Default
Value
HTML element that image is HTML element Mandatory
to be inserted after reference
Image source String Mandatory
Click event handler Function Optional null
Image height Integer Optional Image’s
own
height
Image width Integer Optional Image’s
own
width
Horizontal offset Integer Optional 2
Vertical offset Integer Optional 0

Returns: Reference to the HTML element created or null in error situations

elements.

HTMLAPI.applyFont
Parameters:
Description Type Optional/Mandatory Default
Value
HTML element to which font HTML element Mandatory
is to be applied reference
Font Family String Mandatory
Font Size String Mandatory
Returns: null.
HTMLAPI.getcontainerDIV
Parameters:
Description Type Optional/Mandatory Default
Value
HTML element whose absolutely HTML Mandatory
positioned container DIV is to element
found reference

Returns: Reference to the absolutely positioned container DIV or null if not
found.

HTMLAPILstripTrailingDots

Parameters:

Description Type Optional/Mandatory Default
Value

HTML element from which ~ HTML element Mandatory
dots are to be stripped reference

Returns: null.

HTMLAPIL.insertSubFileScrollers

Parameters:
Description Type Optional/Mandatory Default Value
Page up image to use String Optional Null
Page up click handler Function Optional Null
Page Down image to use String Optional Null
Page Down click handler Function Optional Null
Images Height Integer Optional 12
Images Width Integer Optional 12
Horizontal offset Integer Optional 0
Vertical offset Integer Optional 0

Returns: null.

HTMLAPI. adjustSubFileHeadings

Parameters:

Description Type Optional/Mandatory Default Value
Font to use String Optional Lucida Console
Font Size String Optional 8pt
Background Color String Optional Buttonface
Text Alignment String Optional center

Border Style String Optional 1px solid darkgray

Returns: null.

Screen Wrappers

RAMP screen wrappers are Visual LANSA components that access 5250
screens behind the scenes. The screens and fields accessed are defined in the
usual manner by choreographing them.

A screen wrapper can pick values out of 5250 screens and present them to the
user in completely different ways. Equally, a screen wrapper can accept input
from the user and map it back into the 5250 screens to cause 5250 transactions
to take place.

When to Use 5250 Screen Wrappers?
Screen Wrapper Fundamentals
EventsMethodsExamples

When to Use 5250 Screen Wrappers?

The main advantage of a screen wrapper is obvious. You can put a good
looking, easy to use, high GUI veneer over 5250 screens, without having to
spend the time and money required to analyze, rewrite and then retest all the
business logic imbedded inside them as you would if you replaced them with
VL components.

This is especially important for users to whom platform portability is of no real
interest because they are content with a System i only solution.

Usage Examples
Some usage examples might include:

A screen wrapper can pick values out of hidden 5250 screens and present it in
completely different ways. For example, statistical information can be extracted
and presented as a series of bar graphs (see Example 3: Show the System i Disk
Usage).

A screen wrapper can accept user input and then map it back into the 5250
screens so as to cause 5250 transactions to take place. For example, a VL
component could allow high function, high volume order entry. When the user
clicks Save, the order details are mapped into a series of 5250 screens and input.

A screen wrapper might execute many 5250 screens from one click. For example
a screen wrapper might display a list of 20 order numbers. When the user clicks
OK all 20 orders are deleted by repeatedly executing a 5250 screen that only
allows one order at a time to be deleted.

Role in Modernization Projects

For a customer happy with a System i dependent solution, a screen wrapper
might be as far as they ever take application modernization.

Realistically, screen wrappers take time and money to develop, but probably
significantly less than the equivalent VL. component would, especially in the
application testing phase of the modernization project.

Screen wrappers are not thrown away. When time and money permit, they may
still be changed into proper VL. components by removing their 5250
dependency.

You would expect modernization projects to go to market using a mix of 5250

screens, screen wrappers and VL components. For example, this might be the
mix appropriate to an ISV:

85% - 5250 screens — to get to market ASAP.

10% - screen wrappers - to rapidly replace some heavily used and critical areas
(eg: Order Entry) with something much better to use that adds a lot of business
value.

5% - VL components — add high end value to the application (eg: E-Mail, PDF
documents, MS-Excel spreadsheets, Web integration, etc).

Screen Wrapper Fundamentals

Define your screen wrapper
A screen wrapper is a VL reusable part of class VF_SY122. You must define it
globally scoped as opposed to inside any type of routine.
Define_Com Class(#vf_sy122) Name(#myscreen_wrapper) Parent(#PANL_1)
Visible(False) Displayposition(3)

Key Points:

Set the initial visibility to False. This will ensure it will never show up unless
you want to. For example you might want to make it visible in design mode
when a fatal error occurs to give you the option of seeing what the current 5250

screen is.

You might want to make it a child of a panel attached to the center of the main
panel. This will make it easier to see when you want to make it visible to track

down fatal errors.

Set the uCommand property

In the command's ulnitialize method routine, set the screen wrapper's
uCommand property:
Mthroutine Name(ulnitialize) Options(*REDEFINE)

* Do any initialization defined in the ancestor

Invoke Method(#Com_Ancestor.ulnitialize)

Set Com(#myscreen_wrapper) Ucommand(#com_owner)
Endroutine

Key Points:
Always set uCommand to #com_owner.

Failure to set uCommand will result in an error message of type
VF_INIT_ERROR.

Kick off execution by making RAMP available

Usually you will invoke MakerampTSavailable Method inside the uExecute

method of your command for the first time:
#myscreen_wrapper.MakerampTSavailable

Key Points:
The first time you make RAMP available during the first execution of a
command it will take slightly longer for the event to be fired because RAMP is

not connected to the host.
The command regains control in the RampTSAvailable event routine.

Listen to the RampTSAvailable event
Once RAMP has connected and it's ready to be interacted with it will signal
back to the command in this event. It means you are ready to start navigation.

For example:
Invoke Method(#myscreen_wrapper.navigatetoscreen)
Name(EMPLOYEE_SKILLS)

Listen to the RampMessage event
You write error handling logic and handle messages originating in your 5250

application in the RampMessage Event.

Events

RampMessage Event
RampTSAvailable Event
vHandleArrive Event

RampMessage Event
A message is issued by RAMP or the underlying 5250 application.

Parameters

uMessageType | Char String that specifies a type of message as per table
256 below.

uMessageText | Char String that contains the text of the message.
132

This table illustrates the available message types and their causes:

Type Cause Comments

VF_ERROR Fatal errors. For whatever reason, RAMP
has failed in the process of
executing a request.

For example, a failed
navigation request.

VF_INFO A message from | Any message sent by the actual
the 5250 5250 program running under
application. the covers.

For example, failed validation
rules.

VF_INIT_ERROR The Screen This usually happens when the
wrapper failed | session user object type
to initialize. supplied doesn't yield a defined

session.

Alternatively, if you haven't set
the uCommand property (see
Screen Wrapper
Fundamentals).

VF_UNKNOWN_FORM | During
navigation, an
undefined form
was detected.

Remarks
It is up to the developer how to handle different types of errors.

To cause a message to pop up automatically, use the
#com_owner.avshowmessages method. During development it might be useful
to show the underlying 5250screen when a fatal error occurs. You can do so by
changing the Screen wrapper's visibility and/or display position.

Example

Evtroutine Handling(#screen wrapper.uRampMessage)
Umessagetype(#MsgType) Umessagetext(#MsgText)

Case (#msgtype.value)

When Value_Is('= VF_ERROR)

* Optional. In design mode, making the screen wrapper visible allows you to
show the 5250 screen.Set Com(#myscreen_wrapper) Visible(True)
When Value_Is('= VF_INFQ")

Message Msgid(dcm9899) Msgf(dc@mO01) Msgdta(#msgtext.value)
When Value_Is('= VF_UNKNOWN_FORM")

Message Msgid(dcm9899) Msgf(dc@mO01) Msgdta(#msgtext.value)
When Value_Is('= VF_INIT_ERROR')

Message Msgid(dcm9899) Msgf(dc@mO01) Msgdta(#msgtext.value)
Endcase

Endroutine

RampTSAvailable Event
RAMP has signaled it is interactive.
Parameters

None

Remarks
Start your navigation here.

Example

Evtroutine Handling(#myscreen_wrapper.RampTSAvailable)
Invoke Method(#myscreen_wrapper.navigatetoscreen)
Name(EMPLOYEE_SKILLS)

Endroutine

Also see MakerampTSavailable Method.

vHandleArrive Event

A screen has arrived.

ArrivedScreen Char
256

PreviousScreen Char
256

ArrivedPayload Char
256

ForAction Char
256

VariantName Char
256

Remarks

String that specifies the name of the arrived screen.

String that contains the name of the previous screen.

String that contains a payload.

String that was passed as a parameter to the
NavigateToScreen method.

String that contains the variant name of the arrived
screen

This event will signal for every navigated screen.

Example

Evtroutine Handling(#myscreen_wrapper.vHandleArrive)
Arrivedscreen(#ArrivedScreen) Previousscreen(#PreviousScreen)
Arrivedpayload(#Payload)

Case (#ArrivedScreen)

When Value_Is(= EMPLOYEE_DETAILS)

Set Com(#SAVE_BUTTON) Enabled(false)

If (#Payload *NE UPDATE_EMPLOYEE)

#myscreen_wrapper.getvalue From('empno’) Value(#empno.value)
#myscreen_wrapper.getvalue From('surname') Value(#surname.value)

Endif
Endcase

Endroutine

Methods

Screen wrappers drive the 5250 screens using using normal VL code methods
supplied by component VF_SY 122 (this is very similar to how the
corresponding RAMP javascript functions work):

MakerampTSavailable Method
NavigateToScreen Method
SetValue Method

GetValue Method

SendKey Method
Current_Form Method
SetCursor Method
SetCursorToField Method
Get_Form_Message Method
Check Field Exists Method

MakerampTSavailable Method

Make RAMP interactive.
Syntax

Define_Com Class(#vf_sy122) Name(#myscreen_wrapper)

Parent(#COM_OWNER)

#myscreen_wrapper.MakerampTSavailable

Parameters

uUserObjectType Char 32 -
Optional

uSession_Id Char 40 -
Optional

Return Value
None

Remarks

String that contains the user object type of
the RAMP session.

Required when dealing with more than one
session.

The session assigned to a destination.
Defaults to *AUTO.

Invoke this method in the uExecute command handler method, there is no
performance penalty in doing this. It will ensure that you can interact with

RAMPTS.
Examples

Invoke Method(#myscreen_wrapper.MakerampTSavailable)

uSession_Id(SESSION_A)

Invoke Method(#myscreen_wrapper.MakerampTSavailable)
uUserObjectType(HumanResources)

Related Topic MakerampTSavailable Method.

NavigateToScreen Method
Navigate to a RAMP-TS screen.

Syntax

Define_Com Class(#vf_sy122) Name(#myscreen_wrapper)
Parent(#COM_OWNER)

#myscreen_wrapper.NavigateToScreen Name(EMPLOYEE_SKILLS)

Parameters
Name Char 256 — String that contains the name of the screen to
Required navigate to.

Return Value
None

Remarks

Once NavigateToScreen is executed your screen wrapper will receive screen
arrival event signals to be handled in the vHandleArrive event routine.

Examples

Define_Com Class(#vf_sy122) Name(#myscreen_wrapper)
Parent(#COM_OWNER)
#myscreen_wrapper.Unavigatetoscreen) Name(EMPLOYEE_SKILLS)

SetValue Method

Set the value of an input field on a 5250 screen. Pass an index to set the value of
an input field in a subfile.

Syntax

Define_Com Class(#vf_sy122) Name(#myscreen_wrapper)
Parent(#COM_OWNER)

Setting by Name - #myscreen_wrapper.setvalue Infield(sFieldName)
Value(vValue)

Parameters
Setting by Name:
InField Char 256 — String that contains the name of an input field.
Required
Value Variant — String or number that contains the value.
Required
Index Integer - An Integer that specifies the subfile row of the field.
Optional Note: the specified row index must exist in the

current subfile page.

Return Value
None

Remarks
Only Input fields that have been named can have their values set.

Examples

Define_Com Class(#vf_sy122) Name(#myscreen_wrapper)
Parent(#COM_OWNER)
#myscreen_wrapper.setvalue Infield(GIVENAME) Value(#Givename)

* Set the value of a field in the 3™ row of the current subfile page
#myscreen_wrapper.setvalue Infield(SFL_OPTION) Value(#SelOption)
Index(3)

GetValue Method

Get the value from a field on a screen or in subfile.

Syntax

Define_Com Class(#vf_sy122) Name(#myscreen_wrapper)
Parent(#COM_OWNER)

#myscreen_wrapper.getvalue From(sField) Value(sValue)

Parameters
From Char 256 — | String that contains the name of the field to get
Required the value from.
DefaultValue | Char 256 — | String that contains the default value to return
Optional when the field is not found.
Index Integer - An Integer that specifies the subfile row of the

Optional field.

Note: the specified row index must exist in the
current subfile page.

Return Value

Value | Variant — Required | Returns the field value as a string or number.

Examples

Define_Com Class(#vf_sy122) Name(#myscreen_wrapper)
Parent(#COM_OWNER)
#myscreen_wrapper.getvalue From(SURNAME) Value(#surname.value)

#myscreen_wrapper.getvalue From(SURNAME) Value(#surname.value)
Index(5) DefaultValue(*Blanks)

SendKey Method

Emulates the pressing of a function key.

Syntax

Define_Com Class(#vf_sy122) Name(#myscreen_wrapper)
Parent(#COM_OWNER)

#myscreen_wrapper.SendKey Key(#myscreen_wrapper.<key property>)
Parameters
Key Property The property of #myscreen_wrapper that resolves to the
— desired key.

Required For g list of these properties See the SENDKEY Names in
Function Key Names for SENDKEY Function in
lansa049.chm.

Payload Char A string that contains a payload. The payload is returned in
256 - vHandleArrive
Optional

Return Value
None

Examples

Define_Com Class(#vf_sy122) Name(#myscreen_wrapper)
Parent(#COM_OWNER)

#myscreen_wrapper.Sendkey Key(#myscreen_wrapper.KeyPageDown)
Payload(NEXT_PAGE)

Current_Form Method
Gets the Form name of the current screen wrapper screen.

Syntax
Define_Com Class(#vf_sy122) Name(#myscreen_wrapper)
Parent(#COM_OWNER)

#myscreen_wrapper.current_form Name(sName)

Parameters
None

Return Value

Name Char 256 — String that contains the name of the current 5250
Required screen wrapper screen
Examples

Define_Com Class(#vf_sy122) Name(#myscreen_wrapper)

Parent(#COM_OWNER)
#myscreen_wrapper.current_form Name(#std_txtl)

SetCursor Method

Positions the cursor in a given row and column of the screen.

Syntax

Define_Com Class(#vf_sy122) Name(#myscreen_wrapper)
Parent(#COM_OWNER)

#myscreen_wrapper.SetCursor RowNum(iRowNum) ColNum(iColNum)

Parameters

RowNum Integer — Integer that specifies the row number where to
Required position the cursor.

ColNum Integer — Optional. Integer that specifies the column number
Optional where to position the cursor.

Defaults to 1.

Return Value
None

Examples

Define_Com Class(#vf_sy122) Name(#myscreen_wrapper)
Parent(#COM_OWNER)
#myscreen_wrapper.setcursor Rownum(10)

SetCursorToField Method
Positions the cursor in a given field on a screen or subfile.

Syntax

Define_Com Class(#vf_sy122) Name(#myscreen_wrapper)
Parent(#COM_OWNER)

#myscreen_wrapper.SetCursorToField Name(SURNAME)

Parameters
Name Char 256 — String that specifies the name of the field to position
Required the cursor at.
Index Integer - An Integer that specifies the subfile row of the field.
Optional Note: the specified row index must exist in the current

subfile page.

Return Value
None

Examples

Define_Com Class(#vf_sy122) Name(#myscreen_wrapper)
Parent(#COM_OWNER)
#myscreen_wrapper.setcursortofield Name(SURNAME) Index(3)

Get_Form_Message Method

Retrieves and routes a message in a specified screen row number.

Syntax

Define_Com Class(#vf_sy122) Name(#myscreen_wrapper)
Parent(#COM_OWNER)

#bMoreMsgs := #myscreen_wrapper.GetFormMessage(iRow)

Parameters

RowNumber | Integer — | Integer that specifies the 5250 screen’s row
Required |number where to get the message from.

Return Value

MoreMessages | Boolean | For messages presented in subfiles:
true — there are more messages
false — no more messages

Examples

Define_Com Class(#vf_sy122) Name(#myscreen_wrapper)

Parent(#COM_OWNER)
#MoreMsgs := #myscreen_wrapper.Get_Form_Messate RowNumber(22)

Check_Field_Exists Method
Checks if a field is present in the current screen or subfile.

Syntax

Define_Com Class(#vf_sy122) Name(#myscreen_wrapper)
Parent(#COM_OWNER)

#bFound := #myscreen_wrapper.Check_Field_Exists(sName ilnd)

Parameters
Name | Char 256 — Integer that specifies the row number where to
Required position the cursor.
Index | Integer — An Integer that specifies the subfile row of the field.
Optional Note: the specified row index must exist in the
current subfile page.

Return Value

Found | Boolean | true — the field was found in the current screen
false — the field was not found

Examples

Define_Com Class(#vf_sy122) Name(#myscreen_wrapper)
Parent(#COM_OWNER)

#FldFound := #myscreen_wrapper.Check_Field_Exists("SURNAME")
#FldFound := #myscreen_wrapper.Check_Field_Exists("SURNAME"
#listcount)

Dowhile (#myscreen_wrapper.check_field_exists("SKILLCODE" #listcount
)

#myscreen_wrapper.getvalue From("skillcode") Value(#skilcode)
Index(#listcount)

#listcount += 1

Endwhile

Examples
Example 1: Show Employee Details.

Example 2: Show Employee Details and Skills
Example 3: Show the System i Disk Usage

Example 1: Show Employee Details.

This example will navigate to the Browse and Maintain Employees screen
which is part of the Personnel System.

__ s i| o ppprove | [Details | S Example & Skills | € Transfer [~ Email | = video All Details
Employes Mumber A0090
Emplovee Surname BLOGG
Emplovee Given Mame(s) FRED JOHM HEMRY
Street Mo and Mame 72 MAINM STREET
Suburb or Town MEWTOWN HEIGHTS
State and Country ALUSTRALLA
Post | Zip Code 2202
Home Phone Number 344-2345

To reach this screen, RAMP scripts will execute the following steps:

Sign on

Type lansa run pslsys partition(dem) in the command line and press Enter.
Type 3 in the option field and press Enter.

Type the employee number of the currently selected employee and press Enter.
Press F21.

Function Options(*DIRECT)

Begin_Com Role(*EXTENDS #VF_AC010) Height(569)
Layoutmanager(#MAIN_LAYOUT) Width(776)

Group_By Name(#XG_HEAD) Fields(#eMPNO #SURNAME #GIVENAME
#ADDRESS1 #ADDRESS2 #ADDRESS3 #POSTCODE #PHONEHME
#DEPTMENT #SECTION)

* Body and Button arrangement panels

Define_Com Class(#PRIM_PANL) Name(#BUTTON_PANEL)
Displayposition(2) Height(569) Hint(*MTXTDF_DET1)
Layoutmanager(#BUTTON_FLOW) Left(688) Parent(#COM_OWNER)
Tabposition(3) Tabstop(False) Top(0) Width(88)

Define_Com Class(#PRIM_PANL) Name(#BODY_HEAD)
Displayposition(1) Height(569) Hint(*MTXTDF_DET1)
Layoutmanager(#BODY_HEAD_FLOW) Left(0) Parent(#COM_OWNER)
Tabposition(2) Tabstop(False) Top(0) Verticalscroll(True) Width(688)

* Attachment and flow layout managers
Define_Com Class(#PRIM_ATLM) Name(#MAIN_LAYOUT)

Define_Com Class(#PRIM_FWLM) Name(#BUTTON_FLOW)
Direction(TopToBottom) Flowoperation(Center) Marginbottom(4)
Marginleft(4) Marginright(4) Margintop(4) Spacing(4) Spacingitems(4)
Define_Com Class(#PRIM_FWLM) Name(#BODY_HEAD_FLOW)
Direction(TopToBottom) Marginbottom(4) Marginleft(4) Marginright(4)
Margintop(4) Spacing(4) Spacingitems(4)

Define_Com Class(#PRIM_FWLI) Name(#FWLI_EMPNO)
Manage(#EMPNO) Parent(#BODY_HEAD_FLOW)
Define_Com Class(#PRIM_FWLI) Name(#f WLI_SURNAME)
Manage(#SURNAME) Parent(#BODY_HEAD_FLOW)
Define_Com Class(#PRIM_FWLI) Name(#FWLI_GIVENAME)
Manage(#GIVENAME) Parent(#BODY_HEAD_FLOW)

Define_Com Class(#PRIM_FWLI) Name(#FWLI_ADDRESS1)
Manage(# ADDRESS1) Parent(#BODY_HEAD_FLOW)
Define_Com Class(#PRIM_FWLI) Name(#FWLI_ADDRESS?2)
Manage(# ADDRESS?2) Parent(#BODY_HEAD_FLOW)
Define_Com Class(#PRIM_FWLI) Name(#FWLI_ADDRESS3)
Manage(# ADDRESS3) Parent(#BODY_HEAD_FLOW)
Define_Com Class(#PRIM_FWLI) Name(#FWLI_POSTCODE)
Manage(#POSTCODE) Parent(#BODY_HEAD_FLOW)
Define_Com Class(#PRIM_FWLI) Name(#f WLI_PHONEHME)
Manage(#PHONEHME) Parent(#BODY_HEAD_FLOW)
Define_Com Class(#PRIM_FWLI) Name(#f WLI_SAVE_BUTTON)
Manage(#SAVE_BUTTON) Parent(#BUTTON_FLOW)

* The save button

Define_Com Class(#PRIM_PHBN) Name(#SAVE_BUTTON)
Caption(*MTXTDF_SAVE) Displayposition(1) Left(4)
Parent(#BUTTON_PANEL) Tabposition(1) Top(4)

* Collection for detail fields
Define_Com Class(#Prim_A Col<#prim_evef>) Name(#PanelFields)

* Fields in the head area

Define_Com Class(#EMPNO.Visual) Displayposition(1) Height(19)
Hint(*MTXTDF_DET1) Left(4) Parent(#BODY_HEAD) Readonly(True)
Tabposition(1) Top(4) Usepicklist(False) Width(209)

Define_Com Class(#SURNAME.Visual) Displayposition(2) Height(19)
Hint(*MTXTDF_DET1) Left(4) Parent(#BODY_HEAD) Tabposition(2)
Top(27) Usepicklist(False) Width(324)

Define_Com Class(#GIVENAME.Visual) Displayposition(3) Height(19)
Hint(*MTXTDF_DET1) Left(4) Parent(#BODY_HEAD) Tabposition(3)
Top(50) Usepicklist(False) Width(324)

Define_Com Class(#ADDRESS1.Visual) Displayposition(4) Height(19)
Hint(*MTXTDF_DET1) Left(4) Parent(#BODY_HEAD) Tabposition(4)
Top(73) Usepicklist(False) Width(363)

Define_Com Class(#ADDRESS2.Visual) Displayposition(5) Height(19)
Hint(*MTXTDF_DET1) Left(4) Parent(#BODY_HEAD) Tabposition(5)
Top(96) Usepicklist(False) Width(363)

Define_Com Class(#ADDRESS3.Visual) Displayposition(6) Height(19)

Hint(*MTXTDF_DET1) Left(4) Parent(#BODY_HEAD) Tabposition(6)
Top(119) Usepicklist(False) Width(363)

Define_Com Class(#POSTCODE.Visual) Displayposition(7) Height(19)

Hint(*MTXTDF_DET1) Left(4) Parent(#BODY_HEAD) Tabposition(7)
Top(142) Usepicklist(False) Width(216)

Define_Com Class(#PHONEHME. Visual) Displayposition(8) Height(19)
Hint(*MTXTDF_DET1) Left(4) Parent(#BODY_HEAD) Tabposition(8)
Top(165) Usepicklist(False) Width(286)

Define_Com Class(#PRIM_ATLM) Name(#ATLM_1)

Define_Com Class(#PRIM_ATLI) Name(#ATLI_1) Attachment(Center)
Parent(#ATLM_1)

Define_Com Class(#PRIM_ATLI) Name(#ATLI_2) Attachment(Center)
Manage(#BODY_HEAD) Parent(#¥MAIN_LAYOUT)

Define_Com Class(#PRIM_ATLI) Name(#ATLI_3) Attachment(Right)
Manage(#BUTTON_PANEL) Parent(#MAIN_LAYOUT)

Define_Com Class(#vf_sy122) Name(#myscreen_wrapper)
Displayposition(3) Height(569) Parent(#COM_OWNER) Width(688)

Define_Com Class(#PRIM_ATLI) Name(#ATLI_4) Attachment(Center)
Parent(#MAIN_LAYOUT)

Define_Com Class(#PRIM_ATLI) Name(#ATLI_6) Attachment(Center)
Manage(#myscreen_wrapper) Parent(#¥MAIN_LAYOUT)

* To better understand this example you should be famililar with the shipped
Personnel System demo.
sk

* We expect the following screens to appear as part of this navigation:

sk

* Login -> type in user and password -> press Enter -> (a special screen?
<F3>)

* i5 Main Menu -> type lansa run process(pslsys) partition(dem) -> press
Enter

* Personnel System -> type option 3 -> press Enter

* Inquire -> type the current instance employee number -> press Enter

* Browse Employee Details and Skills in OUTPUT mode -> press F21

* Browse Employee Details and Skills in INPUT mode

Mthroutine Name(ulnitialize) Options(*REDEFINE)

Define_Com Class(#Prim_evef) Name(#FormField) Reference(*dynamic)
Invoke Method(#Com_Ancestor.ulnitialize)

For Each(#Control) In(#Body_Head.ComponentControls)

If_Ref Com(#Control) Is(*INSTANCE_OF #prim_evef)

Set_Ref Com(#FormField) To(*dynamic #Control)

Invoke Method(#PanelFields.Insert) Item(#FormField)

Endif

Endfor

* Set the uCommand wrapper property.
Set Com(#myscreen_wrapper) Ucommand(#com_owner)

Endroutine

* Handle Command Execution
sk

* Always invoke makerampTSavailable to ensure RAMP-TS is up and

running before starting a navigation
sk

* You may also disable the entire form to prevent any input while RAMP is

navigating

Mthroutine Name(uExecute) Options(*REDEFINE)
Invoke Method(#Com_Ancestor.uExecute)
#myscreen_wrapper.makerampTSavailable

Set Com(#Save_Button) Enabled(False)

#com_owner.enabled := false
Endroutine

* RAMP has signalled it's ready. Invoke your navigation here.
sk

* Once the navigaton starts, processing resumes in the vHandleArrive event
handler.

%

Evtroutine Handling(#myscreen_wrapper.RampTSAvailable)
Invoke Method(#myscreen_wrapper.navigatetoscreen) Name('updempskills')

Endroutine

%

* The Payload is a 256 character string sent together with a SENDKEY. Use
the Payload in the same way you would use parameters in an event.

* Assuming when "'updempskills' arrives we change some details and press
Enter or click on the SAVE button, we expect one of these 2 screens to appear:
* If the SAVE was successfull, the INQUIRE screen appears.

* If the SAVE was NOT successfull, the update employee screen will reappear

* Setting the Payload we determine what caused the screen 'updempskills' to
arrive.

sk

* 1. In the Button script of updempskills for the Enter key, we attach a payload
"UPDATE_EMPLOYEE":

case KeyEnter:

SENDKEY(KeyEnter, "UPDATE_EMPLOYEE");
& break;
* 2. In the ARRIVE script of INQUIRE, we test payload. If the Payload is
UPDATE_EMPLOYEE this is telling us we have just done an Update and we
are most likely to want to go back to the same screen.

* ¥ % |l

if (TOSTRING(oPayload) == "UPDATE_EMPLOYEE")

{
NAVIGATE_TO_DESTINATION("updempskills");

}

* ¥ ¥ ¥ ¥ %

Evtroutine Handling(#myscreen_wrapper.vHandleArrive)
Arrivedscreen(#CurrentScreen) Previousscreen(#PreviousScreen)
Arrivedpayload(#Payload)

Case (#CurrentScreen)

When Value_Is(= 'updempskills')

Set Com(#SAVE_BUTTON) Enabled(false)

* Payloads are destroyed when the ARRIVE script finishes executing.
Therefore, a payload of UPDATE_EMPLOYEE would most likely mean there
was a validation error. Otherwise - if INQUIRE had arrived - the Payload
would have been destroyed.

If (#Payload = UPDATE_EMPLOYEE)

Use Builtin(message_box_show) With_Args(ok ok info "Validation Error"
"Please correct any errors")

Else

* Unlock the framework
Set Com(#avFrameworkManager) Ulocked(false)

#myscreen_wrapper.getvalue From('empno’) Value(#empno.value)
#myscreen_wrapper.getvalue From('surname’) Value(#surname.value)
#myscreen_wrapper.getvalue From('givename') Value(#givename.value)
#myscreen_wrapper.getvalue From('address1') Value(#address1.value)
#myscreen_wrapper.getvalue From('address2") Value(#address2.value)
#myscreen_wrapper.getvalue From('address3') Value(#address3.value)
#myscreen_wrapper.getvalue From('homephone') Value(#phonehme.value)
#myscreen_wrapper.getvalue From('postcode') Value(#POSTCODE.value)

#com_owner.enabled := true
Endif
Endcase

Endroutine

Mthroutine Name(Save)

* Set the 5250 field values to the values from this panel
#myscreen_wrapper.setvalue Infield('surname") Value(#surname.value)
#myscreen_wrapper.setvalue Infield('givename') Value(#givename.value)
#myscreen_wrapper.setvalue Infield('address1') Value(#address1.value)
#myscreen_wrapper.setvalue Infield('address2') Value(#address2.value)
#myscreen_wrapper.setvalue Infield('address3') Value(#address3.value)
#myscreen_wrapper.setvalue Infield("homephone') Value(#phonehme.value)
#myscreen_wrapper.setvalue Infield('postcode’) Value(#POSTCODE.value)

* Send the Enter key with the payload
#myscreen_wrapper.sendkey Key(#myscreen_wrapper.KeyEnter)
Payload(UPDATE_EMPLOYEE)

Endroutine
* Listen to messages from RAMP and the 5250 application

Evtroutine Handling(#myscreen_wrapper.RampMessage)
Umessagetype(#MsgType) Umessagetext(#MsgText)

Case (#msgtype.value)

When Value_Is('= VF_ERROR')

* Fatal messages reported by Ramp (e.g. Navigation request failed, etc). If in
design mode, show the underlying 5250 screen. Otherwise, make the error
message appear in a message box on top of the command

If (#usystem.iDesignMode = true)

Set Com(#myscreen_wrapper) Visible(True)

Else

Message Msgid(dcm9899) Msgf(dc@mO01) Msgdta(#msgtext.value)
#com_owner.avshowmessages

Endif

* Messages sent by the System i application or unknown form was
encountered

When Value_Is('= VF_INFO' '= VF_UNKNOWN_FORM)

Message Msgid(dcm9899) Msgf(dc@mO01) Msgdta(#msgtext.value)

* Failure to initialize RAMP. Could occur for mainly one of two reasons
When Value_Is('= VF_INIT_ERROR')

Message Msgid(dcm9899) Msgf(dc@mO01) Msgdta(#msgtext.value)

#com_owner.avshowmessages
Otherwise

Use Builtin(message_box_show) With_Args(ok ok info *Component
('Unknown message type ' + #MsgType + 'encountered'))

Endcase

Endroutine

Evtroutine Handling(#PanelFields<>.Changed)

* Enable the save button
Set Com(#SAVE_BUTTON) Enabled(True)

* Lock the framework and set a message for the user

Use Builtin(bconcat) With_Args('Changes made to employee' #GiveName
#Surname 'have not been saved yet.' 'Do you want to save them before
continuing?') To_Get(#sysvar$av)

Set Com(#avFrameworkManager) Ulocked(USER)
Ulockedmessage(#sysvar$av)

Endroutine

Evtroutine Handling(#PanelFields<>.KeyPress)
Options(*NOCLEARMESSAGES *NOCLEARERRORS)
Keycode(#KeyCode)

If Cond('#KeyCode.Value = Enter")

* If there no changes have been made issue message and ignore enter
If Cond(‘#SAVE_BUTTON.Enabled *EQ True")

Invoke Method(#Com_Owner.Save)

Else

* Issue 'There are no changes to save' message

Use Builtin(Message_box_show) With_Args(ok ok Info *Component
*MTXTDF_NO_SAVE)

Endif
Endif

Endroutine

Evtroutine Handling(#SAVE_BUTTON.Click)
#com_owner.Save

Endroutine

Mthroutine Name(uTerminate) Options(*REDEFINE)

* Clean up the colelction of fields on the panel
Invoke Method(#PanelFields.RemoveAll)

* Do any termination defined in the ancestor
Invoke Method(#Com_Ancestor.uTerminate)

Endroutine

End_Com

Example 2: Show Employee Details and Skills

This example is an extension of the previous one. It shows the same details but
it also shows the skills in a Visual LANSA list view.

Basic details | o approve | [Details | "2 Example & Skils | 3 Transfer [~ Email | = video all Details

Employes Mumber A0090

Employee Surname BLOGE

Employee Given Name(s) FRED JOHM HEMRY

Street Mo and Name 72 MAIM STREET

Suburb ar Town MEWTCOWMN HEIGHTS

State and Country ALSTRALLA

Post | Zip Code 2202

Home Phone Number 344-2345
Acquired Skill Code Skill Comment Gara...
Z1/01/587 L CL PROGRAMMIMNGZ 1 D
0foofo1 COBOL COBOL PROGRAMMIMG MARKED IMPROYE,.. P
7lo7lEs ECD ECONOMICS DEGREE 2 P
0foofo1 INTRO COMPAMNY INTRODIICTION 3 M
1fo1/a9 MAaMAGE 1 MAMAGEMENT COLURSE 1 4 P
25/09/58 MARKETZ MARKETIMG COURSE 2 F
100659 MARKETS MARKETIMG COURSE 3 P
Zlogfa9 ME& MASTER. BUSINESS P
1fo1/az RPG RPG PROGRAMMIMG & P

In this example you can see how to access a subfile/browselist:

Function Options(*DIRECT)

Begin_Com Role(*EXTENDS #VF_AC010) Height(569)
Layoutmanager(#MAIN_LAYOUT) Width(776)

* Simple Field and Group Definitions
sk

Group_By Name(#XG_HEAD) Fields(#eMPNO #SURNAME #GIVENAME
#ADDRESS1 #ADDRESS2 #ADDRESS3 #POSTCODE #PHONEHME
#DEPTMENT #SECTION)

* Body and Button arrangement panels

Define_Com Class(#PRIM_PANL) Name(#BUTTON_PANEL)
Displayposition(2) Height(569) Hint(*MTXTDF_DET1)
Layoutmanager(#BUTTON_FLOW) Left(688) Parent(#COM_OWNER)
Tabposition(3) Tabstop(False) Top(0) Width(88)

Define_Com Class(#PRIM_PANL) Name(#BODY_HEAD)
Displayposition(1) Height(569) Hint(*MTXTDF_DET1)
Layoutmanager(#BODY_HEAD_FLOW) Left(0) Parent(#COM_OWNER)
Tabposition(2) Tabstop(False) Top(0) Verticalscroll(True) Width(688)

* Attachment and flow layout managers

Define_Com Class(#PRIM_ATLM) Name(#MAIN_LAYOUT)
Define_Com Class(#PRIM_FWLM) Name(#BUTTON_FLOW)
Direction(TopToBottom) Flowoperation(Center) Marginbottom(4)
Marginleft(4) Marginright(4) Margintop(4) Spacing(4) Spacingitems(4)

Define_Com Class(#PRIM_FWLM) Name(#BODY_HEAD_FLOW)
Direction(TopToBottom) Marginbottom(4) Marginleft(4) Marginright(4)
Margintop(4) Spacing(4) Spacingitems(4)

Define_Com Class(#PRIM_FWLI) Name(#FWLI_EMPNO)
Manage(#EMPNO) Parent(#BODY_HEAD_FLOW)
Define_Com Class(#PRIM_FWLI) Name(#f WLI_SURNAME)
Manage(#SURNAME) Parent(#BODY_HEAD_FLOW)
Define_Com Class(#PRIM_FWLI) Name(#FWLI_GIVENAME)
Manage(#GIVENAME) Parent(#BODY_HEAD_FLOW)
Define_Com Class(#PRIM_FWLI) Name(#FWLI_ADDRESS1)
Manage(# ADDRESS1) Parent(#BODY_HEAD_FLOW)
Define_Com Class(#PRIM_FWLI) Name(#FWLI_ADDRESS?2)
Manage(# ADDRESS?2) Parent(#BODY_HEAD_FLOW)
Define_Com Class(#PRIM_FWLI) Name(#FWLI_ADDRESS3)
Manage(# ADDRESS3) Parent(#BODY_HEAD_FLOW)

Define_Com Class(#PRIM_FWLI) Name(#FWLI_POSTCODE)
Manage(#POSTCODE) Parent(#BODY_HEAD_FLOW)
Define_Com Class(#PRIM_FWLI) Name(#f WLI_PHONEHME)
Manage(#PHONEHME) Parent(#BODY_HEAD_FLOW)
Define_Com Class(#PRIM_FWLI) Name(#f WLI_SAVE_BUTTON)
Manage(#SAVE_BUTTON) Parent(#BUTTON_FLOW)

* The save button

Define_Com Class(#PRIM_PHBN) Name(#SAVE_BUTTON)
Caption(*MTXTDF_SAVE) Displayposition(1) Left(4)
Parent(#BUTTON_PANEL) Tabposition(1) Top(4)

* Collection for detail fields
Define_Com Class(#Prim_A Col<#prim_evef>) Name(#PanelFields)
* Fields in the head area

Define_Com Class(#EMPNO. Visual) Displayposition(1) Height(19)
Hint(*MTXTDF_DET1) Left(4) Parent(#BODY_HEAD) Tabposition(1)
Top(4) Usepicklist(False) Width(209)

Define_Com Class(#SURNAME.Visual) Displayposition(2) Height(19)
Hint(*MTXTDF_DET1) Left(4) Parent(#BODY_HEAD) Tabposition(2)
Top(27) Usepicklist(False) Width(324)

Define_Com Class(#GIVENAME.Visual) Displayposition(3) Height(19)
Hint(*MTXTDF_DET1) Left(4) Parent(#BODY_HEAD) Tabposition(3)
Top(50) Usepicklist(False) Width(324)

Define_Com Class(#ADDRESS1.Visual) Displayposition(4) Height(19)
Hint(*MTXTDF_DET1) Left(4) Parent(#BODY_HEAD) Tabposition(4)
Top(73) Usepicklist(False) Width(363)

Define_Com Class(#ADDRESS2.Visual) Displayposition(5) Height(19)
Hint(*MTXTDF_DET1) Left(4) Parent(#BODY_HEAD) Tabposition(5)
Top(96) Usepicklist(False) Width(363)

Define_Com Class(#ADDRESS3.Visual) Displayposition(6) Height(19)
Hint(*MTXTDF_DET1) Left(4) Parent(#BODY_HEAD) Tabposition(6)
Top(119) Usepicklist(False) Width(363)

Define_Com Class(#POSTCODE.Visual) Displayposition(7) Height(19)
Hint(*MTXTDF_DET1) Left(4) Parent(#BODY_HEAD) Tabposition(7)

Top(142) Usepicklist(False) Width(216)
Define_Com Class(#PHONEHME. Visual) Displayposition(8) Height(19)
Hint(*MTXTDF_DET1) Left(4) Parent(#BODY_HEAD) Tabposition(8)
Top(165) Usepicklist(False) Width(286)

Define_Com Class(#PRIM_ATLM) Name(#ATLM_1)

Define_Com Class(#PRIM_ATLI) Name(#ATLI_1) Attachment(Center)
Parent(#ATLM_1)

Define_Com Class(#PRIM_ATLI) Name(#ATLI_2) Attachment(Center)
Manage(#BODY_HEAD) Parent(#MAIN_LAYOUT)

Define_Com Class(#PRIM_ATLI) Name(#ATLI_3) Attachment(Right)
Manage(#BUTTON_PANEL) Parent(#MAIN_LAYOUT)

Define_Com Class(#PRIM_ATLI) Name(#ATLI_4) Attachment(Center)
Parent(#MAIN_LAYOUT)
Define_Com Class(#PRIM_ATLI) Name(#ATLI_6) Attachment(Center)
Parent(#MAIN_LAYOUT)

Define_Com Class(#PRIM_FWLI) Name(#FWLI_1)
Parent(#BODY_HEAD_FLOW)

Define_Com Class(#PRIM_LTVW) Name(#skills) Componentversion(2)
Displayposition(9) Fullrowselect(True) Height(229) Left(4)
Parent(#BODY_HEAD) Showsortarrow(True) Tabposition(9) Top(188)
Width(485)

Define_Com Class(#PRIM_LVCL) Name(#LVCL_1) Caption('Acquired’)
Captiontype(Caption) Displayposition(1) Parent(#skills)
Source(#VF_ELTXTS) Width(18) Widthtype(Fixed)

Define_Com Class(#PRIM_LVCL) Name(#LVCL_2) Displayposition(2)
Parent(#skills) Source(#SKILCODE) Width(17)

Define_Com Class(#PRIM_LVCL) Name(#LVCL_3)
Captiontype(ColumnHeadings) Displayposition(3) Parent(#skills)
Source(#SKILDESC) Width(32)

Define_Com Class(#PRIM_LVCL) Name(#LVCL_4)
Captiontype(ColumnHeadings) Displayposition(4) Parent(#skills)
Source(#*COMMENT) Width(24)

Define_Com Class(#PRIM_LVCL) Name(#LVCL_5) Displayposition(5)
Parent(#skills) Source(#GRADE) Width(8) Widthtype(Characters)

Define_Com Class(#vf_sy122) Name(#myscreen_wrapper)
Displayposition(3) Height(569) Parent(#COM_OWNER) Width(688)

* To better understand this example you should be famililar with the shipped
Personnel System demo.
sk

* We expect the following screens to appear as part of this navigation:

sk

* Login -> type in user and password -> press Enter -> (a special screen?
<F3>)

* i5 Main Menu -> type lansa run process(pslsys) partition(dem) -> press
Enter

* Personnel System -> type option 3 -> press Enter

* Inquire -> type the current instance employee number -> press Enter

* Browse Employee Details and Skills in OUTPUT mode -> press F21

* Browse Employee Details and Skills in INPUT mode

Mthroutine Name(ulnitialize) Options(*REDEFINE)

Define_Com Class(#Prim_evef) Name(#FormField) Reference(*dynamic)
Invoke Method(#Com_Ancestor.ulnitialize)

For Each(#Control) In(#Body_Head.ComponentControls)

If_Ref Com(#Control) Is(*INSTANCE_OF #prim_evef)

Set_Ref Com(#FormField) To(*dynamic #Control)

Invoke Method(#PanelFields.Insert) Item(#FormField)

Endif

Endfor

* Set the uCommand wrapper property.
Set Com(#myscreen_wrapper) Ucommand(#com_owner)

Endroutine

* Handle Command Execution

sk

* Always invoke makerampTSavailable to ensure RAMP-TS is up and
running before starting a navigation

sk

* You may also disable the entire form to prevent any input while RAMP is
navigating

Mthroutine Name(uExecute) Options(*REDEFINE)

Invoke Method(#Com_Ancestor.uExecute)

Invoke Method(#myscreen_wrapper.MakeRampTSAvailable)
Set Com(#Save_Button) Enabled(False)
#com_owner.enabled := false

Endroutine

* RAMP has signalled it's ready. Invoke your navigation here. Also, clear the

list and panel fields.

*

* Once the navigaton starts, processing resumes in the vHandleArrive event
handler.

*

Evtroutine Handling(#myscreen_wrapper.RampTSAvailable)

Clr_List Named(#skills)
#XG_HEAD :=*null
Invoke Method(#myscreen_wrapper.navigatetoscreen) Name('updempskills')

Endroutine

*

* The Payload is a 256 character string sent together with a SENDKEY. Use
the Payload in the same way you would use parameters in an event.

* Assuming when 'updempskills' arrives we change some details and press
Enter or click on the SAVE button, we expect one of these 2 screens to appear:
* If the SAVE was successfull, the INQUIRE screen appears.

* If the SAVE was NOT successfull, the update employee screen will reappear
* Setting the Payload we determine what caused the screen 'updempskills' to
arrive.

sk

* 1. In the Button script of updempskills for the Enter key, we attach a payload
"UPDATE_EMPLOYEE":

case KeyEnter:

SENDKEY(KeyEnter, "UPDATE_EMPLOYEE")
g break
* 2. In the ARRIVE script of INQUIRE, we test payload. If the Payload is
UPDATE_EMPLOYEE this is telling us we have just done an Update and we
are most likely to want to go back to the same screen.

* ¥ % |l

if (TOSTRING(oPayload) == "UPDATE_EMPLOYEE")

{
NAVIGATE_TO_DESTINATION("updempskills™)

}

* ¥ ¥ ¥ ¥ %

Evtroutine Handling(#myscreen_wrapper.vHandleArrive)
Arrivedscreen(#CurrentScreen) Previousscreen(#PreviousScreen)
Arrivedpayload(#Payload)

Define_Com Class(#prim_boln) Name(#MoreRecords)
Case (#CurrentScreen)

When Value_Is(= 'updempskills')

Set Com(#SAVE_BUTTON) Enabled(false)

* Payloads are destroyed when the ARRIVE script finishes executing.
Therefore, a payload of UPDATE_EMPLOYEE would most likely mean there
was a validation error. Otherwise - if INQUIRE had arrived - the Payload
would have been destroyed.

If (#Payload = UPDATE_EMPLOYEE)

Use Builtin(message_box_show) With_Args(ok ok info "Validation Error"
"Please correct any errors")

Else
* Unlock the framework - no harm done if it wasn't locked
Set Com(#avFrameworkManager) Ulocked(false)

* Get the current instance and the values of the panel fields
Invoke Method(#avListManager.GetCurrentInstance) Akey1(#deptment)
Akey?2(#section)

* If there are no entries in the list or have sent a PageDown key, get the subfile
page currently on the hidden 5250
If ((#skills.entries *LE 0) Or (#Payload = NEXT_PAGE))

#MoreRecords := #com_owner.uGetSubfilePage

* There are more records in teh subfile, send a pagedown. Processing will
continue in this same event handler once the same screen with the next subfile

page has arrived
If (#MoreRecords)

#myscreen_wrapper.sendkey Key(#myscreen_wrapper.KeyPageDown)
Payload(NEXT_PAGE)

* When all the records have been added to the list view we can re enable the
panel

Else

#com_owner.enabled := true

#myscreen_wrapper.getvalue From('empno’) Value(#empno.value)
#myscreen_wrapper.getvalue From('surname’) Value(#surname.value)
#myscreen_wrapper.getvalue From('givename') Value(#givename.value)
#myscreen_wrapper.getvalue From('address1') Value(#address1.value)
#myscreen_wrapper.getvalue From('address2") Value(#address2.value)
#myscreen_wrapper.getvalue From('address3') Value(#address3.value)
#myscreen_wrapper.getvalue From('homephone') Value(#phonehme.value)
#myscreen_wrapper.getvalue From('postcode') Value(#POSTCODE.value)
Endif

Else

* We can assume that there has been a successfull update so update the
instance list.

Invoke Method(#avListManager.UpdateListEntryData) Akey1(#Deptment)
Akey2(#Section) Akey3(#Empno.value) Visualid2(#surname + " " +
#givename) Businessobjecttype(EMPLOYEE)

Endif
Endif

Endcase
Set Com(#myscreen_wrapper) Visible(False)
Endroutine

* Traverse the skills subfile/browselist

* The technique used here consists of picking one field we know it's in the
subfile, in this case "dateacq" and while there it is present on the screen, get
all teh fields.

* Fields in RAMP-TS subfiles are indexed starting from 1. A subfile page
with 7 rows will have 7 instances of each of the fields in the subfile. Here we
increase #listcount and use it to get the value of a field.

* Note that you can specify a default value when using the getvalue method.
Mthroutine Name(uGetSubfilePage)

Define_Map For(*result) Class(#prim_boln) Name(#NextPage)
Define Field(#MoreVal) Type(*char) Length(1)

#listcount := 1
#NextPage := false

Dowhile (#myscreen_wrapper.check_field_exists("dateacq" #listcount))

#myscreen_wrapper.getvalue From("dateacq") Value(#vf_eltxts)
Defaultvalue(#ddmmyy) Index(#listcount)

#myscreen_wrapper.getvalue From("skillcode") Value(#skilcode)
Index(#listcount)

#myscreen_wrapper.getvalue From("skilldesc") Value(#skildesc)
Index(#listcount) Defaultvalue("Defalt value™)

#myscreen_wrapper.getvalue From("comment") Value(#comment)
Index(#listcount)

#myscreen_wrapper.getvalue From("grade™) Value(#grade) Index(#listcount)

* You can put some tracing
#com_owner.avframeworkmanager.avRecordTrace Component(#com_owner)
Event("Adding entry = " + #vf_eltxts + ", " + #skilcode + ", " + #skildesc + ",
" + #grade)

Add_Entry To_List(#skills)

#listcount += 1

Endwhile

* when identifying this screen we set the name of the "+" sign =
"moreindicator”. The presence of that field in the last row of the subfile tells

us whether there is another page. The last row is one less than the current
value of #listcount.

#listcount -= 1

If (#myscreen_wrapper.check_field_exists("moreindicator" #listcount))
#myscreen_wrapper.getvalue From("moreindicator") Value(#MoreVal)
Index(#listcount)

#NextPage := (#MoreVal.trim *NE "")

Endif

Endroutine

* Listen to messages from RAMP and the 5250 application

Evtroutine Handling(#myscreen_wrapper.RampMessage)
Umessagetype(#MsgType) Umessagetext(#MsgText)

Case (#msgtype.value)

When Value_Is('= VF_ERROR')

* Fatal messages reported by Ramp (e.g. Navigation request failed, etc). If in
design mode, show the underlying 5250 screen. Otherwise, make the error
message

* appear in a message box on top of the command

If (#usystem.iDesignMode = true)

Set Com(#myscreen_wrapper) Visible(True)

Else

Message Msgid(dcm9899) Msgf(dc@mO01) Msgdta(#msgtext.value)

#com_owner. aVShOWIIIESSElgES

Endif

* Messages sent by the System i application or unknown form was
encountered

When Value_Is('= VF_INFO' '= VF_UNKNOWN_FORM)
Message Msgid(dcm9899) Msgf(dc@mO01) Msgdta(#msgtext.value)
* Failure to initialize RAMP. Could occur for mainly one of two reasons
When Value_Is('= VF_INIT_ERROR')

Message Msgid(dcm9899) Msgf(dc@mO01) Msgdta(#msgtext.value)
#com_owner.avshowmessages

Otherwise

Use Builtin(message_box_show) With_Args(ok ok info *Component
('Unknown message type ' + #MsgType + 'encountered'))

Endcase

Endroutine

Evtroutine Handling(#PanelFields<>.Changed)

* Enable the save button
Set Com(#SAVE_BUTTON) Enabled(True)

* Lock the framework and set a message for the user

Use Builtin(bconcat) With_Args('Changes made to employee' #GiveName

#Surname 'have not been saved yet.' 'Do you want to save them before
continuing?') To_Get(#sysvar$av)

Set Com(#avFrameworkManager) Ulocked(USER)

Ulockedmessage(#sysvar$av)

Endroutine

Evtroutine Handling(#PanelFields<>.KeyPress)
Options(*NOCLEARMESSAGES *NOCLEARERRORS)
Keycode(#KeyCode)

If Cond('#KeyCode.Value = Enter")

* If there no changes have been made issue message and ignore enter
If Cond(‘#SAVE_BUTTON.Enabled *EQ True")

Invoke Method(#Com_Owner.Save)

Else

* Issue 'There are no changes to save' message

Use Builtin(Message_box_show) With_Args(ok ok Info *Component
*MTXTDF_NO_SAVE)

Endif

Endif

Endroutine

Evtroutine Handling(#SAVE_BUTTON.Click)

* Call the Save method

Invoke Method(#Com_Owner.Save)

Endroutine

Mthroutine Name(Save)

* Set the 5250 field values to the values from this panel
#myscreen_wrapper.setvalue Infield('surname") Value(#surname.value)
#myscreen_wrapper.setvalue Infield('givename') Value(#givename.value)
#myscreen_wrapper.setvalue Infield('address1') Value(#address1.value)
#myscreen_wrapper.setvalue Infield('address2') Value(#address2.value)
#myscreen_wrapper.setvalue Infield('address3') Value(#address3.value)
#myscreen_wrapper.setvalue Infield("homephone') Value(#phonehme.value)
#myscreen_wrapper.setvalue Infield('postcode’) Value(#POSTCODE.value)

* Send the Enter key with the payload
#myscreen_wrapper.sendkey Key(#myscreen_wrapper.KeyEnter)
Payload(UPDATE_EMPLOYEE)

Endroutine

Mthroutine Name(uTerminate) Options(*REDEFINE)

* Clean up the colelction of fields on the panel
Invoke Method(#PanelFields.RemoveAll)

* Do any termination defined in the ancestor
Invoke Method(#Com_Ancestor.uTerminate)

Endroutine

Example 3: Show the System i Disk Usage

A screen wrapper can pick values out of hidden 5250 screen(s) and present it in
completely different ways. This example shows the disk usage of a System i
graphically:

] Miscelaneous | [Tax Calculator |

Disk: ik %o Use Refresh Statistics
70.4

0.4
0.4
0.4
0.4
0.4

L= Iy B S T

20

20
Use

Disgk Units

To access the work with disk status screen type wrkdsksts in the command line.
The name given to the Work with Disk Status screen in this example is
"DiskStatus".

When in the disk status screen, read the %Use column of the subfile and feed
the data to the graph.

Function Options(*DIRECT)

Begin_Com Role(*EXTENDS #VF_AC010) Height(559)
Hint(*MTXTDF_DET1) Layoutmanager(#ATLM_1) Width(557)

Define_Com Class(#PRIM_GRID) Name(#DiskSts) Displayposition(1)
Height(150) Left(109) Parent(#PANL_2) Rowheight(19) Tabposition(1)
Top(15) Width(212)

Define_Com Class(#PRIM_GDCL) Name(#GDCL_1) Caption('Disk Unit')
Captiontype(Caption) Displayposition(1) Parent(#DiskSts)
Source(#VF_ELTYP) Width(29)

Define_Com Class(#PRIM_GDCL) Name(#GDCL_2) Caption('% Use")
Captiontype(Caption) Displayposition(2) Parent(#DiskSts) Readonly(False)
Source(#VF_ELTXTS) Width(30) Widthtype(Remainder)

Define_Com Class(#PRIM_GRPH) Name(#GRPH_1) Displayposition(1)
Height(370) Left(0) Parent(#PANL_3) Scatterstyle(SymbolAtPoints+Solid)
Surfacestyle(ConnectLinesInBlack) Tabposition(1) Top(0) Width(557)
Xcaption('Disk Units') Ycaption('% Use")

Define_Com Class(#PRIM_GRCL) Name(#GRCL_1) Columnrole(Label)
Displayposition(1) Parent(#GRPH_1) Source(#VF_ELTYP)

Define_Com Class(#PRIM_GRCL) Name(#GRCL_2)
Columnsymbol(HollowUpTriangle) Displayposition(2) Parent(#GRPH_1)
Source(#VF_ELWIDP)

Define_Com Class(#vf_sy122) Name(#myscreen_wrapper)
Displayposition(3) Height(513) Left(144) Parent(#PANL_1) Top(24)
Visible(False) Width(593)

Define_Com Class(#PRIM_PANL) Name(#PANL_1) Displayposition(1)
Height(559) Layoutmanager(#SPLM_1) Left(0) Parent(#COM_OWNER)
Tabposition(1) Tabstop(False) Top(0) Width(557)

Define_Com Class(#PRIM_ATLM) Name(#ATLM_1)
Define_Com Class(#PRIM_ATLI) Name(#ATLI_1) Attachment(Center)
Manage(#PANL_1) Parent(#ATLM_1)

Define_Com Class(#PRIM_SPLM) Name(#SPLM_1)

Define_Com Class(#PRIM_PANL) Name(#PANL_2) Displayposition(1)
Height(181) Layoutmanager(#f WLM_1) Left(0) Parent(#PANL_1)
Tabposition(2) Tabstop(False) Top(0) Width(557)

Define_Com Class(#PRIM_PANL) Name(#PANL_3) Displayposition(2)
Height(370) Layoutmanager(#ATLM_2) Left(0) Parent(#PANL_1)
Tabposition(3) Tabstop(False) Top(189) Width(557)

Define_Com Class(#PRIM_SPLI) Name(#SPLI_1) Manage(#PANL_2)
Parent(#SPLM_1) Weight(1)

Define_Com Class(#PRIM_SPLI) Name(#SPLI_2) Manage(#PANL_3)
Parent(#SPLM_1)

Define_Com Class(#PRIM_ATLM) Name(#ATLM_2)

Define_Com Class(#PRIM_ATLI) Name(#ATLI_2) Attachment(Center)
Manage(#GRPH_1) Parent(#ATLM_2)

Define_Com Class(#PRIM_FWLM) Name(#FWLM_1)
Direction(TopToBottom) Flowoperation(Center) Margintop(15)
Spacingitems(2)

Define_Com Class(#PRIM_FWLI) Name(#FWLI_3) Manage(#DiskSts)
Parent(#FWLM_1)

Define_Com Class(#PRIM_PHBN) Name(#PHBN_1) Caption('Refresh
Statistics') Displayposition(2) Left(331) Parent(#PANL_2) Tabposition(2)
Top(15) Width(117)

Define_Com Class(#PRIM_FWLI) Name(#FWLI_6) Manage(#PHBN_1)
Parent(#FWLM_1)

* This example shows a graph with the percentage of activity of each of the
System i disk units

Mthroutine Name(ulnitialize) Options(*REDEFINE)
* Do any initialization defined in the ancestor

Invoke Method(#Com_Ancestor.ulnitialize)

Set Com(#grph_1) Graphtype(Bar)

Set Com(#myscreen_wrapper) Ucommand(#com_owner)
Endroutine

Mthroutine Name(uExecute) Options(*REDEFINE)

* Do any execution logic defined in the ancestor

Invoke Method(#Com_Ancestor.uExecute)
Invoke Method(#myscreen_wrapper.MakeRampTSAvailable)

Endroutine

Evtroutine Handling(#myscreen_wrapper.RampTSAvailable)

* Clear the lists

Clr_List Named(#DiskSts)

Clr_List Named(#grph_1)

* Run teh scripts to navigate to work with disk status

* The navigation only involves 3 screens: Login -> System i main menu, type
wrkdsts in teh command line -> Destination Work with disk status.
Invoke Method(#myscreen_wrapper.navigatetoscreen) Name(wrkdsksts)
Endroutine

Evtroutine Handling(#myscreen_wrapper.vHandleArrive)
Arrivedscreen(#CurrentScreen) Previousscreen(#PreviousScreen)
Arrivedpayload(#Payload)

Define_Com Class(#prim_boln) Name(#MoreRecords)

Case (#CurrentScreen)

When Value_Is(= wrkdsksts)

* Payloads are destroyed when the ARRIVE script finishes executing.

* The payload is set to FIRST_ARRIVAL when teh enter key is sent in
System i main menu to differentiate what caused the screen to arrive:

* SETVALUE("cmdline","wrkdsksts")

* SENDKEY (KeyEnter, "FIRST_ARRIVAL");

* The same screen can arrive after sending the F10 or an F5, so we set

payload to indicate so

If (#Payload = RESTART_STATYS)

#myscreen_wrapper.sendkey Key(#myscreen_wrapper.KeyF5)
Payload(REFRESH_STATS)

Else
If (#Payload = FIRST_ARRIVAL)

#myscreen_wrapper.sendkey Key(#myscreen_wrapper.KeyF10)
Payload(RESTART_STATS)

Else
#com_owner.uGetSubfilePage
Endif

Endif

Endcase
Set Com(#myscreen_wrapper) Visible(False)
Endroutine

* When RAMP-TS encounters screens like WRKDSKSTS or WRKACTJOB,
it does not recognise the lists on them as subfiles (because they are not
actually subfiles).

* Instead they are recognised as multiple fields.

* However, your scripts can still process them similarly to lists, as long as you
follow a naming standard when naming the fields.

* In our WRKDSKSTS screen we identified the first column as UNITn and
the fourth column as USEDn

Mthroutine Name(uGetSubfilePage)
#listcount := 1

Dowhile (#myscreen_wrapper.check_field_exists(("USED" +
#listcount.asstring)))

#myscreen_wrapper.getvalue From("UNIT" + #listcount.asstring)
Value(#vf_eltyp)

#myscreen_wrapper.getvalue From("USED" + #listcount.asstring)
Value(#vf_eltxts)

#VF_ELWIDP := #vf eltxts.trim.asnumber

Add_Entry To_List(#DiskSts)
Add_Entry To_List(#grph_1)

#listcount += 1
Endwhile

Endroutine

Mthroutine Name(uTerminate) Options(*REDEFINE)
* Do any termination defined in the ancestor

Invoke Method(#Com_Ancestor.uTerminate)

Endroutine

* Refresh statistics
Evtroutine Handling(#PHBN_1.Click)

Invoke Method(#myscreen_wrapper.MakeRampAuvailable)
Foraction(RampTSAvailable)

Endroutine

End_Com

Programming Techniques

This section shows programming techniques to help you overcome common
application design issues and to easily integrate advanced functionality in your
RAMP applications.

Using Function Key Descriptions to Condition RAMP Buttons

Handling a Single Screen which Shows Multiple Modes

A Command Handler Tab with Many 5250 Destinations

Advanced Prompting

A RAMP Design Approach — Using a Single Junction Point (SJP)

Using HIDE_CURRENT_FORM to manage access to command handler tabs

Using Function Key Descriptions to Condition RAMP Buttons
This example shows how to match function key descriptions on 5250 screens:

With RAMP buttons and function keys

This example uses JavaScript function
SHARED.apply5250FunctionKeyPatterns which is designed to look for
Fn=xxxxxx patterns on specified screen lines and then use these patterns to
condition the RAMP-TS buttons and function keys to match.

Note that the matching does not include the text portion of the pattern. Normally
in RAMP-TS the button captions are defined independently of the 5250 screen
in RAMP-Tools.

To try out this example, copy and paste the functions in
SHARED.apply5250FunctionKeyPatterns into your SHARED script object,
file UF_SY420_RTS.JS. The logic in the functions is:

All RAMP-TS function keys and buttons are initially disabled.

The specified lines on the 5250 screen are searched for Fn=XXXXX patterns.
The associated function keys and buttons are enabled by calling the standard
SETKEYENABLED function.

If you have forced certain function keys to be always enabled this is then done
via SETKEYENABLED.

If you have forced certain function keys to be always disabled this is then done
via SETKEYENABLED.

Invoking the Function

Invoke the function from your destination screens arrival script - like this
example:

vHandle_ ARRIVE: function(oPayload, oPreviousForm)
{
var bReturn = true;
SHARED.apply5250FunctionKeyPatterns(22,23); /* Must be before
SHOW_CURRENT_FORM() */
SHOW_CURRENT_FORM(true); /* Show the form in the framework and
show VLF buttons */

HIDE_5250_BUTTONS(); /* Hide any 5250 style buttons
displayed */
GET_FORM_MESSAGE(22); /* Extract messages and hide the message
line */
SETBUSY (false); /* Last thing done - turn off the busy state */
This says to check on lines 22 and 23 of this arriving screen for Fn=xxxx text
patterns and attempt to match the RAMP-TS buttons and function keys with
them. Remember they are just text patterns and programmatically have nothing
precisely to do with what function keys are actually enabled by the 5250
screen. The text patterns are put on the 5250 screens for humans to read - not
computer programs.

Parameters
The function has these parameters:

Start Line Mandatory. Integer. The first line to be searched for

Number Fn=xxxx patterns.

End Line Optional. Integer. The last line to be searched for Fn=xxxxx

Number patterns. The default value is the same value as the start line
number.

Keys/Buttons to Optional. Array of function key identifiers. For example

always be [KeyEnter,KeyF11]

enabled

Keys /Buttons to Optional. Array of function key identifiers. For example [
always be KeyF12, KeyF3]

disabled.

For example:

SHARED.apply5250FunctionKeyPatterns(22, 23, [KeyEnter,KeyF1],
[KeyF12]);

says to check screen lines 22 to 23, always enable Enter and F1, and always
disable F12.

If you wanted to unconditionally enable the page up and down keys, which will
not have matching text patterns to enable them you would do this:

SHARED.apply5250FunctionKeyPatterns(22, 23, [KeyPageUp,
KeyPageDown]);

You could also do this permanently in the SHARED function.
Also see Questions about the Function.

Questions about the Function

What should you do if SHARED.apply5250FunctionKeyPatterns
does not work as expected?

Always try executing the screen with application level tracing turned on and
examine the results.

Also check that extra buttons that always appear when executing in design
mode (eg: Probe Screen) are not clouding the issue. The real test is to execute
the logic in UF_EXEC (end-user) mode.

The destination screen’s caption for the button may be clouding the issue. The
text pattern on the 5250 screen might say F7=Hop, but the screen’s definition in
RAMP tools might say that the F7 key is to have a button that is captioned
“Skip”.

Can you change the SHARED.apply5250FunctionKeyPatterns
logic?

Yes. This code is provided as an example for you to use in your SHARED
object.

It is your code to change and maintain as you see fit.

For example, you might decide that you want to enable all the function keys
initially. This is a possible solution when you have F24=More Keys style
screens, because it is impossible to work out which function keys are actually
enabled from the current screen only. To do this you would change this line:

for (var i = 0; i < oForm.vFKERTS.length; i++) { if
(oForm.vFKERTS.charAt(i) != "0") oForm.vFKERTS =
InsertString(oForm.vFKERTS,"0",i); }

To this:

for (var i = 0; i < oForm.vFKERTS.length; i++) { if
(oForm.vFKERTS.charAt(i) = "1") oForm.vFKERTS =
InsertString(oForm.vFKERTS,"1",i); }

You might decide that you always want to enable Enter and F1 without the
caller always having to specify this - so you could add this to the end of
SHARED.apply5250FunctionKeyPatterns:

SETKEYENABLED(GLOBAL_oCurrentTSform.symbolicName,KeyEnter,trt
SETKEYENABLED(GLOBAL_oCurrentTSform.symbolicName,KeyF1,true,

You might also decide to hook up the xxxxx text portion of Fn=xxxxx strings
with the button caption in some way. This is also possible by using the second
key match element fkeyMatch[2] and the standard RAMP-TS
OVERRIDE_KEY_CAPTION_SCREEN function.

You can probably now see that we could not possibly cover of all the options
and combinations automatically and efficiently by having specialized RAMP-
Tools options. There would be so many check boxes and options that no one
would understand what they meant or did. Using a generic scripted approach
like this is simpler and it allows you to to tailor the approach to your exact
needs.

What if you want to put
SHARED.apply5250FunctionKeyPatterns into every arrival
script?

You will have to add it to existing scripts individually - unless you are already
calling something in the SHARED object that you can hook into.

You can also change your arrival script skeleton so that
SHARED.apply5250FunctionKeyPatterns is automatically generated into all
new scripts. Search for “Script Skeletons” in the RAMP-TS guide
(lansa050.chm).

SHARED.apply5250FunctionKeyPatterns

This example JavaScript function is designed to look for Fn=xxxxxx patterns on
specified screen lines. Copy and paste the attached functions into your
SHARED script object, file UF_SY420_RTS.JS.

/I Apply Fn=xxxxxx function key patterns to buttons and function keys
enabled on the current RAMP-TS screen

apply5250FunctionKeyPatterns :
function(iLowRow,iHighRow,aForceEnable,aForceDisable)
{
if (GLOBAL_oAXESInterface == null) return; / No AXES interface
if (GLOBAL_oCurrentTSform == null) return; // No current AXES form
if (0GLOBAL_CurrentFORM == null) return; / No RAMP-TS
definition for the form

TRACE("SHARED.applyFunctionKeyPatterns started");

if (iHighRow == null) iHighRow = iLowRow; // default is same as
low row

var allkeys ="";

var typeOUTPUT =
GLOBAL_oAXESInterface.Element. TYPE_OUTPUT;

var ofForm = oGLOBAL_CurrentFORM,;

// Disable all function keys and buttons to start with.
// Note that the function keys (oForm.vFKERTYS) and the buttons
(oForm.vFKEVLF) are BOTH disabled here

TRACE("SHARED.applyFunctionKeyPatterns is disabling all function
keys and all buttons");

for (vari = 0; i < oForm.vFKEVLF.length; i++) { if
(oForm.vFKEVLF.charAt(i) !="0") oForm.vFKEVLF =
InsertString(oForm.vFKEVLE,"0",i); }

for (var i = 0; i < oForm.vFKERTS.length; i++) { if
(oForm.vFKERTS.charAt(i) != "0") oForm.vFKERTS =

InsertString(oForm.vFKERTS,"0",i); }

// Strip all output fields on the specified lines to create a long string of
function keys strings

for (var iRow = iLowRow; iRow <= iHighRow; iRow++)
{
var aAElement =
GLOBAL_oCurrentTSform.getElementsByRow(iRow);
for (vari = 0; i < aAElement.length; i++)
{
var oAXESElement = aAElement[i];
if (0AXESElement.type == typeOUTPUT) { allkeys +="" +
oAXESElement.getValue(); }
}
}

// This RegExp looks for strings of the form F1=XXXX (where "F" can
be F, PF, FP, CF

// or Cmd) XXXX can be a string of any length terminating at more than
one space,

// the end of the line or another instance of "F1=" (thats the ?= look ahead
group).

/I All groups are forgotten (that's the ?:) except the function number and
the XXXX text.

var reFKey = /\b(?:F|PF|FP|CF|Cmd)(\d+)[=-](.*?)(?=
(?:\b(?:F|PF|FP|CF|Cmd)\d+[=-]D)|\s{2,}|$)/gi;

var fkeyMatch = reFKey.exec(allkeys);
while (fkeyMatch != null)

{
var key = "F" + TRIM_RIGHT(fkeyMatch[1]);

// Note that the function key and the button are both being enabled here

SETKEYENABLED(GLOBAL_oCurrentTSform.symbolicName,key,true,true
fkeyMatch = reFKey.exec(allkeys);

}

// Enable any forced buttons. Note that the function key and the button are
BOTH enabled

if (aForceEnable != null)
{
TRACE("SHARED.applyFunctionKeyPatterns is forcing the
enablement of specified keys/buttons");
for (var i = 0; i < aForceEnable.length; i++) {
SETKEYENABLED(GLOBAL_oCurrentTSform.symbolicName,aForceEnab]
}
}

// Disable any forced buttons. Note that the function key and the button
are BOTH disabled

if (aForceDisable != null)
{
TRACE("SHARED.applyFunctionKeyPatterns is forcing the
disablement of specified keys/buttons");
for (var i = 0; i < aForceDisable.length; i++) {
SETKEYENABLED(GLOBAL_oCurrentTSform.symbolicName,aForceDisat
}
}

// Finished
TRACE("SHARED.applyFunctionKeyPatterns ended");

}, // <--- Note the comma

Handling a Single Screen which Shows Multiple Modes

In System i applications it is possible that a single screen handles multiple
modes.

For example, an application can have a single screen which allows ADD,
CHANGE, DISPLAY and DELETE.

See tutorial RAMP-TS008: Changing Inquiry Screen to Update Mode for an
example of how to handle this.

A Command Handler Tab with Many 5250 Destinations

You can associate many 5250 destination screens with a single command
handler tab. There are many uses for this capability and it may be used to
overcome some common application design issues.

For example, imagine that you have five different 5250 destination forms that
each request report production criteria and then submit the report to batch. Let's
call these five different 5250 screens uReport1, uReport? uReport5.

In prototyping this application you might approach handling these five different
reports in a number of ways:

Too Many Business Objects

Each report is defined as a unique business object named "Report 1" through
"Report 5". In this case the application navigation tree might be structured like
this ...

[(O Tool B | 4 Report 1
%) Demo Apphcaton
= g m
& Report 1
& Report 2
-I,Jj Report 3
i Report 4
o Report 5

When the user clicks on one of the reports the entire right hand side of the form
would display the reports associated 5250 form.

Too Many Command Tabs
You define a single business object called "Reports" which has five associated
commands or actions called Report 1 Report 5. In this case the application
navigation and command handler tabs might be structured like this ...
| On Teol Ba 48 Report : Report 1

e Appcxben - Reoortl | Oomeport? | 0 Reportd| o Reportd | [ReportS

When the user clicks on a report tab the associated 5250 form would appear on
the tab. One of the tabs would probably be a default.

There are a number of issues with these approaches:

The first approach consumes too many business objects

The second approach consumes too many commands (or actions)
What do you do if there are 50 or 500 different types of reports?

Solution: Dynamic Command Tab

The answer may be to use a single business object named, for example Reports
with a single dynamic command handler tab named Submit Report Request.

For example, here is the Reports business object set up to show two tabs. The
first is "Submit Report Request” and the second is "View Spool Files" which
might be used to display the output of report batch jobs in a variety of different
ways.

| On Tool Bar | 488 Repoct : Submit Report Request
o Efm Applcation — | Submit Report Request | [yiew Spool Fles
B =

.

9 Departments 2

£ Employees The 5250 destination screen shown on this form can be made to vary
Secbons] 1
Maonthiy Reparts at execution time according to user or a programmatic choice

In this example we are only interested in the "Submit Report Request"
command handler tab because we need, at execution time, to dynamically vary
which 5250 destination screen actually appears on it.

So how can you vary which 5250 screen appears on this single tab? There are
two main ways this is done:

A User Controlled Command Tab with Many Destinations
A Program Controlled Command Tab with Many Destinations

Limitations

Using the Framework SWITCH facility to switch to a command handler with
many 5250 destinations is not supported.

Any command handler using this option must be in the main Framework
window, not in a separate pop-up window.

A User Controlled Command Tab with Many Destinations

You can associate several destination screens with a command handler, in which
case the Framework automatically shows a window to allow the end-user decide
which screen to use:

Create the Reports business object

Make sure the Reports business object does not have any filters and is set up so
that it uses up the entire viewing area on the right hand side of the main form.

Give Reports a single business object level command handler named "Submit
Report Request". Make it the default command.

Define the five 5250 destination forms in the normal manner.

Associate all five 5250 destination forms with the Submit Report Request
command handler tab. As you do this the RAMP tool will notify that you are
associating multiple destinations with a single command handler tab.

Execute the application.

Whenever the Submit Report Request command tab needs to be displayed it
detects that it has multiple 5250 destinations and asks the user to choose which
one they would like to use:

[On Tool Bar]
= _ Cemo Application
E-&g HR

s Diey Report 1
‘“ Em FReport2
Seg FReport 3
Mot Report 4
[onl Reports
AnnusrRERGrtE”

A Program Controlled Command Tab with Many Destinations

You can create a program that controls which screen is displayed on the
command tab. This is slightly harder to set up but is more easily expanded.

Create the Reports business object

Give Reports a single instance level command handler named "Submit Report
Request". Make this the default command.

In the business object Reports create an invisible filter that fills the instance list
with the five report names. Make sure to include AKeyN and/or NKeyN values
that identify the associated report. For example:

BEGIN_COM ROLE(*EXTENDS #VF_AC007) HEIGHT(182) WIDTH(326)
Mthroutine ulnitialize Options(*Redefine)

#Com_Owner.avHiddenFilter := TRUE

#avListManager.ClearList

Invoke #avListManager.AddtoList Visualid1('Report 1') Visualid2('Daily
production report') AKey1(‘'uReport1') NKey1(1)

Invoke #avListManager.AddtoList Visualid1('Report 2') Visualid2('Monthly
production report') AKey1(‘'uReport2') NKey1(2)

Invoke #avListManager.AddtoList Visualid1('Report 3")
Visualid2('Overloaded production report') AKey1('uReport3') NKey1(3)
Invoke #avListManager.AddtoList Visualid1('Report 4') Visualid2('Monday
Morning Management Report') AKey1(‘'uReport4') NKey1(4)

Invoke #avListManager.AddtoList Visualid1('Report 5') Visualid2('Daily
production report’) AKey1('uReport5") NKey1(5)

* Instance list updating has been completed

INVOKE METHOD(#avListManager.EndListUpdate)
Endroutine

End_Com

The instance list and command handler tabs are presented to the user like this:

|_ O Tool Bar] Report Description
= (&) Demo Apphcation Report 1 Daily production report

=R =
&l Reports Report 3 Overicaded production report
4 Departments Report 4 Monday Morning Management Report
f: Employess Report 5 Diaily production report
f;f;ﬁﬂmm #_Rmt ¢ Submit Report Request (Repart 24onthly production report)
[J Online Reports — | Submit Report Request | M View Spool Files

A sl Bannrbe

When the user clicks on a report in the instance list the associated 5250
destination screen is displayed on the tab

Define the five 5250 destination forms in the normal manner.

Associate just the first 5250 destination forms (eg: uReport1) with the "Submit
Report Request” command handler tab.

Say the numeric instance list key value NKey1 contained the requested report
number then you could change the script that navigates to uReport1 to be
like this:

/* See is the report number in the instance list is for some other report */
/* If it is then "reroute” this request to correct 5250 destination form */

switch (objListManager.NKey1[0])

{
case 2: NAVIGATE_TO_SCREEN("uReport2"); return;
case 3: NAVIGATE_TO_SCREEN("uReport3"); return;
case 4: NAVIGATE_TO_SCREEN("uReport4"); return;
case 5: NAVIGATE_TO_SCREEN("uReport5"); return;
}

/* Normal navigation logic to handle report number 1 */
NAVIGATE_TO_JUNCTION("whatever");
Etc,etC oovvvvviiiniinninn...

If the alphanumeric instance list key value AKey1 contained the requested 5250
destination screen's name then you could change the script like this:

/* See is the 5250 screen name is this screen's name */
/* If it is then "reroute" this request to correct 5250 destination form */
if (objListManager.AKey1[0] != "uReport1")
{
NAVIGATE_TO_SCREEN(objListManager.AKey1[0]);

return;

/* Normal navigation logic to handle this screen */
NAVIGATE_TO_JUNCTION("whatever");

Etc,etC oovvvvvviiniinninn...

Using this Approach in other Situations

This is example shows how to dynamically choose to present five different 5250
reporting screens onto a single command handler tab.

The choice may be made by the user or logic you write into a script.
You should now understand:

That if there were three different types of "Orders" in an "ERP" application
(International, National and Local, say) that you cold use this approach to cause
three different 5250 destination screens to be displayed on a single command
handler tab named "Details".

That the instance list can be used to dynamically create a "menu" of 5250
destination forms.

That not all 5250 destination screens need to be formally attached to a command
handler tab. They can be dynamically attached (ie: displayed) on tabs by logic
imbedded in a navigation script by using the NAVIGATE_TO_SCREEN()
function.

Advanced Prompting

You can easily provide advanced prompting in your 5250 RAMP screens by
associating simple Visual LANSA forms with fields.

For example you could create a Visual LANSA form to show different item
sizes as a set of radio buttons and then associate this form with an Item Size
field in the RAMP screen to return its value:

Ikem Sizes
) 5mall - 5ML —

1 Medium - MED —

() Extra Large - XL
(1 Extra Extra Large - xxL

The prompter forms give you access to all the advanced Visual LANSA features
such as radio buttons, sortable tree and list views, etc.

Unlike System i prompting, Visual LANSA prompter forms do not necessarily
cause any interaction with the System i server which makes them fast.

Moreover, advanced prompting can be used to provide functionality that is not
possible on a 5250 device. For example, a phone number prompter could
display a phone number search web site and when the user chooses a phone
number, place it's value back into the 5250 screen.

Other Uses for Prompter Forms

Prompter forms can also be used in various ways for sophisticated Windows
desktop integration. For example they might:

Prepare and send an overdue payment e-mail.
Submit a credit reference check via an internet site or a web service.

Extract information from the System i server, create a MS-Excel spread sheet,
then start MS-Excel to display the spreadsheet information.

Display a linked or associated web page.

Display a linked or associated PDF document.

Do any other form of advanced Windows desktop integration that you can dream
up.

The advanced prompter forms are designed as an easy way integrate
sophisticated functionality to subsets of information on the 5250 screen. Of

course entire new RAMP screens can be added to a RAMP application any time
to handle all desktop integration requirements.

Using Prompter Forms

Creating Prompter Forms
Create prompter forms as normal VL forms.

Their Ancestor property must be se to VF_ACO017 so as to inherit standard
behavior.

Associating Prompter Forms with Fields

To associate prompter forms with fields, open the RAMP window and click on
the session object in the navigation tree. The Session properties are displayed:
Seszion - Default Session

Caption | Default Seszion

Drefault Mewlook Layout Dimensions
Height | 380 Width | 700 Top Left

Top kazk Height Bottom bMask Height

Lock framework when unknown 5250 form iz digplaged
Special Field Handing

5250 Field Hame | Function Key Y Handler [clazz WF_ACOT7 object] e
1 | EtSTATE Fa F_STATE
2 | tPHOME Fa F_PHOME
3 F4
4 F4 2
< >

The Special Field Handling area is used to define the forms to be associated
with fields.

The two entries in the example indicate that:
If an input field named txtSTATE is on any 5250 destination form, and it is
where the cursor/focus is, and the user presses function key F4 (or the

equivalent button) then the VL form named P_STATE is to be invoked to handle
the request.

If an input field named txtPHONE is on any 5250 destination form, and it is
where the cursor/focus is, and the user presses function key F5 (or the
equivalent button) then the VL form named P_PHONE is to be invoked to
handle the request.

How do Advanced Prompter Forms Work?
Whenever the user performs the actions required to invoke one of the VL forms

the following happens:

The HANDLE_PROMPT Function in the script is invoked to show the prompter
form associated with the field. Optionally additional information can be passed
to the form using this function.

If the form has not been used already in the session it's ulnitialize method is
invoked. This allows it to do first time processing.

The values of all the named fields on the current 5250 destination form are
extracted and made available to the VL form.

The VL form's uShow method is then invoked so that it can prepare and position
anything that it wants to show to the user.

When the user makes a selection, the VL form can alter the value of any named
field on the current 5250 destination form.

Are any Examples Provided to Learn More about this Topic?

Yes, you should be able to find the following Visual LANSA forms in your
repository:

Combo Box
DF_PRMO1 prompts using a combo box of US states like this:

| ARKANSAS - AR

ALABAMA - AL ~
ALASKA - Ak

AMERICAMN SAMOA - AS
ARIZOMNA - AZ

AREANSAS - AR

CALIFORMNIA - Ch i

Radio Buttons
DF_PRMO02 prompts using a set of product size radio buttons:

Ikem Sizes
1 Small - SML —

1 Medium - MED

(") Extra Large - ¥L
("1 Extra Extra Large - xxL

List with Columns
DF_PRMO03 generically prompts for employees by name:

LaE
GARY

14 Hutchins Crescent,
PADSTOW HEIGHTS,
MaWY,

2016
456 1524
151 4583
£3103401
0/00/00

IMF L
oz
25,600.04
2,133.33
Tree

DF_PRMO04 prompts department and section information using a tree:

Post [Zip Code

Home Phone Mumber
Business Phone Mumber
Start date (YMMDD)
Termination Date (YMMDD)
Department Code

Section Code

Employves Salary

Maonthly Salary

Start Date (DOMMYY)
Termination Date (DOMMYY)

]

Prompk |

-

—IDF_P52503 - Prompting Example 3

Employves Surname |B

Employves Mumber

| Employes Surname

Emploves Given ... | Post | Zip Code |

1031 BLAKE

A0030 BLOGGS
#3564 BR.CWT
A0070 BR.CWT

J3HM

FRED JOHMN
FREDCY
WERCIMICA

2016

456 1524
151 4533
8310301

nio0ian
INF
0z

1/03/83
nio0ian

bl

el

e |

H

H

ADMINISTRATOR DEPT
INTERMAL ALDITIMG
FLEET ADMIMNISTRATION
GROUP ACCOUMNTS
INFORMATION SERVICES
AOMINISTRATION

ACCOUNTING
DEVELOPMENT
LEizAL DEPARTMENT
MANAGEMMNT INFORMATIO

A RAMP Design Approach — Using a Single Junction Point (SJP)

A complex 5250 application that RAMP is being applied to may be visualized
like this:

J | = Junction/Menu Screen

C | = Cherry Screen

Signon

A 5250 user signs on and navigates around a cloud of menus/junctions to reach
the "cherries" (5250 destination screens) where they do useful work.

The RAMP choreographer is able to follow these navigations and working with
it you can define the various navigations required to move around in the cloud.

To a RAMP developer the identification of the junctions and the generation of
their navigation scripts may be a time consuming and rather mundane job.

From the RAMP developers point of view the whole process would be easier to
handle if the 5250 application was actually structured like this:

Signon | — - | J

C

Here a single junction point (or program) controls access to every 5250
destination screen.

If the 5250 application was structured this way then designing a RAMP
application would be simpler and faster because:

Only a single junction needs to be defined and scripted.

The invocation scripts for the destination screens are simpler and
standardized.

This rest of this section describes ways that you might set up this type of view
of a 5250 application.

This approach is called the Single Junction Point (SJP) model.

The SJP model cannot be applied to every type of application, but where it can
be applied it may represent a saving in the time taken to develop a RAMP
application.

Essentially a SJP approach means that two different views of an application
exist:

User's View
when using a
5250 natively

Signon ——

Developer's View
when designing a
RAMP application

To make this programmatic view of the world the System i 5250 program <
needs to already exist or to be created.

Let's call this special program the SJP (Single Junction Point) program

A kind of already exists on all System i system.

It is a program called QCMD (or Command Entry Display) and from it almost
any 5250 application can be invoked in some direct or indirect way. However
using QCMD is not acceptable to many sites for security reasons, so the rest of
this material discusses various ways you might create your own specialized

EG and some of issues and additional benefits that might arise.
How does an SJP work?

Is an SJP really that simple in a real application?

Can SJP do the other useful things?

Does SJP have to be CL (Control Language) program?

What other issues might impact the use on an SJP approach?

How does an SJP work?

An SJP program provides generic access to the destinations that are available to
a RAMP application. An SJP is not designed to talk to a user, it is designed to
talk to a RAMP script.

A simple SJP and RAMP script might work together like this:

RAMP Destination Invoke Script executing on Client

SJP Program (CL) executing on iSeries
* Call program CUSTING *

NAVIGATE_TO_JUNCTION(“SP™);
SETVALUE (“POINAME™, "CUSTING”) ; " Wait for instructions from client "
SEMDKEY (KeyEnter); L10: SNDRVF RCDFMTicontains the field &PGMNAME)
* Call the specified program *
CALL PGM{EPGMNAME)
* Go back and wait for another request from client
GOTOL10

* Now get CUSTING to display the customer */
SETVALUE (“Cusomertiumber”, "123456") ;

SEMDKEY (KeyEnter) ;

The RAMP script example used here is associated with a command handler that
wants to display the details of a customer using a 5250 program named
CUSTINQ.

When it starts to execute it first navigates to the junction screen named JSP.
This causes the SJP program to displays its 5250 screen.

It then sets the field PGMNAME to value "CUSTINQ" and sends the enter key.
This causes the SJP program to receive the screen back.

The CL field &PGMNAME in the SJP program now contains the name
"CUSTINQ".

Program CUSTINQ is then called using a generic call.

The RAMP script then gets the program CUSTINQ to display customer number
123456.

Using this simple SJP hundreds of destination screen scripts could be created to
access all sorts of System i 5250 programs, providing that they all have a simple
CALL interface.

Is an SJP really that simple in a real application?

Probably not. Often the programs being called required simple (and sometimes
complex) parameters to be passed to them and amongst them.

However, in this style of application design, groups of programs usually fall into
large application groups that share a common parameter protocol.

By adding an REQUEST_TYPE (say) field to the information exchanged
between RAMP scripts you can easily accommodate different program
parameter protocols along these lines (logic is in pseudo code):

WRITE and READ the 5250 screen containing PGMNAME and
REQUEST_TYPE

DOWHILE (REQUEST_TYPE not equal to "SIGNOFF")

CASE of REQUEST_TYPE
WHEN = "CALLP1" CALL PGM_NAME using calling protocol 1
for parameters
WHEN = "CALLP2" CALL PGM_NAME using calling protocol 2
for parameters
WHEN = "CALLP3" CALL PGM_NAME using calling protocol 3
for parameters
<etc>
ENDCASE

WRITE and READ the 5250 screen containing PGMNAME and
REQUEST_TYPE
ENDWHILE

If you are used to RPG and CL programs you might not be aware just how
flexible the IBM i program call interface is. Program parameters are just areas
of memory and passed between programs as pointers. You might not know:

Parameters do not have to be the exact length the called program defined. They
just need to be as long or longer, which makes sharing and reusing a small set of
parameter variables in a SJP quite simple.

You can pass a program more parameters than it actually requires. The extra
ones are generally ignored, which means you can have very few actual CALL

commands in your program.

You could directly pass parameter values from you RAMP scripts to the SJP and
pass them into the called programs. You could also get retuned parameter values
back into the script again using this approach. This means your RAMP scripts
can call batch style programs as well.

Can SJP do the other useful things?

It could be designed to do almost anything. For example it can provide a very
flexible and generic interface to IBM i command like this:

WRITE and READ the 5250 screen containing PGMNAME,
REQUEST_TYPE and COMMAND

DOWHILE (REQUEST_TYPE not equal "SIGNOFF")

CASE of REQUEST_TYPE
WHEN ="CMD" CALL QCMDEXEC (COMMAND 256)
WHEN = "CALLP3" CALL PGM_NAME using calling protocol 3
for parameters
<etc>

Would allow your RAMP scripts to execute a CL. command like this:

NAVIGATE_TO_JUNCTION("SJP");
SETVALUE("REQUEST_TYPE","CMD");
SETVALUE("COMMAND","WRKSBMJOB *JOB")
SENDKEY (KeyEnter);

Or
NAVIGATE_TO_JUNCTION("SJP");

SETVALUE("REQUEST_TYPE","CMD");
SETVALUE("COMMAND","SBMJOB(BATCH) CMD("CALL
PRINTORDER")")

SENDKEY (KeyEnter);

The 5250 screen used to communicate between a RAMP script and a SJP is
really more of program data structure that a real 5250 screen that a user would
ever see.

Does SJP have to be CL (Control Language) program?

No, it could be written in any program language that supports the reading and
writing of 5250 screens such RPG, COBOL, C or RDML (which is really RPG
anyway).

If you have LANSA programs RDML is a good choice because it makes it very
easy to call LANSA processes and functions and allows access to common
inter-program communications mechanism such as the exchange list and data
structures.

What other issues might impact the use on an SJP approach?
One of the main ones relates to user profile and site security requirements.

You would probably not want the SJP program accessible to USERA (say) when
he or she is using a normal 5250 screen.

Additionally most sites insist that USERA executes his/her IBM i job under the
profile USERA so that audit, log and security information shows the "real" user
(although this is disappearing as more and more "threaded" processes serving
many concurrent users, such as HTTP web servers, are used on the System i
server).

So how can a single user profile USERA support these different views of the
world?

When they sign on to a real 5250 session they get their normal sign-on menu.

When they sign on via a RAMP script they get the SJP program as their main
"menu"?

There are several solutions to this problem:

Use the Program/Procedure option on the IBM i sign-on screen to specify the
SJP program when logging in via a RAMP script. You would probably add some
security logic to the JSP to prevent users doing this through a real 5250 interface
(see point 2).

If you use a common menu program you could alter it to detect that it is being
called from a RAMP script and then call the SJP program. Equally you could
display the common menu initially and use a special "hidden" menu option to
call the JSP program. The JSP program could confirm that it is being accessed by
a RAMP script by conducting, for example, an encrypted exchange with the
RAMP script that is impossible for a real human user to perform.

RAMP scripts could sign on initially as a generic "USERX" whose initial
program is the SJP program. The SJP program then presents a screen asking for
the real user profile and password, which the RAMP logon script fills in and
sends back. An IBM API is then called to change the current job's user profile
from generic USERX to the real user. Again an encrypted exchange that is
impossible for a real user could be used to confirm access is from a RAMP
script.

Using HIDE_ CURRENT_FORM to manage access to command
handler tabs

In this scenario a RAMP application has been created over an order processing
system.

Imagine that some of the command handler tabs (and their underlying 5250
destination scripts) need to prevent users from performing actions on cancelled
or completed orders.

Step 1 - Put some sort of "Code" or "Status" column into every
instance list entry

Here field #ORDSTATUS is mapped into instance list column Acolumn9().

Imagine it contains values "CAN" (cancelled), "OPN" (Open), "WIP" (Being
worked on) or "COM" (completed)

Invoke Method(#avListManager.AddtoList) Visualid1(#OrdNo)
Visualid2(#CustlName) Akey1(#OrderNumber) AColumn9(#ORDSTATUS)

Note: AColumn9() may or may not be shown to the user as desired.

Step 2 - Put checking code into the appropriate scripts

Here the script for a 5250 screen that allows an order to be modified has had a
check added to stop people from trying to display cancelled or completed orders

/* Get the order status from additional column 9 in the current order instance
list entry */

var ORDSTATUS = objListManager.AColumn9[0];

/* If the order is cancelled or closed, prevent the 5250 screen from being
displayed, and show a message as to why */

if (ORDSTATUS == "CAN") || (ORDSTATUS == "COM"))

{
HIDE_CURRENT_FORM("Sorry, but you are not allowed to display this

order because it is cancelled or completed.");
return;

}

/* If we reach here then it's okay to proceed to the order display screen */

<etc>
<etc>

The HIDE_ CURRENT_FORM("message") function causes the current 5250
screen being displayed on the command tab to be hidden and the message
"Sorry, but you are not allowed to display this order because it is cancelled or
completed." to appear in the center of the tab instead.

The content of AColumn9 (ie: "CAN", "OPN", "WIP", "COM") could be used
anywhere in in the script to limit or control user activities.

Multilingual RAMP Applications

Strings
Refer to the ADD STRING Function and the STRING Function.

The captions show on RAMP buttons can be changed to be multilingual using
the OVERRIDE_KEY_CAPTION_SCREEN Function and
OVERRIDE_KEY_CAPTION_ALL Function.

Troubleshooting

Error Messages

xXxxxxX is an orphan script and should be deleted

Error running RAMP in end-user mode (UF_EXEC) but not in design mode
(UF_DESGN)

Problems

When executing RAMP applications:
Strange behavior in scripts
Screen does not react when selection is changed in instance list

xxxxxxXx is an orphan script and should be deleted

A RAMP warning message is displayed saying that a script is an orphan script
and should be deleted.

What does the message mean?

It means the script is not used by any destination, junction or special screen.
Since the script is not used, it should be deleted.

This message does not impact the operation of RAMP, it's just a warning.

If you get a lot of these warnings, it is likely to be a misunderstanding about use
of the merge tool in a multi-developer environment.

How do you delete a script if you get this message?
Start the RAMP Tools

Expand the script tree node and locate the script.

Select the script and press the Delete button.

Watch out for duplicated script names (this happens in multi-developer
environment). Make sure you have the right script.

How can you get an orphan script?

The most likely way is by using the merge tool to merge in a brand new script all
by itself without merging in the parent destination, junction or special screen as
well.

When would you use the merge tool to just merge in a single
script without also merging in its parent destination, junction or
special screens as well?

Normally you would only do this when you have previously merged in the
parent object and its associated scripts and are just wanting to merge in a single
updated script. You should never do this on an initial merge or you risk creating
orphan script(s).

How should you approach merging RAMP screens and their

associated scripts produced by multiple developers?

Assuming that the high level Framework design objects, that is applications,
business objects, commands and command handlers (tabs) have been set up by
the master designer and all developers are working from the same model (that is
the developers just define the RAMP screens and scripts and then link them up
to the pre-defined command handler tabs):

The sender should add the screens that they have produced to a merge list. This
should automatically include the associated scripts.

The sender should also add to the same merge list all the command handler(s)
that have been modified by being linked up with RAMP destination screens.

The receiver should merge everything into the master Framework. The command
handlers should be handled as updates/replacements and the RAMP objects
should be new objects. In no case should new GUIDs be assigned.

How can you get scripts with the same name?

In a multi-developer environment if two developers create scripts, you may end
up with two scripts named for example FORMSCRIPT_137.

If the work of these developers is merged together, this situation may be
confusing to the developers, but it is not confusing to RAMP because to RAMP
the script name is just a caption. Internally RAMP recognizes and executes
scripts by their unique GUID.

Developers can change the default script names to avoid this confusion.

Screen does not react when selection is changed in instance list
When an entry is selected in the instance list, the RAMP screen does not reflect
this change and instead shows the data for the entry that was first selected.
When does this problem happen?

You recorded the script of the destination screen, but you have not changed the
value parameter of the SETVALUE Function from the recorded hardcoded
value to a substitution value.

Another possible cause is that the value in the SETVALUE function has been
enclosed in quotes in which case it is interpreted as a literal, not as a substitution
value.

For example this example is wrong:

SETVALUE("UtxtMachine","objListManager.AKey1[0]");

Solution

Make the value parameter of the SETVALUE function a substitution value and
make sure it is not surrounded by quotes:

SETVALUE("UtxtMachine", objListManager.AKey1[0]);

For more information:
See the topic Interacting with Instance Lists in Scripts

See the topic Replacing Hardcoded Employee Number with Current Instance
List Entry.

Error running RAMP in end-user mode (UF_EXEC) but not in
design mode (UF_DESGN)

You can run your RAMP application in Design mode but you get an error like
this when you try to run it in End-User mode:

2xl
i ! E Aneror has occured in the script on thiz page.

Lire: 1
Char 1
Eror: Object expected
Code: O

UBL: files /4T NProgram FileshLAaM 5454 WikGS
e LAMSAAG radhexecuteyt 20l 20 him

[ro wou want bo continue rnning scripts on this page’?

Why does this problem happen?

The main difference between running RAMP in design mode and running it
end-user mode is the way javascript is executed.

In design mode, javascript is reloaded each time the Framework is saved if there
has been a change affecting RAMP. Each time the javascript is reloaded, the
object properties are re-set. And each time the Framework is saved, if RAMP is
enabled and has changed, a set of javascript files called <system
prefix>Nodes_nnnnnnnnnnnnnnnnnn.js are generated, one for each session
where the nnnnnnnnnnnnnnnn part is the session identifier.

These files are the ones used in end user mode. They represent the screens and
scripts written out as javascript at the time the Framework was saved.

In end-user mode, these files are loaded once for each session. Each one of the
javascript functions in the file is called only once during session start up. This
method speeds up the start up time of RAMP in end-user mode considerably as
opposed to design time.

When RAMP is executed without errors in design mode but with errors like the
above in end-user mode, the prime suspect is a syntax error in the user-defined
scripts (be it navigation scripts, invoke, etc).

Solution

To find out what line of javascript has the error, you can simply load the file into
a basic .HTM file.

For example create a file called test.htm with content like this:

<html>
<head>
<title>Untitled Page</title>
<script language="javascript" type="text/javascript" src="<your nodes.js
file here>"></script>
</head>
<body>
Hello World
</body>
</html>

Specify the name of your nodes.js file in the src= attribuite of the <script> tag
and put Test.htm in the same folder as the javascript.

Using Internet Explorer, check your Advanced settings tab under Tools/Internet
options to verify you have the "Display notification about about every script
error” checked. You can then run Test.htm and you should get a script error
showing the line number where the error has occured. Tip: the error is most
likely to be inside a javascript function called something like this:

function __UF__nnnnnnnnnnnnnnnnnnnnnnnn(objScriptInstance)

which makes it a bit hard to correlate it with the actual script name. To find out
exactly what this script is, do a Find in the same file of the nnnnnnnnnnnnnnnn
part of the function name. You should then locate the lines of javascript that
define that script as an object and that will have the user name (for example
0S.uScriptUserName="NAVIGATE_SCRIPT_13";)

Edit the script using the RAMP Tools, correct the error and save.

Frequently Asked Questions
How is a Framework associated with RAMP-TS or RAMP-NL?

I have made a mistake in classifying a screen. How do I change the
classification?

How do I differentiate two screens which have the same name?
How can I use web browser windows from RAMP scripts?

How can I get the message from the bottom of the current 5250 screen into my
RAMP script?

How do I handle RA (Auto Record Advance) fields?

Why should the F12=Cancel and F3=EXxit buttons and function keys be disabled
on every 5250 screen?

Do I have to identify and script every 5250 screen in my application to
modernize it?

How can I get the RAMP tool to assign a fixed session?
Can you add in your own functions to the scripts?

How do I make my scripts work in multiple partitions?
How to tell in a RAMP-TS script what theme is being used?
How do I stop break messages in aXes 5250 sessions?

How to tell in a RAMP-T'S script what theme is being used?

In a RAMP-TS script you may want to know what VL/VLF theme is being used
in the application.

The JavaScript variable GLOBAL_VL_Theme is accessible to RAMP-TS
scripts. It should contain “BLUE”, “SILVER”, “OLIVE” or “GRAPHITE”.
You should not change the content of GLOBAL_VL_Theme.

How is a Framework associated with RAMP-TS or RAMP-NL?

A framework (as defined in its XML file) is specifically bound to either RAMP-
TS or RAMP-NL. This means it can only be used with that type of RAMP
session.

When you first start to use RAMP with a framework it makes a decision on
whether to bind to RAMP-NL or RAMP-TS. The binding process works like
this:

First, the content of any existing RAMP nodes file, as defined on the
(Framework) -> (Properties...) a Framework Details tab as the Nodes XML File
is examined. If the nodes file already contains RAMP-TS or RAMP-NL
destinations and scripts, the framework is automatically bound to RAMP-TS or
RAMP-NL as appropriate.

If the Nodes XML File is empty or non-existent, then the servers associated with
the framework are examined. If one or more RAMP-NL servers are defined and
no RAMP-TS servers are defined, the framework is automatically bound to
RAMP-NL.

In all other situations the framework is automatically bound to RAMP-TS.

When you start RAMP Tools the window title shows whether the framework is
bound to RAMP-TS or RAMP-NL.

Things to watch out for when binding a framework to RAMP-TS or RAMP-NL
are:

Make sure the servers associated with a framework are correct and not mixed.
Normally you would only have RAMP-TS or RAMP-NL server(s) defined, but
not both. If necessary create different server XML files for different frameworks
to avoid having RAMP-TS and RAMP-NL servers mixed within one framework.

When using Save As to create a new framework, also change the Nodes XML
file to a new file name. After saving the new framework, delete the Nodes XML

file so as to start working on the new framework with a new and empty nodes
file.

If you accidentally bind a framework incorrectly to RAMP-NL or RAMP-TS,
open the framework XML file with NOTEPAD and search for this property
definition <PROPERTY NAME="U5250HANDLER" VALUE="TS"/> or
<PROPERTY NAME="U5250HANDLER" VALUE="NL"/>.

Remove this property from the XML file and save the changes. Start the

framework as a designer and go to the (Framework) -> (Properties...) a
Framework Details tab. Check that the Nodes XML File name is correct and
different to any other framework you have. Check that you have a either
RAMP-TS or RAMP-NL server(s) defined. Do not have both types defined.
Start the framework as a designer and then start RAMP Tools again. The
binding logic defined previously will be performed again when you start RAMP
Tools.

If the binding process gets the wrong results again it is because your
framework’s servers are not correctly defined, or, because your Node XML file
contains definitions that force it to bind to RAMP-TS or RAMP-NL.

I have made a mistake in classifying a screen. How do I change
the classification?

Delete the screen definition in the 5250 Screen and Script List. The screen will
appear as undefined in the Tracking Information area.

Remember that the scripts associated with the screen are also deleted, so you
need to retrack the navigation from and to the screen.

How do I differentiate two screens which have the same name?

Use the Variant Name to differentiate screens that were given the same name.
See Your RAMP-TS Screen Script Defines a JavaScript Object.

The Variant Name is a property of the screen in the same way as the vName,
vType, etc. To reference the Variant Name in your script use:

this.vLatestVariant

Typically you would use the Variant Name in screens that have different views.
A typical example would be a screen like Work with Active Jobs. You could
name it WRKACTJOB. When you press F11 the same screen appears but this
time with a different set of columns.

You can use one of the column headings in this screen that was not present in
the previous one as part of the screen definition and save it using the Variant
Name. Likewise, pressing F11 again gives you another different set of columns.
You can again use one of the column headings in the definition and save the
screen with another variant name.

For more information see RAMP-TS015: Understanding and Handling Screen
Variations.

How can I use web browser windows from RAMP scripts?

Here's a really simple web browser form that accepts three input fields as
arguments, displays them, allows them to be altered, then returns the altered
values back to the calling RAMP script:

<HTML>
<HEAD>
</HEAD>
<BODY onload="BODY_Load();" onunload="BODY_UnLoad();" >
<script>
function BODY_Load() /* Map arguments passed in to web form fields */
{
FieldA.value = window.dialogArguments[0];
FieldB.value = window.dialogArguments[1];
FieldC.value = window.dialogArguments[2];

}
function BODY_UnLoad() /* Map web form fields into return values */

{
var arrayRets = new Array();
arrayRets[0] = FieldA.value;
arrayRets[1] = FieldB.value;
arrayRets[2] = FieldC.value;
window.returnValue = arrayRets;
}
function OK_Click() /* Handle OK button by closing the web form */
{
window.close();
}
</script>
<P>Input details and click OK"

<input id="FieldA" type="text">

<input id="FieldB" type="text">

<input id="FieldC" type="text">

<input id="Button1" type="button" value=" OK " onclick="OK_Click();">
</BODY>
</HTML>

It looks like this when displayed:

‘2 -- Web Page Dialog @
Input details and click OK"
[SMITHS|

PETER S

|?2 Mullane Avenue,

ok |

This is the RAMP BUTTON script that is used to display the web browser form.
It displays the form when the user hits F5, taking the fields SURNAME,

GIVENAME and ADDRESS1 from the 5250 form and then mapping them
back:

switch (objScriptInstance.FunctionKeyUsed)
{
case KeyEnter:
SENDKEY (KeyEnter);
break;
case KeyFb:
{
var arrayArgs = new Array();
arrayArgs[0] = GETVALUE("SURNAME");
arrayArgs[1] = GETVALUE("GIVENAME");
arrayArgs[2] = GETVALUE("ADDRESS1");
arrayRets =
window.showModalDialog("Example.htm",array Args,"dialogHeight:155px;die
SETVALUE("SURNAME",arrayRets[0]);
SETVALUE("GIVENAME",arrayRets[1]);
SETVALUE("ADDRESS1",arrayRets[2]);
delete(arrayArgs);
delete(arrayRets);
}
break;
default:
SENDKEY (objScriptInstance.FunctionKeyUsed);
break;

This is just a simple example of some of the things you can do (please note that
no warranty about any of this is expressed or implied).

How can I get the message from the bottom of the current 5250
screen into my RAMP script?
Use a script like this:

{
var strMessage = GETVALUE("ActiveForm.Message"); /* Get the

message into JavaScript variable strMessage */
if (strMessage !="") ALERT_MESSAGE(strMessage); /*Ifa
message was retrieved, display it in a message box */

}

How do I handle RA (Auto Record Advance) fields?

Some 5250 applications may use fields with an RA input attribute (Auto
Record Advance). Programs that display these fields automatically press Enter
when the last digit or character is entered by the user.

The RAMP choreographer cannot automatically generate a script for this
situation based on your keystrokes. Instead, it will generate lines like:

/* Set up data fields on form xxx */
SETVALUE("utxtMenuOption","");

/* Send the key required to navigate to xxx */

You will need to edit the generated script, and specify both the value and the
Enter key press, like this:

/* Set up data fields on form xxx */
SETVALUE("utxtMenuOption","2");

/* Send the key required to navigate to xxx */

SENDKEY (KeyEnter);

Why should the F12=Cancel and F3=Exit buttons and function
keys be disabled on every 5250 screen?

Have a think about how you navigate a Windows application.

Do I have to identify and script every 5250 screen in my
application to modernize it?
No.

Typically some areas of a 5250 application are rarely used or used by very few
users.

The degree of modernization you apply to an application area should be related
to the area's degree of exposure to end users and to the amount of benefit that
they would gain if it were completely modernized.

Modernizing a Single Screen to Provide Access to a Subsystem

In this example a 5250 menu or work with screen named uCodeTableMaint
manages access to 47 different 5250 screens that handle System Code Table
Maintenance (for example classic code and parameter tables such as states,
companies, currencies, interest rates, etc that are used to define and control an
application).

uCodeTableMaint could be visualized as an "application subsystem" like this:

uCodeTableMaint

Code Table Sub-System

Because this application area does not need to be completely modernized, the
most rapid way to modernize it is to create a single RAMP screen that provides

access to the other screens.
To do this:
Create a business object called Code Tables and associate with an application.

Give it a single RAMP screen (or tab) called Maintain (say). Make sure this is an
object level command and that it is the default command so that it is executed
automatically every time you click on it.

Identify and define the 5250 work with screen uCodeTableMaint to the
Framework as a destination screen and associate it with the Maintain screen.

When the user clicks on Code Tables in the Framework application they are
immediately navigated to the uCodeTableMaint 5250 screen.

It occupies the entire right hand side of the windows form like this:

Ele Edt Wew Ariors Took Melp (Framework) | Adminstrabon)
K Snof z T [Caiculator

| On Tool Bar | %Z Code Tables
= U System
“E' Code Tables
Duemy Moo Bon
i 15} Programming Techriques

The 5250 uCodeTableMaint soréen appears here when you chek on the Code Tables business obpect

[srowbetsis | [Frogram codng ssstant | [images paette |
Messages | Ready | lecl [26 | poasEn | 31308 | 15:00 i@ l

Once the user has displayed the uCodeTableMaint screen they can then navigate
around in the other 47 associated screens in the normal manner:

Ele Edt YWew Ariors Took Melp {Fromework) (| Adminstrabon)

I Son O . [Colculator
Code Tables
[Oin Tol Eae | % CodeTables
= U Sywten
¥ Code Tables vCodeTableMaint

Dy Appden e
& 13} Programming Techrigues

o 08 0 0 0 0 o

e

Code Table Sub-System

[Shaw De:aTs] |i5ra-;rnm(.odr:; v\m:ml.l | Emages 5'-;‘.!:;]
Meszaces Ready | Leeal [BG | poosEr | 313s | 15:00 G

This is a minimal modernization of the whole uCodeTableMaint managed
subsystem.

Only the 5250 screen uCodeTableMaint needed to be defined and scripted into
the framework. The other 47 screens did not have to be identified nor scripted in
any way.

How can I get the RAMP tool to assign a fixed session?

I want to assign a fixed session, such as Session A, for my destination screen in
the Destination Screen Details. How can I do this?

You have to select the command handler so that the line it is on goes blue, not
just tick the checkbox. Then you associate a session with it.

This may seem unusual, but sometimes multiple command handlers are
associated with a single destination form and therefore you have to actually
indicate which one you want to change the session for.

How do I make my scripts work in multiple partitions?

Replace any hard-coded references to a partition in your scripts with this piece
of code:

objFramework.Partition

You can enter the code Scripting Pop-up Menu : choose Current Framework
and then partition.

Can you add in your own functions to the scripts?

Yes, you can add a function to your screen script. This means it is hidden from
all other screens and only accessible to the screen object itself.

The format is

MyFunction : function (parms) { logic },

And it is invoked by

this.MyFunction(parms);

Put the function before the <SYSINFO> block. Note trailing comma.

Alternatively, you can add a function to UF_VFSY40_RTS,JS and then is
accessible to all screen objects. By passing your "this" reference to the function,
it can generically act on behalf your behalf. See User-Defined Script Functions.

How do I stop break messages in aXes 5250 sessions?

aXes does not like IBM i break messages - because they are pushed by the
server — something that a pull based technology like the web browser cannot
accommodate.

It is strongly recommended that you don’t use break message in aXes 5250
sessions - especially in RAMP-TS and aXes-Mobile applications.

Using these IBM i CL commands in a user’s IBM i logon program will
generally stop all break messages:

CHGJOB BRKMSG(*HOLD) STSMSG(*NONE) MONMSG
MSGID(CPF0000 MCHO0000) CHGMSGQ
MSGQ(*WRKSTN) DLVRY(*HOLD) MONMSG MSGID(CPF0000
MCH0000)

CHGMSGQ MSGQ(*USRPRF) DLVRY(*HOLD) MONMSG
MSGID(CPF0000 MCHO0000)

Appendix

Where and how are my RAMP-TS screen identifications kept?
By default RAMP-TS stores your screens in a folder named /ts/screens.

Each screen definition is stored in a file named N.scn (eg: 1.scn, 2.scn, 3.scn,
etc). They contain JSON fragments that define the characteristics of the screen.

These files are only required during development. For run time, all these of
these files are published in a single consolidated file named screens.jsn.
Screen.jsn is the only screen file that needs to be deployed to production
environments

Important things to know about this folder

Back it (and any subfolders) up regularly. The content of the N.scn files
represents a significant investment of your time.

Don’t copy from, copy to, move, rename or delete any file in folder /ts/Screens,
or any subfolder of it.

Only ever change the content of these files via the RAMP-TS editor.

Dividing up screen definitions

Your screen definitions do not have to be in /ts/screens, you can divide up
screen definitions into sub-folders like /s/screens/Project1 or
/ts/screens/Project2.

You just input the folder name (Project1) with nothing else. It is implicit that
this is a sub-folder of /ts/screens:

RAMP-TS (Terminal Server)

Save as deplovment server]

IP Address 61.88.115.211
Park Murmber a0a0
Execution Mode Load Path ftstskins/
RAMP Tools Mode Load Path fksidew)
Private Definition Folder Project1

Test RAMP-TS Tools Installation and Configuration

When you define a RAMP-TS server in the framework, this subfolder name is
specified as a private working set. Screen definitions may be divided up like
this on an indivisible and completely independent project basis.

Screens should never be divided up on a unit of work or developer basis
because you must not copy, move, rename or delete them.

	RAMP-TS Guide
	How to Get Started with RAMP
	What is RAMP?
	RAMP Stage 1
	RAMP Stage 2
	RAMP Stage 3
	A Modernized Application
	Key Benefits

	How the 5250 Application Will Change
	5250 Application Before Modernization
	5250 Application After Using RAMP
	Accessing Data in the Modernized Application
	Navigation in the Modernized Application

	Modernization Process Overview
	Stage 1: Creating a Modernization Framework
	Who Should Be Involved?
	Creating the Prototype
	Executing and Refining the Prototype

	Stage 2: Incrementally Modernizing the 5250 Application
	Naming the 5250 Screens
	Tracking and Classifying the Screens
	RAMP Stage 2A: Rapidly Modernizing Complete Application Segments
	How to Do It?

	RAMP Stage 2B: Individually Modernizing Frequently Used Screens
	How to Do It?

	RAMP Stage 2C: Adding Value
	What Adds Value?
	How to Do It?

	Stage 3: Removing IBM i Platform Dependencies

	Prerequisite Skills
	Warnings and Disclaimers

	What's New
	New Features in EPC 868 Version of RAMP
	New Features in EPC 843 Version of RAMP

	Licensing Requirements
	Installation and Configuration
	Installation on the Server
	Install and Configure RAMP-TS / aXes-TS on your IBM i Server
	Verify your RAMP-TS/aXes-TS Installation
	Backup Strategy

	Configuration
	Verify Browser Security Settings
	Set Up Reverse Proxy for Chrome, Safari and Firefox

	Configure RAMP
	If You Have Used RAMP-NL, Read This
	Ensure Your Framework Has an Overall Visual Style Theme
	Specify RAMP-TS Server Details
	Set up Super-Server Session
	Optionally Set up Framework Users and Security

	When Many Developers Work on the Same Application
	Handle Multiple Framework Versions
	Script Naming Convention

	Starting RAMP
	Start LANSA
	Start the Framework
	Start RAMP
	Start the Instant Prototyping Assistant
	Start the Program Coding Assistant

	Concepts
	Steps Involved in Using RAMP
	Framework Window
	RAMP Window
	Message Area
	Screen Tracking Area
	RAMP-TS 5250 Emulator Session
	Screen and Script List
	Organizing Screens and Scripts

	Details Area
	Session Details
	Destination Screen Details
	Script Area
	Screen Name Finder

	Types of Screens
	Destination Screen
	Junction Screen
	Special Screen

	Naming Conventions
	OBJECT-ACTION User Interfaces

	Modernization Issues
	The most important and complex 5250 program in an application can become a modernization trap
	How long will it take to RAMP my application?
	Reuse, Reface or Rewrite?

	Tutorials for RAMP Windows
	Before You Use the Tutorials
	RAMP-TS001: Creating a Basic Prototype of the Modernized Application
	Application before Modernization
	RAMP-TS001 Step 1. Create the Application Prototype
	RAMP-TS001 Step 2: Modify the Code Tables Prototype
	RAMP-TS001 Step 3: Examine the Employees Prototype
	RAMP-TS001 Step 4: Prototype End-User's Access to Employee Information
	RAMP-TS001 Step 5. Visualize the Filters
	RAMP-TS001 Step 6. Validate the Basic Prototype
	Summary

	RAMP-TS002: Rapidly Modernizing Complete Application Segments
	Before You Start
	RAMP-TS002 Step 1: Name the Screens
	RAMP-TS002 Step 2: Classify the Screens and Track Navigation
	RAMP-TS002 Step 3: Remove Cancel and Exit buttons
	RAMP-TS002 Step 4: Snap the Application into the Framework
	Summary

	RAMP-TS003: Creating a Data Filter for Employees
	RAMP-TS003 Step 1. Creating Your Real By Name Filter
	RAMP-TS003 Step 2. Snapping In the By Name Filter
	RAMP-TS003 Step 3. Filter Code
	Summary

	RAMP-TS004: Naming and Classifying the Employee Screens
	RAMP-TS004 Step 1. Name the Screens
	RAMP-TS004 Step 2. Classify Screens
	RAMP-TS004 Step 3. Track Navigation
	RAMP-TS004 Step 4. Take Snapshots of Your Destination Screens
	Summary

	RAMP-TS005: Reviewing Design
	RAMP-TS005 Step 1. Place Snapshots on Mock Up Command Handlers
	RAMP-TS005 Step 2. Review the Prototype
	Summary

	RAMP-TS006: Snapping in a Basic Inquiry Screen
	RAMP-TS006 Step 1. Snap a Basic Inquiry Screen into the Framework
	RAMP-TS006 Step 2. Change the Script to Use the Current Instance List Entry
	RAMP-TS006 Step 3. Disable Function Keys
	Summary

	RAMP-TS007: Snapping in a Data Entry Function
	RAMP-TS007 Step 1. Snap a Basic Data Entry Screen into the Framework
	RAMP-TS007 Step 2. Change the Script to Signal the New Employee Number
	RAMP-TS007 Step 3. Add Error Handling
	RAMP-TS007 Step 4. Change the Script to Update the Instance List
	RAMP-TS007 Step 5. Disable Function Keys
	Summary

	RAMP-TS008: Changing Inquiry Screen to Update Mode
	RAMP-TS008 Step 1. Make Display Employee Screen Input Capable
	RAMP-TS008 Step 2. Redisplay DisplayEmployee After Save
	RAMP-TS008 Step 3. Change Button Caption
	Summary

	RAMP-TS009: Tracing Navigation
	RAMP-TS009 Step 1. Starting the Trace and Redisplaying the Destination Screen
	RAMP-TS009 Step 2. Examining the Trace
	Summary

	RAMP-TS010: Using Special Field Handlers
	RAMP-TS010 Step 1. Naming the Field
	RAMP-TS010 Step 2. Associating the Field with the Handler
	RAMP-TS010 Step 3. Test the Special Field Handler
	Summary

	RAMP-TS011: Snapping in Shipped Documents Command Handler
	RAMP-TS011 Step 1. Snapping in the DX_DOCS Command Handler
	RAMP-TS011 Step 2. Adding Documents
	RAMP-TS011 Step 3. Working with Documents
	Summary

	RAMP-TS012: Snapping in Shipped Notes Command Handler
	RAMP-TS012 Step 1. Snapping in the DF_T3201 Command Handler
	RAMP-TS012 Step 2. Adding Notes
	Summary

	RAMP-TS013: Sending Instance List Data to Excel
	RAMP-TS013 Step 1. Creating the Command Handler
	RAMP-TS013 Step 2. Snapping in and Testing the Command Handler
	Summary

	RAMP-TS014: Snapping RAMP Screens into the HR Demo Application
	RAMP-TS014 Step 1. Snap in RAMP Screens to the HR Demo Application
	RAMP-TS014 Step 2. Modifying the SETVALUE Statement
	Summary

	RAMP-TS015: Understanding and Handling Screen Variations
	What is a 5250 Screen?
	RAMP-TS015 Step 1. Assigning the Same Name to Two Screen Variations
	RAMP-TS015 Step 2. Handling Different Screens with the Same Signature
	RAMP-TS015 Step 3. Creating Screen Variants
	RAMP-TS015 Step 4. Using Screen Variants in the Script
	RAMP-TS015 Step 5. Creating a Set of Screens (Advanced)
	Summary

	Advanced Tutorials
	RAMP-TSAD01: Using Buttons to Add Value to an Application
	About Buttons
	RAMP-TSAD01 Step 1. Enable Framework Buttons
	RAMP-TSAD01 Step 2. Name Fields to Be Copied on the DisplayEmployee Screen
	RAMP-TSAD01 Step 3. Add a Function to the Script for the DisplayEmployee Screen
	RAMP-TSAD01 Step 4. Call the Function in the ButtonClick Function
	RAMP-TSAD01 Step 5. Test the Buttons
	Summary

	RAMP-TSAD02: RAMP-TS Event Handling Basics
	RAMP-TSAD02 Step 1. Add a Signal Button to the By Name Filter
	RAMP-TSAD02 Step 2. Make Your 5250 Screen Listen to the Signal
	RAMP-TSAD02 Step 3. Test Signaling from Filter to RAMP Screen
	RAMP-TSAD02 Step 4. Add a Signal Button to the RAMP Screen
	RAMP-TSAD02 Step 5. Make the Filter Listen to the Signal
	RAMP-TSAD02 Step 6. Signalling from a RAMP script to a VLF component
	Summary

	RAMP-TSAD03: Special Field Handling
	RAMP-TSAD03 Step 1. Understand What Makes the Prompter Appear
	RAMP-TSAD03 Step 2. Being smarter with HANDLE_PROMPT()
	RAMP-TSAD03 Step 3. Handler Styles
	RAMP-TSAD03 Step 4. Generic Handler Association
	RAMP-TSAD03 Step 5. Generically Associating Date Fields with Date Picker
	RAMP-TSAD03 Step 6. Dynamic Handler Association
	RAMP-TSAD03 Step 7. Communicating with a Handler
	RAMP-TSAD03 Step 8. What to Do When Things Do Not Work
	Summary

	RAMP-TSAD04: Redesigning the Screen Using aXes
	RAMP-TSAD04 Step 1. Get Started with aXes Designer
	RAMP-TSAD04 Step 2. Set up Styles
	RAMP-TSAD04 Step 3. Hide Repetitive Information
	RAMP-TSAD04 Step 4. Add a Tooltip
	RAMP-TSAD04 Step 5. Add a Drop-Down
	RAMP-TSAD04 Step 6. Organize Fields inside Group Boxes
	RAMP-TSAD04 Step 7. Add Up and Down Buttons to Subfile
	RAMP-TSAD04 Step 8. Hide Function Keys and Add a Picture
	RAMP-TSAD04 Step 9. Add a Hyperlink
	RAMP-TSAD04 Step 10. Test the Redesigned Screen
	RAMP-TSAD04 Step 11. Remove the Screen Customization
	Summary

	RAMP-TSAD05: Using SHARED Properties and Functions
	What are Shared Scripts?
	RAMP-TSAD05 Step 1. Optional - Creating Your Own Copy of the Shared Scripts File
	RAMP-TSAD05 Step 2. Accessing SHARED properties and functions
	RAMP-TSAD05 Step 3. Creating your own SHARED properties
	RAMP-TSAD05 Step 4. Creating your own SHARED functions
	Summary

	RAMP-TSAD06: Handling Multiple Screens on Multiple Tabs
	RAMP-TSAD06 Step 1. A Multiple 5250 Screen Scenario
	RAMP-TSAD06 Step 2. Name the Screens
	RAMP-TSAD06 Step 3. Classify the Screens
	RAMP-TSAD06 Step 4. Review and Understand the Targets List
	RAMP-TSAD06 Step 5. Using Multiple Command Handler Tabs
	RAMP-TSAD06 Step 6. Review and Alter Buttons and Function Keys
	RAMP-TSAD06 Step 7. Review the value you have added to the 5250 application
	RAMP-TSAD06 Appendix: Function UFRTS03

	RAMP-TSAD07: Handling Multiple Screens on a Single Tab
	RAMP-TSAD07 Step 1. A Multiple 5250 Screen Scenario
	RAMP-TSAD07 Step 2. Making a Plan
	RAMP-TSAD07 Step 3. Putting the Screens on a Single Tab
	RAMP-TSAD07 Step 4. Enable Function Keys/Buttons and Add Required Scripting
	RAMP-TSAD07 Step 5. Defining the Exit Junctions and vHandle_NAVIGATETO scripting
	RAMP-TSAD07 Step 6. Testing and Debugging
	RAMP-TSAD07 Step 7. Fine Tuning

	RAMP-TSAD08: Screen Wrapper Basics
	RAMP-TSAD08 Step 1. Name the Fields to Be Used in the Wrapper
	RAMP-TSAD08 Step 2. Create and Snap in the Screen Wrapper
	RAMP-TSAD08 Step 3. Understanding the Screen Wrapper Code
	RAMP-TSAD08 Step 4. Test Updating the Screen from the Wrapper
	Summary

	RAMP-TSAD09: Screen Wrapper with a Subfile
	RAMP-TSAD09 Step 1. Add an Image to the Screen Wrapper
	RAMP-TSAD09 Step 2. Add Skills List View to the Wrapper
	RAMP-TSAD09 Step 3. Add Code to Populate the List View
	Summary

	Scripting
	Learning
	Anatomy of Scripts
	Special Screen Script
	Junction Screen Script
	Destination Screen Script
	vHandle_NAVIGATETO Function
	vHandle_ARRIVE Function
	Your RAMP-TS Screen Script Defines a JavaScript Object

	Scripts in a Classic Details Display
	Javascript Essentials
	External JavaScript Documentation
	Basic Javascript syntax
	Reading, Writing and Storing Values
	alert()
	Converting Numbers to Strings
	Converting String to Numbers
	String Manipulation Functions
	Is This Variable Number or String?
	JavaScript Coding Styles
	Using the objGlobal Object
	Getting Organized
	Using objGlobal to pass optional parameters
	Using objGlobal to define commonly used functions

	Using
	Interacting with Instance Lists in Scripts
	The List Manager
	Visual and Programmatic Identifiers
	Working with All Selected Entries

	Scripting Pop-up Menu
	Replacing Hardcoded User Name with Current Framework User
	Replacing Hardcoded Employee Number with Current Instance List Entry
	Adding Your Own Options to the Scripting Pop-Up Menu

	Updating the Instance List from RAMP screens
	Filter Code which Automatically Handles Changes to Instance List

	Subfiles/Browselists
	Subfile Lines per Entry
	Identifying Subfile fields
	Referencing Subfile fields
	Iterating Subfile Rows
	Paging down or up a subfile
	Locating a specific value in a Subfile and making the selection

	Script Skeletons
	Script Functions
	LOCK_FRAMEWORK Function
	UNLOCK_FRAMEWORK Function
	RESTART_LAST_NAVIGATION Function
	OVRSFLAUTOGUI Function
	AVSWITCH Function
	TRIM_RIGHT Function
	TRIM_LEFT Function
	SHOW_CURRENT_FORM Function
	SHOWSTATUSBAR Function
	TOSTRING Function
	TONUMBER Function
	SETBUSY Function
	CHECK_FIELD_EXISTS Function
	DROP_SPECIAL_FIELD_HANDLER Function
	SET_SPECIAL_FIELD_HANDLER Function
	GET_FORM_MESSAGE Function
	SCREEN Function
	HIDE_5250_BUTTONS() Function
	SHOW_5250_BUTTONS() Function
	COPYTOCLIPBOARD Function
	FATAL_MESSAGE_TYPE Function
	SETKEYENABLED Function
	SETVALUE Function
	Q_SETVALUE Function
	GETVALUE Function
	SENDKEY Function
	Q_SENDKEY Function
	CHECK_CURRENT_FORM Function
	Q_CHECK_CURRENT_FORM Function
	AVCLOSEFORM Function
	HIDE_CURRENT_FORM Function
	CURRENT_FORM Function
	SETCURSORTOROW Function
	SETCURSORTOFIELD Function
	ALERT_MESSAGE Function
	CLEAR_MESSAGES Function
	FATAL_MESSAGE Function
	MESSAGE Function
	AVSIGNALEVENT Function
	TRACE Function
	HANDLE_PROMPT Function
	NAVIGATE_TO_SCREEN Function
	Q_NAVIGATE_TO_SCREEN Function
	STRIP_LEADING_NUMBERS Function
	ADD_STRING Function
	STRING Function
	OVERRIDE_KEY_CAPTION_SCREEN Function
	OVERRIDE_KEY_CAPTION_ALL Function
	AVSAVEVALUE Function
	AVRESTOREAVALUE and AVRESTORENVALUE Function
	ADD_UNKNOWN_FORM_GUESS Function
	SET_HANDLER_CAPTION Function

	Framework Objects that Scripts Can Refer To
	objGlobal
	objFramework
	objApplication
	objBusinessObject
	objCommand
	objListManager
	objUser
	Function Key Names for SENDKEY Function

	User-Defined Script Functions
	Switching Off Recursion Checking
	When Are Scripts Reloaded so That Change Can Be Tested?
	Advanced Scripting
	Creating your own navigation planner
	Using Screen References
	Using a vHandle_DEPART function
	Arrival Scripting and Inter-Screen Communication

	Debugging
	Debug and Diagnostics
	Common Scripting Errors
	Unable to display form
	Could not complete the operation due to error 80020101
	Object expected
	Strange behavior in scripts
	Your script does not execute at all

	Tracing
	Using ALERT_MESSAGE in Your Scripts

	Screen Enrichment
	Hide screen titles in individual RAMP Screens
	Two Ways to Hide the Title

	The HTMLAPI Scripting Object
	Using The HTMLAPI Scripting Object
	HTMLAPI Usage Examples
	Implementing a Basic Standard Layout function
	Generically Modifying a Screen via the Standard Layout function
	Specifically Modifying a Screen via a Specific Layout function
	Adding More Capability to the Standard Generic Handler
	Modifying Subfile Headings
	Modifying Fonts
	Adding Images
	Things to watch out for
	What HTMLAPI functions are provided?

	Screen Wrappers
	When to Use 5250 Screen Wrappers?
	Screen Wrapper Fundamentals
	Events
	RampMessage Event
	RampTSAvailable Event
	vHandleArrive Event

	Methods
	MakerampTSavailable Method
	NavigateToScreen Method
	SetValue Method
	GetValue Method
	SendKey Method
	Current_Form Method
	SetCursor Method
	SetCursorToField Method
	Get_Form_Message Method
	Check_Field_Exists Method

	Examples
	Example 1: Show Employee Details.
	Example 2: Show Employee Details and Skills
	Example 3: Show the System i Disk Usage

	Programming Techniques
	Using Function Key Descriptions to Condition RAMP Buttons
	Questions about the Function
	SHARED.apply5250FunctionKeyPatterns

	Handling a Single Screen which Shows Multiple Modes
	A Command Handler Tab with Many 5250 Destinations
	A User Controlled Command Tab with Many Destinations
	A Program Controlled Command Tab with Many Destinations
	Using this Approach in other Situations

	Advanced Prompting
	Using Prompter Forms
	Are any Examples Provided to Learn More about this Topic?

	A RAMP Design Approach � Using a Single Junction Point (SJP)
	How does an SJP work?
	Is an SJP really that simple in a real application?
	Can SJP do the other useful things?
	Does SJP have to be CL (Control Language) program?
	What other issues might impact the use on an SJP approach?

	Using HIDE_CURRENT_FORM to manage access to command handler tabs

	Multilingual RAMP Applications
	Troubleshooting
	xxxxxxx is an orphan script and should be deleted
	Screen does not react when selection is changed in instance list
	Error running RAMP in end-user mode (UF_EXEC) but not in design mode (UF_DESGN)

	Frequently Asked Questions
	How to tell in a RAMP-TS script what theme is being used?
	How is a Framework associated with RAMP-TS or RAMP-NL?
	I have made a mistake in classifying a screen. How do I change the classification?
	How do I differentiate two screens which have the same name?
	How can I use web browser windows from RAMP scripts?
	How can I get the message from the bottom of the current 5250 screen into my RAMP script?
	How do I handle RA (Auto Record Advance) fields?
	Why should the F12=Cancel and F3=Exit buttons and function keys be disabled on every 5250 screen?
	Do I have to identify and script every 5250 screen in my application to modernize it?
	How can I get the RAMP tool to assign a fixed session?
	How do I make my scripts work in multiple partitions?
	Can you add in your own functions to the scripts?
	How do I stop break messages in aXes 5250 sessions?

	Appendix
	Where and how are my RAMP-TS screen identifications kept?

