
RAMP-TS	Guide
RAMP-TS	Guide
Rapid	Application	Modernization	Process	for
Terminal	Server	Guide
	
How	to	Get	Started	with	RAMP
What's	New
Licensing	Requirements
Installation	and	Configuration
Starting	RAMP
Concepts
Modernization	Issues
Tutorials	for	RAMP	Windows
Scripting
Screen	Enrichment
Screen	Wrappers
Programming	Techniques
Multilingual	RAMP	Applications
Troubleshooting
Frequently	Asked	Questions
Appendix	
Please	send	your	comments	and	suggestions	to	LANSA	Support	at:
lansasupport@lansa.com.au.
	
Disclaimer:	While	every	effort	has	been	made	to	ensure	that	the	information	in
this	material	is	accurate,	in	no	event	shall	LANSA	be	liable	for	any	damages
arising	from	its	use.	LANSA	MAKES	NO	WARRANTIES,	EXPRESSED	OR
IMPLIED.
	
Edition	EPC130100

mailto:lansasupport@lansa.com.au

Edition	Date	November	14,	2012
©	2012	LANSA
	

How	to	Get	Started	with	RAMP
This	is	the	recommended	5	step	plan	for	getting	started	with	RAMP:

1.	Review	the	introductory	section	What	is	RAMP?

2.	Comprehend	how	modernization	will	change	the	nature	of	a	5250
application	by	reviewing:
5250	Application	Before	Modernization
5250	Application	After	Using	RAMP

3.	Comprehend	how	the	modernization	process	is	performed	by	reviewing:
Stage	1:	Creating	a	Modernization	Framework
Stage	2:	Incrementally	Modernizing	the	5250	Application
Stage	3:	Removing	IBM	i	Platform	Dependencies

4.	Install	and	Configure	RAMP	software	(see	Installation	and	Configuration).

5.	Complete	the	essential	Tutorials	for	RAMP	Windows.
	
Once	you	have	completed	these	steps	you	should	be	well	positioned	to	start	to
plan	and	implement	your	own	modernization	project	using	RAMP.

What	is	RAMP?
RAMP	is	a	staged	process	for	the	rapid	modernization	of	IBM	i	(or)	i5	based
5250	applications.	It	is	an	extension	to	the	Visual	LANSA	Framework.
	

			
	
RAMP	Stage	1	involves	prototyping	what	your	modernized	application	will
look	like	when	it	is	finished.
RAMP	Stage	2	involves	re-animating	the	existing	5250	application	in	the
Framework	and	incrementally	modernizing	it.
RAMP	Stage	3,	which	is	optional,	may	involve	you	in	re-engineering	your
application	so	as	to	remove	any	specific	IBM	i	platform	dependency	that	it
has.							
To	understand	what	the	end	result	will	be,	have	a	look	at	A	Modernized
Application.
The	RAMP	process	has	been	designed	to	support	rapid	and	incremental
deliveries	of	your	modernized	applications.	It	is	not	an	approach	where	you
have	to	work	for	years	until	the	result	comes	out	in	one	big	bang.	If	you	have

been	involved	in	big	bang	projects	before	you	will	know	of	the	pitfalls	that	this
entails.	This	RAMP	approach	allows	you	to	modernize	at	your	own	pace,	thus
allowing	you	to	manage	risk	in	a	sensible	manner.	See	Key	Benefits.										
	

RAMP	Stage	1

	

	

RAMP	stage	1	creates	a	prototyped	modernization
framework.
The	purpose	of	this	step	is	to	create	an	unencumbered
vision	of	what	"could	be"	rather	than	just	"what	is",	in
other	words	the	prototype	is	produced	to	be	a	vision	of
the	future	rather	than	just	a	reflection	of	the	application
the	way	it	is	today.
This	prototyping	framework	is	important	because:
It	defines	where	and	how	your	5250	screen	panels	will
be	reused
It	allows	all	stake-holders,	be	they	developers	or	end
users,	to	understand	and	review	what	they	are	going	to
get	and	what	they	are	going	to	have	to	give	to	complete
the	modernization	project.					
It	is	not	thrown	away,	but	will	evolve	into	the	real
executable	application	framework.
	
You	use	the	Instant	Prototyping	Wizard	to	create	the
prototype.	This	tool	is	especially	useful	for	people	with
a	5250	background	because	it	bridges	the	gap	to
Windows	and	web	browser	application	design.
It	should	only	take	a	few	days	to	deliver	a
modernization	framework	for	even	a	very	large
application.	The	prototyping	process	may	be	so	rapid
that	multiple	prototypes	can	be	produced	for
comparison	and	review	by	the	stakeholders.
At	the	end	of	this	stage	a	real	executable	application
framework	is	delivered.	Not	only	does	this	ensure
everyone	knows	what	they	are	getting	and	what	they
have	to	do,	it	also	makes	it	easy	to	define	and	manage
the	rest	of	the	project	and	to	assign	the	various
deliverables	to	the	project	participants.				
The	application	framework	will	be	evolved	into	a	real
application	by	gradually	snapping	out	the	prototype

parts	and	snapping	in	real	application	parts	which	will
be	either	reanimated	5250	screens	or	new	functions.				
For	more	information,	see	Modernization	Process
Overview.

	
	

RAMP	Stage	2

	

In	RAMP	stage	2	you	snap	in	your	5250	application	to
the	Framework	and	incrementally	modernize	it:

RAMP	Stage	2A
In	this	step	you	rapidly	modernize	infrequently	used
complete	application	segments	by	simply	snapping	their
entry	screen	(typically	a	menu)	into	the	Framework.	You
should	do	this	with	all	infrequently	used	segments	of
your	application.
The	major	benefit	of	this	approach	is	to	give	your	5250
screens	a	Windows	user	interface	and	to	make	them
accessible	from	the	Framework	in	very	little	time.
It	is	very	important	to	understand	that	you	do	not	have
individually	modernize	every	single	5250	screen	in	your
application	as	in	stage	2B.	For	more	information,	see
RAMP	Stage	2A:	Rapidly	Modernizing	Complete
Application	Segments.
		

RAMP	Stage	2B
In	this	step	you	individually	modernize	specific
application	areas	and	screens.	You	use	this	approach
with	key	parts	of	your	application.
You	record	the	navigation	to	the	destination	screens	in
the	5250	application	and	snap	them	in	the	Framework.
You	then	create	filters	to	provide	the	end-users	with
efficient	access	to	the	data.
The	enhanced	navigation	and	data	access	provide
significant	usability	benefits	and	are	the	core	of	the
modernized	application.	For	more	information,	see
RAMP	Stage	2B:	Individually	Modernizing	Frequently
Used	Screens.
	
	

RAMP	Stage	2C

In	this	step	you	can	selectively	enrich	your	existing	5250
application	by	adding	new	or	enhanced	functionality
such	as	video,	voice,	e-mail,	improved	desktop
integration,	etc.
How	much	you	add	depends	on	how	much	time	you
have	available.	For	more	information,	see	RAMP	Stage
2C:	Adding	Value.
	

	

RAMP	Stage	3

	

	
In	RAMP	stage	3,	which	is	optional,	you	can	create	an
application	that	can	execute	using	server	platforms	other
than	the	IBM	i,	for	example	Windows	or	Linux	servers
are	possible.
If	you	are	an	ISV	then	your	existing	or	new	customers
will	probably	welcome	the	new	options	that	this	opens
up	for	them.
Your	application	can	be	generated	into	various	3GL
languages	to	ensure	maximum	execution	efficiency	on
the	various	server	platforms	such	as	.NET	or	WebSphere.
The	re-engineering	process	may	use	any	technology,	for
example	you	might	choose	to	use	an:
SOA	(Service	Orientated	Architecture)	approach	or
MVC	(Mode-View	Controller)	approach.
It’s	up	to	you.
This	stage	completely	frees	you	from	the	limitations	of
the	5250	world.
For	more	information,	see	Stage	3:	Removing	IBM	i
Platform	Dependencies.

	
	

A	Modernized	Application
This	is	a	5250	Personnel	application	modernized	by	RAMP.	It	does	not	look
anything	like	a	5250	application,	but	it	is:

	
To	move	from,	for	example,	the	Details	tab	of	an	employee	to	the	Skills	tab	the
user	simply	clicks	on	the	tab	and	the	Skill	5250	screen	appears.	The	fact	that
behind	the	scenes	the	5250	application	needs	to	press	F12	twice,	key	in	an
employee	number	and	then	press	enter	is	completely	invisible	to	the	user.
Notice	tabs	named	Video	and	Email.		Facilities	like	video	and	email	are	not
things	normally	available	in	5250	applications,	but	they	can	easily	be	added	to	a
modernized	application	to	enhance	its	functionality	and	usability.
	

Key	Benefits
Uses	one	tool
and	one	skill
set

RAMP	is	part	of	LANSA.	One	of	LANSA’s	great	strengths	is
that	it	allows	developer	to	use	a	single	tool	and	single	skill	set
to	solve	all	their	commercial	IT	problems.	A	single	developer
with	a	single	skill	set	can	produce	solutions	ranging	from
Windows	Rich	Client	applications,	to	Web	Browser
applications	to	creating	an	XML	based	document	integration
solution

Framework
defines	and
drives
modernization
path

Uniquely	RAMP	uses	a	framework	driven	approach	to
application	modernization.	No	one	else	does	this.	The
framework	defines	and	then	manages	the	complete
modernization	process.	It	is	the	primary	vehicle	for	managing
expectations	and	communications	among	the	various
modernization	project	stakeholders.

Non-intrusive
-	no	changes
to	existing
5250
applications

No	change	at	all	is	required	to	your	existing	5250	applications
to	use	RAMP.

Supports	all
5250
applications	-
even	without
DDS

RAMP	can	modernize	any	5250	based	application,	even	the
application	and	operating	system	components	that	you	have	no
DDS	for	(eg:	Query,	DFU	and	IBM	i	commands).

Not	a	"step
sideways"	or
"ignore	the
problem"
solution

RAMP	provides	an	immediate	short	term	solution	(in	stage	2)
and	then	provides	a	clear	path	to	move	further	forwards	from
there	(in	stage	3)	to	platform	independence.	Using	RAMP	is
not	a	"step	sideways"	or	"a	band-aid"	screen	scraping	solution
that	ignores	your	need	to	produce	both	a	short	term	tactical
solution	for	modernization	and	at	the	same	time	implement	a
longer	term	strategic	direction	for	platform	independence.				

Incremental
approach
lowers

RAMP	is	not	a	big	bang	approach.	It	has	been	designed	to
accommodate	rapid	incremental	deliveries	of	your	modernized
application.	This	minimizes	your	risk	and	time	to	market.	

delivery	time

Should	not
require
hardware	or
O/S	upgrades

RAMP	will	run	on	any	platform	that	LANSA	supports.
Currently	LANSA	requires	IBM	i	V5R1	or	later.	You,	and	if
your	are	an	ISV,	your	own	customers,	do	not	need	to	upgrade
your	hardware	to	support	your	RAMP	modernized
applications.

Delivers	IBM
i	solution	in
short	time

The	entire	focus	of	RAMP	stage	2	is	on	the	delivery	of
modernized	IBM	i	applications	in	the	shortest	possible	time.
We	understand	that	getting	your	application	modernized	and
back	out	into	the	world	in	the	shortest	possible	time	is	vitally
important	to	you.			

	

	

	

How	the	5250	Application	Will	Change
The	sample	application	shown	in	this	section	is	part	a	5250	ERP	(Enterprise
Resource	Planning)	application	containing	more	than	3000	5250	screens.
It	is	a	LANSA	5250	application.	However,	RAMP	is	not	limited	to	LANSA
applications	and	may	be	used	on	any	IBM	i	5250	application	written	in	any
language	such	as	RPG	or	COBOL.	RAMP	may	also	be	used	on	applications	for
which	DDS	does	not	exist	such	as	DFU,	Query	and	IBM	i	command	5250
screens.
No	change	to	the	5250	application	is	made	during	the	modernization	process.
5250	Application	Before	Modernization
5250	Application	After	Using	RAMP
	

5250	Application	Before	Modernization
Think	for	a	moment	of	a	5250	or	green	screen	application	with	classic
navigation	techniques	in	action:	The	users	sign	on	and	are	greeted	by	a	menu.
They	then	navigate	through	several	menus	by	selecting	options	until	they	are
required	to	identify	the	item	they	want	to	work	with:			

		

5250	Application	After	Using	RAMP
Here	is	the	same	5250	ERP	application	as	a	Windows	rich	client	application
after	RAMP	has	been	used	over	it:

	

Accessing	Data	in	the	Modernized	Application
Framework	filters	provide	one	of	the	most	powerful	ways	of	adding	value	to	a
modernized	application	because	they	offer	the	end-users	efficient	and	flexible
access	to	the	data	in	the	application.

	

Navigation	in	the	Modernized	Application
In	RAMP	applications	the	Windows	interface	is	driving	the	5250	panels,	rather
than	the	5250	screens	driving	the	Windows	application.
The	difference	in	who	is	driving	-	the	Windows	application	or	the	5250
application	-	is	what	makes	RAMP	different	to,	and	so	much	more	powerful
than,	any	traditional	form	of	5250	screen	scraping	technology.

RAMPed	applications	do	not	just	look	better,	they	are	easier	and	more
productive	to	use	and	move	around	in,	and	easier	to	teach	someone	new	to	use.
You	can	easily	extend	the	modernized	application	by	adding	in	new	features
such	as	e-mail,	voice,	video,	web	browser	interfaces,	desktop	integration
features,	etc.	that	are	not	possible	using	the	5250	interface.
	

Modernization	Process	Overview
Stage	1:	Creating	a	Modernization	Framework
Stage	2:	Incrementally	Modernizing	the	5250	Application
Stage	3:	Removing	IBM	i	Platform	Dependencies

Stage	1:	Creating	a	Modernization	Framework
To	use	RAMP	the	first	step	is	always	to	produce	an	executable	prototype	of
what	your	modernized	application	will	be	like	when	it	is	completed.	The
prototype	is	very	important	because	it	helps	to	make	sure	that	all	stake-holders,
be	they	developers	or	end-users,	understand	what	they	are	going	to	get	and	what
they	are	going	to	have	to	give	before	any	significant	investment	is	made	in	the
result.
Fortunately	RAMP	makes	application	prototyping	very	simple	and	rapid.

Who	Should	Be	Involved?
Creating	the	Prototype
Executing	and	Refining	the	Prototype

Who	Should	Be	Involved?
Prototyping	requires	effective	communication	between	management,	users	and
IT.
The	classic	idea	of	having	management	and	user	project	champions	still	holds
strongly.	Without	project	champions	IT	groups	will	always	struggle	with
identifying	and	adding	real	value	to	any	project.
Asking	the	project	champions	to	identify	and	then	design	the	top	five	(say)	most
important	real	value	additions,	then	fully	implementing	them,	will	sometimes
get	their	complete	commitment	to	a	project	and	reinforce	the	benefits	of
thinking	clearly,	as	a	group,	about	real	value,	as	opposed	to	getting	lost	in	a
maze	of	trivial	value	items	like	radio	buttons,	drop	downs	and	trees.																
At	this	stage	you	should	review	the	topic	What	Adds	Value?	

Creating	the	Prototype
The	prototyping	process	is	so	rapid	that	is	feasible	to	produce	multiple
prototypes	that	may	be	compared	and	discussed.

	
The	Visual	LANSA	Framework	is	a	framework	for	defining	and	executing
commercial	applications.
The	main	window	is	laid	out	in	a	MS-Outlook	or	"dashboard"	style.	For	more
information	refer	to	Key	Concepts	in	the	Framework	Guide.
Where	these	various	form	areas	are	and	how	they	are	laid	out	can	be	changed	in
many	ways	by	the	designer	and	even	the	end	user	according	to	individual
preference.	See	Tailoring	the	Window	Layout	in	the	Framework	Guide.
	

mk:@MSITStore:lansa048.chm::/Lansa/key_concepts.htm
mk:@MSITStore:lansa048.chm::/Lansa/lansa048_0270.htm

	

	

	

	

	
The	user	then	clicks	on	the	Finish	button	and	the	prototype	application	is
generated.	The	Instant	Prototyping	Assistant	closes	and	the	Visual	LANSA
Framework	main	windows	reappears.
	

Executing	and	Refining	the	Prototype
The	prototype	ERP	application	has	now	been	created	and	inserted	into	the
framework.

	

	

	

	

	

	
When	you	are	happy	with	the	prototype	application,	you	can	proceed	to
implement	the	various	parts	of	it	as	a	real	application,	gradually	snapping	out
the	prototype	parts	and	snapping	in	the	real	application	parts,	so	over	time	the
prototype	evolves	into	a	real	application.

	
For	detailed	instructions	for	how	to	prototype	an	application,	refer	to	the	tutorial
RAMP-TS001:	Creating	a	Basic	Prototype	of	the	Modernized	Application.
	

Stage	2:	Incrementally	Modernizing	the	5250	Application
RAMP	has	been	designed	to	provide	a	realistic	way	to	manage	risk	and	time	to
market	issues	by	using	an	incremental	and	evolutionary	approach	to	producing
the	next	generation	of	an	application.	In	other	words,	because	the	RAMP
architecture	is	not	a	“big	bang”	approach,	it	gives	the	developer	the	choice	of	
shipping	multiple	small	incremental	versions	of	their	application	to	minimize
risk	and	the	time	to	market.

Naming	the	5250	Screens
Tracking	and	Classifying	the	Screens
RAMP	Stage	2A:	Rapidly	Modernizing	Complete	Application	Segments
RAMP	Stage	2B:	Individually	Modernizing	Frequently	Used	Screens
RAMP	Stage	2C:	Adding	Value

Naming	the	5250	Screens
The	first	step	in	snapping	in	5250	screens	into	the	Framework	is	to	name	them:

	

	

	

	

		

	
For	more	detailed	information	about	naming	screens,	refer	to	the	tutorials
RAMP-TS002:	Rapidly	Modernizing	Complete	Application	Segments	and
RAMP-TS004:	Naming	and	Classifying	the	Employee	Screens.
	

Tracking	and	Classifying	the	Screens
Once	the	screens	and	fields	to	be	reused	in	the	modernized	application	have
been	named,	we	can	then	proceed	to	classify	them	and	to	track	the	navigation
between	them:

	

	

	

	

	

	

	

	

RAMP	Stage	2A:	Rapidly	Modernizing	Complete	Application
Segments
During	the	prototyping	stage	you	will	have	identified	those	segments	of	the
application	which	are	used	infrequently,	and	you	have	named	and
choreographed	the	navigation	to	the	entry	point	screens	of	those	segments.	Now
you	snap	them	in	the	Framework.

	
How	to	Do	It?

How	to	Do	It?
After	the	5250	entry	point	screens	have	been	named	and	the	navigation	to	and
from	them	has	been	recorded,	they	are	simply	snapped	in	the	Framework:

	
See	tutorial	RAMP-TS002:	Rapidly	Modernizing	Complete	Application
Segments.

	

RAMP	Stage	2B:	Individually	Modernizing	Frequently	Used
Screens
During	the	prototyping	stage	you	will	have	identified	those	segments	of	the
application	which	are	used	often,	and	you	have	named	and	choreographed	the
navigation	to	the	destination	screens	of	those	segments.	Now	you	snap	them	in
the	Framework,	and	create	filters	to	provide	flexible	and	efficient	access	to	the
data.
	

	
How	to	Do	It?

How	to	Do	It?
See	tutorials:
RAMP-TS003:	Creating	a	Data	Filter	for	Employees
RAMP-TS006:	Snapping	in	a	Basic	Inquiry	Screen
RAMP-TS007:	Snapping	in	a	Data	Entry	Function
RAMP-TS008:	Changing	Inquiry	Screen	to	Update	Mode
	

RAMP	Stage	2C:	Adding	Value
In	this	step	you	selectively	enrich	your	existing	5250	application	by	adding	new
or	enhanced	functionality	such	as	video,	voice,	e-mail,	improved	desktop
integration	etc.

	
Adding	new	Visual	LANSA	components	opens	up	a	whole	new	range	of	ways
that	modern	IT	technologies	can	be	applied	to	improving	business	processes.
	
What	Adds	Value?
How	to	Do	It?

What	Adds	Value?
If	you	do	not	add	real	business	value	to	your	modernized	application,	your
project	may	not	succeed.
Things	that	make	or	save	money	for	the	business	add	value.	They	range	from
business	process	and	productivity	improvements,	lower	training	costs	to	happier
staff.	Similarly,	things	that	allow	end-users	to	do	their	jobs	faster,	better	and
smarter,	with	a	higher	level	of	personal	satisfaction	add	value.			
Introducing	trivial	value	items	such	as	using	a	tree	to	replace	5250	menu
navigation	with	a	few	radio	buttons	and	drop	downs	may	be	nice	to	have,	but	to
an	end-user	they	might	even	have	a	negative	value.			
Some	of	the	ways	to	add	real	value	to	an	existing	5250	application	are:
	

Using	smart	and	powerful
filters	to	access	data

Filters	add	value	because	they	can	easily	do	things
that	the	existing	5250	application	cannot	do,	and
because	they	can	be	tailored	to	exactly	match
common	end-user	business	processes.
For	example,	if	you	take	a	basic	product	enquiry
5250	screen	and	add	a	powerful	filter	over	the
product	master	and	order	details	files,	you	can	add
a	lot	of	value	to	an	end-users	working	life,	for
example	by	making	it	possible	to	find	all	products
on	order	today,	or	on	back	order,	search	by	name,
search	by	category,	etc.
Filters	that	allow	end	users	to	define	their	own
repetitive	custom	searches	(for	example	every
Monday	I	want	to	see	all	products	sold	last	week)
or	dynamically	create	commonly	used	lists	(for
example	all	products	marked	as	hazardous)	also
add	significant	real	value.
If	your	filters	simply	mimic	the	5250	application
you	will	not	be	adding	much	value.		

Consolidating	information	 Often	5250	applications	require	people	working	in
warehouses	and	offices	to	extract	information
from	multiple	sources	and	consolidate	it	into
management	reports	or	use	it	for	input	to	disparate

and	non-integrated	applications.
If	you	can	consolidate	these	tasks	on	a	single	form
with	a	single	click	or	two,	you	will	add	real	value
to	management	and	to	users.			

Integrating	with	desktop
applications

Add	value	by	integrating	functionality	such	as	e-
mail	that	aids	communications	between	users	and
customers,	and	MS-Excel	that	aids	in	reporting
and	analysis	tasks.							

Reducing	repetition	and
rekeying

Lots	of	5250	applications	still	require	users	to
rekey	information	because	the	underlying	5250
applications	are	not	integrated.
If	you	can	reduce	or	eliminate	this	you	will	add
value	to	management	and	users.	Smart	prompting
and	pre-filling	5250	screens,	sometimes	from	a
user-definable	list	of	templates,	are	also	good
ways	to	add	value.				

	

The	things	listed	above	are	simple	examples	of	what	is	at	the	root	of	most
effective	business	process	re-engineering.	It	is	about	what	you	already	have	and
then	reusing	it	in	a	new	improved	way.
You	need	to	consider	all	this	at	Stage	1:	Creating	a	Modernization	Framework.
	

How	to	Do	It?
See	tutorials:
RAMP-TS010:	Using	Special	Field	Handlers
RAMP-TS011:	Snapping	in	Shipped	Documents	Command	Handler
RAMP-TS012:	Snapping	in	Shipped	Notes	Command	Handler
RAMP-TS014:	Snapping	RAMP	Screens	into	the	HR	Demo	Application
RAMP-TSAD01:	Using	Buttons	to	Add	Value	to	an	Application
RAMP-TSAD03:	Special	Field	Handling
	

Stage	3:	Removing	IBM	i	Platform	Dependencies
RAMP	Stage	3	is	an	optional	stage	if	you	do	not	need	to	support	server
platforms	other	than	the	IBM	i.	The	final	objective	of	this	stage	is	to	replace	all
the	5250	destination	screens	with	platform	independent	Visual	LANSA
components,	in	other	words	it	involves	re-engineering	your	existing	5250
application.

	
This	brings	some	significant	benefits:
The	first	is	that	their	entire	application	is	no	longer	dependent	upon	RPG.
COBOL,	DDS,	or	for	that	matter	executing	using	an	IBM	i	or	i5	server.	This
may	be	of	critical	importance	if	you	need	to	sell	your	application	to	customers
who	want	to	use	Windows	or	Linux	servers.
The	re-engineering	exercise	may	be	undertaken	using	any	technology	or

approach	that	LANSA	supports.	(eg:	SOA,MVC).
Stage	3	supports	a	rapid	multiple	incremental	delivery	approach	that	lowers	time
to	market	and	risk.			
Stage	3	opens	up	the	full	power	of	LANSA,		the	Visual	LANSA	Framework,	the
Windows	desktop	and	the	web	browser	to	your	applications.
Stage	3	is	what	makes	RAMP	a	long	term	strategic	approach	to	application
modernization.	It	provides	a	clearly	defined	path	forward	into	the	future	rather
than	a	tactical	“step-sideways”	solution.									
		

Prerequisite	Skills
To	use	RAMP	you	need	to	have	some	basic	knowledge	of	how	LANSA	and	the
Visual	LANSA	Framework	are	used	for	application	development.	You	may
want	to	review	some	of	these	tutorials	(these	links	are	to	other	guides):
Framework	tutorials
Visual	LANSA	tutorials	-	you	will	need	to	know	how	to	create,	compile	and
check	programs	into	your	System	i	server	using	the	Visual	LANSA	editor.
	
	

Subject	Matter	Expertise
To	modernize	applications	with	RAMP	you	need	to	have	access	to	someone
who	has	an	in-depth	knowledge	of	the	business	application	being	modernized
and	the	industry	in	which	the	application	runs.	This	person	should	also	know
what	your	business	is	wanting	to	achieve	as	a	modernized	output.
Without	access	to	a	subject	matter	expert	you	are	unlikely	to	be	able	to
successfully	modernize	any	application	using	any	tool	because:
Nobody	would	know	how	the	existing	functionality	is	used	(as	opposed	to	just
understanding	how	it	works,	which	is	different)
Nobody	would	be	able	to	envision	how	the	modernized	version	would	be	used
(as	opposed	to	how	it	should	work).
	

mk:@MSITStore:lansa048.chm::/Lansa/tutorials.htm
mk:@MSITStore:lansa095.chm::/lansa095_begin.htm

Warnings	and	Disclaimers
The	Clever	versus	Risk	Dilemma
As	you	progress	with	RAMP-TS	you	will	probably	notice	that	the	VLF	and	the
RAMP-TS	server	use	internal	processing	models	that	are	exposed	in	JavaScript,
the	HTML	DOM,	etc.	You	can	do	this	by	looking	at	the	shipped	code	or	by
using	all	sorts	of	tools	explore	the	models.
This	will	lead	you	to	the	"Clever	versus	Risk"	dilemma,	which	is	this	……..			
You	can	probably	write	clever	logic	to	traverse,	modify,	reuse	or	alter	the
internal	processing	model	of	the	framework	or	RAMP-TS.	You	may	have
perfectly	valid	reasons	for	doing	this	and	you	may	be	able	to	produce	some	very
useful	and	powerful	results.
However,	in	doing	this	you	are	taking	a	very	clear	risk.	The	risk	is	that	in	a
future	version	of	the	framework	or	RAMP-TS	the	internal	models	may	change
in	behaviour	or	content.	These	changes	may	render	your	use	of	the	internal
model	useless,	malfunctioning	or	even	damaging.
From	the	product	support	and	maintenance	perspective	LANSA	will	support
published	interfaces	(ie:	things	documented	in	this,	or	the	VLF	guide).
If	you	traverse,	modify,	reuse	or	alter	the	internal	processing	model	of	the
framework	or	RAMP-TS	you	need	to	be	aware	that	you	are	taking	a	risk,	the
cost	of	which	must	be	borne	by	you	or	the	organization	you	work	for.
There	is	no	issue	with	your	right	to	take	such	actions,	but	you	need	to	be	very
clear	about	the	risk	involved	and	about	who	will	pay	for	any	subsequent
consequences.
	
	

What's	New
	
This	version	of	RAMP	supports	LANSA	Version	13.
	
To	review	new	features	in	previous	RAMP	versions,	see:
New	Features	in	EPC	868	Version	of	RAMP
New	Features	in	EPC	843	Version	of	RAMP
	

New	Features	in	EPC	868	Version	of	RAMP
	
This	section	outlines	new	features	in	EPC868	version	of	RAMP-TS:
More	Information	is	Now	Accessible	in	In	RAMP-TS	and	RAMP-NL
Scripts
The	objCommand	object	now	contains	details	about	the	optional	arguments
associated	with	the	current	command	and	the	reason	that	the	command	is
being	executed	(ie:	you	can	now	distinguish	between	a	command	execution
and	a	command	activation).	Refer	to	the	objCommand	definition	for	more
details.		
	
New	Functions
LOCK_FRAMEWORK	Function
UNLOCK_FRAMEWORK	Function
RESTART_LAST_NAVIGATION	Function
	

	
To	review	new	features	in	previous	RAMP	versions,	see:
New	Features	in	EPC	843	Version	of	RAMP
	

New	Features	in	EPC	843	Version	of	RAMP
This	section	outlines	new	features	in	EPC843	version	of	RAMP-TS:
	
SSL	Support	for	RAMP-TS
SSL	(Secure	Socket	Layer)
support	can	now	be	added	to
RAMP-TS.	Check	the
See	the	Use	HTTPS	option	in
the	Framework	server	options.
	
Note:	To	use	SSL	with	RAMP-
TS	from	VLF-WEB	or	VLF-
NET	applications,	the	VLF	Web
server	also	has	to	operate	under
SSL.
	

Switch	From	RAMP-TS	Command
Handlers	to	Other	Business	Objects
The	new	AVSWITCH	Function	enables	a
switch	from	the	current	screen	to	another
business	object	and	executes	a	nominated
command	once	there.	This	is	a	basic
implementation	of	the	VLF	Switch	method.
	

Stop	Values	Saved	to	the
Virtual	Clipboard	Persisting
Beyond	the	Current	Execution
A	new	parameter	for	the
AVSAVEVALUE	Function	has
been	added	so	that,	when	set	to
FALSE,	values	saved	to	the	VLF
Virtual	Clipboard	can	be
stopped	from	persisting	to
further	invocations	of	a	RAMP-
TS	application.	The	default
value	is	TRUE.
	

Private	Version	of	the	SHARED	Object
A	private	version	of	the	SHARED	Object
can	now	be	used	when	RAMP-TS	screens
are	kept	in	a	Private	Definition	Folder.
Check	the	Contains	SHARED	Object	option
in	the	RAMP-TS	(Terminal	Server)	group
box	to	indicate	to	RAMP-TS	that	the
SHARED	Object	file	is	in	the	Private
Definitions	Folder.	See	Contains	SHARED
Object.
Note:	If	a	Private	Definition	Folder	is	not
nominated	then	the	SHARED	Object	file	is
loaded	from	its	default	location.
	

Control	when	to	recognize
subfiles	as	tables
The	new	OVRSFLAUTOGUI
Function	allows	you	to	turn	the

	

mk:@MSITStore:lansa048.chm::/Lansa/lansa048_4990.htm
mk:@MSITStore:lansa048.chm::/Lansa/lansa048_4995.htm

Axes	system	flag	Recognise
subfiles	as	tables	on	and	off	on	a
screen-by-screen	basis.

	

Licensing	Requirements
Developer	Quick	Check	List
If	you	are	RAMP	developer	then	use	this	quick	check	list:
Checked Type	of

License
What	does	it
allow	you	to
do

How	to	check	it

	 VL-IDE
dongle	or
Softkey
license

To	develop
Visual
LANSA
applications

Can	you	create,	compile	and	execute
Visual	LANSA	(VL)	applications	and
check	them	into	your	System	i
server?

	 RAMP
choreographer
license

To
choreograph
RAMP
screens

Use	LANSA	REQUEST(LICENSE)
on	your	System	i	server	and	look	for
a	valid	"AXX"	or	"Ann"	license.

	 Axes-TS
license

To	display
5250	sessions
via	the	Axes-
TS	server

Use	the	IBM	i	command
WRKLICINF	PRDID('1AXES*').
Note	the	asterisk.
Depending	on	what	features	have
been	installed,	the	resulting	screen
may	will	show	these	features:	Base,
Terminal	Server,	Application	Server,
Spooler	File	Server,	Intersession,
Terminal	Server	etc.

	 LANSA
Super	Server
license

To	access
remote	data
and	programs
on	your
System	i	via
non-5250
interfaces.

Use	LANSA	REQUEST(LICENSE)
on	your	System	i	server	and	look	for
a	valid	"LXX"	or	"Xnn"	license.

	

To	obtain	any	type	of	license	contact	your	LANSA	product	vendor.

	
	

Installation	and	Configuration
Installation	on	the	Server
Backup	Strategy
Configuration
When	Many	Developers	Work	on	the	Same	Application

Installation	on	the	Server
See	the	Framework	Guide	for	detailed	instructions	for	installing	the	Framework.
You	need	to:
First	Install	the	Framework	software	on	the	System	i	Server.	Note	that	you	only
need	to	perform	this	step	and	none	of	the	other	steps	described	in	the	Framework
Guide	because	you	are	not	installing	LANSA	for	the	Web.
Next	Install	and	Configure	the	Framework	on	Visual	LANSA	Workstations.
Then	Install	and	Configure	RAMP-TS	/	aXes-TS	on	your	IBM	i	Server.
Lastly	Verify	your	RAMP-TS/aXes-TS	Installation
Backup	Strategy.
If	you	have	used	RAMP-NL	(newlook),	you	may	be	interested	in	the	frequently
asked	question	How	is	a	Framework	associated	with	RAMP-TS	or	RAMP-NL?
	

mk:@MSITStore:lansa048.chm::/Lansa/lansa048_2225.htm
mk:@MSITStore:lansa048.chm::/Lansa/lansa048_0745.htm

Install	and	Configure	RAMP-TS	/	aXes-TS	on	your	IBM	i	Server
Before	you	can	use	RAMP-TS	you	need	to	install	and	configure	aXes	terminal
server	on	your	IBM	i	server.

Before	Installation
Before	starting	the	installation,	please	read	the	planning	section	in	the
aXesQuick	Start	guide.
1.	If	this	product	is	already	installed,	refer	to	aXes	Quick	Start	guide	for	how	to
upgrade,	or	contact	your	vendor.	(To	check	if	it	aXes	is	installed,	run	the
command	GO	LICPGM,	display	installed	license	programs	and	look	for
product	–	1AXES01).

2.	If	aXes	it	not	installed,	download	it	from	www.axeslive.com	and	click	on
download.

3.	Install	aXes	following	the	instructions	in	the	aXesQuick	Start	guide.
	
	

http://www.axeslive.com

Verify	your	RAMP-TS/aXes-TS	Installation
After	installing	RAMP-TS/aXes	on	your	IBM-I	server	you	should	verify	the
installation.
Please	do	not	proceed	any	further	with	using	RAMP-TS	until	you	can
successfully	complete	the	following	verification	steps:
1.			Open	a	browser	window	and	enter	a	URL	like	this,	specifying	the	host	and
port	of	your	aXes-WS	server:		
	
				http://<host>:<port	number>
	

	
The	resulting	screen	should	look	like	this:

	

2.			Click	on	the	aXes	home	page	link.
The	result	should	look	like	this:

	

3.			Click	on	the	TS	terminal	session	option	on	the	right	hand	side,	in	the	launch
aXes	session's	group.	A	separate	window	should	appear	that	allows	you	to
sign	on	to	your	IBM	i	server	using	your	normal	user	profile	and	password:

4.			After	verifying	you	can	sign	on	and	access	your	IBM	i	server	signoff	and
close	the	window.

5.			Now	click	on	Click	on	the	TS	development	session	option	on	the	right	hand

side,	in	the	launch	aXes	session's	group.
6.			When	the	web	logon	dialog	appears	sign	on	as	user	dev	with	password	dev.
The	resulting	screen	should	look	like	this.

7.			Verify	that	you	can	log	on	to	your	IBM	i	server,	using	your	user	profile	and
password.

	

Backup	Strategy
The	library	AXES	and	the	IFS	folder	aXes	and	all	its	subfolders	must	be
included	into	your	daily	backup	cycle.	Failure	to	do	this	could	lead	to	a
significant	or	total	loss	of	developer	work.
See	Where	and	how	are	my	RAMP-TS	screen	identifications	kept?
		

Configuration
Verify	Browser	Security	Settings
Configure	RAMP
	

Verify	Browser	Security	Settings
To	use	RAMP-TS	it	is	necessary	to	bypass	browser	cross-domain	security
(security	relating	to	documents	accessing	documents	from	a	different	domain).
In	Internet	Explorer	cross-domain	security	is	bypassed	by	specifying	the	same
Host	name	in	the	VLF	and	Axes	URL.	For	example,	let's	say	hostabc	resolves	to
10.10.2.181.
This	URL	is	OK	because	both	refer	to	hostabc	regardless	of	reverse	proxy
configuration	and	hostabc	added	to	the	trusted	sites:
http://hostabc:81/images/privatefolder/EX1_Test_ENG_BASE.HTM?
Developer=Y+TSIPAddress=hostabc+TSPortNumber=8080
This	URL	is	also	OK	because	both	refer	to	10.10.2.181	regardless	of	reverse
proxy	configuration	and	10.10.2.181	added	to	the	trusted	sites:
http://	10.10.2.181:81/images/privatefolder/EX1_Test_ENG_BASE.HTM?
Developer=Y+TSIPAddress=10.10.2.181+TSPortNumber=8080
These	URLs	are	NOT	OK:
http://10.10.2.181:81/images/privatefolder/EX1_Test_ENG_BASE.HTM?
Developer=Y+TSIPAddress=hostabc+TSPortNumber=8080
http://hostabc:81/images/privatefolder/EX1_Test_ENG_BASE.HTM?
Developer=Y+TSIPAddress=10.10.2.181+TSPortNumber=8080
	
For	other	browsers	this	is	done	by	setting	up	a	reverse	proxy:
Set	Up	Reverse	Proxy	for	Chrome,	Safari	and	Firefox

	

Set	Up	Reverse	Proxy	for	Chrome,	Safari	and	Firefox
Perform	this	step	on	every	PC	from	which	RAMP-TS	used.
Domain	refers	to	the	Host:Port	combination.	For	example	if	the	VLF	uses	a	host
MyHost	in	port	81,	the	VLF	domain	is	MyHost:81	and	if	RAMP-TS	(aXes)	also
uses	MyHost	but	in	port	8080,	the	RAMP-TS	domain	is	MyHost:8080.
Therefore	the	VLF	and	RAMP-TS	are	accessing	different	domains.
Therefore	it	is	necessary	to	use	the	web	server	Reverse	Proxy	feature	to	bypass
cross-domain	security.	The	Reverse	Proxy	settings	for	the	sample	host	names
look	like	this	in	the	IBM	i	Admin	instance:

To	set	up	your	reverse	proxy,	replace	MyHost:8080	with	your	host	details.	Once
you've	set	up	the	Reverse	Proxy	you	should:
1			Restart	the	web	server
2.			Clear	the	browser's	cache

3.			Start	Fiddler!
4.			Try	first	serving	the	equivalent	of	MyHost:8080/ts/ts2/index.html	and	then
MyHost:81/ts/ts2/index.html.

MyHost:8080	is	the	RAMP-TS	(aXes)	domain	therefore
MyHost:8080/ts/ts2/index.html	should	work	straight	away	and	you	should	see	a
page	like	this:

If	you	cannot	see	this	screen,	you	may	not	have	aXes	installed	or	there	is	a
problem	with	your	configuration.
MyHost:81	is	the	VLF	domain.	If	you	can	serve	the	same	page	using	the	VLF
domain	it	means	the	change	to	the	web	server	configuration	is	working.
	

http://support.lansa.com:2111/ts/ts2/index.html
http://support.lansa.com:2111/ts/ts2/index.html
http://support.lansa.com:2111/ts/ts2/index.html

Configure	RAMP
Perform	these	steps	to	configure	RAMP	in	the	Framework:
If	You	Have	Used	RAMP-NL,	Read	This
Ensure	Your	Framework	Has	an	Overall	Visual	Style	Theme
Specify	RAMP-TS	Server	Details
Set	up	Super-Server	Session
Optionally	Set	up	Framework	Users	and	Security

If	You	Have	Used	RAMP-NL,	Read	This
If	you	start	up	a	Framework	that	is	already	using	RAMP-NL,	it	will	continue	to
use	RAMP-NL.	So	to	get	started	with	RAMP-TS	you	need	to	start	with	a
Framework	that	has	no	RAMP-NL	details	associated	with	it.
This	means	that	the	easiest	way	to	get	started	with	RAMP-TS	is	to:
Start	VLF	using	the	Latest	Shipped	Demonstration	System	(lastshipped.xml	file)
so	you	are	using	a	default	configuration.
You	also	need	to	ensure	there	is	only	one	server	defined	and	set	it	type	“LANSA
iSeries	+	RAMP	TS”.
Remove	any	existing	RAMP-NL	server	definitions.
Ensure	the	existing	vf_sy001_nodes.xml	file	is	renamed	or	removed.
Ensure	you	are	using	a	unique	set	of	XML	file	names	to	store	your	framework
details	in	(on	the	Framework	->	Properties	->	Framework	Details	tab).
Use	the	“Save	As”	option	to	save	this	Framework	with	a	different	name.
	
When	you	have	successfully	configured	to	use	RAMP	TS,
when	opening	the	RAMP	Tools	you	should	see	this:

		
To	understand	more,	see	How	is	a	Framework	associated	with	RAMP-TS	or
RAMP-NL?.
	
	

Ensure	Your	Framework	Has	an	Overall	Visual	Style	Theme
When	using	RAMP-TS	you	must	use	an	overall	theme	for	your	Framework.	The
use	of	overall	theme	None	is	not	valid	in	RAMP-TS	applications.

		
In	aXes	there	are	special	autoGUI	subfile	handling	options	which	must	be
turned	off	in	RAMP:

	
They	are	not	supported	by	RAMP-TS.	In	RAMP-TS	many	screens	are	hidden,
in	which	case	how	subfiles	are	presented	is	irrelevant.		Where	a	screen	is	made
visible	(ie:	a	destination)	you	can	usually	enhance	the	subfile	in	better	way
using	eXtensions	and	other	RAMP-TS	techniques.				

	

Specify	RAMP-TS	Server	Details
1.			Start	the	Framework	as	a	Designer.
2.			In	the	(Administration)	menu	of	the	Framework	select	the	(Servers…)
option.

3.			Select	the	server	named	MY/AS400,	or	create	a	new	server	by	clicking	the
New	button.

4.			On	the	Identification	tab	enter	a	Caption	that	describes	your	server.
5.			On	the	Server	Details	tab,	enter	a	Name	for	the	server	and	select	LANSA	for
System	i	+	RAMP-TS	as	the	Server	Type.

6.			In	the	RAMP-TS	(Terminal	Server)	section	of	the	screen	enter	the	host	and
port	number	of	your	RAMP-TS/aXes-TS	server	like	this:

	

7.			Save	and	restart	the	framework.
8.			Start	the	Framework	as	a	Designer	again.	Use	the	(Administration)	menu
(Servers…)	option	again.

9.			Select	the	server	you	just	defined	and	switch	to	the	Server	Details	tab.
10.			Click	the	Test	RAMP	Tools	Installation	and	Configuration	button.
11.			On	the	resulting	web	sign	on	dialog	sign	on	as	user	dev,	password	dev.
The	resulting	screen	should	look	like	this:	

Please	do	not	proceed	with	using	RAMP-TS	until	this	verification	test
can	be	completed	successfully.	

	

Set	up	Super-Server	Session
When	using	RAMP	you	need	a	super-server	session	to	sign	on	to	the	System	i
server.	To	specify	the	sign-on	option:
Start	the	Framework.
Display	the	Framework	menu	and	select	the	Properties	option.
In	the	Framework	Properties,	select	the	User	Administration	Settings	tab.
Select	the	Users	Sign	on	to	a	Remote	Server	to	Use	the	Framework	option	in
Sign	on	Settings.
Close	the	dialog	and	save	the	Framework.

	

Optionally	Set	up	Framework	Users	and	Security
You	can	optionally	use	Framework	users	and	security:
Display	Framework	properties.	In	the	User	Administration	Settings	tab	select	the
Use	Framework	Users	and	Authority	option.	Also	select	the	option	Store	Users
in	DBMS	tables	VFPPF06/07.	Save	and	restart	the	Framework.

In	the	Administration	menu	select	the	Users	option.
Specify	the	user	profile	details	and	their	authorities.	For	more	information	use
the	context-sensitive	help	by	pressing	F1.
	
	

When	Many	Developers	Work	on	the	Same	Application
When	modernizing	large	applications,	it	may	be	necessary	that	several
developers	share	the	work.
Handle	Multiple	Framework	Versions
Script	Naming	Convention

Handle	Multiple	Framework	Versions
See	Framework	Versions.

mk:@MSITStore:lansa048.chm::/Lansa/L4wVLF08_0040.htm

Script	Naming	Convention
RAMP	scripts	are	assigned	names	like	FORMSCRIPT_137.The	name	reflects
their	purpose	and	the	numerical	suffix	makes	them	unique	within	the	current
Framework,	but	they	have	no	real	programmatic	purpose.
Where	multiple	developers	are	working	on	independent	Frameworks	with	an
intention	to	merge	their	work	together	at	some	later	date,	the	possibility	of
duplicated	script	names	exists.	While	this	situation	does	not	present	a	technical
problem	for	RAMP,	it	can	be	confusing	for	developers	trying	to	identify	unique
scripts.			
Developers	can	change	the	names	of	the	scripts	in	the	Script	Area.	The
recommend	way	to	do	this	is	to	append	a	short	suffix	to	the	generated	script
name,	possibly	relating	to	the	5250	screen	or	application	that	the	script	is
associated	with.
Also	see	xxxxxxx	is	an	orphan	script	and	should	be	deleted.

Starting	RAMP
This	section	summarizes	how	you	start	LANSA	and	the	features	inside	LANSA
you	will	need	when	modernizing	an	application.
Start	LANSA
Start	the	Framework
Start	RAMP
Start	the	Instant	Prototyping	Assistant
Start	the	Program	Coding	Assistant

Start	LANSA
To	start	LANSA:
Use	the	Start	menu	and	display	the	Programs	folder.
Select	LANSA.
Select	the	Development	Environment	option

The	LANSA	development	environment	is	displayed

Start	the	Framework
You	start	the	Framework	from	the	LANSA	development	environment:
Display	the	Tools	menu.
Select	the	VL	Framework	-	as	Designer	option.

	

Start	RAMP
You	start	RAMP	from	the	Framework	window:
Display	the	Framework	menu.
Select	the	RAMP	Tools...	option.

The	RAMP	Tools	window	is	displayed.
	

Start	the	Instant	Prototyping	Assistant
The	tutorial	RAMP-TS001:	Creating	a	Basic	Prototype	of	the	Modernized
Application	shows	how	to	use	the	Instant	Prototyping	Assistant.
Use	the	Instant	Prototyping	Assistant	to	quickly	prototype	your	application	or	to
modify	an	existing	prototype
To	start	the	Instant	Prototyping	Assistant,	use	the	Instant	Prototyping	Assistant...
option	in	the	Framework	menu.

Alternatively,	select	the	New	Application	or	New	Business	Object	options	from
the	popup	menu	in	the	navigation	pane:

And	then	respond	Yes	to	the	message	that	appears:

The	Instant	Prototyping	Assistant	is	displayed:

	
	

Start	the	Program	Coding	Assistant
The	tutorial	RAMP-TS003:	Creating	a	Data	Filter	for	Employees	shows	how	to
use	the	Program	Coding	Assistant.
Use	the	Program	Coding	Assistant	to	quickly	create	the	code	for	Framework
filters	and	RAMP	screens.
To	start	it,	use	the	Program	Coding	Assistant	option	in	the	Framework	menu:

	
	
	

Concepts
Steps	Involved	in	Using	RAMP
Framework	Window
RAMP	Window
Types	of	Screens
Naming	Conventions
OBJECT-ACTION	User	Interfaces

Steps	Involved	in	Using	RAMP
You	need	to	complete	these	steps:
Step Comments		 Modernization

of	Infrequently
Used
Application
Modernization

Application
Modernization

1.	Create	a
prototype	of	your
application.

The	prototype	will
evolve	into	the	final
application.
	
You	need	access	to
the	subject	matter
expert	at	least	during
this	stage.				

	 	

2.	Identify	the
5250		screens	in
the	existing
application.

	 Identify	only
entry	point
5250	screens

Identify	all	5250
screens	that	need
to	be	modernized
as	well	as
significant	fields

3.	Record	the
5250	entry	point
screens	and	snap
them	into	the
Framework.	

The	Framework
needs	to	know	how	to
access	and	display	the
screens.		

	 	

4.	Create	the
required
Framework	filters

Using	powerful	filters
is	the	basis	of	reusing
the	5250	screens	in
new	modernized
ways.	

Not	necessary.
	

5.	Optionally	add
new	features
making	use	of
Windows

For	example	you	may
want	to	add	advanced
screens	for	for
instance	email,	video,

	 	

functionality graphing.

6.	Deploy Deploy	your
application

	 	

	

	
	

Framework	Window

	

RAMP	Window

Message	Area
Screen	Tracking	Area
RAMP-TS	5250	Emulator	Session
Screen	and	Script	List
Details	Area
	

Message	Area
RAMP
Window

Screen
Tracking	Area

RAMP-TS	5250
Emulator	Session

Screen	and
Script	List

Details
Area

	

The	RAMP	message	area	shows	messages	about	where	you	are	and	what	you
should	be	doing.
Messages	are	shown	for	the	screen	selected	in	the	Screen	Tracking	Area.	You
use	this	area	also	to	classify	screens:

The	message	area	has	buttons	you	can	use	when	tracking	screens:	

Probe Use	the	Probe	button	to	examine	the	layout	of	the	current	5250
screen	and	produce	an	online	report.	It	is	used	for	problem
analysis	and	to	determine	the	rows	and	columns	used	in	a
subfile.

Snapshot Use	the	SnapShot	button	to	take	a	snapshot	of	the	current	5250
form	in	GUI	or	5250	mode	and	save	it	as	bitmap.	These
images:
Can	be	dragged	and	dropped	onto	RAD-PAD	prototype
command	tabs	to	enhance	communications	during	design
sessions	with	other	developers	or	end-users.
Are	useful	for	producing	system	documentation

Are	an	aid	to	remembering	exactly	what	5250	screen	is
associated	with	a	junction,	destination	or	special	screen.
The	(nnn	x	nnn)	numbers	on	the	button	indicate	the	pixel	size
of	the	snapshot	that	will	be	saved.	These	numbers	will	change
as	you	change	the	layout	of	the	RAMP	Tools	window.		

Restart Use	the	Restart	button	to	erase	the	tracking	information	and
restart	tracking.

Auto	update
Navigation
Scripts

Use	this	option	to	turn	the	automatic	generation	of	navigation
scripts	on	or	off.	When	this	option	is	selected,	a	red	indicator
light	is	shown	next	to	the	check	box.

	

	

	

	

Screen	Tracking	Area
RAMP
Window

Message
Area

RAMP-TS	5250
Emulator	Session

Screen	and
Script	List

Details
Area

	

	
The	Tracking	area	displays	the	screens	you	have	displayed	in	the	current
RAMP-TS	session.	When	you	end	the	session,	the	tracking	information	is
cleared.
Colors	used	in	the	Tracking	area	for	screens	indicate	their	status	and	type	you
have	assigned	to	the	screen:

The	screen	has	not	been	identified.
	

The	screen	has	been	named,	but	it	has		not	been
defined	in	RAMP.
You	need	to	define	the	screens	in	your	application
according	to	their	purpose:
Destination	Screens	are	screens	where	the	end-user
works
Junction	Screen	s	are	used	for	navigation	only
Special	Screens	are	used	for	messages	etc.

The	screen	is	a	junction	screen.

The	screen	is	a	special	screen.

The	screen	is	a	destination	screen.

	

	

RAMP-TS	5250	Emulator	Session
RAMP
Window

Message
Area

Screen	Tracking
Area

Screen	and	Script
List

Details
Area

	

The	RAMP-TS	emulator	session	shows	the	5250	session	screens	with	action
tabs	shown	on	the	left.	The	Screens	tab	is	where	you	specify	the	name	of	the
screen	and	any	fields	you	need	to	name:

	
When	the	Lock	Screen	option	is	selected,	the	current	screen	will	remain
displayed	when	you	click	on	links	or	buttons	that	would	bring	up	other	screens.
You	can	hide	the	action	tabs	by	clicking	on	the	Show/Hide	button:	

	
You	should	use	the	menus(Session,	Display	and	Help)	in	the	RAMP-TS	session
window	only	when	asked	by	your	product	vendor.
	

Screen	and	Script	List
RAMP
Window

Message
Area

Screen
Tracking	Area

RAMP-TS	5250
Emulator	Session

Details
Area

	

	
The	screen	and	script	list	shows	all	the	5250	screens	defined	in	the	Framework
and	the	associated	scripts:

Select	the	screens	and	scripts	you	want	to	work	with.
You	can	use	the	Find	field	on	the	top	of	the	list	to	locate	screens	and	scripts.	If
you	want	to	search	the	contents	of	scripts,	tick	the	In	Scripts	check	box.
There	are	two	ways	you	can	save	your	changes	to	the	Framework	in	the	RAMP
window:

Full
Save

Performs	a	full	Framework	save	including	the	generation	of	all
scripts	for	execution	in	end-user	mode	and	the	uploading	of	web
server	details.
You	would	normally	do	a	full	save	before	you	want	to	test	your
application	in	end-user	mode.

Partial
Save

Performs	a	partial	Framework	save	so	that	your	work	is	fully
recoverable,	but	does	not	generate	run-time	scripts	or	upload	server

details.
You	will	need	to	do	a	full	Framework	save	to	deploy	your
application	or	execute	it	in	end-user	mode.

	

	
You	can	use	the	New	5250	Application	Session	button	to	organize	screens	and
scripts	into	distinct	5250	Application	Sessions	(see	Organizing	Screens	and
Scripts).
	

Organizing	Screens	and	Scripts
If	your	applications	are	large	and	complex,	you	may	want	to	divide	the	screens
and	the	associated	scripts	into	separate	groups	along	application	lines.	You	can
do	this	by	creating	separate	5250	application	sessions	for	them	in	the	RAMP
window.
Developing	applications	with	hundreds	of	screens	becomes	increasingly
complex	to	manage	because	of	the	number	of	objects	they	contain.	Also,	the
initial	start	up	time	of	an	application	increases	in	a	linear	manner	according	to
the	number	of	objects	it	contains.
In	this	example	a	Personnel	Application	session	has	been	created	in	addition	to
the	Default	Session:

To	create	a	new	application	session,	click	the	New	5250	Application	Session
button.	To	delete	an	application	session,	select	Session	in	the	screen	and	script
list	and	click	Delete.
Note	that	the	5250	application	sessions	are	completely	independent	of	each
other	and	have	no	knowledge	of	each	other's	existence.	This	means	that	a	script
in	one	session	cannot	navigate	to	an	object	in	another	application	session	and
that	you	will	most	likely	have	to	duplicate	some	common	scripts	such	as	logon
and	logoff	and	messages.

A	separate	session	will	be	started	for	each	5250	Application	Session.
To	create	a	new	grouping,	click	on	the	New	5250	Application	Session	button	in
the	RAMP	window.	You	can	edit	its	caption	in	the	Session	Details	area.
Only	one	5250	Application	Session	can	be	active	at	any	time.	To	change	the
application	session,	simply	display	the	tab	for	that	session.	All	screens	that	you
define	and	scripts	you	create	are	stored	in	the	current	5250	Application	Session.
	

Details	Area
Session	Details
Destination	Screen	Details
Script	Area

Session	Details
RAMP
Window

Message
Area

Screen
Tracking
Area

RAMP-TS	5250
Emulator	Session

Screen	and
Script	List

	

	
Use	the	Session	Details	to	specify	various	settings	for	your	5250	Application
Session:

	

Caption The	caption	of	the	RAMP	5250	Application	Session.

User
Object
Name	/
Type

See	Object	Type	in	the	Framework	Guide.

Height The	default	height	of	5250	screens	when	displayed	in	the
Framework.

Width The	default	width	of	5250	screens	when	displayed	in	the
Framework.

Top The	default	distance	between	the	top	of	the	RAMP	screen	tab
and	the	5250	screen.
You	can	use	this	option	to	Hide	screen	titles	in	individual	RAMP
Screens

Left The	default	left	indentation	of	the	5250	screen	when	displayed	in
the	Framework.

Top	Mask
Height

The	default	height	of	a	mask	you	can	use	to	hide	the	top	of	the
5250	screen.
You	can	use	this	option	to	Hide	screen	titles	in	individual	RAMP
Screens
Not	applicable	to	RAMP	Web.

Bottom
Mask
Height

The	default	height	of	a	mask	you	can	use	to	hide	the	bottom	of
the	5250	screen.

RAMP
Screen
Layout
Style

If	RAMP	Screen	Layout	Style		is	set	to	Flow,	RAMP	screens
will	be	automatically	resized	to	fit	into	the	space	available	to
display	them.
If	Flow	is	used:
Specific	positioning	and	sizing	of	screens	is	not	supported,
Top	and	bottom	masking	of	screen	areas	cannot	be	used	to	hide
screen	content.
You	cannot	use	or	show	the	function	key	blue	bar.
Display	Horizontal	Scroll	Bars	and	Display	Vertical	Scroll
Bars	options	cannot	be	used	for	the	obvious	reasons.		
Fixed	means	the	RAMP	screens	are	not	resized	to	fit	into	the

mk:@MSITStore:lansa048.chm::/Lansa/vlf0485.htm

space	available	to	display	them.

Scroll	Bars If	the	Display	Horizontal	Scroll	Bars	option	is	checked,
VLF.WIN	applications	will	display	horizontal	scroll	bars	when	a
Fixed	size	5250	screen	will	not	fit	in	the	display	area.	VLF-
WEB/NET	applications	always	act	as	if	the	Display	Horizontal
Scroll	Bars	option	is	checked.		
If	the	Display	Vertical	Scroll	Bars	option	is	checked,	VLF.WIN
applications	will	display	vertical	scroll	bars	when	a	Fixed	sized
5250	screen	will	not	fit	in	the	display	area.	VLF-WEB/NET
applications	always	act	as	if	the	Display	Vertical	Scroll
Bars	option	is	checked.	

Lock
Framework
when
unknown
5250	form
is	displayed

This	option	applies	a	lock	to	the	Framework	when	an	unknown
5250	screen	is	encountered.
When	a	lock	is	applied,	the	user	cannot	move	around	within	the
Framework	until	they	navigate	to	a	defined	5250	screen.
They	can	exit	from	(for	example,	shut	down)	the	Framework
when	such	a	lock	has	been	applied.
Typically	this	option	is	used	to	trap	unknown	and/or	unexpected
5250	screens.			
In	highly	defined	and	managed	sessions,	where	every	5250
screen	should	have	been	defined	to	RAMP,	set	this	option	on.	In
unmanaged	sessions	always	set	this	option	off.		
	

Reuse
existing
connections
user	profile
and/or
password

Use	this	option	to	indicate	that	when	this	5250	application
session	needs	to	connect	to	a	server	it	should	reuse	the	same	user
profile	and/or	password	details	as	were	used	to	establish	the	last
successful	server	connection.
This	option	can	be	used	to	prevent	the	user	from	being	prompted
to	input	their	user	profile	and/or	password	repeatedly	for	each
new	5250	application	session	that	needs	to	be	started.	Typically
they	are	only	prompted	for	the	first	application	session	they
establish.
This	option	can	be	automatically	overridden	by	individual	user
profile	options	or	by	super-server	connection	values.									

The	Framework	remembers	the	last	user	profile	and/or	password
used	to	establish	a	server	connection	only	until	the	user	exits
from	the	Framework,	at	which	point	the	details	are	lost.				

Always
link	this
session	to	a
server	with
User
Object
Name	/
Type

Normally	when	a	user	needs	to	connect	a	5250	application
session	they	will	be	asked	to	choose	which	server	they	want	to
connect	to.
Use	this	option	to	prevent	the	user	from	having	to,	or	being
allowed	to,	making	this	server	connection	choice.
Using	it	unconditionally	links	a	5250	application	session	with	a
server.
To	use	this	option	first	assign	an	unique	User	Object	Name	/
Type	to	the	server.
Use	the	Framework	Administration	menu	Servers	option	to	do
this.
For	example,	this	server	has	been	assigned	the	User	Object
Name	/	Type	SERVER_2.

Next,	set	the	5150	application	session	to	use	the	same	name	(eg:
SERVER_2).
Now	the	5250	application	session	and	the	server	with	user	object
name/type	SERVER_2	are	unconditionally	linked.
The	user	can	no	longer	choose	which	server	to	associate	the
5250	application	session	with.											
To	remove	this	option	from	a	session	set	it	back	to	the	default
value	of	blank.	

	

RAMP-TS
Maximum
Logoff
Wait	Time
(seconds)

When	a	RAMP-TS	session	needs	to	be	logged	off	(signed	off)
this	values	specifies	in	seconds	the	maximum	time	that	the
framework	should	wait	for	asynchronous	time	log	off	operation
to	complete.	The	default	value	is	10	seconds.	Specify	any
integral	value	in	the	range	0	to	120.	The	value	is	in	seconds.
	

Special
Field
Handling

Advanced	prompting	facility	for	fields.
You	specify	the	name	of	the	field	to	be	prompted,	the	function
key	to	be	used	and	the	Visual	LANSA	form	that	is	used	as	the
prompter.
For	more	information	refer	to	Advanced	Prompting

	

Destination	Screen	Details
RAMP
Window

Message
Area

Screen
Tracking
Area

RAMP-TS	5250
Emulator	Session

Screen	and
Script	List

	

When	a	Destination	Screen	is	selected	in	the	Screen	and	Script	List,	the	details
of	the	destination	screen	are	shown:

You	can	specify	these	details	for	the	destination	screen:

Caption 	

Grouping Optionally	type	a	grouping	name	for	this	screen.
You	can	use	this	option	to	enter	the	same	grouping	name	to
related	screens	so	that	they	can	be	sorted	together	in	the	Screen
and	Script	List.
For	more	fundamental	organization	of	screens	and	scripts,	see
Organizing	Screens	and	Scripts.

Default
RAMP
Layout
Dimensions

Use	these	properties	if	you	want	to	permanently	override	the
default	layout	dimensions	set	in	Session	Details	for	this	screen.

RAMP
Screen
Layout
Style

If	RAMP	Screen	Layout	Style		is	set	to	Flow,	RAMP	screens
will	be	automatically	resized	to	fit	into	the	space	available	to
display	them.
If	Flow	is	used:
Specific	positioning	and	sizing	of	screens	is	not	supported,
Top	and	bottom	masking	of	screen	areas	cannot	be	used	to	hide
screen	content.
You	cannot	use	or	show	the	function	key	blue	bar.
Display	Horizontal	Scroll	Bars	and	Display	Vertical	Scroll
Bars	options	cannot	be	used	for	the	obvious	reasons.		
Fixed	means	the	RAMP	screens	are	not	resized	to	fit	into	the
space	available	to	display	them.
Session	means	the	value	is	inherited	from	the	Session's
properties.

Targets This	list	shows	the	screens	this	screen	can	navigate	to.
The	first	screen	in	the	list	is	the	exit	junction,	that	is,	the	screen
to	which	this	screen	navigates	to	by	default.	You	can	override
the	exit	junction	in	your	script	using	the	vOverrideExitJunction
property.
	

Targeted
By

This	list	shows	the	screens	that	can	navigate	to	this	screen.

Function This	is	a	list	of	all	the	available	function	keys	in	5250	screens.

Key
Enablement

You	can	use	the	list	to	enable	or	disable	function	keys	in	the
5250	screen	and	also	to	enable	or	disable	the	runtime
appearance	of	push	buttons	in	the	RAMP	screen	that	have	the
same	functionality	as	the	corresponding	function	key.
Note	that	function	key	enabling	is	only	valid	for	those	function
keys	already	present	in	the	5250	screen.
For	example,	if	a	5250	screen	is	designed	to	have	function	keys
F1,	F3,	F6	and	F12,	enabling	the	F10	key	will	have	no	effect	in
the	application	since	that	key	has	no	functionality	in	the
original	screen.	However,	you	can	still	enable	the	F10	in	the
RAMP	screen	if	you	add	your	own	script	for	it	in	the	button
script	of	the	destination	screen.
To	enable	a	function	key,	tick	the	check	box	in	the	Enable	Key
column.
To	display	the	function	key	as	a	button,	tick	the	check	box	in	the
Enable	Button	column.
The	captions	of	the	buttons	can	be	changed	in	the	Caption
column.
The	function	keys	and	buttons	can	be	overridden	at	execution
time	using	the	SETKEYENABLED	Function.

Associated
Command
Handlers

The	command	handler	tab	where	the	RAMP	screen	will	be
attached.
The	command	handler	tabs	are	created	when	you	prototype
your	application.

Session	ID Specifies	what	System	i	5250	session	(ie:	job)	should	be	started
for	the	screen.
*AUTO	:	is	the	default	value	and	indicates	that	the	Framework
should	manage	the	required	5250	session(s)	automatically.	This
type	of	session	is	a	managed	session.	It	is	fully	integrated	with
the	Framework,	applications,	business	objects	and	instance	lists
and	all	scripting	facilities	are	available.		
SESSION_A	->	SESSION_Z:	allow	you	to	specify	that	an
unmanaged	session	is	to	be	started	for	the	command	handler	or
tab.	Unmanaged	sessions	are	primarily	used	to	log	the	user	on
and	then	drive	them	to	a	specific	starting	point.	From	that	point
forward	the	user	can	move	around	inside	the	5250	application

in	an	unmanaged	way.	Since	the	session	is	unmanaged	only
very	limited	scripting	capabilities	exist.	For	example,	a	script	in
an	unmanaged	session	can	not	access	the	business	object
instance	list.	Equally,	when	a	user	returns	to	an	active	command
handler	/	tab	that	uses	an	unmanaged	session	it	is	simply
redisplayed	as	it	was	when	they	last	left	it.	No	attempt	to
navigate	them	or	execute	any	scripts	is	attempted	(because	it	is
unmanaged).			
Unmanaged	sessions	are	useful	because	they	allow	large	pieces
of	an	existing	application	to	be	reused	in	the	Framework	very
rapidly.
For	example,	an	unmanaged	session	might	be	used	as	the	only
command	associated	with	a	business	object	named	"System
Tables".		When	the	user	clicks	on	"System	Tables"	in	the
Framework	menu,	a	full	screen	5250	session	appears	that	logs
the	user	on	and	then	drives	them	to	the	5250	menu	that
manages	the	maintenance	of	50	(say)	system	tables.	The	entire
"System	Tables"	facility	composed	of	hundreds	of	5250	screens
(say)	are	now	accessible	in	an	unmanaged	fashion,	without	the
need	to	identify	and	enroll	them	in	the	Framework.	If	the	users
goes	away	from	the	"System	Tables"	tab	and	then	come	back
again	later	the	current	5250	session	screen,	whatever	it	is,	is
just	redisplayed.	No	attempt	is	made	to	navigate	the	screen	(ie:
manage	it)	because	in	all	likelihood	they	will	have	left	it	on	an
undefined	or	unknown	5250	screen.												
In	short,	you	should	always	use	*AUTO	unless	you	have	a
specific	need	to	log	a	user	on,	drive	them	a	defined	starting
point	in	the	application,	and	then	allow	them	to	move	around
wherever	they	like	within	the	5250	application	area.					
	

	

	

Script	Area
RAMP
Window

Message
Area

Screen
Tracking
Area

RAMP-TS	5250
Emulator	Session

Screen	and
Script	List

	

	
The	Details	area	shows	the	details	of	the	script	selected	in	the	Screen	and	Script
List.
The	scripts	are	generated	automatically	as	you	track	your	application,	but
sometimes	it	is	necessary	to	edit	the	scripts.
	

		
	
The	scripting	toolbar	has	buttons	to	assist	you	when	working	with	scripts.	From
left	the	buttons	are:

Copy

Paste

Cut

Undo

Redo

Select	All

Find

Replace

Increase	Font	Size

Reduce	font	size

Show/Hide	line	numbers

Comment	out	lines

Uncomment	out	lines

Indent	lines

Unindent	lines

Print	Code

Commit	Changes

Check	Script

		

	 which	you	can	use	to	rapidly	locate	a	screen	name,
click	on	name	to	get	the	name	of	the	screen	pasted
into	your	code	at	current	insertion	point.

	

	
You	can	use	the	Scripting	Pop-up	Menu	to	help	you	to	format	and	edit	your
scripts.
		

Screen	Name	Finder
When	writing	RAMP-TS	scripts	you	often	need	to	type	in	long	and	case
sensitive	screen	names.	To	make	this	process	easier	you	can	use	the	screen	name
finder	which	appears	at	the	top	of	the	script	editor	frame	like	this:

	
To	use	it,	type	in	your	script	up	to	the	point	you	need	to	input	the	screen	name.
For	example:

	
With	the	editor	insert	point	caret	where	you	want	the	screen	name	to	be	inserted.
Move	up	and	click	in	the	screen	name	finder.	Use	it	to	rapidly	locate	the	name
of	the	screen	you	want	to	use	by	typing	in	a	string	that	would	be	found	in	its
name	eor	caption	(for	example	emp)	and	then	select	the	screen	from	the	list	that
is	displayed.
The	screen	name,	surrounded	by	double	quotes	will	be	pasted	into	your	script,
like	this:

	
To	cancel	the	screen	name	finder	without	selecting	a	screen	name,	click	back
into	your	script.
	

Types	of	Screens
Classifying	the	screens	in	your	5250	application	is	the	starting	point	in
modernizing	your	application:
A	Destination	Screen	is	the	5250	screen	where	the	end-user	performs	actual
work.	These	screens	are	snapped	into	the	Visual	LANSA	Framework	without
any	modification.
A	Junction	Screen	is	used	for	navigation	only.	They	are	hidden	in	your
modernized	application.
A	Special	Screen	is	a	messages	or	other	similar	screen	that	does	not	fit	the	above
two	categories.

Destination	Screen
A	destination	screen	is	a	screen	in	which	the	end-user	works	with	an	object.
Typically	it	is	a	maintenance	screen:

	
But	it	can	also	be	a	menu	(see	RAMP-TS002:	Rapidly	Modernizing	Complete
Application	Segments):

Destination	screens	can	be	reused	without	any	modification	in	RAMP
applications:

Junction	Screen
The	end-user	uses	a	junction	screen	to	move	to	destination	screens.

These	navigation-only	5250	screens	a	become	invisible	to	the	end-user	in	a
RAMP	application.
Typical	junctions	are:
5250	menus
5250	"work	with"	style	screens,	which	are	really	just	data	driven	menus.
Most	5250	screens	where	keys	such	as	order	numbers,	customer	numbers,
product	numbers	etc.	are	entered	to	display	or	action	detailed	information.

Special	Screen
Special	screens	are	message	and	other	screens	that	do	not	fit	in	the	category	of
either	navigation	or	destination	screens.

These	screens	may	appear	unexpectedly	at	anytime	in	a	5250	screen	flow.	For
example:
The	5250	display	message	screen	that	appears	at	sign-on	time
The	5250	break	message	screen	that	may	appear	at	any	time
Fatal	error	message	screen(s)	in	your	own	applications.
The	5250	resume	interactive	session	screen.
Special	screens	usually	have	a	script	associated	with	them.	The	script	is	called
an	elimination	script	because	this	type	of	script	usually	sends	a	key	or	performs
an	action	so	as	to	eliminate	the	screen	from	the	5250	screen	flow.
	

Naming	Conventions
The	following	standards	are	very	strongly	recommended	for	RAMP-TS
projects:
Use	characters	from	the	English	alphabet	(A->Z,	a-z)	and	numbers	(0	–	9)	only
in	names.	The	names	are	then	code	page	invariant.
Never	use	imbedded	blanks	in	names.		
Limit	name	length	to	around	30	characters	or	less.	Long	names	can	be	confusing
and	are	error	prone	when	scripting	and	debugging.
Generally	names	are	case	sensitive.
Never	implement	a	case	based	naming	standard	that	uses	duplicate	names.	For
example,	a	naming	standard	that	used	"EmployeeNumber"	for	a	field	on	a	screen
and	"EMPLOYEENUMBER"	for	the	same	field	in	a	subfile	on	that	screen	will
surely	end	up	in	a	tangle	at	some	stage.	Names	should	be	unique,	regardless	of
their	case.						
	

Naming	Prompters
RAMP-TS	allows	prompters	to	be	automatically	associated	with	named	fields
on	5250	screens.
When	these	prompters	are	defined,	they	may	associate	themselves	with	screen
fields	by	using	a	specific	name	like	StartDate	or	generic	name	like	Date_*
(meaning	that	any	field	whose	name	starts	with	Date_	should	be	associated	with
this	prompter).
If	you	intend	to	use	the	automatic	prompt	capability	with	generic	names	it	will
probably	influence	your	chosen	naming	standard.			
	

OBJECT-ACTION	User	Interfaces
System	i	and	Windows	applications,	including	the	Framework,	share	the	same
basic	design	for	user	interaction:	Object-Action	interfaces.
In	these	interfaces	the	user	first	selects	and	object	and	then	the	action	to	be
performed	on	the	object,	as	opposed	to	Action-Object	interfaces	(such	as
command	line	applications)	where	the	command	is	specified	first	and	its	target
object	second.
Because	of	this	fundamental	similarity,	System	i	applications	fit	naturally	in	the
Framework	model:
The	navigation	screens	of	a	System	i	application	are	replaced	by	graphical
elements	in	the	Framework,	such	filters	and	instance	lists,	which	the	user	can
use	to	quickly	locate	the	object	they	want	to	work	with.
The	options	and	associated	screens	in	a	typical	Work	with	screen	become	a	set
of	command	tabs.
In	the	Framework	the	Object-Action	model	is	expressed	as	a	powerful	graphical
user	interface	(GUI).

System	i	and	Framework	Applications	Share	the	Basic	Model
The	basic	Framework	concepts	of	business	objects,	filters	and	command
handlers	(screens)	can	be	visualized	in	a	System	i	application	like	this:

Here	you	have	a:

	Filter Where	the	Work	with...	command	provides	you	with	options	to
filter	the	list	of	objects	that	are	displayed.	(Many	"Work	with
xxxx"	interfaces	allow	you	to	filter	inside	the	main	display	as
well).

Business
Object
Instance
List

The	list	of	links	that	match	your	filter's	search	criteria.	These	links
are	your	business	objects.

Business
Object
Commands

The	Options	such	as	2=Edit,	7=Rename,	8=Display	that	you	can
execute	against	an	individual	business	object.

Command
Handlers

The	programs	that	execute	when	you	execute	a	command
(7=Rename	or	8=Display	attributes	examples	are	shown).

	

In	the	Framework,	the	same	concepts	are	visualized	as	a	graphical	user	interface
(GUI)	like	this:

	

Modernization	Issues
The	most	important	and	complex	5250	program	in	an	application	can	become	a
modernization	trap
How	long	will	it	take	to	RAMP	my	application?
Reuse,	Reface	or	Rewrite?

The	most	important	and	complex	5250	program	in	an	application
can	become	a	modernization	trap
The	biggest	and	meanest	modernization	trap	involves	the	most	important	and
usually	most	complex	5250	program	in	an	application.	In	an	ERP	application
this	program	handles	Order	Entry,	in	an	Insurance	application	it	is	the	Policy
Master	Update.
Every	5250	application	has	at	least	one	of	these	big	and	mean	5250	programs.
It	is	attractive	and	logical	to	involve	this	type	5250	program	in	any
modernization	proof-of-concept	exercise	on	the	simple	basis	that	"if	RAMP	can
handle	this	program	then	it	can	handle	anything".
As	a	result	a	lot	of	time	may	be	spent	understanding	the	peculiarities	of	this
program	and	scripting	for	them.	This	is	okay	…	unless	handling	it	consumes
excessive	amounts	of	time	and	diverts	all	attentions	away	from	the	hundreds	(or
thousands)	of	other	important	5250	programs	that	also	need	to	be	modernized.
In	this	case	it	can	become	a	trap.
An	ISV	site	should	consider:	Which	program	would	be	the	very	first	one	you
would	change	to	a	new	Visual	LANSA	component	so	as	to	best	show	off	your
modernized	product	to	potential	customers?
An	in-house	development	site	should	consider:	Which	program	would	the	end-
users	gain	the	highest	productivity	and	usability	improvements	from	if	it	was
changed	to	a	new	Visual	LANSA	component?	What	program,	if	it	was	replaced
by	something	better,	would	garner	the	most	management	and	end-user	support
for	the	modernization	project?		
The	answer	in	both	cases	is	quite	probably	the	biggest	and	meanest	5250
program.
	

Why	not	consider	replacing	it	with	something	better?
If	this	is	true,	then	the	next	question	should	be:	"Why	are	we	spending	all	this
time	and	effort	trying	to	reuse	it,	instead	of	just	starting	to	replace	it	with
something	better?"
The	reason	is	obviously	to	avoid	the	time	and	cost	involved	in	replacing	it.
However,	if	the	commercial	reality	is	that	for	various	marketing,	business	and
political	reasons	it	will	need	to	be	replaced	sooner	rather	than	later,	you	should
seriously	consider	doing	it	now,	instead	of	spending	an	unreasonable	amount	of

time	trying	to	reuse	it	and	allowing	it	to	become	the	complete	center	of	attention
to	the	detriment	of	all	the	other	5250	programs	that	also	need	to	be	modernized.

	

How	long	will	it	take	to	RAMP	my	application?
Important	Note:	This	answer	refers	to	RAMP	stage	2	only	-	reusing
your	existing	5250	screens.	It	has	nothing	to	do	with	RAMP	stage	3	-
replacing	your	5250	screens	with	Visual	LANSA	components.			

It	depends	on	the	approach	you	use.
Imagine	a	simple	5250	application	made	up	of	four	menus	(or	some	other
common	access	points)	and	36	other	screens	like	this:		
	

	
We	recommend	you	use	this	approach:

1.	Initially	Perform	a	Rapid	Navigation	Modernization
In	this	example	you	would	identify	and	define	the	four	menus	(or	access	points)
A,	B,	C	and	D	only,	and	snap	them	into	RAMP	as	full	screen	destinations.
The	entire	5250	application,	with	its	modernized	navigation,	could	now	be
deployed	to	your	end	users.
Normally	you	would	also	fully	modernize	at	least	some	part	of	the	application
itself,	to	add	more	value	to	it.
At	this	stage	answering	the	question	"How	long	will	it	take	to	RAMP	my
application?"	is	easy:	Allow	15	minutes	per	menu	(or	common	access	point).	
So	for	this	example,	allow	4	x	15	minutes	=	1	hour.
	

2.	Now	Perform	Selective	and	Incremental	Application
Modernization
Now	assess	application	areas	A,	B,	C	and	D:

How	frequently	are	they	used?
Will	full	modernization	increase	end	user	productivity?	How?	What	needs	to	be
done?
Will	full	modernization	improve	the	end	user	experience?	How?	What	needs	to
be	done?
Will	full	modernization	aid	the	demonstration	and	marketing	of	your	product?
How?	What	needs	to	be	done?	
Based	on	these	assessments	you	might	decide	to:
Modernize	application	area	A	and	deliver	it	to	your	users	as	an	initial	release.
Later	modernize	60%	of	application	area	C	and	deliver	it	to	your	users	as	a	new
version.
Not	fully	modernize	application	area	D	at	all,	because	it	does	not	add	business
value.			
Finally,	modernize	25%	of	application	area	B	and	deliver	a	final	version	to	your
users.
So	answering	the	question	"How	long	will	it	take	to	RAMP	my	application?"
depends	upon	how	you	approach	this	step.
The	question	cannot	be	answered	until	you	decide	what	parts	need	to	be	fully
modernized,	how	much	work	needs	to	be	done,	and	in	what	order.		
	

Key	Points
Navigation	modernization	is	very	rapid.
Application	modernization	takes	longer,	but	adds	significantly	more	value.
You	can	deliver	a	modernized	5250	application	incrementally.	You	don't	have	to
do	it	all	in	one	go.
You	are	not	forced	to	fully	modernize	all	of	a	5250	application	just	to	use	it	in
RAMP.
Some	parts	of	an	application	may	never	be	fully	modernized	before	they	are
replaced	with	new	Visual	LANSA	components	instead.			
	

Reuse,	Reface	or	Rewrite?
In	the	RAMP	context	the	decisions	about	Reusing	(5250	screens)	versus
Refacing	(using	Screen	Wrappers)	versus	Rewriting	(new	VL	component)	are
complex.
Next	time	you	hear	someone	say	“I	could	rewrite	that	in	a	week”,	you	need	to
ensure	that	they	have	accounted	for:
1.			Time	to	discover	and	understand	all	the	existing	functionality	and	interfaces.
2.			Time	to	redesign	with	a	modernized	UI.
3.			Time	to	code	and	unit	test	(this	step	might	actually	be	a	week,	as	stated).		
4.			Time	to	(re)test	all	the	existing	functionality	and	interfaces.
		
When	you	hear	people	say	“I	can	rewrite	that	in	a	week”	you	will	often	mentally
double	or	triple	that	to	allow	for	testing,	etc.	Any	x2	or	x3	factor	you	apply
might	actually	need	to	be	x10	or	more	in	rewrite	situations	(ie:	step	3	may	be
less	that	10%	of	the	whole	job).		
The	chum/wrapper	solution	is	useful	because	it	radically	reduces	the	time
required	to	complete	steps	1	and	4.			
Also,	if	you	are	looking	at	using	some	sort	of	template/wizard/code	generation
techniques,	remember	that	you	are	only	likely	to	speed	up	step	3.
ie:	If	step	3	is	only	10%	of	the	job,	and	you	do	it	twice	as	fast,	you	will	only
have	improved	the	whole	project	by	5%,	not	by	50%.				
	

Tutorials	for	RAMP	Windows
A	RAMP	modernization	project	should	progress	like	this.	You	will	use	an
iterative	release	cycle,	repeatedly	improving	your	application	as	time	and
resources	permit:
RAMP	Stage	1 ↓	Prototype																					 RAMP-TS001:	Creating	a	Basic

Prototype	of	the	Modernized
Application
RAMP-TS005:	Reviewing
Design

	 ↓	Set	Standards Create	project	standards.

	 ↓	Decide	on	Security Decide	on	security/authority
policy.

	 ↓	Name	screens RAMP-TS002:	Rapidly
Modernizing	Complete
Application	Segments
RAMP-TS004:	Naming	and
Classifying	the	Employee	Screens

	 ↓	Classify	screens RAMP-TS002:	Rapidly
Modernizing	Complete
Application	Segments
RAMP-TS004:	Naming	and
Classifying	the	Employee	Screens

RAMP	Stage	2A ↓	Rapidly	modernize RAMP-TS002:	Rapidly
Modernizing	Complete
Application	Segments

RAMP	Stage	2B ↓	Individually
modernize

RAMP-TS006:	Snapping	in	a
Basic	Inquiry	Screen
RAMP-TS007:	Snapping	in	a
Data	Entry	Function
RAMP-TS008:	Changing	Inquiry
Screen	to	Update	Mode
RAMP-TS009:	Tracing

Navigation
RAMP-TS015:	Understanding
and	Handling	Screen	Variations

RAMP	Stage	2C ↓Add	value
See	What	Adds	Value?

RAMP-TS003:	Creating	a	Data
Filter	for	Employees
RAMP-TS010:	Using	Special
Field	Handlers
RAMP-TS011:	Snapping	in
Shipped	Documents	Command
Handler
RAMP-TS012:	Snapping	in
Shipped	Notes	Command
Handler
RAMP-TS013:	Sending	Instance
List	Data	to	Excel
RAMP-TS014:	Snapping	RAMP
Screens	into	the	HR	Demo
Application
RAMP-TSAD04:	Redesigning
the	Screen	Using	aXes

RAMP	Stage	3 ↓Remove	platform
dependencies

Optionally	remove	any	IBM	i
platform	dependencies.

	 ↓	Test Test	the	finished	application.

	 ↓	Deploy Deployment	Check	List	for
RAMP-TS

	 ←	Repeat In	every	cycle	you	will	move
more	and	more	application
components	from	stage	2A	to	2B
to	2C	to	3.
The	mix/ratio	of	stages	is	critical
because	it	impacts	on	how	long
your	project	will	take,	and	it	is
dictated	by	how	much	time	and
resource	you	have	available.

	

Also	see	Advanced	Tutorials.
					
	

Before	You	Use	the	Tutorials
Who	Should	Use	the	Tutorials?
Tutorials	can	be	used	by	novice	or	experienced	LANSA	developers	who	wish	to
learn	how	to	use	RAMP-TS.	No	advanced	Visual	LANSA	knowledge	is
required.	LANSA	for	the	Web	training	is	required	if	you	are	using	the
Framework	for	Web	development.

How	Do	I	Use	the	Tutorials?
It	is	recommended	that	you	complete	the	Tutorials	in	sequence.	Complete	the
exercises	related	to	the	style	of	application	that	you	are	creating.	If	you	are	only
creating	Windows	applications,	you	may	wish	to	skip	the	WEBEVENT	and
WAM	related	exercises.
To	allow	for	more	than	one	developer	to	use	the	tutorials,	all	LANSA	object
names	will	be	prefixed	with	iii.	You	may	use	any	three	characters,	such	as	the
initials	of	your	name,	for	the	iii	characters.	For	example,	if	you	name	is	John
David	Smith	you	can	use	the	characters	JDS.	When	asked	to	create	a
component	named	iiiCOM01,	you	will	create	a	component	named	JDSCOM01.
Always	remember	to	replace	iii	with	your	unique	3	characters.
If	you	are	using	an	unlicensed	or	trial	version	of	Visual	LANSA,	you	must	use
DEM	to	replace	iii.	When	asked	to	create	a	component	named	iiiCOM01,	you
will	create	a	component	named	DEMCOM01.

What	Partition	Should	I	Use?
You	need	to	use	an	RDMLX-enabled	partition.
It	is	recommended	that	you	use	the	DEM	partition	for	the	tutorial.	The	DEM
system	contains	the	Personnel	System	demonstration	and	all	required	files	used
by	the	tutorial.
If	you	want	to	create	a	WEBEVENT	application,	do	not	RDMLX-enable	your
functions.

Tutorial	Installation
In	order	to	use	the	Tutorials,	you	must	have	the	Visual	LANSA	Framework	and
RAMP-TS	installed.	See	Installation	and	Configuration.
The	tutorials	require	the	Personnel	Demonstration	System	files	(installed	by
Partition	Initialization).

How	Many	Developers	Can	Use	the	Training?

There	is	no	limit	on	the	number	of	developers	who	may	use	the	training	at	the
same	time.	However,	it	is	important	that	each	developer	has	a	unique	iii
identifier	for	their	work.
	

Your	Feedback
Your	feedback	regarding	these	tutorials	will	help	us	improve	the	overall	quality
of	the	LANSA	documentation	and	training.	Please	e-mail	your	comments	to
lansatraining@LANSA.com.au

	

RAMP-TS001:	Creating	a	Basic	Prototype	of	the	Modernized
Application
Creating	a	prototype	of	the	modernized	application	is	the	first	step	you	need	to
perform	in	using	RAMP.	A	vision	of	how	the	completed	result	will	look,	act	and
feel	can	be	formed	and	executed	before	any	actual	modernization	steps	are
taken.
This	process	acts	as	a	way	of	rapidly	validating	your	design	and	uncovering	any
new	or	hidden	business	requirements.
	

Objectives
To	understand	how	vital	this	step	is	in	successfully	modernizing	applications
To	learn	how	to	use	the	Framework	prototyping	tools

	
To	achieve	this	objective,	you	will	complete	the	following	steps:
RAMP-TS001	Step	1.	Create	the	Application	Prototype
RAMP-TS001	Step	2:	Modify	the	Code	Tables	Prototype
RAMP-TS001	Step	3:	Examine	the	Employees	Prototype
RAMP-TS001	Step	4:	Prototype	End-User's	Access	to	Employee	Information
RAMP-TS001	Step	5.	Visualize	the	Filters
RAMP-TS001	Step	6.	Validate	the	Basic	Prototype			

Application	before	Modernization
In	this	tutorial	you	will	be	modernizing	the	Personnel	Tables	(code	tables)	and
the	Personnel	System	maintenance	application.
The	Personnel	Tables	application	consists	of		the	Personnel	Table	Main	Menu
and	various	table	maintenance	functions:

	
The	Personnel	Tables	application	is	seldom	used,	so	we	plan	to	modernize	it
simply	by	snapping	its	main	menu	into	the	Framework.
The	parts	of	the	Personnel	System	application	you	will	be	modernizing	are
employee	skills	maintenance	and	enrolling	a	new	employee:

	
The	Personnel	System	is	used	frequently,	so	we	will	be	concentrating	the
modernization	effort	in	this	application.

RAMP-TS001	Step	1.	Create	the	Application	Prototype
The	first	step	in	modernizing	your	application	is	always	to	create	a	prototype	for
it.	In	order	to	create	the	prototype	you	need	to	identify	the	business	objects	the
application	deals	with.	To	do	this	see	what	words	the	end-users	use	to	describe
what	the	system	works	with.	These	words	are	often	reflected	in	the	application
menus	and	screen	titles.
In	our	sample	application	the	users	work	with	Code	Tables	and	Employees,	so
we	will	create	a	Code	Tables	and	an	Employees	business	object.
1.			Log	on	to	the	LANSA	Development	Environment:

	
2.			In	the	LANSA	Editor,	start	the	Framework	as	a	Designer:

	
3.			Start	the	Instant	Prototyping	Assistant	to	create	the	new	business	objects	and
application	to	contain	them:

	
4.			Create	two	new	business	objects	with	the	name	Code	Tables	and	Employees
(separate	the	names	with	a	comma):

	

5.			Click	Next.
6.			Associate	the	Details	command	with	Code	Tables	by	dragging	it	to	the
business	object:

7.			Create	two	new	commands	Documents	and	Events	by	typing	them	in	the
Actions	field	(separate	them	with	commas):

8.			Associate	the	Details,	New,	Documents	and	Events	commands	with
Employees:

	
7.			Click	Next.
8.			Create	a	new	application	called	Personnel	by	typing	it	in	the	list	of
applications:

	
Lastly	add	Code	Tables	and	Employees	to	the	Personnel	application:
9.			Drag	the	Code	Tables	and	Employees	business	objects	and	drop	them	onto
the	Personnel	application	:

	
10.			Click	Next.
11.			Click	Finish.

The	Personnel	application	is	now	created	in	your	Framework:

	

RAMP-TS001	Step	2:	Modify	the	Code	Tables	Prototype
In	this	step	you	will	modify	the	properties	of	the	Code	Tables	business	object	by
removing	the	default	filter	created	for	it.	When	you	are	rapidly	modernizing	an
application	segment	by	simply	attaching	an	existing	5250	screen	to	the
Framework,	you	do	not	need	filters.
1.			Double-click	Code	Tables	to	display	its	properties.
2.			Display	the	Filters	tab.
3.			Delete	the	New	Filter	created	by	default	by	selecting	it	and	clicking	Delete.

	
Because	there	is	no	filter	(and	therefore	no	instance	list),	you	also	need	to
modify	the	definition	of	the	Details	command:
4.			Display	the	Commands	Enabled	tab.
5.			Select	the	Details	command	and	make	its	command	type	Business	Object
Command.

	
A	message	will	be	displayed	asking	if	you	want	to	restart	the	Framework.

	
6.			Uncheck	the	message	box	Warn	me	whenever	I	make	this	type	of	change
and	click	on	the	Close	button.

7.			Close	the	properties	window.
8.			Save	the	Framework.
	

RAMP-TS001	Step	3:	Examine	the	Employees	Prototype
In	this	step	you	will	examine	the	prototype	of	the	Employees	business	object.
1.			Click	on	Employees	in	the	Personnel	application	to	display	your	prototype:

	
2.			Click	on	the	Emulate	Search	button	on	your	filter	to	fill	the	instance	list	with
sample	data.

3.			Click	on	one	of	the	sample	employees	in	the	instance	list	to	display	the
command	handlers	associated	with	it.

	
Notice	that	the	command	handler	for	the	New	command	is	not	displayed	with
the	other	command	handlers.	This	is	because	it	is	by	default	set	to	be	a	business
object	command.
4.			Right-click	one	of	the	employees	in	the	instance	list	to	display	the	context
menu	and	select	the	New	command:

	
The	command	handler	for	New	Employee	is	displayed.
Typically	you	want	business	object	commands	to	appear	in	separate	windows
unrelated	with	the	instance	list,	so	you	will	change	the	definition	of	the	New
command	so	that	it	is	displayed	in	a	separate	window.
5.			Double-click	the	Employees	business	object	to	display	its	properties.
6.			In	the	Command	Display	tab	change	the	Object	Command	Presentation	to
Separate	normal	window:

		
7.			Close	the	Employee	properties.
8.			Select	the	New	command.	It	is	now	displayed	in	a	separate	window:

	
9.			Close	the	Employee	window.
In	the	next	step	you	will	develop	the	initial	prototype	to	make	it	understandable
to	all	stakeholders.
		

RAMP-TS001	Step	4:	Prototype	End-User's	Access	to	Employee
Information
In	this	step	you	prototype	different	ways	the	employee	information	can	be
accessed	by	creating	filters.
You	need	to	provide	prototype	filters	that	search	the	data	in	various	ways	that
your	end	users	might	find	useful	(regardless	of	what	logical	files	are	defined)	in
order	to	elicit	their	input	of	how	they	would	like	to	retrieve	employee
information.
This	step	is	critical	in	modernizing	your	application	in	a	way	that	will	add	value
to	the	end	users.
	
1.			Double-click	the	Employees	business	object	to	bring	up	its	properties.
2.			Display	the	Filters	tab.
3.			Use	the	New	button	to	create	two	more	filters.
4.			Make	the	caption	of	the	first	filter	By	Name.
5.			Make	the	caption	of	the	other	filters	By	Date	of	Birth	and	By	Salary.
6.			Close	the	Employee	properties.
The	filters	for	Employee	are	now	visible:

		

RAMP-TS001	Step	5.	Visualize	the	Filters
In	this	step	you	will	start	to	develop	the	initial	prototype	to	make	it
understandable	to	all	stakeholders.	You	will	use	the	RADPADs	on	the	filters	to
roughly	visualize	what	the	filters	will	look	like.
1.			Display	the	By	Date	of	Birth	filter.
2.			Select	all	the	text	in	the	filter:

	
3.			Delete	the	text.
4.			Prototype	the	filter	by	typing	in	text	inserting	pictures	using	the	Images
Palette.	For	example:

	
5.			Quickly	prototype	the	other	two	filters.
6.			Save	and	restart	the	Framework.
		
	

RAMP-TS001	Step	6.	Validate	the	Basic	Prototype
	
The	first	stage	of	prototyping	your	modernized	application	is	now	complete.
The	prototype	shows	the	basic	structure	and	functionality	of	the	application
once	it	is	modernized:
	

	
In	real	life	situations	at	this	point	you	need	to	show	your	basic	prototype	to	the
stakeholders	of	the	application	to	ensure	that:
Your	choice	of	business	objects	is	understandable	and	acceptable	to	them
That	the	commands	you	have	associated	with	the	business	object	reflect	the

ways	they	work	with	the	information
That	the	access	to	the	information	that	the	filters	provide	is	useful	and	adequate
		
When	prototyping	a	real	application	this	would	be	the	time	to	let	the	end-users
try	out	the	prototype.	Users	typically	find	it	easy	to	give	their	input	when	they
have	a	concrete	sample	of	the	system	available.
After	collecting	the	feedback,	adjust	the	initial	prototype.
The	prototype	will	be	refined	in	step	RAMP-TS005:	Reviewing	Design	.
	

Summary
Important	Observations
You	have	now	completed	the	basic	prototype	of	the	modernized	application.
Using	the	prototype	you	can:
Validate	your	design.
Show	it	to	end-users	and	others	to	obtain	feedback.
Quickly	rework	your	design	until	it	matches	all	the	requirements.
Create	alternative	solutions.
		

What	You	Should	Know
How	to	create	an	application	and	a	business	object	in	the	Framework	and	how	to
associate	command	handlers	with	the	business	object.
How	to	set	Framework	properties
How	to	use	RADPADs	and	the	Images	palette	to	visualize	your	prototype.
	

RAMP-TS002:	Rapidly	Modernizing	Complete	Application
Segments
You	do	not	have	to	use	RAMP	on	every	single	5250	screen	in	your	application.
Often	whole	application	segments	are	rarely	used,	and	typically	these	can	be
snapped	into	a	Framework	in	a	very	short	time
Understanding	when	and	how	to	use	this	approach	will	impact	how	long	it	takes
you	to	complete	your	RAMP	project.		

Objectives
To	show	you	how	to	quickly	modernize	parts	of	your	application	which	are	not
frequently	used.
To	become	familiar	with	the	basic	steps	in	RAMPing	an	application.
To	introduce	some	key	concepts	used	by	RAMP-TS.

		

To	achieve	this	objective,	you	will	complete	the	following	steps:
RAMP-TS002	Step	1:	Name	the	Screens
RAMP-TS002	Step	2:	Classify	the	Screens	and	Track	Navigation
RAMP-TS002	Step	3:	Remove	Cancel	and	Exit	buttons
RAMP-TS002	Step	4:	Snap	the	Application	into	the	Framework
	

Before	You	Begin
You	need	to	have	your	RAMP	system	set	up,	for	more	information	see
Installation	and	Configuration.
In	order	to	complete	this	tutorial,	you	must	have	completed	the	following:
RAMP-TS001:	Creating	a	Basic	Prototype	of	the	Modernized	Application
	

Before	You	Start
There	are	some	important	things	you	need	to	bear	in	mind	before	you	start	using
RAMP-TS:

Remember	Everything	is	Case	Sensitive!
Because	RAMP-TS	uses	Javascript	which	is	case-sensitive,	you	need	to	watch
your	capitalization	closely	when	you	name	screens	and	fields,	create	or	call
variables,	objects	and	functions.
When	you	encounter	a	problem,	the	first	thing	you	should	do	is	to	check	the
capitalization.
	

Using	a	RAMP-TS	5250	Session
A	RAMP-Tools	5250	session	is	heavily	tracked	and	monitored.	This	means	that:
A	RAMP-TS	5250	session	may	execute	significantly	more	slowly	than	an
execution	(run	time)	5250	session.
You	should	always	wait	for	5250	design	time	screens	to	respond.	Avoid	typing
ahead.	Be	slow	and	precise	in	your	screen	actions.
Axes	developer	mode	5250	sessions	are	designed	to	perform	Axes	development
work	only.	This	means	you	should	not	use	Axes	developer	mode	5250	sessions
to	do	other	non-Axes	development	work	(eg:	editing	your	RPG	programs).						
You	should	never	use	Axes	developer	mode	5250	sessions	in	end	user
environments.
		

Understand	How	the	5250	Application	Works
When	RAMPing	screens	you	generate	scripts	that	deal	with	the	way	the	5250
application	behaves.
Typically	5250	applications	exhibit	patterns	of	behavior,	because	they	were
created	by	people	who	(hopefully)	followed	design	rules	and	were	trying	to
produce	a	consistent	5250	UI.	So,	in	a	RAMP	project:	
You	will	need	to	discover	these	application	behavioral	patterns	and
accommodate	them	in	your	scripts.
The	thing	to	most	avoid	is	discovering	“surprising”	or	“unexpected”	behaviors
after	you	have	created	200	scripts	(say)	because	this	may	mean	you	have	to	go
back	and	alter	them	all.

After	RAMPing	10	typical	5250	screens	(say)	you	should	test	them	very
thoroughly	to	try	to	minimize	the	chance	that	something	surprising	or
unexpected	will	be	uncovered	later	in	the	project.
What	you	know	will	not	harm	your	project	–	the	worst	it	can	do	is	make	the
project	more	complicated	–	it’s	what	you	don’t	know	that	will	–	so	you	need	to
try	to	minimize	what	you	don’t	know.
		
	

RAMP-TS002	Step	1:	Name	the	Screens
In	this	step	you	will	name	the	screens	in	your	application.		Naming	the	screens
and	the	fields	used	for	navigation	(if	any)	is	always	the	first	step	you	need	to
perform	when	modernizing	applications	with	RAMP	(do	not	try	to	track
navigation	and	name	screens	at	the	same	time).
1.			If	the	Framework	is	not	running,	start	it.
2.			Start	the	RAMP	Tools	by	selecting	the	RAMP	Tools…	option	in	the
Framework	menu:

	
The	RAMP	Window	is	displayed.
3.			In	the	message	area	click	on	the	message	indicating	that	RAMP	Tools	has
not	been	started	and	choose	the	option	to	start	it:

	
4.			When	the	RAMP	session	starts,	connect		to	your	server	system	(the	default
RAMP-TS	developer	authentication	userid	and	password	are	dev	and	dev,	but
your	system	values	may	have	been	changed.)

	
The	RAMP-TS	5250	Emulator	Session	window	is	displayed:

	
In	the	Tracking	Info	area	you	will	notice	that	the	login	screen	of	your	server	is
named	by	default	MainLogin.	This	is	the	only	screen	that	has	a	default	RAMP
name.
	
5.			Click	on	the	Show/Hide	Action	tabs	button	to	hide	the	tabs.

	
6.			Log	on	to	your	server	system.
The	first	screen	you	may	encounter	is	a	program	message:

	
Notice	that	the	Screen	Tracking	Area	indicates	the	screen	has	no	name
(Unknown	Form).
You	will	now	also	see	another	window	floating	on	the	left	on	top	of	the	RAMP
Tools	window,	the	aXes	Designer:

	
You	will	use	the	aXes	Designer	window	in	tutorial	RAMP-TSAD04:
Redesigning	the	Screen	Using	aXes	.	For	now,	just	size	it	as	small	as	you	can
(do	this	in	the	subsequent	tutorials	as	well):

	
6.			To	name	the	screen,	click	on	the	Show/hide	action	tabs	button	the	top-left
corner	of	the	RAMP-TS	5250	window:

	
7.			Select	the	Screens	tab	in	the	tab	folder	that	appears:

	
8.			Name	the	screen	DisplayMessages:

	
9.			Click	the	Save	button:

	
The	tracking	information	now	shows	the	name	of	the	screen:

	
10.			Move	the	focus	to	the	Session	window	and	press	Enter	to	dismiss	the
message.	The	i5/OS	Main	Menu	is	displayed.	The	tracking	information
indicates	that	the	screen	does	not	have	a	name.

11.			Name	it	i5OSMainMenu	in	the	same	way	as	you	named	the	messages
screen.

You	will	also	need	to	name	the	command	line	field	on	this	screen	so	that	any
commands	entered	can	be	tracked:
12.			Scroll	down	the	list	of	fields	in	the	Screen	tab.
13.			Locate	the	command	line	field:

	
14.			Name	the	field	txtSelectionOrCmd	and	click	Save.

	
15.			Display	the	Personnel	Table	Main	Menu	by	typing	this	command	on	the
command	line	on	the	i5/O5	Main	Menu	screen:
	
lansa	run	psltab	partition(dem)
	

	
16.			Identify	the	screen	with	the	name	PSLTABMain.
17.			Click	on	the	arrow	button	to	hide	the	tab	folder.
You	have	now	finished	naming	your	screens.
			

RAMP-TS002	Step	2:	Classify	the	Screens	and	Track	Navigation
In	this	step	you	will	classify	the	screens	and	track	the	navigation	in	your
application.	When	you	classify	a	screen	a	script	that	records	its	navigation	route
is	created	for	it.
Before	this	step	you	might	want	to	read	this	FAQ:	I	have	made	a	mistake	in
classifying	a	screen.	How	do	I	change	the	classification?
When	navigating	remember	to	choose	menu	options	by	typing	in	the	number
and	pressing	Enter	(if	you	click	on	a	menu	option	with	the	keystroke,	tracking
can't	follow	this).
1.			Exit	from	the	Personnel	Table	Main	Menu.
2.			Sign	off.
3.			Restart	navigation	tracking	by	clicking	on	the	Restart	button	under	the
Message	Area:

	

	
Notice	that	the	Message	Area	indicates	that	the	login	screen	has	already	been
classified	as	a	junction:

	
4.			Log	on	to	your	system.
5.			Classify	the	message	screen	as	a	Special	form.	Depending	on	your	system
this	may	take	a	while,	please	wait	until	RAMP	has	assigned	the	screen	type.

	
6.			Dismiss	the	message	and	classify	the	i5/OS	Main	Menu	as	a	Junction.
7.			Navigate	to	the	Personnel	Table	Main	Menu	by	entering	this	command:
	
lansa	run	psltab	partition(dem)
	

8.			Classify	it	as	a	Destination	screen.
9.			Now	retrace	your	steps	to	track	the	navigation	away	from	the	destination
screen:

Press	F12 To	return	to	the	i5/OS	Main	Menu

Enter	90	on	the	command	line To	sign	off

	

	
You	have	now	completed	classifying	your	screens	and	tracking	the	navigation	in
the	application.
		

RAMP-TS002	Step	3:	Remove	Cancel	and	Exit	buttons
In	this	step	you	will	remove	the	Cancel	and	Exit	buttons	from	the	Personnel
Table	Main	Menu	screen	so	that	users	cannot	navigate	to	other	parts	of	the
application	from	this	screen.
1.			Display	the	Default	Session	tab.
2.			Select	PSLTABMain	in	the	list	of	Destination	screens:

	
The	PSLTABMain	screen	details	are	shown	on	the	right	(you	may	have	to
rearrange	the	RAMP	window	to	see	all	the	details).
3.			In	the	PSLTABMain	Function	Key	Enablement	list,	deselect	the	Exit	and
Cancel	keys:

	
			

RAMP-TS002	Step	4:	Snap	the	Application	into	the	Framework
In	this	step	you	will	snap	your	application	into	the	Framework.	You	will	also
specify	that	an	unmanaged	session	is	to	be	started	for	the	PSLTABMain	screen.
Unmanaged	sessions	are	primarily	used	to	log	the	user	on	and	then	drive	them
to	a	specific	starting	point.	From	that	point	forward	the	user	can	move	around
inside	the	5250	application	without	being	managed	by	the	Framework.
So,	when	the	user	clicks	on	Code	Tables	in	the	Framework	menu,	the		5250
session	logs	the	user	on	and	then	drives	them	to	the	menu	screen.	The	entire
Code	Tables	facility	(which	could	be	composed	of	hundreds	of	5250	screens)	is
now	accessible	without	the	need	to	name,	classify	and	track	the	screens.	If	the
user	goes	away	from	the	command	handler	and	then	comes	back	again	later,	the
current	5250	screen,	whatever	it	is,	is	just	redisplayed.												
	
1.			In	the	PSLTABMain	screen	details	scroll	the	list	of	available	commands	in
the	Associated	Command	Handler(s)	list	and	locate	the	Details	command	of
the	Code	Tables	business	object	(note	that	you	can	sort	the	columns	in	the	list
when	looking	for	the	command).	Select	the	command:

	
2.			In	the	PSLTABMain	screen	details,	set	the	Session	Id	to	Session	A:

	
3.					Save	your	RAMP	definitions	by	clicking	the	Save	button	and	select	Partial
Save:

	
When	working	in	RAMP	Tools,	you	typically	do	a	Partial	Save	of	your	work.
Only	when	you	are	ready	to	test	your	application	in	end-user	mode,	you	need	to
do	a	Full	Save	of	the	RAMP	definitions.
4.			Display	the	Framework	and	select	the	Personnel	application	and	then	Code
Tables	business	object.	The	Personnel	Table	Main	menu	is	displayed.

	

5.			Select	one	of	the	options	in	the	menu	to	access	the	code	tables.

		
Note	that	your	screen	may	look	slightly	different	depending	on	how	your	system
is	set	up.
The	code	tables	maintenance	application	segment	is	now	modernized	and	fully
functional	in	the	Framework.	Note	that	depending	on	your	RAMP-TS
configuration	your	modernized	screen	may	look	slightly	different.
	
	

Summary
Important	Observations
You	do	not	have	to	use	RAMP	on	every	single	5250	screen	in	your	application.
Often	whole	application	segments	are	rarely	used,	and	typically	these	can	be
snapped	into	a	Framework	in	a	very	short	time
You	need	to	carefully	consider	how	much	time	and	resources	you	want	to	spend
modernizing	parts	of	an	application.
You	can	do	the	naming	at	any	time	in	any	order	and	you	don't	have	to	name	all
the	screens	and	fields	used	in	navigation	in	a	single	session.	However,	you	need
to	name	all	screens	and	fields	before	you	classify	them	and	track	the	application
navigation.

What	You	Should	Know
How	to	create	an	application	and	a	business	object	in	the	Framework	and	how	to
associate	command	handlers	with	the	business	object.
How	to	name	screens
How	to	classify	screens	and	track	navigation
How	to	enable	and	disable	buttons	on	a	screen
How	to	snap	your	screen	into	the	Framework.
	

RAMP-TS003:	Creating	a	Data	Filter	for	Employees
In	this	tutorial	you	will	create	a	functional	By	Name	filter	for	the	Employees
business	object.	You	will	use	the	Program	Coding	Assistant	to	create	the	filter.

Objectives
Understand	how	fundamentally	filters	add	value	to	a	modernized	application
Learn	how	to	quickly	create	filters	to	provide	different	ways	of	accessing
information	in	the	application
	

To	achieve	this	objective,	you	will	complete	the	following	steps:
RAMP-TS003	Step	1.	Creating	Your	Real	By	Name	Filter
RAMP-TS003	Step	2.	Snapping	In	the	By	Name	Filter
RAMP-TS003	Step	3.	Filter	Code

	

Before	You	Begin
In	order	to	complete	this	tutorial,	you	must	have	completed	the	following:
RAMP-TS001:	Creating	a	Basic	Prototype	of	the	Modernized	Application
RAMP-TS002:	Rapidly	Modernizing	Complete	Application	Segments
	

RAMP-TS003	Step	1.	Creating	Your	Real	By	Name	Filter
In	this	step,	you	will	create	a	real	filter	which	searches	the	PSLMST	file	by
employee	surname.	You	will	also	learn	how	to	use	the	Program	Coding
Assistant.
	
1.			Click	on	the	Program	Coding	Assistant	button	in	the	By	Name	filter.

	
					The	Program	Coding	Assistant	window	is	displayed.	It	allows	you	to	create
different	types	of	components	that	can	be	plugged	into	your	filters,	instance
lists	and	command	handlers.		It	is	highly	recommended	to	use	the	program
coding	assistant	when	you	first	start	using	the	Framework.	

					Initially	you	will	most	likely	use	filters	that	generate	a	component	that	can	be
executed	(e.g.	CRUD	Filter	(Create/Read/Update/Delete),	Filter	that	searches
a	file	or	view).		As	you	progress	you	might	only	use	a	skeleton	filter	or
simply	copy	from	one	that	is	similar	to	one	that	you	want	to	create.

2.			If	you	are	using	a	non-English	system,	click	on	Framework	->	Your
Framework	in	the	top-left	tree	view.	The	Set	LANSA	code	generation
preferences	option	appears	at	the	bottom.	Select	this	option	and	set	your
preferences.

3.			In	the	list	on	the	top	left,	ensure	the	Personnel	application,	Employees	and
the	By	Name	filter	are	selected.

4.			Underneath	it,	select	Native	MS	Windows	as	the	platform.
5.			As	the	type	of	code	you	want	to	generate,	select	Filter	that	searches	using	a
file	or	view.

	
6.			Click	the	Next	button.
7.			On	the	next	page	specify	PSLMST	as	The	physical	file	that	most	closely
resembles	this	business	object.

	
The	Program	Coding	Assistant	detects	the	Visual	and	Programmatic	Identifiers
required:
A	Visual	Identifier	is	the	field	or	fields	that	a	user	would	use	to	identify	a	unique
instance	of	the	business	object.
A	Programmatic	Identifier	is	the	field(s)	that	the	program	would	use	to	identify	a
unique	instance	of	the	business	object.		Typically	these	would	be	the	primary
keys	of	the	file	or	files	that	make	up	the	data	in	the	instance	list.
The	additional	columns	represent	the	additional	columns	in	your	instance	list
that	you	may	have	added	during	the	prototyping	phase.
		
8.			Click	the	Next	button.

9.			On	the	next	page	specify	PSLMST2	as	the	view	to	be	used	for
filtering/searching	operations.	It	is	logical	view	of	the	PSLMST	file	keyed	by
the	SURNAME	and	GIVENAME	fields.

					Note	that	you	need	an	appropriate	logical	file	for	each	filter	that	you	want	to
create.		Before	implementing	all	your	filters,	review	your	data	model	to
confirm	that	all	the	logical	files	exist.		Doing	so	will	speed	up	the	process	of
implementing	your	prototype.

	
10.			Select	the	SURNAME	field	as	the	key	of	the	view	to	be	used	for	search
operations.

	
11.			Click	the	Next	button.

12.			Select	the	option	Routine	to	listen	for	signals	to	update	the	instance	list.
13.			Click	the	Generate	Code	button.
	
The	next	page,	Generated	Code,	displays	the	source	code	for	your	filter.	You
now	need	to	create	the	component	that	will	contain	this	code:
14.			Specify	iiiRMP01	as	the	name	of	your	real	filter	and	By	Name	Filter	as	the
description.	(iii	are	your	initials	If	you	are	using	an	unlicensed	or	trial	version
of	Visual	LANSA,	you	must	always	use	the	3	characters	DEM	to	replace	iii).

15.			Click	on	the	Create	button	to	create	the	component.

	
After	a	brief	delay	the	Filter	component	is	displayed	in	the	Visual	LANSA
editor.

16.			Compile	the	component.
	

RAMP-TS003	Step	2.	Snapping	In	the	By	Name	Filter
Now	that	you	have	compiled	your	filter	and	are	ready	to	test	it,	you	need	to	snap
it	into	the	Framework.
	
1.			In	the	Framework,	close	the	Program	Coding	Assistant.
2.			Double-click	on	the	Employees	business	object	to	display	its	properties.
3.			Display	the	Filter	Snap-in	Settings	tab.
4.			Specify	iiiRMP01	as	the	Windows	filter	handler	component.

	
5.			Close	the	Employees	business	object	properties	and	display	the	By	Name
filter.	You	can	now	see	your	real	filter.

6.			Type	in	a	letter	in	the	Surname	field	and	click	on	the	Search	button	to	verify

that	your	real	filter	has	been	snapped	in	the	Framework	and	is	usable.

	

RAMP-TS003	Step	3.	Filter	Code
Even	though	you	can	create	most	filters	simply	by	using	the	Program	Coding
Assistant,	you	should	understand	how	they	are	coded.
1.			Switch	to	the	Visual	LANSA	editor	where	the	iiiRMP01	reusable	part	is
open.

2.			Review	the	generated	source	code	in	the	Source	tab	to	see	how	the	filter	is
coded	to	add	data	to	the	instance	list:	

The	Framework	is	notified	that	an	update	is	about	to	occur.

Invoke	#avListManager.BeginListUpdate

	
Next,	the	list	is	cleared	of	any	existing	items.

Invoke	#avListManager.ClearList

	
Next,	data	is	selected.	You	can	use	one	the	techniques	you	learnt	in	the	Visual
LANSA	Fundamentals	tutorials	to	do	this.	For	example:

Select	Fields(#XG_Ident)	From_File(PSLMST2)	With_key(#XG_Keys)
Generic(*yes)	Nbr_Keys(*Compute)

		
Next,	the	visual	identifiers	are	set	up:

Change	#UF_VisID1	#EMPNO

Change	#UF_VisID2	#SURNAME

	
Then	the	data	is	added	to	the	list.

Invoke	#avListManager.AddtoList	Visualid1(#UF_VisID1)
Visualid2(#UF_VisID2)	AKey1(#EMPNO)

	

VisualId1	will	be	shown	in	column	one	of	the	instance	list	and	VisualId2	will	be
shown	in	column	two	of	the	instance	list.		Akey1	is	the	key	that	uniquely
identifies	an	employee	(in	this	case	the	field	is	alphanumeric,	so	its	Akey1,	not
Nkey1).
	
Finally,	the	Framework	is	notified	that	the	instance	list	update	is	complete.
Invoke	#avListManager.EndListUpdate)

	
3.		Next	click	on	Details	tab	in	the	editor	to	display	the	properties	of	your
component.

	
	
You	need	to		ensure	that	all	properties	are	displayed:
4.			Select	the	Settings	option	in	the	Options	menu.
5.			Click	on	Details	and	make	sure	the	Show	Advanced	Features	option	is
selected.

	
6.			Notice	that	the	Ancestor	property	of	the	component	is	#VF_AC007.	All
filters	inherit	from	this	base	class	which	provides	a	set	of	predefined
behavior.

		
7.			Click	on	the	Outline	tab	in	the	editor	to	see	what	components	you	inherit
from	the	VF_AC007	ancestor	component.

	
8.			Right-click	the	avLISTMANAGER	component	and	select	the	Features
option.

	
9.			Expand	the	methods	of	the	component	and	examine	them.

	
10.			Close	the	iiiRMP01	component.
You	may	want	to	read	Filter	and	Command	Handler	Anatomy	in	the	Framework
guide	to	see	how	these	components	are	structured.
	
	

Summary
Important	Observations
Filters	are	one	of	the	main	ways	of	adding	value	in	a	modernized	application.
	

Tips	&	Techniques
The	source	code	for	the	filters	used	in	the	demonstration	application	can	be
found	in	the	repository	in	components	named	DF_*.

What	I	Should	Know
What	you	need	to	do	to	create	your	own	filters.
How	you	snap	them	in	the	Framework.
How	to	use	the	Program	Coding	Assistant.
	
	

RAMP-TS004:	Naming	and	Classifying	the	Employee	Screens
In	this	tutorial	you	will	name	and	classify	the	Personnel	System	screens	that	will
be	used	in	the	Employees	business	object.

Objectives
Learn	more	about	naming	and	classifying	screens.
	

To	achieve	this	objective,	you	will	complete	the	following	steps:
RAMP-TS004	Step	1.	Name	the	Screens
RAMP-TS004	Step	2.	Classify	Screens
RAMP-TS004	Step	3.	Track	Navigation
RAMP-TS004	Step	4.	Take	Snapshots	of	Your	Destination	Screens
		

Before	You	Begin
In	order	to	complete	this	tutorial,	you	must	have	completed	the	following:

RAMP-TS001:	Creating	a	Basic	Prototype	of	the	Modernized	Application
RAMP-TS002:	Rapidly	Modernizing	Complete	Application	Segments
RAMP-TS003:	Creating	a	Data	Filter	for	Employees	
	

RAMP-TS004	Step	1.	Name	the	Screens
In	this	step	you	will	name	the	screens	and	the	required	fields	in	your
application.
1.			Start	the	Framework.
2.			Start	RAMP.
3.			Connect	to	the	server.
4.			Start	the	PSLSYS	application	by	entering	the	command:
		
lansa	run	pslsys	partition(dem)
	

5.			Name	the	main	menu	PSLSYSMain	and	the	option	field	txtOption:

		

Note	that	you	should	not	select	the	check	the	box	in	front	of	a	field.	The
checkbox	is	used	to	use	the	field	to	differentiate	between	otherwise	identical
screens.
In	the	following	steps,	whenever	a	message	appears	asking	you	if	you	want	to
save	the	changes	you	have	made,	click	OK.

	
6.			Select	option	2	in	the	menu	to	display	the	Enrol	a	New	Employee	screen.
7.			Name	it	NewEmployee
8.			Name	the	Employee	number	field	txtEmpno	and	click	Save.

	
9.			Press	F12	to	return	to	the	Personnel	System	Main	Menu.
10.			Select	option	3	in	the	menu	to	display	employee	and	skills	details.
11.			Name	the	employee	search	screen	FindEmployee.
12.			Locate	the	Employee	Number	field	and	name	it	txtEmpno:

	
13.			Click	Save.
14.			Type	in	any	employee	number,	for	example	A1234,	and	press	Enter	to
display	the	Browse/Maintain	Employee	and	Skill	Files	screen.

15.			Name	the	screen	DisplayEmployee.
16.			Click	on	the	Save	button.
17.			Press	F21	to	display	the	screen	in	update	mode	so	that	you	can	name	fields.

18.			Name	the	Surname	field	on	the	screen	txtSurname.

	
You	have	now	finished	naming	your	screens:

	
19.			Do	a	partial	save	of	your	RAMP	definition.
20.			Return	to	the	i5/OS	Main	Menu	by	pressing	F3.
	
	

RAMP-TS004	Step	2.	Classify	Screens
In	this	step	you	will	classify	the	screens	as	Junction	Screen	,	Special	Screen	or
Destination	screen.
1.			Deselect	the	Auto	Update	Navigation	Scripts	check	box	(you	will	track
navigation	in	the	next	step,	now	you	are	just	classifying	the	screens)	and
ignore	any	messages	about	auto	navigation	for	the	moment:

	
2.			Log	on	to	your	system	in	the	RAMP-TS	5250	session.
3.			If	the	messages	screen	is	displayed	dismiss	it.
4.			In	the	i5/OS	Main	menu,	enter	this	command:
	
lansa	run	pslsys	partition(dem)
	

	
5.			Select	option	2	to	enrol	a	new	employee.
6.			When	the	Enrol	a	New	Employee	screen	is	displayed,	press	F12	to	return	to
the	Personnel	System	main	menu.

7.			Select	option	3	to	browse	employees.
8.			In	the	Find	Employee	screen	type	any	employee	number,	for	example
A1234.

The	Browse/Maintain	Employee	and	Skill	Files	screen	is	displayed.
You	now	have	a	list	of	all	the	screens	in	the	Personnel	System	application	about
to	be	modernized	ready	to	be	classified	(you	can	do	the	classification	either
while	you	are	tracking	the	navigation	as	in	RAMP-TS002	Step	2:	Classify	the
Screens	and	Track	Navigation	or	you	can	do	it	as	two	distinct	steps	as	in	here).
It	is	usually	preferable	to	make	the	classification	of	screens	a	distinct	task.	
When	you	are	ready,	you	can	use	your	spreadsheet	or	whatever	document	you
have	and	methodically	track	the	movement	through	the	junctions	to	your
destinations.		Doing	it	this	way	should	produce	the	least	amount	of	rework	later.
Now	you	can	start	classifying	the	screens:	

9.			Click	on	the	MainLogin	screen	in	the	Tracking	Info	area.	Notice	that	it	is
predefined	as	a	Junction	(it	is	automatically	classified).

10.			Using	the	Tracking	Info	area,	classify	the	rest	of	the	screens	like	this:

PSLSYSMain Junction

NewEmployee Destination

FindEmployee Junction

DisplayEmployee Destination

	

	
You	have	now	completed	classifying	the	screens.

	

RAMP-TS004	Step	3.	Track	Navigation
In	this	step	you	will	track	the	navigation	in	the	application.
1.			Cancel	back	to	the	i5/OS	Main	Menu	and	sign	off.
2.			Clear	the	tracking	information	by	clicking	the	Restart	button:

	
3.			Select	the	Auto	Update	Navigation	Scripts	check	box.

		
4.			Log	on	to	your	system	in	the	RAMP-TS	5250	session.
5.			If	the	messages	screen	is	displayed	dismiss	it	by	pressing	Enter.
6.			In	the	i5/OS	Main	menu,	enter	this	command:
	
lansa	run	pslsys	partition(dem)
	

	
7.			Select	option	2	to	enrol	a	new	employee.
8.			When	the	Enrol	a	New	Employee	screen	is	displayed,	press	F12	to	return	to
the	Personnel	System	main	menu.

9.			Select	option	3	to	browse	employees.
10.			In	the	Find	Employee	screen	type	any	employee	number,	for	example
A1234.

11.			Return	from	the	Browse/Maintain	Employee	and	Skill	Files	screen	to	the
Personnel	Main	menu	by	pressing	F12.

12.			Press	F12	to	return	to	the	i5/OS	Main	menu.
13.			Sign	off.
You	have	now	tracked	the	basic	navigation	in	the	Personnel	System	application

segments	about	to	be	modernized.
	
14.			Deselect	the	Auto	Update	Navigation	Scripts	check	box.
	

RAMP-TS004	Step	4.	Take	Snapshots	of	Your	Destination
Screens
In	this	step	you	will	take	snapshots	of	your	two	destination	screens
NewEmployee	and	DisplayEmployee.	These	snapshots	will	be	used	in	the	next
tutorial	to	enhance	your	prototype.
1.			Logon	and	navigate	to	the	NewEmployee	screen.
2.			Make	sure	that	the	tab	sheet	(Screens,	AutoGUI,	Keymaps)	on	the	left	of	the
RAMP-TS	5250	emulator	is	hidden.

3.			Click	on	the	Snapshot	button:

	
4.			Note	the	message	indicating	that	the	snapshot	is	saved	in	your	partition
execute	directory:

	
5.			Take	a	snapshot	of	the	DisplayEmployee	screen.
6.			Do	a	partial	save	of	the	RAMP	information.
		
	

Summary
Important	Observations
Before	you	track	navigation,	you	need	to	name	all	the	screens	in	your	application
and	all	the	fields	used	for	navigation.
You	can	classify	screens	either	at	the	same	time	as	you	track	navigation	or	when
you	have	finished	tracking.
You	can	take	snapshots	of	your	5250	screens	to	be	used	in	the	prototype.
	

What	You	Should	Know
How	to	name	screens	and	navigation	fields.
How	to	track	navigation	and	classify	screens.
	

RAMP-TS005:	Reviewing	Design
In	this	tutorial	you	will	use	snapshots	of	your	destination	screens	to	enhance
your	prototype.

Objectives
Learn	how	to	add	snapshots	to	the	prototype
	

To	achieve	this	objective,	you	will	complete	the	following	steps:
RAMP-TS005	Step	1.	Place	Snapshots	on	Mock	Up	Command	Handlers
RAMP-TS005	Step	2.	Review	the	Prototype

	

Before	You	Begin
In	order	to	complete	this	tutorial,	you	must	have	completed	the	following:
RAMP-TS001:	Creating	a	Basic	Prototype	of	the	Modernized	Application
RAMP-TS002:	Rapidly	Modernizing	Complete	Application	Segments
RAMP-TS003:	Creating	a	Data	Filter	for	Employees
RAMP-TS004:	Naming	and	Classifying	the	Employee	Screens
	

RAMP-TS005	Step	1.	Place	Snapshots	on	Mock	Up	Command
Handlers
In	the	initial	prototype,	you	created	an	executable	model	of	the	modernized
application,	with	the	main	focus	on	how	the	end-users	would	access
information.	Now	that	you	have	named	and	classified	the	screens	in	the	5250
application,	you	can	attach	snapshots	of	your	destination	screens	to	the
prototype	to	make	it	more	visually	complete.
In	this	step	you	will	place	snapshots	of	the	5250	destination	screens	on	the
command	handlers.
1.			In	the	Framework,	select	an	employee	in	the	instance	list	to	display	the
command	handlers	associated	with	employees:

	

2.			Like	the	prototype	filters,	the	prototype	command	handlers	are	editable.
3.			Select	all	the	text	in	the	command	handler	for	the	Details	command	and
delete	it.

	
4.			Click	on	the	on	the	Images	Palette	button.
5.			In	the	Images	Palette	window	click	on	the	Snapshots	Only	radio	button.

	
6.			Locate	the	snapshot	of	the	Browse/Maintain	Employee	and	Skills	Files
screen	and	drag	it	to	the	command	handler.

7.			Resize	the	snapshot	on	the	command	handler	if	necessary.

	
Notice	how	much	easier	it	is	to	envisage	what	the	modernized	application	will
look	like	when	the	command	handlers	show	a	snapshot	of	the	screen	to	be
snapped	in.
	
8.			Display	the	command	handler	for	the	New	command	and	click	the	Images
Palette	button.

9.			Locate	the	Enrol	New	Employee	screen	and	right-click	to	bring	up	the
context	menu	and	select	Copy.

10.			Click	on	the	Employee	window	and	paste	the	image.

11.			Resize	the	image	if	necessary.

	
	

RAMP-TS005	Step	2.	Review	the	Prototype
When	the	prototype	is	visually	complete,	it	is	recommended	you	reviewit	with
the	end-users	to	ensure	the	design	corresponds	to	their	expectations.
The	most	successful	RAMP	solutions	have	all	been	created	on	the	basis	of
careful	prototyping.
	

Summary
Important	Observations
Showing	your	end-users	a	realistic	prototype	will	ensure	they	are	able	to
understand	your	design	and	can	provide	meaningful	feedback.
For	command	handlers	that	will	use	screen	wrappers	or	Visual	LANSA
components,	use	text	and	the	images	palette.
Snapshots	are	useful	also	after	the	prototyping	stage.	You	can	use	them	in	project
documentation	and	as	a	reference	point	if	you	change	your	screens	as	part	of	the
modernization	process.	When	you	have	snapped	the	actual	screens	to	the
Framework	you	can	display	the	snapshots	using	the	Show	Snapshot	button.

What	You	Should	Know
How	to	make	your	prototype	visually	complete.
	
	

RAMP-TS006:	Snapping	in	a	Basic	Inquiry	Screen
In	this	tutorial	you	will	snap	the	Browse/Maintain	Employee	Details	and	Skills
File	screen	to	the	Framework.	It	is	a	typical	basic	5250	inquiry	screen.

Objectives
Learn	how	to	associate	your	snapped	in	screen	with	the	instance	list

To	achieve	this	objective,	you	will	complete	the	following	steps:
RAMP-TS006	Step	1.	Snap	a	Basic	Inquiry	Screen	into	the	Framework
RAMP-TS006	Step	2.	Change	the	Script	to	Use	the	Current	Instance	List	Entry
RAMP-TS006	Step	3.	Disable	Function	Keys
	

Before	You	Begin

In	order	to	complete	this	tutorial,	you	must	have	completed	the	following:
RAMP-TS001:	Creating	a	Basic	Prototype	of	the	Modernized	Application
RAMP-TS002:	Rapidly	Modernizing	Complete	Application	Segments
RAMP-TS003:	Creating	a	Data	Filter	for	Employees
RAMP-TS004:	Naming	and	Classifying	the	Employee	ScreensRAMP-TS005:
Reviewing	Design
	

RAMP-TS006	Step	1.	Snap	a	Basic	Inquiry	Screen	into	the
Framework
In	this	step	you	will	snap	in	the	Browse/Maintain	Employee	Details	and	Skills
File	screen	to	the	Framework	and	test	it.
1.			In	the	RAMP	Tools	window,	select	the	DisplayEmployee	destination	screen
in	the	Screen	and	Script	List.

	
2.			In	the	DisplayEmployee	details,	snap	the	screen	into	the	Details	command
handler	of	the	Employees	business	object:

3.			Do	a	partial	save.
4.			Display	the	Framework	and	select	an	employee	from	the	instance	list	to	test
the	command	handler:

	
If	you	have	correctly	named	and	classified	the	screens	and	tracked	the
navigation,	the	Browse/Maintain	Employee	and	Skill	Files	screen	is	now
functional	in	the	Framework.
However,	notice	that	if	you	select	an	employee	in	the	instance	list,	this	change	is
not	reflected	in	the	command	handler.	This	is	because	the	script	which	was
generated	to	display	the	screen	has	recorded	the	employee	number	you	used
when	tracking	the	screens.
	

RAMP-TS006	Step	2.	Change	the	Script	to	Use	the	Current
Instance	List	Entry
In	this	step	you	will	change	the	script	that	displays	the	employee	details	by
replacing	the	hardcoded	employee	number	with	the	employee	number	of	the
currently	selected	instance	list	entry.
As	you	are	completing	this	exercise	you	may	want	to	refer	to	Javascript
Essentials.
1.			Select	the	FindEmployee	junction	screen	in	the	screens	and	scripts	list.
2.			Expand	it	to	display	the	script	associated	with	it.
3.			Select	the	script	in	the	list	to	display	its	contents:

	
4.			Locate	this	statement	in	the	NAVIGATETO	function:
	
SETVALUE("txtEmpno","A1234");
	

	
5.			Select	the	Employee	Number	and	the	quotes	surrounding	it	and	right-click
to	bring	up	the	context	menu.

6.			Select	the	Current	Instance	List	Entry	option	in	the	menu.
7.			Select	Alpha	Key	1	in	the	submenu:

	
The	statement	is	changed	to:
	
SETVALUE("txtEmpno",objListManager.AKey1[0]);
	

	
This	special	value	will	contain	the	identifier	of	the	employee	that	the	end-user
has	selected	in	the	instance	list.
8.			Commit	the	changes	to	the	script	by	clicking	the	Commit	Changes	button:

	
9.			Do	a	partial	save	of	the	RAMP	information
10.			Display	the	Framework	and	select	an	employee	in	the	instance	list.
Notice	that	the	correct	details	for	the	selected	employee	are	now	shown.	If	for
some	reason,	you	cannot	display	the	employee	details	correctly,	restart	the
Framework.

	

RAMP-TS006	Step	3.	Disable	Function	Keys
In	this	step	you	will	disable	the	5250	keys	used	for	navigation	because	in	the
Framework	you	can	move	wherever	you	want	with	a	few	mouse	clicks	so	the
use	of	function	keys	and	buttons	for	navigation	purposes	is	now	superfluous.
You	should	aim	to	eliminate	the	5250	navigation	buttons	in	your	modernization
project	because	it	makes	your	application	more	familiar	and	comfortable	to
people	who	are	used	to	the	Windows	interface.
	
1.			Display	the	RAMP	Tools	window.
2.			Select	the	DisplayEmployee	screen	in	the	Screen	and	Script	List.
3.			In	the	Function	Key	Enablement	list	disable	the	Exit,	Cancel	and	Messages
keys	and	buttons.

	
4.			Do	a	partial	save	of	the	RAMP	definition.
5.			Switch	to	the	Framework	and	display	the	details	of	an	employee	to	verify
the	buttons	are	no	longer	displayed	and	that	the	keys	do	not	work.

	
The	Probe	Screen,	Show	Snapshot,	Documentation	and	Turn	Trace	On	buttons
are	RAMP	design-time	only	buttons.
	

Summary
Important	Observations
Automatically	generated	scripts	contain	the	hard	coded	number	of	the	value	you
chose	when	tracking	navigation.	You	need	to	make	a	change	to	the	script	to
make	the	screen	respond	to	the	currently	selected	entry	in	the	instance	List.
Use	the	Scripting	Pop-up	Menu	to	change	your	scripts.

What	You	Should	Know
How	to	make	the	screen	interact	with	the	instance	list.
	

RAMP-TS007:	Snapping	in	a	Data	Entry	Function
In	this	tutorial	you	will	snap	the	Enrol	a	New	Employee	screen	to	the
Framework.	It	is	a	typical	5250	data	entry	screen.

Objectives
Learn	how	to	snap	a	data	entry	function	into	the	Framework.
Understand	the	different	functions	in	a	screen's	script.
Learn	how	the	screen	can	signal	events	to	the	Framework	filter.
Learn	how	to	create	basic	error	handling	for	a	screen.

To	achieve	this	objective,	you	will	complete	the	following	steps:
	

RAMP-TS007	Step	1.	Snap	a	Basic	Data	Entry	Screen	into	the	Framework
RAMP-TS007	Step	2.	Change	the	Script	to	Signal	the	New	Employee	Number
RAMP-TS007	Step	3.	Add	Error	Handling
RAMP-TS007	Step	4.	Change	the	Script	to	Update	the	Instance	List
RAMP-TS007	Step	5.	Disable	Function	Keys
	

Before	You	Begin
In	order	to	complete	this	tutorial,	you	must	have	completed	the	following:
RAMP-TS001:	Creating	a	Basic	Prototype	of	the	Modernized	Application
RAMP-TS002:	Rapidly	Modernizing	Complete	Application	Segments
RAMP-TS003:	Creating	a	Data	Filter	for	Employees
RAMP-TS004:	Naming	and	Classifying	the	Employee	Screens
RAMP-TS005:	Reviewing	Design
RAMP-TS006:	Snapping	in	a	Basic	Inquiry	Screen
	

RAMP-TS007	Step	1.	Snap	a	Basic	Data	Entry	Screen	into	the
Framework
In	this	step	you	will	snap	in	the	Browse/Maintain	Employee	Details	and	Skills
File	screen	to	the	Framework	and	test	it.
1.			In	the	RAMP	Tools	window,	select	the	NewEmployee	destination	screen	in
the	Screen	and	Script	List.

2.			In	the	NewEmployee	details	snap	the	screen	into	the	New	command	handler
of	the	Employees	business	object.

	

3.			Do	a	partial	save.
4.			Display	the	Framework	and	select	the	Employees	business	object	in	the
navigation	pane,	use	the	filter	to	fill	the	instance	list	and	then	right-click	the
Employees	business	object	or	an	individual	employee	in	the	instance	list	to
display	the	context	menu.

5.			Select	New.

		
The	Enrol	New	Employee	screen	is	displayed	in	the	Framework.

	
6.			Enter	the	details	for	a	new	employee	and	press	Enter	to	save.
7.			Search	for	the	newly	added	employee	using	the	By	Name	filter.
In	the	next	step	you	will	change	the	New	Employee	screen	to	update	the
instance	list	automatically.
	

RAMP-TS007	Step	2.	Change	the	Script	to	Signal	the	New
Employee	Number
In	this	step	you	will	add	code	to	your	screen	script	signal	the	new	employee
number	when	a	new	employee	is	created.
1.			In	the	RAMP	Tools	window,	locate	the	script	for	the	NewEmployee	screen.

	
2.			Locate	the	BUTTONCLICK	function,	then	the	statement	declaring	bReturn
variable.

3.			Add	this	statement	to	declare	an	oEmp	object		which	will	be	used	to	pass	the
employee	number:
	
			var	oEmp	=	new	Object();
	

	
Your	code	should	look	like	this:

	
4.			Then	locate	the	statement	handling	the	pressing	of	the	Enter	key	(KeyEnter).
5.			Add	this	statement	before	the	SENDKEY	statement	to	retrieve	the	value	of
the	employee	number	of	the	new	employee	to	the	oEmp	object:
	
oEmp.empno	=	GETVALUE("txtEmpno");
		

	

6.			Change	the	SENDKEY	function	to	pass	the	employee	number	payload:
	
SENDKEY(KeyEnter,	oEmp);
		

	Your	code	will	look	like	this:

	
7.					Commit	the	changes.
You	will	use	the	employee	number	payload	in	the	following	steps.	
	

RAMP-TS007	Step	3.	Add	Error	Handling
In	this	step	you	will	add	code	to	your	script	to	issue	a	message	if	the	new
employee	insertion	was	successful.
After	any	attempted	insert	(whether	successful	or	not),	the	NewEmployee
screen	is	redisplayed.	Therefore	you	can	place	the	error	handling	code	in	the
ARRIVE	script	of	the	screen.	You	will	then	add	code	to	close	the	New
Employee	window	if	a	new	employee	has	successfully	been	added.
	
For	the	error	handling	you	will	need	a	Javascript	function	to	trim	the	employee
number.
1.			Add	this	function	code	to	the	end	of	your	script,		just	before	the	SYSINFO:
			/*	==	*/
			/*	===================		uTrim		==========================	*/
			/*	==	*/
			/*	sStringToTrim:	The	string	to	be	trimmed	left	and	right	*/

			uTrim	:	function	(sStringToTrim)	{

			return	sStringToTrim.replace(/^\s+|\s+$/g,"");

			}	,
	
Your	code	will	look	like	this:

	
You	will	only	want	to	execute	the	error	handling	code	when	the	NewEmployee
screen	is	redisplayed,	so	you	will	first	need	to	check	what	the	previous	screen
was:
2.			Add	this	statement	after	the	declaration	of	the	bReturn	variable	in	the
vHandle_ARRIVE	function:
				if	(oPreviousForm.vName	==	"NewEmployee")
					{
					}

	
To	differentiate	between	a	successful	insert	and	a	validation	error	add	code	to
check	whether	the	employee	number	has	been	set	to	blank	by	the	operation.	If	it
is	not	blank,	close	the	window:
3.			Add	this	code	to	the	if	statement:
									/*	Get	the	currently	showing	EMPNO	*/
									var	strCurrEmpno	=	GETVALUE("txtEmpno");
									if	((this.uTrim(strCurrEmpno)	==	"")	&&	(this.uTrim(oPayload.empno)	!=	""))
									{
												/*	Insert	was	sucessful	*/
												/*	Issue	a	message		*/
												MESSAGE("Employee	",	oPayload.empno	,"	created");
												AVCLOSEFORM();

									}
Your	code	will	look	like	this:

	
4.			Click	on	Commit	Changes	and	then	do	a	partial	save.
5.			In	the	Framework	add	a	new	employee.	Notice	that	after	you	have
successfully	added	an	employee,	the	message	is	displayed	and	the	window	is
closed.

RAMP-TS007	Step	4.	Change	the	Script	to	Update	the	Instance
List
In	this	step	you	will	add	code	to	your	screen	script	to	update	the	instance	list
when	a	new	employee	is	created.
	
1.			Add	this	statement	after	the	MESSAGE	function	in	the	error	handling	code
to	send	a	signal	to	your	filter	to	update	the	instance	list	after	an	employee	has
been	successfully	created:
	
AVSIGNALEVENT("Add_List_Entry","BUSINESSOBJECT",
oPayload.empno)
	

	
Your	code	will	look	like	this:

	
When	you	created	your	filter	in	RAMP-TS003	Step	1.	Creating	Your	Real	By
Name	Filter,	you	specified	that	the	filter	should	contain	code	to	listen	for	signals
to	update	the	instance	list,	so	the	code	to	listen	for	this	signal	already	exists	in
the	filter.
2.			Save	the	code	changes	by	clicking	on	the	Commit	Changes	button.
3.			Do	a	partial	save	of	the	RAMP	definition.
4.			Display	the	Framework.

5.			Use	the	filter	to	locate	all	employees	whose	surname	starts	with	S.
6.			Enter	the	details	for	a	new	employee	whose	name	starts	with	S.

	
7.			Click	Enter.	Notice	that	the	newly	created	employee	is	displayed	in	the
instance	list.

		

RAMP-TS007	Step	5.	Disable	Function	Keys
In	this	step	you	will	disable	function	keys	which	are	not	required	in	the
modernized	application.	You	will	also	hide	the	corresponding	buttons.
1.			In	the	RAMP	Tools	window,	select	NewEmployee	in	the	screens	and	script
list	to	display	its	details.

2.			In	the	Function	Key	Enablement	list	disable	all	keys/buttons	except	Enter
and	Prompt.

3.			Change	the	caption	of	Enter	to	Save.

	
4.			Do	a	partial	save	of	the	RAMP	definition.
5.			Display	the	Framework,	click	to	add	a	new	employee	and	check	that	the
correct	buttons	are	shown.

	
The	four	bottommost	buttons	are	only	shown	when	running	the	Framework	in
Design	mode.
	

Summary
Important	Observations
The	SENDKEY	function	has	an	optional	Payload	parameter	you	can	use	to	pass
information
To	signal	events	to	the	Framework	filter,	use	the	AvSignalEvent	function.

What	You	Should	Know
How	to	snap	a	data	entry	function	into	the	Framework.
What	are	the	different	functions	in	a	screen's	script
How	the	screen	can	signal	events	to	the	Framework	filter.
How	to	create	basic	error	handling	for	a	screen.
	

RAMP-TS008:	Changing	Inquiry	Screen	to	Update	Mode
In	this	tutorial	you	will	change	the	EmployeeDetails	screen	to	update	mode	to
allow	changes.

Objectives
Learn	how	to	change	an	inquiry	screen	to	an	update	screen.
Learn	how	to	handle	navigation	between	the	update	screen	and	its	nearest
junction.
Understand	more	about	the	structure	of	scripts.

	
To	achieve	this	objective,	you	will	complete	the	following	steps:

RAMP-TS008	Step	1.	Make	Display	Employee	Screen	Input	Capable
RAMP-TS008	Step	2.	Redisplay	DisplayEmployee	After	Save
RAMP-TS008	Step	3.	Change	Button	Caption
	

Before	You	Begin
In	order	to	complete	this	tutorial,	you	must	have	completed	the	following:
RAMP-TS001:	Creating	a	Basic	Prototype	of	the	Modernized	Application
RAMP-TS002:	Rapidly	Modernizing	Complete	Application	Segments
RAMP-TS003:	Creating	a	Data	Filter	for	Employees
RAMP-TS004:	Naming	and	Classifying	the	Employee	Screens
RAMP-TS005:	Reviewing	Design
RAMP-TS006:	Snapping	in	a	Basic	Inquiry	Screen
RAMP-TS007:	Snapping	in	a	Data	Entry	Function
	

RAMP-TS008	Step	1.	Make	Display	Employee	Screen	Input
Capable
In	this	step	you	will	display	the	DisplayEmployee	screen	in	update	mode.
The	tutorial	RAMP-TS006:	Snapping	in	a	Basic	Inquiry	Screen	showed	how	to
snap	in	a	basic	read-only	inquiry	screen	to	the	Framework	just	to	demonstrate
some	basic	steps,	but	in	real-life	modernized	applications	you	would	as	a	rule
display	the	screens	as	input	capable.
In	RAMP-TS004	Step	1.	Name	the	Screens	you	named	the	txtSurname	field	on
the	DisplayEmployee	screen.		The	field	is	only	displayed	when	the	screen	is	in
change	mode	so	you	can	use	it	to	determine	and	set	the	mode	of	the	screen.
1.			In	the	RAMP	Tools	window	select	the	DisplayEmployee	screen	in	the
Screen	and	Script	List.

2.			Expand	it	to	display	the	script	associated	with	the	screen.
3.			In	the	vHandle_ARRIVE	function	add	this	code	after	the	definition	of
bReturn	to	see	if	the	txtSurname	field	exists,	and	if	it	does	not,	to	set	the
screen	to	change	mode:
if	(CHECK_FIELD_EXISTS("txtSurname"))
					{

					}

					else
					{
					SENDKEY(KeyF21);
					}

		
Your	code	should	look	like	this:

	
4.			Commit	the	changes.
5.			Do	a	partial	save	of	the	RAMP	definition.
6.			Display	the	Framework.
7.			Select	an	employee	in	the	instance	list.	Notice	that	the	Browse/Maintain
Employee	and	Skill	Files	screen	is	now	displayed	in	change	mode.

8.			Make	a	change	to	the	name	of	the	employee.
9.			Press	Enter.
Notice	that	after	the	save	the	FindEmployee	screen	is	shown.

	
This	is	typical	5250	behavior	which	needs	to	be	changed	to	fit	the	Framework
navigation	model.	In	the	next	step	you	will	make	the	FindEmployee	script	to
redisplay	the	Browse/Maintain	Employee	and	Skill	Files	screen	after	employee
details	have	been	saved.
	

RAMP-TS008	Step	2.	Redisplay	DisplayEmployee	After	Save
In	this	step	you	will	change	the	script	for	the	FindEmployee	screen	to	navigate
back	to	the	Browse/Maintain	Employee	and	Skill	Files	screen	after	the	details	of
an	employee	have	been	saved.
1.			Locate	the	vHandle_ARRIVE	function	in	the	script	for	FindEmployee.
2.			Under	the	declaration	var	bReturn	=	true;	create	a	new	object:
	
					var	oEmp	=	new	Object();
	

	
3.			Below	the	statement		/*	<ARRIVE	/>	-	Do	not	remove	or	alter	this	line	*/
add	code	to	check	if	the	previous	screen	is	DisplayEmployee:
	if	(oPreviousForm.vName	==	"DisplayEmployee")
					{
					}

	
4.			In	the	if	statement	signal	to	the	Framework	that	that	the	filter	needs	to
update	the	instance	list	with	the	new	employee:
	
								oEmp.empno	=	GETVALUE("txtEmpno");
								AVSIGNALEVENT("Update_List_Entry","BUSINESSOBJECT",	oEmp.empno);
	

	
5.			And	add	this	code	to	navigate	back	to	the	DisplayEmployee	screen:
	
								NAVIGATE_TO_SCREEN("DisplayEmployee");
	

		
Your	code	will	now	look	like	this:

	
6.			Commit	changes	and	then	do	a	partial	save.
7.			In	the	Framework	update	the	details	of	an	employee.	Notice	that	the
DisplayEmployee	screen	is	now	redisplayed	and	the	instance	list	reflects	the
changes	to	the	employee	details:

	
	

RAMP-TS008	Step	3.	Change	Button	Caption
In	this	step	you	will	change	the	caption	of	the	Enter	button	to	Save.
1.			In	the	RAMP	Tools	window,	select	the	DisplayEmployee	screen.
2.			In	the	Function	Key	Enablement	list,	select	the	caption	of	the	Enter	button
and	change	it	Save.

	
3.			Hide	and	disable	the	Change	and	Delete	buttons.
4.			Do	a	partial	save	of	the	RAMP	definition.
5.			Switch	to	the	Framework	display	the	details	of	an	employee	and	verify	the
function	key	caption.

	

Summary
Important	Observations
You	can	create	an	input	capable	screen	simply	by	tracking	navigation,	RAMP
will	automatically	update	the	associated	script.
After	a	successful	save,	the	previous	junction	screen	is	displayed.	You	can	add
code	in	the	vHandle_Arrive	function	in	the	script	associated	with	the	junction
screen.

What	You	Should	Know
How	to	snap	in	a	screen	in	update	mode.
How	to	handle	navigation	between	the	destination	screen	and	its	nearest	junction
after	a	save.
	

RAMP-TS009:	Tracing	Navigation
In	this	tutorial	you	will	use	application	tracing	to	understand	what	happens
when	you	move	from	a	destination	screen	to	another.

Objectives
Learn	how	to	use	application		tracing
Understand	the	functions	and	commands	used	in	navigation	scripts
	

	
To	achieve	this	objective,	you	will	complete	the	following	steps:
RAMP-TS009	Step	1.	Starting	the	Trace	and	Redisplaying	the	Destination

Screen
RAMP-TS009	Step	2.	Examining	the	Trace

Before	You	Begin
In	order	to	complete	this	tutorial,	you	must	have	completed	the	following:
RAMP-TS001:	Creating	a	Basic	Prototype	of	the	Modernized	Application
RAMP-TS002:	Rapidly	Modernizing	Complete	Application	Segments
RAMP-TS003:	Creating	a	Data	Filter	for	Employees
RAMP-TS004:	Naming	and	Classifying	the	Employee	Screens
RAMP-TS005:	Reviewing	Design
RAMP-TS006:	Snapping	in	a	Basic	Inquiry	Screen
RAMP-TS007:	Snapping	in	a	Data	Entry	Function
RAMP-TS008:	Changing	Inquiry	Screen	to	Update	Mode
	

RAMP-TS009	Step	1.	Starting	the	Trace	and	Redisplaying	the
Destination	Screen
In	this	step	you	will	start	an	application	trace	and	then	redisplay	the	destination
screen	in	order	to	understand	what	happens	when	a	destination	screen	is
displayed.
1.			Select	an	Employee	in	the	instance	list	of	the	Personnel	application.
2.			When	the	details	for	the	employee	are	displayed,	start	an	application	trace
using	the	Framework	menu:

		
3.			Now	select	another	employee	in	the	instance	list.	Notice	that	the	trace
details	are	shown	in	the	window.

4.			Click	on	the	Save	Trace	to	File	button	to	save	the	trace	details	to	a	file	and

then	open	it	in	Notepad.

	

RAMP-TS009	Step	2.	Examining	the	Trace
In	this	step	examine	the	trace:

	

Summary
Important	Observations
You	can	use	tracing	to	learn	to	understand	how	RAMP	navigates	from	one
screen	to	another.
If	you	encounter	a	problem,		start	by	using	a	tracing	to	resolve	it.	See	Debug	and
Diagnostics.
The	shipped	Java	Script	function	TRACE()	allows	you	to	add	your	own	trace
statements.	See	Tracing.
You	might	sometimes	find	that	the	easiest	and	quickest	way	to	debug	a	problem
is	to	put	up	a	message	box.	See	Using	ALERT_MESSAGE	in	Your	Scripts.

What	You	Should	Know
How	to	trace	your	application.
	
	
	
	

RAMP-TS010:	Using	Special	Field	Handlers
You	can	easily	provide	advanced	prompting	in	your	5250	RAMP	screens	by
associating	simple	Visual	LANSA	forms	with	fields.	In	this	tutorial	you	will	add
a	special	field	handler	to	the	Department	Code	field	to	let	the	user	choose	the
code	from	a	list	of	departments.

Objectives
Learn	the	basics	of	using	special	field	handling.
Learn	how	to	add	value	to	your	5250	screens
	

To	achieve	this	objective,	you	will	complete	the	following	steps:
RAMP-TS010	Step	1.	Naming	the	Field
RAMP-TS010	Step	2.	Associating	the	Field	with	the	Handler
RAMP-TS010	Step	3.	Test	the	Special	Field	Handler
	
	

Before	You	Begin
In	order	to	complete	this	tutorial,	you	must	have	completed	the	following:
RAMP-TS001:	Creating	a	Basic	Prototype	of	the	Modernized	Application
RAMP-TS002:	Rapidly	Modernizing	Complete	Application	Segments
RAMP-TS003:	Creating	a	Data	Filter	for	Employees
RAMP-TS004:	Naming	and	Classifying	the	Employee	Screens
RAMP-TS005:	Reviewing	Design
RAMP-TS006:	Snapping	in	a	Basic	Inquiry	Screen
RAMP-TS007:	Snapping	in	a	Data	Entry	Function
RAMP-TS008:	Changing	Inquiry	Screen	to	Update	Mode
RAMP-TS009:	Tracing	Navigation
	
	

RAMP-TS010	Step	1.	Naming	the	Field
In	this	step	you	will	name	the	Department	Code	field	on	the	DisplayEmployee
screen	so	that	you	can	add	special	field	handling	to	it.
1.			In	the	RAMP	Tools	window	start	a	RAMP-TS	5250	session.
2.			Navigate	to	the	DisplayEmployee	screen	and	put	it	in	Change	mode.
3.			Display	the	Screen	naming	area,	locate	the	field	showing	the	Department
Code	and	name	it	utxtDepartment.

4.			Also	name	the	Section	Code	field	SECTION.

	
	5.			Click	on	the	Save	button	to	save	the	screen	definition.
	

RAMP-TS010	Step	2.	Associating	the	Field	with	the	Handler
In	this	step	you	will	associate	the	Department	Code	field	with	the	special
handler.
1.			Select	Session	in	the	screens	and	scripts	list.	The	session	object	is	where	you
associate	fields	and	special	field	handlers	for	all	the	screens	in	your	session.

2.			In	the	Special	Field	Handling	table,	specify	the	utxtDepartment	field	and	a
special	handler	named	DF_PRM04.	Use	F2	as	the	key	to	invoke	the	handler.

	
3.			Select	the	DisplayEmployee	screen	in	the	screens	and	scripts	list.
4.			Enable	the	F2	key.

	
5.			Do	a	partial	save	of	the	RAMP	definition.
	

RAMP-TS010	Step	3.	Test	the	Special	Field	Handler
In	this	step	you	will	test	the	special	field	handler.
1.			Switch	to	the	Framework.
2.			In	the	Personnel	application,	display	the	details	of	an	employee.
3.			Put	the	cursor	on	the	Department	Code	field	and	press	F2	to	display	the
special	field	handler:

			
4.			Double-click	on	a	tree	entry.	The	selected	department	code	is	inserted	back
into	the	field	on	your	5250	screen	instantly.		Because	you	have	a	field	named

SECTION	on	your	5250	screen,	it	is	also		updated.	This	is	because	the
sample	field	handler	DF_PRM04	has	code	to	handle	a	field	named	SECTION
(you	might	want	to	have	a	look	at	the	source	code	of	this	form).

5.			Select	items	in	the	tree,	without	double-clicking.	Notice	that	they	are
immediately	updated	back	into	your	5250	form.

6.			Click	back	somewhere	on	your	5250	form	to	make	DF_PRM04	go	away.
7.			Type	"M"	when	the	field	handler	is	displayed.	Notice	the	handler	tries	to
guess	the	closest	matching	department.	

	
Note:	DF_PRM04	is	a	classic	F4	prompter.	How	it	behaves	it	is	entirely	up	to
you.	By	using	it	(and	the	other	DF_PRMnn	shipped	examples)	you	can	try	out
and	modify	various	types	of	prompting	so	that	you	will	know	how	to	create
your	own	special	field	handling	components.	

Summary
Important	Observations
Special	field	handling	is	an	advanced	prompting	facility	for	fields.
You	specify	the	name	of	the	field	to	be	prompted,	the	function	key	to	be	used
and	the	Visual	LANSA	form	that	is	used	as	the	prompter.
Unlike	System	i	prompting,	Visual	LANSA	prompter	forms	do	not	necessarily
cause	any	interaction	with	the	System	i	server	which	makes	them	fast.
Special	field	handling	can	be	used	to	provide	functionality	that	is	not	possible	on
a	5250	device.
For	a	more	detailed	tutorial	about	special	field	handling	refer	to	RAMP-
TSAD03:	Special	Field	Handling	.
Also	see	the	topic	Advanced	Prompting.

What	You	Should	Know
How	to	associate	special	field	handling	with	fields	on	modernized	5250	screens.
	

	

RAMP-TS011:	Snapping	in	Shipped	Documents	Command
Handler
In	this	tutorial	you	will	learn	how	to	snap	in	a	shipped	generic	Documents
command	handler	to	your	RAMP	application.

Objectives
Learn	to	use	a	generic	shipped	command	handler	to	your	application
Understand	how	easily	you	can	add	value	to	a	modernized	application

To	achieve	this	objective,	you	will	complete	the	following	steps:
RAMP-TS011	Step	1.	Snapping	in	the	DX_DOCS	Command	Handler
RAMP-TS011	Step	2.	Adding	Documents
RAMP-TS011	Step	3.	Working	with	Documents

Before	You	Begin
In	order	to	complete	this	tutorial,	you	must	have	completed	the	following:
RAMP-TS001:	Creating	a	Basic	Prototype	of	the	Modernized	Application
RAMP-TS002:	Rapidly	Modernizing	Complete	Application	Segments
RAMP-TS003:	Creating	a	Data	Filter	for	Employees
RAMP-TS004:	Naming	and	Classifying	the	Employee	Screens
RAMP-TS005:	Reviewing	Design
RAMP-TS006:	Snapping	in	a	Basic	Inquiry	Screen
RAMP-TS007:	Snapping	in	a	Data	Entry	Function
RAMP-TS008:	Changing	Inquiry	Screen	to	Update	Mode
RAMP-TS009:	Tracing	Navigation
RAMP-TS010:	Using	Special	Field	Handlers
	
	

RAMP-TS011	Step	1.	Snapping	in	the	DX_DOCS	Command
Handler
In	this	step	you	will	snap	the	shipped	Documents	command	handler	DX_DOCS
to	the	Employees	business	object.
1.			In	the	Framework	window	double-click	the	Employees	business	object	to
display	its	properties.

2.			Display	the	Commands	Enabled	tab.
3.			Specify	DX_DOCS	as	the	command	handler	for	the	Documents	command:

	
4.			Close	the	properties	of	the	Employees	business	object.
5.			Select	an	employee	in	the	instance	list	and	display	the	Documents	tab.	The
shipped	documents	command	handler	is	snapped	in	and	usable:

	

RAMP-TS011	Step	2.	Adding	Documents
In	this	step	you	will	learn	how	to	use	the	shipped	Documents	command	handler.
1.			Copy	a	document	(for	example	a	Word	document	or	a	PDF)	in	Windows
Explorer:

	
2.			Display	the	Documents	tab	in	your	Framework.
3.			Right-click	the	area	on	the	right	of	the	Documents	command	handler	and
select	Paste	from	the	context	menu:

	
The	document	is	added	to	the	command	handler:

	
4.			Click	on	the	Save	Pending	Changes	button	to	store	the	document	in	the
shipped	database	file	DXDOCS	on	the	server.

5.			Add	another	file,	for	example	a	photo	or	another	image	to	the	command
handler	and	save	it.

Note	that	you	can	also	use	drag-and-drop	to	add	documents,	or	use	the	context
menu	to	create	new	documents..
	

RAMP-TS011	Step	3.	Working	with	Documents
In	this	step	you	will	learn	how	to	edit	and	delete	documents	in	the	Documents
Command	handler.
1.			Select	a	document	from	the	list	of	documents.	Notice	that	it	is	displayed	on
the	area	on	the	right	where	you	first	dropped	it.

	
2.			Double-click	the	document	to	open	it.
3.			Close	the	document	and	display	the	Framework	if	it	is	not	showing.
4.			Select	the	document	and	right-click	to	display	the	context	menu.
5.			Choose	Delete.	Notice	that	Documents	command	handler	indicates	that	the
delete	is	pending.

	
6.			Click	on	the	Save	Pending	Changes	button	to	delete	the	document.
	

Summary
Important	Observations
Reusing	shipped	command	handlers	may	add	significant	value	to	any	5250
application	that	is	being	RAMPed.
The	Documents	command	handler	can	be	used	with	any	business	object.
In	the	Documents	command	handler	you	can	create,	delete,	rename	and	copy
documents	and	open	them	for	editing.
You	can	use	copy	and	paste	or	drag-and-drop	to	add	documents.
An	icon	next	to	the	list	entry	in	the	Documents	command	handler	indicates	the
status	of	the	document.
	

What	You	Should	Know
How	to	use	the	shipped	generic	Documents	command	handler	DX_DOCS
	

	

RAMP-TS012:	Snapping	in	Shipped	Notes	Command	Handler
In	this	tutorial	you	will	learn	how	to	use	the	shipped	generic	Notes	command
handler.

Objectives
To	see	another	example	of	how	easy	it	is	to	quickly	add	value	to	a	modernized
application
To	start	thinking	of	how	to	extend	the	use	of	generic	command	handlers	to	other
business	objects.

To	achieve	this	objective,	you	will	complete	the	following	steps:
RAMP-TS012	Step	1.	Snapping	in	the	DF_T3201	Command	Handler
RAMP-TS012	Step	2.	Adding	Notes

	

Before	You	Begin
In	order	to	complete	this	tutorial,	you	must	have	completed	the	following:
RAMP-TS001:	Creating	a	Basic	Prototype	of	the	Modernized	Application
RAMP-TS002:	Rapidly	Modernizing	Complete	Application	Segments
RAMP-TS003:	Creating	a	Data	Filter	for	Employees
RAMP-TS004:	Naming	and	Classifying	the	Employee	Screens
RAMP-TS005:	Reviewing	Design
RAMP-TS006:	Snapping	in	a	Basic	Inquiry	Screen
RAMP-TS007:	Snapping	in	a	Data	Entry	Function
RAMP-TS008:	Changing	Inquiry	Screen	to	Update	Mode
RAMP-TS009:	Tracing	Navigation
RAMP-TS010:	Using	Special	Field	Handlers
RAMP-TS011:	Snapping	in	Shipped	Documents	Command	Handler
	

RAMP-TS012	Step	1.	Snapping	in	the	DF_T3201	Command
Handler
In	this	step	you	will	associate	the	generic	Notes	command	handler	with	the
Events	command	of	the	Employees	business	object.
1.			Display	the	properties	of	the	Employees	business	object.
2.			In	the	Commands	Enabled	tab,	associate	the	Events	command	with
command	handler	DF_T3201.

3.			Close	the	properties	of	the	Employees	business	object.
4.			Select	an	employee	from	the	instance	list	and	display	the	Events	tab.	The
shipped	notes	command	handler	is	snapped	in	and	usable:

	

	

RAMP-TS012	Step	2.	Adding	Notes
In	this	step	you	will	learn	how	to	add	notes	for	an	employee.	You	can	optionally
also	attach	documents	to	the	notes,	categorize	them	and	set	their	priority.
1.			Add	a	few	notes	for	an	employee	using	the	Save	and	New	buttons.
2.			Add	an	attachment	to	a	note	by	cut-and-paste	or	drag-and-drop	as	in	the
previous	tutorial.

3.		Create	categories	for	the	notes	and	set	their	priority.	For	example:

		

Summary
Important	Observations
Reusing	shipped	command	handlers	may	add	significant	value	to	any	5250
application	that	is	being	RAMPed.
The	Notes	command	handler	can	be	used	with	any	business	object.
The	command	handler	makes	it	possible	for	the	end-user	to	enter	a	number	of
notes	against	any	instance	of	the	business	object
The	note	is	saved	as	a	string	field	on	database	file	FPNOTE
The	attachment	documents	are	saved	on	database	file	FPDOC
Attachment	documents	can	be	added	to	a	note
A	category	value	can	be	specified	for	the	note	to	allow	the	user	to	sort	the	notes
according	to	their	own	criteria
User	Created/Updated	and	Date/Time	Created/Updated	are	automatically
recorded	on	the	list
	

What	You	Should	Know
The	ideas	presented	in	this	tutorial	can	easily	be	extended	to	other	business
objects.	
For	example	a	Product	business	object	might	have	a	press	release,	a	brochure,	a
price	list	associated	with	it.	It	might	also	have	many	events	associated	with	it,
such	as	launch,	customer	complaints,	recalls,	end	of	life,	etc.,	each	of	which	may
have	many	documents	associated	with	it.
There	is	also	a	shipped	generic	Command	Handler	for	spool	files,	DF_T3101.
	

RAMP-TS013:	Sending	Instance	List	Data	to	Excel
This	tutorial	will	show	how	to	integrate	your	application	with	Microsoft	Excel.

Objectives
Learn	how	to	create	a	command	handler	that	sends	data	to	Microsoft	Excel.

To	achieve	this	objective,	you	will	complete	the	following	steps:
RAMP-TS013	Step	1.	Creating	the	Command	Handler
RAMP-TS013	Step	2.	Snapping	in	and	Testing	the	Command	Handler
	

Before	You	Begin
In	order	to	complete	this	tutorial,	you	must	have	completed	the	following:
RAMP-TS001:	Creating	a	Basic	Prototype	of	the	Modernized	Application
RAMP-TS002:	Rapidly	Modernizing	Complete	Application	Segments
RAMP-TS003:	Creating	a	Data	Filter	for	Employees
RAMP-TS004:	Naming	and	Classifying	the	Employee	Screens
RAMP-TS005:	Reviewing	Design
RAMP-TS006:	Snapping	in	a	Basic	Inquiry	Screen
RAMP-TS007:	Snapping	in	a	Data	Entry	Function
RAMP-TS008:	Changing	Inquiry	Screen	to	Update	Mode
RAMP-TS009:	Tracing	Navigation
RAMP-TS010:	Using	Special	Field	Handlers
RAMP-TS011:	Snapping	in	Shipped	Documents	Command	Handler
RAMP-TS012:	Snapping	in	Shipped	Notes	Command	Handler
	

RAMP-TS013	Step	1.	Creating	the	Command	Handler
In	this	step	you	will	use	the	Program	Coding	Assistant	to	create	the
Spreadsheets	command	handler	that	can	be	used	to	send	data	to	Microsoft
Excel.
1.			In	the	Framework	window,	display	the	properties	of	the	Employees	Business
object.

2.			Display	the	Commands	Enabled	tab.
3.			Enable	the	Spreadsheets	command.

	
4.			Close	the	properties	of	Employees.
5.			Start	the	Program	Coding	Assistant	from	the	Framework	menu.
6.			Select	the	Employees	business	object	and	the	Spreadsheets	command
handler.

7.			Select	Native	MS	Windows	as	the	platform.
8.			Select	Send	data	to	MS-Excel	as	a	CSV	file	as	the	type	of	code	you	want	to
generate.

9.			Click	Next.
10.			Select	PSLMST	as	the	physical	file	and	accept	the	default	visual	and
programmatic	identifiers.

		
11.			Click	Next.
12.			Select	to	include	all	the	fields	from	the	PSLMST	file	on	the	top	of	the
command	handler.

	
13.			Click	Generate	Code.
The	next	page,	Generated	Code,	displays	the	source	code	for	your	command
handler.	You	now	need	to	create	the	component	that	will	contain	this	code:
14.			Specify	iiiRMP02	as	the	name	of	your	command	handler	and	Spreadsheet
Command	Handler	as	the	description.	(iii	are	your	initials).

15.			Click	on	the	Create	button	to	create	the	component.
After	a	brief	delay	the	command	handler	component	is	displayed	in	the	Visual
LANSA	editor.
16.			Compile	the	component	in	the	Visual	LANSA	editor.
	

RAMP-TS013	Step	2.	Snapping	in	and	Testing	the	Command
Handler
In	this	step	you	will	snap	in	the	Spreadsheets	command	handler	to	the
Framework	and	test	it.
1.			In	the	Framework	window,	display	the	properties	of	the	Employees	business
object.

2.			Display	the	Commands	Enabled	tab.
3.			Select	the	Spreadsheets	command	handler.
4.			Select	the	option	Business	Object	Command	(the	command	handler	can	be
used	for	all	employees,	not	just	one	employee	instance).

5.			Select	the	Hide	All	Other	Command	Tabs	option	to	ensure	that	the
command	tab	for	New	is	not	displayed	in	the	window.

6.			Specify	the	name	of	your	command	handler	(iiiRMP02)	as	the	Windows
component.

	
7.			Close	the	properties	of	the	employees	business	object.
8.			Save	and	restart	the	Framework.
9.			Use	the	filter	of	the	Employees	business	object	to	select	employees.
10.			Select	some	employees	in	the	instance	list	(hold	the	Ctrl	key	down	and
click	with	the	mouse).

11.			Then	right-click	Employees	in	the	navigation	pane	or	right-click	an
employee	in	the	instance	list	and	select	Spreadsheets	from	the	context	menu.

			
12.			In	the	command	handler,	select	the	fields	to	be	sent	to	Excel	and	the	option
Just	the	selected	instance	list	entries.

	
13.			Click	the	Send	to	MS	Excel	button.

An	MS	Excel	spreadsheet	with	the	selected	employee	data	is	displayed:

		
You	can	now	work	with	the	employee	data	in	Excel.
	

Summary
Important	Observations
Integrating	the	application	with	desktop	tools	such	as	Excel	adds	real	business
value	to	the	5250	application	because	it	provides	new	information	and
capabilities	to	the	application	users		-	unlike,	for	example,	a	drop	down,	which
adds	very	little	real	business	value	to	a	5250	application.
This	feature	allows	you	to	easily	leverage	the	power	of	MS-Excel.	Once	a	user
has	information	in	MS-Excel	they	can	do	what	they	please	with	it	–	draw	graphs
and	charts,	produce	pivot	tables,	save	it	to	their		hard		drive,	print	it,	send	it	vie
e-mail	to	others.	MS-Excel	provides	a	gateway	for	using	valuable	information
locked	up	in	your	IBM	i	data	base.	MS-Excel	is	also	a	great	springboard	for
generic	reporting	activities.					
The	spreadsheet	data	extraction	is	implemented	by	software	developers	-	rather
than	by	end	users	with	ad-hoc	tools	-	so	more	it	is	more	secure	and	its
performance	has	been	verified.	
	

What	You	Should	Know
How	to	create	a	command	handler	that	sends	data	for	all	or	selected	instance	list
entries	to	MS	Excel.
	
	
	

RAMP-TS014:	Snapping	RAMP	Screens	into	the	HR	Demo
Application
In	this	tutorial	you	will	add	your	newly	created	RAMP	screens	to	the	HR	Demo
Application.

Objectives
Learn	how	to	integrate	RAMP	screens	and	Framework	components	in	an
application.
Understand	more	about	how	the	instance	list	and	RAMP	command	handlers
interact.

	
To	achieve	this	objective,	you	will	complete	the	following	steps:

RAMP-TS014	Step	1.	Snap	in	RAMP	Screens	to	the	HR	Demo	Application
RAMP-TS014	Step	2.	Modifying	the	SETVALUE	Statement
	

Before	You	Begin
In	order	to	complete	this	tutorial,	you	must	have	completed	the	following:
RAMP-TS001:	Creating	a	Basic	Prototype	of	the	Modernized	Application
RAMP-TS002:	Rapidly	Modernizing	Complete	Application	Segments
RAMP-TS003:	Creating	a	Data	Filter	for	Employees
RAMP-TS004:	Naming	and	Classifying	the	Employee	Screens
RAMP-TS005:	Reviewing	Design
RAMP-TS006:	Snapping	in	a	Basic	Inquiry	Screen
RAMP-TS007:	Snapping	in	a	Data	Entry	Function
RAMP-TS008:	Changing	Inquiry	Screen	to	Update	Mode
RAMP-TS009:	Tracing	Navigation
RAMP-TS010:	Using	Special	Field	Handlers
RAMP-TS011:	Snapping	in	Shipped	Documents	Command	Handler
RAMP-TS012:	Snapping	in	Shipped	Notes	Command	Handler
RAMP-TS013:	Sending	Instance	List	Data	to	Excel
	
	

RAMP-TS014	Step	1.	Snap	in	RAMP	Screens	to	the	HR	Demo
Application
In	this	step	you	will	snap	in	the	New	Employee	and	DisplayEmployee	screens
to	the	HR	Demo	Application.
1.			In	the	Framework,	select	the	HR	Demo	Application	and	then	the	Resources
business	object.

2.			Display	the	properties	of	the	Resources	business	object.
3.			Display	the	Commands	Enabled	tab.
4.			Click	on	the	Command	Definitions	button	to	add	a	new	command:

	
5.			In	the	Commands	window	click	New	to	create	a	new	command.
6.			Make	the	command	caption	Details	RAMP-TS.

	
7.			Close	the	Command	Window.
8.			Back	in	the	Commands	Enabled	tab	Drag	the	Details	RAMP-TS	command
to	the	Enabled	list.

	
9.			Drag	the	New	command	to	the	Enabled	list.
10.			Save	and	restart	the	Framework.

11.			Start	RAMP	Tools.	You	do	not	need	to	start	a	5250	identification	session.
12.			In	the	RAMP	Tools	window	select	NewEmployee	in	the	screens	and	script
list.

13.			In	the	Associated	Command	Handlers	associate	the	screen	with	the	New
command	for	the	Resources	business	object.

	
14.			Then	associate	the	DisplayEmployee	screen	with	the	Details	RAMP-TS
command	of	the	Resources	business	object.

15.			Do	a	partial	save.
16.			In	the	Framework	window	select	HR	Demo	Application	and	the	Resources
business	object.

17.			Right-click	and	select	New	from	the	context	menu	to	display	the
NewEmployee	screen:

	
18.			Close	the	NewEmployee	screen.
19.			Use	the	filter	to	display	employees	in	the	instance	list.
20.			Select	an	employee	and	click	on	the	Details	RAMP-TS	command	handler.
You	will	get	an	error	Unable	to	navigate	to	DisplayEmployee.

	
21.			Click	on	the	Show	5250	Form	and	Turn	Off	Busy	State	button	to	display
the	screen	where	the	navigation	has	stopped.

	
It	is	the	FindEmployee	screen.	Notice	that	the	Employee	Number	field	has	a
department	code	as	its	value.	In	the	next	step	you	will	change	your	script	to
retrieve	the	employee	number	from	the	instance	list.
	

RAMP-TS014	Step	2.	Modifying	the	SETVALUE	Statement
In	this	step	you	will	examine	the	filter	of	the	HR	Demo	Application	and	modify
the	script	associated	with	the	FindEmployee	screen	so	that	it	can	be	used	in
multiple	locations	in	the	Framework.
1.			Display	the	properties	of	the	Resources	business	object.
2.			Select	the	Filters	tab	and	then	the	Filter	Snap-in	Settings	tab.	Notice	that	the
filter	is	DF_FILT9.	The	filter	determines	the	Akey	values	used	to	fill	the
instance	list.

	
3.			Close	the	properties	of	Resources.
4.			Close	the	Framework.
5.			Switch	to	the	Visual	LANSA	editor	and	locate	and	open	reusable	part
DF_FILT9.

6.			Search	for	the	AddtoList	method	in	the	filter	source:

	
7.			Examine	the	Akey	values	in	the	method.	Notice	that	the	Empno	field	is
Akey3.

Remember	that	the	script	associated	with	the	FindEmployee	screen	uses	the
Akey1	value	to	get	the	employee	number	from	the	instance	list	(because	it	is	the
Akey	value	used	in	the	By	Name	filter).
8.			Close	DF_FILT9.

9.			Start	the	Framework.
10.			Start	the	RAMP	Tools.
11.			Locate	the	script	associated	with	the	FindEmployee	screen	in	the	screens
and	scripts	list.

11.			Change	the	SETVALUE	statement	to:
var	wBusinessObject	=	objBusinessObject.uUserObjectType;
											if	(wBusinessObject	==	'EMPLOYEES')							
SETVALUE("txtEmpno",objListManager.AKey1[0]);
											if	(wBusinessObject	==	'DEM_ORG_SEC_EMP')	
SETVALUE("txtEmpno",objListManager.AKey3[0]);	

	
This	statement	sets	the	AKey	value	according	to	the	name	of	the	business	object
that	is	invoking	the	screen.
12.			Commit	changes	and	do	a	partial	save.
13.			Display	the	Framework.
14.			Select	Resources	in	the	HR	Demo	Application	and	fill	the	instance	list.
15.			Display	the	Details	RAMP-TS	command	handler:

	
The	HR	Demo	Application	now	consists	of	a	mix	of	modernized	5250	screens
and	Framework	components.
16.			Verify	that	the	Details	command	tab	on	the	Employees	business	object	is
also	still	functional.

		

Summary
Important	Observations
You	can	easily	mix	RAMPed	5250	screens	with	command	handlers	created	with
Visual	LANSA
The	filter	determines	which	AKey	values	need	to	be	used	to	link	your	screens
with	the	instance	list.

What	You	Should	Know
How	to	combine	RAMP	screens	and	Visual	LANSA	command	handlers
How	the	AKey	values	are	established.
	

RAMP-TS015:	Understanding	and	Handling	Screen	Variations
In	this	tutorial	you	will	learn	to	understand	concepts	behind	screen	signatures
and	screen	identification.

Objectives
Understand	what	screen	signatures	are.
Learn	how	to	create	a	single	screen	definition	for	two	screens	with	different
signatures
Learn	how	to	uniquely	identify	screens	that	share	the	signature	with	other
screens.
Learn	how	to	use	screen	name	Variants.

	
To	achieve	this	objective,	you	will	complete	the	following	steps:
RAMP-TS015	Step	1.	Assigning	the	Same	Name	to	Two	Screen	Variations
RAMP-TS015	Step	2.	Handling	Different	Screens	with	the	Same	Signature
RAMP-TS015	Step	3.	Creating	Screen	Variants
RAMP-TS015	Step	4.	Using	Screen	Variants	in	the	Script
RAMP-TS015	Step	5.	Creating	a	Set	of	Screens	(Advanced)
	

Before	You	Begin
In	order	to	complete	this	tutorial,	you	must	have	completed	the	following:
RAMP-TS001:	Creating	a	Basic	Prototype	of	the	Modernized	Application
RAMP-TS002:	Rapidly	Modernizing	Complete	Application	Segments
RAMP-TS003:	Creating	a	Data	Filter	for	Employees
RAMP-TS004:	Naming	and	Classifying	the	Employee	Screens
RAMP-TS005:	Reviewing	Design
RAMP-TS006:	Snapping	in	a	Basic	Inquiry	Screen
RAMP-TS007:	Snapping	in	a	Data	Entry	Function
RAMP-TS008:	Changing	Inquiry	Screen	to	Update	Mode
RAMP-TS009:	Tracing	Navigation
RAMP-TS010:	Using	Special	Field	Handlers
RAMP-TS011:	Snapping	in	Shipped	Documents	Command	Handler
RAMP-TS012:	Snapping	in	Shipped	Notes	Command	Handler
RAMP-TS013:	Sending	Instance	List	Data	to	Excel
RAMP-TS014:	Snapping	RAMP	Screens	into	the	HR	Demo	Application
	
	

What	is	a	5250	Screen?
The	question	"What	is	a	5250	screen?"	is	subjective.
Is	this	5250	screen…

the	same	as	this	5250	screen?

On	appearance,	you	might	say	"No	they	are	different	-	you	can	see	that	just	by
looking	at	them".
However,	if	you	know	how	the	RPG	program	displaying	them	works	you	might
say	"Yes,	these	are	the	same	screen"	because	there	is	only	one	point	in	the
program	that	actually	displays	a	5250	screen,	so	logically	they	must	be	the	same

screen.	

Screen	Signatures
RAMP-TS	assigns	a	signature	to	every	5250	screen	based	on	the	name	of	the
record	formats	displayed	on	the	screen.	You	can	see	the	signature	when	using
RAMP-Tools.

	
The	preceding	example	screens	have	different	signatures	because	the	second
screen	displays	a	subfile	control	record	and	some	subfile	records.	This	means
RAMP-TS	will	consider	them	to	be	different	screens.
The	same	sort	of	different	signature	situation	can	happen	on	other	non-subfile
screens.
For	example,	an	order	details	display	may	display	a	record	format	called
ADDINFO	(say)	that	shows	addressing	details,	but	it	only	does	this	when	the
delivery	address	is	different	to	the	postal	address.	This	means	that	what	you
think	is	a	single	screen	named	OrderDetails	(say)	actually	comes	two	variations
(ie:	it	has	two	distinct	signatures).
The	key	to	this	tutorial	is	understanding	that	5250	screens	have	different
signatures	and	how	you	can	use	these	to	handle	different	situations.

Handling	the	same	screen	being	displayed	with	different
signatures
If	RAMP	gives	different	signatures	to	two	screens	that	you	think	should	actually
be	the	same	screen,	you	can	easily	resolve	this	by	giving	both	screens	the	same
screen	name.

This	means	that	there	will	be	a	single	screen	script	handling	both	the	screen
variations.
Sometimes	you	also	apply	a	variant	name	to	each	different	screen	signature	so
that	the	single	screen	script	can	tell	which	screen	it	is	actually	handling.	
See	RAMP-TS015	Step	1.	Assigning	the	Same	Name	to	Two	Screen	Variations
to	learn	how	to	handle	this	situation.

Handling	different	screens	being	displayed	with	same	signature
Sometimes	what	you	consider	to	be	different	screens	will	have	the	same
signature.
Typically	this	is	the	case	with	i5/OS	system	command	screens	(all	have	the
signature	QDUI132.USRRCD).
You	can	uniquely	identify	these	screens	by	selecting	additional	details	on	the
screen	as	ID	fields.	For	example,	the	title	of	the	screen.	Once	you	do	this	you
each	screen	is	assigned	a	different	screen	name,	and	thus	has	its	own	unique
screen	handling	script.		
See	RAMP-TS015	Step	2.	Handling	Different	Screens	with	the	Same	Signature

Handling	different	screens	as	group	or	set	of	screens
Sometimes	a	whole	set	of	different	screens	have	very	similar	behavioral
characteristics	(for	example,	code	table	maintenance	programs).
Each	screen	would	have	a	different	signature,	but	if	you	assign	the	same	screen
name	to	them	all,	you	have	will	have	a	single	screen	script	managing	them	all.
This	is	productive	because	a	single	screen	script	can	handle	many	different
screen	variations.
Typically	you	also	assign	each	different	screen	a	different	variant	name	so	that
your	single	screen	script	can	tell	which	one	it	is	actually	handling.				
See	RAMP-TS015	Step	5.	Creating	a	Set	of	Screens	(Advanced).
	

RAMP-TS015	Step	1.	Assigning	the	Same	Name	to	Two	Screen
Variations
In	this	step	you	will	give	the	same	name	to	two	variations	of	a	screen	(with
different	signatures),	one	with	an	empty	subfile	and	one	with	a	subfile	with
entries.
By	defining	the	two	variations	as	the	same	screen,	there	will	only	be	one	script
to	control	the	navigation	to	and	from	the	screen.
The	function	used	in	this	step	is	the	Telephone	Search	function	in	the	Personnel
System,	which	contains	a	single	REQUEST	statement	display	the	screen:

When	the	screen	is	initially	displayed,	it	has	a	different	signature	to	when	the	it
is	displayed	with	a	list	of	employees	and	phone	numbers	because	the	record
formats	are	different.
	
1.			In	RAMP	Tools,	start	the	RAMP-TS	5250	emulator	session.
2.			Navigate	to	the	Personnel	System	main	menu:
	
				LANSA	run	pslsys	partition(dem)
	

	
3.			Select	option	7	Telephone	Number	Search.
4.			Name	the	screen	TelephoneSearch	and	click	the	Save	button	on	the	Screens

tab:

	
5.			Enter	a	letter	in	the	Employee	Surname	field	and	press	Enter.	Note	that	the
screen	is	redisplayed	with		the	subfile	and	another	signature,	so	RAMP	shows
the	screen	as	Unknown	Form.

6.			Give	the	screen	the	same	name	TelephoneSearch	and	save	the	name.

	
7.			Define	the	TelephoneSearch	screen	as	a	destination.
8.			Cancel	out	of	the	screen	and	select	option	7	again.
9.			Enter	a	letter	in	the	Surname	field	and	press	Enter.	Notice	that	both
TelephoneSearch	screens	are	now	defined	as	a	destination	and	that	they	are
shown	as	one	screen	in	the	screens	and	script	list:

	
10.			Do	a	partial	save	of	the	RAMP	definition.
	
Next	you	need	to	create	a	business	object	with	which	to	associate	the
TelephoneSearch	screen:

11.			In	the	Framework	window,	use	the	Instant	Prototyping	Assistant	to	create	a
new	business	object	Telephone	Search,	add	the	Details	command	to	it	and
then	associate	it	with	the	Personnel	application.

12.			When	the	Telephone	Search	business	object	has	been	created:
Open	its	properties
Delete	the	New	Filter	created	by	default
Make	the	command	a	Business	Object	Command	in	the	Commands	Enabled
tab
Click	the	Close	button	to	the	message	asking	to	Restart	the	Framework
Close	the	properties.
	
13.			Display	the	RAMP	Tools	window.
14.			Select	the	TelephoneSearch	destination	screen	in	the	screens	and	script	list
and	display	its	details.

15.			Refresh	the	Associated	Command	Handlers	list.
16.			Select	the	Details	command	handler	of	the	Telephone	Search	business
object	as	the	command	handler.

	
17.			Disable	all	function	keys	and	buttons	except	Enter.
18.			Switch	to	the	Framework	window	and	select	the	Save	and	Restart	option
from	the	Framework	menu.

19.			When	the	Framework	window	restarts,	select	the	Personnel	application	and
the	Telephone	Search	business	object.

20.			Test	the	command	handler:

		
Note	that	if	you	want	to	name	any	fields	on	the	TelephoneSearch	destination,
you	must	do	it	on	both	screen	variations.

RAMP-TS015	Step	2.	Handling	Different	Screens	with	the	Same
Signature
In	this	step	you	will	give	different	names	to	two	i5/OS	system	command	screens
which	have	the	same	signature	(all	i5/OS	system	command	screens	have	the
same	signature),	the	System	i	Main	Menu	and	Work	with	Active	Jobs.
You	will	uniquely	identify	these	screens	by	selecting	additional	details	on	the
screen	as	ID	fields.	
1.			Navigate	to	the	System	i	Main	Menu	screen	in	the	RAMP-TS	5250	emulator
session.

You	have	already	named	the	screen	i5OSMainMenu,	but	because	this	screen	has
the	same	signature	as	other	i5/OS	screens,	you	need	to	add	more	information
to	its	definition	to	uniquely	identify	it.

2.			Add	the	title	of	the	screen	to	the	definition	by	checking	the	check	box	in
front	of	it.

3.			Click	on	the	Save	button	on	the	Screens	tab.
	

Next	name	the	Work	with	Active	Jobs	screen:
4.			Navigate	to	the	Work	with	Active	Jobs	(WRKACTJOB)	screen	in	the
RAMP-TS	5250	emulator	session.

5.			Add	the	title	area	to	the	screen	definition	by	checking	the	check	box	for	the
title	in	the	Screens	tab.

6.			Enter	WrkActJob	as	the	screen	name.

	
7.			Click	on	the	Save	button.
8.			Classify	the	WrkActJob	screen	as	a	destination.
Note	that	now	the	two	screens	have	their	own	definitions	with	associated
scripts:

	
9.			Next	track	the	navigation	to	and	from	the	Work	with	Active	jobs	screen.
10.			Do	a	partial	save	of	the	RAMP	definition.
	

RAMP-TS015	Step	3.	Creating	Screen	Variants
In	this	step	you	will	identify	the	different	views	of	the	Work	with	Active	Jobs
screen	as	variants,	so	that	your	script	can	handle	the	view	being	shown.
	
1.			Enter	the	Variant	name	Status	for	the	first	view.
2.			Add	the	Status	column	heading	to	the	screen	definition.
	

	
3.			Click	on	the	Save	button	on	the	tab.
4.			Press	F11	on	the	Work	with	Active	jobs	screen	to	display	the	next	view.
5.			Add	the	screen's	title	and	the	Elapsed	column	heading	to	the	screen
definition.

	
6.			Enter	the	name	of	the	screen	(WrkActJob)	and	the	Variant	name	Elapsed.
7.			Click	on	the	Save	button	on	the	Screens	tab.
8.			Press	F11	on	the	Work	with	Active	jobs	screen	to	display	the	next	view.
9.			Add	the	Threads	column	heading	to	screen	definition	by	checking	the	field
corresponding	to	the	title	----	Threads	----.

10.			Enter	the	Variant	name	Threads.
11.			Click	on	the	Save	button	on	the	tab.
12.			Press	F11	to	verify	the	different	views	have	variant	names.
13.			Do	a	partial	save	of	the	RAMP	definition.
	
Next	you	will	create	an	application	and	business	object	you	can	use	to	snap	the
Work	with	Active	Jobs	screen	into	the	Framework.
14.			In	the	Framework	window,	use	the	Instant	Prototyping	Assistant	to	create	a
new	application	System	i	Server:

Create	business	object	Active	Jobs
Associate	Active	Jobs	with	a	Details	command	handler

Create	application	System	i	Server
Add	Active	Jobs	to	the	new	application.
	
15.			Delete	the	filter	for	Active	Jobs	and	make	Details	a	business	object
command.

16.			Save	and	restart	the	Framework	and	start	RAMP	Tools.
17.			In	the	RAMP	Tools	window	associate	the	WrkActJob	screen	with	the
Details	command	handler	of		the	Active	Jobs	business	object.

18.			Disable	the	Cancel	key	and	button.
19.			Select	the	Session	option	SESSION_D	to	execute	the	destination	screen	in
a	separate	session.

20.			Do	a	partial	save	of	the	RAMP	definition.
	

RAMP-TS015	Step	4.	Using	Screen	Variants	in	the	Script
In	this	step	you	will	use	the	screen	variants	to	set	the	caption	of	the	button
corresponding	to	the	F11	key	according	to	the	view	shown.
1.			In	the	Framework	window,	select	the	System	i	Server	application	and	the
Active	Jobs	business	object	to	Display	the	Work	with	Active	Jobs	screen.

2.			Press	F11	to	display	the	different	views	of	the	screen.
3.			Notice	that	the	Caption	of	the	button	corresponding	to	the	F11	key	has	a
static	caption	Display	Elapsed	Data.

To	set	the	appropriate	caption	on	the	button	depending	on	the	view	shown,	you
need	to	check	which	variant	is	being	shown	and	then	use	the
OVERRIDE_KEY_CAPTION_SCREEN	function	to	set	the	button	caption:
4.			Switch	to	the	RAMP	Tools	window	and	display	the	script	for	the	WrkActJob
screen.

5.			In	the	vHandle_ARRIVE	function	add	an	IF…	ELSE	IF…	ELSE	statement
after	the	bReturn	variable	declaration	to	check	which	screen	variant	is	shown
and	to	set	the	caption	of	the	button:
				if	(this.vLatestVariant	==	"Status")
								{
								OVERRIDE_KEY_CAPTION_SCREEN("WrkActJob",	KeyF11,	"Show	Elapsed	Data");
								}

				else	if	(this.vLatestVariant	==	"Elapsed")
								{
								OVERRIDE_KEY_CAPTION_SCREEN("WrkActJob",	KeyF11,	"Show	Thread	Data");
								}

				else
								{
								OVERRIDE_KEY_CAPTION_SCREEN("WrkActJob",	KeyF11,	"Show	Status");
								}

	
Your	script	will	look	like	this:

	
6.			Commit	the	changes	and	do	a	partial	save	of	the	RAMP	definition.
7.			Switch	to	the	Framework	window	and	test	your	changes.	The	button	caption
will	change	depending	on	the	screen	variant	shown:

	

RAMP-TS015	Step	5.	Creating	a	Set	of	Screens	(Advanced)
In	this	tutorial	you	will	create	a	set	of	screens	with	very	similar	behavioral
characteristics	(even	though	each	screen	has	a	different	signature)	by	giving
them	the	same	screen	name.	In	this	way	you	will	have	a	single	screen	definition
and	script	managing	them	all.
The	screens	used	in	this	tutorial	are	the	screens	accessed	from	the	Code	Tables
business	object	in	the	Personnel	application	in	Framework	in	RAMP-TS002:
Rapidly	Modernizing	Complete	Application	Segments:
Review/Maintain/Print	Department	Table
Review/Maintain/Print	Section	Table
Review/Maintain/Print	Skill	Table
You	may	want	to	review	these	screens	first.
	
1.			In	the	RAMP	Tools	window	ensure	that	the	Auto	Update	Navigation	Scripts
option	is	selected.

2.			Use	the	RAMP-TS	5250	emulator	to	navigate	to	the	Personnel	Table	Main
Menu	(PSLTABMain).

3.			Select	option	1.	Review/Maintain/Print	Department	Table.
4.			Name	the	Review/Maintain/Print	Department	Table	screen
ReviewMaintPrint.

5.			Also	give	it	the	Variant	Name	DepartmentTable	in	case	you	might	want	to
handle	this	particular	screen	in	the	script.	(This	is	optional,	you	would
normally	only	give	a	variant	name	if	you	knew	you	would	need	it).

	
6.			Save	the	screen	definition	and	cancel	out	of	the	screen.
7.			Select	option	2.	Review/Maintain/Print	Section	Table
8.			Name	the	screen	ReviewMaintPrint.
9.			Optionally	give	it	the	Variant	Name	SectionTable.
10.			Save	the	screen	definition	and	cancel	back	to	the	main	menu.
11.			Select	option	3.	Review/Maintain/Print	Skill	Table
12.			Again	name	the	screen	ReviewMaintPrint	and	optionally	give	it	the	Variant
Name	SkillTable.

13.			Save	the	screen	definition.
14.			Check	in	the	Tracking	Info	that	all	the	three	screens	have	the	same	name.
15.			Classify	the	screen	as	a	destination.
Note	that	in	the	Screens	and	Scripts	List	there	is	a	single	screen	definition	for
ReviewMaintPrint	with	a	single	script	that	controls	it:

	
Because	there	is	a	common	screen	definition,	any	changes	you	make	to	it	affects
all	the	three	screens.
16.			Disable	the	Exit	key	and	button.

	
17.			Do	a	partial	save	of	the	RAMP	definition.
18.			Restart	the	Framework.
19.			Switch	to	the	Framework	window	and	choose	the	Code	Tables	business
object	created	in	an	earlier	tutorial.

20.			Select	the	Review/Maintain/Print	options	and	verify	that	the	Exit	key	and
button	are	not	enabled	in	any	of	the	three	screens:

	

Summary
Important	Observations
RAMP	assigns	signatures	to	screens	based	on	the	record	formats	on	the	screen
You	can	give	two	or	more	screens	with	different	signatures	the	same	name.
When	you	do	this,	the	screens	are	defined	in	a	single	screen	definition	and	there
is	only	a	one	script	that	handles	them.
You	have	the	option	of	identifying	different	variations	of	a	screen	if	you	want	to
handle	them	in	a	different	way	in	the	script.
Minimizing	the	number	of	screen	definitions	and	scripts	you	create	and	maintain
can	be	very	productive.
Conversely,	you	can	give	different	names	to	screens	with	the	same	signature.	In
this	case	you	will	need	to	add	a	screen	element	that	uniquely	identifies	the
screens	to	the	screen	definitions.	This	is	something	you	would	typically	do	for
the	i5/OS	system	command	screens	which	all	have	the	same	signature.
	

What	You	Should	Know
What	screen	signatures	are.
How	to	give	screens	with	different	signatures	the	same	name.
How	to	identify	screens	that	share	the	signature	with	another	screen.
How	to	create	and	use	screen	name	variants.
	
	
	

Advanced	Tutorials
These	advanced	tutorials	demonstrate	RAMP-TS	concepts	and	techniques.
RAMP-TSAD01:	Using	Buttons	to	Add	Value	to	an	Application
RAMP-TSAD02:	RAMP-TS	Event	Handling	Basics
RAMP-TSAD03:	Special	Field	Handling
RAMP-TSAD04:	Redesigning	the	Screen	Using	aXes
RAMP-TSAD05:	Using	SHARED	Properties	and	Functions
RAMP-TSAD06:	Handling	Multiple	Screens	on	Multiple	Tabs			
RAMP-TSAD07:	Handling	Multiple	Screens	on	a	Single	Tab
RAMP-TSAD08:	Screen	Wrapper	Basics
RAMP-TSAD09:	Screen	Wrapper	with	a	Subfile
	

RAMP-TSAD01:	Using	Buttons	to	Add	Value	to	an	Application
This	tutorial	will	demonstrate	how	to	add	useful	functionality	to	a	modernized
5250	application	by	using	framework	buttons.

Objectives
Learn	how	to	add	functionality	to	your	modernized	screen	using	buttons
Understand	that	clicking	a	button	(or	pressing	a	function	key)	on	a	modernized
screen	does	NOT	have	to	interact	with	the	5250	application.	You	can	capture
button	or	function	key	on	the	client	to	add	functionality.
Learn	how	to	copy	data	from	a	RAMP	command	handler	to	the	Windows
clipboard

To	achieve	this	objective,	you	will	complete	the	following	steps:
Read	About	Buttons
RAMP-TSAD01	Step	1.	Enable	Framework	Buttons
RAMP-TSAD01	Step	2.	Name	Fields	to	Be	Copied	on	the	DisplayEmployee
Screen
RAMP-TSAD01	Step	3.	Add	a	Function	to	the	Script	for	the	DisplayEmployee
Screen
RAMP-TSAD01	Step	4.	Call	the	Function	in	the	ButtonClick	Function
RAMP-TSAD01	Step	5.	Test	the	Buttons

Summary
	

Before	You	Begin
In	order	to	complete	this	tutorial,	you	must	have	completed	the	core	tutorials
RAMP-TS001	-	RAMP-TS015..
	

About	Buttons
There	are	two	kinds	of	buttons	in	a	RAMP	application,	Framework	buttons	and
5250	buttons.

Framework	Buttons
Framework	buttons	are	set	for	destination	screens	in	the	screen's	RAMP
definition:

	
You	should	use	Framework	buttons	on	all	destination	screens.	Button	display	on
junction	and	special	screens	is	irrelevant	because	these	screens	are	not	shown.
When	executing	the	Framework	as	a	Designer,	design-time	buttons	are	also
shown	to	help	with	development	tasks:

	

5250	Buttons
5250	buttons	are	the	buttons	which	are	part	of	the	modernized	5250	application:

	
By	default	on	all	destination	screens	the	5250	buttons	are	hidden.	The	display	of
the	5250	buttons	is	controlled	by	the	SHOW_5250_BUTTONS()	and
HIDE_5250_BUTTONS()	functions:

	
By	default	the	5250	buttons	are	shown	in	unknown	and	undefined	screens.	This
behavior	is	controlled	by	the	special	Unknown	form	definition:

	

RAMP-TSAD01	Step	1.	Enable	Framework	Buttons
In	this	step	you	will	add	a	Copy	to	Clipboard	button	to	the	DisplayEmployee
screen.
1.			In	the	RAMP	Tools	window,	open	the	details	of	the	DisplayEmployee
destination	screen

2.			Check	the	Enable	Button	column	for	function	key	F6	(you	could	use	any
unused	key/button).

3.			Change	the	caption	to	Copy	to	Clipboard.

	
A	button	with	this	caption	will	appear	on	the	destination	screen	but	the
keystroke	for	F6	will	not	be	sent	to	the	5250	application	because	the	key	has	not
been	enabled.	Note	also	that	even	if	the	F6	key	had	been	enabled	here,	but	was
not	present	in	the	5250	screen,	it	would	have	no	effect	in	the	5250	application.
	

RAMP-TSAD01	Step	2.	Name	Fields	to	Be	Copied	on	the
DisplayEmployee	Screen
In	this	step	you	will	name	the	fields	to	be	copied	on	the	DisplayEmployee
screen.
1.			Start	a	RAMP-TS	emulator	session	in	RAMP	Tools.
2.			Ensure	that	the	Auto	Update	Navigation	Scripts	check	box	is	not	checked.
3.			Navigate	to	the	DisplayEmployee	screen	and	press	F21	to	put	it	in	edit
mode.

4.			Name	the	Employee	number	and	Given	Name	fields	txtEmpno	and
txtGivename.	The	Surname	field	should	have	been	named	txtSurname	in	a
previous	tutorial:

	
Bear	in	mind	that	the	field	names	are	case	sensitive.
	
5.			Click	on	the	Save	button	on	the	Screens	tab.

	

RAMP-TSAD01	Step	3.	Add	a	Function	to	the	Script	for	the
DisplayEmployee	Screen
In	this	step	you	will	a	function	in	the	script	for	DisplayEmployee	to	copy	the
contents	of	the	Employee,	Givename	and	Surname	fields	to	the	Windows
clipboard.
1.			Locate	the	script	for	the	DisplayEmployee	destination	screen.
2.			Copy	and	paste	the	following	function	to	the	script	after	the	NavigateTo
function,	before	the	//<SYSINFO>	block:
			/*	==	*/
			/*	===================		uCopyEmpDetails		================	*/
			/*	==	*/
			/*	Copies	Employee	Details	to	the	Windows	Clipboard											*/
	

			uCopyEmpDetails	:	function	()	{
	
			/*	Get	details	from	5250	screen	*/
			var	TAB_Char	=	"\x09"	;
			var	End_Of_Line_Char	=	"\x0D\x0A"	;
	
			var	strEmpno	=	GETVALUE("txtEmpno");
			var	strGName	=	GETVALUE("txtGivename");
			var	strSName	=	GETVALUE("txtSurname");
	
			/*	Write	details	to	clipboard	*/
			var	MyString	=	"";
	

			MyString	=	strEmpno	+	TAB_Char	+	strGName	+	TAB_Char	+	strSName	+	End_Of_Line_Char;
			COPYTOCLIPBOARD(MyString);
	
			/*	Issue	a	message		*/
			MESSAGE("Details	for	employee	",	strEmpno,"	sent	to	the	clipboard");
	
			}	,

		

3.			Use		the	Commit	Changes	button	to	commit	the	changes	to	the	script.
	

RAMP-TSAD01	Step	4.	Call	the	Function	in	the	ButtonClick
Function
In	this	step	add	code	to	call	the	Copy	to	Clipboard	function	from	the
ButtonClick	function.
1.	Add	a	case	statement	for	F6	key	(KeyF6)	in	the	Switch	command	of	the
ButtonClick	function	of	the	DisplayEmployee	script.

2.			In	the	statement	for	the	F6	key	add	a	call	to	the	uCopyEmpDetails	function:
											case	KeyF6:
																	/*	Call	copy	function		*/
																	this.uCopyEmpDetails();
																	break;

	
3.			Use		the	Commit	Changes	button	to	commit	the	changes	to	the	script	and
then	do	a	partial	save.

	

RAMP-TSAD01	Step	5.	Test	the	Buttons
In	this	step	you	will	test	the	Copy	to	Clipboard	button.
1.			In	the	Framework	window,	locate	the	Personnel	Application.
2.			Select	the	Employees	business	object	and	use	the	filter	to	fill	the	instance
list.

3.			Select	an	employee	to	display	its	details.
4.			Click	on	the	Copy	to	Clipboard	button.

	
Notice	the	message	indicating	the	employee	details	have	been	copied	to	the
clipboard.	

	
5.			Start	another	application	to	which	you	can	paste	the	contents	of	the
clipboard,	for	example	MS	Word	or	Excel.

6.			Paste	in	the	employee	details	(Ctrl	+	V):

		
	

Summary
Important	Observations
A	function	key	with	the	Enable	Button	checkbox	checked	but	not	the	Enable
Key	checkbox	functions	as	a	Framework	only	button.	The	action	of	Framework
buttons	is	handled	entirely	on	the	client	and	no	keystrokes	are	sent	to	the	5250
application.	See	Function	Key	Enablement.
The	case	statement	for	a	function	key	controls	what	happens	when	the	key	is
used	from	the	keyboard	or	its	button	is	clicked.
You	can	use	the	SETKEYENABLED	Function	to	dynamically	enable	and
disable	buttons	and	function	keys.
You	can	use	the	OVERRIDE_KEY_CAPTION_SCREEN	Function	or	the
OVERRIDE_KEY_CAPTION_ALL	Function	to	dynamically	change	the	text	on
Framework	buttons.	The	OVERRIDE_KEY_CAPTION_ALL	function	can	also
be	used	to	set	all	function	key	captions	to	another	language	in	a	multilingual
application.
	

What	You	Should	Know
How	to	add	value	to	a	modernized	5250	application	using	Framework	buttons.
How	to	enable	a	Framework	button	and	modify	the	ButtonClick	function	to
provide	actions	when	the	button	is	clicked.
How	to	add	functions	to	a	form	script	that	are	available	from	anywhere	inside
the	form	script.
	
	

RAMP-TSAD02:	RAMP-TS	Event	Handling	Basics
This	tutorial	demonstrates	how	a	RAMP	script	may	signal	an	event	to
Framework	component	and	vice	versa.

Objectives
Learn	how	RAMP	screens	signal	events	to	the	Framework
Learn	how	the	Framework	listens	to	RAMP	signals
Learn	how	the	Framework	signals	events	to	the	RAMP	screen
Learn	how	the	RAMP	screen	listens	to	Framework	signals

		

To	achieve	this	objective,	you	will	complete	the	following	steps:
RAMP-TSAD02	Step	1.	Add	a	Signal	Button	to	the	By	Name	Filter
RAMP-TSAD02	Step	2.	Make	Your	5250	Screen	Listen	to	the	Signal
RAMP-TSAD02	Step	3.	Test	Signaling	from	Filter	to	RAMP	Screen
RAMP-TSAD02	Step	4.	Add	a	Signal	Button	to	the	RAMP	Screen
RAMP-TSAD02	Step	5.	Make	the	Filter	Listen	to	the	Signal
RAMP-TSAD02	Step	6.	Signalling	from	a	RAMP	script	to	a	VLF	component
Summary	

Before	You	Begin
In	order	to	complete	this	tutorial,	you	must	have	completed	the	core	tutorials
RAMP-TS001	-	RAMP-TS015.
		
	

RAMP-TSAD02	Step	1.	Add	a	Signal	Button	to	the	By	Name
Filter
In	this	step	you	will	modify	the	filter	you	created	in	RAMP-TS003:	Creating	a
Data	Filter	for	Employees	so	that	it	has	an	additional	button	which	sends	a
signal	to	a	RAMPed	5250	screen.
1.			Open	the	filter	reusable	part	iiiRMP01.
2.			Drag	a	button	from	the	Common	Controls	tab	to	the	filter	and	make	its
caption	Send	Signal	to	RAMP	Screen.

	
2.			Add	this	code	to	the	filter	source	to	handle	the	click	event	of	the	button:
*	Handle	the	signal	1	button	by	broadcasting	FILTER_SIGNAL_1	with	5
alpha	and	5	numeric	payload	items
	
EVTROUTINE	HANDLING(#PHBN_1.Click)
	
Invoke	#avListManager.GetCurrentInstance	AKey1(#vf_elxak1)
AKey2(#vf_elxak2)	AKey3(#vf_elxak3)	AKey4(#vf_elxak4)
AKey5(#vf_elxak5)	NKey1(#vf_elxnk1)	NKey2(#vf_elxnk2)
NKey3(#vf_elxnk3)	NKey4(#vf_elxnk4)	NKey5(#vf_elxnk4)
Found(#vf_elBool)	VisualId1(#VF_ELXVI1)	VisualId2(#VF_ELXVI2)
BusinessObjectType(#vf_elidn)
	
Invoke	#Com_Owner.avSignalEvent	withId(FILTER_SIGNAL_1)
To(FRAMEWORK)	SendAInfo1(#com_Owner.avObjectType)
SendAInfo2(#vf_elxak1)	SendAInfo3(#VF_ELXVI2)	SendAInfo4("text1")
SendAInfo5("text2")	SendNInfo1(1.1)	SendNInfo2(2.2)	SendNInfo3(3.3)

SendNInfo4(4.4)	SendNInfo5(5.5)

ENDROUTINE
	
Your	code	will	look	like	this:

The	GetCurrentInstance	statement	retrieves	information	of	the	currently	selected
entry	in	the	instance	list.	The	avSignalEvent	then	signals	this	information	to	the
Framework.
Note	that	some	of	the	values	passed	by	the	avSignalEvent	are	just	static	text	or
numbers.	This	is	just	to	demonstrate	that	the	command	can	pass	five	strings	and
five	numeric	values.
3.			Compile	the	filter.	(If	the	compile	fails,	it	may	be	because	the	filter	is	being
used	in	the	Framework.	If	this	is	the	case,	restart	the	Framework).

			

RAMP-TSAD02	Step	2.	Make	Your	5250	Screen	Listen	to	the
Signal
In	this	step	you	will	modify	the	script	associated	with	the	DisplayEmployee
screen	to	listen	for	the	FILTER_SIGNAL_1	and	to	display	a	message	when	the
signal	is	received.
You	will	use	the	vHandle_AVEVENT	function	which	listens	for	events	coming
from	other	components
1.			If	the	Framework	is	not	running,	start	it.
2.			Start	RAMP	Tools	and	locate	the	script	associated	with	the
DisplayEmployee	screen.

3.			Add	this	code	just	above	the	SYSINFO	block:
/*	==
*/
/*	====================	AVEVENT	========================
*/
/*	==
*/
vHandle_AVEVENT:	function(WithId,Sender,WithAInfo1,WithAInfo2,WithAInfo3,WithAInfo4,WithAInfo5,WithNInfo1,WithNInfo2,WithNInfo3,WithNInfo4,WithNInfo5)
{
var	sText	=	"";
	
if	(WithId	==	"FILTER_SIGNAL_1")
{
sText	+=	"RAMP	script	received	signal	"	+	WithId;
sText	+=	"\r	Sender	=	"	+	Sender;
sText	+=	"\r	WithAInfo1	=	"	+	WithAInfo1;
sText	+=	"\r	WithAInfo2	=	"	+	WithAInfo2;
sText	+=	"\r	WithAInfo3	=	"	+	WithAInfo3;
sText	+=	"\r	WithAInfo4	=	"	+	WithAInfo4;
sText	+=	"\r	WithAInfo5	=	"	+	WithAInfo5;
sText	+=	"\r	WithNInfo1	=	"	+	WithNInfo1.toString();
sText	+=	"\r	WithNInfo2	=	"	+	WithNInfo2.toString();
sText	+=	"\r	WithNInfo3	=	"	+	WithNInfo3.toString();
sText	+=	"\r	WithNInfo4	=	"	+	WithNInfo4.toString();
sText	+=	"\r	WithNInfo5	=	"	+	WithNInfo5.toString();
alert(sText);

}
return(true);
},

	
Your	code	should	look	like	this:

	
4.			Commit	the	changes	and	do	a	partial	save	of	the	RAMP	definition.
	
	

RAMP-TSAD02	Step	3.	Test	Signaling	from	Filter	to	RAMP
Screen
In	this	step	you	will	test	the	button	you	have	added	to	the	filter.
1.			Switch	to	the	Framework	window.
2.			Select	the	Employees	business	object	in	the	Personnel	application.
3.			In	the	By	Name	filter,	click	on	the	Send	Signal	to	RAMP	Screen	button.
Notice	that	nothing	happens.	This	is	because	there	is	no	RAMP	screen	visible	to
receive	the	signal.
	
4.			Use	the	filter	to	populate	the	instance	list	and	select	an	employee	in	the	list
and	wait	for	the	Browse/Maintain	Employee	and	Skill	Files	screen	to	appear.

5.			Now	click	the	Send	Signal	to	RAMP	Screen	button	again.
The	filter	fires	off	a	Framework-wide	signal.	The	DisplayEmployee	screen’s
vHandle_AVEVENT	function	hears	this	signal	and	displays	a	message	box
indicating	that	it	has	received	the	signal	and	what	the	payload	was.		

	
	

RAMP-TSAD02	Step	4.	Add	a	Signal	Button	to	the	RAMP	Screen
In	this	step	you	will	modify	the	DisplayEmployee	screen	so	that	it	has	a	button
that	sends	a	signal	to	the	Framework.
1.			In	the	RAMP	Tools	window	display	the	details	of	the	DisplayEmployee
screen.	

2.			In	the	Function	Key	Enablement	section	enable	the	F17	button	and	make	its
caption	Send	Signal	to	Filter.

	
Next	you	need	to	add	the	signal	code	to	the	button	script:
3.			In	the	vHandle_BUTTONCLICK	function	add	this	Case	statement	for	the
F17	key:
											case	KeyF17:	/*	Send	RAMP_SIGNAL_1	*/
																	objGlobal.txtEmpno	=	GETVALUE("txtEmpno");
																	objGlobal.txtGivename	=	GETVALUE("txtGivename");
																	objGlobal.txtSurname	=	GETVALUE("txtSurname");
																	AVSIGNALEVENT("RAMP_SIGNAL_1","FRAMEWORK",objGlobal.txtEmpno,objGlobal.txtGivename,objGlobal.txtSurname,"RS1_Info4","RS1_Info5",111.1,122.1,133.1,144.1,155.1);
																	break;

	
Your	code	will	look	like	this:

	
The	code	retrieves	the	value	of	the	txtEmpno,	txtGivename	and	txtSurname
fields	on	the	screen	(you	have	named	them	in	earlier	tutorials)	and	sends	a
signal	with	this	payload	to	the	Framework.
It	also	sends	some	static	text	and	numeric	strings	just	to	demonstrate	that	the
AVSIGNALEVENT	function	can	pass	five	strings	and	five	numbers	in	its
payload.
4.			Commit	the	changes	and	do	a	partial	save	of	the	RAMP	definition.
5.			Save	and	restart	the	Framework.
	

RAMP-TSAD02	Step	5.	Make	the	Filter	Listen	to	the	Signal
In	this	step	you	will	add	code	to	the	filter	to	listen	for	the	RAMP_SIGNAL_1
and	to	display	a	message	showing	the	signal	payload.
1.			Open	the	iiiRMP01	reusable	part	in	the	Visual	LANSA	editor.
2.			Locate	the	EvtRoutine	#Com_owner.avEvent	event	routine.
3.			Add	this	code	before	the	Endcase	statement	to	listen	for	RAMP_SIGNAL_1
and	issue	a	message	with	the	signal	payload:
when	'=	RAMP_SIGNAL_1'
Use	message_box_add	('VLF	Filter	received	signal	'	#EventId.Value)
Use	message_box_add	('	WithAInfo1	='	#AInfo1)
Use	message_box_add	('	WithAInfo2	='	#AInfo2)
Use	message_box_add	('	WithAInfo3	='	#AInfo3)
Use	message_box_add	('	WithAInfo4	='	#AInfo4)
Use	message_box_add	('	WithAInfo5	='	#AInfo5)
Use	message_box_add	('	WithNInfo1	='	#NInfo1)
Use	message_box_add	('	WithNInfo2	='	#NInfo2)
Use	message_box_add	('	WithNInfo3	='	#NInfo3)
Use	message_box_add	('	WithNInfo4	='	#NInfo4)
Use	message_box_add	('	WithNInfo5	='	#NInfo5)

Use	MESSAGE_BOX_SHOW
	
Your	code	will	look	like	this:

	
4.			Compile	the	filter.
	

RAMP-TSAD02	Step	6.	Signalling	from	a	RAMP	script	to	a	VLF
component
In	this	step	you	will	test	signaling	from	the	RAMP	script	to	the	filter.
1.			In	the	Framework	select	an	employee	from	the	instance	list	to	redisplay	the
DisplayEmployee	screen	with	the	new	button.

2.			Click	on	the	Send	Signal	to	Filter	button:

		
The	RAMP	script	fires	off	a	framework	wide	signal.	The	filter	hears	this	signal
in	its	EVTROUTINE	HANDLING(#Com_Owner.avEvent)	routine	and	displays
message	box	indicating	that	it	has	received	the	signal,	and	what	the	payload
was.		

		

Summary
Important	Observations
Signals	are	asynchronous.	When	you	fire	them	and	when	they	are	received	and
actioned	are	not	synchronous	events.	Sometimes	they	are	synchronous,
sometimes	they	are	not.	You	should	always	code	your	applications	as	if	they	are
asynchronous.
You	should	develop	a	naming	standard	for	your	signal	identifiers	and	document
all	signals	used	and	their	associated	payloads.					
Signals	are	relatively	expensive	requests.	They	should	action	high	level	things
like	EMPLOYEE_UPDATED	or	LIST_DATA_CLEARED,	rather	than	low
level	things	like	MOUSE_MOVED.	
A	RAMP	destination	screen’s	vHandle_AVEVENT	function	only	listens	for
signals	when	it	is	the	currently	displayed	5250	screen	(ie:	only	the	current
RAMP	screen	can	listen	for	signals).
The	second	parameter	(Sender)	passed	to	vHandle_AVEVENT	functions	is	only
available	in	WIN	applications.	In	WEB	and	.NET	applications	this	parameter	is
not	available	and	is	always	passed	as	an	empty	string.		
Any	RAMP	destination	screen	may	have	its	own	unique	vHandle_AVEVENT
function.							

What	You	Should	Know
How	to	signal	events	between	filters	and	RAMP	command	handlers
	
	

RAMP-TSAD03:	Special	Field	Handling
RAMP’s	special	field	handling	(prompting)	allows	you	to	add	features	and
value	to	your	existing	5250	screens.	The	special	field	handlers	are	Visual
LANSA	forms	which	execute	on	the	PC	allowing	you	to	create	functionality
that	would	not	be	possible	in	a	5250	application.
Typically	features	can	be	added	to	many	different	5250	screens	by	a	just	a	single
definition	and	naming	standard.

Objectives
Demonstrate	the	features	of	automated	prompting

To	achieve	this	objective,	you	will	complete	the	following	steps:
RAMP-TSAD03	Step	1.		Understand	What	Makes	the	Prompter	Appear
RAMP-TSAD03	Step	2.		Being	smarter	with	HANDLE_PROMPT()
RAMP-TSAD03	Step	3.		Handler	Styles
RAMP-TSAD03	Step	4.		Generic	Handler	Association
RAMP-TSAD03	Step	5.	Generically	Associating	Date	Fields	with	Date	Picker	
RAMP-TSAD03	Step	6.	Dynamic	Handler	Association
RAMP-TSAD03	Step	7.	Communicating	with	a	Handler

RAMP-TSAD03	Step	8.	What	to	Do	When	Things	Do	Not	Work
Summary	

Before	You	Begin
In	order	to	complete	this	tutorial,	you	must	have	completed	the	core	tutorials
RAMP-TS001	-	RAMP-TS015.
	

RAMP-TSAD03	Step	1.		Understand	What	Makes	the	Prompter
Appear
As	you	learnt	in	RAMP-TS010:	Using	Special	Field	Handlers,	automated
prompting	is	set	up	in	a	table	associated	with	a	RAMP-TS	session.

1.			Open	RAMP	Tools	and	click	on	the	Session	node	in	the	Screen	and	Script
List	on	the	left.	

2.			Locate	the	Special	Field	Handling	table	in	the	session	details.	You	have
defined	in	the	table	that	if	a	field	named	utxtDepartment	is	on	any	5250
screen,	and	the	user	presses	F2,	the	special	field	handler	DF_PRM04	is
invoked.

	
DF_PRM04	is	a	Visual	LANSA	component.	It	is	present,	with	source	code,	in

your	VL	environment.				
In	this	case	the	function	key	you	have	chosen,		F2,	is	not	allowed	by	the	5250
screen.	When	the	user	presses	the	key,	the	request	is	intercepted	and	handled
entirely	on	the	client	PC.
However,	even	if	you	use	a	key/button	that	is	allowed	by	the	5250	screen,	and
you	associate	a	special	handler	for	the	field	with	this	key,	the	request	will	be
intercepted	and	handled	on	the	client	PC.	To	understand	why	this	is	so:
3.			Open	the	script	associated	with	the	DisplayEmployee	screen.
4.			Locate	the	vHandle_BUTTONCLICK	function:

		
The	HANDLE_PROMPT()	function	call	invokes	a	RAMP	supplied	function.
Using	the	name	of	the	focus	field	on	the	5250	screen	and	the	function	key	used,
it	works	out	whether	it	should	call	a	special	field	handler:
If	it	does,	HANDLE_PROMPT()	returns	true	–	it	handled	the	request	–	which	is
why	the	button	script	immediately	terminates	via	return	operation.
If	HANDLE_PROMPT()	did	not	invoke	a	special	field	handler	it	returns	false,
the	button	script	continues	to	process	the	button	click	using	its	own	logic.		
In	most	cases	the	prompt	request	will	be	sent	on	to	the	5250	screen	for	handling
by	the	server	because	there	will	be	no	special	field	handler.					
5.			To	test	this	out,	disable	the	F2	key	and	enable	the	F4	key	in	the
DisplayEmployee	screen.

	
6.			Save	your	changes	and	restart	the	Framework.
7.			Locate	the	Employees	business	object	in	the	Personnel	application	and
display	the	details	of	an	employee.

8.			Press	F4	on	the	Department	Code	field.	Notice	that	the	5250	prompter	is
displayed.

9.			Start	the	RAMP	Tools	and	change	the	special	field	handling	for	the
utxtDepartment	field	to	use	F4.

10.			Save	the	RAMP	definition	and	restart	the	Framework.
11.			Display	the	details	of	an	employee	in	the	Personnel	application	and	press
F4.	The	special	field	handler	is	displayed.

			
	

RAMP-TSAD03	Step	2.		Being	smarter	with
HANDLE_PROMPT()
Note:	This	step	simply	demonstrates	a	technique.	Please	do	not	make	this
modification	in	your	script.
In	the	preceding	example	HANDLE_PROMPT()	was	executed	at	the	start	of
every	button	click.
However,	if	you	know	that	all	prompting	on	this	5250	screen	will	be	done	by
using	F4,	you	can	make	the	logic	faster	and	smarter	like	this:
vHandle_BUTTONCLICK:	function(sButton)
			{
					var	bReturn	=	true;
					
								/*	<BUTTONCLICK	/>	-	Do	not	remove	or	alter	this	line	*/
					
								/*	Handle	function	keys	and	buttons	*/
					
								switch	(sButton)
								{
											case	KeyF4:
												if	(!HANDLE_PROMPT())	ALERT_MESSAGE("Position	the	cursor	in	a	promptable	field	when	using	F4");
												break;

											case	KeyEnter:
													SENDKEY(KeyEnter);
										
													etc,	etc,	etc
	

	
Here	the	HANDLE_PROMPT()	request	has	been	moved	from	the	start	of	the
button	click	function	to	the	KeyF4	case	statement	so	that	it	is	only	called	when
F4	is	used,	because	we	know	that	is	the	only	time	it	is	required.
Logic		has	also	been	added	so	that	if	HANDLE_PROMPT()	does	not	handle	the
request	(note	the	"!"	in	front	of	the	function	call)	then	a	message	box	will	appear
saying	"Position	the	cursor	in	a	promptable	field	when	using	F4".
We	can	do	this	because	we	know	that	F4	is	going	to	be	handled	exclusively	on
the	client	and	not	by	the	5250	RPG	program	on	the	server.	

This	contrasts	with	default	behavior	in	the	preceding	step	that	passed	unhandled
F4	requests	on	to	the	5250	application	to	see	if	it	wanted	to	handle	them.			
	

RAMP-TSAD03	Step	3.		Handler	Styles
The	way	that	a	special	field	handler	looks	and	acts	is	entirely	up	to	you	because
you	code	them	as	Visual	LANSA	forms	to	do	whatever	you	want.
Example	handlers	named	DF_PRM01	–	DF_PRM07	are	shipped	with	the
Framework.	They	demonstrate	various	handler	behaviors	that	you	might	want	to
use	as	a	basis	for	building	your	own	handlers:
	

	

	

DF_PRM01
A	simple	list	of	state	codes.
Classic	"code"	selection.

	

	

DF_PRM02
Selection	of	a	clothing	size
code	from	a	list	of	radio
buttons.
Classic	"code"	selection

DF_PRM03
Locate	an	employee	number.
Classic	"key"	locator	(eg:
Product	Number,	Customer
Number)	used	when	to	much
data	exists	to	use	a	combo
box	or	radio	buttons.	

	

	

Often	supports	searching	in
multiple	ways	(eg:	by	name,
phone	number,	zip	code,
description,	etc).

	

DF_PRM04
Selection	of	two	codes.
Slightly	more	advanced
"code"	selector.	

	

DF_PRM05
Like	DF_PRM01,	but	code
values	are	sent	back	into	the
5250	form	as	they	are
selected.	Shows	how	the
behavior	of	a	handler	can	be
customized	to	what	you
prefer	most.

	

DF_PRM06
Generic	debugging	handler.
Displays	details	of	all	the
information	passed	into	the
handler.
Useful	to	run	in	place	of	a
problematic	special	field
handler	you	are	creating	to
check	that	the	values	being
input	to	the	handler	are	as
you	expect.
Use	with	application	level
tracing.	

	

	

DF_PRM07
Is	a	classic	date	picker.	This
example	is	designed	to	link
to	5250	fields	named	like
DATE_nnnnnn_ffffffff	where
nnnnn	is	a	field	name	and
fffffff	is	the	format	the	date
should	be	processed	in.
As	shipped	it	should	support
these	date	formats:
CCYYsDDsMM
CCYYsMMsDD
CCYYDDMM
CCYYMM

CCYYMMDD
DDsMMsCCYY
DDsMMsYY
DDMMCCYY
DDMMYY
MMsDDsCCYY
MMsDDsYY
MMCCYY
MMDDCCYY
MMDDYY
MMYY
SysFmt6
SysFmt8
YYsMMsDD
YYMM
YYMMDD
Sample	field	names	it	could
work	with	are
DATE_Start_DDMMYYYY
and
DATE_ORDER_MMDDYY	

	

	
Remember	that	you	can	apply	whatever	look	and	feel	you	like	to	your	handlers.
These	are	just	shipped	examples	to	help	you	get	started.		If	you	don’t	like	the
look	or	the	behavior,	change	it.			
	
	

RAMP-TSAD03	Step	4.		Generic	Handler	Association
In	the	initial	step	of	this	tutorial	you	created	a	specific	association	between	your
5250	field	and	the	special	field	handler	DF_PRM04	like	this:

	
This	means	that	on	any	5250	screen	containing	a	field	with	this	name	the
handler	DF_PRM04	is	called.
So	by	using	a	naming	convention	you	can	instantly	add	prompting	to	any	5250
screens	that	have	a	field	with	this	name	on	them.
This	type	of	specific	association	is	most	useful	on	key	fields	(like
CustomerNumber,	ProductNumber,	etc)	and	code	fields	(like	StateCode,
CurrencyCode,	etc).	For	key	fields	you	can	often	associate	a	handler	that	allows
the	user	to	search	in	many	different	ways	to	locate	a	customer	or	product.	For
code	fields	you	can	often	display	the	code/decode	table	allowing	the	user	to
select	the	code	they	want	to	use.					
You	can	also	create	generic	associations:

	
Here:
Fields	starting	with	the	name	DATE_	will	cause	HANDLER1	to	be	invoked

when	F4	is	used.
Fields	starting	with	the	name	CODE_	will	cause	HANDLER2	to	be	invoked
when	F4	is	used.
Fields	starting	with	the	name	CUST_	will	cause	HANDLER3	to	be	invoked
when	F4	is	used.
If	HANDLER1	was	a	date	picker,	then	you	can	see	how	by	using	a	naming
standard	for	your	fields	you	can	instantly	associate	HANDLER1	with	any	date
fields	on	your	5250	screen.
(Note	that	you	can	also	create	date	handlers,	drop-downs	etc.	using	aXes
eXtensions.	For	an	introduction	to	aXes,	see	RAMP-TSAD04:	Redesigning	the
Screen	Using	aXes).
Likewise,	HANDLER2	might	substring	off	the	rest	of	the	prompted	field	name
(eg:	CODE_STATE,	CODE_CURRENCY	or	CODE_AIRPORT)	and	be	able	to
work	out	which	code	table	(States,	Currencies	or	Airports)	it	should	display	for
selection.	This	type	of	"super-prompter"	is	commonly	used	because,	while	the
data	source	changes	(ie:	which	code	table	is	displayed)	the	method	of	displaying
and	selecting	the	code	is	usually	identical.				
In	the	final	example,	CUST_*	demonstrates	a	generic	type	of	special	field
handler	that	does	something	special,	presumably	with	a	"CUST"	(customer).
The	things	it	does	could	range	from	name	searching,	to	printing	details,	to
pasting	screen	values	to	the	clipboard,	to	mapping	customer	into	a	MS-Excel
document,	to	preparing	an	e-mail	to	the	customer.	This	is	why	special	field
handling	is	a	lot	more	than	simple	F4	prompting.
Special	field	handling	is	about	attaching	new	behaviors	to	existing	5250
screens.	By	combining	the	special	field	handling	table	with	a	judicious	naming
standard	you	can	attach	new	behaviors	to	many	5250	screens	with	no	coding.
In	these	examples	the	naming	standard	chosen	is	used	to	communicate	intention
and	information	to	the	handler.	There	are	also	more	precise	ways	of
communicating	intention	and	information	to	handlers.	These	are	discussed	in
the	later	steps	of	this	tutorial.		
	

RAMP-TSAD03	Step	5.	Generically	Associating	Date	Fields	with
Date	Picker	
In	this	step	you	will	generically	associate	date	fields	with	the	shipped	date
picker	DF_PRM07.	To	test	this,	you	will	name	the	Start	Date	and	Termination
Date	fields	on	the	DisplayEmployee	screen	with	a	name	starting	with	Date*.
1.			Start	the	RAMP-TS	5250	emulator	session	in	the	RAMP	Tools	window.
2.			Navigate	to	the	Maintain/Browse	Employee	and	Skill	Files	screen	and	press
F21.

3.			Name	the	Start	Date	field	Date_Start_DDMMYY	and	save.
4.			Name	the	Termination	Date	field	Date_Termn_DDMMYY	and	save.

	
5.			Display	the	Session	details	and	associate	fields	named	Date*	with	the
DF_PRM07	date	picker	component.

	
6.			Save	the	RAMP	definition	and	restart	the	Framework.
7.			Display	the	details	of	an	employee	and	prompt	for	the	Start	Date	and
Termination	Date	fields.	The	special	field	handler	DF_PRM07	is	displayed
for	both	fields	(and	for	any	other	field	named	Date_nnnnnn_ffffffff).

	
	

RAMP-TSAD03	Step	6.	Dynamic	Handler	Association
In	the	preceding	steps	you	learnt	how	to	permanently	define	a	special	field
handler	via	RAMP	Tools.
You	can	also	dynamically	define,	modify	and	delete	special	handlers	in	your
RAMP	scripts.		Typically	this	is	done	in	your	logon	screen	script	so	that	it
happens	just	once.	However,	this	feature	may	be	used	in	individual	screen
scripts	for	specialized	purposes.
To	dynamically	define	or	redefine	a	special	field	handler	use	the
SET_SPECIAL_FIELD_HANDLER()	function.	To	dynamically	remove	a
special	field	handler	use	DROP_SPECIAL_FIELD_HANDLER();
Note	that	dynamically	removing	a	handler	will	not	impact	it	if	is	currently
displayed.	It	will	just	prevent	it	from	being	displayed	again.		
1.			Start	RAMP	Tools	and	locate	the	script	for	the	DisplayEmployee	screen.
2.			In	the	vHandle_ARRIVE	function	for	the	screen	dynamically	attach	a	new
handler	to	the	utxtDepartment	field	like	this:
	
SET_SPECIAL_FIELD_HANDLER("utxtDepartment",KeyEnter,"DF_PRM06");		/*	Attach	an	Enter	Key	handler	*/
	

	
Your	code	will	look	like	this:

		
The	DF_PRM06	handler	will	be	invoked	when	the	Enter	key	is	pressed.
3.			Commit	the	changes	and	do	a	partial	save	of	the	RAMP	definition

4.			Display	the	details	of	an	employee	in	the	Personnel	application	to	show	the
screen	with	the	modified	script.

5.			Press	F4	on	the	Department	Code	field	to	cause	the	DF_PRM04	handler	to
be	invoked	from	the	field.

6.			Press	Enter	on	the	Department	Code	field	to	cause	the	DF_PRM06	handler
to	be	invoked	from	the	field:

	
Note	that	his	means	you	can	attach	multiple	handlers	to	the	same	field,
differentiated	by	the	function	key	used.
		
7.			Next	drop	the	F4	handler	associated	with	the	field	by	adding	this	code	to	the
vHandle_ARRIVE	function:
					DROP_SPECIAL_FIELD_HANDLER("utxtDepartment",KeyF4);																	/*	Drop	the	F4	handler										*/

	
Your	code	will	look	like	this:

	
8.			Try	this	by	selecting	another	employee	from	the	list,	and	confirm	that	F4	on
the	Department	Code	field	no	longer	brings	up	the	DF_PRM04	special
command	handler	(it	shows	the	5250	prompter	instead).

9.			Confirm	that	you	can	use	Enter	to	activate	the	DF_PRM06	handler.
Remember	that	it	is	unusual	(ie:	specialized)	to	do	this	in	a	destination	arrival
script.	Most	dynamic	attachment	is	done	just	once,	in	the	logon	script,	and	it
persists	for	the	entire	session.					
	

RAMP-TSAD03	Step	7.	Communicating	with	a	Handler
There	are	two	ways	to	communicate	additional	intent	and	information	to	a
handler.

The	first	involves	passing	information	on	the
HANDLE_PROMPT()	request.
1.			Start	RAMP	Tools.
2.			In	the	script	for	the	DisplayEmployee	screen	locate	the	button	script's
HANDLE_PROMPT()	function	call	and	add	string	parameters	to	the	call	like
this:
	
									HANDLE_PROMPT("My	Parm1","My	Parm2","My	Parm3")
	

	Your	code	will	look	like	this:

	
3.			Commit	the	changes	and	do	a	partial	save	of	the	RAMP	definition.
4.			In	the	Framework	window,	display	the	details	of	an	employee	to	run	the
modified	script	for	the	screen.

5.			Prompt	the	Department	Code	field	by	pressing	Enter	to	display	the
testing/debugging	handler	DF_PRM06.	The	result	you	see	looks	like	this:

		
The	arguments	passed	to	the	HANDLE_PROMPT()	function	are	passed	on	to
the	handler	with	the	symbolic	names	UARG1,	UARG2,	UARG3,	etc.	The
Visual	LANSA	handler	can	retrieve	these	values	by	using	method	calls	like	this
in	its	code:
	
Invoke	Method(#Com_Owner.uGet5250Field)	Name(UARG1)	Value(#Std_Text)		/*	Get	UARG1	value	into	#STD_Text	*/		
	

	
This	technique	is	fine	when	you	know	what	handler	you	are	talking	to,	or	are
talking	to	all	handlers	generically.	This	technique	also	means	you	probably	need
a	convention	for	what	UARG1,	UARG2,	etc	are	used	for.
To	communicate	with	a	specific	handler,	use	the	next	technique.			
	

The	second	communication	involves	attaching	information	to	the
handler	via	the	SET_SPECIAL_FIELD_HANDLER()	function.
This	is	done	by	using	the	three	optional	parameters	at	the	end	of	the	function
call.
6.			Change	the	SET_SPECIAL_FIELD_HANDLER	statement	you	created	in
the	previous	step	to:
	
										SET_SPECIAL_FIELD_HANDLER("utxtDepartment",KeyEnter,"DF_PRM06",
"Other	1","Other	2","Other3");
	

	

7.			Commit	your	changes	and	do	a	partial	save,	then	select	an	employee	to	run
the	script	for	the	screen	again.

8.			Cause	the	VF_PRM06	handler	to	be	invoked.	You	will	see	this:		

These	three	information	blocks	allow	you	to	communicate	with	a	precise
handler.	The	Visual	LANSA	handler	can	retrieve	these	values	as	properties,	like
this	example:
	
#Product	:=	#Com_Owner.uHandlerInfo1
#Customer	:=	#Com_Owner.uHandlerInfo2
#ZipCode	=	#Com_Owner.uHandlerInfo1.toNumber()

				

RAMP-TSAD03	Step	8.	What	to	Do	When	Things	Do	Not	Work
If	you	have	a	problem	with	special	field	handlers	you	will	need	to	debug	them.
Trying	to	debug	them	with	ALERT_MESSAGE(),	alert()	or
MESSAGE_BOX_SHOW	operations	will	probably	just	confuse	you.
There	are	two	reasons	for	this.
First,	ALERT_MESSAGE	is	asynchronous,	so	when	it	displays	may	not	be
when	you	think	it	does.
Secondly,	using	these	operations	presents	a	windows	message	box.	These
usually	take	focus.	Most	handlers	hide	themselves	when	they	lose	focus	or
become	deactivated,	so	typically	every	time	you	show	a	message	box	your
handler	will	disappear.		The	same	may	be	true	of	using	the	VL	code	debugger.
Debugging	focus	and	activation	sensitive	applications	can	be	tricky.			
The	best	solution	is	to	use	the	framework	application	level	trace	facility,
positioned	so	that	it	does	not	overlap	you	framework	window.	If	you	just	turn	it
on	a	great	deal	of	special	field	handling	trace	information	will	appear.
If	this	does	not	resolve	the	problem	then	start	adding	TRACE()	calls	to	your
RAMP	scripts	and	#AvFrameworkManager.AvRecordTrace	in	your	VL	code.	
Another	useful	debugging	feature	is	to	plug	in	the	shipped	DF_PRM06	handler
in	place	of	your	handler.	When	invoked	is	reports	on	a	lot	of	information	about
what	information	was	passed	to	the	handler,	which	my	help	you	to	identify	your
problem.	

Summary
Important	Observations
Special	field	handlers	can	do	F4	type	prompting	very	easily.		The	results	usually
look	better,	work	faster,		and	place	less	load	on	your	5250		server.
Special	field	handlers	can	do	a	lot	more	than	F4	prompting	because	they	allow
you	to	attach	behaviors	to	fields	on	your	5250	forms	in	many	ways	and	at	many
levels.
Application	tracing	is	the	tool	you	should	use	to	debug	handler	issues
If	you	write	down	a	list	of	all		the	"key"	and	"code"	fields	in	your	5250
application	and	use	a	judicious	field	naming	standard,	you	can	automatically
attach	a	prompting	capability	to	all	your	5250	screens.	
Also	see	Advanced	Prompting.

What	You	Should	Know
How	to	use	special	field	handling	to	add	value	to	your	5250	application
	

RAMP-TSAD04:	Redesigning	the	Screen	Using	aXes
You	can	use	the	aXes	Designer	to	freely	redesign	your	5250	screens.	You	can
move	and	hide	content,	change	labels,	apply	styles	and	use	visual	elements	such
as	lines	and	group	boxes.
Using	aXes	eXtensions,	you	can	also	display	your	content	as	drop-downs,
calendar	drop-downs,	check	boxes	or	radio	buttons	and	add	new	elements	such
as	buttons,	images,	tooltips,	hyperlinks	and	Google	maps.
You	will	notice	that	what	you	can	do	with	aXes	eXtensions	partly	overlaps	with
what	you	can	do	with,	for	example,	special	field	handlers.	It	is	up	to	you	which
of	these	approaches	you	adopt	to	enhance	your	screens.

Objectives
Learn	how	to	use	aXes	Designer	to	redesign	your	screen.

	
To	achieve	this	objective,	you	will	complete	the	following	steps:
RAMP-TSAD04	Step	1.	Get	Started	with	aXes	Designer
RAMP-TSAD04	Step	2.	Set	up	Styles
RAMP-TSAD04	Step	3.	Hide	Repetitive	Information
RAMP-TSAD04	Step	4.	Add	a	Tooltip

RAMP-TSAD04	Step	5.	Add	a	Drop-Down
RAMP-TSAD04	Step	6.	Organize	Fields	inside	Group	Boxes
RAMP-TSAD04	Step	7.	Add	Up	and	Down	Buttons	to	Subfile
RAMP-TSAD04	Step	8.	Hide	Function	Keys	and	Add	a	Picture
RAMP-TSAD04	Step	9.	Add	a	Hyperlink
RAMP-TSAD04	Step	10.	Test	the	Redesigned	Screen
RAMP-TSAD04	Step	11.	Remove	the	Screen	Customization	

Before	You	Begin
In	order	to	complete	this	tutorial,	you	must	have	completed	the	core	tutorials
RAMP-TS001	-	RAMP-TS015.
	

RAMP-TSAD04	Step	1.	Get	Started	with	aXes	Designer
In	this	step	you	will	learn	how	to	start	redesigning	a	screen	using	the	aXes
Designer	window.	You	will	also	learn	how	to	set	the	properties	of	elements	on
the	screen.
1.			In	RAMP	Tools,	display	the	details	of	the	DisplayEmployee	screen.
2.			In	the	Default	RAMP	Layout	Dimensions	section,	ensure	that	the	Top	Mask
Height	is	0	or	blank.

	The	top	mask	is	used	to	hide	the	screen	title	in	RAMP.	In	this	tutorial	you	want
the	title	displayed	because	you	will	learn	how	to	hide	it	using	aXes.

	
3.			Start	a	RAMP-TS	5250	emulator	session.
4.			Navigate	to	the	DisplayEmployee	screen	and	display	it	in	change	mode.
5.			In	the	aXes	Designer	window,	click	on	Start	Customizing	This	Screen.

	
The	screen	is	now	displayed	without	the	5250	emulator	style.	Notice	that	the

boundaries	of	the	5250	screen	are	indicated	by	a	thin	red	line.

	
You	can	change	the	boundaries	of	the	screen	by	moving	the	red	line.	Refer	to
the	aXes	tutorials	to	learn	how.

6.			Click	on	the	screen	title	to	select	it.	Notice	that	the	aXes	Designer	window
now	shows	the	properties	of	the	screen	title.

7.			Set	the	Visible	property	of	the	title	to	False:

	
8.			Click	on	the	Save	button	on	top	of	the	aXes	Designer	window:

	
A	message	indicating	that	the	screen	customization	has	been	saved	is	shown:

	
Notice	the	title	is	no	longer	displayed:

	
		

RAMP-TSAD04	Step	2.	Set	up	Styles
In	this	step	you	will	set	up	a	font	style	for	all	your	screens.
You	need	to	use	styles	in	your	application	(as	opposed	to	formatting	individual
screens	or	elements	manually)	because	styles	produce	a	common	look	and	feel
and	prevent	unconstrained	style	evolution.	They	also	provide	a	single	point	of
change	so	you	can,	for	example,	change	the	font	of	all	screens	by	changing	the
style.
Even	though	you	can	freely	customize	screens	using	aXes,	you	should	bear	in
mind	that	the	look	and	feel	of	your	application	should	be	primarily	controlled	by
the	standard	Framework	themes,	and	that	any	customization	needs	to	fit	in	with
them.
For	example,	you	should	not	use	aXes	styles	to	set	up	screen	background	colors,
because	the	Framework	automatically	sets	the	background	color	of	all	RAMP
screens.
	
1.			Click	on	View	Application	Properties	on	the	bottom	of	the	aXes	Designer
window	to	display	the	properties	of	the	application:

	
2.			To	edit	the	properties,	click	on	Edit	Application	Properties	on	the	top	of	the
aXes	Designer	window:

	
3.			Click	on	Styles	in	the	Styling	group.

	
The	Styles	editor	is	displayed:

	
4.			Click	on	the	Add	button	to	add	a	style:

Specify	BasicFont	as	the	name	of	the	style
Select	All	as	the	value	for	StyleFor	property
Leave	the	htmlTag	property	blank

	
5.			Click	on	the	Style	property.	A	window	showing	all	style	properties	is
displayed.

6.			Locate	the	font-family	attribute	and	specify	Verdana.
7.			Locate	the	font-size	property	and	specify	9pt:

		
8.			Now	double-click	Styles	in	the	aXes	Designer	to	view	the	style	you	have
added:

	
When	setting	font	sizes,	please	note	that	the	screens	shown	in	a	RAMP
application	are	automatically	sized	to	fit	the	available	space.	This	may	mean
that	the	font	size	displayed	may	be	smaller	than	what	you	have	specified.
	
10.			To	understand	what	the	Style	properties	are,	click	on	the	i	icon	in	front	of
the	Styling	heading	in	the	aXes	Designer	window	to	bring	up	the	context
sensitive	help:

	
11.			Read	the	description	for	the	StyleFor	property:

The	value	All	for	the	StyleFor	property	of	the	BasicFont	style	means	it	applies
to	all	text	in	all	screens	which	have	been	defined	in	aXes	(when	you	edit	a
screen	and	save	it	in	aXes	Designer,	a	screen_xxxxx.js	file	is	created	for	it	in	the
aXes	screens	folder).
		
12.			Click	Save	on	top	of	the	aXes	Designer	window	to	save	the	style	you	have
created:

	

Note	that	the	font	of	the	screen	is	now	Verdana	9pt:

	
	
	

RAMP-TSAD04	Step	3.	Hide	Repetitive	Information
In	this	step	you	will	hide	the	Employee	Number	field	on	the	screen	because	the
employee	number	is	visible	in	the	instance	list	and	the	instance	bar	in	the
Framework	and	it	cannot	be	changed	on	this	screen.
When	modernizing	5250	screens,	you	should	always	consider:
Hiding	5250	screen	identifiers	and	titles.	Use	Framework	tabs	and	hints	instead.
Leaving	this	information	on	a	5250	screen	is	a	dead	giveaway	that	the
underpinning	screen	is	a	5250	screen.	Always	ask	yourself	what	value	the
information	has.	If	it	has	none	or	little	value	then	hide	it.			
Hide	screen	dates	and	times.	The	Framework	window	shows	the	date	and	time.
Hide	repetitive	and	key	information	that	is	already	displayed	on	the	instance	bar,
instance	list	or	in	some	other	place.	Again,	question	the	value	of	repetitive
information	in	the	large	framework	context.
Hide	any	application	version	details.	The	Help	menu's	About	option	is	the
Windows	way	to	do	this.
Don’t	use	aXes	screen	title	bars	or	stripes.	They	draw	the	users	eye	way	to
information	that	is	often	redundant	and	has	no	value	add.		
	
1.			Click	on	Edit	Screen	on	top	of	the	aXes	Designer.

	
2.			Select	the	Employee	number	label.

	
3.			Set	its	Visible	property	to	False.
4.			Then	select	the	dots	after	the	label	that	have	become	separated	from	the

label	with	the	font	change	and	set	the	Visible	property	to	False.
5.			Lastly	set	the	Visible	property	of	the	Employee	Number	field	to	False.
6.			Save	the	screen	customization.
The	employee	number	label	and	field	are	no	longer	visible	on	the	screen.
	
	

RAMP-TSAD04	Step	4.	Add	a	Tooltip
In	this	step	you	will	add	a	tooltip	for	the	Department	Code	field.	You	can	use
tooltips	to	provide	longer	labels	and	context	sensitive	help	in	your	screens.
	
1.			Click	on	Edit	Screen	in	the	aXes	Designer	window.
2.			Select	the	Department	Code	field.
3.			Locate	the	Tooltip	property	of	the	field	and	copy	and	paste	in	this	text:
This	code	is	the	Department	that	the	employee	currently	works	for.	It	is	often
referred	to	as	their	"DC"	code.	Their	id	badges	must	always	display	this	code	or
they	may	be	refused	admittance	to	company	premises.

	
4.			Save	the	screen	customization.
5.			Test	the	tooltip	by	hovering	the	cursor	on	the	Department	Code	field:

	
	

RAMP-TSAD04	Step	5.	Add	a	Drop-Down
In	this	step	you	will	make	the	State	and	Country	field	a	drop-down	which	shows
states	in	the	US.	The	data	for	the	drop-down	comes	from	a	static	table	which	is
shipped	with	aXes	eXtensions.
1.			Click	on	Edit	Screen	in	the	aXes	Designer	window.
2.			Select	the	State	and	Country	field	on	the	DisplayEmployee	screen.
3.			In	aXes	Designer,	change	its	extension	from	Default	Visualization	to	Drop-
Down:

	
4.			Change	the	dataSourceType	of	the	drop-down	to	Static	Table.
5.			Specify	USState	as	the	tableName.

	
6.			Save	the	screen	customization.
7.			Test	the	drop-down:

		
You	can	set	the	values	displayed	in	the	drop-down	also	by	entering	fixed	values
or	by	using	a	dynamic	table.	The	aXes	tutorials	contain	detailed	information
about	how	to	do	this.
	

RAMP-TSAD04	Step	6.	Organize	Fields	inside	Group	Boxes
In	this	step	you	will	logically	organize	the	fields	on	the	screen	by	putting	them
into	group	boxes.
1.			Click	on	Edit	Screen	in	the	aXes	Designer	window.	
2.			Set	the	removeCUADots	property	to	True	for	all	elements	on	the	screen	that
have	dots.

	
3.			Save	this	change	and	put	the	aXes	Designer	back	in	edit	mode.
2.			Add	a	new	element	to	the	screen:

	
3.			Make	it	a	Group	Box	extension:

	

4.			Make	the	Caption	of	the	group	box	Identification.

		
5.			Initially	size	it	like	this:

			
6.			Then	resize	the	fields	and	move	them	inside	the	group	box	like	this	(leave
some	room	above	the	group	box):

	
When	aligning	the	fields	you	may	want	to	use	the	screen	graph	paper:
7.			Click	on	an	empty	space	on	the	screen.
8.			Select	the	Screen	Graph	Paper	option	on	in	the	aXes	Designer	window.

	
It	looks	like	this:

	
9.			Turn	the	Screen	Graph	Paper	option	off.
10.			Set	the	look	property	of	the	group	box	to	Modern:

	
11.			Save	this	change	and	put	the	aXes	Designer	back	in	edit	mode.
12.			Add	another	group	box	with	the	Caption	Dates	and	look	Modern.
13.			Place	it	next	to	the	Identification	group	box.
14.			Put	the	Start	Date	and	Termination	dates	in	the	group	box	like	this:

	
15.			Add	another	group	box	with	the	caption	Contact	and	Location	and	look
Modern	(again	leave	some	space	around	the	group	box	so	that	it	will	be
surrounded	by	the	screen's	background	color).

16.			Place	it	under	the	Identification	group	box	and	put	the	remaining	fields
except	for	the	skills	details	in	it:

		
17.			Finally,	add	a	group	box	for	the	skills	information	with	the	caption	Skills,
again	leave	some	room	around	the	group	box:

		

18.			Save	the	screen	customization.
	

RAMP-TSAD04	Step	7.	Add	Up	and	Down	Buttons	to	Subfile
In	this	step	you	will	name	replace	the	plus	sign	indicating	more	entries	exist	in	a
the	subfile	with	up	and	down	keys.
1.		Select	the	plus	indicator	for	the	subfile.

	
2.			Name	it	moreindicator	on	the	Screens	tab.

	

3.			Save	the	screen.

	
4.			In	aXes	Designer,	uncheck	the	default	visualization	of	the	+	sign	so	that	it
disappears

	
5.			Add	a	new	element,	and	make	its	type	Subfile	Scroller.

	
6.			Specify	moreindicator	as	the	markerFieldName.

		
7.			Position	and	size	the	subfile	scroller.
8.			Save	the	screen	customization.
9.			Do	a	partial	save	of	the	RAMP	definition.
10.			Test	the	up	and	down	buttons	on	the	subfile.

	
	
	

RAMP-TSAD04	Step	8.	Hide	Function	Keys	and	Add	a	Picture
In	this	step	you	will	hide	the	function	key	text	shown	on	the	bottom	of	the
screen	and	you	will	add	a	picture	of	an	employee.
When	you	edit	a	screen	with	the	aXes	Designer,	the	function	key	text	line	on	the
screen	becomes	visible,	even	though	it	was	previously	hidden	by	RAMP.	To
hide	the	line:
1.			Click	on	Edit	Screen	in	aXes	Designer.
2.			Select	the	function	key	text	line	on	the	bottom	of	the	screen.
3.			Set	its	Visible	property	to	False.
	
Next	you	will	add	an	image	to	the	screen:
4.			Add	a	group	box	with	the	caption	Photo	and	with	Modern	look:

		
5.			Then	add	a	new	element	and	make	it	an	Image	extension	inside	the	group
box:

		
	
6.			Change	its	imagePath	to	/ts/skins/images/	and	imageName	to
examplephoto.gif:

						
	
7.			Click	Save.	The	image	is	displayed	in	its	full	size.
8.			To	shrink	it,	click	on	the	Style	property	of	the	image	extension	and	change
the	style's	height	and	width	to	100%	(be	careful	to	select	the	Style	property	in
the	Image	group):

	
The	screen	will	now	look	like	this:

	
9.			Save	the	screen	customization

	

RAMP-TSAD04	Step	9.	Add	a	Hyperlink
In	this	step	you	will	add	a	hyperlink	to	the	screen	to	open	a	PDF	document	that
resides	on	the	server.
1.			Put	the	screen	in	edit	mode	by	clicking	Edit	Screen	in	the	aXes	Designer.
2.			Add	a	new	element	to	the	screen.

	
3.			Make	it	Hyperlink	extension.
4.			Size	and	position	it	like	this:

	
5.			Set	its	Caption	to	Employment	Contract.
6.			Change	the	onClick	property	to:

	
				window.open('/ts/skins/images/examplecontract.pdf',	'_blank');
	

7.			Save	the	screen	customization.
8.			Click	on	the	Employment	Contract	hyperlink	on	the	screen.
A	browser	window	containing	the	contract	PDF	on	the	server	is	shown:

		
	

RAMP-TSAD04	Step	10.	Test	the	Redesigned	Screen
In	this	step	you	will	test	the	redesigned	screen	and	make	sure	it	works	with	the
Framework	themes.
1.			Log	off	in	the	RAMP-TS	5250	emulator.
2.			Restart	the	Framework	to	restart	aXes.
3.			Display	employee	Veronica	Brown	in	the	Personnel	application.
The	Details	command	handler	now	looks	like	this:

			
4.			Now	change	the	theme	of	the	Framework	using	the	Overall	Theme	option	of
the	Windows	menu	to	check	what	the	customization	looks	like	with	different
themes.

This	is	what	the	screen	looks	like	with	2007	Olive	theme:

	
Note	that	here	the	aXes	group	boxes	are	all	using	a	bluish	color	gradient.	They
can	also	be	modified	to	follow	the	VL	theme.	Refer	to	the	aXes	USERENV	file
for	details	of	how	the	color	gradients	are	set	up	for	group	boxes.	Refer	to	Axes
Tutorial	10	for	details	of	how	to	find	out	the	current	VL	theme	in	aXes	scripts.			
	

RAMP-TSAD04	Step	11.	Remove	the	Screen	Customization
In	this	step	you	will	remove	the	aXes	screen	customization	by	renaming	the
screen_xxxx.js	file.	You	can	later	reapply	the	extensions	by	renaming	the	file
back.
1.			Shut	down	the	Framework.
2.			In	Windows	Explorer,	locate	the	axes\ts\screens\	directory	(you	will	need	to
be	mapped	to	your	server's	IFS	drive)	or	your	private	definition	folder	if	you
are	using	one.

4.				Then	locate	the	screen_displayemployee.js	file	and	rename	it
screen_displayemployeeX.js.

	
5.			Restart	the	Framework.
6.			Verify	that	your	screen	customization	has	been	removed.
	
When	you	want	to	reapply	the	extensions,	remove	the	X	from	the	file	name.

Note	also	that	every	time	you	click	Save	in	the	aXes	Designer,	a	copy	of	the
customized	screen	is	stored	in	the	subfolder	ScreenVersions	in	the	screens
directory	or	your	private	definition	folder	with	a	name	like
Screen_xxxxxxxxxx_YYYYMMDD_HHMMSS_mmmmmmm.js.
You	can	revert	to	an	earlier	design	by	locating	the	version	you	want,	deleting	the
existing	Screen_xxxxxxxxxx.js	file,	and	then	copying	the	screen	version	file
into	your	definition	set	folder.	Rename	it	to	Screen_xxxxxxxxxx.js.
Remember	to	end	all	aXes	developer	sessions	before	doing	this.
	
		
	
	

Summary
	
If	you	are	planning	to	use	aXes	to	redesign	your	screens,	you	should	complete
the	aXes	tutorials	which	can	be	accessed	from	the	aXes	home	page.
To	launch	aXes	from	your	browser,	use	this	url:
http://hostname:80/wba/home.html		(replace	hostname	with	the	name	of	your
host,	and	if	necessary	change	the	default	port	80).	Click	on	the	Tutorials	link	on
the	right	of	the	aXes	home	page	and	then	the	Tutorial	0	–	Getting	Started
link.			

Important	Observations
There	are	sometimes	alternative	ways	of	creating	a	screen	enhancement.	For
example,	you	can	visualize	a	date	field	as	a	calendar	drop-down	either	by	using	a
special	field	handler	or	by	making	it	a	Date	extension	in	aXes.
You	can	use	aXes	from	the	aXes	home	page	to	name	and	redesign	screens
without	using	RAMP	Tools.	You	need	to	use	RAMP	Tools	for	classifying
screens	and	scripting.

	
Tips
aXes	also	supports	themes.	They	can	directly	map	to	VLF	themes.	In	a	nutshell
this	means	that	when	you	define	a	role-based	style	in	aXes	named	"KeyDetails"
(say)	that	says	key	text	should	be	emphasized	and	bolded	-	you	can	actually
theme	the	style	so	that	for	VLF	theme	Blue	the	text	color	is	dark	blue,	for	theme
Silver	the	text	color	is	black,	for	theme	Olive	the	text	color	is	dark	green,	etc.
Don't	use	bright	primary	colors	and	large	or	fancy	fonts.	Using	large	fonts,	fancy
fonts	and	bright	primary	colors	may	work	in	web	page	displayed	enhanced	5250
screens.	However,	the	VLF	tends	to	produce	more	low	key	screens	-	so	these
types	of	things	will	stand	out	unnecessarily	and	often	quite	badly.
	

What	You	Should	Know
How	to	use	aXes	eXtensions	to	enhance	the	screens	in	your	RAMP	application.
	

	
	

http://hostname/wba/home.html

	
	

RAMP-TSAD05:	Using	SHARED	Properties	and	Functions
Once	you	start	RAMP	scripting	you	will	see	patterns	and	repetitions	in	your
logic.	By	moving	this	logic	into	shared	object	you	can	invoke	this	logic	from
any	RAMP	script.	The	reuse	and	maintenance	benefits	of	using	this	feature	are
obvious.		

Objectives
Learn	how	to	use	shared	properties	and	functions

To	achieve	this	objective,	you	will	complete	the	following	steps:
Read	What	are	Shared	Scripts?
RAMP-TSAD05	Step	1.	Optional	-	Creating	Your	Own	Copy	of	the	Shared

Scripts	File
RAMP-TSAD05	Step	2.		Accessing	SHARED	properties	and	functions
RAMP-TSAD05	Step	3.		Creating	your	own	SHARED	properties
RAMP-TSAD05	Step	4.		Creating	your	own	SHARED	functions
Summary
	

Before	You	Begin
In	order	to	complete	this	tutorial,	you	must	have	completed	the	core	tutorials
RAMP-TS001	-	RAMP-TS015.
	

What	are	Shared	Scripts?
The	shared	scripts	file	uf_sy420_rts.js	can	be	used	to	store	common	JavaScript
properties	and	functions	that	can	be	accessed	from	all	your	5250	screen	scripts.
This	file	is	normally	stored	in	the	RAMP-TS	skins	folder.	However,	a	private
version	of	the	file	can	also	reside	in	the	nominated	Private	Definitions	Folder
(see	RAMP-TSAD05	Step	1.	Optional	-	Creating	Your	Own	Copy	of	the	Shared
Scripts	File).
To	see	what	the	shared	scripts	file	is	like:
1.			In	Windows	Explorer	set	up	a	mapped	drive	so	that	you	can	access	folder
\axes\ts\skins.

2.			Using	Notepad	or	a	text	editor	locate	file	uf_sy420_rts.js	and	open	it.	It
looks	like	this:
/*	==	*/
/*	Note	that	this	file	is	used	when	using	RAMP-
TS	as	the	RAMP	5250	server													*/
/*	==	*/

/*	This	file	is	for	common	JavaScript	properties	and	functions	you	want	to	access					*/
/*	from	all	your	5250	screen	scripts.	To	provide	an	unlimited	name	space	your									*/	
/*	properties	and	functions	MUST	be	encapsulated	inside	an	object	named	SHARED								*/
/*	Typically	is	reside	in	the	\axes\ts\skins	folder																																			*/

/*	--	*/
/*	The	SHARED	object	contains	all	customer	defined	shared	scripts	and	properties						*/
/*	--	*/

var	SHARED	=	
{

			/*	---	*/	
			/*	Properties	defined	as	part	of	the	shared	object	*/		
			/*	---	*/	

			myProperty1	:	"a",
			myProperty2	:	42,	

			/*	---	*/	
			/*	Functions	defined	as	part	of	the	shared	object		*/		
			/*	---	*/	

			/*	myFunction1	is	a	test	function	*/

			myFunction1	:	function(a,b,c)
			{
						alert("myFunction1	executed	with	parameters	"	+	a.toString()	+	"	"	+	b.toString()	+	"	"	….	etc
						return;
			},	/*	<=======	Note	the	comma	===========	*/	

			/*	myFunction2	is	another	test	function	*/
			
			myFunction2	:	function(a,b)
			{
						var	sResult	=	"myFunction2	was	executed	with	parameters	"	+	a.toString()	+	"	"	+	b.toString();		
						return(sResult);
			},	/*	<=======	Note	the	comma	===========	*/	

			/*	Dummy	last	property	that	does	not	have	a	comma,	leave	here.	All	preceeding	definitions	use	a	comma	*/
			
			myEndProperty	:	true										

};	/*	End	of	SHARED	object	definition	*/
	
The	structure	of	this	file	is	simple:
The	line		var	SHARED	=		defines	the	start	of	a	JavaScript	object	named
SHARED	(you	must	use	the	name	SHARED).
Within	the	SHARED	object	are	2	properties	named	myProperty1	and
myProperty2.
There	are	also	2	functions	called	myFunction1	and	myFunction2	that	receive	3
and	2	parameters	respectively.
These	properties	and	function	serve	no	purpose	other	than	to	demonstrate	how
they	are	defined	inside	the	SHARED	object.	Note	especially	the	comments
indicating	the	use	of	commas	to	separate	the	functions.
This	object	format	is	pure	JavaScript.	It	is	not	unique	to	RAMP.

By	using	this	technique	you	will	create	a	preserved	namespace	for	your	code
that	will	never	conflict	with	anything	else.
	

RAMP-TSAD05	Step	1.	Optional	-	Creating	Your	Own	Copy	of
the	Shared	Scripts	File
Shared	scripts	are	normally	stored	in	the	RAMP-TS	skins	folder	in	a	file	named
UF_SY420_RTS.JS.	However,	you	can	make	a	private	version	of	the	SHARED
scripts	file	in	your	Private	Definition	Folder.
Note:	If	you	are	completing	these	tutorials	in	a	classroom	setting,	there	will	be	a
Private	Definition	Folder	set	up	for	every	user.	However,	in	a	real	project	you
should	never	do	this.	Projects	should	be	set	up	on	a	discrete	project	basis
because	work	done	in	a	project	folder	cannot	be	merged	with	work	done	in
another	project	folder.	It	is	normal	for	multiple	developers	to	be	working	on	the
same	project	with	the	same	definition	set.
To	create	a	private	version	of	the	shared	scripts	file	in	your	Private	Definition
Folder:
1.			In	Windows	Explorer	set	up	a	mapped	drive	so	that	you	can	access	the
folder	\axes\ts\skins\.

2.			Copy	uf_sy420_rts.js	and	paste	it	into	your	private	definition	folder
\axes\ts\screens\MyPrivateDefinitionFolder

3.			In	the	Server	Details	in	the	Framework,	check	the	Contains	SHARED
Object	option	in	the	RAMP-TS	(Terminal	Server)	group	box	to	indicate	to
RAMP-TS	that	the	SHARED	Object	file	is	in	the	Private	Definitions	Folder.

	
4.			Save	the	Framework.
	
In	order	for	RAMP-TS	to	recognize	the	file,	you	must	ensure	that	it	only	has
*PUBLIC	*R	user	authority.	To	check	this:

mk:@MSITStore:lansa048.chm::/Lansa/lansa048_4995.htm

5.			In	your	IBM	i,	use	the	WRKLNK	command:

	
6.			Navigate	to	your	private	definition	folder	and	view	the	authorities	of
UF_SY420_RTS.JS.

		
7.			Ensure	that	*PUBLIC	user	only	has	*R	authority:

			
You	are	now	ready	to	start	using	your	private	copy	of	the	shared	scripts	file.
	
	

RAMP-TSAD05	Step	2.		Accessing	SHARED	properties	and
functions
In	this	step	you	will	learn	how	to	access	shared	properties	and	functions.
1.			Locate	the	two	test	properties	in	your	shared	scripts	file	to	see	what	they	are:

	
2.			Open	the	RAMP	script	for	the	DisplayEmployee	screen	and	add	this	code	to
the	vHandle_ARRIVE	function	to	display	the	values	of	the	properties:
	
				alert(SHARED.myProperty1	+	"	"	+	SHARED.myProperty2);
	

Your	code	will	look	like	this:

	
3.			Commit	changes,	do	a	partial	save	and	then	display	the	details	of	an
employee	so	as	to	execute	the	arrival	script.	You	will	see	a	message	box	like
this	appear:

	
The	message	box	is	displaying	the	values	of	the	properties
SHARED.myProperty1	and	SHARED.myProperty2.
	
4.			Locate	the	test	function	Function1	in	your	shared	scripts	file	to	see	what	it
does:

	
5.			Now	add	this	code	to	the	arrival	script:
	
				SHARED.myFunction1("1",2,"3");
	

	

6.			Commit	changes,	do	a	partial	save	and	then	display	the	details	of	another
employee.	You	will		see	another	message	box	appear	like	this,	indicating	you
have	executed	function	myFunction1	in	the	SHARED	object:

	
7.			Finally,	add	this	code	to	your	RAMP	script:
				var	sMessage	=	SHARED.myFunction2("Hello","World");
				alert(sMessage);

	
You	will	see	another	message	box	appear	like	this:		

	
You	now	know	how	to	access	shared	properties	and	shared	logic	defined	in	the
SHARED	object.
	

RAMP-TSAD05	Step	3.		Creating	your	own	SHARED	properties
1.			Modify	file	uf_sy420_rts.js	using	Notepad	by	defining	a	new	property
named	MessageLineNumber:

	

	
			messageLineNumber	:	22,	
	

	

	

Your	code	will	look	like	this:

	
2.			Save	and	restart	the	Framework.
3.			Now	in	the	vHandle_ARRIVE	function	of	the	DisplayEmployee	screen's
script,	remove	the	code	you	added	in	the	preceding	steps	and	add	this	line	of
code:
	
					alert(SHARED.messageLineNumber);
	

		
4.			Execute	the	DisplayEmployee	screen.	You	will	see	a	message	box	like	this
appear.

		
SHARED	properties	like	this	are	useful	for	centralizing	definitions,	making
them	easy	to	change.	For	example,	when	using	the	RAMP	function	to	extract
details	from	your	screen,	using	SHARED.messageLineNumber	would	be	better
than	using	the	literal	22	(say).				
	

RAMP-TSAD05	Step	4.		Creating	your	own	SHARED	functions
1.			Modify	the	file	uf_sy420_rts.js	by	adding	a	function	named	Add	to	it	like
this:
			/*	Add	adds	3	numbers	together	*/

			Add	:	function(a,b,c)
			{
						return(a	+	b	+	c);
			},	/*	<=======	Note	the	comma	===========	*/
	

Your	code	will	look	like	this:

2.			Now	in	your	RAMP	destination	screen	script,	remove	the	code	from	the
preceding	steps	and	add	these	lines	of	code:
			var	iResult	=	SHARED.Add(100,200,136);
			alert("Result	=	"	+	iResult);

	
3.			Close	and	restart	the	Framework.
4.			Execute	your	RAMP	5250	destination	screen.	You	should	see	a	message	box	like	this	appear:

		
That’s	it.	You	have	passed	arguments	to	your	"Add"	function	and	received	back
its	result.	Knowing	how	to	do	this	is	all	you	need	to	do	to	start	sharing	script
logic	across	all	your	RAMP	scripts.
	

Summary
Important	Observations
JavaScript	is	a	very	powerful	programming	language.	The	more	you	understand
its	capabilities	the	more	you	can	leverage	them	in	your	day	to	day	work.
JavaScript	knowledge,	in	an	AJAX	WEB	2.0	world,	is	also	an	increasingly
essential	IT	skill.
There	are	many	free	online	courses	that	offer	JavaScript	training.	For	example,
see	http://www.w3schools.com/
	

What	You	Should	Know
How	to	use	and	create	SHARED	properties	and	functions
	

http://www.w3schools.com/

RAMP-TSAD06:	Handling	Multiple	Screens	on	Multiple	Tabs			
RAMP-TS	5250	destination	screens	are	displayed	on	framework	command
handler	tabs.	Typically	just	one	screen	is	displayed	on	a	command	handler	tab.	
However	it	is	possible	to	split	multiple	screens	up	across	multiple	tabs.	This
tutorial	covers	the	concepts	and	skills	required	to	do	this.

Objectives
Learn	how	to	attach	a	destination	which	has	been	spread	across	multiple	screens
to	multiple	tabs.

To	achieve	this	objective,	you	will	complete	the	following	steps:
RAMP-TSAD06	Step	1.		A	Multiple	5250	Screen	Scenario
RAMP-TSAD06	Step	2.		Name	the	Screens
RAMP-TSAD06	Step	3.		Classify	the	Screens
RAMP-TSAD06	Step	4.		Review	and	Understand	the	Targets	List
RAMP-TSAD06	Step	5.		Using	Multiple	Command	Handler	Tabs
RAMP-TSAD06	Step	6.		Review	and	Alter	Buttons	and	Function	Keys
RAMP-TSAD06	Step	7.		Review	the	value	you	have	added	to	the	5250
application

RAMP-TSAD06	Appendix:	Function	UFRTS03
	

Before	You	Begin
The	following	are	assumed	knowledge	for	the	commencement	of	this	tutorial.
You	need	to:
Understand	the	basic	structure	and	mechanics	of	RAMP	scripting.
Understand	the	concept	of	5250	screens	classified	destinations,	junctions	or
specials.
Understand	how	to	snap	a	destination	screen	onto	a	framework	command
handler	tab.		
If	you	attempt	this	tutorial	without	this	assumed	knowledge	you	will	probably

not	be	able	to	understand	it.

RAMP-TSAD06	Step	1.		A	Multiple	5250	Screen	Scenario
This	tutorial	uses	a	classic	four	screen	5250	Key	->	Data	inquiry	sequence	as	its
main	scenario.
However,	the	Data	part	is	too	much	to	fit	onto	a	single	5250	screen,	so	it	has
been	spread	across	three	5250	screens	like	this:	

These	sample	screens	do	not	have	much	information	on	them.	This	is	a
deliberate	choice	to	avoid	blurring	the	objective	of	this	tutorial.
You	need	to	imagine	that	each	of	the	5250	"data"	screens	is	packed	full	of
information	which	is	usually	why	it	has	been	split	across	three	5250	screens.	
Note	how	the	function	keys	Enter	and	F12	have	been	used	to	perform	classic

5250	style	navigation.	Also	note	that	if	you	are	on	Data	Screen	3,	you	cannot
return	to	Data	Screen	2	without	going	via	the	Request	screen	again.	A	minor
design	flaw	which	could	possibly	be	quite	irritating	to	people	who	use	this	5250
application	all	the	time.		

If	you	are	completing	this	tutorial	as	part	of	classroom	training,	the
function	for	the	displayed	LANSA	5250	screen	will	exist	in	your
system	in	process	UF_RTS,	function	UFRTS03.

If	you	are	completing	this	tutorial	as	self-study,	note	that	the	source
code	is	available	in	a	function	named	UFRTS03	which	can	be	found	in
RAMP-TSAD06	Appendix:	Function	UFRTS03.	It	is	recommended
that	you	create	a	5250	LANSA	process	named	UF_RTS,	and	in	it	a
RDML	function	named	UFRTS03	to	which	you	copy	the	code.	Then
check	the	process	and	the	function	into	your	5250	server	so	you	can
try	out	these	scenarios	in	detail.	

	

RAMP-TSAD06	Step	2.		Name	the	Screens
In	this	step	you	will	use	RAMP	Tools	name	the	process	menu	and	the	four
screens.

If	you	do	not	understand	how	to	do	this	you	should	stop	doing	this
tutorial	and	complete	one	of	the	core	tutorials	instead.

1.			On	the	System	i	Main	menu	enter	this	command:
	
				lansa	run	uf_rts	partition(dem)
	

	
2.			Name	the	screens:

Screen Name	You	Should	Use
RAMP
Testing
Functions
menu

UF_RTS
Also	name	the	option	field	txtOption.	
If	you	are	completing	this	tutorial	in	a	classroom	setting,		you
will	need	to	select	option	3	in	the	RAMP	Testing	Functions	menu
to	bring	up	the	correct	screens:

	

Request
"Key"
Screen

UFRTS03_R1
Also	name	the	employee	number	field	used	in	navigation	as
txtEmpNo

Display
"Data"
Screen	1

UFRTS03_D1

Display	
"Data"
Screen	2	

UFRTS03_D2

Display	
"Data"
Screen	3

UFRTS03_D3

	

	

RAMP-TSAD06	Step	3.		Classify	the	Screens
1.			After	identifying	all	the	required	screens	and	naming	the	required	fields	on
them,	you	should	classify	the	screens.

Name	You	Used Classification	of	this	Screen
UF_RTS Junction

UFRTS03_R1 Junction

UFRTS03_D1 Destination

UFRTS03_D2 Destination

UFRTS03_D3 Destination

	

	.
	

RAMP-TSAD06	Step	4.		Review	and	Understand	the	Targets	List
You	should	now	have	a	junction	screen	(UFRTS03_R1)	and	three	destination
screens	(UFRTS03_D1,	UFRTS03_D2	and	UFRTS03_D3)	defined	and	scripted.
Open	RAMP	Tools	and	click	on	each	of	the	screen	definitions	to	review	their
Targets	lists.
Their	respective	Targets	lists	will	look	like	this:
Screen	Name Type	of	Screen	 Targets
UFRTS03_R1 Junction UFRTS03_D1

UFRTS03_D1 Destination UFRTS03_R1
UFRTS03_D2

UFRTS03_D2 Destination UFRTS03_R1
UFRTS03_D3	

UFRTS03_D3 Destination UFRTS03_R1	

	

	
If	your	target	lists	do	not	look	like	this,	you	should	continue	to	manually
demonstrate	screen	navigations	via	RAMP	Tools	until	they	do.
The	Targets	associated	with	a	screen	definition	are	very	important.	They	tell	the
RAMP	navigation	planner	what	screens	a	particular	screen	can	navigate	to	(ie:
target).	Normally	the	Targets	are	automatically	updated	when	you	manually
demonstrate	a	navigation	to	the	RAMP	Tools	editor.

As	you	become	more	experienced	with	RAMP	you	may	decide	to	just
update	the	Targets	list	manually	and	add	the	appropriate	code	to	the
screen's	navigation	handler	function.		In	effect	this	is	exactly	what
demonstrating	a	navigation	via	RAMP	Tools	does.

The	Targets	lists	used	here	are	simple	to	understand:	
The	junction	UFRTS03_R1’s	target	list	effectively	says	"My	
vHandle_NAVIGATETO	function	contains	scripts	that	can	navigate	to
destination	UFRTS03_D1".

The	destination	UFRTS03_D1’s	target	list	effectively	says	"My	
vHandle_NAVIGATETO	function	contains	scripts	that	can	navigate	to	junction
UFRTS03_R1	or	to	destination	UFRTS03_D2".
The	presence	of	junction	UFRTS03_R1	in	the	target	lists	of	all	3	destinations	is
significant.	The	first	junction	in	a	destination’s	target	list	is	called	the	exit
junction.	The	exit	junction	is	used	to	get	out	of	the	destination	and	back	on	to	the
junction	"freeway	or	motorway"	(ie:	the	network	of	identified	junctions	that	are
used	to	rapidly	move	between	destinations).	If	a	destination	screen	is	on	display,
it	will	be	asked	to	navigate	to	its	nominated	"exit	junction"	before	a	navigation
to	another	destination	(including	itself).		
	

RAMP-TSAD06	Step	5.		Using	Multiple	Command	Handler	Tabs
In	handling	this	type	of	scenario	the	first	option	you	have	available	is	to	put
each	of	the	destination	screens	onto	its	own	command	handler	tab.
This	adds	value	to	the	5250	application	in	which	the	user	cannot	immediately	go
to	data	screen	3	(say)	without	having	to	go	through	data	screens	1	and	2.	Now
they	can	move	freely	among	all	3	data	screens	without	having	to	cancel	and	go
back	to	the	key	screen.
1.			In	the	Framework,	add	three	new	instance	level	commands	to	the	Employee
business	object:	Name,	Address	and	HR	Details.

2.				Make	Name	the	default	command	and	set	the	sequence	of	the	commands	to
1,	2	and	3.	Resequence	the	other	commands	associated	with	Employee	to	that
they	come	after	these	three	commands.

3.			In	RAMP	Tools	link	the	destination	screens	with	the	commands:

UFRTS03_D1 Name

UFRTS03_D2 Address

UFRTS03_D3 HR	Details

	

	
4.			Modify	the	script	of	the	UFRTS03_R1.	You	need	to	change	the	SETVALUE
so	that	the	commands	will	be	shown	for	the	employee	selected	in	the	instance
list.

	
								case	"UFRTS03_D1":
								{
	
											/*	Set	up	data	fields	on	form	UFRTS03_R1	*/
	
											SETVALUE("EmpNo",objListManager.AKey1[0]);
											SENDKEY(KeyEnter);
	
											/*	Check	for	arrival	at	UFRTS03_D1	*/

	
											Q_CHECK_CURRENT_FORM("UFRTS03_D1","Unable	to	navigate
to	form	UFRTS03_D1");
								}
											break;

	
You	may	want	to	review	RAMP-TS006	Step	2.	Change	the	Script	to	Use	the
Current	Instance	List	Entry.
	
5.			Save	and	restart	the	Framework.
	
When	you	display	an	employee	the	command	tabs	should	now	look	like	this:

Notice	that	you	can	display	the	three	5250	screens	in	any	combination.		
You	may	have	to	trace	and	modify	your	scripts,	or	even	demonstrate	new
navigations	to	get	this	example	to	function	correctly.	This	is	a	normal	part	of
scripting	5250	screen	interactions.	You	should	persist	with	doing	this	until	all
three	screens	function	correctly.		Previously	completed	tutorials	should	have

equipped	you	with	the	skills	required	to	debug	your	scripts	until	they	function
correctly.
	

RAMP-TSAD06	Step	6.		Review	and	Alter	Buttons	and	Function
Keys
All	the	5250	function	keys	are	related	to	navigation	activities	and	you	have
replaced	all	the	navigation	with	something	better.		The	5250	Enter	to	go
forward,	and	F12	to	Cancel,	operations	are	largely	nonsensical	in	a	windows
application.
For	example:	You	do	not	"cancel"	an	inquiry	about	the	Address	of	employee
A0090,	you	simply	move	on	to	what	you	want	to	do	next	–	display	the	Name
details	of	employee	A0070	(say).	You	should	strive	to	achieve	this	in	your
modernization	project	because	it	makes	your	application	more	familiar	and
comfortable	to	people	who	are	used	to	the	Windows	interface.						
1.			In	RAMP-Tools	change	destination	screens	UFRTS03_D1,	UFRTS03_D2
and	UFRTS03_D3	so	that	no	function	keys	or	buttons	are	enabled.

2.			Do	a	partial	save.
3.			In	the	Framework,	display	another	employee.	Only	the	design-time	buttons
are	now	shown:

	

RAMP-TSAD06	Step	7.		Review	the	value	you	have	added	to	the
5250	application
You	started	with	a	very	simple	5250	four	screen	inquiry	that	could	only	do	this:

			Now	it	looks	like	this:

The	user	can	now	build	lists	of	the	employees	they	want	to	work	with.
They	can	move	from	displaying	the	Name	details	of	employee	A0070,	to	their
HR	details	in	one	click,	and	then	go	back	again	in	one	click.
They	can	move	from	displaying	the	Name	details	of	employee	A0070	to	the	HR
Details	of	employee	A1031	in	two	clicks.			
	

RAMP-TSAD06	Appendix:	Function	UFRTS03
FUNCTION	OPTIONS(*DIRECT)
BEGIN_LOOP
	
*	Get	the	key	details
*	A	classic	junction
*	Cancel	key	goes	back	to	process	menu	or	caller	program
	
RQ1:	DOUNTIL	COND('#IO$STS	=	OK')
REQUEST	FIELDS(#EMPNO)	EXIT_KEY(*NO)	PANEL_ID(UFRTS03_R1)	PANEL_TITL('UFRTS03_R1	-	Input	Employee	Number')
FETCH	FIELDS(*ALL)	FROM_FILE(pslmst)	WITH_KEY(#EMPNO)	ISSUE_MSG(*YES)
ENDUNTIL
	
*	Display	details	screen	1
*	Cancel	key	goes	back	to	request	next	employee	number
*	Enter	goes	forward	to	Details	screen	2
	
DISPLAY	FIELDS(#EMPNO	#SURNAME	#GIVENAME)	EXIT_KEY(*NO)	MENU_KEY(*YES	RQ1)	PANEL_ID(UFRTS03_D1)	PANEL_TITL('UFRTS03_D1	-	Employee	Details	-	1')
	
*	Display	details	screen	2
*	Cancel	key	goes	back	to	request	next	employee	number
*	Enter	goes	forward	to	Details	screen	3
	
DISPLAY	FIELDS(#EMPNO	#ADDRESS1	#ADDRESS2	#ADDRESS3)	EXIT_KEY(*NO)	MENU_KEY(*YES	RQ1)	PANEL_ID(UFRTS03_D2)	PANEL_TITL('UFRTS03_D2	-	Employee	Details	-	2')
	
*	Display	details	screen	3
*	Cancel	key	goes	back	to	request	next	employee	number
*	Enter	goes	forward	to	request	next	employee	number
	
DISPLAY	FIELDS(#EMPNO	#SALARY	#DEPTMENT	#SECTION)	EXIT_KEY(*NO)	MENU_KEY(*YES	RQ1)	PANEL_ID(UFRTS03_D3)	PANEL_TITL('UFRTS03_D3	Employee	Details	-	3')
	
*	Loop	around	and	ask	for	the	next	employee	number
	
END_LOOP		

	

RAMP-TSAD07:	Handling	Multiple	Screens	on	a	Single	Tab
RAMP-TS	5250	destination	screens	are	displayed	on	framework	command
handler	tabs.	Typically	just	one	screen	is	displayed	on	a	command	handler	tab.	
However	it	is	possible	to	display	multiple	5250	screens	on	a	single	tab.	This
tutorial	covers	the	concepts	and	skills	required	to	do	this.

Objectives
Learn	how	to	attach	a	destination	which	has	been	spread	across	multiple	screens
to	a	single	tab	and	how	enable	buttons	to	navigate	between	the	screens.

	
To	achieve	this	objective,	you	will	complete	the	following	steps:
RAMP-TSAD07	Step	1.		A	Multiple	5250	Screen	Scenario
RAMP-TSAD07	Step	2.		Making	a	Plan	
RAMP-TSAD07	Step	3.		Putting	the	Screens	on	a	Single	Tab	
RAMP-TSAD07	Step	4.		Enable	Function	Keys/Buttons	and	Add	Required

Scripting		
RAMP-TSAD07	Step	5.		Defining	the	Exit	Junctions	and

vHandle_NAVIGATETO	scripting				

RAMP-TSAD07	Step	6.		Testing	and	Debugging
RAMP-TSAD07	Step	7.		Fine	Tuning

Before	You	Begin
The	following	are	assumed	knowledge	for	the	commencement	of	this	tutorial.
You	need	to:
Have	completed	the	preceding	mini-tutorial	RAMP-TSAD06:	Handling	Multiple
Screens	on	Multiple	Tabs				.	If	you	attempt	this	tutorial	without	this	assumed
knowledge	you	will	probably	not	be	able	to	understand	it.

RAMP-TSAD07	Step	1.		A	Multiple	5250	Screen	Scenario
This	tutorial	continues	to	use	the	same	classic	four	screen	5250	Key	->	Data
inquiry	function	UFRTS03	as	its	scenario	as	the	previous	tutorial.	See	RAMP-
TSAD06	Step	1.		A	Multiple	5250	Screen	Scenario	.
	
	

RAMP-TSAD07	Step	2.		Making	a	Plan	
In	the		RAMP-TSAD06:	Handling	Multiple	Screens	on	Multiple	Tabs				tutorial
these	screens	were	identified	and	made	to	function	on	three	command	handler
tabs.
Now	we	are	going	to	make	all	three	destination	screens	appear	on	a	single
command	tab	named	All	Details	and	allow	the	user	to	move	between	them	with
Previous	and	Next	buttons.		To	do	this,	we	need	to	make	a	plan,	something	like
this:

Screen Associated	with
Command	Tab

Enabled	Buttons	/
Function	Keys

Targets

UFRTS03_D1 All	Details Next/Enter	->
UFRTS03_D2

UFRTS03_R1

UFRTS03_D2 - Previous/F12	-	>
UFRTS03_D1
Next/Enter	->
UFRTS03_D3

UFRTS03_R1

UFRTS03_D3 - Previous/F12	->
UFRTS03_D2

UFRTS03_R1

	

	
Looking	at	this	plan	in	more	detail,	you	should	be	able	to	answer	these
questions:
	

Question
	

Notes

Why	is	only
UFRTS03_D1
linked	to	a
command
handler	tab?

There	is	going	to	only	be	one	command	now,	All	Details
and	when	the	user	executes	it	the	screen	UFRTS03_D1	will
be	displayed	on	a	command	tab.			
	

Why	are
UFRTS03_D2
and
UFRTS03_D2
not	linked	to
any	command
handler	tabs.
	

They	are	not	linked	to	any	commands	themselves.	The	only
way	to	get	to	screens	UFRTS03_D2	or	UFRTS03_D3	is	to
go	via	UFRTS03_D1,	then	used	the	Next	button(s)	to
advance	to	them.	If	you	want	them	to	be	independently	and
directly	accessible	put	them	on	their	own	command	tabs.

When	screen
UFRTS03_D1
is	displayed
what	function
keys	/	buttons
will	be	enabled
and	what	will
they	do?

It	will	have	a	Next	button	and	the	Enter	key	enabled.
When	used	they	will	cause	screen	UFRTS03_D2	to
display.			

When	screen
UFRTS03_D2
is	displayed
what	function
keys	/	buttons
will	be	enabled
and	what	will
they	do?

It	will	have	a	Previous	button	and	the	F12	key	enabled.
When	used	they	will	cause	screen	UFRTS03_D1	to
(re)display.
It	will	have	a	Next	button	and	the	Enter	key	enabled.
When	used	they	will	cause	screen	UFRTS03_D3	to
display.			

When	screen
UFRTS03_D3
is	displayed
what	function
keys	/	buttons
will	be	enabled
and	what	will
they	do?

It	will	have	a	Previous	button	and	the	F12	key	enabled.
When	used	they	will	cause	screen	UFRTS03_D2	to
(re)display.			

Why	do	all	3
destination
screens	have
an	exit

Any	displayed	destination	needs	to	have	an	exit	junction
specified	and	the	appropriate	code	in	its
vHandle_NAVIGATETO	script	to	navigate	to	that
junction.		

junction?

How	is	the	exit
junction	used?	

When	a	destination	screen	is	displayed	it	can	at	any	time	be
replaced	by	another	destination,	possibly	for	another
business	object	or	business	object	instance	(ie:	another
order,	product	or	customer,	say).	To	allow	this	to	happen	it
should	have	an	exit	junction	that	allows	the	RAMP
navigator	to	exit	from	it	and	get	back	onto	the	junction
freeway/motorway	and	plan	the	fastest	route	to	the	next
destination.	

	

The	next	few	steps	in	this	tutorial	will	cover	implementing	this	plan	and
testing/debugging	it.
	

RAMP-TSAD07	Step	3.		Putting	the	Screens	on	a	Single	Tab	
In	this	step	you	will	attach		the	screens	to	a	single	command	handler	tab.
1.			In	the	Framework,	associate	the	All	Details	command	with	the	Employee
business	object.

2.			Make	it	the	Default	command.

3.			In	RAMP	Tools	locate	the	details	of	the	UFRTS03_D1	screen	and	remove
the	association	with	the	Name	command,	then	associate	the	screen	with	the
All	Details	command.

4.			Remove	the	command	handler	associations	from	UFRTS03_D2	and
UFRTS03_D3.

5.			Do	a	partial	save	of	the	RAMP	definition.
6.			Save	and	restart	the	Framework.
You	now	have	a	command	handler	tab	captioned	All	Details	which		you	can	use	
to	display	the	basic	details	(screen	UFRTS03_D1)	for	any	selected	employee:	

		
	

RAMP-TSAD07	Step	4.		Enable	Function	Keys/Buttons	and	Add
Required	Scripting		
In	this	step	you	will	enable	Next	and	Previous	buttons	on	the	screens	to	allow
the	end-user	to	navigate	between	the	screens	in	the	function.	You	will	also	make
some	changes	to	the	scripts.
1.			Review	the	properties	of	screens	UFRTS03_D1,	UFRTS03_D2	and
UFRTS03_D3	and	enable	buttons/function	keys	as	previously	planned.		

UFRTS03_D1	should	look	like	this:

UFRTS03_D2	should	look	like	this:

UFRTS03_D3	should	look	like	this:

2.			Save	your	changes	and	restart	the	Framework.	
Next,	review	and	alter	the	vHandle_BUTTONCLICK	scripts	of	each	of	these
screens	to	correctly	handle	the	button	navigations.
3.			First,	refer	to	the	5250	navigation	picture	in	RAMP-TSAD06	Step	1.		A
Multiple	5250	Screen	Scenario	.

4.			From	this	navigation	picture	you	can	see	pretty	easily	what	needs	to	be
done:

Screen Button/Function
Key

What	screen
should	result?

What
vHandle_BUTTONCLICK
needs	to	do

UFRTS03_D1 Next/Enter	 UFRTS03_D2 Send	enter	key.
The	default	button	script
should	handle	this.

UFRTS03_D2 Next/Enter UFRTS03_D3 Send	enter	key.
The	default	button	script
should	handle	this.

UFRTS03_D2
(see	note)

Previous/F12 UFRTS03_D1 Send	F12	to	get	to
UFRTS03_R1	(junction).
Send	Enter	to	advance	to
UFRTS03_D1.
The	default	button	script
will	not	handle	this.

UFRTS03_D3
(see	note)

Previous/F12 UFRTS03_D2 Send	F12	to	get	to
UFRTS03_R1	(junction).
Send	Enter	to	advance	to
UFRTS03_D1.
Send	Enter	to	advance	to
UFRTS03_D2.
The	default	button	script
will	not	handle	this.

	

	
Note	the	addition	of	the	Previous/F12	operations	to	UFRTS03_D2	and	to
UFRTS03_D3.	In	the	underlying	5250	application	no	such	direct	navigations
exist	(ie:	you	cannot	actually	go	from	UFRTS03_D2	to	UFRTS03_D1	in	one
operation).
However,	with	some	simple	scripting	you	can	make	it	appear	to	the	user	as	if
this	feature	actually	exists.	This	is	another	simple	example	of	adding	value	to	an
existing	5250	application.

5.			Change	your	vHandle_BUTTONCLICK	functions.	No	changes	is	required
to	the	UFRTS03_D1	script.

In	UFRTS03_D2	use	a	button	click	switch	construct	like	this:
	
								switch	(sButton)
								{
											case	KeyEnter:	/*	Enter-
Next	means	move	forward	to	UFRTSD03_03	*/
																	SENDKEY(KeyEnter);
																	break;
											case	KeyF12:			/*	F12-Previous	means	go	back	to	UFRTSD03_01	*/
																	Q_SENDKEY("",KeyEnter);
																	SENDKEY(KeyF12);
																	break;
											default:
																	ALERT_MESSAGE("Invalid	function	key	used");
																	break;
								}	

	
In	UFRTS03_D3	use	a	button	click	switch	construct	like	this:
	
								switch	(sButton)
								{
											case	KeyF12:		/*	F12-Previous	means	go	back	to	UFRTSD03_02	*/
																	Q_SENDKEY("",KeyEnter);
																	Q_SENDKEY("",KeyEnter);
																	SENDKEY(KeyF12);
																	break;
												default:
																	ALERT_MESSAGE("Invalid	function	key	used");
																	break;
								}

Note:
These	RAMP	scripts	have	been	changed	to	reinterpret	what	using	F12	actually
means.	On	a	RAMP	tab	showing	the	5250	screen	UFRTS03_D3,	the	F12
function	key	now	means	send	F12,	Enter,	Enter	to	the	5250	server.	This

reinterpretation	has	added	value	to	the	underpinning	5250	application	because	it
has	enabled	the	user	to	move	directly	to	the	previous	screen	from	this	screen.	A
lot	of	quite	valuable	business	process	improvement	is	underpinned	by	very
simple	strategies	like	this.								
All	invalid	function	keys	now	result	in	an	alert	message.	This	is	a	fail	safe	only.
RAMP	should	prevent	the	keys	from	being	used	anyway.
The	use	of	the	Q_SENDKEY()	functions.	RAMP-TS	SENDKEY()	operations
are	asynchronous,	so	only	the	first	SENDKEY()	request	can	be	sent
immediately.	The	subsequent	requests	need	to	be	queued	up	and	handled	when
the	resulting	screen(s)	arrive	back	asynchronously.
7.			Save	your	script	changes	and	do	a	partial	save	of	the	RAMP	definition.
Don’t	test	your	changes	until	you	complete	the	next	step.	Without	them	your
application’s	navigation	may	become	"stuck",	requiring	you	to	cancel	the
application.	

RAMP-TSAD07	Step	5.		Defining	the	Exit	Junctions	and
vHandle_NAVIGATETO	scripting				
The	final	thing	you	need	to	do	is	make	sure	that	all	three	destinations	have	an
Exit	Junction	specified	and	that	their	vHandle_NAVIGATETO	functions	can
navigate	to	the	exit	junction	when	requested.
1.			Open	RAMP	Tools	and	review	the	properties	of	the	3	destination	screens
UFRTS03_D1,	UFRTS03_D2	and	UFRTS03_D3.

2.			In	each	destination	screen,	edit	the	Targets	list	displayed	so	that	it	only
contains	the	name	of	the	junction	UFRTS03_R1.	Remember	to	click	the	save
button	after	making	your	changes	to	each	Targets	list.

	
Technical	Note	about	Exit	Junctions:	When	a	destination	screen	is	on	display
and	a	navigation	to	another	screen	needs	to	be	performed,	the	destination	screen
will	be	asked	to	navigate	to	its	exit	junction	before	the	navigation	route	to	the
target	screen	is	calculated.	By	default	a	destination	screen’s	exit	junction	is	the
first	junction	defined	in	its	Targets	list.						
3.			Now	review	the	script	associated	with	each	of	the	destination	screen.
4.			Locate	its	vHandle_NAVIGATETO	function	and	ensure	it	contains	a	script
that	can	handle	a	request	to	navigate	to	the	junction	named	UFRTS03_R1.

Your	scripts	probably	contain	this	code	already	from	the	previous	tutorial.
However,	it’s	important	you	understand	that	you	can	(and	sometimes	do)
manually	edit	the	Targets	list	and	add	the	associated	implementation	logic	to	the
vHandle_NAVIGATETO	function.			
It	their	trimmest	form,	the	vHandle_NAVIGATETO	functions	for	all	of	the
destination	screens	should	now	look	like	this:		
	
					switch	(sToForm)

					{

								/*	<NAVIGATESWITCH>	-	Do	not	remove	or	alter	this	line	*/

								case	"UFRTS03_R1":	/*	Navigate	back	to	the	exit	junction	*/
								{
											SENDKEY(KeyF12);
											Q_CHECK_CURRENT_FORM("UFRTS03_R1","Unable	to	navigate	to	form	UFRTS03_R1");
								}
								break;

								default:	/*	Handle	an	invalid	request	*/		
														alert("Form	"	+	this.vName	+	"	cannot	navigate	to	form	"	+	sToForm);
														bReturn	=	false;
														break;

					}
	

RAMP-TSAD07	Step	6.		Testing	and	Debugging
The	final	step	involves	some	extensive	testing	of	the	navigation	defined	in	your
code.
Check	that	your	All	Details	command	handler	tab	can	handle	these	situations.
Repeats	the	Next->Next->Previous	cycle	around	the	3	different	destination
screens	in	different	variations	and	combinations.
Selecting	different	employees	down	the	instance	list	with	UFRTS03_D1	on
display.

The	Employee	Details	1	screen	(UFRTS03_D1)	returns	to	its	nearest	junction,
Input	Employee	Number	screen	(UFRTS03_R1).	The	NAVIGATETO	script	for
UFRTS03_R1	navigates	back	to	UFRTS03_D1	by	setting	Employee	Number
from	the	instance	list	and	sending	the	Enter	key.

Selecting	different	employees	down	the	instance	list	with	UFRTS03_D2
displayed	initially.

The	Employee	Details	1	screen	(UFRTS03_D1)	is	displayed	for	each	employee
selected	in	the	instance	list.	This	happens	because	screen	UFRTS03_D1	is
associated	with	command	handler	“All	Details”.

Selecting	different	employees	down	the	instance	list	with	UFRTS03_D3
displayed	initially.

This	action	will	once	again	displayed	the	first	Employee	Details	screen
(UFRTS03_D1)	for	the	employee	selected	from	the	instance	list.

Navigating	to	other	business	objects	and	back	again	with	UFRTS03_D1
displayed.

When	you	select	a	different	business	object,	RAMP	exits	the	current	screen	to
return	to	its	nearest	junction.	From	here,	RAMP	creates	a	navigation	plan	to
reach	the	requested	command	handler	for	the	currently	selected	business	object.
i.e.	a	different	5250	screen.

When	you	reselect	the	All	Details	tab,	the	opposite	navigation	occurs.	The
current	screen	exits	to	its	nearest	junction	and	a	RAMP	generated	navigation
plan	returns	to	the	first	All	Details	screen	(UFRTS03_D1).

Navigating	to	other	business	objects	and	back	again	with	UFRTS03_D2
displayed	(should	come	back	to	UFRTS03_D1)

The	navigation	is	similar	to	the	previous	example.	Once	again	when	you	reselect
the	All	Details	tab	for	the	Employees	business	object	it	is	the	first	Employee
Details	screen	(UFRTS03_D1)	which	is	displayed	since	it	is	this	screen	which	is
associated	with	All	Details.

Navigating	to	other	business	objects	and	back	again	with	UFRTS03_D3
displayed	(should	come	back	to	UFRTS03_D1).

The	logic	here	is	the	same	as	the	previous	example.

If	you	have	problems	you	should	use	application	level	tracing	to	see	what	is
happening	as	your	scripts	execute.

	

		

RAMP-TSAD07	Step	7.		Fine	Tuning
While	testing	your	Next	->	Next	->	Previous	button	processing	you	may	have
noticed	a	flicker	as	RAMP-TS	navigates	through	intermediate	screens.
This	may	be	particularly	noticeable	when	using	the	Previous	button	on	screen
UFRTS03_D3,	because	the	underlying	5250	application	design	means	that	you
need	to	do	this:
	
								switch	(sButton)
								{
											case	KeyF12:		/*	F12-Previous	means	go	back	to	UFRTSD03_02	*/
																	Q_SENDKEY("",KeyEnter);
																	Q_SENDKEY("",KeyEnter);
																	SENDKEY(KeyF12);
																	break;
												default:
																	ALERT_MESSAGE("Invalid	function	key	used");
																	break;
								}

The	flicker	is	because	you	started	this	button	handling	sequence	with	the	current
5250	screen	visible.
Your	script	is	not	quite	complete	yet	and	needs	to	be	fined	tuned.	Change	it	to
this:
	
								switch	(sButton)
								{
											case	KeyF12:		/*	F12-Previous	means	go	back	to	UFRTSD03_02	*/
																	HIDE_CURRENT_FORM();					
																	Q_SENDKEY("",KeyEnter);
																	Q_SENDKEY("",KeyEnter);
																	SENDKEY(KeyF12);
																	break;
												default:
																	ALERT_MESSAGE("Invalid	function	key	used");
																	break;
								}

The	HIDE_CURRENT_FORM()	function	call	causes	the	current	RAMP-TS

screen	to	be	hidden,	preventing	the	intermediate	screen	navigations	from	being
seen	(ie:	the	flashes).	
The	RAMP_TS	screen	becomes	visible	again	when	the	SHOW_FORM	function
in	the	vHandle_ARRIVE	script	of	the	ultimate	destination	is	executed.	
	
	

RAMP-TSAD08:	Screen	Wrapper	Basics
This	tutorial	shows	the	basic	steps	in	creating	a	screen	wrapper.
A	screen	wrapper	is	a	Visual	LANSA	reusable	part	which	can	navigate	to	one	or
more	5250	screens	and	get	and	set	values	on	the	screens.	The	wrappers	offer	a
way	to	enhance	the	existing	5250	application	without	having	to	rewrite	it.
The	screen	wrapper	becomes	the	user	interface,	but	underneath	the	existing
5250	application	is	still	being	used.
This	is	simply	an	introductory	exercise.	There	would	be	no	real	reason	to	create
a	screen	wrapper	over	this	5250	screen.
	

Objectives
Understand	the	basics	of	creating	screen	wrappers

	
To	achieve	this	objective,	you	will	complete	the	following	steps:
RAMP-TSAD08	Step	1.	Name	the	Fields	to	Be	Used	in	the	Wrapper
RAMP-TSAD08	Step	2.	Create	and	Snap	in	the	Screen	Wrapper
RAMP-TSAD08	Step	3.	Understanding	the	Screen	Wrapper	Code
	RAMP-TSAD08	Step	4.	Test	Updating	the	Screen	from	the	Wrapper
Summary

Before	You	Begin
In	order	to	complete	this	tutorial,	you	must	have	completed	the	core	tutorials
RAMP-TS001	-	RAMP-TS015.
	

RAMP-TSAD08	Step	1.	Name	the	Fields	to	Be	Used	in	the
Wrapper
In	this	step	you	will	name	all	the	fields	on	the	DisplayEmployee	screen	so	that
they	can	be	used	in	a	screen	wrapper.
1.			Start	RAMP	Tools.
2.			Start	the	RAMP-TS	5250	emulator.
3.			Navigate	to	the	Browse/Maintain	Employee	and	Skill	Files	screen.
	
LANSA	run	pslsys	partition(dem)
	

4.			Select	option	3	in	the	Personnel	System	main	menu.
5.			Specify	an	employee	number,	for	example	A1234.
6.			Press	F21	to	put	the	screen	in	input	mode.
7.			Name	the	fields	on	the	screen	(you	have	named	some	of	them	in	the
previous	tutorials).	The	fields	should	be	named	like	this:

Employee	Number txtEmpno

Employee	Surname txtSurname

Employee	Given	Name(s) txtGivename

Street	No	and	Name txtAddress1

Suburb	or	Town txtAddress2

State	and	Country txtAddress3

Post	Code txtPostcode

Home	Phone	Number txtPhone

Department	Code utxtDepartment

Section	Code SECTION

Start	Date Date_Start_DDMMYY

Termination	Date Date_Termn_DDMMYY

	

	
You	need	to	also	name	the	subfile	columns	in	the	skills	table:
8.			Select	the	Date	Skl	Acquired	column	(not	the	column	heading)		and	name	it
subDateacq.

	
9.			Name	the	rest	of	the	columns	like	this:

Skill	Code subSkillcode

Skill	Description subSkilldesc

Comment subComment

Grade subGrade

the	plus	indicator moreindicator

	

		
Note	that	you	will	not	use	all	the	fields	you	have	named	in	the	first	part	of	the
tutorial.

	
10.			Save	the	screen	definition.
Now	that	you	have	named	all	the	fields	on	the	screen,	you	are	now	ready	to	put
it	inside	a	screen	wrapper.
	

RAMP-TSAD08	Step	2.	Create	and	Snap	in	the	Screen	Wrapper
In	this	step	you	will	copy	the	code	for	your	first	screen	wrapper	and	then	snap
the	screen	wrapper	to	the	Framework.
1.			In	the	Visual	LANSA	editor,	create	a	new	reusable	part	with	the	name
iiiRMP03.	Make	the	description	DisplayEmployee	Wrapper.

2.			Replace	the	code	in	the	reusable	part	with	this	code:
Function	Options(*DIRECT)
BEGIN_COM	ROLE(*EXTENDS	#VF_AC010)	HEIGHT(227)
LAYOUTMANAGER(#MAIN_LAYOUT)	WIDTH(497)
*
==
*	Simple	Field	and	Group	Definitions
*
==
Group_By	Name(#XG_HEAD)	Fields(#EMPNO	#SURNAME	#GIVENAME
#ADDRESS1	#ADDRESS2	#ADDRESS3	#POSTCODE	#PHONEHME
#DEPTMENT	#SECTION)
*	Body	and	Button	arrangement	panels
DEFINE_COM	CLASS(#PRIM_PANL)	NAME(#BUTTON_PANEL)
DISPLAYPOSITION(2)	HEIGHT(227)	HINT(*MTXTDF_DET1)
LAYOUTMANAGER(#BUTTON_FLOW)	LEFT(409)
PARENT(#COM_OWNER)	TABPOSITION(3)	TABSTOP(False)	TOP(0)
WIDTH(88)
DEFINE_COM	CLASS(#PRIM_PANL)	NAME(#BODY_HEAD)
DISPLAYPOSITION(1)	HEIGHT(227)	HINT(*MTXTDF_DET1)
LAYOUTMANAGER(#BODY_HEAD_FLOW)	LEFT(0)
PARENT(#COM_OWNER)	TABPOSITION(2)	TABSTOP(False)	TOP(0)
VERTICALSCROLL(True)	WIDTH(409)
*	Attachment	and	flow	layout	managers
DEFINE_COM	CLASS(#PRIM_ATLM)	NAME(#MAIN_LAYOUT)
DEFINE_COM	CLASS(#PRIM_FWLM)	NAME(#BUTTON_FLOW)
DIRECTION(TopToBottom)	FLOWOPERATION(Center)
MARGINBOTTOM(4)	MARGINLEFT(4)	MARGINRIGHT(4)
MARGINTOP(4)	SPACING(4)	SPACINGITEMS(4)
DEFINE_COM	CLASS(#PRIM_FWLM)	NAME(#BODY_HEAD_FLOW)
DIRECTION(TopToBottom)	MARGINBOTTOM(4)	MARGINLEFT(4)

MARGINRIGHT(4)	MARGINTOP(4)	SPACING(4)	SPACINGITEMS(4)
DEFINE_COM	CLASS(#PRIM_FWLI)	NAME(#FWLI_EMPNO)
MANAGE(#EMPNO)	PARENT(#BODY_HEAD_FLOW)
DEFINE_COM	CLASS(#PRIM_FWLI)	NAME(#FWLI_SURNAME)
MANAGE(#SURNAME)	PARENT(#BODY_HEAD_FLOW)
DEFINE_COM	CLASS(#PRIM_FWLI)	NAME(#FWLI_GIVENAME)
MANAGE(#GIVENAME)	PARENT(#BODY_HEAD_FLOW)
DEFINE_COM	CLASS(#PRIM_FWLI)	NAME(#FWLI_ADDRESS1)
MANAGE(#ADDRESS1)	PARENT(#BODY_HEAD_FLOW)
DEFINE_COM	CLASS(#PRIM_FWLI)	NAME(#FWLI_ADDRESS2)
MANAGE(#ADDRESS2)	PARENT(#BODY_HEAD_FLOW)
DEFINE_COM	CLASS(#PRIM_FWLI)	NAME(#FWLI_ADDRESS3)
MANAGE(#ADDRESS3)	PARENT(#BODY_HEAD_FLOW)
DEFINE_COM	CLASS(#PRIM_FWLI)	NAME(#FWLI_POSTCODE)
MANAGE(#POSTCODE)	PARENT(#BODY_HEAD_FLOW)
DEFINE_COM	CLASS(#PRIM_FWLI)	NAME(#FWLI_PHONEHME)
MANAGE(#PHONEHME)	PARENT(#BODY_HEAD_FLOW)
DEFINE_COM	CLASS(#PRIM_FWLI)	NAME(#FWLI_SAVE_BUTTON)
MANAGE(#SAVE_BUTTON)	PARENT(#BUTTON_FLOW)
*	The	save	button
DEFINE_COM	CLASS(#PRIM_PHBN)	NAME(#SAVE_BUTTON)
CAPTION(*MTXTDF_SAVE)	DISPLAYPOSITION(1)	LEFT(4)
PARENT(#BUTTON_PANEL)	TABPOSITION(1)	TOP(4)
*	Collection	for	detail	fields
DEFINE_COM	CLASS(#Prim_ACol<#prim_evef>)	NAME(#PanelFields)
*	Fields	in	the	head	area
DEFINE_COM	CLASS(#EMPNO.Visual)	DISPLAYPOSITION(1)
HEIGHT(19)	HINT(*MTXTDF_DET1)	LEFT(4)	PARENT(#BODY_HEAD)
READONLY(True)	TABPOSITION(1)	TOP(4)	USEPICKLIST(False)
WIDTH(209)
DEFINE_COM	CLASS(#SURNAME.Visual)	DISPLAYPOSITION(2)
HEIGHT(19)	HINT(*MTXTDF_DET1)	LEFT(4)	PARENT(#BODY_HEAD)
TABPOSITION(2)	TOP(27)	USEPICKLIST(False)	WIDTH(324)
DEFINE_COM	CLASS(#GIVENAME.Visual)	DISPLAYPOSITION(3)
HEIGHT(19)	HINT(*MTXTDF_DET1)	LEFT(4)	PARENT(#BODY_HEAD)
TABPOSITION(3)	TOP(50)	USEPICKLIST(False)	WIDTH(324)
DEFINE_COM	CLASS(#ADDRESS1.Visual)	DISPLAYPOSITION(4)
HEIGHT(19)	HINT(*MTXTDF_DET1)	LEFT(4)	PARENT(#BODY_HEAD)
TABPOSITION(4)	TOP(73)	USEPICKLIST(False)	WIDTH(363)

DEFINE_COM	CLASS(#ADDRESS2.Visual)	DISPLAYPOSITION(5)
HEIGHT(19)	HINT(*MTXTDF_DET1)	LEFT(4)	PARENT(#BODY_HEAD)
TABPOSITION(5)	TOP(96)	USEPICKLIST(False)	WIDTH(363)
DEFINE_COM	CLASS(#ADDRESS3.Visual)	DISPLAYPOSITION(6)
HEIGHT(19)	HINT(*MTXTDF_DET1)	LEFT(4)	PARENT(#BODY_HEAD)
TABPOSITION(6)	TOP(119)	USEPICKLIST(False)	WIDTH(363)
DEFINE_COM	CLASS(#POSTCODE.Visual)	DISPLAYPOSITION(7)
HEIGHT(19)	HINT(*MTXTDF_DET1)	LEFT(4)	PARENT(#BODY_HEAD)
TABPOSITION(7)	TOP(142)	USEPICKLIST(False)	WIDTH(216)
DEFINE_COM	CLASS(#PHONEHME.Visual)	DISPLAYPOSITION(8)
HEIGHT(19)	HINT(*MTXTDF_DET1)	LEFT(4)	PARENT(#BODY_HEAD)
TABPOSITION(8)	TOP(165)	USEPICKLIST(False)	WIDTH(286)
DEFINE_COM	CLASS(#PRIM_ATLM)	NAME(#ATLM_1)
DEFINE_COM	CLASS(#PRIM_ATLI)	NAME(#ATLI_1)
ATTACHMENT(Center)	PARENT(#ATLM_1)
DEFINE_COM	CLASS(#PRIM_ATLI)	NAME(#ATLI_2)
ATTACHMENT(Center)	MANAGE(#BODY_HEAD)
PARENT(#MAIN_LAYOUT)
DEFINE_COM	CLASS(#PRIM_ATLI)	NAME(#ATLI_3)
ATTACHMENT(Right)	MANAGE(#BUTTON_PANEL)
PARENT(#MAIN_LAYOUT)
*	A	screen	wrapper	is	a	VL	reusable	part	of	class	VF_SY122.	You	must	define
it	globally	scoped	as	opposed	to	inside	any	type	of	routine.
DEFINE_COM	CLASS(#vf_sy122)	NAME(#myscreen_wrapper)
DISPLAYPOSITION(3)	HEIGHT(227)	PARENT(#COM_OWNER)
WIDTH(409)
DEFINE_COM	CLASS(#PRIM_ATLI)	NAME(#ATLI_4)
ATTACHMENT(Center)	PARENT(#MAIN_LAYOUT)
DEFINE_COM	CLASS(#PRIM_ATLI)	NAME(#ATLI_6)
ATTACHMENT(Center)	MANAGE(#myscreen_wrapper)
PARENT(#MAIN_LAYOUT)
*	
*	--
*	Handle	Initialization
*	--
Mthroutine	Name(uInitialize)	Options(*REDEFINE)
Define_Com	Class(#Prim_evef)	Name(#FormField)	Reference(*dynamic)
Invoke	Method(#Com_Ancestor.uInitialize)
For	Each(#Control)	In(#Body_Head.ComponentControls)

If_Ref	Com(#Control)	Is(*INSTANCE_OF	#prim_evef)
Set_Ref	Com(#FormField)	To(*dynamic	#Control)
Invoke	Method(#PanelFields.Insert)	Item(#FormField)
Endif
Endfor
*	In	the	command's	uInitialize	method	routine,	set	the	screen	wrapper's
uCommand	property	to	#com_owner
Set	Com(#myscreen_wrapper)	Ucommand(#com_owner)
Endroutine
*	--

*	Handle	Command	Execution
*	
*	You	may	also	disable	the	entire	form	to	prevent	any	input	while	RAMP	is
navigating
*	--

Mthroutine	Name(uExecute)	Options(*REDEFINE)
Invoke	Method(#Com_Ancestor.uExecute)
#myscreen_wrapper.makerampTSavailable	
Set	Com(#Save_Button)	Enabled(False)
#com_owner.enabled	:=	false
Endroutine
*
==
*	Event	Handlers
*
==
*	RAMP	has	signalled	it's	ready.	Invoke	your	navigation	here.
*	Once	the	navigaton	starts,	processing	resumes	in	the	vHandleArrive	event
handler.
Evtroutine	Handling(#myscreen_wrapper.RampTSAvailable)
Invoke	Method(#myscreen_wrapper.navigatetoscreen)
Name('DisplayEmployee')
Endroutine
	
Evtroutine	Handling(#myscreen_wrapper.vHandleArrive)
Arrivedscreen(#CurrentScreen)	Previousscreen(#PreviousScreen)
Arrivedpayload(#Payload)

Case	(#CurrentScreen)
When	Value_Is(=	'DisplayEmployee')
Set	Com(#SAVE_BUTTON)	Enabled(false)
*	Error	handling:	Payloads	are	destroyed	when	the	ARRIVE	script	finishes
executing.	Therefore,	a	payload	of	UPDATE_EMPLOYEE	would	most	likely
mean	there	was	a	validation	error.	
If	(#Payload	=	UPDATE_EMPLOYEE)
Use	Builtin(message_box_show)	With_Args(ok	ok	info	"Validation	Error"
"Please	correct	any	errors")
Else
*	Unlock	the	framework
Set	Com(#avFrameworkManager)	Ulocked(false)
#myscreen_wrapper.getvalue	From('txtEmpno')	Value(#empno.value)
#myscreen_wrapper.getvalue	From('txtSurname')	Value(#surname.value)
#myscreen_wrapper.getvalue	From('txtGivename')	Value(#givename.value)
#myscreen_wrapper.getvalue	From('txtAddress1')	Value(#address1.value)
#myscreen_wrapper.getvalue	From('txtAddress2')	Value(#address2.value)
#myscreen_wrapper.getvalue	From('txtAddress3')	Value(#address3.value)
#myscreen_wrapper.getvalue	From('txtPhone')	Value(#phonehme.value)
#myscreen_wrapper.getvalue	From('txtPostcode')	Value(#POSTCODE.value)
	
#com_owner.enabled	:=	true
Endif
Endcase
Endroutine
*	--
*	Handle	Save
*	--
Mthroutine	Name(Save)
*	Set	the	5250	field	values	to	the	values	from	this	panel
#myscreen_wrapper.setvalue	Infield('txtSurname')	Value(#surname.value)
#myscreen_wrapper.setvalue	Infield('txtGivename')	Value(#givename.value)
#myscreen_wrapper.setvalue	Infield('txtAddress1')	Value(#address1.value)
#myscreen_wrapper.setvalue	Infield('txtAddress2')	Value(#address2.value)
#myscreen_wrapper.setvalue	Infield('txtAddress3')	Value(#address3.value)
#myscreen_wrapper.setvalue	Infield('txtPhone')	Value(#phonehme.value)
#myscreen_wrapper.setvalue	Infield('txtPostcode')	Value(#POSTCODE.value)
*	Send	the	Enter	key	with	the	payload
#myscreen_wrapper.sendkey	Key(#myscreen_wrapper.KeyEnter)

Payload(UPDATE_EMPLOYEE)
Endroutine
	
*	Listen	to	messages	from	RAMP	and	the	5250	application
Evtroutine	Handling(#myscreen_wrapper.RampMessage)
Umessagetype(#MsgType)	Umessagetext(#MsgText)
Case	(#msgtype.value)
When	Value_Is('=	VF_ERROR')
*	Fatal	messages	reported	by	Ramp	(e.g.	Navigation	request	failed,	etc).	If	in
design	mode,	show	the	underlying	5250	screen.	Otherwise,	make	the	error
message	appear	in	a	message	box	on	top	of	the	command
If	(#usystem.iDesignMode	=	true)
Set	Com(#myscreen_wrapper)	Visible(True)
Else
Message	Msgid(dcm9899)	Msgf(dc@m01)	Msgdta(#msgtext.value)
#com_owner.avshowmessages
Endif
*	Messages	sent	by	the	System	i	application	or	unknown	form	was
encountered
When	Value_Is('=	VF_INFO'	'=	VF_UNKNOWN_FORM')
Message	Msgid(dcm9899)	Msgf(dc@m01)	Msgdta(#msgtext.value)
*	Failure	to	initialize	RAMP.	Could	occur	for	mainly	one	of	two	reasons
When	Value_Is('=	VF_INIT_ERROR')
Message	Msgid(dcm9899)	Msgf(dc@m01)	Msgdta(#msgtext.value)
#com_owner.avshowmessages
Otherwise
Use	Builtin(message_box_show)	With_Args(ok	ok	info	*Component
('Unknown	message	type	'	+	#MsgType	+	'encountered'))
Endcase
Endroutine
*	--
*	Handle	changes	in	any	of	the	fields	on	the	panel
*	--
Evtroutine	Handling(#PanelFields<>.Changed)
*	Enable	the	save	button
Set	Com(#SAVE_BUTTON)	Enabled(True)
*	Lock	the	framework	and	set	a	message	for	the	user
Use	Builtin(bconcat)	With_Args('Changes	made	to	employee'	#GiveName
#Surname	'have	not	been	saved	yet.'	'Do	you	want	to	save	them	before

continuing?')	To_Get(#sysvar$av)
Set	Com(#avFrameworkManager)	Ulocked(USER)
Ulockedmessage(#sysvar$av)
Endroutine
*	--
*	Enter	key	pressed
*	--
Evtroutine	Handling(#PanelFields<>.KeyPress)
Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
Keycode(#KeyCode)
If	Cond('#KeyCode.Value	=	Enter')
*	If	there	no	changes	have	been	made	issue	message	and	ignore	enter
If	Cond('#SAVE_BUTTON.Enabled	*EQ	True')
Invoke	Method(#Com_Owner.Save)
Else
*	Issue	'There	are	no	changes	to	save'	message
Use	Builtin(Message_box_show)	With_Args(ok	ok	Info	*Component
*MTXTDF_NO_SAVE)
Endif
Endif
Endroutine
*	--
*	Handle	the	save	button
*	--
Evtroutine	Handling(#SAVE_BUTTON.Click)
#com_owner.Save
Endroutine
*	--
*	Handle	Termination
*	--
Mthroutine	Name(uTerminate)	Options(*REDEFINE)
*	Clean	up	the	colelction	of	fields	on	the	panel
Invoke	Method(#PanelFields.RemoveAll)
*	Do	any	termination	defined	in	the	ancestor
Invoke	Method(#Com_Ancestor.uTerminate)
Endroutine
End_Com

	

3.			Display	the	Design	tab	of	the	component	to	see	the	screen	wrapper	user
interface:

	
4.			Compile	the	screen	wrapper.
5.			In	the	Framework,	display	the	properties	of	the	Employees	business	object.
6.			Create	a	new	command	Details	Wrapper,	enable	it	for	the	Employees
business	object	and	associate	the	iiiRMP03	screen	wrapper	with	it.

	
7.			Save	and	restart	the	Framework.
8.			Test	your	screen	wrapper	by	selecting	an	employee	and	displaying	the
Details	Wrapper	command	handler	for	an	employee:

		
	

RAMP-TSAD08	Step	3.	Understanding	the	Screen	Wrapper	Code
In	this	step	you	will	examine	the	code	in	the	screen	wrapper.
1.			Display	the	screen	wrapper	source	code	in	the	Visual	LANSA	editor.
2.			The	screen	wrapper	is	a	command	handler,	therefore	it's	ancestor	has	to	be	
#VF_AC010:

3.			The	first	thing	to	note	is	in	the	DEFINE_COM	statement	which	defines	the
screen	wrapper	component	which	enables	the	command	handler	to
communicate	with	the	underlying	5250	screen:

	
4.			Next,	in	the	uInitialize	even	routine,		note	the	statement	that	sets	the	screen
wrapper's	uCommand	property	to	#COM_OWNER	:

	
You	must	always	set	uCommand	to	#com_owner,	otherwise	an	error	message	of

type	VF_INIT_ERROR	will	be	issued	because	the	screen	wrapper	will	not	have
access	to	the	command	handler.
5.			Then	notice	that	RAMP	execution	is	kicked	off	by	the
MakerampTSavailable	method	in	the	uExecute	method	routine:

	
6.			When	RAMP	is	available,	you	specify	the	destination	screen	to	which	you
want	the	wrapper	to	navigate	in	the	#myscreen_wrapper.RampTSAvailable
event	routine:

		
7.			The	vHandleArrive	event	routine	first	checks	that	the	screen	that	has	arrived
is	DisplayEmployee.	For	error	handling,	it	checks	if	there	is	an
UPDATE_EMPLOYEE	payload	(issued	when	the	user	clicks	the	Save
button).	If	there	isn't,	the	wrapper	retrieves	the	values	from	the	fields	on	the
screen	and	displays	them:

	
	
8.			Locate	the	event	routine	handling	the	Save	button	on	the	screen	wrapper
which	assigns	the	values	on	the	fields	on	the	wrapper	to	the	fields	on	the
screen	and	then	emulates	the	pressing	of		the	Enter	key:

	
9.			Lastly	have	a	look	at	the	routine	handling	the
#myscreen_wrapper.RampMessage	event	to	see	how	RAMP-TS	can	handle
different	types	of	errors	in	a	screen	wrapper:

	RAMP-TSAD08	Step	4.	Test	Updating	the	Screen	from	the
Wrapper
In	this	step	you	will
1.			Display	the	details	of	an	employee	in	the	Details	Wrapper	in	the	Framework.
2.			Turn	the	application	trace	on	from	the	Framework	menu
3.			Make	a	change	to,	for	example,	the	employee	surname	and	press	the	Save
button.

4.			Examine	the	trace.	Notice	how	the	screen	wrapper	first	assigns	the	field
values	on	the	wrapper	to	the	fields	on	the	underlying	5250	screen	and	sends
the	Enter	key.	RAMP	then	navigates	to	the	FindEmployee	screen	which
updates	the	instance	list	and	then	navigates	back	to	the	DisplayEmployee
screen.

	

Summary
Important	Observations
Before	you	create	a	screen	wrapper,	name	all	the	fields	on	the	5250	screen(s)
that	will	be	used	in	the	wrapper
You	also	need	to	ensure	there	is	a	navigation	path	to	and	from	the	destination
screen	to	be	wrapped.
A	screen	wrapper	is	a	Visual	LANSA	reusable	part	with	Ancestor	#VF_AC010
(command	handler)	which	defines	class	#VF_SY122.
In	the	screen	wrapper,	you	start	RAMP	execution	by	invoking	the
MakerampTSavailable	event.	Once	RAMP	is	running,	you	specify	the
destination	screen	the	wrapper	is	to	navigate	to	in	the	routine	handling
RampTSAvailable	event.
You	use	the	ScreenWrapper.GetValue	and	ScreenWrapper.SetValue	methods	to
pass	values	between	the	5250	screens	and	the	wrapper.
You	snap	the	screen	wrapper	into	the	Framework	as	you	would	snap	in	any	non-
RAMP	command	handler	(using	the	business	object	properties,	not	RAMP
Tools)

	
What	You	Should	Know
How	to	create	a	basic	screen	wrapper
	
	

RAMP-TSAD09:	Screen	Wrapper	with	a	Subfile
In	this	tutorial	you	will	enhance	your	screen	wrapper	to	include	a	photo	of	the
employee	and	the	skills	subfile	presented	as	a	list	view.

Objectives
Learn	how	to	handle	subfiles	as	a	list	view	in	screen	wrapper
Learn	how	easy	it	to	wrap	a	screen	in	a	more	intuitive	interface

	
To	achieve	this	objective,	you	will	complete	the	following	steps:
RAMP-TSAD09	Step	1.	Add	an	Image	to	the	Screen	Wrapper
RAMP-TSAD09	Step	2.	Add	Skills	List	View	to	the	Wrapper
RAMP-TSAD09	Step	3.	Add	Code	to	Populate	the	List	View

Summary

Before	You	Begin
In	order	to	complete	this	tutorial,	you	must	have	completed	RAMP-TSAD08:
Screen	Wrapper	Basics.

Note	About	This	Tutorial
On	some	systems	the	screen	wrapper	created	in	this	tutorial	causes	a	'multiple
sendkey'	error.	The	problem	is	currently	being	investigated.	A	work-around	is	to
name	the	screen	with	a	different	name	when	it	is	in	update	mode,	for	example
'UpdateEmployee'	instead	of	using	the	F21	keypress	in	the	arrival	script	to
distinguish	the	screen	in	display	and	update	mode.
	

RAMP-TSAD09	Step	1.	Add	an	Image	to	the	Screen	Wrapper
In	this	step	you	will	add	an	image	to	the	Browse/Maintain	Employee	and	Skill
Files	screen	wrapper.
In	this	example	you	will	be	using	a	standard	.gif	file	shipped	with	the
Framework,	in	a	real	application	you	would	have	the	employee	photos	stored	in
a	file	on	the	server	and	you	would	retrieve	them	with	the	other	employee	details.
1.			Display	the	iiiRMP03	screen	wrapper	in	the	Visual	LANSA	editor.
2.			Display	the	Design	tab.
3.			Drag	an	image	control	from	the	Common	Controls	tab	in	Favorites	to	the
screen.

Notice	that	it	is	automatically	placed	under	the	fields	in	the	screen	wrapper	by
the	layout	manager	that	manages	the	screen.	In	this	exercise	you	want	to
position	the	image	manually.
4.			Display	the	Source	tab	and	locate	the	DEFINE_COM	statement	for	the
image,	and	the	layout	item	created	for	it.

5.			Comment	out	the	statement	defining	the	flow	layout	item.

6.				Switch	to	the	Design	tab	and	move	and	position	the	image	like	this:

	
7.			Display	the	Source	tab	and	add	this	statement	to	assign	an	image	file	to	the
image	control	after	the	values	for	fields	on	the	screen	wrapper	have	been
retrieved:
	
Set	Com(#imge_1)	Filename('C:\Program
Files\LANSA\LANSA\Imports\VLFRAMEWORK\df_im001.gif')
	

	
You	need	to	replace	the	path	information	with	the	path	in	your	system	where
df_im001.gif	is	located.	Your	code	should	look	like	this:

	
8.			Compile	the	screen	wrapper.	If	the	compile	fails	because	the	wrapper	is
being	used,	restart	the	Framework.

9.			In	the	Framework,	display	the	Details	Wrapper	for	an	employee:

		
10.			Shut	down	the	Framework.
	

RAMP-TSAD09	Step	2.	Add	Skills	List	View	to	the	Wrapper
In	this	step	you	will	add	a	list	view	to	the	screen	wrapper	that	shows	the	skills
subfile	on	the	Browse/Maintain	Employee	and	Skill	Files	screen.
Note	that	you	named	the	subfile	columns	and	the	plus	sign	in	RAMP-TSAD08
Step	1.	Name	the	Fields	to	Be	Used	in	the	Wrapper.
1.			Display	the	screen	wrapper	user	interface	in	the	Visual	LANSA	editor.
2.			Drag	a	list	view	control	to	the	screen	wrapper	and	size	it	like	this:

	
3.			Name	it	Skills.

	
4.			Locate	the	PSLSKL	file	in	the	repository,	and	drag	the	DATEACQ	and
SKILCODE	fields	in	the	file	to	the	list	view.

5.			Locate	the	SKLTAB	file	in	the	repository	and	drag	the	SKILDESC	field	to
the	list	view.

6.			Lastly	add	the	COMMENT	and	GRADE	fields	from	the	PSLSKL	file	to	the
list	view.

Your	list	view	should	look	like	this:

		
7.			Save	the	wrapper.
	

RAMP-TSAD09	Step	3.	Add	Code	to	Populate	the	List	View
In	this	step	you	will	add	the	code	to	populate	the	list	view.
1.			Display	the	source	code	of	the	screen	wrapper.
2.			Locate	the	#myscreen_wrapper.RampTSAvailable	event	routine	and	add	this
code	to	clear	the	fields	and	the	subfile	on	it	when	the	screen	arrives:
Clr_List	Named(#skills)
#XG_HEAD	:=	*null

	
Your	code	should	look	like	this:

	
3.			Add	the	following	method	routine	to	the	end	of	your	screen	wrapper	source:
Mthroutine	Name(uGetSubfilePage)
	
Define_Map	For(*result)	Class(#prim_boln)	Name(#NextPage)
Define	Field(#MoreVal)	Type(*char)	Length(1)
	
#listcount	:=	1
#NextPage	:=	false
	
Dowhile	(#myscreen_wrapper.check_field_exists("dateacq"	#listcount))
	
#myscreen_wrapper.getvalue	From("dateacq")	Value(#vf_eltxts)
Defaultvalue(#ddmmyy)	Index(#listcount)
#myscreen_wrapper.getvalue	From("skillcode")	Value(#skilcode)
Index(#listcount)
#myscreen_wrapper.getvalue	From("skilldesc")	Value(#skildesc)
Index(#listcount)	Defaultvalue("Defalt	value")
#myscreen_wrapper.getvalue	From("comment")	Value(#comment)
Index(#listcount)
#myscreen_wrapper.getvalue	From("grade")	Value(#grade)	Index(#listcount)

	
*	You	can	put	some	tracing
#com_owner.avframeworkmanager.avRecordTrace	Component(#com_owner)
Event("Adding	entry	=	"	+	#vf_eltxts	+	",	"	+	#skilcode	+	",	"	+	#skildesc	+	",
"	+	#grade)
	
Add_Entry	To_List(#skills)
	
#listcount	+=	1
	
Endwhile
	
*	when	identifying	this	screen	we	set	the	name	of	the	"+"	sign	=
"moreindicator".	The	presence	of	that	field	in	the	last	row	of	the	subfile	tells
us	whether	there	is	another	page.	The	last	row	is	one	less	than	the	current
value	of	#listcount.
	
#listcount	-=	1
	
If	(#myscreen_wrapper.check_field_exists("moreindicator"	#listcount))
#myscreen_wrapper.getvalue	From("moreindicator")	Value(#MoreVal)
Index(#listcount)
#NextPage	:=	(#MoreVal.trim	*NE	"")
Endif
	
Endroutine

	
This	code	traverses	the	skills	subfile	by	first	checking	if	the	first	column
corresponding	to	the	DATEACQ	field	exists.	If	it	is	present	on	the	screen,	the
routine	gets	the	values	for	all	the	subfile	columns.
Fields	in	RAMP-TS	subfiles	are	indexed	starting	from	1.	A	subfile	page	with	7
rows	will	have	7	instances	of	each	of	the	fields	in	the	subfile.	Here	we	increase
#listcount	and	use	it	to	get	the	value	of	a	field.
Note	that	you	can	specify	a	default	value	when	using	the	getvalue	method.
The	moreindicator	is	the	name	you	gave	to	the	plus	sign	on	the	screen.
	
4.			Now	locate	the	#myscreen_wrapper.vHandleArrive	event	routine.

5.			Define	a	Boolean	class	#MoreRecords	which	will	be	used	by	the	wrapper	to
determine	if	there	are	more	records	in	the	skills	subfile.
	
Define_Com	Class(#prim_boln)	Name(#MoreRecords)
	

		
6.			Then	add	this	code	to	check	value	returned	by	the	uGetSubfilePage	method,
and	if	there	are	more	records,	to	send	a	PageDown	keystroke	to	get	to	the
next	subfile	page.
#MoreRecords	:=	#com_owner.uGetSubfilePage
If	(#MoreRecords)
if	(#previousscreen	=	'DisplayEmployee')
#myscreen_wrapper.sendkey	Key(#myscreen_wrapper.KeyPageDown)

	
(The	check	for	the	previous	screen	is	there	simply	to	slow	the	screen	wrapper
down	so	that	repeated	SENDKEY	requests	on	fast	machines	get	queued
properly.)
Your	code	should	look	like	this:

	
7.			Compile	the	screen	wrapper.
8.			Start	the	Framework	and	display	the	Details	Wrapper	command	handler	for
an	employee.

	
	
	

Summary
Important	Observations
You	can	make	the	screen	wrapper	to	show	subfile	records	in	a	list	view	to
eliminate	the	need	to	page	down.
	

What	You	Should	Know
How	to	enhance	your	screen	wrapper	by	adding	components	such	as	images
How	to	display	a	subfile	as	a	list	view	on	a	screen	wrapper.
	
	
	
	
	

Scripting
RAMP	manages	the	5250	screens	in	the	modernized	application	with	scripts.
Learning
Using
Debugging

Learning
Anatomy	of	Scripts	introduces	you	to	RAMP	scripts.
Javascript	Essentials	teaches	you	some	basic	techniques	you	will	often	use	when
writing	scripts.

Application	level	tracing
Use	the	Tracing	option	in	the	Framework	menu	to	start	Application	Level
Tracing
	
	

Anatomy	of	Scripts
Every	classified	screen	has	a	single	script	associated	with	it.	The	script	is
always	structured	like	this:

Special	Screen	Script
Junction	Screen	Script
Destination	Screen	Script
vHandle_ARRIVE	Function
Your	RAMP-TS	Screen	Script	Defines	a	JavaScript	Object

Special	Screen	Script
The	script	associated	with	a	SPECIAL	screen	is	typically	structured	like	this:

Junction	Screen	Script
The	script	associated	with	a	JUNCTION	screen	is	typically	structured	like	this:

	

Destination	Screen	Script
The	script	associated	with	a	DESTINATION	screen	is	typically	structured	like
this:

	

vHandle_NAVIGATETO	Function
This	is	the	vHandle_NAVIGATETO	function	for	an	example	screen	named
"JUNCTION_A".		It	services	navigation	requests	made	to	it	by	the	RAMP
framework.	Imagine	"JUNCTION_A"	can	handle	requests	to	navigate	to
"DESTINATION_B"	and	to	"JUNCTION_C":		

	

vHandle_ARRIVE	Function
This	is	the	vHandle_ARRIVE	for	an	example	screen	named
"DESTINATION_B".	It	executes	whenever	"DESTINATION_B"	is	displayed:

	

Your	RAMP-TS	Screen	Script	Defines	a	JavaScript	Object
The	script	you	create	for	each	RAMP-TS	screen	defines	a	JavaScript	object.
Like	any	JavaScript	object	it	has	functions	and	properties.
The	standard	shipped	RAMP-TS	functions	and	properties	are	as	follows
(commonly	used	features	are		shown	in	bold):	

	

Name Type Modifiable
by	your
scripting?

Description/Comment

vFKC String
Array

No Function	key	captions

vFKERTS String	 No Function	key
enablement	for	5250
screen	

vFKEVLF String No Function	key/button
enablement	for
RAMP-TS

vFKSEQ String No Function	key	sequence
numbers		

vFKSND String
Array

No Function	keys	to	sent
to	5250	server

vGUID String No GUID	of	the	screen
definition

vHandle_ARRIVE Function N/A Screen	arrival
handling	function.			

vHandle_AVEVENT Function N/A Screen	VLF	event
handling	function

vHandle_BUTTONCLICK Function N/A Screen	button	click	/
function	key	handling
function

vHandle_DEPART Function N/A Screen	departure
handling	function	

vHandle_NAVIGATETO Function N/A Screen	navigation
handling	function

vHandle_USER_NAVIGATION_PLAN Function N/A Screen	navigation	plan
override	function

vLastMessage String No Latest	message	to
have	arrived	on	this
screen

vLatestVariant String No Latest	screen	variant
to	have	arrived

vName String No Name	of	the	screen
vOverrideExitJunction String Yes Override	of	exit

junction	associated
with	this	screen.

vTargets String
Array	

No Screens	that	this
screen	can	navigate	to

vTYPE String No Type	of	screen

	

You	can	add	your	own	functions	and	properties.
	
Note:	Do	not	prefix	your	own	functions	and	properties	with	"v"	(lowercase)	or
"V"	(uppercase).	The	v*/V*	namespaces	are	reserved	by	the	RAMP-TS	product
to	allow	for	the	future	expansion	of	the	standard	shipped	functions	and
properties.
	
	

Scripts	in	a	Classic	Details	Display
This	example	shows	how	two	very	simple	5250	screens	are	modernized	in
RAMP.
The	first	screen	GETORDER	asks	for	an	order	number	to	be	input	and	the
second	screen	SHOWORDER		displays	the	order	details:

The	user	repeats	order	inquiries	by	using	the	F12	function	key.

Modernized	Version
To	modernize	the	application	we	identify	the	5250	screens	and	script	their
interaction	to	RAMP:
The	GETORDER	screen	becomes	a	junction	screen.	It	will	not	be	displayed.
The	SHOWORDER	screen	becomes	a	destination	screen.

In	the	modernized	application	the	user	selects	orders	from	the	instance	list	and
the	SHOWORDER	screen	shows	the	details	of	the	selected	order.
GETORDER	has	a	script	with	a	vHandle_NAVIGATETO	Function	which
shows	the	SHOWORDER	screen.
The	SHOWORDER	screen	has	a	script	with	a:
vHandle_NAVIGATETO	Function	which	contains	code	to	cancel	out	of	the
SHOWORDER	screen.
A	vHandle_BUTTONCLICK	function	which	will	not	be	executed	for
SHOWORDER	because	all	function	keys	are	hidden	and	disabled	in	this	screen
(the	user	just	clicks	on	different	orders	up	in	the	instance	list	to	display	the
details	of	a	different	order.)
Every	time	a	user	clicks	on	an	order	in	the	instance	list,	the	SHOWORDER's
vHandle_NAVIGATETO	function	is	executed	to	return	to	the	navigation
network.	Once	there,	the	navigation	path	to	display	the	SHOWORDERS	screen
with	the	details	of	the	selected	order	is	built.
	See	the	tutorial	RAMP-TS009:	Tracing	Navigation	for	details	of	this	type	of
navigation.
		

Javascript	Essentials
RAMP	manages	the	5250	screens	in	the	modernized	application	with	JavaScript
scripts.
JavaScript	is	the	most	commonly	used	scripting	language	in	the	world.	You	can
also	use	Microsoft's	JScript	extension.	Note	that	JavaScript	skills	can	be	used	in
many	other	contexts	such	as	LANSA	for	the	Web	and	HTML	manipulation.
This	section	describes	some	Javascript	essentials:
External	JavaScript	Documentation
Basic	Javascript	syntax
Reading,	Writing	and	Storing	Values
alert()
Converting	Numbers	to	Strings
Converting	String	to	Numbers
String	Manipulation	Functions
Is	This	Variable	Number	or	String?
JavaScript	Coding	Styles
Using	the	objGlobal	Object
	
	

External	JavaScript	Documentation
Click	here	to	access	formal	JavaScript	documentation:
http://www.w3schools.com/jsref/
There	are	also	many	good	books	available	(such	as	JavaScript	Bible	by	Danny
Goodman,	ISBN	0-7645-3188-3).
	

Basic	Javascript	syntax
Comments	are	marked	with	/*		*/
Lines	are	ended	with	a	semicolon	(;)
Literals	are	enclosed	in	double-quotes	(")
There	are	Framework	Objects	that	Scripts	Can	Refer	To
The	structure	of	the	conditional	switch	statement	is:
	
switch(n)
{
case	1:
execute	code	block	1
break			
case	2:
execute	code	block	2
break
default:
code	to	be	executed	if	n	is
different	from	case	1	and	2
}
			

Reading,	Writing	and	Storing	Values
Reading	values
Scripts	can	read	values	from	the	instance	list	like	this:
myVariable	=	objListManager.Akey3[0];

	
See	Visual	and	Programmatic	Identifiers.
	
If	the	user	has	selected	several	entries	in	the	instance	list,	you	can	read	all	the
values	in	a	loop	like	this:
var	i	=	0;
var	strMessage	=	"";
for	(i	=	1;	i	<=	objListManager.TotalSelected;	i++)
{
				strMessage	+=	"Selected	Employee	"	+	objListManager.AKey3[i]	+	"	";
}
alert(strMessage);

	
Or	from	a	field	defined	on	a	5250	screen	like	this:
MyVariable	=	GETVALUE("utxtEmployeeCode");
	

Writing	values
The	script	can	put	values	on	the	screen	like	this:
SETVALUE("utxtEmployeeCode",	"myText");

	

Storing	values
You	can	store	values	in	Javascript	variables	and	then	read	and	write	from	them:
Var	MyString	=	"";
MyString	=	objListManager.Akey3[0];

		
These	variables	exist	only	while	the	script	is	running.	To	share	information
between	scripts,	you	need	to	create	and	set	a	property	for	objGlobal	:
objGlobal.uLastValue	=	"anything";

	
Then	another	script	can	read	this	value:
myVariable	=	objGlobal.uLastValue;
	

Getting	script	pieces	quickly
Scripting	Pop-up	Menu
	

alert()
The	alert()	function	is	your	most	useful	tool	for	debugging	errant	scripts.
For	example:
alert("About	to	send	the	enter	key");
alert("The	value	of	x	is	"	+	x.toString());	
alert("The	customer	number	is	"	+	objGlobal.CustomerNumber);		

Also	See
Strange	behavior	in	scripts	
Object	expected

Converting	Numbers	to	Strings
If	you	have	a	number	in	JavaScript	variable	and	you	want	to	convert	it	to	a
string	use	the	toString()	function.	For	example:
var	number	=	5.65;	
var	stringnumber	=	number.toString();

alert(stringnumber);	

SETVALUE("Amount",stringNumber);			
SETVALUE("Amount",number.toString());		

Converting	String	to	Numbers
If	you	have	a	string	and	want	to	convert	it	to	a	number	then	use	the	parseInt()
method.	For	example	this	script	returns	integer	values	containing	1234	and	43
respectively	into	X:
X	=	parseInt("1234",10);
X	=	parseInt("34abc",10);

	
The	second	argument	(10)	specifies	you	want	to	use	a	base	10	numbering
system.	It's	unusual	to	use	anything	for	this	parameter	except	10	and	you	should
always	specify	it	as	the	default	is	a	bit	unpredictable.	(See,	for	example,
http://www.w3schools.com/jsref/jsref_obj_global.asp	if	you	are	interested	as	to
why)
If	you	need	to	have	decimals	then	use	parseFloat().	For	example	this	script
returns	floating	point	values	1234.345	and	34.7	respectively	into	X:				
X	=	parseFloat("1234.345");
X	=	parseFloat("34.7abc");

	
Remember	that	these	are	floating	point	values	so	they	are	not	always	as	accurate
or	as	predictable	as	signed	or	packed	decimals	numbers.

http://www.w3schools.com/jsref/jsref_obj_global.asp

String	Manipulation	Functions
String	variables	in	JavaScript	have	a	number	of	very	useful	string	functions.
Here's	a	sample	of	the	most	commonly	used:		

Operation	/	Function Example

Concatenation	(+) var	S1	=	"Customer";
var	S2	=	"123456";		
var	S3	=	S1	+	"	"	+	S2	+
"could	not	be	found";

	
puts	Customer	123456could	not
be	found	in	variable	S3.	

IndexOf	–	finds	first	occurrence	of	a	string
in	a	string

/*								012345678901	*/	
var	S1	=
"ABCDHELLOABC";
var	pos	=
S1.indexOf("HELLO");

	
will	put	the	number	4	into
variable	pos.		

lastIndexOf	-	finds	last	occurrence	of	a
string	in	a	string

/*								012345678901	*/	
var	S1	=
"ABCDHELLOABC";
var	pos	=
S1.lastIndexOf("AB");

	
will	put	the	number	9	into
variable	pos.		

charAt	–	returns	the	character	at	a	specific
position	in	a	string

/*								012345678901	*/	
var	S1	=
"ABCDHELLOABC";
var	S2	=	S1.charAt(4);
var	S3	=	S1.charAt(9);

	
will	put	"H"	into	S2	and	"A"

into	S3.

length	–	returns	the	length	of	a	string /*								012345678901		*/	
var	S1	=
"ABCDHELLOABC";
var	I		=	S1.length;

	
will	put	the	number	11	into
variable	I.

substring	–	returns	the	substring	of	string
using	a	starting	and	ending	point.

/*							01234567789		*/	
var	a	=	"Hello	World";
var	b	=	a.substring(4,8);

	
will	put	"o	Wor"	into	b.
	

substr	–	returns	the	substring	of	a	string
using	a	starting	position	and	a	length

/*							01234567789		*/	
var	a	=	"Hello	World";
var	b	=	a.substr(2,3);

	
will	put	"llo"	into	b.
	

toLowerCase	–	returns	the	lowercase	of
string

var	a	=	"Hello	World";
var	b	=	a.toLowerCase();

	
will	put	"hello	world"	into	b.
	

toUpperCase	–	returns	the	uppercase	of	a
string

var	a	=	"Hello	World";
var	b	=	a.toUpperCase();

	
will	put	"HELL	WORLD"	into
b.
	

	

There	are	more	string	functions	like	these	available.	See:
http://www.w3schools.com/jsref/jsref_obj_string.asp	for	more	details.

Is	This	Variable	Number	or	String?
Sometimes	you	have	a	variable	in	Javascript	and	do	not	know	whether	it	is	a
number	or	a	string.	You	can	test	the	type	of	a	variable	by	using	the	typeof()
operator	like	this:
Var	x					=	1.234;
Var	y					=	"Hello";
Var	Type1	=	typeof(x);	
Var	Type2	=	typeof(y);		

Alert(Type1	+	"	and	"	+	Type2);
This	code	displays	the	message	"number	and	string".
There	are	six	possible	values	that	typeof	returns:	"number,"	"string,"	"boolean,"
"object,"	"function,"	and	"undefined."	The	most	useful	are	"number",	"string"
and	"undefined".
"undefined"	is	useful	because	it	tells	you	that	something	does	not	exist	yet	(ie:
it's	undefined)	so	sometimes	you	see	code	like	this:
if	(typeof(objGlobal.CustomerNumber)	=	"undefined"))
objGlobal.CustomerNumber	=	"12345";

JavaScript	Coding	Styles
In	coding	RAMP-TS	scripts	in	JavaScript	these	code	fragments	are	all	standard
and	equivalent:

	

x	=	new	Object();
x.a	=	1;
x.b	=	"Hello";	

x	=	{	a	:	1,	b	:	"Hello")	

x	=	{	"a"	:	1,	"b"	:	"hello"	}			<=========	which	is	the	JavaScript
format	that	was	chosen	for	use	in	AJAX-JSON	strings.			

x	=	{	};
x["a"]	=	1;
x["b"]	=	"hello";

x	=	new	Object();
x["a"]	=	1;
x["b"]	=	"hello";

Using	the	objGlobal	Object
objGlobal		is	one	of	the	Framework	objects	that	scripts	can	refer	to.	Its	purpose
is	to	store	your	own	properties.
This	section	shows	some	techniques	in	using	it:
Getting	Organized
Using	objGlobal	to	pass	optional	parameters
Using	objGlobal	to	define	commonly	used	functions

Getting	Organized
If	you	make	a	lot	of	use	of	the	objGlobal	object	then	you	should	look	to
organizing	its	use	in	some	way.	One	way	is	to	divide	it	up	into	multiple	sub-
objects	by	application	or	usage.
For	example,	if	you	did	this	in	you	logon	script:
objGlobal.AppA	=	new	Object();		
objGlobal.AppB	=	new	Object();		
objGlobal.AppC	=	new	Object();	

Then	in	your	scripts	you	could	make	sure	your	references	do	not	accidentally
interfere	with	each	other.
For	example	objGlobal.AppA.CurrentCustomer	is	a	different	variable	to
objGlobal.AppB.CurrentCustomer	and	objGlobal.AppC.CurrentCustomer.	

Using	objGlobal	to	pass	optional	parameters
Extending	the	idea	in	the	previous	section	slightly,	you	can	introduce	the
concept	of	optional	parameters	being	passed	into	scripts.	In	a	script	that	needs	to
pass	some	optional	parameters	into	another	script	you	might	find	code	like	this:
objGlobal.OptParms	=	new	Object();		
objGlobal.OptParms.CustNumber	=	"12345";
objGlobal.OptParms.CustName			=	"ACME	ENGINEERING";						
NAVIGATE_TO_SCREEN("uShowCustomer");

and	the	script	that	receives	the	optional	parameters	you	would	find	code
possibly	structured	something	like	this:
var	CustNumber	=	"some	default	value";
var	CustName			=	"some	default	value";

if	(objGlobal.OptParms	!=	null)
{
			CustNumber									=	objGlobal.OptParms.CustNumber;	
CustName											=	objGlobal.OptParms.CustName;			
objGlobal.OptParms	=	null;
}	

/*	Now	we	proceed	to	use	the	values	in	CustNumber	and	CustName	*/
The	line	objGlobal.OptParms	=	null;	line	is	very	important	to	this	style	of
processing	because	it	destroys	the	temporary	OptParms	object.

Using	objGlobal	to	define	commonly	used	functions
If	you	want	to	create	a	JavaScript	function	that	is	reused	in	many	places	you
could	do	something	like	this	in	your	sign-on	script:
	
objGlobal.Mult	=	function	(x,y)	{
																	var	z	=	x	*	y;
																	return(z);					}
	
objGlobal.Add		=	function	(x,y)	{
																	var	z	=	x	+	y;
																	return(z);					}

	
These	operations	define	2	functions	in	objGlobal	named	Mult	and	Add	and	the
code	that	they	contain.
Once	this	has	been	done	the	functions	objGlobal.Add	and	objGlobal.Mult	can
be	executed	in	other	scripts	like	this:
	
var	q	=	objGlobal.Add(222,3);
alert(q.toString());
	
q	=	objGlobal.Mult(22,33);
alert(q.toString());
	

which	would	display	the	results	225	and	726	respectively.

	

	

Using
Interacting	with	Instance	Lists	in	Scripts
Scripting	Pop-up	Menu
Updating	the	Instance	List	from	RAMP	screens
Subfiles/Browselists
Script	Skeletons	
Script	Functions
Framework	Objects	that	Scripts	Can	Refer	To
User-Defined	Script	Functions
When	Are	Scripts	Reloaded	so	That	Change	Can	Be	Tested?
Switching	Off	Recursion	Checking
Advanced	Scripting

Interacting	with	Instance	Lists	in	Scripts
The	instance	list	is	the	list	of	business	object	instances	typically	displayed	in	the
upper	right	corner	of	the	Framework	window.		For	example,	the	shipped
demonstration	system	uses	an	Employee	business	object	that	has	an	instance	list
that	looks	like	this	(outlined	in	red):

Many	scripts	need	to	interact	with	the	instance	list.	These	topics	explain	how	to
do	it:
The	List	Manager
Visual	and	Programmatic	Identifiers
Working	with	All	Selected	Entries

The	List	Manager
Script	interactions	with	an	instance	list	are	done	by	accessing	properties	of	the
Framework	JavaScript	object	named	objListManager	(the	list	manager).		
For	example	a	script	that	displays	a	screen	showing	the	details	of	an	employee
uses	the	objListManager	in	the	SETVALUE	command	to	set	the	employee	to
the	selected	entry	in	the	instance	list:
	
/*	Check	for	arrival	at	uFindEmployee	*/
	if	(!(CHECK_CURRENT_FORM("uFindEmployee","Unable	to	navigate	to
form	uFindEmployee")))	return;
	
/*	Set	the	employee	to	be	displayed	to	the	employee	selected	in	the	*/
/*	instance	list	(which	is	identified	by	the	programmatic	identifier	AKey3)	*/
SETVALUE("utxtEmployeeCode",objListManager.AKey3[0]);
	
/*	Send	the	key	required	to	navigate	to	uDisplayEmployee	*/
SENDKEY(KeyEnter);

		
Also	See
objListManager
Replacing	Hardcoded	Employee	Number	with	Current	Instance	List	Entry
	

Visual	and	Programmatic	Identifiers
Instance	list	entries	always	have	an	identification	protocol	that	defines	their
visual	and	programmatic	identification.	You	set	these	identifiers	when	you
create	the	filter	that	controls	the	instance	list.
(Refer	to	the	section	List	Manager	in	the	Framework	guide	if	you	want	detailed
information	about	the	identification	protocol.)
For	example	this	LANSA	command	in	a	filter	for	employees	adds	entries	to	the
instance	list	and	sets	programmatic	and	visual	identifiers	and	additional
columns	for	them:
	
Invoke	Method(#avListManager.AddtoList)	Visualid1(#Empno)
Visualid2(#FullName)	Akey1(#Deptment)	Akey2(#Section)	Akey3(#Empno)
AColumn1(#PhoneHme)	AColumn2(#Address1)	nColumn1(#PostCode)
	

	
In	this	identification	protocol:
The	third	programmatic	identifier	(called	AKey3)	contains	the	employee
number.
The	second	visual	identifier	(called	VisualId2)	contains	the	employee's	name.
When	you	know	the	identification	protocol,	you	can	create	a	JavaScript	that
displays	the	number	and	name	of	the	currently	selected	employee	in	the	instance
list:
	
/*	Get	the	current	instance	list	details	*/
{
			var	strEMPNO	=	objListManager.AKey3[0];					/*	3rd	Akey	is	the	number		
*/
			var	strNAME		=	objListManager.VisualId2[0];	/*	2nd	VisualId	is	the	name
*/	

			alert("Current	employee	number	is	"	+	strEMPNO);
			alert("Current	employee	name	is	"	+	strNAME);
}

	
Like	this:

mk:@MSITStore:lansa048.chm::/Lansa/listmanager.htm

	

Working	with	All	Selected	Entries
More	than	one	entry	can	be	selected	in	the	instance	list.	This	script	displays	the
number	and	name	of	all	selected	employees	in	a	message:
	
/*	Get	all	the	selected	employees	*/

{
			var	i	=	0;
			var	strMessage	=	"";

			for	(i	=	1;	i	<=	objListManager.TotalSelected;	i++)
			{
						strMessage	+=	"Employee	"	+	objListManager.AKey3[i];
						strMessage	+=	"	-	"	+	objListManager.VisualId2[i]	+	"\x0D";
			}

			alert(strMessage);
}

	
So	if	this	script	was	used	with	three	selected	instance	list	entries	like	this:

	
It	would	display	this	alert	message:

	

Scripting	Pop-up	Menu
You	can	use	the	scripting	pop-up	menu	to	format	and	edit	your	scripts.	To
display	the	menu,	right-click	the	Script	Area.

The	first	set	of	options	Cut,	Copy,	Paste,	Undo	and
Redo	are	commonly	used	options	in	many	editors	and
are	self-explanatory.

The	Upper	Case	and	Lower	Case	options	will	change
the	case	of	any	text	currently	selected	in	the	script
editor.	Note	that	Javascript	is	case-sensitive.

The	Lower	font	and	Larger	font	options	allow	you	to
change	the	size	of	the	font	being	used	by	the	text
editor.

The	Show	Line	Numbers	option	displays	(or	hides)
line	numbers	in	the	text	editor.

Use	The	Current...	options	to	insert	properties	for
various	Framework	objects	into	your	script.	Use:
Current	Framework	to	enter	properties	of
objFramework
Current	Application	to	enter	properties	of
objApplication
Current	Business	Object	to	enter	properties	of
objBusinessObject
Current	Command	to	enter	properties	of	objCommand
Current	Instance	List	Entry	to	enter	properties	of
objListManager

Use	the	5250	Subfile	Handling	options	to	insert	code
for	Subfiles/Browselists.

Use	the	Session	Control	options	to	enter	commonly
used	functions	and	objUser		parameters	to	your	script.

	

	
Examples:
Replacing	Hardcoded	User	Name	with	Current	Framework	User
Replacing	Hardcoded	Employee	Number	with	Current	Instance	List	Entry
Adding	Your	Own	Options	to	the	Scripting	Pop-Up	Menu

Replacing	Hardcoded	User	Name	with	Current	Framework	User
To	replace	the	hardcoded	user	name	"QPGMR"	in	this	line	of	script	with	the
name	of	the	current	framework	user:
	
SETVALUE("utxtUserName",	"QPGMR");
	

	
Select	"QPGMR"	(including	the	quotes),	right-click	and	select	the	Session
Control	and	then	User	Name	option:

	
The	constant	"QPGMR"	is	now	replaced	with	the	substitution	value	for	the
current	Framework	user:
	
SETVALUE("utxtUserName",	objUser.Name);
	

Replacing	Hardcoded	Employee	Number	with	Current	Instance
List	Entry
When	you	automatically	generate	scripts	using	tracking	information,	the	scripts
will	contain	the	hardcoded	field	values	you	typed.	To	make	the	script	to	work
with	any	selected	object,	you	need	to	replace	the	hardcoded	value	with	the
appropriate	identifier.
To	replace	the	hardcoded	employee	number	"A1234"	in	this	line	of	script	with
the	name	of	the	employee	currently	selected	in	the	instance	list:
	
SETVALUE("uEmpNo","A1234");
	

	
First	find	out	the	Visual	and	Programmatic	Identifiers	used	to	identify	the
employee.	Then	highlight	the	hardcoded	number	"A1234"	(including	the
quotes)	in	the	script,	right-click	to	bring	up	the	pop-up	menu,	select	the	Current
Instance	List	Entry	option	and	select	the	appropriate	identifier:

The	constant	"A1234"	is	now	replaced	with	the	programmatic	identifier	of	the
employee	number:
	
SETVALUE("uEmpNo",	objListManager.AKey3[0]);	
	

Adding	Your	Own	Options	to	the	Scripting	Pop-Up	Menu
You	can	add	your	own	options	to	the	scripting	pop	up	menu	by	creating	an	xml
file	called	uf_um835.xml,	and	putting	it	in	the	partition	execute	directory.	You
can	do	this	using	notepad.
This	is	an	example	of	uf_um835.xml	that	you	could	create:
	
<?xml	version="1.0"?>
<EXTRACT>
<MENUITEM>
		<PROPERTY	NAME="CAPTION"	VALUE="My	user	defined	options"	/>
		<SUBMENUS>
				<SUBMENUITEM>
						<PROPERTY	NAME="CAPTION"	VALUE="My	caption	for	option	1"
/>
						<PROPERTY	NAME="STRING"	VALUE="My	returned	text	for	option
1"	/>
				</SUBMENUITEM>
				<SUBMENUITEM>
						<PROPERTY	NAME="CAPTION"	VALUE="My	caption	for	option	2
(multiple	lines	returned)"	/>
						<PROPERTY	NAME="STRING"	VALUE="My	returned	line	1	for	option
2"	/>
						<PROPERTY	NAME="STRING"	VALUE="My	returned	line	2	for	option
2"	/>
						<PROPERTY	NAME="STRING"	VALUE="My	returned	line	3	for	option
2"	/>
				</SUBMENUITEM>
				<SUBMENUITEM>
						<PROPERTY	NAME="CAPTION"	VALUE="My	caption	for	option	3
(handling	quotes	in	the	text)"	/>
						<PROPERTY	NAME="STRING"	VALUE="Quotes	and	greater	than	and
less	than	need	special	handling"	/>
						<PROPERTY	NAME="STRING"	VALUE="Quote	-	""	/>
						<PROPERTY	NAME="STRING"	VALUE="Less	than	-	<"	/>
						<PROPERTY	NAME="STRING"	VALUE="Greater	than	-	>"	/>
				</SUBMENUITEM>
		</SUBMENUS>	

</MENUITEM>
</EXTRACT>

	
If	you	create	a	file	called	uf_um835.xml	and	paste	this	text	into	it	and	then	put
uf_um835.xml	into	your	partition	execute	directory,	you	will	be	able	to	see
these	new	options	when	you	are	editing	RAMP	scripts:

	
If	you	choose	option	1,	this	will	be	added	to	your	script:
	
My	returned	text	for	option	1

	
If	you	choose	option	2,	this	will	be	added	to	your	script:
	
My	returned	line	1	for	option	2

My	returned	line	2	for	option	2
My	returned	line	3	for	option	2

	
If	you	choose	option	3,	this	will	be	added	to	your	script:
	
Quotes	and	greater	than	and	less	than	need	special	handling
Quote	-	"
Less	than	-	<
Greater	than	-	>

	
In	the	xml	above,	you	can	see	that	the	caption	displayed	for	the	first	submenu
comes	from	the	caption	property,	and	the	value	returned	to	the	script	when	the
user	clicks	on	this	submenu	comes	from	the	String	property:
	
<SUBMENUITEM>
			<PROPERTY	NAME="CAPTION"	VALUE="My	caption	for	option	1"	/>
			<PROPERTY	NAME="STRING"	VALUE="My	returned	text	for	option	1"
/>
</SUBMENUITEM>

	
From	option	2,	you	can	see	how	to	return	multiple	lines	when	the	user	clicks	on
a	submenu:
	
<SUBMENUITEM>
			<PROPERTY	NAME="CAPTION"	VALUE="My	caption	for	option	2
(multiple	lines	returned)"	/>
			<PROPERTY	NAME="STRING"	VALUE="My	returned	line	1	for	option
2"	/>
			<PROPERTY	NAME="STRING"	VALUE="My	returned	line	2	for	option
2"	/>
			<PROPERTY	NAME="STRING"	VALUE="My	returned	line	3	for	option
2"	/>
</SUBMENUITEM>

	
And	from	option	3,	you	can	see	the	special	handling	if	you	want	quotes	(or
greater	than	or	less	than)	in	the	value	returned	to	the	script:

<SUBMENUITEM>
		<PROPERTY	NAME="CAPTION"	VALUE="My	caption	for	option	3
(handling	quotes	in	the	text)"	/>
		<PROPERTY	NAME="STRING"	VALUE="Quotes	and	greater	than	and
less	than	need	special	handling"	/>
		<PROPERTY	NAME="STRING"	VALUE="Quote	-	""	/>
		<PROPERTY	NAME="STRING"	VALUE="Less	than	-	<"	/>
		<PROPERTY	NAME="STRING"	VALUE="Greater	than	-	>"	/>
</SUBMENUITEM>

		
As	long	as	your	xml	is	valid	xml,	and	keeps	to	the	structure	of	the	example
above	(EXTRACT,	MENUITEM,	SUBMENUS	and	SUBMENUITEM)	it
should	work.
Note:	Ensure	that	your	version	of	UF_UM835.xml	is	backed	up.
	
	
	

Updating	the	Instance	List	from	RAMP	screens
The	tutorial	RAMP-TS007:	Snapping	in	a	Data	Entry	Function	covers	this	topic
in	detail.
A	filter	manages	its	associated	instance	list.	When	a	RAMP	screen	deletes,	adds
or	changes	business	object	instances,	it	needs	to	notify	the	filter	that	a	change
has	occurred.

Create	the	Filter	with	Program	Coding	Assistant
To	create	a	filter	that	listens	for	changes	from	RAMP	screens	use	the	Program
Coding	Assistant	and	select	the	option	Routine	to	listen	for	changes	and	update
the	instance	list:
	

This	option	creates	Filter	Code	which	Automatically	Handles	Changes	to
Instance	List.
	

Add	AVSIGNALEVENT	Function	to	the	Button	Script
Add	an	AVSIGNALEVENT	Function	in	the	button	script	of	your	RAMP
destination	screen	for	the	button	that	handles	the	change	(typically	Save	or
Delete)	to	signal	to	the	filter	that	the	instance	list	needs	to	change.
For	example,	in	a	RAMP	screen	that	updates	an	object,	add	this	statement	to	its
SAVE	button	script:	

	

AVSIGNALEVENT("Update_List_Entry",	"BUSINESSOBJECT",
objListManager.AKey1[0]);
	

The	event	being	signaled	is	named	Update_List_Entry,	and	the	value	being

passed	is	the	identifier	of	the	instance	that	has	been	updated.
To	handle	the	saving	of	a	newly	created	object,	you	must	pass	to	the	filter	the
identifier	of	the	object.	For	example,	to	add	a	new	employee	with	employee
number,	you	would	first	capture	the	employee	number	on	the	screen	using	the
GETVALUE	Function	and	store	it	as	a	property	of	the	objGlobal		object,	and
then	pass	it	to	the	filter:
	
objGlobal.utxtEmployeeCode	=	GETVALUE("utxtEmployeeCode");
SENDKEY(KeyEnter);

AVSIGNALEVENT("Add_List_Entry",	"BUSINESSOBJECT",
objGlobal.utxtEmployeeCode);

	
(The	utxtEmployeeCode	field	is	the	employee	number	field	that	has	been
defined	as	a	text	field	on	the	destination	screen.)
The	standard	event	names	you	can	use	to	update	the	instance	list	are:
Refresh_Instance_List
Update_List_Entry
Add_List_Entry
Delete_List_Entry.

Filter	Code	which	Automatically	Handles	Changes	to	Instance
List
This	RDMLX	code	which	is	created	by	the	Program	Coding	Assistant
automatically	handles	events	signaled	by	the	RAMP	screen	(it	is	shown	here
just	for	your	reference,	you	do	not	need	to	modify	it):
	

*	--

*	Handle	any	external	requests	to	update	the	Instance	List

*	--

EvtRoutine	#Com_owner.avEvent	WithId(#EventId)	WithAInfo1(#AInfo1)
WithAInfo2(#AInfo2)	WithAInfo3(#AInfo3)	WithAInfo4(#AInfo4)
WithAInfo5(#AInfo5)		WithNInfo1(#NInfo1)	WithNInfo2(#NInfo2)
WithNInfo3(#NInfo3)	WithNInfo4(#NInfo4)	WithNInfo5(#NInfo5)

	

*	put	the	received	values	into	fields

Change	#vf_elIdn	#EventId.Value

	

*	Map	the	AInfo	and	NInfo	values	passed,	into	the	key	fields	-	#EMPNO

	

Change	#DEPTMENT	#AInfo1

Change	#SECTION	#AInfo2

Change	#EMPNO	#AInfo3

	

Case	#vf_elIDN

	

when	'=	Refresh_Instance_List'

*	Reload	the	Instance	List

	

Invoke	#Com_Owner.uSelectData

	

when	'=	Add_List_Entry'
*	Add	an	entry	to	the	list	view
	
fetch	FIELDS(#XG_Ident)	FROM_FILE(PSLMST)	WITH_KEY(#EMPNO)
if_status	*OKAY
	
*	Start	an	instance	list	update
Invoke	Method(#avListManager.BeginListUpdate)
	
*	Set	up	the	visual	Identifier(s)
	
Change	#UF_VisID1	#EMPNO
Change	#UF_VisID2	#GIVENAME
Use	BConcat	(#UF_VisID2	#SURNAME)	(#UF_VisID2)
	
*	Add	instance	details	to	the	instance	list
	
Invoke	#avListManager.AddtoList	Visualid1(#UF_VisID1)
Visualid2(#UF_VisID2)	AKey1(#DEPTMENT)	AKey2(#SECTION)
AKey3(#EMPNO)		ACOLUMN1(#PHONEHME)
ACOLUMN2(#ADDRESS1)	NCOLUMN1(#POSTCODE)
*	Instance	list	updating	has	been	completed
Invoke	Method(#avListManager.EndListUpdate)
	
endif

	

when	'=	Update_List_Entry'
*	Update	an	entry	that	already	exists	in	the	instance	list
	
fetch	FIELDS(#XG_Ident)	FROM_FILE(PSLMST)	WITH_KEY(#EMPNO)
if_status	*OKAY
	
*	Start	an	instance	list	update
Invoke	Method(#avListManager.BeginListUpdate)
	
*	Set	up	the	visual	Identifier(s)
	
Change	#UF_VisID1	#EMPNO
Change	#UF_VisID2	#GIVENAME
Use	BConcat	(#UF_VisID2	#SURNAME)	(#UF_VisID2)
	
*	Add	instance	details	to	the	instance	list
	
Invoke	#avListManager.UpdateListEntryData	Visualid1(#UF_VisID1)
Visualid2(#UF_VisID2)	AKey1(#DEPTMENT)	AKey2(#SECTION)
AKey3(#EMPNO)		ACOLUMN1(#PHONEHME)
ACOLUMN2(#ADDRESS1)	NCOLUMN1(#POSTCODE)
*	Instance	list	updating	has	been	completed
Invoke	Method(#avListManager.EndListUpdate)
	
endif

	

when	'=		Delete_List_Entry'

Invoke	Method(#avListManager.BeginListUpdate)

	

*	Remove	instance	details	from	the	instance	list

	

Invoke	#avListManager.RemoveFromList	AKey1(#DEPTMENT)
AKey2(#SECTION)	AKey3(#EMPNO)

Invoke	Method(#avListManager.EndListUpdate)

	

endcase

	

Endroutine

	

End_Com

Subfiles/Browselists
From	time	to	time	you	will	need	to	create	scripts	that	access	5250	subfiles.	Here
are	some	techniques	may	be	useful	to	you	in	different	situations:
Subfile	Lines	per	Entry
Identifying	Subfile	fields
Referencing	Subfile	fields
Iterating	Subfile	Rows
Paging	down	or	up	a	subfile
Locating	a	specific	value	in	a	Subfile	and	making	the	selection
	
	

Subfile	Lines	per	Entry
When	a	Subfile	uses	more	than	1	line	per	entry	you	must	set	the	appropriate
value	in	this	setting:

If	not,	the	result	of	the	SETVALUEs	and	GETVALUEs	of	Subfile	fields	will	be
incorrect.
	

Identifying	Subfile	fields
There	is	no	difference	between	naming	Subfile	fields	and	naming	any	other
fields.	Conceptually	though,	when	you	are	setting	the	name	of	a	field	in	a
Subfile	you	have	to	think	that	you	are	actually	setting	the	name	of	a	Subfile
column.
In	this	picture	the	focus	is	on	the	Selection	field.	Notice	how	the	entire	column
is	highlighted	in	the	5250	screen:

Focus	on	Sel	field	column All	fields	in	column	selected

	

Referencing	Subfile	fields
To	reference	a	field	in	a	Subfile	the	field	name	by	itself	is	not	enough	because
the	name	only	resolves	to	a	column	in	the	Subfile.	To	reference	a	field	in	a
column	and	row	you	must	also	specify	a	row	Index.	The	index	is	an	integer
starting	from	1.
	
For	example,	to	set	the	value	of	the	selector	field	in	the	third	row	to	"X":
	
SETVALUE("SFL_SELECT","X",	3);
	

	
See	SETVALUE	Function.
To	get	the	department	description	in	the	seventh	row	(note	we	named	this	field
as	SFL_DEPTDESC):
	
var	sDeptDesc	=	GETVALUE("SFL_DEPTDESC",	7);
	

	
See	GETVALUE	Function.
	

Iterating	Subfile	Rows
To	iterate	subfile	rows	you	need	to	know	when	you	have	reached	the	last	row	in
order	to	stop	your	logic.	To	do	this	use	the	CHECK_FIELD_EXISTS	Function:
while	(CHECK_FIELD_EXISTS(sFindField,iInd))
{
				<your	logic>
}

	
where	sFindField	is	any	of	the	named	subfile	fields.
	

Paging	down	or	up	a	subfile
To	make	the	Subfile	page	to	the	next	or	previous	screen	you	should	set	a	name
to	the	Subfile	indicator	that	tells	you	whether	there	is	another	page	to	show.
This	is	usually	a	plus	sign	("+")	but	may	vary.

If	the	field	is	present	we	can	assume	there	is	another	page:
if	(CHECK_FIELD_EXISTS("SFL_MORE"))
{
			SENDKEY(KeyPageDown);
}

	

Locating	a	specific	value	in	a	Subfile	and	making	the	selection
Case	A:	when	a	selection	is	found,	set	the	cursor	on	the	appropriate	row	and
press	Enter.
uSubfileSearch:	function(sToForm,	sFindValue,	sFindField,	sMoreRecsField)
{

	
/*	Subfile	indexed	fields	are	one	based	*/
	
				var	iInd	=	1;
				var	bFound	=	false;
	
					while((CHECK_FIELD_EXISTS(sFindField,iInd))	&&	!(bFound))
								{
										/*	Found,	set	the	flag	to	true	to	cause	the	loop	to	end	*/
										if	(sFindValue	==	GETVALUE(sFindField,iInd))
										{
												bFound	=	true;
										}
										else	/*	Increase	field	index	*/
										{
												iInd++;
										}
								}
	
								/*	If	found,	position	the	cursor	to	the	field	and	index	and	send	an	Enter
key	to	cause	that	entry	to	be	selected	*/
								if	(bFound)
								{
												SETCURSORTOFIELD(sFindField,iInd);
												SENDKEY(KeyEnter);
												Q_CHECK_CURRENT_FORM(sToForm,"Unable	to	navigate	to	"	+
sToForm);
								}
								/*	If	not	found,	check	whether	the	nominated	more	records	indicator	field
is	present	on	the	screen.	If	it	is	we	can	page	down.	*/
								/*	Note	the	payload	accompanying	the	Sendkey.	It	is	used	in	the
vHandleArrive	function	to	decide	whether	we	have	to	repeat	this	logic.	*/

							
								else	if	(CHECK_FIELD_EXISTS(sMoreRecsField))
								{
												SENDKEY(KeyPageDown,	"Next_Page");
								}
								}

	
Case	B:	when	a	selection	is	found,	set	the	cursor	on	the	appropriate	row,	set	the
value	of	the	selector	field	"SFL_SELECT"	to	"2"	and	press	Enter.
This	case	is	almost	the	same	as	the	prior	one	except	for	the	SETCURSOR	call.
Replace	the	SETCURSOR	with
	
SETVALUE("SFL_SELECT",	"2",	iInd);
	

	

Script	Skeletons	
Scripts	for	Destinations,	Junctions	and	Special	are	created	based	on	specific
skeleton	files	located	in	your	partition	execute	folder.	These	files	are	called:
vf_fpm030_D.dat	–	skeleton	for	Destinations
vf_fpm030_J.dat	–	skeleton	for	Junctions
vf_fpm030_S.dat	–	skeleton	for	Specials
vf_fpm030_U.dat	–	skeleton	for	Unknowns
		
The	skeletons	lay	out	the	basic	script	sections	but	also	include	some	default
behaviour.
You	can	change	the	skeletons	if	the	default	behaviour	doesn’t	accommodate
your	specific	needs.	Edit	the	skeleton	files	with	any	text	editor	like	Notepad.
For	example,	the	skeleton	for	a	Destination	has	this	line:
	
GET_FORM_MESSAGE(22)
	

		
Because	most	5250	applications	use	line	22	to	send	their	messages.	If	you
application	sends	messages	to	a	different	line	you	may	want	to	change	the
skeleton.
Note	that	the	skeleton	is	only	used	when	a	script	is	created.	Skeleton	changes
will	have	no	effect	on	existing	scripts.
Warning:	Product	upgrades	or	reinstallations	will	overwrite	these	skeleton	files.
You	must	reapply	any	changes	you	make	after	each	upgrade	or	reinstallation.
	

Script	Functions
This	section	describes	the	shipped	RAMP	JavaScript	functions	you	can	use	in
your	scripts.
Note	that	these	functions	are	case	sensitive,	so	be	careful	to	use	exactly	the
same	case	as	shown	when	writing	scripts!

ADD_STRING	Function Defines	a	string	by	a	unique
number	for	use	by	other	scripts

ADD_UNKNOWN_FORM_GUESS
Function

Function	keys	to	send	when	an
unknown	form	appears	during
RAMP	navigation

ALERT_MESSAGE	Function Issue	a	message	as	an	alert

AVCLOSEFORM	Function Signal	to	the	Framework	to	close
the	current	screen	

AVRESTOREAVALUE	and
AVRESTORENVALUE	Function

Restores	an	alphanumeric	or
numeric	value	from	the	Framework
virtual	clipboard

AVSAVEVALUE	Function Save	an	alphanumeric	or	numeric
value	in	the	Framework	virtual
clipboard.

AVSIGNALEVENT	Function Signal	an	event	to	filters	and
RAMP	screens	

AVSWITCH	Function Requests	a	switch	to	another
business	object	and	optionally	the
execution	of	a	nominated
command.

CHECK_CURRENT_FORM	Function Check	that	RAMP	is	showing	a
screen

CHECK_FIELD_EXISTS	Function Checks	whether	a	field	is	present	in
the	current	screen

CLEAR_MESSAGES	Function Clear	all	messages	currently	in	the
stack	

COPYTOCLIPBOARD	Function Copy	a	string	to	the	user's	clipboard

CURRENT_FORM	Function Get	the	Form	Name	of	the	current
RAMP	screen

DROP_SPECIAL_FIELD_HANDLER
Function

Removes	the	definition	of	a	5250
special	field	handler

FATAL_MESSAGE	Function Issue	a	fatal	message

FATAL_MESSAGE_TYPE	Function Stop	the	Framework	from	shutting
down	when	a	fatal	navigation	error
occurs

GET_FORM_MESSAGE	Function Get	the	5250	message	text	at	a
specified	row	number	and
optionally	route	as	a	Framework
message.

GETVALUE	Function Get	the	value	from	a	field	on	a
RAMP	screen

HANDLE_PROMPT	Function Show	a	user	defined	prompter	form
for	a	field

HIDE_5250_BUTTONS()	Function Use	in	the	ARRIVE	script	to	hide
the	function	key	buttons	in	the	5250
screen

HIDE_CURRENT_FORM	Function Hide	the	current	screen	with	an
optional	message

LOCK_FRAMEWORK	Function Locks	the	framework

MESSAGE	Function Issue	a	message

NAVIGATE_TO_SCREEN	Function Navigate	to	a	screen	

OVERRIDE_KEY_CAPTION_ALL
Function

Assigns	a	new	caption	for	a
function	key	on	any	screen

OVERRIDE_KEY_CAPTION_SCREEN
Function

Assigns	a	new	caption	for	a
function	key	on	a	particular	screen

OVRSFLAUTOGUI	Function Allows	you	to	turn	the	Axes	system
flag	Recognise	subfiles	as	tables	on
and	off	on	a	screen	by	screen	basis.

Q_CHECK_CURRENT_FORM
Function

Check	that	RAMP	is	showing	a
screen,	the	request	is	queued	up	and
processed	when	the	next	screen
arrives

Q_NAVIGATE_TO_SCREEN	Function Navigates	to	a	nominated	5250
screen,	the	request	is	queued	up	and
processed	when	the	next	screen
arrives

Q_SENDKEY	Function Emulates	the	pressing	of	a	key,	the
request	is	queued	up	and	processed
when	the	next	screen	arrives

Q_SETVALUE	Function Set	the	content	of	a	field	on	a	5250
screen	to	a	value,	the	request	is
queued	up	and	processed	when	the
next	screen	arrives

RESTART_LAST_NAVIGATION
Function

Restarts	to	the	last	navigation	plan
when	the	next	screen	arrives.	

SCREEN	Function Returns	the	screen	object	for	a
specified	screen	name

SENDKEY	Function Emulate	pressing	a	key.

SET_HANDLER_CAPTION	Function Set	the	current	command	handler
caption	to	a	new	value

SET_SPECIAL_FIELD_HANDLER
Function

Sets	or	resets	the	current	definition
of	a	5250	special	field	handler

SETBUSY	Function Moves	the	cursor	to	the	specified
field,	or	piece	of	text,	or	subfile	cell

	SETCURSORTOFIELD	Function Moves	the	cursor	to	the	specified
field,	or	piece	of	text	or	subfile	cell

SETCURSORTOROW	Function Moves	the	cursor	to	the	specified
row	and	column	on	the	screen

SETKEYENABLED	Function Dynamically	enable	or	disable	a
Destination’s	button	or	5250
function	key

SETVALUE	Function Set	a	field	on	a	RAMP	screen	to	a
value	

SHOW_5250_BUTTONS()	Function Use	in	the	ARRIVE	script	to	show
the	function	key	buttons	in	the	5250
screen

SHOW_CURRENT_FORM	Function Show	or	hide	the	current	screen.

SHOWSTATUSBAR	Function Show/Hide	the	5250	terminal	status
bar	for	the	end	user

STRING	Function Returns	the	string	for	a	given	string
identification	number

STRIP_LEADING_NUMBERS	Function Returns	the	leading	numbers	from	a
string

TONUMBER	Function Makes	a	string	or	other	JScript
object	into	a	number.

TOSTRING	Function Makes	a	number	or	null	or	other
JScript	object	into	a	string.

TRACE	Function Add	run	time	information	to	the
trace	panel	

TRIM_LEFT	Function Trim	preceding	(left)	spaces	from	a
string

TRIM_RIGHT	Function Trim	trailing	spaces	from	a	string

UNLOCK_FRAMEWORK	Function Unlocks	the	framework

	

	

LOCK_FRAMEWORK	Function
Locks	the	framework	and	specifies	the	locking	message	to	be	displayed.
Equivalent	to	using	Set	#avFrameworkManager
uLocked(USER|PROGRAM|PROGRAM_EXIT)	uLockedMessage('message')
in	a	VL	component.
Only	valid	in	VLF-WIN	environments	–	ignored	in	other	environments.					

Syntax
LOCK_FRAMEWORK(lock	type,	lock	message)

Parameters
Lock
type

Required.	A	string	containing	the	type	of	lock	required	as	"USER",
"PROGRAM"	or	"PROGRAM_EXIT".
USER	means	that	the	Framework	is	locked,	but	that	the	user	can
elect	to	end	the	lock.
PROGRAM	means	that	the	Framework	is	locked	and	only	a	program
can	unlock	it.
PROGRAM_EXIT	means	that	the	Framework	is	locked	except	when
exiting	or	closing	down	and	only	a	program	can	unlock	it.
	

Lock
message

Required.	A	string	containing	the	message	to	be	shown	to	the	user	if
they	attempt	to	do	something	that	would	violate	the	lock	state.	

	

	

Return	Value
None

Example
	
LOCK_FRAMEWORK("PROGRAM",	"You	need	to	return	to	the	details
screen	before	attempting	this	action");
	

	

UNLOCK_FRAMEWORK	Function
Unlocks	the	framework	and	clears	the	current	locking	message.
Equivalent	to	using	Set	#avFrameworkManager	uLocked(FALSE)
uLockedMessage("	")	in	a	VL	component.
Only	valid	in	VLF-WIN	environments	–	ignored	in	other	environments.					

Syntax
UNLOCK_FRAMEWORK()

Parameters
None.

Return	Value
None.

Example
	
UNLOCK_FRAMEWORK();
	

	

RESTART_LAST_NAVIGATION	Function
Restarts	to	the	last	navigation	plan	when	the	next	screen	arrives.	

Syntax
RESTART_LAST_NAVIGATION()
	

Parameters
None.

Return	Value
""	(null	string)	or	the	last	function	key	used.

Remarks
This	function	is	used	to	restart	the	last	navigation	performed	or	to	resend	the	last
key.
Typically	it	is	used	in	the	arrival	script	of	an	unknown	or	special	screen	that
needs	to	be	logically	eliminated	from	the	screen	flow	during	a	navigation	–	for
example	a	break	message	screen.
A	call	to	this	function	needs	to	be	followed	by	a	SENDKEY()	function	call	to
cause	the	current	screen	to	be	removed	from	the	screen	flow.
When	the	break	message	screen	appears	while	navigating	between	two	screens,
the	function	should	return	""	(null	string).	When	the	next	screen	arrives	the
navigation	plan	that	was	in	progress	is	restarted	and	replanned	to	resume	the
screen	flow.
If	it	appears	during	a	user	initiated	action	like	pressing	a	function	key	or	button,
the	function	returns	the	last	function	key	that	was	used	before	the	break	message
screen	appeared.	This	allows	the	user	to	re-send	the	last	key	to	continue	the
screen	flow.

Example
var	lastFkey	=	RESTART_LAST_NAVIGATION();
SENDKEY(KeyF3);
if	(lastFkey	!=	"")	Q_SENDKEY("",lastFkey);	/*	queue	sending	of	the	last
function	key	before	the	break	message	screen	appeared	*/

	
Note	that	this	function	should	only	be	invoked	from	an	arrival	script	and	would

almost	always	need	to	be	immediately	followed	by	a	SENDKEY()	function	call
to	cause	the	current	screen	to	be	removed.

	

	
		

OVRSFLAUTOGUI	Function
Allows	you	to	turn	the	Axes	system	flag	Recognise	subfiles	as	tables	on	and	off
on	a	screen	by	screen	basis.
You	need	to	be	on	aXes	2.1	or	later	to	use	this	scripting	function.
	

Syntax
OVRSFLAUTOGUI(sScreenName,	bOvr)	

Parameters
sScreenName Required.	An	string	that	specifies	the	name	of	the	screen.

bOvr Optional.	Boolean.
true	will	cause	the	subfiles	to	be	recognised	as.	
false		will	turn	the	setting	off	
For	any	other	value	including	no	value,	the	behaviour	will	be
according	to	the	current	subfile	AutoGUI	setting.

	

Remarks
The	only	valid	place	to	put	a	call	to	this	API	is	in	the	Navigate_TO	section	of
the	Login	script	for	example:
vHandle_NAVIGATETO:	function(sToForm,	oPreviousForm)
{
					var	bReturn	=	true;
					HIDE_CURRENT_FORM();
					SETBUSY(true);
					OVRSFLAUTOGUI("Employee_Skills",	false);
					etc

				
	

AVSWITCH	Function
Requests	a	switch	to	another	business	object	and	optionally	the	execution	of	a
nominated	command.
	

Syntax
AVSAVEVALUE(sTo,	sNamed,	sExecute,	sTargetWindow)
	

Parameters
sTo Specify	as	FRAMEWORK,	APPLICATION	or

BUSINESSOBJECT	indicating	the	object	to	which	control	is
to	be	switched.

sNamed Specifies	the	User	Object	Name/Type	of	the	APPLICATION
or	BUSINESSOBJECT	that	control	is	to	switch	to.

sExecute Specify	the	User	Object	Name/Type	of	any	command	that	is
to	be	executed	in	the	target	FRAMEWORK,	APPLICATION
or	BUSINESSOBJECT.

sTargetWindow Specifies	the	target	window	in	which	the	switch	operation
should	be	performed.	Allowable	values	are	CURRENT	(the
current	window),	MAIN	(the	main	window)	or	specific
window	name.	The	default	value	is	MAIN.

	

	

Return	Value
None.

Remarks
It	is	the	function	callers	responsibility	to	ensure	the	RAMP-TS	session	is	not
busy	when	the	call	to	AVSWITCH	is	made.	In	development	mode	this	will	result
in	the	RAMP	Session	Busy	message.
	

Examples
	
/*	Switch	to	the	Combobox	Fast	Part	examples	and	run	Example	1	*/
		
AVSWITCH("BUSINESSOBJECT","C0846821929747C295C29FF1E518CCAD","EXAMPLE_1");
	
/*	Switch	to	a	business	object	in	the	same	additional	window	and	*/
/*	run	the	details	command.																																						*/
	
AVSWITCH("BUSINESSOBJECT","EMPLOYEES","DETAILS","CURRENT");

	

TRIM_RIGHT	Function
Trim	trailing	spaces	from	a	string.

Syntax
var	sTrimmed	=	TRIM_RIGHT(sString);
	

Parameters
sString Required.	The	string	to	be	right	trimmed.

	

	

Return	Value
String.	Returns	the	right	trimmed	string.
	

Example
var	myString	=	GETVALUE("PageMarker");
var	sTrimmed	=	TRIM_RIGHT(myString);

	
	

TRIM_LEFT	Function
Trim	preceding	(left)	spaces	from	a	string.

Syntax
var	sTrimmed	=	TRIM_LEFT(sString);
	

Parameters
sString Required.	The	string	to	be	left	trimmed.

	

	

Return	Value
String.	Returns	the	left	trimmed	string.
	

Example:
var	myString	=	GETVALUE("PageMarker");
var	sTrimmed	=	TRIM_LEFT(myString);

	
	
	

SHOW_CURRENT_FORM	Function
Show	or	hide	the	current	screen.

Syntax
SHOW_CURRENT_FORM(bShow)	

Parameters
bShow Required.	A	boolean	value	that	indicates	whether	to	show	the	current

screen.

	

Return	Value
None
	

Example
Show	the	current	screen	(in	an	arrival	script):
vHandle_ARRIVE:	function(oPayload,	oPreviousForm)
			{
					var	bReturn	=	true;
					SHOW_CURRENT_FORM(true);

	
	
		

SHOWSTATUSBAR	Function
Show/Hide	the	5250	terminal	status	bar	for	the	end	user.
	

Syntax
SHOWSTATUSBAR(bShow)	
	

Parameters
bShow Required.	A	boolean	value	that	indicates	whether	to	show	the	5250

terminal	status	bar.

	

	

Return	Value
None
	

Remarks
The	5250	terminal	status	bar	looks	like	this	(in	red)

	
It	allows	the	end	user	to	carry	out	a	variety	of	functions,	such	as	stopping	or
refreshing	the	page	and	displaying	messages	from	the	terminal
	

Example
Show	the	end	user	the	5250	terminal	status	bar	(in	an	arrival	script):
vHandle_ARRIVE:	function(oPayload,	oPreviousForm)
			{
					var	bReturn	=	true;
					SHOW_CURRENT_FORM(true);
					HIDE_5250_BUTTONS();
					SHOWSTATUSBAR(true);

	
	
	
	

TOSTRING	Function
Makes	a	number	or	null	or	other	JScript	object	into	a	string.

Syntax
myString	=	TOSTRING(oObject);	
	

Parameters
oObject Required.	A	JScript	object.	Usually	it	would	be	a	number,	that

needs	to	be	converted	to	a	string.	It	can	also	be	a	string	or	other
JScript	object.

	

	

Return	Value
String The	returned	string

	

	

Example
Convert	the	number	12.5	into	a	string
	
var	myString	=	TOSTRING(12.5);
	

	

TONUMBER	Function
Makes	a	string	or	other	JScript	object	into	a	number.

Syntax
myNumber	=	TONUMBER(oObject);	

	
Parameters
oObject Required.	A	JScript	object.	Usually	it	would	be	a	string,	that	needs

to	be	converted	to	a	number.	It	can	also	be	a	number.

	

	

Return	Value
Number Required.	The	returned	number

	

	

Example
Convert	the	string	"12.5"	into	a	number
	
var	myNumber	=	TONUMBER("12.5");
	

	
	

SETBUSY	Function
Enables/Disables	the	system	busy	state.	When	SETBUSY	is	set	to	true,	the
status	light	will	change	to	red	and	all	user	interactions	are	ignored.
	

Syntax
SETBUSY(fState)	
	

Parameters
fState Required.	A	boolean	value	that	indicates	whether	the	system	should	go

into	the	busy	state.

	

	

Return	Value
None
	

Remarks

Setting	SETBUSY(true)	indicates	that:

The	system	is	busy	doing	something
Things	the	user	does	should	be	ignored	while	the	system	is	busy.
There	is	nothing	the	user	can	or	should	do	to	release	the	busy	state	-	it	will	be
released	automatically	when	the	busy	activity	completes.

It	should	not	be	enabled	when	interaction	is	required	from	the	user.

If	a	script	sets	busy	to	true,	it	should	ensure	that	it	is	set	to	false	after
the	processing	is	finished.	Otherwise	the	user	will	not	be	able	to	interact	with	the
aXes	screen.

	

Example
Turn	off	the	busy	state	to	allow	user	interaction,	and	indicate	that	the	system	is
not	busy
	
SETBUSY(false);
	

	
Turn	on	the	busy	state	to	ignore	user	interaction,	and	indicate	that	the	system	is
busy
	
SETBUSY(true);
	

	

CHECK_FIELD_EXISTS	Function
Checks	whether	a	field	is	present	in	the	current	screen.	Use	the	optional	iInd
parameter	to	refer	to	the	instance	of	a	field	in	a	subfile.

Syntax
CHECK_FIELD_EXISTS(sFieldName,	[iInd])	

Parameters
sFieldName Required.	A	string	that	contains	the	name	of	the	field	to	check.

iInd Optional.	Integer,	must	be	greater	than	zero.	For	subfile	fields
this	is	the	specific	instance	of	the	field.

	

	

Return	Value
Boolean.	Returns	one	of	the	following	possible	values:

true The	field	was	found	in	the	current	screen.

false The	field	was	not	found	in	the	current	screen.

	

	

Remarks
For	subfile	fields	you	may	choose	not	to	pass	iInd.	When	passed,	iInd	must	be
greater	than	zero	or	else	it	will	return	false.

Example
Check	that	that	the	field	named	PageMarker	is	present	on	this	screen:
	
if	(CHECK_FIELD_EXISTS("PageMarker"))
	

	

Read	every	subfile	entry	on	the	page
for	(Index	=	1;	CHECK_FIELD_EXISTS("ColGivename",	Index);		Index++)
{
			var	Givename	=	GETVALUE("ColGivename",Index);
			var	Empno	=	GETVALUE("ColEmpno",	Index);
			...
}

	
	
	

DROP_SPECIAL_FIELD_HANDLER	Function
Removes	the	definition	of	a	5250	special	field	handler.	You	should	complete	the
RAMP-TSAD03:	Special	Field	Handling	tutorial	before	using	this	function.
If	the	handler	definition	does	not	exist	the	request	is	ignored	and	no	error
results.	Removing	the	definition	of	a	displayed	handler	will	not	impact	it	until	it
needs	to	be	displayed	again.	

Syntax
DROP_SPECIAL_FIELD_HANDLER(sName,sKey)

Parameters
	sName Required.	The	5250	name	of	the	field	associated	with	this	special

field	handler.	

sKey Required.	The	function	key	that	causes	the	handler	to	be	invoked.	Use
the	same	keys	names	as	used	in	SENDKEY()	operations.

	

Return	Value
None

Examples
See	the	RAMP-TSAD03:	Special	Field	Handling	tutorial	for	examples.
	
	

SET_SPECIAL_FIELD_HANDLER	Function
Sets	or	resets	the	current	definition	of	a	5250	special	field	handler.	You	should
complete	the	RAMP-TSAD03:	Special	Field	Handling	tutorial	before	using	this
function.

Syntax
SET_SPECIAL_FIELD_HANDLER(sName,sKey,sHandler,sInfo1,sInfo2,sInfo3)

Parameters
_sName Required.	The	5250	name	of	the	field	associated	with	this	special

field	handler.		

sKey Required.	The	function	key	that	causes	the	handler	to	be	invoked.
Use	the	same	keys	names	as	used	in	SENDKEY()	operations.

sHandler Required.	The	name	of	the	VL	component	special	field	handler.	The
VL	component	must	be	a	class	VF_AC017	object.	

sInfo1	–
sInfo3

Optional.	Additional	string	information	to	be	passed	to	the	handler	if
it	is	later	invoked.

	

	

Return	Value
None

Examples
See	the	RAMP-TSAD03:	Special	Field	Handling	tutorial	for	examples.
	
				

GET_FORM_MESSAGE	Function
Get	the	5250	message	text	at	a	specified	row	number	and	optionally	route	as	a
Framework	message.

Syntax
var	bMoreRecords	=	GET_FORM_MESSAGE([iRow,]	[sMoreIndicator,]
[bRoute])	

Parameters
iRow Optional.	An	integer	specifying	the	message	row	number.

Defaults	to	the	last	row.

sMoreIndicator Optional.	The	string	used	by	the	Application	to	denote
whether	there	are	more	messages	available.	Defaults	to	"+".

bRoute Optional.	A	Boolean	to	specify	whether	the	message	is	to	be
routed	to	the	Framework	message	area.	When	true,	the	text
of	the	message	in	the	screen	will	be	removed.	Defaults	to
true.

	

	

Return	Value
Boolean.	Returns	one	of	the	following	possible	values:

true The	more	indicator	was	found	in	an	element	displayed	on	the	message
line

false The	more	indicator	was	not	found	in	an	element	displayed	on	the
message	line

	

	
Remarks
Additionally,	RAMP	will	set	a	property	called	vLastMessage	in	the	current	form

object	that	will	contain	the	text	of	the	last	message	retrieved.	To	use	this
property	in	your	script	use:
	
var	sLastMsg	=	this.vLastMessage;
	

Note	that	the	use	of	the	this	pointer	is	only	valid	within	the	current	script.
	

Examples
GET_FORM_MESSAGE(22);				/*	Extract	messages	and	hide	the	message	line		*/
if	(this.vLastMessage	!=	"")	ALERT_MESSAGE("ERROR:"	+	this.vLastMessage);
GET_FORM_MESSAGE(22,	"More");		

		
The	following	example	shows	using	GET_FORM_MESSAGES	in	an	Arrival
Script	to	rout	all	5250	messages	to	the	Framework
The	GET_FORM_MESSAGE	retrieves	the	text	visible	on	the	5250	screen	at
the	nominated	line.
If	the	5250	screen	indicates	that	there	are	more	messages	available	the	function
will	return	a	result	of	true.	For	the	other	messages	to	be	read	they	must	be	made
visible.	This	is	achieved	by	setting	the	cursor	to	the	line	displaying	the	message
and	sending	a	Page	Down	key	to	the	5250	screen.	When	the	5250	screen	arrives
the	new	message	is	retrieved.	Note	that	this	is	an	expensive	exercise.
	
			/*	==	*/
			/*	==================		vHandle_ARRIVE		==================	*/
			/*	==	*/
			/*	Handle	arrival	at	this	Destination	*/
			/*	oPayload:	The	payload	supplied	by	the	event	initiator	*/
			/*	oPreviousForm:	Reference	to	previous	object	Form*/
	
			vHandle_ARRIVE:	function(oPayload,	oPreviousForm)
			{
					var	bReturn	=	true;
	
					SHOW_CURRENT_FORM(true);
					HIDE_5250_BUTTONS();
					SETBUSY(false);	/*	Turn	off	the	busy	state	to	allow	user	interaction	*/

	
					/*	Get	the	5250	message	text	from	the	message	area	*/
					var	flagMoreRecords	=	GET_FORM_MESSAGE(22);
	
				/*	If	there	are	more	messages	*/
					if	(flagMoreRecords	==	true)
					{
	
								/*	Move	the	cursor	to	the	line	displaying	the	Messages	*/
								SETCURSORTOROW(22);
	
								/*	Bring	up	the	next	message	*/
								SENDKEY(KeyPageDown);
	
					}
	
				/*	<ARRIVE	/>	-	Do	not	remove	or	alter	this	line	*/
	
					return(bReturn);
			},

	
	

SCREEN	Function
Returns	the	screen	object	for	a	specified	screen	name.

Syntax
var	oScreen	=	SCREEN(sName)	

	
Parameters
sName Required.	String	that	specifies	the	name	of	a	screen.

	

	
Return	Value
oScreen Object.	A	reference	to	a	screen	object.

	

	
Remarks
Useful	to	access	the	properties	of	a	specific	screen	at	any	point	in	time	during
your	navigation.
	

Examples
See	Using	Screen	References	.
	

HIDE_5250_BUTTONS()	Function
Use	in	the	ARRIVE	script	to	hide	the	function	key	buttons	in	the	5250	screen.
.

Syntax
HIDE_5250_BUTTONS();
	

Parameters
None
	

Example
				
HIDE_5250_BUTTONS();
	

	

SHOW_5250_BUTTONS()	Function
Use	in	the	ARRIVE	script	to	show	the	function	key	buttons	in	the	5250	screen.
.

Syntax
SHOW_5250_BUTTONS();
	

Parameters
None
	

Example
			
SHOW_5250_BUTTONS();
	

	

	

	

COPYTOCLIPBOARD	Function
Copy	a	string	to	the	user's	clipboard.

Syntax
COPYTOCLIPBOARD(sString);

Parameters
sString Required.	String	that	contains	the	data	to	be	copied	to	the	user's

clipboard.		

	

	

Return	Value
None
	

Examples
	
COPYTOCLIPBOARD("ABC");
	
	
COPYTOCLIPBOARD(MAKESUBFILEINTOSTRING("uDataGrid",	true,
true	,	"0,2,3,4,5"	,	"1,2,3,4,6"));
	
	
/*	Copy	to	a	spreadsheet	*/
	
var	MyString	=	"";
var	TAB_Char	=	"\x09"	;
var	End_Of_Line_Char	=	"\x0D\x0A"	;
	
MyString	=	"Line	1	Cell	1"	+	TAB_Char	+	"Line	1	Cell	2"	+
End_Of_Line_Char;
MyString	+=	"Line	2	Cell	1"	+	TAB_Char	+	"Line	2	Cell	2"	+
End_Of_Line_Char;
COPYTOCLIPBOARD(MyString);

		

Notes
This	function	can	be	used	to	allow	the	user	to	copy	data	to	their	real	clipboard,
for	pasting	into	Word	documents	or	spreadsheets
	
	
	

FATAL_MESSAGE_TYPE	Function
Use	this	function	when	you	don’t	want	the	Framework	to	shut	down	when	a
fatal	navigation	error	occurs.

Syntax
FATAL_MESSAGE_TYPE(sType)

Parameters
sType Optional.	String	that	contains	the	message	type:

		FATAL	(default)	–	in	end	user	mode,	the	framework	will	shut	down.
			HIDE	–	the	RAMP	command	tab	will	hide	the	5250	screen	and	show
the	error.
			INFO	–	the	error	message	will	be	routed	to	the	Framework	message
area.

	

Return	Value
None

Example
	
FATAL_MESSAGE_TYPE("HIDE");
		

	
	

SETKEYENABLED	Function
Dynamically	enable	or	disable	a	destination’s	button	or	5250	function	key.
This	function	overrides	the	destination’s	function	key	enablement,	for	the
duration	of	the	logged	on	5250	session.	The	override	will	impact	all	future
displays	of	the	destination	screen.
	

Syntax
SETKEYENABLED	(sDestinationName,sKeyName,bEnableVLF,bEnableNL)

Parameters
sDestinationName Required.	A	string	that	contains	the	name	of	a	Destination.

sKeyName Required.	String	that	contains	the	name	of	the	key.	See
Function	Key	Names	for	SENDKEY	Function.

bEnableVLF Optional.	Boolean.	Set	to	true	to	show	the	button,	false	to
hide	it,	null	to	ignore.

bEnableNL Optional.	Boolean.	Set	to	true	to	enable	the	5250	function
key,	false	to	disable	it,	null	to	ignore.

	

Return	Value
None

Remarks
To	be	immediately	effective,	SETKEYENABLED	needs	to	occur	prior	to
SHOW_CURRENT_FORM(true)	in	an	arrival	script:
					SETKEYENABLED("DisplayEmployee",KeyF5,	false,	false);
					SHOW_CURRENT_FORM(true);

	

Example

The	Destination	named	uDisplayEmployee	was	set	up	to	Show	the	prompt
button	but	disable	the	F4	5250	function	key.

To	override	those	settings	to	the	reverse:

	

SETKEYENABLED("uDisplayEmployee",	KeyF4,	false,true);

	
To	leave	the	original	setting	for	the	button	but	enable	the	F4	function	key	as
well:
		

SETKEYENABLED("uDisplayEmployee",	KeyF4,	null,true);

	

	

	

SETVALUE	Function
Set	the	content	of	a	field	on	a	5250	screen	to	a	value.	The	field	may	be
identified	by	name	or	by	its	order	on	the	screen.
	

Syntax
Setting	by	Name	-	SETVALUE(sVariable	,	sValue,	iIndex)

Parameters
Setting	by	Name:

sVariable Required.	String	that	contains	the	RAMP	field	name.	

sValue Required.	String	that	contains	the	value	to	set	the	field	to.	

iIndex Optional.	An	Integer	that	specifies	the	subfile	row	of	the	field,	for
fields	that	are	part	of	a	subfile.
Note:	the	specified	row	index	must	exist	in	the	current	subfile
page.	CHECK_FIELD_EXISTS	can	be	used	to	check	whether	a
particular	row	exists	in	the	subfile.

	

	

Return	Value
None

Remarks
To	set	a	value	of	a	field	on	a	screen	by	name,	the	field	must	have	been	given	a
name.
The	use	of	field	identification	by	order	is	more	likely	to	be	impacted	by	form
layout	changes	than	by	using	a	name.
The	initial	setting	of	a	field	by	order	is	more	expensive	to	execute	than	by	name,
however	screen	field	order	details	are	cached	so	that	the	subsequent	access	is
faster.	The	caching	logic	assumes	that	the	relative	order	of	a	field	on	any
particular	screen	will	not	change	within	a	signed	on	5250	session.				
	

Examples
	
SETVALUE("utxtSignOn",	objUser.Name);
	
SETVALUE("utxtPassword",objUser.Password);
	
SETVALUE("utxtSelectionOrCommand","90");
	
SETVALUE("utxtTransaction","MOV");
		

Q_SETVALUE	Function
Set	the	content	of	a	field	on	a	5250	screen	to	a	value,	the	request	is	queued	up
and	processed	when	the	next	screen	arrives.	The	field	may	be	identified	by
name	or	by	its	order	on	the	screen.

	

Syntax
function	Q_SETVALUE(argCondition,	sVariable,	sValue,	iIndex)
	

Parameters
argCondition Optional.	May	be	passed	as:

null	or	"",	indicating	that	no	condition	applies
"=<<screen	name	when	the	queued	instruction	is	executed>>"
indicating	that	the	resulting	SENDKEY/SETVALUE	should	only
be	performed	if	the	next	screen	is	as	named.
"!=<<screen	name	when	the	queued	instruction	is	executed>>"
indicating	that	the	resulting	SENDKEY/SETVALUE	should	only
be	performed	if	the	next	screen	is	not	as	named.
The	screen	name	condition	is	tested	when	the	next	or	resulting
screen	arrives.	The	name	specified	does	not	have	anything	to	do
with	the	current	screen	name.

sVariable Required.	String	that	contains	the	RAMP	field	name.	

sValue Required.	String	that	contains	the	value	to	set	the	field	to.	

iIndex Optional.	An	Integer	that	specifies	the	subfile	row	of	the	field,
for	fields	that	are	part	of	a	subfile.
Note:	the	specified	row	index	must	exist	in	the	current	subfile
page.	CHECK_FIELD_EXISTS	can	be	used	to	check	whether	a
particular	row	exists	in	the	subfile.

	

	

	

GETVALUE	Function
Get	the	value	from	a	field	on	a	RAMP	screen.

Syntax
GETVALUE(sVariable)

Parameters
	 sVariable Required.String	that	contains	the	field	name.	
	 sIndex Optional.	Specifies	the	row	for	fields	used	as	columns	in	subfiles.

sIndex Optional.	An	Integer	that	specifies	the	subfile	row	of	the	field.
Note:	the	specified	row	index	must	exist	in	the	current	subfile
page

	

	

	

Return	Value
String.	Returns	the	value	of	the	field	as	a	string.

Example
	
MyString	=	GETVALUE("utxtSignOn")	;
	

	

SENDKEY	Function
Emulates	the	pressing	of	a	key.

Syntax
SENDKEY(sKeyName,	oPayload)

Parameters
SKeyName Required.String	that	contains	the	name	of	the	key.	See	Function

Key	Names	for	SENDKEY	Function.

oPayload Optional.	Object	that	is	passed	with	the	function.

	

Return	Value
None

Remarks
This	function	typically	initiates	an	asynchronous	5250	server	side	operation.
Your	RAMP-TS	script(s)	should	end	all	processing	immediately	after	invoking
this	function	and	then	do	nothing	more	until	the	asynchronous	operation
completes.
The	completion	of	the	asynchronous	operation	is	typically	indicated	by	the
execution	of	the	arrival	script	of	the	resulting	5250	screen	display.		(Any	queued
script	functions	should	be	queued	prior	to	executing	this	script	function).
	

Examples
	

SENDKEY(KeyEnter);

		
The	next	example	shows	how	to	use	the	Payload	Parameter	with	the	SENDKEY
and	Q_SENDKEY	functions.
An	object	is	created	and	loaded	with	values	in	the	Enter	key	BUTTONCLICK
event	and	then	the	object	is	passed	as	the	oPayload	parameter	of	the	SENDKEY
function:

			/*	==	*/
			/*	==================		BUTTONCLICK		=====================	*/
			/*	==	*/
			/*	sButton:	The	button	that	was	clicked	*/
	
			vHandle_BUTTONCLICK:	function(sButton)
			{
	
					var	bReturn	=	true;
	
					if	(HANDLE_PROMPT())	return(bReturn);	/*	If	the	focus	element	is	automatically	prompted	finish	now	*/
	

					/*	<BUTTONCLICK	/>	-	Do	not	remove	or	alter	this	line	*/
	
											/*	Handle	function	keys	and	buttons	*/
	
											switch	(sButton)
								{
											case	KeyEnter:
													var	objEmp	=	new	Object();
																	objEmp.strEmpno	=	GETVALUE("empno");
																	objEmp.strGName	=	GETVALUE("givename");
																	objEmp.strSName	=	GETVALUE("surname");
																	SENDKEY(KeyEnter,	objEmp);
																	break;
											case	KeyF3:
																	SENDKEY(KeyF3);
																	break;
											case	KeyF4:
																	SENDKEY(KeyF4);
																	break;
											case	KeyF12:
																	SENDKEY(KeyF12);
																	break;
											case	KeyF14:
																	SENDKEY(KeyF14);
																	break;
											case	KeyF21:

																	SENDKEY(KeyF21);
																	break;
											case	KeyF22:
																	SENDKEY(KeyF22);
																	break;
														default:
																	SENDKEY(sButton);
																	break;
								}

					return(bReturn);
			},

	
Then	the	vHandle_Arrive	function	of	the	resulting	screen	gets	the	values	from
the	payload	if	one	is	passed:
				/*	==	*/
			/*	==================		vHandle_ARRIVE		==================	*/
			/*	==	*/
			/*	Handle	arrival	at	this	Destination	*/
			/*	oPayload:	The	payload	supplied	by	the	event	initiator	*/
			/*	oPreviousForm:	Reference	to	previous	object	Form*/
	
			vHandle_ARRIVE:	function(oPayload,	oPreviousForm)
			{
					var	bReturn	=	true;
	
					SHOW_CURRENT_FORM(true);	/*	Show	the	form	in	the	framework	and	show	VLF	buttons	*/
					HIDE_5250_BUTTONS();					/*	Hide	any	5250	style	buttons	displayed															*/
					GET_FORM_MESSAGE(22);				/*	Extract	messages	and	hide	the	message	line										*/
					SETBUSY(false);										/*	Last	thing	done	-	turn	off	the	busy	state											*/
	
					/*	if	there	is	something	in	the	payload	*/
					if	(oPayload	!=	null)
					{
								ALERT_MESSAGE("Employee	Details	from	the	payload	are:	Employee	Number:	",	oPayload.strEmpno,"Name:	",	oPayload.strGName,	oPayload.strSName);
					}
	

					/*	<ARRIVE	/>	-	Do	not	remove	or	alter	this	line	*/
	
					return(bReturn);
			},
	

	
	

Q_SENDKEY	Function
Emulates	the	pressing	of	a	key,	the	request	is	queued	up	and	processed	when	the
next	screen	arrives.
	

Syntax
Q_SENDKEY(argCondition,sKeyName,	oPayload)
	

Parameters
argCondition Optional.	May	be	passed	as:

null	or	"",	indicating	that	no	condition	applies
"=<<screen	name	when	the	queued	instruction	is	executed>>"
indicating	that	the	resulting	SENDKEY/SETVALUE	should	only
be	performed	if	the	next	screen	is	as	named.
"!=<<screen	name	when	the	queued	instruction	is	executed>>"
indicating	that	the	resulting	SENDKEY/SETVALUE	should	only
be	performed	if	the	next	screen	is	not	as	named.
The	screen	name	condition	is	tested	when	the	next	or	resulting
screen	arrives.	The	name	specified	does	not	have	anything	to	do
with	the	current	screen	name.

sKeyToSend Required.String	that	contains	the	name	of	the	key.	See	Function
Key	Names	for	SENDKEY	Function.

oPayload Optional.	Object	that	is	passed	with	the	function.

	

	

Example
		Q_SENDKEY("",KeyF12);			/*	Unconditionally	send	F12	aginst	the	resulting	screen	by	queueing	up	the	request	*/									
		SENDKEY(KeyEnter);						/*	Send	enter	against	the	current	screen	*/

	
Or

	
		Q_SENDKEY("=Confirm",KeyEnter);			/*	If	the	resulting	screen	is	named	Confirm,	send	enter	*/
		Q_SENDKEY("!=Confirm",KeyF12);				/*	else	send	F12																																							*/									
		SENDKEY(KeyEnter);																/*	Send	enter	against	the	current	screen	*/

		
Also	see	SENDKEY	Function.	
	
	

CHECK_CURRENT_FORM	Function
Check	that	RAMP	is	showing	a	screen.

Syntax
CHECK_CURRENT_FORM(sFormName	[,	sMessageText1]	[,
sMessageText2]	...)

Parameters
sFormName Required.	String	that	specifies	the	Name	of	the	Form

sMessageText1 Optional.	String	that	contains	the	first	message	to	be
issued.		

sMessageText2 Optional.	Other	strings	that	are	to	be	concatenated	with	the
first	message	string	(a	separator	space	is	automatically
added	between	each	string).	

	

Return	Value
Boolean.	Returns	one	of	the	following	possible	values:

true The	form	currently	shown	has	the	form	name	specified.

false The	form	currently	shown	does	not	have	the	form	name	specified.

	

Remarks
Used	for	checking	whether	the	script	or	user	has	progressed	to	a	particular
screen,	or	has	stopped	at	an	earlier	screen.
If	the	CHECK_CURRENT_FORM	returns	false,	the	function	will	also
automatically	hide	the	Current	RAMP	screen	and	display	the	message	provided.
If	the	script	wants	to	test	that	the	expected	screen	has	arrived,	and	yet	still
display	the	current	screen	if	it	hasn't,	it	should	not	use	function
CHECK_CURRENT_FORM,	but	instead	use
		

if	(CURRENT_FORM()	==	"My_Form");
		

When	you	are	writing	scripts	that	handle	validation	errors	on	a	screen,	you
usually	want	the	current	screen	to	be	displayed	even	if	a	validation	error
occurred	and	the	user	has	not	progressed	to	the	expected	next	screen.	So	in	this
situation	you	should	not	use	CHECK_CURRENT_FORM.

Example
	
if	(!(CHECK_CURRENT_FORM("uItemMasterBrowse","Unable	to
navigate	to	form	uItemMasterBrowse")))	return;
	

	
	

Q_CHECK_CURRENT_FORM	Function
Check	that	RAMP	is	showing	a	screen,	the	request	is	queued	up	and	processed
when	the	next	screen	arrives.

Syntax
Q_CHECK_CURRENT_FORM(sFormName	[,	sMessageText1]	[,
sMessageText2]	...)

Parameters
sFormName Required.	String	that	specifies	the	Name	of	the	Form

sMessageText1 Optional.	String	that	contains	the	first	message	to	be
issued.		

sMessageText2 Optional.	Other	strings	that	are	to	be	concatenated	with	the
first	message	string	(a	separator	space	is	automatically
added	between	each	string).	

	

Return	Value
Boolean.	Returns	one	of	the	following	possible	values:

true The	form	currently	shown	has	the	form	name	specified.

false The	form	currently	shown	does	not	have	the	form	name	specified.

	

Remarks
Used	for	checking	whether	the	script	or	user	has	progressed	to	a	particular
screen,	or	has	stopped	at	an	earlier	screen.

Example
	
	
	

AVCLOSEFORM	Function
Signals	to	the	Framework	to	close	the	current	form.

Syntax
AVCLOSEFORM()

Parameters
None

Return	Value
None

Remarks
If	a	RAMP	screen	is	running	as	a	separate	form,	and	needs	to	be	closed
automatically	after	completing,	use	AVCLOSEFORM.
Ensure	that	the	current	form	is	a	form	known	to	the	Visual	LANSA	Framework,
at	the	point	the	AVCLOSEFORM	is	issued,	and	that	there	is	a	valid
vHandle_NAVIGATETO	function	for	this	Junction	or	Destination.	This	will
allow	the	Framework	to	navigate	back	to	sign	off	and	end	the	session	cleanly.
This	request	may	be	handled	asynchronously.	The	consequences	of	invoking	it
may	not	be	visible	or	useable	until	your	currently	active	RAMP-TS	script(s)
complete	executing	and	yields	control	back	to	the	RAMP-TS	manager.
	

Example
/*	Close	this	command	handler,	since	the	Delete	is	now	done	*/
/*	We	should	ensure	we	are	on	a	Junction	or	Destination	at	this	point	*/
/*	so	that	the	Framework	can	cleanly	navigate	the	session	to	sign	off	*/
AVCLOSEFORM();

	
	

HIDE_CURRENT_FORM	Function
Hides	the	current	form	and	displays	an	optional	message.
This	function	is	used	to	hide	the	current	5250	screen	from	the	users	and	to
prevent	them	from	manually	interacting	with	it.
For	example,	a	script	that	performed	a	5250	sub-file	search	and	failed	to	find	an
expected	product	number	might	do	this:
	
HIDE_CURRENT_FORM("Product	number",	strProductNumber,	"could	not
be	found.	You	may	not	be	authorized	to	view	it.");
	

This	presents	an	error	message	to	the	user	and	hides	the	current	5250	form,
which	can	then	only	be	interacted	with	by	other	script	controlled	actions.									

Syntax
HIDE_CURRENT_FORM([sMessageText1]	[,	sMessageText2]	...	[,
sMessageTextN])

Parameters
sMessageText1 Optional.	String	that	contains	the	first	message	to	be	issued.	

sMessageText2
->	N

Optional.	Strings	that	are	to	be	concatenated	with	the	previous
message	text	(a	separator	space	is	added).	

	

Return	Value
None
	

Notes
This	request	may	be	handled	asynchronously.	The	consequences	of	invoking	it
may	not	be	visible	or	useable	until	your	currently	active	RAMP-TS	script(s)
complete	executing	and	yields	control	back	to	the	RAMP-TS	manager.
	

Example
	

HIDE_CURRENT_FORM("Inventory	item",	objListManager.AKey1[0]	,
"was	deleted.");
	

	

CURRENT_FORM	Function
Gets	the	Form	Name	of	the	current	RAMP	screen.

Syntax
CURRENT_FORM()

Parameters
None

Return	Value
String.	Returns	the	Form	name	of	the	current	screen,	as	a	string:

Example
	
MyString	=	CURRENT_FORM()	;
	

SETCURSORTOROW	Function
Moves	the	cursor	to	the	specified	row	and	column	on	the	screen.
This	function	is	intended	to	programmatically	manipulate	the	coordinates	(5250
row	and	column)	of	the	underpinning	5250	screen	cursor	-	rather	than	anything
visual	on	the	currently	displayed	web	page.	Typically	a	call	to	this	function	is
immediately	followed	by	a	SENDKEY	function	call.			
	

Syntax
SETCURSORTOROW(iRow,	iColumn)	
	

Parameters
iRow Required.	Integer	for	the	row	on	the	screen.	Starts	at	the	top	with

row	1.

iColumn Optional.	Integer,	for	the	column	on	the	screen.	Must	be	greater	than
zero.	Defaults	to	1.

	

	

Return	Value
None

Remarks
The	cursor	can	be	set	to	anywhere	on	the	screen.

Example
	

Set	the	cursor	to	the	9th	row	down,	43rd	column	across
	
SETCURSORTOROW(9	,	43);
	

	

	SETCURSORTOFIELD	Function
Moves	the	cursor	to	the	specified	field,	or	piece	of	text	or	subfile	cell.
This	function	is	intended	to	programmatically	manipulate	the	coordinates	(5250
row	and	column)	of	the	underpinning	5250	screen	cursor	-	rather	than	anything
visual	on	the	currently	displayed	web	page.	Typically	a	call	to	this	function	is
immediately	followed	by	a	SENDKEY	function	call.			

Syntax
SETCURSORTOFIELD(sFieldName,	iInd)	
	

Parameters
sFieldName Required.	A	string	that	contains	the	name	of	the	field	to	set	the

cursor	to.	This	can	be	any	named	field	or	text	or	subfile	column.

iInd Required	for	subfiles.	Integer,	must	be	greater	than	zero.	For
subfile	fields	this	is	the	specific	instance	of	the	field	(the	row
within	the	column).

	

	

Return	Value
None
	

Remarks
The	cursor	can	be	set	to	any	named	field	or	text	or	subfile	column	on	the	screen.
	

Example
	

Set	the	cursor	to	the	field	named	as	givename,	in	RAMP-TS
	
SETCURSORTOFIELD("givename");
	

	
Set	the	cursor	to	the	field	named	ColDepartment	in	a	subfile,	fifth	row	down
	
SETCURSORTOFIELD("ColDeptment",	5);
	

	
	

ALERT_MESSAGE	Function
Issue	a	message	as	an	alert.

Syntax
ALERT_MESSAGE(sMessageText1	[,	sMessageText2]	...)

Parameters
sMessageText1 Required.	String	that	contains	the	first	message	to	be	issued.		

sMessageText2 Optional.	Other	strings	that	are	to	be	concatenated	with	the
first	message	string	(a	separator	space	is	automatically	added
between	each	string).	

	

Return	Value
None
	

Notes
This	request	may	be	handled	asynchronously.	The	consequences	of	invoking	it
may	not	be	visible	or	useable	until	your	currently	active	RAMP-TS	script(s)
complete	executing	and	yields	control	back	to	the	RAMP-TS	manager.
	

Example
	
ALERT_MESSAGE("Inventory	item",	objListManager.AKey1[0]	,	"was
deleted.");
	

	

CLEAR_MESSAGES	Function
Clears	all	messages	currently	in	the	stack.

Syntax
CLEAR_MESSAGES()

Parameters
None

Return	Value
None
	

Notes
This	request	may	be	handled	asynchronously.	The	consequences	of	invoking	it
may	not	be	visible	or	useable	until	your	currently	active	RAMP-TS	script(s)
complete	executing	and	yields	control	back	to	the	RAMP-TS	manager.
	

Example
	
	
CLEAR_MESSAGES()	;
	

FATAL_MESSAGE	Function
Issues	a	fatal	message	and	causes	the	entire	VLF	application	to	terminate
(unless	it	is	being	executed	in	design	mode).		
In	design	mode	the	message	details	are	presented	in	the	center	of	the	RAMP
panel	area	and	the	application	continues	to	execute.	In	execution	mode	the
entire	VLF	application	terminates.

Syntax
FATAL_MESSAGE(sMessageText1	[,	sMessageText2]	[,	sMessageText3]...)

Parameters
sMessageText1 Optional.	String	that	contains	the	first	message	to	be	issued.		

sMessageText2 Optional.	Other	strings	that	are	to	be	concatenated	with	the
first	message	string	(a	separator	space	is	automatically	added
between	each	string).	

	

Return	Value
None
	

Notes
This	request	may	be	handled	asynchronously.	The	consequences	of	invoking	it
may	not	be	visible	or	useable	until	your	currently	active	RAMP-TS	script(s)
complete	executing	and	yields	control	back	to	the	RAMP-TS	manager.
	

Example
	
FATAL_MESSAGE("Inventory	item",	objListManager.AKey1[0]	,	"was
deleted.");
	

	

MESSAGE	Function
Issue	a	message.

Syntax
MESSAGE(sMessageText1	[,	sMessageText2]	...)

Parameters
sMessageText1 Required.	String	that	contains	the	first	message	to	be	issued.		

sMessageText2 Optional.	Other	strings	that	are	to	be	concatenated	with	the
first	message	string	(a	separator	space	is	automatically	added
between	each	string).	

	

Return	Value
None
	

Notes
This	request	may	be	handled	asynchronously.		The	consequences	of	invoking	it
may	not	be	visible	or	useable	until	your	currently	active	RAMP-TS	script(s)
complete	executing	and	yields	control	back	to	the	RAMP-TS	manager.
The	maximum	length	of	the	message	strings	when	concatenated	must	be	no
more	than	130	characters.
		

Example
	
MESSAGE("Inventory	item",	objListManager.AKey1[0]	,	"was	deleted.");
	

	

AVSIGNALEVENT	Function
Signal	an	event	to	the	Framework	filters	and	RAMP	screens.

Syntax
AVSIGNALEVENT([sId]	[,sTo]	[,sAInfo1]	[,sAInfo2]	[,sAInfo3]	[,sAInfo4]
[,sAInfo5]	[,nNInfo1]	[,nNInfo2]	[,nAInfo3]	[,nNInfo4]	[,nNInfo5])
	

Parameters
SId Required.String	containing	an	identifier	of	the	Event.	

STo Valid	values	are:
FRAMEWORK	=	The	signal	is	broadcast	to	the	whole	framework
BUSINESSOBJECT	=	The	signal	is	only	broadcast	to	filters	and
RAMP	screens	in	the	current	business	object

sAInfo1 Optional.	String	containing	additional	information	that	the	object
listening	for	the	signal	can	use.

sAInfo2 Optional.	String	containing	additional	information	that	the	object
listening	for	the	signal	can	use.

sAInfo3 Optional.	String	containing	additional	information	that	the	object
listening	for	the	signal	can	use.

sAInfo4 Optional.	String	containing	additional	information	that	the	object
listening	for	the	signal	can	use.

sAInfo5 Optional.	String	containing	additional	information	that	the	object
listening	for	the	signal	can	use.

nNInfo1 Optional.	Number	containing	additional	information	that	listening
object	may	use.

nNInfo2 Optional.	Number	containing	additional	information	that	listening
object	may	use.

nNInfo3 Optional.	Number	containing	additional	information	that	listening
object	may	use.

nNInfo4 Optional.	Number	containing	additional	information	that	listening

object	may	use.

nNInfo5 Optional.	Number	containing	additional	information	that	listening
object	may	use.

	

	

Return	Value
None

Example
This	example	signals	that	an	entry	has	been	deleted	in	the	instance	list:
	
AVSIGNALEVENT("Delete_List_Entry",	"BUSINESSOBJECT",
objListManager.AKey1[0]);
	

Also	see	Updating	the	Instance	List	from	RAMP	screens.

TRACE	Function
Allows	the	user	to	add	run	time	information	from	the	script	to	the	application
trace	panel.

Syntax
TRACE(sTraceText1	[,	sTraceText2]	...)

Parameters
sTraceText1 Required.String	that	contains	the	trace	information	to	be	shown.	

sTraceText2 Optional.	String	that	is	concatenated	with	the	previous	trace	text
(a	separator	space	is	added).	

	

Return	Value
None
	

Notes
This	request	may	be	handled	asynchronously.	The	consequences	of	invoking	it
may	not	be	visible	or	useable	until	your	currently	active	RAMP-TS	script(s)
complete	executing	and	yields	control	back	to	the	RAMP-TS	manager.
	

Example
	
TRACE("Inventory	item",	objListManager.AKey1[0]	,	"was	deleted.");
	

	
	

HANDLE_PROMPT	Function
Causes	an	associated	prompter	form	(VL	Handler)	to	appear	next	to	a	field.	The
fields	and	the	prompter	forms	are	specified	in	the	Special	Field	Handling	area	as
described	in	Advanced	Prompting.
Optionally	additional	information	can	be	passed	to	or	retrieved	from	the
prompter	form.

Syntax
HANDLE_PROMPT(sArgument1	[,	sArgument2]	[,	sArgument3]...)

Parameters
SArgumentn Optional.	String	that	contains	any	value	the	user	defined

prompter	may	require.	Note	that	by	default	the	user	defined
prompter	has	bi-directional	access	to	all	named	fields	in	the	5250
screen.

	

Return	Value
None

Example
	
if	(HANDLE_PROMPT())	return;
	

	

Accessing	the	values	passed	as	sArgument1,	sArgument2,	etc.,	in
the	prompter	form
A	function	like	this	in	a	RAMP	script:
	
HANDLE_PROMPT("HELLO","THERE",123);

		
Is	accessed	like	this	in	the	prompter	form:
	
Invoke	Method(#Com_Owner.uGet5250Field)	Name(UARG1)

Value(#Arg1Value)	...	returns	"HELLO"	in	#Arg1Value.
Invoke	Method(#Com_Owner.uGet5250Field)	Name(UARG2)
Value(#Arg2Value)	...	returna	"THERE"	in	#Arg2Value.
Invoke	Method(#Com_Owner.uGet5250Field)	Name(UARG3)
Value(#Arg3Value)	...	returns	"123"	as	a	string	in	#Arg3Value.

	
There	is	no	limit	on	how	many	arguments	you	can	pass.
Numeric	values	can	be	passed,	but	they	will	turn	up	as	strings	in	the	VL
component,	so	they	need	to	be	converted	back	to	a	number	again.
Referencing	an	un-passed	argument	does	not	cause	a	problem.	This	code:
#Arg15Value	:=	"TEST"
Invoke	Method(#Com_Owner.uGet5250Field)	Name(UARG15)
Value(#Arg15Value)

	
Would	execute	and	leave	#ARG15Value	unchanged	as	"TEST",	but	you	can
actually	tell	whether	the	value	was	passed	by	doing	this:
Invoke	Method(#Com_Owner.uGet5250Field)	Name(UARG15)
Value(#Arg15Value)	Found(#Found)
If	(#Found	=	TRUE)	/*	15th	argument	was	passed	to	HANDLE_PROMPT	*/
Else																						/*	15th	argument	was	not	passed)

	
As	an	example,	you	can	use	the	additional	arguments	in	a	HANDLE_PROMPT
function	if	you	need	access	to	values	which	are	not	on	the	screen	from	which
the	prompter	form	is	invoked.	
For	instance,	this	could	be	used	in	a	situation	where	customer	information	is
entered	on	the	first	screen	and	an	invoice	number	is	prompted	for	on	the	second
screen.		If	this	invoice	number	is	dependent	on	the	customer	information
initially	entered	on	the	first	screen	and	the	information	is	not	available	to	you	on
the	second	screen,	you	could	store	the	required	customer	information	in	an
objGlobal	variable	and	pass	it	as	HANDLE_PROMPT()	parameters	for	proper
select	criteria	in	the	prompter	form	code.
	

NAVIGATE_TO_SCREEN	Function
Navigates	to	a	nominated	5250	screen.
Note	that	if	you	specify	the	name	of	the	current	destination	the	request	will	be
ignored.

Syntax
NAVIGATE_TO_SCREEN(sScreenName,	ForAction)

Parameters
SScreenName Required.	A	string	that	contains	the	name	of	a	screen.

ForAction
	

Char	256	–	Optional.
String	that	contains	a	user	defined	value.	This	value	will	be
returned	to	the	Screen	Wrapper	in	the	vHandleArrive	event.

	

Return	Value
None

Remarks
This	function	typically	initiates	an	asynchronous	5250	server	side	operation.
Your	RAMP-TS	script(s)	should	end	all	processing	immediately	after	invoking
this	function	and	then	do	nothing	more	until	the	asynchronous	operation
completes.
The	completion	of	the	asynchronous	operation	is	typically	indicated	by	the
execution	of	the	arrival	script	of	the	resulting	5250	screen	display.		(Any	queued
script	functions	should	be	queued	prior	to	executing	this	script	function).
	

Example
	
NAVIGATE_TO_SCREEN("Enrol	Employee");
	

	

Q_NAVIGATE_TO_SCREEN	Function
Navigates	to	a	nominated	5250	screen,	the	request	is	queued	up	and	processed
when	the	next	screen	arrives.

Syntax
Q_NAVIGATE_TO_SCREEN(argCondition,	sScreenName)

Parameters
argCondition Optional.	May	be	passed	as:

null	or	"",	indicating	that	no	condition	applies
"=<<screen	name	when	the	queued	instruction	is	executed>>"
indicating	that	the	resulting	SENDKEY/SETVALUE	should
only	be	performed	if	the	next	screen	is	as	named.
"!=<<screen	name	when	the	queued	instruction	is	executed>>"
indicating	that	the	resulting	SENDKEY/SETVALUE	should
only	be	performed	if	the	next	screen	is	not	as	named.
The	screen	name	condition	is	tested	when	the	next	or	resulting
screen	arrives.	The	name	specified	does	not	have	anything	to
do	with	the	current	screen	name.

	

SScreenName Required.	A	string	that	contains	the	name	of	a	screen.

	

	
Return	Value
None

Example
	
Q_NAVIGATE_TO_SCREEN("=WorkwithCustomers","WorkwithCustomers_Generic");
	

Note	that	this	function	should	only	be	invoked	from	a	button	script.
	
	
	

STRIP_LEADING_NUMBERS	Function
Returns	the	leading	numbers	from	a	string	to	the	caller.

Syntax
STRIP_LEADING_NUMBERS(sSourceString)
	

Parameters
sSourceString	 String.	Required.	The	string	from	which	the	numbers	are	to	be

stripped.	

	

	
Return	Value
String.	The	stripped	numbers.
	

Example
This	code	causes	the	message	"String	returned	was	15"	to	be	displayed:
var	strResult	=	STRIP_LEADING_NUMBERS("015.	Office	Tasks");
alert("String	returned	was	"	+	strResult);

	

ADD_STRING	Function
Defines	a	string	by	a	unique	number	for	use	by	other	scripts.		This	function	is
especially	useful	in	multilingual	applications.

Syntax
ADD_STRING(iStringNumber	,	sText)

Parameters
iStringNumber The	number	to	be	assigned	to	the	string

sText The	string	text

	

Return	Value
None

Examples
See	the	STRING	Function	definition.
	

STRING	Function
Returns	the	string	for	a	given	string	identification	number.	This	function	is
especially	useful	in	multilingual	applications.

Syntax
STRING(iStringNumber)

Parameters
iStringNumber The	identification	number	of	the	string

	

Return	Value
The	string	previously	defined	by	ADD_STRING	with	the	specified
identification	number	or	a	string	containing	the	text	"String	number	n	not
found.".

Examples
If	your	sign-on	function	used	the	ADD_STRING()	function	to	define
multilingual	strings	like	this	based	on	different	language	codes:
ADD_STRING(1,"OK");
ADD_STRING(2,"Cancel");
ADD_STRING(3,"Customer	not	found");

	
Then	all	other	scripts	that	needed	to	access	a	multi-lingual	string	would
reference	the	function	STRING(n)	in	their	code	in	a	language	independent	way.
For	example	this	code:
for	(i	=	0;	i	<=	4;	i++)
{
			alert(STRING(i));
}

	
Would	display	the	strings:

		String	number	0	not	found.

		OK

		Cancel

		Customer	not	found

		String	number	4	not	found

	
Similarly,	if	your	sign-on	script	had	defined	two	strings	like	this:
ADD_STRING(1,"Customer	number	");
ADD_STRING(2,"	could	not	be	found	or	you	are	not	authorized	to	view
them.");

	
Then	you	could	dynamically	build	a	multi-lingual	message	in	another	script	like
this:
var	strMessage	=	STRING(1)	+	CustomerNumber.toString()	+	STRING(2);
alert(strMessage);								
	

OVERRIDE_KEY_CAPTION_SCREEN	Function
Assigns	a	new	caption	for	a	function	key	on	a	particular	screen.

Syntax
OVERRIDE_KEY_CAPTION_SCREEN
(sDestinationName,sKeyName,sOverrideCaption)

Parameters
sDestinationName Required.	A	string	that	contains	the	name	of	a	Destination.

sKeyName Required.	String	that	contains	the	name	of	the	key.	See
Function	Key	Names	for	SENDKEY	Function.

sOverrideCaption Required.	The	new	caption	that	will	be	used	for	the	button

	

Return	Value
None

Example

OVERRIDE_KEY_CAPTION_SCREEN("uDisplayEmployee",	KeyF1,
"Aide");

	

Notes
This	function	can	also	be	used	in	a	sign-on	script.		

OVERRIDE_KEY_CAPTION_ALL	Function
Assigns	a	new	caption	for	a	function	key	on	any	screen.

Syntax
OVERRIDE_KEY_CAPTION_ALL	(sKeyName,sOverrideCaption)

Parameters
sKeyName Required.	String	that	contains	the	name	of	the	key.	See

Function	Key	Names	for	SENDKEY	Function.

sOverrideCaption Required.	The	new	caption	that	will	be	used	for	the	button

	

Return	Value
None

Example

OVERRIDE_KEY_CAPTION_ALL(KeyF1,	"Aide");

		

Notes
This	function	is	usually	used	in	a	sign-on	script.	It	can	be	used	for	multilingual
applications	to	set	all	function	key	captions	to	another	language.

	

AVSAVEVALUE	Function
Saves	an	alphanumeric	or	numeric	value	onto	the	VLF	virtual	clipboard.

Syntax
AVSAVEVALUE(vValue,	sID1,	sID2,	sID3,	iInstance,	sLanguage,	bPersist)

Parameters
vValue Required.	Alphanumeric	or	numeric	value	to	save	to	the	virtual

clipboard.	
If	this	parameter	is	a	JavaScript	variable	of	type	string,	then	the
value	is	posed	to	the	clipboard	as	an	alphanumeric	value	and	can
therefore	can	only	be	sensibly	be	retrieved	using	the
AVRESTOREAVALUE	function	(or	equivalent).	
If	it	is	of	type	number	it	is	posted	as	type	numeric	to	the	clipboard
and	can	only	be	sensibly	retrieved	using	the
AVRESTORENVALUE	function	(or	equivalent).	
	

sID1 Required.	String	that	contains	the	Virtual	Clipboard	identifier	1.

sID2 Optional.	String	that	contains	the	Virtual	Clipboard	identifier	2.

sID3 Optional.	String	that	contains	the	Virtual	Clipboard	identifier	3.

iInstance Optional.	Integer	that	contains	the	instance	number.	Defaults	to	1
when	not	specified.	Instances	are	typically	used	to	create	lists	of
clipboard	values	and	usually	accompanied	by	another	clipboard
value	that	indicates	how	many	entries	currently	exist	in	the	list.

sLanguage Optional.	String	that	contains	the	language	code.	Defaults	to	ALL
languages	when	not	specified.

bPersist Optional.	Boolean	value	that	indicates	whether	or	not	a	saved
value	should	persist	beyond	the	current	execution	of	the	RAMP
application.	Defaults	to	true.	This	parameter	has	no	meaning	for
VLF-WEB	RAMP	applications	because	VLF	virtual	clipboard
values	never	persist	in	WEB	applications.

	

		

Return	Value
None

Remarks
Use	AVSAVEVALUE	in	your	RAMP	scripts	to	save	value	in	the	VLF	virtual
clipboard.	More	information	about	the	Virtual	Clipboard	can	be	found	in	The
Virtual	Clipboard	in	the	Framework	guide.
For	information	about	the	parameter	lengths,	please	refer	to	VF_SAVEVALUE
and	VF_SAVENVALUE.
The	posting	of	clipboard	values	from	RAMP	scripts	is	asynchronous.	When	you
post	values	they	are	not	physically	processed	onto	the	clipboard	until	your
RAMP	script	completes	execution	and	yields	control	back	to	the	framework.
The	virtual	clipboard	is	primarily	designed	to	pass	information	between	RAMP
scripts	and	RDML(X)	code	executing	in	filters,	command	handlers,	etc.
The	virtual	clipboard	is	not	primarily	designed	to	pass	information	between
RAMP	scripts.	The	JavaScript	objGlobal	object	is	a	more	efficient	way	to	pass
information	exclusively	between	RAMP	scripts.
When	a	RAMP	script	executing	in	a	web	browser	application	posts	values	onto
the	virtual	clipboard,	they	need	to	be	sent	to	the	server	for	subsequent	access	by
RDML(X)	code	executing	in	filters	or	command	handlers	(because	they	are
executing	on	the	server).	This	means	that	the	volume	of	information	you	place
onto	the	clipboard	will	impact	the	amount	of	information	that	needs	to	be
transmitted	between	the	client	and	the	server.
This	request	may	be	handled	asynchronously.	The	consequences	of	invoking	it
may	not	be	visible	or	useable	until	your	currently	active	RAMP-TS	script(s)
complete	executing	and	yields	control	back	to	the	RAMP-TS	manager.
	

Examples	
RDMLX	code	in	a	filter	or	command	handler	to	save/restore	clipboard	values:
	*	Save	values	onto	the	clipboard
	
Invoke	#avFrameworkManager.avSaveValue	WithID1(Test)
WithID2(EMPNO)	FromAValue(("A0090")
Invoke	#avFrameworkManager.avSaveValue	WithID1(Test)
WithID2(SURNAME)	FromAValue("FRED")

mk:@MSITStore:lansa048.chm::/Lansa/lansa048_0840.htm
mk:@MSITStore:lansa048.chm::/Lansa/lansa048_1780.htm

Invoke	#avFrameworkManager.avSaveValue	WithID1(Test)
WithID2(GIVENAME)	FromAValue("BLOGGS")
Invoke	#avFrameworkManager.avSaveValue	WithID1(Test)
WithID2(POSTCODE)	FromNValue(2150)
Invoke	#avFrameworkManager.avSaveValue	WithID1(Test)
WithID2(SALARY)	FromNValue(123456.78)
		
*	Restore	values	from	the	clipboard
		
Invoke	#avFrameworkManager.avRestoreValue	WithID1(Test)
WithID2(EMPNO)	ToAValue(#EMPNO)	UseAValueDefault("NA")
Invoke	#avFrameworkManager.avRestoreValue	WithID1(Test)
WithID2(SURNAME)	ToAValue(#SURNAME)	UseAValueDefault("NA")
Invoke	#avFrameworkManager.avRestoreValue	WithID1(Test)
WithID2(GIVENAME)	ToAValue(#GIVENAME)	UseAValueDefault("NA")
Invoke	#avFrameworkManager.avRestoreValue	WithID1(Test)
WithID2(POSTCODE)	ToNValue(#PostCode)	UseNValueDefault(0)
Invoke	#avFrameworkManager.avRestoreValue	WithID1(Test)
WithID2(SALARY)	ToNValue(#Salary)	UseNValueDefault(0)
		

	
RAMP	JavaScript	code	to	perform	the	equivalent	operations:	
	
/*	Save	values	onto	the	clipboard	–	note	POSTCODE	and	SALARY	are
numeric	*/
	
AVSAVEVALUE("A0090","TEST","EMPNO");
AVSAVEVALUE("FRED","TEST","SURNAME");
AVSAVEVALUE("BLOGGS","TEST","GIVENAME");
AVSAVEVALUE(2150,"TEST","POSTCODE");
AVSAVEVALUE(123456.78,"TEST","SALARY");
	
/*	Restore	values	from	the	clipboard	*/
	
	
		var	vEMPNO				=	AVRESTOREAVALUE("NA","TEST","EMPNO");
		var	vSURNAME		=	AVRESTOREAVALUE("NA","TEST","SURNAME");
		var	vGIVENAME	=

AVRESTOREAVALUE("NA","TEST","GIVENAME");
		var	vPOSTCODE	=	AVRESTORENVALUE(0,"TEST","POSTCODE");
		var	vSALARY			=	AVRESTORENVALUE(0,"TEST","SALARY");
	

	

AVRESTOREAVALUE	and	AVRESTORENVALUE	Function
Restore	an	alphanumeric	or	numeric	value	from	the	VLF	virtual	clipboard.

Syntax
AVRESTOREAVALUE/AVRESTORENVALUE(Default,	sID1,	sID2,	sID3,
iInstance,	sLanguage)

Parameters
Default Required.	String/Number	that	contains	the	default	value	to	return

if	the	value	is	not	found	.	

sID1 Required.	String	that	contains	the	Virtual	Clipboard	identifier	1.

sID2 Optional.	String	that	contains	the	Virtual	Clipboard	identifier	2.

sID3 Optional.	String	that	contains	the	Virtual	Clipboard	identifier	3.

iInstance Optional.	Integer	that	contains	the	instance	number.	Defaults	to	1
when	not	specified

sLanguage Optional.	String	that	contains	the	language	code.	Defaults	to	ALL
languages	when	not	specified.

	

		

Return	Value
None

Remarks
Use	AVRESTOREAVALUE/AVRESTORENVALUE	in	your	RAMP	scripts	to
restore	a	value	from	the	VLF	virtual	clipboard.	More	information	about	the
Virtual	Clipboard	can	be	found	in	The	Virtual	Clipboard	in	the	Framework
guide.
For	information	about	the	parameter	lengths,	please	refer	to
VF_RESTOREAVALUE	and	VF_RESTORENVALUE	in	the	Framework	guide.
	

Examples	

mk:@MSITStore:lansa048.chm::/Lansa/lansa048_0840.htm
mk:@MSITStore:lansa048.chm::/Lansa/lansa048_1785.htm

var	sSavedSurname	=	AVRESTOREAVALUE("Not	Found",
"NewEmployee",	"Surname",	"",	1,	FRA);
var	sSavedPostcode	=	AVRESTOREAVALUE(9999,	"NewEmployee",
"Postcode");

	

ADD_UNKNOWN_FORM_GUESS	Function
Function	keys	to	send	when	an	unknown	form	appears	during	RAMP
navigation.	Only	available	in	Windows.

Syntax
ADD_UNKNOWN_FORM_GUESS(sKeyName)

Parameters
SKeyName Required.String	that	contains	the	name	of	the	key.	See	Function

Key	Names	for	SENDKEY	Function.

	

		

Return	Value
None

Remarks
Use	this	function	call	in	the	session's	sign-on	script.
When	an	unknown	5250	screen	is	encountered,	the	Framework	goes	into	a
locked	state	if	the	Lock	Framework	when	an	unknown	5250	form	is	displayed
property	is	turned	on.	The	user	will	not	be	able	to	move	around	within	the
Framework	until	they	navigate	to	a	defined	5250	screen.
The	ADD_UNKNOWN_FORM_GUESS	function	can	help	to	work	around
such	situation	by	specifying	function	keys	to	send	as	the	user	tries	to	execute	a
different	Framework	action	(for	example	click	on	a	different	Application	or
Business	Object,	Command,	etc.)	without	having	to	navigate	to	a	defined	5250
screen.	Before	getting	into	a	locked	state,	the	Framework	will	send	the	added
keys	in	the	sequence	they	were	added.
For	example,	your	RAMP	application	may	have	many	undefined	F4=Prompt
pop-up	windows	that	are	all	closed	by	using	F12=Cancel.	You	can	instruct
RAMP	that	when	an	unknown	screen	is	on	display	(for	example	an	F4=Prompt
window)	it	should	first	try	F12	(to	see	if	it	can	close	the	window)	before
displaying	the	lock	message.		
It's	up	to	the	unknown	5250	screen	to	support	the	usage	of	the	sent	function
keys	and	to	the	screen	arriving	after	sending	the	keys	to	be	defined	for	this

functionality	to	work.	This	responsibility	is	up	to	the	designer.	
Care	should	be	taken	when	using	this	function	as	it	applies	generically	to	all
undefined	screens.

Examples
	
ADD_UNKNOWN_FORM_GUESS(KeyF3);
ADD_UNKNOWN_FORM_GUESS(KeyF12);

	

SET_HANDLER_CAPTION	Function
Set	the	current	command	handler	caption	to	a	new	value.

Syntax
SET_HANDLER_CAPTION(sCaption)
		

Parameters
Setting	by	Name:

sCaption Required.	String	that	contains	the	new	caption	for	the	current
command	handler.	

	

	

Return	Value
None.
		

Remarks
Using	SET_HANDLER_CAPTION	overrides	the	default	command	handler
caption	shown	by	the	Framework.	This	function	can	be	invoked	at	anytime	in
any	script.
This	function	is	available	to	be	used	in	Windows	and	Web	RAMP	applications.
		

Examples
	
	
SET_HANDLER_CAPTION("New	Command	Handler	Caption")
	

	
	

Framework	Objects	that	Scripts	Can	Refer	To
A	number	of	RAMP	provided	JavaScript	objects	make	standard	information
accessible	to	all	scripts.	For	example	the	JavaScript	object	objUser	publishes
properties	Name	and	Password.
This	means	that	you	can	access	and	pass	around	the	name	and	password	of	the
current	user	in	your	scripts	like	this:
			if	(objUser.Name	==	"QSECOFR")	alert("Your	are	signed	on	as	the	security
officer!");					

	
Note	that	these	names	are	CASE	SENSITIVE.	Be	careful	to	use	exactly	the
same	case	as	shown	when	writing	scripts.
objGlobal	
objFramework
objApplication
objBusinessObject
objCommand
objListManager
objUser	
	
To	find	out	how	you	can	quickly	enter	these	objects	and	their	properties	in	your
scripts,	see	Scripting	Pop-up	Menu	.

objGlobal	
objGlobal	can	be	used	to	store	your	own	properties.
This	can	be	useful	if	you	need	to	store	information	from	one	script	and	use	it
later	in	another	script.
The	information	could	be	field	values	from	a	screen	that	need	to	be	referred	to
by	a	later	script.
Or	it	could	identify	which	path	a	script	is	on,	so	that	when	the	same	screen	is
used	by	two	paths,	the	script	can	determine	which	path	it	is	on.
Property Type Description
<<any	property	name>> string Any	property	you	want	to	assign	to

	

Example
Save	the	path	the	user	is	on,	and	the	item	the	user	is	working	with	(On	Screen
1).
/*	Store	the	Item	number	that	the	user	entered		-	this	field	has	to	be	defined	on
this	form*/
objGlobal.utxtItemNumber	=	GETVALUE("utxtItemNumber");
/*	Store	the	action	that	is	being	performed	(so	that	shared	screens	can	know
whether	its	an	add	or	a	copy)	*/
objGlobal.uLastAction	=	"COPY";
Remember	the	path	the	user	is	on,	and	the	item	the	user	is	working	with	(On
Screen	4).
/*	Get	the	action	that	is	being	performed	*/
if	(objGlobal.uLastAction	==	"COPY")
{
			ALERT_MESSAGE("Inventory	item",	objGlobal.utxtItemNumber,	"was
copied	from	"	,	objListManager.AKey1[0]);
}
else
{
			ALERT_MESSAGE("Inventory	item	was	added.",
objGlobal.utxtItemNumber	,	"has	been	saved.");

	

Note	that	objGlobal	is	global	within	a	5250	session.	Each	5250	session	has	its
own	unique	instance	of	objGlobal.
For	more	information	refer	to	Using	the	objGlobal	Object.

objFramework
objFramework	contains	read	only	properties	that	provide	information	about	the
current	framework	to	your	scripts:		
Property Type Description
uCaption string The	caption	of	the	current	framework

ExecutionEnvironment string Identifies	the	execution	environment	as
"WIN"	or	"WEB"		

flagDesignMode boolean Identifies	whether	the	Framework	is
executing	in	design	mode.	Boolean	value
containing	true	or	false.

Language string Identifies	the	current	LANSA	language	code
(eg:	"ENG",	"FRA",	etc)

Partition string Identifies	the	current	LANSA	partition	(eg:
"DEM",	"SYS")

TraceMode string Identifies	whether	the	Framework	is
executing	in	Trace	mode	as	"TRUE"	or
"FALSE"

	

objApplication
objApplication	contains	read	only	properties	that	provide	information	about	the
current	application	to	your	scripts:		
Property Type Description
uCaption string The	caption	of	the	current	application.

uUserObjectType string The	User	Object	Name	/	Type	of	the	current
application.

	

objBusinessObject
objFramework	contains	read	only	properties	that	provide	information	about	the
current	business	object	to	your	scripts:		
Property Type Description
uCaption string The	caption	of	the	current	business	object.

uUserObjectType string The	User	Object	Name	/	Type	of	the	current	business
object.

	

objCommand
objFramework	contains	read	only	properties	that	provide	information	about	the
current	command	to	your	scripts:		
Property Type Description
uCaption string The	caption	of	the	current	command.

uUserObjectType string The	User	Object	Name	/	Type	of	the	current
command.

uAlphaArg1 String The	optional	alpha	argument	1	of	the	current	VLF
command	handler

uAlphaArg2 String The	optional	alpha	argument	2	of	the	current	VLF
command	handler

uNumArg1 Integer The	optional	numeric	argument	1	of	the	current
VLF	command	handler

uNumArg2 Integer
The	optional	numeric	argument	2	of	the	current	VLF
command	handler

uExecReason String
The	reason	that	the	current	command	handler	was
executed.	This	string	contains	“EXECUTE”	or
“ACTIVATE”	indicating	why	the	current	RAMP
command	was	executed.	The	value	“ACTIVATE”	is
only	applicable	to	visible	VLF-WIN	application
scripts.	In	all	other	contexts,	including	screen
wrappers,	the	value	“EXECUTE”	is	always	used.

	

objListManager
objListManager	contains	read	only	properties	that	provide	information	about	the
instance	list		to	your	scripts.

Array	properties
Array	entry	[0]	is	the	value	for	the	current	entry	in	the	instance	list.	(the	entry
that	has	focus)
Array	entries	[1],	[2],	[3]	...	are	the	values	for	the	selected	entries	in	the	instance
list

Property Type Description
AKey1[0]	-
AKey5[0]

string The		5	Alpha	identifying	key	values	of	the
current	instance	of	the	instance	list

NKey1[0]	-
NKey5[0]

String The		5	Numeric	identifying	key	values	of	the
current	instance	of	the	instance	list

VisualId1[0] String Visual	Identifier	1	of	the	current	Instance	List
entry

VisualId2[0] String Visual	Identifier	2	of	the	current	Instance	List
entry

AColumn1[0]	–
AColumn10[0]

String The	10	Alpha	Additional	Column	values	of	the
current	instance	list	entry

NColumn1[0]	–
NColumn10[0]

String The	10	Numeric	Additional	Column	values	of
the	current	instance	list	entry

	

Single	value	properties
Property Type Description
TotalSelected										 integer The	number	of	selected	entries	in	the	instance

list.

	

	
For	information	about	how	to	use	the	list	manager	object,	see	how	to	Interacting
with	Instance	Lists	in	Scripts.

objUser	
objUser	contains	read	only	properties	that	provide	information	about	the	current
user	to	your	scripts:		
Property Type Description
Name string The	profile	of	the	current	User.

Password string The	password	of	the	current	User.

	

	
	
	

Function	Key	Names	for	SENDKEY	Function
This	table	shows	the	function	key	names	you	need	to	use	in	the	SENDKEY
function	and	the	corresponding	5250	and	Windows	key	names.
Note	that	the	key	names	are	case	sensitive	and	you	must	enter	them	exactly	as
shown	here	in	the	SENDKEY	function.
SENDKEY
Name

Windows
Keyboard

5250	Key	action
description

Button	Text

KeyAttn							 Esc sys	attn "Attn";	

KeyClear						 Shift	Enter Field	Exit "Clear";

KeyEnter						 Enter Enter "Enter";

KeyHelp							 alt	F1 help "Help";

KeyPageDown		 Page	Down Page	Down "Page	Up";

KeyPageUp					 Page	Up Page	Up "Page
Down";	

KeyPrint						 ctrl	Pause host	print "Print";

KeyReset						 ctrl reset "Reset";

KeySysReq					 shift	Esc sys	req "Sys	Req";

KeyTestReq			 alt	Pause test	req "Test	Req";	

KeyF1								 F1 F1 "F1";

KeyF2									 F2 F2 "F2";

KeyF3									 F3 F3 "F3";

KeyF4									 F4 F4 "F4";

KeyF5									 F5 F5 "F5";

KeyF6									 F6 F6 "F6";

KeyF7									 F7 F7 "F7";

KeyF8									 F8 F8 "F8";

KeyF9									 F9 F9 "F9";

KeyF10							 F10 F10 "F10";

KeyF11								 F11 F11 "F11";

KeyF12								 F12 F12 "F12";

KeyF13							 shift	F1 F13 "F13";

KeyF14								 shift	F2 F14 "F14";

KeyF15								 shift	F3 F15 "F15";

KeyF16								 shift	F4 F16 "F16";

KeyF17								 shift	F5 F17 "F17";

KeyF18								 shift	F6 F18 "F18";

KeyF19								 shift	F7 F19 "F19";

KeyF20								 shift	F8 F20 "F20";

KeyF21								 shift	F9 F21 "F21";

KeyF22								 shift	F10 F22 "F22";

KeyF23								 shift	F11 F23 "F23";

KeyF24							 shift	F12 F24 "F24";

KeyPA1							 Esc	1 program	attention	1 "PA1";

KeyPA2							 Esc	2 program	attention	2 "PA2";

KeyPA3								 Esc	3 program	attention	3 "PA3";

	

Example

	

SENDKEY(KeyEnter);

User-Defined	Script	Functions
See	RAMP-TSAD05:	Using	SHARED	Properties	and	Functions	.

Switching	Off	Recursion	Checking
Each	time	a	RAMP	script	is	executed,		the	Framework	checks	if	the	script	has
been	called	recursively	and	flags	an	error	if	it	has.
However,	situations	may	arise	where	a	script	may	appear	to	be	called
recursively,	for	example	if	a	special	screen	appears	two	or	more	times	in
succession.	In	these	cases	the	GLOBAL_flagRecursionCheck	property	can	be
used	to	switch	off	the	recursion	checking	and	avoid	applications	ending	in	error.
The	property	can	be	used	in	scripts	in	this	way:
			
var	flagSaveCheckState	=	GLOBAL_flagRecursionCheck;
	
GLOBAL_flagRecursionCheck	=	false;
	
SENDKEY(KeyEnter);
	
GLOBAL_flagRecursionCheck		=	flagSaveCheckState;
		

Saving	and	restoring	the	state	like	this,	rather	than	simply	setting	the	global
property	to	TRUE	or	FALSE	is	the	best	solution	because	this	is	a	recursive
situation.	The	Framework	will	handle	three	or	four	levels	of	recursion
(depending	on	script	size	and	system	resources	available)	if	a	special	screen
appears	this	many	times.	Only	the	top	recursion	level	will	finally	set	the
GLOBAL_flagRecursionCheck	property	back	to	TRUE	again.
	

When	Are	Scripts	Reloaded	so	That	Change	Can	Be	Tested?
Destination,	Special	and	Junction	(Screen)	scripts
They	are	reloaded	into	the	execution	environment	when	your	click	the	commit
button.
This	means	you	can	normally	test	script	changes	dynamically	by	just	be	causing
the	modified	script	to	re-execute	(for	example	by	clicking	on	another	object	in
the	instance	list	to	re-execute	an	arrival	script).	You	do	not	normally	have	to
save	and	restart	your	VLF-RAMP	sessions	to	test	most	modifications	to	screen
scripts.
		

SHARED	scripts	in	uf_sy420_rts.js
These	scripts	are	loaded	once	when	the	VLF-RAMP	session	is	opened.
Changing	these	scripts	will	have	no	impact	until	you	open	another	VLF-RAMP
session.
Tip:	When	testing	SHARED	scripts,	open	the	business	object	you	are	using	for
testing	them	in	an	independent	window.
When	you	change	a	SHARED	script,	save	it	to	the	server,	close	the	independent
window	and	then	launch	it	again.	This	will	close	and	reopen	the	VLF-RAMP
session	in	the	independent	window,	picking	up	the	modified	SHARED	script.				
		
	

Advanced	Scripting
Creating	your	own	navigation	planner
Using	Screen	References
Using	a	vHandle_DEPART	function
Arrival	Scripting	and	Inter-Screen	Communication
	

Creating	your	own	navigation	planner
When	a	framework	users	executes	a	command	that	is	associated	with	a	RAMP
destination	screen	a	plan	is	always	made	of	how	to	navigate	from	the	current
5250	screen	to	the	required	destination	5250	screen.		
Normally	this	plan	is	constructed	automatically	by	the	RAMP	framework.	In
specialized	cases	you	can	define	your	own	navigation	planning	logic.
Imagine	that	destination	screen	DestinationA	needs	to	take	over	the	planning	of
how	to	best	navigate	to	it.
To	do	this	a	function	named	vHandle_USER_NAVIGATION_PLAN	is	added	to
the	script	associated	with	screen	DestinationA,	like	this:

	

			vHandle_USER_NAVIGATION_PLAN:	function()
			{
						var	bReturn	=	true;
	
						//		your	alternate	navigation	planning	logic	goes	here
	
						return(bReturn);	/*	ß	Remember	to	return	a	Boolean	success/fail	value	*/	
	
			},		/*	ß	Remember	to	separate	this	function	from	the	others	with	a	comma	*/

	
When	the	user	executes	a	VLF	command	that	is	associated	with	DestinationA,
instead	of	making	its	own	plan,	the	RAMP	framework	will	invoke	function
vHandle_USER_NAVIGATION_PLAN	in	DestinationA.
Typically	the	function	NAVIGATE_TO_SCREEN("screen	name")	is	used	by
this	type	of	navigation	planning	function	to	initiate	its	own	navigation	plan.
Before	using	this	feature,	consider	a	screen	named	Destination1	that	contains	its
own	navigation	planner	coded	like	this	….

	

			vHandle_USER_NAVIGATION_PLAN:	function()
			{
						NAVIGATE_TO_SCREEN("Destination1");			

						return(true);		
	
			},	

	
If	you	cannot	see	why	this	code	could	never	possibly	work	you	should	not
attempt	to	use	this	feature.						

	

Using	Screen	References
The	script	associated	with	a	screen	definition	in	RAMP-TS	defines	a	JavaScript
object.	In	effect,	the	screen	script	is	the	object	that	defines	the	screen	and	what	it
can	do.
By	now	you	should	have	encountered	the	concept	of	adding	properties	to	the
definitions	of	your	screens.	Typically	these	are	defined	at	the	start	of	the	script
like	this	example:
	
{
			/*	Properties	of	screen	Destination1	*/
	
			sCurrentOrder					:	"",
			fSkipIntroduction	:	false,
			fScrolling								:	true,

	
The	various	functions	in	this	screens	definition	would	refernce	them	as
this.sCurrentOrder,	this.sSkipIntroduction	and	this.fScrolling.
They	are	useful	for	maintaining	state	within	a	screen	definition	and	for
communicating	between	different	functions	within	the	script.
By	using	the	SCREEN("Screen	Name")	function	you	can	obtain	a	reference	to
the	named	screens	definition	object.
For	example,	a	junction	Junction1	might	have	this	code	in	its	navigation	script:

	

var	oDest1	=	SCREEN("Destination1");
				
oDest1.fSkipIntroduction	=	true;
oDest1.fScrolling	=	false;

	
This	allows	junction1	to	directly	access	properties	and	even	methods	defined
with	destination	screen	Destination1.
This	could	have	been	coded:		
	
SCREEN("Destination1").fSkipIntroduction	=	true;

SCREEN("Destination1").fScrolling
	
But	this	is	not	the	best	solution	for	two	reasons:	
SCREEN()	will	return	a	null	reference	if	for	some	reason	the	definition	of	screen
"Destination1"	cannot	be	found,	causing	your	script	to	fail.
The	string	"Destination1"	needs	to	be	converted	to	an	object	reference	twice,	so
it	is	less	efficient.		

	

The	most	proper	form	of	this	code	is	therefore:
var	oDest1	=	SCREEN("Destination1");
	
if	(oDest1	!=	null)
{				
			oDest1.fSkipIntroduction	=	true;
			oDest1.fScrolling	=	false;
}	
	

	

Using	a	vHandle_DEPART	function
You	are	probably	familiar	with	screen	scripts	containing	a	vHandle_ARRIVE
function	that	is	executed	when	a	5250	screen	arrives.
Any	screen	script	can	also,	optionally,	contain	a	vHandle_DEPART	function.
If	it	exists	it	will	be	invoked	when	a	screen	is	being	departed	from,	which	is
usually	caused	by	a	SENDKEY	operation.
If	you	need	to	use	one,	add	it	to	your	screen’s	script	like	this	example:
	
			vHandle_DEPART:	function()
			{
						var	bReturn	=	true;
	
						//		your	departure	logic	goes	here
	
						return(bReturn);	/*	ß	Remember	to	return	a	Boolean	success/fail	value	*/	
	
			},		/*	ß	Remember	to	separate	this	function	from	the	others	with	a	comma	*/

	
There	are	some	things	you	should	know	about	using	vHandle_DEPART
functions:
Using	them	is	unusual.	If	you	are	using	them	a	lot	then	it	could	be	you	are
solving	a	problem	using	the	wrong	approach.
They	are	invoked	when	the	current	5250	screen	is	submitted	to	server,	usually	as
the	result	of	SENDKEY	operation.	This	means	that	they	may	activate	when	one
of	your	other	scripts	is	active	(eg:	the	one	that	did	the	SENDKEY).
Using	a	SENDKEY	operation	in	a	departure	script	would	be	expected	to	fail	or
cause	strange	results.	You	should	not	do	this.	
They	cannot	cancel	the	submission	of	the	screen.	They	are	being	informed	that
the	screen	is	being	submitted	and	allowed	to	perform	any	relevant	close	or
cleanup	actions.	Returning	false	indicates	that	the	vHandle_DEPART	script
failed.	It	does	not	indicate	that	the	screen	submission	should	be	cancelled.
They	are	invoked	every	time	a	screen	is	submitted.			
		

Arrival	Scripting	and	Inter-Screen	Communication
All	screens	have	an	arrival	function.
Typically	the	arrival	script	of	a	screen	defines	a	single	default	behaviour.
Typical	single	default	behaviours	are:
Junction	screens	–	do	nothing
Special	screens	-	send	key(s)	to	make	the	screen	disappear
Destination	screens	–	display	the	underlying	5250	screen

	

However,	you	will	from	time	to	time	need	to	alter	an	arrival	script	in	a	junction,
special	or	destination	screen	to	make	it	support	multiple	different	behaviours.
The	most	structured	way	of	doing	this	is	to	first	decide	what	behaviours	you
want	your	arrival	script	to	support,	and	then	to	clearly	define	and	document
them	at	the	start	of	you	screen’s	script	like	this	example:
	
						RequestedArrivalBehaviour	:	0,	
	
						ArrivalBehaviours	:
						{
									Default										:	0,	/*	Default	behaviour										*/
									SearchNext									:	1,	/*	Handle	scroll	up	request			*/
									SearchLast							:	2,	/*	Handle	scroll	down	request	*/
									ForcedNavigation	:	3,	/*	Handle	a	forced	navigation	*/
									AutoConfirmation	:	4		/*	Handle	auto	confirnmation		*/
							},

	
This	very	formally	defines	that	this	screen	can	support	5	different	arrival
behaviours.

	

Note	1:	You	do	not	have	to	define	the	behaviours	this	way	and	can	use
different	names.	This	is	an	example	of	formal	way	to	do	this.	This
approach	has	documentation	and	debugging	advantages.	See	the	end

of	this	section	form	notes	about	using	simpler	approaches.

Note	2:	These	behaviours	and	their	names	are	mythical	examples.	You
can	have	as	many	behaviours	as	you	like	with	any	names.

	

Next,	you	actually	need	to	change	your	screen’s	arrival	script	to	handle	these
multiple	behaviours.	Again	this	can	be	done	in	a	structured	way,	like	this
example	arrival	script	for	a	destination	screen:

	

			vHandle_ARRIVE:	function(oPayload,	oPreviousForm)
			{
					/*	Extract	a	copy	of	the	requested	behaviour	*/
	
					var	RequestedBehaviour	=	this.RequestedArrivalBehaviour;
	
					/*	Reset	the	requested	behaviour	back	to	the	default	behaviour	*/
	
					this.RequestedArrivalBehaviour	=	this.ArrivalBehaviours.Default;
	
					/*	Now	preform	the	requested	behaviour	*/
	
					switch	(RequestedBehaviour)
					{
								case	this.ArrivalBehaviours.Default:
													SHOW_CURRENT_FORM(true);
													HIDE_5250_BUTTONS();
													SETBUSY(false);
													break;
	
								case	this.ArrivalBehaviours.SearchNext:
													/*	Logic	to	handle	search	next	page	behaviour*/
													break;
	
								case	this.ArrivalBehaviours.SearchLast:

													/*	Logic	to	handle	search	last	page	behaviour*/
													break;
	
								case	this.ArrivalBehaviours.ForcedNavigation:
													/*	Logic	to	handle	a	forced	navigation,	whatever	that	may	be	*/
													break;
	
								case	this.ArrivalBehaviours.AutoConfirmation:
													/*	Logic	to	handle	a	an	auto	confirmation,	whatever	that	may	be	*/
													break;
	
								default:
													ALERT_MESSAGE(this.vName,"arrival	script	–
	invalid	behaviour	requested",RequestedBehaviour.toString());
	
					}
	
					/*	<ARRIVE	/>	-	Do	not	remove	or	alter	this	line	*/
	
					return(true);
			},
	

	

Okay,	you	have	now	formally	defined	the	different	arrival	behaviours	that	your
screen	supports	and	the	code	required	to	implement	them.
How	are	they	used?
Well	first,	you	might	use	them	within	the	screen’s	own	script	instead	of	using
payloads.
Imagine	a	button	click	that	requests	a	page	search	operation	like	this	…		
	
SENDKEY(KeyPageUp,"SEARCHNEXT");
	

		
Classically	this	sends	the	key	stroke	to	the	server	and	includes	a	payload	so	that
the	arrival	script	knows	what	to	do	with	when	the	form	arrives	back	again.

Note:	If	you	have	done	this	you	probably	already	have	an	arrival	script
exhibiting	at	least	two	different	behaviours.	
Now	you	would	code	this	instead:
this.RequestedArrivalBehaviour	=	this.ArrivalBehaviours.SearchNext;
SENDKEY(KeyPageUp);

	
Note:	Why	do	this?	It	seems	like	more	work.	Well	you	have	already	gained	one
advantage.	Say	you	coded	SENDKEY(KeyPageUp,"SEARCHNET")
accidentally	using	the	payload	technique.	It	would	take	you	a	while	to	debug
your	program	to	find	that	"SEARCHNET"	is	wrong	and	it	should	be
"SEARCHNEXT".	If	you	coded	ArrivalBehaviours.SeachNet	your	script	will
fail	when	you	execute	it,	telling	you	something	is	wrong	instantly.
The	second	place	you	would	use	this	is	in	other	screens.
Say	another	screen	(named	"AnotherScreen")	is	going	to	set	in	motion	a	set	of
events	that	it	knows	will	ultimately	arrive	at,	or	pass	through,	your	multi-
behavioural	screen	(named	"MultiScreen").
Imagine	that	it	also	needs	to	make	sure	that	"MultiScreen"	performs	the	"auto
confirmation"	behaviour	when	it	arrives.
"AnotherScreen"	can	contain	this	code:
	
var	oMS	=	SCREEN("MultiScreen");	/*	Get	a	reference	to	"MultiScreen"	*/
	
oMS.RequestedArrivalBehaviour	=
oMS.ArrivalBehaviours.AutoConfirmation;
	
<<	Now	execute	code	to	start	events	that	will	go	to/though	"MultiScreen"	>>

				
In	other	words,	"AnotherScreen"	is	setting	a	property	in	"MultiScreen"	(named
RequestedArrivalBehaviour)	that	says	"When	you	arrive,	I	want	you	to	perform
the	auto	confirmation	behaviour,	instead	of	the	usual	default	behaviour".
Note	the	"MultiScreen"	does	not	have	to	be	a	destination	screen.	It	could
equally	be	a	junction	of	special	screen.	All	it	needs	to	be	is	a	screen	whose
arrival	script	needs	to	be	capable	of	performing	different	behaviours.	
This	technique	demonstrates	a	very	formal	and	structured	way	for	screens	to
communicate	intention	between	themselves.	You	do	not	need	to	be	so	formal	or
structured,	nor	to	use	the	long	names	suggested.

You	could	simply	declare	this	in	"MultiScreen":
	
				Action	:	0,		/*	Declare	the	action	code	for	arriving	scripts	*/
	

	
And	structure	the	arrival	script	like	this:
				Switch	(Action)
				Case	:	0
				Case	:	1
				Case	:	2
				Case	:	3

												
Other	code	would	use	this.Action	=	2	or	SCREEN("MultiScreen").Action	=	3
You	could	even	use	strings	like	this:
	
				Action	:	"Default",		/*	Declare	the	action	code	for	arriving	scripts	*/
	

And	structure	the	arrival	script	like	this:
				Switch	(Action)
				Case	:	"Default"
				Case	:	"Up"
				Case	:	"Down"
				Case	:	"Jump"

	
Other	code	would	do	this.Action	=	"Up"	or	SCREEN("MultiScreen").Action	=
"Jump".
The	declaration	technique	you	use	is	immaterial	and	long	it	is	structured	and
documented.	The	advantage	of	the	formal	declaration	(enumeration)	technique
is	simply	that	it	is	a	very	formal	documentation	of	capabilities	and	that	code	will
always	fail	if	an	incorrect	value	is	used.

	

	
	

Debugging
Debug	and	Diagnostics
Common	Scripting	Errors
Tracing
Using	ALERT_MESSAGE	in	Your	Scripts

Debug	and	Diagnostics
Switch	on	Tracing
Tracing	is	the	first	thing	you	need	to	do	when	debugging.	Inspect	the	trace	and
look	for	screens	that	have	not	been	recognized	or	that	have	a	blank	name.
	

Add	Alert	statements
An	easy	way	to	debug	scripts	is	to	add	alert()	statements	to	display	values	in	a
pop-up	window	at	run-time.
	

Add	Alert_Message	functions
Similarly,	you	can	use	the	ALERT_MESSAGE	Function	to	display	values	in
pop-up	windows.
	

Add	Trace	functions
If	you	do	not	want	to	interrupt	application	execution,	but	instead	record	values
in	the	trace,	use	the	TRACE	Function	in	your	script.
	

Debug	Your	filters
If	you	want	to	debug	your	filters,	you	can	use	the	avRecordTrace	method	in
your	filter	program:
Invoke	avFrameworkManager.avRecordTrace	Component(#Com_Owner)
Event('Search	Button	click	handler	started')

	
For	more	information	see	Basic	Tracing	Service.
	

Click	on	the	Show	5250	Form	and	Turn	off	Busy	Statebutton
If	the	Framework	ends	on	a	screen	it	does	not	expect	to	be	on,	and	you	get	a
blank	screen	with	an	error	message	Unable	to	display	form	.
	

Use	the	Probe	Screen	button	in	Design	mode

mk:@MSITStore:lansa048.chm::/Lansa/lansa048_0845.htm

To	find	out	what	is	know	about	the	current	screen.
	

Common	Scripting	Errors
Unable	to	display	form
Could	not	complete	the	operation	due	to	error	80020101
Object	expected
Strange	behavior	in	scripts	
Your	script	does	not	execute	at	all
	

Unable	to	display	form
The	execution	of	a	RAMP	screen	results	in	a	screen	that	looks	like	this:

		

What	does	this	error	mean?
The	Framework	has	created	a	valid	navigation	path.
Most	scripts	check	that	the	screen	being	shown	is	the	one	expected.	That's	why
at	the	end	of	most	scripts	there	is	a	line	like	this	one:

	

/*	Check	for	arrival	at	<form	name>	*/

if	(!(Q_CHECK_CURRENT_FORM("<form	name>","Unable	to	display	form
<form	name>")))	return;

	

	
	
The	message	Unable	to	display	form	suggests	that	at	one	stage	during	the

navigation,	a	the	identified	screen	was	expected	but	another	screen	was
received.
The	message	Unable	to	navigate	is	sent	by	the	Destination's
vHandle_NAVIGATETO	function.	It	is	a	check	to	ensure	that	before	running
the	Destination's	script,	the	application	is	showing	the	proper	screen.	This
avoids	typing	or	sending	key	strokes	in	unwanted	screens.
Sometimes	you	may	not	able	to	reach	the	undefined	screen.	This	can	happen
when	the	screen	which	showed	up	unexpectedly	was	one	that	needs	to	be
eliminated	to	allow	the	navigation	to	continue,	typically	a	break	message.
	

Solution
Press	the	Show	5250	Form	and	Turn	off	Busy	Statebutton	to	see	the	currently
active	screen.	The	screen	shown	is	the	unexpected	one.
Select	the	RAMP	Tools	option	in	the	Framework	menu	and	manually	perform
the	navigation	that	the	RAMP	screen	was	supposed	to	perform.
As	you	navigate	through	each	one	of	the	screens,	answer	the	following
questions:
Has	the	screen	been	defined?
Looking	carefully	at	the	scripts	for	the	screen,	does	the	script	match	what	you
do	on	the	screen?
You	should	be	able	to	manually	reach	the	unexpected	screen	because	you	know
what	to	do,	what	to	type	and	what	keys	to	press	in	each	screen.
	

Could	not	complete	the	operation	due	to	error	80020101
You	execute	one	of	your	scripts	and	see	an	error	message	like	this:
	

	

What	does	this	error	mean?
Your	script	has	a	structural	defect	that	prevents	any	attempt	to	execute	it.	For
example,	put	this	code:
	
if	(1	==	2)
{	
	

into	a	script	and	fail	to	add	the	required	closing	}.	The	RAMP	editor	will	warn
you	about	the	missing	},	but	ignore	the	warning	and	go	ahead	and	execute	the
script	anyway.	This	will	cause	a	80020101	error	because	the	script	has	a	missing
}.
The	missing	}	means	the	whole	script	does	not	make	any	sense	at	all.
Similarly,	this	code	causes	an	error	because	of	the	double	closing	square
brackets:
	
SETVALUE("utxtBankAccountID",objListManager.AKey3[0]])
	

Solution
Look	for	"unbalanced"	things	in	your	script	such	as:
An	(without	a	closing/matching)
An	{	without	a	closing/matching	}
An	[without	a	closing/matching]
A	"	or	'	without	a	closing/match	"	or	'	(an	un-terminated	string	constant).	
An	/*	without	a	closing/matching	*/	(an	un-terminated	comment)
Other	JavaScript	constructs	that	are	structurally	incorrect.	

Object	expected
You	execute	one	of	your	scripts	an	get	an	"Object	Expected"	error	like	this:
	

	

What	does	this	error	mean?
You	have	probably	referred	to	something	in	your	script	that	does	not	exist.	The
most	common	cause	of	this	error	is	simple	typographic	errors	or	even	case
errors.
These	script	lines:
	
	
NaVIGATE_TO_JUNCTION("uOS400MainMenu");
	
NAVIGATE_TO_JUNCTIN("uOS400MainMenu");
	

	
will	both	produce	an	"object	expected"	error.	The	reason	is	that	no	object	named
NaVIGATE_TO_JUNCTION	or	NAVIGATE_TO_JUNCTIN	actually	exists.
The	correct	JavaScript	function	name	is	NAVIGATE_TO_JUNCTION
(remembering	that	JavaScript	is	case	sensitive).

Solution
When	you	get	an	"Object	expected	Error"	try:
Checking	the	spelling	of	the	name	of	object	you	are	referencing.
Checking	the	case	of	the	name	of	the	object	you	are	referencing	(eg:	Userprofile
or	UserProfile).
	
Sometimes	it	is	hard	to	tell	exactly	which	line	in	your	script	is	producing	an
error.
The	easiest	way	to	resolve	this	is	to	make	liberal	use	of	the	JavaScript	alert
function.	For	example:

	
alert("About	to	navigate");
	
NaVIGATE_TO_JUNCTION("uOS400MainMenu");
	
alert("Navigation	finished");
	

		
Would	fairly	quickly	isolate	that	the	NaVIGATE_TO_JUNCTION()	line	was
the	one	causing	the	script	failure.		

Strange	behavior	in	scripts	
A	very	common	cause	of	strange	behavior	in	scripts	comes	from	not	using	the
"=="	comparison	correctly.	This	simple	script	demonstrates	a	very	common	and
time	wasting	scripting	problem:
	
	
var	X	=	1;
	
alert	("X	is	"	+	X);
if	(X	=	2)
{
			alert("X	is	2");
}
	

	
If	you	execute	this	script	this	first	alert	message	will	show	X	is	1	and	the	second
will	show	shows	X	is	2	…	which	is	not	possible.
The	cause	of	this	problem	is	of	course	that	the	if	statement	should	have	been
	
	
if	(X	==	2)
{
			alert("X	is	2");
}
	

Your	script	does	not	execute	at	all
Sometimes	your	script	does	not	seem	to	execute	at	all.
Typically	this	is	because	it	is	because	it	is	not	being	invoked	in	a	5250	screen
navigation	in	the	way	that	you	thought	it	would	be.
Use	the	Framework)	->	(Tracing)	->	Application	Level	menu	options	and	trace
the	flow	of	control	in	your	application	to	understand	the	navigation	in	detail.
Generally	this	will	reveal	why	your	script	is	not	being	invoked.
	

Tracing
You	can	start	tracing	at	any	point	in	time	during	the	execution	of	the	Framework
in	design	mode.
Use	the	Application	Level	trace	facility	to	trace	RAMP	execution.	To	start
tracing,	click	on	the	(Framework)	menu,	select	(Tracing)	->	Application	Level.
Trace	statements	will	appear	in	the	Trace	Window.
RAMP	execution	might	produce	a	large	number	of	statements.	It	will	also
produce	long	statements	that	will	make	it	difficult	to	view	in	its	entirety	unless
the	window	is	enlarged.

For	RAMP	execution	tracing,	we	recommend	to	use	the	Save	Trace	to	File
button	to	save	the	trace	into	a	text	file	in	your	temp	directory.	The	exact	location
and	file	name	of	the	trace	file	produced	will	appear	in	a	message.
Press	the	Messages	button	to	find	out	about	the	location	of	the	trace	file.

	

Adding	Your	Own	Tracing	Statements
The	shipped	Java	Script	function	TRACE()	allows	you	to	add	your	own	trace
statements	to	the	Application	Level	trace	and	the	output	of	the	trace	statements
is	directed	to	the	Application	Level	trace	window.
For	example,	this	trace	statement:
TRACE("");

TRACE("Value	of	AKEY1	is	=>"	+	objListManager.AKey1[0]	+	"<=");

TRACE("");

	
Generates	this	tracing:

The	blank	lines	before	and	after	the	actual	trace	statement	are	generated	by
TRACE("");	simply	to	make	it	easier	to	read.
For	more	information	about	the	trace	statement	refer	to	Script	Functions.
	
	

Using	ALERT_MESSAGE	in	Your	Scripts
You	might	sometimes	find	that	the	easiest	and	quickest	way	to	debug	a	problem
is	to	put	up	a	message	box.
Using	ALERT_MESSAGE()	in	your	scripts	causes	a	dialog	box	with	a
predefined	message	to	appear.
ALERT_MESSAGE()	can	also	display	a	mixture	of	text	and	variable	values.
For	example,	if	in	one	of	your	scripts	you	wanted	to	display	the	value	of	an
Akey	that	is	passed	into	the	script,	ALERT_MESSAGE()	would	look	something
like	this:

	

ALERT_MESSAGE("The	value	of	AKEY1	is	=>"	+	objListManager.AKey1[0]
+	"<=");

	

and	during	the	execution	a	message	box	like	this	would	be	displayed:

	

Screen	Enrichment
You	may	want	to	change	the	appearance	of	the	modernized	5250	screens	in	your
application	to	make	them	look	better	and	more	Windows-like.
You	can	do	simple	things	like	hiding	the	screen	title	using	RAMP	layout
dimensions	(see	Hide	screen	titles	in	individual	RAMP	Screens),	or	you	can
freely	redesign	the	screens	using	aXes	eXtensions	(see	RAMP-TSAD04:
Redesigning	the	Screen	Using	aXes)	using	dropdowns,	checkboxes,	radio
buttons,	calendars,	charts,	hyperlinks,	images	and	a	full	color	palette.
There	is	also	The	HTMLAPI	Scripting	Object	which	can	be	used	to	enhance
RAMP	command	handlers.	It	predates	aXes	eXtensions	and	using	it	requires
solid	JavaScript	and	HTML	DOM	skills.
When	enriching	screens,	please	bear	in	mind	that	the	space	on	the	command
handler	is	limited	and	that	creating	another	command	handler	tab	for	additional
content	is	easy	and	fast	and	usually	a	better	option	than	trying	to	squeeze
images,	google	maps	or	such	like	onto	already	crowded	5250	screens.
	

Hide	screen	titles	in	individual	RAMP	Screens
In	most	cases	5250	screen	titles	are	redundant	in	RAMP	screens	because	the
navigation	elements	in	the	Framework	Window	clearly	indicate	the	object	being
worked	with	and	the	command	being	executed:

Therefore	RAMP	screens	look	more	natural	without	titles	in	the	Framework:

There	are	Two	Ways	to	Hide	the	Title.
	
	

Two	Ways	to	Hide	the	Title
You	can	hide	the	screen	title	either	by	moving	the	RAMP	screen	up	so	that	the
title	is	hidden	or	by	applying	a	mask	on	the	title	to	hide	it.
You	set	the	RAMP	screen	position	and	mask	in	the	Session	details	of	the
Default	Session	in	the	RAMP	Tools	window:

You	can	override	these	settings	for	individual	destination	screens	by	changing
the	Layout	Dimensions	in	the	Destination	Screen	Details.

Moving	the	Screen
To	move	the	screen	up	so	that	the	title	is	hidden,	set	the	Top	property	to	a
negative	value:

Masking	the	Title
To	mask	the	title,	set	the	Top	Mask	Height	property	to	a	height	that	covers	the

title:

Not	applicable	to	RAMP	Web.

		

The	HTMLAPI	Scripting	Object
The	HTMLAPI	scripting	object	can	be	used	to	dynamically	modify	the	visual
content	of	5250	screens.
When	RAMP-TS	displays	a	5250	screen,	it	is	actually	rendering	a	HTML
document.	The	HTML	document	that	represents	the	5250	screen	is	like	any
other	HTML	document.	Since	it	is	HTML	based	it	provides	a	DOM	(Document
Object	Model)	that	you	can	access	and	modify	from	your	RAMP	scripts.
The	HTMLAPI	scripting	object	provides	a	small	set	of	methods	that	allow	you
to	access	the	HTML	DOM	of	the	currently	displayed	5250	screen.
By	using	the	HTML	DOM	you	may	choose	to	modify	the	appearance	and
behaviour	of	displayed	5250	screen.

	
What	do	you	need	to	know	to	use	the	HTMLAPI	Scripting
Object?
You	need	to	have	solid	JavaScript	and	HTML	DOM	skills.

What	are	some	of	the	risks	involved	in	using	the	HTMLAPI
Scripting	Object	or	accessing	5250	Screen’s	HTML	DOM?
Some	of	the	risks	you	take	in	using	the	HTMLAPI	Scripting	Object	or	accessing
the	5250	screen’s	HTML	DOM	include:	

Future	changes	in	the	content	or	behaviour	of	the	IE	HTML	DOM	model
Future	changes	in	the	content	or	behaviour	of	the	aXes	5250	HTML	document
layout
Upsetting	or	altering	the	behaviour	of	the	aXes	client	side	logic.
If	you	are	prepared	to	accept,	test	for	and	manage	these	risks,	then	the
HTMLAPI	allows	for	dynamic	and	efficient	changes	to	be	made	to	the	content
and	behaviour	of	5250	RAMP-TS	screens.
	
HTMLAPI	Usage	Examples
	

Using	The	HTMLAPI	Scripting	Object
The	recommended	approach	to	dynamically	altering	the	visual	content	of	5250
screens	is	as	follows:
Whenever	possible	create	SHARED	functions	that	implements	generic	content
changes	so	that	they	can	be	reused	from	other	RAMP-TS	scripts.	By	doing	this
you	are	also	somewhat	minimizing	the	impact	that	any	future	changes	to	the
HTML	or	aXes	DOM	models	might	have	on	you.			
When	content	changes	apply	to	a	specific	5250	screen	only,	implement	them	in	a
single	function	inside	the	screens	scripting	object	with	a	well	defined	name.	By
doing	this	the	logic	that	alters	a	specific	screens	layout	becomes	somewhat
standardized,	easy	to	recognize	and	consolidated	in	one	place	
For	example:

	

Example	Function	Name What	it	might	do?
SHARED.ApplyStandardLayout()
	

Apply	generic	application	layout	rules	to
any	destination	screen.	Most	destination
screens	would	invoke	this	function	in	their
arrival	script,	just	before	making	the	screen
visible.	

SHARED.AttachPromptImages()
	

Accepts	an	array	of	screen	field	names.	It
creates	a	small	clickable	image	beside	each
named	field.	5250	screens	that	display
promotable	fields	would	use	this	function
generically.					

thisScreen.ApplySpecificLayout() Defined	as	a	function	within	the	definition
of	a	specific	5250	destination	screen.
Applies	layout	changes	that	are	specific	to
this	screen.

	

	

HTMLAPI	Usage	Examples
The	following	examples	use	this	5250	destination	screen	which	is	shipped	with
LANSA	as	process	PSLSYS	function	INQUIRE.	It	allows	the	details	of	an
employee	to	be	displayed	and	updated.	It	initially	has	an	arrival	script	like	this:

	

			vHandle_ARRIVE:	function(oPayload,	oPreviousForm)
			{
					/*	If	the	department	input	field	exists	on	the	screen,	display	it	*/
	
					if	(CHECK_FIELD_EXISTS("DEPTMENT"))
					{
								SHOW_CURRENT_FORM(true);
								HIDE_5250_BUTTONS();
								SETCURSORTOFIELD("SURNAME");
								SETBUSY(false);
					}
	
					/*	Otherwise	send	an	F21	key	to	make	the	screen	input	capable		*/
	
					else
					{
								SENDKEY(KeyF21);
					}
	
					/*	<ARRIVE	/>	-	Do	not	remove	or	alter	this	line	*/
	
					return(true);
			},

	

And	it	looks	like	this:

	

	

These	fields	have	been	named	on	this	5250	screen:

SURNAME Employee	Surname

GIVENAME Employee	Given	Name(s)

ADDRESS1 Street	No	and	Name

ADDRESS2	 Suburb	or	Town

ADDRESS3 State	and	Country

DEPTMENT	 Department	Code

SECTION Section	Code

DATE_START_DDMMYY Start	date

DATE_END_DDMMYY Termination	Date

DATE_ACQ_DDMMYY	 Date	Skill	Acquired	(Subfile	Column)

PageDownMarker The	"+"	sign	indicating	more	data	in	the	subfile

	

Note	that	what	follows	are	examples	only.	What	you	do	and	how	you	work	with
your	5250	screens	will	be	different.	You	need	to	adjust	the	approach	you	use	to
match	your	requirements.
Implementing	a	Basic	Standard	Layout	function
Generically	Modifying	a	Screen	via	the	Standard	Layout	function
Specifically	Modifying	a	Screen	via	a	Specific	Layout	function
Adding	More	Capability	to	the	Standard	Generic	Handler		
Modifying	Subfile	Headings
Modifying	Fonts
Adding	Images
Things	to	watch	out	for
What	HTMLAPI	functions	are	provided?
	

Implementing	a	Basic	Standard	Layout	function
First	this	following	function	is	added	to	the	uf_sy420_rts.js	file	as	part	of	the
SHARED	scripting	object:

	

var	SHARED	=	
{
	
			/*	---	*/	
			/*	Apply	standard	layout	changes	to	arriving	screens	*/		
			/*	---	*/	
	
			ApplyStandardLayout	:	function()
			{
	
						/*	Use	the	HTMLAPI	to	hide	lines	1	and	2	on	all	screens	*/
	
						HTMLAPI.hideRow(1);
						HTMLAPI.hideRow(2);
	
			},		
	
Etc,	Etc

	

We	now	have	a	standard	function	named	SHARED,ApplyStandardLayout	that
can	be	invoked	from	any	RAMP	screen’s	arrival	script.
For	example,	the	arrival	script	of	the	example	destination	screen	would	be
modified	like	this	to	use	this	new	function,	just	before	it	causes	the	5250	screen
to	be	displayed:

	

			vHandle_ARRIVE:	function(oPayload,	oPreviousForm)
			{
					/*	If	the	department	input	field	exists	on	the	screen,	display	it	*/

	
					if	(CHECK_FIELD_EXISTS("DEPTMENT"))
					{
	
								SHARED.ApplyStandardLayout();
	
								SHOW_CURRENT_FORM(true);
								HIDE_5250_BUTTONS();
								SETCURSORTOFIELD("SURNAME");
								SETBUSY(false);
					}
	
					/*	Otherwise	send	an	F21	key	to	make	the	screen	input	capable		*/
	
					else
					{
								SENDKEY(KeyF21);
					}
	
					/*	<ARRIVE	/>	-	Do	not	remove	or	alter	this	line	*/
	
					return(true);
			},

	

When	executed	now,	the	resulting	screen	looks	like	this:

	

Note	that	lines	1	and	2	on	the	screen	are	now	invisible.
This	is	a	fairly	trivial	generic	layout	rule,	but	you	have	now	lain	a	base	on	which
much	more	important	rules	can	be	generically	implemented	across	many
different	5250	screens.
	

Generically	Modifying	a	Screen	via	the	Standard	Layout	function
Another	generic	thing	we	might	do	is	remove	all	the	"+"	prompt	fields	from	the
screen	and	strip	the	trailing	dots	from	all	the	field	labels.
To	do	this	you	could	add	code	like	this	to	the	SHARED,ApplyStandardLayout
function:

	

	/*	Get	all	elements	between	lines	3	and	22	*/	
	
	var	aH	=	HTMLAPI.getElementsinRowRange(3,22);
	
	/*	Hide	all	fields	containing	"+"	signs	and	strip	trailing	dots	from	others	*/	
								
	for	(i	=	0;	i	<	aH.length;	i++)
	{
				var	oH	=	aH[i];	
	
				if	((oH	!=	null)	&&	(typeof(oH.tagName)	!=	"undefined"))
				{
							var	fIsINPUTField	=	((oH.tagName	==	"INPUT")	||	(oH.tagName	==	"TEXTAREA"));
							
							if	(!(fIsINPUTField))	/*	This	NOT	an	input	field	on	the	screen	*/
							{
										if	(oH.innerText	==	"+")	HTMLAPI.hideElement(oH);
										else																					HTMLAPI.stripTrailingDots(oH);
							}			
				}
		}

	

When	executed	the	example	5250	now	looks	like	this:	

	

Specifically	Modifying	a	Screen	via	a	Specific	Layout	function
A	5250	screen	specific	thing	we	can	do	is	to	add	scrolling	buttons	to	a	subfile	it
displays.
In	the	script	associated	with	this	example	screen,	three	new	functions	could	be
added	like	this:

	

			/*	Apply	layout	changes	specific	to	this	screen	*/
	
			ApplySpecificLayout	:	function()
			{
						if	(CHECK_FIELD_EXISTS("PageDownMarker"))
	
HTMLAPI.insertSubFileScrollers("/ts/skins/images/pageup.gif",this.HandlePageUp,"/ts/skins/images/pagedown.gif",this.HandlePageDown,9,9,-46,82);
						else
									HTMLAPI.insertSubFileScrollers("/ts/skins/images/pageup.gif",this.HandlePageUp,null,null,9,9,-46,82);
			},
	
			/*	Handle	clicks	on	the	subfile	scroller	images	images	*/
	
			HandlePageDown:	function()	{	EXECUTE_BUTTON_SCRIPT(KeyPageDown);	},
	
			HandlePageUp:	function()			{	EXECUTE_BUTTON_SCRIPT(KeyPageUp);	},

	

And	the	arrival	script	part	of	the	screen	definition	is	modified	to	invoke	this	new
logic	every	time	a	screen	arrives:	

	

			vHandle_ARRIVE:	function(oPayload,	oPreviousForm)
			{
					var	bReturn	=	true;
	
					/*	If	the	department	input	field	exists	on	the	screen,	display	it	*/
	

					if	(CHECK_FIELD_EXISTS("DEPTMENT"))
					{
	
								SHARED.ApplyStandardLayout();
								this.ApplySpecificLayout();
	
etc,	etc

	

When	executed	the	example	5250	screen	now	looks	like	this:	

	

	

Note	the	page	up	and	down	clickable	images	appearing	at	the	bottom	of	the
subfile.	When	clicked	they	invoke	the	handler	functions	HandlePageUp	and
HandlePageDown,	which	then	send	page	up	/	down	keystrokes	to	the	server.
Note:	They	do	this	by	executing	the	vHandle_BUTTONCLICK	function,	so	you
need	to	make	sure	that	it	can	handle	the	page	up	and	page	down	keys	correctly.

Adding	More	Capability	to	the	Standard	Generic	Handler		
The	RAMP-TS	session	used	in	this	example	has	a	special	fields	handling	table
like	this:

	

If	you	do	not	understand	what	this	means	you	should	complete	the	special	field
handling	tutorial.	
The	special	field	handling	table	enables	automatic	prompting	of	these	fields	on
the	example	screen	like	this:

	

Here	the	user	has	pressed	F4	when	the	cursor	was	positioned	in	the	Start	Date
field.	The	special	field	handler	DF_PRM07	causes	a	calendar	to	appear,

allowing	the	user	to	select	a	date.
This	only	happens	when	the	user	positions	into	the	promptable	field	and	uses
the	F4	function	key.
The	F4	prompt	logic	can	be	generically	extended	further	via	the	HTMLAPI	and
by	using	your	generic	SHARED.ApplyStandardLayout	function.	
First,	modify	SHARED.ApplyStandardLayout	to	receive	an	optional	parameter
like	this:
	
			ApplyStandardLayout	:	function(aPromptFields)
	

	
Then	add	code	like	this	example	to	the	ApplyStandardLayout

	

						/*	Insert	prompting	images	*/
						
						if	(aPromptFields	!=	null)
						{
										for	(i	=	0;	i	<	aPromptFields.length;	i++)		
										{
													oH	=	HTMLAPI.getElementbyName(aPromptFields[i]);	
													if	(oH	!=	null)
													{
																oI	=	HTMLAPI.insertImage(oH,"/ts/skins/images/zoom_in_18x18.gif",this.HandlePromptImageClick,12,12,2,3);
																oI.PromptFieldName	=	aPromptFields[i];	
													}
										}
						}

	

By	checking	aPromptFields	==	null	you	rdesign	allows	for	the	parameter	to	be
optional.	Callers	do	not	need	to	pass	it.	
The	SHARED	object	also	needs	to	have	a	function	added	to	handle	clicking	on
the	images	created,	like	this	example:

	

			/*	---	*/	
			/*	Handle	clicking	on	a	prompt	image																	*/		
			/*	---	*/	
	
			HandlePromptImageClick	:	function(oE)
			{				
						var	oI	=	oE.srcElement;
						if	(typeof(oI.PromptFieldName)	!=	"undefined")
						{
									SETCURSORTOFIELD(oI.PromptFieldName);
									EXECUTE_BUTTON_SCRIPT(KeyF4);
						}
			},			

	

Finally,	the	example	5250	destination	screen	that	is	using
SHARED.ApplyStandardLayout	needs	to	be	modified	to	pass	an	array	of
promptable	fields.
First	the	array	is	declared	like	this	(at	the	start	of	the	scripting	code):
	
				aPromptFields	:
Array("DEPTMENT","SECTION","DATE_START_DDMMYY","DATE_END_DDMMYY"),
	

	
The	call	to	SHARED.ApplyStandardLayout	is	modified
				
								SHARED.ApplyStandardLayout(this.aPromptFields);
	

		
The	resulting	5250	screen	looks	like	this:

	

Note	the	small	images	now	appearing	beside	the	promptable	fields.
The	user	can	click	on	the	image	to	prompt	the	field,	or	they	can	position	into	the
field	and	press	F4.	The	result	is	the	same.
Clicking	on	the	image	actually	executes	the	current	screen’s
vHandle_BUTTONCLICK	function,	so	it	needs	to	be	able	to	handle	the	F4	key.

	

Modifying	Subfile	Headings
One	other	feature	that	the	HTMLAPI	provides	dynamically	alters	subfile
headings.	Typically	it	can	be	used	in	a	generic	fashion	for	any	5250	screen.
If	code	like	this	is	added	to	the	standard	SHARED	layout	function
ApplyStandardLayout:

	

						/*	Adjust	the	subfile	headings	*/
	
						HTMLAPI.adjustSubFileHeadings("Arial","8pt");	

	

Then	the	resulting	5250	screen	now	looks	like	this:

	

By	making	this	change	in	your	SHARED.ApplyStandardLayout:	
	
						/*	Adjust	the	subfile	headings	*/
	
						HTMLAPI.adjustSubFileHeadings("Arial","8pt","orange",'left',"1px	solid	black");			

	
You	could	cause	5250	subfile	to	look	like	this	…..

	

	

	

Note:	The	‘shipped’	intention	with	sub	files	is	to	make	them	look	somewhat	like
list	views	or	grids,	which	is	exactly	what	this	orange	example	does	not	do.

Modifying	Fonts
Finally,	here	is	an	example	of	a	modified	SHARED	layout	function	that	changes
the	font	of	all	fields	on	the	form	to	use	8pt	Arial.	The	example	loop	used	earlier
in	SHARED.ApplyStandardLayout	could	be	changed	to	be	like	this	example:

	

/*	Get	all	elements	between	lines	3	and	22	*/	
	
var	aH	=	HTMLAPI.getElementsinRowRange(3,22);
	
/*	Hide	all	fields	containing	"+"	signs	and	strip	trailing	dots	from	others	*/	
								
for	(i	=	0;	i	<	aH.length;	i++)
{
			var	oH	=	aH[i];	
	
			if	((oH	!=	null)	&&	(typeof(oH.tagName)	!=	"undefined"))
			{
					var	fIsINPUTField	=	((oH.tagName	==	"INPUT")	||	(oH.tagName	==	"TEXTAREA"));
										
					if	(fIsINPUTField)	HTMLAPI.applyFont(oH,"Arial","7pt");
					else	
					{
								if	(oH.innerText	==	"+")	HTMLAPI.hideElement(oH);
								else	
								{
											HTMLAPI.stripTrailingDots(oH);	
											HTMLAPI.applyFont(oH,	"Arial","8pt");	
								}
					}			
			}
	}

	

The	resulting	5250	screen	now	looks	like	this:

	

		

	

It	started	out	as:

	

	

Adding	Images
To	add	an	image	to	your	RAMP	command	handler,	put	this	example	generic
code	into	your	SHARED	object:		
	var	SHARED	=	
{
	
			/*	---	*/	
			/*	Handle	clicking	on	a	prompt	image																	*/		
			/*	---	*/	
	
			oFloatingImage	:	null,
	
			InsertImage	:	function(sBesideField,sSource,iHeight,iWidth,iHOffset,iVOffset)
			{				
							var	oE	=	HTMLAPI.getElementbyName(sBesideField);
							
							if	(oE	==	null)	return;
	
							var	oC	=	HTMLAPI.getcontainerDIV(oE);
							
							if	(oC	==	null)	return;
																
							if	(this.oFloatingImage	==	null)
							{
										this.oFloatingImage	=	oC.ownerDocument.createElement("
");		
										oC.ownerDocument.body.insertAdjacentElement("beforeEnd",this.oFloatingImage);	
							}
								
							this.oFloatingImage.src															=	sSource;
							this.oFloatingImage.style.pixelTop				=	oC.style.pixelTop		+	iVOffset;
							this.oFloatingImage.style.pixelLeft			=	oC.style.pixelLeft	+	oC.style.pixelWidth	+	iHOffset;	
							this.oFloatingImage.style.pixelHeight	=	iHeight;	
							this.oFloatingImage.style.pixelWidth		=	iWidth;			
							this.oFloatingImage.style.visibility		=	"visible";	
							this.oFloatingImage.style.display					=	"inline";
												

							return;	
			},

		
And	add	a	new	line	to	your	standard	layout	function	to	make	sure	the	image
dispappears	as	new	screens	arrive:
				ApplyStandardLayout	:	function(aPromptFields)
			{
	
						/*	Drop	any	floating	images	left	around	from	before	*/
	
						if	(this.oFloatingImage	!=	null)	{	this.oFloatingImage.style.visibility	=	"hidden";	this.oFloatingImage.style.display	=	"none";	}
	

		
You	have	now	added	you	own	completey	generic	InsertImage	capability	to	any
RAMP-TS	5250	screen.Try	it	out	by	adding	this	line	to	the	arrival	script	of	a
screen:
									
SHARED.InsertImage("SURNAME","/ts/skins/images/TestImage1.gif",123,100,90,0);
			

	
And	you	get	this:

		
The	SHARED.InsertImage()	can	now	be	reused	anywhere	in	your	application.
Do	not	forget	to	set	authority	correctly	on	an	new	files	in	Axes	folder.
Remember	that	adding	a	new	command	handler	tab	for	the	image	would	be	a
quicker	and	easier	solution.
	

	

Things	to	watch	out	for
Here	are	some	things	to	watch	out	for:
Understand	and	accept	the	risks	that	low	level	access	to	a	DOM	structure
inherently	involves	(see	the	preceding	section	for	more	about	this).
Check	that	you	are	not	impacting	the	performance	of	your	application.	Doing
such	a	check	is	easy.	Comment	out	or	disable	your	logic.	Do	some	timing	tests
using	a	PC	that	has	a	performance	profile	like	a	typical	end	user’s	PC.	Then
repeat	the	tests	with	your	logic	enabled.
Do	not	become	over-focused	on	a	5250	screen.	For	example,	imagine	you	have	a
customer	inquiry	5250	screen.	You	want	to	add	a	Google	Maps	image	to	your
application	to	show	the	customer’s	location.	There	are	two	ways	to	do	this:
Add	an	IFRAME	to	your	5250	screen	with	the	required	JavaScript	logic.
Simply	add	another	tab	called	"Map	Location"	to	your	VLF	application.
Of	these,	the	latter	would	be	simpler	and	easier	to	implement.	It	is	also	‘on
demand’	rather	than	cluttering	up	your	screen	with	information	that	most	people
do	not	need	to	see	most	of	the	time.			
	

What	HTMLAPI	functions	are	provided?
HTMLAPI.getElementbyName
Parameters:
Description	 Type Optional/Mandatory Default	Value
Element	Name String Mandatory 	

Index Integer Optional 0

	 	 	 	

Returns:	A	reference	to	the	HTML	element	or	null	if	not	found.		
	

HTMLAPI.getElementbyLocation
Parameters:
Description	 Type Optional/Mandatory Default	Value
Row Integer Mandatory 	

Column	 Integer Mandatory 	

	 	 	 	

Returns:	A	reference	to	the	HTML	element	or	null	if	not	found.		
	

HTMLAPI.getElementsinRowRange
Parameters:
Description	 Type Optional/Mandatory Default	Value
Low	Row Integer Mandatory 	

High	Row Integer Optional Low	Row

	 	 	 	

Returns:	An	array	of	references	to	the	HTML	elements.		
	

HTMLAPI.getElementsinColumnRange
Parameters:
Description	 Type Optional/Mandatory Default	Value
Low	Column Integer Mandatory 	

High	Column	 Integer Optional Low	Column

	 	 	 	

Returns:	An	array	of	references	to	the	HTML	elements.		
	

HTMLAPI.showElement
Parameters:
Description	 Type Optional/Mandatory Default

Value
HTML
element

HTML	element
reference

Mandatory 	

	 	 	 	

Returns:	null.		
	

HTMLAPI.hideElement
Parameters:
Description	 Type Optional/Mandatory Default

Value
HTML
element

HTML	element
reference

Mandatory 	

	 	 	 	

Returns:	null.		
	

HTMLAPI.hideRow
Parameters:
Description	 Type Optional/Mandatory Default	Value
Row	number Integer Mandatory 	

	 	 	 	

Returns:	null.		
	

HTMLAPI.insertImage
Parameters:
Description	 Type Optional/Mandatory Default

Value
HTML	element	that	image	is
to	be	inserted	after

HTML	element
reference

Mandatory 	

Image	source String Mandatory 	

Click	event	handler Function Optional null

Image	height		 Integer Optional Image’s
own
height	

Image	width Integer Optional Image’s
own
width

Horizontal	offset Integer Optional 2

Vertical	offset Integer Optional 0

	 	 	 	

Returns:	Reference	to	the	HTML	element	created	or	null	in	error	situations

elements.		
	

HTMLAPI.applyFont
Parameters:
Description	 Type Optional/Mandatory Default

Value
HTML	element	to	which	font
is	to	be	applied

HTML	element
reference

Mandatory 	

Font	Family String Mandatory 	

Font	Size String Mandatory 	

	 	 	 	

Returns:	null.		
	

HTMLAPI.getcontainerDIV
Parameters:
Description	 Type Optional/Mandatory Default

Value
HTML	element	whose	absolutely
positioned	container	DIV	is	to
found	

HTML
element
reference

Mandatory 	

	 	 	 	

Returns:	Reference	to	the	absolutely	positioned	container	DIV	or	null	if	not
found.		
	

HTMLAPI.stripTrailingDots
Parameters:
Description	 Type Optional/Mandatory Default

Value

HTML	element	from	which
dots	are	to	be	stripped

HTML	element
reference

Mandatory 	

Returns:	null.		
	

HTMLAPI.insertSubFileScrollers
Parameters:
Description	 Type Optional/Mandatory Default	Value
Page	up	image	to	use	 String Optional Null

Page	up	click	handler Function Optional Null

Page	Down	image	to	use	 String Optional Null

Page	Down	click	handler Function Optional Null

Images	Height Integer Optional 12

Images	Width Integer Optional 12

Horizontal	offset Integer Optional 0

Vertical	offset Integer Optional 0

	 	 	 	

Returns:	null.		
	

HTMLAPI.	adjustSubFileHeadings
Parameters:
Description	 Type Optional/Mandatory Default	Value
Font	to	use		 String Optional Lucida	Console

Font	Size String Optional 8pt

Background	Color String Optional Buttonface

Text	Alignment String Optional center

Border	Style		 String Optional 1px	solid	darkgray

	 	 	 	

Returns:	null.		

	

	
	

Screen	Wrappers
RAMP	screen	wrappers	are	Visual	LANSA	components	that	access	5250
screens	behind	the	scenes.	The	screens	and	fields	accessed	are	defined	in	the
usual	manner	by	choreographing	them.
A	screen	wrapper	can	pick	values	out	of	5250	screens	and	present	them	to	the
user	in	completely	different	ways.	Equally,	a	screen	wrapper	can	accept	input
from	the	user	and	map	it	back	into	the	5250	screens	to	cause	5250	transactions
to	take	place.	
	

When	to	Use	5250	Screen	Wrappers?
Screen	Wrapper	Fundamentals
EventsMethodsExamples
	

When	to	Use	5250	Screen	Wrappers?
The	main	advantage	of	a	screen	wrapper	is	obvious.	You	can	put	a	good
looking,	easy	to	use,	high	GUI	veneer	over	5250	screens,	without	having	to
spend	the	time	and	money	required	to	analyze,	rewrite	and	then	retest	all	the
business	logic	imbedded	inside	them	as	you	would	if	you	replaced	them	with
VL	components.
This	is	especially	important	for	users	to	whom	platform	portability	is	of	no	real
interest	because	they	are	content	with	a	System	i	only	solution.
	

Usage	Examples
Some	usage	examples	might	include:				
A	screen	wrapper	can	pick	values	out	of	hidden	5250	screens	and	present	it	in
completely	different	ways.		For	example,	statistical	information	can	be	extracted
and	presented	as	a	series	of	bar	graphs	(see	Example	3:	Show	the	System	i	Disk
Usage).
A	screen	wrapper	can	accept	user	input	and	then	map	it	back	into	the	5250
screens	so	as	to	cause	5250	transactions	to	take	place.	For	example,	a	VL
component	could	allow	high	function,	high	volume	order	entry.	When	the	user
clicks	Save,	the	order	details	are	mapped	into	a	series	of	5250	screens	and	input.
A	screen	wrapper	might	execute	many	5250	screens	from	one	click.	For	example
a	screen	wrapper	might	display	a	list	of	20	order	numbers.	When	the	user	clicks
OK	all	20	orders	are	deleted	by	repeatedly	executing	a	5250	screen	that	only
allows	one	order	at	a	time	to	be	deleted.
			

Role	in	Modernization	Projects
For	a	customer	happy	with	a	System	i	dependent	solution,	a	screen	wrapper
might	be	as	far	as	they	ever	take	application	modernization.
Realistically,	screen	wrappers	take	time	and	money	to	develop,	but	probably
significantly	less	than	the	equivalent	VL	component	would,	especially	in	the
application	testing	phase	of	the	modernization	project.
Screen	wrappers	are	not	thrown	away.	When	time	and	money	permit,	they	may
still	be	changed	into	proper	VL	components	by	removing	their	5250
dependency.
You	would	expect	modernization	projects	to	go	to	market	using	a	mix	of	5250

screens,	screen	wrappers	and	VL	components.	For	example,	this	might	be	the
mix	appropriate	to	an	ISV:
85%	-	5250	screens	–	to	get	to	market	ASAP.
10%	-	screen	wrappers	-		to	rapidly	replace	some	heavily	used	and	critical	areas
(eg:	Order	Entry)	with	something	much	better	to	use	that	adds	a	lot	of	business
value.
5%			-	VL	components	–	add	high	end	value	to	the	application	(eg:	E-Mail,	PDF
documents,	MS-Excel	spreadsheets,	Web	integration,	etc).	
	
	

Screen	Wrapper	Fundamentals
Define	your	screen	wrapper
A	screen	wrapper	is	a	VL	reusable	part	of	class	VF_SY122.	You	must	define	it
globally	scoped	as	opposed	to	inside	any	type	of	routine.
Define_Com	Class(#vf_sy122)	Name(#myscreen_wrapper)	Parent(#PANL_1)
Visible(False)	Displayposition(3)

	
Key	Points:
Set	the	initial	visibility	to	False.	This	will	ensure	it	will	never	show	up	unless
you	want	to.	For	example	you	might	want	to	make	it	visible	in	design	mode
when	a	fatal	error	occurs	to	give	you	the	option	of	seeing	what	the	current	5250
screen	is.
You	might	want	to	make	it	a	child	of	a	panel	attached	to	the	center	of	the	main
panel.	This	will	make	it	easier	to	see	when	you	want	to	make	it	visible	to	track
down	fatal	errors.

Set	the	uCommand	property
	
In	the	command's	uInitialize	method	routine,	set	the	screen	wrapper's
uCommand	property:
Mthroutine	Name(uInitialize)	Options(*REDEFINE)
	
*	Do	any	initialization	defined	in	the	ancestor
Invoke	Method(#Com_Ancestor.uInitialize)
Set	Com(#myscreen_wrapper)	Ucommand(#com_owner)
Endroutine

	
Key	Points:
Always	set	uCommand	to	#com_owner.
Failure	to	set	uCommand	will	result	in	an	error	message	of	type
VF_INIT_ERROR.

Kick	off	execution	by	making	RAMP	available
	
Usually	you	will	invoke	MakerampTSavailable	Method	inside	the	uExecute

method	of	your	command	for	the	first	time:
#myscreen_wrapper.MakerampTSavailable

	
Key	Points:
The	first	time	you	make	RAMP	available	during	the	first	execution	of	a
command	it	will	take	slightly	longer	for	the	event	to	be	fired	because	RAMP	is
not	connected	to	the	host.
The	command	regains	control	in	the	RampTSAvailable	event	routine.

Listen	to	the	RampTSAvailable	event
Once	RAMP	has	connected	and	it's	ready	to	be	interacted	with	it	will	signal
back	to	the	command	in	this	event.	It	means	you	are	ready	to	start	navigation.
For	example:
Invoke	Method(#myscreen_wrapper.navigatetoscreen)
Name(EMPLOYEE_SKILLS)

	
Listen	to	the	RampMessage	event
You	write	error	handling	logic	and	handle	messages	originating	in	your	5250
application	in	the	RampMessage	Event.

Events
RampMessage	Event
RampTSAvailable	Event
vHandleArrive	Event

RampMessage	Event
A	message	is	issued	by	RAMP	or	the	underlying	5250	application.
	
Parameters

uMessageType Char
256

String	that	specifies	a	type	of	message	as	per	table
below.

uMessageText Char
132

String	that	contains	the	text	of	the	message.

	

	

This	table	illustrates	the	available	message	types	and	their	causes:
Type Cause Comments
VF_ERROR Fatal	errors. For	whatever	reason,	RAMP

has	failed	in	the	process	of
executing	a	request.
For	example,	a	failed
navigation	request.

VF_INFO A	message	from
the	5250
application.

Any	message	sent	by	the	actual
5250	program	running	under
the	covers.
For	example,	failed	validation
rules.

VF_INIT_ERROR The	Screen
wrapper	failed
to	initialize.

This	usually	happens	when	the
session	user	object	type
supplied	doesn't	yield	a	defined
session.
Alternatively,	if	you	haven't	set
the	uCommand	property	(see
Screen	Wrapper
Fundamentals).

VF_UNKNOWN_FORM During
navigation,	an
undefined	form
was	detected.

	

	

	

Remarks
It	is	up	to	the	developer	how	to	handle	different	types	of	errors.
To	cause	a	message	to	pop	up	automatically,	use	the
#com_owner.avshowmessages		method.	During	development	it	might	be	useful
to	show	the	underlying	5250screen	when	a	fatal	error	occurs.	You	can	do	so	by
changing	the	Screen	wrapper's	visibility	and/or	display	position.
	

Example
	
Evtroutine	Handling(#screen	wrapper.uRampMessage)
Umessagetype(#MsgType)	Umessagetext(#MsgText)
Case	(#msgtype.value)
When	Value_Is('=	VF_ERROR')
*	Optional.	In	design	mode,	making	the	screen	wrapper	visible	allows	you	to
show	the	5250	screen.Set	Com(#myscreen_wrapper)	Visible(True)
When	Value_Is('=	VF_INFO')
Message	Msgid(dcm9899)	Msgf(dc@m01)	Msgdta(#msgtext.value)
When	Value_Is('=	VF_UNKNOWN_FORM')
Message	Msgid(dcm9899)	Msgf(dc@m01)	Msgdta(#msgtext.value)
When	Value_Is('=	VF_INIT_ERROR')
Message	Msgid(dcm9899)	Msgf(dc@m01)	Msgdta(#msgtext.value)
Endcase
Endroutine

RampTSAvailable	Event
RAMP	has	signaled	it	is	interactive.
Parameters
	
None

Remarks
Start	your	navigation	here.	

Example
	
Evtroutine	Handling(#myscreen_wrapper.RampTSAvailable)	
	Invoke	Method(#myscreen_wrapper.navigatetoscreen)
Name(EMPLOYEE_SKILLS)
Endroutine

	
Also	see	MakerampTSavailable	Method.

vHandleArrive	Event
A	screen	has	arrived.

ArrivedScreen Char
256

String	that	specifies	the	name	of	the	arrived	screen.

PreviousScreen Char
256

String	that	contains	the	name	of	the	previous	screen.

ArrivedPayload Char
256

String	that	contains	a	payload.

ForAction
	

Char
256
	

String	that	was	passed	as	a	parameter	to	the
NavigateToScreen	method.

VariantName Char
256

String	that	contains	the	variant	name	of	the	arrived
screen

	

	

Remarks
This	event	will	signal	for	every	navigated	screen.

Example
	
Evtroutine	Handling(#myscreen_wrapper.vHandleArrive)
Arrivedscreen(#ArrivedScreen)	Previousscreen(#PreviousScreen)
Arrivedpayload(#Payload)
	
Case	(#ArrivedScreen)
	
When	Value_Is(=	EMPLOYEE_DETAILS)
	
Set	Com(#SAVE_BUTTON)	Enabled(false)
	
If	(#Payload	*NE	UPDATE_EMPLOYEE)

	
#myscreen_wrapper.getvalue	From('empno')	Value(#empno.value)
#myscreen_wrapper.getvalue	From('surname')	Value(#surname.value)
	
Endif
	
Endcase
	
Endroutine

	

Methods
Screen	wrappers	drive	the	5250	screens	using	using	normal	VL	code	methods
supplied	by	component	VF_SY122	(this	is	very	similar	to	how	the
corresponding	RAMP	javascript	functions	work):
MakerampTSavailable	Method
NavigateToScreen	Method
SetValue	Method
GetValue	Method
SendKey	Method
Current_Form	Method
SetCursor	Method
SetCursorToField	Method
Get_Form_Message	Method
Check_Field_Exists	Method

MakerampTSavailable	Method
Make	RAMP	interactive.

Syntax
Define_Com	Class(#vf_sy122)	Name(#myscreen_wrapper)
Parent(#COM_OWNER)
#myscreen_wrapper.MakerampTSavailable

	
Parameters
uUserObjectType Char	32	-

Optional
String	that	contains	the	user	object	type	of
the	RAMP	session.
Required	when	dealing	with	more	than	one
session.

uSession_Id Char	40	-
Optional

The	session	assigned	to	a	destination.
Defaults	to	*AUTO.

	

	

Return	Value
None

Remarks
Invoke	this	method	in	the	uExecute	command	handler	method,	there	is	no
performance	penalty	in	doing	this.	It	will	ensure	that	you	can	interact	with
RAMPTS.

Examples
Invoke	Method(#myscreen_wrapper.MakerampTSavailable)
uSession_Id(SESSION_A)
Invoke	Method(#myscreen_wrapper.MakerampTSavailable)
uUserObjectType(HumanResources)

	
Related	Topic	MakerampTSavailable	Method.

	

NavigateToScreen	Method
Navigate	to	a	RAMP-TS	screen.

Syntax
	
Define_Com	Class(#vf_sy122)	Name(#myscreen_wrapper)
Parent(#COM_OWNER)
#myscreen_wrapper.NavigateToScreen	Name(EMPLOYEE_SKILLS)

Parameters
Name Char	256	–

Required
String	that	contains	the	name	of	the	screen	to
navigate	to.	

	

	

Return	Value
None

Remarks
Once	NavigateToScreen	is	executed	your	screen	wrapper	will	receive	screen
arrival	event	signals	to	be	handled	in	the	vHandleArrive	event	routine.

Examples
	
Define_Com	Class(#vf_sy122)	Name(#myscreen_wrapper)
Parent(#COM_OWNER)
#myscreen_wrapper.Unavigatetoscreen)	Name(EMPLOYEE_SKILLS)

	

SetValue	Method
Set	the	value	of	an	input	field	on	a	5250	screen.	Pass	an	index	to	set	the	value	of
an	input	field	in	a	subfile.

Syntax
Define_Com	Class(#vf_sy122)	Name(#myscreen_wrapper)
Parent(#COM_OWNER)
Setting	by	Name	-	#myscreen_wrapper.setvalue	Infield(sFieldName)
Value(vValue)
	

Parameters
Setting	by	Name:

InField Char	256	–
Required

String	that	contains	the	name	of	an	input	field.	

Value Variant	–
Required

String	or	number	that	contains	the	value.	

Index Integer	-
Optional

An	Integer	that	specifies	the	subfile	row	of	the	field.
Note:	the	specified	row	index	must	exist	in	the
current	subfile	page.

	

	

Return	Value
None

Remarks
Only	Input	fields	that	have	been	named	can	have	their	values	set.
	

Examples
Define_Com	Class(#vf_sy122)	Name(#myscreen_wrapper)
Parent(#COM_OWNER)
#myscreen_wrapper.setvalue	Infield(GIVENAME)	Value(#Givename)

*	Set	the	value	of	a	field	in	the	3rd	row	of	the	current	subfile	page
#myscreen_wrapper.setvalue	Infield(SFL_OPTION)	Value(#SelOption)
Index(3)
	
	

	

GetValue	Method
Get	the	value	from	a	field	on	a	screen	or	in	subfile.

Syntax
Define_Com	Class(#vf_sy122)	Name(#myscreen_wrapper)
Parent(#COM_OWNER)
#myscreen_wrapper.getvalue	From(sField)	Value(sValue)
	

Parameters
From Char	256	–

Required
String	that	contains	the	name	of	the	field	to	get
the	value	from.

DefaultValue Char	256	–
Optional

String	that	contains	the	default	value	to	return
when	the	field	is	not	found.

Index Integer	-
Optional

An	Integer	that	specifies	the	subfile	row	of	the
field.
Note:	the	specified	row	index	must	exist	in	the
current	subfile	page.

	

	

Return	Value
Value Variant	–	Required Returns	the	field	value	as	a	string	or	number.

	

	

Examples
	
Define_Com	Class(#vf_sy122)	Name(#myscreen_wrapper)
Parent(#COM_OWNER)
#myscreen_wrapper.getvalue	From(SURNAME)	Value(#surname.value)

#myscreen_wrapper.getvalue	From(SURNAME)	Value(#surname.value)
Index(5)	DefaultValue(*Blanks)

	

SendKey	Method
Emulates	the	pressing	of	a	function	key.

Syntax
Define_Com	Class(#vf_sy122)	Name(#myscreen_wrapper)
Parent(#COM_OWNER)
#myscreen_wrapper.SendKey	Key(#myscreen_wrapper.<key	property>)

Parameters
Key Property

–
Required

The	property	of	#myscreen_wrapper	that	resolves	to	the
desired	key.
For	a	list	of	these	properties	See	the	SENDKEY	Names	in
Function	Key	Names	for	SENDKEY	Function	in
lansa049.chm.

Payload Char
256		-
Optional

A	string	that	contains	a	payload.	The	payload	is	returned	in
vHandleArrive

	

	

Return	Value
None

Examples
	
Define_Com	Class(#vf_sy122)	Name(#myscreen_wrapper)
Parent(#COM_OWNER)
#myscreen_wrapper.Sendkey	Key(#myscreen_wrapper.KeyPageDown)
Payload(NEXT_PAGE)

	
	

Current_Form	Method
Gets	the	Form	name	of	the	current	screen	wrapper	screen.

Syntax
Define_Com	Class(#vf_sy122)	Name(#myscreen_wrapper)
Parent(#COM_OWNER)
#myscreen_wrapper.current_form	Name(sName)

Parameters
None	

Return	Value
Name Char	256	–

Required
String	that	contains	the	name	of	the	current	5250
screen	wrapper	screen

	

	
Examples
	
Define_Com	Class(#vf_sy122)	Name(#myscreen_wrapper)
Parent(#COM_OWNER)
#myscreen_wrapper.current_form	Name(#std_txtl)
	
	

SetCursor	Method
Positions	the	cursor	in	a	given	row	and	column	of	the	screen.

Syntax
Define_Com	Class(#vf_sy122)	Name(#myscreen_wrapper)
Parent(#COM_OWNER)
#myscreen_wrapper.SetCursor	RowNum(iRowNum)	ColNum(iColNum)
	

Parameters
RowNum Integer	–

Required
Integer	that	specifies	the	row	number	where	to
position	the	cursor.	

ColNum Integer	–
Optional

Optional.	Integer	that	specifies	the	column	number
where	to	position	the	cursor.	
Defaults	to	1.	

	

	
Return	Value
None

Examples
	
Define_Com	Class(#vf_sy122)	Name(#myscreen_wrapper)
Parent(#COM_OWNER)
#myscreen_wrapper.setcursor	Rownum(10)

	

SetCursorToField	Method
Positions	the	cursor	in	a	given	field	on	a	screen	or	subfile.

Syntax
Define_Com	Class(#vf_sy122)	Name(#myscreen_wrapper)
Parent(#COM_OWNER)
#myscreen_wrapper.SetCursorToField	Name(SURNAME)
	

Parameters
Name Char	256	–

Required
String	that	specifies	the	name	of	the	field	to	position
the	cursor	at.	

Index Integer	-
Optional

An	Integer	that	specifies	the	subfile	row	of	the	field.
Note:	the	specified	row	index	must	exist	in	the	current
subfile	page.

	

	

Return	Value
None

Examples
	
Define_Com	Class(#vf_sy122)	Name(#myscreen_wrapper)
Parent(#COM_OWNER)
#myscreen_wrapper.setcursortofield	Name(SURNAME)	Index(3)

	

Get_Form_Message	Method
Retrieves	and	routes	a	message	in	a	specified	screen	row	number.

Syntax
Define_Com	Class(#vf_sy122)	Name(#myscreen_wrapper)
Parent(#COM_OWNER)
#bMoreMsgs	:=	#myscreen_wrapper.GetFormMessage(iRow)
	

Parameters
RowNumber Integer	–

Required
Integer	that	specifies	the	5250	screen’s	row
number	where	to	get	the	message	from.	

	

	

Return	Value
	

MoreMessages Boolean For	messages	presented	in	subfiles:
true	–	there	are	more	messages
false	–	no	more	messages

	

	

Examples
	
Define_Com	Class(#vf_sy122)	Name(#myscreen_wrapper)
Parent(#COM_OWNER)
#MoreMsgs	:=	#myscreen_wrapper.Get_Form_Messate	RowNumber(22)

	

Check_Field_Exists	Method
Checks	if	a	field	is	present	in	the	current	screen	or	subfile.

Syntax
Define_Com	Class(#vf_sy122)	Name(#myscreen_wrapper)
Parent(#COM_OWNER)
#bFound	:=		#myscreen_wrapper.Check_Field_Exists(sName	iInd)
	

Parameters
Name Char	256	–

Required
Integer	that	specifies	the	row	number	where	to
position	the	cursor.	

Index Integer	–
Optional

An	Integer	that	specifies	the	subfile	row	of	the	field.
Note:	the	specified	row	index	must	exist	in	the
current	subfile	page.

	

	

Return	Value
Found Boolean true	–	the	field	was	found	in	the	current	screen

false	–	the	field	was	not	found

	

	

Examples
	
Define_Com	Class(#vf_sy122)	Name(#myscreen_wrapper)
Parent(#COM_OWNER)
#FldFound	:=	#myscreen_wrapper.Check_Field_Exists("SURNAME")
#FldFound	:=	#myscreen_wrapper.Check_Field_Exists("SURNAME"
#listcount)
	

Dowhile	(#myscreen_wrapper.check_field_exists("SKILLCODE"	#listcount
))
#myscreen_wrapper.getvalue	From("skillcode")	Value(#skilcode)
Index(#listcount)
#listcount	+=	1
Endwhile

	
	
	

Examples
Example	1:	Show	Employee	Details.
Example	2:	Show	Employee	Details	and	Skills
Example	3:	Show	the	System	i	Disk	Usage

Example	1:	Show	Employee	Details.
This	example	will	navigate	to	the	Browse	and	Maintain	Employees	screen
which	is	part	of	the	Personnel	System.

To	reach	this	screen,	RAMP	scripts	will	execute	the	following	steps:
Sign	on
Type	lansa	run	pslsys	partition(dem)	in	the	command	line	and	press	Enter.
Type	3	in	the	option	field	and	press	Enter.
Type	the	employee	number	of	the	currently	selected	employee	and	press	Enter.
Press	F21.
	
Function	Options(*DIRECT)
	
Begin_Com	Role(*EXTENDS	#VF_AC010)	Height(569)
Layoutmanager(#MAIN_LAYOUT)	Width(776)
	

*
==
*	Simple	Field	and	Group	Definitions
*
==
	
Group_By	Name(#XG_HEAD)	Fields(#EMPNO	#SURNAME	#GIVENAME
#ADDRESS1	#ADDRESS2	#ADDRESS3	#POSTCODE	#PHONEHME
#DEPTMENT	#SECTION)
	
*	Body	and	Button	arrangement	panels
	
Define_Com	Class(#PRIM_PANL)	Name(#BUTTON_PANEL)
Displayposition(2)	Height(569)	Hint(*MTXTDF_DET1)
Layoutmanager(#BUTTON_FLOW)	Left(688)	Parent(#COM_OWNER)
Tabposition(3)	Tabstop(False)	Top(0)	Width(88)
	
Define_Com	Class(#PRIM_PANL)	Name(#BODY_HEAD)
Displayposition(1)	Height(569)	Hint(*MTXTDF_DET1)
Layoutmanager(#BODY_HEAD_FLOW)	Left(0)	Parent(#COM_OWNER)
Tabposition(2)	Tabstop(False)	Top(0)	Verticalscroll(True)	Width(688)
	
*	Attachment	and	flow	layout	managers
	
Define_Com	Class(#PRIM_ATLM)	Name(#MAIN_LAYOUT)
	
Define_Com	Class(#PRIM_FWLM)	Name(#BUTTON_FLOW)
Direction(TopToBottom)	Flowoperation(Center)	Marginbottom(4)
Marginleft(4)	Marginright(4)	Margintop(4)	Spacing(4)	Spacingitems(4)
Define_Com	Class(#PRIM_FWLM)	Name(#BODY_HEAD_FLOW)
Direction(TopToBottom)	Marginbottom(4)	Marginleft(4)	Marginright(4)
Margintop(4)	Spacing(4)	Spacingitems(4)
	
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_EMPNO)
Manage(#EMPNO)	Parent(#BODY_HEAD_FLOW)
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_SURNAME)
Manage(#SURNAME)	Parent(#BODY_HEAD_FLOW)
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_GIVENAME)
Manage(#GIVENAME)	Parent(#BODY_HEAD_FLOW)

Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_ADDRESS1)
Manage(#ADDRESS1)	Parent(#BODY_HEAD_FLOW)
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_ADDRESS2)
Manage(#ADDRESS2)	Parent(#BODY_HEAD_FLOW)
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_ADDRESS3)
Manage(#ADDRESS3)	Parent(#BODY_HEAD_FLOW)
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_POSTCODE)
Manage(#POSTCODE)	Parent(#BODY_HEAD_FLOW)
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_PHONEHME)
Manage(#PHONEHME)	Parent(#BODY_HEAD_FLOW)
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_SAVE_BUTTON)
Manage(#SAVE_BUTTON)	Parent(#BUTTON_FLOW)
	
*	The	save	button
Define_Com	Class(#PRIM_PHBN)	Name(#SAVE_BUTTON)
Caption(*MTXTDF_SAVE)	Displayposition(1)	Left(4)
Parent(#BUTTON_PANEL)	Tabposition(1)	Top(4)
	
*	Collection	for	detail	fields
Define_Com	Class(#Prim_ACol<#prim_evef>)	Name(#PanelFields)
	
*	Fields	in	the	head	area
	
Define_Com	Class(#EMPNO.Visual)	Displayposition(1)	Height(19)
Hint(*MTXTDF_DET1)	Left(4)	Parent(#BODY_HEAD)	Readonly(True)
Tabposition(1)	Top(4)	Usepicklist(False)	Width(209)
Define_Com	Class(#SURNAME.Visual)	Displayposition(2)	Height(19)
Hint(*MTXTDF_DET1)	Left(4)	Parent(#BODY_HEAD)	Tabposition(2)
Top(27)	Usepicklist(False)	Width(324)
Define_Com	Class(#GIVENAME.Visual)	Displayposition(3)	Height(19)
Hint(*MTXTDF_DET1)	Left(4)	Parent(#BODY_HEAD)	Tabposition(3)
Top(50)	Usepicklist(False)	Width(324)
Define_Com	Class(#ADDRESS1.Visual)	Displayposition(4)	Height(19)
Hint(*MTXTDF_DET1)	Left(4)	Parent(#BODY_HEAD)	Tabposition(4)
Top(73)	Usepicklist(False)	Width(363)
Define_Com	Class(#ADDRESS2.Visual)	Displayposition(5)	Height(19)
Hint(*MTXTDF_DET1)	Left(4)	Parent(#BODY_HEAD)	Tabposition(5)
Top(96)	Usepicklist(False)	Width(363)
Define_Com	Class(#ADDRESS3.Visual)	Displayposition(6)	Height(19)

Hint(*MTXTDF_DET1)	Left(4)	Parent(#BODY_HEAD)	Tabposition(6)
Top(119)	Usepicklist(False)	Width(363)
Define_Com	Class(#POSTCODE.Visual)	Displayposition(7)	Height(19)
Hint(*MTXTDF_DET1)	Left(4)	Parent(#BODY_HEAD)	Tabposition(7)
Top(142)	Usepicklist(False)	Width(216)
Define_Com	Class(#PHONEHME.Visual)	Displayposition(8)	Height(19)
Hint(*MTXTDF_DET1)	Left(4)	Parent(#BODY_HEAD)	Tabposition(8)
Top(165)	Usepicklist(False)	Width(286)
	
Define_Com	Class(#PRIM_ATLM)	Name(#ATLM_1)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_1)	Attachment(Center)
Parent(#ATLM_1)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_2)	Attachment(Center)
Manage(#BODY_HEAD)	Parent(#MAIN_LAYOUT)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_3)	Attachment(Right)
Manage(#BUTTON_PANEL)	Parent(#MAIN_LAYOUT)
	
Define_Com	Class(#vf_sy122)	Name(#myscreen_wrapper)
Displayposition(3)	Height(569)	Parent(#COM_OWNER)	Width(688)
	
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_4)	Attachment(Center)
Parent(#MAIN_LAYOUT)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_6)	Attachment(Center)
Manage(#myscreen_wrapper)	Parent(#MAIN_LAYOUT)
	
*
===
*	To	better	understand	this	example	you	should	be	famililar	with	the	shipped
Personnel	System	demo.
*
*	We	expect	the	following	screens	to	appear	as	part	of	this	navigation:
*
*	Login	->	type	in	user	and	password	->	press	Enter	->	(a	special	screen?
<F3>)
*	i5	Main	Menu	->	type	lansa	run	process(pslsys)	partition(dem)	->	press
Enter
*	Personnel	System		->	type	option	3	->	press	Enter
*	Inquire	->	type	the	current	instance	employee	number	->	press	Enter
*	Browse	Employee	Details	and	Skills	in	OUTPUT	mode	->	press	F21

*	Browse	Employee	Details	and	Skills	in	INPUT	mode
*
===
*
*	--
*	Handle	Initialization
*	--
	
Mthroutine	Name(uInitialize)	Options(*REDEFINE)
	
Define_Com	Class(#Prim_evef)	Name(#FormField)	Reference(*dynamic)
	
Invoke	Method(#Com_Ancestor.uInitialize)
	
For	Each(#Control)	In(#Body_Head.ComponentControls)
	
If_Ref	Com(#Control)	Is(*INSTANCE_OF	#prim_evef)
	
Set_Ref	Com(#FormField)	To(*dynamic	#Control)
	
Invoke	Method(#PanelFields.Insert)	Item(#FormField)
	
Endif
	
Endfor
	
*	Set	the	uCommand	wrapper	property.
Set	Com(#myscreen_wrapper)	Ucommand(#com_owner)
	
Endroutine
	
*	--

*	Handle	Command	Execution
*
*	Always	invoke	makerampTSavailable	to	ensure	RAMP-TS	is	up	and
running	before	starting	a	navigation
*
*	You	may	also	disable	the	entire	form	to	prevent	any	input	while	RAMP	is

navigating
*	--

Mthroutine	Name(uExecute)	Options(*REDEFINE)
	
Invoke	Method(#Com_Ancestor.uExecute)
	
#myscreen_wrapper.makerampTSavailable
	
Set	Com(#Save_Button)	Enabled(False)
	
#com_owner.enabled	:=	false
Endroutine
	
*
==
*	Event	Handlers
*
==
	
*	RAMP	has	signalled	it's	ready.	Invoke	your	navigation	here.
*
*	Once	the	navigaton	starts,	processing	resumes	in	the	vHandleArrive	event
handler.
*
Evtroutine	Handling(#myscreen_wrapper.RampTSAvailable)
	
Invoke	Method(#myscreen_wrapper.navigatetoscreen)	Name('updempskills')
	
Endroutine
	
*
*	The	Payload	is	a	256	character	string	sent	together	with	a	SENDKEY.	Use
the	Payload	in	the	same	way	you	would	use	parameters	in	an	event.
*	Assuming	when	'updempskills'	arrives	we	change	some	details	and	press
Enter	or	click	on	the	SAVE	button,	we	expect	one	of	these	2	screens	to	appear:
*	If	the	SAVE	was	successfull,	the	INQUIRE	screen	appears.
*	If	the	SAVE	was	NOT	successfull,	the	update	employee	screen	will	reappear

*	Setting	the	Payload	we	determine	what	caused	the	screen	'updempskills'	to
arrive.
*
*	1.	In	the	Button	script	of	updempskills	for	the	Enter	key,	we	attach	a	payload
=	"UPDATE_EMPLOYEE":
*
*				case	KeyEnter:
*								SENDKEY(KeyEnter,	"UPDATE_EMPLOYEE");
*								break;
*	2.	In	the	ARRIVE	script	of	INQUIRE,	we	test	payload.	If	the	Payload	is
UPDATE_EMPLOYEE	this	is	telling	us	we	have	just	done	an	Update	and	we
are	most	likely	to	want	to	go	back	to	the	same	screen.
*
*				if	(TOSTRING(oPayload)	==	"UPDATE_EMPLOYEE")
*				{
*							NAVIGATE_TO_DESTINATION("updempskills");
*				}
*
Evtroutine	Handling(#myscreen_wrapper.vHandleArrive)
Arrivedscreen(#CurrentScreen)	Previousscreen(#PreviousScreen)
Arrivedpayload(#Payload)
	
Case	(#CurrentScreen)
	
When	Value_Is(=	'updempskills')
	
Set	Com(#SAVE_BUTTON)	Enabled(false)
	
*	Payloads	are	destroyed	when	the	ARRIVE	script	finishes	executing.
Therefore,	a	payload	of	UPDATE_EMPLOYEE	would	most	likely	mean	there
was	a	validation	error.	Otherwise	-	if	INQUIRE	had	arrived	-	the	Payload
would	have	been	destroyed.
If	(#Payload	=	UPDATE_EMPLOYEE)
	
Use	Builtin(message_box_show)	With_Args(ok	ok	info	"Validation	Error"
"Please	correct	any	errors")
	
Else
	

*	Unlock	the	framework
Set	Com(#avFrameworkManager)	Ulocked(false)
	
#myscreen_wrapper.getvalue	From('empno')	Value(#empno.value)
#myscreen_wrapper.getvalue	From('surname')	Value(#surname.value)
#myscreen_wrapper.getvalue	From('givename')	Value(#givename.value)
#myscreen_wrapper.getvalue	From('address1')	Value(#address1.value)
#myscreen_wrapper.getvalue	From('address2')	Value(#address2.value)
#myscreen_wrapper.getvalue	From('address3')	Value(#address3.value)
#myscreen_wrapper.getvalue	From('homephone')	Value(#phonehme.value)
#myscreen_wrapper.getvalue	From('postcode')	Value(#POSTCODE.value)
	
#com_owner.enabled	:=	true
	
Endif
	
Endcase
	
Endroutine
	
*	--
*	Handle	Save
*	--
	
Mthroutine	Name(Save)
	
*	Set	the	5250	field	values	to	the	values	from	this	panel
#myscreen_wrapper.setvalue	Infield('surname')	Value(#surname.value)
#myscreen_wrapper.setvalue	Infield('givename')	Value(#givename.value)
#myscreen_wrapper.setvalue	Infield('address1')	Value(#address1.value)
#myscreen_wrapper.setvalue	Infield('address2')	Value(#address2.value)
#myscreen_wrapper.setvalue	Infield('address3')	Value(#address3.value)
#myscreen_wrapper.setvalue	Infield('homephone')	Value(#phonehme.value)
#myscreen_wrapper.setvalue	Infield('postcode')	Value(#POSTCODE.value)
	
*	Send	the	Enter	key	with	the	payload
#myscreen_wrapper.sendkey	Key(#myscreen_wrapper.KeyEnter)
Payload(UPDATE_EMPLOYEE)
	

Endroutine
	
*	Listen	to	messages	from	RAMP	and	the	5250	application
	
Evtroutine	Handling(#myscreen_wrapper.RampMessage)
Umessagetype(#MsgType)	Umessagetext(#MsgText)
	
Case	(#msgtype.value)
	
When	Value_Is('=	VF_ERROR')
	
*	Fatal	messages	reported	by	Ramp	(e.g.	Navigation	request	failed,	etc).	If	in
design	mode,	show	the	underlying	5250	screen.	Otherwise,	make	the	error
message	appear	in	a	message	box	on	top	of	the	command
	
If	(#usystem.iDesignMode	=	true)
	
Set	Com(#myscreen_wrapper)	Visible(True)
	
Else
	
Message	Msgid(dcm9899)	Msgf(dc@m01)	Msgdta(#msgtext.value)
	
#com_owner.avshowmessages
	
Endif
	
*	Messages	sent	by	the	System	i	application	or	unknown	form	was
encountered
	
When	Value_Is('=	VF_INFO'	'=	VF_UNKNOWN_FORM')
	
Message	Msgid(dcm9899)	Msgf(dc@m01)	Msgdta(#msgtext.value)
	
*	Failure	to	initialize	RAMP.	Could	occur	for	mainly	one	of	two	reasons
	
When	Value_Is('=	VF_INIT_ERROR')
	
Message	Msgid(dcm9899)	Msgf(dc@m01)	Msgdta(#msgtext.value)

	
#com_owner.avshowmessages
	
Otherwise
	
Use	Builtin(message_box_show)	With_Args(ok	ok	info	*Component
('Unknown	message	type	'	+	#MsgType	+	'encountered'))
	
Endcase
	
Endroutine
	
*	--
*	Handle	changes	in	any	of	the	fields	on	the	panel
*	--
	
Evtroutine	Handling(#PanelFields<>.Changed)
	
*	Enable	the	save	button
Set	Com(#SAVE_BUTTON)	Enabled(True)
	
*	Lock	the	framework	and	set	a	message	for	the	user
Use	Builtin(bconcat)	With_Args('Changes	made	to	employee'	#GiveName
#Surname	'have	not	been	saved	yet.'	'Do	you	want	to	save	them	before
continuing?')	To_Get(#sysvar$av)
	
Set	Com(#avFrameworkManager)	Ulocked(USER)
Ulockedmessage(#sysvar$av)
	
Endroutine
	
*	--
*	Enter	key	pressed
*	--
	
Evtroutine	Handling(#PanelFields<>.KeyPress)
Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
Keycode(#KeyCode)
	

If	Cond('#KeyCode.Value	=	Enter')
	
*	If	there	no	changes	have	been	made	issue	message	and	ignore	enter
	
If	Cond('#SAVE_BUTTON.Enabled	*EQ	True')
	
Invoke	Method(#Com_Owner.Save)
	
Else
	
*	Issue	'There	are	no	changes	to	save'	message
	
Use	Builtin(Message_box_show)	With_Args(ok	ok	Info	*Component
*MTXTDF_NO_SAVE)
	
Endif
	
Endif
	
Endroutine
	
*	--
*	Handle	the	save	button
*	--
	
Evtroutine	Handling(#SAVE_BUTTON.Click)
	
#com_owner.Save
	
Endroutine
	
*	--
*	Handle	Termination
*	--
	
Mthroutine	Name(uTerminate)	Options(*REDEFINE)
	
*	Clean	up	the	colelction	of	fields	on	the	panel
Invoke	Method(#PanelFields.RemoveAll)

	
*	Do	any	termination	defined	in	the	ancestor
Invoke	Method(#Com_Ancestor.uTerminate)
	
Endroutine
	
End_Com
	
	

Example	2:	Show	Employee	Details	and	Skills
This	example	is	an	extension	of	the	previous	one.	It	shows	the	same	details	but
it	also	shows	the	skills	in	a	Visual	LANSA	list	view.

	
In	this	example	you	can	see	how	to	access	a	subfile/browselist:
	
Function	Options(*DIRECT)
	
Begin_Com	Role(*EXTENDS	#VF_AC010)	Height(569)
Layoutmanager(#MAIN_LAYOUT)	Width(776)
	
*
==
*	Simple	Field	and	Group	Definitions
*

==
	
Group_By	Name(#XG_HEAD)	Fields(#EMPNO	#SURNAME	#GIVENAME
#ADDRESS1	#ADDRESS2	#ADDRESS3	#POSTCODE	#PHONEHME
#DEPTMENT	#SECTION)
	
*	Body	and	Button	arrangement	panels
Define_Com	Class(#PRIM_PANL)	Name(#BUTTON_PANEL)
Displayposition(2)	Height(569)	Hint(*MTXTDF_DET1)
Layoutmanager(#BUTTON_FLOW)	Left(688)	Parent(#COM_OWNER)
Tabposition(3)	Tabstop(False)	Top(0)	Width(88)
	
Define_Com	Class(#PRIM_PANL)	Name(#BODY_HEAD)
Displayposition(1)	Height(569)	Hint(*MTXTDF_DET1)
Layoutmanager(#BODY_HEAD_FLOW)	Left(0)	Parent(#COM_OWNER)
Tabposition(2)	Tabstop(False)	Top(0)	Verticalscroll(True)	Width(688)
	
*	Attachment	and	flow	layout	managers
Define_Com	Class(#PRIM_ATLM)	Name(#MAIN_LAYOUT)
Define_Com	Class(#PRIM_FWLM)	Name(#BUTTON_FLOW)
Direction(TopToBottom)	Flowoperation(Center)	Marginbottom(4)
Marginleft(4)	Marginright(4)	Margintop(4)	Spacing(4)	Spacingitems(4)
	
Define_Com	Class(#PRIM_FWLM)	Name(#BODY_HEAD_FLOW)
Direction(TopToBottom)	Marginbottom(4)	Marginleft(4)	Marginright(4)
Margintop(4)	Spacing(4)	Spacingitems(4)
	
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_EMPNO)
Manage(#EMPNO)	Parent(#BODY_HEAD_FLOW)
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_SURNAME)
Manage(#SURNAME)	Parent(#BODY_HEAD_FLOW)
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_GIVENAME)
Manage(#GIVENAME)	Parent(#BODY_HEAD_FLOW)
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_ADDRESS1)
Manage(#ADDRESS1)	Parent(#BODY_HEAD_FLOW)
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_ADDRESS2)
Manage(#ADDRESS2)	Parent(#BODY_HEAD_FLOW)
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_ADDRESS3)
Manage(#ADDRESS3)	Parent(#BODY_HEAD_FLOW)

Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_POSTCODE)
Manage(#POSTCODE)	Parent(#BODY_HEAD_FLOW)
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_PHONEHME)
Manage(#PHONEHME)	Parent(#BODY_HEAD_FLOW)
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_SAVE_BUTTON)
Manage(#SAVE_BUTTON)	Parent(#BUTTON_FLOW)
	
*	The	save	button
	
Define_Com	Class(#PRIM_PHBN)	Name(#SAVE_BUTTON)
Caption(*MTXTDF_SAVE)	Displayposition(1)	Left(4)
Parent(#BUTTON_PANEL)	Tabposition(1)	Top(4)
	
*	Collection	for	detail	fields
	
Define_Com	Class(#Prim_ACol<#prim_evef>)	Name(#PanelFields)
	
*	Fields	in	the	head	area
	
Define_Com	Class(#EMPNO.Visual)	Displayposition(1)	Height(19)
Hint(*MTXTDF_DET1)	Left(4)	Parent(#BODY_HEAD)	Tabposition(1)
Top(4)	Usepicklist(False)	Width(209)
Define_Com	Class(#SURNAME.Visual)	Displayposition(2)	Height(19)
Hint(*MTXTDF_DET1)	Left(4)	Parent(#BODY_HEAD)	Tabposition(2)
Top(27)	Usepicklist(False)	Width(324)
Define_Com	Class(#GIVENAME.Visual)	Displayposition(3)	Height(19)
Hint(*MTXTDF_DET1)	Left(4)	Parent(#BODY_HEAD)	Tabposition(3)
Top(50)	Usepicklist(False)	Width(324)
Define_Com	Class(#ADDRESS1.Visual)	Displayposition(4)	Height(19)
Hint(*MTXTDF_DET1)	Left(4)	Parent(#BODY_HEAD)	Tabposition(4)
Top(73)	Usepicklist(False)	Width(363)
Define_Com	Class(#ADDRESS2.Visual)	Displayposition(5)	Height(19)
Hint(*MTXTDF_DET1)	Left(4)	Parent(#BODY_HEAD)	Tabposition(5)
Top(96)	Usepicklist(False)	Width(363)
Define_Com	Class(#ADDRESS3.Visual)	Displayposition(6)	Height(19)
Hint(*MTXTDF_DET1)	Left(4)	Parent(#BODY_HEAD)	Tabposition(6)
Top(119)	Usepicklist(False)	Width(363)
Define_Com	Class(#POSTCODE.Visual)	Displayposition(7)	Height(19)
Hint(*MTXTDF_DET1)	Left(4)	Parent(#BODY_HEAD)	Tabposition(7)

Top(142)	Usepicklist(False)	Width(216)
Define_Com	Class(#PHONEHME.Visual)	Displayposition(8)	Height(19)
Hint(*MTXTDF_DET1)	Left(4)	Parent(#BODY_HEAD)	Tabposition(8)
Top(165)	Usepicklist(False)	Width(286)
	
Define_Com	Class(#PRIM_ATLM)	Name(#ATLM_1)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_1)	Attachment(Center)
Parent(#ATLM_1)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_2)	Attachment(Center)
Manage(#BODY_HEAD)	Parent(#MAIN_LAYOUT)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_3)	Attachment(Right)
Manage(#BUTTON_PANEL)	Parent(#MAIN_LAYOUT)
	
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_4)	Attachment(Center)
Parent(#MAIN_LAYOUT)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_6)	Attachment(Center)
Parent(#MAIN_LAYOUT)
	
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_1)
Parent(#BODY_HEAD_FLOW)
	
Define_Com	Class(#PRIM_LTVW)	Name(#skills)	Componentversion(2)
Displayposition(9)	Fullrowselect(True)	Height(229)	Left(4)
Parent(#BODY_HEAD)	Showsortarrow(True)	Tabposition(9)	Top(188)
Width(485)
Define_Com	Class(#PRIM_LVCL)	Name(#LVCL_1)	Caption('Acquired')
Captiontype(Caption)	Displayposition(1)	Parent(#skills)
Source(#VF_ELTXTS)	Width(18)	Widthtype(Fixed)
Define_Com	Class(#PRIM_LVCL)	Name(#LVCL_2)	Displayposition(2)
Parent(#skills)	Source(#SKILCODE)	Width(17)
Define_Com	Class(#PRIM_LVCL)	Name(#LVCL_3)
Captiontype(ColumnHeadings)	Displayposition(3)	Parent(#skills)
Source(#SKILDESC)	Width(32)
Define_Com	Class(#PRIM_LVCL)	Name(#LVCL_4)
Captiontype(ColumnHeadings)	Displayposition(4)	Parent(#skills)
Source(#COMMENT)	Width(24)
Define_Com	Class(#PRIM_LVCL)	Name(#LVCL_5)	Displayposition(5)
Parent(#skills)	Source(#GRADE)	Width(8)	Widthtype(Characters)
	

Define_Com	Class(#vf_sy122)	Name(#myscreen_wrapper)
Displayposition(3)	Height(569)	Parent(#COM_OWNER)	Width(688)
	
*
===
*	To	better	understand	this	example	you	should	be	famililar	with	the	shipped
Personnel	System	demo.
*
*	We	expect	the	following	screens	to	appear	as	part	of	this	navigation:
*
*	Login	->	type	in	user	and	password	->	press	Enter	->	(a	special	screen?
<F3>)
*	i5	Main	Menu	->	type	lansa	run	process(pslsys)	partition(dem)	->	press
Enter
*	Personnel	System		->	type	option	3	->	press	Enter
*	Inquire	->	type	the	current	instance	employee	number	->	press	Enter
*	Browse	Employee	Details	and	Skills	in	OUTPUT	mode	->	press	F21
*	Browse	Employee	Details	and	Skills	in	INPUT	mode
*
===
*
*	Handle	Initialization
*	--
	
Mthroutine	Name(uInitialize)	Options(*REDEFINE)
	
Define_Com	Class(#Prim_evef)	Name(#FormField)	Reference(*dynamic)
	
Invoke	Method(#Com_Ancestor.uInitialize)
	
For	Each(#Control)	In(#Body_Head.ComponentControls)
	
If_Ref	Com(#Control)	Is(*INSTANCE_OF	#prim_evef)
	
Set_Ref	Com(#FormField)	To(*dynamic	#Control)
	
Invoke	Method(#PanelFields.Insert)	Item(#FormField)
	
Endif

	
Endfor
	
*	Set	the	uCommand	wrapper	property.
Set	Com(#myscreen_wrapper)	Ucommand(#com_owner)
	
Endroutine
	
*	--

*	Handle	Command	Execution
*
*	Always	invoke	makerampTSavailable	to	ensure	RAMP-TS	is	up	and
running	before	starting	a	navigation
*
*	You	may	also	disable	the	entire	form	to	prevent	any	input	while	RAMP	is
navigating
*	--

Mthroutine	Name(uExecute)	Options(*REDEFINE)
	
Invoke	Method(#Com_Ancestor.uExecute)
	
Invoke	Method(#myscreen_wrapper.MakeRampTSAvailable)
	
Set	Com(#Save_Button)	Enabled(False)
	
#com_owner.enabled	:=	false
	
Endroutine
	
*
==
*	Event	Handlers
*
==
*
*	RAMP	has	signalled	it's	ready.	Invoke	your	navigation	here.	Also,	clear	the

list	and	panel	fields.
*
*	Once	the	navigaton	starts,	processing	resumes	in	the	vHandleArrive	event
handler.
*
	
Evtroutine	Handling(#myscreen_wrapper.RampTSAvailable)
	
Clr_List	Named(#skills)
#XG_HEAD	:=	*null
Invoke	Method(#myscreen_wrapper.navigatetoscreen)	Name('updempskills')
	
Endroutine
	
*
*	The	Payload	is	a	256	character	string	sent	together	with	a	SENDKEY.	Use
the	Payload	in	the	same	way	you	would	use	parameters	in	an	event.
*	Assuming	when	'updempskills'	arrives	we	change	some	details	and	press
Enter	or	click	on	the	SAVE	button,	we	expect	one	of	these	2	screens	to	appear:
*	If	the	SAVE	was	successfull,	the	INQUIRE	screen	appears.
*	If	the	SAVE	was	NOT	successfull,	the	update	employee	screen	will	reappear
*	Setting	the	Payload	we	determine	what	caused	the	screen	'updempskills'	to
arrive.
*
*	1.	In	the	Button	script	of	updempskills	for	the	Enter	key,	we	attach	a	payload
=	"UPDATE_EMPLOYEE":
*
*				case	KeyEnter:
*								SENDKEY(KeyEnter,	"UPDATE_EMPLOYEE")
*								break
*	2.	In	the	ARRIVE	script	of	INQUIRE,	we	test	payload.	If	the	Payload	is
UPDATE_EMPLOYEE	this	is	telling	us	we	have	just	done	an	Update	and	we
are	most	likely	to	want	to	go	back	to	the	same	screen.
*
*				if	(TOSTRING(oPayload)	==	"UPDATE_EMPLOYEE")
*				{
*							NAVIGATE_TO_DESTINATION("updempskills")
*				}
*

	
Evtroutine	Handling(#myscreen_wrapper.vHandleArrive)
Arrivedscreen(#CurrentScreen)	Previousscreen(#PreviousScreen)
Arrivedpayload(#Payload)
	
Define_Com	Class(#prim_boln)	Name(#MoreRecords)
	
Case	(#CurrentScreen)
	
When	Value_Is(=	'updempskills')
	
Set	Com(#SAVE_BUTTON)	Enabled(false)
	
*	Payloads	are	destroyed	when	the	ARRIVE	script	finishes	executing.
Therefore,	a	payload	of	UPDATE_EMPLOYEE	would	most	likely	mean	there
was	a	validation	error.	Otherwise	-	if	INQUIRE	had	arrived	-	the	Payload
would	have	been	destroyed.
If	(#Payload	=	UPDATE_EMPLOYEE)
	
Use	Builtin(message_box_show)	With_Args(ok	ok	info	"Validation	Error"
"Please	correct	any	errors")
	
Else
*	Unlock	the	framework	-	no	harm	done	if	it	wasn't	locked
Set	Com(#avFrameworkManager)	Ulocked(false)
	
	
*	Get	the	current	instance	and	the	values	of	the	panel	fields
Invoke	Method(#avListManager.GetCurrentInstance)	Akey1(#deptment)
Akey2(#section)
	
*	If	there	are	no	entries	in	the	list	or	have	sent	a	PageDown	key,	get	the	subfile
page	currently	on	the	hidden	5250
If	((#skills.entries	*LE	0)	Or	(#Payload	=	NEXT_PAGE))
	
#MoreRecords	:=	#com_owner.uGetSubfilePage
	
*	There	are	more	records	in	teh	subfile,	send	a	pagedown.	Processing	will
continue	in	this	same	event	handler	once	the	same	screen	with	the	next	subfile

page	has	arrived
If	(#MoreRecords)
	
#myscreen_wrapper.sendkey	Key(#myscreen_wrapper.KeyPageDown)
Payload(NEXT_PAGE)
	
*	When	all	the	records	have	been	added	to	the	list	view	we	can	re	enable	the
panel
Else
#com_owner.enabled	:=	true
#myscreen_wrapper.getvalue	From('empno')	Value(#empno.value)
#myscreen_wrapper.getvalue	From('surname')	Value(#surname.value)
#myscreen_wrapper.getvalue	From('givename')	Value(#givename.value)
#myscreen_wrapper.getvalue	From('address1')	Value(#address1.value)
#myscreen_wrapper.getvalue	From('address2')	Value(#address2.value)
#myscreen_wrapper.getvalue	From('address3')	Value(#address3.value)
#myscreen_wrapper.getvalue	From('homephone')	Value(#phonehme.value)
#myscreen_wrapper.getvalue	From('postcode')	Value(#POSTCODE.value)
Endif
	
Else
*	We	can	assume	that	there	has	been	a	successfull	update	so	update	the
instance	list.
Invoke	Method(#avListManager.UpdateListEntryData)	Akey1(#Deptment)
Akey2(#Section)	Akey3(#Empno.value)	Visualid2(#surname	+	"	"	+
#givename)	Businessobjecttype(EMPLOYEE)
	
Endif
	
Endif
	
Endcase
Set	Com(#myscreen_wrapper)	Visible(False)
Endroutine
	
*	Traverse	the	skills	subfile/browselist
*	The	technique	used	here	consists	of	picking	one	field	we	know	it's	in	the
subfile,	in	this	case	"dateacq"	and	while	there	it	is	present	on	the	screen,	get
all	teh	fields.

*	Fields	in	RAMP-TS	subfiles	are	indexed	starting	from	1.	A	subfile	page
with	7	rows	will	have	7	instances	of	each	of	the	fields	in	the	subfile.	Here	we
increase	#listcount	and	use	it	to	get	the	value	of	a	field.
*	Note	that	you	can	specify	a	default	value	when	using	the	getvalue	method.
Mthroutine	Name(uGetSubfilePage)
	
Define_Map	For(*result)	Class(#prim_boln)	Name(#NextPage)
Define	Field(#MoreVal)	Type(*char)	Length(1)
	
#listcount	:=	1
#NextPage	:=	false
	
Dowhile	(#myscreen_wrapper.check_field_exists("dateacq"	#listcount))
	
#myscreen_wrapper.getvalue	From("dateacq")	Value(#vf_eltxts)
Defaultvalue(#ddmmyy)	Index(#listcount)
#myscreen_wrapper.getvalue	From("skillcode")	Value(#skilcode)
Index(#listcount)
#myscreen_wrapper.getvalue	From("skilldesc")	Value(#skildesc)
Index(#listcount)	Defaultvalue("Defalt	value")
#myscreen_wrapper.getvalue	From("comment")	Value(#comment)
Index(#listcount)
#myscreen_wrapper.getvalue	From("grade")	Value(#grade)	Index(#listcount)
	
*	You	can	put	some	tracing
#com_owner.avframeworkmanager.avRecordTrace	Component(#com_owner)
Event("Adding	entry	=	"	+	#vf_eltxts	+	",	"	+	#skilcode	+	",	"	+	#skildesc	+	",
"	+	#grade)
	
Add_Entry	To_List(#skills)
	
#listcount	+=	1
	
Endwhile
	
*	when	identifying	this	screen	we	set	the	name	of	the	"+"	sign	=
"moreindicator".	The	presence	of	that	field	in	the	last	row	of	the	subfile	tells
us	whether	there	is	another	page.	The	last	row	is	one	less	than	the	current
value	of	#listcount.

	
#listcount	-=	1
	
If	(#myscreen_wrapper.check_field_exists("moreindicator"	#listcount))
#myscreen_wrapper.getvalue	From("moreindicator")	Value(#MoreVal)
Index(#listcount)
#NextPage	:=	(#MoreVal.trim	*NE	"")
Endif
	
Endroutine
	
*	Listen	to	messages	from	RAMP	and	the	5250	application
	
Evtroutine	Handling(#myscreen_wrapper.RampMessage)
Umessagetype(#MsgType)	Umessagetext(#MsgText)
	
	
Case	(#msgtype.value)
	
When	Value_Is('=	VF_ERROR')
	
*	Fatal	messages	reported	by	Ramp	(e.g.	Navigation	request	failed,	etc).	If	in
design	mode,	show	the	underlying	5250	screen.	Otherwise,	make	the	error
message
	
*	appear	in	a	message	box	on	top	of	the	command
	
If	(#usystem.iDesignMode	=	true)
	
Set	Com(#myscreen_wrapper)	Visible(True)
	
Else
	
Message	Msgid(dcm9899)	Msgf(dc@m01)	Msgdta(#msgtext.value)
	
#com_owner.avshowmessages
	
Endif
	

*	Messages	sent	by	the	System	i	application	or	unknown	form	was
encountered
	
When	Value_Is('=	VF_INFO'	'=	VF_UNKNOWN_FORM')
	
Message	Msgid(dcm9899)	Msgf(dc@m01)	Msgdta(#msgtext.value)
	
*	Failure	to	initialize	RAMP.	Could	occur	for	mainly	one	of	two	reasons
	
When	Value_Is('=	VF_INIT_ERROR')
	
Message	Msgid(dcm9899)	Msgf(dc@m01)	Msgdta(#msgtext.value)
	
#com_owner.avshowmessages
	
Otherwise
	
Use	Builtin(message_box_show)	With_Args(ok	ok	info	*Component
('Unknown	message	type	'	+	#MsgType	+	'encountered'))
	
Endcase
	
Endroutine
	
*	--
*	Handle	changes	in	any	of	the	fields	on	the	panel
*	--
	
Evtroutine	Handling(#PanelFields<>.Changed)
	
*	Enable	the	save	button
Set	Com(#SAVE_BUTTON)	Enabled(True)
	
*	Lock	the	framework	and	set	a	message	for	the	user
Use	Builtin(bconcat)	With_Args('Changes	made	to	employee'	#GiveName
#Surname	'have	not	been	saved	yet.'	'Do	you	want	to	save	them	before
continuing?')	To_Get(#sysvar$av)
	
Set	Com(#avFrameworkManager)	Ulocked(USER)

Ulockedmessage(#sysvar$av)
	
Endroutine
	
*	--
*	Enter	key	pressed
*	--
	
Evtroutine	Handling(#PanelFields<>.KeyPress)
Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
Keycode(#KeyCode)
	
If	Cond('#KeyCode.Value	=	Enter')
	
*	If	there	no	changes	have	been	made	issue	message	and	ignore	enter
	
If	Cond('#SAVE_BUTTON.Enabled	*EQ	True')
	
Invoke	Method(#Com_Owner.Save)
	
Else
	
*	Issue	'There	are	no	changes	to	save'	message
Use	Builtin(Message_box_show)	With_Args(ok	ok	Info	*Component
*MTXTDF_NO_SAVE)
	
Endif
	
Endif
	
Endroutine
	
*	--
*	Handle	the	save	button
*	--
	
Evtroutine	Handling(#SAVE_BUTTON.Click)
	
*	Call	the	Save	method

	
Invoke	Method(#Com_Owner.Save)
	
Endroutine
	
*	--
*	Handle	Save
*	--
	
Mthroutine	Name(Save)
	
*	Set	the	5250	field	values	to	the	values	from	this	panel
#myscreen_wrapper.setvalue	Infield('surname')	Value(#surname.value)
#myscreen_wrapper.setvalue	Infield('givename')	Value(#givename.value)
#myscreen_wrapper.setvalue	Infield('address1')	Value(#address1.value)
#myscreen_wrapper.setvalue	Infield('address2')	Value(#address2.value)
#myscreen_wrapper.setvalue	Infield('address3')	Value(#address3.value)
#myscreen_wrapper.setvalue	Infield('homephone')	Value(#phonehme.value)
#myscreen_wrapper.setvalue	Infield('postcode')	Value(#POSTCODE.value)
	
*	Send	the	Enter	key	with	the	payload
#myscreen_wrapper.sendkey	Key(#myscreen_wrapper.KeyEnter)
Payload(UPDATE_EMPLOYEE)
	
Endroutine
	
*	--
*	Handle	Termination
*	--
	
Mthroutine	Name(uTerminate)	Options(*REDEFINE)
	
*	Clean	up	the	colelction	of	fields	on	the	panel
Invoke	Method(#PanelFields.RemoveAll)
	
*	Do	any	termination	defined	in	the	ancestor
Invoke	Method(#Com_Ancestor.uTerminate)
	
Endroutine

	
End_Com
	
	

Example	3:	Show	the	System	i	Disk	Usage
A	screen	wrapper	can	pick	values	out	of	hidden	5250	screen(s)	and	present	it	in
completely	different	ways.	This	example	shows	the	disk	usage	of	a	System	i
graphically:
	

	
To	access	the	work	with	disk	status	screen	type	wrkdsksts	in	the	command	line.
The	name	given	to	the	Work	with	Disk	Status	screen	in	this	example	is
"DiskStatus".
When	in	the	disk	status	screen,	read	the	%Use	column	of	the	subfile	and	feed
the	data	to	the	graph.
	

Function	Options(*DIRECT)
	
Begin_Com	Role(*EXTENDS	#VF_AC010)	Height(559)
Hint(*MTXTDF_DET1)	Layoutmanager(#ATLM_1)	Width(557)
	
Define_Com	Class(#PRIM_GRID)	Name(#DiskSts)	Displayposition(1)
Height(150)	Left(109)	Parent(#PANL_2)	Rowheight(19)	Tabposition(1)
Top(15)	Width(212)
Define_Com	Class(#PRIM_GDCL)	Name(#GDCL_1)	Caption('Disk	Unit')
Captiontype(Caption)	Displayposition(1)	Parent(#DiskSts)
Source(#VF_ELTYP)	Width(29)
Define_Com	Class(#PRIM_GDCL)	Name(#GDCL_2)	Caption('%	Use')
Captiontype(Caption)	Displayposition(2)	Parent(#DiskSts)	Readonly(False)
Source(#VF_ELTXTS)	Width(30)	Widthtype(Remainder)
	
Define_Com	Class(#PRIM_GRPH)	Name(#GRPH_1)	Displayposition(1)
Height(370)	Left(0)	Parent(#PANL_3)	Scatterstyle(SymbolAtPoints+Solid)
Surfacestyle(ConnectLinesInBlack)	Tabposition(1)	Top(0)	Width(557)
Xcaption('Disk	Units')	Ycaption('%	Use')
Define_Com	Class(#PRIM_GRCL)	Name(#GRCL_1)	Columnrole(Label)
Displayposition(1)	Parent(#GRPH_1)	Source(#VF_ELTYP)
Define_Com	Class(#PRIM_GRCL)	Name(#GRCL_2)
Columnsymbol(HollowUpTriangle)	Displayposition(2)	Parent(#GRPH_1)
Source(#VF_ELWIDP)
	
Define_Com	Class(#vf_sy122)	Name(#myscreen_wrapper)
Displayposition(3)	Height(513)	Left(144)	Parent(#PANL_1)	Top(24)
Visible(False)	Width(593)
	
Define_Com	Class(#PRIM_PANL)	Name(#PANL_1)	Displayposition(1)
Height(559)	Layoutmanager(#SPLM_1)	Left(0)	Parent(#COM_OWNER)
Tabposition(1)	Tabstop(False)	Top(0)	Width(557)
	
Define_Com	Class(#PRIM_ATLM)	Name(#ATLM_1)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_1)	Attachment(Center)
Manage(#PANL_1)	Parent(#ATLM_1)
	
Define_Com	Class(#PRIM_SPLM)	Name(#SPLM_1)
	

Define_Com	Class(#PRIM_PANL)	Name(#PANL_2)	Displayposition(1)
Height(181)	Layoutmanager(#FWLM_1)	Left(0)	Parent(#PANL_1)
Tabposition(2)	Tabstop(False)	Top(0)	Width(557)
Define_Com	Class(#PRIM_PANL)	Name(#PANL_3)	Displayposition(2)
Height(370)	Layoutmanager(#ATLM_2)	Left(0)	Parent(#PANL_1)
Tabposition(3)	Tabstop(False)	Top(189)	Width(557)
	
Define_Com	Class(#PRIM_SPLI)	Name(#SPLI_1)	Manage(#PANL_2)
Parent(#SPLM_1)	Weight(1)
Define_Com	Class(#PRIM_SPLI)	Name(#SPLI_2)	Manage(#PANL_3)
Parent(#SPLM_1)
Define_Com	Class(#PRIM_ATLM)	Name(#ATLM_2)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_2)	Attachment(Center)
Manage(#GRPH_1)	Parent(#ATLM_2)
Define_Com	Class(#PRIM_FWLM)	Name(#FWLM_1)
Direction(TopToBottom)	Flowoperation(Center)	Margintop(15)
Spacingitems(2)
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_3)	Manage(#DiskSts)
Parent(#FWLM_1)
	
Define_Com	Class(#PRIM_PHBN)	Name(#PHBN_1)	Caption('Refresh
Statistics')	Displayposition(2)	Left(331)	Parent(#PANL_2)	Tabposition(2)
Top(15)	Width(117)
	
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_6)	Manage(#PHBN_1)
Parent(#FWLM_1)
	
*
===
*	This	example	shows	a	graph	with	the	percentage	of	activity	of	each	of	the
System	i	disk	units
*
===
Mthroutine	Name(uInitialize)	Options(*REDEFINE)
	
*	Do	any	initialization	defined	in	the	ancestor
	
Invoke	Method(#Com_Ancestor.uInitialize)
	

Set	Com(#grph_1)	Graphtype(Bar)
	
Set	Com(#myscreen_wrapper)	Ucommand(#com_owner)
	
Endroutine
	
Mthroutine	Name(uExecute)	Options(*REDEFINE)
	
*	Do	any	execution	logic	defined	in	the	ancestor
	
Invoke	Method(#Com_Ancestor.uExecute)
Invoke	Method(#myscreen_wrapper.MakeRampTSAvailable)
	
Endroutine
	
Evtroutine	Handling(#myscreen_wrapper.RampTSAvailable)
	
*	Clear	the	lists
Clr_List	Named(#DiskSts)
Clr_List	Named(#grph_1)
	
*	Run	teh	scripts	to	navigate	to	work	with	disk	status
*	The	navigation	only	involves	3	screens:	Login	->	System	i	main	menu,	type
wrkdsts	in	teh	command	line	->	Destination	Work	with	disk	status.
	
Invoke	Method(#myscreen_wrapper.navigatetoscreen)	Name(wrkdsksts)
	
Endroutine
	
Evtroutine	Handling(#myscreen_wrapper.vHandleArrive)
Arrivedscreen(#CurrentScreen)	Previousscreen(#PreviousScreen)
Arrivedpayload(#Payload)
	
Define_Com	Class(#prim_boln)	Name(#MoreRecords)
	
Case	(#CurrentScreen)
	
When	Value_Is(=	wrkdsksts)
	

*	Payloads	are	destroyed	when	the	ARRIVE	script	finishes	executing.
*	The	payload	is	set	to	FIRST_ARRIVAL	when	teh	enter	key	is	sent	in
System	i	main	menu	to	differentiate	what	caused	the	screen	to	arrive:
*				SETVALUE("cmdline","wrkdsksts")
*				SENDKEY(KeyEnter,	"FIRST_ARRIVAL");
*	The	same	screen	can	arrive	after	sending	the	F10	or	an	F5,	so	we	set
payload	to	indicate	so
If	(#Payload	=	RESTART_STATS)
	
#myscreen_wrapper.sendkey	Key(#myscreen_wrapper.KeyF5)
Payload(REFRESH_STATS)
	
Else
	
If	(#Payload	=	FIRST_ARRIVAL)
	
#myscreen_wrapper.sendkey	Key(#myscreen_wrapper.KeyF10)
Payload(RESTART_STATS)
	
Else
	
#com_owner.uGetSubfilePage
	
Endif
	
Endif
	
Endcase
Set	Com(#myscreen_wrapper)	Visible(False)
Endroutine
	
	
	
*	When	RAMP-TS	encounters	screens	like	WRKDSKSTS	or	WRKACTJOB,
it	does	not	recognise	the	lists	on	them	as	subfiles	(because	they	are	not
actually	subfiles).
*	Instead	they	are	recognised	as	multiple	fields.
*	However,	your	scripts	can	still	process	them	similarly	to	lists,	as	long	as	you
follow	a	naming	standard	when	naming	the	fields.

*	In	our	WRKDSKSTS	screen	we	identified	the	first	column	as	UNITn	and
the	fourth	column	as	USEDn
	
Mthroutine	Name(uGetSubfilePage)
	
#listcount	:=	1
	
Dowhile	(#myscreen_wrapper.check_field_exists(("USED"	+
#listcount.asstring)))
	
#myscreen_wrapper.getvalue	From("UNIT"	+	#listcount.asstring)
Value(#vf_eltyp)
#myscreen_wrapper.getvalue	From("USED"	+	#listcount.asstring)
Value(#vf_eltxts)
#VF_ELWIDP	:=	#vf_eltxts.trim.asnumber
	
Add_Entry	To_List(#DiskSts)
Add_Entry	To_List(#grph_1)
	
#listcount	+=	1
	
Endwhile
	
Endroutine
	
	
Mthroutine	Name(uTerminate)	Options(*REDEFINE)
	
*	Do	any	termination	defined	in	the	ancestor
	
Invoke	Method(#Com_Ancestor.uTerminate)
	
	
Endroutine
	
	
*	Refresh	statistics
Evtroutine	Handling(#PHBN_1.Click)
	

Invoke	Method(#myscreen_wrapper.MakeRampAvailable)
Foraction(RampTSAvailable)
	
Endroutine
	
End_Com
	
	

Programming	Techniques
This	section	shows	programming	techniques	to	help	you	overcome	common
application	design	issues	and	to	easily	integrate	advanced	functionality	in	your
RAMP	applications.
Using	Function	Key	Descriptions	to	Condition	RAMP	Buttons
Handling	a	Single	Screen	which	Shows	Multiple	Modes
A	Command	Handler	Tab	with	Many	5250	Destinations
Advanced	Prompting
A	RAMP	Design	Approach	–	Using	a	Single	Junction	Point	(SJP)
Using	HIDE_CURRENT_FORM	to	manage	access	to	command	handler	tabs
	

Using	Function	Key	Descriptions	to	Condition	RAMP	Buttons
This	example	shows	how	to	match	function	key	descriptions	on	5250	screens:

With	RAMP	buttons	and	function	keys
This	example	uses	JavaScript	function
SHARED.apply5250FunctionKeyPatterns	which	is	designed	to	look	for
Fn=xxxxxx	patterns	on	specified	screen	lines	and	then	use	these	patterns	to
condition	the	RAMP-TS	buttons	and	function	keys	to	match.
Note	that	the	matching	does	not	include	the	text	portion	of	the	pattern.	Normally
in	RAMP-TS	the	button	captions	are	defined	independently	of	the	5250	screen
in	RAMP-Tools.				
To	try	out	this	example,	copy	and	paste	the	functions	in
SHARED.apply5250FunctionKeyPatterns	into	your	SHARED	script	object,	
file	UF_SY420_RTS.JS.	The	logic	in	the	functions	is:
All	RAMP-TS	function	keys	and	buttons	are	initially	disabled.
The	specified	lines	on	the	5250	screen	are	searched	for	Fn=XXXXX	patterns.
The	associated	function	keys	and	buttons	are	enabled	by	calling	the	standard
SETKEYENABLED	function.	
If	you	have	forced	certain	function	keys	to	be	always	enabled		this	is	then	done
via	SETKEYENABLED.
If	you	have	forced	certain	function	keys	to	be	always	disabled	this	is	then	done
via	SETKEYENABLED.
	

Invoking	the	Function
Invoke	the	function	from	your	destination	screens	arrival	script	-	like	this
example:
			vHandle_ARRIVE:	function(oPayload,	oPreviousForm)
			{
					var	bReturn	=	true;
					SHARED.apply5250FunctionKeyPatterns(22,23);	/*	Must	be	before
SHOW_CURRENT_FORM()	*/
					SHOW_CURRENT_FORM(true);	/*	Show	the	form	in	the	framework	and
show	VLF	buttons	*/

					HIDE_5250_BUTTONS();					/*	Hide	any	5250	style	buttons
displayed															*/
					GET_FORM_MESSAGE(22);				/*	Extract	messages	and	hide	the	message
line										*/
					SETBUSY(false);										/*	Last	thing	done	-	turn	off	the	busy	state											*/

This	says	to	check	on	lines	22	and	23	of	this	arriving	screen	for	Fn=xxxx	text
patterns	and	attempt	to	match	the	RAMP-TS	buttons	and	function	keys	with
them.	Remember	they	are	just	text	patterns	and	programmatically	have	nothing
precisely	to	do	with	what	function	keys	are	actually	enabled	by	the	5250
screen.		The	text	patterns	are	put	on	the	5250	screens	for	humans	to	read	-	not
computer	programs.	
			

Parameters
The	function	has	these	parameters:

Start	Line
Number

Mandatory.	Integer.	The	first	line	to	be	searched	for
Fn=xxxx	patterns.

End	Line
Number

Optional.	Integer.	The	last	line	to	be	searched	for	Fn=xxxxx
patterns.	The	default	value	is	the	same	value	as	the	start	line
number.

Keys/Buttons	to
always	be
enabled	

Optional.	Array	of	function	key	identifiers.	For	example
[KeyEnter,KeyF11]

Keys	/Buttons	to
always	be
disabled.

Optional.	Array	of	function	key	identifiers.	For	example	[
KeyF12,	KeyF3]

	

	
For	example:
	
					SHARED.apply5250FunctionKeyPatterns(22,	23,	[KeyEnter,KeyF1],
[KeyF12]);
	

says	to	check	screen	lines	22	to	23,	always	enable	Enter	and	F1,	and	always
disable	F12.
If	you	wanted	to	unconditionally	enable	the	page	up	and	down	keys,	which	will
not	have	matching	text	patterns	to	enable	them	you	would	do	this:
	
				SHARED.apply5250FunctionKeyPatterns(22,	23,	[KeyPageUp,
KeyPageDown]);
	

You	could	also	do	this	permanently	in	the	SHARED	function.
Also	see	Questions	about	the	Function.

Questions	about	the	Function
What	should	you	do	if	SHARED.apply5250FunctionKeyPatterns
does	not	work	as	expected?
Always	try	executing	the	screen	with	application	level	tracing	turned	on	and
examine	the	results.
Also	check	that	extra	buttons	that	always	appear	when	executing	in	design
mode	(eg:	Probe	Screen)		are	not	clouding	the	issue.	The	real	test	is	to	execute
the	logic	in	UF_EXEC	(end-user)	mode.
The	destination	screen’s	caption	for	the	button	may	be	clouding	the	issue.	The
text	pattern	on	the	5250	screen	might	say	F7=Hop,	but	the	screen’s	definition	in
RAMP	tools	might	say	that	the	F7	key	is	to	have	a	button	that	is	captioned
“Skip”.		

Can	you	change	the	SHARED.apply5250FunctionKeyPatterns
logic?
Yes.	This	code	is	provided	as	an	example	for	you	to	use	in	your	SHARED
object.
It	is	your	code	to	change	and	maintain	as	you	see	fit.
For	example,	you	might	decide	that	you	want	to	enable	all	the	function	keys
initially.	This	is	a	possible	solution	when	you	have	F24=More	Keys	style
screens,		because	it	is	impossible	to	work	out	which	function	keys	are		actually
enabled	from	the	current	screen	only.	To	do	this	you	would	change	this	line:
	
for	(var	i	=	0;	i	<	oForm.vFKERTS.length;	i++)	{	if
(oForm.vFKERTS.charAt(i)	!=	"0")	oForm.vFKERTS	=
InsertString(oForm.vFKERTS,"0",i);	}
		

	
To	this:
	
for	(var	i	=	0;	i	<	oForm.vFKERTS.length;	i++)	{	if
(oForm.vFKERTS.charAt(i)	!=	"1")	oForm.vFKERTS	=
InsertString(oForm.vFKERTS,"1",i);	}
	

	

You	might	decide	that	you	always	want	to	enable	Enter	and	F1	without	the
caller	always	having	to	specify	this	-	so	you	could	add	this	to	the	end	of
SHARED.apply5250FunctionKeyPatterns:	
SETKEYENABLED(GLOBAL_oCurrentTSform.symbolicName,KeyEnter,true,true);
SETKEYENABLED(GLOBAL_oCurrentTSform.symbolicName,KeyF1,true,true);

	
You	might	also	decide	to	hook	up	the	xxxxx	text	portion	of	Fn=xxxxx	strings
with	the	button	caption	in	some	way.	This	is	also	possible	by	using	the	second
key	match	element	fkeyMatch[2]	and	the	standard	RAMP-TS
OVERRIDE_KEY_CAPTION_SCREEN	function.
You	can	probably	now	see	that	we	could	not	possibly	cover	of	all	the	options
and	combinations	automatically	and	efficiently	by	having	specialized	RAMP-
Tools	options.	There	would	be	so	many	check	boxes	and	options	that	no	one
would	understand	what	they	meant	or	did.	Using	a	generic	scripted	approach
like	this	is	simpler	and	it	allows	you	to	to	tailor	the	approach	to	your	exact
needs.		

What	if	you	want	to	put
SHARED.apply5250FunctionKeyPatterns	into	every	arrival
script?
You	will	have	to	add	it	to	existing	scripts	individually	-	unless	you	are	already
calling	something	in	the	SHARED	object	that	you	can	hook	into.
You	can	also	change	your	arrival	script	skeleton	so	that
SHARED.apply5250FunctionKeyPatterns	is	automatically	generated	into	all
new	scripts.	Search	for	“Script	Skeletons”	in	the	RAMP-TS	guide
(lansa050.chm).
	

SHARED.apply5250FunctionKeyPatterns
This	example	JavaScript	function	is	designed	to	look	for	Fn=xxxxxx	patterns	on
specified	screen	lines.	Copy	and	paste	the	attached	functions	into	your
SHARED	script	object,	file	UF_SY420_RTS.JS.
		
				//	Apply	Fn=xxxxxx	function	key	patterns	to	buttons	and	function	keys
enabled	on	the	current	RAMP-TS	screen	
	
				apply5250FunctionKeyPatterns	:
function(iLowRow,iHighRow,aForceEnable,aForceDisable)
				{
							if	(GLOBAL_oAXESInterface	==	null)	return;	//	No	AXES	interface
							if	(GLOBAL_oCurrentTSform	==	null)	return;	//	No	current	AXES	form
							if	(oGLOBAL_CurrentFORM	==	null)			return;	//	No	RAMP-TS
definition	for	the	form		
						
							TRACE("SHARED.applyFunctionKeyPatterns	started");
																				
							if	(iHighRow	==	null)	iHighRow	=	iLowRow;							//	default	is	same	as
low	row
													
							var	allkeys				=	"";
							var	typeOUTPUT	=
GLOBAL_oAXESInterface.Element.TYPE_OUTPUT;
							var	oForm						=	oGLOBAL_CurrentFORM;
								
							//	Disable	all	function	keys	and	buttons	to	start	with.
							//	Note	that	the	function	keys	(oForm.vFKERTS)	and	the	buttons
(oForm.vFKEVLF)	are	BOTH	disabled	here
						
							TRACE("SHARED.applyFunctionKeyPatterns	is	disabling	all	function
keys	and	all	buttons");
							for	(var	i	=	0;	i	<	oForm.vFKEVLF.length;	i++)	{	if
(oForm.vFKEVLF.charAt(i)	!=	"0")	oForm.vFKEVLF	=
InsertString(oForm.vFKEVLF,"0",i);	}
							for	(var	i	=	0;	i	<	oForm.vFKERTS.length;	i++)	{	if
(oForm.vFKERTS.charAt(i)	!=	"0")	oForm.vFKERTS	=

InsertString(oForm.vFKERTS,"0",i);	}
																																																					
							//	Strip	all	output	fields	on	the	specified	lines	to	create	a	long	string	of
function	keys	strings
															
							for	(var	iRow	=	iLowRow;	iRow	<=	iHighRow;	iRow++)
							{
										var	aAElement	=
GLOBAL_oCurrentTSform.getElementsByRow(iRow);
										for	(var	i	=	0;	i	<	aAElement.length;	i++)
										{
													var	oAXESElement	=	aAElement[i];
													if	(oAXESElement.type	==	typeOUTPUT)	{	allkeys	+=	"	"	+
oAXESElement.getValue();	}				
										}
							}
	
							//	This	RegExp	looks	for	strings	of	the	form	F1=XXXX	(where	"F"	can
be	F,	PF,	FP,	CF
							//	or	Cmd)	XXXX	can	be	a	string	of	any	length	terminating	at	more	than
one	space,
							//	the	end	of	the	line	or	another	instance	of	"F1="	(thats	the	?=	look	ahead
group).
							//	All	groups	are	forgotten	(that's	the	?:)	except	the	function	number	and
the	XXXX	text.
	
							var	reFKey	=	/\b(?:F|PF|FP|CF|Cmd)(\d+)[=-](.*?)(?=
(?:\b(?:F|PF|FP|CF|Cmd)\d+[=-])|\s{2,}|$)/gi;
	
							var	fkeyMatch	=	reFKey.exec(allkeys);
							while	(fkeyMatch	!=	null)
							{
										var	key	=	"F"	+	TRIM_RIGHT(fkeyMatch[1]);
										//	Note	that	the	function	key	and	the	button	are	both	being	enabled	here
									
SETKEYENABLED(GLOBAL_oCurrentTSform.symbolicName,key,true,true);	
										fkeyMatch	=	reFKey.exec(allkeys);
							}
																									

							//	Enable	any	forced	buttons.	Note	that	the	function	key	and	the	button	are
BOTH	enabled
													
							if	(aForceEnable	!=	null)
							{
										TRACE("SHARED.applyFunctionKeyPatterns	is	forcing	the
enablement	of	specified	keys/buttons");
										for	(var	i	=	0;	i	<	aForceEnable.length;	i++)	{
SETKEYENABLED(GLOBAL_oCurrentTSform.symbolicName,aForceEnable[i],true,true);
}
							}					
													
							//	Disable	any	forced	buttons.	Note	that	the	function	key	and	the	button
are	BOTH	disabled
													
							if	(aForceDisable	!=	null)
							{
										TRACE("SHARED.applyFunctionKeyPatterns	is	forcing	the
disablement	of	specified	keys/buttons");
										for	(var	i	=	0;	i	<	aForceDisable.length;	i++)	{
SETKEYENABLED(GLOBAL_oCurrentTSform.symbolicName,aForceDisable[i],false,false);
}
							}					
	
							//	Finished		
	
							TRACE("SHARED.applyFunctionKeyPatterns	ended");
																																						
				},	//	<---	Note	the	comma					

	

Handling	a	Single	Screen	which	Shows	Multiple	Modes
In	System	i	applications	it	is	possible	that	a	single	screen	handles	multiple
modes.
For	example,	an	application	can	have	a	single	screen	which	allows	ADD,
CHANGE,	DISPLAY	and	DELETE.	
See	tutorial	RAMP-TS008:	Changing	Inquiry	Screen	to	Update	Mode	for	an
example	of	how	to	handle	this.
	
	

	

A	Command	Handler	Tab	with	Many	5250	Destinations
You	can	associate	many	5250	destination	screens	with	a	single	command
handler	tab.	There	are	many	uses	for	this	capability	and	it	may	be	used	to
overcome	some	common	application	design	issues.
For	example,	imagine	that	you	have	five	different	5250	destination	forms	that
each	request	report	production	criteria	and	then	submit	the	report	to	batch.	Let's
call	these	five	different	5250	screens	uReport1,	uReport2	….	uReport5.
In	prototyping	this	application	you	might	approach	handling	these	five	different
reports	in	a	number	of	ways:					

Too	Many	Business	Objects
Each	report	is	defined	as	a	unique	business	object	named	"Report	1"	through
"Report	5".	In	this	case	the	application	navigation	tree	might	be	structured	like
this	…

When	the	user	clicks	on	one	of	the	reports	the	entire	right	hand	side	of	the	form
would	display	the	reports	associated	5250	form.

Too	Many	Command	Tabs
You	define	a	single	business	object	called	"Reports"	which	has	five	associated
commands	or	actions	called	Report	1		….	Report	5.	In	this	case	the	application
navigation	and	command	handler	tabs	might	be	structured	like	this	…

When	the	user	clicks	on	a	report	tab	the	associated	5250	form	would	appear	on
the	tab.	One	of	the	tabs	would	probably	be	a	default.
There	are	a	number	of	issues	with	these	approaches:
The	first	approach	consumes	too	many	business	objects
The	second	approach	consumes	too	many	commands	(or	actions)
What	do	you	do	if	there	are	50	or	500	different	types	of	reports?

Solution:	Dynamic	Command	Tab

The	answer	may	be	to	use	a	single	business	object	named,	for	example	Reports
with	a	single	dynamic	command	handler	tab	named	Submit	Report	Request.		
For	example,	here	is	the	Reports	business	object	set	up	to	show	two	tabs.	The
first	is	"Submit	Report	Request"	and	the	second	is	"View	Spool	Files"	which
might	be	used	to	display	the	output	of	report	batch	jobs	in	a	variety	of	different
ways.	

In	this	example	we	are	only	interested	in	the	"Submit	Report	Request"
command	handler	tab	because	we	need,	at	execution	time,	to	dynamically	vary
which	5250	destination	screen	actually	appears	on	it.
So	how	can	you	vary	which	5250	screen	appears	on	this	single	tab?	There	are
two	main	ways	this	is	done:
A	User	Controlled	Command	Tab	with	Many	Destinations
A	Program	Controlled	Command	Tab	with	Many	Destinations
	

Limitations	
Using	the	Framework	SWITCH	facility	to	switch	to	a	command	handler	with
many	5250	destinations	is	not	supported.
Any	command	handler	using	this	option	must	be	in	the	main	Framework
window,	not	in	a	separate	pop-up	window.
	

A	User	Controlled	Command	Tab	with	Many	Destinations
You	can	associate	several	destination	screens	with	a	command	handler,	in	which
case	the	Framework	automatically	shows	a	window	to	allow	the	end-user	decide
which	screen	to	use:
Create	the	Reports	business	object
Make	sure	the	Reports	business	object	does	not	have	any	filters	and	is	set	up	so
that	it	uses	up	the	entire	viewing	area	on	the	right	hand	side	of	the	main	form.			
Give	Reports	a	single	business	object	level	command	handler	named	"Submit
Report	Request".	Make	it	the	default	command.		
Define	the	five	5250	destination	forms	in	the	normal	manner.	
Associate	all	five	5250	destination	forms	with	the	Submit	Report	Request
command	handler	tab.	As	you	do	this	the	RAMP	tool	will	notify	that	you	are
associating	multiple	destinations	with	a	single	command	handler	tab.				
Execute	the	application.
Whenever	the	Submit	Report	Request	command	tab	needs	to	be	displayed	it
detects	that	it	has	multiple	5250	destinations	and	asks	the	user	to	choose	which
one	they	would	like	to	use:

		

A	Program	Controlled	Command	Tab	with	Many	Destinations
You	can	create	a	program	that	controls	which	screen	is	displayed	on	the
command	tab.	This	is	slightly	harder	to	set	up	but	is	more	easily	expanded.
Create	the	Reports	business	object
Give	Reports	a	single	instance	level	command	handler	named	"Submit	Report
Request".	Make	this	the	default	command.
In	the	business	object	Reports	create	an	invisible	filter	that	fills	the	instance	list
with	the	five	report	names.	Make	sure	to	include	AKeyN	and/or	NKeyN	values
that	identify	the	associated	report.	For	example:

BEGIN_COM	ROLE(*EXTENDS	#VF_AC007)	HEIGHT(182)	WIDTH(326)

Mthroutine	uInitialize	Options(*Redefine)

#Com_Owner.avHiddenFilter	:=	TRUE

#avListManager.ClearList

Invoke	#avListManager.AddtoList	Visualid1('Report	1')	Visualid2('Daily
production	report')	AKey1('uReport1')	NKey1(1)
Invoke	#avListManager.AddtoList	Visualid1('Report	2')	Visualid2('Monthly
production	report')	AKey1('uReport2')	NKey1(2)
Invoke	#avListManager.AddtoList	Visualid1('Report	3')
Visualid2('Overloaded	production	report')	AKey1('uReport3')	NKey1(3)
Invoke	#avListManager.AddtoList	Visualid1('Report	4')	Visualid2('Monday
Morning	Management	Report')	AKey1('uReport4')	NKey1(4)
Invoke	#avListManager.AddtoList	Visualid1('Report	5')	Visualid2('Daily
production	report')	AKey1('uReport5')	NKey1(5)

*	Instance	list	updating	has	been	completed

INVOKE	METHOD(#avListManager.EndListUpdate)

Endroutine

End_Com					

The	instance	list	and	command	handler	tabs	are	presented	to	the	user	like	this:

When	the	user	clicks	on	a	report	in	the	instance	list	the	associated	5250
destination	screen	is	displayed	on	the	tab
Define	the	five	5250	destination	forms	in	the	normal	manner.	
Associate	just	the	first	5250	destination	forms	(eg:	uReport1)	with	the	"Submit
Report	Request"	command	handler	tab.
Say	the	numeric	instance	list	key	value	NKey1	contained	the	requested	report
number	…..	then	you	could	change	the	script	that	navigates	to	uReport1	to	be
like	this:

/*	See	is	the	report	number	in	the	instance	list	is	for	some	other	report	*/

/*	If	it	is	then	"reroute"	this	request	to	correct	5250	destination	form		*/

switch	(objListManager.NKey1[0])

{

		case	2:	NAVIGATE_TO_SCREEN("uReport2");	return;
		case	3:	NAVIGATE_TO_SCREEN("uReport3");	return;
		case	4:	NAVIGATE_TO_SCREEN("uReport4");	return;
		case	5:	NAVIGATE_TO_SCREEN("uReport5");	return;

}

/*	Normal	navigation	logic	to	handle	report	number	1	*/

NAVIGATE_TO_JUNCTION("whatever");

Etc,	etc	……………………

If	the	alphanumeric	instance	list	key	value	AKey1	contained	the	requested	5250
destination	screen's	name	…..	then	you	could	change	the	script	like	this:

/*	See	is	the	5250	screen	name	is	this	screen's	name																					*/

/*	If	it	is	then	"reroute"	this	request	to	correct	5250	destination	form	*/

if	(objListManager.AKey1[0]	!=	"uReport1")

{

			NAVIGATE_TO_SCREEN(objListManager.AKey1[0]);

			return;

}

/*	Normal	navigation	logic	to	handle	this	screen	*/

NAVIGATE_TO_JUNCTION("whatever");

Etc,	etc	……………………

	
	

Using	this	Approach	in	other	Situations
This	is	example	shows	how	to	dynamically	choose	to	present	five	different	5250
reporting	screens	onto	a	single	command	handler	tab.
The	choice	may	be	made	by	the	user	or	logic	you	write	into	a	script.
You	should	now	understand:
That	if	there	were	three	different	types	of	"Orders"	in	an	"ERP"	application
(International,	National	and	Local,	say)	that	you	cold	use	this	approach	to	cause
three	different	5250	destination	screens	to	be	displayed	on	a	single	command
handler	tab	named	"Details".
That	the	instance	list	can	be	used	to	dynamically	create	a	"menu"	of	5250
destination	forms.
That	not	all	5250	destination	screens	need	to	be	formally	attached	to	a	command
handler	tab.	They	can	be	dynamically	attached	(ie:	displayed)	on	tabs	by	logic
imbedded	in	a	navigation	script	by	using	the	NAVIGATE_TO_SCREEN()
function.								

Advanced	Prompting
You	can	easily	provide	advanced	prompting	in	your	5250	RAMP	screens	by
associating	simple	Visual	LANSA	forms	with	fields.
For	example	you	could	create	a	Visual	LANSA	form	to	show	different	item
sizes	as	a	set	of	radio	buttons	and	then	associate	this	form	with	an	Item	Size
field	in	the	RAMP	screen	to	return	its	value:

The	prompter	forms	give	you	access	to	all	the	advanced	Visual	LANSA	features
such	as	radio	buttons,	sortable	tree	and	list	views,	etc.
Unlike	System	i	prompting,	Visual	LANSA	prompter	forms	do	not	necessarily
cause	any	interaction	with	the	System	i	server	which	makes	them	fast.	
Moreover,	advanced	prompting	can	be	used	to	provide	functionality	that	is	not
possible	on	a	5250	device.	For	example,	a	phone	number	prompter	could
display	a	phone	number	search	web	site	and	when	the	user	chooses	a	phone
number,	place	it's	value	back	into	the	5250	screen.

Other	Uses	for	Prompter	Forms
Prompter	forms	can	also	be	used	in	various	ways	for	sophisticated	Windows
desktop	integration.	For	example	they	might:
Prepare	and	send	an	overdue	payment	e-mail.
Submit	a	credit	reference	check	via	an	internet	site	or	a	web	service.
Extract	information	from	the	System	i	server,	create	a	MS-Excel	spread	sheet,
then	start	MS-Excel	to	display	the	spreadsheet	information.
Display	a	linked	or	associated	web	page.
Display	a	linked	or	associated	PDF	document.
Do	any	other	form	of	advanced	Windows	desktop	integration	that	you	can	dream
up.
The	advanced	prompter	forms	are	designed	as	an	easy	way	integrate
sophisticated	functionality	to	subsets	of	information	on	the	5250	screen.		Of

course	entire	new	RAMP	screens	can	be	added	to	a	RAMP	application	any	time
to	handle	all	desktop	integration	requirements.

Using	Prompter	Forms
Creating	Prompter	Forms
Create	prompter	forms	as	normal	VL	forms.
Their	Ancestor	property	must	be	se	to	VF_AC017	so	as	to	inherit	standard
behavior.	

Associating	Prompter	Forms	with	Fields
To	associate	prompter	forms	with	fields,	open	the	RAMP	window	and	click	on
the	session	object	in	the	navigation	tree.		The	Session	properties	are	displayed:

	
The	Special	Field	Handling	area	is	used	to	define	the	forms	to	be	associated
with	fields.
The	two	entries	in	the	example	indicate	that:
If	an	input	field	named	txtSTATE	is	on	any	5250	destination	form,	and	it	is
where	the	cursor/focus	is,	and	the	user	presses	function	key	F4	(or	the
equivalent	button)	then	the	VL	form	named	P_STATE	is	to	be	invoked	to	handle
the	request.
If	an	input	field	named	txtPHONE	is	on	any	5250	destination	form,	and	it	is
where	the	cursor/focus	is,	and	the	user	presses	function	key	F5	(or	the
equivalent	button)	then	the	VL	form	named	P_PHONE	is	to	be	invoked	to
handle	the	request.

How	do	Advanced	Prompter	Forms	Work?
Whenever	the	user	performs	the	actions	required	to	invoke	one	of	the	VL	forms

the	following	happens:
The	HANDLE_PROMPT	Function	in	the	script	is	invoked	to	show	the	prompter
form	associated	with	the		field.	Optionally	additional	information	can	be	passed
to	the	form	using	this	function.
If	the	form	has	not	been	used	already	in	the	session	it's	uInitialize	method	is
invoked.	This	allows	it	to	do	first	time	processing.
The	values	of	all	the	named	fields	on	the	current	5250	destination	form	are
extracted	and	made	available	to	the	VL	form.
The	VL	form's	uShow	method	is	then	invoked	so	that	it	can	prepare	and	position
anything	that	it	wants	to	show	to	the	user.			
When	the	user	makes	a	selection,	the	VL	form	can	alter	the	value	of	any	named
field	on	the	current	5250	destination	form.			

Are	any	Examples	Provided	to	Learn	More	about	this	Topic?
Yes,	you	should	be	able	to	find	the	following	Visual	LANSA	forms	in	your
repository:

Combo	Box
DF_PRM01	prompts	using	a	combo	box	of	US	states	like	this:

	

	Radio	Buttons
DF_PRM02	prompts	using	a	set	of	product	size	radio	buttons:

	

List	with	Columns
DF_PRM03	generically	prompts	for	employees	by	name:

	

Tree
DF_PRM04	prompts	department	and	section	information	using	a	tree:

A	RAMP	Design	Approach	–	Using	a	Single	Junction	Point	(SJP)
A	complex	5250	application	that	RAMP	is	being	applied	to	may	be	visualized
like	this:	
	

A	5250	user	signs	on	and	navigates	around	a	cloud	of	menus/junctions	to	reach
the	"cherries"	(5250	destination	screens)	where	they	do	useful	work.
The	RAMP	choreographer	is	able	to	follow	these	navigations	and	working	with
it	you	can	define	the	various	navigations	required	to	move	around	in	the	cloud.	
To	a	RAMP	developer	the	identification	of	the	junctions	and	the	generation	of
their	navigation	scripts	may	be	a	time	consuming	and	rather	mundane	job.	
From	the	RAMP	developers	point	of	view	the	whole	process	would	be	easier	to
handle	if	the	5250	application	was	actually	structured	like	this:

Here	a	single	junction	point	(or	program)	controls	access	to	every	5250
destination	screen.
If	the	5250	application	was	structured	this	way	then	designing	a	RAMP
application	would	be	simpler	and	faster	because:
Only	a	single	junction	needs	to	be	defined	and	scripted.
The	invocation	scripts	for	the	destination	screens	are	simpler	and
standardized.				
This	rest	of	this	section	describes	ways	that	you	might	set	up	this	type	of	view
of	a	5250	application.
This	approach	is	called	the	Single	Junction	Point	(SJP)	model.
The	SJP	model	cannot	be	applied	to	every	type	of	application,	but	where	it	can
be	applied	it	may	represent	a	saving	in	the	time	taken	to	develop	a	RAMP
application.	
Essentially	a	SJP	approach	means	that	two	different	views	of	an	application
exist:
					

	

To	make	this	programmatic	view	of	the	world	the	System	i	5250	program	
needs	to	already	exist	or	to	be	created.

Let's	call	this	special	program	the	SJP	(Single	Junction	Point)	program	 	

A	kind	of	 	already	exists	on	all	System	i	system.
It	is	a	program	called	QCMD	(or	Command	Entry	Display)	and	from	it	almost
any	5250	application	can	be	invoked	in	some	direct	or	indirect	way.	However
using	QCMD	is	not	acceptable	to	many	sites	for	security	reasons,	so	the	rest	of
this	material	discusses	various	ways	you	might	create	your	own	specialized

	and	some	of	issues	and	additional	benefits	that	might	arise.
How	does	an	SJP	work?
Is	an	SJP	really	that	simple	in	a	real	application?
Can	SJP	do	the	other	useful	things?
Does	SJP	have	to	be	CL	(Control	Language)	program?

What	other	issues	might	impact	the	use	on	an	SJP	approach?

How	does	an	SJP	work?
An	SJP	program	provides	generic	access	to	the		destinations	that	are	available	to
a	RAMP	application.	An	SJP	is	not	designed	to	talk	to	a	user,	it	is	designed	to
talk	to	a	RAMP	script.
A	simple	SJP	and	RAMP	script	might	work	together	like	this:

The	RAMP	script	example	used	here	is	associated	with	a	command	handler	that
wants	to	display	the	details	of	a	customer	using	a	5250	program	named
CUSTINQ.
When	it	starts	to	execute	it	first	navigates	to	the	junction	screen	named	JSP.
This	causes	the	SJP	program	to	displays	its	5250	screen.
It	then	sets	the	field	PGMNAME	to	value	"CUSTINQ"	and	sends	the	enter	key.
This	causes	the	SJP	program	to	receive	the	screen	back.
The	CL	field	&PGMNAME	in	the	SJP	program	now	contains	the	name
"CUSTINQ".
Program	CUSTINQ	is	then	called	using	a	generic	call.
The	RAMP	script	then	gets	the	program	CUSTINQ	to	display	customer	number
123456.
Using	this	simple	SJP	hundreds	of	destination	screen	scripts	could	be	created	to
access	all	sorts	of	System	i	5250	programs,	providing	that	they	all	have	a	simple
CALL	interface.			

	

Is	an	SJP	really	that	simple	in	a	real	application?
Probably	not.	Often	the	programs	being	called	required	simple	(and	sometimes
complex)	parameters	to	be	passed	to	them	and	amongst	them.
However,	in	this	style	of	application	design,	groups	of	programs	usually	fall	into
large	application	groups	that	share	a	common	parameter	protocol.
By	adding	an	REQUEST_TYPE	(say)	field	to	the	information	exchanged
between	RAMP	scripts	you	can	easily	accommodate	different	program
parameter	protocols	along	these	lines	(logic	is	in	pseudo	code):
	
				WRITE	and	READ	the	5250	screen	containing	PGMNAME	and
REQUEST_TYPE		
			
				DOWHILE	(REQUEST_TYPE	not	equal	to	"SIGNOFF")
				
									CASE	of	REQUEST_TYPE
													WHEN	=	"CALLP1"	CALL	PGM_NAME	using	calling	protocol	1
for	parameters			
													WHEN	=	"CALLP2"	CALL	PGM_NAME	using	calling	protocol	2
for	parameters			
													WHEN	=	"CALLP3"	CALL	PGM_NAME	using	calling	protocol	3
for	parameters		
													<etc>
									ENDCASE
	
									WRITE	and	READ	the	5250	screen	containing	PGMNAME	and
REQUEST_TYPE		
				ENDWHILE

				
If	you	are	used	to	RPG	and	CL	programs	you	might	not	be	aware	just	how
flexible	the	IBM	i	program	call	interface	is.	Program	parameters	are	just	areas
of	memory	and	passed	between	programs	as	pointers.	You	might	not	know:
Parameters	do	not	have	to	be	the	exact	length	the	called	program	defined.	They
just	need	to	be	as	long	or	longer,	which	makes	sharing	and	reusing	a	small	set	of
parameter	variables	in	a	SJP	quite	simple.			
You	can	pass	a	program	more	parameters	than	it	actually	requires.	The	extra
ones	are	generally	ignored,	which	means	you	can	have	very	few	actual	CALL

commands	in	your	program.
You	could	directly	pass	parameter	values	from	you	RAMP	scripts	to	the	SJP	and
pass	them	into	the	called	programs.	You	could	also	get	retuned	parameter	values
back	into	the	script	again	using	this	approach.	This	means	your	RAMP	scripts
can	call	batch	style	programs	as	well.							

Can	SJP	do	the	other	useful	things?
It	could	be	designed	to	do	almost	anything.	For	example	it	can	provide	a	very
flexible	and	generic	interface	to	IBM	i	command	like	this:
	
				WRITE	and	READ	the	5250	screen	containing	PGMNAME,
REQUEST_TYPE	and	COMMAND
				
				DOWHILE	(REQUEST_TYPE	not	equal	"SIGNOFF")
			
									CASE	of	REQUEST_TYPE
													WHEN	=	"CMD"				CALL	QCMDEXEC	(COMMAND	256)
													WHEN	=	"CALLP3"	CALL	PGM_NAME	using	calling	protocol	3
for	parameters		
													<etc>

	
Would	allow	your	RAMP	scripts	to	execute	a	CL	command	like	this:
	
NAVIGATE_TO_JUNCTION("SJP");
SETVALUE("REQUEST_TYPE","CMD");
SETVALUE("COMMAND","WRKSBMJOB	*JOB")
SENDKEY(KeyEnter);

	
Or			
		NAVIGATE_TO_JUNCTION("SJP");
SETVALUE("REQUEST_TYPE","CMD");
SETVALUE("COMMAND","SBMJOB(BATCH)	CMD("CALL
PRINTORDER")")
SENDKEY(KeyEnter);

	
The	5250	screen	used	to	communicate	between	a	RAMP	script	and	a	SJP	is
really	more	of	program	data	structure	that	a	real	5250	screen	that	a	user	would
ever	see.

Does	SJP	have	to	be	CL	(Control	Language)	program?
No,	it	could	be	written	in	any	program	language	that	supports	the	reading	and
writing	of	5250	screens	such	RPG,	COBOL,	C	or	RDML	(which	is	really	RPG
anyway).
If	you	have	LANSA	programs	RDML	is	a	good	choice	because	it	makes	it	very
easy	to	call	LANSA	processes	and	functions	and	allows	access	to	common
inter-program	communications	mechanism	such	as	the	exchange	list	and	data
structures.

What	other	issues	might	impact	the	use	on	an	SJP	approach?
One	of	the	main	ones	relates	to	user	profile	and	site	security	requirements.
You	would	probably	not	want	the	SJP	program	accessible	to	USERA	(say)	when
he	or	she	is	using	a	normal	5250	screen.	
Additionally	most	sites	insist	that	USERA	executes	his/her	IBM	i	job	under	the
profile	USERA	so	that	audit,	log	and	security	information	shows	the	"real"	user
(although	this	is	disappearing	as	more	and	more	"threaded"	processes	serving
many	concurrent	users,	such	as	HTTP	web	servers,	are	used	on	the	System	i
server).					
So	how	can	a	single	user	profile	USERA	support	these	different	views	of	the
world?	
When	they	sign	on	to	a	real	5250	session	they	get	their	normal	sign-on	menu.
When	they	sign	on	via	a	RAMP	script	they	get	the	SJP	program	as	their	main
"menu"?		
There	are	several	solutions	to	this	problem:
Use	the	Program/Procedure	option	on	the	IBM	i	sign-on	screen	to	specify	the
SJP	program	when	logging	in	via	a	RAMP	script.	You	would	probably	add	some
security	logic	to	the	JSP	to	prevent	users	doing	this	through	a	real	5250	interface
(see	point	2).
If	you	use	a	common	menu	program	you	could	alter	it	to	detect	that	it	is	being
called	from	a	RAMP	script	and	then	call	the	SJP	program.	Equally	you	could
display	the	common	menu	initially	and	use	a	special	"hidden"	menu	option	to
call	the	JSP	program.	The	JSP	program	could	confirm	that	it	is	being	accessed	by
a	RAMP	script	by	conducting,	for	example,	an	encrypted	exchange	with	the
RAMP	script	that	is	impossible	for	a	real	human	user	to	perform.
RAMP	scripts	could	sign	on	initially	as	a	generic	"USERX"	whose	initial
program	is	the	SJP	program.	The	SJP	program	then	presents	a	screen	asking	for
the	real	user	profile	and	password,	which	the	RAMP	logon	script	fills	in	and
sends	back.	An	IBM	API	is	then	called	to	change	the	current	job's	user	profile
from	generic	USERX	to	the	real	user.	Again	an	encrypted	exchange	that	is
impossible	for	a	real	user	could	be	used	to	confirm	access	is	from	a	RAMP
script.	
	

Using	HIDE_CURRENT_FORM	to	manage	access	to	command
handler	tabs
In	this	scenario	a	RAMP	application	has	been	created	over	an	order	processing
system.
Imagine	that	some	of	the	command	handler	tabs	(and	their	underlying	5250
destination	scripts)	need	to	prevent	users	from	performing	actions	on	cancelled
or	completed	orders.			

Step	1	-	Put	some	sort	of	"Code"	or	"Status"	column	into	every
instance	list	entry
Here	field	#ORDSTATUS	is	mapped	into	instance	list	column	Acolumn9().
Imagine	it	contains	values	"CAN"	(cancelled),	"OPN"	(Open),	"WIP"	(Being
worked	on)	or	"COM"	(completed)				
		
Invoke	Method(#avListManager.AddtoList)	Visualid1(#OrdNo)
Visualid2(#CustlName)	Akey1(#OrderNumber)	AColumn9(#ORDSTATUS)

		
Note:	AColumn9()	may	or	may	not	be	shown	to	the	user	as	desired.
		

Step	2	-	Put	checking	code	into	the	appropriate	scripts
Here	the	script	for	a	5250	screen	that	allows	an	order	to	be	modified	has	had	a
check	added	to	stop	people	from	trying	to	display	cancelled	or	completed	orders
.....
	
/*	Get	the	order	status	from	additional	column	9	in	the	current	order	instance
list	entry	*/
		
var	ORDSTATUS	=	objListManager.AColumn9[0];
	
/*	If	the	order	is	cancelled	or	closed,	prevent	the	5250	screen	from	being
displayed,	and	show	a	message	as	to	why	*/
		
if	((ORDSTATUS	==	"CAN")	||	(ORDSTATUS	==	"COM"))
{
			HIDE_CURRENT_FORM("Sorry,	but	you	are	not	allowed	to	display	this

order	because	it	is	cancelled	or	completed.");
			return;
}
	
/*	If	we	reach	here	then	it's	okay	to	proceed	to	the	order	display	screen	*/
		
		
<etc>
<etc>

		
The	HIDE_CURRENT_FORM("message")	function	causes	the	current	5250
screen	being	displayed	on	the	command	tab	to	be	hidden	and	the	message
"Sorry,	but	you	are	not	allowed	to	display	this	order	because	it	is	cancelled	or
completed."	to	appear	in	the	center	of	the	tab	instead.
The	content	of	AColumn9	(ie:	"CAN",	"OPN",	"WIP",	"COM")	could	be	used
anywhere	in	in	the	script	to	limit	or	control	user	activities.							

	

	

Multilingual	RAMP	Applications
Strings
Refer	to	the	ADD_STRING	Function	and	the	STRING	Function.
The	captions	show	on	RAMP	buttons	can	be	changed	to	be	multilingual	using
the	OVERRIDE_KEY_CAPTION_SCREEN	Function	and
OVERRIDE_KEY_CAPTION_ALL	Function.
	

Troubleshooting

Error	Messages
xxxxxxx	is	an	orphan	script	and	should	be	deleted
Error	running	RAMP	in	end-user	mode	(UF_EXEC)	but	not	in	design	mode
(UF_DESGN)
	

	
	

Problems
When	executing	RAMP	applications:
Strange	behavior	in	scripts	
Screen	does	not	react	when	selection	is	changed	in	instance	list
	
	

xxxxxxx	is	an	orphan	script	and	should	be	deleted
A	RAMP	warning		message	is	displayed	saying	that	a	script	is	an	orphan	script
and	should	be	deleted.

What	does	the	message	mean?
It	means	the	script	is	not	used	by	any	destination,	junction	or	special	screen.
Since	the	script	is	not	used,	it	should	be	deleted.
This	message	does	not	impact	the	operation	of	RAMP,	it's	just	a	warning.
If	you	get	a	lot	of	these	warnings,	it	is	likely	to	be	a	misunderstanding	about	use
of	the	merge	tool	in	a	multi-developer	environment.		
		

How	do	you	delete	a	script	if	you	get	this	message?
Start	the	RAMP	Tools
Expand	the	script	tree	node	and	locate	the	script.
Select	the	script	and	press	the	Delete	button.
Watch	out	for	duplicated	script	names	(this	happens	in	multi-developer
environment).	Make	sure	you	have	the	right	script.
					

How	can	you	get	an	orphan	script?
The	most	likely	way	is	by	using	the	merge	tool	to	merge	in	a	brand	new	script	all
by	itself	without	merging	in	the	parent	destination,	junction	or	special	screen	as
well.		
		

When	would	you	use	the	merge	tool	to	just	merge	in	a	single
script	without	also	merging	in	its	parent	destination,	junction	or
special	screens	as	well?
Normally	you	would	only	do	this	when	you	have	previously	merged	in	the
parent	object	and	its	associated	scripts	and	are	just	wanting	to	merge	in	a	single
updated	script.	You	should	never	do	this	on	an	initial	merge	or	you	risk	creating
orphan	script(s).
		

How	should	you	approach	merging	RAMP	screens	and	their

associated	scripts	produced	by	multiple	developers?
Assuming	that	the	high	level	Framework	design	objects,	that	is	applications,
business	objects,	commands	and	command	handlers	(tabs)	have	been	set	up	by
the	master	designer	and	all	developers	are	working	from	the	same	model	(that	is
the	developers	just	define	the	RAMP	screens	and	scripts	and	then	link	them	up
to	the	pre-defined	command	handler	tabs):
The	sender	should	add	the	screens	that	they	have	produced	to	a	merge	list.	This
should	automatically	include	the	associated	scripts.
The	sender	should	also	add	to	the	same	merge	list	all	the	command	handler(s)
that	have	been	modified	by	being	linked	up	with	RAMP	destination	screens.
The	receiver	should	merge	everything	into	the	master	Framework.	The	command
handlers	should	be	handled	as	updates/replacements	and	the	RAMP	objects
should	be	new	objects.	In	no	case	should	new	GUIDs	be	assigned.				
	

How	can	you	get	scripts	with	the	same	name?
In	a	multi-developer	environment	if	two	developers	create	scripts,	you	may	end
up	with	two	scripts	named	for	example	FORMSCRIPT_137.
If	the	work	of	these	developers	is	merged	together,	this	situation	may	be
confusing	to	the	developers,	but	it	is	not	confusing	to	RAMP	because	to	RAMP
the	script	name	is	just	a	caption.	Internally	RAMP	recognizes	and	executes
scripts	by	their	unique	GUID.
Developers	can	change	the	default	script	names	to	avoid	this	confusion.
	
	
	
	

Screen	does	not	react	when	selection	is	changed	in	instance	list
When	an	entry	is	selected	in	the	instance	list,	the	RAMP	screen	does	not	reflect
this	change	and	instead	shows	the	data	for	the	entry	that	was	first	selected.

When	does	this	problem	happen?
You	recorded	the	script	of	the	destination	screen,	but	you	have	not	changed	the
value	parameter	of	the	SETVALUE	Function	from	the	recorded	hardcoded
value	to	a	substitution	value.
Another	possible	cause	is	that	the	value	in	the	SETVALUE	function	has	been
enclosed	in	quotes	in	which	case	it	is	interpreted	as	a	literal,	not	as	a	substitution
value.
For	example	this	example	is	wrong:
	
SETVALUE("UtxtMachine","objListManager.AKey1[0]");	
	

Solution
Make	the	value	parameter	of	the	SETVALUE	function	a	substitution	value	and
make	sure	it	is	not	surrounded	by	quotes:
		
SETVALUE("UtxtMachine",	objListManager.AKey1[0]);
		

For	more	information:
See	the	topic	Interacting	with	Instance	Lists	in	Scripts
See	the	topic	Replacing	Hardcoded	Employee	Number	with	Current	Instance
List	Entry.

	

	

Error	running	RAMP	in	end-user	mode	(UF_EXEC)	but	not	in
design	mode	(UF_DESGN)
You	can	run	your	RAMP	application	in	Design	mode	but	you	get	an	error	like
this	when	you	try	to	run	it	in	End-User	mode:

	

Why	does	this	problem	happen?
The	main	difference	between	running	RAMP	in	design	mode	and	running	it
end-user	mode	is	the	way		javascript	is	executed.
In	design	mode,	javascript	is	reloaded	each	time	the	Framework	is	saved	if	there
has	been	a	change	affecting	RAMP.	Each	time	the	javascript	is	reloaded,	the
object	properties	are	re-set.	And	each	time	the	Framework	is	saved,	if	RAMP	is
enabled	and	has	changed,	a	set	of	javascript	files	called	<system
prefix>Nodes_nnnnnnnnnnnnnnnnnn.js	are	generated,	one	for	each	session
where	the	nnnnnnnnnnnnnnnn	part	is	the	session	identifier.
These	files	are	the	ones	used	in	end	user	mode.	They	represent	the	screens	and
scripts	written	out	as	javascript	at	the	time	the	Framework	was	saved.
In	end-user	mode,	these	files	are	loaded	once	for	each	session.	Each	one	of	the
javascript	functions	in	the	file	is	called	only	once	during	session	start	up.	This
method	speeds	up	the	start	up	time	of	RAMP	in	end-user	mode	considerably	as
opposed	to	design	time.
When	RAMP	is	executed	without	errors	in	design	mode	but	with	errors	like	the
above	in	end-user	mode,	the	prime	suspect	is	a	syntax	error	in	the	user-defined
scripts	(be	it	navigation	scripts,	invoke,	etc).

	

Solution
To	find	out	what	line	of	javascript	has	the	error,	you	can	simply	load	the	file	into
a	basic	.HTM	file.
For	example	create	a	file	called	test.htm	with	content	like	this:
	
<html>
<head>
				<title>Untitled	Page</title>
				<script	language="javascript"	type="text/javascript"	src="<your	nodes.js
file	here>"></script>
</head>
<body>
Hello	World
</body>
</html>

	
Specify	the	name	of	your	nodes.js	file	in	the	src=	attribuite	of	the	<script>	tag
and	put	Test.htm	in	the	same	folder	as	the	javascript.
Using	Internet	Explorer,	check	your	Advanced	settings	tab	under	Tools/Internet
options	to	verify	you	have	the	"Display	notification	about	about	every	script
error"	checked.	You	can	then	run	Test.htm	and	you	should	get	a	script	error
showing	the	line	number	where	the	error	has	occured.	Tip:	the	error	is	most
likely	to	be	inside	a	javascript	function	called	something	like	this:
	
function	__UF__nnnnnnnnnnnnnnnnnnnnnnnn(objScriptInstance)

which	makes	it	a	bit	hard	to	correlate	it	with	the	actual	script	name.	To	find	out
exactly	what	this	script	is,	do	a	Find	in	the	same	file	of	the	nnnnnnnnnnnnnnnn
part	of	the	function	name.	You	should	then	locate	the	lines	of	javascript	that
define	that	script	as	an	object	and	that	will	have	the	user	name	(for	example
oS.uScriptUserName="NAVIGATE_SCRIPT_13";)
Edit	the	script	using	the	RAMP	Tools,	correct	the	error	and	save.
	
	

Frequently	Asked	Questions
How	is	a	Framework	associated	with	RAMP-TS	or	RAMP-NL?
I	have	made	a	mistake	in	classifying	a	screen.	How	do	I	change	the
classification?
How	do	I	differentiate	two	screens	which	have	the	same	name?
How	can	I	use	web	browser	windows	from	RAMP	scripts?
How	can	I	get	the	message	from	the	bottom	of	the	current	5250	screen	into	my
RAMP	script?
How	do	I	handle	RA	(Auto	Record	Advance)	fields?
Why	should	the	F12=Cancel	and	F3=Exit	buttons	and	function	keys	be	disabled
on	every	5250	screen?
Do	I	have	to	identify	and	script	every	5250	screen	in	my	application	to
modernize	it?
How	can	I	get	the	RAMP	tool	to	assign	a	fixed	session?
Can	you	add	in	your	own	functions	to	the	scripts?
How	do	I	make	my	scripts	work	in	multiple	partitions?
How	to	tell	in	a	RAMP-TS	script	what	theme	is	being	used?
How	do	I	stop	break	messages	in	aXes	5250	sessions?
	

How	to	tell	in	a	RAMP-TS	script	what	theme	is	being	used?
In	a	RAMP-TS	script	you	may	want	to	know	what	VL/VLF	theme	is	being	used
in	the	application.
The	JavaScript	variable	GLOBAL_VL_Theme	is	accessible	to	RAMP-TS
scripts.	It	should	contain	“BLUE”,	“SILVER”,	“OLIVE”	or	“GRAPHITE”.
You	should	not	change	the	content	of	GLOBAL_VL_Theme.
	

How	is	a	Framework	associated	with	RAMP-TS	or	RAMP-NL?
A	framework	(as	defined	in	its	XML	file)	is	specifically	bound	to	either	RAMP-
TS	or	RAMP-NL.	This	means	it	can	only	be	used	with	that	type	of	RAMP
session.
When	you	first	start	to	use	RAMP	with	a	framework	it	makes	a	decision	on
whether	to	bind	to	RAMP-NL	or	RAMP-TS.	The	binding	process	works	like
this:
First,	the	content	of	any	existing	RAMP	nodes	file,	as	defined	on	the
(Framework)	->	(Properties…)	à	Framework	Details	tab	as	the	Nodes	XML	File
is	examined.	If	the	nodes	file	already	contains	RAMP-TS	or	RAMP-NL
destinations	and	scripts,	the	framework	is	automatically	bound	to	RAMP-TS	or
RAMP-NL	as	appropriate.
If	the	Nodes	XML	File	is	empty	or	non-existent,	then	the	servers	associated	with
the	framework	are	examined.	If	one	or	more	RAMP-NL	servers	are	defined	and
no	RAMP-TS	servers	are	defined,	the	framework	is	automatically	bound	to
RAMP-NL.
In	all	other	situations	the	framework	is	automatically	bound	to	RAMP-TS.
	
When	you	start	RAMP	Tools	the	window	title	shows	whether	the	framework	is
bound	to	RAMP-TS	or	RAMP-NL.																
Things	to	watch	out	for	when	binding	a	framework	to	RAMP-TS	or	RAMP-NL
are:
Make	sure	the	servers	associated	with	a	framework	are	correct	and	not	mixed.
Normally	you	would	only	have	RAMP-TS	or	RAMP-NL	server(s)	defined,	but
not	both.	If	necessary	create	different	server	XML	files	for	different	frameworks
to	avoid	having	RAMP-TS	and	RAMP-NL	servers	mixed	within	one	framework.
When	using	Save	As	to	create	a	new	framework,	also	change	the	Nodes	XML
file	to	a	new	file	name.	After	saving	the	new	framework,	delete	the	Nodes	XML
file	so	as	to	start	working	on	the	new	framework	with	a	new	and	empty	nodes
file.
If	you	accidentally	bind	a	framework	incorrectly	to	RAMP-NL	or	RAMP-TS,
open	the	framework	XML	file	with	NOTEPAD	and	search	for	this	property
definition	<PROPERTY	NAME="U5250HANDLER"	VALUE="TS"/>	or
<PROPERTY	NAME="U5250HANDLER"	VALUE="NL"/>.
Remove	this	property	from	the	XML	file	and	save	the	changes.	Start	the

framework	as	a	designer	and	go	to	the	(Framework)	->	(Properties…)	à
Framework	Details	tab.	Check	that	the	Nodes	XML	File	name	is	correct	and
different	to	any	other	framework	you	have.	Check	that	you	have	a	either
RAMP-TS	or	RAMP-NL	server(s)	defined.	Do	not	have	both	types	defined.
Start	the	framework	as	a	designer	and	then	start	RAMP	Tools	again.	The
binding	logic	defined	previously	will	be	performed	again	when	you	start	RAMP
Tools.
If	the	binding	process	gets	the	wrong	results	again	it	is	because	your
framework’s	servers	are	not	correctly	defined,	or,	because	your	Node	XML	file
contains	definitions	that	force	it	to	bind	to	RAMP-TS	or	RAMP-NL.
	

I	have	made	a	mistake	in	classifying	a	screen.	How	do	I	change
the	classification?
Delete	the	screen	definition	in	the	5250	Screen	and	Script	List.	The	screen	will
appear	as	undefined	in	the	Tracking	Information	area.
Remember	that	the	scripts	associated	with	the	screen	are	also	deleted,	so	you
need	to	retrack	the	navigation	from	and	to	the	screen.
	

How	do	I	differentiate	two	screens	which	have	the	same	name?
Use	the	Variant	Name	to	differentiate	screens	that	were	given	the	same	name.
See	Your	RAMP-TS	Screen	Script	Defines	a	JavaScript	Object.
The	Variant	Name	is	a	property	of	the	screen	in	the	same	way	as	the	vName,
vType,	etc.	To	reference	the	Variant	Name	in	your	script	use:
	
this.vLatestVariant
	

	
Typically	you	would	use	the	Variant	Name	in	screens	that	have	different	views.
A	typical	example	would	be	a	screen	like	Work	with	Active	Jobs.	You	could
name	it	WRKACTJOB.	When	you	press	F11	the	same	screen	appears	but	this
time	with	a	different	set	of	columns.
You	can	use	one	of	the	column	headings	in	this	screen	that	was	not	present	in
the	previous	one	as	part	of	the	screen	definition	and	save	it	using	the	Variant
Name.	Likewise,	pressing	F11	again	gives	you	another	different	set	of	columns.
You	can	again	use	one	of	the	column	headings	in	the	definition	and	save	the
screen	with	another	variant	name.
For	more	information	see	RAMP-TS015:	Understanding	and	Handling	Screen
Variations.
	

How	can	I	use	web	browser	windows	from	RAMP	scripts?
Here's	a	really	simple	web	browser	form	that	accepts	three	input	fields	as
arguments,	displays	them,	allows	them	to	be	altered,	then	returns	the	altered
values	back	to	the	calling	RAMP	script:		
		
<HTML>
<HEAD>
</HEAD>
<BODY	onload="BODY_Load();"	onunload="BODY_UnLoad();"	>
<script>
function	BODY_Load()	/*	Map	arguments	passed	in	to	web	form	fields	*/
{
			FieldA.value	=	window.dialogArguments[0];
			FieldB.value	=	window.dialogArguments[1];
			FieldC.value	=	window.dialogArguments[2];	
}
function	BODY_UnLoad()	/*	Map	web	form	fields	into	return	values	*/
{
			var	arrayRets		=	new	Array();
			arrayRets[0]			=	FieldA.value;
			arrayRets[1]			=	FieldB.value;
			arrayRets[2]			=	FieldC.value;
			window.returnValue	=	arrayRets;
}
function	OK_Click()	/*	Handle	OK	button	by	closing	the	web	form	*/
{
			window.close();
}
</script>
<P>Input	details	and	click	OK"

<input	id="FieldA"	type="text">

<input	id="FieldB"	type="text">

<input	id="FieldC"	type="text">

<input	id="Button1"	type="button"	value="		OK		"	onclick="OK_Click();">
</BODY>
</HTML>
	

It	looks	like	this	when	displayed:

	
This	is	the	RAMP	BUTTON	script	that	is	used	to	display	the	web	browser	form.
It	displays	the	form	when	the	user	hits	F5,	taking	the	fields	SURNAME,
GIVENAME	and	ADDRESS1	from	the	5250	form	and	then	mapping	them
back:
		
switch	(objScriptInstance.FunctionKeyUsed)
{
			case	KeyEnter:
						SENDKEY(KeyEnter);
						break;
			case	KeyF5:
						{
									var	arrayArgs	=	new	Array();
									arrayArgs[0]	=	GETVALUE("SURNAME");
									arrayArgs[1]	=	GETVALUE("GIVENAME");
									arrayArgs[2]	=	GETVALUE("ADDRESS1");
									arrayRets	=
window.showModalDialog("Example.htm",arrayArgs,"dialogHeight:155px;dialogWidth:200px;help:no;resizable:no;scroll:no;status:no;");
									SETVALUE("SURNAME",arrayRets[0]);
									SETVALUE("GIVENAME",arrayRets[1]);
									SETVALUE("ADDRESS1",arrayRets[2]);
									delete(arrayArgs);
									delete(arrayRets);
						}
						break;
			default:
						SENDKEY(objScriptInstance.FunctionKeyUsed);
						break;
}

		

This	is	just	a	simple	example	of	some	of	the	things	you	can	do	(please	note	that
no	warranty	about	any	of	this	is	expressed	or	implied).
	

How	can	I	get	the	message	from	the	bottom	of	the	current	5250
screen	into	my	RAMP	script?
Use	a	script	like	this:
		
					{
											var	strMessage	=	GETVALUE("ActiveForm.Message");		/*	Get	the
message	into	JavaScript	variable	strMessage					*/
											if	(strMessage	!=	"")	ALERT_MESSAGE(strMessage);				/*	If	a
message	was	retrieved,	display	it	in	a	message	box	*/
						}		

	

How	do	I	handle	RA	(Auto	Record	Advance)	fields?
	Some	5250	applications	may	use	fields	with	an	RA	input	attribute	(Auto
Record	Advance).	Programs	that	display	these	fields	automatically	press	Enter
when	the	last	digit	or	character	is	entered	by	the	user.
	The	RAMP	choreographer	cannot	automatically	generate	a	script	for	this
situation	based	on	your	keystrokes.	Instead,	it	will	generate	lines	like:
		
/*	Set	up	data	fields	on	form	xxx	*/
	
SETVALUE("utxtMenuOption","");
	
/*	Send	the	key	required	to	navigate	to	xxx	*/
	

You	will	need	to	edit	the	generated	script,	and	specify	both	the	value	and	the
Enter	key	press,	like	this:
	
/*	Set	up	data	fields	on	form	xxx	*/
	
SETVALUE("utxtMenuOption","2");
	
/*	Send	the	key	required	to	navigate	to	xxx	*/
	
SENDKEY(KeyEnter);
	

	
	

Why	should	the	F12=Cancel	and	F3=Exit	buttons	and	function
keys	be	disabled	on	every	5250	screen?
Have	a	think	about	how	you	navigate	a	Windows	application.

Do	I	have	to	identify	and	script	every	5250	screen	in	my
application	to	modernize	it?
No.
Typically	some	areas	of	a	5250	application	are	rarely	used	or	used	by	very	few
users.
The	degree	of	modernization	you	apply	to	an	application	area	should	be	related
to	the	area's	degree	of	exposure	to	end	users	and	to	the	amount	of	benefit	that
they	would	gain	if	it	were	completely	modernized.		

Modernizing	a	Single	Screen	to	Provide	Access	to	a	Subsystem
In	this	example	a	5250	menu	or	work	with	screen	named	uCodeTableMaint
manages	access	to	47	different	5250	screens	that	handle	System	Code	Table
Maintenance	(for	example	classic	code	and	parameter	tables	such	as	states,
companies,	currencies,	interest	rates,	etc	that	are	used	to	define	and	control	an
application).
uCodeTableMaint	could	be	visualized	as	an	"application	subsystem"	like	this:
	

	
Because	this	application	area	does	not	need	to	be	completely	modernized,	the
most	rapid	way	to	modernize	it	is	to	create	a	single	RAMP	screen	that	provides

access	to	the	other	screens.
To	do	this:
Create	a	business	object	called	Code	Tables	and	associate	with	an	application.
Give	it	a	single	RAMP	screen	(or	tab)	called	Maintain	(say).	Make	sure	this	is	an
object	level	command	and	that	it	is	the	default	command	so	that	it	is	executed
automatically	every	time	you	click	on	it.
Identify	and	define	the	5250	work	with	screen	uCodeTableMaint	to	the
Framework	as	a	destination	screen	and	associate	it	with	the	Maintain	screen.
When	the	user	clicks	on	Code	Tables	in	the	Framework	application	they	are
immediately	navigated	to	the	uCodeTableMaint	5250	screen.
It	occupies	the	entire	right	hand	side	of	the	windows	form	like	this:

Once	the	user	has	displayed	the	uCodeTableMaint	screen	they	can	then	navigate
around	in	the	other	47	associated	screens	in	the	normal	manner:

This	is	a	minimal	modernization	of	the	whole	uCodeTableMaint	managed
subsystem.
Only	the	5250	screen	uCodeTableMaint	needed	to	be	defined	and	scripted	into
the	framework.	The	other	47	screens	did	not	have	to	be	identified	nor	scripted	in
any	way.	

How	can	I	get	the	RAMP	tool	to	assign	a	fixed	session?
I	want	to	assign	a	fixed	session,	such	as	Session	A,	for	my	destination	screen	in
the	Destination	Screen	Details.	How	can	I	do	this?
You	have	to	select	the	command	handler	so	that	the	line	it	is	on	goes	blue,	not
just	tick	the	checkbox.	Then	you	associate	a	session	with	it.
This	may	seem	unusual,	but	sometimes	multiple	command		handlers	are
associated	with	a	single	destination	form	and	therefore	you	have	to	actually
indicate	which	one	you	want	to	change	the	session	for.		

How	do	I	make	my	scripts	work	in	multiple	partitions?
Replace	any	hard-coded	references	to	a	partition	in	your	scripts	with	this	piece
of	code:
	
objFramework.Partition
	

You	can	enter	the	code		Scripting	Pop-up	Menu	:	choose	Current	Framework
and	then	partition.
	

Can	you	add	in	your	own	functions	to	the	scripts?
Yes,	you	can	add	a	function	to	your	screen	script.	This	means	it	is	hidden	from
all	other	screens	and	only	accessible	to	the	screen	object	itself.
The	format	is
	
					MyFunction	:	function	(parms)	{	logic	}	,	
	

		
And	it	is	invoked	by
	
					this.MyFunction(parms);	
	

	
Put	the	function	before	the	<SYSINFO>	block.	Note	trailing	comma.
Alternatively,	you	can	add	a	function	to	UF_VFSY40_RTS,JS	and	then	is
accessible	to	all	screen	objects.	By	passing	your	"this"	reference	to	the	function,
it	can	generically	act	on	behalf	your	behalf.	See	User-Defined	Script	Functions.

How	do	I	stop	break	messages	in	aXes	5250	sessions?
aXes	does	not	like	IBM	i	break	messages	-	because	they	are	pushed	by	the
server	–	something	that	a	pull	based	technology	like	the	web	browser	cannot
accommodate.		
It	is	strongly	recommended	that	you	don’t	use	break	message	in	aXes	5250
sessions	-	especially	in	RAMP-TS	and	aXes-Mobile	applications.			
Using	these	IBM	i	CL	commands	in	a	user’s	IBM	i	logon	program	will
generally	stop	all	break	messages:
CHGJOB					BRKMSG(*HOLD)	STSMSG(*NONE)	MONMSG				
MSGID(CPF0000	MCH0000)																																													CHGMSGQ			
MSGQ(*WRKSTN)	DLVRY(*HOLD)	MONMSG					MSGID(CPF0000
MCH0000)					

	

CHGMSGQ				MSGQ(*USRPRF)	DLVRY(*HOLD)	MONMSG				
MSGID(CPF0000	MCH0000)					
	
	

Appendix

Where	and	how	are	my	RAMP-TS	screen	identifications	kept?
By	default	RAMP-TS	stores	your	screens	in	a	folder	named		/ts/screens.
Each	screen	definition	is	stored	in	a	file	named	N.scn	(eg:	1.scn,	2.scn,	3.scn,
etc).	They	contain	JSON	fragments	that	define	the	characteristics	of	the	screen.
These	files	are	only	required	during	development.	For	run	time,	all	these	of
these	files	are	published	in	a	single	consolidated	file	named	screens.jsn.
Screen.jsn	is	the	only	screen	file	that	needs	to	be	deployed	to	production
environments

Important	things	to	know	about	this	folder
Back	it	(and	any	subfolders)	up	regularly.	The	content	of	the	N.scn	files
represents	a	significant	investment	of	your	time.
Don’t	copy	from,	copy	to,	move,	rename	or	delete	any	file	in	folder	/ts/Screens,
or	any	subfolder	of	it.
Only	ever	change	the	content	of	these	files	via	the	RAMP-TS	editor.				
		

Dividing	up	screen	definitions
Your	screen	definitions	do	not	have	to	be	in	/ts/screens,		you	can	divide	up
screen	definitions	into	sub-folders	like	/s/screens/Project1	or
/ts/screens/Project2.
You	just	input	the	folder	name	(Project1)	with	nothing	else.	It	is	implicit	that
this	is	a	sub-folder	of	/ts/screens:

When	you	define	a	RAMP-TS	server	in	the	framework,	this	subfolder	name	is
specified	as	a	private	working	set.		Screen	definitions	may	be	divided	up	like
this	on	an	indivisible	and	completely	independent	project	basis.

Screens	should	never	be	divided	up	on	a	unit	of	work	or	developer	basis
because	you	must	not	copy,	move,	rename	or	delete	them.
	
	

	RAMP-TS Guide
	How to Get Started with RAMP
	What is RAMP?
	RAMP Stage 1
	RAMP Stage 2
	RAMP Stage 3
	A Modernized Application
	Key Benefits

	How the 5250 Application Will Change
	5250 Application Before Modernization
	5250 Application After Using RAMP
	Accessing Data in the Modernized Application
	Navigation in the Modernized Application

	Modernization Process Overview
	Stage 1: Creating a Modernization Framework
	Who Should Be Involved?
	Creating the Prototype
	Executing and Refining the Prototype

	Stage 2: Incrementally Modernizing the 5250 Application
	Naming the 5250 Screens
	Tracking and Classifying the Screens
	RAMP Stage 2A: Rapidly Modernizing Complete Application Segments
	How to Do It?

	RAMP Stage 2B: Individually Modernizing Frequently Used Screens
	How to Do It?

	RAMP Stage 2C: Adding Value
	What Adds Value?
	How to Do It?

	Stage 3: Removing IBM i Platform Dependencies

	Prerequisite Skills
	Warnings and Disclaimers

	What's New
	New Features in EPC 868 Version of RAMP
	New Features in EPC 843 Version of RAMP

	Licensing Requirements
	Installation and Configuration
	Installation on the Server
	Install and Configure RAMP-TS / aXes-TS on your IBM i Server
	Verify your RAMP-TS/aXes-TS Installation
	Backup Strategy

	Configuration
	Verify Browser Security Settings
	Set Up Reverse Proxy for Chrome, Safari and Firefox

	Configure RAMP
	If You Have Used RAMP-NL, Read This
	Ensure Your Framework Has an Overall Visual Style Theme
	Specify RAMP-TS Server Details
	Set up Super-Server Session
	Optionally Set up Framework Users and Security

	When Many Developers Work on the Same Application
	Handle Multiple Framework Versions
	Script Naming Convention

	Starting RAMP
	Start LANSA
	Start the Framework
	Start RAMP
	Start the Instant Prototyping Assistant
	Start the Program Coding Assistant

	Concepts
	Steps Involved in Using RAMP
	Framework Window
	RAMP Window
	Message Area
	Screen Tracking Area
	RAMP-TS 5250 Emulator Session
	Screen and Script List
	Organizing Screens and Scripts

	Details Area
	Session Details
	Destination Screen Details
	Script Area
	Screen Name Finder

	Types of Screens
	Destination Screen
	Junction Screen
	Special Screen

	Naming Conventions
	OBJECT-ACTION User Interfaces

	Modernization Issues
	The most important and complex 5250 program in an application can become a modernization trap
	How long will it take to RAMP my application?
	Reuse, Reface or Rewrite?

	Tutorials for RAMP Windows
	Before You Use the Tutorials
	RAMP-TS001: Creating a Basic Prototype of the Modernized Application
	Application before Modernization
	RAMP-TS001 Step 1. Create the Application Prototype
	RAMP-TS001 Step 2: Modify the Code Tables Prototype
	RAMP-TS001 Step 3: Examine the Employees Prototype
	RAMP-TS001 Step 4: Prototype End-User's Access to Employee Information
	RAMP-TS001 Step 5. Visualize the Filters
	RAMP-TS001 Step 6. Validate the Basic Prototype
	Summary

	RAMP-TS002: Rapidly Modernizing Complete Application Segments
	Before You Start
	RAMP-TS002 Step 1: Name the Screens
	RAMP-TS002 Step 2: Classify the Screens and Track Navigation
	RAMP-TS002 Step 3: Remove Cancel and Exit buttons
	RAMP-TS002 Step 4: Snap the Application into the Framework
	Summary

	RAMP-TS003: Creating a Data Filter for Employees
	RAMP-TS003 Step 1. Creating Your Real By Name Filter
	RAMP-TS003 Step 2. Snapping In the By Name Filter
	RAMP-TS003 Step 3. Filter Code
	Summary

	RAMP-TS004: Naming and Classifying the Employee Screens
	RAMP-TS004 Step 1. Name the Screens
	RAMP-TS004 Step 2. Classify Screens
	RAMP-TS004 Step 3. Track Navigation
	RAMP-TS004 Step 4. Take Snapshots of Your Destination Screens
	Summary

	RAMP-TS005: Reviewing Design
	RAMP-TS005 Step 1. Place Snapshots on Mock Up Command Handlers
	RAMP-TS005 Step 2. Review the Prototype
	Summary

	RAMP-TS006: Snapping in a Basic Inquiry Screen
	RAMP-TS006 Step 1. Snap a Basic Inquiry Screen into the Framework
	RAMP-TS006 Step 2. Change the Script to Use the Current Instance List Entry
	RAMP-TS006 Step 3. Disable Function Keys
	Summary

	RAMP-TS007: Snapping in a Data Entry Function
	RAMP-TS007 Step 1. Snap a Basic Data Entry Screen into the Framework
	RAMP-TS007 Step 2. Change the Script to Signal the New Employee Number
	RAMP-TS007 Step 3. Add Error Handling
	RAMP-TS007 Step 4. Change the Script to Update the Instance List
	RAMP-TS007 Step 5. Disable Function Keys
	Summary

	RAMP-TS008: Changing Inquiry Screen to Update Mode
	RAMP-TS008 Step 1. Make Display Employee Screen Input Capable
	RAMP-TS008 Step 2. Redisplay DisplayEmployee After Save
	RAMP-TS008 Step 3. Change Button Caption
	Summary

	RAMP-TS009: Tracing Navigation
	RAMP-TS009 Step 1. Starting the Trace and Redisplaying the Destination Screen
	RAMP-TS009 Step 2. Examining the Trace
	Summary

	RAMP-TS010: Using Special Field Handlers
	RAMP-TS010 Step 1. Naming the Field
	RAMP-TS010 Step 2. Associating the Field with the Handler
	RAMP-TS010 Step 3. Test the Special Field Handler
	Summary

	RAMP-TS011: Snapping in Shipped Documents Command Handler
	RAMP-TS011 Step 1. Snapping in the DX_DOCS Command Handler
	RAMP-TS011 Step 2. Adding Documents
	RAMP-TS011 Step 3. Working with Documents
	Summary

	RAMP-TS012: Snapping in Shipped Notes Command Handler
	RAMP-TS012 Step 1. Snapping in the DF_T3201 Command Handler
	RAMP-TS012 Step 2. Adding Notes
	Summary

	RAMP-TS013: Sending Instance List Data to Excel
	RAMP-TS013 Step 1. Creating the Command Handler
	RAMP-TS013 Step 2. Snapping in and Testing the Command Handler
	Summary

	RAMP-TS014: Snapping RAMP Screens into the HR Demo Application
	RAMP-TS014 Step 1. Snap in RAMP Screens to the HR Demo Application
	RAMP-TS014 Step 2. Modifying the SETVALUE Statement
	Summary

	RAMP-TS015: Understanding and Handling Screen Variations
	What is a 5250 Screen?
	RAMP-TS015 Step 1. Assigning the Same Name to Two Screen Variations
	RAMP-TS015 Step 2. Handling Different Screens with the Same Signature
	RAMP-TS015 Step 3. Creating Screen Variants
	RAMP-TS015 Step 4. Using Screen Variants in the Script
	RAMP-TS015 Step 5. Creating a Set of Screens (Advanced)
	Summary

	Advanced Tutorials
	RAMP-TSAD01: Using Buttons to Add Value to an Application
	About Buttons
	RAMP-TSAD01 Step 1. Enable Framework Buttons
	RAMP-TSAD01 Step 2. Name Fields to Be Copied on the DisplayEmployee Screen
	RAMP-TSAD01 Step 3. Add a Function to the Script for the DisplayEmployee Screen
	RAMP-TSAD01 Step 4. Call the Function in the ButtonClick Function
	RAMP-TSAD01 Step 5. Test the Buttons
	Summary

	RAMP-TSAD02: RAMP-TS Event Handling Basics
	RAMP-TSAD02 Step 1. Add a Signal Button to the By Name Filter
	RAMP-TSAD02 Step 2. Make Your 5250 Screen Listen to the Signal
	RAMP-TSAD02 Step 3. Test Signaling from Filter to RAMP Screen
	RAMP-TSAD02 Step 4. Add a Signal Button to the RAMP Screen
	RAMP-TSAD02 Step 5. Make the Filter Listen to the Signal
	RAMP-TSAD02 Step 6. Signalling from a RAMP script to a VLF component
	Summary

	RAMP-TSAD03: Special Field Handling
	RAMP-TSAD03 Step 1. Understand What Makes the Prompter Appear
	RAMP-TSAD03 Step 2. Being smarter with HANDLE_PROMPT()
	RAMP-TSAD03 Step 3. Handler Styles
	RAMP-TSAD03 Step 4. Generic Handler Association
	RAMP-TSAD03 Step 5. Generically Associating Date Fields with Date Picker
	RAMP-TSAD03 Step 6. Dynamic Handler Association
	RAMP-TSAD03 Step 7. Communicating with a Handler
	RAMP-TSAD03 Step 8. What to Do When Things Do Not Work
	Summary

	RAMP-TSAD04: Redesigning the Screen Using aXes
	RAMP-TSAD04 Step 1. Get Started with aXes Designer
	RAMP-TSAD04 Step 2. Set up Styles
	RAMP-TSAD04 Step 3. Hide Repetitive Information
	RAMP-TSAD04 Step 4. Add a Tooltip
	RAMP-TSAD04 Step 5. Add a Drop-Down
	RAMP-TSAD04 Step 6. Organize Fields inside Group Boxes
	RAMP-TSAD04 Step 7. Add Up and Down Buttons to Subfile
	RAMP-TSAD04 Step 8. Hide Function Keys and Add a Picture
	RAMP-TSAD04 Step 9. Add a Hyperlink
	RAMP-TSAD04 Step 10. Test the Redesigned Screen
	RAMP-TSAD04 Step 11. Remove the Screen Customization
	Summary

	RAMP-TSAD05: Using SHARED Properties and Functions
	What are Shared Scripts?
	RAMP-TSAD05 Step 1. Optional - Creating Your Own Copy of the Shared Scripts File
	RAMP-TSAD05 Step 2. Accessing SHARED properties and functions
	RAMP-TSAD05 Step 3. Creating your own SHARED properties
	RAMP-TSAD05 Step 4. Creating your own SHARED functions
	Summary

	RAMP-TSAD06: Handling Multiple Screens on Multiple Tabs
	RAMP-TSAD06 Step 1. A Multiple 5250 Screen Scenario
	RAMP-TSAD06 Step 2. Name the Screens
	RAMP-TSAD06 Step 3. Classify the Screens
	RAMP-TSAD06 Step 4. Review and Understand the Targets List
	RAMP-TSAD06 Step 5. Using Multiple Command Handler Tabs
	RAMP-TSAD06 Step 6. Review and Alter Buttons and Function Keys
	RAMP-TSAD06 Step 7. Review the value you have added to the 5250 application
	RAMP-TSAD06 Appendix: Function UFRTS03

	RAMP-TSAD07: Handling Multiple Screens on a Single Tab
	RAMP-TSAD07 Step 1. A Multiple 5250 Screen Scenario
	RAMP-TSAD07 Step 2. Making a Plan
	RAMP-TSAD07 Step 3. Putting the Screens on a Single Tab
	RAMP-TSAD07 Step 4. Enable Function Keys/Buttons and Add Required Scripting
	RAMP-TSAD07 Step 5. Defining the Exit Junctions and vHandle_NAVIGATETO scripting
	RAMP-TSAD07 Step 6. Testing and Debugging
	RAMP-TSAD07 Step 7. Fine Tuning

	RAMP-TSAD08: Screen Wrapper Basics
	RAMP-TSAD08 Step 1. Name the Fields to Be Used in the Wrapper
	RAMP-TSAD08 Step 2. Create and Snap in the Screen Wrapper
	RAMP-TSAD08 Step 3. Understanding the Screen Wrapper Code
	RAMP-TSAD08 Step 4. Test Updating the Screen from the Wrapper
	Summary

	RAMP-TSAD09: Screen Wrapper with a Subfile
	RAMP-TSAD09 Step 1. Add an Image to the Screen Wrapper
	RAMP-TSAD09 Step 2. Add Skills List View to the Wrapper
	RAMP-TSAD09 Step 3. Add Code to Populate the List View
	Summary

	Scripting
	Learning
	Anatomy of Scripts
	Special Screen Script
	Junction Screen Script
	Destination Screen Script
	vHandle_NAVIGATETO Function
	vHandle_ARRIVE Function
	Your RAMP-TS Screen Script Defines a JavaScript Object

	Scripts in a Classic Details Display
	Javascript Essentials
	External JavaScript Documentation
	Basic Javascript syntax
	Reading, Writing and Storing Values
	alert()
	Converting Numbers to Strings
	Converting String to Numbers
	String Manipulation Functions
	Is This Variable Number or String?
	JavaScript Coding Styles
	Using the objGlobal Object
	Getting Organized
	Using objGlobal to pass optional parameters
	Using objGlobal to define commonly used functions

	Using
	Interacting with Instance Lists in Scripts
	The List Manager
	Visual and Programmatic Identifiers
	Working with All Selected Entries

	Scripting Pop-up Menu
	Replacing Hardcoded User Name with Current Framework User
	Replacing Hardcoded Employee Number with Current Instance List Entry
	Adding Your Own Options to the Scripting Pop-Up Menu

	Updating the Instance List from RAMP screens
	Filter Code which Automatically Handles Changes to Instance List

	Subfiles/Browselists
	Subfile Lines per Entry
	Identifying Subfile fields
	Referencing Subfile fields
	Iterating Subfile Rows
	Paging down or up a subfile
	Locating a specific value in a Subfile and making the selection

	Script Skeletons
	Script Functions
	LOCK_FRAMEWORK Function
	UNLOCK_FRAMEWORK Function
	RESTART_LAST_NAVIGATION Function
	OVRSFLAUTOGUI Function
	AVSWITCH Function
	TRIM_RIGHT Function
	TRIM_LEFT Function
	SHOW_CURRENT_FORM Function
	SHOWSTATUSBAR Function
	TOSTRING Function
	TONUMBER Function
	SETBUSY Function
	CHECK_FIELD_EXISTS Function
	DROP_SPECIAL_FIELD_HANDLER Function
	SET_SPECIAL_FIELD_HANDLER Function
	GET_FORM_MESSAGE Function
	SCREEN Function
	HIDE_5250_BUTTONS() Function
	SHOW_5250_BUTTONS() Function
	COPYTOCLIPBOARD Function
	FATAL_MESSAGE_TYPE Function
	SETKEYENABLED Function
	SETVALUE Function
	Q_SETVALUE Function
	GETVALUE Function
	SENDKEY Function
	Q_SENDKEY Function
	CHECK_CURRENT_FORM Function
	Q_CHECK_CURRENT_FORM Function
	AVCLOSEFORM Function
	HIDE_CURRENT_FORM Function
	CURRENT_FORM Function
	SETCURSORTOROW Function
	SETCURSORTOFIELD Function
	ALERT_MESSAGE Function
	CLEAR_MESSAGES Function
	FATAL_MESSAGE Function
	MESSAGE Function
	AVSIGNALEVENT Function
	TRACE Function
	HANDLE_PROMPT Function
	NAVIGATE_TO_SCREEN Function
	Q_NAVIGATE_TO_SCREEN Function
	STRIP_LEADING_NUMBERS Function
	ADD_STRING Function
	STRING Function
	OVERRIDE_KEY_CAPTION_SCREEN Function
	OVERRIDE_KEY_CAPTION_ALL Function
	AVSAVEVALUE Function
	AVRESTOREAVALUE and AVRESTORENVALUE Function
	ADD_UNKNOWN_FORM_GUESS Function
	SET_HANDLER_CAPTION Function

	Framework Objects that Scripts Can Refer To
	objGlobal
	objFramework
	objApplication
	objBusinessObject
	objCommand
	objListManager
	objUser
	Function Key Names for SENDKEY Function

	User-Defined Script Functions
	Switching Off Recursion Checking
	When Are Scripts Reloaded so That Change Can Be Tested?
	Advanced Scripting
	Creating your own navigation planner
	Using Screen References
	Using a vHandle_DEPART function
	Arrival Scripting and Inter-Screen Communication

	Debugging
	Debug and Diagnostics
	Common Scripting Errors
	Unable to display form
	Could not complete the operation due to error 80020101
	Object expected
	Strange behavior in scripts
	Your script does not execute at all

	Tracing
	Using ALERT_MESSAGE in Your Scripts

	Screen Enrichment
	Hide screen titles in individual RAMP Screens
	Two Ways to Hide the Title

	The HTMLAPI Scripting Object
	Using The HTMLAPI Scripting Object
	HTMLAPI Usage Examples
	Implementing a Basic Standard Layout function
	Generically Modifying a Screen via the Standard Layout function
	Specifically Modifying a Screen via a Specific Layout function
	Adding More Capability to the Standard Generic Handler
	Modifying Subfile Headings
	Modifying Fonts
	Adding Images
	Things to watch out for
	What HTMLAPI functions are provided?

	Screen Wrappers
	When to Use 5250 Screen Wrappers?
	Screen Wrapper Fundamentals
	Events
	RampMessage Event
	RampTSAvailable Event
	vHandleArrive Event

	Methods
	MakerampTSavailable Method
	NavigateToScreen Method
	SetValue Method
	GetValue Method
	SendKey Method
	Current_Form Method
	SetCursor Method
	SetCursorToField Method
	Get_Form_Message Method
	Check_Field_Exists Method

	Examples
	Example 1: Show Employee Details.
	Example 2: Show Employee Details and Skills
	Example 3: Show the System i Disk Usage

	Programming Techniques
	Using Function Key Descriptions to Condition RAMP Buttons
	Questions about the Function
	SHARED.apply5250FunctionKeyPatterns

	Handling a Single Screen which Shows Multiple Modes
	A Command Handler Tab with Many 5250 Destinations
	A User Controlled Command Tab with Many Destinations
	A Program Controlled Command Tab with Many Destinations
	Using this Approach in other Situations

	Advanced Prompting
	Using Prompter Forms
	Are any Examples Provided to Learn More about this Topic?

	A RAMP Design Approach � Using a Single Junction Point (SJP)
	How does an SJP work?
	Is an SJP really that simple in a real application?
	Can SJP do the other useful things?
	Does SJP have to be CL (Control Language) program?
	What other issues might impact the use on an SJP approach?

	Using HIDE_CURRENT_FORM to manage access to command handler tabs

	Multilingual RAMP Applications
	Troubleshooting
	xxxxxxx is an orphan script and should be deleted
	Screen does not react when selection is changed in instance list
	Error running RAMP in end-user mode (UF_EXEC) but not in design mode (UF_DESGN)

	Frequently Asked Questions
	How to tell in a RAMP-TS script what theme is being used?
	How is a Framework associated with RAMP-TS or RAMP-NL?
	I have made a mistake in classifying a screen. How do I change the classification?
	How do I differentiate two screens which have the same name?
	How can I use web browser windows from RAMP scripts?
	How can I get the message from the bottom of the current 5250 screen into my RAMP script?
	How do I handle RA (Auto Record Advance) fields?
	Why should the F12=Cancel and F3=Exit buttons and function keys be disabled on every 5250 screen?
	Do I have to identify and script every 5250 screen in my application to modernize it?
	How can I get the RAMP tool to assign a fixed session?
	How do I make my scripts work in multiple partitions?
	Can you add in your own functions to the scripts?
	How do I stop break messages in aXes 5250 sessions?

	Appendix
	Where and how are my RAMP-TS screen identifications kept?

