
RAMP-NL	Guide
Rapid	Application	Modernization	Process	for
newlook	Guide
	
									How	to	Get	Started	with	RAMP

									Licensing	Requirements
									Installation	and	Configuration
									Starting	RAMP

									Concepts
									Modernization	Issues
									Tutorials

									Scripting
									Screen	Wrappers
									Programming	Techniques

									Multilingual	RAMP	Applications
									Troubleshooting
									Frequently	Asked	Questions

									Movie	Index
	
Please	send	your	comments	and	suggestions	to	LANSA	Support	at:
lansasupport@lansa.com.au.
	
	
Disclaimer:	While	every	effort	has	been	made	to	ensure	that	the	information	in
this	material	is	accurate,	in	no	event	shall	LANSA	be	liable	for	any	damages
arising	from	its	use.	LANSA	MAKES	NO	WARRANTIES,	EXPRESSED	OR
IMPLIED.
	
Edition	Number	EPC130100

mailto:lansasupport@lansa.com.au

Edition	Date	July	16,	2012.
©	2012	LANSA

How	to	Get	Started	with	RAMP
This	is	the	recommended	6	step	plan	for	getting	started	with	RAMP:

1.	Review	the	introductory	movie	What	is	RAMP?	-	9	minutes

2.	Comprehend	how	modernization	will	change	the	nature	of	a	5250
application	by	reviewing	these	movies:
5250	Application	before	using	RAMP	-	2	minutes
5250	Application	after	using	RAMP	-	4	minutes

3.	Comprehend	how	the	modernization	process	is	performed	by	reviewing
these	movies:
Stage	1:	Creating	a	Modernization	Framework	-	8	minutes
Stage	2:	Snapping	the	5250	Application	in	the	Framework	-	11	minutes
Stage	3:	Enrichment	and	Re-engineering	-	5	minutes

4.	Install	and	Configure	RAMP	and	newlook	software	(see	Installation	and
Configuration).

5.	Complete	this	essential	RAMP	Tutorial:
	Modernizing	a	Complete	Application

6.	If	you	have	time,	complete	this	optional	RAMP	tutorial	that	deals	with	a
different	way	to	use	RAMP	for	application	modernization:
Modernizing	Application	Navigation
	
Once	you	have	completed	these	steps	you	should	be	well	positioned	to	start	to
plan	and	implement	your	own	modernization	project	using	RAMP.
	
Also	see	Prerequisite	Skills.

Prerequisite	Skills
To	use	RAMP	you	need	to	have	some	basic	knowledge	of	how	LANSA	and	the
Visual	LANSA	Framework	are	used	for	application	development.	You	may
want	to	review	some	of	these	tutorials	(these	links	are	to	other	guides):
									Framework	tutorials

									Visual	LANSA	tutorials	-	you	will	need	to	know	how	to	create,	compile
and	check	programs	into	your	System	i	server	using	the	Visual	LANSA
editor.

	

Subject	Matter	Expertise
To	modernize	applications	with	RAMP	you	need	to	have	access	to	someone
who	has	an	in-depth	knowledge	of	the	business	application	being	modernized
and	the	industry	in	which	the	application	runs.	This	person	should	also	know
what	your	business	is	wanting	to	achieve	as	a	modernized	output.
Without	access	to	a	subject	matter	expert	you	are	unlikely	to	be	able	to
successfully	modernize	any	application	using	any	tool	because:
									Nobody	would	know	how	the	existing	functionality	is	used	(as	opposed	to
just	understanding	how	it	works,	which	is	different)

									Nobody	would	be	able	to	envision	how	the	modernized	version	would	be
used	(as	opposed	to	how	it	should	work).

javascript:void(0);openCHM('lansa048.CHM::/tutorials.htm',’lansa’);
javascript:void(0);openCHM('Lansa095.chm::/lansa095_begin.htm',’lansa’);

What	is	RAMP?	-	9	minutes

Play	Movie 	to	see	what	RAMP	is.

5250	Application	before	using	RAMP	-	2	minutes

Play	Movie 	to	see	the	user	view	of	a	5250	application	before	it	is
modernized	with	RAMP.

5250	Application	after	using	RAMP	-	4	minutes

Play	Movie 	to	see	the	same	5250	ERP	application	after	it	is	modernized
with	RAMP.

Stage	1:	Creating	a	Modernization	Framework	-	8	minutes

Play	Movie 	to	learn	how	to	start	modernizing	your	application	by	creating	a
working	prototype	for	it.

Stage	2:	Snapping	the	5250	Application	in	the	Framework	-	11
minutes

Play	Movie 	to	learn	how	to	integrate	your	5250	application	to	the	Windows
navigation	framework.

Stage	3:	Enrichment	and	Re-engineering	-	5	minutes

Play	Movie 	to	learn	about	the	optional	stage	3	of	RAMP	modernization
during	which	you	enrich	and	re-engineer	your	application.	(5	minutes)

What's	New
This	section	outlines	new	features	in	EPC868	version	of	RAMP-NL:
More	Information	is	Now	Accessible	in	In	RAMP-TS	and	RAMP-NL
Scripts
The	objCommand	object	now	contains	details	about	the	optional	arguments
associated	with	the	current	command	and	the	reason	that	the	command	is	being
executed	(ie:	you	can	now	distinguish	between	a	command	execution	and	a
command	activation).	Refer	to	the	objCommand	definition	for	more	details.		
To	review	new	features	in	previous	RAMP	versions,	see:
New	features	in	EPC	831	Version	of	RAMP

New	features	in	EPC	831	Version	of	RAMP
This	section	outlines	features	that	were	introduced	in	EPC	831	version	RAMP:

Dynamic	Naming	of	Newlook
screens	and	fields
It	is	no	longer	necessary	to	use
Newlook	Designer	to	identify	the
relevant	screens	and	fields	to
Newlook	prior	to	using	the	RAMP
tools.	Instead	you	can	use	Dynamic
Naming	of	Newlook	Screens	and
Fields	from	within	the	RAMP	tools
environment.
Note	that	newlook	licensing	features
may	limit	the	use	of	this	option	in
some	RAMP	environments.	Please
contact	your	product	vendor	for
further	information.	

Web	applications	can	override
RAMP	profile	and	password
In	the	Web	signon	IIP	it	is	now
possible	to	override	the	user
profile	and	password	used	to
start	a	RAMP	session	specified.
The	shipped	version	of	this	is
function
UF_SYSBR/UFU0001.	See	the
source	code	of	UFU0001	for
more	details.

Developers’	Workbench
You	can	use	the	new	Developers’
Workbench	to	create	your	RAMP
applications.

New	newlook	Server	Property
Use	INI	file
Use	the	Use	INI	File	property	to
associate	a	Newlook	server	to	a
Newlook	ini	file.

New	Scripting	Functions
SETKEYENABLED	Function
enables	or	disables	buttons	and/or
function	keys	that	were	enabled	or
disabled	when	defining	the
destination.
SETFOCUS	Function-	Set	the	focus
to	a	field	on	the	current	screen
GETFOCUS	Function	-	Get	the
name	of	the	field	with	focus	on	the
current	screen
COPYTOCLIPBOARD	Function-

RAMP	application	running	in
a	browser	now	displays	scroll
bars	by	default
Up	until	now,	when	the	size	of	a
Destination	screen	exceeded	the
size	of	its	container	no	scroll
bars	were	shown	and	part	of	the
Destination	screen	was	hidden.
The	only	option	for	users	to	see
the	hidden	part	was	to	resize	the
command	and/or	the	entire
browser	container.
Now	scroll	bars	are

javascript:void(0);openCHM('LANSA048.CHM::/lansa048_3975.htm',’lansa’);
javascript:void(0);openCHM('LANSA048.CHM::/lansa048_4255.htm',’lansa’);

Copy	a	string	to	the	user's	clipboard
MAKESUBFILEINTOSTRING
Function	-	Return	a	DataGrid	as	a
string
SET_UNKNOWN_LOCKING
Function	-	Override	Session	lock
property
FATAL_MESSAGE_TYPE	Function
–	Stop	the	Framework	shutting	down
when	a	fatal	navigation	error	occurs

automatically	shown.

New	deployment	options
You	can	now	specify	the	Update	File
and	Codebase	values	in	the	server
definition	instead	of	modifying	the
VF_SY120.js	file.
Alternatively	you	can	specify	them
as	as	URL	parameters	when	starting
your	application:
+NLCODEBASE=
+NLUPDATEFILE=

newlook	version
This	version	of	RAMP	requires
newlook	Version	8.0.5.14307
(or	later)

Optional	command	arguments
accessible	in	RAMP	scripts
It	is	now	possible	to	reference	the
two	alphanumeric	and	two	numeric
optional	command	arguments	in
RAMP	scripts.	Use	the	context	menu
(right	click)	Current	Command	to
paste	the	values	into	your	script.	For
example:
objCommand.uAlphaArg1
objCommand.uNumArg2

	

		

javascript:void(0);openCHM('LANSA048.CHM::/lansa048_4250.htm',’lansa’);
javascript:void(0);openCHM('LANSA048.CHM::/lansa048_4390.htm',’lansa’);

Dynamic	Naming	of	Newlook	Screens	and	Fields
Previously	you	were	required	to	use	newlook	Designer	to	identify	the	screens
and	the	fields	in	your	application	before	you	could	start	modernizing	it	using
RAMP.	Now	the	new	Dynamic	Naming	feature	allows	you	to	set	the	name	of
newlook	screens	and	fields	in	the	RAMP	Tools	window	itself:

This	means	that	if	you	use	dynamic	naming,	it	is	no	longer	necessary	to	start
newlook	outside	RAMP,	provided	that	the	default	screen	IDs	created	by
newlook	uniquely	identify	the	screens	in	your	application.
Before	you	start	naming	the	screens,	you	may	want	to	use	the	Identify	function
in	newlook	tools	to	ensure	that	your	screens	have	unique	Screen	IDs.	If	they	do
not,	you	will	not	be	able	to	give	them	unique	names.
Note	that	newlook	licensing	features	may	limit	the	use	of	this	option	in	some
RAMP	environments.	Please	contact	your	product	vendor	for	further

information.	
Using	Dynamic	Naming
Dynamic	Naming	Dialog	Details
Frequently	Asked	Questions
Backing	Up	Screen	Definitions
New	IIPs	for	Windows

Using	Dynamic	Naming
Before	choreographing	the	navigation	in	your	application,	you	need	to	name	all
the	screens	in	your	application.
Using	RAMP	tools,	start	newlook	and	connect	to	your	newlook	session.	When	a
screen	is	displayed	in	the	newlook	window,	the	Dynamic	Naming	button	is
shown	under	the	RAMP	messages	area:

When	you	click	the	Dynamic	Naming	button,	the	Dynamic	Naming	dialog	is
displayed.	If	the	current	screen	has	not	been	named	previously,	the	dialog	looks
like	this:

Type	in	the	RAMP	Screen	(Name).	Define	any	Input	or	Output	fields	on	the
screen.
Save	the	screen	details	by	clicking	on	the	Save	button.
When	you	have	saved	a	screen	with	a	name,	the	Dynamic	Naming	dialog	shows
when	the	screen	was	named	and	the	user	that	named	it:

You	should	name	all	the	screens	in	your	application	before	you	start	tracking	the
navigation.
	

Dynamic	Naming	Dialog	Details

RAMP	Screen
Name

This	is	the	programmatic	name	that	RAMP	uses	to
uniquely	identify	this	screen	as	a	destination,	a
junction	or	a	special	screen.	It	is	stored	in	the
(Name)	property	of	the	screen	inside	newlook.	This
is	why	it	is	displayed	in	brackets.	Usually	every
newlook	Host	Screen	Name	has	a	unique	RAMP
(Name)	associated	with	it.
Sometimes,	in	situations	where	multiple	newlook
Host	Screens	are	very	similar,	they	are	all	assigned
the	same	RAMP	Screen	(Name)	to	reduce	the
amount	of	scripting	required.	Refer	to	the	guide	for
more	details	about	this	special	programming
technique.

Input	Controls The	input	controls	tab	sheet	shows	the	list	with	all
the	input	controls	found	in	the	Newlook	screen
currently	showing.	Note	that	input	controls	are	not
only	input	fields.
Use	the	Current	(Name)	Assigned	column	to
modify	or	set	a	name	for	a	control.	Notice	two
things	when	you	focus	on	a	cell	in	this	column:
									The	background	of	the	control	in	the	Newlook
screen	corresponding	to	the	cell	being	focused
on	becomes	pink	to	provide	visual	feedback	as	to
which	field	will	be	named.

									The	cell’s	content	is	pre-filled	with	a	default
prefix.	It	allows	you	to	standardise	the	field
names	should	your	application	use	a	certain
naming	convention.	You	can	modify	the	default
behaviour	in	the	Windows	IIP	(UF_SYSTM
unless	you	have	created	your	own).	See	New
IIPs	for	Windows.

Output	Controls The	output	controls	tab	sheet	shows	the	list	of
output	controls	found	in	the	current	Newlook
screen.	You	normally	do	not	need	to	name	output

fields.

Last	Saved Shows	the	date	and	time	when	this	screen	was	last
saved	using	Dynamic	Naming.	If	this	was	the	first
time	Dynamic	Naming	was	used	for	this	screen	you
would	see	a	message	indicating	so.

User	Profile Shows	the	User	profile	that	last	saved	this	screen
using	Dynamic	Naming.

Frequently	Asked	Questions
When	should	I	use	newlook	Designer	to	manually	name	screens	instead	of
using	Dynamic	Naming?
For	troubleshooting	purposeses	it	is	important	that	you	understand	how	the
screens	are	named	in	newlook.	However,	you	would	normally	identify	your
screens	using	RAMP	dynamic	naming	because	it	is	quicker	and	easier.
I	navigate	to	a	screen	which	I	have	not	named	yet,	but	RAMP	shows	it	with
a	name	of	another	screen	I	have	already	named?
Newlook	has	assigned	this	screen	the	same	Screen	Id	as	another	screen.	You
need	to	start	newlook	and	use	the	Identify	function	to	change	the	Screen	Ids	so
that	they	are	unique.

Backing	Up	Screen	Definitions
You	may	want	to	keep	backup	copies	of	your	screen	definitions	as	a	precaution
before	you	use	Dynamic	Naming.
To	do	this,	select	the	option	Keep	newlook	sid	file	versions	(RAMP	only)	in	the
Framework	Details	tab	in	Framework	Properties:

	
When	this	option	is	selected,	you	will	be	prompted	to	save	the	definitions	when
you	start	newlook	in	RAMP	tools:

New	IIPs	for	Windows
New	IIPs	have	been	made	available	to	support	Dynamic	Naming:

AvMakeFormName This	method	is	called	when	a	form	has	yet
to	be	named	using	Dynamic	Naming.

AvMakeControlName This	method	is	called	each	time	a	cell	in	the
Input/Output	control	grid	in	Dynamic
Naming	interface	receives	the	focus.	It
allows	you	to	standardise	the	screen’s	field
names	should	your	application	use	a	certain
naming	convention.

AvValidateFormName Validate	the	name	given	to	a	Newlook
screen.

AvValidateControlName Validate	the	name	given	to	a	Newlook
screen’s	control.

	

Example
You	can	modify	the	default	behaviour	of	the	Dynamic	Naming	dialog	in	the
Windows	IIP	(by	default	UF_SYSTM).
This	example	sets	the	prefix	for	all	newlook	controls	XXX:
...
*	This	method	is	called	by	the	dynamic	naming	tool	to	set	a	default	value	to
give	to	an	unnamed	Newlook	form.
*	Here	you	can	specify	a	value	based	on	some	naming	standard	to	give	to	all
Newlook	forms.	The	default	value	returned	by	the	ancestor
*	is	blank.
*	To	specify	your	own,	comment	out	or	delete	the	Invoke
Method(#COm_Ancestor.avMakeFormName)	Formprefix(#FormPrefix)
command
*	and	insert	your	own	logic.	Return	the	value	in	the	output	parameter
#FormPrefix.
	
Mthroutine	Name(avMakeFormName)	Options(*REDEFINE)
*	Define_Map	For(*output)	Class(#vf_eltxtm)	Name(#FormPrefix)	Desc('Prefix

to	apply	to	unnamed	forms	')
	
Invoke	Method(#Com_Ancestor.avMakeFormName)	Formprefix(#FormPrefix)
	
Endroutine
	
*	This	method	is	called	by	the	dynamic	naming	tool	when	the	focus	is	set	into	a
cell	in	the	grid	that	shows
*	all	the	*controls	in	the	Newlook	form	that	is	showing.	Here	you	can	specify	a
value	perhaps	based	on	some
*	naming	standard	to	give	to	all	defined	Newlook	controls.	The	default	value
returned	by	the	ancestor	blank.
*	To	specify	your	own,	comment	out	or	delete	the	Invoke
Method(#COm_Ancestor.avMakeControlName)	Controlprefix(#ControlPrefix)
command
*	and	insert	your	own	logic.	Return	the	value	in	the	output	parameter
#ControlPrefix.
	
Mthroutine	Name(avMakeControlName)	Options(*REDEFINE)
*	Define_Map	For(*output)	Class(#vf_elctln)	Name(#ControlPrefix)
Desc('Prefix	to	apply	to	unnamed	controls	')
	
*	Invoke	Method(#COm_Ancestor.avMakeControlName)
Controlprefix(#ControlPrefix)
	
set	com(#Controlprefix)	value(xxx)
	
Endroutine
	
*	Use	this	method	to	validate	the	name	given	to	a	Form	using	the	Dynamic
Naming	tool.	The	default	behaviour	is	to	return	OK
*	except	when	the	form	name	is	equal	to	the	value	set	in	method
avMakeFormName:
*	If	Cond('#FormName	=	*blanks')
*	Set	Com(#ReturnCode)	Value(ER)
*	Set	Com(#ErrorMessage)	Value(*MTXTVF_UM701_014)
*	Else
*	Set	Com(#ReturnCode)	Value(OK)
*	Endif

	
Mthroutine	Name(avValidateFormName)	Options(*REDEFINE)
*	Define_Map	For(*input)	Class(#vf_eltxtm)	Name(#FormName)	Desc('Form
name	to	be	validated')
*	Define_Map	For(*output)	Class(#vf_elretc)	Name(#ReturnCode)	Desc('OK	or
ER')
*	Define_Map	For(*output)	Class(#vf_elmsg)	Name(#ErrorMessage)
Desc('Returned	message	in	case	of	error')
	
Invoke	Method(#COm_Ancestor.avValidateFormName)
Formname(#FormName)	Returncode(#ReturnCode)
Errormessage(#ErrorMessage)
Endroutine
	
*	Use	this	method	to	validate	the	name	given	to	a	Newlook	control	using	the
Dynamic	Naming	tool.	The	default	behaviour	is
*	to	return	OK	except	when	the	control	name	is	equal	to	the	value	set	in	method
avMakeControlName:
*	If	Cond('#ControlName	=	*blanks')
*	Set	Com(#ReturnCode)	Value(ER)
*	Set	Com(#ErrorMessage)	Value(*MTXTVF_UM701_013)
*	Else
*	Set	Com(#ReturnCode)	Value(OK)
*	Endif
	
Mthroutine	Name(avValidateControlNam)	Options(*REDEFINE)
*	Define_Map	For(*input)	Class(#vf_elctln)	Name(#ControlName)
Desc('Control	name	to	be	validated')
*	Define_Map	For(*output)	Class(#vf_elretc)	Name(#ReturnCode)	Desc('OK	or
ER')
*	Define_Map	For(*output)	Class(#vf_elmsg)	Name(#ErrorMessage)
Desc('Returned	message	in	case	of	error')
	
Invoke	Method(#COm_Ancestor.avValidateControlNam)
Controlname(#ControlName)	Returncode(#ReturnCode)
Errormessage(#ErrorMessage)
	
Endroutine
...

	

New	features	in	EPC	826	Version	of	RAMP
This	section	outlines	new	features	in	EPC	826	version	RAMP:

New	Subfile	Accessor	properties
for	faster	scripting
For	subfiles	that	use	markers	such
as	"+",	"More..",	"Bottom":
									The	new	EndofFileMarker
property	indicates	the	subfile
end	marker.	The	default	is
"Bottom".

									Scrolling	stops	when	either
no	marker	is	found,	or	when	the
marker	exactly	matches
EndofFileMarker.

	
For	subfiles	that	issue	a	message
when	attempting	to	scroll	past	the
end:
									If	the	subfile	has	no	marker
at	all,	set	the	new	UseMarker
property	to	False	and
EndofFileMarker	to	text	that
can	be	found	somewhere	in	the
message	that	appears	when
attempting	to	scroll	past	end.
For	example	EndofFileMarker
=	"made	to	scroll	past	end"				

See	the	Properties	table	in
SUBFILE_ACCESSOR	Object

Add	your	own	options	to	the
scripting	pop-up	menu	by
creating	an	xml	file
See	Adding	Your	Own	Options	to
the	Scripting	Pop-Up	Menu.
	

Set	Command	Handler	Caption
from	RAMP	Scripts
The	captions	for	command
handlers	can	now	be	changed	from
RAMP	scripts	using	the	new
SET_HANDLER_CAPTION
Function.

Turn	off	recursion	checking	for
RAMP	scripts
You	can	use	the	new	global
property
GLOBAL_flagRecursionCheck	to
turn	off	recursion	checking.	See
Switching	Off	Recursion
Checking.

Easier	liteclient	license
configuration
Newlook	liteclient	licenses	can
now	be	used	without	having	to
manually	modify	any	HTML	file.

newlook	Version
This	version	of	RAMP	requires
newlook	Version	8.0.2.11391
dated	July	18	2007	(or	later).

	

	

New	features	in	EPC	804	Version	of	RAMP
This	section	outlines	new	features	in	EPC	804	version	RAMP:

Wrappers	for	5250	screens
Using	RAMP	Screen	Wrappers	you	can	present	a
good	looking,	easy	to	use,	high	GUI	veneer	over
5250	screens	without	having	to	analyze	and	rewrite
all	the	business	logic	imbedded	inside	them.

newlook	Version	8
This	version	of	RAMP	requires	newlook
Version	8.0.1.10669	dated	March	14,
2007	(or	later).

newlook	function	key	bar
The	newlook	function	key	bar	may	now	be
optionally	displayed	on	RAMP	screens	using	the
OVERRIDE_BUTTONS_UNDEFINED_SCREENS
Function.
This	is	most	commonly	done	in	pop-up	windows.

Set	multilingual	function	key	captions
The	captions	show	on	RAMP	buttons	can
now	be	changed	to	be	multilingual	using
the
OVERRIDE_KEY_CAPTION_SCREEN
Function	and
OVERRIDE_KEY_CAPTION_ALL
Function.

Virtual	Clipboard	Access
Information	placed	onto	the	virtual	clipboard	by
VLF	filters	and	command	handlers	can	now	be	read
and	updated	from	RAMP	scripts	using	the
AVSAVEVALUE	Function	and	the
AVRESTOREAVALUE	and	AVRESTORENVALUE
Function.	This	significantly	improves	the	ability	for
RAMP	scripts	and	filters	and	command	handlers	to
exchange	information.
Available	in	VLF	web	or	windows	based
applications.

Scripts
Commonly	used	script	logic	can	
placed	into	a	common	JavaScript	file	as
User-defined	script	functions
better	reuse.
Script	names	may	now	be	changed.
Creating	a	Script	Naming	Convention
sometimes	necessary	when	many
developers	work	on	the	same	application.
Also	see	xxxxxxx	is	an	orphan	script	and
should	be	deleted.
	

User-defined	lock	message
The	message	that	appears	when	a	user	attempts	a
RAMP	navigation	from	an	unknown	screen	has	been
improved.
The	message	presented	is	now	different	for
designers	and	end-users.	Additionally	the	message
text	may	now	be	changed	from	a	RAMP	script	to

Handling	undefined	screens
Often	unknown	screens	are	left	on
display	by	users,	causing	the	unknown
screen	lock	message	to	be	displayed
when	they	attempt	to	navigate
somewhere	else.	Now	you	can	instruct
Windows	RAMP	applications	how	to

exactly	what	any	site	requires	using	the
SET_LOCK_MESSAGE	Function.

‘guess’	what	it	might	do	automatically	to
make	an	unknown	screen	go	away	using
the	ADD_UNKNOWN_FORM_GUESS
Function,	so	that	the	users	navigation
request	can	be	handled	correctly.

Deployment
Visual	LANSA	Framework	and	RAMP	check	lists
for	deployment	are	available.	The	detailed	check
lists	guide	the	user	in	planning	the	deployment,
packaging	the	material	and	installing	the	package.

Change	Date/Time/User	Displayed
The	RAMP	tool	now	displays	the	last
changed	date-time-user	for	all	screens
and	scripts	to	make	script	source
management	easier.
List	of	objects	in	the	session	tree	may	be
sorted	by	their	date	and	time.

Handling	Pop-ups
A	new	section	Handling	Pop-Ups	describes	how	to
handle	pop-up	windows	in	RAMP.
The	new	FORCE_POPUP_REFRESH	Function
displays	hidden	pop-ups.

Advanced	Prompting
Information	is	provided	on	how	to	handle
the	additional	information	that	can	be
passed	to	or	retrieved	from	a	prompter
form	using	the	HANDLE_PROMPT
Function.

javascript:void(0);openCHM('lansa047.chm',’lansa’);

New	features	in	EPC	793	Version	of	RAMP
This	section	outlines	new	features	in	EPC	793	version	RAMP:
Performance
The	start-up	times	for	Framework	applications	(including	RAMP)	have	been
substantially	improved	in	this	version.	For	more	information	see	What's	New	in
the	Framework	Guide.
	
Instance	Lists
RAMP-specific	instance	list	information	is	now	provided.	See	Advanced
Instance	List	Processing.
	
To	review	new	features	in	previous	Framework	versions,	see:
New	features	in	EPC	785	Version	of	RAMP

javascript:void(0);openCHM('LANSA048.CHM::/lansa048_0015.htm',’lansa’);
javascript:void(0);openCHM('LANSA048.CHM::/lansa048_3120.htm',’lansa’);

New	features	in	EPC	785	Version	of	RAMP

RAMP	in	the	Browser
RAMP	applications	can	now	be
executed	in	the	browser	version	of
the	Visual	LANSA	Framework.
You	can	use	both	Webevent	and
WAM	filters	in	your	application.
See	Starting	the	Framework	on	the
Web
	

Merge	Tool
Framework	and	RAMP
applications	can	now	be	merged
together	When	Many	Developers
Work	on	the	Same	Application.

New	Choreographing	Features
You	can	use	the	Snapshot	button
while	choreographing	to	capture
the	5250	screens	as	a	bitmaps.
You	can	use	the	screen	images	to
give	your	prototype	a	realistic	look,
as	a	memory	jogger	or	for
documentation	purposes	during
POC	exercises.
Also,	a	new	Refresh	button	is
available	to	force	the	RAMP
choreographer	to	re-examine	the
current	5250	screen.	This	is	useful
in	situations	involving	5250	flash
screens
	

Internet	Explorer	(IE)	7	is	now
supported	as	a	browser	in	VLF
end-user	applications
Note	that	at	this	date	IE7	is	still	a
Microsoft	beta	product	and	it	is
not	yet	supported	by	the	Visual
LANSA	IDE	for	developers.

Scripting
New	functions:
GET_MENU_OPTION_NUMBER
Function
STRIP_LEADING_NUMBERS
Function
ADD_STRING	Function

Subfile	Handling
Enhancements
Subfile	access	from	scripts	has
been	improved.	A	new
SUBFILE_ACCESSOR	object	is
provided	and	simpler	scripting	is
now	possible.
See	Subfiles/Browselists	for

STRING	Function
	
The	automated	generation	of
scripts	has	been	improved,	with
better	explanations	in	cases	when	a
script	cannot	be	generated
automatically
	
Also	see	Javascript	Essentials
documentation	and	the	Movie
Index	for	new	scripting	movies.
	

movies	on	subfile	handling.
A	new	Probe	button	is	available
to	probe	the	current	5250	form
layout,	especially	subfile	layouts.
It	presents	information	about	the
fields	and	subfile	rows	and
columns	that	makes	scripting
easier	and	simpler.

Run-Time	RAMP	Performance
Improvements
Business	Object	instance	list
processing	is	faster	in	all	Visual
LANSA	Framework	Windows
applications.			
RAMP	application	start-up
performance	has	been	improved,
particularly	when	executing	in	end-
user	mode.		

Changes	To	Trace	and
Messaging
Application	Tracing	and	message
handling	have	been	improved,
including	the	ability	to	save	trace
details	to	a	file.	
Buttons	to	turn	application	level
tracing	off	or	on	are	now
presented	directly	on	RAMP
screens	when	working	as	a
developer	as	continual	reminder
that	this	is	the	primary	script
debugging	aid.

The	5250	Home	key	is	now
handled	in	RAMP	applications
	

User	Interface	Improvements
The	newlook	5250	session	height,
width,	location	and	masking	areas
can	now	be	set	for	individual
5250	forms	to	override	the
session	level	defaults	in
Destination	Screen	Details.

Licensing	Requirements
Developer	Quick	Check	List
If	you	are	RAMP	developer	then	use	this	quick	check	list:

Checked Type	of
License

What	does	it
allow	you	to	do

How	to	check	it

	 VL-IDE	dongle
or	Softkey
license

To	develop
Visual	LANSA
applications

Can	you	create,	compile
and	execute	Visual
LANSA	(VL)
applications	and	check
them	into	your	System	i
server?

	 RAMP
choreographer
license

To	choreograph
RAMP	screens

Use	LANSA
REQUEST(LICENSE)
on	your	System	i	server
and	look	for	a	valid
"AXX"	or	"Ann"	license.

	 newlook
Professional
Edition	(PE)	or
Centric	license

To	identify	and
enhance	screens
using	the
newlook
Designer.

Use	WRKLICINF
PRDID(0NWLOOK)	on
your	System	i	server.

	 newlook
smartclient	or
liteclient
license

To	execute	5250
applications
inside	newlook.

WRKLICINF
PRDID(0NWLOOK)	on
your	System	i	server.

	 LANSA	Super
Server	license

To	access	remote
data	and
programs	on	your
System	i	via	non-
5250	interfaces.

Use	LANSA
REQUEST(LICENSE)
on	your	System	i	server
and	look	for	a	valid
"LXX"	or	"Xnn"	license.

To	obtain	any	type	of	license	contact	your	LANSA	product	vendor.
If	you	need	to	understand	the	detailed	licensing	requirements	for	both

developers	and	end	users,	refer	to	Complete	Licensing	Details.
More	About	Newlook	Licensing	describes	newlook	licensing.
	

Complete	Licensing	Details

License
Type

RAMP
license

Visual
LANSA
Development
license

newlook
Professional
Edition
(PE)	or
Centric
license

Newlook
smartclient
or	liteclient
license

LANSA
Super
Server
license

License
Purpose

To
choreograph
RAMP
screens

To	develop
Visual
LANSA
applications

To	identify
and	enhance
screens	in
newlook

To	execute
RAMP
applications

To	access
remote
data	and
programs
on	your
System	i
via	non-
5250
interfaces.

Required
by	RAMP
application
developer

v v	-	See	Note
1

v v v	-	See
Note	2

Required
by	RAMP
application
end-user

	 	 	 v v	-	See
Note	3

	
Notes:
1:	Visual	LANSA	Development	licenses	are	dongles	or	soft	keys	that	are	bound
to	a	specific	developer	workstation.	All	other	licenses	are	slot-based	(licensed
per	server	by	number	of	concurrent	developers).
2:	Visual	LANSA	Development	licenses	may	include	a	Super-Server	license.
Entitlements	may	vary.
3:	RAMP	applications	may	be	designed	and	developed	in	a	restricted	manner	so
that	they	do	not	require	LANSA	Super	Server	licenses.
	

Visual	LANSA	Version
Visual	LANSA	version	12.0	with	EPC	859	and	patch	EPC859HF-101005
applied,	or	later.
	

newlook	Version
You	need	to	use	newlook	Version	8.0.5.14769	(or	later).
	
About	the	RAMP	License
The	RAMP	license	is	only	required	to	use	RAMP	tools	during	application
development.	It	may	be	an	AXX	(unlimited)	or	an	Ann	(limited	to	nn
concurrent	developers)	license.
Install	it	on	the	System	i	server	that	you	use	for	application	development.
If	you	do	not	have	a	license	to	use	the	RAMP	tools	you	need	to:
									Obtain	a	RAMP	license	from	LANSA.
									Input	the	license	code	on	your	System	i	server	using	the	LANSA
REQUEST(LICENSE)	command	followed	by	the	Insert	a	Permanent
License	Code	menu	option.	Key	in	the	License	Type	(AXX	or	Ann)	and	the
License	Code	assigned	to	you	by	LANSA	and	press	Enter.	This	method	of
license	installation	is	the	same	as	for	all	other	licensed	LANSA	products.

									When	you	start	the	Visual	LANSA	Framework	and	need	to	use	the	RAMP
tools,	use	should	use	super-server	mode	and	connect	to	your	System	i	server
so	that	your	license	can	be	checked,	so	a	Super	Server	license	is	also
required.					

	

About	the	newlook	Licenses
									Developers	designing	and	enhancing	newlook	screens	also	require	use	of	a
newlook	execution	license	(smartclient	or	liteclient).

									newlook	liteclient	licenses	restrict	the	range	of	newlook	execution	time
facilities	available.

	

More	About	Newlook	Licensing
VLF.RAMP	starts	newlook	in	two	different	ways:
									In	RAMP	tools	to	support	developer	choreographing

									On	command	handler	tabs	as	part	of	executing	an	VLF	application.

How	a	LiteClient	License	is	Determined
When	newlook	is	started,	this	VLF	server	definition	setting	is	checked:

	
In	RAMP	tools	à	If	any	server	definition	has	‘Use	liteclient	license’	ticked,
newlook	is	requested	to	start	up	using	a	liteclient	license.						
On	command	handler	tabs	à	If	the	connected	server	has	‘Use	liteclient	license’
ticked,	newlook	is	requested	to	start	up	using	a	liteclient	license.					
		

Other	Types	of	Newlook	Licenses
If	a	liteclient	license	is	not	to	be	used,	then	VLF_RAMP	starts	newlook	without
specifying	a	license	type.	This	means	that	newlook	will	use	its	own	logic	to
determine	what	type	of	license	should	be	used.	It	will	do	this	based	on	how	your
newlook	environment	is	configured,	which	is	usually	determined	by	you	when
you	installed	or	upgraded	newlook.			
		

Checking	the	Type	of	Newlook	Licence(s)	you	have
To	verify	the	type	of	license	used	by	a	client	PC	you	have	to	check	the	value	of
Edition	in	the	following	registry	key:
	
HKEY_CURRENT_USER\Software\looksoftware\newlook\8.0
	
If	set	to	Host	the	client	will	request	a	license	from	the	host.
If	set	to	blank	the	client	will	has	been	set	to	use	a	Local	license.	A	Local	licence
will	usually	override	all	other	settings	and	requests.

To	check	your	Host	licences	use	the	WRKLICINF	PRDID(0NWLOOK)
command.
All	different	license	types	are	listed	for	the	appropriate	version	but	that	doesn’t
mean	you	the	host	has	a	real	license.	For	example,	you	might	see	something	like
this:
	
Product			Term				Feature		Description
0NWLOOK		V8R0						5001				smartclient
0NWLOOK		V8R0						5002				newlook			
0NWLOOK		V8R0						5003				centric			
0NWLOOK		V8R0						5004				soarchitect
0NWLOOK		V8R0						5005				liteclient
0NWLOOK		V8R0						5010				lookdirect
	
To	find	out	which	of	the	license	types	the	machine	is	licensed	to,	press	F11.	You
will	then	see	something	like	this:
	
Product			Term				Feature		Limit								Count
0NWLOOK		V8R0						5001				0												.00
0NWLOOK		V8R0						5002				3												1.00
0NWLOOK		V8R0						5003				0												.00
0NWLOOK		V8R0						5004				0												.00
0NWLOOK		V8R0						5005				8												.00
	
The	Limit	column	tells	you	total	number	of	license	seats	and	the	Count	column
how	many	seats	are	currently	in	use.
	

Forcing	Newlook	to	start	using	a	specific	licence	type
Provided	that	you	are	not	using	a	local	license,	you	can	do	this	by	modifying
VLF	JavaScript	files	VF_UM703.JS	(used	by	RAMP	Tools)	and/or
VF_SY120.JS	(used	to	execute	newlook	on	command	handler	tabs).
In	both	these	files	you	will	find	a	section	of	code	like	this:
	
			if	(flagLiteclient)
			{

						var	strHTML	=	"<object	id='__objNewLookAX'
onreadystatechange='VF_SY121_KICK_OFF()'	style='height:100%;'
width='100%'	classid='CLSID:CFFE5E18-79B9-431C-8CE2-
AE55A16E7C09'><param	name='options'	value='-vs	-vr	-q	-i"	+	sUseIni	+	"'>
<param	name='TimeOut'	value='0'><param	name='HideToolbars'	value='-1'>
<param	name='HideConnectionDialog'	value='1'><param	name='license'
value='liteclient'><h1	id='NL_Failed'>Newlook	has	failed	to	Initialize.</h1>
</object>";
			}
			else
			{
						var	strHTML	=	"<object	id='__objNewLookAX'
onreadystatechange='VF_SY121_KICK_OFF()'	style='height:100%;'
width='100%'	classid='CLSID:CFFE5E18-79B9-431C-8CE2-
AE55A16E7C09'><param	name='options'	value='-vs	-vr	-q	-i"	+	sUseIni	+	"'>
<param	name='TimeOut'	value='0'><param	name='HideToolbars'	value='-1'>
<param	name='HideConnectionDialog'	value='1'><h1	id='NL_Failed'>Newlook
has	failed	to	Initialize.</h1></object>";					
			}
	
	
The	first	section	is	used	to	specify	a	newlook	liteclient	licence	when	starting.			
You	need	to	add	a	<param	name='license'	value='smartclient'>	string	into	the
code	section	to	indicate	what	type	of	license	you	want	to	force	newlook	to	use.
The	second	section	assembles	the	HTML	tag	used	to	start	newlook	with	a
default	license.	This	is	the	code	section	you	need	to	modify
	

Installation	and	Configuration
Installation
Configuration
Starting	the	Framework	on	the	Web
When	Many	Developers	Work	on	the	Same	Application

Installation
Install	RAMP
Install	newlook

Install	RAMP
See	the	Framework	Guide	for	detailed	instructions	for	installing	the	Framework.
You	need	to:
									Install	the	Framework	software	on	the	System	i	Server.	Note	that	you	only
need	to	perform	this	step	and	none	of	the	other	steps	described	in	the
Framework	Guide	because	you	are	not	installing	LANSA	for	the	Web.

									Install	and	Configure	the	Framework	on	Visual	LANSA	Workstations.

javascript:void(0);openCHM('LANSA048.CHM::/lansa048_2225.htm',’lansa’);
javascript:void(0);openCHM('LANSA048.CHM::/lansa048_0745.htm',’lansa’);

Install	newlook
You	need	to	use	newlook	Version	8.0.5.14769	(or	later).
Locate	it	on	www.looksoftware.com.
We	recommend	that	if	you	have	an	earlier	newlook	8	version	installed	on	the
machine,	you	uninstall	it	and	reboot	before	installing	the	new	version.
During	the	installation	choose	the	Typical	setup.
Next,	if	you	have	a	newlook	license,	select	the	request	host	license	option.

Configuration
Verify	newlook	Installation
Verify	Internet	Explorer	Security	Settings
Configure	newlook
Configure	RAMP

Verify	newlook	Installation
Start	newlook	in	the	looksoftware	suite	program	folder.	Select	option	newlook
8.0.
Then	select	the	Connect	option	in	the	Session	menu.

In	the	Connect	dialog	click	on	the	Wizard	On	toggle	button	to	turn	it	off.	Then
use	the	Add	button	to	add	the	server	that	has	the	application	you	are	going	to
modernize	to	newlook.

Click	Next.	Then	specify	a	name	for	the	connection:

Click	next.	Then	select	the	connection	type:

Click	Next.	Then	specify	the	internet	address.	Do	not	select	Secure	connection.

Click	Next.	Accept	the	default	session	type:

Click	Next.	You	do	not	have	to	specify	a	device	name.	Do	not	select	Connect
using	lookdirect.

Click	Next.	Select	the	locale:

Click	Next.	Select	the	sign-on	options	for	obtaining	the	newlook	license	from
the	System	i:
									In	most	situations	we	recommend	you	select	the	Specify	the	username	and
password	option	so	that	the	information	required	for	obtaining	the	license	is
stored	in	the	newlook.sid	file.	In	this	way	later	on	you	will	be	able	to	deploy
a	generic	profile	with	your	application	and	the	end-user	will	not	be	prompted
for	the	username	and	password.	(If	you	choose	the	option	Use	the	common
username	and	password,	newlook	uses	the	profile	stored	in	the
HKEY_CURRENT_USER\Software\looksoftware\newlook\8.0\Sign	On
registry	key	on	the	PC.)

									Make	sure	that	the	Automatically	signon	to	display	sessions	option	is	NOT
selected	in	any	RAMP	applications:

Click	Next.	Specify	the	username	and	password	used	to	obtain	a	valid	profile	so
that	newlook	can	retrieve	a	newlook	license	from	the	System	i.	It	is
recommended	you	use	a	profile	that	never	expires.

Then	click	Finish.

When	your	connection	is	defined,	click	on	the	Connect	button.	Enter	the
username	and	password	to	sign	on	to	your	server:

The	newlook	version	of	your	server's	5250	sign-on	screen	is	displayed:

You	have	now	verified	newlook	has	been	installed.

Verify	Internet	Explorer	Security	Settings
Verify	that	that	the	internet	security	setting	Allow	active	content	to	run	files	on
my	computer	is	selected:
									Open	Internet	Explorer

									Select	the	Internet	Options	option	in	the	Tools	menu
									Display	the	Advanced	Tab
									Locate	the	Security	group

									Ensure	the	Allow	active	content	to	run	files	on	my	computer	option	is
selected.

Depending	on	the	version	of	Internet	Explorer	you	have,	this	option	may	not	be
present.	If	it	is	not	present,	just	ignore	this	step.

Configure	newlook
Merge	Shipped	Macros	into	newlook
Configure	newlook	for	a	Windows	Look	and	Feel

Merge	Shipped	Macros	into	newlook
Merge	VF_XP.nlg
Merge	VF_MACRO.sid

VF_XP.nlg
Using	Windows	Explorer,	copy	the	files	of	type	VF_XP*.nlg	(VF_XP.nlg,
VF_XP_2007BLUE.nlg,	VF_XP_2003BLUE.nlg	etc):
									From	the	Execute	directory	of	the	LANSA	partition	you	will	be	using	(for
example	C:\Program	Files\LANSA\X_WIN95\X_LANSA\x_dem\execute)

									To	the	newlook	directory	(for	example	C:\Program	Files\looksoftware	8.0)

VF_MACRO.sid
Merge	the	VF_MACRO.sid	file	into	newlook:
									Start	looksoftware	suite	8.0	then	newlook	8.0		

									In	the	Tools	menu	select	Merge	Repository

The	Browsing	for	Dynamic	Recognition	Repository	dialog	is	displayed.
									Use	this	dialog	to	locate	VF_MACRO.sid	in	your	LANSA	partition
execute	directory	(for	example	C:\Program
Files\LANSA\X_WIN95\X_LANSA\x_dem\execute):

									Click	Open.
									Display	the	Macros	tab.	Select	VF_MACRO	from	the	list	of	macros.	Then
click	on	the	Merge	button:

The	Framework	macros	should	now	have	now	been	merged	into	newlook.

This	is	confirmed	by	a	Merge	Summary	screen	like	this:

Configure	newlook	for	a	Windows	Look	and	Feel
To	optimize	the	appearance	of	your	RAMP	screens,	you	need	to	make	some
changes	to	newlook	options.	To	do	this	Start	newlook	by	clicking	on	the
newlook	Designer	button	in	the	RAMP	Tools	window	and	then:

									Change	the	Scheme

									Change	the	Background

									Ensure	newlook	uses	the	Windows	Themes

									Suppress	newlook	Sounds

Change	the	Scheme
To	change	the	newlook	scheme	to	XP,	select	the	Tools	menu	and	then	the
Settings	option	in	the	newlook	window:

To	change	the	scheme	of	your	RAMP	screens,	select	the	Display	tab	and	click
on	the	Settings	button	in	the	Appearance	area:

In	the	Graphical	tab	of	the	Appearance	dialog	change	the	Scheme	to	VF_XP	if
your	framework	application	does	not	use	Visual	Themes.
If	your	framework	application	uses	a	Visual	theme,	select	the
matching	VF_XP_*	value.
See	the	Framework	property	Overall	Theme.

javascript:void(0);openCHM('LANSA048.CHM::/lansa048_4265.htm',’lansa’);

		
Click	OK.

Change	the	Background
By	default	newlook	uses	a	background	image	on	the	modernized	screens	which
you	may	prefer	remove.	To	do	this,	click	on	the	Settings	button	in	the
Background	area	in	the	Display	tab.
The	Background	dialog	is	displayed.
Blank	out	the	Picture	field	to	remove	the	background	graphic:

Click	OK.
Close	the	newlook	Settings	dialog	by	clicking	OK.

Ensure	newlook	uses	the	Windows	Themes
You	need	to	ensure	that	newlook	is	set	up	to	use	Windows	themes	and	visual
styles	in	order	to	enable	visual	effects	such	as	mouseovers.	To	do	this	select	the
Rules	option	in	the	Tools	menu.
The	newlook	Rules	dialog	is	displayed:

Display	the	Categories	tab	and	then	click	on	the	Advanced	button:
The	Advanced	Categories	dialog	is	displayed:

Select	the	Use	Windows	themes	and	visual	styles	option.	Then	click	OK	to
close	the	dialog.	Close	the	newlook	rules	dialog	by	clicking	OK.

Suppress	newlook	Sounds
By	default	newlook	automatically	plays	sounds	in	some	situations,	for	example
when	a	host	screen	is	received.	To	suppress	these	sounds:
									Start	newlook

									Display	the	Tools	menu	and	select	the	Settings	option
									Display	the	Preferences	tab	in	the	newlook	Settings	window	and	uncheck
the	Enable	Sounds	option:

									Click	OK
	
	

Configure	RAMP
Perform	these	steps	to	define	a	newlook	server	in	the	Framework:
Specify	Server	Details
Set	up	Super-Server	Session
Optionally	Set	up	Framework	Users	and	Security
Optionally	Configure	newlook	User	Profile	and	Password	in	the	Framework

Specify	Server	Details
									Start	the	Framework.
									In	the	Administration	menu	of	the	Framework	select	the	Servers	option.
									In	the	Server	Details	tab,	select	LANSA	for	System	i	+	newlook	as	the
Server	Type.	(If	your	System	i	and	newlook	servers	have	different	IP
addresses	even	though	they	might	be	the	same	physical	server,	choose	the
newlook	Only	option.)

									Enter	the	name	of	the	newlook	connection	as	defined	in	the	newlook
Connection	Properties	panel	in	the	Server	Name	property.	You	can	leave	the
name	blank	in	which	case	the	IP	address	and	Port	Number	will	be	used.

									If	you	are	using	a	newlook	liteclient	license,	select	the	Use	'liteclient'
license	check	box.

									If	you	leave	also	the	IP	Address	and	Port	Number	blank,	the	newlook
connection	panel	will	be	displayed	when	the	Framework	is	trying	to	establish
a	connection.

	

Set	up	Super-Server	Session
When	using	RAMP	you	need	a	super-server	session	to	sign	on	to	the	System	i
server.	To	specify	the	sign-on	option:
									Start	the	Framework.
									Display	the	Framework	menu	and	select	the	Properties	option.
									In	the	Framework	Properties,	select	the	User	Administration	Settings	tab.
									Select	the	Users	Sign	on	to	a	Remote	Server	to	Use	the	Framework	option
in	Sign	on	Settings.

									Close	the	dialog	and	save	the	Framework.

	

Optionally	Set	up	Framework	Users	and	Security
You	can	optionally	use	Framework	users	and	security:
									Display	Framework	properties.	In	the	User	Administration	Settings	tab
select	the	Use	Framework	Users	and	Authority	option.	Also	select	the	option
Store	Users	in	DBMS	tables	VFPPF06/07.	Save	and	restart	the	Framework.

									In	the	Administration	menu	select	the	Users	option.
									Specify	the	user	profile	details	and	their	authorities.	For	more	information
use	the	context-sensitive	help	by	pressing	F1.

	

Optionally	Configure	newlook	User	Profile	and	Password	in	the
Framework
Most	commonly	the	newlook	user	profile	and	password	are	the	same	as	the	the
user	profile	and	password	used	for	the	Framework	superserver	connection.	In
this	case	do	not	specify	the	newlook	user	id	and	password	because	RAMP	will
default	to	these	values	when	starting	a	newlook	session.
However,	if	you	are	using	Framework	Users	and	Security	and	if	the	newlook
user	profile	and	password	are	different	from	the	Framework	user	profile	and
password,	you	can	specify	your	newlook	User	Profile	and	newlook	Password	in
the	Framework.	Alternatively	you	can	specify	these	details	when	connecting	to
newlook.
If	you	want	to	specify	these	details	in	the	Framework:
									Start	the	Framework.
									In	the	Administration	menu	select	the	Users	option	to	display	the	User
Details	tab.

									Select	your	user	profile.
									In	the	newlook	User	and	newlook	Password	fields,	define	the	user	profile
and	password	you	use	to	connect	from	newlook	to	your	System	i	server,	or
use	the	special	value	*PROMPT	in	both	fields.

									Close	the	dialog	and	save	the	Framework.

javascript:void(0);openCHM('LANSA048.CHM::/L4wVLF11_0080.htm',’lansa’);
javascript:void(0);openCHM('LANSA048.CHM::/L4wVLF11_0085.htm',’lansa’);

Starting	the	Framework	on	the	Web
There	are	RAMP-specific	options	when	starting	the	Framework	on	the	web.	See
this	section	in	the	Framework	guide:	Web	Application	Start	Options.

javascript:void(0);openCHM('LANSA048.CHM::/lansa048_0900.htm',’lansa’);

When	Many	Developers	Work	on	the	Same	Application
When	modernizing	large	applications,	it	may	be	necessary	that	several
developers	share	the	work.
Handle	Multiple	Framework	Versions
Multiple	Developers	Using	newlook
Script	Naming	Convention

Handle	Multiple	Framework	Versions
See	Framework	Versions.

javascript:void(0);openCHM('LANSA048.CHM::/L4wVLF08_0040.htm',’lansa’);

Multiple	Developers	Using	newlook
When	multiple	developers	are	identifying	screens	and	fields	in	newlook,	it	is
recommended	that	the	developers	work	from	local	copies	of	the	SID	file	with
updates	being	merged	into	a	central	repository.	The	merge	process	should	be
performed	by	a	single	developer	who	is	responsible	for	managing	potential
conflicts.
However,	it	is	also	possible	to	have	multiple	developers	working	on	the	same
SID	file	via	the	network.	You	should	note	that	working	on	a	SID	via	a	network
is	not	as	fast	as	working	on	a	SID	file	locally	and,	as	with	all	shared	databases,
there	is	always	the	risk	of	data	corruption	due	to	PC	lockups	or	power	outages.
To	work	on	a	shared	.sid	file:
									Copy	the	newlook.sid	(or	whatever	your	shared	dynamic	repository	is
named)	to	a	shared	folder.

									In	newlook	choose	the	Settings	option	from	the	Tools	menu,	then	click	the
Settings	button	in	the	Dynamic	Recognition	Repository	section.

									In	the	Shared	field	specify	the	newlook.sid	file	on	the	shared	folder.
Repeat	the	last	two	steps	for	all	developers	who	want	to	work	on	the	repository.
Many	developers	can	simultaneously	work	on	the	same	newlook.sid	file.		If
developer	A	makes	some	customizations	to	a	screen	and	saves	the	changes,
developer	B	will	see	those	customizations	instantly.	If	two	developers	try	to
change	the	same	object	(i.e.	screen,	macro,	etc)	at	the	same	time,	newlook	tells
the	second	developer	that	the	relevant	object	is	currently	locked	by	another
developer.

Script	Naming	Convention
RAMP	scripts	are	assigned	names	like	INVOKE_SCRIPT_2,
BUTTON_SCRIPT_7,	etc.
The	name	reflects	their	purpose	and	the	numerical	suffix	makes	them	unique
within	the	current	Framework,	but	they	have	no	real	programmatic	purpose.
Where	multiple	developers	are	working	on	independent	Frameworks	with	an
intention	to	merge	their	work	together	at	some	later	date,	the	possibility	of
duplicated	script	names	exists.	While	this	situation	does	not	present	a	technical
problem	for	RAMP,	it	can	be	confusing	for	developers	trying	to	identify	unique
scripts.			
Developers	can	change	the	names	of	the	scripts	in	the	Script	Details	area.	The
recommend	way	to	do	this	is	to	append	a	short	suffix	to	the	generated	script
name,	possibly	relating	to	the	5250	screen	or	application	that	the	script	is
associated	with.
Also	see	xxxxxxx	is	an	orphan	script	and	should	be	deleted.

Starting	RAMP
This	section	summarizes	how	you	start	LANSA	and	the	features	inside	LANSA
you	will	need	when	modernizing	an	application.
Start	LANSA
Start	the	Framework
Start	RAMP
Start	newlook
Start	the	Instant	Prototyping	Assistant
Start	the	Program	Coding	Assistant

Start	LANSA
To	start	LANSA:
									Use	the	Start	menu	and	display	the	Programs	folder.
									Select	LANSA.
									Select	the	Development	Environment	option

The	LANSA	development	environment	is	displayed

Start	the	Framework
You	start	the	Framework	from	the	LANSA	development	environment:
									Display	the	Tools	menu.
									Select	the	VL	Framework	-	as	Designer	option.

Start	RAMP
You	start	RAMP	from	the	Framework	window:
									Display	the	Framework	menu.
									Select	the	RAMP	Tools...	option.

The	RAMP	and	newlook	Tools	window	is	displayed.

Start	newlook
									You	start	newlook	in	the	RAMP	Window	There	are	two	different	ways	you
use	newlook:

Identifying	Screens
To	identify	5250	screens,	click	on	the	newlook	Designer	button	on	the	bottom	of
the	RAMP	and	newlook	tools	window:

The	newlook	window	is	displayed:

Use	the	Session	menu	to	establish	a	connection	to	the	newlook	server.

Defining	Screens
After	you	have	identified	the	screens	using	newlook	Tools,	you	need	to	define
the	screens	in	the	Framework	and	track	the	navigation	between	them.
To	do	this,	start	the	newlook	emulator	session	by	clicking	on	the	message
newlook	has	not	been	started	in	the	message	area:

The	newlook	Emulator	Session	is	started	in	the	RAMP	window.	Use	the	Session
menu	to	connect	to	the	server.
	
	
	

Start	the	Instant	Prototyping	Assistant
The	tutorial	movie	Create	a	prototype	of	your	application	-	3	minutes	shows
how	to	use	the	Instant	Prototyping	Assistant.
Use	the	Instant	Prototyping	Assistant	to	quickly	prototype	your	application	or	to
modify	an	existing	prototype
To	start	the	Instant	Prototyping	Assistant,	use	the	Instant	Prototyping	Assistant...
option	in	the	Framework	menu.

Alternatively,	select	the	New	Application	or	New	Business	Object	options	from
the	popup	menu	in	the	navigation	pane:

And	then	respond	Yes	to	the	message	that	appears:

The	Instant	Prototyping	Assistant	is	displayed:

Start	the	Program	Coding	Assistant
The	tutorial	movie	Create	a	filter	and	snap	it	in	-	4	minutes	shows	how	to	use
the	Program	Coding	Assistant.
Use	the	Program	Coding	Assistant	to	quickly	create	the	code	for	Framework
filters	and	RAMP	screens.
To	start	it,	use	the	Program	Coding	Assistant	option	in	the	Framework	menu:

	
	
	

Concepts
Steps	Involved	in	Using	RAMP
Framework	Window
RAMP	Window
Types	of	Screens
OBJECT-ACTION	User	Interfaces

Steps	Involved	in	Using	RAMP
You	need	to	complete	these	steps:

Step Comments
	

Navigation
Modernization

Application
Modernization

1.	Create	a
prototype	of
your
application.

The
prototype
will	evolve
into	the
final
application.
You	need
access	to
the	subject
matter
expert	at
least	during
this	stage.	
		

	 	

2.	Identify
the	5250
screens	in
the	existing
application.

You	use	the
newlook
Designer
for	this.

Identify	only
entry	point
5250	screens

Identify	all
5250	screens
that	need	to	be
modernized	as
well	as
significant
fields

3.	Record
the	5250
entry	point
screens	and
snap	them
into	the
Framework.	

The
Framework
needs	to
know	how
to	access
and	display
the
screens.		

	 	

4.	Create	the Using Not	necessary.

required
Framework
filters

powerful
filters	is	the
basis	of
reusing	the
5250
screens	in
new
modernized
ways.	

	

5.
Optionally
add	new
features
making	use
of	Windows
functionality

For
example
you	may
want	to	add
advanced
screens	for
for	instance
email,
video,
graphing.

	 	

6.	Deploy Deploy
your
application

	 	

	

Framework	Window

RAMP	Window

Message	Area
Screen	Tracking	Area
newlook	Emulator	Session
Screen	and	Script	List
Details	Area

Message	Area
RAMP
Window

Screen
Tracking
Area

newlook
Emulator
Session

Screen	and
Script	List

Details
Area

The	RAMP	message	area	shows	messages	about	where	you	are	and	what	you
should	be	doing.
When	newlook	is	running,	messages	are	shown	for	the	screen	selected	in	the
Screen	Tracking	Area.
If	messages	have	a	message	icon,	click	on	it	to	see	what	actions	are	available.
The	message	area	has	buttons	you	can	use	when	tracking	screens:

	

Probe Use	the	Probe	button	to	examine	the	layout	of	the	current
5250	screen	and	produce	an	online	report.	It	is	used	for
problem	analysis	and	to	determine	the	rows	and	columns
used	in	a	subfile.

Snapshot Use	the	SnapShot	button	to	take	a	snapshot	of	the	current
5250	form	in	GUI	or	5250	mode	and	save	it	as	bitmap.
These	images:

									Can	be	dragged	and	dropped	onto	RAD-PAD
prototype	command	tabs	to	enhance	communications
during	design	sessions	with	other	developers	or	end-
users.

									Are	useful	for	producing	system	documentation

									Are	an	aid	to	remembering	exactly	what	5250	screen
is	associated	with	a	junction,	destination	or	special
screen.

The	(nnn	x	nnn)	numbers	on	the	button	indicate	the	pixel
size	of	the	snapshot	that	will	be	saved.	These	numbers	will
change	as	you	change	the	layout	of	the	RAMP	Tools
window.		

Restart Use	the	Restart	button	to	erase	the	tracking	information	and
restart	tracking.

Refresh Use	the	Refresh	button	to	force	the	RAMP	choreographer
to	re-examine	the	current	5250	screen.	This	is	useful	in
situations	involving	5250	flash	screens.

	

Screen	Tracking	Area
RAMP
Window

Message
Area

newlook
Emulator
Session

Screen	and	Script
List

Details
Area

The	Tracking	area	displays	the	screens	you	have	displayed	in	the	current
newlook	5250	emulator	session.	When	you	end	the	newlook	session,	the
tracking	information	is	cleared.
Colors	used	in	the	Tracking	area	for	screens	indicate	their	status	and	type	you
have	assigned	to	the	screen:

	 The	screen	has	not	been	identified	in
newlook.
Before	using	RAMP	tools,	you	must
identify	the	screens	of	your	application
using	newlook.

The	screen	has	been	identified	in	newlook,
but	it	has	not	been	defined	in	RAMP.
You	need	to	define	the	screens	in	your
application	according	to	their	purpose:
									Destination	screens	are	screens	where
the	end-user	works

									Junction	screens	are	used	for
navigation	only

									Special	screens	are	used	for	messages
etc.

To	define	a	screen,	click	on	the	message
saying	that	the	form	has	not	been	defined.

The	screen	is	a	junction	screen.

The	screen	is	a	special	screen.

The	screen	is	a	destination	screen.

newlook	Emulator	Session
RAMP
Window

Message
Area

Screen	Tracking
Area

Screen	and
Script	List

Details
Area

You	use	the	newlook	emulator	session	to	run	the	application	you	are
modernizing.
When	newlook	has	not	been	started,	the	message	newlook	has	not	been	started
is	shown	in	the	message	area:

Click	on	the	message	to	start	newlook.	Then	use	the	newlook	Session	menu	to
connect	to	the	server:

Screen	and	Script	List
RAMP
Window

Message
Area

Screen
Tracking
Area

newlook
Emulator
Session

Details
Area

The	screen	and	script	list	shows	all	the	5250	screens	defined	in	the	Framework
and	the	associated	scripts:

Select	the	screens	and	scripts	you	want	to	work	with.
You	can	use	the	Find	field	on	the	top	of	the	list	to	locate	screens	and	scripts.	If
you	want	to	search	the	contents	of	scripts,	tick	the	In	Scripts	check	box.
There	are	two	ways	you	can	save	your	changes	to	the	Framework	in	the	RAMP
window:

Full	Save Performs	a	full	Framework	save	including	the	generation
of	all	scripts	for	execution	in	end-user	mode	and	the
uploading	of	web	server	details.

Partial
Save

Performs	a	partial	Framework	save	so	that	your	work	is
fully	recoverable,	but	does	not	generate	run-time	scripts	or
upload	server	details.
You	will	need	to	do	a	full	Framework	save	to	deploy	your
application	or	execute	it	in	end-user	mode.

	
You	can	use	the	New	5250	Application	Session	button	to	organize	screens	and
scripts	into	distinct	5250	Application	Sessions	(see	Organizing	Screens	and
Scripts).
The	newlook	Designer	button	starts	a	newlook	client	session	you	need	to	use
when	identifying	screens.

Organizing	Screens	and	Scripts
If	your	applications	are	large	and	complex,	you	may	want	to	divide	the	screens
and	the	associated	scripts	into	separate	groups	along	application	lines.	You	can
do	this	by	creating	separate	5250	application	sessions	for	them	in	the	RAMP
window.
Developing	applications	with	hundreds	of	screens	becomes	increasingly
complex	to	manage	because	of	the	number	of	objects	they	contain.	Also,	the
initial	start	up	time	of	an	application	increases	in	a	linear	manner	according	to
the	number	of	objects	it	contains.
In	this	example	three	application	sessions	have	been	created	in	addition	to	the
Default	Session	(5250	Application	Session,	Personnel	Application	and	Invoice
Processing	Application):

Note
that	the	5250	application	sessions	are	completely	independent	of	each	other	and
have	no	knowledge	of	each	other's	existence.	This	means	that	a	script	in	one
session	cannot	navigate	to	an	object	in	another	application	session	and	that	you
will	most	likely	have	to	duplicate	some	common	scripts	such	as	logon	and
logoff	and	messages.
A	separate	newlook	session	will	be	started	for	each	5250	Application	Session.
To	create	a	new	grouping,	click	on	the	New	5250	Application	Session	button	in
the	RAMP	window.	You	can	edit	its	caption	in	the	Session	Details	area.
Only	one	5250	Application	Session	can	be	active	at	any	time.	To	change	the
application	session,	simply	display	the	tab	for	that	session.	All	screens	that	you
define	and	scripts	you	create	are	stored	in	the	current	5250	Application	Session.

Details	Area
Session	Details
Destination	Screen	Details
Script	Details

Session	Details
RAMP
Window

Message
Area

Screen
Tracking
Area

newlook
Emulator
Session

Screen	and
Script	List

Use	the	Session	Details	to	specify	various	settings	for	your	5250	Application
Session:

	 	 	

Caption The	caption	of	the	RAMP	5250	Application	Session.

Height The	default	height	of	5250	screens	when	displayed	in	the
Framework.

Width The	default	width	of	5250	screens	when	displayed	in	the
Framework.

Top The	default	distance	between	the	top	of	the	RAMP	screen	tab
and	the	5250	screen.

You	can	use	this	option	to	Hide	screen	titles	in	RAMP	Screens

Left The	default	left	indentation	of	the	5250	screen	when	displayed	in
the	Framework.

Top	Mask
Height

The	default	height	of	a	mask	you	can	use	to	hide	the	top	of	the
5250	screen.
You	can	use	this	option	to	Hide	screen	titles	in	RAMP	Screens
This	option	is	not	applicable	to	RAMP	Web.

Bottom
Mask
Height

The	default	height	of	a	mask	you	can	use	to	hide	the	bottom	of
the	5250	screen.

RAMP
Screen
Layout
Style

If	RAMP	Screen	Layout	Style		is	set	to	Flow,	RAMP	screens
will	be	automatically	resized	to	fit	into	the	space	available	to
display	them.
If	Flow	is	used:
									Specific	positioning	and	sizing	of	screens	is	not	supported,

									Top	and	bottom	masking	of	screen	areas	cannot	be	used	to
hide	screen	content.

									You	cannot	use	or	show	the	function	key	blue	bar.
									Display	Horizontal	Scroll	Bars	and	Display	Vertical	Scroll
Bars	options	cannot	be	used	for	the	obvious	reasons.		

Fixed	means	the	RAMP	screens	are	not	resized	to	fit	into	the
space	available	to	display	them.
Note	that	you	can	override	this	setting	for	individual	destination
screens.

Scroll	Bars If	the	Display	Horizontal	Scroll	Bars	option	is	checked,
VLF.WIN	applications	will	display	horizontal	scroll	bars	when	a
Fixed	size	5250	screen	will	not	fit	in	the	display	area.	VLF-
WEB/NET	applications	always	act	as	if	the	Display	Horizontal
Scroll	Bars	option	is	checked.		
If	the	Display	Vertical	Scroll	Bars	option	is	checked,	VLF.WIN
applications	will	display	vertical	scroll	bars	when	a	Fixed	sized
5250	screen	will	not	fit	in	the	display	area.	VLF-WEB/NET

applications	always	act	as	if	the	Display	Vertical	Scroll
Bars	option	is	checked.	

Lock
Framework
when
unknown
5250	form
is	displayed

This	option	applies	a	lock	to	the	Framework	when	an	unknown
5250	screen	is	encountered.
When	a	lock	is	applied,	the	user	cannot	move	around	within	the
Framework	until	they	navigate	to	a	defined	5250	screen.
They	can	exit	from	(for	example,	shut	down)	the	Framework
when	such	a	lock	has	been	applied.
Typically	this	option	is	used	to	trap	unknown	and/or	unexpected
5250	screens.			
In	highly	defined	and	managed	sessions,	where	every	5250
screen	should	have	been	defined	to	RAMP,	set	this	option	on.	In
unmanaged	sessions	always	set	this	option	off.		

Reuse
existing
connections
user	profile
and/or
password

Use	this	option	to	indicate	that	when	this	5250	application
session	needs	to	connect	to	a	server	it	should	reuse	the	same	user
profile	and/or	password	details	as	were	used	to	establish	the	last
successful	server	connection.
This	option	may	be	used	to	prevent	the	user	from	being
prompted	to	input	their	user	profile	and/or	password	repeatedly
for	each	new	5250	application	session	that	needs	to	be	started.
Typically	they	are	only	prompted	for	the	first	application	session
they	establish.
This	option	may	be	automatically	overridden	by	individual	user
profile	options	or	by	super-server	connection	values.									
The	Framework	remembers	the	last	user	profile	and/or	password
used	to	establish	a	server	connection	only	until	the	user	exits
from	the	Framework,	at	which	point	the	details	are	lost.				

Always
link	this
session	to	a
server	with
User
Object
Name	/
Type

Normally	when	a	user	needs	to	connect	a	5250	application
session	they	will	be	asked	to	choose	which	server	they	want	to
connect	to.
Use	this	option	to	prevent	the	user	from	having	to,	or	being
allowed	to,	making	this	server	connection	choice.
Using	it	unconditionally	links	a	5250	application	session	with	a
server.

To	use	this	option	first	assign	an	unique	User	Object	Name	/
Type	to	the	server.
Use	the	Framework	Administration	menu	Servers	option	to	do
this.
For	example,	this	server	has	been	assigned	the	User	Object
Name	/	Type	SERVER_2.

Next,	set	the	5150	application	session	to	use	the	same	name	(eg:
SERVER_2).
Now	the	5250	application	session	and	the	server	with	user	object
name/type	SERVER_2	are	unconditionally	linked.
The	user	can	no	longer	choose	which	server	to	associate	the
5250	application	session	with.											
To	remove	this	option	from	a	session	set	it	back	to	the	default
value	of	blank.	

Special
Field
Handling

Advanced	prompting	facility	for	fields.
You	specify	the	name	of	the	field	to	be	prompted,	the	function
key	to	be	used	and	the	Visual	LANSA	form	that	is	used	as	the
prompter.
For	more	information	refer	to	Advanced	Prompting

Hide	screen	titles	in	RAMP	Screens
In	most	cases	5250	screen	titles	are	redundant	in	RAMP	screens	because	the
navigation	elements	in	the	Framework	Window	clearly	indicate	the	object	being
worked	with	and	the	command	being	executed:

Therefore	RAMP	screens	look	more	natural	without	titles	in	the	Framework:

There	are	Two	Ways	to	Hide	the	Title.
	
	

Two	Ways	to	Hide	the	Title
You	can	hide	the	screen	title	either	by	moving	the	RAMP	screen	up	so	that	the
title	is	hidden	or	by	applying	a	mask	on	the	title	to	hide	it.
You	set	the	RAMP	screen	position	and	mask	in	the	Session	details	of	the
Default	Session	in	the	RAMP	Tools	window:

You	can	override	these	settings	for	individual	destination	screens	by	changing
the	Layout	Dimensions	in	the	Destination	Screen	Details.

Moving	the	Screen
To	move	the	screen	up	so	that	the	title	is	hidden,	set	the	Top	property	to	a
negative	value:

Masking	the	Title
To	mask	the	title,	set	the	Top	Mask	Height	property	to	a	height	that	covers	the
title:

Destination	Screen	Details
RAMP
Window

Message
Area

Screen
Tracking
Area

newlook
Emulator
Session

Screen	and
Script	List

When	a	Destination	Screen	is	selected	in	the	Screen	and	Script	List,	the	details
of	the	destination	screen	are	shown:

You	can	specify	these	details	for	the	destination	screen:

Grouping Optionally	type	a	grouping	name	for	this
screen.
You	can	use	this	option	to	enter	the	same
grouping	name	to	related	screens	so	that	they
can	be	sorted	together	in	the	Screen	and	Script
List.

For	more	fundamental	organization	of	screens
and	scripts,	see	Organizing	Screens	and
Scripts.

Default	RAMP	Layout
Dimensions

Use	these	properties	if	you	want	to
permanently	override	the	default	layout
dimensions	set	in	Session	Details	for	this
screen.

RAMP	Screen	Layout	Style If	RAMP	Screen	Layout	Style		is	set	to	Flow,
this	screen	will	be	automatically	resized	to	fit
into	the	space	available	to	display	it.
If	Flow	is	used:
									Specific	positioning	and	sizing	of	the
screen	is	not	supported,

									Top	and	bottom	masking	of	the	screen
area	cannot	be	used	to	hide	screen	content.

									You	cannot	use	or	show	the	function	key
blue	bar.

									Display	Horizontal	Scroll	Bars	and
Display	Vertical	Scroll	Bars	options	cannot
be	used	for	the	obvious	reasons.		

Fixed	means	the	RAMP	screen	is	not	resized
to	fit	into	the	space	available	to	display	it.
Session	means	the	value	is	inherited	from	the
Session's	properties.

Function	Key	Enablement This	is	a	list	of	all	the	available	function	keys
in	5250	screens.
You	can	use	the	list	to	enable	or	disable
function	keys	in	the	5250	screen	and	also	to
enable	or	disable	the	runtime	appearance	of
push	buttons	in	the	RAMP	screen	that	have
the	same	functionality	as	the	corresponding
function	key.
By	default,	when	a	screen	is	defined	as	a
destination,	all	function	keys	are	disabled	and

the	corresponding	buttons	are	enabled.	This
means	that	when	the	screen	appears,	pressing
the	function	key	will	have	no	effect,	but	a
corresponding	button	will	appear	on	the
RAMP	screen	which	is	functionally
equivalent	the	function	key	in	the	original
5250	screen.
Note	that	function	key	enabling	is	only	valid
for	those	function	keys	already	present	in	the
5250	screen.
For	example,	if	a	5250	screen	is	designed	to
have	function	keys	F1,	F3,	F6	and	F12,
enabling	the	F10	key	will	have	no	effect	in	the
application	since	that	key	has	no	functionality
in	the	original	screen.	However,	you	can	still
enable	the	F10	in	the	RAMP	screen	if	you	add
your	own	script	for	it	in	the	button	script	of
the	destination	screen.
									To	enable	a	function	key,	tick	the	check
box	in	the	Enable	5250	column.

									To	display	the	function	key	as	a	button,
tick	the	check	box	in	the	Enable	VLF
column.

									The	captions	of	the	buttons	can	be
changed	in	the	Caption	column.

Associated	Command
Handlers

The	command	handler	tab	where	the	RAMP
screen	will	be	attached.
The	command	handler	tabs	are	created	when
you	prototype	your	application.

Session Specifies	what	System	i	5250	session	(ie:	job)
should	be	started	for	the	screen.
*AUTO	:	is	the	default	value	and	indicates
that	the	Framework	should	manage	the
required	5250	session(s)	automatically.	This
type	of	session	is	a	managed	session.	It	is

fully	integrated	with	the	Framework,
applications,	business	objects	and	instance
lists	and	all	scripting	facilities	are	available.		
SESSION_A	->	SESSION_Z:	allow	you	to
specify	that	an	unmanaged	session	is	to	be
started	for	the	command	handler	or	tab.
Unmanaged	sessions	are	primarily	used	to	log
the	user	on	and	then	drive	them	to	a	specific
starting	point.	From	that	point	forward	the
user	can	move	around	inside	the	5250
application	in	an	unmanaged	way.	Since	the
session	is	unmanaged	only	very	limited
scripting	capabilities	exist.	For	example,	a
script	in	an	unmanaged	session	can	not	access
the	business	object	instance	list.	Equally,
when	a	user	returns	to	an	active	command
handler	/	tab	that	uses	an	unmanaged	session
it	is	simply	redisplayed	as	it	was	when	they
last	left	it.	No	attempt	to	navigate	them	or
execute	any	scripts	is	attempted	(because	it	is
unmanaged).			
Unmanaged	sessions	are	useful	because	they
allow	large	pieces	of	an	existing	application	to
be	reused	in	the	Framework	very	rapidly.
For	example,	an	unmanaged	session	might	be
used	as	the	only	command	associated	with	a
business	object	named	"System	Tables".	
When	the	user	clicks	on	"System	Tables"	in
the	Framework	menu,	a	full	screen	5250
session	appears	that	logs	the	user	on	and	then
drives	them	to	the	5250	menu	that	manages
the	maintenance	of	50	(say)	system	tables.
The	entire	"System	Tables"	facility	composed
of	hundreds	of	5250	screens	(say)	are	now
accessible	in	an	unmanaged	fashion,	without
the	need	to	identify	and	enroll	them	in	the
Framework.	If	the	users	goes	away	from	the
"System	Tables"	tab	and	then	come	back

again	later	the	current	5250	session	screen,
whatever	it	is,	is	just	redisplayed.	No	attempt
is	made	to	navigate	the	screen	(ie:	manage	it)
because	in	all	likelihood	they	will	have	left	it
on	an	undefined	or	unknown	5250	screen.	
										
In	short,	you	should	always	use	*AUTO
unless	you	have	a	specific	need	to	log	a	user
on,	drive	them	a	defined	starting	point	in	the
application,	and	then	allow	them	to	move
around	wherever	they	like	within	the	5250
application	area.					
NOTE:	When	changing	the	session	option
ensure	that	you	select	associated	command
handler	by	clicking	on	it.		
This	command	handler	is	not	correctly
selected:

and	changes	to	the	session	will	be	ignored.
This	command	handler	is	correctly	selected:

	and	changes	to	the	session	will	be	recorded.
You	need	to	do	this	because	sometimes	a
single	destination	screen	is	associated	with
multiple	command	handlers	which	can	have
different	sessions,	so	you	need	to	positively
indicate	the	one	you	wish	to	work	with.

Script	Details
RAMP
Window

Message
Area

Screen
Tracking
Area

newlook
Emulator
Session

Screen	and
Script	List

The	Details	area	shows	the	details	of	the	script	selected	in	the	Screen	and	Script
List.
The	scripts	are	most	often	generated	automatically	as	you	trace	your
application.	Sometimes	it	is	necessary	to	edit	the	scripts.
You	can	use	the	Using	the	Scripting	Pop-up	Menu	to	help	you	to	format	and	edit
your	scripts.

	

Types	of	Screens
Classifying	the	screens	in	your	5250	application	is	the	starting	point	in
modernizing	your	application:
									A	Destination	Screen	is	the	5250	screen	where	the	end-user	performs
actual	work.	These	screens	are	snapped	into	the	Visual	LANSA	Framework
without	any	modification.

									A	Junction	Screen	is	used	for	navigation	only.	They	are	hidden	in	your
modernized	application.

									A	Special	Screen	is	a	messages	or	other	similar	screen	that	does	not	fit	the
above	two	categories.

Destination	Screen
A	destination	screen	is	a	screen	in	which	the	end-user	works	with	an	object.

Destination	screens	can	be	reused	without	any	modification	in	RAMP
applications:

Junction	Screen
The	end-user	uses	a	junction	screen	to	move	to	destination	screens.

These	navigation-only	5250	screens	a	become	invisible	to	the	end-user	in	a
RAMP	application.
Typical	junctions	are:
									5250	menus
									5250	"work	with"	style	screens,	which	are	really	just	data	driven	menus.
									Most	5250	screens	where	keys	such	as	order	numbers,	customer	numbers,
product	numbers	etc.	are	entered	to	display	or	action	detailed	information.

Special	Screen
Special	screens	are	message	and	other	screens	that	do	not	fit	in	the	category	of
either	navigation	or	destination	screens.

These	screens	may	appear	unexpectedly	at	anytime	in	a	5250	screen	flow.	For
example:
									The	5250	display	message	screen	that	appears	at	sign-on	time
									The	5250	break	message	screen	that	may	appear	at	any	time
									Fatal	error	message	screen(s)	in	your	own	applications.
									The	5250	resume	interactive	session	screen.
Special	screens	usually	have	a	script	associated	with	them.	The	script	is	called
an	elimination	script	because	this	type	of	script	usually	sends	a	key	or	performs
an	action	so	as	to	eliminate	the	screen	from	the	5250	screen	flow.
See	Types	of	Scripts	in	RAMP	for	more	information	about	elimination	scripts.
.

OBJECT-ACTION	User	Interfaces
System	i	and	Windows	applications,	including	the	Framework,	share	the	same
basic	design	for	user	interaction:	Object-Action	interfaces.
In	these	interfaces	the	user	first	selects	and	object	and	then	the	action	to	be
performed	on	the	object,	as	opposed	to	Action-Object	interfaces	(such	as
command	line	applications)	where	the	command	is	specified	first	and	its	target
object	second.
Because	of	this	fundamental	similarity,	System	i	applications	fit	naturally	in	the
Framework	model:
The	navigation	screens	of	a	System	i	application	are	replaced	by	graphical
elements	in	the	Framework,	such	filters	and	instance	lists,	which	the	user	can
use	to	quickly	locate	the	object	they	want	to	work	with.
The	options	and	associated	screens	in	a	typical	Work	with	screen	become	a	set
of	command	tabs.
In	the	Framework	the	Object-Action	model	is	expressed	as	a	powerful	graphical
user	interface	(GUI).

System	i	and	Framework	Applications	Share	the	Basic	Model
The	basic	Framework	concepts	of	business	objects,	filters	and	command
handlers	(screens)	can	be	visualized	in	a	System	i	application	like	this:

Here	you	have	a:

	Filter Where	the	Work	with...	command	provides	you	with
options	to	filter	the	list	of	objects	that	are	displayed.
(Many	"Work	with	xxxx"	interfaces	allow	you	to	filter
inside	the	main	display	as	well).

Business
Object
Instance
List

The	list	of	links	that	match	your	filter's	search	criteria.
These	links	are	your	business	objects.

Business
Object
Commands

The	Options	such	as	2=Edit,	7=Rename,	8=Display	that
you	can	execute	against	an	individual	business	object.

Command
Handlers

The	programs	that	execute	when	you	execute	a	command
(7=Rename	or	8=Display	attributes	examples	are	shown).

In	the	Framework,	the	same	concepts	are	visualized	as	a	graphical	user	interface

(GUI)	like	this:

	

Modernization	Issues
The	most	important	and	complex	5250	program	in	an	application	can	become	a
modernization	trap
How	long	will	it	take	to	RAMP	my	application?

The	most	important	and	complex	5250	program	in	an	application
can	become	a	modernization	trap
The	biggest	and	meanest	modernization	trap	involves	the	most	important	and
usually	most	complex	5250	program	in	an	application.	In	an	ERP	application
this	program	handles	Order	Entry,	in	an	Insurance	application	it	is	the	Policy
Master	Update.
Every	5250	application	has	at	least	one	of	these	big	and	mean	5250	programs.
It	is	attractive	and	logical	to	involve	this	type	5250	program	in	any
modernization	proof-of-concept	exercise	on	the	simple	basis	that	"if	RAMP	can
handle	this	program	then	it	can	handle	anything".
As	a	result	a	lot	of	time	may	be	spent	understanding	the	peculiarities	of	this
program	and	scripting	for	them.	This	okay	…	unless	handling	it	consumes
excessive	amounts	of	time	and	diverts	all	attentions	away	from	the	hundreds	(or
thousands)	of	other	important	5250	programs	that	also	need	to	be	modernized.
In	this	case	it	can	become	a	trap.
									An	ISV	site	should	consider:	Which	program	would	be	the	very	first	one
you	would	change	to	a	new	Visual	LANSA	component	so	as	to	best	show	off
your	modernized	product	to	potential	customers?

									An	in-house	development	site	should	consider:	Which	program	would	the
end-users	gain	the	highest	productivity	and	usability	improvements	from	if	it
was	changed	to	a	new	Visual	LANSA	component?	What	program,	if	it	was
replaced	by	something	better,	would	garner	the	most	management	and	end-
user	support	for	the	modernization	project?		

The	answer	in	both	cases	is	quite	probably	the	biggest	and	meanest	5250
program.
	

Why	not	consider	replacing	it	with	something	better?
If	this	is	true,	then	the	next	question	should	be:	"Why	are	we	spending	all	this
time	and	effort	trying	to	reuse	it,	instead	of	just	starting	to	replace	it	with
something	better?"
The	reason	is	obviously	to	avoid	the	time	and	cost	involved	in	replacing	it.
However,	if	the	commercial	reality	is	that	for	various	marketing,	business	and
political	reasons	it	will	need	to	be	replaced	sooner	rather	than	later,	you	should
seriously	consider	doing	it	now,	instead	of	spending	an	unreasonable	amount	of
time	trying	to	reuse	it	and	allowing	it	to	become	the	complete	center	of	attention

to	the	detriment	of	all	the	other	5250	programs	that	also	need	to	be	modernized.

How	long	will	it	take	to	RAMP	my	application?

Important	Note:	This	answer	refers	to	RAMP	stage	2	only	-	reusing	your
existing	5250	screens.	It	has	nothing	to	do	with	RAMP	stage	3	-	replacing
your	5250	screens	with	Visual	LANSA	components.			

It	depends	on	the	approach	you	use.
Imagine	a	simple	5250	application	made	up	of	four	menus	(or	some	other
common	access	points)	and	36	other	screens	like	this:		
	

	
We	recommend	you	use	this	approach:

1.	Initially	Perform	a	Rapid	Navigation	Modernization
In	this	example	you	would	identify	and	define	the	four	menus	(or	access	points)
A,	B,	C	and	D	only,	and	snap	them	into	RAMP	as	full	screen	destinations.
The	entire	5250	application,	with	its	modernized	navigation,	could	now	be
deployed	to	your	end	users.
Normally	you	would	also	fully	modernize	at	least	some	part	of	the	application
itself,	to	add	more	value	to	it.
At	this	stage	answering	the	question	"How	long	will	it	take	to	RAMP	my
application?"	is	easy:	Allow	15	minutes	per	menu	(or	common	access	point).
So	for	this	example,	allow	4	x	15	minutes	=	1	hour.
	

2.	Now	Perform	Selective	and	Incremental	Application
Modernization
Now	assess	application	areas	A,	B,	C	and	D:

									How	frequently	are	they	used?
									Will	full	modernization	increase	end	user	productivity?	How?	What	needs
to	be	done?

									Will	full	modernization	improve	the	end	user	experience?	How?	What
needs	to	be	done?

									Will	full	modernization	aid	the	demonstration	and	marketing	of	your
product?	How?	What	needs	to	be	done?	

Based	on	these	assessments	you	might	decide	to:
									Modernize	application	area	A	and	deliver	it	to	your	users	as	an	initial
release.

									Later	modernize	60%	of	application	area	C	and	deliver	it	to	your	users	as	a
new	version.

									Not	fully	modernize	application	area	D	at	all,	because	it	does	not	add
business	value.			

									Finally,	modernize	25%	of	application	area	B	and	deliver	a	final	version	to
your	users.

So	answering	the	question	"How	long	will	it	take	to	RAMP	my	application?"
depends	upon	how	you	approach	this	step.
The	question	cannot	be	answered	until	you	decide	what	parts	need	to	be	fully
modernized,	how	much	work	needs	to	be	done,	and	in	what	order.		
	

Key	Points
									Navigation	modernization	is	very	rapid.
									Application	modernization	takes	longer,	but	adds	significantly	more	value.
									You	can	deliver	a	modernized	5250	application	incrementally.	You	don't
have	to	do	it	all	in	one	go.

									You	are	not	forced	to	fully	modernize	all	of	a	5250	application	just	to	use
it	in	RAMP.

									Some	parts	of	an	application	may	never	be	fully	modernized	before	they
are	replaced	with	new	Visual	LANSA	components	instead.			

Tutorials
There	are	two	very	different	ways	of	modernizing	an	application	with	RAMP:
									The	steps	described	in	the	tutorial	Modernizing	a	Complete	Application	is
the	most	appropriate	way	of	modernizing	most	applications.

									The	alternative	way	is	Modernizing	Application	Navigation.	This
approach	is	fast,	but	the	resulting	application	does	not	make	use	of	all	the
powerful	features	provided	by	the	Framework	user	interface.

Scripting	Tutorials	show	you	how	to	manage	your	5250	screens	in	the
modernized	application.

Modernizing	a	Complete	Application
This	tutorial	introduces	the	key	concepts	required	to	modernize	a	complete
application.
Modernizing	a	complete	application	is	more	complex	and	takes	longer	than	just
modernizing	it's	navigation.
The	example	chosen	is	taken	from	a	simple	personnel	management	system:
Application	before	Modernization	-	2.5	minutes
Modernized	Application	-	2	minutes
	
This	tutorial	has	these	steps:
Identify	your	business	objects	-	1	minute
Create	a	prototype	of	your	application	-	3	minutes
Create	a	filter	and	snap	it	in	-	4	minutes
Make	a	plan	of	the	5250	screens	you	will	need	to	use	-	2.5	minutes
Identify	the	relevant	screens	and	fields	to	newlook	-	4	minutes
Define	the	screens	to	the	VLF	and	build	a	navigation	script	(New	Employee)	-
7.5	minutes
Define	the	screens	to	the	VLF	and	build	a	navigation	script	(Employee	Details)
-	5	minutes
Link	the	Selected	Employee	in	the	Instance	List	with	the	Display	Employee
Screen	-	4	minutes
Make	Function	Keys	Go	Somewhere	Different	-	4.5	minutes
Handle	Unexpected	Stops	in	Navigation	and	Messages	-	3	minutes
Update	the	Instance	List	from	5250	Screens	-	4	minutes
	
This	tutorial	is	presented	as	a	series	of	movies	showing	each	step	in	the	RAMP
process.	It	is	recommended	that	at	the	end	of	each	movie	you	complete	the
outlined	steps.	This	will	reinforce	the	concepts	and	provide	hands-on	experience
with	RAMP.	Some	individuals	may	find	it	convenient	to	use	a	second	machine
or	an	extended	desktop	to	view	the	movie	while	completing	the	tutorial.	

Application	before	Modernization	-	2.5	minutes
	

Play	Movie 	to	review	the	application	before	it	was	modernized	or	read	the
Movie	Summary.

	

Movie	Summary
For	movie	Application	before	Modernization	-	2.5	minutes.
This	movie	shows	a	simple	5250	application	for	maintaining	the	details	of
employees	which	we	are	going	to	modernize.
It	also	introduces	the	concepts	of	Junction	Screen	and	Destination	Screen.

Modernized	Application	-	2	minutes

Play	Movie 	to	review	the	final	output	of	this	tutorial	or	read	the	Movie
Summary.

Movie	Summary
For	movie	Modernized	Application	-	2	minutes.
This	movie	shows	how	the	modernized	application	we	will	create	in	the	tutorial
works:

Identify	your	business	objects	-	1	minute

Play	Movie 	to	learn	how	to	identify	your	business	objects	or	read	the	Movie
Summary.

Movie	Summary
For	movie	Identify	your	business	objects	-	1	minute
This	movie	shows	how	to	work	out	what	the	business	objects	are	for	an
application:
									See	what	words	the	end	users	use	to	describe	what	the	system	works	with.
These	words	are	often	reflected	in	the	application	menus	and	screen	titles.

									In	our	sample	application	the	users	work	with	the	details	of	Employees,	so
we	decide	we	will	create	an	Employees	business	object.

Create	a	prototype	of	your	application	-	3	minutes

Play	Movie 	to	learn	how	to	create	a	prototype	of	your	application	or	read	the
Movie	Summary.

Movie	Summary
For	movie	Create	a	prototype	of	your	application	-	3	minutes.
This	movie	shows	how	to	create	a	prototype	of	the	modernized	application:
									Start	the	Instant	Prototyping	Assistant

									Create	business	object	_Employees
									Create	two	actions	New	and	Details
									Associated	the	actions	with	_Employees

									Create	a	subsystem	called	Personnel	and	put	the	_Employees	business
object	in	it

	
See	Also:
Start	the	Instant	Prototyping	Assistant

Create	a	filter	and	snap	it	in	-	4	minutes

Play	Movie 	to	learn	how	to	create	a	filter	and	snap	it	in	or	read	the	Movie
Summary.

Movie	Summary
For	movie	Create	a	filter	and	snap	it	in	-	4	minutes
This	movie	shows	how	to	create	a	filter	that	locates	employees:

Create	code	for	filter
									Start	the	Program	Coding	Assistant

									Choose	Filter	that	searches	by	all	logical	views
									Enter	the	name	of	the	physical	file	that	most	resembles	the	business	object:
PSLMST

									The	code	assistant	generates	the	code	for	the	filter	program

									Use	the	Copy	to	Clipboard	button
	

Create	filter	reusable	part
									Open	the	Visual	LANSA	development	environment	and:
									Create	a	new	reusable	part,	call	it	by	any	unique	name	and	give	it	a
description

									Paste	the	generated	code	from	the	clipboard	into	the	Source	tab	for	the
reusable	part

									Compile	it
	

Snap	in	the	filter
									Return	to	the	Visual	LANSA	Framework

									Close	the	Coding	Assistant	window
									Bring	up	the	properties	of	the	_Employees	business	object
									Go	to	the	Filters	tab	and	select	the	filter	for	this	business	object	and	snap
in	a	real	filter	choosing	the	reusable	part	we	just	created

									Close	the	properties	window,	and	save	the	Framework
	
You	now	have	a	real	working	filter.	If	you	enter	a	value,	all	the	matching
employees	will	be	loaded	into	the	instance	list.

	
See	Also:
Start	the	Program	Coding	Assistant

Make	a	plan	of	the	5250	screens	you	will	need	to	use	-	2.5	minutes

Play	Movie 	to	learn	how	to	make	a	plan	of	the	5250	screens	you	will	need	to
use	or	read	the	Movie	Summary.

Movie	Summary
For	movie	Make	a	plan	of	the	5250	screens	you	will	need	to	use	-	2.5	minutes.
This	movie	shows	how	to	make	a	plan	of	the	screens	that	will	be	used:
									Draw	a	diagram	of	all	the	screens	that	you	want	to	use

									Create	a	naming	standard	for	screens	and	keep	the	names	less	than	32
characters.

									Assign	a	unique	name	to	all	the	screens	to	be	used	as	the	form	name	in
newlook	(newlook	must	be	able	to	differentiate	all	these	screens,	even	though
some	have	the	same	title)

									Decide	which	fields	have	data	added	to	them	as	part	of	the	navigation
process	and	give	these	fields	a	name	that	is	unique	within	the	screen.

	
You	now	have	a	diagram	that	sets	out	what	you	have	to	define	in	newlook:

Identify	the	relevant	screens	and	fields	to	newlook	-	4	minutes

Play	Movie 	to	learn	how	to	identify	the	relevant	screens	and	fields	to
newlook,	or	read	the	Movie	Summary.

Movie	Summary
For	movie	Identify	the	relevant	screens	and	fields	to	newlook	-	4	minutes.
This	movie	shows	how	to	identify	the	screens	and	fields	in	newlook.	Use	the
diagram	created	in	the	previous	step	for	naming	(see	Movie	Summary):

Start	newlook	Client
									And	then	do	the	following	for	every	screen:

Identify	the	screen
									Choose	the	Identify	option	in	the	Tools	menu
									Check	that	the	newlook	screen	identification	area	adequately	identifies	the
screen	(If	the	current	recognition	area	is	not	sufficient	to	distinguish	this
screen,	select	a	larger	area,	and	use	the	pop-up	menu	to	mark	it	as	Screen	Id.

									Save	using	the	form	name

	Name	the	screen
									Choose	the	Designer	option	in	the	Tools	menu
									Name	the	screen	(form).	The	easiest	way	to	do	this	is	to	double-click	on	an
unused	area	of	the	screen,	and	edit	the	Name	property	of	the	form	object.
Note	that	names	are	case-sensitive,	can	be	maximum	256	characters	and	do
not	allow	trailing	blank	spaces.

									Right-click	all	fields	on	the	form	that	are	used	for	navigation	(if	any)	to
display	their	properties.

									Use	the	name	property	of	the	fields	to	identify	them.	For	example	on	the
Sign-on	screen	name	the	User	field	utxtProfile	and	the	Password	field
utxtPassword.

Use	the	diagram	in	this	Movie	Summary	to	see	which	screens	and	which	fields
on	the	screens	you	need	to	identify.
Repeat	these	steps	for	each	screen.

Define	the	screens	to	the	VLF	and	build	a	navigation	script	(New
Employee)	-	7.5	minutes

Play	Movie 	to	learn	how	to	define	the	screens	to	the	VLF	and	build	a
navigation	script	(New	Employee)	or	read	the	Movie	Summary.

Movie	Summary
For	movie	Define	the	screens	to	the	VLF	and	build	a	navigation	script	(New
Employee)	-	7.5	minutes.
This	movie	shows	you	how	to	define	screens	and	track	navigation	to	the	New
Employee	screen.

Track	navigation	to	New	Employee	screen
									Start	RAMP	Tools	and	start	newlook.

									Connect	to	newlook	server	and	sign	on
									Display	the	Personnel	Menu	by	typing	this	command	on	the	command	line
on	the	IBM	i	Main	menu	screen:

	
lansa	run	pslsys	partition(dem)
	
									Select	the	New	Employee	option

									Once	in	the	New	Employee	screen	cancel	back	to	Sign	Off	so	that	the
Framework	can	track	the	navigation

Remember	to	choose	menu	options	by	typing	in	the	number	and	pressing	Enter
(if	you	click	on	a	menu	option	with	the	keystroke	tracking	can't	follow	this).

Define	screens
									The	sign-on	screen	and	all	menu	screens	as	Junction	Screens
									The	uDisplayMessages	as	a	Special	Screen

									The	uNewEmployee	as	a	Destination	Screen

Generate	scripts
									For	every	screen,	use	the	pop-up	menu	options	to	generate	scripts	based	on
the	tracking	information

Specify	the	command	tab	where	the	screen	is	displayed
									Select	the	uNewEmployee	destination	screen	and	locate	and	check
Employees	-	New	on	the	list	of	commands	for	all	the	business	objects	on	the
right-hand	panel

									Save	the	Framework	using	the	Save	Framework	button

Close	and	restart	the	Framework
									You	will	see	the	New	Employee	screen	snapped	in	the	Framework
	
Also	See
Screen	Tracking	Area
Destination	Screen	Details

Define	the	screens	to	the	VLF	and	build	a	navigation	script
(Employee	Details)	-	5	minutes

Play	Movie 	to	learn	how	to	define	the	screens	to	RAMP	and	build	a
navigation	script	to	the	Display	Employee	screen,	or	read	the	Movie	Summary.

Movie	Summary
For	movie	Define	the	screens	to	the	VLF	and	build	a	navigation	script
(Employee	Details)	-	5	minutes.
This	movie	shows	you	to	define	screens	and	track	navigation	to	the	Display
Employee	screen.

Track	navigation	to	Employee	Details	screen
									Start	the	RAMP	tools	and	connect	to	newlook

									On	the	Personnel	Menu	type	3	to	select	Display	Employee	option
									Enter	the	identifier	of	any	employee	on	the	Find	Employee	Screen
									The	destination	screen	uDisplayEmployee	is	displayed

									Go	back	along	the	pathway	of	screens	so	the	Framework	can	track	the
navigation

									Notice	F12	has	taken	us	back	from	UDisplayEmployee	directly	to
uPersonnelMenu,	bypassing	Find	Employee.	We	need	to	go	to	Find
Employee	and	use	F12	from	there	to	show	the	Framework	how	to	get	back
from	uFindEmployee

Define	screens
									uFindEmployee	as	a	Junction

									uDisplayEmployee	as	a	Destination

Generate	scripts
									Use	the	pop-up	menu	to	automatically	generate	scripts	based	on	the
tracking	information

Specify	the	command	tab	where	the	screen	is	displayed
									Associate	the	Employee	Details	screen	with	the	Details	command	for	the
Employees	business	object.

Start	the	screen	in	edit	mode
After	closing	and	restarting,	the	Employee	Details	screen	is	working.	However,
to	change	an	employee's	details	you	have	to	first	click	on	the	Change	button.
In	Windows	screens	are	usually	shown	in	edit	mode.	To	do	this:
									Start	RAMP	Tools

									Locate	the	Invoke	script	for	uDisplayEmployee	destination
									Find	the	last	line	in	the	script,	and	add	an	instruction	to	automatically	press
F21.	That	will	put	it	into	edit	mode:

...	
/*	Send	the	key	required	to	navigate	to	uDisplayEmployee
	
SENDKEY(KeyEnter);	
	
/*	Send	the	key	required	to	navigate	to	put	the	screen	into	edit	mode
	
SENDKEY(KeyF21);
...	
Now,	when	the	user	clicks	on	an	employee,	they	can	edit	the	details	straight
away.
	
Also	see:
Invoke	Script

Link	the	Selected	Employee	in	the	Instance	List	with	the	Display
Employee	Screen	-	4	minutes

Play	Movie 	to	learn	how	to	link	the	selected	employee	in	the	instance	list
with	the	Display	Employee	screen,	or	read	the	Movie	Summary

Movie	Summary
For	movie	Link	the	Selected	Employee	in	the	Instance	List	with	the	Display
Employee	Screen	-	4	minutes.
This	movie	shows	how	to	display	the	details	of	the	employee	selected	in	the
instance	list.
If	we	select	an	employee	and	the	Details	command,	the	invoke	script	of	the
screen	executes	and	RAMP	navigates	through	a	number	of	junction	screens	and
then	shows	us	the	uDisplayEmployee	screen.
However,	regardless	of	which	employee	we	click	on	in	the	instance	list,	the
details	one	and	the	same	employee	are	shown.	This	is	because	the	invoke	script
contains	the	hard	coded	number	of	the	employee	we	chose	when	tracking
navigation.

Change	the	Invoke	script	to	display	details	for	current	employee
To	change	the	script	so	it	shows	the	details	of	the	currently	selected	employee:
									Start	RAMP	tools

									Locate	the	invoke	script	for	the	uDisplayEmployee	destination	screen
Here	is	the	line	where	the	hard	coded	value	for	the	employee	identifier	is
entered	into	the	Employee	Code	field:
	
SETVALUE("utxtEmployeeCode",	"A1004");
	
To	substitute	the	employee	identifier	with	the	currently	selected	entry:
									Select	"A1004"	including	the	quotes
									Right-click	and	choose	Current	Instance	List	entry

									Select	Alpha	Key	1	from	the	submenu
This	replaces	the	hard	coded	value	with	a	special	value	that	will	contain	the
identifier	of	the	employee	that	the	user	has	selected:
	
SETVALUE("utxtEmployeeCode",	objListManager.AKey1[0]);
	
Save	the	changes	to	the	script.	The	Display	Employee	screen	now	shows	the
details	of	the	employee	selected	in	the	instance	list.
	

Also	See
Replacing	Hardcoded	Employee	Number	with	Current	Instance	List	Entry
Invoke	Script
SETVALUE	Function

Make	Function	Keys	Go	Somewhere	Different	-	4.5	minutes

Play	Movie 	to	learn	how	to	make	function	keys	go	somewhere	different	or
read	the	Movie	Summary.

Movie	Summary
For	movie	Make	Function	Keys	Go	Somewhere	Different	-	4.5	minutes.
This	movie	shows	how	to	automatically	redisplay	the	Display	Employee	screen
after	the	user	has	made	a	change	and	pressed	Enter.	It	also	shows	how	to	hide
function	keys	and	buttons	which	are	not	required.

Automatically	redisplay	the	screen
When	the	user	edits	an	employee	and	presses	Enter,	they	return	to	the	Find
Employee	screen.	We	want	to	change	this	so	that	the	Display	Employee	screen
is	redisplayed	(this	is	how	Windows	typically	works).
To	redisplay	the	edit	screen	we	locate	the	Button	Script	for	the	Display
Employee	destination	and	change	it	so	that	when	the	user	presses	Enter:
									First	we	tell	RAMP	to	press	Enter	to	go	to	the	Find	Employee	screen

									Then	we	set	the	value	of	the	employee	code	field	on	the	Find	Employee
screen	in	the	same	way	as	in	the	previous	tutorial

									And	then	press	Enter	to	go	to	the	Display	Employees	screen
									Lastly	to	start	edit	mode	we	add	a	script	instruction	to	press	F21
This	is	the	code:
...	
Case	KeyEnter:
					SENDKEY(KeyEnter);
					SETVALUE("utxtEmployeeCode",	objListManager.AKey1[0]);
					SENDKEY(KeyEnter);
					SENDKEY(KeyF21);
...
	

Hide	function	keys	and	buttons
We	also	hide	most	of	the	buttons	that	are	displayed	on	Display	Employee
because	they	are	not	required:
									Display	the	Destination	Screen	Details	for	Display	Employee
									Disable	and	hide	all	buttons	except	Enter
									Change	the	caption	of	the	Enter	button	to	Save
Now	save	your	changes	and	restart	the	Framework.

	
If	you	now	change	some	employee	details	to	valid	values	and	press	Save,	the
Display	Employee	screen	is	redisplayed.

Handle	Unexpected	Stops	in	Navigation	and	Messages	-	3	minutes

Play	Movie 	to	learn	how	to	handle	unexpected	stops	in	navigation	and
messages	or	read	the	Movie	Summary.

ö

Movie	Summary
For	movie	Handle	Unexpected	Stops	in	Navigation	and	Messages	-	3	minutes.
This	movie	shows	how	to	handle	unexpected	stops	in	the	navigation	and	how	to
issue	messages.

Handle	unexpected	stops
If	the	employee	details	entered	by	the	user	are	invalid,	the	user	stays	on	the
Display	Employee	screen	instead	of	going	to	the	Find	Employee	screen,	and
consequently	our	script	instructions	for	handling	the	Enter	key	will	be	wrong.
We	need	to	change	the	script	so	that	if	it	detects	that	the	user	did	not	get	to	the
Find	Employee	screen,	it	stops	and	takes	no	further	action.	To	do	this:
Go	to	the	Button	Script	for	the	uDisplayEmployee	Destinations	and	locate	the
SENDKEY(EnterKey)	statement	which	takes	us	to	the	Find	Employee	screen.
Add	this	line	under	the	SENDKEY	statement	to	check	if	we	actually	got	to	the
Find	Employee	screen	and	to	end	the	script	with	a	return	if	we	did	not:
	
if	(CURRENT_FORM()	!=	"uFindEmployee")	return;
	
	

Issue	a	message
If	we	get	past	this	line,	we	can	assume	that	the	employee	details	were
successfully	saved	and	issue	a	message.	To	do	this	add	this	line	after	the	if
statement:
	
ALERT_MESSAGE("Employee	",	objListManager.AKey1[0]	,	"	has	been
saved.");
	
Commit	your	script	changes	and	then	save	and	restart	the	Framework.
Now,	if	we	attempt	to	save	an	employee	with	invalid	data,	the	script	stops	and
the	Display	Employee	screen	is	redisplayed.
If	we	abandon	changes	for	that	employee,	click	on	another	employee	and
successfully	save	the	details,	we	get	the	message	we	created	and	the	script
continues	on	around	to	the	Display	Employee	screen	again.

Update	the	Instance	List	from	5250	Screens	-	4	minutes

Play	Movie 	to	learn	how	to	update	the	instance	list	from	5250	screens	or
read	the	Movie	Summary.

Movie	Summary
For	movie	Update	the	Instance	List	from	5250	Screens	-	4	minutes.
See	topic	Updating	the	Instance	List	from	RAMP	screens	which	summarizes	the
information	in	this	movie.

Modernizing	Application	Navigation
This	tutorial	introduces	the	key	concepts	and	steps	required	to	modernize	the
navigation	of	an	existing	5250	application.
This	is	the	simplest	and	most	rapid	way	to	modernize	an	application	and	must
be	distinguished	from	modernizing	a	complete	application,	which	is	a	more
complex	task.
However,	it	should	be	noted	that	in	many	cases	modernizing	a	complete
application	yields	better	modernization	results	because	it	introduces	more
powerful	means	of	organizing	and	accessing	information.
The	examples	used	in	this	tutorial	are	from	the	I5/OS	operating	system.	These
I5/OS	objects	are	used:
									Job	Queues

									Output	Queues
									IFS	Folders
									System	Jobs
These	objects	were	chosen	because	all	System	i	users	are	familiar	with	them.
Note	however	that	the	concepts	in	this	tutorial	apply	equally	to	commercial
business	objects	like	Products,	Orders,	Customers,	Invoices,	Policies,	etc.
To	review	the	final	output	of	this	tutorial	see	Modernized	Navigation	-	5
minutes.
This	tutorial	has	these	steps:
Create	a	Prototype	of	Your	Application	-	9.5	minutes
Identify	Your	5250	Entry	Point	Screens	Using	newlook	-	13	minutes
Script	the	Screens	and	Snap	them	in	the	Framework	-	16	minutes

Modernized	Navigation	-	5	minutes

Play	Movie 	to	review	the	final	output	of	this	tutorial	or	read	the	Movie
Summary.

Movie	Summary
For	movie	Modernized	Navigation	-	5	minutes.
This	movie	shows	the	modernized	application	we	will	create	in	the	tutorial:

Create	a	Prototype	of	Your	Application	-	9.5	minutes

Play	Movie 	to	learn	how	to	prototype	your	application	or	read	the	Movie
Summary.

Movie	Summary
For	movie	Create	a	Prototype	of	Your	Application	-	9.5	minutes.
This	movie	shows	how	to	create	a	prototype	of	the	modernized	application.

Create	a	prototype	application
									Start	the	Instant	Prototyping	Assistant

									Create	business	objects	Job	Queues,	Output	Queues,	IFS	Folders	and
System	Jobs

									Create	action	Work	With
									Associate	Work	With	with	all	the	four	new	business	objects

									Create	application	iSeries	Server	and	add	the	four	business	objects	to	it
	

Remove	Filters
The	Program	Coding	Assistant	automatically	creates	filters	for	new	business
objects.	In	this	tutorial	we	do	not	need	them.
To	remove	the	filters	perform	these	steps	for	all	the	four	business	objects:
									Display	the	properties	of	the	business	object
									On	the	Filters	tab	select	and	delete	the	filter

									On	the	Commands	Enabled	tab	change	the	Work	with	command	to	be	a
Business	Object	Command

									On	the	Command	Display	tab	change	the	Object	Command	Presentation
option	to	Use	All	Of	The	Window

									Save	and	restart	the	Framework
	
Execute	your	application	prototype.	Optionally	type	in	text	and	insert	images	to
the	prototype	screens	so	you	can	explain	your	proposed	design	to	others.

Identify	Your	5250	Entry	Point	Screens	Using	newlook	-	13
minutes

Play	Movie 	to	learn	how	identify	your	5250	entry	point	screens	or	read	the
Movie	Summary.

Movie	Summary

For	movie	Identify	Your	5250	Entry	Point	Screens	Using	newlook	-	13
minutes.

This	movie	shows	how	to	identify	5250	screens	and	fields	on	them	so	that	we
can	reference	them	in	the	Visual	LANSA	Framework.
In	this	tutorial	you	identify	these	screens	and	fields:

Screen Field

Sign	On User	profile	and	password

Attempt	Recovery Menu	option

Sign	Off 	

Display	Messages 	

I5/OS	Main	Menu Command	to	execute

WRKJOBQ 	

WRKOUTQ 	

WRKLNK 	

WRKACTJOB 	

	

Identify	the	screens
									Start	newlook	8.0
Then	for	every	5250	screen:
									Navigate	to	the	screen
									Select	the	Designer	option	in	the	Tools	menu
									Double-click	the	screen	and	assign	a	name	to	it	(using	the	Form	Name
property)	and	when	required,	also	for	the	fields	on	the	screen

									Close	the	Designer	using	the	File	menu
									Specify	a	name	for	the	screen	and	save

									Proceed	to	the	next	screen
	
You	can	do	the	naming	at	any	time	in	any	order	and	you	don't	have	to	name	all
the	forms	and	fields	in	a	single	session.
	
Also	See
Start	newlook

Script	the	Screens	and	Snap	them	in	the	Framework	-	16	minutes

Play	Movie 	to	learn	how	to	script	screen	navigation	and	snap	screens	in	the
Framework	or	read	the	Movie	Summary.

Movie	Summary

For	movie	Script	the	Screens	and	Snap	them	in	the	Framework	-	16
minutes

This	movie	shows	how	to	script	the	5250	screens	and	snap	them	to	the
Framework.
									(It	first	shows	a	quick	tour	of	the	RAMP	Window)
	

Track	Navigation
									Start	newlook	in	the	RAMP	window
									Connect	to	the	System	i	server
									Demonstrate	to	RAMP	the	navigation	from	the	I5/OS	main	menu	to
WRKLNK,	WRKJOBQ,	WRKOUTQ	and	WRKACTJOB	and	back

									Sign	off	from	the	System	i	server
	

Define	screens
									For	every	screen,	click	on	the	message	that	says	the	screen	is	unknown
									Define	the	Sign-on	screen	and	the	Main	menu	as	Junction	Screens

									Define	WRKLNK,	WRKJOBQ,	WRKOUTQ	and	WRKACTJOB	as
Destination	Screens

									Define	Display	Messages	as	a	Special	Screen
	

Create	scripts
									Use	the	pop-up	menu	to	automatically	create	scripts	for	all	the	screens
	

Enable	Function	Keys
									Select	the	WRKLNK	screen	in	the	Screen	and	Script	List
									In	the	Destination	Screen	Details	check	Page	Up	and	Page	Down	in	the
Enable	for	NL	column	in	the	Function	Key	Enablement	Group	so	that	the
user	can	use	these	keys	from	the	keyboard.

									Repeat	this	step	for	the	other	three	destination	screens
	

Specify	the	command	tab	where	the	screen	is	displayed
									In	the	Associated	Command	Handlers	list	associate	the	screens	with	the
command	tab:

WRKJOBQ Job	Queues	-	Work	With

WRKOUTQ Output	Queues	-	Work	With

WRKLINK IFS	Folders	-	Work	With

WRKACTJOB System	Jobs	-	Work	With

	

Specify	a	different	Session	Option	for	every	screen
To	execute	the	destination	screens	in	separate	sessions	select	the	Session	options
SESSION_A,	SESSION_B,	SESSION_C	and	SESSION_D	for	the	four
destination	screens	respectively	(normally	the	default	value	*AUTO	is	used
which	means	the	Framework	will	automatically	determine	the	correct	session)
Note	that	in	addition	to	selecting	the	checkbox	in	front	of	the	associated
command	handler	you	also	need	to	click	its	name	so	that	it	is	highlighted	when
you	specify	the	Session	Option.
	

Save	and	Restart	the	Framework
Open	the	System	i	Server	application	and	click	on	any	of	the	four	business
objects	to	start	a	new	5250	session	to	the	System	i	server	and	display	the
modernized	5250	screen.

Scripting	Tutorials
General
Introduction	to	Scripts	-	6.5	minutes
Reading,	Writing	and	Storing	Values	in	Scripts	-	4	minutes
Debug	and	Diagnostics	-	2.5	minutes
	

Subfile	Handling
Not	Using	a	Datagrid	Control	-	1	minute
Using	Subfile	Accessor	-	5	minutes
Subfile	Direct	Access	-	2	minutes

Scripting
RAMP	manages	the	5250	screens	in	the	modernized	application	with	scripts.
Learning
Using
Debugging

Learning
The	movie	Introduction	to	Scripts	-	6.5	minutes	shows	you	how	to	learn
scripting	basics.
Types	of	Scripts	in	RAMP	introduces	you	to	RAMP	scripts.
You	also	need	to	know	how	to	Generate	Scripts	Automatically	because	this	is
how	most	scripts	are	created
The	movie	Reading,	Writing	and	Storing	Values	in	Scripts	-	4	minutes	shows
how	to	pass	values	to	and	from	your	screens.
Javascript	Essentials	teaches	you	some	basic	techniques	you	will	often	use	when
writing	scripts.

Introduction	to	Scripts	-	6.5	minutes

Play	Movie 	to	learn	scripting	basics	or	read	the	Movie	Summary.

.

Movie	Summary
For	movie	Introduction	to	Scripts	-	6.5	minutes
Scripts	are	usually	created	automatically	in	RAMP,	but	to	deal	with	them
confidently	you	need	to	understand	some	scripting	basics.
This	movie	introduces	Javascript,	the	types	of	scripts	in	RAMP	and	tracing:

Basic	Javascript	syntax
									Comments	are	marked	with	/*	*/

									Lines	are	ended	with	a	semicolon	(;)
									Literals	are	enclosed	in	double-quotes	(")
									There	are	Framework	Objects	that	Scripts	Can	Refer	To

									The	structure	of	the	conditional	switch	statement	is:
	
switch(n)
{
case	1:

execute	code	block	1
break

case	2:
execute	code	block	2
break

default:
code	to	be	executed	if	n	is
different	from	case	1	and	2

}
		

Types	of	scripts	in	RAMP
The	movies	shows:
									The	interaction	between	Invoke	Scripts	and	Return	Scripts
									Button	Script

									Eliminate	Script

Application	level	tracing
									Use	the	Tracing	option	in	the	Framework	menu	to	start	Application	Level

Tracing

Types	of	Scripts	in	RAMP
There	are	different	types	of	RAMP	scripts	for	different	types	of	screens:

Destination
Screens

An	Invoke	Script	indicates	how	the	destination	screen
should	be	invoked	(or	accessed).	This	script	is	the	key	to
how	the	Framework	manages	screen	navigation.
A	Return	Script	indicates	how	to	cancel	the	screen	and
get	back	to	the	nearest	junction	screen.
A	Button	Script	indicates	how	buttons	clicked	by	the
user	should	be	handled.

Junction
Screens

A	Navigate	Script	indicates	how	to	navigate	from	one
screen	to	another

Special
Screens

An	Eliminate	Script	indicates	how	to	hide	them.

For	a	basic	scripting	example,	also	see	Scripts	in	a	Classic	Details	Display.

Scripts	in	a	Classic	Details	Display
This	example	shows	how	two	very	simple	5250	screens	are	modernized	in
RAMP.
The	first	screen	GETORDER	asks	for	an	order	number	to	be	input	and	the
second	screen	SHOWORDER	displays	the	order	details:

The	user	repeats	order	inquiries	by	using	the	F12	function	key.
	

Modernized	Version
To	modernize	the	application	we	identify	the	5250	screens	and	script	their
interaction	to	RAMP:
									The	GETORDER	screen	becomes	a	junction	screen.	It	will	not	be
displayed.

									The	SHOWORDER	screen	becomes	a	destination	screen.

In	the	modernized	application	the	user	selects	orders	from	the	instance	list	and
the	SHOWORDER	screen	shows	the	details	of	the	selected	order.
SHOWORDER	has	three	scripts:
									The	Invoke	Script	which	displays	the	SHOWORDER	screen.

									A	Return	Script	which	contains	a	single	executable	line	to	cancel	out	of	the
SHOWORDER	screen.

									A	Button	Script	which	will	not	be	executed	for	SHOWORDER	because	all
function	keys	are	hidden	and	disabled	in	this	screen	(the	user	just	clicks	on
different	orders	up	in	the	instance	list	to	display	the	details	of	a	different
order.)

Every	time	a	user	clicks	on	an	order	in	the	instance	list,	the	SHOWORDER's
return	script	is	executed	to	return	to	the	navigation	network.	Once	there,	the
invoke	script	is	executed	to	display	the	SHOWORDERS	screen	with	the	details
of	the	selected	order.
	
	

Invoke	Script
Every	Destination	Screen	has	an	invoke	script	which	controls	how	it	is
displayed.	Here	is	an	example	of	a	script	that	invokes	a	SHOWORDER	screen
when	an	order	is	selected	in	the	instance	list:

First	the	script	navigates	to	the	5250	junction	screen	GETORDER	which	is	used
to	select	which	order	is	to	be	shown:
	
NAVIGATE_TO_JUNCTION("GETORDER");
	
It	then	makes	sure	that	we	get	to	the	GETORDER	screen.	If	this	check	fails	an
error	message	is	shown:
	
if	(!(CHECK_CURRENT_FORM("GETORDER",	"Unable	to	navigate	to	form
GETORDER")))	return;
	
Next	the	script	retrieves	the	current	order	number	from	the	instance	list	to	the
GETORDER	screen.	Typically	you	need	to	edit	this	part	of	the	script	(see
Replacing	Hardcoded	Employee	Number	with	Current	Instance	List	Entry):

	
SETVALUE("ORDERNUMBER",	objListManager.AKey1[0]);
	
And	then	presses	the	Enter	key	to	process	the	GETORDER	screen:
	
SENDKEY(KeyEnter);
	
Finally	the	script	makes	sure	that	screen	SHOWORDER	has	arrived	back	from
the	System	i	and	is	ready	to	be	displayed.	If	this	check	fails,	an	error	message	is
shown:
	
if	(!(CHECK_CURRENT_FORM("SHOWORDER",	"Unable	to	display	order
number	"	+	objListManager.AKey1[0])))	return;
	
	
Also	See:
NAVIGATE_TO_JUNCTION	Function
CHECK_CURRENT_FORM	Function
SETVALUE	Function
SENDKEY	Function

Return	Script
Every	Destination	Screen	has	a	return	script	which	indicates	how	to	exit	the
destination	screen:

The	return	script	shows	how	to	go	back	to	the	nearest	junction	and	onto	the
navigation	system.	It	probably	contains	just	a	single	executable	line:
	
SENDKEY(KeyF12);
	
The	return	script	does	not	necessarily	have	to	go	back	via	the	junction	where	it
was	originally	invoked	from,	but	typically	it	does.
Also	See:
SENDKEY	Function

Button	Script
Every	Destination	Screen	has	a	button	script	which	indicates	how	the	function
keys	the	user	presses	or	the	buttons	the	user	clicks	should	be	handled:

When	you	generate	a	button	script	from	tracking	information,	every	key	present
on	the	screen	is	handled	in	a	series	of	SENDKEY	functions	in	the	script.
...	
case	KeyEnter:
SENDKEY(KeyEnter);
...	
If	you	disable	a	key	in	the	Destination	Screen	Details	the	script	for	it	does	not
get	executed.
In	most	situations	navigational	5250	function	keys	like	F12=Cancel	and
F3=Exit	should	be	disabled	and	not	shown	because	they	are	not	required	in

Windows	navigation	and	tend	to	just	confuse	users.
You	can	also	add	buttons	or	function	keys	which	are	entirely	processed	on	the
client	system	and	never	sent	back	to	the	server.	To	do	this	you	enable	them	in
the	Destination	Screen	Details	and	then	add	handling	for	them	in	the	button
script.
Also	See:
SENDKEY	Function

Navigate	Script
Junction	Screens	control	application	navigation	but	are	never	shown	to	the	user.
These	screens	have	navigate	scripts	associated	with	them	which	control	the
navigation	to	and	from	the	junction	screen.
This	example	script	selects	menu	option	3	on	a	menu,	emulates	the	pressing	of
the	enter	key	and	checks	that	the	correct	screen	is	displayed:

Typically	there	are	one	or	more	scripts	navigating	away	from	a	junction	screen
towards	other	junctions	and	one	or	more	scripts	navigating	towards	it	from	other
junctions.
Collectively	these	scripts	define	a	navigation	network	between	junctions.
Also	See:
SETVALUE	Function
SENDKEY	Function
CHECK_CURRENT_FORM	Function

Eliminate	Script
Special	Screens	have	an	eliminate	script	associated	with	them.	These	scripts
define	what	is	to	happen	whenever	a	special	screen	appears	so	as	to	eliminate	it
from	the	5250	data	stream	and	make	it	invisible	to	other	scripts.
This	script	eliminates	the	display	of	the	system	messages	screen:

Also	See:
SENDKEY	Function

Generate	Scripts	Automatically
After	you	have	tracked	the	navigation	in	your	application	using	RAMP	Tools,
you	can	automatically	generate	scripts	using	the	tracking	information
To	generate	scripts,	click	on	the	messages	in	the	Message	Area	and	use	the	pop-
up	menu.
To	see	how	it	is	done	you	can	play	the	tutorial	movie	Define	the	screens	to	the
VLF	and	build	a	navigation	script	(New	Employee)	-	7.5	minutes.
The	best	sequence	for	choreographing	5250	screen	interactions	is	to:
									Track	all	the	appropriate	5250	screen	interactions	in	the	navigation	path.

									Go	down	through	the	tracking	area	and	classify	every	screen	as	a
destination,	special,	junction,	etc.

									Go	down	through	the	tracking	area	again	and	for	each	screen	ask	for	the
scripts	to	be	automatically	generated.

Reading,	Writing	and	Storing	Values	in	Scripts	-	4	minutes

Play	Movie 	to	learn	how	to	read	and	write	values	in	scripts	and	how	to	store
them	as	variables	or	as	properties	of	objects	or	read	the	Movie	Summary.
.

Movie	Summary
For	movie	Reading,	Writing	and	Storing	Values	in	Scripts	-	4	minutes
This	movie	shows	how	you	can	read,	write	and	store	values	in	scripts.

Reading	values
Scripts	can	read	values	from	the	instance	list	like	this:
myVariable	=	objListManager.Akey3[0];
	
See	Visual	and	Programmatic	Identifiers.
	
If	the	user	has	selected	several	entries	in	the	instance	list,	you	can	read	all	the
values	in	a	loop	like	this:
var	i	=	0;
var	strMessage	=	"";
for	(i	=	1;	i	<=	objListManager.TotalSelected;	i++)
{
				strMessage	+=	"Selected	Employee	"	+	objListManager.AKey3[i]	+	"	";
}
alert(strMessage);
	
Or	from	a	field	defined	on	a	5250	screen	like	this:
MyVariable	=	GETVALUE("utxtEmployeeCode");
	

Writing	values
The	script	can	put	values	on	the	screen	like	this:
SETVALUE("utxtEmployeeCode",	"myText");
	

Storing	values
You	can	store	values	in	Javascript	variables	and	then	read	and	write	from	them:
Var	MyString	=	"";
MyString	=	objListManager.Akey3[0];
		
These	variables	exist	only	while	the	script	is	running.	To	share	information

between	scripts,	you	need	to	create	and	set	a	property	for	objGlobal:
objGlobal.uLastValue	=	"anything";
	
Then	another	script	can	read	this	value:
myVariable	=	objGlobal.uLastValue;
	

Getting	script	pieces	quickly
Using	the	Scripting	Pop-up	Menu

Javascript	Essentials
RAMP	manages	the	5250	screens	in	the	modernized	application	with	JavaScript
scripts.
JavaScript	is	the	most	commonly	used	scripting	language	in	the	world.	You	can
also	use	Microsoft's	JScript	extension.	Note	that	JavaScript	skills	can	be	used	in
many	other	contexts	such	as	LANSA	for	the	Web	and	HTML	manipulation.
This	section	describes	some	Javascript	essentials:
External	JavaScript	Documentation
Alert()
Converting	Numbers	to	Strings
Converting	String	to	Numbers
String	Manipulation	Functions
Is	This	Variable	Number	or	String?
Using	the	objGlobal	Object

External	JavaScript	Documentation
Put	this	link	behind	an	icon	on	you	desktop	for	instant	access	to	formal
JavaScript	documentation:
http://www.w3schools.com/jsref/
	
There	are	also	many	good	books	available	(such	as	JavaScript	Bible	by	Danny
Goodman,	ISBN	0-7645-3188-3).

http://www.w3schools.com/jsref/

Alert()
The	Alert()	function	is	your	most	useful	tool	for	debugging	errant	scripts.
For	example:
Alert("About	to	send	the	enter	key");
Alert("The	value	of	x	is	"	+	x.toString());
Alert("The	customer	number	is	"	+	objGlobal.CustomerNumber);		
	
Also	See
Strange	behavior	in	scripts
Object	expected

Converting	Numbers	to	Strings
If	you	have	a	number	in	JavaScript	variable	and	you	want	to	convert	it	to	a
string	use	the	toString()	function.	For	example:
var	number	=	5.65;
var	stringnumber	=	number.toString();
	
alert(stringnumber);
	
SETVALUE("Amount",stringNumber);		
SETVALUE("Amount",number.toString());		

Converting	String	to	Numbers
If	you	have	a	string	and	want	to	convert	it	to	a	number	then	use	the	parseInt()
method.	For	example	this	script	returns	integer	values	containing	1234	and	43
respectively	into	X:
X	=	parseInt("1234",10);
X	=	parseInt("34abc",10);
		
The	second	argument	(10)	specifies	you	want	to	use	a	base	10	numbering
system.	It's	unusual	to	use	anything	for	this	parameter	except	10	and	you	should
always	specify	it	as	the	default	is	a	bit	unpredictable.	(See,	for	example,
http://www.w3schools.com/jsref/jsref_obj_global.asp	if	you	are	interested	as	to
why)
If	you	need	to	have	decimals	then	use	parseFloat().	For	example	this	script
returns	floating	point	values	1234.345	and	34.7	respectively	into	X:				
X	=	parseFloat("1234.345");
X	=	parseFloat("34.7abc");
		
Remember	that	these	are	floating	point	values	so	they	are	not	always	as	accurate
or	as	predictable	as	signed	or	packed	decimals	numbers.

http://www.w3schools.com/jsref/jsref_obj_global.asp

String	Manipulation	Functions
String	variables	in	JavaScript	have	a	number	of	very	useful	string	functions.
Here's	a	sample	of	the	most	commonly	used:		

Operation	/	Function Example

Concatenation	(+) var	S1	=	"Customer";
var	S2	=	"123456";	
var	S3	=	S1	+	"	"	+	S2	+	"could	not	be	found";
	
puts	Customer	123456could	not	be	found	in
variable	S3.		

IndexOf	–	finds	first
occurrence	of	a	string	in	a
string

/*								012345678901	*/
var	S1	=	"ABCDHELLOABC";
var	pos	=	S1.indexOf("HELLO");
	
will	put	the	number	4	into	variable	pos.		

lastIndexOf	-	finds	last
occurrence	of	a	string	in	a
string

/*								012345678901	*/
var	S1	=	"ABCDHELLOABC";
var	pos	=	S1.lastIndexOf("AB");
	
will	put	the	number	9	into	variable	pos.		

charAt	–	returns	the
character	at	a	specific
position	in	a	string

/*								012345678901	*/
var	S1	=	"ABCDHELLOABC";
var	S2	=	S1.charAt(4);
var	S3	=	S1.charAt(9);
	
will	put	"H"	into	S2	and	"A"	into	S3.

length	–	returns	the	length
of	a	string

/*								012345678901		*/
var	S1	=	"ABCDHELLOABC";
var	I		=	S1.length;
	
will	put	the	number	11	into	variable	I.

substring	–	returns	the /*							01234567789		*/

substring	of	string	using	a
starting	and	ending	point.

var	a	=	"Hello	World";
var	b	=	a.substring(4,8);
	
will	put	"o	Wor"	into	b.
	

substr	–	returns	the
substring	of	a	string	using
a	starting	position	and	a
length

/*							01234567789		*/
var	a	=	"Hello	World";
var	b	=	a.substr(2,3);
	
will	put	"llo"	into	b.
	

toLowerCase	–	returns	the
lowercase	of	string

var	a	=	"Hello	World";
var	b	=	a.toLowerCase();
	
will	put	"hello	world"	into	b.
	

toUpperCase	–	returns	the
uppercase	of	a	string

var	a	=	"Hello	World";
var	b	=	a.toUpperCase();
	
will	put	"HELL	WORLD"	into	b.
	

There	are	more	string	functions	like	these	available.	See:
http://www.w3schools.com/jsref/jsref_obj_string.asp	for	more	details.
	
	

http://www.w3schools.com/jsref/jsref_obj_string.asp

Is	This	Variable	Number	or	String?
Sometimes	you	have	a	variable	in	Javascript	and	do	not	know	whether	it	is	a
number	or	a	string.	You	can	test	the	type	of	a	variable	by	using	the	typeof()
operator	like	this:
Var	x					=	1.234;
Var	y					=	"Hello";
Var	Type1	=	typeof(x);
Var	Type2	=	typeof(y);	
	
Alert(Type1	+	"	and	"	+	Type2);
	
This	code	displays	the	message	"number	and	string".
There	are	six	possible	values	that	typeof	returns:	"number,"	"string,"	"boolean,"
"object,"	"function,"	and	"undefined."	The	most	useful	are	"number",	"string"
and	"undefined".
	"undefined"	is	useful	because	it	tells	you	that	something	does	not	exist	yet	(ie:
it's	undefined)	so	sometimes	you	see	code	like	this:
if	(typeof(objGlobal.CustomerNumber)	=	"undefined"))
objGlobal.CustomerNumber	=	"12345";

Using	the	objGlobal	Object
objGlobal	is	one	of	the	Framework	objects	that	scripts	can	refer	to.	Its	purpose
is	to	store	your	own	properties.
This	section	shows	some	techniques	in	using	it:
Getting	Organized
Using	objGlobal	to	pass	optional	parameters
Using	objGlobal	to	pass	optional	parameters	to	an	INVOKE	script
Using	objGlobal	to	define	commonly	used	functions

Getting	Organized
If	you	make	a	lot	of	use	of	the	objGlobal	object	then	you	should	look	to
organizing	its	use	in	some	way.	One	way	is	to	divide	it	up	into	multiple	sub-
objects	by	application	or	usage.
For	example,	if	you	did	this	in	you	logon	script:
objGlobal.AppA	=	new	Object();	
objGlobal.AppB	=	new	Object();	
objGlobal.AppC	=	new	Object();	
	
Then	in	your	scripts	you	could	make	sure	your	references	do	not	accidentally
interfere	with	each	other.
For	example	objGlobal.AppA.CurrentCustomer	is	a	different	variable	to
objGlobal.AppB.CurrentCustomer	and	objGlobal.AppC.CurrentCustomer.	

Using	objGlobal	to	pass	optional	parameters
Extending	the	idea	in	the	previous	section	slightly,	you	can	introduce	the
concept	of	optional	parameters	being	passed	into	scripts.	In	a	script	that	needs	to
pass	some	optional	parameters	into	another	script	you	might	find	code	like	this:
	
objGlobal.OptParms	=	new	Object();	
objGlobal.OptParms.CustNumber	=	"12345";
objGlobal.OptParms.CustName			=	"ACME	ENGINEERING";					
NAVIGATE_TO_DESTINATION("uShowCustomer");
	
and	the	script	that	receives	the	optional	parameters	you	would	find	code
possibly	structured	something	like	this:
var	CustNumber	=	"some	default	value";
var	CustName			=	"some	default	value";
	
if	(objGlobal.OptParms	!=	null)
{
			CustNumber									=	objGlobal.OptParms.CustNumber;
	CustName											=	objGlobal.OptParms.CustName;		
	objGlobal.OptParms	=	null;
}
	
/*	Now	we	proceed	to	use	the	values	in	CustNumber	and	CustName	*/
	
The	line	objGlobal.OptParms	=	null;	line	is	very	important	to	this	style	of
processing	because	it	destroys	the	temporary	OptParms	object.

Using	objGlobal	to	pass	optional	parameters	to	an	INVOKE
script
Sometime	an	INVOKE	script	is	executed	in	different	ways.	For	example:
									When	the	user	clicks	on	a	line	in	instance	list,	the	script	is	invoked	to
display	the	customer	details.

									This	script	may	also	be	invoked	from	another	script	to	display	the	details
of	a	specific	customer.

Since	this	script	can	be	used	in	two	different	ways,	it	needs	to	be	aware	of	what
it	is	being	asked	to	do.	The	easiest	way	to	do	this	is	to	use	the	"ObjGlobal"
object	to	pass	optional	parameters	to	it.
In	an	INVOKE	script	you	can	define	and	check	for	the	existence	of	optional
parameters	like	this:
																	/*	Conceptually	this	script's	behavior	is	controlled	by	2	parameters
which	may	or	may	not	be	passed	to	it	*/
	
										var		Parameter1	=	"parameter	default	value";
										var		Parameter2	=	"parameter	default	value";
						
										/*	If	either	parameter	has	been	passed	in	the	objGlobal	object	then
override	the	default	behavior.				*/
										/*	Note	the	destruction	of	the	optional	parameters.	This	is	so	they	do	not
hang	around	to	interfere			*/
										/*	with	later	executions	of	this	script.	They	are	created,	passed	into	the
script	and	then	destroyed.	*/				
	
										if	(objGlobal.optParameter1	!=	null)	{	Parameter1	=
objGlobal.optParameter1;	objGlobal.optParameter1	=	null;	}
	
										if	(objGlobal.optParameter2	!=	null)	{	Parameter2	=
objGlobal.optParameter2;	objGlobal.optParameter2	=	null;	}
	
										/*	Now	use	the	values	in	Parameter1	and	Parameter	2	to	control	how	this
script	behaves	*/
	
										<	etc	>			
										<	etc	>			

	
		
As	a	specific	example,	imagine	an	INVOKE	script	that	by	default	displayed	the
current	customer	from	the	instance	list.	However,	some	other	scripts	reuse	it	to
display	a	specific	customer,	which	may	or	may	not	be	in	the	instance	list.
You	could	handle	this	situation	like	this:		
				
																	/*	By	default	this	script	displays	the	current	customer	from	the
instance	list,	so	get	the	customer	number	*/
	
										var	RequestedCustomer	=	objListManager.AKey1[0];
						
										/*	If	the	caller	has	supplied	a	specific	customer	number	use	it	instead
(making	sure	to	destroy	the	optional	parameter)	*/
	
										if	(objGlobal.optRequestedCustomer	!=	null)
										{
													RequestedCustomer														=	objGlobal.optRequestedCustomer;
													objGlobal.optRequestedCustomer	=	null;
										}
	
										/*	Now	display	the	details	of	the	customer	identified	in
RequestedCustomer	*/
	
										<	etc	>			
										<	etc	>			

	

In	a	script	that	wants	to	display	a	specific	customer	number	you	could	do
something	like	this:
	
										/*	Save	the	changes	and	(re)display	this	customer	*/
														
										case	KeyEnter:
										{
													var	CustomerNumber	=	GETVALUE("CustNo");									/*	Get	the

updated	customer	number	from	the	current	screen	*/
													SENDKEY(KeyEnter);																															/*	Update	the	current	screen
details																							*/
													objGlobal.optRequestedCustomer	=	CustomerNumber;	/*	Set	up	the
specific	customer	number	you	want	(re)displayed	*/		
													NAVIGATE_TO_DESTINATION("uShowCustomerDetails");	/*
Redisplay	the	customer	by	executing	the	destination	script	again	*/		
										}
										break;
	

Using	objGlobal	to	define	commonly	used	functions
If	you	want	to	create	a	JavaScript	function	that	is	reused	in	many	places	you
could	do	something	like	this	in	your	sign-on	script:
	
objGlobal.Mult	=	function	(x,y)	{
																	var	z	=	x	*	y;
																	return(z);					}
	
objGlobal.Add		=	function	(x,y)	{
																	var	z	=	x	+	y;
																	return(z);					}
	
These	operations	define	2	functions	in	objGlobal	named	Mult	and	Add	and	the
code	that	they	contain.
Once	this	has	been	done	the	functions	objGlobal.Add	and	objGlobal.Mult	can
be	executed	in	other	scripts	like	this:
	
var	q	=	objGlobal.Add(222,3);
alert(q.toString());
	
q	=	objGlobal.Mult(22,33);
alert(q.toString());
	
which	would	display	the	results	225	and	726	respectively.

	

Using
Interacting	with	Instance	Lists	in	Scripts
Using	the	Scripting	Pop-up	Menu
Updating	the	Instance	List	from	RAMP	screens
Subfiles/Browselists
Handling	Pop-Ups
Script	Functions
Framework	Objects	that	Scripts	Can	Refer	To
User-defined	script	functions
Switching	Off	Recursion	Checking

Interacting	with	Instance	Lists	in	Scripts
For	an	introduction	to	this	topic,	play	the	tutorial	movie	Link	the	Selected
Employee	in	the	Instance	List	with	the	Display	Employee	Screen	-	4	minutes.
The	instance	list	is	the	list	of	business	object	instances	typically	displayed	in	the
upper	right	corner	of	the	Framework	window.	For	example,	the	shipped
demonstration	system	uses	an	Employee	business	object	that	has	an	instance	list
that	looks	like	this	(outlined	in	red):

Many	scripts	need	to	interact	with	the	instance	list.	These	topics	explain	how	to
do	it:
The	List	Manager
Visual	and	Programmatic	Identifiers
Working	with	All	Selected	Entries

The	List	Manager
Script	interactions	with	an	instance	list	are	done	by	accessing	properties	of	the
Framework	JavaScript	object	named	objListManager	(the	list	manager).
For	example	an	invoke	script	that	displays	a	screen	showing	the	details	of	an
employee	uses	the	objListManager	in	the	SETVALUE	command	to	set	the
employee	to	the	selected	entry	in	the	instance	list:
	
	/*	Navigate	to	the	nearest	access	junction	*/
NAVIGATE_TO_JUNCTION("uFindEmployee");
	
/*	Check	for	arrival	at	uFindEmployee	*/
	if	(!(CHECK_CURRENT_FORM("uFindEmployee","Unable	to	navigate	to
form	uFindEmployee")))	return;
	
/*	Set	the	employee	to	be	displayed	to	the	employee	selected	in	the	*/
/*	instance	list	(which	is	identified	by	the	programmatic	identifier	AKey3)	*/
SETVALUE("utxtEmployeeCode",objListManager.AKey3[0]);
	
/*	Send	the	key	required	to	navigate	to	uDisplayEmployee	*/
SENDKEY(KeyEnter);
SENDKEY(KeyF21);
		
Also	See
objListManager
Replacing	Hardcoded	Employee	Number	with	Current	Instance	List	Entry

Visual	and	Programmatic	Identifiers
Instance	list	entries	always	have	an	identification	protocol	that	defines	their
visual	and	programmatic	identification.	You	set	these	identifiers	when	you
create	the	filter	that	controls	the	instance	list.
(Refer	to	the	section	List	Manager	in	the	Framework	guide	if	you	want	detailed
information	about	the	identification	protocol.)
For	example	this	LANSA	command	in	a	filter	for	employees	adds	entries	to	the
instance	list	and	sets	programmatic	and	visual	identifiers	and	additional
columns	for	them:
	
Invoke	Method(#avListManager.AddtoList)	Visualid1(#Empno)
Visualid2(#FullName)	Akey1(#Deptment)	Akey2(#Section)	Akey3(#Empno)
AColumn1(#PhoneHme)	AColumn2(#Address1)	nColumn1(#PostCode)
	
	
In	this	identification	protocol:
									The	third	programmatic	identifier	(called	AKey3)	contains	the	employee
number.

									The	second	visual	identifier	(called	VisualId2)	contains	the	employee's
name.

When	you	know	the	identification	protocol,	you	can	create	a	JavaScript	that
displays	the	number	and	name	of	the	currently	selected	employee	in	the	instance
list:
/*	Get	the	current	instance	list	details	*/
{
var	strEMPNO	=	objListManager.AKey3[0];	/*	3rd	Akey	is	the	number	*/
var	strNAME	=	objListManager.VisualId2[0];	/*	2nd	VisualId	is	the	name	*/
alert("Current	employee	number	is	"	+	strEMPNO);
alert("Current	employee	name	is	"	+	strNAME);
}
	
Like	this:

javascript:void(0);openCHM('LANSA048.CHM::/listmanager.htm',’lansa’);

	

Working	with	All	Selected	Entries
More	than	one	entry	can	be	selected	in	the	instance	list.	This	script	displays	the
number	and	name	of	all	selected	employees	in	a	message:
	
/*	Get	all	the	selected	employees	*/
{
var	i	=	0;
var	strMessage	=	"";
for	(i	=	1;	i	<=	objListManager.TotalSelected;	i++)
{
strMessage	+=	"Employee	"	+	objListManager.AKey3[i];
strMessage	+=	"	-	"	+	objListManager.VisualId2[i]	+	"\x0D";
}
alert(strMessage);
}
So	if	this	script	was	used	with	three	selected	instance	list	entries	like	this:

It	would	display	this	alert	message:

	

Using	the	Scripting	Pop-up	Menu
You	can	use	the	scripting	pop-up	menu	to	format	and	edit	your	scripts.	To
display	the	menu,	right-click	the	Script	Details	area.

The	first	set	of	options	Cut,	Copy,
Paste,	Undo	and	Redo	are	commonly
used	options	in	many	editors	and	are
self-explanatory.

The	Upper	Case	and	Lower	Case
options	will	change	the	case	of	any	text
currently	selected	in	the	script	editor.
Note	that	Javascript	is	case-sensitive.

The	Lower	font	and	Larger	font	options
allow	you	to	change	the	size	of	the	font
being	used	by	the	text	editor.

The	Show	Line	Numbers	option
displays	(or	hides)	line	numbers	in	the
text	editor.

Use	The	Current...	options	to	insert
properties	for	various	Framework
objects	into	your	script.	Use:
									Current	Framework	to	enter
properties	of	objFramework

									Current	Application	to	enter
properties	of	objApplication

									Current	Business	Object	to	enter
properties	of	objBusinessObject

									Current	Command	to	enter
properties	of	objCommand

									Current	Instance	List	Entry	to
enter	properties	of	objListManager

Use	the	5250	Subfile	Handling	options
to	insert	code	for	Subfiles/Browselists.

Use	the	Session	Control	options	to	enter
commonly	used	functions	and	objUser
parameters	to	your	script.

Examples:
									Replacing	Hardcoded	User	Name	with	Current	Framework	User

									Replacing	Hardcoded	Employee	Number	with	Current	Instance	List	Entry
									Adding	Your	Own	Options	to	the	Scripting	Pop-Up	Menu

Replacing	Hardcoded	User	Name	with	Current	Framework	User
To	replace	the	hardcoded	user	name	"QPGMR"	in	this	line	of	script	with	the
name	of	the	current	framework	user:
	
SETVALUE("utxtUserName",	"QPGMR");
	
	
Select	"QPGMR"	(including	the	quotes),	right-click	and	select	the	Session
Control	and	then	User	Name	option:

	
The	constant	"QPGMR"	is	now	replaced	with	the	substitution	value	for	the
current	Framework	user:
	
SETVALUE("utxtUserName",	objUser.Name);
	

Replacing	Hardcoded	Employee	Number	with	Current	Instance
List	Entry
When	you	automatically	generate	scripts	using	tracking	information,	the	scripts
will	contain	the	hardcoded	field	values	you	typed.	To	make	the	script	to	work
with	any	selected	object,	you	need	to	replace	the	hardcoded	value	with	the
appropriate	identifier.
To	replace	the	hardcoded	employee	number	"A1234"	in	this	line	of	script	with
the	name	of	the	employee	currently	selected	in	the	instance	list:
	
SETVALUE("uEmpNo","A1234");
	
	
First	find	out	the	Visual	and	Programmatic	Identifiers	used	to	identify	the
employee.	Then	highlight	the	hardcoded	number	"A1234"	(including	the
quotes)	in	the	script,	right-click	to	bring	up	the	pop-up	menu,	select	the	Current
Instance	List	Entry	option	and	select	the	appropriate	identifier:

The	constant	"A1234"	is	now	replaced	with	the	programmatic	identifier	of	the
employee	number:
	
SETVALUE("uEmpNo",	objListManager.AKey3[0]);	
	

Adding	Your	Own	Options	to	the	Scripting	Pop-Up	Menu
You	can	add	your	own	options	to	the	scripting	pop	up	menu	by	creating	an	xml
file	called	uf_um835.xml,	and	putting	it	in	the	partition	execute	directory.	You
can	do	this	using	notepad.
This	is	an	example	of	uf_um835.xml	that	you	could	create:
<?xml	version="1.0"?>
<EXTRACT>
<MENUITEM>
<PROPERTY	NAME="CAPTION"	VALUE="My	user	defined	options"	/>
<SUBMENUS>
<SUBMENUITEM>
<PROPERTY	NAME="CAPTION"	VALUE="My	caption	for	option	1"	/>
<PROPERTY	NAME="STRING"	VALUE="My	returned	text	for	option	1"	/>
</SUBMENUITEM>
<SUBMENUITEM>
<PROPERTY	NAME="CAPTION"	VALUE="My	caption	for	option	2
(multiple	lines	returned)"	/>
<PROPERTY	NAME="STRING"	VALUE="My	returned	line	1	for	option	2"	/>
<PROPERTY	NAME="STRING"	VALUE="My	returned	line	2	for	option	2"	/>
<PROPERTY	NAME="STRING"	VALUE="My	returned	line	3	for	option	2"	/>
</SUBMENUITEM>
<SUBMENUITEM>
<PROPERTY	NAME="CAPTION"	VALUE="My	caption	for	option	3
(handling	quotes	in	the	text)"	/>
<PROPERTY	NAME="STRING"	VALUE="Quotes	and	greater	than	and	less
than	need	special	handling"	/>
<PROPERTY	NAME="STRING"	VALUE="Quote	-	""	/>
<PROPERTY	NAME="STRING"	VALUE="Less	than	-	<"	/>
<PROPERTY	NAME="STRING"	VALUE="Greater	than	-	>"	/>
</SUBMENUITEM>
</SUBMENUS>
</MENUITEM>
</EXTRACT>
	
If	you	create	a	file	called	uf_um835.xml	and	paste	this	text	into	it	and	then	put
uf_um835.xml	into	your	partition	execute	directory,	you	will	be	able	to	see
these	new	options	when	you	are	editing	RAMP	scripts:

If	you	choose	option	1,	this	will	be	added	to	your	script:
My	returned	text	for	option	1
	
If	you	choose	option	2,	this	will	be	added	to	your	script:
My	returned	line	1	for	option	2
My	returned	line	2	for	option	2
My	returned	line	3	for	option	2
	
If	you	choose	option	3,	this	will	be	added	to	your	script:
Quotes	and	greater	than	and	less	than	need	special	handling
Quote	-	"
Less	than	-	<
Greater	than	-	>
	
In	the	xml	above,	you	can	see	that	the	caption	displayed	for	the	first	submenu

comes	from	the	caption	property,	and	the	value	returned	to	the	script	when	the
user	clicks	on	this	submenu	comes	from	the	String	property:
<SUBMENUITEM>
<PROPERTY	NAME="CAPTION"	VALUE="My	caption	for	option	1"	/>
<PROPERTY	NAME="STRING"	VALUE="My	returned	text	for	option	1"	/>
</SUBMENUITEM>
	
From	option	2,	you	can	see	how	to	return	multiple	lines	when	the	user	clicks	on
a	submenu:
<SUBMENUITEM>
<PROPERTY	NAME="CAPTION"	VALUE="My	caption	for	option	2
(multiple	lines	returned)"	/>
<PROPERTY	NAME="STRING"	VALUE="My	returned	line	1	for	option	2"	/>
<PROPERTY	NAME="STRING"	VALUE="My	returned	line	2	for	option	2"	/>
<PROPERTY	NAME="STRING"	VALUE="My	returned	line	3	for	option	2"	/>
</SUBMENUITEM>
	
And	from	option	3,	you	can	see	the	special	handling	if	you	want	quotes	(or
greater	than	or	less	than)	in	the	value	returned	to	the	script:
<SUBMENUITEM>
<PROPERTY	NAME="CAPTION"	VALUE="My	caption	for	option	3
(handling	quotes	in	the	text)"	/>
<PROPERTY	NAME="STRING"	VALUE="Quotes	and	greater	than	and	less
than	need	special	handling"	/>
<PROPERTY	NAME="STRING"	VALUE="Quote	-	""	/>
<PROPERTY	NAME="STRING"	VALUE="Less	than	-	<"	/>
<PROPERTY	NAME="STRING"	VALUE="Greater	than	-	>"	/>
</SUBMENUITEM>
		
As	long	as	your	xml	is	valid	xml,	and	keeps	to	the	structure	of	the	example
above	(EXTRACT,	MENUITEM,	SUBMENUS	and	SUBMENUITEM)	it
should	work.
Note:	Ensure	that	your	version	of	UF_UM835.xml	is	backed	up.
	
	

Updating	the	Instance	List	from	RAMP	screens
The	tutorial	movie	Update	the	Instance	List	from	5250	Screens	-	4	minutes
covers	this	topic	in	detail.
A	filter	manages	its	associated	instance	list.	When	a	RAMP	screen	deletes,	adds
or	changes	business	object	instances,	it	needs	to	notify	the	filter	that	a	change
has	occurred.

Create	the	Filter	with	Program	Coding	Assistant
To	create	a	filter	that	listens	for	changes	from	RAMP	screens	use	the	Program
Coding	Assistant	and	select	the	option	Routine	to	listen	for	changes	and	update
the	instance	list:
	

This	option	creates	Filter	Code	which	Automatically	Handles	Changes	to
Instance	List.
	

Add	AVSIGNALEVENT	Function	to	the	Button	Script
Add	an	AVSIGNALEVENT	Function	in	the	button	script	of	your	RAMP
destination	screen	for	the	button	that	handles	the	change	(typically	Save	or
Delete)	to	signal	to	the	filter	that	the	instance	list	needs	to	change.
For	example,	in	a	RAMP	screen	that	updates	an	object,	add	this	statement	to	its
SAVE	button	script:	
	
AVSIGNALEVENT("Update_List_Entry",	"BUSINESSOBJECT",
objListManager.AKey1[0]);
	
The	event	being	signaled	is	named	Update_List_Entry,	and	the	value	being
passed	is	the	identifier	of	the	instance	that	has	been	updated.

To	handle	the	saving	of	a	newly	created	object,	you	must	pass	to	the	filter	the
identifier	of	the	object.	For	example,	to	add	a	new	employee	with	employee
number,	you	would	first	capture	the	employee	number	on	the	screen	using	the
GETVALUE	Function	and	store	it	as	a	property	of	the	objGlobal	object,	and
then	pass	it	to	the	filter:
	
objGlobal.utxtEmployeeCode	=	GETVALUE("utxtEmployeeCode");
SENDKEY(KeyEnter);
AVSIGNALEVENT("Add_List_Entry",	"BUSINESSOBJECT",
objGlobal.utxtEmployeeCode);
	
(The	utxtEmployeeCode	field	is	the	employee	number	field	that	has	been
defined	as	a	text	field	on	the	destination	screen.)
The	standard	event	names	you	can	use	to	update	the	instance	list	are:
									Refresh_Instance_List

									Update_List_Entry
									Add_List_Entry
									Delete_List_Entry.

Filter	Code	which	Automatically	Handles	Changes	to	Instance
List
This	RDMLX	code	which	is	created	by	the	Program	Coding	Assistant
automatically	handles	events	signaled	by	the	RAMP	screen	(it	is	shown	here
just	for	your	reference,	you	do	not	need	to	modify	it):
	
*	--
*	Handle	any	external	requests	to	update	the	Instance	List
*	--
EvtRoutine	#Com_owner.avEvent	WithId(#EventId)	WithAInfo1(#AInfo1)
WithAInfo2(#AInfo2)	WithAInfo3(#AInfo3)	WithAInfo4(#AInfo4)
WithAInfo5(#AInfo5)	WithNInfo1(#NInfo1)	WithNInfo2(#NInfo2)
WithNInfo3(#NInfo3)	WithNInfo4(#NInfo4)	WithNInfo5(#NInfo5)
*	put	the	received	values	into	fields
Change	#vf_elIdn	#EventId.Value
*	Map	the	AInfo	and	NInfo	values	passed,	into	the	key	fields	-	#EMPNO
Change	#DEPTMENT	#AInfo1
Change	#SECTION	#AInfo2
Change	#EMPNO	#AInfo3
	
Case	#vf_elIDN
	
when	'=	Refresh_Instance_List'
*	Reload	the	Instance	List
Invoke	#Com_Owner.uSelectData
	
when	'=	Add_List_Entry'
*	Add	an	entry	to	the	list	view
fetch	FIELDS(#XG_Ident)	FROM_FILE(PSLMST)	WITH_KEY(#EMPNO)
if_status	*OKAY
*	Start	an	instance	list	update
Invoke	Method(#avListManager.BeginListUpdate)
*	Set	up	the	visual	Identifier(s)
Change	#UF_VisID1	#EMPNO
Change	#UF_VisID2	#GIVENAME
Use	BConcat	(#UF_VisID2	#SURNAME)	(#UF_VisID2)
*	Add	instance	details	to	the	instance	list

Invoke	#avListManager.AddtoList	Visualid1(#UF_VisID1)
Visualid2(#UF_VisID2)	AKey1(#DEPTMENT)	AKey2(#SECTION)
AKey3(#EMPNO)	ACOLUMN1(#PHONEHME)	ACOLUMN2(#ADDRESS1)
NCOLUMN1(#POSTCODE)
*	Instance	list	updating	has	been	completed
Invoke	Method(#avListManager.EndListUpdate)
endif
	
when	'=	Update_List_Entry'
*	Update	an	entry	that	already	exists	in	the	instance	list
fetch	FIELDS(#XG_Ident)	FROM_FILE(PSLMST)	WITH_KEY(#EMPNO)
if_status	*OKAY
*	Start	an	instance	list	update
Invoke	Method(#avListManager.BeginListUpdate)
*	Set	up	the	visual	Identifier(s)
Change	#UF_VisID1	#EMPNO
Change	#UF_VisID2	#GIVENAME
Use	BConcat	(#UF_VisID2	#SURNAME)	(#UF_VisID2)
*	Add	instance	details	to	the	instance	list
Invoke	#avListManager.UpdateListEntryData	Visualid1(#UF_VisID1)
Visualid2(#UF_VisID2)	AKey1(#DEPTMENT)	AKey2(#SECTION)
AKey3(#EMPNO)	ACOLUMN1(#PHONEHME)	ACOLUMN2(#ADDRESS1)
NCOLUMN1(#POSTCODE)
*	Instance	list	updating	has	been	completed
Invoke	Method(#avListManager.EndListUpdate)
endif
	
when	'=	Delete_List_Entry'
Invoke	Method(#avListManager.BeginListUpdate)
*	Remove	instance	details	from	the	instance	list
Invoke	#avListManager.RemoveFromList	AKey1(#DEPTMENT)
AKey2(#SECTION)	AKey3(#EMPNO)
Invoke	Method(#avListManager.EndListUpdate)
endcase
	
Endroutine
End_Com

Subfiles/Browselists
From	time	to	time	you	will	need	to	create	scripts	that	access	5250	subfiles.
There	are	three	common	approaches	used	to	do	this:
Movie	Not	Using	a	Datagrid	Control	-	1	minute
Movie	Using	Subfile	Accessor	-	5	minutes
Movie	Subfile	Direct	Access	-	2	minutes	(If	you	need	to	use	subfile	direct
access	then	please	review	this	movie	first.)
	
After	this	following	additional	script	samples	may	be	useful	to	you	in	different
situations:
Script	for	Locating	an	Entry	in	a	Subfile/Browselist
Script	for	Locating	and	Selecting	an	Entry	in	a	Browselist	or	Subfile	by
Positioning	the	Cursor
Script	for	Locating	an	Entry	when	no	Positioning	is	Available
Script	for	Locating	an	Entry	when	no	Positioning	is	Available	and	the	List	has
more	than	One	Page
	
Also	See
SUBFILE_ACCESSOR	Object

Not	Using	a	Datagrid	Control	-	1	minute

Play	Movie 	to	learn	how	to	manage	subfiles/browselists	without	datagrid
control	or	read	the	Movie	Summary.
.

Movie	Summary
For	movie	Not	Using	a	Datagrid	Control	-	1	minute.
When	a	5250	subfile	is	presented	as	a	data	grid	on	a	junction	screen	the	first
question	you	should	always	ask:	"Can	my	script	always	ensure	that	the	data	I
am	interested	in	occurs	in	the	first	entry	in	the	subfile?"
If	the	answer	is	yes,	then	the	easiest	way	to	access	the	content	of	the	5250
subfile	data	grid	is	to	disable	the	grid	and	treat	the	entry	(browselist	cell)	as	a
field:

Disable	the	grid
In	newlook	Designer,	open	the	properties	of	the	Form	object	by	double-clicking
on	the	form.	Locate	the	Recognition	UseGrids	property	and	set	it	to	False.
Close	the	designer	and	save	your	changes.
Now	newlook	recognizes	the	browselist	cells	as	normal	fields.
	

Name	the	first	cell	as	a	field
Open	the	Designer	again.	The	subfile	area	is	now	presented	as	a	series	of	simple
text	boxes	and	labels,	rather	than	as	a	data	grid.
Right-click	the	first	text	box	to	bring	up	its	properties	and	give	it	a	name	using
the	Name	property,	for	example	uSelectEmployee.
The	script	can	now	put	a	value	to	the	field	just	as	if	it	was	a	normal	field:
SETVALUE("uSelectEmployee",	"8");
SENDKEY(KeyEnter);

Using	Subfile	Accessor	-	5	minutes

Play	Movie 	to	learn	how	to	use	the	subfile	accessor	or	read	the	Movie
Summary.
.

Movie	Summary
For	movie	Using	Subfile	Accessor	-	5	minutes.
A	typical	Work	With	screen	has	a	subfile/browselist	of	objects	(in	this	example
Employees),	each	with	an	option	field.
In	RAMP	a	subfile	is	displayed	as	a	data	grid.
In	this	tutorial	we	want	to	enter	option	"8"	in	front	of	a	specific	entry	in	the	data
grid:

Name	the	data	grid
Open	the	screen	in	newlook	Designer,	click	on	the	grid	and	specify
EMPLOYEE_LIST	as	the	Name	property	in	the	Misc	section.

Note	that	the	data	grid	and	the	subfile	have	different	numbers	of
columns	and	rows
									A	data	grid	starts	column	and	row	numbering	from	0	and	includes	the
header	rows

									Column	numbers	are	not	necessarily	sequential	in	a	data	grid
									Columns	have	names	based	on	the	text	in	the	column	headings

To	select	an	employee	in	the	grid	using	SUBFILE_ACCESSOR
Create	the	SUBFILE_ACCESSOR	object:
var	SFL	=	new	SUBFILE_ACCESSOR	("EMPLOYEE_LIST");
	
Put	an	"8"	somewhere	in	column	"Opt":
SFL.SetSelectionColumnName("Opt","8");
	
Then	locate	the	employee	that	has	"A0090"	in	column	"EmployNumber":
SFL.SetSearchColumnName("EmployNumber","A0090");
	
Put	the	value	into	the	subfile:
SFL.SelectSubfileEntry();
	
Lastly,	destroy	the	subfile	object:
SFL.Dispose();

Do	not	write	subfile	code	manually
Instead	see	how	to	create	a	subfile	script	Using	the	Scripting	Pop-up	Menu	and
then	modify	it	as	required.

Find	out	row	and	column	names
Use	the	Probe	button	which	appears	on	RAMP	screens.
	
Also	see	SUBFILE_ACCESSOR	Object.

Subfile	Direct	Access	-	2	minutes

Play	Movie 	to	learn	how	to	directly	access	subfiles	or	read	the	Movie
Summary.
.

Movie	Summary
For	movie	Subfile	Direct	Access	-	2	minutes.
This	tutorial	describes	the	subfile	direct	access	foundation	script.
Create	the	script	Using	the	Scripting	Pop-up	Menu.	The	script	reads	all	subfile
pages,	and	for	each	page	it	reads	all	columns	and	for	each	column	it	reads	all	the
cells.
By	modifying	this	script	you	should	be	able	to	perform	any	required	subfile
operation.

Foundation	Script
{
var	strDataGridName	=	"xxxxxxxxx";	/*	Specify	the	data	grid	name	here	*/
var	flagAnotherPageExists	=	true;	/*	Another	subfile	page	exists	*/
/*	Loop	through	all	subfile	pages	*/
do
{
var	intColumnCount	=	TONUMBER(GETVALUE(strDataGridName	+
".Columns.Count"));
var	intRowCount	=	TONUMBER(GETVALUE(strDataGridName	+
".RowCount"));
var	intColumn,	intRow	=	0;
/*	Iterate	over	the	current	subfile	page	*/
for	(intColumn	=	0;	intColumn	<	intColumnCount;	intColumn++)	/*	Iterate
through	the	columns	*/
{
var	strColumn	=	intColumn.toString();
var	strColumnName	=	GETVALUE(strDataGridName	+	".Columns("	+
strColumn	+	").Name");
TRACE("Column	number	"	+	strColumn	+	"	is	named	\""	+	strColumnName	+
"\"");
/*	Iterate	through	the	cells	in	the	column	*/
for	(intRow	=	0;	intRow	<	intRowCount;	intRow++)	/*	Iterate	through	the	rows
for	a	column	*/
{
var	strRow	=	intRow.toString();
var	strRowCellValue	=	GETVALUE(strDataGridName	+	".Columns("	+
strColumn	+	").Cells("	+	strRow	+	").Text");
TRACE("	in	row	"	+	strRow	+	"	it	contains	the	value	\""	+	strRowCellValue	+

"\"");
}	/*	end	iterating	the	rows	for	a	column	*/
}	/*	end	iterating	the	columns	*/
/*	Proceed	(or	not)	to	the	next	subfile	page	based	on	the	marker	*/
flagAnotherPageExists	=	(GETVALUE(strDataGridName	+	".Marker")	!=	"");
if	(flagAnotherPageExists)	{	TRACE("Scrolling	to	next	page.");
SENDKEY(KeyPageDown);	}
else	{	TRACE("End	of	subfile	encountered");	}
}	while(flagAnotherPageExists);	/*	Loop	around	and	process	the	next	subfile
page	*/
}	/*	NOTE:	This	script	is	dependent	on	the	use	of	newlook	for	5250	access	*/
	

To	test	you	have	the	row	you	want
To	work	with	subfile	entries	you	need	to	compare	your	search	value	with	the
text	in	the	cell.	To	read	the	text	in	a	cell:
strCell	=	StrGridName+".Columns("+strColumn+").Cells("+strRow+").Text;
	
And	put	the	value	into	a	GETVALUE	function:
StrRowCellValue	=	GETVALUE(strCell);
	
To	set	the	value	of	a	cell:
SETVALUE(strCell,	"some	valid	value");

Locating	and	Selecting	an	Entry	in	a	System	i	Subfile/LANSA
Browselist
Many	5250	applications	use	System	i	Subfiles	or	LANSA	Browselists	to	allow
the	end-user	to	select	the	object	they	want	to	work	with.
In	a	modernized	RAMP	application	that	uses	filters	and	the	instance	list	the
subfiles/browselists	typically	become	superfluous	so	you	will	probably	want	to
hide	them.	You	do	this	by	using	a	script	that	automatically	locates	the	entry	in
the	subfile/browselist	without	the	user	having	to	interact	with	the	screen.
Script	for	Locating	an	Entry	in	a	Subfile/Browselist
Script	for	Locating	and	Selecting	an	Entry	in	a	Browselist	or	Subfile	by
Positioning	the	Cursor
Script	for	Locating	an	Entry	when	no	Positioning	is	Available
Script	for	Locating	an	Entry	when	no	Positioning	is	Available	and	the	List	has
more	than	One	Page

Script	for	Locating	an	Entry	in	a	Subfile/Browselist
This	script		locates	an	entry	in	a	browse	list.
The	position	of	the	entry	in	the	list	is	determined	by	the	value	entered	in	an
input	field.	Then,	perform	an	action	on	the	selected	the	entry.
In	this	script:
·									utxtEmpno	is	the	name	given	to	the	field	to	position	to	in	the	form	using
newlook	Designer
·									uDataGrid	Is	the	name	given	to	the	browselist/subfile	in	the	form	using
newlook	Designer
·										The	first	column	in	the	data	grid	contains	the	Option	field.
·										The	second	column	in	the	data	grid	contains	the	value	to	position	to.
·										The	VisualID1	of	the	Instance	List	has	the	employee	number
·										Use	option	2	to	change	the	details	of	an	employee	selected	in	the
Instance	List.
/*	Set	the	value	of	a	variable	to	that	of	the	selected	Employee	*/
var	strCompare	=	objListManager.VisualId1[0];
/*	Set	the	value	of	the	field	in	the	form	to	that	of	the	selected	Employee	*/
SETVALUE("utxtEmpno",	strCompare);
/*	Send	an	Enter	key	to	cause	the	list	positioning	*/
SENDKEY(KeyEnter);
/*	Get	the	number	of	rows	in	the	data	grid	*/
var	intRowCount	=	GETVALUE("uDataGrid.RowCount");
/*	Traverse	the	rows	and	compare	the	value	of	the	second	column	with	the	one
to	position	to.	*/
for	(var	intRowNo	=	0;	intRowNo	<	intRowCount;	intRowNo++)
{
if	(GETVALUE("uDataGrid.Rows("	+	intRowNo	+	").Cells(1).Text")	==
strCompare)
			{
			/*	Type	a	2	next	to	the	first	entry	and	press	enter	*/
						SETVALUE("uDataGrid.Rows("	+	intRowNo	+	").Cells(0).Text",	2);
						SENDKEY(KeyEnter);
						break;
			}
}

Script	for	Locating	and	Selecting	an	Entry	in	a	Browselist	or
Subfile	by	Positioning	the	Cursor
Sometimes	entries	in	browselists/subfiles	are	selected	by	positioning	the	cursor
on	the	desired	row	and	pressing	Enter.
To	position	the	cursor	in	a	desired	row/column	you	can	use	the	provided
SETCURSOR()	interface.	Please	refer	to	<setcursor>	to	find	out	details	of	the
uses	of	SETCURSOR().
SETCURSOR	receives	a	row,	column	and	row	offset	position.	The	latter	is	the
row	number	of	the	first	entry	in	the	browselist/subfile.	Note	that	newlook's	Data
Grids	counts	the	column	headings	as	rows.	To	find	out	the	row	position	of	a
browselist	or	subfile,	run	the	application	in	green	screen	mode	until	you	reach
the	desired	list.	You	should	be	able	to	see	the	row/column	positions	on	the
bottom	right	of	the	screen.	Move	the	cursor	until	the	column	heading's	top	most
piece	of	text.	That	will	be	the	row	offset	value	to	pass.
var	strCompare	=	objListManager.VisualId1[0];
/*	This	is	the	row	number	where	the	first	row	entry	in	the	list.	Column	headings
are	counted	as	rows	*/
var	intListOffset	=	3;
var	flagPageDown	=	true;
while	(flagPageDown)
{
	intRowCount	=	GETVALUE("uuDataGrid.RowCount");
	for	(var	intRowNo	=	0;	intRowNo	<	intRowCount;	intRowNo++)
	{
	/*	The	value	we	want	to	compare	with	is	in	the	first	cell	*/
						if	(GETVALUE("uDataGrid.Rows("	+	intRowNo	+	").Cells(0).Text")	==
strCompare)
						{
									SETCURSOR(intRowNo,	10,	intListOffset);
									SENDKEY(KeyEnter);
									flagPageDown	=	false;
									break;
						}
	}
			if	(flagPageDown)
			{
						if	(GETVALUE("uDataGrid.Marker")	!=	"")	SENDKEY(KeyPageDown);

						else	{	flagPageDown	=	false;	alert("page	down	is	false");	}
			}
}

Script	for	Locating	an	Entry	when	no	Positioning	is	Available
A	variation	on	the	previous	script	is	to	find	an	entry	in	a	list	where	there	is	no
positioning	available	and	we	do	not	know	which	column	holds	the	sought	after
value.	In	such	scenario,	for	each	row	we'd	have	to	traverse	each	cell.	Note	that
for	big	lists	this	can	be	a	time	consuming	task:
for	(var	intRowNo	=	0;	intRowNo	<	intRowCount;	intRowNo++)
{
			/*	Get	the	number	of	cells	in	this	row.	*/
			var	intColCount	=	GETVALUE("uDataGrid.ColCount");
			for	(var	intColNo	=	0;	intColNo	<	intColCount;	intColNo++)
			{
						if	(GETVALUE("uDataGrid.Rows("	+	intRowNo	+	").Cells("	+	intColNo	+
").Text")	==	strCompare)
						{
									/*	Type	a	2	next	to	the	first	entry	and	press	enter	*/
								SETVALUE("uDataGrid.Rows("	+	intRowNo	+	").Cells(0).Text",	2);
									SENDKEY(KeyEnter);
									break;
						}
			}
}
Note	that	the	above	script	will	only	handle	the	first	page	in	the	list.

Script	for	Locating	an	Entry	when	no	Positioning	is	Available	and
the	List	has	more	than	One	Page
The	previous	example	showed	how	to	handle	a	list	with	only	one	page.	If	a	list
has	more	than	one	page,	we	have	to	page	down	until	the	end	of	the	list.
Therefore,	the	for	loop	should	be	enclosed	within	another	loop	to	be	executed
while	we	haven't	reached	the	end	of	the	list.	Note	that	in	this	case,	the	row	count
must	be	retrieved	for	each	page.
var	flagPageDown	=	true;
while	(flagPageDown)
{
	intRowCount	=	GETVALUE("uDataGrid.RowCount");
	for	(var	intRowNo	=	0;	intRowNo	<	intRowCount;	intRowNo++)
	{
			/*	Get	the	number	of	cells	in	this	row.	*/
			intColCount	=	GETVALUE("uDataGrid.ColCount");
			for	(var	intColNo	=	0;	intColNo	<	intColCount;	intColNo++)
			{
						if	(GETVALUE("uDataGrid.Rows("	+	intRowNo	+	").Cells("	+	intColNo	+
").Text")	==	strCompare)
						{
									/*	Type	a	2	next	to	the	first	entry	and	press	enter	*/
									SETVALUE("uDataGrid.Rows("	+	intRowNo	+	").Cells(0).Text",	2);
									SENDKEY(KeyEnter);
		/*	Reset	the	flag	to	cause	the	while	loop	to	end	*/
									flagPageDown	=	false;
									break;
						}
			}
	}
			if	(flagPageDown)
			{
							/*	Get	the	value	of	the	newlook	indicator	that	tells	us	whether	there	is
another	page	in	the	list.	If	not,	reset	the	flag	to	cause	the	while	loop	to	end	*/
						if	(GETVALUE("uDataGrid.Marker")	!=	"")	SENDKEY(KeyPageDown);
						else	flagPageDown	=	false;
			}
}

Handling	Pop-Ups
When	newlook	recognizes	a	border	pattern	on	a	5250	screen,	it	creates	a	pop-up
window.	You	are	not	compelled	to	present	these	pseudo	pop-ups	as	a	real
windows,	and	we	strongly	recommend	you	do	not	define	them	as	destination
screens.
During	Navigation
Pop-up	as	Destination
When	Triggered	by	Button	Click	or	Function	Key	Press
Forcing	a	Pop-Up	to	Front
How	to	Turn	Pop-Ups	into	Full	Screens
	
Also	see	FORCE_POPUP_REFRESH	Function.

During	Navigation
Situation
RAMP	navigates	through	a	pop-up	on	its	way	to	a	destination	screen.

Expected	Behavior
Windows:	the	pop-up	is	not	visible	during	navigation.	
Browser:	the	pop-up	is	visible	during	navigation.	

Remarks
You	cannot	interact	with	newlook	when	it	is	hidden	in	the	browser.

Pop-up	as	Destination
We	recommend	you	absolutely	avoid	using	5250	pop-up	screens	as	RAMP
destination	screens.
Having	a	pop-up	jump	out	of	command	tab	would	be	very	unusual.	We
recommend	you	instruct	newlook	to	present	the	5250	pop-up	as	a	full	screen.
See	How	to	Turn	Pop-Ups	into	Full	Screens.		

When	Triggered	by	Button	Click	or	Function	Key	Press
Situation
Ramp	navigates	to	a	destination.	The	user	clicks	on	a	VLF	push	button	or
presses	a	function	key	to	display	a	pop-up.

Expected	Behavior
Windows	and	Browser:	the	pop-up	will	not	be	visible	and	the	main	screen
becomes	grayed	out	and	input	incapable.		

Remarks
In	this	case	the	pop-up	is	hidden	behind	the	main	screen.	See	Forcing	a	Pop-Up
to	Front.
	

Forcing	a	Pop-Up	to	Front
If	you	need	to	force	a	pop-up	window	to	front	(for	example	if	you	absolutely
have	to	present	a	5250	pop-up	window	as	a	destination	screen),	using
FORCE_POPUP_REFRESH	Function	will	not	help	you	because	it	only	turns
the	automatic	force-to-front	logic	off	or	on.	It	does	not	change	when	the	logic	is
used.											
In	these	special	cases	you	will	have	to	invoke	the	force	logic	yourself,	probably
at	the	end	of	your	destination	pop-up	screens	INVOKE	script.
The	easiest	way	to	do	this	is	by	executing	the	JavaScript	function
VF_SY120_FORCE_POPUP_REFRESH().	This	will	cause	the	current	5250
pop-up	to	come	to	the	front.
If	you	want	to	force	a	pop-up	which	is	triggered	by	a	button	click	or	function
key	press	to	front,	do	it	like	this:
SENDKEY(KeyF10);
VF_SY120_FORCE_POPUP_REFRESH();
	

How	to	Turn	Pop-Ups	into	Full	Screens
This	example	turns	a	pop-up	into	a	full	screen.	It	uses	the	Department	pop-up
called	using	option	8	(Dept/Section/Employee	Window	Enquiry)	from	the
Personnel	System’s	main	menu.
1.								Start	newlook,	connect	to	your	System	i	and	sign	on.	On	the	command
line,	invoke	the	Personnel	System’s	main	menu.	For	example,

lansa	run	pslsys	partition(dem)

	
2.								Use	option	8	to	display	the	Departments	prompter:

	
3.								Press	Ctrl+D	to	start	newlook	Designer.	The	screen	should	look	something
like	this:

	
4.								Click	on	Identify	to	work	in	newlook	Identify	mode:

	

	
5.								Use	the	mouse	to	select	the	entire	grey	area:

	
6.								Right	click	anywhere	on	the	selected	area	and	select	the	Set	Window	Area
option	in	the	Screen	submenu:

	

	
7.								Now	select	everything	surrounding	the	pop-up	area,	right	click	on	the
selected	area	and	select	Ignore.	Note	that	you	may	have	to	do	more	than	one
selection	to	cover	the	whole	of	the	surroundings.	Make	sure	to	have
something	selected	as	the	pop-up	screen	id.	In	the	example	below,	the	id	is
the	attribute	bytes	enclosing	the	Department	and	Description	subfile	headers:

	

	
8.								Close	Identify.	The	screen	should	now	look	something	like	this:

	
The	pop-up	has	now	been	converted	into	a	full	screen.

Script	Functions
This	section	describes	the	shipped	RAMP	JavaScript	functions	you	can	use	in
your	scripts.
Note	that	these	functions	are	case	sensitive,	so	be	careful	to	use	exactly	the
same	case	as	shown	when	writing	scripts.

Get	and	Set	Values	of	fields	on	RAMP	Screens

Set	a	field	on	a	RAMP
screen	to	a	value	

SETVALUE	Function

Get	the	value	from	a
field	on	a	RAMP
screen

GETVALUE	Function

Screen	Functions

Emulate	pressing	a
key.

SENDKEY	Function

Check	that	RAMP	is
showing	a	screen

CHECK_CURRENT_FORM	Function

Signal	to	the
Framework	to	close	the
current	screen	

AVCLOSEFORM	Function

Hide	the	current	screen
with	an	optional
message

HIDE_CURRENT_FORM	Function

Get	the	Form	Name	of
the	current	RAMP
screen

CURRENT_FORM	Function

Position	the	cursor	in	a
given	row	and	column
of	the	screen	

SETCURSOR	Function

Searches	the	label
fields	on	the	form	for	a

GET_MENU_OPTION_NUMBER	Function

menu	option	by	name

Function	keys	to	send
when	an	unknown
form	appears	during
RAMP	navigation

ADD_UNKNOWN_FORM_GUESS	Function

Overcome	problem	of
a	pop-up	which	is
invoked	from	a	button
click	or	function	key
press	in	a	destination
screen	being	hidden
behind	the	main	screen

FORCE_POPUP_REFRESH	Function

Set	the	current
command	handler
caption	to	a	new	value

SET_HANDLER_CAPTION	Function

Dynamically	enable	or
disable	a	Destination’s
button	or	5250
function	key

SETKEYENABLED	Function

Message	Functions

Issue	a	message	as	an
alert

ALERT_MESSAGE	Function

Clear	all	messages
currently	in	the	stack	

CLEAR_MESSAGES	Function

Issue	a	fatal	message FATAL_MESSAGE	Function

Issue	a	message MESSAGE	Function

Stop	the	Framework
from	shutting	down
when	a	fatal	navigation
error	occurs

FATAL_MESSAGE_TYPE	Function

Other	Functions

Signal	an	event	to
filters	and	RAMP
screens	

AVSIGNALEVENT	Function

Add	run	time
information	to	the	trace
panel	

TRACE	Function

Run	a	newlook	Macro RUNMACRO	Function

Navigate	to	a
Junction	screen

NAVIGATE_TO_JUNCTION	Function

Show	a	user	defined
prompter	form	for	a
field

HANDLE_PROMPT	Function

Navigate	to	a
Destination	screen	

NAVIGATE_TO_DESTINATION	Function

Navigate	to	a
previously	shown
Destination	screen	

NAVIGATE_TO_PREV_DESTINATION	Function

Returns	the	leading
numbers	from	a	string

STRIP_LEADING_NUMBERS	Function

Defines	a	string	by	a
unique	number	for	use
by	other	scripts

ADD_STRING	Function

Sets	the	message	to
show	when	the
Framework	locks	up

SET_LOCK_MESSAGE	Function

Returns	the	string	for	a
given	string
identification	number

STRING	Function

Call	this	function	to SET_UNKNOWN_LOCKING	Function

override	the	Lock
Framework	when
unknown	5250	form	is
displayed	session
property

Set	the	focus	to	a	field
on	the	current	screen

SETFOCUS	Function

Get	the	name	of	the
field	with	focus	on	the
current	screen

GETFOCUS	Function

Return	a	DataGrid	as	a
string

MAKESUBFILEINTOSTRING	Function

newlook	Function	Key	Bar	Functions

Causes	all	screens	not
defined	to	RAMP	to
show	the	newlook
toolbar	buttons

OVERRIDE_BUTTONS_UNDEFINED_SCREENS
Function

Multilingual	Caption	Functions

Assigns	a	new	caption
for	a	function	key	on	a
particular	screen

OVERRIDE_KEY_CAPTION_SCREEN	Function

Assigns	a	new	caption
for	a	function	key	on
any	screen

OVERRIDE_KEY_CAPTION_ALL	Function

Virtual	Clipboard	Access	Functions

Save	an	alphanumeric
or	numeric	value	in	the
Framework	virtual
clipboard.

AVSAVEVALUE	Function

Restores	an AVRESTOREAVALUE	and	AVRESTORENVALUE

alphanumeric	or
numeric	value	from	the
Framework	virtual
clipboard

Function

Real	Clipboard	Access	Functions

Copy	a	string	to	the
user's	clipboard

COPYTOCLIPBOARD	Function

	

SETFOCUS	Function
Set	the	focus	to	a	field	on	the	current	screen.

Syntax
SETFOCUS(sControlName);

Parameters
sControlName Required.	String	that	contains	the	name	of	the	field

that	focus	is	to	be	set	to.		

Return	Value
None

Example
		
SETFOCUS("utxtSurname");
		

Notes
The	field	(or	other	control)	name	is	the	name	assigned	to	the	field	in	Newlook
Identify.
This	function	uses	a	new	macro	in	VF_MACRO.sid,	called
VF_Macro.VF_Set_Active_Control.	So	before	this	function	can	be	used,	the
latest	shipped	VF_MACRO.sid	must	be	merged	into	your	Newlook.sid	file.

GETFOCUS	Function
Get	the	name	of	the	field	with	focus	on	the	current	screen.

Syntax
GETFOCUS();

Parameters
None

Return	Value
sControlName String	that	contains	the	name	of	the	field	that	has

focus.	It	is	""	if	no	control	is	found,	or	if	the
Control	with	focus	does	not	have	a	name.		

Example
		
var	strValue	=	GETFOCUS();
		

Notes
The	field	(or	other	control)	name	is	the	name	assigned	to	the	field	in	Newlook
Identify.

MAKESUBFILEINTOSTRING	Function
Return	a	DataGrid	as	a	string.

Syntax
MAKESUBFILEINTOSTRING(sDataGridName,	All_Pages,	Include_Heading,
sHeader_Column_	Numbers,	sDetail_Column_Numbers)

Parameters
sDataGridName Required.	String	that	contains	the	name

of	the	data	grid	that	is	to	be	returned	as
a	string.		

All_Pages Optional.	Boolean	that	tells	the
function	to	page	down	through	all
pages	in	the	subfile.	Defaults	to	false.

Include_Heading Optional.	Boolean	that	tells	the
function	to	include	the	subfile	header
rows	in	the	returned	string.	Defaults	to
true

sHeader_Column_Numbers Optional.	String	that	contains	the
column	numbers	of	the	header	rows	to
show,	delimited	by	commas.	Default	is
all	non-blank	columns

sDetail_Column_Numbers Optional.	String	that	contains	the
column	numbers	of	the	detail	rows	to
show,	delimited	by	commas.	Default	is
the	columns	used	for	the	header
columns

Return	Value
sSubfileAsString Required.	String	that	contains	the	subfile	as	a	tab

delimited	string.		

Examples
	
/*	Get	just	the	currently	visible	page	of	the	subfile	named	uDataGrid	*/

/*	Get	the	header	rows,	*/
/*	and	paste	them	all	onto	the	clipboard.	*/
/*	Only	show	the	header	cells	in	columns	0,2,3,4	and	5	*/
/*	Only	show	the	detail	cells	in	columns	1,2,3,4	and	6	*/
	
COPYTOCLIPBOARD(MAKESUBFILEINTOSTRING("uDataGrid",	false	,
true	,"0,2,3,4,5"	,	"1,2,3,4,6"));
	
/*	Get	all	the	pages	of	the	subfile	named	uDataGrid	*/
/*	Get	the	header	rows,	*/
/*	and	paste	them	all	onto	the	clipboard.	*/
/*	Only	show	the	header	cells	in	columns	0,2,3,4	and	5	*/
/*	Only	show	the	detail	cells	in	columns	1,2,3,4	and	6	*/
	
COPYTOCLIPBOARD(MAKESUBFILEINTOSTRING("uDataGrid",	true,
true	,	"0,2,3,4,5"	,	"1,2,3,4,6"));
	
/*	Get	all	the	pages	of	the	subfile	named	uDataGrid	*/
/*	Get	the	header	rows,	*/
/*	and	paste	them	all	onto	the	clipboard.	*/
/*	Only	show	the	header	cells	in	columns	0,2,3,4	and	5	*/
/*	Only	show	the	detail	cells	in	columns	0,2,3,4	and	5	*/
	
COPYTOCLIPBOARD(MAKESUBFILEINTOSTRING("uDataGrid",	true,
true	,	"0,2,3,4,5"));
	
/*	Get	all	the	pages	of	the	subfile	named	uDataGrid	*/
/*	Get	the	header	rows,	*/
/*	and	paste	them	all	onto	the	clipboard.	*/
/*	Show	the	non-blank	header	cells	*/
/*	Only	show	the	detail	cells	in	columns	1,2,3,4	and	6	*/
	
COPYTOCLIPBOARD(MAKESUBFILEINTOSTRING("uDataGrid",	true,
true	,	null	,"1,2,3,4,6"));
	
/*	Get	all	the	pages	of	the	subfile	named	uDataGrid	*/
/*	Get	the	header	rows,	*/
/*	and	paste	them	all	onto	the	clipboard.	*/
/*	Show	the	non-blank	header	cells	*/

/*	Only	show	the	detail	cells	in	columns	with	non-blank	headers	*/
	
COPYTOCLIPBOARD(MAKESUBFILEINTOSTRING("uDataGrid",	true,
true));
	
/*	Get	all	the	pages	of	the	subfile	named	uDataGrid	*/
/*	Get	all	the	detail	rows,	but	don't	get	the	header	rows,	*/
/*	paste	them	onto	the	clipboard.	*/
/*	Only	show	the	detail	cells	in	columns	1,2,3,4	and	6	*/
	
COPYTOCLIPBOARD(MAKESUBFILEINTOSTRING("uDataGrid",	true	,
false	,	null,	"1,2,3,4,6"));
	

Notes
Use	the	probe	screen	report	to	ensure	that	Newlook	is	displaying	the	subfile	as	a
datagrid,	and	to	determine	the	column	numbers	of	the	header	and	detail	cells
that	you	want	to	show.
Can	be	used	in	combination	with	function	COPYTOCLIPBOARD	to	allow	the
user	to	paste	a	subfile	into	their	own	excel	spreadsheet.

COPYTOCLIPBOARD	Function
Copy	a	string	to	the	user's	clipboard.

Syntax
COPYTOCLIPBOARD(sString);

Parameters
sString Required.	String	that	contains	the	data	to	be

copied	to	the	user's	clipboard.		

Return	Value
None

Examples
	
COPYTOCLIPBOARD("ABC");
	
COPYTOCLIPBOARD(MAKESUBFILEINTOSTRING("uDataGrid",	true,
true	,	"0,2,3,4,5"	,	"1,2,3,4,6"));
	
/*	Copy	to	a	spreadsheet	*/
	
var	MyString	=	"";
var	TAB_Char	=	"\x09"	;
var	End_Of_Line_Char	=	"\x0D\x0A"	;
	
MyString	=	"Line	1	Cell	1"	+	TAB_Char	+	"Line	1	Cell	2"	+
End_Of_Line_Char;
MyString	+=	"Line	2	Cell	1"	+	TAB_Char	+	"Line	2	Cell	2"	+
End_Of_Line_Char;
COPYTOCLIPBOARD(MyString);
		

Notes
This	function	can	be	used	to	allow	the	user	to	copy	data	to	their	real	clipboard,
for	pasting	into	Word	documents	or	spreadsheets

FATAL_MESSAGE_TYPE	Function
Use	this	function	when	you	don’t	want	the	Framework	to	shut	down	when	a
fatal	navigation	error	occurs.

Syntax
FATAL_MESSAGE_TYPE(sType)

Parameters
sType Optional.	String	that	contains	the	message	type:

		FATAL	(default)	–	in	end	user	mode,	the	framework	will
shut	down.
			HIDE	–	the	RAMP	command	tab	will	hide	Newlook
5250	and	show	the	error.
			INFO	–	the	error	message	will	be	routed	to	the
Framework	message	area.

Return	Value
None

Example
	
FATAL_MESSAGE_TYPE("HIDE");
		

SET_UNKNOWN_LOCKING	Function

We	strongly	recommend	you	do	not	to	use	this	function	because	the
default	locking	behaviour	is	correct	in	most	situations.	If	you	think	you
need	to	use	this	function	please	contact	your	support	representative.

Call	this	function	to	override	the	Lock	Framework	when	unknown	5250	form	is
displayed	session	property.	See	Session	Details	for	more	information.

Syntax
SET_UNKNOWN_LOCKING(boolean)

Parameters
Boolean.	One	of	the	following	possible	values:

true Apply	a	lock	to	the	framework	when	an
unknown	5250	form	is	encountered.

false Don’t	lock	the	framework	when	an	unkown
5250	form	is	encountered.

Return	Value
None.

Remarks
Invoke	only	once	per	session	from	the	sign	on	script.	Dynamically	changing	this
value	may	cause	undesirable	results.
	

SETKEYENABLED	Function
Dynamically	enable	or	disable	a	destination’s	button	or	5250	function	key.
This	function	overrides	the	destination’s	function	key	enablement,	for	the
duration	of	the	logged	on	5250	session.	The	override	will	impact	all	future
displays	of	the	destination	screen.

Syntax
SETKEYENABLED	(sDestinationName,sKeyName,bEnableVLF,bEnableNL)

Parameters
sDestinationName Required.	A	string	that	contains	the

name	of	a	Destination.

sKeyName Required.	String	that	contains	the
name	of	the	key.	See	Function	Key
Names	for	SENDKEY	Function.

bEnableVLF Optional.	Boolean.	Set	to	true	to
show	the	button,	false	to	hide	it,	null
to	ignore.

bEnableNL Optional.	Boolean.	Set	to	true	to
enable	the	5250	function	key,	false	to
disable	it,	null	to	ignore.

Return	Value
None

Example
The	Destination	named	uDisplayEmployee	was	set	up	to	Show	the	prompt
button	but	disable	the	F4	5250	function	key.
To	override	those	settings	to	the	reverse:
	
SETKEYENABLED("uDisplayEmployee",	KeyF4,	false,true);
	
To	leave	the	original	setting	for	the	button	but	enable	the	F4	function	key	as
well:
		

SETKEYENABLED("uDisplayEmployee",	KeyF4,	null,true);
	

SETVALUE	Function
Set	the	content	of	a	field	on	a	5250	screen	to	a	value.	The	field	may	be
identified	by	name	or	by	its	order	on	the	screen.

Syntax
Setting	by	Name	-	SETVALUE(sVariable	,	sValue)
Setting	by	Order	-	SETVALUE(__Field	,	sOrder,		sValue)

Parameters
Setting	by	Name:

sVariable Required.	String	that	contains	the	RAMP	field
name.	

sValue Required.	String	that	contains	the	value	to	set
the	field	to.	

	
Setting	by	Order:																																

__Field Special	value	__Field	(with	two	underscores)	indicates
that	a	field	(ie:	a	simple	text	area)	on	the	form	is	to	be
set.

sOrder The	order	of	the	field	on	the	form	starting	from	1.
Special	values	__Last	and	__First	(again	with	two
underscores)	may	be	used.		Note	the	order	is	that	of	the
fields	on	the	form,	not	of	all	the	controls	on	the	form
(eg:	labels,	combo	boxes,	etc).						

sValue Required.	String	that	contains	the	value	to	set	the	field
to.	

	

Return	Value
None

Remarks
To	set	a	value	of	a	field	on	a	screen	by	name,	the	field	must	be	given	a	name	in
the	newlook	Designer.

The	use	of	field	identification	by	order	is	more	likely	to	be	impacted	by	form
layout	changes	than	by	using	a	name.
The	initial	setting	of	a	field	by	order	is	more	expensive	to	execute	than	by	name,
however	screen	field	order	details	are	cached	so	that	the	subsequent	access	is
faster.	The	caching	logic	assumes	that	the	relative	order	of	a	field	on	any
particular	screen	will	not	change	within	a	signed	on	5250	session.				

Examples
	
SETVALUE("utxtSignOn",	objUser.Name);
	
SETVALUE("utxtPassword",objUser.Password);
	
SETVALUE("utxtSelectionOrCommand","90");
	
SETVALUE("utxtTransaction","MOV");
	
SETVALUE(__Field,__First,"xxx");	/*	Set	first	field	*/
	
SETVALUE(__Field,__Last,"7.45");	/*	Set	last	field	*/
	
SETVALUE(__Field,1,"Hello	World");	/*	Set	field	number	1	*/
	
SETVALUE(__Field,6,"ADM");	/*	Set	field	number	6	*/
		

GETVALUE	Function
Get	the	value	from	a	field	on	a	RAMP	screen.

Syntax
GETVALUE(sVariable)

Parameters
sVariable Required.String	that	contains	the	newlook	field	name.	

Return	Value
String.	Returns	the	value	of	the	field,	as	a	string:

Example
	
MyString	=	GETVALUE("utxtSignOn")	;
	

SENDKEY	Function
Emulates	the	pressing	of	a	key.

Syntax
SENDKEY(sKeyName)

Parameters
SKeyName Required.String	that	contains	the	name	of	the	key.	See

Function	Key	Names	for	SENDKEY	Function.

Return	Value
None

Example
	
SENDKEY(KeyEnter);
		

CHECK_CURRENT_FORM	Function
Check	that	RAMP	is	showing	a	screen.

Syntax
CHECK_CURRENT_FORM(sFormName	[,	sMessageText1]	[,
sMessageText2]	...)

Parameters
sFormName Required.	String	that	specifies	the	Name	of	the	Form

sMessageText1 Optional.	String	that	contains	the	first	message	to	be
issued.		

sMessageText2 Optional.	Other	strings	that	are	to	be	concatenated	with
the	first	message	string	(a	separator	space	is
automatically	added	between	each	string).	

Return	Value
Boolean.	Returns	one	of	the	following	possible	values:

true The	form	currently	shown	has	the	form	name	specified.

false The	form	currently	shown	does	not	have	the	form	name
specified.

Remarks
Used	for	checking	whether	the	script	or	user	has	progressed	to	a	particular
screen,	or	has	stopped	at	an	earlier	screen.
The	Form	name	for	a	RAMP	screen	is	found	by	working	with	the	screen	in
newlook	in	Designer	mode	and	setting	the	Name	property	of	the	Form	object.
If	the	CHECK_CURRENT_FORM	returns	false,	the	function	will	also
automatically	hide	the	Current	RAMP	screen	and	display	the	message	provided.
If	the	script	wants	to	test	that	the	expected	screen	has	arrived,	and	yet	still
display	the	current	screen	if	it	hasn't,	it	should	not	use	function
CHECK_CURRENT_FORM,	but	instead	use
		
if	(CURRENT_FORM()	==	"My_Form");
		

When	you	are	writing	scripts	that	handle	validation	errors	on	a	screen,	you
usually	want	the	current	screen	to	be	displayed	even	if	a	validation	error
occurred	and	the	user	has	not	progressed	to	the	expected	next	screen.	So	in	this
situation	you	should	not	use	CHECK_CURRENT_FORM.

Example
	
if	(!(CHECK_CURRENT_FORM("uItemMasterBrowse","Unable	to	navigate
to	form	uItemMasterBrowse")))	return;
	

AVCLOSEFORM	Function
Signals	to	the	Framework	to	close	the	current	form.

Syntax
AVCLOSEFORM()

Parameters
None

Return	Value
None

Remarks
If	a	RAMP	screen	is	running	as	a	separate	form,	and	needs	to	be	closed
automatically	after	completing,	use	AVCLOSEFORM.
Ensure	that	the	current	form	is	a	form	known	to	the	Visual	LANSA	Framework,
at	the	point	the	AVCLOSEFORM	is	issued,	and	that	there	is	a	valid	Return
Script	for	this	Junction	or	Destination.	This	will	allow	the	Framework	to
navigate	back	to	sign	off	and	end	the	session	cleanly.

Example
/*	Close	this	command	handler,	since	the	Delete	is	now	done	*/
/*	We	should	ensure	we	are	on	a	Junction	or	Destination	at	this	point	*/
/*	so	that	the	Framework	can	cleanly	navigate	the	newlook	session	to	sign	off	*/
AVCLOSEFORM();

HIDE_CURRENT_FORM	Function
Hides	the	current	form	and	displays	an	optional	message.
This	function	is	used	to	hide	the	current	5250	screen	from	the	users	and	to
prevent	them	from	manually	interacting	with	it.
For	example,	a	script	that	performed	a	5250	sub-file	search	and	failed	to	find	an
expected	product	number	might	do	this:
	
HIDE_CURRENT_FORM("Product	number",	strProductNumber,	"could	not	be
found.	You	may	not	be	authorized	to	view	it.");
	
This	presents	an	error	message	to	the	user	and	hides	the	current	5250	form,
which	can	then	only	be	interacted	with	by	other	script	controlled	actions.									

Syntax
HIDE_CURRENT_FORM([sMessageText1]	[,	sMessageText2]	...	[,
sMessageTextN])

Parameters
sMessageText1 Optional.	String	that	contains	the	first	message	to

be	issued.	

sMessageText2
->	N

Optional.	Strings	that	are	to	be	concatenated	with
the	previous	message	text	(a	separator	space	is
added).	

Return	Value
None

Example
	
HIDE_CURRENT_FORM("Inventory	item	",	objListManager.AKey1[0]	,	"was
deleted.");

CURRENT_FORM	Function
Gets	the	Form	Name	of	the	current	RAMP	screen.

Syntax
CURRENT_FORM()

Parameters
None

Return	Value
String.	Returns	the	Form	name	of	the	current	screen,	as	a	string:

Example
	
MyString	=	CURRENT_FORM()	;
	

SETCURSOR	Function
Positions	the	cursor	in	a	given	row	and	column	of	the	screen

Syntax
SETCURSOR([iRowNumber][,iColumnNumber][,iRowOffset])

Parameters
IRowNumber Required.	Integer	that	specifies	the	row	number

where	to	position	the	cursor.

IColumnNumber Optional.	Integer	that	specifies	the	column	number
where	to	position	the	cursor.		Defaults	to	1.

IRowOffset Optional.	Integer	that	specifies	the	row	number	of
the	first	row	in	a	browse	list	or	subfile.	This
parameter	only	makes	sense	in	situations	where	the
cursor	is	to	be	positioned	in	a	browse	list	or	subfile
row	and	the	entry	is	selected	pressing	the	Enter	key.
Note	that	in	newlook,	browse	lists	and	subfiles	are
recognized	as	grids.	In	these	grids,	column
headings	are	counted	as	rows.	Hence	the	value	of
this	parameter	should	equal	to	the	row	position	of
the	topmost	column	heading	literal.
To	find	out	the	row	position	of	the	browselist	or
subfile,	run	the	application	in	5250	session	until
you	reach	the	desired	list.	You	should	be	able	to	see
the	row/column	positions	on	the	bottom	right	of	the
screen.	Move	the	cursor	until	the	column	heading's
top	most	piece	of	text.

Return	Value
None.

Example
	
SETCURSOR(7,	10,	3);
	

ALERT_MESSAGE	Function
Issue	a	message	as	an	alert.

Syntax
ALERT_MESSAGE(sMessageText1	[,	sMessageText2]	...)

Parameters
sMessageText1 Required.	String	that	contains	the	first	message	to	be

issued.		

sMessageText2 Optional.	Other	strings	that	are	to	be	concatenated	with
the	first	message	string	(a	separator	space	is
automatically	added	between	each	string).	

Return	Value
None

Example
	
ALERT_MESSAGE("Inventory	item	",	objListManager.AKey1[0]	,	"was
deleted.");
	

CLEAR_MESSAGES	Function
Clears	all	messages	currently	in	the	stack.

Syntax
CLEAR_MESSAGES()

Parameters
None

Return	Value
None

Example
	
CLEAR_MESSAGES()	;
	

FATAL_MESSAGE	Function
Issues	a	fatal	message	and	causes	the	entire	VLF	application	to	terminate
(unless	it	is	being	executed	in	design	mode).		
In	design	mode	the	message	details	are	presented	in	the	center	of	the	RAMP
panel	area	and	the	application	continues	to	execute.	In	execution	mode	the
entire	VLF	application	terminates.

Syntax
FATAL_MESSAGE(sMessageText1	[,	sMessageText2]	[,	sMessageText3]...)

Parameters
sMessageText1 Optional.	String	that	contains	the	first	message	to	be

issued.		

sMessageText2 Optional.	Other	strings	that	are	to	be	concatenated	with
the	first	message	string	(a	separator	space	is	automatically
added	between	each	string).	

Return	Value
None

Example
	
FATAL_MESSAGE("Inventory	item	",	objListManager.AKey1[0]	,	"was
deleted.");
	

MESSAGE	Function
Issue	a	message.

Syntax
MESSAGE(sMessageText1	[,	sMessageText2]	...)

Parameters
sMessageText1 Required.	String	that	contains	the	first	message	to	be

issued.		

sMessageText2 Optional.	Other	strings	that	are	to	be	concatenated	with
the	first	message	string	(a	separator	space	is
automatically	added	between	each	string).	

Return	Value
None

Example
	
MESSAGE("Inventory	item	",	objListManager.AKey1[0]	,	"was	deleted.");
	

AVSIGNALEVENT	Function
Signal	an	event	to	the	Framework	filters	and	RAMP	screens.

Syntax
AVSIGNALEVENT([sId]	[,sTo]	[,sAInfo1]	[,sAInfo2]	[,sAInfo3]	[,sAInfo4]
[,sAInfo5]	[,nNInfo1]	[,nNInfo2]	[,nAInfo3]	[,nNInfo4]	[,nNInfo5])

Parameters
SId Required.String	containing	an	identifier	of	the

Event.	

STo Valid	values	are:
FRAMEWORK	=	The	signal	is	broadcast	to	the
whole	framework
BUSINESSOBJECT	=	The	signal	is	only	broadcast
to	filters	and	RAMP	screens	in	the	current	business
object

sAInfo1 Optional.	String	containing	additional	information
that	the	object	listening	for	the	signal	can	use.

sAInfo2 Optional.	String	containing	additional	information
that	the	object	listening	for	the	signal	can	use.

sAInfo3 Optional.	String	containing	additional	information
that	the	object	listening	for	the	signal	can	use.

sAInfo4 Optional.	String	containing	additional	information
that	the	object	listening	for	the	signal	can	use.

sAInfo5 Optional.	String	containing	additional	information
that	the	object	listening	for	the	signal	can	use.

nNInfo1 Optional.	Number	containing	additional	information
that	listening	object	may	use.

nNInfo2 Optional.	Number	containing	additional	information
that	listening	object	may	use.

nNInfo3 Optional.	Number	containing	additional	information

that	listening	object	may	use.

nNInfo4 Optional.	Number	containing	additional	information
that	listening	object	may	use.

nNInfo5 Optional.	Number	containing	additional	information
that	listening	object	may	use.

	

Return	Value
None

Example
This	example	signals	that	an	entry	has	been	deleted	in	the	instance	list:
	
AVSIGNALEVENT("Delete_List_Entry",	"BUSINESSOBJECT",
objListManager.AKey1[0]);
	
Also	see	Updating	the	Instance	List	from	RAMP	screens.

TRACE	Function
Allows	the	user	to	add	run	time	information	from	the	script	to	the	application
trace	panel.

Syntax
TRACE(sTraceText1	[,	sTraceText2]	...)

Parameters
sTraceText1 Required.String	that	contains	the	trace	information

to	be	shown.	

sTraceText2 Optional.	String	that	is	concatenated	with	the
previous	trace	text	(a	separator	space	is	added).	

Return	Value
None

Example
	
TRACE("Inventory	item	",	objListManager.AKey1[0]	,	"was	deleted.");
	

RUNMACRO	Function
Runs	a	newlook	Macro.

Syntax
RUNMACRO(sMacroName)

Parameters
sMacroName Required.String	that	contains	the	name	of	the	newlook

Macro.	

Return	Value
None

Example
	
RUNMACRO("MyMacro")	;
	

NAVIGATE_TO_JUNCTION	Function
Navigates	RAMP	to	a	Junction.

Syntax
NAVIGATE_TO_JUNCTION(sJunctionName)

Parameters
SjunctionName Required.String	that	contains	the	form	name	of

the	Junction.	

Return	Value
None

Example
	
/*	Navigate	to	the	nearest	access	junction	*/
NAVIGATE_TO_JUNCTION("uItemMasterBrowse");
	
Note	that	this	function	should	only	be	invoked	from	an	invoke	script.

HANDLE_PROMPT	Function
Causes	an	associated	prompter	form	(VL	Handler)	to	appear	next	to	a	field.	The
fields	and	the	prompter	forms	are	specified	in	the	Special	Field	Handling	area	as
described	in	Advanced	Prompting.
Optionally	additional	information	can	be	passed	to	or	retrieved	from	the
prompter	form.

Syntax
HANDLE_PROMPT(sArgument1	[,	sArgument2]	[,	sArgument3]...)

Parameters
SArgumentn Optional.	String	that	contains	any	value	the	user	defined

prompter	may	require.	Note	that	by	default	the	user
defined	prompter	has	bi-directional	access	to	all	named
fields	in	the	5250	screen.

Return	Value
None

Example
	
if	(HANDLE_PROMPT())	return;
	
	

Accessing	the	values	passed	as	sArgument1,	sArgument2,	etc.,	in
the	prompter	form
A	function	like	this	in	a	RAMP	script:
HANDLE_PROMPT("HELLO","THERE",123);
		
Is	accessed	like	this	in	the	prompter	form:
Invoke	Method(#Com_Owner.uGet5250Field)	Name(UARG1)
Value(#Arg1Value)	...	returns	"HELLO"	in	#Arg1Value.
Invoke	Method(#Com_Owner.uGet5250Field)	Name(UARG2)
Value(#Arg2Value)	...	returna	"THERE"	in	#Arg2Value.
Invoke	Method(#Com_Owner.uGet5250Field)	Name(UARG3)
Value(#Arg3Value)	...	returns	"123"	as	a	string	in	#Arg3Value.

	
There	is	no	limit	on	how	many	arguments	you	can	pass.
Numeric	values	can	be	passed,	but	they	will	turn	up	as	strings	in	the	VL
component,	so	they	need	to	be	converted	back	to	a	number	again.
Referencing	an	un-passed	argument	does	not	cause	a	problem.	This	code:
#Arg15Value	:=	"TEST"
Invoke	Method(#Com_Owner.uGet5250Field)	Name(UARG15)
Value(#Arg15Value)
	
Would	execute	and	leave	#ARG15Value	unchanged	as	"TEST",	but	you	can
actually	tell	whether	the	value	was	passed	by	doing	this:
Invoke	Method(#Com_Owner.uGet5250Field)	Name(UARG15)
Value(#Arg15Value)	Found(#Found)

If	(#Found	=	TRUE)	/*	15th	argument	was	passed	to	HANDLE_PROMPT	*/

Else																						/*	15th	argument	was	not	passed)
	
As	an	example,	you	can	use	the	additional	arguments	in	a	HANDLE_PROMPT
function	if	you	need	access	to	values	which	are	not	on	the	screen	from	which
the	prompter	form	is	invoked.	
For	instance,	this	could	be	used	in	a	situation	where	customer	information	is
entered	on	the	first	screen	and	an	invoice	number	is	prompted	for	on	the	second
screen.		If	this	invoice	number	is	dependent	on	the	customer	information
initially	entered	on	the	first	screen	and	the	information	is	not	available	to	you	on
the	second	screen,	you	could	store	the	required	customer	information	in	an
objGlobal	variable	and	pass	it	as	HANDLE_PROMPT()	parameters	for	proper
select	criteria	in	the	prompter	form	code.

NAVIGATE_TO_DESTINATION	Function
Navigates	to	a	nominated	5250	Destination	screen.
Note	that	if	you	specify	the	name	of	the	current	destination	the	request	will	be
ignored.	If	you	want	to	re	run	the	script	for	a	current	destination	use
NAVIGATE_TO_PREV_DESTINATION(1).

Syntax
NAVIGATE_TO_DESTINATION(sDestinationName)

Parameters
SDestinationName Required.	A	string	that	contains	the	name	of	a

Destination.

Return	Value
None

Example
	
NAVIGATE_TO_DESTINATION("Enrol	Employee");
	
Note	that	this	function	should	only	be	invoked	from	a	button	script.

NAVIGATE_TO_PREV_DESTINATION	Function
Navigates	the	5250	to	a	previously	shown	destination	in	this	execution.

Syntax
NAVIGATE_TO_PREV_DESTINATION(iPreviousDestination)

Parameters
iPreviousDestination Required.	Integer	that	contains	a	number	that

indicates	how	many	destinations	backwards	to
navigate.	The	maximum	allowed	is	20.
Note	that	previous	destinations	include	every	single
destination	that	has	been	navigated	through
irrespective	of	whether	it	was	shown	or	not.	For
example,	you	might	execute	a	screen	wrapper	that
passes	through	2	destinations.

Return	Value
None

Example
/*	Re	run	INVOKE	script	to	get	the	current	5250	destination	screen*/
NAVIGATE_TO_PREV_DESTINATION(1);
/*	Navigates	to	the	previous	5250	destination	screen*/
NAVIGATE_TO_PREV_DESTINATION(2);
	
Note	that	this	function	should	only	be	invoked	from	a	button	script.

GET_MENU_OPTION_NUMBER	Function
Searches	the	label	fields	on	the	current	form	looking	for	a	menu	option	by
name.	If	the	menu	option	can	be	found	an	attempt	is	made	to	deduce	an
associated	menu	option	number.				
This	function	is	useful	in	applications	where	the	menu	option	number	associated
with	an	activity	varies	because	it	allows	a	text	string	that	identifies	the	menu
option	in	words	to	be	dynamically	converted	to	the	associated	menu	option
number.
This	function	uses	a	cache	keyed	by	screen	name/search	text	to	optimize
repeatedly	performing	the	same	operation.
The	cache	logic	assumes	that	a	menu	option	number	on	any	given	5250	screen
will	not	change	within	a	signed-on	session.

Syntax
GET_MENU_OPTION_NUMBER(sSearchText,	bCaseInsensitive,
bTryPrecdeingField)
	

Parameters
sSearchText	 String.	Required.	The	menu	option	search	string.	

bCaseInsensitive Boolean	(true/false).	Optional.	Default	is	true.
Indicates	that	the	search	should	be	case
insensitive.

vTryPreceding Boolean	(true/false).	Optional.	Default	is	true.
Indicates	that	when	a	label	contains	the	search
text,	but	a	menu	number	cannot	be	deduced	from
it,	that	the	preceding	label	field	should	be	used	as
an	alternate	source	for	the	menu	number.	This
option	accommodates	menus	where	the	menu
option	number	and	the	menu	text	are	in	separate
but	adjacent	label	fields.			

Return	Value
String.	The	associated	menu	option	number	or	an	empty	string	if	no	menu
option	could	be	deduced.

	
Example
This	code	causes	the	message	"Menu	option	number	returned	was	2"	to	be
displayed:
/*	Locate	the	menu	option	number	of	Office	Tasks	on	the	I5/OS	Main	menu	*/
var	strMenuNumber	=	GET_MENU_OPTION_NUMBER("office	tasks");
alert("Menu	option	number	returned	was	"	+	strMenuNumber);
	
This	code	causes	the	message	"Menu	option	number	returned	was	11"	to	be
displayed:
/*	Locate	the	menu	option	number	of	Client	Access/400	tasks	on	the	I5/OS
Main	menu	*/
var	strMenuNumber	=	GET_MENU_OPTION_NUMBER("client	acc");
alert("Menu	option	number	returned	was	"	+	strMenuNumber);
		
	

STRIP_LEADING_NUMBERS	Function
Returns	the	leading	numbers	from	a	string	to	the	caller.

Syntax
STRIP_LEADING_NUMBERS(sSourceString)
	

Parameters
sSourceString	 String.	Required.	The	string	from	which

the	numbers	are	to	be	stripped.	

	
Return	Value
String.	The	stripped	numbers.
	

Example
This	code	causes	the	message	"String	returned	was	15"	to	be	displayed:
var	strResult	=	STRIP_LEADING_NUMBERS("015.	Office	Tasks");
alert("String	returned	was	"	+	strResult);
	

ADD_STRING	Function
Defines	a	string	by	a	unique	number	for	use	by	other	scripts.	This	function	is
especially	useful	in	multilingual	applications.

Syntax
ADD_STRING(iStringNumber	,	sText)

Parameters
iStringNumber The	number	to	be	assigned	to	the	string

sText The	string	text

Return	Value
None

Examples
See	the	STRING	Function	definition.

STRING	Function
Returns	the	string	for	a	given	string	identification	number.	This	function	is
especially	useful	in	multilingual	applications.

Syntax
STRING(iStringNumber)

Parameters
iStringNumber The	identification	number	of	the	string

Return	Value
The	string	previously	defined	by	ADD_STRING	with	the	specified
identification	number	or	a	string	containing	the	text	"String	number	n	not
found.".

Examples
If	your	sign-on	function	used	the	ADD_STRING()	function	to	define
multilingual	strings	like	this	based	on	different	language	codes:
ADD_STRING(1,"OK");
ADD_STRING(2,"Cancel");
ADD_STRING(3,"Customer	not	found");
	
Then	all	other	scripts	that	needed	to	access	a	multi-lingual	string	would
reference	the	function	STRING(n)	in	their	code	in	a	language	independent	way.
For	example	this	code:
for	(i	=	0;	i	<=	4;	i++)
{
alert(STRING(i));
}
	
Would	display	the	strings:
		String	number	0	not	found.
		OK
		Cancel
		Customer	not	found
		String	number	4	not	found

	
Similarly,	if	your	sign-on	script	had	defined	two	strings	like	this:
ADD_STRING(1,"Customer	number	");
ADD_STRING(2,"	could	not	be	found	or	you	are	not	authorized	to	view
them.");
	
Then	you	could	dynamically	build	a	multi-lingual	message	in	another	script	like
this:
var	strMessage	=	STRING(1)	+	CustomerNumber.toString()	+	STRING(2);
alert(strMessage);	

OVERRIDE_BUTTONS_UNDEFINED_SCREENS	Function
Applicable	to	Windows	only.
Causes	all	undefined	screens	to	show	the	5250	function	key	bar.

Syntax
OVERRIDE_BUTTONS_UNDEFINED_SCREENS	()

Parameters
None.

Return	Value
None

Remarks
This	function	turns	on	the	function	key	bar	for	all	screens	in	a	session,	but
because	function	key	bars	should	not	appear	in	defined	screens	it	must	be
hidden.
To	use	this	special	function	you	must	do	this:
						Set	the	Bottom	Mask	Height	property	for	the	session	to	28.	All	destinations
will	inherit	this	mask	setting	by	default.

						Use	the	OVERRIDE_BUTTONS_UNDEFINED_SCREENS()	function	in
your	sign-on	script.

Once	the	option	is	turned	on	it	will	remain	so	for	the	duration	of	the	session.
To	show	the	function	key	bar	for	a	destination	screen,	reset	the	Bottom	Mask
Height	of	the	destination	screen	to	zero.	However,	we	do	not	recommend
showing	the	function	key	bar	for	destination	screens.
Note:	when	the	undefined	screen	is	a	pop-up,	the	screen	in	the	background
(even	though	defined)	might	also	show	the	function	key	bar	although	it	will	not
be	usable.

Examples	
OVERRIDE_BUTTONS_UNDEFINED_SCREENS()

OVERRIDE_KEY_CAPTION_SCREEN	Function
Assigns	a	new	caption	for	a	function	key	on	a	particular	screen.

Syntax
OVERRIDE_KEY_CAPTION_SCREEN
(sDestinationName,sKeyName,sOverrideCaption)

Parameters

sDestinationName Required.	A	string	that	contains	the	name	of	a
Destination.

sKeyName
Required.	String	that	contains	the	name	of	the
key.	See	Function	Key	Names	for	SENDKEY
Function.

sOverrideCaption Required.	The	new	caption	that	will	be	used	for
the	button

Return	Value
None

Example
OVERRIDE_KEY_CAPTION_SCREEN("uDisplayEmployee",	KeyF1,
"Aide");
	

Notes
This	function	is	very	sensitive	to	where	in	a	RAMP	script	it	is	used.	If	it	is	used
in	an	INVOKE	script	for	a	destination,	it	should	be	placed	just	before	the
destination	screen	appears.
This	function	can	also	be	used	in	a	sign-on	script.

OVERRIDE_KEY_CAPTION_ALL	Function
Assigns	a	new	caption	for	a	function	key	on	any	screen.

Syntax
OVERRIDE_KEY_CAPTION_ALL	(sKeyName,sOverrideCaption)

Parameters

sKeyName
Required.	String	that	contains	the	name	of	the
key.	See	Function	Key	Names	for	SENDKEY
Function.

sOverrideCaption Required.	The	new	caption	that	will	be	used	for
the	button

Return	Value
None

Example
OVERRIDE_KEY_CAPTION_ALL(KeyF1,	"Aide");
		

Notes
This	function	is	usually	used	in	a	sign-on	script.	It	can	be	used	for	multilingual
applications	to	set	all	function	key	captions	to	another	language.

AVSAVEVALUE	Function
Saves	an	alphanumeric	or	numeric	value	onto	the	VLF	virtual	clipboard.

Syntax
AVSAVEVALUE(vValue,	sID1,	sID2,	sID3,	iInstance,	sLanguage,	bPersist)

Parameters
vValue Required.	Alphanumeric	or	numeric	value	to

save	to	the	virtual	clipboard.	
If	this	parameter	is	a	JavaScript	variable	of
type	string,	then	the	value	is	posed	to	the
clipboard	as	an	alphanumeric	value	and	can
therefore	can	only	be	sensibly	be	retrieved
using	the	AVRESTOREAVALUE	function	(or
equivalent).	
If	it	is	of	type	number	it	is	posted	as	type
numeric	to	the	clipboard	and	can	only	be
sensibly	retrieved	using	the
AVRESTORENVALUE	function	(or
equivalent).	
	

sID1 Required.	String	that	contains	the	Virtual
Clipboard	identifier	1.

sID2 Optional.	String	that	contains	the	Virtual
Clipboard	identifier	2.

sID3 Optional.	String	that	contains	the	Virtual
Clipboard	identifier	3.

iInstance Optional.	Integer	that	contains	the	instance
number.	Defaults	to	1	when	not	specified.
Instances	are	typically	used	to	create	lists	of
clipboard	values	and	usually	accompanied	by
another	clipboard	value	that	indicates	how
many	entries	currently	exist	in	the	list.

sLanguage Optional.	String	that	contains	the	language

code.	Defaults	to	ALL	languages	when	not
specified.

bPersist Optional.	Boolean	value	that	indicates	whether
or	not	a	saved	value	should	persist	beyond	the
current	execution	of	the	RAMP	application.
Defaults	to	true.	This	parameter	has	no
meaning	for	VLF-WEB	RAMP	applications
because	VLF	virtual	clipboard	values	never
persist	in	WEB	applications.

			

Return	Value
None

Remarks
									Use	AVSAVEVALUE	in	your	RAMP	scripts	to	save	value	in	the	VLF
virtual	clipboard.	More	information	about	the	Virtual	Clipboard	can	be	found
in	The	Virtual	Clipboard	in	the	Framework	guide.

									For	information	about	the	parameter	lengths,	please	refer	to
VF_SAVEAVALUE	and	VF_SAVENVALUE.

									The	posting	of	clipboard	values	from	RAMP	scripts	is	asynchronous.
When	you	post	values	they	are	not	physically	processed	onto	the	clipboard
until	your	RAMP	script	completes	execution	and	yields	control	back	to	the
framework.

									The	virtual	clipboard	is	primarily	designed	to	pass	information	between
RAMP	scripts	and	RDML(X)	code	executing	in	filters,	command	handlers,
etc.

									The	virtual	clipboard	is	not	primarily	designed	to	pass	information
between	RAMP	scripts.	The	JavaScript	objGlobal	object	is	a	more	efficient
way	to	pass	information	exclusively	between	RAMP	scripts.

									When	a	RAMP	script	executing	in	a	web	browser	application	posts	values
onto	the	virtual	clipboard,	they	need	to	be	sent	to	the	server	for	subsequent
access	by	RDML(X)	code	executing	in	filters	or	command	handlers	(because
they	are	executing	on	the	server).	This	means	that	the	volume	of	information
you	place	onto	the	clipboard	will	impact	the	amount	of	information	that
needs	to	be	transmitted	between	the	client	and	the	server.

javascript:void(0);openCHM('lansa048.CHM::/lansa048_0840.htm',’lansa’);
javascript:void(0);openCHM('lansa048.CHM::/lansa048_1780.htm',’lansa’);

Examples	
RDMLX	code	in	a	filter	or	command	handler	to	save/restore	clipboard	values:
	*	Save	values	onto	the	clipboard
	
Invoke	#avFrameworkManager.avSaveValue	WithID1(Test)	WithID2(EMPNO)
FromAValue(("A0090")
Invoke	#avFrameworkManager.avSaveValue	WithID1(Test)
WithID2(SURNAME)	FromAValue("FRED")
Invoke	#avFrameworkManager.avSaveValue	WithID1(Test)
WithID2(GIVENAME)	FromAValue("BLOGGS")
Invoke	#avFrameworkManager.avSaveValue	WithID1(Test)
WithID2(POSTCODE)	FromNValue(2150)
Invoke	#avFrameworkManager.avSaveValue	WithID1(Test)
WithID2(SALARY)	FromNValue(123456.78)
		
*	Restore	values	from	the	clipboard
		
Invoke	#avFrameworkManager.avRestoreValue	WithID1(Test)
WithID2(EMPNO)	ToAValue(#EMPNO)	UseAValueDefault("NA")
Invoke	#avFrameworkManager.avRestoreValue	WithID1(Test)
WithID2(SURNAME)	ToAValue(#SURNAME)	UseAValueDefault("NA")
Invoke	#avFrameworkManager.avRestoreValue	WithID1(Test)
WithID2(GIVENAME)	ToAValue(#GIVENAME)	UseAValueDefault("NA")
Invoke	#avFrameworkManager.avRestoreValue	WithID1(Test)
WithID2(POSTCODE)	ToNValue(#PostCode)	UseNValueDefault(0)
Invoke	#avFrameworkManager.avRestoreValue	WithID1(Test)
WithID2(SALARY)	ToNValue(#Salary)	UseNValueDefault(0)
		
	
RAMP	JavaScript	code	to	perform	the	equivalent	operations:	
	
/*	Save	values	onto	the	clipboard	–	note	POSTCODE	and	SALARY	are
numeric	*/
	
AVSAVEVALUE("A0090","TEST","EMPNO");
AVSAVEVALUE("FRED","TEST","SURNAME");
AVSAVEVALUE("BLOGGS","TEST","GIVENAME");

AVSAVEVALUE(2150,"TEST","POSTCODE");
AVSAVEVALUE(123456.78,"TEST","SALARY");
	
/*	Restore	values	from	the	clipboard	*/
	
	
		var	vEMPNO				=	AVRESTOREAVALUE("NA","TEST","EMPNO");
		var	vSURNAME		=	AVRESTOREAVALUE("NA","TEST","SURNAME");
		var	vGIVENAME	=	AVRESTOREAVALUE("NA","TEST","GIVENAME");
		var	vPOSTCODE	=	AVRESTORENVALUE(0,"TEST","POSTCODE");
		var	vSALARY			=	AVRESTORENVALUE(0,"TEST","SALARY");
	

AVRESTOREAVALUE	and	AVRESTORENVALUE	Function
Restore	an	alphanumeric	or	numeric	value	from	the	VLF	virtual	clipboard.

Syntax
AVRESTOREAVALUE/AVRESTORENVALUE(Default,	sID1,	sID2,	sID3,
iInstance,	sLanguage)

Parameters
Default Required.	String/Number	that	contains	the

default	value	to	return	if	the	value	is	not	found
.	

sID1 Required.	String	that	contains	the	Virtual
Clipboard	identifier	1.

sID2 Optional.	String	that	contains	the	Virtual
Clipboard	identifier	2.

sID3 Optional.	String	that	contains	the	Virtual
Clipboard	identifier	3.

iInstance Optional.	Integer	that	contains	the	instance
number.	Defaults	to	1	when	not	specified

sLanguage Optional.	String	that	contains	the	language
code.	Defaults	to	ALL	languages	when	not
specified.

		

Return	Value
None

Remarks
Use	AVRESTOREAVALUE/AVRESTORENVALUE	in	your	RAMP	scripts	to
restore	a	value	from	the	VLF	virtual	clipboard.	More	information	about	the
Virtual	Clipboard	can	be	found	in	The	Virtual	Clipboard	in	the	Framework
guide
For	information	about	the	parameter	lengths,	please	refer	to
VF_RESTOREAVALUE	and	VF_RESTORENVALUE	in	the	Framework	guide.

javascript:void(0);openCHM('lansa048.CHM::/lansa048_0840.htm',’lansa’);
javascript:void(0);openCHM('lansa048.CHM::/lansa048_1785.htm',’lansa’);

Examples	
var	sSavedSurname	=	AVRESTOREAVALUE("Not	Found",	"NewEmployee",
"Surname",	"",	1,	FRA);
var	sSavedPostcode	=	AVRESTOREAVALUE(9999,	"NewEmployee",
"Postcode");

SET_LOCK_MESSAGE	Function
Set	the	message	to	show	when	the	Framework	locks	up.

Syntax
SET_LOCK_MESSAGE(sText)

Parameters
Setting	by	Name:

sText Required.	String	that	contains	the	text	of	the
message.	

	

Return	Value
None

Remarks
Using	SET_LOCK_MESSAGE	overrides	the	default	message	shown	by	the
Framework.	This	function	can	be	invoked	at	anytime	in	any	script.	It's
recommended	that,	when	used,	the	user	message	is	set	at	the	very	beginning	of
the	sign-on	script.
This	will	have	no	effect	when	executing	RAMP	in	a	browser	because	locking	is
disabled	in	such	an	environment.

Examples
	
SET_LOCK_MESSAGE("This	is	my	own	message	text	for	when	the
framework	locks	up")

ADD_UNKNOWN_FORM_GUESS	Function
Function	keys	to	send	when	an	unknown	form	appears	during	RAMP
navigation.	Only	available	in	Windows.

Syntax
ADD_UNKNOWN_FORM_GUESS(sKeyName)

Parameters
SKeyName Required.String	that	contains	the	name	of	the	key.	See

Function	Key	Names	for	SENDKEY	Function.

		

Return	Value
None

Remarks
Use	this	function	call	in	the	session's	sign-on	script.
When	an	unknown	5250	screen	is	encountered,	the	Framework	goes	into	a
locked	state	if	the	Lock	Framework	when	an	unknown	5250	form	is	displayed
property	is	turned	on.	The	user	will	not	be	able	to	move	around	within	the
Framework	until	they	navigate	to	a	defined	5250	screen.
The	ADD_UNKNOWN_FORM_GUESS	function	can	help	to	work	around
such	situation	by	specifying	function	keys	to	send	as	the	user	tries	to	execute	a
different	Framework	action	(for	example	click	on	a	different	Application	or
Business	Object,	Command,	etc.)	without	having	to	navigate	to	a	defined	5250
screen.	Before	getting	into	a	locked	state,	the	Framework	will	send	the	added
keys	in	the	sequence	they	were	added.
For	example,	your	RAMP	application	may	have	many	undefined	F4=Prompt
pop-up	windows	that	are	all	closed	by	using	F12=Cancel.	You	can	instruct
RAMP	that	when	an	unknown	screen	is	on	display	(for	example	an	F4=Prompt
window)	it	should	first	try	F12	(to	see	if	it	can	close	the	window)	before
displaying	the	lock	message.
It's	up	to	the	unknown	5250	screen	to	support	the	usage	of	the	sent	function
keys	and	to	the	screen	arriving	after	sending	the	keys	to	be	defined	for	this
functionality	to	work.	This	responsibility	is	up	to	the	designer.
Care	should	be	taken	when	using	this	function	as	it	applies	generically	to	all
undefined	screens.

Examples
	
ADD_UNKNOWN_FORM_GUESS(KeyF3);
ADD_UNKNOWN_FORM_GUESS(KeyF12);

FORCE_POPUP_REFRESH	Function

We	strongly	recommend	you	do	not	to	use	this	function	because	the
default	behavior	of	pop-up	windows	is	correct	in	most	situations.	If	you
think	you	need	to	use	this	function	please	contact	your	support
representative.

RAMP	contains	force-to-front	logic.	This	logic	is	invoked	automatically
whenever	a	5250	pop-up	is	encountered	as	an	undefined	screen	or	when	a
function	key	or	button	is	used	from	a	destination	form.
This	logic	can	be	turned	off	using	FORCE_POP_UP_REFRESH(False).

Syntax
FORCE_POPUP_REFRESH(boolean)

Parameters
boolean.	One	of	the	following	possible	values:

true Default.	RAMP	will	attempt	to	bring	the	hidden	pop	up
to	the	foreground.

false Do	nothing.

Return	Value
None

Remarks
Using	FORCE_POPUP_REFRESH	only	impacts	the	enablement	of	the	force-
to-front	logic,	not	when	it	is	used.		
Please	refer	to	Handling	Pop-Ups	for	more	information	about	this	option.

SET_HANDLER_CAPTION	Function
Set	the	current	command	handler	caption	to	a	new	value.

Syntax
SET_HANDLER_CAPTION(sCaption)
		

Parameters
Setting	by	Name:

sCaption Required.	String	that	contains	the	new	caption	for	the
current	command	handler.	

	

Return	Value
None.
		

Remarks
Using	SET_HANDLER_CAPTION	overrides	the	default	command	handler
caption	shown	by	the	Framework.	This	function	can	be	invoked	at	anytime	in
any	script.
This	function	is	available	to	be	used	in	Windows	and	Web	RAMP	applications.
		

Examples
	
SET_HANDLER_CAPTION("New	Command	Handler	Caption")
	
	

Framework	Objects	that	Scripts	Can	Refer	To
A	number	of	RAMP	provided	JavaScript	objects	make	standard	information
accessible	to	all	scripts.	For	example	the	JavaScript	object	objUser	publishes
properties	Name	and	Password.
This	means	that	you	can	access	and	pass	around	the	name	and	password	of	the
current	user	in	your	scripts	like	this:
			if	(objUser.Name	==	"QSECOFR")	alert("Your	are	signed	on	as	the	security
officer!");					
Note	that	these	names	are	CASE	SENSITIVE.	Be	careful	to	use	exactly	the
same	case	as	shown	when	writing	scripts.
									objGlobal

									objFramework
									objApplication
									objBusinessObject

									objCommand
									objListManager
									objUser

									SUBFILE_ACCESSOR	Object
	
To	find	out	how	you	can	quickly	enter	these	objects	and	their	properties	in	your
scripts,	see	Using	the	Scripting	Pop-up	Menu.

objGlobal
objGlobal	can	be	used	to	store	your	own	properties.
This	can	be	useful	if	you	need	to	store	information	from	one	script	and	use	it
later	in	another	script.
The	information	could	be	field	values	from	a	screen	that	need	to	be	referred	to
by	a	later	script.
Or	it	could	identify	which	path	a	script	is	on,	so	that	when	the	same	screen	is
used	by	two	paths,	the	script	can	determine	which	path	it	is	on.

Property Type Description

<<any	property
name>>

string Any	property	you	want	to	assign	to

Example
Save	the	path	the	user	is	on,	and	the	item	the	user	is	working	with	(On	Screen
1).
/*	Store	the	Item	number	that	the	user	entered		-	this	field	has	to	be	defined	on
this	form	in	newlook*/
objGlobal.utxtItemNumber	=	GETVALUE("utxtItemNumber");
/*	Store	the	action	that	is	being	performed	(so	that	shared	screens	can	know
whether	its	an	add	or	a	copy)	*/
objGlobal.uLastAction	=	"COPY";
Remember	the	path	the	user	is	on,	and	the	item	the	user	is	working	with	(On
Screen	4).
/*	Get	the	action	that	is	being	performed	*/
if	(objGlobal.uLastAction	==	"COPY")
{
			ALERT_MESSAGE("Inventory	item	",	objGlobal.utxtItemNumber,	"was
copied	from	"	,	objListManager.AKey1[0]);
}
else
{
			ALERT_MESSAGE("Inventory	item	was	added.	",
objGlobal.utxtItemNumber	,	"has	been	saved.");
	
Note	that	objGlobal	is	global	within	a	5250	session.	Each	5250	session	has	its

own	unique	instance	of	objGlobal.
For	more	information	refer	to	Using	the	objGlobal	Object.

objFramework
objFramework	contains	read	only	properties	that	provide	information	about	the
current	framework	to	your	scripts:		

Property Type Description

uCaption string The	caption	of	the	current
framework

ExecutionEnvironment string Identifies	the	execution
environment	as	"WIN"	or	"WEB"		

flagDesignMode boolean Identifies	whether	the	Framework
is	executing	in	design	mode.
Boolean	value	containing	true	or
false.

Language string Identifies	the	current	LANSA
language	code	(eg:	"ENG",	"FRA",
etc)

Partition string Identifies	the	current	LANSA
partition	(eg:	"DEM",	"SYS")

TraceMode string Identifies	whether	the	Framework
is	executing	in	Trace	mode	as
"TRUE"	or	"FALSE"

objApplication
objApplication	contains	read	only	properties	that	provide	information	about	the
current	application	to	your	scripts:		

Property Type Description

uCaption string The	caption	of	the	current	application.

uUserObjectType string The	User	Object	Name	/	Type	of	the
current	application.

objBusinessObject
objFramework	contains	read	only	properties	that	provide	information	about	the
current	business	object	to	your	scripts:		

Property Type Description

uCaption string The	caption	of	the	current	business	object.

uUserObjectType string The	User	Object	Name	/	Type	of	the
current	business	object.

objCommand
objFramework	contains	read	only	properties	that	provide	information	about	the
current	command	to	your	scripts:		

Property Type Description

uCaption string The	caption	of	the	current	command.

uUserObjectType string The	User	Object	Name	/	Type	of	the
current	command.

uAlphaArg1 String The	optional	alpha	argument	1	of	the
current	VLF	command	handler

uAlphaArg2 String The	optional	alpha	argument	2	of	the
current	VLF	command	handler

uNumArg1 Integer The	optional	numeric	argument	1	of	the
current	VLF	command	handler

uNumArg2 Integer The	optional	numeric	argument	2	of	the
current	VLF	command	handler

uExecReason String The	reason	that	the	current	command
handler	was	executed.	This	string	contains
"EXECUTE"	or	"ACTIVATE"	indicating
why	the	current	RAMP	command	was
executed.	The	value	"ACTIVATE"	is	only
applicable	to	visible	VLF-WIN
application	scripts.	In	all	other	contexts,
including	screen	wrappers,	the	value
"EXECUTE"	is	always	used.

objListManager
objListManager	contains	read	only	properties	that	provide	information	about	the
instance	list		to	your	scripts.

Array	properties
Array	entry	[0]	is	the	value	for	the	current	entry	in	the	instance	list.	(the	entry
that	has	focus)
Array	entries	[1],	[2],	[3]	...	are	the	values	for	the	selected	entries	in	the	instance
list

Property Type Description

AKey1[0]	-
AKey5[0]

string The		5	Alpha	identifying	key	values	of	the
current	instance	of	the	instance	list

NKey1[0]	-
NKey5[0]

String The		5	Numeric	identifying	key	values	of
the	current	instance	of	the	instance	list

VisualId1[0] String Visual	Identifier	1	of	the	current	Instance
List	entry

VisualId2[0] String Visual	Identifier	2	of	the	current	Instance
List	entry

AColumn1[0]	–
AColumn10[0]

String The	10	Alpha	Additional	Column	values
of	the	current	instance	list	entry

NColumn1[0]	–
NColumn10[0]

String The	10	Numeric	Additional	Column
values	of	the	current	instance	list	entry

Single	value	properties
Property Type Description

TotalSelected										 integer The	number	of	selected	entries	in	the
instance	list.

	
For	information	about	how	to	use	the	list	manager	object,	see	how	to	Interacting
with	Instance	Lists	in	Scripts.

objUser
objUser	contains	read	only	properties	that	provide	information	about	the	current
user	to	your	scripts:		

Property Type Description

Name string The	profile	of	the	current	User.

Password string The	password	of	the	current	User.

SUBFILE_ACCESSOR	Object
The	SUBFILE_ACCESSOR	object	may	be	used	to	access	a	5250	subfile	from	a
script.
See	the	movie	Using	Subfile	Accessor	-	5	minutes.

Properties

SelectionColumnOffset

The	offset	of	the	selection	column	when
it	is	in	a	different	row	to	the	matched
column.	Default	is	0	(zero),	indicating	it
is	on	the	same	subfile	row.			

SelectionKey

The	key	to	be	sent	to	select	an	entry	in
the	subfile.	The	default	is	KeyEnter.
If	you	don't	want	any	key	to	be	pressed,
set	this	value	to	null	(no	quotes).

KeyPageDown The	key	to	be	used	to	page	the	subfile
down.	The	default	is	KeyPageDown.

Scrollable Indicates	whether	the	subfile	may	be
scrolled	down.	The	default	is	true.

Trace

Indicates	whether	detailed	trace
information	should	be	produced	from	the
subfile	when	trace	mode	is	on.	The
default	is	true.

SelectionByCursor

Used	when	selection	is	to	be	done	by
cursor	location.	Default	is	false.
Typically	SelectionByCursorOffset	is
also	set	when	using	this	value.

SelectionByCursorOffset

When	using	SelectionByCursor	this
value	indicates	the	offset	between	the
matching	row	in	the	datagrid	control	and
the	actual	5250	screen	line	number	the
cursor	should	be	positioned	to.
	
For	example,	if	the	first	data	line	in	5250

subfile	(visualized	as	a	datagrid)	was	on
line	12	of	the	5250	display,	you	would
set	this	property	to	11.	This	indicates	that
a	match	on	datagrid	row	3	(say)	would
map	to	real	5250	screen	line	3	+	11	=	14.
							

EndofFileMarker

Set	the	EndofFileMarker	property	to	the
value	used	in	the	subfile/browselist
marker	when	the	end	of	file	has	been
reached.	It	will	be	then	used	to	determine
the	end	of	the	subfile	when	trying	to
select	an	entry.	Default	is	"Bottom".
This	property	can	be	set	in	RAMP	scripts
like	this;
objAccessor.EndofFileMarker	=	"End";
	
This	will	be	used	to	determine	when
scrolling	is	no	longer	required.

UseMarker

Set	the	UseMarker	property	to	false
when	the	subfile/browse	list	does	not	use
markers.
Note	that	you	must	set	the
EndofFileMarker	property	to	all	or	part
of	the	message	that	appears	when
scrolling	past	the	end	of
the	subfile/browselist	so	the	Subfile
Accessor	can	determine	when	the	end	of
the	subfile/browselist	is	reached.	The
default	is	true.

	
	

Methods																																
Used	to	dispose	of	a
SUBFILE_ACCESSOR	object

Dispose() when	you	have	completed
using	in	a	script

SetSearchColumnNumber(1,2,3,4);

Defines	a	search	column,	by
column	number,	to	be	used
when	looking	for	an	entry	in
the	subfile.	Arguments	are:
1	–	Column	Number
2	–	Value	to	Search	for
3	–	Search	without	regard	to
case.	Optional.	Default	false.	
4	–	Search	using	"contains"
matching	rather	than	exact
equality.	Optional.	Default
false.			

SetSearchColumnName(1,2,3,4)

Defines	a	search	column,	by
column	name,	to	be	used	when
looking	for	an	entry	in	the
subfile.	Arguments	are:
1	–	Column	Name
2	–	Value	to	Search	for
3	–	Search	without	regard	to
case.	Optional.	Default	false.	
4	–	Search	using	"contains"
matching	rather	than	exact
equality.	Optional.	Default
false.		

SelectSubFileEntry()

Searches	the	subfile	using	the
column	search	and	selection
details	provided	and	selects	the
required	subfile	entry.

TracePage()
Dumps	the	current	subfile
details	to	the	trace	(if	trace	is
active).	No	arguments.	

SetSelectionColumnName(1,2,3)

Defines	the	selection	column,
by	column	name,	to	be	used
when	selecting	an	entry	in	the
subfile.	Arguments	are:
1	–	Column	number
2	–	Selection	value	to	be	used
3	–	Unselection	value.
Optional.	Default	is	that
automatic	unselection	of
columns	is	not	performed.	

SetSelectionColumnNumber(1,2,3)

Defines	the	selection	column,
by	column	number,	to	be	used
when	selecting	an	entry	in	the
subfile.	Arguments	are:
1	–	Column	number
2	–	Selection	value	to	be	used
3	–	Unselection	value.
Optional.	Default	is	that
automatic	unselection	of
columns	is	not	performed.	

	
Use	the	right	mouse	when	coding	scripts	to	generate	base
SUBFILE_ACCESSOR	code.		See	Using	the	Scripting	Pop-up	Menu.
	
	
	

Function	Key	Names	for	SENDKEY	Function
This	table	shows	the	function	key	names	you	need	to	use	in	the	SENDKEY
function	and	the	corresponding	5250	and	Windows	key	names.
Note	that	the	key	names	are	case	sensitive	and	you	must	enter	them	exactly	as
shown	here	in	the	SENDKEY	function.

SENDKEY
Name

Windows
Keyboard

5250	Key	action
description

Button
Text

KeyAttn							 Esc sys	attn "Attn";	

KeyClear						 Shift	Enter Field	Exit "Clear";

KeyEnter						 Enter Enter "Enter";

KeyHelp							 alt	F1 help "Help";

KeyPageDown		 Page	Down Page	Down "Page
Up";

KeyPageUp					 Page	Up Page	Up "Page
Down";	

KeyPrint						 ctrl	Pause host	print "Print";

KeyReset						 ctrl reset "Reset";

KeySysReq					 shift	Esc sys	req "Sys
Req";

KeyTestReq			 alt	Pause test	req "Test
Req";	

KeyF1								 F1 F1 "F1";

KeyF2									 F2 F2 "F2";

KeyF3									 F3 F3 "F3";

KeyF4									 F4 F4 "F4";

KeyF5									 F5 F5 "F5";

KeyF6									 F6 F6 "F6";

KeyF7									 F7 F7 "F7";

KeyF8									 F8 F8 "F8";

KeyF9									 F9 F9 "F9";

KeyF10							 F10 F10 "F10";

KeyF11								 F11 F11 "F11";

KeyF12								 F12 F12 "F12";

KeyF13							 shift	F1 F13 "F13";

KeyF14								 shift	F2 F14 "F14";

KeyF15								 shift	F3 F15 "F15";

KeyF16								 shift	F4 F16 "F16";

KeyF17								 shift	F5 F17 "F17";

KeyF18								 shift	F6 F18 "F18";

KeyF19								 shift	F7 F19 "F19";

KeyF20								 shift	F8 F20 "F20";

KeyF21								 shift	F9 F21 "F21";

KeyF22								 shift	F10 F22 "F22";

KeyF23								 shift	F11 F23 "F23";

KeyF24							 shift	F12 F24 "F24";

KeyPA1							 Esc	1 program	attention	1 "PA1";

KeyPA2							 Esc	2 program	attention	2 "PA2";

KeyPA3								 Esc	3 program	attention	3 "PA3";

Example

	
SENDKEY(KeyEnter);

User-defined	script	functions
You	can	define	your	own	JavaScript	functions	to	be	used	in	different	RAMP
scripts	by	editing	a	special	JavaScript	file	UF_SY120.JS	in	the	partition	execute
directory	and	creating	your	own	functions	based	on	function
UF_MY_FUNCTION.
Note	that	the	file	names	start	with	"U",	not	with	"V".
You	can	edit	this	file	with	any	editor	or	use	the	button	at	the	top	of	the	RAMP
tools	window	to	edit	via	NOTEPAD.		
Your	RAMP	scripts	will	then	be	able	to	use	the	JavaScript	functions	you	define.
If	you	are	using	RAMP	in	a	web	browser	application,	you	will	need	to	save
uf_sy120.js	to	your	web	server.
To	do	this,	select	Current	RAMP	Design	Details	or	Shipped	system	and
demonstration	objects	options	when	you	are	saving	the	Framework	on	the	web
server.
		

Switching	Off	Recursion	Checking
Each	time	a	RAMP	script	is	executed,	the	Framework	checks	if	the	script	has
been	called	recursively	and	flags	an	error	if	it	has.
However,	situations	may	arise	where	a	script	may	appear	to	be	called
recursively,	for	example	if	a	special	screen	appears	two	or	more	times	in
succession.	In	these	cases	the	GLOBAL_flagRecursionCheck	property	can	be
used	to	switch	off	the	recursion	checking	and	avoid	applications	ending	in	error.
The	property	can	be	used	in	scripts	in	this	way:
			
var	flagSaveCheckState	=	GLOBAL_flagRecursionCheck;
	
GLOBAL_flagRecursionCheck	=	false;
	
SENDKEY(KeyEnter);
	
GLOBAL_flagRecursionCheck		=	flagSaveCheckState;
		
Saving	and	restoring	the	state	like	this,	rather	than	simply	setting	the	global
property	to	TRUE	or	FALSE	is	the	best	solution	because	this	is	a	recursive
situation.	The	Framework	will	handle	three	or	four	levels	of	recursion
(depending	on	script	size	and	system	resources	available)	if	a	special	screen
appears	this	many	times.	Only	the	top	recursion	level	will	finally	set	the
GLOBAL_flagRecursionCheck	property	back	to	TRUE	again.
	

Debugging
Debug	and	Diagnostics	-	2.5	minutes
Common	Scripting	Errors
Tracing
Using	ALERT_MESSAGE	in	Your	Scripts

Debug	and	Diagnostics	-	2.5	minutes

Play	Movie 	to	learn	how	to	debug	your	application	or	read	the	Movie
Summary.
.

Movie	Summary
For	movie	Debug	and	Diagnostics	-	2.5	minutes.

Switch	on	Tracing
Tracing	is	the	first	thing	you	need	to	do	when	debugging.	Inspect	the	trace	and
look	for	screens	that	have	not	been	recognized	or	that	have	a	blank	name.
	

Add	Alert	statements
An	easy	way	to	debug	scripts	is	to	add	Alert()	statements	to	display	values	in	a
pop-up	window	at	run-time.
	

Add	Alert_Message	functions
Similarly,	you	can	use	the	ALERT_MESSAGE	Function	to	display	values	in
pop-up	windows.
	

Add	Trace	functions
If	you	do	not	want	to	interrupt	application	execution,	but	instead	record	values
in	the	trace,	use	the	TRACE	Function	in	your	script.
	

Debug	your	filters
If	you	want	to	debug	your	filters,	you	can	use	the	avRecordTrace	method	in
your	filter	program:
Invoke	avFrameworkManager.avRecordTrace	Component(#Com_Owner)
Event('Search	Button	click	handler	started')
	
For	more	information	see	Basic	Tracing	Service.
	

Click	on	the	Show	Current	newlook	Form	button
If	the	Framework	ends	on	a	screen	it	does	not	expect	to	be	on,	and	you	get	a
blank	screen	with	an	error	message	Unable	to	display	form.
	

Use	the	Probe	Screen	button	in	Design	mode

javascript:void(0);openCHM('LANSA048.CHM::/lansa048_0845.htm',’lansa’);

To	find	out	what	is	know	about	the	current	screen.

Common	Scripting	Errors
NAVIGATE_TO_JUNCTION	request	failed
Unable	to	display	form
Script	with	identifier	XYZ	not	found
Could	not	complete	the	operation	due	to	error	80020101
Object	expected
Strange	behavior	in	scripts
Your	script	does	not	execute	at	all

NAVIGATE_TO_JUNCTION	request	failed
The	execution	of	a	RAMP	screen	results	in	a	screen	like	this:

What	does	this	error	mean?
This	error	happens	when	the	Framework	has	failed	to	build	a	navigation	path
because	there	is	insufficient	or	no	information	for	the	navigation	to	complete
successfully.
You	can	train	the	Framework	to	navigate	from	one	RAMP	screen	to	another
until	reaching	the	Destination	screen.	All	Destinations	screens	need	to	have	an
INVOKE_SCRIPT_n	associated	with	them.	The	first	line	in	an
INVOKE_SCRIPT_n	looks	like	this:
	
/*	Navigate	to	the	nearest	access	junction	*/
NAVIGATE_TO_JUNCTION("<junction	name>");
	
where	<junction	name>	is	the	name	given	to	a	screen	using	newlook	Designer
and	tagged	as	a	Junction	using	the	RAMP	tools	in	the	Framework.
Before	starting	the	navigation,	the	Framework	tries	to	create	a	navigation	path
to	go	from	the	screen	currently	showing	to	reach	the	<junction	name>	specified

in	the	NAVIGATE_TO_JUNCTION()	function	call.
The	error	means	there	is	no	valid	path	from	the	current	screen	to	the	<junction
name>.	The	error	shown	In	the	example	screen	means	there	is	no	path	to	get
from	EnrolEmployee	to	a	Junction	named	pslsys_menu	(see	the	first	message).

Solution
You	need	to	manually	execute	the	application	starting	at	the	screen	that	was
showing	in	your	runtime	session,	stop	at	every	screen	and	verify	that	is	has	been
defined,	that	the	required	scripts	are	there	and	that	they	are	correct	until	you	find
the	mistake.	Somewhere	along	the	navigation	path	you	should	find	an	undefined
screen.
Do	this:
Press	the	Show	Current	newlook	Form	button	on	the	bottom	of	the	error
message	screen	to	see	the	currently	active	screen.	In	the	example	the	screen
should	be	EnrolEmployee	which	is	the	name	given	to	it	using	newlook
Designer.
Choose	the	RAMP	Tools	option	from	the	Framework	menu	and	start	a	newlook
session.
In	newlook,	display	the	screen	that	was	showing	in	your	runtime	session.	In	our
example,	EnrolEmployee.
Once	you	have	reached	the	screen	causing	the	error	(EnrolEmployee,),	have	a
close	look	at	the	list	of	messages	on	the	top	right	and	answer	the	following
questions:

Has	the	screen	been	defined	in
the	Framework	as	a	Junction,
Destination	or	Special?

If	not,	then	it	would	not	have	any
scripts	and	hence	it	would	be	unable
to	navigate	anywhere.

If	the	screen	has	been	defined,
have	all	the	scripts	been
defined?

If	all	scripts	have	been	defined,	you
need	to	review	them.

Unable	to	display	form
The	execution	of	a	RAMP	screen	results	in	a	screen	that	looks	like	this:

	

What	does	this	error	mean?
The	Framework	has	created	a	valid	navigation	path.
Most	scripts	check	that	the	screen	being	shown	is	the	one	expected.	That's	why
at	the	end	of	most	scripts	there	is	a	line	like	this	one:
	
/*	Check	for	arrival	at	<form	name>	*/
if	(!(CHECK_CURRENT_FORM("<form	name>","Unable	to	display	form
<form	name>")))	return;
	
	
The	message	Unable	to	display	form	suggests	that	at	one	stage	during	the
navigation,	a	the	identified	screen	was	expected	but	another	screen	was
received.
The	message	Unable	to	navigate	is	sent	by	the	Destination's	INVOKE_SCRIPT.
It	is	a	check	to	ensure	that	before	running	the	Destination's	script,	the
application	is	showing	the	proper	screen.	This	avoids	typing	or	sending	key
strokes	in	unwanted	screens.
Sometimes	you	may	not	able	to	reach	the	undefined	screen.	This	can	happen
when	the	screen	which	showed	up	unexpectedly	was	one	that	needs	to	be
eliminated	to	allow	the	navigation	to	continue,	typically	a	break	message.

Solution
Press	the	Show	Current	newlook	Form	button	to	see	the	currently	active	screen.
The	screen	shown	is	the	unexpected	one.
Select	the	RAMP	Tools	option	in	the	Framework	menu	and	manually	perform
the	navigation	that	the	RAMP	screen	was	supposed	to	perform.
As	you	navigate	through	each	one	of	the	screens,	answer	the	following
questions:
Has	the	screen	been	defined?
Looking	carefully	at	the	scripts	for	the	screen,	does	the	script	match	what	you
do	on	the	screen?
You	should	be	able	to	manually	reach	the	unexpected	screen	because	you	know
what	to	do,	what	to	type	and	what	keys	to	press	in	each	screen.

Script	with	identifier	XYZ	not	found
The	execution	of	a	RAMP	screen	results	in	a	screen	like	this:

What	does	this	error	mean?
This	error	happens	when	you	delete	a	script	and	then	execute	the	RAMP	screen
without	saving	and	restarting	the	Framework.

Solution
Save	and	restart	the	Framework.

Could	not	complete	the	operation	due	to	error	80020101
You	execute	one	of	your	scripts	and	see	an	error	message	like	this:

What	does	this	error	mean?
Your	script	has	a	structural	defect	that	prevents	any	attempt	to	execute	it.	For
example,	put	this	code:
	
if	(1	==	2)
{
	
into	a	script	and	fail	to	add	the	required	closing	}.	The	RAMP	editor	will	warn
you	about	the	missing	},	but	ignore	the	warning	and	go	ahead	and	execute	the
script	anyway.	This	will	cause	a	80020101	error	because	the	script	has	a	missing
}.
The	missing	}	means	the	whole	script	does	not	make	any	sense	at	all.
Similarly,	this	code	causes	an	error	because	of	the	double	closing	square
brackets:
	
SETVALUE("utxtBankAccountID",objListManager.AKey3[0]])
	

Solution
Look	for	"unbalanced"	things	in	your	script	such	as:
									An	(without	a	closing/matching)

									An	{	without	a	closing/matching	}
									An	[without	a	closing/matching]
									A	"	or	'	without	a	closing/match	"	or	'	(an	un-terminated	string	constant).

									An	/*	without	a	closing/matching	*/	(an	un-terminated	comment)
Other	JavaScript	constructs	that	are	structurally	incorrect.

Object	expected
You	execute	one	of	your	scripts	an	get	an	"Object	Expected"	error
like	this:

What	does	this	error	mean?
You	have	probably	referred	to	something	in	your	script	that	does	not	exist.	The
most	common	cause	of	this	error	is	simple	typographic	errors	or	even	case
errors.
These	script	lines:
	
NaVIGATE_TO_JUNCTION("uOS400MainMenu");
NAVIGATE_TO_JUNCTIN("uOS400MainMenu");
	
will	both	produce	an	"object	expected"	error.	The	reason	is	that	no	object	named
NaVIGATE_TO_JUNCTION	or	NAVIGATE_TO_JUNCTIN	actually	exists.
The	correct	JavaScript	function	name	is	NAVIGATE_TO_JUNCTION
(remembering	that	JavaScript	is	case	sensitive).

Solution
When	you	get	an	"Object	expected	Error"	try:
									Checking	the	spelling	of	the	name	of	object	you	are	referencing.

									Checking	the	case	of	the	name	of	the	object	you	are	referencing	(eg:
Userprofile	or	UserProfile).

Sometimes	it	is	hard	to	tell	exactly	which	line	in	your	script	is	producing	an
error.
The	easiest	way	to	resolve	this	is	to	make	liberal	use	of	the	JavaScript	alert
function.	For	example:
	
alert("About	to	navigate");
NaVIGATE_TO_JUNCTION("uOS400MainMenu");
alert("Navigation	finished");
	
	

Would	fairly	quickly	isolate	that	the	NaVIGATE_TO_JUNCTION()	line	was
the	one	causing	the	script	failure.

Strange	behavior	in	scripts
A	very	common	cause	of	strange	behavior	in	scripts	comes	from	not	using	the
"=="	comparison	correctly.	This	simple	script	demonstrates	a	very	common	and
time	wasting	scripting	problem:
	
var	X	=	1;
alert	("X	is	"	+	X);
if	(X	=	2)
{
alert("X	is	2");
}
	
If	you	execute	this	script	this	first	alert	message	will	show	X	is	1	and	the	second
will	show	shows	X	is	2	…	which	is	not	possible.
The	cause	of	this	problem	is	of	course	that	the	if	statement	should	have	been
	
if	(X	==	2)
{
alert("X	is	2");
}
	

Your	script	does	not	execute	at	all
Sometimes	your	script	does	not	seem	to	execute	at	all.
Typically	this	is	because	it	is	because	it	is	not	being	invoked	in	a	5250	screen
navigation	in	the	way	that	you	thought	it	would	be.
Use	the	Framework)	->	(Tracing)	->	Application	Level	menu	options	and	trace
the	flow	of	control	in	your	application	to	understand	the	navigation	in	detail.
Generally	this	will	reveal	why	your	script	is	not	being	invoked.

Tracing
You	can	start	tracing	at	any	point	in	time	during	the	execution	of	the	Framework
in	design	mode.
Use	the	Application	Level	trace	facility	to	trace	RAMP	execution.	To	start
tracing,	click	on	the	(Framework)	menu,	select	(Tracing)	->	Application	Level.
Trace	statements	will	appear	in	the	Trace	Window.
RAMP	execution	might	produce	a	large	number	of	statements.	It	will	also
produce	long	statements	that	will	make	it	difficult	to	view	in	its	entirety	unless
the	window	is	enlarged.

For	RAMP	execution	tracing,	we	recommend	to	use	the	Save	Trace	to	File
button	to	save	the	trace	into	a	text	file	in	your	temp	directory.	The	exact	location
and	file	name	of	the	trace	file	produced	will	appear	in	a	message.
Press	the	Messages	button	to	find	out	about	the	location	of	the	trace	file.

Adding	Your	Own	Tracing	Statements
The	shipped	Java	Script	function	TRACE()	allows	you	to	add	your	own	trace
statements	to	the	Application	Level	trace	and	the	output	of	the	trace	statements
is	directed	to	the	Application	Level	trace	window.
For	example,	this	trace	statement:
TRACE("");
TRACE("Value	of	AKEY1	is	=>"	+	objListManager.AKey1[0]	+	"<=");
TRACE("");
Generates	this	tracing:

The	blank	lines	before	and	after	the	actual	trace	statement	are	generated	by
TRACE("");	simply	to	make	it	easier	to	read.
For	more	information	about	the	trace	statement	refer	to	Script	Functions.

	
	

Using	ALERT_MESSAGE	in	Your	Scripts
You	might	sometimes	find	that	the	easiest	and	quickest	way	to	debug	a	problem
is	to	put	up	a	message	box.
Using	ALERT_MESSAGE()	in	your	scripts	causes	a	dialog	box	with	a
predefined	message	to	appear.
ALERT_MESSAGE()	can	also	display	a	mixture	of	text	and	variable	values.
For	example,	if	in	one	of	your	scripts	you	wanted	to	display	the	value	of	an
Akey	that	is	passed	into	the	script,	ALERT_MESSAGE()	would	look	something
like	this:
	
ALERT_MESSAGE("The	value	of	AKEY1	is	=>"	+	objListManager.AKey1[0]
+	"<=");
	
and	during	the	execution	a	message	box	like	this	would	be	displayed:

Screen	Wrappers
RAMP	screen	wrappers	are	Visual	LANSA	components	that	access	5250
screens	behind	the	scenes.	The	screens	and	fields	accessed	are	defined	in	the
usual	manner	by	choreographing	them.
A	screen	wrapper	can	pick	values	out	of	5250	screens	and	present	them	to	the
user	in	completely	different	ways.	Equally,	a	screen	wrapper	can	accept	input
from	the	user	and	map	it	back	into	the	5250	screens	to	cause	5250	transactions
to	take	place.	

When	to	Use	5250	Screen	Wrappers?
Screen	Wrapper	Fundamentals
Events
Methods
Examples

When	to	Use	5250	Screen	Wrappers?
The	main	advantage	of	a	screen	wrapper	is	obvious.	You	can	put	a	good
looking,	easy	to	use,	high	GUI	veneer	over	5250	screens,	without	having	to
spend	the	time	and	money	required	to	analyze,	rewrite	and	then	retest	all	the
business	logic	imbedded	inside	them	as	you	would	if	you	replaced	them	with
VL	components.
This	is	especially	important	for	users	to	whom	platform	portability	is	of	no	real
interest	because	they	are	content	with	a	System	i	only	solution.
	

Usage	Examples
Some	usage	examples	might	include:				
									A	screen	wrapper	can	pick	values	out	of	hidden	5250	screens	and	present	it
in	completely	different	ways.	For	example,	statistical	information	can	be
extracted	and	presented	as	a	series	of	bar	graphs	(see	Example	3:	Show	the
System	i	Disk	Usage).

									A	screen	wrapper	can	accept	user	input	and	then	map	it	back	into	the	5250
screens	so	as	to	cause	5250	transactions	to	take	place.	For	example,	a	VL
component	could	allow	high	function,	high	volume	order	entry.	When	the
user	clicks	Save,	the	order	details	are	mapped	into	a	series	of	5250	screens
and	input.

									A	screen	wrapper	might	execute	many	5250	screens	from	one	click.	For
example	a	screen	wrapper	might	display	a	list	of	20	order	numbers.	When	the
user	clicks	OK	all	20	orders	are	deleted	by	repeatedly	executing	a	5250
screen	that	only	allows	one	order	at	a	time	to	be	deleted.

	

Role	in	Modernization	Projects
For	a	customer	happy	with	a	System	i	dependent	solution,	a	screen	wrapper
might	be	as	far	as	they	ever	take	application	modernization.
Realistically,	screen	wrappers	take	time	and	money	to	develop,	but	probably
significantly	less	than	the	equivalent	VL	component	would,	especially	in	the
application	testing	phase	of	the	modernization	project.
Screen	wrappers	are	not	thrown	away.	When	time	and	money	permit,	they	may
still	be	changed	into	proper	VL	components	by	removing	their	5250
dependency.

You	would	expect	modernization	projects	to	go	to	market	using	a	mix	of	5250
screens,	screen	wrappers	and	VL	components.	For	example,	this	might	be	the
mix	appropriate	to	an	ISV:
									85%	-	5250	screens	–	to	get	to	market	ASAP.

									10%	-	screen	wrappers	-		to	rapidly	replace	some	heavily	used	and	critical
areas	(eg:	Order	Entry)	with	something	much	better	to	use	that	adds	a	lot	of
business	value.

									5%			-	VL	components	–	add	high	end	value	to	the	application	(eg:	E-Mail,
PDF	documents,	MS-Excel	spreadsheets,	Web	integration,	etc).	

Screen	Wrapper	Fundamentals
Define	your	screen	wrapper
A	screen	wrapper	is	a	VL	reusable	part	of	class	VF_SY122.	You	must	define	it
globally	scoped	as	opposed	to	inside	any	type	of	routine.
Define_Com	Class(#vf_sy122)	Name(#myscreen_wrapper)	Parent(#PANL_1)
Visible(False)
Key	Points:
									Set	the	initial	visibility	to	False.	This	will	ensure	it	will	never	show	up
unless	you	want	to.	For	example	you	might	want	to	make	it	visible	in	design
mode	when	a	fatal	error	occurs	to	give	you	the	option	of	seeing	what	the
current	5250	screen	is.

									You	might	want	to	make	it	a	child	of	a	panel	attached	to	the	center	of	the
main	panel.	This	will	make	it	easier	to	see	when	you	want	to	make	it	visible
to	track	down	fatal	errors.

Set	the	uCommand	property
In	the	command's	uInitialize	method	routine,	set	the	screen	wrapper's
uCommand	property:
Mthroutine	Name(uInitialize)	Options(*REDEFINE)
*	Do	any	initialization	defined	in	the	ancestor
Invoke	Method(#Com_Ancestor.uInitialize)
Set	Com(#myscreen_wrapper)	Ucommand(#com_owner)
Endroutine
Key	Points:
									Always	set	uCommand	to	#com_owner.
									Failure	to	set	uCommand	will	result	in	an	error	message	of	type
VF_INIT_ERROR.

Kick	off	execution	by	making	RAMP	available	for	a	specific
action
Usually	you	will	invoke	MakeRampAvailable	Method	inside	the	uExecute
method	of	your	command	for	the	first	time:
#myscreen_wrapper.MakeRampAvailable	Foraction(Display)
Key	Points:
									The	first	time	you	make	RAMP	available	during	the	first	execution	of	a

command	it	will	take	slightly	longer	for	the	event	to	be	fired	because	RAMP
is	not	connected	to	the	host.

									The	command	regains	control	in	the	event	routing	handling	RampAvailable
Event.

Listen	to	the	RampAvailable	event
Once	RAMP	has	connected	and	it's	ready	to	be	interacted	with	it	will	signal
back	to	the	command.	It	will	pass	the	value	of	the	action	you	requested.
Typically	this	routine	will	consist	of	a	CASE	statement	handling	all	the	possible
actions.

Listen	to	the	RampMessage	event
You	write	error	handling	logic	and	handle	messages	originating	in	your	5250
application	in	the	RampMessage	Event.

Events
RampMessage	Event
RampAvailable	Event

RampMessage	Event
A	message	is	issued	by	RAMP	or	the	underlying	5250	application.

Parameters
uMessageType Char	256 String	that	specifies	a	type	of

message	as	per	table	below.

uMessageText Char	132 String	that	contains	the	text	of	the
message.

	

This	table	illustrates	the	available	message	types	and	their	causes:
Type Cause Comments

VF_ERROR Fatal	errors. For	whatever	reason,
RAMP	has	failed	in	the
process	of	executing	a
request.
For	example,	a	failed
navigation	request.

VF_INFO A	message	from	the
5250	application.

Any	message	sent	by	the
actual	5250	program
running	under	the	covers.
For	example,	failed
validation	rules.

VF_INIT_ERROR The	Screen	wrapper
failed	to	initialize.

This	usually	happens
when	the	session	user
object	type	supplied
doesn't	yield	a	defined
session.
Alternatively,	if	you
haven't	set	the	uCommand
property	(see	Screen
Wrapper	Fundamentals).

VF_WAITCONNECTION Issued	every	½ Connections	usually

second	while
newlook	is
attempting	a
connection	with	the
host.

complete	very	quickly.
This	type	is	provided	only
when	for	whatever
reasons	the	connection	is
expected	to	take	a	little
while.

VF_UNKNOWN_FORM During	navigation,
an	undefined	form
was	detected.

	

Remarks
It	is	entirely	up	to	the	developer	how	to	handle	different	types	of	errors.
To	cause	a	message	to	pop	up	automatically,	use	the
#com_owner.avshowmessages	method.	During	development	it	might	be	useful
to	show	the	underlying	newlook	screen	when	a	fatal	error	occurs.	You	can	do	so
by	changing	the	Screen	wrapper's	visibility	and/or	display	position.

Example
Evtroutine	Handling(#screen	wrapper.uRampMessage)
Umessagetype(#MsgType)	Umessagetext(#MsgText)
Case	(#msgtype.value)
When	Value_Is('=	VF_ERROR')
*	Optional.	In	design	mode,	making	the	screen	wrapper	visible	allows	you	to
show	the	5250	screen.Set	Com(#myscreen_wrapper)	Visible(True)
When	Value_Is('=	VF_INFO')
Message	Msgid(dcm9899)	Msgf(dc@m01)	Msgdta(#msgtext.value)
When	Value_Is('=	VF_UNKNOWN_FORM')
Message	Msgid(dcm9899)	Msgf(dc@m01)	Msgdta(#msgtext.value)
When	Value_Is('=	VF_INIT_ERROR')
Message	Msgid(dcm9899)	Msgf(dc@m01)	Msgdta(#msgtext.value)
Endcase
Endroutine

RampAvailable	Event
RAMP	has	signaled	it	is	interactive.

Parameters
ForAction Char	256 String	that	specifies	a	user	defined

action	identifier.

NextAction Char	256 When	a	second	action	is	attempted
during	the	handling	of	an	action,
specify	it	here.

Remarks
Sometimes	you	might	need	to	perform	a	second	action	within	the	same	event
handler.
For	example,	you	make	RAMP	available	for	action	A.	For	this	action	you
navigate	to	a	screen,	then	you	get	some	values	and	depending	on	a	condition
you	want	to	do	action	B	or	C,	that	is,	navigate	to	a	different	screen.
Invoking	the	MakeRampAvailable	method	for	action	B	or	C	while	handling
action	A	will	cause	a	signal	to	the	same	event	routine	with	undesirable
consequences.	It's	only	in	these	situations	where	you	must	set	NextAction.

Example
Evtroutine	Handling(#myscreen_wrapper.RampAvailable)
Foraction(#ForAction)	Nextaction(#NextAction)
	
Case	(#ForAction)
When	Value_Is('=	Display')
navigate	to	a	screen
get	value
If	value	is	A
#NextAction	:=	X
Else
Navigate	to	Y
endif
When	Value_Is('=	X')
When	Value_Is('=	Y')
Otherwise
Use	Builtin(message_box_show)	With_Args(ok	ok	info	*component	('Unknown

ForAction>>'	+	#ForAction.Value	+	'<<'))
Endcase
	
Endroutine
Also	see	MakeRampAvailable	Method.

Methods
Screen	wrappers	drive	the	5250	screens	using	using	normal	VL	code	methods
supplied	by	component	VF_SY122	(this	is	very	similar	to	how	the
corresponding	RAMP	javascript	functions	work):
MakeRampAvailable	Method
NavigateToScreen	Method
SetValue	Method
GetValue	Method
SendKey	Method
Current_Form	Method
SetCursor	Method

MakeRampAvailable	Method
Make	RAMP	interactive	for	a	specified	action.

Syntax
Define_Com	Class(#vf_sy122)	Name(#myscreen_wrapper)
Parent(#COM_OWNER)
#myscreen_wrapper.MakeRampAvailable	Foraction(sAction)

Parameters
ForAction Char	256	–	Required String	that	specifies	an

action.	Actions	are
listened	to	in	the
RampAvailable	event
listener.

uUserObjectType Char	32	-	Optional String	that	contains	the
user	object	type	of	the
RAMP	session	specified
when	defining	the	session
using	the	RAMP	tools.
When	there	is	one	session
this	parameter	is	not
required.

uSession_Id Char	40	-	Optional The	session	assigned	to	a
destination.	Defaults	to
*AUTO.

	

Return	Value
None

Remarks
This	method	triggers	the	execution	of	a	specific	user-defined	action.	When	you
invoke	this	method	the	VLF	will	perform	the	connection	if	required.	Once
RAMP	is	available	it	will	signal	a	RampAvailable	event.	The	event	routine
listening	to	RampAvailable	is	where	the	main	program	logic	is	performed
according	to	the	specified	action.

Examples
Invoke	Method(#myscreen_wrapper.MakeRampAvailable)	Foraction(Display)
uSession_Id(SESSION_A)
Invoke	Method(#myscreen_wrapper.MakeRampAvailable)	Foraction(Update)
uSession_Id(SESSION_A)
Invoke	Method(#myscreen_wrapper.MakeRampAvailable)	Foraction(Display)
uUserObjectType(HumanResources)
Related	Topic	MakeRampAvailable	Method.

NavigateToScreen	Method
Navigate	newlook	to	a	screen.

Syntax
Define_Com	Class(#vf_sy122)	Name(#myscreen_wrapper)
Parent(#COM_OWNER)
#myscreen_wrapper.NavigateToScreen	Name(‘EmpDetails’)	ReturnScreen

Parameters
Name Char	256	–

Required
String	that	contains	the	name	of	the
screen	to	navigate	to.	

	

Return	Value
ReturnScreen Char	256	–

Optional
String	that	contains	the	name	of	the
screen	wrapper	5250	screen	when
the	navigation	has	completed.

Remarks
The	screen	to	navigate	can	be	a	Junction	or	a	Destination	as	defined	in	the
choreographer.

Examples
Define_Com	Class(#vf_sy122)	Name(#myscreen_wrapper)
Parent(#COM_OWNER)
#myscreen_wrapper.Unavigatetoscreen)	Name('EmpSkills')
Returnscreen(#vf_eltxtl)	

SetValue	Method
Set	the	content	of	a	field	on	a	5250	screen	to	a	value.	The	field	may	be
identified	by	name	or	by	its	order	on	the	screen.

Syntax
Define_Com	Class(#vf_sy122)	Name(#myscreen_wrapper)
Parent(#COM_OWNER)
Setting	by	Name	-	#myscreen_wrapper.setvalue	Infield(sField)	Value(vValue)

Parameters
Setting	by	Name:

InField Char	256	–	Required String	that	contains	the	RAMP
field	name.	

Value Variant	–	Required String	or	number	that	contains
the	value	to	set	the	field	to.	

	
Setting	by	Order:						

InField Property	-
Required

<#myscreen_wrapper>.ByOrder_Field

Value Variant	–
Required

String	or	number	that	contains	the
value	to	set	the	field	to.

SpecialValue Property	–
Optional

One	of	these	two	values:
<#myscreen_wrapper>.First_Field	–
to	set	the	value	of	the	first	field	on	the
screen
<#myscreen_wrapper>.Last_Field	–	to
set	the	value	of	the	last	field	on	the
screen

Order Integer	–
Optional

The	order	of	the	field	on	the	form
starting	from	1.	

	

Return	Value

None

Remarks
To	set	a	value	of	a	field	on	a	screen	by	name,	the	field	must	be	given	a	name	in
newlook	Designer.
The	use	of	field	identification	by	order	is	more	likely	to	be	impacted	by	form
layout	changes	than	when	using	a	name.
The	initial	setting	of	a	field	by	order	is	more	expensive	to	execute	than	by	name,
however	screen	field	order	details	are	cached	so	that	the	subsequent	access	is
faster.	The	caching	logic	assumes	that	the	relative	order	of	a	field	on	any
particular	screen	will	not	change	within	a	signed	on	5250	session.				

Examples
Define_Com	Class(#vf_sy122)	Name(#myscreen_wrapper)
Parent(#COM_OWNER)
Setting	by	Name	-	#myscreen_wrapper.setvalue	Infield('uEmpno')
Value(#EMPNO)
Setting	by	Order	-	#myscreen_wrapper.setvalue
Infield(#myscreen_wrapper.ByOrder_Field)	Value(#Empno)	Order(2)
	

GetValue	Method
Get	the	value	from	a	field	on	a	RAMP	screen.

Syntax
Define_Com	Class(#vf_sy122)	Name(#myscreen_wrapper)
Parent(#COM_OWNER)
#myscreen_wrapper.getvalue	From(sField)	Value(sValue)

Parameters
From Char	256	–	Required String	that	contains	the	RAMP

field	name	to	get	the	value
from.

	

Return	Value
Value Variant	–

Required
Returns	the	value	of	the	field	as	a
string	or	number.

Examples
Define_Com	Class(#vf_sy122)	Name(#myscreen_wrapper)
Parent(#COM_OWNER)
#myscreen_wrapper.getvalue	From('uSurname')	Value(#surname.value)

SendKey	Method
Emulates	the	pressing	of	a	function	key.

Syntax
Define_Com	Class(#vf_sy122)	Name(#myscreen_wrapper)
Parent(#COM_OWNER)
#myscreen_wrapper.SendKey	Key(#myscreen_wrapper.<key	property>)

Parameters
Key Property	–	Required The	property	of

#myscreen_wrapper	that
resolves	to	the	desired	key.
For	a	list	of	these	properties
See	the	SENDKEY	Names	in
Function	Key	Names	for
SENDKEY	Function	in
lansa049.chm.

	

Return	Value
ReturnScreen Char	256	–

Optional
String	that	contains	the	name	of	the
screen	wrapper	5250	screen	after	the
key	was	sent.

Examples
Define_Com	Class(#vf_sy122)	Name(#myscreen_wrapper)
Parent(#COM_OWNER)
#myscreen_wrapper.Sendkey	Key(#myscreen_wrapper.KeyEnter)

Current_Form	Method
Gets	the	Form	name	of	the	current	screen	wrapper	screen.

Syntax
Define_Com	Class(#vf_sy122)	Name(#myscreen_wrapper)
Parent(#COM_OWNER)
#myscreen_wrapper.current_form	Name(sName)

Parameters
None	

Return	Value
Name Char	256	–

Required
String	that	contains	the	name	of	the
current	5250	screen	wrapper	screen

Examples
Define_Com	Class(#vf_sy122)	Name(#myscreen_wrapper)
Parent(#COM_OWNER)
#myscreen_wrapper.current_form	Name(#vf_eltxtl)

SetCursor	Method
Positions	the	cursor	in	a	given	row	and	column	of	the	screen.	Optionally	sends	a
key	once	the	cursor	has	been	positioned.

Syntax
Define_Com	Class(#vf_sy122)	Name(#myscreen_wrapper)
Parent(#COM_OWNER)
#myscreen_wrapper.SetCursor	RowNum(iRowNum)	ColNum(iColNum)
SendKey(#myscreen_wrapper.<key	property>)

Parameters
RowNum Integer	–	Required Integer	that	specifies	the	row

number	where	to	position	the
cursor.	

ColNum Integer	–	Optional Optional.	Integer	that
specifies	the	column	number
where	to	position	the	cursor.	
Defaults	to	1.	

SendKey Property	-	Optional The	property	of
#myscreen_wrapper	that
resolves	to	the	desired	key.
For	a	list	of	these	properties
See	the	SENDKEY	Names	in
Function	Key	Names	for
SENDKEY	Function	in
lansa049.chm.

Return	Value
None

Examples
Define_Com	Class(#vf_sy122)	Name(#myscreen_wrapper)
Parent(#COM_OWNER)
#myscreen_wrapper.setcursor	Rownum(10)
Sendkey(#myscreen_wrapper.keyenter)

Examples
Example	1:	Show	Employee	Details.
Example	2:	Show	Employee	Details	and	Skills
Example	3:	Show	the	System	i	Disk	Usage

Example	1:	Show	Employee	Details.
This	example	will	navigate	to	the	Browse	and	Maintain	Employees	screen
which	is	part	of	the	Personnel	System.

To	reach	this	screen,	RAMP	scripts	will	execute	the	following	steps:
									Sign	on
									Type	lansa	run	pslsys	partition(dem)	in	the	command	line	and	press	Enter.
									Type	3	in	the	option	field	and	press	Enter.
									Type	the	employee	number	of	the	currently	selected	employee	and	press
Enter.

									Press	F21.
Function	Options(*DIRECT)
Begin_Com	Role(*EXTENDS	#VF_AC010)	Height(569)
Layoutmanager(#MAIN_LAYOUT)	Width(776)
*
==

*	Simple	Field	and	Group	Definitions
*
==
Group_By	Name(#XG_HEAD)	Fields(#EMPNO	#SURNAME	#GIVENAME
#ADDRESS1	#ADDRESS2	#ADDRESS3	#POSTCODE	#PHONEHME
#DEPTMENT	#SECTION)
*	Body	and	Button	arrangement	panels
Define_Com	Class(#PRIM_PANL)	Name(#BUTTON_PANEL)
Displayposition(3)	Height(569)	Hint(*MTXTDF_DET1)
Layoutmanager(#BUTTON_FLOW)	Left(688)	Parent(#COM_OWNER)
Tabposition(3)	Tabstop(False)	Top(0)	Width(88)
Define_Com	Class(#PRIM_PANL)	Name(#BODY_HEAD)	Displayposition(2)
Height(569)	Hint(*MTXTDF_DET1)
Layoutmanager(#BODY_HEAD_FLOW)	Left(0)	Parent(#COM_OWNER)
Tabposition(2)	Tabstop(False)	Top(0)	Verticalscroll(True)	Width(688)
*	Attachment	and	flow	layout	managers
Define_Com	Class(#PRIM_ATLM)	Name(#MAIN_LAYOUT)
Define_Com	Class(#PRIM_FWLM)	Name(#BUTTON_FLOW)
Direction(TopToBottom)	Flowoperation(Center)	Marginbottom(4)
Marginleft(4)	Marginright(4)	Margintop(4)	Spacing(4)	Spacingitems(4)
Define_Com	Class(#PRIM_FWLM)	Name(#BODY_HEAD_FLOW)
Direction(TopToBottom)	Marginbottom(4)	Marginleft(4)	Marginright(4)
Margintop(4)	Spacing(4)	Spacingitems(4)
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_EMPNO)
Manage(#EMPNO)	Parent(#BODY_HEAD_FLOW)
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_SURNAME)
Manage(#SURNAME)	Parent(#BODY_HEAD_FLOW)
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_GIVENAME)
Manage(#GIVENAME)	Parent(#BODY_HEAD_FLOW)
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_ADDRESS1)
Manage(#ADDRESS1)	Parent(#BODY_HEAD_FLOW)
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_ADDRESS2)
Manage(#ADDRESS2)	Parent(#BODY_HEAD_FLOW)
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_ADDRESS3)
Manage(#ADDRESS3)	Parent(#BODY_HEAD_FLOW)
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_POSTCODE)
Manage(#POSTCODE)	Parent(#BODY_HEAD_FLOW)
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_PHONEHME)
Manage(#PHONEHME)	Parent(#BODY_HEAD_FLOW)

Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_SAVE_BUTTON)
Manage(#SAVE_BUTTON)	Parent(#BUTTON_FLOW)
*	The	save	button
Define_Com	Class(#PRIM_PHBN)	Name(#SAVE_BUTTON)
Caption(*MTXTDF_SAVE)	Displayposition(1)	Left(4)
Parent(#BUTTON_PANEL)	Tabposition(1)	Top(4)
*	Collection	for	detail	fields
Define_Com	Class(#Prim_ACol<#prim_evef>)	Name(#PanelFields)
*	Fields	in	the	head	area
Define_Com	Class(#EMPNO.Visual)	Displayposition(1)	Height(19)
Hint(*MTXTDF_DET1)	Left(4)	Parent(#BODY_HEAD)	Tabposition(1)	Top(4)
Usepicklist(False)	Width(209)
Define_Com	Class(#SURNAME.Visual)	Displayposition(2)	Height(19)
Hint(*MTXTDF_DET1)	Left(4)	Parent(#BODY_HEAD)	Tabposition(2)
Top(27)	Usepicklist(False)	Width(324)
Define_Com	Class(#GIVENAME.Visual)	Displayposition(3)	Height(19)
Hint(*MTXTDF_DET1)	Left(4)	Parent(#BODY_HEAD)	Tabposition(3)
Top(50)	Usepicklist(False)	Width(324)
Define_Com	Class(#ADDRESS1.Visual)	Displayposition(4)	Height(19)
Hint(*MTXTDF_DET1)	Left(4)	Parent(#BODY_HEAD)	Tabposition(4)
Top(73)	Usepicklist(False)	Width(363)
Define_Com	Class(#ADDRESS2.Visual)	Displayposition(5)	Height(19)
Hint(*MTXTDF_DET1)	Left(4)	Parent(#BODY_HEAD)	Tabposition(5)
Top(96)	Usepicklist(False)	Width(363)
Define_Com	Class(#ADDRESS3.Visual)	Displayposition(6)	Height(19)
Hint(*MTXTDF_DET1)	Left(4)	Parent(#BODY_HEAD)	Tabposition(6)
Top(119)	Usepicklist(False)	Width(363)
Define_Com	Class(#POSTCODE.Visual)	Displayposition(7)	Height(19)
Hint(*MTXTDF_DET1)	Left(4)	Parent(#BODY_HEAD)	Tabposition(7)
Top(142)	Usepicklist(False)	Width(216)
Define_Com	Class(#PHONEHME.Visual)	Displayposition(8)	Height(19)
Hint(*MTXTDF_DET1)	Left(4)	Parent(#BODY_HEAD)	Tabposition(8)
Top(165)	Usepicklist(False)	Width(286)
Define_Com	Class(#PRIM_ATLM)	Name(#ATLM_1)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_1)	Attachment(Center)
Parent(#ATLM_1)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_2)	Attachment(Center)
Manage(#BODY_HEAD)	Parent(#MAIN_LAYOUT)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_3)	Attachment(Right)

Manage(#BUTTON_PANEL)	Parent(#MAIN_LAYOUT)
Define_Com	Class(#vf_sy122)	Name(#myscreen_wrapper)	Height(569)
Parent(#COM_OWNER)	Visible(False)	Width(688)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_4)	Attachment(Center)
Parent(#MAIN_LAYOUT)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_6)	Attachment(Center)
Manage(#myscreen_wrapper)	Parent(#MAIN_LAYOUT)
*	--
*	Handle	Initialization
*	--
Mthroutine	Name(uInitialize)	Options(*REDEFINE)
Define_Com	Class(#Prim_evef)	Name(#FormField)	Reference(*dynamic)
Invoke	Method(#Com_Ancestor.uInitialize)
For	Each(#Control)	In(#Body_Head.ComponentControls)
If_Ref	Com(#Control)	Is(*INSTANCE_OF	#prim_evef)
Set_Ref	Com(#FormField)	To(*dynamic	#Control)
Invoke	Method(#PanelFields.Insert)	Item(#FormField)
Endif
Endfor
*	Set	the	uCommand	wrapper	property.
Set	Com(#myscreen_wrapper)	Ucommand(#com_owner)
Endroutine
*	--
*	Handle	Command	Execution
*	--
Mthroutine	Name(uExecute)	Options(*REDEFINE)
Invoke	Method(#Com_Ancestor.uExecute)
*	The	user	has	selected	an	Employee	from	the	instance	list.
MakeRampAvailable	will	make	sure	the	connection	is	in	order	and	then	signal
back	with	the	appropiate	action
Invoke	Method(#myscreen_wrapper.MakeRampAvailable)
Foraction(ShowDetails)
Set	Com(#Save_Button)	Enabled(False)
Endroutine
*
==
*	Event	Handlers
*
==

*	RAMP	has	signalled	it's	available.	What	we	do	will	depend	on	the	#ForAction
specified	in	the	MakeRampAvailable	method	invocation.
Evtroutine	Handling(#myscreen_wrapper.RampAvailable)
Foraction(#ForAction)	Nextaction(#NextAction)
Case	(#ForAction)
When	Value_Is('=	ShowDetails')
*	Navigate	to	a	Destination	that	was	previously	named
EmployeeDetailsAndSkills	using	newlook	Designer.	Use	the	ReturnScreen
parameter	to	verify	we	are	in	the	expected	screen
*	once	the	navigation	has	completed
Invoke	Method(#myscreen_wrapper.navigatetoscreen)
Name('EmployeeDetailsAndSkills')	Returnscreen(#vf_eltxtl)
*	If	the	current	screen	is	the	expected	one,	get	the	values	of	the	5250	screen
fields	into	the	fields	in	this	component
If	(#vf_eltxtl	=	'EmployeeDetailsAndSkills')
Invoke	Method(#avListManager.GetCurrentInstance)	Akey3(#EMPNO)
#myscreen_wrapper.getvalue	From('uSurname')	Value(#surname.value)
#myscreen_wrapper.getvalue	From('uGivename')	Value(#givename.value)
#myscreen_wrapper.getvalue	From('uAddress1')	Value(#address1.value)
#myscreen_wrapper.getvalue	From('uAddress2')	Value(#address2.value)
#myscreen_wrapper.getvalue	From('uAddress3')	Value(#address3.value)
#myscreen_wrapper.getvalue	From('uHomePhone')	Value(#phonehme.value)
#myscreen_wrapper.getvalue	From('uPostcode')	Value(#POSTCODE.value)
Endif
When	Value_Is('=	UpdateDetails')
*	Set	the	values	of	the	fields	in	the	newlook	form	with	the	ones	from	this
component
#myscreen_wrapper.setvalue	Infield('uSurname')	Value(#surname.value)
#myscreen_wrapper.setvalue	Infield('uGivename')	Value(#givename.value)
#myscreen_wrapper.setvalue	Infield('uAddress1')	Value(#address1.value)
#myscreen_wrapper.setvalue	Infield('uAddress2')	Value(#address2.value)
#myscreen_wrapper.setvalue	Infield('uAddress3')	Value(#address3.value)
#myscreen_wrapper.setvalue	Infield('uHomePhone')	Value(#phonehme.value)
#myscreen_wrapper.setvalue	Infield('uPostcode')	Value(#POSTCODE.value)
*	Send	the	enter	key	to	update	the	details	in	the	5250
#myscreen_wrapper.sendkey	Key(#myscreen_wrapper.KeyEnter)
Returnscreen(#vf_eltxtl)
Otherwise
Use	Builtin(message_box_show)	With_Args(ok	ok	info	*component	('Unknown

ForAction>>'	+	#ForAction.Value	+	'<<'))
Endcase
Set	Com(#myscreen_wrapper)	Visible(False)
Endroutine
*	Listen	to	messages	from	RAMP	and	the	5250	application
Evtroutine	Handling(#myscreen_wrapper.RampMessage)
Umessagetype(#MsgType)	Umessagetext(#MsgText)
Case	(#msgtype.value)
When	Value_Is('=	VF_ERROR')
*	Fatal	messages	reported	by	Ramp	(e.g.	Navigation	request	failed,	etc).	If	in
design	mode,	show	the	underlying	newlook	screen.	Otherwise,	make	the	error
message
*	appear	in	a	message	box	on	top	of	the	command
If	(#usystem.iDesignMode	=	true)
Set	Com(#myscreen_wrapper)	Visible(True)
Else
Message	Msgid(dcm9899)	Msgf(dc@m01)	Msgdta(#msgtext.value)
#com_owner.avshowmessages
Endif
*	Messages	sent	by	the	System	i	application	or	unknown	form	was	encountered
When	Value_Is('=	VF_INFO'	'=	VF_UNKNOWN_FORM')
Message	Msgid(dcm9899)	Msgf(dc@m01)	Msgdta(#msgtext.value)
*	Failure	to	initialize	RAMP.	Could	occur	for	mainly	one	of	two	reasons
When	Value_Is('=	VF_INIT_ERROR')
Message	Msgid(dcm9899)	Msgf(dc@m01)	Msgdta(#msgtext.value)
#com_owner.avshowmessages
When	Value_Is('=	VF_WAITCONNECTION')
Otherwise
Use	Builtin(message_box_show)	With_Args(ok	ok	info	*Component
('Unknown	message	type	'	+	#MsgType	+	'encountered'))
Endcase
Endroutine
*	--
*	Handle	changes	in	any	of	the	fields	on	the	panel
*	--
Evtroutine	Handling(#PanelFields<>.Changed)
*	Enable	the	save	button
Set	Com(#SAVE_BUTTON)	Enabled(True)
*	Lock	the	framework	and	set	a	message	for	the	user

Use	Builtin(bconcat)	With_Args('Changes	made	to	employee'	#GiveName
#Surname	'have	not	been	saved	yet.'	'Do	you	want	to	save	them	before
continuing?')	To_Get(#sysvar$av)
Set	Com(#avFrameworkManager)	Ulocked(USER)
Ulockedmessage(#sysvar$av)
Endroutine
*	--
*	Enter	key	pressed
*	--
Evtroutine	Handling(#PanelFields<>.KeyPress)
Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
Keycode(#KeyCode)
If	Cond('#KeyCode.Value	=	Enter')
*	If	there	no	changes	have	been	made	issue	message	and	ignore	enter
If	Cond('#SAVE_BUTTON.Enabled	*EQ	True')
Invoke	Method(#Com_Owner.Save)
Else
*	Issue	'There	are	no	changes	to	save'	message
Use	Builtin(Message_box_show)	With_Args(ok	ok	Info	*Component
*MTXTDF_NO_SAVE)
Endif
Endif
Endroutine
*	--
*	Handle	the	save	button
*	--
Evtroutine	Handling(#SAVE_BUTTON.Click)
*	Call	the	Save	method
Invoke	Method(#Com_Owner.Save)
Endroutine
*	--
*	Handle	Save
*	--
Mthroutine	Name(Save)
*	Update	data	base
Invoke	Method(#myscreen_wrapper.MakeRampAvailable)
Foraction(UpdateDetails)
Endroutine
*	--

*	Handle	Termination
*	--
Mthroutine	Name(uTerminate)	Options(*REDEFINE)
*	Clean	up	the	colelction	of	fields	on	the	panel
Invoke	Method(#PanelFields.RemoveAll)
*	Do	any	termination	defined	in	the	ancestor
Invoke	Method(#Com_Ancestor.uTerminate)
Endroutine
End_Com

Example	2:	Show	Employee	Details	and	Skills
This	example	is	an	extension	of	the	previous	one.	It	shows	the	same	details	but
it	also	shows	the	skills	in	a	Visual	LANSA	list	view.

In	this	example	you	can	see	how	to	access	a	subfile/browselist:
Function	Options(*DIRECT)
Begin_Com	Role(*EXTENDS	#VF_AC010)	Height(569)
Layoutmanager(#MAIN_LAYOUT)	Width(776)
*
==
*	Simple	Field	and	Group	Definitions
*
==
Group_By	Name(#XG_HEAD)	Fields(#EMPNO	#SURNAME	#GIVENAME
#ADDRESS1	#ADDRESS2	#ADDRESS3	#POSTCODE	#PHONEHME
#DEPTMENT	#SECTION)
*	Body	and	Button	arrangement	panels

Define_Com	Class(#PRIM_PANL)	Name(#BUTTON_PANEL)
Displayposition(2)	Height(569)	Hint(*MTXTDF_DET1)
Layoutmanager(#BUTTON_FLOW)	Left(688)	Parent(#COM_OWNER)
Tabposition(3)	Tabstop(False)	Top(0)	Width(88)
Define_Com	Class(#PRIM_PANL)	Name(#BODY_HEAD)	Displayposition(1)
Height(569)	Hint(*MTXTDF_DET1)
Layoutmanager(#BODY_HEAD_FLOW)	Left(0)	Parent(#COM_OWNER)
Tabposition(2)	Tabstop(False)	Top(0)	Verticalscroll(True)	Width(688)
*	Attachment	and	flow	layout	managers
Define_Com	Class(#PRIM_ATLM)	Name(#MAIN_LAYOUT)
Define_Com	Class(#PRIM_FWLM)	Name(#BUTTON_FLOW)
Direction(TopToBottom)	Flowoperation(Center)	Marginbottom(4)
Marginleft(4)	Marginright(4)	Margintop(4)	Spacing(4)	Spacingitems(4)
Define_Com	Class(#PRIM_FWLM)	Name(#BODY_HEAD_FLOW)
Direction(TopToBottom)	Marginbottom(4)	Marginleft(4)	Marginright(4)
Margintop(4)	Spacing(4)	Spacingitems(4)
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_EMPNO)
Manage(#EMPNO)	Parent(#BODY_HEAD_FLOW)
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_SURNAME)
Manage(#SURNAME)	Parent(#BODY_HEAD_FLOW)
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_GIVENAME)
Manage(#GIVENAME)	Parent(#BODY_HEAD_FLOW)
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_ADDRESS1)
Manage(#ADDRESS1)	Parent(#BODY_HEAD_FLOW)
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_ADDRESS2)
Manage(#ADDRESS2)	Parent(#BODY_HEAD_FLOW)
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_ADDRESS3)
Manage(#ADDRESS3)	Parent(#BODY_HEAD_FLOW)
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_POSTCODE)
Manage(#POSTCODE)	Parent(#BODY_HEAD_FLOW)
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_PHONEHME)
Manage(#PHONEHME)	Parent(#BODY_HEAD_FLOW)
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_SAVE_BUTTON)
Manage(#SAVE_BUTTON)	Parent(#BUTTON_FLOW)
*	The	save	button
Define_Com	Class(#PRIM_PHBN)	Name(#SAVE_BUTTON)
Caption(*MTXTDF_SAVE)	Displayposition(1)	Left(4)
Parent(#BUTTON_PANEL)	Tabposition(1)	Top(4)
*	Collection	for	detail	fields

Define_Com	Class(#Prim_ACol<#prim_evef>)	Name(#PanelFields)
*	Fields	in	the	head	area
Define_Com	Class(#EMPNO.Visual)	Displayposition(1)	Height(19)
Hint(*MTXTDF_DET1)	Left(4)	Parent(#BODY_HEAD)	Tabposition(1)	Top(4)
Usepicklist(False)	Width(209)
Define_Com	Class(#SURNAME.Visual)	Displayposition(2)	Height(19)
Hint(*MTXTDF_DET1)	Left(4)	Parent(#BODY_HEAD)	Tabposition(2)
Top(27)	Usepicklist(False)	Width(324)
Define_Com	Class(#GIVENAME.Visual)	Displayposition(3)	Height(19)
Hint(*MTXTDF_DET1)	Left(4)	Parent(#BODY_HEAD)	Tabposition(3)
Top(50)	Usepicklist(False)	Width(324)
Define_Com	Class(#ADDRESS1.Visual)	Displayposition(4)	Height(19)
Hint(*MTXTDF_DET1)	Left(4)	Parent(#BODY_HEAD)	Tabposition(4)
Top(73)	Usepicklist(False)	Width(363)
Define_Com	Class(#ADDRESS2.Visual)	Displayposition(5)	Height(19)
Hint(*MTXTDF_DET1)	Left(4)	Parent(#BODY_HEAD)	Tabposition(5)
Top(96)	Usepicklist(False)	Width(363)
Define_Com	Class(#ADDRESS3.Visual)	Displayposition(6)	Height(19)
Hint(*MTXTDF_DET1)	Left(4)	Parent(#BODY_HEAD)	Tabposition(6)
Top(119)	Usepicklist(False)	Width(363)
Define_Com	Class(#POSTCODE.Visual)	Displayposition(7)	Height(19)
Hint(*MTXTDF_DET1)	Left(4)	Parent(#BODY_HEAD)	Tabposition(7)
Top(142)	Usepicklist(False)	Width(216)
Define_Com	Class(#PHONEHME.Visual)	Displayposition(8)	Height(19)
Hint(*MTXTDF_DET1)	Left(4)	Parent(#BODY_HEAD)	Tabposition(8)
Top(165)	Usepicklist(False)	Width(286)
Define_Com	Class(#PRIM_ATLM)	Name(#ATLM_1)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_1)	Attachment(Center)
Parent(#ATLM_1)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_2)	Attachment(Center)
Manage(#BODY_HEAD)	Parent(#MAIN_LAYOUT)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_3)	Attachment(Right)
Manage(#BUTTON_PANEL)	Parent(#MAIN_LAYOUT)
Define_Com	Class(#vf_sy122)	Name(#myscreen_wrapper)	Displayposition(3)
Height(569)	Parent(#COM_OWNER)	Visible(False)	Width(688)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_4)	Attachment(Center)
Parent(#MAIN_LAYOUT)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_6)	Attachment(Center)
Manage(#myscreen_wrapper)	Parent(#MAIN_LAYOUT)

Define_Com	Class(#PRIM_LTVW)	Name(#skills)	Componentversion(2)
Displayposition(9)	Fullrowselect(True)	Height(229)	Left(4)
Parent(#BODY_HEAD)	Showsortarrow(True)	Tabposition(9)	Top(188)
Width(485)
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_1)	Manage(#skills)
Parent(#BODY_HEAD_FLOW)
Define_Com	Class(#PRIM_LVCL)	Name(#LVCL_2)	Displayposition(2)
Parent(#skills)	Source(#SKILCODE)	Width(17)
Define_Com	Class(#PRIM_LVCL)	Name(#LVCL_3)
Captiontype(ColumnHeadings)	Displayposition(3)	Parent(#skills)
Source(#SKILDESC)	Width(32)
Define_Com	Class(#PRIM_LVCL)	Name(#LVCL_4)
Captiontype(ColumnHeadings)	Displayposition(4)	Parent(#skills)
Source(#COMMENT)	Width(24)
Define_Com	Class(#PRIM_LVCL)	Name(#LVCL_5)	Displayposition(5)
Parent(#skills)	Source(#GRADE)	Width(8)	Widthtype(Characters)
Define_Com	Class(#PRIM_LVCL)	Name(#LVCL_1)	Caption('Acquired')
Captiontype(Caption)	Displayposition(1)	Parent(#skills)	Source(#VF_ELTXTS)
Width(18)	Widthtype(Fixed)
*	--
*	Handle	Initialization
*	--
Mthroutine	Name(uInitialize)	Options(*REDEFINE)
Define_Com	Class(#Prim_evef)	Name(#FormField)	Reference(*dynamic)
Invoke	Method(#Com_Ancestor.uInitialize)
For	Each(#Control)	In(#Body_Head.ComponentControls)
If_Ref	Com(#Control)	Is(*INSTANCE_OF	#prim_evef)
Set_Ref	Com(#FormField)	To(*dynamic	#Control)
Invoke	Method(#PanelFields.Insert)	Item(#FormField)
Endif
Endfor
*	Set	the	uCommand	wrapper	property.
Set	Com(#myscreen_wrapper)	Ucommand(#com_owner)
Endroutine
*	--
*	Handle	Command	Execution
*	--
Mthroutine	Name(uExecute)	Options(*REDEFINE)
Invoke	Method(#Com_Ancestor.uExecute)

*	The	user	has	selected	an	Employee	from	the	instance	list.
MakeRampAvailable	will	make	sure	the	connection	is	in	order	and	then	signal
back	with	the	appropiate	action
Invoke	Method(#myscreen_wrapper.MakeRampAvailable)
Foraction(ShowDetails)
Set	Com(#Save_Button)	Enabled(False)
Endroutine
*
==
*	Event	Handlers
*
==
*	RAMP	has	signalled	it's	available.	What	we	do	will	depend	on	the	#ForAction
specified	in	the	MakeRampAvailable	method	invocation.
Evtroutine	Handling(#myscreen_wrapper.RampAvailable)
Foraction(#ForAction)	Nextaction(#NextAction)
Case	(#ForAction)
When	Value_Is('=	ShowDetails')
*	Navigate	to	a	Destination	that	was	previously	named
EmployeeDetailsAndSkills	using	newlook	Designer.	Use	the	ReturnScreen
parameter	to	verify	we	are	in	the	expected	screen
*	once	the	navigation	has	completed
Invoke	Method(#myscreen_wrapper.navigatetoscreen)
Name('EmployeeDetailsAndSkills')	Returnscreen(#vf_eltxtl)
*	If	the	current	screen	is	the	expected	one,	get	the	values	of	the	5250	screen
fields	into	the	fields	in	this	component	and	the	skills	into	the	skills	list	view
If	(#vf_eltxtl	=	'EmployeeDetailsAndSkills')
#myscreen_wrapper.sendkey(#myscreen_wrapper.KeyF21)
Invoke	Method(#avListManager.GetCurrentInstance)	Akey3(#EMPNO)
#myscreen_wrapper.getvalue	From('uSurname')	Value(#surname.value)
#myscreen_wrapper.getvalue	From('uGivename')	Value(#givename.value)
#myscreen_wrapper.getvalue	From('uAddress1')	Value(#address1.value)
#myscreen_wrapper.getvalue	From('uAddress2')	Value(#address2.value)
#myscreen_wrapper.getvalue	From('uAddress3')	Value(#address3.value)
#myscreen_wrapper.getvalue	From('uHomePhone')	Value(#phonehme.value)
#myscreen_wrapper.getvalue	From('uPostcode')	Value(#POSTCODE.value)
#com_owner.uGetSkills	Gridname('uSkillsGrid')
Endif
When	Value_Is('=	UpdateDetails')

#myscreen_wrapper.setvalue	Infield('uSurname')	Value(#surname.value)
#myscreen_wrapper.setvalue	Infield('uGivename')	Value(#givename.value)
#myscreen_wrapper.setvalue	Infield('uAddress1')	Value(#address1.value)
#myscreen_wrapper.setvalue	Infield('uAddress2')	Value(#address2.value)
#myscreen_wrapper.setvalue	Infield('uAddress3')	Value(#address3.value)
#myscreen_wrapper.setvalue	Infield('uHomePhone')	Value(#phonehme.value)
#myscreen_wrapper.setvalue	Infield('uPostcode')	Value(#POSTCODE.value)
#myscreen_wrapper.sendkey	Key(#myscreen_wrapper.KeyEnter)
Returnscreen(#vf_eltxtl)
*	Update	the	instance	list	using	the	"quick	update"	method
Use	Builtin(BConcat)	With_Args(#GiveName	#SurName)	To_Get(#FullName)
Invoke	Method(#avListManager.UpdateListEntryData)	Akey1(#Deptment)
Akey2(#Section)	Akey3(#Empno)	Visualid2(#FullName)
Acolumn1(#Phonehme)	Acolumn2(#Address1)	Ncolumn1(#PostCode)
Businessobjecttype(EMPLOYEES)
*	Disable	the	save	button	again
Set	Com(#SAVE_BUTTON)	Enabled(False)
*	Drop	the	framework	lock	as	no	updates	are	outstanding	now
Set	Com(#avFrameworkManager)	Ulocked(FALSE)
Otherwise
Use	Builtin(message_box_show)	With_Args(ok	ok	info	*component	('Unknown
ForAction>>'	+	#ForAction.Value	+	'<<'))
Endcase
Set	Com(#myscreen_wrapper)	Visible(False)
Endroutine
*	Traverse	the	skills	subfile/browselist	by	column	name
Mthroutine	Name(uGetSkills)
Define_Map	For(*input)	Class(#vf_eltxtl)	Name(#GridName)
Define_Map	For(*input)	Class(#vf_eltxtl)	Name(#nxtpage)	Mandatory('+')
Define	Field(#colcount)	Type(*dec)	Length(2)	Decimals(0)
Define	Field(#rowcount)	Type(*dec)	Length(4)	Decimals(0)
Define	Field(#column)	Type(*dec)	Length(2)	Decimals(0)	Default(0)
Define	Field(#row)	Type(*dec)	Length(2)	Decimals(0)	Default(0)
Define	Field(#colname)	Type(*char)	Length(50)
Define	Field(#headrows)	Type(*dec)	Length(2)	Decimals(0)	Default(0)
Clr_List	Named(#skills)
Dowhile	(#nxtpage	*NE	'')
*	Get	the	total	number	of	subfile	rows
#myscreen_wrapper.getvalue	From(#GridName.value	+	".RowCount")

Value(#rowcount)
*	Get	the	total	number	of	subfile	heading	rows
#myscreen_wrapper.getvalue	From(#GridName.value	+	".HeadRows")
Value(#headrows)
*	Subtract	one	because	the	row	collection	is	zero	based.
#rowcount	-=	1
Begin_Loop	Using(#row)	From(#headrows)	To(#rowcount)
*	get	the	number	of	subfile	colums
#myscreen_wrapper.getvalue	From(#GridName.value	+	".Columns.Count")
Value(#colcount)
Begin_Loop	Using(#column)	To(#colcount)
*	get	the	column	name.	Use	a	method	to	make	the	code	easier	to	read
#com_owner.uGetColName	Ugridname(#GridName.value)
Ucolnumber(#column)	Ucolname(#colname)
*	for	the	appropiate	column,	get	the	cell	value
Case	(#colname)
When	Value_Is(=	'DateSklAcquired')
#com_owner.uGetCellValue	Ugridname(#GridName.value)
Ucolnumber(#column)	Urownumber(#row)	Ucellvalue(#vf_eltxts)
When	Value_Is(=	'SkillCode')
#com_owner.uGetCellValue	Ugridname(#GridName.value)
Ucolnumber(#column)	Urownumber(#row)	Ucellvalue(#skilcode)
When	Value_Is(=	'SkillDescription')
#com_owner.uGetCellValue	Ugridname(#GridName.value)
Ucolnumber(#column)	Urownumber(#row)	Ucellvalue(#skildesc)
When	Value_Is(=	'Comment')
#com_owner.uGetCellValue	Ugridname(#GridName.value)
Ucolnumber(#column)	Urownumber(#row)	Ucellvalue(#comment)
When	Value_Is(=	'Grade')
#com_owner.uGetCellValue	Ugridname(#GridName.value)
Ucolnumber(#column)	Urownumber(#row)	Ucellvalue(#grade)
Endcase
End_Loop
*	Sometimes	newlook	treats	rows	without	data	as	valid	rows	so	add	only	the
ones	where	at	least	one	field	has	data
If_Null	(#skilcode	#skildesc	#comment	#grade)
Else
Add_Entry	To_List(#skills)
Endif

End_Loop
*	If	there	is	another	page,	page	down
#myscreen_wrapper.getvalue	From(#GridName.value	+	".Marker")
Value(#nxtpage.value)
If	(#nxtpage.value	*NE	'')
#myscreen_wrapper.sendkey	Key(#myscreen_wrapper.KeyPageDown)
Endif
Endwhile
Endroutine
Mthroutine	Name(uGetColName)
Define_Map	For(*input)	Class(#vf_eltxtl)	Name(#uGridName)
Define_Map	For(*input)	Class(#vf_elnum)	Name(#uColNumber)
Define_Map	For(*output)	Class(#vf_eltxtl)	Name(#uColName)
*	The	column	collection	is	zero	based	but	Begin	Loop	must	start	at	minimum	of
1.
#ucolnumber	-=	1
#myscreen_wrapper.getvalue	From(#uGridName.value	+	".Columns("	+
#uColNumber.asstring	+	").Name")	Value(#ucolname.value)
Endroutine
Mthroutine	Name(uGetCellValue)
Define_Map	For(*input)	Class(#vf_eltxtl)	Name(#uGridName)
Define_Map	For(*input)	Class(#vf_elnum)	Name(#uColNumber)
Define_Map	For(*input)	Class(#vf_elnum)	Name(#uRowNumber)
Define_Map	For(*output)	Class(#vf_eltxtl)	Name(#uCellvalue)
*	The	column	collection	is	zero	based	but	Begin	Loop	must	start	at	minimum	of
1.
#ucolnumber	-=	1
#myscreen_wrapper.getvalue	From(#uGridName.value	+	".Columns("	+
#uColNumber.asstring	+	").Cells("	+	#uRowNumber.asstring	+	").Text")
Value(#ucellvalue.value)
Endroutine
*	Listen	to	messages	from	RAMP	and	the	5250	application
Evtroutine	Handling(#myscreen_wrapper.RampMessage)
Umessagetype(#MsgType)	Umessagetext(#MsgText)
Case	(#msgtype.value)
When	Value_Is('=	VF_ERROR')
*	Fatal	messages	reported	by	Ramp	(e.g.	Navigation	request	failed,	etc).	If	in
design	mode,	show	the	underlying	newlook	screen.	Otherwise,	make	the	error
message

*	appear	in	a	message	box	on	top	of	the	command
If	(#usystem.iDesignMode	=	true)
Set	Com(#myscreen_wrapper)	Visible(True)
Else
Message	Msgid(dcm9899)	Msgf(dc@m01)	Msgdta(#msgtext.value)
#com_owner.avshowmessages
Endif
*	Messages	sent	by	the	System	i	application	or	unknown	form	was	encountered
When	Value_Is('=	VF_INFO'	'=	VF_UNKNOWN_FORM')
Message	Msgid(dcm9899)	Msgf(dc@m01)	Msgdta(#msgtext.value)
*	Failure	to	initialize	RAMP.	Could	occur	for	mainly	one	of	two	reasons
When	Value_Is('=	VF_INIT_ERROR')
Message	Msgid(dcm9899)	Msgf(dc@m01)	Msgdta(#msgtext.value)
#com_owner.avshowmessages
When	Value_Is('=	VF_WAITCONNECTION')
Otherwise
Use	Builtin(message_box_show)	With_Args(ok	ok	info	*Component
('Unknown	message	type	'	+	#MsgType	+	'encountered'))
Endcase
Endroutine
*	--
*	Handle	changes	in	any	of	the	fields	on	the	panel
*	--
Evtroutine	Handling(#PanelFields<>.Changed)
*	Enable	the	save	button
Set	Com(#SAVE_BUTTON)	Enabled(True)
*	Lock	the	framework	and	set	a	message	for	the	user
Use	Builtin(bconcat)	With_Args('Changes	made	to	employee'	#GiveName
#Surname	'have	not	been	saved	yet.'	'Do	you	want	to	save	them	before
continuing?')	To_Get(#sysvar$av)
Set	Com(#avFrameworkManager)	Ulocked(USER)
Ulockedmessage(#sysvar$av)
Endroutine
*	--
*	Enter	key	pressed
*	--
Evtroutine	Handling(#PanelFields<>.KeyPress)
Options(*NOCLEARMESSAGES	*NOCLEARERRORS)
Keycode(#KeyCode)

If	Cond('#KeyCode.Value	=	Enter')
*	If	there	no	changes	have	been	made	issue	message	and	ignore	enter
If	Cond('#SAVE_BUTTON.Enabled	*EQ	True')
Invoke	Method(#Com_Owner.Save)
Else
*	Issue	'There	are	no	changes	to	save'	message
Use	Builtin(Message_box_show)	With_Args(ok	ok	Info	*Component
*MTXTDF_NO_SAVE)
Endif
Endif
Endroutine
*	--
*	Handle	the	save	button
*	--
Evtroutine	Handling(#SAVE_BUTTON.Click)
*	Call	the	Save	method
Invoke	Method(#Com_Owner.Save)
Endroutine
*	--
*	Handle	Save
*	--
Mthroutine	Name(Save)
*	Update	data	base
Invoke	Method(#myscreen_wrapper.MakeRampAvailable)
Foraction(UpdateDetails)
*	If	update	completed	okay
Endroutine
*	--
*	Handle	Termination
*	--
Mthroutine	Name(uTerminate)	Options(*REDEFINE)
*	Clean	up	the	colelction	of	fields	on	the	panel
Invoke	Method(#PanelFields.RemoveAll)
*	Do	any	termination	defined	in	the	ancestor
Invoke	Method(#Com_Ancestor.uTerminate)
Endroutine
End_Com

Example	3:	Show	the	System	i	Disk	Usage
A	screen	wrapper	can	pick	values	out	of	hidden	5250	screen(s)	and	present	it	in
completely	different	ways.	This	example	shows	the	disk	usage	of	a	System	i
graphically:

To	access	the	work	with	disk	status	screen	type	wrkdsksts	in	the	command	line.
The	name	given	to	the	Work	with	Disk	Status	screen	in	this	example	is
"DiskStatus".
When	in	the	disk	status	screen,	read	the	%Use	column	of	the	subfile	and	feed
the	data	to	the	graph.
*
*
*	COMPONENT:	STD_PANL
*

*
Function	Options(*DIRECT)
Begin_Com	Role(*EXTENDS	#VF_AC010)	Height(559)
Hint(*MTXTDF_DET1)	Layoutmanager(#ATLM_1)	Width(557)
Define_Com	Class(#PRIM_GRID)	Name(#DiskSts)	Displayposition(1)
Height(150)	Left(109)	Parent(#PANL_2)	Rowheight(19)	Tabposition(1)
Top(15)	Width(212)
Define_Com	Class(#PRIM_GDCL)	Name(#GDCL_1)	Caption('Disk	Unit')
Captiontype(Caption)	Displayposition(1)	Parent(#DiskSts)
Source(#VF_ELTYPE)	Width(29)
Define_Com	Class(#PRIM_GDCL)	Name(#GDCL_2)	Caption('%	Use')
Captiontype(Caption)	Displayposition(2)	Parent(#DiskSts)	Readonly(False)
Source(#VF_ELTXTS)	Width(30)	Widthtype(Remainder)
Define_Com	Class(#PRIM_GRPH)	Name(#GRPH_1)	Displayposition(1)
Height(370)	Left(0)	Parent(#PANL_3)	Scatterstyle(SymbolAtPoints+Solid)
Surfacestyle(ConnectLinesInBlack)	Tabposition(1)	Top(0)	Width(557)
Xcaption('Disk	Units')	Ycaption('%	Use')
Define_Com	Class(#PRIM_GRCL)	Name(#GRCL_1)	Columnrole(Label)
Displayposition(1)	Parent(#GRPH_1)	Source(#VF_ELTYPE)
Define_Com	Class(#PRIM_GRCL)	Name(#GRCL_2)
Columnsymbol(HollowUpTriangle)	Displayposition(2)	Parent(#GRPH_1)
Source(#VF_ELWIDP)
Define_Com	Class(#vf_sy122)	Name(#myscreen_wrapper)	Displayposition(3)
Height(513)	Left(144)	Parent(#PANL_1)	Top(24)	Visible(False)	Width(593)
Define_Com	Class(#PRIM_PANL)	Name(#PANL_1)	Displayposition(1)
Height(559)	Layoutmanager(#SPLM_1)	Left(0)	Parent(#COM_OWNER)
Tabposition(1)	Tabstop(False)	Top(0)	Width(557)
Define_Com	Class(#PRIM_ATLM)	Name(#ATLM_1)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_1)	Attachment(Center)
Manage(#PANL_1)	Parent(#ATLM_1)
Define_Com	Class(#PRIM_SPLM)	Name(#SPLM_1)
Define_Com	Class(#PRIM_PANL)	Name(#PANL_2)	Displayposition(1)
Height(185)	Layoutmanager(#FWLM_1)	Left(0)	Parent(#PANL_1)
Tabposition(2)	Tabstop(False)	Top(0)	Width(557)
Define_Com	Class(#PRIM_PANL)	Name(#PANL_3)	Displayposition(2)
Height(370)	Layoutmanager(#ATLM_2)	Left(0)	Parent(#PANL_1)
Tabposition(3)	Tabstop(False)	Top(189)	Width(557)
Define_Com	Class(#PRIM_SPLI)	Name(#SPLI_1)	Manage(#PANL_2)
Parent(#SPLM_1)	Weight(1)

Define_Com	Class(#PRIM_SPLI)	Name(#SPLI_2)	Manage(#PANL_3)
Parent(#SPLM_1)
Define_Com	Class(#PRIM_ATLM)	Name(#ATLM_2)
Define_Com	Class(#PRIM_ATLI)	Name(#ATLI_2)	Attachment(Center)
Manage(#GRPH_1)	Parent(#ATLM_2)
Define_Com	Class(#PRIM_FWLM)	Name(#FWLM_1)
Direction(TopToBottom)	Flowoperation(Center)	Margintop(15)
Spacingitems(2)
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_3)	Manage(#DiskSts)
Parent(#FWLM_1)
Define_Com	Class(#PRIM_PHBN)	Name(#PHBN_1)	Caption('Refresh
Statistics')	Displayposition(2)	Left(331)	Parent(#PANL_2)	Tabposition(2)
Top(15)	Width(117)
Define_Com	Class(#PRIM_FWLI)	Name(#FWLI_6)	Manage(#PHBN_1)
Parent(#FWLM_1)
Mthroutine	Name(uInitialize)	Options(*REDEFINE)
*	Do	any	initialization	defined	in	the	ancestor
Invoke	Method(#Com_Ancestor.uInitialize)
Set	Com(#grph_1)	Graphtype(Bar)
Set	Com(#myscreen_wrapper)	Ucommand(#com_owner)
Endroutine
Mthroutine	Name(uExecute)	Options(*REDEFINE)
*	Do	any	execution	logic	defined	in	the	ancestor
Invoke	Method(#Com_Ancestor.uExecute)
Invoke	Method(#myscreen_wrapper.MakeRampAvailable)
Foraction(ShowDiskStatus)
Endroutine
Evtroutine	Handling(#myscreen_wrapper.RampAvailable)
Foraction(#ForAction)
*	Get	the	employee	number	of	the	employee	whose	details	are	to	be	displayed.
Case	(#ForAction)
When	Value_Is('=	ShowDiskStatus')
#myscreen_wrapper.current_form	Name(#vf_eltxtl)
If	(#vf_eltxtl	*NE	'DiskStatus')
Invoke	Method(#myscreen_wrapper.navigatetoscreen)	Name('DiskStatus')
Returnscreen(#vf_eltxtl)
Endif
If	(#vf_eltxtl	=	'DiskStatus')
#myscreen_wrapper.sendkey	Key(#myscreen_wrapper.KeyF10)

#myscreen_wrapper.sendkey	Key(#myscreen_wrapper.KeyF5)
#com_owner.uGetDiskStatus	Gridname('uDiskStatus')
Endif
Otherwise
Use	Builtin(message_box_show)	With_Args(ok	ok	info	*component	('Incorrect
ForAction>>'	+	#ForAction.Value	+	'<<'))
Endcase
Endroutine
Mthroutine	Name(uGetDiskStatus)
Define_Map	For(*input)	Class(#vf_eltxtl)	Name(#GridName)
Define_Map	For(*input)	Class(#vf_eltxtl)	Name(#nxtpage)	Mandatory('+')
Define	Field(#colcount)	Type(*dec)	Length(2)	Decimals(0)
Define	Field(#rowcount)	Type(*dec)	Length(4)	Decimals(0)
Define	Field(#column)	Type(*dec)	Length(2)	Decimals(0)	Default(0)
Define	Field(#row)	Type(*dec)	Length(2)	Decimals(0)	Default(0)
Define	Field(#colname)	Type(*char)	Length(50)
Define	Field(#headrows)	Type(*dec)	Length(2)	Decimals(0)	Default(0)
Clr_List	Named(#DiskSts)
Clr_List	Named(#grph_1)
Dowhile	((#nxtpage	*NE	'')	And	(#nxtpage	*NE	'Bottom'))
#myscreen_wrapper.getvalue	From(#GridName.value	+	".RowCount")
Value(#rowcount)
#myscreen_wrapper.getvalue	From(#GridName.value	+	".HeadRows")
Value(#headrows)
*	Subtract	one	because	the	row	collection	is	zero	based.
#rowcount	-=	1
Begin_Loop	Using(#row)	From(#headrows)	To(#rowcount)
#myscreen_wrapper.getvalue	From(#GridName.value	+	".Columns.Count")
Value(#colcount)
Begin_Loop	Using(#column)	To(#colcount)
#com_owner.uGetColName	Ugridname(#GridName.value)
Ucolnumber(#column)	Ucolname(#colname)
Case	(#colname)
When	Value_Is(=	'Unit')
#com_owner.uGetCellValue	Ugridname(#GridName.value)
Ucolnumber(#column)	Urownumber(#row)	Ucellvalue(#vf_eltype)
When	Value_Is(=	'Used')
#com_owner.uGetCellValue	Ugridname(#GridName.value)
Ucolnumber(#column)	Urownumber(#row)	Ucellvalue(#vf_eltxts)

#VF_ELWIDP	:=	#vf_eltxts.trim.asnumber
Endcase
End_Loop
Add_Entry	To_List(#DiskSts)
Add_Entry	To_List(#grph_1)
End_Loop
#myscreen_wrapper.getvalue	From(#GridName.value	+	".Marker")
Value(#nxtpage.value)
If	((#nxtpage.value	*NE	'')	And	(#nxtpage.value	*NE	'Bottom'))
#myscreen_wrapper.sendkey	Key(#myscreen_wrapper.KeyPageDown)
Endif
Endwhile
Endroutine
Mthroutine	Name(uGetColName)
Define_Map	For(*input)	Class(#vf_eltxtl)	Name(#uGridName)
Define_Map	For(*input)	Class(#vf_elnum)	Name(#uColNumber)
Define_Map	For(*output)	Class(#vf_eltxtl)	Name(#uColName)
#ucolnumber	-=	1
#myscreen_wrapper.getvalue	From(#uGridName.value	+	".Columns("	+
#uColNumber.asstring	+	").Name")	Value(#ucolname.value)
Endroutine
Mthroutine	Name(uGetCellValue)
Define_Map	For(*input)	Class(#vf_eltxtl)	Name(#uGridName)
Define_Map	For(*input)	Class(#vf_elnum)	Name(#uColNumber)
Define_Map	For(*input)	Class(#vf_elnum)	Name(#uRowNumber)
Define_Map	For(*output)	Class(#vf_eltxtl)	Name(#uCellvalue)
#ucolnumber	-=	1
#myscreen_wrapper.getvalue	From(#uGridName.value	+	".Columns("	+
#uColNumber.asstring	+	").Cells("	+	#uRowNumber.asstring	+	").Text")
Value(#ucellvalue.value)
Endroutine
Mthroutine	Name(uTerminate)	Options(*REDEFINE)
*	Clean	up	the	colelction	of	fields	on	the	panel
*	Do	any	termination	defined	in	the	ancestor
Invoke	Method(#Com_Ancestor.uTerminate)
Endroutine
Evtroutine	Handling(#PHBN_1.Click)
Invoke	Method(#myscreen_wrapper.MakeRampAvailable)
Foraction(ShowDiskStatus)

Endroutine
End_Com
	

Programming	Techniques
This	section	shows	programming	techniques	to	help	you	overcome	common
application	design	issues	and	to	easily	integrate	advanced	functionality	in	your
RAMP	applications.
Defining	Screens
									Handling	a	Single	Screen	which	Shows	Multiple	Modes

									Handling	Multi-5250	Screen	Data	Entry
Programming
									Short-circuiting	Navigation
									A	Command	Handler	Tab	with	Many	5250	Destinations

									Advanced	Prompting
									A	RAMP	Design	Approach	Using	a	Single	Junction	Point	(SJP)
									Using	HIDE_CURRENT_FORM	to	manage	access	to	command	handler
tabs

Handling	a	Single	Screen	which	Shows	Multiple	Modes
In	System	i	applications	it	is	possible	that	a	single	screen	handles	multiple
modes.
For	example,	an	application	can	have	a	single	screen	which	allows	ADD,
CHANGE,	DISPLAY	and	DELETE.	
To	be	able	to	handle	such	screens	in	RAMP,	the	screens	must	have	a	unique
screen	ID	in	all	the	modes	they	can	appear	in	and	they	must	be	uniquely	defined
as	separate	destination	screens	using	newlook	Designer.
If	the	mode	is	displayed	on	the	screen,	you	can	include	it	in	the	screen	ID	in
newlook	Identify	so	that	the	screen	ID	automatically	changes	according	to	the
mode.
Also,	the	attribute	bytes	(the	grey	squares)	surrounding	a	field	in	newlook
Identify	distinguish	whether	a	field	is	input	capable	or	not.	Newlook	is	able	to
recognise	the	state	of	the	attribute	bytes	and	they	can	be	used	as	part	of	the
screen	ID.
For	example	if	you	have	two	identical	screens	where	the	only	difference	is	that
one	screen	is	input	capable	and	the	other	one	only	displays	information,	you	can
use	a	single	field	with	the	surrounding	attribute	bytes	as	the	screen	ID.

Handling	Multi-5250	Screen	Data	Entry
	In	this	scenario	three	5250	screens	are	used	to	input	new	orders	like	this:

		
We	need	to	do	is	to	make	them	all	work	on	a	single	command	handler	tab	like
this,	handling	the	"New"	command	for	business	object	"Order":
		

Here's	an	outline	of	the	steps	required	to	do	this	and	some	ideas	about	how	this
common	type	of	5250	interaction	might	be	modernized:
									First,	enroll	Screen	A,	Screen	B	and	Screen	C	in	RAMP	as	destinations.

									Now,	link	Screen	A	to	the	"New"	command	in	the	"Orders"	business
object.

									Do	not	link	destination	screens	B	or	C	to	anything.	They	are	defined	as
destinations	only	so	that	RAMP	can	control	their	function	keys	and	execute
scripts	associated	with	them.	They	are	never	directly	accessed	by	any
command,	so	their	INVOKE	scripts	will	never	be	used.

									Now	examine	and	think	about	the	INVOKE,	BUTTON	and	RETURN
scripts	associated	with	each	of	screen	A,	B	and	C	as	follows:

		 Screen	A Screen	B Screen	C

INVOKE
script

Should	be
okay	as
generated.

Should
never	be
used,	so
delete	any
script
lines	or
add	an
error
message.

Should	never	be	used,	so	delete	any	script
lines	or	add	an	error	message.

BUTTON
script

Successful
Enter/OK
button
usage
should
cause
Screen	B
to	appear.

Successful
Enter/OK
button
usage
should
cause
Screen	C
to	appear

After	successful	Enter/OK	button	you
would	probably	script	for,	or,	try	using
NAVIGATE_TO_DESTINATION("Screen
A")	to	start	another	new	order	being	input

RETURN
script

Should	be
okay	as
generated

Make	sure
it
navigates
back	to
the	correct
junction
and	not
back	to
screen	A.

Make	sure	it	navigates	back	to	the	correct
junction	and	not	back	to	screen	B.

The	preceding	table	mentions	"Successful	Enter/OK	button	usage".	This	means
that	your	script	does	a	SENDKEY(KeyEnter)	and	then	possibly	checks	that
everything	went	as	expected.
As	generated,	default	scripts	probably	would	handle	the	Screen	A	->	B	->	C
flow	automatically,	but	it	might	be	useful	to	understand	how	this	happens	so
that	you	can	modify	the	behavior.	Consider	this	modified	partial	BUTTON
script:
	
		/*	The	user	has	clicked	the	OK	button	or	pressed	the	enter	key	on	screen	A	*/
	
		case	KeyEnter:
						
							/*	Send	the	enter	key	on	Screen	A	to	the	System	i	5250	server	*/		
						
							SENDKEY(KeyEnter);
						
							/*	Now	handle	the	screen	that	results	(ie:	after	sending	the	Enter	key)	*/
						
						switch	(CURRENT_FORM())
							{

										/*	If	screen	B	is	now	being	displayed	we	have	advanced	to	the	2nd

screen.	*/
										/*	There	is	nothing	more	to	do	as	screen	B's	scripts	will	now	take	over.	*/	
	
										case	"Screen	B":
																break;	
	
										/*	If	Screen	A	is	still	being	displayed	the	user	has	probably	made	a	data
entry	error	*/
	
										case	"Screen	A":
															ALERT_MESSAGE("Please	correct	the	data	entry	errors	and	click	OK
again.");
															break;
																
										/*	If	we	reach	here,	then	some	unexpected	screen	is	being	displayed	*/
					
										default:
															HIDE_MESSAGE("Unexpected	screen	"	+	CURRENT_FORM()	+	"
encountered.");
															break;										
							}
	
							break;
	
									Finally,	think	about	adding,	re-labeling	or	changing	buttons	and	function
keys	so	as	to	get	a	more	Windows	like	"Previous"	->	"Next"	->	"Save"	flow
going	on	between	screens	A,	B	and	C.	Possibly	something	like	this:

	

	 Has	a	"Next"
Button

Has	a	"Previous"
Button

Screen	A Yes	-	probably	re-
labels	existing
Enter/OK	button.
Script	sends
KeyEnter	to	advance

No.	

to	screen	B		

Screen	B Yes	-	probably	re-
labels	existing
Enter/OK	button.
Script	sends
KeyEnter	to	advance
to	screen	C		

Yes	-	probably	re-
labels	something	like
F12	to	cause	Screen	A
to	be	redisplayed	(the
5250	application
would	need	to	support
this	of	course)			

Screen	C No	-	Existing
Enter/OK	button	is
probably	re-labeled
as	""Save"	instead.
Script	probably
sends	KeyEnter	to
advance	to	screen	A
to	start	a	brand	new
order	(after	saving
the	current	one).			

Yes	-	probably	re-
labels	something	like
F12	to	cause	Screen	B
to	be	redisplayed	(the
5250	application
would	need	to	support
this	of	course)			

	

If	a	pop-up	message	is	displayed	when	leaving	Screen	A	B	or	C
Sometimes	a	5250	pop-up	message	is	displayed	when	leaving	Screen	A,	B	or	C
(either	by	pressing	F12	on	System	i	or	by	selecting	another	object	in	the
Framework)	asking	to	confirm	the	changes,	and	the	response	to	the	message
takes	the	user	to	different	screens.	For	example	if	the	answer	is	Yes	the	user
might	be	taken	to	the	nearest	junction,	but	if	the	answer	is	No	the	user	might	be
taken	back	to	the	entry	screen	(A	B	or	C).
The	easiest	solution	to	this	is	to	ignore	the	popup	by	defining	it	in	newlook	as	a
full	display	(see	How	to	Turn	Pop-Ups	into	Full	Screens)	and	defining	it	to
RAMP	as	a	special	screen.		The	script	for	the	special	screen	can	set	the	value	of
the	Response	field	to	Yes	and	send	the	Enter	key.		In	this	way,	the	assumption	is
that	the	user	is	cancelling	the	entry	when	they	select	something	else	in	the
Framework.	
In	addition	a	Cancel	button	on	each	of	the	entry	screens	can	be	set	to	send	an
F12	key	to	get	to	the	special	screen	and	back	to	the	junction,	and	the	pop-up	can
be	hidden.	Alternatively	the	Cancel	button	script	for	the	F12	key	could	contain	a

javascript	confirm()	function,	which	will	display	a	confirmation	box	to	the	user:
	
							var	answer	=	confirm("Confirm	cancellation	of	changes?")
						if	(answer	==	true)
						{
									/*	user	pressed	the	ok	button	on	the	confirmation	box	to	cancel,	so	send
the	F12	key	*/
									SENDKEY(KeyF12);
									/*	if	popup	is	defined	as	a	special,	let	the	special	eliminate	the	screen	*/
									HIDE_CURRENT_FORM("Entry	successfully	cancelled.");
						}
						else
						{
									/*	user	pressed	the	cancel	button	on	the	confirmation	box,	so	don’t	do
anything	*/
						}
	

Short-circuiting	Navigation
Sometimes	5250	enquiry	style	transactions	use	a	5250	screen	that	loop	on
<enter	key	values>	->	<display	data>	->	<enter	key	values>	->	<display	data>
interactions.
	Typically	these	screens	have	an	INVOKE	script	that	is	structured	along	these
lines:		
	
									var	strAccessMenu			=	"SomeMenuScreenName";
									var	strThisEnquiry		=	"SomeCherryEnquiryScreenName";				
	
									/*		Navigate	to	the	menu	that	will	provide	access	to	the	enquiry	function	*/
								
									NAVIGATE_TO_JUNCTION(strAccessMenu);
									if	(!(CHECK_CURRENT_FORM(strAccessMenu,	"Could	not	display
menu",	strAccessMenu))	return;
	
									/*	Invoke	the	screen	from	the	access	menu	*/
	
									SETVALUE("uMenuOptionField","7");		/*	Say	*/
									SENDKEY(KeyEnter);
									if	(!(CHECK_CURRENT_FORM(strThisEnquiry,"Could	not	display
enquiry	screen",	strThisEnquiry))	return;
	
									/*	Enter	the	appropriate	key	value	and	display	the	enquiry	details	*/
								
									SETVALUE("uKeyValueField",objInstanceList.Akey1[0]);		/*	Say	*/
									SENDKEY(KeyEnter);
									if	(!(CHECK_CURRENT_FORM(strThisEnquiry,"Could	not	display",
strThisEnquiry))	return;
									
									/*	Finished	*/
	
When	this	transaction	is	used	repeatedly	(for	example	by	clicking	down	through
an	instance	list	or	orders,	products,	policies,	etc)	you	can	sometimes	short-
circuit	the	navigation	logic	by	a	simple	script	change	along	the	following	lines.
This	change	produces	less	5250	screen	interactions	giving	a	faster	response	for
your	end-users:

	
									var	strAccessMenu			=	"SomeMenuScreenName";
									var	strThisEnquiry		=	"SomeCherryEnquiryScreenName";				
	
									/*	We	only	need	to	navigate	if	we	are	not	already	at	the	screen	*/
	
									if	(CURRENT_FORM()	!=	strThisEnquiry)
									{						
	
													/*		Navigate	to	the	menu	that	will	provide	access	to	the	enquiry
function	*/
								
													NAVIGATE_TO_JUNCTION(strAccessMenu);
													if	(!(CHECK_CURRENT_FORM(strAccessMenu,	"Could	not
display	menu",	strAccessMenu))	return;
	
													/*	Invoke	the	screen	from	the	access	menu	*/
	
													SETVALUE("uMenuOptionField","7");		/*	Say	*/
													SENDKEY(KeyEnter);
													if	(!(CHECK_CURRENT_FORM(strThisEnquiry,"Could	not
display	enquiry	screen",strThisEnquiry))	return;
								
									}		
	
	
									/*	Enter	the	appropriate	key	value	and	display	the	enquiry	details	*/
								
									SETVALUE("uKeyValueField",objInstanceList.Akey1[0]);		/*	Say	*/
									SENDKEY(KeyEnter);
									if	(!(CHECK_CURRENT_FORM(strThisEnquiry,"Could	not	display",
strThisEnquiry))	return;
	
									/*	Finished	*/
	

A	Command	Handler	Tab	with	Many	5250	Destinations
You	can	associate	many	5250	destination	screens	with	a	single	command
handler	tab.	There	are	many	uses	for	this	capability	and	it	may	be	used	to
overcome	some	common	application	design	issues.
For	example,	imagine	that	you	have	five	different	5250	destination	forms	that
each	request	report	production	criteria	and	then	submit	the	report	to	batch.	Let's
call	these	five	different	5250	screens	uReport1,	uReport2	….	uReport5.
In	prototyping	this	application	you	might	approach	handling	these	five	different
reports	in	a	number	of	ways:					

Too	Many	Business	Objects
Each	report	is	defined	as	a	unique	business	object	named	"Report	1"	through
"Report	5".	In	this	case	the	application	navigation	tree	might	be	structured	like
this	…

When	the	user	clicks	on	one	of	the	reports	the	entire	right	hand	side	of	the	form
would	display	the	reports	associated	5250	form.

Too	Many	Command	Tabs
You	define	a	single	business	object	called	"Reports"	which	has	five	associated
commands	or	actions	called	Report	1		….	Report	5.	In	this	case	the	application
navigation	and	command	handler	tabs	might	be	structured	like	this	…

When	the	user	clicks	on	a	report	tab	the	associated	5250	form	would	appear	on
the	tab.	One	of	the	tabs	would	probably	be	a	default.
There	are	a	number	of	issues	with	these	approaches:
									The	first	approach	consumes	too	many	business	objects

									The	second	approach	consumes	too	many	commands	(or	actions)
What	do	you	do	if	there	are	50	or	500	different	types	of	reports?

Solution:	Dynamic	Command	Tab

The	answer	may	be	to	use	a	single	business	object	named,	for	example	Reports
with	a	single	dynamic	command	handler	tab	named	Submit	Report	Request.		
For	example,	here	is	the	Reports	business	object	set	up	to	show	two	tabs.	The
first	is	"Submit	Report	Request"	and	the	second	is	"View	Spool	Files"	which
might	be	used	to	display	the	output	of	report	batch	jobs	in	a	variety	of	different
ways.	

In	this	example	we	are	only	interested	in	the	"Submit	Report	Request"
command	handler	tab	because	we	need,	at	execution	time,	to	dynamically	vary
which	5250	destination	screen	actually	appears	on	it.
So	how	can	you	vary	which	5250	screen	appears	on	this	single	tab?	There	are
two	main	ways	this	is	done:
									A	User	Controlled	Command	Tab	with	Many	Destinations

									A	Program	Controlled	Command	Tab	with	Many	Destinations
	

Limitations	
									Using	the	Framework	SWITCH	facility	to	switch	to	a	command	handler
with	many	5250	destinations	is	not	supported.

									Any	command	handler	using	this	option	must	be	in	the	main	Framework
window,	not	in	a	separate	pop-up	window.

A	User	Controlled	Command	Tab	with	Many	Destinations
You	can	associate	several	destination	screens	with	a	command	handler,	in	which
case	the	Framework	automatically	shows	a	window	to	allow	the	end-user	decide
which	screen	to	use:
									Create	the	Reports	business	object

									Make	sure	the	Reports	business	object	does	not	have	any	filters	and	is	set
up	so	that	it	uses	up	the	entire	viewing	area	on	the	right	hand	side	of	the	main
form.			

									Give	Reports	a	single	business	object	level	command	handler	named
"Submit	Report	Request".	Make	it	the	default	command.		

									Define	the	five	5250	destination	forms	in	the	normal	manner.	

									Associate	all	five	5250	destination	forms	with	the	Submit	Report	Request
command	handler	tab.	As	you	do	this	the	RAMP	tool	will	notify	that	you	are
associating	multiple	destinations	with	a	single	command	handler	tab.				

									Execute	the	application.
Whenever	the	Submit	Report	Request	command	tab	needs	to	be	displayed	it
detects	that	it	has	multiple	5250	destinations	and	asks	the	user	to	choose	which
one	they	would	like	to	use:

		

A	Program	Controlled	Command	Tab	with	Many	Destinations
You	can	create	a	program	that	controls	which	screen	is	displayed	on	the
command	tab.	This	is	slightly	harder	to	set	up	but	is	more	easily	expanded.
Create	the	Reports	business	object
Give	Reports	a	single	instance	level	command	handler	named	"Submit	Report
Request".	Make	this	the	default	command.
In	the	business	object	Reports	create	an	invisible	filter	that	fills	the	instance	list
with	the	five	report	names.	Make	sure	to	include	AKeyN	and/or	NKeyN	values
that	identify	the	associated	report.	For	example:
BEGIN_COM	ROLE(*EXTENDS	#VF_AC007)	HEIGHT(182)	WIDTH(326)
Mthroutine	uInitialize	Options(*Redefine)
#Com_Owner.avHiddenFilter	:=	TRUE
#avListManager.ClearList
Invoke	#avListManager.AddtoList	Visualid1('Report	1')	Visualid2('Daily
production	report')	AKey1('uReport1')	NKey1(1)
Invoke	#avListManager.AddtoList	Visualid1('Report	2')	Visualid2('Monthly
production	report')	AKey1('uReport2')	NKey1(2)
Invoke	#avListManager.AddtoList	Visualid1('Report	3')	Visualid2('Overloaded
production	report')	AKey1('uReport3')	NKey1(3)
Invoke	#avListManager.AddtoList	Visualid1('Report	4')	Visualid2('Monday
Morning	Management	Report')	AKey1('uReport4')	NKey1(4)
Invoke	#avListManager.AddtoList	Visualid1('Report	5')	Visualid2('Daily
production	report')	AKey1('uReport5')	NKey1(5)
*	Instance	list	updating	has	been	completed
INVOKE	METHOD(#avListManager.EndListUpdate)
Endroutine
End_Com					
The	instance	list	and	command	handler	tabs	are	presented	to	the	user	like	this:

When	the	user	clicks	on	a	report	in	the	instance	list	the	associated	5250
destination	screen	is	displayed	on	the	tab

Define	the	five	5250	destination	forms	in	the	normal	manner.	
Associate	just	the	first	5250	destination	forms	(eg:	uReport1)	with	the	"Submit
Report	Request"	command	handler	tab.
Say	the	numeric	instance	list	key	value	NKey1	contained	the	requested	report
number	…..	then	you	could	change	the	uReport1	INVOKE_SCRIPT	to	be	like
this:
/*	See	is	the	report	number	in	the	instance	list	is	for	some	other	report	*/
/*	If	it	is	then	"reroute"	this	request	to	correct	5250	destination	form		*/
switch	(objListManager.NKey1[0])
{
		case	2:	NAVIGATE_TO_DESTINATION("uReport2");	return;
		case	3:	NAVIGATE_TO_DESTINATION("uReport3");	return;
		case	4:	NAVIGATE_TO_DESTINATION("uReport4");	return;
		case	5:	NAVIGATE_TO_DESTINATION("uReport5");	return;
}
/*	Normal	navigation	logic	to	handle	report	number	1	*/
NAVIGATE_TO_JUNCTION("whatever");
Etc,	etc	……………………
If	the	alphanumeric	instance	list	key	value	AKey1	contained	the	requested	5250
destination	screen's	name	…..	then	you	could	change	the	uReport1
INVOKE_SCRIPT	like	this:
/*	See	is	the	5250	screen	name	is	this	screen's	name																					*/
/*	If	it	is	then	"reroute"	this	request	to	correct	5250	destination	form	*/
if	(objListManager.AKey1[0]	!=	"uReport1")
{
			NAVIGATE_TO_DESTINATION(objListManager.AKey1[0]);
			return;
}
/*	Normal	navigation	logic	to	handle	this	screen	*/
NAVIGATE_TO_JUNCTION("whatever");
Etc,	etc	……………………
	
	

Using	this	Approach	in	other	Situations
This	is	example	shows	how	to	dynamically	choose	to	present	five	different	5250
reporting	screens	onto	a	single	command	handler	tab.
The	choice	may	be	made	by	the	user	or	logic	you	write	into	a	script.
You	should	now	understand:
									That	if	there	were	three	different	types	of	"Orders"	in	an	"ERP"	application
(International,	National	and	Local,	say)	that	you	cold	use	this	approach	to
cause	three	different	5250	destination	screens	to	be	displayed	on	a	single
command	handler	tab	named	"Details".

									That	the	instance	list	can	be	used	to	dynamically	create	a	"menu"	of	5250
destination	forms.

									That	not	all	5250	destination	screens	need	to	be	formally	attached	to	a
command	handler	tab.	They	can	be	dynamically	attached	(ie:	displayed)	on
tabs	by	logic	imbedded	in	a	navigation	script	by	using	the
NAVIGATE_TO_DESTINATION()	function.								

Advanced	Prompting
You	can	easily	provide	advanced	prompting	in	your	5250	RAMP	screens	by
associating	simple	Visual	LANSA	forms	with	fields.
For	example	you	could	create	a	Visual	LANSA	form	to	show	different	item
sizes	as	a	set	of	radio	buttons	and	then	associate	this	form	with	an	Item	Size
field	in	the	RAMP	screen	to	return	its	value:

The	prompter	forms	give	you	access	to	all	the	advanced	Visual	LANSA	features
such	as	radio	buttons,	sortable	tree	and	list	views,	etc.
Unlike	System	i	prompting,	Visual	LANSA	prompter	forms	do	not	necessarily
cause	any	interaction	with	the	System	i	server	which	makes	them	fast.	
Moreover,	advanced	prompting	can	be	used	to	provide	functionality	that	is	not
possible	on	a	5250	device.	For	example,	a	phone	number	prompter	could
display	a	phone	number	search	web	site	and	when	the	user	chooses	a	phone
number,	place	it's	value	back	into	the	5250	screen.

Other	Uses	for	Prompter	Forms
Prompter	forms	can	also	be	used	in	various	ways	for	sophisticated	Windows
desktop	integration.	For	example	they	might:
									Prepare	and	send	an	overdue	payment	e-mail.

									Submit	a	credit	reference	check	via	an	internet	site	or	a	web	service.
									Extract	information	from	the	System	i	server,	create	a	MS-Excel	spread
sheet,	then	start	MS-Excel	to	display	the	spreadsheet	information.

									Display	a	linked	or	associated	web	page.

									Display	a	linked	or	associated	PDF	document.
									Do	any	other	form	of	advanced	Windows	desktop	integration	that	you	can
dream	up.

The	advanced	prompter	forms	are	designed	as	an	easy	way	integrate
sophisticated	functionality	to	subsets	of	information	on	the	5250	screen.		Of

course	entire	new	RAMP	screens	can	be	added	to	a	RAMP	application	any	time
to	handle	all	desktop	integration	requirements.

Using	Prompter	Forms
Creating	Prompter	Forms
Create	prompter	forms	as	normal	VL	forms.
Their	Ancestor	property	must	be	se	to	VF_AC017	so	as	to	inherit	standard
behavior.	

Associating	Prompter	Forms	with	Fields
To	associate	prompter	forms	with	fields,	open	the	RAMP	window	and	click	on
the	session	object	in	the	navigation	tree.		The	Session	properties	are	displayed:

	
The	Special	Field	Handling	area	is	used	to	define	the	forms	to	be	associated
with	fields.
The	two	entries	in	the	example	indicate	that:
If	an	input	field	named	txtSTATE	is	on	any	5250	destination	form,	and	it	is
where	the	cursor/focus	is,	and	the	user	presses	function	key	F4	(or	the
equivalent	button)	then	the	VL	form	named	P_STATE	is	to	be	invoked	to	handle
the	request.
If	an	input	field	named	txtPHONE	is	on	any	5250	destination	form,	and	it	is
where	the	cursor/focus	is,	and	the	user	presses	function	key	F5	(or	the
equivalent	button)	then	the	VL	form	named	P_PHONE	is	to	be	invoked	to
handle	the	request.

How	do	Advanced	Prompter	Forms	Work?
Whenever	the	user	performs	the	actions	required	to	invoke	one	of	the	VL	forms

the	following	happens:
									The	HANDLE_PROMPT	Function	in	the	script	is	invoked	to	show	the
prompter	form	associated	with	the	field.	Optionally	additional	information
can	be	passed	to	the	form	using	this	function.

									If	the	form	has	not	been	used	already	in	the	session	it's	uInitialize	method
is	invoked.	This	allows	it	to	do	first	time	processing.

									The	values	of	all	the	named	fields	on	the	current	5250	destination	form	are
extracted	and	made	available	to	the	VL	form.

									The	VL	form's	uShow	method	is	then	invoked	so	that	it	can	prepare	and
position	anything	that	it	wants	to	show	to	the	user.			

									When	the	user	makes	a	selection,	the	VL	form	can	alter	the	value	of	any
named	field	on	the	current	5250	destination	form.			

Are	any	Examples	Provided	to	Learn	More	about	this	Topic?
Yes,	you	should	be	able	to	find	the	following	Visual	LANSA	forms	in	your
repository:

Combo	Box
DF_PRM01	prompts	using	a	combo	box	of	US	states	like	this:

	

	Radio	Buttons
DF_PRM02	prompts	using	a	set	of	product	size	radio	buttons:

	

List	with	Columns
DF_PRM03	generically	prompts	for	employees	by	name:

	

Tree
DF_PRM04	prompts	department	and	section	information	using	a	tree:

A	RAMP	Design	Approach	Using	a	Single	Junction	Point	(SJP)
A	complex	5250	application	that	RAMP	is	being	applied	to	may	be	visualized
like	this:

A	5250	user	signs	on	and	navigates	around	a	cloud	of	menus/junctions	to	reach
the	"cherries"	(5250	destination	screens)	where	they	do	useful	work.
The	RAMP	choreographer	is	able	to	follow	these	navigations	and	working	with
it	you	can	define	the	various	navigations	required	to	move	around	in	the	cloud.
To	a	RAMP	developer	the	identification	of	the	junctions	and	the	generation	of
their	navigation	scripts	may	be	a	time	consuming	and	rather	mundane	job.
From	the	RAMP	developers	point	of	view	the	whole	process	would	be	easier	to
handle	if	the	5250	application	was	actually	structured	like	this:

Here	a	single	junction	point	(or	program)	controls	access	to	every	5250
destination	screen.
If	the	5250	application	was	structured	this	way	then	designing	a	RAMP
application	would	be	simpler	and	faster	because:
									Only	a	single	junction	needs	to	be	defined	and	scripted.

									The	invocation	scripts	for	the	destination	screens	are	simpler	and
standardized.

This	rest	of	this	section	describes	ways	that	you	might	set	up	this	type	of	view
of	a	5250	application.
This	approach	is	called	the	Single	Junction	Point	(SJP)	model.
The	SJP	model	cannot	be	applied	to	every	type	of	application,	but	where	it	can
be	applied	it	may	represent	a	saving	in	the	time	taken	to	develop	a	RAMP
application.
Essentially	a	SJP	approach	means	that	two	different	views	of	an	application
exist:

To	make	this	programmatic	view	of	the	world	the	System	i	5250	program	
needs	to	already	exist	or	to	be	created.

Let's	call	this	special	program	the	SJP	(Single	Junction	Point)	program	

A	kind	of	 	already	exists	on	all	System	i	system.
It	is	a	program	called	QCMD	(or	Command	Entry	Display)	and	from	it	almost
any	5250	application	can	be	invoked	in	some	direct	or	indirect	way.	However
using	QCMD	is	not	acceptable	to	many	sites	for	security	reasons,	so	the	rest	of
this	material	discusses	various	ways	you	might	create	your	own	specialized

	and	some	of	issues	and	additional	benefits	that	might	arise.
How	does	an	SJP	work?
Is	an	SJP	really	that	simple	in	a	real	application?
Can	SJP	do	the	other	useful	things?
Does	SJP	have	to	be	CL	(Control	Language)	program?
What	other	issues	might	impact	the	use	on	an	SJP	approach?

How	does	an	SJP	work?
An	SJP	program	provides	generic	access	to	the	destinations	that	are	available	to
a	RAMP	application.	An	SJP	is	not	designed	to	talk	to	a	user,	it	is	designed	to
talk	to	a	RAMP	script.
A	simple	SJP	and	RAMP	script	might	work	together	like	this:

The	RAMP	script	example	used	here	is	associated	with	a	command	handler	that
wants	to	display	the	details	of	a	customer	using	a	5250	program	named
CUSTINQ.
When	it	starts	to	execute	it	first	navigates	to	the	junction	screen	named	JSP.
This	causes	the	SJP	program	to	displays	its	5250	screen.
It	then	sets	the	field	PGMNAME	to	value	"CUSTINQ"	and	sends	the	enter	key.
This	causes	the	SJP	program	to	receive	the	screen	back.
The	CL	field	&PGMNAME	in	the	SJP	program	now	contains	the	name
"CUSTINQ".
Program	CUSTINQ	is	then	called	using	a	generic	call.
The	RAMP	script	then	gets	the	program	CUSTINQ	to	display	customer	number
123456.
Using	this	simple	SJP	hundreds	of	destination	screen	scripts	could	be	created	to
access	all	sorts	of	System	i	5250	programs,	providing	that	they	all	have	a	simple
CALL	interface.

Is	an	SJP	really	that	simple	in	a	real	application?
Probably	not.	Often	the	programs	being	called	required	simple	(and	sometimes
complex)	parameters	to	be	passed	to	them	and	amongst	them.
However,	in	this	style	of	application	design,	groups	of	programs	usually	fall	into
large	application	groups	that	share	a	common	parameter	protocol.
By	adding	an	REQUEST_TYPE	(say)	field	to	the	information	exchanged
between	RAMP	scripts	you	can	easily	accommodate	different	program
parameter	protocols	along	these	lines	(logic	is	in	pseudo	code):
	
WRITE	and	READ	the	5250	screen	containing	PGMNAME	and
REQUEST_TYPE
	
DOWHILE	(REQUEST_TYPE	not	equal	to	"SIGNOFF")
	
CASE	of	REQUEST_TYPE
WHEN	=	"CALLP1"	CALL	PGM_NAME	using	calling	protocol	1	for
parameters
WHEN	=	"CALLP2"	CALL	PGM_NAME	using	calling	protocol	2	for
parameters
WHEN	=	"CALLP3"	CALL	PGM_NAME	using	calling	protocol	3	for
parameters
<etc>
ENDCASE
	
WRITE	and	READ	the	5250	screen	containing	PGMNAME	and
REQUEST_TYPE
ENDWHILE
	
If	you	are	used	to	RPG	and	CL	programs	you	might	not	be	aware	just	how
flexible	the	IBM	i	program	call	interface	is.	Program	parameters	are	just	areas
of	memory	and	passed	between	programs	as	pointers.	You	might	not	know:
									Parameters	do	not	have	to	be	the	exact	length	the	called	program	defined.
They	just	need	to	be	as	long	or	longer,	which	makes	sharing	and	reusing	a
small	set	of	parameter	variables	in	a	SJP	quite	simple.

									You	can	pass	a	program	more	parameters	than	it	actually	requires.	The
extra	ones	are	generally	ignored,	which	means	you	can	have	very	few	actual

CALL	commands	in	your	program.
									You	could	directly	pass	parameter	values	from	you	RAMP	scripts	to	the
SJP	and	pass	them	into	the	called	programs.	You	could	also	get	retuned
parameter	values	back	into	the	script	again	using	this	approach.	This	means
your	RAMP	scripts	can	call	batch	style	programs	as	well.

Can	SJP	do	the	other	useful	things?
It	could	be	designed	to	do	almost	anything.	For	example	it	can	provide	a	very
flexible	and	generic	interface	to	IBM	i	command	like	this:
	
WRITE	and	READ	the	5250	screen	containing	PGMNAME,	REQUEST_TYPE
and	COMMAND
	
DOWHILE	(REQUEST_TYPE	not	equal	"SIGNOFF")
	
CASE	of	REQUEST_TYPE
WHEN	=	"CMD"	CALL	QCMDEXEC	(COMMAND	256)
WHEN	=	"CALLP3"	CALL	PGM_NAME	using	calling	protocol	3	for
parameters
<etc>
	
Would	allow	your	RAMP	scripts	to	execute	a	CL	command	like	this:
NAVIGATE_TO_JUNCTION("SJP");
SETVALUE("REQUEST_TYPE","CMD");
SETVALUE("COMMAND","WRKSBMJOB	*JOB")
SENDKEY(KeyEnter);
	
Or
		NAVIGATE_TO_JUNCTION("SJP");
SETVALUE("REQUEST_TYPE","CMD");
SETVALUE("COMMAND","SBMJOB(BATCH)	CMD("CALL
PRINTORDER")")
SENDKEY(KeyEnter);
	
The	5250	screen	used	to	communicate	between	a	RAMP	script	and	a	SJP	is
really	more	of	program	data	structure	that	a	real	5250	screen	that	a	user	would
ever	see.

Does	SJP	have	to	be	CL	(Control	Language)	program?
No,	it	could	be	written	in	any	program	language	that	supports	the	reading	and
writing	of	5250	screens	such	RPG,	COBOL,	C	or	RDML	(which	is	really	RPG
anyway).
If	you	have	LANSA	programs	RDML	is	a	good	choice	because	it	makes	it	very
easy	to	call	LANSA	processes	and	functions	and	allows	access	to	common
inter-program	communications	mechanism	such	as	the	exchange	list	and	data
structures.

What	other	issues	might	impact	the	use	on	an	SJP	approach?
One	of	the	main	ones	relates	to	user	profile	and	site	security	requirements.
You	would	probably	not	want	the	SJP	program	accessible	to	USERA	(say)	when
he	or	she	is	using	a	normal	5250	screen.
Additionally	most	sites	insist	that	USERA	executes	his/her	IBM	i	job	under	the
profile	USERA	so	that	audit,	log	and	security	information	shows	the	"real"	user
(although	this	is	disappearing	as	more	and	more	"threaded"	processes	serving
many	concurrent	users,	such	as	HTTP	web	servers,	are	used	on	the	System	i
server).
So	how	can	a	single	user	profile	USERA	support	these	different	views	of	the
world?
									When	they	sign	on	to	a	real	5250	session	they	get	their	normal	sign-on
menu.

									When	they	sign	on	via	a	RAMP	script	they	get	the	SJP	program	as	their
main	"menu"?

There	are	several	solutions	to	this	problem:
									Use	the	Program/Procedure	option	on	the	IBM	i	sign-on	screen	to	specify
the	SJP	program	when	logging	in	via	a	RAMP	script.	You	would	probably
add	some	security	logic	to	the	JSP	to	prevent	users	doing	this	through	a	real
5250	interface	(see	point	2).

									If	you	use	a	common	menu	program	you	could	alter	it	to	detect	that	it	is
being	called	from	a	RAMP	script	and	then	call	the	SJP	program.	Equally	you
could	display	the	common	menu	initially	and	use	a	special	"hidden"	menu
option	to	call	the	JSP	program.	The	JSP	program	could	confirm	that	it	is
being	accessed	by	a	RAMP	script	by	conducting,	for	example,	an	encrypted
exchange	with	the	RAMP	script	that	is	impossible	for	a	real	human	user	to
perform.

									RAMP	scripts	could	sign	on	initially	as	a	generic	"USERX"	whose	initial
program	is	the	SJP	program.	The	SJP	program	then	presents	a	screen	asking
for	the	real	user	profile	and	password,	which	the	RAMP	logon	script	fills	in
and	sends	back.	An	IBM	API	is	then	called	to	change	the	current	job's	user
profile	from	generic	USERX	to	the	real	user.	Again	an	encrypted	exchange
that	is	impossible	for	a	real	user	could	be	used	to	confirm	access	is	from	a
RAMP	script.

Using	HIDE_CURRENT_FORM	to	manage	access	to	command
handler	tabs
In	this	scenario	a	RAMP	application	has	been	created	over	an	order	processing
system.
Imagine	that	some	of	the	command	handler	tabs	(and	their	underlying	5250
destination	scripts)	need	to	prevent	users	from	performing	actions	on	cancelled
or	completed	orders.			

Step	1	-	Put	some	sort	of	"Code"	or	"Status"	column	into	every
instance	list	entry
Here	field	#ORDSTATUS	is	mapped	into	instance	list	column	Acolumn9().
Imagine	it	contains	values	"CAN"	(cancelled),	"OPN"	(Open),	"WIP"	(Being
worked	on)	or	"COM"	(completed)				
		
Invoke	Method(#avListManager.AddtoList)	Visualid1(#OrdNo)
Visualid2(#CustlName)	Akey1(#OrderNumber)	AColumn9(#ORDSTATUS)
		
Note:	AColumn9()	may	or	may	not	be	shown	to	the	user	as	desired.
		

Step	2	-	Put	checking	code	into	the	appropriate	INVOKE	scripts
Here	the	INVOKE	script	for	a	5250	screen	that	allows	an	order	to	be	modified
has	had	a	check	added	to	stop	people	from	trying	to	display	cancelled	or
completed	orders
	
/*	Get	the	order	status	from	additional	column	9	in	the	current	order	instance	list
entry	*/
		
var	ORDSTATUS	=	objListManager.AColumn9[0];
	
/*	If	the	order	is	cancelled	or	closed,	prevent	the	5250	screen	from	being
displayed,	and	show	a	message	as	to	why	*/
		
if	((ORDSTATUS	==	"CAN")	||	(ORDSTATUS	==	"COM"))
{
			HIDE_CURRENT_FORM("Sorry,	but	you	are	not	allowed	to	display	this

order	because	it	is	cancelled	or	completed.");
			return;
}
	
/*	If	we	reach	here	then	it's	okay	to	proceed	to	the	order	display	screen	*/
		
NAVIGATE_TO_JUNCTION("OrderMainMenu");
		
<etc>
<etc>
		
The	HIDE_CURRENT_FORM("message")	function	causes	the	current	5250
screen	being	displayed	on	the	command	tab	to	be	hidden	and	the	message
"Sorry,	but	you	are	not	allowed	to	display	this	order	because	it	is	cancelled	or
completed."	to	appear	in	the	center	of	the	tab	instead.
	The	content	of	AColumn9	(ie:	"CAN",	"OPN",	"WIP",	"COM")	could	be	used
anywhere	in	INVOKE	or	BUTTON	scripts	to	limit	or	control	user	activities.
						

	

Multilingual	RAMP	Applications
Strings
Refer	to	the	ADD_STRING	Function	and	the	STRING	Function.
The	captions	show	on	RAMP	buttons	can	be	changed	to	be	multilingual	using
the	OVERRIDE_KEY_CAPTION_SCREEN	Function	and
OVERRIDE_KEY_CAPTION_ALL	Function.

Troubleshooting

Error	Messages
An	unexpected	database	error	has	occurred
TCP/IP	timeout	has	occurred
TCP/IP	host	was	not	found
The	connection	to	<newlook	server	name>	has	not	been
defined
Script	cannot	be	generated	at	this	time
xxxxxxx	is	an	orphan	script	and	should	be	deleted
Error	running	RAMP	in	end-user	mode	(UF_EXEC)	but
not	in	design	mode	(UF_DESGN)

Problems
When	recording:
newlook	cannot	be	started	in	the	RAMP	Window
Keystroke	is	ignored
RAMP	does	not	recognise	the	name	of	forms	that	I	have
defined	recently	or	any	other	newlook	definition	changes
RAMP	Choreographer	does	not	recognize	a	screen	that	has
a	name	in	newlook	Designer

When	executing	RAMP	applications:
Navigation	is	Incorrect,	but	there	is	no	error	message
Strange	behavior	in	scripts
Screen	does	not	react	when	selection	is	changed	in	instance
list
A	Screen	is	not	recognized

When	scripting:
Subfile	accessor	only	reads	the	first	page

An	unexpected	database	error	has	occurred
An	newlook	database	error	is	displayed:

After	the	error	you	cannot	run	the	Framework.

What	does	this	error	mean?
Some	part	of	your	system	is	corrupted.

Solution
First	run	the	newlook	SID	file	cleanup	program	CHKSID.exe	with	the	-r
parameter.
Then	Merge	Shipped	Macros	into	newlook	again.

xxxxxxx	is	an	orphan	script	and	should	be	deleted
A	RAMP	warning	message	is	displayed	saying	that	a	script	is	an	orphan	script
and	should	be	deleted.

What	does	the	message	mean?
									It	means	the	script	is	not	used	by	any	destination,	junction	or	special
screen.

									Since	the	script	is	not	used,	it	should	be	deleted.
									This	message	does	not	impact	the	operation	of	RAMP,	it's	just	a	warning.
									If	you	get	a	lot	of	these	warnings,	it	is	likely	to	be	a	misunderstanding
about	use	of	the	merge	tool	in	a	multi-developer	environment.		

		

How	do	you	delete	a	script	if	you	get	this	message?
									Start	the	RAMP	tools
									Expand	the	script	tree	node	and	locate	the	script.
									Select	the	script	and	press	the	Delete	button.

									Watch	out	for	duplicated	script	names	(this	happens	in	multi-developer
environment).	Make	sure	you	have	the	right	script.

					

How	can	you	get	an	orphan	script?
									The	most	likely	way	is	by	using	the	merge	tool	to	merge	in	a	brand	new
script	all	by	itself	without	merging	in	the	parent	destination,	junction	or
special	screen	as	well.		

		

When	would	you	use	the	merge	tool	to	just	merge	in	a	single
script	without	also	merging	in	its	parent	destination,	junction	or
special	screens	as	well?
									Normally	you	would	only	do	this	when	you	have	previously	merged	in	the
parent	object	and	its	associated	scripts	and	are	just	wanting	to	merge	in	a
single	updated	script.	You	should	never	do	this	on	an	initial	merge	or	you	risk
creating	orphan	script(s).

		

How	should	you	approach	merging	RAMP	screens	and	their
associated	scripts	produced	by	multiple	developers?
Assuming	that	the	high	level	Framework	design	objects,	that	is	applications,
business	objects,	commands	and	command	handlers	(tabs)	have	been	set	up	by
the	master	designer	and	all	developers	are	working	from	the	same	model	(that	is
the	developers	just	define	the	RAMP	screens	and	scripts	and	then	link	them	up
to	the	pre-defined	command	handler	tabs):
									The	sender	should	add	the	screens	that	they	have	produced	to	a	merge	list.
This	should	automatically	include	the	associated	scripts.

									The	sender	should	also	add	to	the	same	merge	list	all	the	command
handler(s)	that	have	been	modified	by	being	linked	up	with	RAMP
destination	screens.

									The	receiver	should	merge	everything	into	the	master	Framework.	The
command	handlers	should	be	handled	as	updates/replacements	and	the
RAMP	objects	should	be	new	objects.	In	no	case	should	new	GUIDs	be
assigned.				

	

How	can	you	get	scripts	with	the	same	name?
In	a	multi-developer	environment	if	two	developers	create	scripts,	you	may	end
up	with	two	scripts	named	for	example	INVOKE_SCRIPT_16.
If	the	work	of	these	developers	is	merged	together,	this	situation	may	be
confusing	to	the	developers,	but	it	is	not	confusing	to	RAMP	because	to	RAMP
the	script	name	is	just	a	caption.	Internally	RAMP	recognizes	and	executes
scripts	by	their	unique	GUID.
Developers	can	change	the	default	script	names	to	avoid	this	confusion.
	

Navigation	is	Incorrect,	but	there	is	no	error	message
Navigation	produces	no	error	but	it	doesn't	do	what	it	should.

When	does	this	problem	happen?
This	can	happen	when	a	field	in	a	RAMP	screen	which	is	required	for
navigation	has	not	been	given	a	name	using	newlook	Designer	and	a	script	is
generated	using	RAMP's	tracking	facility.
This	is	because	scripts	produced	by	RAMP	tracking	ignore	actions	taken	in
unnamed	fields.

Solution
Use	newlook	Designer	to	give	fields	you	intend	to	use	in	the	navigation	a	name.
When	the	field	has	a	name,	make	sure	to	run	the	navigation	again	so	that	the
tracking	facility	can	detect	it	and	use	it	in	the	script.

Keystroke	is	ignored
The	keystroke	is	ignored	when	recording	screens.

When	does	this	problem	happen?
This	happens	when	one	and	the	same	screen	is	used	for	both	display	and	edit.
The	screen	has	the	same	name	in	newlook.
When	the	key	is	pressed,	RAMP	detects	that	the	screen	arriving	is	the	one
currently	showing	because	it	has	the	same	name	and	ignores	it	so	the	keystroke
is	lost.

Solution
The	solution	is	to	make	display	and	edit	two	different	screens,	in	other	words
identify	them	and	name	them	as	two	different	screens	using	the	newlook
Designer.	One	with	the	fields	as	output	(display)	and	another	one	with	the	fields
input	capable.

RAMP	does	not	recognise	the	name	of	forms	that	I	have	defined
recently	or	any	other	newlook	definition	changes
When	does	this	problem	happen?
This	happens	when	newlook	is	not	aware	of	the	changes.

Solution
									Check	that	the	form	object	is	named	when	in	newlook	designer	mode.

									Check	that	the	name	of	the	form	object	(when	in	newlook	designer	mode)
does	not	have	any	trailing	spaces

									If	this	happens	on	a	RAMP	web	development	PC	that	has	downloaded	a
newlook	deployment	package	from	a	RAMP	website	recently,	it	could	be	that
the	RAMP	choreographer	(the	newlook	activeX)	looking	at	the	.sid	file	from
the	downloaded	package.	This	will	be	different	than	the	local	sid	file	that
holds	the	newlook	screen	definitions	that	you	have	made	since	the	package
was	created.	RAMP	should	not	be	tested	on	development	PCs.

The	connection	to	<newlook	server	name>	has	not	been	defined
Connection	fails	with	following	error:

Cause
In	the	Framework	server	definitions	there	is	a	server	of	type	newlook	with	name
<server	name>	without	IP	address	or	Port	fields	defined,	but	there	is	no	session
with	the	name	is	defined	to	newlook.
If	you	specify	a	newlook	server	in	the	Framework,	but	leave	the	IP	address	and
port	fields	blank,	the	Framework	assumes	that	there	is	a	permanent	connection
with	the	corresponding	name	defined	in	newlook.

Solution
Option	1:
If	you	want	to	define	a	permanent	connection	in	newlook:
									Start	newlook	8.0.

									Click	on	the	Session	menu	and	select	Connect.	The	connect	dialog	shows
all	the	defined	connections.

									Use	the	newlook	connection	wizard	to	define	a	new	connection	using	the
name	you	have	used	in	the	Framework	server	definitions.

For	more	information	see	Verify	newlook	Installation.
	
Option	2:
If	you	want	to	change	the	Server	Name	of	the	server	definition	to	an	existing
newlook	connection	in	the	Framework:
									Display	the	Servers	tab	in	the	Framework

									Locate	the	server	with	name	<server	name>	and	change	the	name.

Option	3:

If	you	do	not	want	to	define	a	permanent	connection	in	newlook,	fill	in	the	IP
address	and	Port	Number	in	the	Framework	server	details	for	the	newlook
server:
									Display	the	Servers	tab	in	the	Framework

									Locate	the	server	with	name	<server	name>
									Fill	in	the	IP	Address	and	Port	Number	fields.
For	more	information	refer	to	Configure	RAMP.

Script	cannot	be	generated	at	this	time
Script	generation	fails	with	an	error	saying	the	script	cannot	be	generated	at	this
time:

Solution
Check	when	the	screen	was	defined	in	Newlook	that:
									The	Name	doesn't	exceed	265	characters.

									There	are	no	trailing	spaces	in	the	name.
Is	recommended	that	only	characters	A	-	Z	are	used	and	blanks	or	spaces	are	not
used	anywhere	in	the	name.
Also	note	that	screen	names	are	case	sensitive.

TCP/IP	timeout	has	occurred
Connection	fails	with	following	error:

Cause
For	the	Server	Type	newlook	in	the	Framework	server	definition,	the	IP	address
or	the	port	number	or	both	are	incorrect.

Solution
In	the	Framework	Server	Details	tab,	locate	the	definition	of	the	newlook	server
you	are	trying	to	connect	to.	Make	sure	the	IP	address	and	the	port	number	are
correct.
Note	that	if	you	specify	a	Server	which	has	a	connection	defined	in	newlook,
you	can	leave	the	IP	address	and	port	number	fields	blank	in	the	Framework
Server	Details	tab.
For	more	information	refer	to	Configure	RAMP.

TCP/IP	host	was	not	found
Connection	fails	with	following	error:

Cause
An	invalid	host	name	has	been	specified	in	the	IP	address	for	the	newlook
server	in	the	Framework	Server	Details	tab.
The	IP	address	can	be	specified	in	the	form	nnn.nnn.nnn.nnn	or	as	a	host	name.
This	error	points	to	an	incorrect	host	name.

Solution
In	the	Framework	Server	Details	tab,	locate	the	server	of	type	newlook	that	you
are	trying	to	connect	to.	Make	sure	the	IP	address	contains	a	valid	host	name.
Note	that	if	you	specify	a	Server	which	has	a	connection	defined	in	newlook,
you	can	leave	the	IP	address	and	port	number	fields	blank	in	the	Framework
Server	Details	tab.
For	more	information	refer	to	Configure	RAMP.

Screen	does	not	react	when	selection	is	changed	in	instance	list
When	an	entry	is	selected	in	the	instance	list,	the	RAMP	screen	does	not	reflect
this	change	and	instead	shows	the	data	for	the	entry	that	was	first	selected.

When	does	this	problem	happen?
You	recorded	the	invoke	script	of	the	destination	screen,	but	you	have	not
changed	the	value	parameter	of	the	SETVALUE	Function	from	the	recorded
hardcoded	value	to	a	substitution	value.
Another	possible	cause	is	that	the	value	in	the	SETVALUE	function	has	been
enclosed	in	quotes	in	which	case	it	is	interpreted	as	a	literal,	not	as	a	substitution
value.
For	example	this	example	is	wrong:
	
SETVALUE("UtxtMachine","objListManager.AKey1[0]");	
	

Solution
Make	the	value	parameter	of	the	SETVALUE	function	a	substitution	value	and
make	sure	it	is	not	surrounded	by	quotes:
		
SETVALUE("UtxtMachine",	objListManager.AKey1[0]);
		
For	more	information:
									Watch	the	tutorial	movie	Link	the	Selected	Employee	in	the	Instance	List
with	the	Display	Employee	Screen	-	4	minutes

									See	the	topic	Interacting	with	Instance	Lists	in	Scripts
									See	the	topic	Replacing	Hardcoded	Employee	Number	with	Current
Instance	List	Entry.

A	Screen	is	not	recognized
The	Framework	fails	to	recognise	a	screen,	this	may	happen	always	or
occasionally.
The	Trace	for	the	screen	looks	like	this:
VF_CH006	Screen	named	has	arrived	and	is	being	processed
VF_CH006	Screen	named	in	a	form	not	defined	to	the	framework.
VF_CH006	Signal	LockFramework	is	being	queued.
VF_CH006	Signal	LockFramework	has	been	queued.
VF_CH006	Screen	named	is	not	a	destination	do	function	keys	will	be	left
unchanged.
		

Solution
Check	that:
									The	form	object	is	named	in	newlook	design	mode.

									The	screen	ID	area	covers	only	static	elements	in	newlook	Identify	mode.
In	other	words,	the	ID	area	must	not	cover	field	data,	browselist	data,	system
date/time,	System	i	machine	name,	User	profile	or	other	data	that	can	change.

newlook	cannot	be	started	in	the	RAMP	Window
newlook	client	(designer)	works	in	its	own	window,	but	not	inside	the	RAMP
window.

When	does	this	problem	happen?
The	most	likely	cause	is	that	you	do	not	have	a	Standard	Edition	or	liteclient
newlook	licence	on	the	server.

Solution
Check	Licensing	Requirements	to	make	sure	you	have	the	correct	licences.

Subfile	accessor	only	reads	the	first	page
If	you	are	using	the	RAMP	subfile	accessor,	and	you	believe	it	should	scroll
through	all	the	pages	in	the	subfile	looking	for	a	row,	but	it	never	seems	to	read
beyond	the	first	page,

Solution
Check	that:
									PageUp	and	PageDown	function	keys	are	working

									newlook	recognises	the	subfile	marker.	Check	this	by	going	into	newlook
Identify,	and	then	select	the	area	containing	the	plus	(+)	sign	that	indicates
there	are	more	subfile	entries,	and	ensure	that	this	is	ticked	as	SubFile
Marker.

Error	running	RAMP	in	end-user	mode	(UF_EXEC)	but	not	in
design	mode	(UF_DESGN)
You	can	run	your	RAMP	application	in	Design	mode	but	you	get	an	error	like
this	when	you	try	to	run	it	in	End-User	mode:

Why	does	this	problem	happen?
The	main	difference	between	running	RAMP	in	design	mode	and	running	it
end-user	mode	is	the	way	javascript	is	executed.
In	design	mode,	javascript	is	reloaded	each	time	the	Framework	is	saved	if	there
has	been	a	change	affecting	RAMP.	Each	time	the	javascript	is	reloaded,	the
object	properties	are	re-set.	And	each	time	the	Framework	is	saved,	if	RAMP	is
enabled	and	has	changed,	a	set	of	javascript	files	called	<system
prefix>Nodes_nnnnnnnnnnnnnnnnnn.js	are	generated,	one	for	each	session
where	the	nnnnnnnnnnnnnnnn	part	is	the	session	identifier.
These	files	are	the	ones	used	in	end	user	mode.	They	represent	the	screens	and
scripts	written	out	as	javascript	at	the	time	the	Framework	was	saved.
In	end-user	mode,	these	files	are	loaded	once	for	each	session.	Each	one	of	the
javascript	functions	in	the	file	is	called	only	once	during	session	start	up.	This
method	speeds	up	the	start	up	time	of	RAMP	in	end-user	mode	considerably	as
opposed	to	design	time.
When	RAMP	is	executed	without	errors	in	design	mode	but	with	errors	like	the
above	in	end-user	mode,	the	prime	suspect	is	a	syntax	error	in	the	user-defined
scripts	(be	it	navigation	scripts,	invoke,	etc).
	

Solution
To	find	out	what	line	of	javascript	has	the	error,	you	can	simply	load	the	file	into
a	basic	.HTM	file.
For	example	create	a	file	called	test.htm	with	content	like	this:
	
<html>
<head>
<title>Untitled	Page</title>
<script	language="javascript"	type="text/javascript"	src="<your	nodes.js	file
here>"></script>
</head>
<body>
Hello	World
</body>
</html>
	
Specify	the	name	of	your	nodes.js	file	in	the	src=	attribuite	of	the	<script>	tag
and	put	Test.htm	in	the	same	folder	as	the	javascript.
Using	Internet	Explorer,	check	your	Advanced	settings	tab	under	Tools/Internet
options	to	verify	you	have	the	"Display	notification	about	about	every	script
error"	checked.	You	can	then	run	Test.htm	and	you	should	get	a	script	error
showing	the	line	number	where	the	error	has	occured.	Tip:	the	error	is	most
likely	to	be	inside	a	javascript	function	called	something	like	this:
	
function	__UF__nnnnnnnnnnnnnnnnnnnnnnnn(objScriptInstance)
which	makes	it	a	bit	hard	to	correlate	it	with	the	actual	script	name.	To	find	out
exactly	what	this	script	is,	do	a	Find	in	the	same	file	of	the	nnnnnnnnnnnnnnnn
part	of	the	function	name.	You	should	then	locate	the	lines	of	javascript	that
define	that	script	as	an	object	and	that	will	have	the	user	name	(for	example
oS.uScriptUserName="NAVIGATE_SCRIPT_13";)
Edit	the	script	using	the	RAMP	tools,	correct	the	error	and	save.	

RAMP	Choreographer	does	not	recognize	a	screen	that	has	a
name	in	newlook	Designer
Using	the	choreographer	in	the	RAMP	tools,	I	navigate	to	a	screen	that	I	had
previously	named	using	Newlook	Designer.	The	choreographer	doesn't
recognise	it	and	shows	a	message	saying	Unknown	Form.
If	I	start	the	Newlook	windows	client	and	navigate	to	that	screen,	I	can	verify
that	the	screen	has	indeed	been	given	a	name.

Why	does	this	problem	happen?
Most	likely	you	have	executed	a	RAMP	application	that	was	deployed	using	a
cab	file.	In	such	cases,	the	downloaded	Newlook	ActiveX	control	is	registered
in	your	machine	as	the	cab	file	is	automatically	downloaded.	Thereafter,	you
would	be	running	a	different	newlook	with	a	different	SID	file	than	the	one	you
were	working	with	before.
When	the	downloaded	newlook	version	is	different	than	the	Newlook	version
that	was	installed,	you	can	easily	verify	this	anomaly:
									Locate	a	file	called	nl_load_test.htm	in	the	partition	execute	folder.
Double	click	on	it	and	show	the	Help/About.

									Start	the	Newlook	windows	client	from	the	Newlook	folder	and	show	the
Help/About.

	

Solution
If	the	versions	are	different:
									Uninstall	Newlook	(a	shortcut	to	this	step	is	to	run	nlclean.exe	and	answer
Y	to	all	questions).

									Reboot

									Reinstall	Newlook
	

Remember	no	tot	test	VLF.RAMP-WEB	deployments	onto	your	development
PC!

Frequently	Asked	Questions
How	is	my	newlook	license	type	determined	when	starting	newlook?
How	can	I	use	web	browser	windows	from	RAMP	scripts?
How	can	I	get	the	message	from	the	bottom	of	the	current	5250	screen	into	my
RAMP	script?
How	do	I	handle	RA	(Auto	Record	Advance)	fields?
Why	does	my	newlook	session	have	a	message	"Press	SPACEBAR	or	ENTER
to	activate	and	use	this	control"?
What	is	the	difference	between	newlook	Designer	and	newlook	Emulator
Session?
Why	should	the	F12=Cancel	and	F3=Exit	buttons	and	function	keys	be	disabled
on	every	5250	screen?
I	have	defined	a	screen	as	a	junction,	but	it	should	be	destination.	How	do	I
change	it?
Do	I	have	to	identify	and	script	every	5250	screen	in	my	application	to
modernize	it?
How	can	I	get	the	RAMP	tool	to	assign	a	fixed	session?
How	do	I	make	my	scripts	work	in	multiple	partitions?
How	can	I	change	the	background	color	of	RAMP	screens?
How	can	I	~suppress	the	action	of	Alt	+	F4	inside	Newlook?

How	is	my	newlook	license	type	determined	when	starting
newlook?
In	RAMP	Tools
If	any	of	the	newlook	server	definitions	in	your	Framework	has	the	Use
liteclient	license	option	checked,	RAMP	tools	start	newlook	requesting	that	a
liteclient	license	type	is	used.	Otherwise	newlook	will	use	a	default	license
type.							
	

When	executing	Windows	Applications
When	newlook	is	started	it	is	associated	with	a	server	defined	in	your
Framework.
If	the	server	has	the	Use	liteclient	license	option	checked,	a	liteclient	license
type	will	be	used.	Otherwise	newlook	will	use	a	default	license	type.					
	

When	executing	Web	Browser	Applications
When	the	HTML	and	JavaScript	flies	associated	with	your	Framework	are
saved	a	default	license	type	is	determined.
If	any	of	the	newlook	server	definitions	in	your	Framework	has	the	Use
liteclient	license	option	checked,	the	default	will	be	to	use	a	liteclient	type	of
newlook	license.	Otherwise	a	default	newlook	license	will	be	used.
You	can	override	this	default	by	adding	+NLLiteClient=TRUE	or
+NLLiteClient=FALSE	to	the	URL	you	use	to	start	your	web	browser
application.	For	more	information	see	Web	Application	Start	Options	in	the
Framework	guide.
	

There	may	be	exceptions
If	a	developer	modifies	the	VF_UM703.HTM	(RAMP	tools)	or
VF_SY120.HTM	(RAMP	Execution)	start	up	pages	they	may	unconditionally
force	a	newlook	license	type	to	be	used	in	all	situations.					

javascript:void(0);openCHM('Lansa048.chm::/lansa048_3965.htm',’lansa’);
javascript:void(0);openCHM('Lansa048.chm::/lansa048_0900.htm',’lansa’);

How	can	I	use	web	browser	windows	from	RAMP	scripts?
Here's	a	really	simple	web	browser	form	that	accepts	three	input	fields	as
arguments,	displays	them,	allows	them	to	be	altered,	then	returns	the	altered
values	back	to	the	calling	RAMP	script:		
		
<HTML>
<HEAD>
</HEAD>
<BODY	onload="BODY_Load();"	onunload="BODY_UnLoad();"	>
<script>
function	BODY_Load()	/*	Map	arguments	passed	in	to	web	form	fields	*/
{
			FieldA.value	=	window.dialogArguments[0];
			FieldB.value	=	window.dialogArguments[1];
			FieldC.value	=	window.dialogArguments[2];	
}
function	BODY_UnLoad()	/*	Map	web	form	fields	into	return	values	*/
{
			var	arrayRets		=	new	Array();
			arrayRets[0]			=	FieldA.value;
			arrayRets[1]			=	FieldB.value;
			arrayRets[2]			=	FieldC.value;
			window.returnValue	=	arrayRets;
}
function	OK_Click()	/*	Handle	OK	button	by	closing	the	web	form	*/
{
			window.close();
}
</script>
<P>Input	details	and	click	OK"

<input	id="FieldA"	type="text">

<input	id="FieldB"	type="text">

<input	id="FieldC"	type="text">

<input	id="Button1"	type="button"	value="		OK		"	onclick="OK_Click();">
</BODY>
</HTML>
	

It	looks	like	this	when	displayed:

	
This	is	the	RAMP	BUTTON	script	that	is	used	to	display	the	web	browser	form.
It	displays	the	form	when	the	user	hits	F5,	taking	the	fields	SURNAME,
GIVENAME	and	ADDRESS1	from	the	5250	form	and	then	mapping	them
back:
		
switch	(objScriptInstance.FunctionKeyUsed)
{
			case	KeyEnter:
						SENDKEY(KeyEnter);
						break;
			case	KeyF5:
						{
									var	arrayArgs	=	new	Array();
									arrayArgs[0]	=	GETVALUE("SURNAME");
									arrayArgs[1]	=	GETVALUE("GIVENAME");
									arrayArgs[2]	=	GETVALUE("ADDRESS1");
									arrayRets	=
window.showModalDialog("Example.htm",arrayArgs,"dialogHeight:155px;dialogWidth:200px;help:no;resizable:no;scroll:no;status:no;");
									SETVALUE("SURNAME",arrayRets[0]);
									SETVALUE("GIVENAME",arrayRets[1]);
									SETVALUE("ADDRESS1",arrayRets[2]);
									delete(arrayArgs);
									delete(arrayRets);
						}
						break;
			default:
						SENDKEY(objScriptInstance.FunctionKeyUsed);
						break;
}
		

This	is	just	a	simple	example	of	some	of	the	things	you	can	do	(please	note	that
no	warranty	about	any	of	this	is	expressed	or	implied).

How	can	I	get	the	message	from	the	bottom	of	the	current	5250
screen	into	my	RAMP	script?
Use	a	script	like	this:
		
					{
											var	strMessage	=	GETVALUE("ActiveForm.Message");		/*	Get	the
message	into	JavaScript	variable	strMessage					*/
											if	(strMessage	!=	"")	ALERT_MESSAGE(strMessage);				/*	If	a	message
was	retrieved,	display	it	in	a	message	box	*/
						}		
	

How	do	I	handle	RA	(Auto	Record	Advance)	fields?
	Some	5250	applications	may	use	fields	with	an	RA	input	attribute	(Auto
Record	Advance).	Programs	that	display	these	fields	automatically	press	Enter
when	the	last	digit	or	character	is	entered	by	the	user.
	The	RAMP	choreographer	cannot	automatically	generate	a	script	for	this
situation	based	on	your	keystrokes.	Instead,	it	will	generate	lines	like:
		
/*	Set	up	data	fields	on	form	xxx	*/
	
SETVALUE("utxtMenuOption","");
	
/*	Send	the	key	required	to	navigate	to	xxx	*/
	
You	will	need	to	edit	the	generated	script,	and	specify	both	the	value	and	the
Enter	key	press,	like	this:
	
/*	Set	up	data	fields	on	form	xxx	*/
	
SETVALUE("utxtMenuOption","2");
	
/*	Send	the	key	required	to	navigate	to	xxx	*/
	
SENDKEY(KeyEnter);
	
	

Why	does	my	newlook	session	have	a	message	"Press
SPACEBAR	or	ENTER	to	activate	and	use	this	control"?

This	message	is	presented	by	a	change	to	the	handling	of	Active-X	controls	that
Microsoft	introduced	with	Service	Pack	2.	They	have	since	rescinded	this	patch
because	of	the	disruption	it	caused	to	existing	applications.	Please	refer	to
http://support.microsoft.com/?kbid=917425		for	more	details.		

http://support.microsoft.com/?kbid=917425

What	is	the	difference	between	newlook	Designer	and	newlook
Emulator	Session?
You	use	the	newlook	Designer	to	identify	all	the	screens	in	the	application	being
modernized	by	giving	them	a	unique	name.	You	start	the	Designer	by	clicking
the	newlook	Designer	button	in	the	RAMP	window.
You	use	the	newlook	emulator	session(which	is	located	in	the	top	left	corner	of
the	RAMP	window)	to	define	your	screens	to	the	Framework	and	to	trace
navigation	between	the	screens.	To	start	the	emulator	click	on	the	message
newlook	has	not	been	started	in	the	message	area.

Why	should	the	F12=Cancel	and	F3=Exit	buttons	and	function
keys	be	disabled	on	every	5250	screen?
Have	a	think	about	how	you	navigate	a	Windows	application.

I	have	defined	a	screen	as	a	junction,	but	it	should	be	destination.
How	do	I	change	it?
Delete	the	screen	definition	in	the	5250	screen	list	on	the	bottom	left	of	the
RAMP	window.	The	screen	will	appear	as	undefined	in	the	Tracking
Information	area.

Do	I	have	to	identify	and	script	every	5250	screen	in	my
application	to	modernize	it?
No.
Typically	some	areas	of	a	5250	application	are	rarely	used	or	used	by	very	few
users.
The	degree	of	modernization	you	apply	to	an	application	area	should	be	related
to	the	area's	degree	of	exposure	to	end	users	and	to	the	amount	of	benefit	that
they	would	gain	if	it	were	completely	modernized.

Modernizing	a	Single	Screen	to	Provide	Access	to	a	Subsystem
In	this	example	a	5250	menu	or	work	with	screen	named	uCodeTableMaint
manages	access	to	47	different	5250	screens	that	handle	System	Code	Table
Maintenance	(for	example	classic	code	and	parameter	tables	such	as	states,
companies,	currencies,	interest	rates,	etc	that	are	used	to	define	and	control	an
application).
uCodeTableMaint	could	be	visualized	as	an	"application	subsystem"	like	this:

	
Because	this	application	area	does	not	need	to	be	completely	modernized,	the
most	rapid	way	to	modernize	it	is	to	create	a	single	RAMP	screen	that	provides
access	to	the	other	screens.
To	do	this:

									Create	a	business	object	called	Code	Tables	and	associate	with	an
application.

									Give	it	a	single	RAMP	screen	(or	tab)	called	Maintain	(say).	Make	sure
this	is	an	object	level	command	and	that	it	is	the	default	command	so	that	it	is
executed	automatically	every	time	you	click	on	it.

									Identify	and	define	the	5250	work	with	screen	uCodeTableMaint	to	the
Framework	as	a	destination	screen	and	associate	it	with	the	Maintain	screen.

When	the	user	clicks	on	Code	Tables	in	the	Framework	application	they	are
immediately	navigated	to	the	uCodeTableMaint	5250	screen.
It	occupies	the	entire	right	hand	side	of	the	windows	form	like	this:

Once	the	user	has	displayed	the	uCodeTableMaint	screen	they	can	then	navigate
around	in	the	other	47	associated	screens	in	the	normal	manner:

This	is	a	minimal	modernization	of	the	whole	uCodeTableMaint	managed
subsystem.
Only	the	5250	screen	uCodeTableMaint	needed	to	be	defined	and	scripted	into
the	framework.	The	other	47	screens	did	not	have	to	be	identified	nor	scripted	in
any	way.

How	can	I	get	the	RAMP	tool	to	assign	a	fixed	session?
I	want	to	assign	a	fixed	session,	such	as	Session	A,	for	my	destination	screen	in
the	Destination	Screen	Details.	How	can	I	do	this?
You	have	to	select	the	command	handler	so	that	the	line	it	is	on	goes	blue,	not
just	tick	the	checkbox.	Then	you	associate	a	session	with	it.
This	may	seem	unusual,	but	sometimes	multiple	command		handlers	are
associated	with	a	single	destination	form	and	therefore	you	have	to	actually
indicate	which	one	you	want	to	change	the	session	for.		

How	do	I	make	my	scripts	work	in	multiple	partitions?
Replace	any	hard-coded	references	to	a	partition	in	your	scripts	with	this	piece
of	code:
	
objFramework.Partition
	
You	can	enter	the	code	Using	the	Scripting	Pop-up	Menu:	choose	Current
Framework	and	then	partition.

How	can	I	change	the	background	color	of	RAMP	screens?
To	change	the	RAMP	background	color,	edit	the	visual	style	called	UF_VS006
and	change	the	NormBackColor	of	the	Caption	and	Value	to	Buttonface.
Recompile	your	equivalent	of	UF_SYSTM,	to	pick	up	the	change.	The	visual
lansa	component	that	displays	RAMP	screens	will	then	pick	up	the	current
theme.
To	change	the	theme	within	the	newlook	area	of	a	RAMP	screen,	ensure	that	the
shipped	VF_XP_2003*.nlg	and	VF_XP_2007*.nlg	files	are	present	in	the
looksoftware	directory	and	from	within	newlook,	choose	the	matching	scheme
in	-->	Tools	-->	Settings	-->	Display	-->	Appearance,	Settings	-->	Scheme	and
apply.

How	can	I	suppress	the	action	of	Alt	+	F4	inside	Newlook?
Pressing	Alt	+	F4	when	focused	in	the	RAMP-NL	command	handler	causes	the
Newlook	session	to	terminate	(the	user	is	prompted	with	the	"do	you	wish	to
exit"	pop-up).	The	Framework	however	remains	active.
You	can	disable	the	Alt+F4	key	by	doing	the	following:
1.				Create	a	macro	named	Disable	Alt+F4	Key	(or	name	it	whatever	you	want).

2.				Set	the	Action	on	row	1	to	be	CancelEvent.

3.				Then	choose	File|Properties|Menu	from	the	Macro	Editor.

4.				Then	assign	the	Alt+F4	key	as	the	shortcut	key	for	this	macro	and	your
problem	will	be	solved.

	

Movie	Index
Conceptual

What	is	RAMP?	-	9	minutes 	

5250	Application	before	using	RAMP	-
2	minutes

	

5250	Application	after	using	RAMP	-	4
minutes

	

Stage	1:	Creating	a	Modernization
Framework	-	8	minutes

	

Stage	2:	Snapping	the	5250
Application	in	the	Framework	-	11
minutes

	

Stage	3:	Enrichment	and	Re-
engineering	-	5	minutes

	

	 	

Tutorial:	Modernizing	Complete	Application

Application	before	Modernization	-	2.5
minutes

Movie	Summary

Modernized	Application	-	2	minutes Movie	Summary

Identify	your	business	objects	-	1
minute

Movie	Summary

Create	a	prototype	of	your	application	-
3	minutes

Movie	Summary

Create	a	filter	and	snap	it	in	-	4	minutes Movie	Summary

Make	a	plan	of	the	5250	screens	you
will	need	to	use	-	2.5	minutes

Movie	Summary

Identify	the	relevant	screens	and	fields Movie	Summary

to	newlook	-	4	minutes

Define	the	screens	to	the	VLF	and
build	a	navigation	script	(New
Employee)	-	7.5	minutes

Movie	Summary

Define	the	screens	to	the	VLF	and
build	a	navigation	script	(Employee
Details)	-	5	minutes

Movie	Summary

Link	the	Selected	Employee	in	the
Instance	List	with	the	Display
Employee	Screen	-	4	minutes

Movie	Summary

Make	Function	Keys	Go	Somewhere
Different	-	4.5	minutes

Movie	Summary

Handle	Unexpected	Stops	in
Navigation	and	Messages	-	3	minutes

Movie	Summary

Update	the	Instance	List	from	5250
Screens	-	4	minutes

Movie	Summary

	 	

Tutorial:	Modernizing	Application	Navigation

Modernized	Navigation	-	5	minutes Movie	Summary

Create	a	Prototype	of	Your	Application
-	9.5	minutes

Movie	Summary

Identify	Your	5250	Entry	Point	Screens
Using	newlook	-	13	minutes

Movie	Summary

Script	the	Screens	and	Snap	them	in
the	Framework	-	16	minutes

Movie	Summary

	 	

Scripting:	General

Introduction	to	Scripts	-	6.5	minutes Movie	Summary

Reading,	Writing	and	Storing	Values	in
Scripts	-	4	minutes

Movie	Summary

Debug	and	Diagnostics	-	2.5	minutes Movie	Summary

	 	

Scripting:	Subfiles/Browselists

Not	Using	a	Datagrid	Control	-	1
minute

Movie	Summary

Using	Subfile	Accessor	-	5	minutes Movie	Summary

Subfile	Direct	Access	-	2	minutes Movie	Summary

	
	
		
	

	RAMP-NL Guide
	How to Get Started with RAMP
	Prerequisite Skills
	What is RAMP? - 9 minutes
	5250 Application before using RAMP - 2 minutes
	5250 Application after using RAMP - 4 minutes
	Stage 1: Creating a Modernization Framework - 8 minutes
	Stage 2: Snapping the 5250 Application in the Framework - 11 minutes
	Stage 3: Enrichment and Re-engineering - 5 minutes
	What's New
	New features in EPC 831 Version of RAMP
	Dynamic Naming of Newlook Screens and Fields
	Using Dynamic Naming
	Dynamic Naming Dialog Details
	Frequently Asked Questions
	Backing Up Screen Definitions
	New IIPs for Windows
	New features in EPC 826 Version of RAMP
	New features in EPC 804 Version of RAMP
	New features in EPC 793 Version of RAMP
	New features in EPC 785 Version of RAMP
	Licensing Requirements
	Complete Licensing Details
	More About Newlook Licensing
	Installation and Configuration
	Installation
	Install RAMP
	Install newlook
	Configuration
	Verify newlook Installation
	Verify Internet Explorer Security Settings
	Configure newlook
	Merge Shipped Macros into newlook
	VF_XP.nlg
	VF_MACRO.sid
	Configure newlook for a Windows Look and Feel
	Change the Scheme
	Change the Background
	Ensure newlook uses the Windows Themes
	Suppress newlook Sounds
	Configure RAMP
	Specify Server Details
	Set up Super-Server Session
	Optionally Set up Framework Users and Security
	Optionally Configure newlook User Profile and Password in the Framework
	Starting the Framework on the Web
	When Many Developers Work on the Same Application
	Handle Multiple Framework Versions
	Multiple Developers Using newlook
	Script Naming Convention
	Starting RAMP
	Start LANSA
	Start the Framework
	Start RAMP
	Start newlook
	Start the Instant Prototyping Assistant
	Start the Program Coding Assistant
	Concepts
	Steps Involved in Using RAMP
	Framework Window
	RAMP Window
	Message Area
	Screen Tracking Area
	newlook Emulator Session
	Screen and Script List
	Organizing Screens and Scripts
	Details Area
	Session Details
	Hide screen titles in RAMP Screens
	Two Ways to Hide the Title
	Destination Screen Details
	Script Details
	Types of Screens
	Destination Screen
	Junction Screen
	Special Screen
	OBJECT-ACTION User Interfaces
	Modernization Issues
	The most important and complex 5250 program in an application can become a modernization trap
	How long will it take to RAMP my application?
	Tutorials
	Modernizing a Complete Application
	Application before Modernization - 2.5 minutes
	Movie Summary
	Modernized Application - 2 minutes
	Movie Summary
	Identify your business objects - 1 minute
	Movie Summary
	Create a prototype of your application - 3 minutes
	Movie Summary
	Create a filter and snap it in - 4 minutes
	Movie Summary
	Make a plan of the 5250 screens you will need to use - 2.5 minutes
	Movie Summary
	Identify the relevant screens and fields to newlook - 4 minutes
	Movie Summary
	Define the screens to the VLF and build a navigation script (New Employee) - 7.5 minutes
	Movie Summary
	Define the screens to the VLF and build a navigation script (Employee Details) - 5 minutes
	Movie Summary
	Link the Selected Employee in the Instance List with the Display Employee Screen - 4 minutes
	Movie Summary
	Make Function Keys Go Somewhere Different - 4.5 minutes
	Movie Summary
	Handle Unexpected Stops in Navigation and Messages - 3 minutes
	Movie Summary
	Update the Instance List from 5250 Screens - 4 minutes
	Movie Summary
	Modernizing Application Navigation
	Modernized Navigation - 5 minutes
	Movie Summary
	Create a Prototype of Your Application - 9.5 minutes
	Movie Summary
	Identify Your 5250 Entry Point Screens Using newlook - 13 minutes
	Movie Summary
	Script the Screens and Snap them in the Framework - 16 minutes
	Movie Summary
	Scripting Tutorials
	Scripting
	Learning
	Introduction to Scripts - 6.5 minutes
	Movie Summary
	Types of Scripts in RAMP
	Scripts in a Classic Details Display
	Invoke Script
	Return Script
	Button Script
	Navigate Script
	Eliminate Script
	Generate Scripts Automatically
	Reading, Writing and Storing Values in Scripts - 4 minutes
	Movie Summary
	Javascript Essentials
	External JavaScript Documentation
	Alert()
	Converting Numbers to Strings
	Converting String to Numbers
	String Manipulation Functions
	Is This Variable Number or String?
	Using the objGlobal Object
	Getting Organized
	Using objGlobal to pass optional parameters
	Using objGlobal to pass optional parameters to an INVOKE script
	Using objGlobal to define commonly used functions
	Using
	Interacting with Instance Lists in Scripts
	The List Manager
	Visual and Programmatic Identifiers
	Working with All Selected Entries
	Using the Scripting Pop-up Menu
	Replacing Hardcoded User Name with Current Framework User
	Replacing Hardcoded Employee Number with Current Instance List Entry
	Adding Your Own Options to the Scripting Pop-Up Menu
	Updating the Instance List from RAMP screens
	Filter Code which Automatically Handles Changes to Instance List
	Subfiles/Browselists
	Not Using a Datagrid Control - 1 minute
	Movie Summary
	Using Subfile Accessor - 5 minutes
	Movie Summary
	Subfile Direct Access - 2 minutes
	Movie Summary
	Locating and Selecting an Entry in a System i Subfile/LANSA Browselist
	Script for Locating an Entry in a Subfile/Browselist
	Script for Locating and Selecting an Entry in a Browselist or Subfile by Positioning the Cursor
	Script for Locating an Entry when no Positioning is Available
	Script for Locating an Entry when no Positioning is Available and the List has more than One Page
	Handling Pop-Ups
	During Navigation
	Pop-up as Destination
	When Triggered by Button Click or Function Key Press
	Forcing a Pop-Up to Front
	How to Turn Pop-Ups into Full Screens
	Script Functions
	SETFOCUS Function
	GETFOCUS Function
	MAKESUBFILEINTOSTRING Function
	COPYTOCLIPBOARD Function
	FATAL_MESSAGE_TYPE Function
	SET_UNKNOWN_LOCKING Function
	SETKEYENABLED Function
	SETVALUE Function
	GETVALUE Function
	SENDKEY Function
	CHECK_CURRENT_FORM Function
	AVCLOSEFORM Function
	HIDE_CURRENT_FORM Function
	CURRENT_FORM Function
	SETCURSOR Function
	ALERT_MESSAGE Function
	CLEAR_MESSAGES Function
	FATAL_MESSAGE Function
	MESSAGE Function
	AVSIGNALEVENT Function
	TRACE Function
	RUNMACRO Function
	NAVIGATE_TO_JUNCTION Function
	HANDLE_PROMPT Function
	NAVIGATE_TO_DESTINATION Function
	NAVIGATE_TO_PREV_DESTINATION Function
	GET_MENU_OPTION_NUMBER Function
	STRIP_LEADING_NUMBERS Function
	ADD_STRING Function
	STRING Function
	OVERRIDE_BUTTONS_UNDEFINED_SCREENS Function
	OVERRIDE_KEY_CAPTION_SCREEN Function
	OVERRIDE_KEY_CAPTION_ALL Function
	AVSAVEVALUE Function
	AVRESTOREAVALUE and AVRESTORENVALUE Function
	SET_LOCK_MESSAGE Function
	ADD_UNKNOWN_FORM_GUESS Function
	FORCE_POPUP_REFRESH Function
	SET_HANDLER_CAPTION Function
	Framework Objects that Scripts Can Refer To
	objGlobal
	objFramework
	objApplication
	objBusinessObject
	objCommand
	objListManager
	objUser
	SUBFILE_ACCESSOR Object
	Function Key Names for SENDKEY Function
	User-defined script functions
	Switching Off Recursion Checking
	Debugging
	Debug and Diagnostics - 2.5 minutes
	Movie Summary
	Common Scripting Errors
	NAVIGATE_TO_JUNCTION request failed
	Unable to display form
	Script with identifier XYZ not found
	Could not complete the operation due to error 80020101
	Object expected
	Strange behavior in scripts
	Your script does not execute at all
	Tracing
	Using ALERT_MESSAGE in Your Scripts
	Screen Wrappers
	When to Use 5250 Screen Wrappers?
	Screen Wrapper Fundamentals
	Events
	RampMessage Event
	RampAvailable Event
	Methods
	MakeRampAvailable Method
	NavigateToScreen Method
	SetValue Method
	GetValue Method
	SendKey Method
	Current_Form Method
	SetCursor Method
	Examples
	Example 1: Show Employee Details.
	Example 2: Show Employee Details and Skills
	Example 3: Show the System i Disk Usage
	Programming Techniques
	Handling a Single Screen which Shows Multiple Modes
	Handling Multi-5250 Screen Data Entry
	Short-circuiting Navigation
	A Command Handler Tab with Many 5250 Destinations
	A User Controlled Command Tab with Many Destinations
	A Program Controlled Command Tab with Many Destinations
	Using this Approach in other Situations
	Advanced Prompting
	Using Prompter Forms
	Are any Examples Provided to Learn More about this Topic?
	A RAMP Design Approach Using a Single Junction Point (SJP)
	How does an SJP work?
	Is an SJP really that simple in a real application?
	Can SJP do the other useful things?
	Does SJP have to be CL (Control Language) program?
	What other issues might impact the use on an SJP approach?
	Using HIDE_CURRENT_FORM to manage access to command handler tabs
	Multilingual RAMP Applications
	Troubleshooting
	An unexpected database error has occurred
	xxxxxxx is an orphan script and should be deleted
	Navigation is Incorrect, but there is no error message
	Keystroke is ignored
	RAMP does not recognise the name of forms that I have defined recently or any other newlook definition changes
	The connection to <newlook server name> has not been defined
	Script cannot be generated at this time
	TCP/IP timeout has occurred
	TCP/IP host was not found
	Screen does not react when selection is changed in instance list
	A Screen is not recognized
	newlook cannot be started in the RAMP Window
	Subfile accessor only reads the first page
	Error running RAMP in end-user mode (UF_EXEC) but not in design mode (UF_DESGN)
	RAMP Choreographer does not recognize a screen that has a name in newlook Designer
	Frequently Asked Questions
	How is my newlook license type determined when starting newlook?
	How can I use web browser windows from RAMP scripts?
	How can I get the message from the bottom of the current 5250 screen into my RAMP script?
	How do I handle RA (Auto Record Advance) fields?
	Why does my newlook session have a message "Press SPACEBAR or ENTER to activate and use this control"?
	What is the difference between newlook Designer and newlook Emulator Session?
	Why should the F12=Cancel and F3=Exit buttons and function keys be disabled on every 5250 screen?
	I have defined a screen as a junction, but it should be destination. How do I change it?
	Do I have to identify and script every 5250 screen in my application to modernize it?
	How can I get the RAMP tool to assign a fixed session?
	How do I make my scripts work in multiple partitions?
	How can I change the background color of RAMP screens?
	How can I suppress the action of Alt + F4 inside Newlook?
	Movie Index

