
	|		|		|		|		|	

Qt

Qt
Qt

Window
Qt

Qt
	

Qt	3.0

Qt	2.xQt	3.x

Qt

API

()
()

PDF
man

OpenGL
SQL

XML

HOWTO
Qt

(i18n)

Qt
Qt

Trolltech

Trolltech
bug

Qt
Qt
Qt
qmake

Q
GNU
Qt

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/products/qt/whitepaper.html
http://www.trolltech.com/developer/changes/
http://doc.trolltech.com/qq/index.html
ftp://ftp.trolltech.com/qt/pdf/3.0/
ftp://ftp.trolltech.com/qt/man/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Qt
QtC++	Qt	

1996Qt	QtLinux

Qt

MS/Windows	-	9598NT	4.0ME2000
Unix/X11	-	LinuxSun	SolarisHP-UXCompaq	Tru64	UNIXIBM
AIXSGI	IRIXX11
Macintosh	-	Mac	OS	X
Embedded	-	(framebuffer)Linux

Qt Trolltech

Qt

QtQt		Trolltech sales@trolltech.com	

QtQt	Unix/X11 QGNU	

Qt/Qt	 GNU

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.kde.org/
http://www.trolltech.com/pricing.html
mailto:sales@trolltech.com
http://www.trolltech.com/dl/qtfree-dl.html
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Qt
Qt Qt

QtQt

	Qt	Windows

/
Qt 	Qt X X
Qt
Qt X X

X X

MDI X X

OpenGL	
QtOpenGL X

TCPFTPDNS X

X

/ X

XML
SAXDOM	Level	1XML X

SQL
SQL X

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

FAQs
This	document	describes	how	to	use	more	than	one	Qt	version	on	one	machine
and	how	to	use	Qt	on	X11	without	a	window	manager.	In	addition	it	explains	the
most	common	source	of	link	errors	with	Qt.	QtX11Qt	QtSource

Other	frequently	asked	questions	can	be	found	in	the	
(FAQs)	FAQ	index		 Technical	FAQ.

Link	error,	complaining	about	a	lack	of	\c	vtbl,	\c	_vtbl,	\c	__vtbl	or	similar
\c	vtbl,	\c	_vtbl,	\c	__vtbl
Using	different	versions	of	Qt	on	the	same	machine
Qt

Developers	building	for	a	single	version	of	Qt	on	Unix	-	Qt	binary
packages
UnixQt(Building)	-	Qt(binary	packages)
Developers	building	for	two	versions	of	Qt	on	Unix	-	Qt	sources
UnixQt(Building)	-	Qt(sources)

Using	Qt	on	X11	without	a	window	manager
X11Qt

http://www.trolltech.com/developer/faqs/
http://www.trolltech.com/developer/faqs/technical.html

Link	error,	complaining	about	a	lack	of	vtbl,	_vtbl,
__vtbl	or	similar

,	 vtbl,	_vtbl,	__vtbl

This	indicates	that	you've	included	the	Q_OBJECT	macro	in	a	class	declaration
and	probably	also	run	the	moc,	but	forgot	to	link	the	moc-generated	object	code
into	your	executable.	See	Using	the	Meta	Object	Compiler	for	details	on	how	to
use	moc.

Using	different	versions	of	Qt	on	the	same	machine

Qt	programs	need	the	following	components	of	a	Qt	distribution:

Header	files	-	Compile	time

Programmers	need	to	include	the	Qt	header	files.	The	Qt	header	files	are
usually	located	in	the	include	subdirectory	of	Qt	distributions.	Care	must
be	taken	to	include	the	header	files	of	the	relevant	release	of	Qt.	Those	with
a	command-line	compiler	will	typically	use	options	such	as
/I%QTDIR%\include	the	relevant	release	of	Qt.

Meta	Object	Compiler	and	other	tools	-	Compile	time

Programmers	need	to	run	moc	and	other	tools	such	as	uic.	These	tools	are
usually	located	in	the	bin	subdirectory	of	Qt	distributions.	Either	run
"$QTDIR"/bin/moc	and	"$QTDIR"/bin/uic	or	add	"$QTDIR"/bin	to	your
PATH	and	run	moc	and	uic.	If	you	use	qmake	the	appropriate	lines	will	be
added	to	your	Makefiles	so	that	uic	and	moc	will	be	executed	as	required.

Static	or	shared	libraries	-	Link	time

Programmers	need	to	link	with	the	Qt	static	or	shared	libraries.	The	Qt
libraries	are	usually	located	in	the	lib	subdirectory	of	Qt	distributions.	Care
must	be	taken	to	link	with	the	libraries	of	the	relevant	release	of	Qt.	Those
with	a	command-line	compiler	will	typically	use	options	such	as
/L%QTDIR%\lib\qt.lib	or	-L"$QTDIR"/lib	-lqt	provided	QTDIR	specifies
the	relevant	release	of	Qt.

Shared	libraries	-	Run	time

Users	of	programs	linked	with	shared	Qt	libraries	need	these	same	shared
libraries	to	run	these	programs.	The	Qt	libraries	are	usually	located	in	the
lib	subdirectory	of	Qt	distributions.	Shared	libraries	are	made	available	to
programs	in	places	such	as	C:\windows\system	on	Windows	platforms,
directories	listed	in	file	/etc/ld.so.conf	on	Linux,	standard	lib
directories	on	Unix,	or	directories	listed	in	environment	variables
LD_LIBRARY_PATH,	SHLIB_PATH,	or	LIBPATH	on	various	Unix	flavours.	Make

the	relevant	Qt	libraries	available	using	one	of	these	mechanisms.

Qt	distributions	consist	of	different	files	needed	at	compile	time,	link	time,	or
run	time.	Trolltech	distributes	Qt	in	the	form	of	a	source	package	that	contain	all
these	files	once	they	have	been	built.

Other	vendors	distribute	Qt	in	the	form	of	binary	packages.	Binary	packages
usually	consist	of	two	parts:

shared	libraries	in	the	run	time	package,	usually	called	qt3.

header	files,	static	libraries,	the	moc	and	other	tools	in	the	developers'	kit,
usually	called	qt3-dev.

Depending	on	how	you	are	using	Qt,	you	need	to	make	specific	parts	of	the	Qt
distribution	available	to	your	programs.	Typical	situations	are	described	below.

Developers	building	for	a	single	version	of	Qt	on	Unix	-	Qt	binary
packages

You	build	programs	with	a	single	version	of	Qt,	but	you	still	need	to	run
programs	linked	with	another	version	of	Qt.	You	are	typically	a	Linux	developer
who	builds	programs	for	Qt	3.x	on	a	KDE	desktop	based	on	Qt	2.x.	Qt	packages
are	usually	split	into	a	shared	library	package	with	a	name	like	qt	and	a
developer	package	with	a	name	like	qt-dev.	You	will	need	the	appropriate
packages:

To	build	programs	you	will	need	the	header	files,	the	libraries,	the	moc	and
other	tools	from	Qt	3.x.	They	are	included	in	the	developer	package	of	Qt
3.x	(qt3-dev	or	similar).

To	run	programs	you	will	need	the	shared	libraries	of	Qt	3.x	and	Qt	2.x.
They	are	included	in	the	regular	packages	of	Qt	3.x	(qt3	or	similar)	and	Qt
2.x	(qt2	or	similar).

Just	install	the	packages,	qt2,	qt3,	and	qt3-dev.	You	may	need	to	set	the
environment	variable	QTDIR	to	point	to	Qt	3.x.

Developers	building	for	two	versions	of	Qt	on	Unix	-	Qt	sources

You	build	and	run	programs	for	Qt	2.x	and	Qt	3.x.	You	will	need:

the	header	files,	the	libraries,	the	moc	and	other	tools	from	Qt	3.x	and	Qt
2.x	to	build	programs,

the	shared	libraries	of	Qt	3.x	and	Qt	2.x	to	run	programs.

Get	the	source	distributions	of	both	Qt	2.x	and	Qt	3.x.

1.	 Install	and	build	Qt	2.x	and	Qt	3.x,	usually	in	/opt	or	/usr/local.	In	the
case	of	/opt:

$	cd	/opt

$	gunzip	-c	\c	qt-x11-2.3.1.tar.gz	|	tar	xf	-

$	cd	qt-2.3.1

$	setenv	QTDIR	/opt/qt-2.3.1

$	configure	[options]

$	make

$	cd	/opt

$	gunzip	-c	qt-x11-free-3.0.0.tar.gz	|	tar	xf	-

$	cd	qt-3.0.0

$	setenv	QTDIR	/opt/qt-3.0.0

$	configure	[options]

$	make

2.	 Make	shared	libraries	available	to	programs	at	run	time.	Either	add	both
/opt/qt-2.3.1/lib	and	/opt/qt-3.0.0/lib	to	your	environment	variable
LD_LIBRARY_PATH	or	file	/etc/ld.so.conf	or	whataver	mechanism	you're
using,	or	make	links	to	the	libraries	in	a	standard	directory	like
/usr/local/lib:

cd	/usr/local/lib

ln	-s	/opt/qt-2.3.1/lib/libqt.so.2	.

ln	-s	/opt/qt-2.3.1/lib/libqt-mt.so.2	.

ln	-s	/opt/qt-2.3.1/lib/libqutil.so.1	.

ln	-s	/opt/qt-3.0.0/lib/libqt.so.3	.

ln	-s	/opt/qt-3.0.0/lib/libqui.so.1	.

To	develop	with	Qt	2.x	use:

setenv	QTDIR	/opt/qt-2.3.1

setenv	PATH	${QTDIR}/bin:${PATH}

To	develop	with	Qt	3.x	use:

setenv	QTDIR	/opt/qt-3.0.0

setenv	PATH	${QTDIR}/bin:${PATH}

Setting	QTDIR	ensures	that	the	proper	resources	are	used,	such	as	the
documentation	appropriate	to	the	version	of	Qt	you're	using.	Also	your	Makfiles
may	refer	to	"$QTDIR"/include	and	"$QTDIR"/lib	to	include	the	proper	header
files	and	link	with	the	proper	libraries.	Setting	the	PATH	ensures	that	the	proper
version	of	moc	and	other	tools	is	being	used.

Using	Qt	on	X11	without	a	window	manager

When	using	Qt	without	a	window	manager	on	Unix/X11,	you	will	most	likely
experience	focus	problems.	Without	a	window	manager,	there	is	no	focus
handling	on	X11,	and	no	concept	of	an	active	window	either.	If	you	want	your
application	to	work	in	such	an	environment,	you	have	to	explicitly	mark	a
window	as	active	after	showing	it:

	yourWindow->show();

	yourWindow->setActiveWindow();

Note	that	setActiveWindow()	won't	work	if	the	widget	does	not	become
physically	visible	during	this	event	cycle.	However,	without	a	window	manager
running,	this	is	guaranteed	to	happen.	For	the	curious	reader:	setActiveWindow()
emulates	a	window	manager	by	explicitly	setting	the	X	Input	Focus	to	a	widget's
top	level	window.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Window	System-specific	Notes
Qt	is	a	multiplatform	GUI	toolkit,	so	almost	the	entire	API	is	the	same	on	all
platforms	and	window	systems.	If	you	wish	to	use	platform-specific	features,
and	still	maintain	a	platform-independent	source	tree,	you	should	protect	the
platform-specific	code	using	the	appropriate	#ifdef	statements	(see	below).

For	information	about	which	platforms	are	supported	by	Qt,	see	the	Platform
Notes.

http://www.trolltech.com/products/platforms/

Qt/X11

When	compiling	for	this	platform,	the	macro	Q_WS_X11	is	defined.

Not	documented	here.	Please	contact	Trolltech	Technical	Support	if	you	have
queries.

Qt/Windows

When	compiling	for	this	platform,	the	macro	Q_WS_WIN	is	defined.

Not	documented	here.	Please	contact	Trolltech	Technical	Support	if	you	have
queries.

Qt/MacOSX

When	compiling	for	this	platform,	the	macro	Q_WS_MACX	is	defined.

Not	documented	here.	Please	contact	Trolltech	Technical	Support	if	you	have
queries.

Qt/Embedded

When	compiling	for	this	platform,	the	macro	Q_WS_QWS	is	defined	(the	window
system	is	literally	the	Qt	Window	System).

Installation
Qt/Embedded	performance	tuning
Running	Qt/Embedded	applications
Porting	your	applications	to	Qt/Embedded
Font	formats	and	definitions
Character	input	(keyboard,	pen,	...)
Pointer	handling	(mouse,	pen,	...)
Reduce	memory	use	with	the	feature	definition	file
A	case	study	embedding	on	Cassiopeia

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Qt
+47	21	60	48	01QtQt

VISAAmerican	ExpressMastercardJCB

SWIFT	

e-mail

Trolltech	AS
Waldemar	Thranes	gate	98
N-0175	Oslo
NORWAY

sales@trolltech.com+47	21	60	48	00

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/purchase/orderform.html
http://www.trolltech.com/pricing.html
http://www.trolltech.com/purchase/orderform.html
mailto:sales@trolltech.com
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Qt

Qt/X11
Qt/Windows
Qt/Embedded

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Qt/X11
rootQt

1.	

				cd	/usr/local

				gunzip	qt-x11-version.tar.gz				#	

				tar	xf	qt-x11-version.tar							#	

/usr/local/qt- version

qt- versionqt

				mv	qt-version	qt

Qt/usr/local/qt

2.	 .profile.loginshell

QTDIR	--	Qt
PATH	--	 mocQt
MANPATH	--	Qt	man
LD_LIBRARY_PATH	--	Qt

.profileshellbashkshzshsh

				QTDIR=/usr/local/qt

				PATH=$QTDIR/bin:$PATH

				MANPATH=$QTDIR/man:$MANPATH

				LD_LIBRARY_PATH=$QTDIR/lib:$LD_LIBRARY_PATH

				export	QTDIR	PATH	MANPATH	LD_LIBRARY_PATH

.loginshellcshtcsh

				setenv	QTDIR	/usr/local/qt

				setenv	PATH	$QTDIR/bin:$PATH

				setenv	MANPATH	$QTDIR/man:$MANPATH

				setenv	LD_LIBRARY_PATH	$QTDIR/lib:$LD_LIBRARY_PATH

$QTDIR

3.	

4.	 QtQt

				./configure

QtGIF./configure	-helpPLATFORMS

				make

http://www.trolltech.com/platforms/

5.	 /sbin/ldconfig

				can't	load	library	'libqt.so.2'

qtroot/sbin/ldconfigLD_LIBRARY_PATH

6.	 HTML/usr/local/qt/doc/html//usr/local/qt/doc/html/index.htmlman
/usr/local/qt/doc/man/

Qt

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/platforms/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Qt/Windows
Qt/Windows

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Installing	Qt/Embedded
This	installation	procedure	is	written	for	Linux.	It	may	need	to	be	modified	for
other	platforms.	Linux

Unpack	the	archive	if	you	have	not	done	so	already
1.	

				cd	<anywhere>;

				gunzip	qt-embedded-VERSION-commercial.tar.gz				#	uncompress	the	archive

				tar	xf	qt-embedded-VERSION-commercial.tar							#	unpack	it

Replace	VERSION	with	the	Qt/Embedded	version	number	throughout.
Qt/Embedded"VERSION"
This	document	assumes	that	the	archive	is	installed	as	~/qt-VERSION.	
Qt ~/qt-VERSION.

Compile	the	Qt/Embedded	library	and	examples.

2.	 Qt/Embedded

				cd	~/qt-VERSION

				export	QTDIR=~/qt-VERSION

				./configure

				make

The	configuration	system	is	designed	to	allow	platform-specific	options	to
be	added,	but	in	general	all	Linux	system	which	have	framebuffer	support
can	use	the	"linux-generic-g++"	platform.	The	configuration	system	also
supports	cross-compilers:	to	build	on	Linux/x86	for	the	Linux/MIPSEL
target,	you	would	use:

(configuration	system)	(framebuffer)Linux"linux-generic-g++"
	(configuration	system)Linux/x86Linux/MIPSEL

				./configure	-platform	linux-x86-g++	-xplatform	linux-mips-g++

Only	a	small	number	of	configurations	are	predefined,	all	much	the	same.
Configurations	files	are	found	in	configs/.

configs/

Enable	framebuffer	support.

3.	 (framebuffer)

You	may	need	to	recompile	your	kernel	to	enable	the	framebuffer.	This
document	does	not	describe	how	to	do	this;	the	HOWTO-Framebuffer	page
contains	a	short	description.	(You	should	see	a	penguin	logo	at	boot	time
when	the	frame	buffer	is	enabled.)
(framebuffer)(Kernel)	
(framebuffer))

For	Matrox	G100/G200/G400	use	the	matrox	frame	buffer	driver.	
For	NVidia	TNT	cards	use	the	nvidia	frame	buffer	driver.	
For	Mach64	and	most	other	cards,	use	the	vesafb	driver.
Matrox	G100/G200/G400matrox	frame	buffer
NVidia	TNTnvidia	frame	buffer
Mach64vesafb

Note	that	some	cards	are	only	supported	in	VGA16	mode,	this	will	not
work	with	the	current	version	of	Qt/Embedded,	since	VGA/16	is	not	yet
supported.	You	may	need	to	upgrade	your	kernel,	or	even	switch	to	an
experimental	kernel.

VGA16VGA/16Qt/Embedded	(experimental	kernel)

The	frame	buffer	must	also	be	enabled	with	a	boot	parameter.	See
/usr/src/linux/Documentation/fb	for	details.	

/usr/src/linux/Documentation/fb

The	fbset	program,	which	should	be	included	in	Linux	distributions,	may
be	used	to	switch	video	modes	without	rebooting	the	system.	The	video
mode	active	when	the	server	is	started	will	be	used.	(8-bit	modes	are	still
experimental.)	Note:	fbset	does	not	work	with	the	vesafb	driver.

4.	 Change	permissions.	

To	run	Qt/Embedded,	you	need	write	access	to	the	framebuffer	device
/dev/fb0.	
You	also	need	read	access	to	the	mouse	device.	(Note	that	/dev/mouse	is
normally	a	symbolic	link;	the	actual	mouse	device	must	be	readable.)
Qt/Embedded, /dev/fb0 /dev/fb0	(/dev/mouse)

5.	 How	to	run	the	demonstration	program.	

Log	into	a	virtual	console	and	do:	

				cd	~/qt-VERSION/

				./start-demo

6.	 Miscellaneous	troubleshooting	and	known	bugs.	
Bug

To	kill	gpm,	run	the	following	command	as	root:	
gpmroot:

				gpm	-k

In	some	cases,	if	the	server	does	not	work,	it	will	work	when	run	as	root.	
root

Some	example	programs	may	not	compile	with	GCC	2.95.	
GCC	2.95

Show	processes	using	the	framebuffer:	
(framebuffer)(processes):

				fuser	-v	/dev/fb0

Kill	such	processes:	

				fuser	-vk	/dev/fb0

or	harsher:	
:

				fuser	-k	-KILL	/dev/fb0

Show	existing	semaphores:	
:

				ipcs												

Remove	semaphores:	
:

				ipcrm

The	communication	between	client	and	server	is	done	through	the	named
pipe	/tmp/.QtEmbedded;	sometimes	it	may	need	to	be	deleted	(eg.	if	you
run	Qt/Embedded	as	root	then	later	as	an	unprivileged	user).	
(named	pipe)/tmp/.QtEmbedded;	rootQt/Embedded

7.	 Customization.	

The	Qt/Embedded	library	can	be	reduced	in	size	by	removing	unnecessary
features.	
Qt/Embedded

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Qt
C++

QtQtQt“”

C++

QtC++ 12

QtQt

Qt

demo $QTDIR/examples/demoQt

Qt

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/products/qt/whitepaper.html
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Qt	——	
QtQt

Hello	World

Qt Qt

1.	 Hello,	World!
2.	
3.	
4.	
5.	
6.	
7.	
8.	
9.	
10.	
11.	
12.	
13.	
14.	

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Qt	——	Hello,	World!

Hello	WorldQt

/**

**

**	Qt	-	2

**

**/

#include	<qapplication.h>

#include	<qpushbutton.h>

int	main(int	argc,	char	**argv)

{

				QApplication	a(argc,	argv);

				QPushButton	hello("Hello	world!",	0);

				hello.resize(100,	30);

				a.setMainWidget(&hello);

				hello.show();

				return	a.exec();

}

				#include	<qapplication.h>

QApplicationQtQApplicationQApplication

				#include	<qpushbutton.h>

QPushButton

QPushButton

				int	main(int	argc,	char	**argv)

				{

main()Qtmain()QtQt

argc argvC/C++QtQt

								QApplication	a(argc,	argv);

aQApplicationX-displayQt argv argc QApplication::argv()

QtQApplication

								QPushButton	hello("Hello	world!",	0);

QApplication

“Hello	world!”0

								hello.resize(100,	30);

10030

								a.setMainWidget(&hello);

								hello.show();

show()

								return	a.exec();

main()Qtexec()

exec()Qt

				}

C++makefileQtmakefileQt

qmake	-project

qmake

qmake.promakefile make nmakeVisual	StudioQt

Hellow	World!

X-geometry -geometry	100x200+10+20

[]	[]

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Qt	——	

/**

**

**	Qt	-	2

**

**/

#include	<qapplication.h>

#include	<qpushbutton.h>

#include	<qfont.h>

int	main(int	argc,	char	**argv)

{

				QApplication	a(argc,	argv);

				QPushButton	quit("Quit",	0);

				quit.resize(75,	30);

				quit.setFont(QFont("Times",	18,	QFont::Bold));

				QObject::connect(&quit,	SIGNAL(clicked()),	&a,	SLOT(quit()));

				a.setMainWidget(&quit);

				quit.show();

				return	a.exec();

}

				#include	<qfont.h>

QFontqfont.hQtX

								QPushButton	quit("Quit",	0);

“Quit”0

								quit.resize(75,	30);

“Hello	world!”

								quit.setFont(QFont("Times",	18,	QFont::Bold));

Times18

QApplication::setFont()

								QObject::connect(&quit,	SIGNAL(clicked()),	&a,	SLOT(quit()));

connectQt connect() QObjectsocketconnect()

QtQObjectQt
QWidgetQObject

quitclicked()aquit()

makefile

connect()

QPushButtonquitQPushButton QButton

[]	[]	[]

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Qt	——	

/**

**

**	Qt	-	3

**

**/

#include	<qapplication.h>

#include	<qpushbutton.h>

#include	<qfont.h>

#include	<qvbox.h>

int	main(int	argc,	char	**argv)

{

				QApplication	a(argc,	argv);

				QVBox	box;

				box.resize(200,	120);

				QPushButton	quit("Quit",	&box);

				quit.setFont(QFont("Times",	18,	QFont::Bold));

				QObject::connect(&quit,	SIGNAL(clicked()),	&a,	SLOT(quit()));

				a.setMainWidget(&box);

				box.show();

				return	a.exec();

}

				#include	<qvbox.h>

qvbox.h

								QVBox	box;

QVBox QWidget::sizePolicy()

								box.resize(200,	120);

120200

								QPushButton	quit("Quit",	&box);

QPushButton“text”box

QVBox

								box.show();

“”

makefile

[]	[]	[]

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Qt	——	

/**

**

**	Qt	-	4

**

**/

#include	<qapplication.h>

#include	<qpushbutton.h>

#include	<qfont.h>

class	MyWidget	:	public	QWidget

{

public:

				MyWidget(QWidget	*parent=0,	const	char	*name=0);

};

MyWidget::MyWidget(QWidget	*parent,	const	char	*name)

								:	QWidget(parent,	name)

{

				setMinimumSize(200,	120);

				setMaximumSize(200,	120);

				QPushButton	*quit	=	new	QPushButton("Quit",	this,	"quit");

				quit->setGeometry(62,	40,	75,	30);

				quit->setFont(QFont("Times",	18,	QFont::Bold));

				connect(quit,	SIGNAL(clicked()),	qApp,	SLOT(quit()));

}

int	main(int	argc,	char	**argv)

{

				QApplication	a(argc,	argv);

				MyWidget	w;

				w.setGeometry(100,	100,	200,	120);

				a.setMainWidget(&w);

				w.show();

				return	a.exec();

}

				class	MyWidget	:	public	QWidget

				{

				public:

								MyWidget(QWidget	*parent=0,	const	char	*name=0);

				};

QWidget

QWidgetQt

				MyWidget::MyWidget(QWidget	*parent,	const	char	*name)

												:	QWidget(parent,	name)

parentnameQWidget

				{

								setMinimumSize(200,	120);

								setMaximumSize(200,	120);

								QPushButton	*quit	=	new	QPushButton("Quit",	this,	"quit");

								quit->setGeometry(62,	40,	75,	30);

								quit->setFont(QFont("Times",	18,	QFont::Bold));

“quit”

quitMyWidgetQtMyWidgetMyWidgetQt

setGeometry()move()resize()

								connect(quit,	SIGNAL(clicked()),	qApp,	SLOT(quit()));

				}

MyWidgetQt qApp

MyWidgetQtqApp

				int	main(int	argc,	char	**argv)

				{

								QApplication	a(argc,	argv);

								MyWidget	w;

								w.setGeometry(100,	100,	200,	120);

								a.setMainWidget(&w);

								w.show();

								return	a.exec();

				}

makefile

main()MyWidget

QPushButton

[]	[]	[]

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Qt	——	

/**

**

**	Qt	-	5

**

**/

#include	<qapplication.h>

#include	<qpushbutton.h>

#include	<qslider.h>

#include	<qlcdnumber.h>

#include	<qfont.h>

#include	<qvbox.h>

class	MyWidget	:	public	QVBox

{

public:

				MyWidget(QWidget	*parent=0,	const	char	*name=0);

};

MyWidget::MyWidget(QWidget	*parent,	const	char	*name)

								:	QVBox(parent,	name)

{

				QPushButton	*quit	=	new	QPushButton("Quit",	this,	"quit");

				quit->setFont(QFont("Times",	18,	QFont::Bold));

				connect(quit,	SIGNAL(clicked()),	qApp,	SLOT(quit()));

				QLCDNumber	*lcd		=	new	QLCDNumber(2,	this,	"lcd");

				QSlider	*	slider	=	new	QSlider(Horizontal,	this,	"slider");

				slider->setRange(0,	99);

				slider->setValue(0);

				connect(slider,	SIGNAL(valueChanged(int)),	lcd,	SLOT(display(int)));

}

int	main(int	argc,	char	**argv)

{

				QApplication	a(argc,	argv);

				MyWidget	w;

				a.setMainWidget(&w);

				w.show();

				return	a.exec();

}

				#include	<qapplication.h>

				#include	<qpushbutton.h>

				#include	<qslider.h>

				#include	<qlcdnumber.h>

				#include	<qfont.h>

				#include	<qvbox.h>

qslider.hqlcdnumber.h

				class	MyWidget	:	public	QVBox

				{

				public:

								MyWidget(QWidget	*parent=0,	const	char	*name=0);

				};

				MyWidget::MyWidget(QWidget	*parent,	const	char	*name)

												:	QVBox(parent,	name)

				{

MyWidget QVBoxQWidgetQVBoxQVBoxMyWidget

								QLCDNumber	*lcd		=	new	QLCDNumber(2,	this,	"lcd");

lcdQLCDNumberLCD this“lcd”

								QSlider	*	slider	=	new	QSlider(Horizontal,	this,	"slider");

								slider->setRange(0,	99);

								slider->setValue(0);

QSlider0~99099 QSlider::setRange()0

								connect(slider,	SIGNAL(valueChanged(int)),	lcd,	SLOT(display

/ valueChanged()LCDdisplay()

valueChanged()LCDdisplay()

C++C++

LCDLDC

makefile

LCD

QSpinBox

LCD

[]	[]	[]

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Qt	——	

/**

**

**	Qt	-	6

**

**/

#include	<qapplication.h>

#include	<qpushbutton.h>

#include	<qslider.h>

#include	<qlcdnumber.h>

#include	<qfont.h>

#include	<qvbox.h>

#include	<qgrid.h>

class	LCDRange	:	public	QVBox

{

public:

				LCDRange(QWidget	*parent=0,	const	char	*name=0);

};

LCDRange::LCDRange(QWidget	*parent,	const	char	*name)

								:	QVBox(parent,	name)

{

				QLCDNumber	*lcd		=	new	QLCDNumber(2,	this,	"lcd");

				QSlider	*	slider	=	new	QSlider(Horizontal,	this,	"slider");

				slider->setRange(0,	99);

				slider->setValue(0);

				connect(slider,	SIGNAL(valueChanged(int)),	lcd,	SLOT(display(int)));

}

class	MyWidget	:	public	QVBox

{

public:

				MyWidget(QWidget	*parent=0,	const	char	*name=0);

};

MyWidget::MyWidget(QWidget	*parent,	const	char	*name)

								:	QVBox(parent,	name)

{

				QPushButton	*quit	=	new	QPushButton("Quit",	this,	"quit");

				quit->setFont(QFont("Times",	18,	QFont::Bold));

				connect(quit,	SIGNAL(clicked()),	qApp,	SLOT(quit()));

				QGrid	*grid	=	new	QGrid(4,	this);

				for(int	r	=	0	;	r	<	4	;	r++)

								for(int	c	=	0	;	c	<	4	;	c++)

												(void)new	LCDRange(grid);

}

int	main(int	argc,	char	**argv)

{

				QApplication	a(argc,	argv);

				MyWidget	w;

				a.setMainWidget(&w);

				w.show();

				return	a.exec();

}

				class	LCDRange	:	public	QVBox

				{

				public:

								LCDRange(QWidget	*parent=0,	const	char	*name=0);

				};

LCDRangeAPIAPI

				LCDRange::LCDRange(QWidget	*parent,	const	char	*name)

												:	QVBox(parent,	name)

				{

								QLCDNumber	*lcd		=	new	QLCDNumber(2,	this,	"lcd");

								QSlider	*	slider	=	new	QSlider(Horizontal,	this,	"slider");

								slider->setRange(0,	99);

								slider->setValue(0);

								connect(slider,	SIGNAL(valueChanged(int)),	lcd,	SLOT(display

				}

MyWidget

				class	MyWidget	:	public	QVBox

				{

				public:

								MyWidget(QWidget	*parent=0,	const	char	*name=0);

				};

MyWidgetAPI

				MyWidget::MyWidget(QWidget	*parent,	const	char	*name)

												:	QVBox(parent,	name)

				{

								QPushButton	*quit	=	new	QPushButton("Quit",	this,	"quit");

								quit->setFont(QFont("Times",	18,	QFont::Bold));

								connect(quit,	SIGNAL(clicked()),	qApp,	SLOT(quit()));

LCDRange“Quit”LCDRange

								QGrid	*grid	=	new	QGrid(4,	this);

QGridQGridQGrid

								for(int	r	=	0	;	r	<	4	;	r++)

												for(int	c	=	0	;	c	<	4	;	c++)

																(void)new	LCDRange(grid);

4*4LCDRangesgridQGrid

				}

LCD

makefile

“4”3 QGrid

[]	[]	[]

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Qt	——	

t7/lcdrange.hLCDRange
t7/lcdrange.cppLCDRange
t7/main.cppMyWidgetmain

t7/lcdrange.h

main.cpp

				#ifndef	LCDRANGE_H

				#define	LCDRANGE_H

C#ifndef

				#include	<qvbox.h>

qvbox.hLCDRange QVBox qpushbutton.hqwidget.h

				class	QSlider;

QSlider.cppQSlider

				class	LCDRange	:	public	QVBox

				{

								Q_OBJECT

				public:

								LCDRange(QWidget	*parent=0,	const	char	*name=0);

meta	object	file.	Q_OBJECT /

								int	value()	const;

				public	slots:

								void	setValue(int);

				signals:

								void	valueChanged(int);

LCDRange

value()LCDRangesetValue()valueChanged()

C++ C++

LCDRangevalueChanged()——

t7/lcdrange.cpp

t6/main.cpp

								connect(slider,	SIGNAL(valueChanged(int)),

																	lcd,	SLOT(display(int)));

								connect(slider,	SIGNAL(valueChanged(int)),

																	SIGNAL(valueChanged(int)));

LCDRange

connectvalueChanged()valueChanged

valueChanged()

LCDRangevalueChanged() QLCDNumber::display

——LCDRange::valueChanged()QLCDNumber::display()

				int	LCDRange::value()	const

				{

								return	slider->value();

				}

value()

				void	LCDRange::setValue(int	value)

				{

								slider->setValue(value);

				}

setValue()LCDLCD

t7/main.cpp

								LCDRange	*previous	=	0;

								for(int	r	=	0	;	r	<	4	;	r++)	{

												for(int	c	=	0	;	c	<	4	;	c++)	{

																LCDRange*	lr	=	new	LCDRange(grid);

																if	(previous)

																				connect(lr,	SIGNAL(valueChanged(int)),

																													previous,	SLOT(setValue(int)));

																previous	=	lr;

												}

								}

main.cppMyWidget16RCDRange
LCDRangevalueChanged()“”

makefilemakefile

qmake	-project

qmake

qmake.promakefile make nmakeVisual	Studio

……

seven	LCDs	back	to	50.	LCD5040LCD50

[]	[]	[]

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Qt	——	

.cannon.cpp

t9/lcdrange.hLCDRange
t9/lcdrange.cppLCDRange
t9/cannon.hCannonField
t9/cannon.cppCannonField
t9/main.cppMyWidgetmain

t9/cannon.cpp

				void	CannonField::paintEvent(QPaintEvent	*)

				{

								QPainter	p(this);

QPainter

								p.setBrush(blue);

QPainter

								p.setPen(NoPen);

QPainterNoPen

								p.translate(0,	rect().bottom());

QPainter::translate()QPainter(0,0)xyy Qt

								p.drawPie(QRect(-35,	-35,	70,	70),	0,	90*16);

drawPie()

								p.rotate(-ang);

QPainter::rotate()QPainter ang

								p.drawRect(QRect(33,	-4,	15,	8));

QPainter::drawRect()

QRect(33,	-4,	15,	8)

CannonField60(0,0)

Windows

				int	main(int	argc,	char	**argv)

				{

								QApplication::setColorSpec(QApplication::CustomColor);

								QApplication	a(argc,	argv);

Qt

QuitQAlt+Q

makefile

NoPen

“Q&uit;”“Qu ”“&Quit;”

[]	[]	[]

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Qt	——	

pixmap

t10/lcdrange.hLCDRange
t10/lcdrange.cppLCDRange
t10/cannon.hCannonField
t10/cannon.cppCannonField
t10/main.cppMyWidgetmain

t10/cannon.h

CannonField

								int			angle()	const	{	return	ang;	}

								int			force()	const	{	return	f;	}

				public	slots:

								void		setAngle(int	degrees);

								void		setForce(int	newton);

				signals:

								void		angleChanged(int);

								void		forceChanged(int);

				private:

								QRect	cannonRect()	const;

								int	ang;

								int	f;

				};

f

t10/cannon.cpp

				#include	<qpixmap.h>

QPixmap

				CannonField::CannonField(QWidget	*parent,	const	char	*name)

												:	QWidget(parent,	name)

				{

								ang	=	45;

								f	=	0;

								setPalette(QPalette(QColor(250,	250,	200)));

				}

f0

				void	CannonField::setAngle(int	degrees)

				{

								if	(degrees	<	5)

												degrees	=	5;

								if	(degrees	>	70)

												degrees	=	70;

								if	(ang	==	degrees)

												return;

								ang	=	degrees;

								repaint(cannonRect(),	FALSE);

								emit	angleChanged(ang);

				}

setAngle()FALSE

				void	CannonField::setForce(int	newton)

				{

								if	(newton	<	0)

												newton	=	0;

								if	(f	==	newton)

												return;

								f	=	newton;

								emit	forceChanged(f);

				}

setForce()setAngle()

				void	CannonField::paintEvent(QPaintEvent	*e)

				{

								if	(!e->rect().intersects(cannonRect()))

												return;

								QRect	cr	=	cannonRect();

								QPixmap	pix(cr.size());

pixmappixmappixmap

——

								pix.fill(this,	cr.topLeft());

pixmap

								QPainter	p(&pix);

								p.setBrush(blue);

								p.setPen(NoPen);

								p.translate(0,	pix.height()	-	1);

								p.drawPie(QRect(-35,-35,	70,	70),	0,	90*16);

								p.rotate(-ang);

								p.drawRect(QRect(33,	-4,	15,	8));

								p.end();

pixmap

pixmap

								p.begin(this);

								p.drawPixmap(cr.topLeft(),	pix);

CannonFieldpixmap

100%

				QRect	CannonField::cannonRect()	const

				{

								QRect	r(0,	0,	50,	50);

								r.moveBottomLeft(rect().bottomLeft());

								return	r;

				}

50*50

QWidget::rect()0,0

t10/main.cpp

				MyWidget::MyWidget(QWidget	*parent,	const	char	*name)

												:	QWidget(parent,	name)

				{

								LCDRange	*force		=	new	LCDRange(this,	"force");

								force->setRange(10,	50);

LCDRange

								connect(force,	SIGNAL(valueChanged(int)),

																	cannonField,	SLOT(setForce(int)));

								connect(cannonField,	SIGNAL(forceChanged(int)),

																	force,	SLOT(setValue(int)));

forcecannonField angle

								QVBoxLayout	*leftBox	=	new	QVBoxLayout;

								grid->addLayout(leftBox,	1,	0);

								leftBox->addWidget(angle);

								leftBox->addWidget(force);

angle angleforce

								force->setValue(25);

25

makefile

+-enter QAccel
QSlider::addStep()

[]	[]	[]

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Qt	——	

t11/lcdrange.hLCDRange
t11/lcdrange.cppLCDRange
t11/cannon.hCannonField
t11/cannon.cppCannonField
t11/main.cppMyWidgetmain

t11/cannon.h

CannonField

								void		shoot();

				private	slots:

								void		moveShot();

				private:

								void		paintShot(QPainter	*);

								QRect	shotRect()	const;

								int	timerCount;

								QTimer	*	autoShootTimer;

								float	shoot_ang;

								float	shoot_f;

				};

timerCount shoot_ang shoot_f

t11/cannon.cpp

				#include	<math.h>

sin()cos()

				CannonField::CannonField(QWidget	*parent,	const	char	*name)

												:	QWidget(parent,	name)

				{

								ang	=	45;

								f	=	0;

								timerCount	=	0;

								autoShootTimer	=	new	QTimer(this,	"movement	handler");

								connect(autoShootTimer,	SIGNAL(timeout()),

																	this,	SLOT(moveShot()));

								shoot_ang	=	0;

								shoot_f	=	0;

								setPalette(QPalette(QColor(250,	250,	200)));

				}

QTimer::timeout()moveShot()

				void	CannonField::shoot()

				{

								if	(autoShootTimer->isActive())

												return;

								timerCount	=	0;

								shoot_ang	=	ang;

								shoot_f	=	f;

								autoShootTimer->start(50);

				}

timerCount shoot_angshoot_f

				void	CannonField::moveShot()

				{

								QRegion	r(shotRect());

								timerCount++;

								QRect	shotR	=	shotRect();

								if	(shotR.x()	>	width()	||	shotR.y()	>	height())

												autoShootTimer->stop();

								else

												r	=	r.unite(QRegion(shotR));

								repaint(r);

				}

moveShot() QTimer50

QRegionshotRect() QRegionshotRect()——

timerCount

shotRect()QRegion

QRegion

				void	CannonField::paintEvent(QPaintEvent	*e)

				{

								QRect	updateR	=	e->rect();

								QPainter	p(this);

								if	(updateR.intersects(cannonRect()))

												paintCannon(&p);

								if	(autoShootTimer->isActive()	&&

													updateR.intersects(shotRect()))

												paintShot(&p);

				}

/paintCannon()/paintShot()

				void	CannonField::paintShot(QPainter	*p)

				{

								p->setBrush(black);

								p->setPen(NoPen);

								p->drawRect(shotRect());

				}

paintCannon()paintEvent()

				QRect	CannonField::shotRect()	const

				{

								const	double	gravity	=	4;

								double	time						=	timerCount	/	4.0;

								double	velocity		=	shoot_f;

								double	radians			=	shoot_ang*3.14159265/180;

								double	velx						=	velocity*cos(radians);

								double	vely						=	velocity*sin(radians);

								double	x0								=	(barrelRect.right()		+	5)*cos(radians);

								double	y0								=	(barrelRect.right()		+	5)*sin(radians);

								double	x									=	x0	+	velx*time;

								double	y									=	y0	+	vely*time	-	0.5*gravity*time*time;

								QRect	r	=	QRect(0,	0,	6,	6);

								r.moveCenter(QPoint(qRound(x),	height()	-	1	-	qRound(y)));

								return	r;

				}

y6*6

qRound()qglobal.hQtqRound()

t11/main.cpp

				class	MyWidget:	public	QWidget

				{

				public:

								MyWidget(QWidget	*parent=0,	const	char	*name=0);

				};

Shoot

								QPushButton	*shoot	=	new	QPushButton("&Shoot",	this,	"shoot");

								shoot->setFont(QFont("Times",	18,	QFont::Bold));

ShootQuit

								connect(shoot,	SIGNAL(clicked()),	cannonField,	SLOT(shoot()));

Shootclicked()CannonFieldshoot()

The	cannon	can	shoot,	but	there's	nothing	to	shoot	at.

makefile

QPainter::drawEllipse()

[]	[]	[]

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Qt	——	

MyWidgetGameBoard

gamebrd.hgamebrd.cpp

CannonField

LCDRange

t13/lcdrange.hLCDRange
t13/lcdrange.cppLCDRange
t13/cannon.hCannonField
t13/cannon.cppCannonField
t13/gamebrd.hGameBoard
t13/gamebrd.cppGameBoard
t13/main.cppMyWidgetmain

t13/lcdrange.h

				#include	<qwidget.h>

				class	QSlider;

				class	QLabel;

				class	LCDRange	:	public	QWidget

QWidgetQVBoxQVBox QVBoxLayoutQVBoxLayout

t13/lcdrange.cpp

				#include	<qlayout.h>

qlayout.hAPI

				LCDRange::LCDRange(QWidget	*parent,	const	char	*name)

												:	QWidget(parent,	name)

QWidget

init()

								QVBoxLayout	*	l	=	new	QVBoxLayout(this);

QVBoxLayout

								l->addWidget(lcd,	1);

At	the	top	we	add	the	QLCDNumber	with	a	non-zero	stretch.

								l->addWidget(slider);

								l->addWidget(label);

QVBoxLayout QHBoxLayoutQGridLayout QVBoxQLCDNumber

t13/cannon.h

CannonField

								bool		gameOver()	const	{	return	gameEnded;	}

TRUEFALSE

								void		setGameOver();

								void		restartGame();

setGameOver()restartGame()

								void		canShoot(bool);

CannonFieldshoot()Shoot

								bool	gameEnded;

TRUEFALSE

t13/cannon.cpp

								gameEnded	=	FALSE;

	:-

				void	CannonField::shoot()

				{

								if	(isShooting())

												return;

								timerCount	=	0;

								shoot_ang	=	ang;

								shoot_f	=	f;

								autoShootTimer->start(50);

								emit	canShoot(FALSE);

				}

isShooting()shoot()shootCannonField

				void	CannonField::setGameOver()

				{

								if	(gameEnded)

												return;

								if	(isShooting())

												autoShootTimer->stop();

								gameEnded	=	TRUE;

								repaint();

				}

CannonFieldCannonField

				void	CannonField::restartGame()

				{

								if	(isShooting())

												autoShootTimer->stop();

								gameEnded	=	FALSE;

								repaint();

								emit	canShoot(TRUE);

				}

gameEnded

hit()miss()moveShot()canShoot(TRUE)

CannonField::paintEvent()

				void	CannonField::paintEvent(QPaintEvent	*e)

				{

								QRect	updateR	=	e->rect();

								QPainter	p(this);

								if	(gameEnded)	{

												p.setPen(black);

												p.setFont(QFont("Courier",	48,	QFont::Bold));

												p.drawText(rect(),	AlignCenter,	"Game	Over");

								}

gameEndedTRUE“Game	Over”

Courier48UnicodeXQt

								if	(updateR.intersects(cannonRect()))

												paintCannon(&p);

								if	(isShooting()	&&	updateR.intersects(shotRect()))

												paintShot(&p);

								if	(!gameEnded	&&	updateR.intersects(targetRect()))

												paintTarget(&p);

				}

t13/gamebrd.h

MyWidgetGameBoard

				class	QPushButton;

				class	LCDRange;

				class	QLCDNumber;

				class	CannonField;

				#include	"lcdrange.h"

				#include	"cannon.h"

				class	GameBoard	:	public	QWidget

				{

								Q_OBJECT

				public:

								GameBoard(QWidget	*parent=0,	const	char	*name=0);

				protected	slots:

								void		fire();

								void		hit();

								void		missed();

								void		newGame();

				private:

								QLCDNumber		*hits;

								QLCDNumber		*shotsLeft;

								CannonField	*cannonField;

				};

QLCDNumbers

t13/gamebrd.cpp

MyWidgetGameBoard

GameBoard

								cannonField	=	new	CannonField(this,	"cannonField");

cannonFieldTrolltech “programmor”

								connect(cannonField,	SIGNAL(hit()),

																	this,	SLOT(hit()));

								connect(cannonField,	SIGNAL(missed()),

																	this,	SLOT(missed()));

CannonFieldhit()missed()

								connect(shoot,	SIGNAL(clicked()),	SLOT(fire()));

Shootclicked()CannonFieldshoot()

								connect(cannonField,	SIGNAL(canShoot(bool)),

																	shoot,	SLOT(setEnabled(bool)));

cannonFieldcanShoot()Shoot

								QPushButton	*restart

												=	new	QPushButton("&New	Game",	this,	"newgame");

								restart->setFont(QFont("Times",	18,	QFont::Bold));

								connect(restart,	SIGNAL(clicked()),	this,	SLOT(newGame()));

New	GamenewGame()

								hits	=	new	QLCDNumber(2,	this,	"hits");

								shotsLeft	=	new	QLCDNumber(2,	this,	"shotsleft");

								QLabel	*hitsL	=	new	QLabel("HITS",	this,	"hitsLabel");

								QLabel	*shotsLeftL

												=	new	QLabel("SHOTS	LEFT",	this,	"shotsleftLabel");

QLabelGameBoardGameBoardQt

								QHBoxLayout	*topBox	=	new	QHBoxLayout;

								grid->addLayout(topBox,	0,	1);

								topBox->addWidget(shoot);

								topBox->addWidget(hits);

								topBox->addWidget(hitsL);

								topBox->addWidget(shotsLeft);

								topBox->addWidget(shotsLeftL);

								topBox->addStretch(1);

								topBox->addWidget(restart);

New	Game

								newGame();

				}

GameBoardnewGame()newGame()

				void	GameBoard::fire()

				{

								if	(cannonField->gameOver()	||	cannonField->isShooting())

												return;

								shotsLeft->display(shotsLeft->intValue()	-	1);

								cannonField->shoot();

				}

				void	GameBoard::hit()

				{

								hits->display(hits->intValue()	+	1);

								if	(shotsLeft->intValue()	==	0)

												cannonField->setGameOver();

								else

												cannonField->newTarget();

				}

CannonField

				void	GameBoard::missed()

				{

								if	(shotsLeft->intValue()	==	0)

												cannonField->setGameOver();

				}

				void	GameBoard::newGame()

				{

								shotsLeft->display(15);

								hits->display(0);

								cannonField->restartGame();

								cannonField->newTarget();

				}

Restart15

t13/main.cpp

MyWidgetmain()

makefile

[]	[]	[]

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Qt	——	

CannonFieldCannonField

t14/lcdrange.hLCDRange
t14/lcdrange.cppLCDRange
t14/cannon.hCannonField
t14/cannon.cppCannonField
t14/gamebrd.hGameBoard
t14/gamebrd.cppGameBoard
t14/main.cppMyWidgetmain

t14/cannon.h

CannonFieldCannonField

				protected:

								void		paintEvent(QPaintEvent	*);

								void		mousePressEvent(QMouseEvent	*);

								void		mouseMoveEvent(QMouseEvent	*);

								void		mouseReleaseEvent(QMouseEvent	*);

CannonField

								void		paintBarrier(QPainter	*);

								QRect	barrierRect()	const;

								bool		barrelHit(const	QPoint	&)	const;

								bool	barrelPressed;

TRUE

t14/cannon.cpp

								barrelPressed	=	FALSE;

								}	else	if	(shotR.x()	>	width()	||	shotR.y()	>	height()	||

																				shotR.intersects(barrierRect()))	{

				void	CannonField::mousePressEvent(QMouseEvent	*e)

				{

								if	(e->button()	!=	LeftButton)

												return;

								if	(barrelHit(e->pos()))

												barrelPressed	=	TRUE;

				}

Qt

pos()

				void	CannonField::mouseMoveEvent(QMouseEvent	*e)

				{

								if	(!barrelPressed)

												return;

								QPoint	pnt	=	e->pos();

								if	(pnt.x()	<=	0)

												pnt.setX(1);

								if	(pnt.y()	>=	height())

												pnt.setY(height()	-	1);

								double	rad	=	atan(((double)rect().bottom()-pnt.y())/pnt.x());

								setAngle(qRound	(rad*180/3.14159265));

				}

Qt/Qt

setAngle()

				void	CannonField::mouseReleaseEvent(QMouseEvent	*e)

				{

								if	(e->button()	==	LeftButton)

												barrelPressed	=	FALSE;

				}

Qt

								if	(updateR.intersects(barrierRect()))

												paintBarrier(&p);

paintBarrier()paintShot()paintTarget()paintCannon()

				void	CannonField::paintBarrier(QPainter	*p)

				{

								p->setBrush(yellow);

								p->setPen(black);

								p->drawRect(barrierRect());

				}

				QRect	CannonField::barrierRect()	const

				{

								return	QRect(145,	height()	-	100,	15,	100);

				}

				bool	CannonField::barrelHit(const	QPoint	&p)	const

				{

								QWMatrix	mtx;

								mtx.translate(0,	height()	-	1);

								mtx.rotate(-ang);

								mtx	=	mtx.invert();

								return	barrelRect.contains(mtx.map(p));

				}

TRUEFALSE

QWMatrixqwmatrix.hqpainter.h

QWMatrix QPainter

paintCannon()

p pTRUE

t14/gamebrd.cpp

				#include	<qaccel.h>

QAccel

								QVBox	*box	=	new	QVBox(this,	"cannonFrame");

								box->setFrameStyle(QFrame::WinPanel	|	QFrame::Sunken);

								cannonField	=	new	CannonField(box,	"cannonField");

QVBox CannonField QVBoxCannonField

								QAccel	*accel	=	new	QAccel(this);

								accel->connectItem(accel->insertItem(Key_Enter),

																												this,	SLOT(fire()));

								accel->connectItem(accel->insertItem(Key_Return),

																												this,	SLOT(fire()));

Enterfire()Ctrl+QEnterReturn

								accel->connectItem(accel->insertItem(CTRL+Key_Q),

																												qApp,	SLOT(quit()));

Ctrl+QAlt+QCtrl+Q

CTRLKey_EnterKey_ReturnKey_QQtQt::Key_Enter

								QGridLayout	*grid	=	new	QGridLayout(this,	2,	2,	10);

								grid->addWidget(quit,	0,	0);

								grid->addWidget(box,	1,	1);

								grid->setColStretch(1,	10);

boxQVBoxCannonField

EnterCannnonField

makefile

Igor	Rafienko

[]	[]	[]

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

mailto:igorr@ifi.uio.no
http://www.stud.ifi.uio.no/~igorr/download.html
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Qt
“”QtQt

Qt Qt

“”

	»

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

chart

«		|	“”	»

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

“”

chart Element

main.cpp

QCanvasViewQCanvasQCanvasView QCanvasText

chart.proMakefile

«		|		|		»

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Element

element.h

				private:

								double	m_value;

								QColor	m_valueColor;

								int	m_valuePattern;

								QString	m_label;

								QColor	m_labelColor;

								double	m_propoints[2	*	MAX_PROPOINTS];

				#include	<qcolor.h>

				#include	<qnamespace.h>

				#include	<qstring.h>

				#include	<qvaluevector.h>

Element QtQt qcolor.hElement qnamespace.hQt Qt
ElementQtqnamespace.hQt ElementQt qstring.hQtUnicode

Element qvaluevector.h

				typedef	QValueVector<Element>	ElementVector;

Qt QValueVector ElementVector

				const	double	EPSILON	=	0.0000001;	//		>	INVALID

				class	Element

				{

				public:

								enum	{	INVALID	=	-1	};

								enum	{	NO_PROPORTION	=	-1	};

								enum	{	MAX_PROPOINTS	=	3	};	//	

Element INVALIDisValid() Element INVALID

ElementNO_PROPORTION

xy(x,y)
300400x300/400	=	0.75

MAX_PROPOINTSxy ElementChartForm

								Element(double	value	=	INVALID,	QColor	valueColor	=	Qt::gray,

																	int	valuePattern	=	Qt::SolidPattern,

																	const	QString&	label	=	QString::null,

																	QColor	labelColor	=	Qt::black)	{

												init(value,	valueColor,	valuePattern,	label,	labelColor);

												for	(int	i	=	0;	i	<	MAX_PROPOINTS	*	2;	++i)

																m_propoints[i]	=	NO_PROPORTION;

								}

Elementinit()set()

								bool	isValid()	const	{	return	m_value	>	EPSILON;	}

ElementisValid()

element.cpp

				double	Element::proX(int	index)	const

				{

								Q_ASSERT(index	>=	0	&&	index	<	MAX_PROPOINTS);

								return	m_propoints[2	*	index];

				}

ElementproX()proY()setProX()setProY() Q_ASSERT

element.h

				Q_EXPORT	QTextStream	&operator<<(QTextStream&,	const	Element&);

				Q_EXPORT	QTextStream	&operator>>(QTextStream&,	Element&);

Element<<>> Element

element.cpp

				#include	"element.h"

				#include	<qstringlist.h>

				#include	<qtextstream.h>

qtextstream.hqstringlist.h

				const	char	FIELD_SEP	=	':';

				const	char	PROPOINT_SEP	=	';';

				const	char	XY_SEP	=	',';

xy

20:#ff0000:14:#000000:0.767033,0.412946;0,0.75;0,0:Red	:with	colons:!

70:#00ffff:2:#ffff00:0.450549,0.198661;0.198516,0.125954;0,0.198473:Cyan

35:#0000ff:8:#555500:0.10989,0.299107;0.397032,0.562977;0,0.396947:Blue

55:#ffff00:1:#000080:0.0989011,0.625;0.595547,0.312977;0,0.59542:Yellow

80:#ff00ff:1:#000000:0.518681,0.694196;0.794063,0;0,0.793893:Magenta	or	Violet

Element

				QTextStream	&operator<<(QTextStream	&s,	const	Element	&element)

				{

								s	<<	element.value()	<<	FIELD_SEP

										<<	element.valueColor().name()	<<	FIELD_SEP

										<<	element.valuePattern()	<<	FIELD_SEP

										<<	element.labelColor().name()	<<	FIELD_SEP;

								for	(int	i	=	0;	i	<	Element::MAX_PROPOINTS;	++i)	{

												s	<<	element.proX(i)	<<	XY_SEP	<<	element.proY(i);

												s	<<	(i	==	Element::MAX_PROPOINTS	-	1	?	FIELD_SEP	:	PROPOINT_SEP);

								}

								s	<<	element.label()	<<	'\n';

								return	s;

				}

XY_SEP

				QTextStream	&operator>>(QTextStream	&s,	Element	&element)

				{

								QString	data	=	s.readLine();

								element.setValue(Element::INVALID);

								int	errors	=	0;

								bool	ok;

								QStringList	fields	=	QStringList::split(FIELD_SEP,	data);

								if	(fields.count()	>=	4)	{

												double	value	=	fields[0].toDouble(&ok);

												if	(!ok)

																errors++;

												QColor	valueColor	=	QColor(fields[1]);

												if	(!valueColor.isValid())

																errors++;

												int	valuePattern	=	fields[2].toInt(&ok);

												if	(!ok)

																errors++;

												QColor	labelColor	=	QColor(fields[3]);

												if	(!labelColor.isValid())

																errors++;

												QStringList	propoints	=	QStringList::split(PROPOINT_SEP,	fields[4]);

												QString	label	=	data.section(FIELD_SEP,	5);

												if	(!errors)	{

																element.set(value,	valueColor,	valuePattern,	label,	labelColor);

																int	i	=	0;

																for	(QStringList::iterator	point	=	propoints.begin();

																				i	<	Element::MAX_PROPOINTS	&&	point	!=	propoints.

																				++i,	++point)	{

																				errors	=	0;

																				QStringList	xy	=	QStringList::split(XY_SEP,	*point);

																				double	x	=	xy[0].toDouble(&ok);

																				if	(!ok	||	x	<=	0.0	||	x	>=	1.0)

																								errors++;

																				double	y	=	xy[1].toDouble(&ok);

																				if	(!ok	||	y	<=	0.0	||	y	>=	1.0)

																								errors++;

																				if	(errors)

																								x	=	y	=	Element::NO_PROPORTION;

																				element.setProX(i,	x);

																				element.setProY(i,	y);

																}

												}

								}

								return	s;

				}

QStringList::split() FIELD_SEP

Element::set() INVALIDxy NO_PROPORTION

Element

main.cpp

QtQDataStreamQt

«	“” 	|		|		»

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

main.cpp

				#include	<qapplication.h>

				#include	"chartform.h"

				int	main(int	argc,	char	*argv[])

				{

								QApplication	app(argc,	argv);

								QString	filename;

								if	(app.argc()	>	1)	{

												filename	=	app.argv()[1];

												if	(!filename.endsWith(".cht"))

																filename	=	QString::null;

								}

								ChartForm	*cf	=	new	ChartForm(filename);

								app.setMainWidget(cf);

								cf->show();

								app.connect(&app,	SIGNAL(lastWindowClosed()),	cf,	SLOT(fileQuit()));

								return	app.exec();

				}

main() QApplication chart	mychart.cht

«		|		|		»

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

chartCanvasView

chartform.h

				class	ChartForm:	public	QMainWindow

				{

								Q_OBJECT

				public:

								enum	{	MAX_ELEMENTS	=	100	};

								enum	{	MAX_RECENTFILES	=	9	};	//	9

								enum	ChartType	{	PIE,	VERTICAL_BAR,	HORIZONTAL_BAR	};

								enum	AddValuesType	{	NO,	YES,	AS_PERCENTAGE	};

								ChartForm(const	QString&	filename);

								~ChartForm();

								int	chartType()	{	return	m_chartType;	}

								void	setChanged(bool	changed	=	true)	{	m_changed	=	changed;	}

								void	drawElements();

								QPopupMenu	*optionsMenu;	//	canvasview.cpp

				private	slots:

								void	fileNew();

								void	fileOpen();

								void	fileOpenRecent(int	index);

								void	fileSave();

								void	fileSaveAs();

								void	fileSaveAsPixmap();

								void	filePrint();

								void	fileQuit();

								void	optionsSetData();

								void	updateChartType(QAction	*action);

								void	optionsSetFont();

								void	optionsSetOptions();

								void	helpHelp();

								void	helpAbout();

								void	helpAboutQt();

								void	saveOptions();

				private:

								void	init();

								void	load(const	QString&	filename);

								bool	okToClear();

								void	drawPieChart(const	double	scales[],	double	total,	int	count);

								void	drawVerticalBarChart(const	double	scales[],	double	total,	int	count);

								void	drawHorizontalBarChart(const	double	scales[],	double	total,	int	count);

								QString	valueLabel(const	QString&	label,	double	value,	double	total);

								void	updateRecentFiles(const	QString&	filename);

								void	updateRecentFilesMenu();

								void	setChartType(ChartType	chartType);

								QPopupMenu	*fileMenu;

								QAction	*optionsPieChartAction;

								QAction	*optionsHorizontalBarChartAction;

								QAction	*optionsVerticalBarChartAction;

								QString	m_filename;

								QStringList	m_recentFiles;

								QCanvas	*m_canvas;

								CanvasView	*m_canvasView;

								bool	m_changed;

								ElementVector	m_elements;

								QPrinter	*m_printer;

								ChartType	m_chartType;

								AddValuesType	m_addValues;

								int	m_decimalPlaces;

								QFont	m_font;

				};

QMainWindowChartFormQ_OBJECTQt

“changed”drawElements()

QCanvas QCanvasView

fileNew()optionsSetData()

chartform.cpp chartform_canvas.cpp

chartform.cpp

				#include	"images/file_new.xpm"

				#include	"images/file_open.xpm"

				#include	"images/options_piechart.xpm"

chartimages.xpm

				ChartForm::ChartForm(const	QString&	filename)

								:	QMainWindow(0,	0,	WDestructiveClose)

...

								QAction	*fileNewAction;

								QAction	*fileOpenAction;

								QAction	*fileSaveAction;

QAction

QtQAction

								fileNewAction	=	new	QAction(

																"New	Chart",	QPixmap(file_new),

																"&New",	CTRL+Key_N,	this,	"new");

								connect(fileNewAction,	SIGNAL(activated()),	this,	SLOT(fileNew()));

0

QActionGroup

								QActionGroup	*chartGroup	=	new	QActionGroup(this);	//	Connected	later

								chartGroup->setExclusive(true);

thisexlusivesetExclusive()

								optionsPieChartAction	=	new	QAction(

																"Pie	Chart",	QPixmap(options_piechart),

																"&Pie	Chart",	CTRL+Key_I,	chartGroup,	"pie	chart");

								optionsPieChartAction->setToggleAction(true);

/setToggleAction(TRUE)

								QToolBar*	fileTools	=	new	QToolBar(this,	"file	operations");

								fileTools->setLabel("File	Operations");

								fileNewAction->addTo(fileTools);

								fileOpenAction->addTo(fileTools);

								fileSaveAction->addTo(fileTools);

...

								fileMenu	=	new	QPopupMenu(this);

								menuBar()->insertItem("&File",	fileMenu);

								fileNewAction->addTo(fileMenu);

								fileOpenAction->addTo(fileMenu);

								fileSaveAction->addTo(fileMenu);

QAction

								QSettings	settings;

								settings.insertSearchPath(QSettings::Windows,	WINDOWS_REGISTRY);

								int	windowWidth	=	settings.readNumEntry(APP_KEY	+	"WindowWidth",	460);

								int	windowHeight	=	settings.readNumEntry(APP_KEY	+	"WindowHeight",	530);

								int	windowX	=	settings.readNumEntry(APP_KEY	+	"WindowX",	0);

								int	windowY	=	settings.readNumEntry(APP_KEY	+	"WindowY",	0);

								setChartType(ChartType(

																settings.readNumEntry(APP_KEY	+	"ChartType",	int(PIE))));

								m_font	=	QFont("Helvetica",	18,	QFont::Bold);

								m_font.fromString(

																settings.readEntry(APP_KEY	+	"Font",	m_font.toString()));

								for	(int	i	=	0;	i	<	MAX_RECENTFILES;	++i)	{

												QString	filename	=	settings.readEntry(APP_KEY	+	"File"	+

																																																			QString::number(i	+	1));

												if	(!filename.isEmpty())

																m_recentFiles.push_back(filename);

								}

								if	(m_recentFiles.count())

												updateRecentFilesMenu();

QSettingsQSettingsinsertSearchPath()Windows #ifdef

readNumEntry()CharType“Font”

QSettings“File1”“File9”updateRecentFilesMenu()
File

								connect(chartGroup,	SIGNAL(selected(QAction*)),

																	this,	SLOT(updateChartType(QAction*)));

updateChartType()

								resize(windowWidth,	windowHeight);

								move(windowX,	windowY);

								m_canvas	=	new	QCanvas(this);

								m_canvas->resize(width(),	height());

								m_canvasView	=	new	CanvasView(m_canvas,	&m_elements,	this);

								setCentralWidget(m_canvasView);

								m_canvasView->show();

QCanvas CanvasView QCanvasViewQCanvas

								if	(!filename.isEmpty())

												load(filename);

								else	{

												init();

												m_elements[0].set(20,	red,				14,	"Red");

												m_elements[1].set(70,	cyan,				2,	"Cyan",			darkGreen);

												m_elements[2].set(35,	blue,			11,	"Blue");

												m_elements[3].set(55,	yellow,		1,	"Yellow",	darkBlue);

												m_elements[4].set(80,	magenta,	1,	"Magenta");

												drawElements();

								}

								statusBar()->message("Ready",	2000);

statusBar()

init()

				void	ChartForm::init()

				{

								setCaption("Chart");

								m_filename	=	QString::null;

								m_changed	=	false;

								m_elements[0]		=	Element(Element::INVALID,	red);

								m_elements[1]		=	Element(Element::INVALID,	cyan);

								m_elements[2]		=	Element(Element::INVALID,	blue);

...

init()

QString::null

okToClear()

				bool	ChartForm::okToClear()

				{

								if	(m_changed)	{

												QString	msg;

												if	(m_filename.isEmpty())

																msg	=	"Unnamed	chart	";

												else

																msg	=	QString("Chart	'%1'\n").arg(m_filename);

												msg	+=	"has	been	changed.";

												switch(QMessageBox::information(this,	"Chart	--	Unsaved	Changes",

																																														msg,	"&Save",	"Cancel",	"&Abandon",

																																														0,	1))	{

																case	0:

																				fileSave();

																				break;

																case	1:

																default:

																				return	false;

																				break;

																case	2:

																				break;

												}

								}

								return	true;

				}

okToClear()

fileNew()

				void	ChartForm::fileNew()

				{

								if	(okToClear())	{

												init();

												drawElements();

								}

				}

fileNew()okToClear()

optionsSetData()optionsSetData()

fileOpen()

				void	ChartForm::fileOpen()

				{

								if	(!okToClear())

												return;

								QString	filename	=	QFileDialog::getOpenFileName(

																																QString::null,	"Charts	(*.cht)",	this,

																																"file	open",	"Chart	--	File	Open");

								if	(!filename.isEmpty())

												load(filename);

								else

												statusBar()->message("File	Open	abandoned",	2000);

				}

okToClear() QFileDialog::getOpenFileName

fileSaveAs()

				void	ChartForm::fileSaveAs()

				{

								QString	filename	=	QFileDialog::getSaveFileName(

																																QString::null,	"Charts	(*.cht)",	this,

																																"file	save	as",	"Chart	--	File	Save	As");

								if	(!filename.isEmpty())	{

												int	answer	=	0;

												if	(QFile::exists(filename))

																answer	=	QMessageBox::warning(

																																this,	"Chart	--	Overwrite	File",

																																QString("Overwrite\n\'%1\'?").

																																				arg(filename),

																																"&Yes",	"&No",	QString::null,	1,	1);

												if	(answer	==	0)	{

																m_filename	=	filename;

																updateRecentFiles(filename);

																fileSave();

																return;

												}

								}

								statusBar()->message("Saving	abandoned",	2000);

				}

QFileDialog::getSaveFileName() QMessageBox::warning

								QStringList	m_recentFiles;

				void	ChartForm::updateRecentFilesMenu()

				{

								for	(int	i	=	0;	i	<	MAX_RECENTFILES;	++i)	{

												if	(fileMenu->findItem(i))

																fileMenu->removeItem(i);

												if	(i	<	int(m_recentFiles.count()))

																fileMenu->insertItem(QString("&%1	%2").

																																								arg(i	+	1).arg(m_recentFiles[i]),

																																						this,	SLOT(fileOpenRecent(int)),

																																						0,	i);

								}

				}

updateRecentFiles()
fileOpenRecent()idQtid<0id>=0

				void	ChartForm::updateRecentFiles(const	QString&	filename)

				{

								if	(m_recentFiles.find(filename)	!=	m_recentFiles.end())

												return;

								m_recentFiles.push_back(filename);

								if	(m_recentFiles.count()	>	MAX_RECENTFILES)

												m_recentFiles.pop_front();

								updateRecentFilesMenu();

				}

>9updateRecentFilesMenu()File

				void	ChartForm::fileOpenRecent(int	index)

				{

								if	(!okToClear())

												return;

								load(m_recentFiles[index]);

				}

fileOpenRecent()idid

				void	ChartForm::fileQuit()

				{

								if	(okToClear())	{

												saveOptions();

												qApp->exit(0);

								}

				}

okToClear()

				void	ChartForm::saveOptions()

				{

								QSettings	settings;

								settings.insertSearchPath(QSettings::Windows,	WINDOWS_REGISTRY);

								settings.writeEntry(APP_KEY	+	"WindowWidth",	width());

								settings.writeEntry(APP_KEY	+	"WindowHeight",	height());

								settings.writeEntry(APP_KEY	+	"WindowX",	x());

								settings.writeEntry(APP_KEY	+	"WindowY",	y());

								settings.writeEntry(APP_KEY	+	"ChartType",	int(m_chartType));

								settings.writeEntry(APP_KEY	+	"AddValues",	int(m_addValues));

								settings.writeEntry(APP_KEY	+	"Decimals",	m_decimalPlaces);

								settings.writeEntry(APP_KEY	+	"Font",	m_font.toString());

								for	(int	i	=	0;	i	<	int(m_recentFiles.count());	++i)

												settings.writeEntry(APP_KEY	+	"File"	+	QString::number(i	+	1),

																																	m_recentFiles[i]);

				}

QSettings

				void	ChartForm::optionsSetOptions()

				{

								OptionsForm	*optionsForm	=	new	OptionsForm(this);

								optionsForm->chartTypeComboBox->setCurrentItem(m_chartType);

								optionsForm->setFont(m_font);

								if	(optionsForm->exec())	{

												setChartType(ChartType(

																				optionsForm->chartTypeComboBox->currentItem()));

												m_font	=	optionsForm->font();

												drawElements();

								}

								delete	optionsForm;

				}

OptionsForm “”“OK”exec()

				void	ChartForm::optionsSetData()

				{

								SetDataForm	*setDataForm	=	new	SetDataForm(&m_elements,	m_decimalPlaces,	this);

								if	(setDataForm->exec())	{

												m_changed	=	true;

												drawElements();

								}

								delete	setDataForm;

				}

SetDataForm “”“OK”exec()optionsSetData()
changeddrawElements()

«		|		|		»

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

drawElements()

chartform_canvas.cpp

drawElements()
				void	ChartForm::drawElements()

				{

								QCanvasItemList	list	=	m_canvas->allItems();

								for	(QCanvasItemList::iterator	it	=	list.begin();	it	!=	list.

												delete	*it;

drawElements()

												//	360	*	16Qt16360x16

								int	scaleFactor	=	m_chartType	==	PIE	?	5760	:

																												m_chartType	==	VERTICAL_BAR	?	m_canvas->height()	:

																																m_canvas->width();

								double	biggest	=	0.0;

								int	count	=	0;

								double	total	=	0.0;

								static	double	scales[MAX_ELEMENTS];

								for	(int	i	=	0;	i	<	MAX_ELEMENTS;	++i)	{

												if	(m_elements[i].isValid())	{

																double	value	=	m_elements[i].value();

																count++;

																total	+=	value;

																if	(value	>	biggest)

																				biggest	=	value;

																scales[i]	=	m_elements[i].value()	*	scaleFactor;

												}

								}

								if	(count)	{

																//	

												for	(int	i	=	0;	i	<	MAX_ELEMENTS;	++i)

																if	(m_elements[i].isValid())

																				if	(m_chartType	==	PIE)

																								scales[i]	=	(m_elements[i].value()	*	scaleFactor)	/	total;

																				else

																								scales[i]	=	(m_elements[i].value()	*	scaleFactor)	/	biggest;

												switch	(m_chartType)	{

																case	PIE:

																				drawPieChart(scales,	total,	count);

																				break;

																case	VERTICAL_BAR:

																				drawVerticalBarChart(scales,	total,	count);

																				break;

																case	HORIZONTAL_BAR:

																				drawHorizontalBarChart(scales,	total,	count);

																				break;

												}

								}

								m_canvas->update();

update()

drawHorizontalBarChart()

Qt

				void	ChartForm::drawHorizontalBarChart(

												const	double	scales[],	double	total,	int	count)

				{

								double	width	=	m_canvas->width();

								double	height	=	m_canvas->height();

								int	proheight	=	int(height	/	count);

								int	y	=	0;

proheight y0

								QPen	pen;

								pen.setStyle(NoPen);

NoPen

								for	(int	i	=	0;	i	<	MAX_ELEMENTS;	++i)	{

												if	(m_elements[i].isValid())	{

																int	extent	=	int(scales[i]);

																QCanvasRectangle	*rect	=	new	QCanvasRectangle(

																																																0,	y,	extent,	proheight,	m_canvas);

																rect->setBrush(QBrush(m_elements[i].valueColor(),

																																								BrushStyle(m_elements[i].valuePattern())));

																rect->setPen(pen);

																rect->setZ(0);

																rect->show();

QCanvasRectanglex0y0

																QString	label	=	m_elements[i].label();

																if	(!label.isEmpty()	||	m_addValues	!=	NO)	{

																				double	proX	=	m_elements[i].proX(HORIZONTAL_BAR);

																				double	proY	=	m_elements[i].proY(HORIZONTAL_BAR);

																				if	(proX	<	0	||	proY	<	0)	{

																								proX	=	0;

																								proY	=	y	/	height;

																				}

CanvasTextxy<	0x0y
x,y

																				label	=	valueLabel(label,	m_elements[i].value(),	total);

valueLabel()valueLabel()

																				CanvasText	*text	=	new	CanvasText(i,	label,	m_font,	m_canvas);

																				text->setColor(m_elements[i].labelColor());

																				text->setX(proX	*	width);

																				text->setY(proY	*	height);

																				text->setZ(1);

																				text->show();

																				m_elements[i].setProX(HORIZONTAL_BAR,	proX);

																				m_elements[i].setProY(HORIZONTAL_BAR,	proY);

CanvasTextxyZ1Z0show()xy

																}

																y	+=	proheight;

y

												}

								}

				}

QCanvasText

canvastext.h

				class	CanvasText	:	public	QCanvasText

				{

				public:

								enum	{	CANVAS_TEXT	=	1100	};

								CanvasText(int	index,	QCanvas	*canvas)

												:	QCanvasText(canvas),	m_index(index)	{}

								CanvasText(int	index,	const	QString&	text,	QCanvas	*canvas)

												:	QCanvasText(text,	canvas),	m_index(index)	{}

								CanvasText(int	index,	const	QString&	text,	QFont	font,	QCanvas	*canvas)

												:	QCanvasText(text,	font,	canvas),	m_index(index)	{}

								int	index()	const	{	return	m_index;	}

								void	setIndex(int	index)	{	m_index	=	index;	}

								int	rtti()	const	{	return	CANVAS_TEXT;	}

				private:

								int	m_index;

				};

CanvasText QCanvasText m_index

QCanvasView

canvasview.h

				class	CanvasView	:	public	QCanvasView

				{

								Q_OBJECT

				public:

								CanvasView(QCanvas	*canvas,	ElementVector	*elements,

																				QWidget*	parent	=	0,	const	char*	name	=	"canvas	view",

																				WFlags	f	=	0)

												:	QCanvasView(canvas,	parent,	name,	f),

														m_elements(elements)	{}

				protected:

								void	viewportResizeEvent(QResizeEvent	*e);

								void	contentsMousePressEvent(QMouseEvent	*e);

								void	contentsMouseMoveEvent(QMouseEvent	*e);

								void	contentsContextMenuEvent(QContextMenuEvent	*e);

				private:

								QCanvasItem	*m_movingItem;

								QPoint	m_pos;

								ElementVector	*m_elements;

				};

QCanvasView

1.	
2.	
3.	

canvasview.cpp

				void	CanvasView::contentsContextMenuEvent(QContextMenuEvent	*)

				{

								((ChartForm*)parent())->optionsMenu->exec(QCursor::pos());

				}

ChartFormexec()

				void	CanvasView::viewportResizeEvent(QResizeEvent	*e)

				{

								canvas()->resize(e->size().width(),	e->size().height());

								((ChartForm*)parent())->drawElements();

				}

drawElements()drawElements()

				void	CanvasView::contentsMousePressEvent(QMouseEvent	*e)

				{

								QCanvasItemList	list	=	canvas()->collisions(e->pos());

								for	(QCanvasItemList::iterator	it	=	list.begin();	it	!=	list.

												if	((*it)->rtti()	==	CanvasText::CANVAS_TEXT)	{

																m_movingItem	=	*it;

																m_pos	=	e->pos();

																return;

												}

								m_movingItem	=	0;

				}

“”

				void	CanvasView::contentsMouseMoveEvent(QMouseEvent	*e)

				{

								if	(m_movingItem)	{

												QPoint	offset	=	e->pos()	-	m_pos;

												m_movingItem->moveBy(offset.x(),	offset.y());

												m_pos	=	e->pos();

												ChartForm	*form	=	(ChartForm*)parent();

												form->setChanged(true);

												int	chartType	=	form->chartType();

												CanvasText	*item	=	(CanvasText*)m_movingItem;

												int	i	=	item->index();

												(*m_elements)[i].setProX(chartType,	item->x()	/	canvas()->width());

												(*m_elements)[i].setProY(chartType,	item->y()	/	canvas()->height());

												canvas()->update();

								}

				}

setChanged()xyxy
update()

QCanvas QCanvasViewshow() QCanvas::update()
QCanva QCanvasRectangleQCanvasEllipse

«		|		|		»

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

chartform_files.cpp

				void	ChartForm::load(const	QString&	filename)

				{

								QFile	file(filename);

								if	(!file.open(IO_ReadOnly))	{

												statusBar()->message(QString("Failed	to	load	\'%1\'").

																																				arg(filename),	2000);

												return;

								}

								init();	//	

								m_filename	=	filename;

								QTextStream	ts(&file);

								Element	element;

								int	errors	=	0;

								int	i	=	0;

								while	(!ts.eof())	{

												ts	>>	element;

												if	(element.isValid())

																m_elements[i++]	=	element;

								file.close();

								setCaption(QString("Chart	--	%1").arg(filename));

								updateRecentFiles(filename);

								drawElements();

								m_changed	=	false;

				}

				void	ChartForm::fileSave()

				{

								QFile	file(m_filename);

								if	(!file.open(IO_WriteOnly))	{

												statusBar()->message(QString("Failed	to	save	\'%1\'").

																																				arg(m_filename),	2000);

												return;

								}

								QTextStream	ts(&file);

								for	(int	i	=	0;	i	<	MAX_ELEMENTS;	++i)

												if	(m_elements[i].isValid())

																ts	<<	m_elements[i];

								file.close();

								setCaption(QString("Chart	--	%1").arg(m_filename));

								statusBar()->message(QString("Saved	\'%1\'").arg(m_filename),	2000);

								m_changed	=	false;

				}

«		|		|		»

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

setdataform.h

				class	SetDataForm:	public	QDialog

				{

								Q_OBJECT

				public:

								SetDataForm(ElementVector	*elements,	int	decimalPlaces,

																					QWidget	*parent	=	0,	const	char	*name	=	"set	data	form",

																					bool	modal	=	TRUE,	WFlags	f	=	0);

								~SetDataForm()	{}

				public	slots:

								void	setColor();

								void	setColor(int	row,	int	col);

								void	currentChanged(int	row,	int	col);

								void	valueChanged(int	row,	int	col);

				protected	slots:

								void	accept();

				private:

								QTable	*table;

								QPushButton	*colorPushButton;

								QPushButton	*okPushButton;

								QPushButton	*cancelPushButton;

				protected:

								QVBoxLayout	*tableButtonBox;

								QHBoxLayout	*buttonBox;

				private:

								ElementVector	*m_elements;

								int	m_decimalPlaces;

				};

“”

setdataform.cpp

				#include	"images/pattern01.xpm"

				#include	"images/pattern02.xpm"

.XPMQt

				SetDataForm::SetDataForm(ElementVector	*elements,	int	decimalPlaces,

																														QWidget*	parent,		const	char*	name,

																														bool	modal,	WFlags	f)

								:	QDialog(parent,	name,	modal,	f)

				{

								m_elements	=	elements;

								m_decimalPlaces	=	decimalPlaces;

QDialogSetDataForm

								setCaption("Chart	--	Set	Data");

								resize(540,	440);

								tableButtonBox	=	new	QVBoxLayout(this,	11,	6,	"table	button	box	layout");

tableButtonBox

								table	=	new	QTable(this,	"data	table");

								table->setNumCols(5);

								table->setNumRows(ChartForm::MAX_ELEMENTS);

								table->setColumnReadOnly(1,	true);

								table->setColumnReadOnly(2,	true);

								table->setColumnReadOnly(4,	true);

								table->setColumnWidth(0,	80);

								table->setColumnWidth(1,	60);	//	Columns	1	and	4	must	be	equal

								table->setColumnWidth(2,	60);

								table->setColumnWidth(3,	200);

								table->setColumnWidth(4,	60);

								QHeader	*th	=	table->horizontalHeader();

								th->setLabel(0,	"Value");

								th->setLabel(1,	"Color");

								th->setLabel(2,	"Pattern");

								th->setLabel(3,	"Label");

								th->setLabel(4,	"Color");

								tableButtonBox->addWidget(table);

QTableColortableButtonBox

								buttonBox	=	new	QHBoxLayout(0,	0,	6,	"button	box	layout");

								colorPushButton	=	new	QPushButton(this,	"color	button");

								colorPushButton->setText("&Color...");

								colorPushButton->setEnabled(false);

								buttonBox->addWidget(colorPushButton);

colorbuttonBox

								QSpacerItem	*spacer	=	new	QSpacerItem(0,	0,	QSizePolicy::Expanding,

																																																					QSizePolicy::Minimum);

								buttonBox->addItem(spacer);

colorOKCancelbuttonBox

								okPushButton	=	new	QPushButton(this,	"ok	button");

								okPushButton->setText("OK");

								okPushButton->setDefault(TRUE);

								buttonBox->addWidget(okPushButton);

								cancelPushButton	=	new	QPushButton(this,	"cancel	button");

								cancelPushButton->setText("Cancel");

								cancelPushButton->setAccel(Key_Escape);

								buttonBox->addWidget(cancelPushButton);

OKCancelbuttonBoxOKCancel

								tableButtonBox->addLayout(buttonBox);

buttonBoxtableButtonBox

								connect(table,	SIGNAL(clicked(int,int,int,const	QPoint&)),

																	this,	SLOT(setColor(int,int)));

								connect(table,	SIGNAL(currentChanged(int,int)),

																	this,	SLOT(currentChanged(int,int)));

								connect(table,	SIGNAL(valueChanged(int,int)),

																	this,	SLOT(valueChanged(int,int)));

								connect(colorPushButton,	SIGNAL(clicked()),	this,	SLOT(setColor()));

								connect(okPushButton,	SIGNAL(clicked()),	this,	SLOT(accept

								connect(cancelPushButton,	SIGNAL(clicked()),	this,	SLOT(

setColor()
QTablecurrentChanged()currentChanged()color/

valueChanged()valueChanged()

ColorsetColor()
OKaccept()
Cancel QDialogreject()

								QPixmap	patterns[MAX_PATTERNS];

								patterns[0]		=	QPixmap(pattern01);

								patterns[1]		=	QPixmap(pattern02);

patterns

								QRect	rect	=	table->cellRect(0,	1);

								QPixmap	pix(rect.width(),	rect.height());

								for	(int	i	=	0;	i	<	ChartForm::MAX_ELEMENTS;	++i)	{

												Element	element	=	(*m_elements)[i];

												if	(element.isValid())

																table->setText(

																				i,	0,

																				QString("%1").arg(element.value(),	0,	'f',

																																									m_decimalPlaces));

												QColor	color	=	element.valueColor();

												pix.fill(color);

												table->setPixmap(i,	1,	pix);

												table->setText(i,	1,	color.name());

												QComboBox	*combobox	=	new	QComboBox;

												for	(int	j	=	0;	j	<	MAX_PATTERNS;	++j)

																combobox->insertItem(patterns[j]);

												combobox->setCurrentItem(element.valuePattern()	-	1);

												table->setCellWidget(i,	2,	combobox);

												table->setText(i,	3,	element.label());

												color	=	element.labelColor();

												pix.fill(color);

												table->setPixmap(i,	4,	pix);

												table->setText(i,	4,	color.name());

0Value

				void	SetDataForm::currentChanged(int	row,	int	col)

				{

								colorPushButton->setEnabled(col	==	1	||	col	==	4);

								if	(col	==	2)

												((QComboBox*)table->cellWidget(row,	col))->popup();

				}

currentChanged()14colorPushButton

				void	SetDataForm::valueChanged(int	row,	int	col)

				{

								if	(col	==	0)	{

												bool	ok;

												double	d	=	table->text(row,	col).toDouble(&ok);

												if	(ok	&&	d	>	EPSILON)

																table->setText(

																				row,	col,	QString("%1").arg(

																																d,	0,	'f',	m_decimalPlaces));

												else

																table->setText(row,	col,	table->text(row,	col)	+	"?");

								}

				}

				void	SetDataForm::setColor()

				{

								setColor(table->currentRow(),	table->currentColumn());

								table->setFocus();

				}

ColorsetColor()

				void	SetDataForm::setColor(int	row,	int	col)

				{

								if	(!(col	==	1	||	col	==	4))

												return;

								QColor	color	=	QColorDialog::getColor(

																												QColor(table->text(row,	col)),

																												this,	"color	dialog");

								if	(color.isValid())	{

												QPixmap	pix	=	table->pixmap(row,	col);

												pix.fill(color);

												table->setPixmap(row,	col,	pix);

												table->setText(row,	col,	color.name());

								}

				}

QColorDialog::getColor

				void	SetDataForm::accept()

				{

								bool	ok;

								for	(int	i	=	0;	i	<	ChartForm::MAX_ELEMENTS;	++i)	{

												Element	&element	=	(*m_elements)[i];

												double	d	=	table->text(i,	0).toDouble(&ok);

												if	(ok)

																element.setValue(d);

												else

																element.setValue(Element::INVALID);

												element.setValueColor(QColor(table->text(i,	1)));

												element.setValuePattern(

																				((QComboBox*)table->cellWidget(i,	2))->currentItem()	+	1);

												element.setLabel(table->text(i,	3));

												element.setLabelColor(QColor(table->text(i,	4)));

								}

								QDialog::accept();

				}

OK

QDialog::accept()

«		|		|		»

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

optionsform.h

				class	OptionsForm	:	public	QDialog

				{

								Q_OBJECT

				public:

								OptionsForm(QWidget*	parent	=	0,	const	char*	name	=	"options	form",

																					bool	modal	=	FALSE,	WFlags	f	=	0);

								~OptionsForm()	{}

								QFont	font()	const	{	return	m_font;	}

								void	setFont(QFont	font);

								QLabel	*chartTypeTextLabel;

								QComboBox	*chartTypeComboBox;

								QPushButton	*fontPushButton;

								QLabel	*fontTextLabel;

								QFrame	*addValuesFrame;

								QButtonGroup	*addValuesButtonGroup;

								QRadioButton	*noRadioButton;

								QRadioButton	*yesRadioButton;

								QRadioButton	*asPercentageRadioButton;

								QLabel	*decimalPlacesTextLabel;

								QSpinBox	*decimalPlacesSpinBox;

								QPushButton	*okPushButton;

								QPushButton	*cancelPushButton;

				protected	slots:

								void	chooseFont();

				protected:

								QVBoxLayout	*optionsFormLayout;

								QHBoxLayout	*chartTypeLayout;

								QHBoxLayout	*fontLayout;

								QVBoxLayout	*addValuesFrameLayout;

								QVBoxLayout	*addValuesButtonGroupLayout;

								QHBoxLayout	*decimalPlacesLayout;

								QHBoxLayout	*buttonsLayout;

				private:

								QFont	m_font;

				};

“”“”

optionsform.cpp

				#include	"images/options_horizontalbarchart.xpm"

				#include	"images/options_piechart.xpm"

				#include	"images/options_verticalbarchart.xpm"

				OptionsForm::OptionsForm(QWidget*	parent,	const	char*	name,

																														bool	modal,	WFlags	f)

								:	QDialog(parent,	name,	modal,	f)

				{

								setCaption("Chart	--	Options");

								resize(320,	290);

QDialog

								optionsFormLayout	=	new	QVBoxLayout(this,	11,	6);

								chartTypeLayout	=	new	QHBoxLayout(0,	0,	6);

								chartTypeTextLabel	=	new	QLabel("&Chart	Type",	this);

								chartTypeLayout->addWidget(chartTypeTextLabel);

								chartTypeComboBox	=	new	QComboBox(false,	this);

								chartTypeComboBox->insertItem(QPixmap(options_piechart),	"Pie	Chart");

								chartTypeComboBox->insertItem(QPixmap(options_verticalbarchart),

																																							"Vertical	Bar	Chart");

								chartTypeComboBox->insertItem(QPixmap(options_horizontalbarchart),

																																							"Horizontal	Bar	Chart");

								chartTypeLayout->addWidget(chartTypeComboBox);

								optionsFormLayout->addLayout(chartTypeLayout);

								fontLayout	=	new	QHBoxLayout(0,	0,	6);

								fontPushButton	=	new	QPushButton("&Font...",	this);

								fontLayout->addWidget(fontPushButton);

								QSpacerItem*	spacer	=	new	QSpacerItem(0,	0,

																																															QSizePolicy::Expanding,

																																															QSizePolicy::Minimum);

								fontLayout->addItem(spacer);

								fontTextLabel	=	new	QLabel(this);	//	setFont()

								fontLayout->addWidget(fontTextLabel);

								optionsFormLayout->addLayout(fontLayout);

								addValuesFrame	=	new	QFrame(this);

								addValuesFrame->setFrameShape(QFrame::StyledPanel);

								addValuesFrame->setFrameShadow(QFrame::Sunken);

								addValuesFrameLayout	=	new	QVBoxLayout(addValuesFrame,	11,	6);

								addValuesButtonGroup	=	new	QButtonGroup("Show	Values",	addValuesFrame);

								addValuesButtonGroup->setColumnLayout(0,	Qt::Vertical);

								addValuesButtonGroup->layout()->setSpacing(6);

								addValuesButtonGroup->layout()->setMargin(11);

								addValuesButtonGroupLayout	=	new	QVBoxLayout(

																																												addValuesButtonGroup->layout

								addValuesButtonGroupLayout->setAlignment(Qt::AlignTop);

								noRadioButton	=	new	QRadioButton("&No",	addValuesButtonGroup);

								noRadioButton->setChecked(true);

								addValuesButtonGroupLayout->addWidget(noRadioButton);

								yesRadioButton	=	new	QRadioButton("&Yes",	addValuesButtonGroup);

								addValuesButtonGroupLayout->addWidget(yesRadioButton);

								asPercentageRadioButton	=	new	QRadioButton("As	&Percentage",

																																																				addValuesButtonGroup);

								addValuesButtonGroupLayout->addWidget(asPercentageRadioButton);

								addValuesFrameLayout->addWidget(addValuesButtonGroup);

Qt“No”

								connect(fontPushButton,	SIGNAL(clicked()),	this,	SLOT(chooseFont()));

								connect(okPushButton,	SIGNAL(clicked()),	this,	SLOT(accept

								connect(cancelPushButton,	SIGNAL(clicked()),	this,	SLOT(

1.	 chooseFont()
2.	 OK QDialog::accept()
3.	 Cancel QDialog::reject()

								chartTypeTextLabel->setBuddy(chartTypeComboBox);

								decimalPlacesTextLabel->setBuddy(decimalPlacesSpinBox);

setBuddy()

				void	OptionsForm::chooseFont()

				{

								bool	ok;

								QFont	font	=	QFontDialog::getFont(&ok,	m_font,	this);

								if	(ok)

												setFont(font);

				}

Font QFontDialog::getFont()setFont()

				void	OptionsForm::setFont(QFont	font)

				{

								QString	label	=	font.family()	+	"	"	+

																								QString::number(font.pointSize())	+	"pt";

								if	(font.bold())

												label	+=	"	Bold";

								if	(font.italic())

												label	+=	"	Italic";

								fontTextLabel->setText(label);

								m_font	=	font;

				}

m_fontchooseFont()

«	Taking	Data	|		|		»

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

chart.pro

				TEMPLATE	=	app

				CONFIG		+=	warn_on

				HEADERS	+=		element.h	\

																canvastext.h	\

																canvasview.h	\

																chartform.h	\

																optionsform.h	\

																setdataform.h

				SOURCES	+=		element.cpp	\

																canvasview.cpp	\

																chartform.cpp	\

																chartform_canvas.cpp	\

																chartform_files.cpp	\

																optionsform.cpp	\

																setdataform.cpp	\

																main.cpp

MakefileMakefile

qmake	-o	Makefile	chart.pro

«		|		|		»

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

chartQtQt

QtQt main.cpp.pro

chart

QValidator

«		|		»

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Examples
Qt	ships	with	lots	of	small	and	some	medium-sized	example	programs	that	teach
you	how	to	implement	various	tasks	with	Qt.	Most	of	them	will	show	how	to	use
a	certain	class	or	module,	others	aim	at	programming	techniques	and	Qt	basics,
and	some	of	them	simply	want	to	show	you	what's	possible.

Note	that	most	of	the	examples	assume	that	you	have	some	experience	with	C++
and	Qt	and	therefore	are	not	commented	extensively.	If	you	are	interested	in	a
line-by-line	coverage	please	refer	to	the	step-by-step	examples.

Qt	Base	Classes:	Assorted	Examples

QAction	and	QActionGroup
QFont,	QFontMetrics,	QFontInfo	and	QFontDatabase
QProcess

Qt	Modules:	Assorted	Examples

XML	examples
Network	examples
OpenGL	examples
Table	examples
SQL	examples

Qt	Extensions:	Assorted	Examples

Qt-based	plugins	for	web	browsers
Xt/Motif	support	extension

Miscellaneous	Examples

Analog	Clock
Simple	Addressbook
Biff	(UNIX	only)
Buttons	and	Groupboxes
Canvas	Example
Listviews	with	Checkable	Items
Cursors
Customized	Layoutmanager
Digital	Clock
Qt	Demo
Painting	on	the	Desktop
A	Directory	Browser
Drag	and	Drop
Draw	Demo
Connect	the	Points
Simple	Filemanager
A	Rectangle	Draw	"Benchmark"
Hello,	World
Simple	HTML	Help	Browser
Internationalization
Iconview
Layout	Managers
Conway's	Game	of	Life
Line	Edits
Listbox	Example
Listboxes	and	Comboboxes
Listviews
A	MDI	Application
Using	menus
Movies	or	the	Story	of	the	Animated	GIF	file

Picture
Popup	Widgets
Progress	Bar	and	Dialog	Example
Progress	Bar
QDir
Font	Displayer
QMag
A	Tiny	QTL	Example
Simple	HTML	Browser
Range	controls
Richtext
Rot13
Simple	Painting	Application
Scrollview
Show	Image
A	Complete	Application	Window
Drag	and	Drop	(Simple)
Sound	Example
Splitter
Tabdialog
Tablet	Example
Tetrix
Text	Edit	Example
Themes	(Styles)
Tic	Tac	Toe
Advanced	use	of	tool	tips
Widgets	Example
Wizard
Transformed	Graphics	Demo

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Step-by-step	Examples
Step-by-step	examples	provide	a	careful	explanation	of	example	code.

The	covered	example	programs	usually	show	how	to	use	certain	classes	or	deal
with	programming	techniques	and	Qt	basics.

These	examples	are	especially	aimed	at	Qt	novices	and	less	experienced
programmers	and	try	to	make	learning	Qt	as	painless	as	possible.

Walkthrough:	A	Tiny	Editor	Illustrating	QActionGroup
A	Complete	Canvas	Application
Walkthrough:	A	Simple	Application	with	Actions
Walkthrough:	A	Simple	Application
Walkthrough:	A	simple	QFont	demonstration
Walkthrough:	Using	SAX2	features	with	the	Qt	XML	classes
Walkthrough:	How	to	use	the	Qt	SAX2	classes

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Qt
Qt.

AQAccel QDockWindow QImageFormatPlugin
QAccessible QDomAttr QImageFormatType
QAccessibleInterface QDomCDATASection QImageIO
QAccessibleObject QDomCharacterData QIMEvent
QAction QDomComment QInputDialog
QActionGroup QDomDocument QIntCache
QApplication QDomDocumentFragment QIntCacheIterator
QAsciiCache QDomDocumentType QIntDict
QAsciiCacheIterator QDomElement QIntDictIterator
QAsciiDict QDomEntity QIntValidator
QAsciiDictIterator QDomEntityReference QIODevice

BQBitArray QDomImplementation JQJisCodec
QBitmap QDomNamedNodeMap KQKeyEvent
QBitVal QDomNode QKeySequence
QBoxLayout QDomNodeList LQLabel
QBrush QDomNotation QLayout
QBuffer QDomProcessingInstruction QLayoutItem
QButton QDomText QLayoutIterator
QButtonGroup QDoubleValidator QLCDNumber
QByteArray QDragEnterEvent QLibrary

CQCache QDragLeaveEvent QLineEdit
QCacheIterator QDragMoveEvent QListBox
QCanvas QDragObject QListBoxItem
QCanvasEllipse QDropEvent QListBoxPixmap
QCanvasItem EQEditorFactory QListBoxText
QCanvasItemList QErrorMessage QListView
QCanvasLine QEucJpCodec QListViewItem
QCanvasPixmap QEucKrCodec QListViewItemIterator

QCanvasPixmapArray QEvent QLocalFs
QCanvasPolygon FQFile QLock
QCanvasPolygonalItem QFileDialog MQMainWindow
QCanvasRectangle QFileIconProvider QMap
QCanvasSpline QFileInfo QMapConstIterator
QCanvasSprite QFilePreview QMapIterator
QCanvasText QFocusData QMemArray
QCanvasView QFocusEvent QMenuBar
QCDEStyle QFont QMenuData
QChar QFontDatabase QMessageBox
QCharRef QFontDialog QMetaObject
QCheckBox QFontInfo QMetaProperty
QCheckListItem QFontManager QMimeSource
QCheckTableItem QFontMetrics QMimeSourceFactory
QChildEvent QFrame QMotifPlusStyle
QClipboard QFtp QMotifStyle
QCloseEvent GQGb18030Codec QMouseEvent
QColor QGbkCodec QMoveEvent
QColorDialog QGL QMovie
QColorDrag QGLayoutIterator QMutex
QColorGroup QGLColormap NQNetworkOperation
QComboBox QGLContext QNetworkProtocol
QComboTableItem QGLFormat QNPInstance	*
QCommonStyle QGLWidget QNPlugin	*
QConstString QGrid QNPStream	*
QContextMenuEvent QGridLayout QNPWidget	*
QCopChannel QGridView OQObject
QCString QGroupBox QObjectCleanupHandler
QCursor QGuardedPtr QObjectList
QCustomEvent HQHBox QObjectListIt
QCustomMenuItem QHBoxLayout PQPaintDevice

DQDataBrowser QHButtonGroup QPaintDeviceMetrics
QDataStream QHeader QPainter

QDataTable QHebrewCodec QPaintEvent
QDataView QHGroupBox QPair
QDate QHideEvent QPalette
QDateEdit QHostAddress QPen
QDateTime QHttp QPicture
QDateTimeEdit IQIconDrag QPixmap
QDesktopWidget QIconDragItem QPixmapCache
QDial QIconSet QPlatinumStyle
QDialog QIconView QPNGImagePacker
QDict QIconViewItem QPoint
QDictIterator QImage QPointArray
QDir QImageConsumer QPopupMenu
QDirectPainter QImageDecoder QPrinter
QDns QImageDrag QProcess
QDockArea QImageFormat QProgressBar

*	NSPluginXt/Motif

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Qt
QtXML Qt

AQAction QFileDialog QMessageBox QSlider
QApplication QFont QMovie QSound

BQButtonGroup QFontDialog NQNetworkProtocol QSpinBox
CQCanvas GQGLWidget OQObject QSplitter
QCheckBox QGridLayout PQPainter QSql
QClipboard QGroupBox QPalette QSqlDatabase
QColorDialog QGuardedPtr QPen QSqlDriverPlugin
QComboBox HQHBoxLayout QPixmap QSqlForm

DQDataBrowser IQIconSet QPoint QSqlQuery
QDataTable QIconView QPopupMenu QStatusBar
QDataView QImage QPrinter QString
QDate QInputDialog QProcess QStringList
QDateEdit LQLabel QProgressBar TQTabDialog
QDateTime QLCDNumber QProgressDialog QTable
QDateTimeEdit QLibrary QPushButton QTabWidget
QDial QLineEdit RQRadioButton QTextBrowser
QDialog QListBox QRect QTextEdit
QDict QListView QRegExp QTextStream
QDir MQMainWindow SQScrollView QTime
QDockWindow QMap QSettings QTimeEdit

FQFile QMenuBar QSimpleRichText QTimer

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Qt

GUI
GUI,
SQL

MIME
,

GUI QApplication
()OpenGL

/

	
Qt
TAB

Qt
XML

DOMSAXXML

XML

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Annotated	Class	Index
Here	are	the	classes	in	Qt,	with	brief	descriptions:

QAccel Handles	keyboard	accelerator	and	shortcut	keys

QAccessible Enums	and	static	functions	relating	to
accessibility

QAccessibleInterface Defines	an	interface	that	exposes	information
about	accessible	objects

QAccessibleObject Implements	parts	of	the	QAccessibleInterface	for
QObjects

QAction Abstract	user	interface	action	that	can	appear
both	in	menus	and	tool	bars

QActionGroup Groups	actions	together

QApplication Manages	the	GUI	application's	control	flow	and
main	settings

QAsciiCache Template	class	that	provides	a	cache	based	on
char*	keys

QAsciiCacheIterator Iterator	for	QAsciiCache	collections

QAsciiDict Template	class	that	provides	a	dictionary	based
on	char*	keys

QAsciiDictIterator Iterator	for	QAsciiDict	collections
QBitArray Array	of	bits
QBitVal Internal	class,	used	with	QBitArray
QBitmap Monochrome	(1-bit	depth)	pixmaps
QBoxLayout Lines	up	child	widgets	horizontally	or	vertically

QBrush Defines	the	fill	pattern	of	shapes	drawn	by	a
QPainter

QBuffer I/O	device	that	operates	on	a	QByteArray

QButton The	abstract	base	class	of	button	widgets,
providing	functionality	common	to	buttons

QButtonGroup Organizes	QButton	widgets	in	a	group
QByteArray Array	of	bytes

QCDEStyle CDE	look	and	feel

QCString Abstraction	of	the	classic	C	zero-terminated	char
array	(char	*)

QCache Template	class	that	provides	a	cache	based	on
QString	keys

QCacheIterator Iterator	for	QCache	collections
QCanvas 2D	area	that	can	contain	QCanvasItem	objects
QCanvasEllipse Ellipse	or	ellipse	segment	on	a	QCanvas
QCanvasItem Abstract	graphic	object	on	a	QCanvas
QCanvasItemList List	of	QCanvasItems
QCanvasLine Line	on	a	QCanvas
QCanvasPixmap Pixmaps	for	QCanvasSprites
QCanvasPixmapArray Array	of	QCanvasPixmaps
QCanvasPolygon Polygon	on	a	QCanvas
QCanvasPolygonalItem Polygonal	canvas	item	on	a	QCanvas
QCanvasRectangle Rectangle	on	a	QCanvas
QCanvasSpline Multi-bezier	splines	on	a	QCanvas
QCanvasSprite Animated	canvas	item	on	a	QCanvas
QCanvasText Text	object	on	a	QCanvas
QCanvasView On-screen	view	of	a	QCanvas
QChar Lightweight	Unicode	character
QCharRef Helper	class	for	QString
QCheckBox Checkbox	with	a	text	label
QCheckListItem Checkable	list	view	items
QCheckTableItem Checkboxes	in	QTables
QChildEvent Event	parameters	for	child	object	events
QClipboard Access	to	the	window	system	clipboard
QCloseEvent Parameters	that	describe	a	close	event
QColor Colors	based	on	RGB	or	HSV	values
QColorDialog Dialog	widget	for	specifying	colors
QColorDrag Drag	and	drop	object	for	transferring	colors
QColorGroup Group	of	widget	colors
QComboBox Combined	button	and	popup	list

QComboTableItem Means	of	using	comboboxes	in	QTables

QCommonStyle Encapsulates	the	common	Look	and	Feel	of	a
GUI

QConstString String	objects	using	constant	Unicode	data
QContextMenuEvent Parameters	that	describe	a	context	menu	event

QCopChannel Communication	capabilities	between	several
clients

QCursor Mouse	cursor	with	an	arbitrary	shape
QCustomEvent Support	for	custom	events

QCustomMenuItem Abstract	base	class	for	custom	menu	items	in
popup	menus

QDataBrowser Data	manipulation	and	navigation	for	data	entry
forms

QDataStream Serialization	of	binary	data	to	a	QIODevice

QDataTable Flexible	SQL	table	widget	that	supports
browsing	and	editing

QDataView Read-only	SQL	forms
QDate Date	functions
QDateEdit Date	editor
QDateTime Date	and	time	functions

QDateTimeEdit Combines	a	QDateEdit	and	QTimeEdit	widget
into	a	single	widget	for	editing	datetimes

QDesktopWidget Access	to	screen	information	on	multi-head
systems

QDial Rounded	range	control	(like	a	speedometer	or
potentiometer)

QDialog The	base	class	of	dialog	windows

QDict Template	class	that	provides	a	dictionary	based
on	QString	keys

QDictIterator Iterator	for	QDict	collections

QDir Access	to	directory	structures	and	their	contents
in	a	platform-independent	way

QDirectPainter Direct	access	to	the	video	hardware
QDns Asynchronous	DNS	lookups

QDockArea Manages	and	lays	out	QDockWindows

QDockWindow
Widget	which	can	be	docked	inside	a
QDockArea	or	floated	as	a	top	level	window	on
the	desktop

QDomAttr Represents	one	attribute	of	a	QDomElement
QDomCDATASection Represents	an	XML	CDATA	section
QDomCharacterData Represents	a	generic	string	in	the	DOM
QDomComment Represents	an	XML	comment
QDomDocument Represents	an	XML	document

QDomDocumentFragment Tree	of	QDomNodes	which	is	not	usually	a
complete	QDomDocument

QDomDocumentType The	representation	of	the	DTD	in	the	document
tree

QDomElement Represents	one	element	in	the	DOM	tree
QDomEntity Represents	an	XML	entity
QDomEntityReference Represents	an	XML	entity	reference

QDomImplementation Information	about	the	features	of	the	DOM
implementation

QDomNamedNodeMap Collection	of	nodes	that	can	be	accessed	by	name
QDomNode The	base	class	for	all	the	nodes	in	a	DOM	tree
QDomNodeList List	of	QDomNode	objects
QDomNotation Represents	an	XML	notation
QDomProcessingInstruction Represents	an	XML	processing	instruction

QDomText Represents	text	data	in	the	parsed	XML
document

QDoubleValidator Range	checking	of	floating-point	numbers

QDragEnterEvent Event	which	is	sent	to	the	widget	when	a	drag
and	drop	first	drags	onto	the	widget

QDragLeaveEvent Event	which	is	sent	to	the	widget	when	a	drag
and	drop	leaves	the	widget

QDragMoveEvent Event	which	is	sent	while	a	drag	and	drop	is	in
progress

QDragObject Encapsulates	MIME-based	data	transfer

QDropEvent
Event	which	is	sent	when	a	drag	and	drop	is

completed

QEditorFactory Used	to	create	editor	widgets	for	QVariant	data
types

QErrorMessage Error	message	display	dialog
QEucJpCodec Conversion	to	and	from	EUC-JP	character	sets
QEucKrCodec Conversion	to	and	from	EUC-KR	character	sets

QEvent The	base	class	of	all	event	classes.	Event	objects
contain	event	parameters

QFile I/O	device	that	operates	on	files

QFileDialog Dialogs	that	allow	users	to	select	files	or
directories

QFileIconProvider Icons	for	QFileDialog	to	use
QFileInfo System-independent	file	information
QFilePreview File	previewing	in	QFileDialog
QFocusData Maintains	the	list	of	widgets	in	the	focus	chain
QFocusEvent Event	parameters	for	widget	focus	events
QFont Font	used	for	drawing	text

QFontDatabase Information	about	the	fonts	available	in	the
underlying	window	system

QFontDialog Dialog	widget	for	selecting	a	font
QFontInfo General	information	about	fonts
QFontManager Implements	font	management	in	Qt/Embedded
QFontMetrics Font	metrics	information
QFrame The	base	class	of	widgets	that	can	have	a	frame
QFtp Implementation	of	the	FTP	protocol

QGL Namespace	for	miscellaneous	identifiers	in	the
Qt	OpenGL	module

QGLColormap Used	for	installing	custom	colormaps	into
QGLWidgets

QGLContext Encapsulates	an	OpenGL	rendering	context

QGLFormat The	display	format	of	an	OpenGL	rendering
context

QGLWidget Widget	for	rendering	OpenGL	graphics
QGLayoutIterator Abstract	base	class	of	internal	layout	iterators

QGb18030Codec Conversion	to	and	from	the	Chinese
GB18030/GBK/GB2312	encoding

QGbkCodec Conversion	to	and	from	the	Chinese	GBK
encoding

QGrid Simple	geometry	management	of	its	children
QGridLayout Lays	out	widgets	in	a	grid
QGridView Abstract	base	for	fixed-size	grids
QGroupBox Group	box	frame	with	a	title

QGuardedPtr Template	class	that	provides	guarded	pointers	to
QObjects

QHBox Horizontal	geometry	management	for	its	child
widgets

QHBoxLayout Lines	up	widgets	horizontally

QHButtonGroup Organizes	QButton	widgets	in	a	group	with	one
horizontal	row

QHGroupBox Organizes	widgets	in	a	group	with	one	horizontal
row

QHeader Header	row	or	column,	e.g.	for	tables	and
listviews

QHebrewCodec Conversion	to	and	from	visually	ordered	Hebrew
QHideEvent Event	which	is	sent	after	a	widget	is	hidden
QHostAddress IP	address
QHttp Implementation	of	the	HTTP	protocol
QIMEvent Parameters	for	input	method	events
QIODevice The	base	class	of	I/O	devices

QIconDrag Supports	drag	and	drop	operations	within	a
QIconView

QIconDragItem Encapsulates	a	drag	item
QIconSet Set	of	icons	with	different	styles	and	sizes
QIconView Area	with	movable	labelled	icons
QIconViewItem Single	item	in	a	QIconView

QImage Hardware-independent	pixmap	representation
with	direct	access	to	the	pixel	data

QImageConsumer Abstraction	used	by	QImageDecoder

QImageDecoder Incremental	image	decoder	for	all	supported
image	formats

QImageDrag Drag	and	drop	object	for	transferring	images

QImageFormat Incremental	image	decoder	for	a	specific	image
format

QImageFormatPlugin Abstract	base	for	custom	image	format	plugins
QImageFormatType Factory	that	makes	QImageFormat	objects
QImageIO Parameters	for	loading	and	saving	images

QInputDialog Simple	convenience	dialog	to	get	a	single	value
from	the	user

QIntCache Template	class	that	provides	a	cache	based	on
long	keys

QIntCacheIterator Iterator	for	QIntCache	collections

QIntDict Template	class	that	provides	a	dictionary	based
on	long	keys

QIntDictIterator Iterator	for	QIntDict	collections

QIntValidator Validator	which	ensures	that	a	string	contains	a
valid	integer	within	a	specified	range

QJisCodec Conversion	to	and	from	JIS	character	sets
QKeyEvent Describes	a	key	event

QKeySequence Encapsulates	a	key	sequence	as	used	by
accelerators

QLCDNumber Displays	a	number	with	LCD-like	digits
QLabel Text	or	image	display
QLayout The	base	class	of	geometry	managers
QLayoutItem Abstract	item	that	a	QLayout	manipulates
QLayoutIterator Iterators	over	QLayoutItem
QLibrary Wrapper	for	handling	shared	libraries
QLineEdit One-line	text	editor
QListBox List	of	selectable,	read-only	items
QListBoxItem The	base	class	of	all	list	box	items
QListBoxPixmap List	box	items	with	a	pixmap	and	optional	text
QListBoxText List	box	items	that	display	text
QListView Implements	a	list/tree	view

QListViewItem Implements	a	list	view	item
QListViewItemIterator Iterator	for	collections	of	QListViewItems

QLocalFs Implementation	of	a	QNetworkProtocol	that
works	on	the	local	file	system

QLock Wrapper	for	a	System	V	shared	semaphore

QMainWindow Main	application	window,	with	a	menu	bar,	dock
windows	(e.g.	for	toolbars),	and	a	status	bar

QMap Value-based	template	class	that	provides	a
dictionary

QMapConstIterator Iterator	for	QMap
QMapIterator Iterator	for	QMap

QMemArray Template	class	that	provides	arrays	of	simple
types

QMenuBar Horizontal	menu	bar
QMenuData Base	class	for	QMenuBar	and	QPopupMenu

QMessageBox Modal	dialog	with	a	short	message,	an	icon,	and
some	buttons

QMetaObject Meta	information	about	Qt	objects
QMetaProperty Stores	meta	data	about	a	property

QMimeSource Abstraction	of	objects	which	provide	formatted
data	of	a	certain	MIME	type

QMimeSourceFactory Extensible	provider	of	mime-typed	data
QMotifPlusStyle More	sophisticated	Motif-ish	look	and	feel
QMotifStyle Motif	look	and	feel
QMouseEvent Parameters	that	describe	a	mouse	event
QMoveEvent Event	parameters	for	move	events

QMovie Incremental	loading	of	animations	or	images,
signalling	as	it	progresses

QMutex Access	serialization	between	threads
QNPInstance QObject	that	is	a	Web-browser	plugin

QNPStream Stream	of	data	provided	to	a	QNPInstance	by	the
browser

QNPWidget QWidget	that	is	a	Web-browser	plugin	window
QNPlugin The	plugin	central	factory

QNetworkOperation Common	operations	for	network	protocols
QNetworkProtocol Common	API	for	network	protocols
QObject The	base	class	of	all	Qt	objects
QObjectCleanupHandler Watches	the	lifetime	of	multiple	QObjects
QObjectList QPtrList	of	QObjects
QObjectListIt Iterator	for	QObjectLists
QPNGImagePacker Creates	well-compressed	PNG	animations
QPaintDevice The	base	class	of	objects	that	can	be	painted
QPaintDeviceMetrics Information	about	a	paint	device
QPaintEvent Event	parameters	for	paint	events
QPainter Does	low-level	painting	e.g.	on	widgets

QPair Value-based	template	class	that	provides	a	pair	of
elements

QPalette Color	groups	for	each	widget	state

QPen Defines	how	a	QPainter	should	draw	lines	and
outlines	of	shapes

QPicture Paint	device	that	records	and	replays	QPainter
commands

QPixmap Off-screen,	pixel-based	paint	device
QPixmapCache Application-global	cache	for	pixmaps
QPlatinumStyle Mac/Platinum	look	and	feel
QPoint Defines	a	point	in	the	plane
QPointArray Array	of	points
QPopupMenu Popup	menu	widget
QPrinter Paint	device	that	paints	on	a	printer

QProcess Used	to	start	external	programs	and	to
communicate	with	them

QProgressBar Horizontal	progress	bar
QProgressDialog Feedback	on	the	progress	of	a	slow	operation

QPtrCollection The	base	class	of	most	pointer-based	Qt
collections

QPtrDict Template	class	that	provides	a	dictionary	based
on	void*	keys

QPtrDictIterator Iterator	for	QPtrDict	collections

QPtrList Template	class	that	provides	doubly-linked	lists
QPtrListIterator Iterator	for	QPtrList	collections
QPtrQueue Template	class	that	provides	a	queue
QPtrStack Template	class	that	provides	a	stack

QPtrVector Template	collection	class	that	provides	a	vector
(array)

QPushButton Command	button
QRadioButton Radio	button	with	a	text	or	pixmap	label
QRangeControl Integer	value	within	a	range
QRect Defines	a	rectangle	in	the	plane
QRegExp Pattern	matching	using	regular	expressions

QRegExpValidator Used	to	check	a	string	against	a	regular
expression

QRegion Clip	region	for	a	painter
QResizeEvent Event	parameters	for	resize	events
QSGIStyle SGI/Irix	look	and	feel

QScreen And	its	descendants	manage	the	framebuffer	and
palette

QScrollBar Vertical	or	horizontal	scroll	bar
QScrollView Scrolling	area	with	on-demand	scroll	bars
QSemaphore Robust	integer	semaphore
QServerSocket TCP-based	server
QSessionManager Access	to	the	session	manager

QSettings Persistent	platform-independent	application
settings

QShowEvent Event	which	is	sent	when	a	widget	is	shown

QSignal Can	be	used	to	send	signals	for	classes	that	don't
inherit	QObject

QSignalMapper Bundles	signals	from	identifiable	senders
QSimpleRichText Small	displayable	piece	of	rich	text
QSize Defines	the	size	of	a	two-dimensional	object
QSizeGrip Corner-grip	for	resizing	a	top-level	window

QSizePolicy Layout	attribute	describing	horizontal	and
vertical	resizing	policy

QSjisCodec Conversion	to	and	from	Shift-JIS

QSlider Vertical	or	horizontal	slider
QSocket Buffered	TCP	connection
QSocketDevice Platform-independent	low-level	socket	API
QSocketNotifier Support	for	socket	callbacks
QSound Access	to	the	platform	audio	facilities
QSpacerItem Blank	space	in	a	layout
QSpinBox Spin	box	widget	(spin	button)
QSplitter Implements	a	splitter	widget

QSql Namespace	for	Qt	SQL	identifiers	that	need	to	be
global-like

QSqlCursor Browsing	and	editing	of	SQL	tables	and	views

QSqlDatabase Used	to	create	SQL	database	connections	and
provide	transaction	handling

QSqlDriver Abstract	base	class	for	accessing	SQL	databases
QSqlDriverPlugin Abstract	base	for	custom	QSqlDriver	plugins

QSqlEditorFactory Used	to	create	the	editors	used	by	QDataTable
and	QSqlForm

QSqlError SQL	database	error	information

QSqlField Manipulates	the	fields	in	SQL	database	tables
and	views

QSqlFieldInfo Stores	meta	data	associated	with	a	SQL	field

QSqlForm Creates	and	manages	data	entry	forms	tied	to
SQL	databases

QSqlIndex Functions	to	manipulate	and	describe
QSqlCursor	and	QSqlDatabase	indexes

QSqlPropertyMap Used	to	map	widgets	to	SQL	fields

QSqlQuery Means	of	executing	and	manipulating	SQL
statements

QSqlRecord Encapsulates	a	database	record,	i.e.	a	set	of
database	fields

QSqlRecordInfo Encapsulates	a	set	of	database	field	meta	data

QSqlResult Abstract	interface	for	accessing	data	from	SQL
databases

QStatusBar Horizontal	bar	suitable	for	presenting	status
information

QStoredDrag Simple	stored-value	drag	object	for	arbitrary
MIME	data

QStrIList Doubly-linked	list	of	char*	with	case-insensitive
comparison

QStrList Doubly-linked	list	of	char*
QStrListIterator Iterator	for	the	QStrList	and	QStrIList	classes

QString Abstraction	of	Unicode	text	and	the	classic	C
null-terminated	char	array

QStringList List	of	strings
QStyle The	look	and	feel	of	a	GUI
QStyleFactory Creates	QStyle	objects
QStyleOption Optional	parameters	for	QStyle	functions
QStylePlugin Abstract	base	for	custom	QStyle	plugins

QStyleSheet Collection	of	styles	for	rich	text	rendering	and	a
generator	of	tags

QStyleSheetItem Encapsulation	of	a	set	of	text	styles
QTab The	structures	in	a	QTabBar
QTabBar Tab	bar,	e.g.	for	use	in	tabbed	dialogs
QTabDialog Stack	of	tabbed	widgets
QTabWidget Stack	of	tabbed	widgets
QTable Flexible	editable	table	widget
QTableItem The	cell	content	for	QTable	cells
QTableSelection Access	to	a	selected	area	in	a	QTable
QTabletEvent Parameters	that	describe	a	Tablet	event
QTextBrowser Rich	text	browser	with	hypertext	navigation
QTextCodec Conversion	between	text	encodings
QTextCodecPlugin Abstract	base	for	custom	QTextCodec	plugins
QTextDecoder State-based	decoder

QTextDrag Drag	and	drop	object	for	transferring	plain	and
Unicode	text

QTextEdit Powerful	single-page	rich	text	editor
QTextEncoder State-based	encoder

QTextIStream Convenience	class	for	input	streams

QTextOStream Convenience	class	for	output	streams

QTextStream Basic	functions	for	reading	and	writing	text	using
a	QIODevice

QThread Platform-independent	threads
QTime Clock	time	functions
QTimeEdit Time	editor
QTimer Timer	signals	and	single-shot	timers
QTimerEvent Parameters	that	describe	a	timer	event

QToolBar Movable	panel	containing	widgets	such	as	tool
buttons

QToolButton Quick-access	button	to	commands	or	options,
usually	used	inside	a	QToolBar

QToolTip Tool	tips	(balloon	help)	for	any	widget	or
rectangular	part	of	a	widget

QToolTipGroup Collects	tool	tips	into	related	groups
QTranslator Internationalization	support	for	text	output
QTranslatorMessage Translator	message	and	its	properties

QTsciiCodec Conversion	to	and	from	the	Tamil	TSCII
encoding

QUriDrag Drag	object	for	a	list	of	URI	references
QUrl URL	parser	and	simplifies	working	with	URLs
QUrlInfo Stores	information	about	URLs
QUrlOperator Common	operations	on	URLs

QVBox Vertical	geometry	management	of	its	child
widgets

QVBoxLayout Lines	up	widgets	vertically
QVButtonGroup Organizes	QButton	widgets	in	a	vertical	column

QVGroupBox Organizes	a	group	of	widgets	in	a	vertical
column

QValidator Validation	of	input	text

QValueList Value-based	template	class	that	provides	doubly
linked	lists

QValueListConstIterator Const	iterator	for	QValueList

QValueListIterator Iterator	for	QValueList

QValueStack Value-based	template	class	that	provides	a	stack

QValueVector Value-based	template	class	that	provides	a
dynamic	array

QVariant Acts	like	a	union	for	the	most	common	Qt	data
types

QWMatrix 2D	transformations	of	a	coordinate	system

QWSDecoration Allows	the	appearance	of	the	Qt/Embedded
Window	Manager	to	be	customized

QWSKeyboardHandler Implements	the	keyboard	driver/handler	for
Qt/Embedded

QWSMouseHandler Mouse	driver/handler	for	Qt/Embedded
QWSServer Server-specific	functionality	in	Qt/Embedded
QWSWindow Server-specific	functionality	in	Qt/Embedded

QWaitCondition Allows	waiting/waking	for	conditions	between
threads

QWhatsThis Simple	description	of	any	widget,	i.e.	answering
the	question	"What's	this?"

QWheelEvent Parameters	that	describe	a	wheel	event
QWidget The	base	class	of	all	user	interface	objects

QWidgetFactory For	the	dynamic	creation	of	widgets	from	Qt
Designer	.ui	files

QWidgetItem Layout	item	that	represents	a	widget
QWidgetPlugin Abstract	base	for	custom	QWidget	plugins

QWidgetStack Stack	of	widgets	of	which	only	the	top	widget	is
user-visible

QWindowsMime Maps	open-standard	MIME	to	Window
Clipboard	formats

QWindowsStyle Microsoft	Windows-like	look	and	feel
QWizard Framework	for	wizard	dialogs

QWorkspace Workspace	window	that	can	contain	decorated
windows,	e.g.	for	MDI

QXmlAttributes XML	attributes
QXmlContentHandler Interface	to	report	the	logical	content	of	XML

data
QXmlDTDHandler Interface	to	report	DTD	content	of	XML	data

QXmlDeclHandler Interface	to	report	declaration	content	of	XML
data

QXmlDefaultHandler Default	implementation	of	all	XML	handler
classes

QXmlEntityResolver Interface	to	resolve	external	entities	contained	in
XML	data

QXmlErrorHandler Interface	to	report	errors	in	XML	data
QXmlInputSource The	input	data	for	the	QXmlReader	subclasses

QXmlLexicalHandler Interface	to	report	the	lexical	content	of	XML
data

QXmlLocator The	XML	handler	classes	with	information	about
the	parsing	position	within	a	file

QXmlNamespaceSupport Helper	class	for	XML	readers	which	want	to
include	namespace	support

QXmlParseException Used	to	report	errors	with	the
QXmlErrorHandler	interface

QXmlReader Interface	for	XML	readers	(i.e.	parsers)
QXmlSimpleReader Implementation	of	a	simple	XML	reader	(parser)
QXtApplication Facilitates	the	mixing	of	Xt/Motif	and	Qt	widgets
QXtWidget Allows	mixing	of	Xt/Motif	and	Qt	widgets

Qt Namespace	for	miscellaneous	identifiers	that
need	to	be	global-like

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Class	Inheritance	Hierarchy
This	list	shows	the	C++	class	inheritance	relations	between	the	classes	in	the	Qt
API.

The	list	is	sorted	roughly,	but	not	completely,	alphabetically.

QAccessible
QAccessibleInterface

QAsciiCache
QAsciiCacheIterator
QAsciiDictIterator
QAsyncIO

QDataSink
QDataSource

QIODeviceSource
QBitVal
QCacheIterator
QCanvasPixmapArray
QChar
QCharRef
QColor
QColorGroup
QConstString
QDataStream
QDate
QDateEdit
QDateTime
QDictIterator
QDir
QDomImplementation
QDomNamedNodeMap
QDomNode

QDomAttr
QDomCharacterData

QDomComment

QDomText
QDomCDATASection

QDomDocument
QDomDocumentFragment
QDomDocumentType
QDomElement
QDomEntity
QDomEntityReference
QDomNotation
QDomProcessingInstruction

QDomNodeList
QDropSite
QFileInfo
QFilePreview
QFocusData
QFont
QFontDatabase
QFontInfo
QFontManager
QFontMetrics
QGL

QGLContext
QGLFormat

QGLayoutIterator
QGLColormap
QGuardedPtr
QHostAddress
QIconDragItem
QIconSet
QImage
QImageConsumer
QImageDecoder
QImageFormat
QImageFormatPlugin
QImageFormatType
QImageIO
QIntCache
QIntCacheIterator
QIntDictIterator

QIODevice
QBuffer
QFile
QSocketDevice

QLayoutItem
QSpacerItem
QWidgetItem

QLayoutIterator
QLibrary
QListBoxItem

QListBoxPixmap
QListBoxText

QListViewItemIterator
QLock
QMap
QMapConstIterator
QMapIterator
QMemArray

QByteArray
QBitArray
QCString

QPointArray
QMenuData
QMetaObject
QMetaProperty
QMimeSource
QMimeSourceFactory
QMovie
QMutex
QNPlugin
QNPStream
QPaintDevice

QPicture
QPixmap

QBitmap
QCanvasPixmap

QPrinter
QPaintDeviceMetrics
QPair

QPalette
QPixmapCache
QPNGImagePacker
QPoint
QPtrCollection

QAsciiDict
QCache
QDict
QIntDict
QPtrDict
QPtrList

QObjectList
QSortedList
QStrList

QStrIList
QPtrVector

QPtrDictIterator
QPtrListIterator

QObjectListIt
QStrListIterator

QPtrQueue
QPtrStack
QRangeControl
QRect
QRegExp
QRegion
QScreen
QSemaphore
QSettings
QSimpleRichText
QSize
QSizePolicy
QSql
QSqlDriverPlugin
QSqlError
QSqlField
QSqlFieldInfo
QSqlPropertyMap
QSqlQuery

QSqlRecord
QSqlCursor
QSqlIndex

QSqlRecordInfo
QSqlResult
QString
QStyleFactory
QStyleOption
QStylePlugin
Qt

QBrush
QCanvasItem

QCanvasPolygonalItem
QCanvasEllipse
QCanvasLine
QCanvasPolygon

QCanvasSpline
QCanvasRectangle

QCanvasSprite
QCanvasText

QCursor
QCustomMenuItem
QEvent

QChildEvent
QCloseEvent
QContextMenuEvent
QCustomEvent
QDragLeaveEvent
QDropEvent

QDragMoveEvent
QDragEnterEvent

QFocusEvent
QHideEvent
QIMEvent
QKeyEvent
QMouseEvent
QMoveEvent
QPaintEvent
QResizeEvent

QShowEvent
QTabletEvent
QTimerEvent
QWheelEvent

QIconViewItem
QKeySequence
QListViewItem

QCheckListItem
QObject

QAccel
QAccessibleObject
QAction

QActionGroup
QApplication

QXtApplication
QCanvas
QClipboard
QCopChannel
QDataPump
QDns
QDragObject

QIconDrag
QImageDrag
QStoredDrag

QColorDrag
QUriDrag

QTextDrag
QEditorFactory

QSqlEditorFactory
QFileIconProvider
QLayout

QBoxLayout
QHBoxLayout
QVBoxLayout

QGridLayout
QNetworkOperation
QNetworkProtocol

QFtp
QHttp

QLocalFs
QNPInstance
QObjectCleanupHandler
QProcess
QServerSocket
QSessionManager
QSignal
QSignalMapper
QSocket
QSocketNotifier
QSound
QSqlDatabase
QSqlDriver
QSqlForm
QStyle

QCommonStyle
QMotifStyle

QCDEStyle
QMotifPlusStyle
QSGIStyle

QWindowsStyle
QPlatinumStyle

QStyleSheet
QTimer
QToolTipGroup
QTranslator
QUrlOperator
QValidator

QDoubleValidator
QIntValidator
QRegExpValidator

QWidget
QButton

QCheckBox
QPushButton
QRadioButton
QToolButton

QComboBox
QDataBrowser

QDataView
QDateTimeEdit
QDesktopWidget
QDial
QDialog

QColorDialog
QErrorMessage
QFileDialog
QFontDialog
QInputDialog
QMessageBox
QProgressDialog
QTabDialog
QWizard

QDockArea
QFrame

QDockWindow
QToolBar

QGrid
QGroupBox

QButtonGroup
QHButtonGroup
QVButtonGroup

QHGroupBox
QVGroupBox

QHBox
QVBox

QLabel
QLCDNumber
QLineEdit
QMenuBar
QPopupMenu
QProgressBar
QScrollView

QCanvasView
QGridView
QIconView
QListBox
QListView

QTable
QDataTable

QTextEdit
QMultiLineEdit
QTextBrowser
QTextView

QSplitter
QtTableView

QtMultiLineEdit
QWidgetStack

QGLWidget
QHeader
QMainWindow
QNPWidget
QScrollBar
QSizeGrip
QSlider
QSpinBox
QStatusBar
QTabBar
QTabWidget
QWorkspace
QXtWidget

QWSKeyboardHandler
QWSMouseHandler

QPainter
QDirectPainter

QPen
QStyleSheetItem
QTab
QTableItem

QCheckTableItem
QComboTableItem

QThread
QToolTip
QWhatsThis

QTableSelection
QTextCodec

QEucJpCodec

QEucKrCodec
QGb18030Codec

QGbkCodec
QHebrewCodec
QJisCodec
QSjisCodec
QTsciiCodec

QTextCodecPlugin
QTextDecoder
QTextEncoder
QTextStream

QTextIStream
QTextOStream

QTime
QTimeEdit
QTranslatorMessage
QUrl
QUrlInfo
QValueList

QCanvasItemList
QStringList
QValueStack

QValueListConstIterator
QValueListIterator
QValueVector
QVariant
QWaitCondition
QWidgetFactory
QWidgetPlugin
QWindowsMime
QWMatrix
QWSDecoration
QWSServer
QWSWindow
QXmlAttributes
QXmlContentHandler

QXmlDefaultHandler
QXmlDeclHandler
QXmlDTDHandler

QXmlEntityResolver
QXmlErrorHandler
QXmlInputSource
QXmlLexicalHandler
QXmlLocator
QXmlNamespaceSupport
QXmlParseException
QXmlReader

QXmlSimpleReader

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Qt	Class	Chart

The	gzipped	postscript	A3	size	master	copy	of	the	class	chart	is	available	for
download	from	ftp://ftp.trolltech.com/qt/pdf/3.0/qt30-class-chart.pdf	(104K).*
The	PDF	file	will	always	be	the	same	or	more	recent	than	the	one	shown	here.

*	The	PDF	file	is	not	supported;	we	do	not	guarantee	it	will	print	correctly	(although	several	people	have
reported	that	it	does).	It	is	not	available	in	any	other	format	or	size.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

ftp://ftp.trolltech.com/qt/pdf/3.0/qt30-class-chart.pdf
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Member	Function	Index
Here	is	a	list	of	all	of	the	documented	member	functions	in	the	Qt	API	with	links
to	the	class	documentation	for	each	function.

A	B	C	D	E	F	G	H	I	J	K	L	M	N	O	P	Q	R	S	T	U	V	W	X	Y	Z

DTDHandler:	QXmlReader
Q_ASSERT:	QApplication
Q_CHECK_PTR:	QApplication
	abort:	QPrinter
aborted:	QPrinter
about:	QMessageBox
aboutQt:	QMessageBox
aboutToHide:	QPopupMenu
aboutToQuit:	QApplication
aboutToShow:	QPopupMenu	QTabDialog	QWidgetStack
absFilePath:	QDir	QFileInfo
absPath:	QDir
accel:	QAction	QButton	QCheckBox	QMenuData	QPopupMenu
QPushButton	QRadioButton
accept:	QCloseEvent	QContextMenuEvent	QDialog	QDragMoveEvent
QDropEvent	QIMEvent	QKeyEvent	QMouseEvent	QSocketDevice
QTabletEvent	QWheelEvent
acceptAction:	QDropEvent
acceptDrop:	QIconViewItem	QListViewItem
acceptDrops:	QWidget
accum:	QGLFormat
action:	QDropEvent
activate:	QCheckListItem	QLayout	QListViewItem	QSignal
activateItemAt:	QMenuData
activateNextCell:	QTable
activated:	QAccel	QAction	QComboBox	QMenuBar	QPopupMenu
QSocketNotifier
activatedPos:	QListViewItem
active:	QPalette

activeModalWidget:	QApplication
activePopupWidget:	QApplication
activeWindow:	QApplication	QWorkspace
actual:	QNPlugin
add:	QActionGroup	QGridLayout	QLayout	QObjectCleanupHandler
QToolTip	QWhatsThis
addArgument:	QProcess
addChild:	QScrollView
addChildLayout:	QLayout
addColSpacing:	QGridLayout
addColumn:	QDataTable	QListView
addCoords:	QRect
addDatabase:	QSqlDatabase
addDays:	QDate	QDateTime
addDockWindow:	QMainWindow
addFactory:	QMimeSourceFactory
addFilePath:	QMimeSourceFactory
addFilter:	QFileDialog
addItem:	QBoxLayout	QGridLayout	QLayout
addLabel:	QHeader
addLayout:	QBoxLayout	QGridLayout
addLeftWidget:	QFileDialog
addLibraryPath:	QApplication
addLine:	QDial	QRangeControl
addMSecs:	QTime
addMonths:	QDate	QDateTime
addMultiCell:	QGridLayout
addMultiCellLayout:	QGridLayout
addMultiCellWidget:	QGridLayout
addOperation:	QNetworkProtocol
addPage:	QDial	QRangeControl	QWizard
addPath:	QUrl
addRightWidget:	QFileDialog
addRowSpacing:	QGridLayout
addSecs:	QDateTime	QTime
addSelection:	QTable
addSeparator:	QActionGroup	QToolBar
addSpace:	QGroupBox
addSpacing:	QBoxLayout

addStep:	QSlider
addStretch:	QBoxLayout
addStrut:	QBoxLayout
addTab:	QTabBar	QTabDialog	QTabWidget
addTo:	QAction	QActionGroup
addToolButton:	QFileDialog
addWidget:	QBoxLayout	QGridLayout	QStatusBar	QWidgetStack
addWidgetFactory:	QWidgetFactory
addWidgets:	QFileDialog
addYears:	QDate	QDateTime
addedTo:	QAction	QActionGroup
address:	QServerSocket	QSocket	QSocketDevice
addressReusable:	QSocketDevice
addresses:	QDns
adjustColumn:	QDataTable	QTable
adjustHeaderSize:	QHeader
adjustItems:	QIconView
adjustPos:	QSplitter
adjustRow:	QTable
adjustSize:	QMessageBox	QSimpleRichText	QWidget
advance:	QCanvas	QCanvasItem	QCanvasSprite
afterSeek:	QSqlQuery
alignment:	QGroupBox	QLabel	QLayoutItem	QLineEdit	QMultiLineEdit
QStyleSheetItem	QTableItem	QTextEdit	QtMultiLineEdit
alignmentRect:	QLayout
all:	QWindowsMime
allColumnsShowFocus:	QListView
allGray:	QImage
allItems:	QCanvas
allWidgets:	QApplication
alloc:	QColor	QScreen
allocation:	QWSWindow
allowedInContext:	QStyleSheetItem
allowsErrorInteraction:	QSessionManager
allowsInteraction:	QSessionManager
alpha:	QGLFormat
anchorAt:	QSimpleRichText	QTextEdit
anchorCol:	QTableSelection
anchorRow:	QTableSelection

angleLength:	QCanvasEllipse
angleStart:	QCanvasEllipse
animateClick:	QButton
animated:	QCanvasItem
answerRect:	QDragMoveEvent
append:	QCString	QIconDrag	QPtrList	QSqlCursor	QSqlIndex	QSqlRecord
QString	QTextEdit	QValueList	QXmlAttributes	QtMultiLineEdit
appendChild:	QDomNode
appendData:	QDomCharacterData
applyButtonPressed:	QTabDialog
appropriate:	QMainWindow	QWizard
area:	QDockWindow
areaPoints:	QCanvasPolygon	QCanvasPolygonalItem
areaPointsAdvanced:	QCanvasPolygonalItem
arg:	QNPInstance	QNetworkOperation	QString
argc:	QApplication	QNPInstance
argn:	QNPInstance
arguments:	QProcess
argv:	QApplication	QNPInstance
arrangeItemsInGrid:	QIconView
arrangement:	QIconView
arrowType:	QStyleOption
asBitArray:	QVariant
asBitmap:	QVariant
asBool:	QVariant
asBrush:	QVariant
asByteArray:	QVariant
asCString:	QVariant
asColor:	QVariant
asColorGroup:	QVariant
asCursor:	QVariant
asDate:	QVariant
asDateTime:	QVariant
asDouble:	QVariant
asFont:	QVariant
asIconSet:	QVariant
asImage:	QVariant
asInt:	QVariant
asKeySequence:	QVariant

asList:	QVariant
asMap:	QVariant
asPalette:	QVariant
asPixmap:	QVariant
asPoint:	QVariant
asPointArray:	QVariant
asRect:	QVariant
asRegion:	QVariant
asSize:	QVariant
asSizePolicy:	QVariant
asString:	QVariant
asStringList:	QVariant
asTime:	QVariant
asUInt:	QVariant
ascent:	QFontMetrics
ascii:	QKeyEvent
assign:	QMemArray
at:	QBitArray	QFile	QIODevice	QMemArray	QPtrList	QPtrVector	QSocket
QSqlQuery	QSqlResult	QString	QValueList	QValueVector
atBeginning:	QMultiLineEdit	QtMultiLineEdit
atEnd:	QDataStream	QFile	QIODevice	QMultiLineEdit	QSocket
QTextStream	QtMultiLineEdit
atFirst:	QAsciiCacheIterator	QCacheIterator	QIntCacheIterator
QPtrListIterator
atLast:	QAsciiCacheIterator	QCacheIterator	QIntCacheIterator
QPtrListIterator
attribute:	QDomElement
attributeDecl:	QXmlDeclHandler
attributeNS:	QDomElement
attributeNode:	QDomElement
attributeNodeNS:	QDomElement
attributes:	QDomElement	QDomNode
autoAdd:	QLayout
autoAdvance:	QDateEdit	QDateTimeEdit	QTimeEdit
autoArrange:	QIconView
autoBottomScrollBar:	QListBox
autoBufferSwap:	QGLWidget
autoClose:	QProgressDialog
autoCompletion:	QComboBox

autoDefault:	QPushButton
autoDelete:	QAsciiDict	QCache	QDataTable	QDict	QIntDict
QNetworkProtocol	QPtrCollection	QPtrDict	QPtrList	QPtrQueue
QPtrStack	QPtrVector
autoEdit:	QDataBrowser	QDataTable
autoMask:	QWidget
autoRaise:	QToolButton
autoRepeat:	QButton	QCheckBox	QPushButton	QRadioButton
autoReset:	QProgressDialog
autoScrollBar:	QListBox
autoUnload:	QLibrary
autoUpdate:	QtMultiLineEdit	QtTableView
available:	QSemaphore	QSound
	back:	QValueList	QValueVector	QWizard
backButton:	QWizard
background:	QColorGroup
backgroundBrush:	QWidget
backgroundColor:	QCanvas	QMovie	QPainter
backgroundMode:	QPainter	QWidget
backgroundOrigin:	QWidget
backgroundPixmap:	QCanvas
backspace:	QLineEdit	QMultiLineEdit	QtMultiLineEdit
backward:	QTextBrowser
backwardAvailable:	QTextBrowser
base:	QColorGroup	QScreen
baseName:	QFileInfo
baseSize:	QWidget
beep:	QApplication
beforeDelete:	QDataBrowser	QDataTable
beforeInsert:	QDataBrowser	QDataTable
beforeSeek:	QSqlQuery
beforeUpdate:	QDataBrowser	QDataTable
begin:	QMap	QMemArray	QPainter	QValueList	QValueVector
beginEdit:	QTable
beginInsert:	QDataTable
beginTransaction:	QSqlDriver
beginUpdate:	QDataTable
bind:	QSocketDevice
bitBlt:	QPaintDevice

bitOrder:	QImage
bitmap:	QCursor
bits:	QImage
blank:	QScreen
blockSignals:	QObject
blocking:	QSocketDevice
blue:	QColor
bold:	QFont	QFontDatabase	QFontInfo	QTextEdit
bottom:	QDoubleValidator	QIntValidator	QRect
bottomDock:	QMainWindow
bottomEdge:	QCanvasSprite
bottomLeft:	QRect
bottomMargin:	QScrollView
bottomRight:	QRect
bottomRow:	QTableSelection
bottomScrollBar:	QListBox
bound:	QRangeControl
boundary:	QDataBrowser
boundaryChecking:	QDataBrowser
boundedTo:	QSize
boundingRect:	QCanvasItem	QCanvasPolygonalItem	QCanvasSprite
QCanvasText	QFontMetrics	QPainter	QPicture	QPointArray	QRegion
boundingRectAdvanced:	QCanvasItem
boxLayout:	QDockWindow
brightText:	QColorGroup
brush:	QCanvasPolygonalItem	QColorGroup	QPainter	QPalette
brushOrigin:	QPainter
bsearch:	QMemArray	QPtrVector
buddy:	QLabel
buffer:	QBuffer
button:	QColorGroup	QMouseEvent
buttonSymbols:	QSpinBox
buttonText:	QColorGroup	QMessageBox
byteOrder:	QDataStream
bytesAvailable:	QSocket	QSocketDevice
bytesPerLine:	QImage
bytesToWrite:	QSocket
bytesWritten:	QSocket
	cache:	QScreen

cacheLimit:	QPixmapCache
caching:	QFileInfo
calcRect:	QIconViewItem
calculateField:	QSqlCursor
calibrate:	QWSMouseHandler
canCast:	QVariant
canConvert:	QWindowsMime
canDecode:	QColorDrag	QIconDrag	QImageDrag	QTextDrag	QUriDrag
canDelete:	QSqlCursor
canEncode:	QTextCodec
canInsert:	QSqlCursor
canReadLine:	QSocket
canReadLineStderr:	QProcess
canReadLineStdout:	QProcess
canUpdate:	QSqlCursor
cancel:	QProgressDialog	QSessionManager
cancelButton:	QWizard
cancelButtonPressed:	QTabDialog
cancelRename:	QListViewItem
cancelled:	QProgressDialog
canonicalName:	QDns
canonicalPath:	QDir
canvas:	QCanvasItem	QCanvasView
cap:	QRegExp
capStyle:	QPen
capacity:	QValueVector
caption:	QWSWindow	QWidget
capturedTexts:	QRegExp
cascade:	QWorkspace
caseSensitive:	QRegExp
cast:	QVariant
category:	QChar
cd:	QDir
cdUp:	QDir	QUrl
cell:	QChar
cellGeometry:	QGridLayout	QGridView	QTable
cellHeight:	QGridView	QtTableView
cellRect:	QGridView	QTable
cellUpdateRect:	QtTableView

cellWidget:	QTable
cellWidth:	QGridView	QtTableView
center:	QRect	QScrollView
centerCurrentItem:	QListBox
centerIndicator:	QProgressBar
centralWidget:	QMainWindow
cf:	QWindowsMime
cfFor:	QWindowsMime
cfToMime:	QWindowsMime
changeInterval:	QTimer
changeItem:	QComboBox	QListBox	QMenuData	QPopupMenu
changeSize:	QSpacerItem
changeTab:	QTabDialog	QTabWidget
changed:	QImageConsumer
channel:	QCopChannel
charAt:	QTextEdit
charWidth:	QFontMetrics
characterAt:	QLineEdit
characters:	QXmlContentHandler
checkConnectArgs:	QObject
checkConnection:	QNetworkProtocol
checkOverflow:	QLCDNumber
child:	QChildEvent	QObject
childAt:	QWidget
childCount:	QAccessibleInterface	QListView	QListViewItem
childEvent:	QMainWindow	QObject	QSplitter
childNodes:	QDomNode
childX:	QScrollView
childY:	QScrollView
children:	QObject
childrenRect:	QWidget
childrenRegion:	QWidget
chooseContext:	QGLContext
chooseMacVisual:	QGLContext
choosePixelFormat:	QGLContext
chunkSize:	QCanvas
chunks:	QCanvasRectangle
classInfo:	QMetaObject
className:	QMetaObject	QObject

cleanDirPath:	QDir
cleanText:	QSpinBox
cleanup:	QColor	QCursor	QFontManager
clear:	QAccel	QAsciiCache	QAsciiDict	QCache	QClipboard	QComboBox
QDict	QDomNode	QIconView	QIntCache	QIntDict	QLabel	QLineEdit
QListBox	QListView	QMap	QMenuBar	QMenuData
QObjectCleanupHandler	QPixmapCache	QPopupMenu	QPtrCollection
QPtrDict	QPtrList	QPtrQueue	QPtrStack	QPtrVector	QSqlCursor
QSqlField	QSqlForm	QSqlRecord	QStatusBar	QTextEdit	QToolBar
QToolTip	QTranslator	QValueList	QValueVector	QVariant	QXmlAttributes
QtMultiLineEdit
clearArguments:	QProcess
clearBit:	QBitArray
clearCalibration:	QWSMouseHandler
clearCell:	QTable
clearCellWidget:	QTable
clearEdit:	QComboBox
clearEntries:	QUrlOperator
clearFocus:	QWidget
clearGenerated:	QIconSet
clearMask:	QWidget
clearOperationQueue:	QNetworkProtocol
clearParagraphBackground:	QTextEdit
clearSelection:	QAccessibleInterface	QIconView	QListBox	QListView
QTable
clearTableFlags:	QtTableView
clearValidator:	QComboBox	QLineEdit
clearValues:	QDataBrowser	QDataView	QSqlForm	QSqlRecord
clearWFlags:	QWidget
clicked:	QButton	QButtonGroup	QCheckBox	QHeader	QIconView
QListBox	QListView	QPushButton	QRadioButton	QTable	QWhatsThis
client:	QWSWindow
clientWindows:	QWSServer
clipRegion:	QPainter
clipboard:	QApplication
clipper:	QScrollView
cloneNode:	QDomNode
close:	QFile	QIODevice	QSocket	QSqlDatabase	QSqlDriver
QWSDecoration	QWidget

closeAllWindows:	QApplication
closeEvent:	QWidget
closeKeyboard:	QWSServer
closeMode:	QDockWindow
closeMouse:	QWSServer
closeStdin:	QProcess
closed:	QCanvasSpline
closingDown:	QApplication
clut:	QScreen
cmd:	QPaintDevice
codecForContent:	QTextCodec
codecForIndex:	QTextCodec
codecForLocale:	QTextCodec
codecForMib:	QTextCodec
codecForName:	QTextCodec
col:	QTableItem
colIsVisible:	QtTableView
colSpan:	QTableItem
colStretch:	QGridLayout
colXPos:	QtTableView
collapsed:	QListView
collidesWith:	QCanvasItem
collisions:	QCanvas	QCanvasItem
color:	QBrush	QCanvasText	QColorGroup	QImage	QPalette	QPen
QStyleOption	QStyleSheetItem	QTextEdit
colorGroup:	QWidget
colorMode:	QPrinter
colorSpec:	QApplication
colorTable:	QImage
colormap:	QGLWidget
columnAlignment:	QListView
columnAt:	QGridView	QTable
columnClicked:	QTable
columnIndexChanged:	QTable
columnMode:	QListBox
columnMovingEnabled:	QTable
columnNumber:	QXmlLocator	QXmlParseException
columnPos:	QTable
columnText:	QListView

columnWidth:	QListView	QTable
columnWidthChanged:	QTable
columnWidthMode:	QListView
columns:	QGroupBox	QListView	QPopupMenu
combiningClass:	QChar
comment:	QTranslatorMessage	QXmlLexicalHandler
commit:	QSqlDatabase
commitData:	QApplication
commitTransaction:	QSqlDriver
commonPrefix:	QTranslatorMessage
communication:	QProcess
compare:	QIconViewItem	QListViewItem	QString
compareItems:	QPtrList	QPtrVector
complete:	QNPStream
compose:	QString
confirmCancel:	QDataBrowser	QDataTable
confirmCancels:	QDataBrowser	QDataTable
confirmDelete:	QDataBrowser	QDataTable
confirmEdit:	QDataBrowser	QDataTable
confirmEdits:	QDataBrowser	QDataTable
confirmInsert:	QDataBrowser	QDataTable
confirmUpdate:	QDataBrowser	QDataTable
connect:	QAsyncIO	QObject	QScreen	QSignal	QSocketDevice
connectItem:	QAccel	QMenuData	QPopupMenu
connectNotify:	QObject
connectResize:	QMovie
connectStatus:	QMovie
connectToHost:	QSocket
connectUpdate:	QMovie
connected:	QSocket
connectionClosed:	QSocket
connectionStateChanged:	QNetworkProtocol	QUrlOperator
constPolish:	QWidget
constref:	QString
consume:	QContextMenuEvent
contains:	QCString	QDomNamedNodeMap	QIconViewItem	QMap
QMemArray	QPtrList	QPtrVector	QRect	QRegion	QSqlDatabase
QSqlRecord	QSqlRecordInfo	QString	QTranslator	QValueList
containsRef:	QPtrList	QPtrVector

contentHandler:	QXmlReader
contentsContextMenuEvent:	QScrollView
contentsDragEnterEvent:	QScrollView	QTable
contentsDragLeaveEvent:	QScrollView	QTable
contentsDragMoveEvent:	QScrollView	QTable
contentsDropEvent:	QScrollView	QTable
contentsHeight:	QScrollView
contentsMouseDoubleClickEvent:	QListView	QScrollView
contentsMouseMoveEvent:	QListView	QScrollView
contentsMousePressEvent:	QListView	QScrollView
contentsMouseReleaseEvent:	QListView	QScrollView
contentsMoving:	QScrollView
contentsRect:	QFrame
contentsToViewport:	QScrollView
contentsWheelEvent:	QScrollView
contentsWidth:	QScrollView
contentsX:	QScrollView
contentsY:	QScrollView
context:	QGLWidget	QSimpleRichText	QTextEdit	QTranslatorMessage
contextMenuEvent:	QWidget
contextMenuRequested:	QIconView	QListBox	QListView	QTable
contexts:	QStyleSheetItem
controlAt:	QAccessibleInterface
controlPoints:	QCanvasSpline
convertBitOrder:	QImage
convertDepth:	QImage
convertDepthWithPalette:	QImage
convertFromImage:	QPixmap
convertFromMime:	QWindowsMime
convertFromPlainText:	QStyleSheet
convertSeparators:	QDir
convertToAbs:	QDir	QFileInfo
convertToGLFormat:	QGLWidget
convertToImage:	QPixmap
convertToMime:	QWindowsMime
convertor:	QWindowsMime
convertorName:	QWindowsMime
coords:	QRect
copy:	QBitArray	QCString	QImage	QLineEdit	QMemArray	QPalette

QPicture	QPointArray	QTextEdit	QUrlOperator	QtMultiLineEdit
copyAvailable:	QTextEdit	QtMultiLineEdit
cornerWidget:	QScrollView
count:	QAccel	QAsciiCache	QAsciiCacheIterator	QAsciiDict
QAsciiDictIterator	QButtonGroup	QCache	QCacheIterator
QCanvasPixmapArray	QComboBox	QComboTableItem	QDict
QDictIterator	QDir	QDockArea	QDomNamedNodeMap	QDomNodeList
QFocusData	QHeader	QIconView	QIntCache	QIntCacheIterator	QIntDict
QIntDictIterator	QKeyEvent	QListBox	QMap	QMemArray	QMenuData
QPtrCollection	QPtrDict	QPtrDictIterator	QPtrList	QPtrListIterator
QPtrQueue	QPtrStack	QPtrVector	QSqlForm	QSqlRecord	QTabBar
QTabWidget	QValueList	QXmlAttributes
countCf:	QWindowsMime
create:	QGLContext	QImage	QNPlugin	QSqlDriverPlugin	QStyleFactory
QStylePlugin	QWidget	QWidgetFactory	QWidgetPlugin
createAlphaMask:	QImage
createAttribute:	QDomDocument
createAttributeNS:	QDomDocument
createCDATASection:	QDomDocument
createComment:	QDomDocument
createDockWindowMenu:	QMainWindow
createDocument:	QDomImplementation
createDocumentFragment:	QDomDocument
createDocumentType:	QDomImplementation
createEditor:	QEditorFactory	QSqlEditorFactory	QTable	QTableItem
createElement:	QDomDocument
createElementNS:	QDomDocument
createEntityReference:	QDomDocument
createForMib:	QTextCodecPlugin
createForName:	QTextCodecPlugin
createGfx:	QScreen
createHeuristicMask:	QImage	QPixmap
createPopupMenu:	QLineEdit	QTextEdit
createProcessingInstruction:	QDomDocument
createQuery:	QSqlDriver
createTextNode:	QDomDocument
createWidget:	QWidgetFactory
created:	QFileInfo
createdDirectory:	QNetworkProtocol	QUrlOperator

creator:	QPrinter
critical:	QMessageBox
cubicBezier:	QPointArray
currEditCol:	QTable
currEditRow:	QTable
current:	QAsciiCacheIterator	QAsciiDictIterator	QCacheIterator
QDictIterator	QDir	QGLayoutIterator	QIntCacheIterator	QIntDictIterator
QLayoutIterator	QListViewItemIterator	QPtrDictIterator	QPtrList
QPtrListIterator	QPtrQueue	QPtrStack
currentAlignmentChanged:	QTextEdit
currentAllocContext:	QColor
currentChanged:	QDataBrowser	QDataTable	QIconView	QListBox
QListView	QTabDialog	QTabWidget	QTable
currentColorChanged:	QTextEdit
currentColumn:	QTable
currentContext:	QGLContext
currentDate:	QDate
currentDateTime:	QDateTime
currentDirPath:	QDir
currentEdited:	QDataBrowser
currentFontChanged:	QTextEdit
currentItem:	QComboBox	QComboTableItem	QIconView	QListBox
QListView
currentKey:	QAsciiCacheIterator	QAsciiDictIterator	QCacheIterator
QDictIterator	QIntCacheIterator	QIntDictIterator	QPtrDictIterator
currentNode:	QPtrList
currentPage:	QTabDialog	QTabWidget	QWizard
currentPageIndex:	QTabWidget
currentRecord:	QDataTable
currentRow:	QTable
currentSelection:	QTable
currentTab:	QTabBar
currentText:	QComboBox	QComboTableItem	QListBox
currentThread:	QThread
currentTime:	QTime
currentValueText:	QSpinBox
currentVerticalAlignmentChanged:	QTextEdit
cursor:	QWidget
cursorBackward:	QLineEdit

cursorChanged:	QDataBrowser	QDataTable
cursorDown:	QMultiLineEdit	QtMultiLineEdit
cursorFlashTime:	QApplication
cursorForward:	QLineEdit
cursorLeft:	QMultiLineEdit	QtMultiLineEdit
cursorName:	QSqlIndex
cursorPoint:	QMultiLineEdit	QtMultiLineEdit
cursorPos:	QIMEvent
cursorPosition:	QLineEdit
cursorPositionChanged:	QTextEdit
cursorRight:	QMultiLineEdit	QtMultiLineEdit
cursorUp:	QMultiLineEdit	QtMultiLineEdit
cursorWordBackward:	QLineEdit	QMultiLineEdit	QtMultiLineEdit
cursorWordForward:	QLineEdit	QMultiLineEdit	QtMultiLineEdit
customColor:	QColorDialog
customCount:	QColorDialog
customEvent:	QObject
customWhatsThis:	QWidget
customize:	QMainWindow
cut:	QLineEdit	QTextEdit	QtMultiLineEdit
	dark:	QColor	QColorGroup
data:	QClipboard	QCustomEvent	QDomCharacterData
QDomProcessingInstruction	QIconDragItem	QMapConstIterator
QMapIterator	QMemArray	QMimeSourceFactory	QNetworkProtocol
QPicture	QPtrVector	QSqlResult	QUrlOperator	QXmlInputSource
dataBytesWritten:	QFtp
dataChanged:	QClipboard
dataClosed:	QFtp
dataConnected:	QFtp
dataReadyRead:	QFtp
dataTransferProgress:	QNetworkProtocol	QUrlOperator
database:	QSqlDatabase
databaseName:	QSqlDatabase
databaseText:	QSqlError
date:	QDateEdit	QDateTime
dateEdit:	QDateTimeEdit
dateFormat:	QDataTable
dateTime:	QDateTimeEdit
day:	QDate

dayOfWeek:	QDate
dayOfYear:	QDate
daysInMonth:	QDate
daysInYear:	QDate
daysTo:	QDate	QDateTime
deciPointSize:	QFont
decimals:	QDoubleValidator
declHandler:	QXmlReader
decode:	QColorDrag	QImageDecoder	QImageDrag	QImageFormat
QTextDrag	QUriDrag	QUrl
decodeLocalFiles:	QUriDrag
decodeName:	QFile
decodeToUnicodeUris:	QUriDrag
decoderFor:	QImageFormatType
decomposition:	QChar
decompositionTag:	QChar
defaultButtonPressed:	QTabDialog
defaultCodec:	QApplication
defaultDepth:	QPixmap
defaultFactory:	QEditorFactory	QMimeSourceFactory	QSqlEditorFactory
defaultFamily:	QFont
defaultFormat:	QGLFormat
defaultMap:	QSqlPropertyMap
defaultOptimization:	QPixmap
defaultOverlayFormat:	QGLFormat
defaultRenameAction:	QListView
defaultSheet:	QStyleSheet
defaultTabStop:	QtMultiLineEdit
defaultValue:	QSqlFieldInfo
defineIOHandler:	QImageIO
definesFontItalic:	QStyleSheetItem
definesFontStrikeOut:	QStyleSheetItem
definesFontUnderline:	QStyleSheetItem
del:	QDataBrowser	QLineEdit	QSqlCursor	QTextEdit	QtMultiLineEdit
delay:	QToolTipGroup
delayedCloseFinished:	QSocket
deleteAllCodecs:	QTextCodec
deleteAllItems:	QLayout
deleteCurrent:	QDataBrowser	QDataTable	QLayoutIterator

deleteData:	QDomCharacterData
deleteItem:	QPtrCollection
deleteLater:	QObject
deleteNetworkProtocol:	QUrlOperator
delta:	QWheelEvent
depth:	QDirectPainter	QGLFormat	QImage	QListViewItem
QPaintDeviceMetrics	QPixmap	QScreen
dequeue:	QPtrQueue
descent:	QFontMetrics
description:	QImageIO
deselect:	QLineEdit	QtMultiLineEdit
designable:	QMetaProperty
desktop:	QApplication
desktopSettingsAware:	QApplication
destroy:	QWidget
destroyAllocContext:	QColor
destroyed:	QObject
detach:	QBitArray	QGLColormap	QIconSet	QImage	QMap	QMemArray
QPicture	QPixmap	QValueVector
device:	QDataStream	QGLContext	QPainter	QTabletEvent	QTextStream
deviceHeight:	QScreen
deviceIsPixmap:	QGLContext
deviceWidth:	QScreen
dialMoved:	QDial
dialPressed:	QDial
dialReleased:	QDial
digitValue:	QChar
dimensionChange:	QGridView
dir:	QFileDialog	QFileInfo
dirEntered:	QFileDialog
dirName:	QDir
dirPath:	QFileDialog	QFileInfo	QUrl
directRendering:	QGLFormat
directSetValue:	QRangeControl
direction:	QBoxLayout	QChar
dirty:	QFont
disabled:	QPalette
discardCommand:	QSessionManager
disconnect:	QObject	QScreen	QSignal

disconnectItem:	QAccel	QMenuData	QPopupMenu
disconnectNotify:	QObject
disconnectResize:	QMovie
disconnectStatus:	QMovie
disconnectUpdate:	QMovie
display:	QLCDNumber	QWhatsThis
displayMode:	QStyleSheetItem
displayText:	QLineEdit
doAutoScroll:	QIconView	QListView
doDefaultAction:	QAccessibleInterface
doKeyboardAction:	QTextEdit
doLayout:	QListBox
docName:	QPrinter
dock:	QDockWindow
dockWindowList:	QDockArea
dockWindowPositionChanged:	QMainWindow
dockWindows:	QMainWindow
dockWindowsMovable:	QMainWindow
doctype:	QDomDocument
documentElement:	QDomDocument
documentTitle:	QTextEdit
done:	QDialog
doneCurrent:	QGLContext
dotsPerMeterX:	QImage
dotsPerMeterY:	QImage
doubleBuffer:	QGLFormat	QGLWidget
doubleClickInterval:	QApplication
doubleClicked:	QIconView	QListBox	QListView	QTable
downRect:	QSpinBox
drag:	QDragObject
dragAutoScroll:	QScrollView
dragCopy:	QDragObject
dragEnabled:	QIconViewItem	QLineEdit	QListViewItem	QTable
dragEnterEvent:	QWidget
dragEntered:	QIconViewItem	QListViewItem
dragLeaveEvent:	QWidget
dragLeft:	QIconViewItem	QListViewItem
dragLink:	QDragObject
dragMove:	QDragObject

dragMoveEvent:	QWidget
dragObject:	QIconView	QListView	QTable
draggingSlider:	QScrollBar
draw:	QCanvasItem	QCanvasPolygonalItem	QCanvasSprite	QCanvasText
QSimpleRichText
drawArc:	QPainter
drawArea:	QCanvas
drawBackground:	QCanvas	QIconView
drawButton:	QButton
drawButtonLabel:	QButton
drawChord:	QPainter
drawComplexControl:	QStyle
drawComplexControlMask:	QStyle
drawContents:	QCanvasView	QFrame	QLCDNumber	QLabel	QMenuBar
QPopupMenu	QScrollView	QTable
drawContentsOffset:	QListView	QScrollView
drawControl:	QStyle
drawControlMask:	QStyle
drawConvexPolygon:	QPainter
drawCubicBezier:	QPainter
drawEllipse:	QPainter
drawForeground:	QCanvas
drawFrame:	QFrame
drawImage:	QPainter
drawItem:	QPopupMenu	QStyle
drawLine:	QPainter
drawLineSegments:	QPainter
drawPicture:	QPainter
drawPie:	QPainter
drawPixmap:	QPainter
drawPoint:	QPainter
drawPoints:	QPainter
drawPolygon:	QPainter
drawPolyline:	QPainter
drawPrimitive:	QStyle
drawRect:	QPainter
drawRiffles:	QPlatinumStyle
drawRoundRect:	QPainter
drawRubber:	QIconView

drawShape:	QCanvasEllipse	QCanvasPolygon	QCanvasPolygonalItem
QCanvasRectangle
drawText:	QPainter	QWidget
drawTiledPixmap:	QPainter
drawWinFocusRect:	QPainter
driver:	QSqlDatabase	QSqlQuery	QSqlResult
driverName:	QSqlDatabase
driverText:	QSqlError
drivers:	QSqlDatabase
drives:	QDir
dropEnabled:	QIconViewItem	QListViewItem
dropEvent:	QWidget
dropped:	QIconView	QIconViewItem	QListView	QListViewItem	QTable
dumpObjectInfo:	QObject
dumpObjectTree:	QObject
duplicate:	QMemArray
duplicatesEnabled:	QComboBox
dx:	QWMatrix
dy:	QWMatrix
	echoMode:	QLineEdit	QtMultiLineEdit
editBuffer:	QSqlCursor
editCell:	QTable
editMode:	QTable
editType:	QTableItem
editable:	QComboBox
edited:	QLineEdit	QMultiLineEdit	QtMultiLineEdit
editor:	QSpinBox
elapsed:	QTime
elementById:	QDomDocument
elementsByTagName:	QDomDocument	QDomElement
elementsByTagNameNS:	QDomDocument	QDomElement
emitSelectionChanged:	QIconView
empty:	QMap	QValueList	QValueVector
enableClipper:	QScrollView
enablePainting:	QWSServer
enableRewind:	QDataSource	QIODeviceSource
enabled:	QToolTipGroup
enabledChange:	QWidget
encode:	QUrl

encodeName:	QFile
encodedData:	QDropEvent	QIconDrag	QMimeSource	QStoredDrag
encodedPathAndQuery:	QUrl
end:	QImageConsumer	QLineEdit	QMap	QMemArray	QMultiLineEdit
QNPStream	QPainter	QValueList	QValueVector	QtMultiLineEdit
endCDATA:	QXmlLexicalHandler
endDTD:	QXmlLexicalHandler
endDocument:	QXmlContentHandler
endEdit:	QTable
endElement:	QXmlContentHandler
endEntity:	QXmlLexicalHandler
endPoint:	QCanvasLine
endPrefixMapping:	QXmlContentHandler
endsWith:	QString
enforceSortOrder:	QListViewItem
enqueue:	QPtrQueue
ensureCellVisible:	QGridView	QTable
ensureCurrentVisible:	QListBox
ensureCursorVisible:	QTextEdit
ensureItemVisible:	QIconView	QListView
ensureVisible:	QScrollView
enterAllocContext:	QColor
enterEvent:	QWidget
enterInstance:	QNPWidget
enterWhatsThisMode:	QWhatsThis
enter_loop:	QApplication
entities:	QDomDocumentType
entityResolver:	QXmlReader
entryColor:	QGLColormap
entryInfoList:	QDir
entryList:	QDir	QSettings
entryRgb:	QGLColormap
enumKeys:	QMetaProperty
eof:	QDataSink
eor:	QRegion
equal:	QUrlInfo
erase:	QMap	QValueList	QValueVector	QWidget
eraseColor:	QWidget
erasePixmap:	QWidget

eraseRect:	QPainter
erased:	QPaintEvent
error:	QSocket	QSocketDevice	QStyleSheet	QXmlErrorHandler
errorCode:	QNetworkOperation
errorHandler:	QXmlReader
errorString:	QXmlContentHandler	QXmlDTDHandler	QXmlDeclHandler
QXmlEntityResolver	QXmlErrorHandler	QXmlLexicalHandler
escape:	QStyleSheet
event:	QObject	QWidget
eventFilter:	QAccel	QListView	QObject	QScrollView	QSpinBox
exactMatch:	QFont	QFontInfo	QRegExp
exec:	QApplication	QDialog	QPopupMenu	QSqlDatabase	QSqlQuery
exists:	QDir	QFile	QFileInfo
exit:	QApplication	QThread
exitStatus:	QProcess
exit_loop:	QApplication
expand:	QGridLayout
expandTo:	QTableSelection
expanded:	QListView
expandedTo:	QSize
expanding:	QBoxLayout	QGridLayout	QLayout	QLayoutItem	QSizePolicy
QSpacerItem	QWidgetItem
extension:	QDialog	QFileInfo
externalEntityDecl:	QXmlDeclHandler
	falseText:	QDataTable
families:	QFontDatabase
family:	QFont	QFontInfo	QTextEdit
fatalError:	QXmlErrorHandler
feature:	QXmlReader
fetch:	QSqlResult
fetchData:	QXmlInputSource
fetchFirst:	QSqlResult
fetchLast:	QSqlResult
fetchNext:	QSqlResult
fetchPrev:	QSqlResult
field:	QSqlRecord
fieldAlignment:	QDataTable
fieldName:	QSqlRecord
fieldToWidget:	QSqlForm

fileHighlighted:	QFileDialog
fileName:	QFileInfo	QImageIO	QSound	QUrl
filePath:	QDir	QFileInfo	QMimeSourceFactory
fileSelected:	QFileDialog
filesSelected:	QFileDialog
fill:	QBitArray	QCString	QImage	QMemArray	QPixmap	QPtrVector
QString	QTextStream
fillRect:	QPainter
filter:	QDataBrowser	QDataTable	QDir	QSqlCursor
filterSelected:	QFileDialog
find:	QAsciiCache	QAsciiDict	QButtonGroup	QCString	QCache
QDataTable	QDict	QGLColormap	QIntCache	QIntDict	QMap	QMemArray
QPixmapCache	QPtrDict	QPtrList	QPtrVector	QSqlRecordInfo	QString
QTextEdit	QValueList	QWidget
findCol:	QtTableView
findFirstVisibleItem:	QIconView
findIndex:	QValueList
findItem:	QIconView	QListBox	QListView	QMenuData
findKey:	QAccel
findLastVisibleItem:	QIconView
findMessage:	QTranslator
findNearest:	QGLColormap
findNext:	QPtrList
findNextRef:	QPtrList
findProperty:	QMetaObject
findRef:	QPtrList	QPtrVector
findRev:	QCString	QString
findRow:	QtTableView
findWidget:	QBoxLayout	QGridLayout
finishButton:	QWizard
finished:	QMovie	QNetworkProtocol	QThread	QUrlOperator
first:	QDataBrowser	QPtrList	QSqlQuery	QValueList
firstChild:	QDomNode	QListView	QListViewItem
firstItem:	QIconView	QListBox
firstRecordAvailable:	QDataBrowser
fix:	QDateEdit
fixedExtent:	QDockWindow
fixedPitch:	QFont	QFontInfo
fixup:	QValidator

flags:	QIODevice	QTextStream
flush:	QApplication	QFile	QIODevice	QPainter	QSocket
flushX:	QApplication
focusData:	QWidget
focusInEvent:	QWidget	QtMultiLineEdit
focusNextPrevChild:	QTextEdit	QWidget
focusOutEvent:	QWidget
focusPolicy:	QWidget
focusProxy:	QWidget
focusStyle:	QTable
focusWidget:	QApplication	QFocusData	QWidget
font:	QApplication	QCanvasText	QFontDatabase	QPainter	QTextEdit
QToolTip	QWidget
fontChange:	QWidget
fontFamily:	QStyleSheetItem
fontInfo:	QPainter	QWidget
fontItalic:	QStyleSheetItem
fontMetrics:	QApplication	QPainter	QWidget
fontSize:	QStyleSheetItem
fontStrikeOut:	QStyleSheetItem
fontUnderline:	QStyleSheetItem
fontWeight:	QStyleSheetItem
forceShow:	QProgressDialog
foreground:	QColorGroup
foregroundColor:	QWidget
form:	QDataBrowser	QDataView
format:	QDropEvent	QGLContext	QGLWidget	QImageDecoder	QImageIO
QMimeSource
formatName:	QImageDecoder	QImageFormatType
formatValue:	QSqlDriver
forward:	QTextBrowser
forwardAvailable:	QTextBrowser
frame:	QCanvasSprite	QLineEdit
frameBuffer:	QDirectPainter
frameChanged:	QFrame
frameCount:	QCanvasSprite
frameDone:	QImageConsumer
frameGeometry:	QWidget
frameImage:	QMovie

frameNumber:	QMovie
framePixmap:	QMovie
frameRect:	QFrame
frameShadow:	QFrame	QStyleOption
frameShape:	QFrame	QStyleOption
frameSize:	QWidget
frameStyle:	QFrame
frameWidth:	QFrame
free:	QNetworkOperation
fromLast:	QValueList
fromLatin1:	QString
fromLocal8Bit:	QString
fromPage:	QPrinter
fromRawData:	QXmlInputSource
fromStrList:	QStringList
fromString:	QDate	QDateTime	QFont	QTime
fromStringList:	QSqlIndex
fromUnicode:	QHebrewCodec	QTextCodec	QTextEncoder
fromUtf8:	QString
front:	QValueList	QValueVector
fullPage:	QPrinter
fullSpan:	QCustomMenuItem
	gamma:	QImageIO
geometry:	QLayoutItem	QWidget
get:	QFontManager	QUrlOperator
getCalibration:	QWSMouseHandler
getColor:	QColorDialog
getCursorPosition:	QTextEdit	QtMultiLineEdit
getDouble:	QInputDialog
getExistingDirectory:	QFileDialog
getFirst:	QPtrList
getFont:	QFontDialog
getInteger:	QInputDialog
getItem:	QInputDialog
getJavaClass:	QNPlugin
getJavaEnv:	QNPlugin
getJavaPeer:	QNPInstance
getLast:	QPtrList
getLocation:	QMainWindow

getMIMEDescription:	QNPlugin
getMarkedRegion:	QMultiLineEdit	QtMultiLineEdit
getNetworkProtocol:	QNetworkProtocol	QUrlOperator
getOpenFileName:	QFileDialog
getOpenFileNames:	QFileDialog
getPluginDescriptionString:	QNPlugin
getPluginNameString:	QNPlugin
getRange:	QSplitter
getRgba:	QColorDialog
getSaveFileName:	QFileDialog
getSelection:	QLineEdit	QTextEdit
getString:	QtMultiLineEdit
getText:	QInputDialog
getURL:	QNPInstance
getURLNotify:	QNPInstance
getValidRect:	QMovie
getVersionInfo:	QNPlugin
getWFlags:	QWidget
getch:	QFile	QIODevice	QSocket
glDraw:	QGLWidget
glInit:	QGLWidget
globalPos:	QContextMenuEvent	QMouseEvent	QTabletEvent
QWheelEvent
globalStrut:	QApplication
globalX:	QContextMenuEvent	QMouseEvent	QTabletEvent	QWheelEvent
globalY:	QContextMenuEvent	QMouseEvent	QTabletEvent	QWheelEvent
gotFocus:	QFocusEvent
grabFrameBuffer:	QGLWidget
grabKeyboard:	QWidget
grabMouse:	QWidget
grabWidget:	QPixmap
grabWindow:	QPixmap
greaterThan:	QUrlInfo
green:	QColor
grep:	QStringList
gridSize:	QGridView
gridX:	QIconView
gridY:	QIconView
group:	QButton	QCheckBox	QFileInfo	QPushButton	QRadioButton

QToolTip	QUrlInfo	QWidgetPlugin
groupId:	QFileInfo
guiThreadAwake:	QApplication
	hMargin:	QtMultiLineEdit
hScrollBarMode:	QScrollView
handle:	QCursor	QFile	QFont	QPaintDevice	QPainter	QRegion
QSessionManager
handleError:	QDataBrowser	QDataTable
handlePosition:	QDockArea
hasAlphaBuffer:	QImage
hasApplyButton:	QTabDialog
hasAttribute:	QDomElement
hasAttributeNS:	QDomElement
hasAttributes:	QDomNode
hasCancelButton:	QTabDialog
hasChildNodes:	QDomNode
hasClipping:	QPainter
hasDefaultButton:	QTabDialog
hasDockWindow:	QDockArea	QMainWindow
hasFeature:	QDomImplementation	QSqlDriver	QXmlReader
hasFocus:	QWidget
hasGlobalMouseTracking:	QApplication
hasHeightForWidth:	QBoxLayout	QGridLayout	QLayoutItem	QSizePolicy
hasHelpButton:	QTabDialog
hasHost:	QUrl
hasMarkedText:	QMultiLineEdit	QtMultiLineEdit
hasMouse:	QWidget
hasMouseTracking:	QWidget
hasOkButton:	QTabDialog
hasOnlyLocalFileSystem:	QNetworkProtocol
hasOpenGL:	QGLFormat
hasOpenGLOverlays:	QGLFormat
hasOverlay:	QGLFormat
hasPassword:	QUrl
hasPath:	QUrl
hasPendingEvents:	QApplication
hasPort:	QUrl
hasProperty:	QXmlReader
hasRef:	QUrl

hasScaledContents:	QLabel
hasSelectedText:	QLineEdit	QTextEdit
hasStaticBackground:	QScrollView
hasUser:	QUrl
hasViewXForm:	QPainter
hasWorldXForm:	QPainter
hash:	QTranslatorMessage
head:	QPtrQueue
header:	QListView
headerWidth:	QHeader
height:	QCanvas	QCanvasEllipse	QCanvasRectangle	QCanvasSprite
QDirectPainter	QFontMetrics	QIconViewItem	QImage	QListBoxItem
QListBoxPixmap	QListBoxText	QListViewItem	QPaintDeviceMetrics
QPixmap	QRect	QScreen	QSimpleRichText	QSize	QWidget
heightForWidth:	QBoxLayout	QGridLayout	QLayoutItem	QMenuBar
QTextEdit	QWidget
heightMM:	QPaintDeviceMetrics
help:	QWizard
helpButton:	QWizard
helpButtonPressed:	QTabDialog
helpClicked:	QWizard
heuristicContentMatch:	QTextCodec
heuristicNameMatch:	QTextCodec
hide:	QCanvasItem	QMenuBar	QToolTip	QWSWindow	QWidget
hideColumn:	QTable
hideEvent:	QScrollBar	QWidget
hideOrShow:	QStatusBar
hideRow:	QTable
highPriority:	QObject
highlight:	QColorGroup
highlighted:	QComboBox	QListBox	QMenuBar	QPopupMenu
QTextBrowser
highlightedText:	QColorGroup
hitButton:	QButton
home:	QDir	QFocusData	QLineEdit	QMultiLineEdit	QTextBrowser
QtMultiLineEdit
homeDirPath:	QDir
horData:	QSizePolicy
horStretch:	QSizePolicy

horizontalAlignment:	QApplication
horizontalHeader:	QTable
horizontalScrollBar:	QScrollView	QtTableView
host:	QUrl
hostFound:	QSocket
hostName:	QSqlDatabase
hostNames:	QDns
hotSpot:	QCursor
hour:	QTime
hsv:	QColor
	icon:	QMessageBox	QWidget
iconPixmap:	QMessageBox
iconProvider:	QFileDialog
iconSet:	QAction	QHeader	QMenuData	QPopupMenu	QPushButton	QTab
QToolButton	QWidgetPlugin
iconSize:	QIconSet
iconText:	QWidget
iconView:	QIconViewItem
id:	QButtonGroup	QWidgetStack
idAfter:	QSplitter
idAt:	QMenuData	QPopupMenu
identifier:	QTab
ignorableWhitespace:	QXmlContentHandler
ignore:	QCloseEvent	QContextMenuEvent	QDragMoveEvent	QDropEvent
QIMEvent	QKeyEvent	QMouseEvent	QTabletEvent	QWheelEvent
imComposeEvent:	QWidget
imEndEvent:	QWidget
imStartEvent:	QWidget
image:	QCanvasPixmapArray	QCanvasSprite	QClipboard	QImageDecoder
QImageIO
imageAdvanced:	QCanvasSprite
imageFormat:	QImage	QImageIO	QPixmap
implementation:	QDomDocument
importNode:	QDomDocument
inFont:	QFontMetrics
inSort:	QPtrList
inText:	QSimpleRichText
inWhatsThisMode:	QWhatsThis
inactive:	QPalette

includeFile:	QWidgetPlugin
indent:	QLabel	QTextEdit
index:	QIconView	QIconViewItem	QListBox	QSqlCursor	QXmlAttributes
indexChange:	QHeader
indexOf:	QDataTable	QMenuData	QTabBar	QTabWidget	QTable	QWizard
indicatorFollowsStyle:	QProgressBar
info:	QUrlOperator
information:	QMessageBox
inherits:	QMetaObject	QObject
init:	QTableSelection
initCursor:	QScreen
initDevice:	QScreen
initialize:	QColor	QCursor	QFontManager	QWindowsMime
initializeGL:	QGLWidget
initializeOverlayGL:	QGLWidget
initialized:	QGLContext
inputFormatList:	QImage
inputFormats:	QImage	QImageDecoder	QImageIO
insert:	QAsciiCache	QAsciiDict	QButtonGroup	QCString	QCache
QDataBrowser	QDict	QIntCache	QIntDict	QLineEdit	QMap
QPixmapCache	QPtrDict	QPtrList	QPtrVector	QSqlCursor	QSqlForm
QSqlPropertyMap	QSqlRecord	QString	QTextEdit	QTranslator	QValueList
QValueVector	QtMultiLineEdit
insertAfter:	QDomNode
insertAndMark:	QMultiLineEdit
insertAt:	QMultiLineEdit	QTextEdit	QtMultiLineEdit
insertBefore:	QDomNode
insertChar:	QtMultiLineEdit
insertChild:	QObject
insertColumns:	QTable
insertCurrent:	QDataBrowser	QDataTable
insertData:	QDomCharacterData
insertInGrid:	QIconView
insertItem:	QAccel	QBoxLayout	QComboBox	QIconView	QListBox
QListView	QListViewItem	QMenuBar	QMenuData	QPopupMenu
insertLayout:	QBoxLayout
insertLine:	QMultiLineEdit	QtMultiLineEdit
insertPage:	QWizard
insertParagraph:	QTextEdit

insertRows:	QTable
insertSearchPath:	QSettings
insertSeparator:	QMenuBar	QMenuData	QPopupMenu
insertSpacing:	QBoxLayout
insertStrList:	QComboBox	QListBox
insertStretch:	QBoxLayout
insertStringList:	QComboBox	QListBox
insertSubstitution:	QFont
insertSubstitutions:	QFont
insertTab:	QTabBar	QTabDialog	QTabWidget
insertTearOffHandle:	QPopupMenu
insertWidget:	QBoxLayout	QTable
inserted:	QChildEvent
insertionPolicy:	QComboBox
insideMargin:	QGroupBox
insideSpacing:	QGroupBox
installDefaultFactory:	QEditorFactory	QSqlEditorFactory
installDefaultMap:	QSqlPropertyMap
installEditorFactory:	QDataTable
installEventFilter:	QObject
installIOHandler:	QImageFormatPlugin
installPropertyMap:	QDataTable	QSqlForm
installTranslator:	QApplication
instance:	QNPStream	QNPWidget
intValue:	QLCDNumber
internalEntityDecl:	QXmlDeclHandler
internalGfx:	QPainter
internalSubset:	QDomDocumentType
interpretText:	QSpinBox
intersect:	QRect	QRegion
intersects:	QIconViewItem	QRect
invalidate:	QBoxLayout	QGridLayout	QLayout	QLayoutItem
invalidateHeight:	QListViewItem
inverseWorldMatrix:	QCanvasView
invert:	QWMatrix
invertPixels:	QImage
invertSelection:	QIconView	QListBox	QListView
ioDevice:	QImageIO
ip4Addr:	QHostAddress

isA:	QObject
isAccepted:	QCloseEvent	QContextMenuEvent	QDropEvent	QIMEvent
QKeyEvent	QMouseEvent	QTabletEvent	QWheelEvent
isActionAccepted:	QDropEvent
isActive:	QCanvasItem	QPainter	QSqlQuery	QSqlResult	QTableSelection
QTimer
isActiveWindow:	QWidget	QXtWidget
isAnchor:	QStyleSheetItem
isAsynchronous:	QIODevice
isAttr:	QDomAttr	QDomNode
isAutoRepeat:	QKeyEvent
isAvailable:	QSound
isBitmapScalable:	QFontDatabase
isBuffered:	QIODevice
isCDATASection:	QDomCDATASection	QDomNode
isCalculated:	QSqlCursor	QSqlFieldInfo
isCharacterData:	QDomCharacterData	QDomNode
isCheckable:	QPopupMenu
isChecked:	QCheckBox	QCheckTableItem	QRadioButton
isClickEnabled:	QHeader
isCloseEnabled:	QDockWindow
isColumnReadOnly:	QTable
isColumnSelected:	QTable
isColumnStretchable:	QTable
isCombinedAccess:	QIODevice
isComment:	QDomComment	QDomNode
isConsumed:	QContextMenuEvent
isContainer:	QWidgetPlugin
isContentsPreviewEnabled:	QFileDialog
isCopyOf:	QFont	QPalette
isCurrent:	QListBoxItem
isCustomizable:	QMainWindow
isDefault:	QPushButton	QStyleOption
isDefaultUp:	QMenuBar
isDescending:	QSqlIndex
isDesktop:	QWidget
isDialog:	QWidget
isDigit:	QChar
isDir:	QFileInfo	QUrlInfo	QUrlOperator

isDirectAccess:	QIODevice
isDockEnabled:	QMainWindow
isDockMenuEnabled:	QMainWindow
isDockWindowAccepted:	QDockArea
isDocument:	QDomDocument	QDomNode
isDocumentFragment:	QDomDocumentFragment	QDomNode
isDocumentType:	QDomDocumentType	QDomNode
isDown:	QButton	QCheckBox	QPushButton	QRadioButton
isEditable:	QComboTableItem
isEditing:	QTable
isEffectEnabled:	QApplication
isElement:	QDomElement	QDomNode
isEmpty:	QAsciiCache	QAsciiCacheIterator	QAsciiDict	QAsciiDictIterator
QCString	QCache	QCacheIterator	QDict	QDictIterator	QDockArea
QGLColormap	QIntCache	QIntCacheIterator	QIntDict	QIntDictIterator
QLayout	QLayoutItem	QMap	QMemArray	QObjectCleanupHandler
QPtrDict	QPtrDictIterator	QPtrList	QPtrListIterator	QPtrQueue	QPtrStack
QPtrVector	QRect	QRegExp	QRegion	QSize	QSpacerItem	QSqlRecord
QString	QValueList	QWidgetItem
isEnabled:	QAccel	QAction	QCanvasItem	QLayout	QListViewItem
QSocketNotifier	QTab	QTableItem	QWidget
isEnabledTo:	QWidget
isEndOfParagraph:	QtMultiLineEdit
isEntity:	QDomEntity	QDomNode
isEntityReference:	QDomEntityReference	QDomNode
isEnumType:	QMetaProperty
isExclusive:	QActionGroup	QButtonGroup
isExclusiveToggle:	QButton	QCheckBox	QPushButton	QRadioButton
isExecutable:	QFileInfo	QUrlInfo
isExpandable:	QListViewItem
isExtDev:	QPaintDevice
isFile:	QFileInfo	QUrlInfo
isFinished:	QSound
isFixedPitch:	QFontDatabase
isFlat:	QPushButton
isFocusEnabled:	QWidget
isForwardOnly:	QSqlResult
isFullyObscured:	QWSWindow
isGenerated:	QIconSet	QSqlFieldInfo	QSqlRecord

isGloballyEnabled:	QToolTip
isGrayscale:	QImage
isHidden:	QWidget
isHorizontallyStretchable:	QDockWindow
isIdentity:	QWMatrix
isInactive:	QIODevice
isInfoPreviewEnabled:	QFileDialog
isInterlaced:	QScreen
isInvertible:	QWMatrix
isIp4Addr:	QHostAddress
isItemActive:	QMenuData
isItemChecked:	QMenuData	QPopupMenu
isItemEnabled:	QAccel	QMenuBar	QMenuData	QPopupMenu
isLetter:	QChar
isLetterOrNumber:	QChar
isLoaded:	QLibrary
isLocalFile:	QUrl
isMark:	QChar
isMaximized:	QWidget
isMinimized:	QWidget
isModal:	QWidget
isModified:	QTextEdit
isMovingEnabled:	QDockWindow	QHeader
isMultiSelection:	QListView
isNotation:	QDomNode	QDomNotation
isNull:	QCString	QChar	QDate	QDateTime	QDomImplementation
QDomNode	QGuardedPtr	QIconSet	QImage	QMemArray	QMovie
QPicture	QPixmap	QPoint	QPtrVector	QRect	QRegion	QSize	QSqlField
QSqlQuery	QSqlRecord	QSqlResult	QString	QTime
isNumber:	QChar
isOn:	QAction	QButton	QCheckBox	QCheckListItem	QPushButton
QRadioButton
isOpen:	QIODevice	QListView	QListViewItem	QSqlDatabase	QSqlDriver
isOpenError:	QSqlDatabase	QSqlDriver
isOverwriteMode:	QTextEdit	QtMultiLineEdit
isPartiallyObscured:	QWSWindow
isPhase2:	QSessionManager
isPopup:	QWidget
isPrint:	QChar

isPrintableData:	QDataStream
isProcessingInstruction:	QDomNode	QDomProcessingInstruction
isPunct:	QChar
isQBitmap:	QPixmap
isRadioButtonExclusive:	QButtonGroup
isRaw:	QIODevice
isReadOnly:	QDataBrowser	QLineEdit	QSqlCursor	QSqlField	QTable
QTextEdit	QtMultiLineEdit
isReadWrite:	QIODevice
isReadable:	QDir	QFileInfo	QIODevice	QUrlInfo
isRedoAvailable:	QLineEdit	QTextEdit
isRegistered:	QCopChannel
isRelative:	QDir	QFileInfo
isRelativePath:	QDir
isRelativeUrl:	QUrl
isRenaming:	QIconView	QListView
isReplaceable:	QTableItem
isRequired:	QSqlFieldInfo
isResizeEnabled:	QDockWindow	QHeader
isRoot:	QDir
isRowReadOnly:	QTable
isRowSelected:	QTable
isRowStretchable:	QTable
isRubberSelecting:	QListBox
isRunning:	QProcess
isScalable:	QFontDatabase
isSelect:	QSqlQuery	QSqlResult
isSelectable:	QIconViewItem	QListBoxItem	QListViewItem
isSelected:	QCanvasItem	QIconViewItem	QListBox	QListBoxItem
QListView	QListViewItem	QTable
isSeparator:	QCustomMenuItem
isSequentialAccess:	QIODevice
isSessionRestored:	QApplication
isSetType:	QMetaProperty
isSharing:	QGLContext	QGLWidget
isSizeGripEnabled:	QDialog	QStatusBar
isSmoothlyScalable:	QFontDatabase
isSpace:	QChar
isStretchEnabled:	QHeader

isStretchable:	QDockWindow
isSupported:	QDomNode
isSymLink:	QFileInfo	QUrlInfo
isSymbol:	QChar
isSynchronous:	QIODevice
isTabEnabled:	QTabBar	QTabDialog	QTabWidget
isText:	QDomNode	QDomText
isToggleAction:	QAction
isToggleButton:	QButton	QCheckBox	QPushButton	QRadioButton
isTopLevel:	QLayout	QWidget
isTransformed:	QScreen
isTranslated:	QIODevice
isTrim:	QSqlFieldInfo
isTrimmed:	QSqlCursor
isTristate:	QCheckBox
isUndoAvailable:	QLineEdit	QTextEdit
isUndoEnabled:	QtMultiLineEdit
isUndoRedoEnabled:	QTextEdit
isUpdatesEnabled:	QWidget
isValid:	QAccessibleInterface	QCanvasPixmapArray	QColor	QDate
QDateTime	QGLContext	QGLWidget	QLock	QRect	QRegExp	QSize
QSocketDevice	QSqlQuery	QSqlResult	QTime	QUrl	QUrlInfo	QVariant
isVerticallyStretchable:	QDockWindow
isVirtualDesktop:	QDesktopWidget
isVisible:	QCanvasItem	QListViewItem	QWSWindow	QWidget
isVisibleTo:	QWidget
isWidgetType:	QObject
isWorking:	QDns
isWritable:	QFileInfo	QIODevice	QUrlInfo
italic:	QFont	QFontDatabase	QFontInfo	QTextEdit
item:	QDomNamedNodeMap	QDomNodeList	QListBox	QStyleSheet
QTable
itemAbove:	QListViewItem
itemAt:	QListBox	QListView
itemBelow:	QListViewItem
itemChanged:	QNetworkProtocol	QUrlOperator
itemHeight:	QListBox	QPopupMenu
itemMargin:	QListView
itemParameter:	QMenuData	QPopupMenu

itemPos:	QListView	QListViewItem
itemRect:	QListBox	QListView	QStyle
itemRenamed:	QIconView	QListView
itemTextBackground:	QIconView
itemTextPos:	QIconView
itemVisible:	QListBox
itemsMovable:	QIconView
iterator:	QLayout	QLayoutItem
	join:	QStringList
joinStyle:	QPen
joining:	QChar
jumpTable:	QImage
	key:	QAccel	QFont	QIconViewItem	QKeyEvent	QListViewItem
QMapConstIterator	QMapIterator	QTableItem
keyMap:	QWSServer
keyPressEvent:	QLineEdit	QTextBrowser	QTextEdit	QWidget
QtMultiLineEdit
keyReleaseEvent:	QWidget
keyToValue:	QMetaProperty
keyboardFocusTab:	QTabBar
keyboardGrabber:	QWidget
keyboardHandler:	QWSServer
keys:	QImageFormatPlugin	QMap	QSqlDriverPlugin	QStyleFactory
QStylePlugin	QWidgetPlugin
keysToValue:	QMetaProperty
kill:	QProcess
killLine:	QMultiLineEdit	QtMultiLineEdit
killTimer:	QObject
killTimers:	QObject
	label:	QDns	QHeader	QTabWidget	QToolBar
labelText:	QProgressDialog
last:	QDataBrowser	QPtrList	QSqlQuery	QValueList
lastChild:	QDomNode
lastColVisible:	QtTableView
lastError:	QSqlDatabase	QSqlDriver	QSqlQuery	QSqlResult
lastItem:	QIconView	QListView
lastModified:	QFileInfo	QNPStream	QUrlInfo
lastOp:	QScreen
lastQuery:	QSqlQuery	QSqlResult

lastRead:	QFileInfo	QUrlInfo
lastRecordAvailable:	QDataBrowser
lastResortFamily:	QFont
lastResortFont:	QFont
lastRowVisible:	QtTableView
lastWindowClosed:	QApplication
latin1:	QChar	QString
launch:	QProcess
launchFinished:	QProcess
layOutButtonRow:	QWizard
layOutTitleRow:	QWizard
layout:	QLayoutItem	QWidget
layoutTabs:	QTabBar
leading:	QFontMetrics
leapYear:	QDate
leaveAllocContext:	QColor
leaveEvent:	QWidget
leaveInstance:	QNPWidget
leaveWhatsThisMode:	QWhatsThis
left:	QCString	QRect	QString
leftBearing:	QFontMetrics
leftCell:	QtTableView
leftCol:	QTableSelection
leftDock:	QMainWindow
leftEdge:	QCanvasSprite
leftJustify:	QCString	QString
leftMargin:	QScrollView
length:	QCString	QDomCharacterData	QDomNamedNodeMap
QDomNodeList	QSqlFieldInfo	QString	QTextEdit	QXmlAttributes
QtMultiLineEdit
lessThan:	QUrlInfo
lexicalHandler:	QXmlReader
library:	QLibrary
libraryPaths:	QApplication
light:	QColor	QColorGroup
lineEdit:	QComboBox
lineLength:	QMultiLineEdit	QtMultiLineEdit
lineNumber:	QXmlLocator	QXmlParseException
lineOfChar:	QTextEdit

lineSpacing:	QFontMetrics
lineStep:	QDial	QDirectPainter	QRangeControl	QScrollBar	QSlider
QSpinBox
lineTo:	QPainter
lineUp:	QDockArea
lineUpDockWindows:	QMainWindow
lineWidth:	QFontMetrics	QFrame	QStyleOption
lines:	QTextEdit
linesOfParagraph:	QTextEdit
linestep:	QScreen
link:	QColorGroup
linkClicked:	QTextBrowser
linkUnderline:	QTextEdit
linkVisited:	QColorGroup
listBegin:	QVariant
listBox:	QComboBox	QListBoxItem
listChildren:	QUrlOperator
listEnd:	QVariant
listStyle:	QStyleSheetItem
listView:	QListViewItem
listViewItem:	QStyleOption
listen:	QSocketDevice
load:	QImage	QLibrary	QPicture	QPixmap	QTranslator
loadCharmap:	QTextCodec
loadCharmapFile:	QTextCodec
loadFromData:	QImage	QPixmap
loadImages:	QWidgetFactory
local8Bit:	QString
localFileToUri:	QUriDrag
localName:	QDomNode	QXmlAttributes
locale:	QTextCodec
localeAwareCompare:	QString
lock:	QApplication	QLock	QMutex
locked:	QApplication	QLock	QMutex
logicalDpiX:	QPaintDeviceMetrics
logicalDpiY:	QPaintDeviceMetrics
logicalFontSize:	QStyleSheetItem
logicalFontSizeStep:	QStyleSheetItem
longDayName:	QDate

longMonthName:	QDate
loopLevel:	QApplication
loops:	QSound
loopsRemaining:	QSound
lostFocus:	QFocusEvent
lower:	QCString	QChar	QString	QWSWindow	QWidget
	m11:	QWMatrix
m12:	QWMatrix
m21:	QWMatrix
m22:	QWMatrix
macEvent:	QWidget
macEventFilter:	QApplication
mailServers:	QDns
mainWidget:	QApplication	QLayout
mainWindow:	QToolBar
makeAbsolute:	QMimeSourceFactory
makeArc:	QPointArray
makeCurrent:	QGLContext	QGLWidget
makeDecoder:	QTextCodec
makeEllipse:	QPointArray
makeEncoder:	QTextCodec
makeOverlayCurrent:	QGLWidget
makeRowLayout:	QIconView
manager:	QWSServer
manhattanLength:	QPoint
map:	QSignalMapper	QWMatrix
mapBegin:	QVariant
mapEnd:	QVariant
mapFind:	QVariant
mapFrom:	QWidget
mapFromDevice:	QScreen
mapFromGlobal:	QWidget
mapFromParent:	QWidget
mapRect:	QWMatrix
mapTextToValue:	QSpinBox
mapTo:	QWidget
mapToDevice:	QScreen
mapToGlobal:	QWidget
mapToIndex:	QHeader

mapToParent:	QWidget
mapToSection:	QHeader
mapValueToText:	QSpinBox
mapped:	QSignalMapper
margin:	QFrame	QLayout	QStyleSheetItem	QTabWidget
margins:	QPrinter
markedText:	QMultiLineEdit	QtMultiLineEdit
mask:	QCursor	QPixmap
match:	QDir
matchAllDirs:	QDir
matchedLength:	QRegExp
maxColOffset:	QtTableView
maxColors:	QColor
maxCost:	QAsciiCache	QCache	QIntCache
maxCount:	QComboBox
maxIconWidth:	QStyleOption
maxItemTextLength:	QIconView
maxItemWidth:	QIconView	QListBox
maxLength:	QLineEdit	QtMultiLineEdit
maxLineLength:	QtMultiLineEdit
maxLineWidth:	QtMultiLineEdit
maxLines:	QtMultiLineEdit
maxPage:	QPrinter
maxRowOffset:	QtTableView
maxValue:	QDateEdit	QDial	QRangeControl	QScrollBar	QSlider
QSpinBox	QTimeEdit
maxViewX:	QtTableView
maxViewY:	QtTableView
maxWidth:	QFontMetrics
maxXOffset:	QtTableView
maxYOffset:	QtTableView
maximize:	QWSDecoration
maximumHeight:	QWidget
maximumSize:	QBoxLayout	QGridLayout	QLayout	QLayoutItem
QSpacerItem	QWidget	QWidgetItem
maximumWidth:	QWidget
mayGrowHorizontally:	QSizePolicy
mayGrowVertically:	QSizePolicy
mayShrinkHorizontally:	QSizePolicy

mayShrinkVertically:	QSizePolicy
maybeReady:	QDataSink	QDataSource
maybeTip:	QToolTip
menu:	QWSDecoration
menuAboutToShow:	QMainWindow
menuBar:	QLayout	QMainWindow
menuContentsChanged:	QMenuBar	QMenuData
menuDelPopup:	QMenuData
menuInsPopup:	QMenuData
menuItem:	QStyleOption
menuStateChanged:	QMenuBar	QMenuData
menuText:	QAction
message:	QErrorMessage	QStatusBar	QXmlParseException
messages:	QTranslator
metaObject:	QObject
metric:	QPicture	QPixmap	QWidget
mibEnum:	QEucJpCodec	QTextCodec
mibEnums:	QTextCodecPlugin
microFocusHint:	QWidget
mid:	QCString	QColorGroup	QString
midLineWidth:	QFrame	QStyleOption
midlight:	QColorGroup
mightBeRichText:	QStyleSheet
mimeFor:	QWindowsMime
mimeName:	QEucJpCodec	QEucKrCodec	QGbkCodec	QHebrewCodec
QJisCodec	QSjisCodec	QTextCodec
mimeSourceFactory:	QTextEdit
minLeftBearing:	QFontMetrics
minPage:	QPrinter
minRightBearing:	QFontMetrics
minValue:	QDateEdit	QDial	QRangeControl	QScrollBar	QSlider
QSpinBox	QTimeEdit
minViewX:	QtTableView
minViewY:	QtTableView
minimal:	QRegExp
minimize:	QWSDecoration
minimumDuration:	QProgressDialog
minimumHeight:	QWidget
minimumSize:	QBoxLayout	QGridLayout	QLayout	QLayoutItem

QSpacerItem	QWidget	QWidgetItem
minimumSizeHint:	QLineEdit	QWidget	QtMultiLineEdit
minimumWidth:	QWidget
minute:	QTime
mirror:	QImage
mirrored:	QChar
mirroredChar:	QChar
mixedColor:	QPlatinumStyle
mkdir:	QDir	QUrlOperator
mode:	QFileDialog	QIODevice	QLCDNumber	QNPInstance	QSqlCursor
modificationChanged:	QTextEdit
month:	QDate
mouseButtonClicked:	QIconView	QListBox	QListView
mouseButtonPressed:	QIconView	QListBox	QListView
mouseChanged:	QWSMouseHandler
mouseDoubleClickEvent:	QWidget
mouseGrabber:	QWidget
mouseHandler:	QWSServer
mouseMoveEvent:	QSizeGrip	QWidget
mousePressEvent:	QSizeGrip	QWidget
mouseReleaseEvent:	QWidget
move:	QCanvasItem	QCanvasSprite	QIconViewItem	QWidget
moveBottomLeft:	QRect
moveBottomRight:	QRect
moveBy:	QCanvasItem	QIconViewItem	QRect
moveCenter:	QRect
moveChild:	QScrollView
moveCursor:	QTextEdit
moveDockWindow:	QDockArea	QMainWindow
moveEvent:	QWidget
moveFocus:	QButtonGroup
moveItem:	QListViewItem
moveSection:	QHeader
moveSplitter:	QSplitter
moveTo:	QPainter
moveToFirst:	QSplitter
moveToLast:	QSplitter
moveTopLeft:	QRect
moveTopRight:	QRect

moved:	QIconView
movie:	QLabel
msec:	QTime
msecsTo:	QTime
msleep:	QThread
multiLinesEnabled:	QListViewItem
	name:	QColor	QDomAttr	QDomDocumentType	QFile	QMetaProperty
QObject	QSqlCursor	QSqlField	QSqlFieldInfo	QSqlIndex	QStyleSheetItem
QTextCodec	QUrlInfo	QWSWindow
nameFilter:	QDir	QUrlOperator
nameToType:	QVariant
namedItem:	QDomNamedNodeMap	QDomNode
namedItemNS:	QDomNamedNodeMap
names:	QTextCodecPlugin
namespaceURI:	QDomNode
navigate:	QAccessibleInterface
networkOrdered:	QChar
newChannel:	QWSServer
newChild:	QNetworkProtocol
newChildren:	QNetworkProtocol	QUrlOperator
newConnection:	QServerSocket
newInstance:	QNPlugin
newItem:	QPtrCollection
newLine:	QDockWindow	QMultiLineEdit	QtMultiLineEdit
newPage:	QPrinter
newStream:	QNPInstance
newStreamCreated:	QNPInstance
newWindow:	QNPInstance
next:	QDataBrowser	QFocusData	QGLayoutIterator	QListBoxItem
QPtrList	QSqlQuery	QWizard	QXmlInputSource
nextButton:	QWizard
nextItem:	QIconViewItem
nextLine:	QScrollBar
nextPage:	QScrollBar
nextRecordAvailable:	QDataBrowser
nextSibling:	QDomNode	QListViewItem
nodeName:	QDomNode
nodeType:	QDomAttr	QDomCDATASection	QDomCharacterData
QDomComment	QDomDocument	QDomDocumentFragment

QDomDocumentType	QDomElement	QDomEntity	QDomEntityReference
QDomNode	QDomNotation	QDomProcessingInstruction	QDomText
nodeValue:	QDomNode
normalExit:	QProcess
normalize:	QDomNode	QRect
normalizeSignalSlot:	QObject
notationDecl:	QXmlDTDHandler
notationName:	QDomEntity
notations:	QDomDocumentType
notchSize:	QDial
notchTarget:	QDial
notchesVisible:	QDial
notify:	QApplication
notifyURL:	QNPInstance
nrefs:	QMemArray
nullText:	QDataTable	QSqlDriver
numBitPlanes:	QColor
numBytes:	QImage
numClassInfo:	QMetaObject
numColors:	QImage	QPaintDeviceMetrics
numCols:	QDataTable	QGridLayout	QGridView	QScreen	QTable
QtTableView
numColumns:	QListBox
numCopies:	QPrinter
numDigits:	QLCDNumber
numItemsVisible:	QListBox
numLines:	QMultiLineEdit	QtMultiLineEdit
numProperties:	QMetaObject
numRects:	QDirectPainter
numRows:	QDataTable	QGridLayout	QGridView	QListBox	QTable
QtTableView
numRowsAffected:	QSqlQuery	QSqlResult
numScreens:	QDesktopWidget
numSelections:	QTable
numSignals:	QMetaObject
numSlots:	QMetaObject
number:	QSqlError	QString
	object:	QAccessibleObject
objectTrees:	QObject

offset:	QDirectPainter	QDockWindow	QHeader	QImage
offsetX:	QCanvasPixmap
offsetY:	QCanvasPixmap
ok:	QServerSocket
okRename:	QListViewItem
okay:	QNPStream
oldPos:	QMoveEvent
oldSize:	QResizeEvent
onCanvas:	QCanvas
onCard:	QScreen
onItem:	QIconView	QListBox	QListView
onViewport:	QIconView	QListBox	QListView
opType:	QScreen
opaqueMoving:	QDockWindow	QMainWindow
opaqueResize:	QSplitter
open:	QFile	QIODevice	QSocket	QSqlDatabase	QSqlDriver
openKeyboard:	QWSServer
openMouse:	QWSServer
openPopup:	QToolButton
operation:	QNetworkOperation
operationGet:	QNetworkProtocol
operationInProgress:	QNetworkProtocol
operationListChildren:	QNetworkProtocol
operationMkDir:	QNetworkProtocol
operationPut:	QNetworkProtocol
operationRemove:	QNetworkProtocol
operationRename:	QNetworkProtocol
operator	QString:	QKeySequence	QUrl
operator	T	*:	QGuardedPtr
operator	char:	QChar
operator	const	char	*:	QCString	QString
operator	const	type	*:	QMemArray
operator	int:	QBitVal	QKeySequence
operator	type	*:	QAsciiCacheIterator	QAsciiDictIterator	QCacheIterator
QDictIterator	QIntCacheIterator	QIntDictIterator	QPtrDictIterator
QPtrListIterator	QPtrQueue	QPtrStack
operator!:	QString
operator!=:	QBrush	QCString	QChar	QColor	QColorGroup	QDate
QDateTime	QDir	QDomImplementation	QDomNamedNodeMap

QDomNode	QDomNodeList	QFont	QGuardedPtr	QImage	QKeySequence
QMapConstIterator	QMapIterator	QMemArray	QPalette	QPen	QPoint
QRect	QRegExp	QRegion	QSize	QSizePolicy	QString	QTableSelection
QTime	QTranslatorMessage	QValueList	QValueListConstIterator
QValueListIterator	QVariant	QWMatrix
operator&:	QBitArray	QRect	QRegion
operator&=:	QBitArray	QRect	QRegion
operator():	QAsciiCacheIterator	QAsciiDictIterator	QCacheIterator
QDictIterator	QIntCacheIterator	QIntDictIterator	QPtrDictIterator
QPtrListIterator
operator*:	QGuardedPtr	QMapConstIterator	QMapIterator	QPoint
QPtrListIterator	QSize	QValueListConstIterator	QValueListIterator
QWMatrix
operator*=:	QPoint	QSize	QWMatrix
operator+:	QCString	QPoint	QRegion	QSize	QString	QValueList
operator++:	QAsciiCacheIterator	QAsciiDictIterator	QCacheIterator
QDictIterator	QIntCacheIterator	QIntDictIterator	QLayoutIterator
QListViewItemIterator	QMapConstIterator	QMapIterator	QPtrDictIterator
QPtrListIterator	QSemaphore	QValueListConstIterator	QValueListIterator
operator+=:	QAsciiCacheIterator	QAsciiDictIterator	QCString
QCacheIterator	QIntCacheIterator	QIntDictIterator	QListViewItemIterator
QPoint	QPtrDictIterator	QPtrListIterator	QRegion	QSemaphore	QSize
QString	QValueList
operator-:	QPoint	QRegion	QSize
operator--:	QAsciiCacheIterator	QCacheIterator	QIntCacheIterator
QListViewItemIterator	QMapConstIterator	QMapIterator	QPtrListIterator
QSemaphore	QValueListConstIterator	QValueListIterator
operator-=:	QAsciiCacheIterator	QCacheIterator	QIntCacheIterator
QListViewItemIterator	QPoint	QPtrListIterator	QRegion	QSemaphore
QSize
operator->:	QGuardedPtr
operator/:	QPoint	QSize
operator/=:	QPoint	QSize
operator<:	QCString	QChar	QDate	QDateTime	QString	QTime
QTranslatorMessage
operator<<:	QBitArray	QBrush	QCString	QColor	QColorGroup	QCursor
QDataStream	QDate	QDateTime	QDockArea	QDomNode	QFont	QImage
QKeySequence	QMainWindow	QMap	QMemArray	QPalette	QPen
QPicture	QPixmap	QPoint	QPointArray	QRect	QRegion	QSize	QString

QTextStream	QTime	QValueList	QWMatrix
operator<=:	QCString	QChar	QDate	QDateTime	QString	QTime
QTranslatorMessage
operator=:	QAsciiCacheIterator	QAsciiDict	QBitArray	QBitVal	QBitmap
QBrush	QCString	QCacheIterator	QColor	QColorGroup	QCursor	QDict
QDir	QDomAttr	QDomCDATASection	QDomCharacterData
QDomComment	QDomDocument	QDomDocumentFragment
QDomDocumentType	QDomElement	QDomEntity	QDomEntityReference
QDomImplementation	QDomNamedNodeMap	QDomNode
QDomNodeList	QDomNotation	QDomProcessingInstruction	QDomText
QFileInfo	QFont	QFontInfo	QFontMetrics	QGLColormap	QGuardedPtr
QHostAddress	QIconSet	QImage	QIntCacheIterator	QIntDict	fnord
QKeySequence	QLayoutIterator	QListViewItemIterator	QMap
QMemArray	QMovie	QObjectList	QObjectListIt	QPalette	QPen	QPicture
QPixmap	QPointArray	QPtrDict	QPtrList	QPtrListIterator	QPtrQueue
QPtrStack	QPtrVector	QRegExp	QRegion	QSortedList	QSqlCursor
QSqlError	QSqlField	QSqlFieldInfo	QSqlIndex	QSqlQuery	QSqlRecord
QStrList	QString	QTranslatorMessage	QUrl	QUrlInfo	QValueList
QValueVector	QVariant
operator==:	QBrush	QCString	QChar	QColor	QColorGroup	QDate
QDateTime	QDir	QDomImplementation	QDomNamedNodeMap
QDomNode	QDomNodeList	QFont	QGuardedPtr	QHostAddress	QImage
QKeySequence	QMapConstIterator	QMapIterator	QMemArray	QPalette
QPen	QPoint	QPtrList	QPtrVector	QRect	QRegExp	QRegion	QSize
QSizePolicy	QSqlField	QSqlFieldInfo	QString	QTableSelection	QTime
QTranslatorMessage	QUrl	QUrlInfo	QValueList	QValueListConstIterator
QValueListIterator	QValueVector	QVariant	QWMatrix
operator>:	QCString	QChar	QDate	QDateTime	QString	QTime
QTranslatorMessage
operator>=:	QCString	QChar	QDate	QDateTime	QString	QTime
QTranslatorMessage
operator>>:	QBitArray	QBrush	QCString	QColor	QCursor	QDataStream
QDate	QDateTime	QDockArea	QFont	QImage	QKeySequence
QMainWindow	QMap	QMemArray	QPalette	QPen	QPicture	QPixmap
QPoint	QPointArray	QRect	QRegion	QSize	QString	QTextStream	QTime
QValueList	QWMatrix
operator[]:	QAsciiCache	QAsciiDict	QBitArray	QCache	QDict	QDir
QIntCache	QIntDict	QMap	QMemArray	QPtrDict	QPtrVector	QString
QValueList	QValueVector

http://www.kbuxton.com/discordia/fnord.html

operator^:	QBitArray	QRegion
operator^=:	QBitArray	QRegion
operator|:	QBitArray	QRect	QRegion
operator|=:	QBitArray	QRect	QRegion
operator~:	QBitArray
optimization:	QPixmap
order:	QDateEdit
orientation:	QDialog	QDockArea	QDockWindow	QGroupBox	QHeader
QPrinter	QScrollBar	QSlider	QSplitter	QWheelEvent
orientationChanged:	QDockWindow
origin:	QGridLayout
outputFileName:	QPrinter
outputFormatList:	QImage
outputFormats:	QImage	QImageIO
outputToFile:	QPrinter
overflow:	QLCDNumber
overlayContext:	QGLWidget
overlayTransparentColor:	QGLContext
overrideCursor:	QApplication
ownCursor:	QWidget
ownFont:	QWidget
ownPalette:	QWidget
owner:	QFileInfo	QUrlInfo
ownerDocument:	QDomNode
ownerElement:	QDomAttr
ownerId:	QFileInfo
ownsClipboard:	QClipboard
ownsSelection:	QClipboard
	packImage:	QPNGImagePacker
page:	QTabWidget	QWizard
pageCount:	QWizard
pageDown:	QMultiLineEdit	QtMultiLineEdit
pageOrder:	QPrinter
pageSize:	QPrinter
pageStep:	QDial	QRangeControl	QScrollBar	QSlider
pageUp:	QMultiLineEdit	QtMultiLineEdit
paint:	QCustomMenuItem	QListBoxItem	QListBoxPixmap	QListBoxText
QTabBar	QTableItem	QWSDecoration
paintBranches:	QListViewItem

paintButton:	QWSDecoration
paintCell:	QCheckListItem	QGridView	QListBox	QListViewItem	QTable
QtMultiLineEdit	QtTableView
paintEmptyArea:	QGridView	QListView	QTable
paintEvent:	QButton	QFrame	QGLWidget	QSizeGrip	QStatusBar	QTabBar
QWidget	QtTableView
paintField:	QDataTable
paintFocus:	QCheckListItem	QIconViewItem	QListViewItem	QTable
paintGL:	QGLWidget
paintItem:	QIconViewItem
paintLabel:	QTabBar
paintOverlayGL:	QGLWidget
paintSection:	QHeader
paintSectionLabel:	QHeader
paintingActive:	QPaintDevice
palette:	QApplication	QToolTip	QWidget
paletteBackgroundColor:	QWidget
paletteBackgroundPixmap:	QWidget
paletteChange:	QWidget
paletteForegroundColor:	QWidget
paper:	QTextEdit
paperSource:	QPrinter
paragraphAt:	QTextEdit
paragraphBackgroundColor:	QTextEdit
paragraphLength:	QTextEdit
paragraphRect:	QTextEdit
paragraphs:	QTextEdit
parameters:	QImageIO
parent:	QListViewItem	QObject
parentNode:	QDomNode
parentWidget:	QToolTip	QWidget
parse:	QUrl	QXmlReader	QXmlSimpleReader
parseContinue:	QXmlSimpleReader
parseDir:	QFtp
password:	QSqlDatabase	QUrl
passwordChar:	QLineEdit
paste:	QLineEdit	QTextEdit	QtMultiLineEdit
pasteSubType:	QTextEdit	QtMultiLineEdit
path:	QDir	QUrl

pattern:	QRegExp
pause:	QMovie
paused:	QMovie
peerAddress:	QSocket	QSocketDevice
peerName:	QSocket
peerPort:	QSocket	QSocketDevice
pen:	QCanvasPolygonalItem	QPainter
percentageVisible:	QProgressBar
permission:	QFileInfo
permissions:	QUrlInfo
picture:	QIconViewItem	QLabel
pixel:	QColor	QImage
pixelIndex:	QImage
pixelMetric:	QStyle
pixelSize:	QFont	QFontInfo
pixelType:	QScreen
pixmap:	QBrush	QButton	QCheckBox	QClipboard	QComboBox
QDragObject	QFileIconProvider	QIconSet	QIconViewItem	QLabel
QListBox	QListBoxItem	QListBoxPixmap	QListViewItem	QMenuData
QPopupMenu	QPushButton	QRadioButton	QTable	QTableItem
pixmapDepth:	QScreen
pixmapHotSpot:	QDragObject
pixmapLinestepAlignment:	QScreen
pixmapOffsetAlignment:	QScreen
pixmapRect:	QIconViewItem
pixmapSizeChanged:	QMainWindow
place:	QDockWindow
placeChanged:	QDockWindow
placeCursor:	QTextEdit
plane:	QGLFormat
play:	QPicture	QSound
point:	QPointArray
pointSize:	QFont	QFontInfo	QTextEdit
pointSizeFloat:	QFont
pointSizes:	QFontDatabase
points:	QCanvasPolygon
polish:	QApplication	QStyle	QWidget
polishPopupMenu:	QStyle
pop:	QPtrStack	QValueStack

popContext:	QXmlNamespaceSupport
pop_back:	QValueList	QValueVector
pop_front:	QValueList
popup:	QComboBox	QPopupMenu	QPushButton	QToolButton
popupDelay:	QToolButton
port:	QServerSocket	QSocket	QSocketDevice	QSqlDatabase	QUrl
pos:	QContextMenuEvent	QCursor	QDropEvent	QIconViewItem
QMouseEvent	QMoveEvent	QPainter	QRegExp	QTabletEvent
QWheelEvent	QWidget
position:	QSqlRecord
positionFromValue:	QRangeControl
postEvent:	QApplication	QThread
postURL:	QNPInstance
precision:	QSqlFieldInfo	QTextStream
prefix:	QDomNode	QSpinBox	QXmlNamespaceSupport
prefixes:	QXmlNamespaceSupport
prepend:	QCString	QPtrList	QString	QValueList
pressed:	QButton	QButtonGroup	QCheckBox	QHeader	QIconView
QListBox	QListView	QPushButton	QRadioButton	QTable
pressure:	QTabletEvent
prev:	QDataBrowser	QFocusData	QListBoxItem	QPtrList	QSqlQuery
prevItem:	QIconViewItem
prevLine:	QScrollBar
prevPage:	QScrollBar
prevRecordAvailable:	QDataBrowser
prevValue:	QRangeControl
previewMode:	QFileDialog
previewUrl:	QFilePreview
previousSibling:	QDomNode
primaryIndex:	QSqlCursor	QSqlDatabase	QSqlDriver
primaryScreen:	QDesktopWidget
primeDelete:	QDataBrowser	QDataTable	QSqlCursor
primeInsert:	QDataBrowser	QDataTable	QSqlCursor
primeUpdate:	QDataBrowser	QDataTable	QSqlCursor
print:	QNPInstance
printFullPage:	QNPInstance
printProgram:	QPrinter
printerName:	QPrinter
printerSelectionOption:	QPrinter

processEvents:	QApplication
processExited:	QProcess
processIdentifier:	QProcess
processKeyEvent:	QWSKeyboardHandler
processName:	QXmlNamespaceSupport
processOneEvent:	QApplication
processingInstruction:	QXmlContentHandler
progress:	QProgressBar	QProgressDialog
progressString:	QProgressBar
property:	QMetaObject	QObject	QSqlPropertyMap	QXmlReader
propertyNames:	QMetaObject
protocol:	QUrl
protocolDetail:	QNetworkOperation
provides:	QDropEvent	QMimeSource
publicId:	QDomDocumentType	QDomEntity	QDomNotation
QXmlParseException
push:	QPtrStack	QValueStack
pushContext:	QXmlNamespaceSupport
pushData:	QMovie
pushSpace:	QMovie
push_back:	QValueList	QValueVector
push_front:	QValueList
put:	QUrlOperator
putPoints:	QPointArray
putch:	QFile	QIODevice	QSocket
	qAddPostRoutine:	QApplication
qAlpha:	QColor
qBlue:	QColor
qChecksum:	QMemArray
qDebug:	QApplication
qDrawPlainRect:	QPainter
qDrawShadeLine:	QPainter
qDrawShadePanel:	QPainter
qDrawShadeRect:	QPainter
qDrawWinButton:	QPainter
qDrawWinPanel:	QPainter
qFatal:	QApplication
qGray:	QColor
qGreen:	QColor

qInitNetworkProtocols:	QUrlOperator
qInstallMsgHandler:	QApplication
qMakePair:	QPair
qName:	QXmlAttributes
qRed:	QColor
qRgb:	QColor
qRgba:	QColor
qSysInfo:	QApplication
qSystemWarning:	QApplication
qVersion:	QApplication
qWarning:	QApplication
qglClearColor:	QGLWidget
qglColor:	QGLWidget
qmemmove:	QCString
qstrcmp:	QCString
qstrcpy:	QCString
qstrdup:	QCString
qstricmp:	QCString
qstrncmp:	QCString
qstrncpy:	QCString
qstrnicmp:	QCString
qtHandler:	QErrorMessage
qt_find_obj_child:	QObject
qualifiedNames:	QDns
quality:	QImageIO
query:	QUrl
queryAccessibleInterface:	QAccessible
queryChild:	QAccessibleInterface
queryList:	QObject
queryParent:	QAccessibleInterface
querySubControl:	QStyle
querySubControlMetrics:	QStyle
quit:	QApplication
qwsDecoration:	QApplication
qwsEvent:	QWidget
qwsEventFilter:	QApplication
qwsRenderToDisk:	QFont
qwsSetCustomColors:	QApplication
qwsSetDecoration:	QApplication

	rBottom:	QRect
rLeft:	QRect
rRight:	QRect
rTop:	QRect
raise:	QWSWindow	QWidget
raiseWidget:	QWidgetStack
rangeChange:	QDial	QRangeControl	QSlider	QSpinBox
rasterOp:	QPainter
rawArg:	QNetworkOperation
rawMode:	QFont	QFontInfo
rawName:	QFont
read:	QAsciiDict	QDict	QImageIO	QIntDict	QPtrDict	QPtrList	QPtrQueue
QPtrStack	QPtrVector	QTextStream
readAll:	QFile	QIODevice
readBlock:	QFile	QIODevice	QSocket	QSocketDevice
readBoolEntry:	QSettings
readBytes:	QDataStream
readCollisionMasks:	QCanvasPixmapArray
readDoubleEntry:	QSettings
readEntry:	QSettings
readField:	QSqlForm
readFields:	QDataBrowser	QDataView	QSqlForm
readLine:	QFile	QIODevice	QSocket	QTextStream
readLineStderr:	QProcess
readLineStdout:	QProcess
readLink:	QFileInfo
readListEntry:	QSettings
readNumEntry:	QSettings
readPixmaps:	QCanvasPixmapArray
readRawBytes:	QDataStream	QTextStream
readStderr:	QProcess
readStdout:	QProcess
ready:	QAsyncIO
readyRead:	QFtp	QSocket
readyReadStderr:	QProcess
readyReadStdout:	QProcess
readyToReceive:	QDataSink
readyToSend:	QDataSource	QIODeviceSource
reason:	QContextMenuEvent	QFocusEvent

receive:	QCopChannel	QDataSink
receiveBufferSize:	QSocketDevice
received:	QCopChannel
record:	QDataView	QSqlDatabase	QSqlDriver
recordInfo:	QSqlDatabase	QSqlDriver
recordType:	QDns
rect:	QAccessibleInterface	QCanvas	QCanvasRectangle	QDirectPainter
QIconViewItem	QImage	QPaintEvent	QPixmap	QRect	QTab	QWidget
rects:	QRegion
red:	QColor
redirect:	QPainter
redo:	QLineEdit	QTextEdit	QtMultiLineEdit
redoAvailable:	QTextEdit	QtMultiLineEdit
ref:	QString	QUrl
reformat:	QStatusBar
refresh:	QDataBrowser	QDataTable	QDataView	QFileInfo	QSplitter
QWSServer
regExp:	QRegExpValidator
region:	QDirectPainter	QPaintEvent	QWSDecoration
registerDecoderFactory:	QImageDecoder
registerNetworkProtocol:	QNetworkProtocol
reject:	QDialog
release:	QSessionManager
releaseKeyboard:	QWidget
releaseMouse:	QWidget
released:	QButton	QButtonGroup	QCheckBox	QHeader	QPushButton
QRadioButton
reload:	QTextBrowser
remove:	QAsciiCache	QAsciiDict	QButtonGroup	QCString	QCache	QDict
QDir	QFile	QIntCache	QIntDict	QMap	QObjectCleanupHandler	QPtrDict
QPtrList	QPtrQueue	QPtrStack	QPtrVector	QSqlCursor	QSqlForm
QSqlPropertyMap	QSqlRecord	QString	QToolTip	QTranslator
QUrlOperator	QValueList	QWhatsThis
removeAttribute:	QDomElement
removeAttributeNS:	QDomElement
removeAttributeNode:	QDomElement
removeChild:	QDomNode	QObject	QScrollView
removeColumn:	QDataTable	QListView	QTable
removeColumns:	QTable

removeDatabase:	QSqlDatabase
removeDockWindow:	QDockArea	QMainWindow
removeEntry:	QSettings
removeEventFilter:	QObject
removeFactory:	QMimeSourceFactory
removeFirst:	QPtrList
removeFrom:	QAction
removeItem:	QAccel	QComboBox	QListBox	QMenuBar	QMenuData
QPopupMenu
removeItemAt:	QMenuData	QPopupMenu
removeLabel:	QHeader
removeLast:	QPtrList
removeLibraryPath:	QApplication
removeLine:	QMultiLineEdit	QtMultiLineEdit
removeMappings:	QSignalMapper
removeNamedItem:	QDomNamedNodeMap
removeNamedItemNS:	QDomNamedNodeMap
removeNode:	QPtrList
removePage:	QTabDialog	QTabWidget	QWizard
removeParagraph:	QTextEdit
removePostedEvents:	QApplication
removeRef:	QPtrList
removeRenameBox:	QIconViewItem
removeRow:	QTable
removeRows:	QTable
removeSearchPath:	QSettings
removeSelectedText:	QTextEdit
removeSelection:	QTable	QTextEdit
removeSubstitution:	QFont
removeTab:	QTabBar
removeTabToolTip:	QTabWidget
removeTip:	QToolTipGroup
removeToolTip:	QTabBar
removeTranslator:	QApplication
removeWidget:	QStatusBar	QWidgetStack
removed:	QChildEvent	QNetworkProtocol	QUrlOperator
rename:	QDir	QIconViewItem	QUrlOperator
renameEnabled:	QIconViewItem	QListViewItem
renderPixmap:	QGLWidget

repaint:	QIconViewItem	QListViewItem	QWidget	QtTableView
repaintCell:	QGridView
repaintChanged:	QTextEdit
repaintContents:	QScrollView
repaintItem:	QIconView	QListView
repaintScreen:	QDial
repaintSelections:	QTable
repairEventFilter:	QAccel
reparent:	QWidget
replace:	QAsciiDict	QCString	QDict	QIntDict	QMap	QPtrDict	QString
replaceChild:	QDomNode
replaceData:	QDomCharacterData
requestPhase2:	QSessionManager
requestRead:	QNPStream
requested:	QWSWindow
requestedFormat:	QGLContext
rereadDir:	QFileDialog
reserve:	QValueVector
reset:	QDataTable	QGLContext	QIODevice	QIconSet	QImage
QMetaProperty	QProgressBar	QProgressDialog	QSqlResult	QTextStream
QUrl	QWMatrix	QXmlInputSource	QXmlNamespaceSupport
resetInputContext:	QWidget
resetRawData:	QMemArray
resetReason:	QFocusEvent
resetStatus:	QIODevice
resetXForm:	QPainter
resize:	QAsciiDict	QBitArray	QCString	QCanvas	QDict	QIntDict
QMemArray	QPixmap	QPtrDict	QPtrVector	QValueVector	QWidget
resizeContents:	QScrollView
resizeData:	QTable
resizeEvent:	QFrame	QGLWidget	QListView	QWidget
resizeGL:	QGLWidget
resizeMode:	QIconView	QLayout	QListView
resizeOverlayGL:	QGLWidget
resizePolicy:	QScrollView
resizeSection:	QHeader
resized:	QCanvas
resolution:	QPrinter
resolve:	QLibrary

resolveEntity:	QXmlEntityResolver
resortDir:	QFileDialog
restart:	QMovie	QTime
restartCommand:	QSessionManager
restartHint:	QSessionManager
restore:	QPainter	QScreen
restoreOverrideCursor:	QApplication
result:	QDialog	QSqlQuery
resultsReady:	QDns
retune:	QCanvas
returnPressed:	QIconView	QLineEdit	QListBox	QListView	QTextEdit
QtMultiLineEdit
reverseLayout:	QApplication
rewind:	QDataSource	QIODeviceSource
rewindable:	QDataSource	QIODeviceSource
rgb:	QColor
rgba:	QGLFormat
rheight:	QSize
right:	QCString	QRect	QString
rightBearing:	QFontMetrics
rightButtonClicked:	QIconView	QListBox	QListView
rightButtonPressed:	QIconView	QListBox	QListView
rightCol:	QTableSelection
rightDock:	QMainWindow
rightEdge:	QCanvasSprite
rightJustification:	QMainWindow
rightJustify:	QCString	QString
rightMargin:	QScrollView
rmdir:	QDir
role:	QAccessibleInterface
rollback:	QSqlDatabase
rollbackTransaction:	QSqlDriver
root:	QDir
rootDirPath:	QDir
rootIsDecorated:	QListView
rotate:	QPainter	QWMatrix
row:	QChar	QTableItem
rowAt:	QGridView	QTable
rowHeight:	QTable

rowHeightChanged:	QTable
rowIndexChanged:	QTable
rowIsVisible:	QtTableView
rowMode:	QListBox
rowMovingEnabled:	QTable
rowPos:	QTable
rowSpan:	QTableItem
rowStretch:	QGridLayout
rowYPos:	QtTableView
rtti:	QCanvasEllipse	QCanvasItem	QCanvasLine	QCanvasPolygon
QCanvasPolygonalItem	QCanvasRectangle	QCanvasSpline	QCanvasSprite
QCanvasText	QCheckListItem	QCheckTableItem	QComboTableItem
QIconViewItem	QListBoxItem	QListViewItem	QTableItem
run:	QThread
running:	QMovie	QThread
rwidth:	QSize
rx:	QPoint
ry:	QPoint
	sRect:	QHeader
save:	QDomNode	QImage	QPainter	QPicture	QPixmap	QScreen
QTranslator
saveState:	QApplication
scale:	QImage	QPainter	QWMatrix
scaleFont:	QStyleSheet
scaleHeight:	QImage
scaleWidth:	QImage
scanLine:	QImage
screen:	QDesktopWidget
screenGeometry:	QDesktopWidget
screenGfx:	QScreen
screenNumber:	QDesktopWidget
screenSaverActivate:	QWSServer
screenSaverActive:	QWSServer
screenSize:	QScreen
scriptName:	QFontDatabase
scriptSample:	QFontDatabase
scriptable:	QMetaProperty
scroll:	QWidget	QtTableView
scrollBar:	QListBox

scrollBarsEnabled:	QWorkspace
scrollBy:	QScrollView
scrollToAnchor:	QTextEdit
scrollToBottom:	QTextEdit
search:	QRegExp
searchRev:	QRegExp
second:	QTime
secsTo:	QDateTime	QTime
section:	QString
sectionAt:	QHeader
sectionFormattedText:	QDateEdit	QTimeEdit
sectionPos:	QHeader
sectionRect:	QHeader
sectionSize:	QHeader
seek:	QDataBrowser	QSqlQuery
seekable:	QNPStream
segmentStyle:	QLCDNumber
select:	QSqlCursor
selectAll:	QFileDialog	QIconView	QLineEdit	QListBox	QListView
QSpinBox	QTextEdit	QtMultiLineEdit
selectTab:	QTabBar
selected:	QActionGroup	QButtonGroup	QListBox	QTabBar	QWizard
selectedFile:	QFileDialog
selectedFiles:	QFileDialog
selectedFilter:	QFileDialog
selectedItem:	QListView
selectedText:	QLineEdit	QTextEdit
selection:	QAccessibleInterface	QTable
selectionChanged:	QClipboard	QIconView	QLineEdit	QListBox	QListView
QTable	QTextEdit
selectionMode:	QIconView	QListBox	QListView	QTable
selectionModeEnabled:	QClipboard
selfMask:	QPixmap
selfNesting:	QStyleSheetItem
send:	QCopChannel
sendBufferSize:	QSocketDevice
sendEvent:	QApplication
sendKeyEvent:	QWSServer
sendPostedEvents:	QApplication

sendTo:	QDataSource	QIODeviceSource
sender:	QObject
separator:	QDateEdit	QDir	QTimeEdit
serialNumber:	QMimeSource	QPalette	QPixmap
servers:	QDns
sessionId:	QApplication	QSessionManager
set:	QScreen
setAccel:	QAction	QButton	QCheckBox	QMenuData	QPopupMenu
QPushButton	QRadioButton
setAcceptDockWindow:	QDockArea
setAcceptDrops:	QWidget
setAccum:	QGLFormat
setAction:	QDropEvent
setActive:	QCanvasItem	QPalette	QSqlResult
setActiveItem:	QPopupMenu
setActiveWindow:	QWSWindow	QWidget	QXtWidget
setAddress:	QHostAddress
setAddressReusable:	QSocketDevice
setAdvancePeriod:	QCanvas
setAlignment:	QGroupBox	QLabel	QLayoutItem	QLineEdit
QMultiLineEdit	QStyleSheetItem	QTextEdit	QtMultiLineEdit
setAllChanged:	QCanvas
setAllColumnsShowFocus:	QListView
setAlpha:	QGLFormat
setAlphaBuffer:	QImage
setAnchor:	QStyleSheetItem
setAngles:	QCanvasEllipse
setAnimated:	QCanvasItem
setApplyButton:	QTabDialog
setAppropriate:	QMainWindow	QWizard
setAreaChanged:	QDirectPainter
setArg:	QNetworkOperation
setArguments:	QProcess
setArrangement:	QIconView
setAt:	QSqlResult
setAttribute:	QDomElement
setAttributeNS:	QDomElement
setAttributeNode:	QDomElement
setAttributeNodeNS:	QDomElement

setAutoAdd:	QLayout
setAutoAdvance:	QDateEdit	QDateTimeEdit	QTimeEdit
setAutoArrange:	QIconView
setAutoBottomScrollBar:	QListBox
setAutoBufferSwap:	QGLWidget
setAutoClose:	QProgressDialog
setAutoCompletion:	QComboBox
setAutoDefault:	QPushButton
setAutoDelete:	QAsciiDict	QCache	QDataTable	QDict	QIntDict
QNetworkProtocol	QPtrCollection	QPtrDict	QPtrList	QPtrQueue
QPtrStack	QPtrVector
setAutoEdit:	QDataBrowser	QDataTable
setAutoMask:	QWidget
setAutoRaise:	QToolButton
setAutoRepeat:	QButton	QCheckBox	QPushButton	QRadioButton
setAutoReset:	QProgressDialog
setAutoScrollBar:	QListBox
setAutoUnload:	QLibrary
setAutoUpdate:	QtMultiLineEdit	QtTableView
setBackEnabled:	QWizard
setBackgroundColor:	QCanvas	QMovie	QPainter
setBackgroundMode:	QPainter	QWidget
setBackgroundOrigin:	QWidget
setBackgroundPixmap:	QCanvas
setBar:	QProgressDialog
setBaseSize:	QWidget
setBinMode:	QLCDNumber
setBit:	QBitArray
setBlocking:	QSocketDevice
setBold:	QFont	QTextEdit
setBottom:	QDoubleValidator	QIntValidator	QRect
setBottomItem:	QListBox
setBottomScrollBar:	QListBox
setBoundaryChecking:	QDataBrowser
setBrush:	QCanvasPolygonalItem	QColorGroup	QPainter	QPalette
setBrushOrigin:	QPainter
setBuddy:	QLabel
setBuffer:	QBuffer
setButton:	QButtonGroup

setButtonSymbols:	QSpinBox
setButtonText:	QMessageBox
setByteOrder:	QDataStream
setCacheLimit:	QPixmapCache
setCaching:	QFileInfo
setCalculated:	QSqlCursor	QSqlFieldInfo
setCancelButton:	QProgressDialog	QTabDialog
setCancelButtonText:	QProgressDialog
setCanvas:	QCanvasItem	QCanvasView
setCapStyle:	QPen
setCaption:	QWidget
setCaseSensitive:	QRegExp
setCellContentFromEditor:	QTable
setCellHeight:	QGridView	QtTableView
setCellWidget:	QTable
setCellWidth:	QGridView	QtTableView
setCenterIndicator:	QProgressBar
setCentralWidget:	QMainWindow
setChanged:	QCanvas
setCheckable:	QPopupMenu
setChecked:	QCheckBox	QCheckTableItem	QRadioButton
setChildGeometries:	QWidgetStack
setClickEnabled:	QHeader
setClipRect:	QPainter
setClipRegion:	QPainter
setClipping:	QPainter
setCloseMode:	QDockWindow
setCodec:	QTextStream
setCodecForLocale:	QTextCodec
setCol:	QTableItem
setColStretch:	QGridLayout
setColor:	QBrush	QCanvasText	QColorDrag	QColorGroup	QImage
QPalette	QPen	QStyleSheetItem	QTextEdit
setColorMode:	QPrinter
setColorSpec:	QApplication
setColormap:	QGLWidget
setColumn:	QDataTable
setColumnAlignment:	QListView
setColumnLayout:	QGroupBox

setColumnMode:	QListBox
setColumnMovingEnabled:	QTable
setColumnReadOnly:	QTable
setColumnStretchable:	QTable
setColumnText:	QListView
setColumnWidth:	QDataTable	QListView	QTable
setColumnWidthMode:	QListView
setColumns:	QGroupBox
setCommunication:	QProcess
setConfirmCancels:	QDataBrowser	QDataTable
setConfirmDelete:	QDataBrowser	QDataTable
setConfirmEdits:	QDataBrowser	QDataTable
setConfirmInsert:	QDataBrowser	QDataTable
setConfirmUpdate:	QDataBrowser	QDataTable
setContent:	QDomDocument
setContentFromEditor:	QTableItem
setContentHandler:	QXmlReader
setContentsPos:	QScrollView
setContentsPreview:	QFileDialog
setContentsPreviewEnabled:	QFileDialog
setContexts:	QStyleSheetItem
setControlPoints:	QCanvasSpline
setCoords:	QRect
setCornerWidget:	QScrollView
setCreator:	QPrinter
setCurrent:	QDir
setCurrentCell:	QTable
setCurrentFont:	QTextEdit
setCurrentItem:	QComboBox	QComboTableItem	QIconView	QListBox
QListView
setCurrentPage:	QTabWidget
setCurrentTab:	QTabBar
setCurrentText:	QComboBox
setCursor:	QWidget
setCursorFlashTime:	QApplication
setCursorName:	QSqlIndex
setCursorPosition:	QLineEdit	QMultiLineEdit	QTextEdit	QtMultiLineEdit
setCustomColor:	QColorDialog
setCustomHighlighting:	QListBoxItem

setDTDHandler:	QXmlReader
setData:	QClipboard	QCustomEvent	QDomCharacterData
QDomProcessingInstruction	QIconDragItem	QMimeSourceFactory
QPicture	QXmlInputSource
setDatabaseName:	QSqlDatabase
setDatabaseText:	QSqlError
setDate:	QDateEdit	QDateTime
setDateFormat:	QDataTable
setDateTime:	QDateTimeEdit
setDay:	QDateEdit
setDecMode:	QLCDNumber
setDecimals:	QDoubleValidator
setDeclHandler:	QXmlReader
setDecodingFunction:	QFile
setDefault:	QPushButton
setDefaultButton:	QTabDialog
setDefaultCodec:	QApplication
setDefaultFactory:	QMimeSourceFactory
setDefaultFont:	QSimpleRichText
setDefaultFormat:	QGLFormat
setDefaultKeyboard:	QWSServer
setDefaultMouse:	QWSServer
setDefaultOptimization:	QPixmap
setDefaultOverlayFormat:	QGLFormat
setDefaultRenameAction:	QListView
setDefaultSheet:	QStyleSheet
setDefaultTabStop:	QtMultiLineEdit
setDefaultUp:	QMenuBar
setDelay:	QToolTipGroup
setDepth:	QGLFormat
setDescending:	QSqlIndex
setDescription:	QImageIO
setDesktopBackground:	QWSServer
setDesktopSettingsAware:	QApplication
setDevice:	QDataStream	QTextStream
setDir:	QFileDialog	QUrlInfo
setDirectRendering:	QGLFormat
setDirection:	QBoxLayout
setDirty:	QScreen

setDisabled:	QPalette	QWidget
setDiscardCommand:	QSessionManager
setDisplayMode:	QStyleSheetItem
setDocName:	QPrinter
setDockEnabled:	QMainWindow
setDockMenuEnabled:	QMainWindow
setDockWindowsMovable:	QMainWindow
setDocumentLocator:	QXmlContentHandler
setDotsPerMeterX:	QImage
setDotsPerMeterY:	QImage
setDoubleBuffer:	QGLFormat
setDoubleBuffering:	QCanvas
setDoubleClickInterval:	QApplication
setDown:	QButton	QCheckBox	QPushButton	QRadioButton
setDragAutoScroll:	QScrollView
setDragEnabled:	QIconViewItem	QLineEdit	QListViewItem	QTable
setDriverText:	QSqlError
setDropEnabled:	QIconViewItem	QListViewItem
setDuplicatesEnabled:	QComboBox
setEchoMode:	QLineEdit	QtMultiLineEdit
setEditMode:	QTable
setEditText:	QComboBox
setEditable:	QComboBox	QComboTableItem
setEdited:	QLineEdit	QMultiLineEdit	QtMultiLineEdit
setEffectEnabled:	QApplication
setEnabled:	QAccel	QAction	QCanvasItem	QLayout	QListViewItem
QSocketNotifier	QTab	QTableItem	QToolTipGroup	QWidget
setEncodedData:	QStoredDrag
setEncodedPathAndQuery:	QUrl
setEncoding:	QTextStream
setEncodingFunction:	QFile
setEntityResolver:	QXmlReader
setEntries:	QGLColormap
setEntry:	QGLColormap
setEraseColor:	QWidget
setErasePixmap:	QWidget
setError:	QSocketDevice
setErrorCode:	QNetworkOperation
setErrorHandler:	QXmlReader

setExclusive:	QActionGroup	QButtonGroup
setExpand:	QCString
setExpandable:	QListViewItem
setExtension:	QDialog
setExtensionType:	QMimeSourceFactory
setFalseText:	QDataTable
setFamily:	QFont	QTextEdit
setFeature:	QXmlReader
setFile:	QFileInfo	QUrlInfo
setFileName:	QImageIO	QUrl
setFileNames:	QUriDrag
setFilePath:	QMimeSourceFactory
setFilter:	QDataBrowser	QDataTable	QDir	QFileDialog	QSqlCursor
setFilters:	QFileDialog
setFinishEnabled:	QWizard
setFixedExtentHeight:	QDockWindow
setFixedExtentWidth:	QDockWindow
setFixedHeight:	QWidget
setFixedPitch:	QFont
setFixedSize:	QWidget
setFixedVisibleLines:	QtMultiLineEdit
setFixedWidth:	QWidget
setFlat:	QPushButton
setFocus:	QAccessibleInterface	QWidget
setFocusPolicy:	QWidget
setFocusProxy:	QWidget
setFocusStyle:	QTable
setFont:	QApplication	QCanvasText	QComboBox	QCustomMenuItem
QLabel	QPainter	QTabDialog	QToolTip	QWidget
setFontFamily:	QStyleSheetItem
setFontItalic:	QStyleSheetItem
setFontSize:	QStyleSheetItem
setFontStrikeOut:	QStyleSheetItem
setFontUnderline:	QStyleSheetItem
setFontWeight:	QStyleSheetItem
setForm:	QDataBrowser	QDataView
setFormat:	QGLContext	QImageIO
setForwardOnly:	QSqlResult
setFrame:	QCanvasSprite	QLineEdit

setFrameAnimation:	QCanvasSprite
setFramePeriod:	QImageConsumer
setFrameRect:	QFrame
setFrameShadow:	QFrame
setFrameShape:	QFrame
setFrameStyle:	QFrame
setFromTo:	QPrinter
setFullPage:	QPrinter
setGamma:	QImageIO
setGenerated:	QSqlCursor	QSqlFieldInfo	QSqlRecord
setGeometry:	QBoxLayout	QGridLayout	QLayout	QLayoutItem
QSpacerItem	QWidget	QWidgetItem
setGlobalMouseTracking:	QApplication
setGlobalStrut:	QApplication
setGloballyEnabled:	QToolTip
setGridX:	QIconView
setGridY:	QIconView
setGroup:	QUrlInfo
setHBarGeometry:	QScrollView
setHMS:	QTime
setHMargin:	QtMultiLineEdit
setHScrollBarMode:	QScrollView
setHeight:	QListViewItem	QRect	QSize
setHeightForWidth:	QSizePolicy
setHelpButton:	QTabDialog
setHelpEnabled:	QWizard
setHexMode:	QLCDNumber
setHorData:	QSizePolicy
setHorStretch:	QSizePolicy
setHorizontallyStretchable:	QDockWindow
setHost:	QUrl
setHostName:	QSqlDatabase
setHour:	QTimeEdit
setHsv:	QColor
setIODevice:	QImageIO
setIcon:	QMessageBox	QWidget
setIconPixmap:	QMessageBox
setIconProvider:	QFileDialog
setIconSet:	QAction	QPushButton	QTab	QToolButton

setIconSize:	QIconSet
setIconText:	QWidget
setId:	QMenuData
setIdentifier:	QTab
setImage:	QCanvasPixmapArray	QClipboard	QImageDrag	QImageIO
QMimeSourceFactory
setInactive:	QPalette
setIndent:	QLabel
setIndicator:	QProgressBar
setIndicatorFollowsStyle:	QProgressBar
setInfoPreview:	QFileDialog
setInfoPreviewEnabled:	QFileDialog
setInitialized:	QGLContext
setInsertionPolicy:	QComboBox
setInsideMargin:	QGroupBox
setInsideSpacing:	QGroupBox
setItalic:	QFont	QTextEdit
setItem:	QTable
setItemChecked:	QMenuData	QPopupMenu
setItemEnabled:	QAccel	QMenuBar	QMenuData	QPopupMenu
setItemMargin:	QListView
setItemParameter:	QMenuData	QPopupMenu
setItemRect:	QIconViewItem
setItemTextBackground:	QIconView
setItemTextPos:	QIconView
setItemsMovable:	QIconView
setJoinStyle:	QPen
setKey:	QIconViewItem
setKeyCompression:	QWidget
setKeyboardFilter:	QWSServer
setKeyboardHandler:	QWSServer
setLabel:	QDns	QHeader	QProgressDialog	QToolBar
setLabelText:	QProgressDialog
setLastError:	QSqlDriver	QSqlResult
setLastModified:	QUrlInfo
setLatin1:	QString
setLeft:	QRect
setLeftCell:	QtTableView
setLeftMargin:	QTable

setLength:	QString
setLexicalHandler:	QXmlReader
setLibraryPaths:	QApplication
setLineEdit:	QComboBox
setLineSpacing:	QStyleSheetItem
setLineStep:	QDial	QScrollBar	QSlider	QSpinBox
setLineWidth:	QFrame
setLinkUnderline:	QTextEdit
setListBox:	QComboBox
setListStyle:	QStyleSheetItem
setLogicalFontSize:	QStyleSheetItem
setLogicalFontSizeStep:	QStyleSheetItem
setLooping:	QImageConsumer
setLoops:	QSound
setMainWidget:	QApplication
setManagerProperty:	QSessionManager
setMapping:	QSignalMapper
setMargin:	QFrame	QLayout	QStyleSheetItem	QTabWidget
setMargins:	QScrollView
setMask:	QPixmap	QWidget
setMatchAllDirs:	QDir
setMatrix:	QWMatrix
setMaxCost:	QAsciiCache	QCache	QIntCache
setMaxCount:	QComboBox
setMaxItemTextLength:	QIconView
setMaxItemWidth:	QIconView
setMaxLength:	QLineEdit	QtMultiLineEdit
setMaxLineLength:	QtMultiLineEdit
setMaxLines:	QtMultiLineEdit
setMaxValue:	QDateEdit	QDial	QRangeControl	QScrollBar	QSlider
QSpinBox	QTimeEdit
setMaxWindowRect:	QWSServer
setMaximumHeight:	QWidget
setMaximumSize:	QWidget
setMaximumWidth:	QWidget
setMenuBar:	QLayout
setMenuText:	QAction
setMicroFocusHint:	QWidget
setMidLineWidth:	QFrame

setMimeSourceFactory:	QTextEdit
setMinMax:	QPrinter
setMinValue:	QDateEdit	QDial	QRangeControl	QScrollBar	QSlider
QSpinBox	QTimeEdit
setMinimal:	QRegExp
setMinimumDuration:	QProgressDialog
setMinimumHeight:	QWidget
setMinimumSize:	QWidget
setMinimumWidth:	QWidget
setMinute:	QTimeEdit
setMode:	QFileDialog	QLCDNumber	QScreen	QSqlCursor
setModified:	QTextEdit
setMonth:	QDateEdit
setMouseTracking:	QWidget
setMovie:	QLabel
setMovingEnabled:	QDockWindow	QHeader
setMultiLinesEnabled:	QListViewItem
setMultiSelection:	QListView
setName:	QFile	QObject	QSqlCursor	QSqlField	QSqlIndex	QUrlInfo
setNameFilter:	QDir	QUrlOperator
setNamedColor:	QColor
setNamedItem:	QDomNamedNodeMap
setNamedItemNS:	QDomNamedNodeMap
setNewLine:	QDockWindow
setNextEnabled:	QWizard
setNoChange:	QCheckBox
setNodeValue:	QDomNode
setNotchTarget:	QDial
setNotchesVisible:	QDial
setNull:	QSqlField	QSqlRecord
setNullText:	QDataTable
setNum:	QCString	QLabel	QString
setNumColors:	QImage
setNumCols:	QGridView	QTable	QtTableView
setNumCopies:	QPrinter
setNumDigits:	QLCDNumber
setNumRows:	QGridView	QTable	QtTableView
setNumber:	QSqlError
setOctMode:	QLCDNumber

setOffset:	QCanvasPixmap	QDockWindow	QHeader	QImage	QtTableView
setOkButton:	QTabDialog
setOn:	QAction	QButton	QCheckListItem	QPushButton	QToolButton
setOpaqueMoving:	QDockWindow	QMainWindow
setOpaqueResize:	QSplitter
setOpen:	QListView	QListViewItem	QSqlDriver
setOpenError:	QSqlDriver
setOptimization:	QPixmap
setOption:	QGLFormat
setOrder:	QDateEdit
setOrientation:	QDialog	QDockWindow	QGroupBox	QHeader	QPrinter
QScrollBar	QSlider	QSplitter
setOrigin:	QGridLayout
setOutputFileName:	QPrinter
setOutputToFile:	QPrinter
setOverlay:	QGLFormat
setOverrideCursor:	QApplication
setOverwriteMode:	QTextEdit	QtMultiLineEdit
setOwner:	QUrlInfo
setPageOrder:	QPrinter
setPageSize:	QPrinter
setPageStep:	QDial	QScrollBar	QSlider
setPalette:	QApplication	QComboBox	QScrollBar	QSlider	QToolTip
QWidget
setPaletteBackgroundColor:	QWidget
setPaletteBackgroundPixmap:	QWidget
setPaletteForegroundColor:	QWidget
setPaper:	QTextEdit
setPaperSource:	QPrinter
setParagraphBackgroundColor:	QTextEdit
setParameters:	QImageIO
setPassword:	QSqlDatabase	QUrl
setPasswordChar:	QLineEdit
setPath:	QDir	QUrl
setPattern:	QRegExp
setPen:	QCanvasPolygonalItem	QPainter
setPercentageVisible:	QProgressBar
setPermissions:	QUrlInfo
setPicture:	QIconViewItem	QLabel

setPixel:	QImage
setPixelAlignment:	QPNGImagePacker
setPixelSize:	QFont
setPixmap:	QBrush	QButton	QCheckBox	QClipboard	QDragObject
QIconSet	QIconViewItem	QLabel	QListViewItem	QMimeSourceFactory
QPushButton	QRadioButton	QTable	QTableItem
setPixmapRect:	QIconViewItem
setPlane:	QGLFormat
setPoint:	QDropEvent	QPointArray
setPointSize:	QFont	QTextEdit
setPointSizeFloat:	QFont
setPoints:	QCanvasLine	QCanvasPolygon
setPopup:	QPushButton	QToolButton
setPopupDelay:	QToolButton
setPort:	QSqlDatabase	QUrl
setPos:	QCursor
setPrefix:	QDomNode	QSpinBox	QXmlNamespaceSupport
setPreviewMode:	QFileDialog
setPrimaryIndex:	QSqlCursor
setPrintProgram:	QPrinter
setPrintableData:	QDataStream
setPrinterName:	QPrinter
setPrinterSelectionOption:	QPrinter
setProgress:	QProgressBar	QProgressDialog
setProperty:	QObject	QSqlPropertyMap	QXmlReader
setProtocol:	QUrl
setProtocolDetail:	QNetworkOperation
setQuality:	QImageIO
setQuery:	QSqlResult	QUrl
setRadioButtonExclusive:	QButtonGroup
setRange:	QDateEdit	QDoubleValidator	QIntValidator	QRangeControl
QSlider	QTimeEdit
setRasterOp:	QPainter
setRawArg:	QNetworkOperation
setRawData:	QMemArray
setRawMode:	QFont
setRawName:	QFont
setReadOnly:	QDataBrowser	QLineEdit	QSqlField	QTable	QTextEdit
QtMultiLineEdit

setReadable:	QUrlInfo
setReason:	QFocusEvent
setReceiveBufferSize:	QSocketDevice
setRecord:	QDataView	QSqlForm
setRecordType:	QDns
setRect:	QRect	QTab
setRef:	QUrl
setRegExp:	QRegExpValidator
setRenameEnabled:	QIconViewItem	QListViewItem
setReplaceable:	QTableItem
setResizeEnabled:	QDockWindow	QHeader
setResizeMode:	QIconView	QLayout	QListView	QSplitter
setResizePolicy:	QScrollView
setResolution:	QPrinter
setRestartCommand:	QSessionManager
setRestartHint:	QSessionManager
setResult:	QDialog
setReverseLayout:	QApplication
setRgb:	QColor
setRgba:	QGLFormat
setRight:	QRect
setRightJustification:	QMainWindow
setRootIsDecorated:	QListView
setRow:	QTableItem
setRowHeight:	QTable
setRowMode:	QListBox
setRowMovingEnabled:	QTable
setRowReadOnly:	QTable
setRowStretch:	QGridLayout
setRowStretchable:	QTable
setRubberband:	QSplitter
setScaledContents:	QLabel
setScreenSaver:	QWSServer
setScreenSaverInterval:	QWSServer
setScreenSaverIntervals:	QWSServer
setScrollBar:	QListBox
setScrollBarsEnabled:	QWorkspace
setSecond:	QTimeEdit
setSegmentStyle:	QLCDNumber

setSelect:	QSqlResult
setSelectable:	QIconViewItem	QListBoxItem	QListViewItem
setSelected:	QAccessibleInterface	QCanvasItem	QIconView
QIconViewItem	QListBox	QListView	QListViewItem
setSelectedFilter:	QFileDialog
setSelection:	QFileDialog	QLineEdit	QTextEdit	QtMultiLineEdit
setSelectionAttributes:	QTextEdit
setSelectionMode:	QClipboard	QIconView	QListBox	QListView	QTable
setSelfNesting:	QStyleSheetItem
setSendBufferSize:	QSocketDevice
setSeparator:	QDateEdit	QTimeEdit
setSequence:	QCanvasSprite
setShape:	QCursor	QTabBar
setShowGrid:	QTable
setShowHiddenFiles:	QFileDialog
setShowSortIndicator:	QListView
setShowToolTips:	QIconView	QListView
setSize:	QCanvasEllipse	QCanvasRectangle	QDataTable	QImageConsumer
QRect	QUrlInfo
setSizeGripEnabled:	QDialog	QStatusBar
setSizeIncrement:	QWidget
setSizeLimit:	QComboBox
setSizePolicy:	QWidget
setSizes:	QSplitter
setSmallDecimalPoint:	QLCDNumber
setSocket:	QServerSocket	QSocket	QSocketDevice
setSocketDevice:	QSocket
setSort:	QDataBrowser	QDataTable	QSqlCursor
setSortIndicator:	QHeader
setSorting:	QDir	QIconView	QListView	QTable
setSource:	QTextBrowser
setSpacing:	QGrid	QHBox	QIconView	QLayout
setSpan:	QTableItem
setSpecialValueText:	QSpinBox
setSpeed:	QMovie
setSqlCursor:	QDataBrowser	QDataTable
setStartDragDistance:	QApplication
setStartDragTime:	QApplication
setState:	QButton	QNetworkOperation

setStaticBackground:	QScrollView
setStatus:	QImageIO
setStatusTip:	QAction
setStencil:	QGLFormat
setSteps:	QRangeControl
setStereo:	QGLFormat
setStr:	QCString
setStretchEnabled:	QHeader
setStretchFactor:	QBoxLayout	QHBox
setStretchableWidget:	QToolBar
setStrikeOut:	QFont
setStringList:	QComboTableItem
setStyle:	QApplication	QBrush	QPen	QWidget
setStyleHint:	QFont
setStyleSheet:	QTextEdit
setStyleStrategy:	QFont
setSubtype:	QTextDrag
setSuffix:	QSpinBox
setSupportsMargin:	QLayout
setSymLink:	QUrlInfo
setTabArray:	QPainter
setTabBar:	QTabDialog	QTabWidget
setTabEnabled:	QTabBar	QTabDialog	QTabWidget
setTabIconSet:	QTabWidget
setTabLabel:	QTabWidget
setTabOrder:	QWidget
setTabPosition:	QTabWidget
setTabShape:	QTabWidget
setTabStopWidth:	QTextEdit
setTabStops:	QPainter
setTabToolTip:	QTabWidget
setTableFlags:	QtTableView
setTagName:	QDomElement
setText:	QAccessibleInterface	QAction	QButton	QCanvasText	QCheckBox
QClipboard	QIconViewItem	QImage	QLabel	QLineEdit	QListBoxItem
QListViewItem	QMessageBox	QMimeSourceFactory	QPushButton
QRadioButton	QTab	QTable	QTableItem	QTextDrag	QTextEdit
QtMultiLineEdit
setTextFlags:	QCanvasText

setTextFormat:	QLabel	QMessageBox	QTextEdit
setTextLabel:	QToolButton
setTextRect:	QIconViewItem
setTickInterval:	QSlider
setTickmarks:	QSlider
setTile:	QCanvas
setTiles:	QCanvas
setTime:	QDateTime	QTimeEdit
setTime_t:	QDateTime
setTitle:	QGroupBox	QWizard
setTitleFont:	QWizard
setToggleAction:	QAction
setToggleButton:	QButton	QPushButton	QToolButton
setToggleType:	QButton
setToolTip:	QAction	QTabBar
setTop:	QDoubleValidator	QIntValidator	QRect
setTopCell:	QtTableView
setTopItem:	QListBox
setTopLeftCell:	QtTableView
setTopMargin:	QTable
setTotalSteps:	QProgressBar	QProgressDialog
setTracking:	QDial	QHeader	QScrollBar	QSlider
setTranslation:	QTranslatorMessage
setTreeStepSize:	QListView
setTrim:	QSqlFieldInfo
setTrimmed:	QSqlCursor
setTristate:	QCheckBox
setTrueText:	QDataTable
setType:	QSqlError
setUnchanged:	QCanvas
setUnderline:	QFont	QTextEdit
setUndoDepth:	QTextEdit	QtMultiLineEdit
setUndoEnabled:	QtMultiLineEdit
setUndoRedoEnabled:	QTextEdit
setUnicode:	QString
setUnicodeCodes:	QString
setUnicodeUris:	QUriDrag
setUpLayout:	QMainWindow
setUpdatePeriod:	QCanvas

setUpdatesEnabled:	QWidget
setUris:	QUriDrag
setUrl:	QFileDialog	QNetworkProtocol
setUseHighlightColors:	QMotifStyle
setUser:	QUrl
setUserName:	QSqlDatabase
setUsesBigPixmap:	QToolButton
setUsesBigPixmaps:	QMainWindow
setUsesDropDown:	QActionGroup
setUsesTextLabel:	QMainWindow	QToolButton
setVBarGeometry:	QScrollView
setVScrollBarMode:	QScrollView
setValidator:	QComboBox	QLineEdit	QSpinBox	QtMultiLineEdit
setValue:	QDial	QDomAttr	QRangeControl	QScrollBar	QSignal	QSlider
QSpinBox	QSqlField	QSqlRecord
setVariableHeight:	QListBox
setVariableWidth:	QListBox
setVelocity:	QCanvasItem
setVerData:	QSizePolicy
setVerStretch:	QSizePolicy
setVersion:	QDataStream
setVerticalAlignment:	QStyleSheetItem	QTextEdit
setVerticallyStretchable:	QDockWindow
setViewMode:	QFileDialog
setViewXForm:	QPainter
setViewport:	QPainter
setVisible:	QCanvasItem	QListViewItem
setWFlags:	QWidget
setWeight:	QFont
setWhatsThis:	QAccel	QAction	QMenuData	QPopupMenu
setWheelScrollLines:	QApplication
setWhiteSpaceMode:	QStyleSheetItem
setWidget:	QDockWindow
setWidth:	QPen	QRect	QSimpleRichText	QSize
setWildcard:	QRegExp
setWinding:	QCanvasPolygonalItem
setWindow:	QPainter
setWindowCreated:	QGLContext
setWordWrap:	QTableItem	QTextEdit	QtMultiLineEdit

setWordWrapIconText:	QIconView
setWorkingDirectory:	QProcess
setWorldMatrix:	QCanvasView	QPainter
setWorldXForm:	QPainter
setWrapColumnOrWidth:	QTextEdit	QtMultiLineEdit
setWrapPolicy:	QTextEdit	QtMultiLineEdit
setWrapping:	QDial	QSpinBox
setWritable:	QUrlInfo
setX:	QCanvasItem	QPoint	QRect
setXOffset:	QtTableView
setXVelocity:	QCanvasItem
setY:	QCanvasItem	QPoint	QRect
setYMD:	QDate
setYOffset:	QtTableView
setYVelocity:	QCanvasItem
setYear:	QDateEdit
setZ:	QCanvasItem
setf:	QTextStream
setup:	QListViewItem	QPrinter
setupPainter:	QtTableView
shadow:	QColorGroup
shape:	QCursor	QTabBar
shear:	QPainter	QWMatrix
shortDayName:	QDate
shortMonthName:	QDate
shortcutKey:	QAccel
show:	QCanvasItem	QDialog	QMenuBar	QWSWindow	QWidget
showColumn:	QTable
showDockMenu:	QMainWindow
showEvent:	QWidget
showExtension:	QDialog
showFullScreen:	QWidget
showGrid:	QTable
showHiddenFiles:	QFileDialog
showMaximized:	QWidget
showMinimized:	QWidget
showNormal:	QWidget
showPage:	QTabDialog	QTabWidget	QWizard
showRow:	QTable

showSortIndicator:	QListView
showTip:	QToolTipGroup
showToolTips:	QIconView	QListView
shutdownDevice:	QScreen
signalNames:	QMetaObject
signalsBlocked:	QObject
simpleHeuristicNameMatch:	QTextCodec
simplifyWhiteSpace:	QCString	QString
singleShot:	QTimer
size:	QAsciiCache	QAsciiDict	QBitArray	QCache	QCanvas
QCanvasRectangle	QDict	QDirectPainter	QFile	QFileInfo	QFontMetrics
QGLColormap	QIODevice	QIconViewItem	QImage	QIntCache	QIntDict
QMap	QMemArray	QPicture	QPixmap	QPtrDict	QPtrVector	QRect
QResizeEvent	QSocket	QSqlQuery	QSqlResult	QUrlInfo	QValueList
QValueVector	QWidget
sizeChange:	QHeader
sizeFromContents:	QStyle
sizeHint:	QBoxLayout	QCustomMenuItem	QGridLayout	QLayoutItem
QLineEdit	QProgressDialog	QSizeGrip	QSpacerItem	QTableItem	QWidget
QWidgetItem
sizeIncrement:	QWidget
sizeLimit:	QComboBox
sizePolicy:	QWidget
sizes:	QSplitter
skipWhiteSpace:	QTextStream
skippedEntity:	QXmlContentHandler
sleep:	QThread
sliderMoved:	QScrollBar	QSlider
sliderPressed:	QScrollBar	QSlider
sliderRect:	QScrollBar	QSlider
sliderReleased:	QScrollBar	QSlider
sliderStart:	QScrollBar	QSlider
slotNames:	QMetaObject
slotUpdate:	QIconView
smallDecimalPoint:	QLCDNumber
smoothScale:	QImage
smoothSizes:	QFontDatabase
sn_read:	QSocket
sn_write:	QSocket

socket:	QServerSocket	QSocket	QSocketDevice	QSocketNotifier
socketDevice:	QServerSocket	QSocket
sort:	QDataBrowser	QDataTable	QIconView	QListBox	QListView
QListViewItem	QMemArray	QPtrList	QPtrVector	QSqlCursor	QStringList
sortAscending:	QDataTable
sortChildItems:	QListViewItem
sortColumn:	QDataTable	QTable
sortDescending:	QDataTable
sortDirection:	QIconView
sorting:	QDir	QIconView	QTable
source:	QDragObject	QDropEvent	QTextBrowser
sourceText:	QTranslatorMessage
spacePressed:	QListView
spacerItem:	QLayoutItem
spacing:	QIconView	QLayout
specialValueText:	QSpinBox
specified:	QDomAttr
speed:	QMovie
split:	QStringList
splitName:	QXmlNamespaceSupport
splitText:	QDomText
spontaneous:	QEvent
sprintf:	QCString	QString
sqlCursor:	QDataBrowser	QDataTable
squeeze:	QTranslator
stackUnder:	QWidget
standardIcon:	QMessageBox
standardSizes:	QFontDatabase
start:	QNetworkProtocol	QProcess	QThread	QTime	QTimer	QUrlOperator
startCDATA:	QXmlLexicalHandler
startDTD:	QXmlLexicalHandler
startDocument:	QXmlContentHandler
startDrag:	QIconView	QListView	QTable
startDragDistance:	QApplication
startDragTime:	QApplication
startElement:	QXmlContentHandler
startEntity:	QXmlLexicalHandler
startPoint:	QCanvasLine
startPrefixMapping:	QXmlContentHandler

startRename:	QListViewItem
startTimer:	QObject
startedNextCopy:	QUrlOperator
startingUp:	QApplication
startsWith:	QString
state:	QAccessibleInterface	QButton	QCheckBox	QContextMenuEvent
QIODevice	QKeyEvent	QMouseEvent	QNetworkOperation	QPushButton
QRadioButton	QSocket	QWheelEvent
stateAfter:	QKeyEvent	QMouseEvent
stateChange:	QCheckListItem
stateChanged:	QButton	QCheckBox	QPushButton	QRadioButton
statistics:	QAsciiCache	QAsciiDict	QCache	QDict	QIntCache	QIntDict
QPtrDict
status:	QIODevice	QImageIO	QNPInstance
statusBar:	QMainWindow
statusTip:	QAction
stencil:	QGLFormat
step:	QMovie
stepChange:	QRangeControl
stepDown:	QSpinBox
stepUp:	QSpinBox
steps:	QMovie
stereo:	QGLFormat
stop:	QNetworkProtocol	QSound	QTimer	QUrlOperator
stored:	QMetaProperty
streamAsFile:	QNPInstance
streamDestroyed:	QNPInstance
strikeOut:	QFont
strikeOutPos:	QFontMetrics
string:	QConstString
stringListBegin:	QVariant
stringListEnd:	QVariant
stringShown:	QtMultiLineEdit
stripWhiteSpace:	QCString	QString
style:	QApplication	QBrush	QPen	QWidget
styleChange:	QWidget
styleHint:	QFont	QFontInfo	QStyle
stylePixmap:	QStyle
styleSheet:	QStyleSheetItem	QTextEdit

styleStrategy:	QFont
styleString:	QFontDatabase
styles:	QFontDatabase
subRect:	QStyle
subkeyList:	QSettings
substitute:	QFont
substitutes:	QFont
substitutions:	QFont
substringData:	QDomCharacterData
subtract:	QRegion
subtractLine:	QDial	QRangeControl
subtractPage:	QDial	QRangeControl
subtractStep:	QSlider
suffix:	QSpinBox
superClass:	QMetaObject
superClassName:	QMetaObject
supportedOperations:	QNetworkProtocol
supportsDepth:	QScreen
supportsMargin:	QLayout
supportsSelection:	QClipboard
swapBuffers:	QGLContext	QGLWidget
swapCells:	QTable
swapColumns:	QTable
swapRGB:	QImage
swapRows:	QTable
syncX:	QApplication
systemBitOrder:	QImage
systemByteOrder:	QImage
systemId:	QDomDocumentType	QDomEntity	QDomNotation
QXmlParseException
	tab:	QStyleOption	QTabBar
tabArray:	QPainter
tabAt:	QTabBar
tabBar:	QTabDialog	QTabWidget
tabIconSet:	QTabWidget
tabLabel:	QTabDialog	QTabWidget
tabList:	QTabBar
tabPosition:	QTabWidget
tabShape:	QTabWidget

tabStopWidth:	QTextEdit
tabStops:	QPainter
tabToolTip:	QTabWidget
tabWidth:	QStyleOption
table:	QTableItem
tableFlags:	QtTableView
tables:	QSqlDatabase	QSqlDriver
tabletEvent:	QWidget
tag:	QStyleSheet
tagName:	QDomElement
take:	QAsciiCache	QAsciiDict	QCache	QDict	QIntCache	QIntDict
QPtrDict	QPtrList	QPtrVector
takeCurrent:	QGLayoutIterator	QLayoutIterator
takeDefaultFactory:	QMimeSourceFactory
takeItem:	QIconView	QListBox	QListView	QListViewItem	QTable
takeNode:	QPtrList
target:	QDomProcessingInstruction	QDragObject
testBit:	QBitArray
testOption:	QGLFormat
testTableFlags:	QtTableView
testWFlags:	QWidget
text:	QAccessibleInterface	QAction	QButton	QCanvasText	QCheckBox
QCheckListItem	QClipboard	QColorGroup	QComboBox
QComboTableItem	QDataTable	QDomElement	QIMEvent	QIconViewItem
QImage	QKeyEvent	QLabel	QLineEdit	QListBox	QListBoxItem
QListViewItem	QMenuData	QMessageBox	QPopupMenu	QPushButton
QRadioButton	QSpinBox	QTab	QTable	QTableItem	QTextEdit
QWhatsThis	QtMultiLineEdit
textChanged:	QComboBox	QLineEdit	QSpinBox	QTextEdit
QtMultiLineEdit
textCursor:	QTextEdit
textFlags:	QCanvasText
textFor:	QToolTip	QWhatsThis
textFormat:	QLabel	QMessageBox	QTextEdit
textKeys:	QImage
textLabel:	QToolButton
textLanguages:	QImage
textLine:	QMultiLineEdit	QtMultiLineEdit
textList:	QImage

textRect:	QIconViewItem
textWidth:	QtMultiLineEdit
texts:	QDns
tickInterval:	QSlider
tickmarks:	QSlider
tile:	QCanvas	QWorkspace
tileHeight:	QCanvas
tileWidth:	QCanvas
tilesHorizontally:	QCanvas
tilesVertically:	QCanvas
time:	QDateTime	QTimeEdit
timeEdit:	QDateTimeEdit
timeout:	QTimer
timerEvent:	QObject
timerId:	QTimerEvent
tip:	QToolTip
title:	QGroupBox	QWizard
titleFont:	QWizard
toAttr:	QDomNode
toBitArray:	QVariant
toBitmap:	QVariant
toBool:	QVariant
toBrush:	QVariant
toByteArray:	QVariant
toCDATASection:	QDomNode
toCString:	QDomDocument	QVariant
toCharacterData:	QDomNode
toColor:	QVariant
toColorGroup:	QVariant
toComment:	QDomNode
toCursor:	QVariant
toDate:	QVariant
toDateTime:	QVariant
toDocument:	QDomNode
toDocumentFragment:	QDomNode
toDocumentType:	QDomNode
toDouble:	QCString	QString	QVariant
toElement:	QDomNode
toEntity:	QDomNode

toEntityReference:	QDomNode
toField:	QSqlFieldInfo
toFirst:	QAsciiCacheIterator	QAsciiDictIterator	QCacheIterator
QDictIterator	QIntCacheIterator	QIntDictIterator	QPtrDictIterator
QPtrListIterator
toFloat:	QCString	QString
toFont:	QVariant
toIconSet:	QVariant
toImage:	QVariant
toInt:	QCString	QString	QVariant
toKeySequence:	QVariant
toLast:	QAsciiCacheIterator	QCacheIterator	QIntCacheIterator
QPtrListIterator
toList:	QPtrVector	QVariant
toLong:	QCString	QString
toMap:	QVariant
toNotation:	QDomNode
toPage:	QPrinter
toPalette:	QVariant
toPixmap:	QVariant
toPoint:	QVariant
toPointArray:	QVariant
toProcessingInstruction:	QDomNode
toRecord:	QSqlRecordInfo
toRect:	QVariant
toRegion:	QVariant
toShort:	QCString	QString
toSize:	QVariant
toSizePolicy:	QVariant
toString:	QDate	QDateTime	QDomDocument	QFont	QHostAddress
QSqlCursor	QSqlRecord	QTime	QUrl	QVariant
toStringList:	QSqlRecord	QVariant
toText:	QDomNode
toTime:	QVariant
toUInt:	QCString	QString	QVariant
toULong:	QCString	QString
toUShort:	QCString	QString
toUnicode:	QTextCodec	QTextDecoder
toVector:	QPtrList

toggle:	QAction	QButton	QCheckBox	QPushButton	QRadioButton
QToolButton
toggleBit:	QBitArray
toggleCurrentItem:	QListBox
toggleType:	QButton
toggled:	QAction	QButton	QCheckBox	QPushButton	QRadioButton
toolBars:	QMainWindow
toolTip:	QAction	QTabBar	QWidgetPlugin
toolTipGroup:	QMainWindow
top:	QDoubleValidator	QIntValidator	QPtrStack	QRect	QValueStack
topCell:	QtTableView
topDock:	QMainWindow
topEdge:	QCanvasSprite
topItem:	QListBox
topLeft:	QRect
topLevelWidget:	QWidget
topLevelWidgets:	QApplication
topMargin:	QScrollView
topRight:	QRect
topRow:	QTableSelection
total:	QSemaphore
totalCost:	QAsciiCache	QCache	QIntCache
totalHeight:	QListViewItem	QtTableView
totalSize:	QScreen
totalSteps:	QProgressBar	QProgressDialog
totalWidth:	QtTableView
tr:	QObject
trUtf8:	QObject
tracking:	QDial	QHeader	QScrollBar	QSlider
transaction:	QSqlDatabase
transformOrientation:	QDirectPainter	QScreen
translate:	QApplication	QPainter	QPointArray	QRegion	QWMatrix
translation:	QTranslatorMessage
transpose:	QSize
treeStepSize:	QListView
triggerUpdate:	QListBox	QListView
trueMatrix:	QPixmap
trueText:	QDataTable
truncate:	QCString	QMemArray	QString

tryAccess:	QSemaphore
tryLock:	QApplication	QMutex
tryTerminate:	QProcess
turnOffChild:	QCheckListItem
type:	QApplication	QCheckListItem	QEvent	QMetaProperty	QNPStream
QSocketDevice	QSocketNotifier	QSqlError	QSqlField	QSqlFieldInfo
QVariant	QXmlAttributes
typeID:	QSqlFieldInfo
typeName:	QVariant
typeToName:	QVariant
	unPolish:	QStyle
uncache:	QScreen
underline:	QFont	QTextEdit
underlinePos:	QFontMetrics
undo:	QLineEdit	QTextEdit	QtMultiLineEdit
undoAvailable:	QTextEdit	QtMultiLineEdit
undoDepth:	QTextEdit	QtMultiLineEdit
undock:	QDockWindow
ungetch:	QFile	QIODevice	QSocket
unicode:	QChar	QString
unicodeUriToUri:	QUriDrag
uniqueId:	QTabletEvent
unite:	QRect	QRegion
unload:	QLibrary
unlock:	QApplication	QLock	QMutex
unparsedEntityDecl:	QXmlDTDHandler
unpause:	QMovie
unregisterDecoderFactory:	QImageDecoder
unsetCursor:	QWidget
unsetDevice:	QDataStream	QTextStream
unsetFont:	QWidget
unsetPalette:	QWidget
unsetf:	QTextStream
unsqueeze:	QTranslator
unuseJavaClass:	QNPlugin
upRect:	QSpinBox
update:	QCanvas	QCanvasItem	QDataBrowser	QSqlCursor	QWidget
updateAccessibility:	QAccessible
updateBoundary:	QDataBrowser

updateButtons:	QDateEdit	QTimeEdit
updateCell:	QGridView	QTable	QtTableView
updateContents:	QListView	QScrollView
updateCurrent:	QDataBrowser	QDataTable
updateDisplay:	QSpinBox
updateGL:	QGLWidget
updateGeometry:	QWidget
updateItem:	QListBox	QMenuData	QPopupMenu
updateMask:	QWidget
updateOverlayGL:	QGLWidget
updateScrollBars:	QScrollView	QtTableView
updateTableSize:	QtTableView
upper:	QCString	QChar	QString
uri:	QXmlAttributes	QXmlNamespaceSupport
uriToLocalFile:	QUriDrag
uriToUnicodeUri:	QUriDrag
url:	QFileDialog	QNPStream	QNetworkProtocol
useHighlightColors:	QMotifStyle
user:	QUrl
userAgent:	QNPInstance
userName:	QSqlDatabase
uses3D:	QToolButton
usesBigPixmap:	QToolButton
usesBigPixmaps:	QMainWindow
usesDropDown:	QActionGroup
usesTextLabel:	QMainWindow	QToolButton
usesTextLabelChanged:	QMainWindow
usleep:	QThread
utf8:	QString
	vScrollBarMode:	QScrollView
valid:	QImage
validChunk:	QCanvas
validate:	QDoubleValidator	QIntValidator	QRegExpValidator	QValidator
validateAndSet:	QLineEdit
validator:	QComboBox	QLineEdit	QSpinBox	QtMultiLineEdit
value:	QDataTable	QDial	QDomAttr	QLCDNumber	QRangeControl
QScrollBar	QSignal	QSlider	QSpinBox	QSqlField	QSqlQuery	QSqlRecord
QXmlAttributes
valueChange:	QDial	QRangeControl	QSlider	QSpinBox

valueChanged:	QDateEdit	QDateTimeEdit	QDial	QScrollBar	QSlider
QSpinBox	QTable	QTimeEdit
valueFromPosition:	QRangeControl
valueToKey:	QMetaProperty
valueToKeys:	QMetaProperty
values:	QMap
variableHeight:	QListBox
variableWidth:	QListBox
verData:	QSizePolicy
verStretch:	QSizePolicy
version:	QDataStream
verticalAlignment:	QStyleSheetItem
verticalHeader:	QTable
verticalScrollBar:	QScrollView	QtTableView
viewHeight:	QtTableView
viewMode:	QFileDialog
viewRect:	QtTableView
viewWidth:	QtTableView
viewport:	QPainter	QScrollView
viewportPaintEvent:	QScrollView
viewportResizeEvent:	QScrollView
viewportSize:	QScrollView
viewportToContents:	QScrollView
visibilityChanged:	QDockWindow
visibleHeight:	QScrollView
visibleRect:	QWidget
visibleWidget:	QWidgetStack
visibleWidth:	QScrollView
visualRect:	QStyle
	wait:	QThread	QWaitCondition
waitForMore:	QSocket	QSocketDevice
wakeAll:	QWaitCondition
wakeOne:	QWaitCondition
wakeUpGuiThread:	QApplication
warning:	QMessageBox	QXmlErrorHandler
wasCancelled:	QProgressDialog
weight:	QFont	QFontDatabase	QFontInfo
whatsThis:	QAccel	QAction	QMainWindow	QMenuData	QPopupMenu
QWidgetPlugin

whatsThisButton:	QWhatsThis
wheelEvent:	QWidget
wheelScrollLines:	QApplication
whiteSpaceMode:	QStyleSheetItem
widget:	QDockWindow	QLayoutItem	QNPInstance	QSqlForm
QWidgetItem	QWidgetStack
widgetAt:	QApplication
widgetToField:	QSqlForm
width:	QCanvas	QCanvasEllipse	QCanvasRectangle	QCanvasSprite
QDirectPainter	QFontMetrics	QIconViewItem	QImage	QListBoxItem
QListBoxPixmap	QListBoxText	QListViewItem	QPaintDeviceMetrics
QPen	QPixmap	QRect	QScreen	QSimpleRichText	QSize	QTextStream
QWidget
widthChanged:	QListViewItem
widthMM:	QPaintDeviceMetrics
widthUsed:	QSimpleRichText
wildcard:	QRegExp
winEvent:	QWidget
winEventFilter:	QApplication
winFocus:	QApplication
winId:	QWSWindow	QWidget
winPageSize:	QPrinter
winVersion:	QApplication
winding:	QCanvasPolygonalItem
window:	QPainter
windowActivated:	QWorkspace
windowActivationChange:	QWidget
windowAt:	QWSServer
windowCreated:	QGLContext
windowEvent:	QWSServer
windowList:	QWorkspace
wordWrap:	QTableItem	QTextEdit	QtMultiLineEdit
wordWrapIconText:	QIconView
workingDirectory:	QProcess
worldMatrix:	QCanvasView	QPainter
wrapColumnOrWidth:	QTextEdit	QtMultiLineEdit
wrapPolicy:	QTextEdit	QtMultiLineEdit
wrapping:	QDial	QSpinBox
writable:	QMetaProperty

write:	QAsciiDict	QDict	QImageIO	QIntDict	QNPInstance	QNPStream
QPtrDict	QPtrList	QPtrQueue	QPtrStack	QPtrVector	QTranslatorMessage
writeBlock:	QBuffer	QIODevice	QSocket	QSocketDevice
writeBytes:	QDataStream
writeEntry:	QSettings
writeField:	QSqlForm
writeFields:	QDataBrowser	QDataView	QSqlForm
writeRawBytes:	QDataStream	QTextStream
writeReady:	QNPInstance
writeToStdin:	QProcess
wroteToStdin:	QProcess
	x:	QCanvasItem	QContextMenuEvent	QIconViewItem	QMouseEvent
QPoint	QRect	QTabletEvent	QWheelEvent	QWidget
x11AppCells:	QPaintDevice
x11AppColormap:	QPaintDevice
x11AppDefaultColormap:	QPaintDevice
x11AppDefaultVisual:	QPaintDevice
x11AppDepth:	QPaintDevice
x11AppDisplay:	QPaintDevice
x11AppDpiX:	QPaintDevice
x11AppDpiY:	QPaintDevice
x11AppScreen:	QPaintDevice
x11AppVisual:	QPaintDevice
x11Cells:	QPaintDevice
x11Colormap:	QPaintDevice
x11DefaultColormap:	QPaintDevice
x11DefaultVisual:	QPaintDevice
x11Depth:	QPaintDevice
x11Display:	QPaintDevice
x11Event:	QWidget	QXtWidget
x11EventFilter:	QApplication
x11ProcessEvent:	QApplication
x11Screen:	QPaintDevice
x11SetAppDpiX:	QPaintDevice
x11SetAppDpiY:	QPaintDevice
x11Visual:	QPaintDevice
xForm:	QBitmap	QImage	QPainter	QPixmap
xFormDev:	QPainter
xOffset:	QDirectPainter	QtTableView

xTilt:	QTabletEvent
xVelocity:	QCanvasItem
xtWidget:	QXtWidget
	y:	QCanvasItem	QContextMenuEvent	QIconViewItem	QMouseEvent
QPoint	QRect	QTabletEvent	QWheelEvent	QWidget
yOffset:	QDirectPainter	QtTableView
yTilt:	QTabletEvent
yVelocity:	QCanvasItem
year:	QDate
	z:	QCanvasItem
zoomIn:	QTextEdit
zoomOut:	QTextEdit
zoomTo:	QTextEdit

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Header	File	Index
Here	are	the	header	files	that	make	up	the	Qt	API:

qaccel.h
qaccessible.h
qaction.h
qapplication.h
qasciicache.h
qasciidict.h
qasyncimageio.h
qasyncio.h
qbitarray.h
qbitmap.h
qbrush.h
qbuffer.h
qbutton.h
qbuttongroup.h
qcache.h
qcanvas.h
qcdestyle.h
qcheckbox.h
qclipboard.h
qcolor.h
qcolordialog.h
qcombobox.h
qcommonstyle.h
qcopchannel_qws.h
qcstring.h
qcursor.h
qdatabrowser.h
qdatastream.h
qdatatable.h
qdataview.h
qdatetime.h
qdatetimeedit.h

qdesktopwidget.h
qdial.h
qdialog.h
qdict.h
qdir.h
qdirectpainter_qws.h
qdns.h
qdockarea.h
qdockwindow.h
qdom.h
qdragobject.h
qdrawutil.h
qdropsite.h
qeditorfactory.h
qerrormessage.h
qeucjpcodec.h
qeuckrcodec.h
qevent.h
qfile.h
qfiledialog.h
qfileinfo.h
qfocusdata.h
qfont.h
qfontdatabase.h
qfontdialog.h
qfontinfo.h
qfontmanager_qws.h
qfontmetrics.h
qframe.h
qftp.h
qgb18030codec.h
qgfx_qws.h
qgl.h
qglcolormap.h
qglobal.h
qgrid.h
qgridview.h
qgroupbox.h
qguardedptr.h

qhbox.h
qhbuttongroup.h
qheader.h
qhgroupbox.h
qhostaddress.h
qhttp.h
qiconset.h
qiconview.h
qimage.h
qimageformatplugin.h
qinputdialog.h
qintcache.h
qintdict.h
qiodevice.h
qjiscodec.h
qkeyboard_qws.h
qkeysequence.h
qlabel.h
qlayout.h
qlcdnumber.h
qlibrary.h
qlineedit.h
qlistbox.h
qlistview.h
qlocalfs.h
qlock_qws.h
qmainwindow.h
qmap.h
qmemarray.h
qmenubar.h
qmenudata.h
qmessagebox.h
qmetaobject.h
qmime.h
qmotifplusstyle.h
qmotifstyle.h
qmovie.h
qmultilineedit.h
qmutex.h

qnamespace.h
qnetworkprotocol.h
qnp.h
qobject.h
qobjectcleanuphandler.h
qobjectlist.h
qpaintdevice.h
qpaintdevicemetrics.h
qpainter.h
qpair.h
qpalette.h
qpen.h
qpicture.h
qpixmap.h
qpixmapcache.h
qplatinumstyle.h
qpngio.h
qpoint.h
qpointarray.h
qpopupmenu.h
qprinter.h
qprocess.h
qprogressbar.h
qprogressdialog.h
qptrcollection.h
qptrdict.h
qptrlist.h
qptrqueue.h
qptrstack.h
qptrvector.h
qpushbutton.h
qradiobutton.h
qrangecontrol.h
qrect.h
qregexp.h
qregion.h
qrtlcodec.h
qscrollbar.h
qscrollview.h

qsemaphore.h
qserversocket.h
qsessionmanager.h
qsettings.h
qsgistyle.h
qsignal.h
qsignalmapper.h
qsimplerichtext.h
qsize.h
qsizegrip.h
qsizepolicy.h
qsjiscodec.h
qslider.h
qsocket.h
qsocketdevice.h
qsocketnotifier.h
qsortedlist.h
qsound.h
qspinbox.h
qsplitter.h
qsql.h
qsqlcursor.h
qsqldatabase.h
qsqldriver.h
qsqldriverplugin.h
qsqleditorfactory.h
qsqlerror.h
qsqlfield.h
qsqlform.h
qsqlindex.h
qsqlpropertymap.h
qsqlquery.h
qsqlrecord.h
qsqlresult.h
qstatusbar.h
qstring.h
qstringlist.h
qstrlist.h
qstyle.h

qstylefactory.h
qstyleplugin.h
qstylesheet.h
qtabbar.h
qtabdialog.h
qtable.h
qtabwidget.h
qtextbrowser.h
qtextcodec.h
qtextcodecplugin.h
qtextedit.h
qtextstream.h
qtextview.h
qthread.h
qtimer.h
qtmultilineedit.h
qtoolbar.h
qtoolbutton.h
qtooltip.h
qtranslator.h
qtsciicodec.h
qttableview.h
qurl.h
qurlinfo.h
qurloperator.h
qvalidator.h
qvaluelist.h
qvaluestack.h
qvaluevector.h
qvariant.h
qvbox.h
qvbuttongroup.h
qvgroupbox.h
qwaitcondition.h
qwhatsthis.h
qwidget.h
qwidgetfactory.h
qwidgetplugin.h
qwidgetstack.h

qwindowdefs.h
qwindowsstyle.h
qwindowsystem_qws.h
qwizard.h
qwmatrix.h
qworkspace.h
qwsdecoration_qws.h
qwsmouse_qws.h
qxml.h
qxt.h

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QtQtQtQtQt——

OpenGL
SQL

MDI
XML

Copyright	©	2002	Trolltech Trademarks dirtfei Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Qt

QCanvas	 QCanvasItems QCanvasSpriteQt

/ QCanvasView	

Qt QCanvas:

QCanvasItem--
QCanvasEllipse--“”
QCanvasLine--
QCanvasPolygon--
QCanvasPolygonalItem--
QCanvasRectangle--QCanvasPolygon
QCanvasSpline--
QCanvasSprite--

QCanvasText--

QCanvasPixmapQCanvasPixmapArrayQCanvasSprite

QCanvasItem	 QCanvasPolygonalItem

Copyright	©	2002	Trolltech Trademarks dirtfei Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QIconViewAPI QListViewQListBox

Copyright	©	2002	Trolltech Trademarks dirtfei Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Network	Module
This	module	is	part	of	the	Qt	Enterprise	Edition.

Introduction
Working	Network	Protocol	independent	with	QUrlOperator	and
QNetworkOperation

Implementing	your	own	Network	Protocol
Error	Handling

Introduction

The	network	module	offers	classes	to	make	network	programming	easier	and
portable.	Basically	there	are	three	sets	of	classes,	first	very	basic	classes	like
QSocket,	QServerSocket,	QDns,	etc.	which	allow	to	work	in	a	portable	way	with
TCP/IP	sockets.	In	addition,	there	are	classes	like	QNetworkProtocol,
QNetworkOperation	in	the	Qt	base	library,	which	provide	an	abstract	layer	for
implementing	network	protocols	and	QUrlOperator	which	operates	on	such
network	protocols.	Finally	the	third	set	of	network	classes	are	the	passive	ones,
namely	QUrl	and	QUrlInfo	which	do	URL	parsing	and	similar	stuff.

The	first	set	of	classes	(QSocket,	QServerSocket,	QDns,	QFtp,	etc.)	are	included
in	the	"network"	module	of	Qt.

The	QSocket	classes	are	not	directly	related	to	the	QNetwork	classes,	but
QSocket	should	and	will	be	used	for	implementing	network	protocols,	which	are
directly	related	to	the	QNetwork	classes.	E.g.	the	QFtp	class	(implementation	of
the	FTP	protocol)	uses	QSockets.	But	QSockets	don't	need	to	be	used	for
protocol	implementations,	e.g.	QLocalFs	(which	is	an	implementation	of	the
local	filesystem	as	network	protocol)	uses	QDir	and	no	QSocket.	Using
QNetworkProtocols	you	can	implement	everything	which	fits	into	a	hierarchical
structure	and	can	be	accessed	using	URLs.	This	could	be	e.g.	a	protocol	which
can	read	pictures	from	a	digital	camera	using	a	serial	connection.

Working	Network	Protocol	independent	with
QUrlOperator	and	QNetworkOperation

To	just	use	existing	network	protocol	implementations	and	operate	on	URLs
using	them	is	quite	easy.	E.g.	downloading	a	file	from	an	FTP	server	to	the	local
filesystem	can	be	done	with	following	code:

				QUrlOperator	op;

				op.copy("ftp://ftp.trolltech.com/qt/source/qt-2.1.0.tar.gz",	"file:/tmp",	FALSE);

And	that's	all!	Of	course	an	implementation	of	the	FTP	protocol	has	to	be
available	and	registered	for	doing	that.	More	information	on	that	later.

You	can	also	do	stuff	like	creating	directories,	removing	files,	renaming,	etc.	E.g.
to	create	a	folder	on	a	private	FTP	account	do

				QUrlOperator	op("ftp://username:password@host.domain.no/home/username");

				op.mkdir("New	Directory");

That's	it	again.	To	see	all	available	operations,	look	at	the	QUrlOperator	class
documentation.

Now	as	everything	works	asynchronous,	the	function	call	for	an	operation
returns	before	the	operation	has	been	processed.	So	you	don't	get	a	return	value
which	tells	you	something	about	failure	or	success.	The	return	value	always	is	a
pointer	to	a	QNetworkOperation.

In	this	QNetworkOperation	all	information	about	the	operation	is	stored.	There
is	e.g.	a	method	of	QNetworkOperation	which	returns	the	state	of	this	operation.
Using	that	you	can	find	out	all	the	time	in	which	state	the	operation	currently	is.
Also	you	get	the	arguments	you	passed	to	the	QUrlOperator	method,	the	type	of
the	operation	and	some	more	stuff	from	this	QNetworkOperation	object.	For
more	details	see	the	class	documentation	of	QNetworkOperation.

Now,	later	you	get	signals	emitted	by	the	QUrlOperator,	which	inform	you	about
the	process	of	the	operations.	As	you	can	call	many	methods	which	operate	on	a
URL	of	one	QUrlOperator,	it	queues	up	all	these	operations.	So	you	can't	know
which	operation	the	QUrlOperator	just	processes.	Because	of	this	you	get	in
each	signal	as	the	last	argument	a	pointer	to	the	QNetworkOperation	object

which	is	just	processed	and	from	which	this	signal	comes.

Some	of	these	operations	send	a	start()	signal	at	the	beginning	(depending	if	it
makes	sense	or	not),	then	some	of	them	send	some	signals	during	processing	the
operation,	and	all	operations	send	a	finished()	signal	after	they	are	done.	Now,
finished	could	mean	that	the	operation	has	been	successfully	finished	or	that	it
failed.	To	find	that	out	you	can	use	the	QNetworkOperation	pointer	you	got	with
the	finished()	signal.	If	QNetworkOperation::state()	equals
QNetworkProtocol::StDone	the	operation	finished	successful,	if	it	is
QNetworkProtocol::StFailed	the	operation	failed.

Now,	a	slot	which	you	connected	to	the	QUrlOperator::finished(
QNetworkOperation	*)	signal	could	look	like	this

void	MyClass::slotOperationFinished(QNetworkOperation	*op)

{

				switch	(op->operation())	{

				case	QNetworkProtocol::OpMkDir:	{

								if	(op->state()	==	QNetworkProtocol::StFailed)

												qDebug("Couldn't	create	directory	%s",	op->arg(0).latin1());

								else

												qDebug("Successfully	created	directory	%s",	op->arg(0).latin1());

				}	break;

				//	...	and	so	on

				}

}

As	mentioned	before,	some	operations	send	other	signals	too.	Let's	take	the	list
children	operation	as	an	example	(e.g.	read	the	directory	of	a	directory	on	a	FTP
server):

QUrlOperator	op;

MyClass::MyClass()	:	QObject(),	op("ftp://ftp.trolltech.com")

{

				connect(&op,	SIGNAL(newChildren(const	QValueList<QUrlInfo>	&,	QNetworkOperation	*)),

													this,	SLOT(slotInsertEntries(const	QValueList<QUrlInfo>	&,	QNetworkOperation	*)));

				connect(&op,	SIGNAL(start(QNetworkOperation	*)),

													this,	SLOT(slotStart(QNetworkOperation	*)));

				connect(&op,	SIGNAL(finished(QNetworkOperation	*)),

													this,	SLOT(slotFinished(QNetworkOperation	*)));

}

void	MyClass::slotInsertEntries(const	QValueList<QUrlInfo>	&info,	QNetworkOperation	*)

{

				QValueList<QUrlInfo>::ConstIterator	it	=	info.begin();

				for	(;	it	!=	info.end();	++it)	{

								const	QUrlInfo	&inf	=	*it;

								qDebug("Name:	%s,	Size:	%d,	Last	Modified:	%s",

												inf.name().latin1(),	inf.size(),	inf.lastModified().toString().latin1());

				}

}

void	MyClass::slotStart(QNetworkOperation	*)

{

				qDebug("Start	reading	'%s'",	op.toString().latin1());

}

void	MyClass::slotFinished(QNetworkOperation	*operation)

{

				if	(operation->operation()	==	QNetworkProtocol::OpListChildren)	{

								if	(operation->state()	==	QNetworkProtocol::StFailed)

												qDebug("Couldn't	read	'%s'!	Following	error	occurred:	%s",

																op.toString().latin1(),	operation->protocolDetail().latin1());

								else

												qDebug("Finished	reading	'%s'!",	op.toString().latin1());

				}

}

These	examples	explained	now	how	to	use	the	QUrlOperator	and
QNetworkOperations.	The	network	extension	will	contain	some	good	examples
for	this	too.

Implementing	your	own	Network	Protocol

QNetworkProtocol	provides	a	base	class	for	implementations	of	network
protocols	and	an	architecture	to	a	dynamic	registration	and	unregistration	of
network	protocols.	If	you	use	this	architecture	you	also	don't	need	to	care	about
asynchronous	programming,	as	the	architecture	hides	this	and	does	all	the	work
for	you.

Limitation:	As	it	is	quite	hard	to	design	a	base	class	for	network	protocols	which
satisfies	all	network	protocols,	the	architecture	described	here	is	designed	to
work	with	all	kinds	of	hierarchical	structures,	like	filesystems.	So	everything
which	can	be	interpreted	as	hierarchical	structure	and	accessed	via	URLs,	can	be
implemented	as	network	protocol	and	easily	used	in	Qt.	This	is	not	limited	to

filesystems	only!

To	implement	a	network	protocol	create	a	class	derived	from	QNetworkProtocol.

Other	classes	will	use	this	network	protocol	implementation	to	operate	on	it.	So
you	should	reimplement	following	protected	members

				void	QNetworkProtocol::operationListChildren(QNetworkOperation	*op);

				void	QNetworkProtocol::operationMkDir(QNetworkOperation	*op);

				void	QNetworkProtocol::operationRemove(QNetworkOperation	*op);

				void	QNetworkProtocol::operationRename(QNetworkOperation	*op);

				void	QNetworkProtocol::operationGet(QNetworkOperation	*op);

				void	QNetworkProtocol::operationPut(QNetworkOperation	*op);

Some	words	about	how	to	reimplement	these	methods:	You	always	get	a	pointer
to	a	QNetworkOperation	as	argument.	This	pointer	holds	all	information	about
the	operation	in	the	current	state.	If	you	start	processing	such	an	operation,	set
the	state	to	QNetworkProtocol::StInProgress.	If	you	finished	processing	the
operation,	set	the	state	to	QNetworkProtocol::StDone	if	it	was	successful	or
QNetworkProtocol::StFailed	if	an	error	occurred.	If	an	error	occurred	you	have
to	set	an	error	code	(see	QNetworkOperation::setErrorCode())	and	if	you	know
some	details	(e.g.	an	error	message)	you	can	also	set	this	message	to	the
operation	pointer	(see	QNetworkOperation::setProtocolDetail()).	Also	you	get
all	information	(type,	arguments,	etc.)	of	the	operation	from	this
QNetworkOperation	pointer.	For	details	about	which	arguments	you	can	get	and
set	look	at	the	class	documentation	of	QNetworkOperation.

If	you	reimplement	such	an	operation	method,	it's	also	very	important	to	emit	the
correct	signals	at	the	correct	time:	In	general	always	emit	at	the	end	of	an
operation	(when	you	either	successfully	finished	processing	the	operation	or	and
error	occurred)	the	finished()	signal	with	the	network	operation	as	argument.
The	whole	network	architecture	relies	on	correctly	emitted	finished()	signals!
So	be	careful	with	that!	Then	there	are	some	more	special	signals	which	are
specific	to	operations:

Emit	in	operationListChildren:
start()	just	before	starting	listing	the	children
newChildren()	when	new	children	are	read

Emit	in	operationMkDir:
createdDirectory()	after	the	directory	has	been	created
newChild()	(or	newChildren())	after	the	directory	has	been	created	(as

a	new	directory	is	a	new	child)
Emit	in	operationRemove:

removed()	after	the	child	has	been	removed
Emit	in	operationRename:

itemChanged()	after	the	child	has	been	renamed
Emit	in	operationGet:

data()	each	time	new	data	has	been	read
dataTransferProgress()	each	time	new	data	has	been	read	to
indicate	how	much	of	the	data	has	been	read	now.

Emit	in	operationPut:
dataTransferProgress()	each	time	data	has	been	written	to	indicate
how	much	of	the	data	has	been	written.	Although	you	know	the	whole
data	when	this	operation	is	called,	it's	suggested	not	to	write	the	whole
data	at	once,	but	to	do	it	step	by	step	to	avoid	blocking	the	GUI	and
also	this	way	the	progress	can	be	made	visible	to	the	user.

And	remember,	always	emit	the	finished()	signal	at	the	end!

For	more	details	about	the	arguments	of	these	signals	take	a	look	at	the
QNetworkProtocol	class	documentation.

Now,	as	argument	in	such	a	method	you	get	the	QNetworkOperation	which	you
process.	Here	is	a	list	which	arguments	of	the	QNetworkOperation	you	can	get
and	which	you	have	to	set	in	which	method:

(To	get	the	URL	on	which	you	should	work,	use	the	QNetworkProtocol::url()
method	which	returns	the	pointer	to	the	URL	operator.	Using	that	you	can	get	the
path,	host,	name	filter	and	everything	else	of	the	URL)

In	operationListChildren:
Nothing.

In	operationMkDir:
QNetworkOperation::arg(0)	contains	the	name	of	the	directory
which	should	be	created

In	operationRemove:
QNetworkOperation::arg(0)	contains	the	name	of	the	file	which
should	be	removed.	Normally	this	is	a	relative	name.	But	it	may	be
absolute	too,	so	use	QUrl(op->arg(0)).fileName()	to	get	the
filename.

In	operationRename:
QNetworkOperation::arg(0)	contains	the	name	of	the	file	which
should	be	renamed
QNetworkOperation::arg(1)	contains	the	name	to	which	it	should
be	renamed.

In	operationGet:
QNetworkOperation::arg(0)	contains	the	full	URL	of	the	file
which	should	be	retrieved.

In	operationPut:
QNetworkOperation::arg(0)	contains	the	full	URL	of	the	file	in
which	the	data	should	be	stored.
QNetworkOperation::rawArg(1)	contains	the	data	which	should	be
stored	in	QNetworkOperation::arg(0)

So,	to	sum	it	up:	If	you	reimplement	such	an	operation	method,	you	have	to	emit
some	special	signals	and	always	at	the	end	a	finished()	signal,	either	on
success	or	on	failure.	Also	you	have	to	change	the	state	of	the
QNetworkOperation	during	processing	it	and	can	get	and	set	arguments	of	the
operation	as	well.

But	it's	unlikely	that	the	network	protocol	you	implement	supports	all	these
operations.	So,	just	reimplement	the	operations,	which	are	supported	by	the
protocol.	Additionally	you	have	to	specify	which	operations	are	supported	then.
This	is	done	by	reimplementing

				int	QNetworkProtocol::supportedOperations()	const;

In	your	implementation	of	this	method	return	an	int	value	which	is	constructed
by	or'ing	together	the	correct	values	(supported	operations)	of	the	following
enum	(of	QNetworkProtocol):

				enum	Operation	{

								OpListChildren	=	1,

								OpMkDir	=	2,

								OpRemove	=	4,

								OpRename	=	8,

								OpGet	=	32,

								OpPut	=	64

				};

So,	if	your	protocol	e.g.	supports	listing	children	and	renaming	them,	do	in	your

implementation	of	supportedOperations():

				return	OpListChildren	|	OpRename;

The	last	method	you	have	to	reimplement	is

				bool	QNetworkProtocol::checkConnection(QNetworkOperation	*op);

Here	you	have	to	return	TRUE,	if	the	connection	is	up	and	ok	(this	means
operations	on	the	protocol	can	be	done).	If	the	connection	is	not	ok,	return
FALSE	and	start	to	try	opening	it.	If	you	will	not	be	able	to	open	the	connection
at	all	(e.g.	because	the	host	is	not	found),	emit	a	finished()	signal	and	set	an
error	code	and	the	QNetworkProtocol::StFailed	state	to	the	QNetworkOperation
pointer	you	get	here.

Now,	you	never	need	to	check	before	doing	an	operation	yourself,	if	the
connection	is	ok.	The	network	architecture	does	this,	this	means	using
checkConnection()	it	looks	if	an	operation	could	be	done	and	if	not,	it	tries	it
again	and	again	for	some	time	and	only	calls	an	operation	method	if	the
connection	is	ok.

Using	this	knowledge	it	should	be	possible	to	implement	network	protocols.
Finally	to	be	able	to	use	it	with	a	QUrlOperator	(and	so	e.g.	in	the	QFileDialog),
you	have	to	register	the	network	protocol	implementation.	This	can	be	done	like
this:

				QNetworkProtocol::registerNetworkProtocol("myprot",	new	QNetworkProtocolFactory<MyProtocol>);

In	this	case	MyProtocol	would	be	a	class	you	implemented	like	described	here
(derived	from	QNetworkProtocol)	and	the	name	of	the	protocol	would	be
myprot.	So	if	you	want	to	use	it,	you	would	do	something	like

				QUrlOperator	op("myprot://host/path");

				op.listChildren();

Finally	as	example	for	a	network	protocol	implementation	you	could	look	at	the
implementation	of	QLocalFs.	The	network	extension	will	also	contain	an
example	implementation	of	a	network	protocol

Error	Handling

Error	handling	is	important	for	both,	implementing	new	network	protocols	and
using	them	(through	QUrlOperator).	So	first	some	words	about	error	handling
when	using	the	network	protocols:

As	already	mentioned	quite	some	times	after	processing	an	operation	has	been
finished	the	network	operation	and	so	the	QUrlOperator	emits	the	finished()
signal.	This	has	as	argument	the	pointer	to	the	processed	QNetworkOperation.	If
the	state	of	this	operation	is	QNetworkProtocol::StFailed,	the	operation	contains
some	more	information	about	this	error.	Following	error	codes	are	defined	in
QNetworkProtocol:

QNetworkProtocol::NoError	-	No	error	occurred
QNetworkProtocol::ErrValid	-	The	URL	you	are	operating	on	is	not	valid
QNetworkProtocol::ErrUnknownProtocol	-	There	is	no	protocol
implementation	available	for	the	protocol	of	the	URL	you	are	operating	on
(e.g.	if	the	protocol	is	http	and	no	http	implementation	has	been	registered)
QNetworkProtocol::ErrUnsupported	-	The	operation	is	not	supported	by	the
protocol
QNetworkProtocol::ErrParse	-	Parse	error	of	the	URL
QNetworkProtocol::ErrLoginIncorrect	-	You	needed	to	login	but	the
username	and	or	password	are	wrong
QNetworkProtocol::ErrHostNotFound	-	The	specified	host	(in	the	URL)
couldn't	be	found
QNetworkProtocol::ErrListChildren	-	An	error	occurred	while	listing	the
children
QNetworkProtocol::ErrMkDir	-	An	error	occurred	when	creating	a
directory
QNetworkProtocol::ErrRemove	-An	error	occurred	while	removing	a	child
QNetworkProtocol::ErrRename	-	An	error	occurred	while	renaming	a	child
QNetworkProtocol::ErrGet	-	An	error	occurred	while	getting	(retrieving)
data
QNetworkProtocol::ErrPut	-	An	error	occurred	while	putting	(uploading)
data
QNetworkProtocol::ErrFileNotExisting	-	A	file	which	is	needed	by	the
operation	doesn't	exist
QNetworkProtocol::ErrPermissionDenied	-	The	permission	for	doing	the
operation	has	been	denied

QNetworkOperation::errorCode()	returns	then	one	of	these	codes	or	maybe	a

different	one	if	you	use	an	own	network	protocol	implementation	which	defines
additional	error	codes.

QNetworkOperation::protocolDetails()	may	also	return	a	string	which
contains	an	error	message	then	which	could	e.g.	be	displayed	for	the	user.

According	to	this	information	it	should	be	possible	to	react	on	errors.

Now,	if	you	implement	your	own	network	protocol,	you	will	need	to	tell	about
errors	which	occurred.	First	you	always	need	to	be	able	to	access	the
QNetworkOperation	which	is	processed	at	the	moment.	This	can	be	done	using
QNetworkOperation::operationInProgress(),	which	returns	a	pointer	to	the
current	network	operation	or	0	if	no	operation	is	processed	at	the	moment.

Now	if	and	error	occurred	and	you	need	to	handle	it,	do

				if	(operationInProgress())	{

								operationInProgress()->setErrorCode(error_code_of_your_error);

								operationInProgress()->setProtocolDetails(detail);	//	optional!

								emit	finished(operationInProgress());

								return;

				}

That's	all.	The	connection	to	the	QUrlOperator	and	so	on	is	done	automatically.
Additionally,	if	the	error	was	really	bad	so	that	no	more	operations	can	be	done
in	the	current	state	(e.g.	if	the	host	couldn't	be	found),	call
QNetworkProtocol::clearOperationStack()	before	emitting	finished().

Now,	as	error	code	you	should	use,	if	possible,	one	of	the	predefined	error	codes
of	QNetworkProtocol.	If	this	is	not	possible,	you	can	add	own	error	codes	-	they
are	just	normal	integers.	Just	be	careful	that	the	value	of	the	error	code	doesn't
conflict	with	an	existing	one.

Documentation	about	the	low-level	classes	like	QSocket,	QDns,	etc.	will	be
included	in	the	seperate	network	extension.

For	internal	use	only.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Qt	OpenGL
Qt

OpenGL

OpenGLOpenGL

QtOpenGLQtOpenGLOpenGLOpenGLOpenGLQt

Qt	OpenGLQt/C++GLXWGLAGLC	Mark	KilgardGLUTQt
OpenGLOpenGLGUIQt

X11QtOpenGLQtQt	OpenGLOpenGLconfig
SYSCONF_CXXFLAGS_OPENGL/	SYSCONF_LFLAGS_OPENGL
OpenGLOpenGL configure	-thread

WindowsQtQtOpenGL

QtOpenGLQtOpenGLQt

X11Mesa:	Mesa	3.1“MesaGL”“MesaGLU”“GL”“GLU”Mesa	3.1
MakefileconfigSYSCONF_LIBS_OPENGL“-lGL	-lGLU”“-
lMesaGL	-lMesaGLU”“configure”

QGL

QtOpenGL

QGLWidgetQtOpenGL
QGLContextOpenGL
QGLFormat
QGLColormapGL-indexcolormaps

QGLWidgetQGLX11 overlays

OpenGL

QGLOpenGL http://www.opengl.org/

*OpenGLSilicon	Graphics

Copyright	©	2002	Trolltech Trademarks dirtfei Qt	version	3.0.5

http://www.opengl.org/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

SQL
Qt

SQL
SQL

QSqlQuerySQL

QSqlCursor

QSqlCursor

QtSQLQt

SQL SELECTINSERTUPDATE

C.	J.	Date ISBN	0201385902

Qt“”

SQL

QSqlDatabase

SQL SELECTINSERTUPDATEDELETESQL QSqlQuery

QSqlCursorQSqlQuerySQL

QDataTableQSqlFormQSqlPropertyMapQSqlEditorFactory Qt Qt
QDataBrowserQDataView

QSqlCursorQSqlCursor

SQL

SQL

QSqlCursor) QtC++
QSqlEditorFactoryQSqlFormQSqlPropertyMapQDataTableQDataBrowser
QDataView

SQL QSqlDatabase QSqlQuerySQL QSqlCursorSQL
QSqlDatabaseQSqlCursorQSqlQuery QSqlErrorQSqlFieldQSqlIndex
QSqlRecord

QSqlResultQSqlDriverQSqlDriverFactoryInterfaceSQL Qt
SQL

SQL

QtSQL

SQL

Qt QSqlDatabase QSqlDatabase::drivers

QSqlQueryQSqlCursor

QSqlDatabaseSQL

QSqlDatabaseqsqldatabase.h

				#include	<qapplication.h>

				#include	<qsqldatabase.h>

				#include	"../login.h"

				int	main(int	argc,	char	*argv[])

				{

								QApplication	app(argc,	argv);

								QSqlDatabase	*defaultDB	=	QSqlDatabase::addDatabase(DB_SALES_DRIVER);

								if	(defaultDB)	{

												defaultDB->setDatabaseName(DB_SALES_DBNAME);

												defaultDB->setUserName(DB_SALES_USER);

												defaultDB->setPassword(DB_SALES_PASSWD);

												defaultDB->setHostName(DB_SALES_HOST);

												if	(defaultDB->open())	{

																//	SQL

												}

								}

								return	0;

				}

sql/overview/connect1/main.cpp

QSqlDatabase::addDatabase() QODBC3
9 QTDS7Sybase	Adaptive	ServerMicrosoft	SQL
Server QPSQL7PostgreSQL	67 QMYSQL3MySQLQt
README

QtSQL

setDatabaseName()setUserName()setPassword()setHostName()
QOCI8Oracle	89TNSsetDatbaseName()ODBCDSN
setDatabaseName()

open() QSqlDatabase::lastError

QSqlDatabase::addDatabase()

				#include	<qapplication.h>

				#include	<qsqldatabase.h>

				#include	"../login.h"

				bool	createConnections();

				int	main(int	argc,	char	*argv[])

				{

								QApplication	app(argc,	argv);

								if	(createConnections())	{

												//	

												QSqlDatabase	*oracledb	=	QSqlDatabase::database("ORACLE");

												//	oracleSQL

								}

								return	0;

				}

				bool	createConnections()

				{

								//	

								QSqlDatabase	*defaultDB	=	QSqlDatabase::addDatabase(DB_SALES_DRIVER);

								if	(!	defaultDB)	{

												qWarning("Failed	to	connect	to	driver");

												return	FALSE;

								}

								defaultDB->setDatabaseName(DB_SALES_DBNAME);

								defaultDB->setUserName(DB_SALES_USER);

								defaultDB->setPassword(DB_SALES_PASSWD);

								defaultDB->setHostName(DB_SALES_HOST);

								if	(!	defaultDB->open())	{

												qWarning("Failed	to	open	sales	database:	"	+

																						defaultDB->lastError().driverText());

												qWarning(defaultDB->lastError().databaseText());

												return	FALSE;

								}

								//	oracle

								QSqlDatabase	*oracle	=	QSqlDatabase::addDatabase(DB_ORDERS_DRIVER,	"ORACLE");

								if	(!	oracle)	{

												qWarning("Failed	to	connect	to	oracle	driver");

												return	FALSE;

								}

								oracle->setDatabaseName(DB_ORDERS_DBNAME);

								oracle->setUserName(DB_ORDERS_USER);

								oracle->setPassword(DB_ORDERS_PASSWD);

								oracle->setHostName(DB_ORDERS_HOST);

								if	(!	oracle->open())	{

												qWarning("Failed	to	open	orders	database:	"	+

																						oracle->lastError().driverText());

												qWarning(oracle->lastError().databaseText());

												return	FALSE;

								}

								return	TRUE;

				}

sql/overview/create_connections/main.cpp

QSqlDatabase::database()“ORACLE”

Qtmain.cppcreateConnections() Qt

ODBC QSqlDatabaseaddDatabase()
QSqlDatabase::removeDatabase()

QSqlQuerySQL

QSqlQuerySQL SELECT

QSqlCursorSQL QSqlCursorSQL “	QSqlCursor” QSqlCursor

QSqlDriver::hasFeatureQSqlDriver::Transactions	
QSqlDatabase::transaction() QSqlDatabase::commit()
QSqlDatabase::rollback()

				#include	<qapplication.h>

				#include	<qsqldatabase.h>

				#include	<qsqlquery.h>

				#include	"../login.h"

				bool	createConnections();

				int	main(int	argc,	char	*argv[])

				{

								QApplication	app(argc,	argv);

								if	(createConnections())	{

												QSqlDatabase	*oracledb	=	QSqlDatabase::database("ORACLE");

												//	oracleODBC

												QSqlQuery	target;

												QSqlQuery	query("SELECT	id,	name	FROM	people;",	oracledb);

												if	(query.isActive())	{

																while	(query.next())	{

																				target.exec("INSERT	INTO	people	(id,	name)	VALUES	("	+

																																		query.value(0).toString()	+

																																		",	'"	+	query.value(1).toString()	+		"');");

																}

												}

								}

								return	0;

				}

sql/overview/basicbrowsing/main.cpp

qsqlquery.h.	 target“ORACLE”createConnections()

SELECTisActive()next()value()QVariants target	QSqlQuery

												int	count	=	0;

												if	(query.isActive())	{

																while	(query.next())	{

																				target.exec("INSERT	INTO	people	(id,	name)	VALUES	("	+

																																		query.value(0).toString()	+

																																		",	'"	+	query.value(1).toString()	+		"');");

																				if	(target.isActive())

																								count	+=	target.numRowsAffected();

																}

												}

sql/overview/basicbrowsing2/main.cpp

isActive()numRowsAffected()-1

				int	main(int	argc,	char	*argv[])

				{

								QApplication	app(argc,	argv);

								int	rows	=	0;

								if	(createConnections())	{

												QSqlQuery	query("INSERT	INTO	staff	(id,	forename,	surname,	salary)	"

																									"VALUES	(1155,	'Ginger',	'Davis',	50000);");

												if	(query.isActive())	rows	+=	query.numRowsAffected()	;

												query.exec("UPDATE	staff	SET	salary=60000	WHERE	id=1155;");

												if	(query.isActive())	rows	+=	query.numRowsAffected()	;

												query.exec("DELETE	FROM	staff	WHERE	id=1155;");

												if	(query.isActive())	rows	+=	query.numRowsAffected()	;

								}

								return	(rows	==	3)	?	0	:	1;

				}

sql/overview/basicdatamanip/main.cpp

SQL	DML QSqlQuery QSqlQuery
TABLE CREATE	INDEX

SELECTnext() QSqlQueryfirst()last()next()prev()isValid()

seek()

								if	(createConnections())	{

												QSqlQuery	query("SELECT	id,	name	FROM	people	ORDER	BY	name;");

												if	(!	query.isActive())	return	1;	//	

												int	i;

												i	=	query.size();															//	9i==9

												query.first();																		//	

												i	=	query.at();																	//	i==0

												query.last();																			//	

												i	=	query.at();																	//	i==8

												query.seek(query.size()	/	2);	//	

												i	=	query.at();																	//	i==4

								}

sql/overview/navigating/main.cpp

size()

				QSqlDatabase*	defaultDB	=	QSqlDatabase::database();

				if	(defaultDB->driver()->hasFeature(QSqlDriver::QuerySize))	{

								//	QSqlQuery::size()

				}

				else	{

								//	QSqlQuery::size()

				}

								if	(createConnections())	{

												QSqlQuery	query("SELECT	id,	surname	FROM	staff;");

												if	(query.isActive())	{

																while	(query.next())	{

																				qDebug(query.value(0).toString()	+	":	"	+

																												query.value(1).toString());

																}

												}

								}

sql/overview/retrieve1/main.cpp

next()

lastQuery()Sql

QSqlCursor

QSqlCursorSQL

QSqlCursor QSqlQuery	 QSqlCursor
QSqlRecord::setGenerated() QSqlQuery	 QSqlCursor QSqlQuery

QSqlCursorinsertupdate	deleteQSqlCursorQSqlCursor“
”“”

QSqlCursor createConnections() QSqlDatabase

QSqlCursor

QSqlCursorqsqlcursor.h

				#include	<qapplication.h>

				#include	<qsqldatabase.h>

				#include	<qsqlcursor.h>

				#include	"../login.h"

				bool	createConnections();

				int	main(int	argc,	char	*argv[])

				{

								QApplication	app(argc,	argv);

								if	(createConnections())	{

												QSqlCursor	cur("staff");	//	/

												cur.select();	//	

												while	(cur.next())	{

																qDebug(cur.value("id").toString()	+	":	"	+

																								cur.value("surname").toString()	+	"	"	+

																								cur.value("salary").toString());

												}

								}

								return	0;

				}

sql/overview/retrieve2/main.cpp

QSqlCursor QSqlCursor

cur.select()Sql

				SELECT	staff.id,	staff.forename,	staff.surname,	staff.salary,	staff.statusid	FROM	staff

cur.next() QSqlQueryvalue()	setValue()

select()SQLWHERE)

				cur.select("id	>	100");

select()SQL

				SELECT	staff.id,	staff.forename,	staff.surname,	staff.salary,	staff.statusid	

				FROM	staff	WHERE	staff.id	>	100

id100

QSqlIndexselect()

				QSqlCursor	cur("staff");

				QSqlIndex	nameIndex	=	cur.index("surname");	

				cur.select(nameIndex);

“surname” QSqlIndexselect()staff.surnameORDER	BYSQL

				SELECT	staff.id,	staff.forename,	staff.surname,	staff.salary,	staff.statusid	

				FROM	staff	ORDER	BY	staff.surname	ASC

				cur.select("surname	LIKE	'A%'",	nameIndex);

WHERE QSqlIndexORDER	BY

				SELECT	staff.id,	staff.forename,	staff.surname,	staff.salary,	staff.statusid

				FROM	staff	WHERE	staff.surname	LIKE	'A%'	ORDER	BY	staff.surname	ASC

												QSqlCursor	cur("staff");

												QStringList	fields	=	QStringList()	<<	"surname"	<<	"forename";

												QSqlIndex	order	=	cur.index(fields);

												cur.select(order);

												while	(cur.next())	{

sql/overview/order1/main.cpp

				SELECT	staff.id,	staff.forename,	staff.surname,	staff.salary,	staff.statusid

				FROM	staff	ORDER	BY	staff.surname	ASC,	staff.forename	ASC

												QSqlCursor	cur("staff");

												QStringList	fields	=	QStringList()	<<	"id"	<<	"forename";

												QSqlIndex	order	=	cur.index(fields);

												QSqlIndex	filter	=	cur.index("surname");

												cur.setValue("surname",	"Bloggs");

												cur.select(filter,	order);

												while	(cur.next())	{

sql/overview/order2/main.cpp

SQL

				SELECT	staff.id,	staff.forename,	staff.surname,	staff.salary,	staff.statusid	

				FROM	staff	WHERE	staff.surname='Bloggs'	ORDER	BY	staff.id	ASC,	staff.forename	ASC

QSqlIndex“order”“id”“forename” QSqlIndex“filter”
“surname”select()

												QSqlCursor	cur("creditors");

												QStringList	orderFields	=	QStringList()	<<	"surname"	<<	"forename";

												QSqlIndex	order	=	cur.index(orderFields);

												QStringList	filterFields	=	QStringList()	<<	"surname"	<<	"city";

												QSqlIndex	filter	=	cur.index(filterFields);

												cur.setValue("surname",	"Chirac");

												cur.setValue("city",	"Paris");

												cur.select(filter,	order);

												while	(cur.next())	{

																int	id	=	cur.value("id").toInt();

																QString	name	=	cur.value("forename").toString()	+	"	"	+

																															cur.value("surname").toString();

																qDebug(QString::number(id)	+	":	"	+	name);

												}

sql/overview/extract/main.cpp

creditors, QSqlIndex“order”“orderFields”“filter”
“filterFields”“surname”“city”select()SQL

				SELECT	creditors.city,	creditors.surname,	creditors.forename,	creditors.id	

				FROM	creditors	

				WHERE	creditors.surname	=	'Chirac'	AND	creditors.city	=	'Paris'	

				ORDER	BY	creditors.surname	ASC,	creditors.forename	ASC

WHEREORDER	BY

idforenamesurname

QSqlCursor QSqlQuery

insertupdatedelete	setValue()insert()update()del()
primeInsert()setValue()QSQlCursor::insert()

setValue()SQL

primeInsert()primeUpdate()primeDelete()
QSqlCursor::primeInsert()

QSqlRecord::clearValues() QSqlCursor::primeUpdate()
QSqlCursor::primeDelete()primeInsert())primeInsert()

QSqlCursor

insert()update()del()select()

												QSqlCursor	cur("prices");

												QStringList	names	=	QStringList()	<<

																"Screwdriver"	<<	"Hammer"	<<	"Wrench"	<<	"Saw";

												int	id	=	20;

												for	(QStringList::Iterator	name	=	names.begin();

																		name	!=	names.end();	++name)	{

																QSqlRecord	*buffer	=	cur.primeInsert();

																buffer->setValue("id",	id);

																buffer->setValue("name",	*name);

																buffer->setValue("price",	100.0	+	(double)id);

																count	+=	cur.insert();

																id++;

												}

sql/overview/insert/main.cpp

“prices”primeInsert()
QSqlCursor::primeInsert() QSqlCursorsetValue()insert()
insert()

primeInsert() QSqlRecord QSqlRecord QSqlRecordvalue()setValue()

												QSqlCursor	cur("prices");

												cur.select("id=202");

												if	(cur.next())	{

																QSqlRecord	*buffer	=	cur.primeUpdate();

																double	price	=	buffer->value("price").toDouble();

																double	newprice	=	price	*	1.05;

																buffer->setValue("price",	newprice);

																cur.update();

												}

sql/overview/update/main.cpp

select()next()primeUpdate()
update()

QSqlQuerySQL

				QSqlQuery	query("UPDATE	prices	SET	price	=	price	*	1.05");

												QSqlCursor	cur("prices");

												cur.select("id=999");

												if	(cur.next())	{

																cur.primeDelete();

																cur.del();

sql/overview/del/main.cpp

primeDelete() QSqlCursor::del()

SQL

				QSqlQuery	query("DELETE	FROM	prices	WHERE	id	>=	2450	AND	id	<=	2500");

Qt Qt“”

				#include	<qapplication.h>

				#include	<qsqldatabase.h>

				#include	<qsqlcursor.h>

				#include	<qdatatable.h>

				#include	"../login.h"

				bool	createConnections();

				int	main(int	argc,	char	*argv[])

				{

								QApplication	app(argc,	argv);

								if	(createConnections())	{

												QSqlCursor	staffCursor("staff");

												QDataTable	*staffTable	=	new	QDataTable(&staffCursor,	TRUE);

												app.setMainWidget(staffTable);

												staffTable->refresh();

												staffTable->show();

												return	app.exec();

								}

								return	0;

				}

sql/overview/table1/main.cpp

qdatatable.hqsqlcursor.hcreateConnections() QDataTable
autoPopulateTRUE QDataTable	refresh()show()

autoPopulate QDataTablerefresh()

												QSqlCursor	staffCursor("staff");

												QDataTable	*staffTable	=	new	QDataTable(&staffCursor);

												app.setMainWidget(staffTable);

												staffTable->addColumn("forename",	"Forename");

												staffTable->addColumn("surname",		"Surname");

												staffTable->addColumn("salary",			"Annual	Salary");

												QStringList	order	=	QStringList()	<<	"surname"	<<	"forename";

												staffTable->setSort(order);

												staffTable->refresh();

												staffTable->show();

sql/overview/table2/main.cpp

QDataTable

refresh()show()

QDataTables

				#include	<qapplication.h>

				#include	<qdialog.h>

				#include	<qlabel.h>

				#include	<qlayout.h>

				#include	<qlineedit.h>

				#include	<qsqldatabase.h>

				#include	<qsqlcursor.h>

				#include	<qsqlform.h>

				#include	"../login.h"

				bool	createConnections();

				class	FormDialog	:	public	QDialog

				{

								public:

												FormDialog();

				};

				FormDialog::FormDialog()

				{

								QLabel	*forenameLabel			=	new	QLabel("Forename:",	this);

								QLabel	*forenameDisplay	=	new	QLabel(this);

								QLabel	*surnameLabel				=	new	QLabel("Surname:",	this);

								QLabel	*surnameDisplay		=	new	QLabel(this);

								QLabel	*salaryLabel					=	new	QLabel("Salary:",	this);

								QLineEdit	*salaryEdit			=	new	QLineEdit(this);

								QGridLayout	*grid	=	new	QGridLayout(this);

								grid->addWidget(forenameLabel,					0,	0);

								grid->addWidget(forenameDisplay,			0,	1);

								grid->addWidget(surnameLabel,						1,	0);

								grid->addWidget(surnameDisplay,				1,	1);

								grid->addWidget(salaryLabel,							2,	0);

								grid->addWidget(salaryEdit,								2,	1);

								grid->activate();

								QSqlCursor	staffCursor("staff");

								staffCursor.select();

								staffCursor.next();

								QSqlForm	sqlForm(this);

								sqlForm.setRecord(staffCursor.primeUpdate());

								sqlForm.insert(forenameDisplay,	"forename");

								sqlForm.insert(surnameDisplay,	"surname");

								sqlForm.insert(salaryEdit,	"salary");

								sqlForm.readFields();

				}

				int	main(int	argc,	char	*argv[])

				{

								QApplication	app(argc,	argv);

								if	(!	createConnections())	return	1;

								FormDialog	*formDialog	=	new	FormDialog();

								formDialog->show();

								app.setMainWidget(formDialog);

								return	app.exec();

				}

sql/overview/form1/main.cpp

qsqldatabase.hqsqlcursor.hqsqlform.h

FormDialog QDialogQLineEdit

staff

QSqlFormQSqlForm QSqlFormreadFields()

QDataViewQSqlFormQSqlFormrefresh(QSqlRecord	*) QDataTable

				connect(myDataTable,	SIGNAL(currentChanged(QSqlRecord*)),	

													myDataView,	SLOT(refresh(QSqlRecord*)));

				class	FormDialog	:	public	QDialog

				{

								Q_OBJECT

								public:

												FormDialog();

												~FormDialog();

								public	slots:

												void	save();

								private:

												QSqlCursor	staffCursor;

												QSqlForm	*sqlForm;

												QSqlIndex	idIndex;

				};

sql/overview/form2/main.h

save	 QSqlCursorQSqlForm

								staffCursor.setTrimmed("forename",	TRUE);

								staffCursor.setTrimmed("surname",		TRUE);

setTrimmed()

QLineEdit::setAlignmentQLineEdit::setValidator

								QLineEdit			*forenameEdit		=	new	QLineEdit(this);

								QPushButton	*saveButton				=	new	QPushButton("&Save",	this);

								connect(saveButton,	SIGNAL(clicked()),	this,	SLOT(save()));

FormDialogforenamesurnameQLineEdits

								grid->addWidget(saveButton,				3,	0);

save

								idIndex	=	staffCursor.index("id");

								staffCursor.select(idIndex);

								staffCursor.first();

QSqlIndexselect()

								sqlForm	=	new	QSqlForm(this);

								sqlForm->setRecord(staffCursor.primeUpdate());

QSqlForm

								sqlForm->insert(forenameEdit,	"forename");

								sqlForm->insert(surnameEdit,	"surname");

								sqlForm->insert(salaryEdit,	"salary");

								sqlForm->readFields();

QLineEditreadFields()

				FormDialog::~FormDialog()

				{

				}

QSqlFormQt

				void	FormDialog::save()

				{

								sqlForm->writeFields();

								staffCursor.update();

								staffCursor.select(idIndex);

								staffCursor.first();

				}

writeFields()

QDataBrowserQDataView QDataBrowser QDataView Qt

sql/overview/form2/main.cpp

QSqlFormQSqlPropertyMap

form2 sql/overview/custom1/main.h

				class	CustomEdit	:	public	QLineEdit

				{

								Q_OBJECT

								Q_PROPERTY(QString	upperLine	READ	upperLine	WRITE	setUpperLine)

								public:

												CustomEdit(QWidget	*parent=0,	const	char	*name=0);

												QString	upperLine()	const;

												void	setUpperLine(const	QString	&line);

								public	slots:

												void	changed(const	QString	&line);

								private:

												QString	upperLineText;

				};

QLineEditupperLineTextchanged

												QSqlPropertyMap	*propMap;

FormDialog

				CustomEdit::CustomEdit(QWidget	*parent,	const	char	*name)	:

								QLineEdit(parent,	name)

				{

								connect(this,	SIGNAL(textChanged(const	QString	&)),

																	this,	SLOT(changed(const	QString	&)));

				}

CustomEditQLineEdittextChangedchanged

				void	CustomEdit::changed(const	QString	&line)

				{

								setUpperLine(line);

				}

changed()setUpperLine()

				void	CustomEdit::setUpperLine(const	QString	&line)

				{

								upperLineText	=	line.upper();

								setText(upperLineText);

				}

setUpperLine()

CustomEditCustomEdit

								CustomEdit		*forenameEdit			=	new	CustomEdit(this);

								CustomEdit		*surnameEdit				=	new	CustomEdit(this);

FormDialog QLineEditCustomEdit

								propMap	=	new	QSqlPropertyMap;

								propMap->insert(forenameEdit->className(),	"upperLine");

CustomEditupperLine

								sqlForm	=	new	QSqlForm(this);

								sqlForm->setRecord(staffCursor->primeUpdate());

								sqlForm->installPropertyMap(propMap);

QSqlFormQSqlFormQSqlFormFormDialogQt

forenamesurnameCustomEdit

QSqlEditorFactory QComboBoxQSqlEditorFactoryQDataTable

				class	StatusPicker	:	public	QComboBox

				{

								Q_OBJECT

								Q_PROPERTY(int	statusid	READ	statusId	WRITE	setStatusId)

								public:

												StatusPicker(QWidget	*parent=0,	const	char	*name=0);

												int	statusId()	const;

												void	setStatusId(int	id);

								private:

												QMap<	int,	int	>	index2id;

				};

sql/overview/table3/main.h

statusidstatusidcombobox

				class	CustomSqlEditorFactory	:	public	QSqlEditorFactory

				{

								Q_OBJECT

								public:

												QWidget	*createEditor(QWidget	*parent,	const	QSqlField	*field);

				};

QSqlEditorFactorycreateEditor()

				StatusPicker::StatusPicker(QWidget	*parent,	const	char	*name)

								:	QComboBox(parent,	name)

				{

								QSqlCursor	cur("status");

								cur.select(cur.index("name"));

								int	i	=	0;

								while	(cur.next())	{

												insertItem(cur.value("name").toString(),	i);

												index2id[i]	=	cur.value("id").toInt();

												i++;

								}

sql/overview/table3/main.cpp

StatusPickernamecombobox

				int	StatusPicker::statusId()	const

				{

								return	index2id[currentItem()];

				}

statusidcomboboxindex2id

				void	StatusPicker::setStatusId(int	statusid)

				{

								QMap<int,int>::Iterator	it;

								for	(it	=	index2id.begin();	it	!=	index2id.end();	++it)	{

												if	(it.data()	==	statusid)	{

																setCurrentItem(it.key());

																break;

												}

								}

				}

statusId()statusidQMapstatusidcomboboxstatusid

QDataTablestatuscomboboxstatusQDataTablepaintField()

				class	CustomTable	:	public	QDataTable

				{

								Q_OBJECT

				public:

								CustomTable(

																QSqlCursor	*cursor,	bool	autoPopulate	=	FALSE,

																QWidget	*	parent	=	0,	const	char	*	name	=	0)	:

												QDataTable(cursor,	autoPopulate,	parent,	name)	{}

								void	paintField(

																QPainter	*	p,	const	QSqlField*	field,	const	QRect	&	cr,	bool);

				};

sql/overview/table4/main.h

QDataTablepaintField

				void	CustomTable::paintField(QPainter	*	p,	const	QSqlField*	field,

																																		const	QRect	&	cr,	bool	b)

				{

								if	(!field)

												return;

								if	(field->name()	==	"statusid")	{

												QSqlQuery	query("SELECT	name	FROM	status	WHERE	id="	+

																									field->value().toString());

												QString	text;

												if	(query.next())	{

																text	=	query.value(0).toString();

												}

												p->drawText(2,2,	cr.width()-4,	cr.height()-4,	fieldAlignment(field),	text);

								}

								else	{

												QDataTable::paintField(p,	field,	cr,	b)	;

								}

sql/overview/table4/main.cpp

paintField QDataTableif field->name()	==	"statusid"

	staffTableQDataTableCustomTable

QSqlCursor
				#include	<qapplication.h>

				#include	<qsqldatabase.h>

				#include	<qsqlcursor.h>

				#include	<qdatatable.h>

				#include	"../login.h"

				bool	createConnections();

				int	main(int	argc,	char	*argv[])

				{

								QApplication	app(argc,	argv);

								if	(createConnections())	{

												QSqlCursor	invoiceItemCursor("invoiceitem");

												QDataTable	*invoiceItemTable	=	new	QDataTable(&invoiceItemCursor);

												app.setMainWidget(invoiceItemTable);

												invoiceItemTable->addColumn("pricesid",	"PriceID");

												invoiceItemTable->addColumn("quantity",	"Quantity");

												invoiceItemTable->addColumn("paiddate",	"Paid");

												invoiceItemTable->refresh();

												invoiceItemTable->show();

												return	app.exec();

								}

								return	1;

				}

sql/overview/subclass1/main.cpp

table1 QDataTablerefresh()show()

	

				class	InvoiceItemCursor	:	public	QSqlCursor

				{

								public:

												InvoiceItemCursor();

				};

				

sql/overview/subclass2/main.h

QSqlCursor

				InvoiceItemCursor::InvoiceItemCursor()	:

								QSqlCursor("invoiceitem")

				{

								//	

				}

sql/overview/subclass2/main.cpp

QSqlCursor

												InvoiceItemCursor	invoiceItemCursor;

invoiceitemInvoiceItemCursorQSqlCursor

								protected:

												QVariant	calculateField(const	QString	&	name);

sql/overview/subclass3/main.h

calculateField()

				InvoiceItemCursor::InvoiceItemCursor()	:

								QSqlCursor("invoiceitem")

				{

								QSqlFieldInfo	productName("productname",	QVariant::String);

								append(productName);

								setCalculated(productName.name(),	TRUE);

				}

				QVariant	InvoiceItemCursor::calculateField(const	QString	&	name)

				{

								if	(name	==	"productname")	{

												QSqlQuery	query("SELECT	name	FROM	prices	WHERE	id="	+

																									field("pricesid")->value().toString()	+	";");

												if	(query.next())

																return	query.value(0);

								}

								return	QVariant(QString::null);

				}

sql/overview/subclass3/main.cpp

InvoiceItemCursor QSqlFieldproductname	InvoiceItemCursor
productnamesetCalculated()setCalculated()TRUEcalculateField()

												invoiceItemTable->addColumn("productname",	"Product");

addColumn()

calculateField()invoiceitempricesidpricesidSql

sql/overview/subclass4/main.hcalculateField()

				InvoiceItemCursor::InvoiceItemCursor()	:

								QSqlCursor("invoiceitem")

				{

								QSqlFieldInfo	productName("productname",	QVariant::String);

								append(productName);

								setCalculated(productName.name(),	TRUE);

								QSqlFieldInfo	productPrice("price",	QVariant::Double);

								append(productPrice);

								setCalculated(productPrice.name(),	TRUE);

								QSqlFieldInfo	productCost("cost",	QVariant::Double);

								append(productCost);

								setCalculated(productCost.name(),	TRUE);

				}

sql/overview/subclass4/main.cpp

pricecostsetCalculated()

				QVariant	InvoiceItemCursor::calculateField(const	QString	&	name)

				{

								if	(name	==	"productname")	{

												QSqlQuery	query("SELECT	name	FROM	prices	WHERE	id="	+

																									field("pricesid")->value().toString()	+	";");

												if	(query.next())

																return	query.value(0);

								}

								else	if	(name	==	"price")	{

												QSqlQuery	query("SELECT	price	FROM	prices	WHERE	id="	+

																									field("pricesid")->value().toString()	+	";");

												if	(query.next())

																return	query.value(0);

								}

								else	if	(name	==	"cost")	{

												QSqlQuery	query("SELECT	price	FROM	prices	WHERE	id="	+

																									field("pricesid")->value().toString()	+	";");

												if	(query.next())

																return	QVariant(query.value(0).toDouble()	*

																																	value("quantity").toDouble());

								}

								return	QVariant(QString::null);

				}

sql/overview/subclass4/main.cpp

calculateField()productnamepricepricesidcostcost
calculateField()

												QSqlRecord	*primeInsert();

sql/overview/subclass5/main.h

primeInsert()

calculateField()

				QSqlRecord	*InvoiceItemCursor::primeInsert()

				{

								QSqlRecord	*buffer	=	editBuffer();

								QSqlQuery	query("SELECT	NEXTVAL('invoiceitem_seq');");

								if	(query.next())

												buffer->setValue("id",	query.value(0));

								buffer->setValue("paiddate",	QDate::currentDate());

								buffer->setValue("quantity",	1);

								return	buffer;

				}

sql/overview/subclass5/main.cpp

idinvoiceitem_seqpaiddate1

SQL

create	table	people	(id	integer	primary	key,	name	char(40))

create	table	staff	(id	integer	primary	key,	forename	char(40),

																				surname	char(40),	salary	float,	statusid	integer)

create	table	status	(id	integer	primary	key,	name	char(30))

create	table	creditors	(id	integer	primary	key,	forename	char(40),

																								surname	char(40),	city	char(30))

create	table	prices	(id	integer	primary	key,	name	char(40),	price	float)

create	table	invoiceitem	(id	integer	primary	key,	

																										pricesid	integer,	quantity	integer,

																										paiddate	date)

calculateField()sequence

create	sequence	invoiceitem_seq

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Qt

QTableQTable	QTable QTable
1,000,000

QTable
QTableItemQTable
QComboTableItemQTablecombobox
QCheckTableItemQTablecheckbox
QTableSelectionQTable
QHeader

Qt

Copyright	©	2002	Trolltech Trademarks dirtfei Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

MDI

QWorkspace

Copyright	©	2002	Trolltech Trademarks dirtfei Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

XML	Module
This	module	is	part	of	the	Qt	Enterprise	Edition.

Overview	of	the	XML	architecture	in	Qt
The	Qt	SAX2	classes

Introduction	to	SAX2
Features
Namespace	support	via	features

Summary
Properties
Further	reading

The	Qt	DOM	classes
Introduction	to	DOM
Further	reading

An	introduction	to	namespaces
Conventions	used	in	Qt	XML	documentation

Overview	of	the	XML	architecture	in	Qt

The	XML	module	provides	a	well-formed	XML	parser	using	the	SAX2	(Simple
API	for	XML)	interface	plus	an	implementation	of	the	DOM	Level	2	(Document
Object	Model).

SAX	is	an	event-based	standard	interface	for	XML	parsers.	The	Qt	interface
follows	the	design	of	the	SAX2	Java	implementation.	Its	naming	scheme	was
adapted	to	fit	the	Qt	naming	conventions.	Details	on	SAX2	can	be	found	at
http://www.megginson.com/SAX/.

Support	for	SAX2	filters	and	the	reader	factory	are	under	development.
Furthermore	the	Qt	implementation	does	not	include	the	SAX1	compatibility
classes	present	in	the	Java	interface.

For	an	introduction	to	Qt's	SAX2	classes	see	"The	Qt	SAX2	classes".	A	code
example	is	discussed	in	the	"tagreader	walkthrough".

DOM	Level	2	is	a	W3C	Recommendation	for	XML	interfaces	that	maps	the
constituents	of	an	XML	document	to	a	tree	structure.	Details	and	the
specification	of	DOM	Level	2	can	be	found	at	http://www.w3.org/DOM/.	More
information	about	the	DOM	classes	in	Qt	is	provided	in	the	Qt	DOM	classes.

Qt	provides	the	following	XML	related	classes:

QDomAttr	--	Represents	one	attribute	of	a	QDomElement
QDomCDATASection	--	Represents	an	XML	CDATA	section
QDomCharacterData	--	Represents	a	generic	string	in	the	DOM
QDomComment	--	Represents	an	XML	comment
QDomDocument	--	The	representation	of	an	XML	document
QDomDocumentFragment	--	Tree	of	QDomNodes	which	is	usually	not	a
complete	QDomDocument
QDomDocumentType	--	The	representation	of	the	DTD	in	the	document
tree
QDomElement	--	Represents	one	element	in	the	DOM	tree
QDomEntity	--	Represents	an	XML	entity
QDomEntityReference	--	Represents	an	XML	entity	reference
QDomImplementation	--	Information	about	the	features	of	the	DOM

http://www.megginson.com/SAX/
http://www.w3.org/DOM/

implementation
QDomNamedNodeMap	--	Collection	of	nodes	that	can	be	accessed	by
name
QDomNode	--	The	base	class	for	all	nodes	of	the	DOM	tree
QDomNodeList	--	List	of	QDomNode	objects
QDomNotation	--	Represents	an	XML	notation
QDomProcessingInstruction	--	Represents	an	XML	processing	instruction
QDomText	--	Represents	textual	data	in	the	parsed	XML	document
QXmlAttributes	--	XML	attributes
QXmlContentHandler	--	Interface	to	report	logical	content	of	XML	data
QXmlDeclHandler	--	Interface	to	report	declaration	content	of	XML	data
QXmlDefaultHandler	--	Default	implementation	of	all	XML	handler	classes
QXmlDTDHandler	--	Interface	to	report	DTD	content	of	XML	data
QXmlEntityResolver	--	Interface	to	resolve	extern	entities	contained	in
XML	data
QXmlErrorHandler	--	Interface	to	report	errors	in	XML	data
QXmlInputSource	--	The	input	data	for	the	QXmlReader	subclasses
QXmlLexicalHandler	--	Interface	to	report	lexical	content	of	XML	data
QXmlLocator	--	The	XML	handler	classes	with	information	about	the
actual	parsing	position
QXmlNamespaceSupport	--	Helper	class	for	XML	readers	which	want	to
include	namespace	support
QXmlParseException	--	Used	to	report	errors	with	the	QXmlErrorHandler
interface
QXmlReader	--	Interface	for	XML	readers	(i.e.	for	SAX2	parsers)
QXmlSimpleReader	--	Implementation	of	a	simple	XML	reader	(a	SAX2
parser)

The	Qt	SAX2	classes

Introduction	to	SAX2

The	SAX2	interface	is	an	event-driven	mechanism	to	provide	the	user	with
document	information.	"Event"	in	this	context	has	nothing	to	do	with	the	term
"event"	you	probably	know	from	windowing	systems;	it	means	that	the	parser
reports	certain	document	information	while	parsing	the	document.	These
reported	information	is	referred	to	as	"event".

To	make	it	less	abstract	consider	the	following	example:

	

<quote>To	make	it	less	abstract	consider	the	following	example:</quote>

Whilst	reading	(a	SAX2	parser	is	usually	referred	to	as	"reader")	the	above
document	three	events	would	be	triggered:

1.	 A	start	tag	occurs	(<quote>).
2.	 Character	data	(i.e.	text)	is	found.
3.	 An	end	tag	is	parsed	(</quote>).

Each	time	such	an	event	occurs	the	parser	reports	it	so	that	a	suitable	event
handling	routine	can	be	invoked.

Whilst	this	is	a	fast	and	simple	approach	to	read	XML	documents	manipulation
is	difficult	because	data	are	not	stored,	simply	handled	and	discarded	serially.
This	is	when	the	DOM	interface	comes	handy.

The	Qt	XML	module	provides	an	abstract	class,	QXmlReader,	that	defines	the
interface	for	potential	SAX2	readers.	At	the	moment	Qt	ships	with	one	reader
implementation,	QXmlSimpleReader.

The	reader	reports	parsing	events	through	special	handler	classes.	In	Qt	the
following	ones	are	available:

QXmlContentHandler	reports	events	related	to	the	content	of	a	document
(e.g.	the	start	tag	or	characters).
QXmlDTDHandler	reports	events	related	to	the	DTD	(e.g.	notation

declarations).
QXmlErrorHandler	reports	errors	or	warnings	that	occurred	during	parsing.
QXmlEntityResolver	reports	external	entities	during	parsing	and	allows	the
user	to	resolve	external	entities	him-	or	herself	instead	of	leaving	it	to	the
reader.
QXmlDeclHandler	reports	further	DTD	related	events	(e.g.	attribute
declarations).	Usually	users	are	not	interested	in	them,	but	under	certain
circumstances	this	class	comes	handy.
QXmlLexicalHandler	reports	events	related	to	the	lexical	structure	of	the
document	(the	beginning	of	the	DTD,	comments	etc.).	Occasionally	this
might	be	useful.

These	classes	are	abstract	classes	describing	the	interface.	The
QXmlDefaultHandler	class	provides	a	"do	nothing"	default	implementation	for
all	of	them.	Therefore	users	need	to	overload	only	the	QXmlDefaultHandler
functions	they	are	interested	in.

To	read	input	XML	data	a	special	class	QXmlInputSource	is	used.

Apart	from	the	already	mentioned	ones	the	following	SAX2	support	classes
provide	the	user	with	useful	functionality:

QXmlAttributes	is	used	to	pass	attributes	in	a	start	element	event.
QXmlLocator	is	used	to	obtain	the	actual	parsing	position	of	an	event.
QXmlNamespaceSupport	is	used	to	easily	implement	namespace	support
for	a	reader.	Note	that	namespaces	do	not	change	the	parsing	behavior.
They	are	only	reported	through	the	handler.

Features

The	behaviour	of	an	XML	reader	depends	on	whether	it	supports	certain	optional
features	or	not.	As	an	example	a	reader	can	have	the	feature	"report	attributes
used	for	namespace	declarations	and	prefixes	along	with	the	local	name	of	a
tag".	Like	every	other	feature	this	has	a	unique	name	represented	by	a	URI:	it	is
called	http://xml.org/sax/features/namespace-prefixes.

The	Qt	SAX2	implementation	allows	you	to	find	out	whether	the	reader	has	this
ability	using	QXmlReader::hasFeature().	If	the	return	value	is	TRUE	it	is
possible	to	turn	the	relevant	feature	on	and	off.	To	do	this	use

QXmlReader::setFeature().	Whether	a	supported	feature	is	on	or	off	(TRUE	or
FALSE)	can	be	queried	using	QXmlReader::feature().

Consider	the	example

	

<document	xmlns:book	=	'http://trolltech.com/fnord/book/'

										xmlns						=	'http://trolltech.com/fnord/'	>

A	reader	not	supporting	the	http://xml.org/sax/features/namespace-prefixes
feature	would	clearly	report	the	element	name	document	but	not	its	attributes
xmlns:book	and	xmlns	with	their	values.	A	reader	with	the	feature
http://xml.org/sax/features/namespace-prefixes	reports	the	namespace	attributes
if	QXmlReader::feature()	is	TRUE	and	disregards	them	if	the	feature	is	FALSE.

Other	features	include	http://xml.org/sax/features/namespace	(namespace
processing,	implies	http://xml.org/sax/features/namespace-prefixes)	or
http://xml.org/sax/features/validation	(the	ability	to	report	validation	errors).

Whilst	SAX2	leaves	it	to	the	user	to	define	and	implement	whatever	features	are
required,	support	for	http://xml.org/sax/features/namespace	(and	thus
http://xml.org/sax/features/namespace-prefixes)	is	mandantory.	Accordingly
QXmlSimpleReader,	the	implementation	of	QXmlReader	that	comes	with	the	Qt
XML	module,	supports	both	of	them,	and	therefore	can	do	namespace
processing.

Being	a	non-validating	parser	QXmlSimpleReader	does	not	support
http://xml.org/sax/features/validation	and	other	features.

Namespace	support	via	features

As	we	have	seen	in	the	previous	section	we	can	configure	the	behavior	of	the
reader	when	it	comes	to	namespace	processing.	This	is	done	by	setting	and
unsetting	the	http://xml.org/sax/features/namespaces	and
http://xml.org/sax/features/namespace-prefixes	features.

They	influence	the	reporting	behavior	in	the	following	way:

1.	 Namespace	prefixes	and	local	parts	of	elements	and	attributes	can	be
reported.

2.	 The	qualified	names	of	elements	and	attributes	are	reported.
3.	 QXmlContentHandler::startPrefixMapping()	and

QXmlContentHandler::endPrefixMapping()	are	called	by	the	reader.
4.	 Attributes	that	declare	namespaces	(i.e.	the	attribute	xmlns	and	attributes

starting	with	xmlns:)	are	reported.

Consider	the	following	element:

<author	xmlns:fnord	=	'http://trolltech.com/fnord/'

													title="Ms"	

													fnord:title="Goddess"	

													name="Eris	Kallisti"/>

With	http://xml.org/sax/features/namespace-prefixes	set	to	TRUE	the	reader	will
report	four	attributes,	with	the	namespace-prefixes	feature	set	to	FALSE	only
three:	The	xmlns:fnord	attribute	defining	a	namespace	is	then	"unvisible"	for	the
reader.

The	http://xml.org/sax/features/namespaces	feature	on	the	other	hand	is
responsible	for	reporting	local	names,	namespace	prefixes	and	-URIs.	With
http://xml.org/sax/features/namespaces	set	to	TRUE	the	parser	will	report	title	as
the	local	name	of	fnord:title	attribute,	fnord	being	the	namespace	prefix	and
http://trolltech.com/fnord/	as	the	namespace	URI.	When
http://xml.org/sax/features/namespaces	is	FALSE	none	of	them	are	reported.

In	the	current	implementation	the	Qt	XML	classes	follow	the	definition	that	the
prefix	xmlns	itself	isn't	associated	with	any	namespace	at	all	(see
http://www.w3.org/TR/1999/REC-xml-names-19990114/#ns-using).	Therefore
even	with	http://xml.org/sax/features/namespaces	and
http://xml.org/sax/features/namespace-prefixes	both	set	to	TRUE	the	reader
won't	return	either	a	local	name,	a	namespace	prefix	or	a	namespace	URI	for
xmlns:fnord.

This	might	be	changed	in	the	future	following	the	W3C	suggestion
http://www.w3.org/2000/xmlns/	to	associate	xmlns	with	the	namespace
http://www.w3.org/2000/xmlns.

As	the	SAX2	standard	suggests	QXmlSimpleReader	by	default	has
http://xml.org/sax/features/namespaces	set	to	TRUE	and
http://xml.org/sax/features/namespace-prefixes	set	to	FALSE.	When	changing

http://www.w3.org/TR/1999/REC-xml-names-19990114/#ns-using
http://www.w3.org/2000/xmlns/

this	behavior	using	QXmlSimpleReader::setFeature()	note	that	the	combination
of	both	features	set	to	FALSE	is	illegal.

For	a	practical	demonstration	of	how	the	two	features	affect	the	output	of	the
reader	run	the	tagreader	with	features	example.

Summary

QXmlSimpleReader	implements	the	following	behavior:

(namespaces,
namespace-prefixes)

Namespace	prefix
and	local	part

Qualified
names

Prefix
mapping

xmlns
attributes

(TRUE,	FALSE) Yes Yes* Yes No
(TRUE,	TRUE) Yes Yes Yes Yes
(FALSE,	TRUE) No* Yes No* Yes
(FALSE,	FALSE) Illegal

For	the	entries	marked	with	a	"*",	SAX	does	not	require	a	particuliar	behavior.

Properties

Properties	are	a	more	general	concept.	They	also	have	a	unique	name,
represented	as	an	URI,	but	their	value	is	void*.	Thus	nearly	everything	can	be
used	as	a	property	value.	This	concept	involves	some	danger,	though:	there	are
no	means	to	ensure	type-safety;	the	user	must	take	care	that	he	or	she	passes	the
correct	type.	Properties	are	useful	if	a	reader	supports	special	handler	classes.

The	URIs	used	for	features	and	properties	often	look	like	URLs,	e.g.
http://xml.org/sax/features/namespace.	This	does	not	mean	that	whatsoever	data
is	required	at	this	address.	It	is	simply	a	way	to	define	unique	names.

Everybody	can	define	and	use	new	SAX2	properties	for	his	or	her	readers.
Property	support	is	however	not	required.

To	set	or	query	properties	the	following	functions	are	provided:
QXmlReader::setProperty(),	QXmlReader::property()	and
QXmlReader::hasProperty().

http://xml.org/sax/features/namespace

Further	reading

For	a	practical	example	on	how	to	use	the	Qt	SAX2	classes	see	the	tagreader
walkthrough.

More	information	about	XML	(e.g.	namespaces)	can	be	found	in	the	introduction
to	the	Qt	XML	module.

The	Qt	DOM	classes

Introduction	to	DOM

DOM	provides	an	interface	to	access	and	change	the	content	and	structure	of	an
XML	file.	It	makes	a	hierarchical	view	of	the	document	(tree)	available	with	the
root	element	of	the	XML	file	serving	as	its	root.	Thus	--	in	contrast	to	the	SAX2
interface	--	an	object	model	of	the	document	is	resident	in	memory	after	parsing
which	makes	manipulation	easy.

In	the	Qt	implementation	of	the	DOM	all	nodes	in	the	document	tree	are
subclasses	of	QDomNode.	The	document	itself	is	represented	as	a
QDomDocument	object.

Here	are	the	available	node	classes	and	their	potential	children	classes:

QDomDocument:	Possible	children	are
QDomElement	(at	most	one)
QDomProcessingInstruction
QDomComment
QDomDocumentType

QDomDocumentFragment:	Possible	children	are
QDomElement
QDomProcessingInstruction
QDomComment
QDomText
QDomCDATASection
QDomEntityReference

QDomDocumentType:	No	children
QDomEntityReference:	Possible	children	are

QDomElement
QDomProcessingInstruction
QDomComment
QDomText
QDomCDATASection
QDomEntityReference

QDomElement:	Possible	children	are

QDomElement
QDomText
QDomComment
QDomProcessingInstruction
QDomCDATASection
QDomEntityReference

QDomAttr:	Possible	children	are
QDomText
QDomEntityReference

QDomProcessingInstruction:	No	children
QDomComment:	No	children
QDomText:	No	children
QDomCDATASection:	No	children
QDomEntity:	Possible	children	are

QDomElement
QDomProcessingInstruction
QDomComment
QDomText
QDomCDATASection
QDomEntityReference

QDomNotation:	No	children

With	QDomNodeList	and	QDomNamedNodeMap	two	collection	classes	are
provided:	QDomNodeList	is	a	list	of	nodes	whereas	QDomNamedNodeMap	is
used	to	handle	unordered	sets	of	nodes	(often	used	for	attributes).

The	QDomImplementation	class	allows	the	user	to	query	features	of	the	DOM
implementation.

Further	reading

To	get	started	please	refer	to	the	QDomDocument	documentation	that	describes
basic	usage.

An	introduction	to	namespaces

Parts	of	the	Qt	XML	module	documentation	assume	that	you	are	familiar	with
XML	namespaces.	Here	we	present	a	brief	introduction;	skip	to	Qt	XML
documentation	conventions	if	you	know	this	material.

Namespaces	are	a	concept	introduced	into	XML	to	allow	a	more	modular	design.
With	their	help	data	processing	software	can	easily	resolve	naming	conflicts	in
XML	documents.

Consider	the	following	example:

<document>

<book>

		<title>Practical	XML</title>

		<author	title="Ms"	name="Eris	Kallisti"/>

		<chapter>

				<title>A	Namespace	Called	fnord</title>

		</chapter>

</book>

</document>

Here	we	find	three	different	uses	of	the	name	title.	If	you	wish	to	process	this
document	you	will	encounter	problems	because	each	of	the	titles	should	be
displayed	in	a	different	manner	--	even	though	they	have	the	same	name.

The	solution	would	be	to	have	some	means	of	identifying	the	first	occurrence	of
title	as	the	title	of	a	book,	i.e.	to	use	the	title	element	of	a	book	namespace	to
distinguish	it	from	for	example	the	chapter	title,	e.g.:

<book:title>Practical	XML</book:title>

book	in	this	case	is	a	prefix	denoting	the	namespace.

Before	we	can	apply	a	namespace	to	element	or	attribute	names	we	must	declare
it.

Namespaces	are	URIs	like	http://trolltech.com/fnord/book/.	This	does	not	mean
that	data	must	be	available	at	this	address;	the	URI	is	simply	used	to	provide	a
unique	name.

We	declare	namespaces	in	the	same	way	as	attributes;	strictly	speaking	they	are
attributes.	To	make	for	example	http://trolltech.com/fnord/	the	document's
default	XML	namespace	xmlns	we	write

xmlns="http://trolltech.com/fnord/"

To	distinguish	the	http://trolltech.com/fnord/book/	namespace	from	the	default,
we	have	to	supply	it	with	a	prefix:

xmlns:book="http://trolltech.com/fnord/book/"

A	namespace	that	is	declared	like	this	can	be	applied	to	element	and	attribute
names	by	prepending	the	appropriate	prefix	and	a	":"	delimiter.	We	have	already
seen	this	with	the	book:title	element.

Element	names	without	a	prefix	belong	to	the	default	namespace.	This	rule	does
not	apply	to	attributes:	an	attribute	without	a	prefix	does	not	belong	to	any	of	the
declared	XML	namespaces	at	all.	Attributes	always	belong	to	the	"traditional"
namespace	of	the	element	in	which	they	appear.	A	"traditional"	namespace	is	not
an	XML	namespace,	it	simply	means	that	all	attribute	names	belonging	to	one
element	must	be	different.	Later	we	will	see	how	to	assign	an	XML	namespace
to	an	attribute.

Due	to	the	fact	that	attributes	without	prefixes	are	not	in	any	XML	namespace
there	is	no	collision	between	the	attribute	title	(that	belongs	to	the	author
element)	and	for	example	the	title	element	within	a	chapter.

Let's	clarify	matters	with	an	example:

<document	xmlns:book	=	'http://trolltech.com/fnord/book/'

										xmlns						=	'http://trolltech.com/fnord/'	>

<book>

		<book:title>Practical	XML</book:title>

		<book:author	xmlns:fnord	=	'http://trolltech.com/fnord/'

															title="Ms"

															fnord:title="Goddess"

															name="Eris	Kallisti"/>

		<chapter>

				<title>A	Namespace	Called	fnord</title>

		</chapter>

</book>

</document>

Within	the	document	element	we	have	two	namespaces	declared.	The	default
namespace	http://trolltech.com/fnord/	applies	to	the	book	element,	the	chapter
element,	the	appropriate	title	element	and	of	course	to	document	itself.

The	book:author	and	book:title	elements	belong	to	the	namespace	with	the	URI
http://trolltech.com/fnord/book/.

The	two	book:author	attributes	title	and	name	have	no	XML	namespace
assigned.	They	are	only	members	of	the	"traditional"	namespace	of	the	element
book:author,	meaning	that	for	example	two	title	attributes	in	book:author	are
forbidden.

In	the	above	example	we	circumvent	the	last	rule	by	adding	a	title	attribute	from
the	http://trolltech.com/fnord/	namespace	to	book:author:	the	fnord:title	comes
from	the	namespace	with	the	prefix	fnord	that	is	declared	in	the	book:author
element.

Clearly	the	fnord	namespace	has	the	same	namespace	URI	as	the	default
namespace.	So	why	didn't	we	simply	use	the	default	namespace	we'd	already
declared?	The	answer	is	quite	complex:

attributes	without	a	prefix	don't	belong	to	any	XML	namespace	at	all,	even
not	to	the	default	namespace;
additionally	omitting	the	prefix	would	lead	to	a	title-title	clash;
writing	it	as	xmlns:title	would	declare	a	new	namespace	with	the	prefix	title
instead	of	applying	the	default	xmlns	namespace.

With	the	Qt	XML	classes	elements	and	attributes	can	be	accessed	in	two	ways:
either	by	refering	to	their	qualified	names	consisting	of	the	namespace	prefix	and
the	"real"	name	(or	local	name)	or	by	the	combination	of	local	name	and
namespace	URI.

More	information	on	XML	namespaces	can	be	found	at
http://www.w3.org/TR/REC-xml-names/.

Conventions	used	in	Qt	XML	documentation

The	following	terms	are	used	to	distinguish	the	parts	of	names	within	the	context
of	namespaces:

http://www.w3.org/TR/REC-xml-names/

The	qualified	name	is	the	name	as	it	appears	in	the	document.	(In	the	above
example	book:title	is	a	qualified	name.)
A	namespace	prefix	in	a	qualified	name	is	the	part	to	the	left	of	the	":".
(book	is	the	namespace	prefix	in	book:title.)
The	local	part	of	a	name	(also	refered	to	as	the	local	name)	appears	to	the
right	of	the	":".	(Thus	title	is	the	local	part	of	book:title.)
The	namespace	URI	("Uniform	Resource	Identifier")	is	a	unique	identifier
for	a	namespace.	It	looks	like	a	URL	(e.g.	http://trolltech.com/fnord/)	but
does	not	require	data	to	be	accessible	by	the	given	protocol	at	the	named
address.

Elements	without	a	":"	(like	chapter	in	the	example)	do	not	have	a	namespace
prefix.	In	this	case	the	local	part	and	the	qualified	name	are	identical	(i.e.
chapter).

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

HOWTO
Qt

Qt

Qt Qt
Qt
Unicode

Qt/

Qt	3.x

Qt
QDataStream

Qt

Qt
bug

Qt

OpenGLX11

Qt

QVFb	-	Qt/

	

Qt/

Qt/
Qt/
Qt/	-	Cassiopeia	E-100
Linux
Qt/
Qt/
Qt/
Qt/
Qt/
Qt/
Qt/

Qt

Qt
QtXt/Motif

Qt/
Qt/VNC

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Qt
C++C++		QtC++	Qt

QtC++

	

QGuardedPtr	C++“”

Qt QObjectC++	Qt (moc)	

C++	C++C++	

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

/QtQt	

		XML	XML

					

Qt	Qt		Qt	

				Qt		(core
dump)

QObject	 QWidget				

		

		

C++

				class	Foo

				{

				public:

								Foo();

								int	value()	const	{	return	val;	}

								void	setValue(int);

				private:

								int	val;

				};

Qt

				class	Foo	:	public	QObject

				{

								Q_OBJECT

				public:

								Foo();

								int	value()	const	{	return	val;	}

				public	slots:

								void	setValue(int);

				signals:

								void	valueChanged(int);

				private:

								int	val;

				};

	

/Q_OBJECT

Foo::setValue()

				void	Foo::setValue(int	v)

				{

								if	(v	!=	val)	{

												val	=	v;

												emit	valueChanged(v);

								}

				}

emit	valueChanged(v)valueChanged	 emit	signal(arguments)

				Foo	a,	b;

				connect(&a,	SIGNAL(valueChanged(int)),	&b,	SLOT(setValue(int)));

				b.setValue(11);	//	a	==	undefined		b	==	11

				a.setValue(79);	//	a	==	79									b	==	79

				b.value();								

a.setValue(79)avalueChanged()	 bsetValue() b.setValue(79)	
bvalueChanged()	 bvalueChanged()	

v	!=	valsetValue()	 b.valueChanged()	a.setValue()

	

signalsslotsemit	C++

moc	C++

		

highlighted()activated()	 activated()		

	/	

	

moc.cpp	 void

	 QScrollBar::valueChanged()	hypothetical
QRangeControl::Range	 QRangeControl	 15	

	C++		

	

public	slots:		

protected	slots:	

private	slots:	

“”					
“new”	“delete”“new”	“delete”		i585-5002
000000	1200000	

moc	C++C++	 Qt

		

		if	(widget->inherits("QButton"))	{

								//	Push	ButtonRadio	Button

		}

qlcdnumber.h

				#include	"qframe.h"

				#include	"qbitarray.h"

				class	QLCDNumber	:	public	QFrame

QLCDNumberQFrameQWidget#include	/ QObject

				{

								Q_OBJECT

Q_OBJECTmoc	“virtual	function	QButton::className	not	defined”	
mocmoc

				public:

								QLCDNumber(QWidget	*parent=0,	const	char	*name=0);

								QLCDNumber(uint	numDigits,	QWidget	*parent=0,	const	char	*name=0);

mocQWidget	 parentname

moc

				signals:

								void				overflow();

QLCDNumber	

overflow()	

	Qt

				public	slots:

								void				display(int	num);

								void				display(double	num);

								void				display(const	char	*str);

								void				setHexMode();

								void				setDecMode();

								void				setOctMode();

								void				setBinMode();

								void				smallDecimalPoint(bool);

QLCDNumber	

QScrollBarnewValuedisplayLCD

display()Qt	

				};

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QWidget

x(),	y(),	frameGeometry(),	pos()	and	move()

geometry(),	width(),	height(),	rect()	and	size()

Unix/X11

Unix/X11show()X11

QtICCCM

X11QtframeGeometry()

X11QtshowMaximized()frameGeometry()

Windowsgeometry()setGeometry()X11X

show()setGeometry()pos()size()show()resize()move()

				MyWidget*	widget	=	new	MyWidget

				...

				QPoint	p	=	widget->pos();			//	

				QSize	s	=	widget->size();			//	

				...

				widget	=	new	MyWidget;

				widget->resize(s);								//	

				widget->move(p);										//	

				widget->show();													//	

MS-WindowsX11

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Qt QEvent QObject::event()	 QObject		 QEvent
	 QWidget—— QSocketNotifier

QMouseEvent QTimerEventQtQt

QResizeEventQPaintEventQMouseEventQKeyEvent

QEvent QResizeEventQResizeEvent QResizeEvent::size()
QResizeEvent::oldSize()

QMouseEvent

Qt QApplication::notify

QPaintEventQWidget::paintEvent

tab

QObject::event()tab

		bool	MyClass:event(QEvent	*	e)	{

						if	(e->type()	==	QEvent::KeyPress)	{

										QKeyEvent	*	ke	=	(QKeyEvent*)	e;

										if	(ke->key()	==	Key_Tab)	{

														//	tab

														k->accept();

														return	TRUE;

										}

						}	else	if	(e->type()	>=	QEvent::User)	{

										QCustomEvent	*	c	=	(QCustomEvent*)	e;

										//	

										return	TRUE;

						}

						QWidget::event(e);

		}

Qt QObject::installEventFilter()Return

QObject::eventFilter()

QApplication QToolTip

QApplication::sendEvent

sendEvent()	——sendEvent()	isAccepted()

postEvent()Qtresizepaint
postEvent()

postEvent()

QEvent::UserQCustomEvent

Copyright	©	2002	Trolltech Trademarks :Blueneno Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Qt

USAustralianBritishUSJapaneseKoreanGerman

Qt

Step	by	Step

Qt

QString

QStringUnicodeQtQStringchar*QString

“” QObjectQStringchar* QCString

UnicodeQString QCharCconst	char*char

tr()

"quoted	text"QApplication::translate() QObject::tr() LoginWidget

QWidget

				LoginWidget::LoginWidget()

				{

								QLabel	*label	=	new	QLabel(tr("Password:"),	this);

								...

				}

99

quoted	textQObjecttr() QApplication::translate()

				void	some_global_function(LoginWidget	*logwid)

				{

								QLabel	*label	=	new	QLabel(

																LoginWidget::tr("Password:"),	logwid);

				}

				void	same_global_function(LoginWidget	*logwid)

				{

								QLabel	*label	=	new	QLabel(

																qApp->translate("LoginWidget",	"Password:"),

																logwid);

				}

QT_TR_NOOP()QT_TRANSLATE_NOOP() lupdate

QT_TR_NOOP()

				QString	FriendlyConversation::greeting(int	greet_type)

				{

								static	const	char*	greeting_strings[]	=	{

												QT_TR_NOOP("Hello"),

												QT_TR_NOOP("Goodbye")

								};

								return	tr(greeting_strings[greet_type]);

				}

QT_TRANSLATE_NOOP()

				static	const	char*	greeting_strings[]	=	{

								QT_TRANSLATE_NOOP("FriendlyConversation",	"Hello"),

								QT_TRANSLATE_NOOP("FriendlyConversation",	"Goodbye")

				};

				QString	FriendlyConversation::greeting(int	greet_type)

				{

								return	tr(greeting_strings[greet_type]);

				}

				QString	global_greeting(int	greet_type)

				{

								return	qApp->translate("FriendlyConversation",

																																greeting_strings[greet_type]);

				}

QT_NO_CAST_ASCIIconst	char* QString QString::fromLatin1()

Latin-1 QObject::trUtf8()QObject::tr()tr() QApplication::defaultCodec()
QObject::trUtf8()

Accelerator	value QKeySequence()

Ctrl+QAlt+F	“Quit”hardcode CTRL+Key_Q

				QPopupMenu	*file	=	new	QPopupMenu(this);

				file->insertItem(tr("&Quit"),	this,	SLOT(quit()),

																						QKeySequence(tr("Ctrl+Q",	"File|Quit")));

QString::arg()

printf()QString::arg()

				void	FileCopier::showProgress(int	done,	int	total,

																																			const	QString&	current_file)

				{

								label.setText(tr("%1	of	%2	files	copied.\nCopying:	%3")

																								.arg(done)

																								.arg(total)

																								.arg(current_file));

				}

tr()

QtQt Qtlupdatelrelease

Qt

1.	 lupdateQtC++.tstr()QT_*_NOOP.ts
2.	 Qt.ts.tsXML
3.	 lrelease.ts.qm.ts“”.qm“”.ts.qm

locale

lupdate

lupdate.pro

				HEADERS									=	funnydialog.h	\

																						wackywidget.h

				SOURCES									=	funnydialog.cpp	\

																						main.cpp	\

																						wackywidget.cpp

				FORMS											=	fancybox.ui

				TRANSLATIONS				=	superapp_dk.ts	\

																						superapp_fi.ts	\

																						superapp_no.ts	\

																						superapp_se.ts

lupdatelrelease

DanishFinnishNorwegianSwedishqmaketmake lupdate
TRANSLATIONSqmake

QTranslator::load() QApplication::installTranslator()

Qtfindtrmsg2qmmergetr qm2ts.qm

lupdatelrelease$QTDIR/binQtHelp|Manual

.qm.qm QTranslator::insert()QTranslator QTranslator::save()

.qm	

Qt400 $QTDIR/translationsFrenchGerman

main()

				int	main(int	argc,	char	**argv)

				{

								QApplication	app(argc,	argv);

								//	translation	file	for	Qt

								QTranslator	qt(0);

								qt.load(QString("qt_")	+	QTextCodec::locale(),	".");

								app.installTranslator(&qt);

								//	translation	file	for	application	strings

								QTranslator	myapp(0);

								myapp.load(QString("myapp_")	+	QTextCodec::locale(),	".");

								app.installTranslator(&myapp);

								...

								return	app.exec();

				}

QTextCodecQTextStreamlocale8-bit——8-bitI/O——8-
bit

8-bitCyrillic	KOI8-R	localelocale	ISO	8859-5Cyrillic

				QString	string	=	...;	//	some	Unicode	text

				QTextCodec*	codec	=	QTextCodec::codecForName("ISO	8859-5");

				QCString	encoded_string	=	codec->fromUnicode(string);

				...;	//	use	encoded_string	in	8-bit	operations

Unicode8-bit QStringlocal8Bit()8-bit utf8()8-bitUTF-8——	
UnicodeUS-ASCIIUnicodeUS-ASCII

QString::fromUtf8()QString::fromLocal8Bit()ISO	8859-5	Cyrillic
Unicode

				QCString	encoded_string	=	...;	//	Some	ISO	8859-5	encoded	text.

				QTextCodec*	codec	=	QTextCodec::codecForName("ISO	8859-5");

				QString	string	=	codec->toUnicode(encoded_string);

				...;	//	Use	string	in	all	of	Qt's	QString	operations.

UnicodeI/OUnicodeUTF16UTF8	
QTextCodec::codecForLocale()local8Bit()

Unix8-bitUnicode QTextCodecTrolltechqt-interest	
QTextCodec::loadCharmapFile()QTextCodecQTextCodec

	tr()"magic"	words

				void	Clock::setTime(const	QTime&	t)

				{

								if	(tr("AMPM")	==	"AMPM")	{

												//	12-hour	clock

								}	else	{

												//	24-hour	clock

								}

				}

UnicodeQtQt

Unix/X11

Locale-orientedQtUnicode
Unix UTF-8QtUnicode8-bitUnix
QFile::setEncodingFunction()
I/O8-bit QTextStreamUnicode

Windows	95/98/NT

QtUnicode
I/OLatin-1QTextStreamUnicodeWindowsbig-endianUnicode
Unicode
MFCwinlibQtWindows	95/98Windows	NT Unicode

http://www.ietf.org/rfc/rfc2279.txt

TrolltechQtQtQt

European	Latin-1KOI8-REast	Asian	EUC-JP	“”——
ArabicHebrewThai	script——Indic	scriptHindiDevanagari
Bengali

Windows
ISO	ISO	8859-1	ISO	8859-2	ISO
8859-3	ISO	8859-4	ISO	8859-5
ISO	8859-7	ISO	8859-9	ISO	8859-15
KOI8-R

eucJPJISShiftJIS

X11XIMeucJPJapanese
Windows	NTIME	Windows	NT
Serika	Kurusugawa

eucKR Mizi	Research hanIM

Big5 QtMing	Che-ChuangBig5xcin
(2.5.x)	XIM	server

eucTW

Qtwriting	system writing	systems

Qt

UnixUnicodeUnicode-orientedWindows xfsftxfsttx-tt
UTF-8Unicode Solaris	7Unicode

ftp://ftp.sra.co.jp/pub/x11/kinput2/
http://www.mizi.com
http://www.dcs.ed.ac.uk/home/jec/programs/xfsft/
ftp://sunsite.unc.edu/pub/Linux/X11/fonts/
http://www.ietf.org/rfc/rfc2279.txt
http://www.sun.com/software/white-papers/wp-unicode/

X11Locale

localeUnix /usr/share/locale/ja_JP.EUCJapaneseJIS
Unicode /usr/share/locale/ja_JP.EUClocale

Qt

Qt

QEucJpCodec EUC-JP
QEucKrCodec EUC-KR
QGb18030Codec Chinese	GB18030/GBK/GB2312
QGbkCodec Chinese	GBK
QHebrewCodec visually	ordered	Hebrew
QJisCodec JIS
QSjisCodec Shift-JIS
QTextCodec
QTextDecoder State-based
QTextEncoder
QTranslator
QTranslatorMessage Translator
QTsciiCodec Tamil	TSCII

Copyright	©	2002	Trolltech Trademarks :farfareast Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Qt

Qt

-nograb	 Linuxgdb
-dograb	-nograb-nograb-dograb-nograb
-sync	XXX-syncX11Qt

Qt

qDebug()
qWarning()
qFatal()

QtUnix/X11 stderr Windows qInstallMsgHandler()

QObject::dumpObjectTree()QObject::dumpObjectInfo

qglobal.h#defines

Q_ASSERT(b)bbFALSE“ASSERT:	'b'	in	file	file.cpp	(234)”
Q_CHECK_PTR(p)pp“In	file	file.cpp,	line	234:	Out	of
memory”

		char	*alloc(int	size)

		{

						Q_ASSERT(size	>	0);

						char	*p	=	new	char[size];

						Q_CHECK_PTR(p);

						return	p;

		}

QT_FATAL_ASSERTQ_ASSERTfatal()warning()

QT_CHECK_STATEQ_ASSERT QT_CHECK_NULL

Q_CHECK_PTR Q_ASSERTQ_CHECK_PTR

		char	*alloc(int	size)

		{

						char	*p;

						Q_CHECK_PTR(p	=	new	char[size]);	//	WRONG

						return	p;

		}

pQT_CHECK_NULLQ_CHECK_PTR

Qt

Qt

QT_CHECK_STATE/
QT_CHECK_RANGE
QT_CHECK_NULL

QT_CHECK_MATH0
QT_NO_CHECKQT_CHECK_...
QT_DEBUG
QT_NO_DEBUGQT_DEBUG

QT_DEBUGQT_CHECKQT_DEBUGQT_NO_DEBUG
QT_CHECKQT_NO_CHECK

		void	f(char	*p,	int	i)

		{

		#if	defined(QT_CHECK_NULL)

						if	(p	==	0)

										qWarning("f:	Null	pointer	not	allowed");

		#endif

		#if	defined(QT_CHECK_RANGE)

						if	(i	<	0)

										qWarning("f:	The	index	cannot	be	negative");

		#endif

		}

Bug

bug Q_OBJECTmocmoc

vtbl_vtbl__vtbl

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Qt
QtQtQt

Threads	Primer:	A	Guide	to	Multithreaded	Programming
Thread	Time:	The	Multithreaded	Programming	Guide
Pthreads	Programming:	A	POSIX	Standard	for	Better	Multiprocessing
(O'Reilly	Nutshell)
Win32	Multithreaded	Programming

GUI QWidget QProcess

QRegExp QMutexQRegExp

http://www.amazon.com/exec/obidos/ASIN/0134436989/trolltech/t
http://www.amazon.com/exec/obidos/ASIN/0131900676/trolltech/t
http://www.amazon.com/exec/obidos/ASIN/1565921151/trolltech/t
http://www.amazon.com/exec/obidos/ASIN/1565922964/trolltech/t

WindowsQt

Mac	OS	XUnix configure-threadUnixlibc
mtQt

QT_THREAD_SUPPORT -DQT_THREAD_SUPPORTWindows
qconfig.h

QThread QThread::run()Java

				class	MyClass

				{

				public:

								void	doStuff(int);

				private:

								QMutex	mutex;

								int	a;

								int	b;

				};

				//	acbc*2

				void	MyClass::doStuff(int	c)

				{

								mutex.lock();

								a	=	c;

								b	=	c	*	2;

								mutex.unlock();

				}	

MyClass::doStuff() bc	*	2

QWaitConditionQWaitCondition
POSIXUnix

				#include	<qapplication.h>

				#include	<qpushbutton.h>

				//	

				QWaitCondition	mycond;

				//	Worker

				class	Worker	:	public	QPushButton,	public	QThread

				{

								Q_OBJECT

				public:

								Worker(QWidget	*parent	=	0,	const	char	*name	=	0)

												:	QPushButton(parent,	name)

								{

												setText("Start	Working");

												//	QPushButtonslotClicked()

												connect(this,	SIGNAL(clicked()),	SLOT(slotClicked()));

												//	QThreadstart()……

												QThread::start();

								}

				public	slots:

								void	slotClicked()

								{

												//	

												mycond.wakeOne();

								}

				protected:

								void	run()

								{

												//	……

												while	(TRUE)	{

																//	

																qApp->lock();

																setCaption("Waiting");

																qApp->unlock();

																//	

																mycond.wait();

																//	……

																qApp->lock();

																setCaption("Working!");

																qApp->unlock();

																//	GUIGUI……

																do_complicated_thing();

												}

								}

				};

	 //	——GUI

				int	main(int	argc,	char	**argv)

				{

								QApplication	app(argc,	argv);

								//	worker……worker

								Worker	firstworker(0,	"worker");

								app.setMainWidget(&worker);

								worker.show();

								return	app.exec();

				}

		

workerworker

Qt——QThread::postEvent

				QWidget	*mywidget;

				QThread::postEvent(mywidget,	new	QPaintEvent(QRect(0,	0,	100,	100)));

		

mywidget100*100

Qt

QtQt

		QApplication	*qApp;

		QWidget	*mywidget;

		qApp->lock();

		mywidget->setGeometry(0,0,100,100);

		QPainter	p;

		p.begin(mywidget);

		p.drawLine(0,0,100,100);

		p.end();

		qApp->unlock();

		

QtQtGUIQtGUI/

Qt

QMutex

QtQt

=()Qt

Qt QPtrListQPtrList QPtrList::first()

GUI QWidgetQTimerQSocketNotifierGUI

GUIQNetwork QSocket

GUIprocessEvents()
QDialog::exec() QPopupMenu::exec() QApplication::processEvents()

QtQtQtQtQtQtQt

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QtHOWTO
Qttext	codecstyle

Qt	3.0.5Qt	3.0.4 Qt	3.0.5

QImageFormatPlugin $QTDIR/plugins/imageformats
QSqlDriverPlugin $QTDIR/plugins/sqldrivers

QStylePlugin $QTDIR/plugins/styles

QTextCodecPlugin $QTDIR/plugins/codecs

QWidgetPlugin $QTDIR/plugins/designer

'MyStyle'

				class	MyStylePlugin	:	public	QStylePlugin

				{

				public:

								MyStylePlugin()	{}

								~MyStylePlugin()	{}

								QStringList	keys()	const	{	

												return	QStringList()	<<	"MyStyle";	

								}

								QStyle*	create(const	QString&	key)	{	

												if	(key	==	"MyStyle")	

																return	new	MyStyle;

												return	0;

								}

				};

				Q_EXPORT_PLUGIN(MyStylePlugin)

keys()0 QStylePlugincreate()

QStylePlugin

Qt

				QApplication::setStyle(QStyleFactory::create("MyStyle"));

QWidgetPlugin Qt'''' Qt QWidgetFactory
QWidgetPlugin

QtQt

$QTDIR/plugins styles QSettings
QApplication::addLibraryPath() styleswidgets

DLL so appdir/plugins/designer

QtQt

Qt

QtTrolltechminor	releaseAPI

Qt Qt

Qt QtUNIXQtQtQtQt

Qt Qt

Qt	3.0.5Qt build	key QtQt

build	key

build	key

Architecture

QtAPI

QtQt

QtQt

Qt

QtQt Qt.pro

				CONFIG	+=	thread

QtQtQtQtQtQtcorruptQt

Copyright	©	2002	Trolltech Trademarks :farfareast Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Pictures	of	Most	Qt	Widgets
Most	of	these	widgets	are	shown	in	either	Motif	or	Windows	style.	All	widgets
are	supported	in	both	styles	(and	other	styles),	but	for	clarity	we	just	present	a
selection.

Below	we	have	three	views	seperated	by	QSplitters.	At	the	top-left	there's	a
QListBox,	at	the	top-right	there's	a	QListView	with	a	QHeader	and	two
QScrollBars.	And	at	the	bottom	there's	a	QIconView.

Below	we	present	a	QMainWindow	which	has	a	QMenuBar	and	some
QToolBars	that	contain	various	widgets,	e.g.	QToolButtons	and	QComboBoxes.
The	central	widget	is	a	QWorkspace	which	is	used	for	MDI	window
management	and	which	contains	an	MDI-Window	featuring	a	QTextEdit.	At	the
bottom	you	see	a	QStatusBar	and	at	the	bottom-right	a	QSizeGrip.

The	image	below	shows	a	QFileDialog.	On	the	Macintosh	and	Windows
platforms	you	can	either	use	a	QFileDialog	or	the	native	file	dialog.	This	is
explained	in	the	QFileDialog	class	documentation.

Below	is	a	QPrintDialog.	On	Macintosh	and	Windows	the	native	print	dialog	is
used,	but	for	other	platforms	we	provide	QPrintDialog.	Use	QPrinter::setup()	for
portability	instead	of	the	QPrintDialog	if	you	need	to	be	platform	independent.

Below	is	a	QFontDialog.

Windows

The	screenshot	below	shows	a	QColorDialog.

Messages	are	presented	using	QMessageBoxes,	as	shown	below.

The	image	below	shows	a	QProgressDialog.	The	QProgressBar	can	also	be	used
as	a	separate	widget.

In	the	screenshot	below	we	have	a	QGroupBox	that	contains	a	QLineEdit,	a
read-only	QComboBox	and	an	editable	QComboBox.

The	screenshot	below	shows	a	QPopupMenu.

In	the	screenshot	below	there's	a	QButtonGroup	containing	four	QRadioButtons
and	two	QCheckBoxes.

The	screenshot	below	shows	a	QTabDialog.	The	tabs	(QTabBar)	or	the	more
convenient	class	QTabWidget,	which	combines	a	tab	bar	with	the	pages,	can	be
used	separately.	In	the	visible	page	you	see	a	QLabel,	the	range	controls	QSlider
and	QSpinBox	and	below	a	QLCDNumber.	In	the	bottom	row	there	are	some
QPushButtons.

In	the	screenshot	below	there's	a	QTextBrowser	displaying	a	HTML	page.	See
also	QTextEdit.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Qt
Qt

Qt——
Qtlupdatelrelease ——
Qt——
qmake——Makefile
qembed——C++
qvfb——
makeqpf——
moc——
uic——
qtconfig——UnixQt

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Qt

Qt

Qt

.ui

Copyright	©	2002	Trolltech Trademarks :hackerjun Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

[Qt]	[Qt]

Qt Qt Qt Qt

QtWindows Qt Qt Qt

Qt QtQt

QtQt Qt qmakeMakefile

Qt(e.g.)

Qt Qt

	 qmake	 uic QWidgetFactory.ui

Qt

	 QtSQL

QtQtMakefiles

Qt

C++QtC++QtC++QtQt

QtSQL QtSQLSQL

Qt

Qt Qt Qt

Qt Qt

libquiQt.uiC++

QtQt	2.x

Qt

doc@trolltech.comQt QtbugQt-bugs@trolltech.comQt-interest
http://www.trolltech.com

[Qt]	[Qt]

Copyright	©	2002	Trolltech Trademarks :hackerjun Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

[Prev:	Preface]	[Home]	[Next:	Creating	Main	Windows	with	Actions,	Toolbars
and	Menus]

Creating	a	Qt	Application

Starting	and	Exiting	Qt	Designer

Qt	Designer	is	controlled	in	the	same	way	as	any	other	modern	desktop
application.	To	start	Qt	Designer	under	Windows	click	the	Start	button	and	click
Programs|Qt	X.x.x|Designer.	(X.x.x	is	the	Qt	version	number,	e.g.	3.0.0.)	If
you're	running	a	Unix	or	Linux	operating	system	you	can	either	double	click	the
Qt	Designer	icon	or	enter	designer	&	in	an	xterm.

When	you've	finished	using	Qt	Designer	click	File|Exit;	you	will	be	prompted	to
save	any	unsaved	changes.	Help	is	available	by	pressing	F1	or	from	the	Help
menu.

To	get	the	most	benefit	from	the	tutorial	chapters	we	recommend	that	you	start
Qt	Designer	now	and	create	the	example	applications	as	you	read.	Most	of	the
work	involves	using	Qt	Designer's	menus,	dialogs	and	editors,	with	only	small
amounts	of	code	to	type	in.

When	you	start	Qt	Designer,	by	default,	you	will	see	a	menu	bar	and	various
toolbars	at	the	top.	On	the	left	hand	side	are	three	windows,	the	first	is	the	Files
window,	the	second	is	the	Widgets	and	Source	window	(the	Object	Explorer)
and	the	third	is	the	Properties	window.	The	Files	window	lists	the	files	and
images	associated	with	the	project;	to	open	any	form	single	click	it	in	the	Files
list.	The	Widgets	and	Source	window	lists	the	current	form's	widgets	and	slots.
The	Properties	window	is	used	to	view	and	change	the	properties	of	forms	and
widgets.	We	will	cover	the	use	of	Qt	Designer's	windows,	dialogs,	menu	options
and	toolbar	buttons	as	we	create	example	applications.

In	this	chapter	we	will	build	an	application	called	'multiclip'	which	allows	you	to
store	and	retrieve	multiple	text	clippings	to	and	from	the	clipboard.

The	Multiclip	Application

Creating	a	New	Project

Whenever	you	create	a	new	application	we	strongly	recommend	that	you	create	a
project	file	and	open	the	project	rather	than	individual	.ui	files.	Using	a	project
has	the	advantage	that	all	the	forms	you	create	for	the	project	are	available	via	a
single	mouse	click	rather	than	having	to	be	loaded	individually	through	file	open
dialogs.	An	additional	benefit	of	using	project	files	is	that	they	allow	you	to	store
all	your	images	in	a	single	file	rather	than	duplicate	them	in	each	form	in	which
they	appear.	See	The	Designer	Approach	chapter's	Project	management	section
for	detailed	information	on	the	benefits	of	using	project	files.

Start	Qt	Designer	if	you	haven't	already.	Click	File|New	to	invoke	the	New	File
dialog.	Click	the	'C++	Project'	icon,	then	click	OK	to	invoke	the	Project	Settings
dialog.	You	need	to	give	the	project	a	name,	and	we	recommend	that	you	put
each	project	in	its	own	subdirectory.	Click	the	ellipsis	...	button	to	invoke	the
Save	As	dialog	and	navigate	to	where	you	want	to	put	the	new	project.	Click	the
Create	New	Folder	toolbar	button	to	create	the	'multiclip'	directory.	Double
click	the	'multiclip'	directory	to	make	it	the	current	directory.	Enter	a	file	name
of	'multiclip.pro',	and	click	the	Save	button.	The	'Project	File'	field	of	the	Project
Settings	dialog	will	have	the	path	and	name	of	your	new	project;	click	OK	to
create	the	project.

Creating	a	New	Project

The	name	of	the	current	project	is	shown	in	the	Files	toolbar	which	is	the	top	left
toolbar	by	default.	Once	we	have	a	project	we	can	add	forms	and	begin	to	build
our	application.	(See	Customizing	Qt	Designer	for	information	on	changing	Qt
Designer's	toolbars	and	windows	to	suit	your	preferences.)

Creating	a	New	Form

Click	File|New	to	invoke	the	New	File	dialog.	Several	default	forms	are	supplied
but	we	will	use	the	default	Dialog	form,	so	just	click	OK.	A	new	form	called
'Form1'	will	appear.	Note	that	the	new	form	is	listed	in	the	Files	list	and	the
Properties	window	shows	the	form's	default	property	settings.

Click	the	Value	beside	the	name	property	and	change	the	form's	name	to
'MulticlipForm'.	Change	the	form's	caption	to	'Multiclip'.	The	properties	are
ordered	in	accordance	with	the	inheritance	hierarchy,	and	caption	is	roughly	in
the	middle	of	the	property	editor.	Save	the	form:	click	File|Save,	enter	the	name

'multiclip.ui',	then	click	the	Save	button.

Creating	a	New	Form

Using	the	Property	Editor

The	Property	Editor	has	two	columns,	the	Property	column	which	lists
property	names	and	the	Value	column	which	lists	the	values.	Some	property
names	have	a	plus	sign	'+'	in	a	square	to	their	left;	this	signifies	that	the
property	name	is	the	collective	name	for	a	set	of	related	properties.	Click
the	form	to	make	the	Property	Editor	show	the	form's	properties.	Click	the
sizePolicy	property's	plus	sign;	you	will	see	four	properties	appear	indented
below	sizePolicy,	hSizeType,	vSizeType,	horizontalStretch	and
verticalStretch.	These	properties	are	edited	in	the	same	way	as	any	other

properties.

Property	Editor

Some	properties	have	simple	values,	for	example,	the	name	property	has	a
text	value,	the	width	property	(within	minimumSize	for	example)	has	a

numeric	value.	To	change	a	text	value	click	the	existing	text	and	type	in
your	new	text.	To	change	a	numeric	value	click	the	value	and	either	type	in
a	new	number,	or	use	the	spin	buttons	to	increase	or	decrease	the	existing
number	until	it	reaches	the	value	you	want.	Some	properties	have	a	fixed
list	of	values,	for	example	the	mouseTracking	property	is	boolean	and	can
take	the	values	True	or	False.	The	cursor	property	also	has	a	fixed	list	of
values.	If	you	click	the	cursor	property	or	the	mouseTracking	property	the
value	will	be	shown	in	a	drop	down	combobox;	click	the	down	arrow	to	see
what	values	are	available.	Some	properties	have	complex	sets	of	values;	for
example	the	font	property.	If	you	click	the	font	property	an	ellipsis	button
(...)	will	appear;	click	this	button	and	a	Select	Font	dialog	will	pop	up
which	you	can	use	to	change	any	of	the	font	settings.	Other	properties	have
ellipsis	buttons	which	lead	to	different	dialogs	depending	on	what	settings
the	property	can	have.	For	example,	if	you	have	a	lot	of	text	to	enter	for	a
text	property	you	could	click	the	ellipsis	button	to	invoke	the	multi-line	text
editor	dialog.

The	names	of	properties	which	have	changed	are	shown	in	bold.	If	you've
changed	a	property	but	want	to	revert	it	to	its	default	value	click	the
property's	value	and	then	click	the	red	'X'	button	to	the	right	of	the	value.
Some	properties	have	an	initial	value,	e.g.	'TextEdit1',	but	no	default	value;
if	you	revert	a	property	that	has	an	initial	value	but	no	default	value	(by
clicking	the	red	'X')	the	value	will	become	empty	unless	the	property,	e.g.
name,	is	not	allowed	to	be	empty.

If	multiple	widgets	are	selected,	the	property	editor	shows	the	properties
that	the	selected	widgets	have	in	common.	Changing	one	of	these	properties
will	cause	all	the	selected	widgets	to	have	this	property	changed.

The	property	editor	fully	supports	Undo	and	Redo	(Ctrl+Z	and	Ctrl+Y,
also	available	from	the	Edit	menu).

Adding	Widgets

The	multiclip	application	consists	of	a	text	box	to	display	the	current	clipboard
text	(if	any),	a	list	box	showing	the	previous	clippings,	a	length	indicator,	a
checkbox	and	buttons.	If	you	run	the	application	and	resize	it	all	the	widgets	will
scale	properly.

The	Qt	Designer	approach	to	laying	out	a	form	is	to	place	the	required	widgets
on	the	form	in	the	approximate	positions	that	they	should	occupy	and	then	use
the	layout	tools	to	size	and	position	them	correctly.	We'll	now	add	the	multiclip
form's	widgets.

1.	 We'll	start	with	the	current	clipping	text	box.	Click	the	Text	Label	toolbar
button	and	click	towards	the	top	left	of	the	form.	(If	you	hover	the	mouse
over	a	toolbar	button	its	name	will	appear	in	a	tooltip.)	We	won't	bother
renaming	the	label	since	we'll	never	refer	to	it	in	code;	but	we	need	to
change	its	text,	so	change	its	text	property	to	'Current	Clipping'.	(See	the
Using	the	Property	Editor	sidebar	for	an	explanation	of	the	property	editor.)

Click	the	Line	Edit	toolbar	button	and	click	towards	the	top	right	of	the
form.	Use	the	Property	Editor	to	change	the	widget's	name	to
'currentLineEdit'.

2.	 Now	we'll	add	another	label	and	the	list	box.	Click	the	Text	Label	toolbar
button	and	click	below	the	Current	Clipping	label.	Change	the	text	property
to	'Previous	Clippings'.	Don't	worry	about	positioning	the	widgets	precisely,
nor	about	the	fact	that	they	are	the	wrong	size;	the	layout	tools	(covered	in
the	next	section)	will	take	care	of	this.

Click	the	List	Box	toolbar	button	and	click	the	form	below	the	'Previous
Clippings'	label.	Change	the	list	box's	name	to	'clippingsListBox'.	By
default	Qt	Designer	creates	list	boxes	with	a	single	initial	value	of	'New
Item'.	We	don't	want	this	value	(we'll	be	populating	our	list	box	in	code
later),	so	we	need	to	remove	the	value.	Right	click	the	list	box	then	click	the
Edit	menu	item	on	the	popup	menu	to	invoke	the	listbox's	value	editor
dialog.	Click	Delete	Item	to	delete	the	default	item,	then	click	OK.	(See	the
Value	Editors	sidebar.)

3.	 We	want	to	know	the	length	of	the	current	clipping	so	we'll	add	a	label	and
an	LCD	Number	widget.

Click	the	Text	Label	toolbar	button	and	click	below	the	Line	Edit.	Change
its	text	property's	value	to	'Length'.	Click	the	LCD	Number	toolbar	button
and	click	below	the	length	label.	Change	the	LCD	Number's	name	to
'lengthLCDNumber'.

4.	 Multiclip	can	be	made	to	detect	clipboard	changes	and	automatically	add

new	clippings.	We	want	the	user	to	have	control	over	whether	this	should
happen	or	not	so	we	will	provide	a	check	box	which	they	can	use	to
indicate	their	preference.

Click	the	Check	Box	toolbar	button	and	click	below	the	LCD	Number.
Change	the	checkbox's	name	to	'autoCheckBox'	and	its	text	to	'A&uto	Add
Clippings'.	Note	that	the	accel	property	automatically	changes	to	Alt+U
because	the	ampersand	in	the	text	signifies	a	keyboard	shortcut.

5.	 The	last	widgets	we	require	are	the	buttons.	One	way	to	add	the	same	kind
of	widget	multiple	times	is	to	add	one,	copy	it,	then	paste	repeatedly.	We
will	use	another	approach.

Double	click	the	Push	Button	toolbar	button;	now	click	below	the
checkbox	to	place	a	button.	Click	below	the	button	we've	just	added	to	add
a	second	button.	Add	a	third	and	fourth	button.	Now	click	the	Pointer
toolbar	button	to	switch	off	automatically	adding	the	same	widget.	Change
the	first	button's	name	to	'addPushButton'	and	its	text	to	'&Add	Clipping'.
Change	the	second	button's	name	to	'copyPushButton'	and	its	text	to
'&Copy	Previous'.	Change	the	third	button's	name	and	text	properties	to
'deletePushButton'	and	'&Delete	Clipping'	respectively.	Similarly	change
the	fourth	button's	name	and	text	to	'quitPushButton'	and	'&Quit'.

All	our	widgets	have	been	placed	on	the	form	with	their	properties	changed	to
suit	our	application's	needs.	In	the	next	section	we	will	use	Qt	Designer's	layout
tools	to	size	and	position	the	widgets	correctly	and	in	such	a	way	that	when	the
user	resizes	the	form	the	widgets	will	scale	properly.

Adding	Widgets	to	the	Form

Value	Editors

Whilst	the	Property	Editor	is	used	to	customize	the	generic	properties	of
widgets,	value	editors	are	used	to	edit	values	held	within	instances	of
particular	widgets.	For	example	a	QLineEdit	can	only	contain	a	single	line
of	text,	but	a	QListBox	can	contain	any	number	of	items	each	of	which
may	be	a	line	of	text,	a	pixmap,	or	both.	To	invoke	a	widget's	value	editor
double	click	the	widget.	(Alternatively	right	click	the	widget	and	a	popup
menu	will	appear;	if	the	first	menu	item	is	'Edit',	you	can	click	this	to	access
the	widget's	value	editor	dialog.)	Different	widgets	have	different	value
editors.	See	the	Value	Editors	chapter	for	more	details.

Laying	Out	Widgets	and	Previewing

Introduction	to	Layouts

Layouts	work	by	grouping	together	widgets	and	groups	of	widgets,	horizontally,
vertically	or	in	a	grid.	Widgets	that	are	laid	out	together	horizontally	or	vertically
can	be	grouped	either	with	a	Layout	or	with	a	Splitter;	the	only	difference	is	that
a	user	can	manipulate	a	Splitter	themselves.

If	we	want	to	lay	out	some	widgets	side	by	side	we	would	select	them	and	then
click	the	Lay	Out	Horizontally	toolbar	button.	If	we	want	our	widgets	to	be
lined	up	one	above	the	other	we	would	use	the	Lay	Out	Vertically	toolbar
button.	Once	we've	grouped	some	widgets	together	we	can	then	lay	out	the
groups	in	relation	to	each	other,	again	using	vertical,	horizontal	or	grid	layouts.
Once	we	have	a	collection	of	laid	out	groups	we	then	click	on	the	form	itself	and
lay	out	the	groups	within	the	form	using	one	of	the	layout	buttons.

Some	widgets	will	grow	to	fill	the	available	space,	vertically	or	horizontally	or
both	ways.	Buttons	and	line	edits	will	fill	horizontal	space	for	example,	whereas
a	ListView	will	fill	space	in	both	directions.	The	easiest	way	to	achieve	the	layout
you	want	is	to	use	Qt	Designer's	layout	tools.	When	you	apply	a	layout	to	some
widgets	in	some	situations	the	widgets	may	not	lay	out	the	way	you	want.	If	a
widget	does	not	fill	up	enough	space	try	changing	its	sizePolicy	to	Expanding.	If
a	widget	takes	up	too	much	space	one	approach	is	to	change	its	sizePolicy,	and
another	approach	is	to	use	a	Spacer	to	consume	excess	space.

Spacers	have	no	visual	appearance	on	the	running	form	and	are	used	purely	to
insert	space	between	widgets	or	groups	of	widgets.	Suppose	you	have	a	widget
that	takes	up	too	much	space.	You	could	break	the	layout	and	resize	the	widget
to	make	room	for	a	spacer.	Then	you	would	insert	the	spacer	and	layout	the
spacer	with	the	widgets	and	the	spacer	will	consume	the	excess	space.	If	the
spacer	doesn't	take	up	the	right	amount	of	space	you	can	change	its	sizePolicy
for	finer	control.

The	best	way	to	learn	about	layouts	and	spacers	is	to	try	them	out.
Experimenting	with	layouts	is	easy.	If	you	make	any	changes	that	you	aren't
happy	with	you	can	easily	undo	them	by	clicking	Edit|Undo	or	by	pressing
Ctrl+Z.	In	the	next	section	we'll	lay	out	our	multiclip	example	step-by-step.

Laying	Out	Widgets

Layouts	provide	a	means	of	grouping	widgets	and	groups	of	widgets	together	in
horizontal	and	vertical	pairs	and	in	grids.	If	you	use	layouts	your	forms	and	the
widgets	they	contain	will	scale	automatically	when	the	user	resizes	the	window.
This	is	better	than	using	absolute	sizes	and	positions	since	you	don't	have	to
write	any	code	to	achieve	the	scaling	and	your	users	can	make	the	most	of	their
screen	size	whether	they	have	a	laptop	or	a	very	large	screen	desktop	machine.
Layouts	use	standard	sizes	for	margins	and	widget	spacing	which	helps	give
your	applications	a	consistent	and	proportional	look	without	requiring	any	effort
on	your	part.	Layouts	are	also	easier	and	faster	to	use	than	absolute	positioning;
you	can	just	place	your	widgets	on	the	form	in	approximate	positions	and	leave
the	layout	tools	to	size	and	scale	the	widgets	correctly.

Selecting	Widgets	and	Inserting	Widgets

To	select	an	individual	widget,	either	click	the	widget	itself	or	click	its
Name	in	the	Object	Explorer	window.	To	select	a	group	either	click	a
fraction	outside	its	red	outline	or	click	its	Name	in	the	Object	Explorer
window.	To	select	multiple	widgets	or	groups,	click	the	form	to	deselect
any	selected	widgets,	then	Ctrl+Click	one	widget	or	group	then	drag	the
rubber	band	so	that	it	touches	the	other	widgets	or	groups	that	you	want	to
select.	This	technique	is	particularly	useful	for	selecting	widgets	that	are
inside	another	widget.	For	example	to	select	the	radio	buttons	in	a	button
group	but	not	the	button	group	itself	you	would	click	the	form	then
Ctrl+Click	one	of	the	radio	buttons	and	drag	the	rubber	band	to	touch	the
other	radio	buttons.

If	we	want	to	insert	a	widget	into	a	gap	between	widgets	which	are	in	a
layout	we	can	click	the	toolbar	button	for	the	new	widget	and	then	click	in
the	gap.	Qt	Designer	will	ask	us	if	we	want	to	break	the	layout	and	if	we
click	Break	Layout	the	layout	will	be	broken	and	our	widget	inserted.	We
can	then	select	the	widgets	and	groups	we	want	to	lay	out	and	lay	them	out
again.	The	same	effect	can	be	achieved	by	clicking	the	group	and	either
clicking	the	Break	Layout	toolbar	button	or	pressing	Ctrl+B.

The	layout	we	want	to	achieve	is	to	have	the	current	clipping	label	and
currentLineEdit	side	by	side	at	the	top	of	the	form.	We	want	the	previous
clippings	label	and	the	clippingsListBox	to	occupy	the	left	hand	side	of	the	form
with	the	remaining	widgets	in	a	column	on	the	right.	We	want	to	divide	left	and
right	with	a	splitter	and	make	the	left	hand	side	larger	by	default.	We'll	leave	the

sizing	of	the	widgets	to	Qt	Designer.	The	layout	controls	are	in	the	Layout
toolbar.	(By	default	this	is	the	fourth	toolbar	counting	left	to	right.)	We'll	now	lay
out	the	widgets	we've	placed	on	the	form.

1.	 Click	the	current	clipping	label	and	Shift+Click	the	currentLineEdit	Line
Edit.	(Shift+Click	means	hold	down	the	shift	key	whilst	clicking;	this	will
ensure	that	Qt	Designer	performs	multiple	selections.)	Most	of	the	layout
toolbar	buttons	will	now	be	available.	Click	the	Lay	Out	Horizontally
toolbar	button.	(If	you	hover	the	mouse	over	a	toolbar	button	a	tooltip
giving	the	button's	name	will	appear.)	The	two	widgets	will	be	moved
together	with	a	thin	red	line	surrounding	them.	It	doesn't	matter	that	the
widgets	aren't	the	right	size	or	in	exactly	the	right	place;	as	we	progress
with	the	layout	Qt	Designer	will	size	and	place	them	correctly.

Layout	Current	Clipping	Label	and	currentLineEdit

2.	 Click	the	Previous	Clippings	label	and	Shift+Click	the	clippingsListBox.
Click	the	Lay	Out	Vertically	toolbar	button.

3.	 We	want	the	remaining	widgets	to	be	grouped	together	vertically.	We	could
Shift+Click	each	one	but	instead	click	the	form	above	the	Length	label,
then	drag	until	the	Length	label,	the	LCD	Number,	the	check	box	and	all	the
buttons	are	all	touching	the	rubber	band	(a	black	outline	rectangle)	that
appears	when	you	drag.	Release	the	mouse,	and	all	the	remaining	widgets
should	be	selected.	If	you	missed	any	Shift+Click	them.	Now	click	the	Lay
Out	Vertically	toolbar	button.

Selecting	a	Group	of	Widgets

We	now	have	three	groups	of	widgets	which	must	be	laid	out	in	relation	to	each
other	and	then	laid	out	in	relation	to	the	form	itself.

Groups	of	Layed	Out	Widgets

1.	 Shift+Clicking	is	used	to	select	individual	widgets.	To	select	a	group	we
must	click	the	form	to	deselect	any	selected	widgets,	then	Ctrl+Click	the
group	and	drag	so	that	the	rubber	band	touches	the	groups	we	want	to	lay
out	and	then	release.	With	the	buttons	and	other	widgets	already	laid	out
and	selected,	Ctrl+Click	the	list	box	and	drag	the	rubber	band	over	the	one
of	the	buttons,	then	release.	Both	groups	should	now	be	selected.	Click	the
Lay	Out	Horizontally	(in	Splitter)	toolbar	button.

Layout	Groups	of	Widgets

2.	 We	now	have	two	groups,	the	top	one	with	the	Current	Clipping	label	and
the	line	edit	and	the	group	we've	just	created	with	the	list	box,	buttons	and
other	widgets.	We	now	want	to	lay	these	out	in	relation	to	the	form.	Click
the	form	and	click	the	Lay	Out	Vertically	toolbar	button.	The	widgets	will
be	resized	to	fill	the	entire	form.

Lay	out	Widgets	in	Relation	to	the	Form

Unfortunately	the	Length	label	and	the	LCD	Number	take	up	far	too	much
space,	so	we	will	have	to	revise	the	layout.	With	experience	you	will	find	that
you	do	not	need	to	rework	layouts	very	often.	We	will	insert	a	spacer	which	will
use	the	extra	space.

1.	 First	we	must	make	some	room	for	the	spacer.	Click	the	LCD	Number	to
select	it.	Now	click	the	Break	Layout	toolbar	button.	Move	the	LCD
Number	up	a	little	bit,	there's	no	need	to	be	exact	we	just	want	to	create
some	space	below	it.

2.	 Now	we'll	add	the	spacer.	Click	the	Spacer	toolbar	button,	then	click	the
form	in	the	space	you've	created	between	the	LCD	Number	and	the	check
box.	A	popup	menu	with	two	options,	Horizontal	and	Vertical,	will	appear;
click	Vertical.	We	choose	vertical	because	we	want	the	spacer	to	consume

excess	vertical	space.

Adding	a	Vertical	Spacer

3.	 We	need	to	regroup	the	buttons	and	other	widgets	in	a	vertical	group.	Drag
the	mouse	from	near	the	bottom	right	of	the	form	so	that	the	rubber	band
includes	or	touches	the	buttons,	the	check	box,	the	spacer,	the	LCD	Number
and	the	Length	label;	then	release.	If	you	selected	any	other	widgets	by
mistake,	click	the	form	and	try	the	drag	again.	Click	the	Lay	Out
Vertically	toolbar	button.

4.	 We	now	have	three	groups	as	we	had	before,	only	this	time	with	the	small
addition	of	the	spacer.	Select	the	list	box	and	the	buttons	by	clicking	the
form,	dragging	and	releasing	once	the	rubber	band	covers	or	touches	both
groups.	Click	Lay	Out	Horizontally	(in	Splitter)	to	regroup	them	with	the
splitter.

5.	 The	last	step	is	to	lay	out	the	form	itself.	Click	the	form	and	click	Lay	Out
Vertically.	The	form	should	now	be	laid	out	correctly.

Lay	Out	the	Form

There	are	two	small	deficiencies	in	the	layout	that	we	have	achieved.	Firstly	the
list	box	and	buttons	take	up	an	equal	width	whereas	we'd	rather	have	the	list	box
take	up	about	three	quarters	of	the	width.	Secondly	the	Length	label,	the	check
box	and	the	buttons	extend	right	up	to	the	splitter.	They	would	look	more
attractive	if	there	was	a	little	bit	of	space	separating	them	from	the	splitter.

Expanding	the	list	box	half	of	the	splitter	would	require	us	to	add	an	init()
function	with	the	following	code:

				void	MulticlipForm::init()

				{

	 QValueList<	int	>	sizes;

	 sizes	<<	250	<<	40;

	 Splitter->setSizes(sizes);

				}

We	won't	add	this	code	now	since	we'll	deal	with	the	code	when	we	come	to
implement	the	application's	functionality	later	in	the	chapter.

We	will	create	some	space	around	the	splitter	by	changing	the	margins	of	the
layout	groups	that	it	joins	together.	To	click	a	layout	either	click	a	fraction	above
the	layout's	top	red	line	or	click	the	layout's	name	in	the	Object	Explorer	(the
Widgets	and	Source	window).	(See	Object	Explorer	Window	sidebar	for	an
explanation	of	the	Object	Explorer	window.)	Click	the	layout	that	contains	the
list	box,	and	change	the	layoutMargin	property	to	6,	then	press	Enter.	Click	the
layout	that	contains	the	buttons	and	other	widgets,	and	change	its	layoutMargin
to	the	same	value	in	the	same	way.

The	Object	Explorer

View	the	Object	Explorer	(Widgets	and	Source)	window	by	clicking
Window|Views|Object	Explorer.	The	Object	Explorer	has	two	tabs,	the
Widgets	tab	which	shows	the	object	hierarchy,	and	the	Source	tab	which
shows	the	source	code	you	have	added	to	the	form.	Clicking	the	name	of	a
widget	in	the	Widget	tab	will	select	the	widget	and	show	its	properties	in
the	Property	Editor.	It	is	easy	to	see	and	select	widgets	in	the	Object
Explorer	which	is	especially	useful	for	forms	that	have	many	widgets	or
which	use	layouts.

Object	Explorer

In	the	original	version	of	Qt	Designer	if	you	wanted	to	provide	code	for	a
form	you	had	to	subclass	the	form	and	put	your	code	in	the	subclass.	This
version	fully	supports	the	subclassing	approach,	but	now	provides	an
alternative:	placing	your	code	directly	into	forms.	Writing	code	in	Qt
Designer	is	not	quite	the	same	as	subclassing,	for	example	you	cannot	get
direct	access	to	the	form's	constructor	or	destructor.	If	you	need	code	to	be
executed	by	the	constructor	create	a	slot	called	void	init();	if	it	exists	it
will	be	called	from	the	constructor.	Similarly,	if	you	need	to	be	executed
before	destruction	create	a	slot	called	void	destroy().	You	can	also	add
your	own	class	variables	which	will	be	put	in	the	generated	constructor's
code,	and	you	can	add	forward	declarations	and	any	includes	you	require.
To	add	a	variable	or	declaration	right	click	the	appropriate	item,	e.g.	Class
Variables,	then	click	New	then	enter	your	text,	e.g.	QString	fileName.	If

one	or	more	items	exist	right	clicking	will	popup	a	two	item	menu	with
New	and	Delete	as	options.	To	edit	code	just	click	the	name	of	a	function	to
invoke	the	code	editor.	Code	editing	and	creating	slots	are	covered	later.

If	you	subclass	the	form	you	create	your	own	.cpp	files	which	can	contain
your	own	constructor,	destructor,	functions,	slots,	declarations	and	variables
as	your	requirements	dictate.	(See	Subclassing	for	more	information.)

In	the	example	we	used	Qt	Designer's	layout	tools	to	lay	out	our	widgets.	We
will	use	the	layout	tools	again	in	the	examples	presented	in	later	chapters.	If	you
want	to	use	absolute	positioning,	i.e.	to	place	and	size	your	widgets	with	exact
pixel	sizes	you	can	easily	do	so.	To	place	a	widget	click	it	and	drag	it	to	the
desired	position.	To	resize	it,	click	it,	and	drag	one	of	the	sizing	handles	(these
are	small	blue	squares)	until	the	size	is	right.	To	stop	the	widget	from	resizing
when	the	window	is	resized	change	the	hSizeType	and	vSizeType	(these	are
properties	within	the	sizePolicy	property),	to	Fixed.

Previewing

Although	Qt	Designer	presents	an	accurate	view	of	our	forms	we	often	want	to
see	what	a	form	looks	like	when	it	is	run.	It	is	also	useful	to	be	able	to	test	out
some	aspects	of	the	form,	for	example	how	the	form	scales	when	resized	or	how
the	splitters	work	in	practice.	If	we're	building	multiplatform	applications	it	is
also	useful	to	see	how	the	form	will	look	in	different	environments.

To	see	a	preview	either	click	Preview|Preview	Form	or	press	Ctrl+T.	To	leave
preview	mode	close	the	window	in	the	standard	way	for	your	environment.	To
view	previews	which	show	how	the	application	will	look	on	other	platforms
click	the	Preview	menu	and	click	one	of	the	menu	items	that	drop	down.

Preview	the	multiclip	form	and	try	out	the	splitter	and	try	resizing	the	form.	In
all	probability	you	moved	the	splitter	to	the	right	to	reduce	the	size	of	the	buttons
to	make	the	form	more	attractive.	The	splitter	seemed	like	a	good	idea	but	in
practice	we	want	the	buttons	and	the	other	widgets	on	the	right	hand	side	to	take
up	a	fixed	amount	of	space.	Qt	Designer	makes	changing	layouts	very	easy,	so
we'll	fix	this	straight	away.

Previewing	Multiclip

Click	the	splitter	then	click	the	Break	Layout	toolbar	button;	the	splitter	will	be
removed.	Now	click	the	form	itself,	near	the	bottom,	and	drag	the	rubber	band	so
that	it	touches	both	the	list	box	and	some	of	the	buttons,	then	release.	The	list
box	group	and	the	buttons	group	are	selected;	click	the	Lay	Out	Horizontally
toolbar	button.	Click	the	form	then	click	the	Lay	Out	Vertically	toolbar	button.
The	form	is	now	laid	out	as	we	require.	Preview	the	form	(press	Ctrl+T)	and	try
resizing	it.

It	would	be	useful	if	you	experimented	further	with	layouts	since	they	work
visually	and	are	best	learnt	through	practice.	To	remove	a	layout	click	the	Break
Layout	toolbar	button;	to	apply	a	layout	select	the	relevant	widgets	or	groups
and	click	a	layout	button.	You	can	preview	as	often	as	you	like	and	you	can
always	undo	any	changes	that	you	make.

Let's	try	an	experiment,	to	see	how	the	grid	layout	works.	Click	the	list	box,	then
press	Ctrl+B	(break	layout).	Click	one	of	the	buttons	and	press	Ctrl+B.	Click
the	form	at	the	bottom	and	drag	until	all	the	widgets	are	touching	or	within	the
rubber	band,	(but	excluding	the	Current	Clipping	label	and	the	currentLineEdit
line	edit);	then	release.	Press	Ctrl+G	(lay	out	in	a	grid).	Click	the	form,	then
click	Ctrl+L	(lay	out	vertically).	Our	original	design	is	back	--	but	this	time
using	a	grid	layout.

Changing	the	Tab	Order

Keyboard	users	press	the	Tab	key	to	move	the	focus	from	widget	to	widget	as
they	use	a	form.	The	order	in	which	the	focus	moves	is	called	the	tab	order.
Preview	multiclip	(press	Ctrl+T)	and	try	tabbing	through	the	widgets.	The	tab

order	may	not	be	what	we	want	so	we'll	go	into	tab	order	mode	and	change	it	to
the	order	we	want.

When	you	click	the	Tab	Order	toolbar	button	a	number	in	a	blue	circle	will
appear	next	to	every	widget	that	can	accept	keyboard	focus.	The	numbers
represent	each	widget's	tab	order,	starting	from	1.	You	change	the	tab	order	by
clicking	the	widgets	in	the	order	you	want	to	be	the	new	tab	order.	If	you	make	a
mistake	and	need	to	start	again,	double	click	the	widget	you	want	to	be	first,	then
click	the	other	widgets	in	the	required	order	as	before.	When	you've	finished
press	Esc	to	leave	tab	order	mode.	If	you	made	a	mistake	or	preferred	the
previous	tab	order	you	can	undo	your	changes	by	leaving	tab	order	and	undoing
(press	Esc	then	Ctrl+Z).

Click	the	Tab	Order	toolbar	button,	then	click	the	current	clipping	Line	Edit	--
even	if	it	is	already	number	one	in	the	tab	order.	Next	click	the	previous	clipping
ListBox,	then	the	auto	add	clippings	CheckBox.	Click	each	button	in	turn	from
top	(add	clipping)	to	bottom	(quit).	Press	Esc	to	finish	tab	order	mode,	then
preview	the	form	and	try	tabbing	through	the	widgets.

Note	that	you	can	stop	clicking	if	the	tab	order	numbers	for	all	the	widgets	is
correct;	just	press	Esc	to	leave	tab	order	mode.

Setting	the	Tab	Order

Connecting	Signals	and	Slots

Qt	provides	the	signals	and	slots	mechanism	for	communicating	between
widgets.	Signals	are	emitted	by	widgets	when	particular	events	occur.	We	can
connect	signals	to	slots,	either	pre-defined	slots	or	those	we	create	ourselves.	In
older	toolkits	this	communication	would	be	achieved	using	callbacks.	(For	a	full
explanation	of	Qt's	signals	and	slots	mechanism	see	the	on-line	Signals	and	Slots
documentation.)

Connecting	Predefined	Signals	and	Slots

Some	of	an	application's	functionality	can	be	obtained	simply	by	connecting	pre-
defined	signals	and	slots.	In	multiclip	there	is	only	one	pre-defined	connection
that	we	can	use,	but	in	the	richedit	application	that	we'll	build	in	Creating	Main
Windows	with	Actions,	Toolbars	and	Menus	we	will	use	many	pre-defined
signals	and	slots	to	get	a	lot	of	the	functionality	we	need	without	having	to	write
any	code.

We	will	connect	the	Quit	button's	clicked()	signal	to	the	form's	accept()	slot.
The	accept()	slot	notifies	the	dialog's	caller	that	the	dialog	is	no	longer
required;	since	our	dialog	is	our	main	window	this	will	close	the	application.
Preview	the	form	(press	Ctrl+T);	click	the	Quit	button.	The	button	works
visually	but	does	nothing.	Press	Esc	or	close	the	preview	window	to	leave	the
preview.

Click	the	Connect	Signals/Slots	toolbar	button.	Click	the	Quit	button,	drag	to
the	form	and	release.	The	Edit	Connections	dialog	will	pop	up.	The	top	left	hand
list	box	lists	the	Signals	that	the	widget	we've	clicked	can	emit.	At	the	top	right
is	a	combobox	which	lists	the	form	and	its	widgets;	any	of	these	are	candidates
for	receiving	signals.	Since	we	released	on	the	form	rather	than	a	widget	the
slots	combobox	shows	the	form's	name,	'MulticlipForm'.	Beneath	the	combobox
is	a	list	box	which	shows	the	slots	available	in	the	form	or	widget	shown	in	the
combobox.	Note	that	only	those	slots	that	can	be	connected	to	the	highlighted
signal	are	shown.	If	you	clicked	a	different	signal,	for	example	the	toggled()
toggled()	signal,	the	list	of	available	slots	would	change.	Click	the	signal,	then
click	the	The	connection	will	be	shown	in	the	Connections	list	box.	Click	OK.

http://doc.trolltech.com/signalsandslots.html

Connecting	the	clicked()	Signal	to	the	accept()	Slot

We	will	make	lots	of	signal/slot	connections	as	we	work	through	the	examples,
including	connections	to	our	own	custom	slots.	Signal/slot	connections	(using
pre-defined	signals	and	slots)	work	in	preview	mode.	Press	Ctrl+T	to	preview
the	form;	click	the	form's	Quit	button.	The	button	now	works	correctly.

Creating	and	Connecting	Custom	Slots

In	the	first	version	of	Qt	Designer	you	could	create	the	signatures	of	your
custom	slots	and	make	the	connections,	but	you	could	not	implement	your	slots
directly.	Instead	you	had	to	subclass	the	form	and	code	your	slots	in	the	subclass.
The	subclassing	approach	is	still	available,	and	makes	sense	in	some	situations.
But	now	you	can	implement	your	slots	directly	in	Qt	Designer,	so	for	many
dialogs	and	windows	subclassing	is	no	longer	necessary.	(Qt	Designer	stores	the
slot	implementations	in	a	.ui.h	file;	see	The	ui.h	extension	approach	in	The
Designer	Approach	chapter	for	more	about	these	files.)

The	multiclip	application	requires	four	slots,	one	for	each	button,	but	only	three
need	to	be	custom	slots	since	we	connected	a	signal	to	a	pre-defined	slot	to	make
the	Quit	button	functional.	We	need	a	slot	for	the	Add	Clipping	button;	this	will
add	the	current	clipping	to	the	list	box.	The	Copy	Previous	button	requires	a	slot
which	will	copy	the	selected	list	box	item	to	the	current	clipping	line	edit	(and	to
the	clipboard).	The	Delete	Clipping	button	needs	a	slot	to	delete	the	current
clipping	and	the	current	list	box	item.	We	will	also	need	to	write	some
initialization	code	so	that	when	the	application	starts	it	will	put	the	current
clipboard	text	(if	any)	into	the	line	edit.	The	code	is	written	directly	in	Qt
Designer;	the	snippets	are	taken	from	the	generated
qt/tools/designer/examples/multiclip/multiclip.ui.h	file.

We'll	need	Qt's	global	clipboard	object	throughout	the	code	which	would	mean
calling	QApplication::clipboard()	or	qApp->clipboard()	in	several	places.
Rather	than	perform	all	these	function	calls	we'll	keep	a	pointer	to	the	clipboard
in	the	form	itself.	Click	the	Source	tab	of	the	Object	Explorer.	(If	the	Object
Explorer	isn't	visible	click	Window|Views|Object	Explorer.)	The	Source	tab
shows	us	the	functions	in	our	form,	the	class	variables,	the	forward	declarations
and	the	names	of	the	include	files	we've	asked	for.

Right	click	the	Class	Variables	item	(near	the	bottom;	you	may	have	to	click	the
scrollbar),	then	click	New	on	the	popup	menu.	(If	there	had	been	any	existing
variables	the	popup	menu	would	also	have	a	Delete	option.)	Type	in	'QClipboard
*cb;'	and	press	Enter.	We	will	create	an	init()	function	in	which	we	will	assign
this	pointer	to	Qt's	global	clipboard	object.	We	also	need	to	declare	the	clipboard
header	file.	Right	click	Includes	(in	Declaration),	then	click	New.	Type	in
'<qclipboard.h>'	and	press	Enter.	Since	we	need	to	refer	to	the	global
application	object,	qApp,	we	need	to	add	another	include	declaration.	Right	click
Includes	(in	Implementation),	then	click	New.	Type	in	'<qapplication.h>'	and
press	Enter.	The	variable	and	declarations	will	be	included	in	the	code
generated	from	Qt	Designer's	.ui	file.

We	will	invoke	Qt	Designer's	code	editor	and	write	the	code.

We'll	create	the	init()	function	first.	One	way	of	invoking	the	code	editor	is	to
click	the	Source	tab,	then	click	the	name	of	the	function	you	want	to	work	on.	If
you	have	no	functions	or	wish	to	create	a	new	function	you	need	to	use	the
Source	tab.	Right	click	the	'protected'	item	in	the	Source	tab's	Slots	list,	then	left
click	New	to	launch	the	Edit	Slots	dialog.	Change	the	slot's	name	from	'newSlot'

to	'init()'	then	click	OK.	You	can	then	click	inside	the	editor	window	that	appears
to	enter	your	code.

Note	that	you	are	not	forced	to	use	Qt	Designer's	code	editor;	so	long	as	you
add,	delete	and	rename	your	slots	all	within	Qt	Designer,	you	can	edit	the
implementation	code	for	your	slots	using	a	separate	external	editor	and	Qt
Designer	will	preserve	the	code	you	write.

				void	MulticlipForm::init()

				{

								lengthLCDNumber->setBackgroundColor(darkBlue);

								currentLineEdit->setFocus();

								cb	=	qApp->clipboard();

								connect(cb,	SIGNAL(dataChanged()),	SLOT(dataChanged()));

								if	(cb->supportsSelection())

												connect(cb,	SIGNAL(selectionChanged()),	SLOT(selectionChanged()));

								dataChanged();

				}

The	first	couple	of	lines	change	the	LCD	number's	background	color	and	make
the	form	start	with	the	focus	in	the	line	edit.	We	take	a	pointer	to	Qt's	global
clipboard	and	keep	it	in	our	class	variable,	cb.	We	connect	the	clipboard's
dataChanged()	signal	to	a	slot	called	dataChanged();	we	will	create	this	slot
ourselves	shortly.	If	the	clipboard	supports	selection	(under	the	X	Window
system	for	example),	we	also	connect	the	clipboard's	selectionChanged()
selectionChanged()	signal	to	a	slot	of	the	same	name	that	we	will	create.
Finally	we	call	our	dataChanged()	dataChanged()	slot	to	populate	the	line	edit
with	the	clipboard's	text	(if	any)	when	the	application	begins.

Since	we've	referred	to	the	dataChanged()	and	selectionChanged()	slots	we'll
code	them	next,	starting	with	dataChanged().

				void	MulticlipForm::dataChanged()

				{

								QString	text;

								text	=	cb->text();

								clippingChanged(text);

								if	(autoCheckBox->isChecked())

												addClipping();

				}

We	take	a	copy	of	the	clipboard's	text	and	call	our	own	clippingChanged()	slot

with	the	text	we've	retrieved.	If	the	user	has	checked	the	Auto	Add	Clippings
checkbox	we	call	our	addClipping()	slot	to	add	the	clipping	to	the	list	box.

The	only	applicable	under	the	X	Window	System.	Users	of	MS	Windows	can
still	include	the	code	to	ensure	that	the	application	works	multiplatform.

				void	MulticlipForm::selectionChanged()

				{

								cb->setSelectionMode(TRUE);

								dataChanged();

								cb->setSelectionMode(FALSE);

				}

We	tell	the	clipboard	to	use	selection	mode,	we	call	our	dataChanged()
dataChanged()	slot	to	retrieve	any	selected	text,	then	set	the	clipboard	back	to
its	default	mode.

In	the	another	custom	slot,	clippingChanged().

				void	MulticlipForm::clippingChanged(const	QString	&	clipping)

				{

								currentLineEdit->setText(clipping);

								lengthLCDNumber->display((int)clipping.length());

				}

We	set	the	line	edit	to	whatever	text	is	passed	to	the	clippingChanged()	slot	and
update	the	LCD	number	with	the	length	of	the	new	text.

The	next	slot	we'll	code	will	perform	the	Add	Clipping	function.	This	slot	is
called	by	our	code	internally	(see	the	dataChanged()	slot	above),	and	when	the
user	clicks	the	Add	Clipping	button.	Since	we	want	Qt	Designer	to	be	able	to	set
up	a	connection	to	this	slot	instead	of	just	typing	it	in	the	editor	window	we'll	let
Qt	Designer	create	its	skeleton	for	us.	Click	Edit|Slots	to	invoke	the	Edit	Slots
dialog.	Click	New	Slot	and	replace	the	default	name	of	'new_slot()'	with
'addClipping()'.	There	is	no	need	to	change	the	access	specifier	or	return	type.
Now	that	we've	created	our	slot	we	can	implement	it	in	the	code	editor	where	it
has	now	appeared.

The	Add	Clipping	button	is	used	to	copy	the	clipping	from	the	Current	Clipping
line	edit	into	the	list	box.	We	also	update	the	length	number.

				void	MulticlipForm::addClipping()

				{

								QString	text	=	currentLineEdit->text();

								if	(!	text.isEmpty())	{

												lengthLCDNumber->display((int)text.length());

												int	i	=	0;

												for	(;	i	<	(int)clippingsListBox->count();	i++)	{

																if	(clippingsListBox->text(i)	==	text)	{

																				i	=	-1;	//	Do	not	add	duplicates

																				break;

																}

												}

												if	(i	!=	-1)

																clippingsListBox->insertItem(text,	0);

								}

				}

If	there	is	some	text	we	change	the	LCD's	value	to	the	length	of	the	text.	We	then
iterate	over	all	the	items	in	the	list	box	to	see	if	we	have	the	same	text	already.	If
the	text	is	not	already	in	the	list	box	we	insert	it.

To	make	the	Add	Clipping	button	functional	we	need	to	connect	the	button's
addClipping()	slot.	Click	the	Connect	Signals/Slots	toolbar	button.	Click	the
Add	Clipping	button,	drag	to	the	form	and	release.	(Make	sure	you	drag	to	the
form	rather	than	another	widget	--	the	form	will	have	a	thin	pink	border	during
the	drag.	If	you	make	a	mistake	simply	change	the	name	in	the	Slots	combobox.)
The	Edit	Connections	dialog	will	appear.	Click	the	addClipping()	slot.	Click
OK	to	confirm	the	connection.

The	Copy	Previous	button	is	used	to	copy	the	selected	clipping	from	the	list	box
into	the	line	edit.	The	clipping	is	also	placed	on	the	clipboard.	The	procedure	is
the	same	as	for	the	Add	Clipping	button:	first	we	create	the	slot,	then	we
implement	it	and	finally	we	connect	to	it:

1.	 Create	the	slot.

Click	the	Edit|Slots	menu	item	to	invoke	the	Edit	Slots	dialog.	Click	New
Slot	and	replace	the	default	'new_slot()'	name	with	'copyPrevious()'.	Click
OK.

2.	 Implement	the	slot.

				void	MulticlipForm::copyPrevious()

				{

								if	(clippingsListBox->currentItem()	!=	-1)	{

												cb->setText(clippingsListBox->currentText());

												if	(cb->supportsSelection())	{

																cb->setSelectionMode(TRUE);

																cb->setText(clippingsListBox->currentText());

																cb->setSelectionMode(FALSE);

												}

								}

				}

The	code	for	Copy	Previous	checks	to	see	if	there	is	a	selected	item	in	the
list	box.	If	there	is	the	item	is	copied	to	the	line	edit.	If	we	are	using	a
system	that	supports	selection	we	have	to	repeat	the	copy,	this	time	with
selection	mode	set.	We	don't	explicitly	update	the	clipboard.	When	the	line
edit's	text	is	changed	it	emits	a	dataChanged()	signal	which	our
dataChanged()	slot	receives.	Our	dataChanged()	slot	updates	the
clipboard.

3.	 Connect	to	the	slot.

Click	the	Connect	Signals/Slots	toolbar	button.	Click	the	Copy	Previous
button,	drag	to	the	form	and	release.	The	Edit	Connections	dialog	will	pop
up.	Click	the	clicked()	signal	and	the	copyPrevious()	slot.	Click	OK.

We	take	the	same	approach	to	the	Delete	Clipping	button.

1.	 Click	Edit|Slots	to	invoke	the	Edit	Slots	dialog.	Click	New	Slot	and	replace
the	default	name	with	'deleteClipping()'.	Click	OK.

2.	 The	Delete	button	must	delete	the	current	item	in	the	list	box	and	clear	the
line	edit.

				void	MulticlipForm::deleteClipping()

				{

								clippingChanged("");

								clippingsListBox->removeItem(clippingsListBox->currentItem());

				}

We	call	our	own	clippingChanged()	slot	with	an	empty	string	and	use	the
list	box's	removeItem()	function	to	remove	the	current	item.

3.	 Connect	the	Delete	Clipping	button's	clicked()	signal	to	our
deleteClipping()	slot.	(Press	F3	--	which	is	the	same	as	clicking	the
Connect	Signals/Slots	toolbar	button.	Click	the	Delete	Clipping	button	and

drag	to	the	form;	release.	The	Edit	Connections	dialog	will	appear.	Click
the	clicked()	signal	and	the	deleteClipping()	slot.	Click	OK.)

Compiling	and	Building	an	Application

So	far	we	have	written	about	99%	of	a	Qt	application	entirely	in	Qt	Designer.	To
make	the	application	compile	and	run	we	must	create	a	main.cpp	file	from
which	we	can	call	our	form.

The	simplest	way	to	create	a	new	source	file	is	by	clicking	File|New	to	invoke
the	'New	File'	dialog,	then	click	'C++	Source'	or	'C++	Header'	as	appropriate,
then	click	OK.	A	new	empty	source	window	will	appear.	Click	File|Save	to
invoke	the	Save	As	dialog,	enter	'main.cpp',	then	click	Save.

Enter	the	following	code	in	the	main.cpp	C++	editor	window:

				#include	<qapplication.h>

				#include	"multiclip.h"

				int	main(int	argc,	char	*argv[])

				{

								QApplication	app(argc,	argv);

								MulticlipForm	clippingForm;

								app.setMainWidget(&clippingForm);

								clippingForm.show();

								return	app.exec();

				}

The	program	creates	a	QApplication	object	and	an	instance	of	our
MulticlipForm,	sets	the	form	to	be	the	main	widget	and	shows	the	form.	The
app.exec()	call	starts	off	the	event	loop.

Now	start	up	a	console	(or	xterm),	change	directory	to	the	multiclip	application
and	run	qmake.	A	Makefile	compatible	with	your	system	will	be	generated:

qmake	-o	Makefile	multiclip.pro

You	can	now	make	the	application,	e.g.	by	running	make	or	nmake.	Try
compililng	and	running	multiclip.	There	are	many	improvement	you	could	make
and	experimenting	with	both	the	layout	and	the	code	will	help	you	learn	more

about	Qt	and	Qt	Designer.

This	chapter	has	introduced	you	to	creating	multiplatform	applications	with	Qt
Designer.	We've	created	a	form,	populated	it	with	widgets	and	laid	the	widgets
out	neatly	and	scalably.	We've	used	Qt's	signals	and	slots	mechanism	to	make	the
application	functional	and	generated	the	Makefile.	These	techniques	for	adding
widgets	to	a	form	and	laying	them	out	with	the	layout	tools;	and	for	creating,
coding	and	connecting	slots	will	be	used	time	and	again	as	you	create
applications	with	Qt	Designer.	The	following	chapters	will	present	further
examples	and	explore	more	techniques	for	using	Qt	Designer.

[Prev:	Preface]	[Home]	[Next:	Creating	Main	Windows	with	Actions,	Toolbars
and	Menus]

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

[Prev:	Creating	a	Qt	Application]	[Home]	[Next:	The	Designer	Approach]

Creating	Main	Windows	with	Actions,	Toolbars	and
Menus

In	this	chapter	we	will	explain	how	to	create	an	application's	main	window	and
how	to	add	actions	(explained	shortly),	menus	and	toolbars.	We	will	also
demonstrate	how	some	common	actions,	like	cut	and	paste	in	a	QTextEdit,	can
be	performed	automatically	simply	by	making	the	appropriate	signals	and	slots
connections.	We	will	build	the	richedit	application	to	illustrate	the	necessary
techniques.

The	Richedit	Application

We	begin	by	creating	a	project	file.	Start	Qt	Designer	or	if	it	is	already	running,
close	any	existing	projects	and	files.	Click	File|New	to	invoke	the	New	File
dialog.	Click	the	'C++	Project'	icon,	then	click	OK	to	invoke	the	Project	Settings
dialog.	Click	the	ellipsis	button	to	invoke	the	Save	As	dialog	and	navigate	to
where	you	want	to	put	the	new	project.	Use	the	Create	New	Folder	toolbar
button	to	create	the	'richedit'	directory	if	it	doesn't	exist.	Make	sure	you're	in	the
'richedit'	directory	(double	click	it)	and	enter	a	file	name	of	'richedit.pro'.	Click

the	Save	button.	The	'Project	File'	field	of	the	Project	Settings	dialog	will	have
the	path	and	name	of	your	new	project;	click	OK	to	create	the	project.

If	you're	unfamiliar	with	Actions	and	Action	Groups	the	sidebar	provides	the
necessary	introduction;	otherwise	skip	ahead	to	"Designing	the	Main	Window".

Actions	and	Action	Groups

An	action	is	an	operation	that	the	user	initiates	through	the	user	interface,
for	example,	saving	a	file	or	changing	some	text's	font	weight	to	bold.

We	often	want	the	user	to	be	able	to	perform	an	action	using	a	variety	of
means.	For	example,	to	save	a	file	we	might	want	the	user	to	be	able	to
press	Ctrl+S,	or	to	click	the	Save	toolbar	button	or	to	click	the	File|Save
menu	option.	Although	the	means	of	invoking	the	action	are	all	different,
the	underlying	operation	is	the	same	and	we	don't	want	to	duplicate	the
code	that	performs	the	operation.	In	Qt	we	can	create	an	action	(a	QAction
object)	which	will	call	the	appropriate	function	when	the	action	is	invoked.
We	can	assign	an	accelerator,	(e.g.	Ctrl+S),	to	an	action.	We	can	also	add
an	action	to	a	menu	item	and	to	a	toolbar	button.

If	the	action	has	an	on/off	state,	e.g.	bold	is	on	or	off,	when	the	user
changes	the	state,	for	example	by	clicking	a	toolbar	button,	the	state	of
everything	associated	with	the	action,	e.g.	menu	items	and	toolbar	buttons,
are	updated.

Some	actions	should	operate	together	like	radio	buttons.	For	example,	if	we
have	left	align,	center	align	and	right	align	actions,	only	one	should	be	'on'
at	any	one	time.	An	action	group	(a	QActionGroup	object)	is	used	to
group	a	set	of	actions	together.	If	the	action	group's	exclusive	property	is
TRUE	then	only	one	of	the	actions	in	the	group	can	be	on	at	any	one	time.
If	the	user	changes	the	state	of	an	action	in	an	action	group	where
exclusive	is	TRUE,	everything	associated	with	the	actions	in	the	action
group,	e.g.	menu	items	and	toolbar	buttons,	are	updated.

Qt	Designer	can	create	actions	and	action	groups	visually,	can	assign
accelerators	to	them,	and	can	associate	them	with	menu	items	and	toolbar
buttons.

Designing	the	Main	Window

We	will	use	the	main	window	wizard	to	build	a	main	window.	The	wizard	allows
us	to	create	actions	and	a	menu	bar	and	a	toolbar	through	which	the	user	can
invoke	the	actions.	We	will	also	create	our	own	actions,	menus	and	toolbar.	We
will	add	some	widgets	to	the	toolbar	and	add	a	main	widget	to	the	main	window.
Finally	we	will	connect	signals	to	slots	to	take	advantage	of	Qt's	default
functionality	and	minimize	our	coding.

Creating	the	Main	Window

Click	File|New	to	invoke	the	New	File	dialog,	click	Mainwindow,	then	click
OK.	A	new	QMainWindow	form	will	be	created	and	the	Mainwindow	Wizard
will	pop	up.

1.	 The	Choose	available	menus	and	toolbars	wizard	page	appears	first.	It
presents	three	categories	of	default	actions,	File	Actions,	Edit	Actions	and
Help	Actions.	For	each	category	you	can	choose	to	have	Qt	Designer	create
menu	items,	toolbar	buttons	and	signal/slots	connections	for	the	relevant
actions.	You	can	always	add	or	delete	actions,	menu	items,	toolbar	buttons
and	connections	later.

We	will	accept	the	defaults	for	File	Actions,	i.e.	have	menu	items,	toolbar
buttons	and	the	relevant	connections	created.	But	for	the	Edit	Actions	we
don't	want	any	connections	created	since	we'll	be	connecting	the	actions
directly	to	the	QTextEdit	we'll	create	later,	so	uncheck	the	Edit	Action's
Create	Slots	and	Connections	checkbox.	We	won't	have	any	Help	Actions
on	the	toolbar	so	uncheck	the	Help	Action's	Toolbar	checkbox.	Click	Next
to	move	on	to	the	next	wizard	page.

Main	Window	Wizard-	Choosing	menus	and	toolbars

2.	 The	Setup	Toolbar	wizard	page	is	used	to	populate	a	toolbar	with	actions
from	each	of	the	default	action	categories.	The	Category	combobox	is	used
to	select	which	set	of	actions	you	wish	to	work	on.	The	Actions	list	box	lists
the	actions	available	for	the	current	category.	The	Toolbar	listbox	lists	the
toolbar	buttons	you	want	to	create.	The	blue	left	and	right	arrow	buttons	are
used	to	move	actions	into	or	out	of	the	Toolbar	list	box.	The	blue	up	and
down	arrow	buttons	are	used	to	move	actions	up	and	down	within	the
Toolbar	list	box.	Note	that	the	'<Separator>'	item	in	the	Actions	list	box
may	be	moved	to	the	Toolbar	list	box	as	often	as	required	and	will	cause	a
separator	to	appear	in	the	finished	toolbar.

Copy	the	New,	Open	and	Save	Actions	to	the	Toolbar	list	box.	Copy	a
<Separator>	to	the	Toolbar	list	box.	Change	the	Category	to	Edit	and	copy
the	Undo,	Redo,	Cut	Copy	and	Paste	actions	to	the	Toolbar	list	box.	Click
Next	and	then	click	Finish.

Main	Window	Wizard-	Setting	up	the	toolbar

If	you	preview	the	form	(Ctrl+T)	the	File	and	Edit	menus	will	be	available	and
you'll	be	able	to	drag	the	toolbar	either	into	an	independent	window	of	its	own,
or	to	dock	it	to	the	left,	right,	bottom	or	top	of	the	window.	The	menus	and
toolbars	are	not	functional	yet	but	we	will	rectify	this	as	we	progress.

Previewing	the	Form

Click	File|Save	to	save	the	form	as	richedit.ui.

Creating	and	Deleting	Actions	and	Action	Groups

Creating	Actions

Our	application	requires	more	menu	items	and	toolbar	buttons	than	the	the
defaults	we	created	with	the	main	window	wizard.	But	before	we	create	the
menu	items	and	toolbar	buttons	we	will	create	the	actions	that	they'll	invoke.	The
Action	Editor	appears	automatically	when	you	create	a	main	window.	You	can
also	access	it	through	the	Window	menu	(click	Window|Action	Editor).

Action	Editor

For	the	richedit	application	we	need	to	create	actions	for	indicating	bold,	italic
and	underlined	font	attributes,	and	to	set	text	alignment.

Right	click	in	the	Action	Editor	where	the	actions	are	listed,	then	left	click	New
Action.	This	will	create	a	new	action	called	'Action'	at	the	top	of	the	list	of
actions.	The	Property	Editor	will	change	to	show	the	default	settings	for	the	new
action.	We'll	now	go	through	all	the	properties	we	need	to	change.

1.	 Change	the	name	of	the	action	to	'boldAction'.

2.	 Since	bold	can	only	be	on	or	off	change	the	toggleAction	property	to	True.

3.	 The	iconSet	property	is	used	to	set	an	icon	which	will	appear	to	the	left	of
the	action's	name	in	any	menu	you	associate	the	action	with.	The	iconSet	is
also	used	for	the	toolbar	button	if	you	associate	the	action	with	a	toolbar.
Click	the	ellipsis	button	(...)	to	invoke	the	Choose	an	Image	dialog.	The
ellipsis	button	appears	when	you	click	in	the	Value	part	of	the	Properties	list
by	a	pixmap	or	iconSet	property.	The	pixmap	we	require	is	not	in	the	default
collection.	Click	the	Add	button	and	a	file	dialog	will	appear.	The	icons	we
require	are	in	the	Qt	examples	directory,	qt/examples/textedit/.
Navigate	to	the	textedit	directory	and	select	the	textbold.xpm	file	and	then
click	Open.	Click	the	new	textbold	icon	in	the	pixmap	collection	then	click
OK.

Properties	of	Bold	Action

4.	 Change	the	text	property	to	'bold'.	This	automatically	changes	the	menuText,
toolTip	and	statusTip	properties.

5.	 Change	the	menu	text	to	'&Bold'.	If	we	choose	to	associate	this	action	with
a	menu	item	then	this	property	is	used;	otherwise	it	is	ignored.

6.	 Change	the	accel	property	to	'CTRL+B'.	This	will	associate	the	Ctrl+B
keyboard	accelerator	with	this	action.

Properties	for	the	Bold	Action

Note	that	at	this	point	the	only	way	to	invoke	this	action	is	to	use	the	keyboard
accelerator	(Ctrl+B),	because	we	have	not	yet	associated	the	action	with	a	menu
item	or	with	a	toolbar	button.

We	need	to	add	two	more	actions,	italic	and	underline.	For	each	one	right	click
the	Action	Editor	and	click	New	Action.	Then	repeat	the	steps	listed	above	to
change	each	action's	properties:

For	the	italic	action	change	its	name	to	'italicAction'	and	ensure	its
toggleAction	property	is	True.	The	iconSet	is	in	the	textedit	directory	and	is
called	textitalic.xpm;	add	its	pixmap	in	the	same	way	that	we	added	the
bold	pixmap.	(For	example,	click	the	ellipsis	(...),	click	Add,	navigate	to	the
textedit	directory	and	click	the	textitalic.xpm	pixmap	and	then	click
Open.	Then	click	the	textitalic	icon	in	the	pixmap	collection	and	click	OK).
Change	the	action's	text	to	'italic',	its	menuText	to	'&Italic'	and	its	accel	to
'CTRL+I'.

For	the	underline	action	change	its	name	to	'underlineAction'	and	set	its
toggleAction	property	to	True.	The	iconSet	is	in	the	same	directory	and	is
called	textunder.xpm;	add	it	in	the	same	way	as	the	previous	pixmaps.
Change	its	text	to	'underline',	its	menuText	to	'&Underline'	and	its	accel	to
'CTRL+U'.

Creating	Action	Groups

It	is	perfectly	possible	to	have	bold,	italic	and	underline	all	active	at	once.	But
for	alignment,	i.e.	left	align,	right	align	and	centered,	it	only	makes	sense	for	one
of	them	to	be	active	at	any	one	time.	Because	we	need	the	alignment	actions	to
operate	in	sync	with	one	another	we	must	create	an	Action	Group	which	will
automatically	manage	the	behaviour	of	the	actions	it	contains	in	the	way	we
require.

Right	click	the	Action	Editor	then	left	click	New	Action	Group.	Change	the
action	group's	name	in	the	Property	Editor	to	'alignActionGroup',	and	change	its
text	to	'align'.	The	'exclusive'	property's	default	is	True.	This	ensures	that	only
one	action	within	the	action	group	can	be	'on'	at	any	one	time	which	is	the
behaviour	we	require.

We	create	the	actions	within	the	action	group	in	almost	the	same	way	as	before.

The	only	difference	is	that	we	must	right	click	the	alignActionGroup	(rather	than
an	Action)	and	then	left	click	New	Action	to	create	a	new	action	within	the
action	group.	We	will	create	three	new	actions	within	the	alignActionGroup:

1.	 Create	a	new	action	within	the	alignActionGroup	action	group.	Change	the
name	of	this	action	to	'leftAlignAction'	and	ensure	its	toggleAction	property
is	True.	Use	the	iconSet	in	the	textedit	directory	called	textleft.xpm,
adding	the	pixmap	to	the	pixmap	collection	in	the	same	way	as	we	added
the	textbold	pixmap	earlier.	Change	its	text	to	'left',	its	menuText	to	'&Left'
and	its	accel	to	'CTRL+L'.

Creating	an	Action	group

2.	 Create	another	new	action	within	alignActionGroup.	Change	this	action's
name	to	'rightAlignAction'	and	set	its	toggleAction	property	to	True.	Set	its
iconSet	to	textright.xpm	using	the	pixmap	collection	as	before.	Change	its
text	to	'right',	its	menuText	to	'&Right'	and	its	accel	to	'CTRL+R'.

3.	 Create	a	third	action	within	alignActionGroup.	Change	its	name	to
'centerAlignAction'	and	make	its	toggleAction	property	True.	Change	its
iconSet	to	textcenter.xpm.	Change	its	text	to	'center'	and	its	menuText	to
'&Center'.	We	won't	set	an	accelerator	for	this	action.

Align	Action	Group

Note	that	the	toolTip	and	statusTip	properties	were	inherited	from	the	action
group;	you	may	wish	to	change	these	to	be	specific	to	the	actions	concerned.

Deleting	Actions	and	Action	Groups

We	have	some	actions	that	we	don't	intend	providing	for	this	first	release,	for
example,	the	editFindAction	and	the	filePrintAction.	Click	editFindAction	and
then	click	the	Delete	Action	toolbar	button.	Delete	the	filePrintAction	in	the
same	way.	Action	Groups	(including	any	actions	they	contain)	can	also	be
deleted	with	the	Delete	Action	toolbar	button.

Deleting	editFindAction

Creating	and	Populating	a	Toolbar

All	the	actions	we	require	are	now	in	place	and	we	are	ready	to	create	a	new
toolbar	and	add	some	of	our	actions	to	it.	Right	click	on	the	right	hand	side	of
the	toolbar	area,	or	on	the	form,	then	left	click	Add	Toolbar.	The	new	toolbar	is
empty	and	is	visible	only	by	its	toolbar	handle.	(Toolbar	handle's	are	usually
represented	as	a	gray	area	containing	either	two	thick	vertical	lines	or	with	many
small	pits).

Toolbar	Handle

We'll	add	the	new	actions	we've	just	created.	Drag	the	alignActionGroup,	(not
any	action	it	contains),	to	the	new	toolbar	and	drop	it	on	the	toolbar	handle	to	the
right	of	the	vertical	lines.	The	three	alignment	actions	will	be	added	to	the
toolbar.

Dragging	the	Action	Group	to	the	Toolbar

Populating	the	Toolbar	with	an	Action	Group

The	bold,	italic	and	underline	actions	do	not	belong	to	an	action	group,	and	must
be	dragged	to	the	toolbar	individually.	Drag	the	bold	action	to	the	toolbar:	when
the	mouse	is	over	the	toolbar	a	thick	red	line	will	appear	indicating	the	position
at	which	the	toolbar	button	will	be	inserted;	drop	the	bold	action	on	the	toolbar.
Drag	the	italic	and	underline	actions	to	the	toolbar	and	drop	them	next	to	the
bold	button.	Separate	the	alignment	toolbar	buttons	from	the	font	related	buttons
by	right	clicking	the	centered	toolbar	button	and	clicking	Insert	Separator.

Toolbar	buttons	and	separators	(usually	represented	as	indented	vertical	gray
lines),	can	be	dragged	and	dropped	into	new	positions	in	the	toolbar	at	any	time.
Separators	can	be	inserted	by	right	clicking	a	toolbar	button	and	clicking	Insert
Separator.	Toolbar	buttons	and	separators	can	be	deleted	by	right	clicking	them
and	clicking	Delete	Item.	Toolbars	can	be	deleted	by	right	clicking	their	toolbar
handle	and	clicking	Delete	Toolbar.

If	you	preview	the	application	you'll	find	that	both	the	original	and	new	toolbar
can	be	dragged	to	different	docking	points	or	dragged	out	of	the	application	as
independent	tool	windows.

Toolbar	with	all	the	Actions	Added

Adding	Widgets	to	the	Toolbar

We	want	our	users	to	be	able	to	choose	the	font	and	font	size	from	the	toolbar.	To
achieve	this	we'll	create	a	font	combobox	and	a	font	size	spinbox	and	place	them
in	the	formatting	toolbar	we	created	in	the	previous	section.

Click	Qt	Designer's	ComboBox	toolbar	button	and	click	the	last	(right-most)
toolbar	button	in	the	application's	new	toolbar.	Change	the	combobox's	name	to
'fontComboBox'.	Click	the	SpinBox	toolbar	button	and	click	the	combobox
we've	just	added	to	insert	the	spinbox	next	to	it.	Change	the	spinbox's	minValue
property	to	6,	its	value	property	to	10	and	its	suffix	to	a	space	followed	by	'pt'.
Insert	a	separator	to	the	left	of	the	combobox.

Adding	Widgets	to	the	Toolbar

Although	you	can	put	any	widget	into	a	toolbar	we	recommend	that	widgets
which	can	be	associated	with	an	action	should	not	be	added	to	the	toolbar
directly.	For	these	widgets,	i.e.	menu	items,	toolbar	buttons	and	lists	of	items,
you	should	create	an	action	(drop	down	action	for	a	list	of	items),	associate	the
action	with	the	widget,	and	add	the	action	to	the	toolbar.	Widgets	that	can
sensibly	be	inserted	directly	into	a	toolbar	are	ComboBoxes,	SpinBoxes	and	Line
Edits.

Creating	Menus

We'll	now	add	the	actions	we	added	to	the	new	toolbar	to	a	new	menu	and
modify	the	existing	menus	slightly.

Right	click	our	application's	menu	bar	and	click	Add	Menu	Item.	A	new	menu

item	called	'Menu'	will	appear.	Right	click	this	menu	item	and	click	Rename
Item.	Change	its	name	to	'F&ormat'.

Format	Menu

Click	the	menu	item	and	a	red	bar	will	appear	beneath	it	--	this	is	the	empty
menu.	Drag	the	alignActionGroup	from	the	Action	Editor	to	the	Format	menu
item	and	drop	the	action	group	on	the	menu.	(The	menu's	red	bar	will	appear	and
a	thick	red	line	will	be	drawn	where	the	new	menu	items	will	appear	--	drop
when	the	red	line	is	in	the	position	you	require.)	Now	if	you	click	the	Format
menu	item	the	three	alignment	actions	will	be	displayed.	Just	like	the	toolbar	we
must	add	the	bold,	italic	and	underline	actions	individually.	Drag	the	bold	action
to	the	Format	menu	and	move	the	mouse	so	that	the	red	line	is	positioned	at	the
bottom	of	the	menu,	then	drop	the	action.	Repeat	this	process	for	the	italic	and
underline	actions.

Draggin	the	Action	Group	to	the	Menu	Bar

Dragging	and	Dropping	Align	Action	Group	to	the	Format	Menu

We'll	now	deal	with	the	separators	in	the	menus.	Firstly	we'll	add	a	separator	in
the	Format	menu	and	then	we'll	remove	some	redundant	separators	from	the
other	menus.	Click	the	Format	menu	and	right	click	the	bold	item	towards	the
top	of	the	highlighted	area;	click	Insert	Separator.	Note	that	you	could	also	right
click	the	center	align	item	towards	the	bottom	of	the	highlighted	area	to	insert
the	separator	between	the	align	actions	and	the	font	actions.	###Click	the	File
menu	and	right	click	one	of	the	separators	above	the	Exit	action;	click	Delete
Item.	Click	the	Edit	menu,	right	click	the	separator	at	the	very	bottom	of	the
menu	and	click	Delete	Item.	Delete	Item	can	be	used	to	delete	separators,	menu
items	and	menus.###

Click	the	Format	menu	and	drag	it	to	the	left	of	the	Help	menu,	then	drop	the
Format	menu.	(A	thick	red	bar	will	appear	to	indicate	the	insertion	postion.)
Both	menus	and	menu	items	may	be	dragged	and	dropped	to	different	positions
in	the	same	way.

Preview	the	application	and	try	clicking	the	alignment	and	font	style	toolbar
buttons	and	menu	items.	Qt	will	automatically	keep	the	state	of	the	menu	items
and	the	toolbar	buttons	synchronized.

Adding	and	Connecting	the	Main	Widget

Our	application	is	a	rich	text	editor,	but	so	far	there	has	been	nowhere	for	the
user	to	edit	text.	We'll	add	a	QTextEdit	widget	and	use	Qt's	signals	and	slots
mechanism	to	minimize	the	code	we	have	to	write	to	make	it	functional.

Click	Qt	Designer's	Richtext	Editor	(Text	Edit)	toolbar	button	and	click	in	the
center	of	the	form.	Click	the	form,	then	click	the	Lay	Out	Horizontally	toolbar
button.	We're	now	ready	to	make	the	connections	we	need;	but	first	we	will	do
some	renaming	to	make	things	easier	to	understand.	Click	on	the	Text	Edit
widget	and	change	its	name	property	to	'textEdit'.	Change	the	textFormat
property	to	'RichText'.	Change	the	name	of	the	form	to	'EditorForm'	and	its
caption	to	'Rich	Edit'.

Adding	Rich	Text	Edit	Widget

The	QTextEdit	widget	contains	built-in	functionality	for	cut	and	paste	and
various	other	editing	functions.	By	connecting	the	appropriate	signals	to	our
textEdit	we	can	take	advantage	of	this	functionality	without	the	need	to	write
any	code.

Connecting	Actions	to	Change	Font	Attributes

Click	the	underlineAction	in	the	Action	Editor,	then	click	the	Connect	button	in
the	Action	Editor	toolbar.	The	Edit	Connections	dialog	will	appear.	Click	the
toggled()	signal.	Since	we	wish	to	connect	this	signal	to	the	text	edit	widget,
drop	down	the	Slots	combobox	and	click	textEdit.	The	text	edit's	slots	that	can
respond	to	a	toggled	signal	will	appear	in	the	right	hand	list	box.	Click	the
setUnderline()	setUnderline()	slot,	then	click	OK.

Connecting	the	Underline	Action

Connect	up	the	bold	and	italic	actions	in	the	same	way.	(For	example,	click	the
bold	action	and	click	Connect.	Click	the	toggled()	signal,	change	the	Slots
combobox	item	to	textEdit	and	click	the	Click	OK.)	If	you	preview	the	form
you'll	find	that	you	can	enter	text	and	that	choosing	bold,	italic	or	underline	will
work.

Connecting	Actions	to	Implement	Cut,	Copy,	Paste,	Undo	and	Redo

The	cut,	copy,	paste,	undo	and	redo	actions	are	connected	in	the	same	way	as	the
font	attributes.	For	example,	click	the	editPasteAction	action	and	click	Connect.
Click	the	activated()	signal,	change	the	Slots	combobox	item	to	textEdit	and
click	the	the	connection.	Connect	the	cut,	copy,	undo	and	redo	actions	in	the
same	way.	(For	example,	click	the	editCopyAction	action,	click	Connect,	click
the	signal,	change	the	Slots	combobox	item	to	textEdit,	click	the	copy()	copy()
slot	then	click	OK.)	Then	the	cut,	copy,	paste,	undo	and	redo	actions	will	all
work	in	preview	mode.

Connecting	for	Text	Alignment

We	need	to	create	a	slot	to	receive	signals	from	alignment	actions	and	set	the

textEdit	widget's	alignment	state	accordingly.	One	approach	would	be	to	connect
each	individual	alignment	action	to	our	slot,	but	because	the	align	actions	are	in
a	group	we	will	connect	the	alignActionGroup	to	our	slot	and	determine	which
alignment	the	user	chose	from	the	QAction	pointer	that	is	passed.

Create	a	new	slot	with	the	signature	changeAlignment(QAction	*align).	(Click
Edit|Slots,	click	New	Slot,	enter	the	slot's	signature	and	click	OK.)	Click
alignActionGroup	in	the	Action	Editor,	then	click	Connect.	Connect	the
selected(QAction*)	signal	to	our	change	alignment	slot,	then	click	OK.

Connecting	the	Alignment	Actions

We'll	have	to	write	the	code	to	set	the	alignment	ourselves;	we'll	cover	this	in
Aligning	Text.

Connecting	for	Font	Names	and	Sizes

We'll	start	by	dealing	with	font	size	since	it's	easiest.	Click	the	Connect
Signals/Slots	toolbar	button	then	click	the	spinbox	and	drag	to	the	text	edit
widget;	release	on	the	text	edit.	Click	the	signal	and	then	click	the	textEdit's
setPointSize(int)	slot.	Click	OK	and	font	sizes	are	done.	(Since	font	sizes	are
handled	purely	through	built-in	signals	and	slots	they	work	in	preview	mode.)

Connecting	the	Font	Sizes

Connect	the	fontComboBox's	activated()	signal	to	the	textEdit's	setFamily()
slot.	This	connection	will	handle	updating	the	textEdit's	font	family	with	the
user's	choice	of	font.	Note	that	when	you	invoke	the	Edit	Connections	dialog	the
first	signal	that	is	highlighted	is	activated(int).	Since	the	setFamily()
setFamily()	slot	takes	a	QString	argument	it	does	not	appear	in	the	list	of	slots.
Only	those	slots	which	are	compatible	with	the	highlighted	signal	are	shown,	in
this	case,	slots	which	take	no	argument	or	which	take	an	integer	argument.	Click
the	activated(const	QString&)	signal	and	the	list	of	slots	will	change	to	those
which	take	no	argument	or	which	take	a	QString	argument;	the	list	will	now
include	setFamily()	since	this	takes	a	QString	argument.	We	will	have	to
populate	the	combobox	with	the	font	names	for	the	user	to	choose	from	in	code.
(See	the	in	Changing	Fonts.)	It's	a	good	idea	to	connect	the	fontComboBox's	the
textEdit's	will	ensure	that	after	the	user	has	changed	font	the	focus	will	return	to
the	text.

The	richedit	application	is	nearly	complete.	We	will	have	to	write	code	to	handle
text	alignment,	font	family	and	file	loading	and	saving.	We	will	also	write	the
code	for	application	exit	to	deal	correctly	with	any	unsaved	changes.

Converting	the	Design	into	an	Executable	Application

We've	built	the	user	interface	through	Qt	Designer	and	connected	those	slots	that
provided	sufficient	default	functionality.	The	last	steps	are	to	code	the	slots	that
require	customization	and	then	to	create	main.cpp	so	that	we	can	compile	and
build	our	application.

Implementing	the	Main	Window's	Functionality

When	the	user	starts	the	richedit	application	we	want	the	focus	to	be	in	the
textEdit	widget	so	we	need	to	create	an	init()	function	with	one	line	of	code	to
achieve	this.	(All	the	code	snippets	are	from
qt/tools/designer/examples/richedit/richedit.ui.h.)

				void	EditorForm::init()

				{

								textEdit->setFocus();

												}

We'll	add	more	to	this	function	later.

New	Files	and	Loading	and	Saving	Existing	Files

The	code	for	these	tasks	is	straightforward.	When	the	user	clicks	File|New	we
check	to	see	if	there	are	unsaved	changes	in	the	existing	text	and	give	them	the
opportunity	to	save,	continue	without	saving	or	cancel	the	operation.	When	the
user	opts	to	open	an	existing	file	or	exit	the	application	we	perform	the	same
check	and	offer	them	the	same	choices.

				void	EditorForm::fileNew()

				{

								if	(saveAndContinue("New"))

												textEdit->clear();

				}

The	fileNew()	function	clears	the	text	and	the	filename.

				void	EditorForm::fileOpen()

				{

								if	(saveAndContinue("Open"))	{

												QString	fn(QFileDialog::getOpenFileName(

																												QString::null,

																												"Rich	Text	Files	(*.htm*)",	this));

												if	(!fn.isEmpty())	{

																fileName	=	fn;

																QFile	file(fileName);

																if	(file.open(IO_ReadOnly))	{

																				QTextStream	ts(&file);

																				textEdit->setText(ts.read());

																}

												}

								}

				}

The	fileOpen()	function	asks	the	user	to	choose	a	file	using
QFileDialog::getOpenFileName().	If	they	choose	a	file	we	set	the	fileName
member	to	its	name,	open	it	and	read	its	contents	directly	into	the	text	edit	via	a
text	stream.

				void	EditorForm::fileSave()

				{

								if	(fileName.isEmpty())	{

												fileSaveAs();

								}	else	{

												QFile	f(fileName);

												if	(f.open(IO_WriteOnly))	{

																QTextStream	ts(&f);

																ts	<<	textEdit->text();

																textEdit->setModified(FALSE);

												}

								}

				}

If	there	is	no	current	file	name	we	call	fileSaveAs()	which	will	prompt	for	a
file	name	and	if	a	file	name	is	given	calls	fileSave().	If	we	have	a	file	name	we
open	a	file	and	write	the	text	from	the	text	edit	into	the	file	via	a	text	stream.	We
also	set	the	text	edit's	modified	property	to	FALSE.

				void	EditorForm::fileSaveAs()

				{

								QString	fn	=	QFileDialog::getSaveFileName(

																																				"",	"Rich	Text	Files	(*.htm*)",	this);

								if	(!fn.isEmpty())	{

												fileName	=	fn;

												fileSave();

								}

				}

The	fileSaveAs	function	prompts	the	user	for	a	file	name	and	if	they	give	a	file
name,	saves	the	text	to	the	file	by	calling	fileSave().

				void	EditorForm::fileExit()

				{

								if	(saveAndContinue("Exit"))

												qApp->exit();

				}

When	we	exit	the	application	we	must	perform	the	same	check	for	unsaved
changes	as	we've	done	in	the	preceding	functions,	so	we've	included	the
fileExit()	function's	code	here.

				int	EditorForm::saveAndContinue(const	QString	&	action)

				{

								int	continueAction	=	1;

								if	(textEdit->isModified())	{

												switch(QMessageBox::information(

																				this,	"Rich	Edit",

																				"The	document	contains	unsaved	changes.\n"

																				"Do	you	want	to	save	the	changes?",

																				"&Save",	"&Don't	Save",	"&Cancel	"	+	action,

																				0,	//	Enter	==	button	0

																				2))	{	//	Escape	==	button	2

												case	0:	//	Save;	continue

																				fileSave();

																				break;

												case	1:	//	Do	not	save;	continue

																				break;

												case	2:	//	Cancel

																				continueAction	=	0;

																				break;

												}

								}

								return	continueAction;

				}

The	saveAndContinue()	function	is	included	for	completeness.

Aligning	Text

				void	EditorForm::changeAlignment(QAction	*	align)

				{

								if	(align	==	leftAlignAction)

												textEdit->setAlignment(Qt::AlignLeft);

								else	if	(align	==	rightAlignAction)

												textEdit->setAlignment(Qt::AlignRight);

								else	if	(align	==	centerAlignAction)

												textEdit->setAlignment(Qt::AlignCenter);

				}

We	compare	the	chosen	alignment	action's	pointer	to	the	the	pointers	stored	in
the	form	and	if	we	get	a	match	set	the	appropriate	alignment	in	the	textEdit
widget.

Changing	Fonts

We've	already	connected	the	fontComboBox's	activated()	signal	to	the
textEdit's	setFamily()	slot	so	we	just	have	to	populate	the	combobox	with	the
font	names	when	we	call	init().

				void	EditorForm::init()

				{

								textEdit->setFocus();

								QFontDatabase	fonts;

								fontComboBox->insertStringList(fonts.families());

								QString	font	=	textEdit->family();

								font	=	font.lower();

								for	(int	i	=	0	;	i	<	fontComboBox->count();	i++)	{

												if	(font	==	fontComboBox->text(i))	{

																fontComboBox->setCurrentItem(i);

																break;

												}

								}

				}

The	first	line	sets	the	focus	as	we've	already	mentioned.	We	then	create	a
QFontDatabase	object	and	insert	its	list	of	font	families	into	the
fontComboBox.	Finally	we	set	the	fontComboBox's	current	item	to	the	textEdit's
current	font.

Making	the	Application	Run

With	all	the	connections	and	code	in	place	we	are	now	ready	to	make	our
application	run.	Click	on	the	Source	tab	of	the	Object	Hierarchy	window	and
click	on	the	Includes	(in	Implementation)	item.	We	need	to	include	the	files	that
our	source	code	depends	on.	Right	click	the	Includes	item	and	click	New.	Type
in	<qapplication.h>	for	fileExit()'s	exit()	call.	In	the	same	way	add
<qmessagebox.h>	for	saveAndContinue()'s	message	box,	<qfiledialog.h>	for

the	fileOpen()	and	fileSaveAs()	functions,	and	<qfontdatabase.h>	for	the
QFontDatabase	class	in	init().

We	referred	to	a	member	variable,	fileName,	in	our	source	code	so	we	must	add
it	to	the	form.	Click	the	Source	tab,	right	click	the	Class	Variables	item,	click
New	from	the	pop	up	menu,	then	enter	'QString	fileName;'.

The	simplest	way	to	create	a	new	source	file	is	by	clicking	File|New	to	invoke
the	'New	File'	dialog,	then	click	'C++	Source'	or	'C++	Header'	as	appropriate,
then	click	OK.	A	new	empty	source	window	will	appear.	Click	File|Save	to
invoke	the	Save	As	dialog,	enter	'main.cpp',	then	click	Save.	Enter	the	following
code	in	the	main.cpp	C++	editor	window:

				#include	<qapplication.h>

				#include	"richedit.h"

				int	main(int	argc,	char	*argv[])

				{

								QApplication	app(argc,	argv);

								EditorForm	richeditForm;

								app.setMainWidget(&richeditForm);

								richeditForm.show();

								return	app.exec();

				}

All	that's	left	to	do	is	to	generate	the	Makefile,	compile	and	run.	The	Makefile	is
created	with	qmake:	qmake	-o	Makefile	richedit.pro.

The	richedit	application	demonstrates	how	easy	it	is	to	create	a	Qt	application's
main	window	with	menus	and	dockable	toolbars.	A	great	deal	of	functionality
was	obtained	by	connecting	the	appropriate	built-in	signals	and	slots.	The
remaining	functionality	was	achieved	by	connecting	built-in	signals	to	our	own
custom	slots.	We	could	continue	developing	the	application,	for	example
updating	the	fontComboBox,	the	font	size	spinbox	and	the	actions	with	the	font
attributes	as	the	user	moves	the	cursor	through	their	text.	But	our	objective	has
been	to	demonstrate	the	creation	of	a	main	window	with	actions,	menus	and
toolbars	so	we	must	stop	at	this	point	and	leave	further	development	and
experimentation	to	you.

[Prev:	Creating	a	Qt	Application]	[Home]	[Next:	The	Designer	Approach]

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

[Prev:	Creating	Main	Windows	with	Actions,	Toolbars	and	Menus]	[Home]
[Next:	Subclassing	and	Dynamic	Dialogs]

The	Designer	Approach

Introduction

In	Qt	2.x,	Qt	Designer	was	a	visual	form	designer	for	editing	files	in	the	.ui	file
format.	Qt	Designer's	primary	goal	was	to	turn	the	most	tedious	part	of	GUI
programming	--	dialog	design	--	into	a	pleasant	experience.	From	an
architectural	point	of	view,	Qt	Designer	in	2.x	is	a	fairly	simple	program.	It	reads
and	writes	.ui	files.	Each	.ui	file	contains	an	XML	description	of	a	single
dialog	form.	A	second	utility	--	the	user	interface	compiler	uic	--	is	used	during
the	build	process	of	an	application	to	generate	C++	code	from	those	XML
descriptions.

For	Qt	3.0	our	ambitions	for	Qt	Designer	have	grown	beyond	single	dialog
editing.	In	addition	to	many	new	design	features	like	the	ability	to	creating	main
windows	and	actions,	the	new	version	introduces:

project	management	for	the	user	interface	part	of	your	application;

code	in	forms	Qt	Designer	provides	a	code	editor	so	that	you	can	code	your
slots	directly;	the	code	is	stored	in	.ui.h	files	and	eliminates	the	need	for
sub-classing	(although	you	can	still	subclass	if	you	prefer);

dynamic	form	loading	allows	you	to	load	.ui	files	at	runtime	which
provides	great	scope	for	design	customisation	separate	from	the	underlying
code.

The	purpose	of	this	chapter	is	to	explain	the	motivation	for	making	these
changes,	describe	the	new	concepts	involved	and	show	how	these	features	work
internally.

Qt	Designer	is	and	remains	a	visual	design	tool:	it	is	not	a	complete	integrated
development	environment.	Our	policy	is	to	make	GUI	development	as	easy	and
powerful	as	possible	without	locking	our	users	into	any	particular	tool:	Qt
Designer	makes	it	easy	to	create	and	modify	GUI	designs,	but	you	can	still
achieve	the	same	results	directly	in	code	using	a	plain	text	editor	if	you	prefer.

To	make	working	more	convenient,	Qt	Designer	now	includes	a	C++	editor	(as	a

plugin).	If	you	want	to	create	or	edit	a	form,	use	Qt	Designer.	If	you	want	edit
code	for	that	form,	you	can	use	the	C++	editor	in	Qt	Designer	as	well.	This	built-
in	editor	has	certain	benefits	stemming	from	its	tight	integration	with	the	visual
form	design	process	that	we	will	explain	later.	However,	if	you	prefer	using	the
editor	you're	used	to,	vim,	emacs,	notepad,	Microsoft	Visual	Studio,	etc.	you	can
still	do	so.

Project	management

Reading	and	writing	single,	non-connected	.ui	files	is	conceptually	simple	and
worked	fairly	well	in	Qt	2.x.	However,	it	lacked	certain	features	that	made	us
introduce	project	management	for	the	GUI	part	of	an	application	in	Qt	Designer.
The	main	benefits	of	project	management	are:

Grouping	forms	that	belong	together.

Sharing	images	between	different	forms.

Sharing	database	information	between	different	forms.

The	following	sections	explain	these	benefits	in	more	detail,	and	why	project
management	is	required	to	achieve	them.

Grouping	forms

Grouping	forms	means	that	Qt	Designer	maintains	a	list	of	the	.ui	files	that
belong	to	the	same	project.	This	makes	it	easy	to	switch	between	forms	with	a
single	mouse	click.

Sharing	images	in	a	image	collection

In	Qt	2.x's	Qt	Designer	each	form	included	the	images	it	required	and	no	images
were	shared.	This	led	to	duplication	when	several	forms	needed	to	use	the	same
images.	Furthermore	the	images	were	stored	in	the	XML	.ui	files	which	made
them	large.

As	a	workaround,	we	introduced	a	pixmap-loading	function	that	you	could
define	in	Qt	Designer.	It	then	was	your	responsibility	to	provide	the
implementation	of	this	function	in	your	application	code.	The	big	disadvantage

of	this	approach	was	that	you	couldn't	see	the	images	during	the	design	process
in	Qt	Designer.	This	not	only	makes	designing	a	form	less	visually	interesting,
but	also	has	a	noticeable	impact	on	geometry	management.

In	the	Qt	3.0	version	of	Qt	Designer	we've	introduced	the	concept	of	a	project
image	collection.	If	you	use	a	project	you	can	add	images	to	the	project's	image
collection,	and	these	images	can	be	shared	and	used	by	any	of	the	forms	you
include	in	the	project.	The	images	are	stored	as	PNGs	(portable	network
graphics)	in	a	subdirectory,	images/,	inside	the	project's	directory.	Whenever
you	modify	the	image	collection,	Qt	Designer	creates	a	source	file	which
contains	both	the	image	data	in	binary	format	and	a	function	to	instantiate	the
images.	The	images	are	accessible	by	all	forms	in	the	project	and	the	data	is
shared.

A	further	benefit	of	using	an	image	collection	is	that	the	images	are	added	to	the
default	QMimeSourceFactory.	This	way	they	are	accessible	from	rich-text	labels,
What's	This?	context	help	and	even	tooltips	through	standard	HTML	image	tags.
The	source	argument	of	the	image	tag	is	simply	the	image's	name	in	the	image
collection.	This	also	works	during	the	design	process	in	Qt	Designer.

Sharing	database	settings

Qt	3.0	introduces	a	brand	new	database	module,	the	Qt	SQL	module.	Qt
Designer	is	fully	integrated	with	the	SQL	module	and	can	show	live	data	from
the	databases	that	you	connect	to.

When	you've	opened	or	created	a	project	you	can	set	up	its	database	connections
using	the	Edit	Database	Connections	dialog	(invoked	by	the	Project|Database
Connections	menu	option).	The	connections	you	make	are	stored	in	a	.db	file.
When	you	reload	a	project	you	can	reconnect	by	going	to	the	Edit	Database
Connections	dialog,	clicking	a	connection	in	the	list	and	clicking	the	Connect
button.

In	most	non-trivial	database	applications	you	will	want	to	access	the	database
from	more	than	one	form.	This	is	why	the	.db	file	is	part	of	a	project,	not	just
part	of	a	single	form.

.pro	files

Qt	Designer	needs	to	store	information	on	projects,	for	example,	the	list	of
forms,	the	image	collection	and	information	about	available	databases	and	how
to	access	them.	The	majority	of	Qt	users	already	use	a	project	file	format	to
create	multiplatform	makefiles:	tmake	(and	with	Qt	3.0	qmake)	project	.pro	files.
These	files	already	contain	the	list	of	forms,	.ui	files,	used	in	the	project	for	uic.

We've	extended	the	sections	in	the	.pro	file	to	include	the	extra	information	that
Qt	Designer	needs	to	manage	projects.	For	example,	when	you	add	a	form	to
your	project	in	Qt	Designer,	it	is	automatically	added	to	the	FORMS	section	of
the	project	file,	and	thus	qmake	will	generate	the	required	build	rules	without	any
further	work.	Similarly,	the	images	are	added	to	the	IMAGES	section	and	thus
gets	automatically	compiled	into	your	executable.

We	don't	force	you	to	use	qmake;	if	you	prefer	another	build	system,	for	example
automake/autoconf	or	jam,	you	can	still	continue	to	use	it.	Look	upon	the	.pro
file	as	a	file	that	describes	the	GUI	part	of	your	application.	All	you	need	to	do	--
as	previously	--	is	add	the	.ui	files	and	the	images	collection	to	your	own
Makefiles.

Extending	the	functionality	of	a	form

First	let	us	look	at	a	small	figure	that	shows	the	relationship	between	.ui	files,
generated	code	and	application	code:

Qt	Designer	reads	and	writes	.ui	files,	e.g.	form.ui.	The	user	interface
compiler,	uic,	creates	both	a	header	file,	e.g.	form.h,	and	an	implementation
file,	e.g.	form.cpp,	from	the	.ui	file.	The	application	code	in	main.cpp
#includes	form.h.	Typically	main.cpp	is	used	to	instantiate	the	QApplication

object	and	start	off	the	event	loop.

While	this	approach	is	simple,	it	isn't	sufficient	for	more	complex	dialogs.
Complex	dialogs	tend	to	have	quite	a	lot	of	logic	attached	to	the	form's	widgets,
more	logic	than	can	usually	be	expressed	with	predefined	signals	and	slots.	One
way	of	handling	this	extra	logic	is	to	write	a	controller	class	in	the	application
code	that	adds	functionality	to	the	form.	This	is	possible	because	uic	generated
classes	expose	a	form's	controls	and	their	signals	to	the	public	space.	The	big
disadvantage	of	this	method	is	that	it's	not	exactly	Qt-style.	If	you	were	not	using
Qt	Designer,	you	would	almost	always	add	the	logic	to	the	form	itself,	where	it
belongs.

This	is	why	the	capability	of	adding	custom	slots	and	member	variables	to	a
form	was	added	to	Qt	Designer	early	on.	The	big	additional	benefit	with	this
approach	is	that	you	can	use	Qt	Designer	to	connect	signals	to	those	custom
slots,	in	the	same	elegant	graphical	way	that	is	used	to	connect	signals	to
predefined	slots.	The	uic	then	adds	an	empty	stub	for	each	custom	slot	to	the
generated	form.cpp	implementation	file.

The	big	question	now	is	how	to	add	custom	implementation	code	to	those
custom	slots.	Adding	code	to	the	generated	form.cpp	is	not	an	option,	as	this	file
gets	recreated	by	the	uic	whenever	the	form	changes	--	and	we	don't	want	a
combination	of	generated	and	handwritten	code.	There	are	two	possible
solutions,	which	we'll	cover	next.

The	subclassing	approach

A	very	clean	way	to	implement	custom	slots	for	generated	forms	is	via	C++
inheritance	as	shown	in	the	next	figure:

Here	the	user	wrote	an	additional	class	FormImpl,	which	is	split	into	the	header
file	formimpl.h	and	the	implementation	file	formimpl.cpp.	The	header	file
includes	the	uic	generated	form.h	and	reimplements	all	the	custom	slots.	This	is
possible	because	uic	generated	custom	slots	are	virtual.	In	addition	to
implementing	custom	slots,	this	approach	gives	the	user	a	way	to	do	extra
initialization	work	in	the	constructor	of	the	subclass,	and	extra	cleanups	in	the
destructor.

Because	of	these	benefits	and	its	flexibility,	this	approach	became	the	primary
way	of	using	Qt	Designer	in	Qt	2.x.

Note:	To	keep	the	namespace	clean,	most	users	did	not	follow	the	Form	and
FormImpl	naming	scheme	shown	in	the	figure,	but	instead	named	their	Qt
Designer	forms	FormBase	and	their	subclasses	Form.	This	made	a	lot	of	sense,
because	they	always	subclassed	and	were	using	those	subclasses	in	application
code.

The	ui.h	extension	approach

Despite	its	flexibility	and	cleanness,	the	subclassing	approach	has	some
disadvantages:

Subclassing	is	not	natural	and	easy	for	everybody.	Newcomers	to	object-
oriented	techniques	may	feel	uneasy	about	being	forced	to	subclass	for	such
a	simple	and	natural	thing	like	the	implementation	of	a	custom	slot.

Inheriting	generated	classes	is	an	additional	possible	source	of
programming	mistakes,	especially	if	the	number	of	reimplemented

functions	is	high	and	the	signatures	change	often	during	the	design	process.
To	make	the	development	process	smoother,	uic	generates	empty	stubs	for
custom	slots	rather	than	pure	virtual	functions.	While	this	approach	keeps
the	code	compiling	and	running,	programmers	can	find	themselves	in	a
situation	where	they	miss	a	runtime	warning	message	and	lose	time	before
they	find	a	small	spelling	error	in	their	subclass.

In	larger	projects	with	hundreds	of	forms,	the	additional	subclasses	can
make	a	noticeable	difference	in	terms	of	compilation	speed	and	code	size.

There	may	be	more	disadvantages,	but	these	were	reason	enough	for	us	to
investigate	alternative	solutions.	For	Qt	3.0,	we	came	up	with	a	new	concept,	the
ui.h	extension.

This	is	how	it	works:

In	addition	to	the	.ui	file,	form.ui,	Qt	Designer	reads	and	writes	another
associated	file	form.ui.h.	This	.ui.h	file	is	an	ordinary	C++	source	file	that
contains	implementations	of	custom	slots.	The	file	gets	included	from	the
generated	form	implementation	file	form.cpp	and	thus	can	be	totally	ignored	by
other	user	code.	The	reason	we	use	a	.h	extension	for	the	.ui.h	file	even	though
it	contains	C++	code	is	because	it	is	always	included,	and	because	it	is	easier	to
integrate	into	the	build	process	with	a	.h	extension.

The	form.ui.h	file	has	a	special	position	among	all	other	files.	It	is	a	shared

source	file	that	gets	written	and	read	by	both	the	user	and	Qt	Designer.	As	such
it	is	an	ordinary	revision	controlled	source	file	and	not	generated	by	uic.	Qt
Designer's	responsibility	is	to	keep	the	file	in	sync	with	the	custom	slot
definitions	of	the	associated	form:

1.	 Whenever	the	users	adds	a	new	slots	to	the	form,	Qt	Designer	adds	a	stub	to
the	.ui.h	file.

2.	 Whenever	the	user	changes	a	custom	slot's	signature,	Qt	Designer	updates
the	corresponding	implementation.

3.	 Whenever	the	user	removes	a	custom	slot,	Qt	Designer	removes	it	from	the
.ui.h	file.

This	way	integrity	is	guaranteed,	there	is	no	more	need	for	subclassing	and	no
more	danger	of	forgotten	or	misspelled	slots	in	subclasses.

You	can	edit	.ui.h	files	either	directly	in	Qt	Designer	with	the	built-in	C++
editor	plugin,	or	with	whatever	editor	you	prefer.	You	should	only	put	slot
implementations	in	the	.ui.h	file	and	you	should	always	add,	delete	or	rename
slots	within	Qt	Designer.	You	can	edit	the	implementations	of	the	slots	either
within	Qt	Designer	or	using	your	own	editor;	if	you	use	your	own	editor	Qt
Designer	will	keep	your	changes.

Construction	and	destruction

The	ui.h	extension	approach	has	one	disadvantage	compared	to	subclassing.
The	ui.h	file	only	contains	custom	slot	implementations,	but	the	objects	are	still
entirely	constructed	and	destructed	inside	the	generated	form.cpp	code.	This
leaves	the	user	without	the	possibility	of	doing	further	form	initializations	or
cleanups	that	you	normally	would	do	within	the	constructor	and	destructor
functions	of	a	C++	class.

To	work	around	this	limitation,	we	created	the	init/destroy	convention.	If	you
add	a	slot	Form::init()	to	your	form,	this	slot	will	be	called	automatically	at
the	end	of	the	generated	form	constructor.	Similarly,	if	you	add	a	slot
Form::destroy()	to	your	form,	the	slot	will	automatically	be	invoked	by	the
destructor	before	any	form	controls	get	deleted.	(These	slots	should	return	void.)
If	you	prefer	to	use	your	own	editor	you	must	still	create	these	functions	in	Qt

Designer;	once	created	you	can	then	write	your	implementation	code	either
using	Qt	Designer's	C++	editor	plugin	or	using	your	own	editor.

Loading	forms	dynamically

We	extracted	the	part	of	Qt	Designer	that	is	responsible	for	loading	and
previewing	a	form	into	a	library	of	its	own,	libqui.	A	new	class
QWidgetFactory	makes	it	possible	to	load	.ui	files	at	runtime	and	instantiate
forms	from	them.

This	dynamic	approach	keeps	the	GUI	design	and	the	code	separate	and	is	useful
in	environments	where	the	GUI	may	have	to	change	more	often	than	the
underlying	application	logic.	Ultimately,	you	can	provide	users	of	your
application	the	ability	to	modify	the	graphical	user	interface	without	the	need	for
a	complete	C++	development	environment.

Since	the	.ui	file	is	not	compiled	it	cannot	include	any	C++	code,	(e.g.	custom
slot	implementations).	We	provide	a	way	of	adding	those	implementations	via	a
controlling	QObject	subclass	that	you	pass	as	receiver	to	the	widget	factory.

This	concept	and	its	usage	is	explained	in	detail	in	the	Subclassing	and	Dynamic
Dialogs	chapter.

[Prev:	Creating	Main	Windows	with	Actions,	Toolbars	and	Menus]	[Home]
[Next:	Subclassing	and	Dynamic	Dialogs]

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

[Prev:	The	Designer	Approach]	[Home]	[Next:	Creating	Custom	Widgets]

Subclassing	and	Dynamic	Dialogs

This	chapter	describes	two	different	approaches	that	you	can	take	to	creating
forms	with	Qt	Designer.	Subclassing	is	used	to	extend	the	functionality	of	a
form	by	creating	your	own	class	based	upon	a	form	you	create	in	Qt	Designer.
Dynamic	dialogs	are	.ui	files	which	can	be	executed	by	a	Qt	application;	this
keeps	the	GUI	design	and	the	code	separate	and	is	useful	in	environments	where
the	GUI	may	have	to	change	more	often	than	the	underlying	application	logic.

Subclassing

We'll	start	with	a	general	description	of	how	to	subclass	a	form	and	follow	with	a
short	example.	Note	that	subclassing	has	some	disadvantages	compared	with
putting	your	code	into	a	form	directly;	see	Extending	the	functionality	of	a	form
in	The	Designer	Approach	chapter	for	details.

Generating	Source	Code	from	Qt	Designer	.ui	Files

Qt	Designer	reads	and	writes	qmake	.pro	(project)	files	which	are	used	to	record
the	files	used	to	build	the	application	and	from	which	Makefiles	are	generated.
Qt	Designer	also	reads	and	writes	.ui	(user	interface)	files.	These	are	XML	files
that	record	the	widgets,	layouts,	source	code	and	settings	you've	used	for	a	form.
Every	.ui	file	is	converted	by	the	uic	(user	interface	compiler)	into	a	C++	.h
file	and	a	C++	.cpp	file.	These	C++	files	are	then	read	by	moc	(meta	object
compiler),	and	finally	compiled	by	your	compiler	into	a	working	application.

If	you	create	applications	wholly	within	Qt	Designer	you	only	need	to	create	a
main.cpp.

If	you	create	the	main.cpp	file	within	Qt	Designer,	it	will	automatically	be
added	to	your	project	file	by	Qt	Designer.	If	you	create	the	main.cpp	file	outside
of	Qt	Designer	you	must	add	it	to	the	project	file	manually	by	adding	the
following	line	at	the	end	of	your	project's	.pro	file:

SOURCES	+=	main.cpp

You	can	then	use	qmake	to	generate	the	Makefile.	(For	example	qmake	-o

Makefile	myproject.pro.)	Running	make	(Linux,	Unix	or	Borland	compilers),
or	nmake	(Visual	C++),	will	then	call	uic,	moc	and	your	compiler	as	necessary	to
build	your	application.

If	you	use	Qt	Designer	to	create	your	main	window	and	dialogs,	but	also	add
other	C++	files,	or	if	you	subclass	any	of	your	forms	you	will	need	to	add	these
files	to	the	.pro	file	so	that	they	are	compiled	with	the	rest	of	your	application's
source	files.	Each	.h	file	that	you	create	separately	from	Qt	Designer	should	be
added	to	the	HEADERS	line,	and	each	.cpp	file	should	be	added	to	the	SOURCES
line,	just	as	we've	done	for	main.cpp.	If	you	get	undefined	reference	errors	it	is
worth	checking	that	you've	added	the	names	of	all	your	header	and
implementation	files	to	the	.pro	file.

Subclassing	a	Form

When	subclassing	a	form	it	is	helpful	to	use	a	naming	convention	to	help	us
identify	which	files	are	generated	from	Qt	Designer's	.ui	files	and	which	are
hand	coded.

Suppose,	for	example,	that	we	are	developing	a	dialog	and	writing	the	code
directly	in	Qt	Designer.	We	might	call	our	dialog	'OptionsForm'	and	the	.ui	file,
optionsform.ui.	The	automatically	generated	files	will	be	optionsform.h	and
optionsform.cpp.

If	we	were	developing	another	dialog,	but	this	time	one	that	we	intended	to
subclass,	we	want	to	make	it	easy	to	distinguish	between	the	automatically
generated	files	and	our	hand	coded	files.	For	example,	we	might	call	our	dialog
'SettingsFormBase'	and	the	.ui	file	settingsformbase.ui.	The	automatically
generated	files	would	then	be	called	settingsformbase.h	and
settingsformbase.cpp.	We	would	then	call	our	subclass	'SettingsForm'	and
code	it	in	the	files	settingsform.h	and	settingsform.cpp.

Any	subclass	of	a	form	should	include	the	Q_OBJECT	macro	so	that	slots	and
signals	will	work	correctly.	Once	you've	created	your	subclass	be	sure	to	add	the
.h	and	the	.cpp	files	to	the	.pro	project	file.	For	example	we	would	add	the
following	lines	for	our	subclassed	'SettingsForm'	at	the	end	of	the	.pro	file:

HEADERS	+=	settingsform.h

SOURCES	+=	settingsform.cpp

The	simplest	way	to	create	a	new	source	file	is	by	clicking	File|New	to	invoke
the	'New	File'	dialog,	then	click	'C++	Source'	or	'C++	Header'	as	appropriate,
then	click	OK.	A	new	empty	source	window	will	appear.	You	don't	need	to
manually	edit	the	.pro	file	since	Qt	Designer	will	add	them	for	you
automatically.

Qt	Designer	will	have	added

FORMS	=	settingsformbase.ui

to	the	project	file.	The	settingsformbase.h	and	settingsformbase.cpp	files
will	be	generated	from	the	.ui	file	automatically.

A	Subclassing	Example

We	will	write	a	small	example	dialog	to	show	the	use	of	subclassing	in	practice.
The	dialog	will	present	a	choice	of	customer	credit	ratings	with	an	option	of
choosing	a	'special'	rating	for	which	a	specific	amount	must	be	given.	We'll
implement	the	functionality	in	a	subclass.	We'll	start	by	creating	the	base	form
and	connecting	its	signals	and	slots,	then	we'll	create	the	subclass	and	a	simple
main.cpp	so	that	we	can	test	it.

Designing	the	Form

We'll	begin	by	creating	a	new	project.	Click	File|New,	then	click	the	'C++
Project'	icon	to	invoke	the	Project	Settings	dialog.	Click	the	ellipsis	button	to
invoke	the	Save	As	dialog;	navigate	to	the	project's	directory	(creating	it	if
necessary).	Make	sure	you're	in	the	project's	directory,	then	enter	a	project	name
of	'credit.pro'.	Click	the	Save	button	to	return	to	the	Project	Settings	dialog,	then
click	OK.	Now	we'll	add	a	form	to	the	project.	Click	File|New	to	invoke	the
New	File	dialog.	The	default	form	is	Dialog	which	is	what	we	want;	click	OK.
Resize	the	form	to	make	it	smaller;	it	should	be	about	2	inches	(5	cm)	square.
Change	the	form's	name	to	'CreditFormBase'	and	the	caption	to	'Credit	Rating'.
Save	the	form	as	creditformbase.ui.

We'll	now	add	the	widgets	we	need.

1.	 Click	the	Button	Group	toolbar	button,	then	click	near	the	top	left	of	the
form.	Resize	the	button	group	so	that	it	takes	up	approximately	half	the

form.	Change	the	button	group's	name	to	'creditButtonGroup'	and	its	title
property	to	'Credit	Rating'.

2.	 We'll	now	add	some	radio	buttons.	Double	click	the	Radio	Button	toolbar
button.	Click	towards	the	top	of	the	Credit	Rating	button	group	and	a	radio
button	will	appear.	Click	below	this	button,	to	create	a	second	radio	button,
then	click	below	the	second	button	to	create	a	third.	Now	we	will	switch	off
the	effect	of	the	double	click	by	clicking	the	Pointer	(arrow)	toolbar	button.
The	pointer	will	now	behave	normally,	i.e.	clicking	the	form	will	no	longer
create	more	radio	buttons.	Change	the	first	radio	button's	name	to
'stdRadioButton'	and	its	text	to	'&Standard'.	Change	its	checked	property	to
True.	Change	the	second	button's	name	to	'noneRadioButton'	and	its	text	to
'&None'.	Change	the	third	radio	button's	properties	to	'specialRadioButton'
and	'Sp&ecial'	respectively.

3.	 If	the	user	chooses	the	special	credit	rating	they	must	specify	an	amount.
Click	the	SpinBox	toolbar	button	and	click	the	form	just	below	the	button
group.	Change	the	spin	box's	name	to	'amountSpinBox'.	Change	its	prefix	to
'$	'	(note	the	space),	its	maxValue	to	'100000'	and	its	lineStep	to	'10000'.
Change	its	enabled	property	to	False.

4.	 Click	the	Push	Button	toolbar	button	and	click	the	form	below	the	spin
box.	Change	the	button's	name	to	'okPushButton',	its	text	to	'OK'	and	its
default	property	to	'True'.	Add	a	second	button	to	the	right	of	the	first.
Change	the	second	button's	name	to	'cancelPushButton'	and	its	text	to
'Cancel'.

We'll	now	lay	out	the	widgets	and	connect	up	the	slots	we	need.

1.	 Click	the	credit	rating	group	box	then	press	Ctrl+L	(lay	out	vertically).

2.	 Click	the	form	so	that	the	button	group	is	no	longer	selected.	Ctrl+Click
the	OK	button	and	drag	the	rubber	band	to	touch	the	Cancel	button,	then
release.	Press	Ctrl+H.

3.	 Click	the	form,	then	press	Ctrl+L.

The	widgets	will	be	laid	out	vertically,	each	one	stretching	to	fill	up	the
maximum	space	both	vertically	and	horizontally.	The	buttons	look	rather
large	since	they've	expanded	to	take	up	the	full	width	of	the	form.	It	might

look	more	attractive	to	make	the	buttons	smaller	using	spacers.	Click	the
OK	button,	then	press	Ctrl+B	(break	layout).	Resize	both	buttons	to	make
them	narrower	leaving	space	on	either	side	of	them.	Click	the	Spacer
toolbar	button	then	click	to	the	left	of	the	OK	button;	click	Horizontal	from
the	pop	up	spacer	menu.	Copy	this	spacer	and	place	the	copy	between	the
two	buttons.	Copy	the	spacer	again	and	place	the	copy	to	the	right	of	the
Cancel	button.	(For	the	second	and	third	spacers,	click	on	the	first	spacer,
press	Ctrl+C	then	Ctrl+V.	Drag	the	new	spacer	to	the	desired	position.)
Ctrl+Click	the	left	most	spacer	and	drag	the	rubber	band	so	that	it	touches
the	buttons	and	the	spacers,	then	release.	Press	Ctrl+H.	Click	the	form	then
press	Ctrl+L.

We'll	now	connect	the	signals	and	slots.	Press	F3	(connect	signals/slots),	then
click	the	OK	button.	Drag	to	the	form	and	release.	In	the	Edit	Connections
dialog	that	pops	up	connect	the	clicked()	signal	to	the	accept()	slot.	(Click	the
clicked()	signal,	click	the	accept()	slot,	then	click	OK.)	Connect	the	Cancel
button	to	the	reject()	slot	using	the	same	technique.

We	want	the	amount	spin	box	to	be	enabled	only	if	the	special	radio	button	is
checked.	Press	F3	(connect	signals/slots),	then	click	the	special	radio	button.
Drag	to	the	spin	box	and	release.	In	the	Edit	Connections	dialog	that	pops	up
click	the	toggled()	signal	and	the	setEnabled()	slot.

If	the	user	checks	the	standard	or	none	radio	buttons	we	want	to	set	the	amount
accordingly.	Press	F3,	then	click	the	credit	rating	button	group.	Drag	to	the	form
and	release.	Click	the	clicked()	signal.	We	want	to	connect	this	signal	to	our
own	custom	slot,	but	we	haven't	created	one	yet.	Click	the	Edit	Slots	button	and
the	Edit	Slots	dialog	will	pop	up.	Click	New	Slot	and	change	the	Slot's	name	to
'setAmount()'.	Click	OK.	This	new	slot	is	now	available	in	the	list	of	slots.	Click
the	setAmount()	slot	then	click	OK.

We'll	subclass	the	form	to	set	the	amount	in	the	spin	box	depending	on	which
radio	button	is	checked.	Save	the	form	as	'creditformbase.ui'	(press	Ctrl+S).

Creating	the	Test	Harness

Although	we	intend	our	dialog	to	be	used	within	an	application	it	is	useful	to
create	a	test	harness	so	that	we	can	develop	and	test	it	stand-alone.	Click
File|New	to	invoke	the	'New	File'	dialog,	then	click	'C++	Source',	then	click

OK.	In	the	editor	window	that	pops	up,	enter	the	following	code:

#include	<qapplication.h>

#include	"creditformbase.h"

int	main(int	argc,	char	*argv[])	

{

				QApplication	app(argc,	argv);

				CreditFormBase	creditForm;

				app.setMainWidget(&creditForm);

				creditForm.show();

				return	app.exec();

}

Note	that	we're	including	creditformbase.h	and	instantiating	a	CreditFormBase
object;	once	we've	written	our	subclass	we'll	replace	the	header	with	our
subclass,	creditform.h,	and	instantiate	a	CreditForm.

We	can	now	generate	the	application	with	qmake,	e.g.	qmake	-o	Makefile
credit.pro,	make	it	and	run	it.	The	form	should	run	fine,	but	doesn't	yet	have
the	behaviour	we	require.

Creating	the	Subclass

We	need	to	create	a	header	and	an	implementation	file	for	our	subclass.	The	code
for	our	subclass	is	minimal.	The	header	file	is
qt/tools/designer/examples/credit/creditform.h:

				#include	"creditformbase.h"

				class	CreditForm	:	public	CreditFormBase

				{

								Q_OBJECT

				public:

								CreditForm(QWidget*	parent	=	0,	const	char*	name	=	0,

																				bool	modal	=	FALSE,	WFlags	fl	=	0);

								~CreditForm();

				public	slots:

								void	setAmount();

				};

We've	declared	the	slot,	setAmount(),	that	we	created	in	Qt	Designer.	The
Q_OBJECT	macro	is	included	because	it	is	essential	for	classes	that	use	signals

and	slots.

The	implementation	in	qt/tools/designer/examples/credit/creditform.cpp
is	simple:

				#include	<qradiobutton.h>

				#include	<qspinbox.h>

				#include	"creditform.h"

				CreditForm::CreditForm(QWidget*	parent,	const	char*	name,

																												bool	modal,	WFlags	fl)

								:	CreditFormBase(parent,	name,	modal,	fl)

				{

								setAmount();

				}

				CreditForm::~CreditForm()	{	/*	NOOP	*/	}

				void	CreditForm::setAmount()

				{

								if	(stdRadioButton->isChecked())

												amountSpinBox->setValue(amountSpinBox->maxValue()	/	2);

								else	if	(noneRadioButton->isChecked())

												amountSpinBox->setValue(amountSpinBox->minValue());

				}

We	call	setAmount()	in	the	constructor	to	ensure	that	the	correct	amount	is
shown	when	the	form	starts	based	on	whichever	radio	button	we	checked	in	Qt
Designer.	In	setAmount()	we	set	the	amount	if	the	standard	or	none	radio	button
is	checked.	If	the	user	has	checked	the	special	radio	button	they	are	free	to
change	the	amount	themselves.

To	be	able	to	test	our	subclass	we	change	main.cpp	to	include	creditform.h
rather	than	creditformbase.h	and	change	the	instantiation	of	the	creditForm
object:

				#include	<qapplication.h>

				#include	"creditform.h"

				int	main(int	argc,	char	*argv[])

				{

								QApplication	app(argc,	argv);

								CreditForm	creditForm;

								app.setMainWidget(&creditForm);

								creditForm.show();

								return	app.exec();

				}

If	you	created	the	creditform.h	and	creditform.cpp	files	in	Qt	Designer,	they
are	already	in	the	project	file,	but	if	you	created	them	manually	you	must	also
update	the	project	file	by	adding	these	two	new	lines	at	the	end:

HEADERS	+=	creditform.h

SOURCES	+=	creditform.cpp

To	test	the	form	rerun	qmake	to	regenerate	the	Makefile,	then	make	and	run.

The	subclassing	example	we've	used	is	simple,	but	this	reflects	subclassing
forms	in	Qt:	it	is	easy	to	do.

Creating	Dynamic	Dialogs	from	.ui	Files

Qt	programs	are	capable	of	loading	Qt	Designer	.ui	files	and	instantiating	the
forms	represented	by	the	.ui	files.	Since	the	.ui	file	is	not	compiled	it	cannot
include	any	C++	code,	(e.g.	slot	implementations).	In	this	section	we	will
explain	how	to	load	a	dynamic	dialog	and	how	to	create	a	class	that	can	be	used
to	implement	the	dynamic	dialog's	custom	slots.

We	will	use	the	credit	form	that	we	created	in	the	subclassing	section	as	our
example	form.	We	will	start	by	simply	instantiating	and	running	the	form	and
then	we'll	cover	how	to	implement	custom	slots.

We'll	create	a	main.cpp	file	to	use	as	a	test	harness,	and	manually	create	a
project	file.

Creating	the	Project	File

The	project	file	qt/tools/designer/examples/receiver1/receiver.pro	looks
like	this:

TEMPLATE				=	app

CONFIG					+=	qt	warn_on	release

TARGET						=	receiver

SOURCES				+=	main.cpp

unix:LIBS		+=	-lqui

win32:LIBS	+=	$(QTDIR)/lib/qui.lib

FORMS						=	mainform.ui

LANGUAGE				=	C++

INCLUDEPATH	+=	$(QTDIR)/tools/designer/uilib

We	do	not	include	the	creditformbase.ui	file	since	this	file	will	be	read	at
runtime,	as	we'll	see	shortly.	We	must	include	the	qresource	library	since	the
functionality	we	require	is	not	part	of	the	standard	Qt	library.

Creating	main.cpp

The	main.cpp	is	quite	standard.	It	will	invoke	the	form	we're	going	to	create	in
Qt	Designer	as	its	main	form.	This	form	will	then	load	and	execute	the	dynamic
dialog.

				#include	<qapplication.h>

				#include	"mainform.h"

				int	main(int	argc,	char	*argv[])

				{

								QApplication	app(argc,	argv);

								MainForm	*mainForm	=	new	MainForm;

								app.setMainWidget(mainForm);

								mainForm->show();

								return	app.exec();

				}

We	create	a	new	instance	of	our	MainForm	class,	set	it	to	be	the	main	widget,
show	it	and	enter	the	event	loop	in	the	app.exec()	call.

Creating	the	Main	Form

Designing	the	Form

1.	 Open	the	receiver.pro	project	file	in	Qt	Designer.	We'll	create	a	dialog	as
our	main	window	which	we'll	use	to	invoke	the	dynamic	dialog.	Press
Ctrl+N	to	launch	the	New	File	dialog	and	click	OK	to	get	the	default	which
is	a	dialog.	Change	the	dialog's	name	to	'MainForm'	and	its	caption	to	'Main
Form'.	Add	two	buttons,	one	called	'creditPushButton'	with	the	text
'&Credit	Dialog',	and	the	other	called	'quitPushButton'	with	the	text	'&Quit'.

(For	each	button	click	the	Push	Button	toolbar	button,	then	click	the	form.
Change	the	properties	in	the	property	window	to	those	we've	just
described.)

2.	 We	will	now	add	a	couple	of	labels	so	that	we	can	show	the	settings	the
user	chose	in	the	dynamic	dialog.	Click	the	Text	Label	toolbar	button,	then
click	the	form	below	the	Credit	Dialog	button.	Change	the	label's	text	to
'Credit	Rating'.	Add	another	text	label	below	the	Quit	button.	Change	its
name	to	'ratingTextLabel'	and	its	text	to	'Unrated'.

3.	 We'll	now	lay	out	the	widgets.	Click	the	form	then	press	Ctrl+G	(lay	out	in
a	grid).

4.	 We'll	now	handle	the	signals	and	slots	connections.	Press	F3	(connect
signals/slots).	Click	the	Credit	Dialog	button,	drag	to	the	form	and	release.
Click	the	clicked()	signal.	We'll	need	to	implement	a	custom	slot.	Click
Edit	Slots	to	invoke	the	Edit	Slots	dialog.	Click	New	Slot	and	type	in	the
Slot	name	'creditDialog()'.	Click	OK.	The	new	slot	is	now	in	the	list	of
slots;	click	the	creditDialog()	slot	to	make	the	connection	then	click	OK.
Connect	the	Quit	button's	clicked()	signal	to	the	dialog's	accept()
function.	(Press	F3.	Click	the	Quit	button	and	drag	to	the	form;	release.
Click	the	clicked()	signal	and	the	accept()	slot,	then	click	OK.)

Save	the	form	and	call	it	mainform.ui.	(Press	Ctrl+S	and	enter	the	filename.)	In
the	next	section	we'll	write	the	code	for	loading	and	launching	the	dynamic
dialog	directly	in	Qt	Designer.

Loading	and	Executing	a	Dynamic	Dialog

We'll	now	add	the	code	to	invoke	the	credit	dialog.	Before	we	can	do	this	we
need	to	add	the	widget	factory's	header	file	to	the	form.	Click	the	Source	tab	in
the	Object	Hierarchy.	Right	click	Included	(in	Implementation),	then	click	New.
Type	in	'<qwidgetfactory.h>',	then	press	Enter.	Because	we	will	need	to	access
the	spin	box	in	the	dynamic	dialog	we	must	add	its	header	file.	Right	click
Included	(in	Implmentation),	then	click	New.	Type	in	'<qspinbox.h>',	then	press
Enter.

In	our	main	form	we	created	a	slot	called	creditDialog().	We	will	implement
this	slot	directly	in	Qt	Designer	and	use	it	to	load	and	execute	the	dynamic

dialog.	The	code	is	taken	from
qt/tools/designer/examples/receiver1/mainform.ui.h	which	contains	the
C++	implementation	of	mainform.ui's	slots.

				void	MainForm::creditDialog()

				{

								QDialog	*creditForm	=	(QDialog	*)

												QWidgetFactory::create("../credit/creditformbase.ui");

								//	Set	up	the	dynamic	dialog	here

								if	(creditForm->exec())	{

												//	The	user	accepted,	act	accordingly

												QSpinBox	*amount	=	(QSpinBox	*)	creditForm->child("amountSpinBox",	"QSpinBox");

												if	(amount)

																ratingTextLabel->setText(amount->text());

								}

								delete	creditForm;

				}

The	create()	function	is	a	static	QWidgetFactory	function.	It	loads	the
specified	.ui	file	and	returns	a	pointer	to	the	toplevel	QWidget	created	from	the
.ui	file.	We	have	cast	the	pointer	to	QDialog	since	we	know	that	the
creditformbase.ui	file	defines	a	QDialog.	After	creating	the	dialog	we	exec()
it.	If	the	user	clicked	OK	the	dialog	returns	Accepted	and	we	enter	the	body	of
the	if	statement.	We	want	to	know	the	amount	of	credit	that	the	user	selected.
We	call	the	child()	function	on	the	dialog	passing	it	the	name	of	the	widget
we're	interested	in.	The	child()	function	returns	a	pointer	to	the	widget	with	the
name	we	passed,	or	returns	0	if	no	widget	of	that	name	was	found.	In	the
example	we	call	child()	to	get	a	pointer	to	the	'amountSpinBox'.	If	the	pointer
we	get	back	is	not	0	we	set	the	rating	text	to	the	amount	in	the	dialog's	spin	box.
At	the	end	we	delete	the	dynamic	dialog.	Deleting	the	dialog	ensures	that	we
free	up	its	resources	as	soon	as	it	is	no	longer	required.

We	used	the	child()	to	gain	access	to	a	widget	within	the	dynamic	dialog,
passing	it	the	name	of	the	widget	we	were	interested	in.	In	some	situations	we
might	not	know	what	a	widget	is	called.	We	can	access	the	first	widget	of	a
specified	class	by	calling	child()	with	a	null	widget	name	and	a	classname,	e.g.
child(0,"QPushButton").	This	will	return	a	pointer	to	the	first	QPushButton	it
finds	(or	0	if	there	isn't	one).	If	you	want	pointers	to	all	the	widgets	of	a	given
class	you	can	call	the	QObject::queryList()	function,	passing	it	the	name	of
the	class.	It	returns	a	QObjectList	pointer	which	points	to	every	object	in	the
dialog	that	is	derived	from	the	given	class.	See	the	online	QObject

http://doc.trolltech.com/qobject.html

documentation	for	further	details.

Implementing	Slots	for	Dynamic	Dialogs

There	is	one	outstanding	issue	that	we	haven't	addressed:	the	dynamic	dialog
does	not	have	the	behaviour	of	the	original	credit	dialog	because	we	have	not
implemented	the	setAmount()	slot.	We	can	implement	slots	for	dynamic	dialogs
by	creating	a	QObject	subclass.	We	then	create	an	instance	of	this	subclass	and
pass	a	pointer	to	it	to	the	QWidgetFactory::create()	function	which	will
connect	the	dynamic	dialog's	signals	to	the	slots	implemented	in	our	subclass.

We	need	to	create	a	QObject	subclass	and	change	our	creditDialog()	to	create
an	instance	of	our	subclass	that	can	be	passed	to	the	QWidgetFactory::create()
function.	Here	is	the	modified	creditDialog()	function	from	the
qt/tools/designer/examples/receiver2/mainform.ui.h	file	that	contains	the
code	for	mainform.ui's	slots:

				void	MainForm::creditDialog()

				{

								Receiver	*receiver	=	new	Receiver;

								QDialog	*creditForm	=	(QDialog	*)

								QWidgetFactory::create("../credit/creditformbase.ui",	receiver);

								receiver->setParent(creditForm);

								//	Set	up	the	dynamic	dialog	here

								if	(creditForm->exec())	{

												//	The	user	accepted,	act	accordingly

												QSpinBox	*amount	=	(QSpinBox	*)	creditForm->child("amountSpinBox",	"QSpinBox");

												if	(amount)

																ratingTextLabel->setText(amount->text());

								}

								delete	receiver;

								delete	creditForm;

				}

We	create	a	new	instance	of	our	'Receiver'	subclass.	(We'll	write	the	code	for	this
class	shortly.)	We	then	create	the	QDialog	using	QWidgetFactory::create().
This	call	differs	from	our	previous	example	because	we	pass	in	the	subclass
object	so	that	the	create()	function	can	set	up	the	signals/slots	connections
automatically	for	us.	Since	our	slot	must	access	the	widgets	in	the	dynamic	form
we	pass	a	pointer	to	the	form	to	the	receiver	object	through	our	setParent()

function.	The	remainder	of	the	function	is	the	same	as	before	except	that	we
delete	our	receiver	object.

We'll	now	look	at	the	implementation	of	our	'Receiver'	subclass.	The	code	is
taken	from	qt/tools/designer/examples/receiver2/receiver.h	and	the
corresponding	receiver.cpp	file.	We'll	start	with	the	header	file.

#include	<qobject.h>

#include	<qdialog.h>

class	Receiver	:	public	QObject

{

				Q_OBJECT

public:

				void	setParent(QDialog	*parent);

public	slots:

				void	setAmount();

private:

				QDialog	*p;

};

Our	class	must	be	a	QObject	subclass	and	because	we're	using	signals	and	slots
it	must	include	the	Q_OBJECT	macro.	We	declare	a	function	and	the	setAmount()
slot	that	we	wish	to	implement	as	well	as	a	private	QDialog	pointer.

We'll	discuss	the	implementation	of	each	function	in	receiver.cpp	separately.

				void	Receiver::setParent(QDialog	*parent)

				{

								p	=	parent;

								setAmount();

				}

The	setParent()	function	assigns	a	pointer	to	the	dynamic	dialog	to	our	private
pointer.	We	could	not	do	this	in	a	constructor	call	because	we	have	to	construct
our	Receiver	object	before	we	call	QWidgetFactory::create(),	since	we	must
pass	the	Receiver	object	to	the	create()	function.	Once	we've	called	create()
we	then	have	a	pointer	to	the	dynamic	dialog	which	we	can	then	pass	via
setParent()	to	our	Receiver	class.	In	the	subclass	version	of	this	example	we
called	setAmount()	in	the	constructor;	but	we	cannot	do	that	here	because	the
implementation	of	setAmount()	depends	on	knowledge	of	the	dynamic	dialog
which	is	not	available	at	construction	time.	Because	of	this	we	call	setAmount()
in	the	setParent()	function.

				void	Receiver::setAmount()

				{

								QSpinBox	*amount	=

												(QSpinBox	*)	p->child("amountSpinBox",	"QSpinBox");

								QRadioButton	*radio	=

												(QRadioButton	*)	p->child("stdRadioButton",	"QRadioButton");

								if	(radio	&&	radio->isChecked())	{

												if	(amount)

																amount->setValue(amount->maxValue()	/	2);

												return;

								}

								radio	=

												(QRadioButton	*)	p->child("noneRadioButton",	"QRadioButton");

								if	(radio	&&	radio->isChecked())

												if	(amount)

																amount->setValue(amount->minValue());

				}

Since	we	may	be	updating	the	amount	spin	box	we	need	to	get	a	pointer	to	it.	We
call	child()	on	the	pointer	p	which	points	to	the	dynamic	dialog	assigned	in	the
setParent()	call.	We	cast	the	resulting	pointer	to	the	correct	type	so	that	we	can
call	any	functions	relevant	to	that	type.	In	the	example	we	call	child()	to	get	a
pointer	to	the	amount	spin	box,	and	then	call	child()	again	to	get	a	pointer	to
the	'stdRadioButton'.	If	we	get	a	pointer	to	the	radio	button	and	the	button	is
checked	we	set	the	amount	providing	we	have	a	pointer	to	the	amount	spin	box.
If	this	radio	button	was	checked	we're	finished	so	we	return.	If	the
'stdRadioButton'	isn't	checked	we	get	a	pointer	to	the	'noneRadioButton'	and	set
the	amount	if	this	button	is	checked.	We	do	nothing	if	the	'specialRadioButton'	is
checked	because	the	user	is	free	to	enter	a	value	of	their	choice.

Compiling	vs	Dynamically	Loading	Dialogs

The	differences	between	using	a	'compiled	in'	.ui	file	and	a	dynamically
loaded	.ui	file	are	these:

Dynamic	dialogs	cannot	have	any	C++	code	in	the	.ui	file;	any
custom	slots	must	be	implemented	via	a	QObject	subclass.	Compiled
dialogs	can	contain	code	either	in	the	.ui	file	or	in	a	subclass.

Dynamic	dialogs	will	load	slower	because	the	.ui	file	must	be	read
and	a	QWidget	instance	instantiated	based	on	the	.ui	file's	parse	tree.

Compiled	code	will	load	much	faster	because	no	file	reading	or
parsing	is	necessary.	Note	that	the	user	may	not	notice	any	difference
in	speed	since	the	difference	may	be	mere	fractions	of	a	second.

Dynamic	dialogs	allow	you	to	change	the	.ui	file	independently	of	the
code	so	long	as	none	of	the	changes	impact	the	code.	This	means	that
you	can	change	the	appearance	of	the	form,	e.g.	move	widgets	and	lay
them	out	differently.	If	you	want	to	change	a	compiled	dialog	you	must
change	the	.ui	file	and	recompile.	If	you	are	building	an	application
and	want	your	customers	to	be	able	to	customize	aspects	of	the	user
interface	you	can	give	them	a	copy	of	Qt	Designer	and	use	dynamic
dialogs.

[Prev:	The	Designer	Approach]	[Home]	[Next:	Creating	Custom	Widgets]

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

[Prev:	Subclassing	and	Dynamic	Dialogs]	[Home]	[Next:	Creating	Database
Applications]

Creating	Custom	Widgets

Custom	widgets	are	created	in	code.	They	may	comprise	a	combination	of
existing	widgets	but	with	additional	functionality,	slots	and	signals,	or	they	may
be	written	from	scratch,	or	a	mixture	of	both.

Qt	Designer	provides	two	mechanisms	for	incorporating	custom	widgets:

1.	 The	original	method	involves	little	more	than	completing	a	dialog	box.
Widgets	incorporated	this	way	appear	as	flat	pixmaps	when	added	to	a	form
in	Qt	Designer,	even	in	preview	mode.	They	only	appear	in	their	true	form
at	runtime.	We'll	explain	how	to	create	custom	widgets	using	the	original
approach	in	"Simple	Custom	Widgets".

2.	 The	new	method	involves	embedding	the	widgets	in	a	plugin.	Widgets	that
are	incorporated	through	plugins	appear	in	their	true	form	in	Qt	Designer,
both	when	laying	out	the	form	and	in	preview	mode.	This	approach
provides	more	power	and	flexibility	than	the	original	method	and	is	covered
in	Creating	Custom	Widgets	with	Plugins.

Simple	Custom	Widgets

There	are	two	stages	to	creating	a	custom	widget.	Firstly	we	must	create	a	class
that	defines	the	widget,	and	secondly	we	must	incorporate	the	widget	into	Qt
Designer.	Creating	the	widget	has	to	be	done	whether	we	are	creating	a	simple
custom	widget	or	a	plugin,	but	for	simple	custom	widgets	the	incorporation	into
Qt	Designer	is	very	easy.

We	will	create	a	VCR	style	widget	comprising	four	buttons,	rewind,	play,	next
and	stop.	The	widget	will	emit	signals	according	to	which	button	is	clicked.

Coding	the	Custom	Widget

A	custom	widget	may	consist	of	one	or	more	standard	widgets	placed	together	in
a	particular	combination,	or	may	be	written	from	scratch.	We	will	combine	some
QPushButton	widgets	to	form	the	basis	of	our	custom	widget.

We'll	look	at	the	header	file,	qt/tools/designer/examples/vcr/vcr.h	first.

				#include	<qwidget.h>

				class	Vcr	:	public	QWidget

				{

								Q_OBJECT

				public:

								Vcr(QWidget	*parent	=	0,	const	char	*name	=	0);

								~Vcr()	{}

				signals:

								void	rewind();

								void	play();

								void	next();

								void	stop();

				};

We	include	qwidget.h	since	we'll	be	deriving	our	custom	widget	from
QWidget.	We	declare	a	constructor	where	the	widget	will	be	created	and	the
four	signals	we	want	our	widget	to	emit.	Since	we're	using	signals	we	must	also
include	the	Q_OBJECT	macro.

The	implementation	is	straightforward.	The	only	function	we	implement	is	the
constructor.	The	rest	of	the	file	consists	of	include	statements	and	embedded
.xpm	images.

				Vcr::Vcr(QWidget	*parent,	const	char	*name)

								:	QWidget(parent,	name)

				{

								QHBoxLayout	*layout	=	new	QHBoxLayout(this);

								layout->setMargin(0);

								QPushButton	*rewind	=	new	QPushButton(QPixmap(rewind_xpm),	0,	this,	"vcr_rewind");

								layout->addWidget(rewind);

We	create	a	QHBoxLayout	in	which	we'll	place	the	buttons.	We've	only	shown
the	rewind	button	in	the	code	above	since	all	the	others	are	identical	except	for
the	names	of	the	buttons,	pixmaps	and	signals.	For	each	of	the	buttons	we
require	we	call	the	QPushButton	constructor	passing	it	the	appropriate
embedded	pixmap.	We	then	add	it	to	the	layout.	Finally	we	connect	the	button's
clicked()	signal	to	the	appropriate	signal.	Since	the	clicked()	signals	aren't
specific	to	our	widget	we	want	to	emit	signals	that	reflect	the	widget's	use.	The
rewind(),	play(),	etc.	signals	are	meaningful	in	the	context	of	our	widget	so	we
propagate	each	button's	clicked()	signal	to	the	appropriate	widget-specific

signal.

The	implementation	is	complete,	but	to	make	sure	that	our	widget	compiles	and
runs	we'll	create	a	tiny	test	harness.	The	test	harness	will	require	two	files,	a
.pro	project	file	and	a	main.cpp.	The
qt/tools/designer/examples/vcr/vcr.pro	project	file:

SOURCES	+=	vcr.cpp	main.cpp

HEADERS	+=	vcr.h

TARGET			=	vcr

TEMPLATE								=app

CONFIG		+=	qt	warn_on	release

DBFILE		=	vcr.db

LANGUAGE								=	C++

The	qt/tools/designer/examples/vcr/main.cpp	file	is	also	brief:

				#include	<qapplication.h>

				#include	"vcr.h"

				int	main(int	argc,	char	**	argv)

				{

								QApplication	app(argc,	argv);

								Vcr	*vcr	=	new	Vcr;

								vcr->show();

								return	app.exec();

				}

Once	we're	satisfied	that	the	custom	widget	compiles	and	runs	we	are	ready	to
incorporate	it	into	Qt	Designer.

In	Base-class	Templates	the	creation	of	a	container	custom	widget	is	described.

Adding	the	Custom	Widget	to	Qt	Designer

Click	Tools|Custom|Edit	Custom	Widgets	to	invoke	the	Edit	Custom	Widgets
dialog.

1.	 Click	New	Widget	so	that	we	are	ready	to	add	our	new	widget.

2.	 Change	the	Class	name	from	'MyCustomWidget'	to	'Vcr'.

3.	 Click	the	ellipsis	(...)	button	to	the	right	of	the	Headerfile	line	edit	to	invoke

the	file	Open	dialog.	Locate	vcr.h,	select	it,	and	click	Open.	It	will	now
appear	as	the	header	file.

4.	 If	you	have	a	pixmap	that	you	want	to	use	to	identify	your	widget	on	the
toolbar	click	the	ellipsis	button	to	the	right	of	Pixmap	property.	(The	ellipsis
button	appears	when	you	click	in	the	Value	part	of	the	Properties	list	by	a
pixmap	or	iconSet	property.)

In	our	example	we	have	the	file
qt/tools/designer/examples/vcr/play.xpm	which	we'll	use	for	this
purpose.

5.	 Since	we	know	the	minimum	sensible	size	for	our	widget	we'll	put	these
values	into	the	Size	Hint	spin	boxes.	Enter	a	width	of	80	(in	the	left	hand
spin	box),	and	a	height	of	20	(in	the	right	hand	spin	box).

The	remaining	items	to	be	completed	will	depend	on	the	characteristics	of	the
widget	you've	created.	If,	for	example,	your	widget	can	be	used	to	contain	other
widgets	you'd	check	the	Container	Widget	checkbox.	In	the	case	of	our	Vcr
example	the	only	items	we	need	to	add	are	its	signals.

Click	the	Signals	tab.	Click	the	New	Signal	button	and	type	in	the	signal	name
'rewind()'.	Click	New	Signal	again	and	this	time	type	in	'play()'.	Add	the	'next()'
and	'stop()'	signals	in	the	same	way.

Since	our	example	hasn't	any	slots	or	properties	we've	finished	and	can	click
Close.	A	new	icon	will	appear	in	Qt	Designer's	toolbars	which	represents	the
new	widget.	If	you	create	a	new	form	you	can	add	Vcr	widgets	and	connect	the
Vcr's	signals	to	your	slots.

Incorporating	custom	widgets	that	have	their	own	slots	and	properties	is
achieved	in	a	similar	way	to	adding	signals.	All	the	required	information	is	in
our	custom	widget's	header	file.

Creating	Custom	Widgets	with	Plugins

This	section	will	show	you	how	to	write	a	custom	widget	and	how	to	embed	the
custom	widget	into	a	plugin.	There	are	no	restrictions	or	special	considerations
that	must	be	taken	into	account	when	creating	a	widget	that	is	destined	to

become	a	plugin.	If	you	are	an	experienced	Qt	programmer	you	can	safely	skip
the	section	on	creating	a	custom	widget	and	go	directly	to	Creating	a	Plugin.

Creating	a	Custom	Widget

A	custom	widget	is	often	a	specialization	(subclass)	of	another	widget	or	a
combination	of	widgets	working	together	or	a	blend	of	both	these	approaches.	If
you	simply	want	a	collection	of	widgets	in	a	particular	configuration	it	is	easiest
to	create	them,	select	them	as	a	group,	and	copy	and	paste	them	as	required
within	Qt	Designer.	Custom	widgets	are	generally	created	when	you	need	to	add
new	functionality	to	existing	widgets	or	groups	of	widgets.

We	have	two	recommendations	that	you	should	consider	when	creating	a	custom
widget	for	a	plugin:

1.	 Using	Qt's	property	system	will	provide	Qt	Designer	users	with	a	direct
means	of	configuring	the	widget	through	the	property	editor.	(See	the	Qt
Properties	documentation.)

2.	 Consider	making	your	widget's	public	'set'	functions	into	public	slots	so	that
you	can	perform	signal-slot	connections	with	the	widget	in	Qt	Designer.

In	the	course	of	this	chapter	we	will	create	a	simple	but	useful	widget,
'FileChooser',	which	we'll	later	make	available	in	Qt	Designer	as	a	plugin.	In
practice	most	custom	widgets	are	created	to	add	functionality	rather	than	to
compose	widgets,	so	we	will	create	our	widget	in	code	rather	than	using	Qt
Designer	to	reflect	this	approach.	FileChooser	consists	of	a	QLineEdit	and	a
QPushButton.	The	QLineEdit	is	used	to	hold	a	file	or	directory	name,	the
QPushButton	is	used	to	launch	a	file	dialog	through	which	the	user	can	choose
a	file	or	directory.

The	FileChooser	Custom	Widget

If	you've	followed	the	manual	up	to	this	point	you	may	well	be	able	to	create	this
custom	widget	yourself.	If	you're	confident	that	you	can	make	your	own	version
of	the	widget,	or	have	another	widget	that	you	want	to	turn	into	a	plugin,	skip
ahead	to	Creating	a	Plugin.	If	you	prefer	to	read	how	we	created	the	widget	then

http://doc.trolltech.com/properties.html

read	on.

Coding	the	Widget's	Interface

We	will	work	step-by-step	through	the	widget's	header	file,
qt/tools/designer/examples/filechooser/widget/filechooser.h.

				#include	<qwidget.h>

				class	QLineEdit;

				class	QPushButton;

Our	widget	will	be	derived	from	QWidget	so	we	include	the	qwidget.h	header
file.	We	also	forward	declare	the	two	classes	that	our	widget	will	be	built	from.

We	include	the	Q_OBJECT	macro	since	this	is	required	for	classes	that	declare
signals	or	slots.	The	Q_ENUMS	declaration	is	used	to	register	the	Mode
enumeration.	Our	widget	has	two	properties,	mode,	to	store	whether	the	user
should	select	a	File	or	a	Directory	and	fileName	which	stores	the	file	or	directory
they	chose.

				class	FileChooser	:	public	QWidget

				{

								Q_OBJECT

								Q_ENUMS(Mode)

								Q_PROPERTY(Mode	mode	READ	mode	WRITE	setMode)

								Q_PROPERTY(QString	fileName	READ	fileName	WRITE	setFileName)

				public:

								FileChooser(QWidget	*parent	=	0,	const	char	*name	=	0);

								enum	Mode	{	File,	Directory	};

								QString	fileName()	const;

								Mode	mode()	const;

The	constructor	is	declared	in	the	standard	way	for	widgets.	We	declare	two
public	functions,	fileName()	to	return	the	filename,	and	mode()	to	return	the
mode.

				public	slots:

								void	setFileName(const	QString	&fn);

								void	setMode(Mode	m);

				signals:

								void	fileNameChanged(const	QString	&);

				private	slots:

								void	chooseFile();

The	two	'set'	functions	are	declared	as	public	slots.	setFileName()	and
setMode()	set	the	filename	and	mode	respectively.	We	declare	a	single	signal,
fileNameChanged().	The	private	slot,	chooseFile()	is	called	by	the	widget
itself	when	its	button	is	clicked.

				private:

								QLineEdit	*lineEdit;

								QPushButton	*button;

								Mode	md;

				};

A	pointer	to	QLineEdit	and	QPushButton,	as	well	as	a	Mode	variable	are	held
as	private	data.

Coding	the	Implementation

We	will	work	step-by-step	through	the	implementation	which	is	in
qt/tools/designer/examples/filechooser/widget/filechooser.cpp.

				FileChooser::FileChooser(QWidget	*parent,	const	char	*name)

								:	QWidget(parent,	name),	md(File)

				{

The	constructor	passes	the	parent	and	name	to	its	superclass,	QWidget,	and	also
initializes	the	private	mode	data,	md,	to	File	mode.

								QHBoxLayout	*layout	=	new	QHBoxLayout(this);

								layout->setMargin(0);

								lineEdit	=	new	QLineEdit(this,	"filechooser_lineedit");

								layout->addWidget(lineEdit);

We	begin	by	creating	a	horizontal	box	layout	(QHBoxLayout)	and	add	a
QLineEdit	and	a	QPushButton	to	it.

								connect(lineEdit,	SIGNAL(textChanged(const	QString	&)),

																	this,	SIGNAL(fileNameChanged(const	QString	&)));

								button	=	new	QPushButton("...",	this,	"filechooser_button");

								button->setFixedWidth(button->fontMetrics().width("	...	"));

								layout->addWidget(button);

								connect(button,	SIGNAL(clicked()),

																	this,	SLOT(chooseFile()));

We	connect	the	lineEdit's	textChanged()	signal	to	the	custom	widget's
fileNameChanged()	signal.	This	ensures	that	if	the	user	changes	the	text	in	the
QLineEdit	this	fact	will	be	propagated	via	the	custom	widget's	own	signal.	The
button's	clicked()	signal	is	connected	to	the	custom	widget's	chooseFile()	slot
which	invokes	the	appropriate	dialog	for	the	user	to	choose	their	file	or	directory.

								setFocusProxy(lineEdit);

				}

We	set	the	lineEdit	as	the	focus	proxy	for	our	custom	widget.	This	means	that
when	the	widget	is	given	focus	the	focus	actually	goes	to	the	lineEdit.

				void	FileChooser::setFileName(const	QString	&fn)

				{

								lineEdit->setText(fn);

				}

				QString	FileChooser::fileName()	const

				{

								return	lineEdit->text();

				}

The	setFileName()	function	sets	the	filename	in	the	QLineEdit,	and	the
fileName()	function	returns	the	filename	from	the	QLineEdit.	The	setMode()
and	mode()	functions	(not	shown)	are	similarly	set	and	return	the	given	mode.

				void	FileChooser::chooseFile()

				{

								QString	fn;

								if	(mode()	==	File)

												fn	=	QFileDialog::getOpenFileName(lineEdit->text(),	QString::null,	this);

								else

												fn	=	QFileDialog::getExistingDirectory(lineEdit->text(),this);

								if	(!fn.isEmpty())	{

												lineEdit->setText(fn);

												emit	fileNameChanged(fn);

								}

				}

When	chooseFile()	is	called	it	presents	the	user	with	a	file	or	directory	dialog
depending	on	the	mode.	If	the	user	chooses	a	file	or	directory	the	QLineEdit	is
updated	with	the	chosen	file	or	directory	and	the	fileNameChanged()	signal	is
emitted.

Although	these	two	files	complete	the	implementation	of	the	FileChooser	widget
it	is	good	practice	to	write	a	test	harness	to	check	that	the	widget	behaves	as
expected	before	attempting	to	put	it	into	a	plugin.

Testing	the	Implementation

We	present	a	rudimentary	test	harness	which	will	allow	us	to	run	our	custom
widget.	The	test	harness	requires	two	files,	a	main.cpp	to	contain	the
FileChooser,	and	a	.pro	file	to	create	the	Makefile	from.	Here	is
qt/tools/designer/examples/filechooser/widget/main.cpp:

				#include	<qapplication.h>

				#include	"filechooser.h"

				int	main(int	argc,	char	**	argv)

				{

								QApplication	a(argc,	argv);

								FileChooser	*fc	=	new	FileChooser;

								fc->show();

								return	a.exec();

				}

And	here	is
qt/tools/designer/examples/filechooser/widget/filechooser.pro

SOURCES	+=	filechooser.cpp	main.cpp

HEADERS	+=	filechooser.h

TARGET										=	filechooser

TEMPLATE								=app

CONFIG		+=	qt	warn_on	release

DBFILE		=	filechooser.db

LANGUAGE								=	C++

We	can	create	the	makefile	using	qmake:	qmake	-o	Makefile	filechooser.pro,
then	we	can	make	and	run	the	harness	to	test	our	new	widget.	Once	we're
satisfied	that	the	custom	widget	is	robust	and	has	the	behaviour	we	require	we
can	embed	it	into	a	plugin.

Creating	a	Plugin

Qt	Plugins	can	be	used	to	provide	self-contained	software	components	for	Qt
applications.	Qt	currently	supports	the	creation	of	five	kinds	of	plugins:	codecs,
image	formats,	database	drivers,	styles	and	custom	widgets.	In	this	section	we
will	explain	how	to	convert	our	filechooser	custom	widget	into	a	Qt	Designer
custom	widget	plugin.

A	Qt	Designer	custom	widget	plugin	is	always	derived	from	QWidgetPlugin.
The	amout	of	code	that	needs	to	be	written	is	minimal.

To	make	your	own	plugin	it	is	probably	easiest	to	start	by	copying	our	example
plugin.h	and	plugin.cpp	files	and	changing	'CustomWidgetPlugin'	to	the	name
you	wish	to	use	for	your	widget	plugin	implementation	class.	Below	we	provide
an	introduction	to	the	header	file	although	it	needs	no	changes	beyond	class
renaming.	The	implementation	file	requires	simple	changes,	mostly	more	class
renaming;	we	will	review	each	function	in	turn	and	explain	what	you	need	to	do.

The	CustomWidgetPlugin	Implementation

We	have	called	our	header	file	plugin.h	and	we've	called	our	plugin	class
CustomWidgetPlugin	since	we	will	be	using	our	plugin	class	to	wrap	our
custom	widgets.	We	present	the	entire	header	file	to	give	you	an	impression	of
the	scope	of	the	implementation	required.	Most	of	the	functions	require	just	a
few	lines	of	code.

				#include	<qwidgetplugin.h>

				class	QT_WIDGET_PLUGIN_EXPORT	CustomWidgetPlugin	:	public	QWidgetPlugin

				{

				public:

								CustomWidgetPlugin();

								QStringList	keys()	const;

								QWidget*	create(const	QString	&classname,	QWidget*	parent	=	0,	const	char*	name	=	0);

								QString	group(const	QString&)	const;

								QIconSet	iconSet(const	QString&)	const;

								QString	includeFile(const	QString&)	const;

								QString	toolTip(const	QString&)	const;

								QString	whatsThis(const	QString&)	const;

								bool	isContainer(const	QString&)	const;

				};

From	qt/tools/designer/examples/filechooser/plugin/plugin.h

The	QWidgetPlugin	Functions

Create	your	own	plugin	.cpp	file	by	copying	our	plugin.cpp	file	and	changing
all	occurrences	of	'CustomWidgetPlugin'	to	the	name	you	wish	to	use	for	your
widget	plugin	implementation.	Most	of	the	other	changes	are	simply	replacing
the	name	of	our	custom	control,	'FileChooser',	with	the	name	of	your	custom
control.	You	may	need	to	add	extra	else	if	clauses	if	you	have	more	than	one
custom	control	in	your	plugin	implementation.

We'll	now	look	at	the	constructor.

				CustomWidgetPlugin::CustomWidgetPlugin()

				{

				}

The	constructor	does	not	have	to	do	anything.	Simply	copy	ours	with	the	class
name	you	wish	to	use	for	your	widget	plugin	implementation.

No	destructor	is	necessary.

The	keys	function.

				QStringList	CustomWidgetPlugin::keys()	const

				{

								QStringList	list;

								list	<<	"FileChooser";

								return	list;

				}

For	each	widget	class	that	you	want	to	wrap	in	the	plugin	implementation	you
should	supply	a	key	by	which	the	class	can	be	identified.	This	key	must	be	your
class's	name,	so	in	our	example	we	add	a	single	key,	'FileChooser'.

The	create()	function.

				QWidget*	CustomWidgetPlugin::create(const	QString	&key,	QWidget*	parent,	const	char*	name)

				{

								if	(key	==	"FileChooser")

												return	new	FileChooser(parent,	name);

								return	0;

				}

In	this	function	we	create	an	instance	of	the	requested	class	and	return	a
QWidget	pointer	to	the	newly	created	widget.	Copy	this	function	changing	the
class	name	and	the	feature	name	and	create	an	instance	of	your	widget	just	as
we've	done	here.	(See	the	Qt	Plugin	documentation	for	more	information.)

The	includeFile()	function.

				QString	CustomWidgetPlugin::includeFile(const	QString&	feature)	const

				{

								if	(feature	==	"FileChooser")

												return	"filechooser.h";

								return	QString::null;

				}

This	function	returns	the	name	of	the	include	file	for	the	custom	widget.	Copy
this	function	changing	the	class	name,	key	and	include	filename	to	suit	your	own
custom	widget.

The	group(),	iconSet(),	toolTip()	and	whatsThis()	functions.

				QString	CustomWidgetPlugin::group(const	QString&	feature)	const

				{

								if	(feature	==	"FileChooser")

												return	"Input";

								return	QString::null;

				}

				QIconSet	CustomWidgetPlugin::iconSet(const	QString&)	const

				{

								return	QIconSet(QPixmap(filechooser_pixmap));

				}

				QString	CustomWidgetPlugin::includeFile(const	QString&	feature)	const

				{

								if	(feature	==	"FileChooser")

												return	"filechooser.h";

								return	QString::null;

				}

				QString	CustomWidgetPlugin::toolTip(const	QString&	feature)	const

				{

								if	(feature	==	"FileChooser")

												return	"File	Chooser	Widget";

								return	QString::null;

				}

http://doc.trolltech.com/plugins.html

				QString	CustomWidgetPlugin::whatsThis(const	QString&	feature)	const

				{

								if	(feature	==	"FileChooser")

												return	"A	widget	to	choose	a	file	or	directory";

								return	QString::null;

				}

We	use	the	group()	function	to	identify	which	Qt	Designer	toolbar	group	this
custom	widget	should	be	part	of.	If	we	use	a	name	that	is	not	in	use	Qt	Designer
will	create	a	new	toolbar	group	with	the	given	name.	Copy	this	function,
changing	the	class	name,	key	and	group	name	to	suit	your	own	widget	plugin
implementation.

The	iconSet()	function	returns	the	pixmap	to	use	in	the	toolbar	to	represent	the
custom	widget.	The	toolTip()	function	returns	the	tooltip	text	and	the
whatsThis()	function	returns	the	Whats	This	text.	Copy	each	of	these	functions
changing	the	class	name,	key	and	the	string	you	return	to	suit	your	own	widget
plugin	implementation.

The	isContainer()	function.

				bool	CustomWidgetPlugin::isContainer(const	QString&)	const

				{

								return	FALSE;

				}

Copy	this	function	changing	the	class	name	to	suit	your	widget	plugin
implementation.	It	should	return	TRUE	if	your	custom	widget	can	contain	other
widgets,	e.g.	like	QFrame,	or	FALSE	if	it	must	not	contain	other	widgets,	e.g.
like	QPushButton.

The	Q_EXPORT_PLUGIN	macro.

				Q_EXPORT_PLUGIN(CustomWidgetPlugin)

This	macro	identifies	the	module	as	a	plugin	--	all	the	other	code	simply
implements	the	relevant	interface,	i.e.	wraps	the	classes	you	wish	to	make
available.

This	macro	must	appear	once	in	your	plugin.	It	should	be	copied	with	the	class
name	changed	to	the	name	of	your	plugin's	class.	(See	the	Qt	Plugin
documentation	for	more	information	on	the	plugin	entry	point.)

http://doc.trolltech.com/plugins.html

Each	widget	you	wrap	in	a	widget	plugin	implementation	becomes	a	class	that
the	plugin	implementation	offers.	There	is	no	limit	to	the	number	of	classes	that
you	may	include	in	an	plugin	implementation.

The	Project	File

The	project	file	for	a	plugin	is	somewhat	different	from	an	application's	project
file	but	in	most	cases	you	can	use	our	project	file	changing	only	the	HEADERS	and
SOURCES	lines.

SOURCES		+=	plugin.cpp	../widget/filechooser.cpp

HEADERS		+=	plugin.h	../widget/filechooser.h

DESTDIR			=	../../../../../plugins/designer

TARGET				=	filechooser

target.path=$$plugins.path

isEmpty(target.path):target.path=$$QT_PREFIX/plugins

INSTALLS				+=	target

TEMPLATE					=	lib

CONFIG						+=	qt	warn_on	release	plugin

INCLUDEPATH	+=	$(QTDIR)/tools/designer/interfaces

DBFILE							=	plugin.db

LANGUAGE					=	C++

qt/tools/designer/examples/filechooser/plugin/plugin.pro

Change	the	HEADERS	line	to	list	your	plugin's	header	file	plus	a	header	file	for
each	of	your	widgets.	Make	the	equivalent	change	for	the	SOURCES	line.	If	you
create	a	Makefile	with	qmake	and	make	the	project	the	plugin	will	be	created	and
placed	in	a	directory	where	Qt	Designer	can	find	it.	The	next	time	you	run	Qt
Designer	it	will	detect	your	new	plugin	and	load	it	automatically,	displaying	its
icon	in	the	toolbar	you	specified.

Using	the	Widget	Plugin

Once	the	plugin	has	been	compiled	it	will	automatically	be	found	and	loaded	by
Qt	Designer	the	next	time	Qt	Designer	is	run.	Use	your	custom	widget	just	like
any	other.

If	you	want	to	use	the	plugin	in	another	of	your	projects	you	can	link	against	it
by	adding	an	appropriate	line	to	the	project,	e.g.	by	adding	a	line	like	this	to	the
project's	.pro	file:

LIBS	+=	filechooser.lib

When	you	want	to	distribute	your	application,	include	the	compiled	plugin	with
the	executable.	Install	the	plugin	in	$QTDIR/plugins/widgets.	If	you	don't	want
to	use	the	standard	plugin	path,	have	your	installation	process	determine	the	path
you	want	to	use	for	the	plugin,	and	save	the	path,	e.g.	using	QSettings,	for	the
application	to	read	when	it	runs.	The	application	can	then	call
QApplication::addLibraryPath()	with	this	path	and	your	plugins	will	be	available
to	the	application.	Note	that	the	final	part	of	the	path,	i.e.	styles,	widgets,	etc.
cannot	be	changed.

Plugins	and	Threaded	Applications

If	you	want	to	build	a	plugin	which	you	want	to	use	with	a	threaded	Qt
library	(whether	or	not	the	plugin	itself	uses	threads)	you	must	use	a
threaded	environment.	Specifically,	you	must	use	a	threaded	Qt	library,	and
you	must	build	Qt	Designer	with	that	library.	Your	.pro	file	for	your	plugin
must	include	the	line:

				CONFIG	+=	thread

Do	not	mix	the	normal	Qt	library	and	the	threaded	Qt	library	in	an
application.	If	your	application	uses	the	threaded	Qt	library,	you	should	not
link	with	the	normal	Qt	library.	Nor	should	you	dynamically	load	the
normal	Qt	library	or	dynamically	load	another	library,	e.g.	a	plugin,	that
depends	on	the	normal	Qt	library.	On	some	systems,	mixing	threaded	and
non-threaded	libraries	or	plugins	will	corrupt	the	static	data	used	in	the	Qt
library.

[Prev:	Subclassing	and	Dynamic	Dialogs]	[Home]	[Next:	Creating	Database
Applications]

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

[Prev:	Creating	Custom	Widgets]	[Home]	[Next:	Customizing	and	Integrating	Qt
Designer]

Creating	Database	Applications

This	chapter	shows	you	how	to	use	Qt's	data-aware	widgets	from	within	Qt
Designer.	It	demonstrates	INSERT,	UPDATE	and	DELETE	in	both	QDataTables
(tables)	and	QDataBrowsers	(forms).	It	also	shows	how	to	code	Master-Detail
relationships	and	Drilldown.	A	simple	approach	to	foreign	key	handling	is
presented	here;	a	more	sophisticated	approach	is	shown	in	the	online	SQL
module	documentation.

If	you	wish	to	run	the	examples	or	create	your	own	applications	using	these
widgets	you	need	access	to	an	SQL	database	and	a	Qt	database	driver	that	can
connect	to	the	database.	At	the	time	of	writing	the	drivers	that	Qt	supports	are
QODBC3	(Open	Database	Connectivity),	QOCI8	(Oracle),	QPSQL7
(PostgreSQL	6	and	7)	and	QMYSQL3	(MySQL).

Although	you	can	use	the	Qt	data-aware	widgets	to	browse	and	edit	data	in	SQL
databases	without	having	to	write	any	SQL,	a	basic	understanding	of	SQL	is
highly	recommended.	We	assume	that	you	have	some	familiarity	with	SELECT,
INSERT,	UPDATE	and	DELETE	statements.	We	also	assume	a	basic	understanding	of
the	concepts	of	normalisation	and	of	primary	and	foreign	keys.	A	standard	text
covering	SQL	databases	is	An	Introduction	to	Database	Systems	(7th	ed.)	by	C.
J.	Date,	ISBN	0201385902.

In	the	following	text	we	describe	the	creation	of	a	'book'	database	application.
The	application	demonstrates	how	to	use	QDataTables	including	in-place	record
editing	and	how	to	set	up	master-detail	relationships	between	QDataTables.	It
also	explains	how	to	drill	down	from	a	QDataTable	to	another	widget,	for
example,	to	a	QDataBrowser	or	a	QDataView	and	how	to	perform	record
editing	in	a	QDataBrowser.	A	great	deal	of	functionality	is	available	from	the
classes	directly	in	Qt	Designer	although	subclassing	is	always	available	for	finer
control.	If	you	want	to	build	the	'book'	examples	you	will	need	to	create	the
example	schema	on	your	database.

The	Book	Application

The	Example	Schema

Note	that	the	examples	in	this	chapter	all	use	the	tables,	views	and	records
which	are	defined	in	the	qt/tools/designer/examples/book/book.sql
file.	This	file	has	been	tested	with	PostgreSQL	6	and	PostgreSQL	7.	You
may	need	to	modify	the	SQL	in	this	file	to	recreate	the	example	database	on
your	own	system.

Schema	CREATE	TABLE	Statements

				CREATE	TABLE	author

				(id	integer	primary	key,

				forename	varchar(40),

				surname	varchar(40));

				CREATE	TABLE	book

				(id	integer	primary	key,

				title	varchar(40),

				price	numeric(10,2),

				authorid	integer,

				notes	varchar(255));

				CREATE	TABLE	sequence

				(tablename	varchar(10),

				sequence	numeric);

The	'book'	table	is	simplified	for	the	purposes	of	the	example.	It	can	only
relate	a	book	to	a	single	author	(authorid)	and	lacks	an	ISBN	field.	The
'sequence'	table	is	used	for	generating	unique	index	values	for	the	example
tables.	Note	that	SQL	databases	often	provide	their	own	method	for	creating
sequences	(for	example,	using	the	CREATE	SEQUENCE	command)	which	is
very	likely	to	be	a	more	optimal	solution.	For	the	sake	of	portability	the
examples	will	use	a	'sequence'	table	which	will	work	with	the	vast	majority
of	SQL	databases.

Setting	Up	Database	Connections

There	are	two	aspects	of	database	connections	that	we	must	consider.	Firstly	the
connection	we	wish	to	use	within	Qt	Designer	itself,	and	secondly	the
connection	we	wish	to	use	in	the	applications	that	we	create.

Setting	Up	Qt	Designer's	Connections

Database	Connections	Dialog

Choose	Project|Database	Connections	from	the	menu	bar.	The	Database
Connections	dialog	will	appear.	Click	New	Connection.	For	applications	that
use	a	single	database	it	will	probably	be	most	convenient	to	use	the	default
connection	name	of	'(default)'.	If	you	use	more	than	one	database	then	each	one
must	be	given	a	unique	name.	A	driver	must	be	chosen	from	the	Driver	combo
box.	The	database	name	may	be	available	in	the	Database	Name	combo	box	or
may	have	to	be	typed	in.	The	database	name,	username,	password	and	hostname
should	be	provided	by	your	database	system	administrator.	When	the	Connection
information	has	been	completed	click	Connect.	If	the	connection	is	made	the
connection	name	will	appear	in	the	list	box	on	the	left	hand	side	of	the	dialog.
You	can	now	close	the	dialog;	the	connection	settings	will	remain	in	effect	until
you	change	or	delete	them	or	exit	from	Qt	Designer.

Qt	Designer	can	remember	database	connection	settings	in	qmake	project	files.
Create	a	new	project,	e.g.	click	File|New,	then	click	the	'C++	Project'	icon	to
invoke	the	Project	Settings	dialog.	Click	the	ellipsis	button	to	invoke	the	Save	As
dialog;	navigate	to	the	project's	directory	(creating	it	if	necessary).	Make	sure
you're	in	the	project's	directory,	then	enter	a	project	name	of	'book.pro'.	Click	the
Save	button	to	return	to	the	Project	Settings	dialog,	then	click	OK.	Next	time
you	start	Qt	Designer	instead	of	opening	individual	.ui	files	open	the	.pro
project	file	instead	and	Qt	Designer	will	automatically	reload	the	project's

connection	settings.	To	activate	the	connection	click	Project|Database
Connections.	The	connections	previously	saved	with	the	project	will	be	listed	in
the	left	hand	list	box.	Click	the	connection	you	wish	to	use	and	then	click
Connect.	This	connection	will	be	used	from	now	on,	e.g.	for	previewing
QDataTables.	Opening	a	project	file	also	causes	Qt	Designer	to	load	in	the	list
of	forms	associated	with	the	project	into	the	Form	List	window.	In	most	of	the
explanation	that	follows	we	will	assume	that	you	use	project	files	and	have
clicked	Connect	so	that	there	is	always	a	connection	available	when	you	work	in
Qt	Designer.

Setting	Up	Connections	for	Applications

The	applications	you	create	must	make	their	own	connections	to	the	SQL
database.	We	provide	an	example	function,	createConnections(),	that	you	can
use	as	a	basis	for	your	own	code.

bool	createConnections()

{

				//	create	the	default	database	connection

				QSqlDatabase	*defaultDB	=	QSqlDatabase::addDatabase("QPSQL7");

				if	(!	defaultDB)	{

								qWarning("Failed	to	connect	to	driver");

								return	FALSE;

				}

				defaultDB->setDatabaseName("book");

				defaultDB->setUserName("bookuser");

				defaultDB->setPassword("bookpw");

				defaultDB->setHostName("bookhost");

				if	(!	defaultDB->open())	{

								qWarning("Failed	to	open	books	database:	"	+

																		defaultDB->lastError().driverText());

								qWarning(defaultDB->lastError().databaseText());

								return	FALSE;

				}

				return	TRUE;

}

We	call	addDatabase()	passing	it	the	name	of	the	driver	we	wish	to	use.	We
then	set	the	connection	information	by	calling	the	set...	functions.	Finally	we
attempt	to	open	the	connection.	If	we	succeed	we	return	TRUE,	otherwise	we
output	some	error	information	and	return	FALSE.	From
qt/tools/designer/examples/book/book1/main.cpp

				int	main(int	argc,	char	*argv[])

				{

								QApplication	app(argc,	argv);

								if	(!	createConnections())

												return	1;

								BookForm	bookForm;

								app.setMainWidget(&bookForm);

								bookForm.show();

								return	app.exec();

				}

All	the	examples	presented	in	this	chapter	call	createConnections()	after
creating	the	QApplication	object	in	their	main.cpp	file	and	make	use	of	the
default	connection.	If	you	need	to	connect	to	multiple	databases	use	the	two-
argument	form	of	addDatabase(),	passing	it	both	the	name	of	the	driver	and	a
unique	identifier.	This	is	explained	further	in	the	Qt	SQL	Module
documentation.

You	do	not	need	to	keep	a	reference	to	database	connections.	If	you	use	a	single
database	connection,	this	becomes	the	default	connection	and	database	functions
will	use	this	connection	automatically.	We	can	always	get	a	pointer	to	any	of	our
connections	by	calling	QSqlDatabase::database().

If	you	create	a	main.cpp	file	using	Qt	Designer,	this	file	will	not	include
createConnections().	We	do	not	include	this	function	because	it	needs	the
username	and	password	for	the	database	connection,	and	you	may	prefer	to
handle	these	differently	from	our	simple	example	function.	As	a	result,
applications	that	preview	correctly	in	Qt	Designer	will	not	run	unless	you
implement	your	own	database	connections	function.

Using	QDataTable

QDataTables	may	be	placed	on	any	form	to	provide	browsing	of	database	tables
and	views.	QDataTables	can	also	be	used	to	update	or	delete	records	in-place,
i.e.	inside	the	cells	themselves.	Inserting	records	via	a	QDataTable	usually
requires	connecting	to	the	primeInsert()	signal,	so	that	we	can	generate
primary	keys	for	example,	or	provide	default	values.	If	we	wish	to	present
records	using	a	form	view	(perhaps	combining	data	from	several	tables	and
views)	we	might	use	several	QDataBrowsers	and	QDataViews.

http://doc.trolltech.com/sql.html

Quickly	Viewing	a	Database	Table

This	example,	along	with	all	the	other	examples	in	this	chapter,	has	the	project
name	'book'	and	uses	the	database	created	by	the	book.sql	script.	As	we	work
through	the	chapter	we	will	build	the	'book'	application	step	by	step.	Create	or
copy	the	qt/tools/designer/examples/book/book1/main.cpp	file	shown
earlier.	The	project	file	for	this	first	example	is
qt/tools/designer/examples/book/book1/book.pro.	Start	a	new	project	by
clicking	File|New,	then	click	the	'C++	Project'	icon	to	invoke	the	Project
Settings	dialog.	Click	the	ellipsis	button	to	invoke	the	Save	As	dialog;	navigate	to
the	project's	directory	(creating	it	if	necessary).	Make	sure	you're	in	the	project's
directory,	then	enter	a	project	name	of	'book.pro'.	Click	the	Save	button	to	return
to	the	Project	Settings	dialog,	then	click	OK.	Now	click	Project|Database
Connections.	Fill	in	the	connection	information	appropriate	to	your	database
then	press	Connect.	The	connection	name	should	now	appear	in	the	left	hand	list
box.	(If	this	doesn't	happen	you'll	need	to	contact	your	database	systems
administrator	for	help.)	Close	the	dialog.

We	will	now	create	a	new	form	with	a	QDataTable	that's	connected	to	one	of
our	database	tables.

Click	File|New.	The	New	File	dialog	presents	us	with	a	number	of	form
templates	to	choose	from.	Choose	the	'Dialog'	form	and	click	OK.	Now	click
File|Save.	You	will	be	prompted	for	a	filename,	call	it	book.ui.

Setting	up	a	QDataTable

To	place	a	QDataTable	widget	on	the	form	either	click
Tools|Views|QDataTable	or	click	the	QDataTable	toolbar	button.	Click	on	the
form	and	the	SQL	Table	Wizard	will	appear.

1.	 The	Database	Connection	and	Table	wizard	page	is	used	to	set	up	a
connection	if	one	doesn't	exist	and	to	choose	the	table	or	view	for	the
QDataTable.	(See	Setting	Up	Qt	Designer's	Connections.)

Click	the	connection	you	wish	to	use,	listed	in	the	left	hand	list	box,	e.g.	"
(default)".	The	available	tables	and	views	will	appear	in	the	right	hand
Table	list	box.	Click	the	'author'	table	and	then	click	the	Next	button.

2.	 The	Displayed	Fields	wizard	page	provides	a	means	of	selecting	which
fields	should	be	displayed	in	the	QDataTable	and	in	what	order.	By	default
all	fields	except	the	primary	key	(if	there	is	one)	are	in	the	Displayed	Fields
list	box.	The	left-	and	right-pointing	blue	arrow	buttons	can	be	used	to
move	fields	between	the	Displayed	Fields	and	the	Available	Fields	list
boxes.	The	blue	up	and	down	pointing	arrow	buttons	are	used	to	select	the
display	order	of	the	displayed	fields.

The	default	settings	are	the	ones	we	want	so	simply	click	Next.

3.	 The	Table	Properties	wizard	page	provides	convenient	access	to	some	of
the	database-related	properties	of	the	QDataTable.

Make	sure	the	Confirm	Deletes	checkbox	is	checked,	then	click	Next.

4.	 The	SQL	wizard	page	is	used	to	set	the	QDataTable's	Filter	and	Sort
properties.	The	Filter	is	an	SQL	WHERE	clause	(without	the	word	'WHERE').
For	example,	to	only	list	authors	whose	surnames	begin	with	'P',	we	would
enter	title	LIKE	'P%'.	We'll	leave	the	filter	empty.	The	Available	Fields
list	box	lists	all	the	fields.	The	Sort	By	list	box	lists	the	fields	that	the
QDataTable	is	to	sort	by	and	the	direction	of	their	sorting	(ASCending	or
DESCending).	The	left	and	right	blue	arrows	are	used	to	move	fields
between	the	two	list	boxes.	The	up	and	down	blue	arrows	move	fields	up
and	down	within	the	Sort	By	list	box.	The	ASC	or	DESC	setting	is	changed
with	the	'sort	order'	toolbar	button.

Move	the	surname	and	forename	fields	into	the	Sort	By	list	box	and	click
Next.

5.	 The	Finish	wizard	page	gives	us	the	opportunity	to	go	back	and	change	any
of	our	settings.	We	will	be	able	to	change	them	later	through	the
QDataTable's	properties	so	we	can	finish	with	the	wizard.

Click	Finish.

The	table	will	appear	on	the	form	with	each	column	labelled	with	a	default
column	name.	If	you	wish	to	change	the	settings	then	most	of	them	are	available
in	the	property	window.	The	display	names,	the	fields	they	are	based	upon,	and
the	order	of	appearance	of	the	columns	can	be	changed	using	the	Edit	Table
dialog	(explained	later)	by	right	clicking	the	QDataTable	and	left	clicking	Edit.

Laying	out	the	Form

Click	on	the	form	and	click	the	Lay	Out	Vertically	toolbar	button.	Now	click
Preview|Preview	Form;	the	form	will	run	and	the	table	will	automatically
display	all	the	records.

To	turn	the	form	we've	created	into	an	executable	application	we	must	add	the
main.cpp	file	to	the	project	file	and	make	the	project.	We	should	also	do	some
renaming	to	make	things	easier	to	understand.

1.	 Click	on	the	form	and	change	its	name	to	'BookForm'	and	its	caption	to
'Book'.	Click	on	the	QDataTable	and	change	its	name	to
'AuthorDataTable'.

2.	 Click	File|Save	All.

3.	 Open	the	project	file,	e.g.	book.pro,	in	a	plain	text	editor	and	add	the	line:
SOURCES	+=	main.cpp	at	the	end	of	the	file.

4.	 Run	qmake	to	generate	the	make	file,	e.g.	qmake	-o	Makefile	book.pro,
then	make	and	run	the	book	program.

This	example	shows	how	easy	it	is	to	use	QDataTable	to	show	the	contents	of	a
database	table	or	view.	You	can	use	the	application	we've	just	built	to	update	and
delete	author	records.	In	the	examples	that	follow	we	will	cover	insertions,
setting	up	master-detail	relationships,	drilldown	and	foreign	key	lookups.

A	Note	on	Foreign	Keys

In	most	relational	databases	tables	contain	fields	which	are	foreign	keys
into	other	tables.	In	our	'book'	database	example	the	authorid	in	the	book
table	is	a	foreign	key	into	the	author	table.	When	we	present	a	form	to	the
end	user	we	do	not	usually	want	the	foreign	key	itself	to	be	visible	but
rather	the	text	associated	with	it.	Thus,	we	would	want	the	author's	name	to
appear	rather	than	the	author	id	when	we	show	book	information.	In	many
databases,	this	can	be	achieved	by	using	a	view.	See	your	database's
documentation	for	details.

Inserting	Records	in	QDataTables

Record	insertion	into	a	relational	database	usually	requires	the	generation	of	a
primary	key	value	which	uniquely	identifies	the	record	in	the	table.	Also	we
often	want	to	create	default	values	for	some	fields	to	minimize	the	user's	work.
We	will	create	a	slot	to	capture	the	QDataTables	primeInsert()	signal	and
populate	the	QSqlRecord	insertion	buffer	with	a	unique	primary	key.

1.	 Click	Edit|Slots	to	invoke	the	Edit	Slots	dialog.	Click	New	Slot,	then	enter
the	slot	name	primeInsertAuthor(QSqlRecord*)	into	the	Slot	Properties'
Slot	line	edit	box.	Click	OK.

2.	 Click	the	Connect	Signals/Slots	toolbar	button,	then	click	the
AuthorDataTable,	drag	to	the	form	and	release	the	mouse.	The	Edit
Connections	dialog	will	now	appear.	Click	the	primeInsert()	signal	and
then	the	primeInsertAuthor()	slot	to	make	the	connection.	Now	click	OK.

3.	 Click	the	Source	tab	of	the	Object	Hierarchy	window	(click
Window|Object	Hierarchy	to	make	the	window	visible	if	necessary).
Click	the	primeInsertAuthor()	slot	and	an	editor	window	will	appear.

4.	 We	must	change	the	BookForm::primeInsertAuthor()	slot	to	specify	the
parameter	name	and	perform	the	necessary	action:

				void	BookForm::primeInsertAuthor(QSqlRecord	*	buffer)

				{

								QSqlQuery	query;

								query.exec("UPDATE	sequence	SET	sequence	=	sequence	+	1	WHERE	tablename='author';");

								query.exec("SELECT	sequence	FROM	sequence	WHERE	tablename='author';");

								if	(query.next())	{

												buffer->setValue("id",	query.value(0));

								}

				}

A	QSqlQuery	object	is	used	to	increment	and	retrieve	a	unique	'sequence'
number	for	the	author	table.	The	signal	passed	us	a	pointer	to	the	insertion
buffer	and	we	then	put	the	value	we've	retrieved,	i.e.	the	next	sequence
number,	into	the	buffer's	id	field.	(Again,	note	that	SQL	databases	often
support	a	native	'sequence'	function.	The	method	used	here	is	inappropriate
for	production	systems,	and	is	for	example	purposes	only.	See	your
database's	documentation	for	details	on	how	to	generate	unique	keys	in
code.	In	many	cases,	the	database	can	generate	them	automatically,	or	the
database	may	provide	a	special	syntax	for	dealing	with	sequences.)

If	we	rebuild	the	application	it	will	now	support	INSERT	as	well	as	UPDATE	and
DELETE.	We	could	easily	have	added	additional	code	to	insert	default	values,	e.g.
today's	date	into	a	date	field,	if	necessary.

Browsing	is	supported	by	clicking	records	and	by	using	the	arrow	keys.	Once	a
record	is	active	(highlighted)	we	can	edit	the	it.	Press	the	Insert	key	to	INSERT	a
new	record;	press	F2	to	UPDATE	the	current	record;	press	the	Del	key	to	DELETE
the	current	record.	All	these	operations	take	place	immediately.	Users	can	be
given	the	opportunity	to	confirm	their	edits	by	setting	the	QDataTable's
confirmEdits	property	to	True.	If	the	confirmEdits	property	is	True	then	user
confirmation	will	be	required	for	all	insertions,	updates	and	deletes.	For	finer
control	you	can	set	the	confirmInsert,	confirmUpdate	and	confirmDelete
properties	individually.

QDataTable	User	Interface	Interaction

The	default	user-interface	behaviour	for	QDataTables	is	as	follows:

Users	can	move	to	records	by	clicking	the	scrollbar	and	clicking
records	with	the	mouse.	They	can	also	use	the	keyboard's	navigation
keys,	e.g.	Left	Arrow,	Right	Arrow,	Up	Arrow,	Down	Arrow,	Page
Up,	Page	Down,	Home	and	End.

INSERT	is	initiated	by	right-clicking	the	record	and	clicking	Insert	or
by	pressing	the	Ins	(Insert)	key.	The	user	moves	between	fields	using
Tab	and	Shift+Tab.	The	INSERT	will	take	place	if	the	user	presses
Enter	or	Tabs	off	the	last	field.	If	autoEdit	is	TRUE	the	insert	will
take	place	if	the	user	navigates	to	another	record.	INSERT	is	cancelled
by	pressing	Esc	(Escape).	If	autoEdit	is	FALSE	navigating	to	another
record	also	cancels	the	INSERT.	Setting	confirmInsert	to	TRUE	will
require	the	user	to	confirm	each	INSERT.

UPDATE	is	initiated	by	right-clicking	the	record	and	clicking	Update	or
by	pressing	F2.	The	update	will	take	place	if	the	user	presses	Enter	or
Tabs	off	the	last	field.	If	autoEdit	is	TRUE	the	update	will	take	place	if
the	user	navigates	to	another	record.	UPDATE	is	cancelled	by	pressing
Esc.	If	autoEdit	is	FALSE	navigating	to	another	record	also	cancels
the	UPDATE.	Setting	confirmUpdate	to	TRUE	will	require	the	user	to
confirm	each	UPDATE.

DELETE	is	achieved	by	right-clicking	the	record	and	clicking	Delete	or
by	pressing	the	Del	(Delete)	key.	Setting	confirmDelete	to	TRUE	will
require	the	user	to	confirm	each	DELETE.

You	can	change	this	default	behaviour	programmatically	if	required.

Relating	Two	Tables	Together	(Master-Detail)

Databases	often	have	pairs	of	tables	that	are	related.	For	example,	an	invoice
table	might	list	the	numbers,	dates	and	customers	for	invoices,	but	not	the	actual
invoice	items,	which	an	invoice	item	table	might	store.	In	the	'book'	application
we	wish	to	have	a	QDataTable	that	we	can	use	to	browse	through	the	authors
table	and	a	second	QDataTable	to	show	the	books	they've	written.

Open	the	book	project	if	it	isn't	already	open	Qt	Designer.	We	will	modify	this
project	to	show	two	QDataTables	that	relate	the	author	table	to	the	book	table.

1.	 Click	the	author	QDataTable	and	then	click	the	Break	Layout	toolbutton.

2.	 Resize	the	QDataTable	so	that	it	only	occupies	the	top	half	of	the	form.

3.	 Now	click	on	the	QDataTable	toolbutton	and	click	on	the	bottom	half	of
the	form.	The	SQL	Table	Wizard	will	appear.	(This	Wizard	is	explained	in
Quickly	Viewing	a	Database	Table.)

1.	 Click	the	connection	you're	using	and	click	the	book	table.	Click	the
Next	button.

2.	 Since	we	do	not	want	them	visible,	make	sure	the	authorid	and	id
fields	are	moved	to	the	Available	Fields	list	box	by	using	the	arrow
buttons.	Move	the	title	field	to	the	top	of	the	Displayed	Fields,	and
move	the	price	field	above	the	notes	field.	Click	the	Next	button.

3.	 On	the	Table	Properties	page	click	the	Read	Only	checkbox	then	click
the	Next	button.

4.	 On	the	SQL	page	we	will	leave	the	Filter	(WHERE	clause)	empty.	Move
the	title	field	to	the	Sort	By	list	box	and	click	Next.	Now	click	Finish.

5.	 Change	this	QDataTable's	name	to	"BookDataTable".

4.	 Shift+Click	the	top	QDataTable	so	that	both	QDataTables	are	selected
and	then	click	the	Lay	Out	Vertically	(in	Splitter)	toolbar	button.

5.	 Click	on	the	form	and	click	the	Lay	Out	Vertically	toolbar	button.

Run	the	form	by	clicking	Preview|Preview	Form.	All	the	authors	are	displayed
in	the	top	QDataTable	and	all	the	books	are	displayed	in	the	bottom
QDataTable.	However	we	only	want	the	books	of	the	currently	selected	author
showing	in	the	bottom	QDataTable.	We	will	deal	with	this	by	filtering	the
records	in	the	book	table	according	to	the	author	selected	in	the	author	table.

Using	the	Table	Editor

Edit	Table	Dialog

QDataTables	are	created	and	set	up	using	the	SQL	Table	Wizard.	Like	any
other	Qt	Designer	widget	their	properties	may	be	changed	in	the	Properties
window.	Some	of	the	column	and	row	based	properties	can	also	be	be
changed	using	the	Edit	Table	dialog.	This	dialog	is	invoked	by	right
clicking	the	QDataTable	and	left	clicking	the	Edit	menu	item.	The	right
hand	half	of	the	Edit	Table	dialog	is	where	we	choose	the	fields	we	wish	to

display,	their	order	and	their	labels.	The	procedure	for	creating	columns	is
as	follows:

1.	 Click	the	New	Column	button.

2.	 Drop	down	the	Field	combobox	to	list	the	available	fields.

3.	 Click	the	field	you	wish	to	include	at	this	point.

4.	 Optionally	edit	the	Label	if	the	default	isn't	appropriate.

5.	 Optionally	click	the	Pixmap	ellipsis	(...)	button	to	choose	a	pixmap	to
be	displayed	to	the	left	of	the	column's	label.	(The	ellipsis	button
appears	when	you	click	in	the	Value	part	of	the	Properties	list	by	a
pixmap	or	iconSet	property.)

Repeat	the	steps	listed	above	for	each	column	you	wish	to	add.	Once	all	the
fields	have	been	added	you	can	change	their	ordering	by	using	the	blue	up
and	down	arrow	buttons.	At	any	point	you	can	press	Apply	to	see	how	the
table	will	look.	Finally	click	the	OK	button	to	save	the	properties	you	have
set.	You	can	always	return	to	the	table	editor	to	change	these	settings	later.

Filtering	One	QDataTable	by	Another

To	filter	the	book	table's	records	we	need	to	capture	the	author	QDataTable's
currentChanged()	signal	and	change	the	BookDataTable's	filter	accordingly.

1.	 Click	Edit|Slots.	In	the	Edit	Slots	dialog	click	New	Slot	and	enter	a	slot
name	of	newCurrentAuthor(QSqlRecord*).	Click	OK.

2.	 Click	Connect	Signals/Slots,	then	click	the	AuthorDataTable	QDataTable
and	drag	to	the	form;	release	the	mouse	on	the	form.	The	Edit	Connections
dialog	will	appear.	Click	the	currentChanged()	signal	and	the
newCurrentAuthor	slot.	Click	OK.

3.	 Click	the	Source	tab	of	the	Object	Hierarchy	window	(click
Window|Object	Hierarchy	to	make	the	window	visible	if	necessary).
Click	the	newCurrentAuthor()	slot	and	an	editor	window	will	appear.

4.	 We	must	change	the	BookForm::newCurrentAuthor()	slot	to	specify	the

parameter	name	and	perform	the	necessary	action:

				void	BookForm::newCurrentAuthor(QSqlRecord	*author)

				{

								BookDataTable->setFilter("authorid="	+	author->value("id").toString());

								BookDataTable->refresh();

				}

All	that's	required	now	is	to	change	the	BookDataTable's	filter	and	refresh
the	QDataTable	to	show	the	results	of	the	filter.

Preparing	the	Interface	for	Drilldown

We	can	now	browse	and	edit	authors	and	see	their	books	in	the	BookDataTable.
In	the	next	section	we	explore	QDataBrowser,	which	will	allow	us	to	drill	down
to	a	dialog	through	which	we	can	edit	books.	For	now	we	will	add	some	buttons
to	the	main	BookForm	which	we	will	use	to	invoke	the	book	editing	dialog.

1.	 Click	the	form,	then	click	the	Break	Layout	toolbar	button.	Resize	the
form	to	make	room	for	some	buttons	at	the	bottom.

2.	 Add	two	buttons	to	the	bottom	of	the	form.	Change	their	names	and	labels
to	the	following:

EditPushButton	--	&Edit	Books

QuitPushButton	--	&Quit

Hold	down	the	Shift	key	and	Click	both	buttons	(i.e.	Shift+Click	the
buttons)	and	click	the	Lay	Out	Horizontally	toolbar	button.	Click	the	form
and	click	the	Lay	Out	Vertically	toolbar	button.

3.	 We	will	provide	the	Quit	button	with	functionality	now	and	work	on	the	rest
shortly.	Click	Connect	Signals/Slots,	then	click	the	Quit	button	and	drag	to
the	form;	release	the	mouse	on	the	form.	The	Edit	Connections	dialog	will
appear.	Click	the	clicked()	signal	and	the	accept()	slot.	Click	OK.

Using	QDataBrowser	and	QDataView

The	Book	Application's	Edit	Books	Dialog

Drilling	Down	to	a	Form	using	QDataBrowser

Setting	up	a	QDataBrowser

We	will	now	create	a	new	form	to	allow	users	to	edit	book	records.	Click	the
New	toolbar	button,	click	the	Dialog	template	from	the	New	File	dialog	and
click	OK.	Change	the	name	of	the	form	to	EditBookForm	and	its	caption	to	'Edit
Books'.	Click	the	Save	toolbar	button	and	call	the	file	editbook.ui.	Now	that
we	have	the	form	we	can	add	a	QDataBrowser	to	show	the	book	records.

1.	 Click	the	Data	Browser	toolbar	button,	then	click	the	form.	The	Data
Browser	Wizard	will	appear.

2.	 The	Database	Connection	and	Table	wizard	page	is	used	to	set	up	a
connection	if	one	doesn't	exist	and	to	choose	the	table	or	view	for	the
QDataBrowser.	(See	Setting	Up	Qt	Designer's	Connections.)

Click	the	connection	you	wish	to	use,	listed	in	the	Connection	list	box,	e.g.

"(default)".	The	available	tables	and	views	will	appear	in	the	Table	list	box.
Click	the	book	table	and	then	click	the	Next	button.

3.	 The	Displayed	Fields	wizard	page	provides	a	means	of	selecting	which
fields	should	be	displayed	in	the	QDataBrowser	and	in	what	order.	By
default	all	fields	except	the	primary	key	(if	there	is	one)	are	in	the	right
hand	Displayed	Fields	list	box.	The	left	and	right	blue	arrow	buttons	can	be
used	to	move	fields	between	the	Displayed	Fields	and	the	Available	Fields
list	boxes.	The	blue	up	and	down	arrow	buttons	are	used	to	select	the
display	order	of	the	displayed	fields.

We	don't	want	to	see	the	authorid	foreign	key	field	on	the	form,	so	move	it
to	the	Available	Fields	list	box.	Also,	move	the	title	field	to	the	top	of	the
Displayed	Fields	list.	Click	the	Next	button.

4.	 The	Navigation	and	Editing	wizard	page	allows	us	to	choose	which
navigation	and	editing	buttons	should	appear	on	the	form.

We	will	accept	the	defaults	and	simply	click	the	Next	button.

5.	 The	SQL	wizard	page	is	used	to	set	the	QDataBrowser's	Filter	and	Sort
properties.	The	Filter	is	an	SQL	WHERE	clause	(without	the	word	'WHERE').
For	example,	to	only	list	books	that	cost	less	than	50	(of	some	currency,	e.g.
dollars),	we	would	enter	price	<	50.	We	will	leave	the	filter	empty.	The
Available	Fields	list	box	lists	all	the	fields.	The	Sort	By	list	box	lists	the
fields	that	the	QDataBrowser	is	to	sort	by	and	the	direction	of	their	sorting
(ASCending	or	DESCending).	The	left	and	right	blue	arrows	are	used	to
move	fields	between	the	two	list	boxes.	The	up	and	down	blue	arrows	move
fields	up	and	down	within	the	Sort	By	list	box.	The	ASC	or	DESC	setting	is
changed	with	the	sort	order	button.

Move	the	title	field	into	the	Sort	By	list	box	and	click	Next.

6.	 The	Layout	wizard	page	is	used	to	specify	the	initial	layout	of	the	form.

Change	the	Number	of	Columns	to	1,	then	click	Next.	Now	click	Finish.

7.	 The	QDataBrowser	will	now	appear	on	the	form.	Resize	the	form	to	make
it	shorter.	Click	the	QDataBrowser	then	click	the	Break	Layout	toolbar
button.	Click	the	buttons	then	click	the	Break	Layout	toolbar	button.	Add

another	button	called	'PushButtonClose'	with	the	text	'&Close'	and	place	it
to	the	right	of	the	Delete	button.

8.	 Shift+Click	the	Insert,	Update,	Delete	and	Close	buttons,	then	click	the
Lay	Out	Horizontally	toolbar	button.	Click	the	QDataBrowser,	then	click
the	Lay	Out	in	a	Grid	toolbar	button.	Finally	click	the	form	and	click	the
Lay	Out	Vertically	toolbar	button.	Now	click	the	QDataBrowser	and
rename	it	'BookDataBrowser'.

9.	 Qt	Designer	will	generate	the	necessary	code	to	make	the	browser
operational	(including	generating	the	appropriate	cursor,	sort	and	filter
code).

For	finer	control	over	the	form,	we	will	be	creating	our	own	database
cursor.	Therefore,	set	the	BookDataBrowser's	frameworkCode	property	to
FALSE	in	the	Properties	window	to	prevent	Qt	Designer	from	generating
redundant	code	for	the	cursor.

QDataBrowser	User	Interface	Interaction

The	user-interface	behaviour	for	QDataBrowsers	is	created	by	connecting
slots	and	signals.	The	slots	provided	are:

insert(),	update()	and	del()	for	editing;

first(),	next(),	prev(),	and	last()	for	navigation;

refresh()	to	refresh	the	cursor	from	the	database;

readFields()	to	read	data	from	the	cursor's	edit	buffer	and
writeFields()	to	write	the	form's	data	to	the	cursor's	edit	buffer;

clearValues()	to	clear	the	form's	values.

If	you	use	Qt	Designer's	QDataBrowser	wizard	you	will	be	given	the
option	of	creating	a	default	set	of	buttons	for	navigation	and	editing.	The
behaviour	of	these	buttons	is	set	up	using	the	slots	described	above	to
provide	the	following	functionality:

INSERT	is	initiated	by	pressing	the	Ins	(Insert)	button.	The	user	moves

between	fields	using	Tab	and	Shift+Tab.	If	the	user	presses	the
Update	button	the	INSERT	will	take	place	and	the	user	will	be	taken	to
the	record	they	have	just	inserted.	If	the	user	presses	the	Insert	button
(i.e.	a	second	time)	the	INSERT	will	take	place	and	a	new	insertion	will
be	initiated.	If	autoEdit	is	TRUE	the	INSERT	will	take	place	if	the	user
navigates	to	another	record.	INSERT	is	cancelled	by	pressing	the	Esc
key	or	by	pressing	the	Del	(Delete)	button.	If	autoEdit	is	FALSE	then
navigating	to	another	record	also	cancels	the	INSERT.	Setting
confirmInsert	to	TRUE	will	require	the	user	to	confirm	each	INSERT.

UPDATE	is	automatically	initiated	whenever	the	user	navigates	to	a
record.	An	update	will	take	place	if	the	user	presses	the	Update	button.
If	autoEdit	is	TRUE	the	update	will	take	place	if	the	user	navigates	to
another	record.	UPDATE	is	cancelled	by	pressing	the	Esc	key	or	by
pressing	the	Del	button.	If	autoEdit	is	FALSE	then	navigating	to
another	record	also	cancels	the	UPDATE.	Setting	confirmUpdate	to
TRUE	will	require	the	user	to	confirm	each	UPDATE.

DELETE	is	achieved	by	pressing	the	Del	button.	Setting	confirmDelete
to	TRUE	will	require	the	user	to	confirm	each	DELETE.

Performing	the	Drilldown

We	now	have	a	working	form	for	editing	book	records.	We	need	to	start	the	form
when	the	user	clicks	our	'Edit	Books'	button,	and	to	navigate	to	the	record	they
have	selected	in	the	BookDataTable.	We	also	need	to	provide	a	means	of	editing
the	foreign	keys,	e.g.	authorid.

1.	 We	need	to	make	a	new	slot	to	connect	the	Edit	Books'	button's	clicked()
signal	to.	Click	on	the	Book	form	to	make	it	Qt	Designer's	active	form.
Invoke	the	Edit	Slots	dialog	and	create	a	new	slot	called	editClicked().
Now	click	the	Connect	Signals/Slots	toolbar	button.	Click	the	Edit	Books
button	and	drag	to	the	form;	release	the	mouse	on	the	form.	In	the	Edit
Connections	dialog	connect	the	clicked()	signal	to	the	editClicked()
slot.	Click	OK	to	leave	the	dialog.

2.	 In	the	Object	Hierarchy	window	click	Source	and	then	click	the
editClicked	function.	We	need	to	change	it	to	the	following:

				void	BookForm::editClicked()

				{

								EditBookForm	*dialog	=	new	EditBookForm(this,	"Edit	Book	Form",	TRUE);

								QSqlCursor	cur("book");

								dialog->BookDataBrowser->setSqlCursor(&cur);

								dialog->BookDataBrowser->setFilter(BookDataTable->filter());

								dialog->BookDataBrowser->setSort(QSqlIndex::fromStringList

												BookDataTable->sort(),	&cur));

								dialog->BookDataBrowser->refresh();

								int	i	=	BookDataTable->currentRow();

								if	(i	==	-1)	i	=	0;	//	Always	use	the	first	row

								dialog->BookDataBrowser->seek(i);

								dialog->exec();

								delete	dialog;

								BookDataTable->refresh();

				}

We	create	our	dialog	as	before.	We	also	create	a	cursor	over	the	book	table
and	set	the	dialog's	QDataBrowser,	BookDataBrowser,	to	use	this	new
cursor.	We	set	the	QDataBrowser's	filter	and	sort	to	those	that	applied	to
the	main	form's	book	QDataTable.	We	refresh	the	QDataBrowser	and
seek	to	the	same	record	the	user	was	viewing	on	the	main	form.	Then	we
exec	the	dialog	and	delete	it	when	the	user	has	finished	with	it.	Finally	we
update	the	BookDataTable	in	the	main	form	to	reflect	any	changes	that
were	made	in	the	dialog.

3.	 Because	our	code	refers	to	a	class	declared	in	editbook.h	and	to	a
QDataBrowser	we	need	to	add	two	additional	include	files.	Click	on	the
BookForm,	then	click	on	the	Source	tab	of	the	Object	Hierarchy	window.
Right	click	the	'Includes	(In	Declaration)'	item	and	click	New.	Type	in
"editbook.h".	Now	add	a	second	include,	this	time,	<qdatabrowser.h>.

Now	when	we	navigate	through	the	author	and	book	records	in	the	BookForm
we	can	click	the	Edit	Books	button	to	launch	our	Edit	Books	dialog.	Although
the	dialog	supports	UPDATE,	DELETE	and	navigation	over	the	book	table,	we
cannot	edit	the	foreign	keys	nor	perform	inserts.	We	will	deal	with	insertion	in
the	same	way	as	we	did	with	the	QDataTable,	then	we	will	handle	the	foreign
key	relationship	to	author.

Inserting	into	a	QDataBrowser

We	will	create	a	slot	to	receive	the	Edit	Books	form's	primeInsert()	signal	so
that	we	can	insert	a	unique	primary	key.

1.	 Click	on	the	Edit	Books	form,	then	create	a	new	Slot	called
primeInsertBook(QSqlRecord*).

Click	Edit|Slots,	then	click	the	New	Slot	button	and	type	the	new	slot	name
in	the	Slot	Properties	Slot	edit	box.	Click	OK.

2.	 Connect	the	BookDataBrowser's	primeInsert()	signal	to	the
primeInsertBook()	slot.

Click	the	Connect	Signals/Slots	toolbar	button,	then	click	the
BookDataBrowser	and	drag	to	the	form;	release	the	mouse	on	the	form.
Now	click	the	primeInsert()	signal	and	the	primeInsertBook	slot.	Click
OK.

3.	 In	the	Object	Hierarchy	window	click	Source	and	then	click	the
primeInsertBook	slot.	We	need	to	change	it	to	the	following:

				void	EditBookForm::primeInsertBook(QSqlRecord	*	buffer)

				{

								QSqlQuery	query;

								query.exec("UPDATE	sequence	SET	sequence	=	sequence	+	1	WHERE	tablename='book';");

								query.exec("SELECT	sequence	FROM	sequence	WHERE	tablename='book';");

								if	(query.next())	{

												buffer->setValue("id",	query.value(0));

								}

				}

4.	 We	will	also	tidy	up	the	user	interface	slightly.	Click	the	Update	button	and
set	its	default	property	to	True.	Connect	the	Close	button's	clicked()
signal	to	the	EditBookForm's	accept()	slot.

Handling	Foreign	Keys	in	a	QDataBrowser

Qt's	SQL	module	provides	two	approaches	to	dealing	with	foreign	keys.	The
most	powerful	and	flexible	is	to	subclass	widgets	and	use	property	maps	to	relate
the	widgets	to	the	database.	This	approach	is	described	in	the	Qt	SQL	Module
documentation,	particularly	the	StatusPicker	example.	A	simpler	approach	that
can	be	taken	wholly	within	Qt	Designer	is	presented	here.

We	will	add	a	new	field	to	the	EditBookForm	so	that	authors	can	be	edited	along
with	the	title	and	price.	Once	we've	handled	the	visual	design	we'll	write	the
code	to	make	it	all	work.

http://doc.trolltech.com/sql.html#Custom_Editor_Widgets

1.	 First	we'll	add	the	new	widgets.	Click	the	BookDataBrowser	and	click	the
Break	Layout	toolbar	button.	Resize	the	form	to	make	it	larger	and	drag
each	set	of	buttons	down	to	make	some	room	below	the	title	and	price
QLineEdits.	Click	the	Text	Label	toolbar	button	and	click	on	the	form
beneath	the	Price	label.	Click	the	Text	Label	and	change	its	text	to	'Author'.
Click	the	ComboBox	toolbar	button	and	click	on	the	form	beneath	the	price
QLineEdit.	In	the	Property	Window	change	the	ComboBox's	name	to
ComboBoxAuthor	and	change	its	sizePolicy	hSizeType	to	Expanding.

2.	 Now	we'll	lay	out	the	dialog.	Shift+Click	the	Author	label	and	the
ComboBox	then	click	the	Lay	Out	Horizontally	toolbar	button.	Now	click
the	BookDataBrowser	and	click	the	Lay	Out	in	a	Grid	toolbar	button.

We	need	to	write	some	code	so	that	the	ComboBox	will	be	populated	with	author
names	and	scroll	to	the	current	book's	author.	We	also	need	to	ensure	that	we	put
the	author's	id	into	the	book	table's	authorid	field	when	a	book	record	is	inserted
or	updated.	We'll	ensure	the	code	is	executed	at	the	right	time	by	putting	it	in
slots	and	connecting	signals	to	our	slots.

1.	 Create	two	new	slots	called	beforeUpdateBook(QSqlRecord	*buffer)	and
primeUpdateBook(QSqlRecord	*buffer).	(Click	Edit|Slots,	then	in	the
Edit	Slots	dialog	click	New	Slot	and	enter	the	first	new	slot.	Click	New	Slot
again	and	enter	the	second	slot	then	click	OK.)

2.	 When	the	user	navigates	through	the	dialog,	each	time	they	move	to	a	new
record,	a	primeUpdate()	signal	is	emitted.	We	connect	to	this	so	that	we
can	update	the	ComboBox's	display.	Just	before	a	record	is	updated	or
inserted	into	the	database	a	beforeUpdate()	or	beforeInsert()	signal	is
emitted.	We	connect	our	beforeUpdateBook()	slot	to	both	these	signals	so
that	we	can	ensure	that	the	book's	authorid	field	is	correctly	populated.

Click	the	BookDataBrowser	and	drag	the	mouse	to	the	form;	release	the
mouse	and	the	Edit	Connections	dialog	will	appear.	Connect	the
beforeUpdate()	signal	to	our	beforeUpdateBook()	slot.	Connect	the
beforeInsert()	signal	to	our	beforeUpdateBook()	slot.	Finally	connect
the	primeUpdate()	signal	to	our	primeUpdateBook()	slot.

3.	 All	that	remains	is	to	write	the	underlying	code.	All	the	code	snippets	are
taken	from	qt/tools/designer/examples/book/book7/editbook.ui.

1.	 We	start	with	the	init()	function;	this	is	called	after	the	dialog	is
constructed	and	we	will	use	it	to	populate	the	ComboBox	with	author
names.

				void	EditBookForm::init()

				{

								QSqlQuery	query("SELECT	surname	FROM	author	ORDER	BY	surname;");

								while	(query.next())

												ComboBoxAuthor->insertItem(query.value(0).toString());

				}

Here	we	execute	a	query	to	get	a	list	of	author	names	and	insert	each
one	into	the	ComboBox.

2.	 We	next	write	the	code	which	will	be	executed	just	before	a	record	is
updated	(or	inserted)	in	the	database.

				void	EditBookForm::beforeUpdateBook(QSqlRecord	*	buffer)

				{

								QSqlQuery	query("SELECT	id	FROM	author	WHERE	surname	='"	+

												ComboBoxAuthor->currentText()	+	"';");

								if	(query.next())

												buffer->setValue("authorid",	query.value(0));

				}

We	look	up	the	id	of	the	ComboBox's	current	author	and	place	it	in	the
update	(or	insert)	buffer's	authorid	field.

3.	 As	the	user	navigates	through	the	records	we	ensure	that	the
ComboBox	reflects	the	current	author.

				void	EditBookForm::primeUpdateBook(QSqlRecord	*	buffer)

				{

								//	Who	is	this	book's	author?

								QSqlQuery	query("SELECT	surname	FROM	author	WHERE	id='"	+

												buffer->value("authorid").toString()	+	"';");

								QString	author	=	"";

								if	(query.next())

												author	=	query.value(0).toString();

								//	Set	the	ComboBox	to	the	right	author

								for	(int	i	=	0;	i	<	ComboBoxAuthor->count();	i++)	{

												if	(ComboBoxAuthor->text(i)	==	author)	{

																ComboBoxAuthor->setCurrentItem(i)	;

																break;

												}

								}

				}

Firstly	we	look	up	the	book's	author	and	secondly	we	iterate	through
the	ComboBox's	items	until	we	find	the	author	and	set	the	ComboBox's
current	item	to	the	matching	author.

If	the	author	name	has	changed	or	been	deleted	the	query	will	fail	and	no	author
id	will	be	inserted	into	the	buffer	causing	the	INSERT	to	fail.	An	alternative	is	to
record	the	author	id's	as	we	populate	the	ComboBox	and	store	them	in	a	QMap
which	we	can	then	look	up	as	required.	This	approach	requires	changes	to	the
init(),	beforeUpdateBook()	and	primeInsertBook()	functions	and	the
addition	of	a	new	function,	mapAuthor().	The	relevant	code	from
qt/tools/designer/examples/book/book8/editbook.ui	is	shown	below.

1.	 First	we	need	to	create	a	class	variable	to	map	author	names	to	author	id's.
Click	in	the	Source	tab	of	the	Object	Hierarchy,	then	right	click	the	Class
Variables	item	and	click	New.	Type	in	'QMap<QString,int>	authorMap;'.

2.	 We	now	record	the	author	id's	in	the	init()	function.

				void	EditBookForm::init()

				{

								QSqlQuery	query("SELECT	surname,	id	FROM	author	ORDER	BY	surname;");

								while	(query.next())	{

												ComboBoxAuthor->insertItem(query.value(0).toString());

												int	id	=	query.value(1).toInt();

												mapAuthor(query.value(0).toString(),	id,	TRUE);

								}

				}

After	inserting	each	author's	name	into	the	ComboBox	we	populate	a
QMap	with	the	author's	name	and	id.

3.	 Instead	of	looking	up	the	author's	id	in	the	database	we	look	it	up	in	the
QMap.

				void	EditBookForm::beforeUpdateBook(QSqlRecord	*	buffer)

				{

								int	id;

								mapAuthor(ComboBoxAuthor->currentText(),	id,	FALSE);

								buffer->setValue("authorid",	id);

				}

4.	 We	use	a	single	function	for	storing	author	id's	and	returning	them	so	that
we	can	use	a	static	data	structure.

				void	EditBookForm::mapAuthor(const	QString	&	name,	int	&	id,	bool	populate)

				{

								if	(populate)

												authorMap[name]	=	id;

								else

												id	=	authorMap[name];

				}

If	the	populate	flag	is	TRUE,	we	store	the	author's	name	and	id	in	the
QMap,	otherwise	we	look	up	the	given	author	name	and	set	id
appropriately.

5.	 Before	we	perform	an	update	we	need	to	know	who	the	book's	author	is,
and	we	need	to	update	the	combobox.

				void	EditBookForm::primeUpdateBook(QSqlRecord	*	buffer)

				{

								//	Who	is	this	book's	author?

								QSqlQuery	query("SELECT	surname	FROM	author	WHERE	id="	+

												buffer->value("authorid").toString()	+	";");

								QString	author	=	"";

								if	(query.next())

												author	=	query.value(0).toString();

								//	Set	the	ComboBox	to	the	right	author

								for	(int	i	=	0;	i	<	ComboBoxAuthor->count();	i++)	{

												if	(ComboBoxAuthor->text(i)	==	author)	{

																ComboBoxAuthor->setCurrentItem(i)	;

																break;

												}

								}

				}

Another	approach	which	is	especially	useful	if	the	same	foreign	key	lookups	are
required	in	different	parts	of	the	application	is	to	subclass	a	cursor	and	use	this
for	our	lookups.	This	is	described	in	the	Qt	SQL	Module	documentation,
particulary	the	section	on	subclassing	QSqlCursor.

The	'book'	example	demonstrates	the	basic	techniques	needed	for	SQL
programming	with	Qt.	Additional	information	on	the	Qt	SQL	classes,	especially
the	QSqlQuery	and	QSqlCursor	classes	is	provided	in	the	Qt	SQL	Module
documentation.

http://doc.trolltech.com/sql.html
http://doc.trolltech.com/sql.html

[Prev:	Creating	Custom	Widgets]	[Home]	[Next:	Customizing	and	Integrating	Qt
Designer]

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

[Prev:	Creating	Database	Applications]	[Home]	[Next:	Reference:	Key
Bindings]

Customizing	and	Integrating	Qt	Designer

Customizing	Qt	Designer

Qt	Designer	can	be	customized	in	two	ways:	you	can	add	custom	widgets,	and
you	can	change	aspects	of	how	Qt	Designer	works.	Custom	widgets	are	covered
in	Creating	Custom	Widgets.	This	section	will	focus	on	customizing	Qt	Designer
itself.

Qt	Designer's	toolbars	are	all	dockable	so	they	can	be	dragged	by	their	toolbar
handles	and	arranged	how	you	like.	The	Files,	Object	Hierarchy,	Property	Editor
and	Output	Windows	are	also	dockable	so	you	can	also	drag	them	to	the
positions	that	you	prefer.	You	can	also	make	them	into	floating	windows	by
dragging	them	outside	Qt	Designer's	dock	areas.

General	preferences	can	be	set	by	clicking	Edit|Preferences	to	invoke	the
Preferences	dialog.	If	you	check	the	'Restore	Last	Workspace	on	Startup'
checkbox	then	Qt	Designer	will	remember	the	sizes	and	positions	of	the	toolbars
and	the	dockable	windows.	You	can	change	Qt	Designer's	main	window
background	either	by	selecting	a	color	or	a	pixmap.	You	can	also	switch	off	the
grid	(uncheck	Show	Grid)	since	using	layouts	makes	the	grid	redundant.

The	Preferences	dialog	may	have	additional	tabs,	depending	on	what	plugins
you	have	installed.	We'll	describe	the	C++	Editor	tab	since	this	is	installed	by
default.

The	C++	Editor	tab	is	used	to	set	your	preferred	fonts	for	syntax	highlighting	in
Qt	Designer's	code	editor.	The	base	font	for	all	elements	is	set	in	the	'Standard'
element	which	is	the	last	item	in	the	list.	If	you	want	one	font	to	be	used
throughout	then	set	the	'Standard'	font	and	all	the	other	elements	will	inherit	its
setting.

Qt	Designer's	Code	Editor

The	code	editor	is	available	if	an	Editor	plugin	is	installed.	The	C++	Editor
plugin	is	installed	by	default.

The	code	editor	provides	the	following	keystrokes:

Left	Arrow	--	Moves	the	cursor	one	character	left

Right	Arrow	--	Moves	the	cursor	one	character	right

Up	Arrow	--	Moves	the	cursor	one	line	up

Down	Arrow	--	Moves	the	cursor	one	line	down

Page	Up	--	Moves	the	cursor	one	page	up

Page	Down	--	Moves	the	cursor	one	page	down

Backspace	--	Deletes	the	character	to	the	left	of	the	cursor

Home	--	Moves	the	cursor	to	the	beginning	of	the	line

End	--	Moves	the	cursor	to	the	end	of	the	line

Delete	--	Deletes	the	character	to	the	right	of	the	cursor

Ctrl+A	--	Moves	the	cursor	to	the	beginning	of	the	line

Ctrl+B	--	Moves	the	cursor	one	character	left

Ctrl+C	--	Copies	the	selected	text	to	the	clipboard	(also	Ctrl+Insert	under
Windows)

Ctrl+D	--	Deletes	the	character	to	the	right	of	the	cursor

Ctrl+E	--	Moves	the	cursor	to	the	end	of	the	line

Ctrl+F	--	Invokes	the	Find	Text	dialog

Ctrl+G	--	Invokes	the	Goto	Line	dialog

Ctrl+H	--	Deletes	the	character	to	the	left	of	the	cursor

Ctrl+I	--	Indent	the	line	or	selected	text	that	contains	the	cursor

Alt+I	--	Starts	incremental	search	(see	below)

Ctrl+K	--	Deletes	from	the	cursor	position	to	the	end	of	the	line

Ctrl+N	--	Moves	the	cursor	one	line	down

Ctrl+P	--	Moves	the	cursor	one	line	up

Ctrl+R	--	Invokes	the	Replace	Text	dialog

Ctrl+V	--	Pastes	the	clipboard	text	into	line	edit	(also	Shift+Insert	under
Windows)

Ctrl+X	--	Cuts	the	marked	text,	copy	to	clipboard	(also	Shift+Delete	under
Windows)

Ctrl+Y	--	Redoes	the	last	operation

Ctrl+Z	--	Undoes	the	last	operation

Ctrl+Left	Arrow	--	Moves	the	cursor	one	word	left

Ctrl+Right	Arrow	--	Moves	the	cursor	one	word	right

Ctrl+Up	Arrow	--	Moves	the	cursor	one	word	up

Ctrl+Down	Arrow	--	Moves	the	cursor	one	word	down

Ctrl+Home	Arrow	--	Moves	the	cursor	to	the	beginning	of	the	text

Ctrl+End	Arrow	--	Moves	the	cursor	to	the	end	of	the	text

Tab	--	Completion	(see	below)

To	select	(mark)	text	hold	down	the	Shift	key	whilst	pressing	one	of	the
movement	keystrokes,	for	example,	Shift+Right	Arrow	will	select	the	character
to	the	right,	and	Shift+Ctrl+Right	Arrow	will	select	the	word	to	the	right,	etc.

Pressing	Alt+I	starts	incremental	search.	The	characters	you	type	will	appear	in
the	Incremental	Search	line	edit	in	the	Search	toolbar	and	the	cursor	will	be
moved	to	the	first	matching	text	in	the	editor.	As	you	type	the	search	will

continue.	Press	Return	to	move	to	the	next	match	and	press	Esc	to	cancel	the
search	at	the	position	you've	reached.

Pressing	Tab	after	you've	typed	one	or	more	characters	invokes	completion.
Completion	works	like	this:	start	typing	some	text	then	press	Tab.	If	the	editor
can	find	another	item	of	text	that	begins	with	the	same	characters	it	will
complete	your	text	for	you;	if	it	finds	more	than	one	possibility	it	will	pop	up	a
list	of	choices.	You	can	use	the	arrow	keys	to	choose	a	piece	of	text	then	press
Return,	or	press	Esc	to	continue	typing.	You	can	switch	off	completion	in	the
Preferences	dialog.

When	you	enter	->	or	.	the	editor	will	pop	up	a	command	completion	list;	use
the	arrow	keys	to	move	to	the	item	you	want	and	press	Return,	or	press	Esc	to
ignore	the	list.

Creating	and	Using	Templates

Qt	Designer	supports	two	approaches	to	creating	template	forms.	The	simplest
approach	involves	little	more	than	saving	a	.ui	file	into	the	templates	directory.
The	second	approach	involves	creating	a	container	widget	class	to	be	used	as	a
base	class	for	forms	that	use	the	template.	We	will	explain	both	techniques.

Simple	Templates

These	templates	are	most	useful	when	you	want	to	create	a	whole	set	of	forms
which	all	have	some	common	widgets.	For	example,	you	might	have	a	project
that	will	require	many	forms,	all	of	which	need	to	be	branded	with	a	company
name	and	logo.

First	we'll	create	the	simple	template.

1.	 Click	File|New	to	invoke	the	New	File	dialog.	Click	the	Dialog	template
then	click	OK.

2.	 Click	the	Text	Label	toolbar	button,	then	click	near	the	top	left	of	the	form.
Change	the	font	Point	Size	property	to	16	and	change	the	text	property	to
your	or	your	company's	name.	Click	the	Line	toolbar	button,	then	click	the
form	below	the	label;	click	Horizontal	on	the	pop-up	menu.

3.	 Select	the	label	and	the	line.	(Ctrl+Click	the	form,	then	drag	the	rubber
band	so	that	it	touches	or	includes	the	line	and	the	label.)	Press	Ctrl+L	to
lay	them	out	vertically.

4.	 Click	the	Save	toolbar	button.	In	the	Save	As	dialog,	navigate	to	Qt
Designer's	templates	directory,	e.g.	(qt/tools/designer/templates.	Type
in	the	name	'Simple_Dialog.ui'	and	click	Save.

5.	 Right	click	the	form	in	the	Forms	list,	then	click	Remove	form	from
project.

Now	that	we	have	the	simple	template	we	are	ready	to	use	it.	Click	File|New	to
invoke	the	New	File	dialog.	One	of	the	templates	that	will	appear	is	'Simple
Dialog'.	Click	the	simple	dialog,	then	click	OK.	A	new	form	will	appear	with	the
same	widgets	and	layout	as	the	template.	Add	any	other	widgets	and
functionality.	When	you	attempt	to	save	the	form	you	will	be	prompted	for	a	new
form	name.

Base-class	Templates

These	templates	are	useful	when	you	want	to	provide	some	default	functionality
that	all	the	forms	based	on	the	base	class	can	inherit.	In	our	example	we'll	use	a
class	called	SizeAware	that	remembers	and	restores	its	size	as	the	basis	of	a
template.	We	won't	describe	the	class	itself,	but	will	focus	instead	on	making	use
of	it	as	a	Qt	Designer	template.	The	source	for	the	class	is	in
qt/tools/designer/examples/sizeaware.

The	template	can	either	be	based	on	a	custom	widget	or	on	any	existing
container	widget.

If	you	want	to	base	the	template	on	a	custom	widget	you	must	first	add	it	to	Qt
Designer's	custom	widgets.	Click	Tools|Custom|Edit	Custom	Widgets	to
invoke	the	Edit	Custom	Widgets	dialog.	(This	dialog	is	explained	in	more	detail
in	Simple	Custom	Widgets.)	Click	New	Widget.	Change	the	Class	from
'MyCustomWidget'	to	'SizeAware'.	Click	the	Headerfile	ellipsis	button	and	select
the	file	qt/tools/designer/examples/sizeaware/sizeaware.h.	Check	the
Container	Widget	checkbox.	This	class	provides	two	properties.	Click	the
Properties	tab.	Click	New	Property	and	change	the	property	name	to	'company'.
Click	the	New	Property	again	and	change	the	property	name	to	'settingsFile'.

Click	Close.

To	create	a	template,	based	on	an	existing	widget	or	on	your	own	custom	widget,
click	File|Create	Template	to	invoke	the	Create	Template	dialog.	Change	the
Template	Name	to	'SizeAware'	and	click	the	SizeAware	base	class,	then	click
Create.	The	dialog	will	create	the	template	and	close	itself	immediately.	Close
Qt	Designer	and	restart	it.

A	new	template,	'SizeAware'	is	now	available	from	the	list	of	templates.	Click
File|New,	click	SizeAware	and	click	OK.	Note	that	the	two	properties,	company
and	settingsFile,	are	available	in	the	Properties	window.	Any	forms	based	on	this
template	will	remember	their	size	and	resize	when	reloaded.	(In	practical
applications	having	one	settingsFile	per	form	is	not	recommended,	so	this
template	would	only	really	be	useful	for	applications	that	have	a	single	main
window.)

Integrating	Qt	Designer	with	Visual	Studio

Qt	Designer	can	be	integrated	into	Visual	Studio	using	the	qmsdev.dsp	file	that
is	supplied	with	Qt.

Start	up	Visual	Studio	and	click	File|Open	Workspace.	Open
%QTDIR%\tools\designer\integration\qmsdev\qmsdev.dsp.	Click	Build|Set	Active
Configuration	and	in	the	list	click	'QMsDev	-	Win32	Release',	then	click	OK.
Now	click	Build|Build	qmsdev.dll.	You	should	now	copy	the	file
%QTDIR%\tools\designer\integration\qmsdev\Release\qmsdev.dll	into	Microsoft
Visual	Studio\Common\MSDev98\AddIns.	Now	click	Tools|Customize.	Click
the	Add-in	Macro	Files	tab,	then	click	the	Browse	button.	Change	the	file	type
to	'Add-ins	(.dll)'	and	navigate	to	Microsoft	Visual
Studio\Common\MSDev98\AddIns.	Click	the	qmsdev.dll	file,	click	Open,	then
click	Close.

A	new	toolbar	will	appear	in	Visual	Studio	with	the	following	toolbar	buttons:

New	Qt	Project	--	A	small	application	wizard

Generate	Qt	Project	--	Runs	qmake	(or	the	functionally	equivalent	tmake)
with	a	.pro	file

New	Qt	Dialog	--	Add	an	empty	Qt	Dialog	to	the	active	project

Qt	GUI	Designer	--	Run	Qt	Designer

Use	Qt	--	Add	the	Qt	libraries	to	the	active	project

Add	MOC	--	Add	the	moc	precompiler	to	the	active	file

Add	UIC	--	Add	the	uic	precompiler	to	the	active	file

Double	clicking	a	.ui	file	in	the	workspace	overview	will	now	launch	Qt
Designer.

If	you	create	a	.cpp	file	which	contains	the	Q_OBJECT	macro	you	will	need	an
additional	file	which	is	generated	by	the	moc	to	be	included	in	your	project.	For
example,	if	you	have	'file.cpp',	then	the	last	line	would	be	#include	"file.moc"
and	the	additional	file	would	be	called	'file.moc'.	To	ensure	that	Visual	Studio
executes	the	moc	and	generates	this	file	you	must	create	a	custom	dependency.
Double	click	the	.cpp	file	(in	your	project	workspace)	that	contains	the
Q_OBJECT	macro.	Click	the	Add	MOC	toolbar	button;	this	will	create	an	empty
.moc	file	in	your	project	workspace.	Right	click	the	newly	created	.moc	file,	then
click	Settings	from	the	pop-up	menu	to	invoke	the	Project	Settings	dialog.	Click
the	Custom	Build	tab.	Click	the	Dependencies	button	to	pop	up	the	User
Defined	Dependencies	dialog.	Type	in	$(InputDir)\$(InputPath),	then	press
Return.	Click	OK	to	leave	the	Dependencies	dialog,	then	click	OK	to	leave	the
Project	Settings	dialog.

If	you	wish	to	delete	the	add-in	remove	it	from	the	toolbar	then	delete	the
qmsdev.dll	file	from	the	add-ins	directory.

Creating	Makefiles	without	qmake

The	qmake	tool	provided	with	Qt	can	create	Makefiles	appropriate	to	your
platform	based	on	.pro	project	files.	This	section	describes	the	dependencies
involved	in	building	a	Qt	application	and	gives	a	couple	of	simple	example
Makefiles.	This	section	assumes	that	you	have	a	good	understanding	of
Makefiles.

Qt	Designer	produces	.ui	files	which	are	used	to	generate	.h	and	.cpp	files	for

the	compiler	to	compile.	The	.ui	files	are	processed	by	uic.	Classes	which
inherit	from	QObject,	e.g.	those	which	use	slots	and	signals,	require	an
additional	.cpp	file	to	be	generated.	These	files	are	generated	by	the	moc	and	are
named	'moc_file.cpp'	where	the	original	.cpp	file	is	called	'file.cpp'.	If	your	.cpp
file	contains	the	Q_OBJECT	macro	an	additional	file	'file.moc'	should	be	generated
which	must	be	#included	in	the	.cpp,	normally	at	the	end.	This	requires	an
extra	dependency	being	created.

Processing	.ui	files	with	uic	is	done	twice:

uic	myform.ui	-o	myform.h

uic	myform.ui	-i	myform.h	-o	myform.cpp

The	first	execution	creates	the	header	file,	the	second	creates	the	.cpp	file.	If	you
wish	to	subclass	a	form	you	can	use	uic	to	generate	subclass	skeletons:

uic	formbase.ui	-o	formbase.h

uic	formbase.ui	-i	formbase.h	-o	formbase.cpp

uic	-subdecl	Form	formbase.h	formbase.ui	-o	form.h

uic	-subimpl	Form	form.h	formbase.ui	-o	form.cpp

First	we	generate	the	header	and	implementation	file	for	our	base	class.	Then	we
generate	the	header	and	implementation	skeletons	for	our	subclass.	Note	that	the
use	of	uic	to	generate	skeletons	is	not	something	that	would	be	done	in	a
Makefile,	we	mention	it	here	because	it	can	be	useful	for	command	line	users.
Note	also	that	the	command	line	for	-subdecl	and	for	subimpl	are	subtly
different.

For	implementation	files	that	contain	classes	which	inherit	from	QObject	we
must	create	moc	files:

moc	myform.h	-o	moc_myform.cpp

We'll	look	at	a	simple	Makefile	to	see	the	dependencies	in	practice.

myapp:	moc_myform.o	myform.o	main.o

								g++	-lqt	-o	myapp	moc_myform.o	myform.o	main.o

main.o:	main.cpp

								g++	-o	main.o	main.cpp

moc_myform.o:	moc_myform.cpp

								g++	-o	moc_myform.o	moc_myform.cpp

moc_myform.cpp:	myform.h

								moc	myform.h	-o	moc_myform.cpp

myform.o:	myform.cpp

								g++	-o	myform.o	myform.cpp

myform.cpp:	myform.h	myform.ui

								uic	myform.ui	-i	myform.h	-o	myform.cpp

myform.h:	myform.ui

								uic	myform.ui	-o	myform.h

Note	that	you	may	need	to	include	the	full	path	to	the	commands	in	your
Makefile,	and	under	Windows	the	filenames	are	moc.exe	and	uic.exe.

In	Unix/Linux	environments	the	make	command	may	be	able	to	do	more	for	us,
so	we	should	be	able	to	use	a	simpler	Makefile	like	this:

myapp:	moc_myform.o	myform.o	main.o

								g++	-lq	-o	$@	$^

%.o:	%.cpp

								g++	-o	$^	$@

moc_%.cpp:	%.h

								moc	$^	-o	$@

myform.cpp:	myform.h	myform.ui

								uic	myform.ui	-i	myform.h	-o	myform.cpp

myform.h:	myform.ui

								uic	myform.ui	-o	myform.h

To	see	more	sophisticated	Makefiles	simply	generate	them	using	qmake	on	any
of	your	Qt	projects	or	any	of	the	examples	supplied	with	Qt.

Importing	Foreign	File	Formats

To	import	a	file	in	a	supported	foreign	file	format	click	File|Open,	then	click	the
File	Type	combobox	to	choose	the	file	type	you	wish	to	load.	Click	the	required
file	and	Qt	Designer	will	convert	and	load	the	file.

The	filters	that	Qt	Designer	uses	to	read	foreign	file	formats	are	'works	in
progress'.	You	may	have	different	filters	available	in	your	version	of	Qt	Designer

than	those	described	here.	The	easiest	way	to	see	which	filters	are	available	is	to
invoke	the	file	open	dialog;	all	your	filters	are	listed	in	the	File	Type	combobox.

Importing	Qt	Architect	Files

Qt	Architect	is	a	free	GUI	builder	for	Qt	written	by	Jeff	Harris	and	Klaus	Ebner.
The	.dlg	extension	is	associated	with	Qt	Architect	dialog	files.

Qt	Designer	can	read	files	generated	by	Qt	Architect	version	2.1	and	above.
When	given	a	.dlg	file	from	a	previous	version	of	Qt	Architect,	Qt	Designer
tells	you	how	to	convert	it	to	the	file	format	of	version	2.1.	(The	conversion
procedure	varies	depending	on	the	version	of	the	.dlg	file.)

The	import	filter	does	a	good	job	of	importing	.dlg	files;	the	result	is	almost
identical	to	what	you	get	in	Qt	Architect.	However,	the	C++	code	that	uses	the
dialogs	will	probably	need	some	adaptation.

There	are	a	few	drawbacks	to	converting	Qt	Architect	files	to	Qt	Designer's
format	due	to	differences	between	the	two	tools;	these	are	listed	below:

Layout	spacing	and	margins

If	the	.dlg	file	layouts	use	the	Qt	Architect	defaults	for	layout	spacing	and
margins,	Qt	Designer	will	override	these	with	its	standard	defaults.	You	can
change	the	"layoutSpacing"	and	"layoutMargin"	properties	manually
afterwards	if	necessary.

Layout	stretches	and	spacings

Qt	Architect	gives	access	to	more	features	of	Qt's	layout	system	than	Qt
Designer,	namely	stretches	and	spacings.	Qt	Designer	will	attempt	to	cope
with	.dlg	files	that	use	these	features,	but	sometimes	the	resizing	will	not
be	what	you	want.	The	solution	typically	involves	setting	the	"sizePolicy"
properties	of	some	widgets	and	inserting	or	deleting	spacers.

Mixing	managed	and	unmanaged	widgets

Qt	Architect	allows	a	widget	to	have	some	child	widgets	managed	by	a
layout	and	other	child	widgets	with	fixed	positions.	When	presented	with	a

http://qtarch.sourceforge.net/

.dlg	file	that	uses	this	facility,	Qt	Designer	will	silently	put	the	fixed
position	widgets	into	the	layout.

Pixmaps

Qt	Designer	ignores	pixmaps	specified	in	.dlg	files.	These	have	to	be
restored	manually	in	Qt	Designer.

Importing	Glade	Files

Glade	is	a	free	GUI	builder	for	GTK+	and	GNOME	written	by	Damon	Chaplin.
The	.glade	extension	is	associated	with	Glade	files.

Qt	Designer	has	been	tested	with	Glade	files	up	to	version	0.6.0	and	might	work
with	later	versions	as	well.

Although	Glade	does	not	target	Qt,	the	layout	system	and	the	widget	set	of
GTK+	are	similar	to	those	of	Qt,	so	the	filter	will	retain	most	of	the	information
in	the	.glade	file.

There	are	some	considerations	regarding	the	conversion	of	Glade	files,	as	listed
below:

Ampersands	(&)	in	labels

Qt	displays	an	ampersand	when	a	QLabel	has	no	buddy.	(A	buddy	is	a
widget	that	accepts	focus	on	behalf	of	a	QLabel.)	Glade	allows	GtkLabel
widgets	with	an	(underlined)	accelerator	key	but	with	no	buddy.	This	is	an
error	since	users	expect	underlined	characters	to	be	accelerators.	In	this
situation,	Qt	displays	the	ampersand	itself	instead	of	underlining	the
accelerator	key.	You	should	go	over	these	QLabel	widgets	and	set	their
"buddy"	property.

Layout	placeholders

GTK	allows	a	layout	position	to	be	occupied	by	a	placeholder.	Qt	Designer
converts	those	placeholders	into	QLabels	whose	text	is	"?"	in	red,	so	that
you	can	find	them	and	fix	them	manually.

GTK+	or	GNOME	widget	with	no	Qt	equivalent

http://glade.pn.org/

Qt	has	equivalents	for	most	GTK+	widgets,	but	Glade	also	supports
GNOME,	whose	goal	is	to	provide	a	complete	desktop	environment.
Because	Qt's	scope	is	narrower,	when	Qt	Designer	encounters	a	widget	it
cannot	convert,	it	replaces	it	with	a	label	that	indicates	the	problem.	For
example,	a	GnomePaperSelector	will	be	replaced	by	a	QLabel	whose	text
is	"GnomePaperSelector?"	in	red.	If	you	are	porting	to	KDE,	you	might
want	to	use	the	corresponding	KDE	widget.

Other	GTK+/GNOME	widgets	are	only	supported	in	certain	contexts.	For
example,	the	GnomeDruid	can	be	embedded	in	another	widget,	whereas	the
corresponding	QWizard	class	cannot.

Message	boxes	and	other	high-level	dialogs

Glade	supports	editing	of	GnomeMessageBox,	GtkFileSelection,
GtkFontSelectionDialog	and	others.	This	is	trivially	achieved	in	Qt	by
means	of	a	QMessageBox	dialog,	a	QFileDialog,	a	QFontDialog,	etc.,	in
C++	code.

Stand-alone	popup	menus

Qt	Designer	only	supports	popup	menus	inside	a	QMainWindow.	If	you
need	a	stand-alone	popup	menu	(presumably	a	context	menu),	you	can
easily	write	code	that	does	this	using	QPopupMenu.

Size	policy	parameters

Glade	provides	size	policies	in	the	"Place"	tab	of	the	property	editor.	Qt
Designer	does	not	attempt	to	make	use	of	the	padding,	expand,	shrink	and
fill	information,	as	the	Qt	defaults	are	usually	good	enough.	In	a	few	cases,
you	might	have	to	set	the	"sizePolicy"	property	manually	to	obtain	the
effect	you	want.

GNOME	standard	icons

GNOME	provides	a	large	set	of	standard	icons.	Qt	Designer	will	ignore
references	to	these.	If	you	are	porting	to	KDE,	you	might	want	to	manually
set	the	standard	KDE	icons.

Packer	layout

GTK+	provides	a	class	called	GtkPacker	that	provides	for	exotic	layouts;
Qt	provides	no	QPackerLayout	and	never	will.	Qt	Designer	will	treat
packer	layouts	as	if	they	were	vertical	layouts	and	you	will	probably	have
to	change	them	to	whatever	combination	of	layouts	that	produces	the	right
effect.

Incorrectly-justified	text	after	conversion

The	"hAlign"	property	is	sometimes	set	wrongly,	in	which	case	you	have	to
change	it	manually.	It	is	caused	by	a	quirk	in	Glade.

[Prev:	Creating	Database	Applications]	[Home]	[Next:	Reference:	Key
Bindings]

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

[Prev:	Customizing	and	Integrating	Qt	Designer]	[Home]	[Next:	Reference:
Menu	Options]

Reference:	Key	Bindings

Ctrl+A	--	Selects	all	GUI	elements	in	the	active	form.

Ctrl+B	--	Breaks	the	selected	layout	so	that	you	can	add	or	delete	GUI
elements.

Ctrl+C	--	Copies	the	selected	GUI	elements	from	the	active	form	into	the
clipboard.

Alt+E	--	Pulls	down	the	Edit	menu.

Alt+F	--	Pulls	down	the	File	menu.

Ctrl+G	--	Applies	a	grid	layout	to	the	selected	container,	or	creates	a	new
container	containing	the	selected	GUI	elements	and	applies	a	grid	layout	to
this	container.

Ctrl+H	--	Applies	a	horizontal	box	layout	to	the	selected	container,	or
creates	a	new	container	containing	the	selected	GUI	elements	and	applies	a
horizontal	box	layout	to	this	container.

Alt+H	--	Pulls	down	the	Help	menu.

Ctrl+J	Adjusts	the	size	of	the	selected	GUI	element	(or	elements)	so	that	it
has	the	minimal	size	needed	for	displaying	itself	properly.

Ctrl+L	--	Applies	a	vertical	box	layout	to	the	selected	container,	or	creates	a
new	container	containing	the	selected	GUI	elements	and	applies	a	vertical
box	layout	to	this	container.

Alt+L	--	Pulls	down	the	Layout	menu.

Ctrl+M	--	Opens	an	online	version	of	this	manual	in	Qt	Assistant.

Ctrl+N	--	Invokes	the	New	File	dialog.

Ctrl+O	--	Invokes	the	Open	File	dialog.

Alt+P	--	Pulls	down	the	Preview	menu.

Ctrl+R	--	Checks	the	accelerators	in	the	active	form	for	duplicates.

Ctrl+S	--	Saves	the	active	form.

Ctrl+T	--	Previews	the	active	form	in	the	default	GUI	style	of	the	platform.

Alt+T	--	Pulls	down	the	Tools	menu.

Ctrl+V	--	Pastes	the	GUI	element	(or	elements)	in	the	clipboard	into	the
active	form	at	the	position	it	had	in	its	original	form	plus	a	little	offset.
Does	nothing	if	the	clipboard	does	not	contain	a	GUI	element.

Alt+W	--	Pulls	down	the	Window	menu.

Ctrl+X	--	Cuts	the	selected	GUI	element	(or	elements)	from	the	active	form
and	puts	it	into	the	clipboard.

Ctrl+Y	--	Redoes	the	last	undo	action.

Ctrl+Z	--	Undoes	the	last	action.

Del	--	Deletes	the	selected	GUI	elements	from	the	active	form.

F1	--	Opens	the	introductory	page	of	the	Qt	Designer	manual	in	Qt
Assistant.

Shift-F1	--	Turns	on	What's	This	mode,	which	lets	you	click	on	a	GUI
element	in	Qt	Designer	to	get	a	small	description	window	for	this	element.

F2	--	Activates	the	pointer	tool	that	lets	you	select	GUI	elements.

F3	--	Activates	the	connection	tool	that	lets	you	edit	the	connections
between	signals	and	slots	in	a	form.

F4	--	Activates	the	tab	order	tool	that	lets	you	change	the	tab	order	of	the
GUI	elements	on	the	active	form.

Ctrl+F4	--	Closes	the	active	window.

Ctrl+F6	--	Activates	the	next	window	in	the	order	of	window	creation.

Ctrl+Shift-F6	--	Activates	the	previous	window	in	the	order	of	window
creation.

[Prev:	Customizing	and	Integrating	Qt	Designer]	[Home]	[Next:	Reference:
Menu	Options]

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

[Prev:	Reference:	Key	Bindings]	[Home]	[Next:	Reference:	Toolbar	Buttons]

Reference:	Menu	Options

Introduction

Qt	Designer	provides	menu	options	that	invoke	the	actions	necessary	to	create
applications.	Many	menu	options	lead	to	dialog	boxes	that	provide	additional
options	and	functionality.	The	most	commonly	used	menu	options	also	have
corresponding	toolbar	buttons.	This	chapter	explains	each	menu	option	and	its
use.	For	menu	options	that	invoke	a	dialog	box	or	which	have	a	corresponding
toolbar	button,	there	is	a	cross-reference	to	the	detailed	explanation	that	appears
in	the	relevant	chapter.

The	File	Menu

The	File	Menu

This	menu	is	invoked	with	Alt+F,	and	provides	the	following	options:

File|New	Click	this	menu	option	(or	press	Ctrl+N)	to	create	a	new	project,
form	or	file.	This	option	invokes	the	New	File	Dialog.

File|Open
Click	this	menu	option	(or	press	Ctrl+O)	to	open	existing	projects,	forms
or	files.	The	File	Open	Dialog	is	invoked	through	which	a	file	name	can	be
selected.

File|Close
Click	this	menu	option	to	close	the	currently	open	project.	If	the	project	has
unsaved	changes,	the	Save	Form	Dialog	appears.

File|Save
Click	this	menu	option	(or	press	Ctrl+S)	to	save	the	project	along	with	its
forms	and	files.	For	a	project	that	has	forms	or	files,	click	'Save'	to	save	the
project	before	exiting.	For	new	forms,	click	'Save'	and	the	Save	Form	As
Dialog	appears.	For	forms	that	have	been	saved	previously	click	'Save'.	For
new	files	or	for	files	that	have	been	changed,	click	'Save'.

File|Save	As
Click	this	menu	option	to	save	and	name	the	current	form	or	file.	This
option	invokes	the	Save	Form	As	Dialog.

File|Save	All
Click	this	menu	option	to	save	every	open	file	and	form	in	every	open
project.

File|Create	Template
Click	this	menu	option	to	create	a	form	template.	This	option	invokes	the
Create	Template	Dialog	dialog.

File|Recently	Opened	Files
Click	this	menu	option	to	list	the	most	recently	opened	files.	Click	one	of
the	files	listed	to	open	it.	Note	that	we	recommend	that	you	open	projects
rather	than	files.	You	can	open	a	file	by	clicking	the	file's	name	in	the
project's	File	Overview	Window.

File|Recently	Opened	Projects
Click	this	menu	option	to	list	the	most	recently	opened	projects.	Click	one
of	the	projects	listed	to	open	it.

File|Exit
Click	this	menu	option	to	exit	Qt	Designer.	If	any	open	files	have	unsaved
changes,	the	Save	Form	Dialog	message	box	will	appear	for	each	of	them,
before	Qt	Designer	exits.	Note	that	for	a	form	that	has	not	been	saved
previously	but	has	had	changes	made	to	it	or	that	has	been	saved	but	has
had	changes	made	to	it,	the	Save	Form	Dialog	is	invoked.	Click	Yes	to
invoke	the	Save	Form	As	dialog.

See	also	The	File	Toolbar	Buttons.

The	Edit	Menu

The	Edit	Menu

This	menu	is	invoked	with	Alt+E,	and	provides	the	following	options:

Edit|Undo
Click	this	menu	option	(or	press	Ctrl+Z)	to	undo	an	action.	The	name	of
the	last	action	that	was	performed	appears	after	the	word	'Undo'.

Edit|Redo
Click	this	menu	option	(or	press	Ctrl+Y)	to	redo	an	action.	The	name	of	the
last	action	that	was	performed	appears	after	the	word	'Redo'.

Edit|Cut
Click	this	menu	option	(or	press	Ctrl+X)	to	delete	the	selected	item	from
the	current	form	or	file	and	copy	it	to	the	clipboard.

Edit|Copy
Click	this	menu	option	(or	press	Ctrl+C)	to	copy	the	selected	item	from	the
current	form	or	file	to	the	clipboard.

Edit|Paste

Click	this	menu	option	(or	press	Ctrl+V)	to	paste	the	clipboard	item	(if
any)	into	the	current	form	or	file.

Edit|Delete
Click	this	menu	option	(or	press	Del)	to	delete	the	selected	item	from	the
current	form	or	file.

Edit|Select	All
Click	this	menu	option	(or	press	Ctrl+A)	to	highlight	all	the	widgets	on	the
current	form	or	all	the	text	in	the	current	file.

Edit|Check	Accelerators
Click	this	menu	option	(or	press	Alt+R)	to	verify	that	all	the	accelerators
are	used	only	once.	If	an	accelerator	is	used	more	than	once,	a	message	box
appears	with	the	statement	'The	accelerator	'x'	is	used	'y'	times'.	Click	Select
to	highlight	the	widgets	with	the	same	accelerator,	or	click	Cancel	to	exit
the	message	box	without	taking	any	action.

Edit|Slots
Click	this	menu	option	to	edit	and	create	slots.	This	option	invokes	the	Edit
Slots	Dialog.

Edit|Connections
Click	this	menu	option	to	invoke	the	View	Connections	Dialog.

Edit|Form	Settings
Click	this	menu	option	to	invoke	the	Form	Settings	Dialog.

Edit|Preferences
Click	this	menu	option	to	invoke	the	Preferences	Dialog.

See	also	The	Edit	Toolbar	Buttons.

The	Project	Menu

The	Project	Menu

This	menu	is	invoked	with	Alt+O,	and	provides	the	following	options:

Project|Active	Project
Click	this	menu	option	to	toggle	between	projects	if	there	is	more	than	one
project	open.	You	can	also	toggle	between	projects	using	the	Active	Project
drop-down	combobox	in	the	The	File	Toolbar	Buttons.

Project|Add	File
Click	this	menu	option	to	invoke	the	Add	Dialog

Project|Project	Settings
Click	this	menu	option	to	invoke	the	Project	Settings	Dialog.

Project|Image	Collection
Click	this	menu	option	to	invoke	the	Image	Collection	Dialog.

Project|Database	Connections
Click	this	menu	option	to	invoke	the	Edit	Database	Connections	Dialog.

See	also	The	File	Toolbar	Buttons.

The	Search	Menu

The	Search	Menu

This	menu	is	invoked	with	Alt+S,	and	provides	the	following	options:

Search|Find
Click	this	menu	option	(or	press	Ctrl+F)	to	invoke	the	Find	Text	Dialog.

Search|Find	Incremental
Click	this	menu	option	(or	press	Alt+I)	to	place	the	cursor	in	the	text	box
located	next	to	the	Find	toolbar	button.	Type	characters	into	the	text	box;	as
you	type,	Qt	Designer	will	highlight	the	first	occurrence	of	the	text	that	it
finds	in	the	file.	Press	the	Enter	key	to	go	to	the	next	occurrence	of	the	text.
Press	the	Esc	key	once	you	have	found	the	word	you	are	looking	for	to
place	the	cursor	in	the	editor.

Search|Replace
Click	this	menu	option	(or	press	Ctrl+R)	to	invoke	the	Replace	Text	Dialog
to	replace	specific	words	or	characters.

Search|Goto	line
Click	this	menu	option	(or	press	Alt+G)	to	invoke	the	Goto	Line	Dialog	to
go	to	a	specific	line	in	the	file.

See	also	The	Search	Toolbar	Buttons.

The	Tools	Menu

The	Tools	Menu

This	menu	is	invoked	with	Alt+T,	and	provides	the	following	options:

Tools|Pointer
Click	this	menu	option	(or	press	F2)	to	de-select	any	selected	widget
toolbar	button.	The	pointer	is	also	used	to	stop	inserting	new	widgets	on	the

form	if	you	double	clicked	a	widget	toolbar	button.	Press	the	Esc	key	to
return	to	the	pointer	at	any	time.

Tools|Connect	Signals	and	Slots
Click	this	menu	option	(or	press	F3)	to	connect	signals	and	slots.	Click	on	a
widget	and	drag	the	connection	line	to	the	widget	(or	form)	that	you	want	to
connect	to.	Release	the	mouse	button	and	the	Edit	Connections	Dialog	will
appear.

Tools|Tab	Order
Click	this	menu	option	(or	press	F4)	to	set	the	tab	order	for	all	the	widgets
on	the	form	that	can	accept	keyboard	focus.	Choose	this	option	and	blue
circles	with	numbers	on	them	appear	next	to	the	widgets.	Click	the	widget
that	you	want	to	be	first	in	the	tab	order,	then	click	the	widget	that	should
be	next	in	the	tab	order,	and	continue	until	all	the	widgets	have	the	tab	order
numbers	you	want.	If	you	make	a	mistake,	double	click	the	first	widget	and
start	again.	Press	Esc	to	leave	tab	order	mode.	If	you	want	to	revert	your
changes,	leave	tab	order	mode,	then	undo.

Tools|Buttons|PushButton
Click	this	menu	option	and	then	click	the	form	to	place	a	PushButton	on	the
form.

Tools|Buttons|ToolButton
Click	this	menu	option	and	then	click	the	form	to	place	a	ToolButton	on	the
form.

Tools|Buttons|RadioButton
Click	this	menu	option	and	then	click	the	form	to	place	a	RadioButton	on
the	form.	It	is	recommended	that	you	place	RadioButtons	inside
ButtonGroups	so	that	Qt	will	automatically	ensure	that	only	one
RadioButton	in	the	group	is	active	at	any	one	time.

Tools|Buttons|CheckBox
Click	this	menu	option	and	then	click	the	form	to	place	a	CheckBox	on	the
form.

Tools|Containers|GroupBox
Click	this	menu	option	and	then	click	the	form	to	place	a	GroupBox	on	the
form.

Tools|Containers|ButtonGroup
Click	this	menu	option	and	then	click	the	form	to	place	a	ButtonGroup	on
the	form.

Tools|Containers|Frame
Click	this	menu	option	and	then	click	the	form	to	place	a	Frame	on	the
form.

Tools|Containers|TabWidget
Click	this	menu	option	and	then	click	the	form	to	place	a	TabWidget	on	the
form.	To	add	or	remove	tabs,	right	click	the	tab	widget	and	choose	'Add
Page'	or	'Remove	Page'.

Tools|Views|ListBox
Click	this	menu	option	and	then	click	the	form	to	place	a	ListBox	on	the
form.

Tools|Views|ListView
Click	this	menu	option	and	then	click	the	form	to	place	a	ListView	on	the
form.

Tools|Views|Icon	View
Click	this	menu	option	and	then	click	the	form	to	place	an	IconView	on	the
form.

Tools|Views|Table
Click	this	menu	option	and	then	click	the	form	to	place	a	Table	on	the	form.

Tools|Database|DataTable
Click	this	menu	option	and	then	click	the	form	to	place	a	DataTable	on	the
form.

Tools|Database|DataBrowser
Click	this	menu	option	and	then	click	the	form	to	place	a	DataBrowser	on
the	form.

Tools|Database|DataView
Click	this	menu	option	and	then	click	the	form	to	place	a	DataView	on	the
form.

Tools|Input|LineEdit
Click	this	menu	option	and	then	click	the	form	to	place	a	LineEdit	on	the
form.

Tools|Input|SpinBox
Click	this	menu	option	and	then	click	the	form	to	place	a	SpinBox	on	the
form.

Tools|Input|DateEdit
Click	this	menu	option	and	then	click	the	form	to	place	a	DateEdit	on	the
form.

Tools|Input|TimeEdit
Click	this	menu	option	and	then	click	the	form	to	place	a	TimeEdit	on	the
form.

Tools|Input|DateTimeEdit
Click	this	menu	option	and	then	click	the	form	to	place	a	DateTimeEdit	on
the	form.

Tools|Input|TextEdit
Click	this	menu	option	and	then	click	the	form	to	place	a	TextEdit	on	the
form.

Tools|Input|ComboBox
Click	this	menu	option	and	then	click	the	form	to	place	a	ComboBox	on	the
form.

Tools|Input|Slider
Click	this	menu	option	and	then	click	the	form	to	place	a	Slider	on	the
form.

Tools|Input|ScrollBar
Click	this	menu	option	and	then	click	the	form	to	place	a	Scrollbar	on	the
form.

Tools|Input|Dial
Click	this	menu	option	and	then	click	the	form	to	place	a	Dial	on	the	form.

Tools|Display|TextLabel

Click	this	menu	option	and	then	click	the	form	to	place	a	TextLabel	on	the
form.

Tools|Display|PixmapLabel
Click	this	menu	option	and	then	click	the	form	to	place	a	PixmapLabel	on
the	form.

Tools|Display|LCDNumber
Click	this	menu	option	and	then	click	the	form	to	place	a	LCDNumber	on
the	form.

Tools|Display|Line
Click	this	menu	option	and	then	click	the	form	to	place	a	Line	on	the	form.

Tools|Display|ProgressBar
Click	this	menu	option	and	then	click	the	form	to	place	a	ProgressBar	on
the	form.

Tools|Display|TextBrowser
Click	this	menu	option	and	then	click	the	form	to	place	a	TextBrowser	on
the	form.

Tools|Custom|Edit	Custom	Widgets
Click	this	menu	option	to	invoke	the	Edit	Custom	Widgets	Dialog.

Tools|Custom|
Click	this	menu	option	and	then	click	the	form	to	place	the	Custom	Widget
on	the	form.	Note	that	this	menu	option	only	appears	if	you	have	created	a
widget	using	Tools|Custom|Edit	Custom	Widgets.

See	also	The	Tools	Toolbar	Buttons.

The	Layout	Menu

The	Layout	Menu

This	menu	is	invoked	with	Alt+L,	and	provides	the	following	options:

Layout|Adjust	Size
Click	this	menu	option	(or	press	Ctrl+J)	to	adjust	the	size	of	the	widget	to
it's	recommended	size.

Layout|Lay	Out	Horizontally
Click	this	menu	option	(or	press	Ctrl+H)	to	lay	out	the	selected	widgets	or
layouts	side	by	side.	Use	Shift+Click	to	select	each	widget	or	layout,	and
then	choose	this	menu	option	to	group	them	horizontally.	Note	that	for
complex	widgets	it	is	sometimes	easiest	to	select	widgets	and	layouts	by
clicking	them	in	the	Widgets	tab	of	the	Object	Explorer	Window.	If	only
one	widget	is	selected,	its	child	widgets	will	be	laid	out	horizontally.

Layout|Lay	Out	Vertically
Click	this	menu	option	(or	press	Ctrl+L)	to	lay	out	the	selected	widgets	one
above	the	other.	Use	Shift+Click	to	select	each	widget	or	layout,	and	then
choose	this	menu	option	to	group	them	vertically.	Note	that	for	complex
widgets	it	is	sometimes	easiest	to	select	widgets	and	layouts	by	clicking
them	in	the	Widgets	tab	of	the	Object	Explorer	Window.	If	only	one	widget
is	selected,	its	child	widgets	will	be	laid	out	vertically.

Layout|Lay	Out	in	a	Grid
Click	this	menu	option	(or	press	Ctrl+G)	to	lay	out	the	selected	widgets	in
a	grid.	If	only	one	widget	is	selected,	its	child	widgets	will	be	laid	out	in	a

grid.

Layout|Lay	Out	Horizontally	(in	Splitter)
Click	this	menu	option	to	lay	out	the	selected	widgets	or	layouts	side	by
side	with	a	splitter	between	each.	Use	Shift+Click	to	select	each	widget	or
layout,	and	then	choose	this	menu	option	to	group	them	horizontally.	Note
that	for	complex	widgets	it	is	sometimes	easiest	to	select	widgets	and
layouts	by	clicking	them	in	the	Widgets	tab	of	the	Object	Explorer	Window.

Layout|Lay	Out	Vertically	(in	Splitter)
Click	this	menu	option	to	lay	out	the	selected	widgets	or	layouts	one	above
the	other	with	a	splitter	between	each.	Use	Shift+Click	to	select	each
widget	or	layout,	and	then	choose	this	menu	option	to	group	them
vertically.	Note	that	for	complex	widgets	it	is	sometimes	easiest	to	select
widgets	and	layouts	by	clicking	them	in	the	Widgets	tab	of	the	Object
Explorer	Window.

Layout|Break	Layout
Click	this	menu	option	(or	press	Ctrl+B)	to	break	a	layout.	Click	on	the
layout,	then	select	this	option;	the	layout	is	deleted.

Layout|Add	Spacer
Click	this	menu	option	to	add	a	vertical	or	horizontal	spacer	to	widgets	that
take	up	too	much	space	on	the	form.	The	spacer	consumes	extra	space	in
the	layout.

See	also	The	Layout	Toolbar	Buttons.

The	Preview	Menu

The	Preview	Menu

This	menu	is	invoked	with	Alt+P,	and	provides	the	following	options:

Preview|Preview	Form
Click	this	menu	option	(or	press	Ctrl+T)	to	preview	the	form	within	Qt
Designer.

Preview|...in	Windows	Style
Click	this	menu	option	to	preview	the	form	in	the	Windows	style.

Preview|...in	Motif	Style
Click	this	menu	option	to	preview	the	form	in	the	Motif	style.

Preview|...in	CDE	Style
Click	this	menu	option	to	preview	the	form	in	the	CDE	style.

Preview|...in	MotifPlus	Style
Click	this	menu	option	to	preview	the	form	in	the	MotifPlus	style.

Preview|...in	Platinum	Style
Click	this	menu	option	to	preview	the	form	in	the	Platinum	style.

Preview|...in	SGI	Style
Click	this	menu	option	to	preview	the	form	in	the	SGI	style.

The	Window	Menu

The	Window	Menu

This	menu	is	invoked	with	Alt+W,	and	provides	the	following	options:

Window|Close
Click	this	menu	option	(or	press	Ctrl+F4)	to	close	the	window	that	is
currently	active.

Window|Close	All
Click	this	menu	option	to	close	all	the	windows	that	are	currently	open.

Window|Next
Click	this	menu	option	(or	press	Ctrl+F6)	to	make	the	next	window	active.
The	order	is	the	order	in	which	the	windows	were	opened.

Window|Previous
Click	this	menu	option	(or	press	Ctrl+Shift+F6)	to	make	the	previous
window	active.	The	order	is	the	order	in	which	the	windows	were	opened.

Window|Tile
Click	this	menu	option	to	arrange	all	the	open	files	and	forms	side	by	side
so	that	each	window	is	visible.

Window|Cascade
Click	this	menu	option	to	stack	all	the	open	file	and	forms,	one	on	top	of
the	other,	but	with	an	overlap	so	that	each	window's	title	bar	is	visible.

Window|Views|File	Overview
Click	this	menu	option	to	make	the	File	Overview	Window	visible,	or	to
hide	it	if	it	is	already	visible.	If	the	window	is	currently	visible,	a	check
mark	will	appear	next	to	the	name	in	the	menu.

Window|Views|Property	Editor/Signal	Handlers
Click	this	menu	option	to	make	the	Property	Editor/Signal	Handlers
Window	visible,	or	to	hide	it	if	it	is	already	visible.	If	the	window	is
currently	visible,	a	check	mark	will	appear	next	to	the	name	in	the	menu.

Window|Views|Object	Explorer
Click	this	menu	option	to	make	the	Object	Explorer	Window	visible,	or	to
hide	it	if	it	is	already	visible.	If	the	window	is	currently	visible,	a	check
mark	will	appear	next	to	the	name	in	the	menu.

Window|Views|Line	Up
Click	this	menu	option	to	eliminate	any	extra	space	between	toolbars	and
line	them	up	next	to	each	other	all	at	once,	rather	than	moving	each
individual	toolbar	into	place.

Window|Toolbars|File
Click	this	menu	option	to	make	the	File	toolbar	buttons	visible,	or	to	hide
them	if	they	are	already	visible.	If	the	toolbar	buttons	are	currently	visible,
a	check	mark	will	appear	next	to	the	name	in	the	menu.

Window|Toolbars|Edit
Click	this	menu	option	to	make	the	Edit	toolbar	buttons	visible,	or	to	hide
them	if	they	are	already	visible.	If	the	toolbar	buttons	are	currently	visible,
a	check	mark	will	appear	next	to	the	name	in	the	menu.

Window|Toolbars|Search
Click	this	menu	option	to	make	the	Search	toolbar	buttons	visible,	or	to
hide	them	if	they	are	already	visible.	if	the	toolbar	buttons	are	currently
visible,	a	check	mark	will	appear	next	to	the	name	in	the	menu.

Window|Toolbars|Layout
Click	this	menu	option	to	make	the	Layout	toolbar	buttons	visible,	or	to
hide	them	if	they	are	already	visible.	If	the	toolbar	buttons	are	currently
visible,	a	check	mark	will	appear	next	to	the	name	in	the	menu.

Window|Toolbars|Tools
Click	this	menu	option	to	make	the	Tools	toolbar	buttons	visible,	or	to	hide
them	if	they	are	already	visible.	If	the	toolbar	buttons	are	currently	visible,
a	check	mark	will	appear	next	to	the	name	in	the	menu.

Window|Toolbars|Buttons
Click	this	menu	option	to	make	the	Buttons	toolbar	buttons	visible,	or	to
hide	them	if	they	are	already	visible.	If	the	toolbar	buttons	are	currently
visible,	a	check	mark	will	appear	next	to	the	name	in	the	menu.

Window|Toolbars|Containers
Click	this	menu	option	to	make	the	Containers	toolbar	buttons	visible,	or	to
hide	them	if	they	are	already	visible.	If	the	toolbar	buttons	are	currently
visible,	a	check	mark	will	appear	next	to	the	name	in	the	menu.

Window|Toolbars|Views
Click	this	menu	option	to	make	the	Views	toolbar	buttons	visible,	or	to	hide
them	if	they	are	already	visible.	If	the	toolbar	buttons	are	currently	visible,
a	check	mark	will	appear	next	to	the	name	in	the	menu.

Window|Toolbars|Database
Click	this	menu	option	to	make	the	Database	toolbar	buttons	visible,	or	to
hide	them	if	they	are	already	visible.	If	the	toolbar	buttons	are	currently
visible,	a	check	mark	will	appear	next	to	the	name	in	the	menu.

Window|Toolbars|Input
Click	this	menu	option	to	make	the	Input	toolbar	buttons	visible,	or	to	hide
them	if	they	are	already	visible.	If	the	toolbar	buttons	are	currently	visible,
a	check	mark	will	appear	next	to	the	name	in	the	menu.

Window|Toolbars|Display
Click	this	menu	option	to	make	the	Display	toolbar	buttons	visible,	or	to
hide	them	if	they	are	already	visible.	If	the	toolbar	buttons	are	currently
visible,	a	check	mark	will	appear	next	to	the	name	in	the	menu.

Window|Toolbars|Custom
Click	this	menu	option	to	make	the	Custom	toolbar	buttons	visible,	or	to
hide	them	if	they	are	already	visible.	If	the	toolbar	buttons	are	currently
visible,	a	check	mark	will	appear	next	to	the	name	in	the	menu.

Window|Toolbars|Help
Click	this	menu	option	to	make	the	Help	toolbar	buttons	visible,	or	to	hide
them	if	they	are	already	visible.	If	the	toolbar	buttons	are	currently	visible,
a	check	mark	will	appear	next	to	the	name	in	the	menu.

Window|Toolbars|Line	Up
Click	this	menu	option	to	eliminate	extra	space	between	toolbars	and	line
them	up	next	to	each	other	all	at	once,	rather	than	moving	each	individual
toolbar	into	place.

Window|n
Click	one	of	the	numbered	menu	options	that	list	the	currently	open	files
and	forms	to	switch	to	the	named	file	or	form.

The	Help	Menu

The	Help	Menu

This	menu	is	invoked	with	Alt+H,	and	provides	the	following	options:

Help|Contents
Click	this	menu	option	(or	press	F1)	to	invoke	the	Qt	Assistant	application
which	provides	on-line	help.	The	on-line	help	is	context	sensitive,	so	you
can	type	the	item	you	want	more	information	about	in	the	line	edit	and	Qt
Assistant	will	automatically	find	it	if	it	is	available.

Help|Manual
Click	this	menu	option	(or	press	Ctrl+M)	to	invoke	the	Qt	Assistant
application	which	opens	showing	this	manual.

Help|About...
Click	this	menu	option	to	invoke	the	About	Qt	Designer	dialog	which	gives
the	version	number	and	some	licensing	information.

Help|About	Qt...
Click	this	menu	option	to	invoke	a	dialog	which	provides	information	about
Qt.

Help|What's	This?
Click	this	menu	option	to	invoke	a	small	question	mark	that	is	attached	to
the	mouse	pointer.	Click	on	a	feature	which	you	would	like	more
information	about.	A	popup	box	appears	with	information	about	the	feature.

See	also	The	Help	Toolbar	Button.

[Prev:	Reference:	Key	Bindings]	[Home]	[Next:	Reference:	Toolbar	Buttons]

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

[Prev:	Reference:	Menu	Options]	[Home]	[Next:	Reference:	Dialogs]

Reference:	Toolbar	Buttons

Introduction

Qt	Designer's	toolbar	buttons	provide	fast	access	to	common	functionality.

Toolbar	buttons	are	grouped	in	several	toolbars.	Toolbars	have	a	handle	at	the
left	hand	side	which	can	be	clicked	to	minimize	the	toolbar.	Toolbars	that	have
been	minimized	have	their	handle	appear	just	under	the	menu	bar;	click	the
handle	to	restore	the	toolbar	to	the	last	position	it	occupied.	You	can	drag	a
toolbar's	handle	to	move	the	toolbar	to	a	different	position	in	the	toolbar	area.
Toolbars	can	be	dragged	out	of	the	toolbar	area	entirely	and	made	into	stand-
alone	tool	dock	windows.	To	hide	a	tool	dock	window	click	its	close	button.	To
restore	a	hidden	tool	dock	window,	right	click	the	tool	area,	then	click	the	name
of	the	tool	dock	window	you	wish	to	restore.

File	Toolbuttons

The	File	Toolbar	Buttons

New	Click	this	toolbar	button	(or	press	Ctrl+N)	to	create	a	new	project,
form	or	file.	This	option	invokes	the	New	File	Dialog.

Open
Click	this	toolbar	button	(or	press	Ctrl+O)	to	open	existing	projects,	forms
or	files.	This	button	invokes	the	File	Open	Dialog	which	is	used	to	select
files.

Save
Click	this	toolbar	button	(or	press	Ctrl+S)	to	save	the	project,	forms	and
files.	For	a	new	project	that	has	no	forms	or	files,	click	'Save'	to	save	the
project	before	exiting.	For	new	forms,	click	'Save'	and	the	Save	Form	As
Dialog	appears.

Active	Project

Click	the	combobox	to	view	the	names	of	the	projects	that	are	currently
open	and	select	a	project	name	to	toggle	between	the	projects.

Edit	Toolbuttons

The	Edit	Toolbar	Buttons

Undo
Click	this	toolbar	button	(or	press	Ctrl+Z)	to	undo	an	action.	The	name	of
the	last	action	that	was	performed	appears	after	the	word	'Undo'	in	this
toolbar	button's	tooltip.

Redo
Click	this	toolbar	button	(or	press	Ctrl+Y)	to	redo	an	action.	The	name	of
the	last	action	that	was	performed	appears	after	the	word	'Redo'	in	this
toolbar	button's	tooltip.

Cut
Click	this	toolbar	button	(or	press	Ctrl+X)	to	delete	the	selected	item	from
the	current	form	or	file	and	copy	it	to	the	clipboard.

Copy
Click	this	toolbar	button	(or	press	Ctrl+C)	to	copy	the	selected	item	from
the	current	form	or	file	to	the	clipboard.

Paste
Click	this	toolbar	button	(or	press	Ctrl+V)	to	paste	the	selected	item	(if
any)	from	the	clipboard	into	the	current	form	or	file.

Search	Toolbuttons

The	Search	Toolbar	Buttons

Find
Click	this	toolbar	button	(or	press	Ctrl+F)	to	invoke	the	Find	Text	Dialog.

Find	Incremental
Click	this	toolbar	button	(or	press	Alt+I)	to	place	the	cursor	in	the	text	box
located	next	to	the	Find	toolbar	button.	Type	characters	into	the	text	box;	as
you	type,	Qt	Designer	will	highlight	the	first	occurrence	of	the	text	that	it
finds	in	the	file.	Press	the	Enter	key	to	go	to	the	next	occurrence	of	the	text.
Press	the	Esc	key	once	you	have	found	the	word	you	are	looking	for	to
place	the	cursor	in	the	editor.

The	Tools	Toolbar	Buttons

If	you	want	to	add	the	same	kind	of	widget	several	times	to	a	form,	for	example,
several	push	buttons,	double	click	the	widget's	toolbar	button.	After	this,	every
time	you	click	the	form	a	new	widget	will	be	added.	Click	the	Pointer	toolbar
button	to	leave	this	mode.

Tools

Tools

Pointer
Click	this	toolbar	button	(or	press	F2)	to	de-select	any	selected	widget
toolbar	button.	The	pointer	is	also	used	to	stop	inserting	new	widgets	if	you
double	clicked	a	widget	toolbar	button.	Press	the	Esc	key	to	return	to	the
pointer	at	any	time.

Connect	Signals	and	Slots
Click	this	toolbar	button	(or	press	F3)	to	connect	signals	and	slots.	Then
click	on	a	widget	and	drag	the	connection	line	to	the	widget	(or	the	form)
that	you	want	to	connect	to.	Release	the	mouse	button	and	the	Edit
Connections	Dialog	will	appear.

Tab	Order
Click	this	toolbar	button	(or	press	F4)	to	set	the	tab	order	for	all	the	widgets

on	the	form	that	can	accept	keyboard	focus.	Click	this	toolbar	button	and
blue	circles	with	numbers	on	them	appear	next	to	the	widgets.	Click	the
widget	that	you	want	to	be	first	in	the	tab	order,	then	click	the	widget	that
should	be	next	in	the	tab	order,	and	continue	until	all	the	widgets	have	the
tab	order	numbers	you	want.	If	you	make	a	mistake,	double	click	the	first
widget	and	start	again.	Press	Esc	to	leave	tab	order	mode.	If	you	want	to
revert	your	changes,	leave	tab	order	mode,	then	undo.

Buttons

Buttons

PushButton
Click	this	toolbar	button,	then	click	the	form,	to	place	a	Pushbutton	on	the
form.

ToolButton
Click	this	toolbar	button,	then	click	the	form,	to	place	a	Toolbutton	on	the
form.

RadioButton
Click	this	toolbar	button,	then	click	the	form,	to	place	a	Radiobutton	on	the
form.	It	is	recommended	that	you	place	RadioButtons	inside	ButtonGroups
so	that	Qt	will	automatically	ensure	that	only	one	RadioButton	in	the	group
is	active	at	any	one	time.

CheckBox
Click	this	toolbar	button,	then	click	the	form,	to	place	a	CheckBox	on	the
form.

Containers

Containers

GroupBox
Click	this	toolbar	button,	then	click	the	form,	to	place	a	GroupBox	on	the
form.

ButtonGroup
Click	this	toolbar	button,	then	click	the	form,	to	place	a	ButtonGroup	on	the
form.

Frame
Click	this	toolbar	button,	then	click	the	form,	to	place	a	Frame	on	the	form.

TabWidget
Click	this	toolbar	button,	then	click	the	form,	to	place	a	TabWidget	on	the
form.	To	add	or	remove	tabs,	right	click	the	tab	widget	and	choose	'Add
Page'	or	'Remove	Page'.

Views

Views

ListBox
Click	this	toolbar	button,	then	click	the	form,	to	place	a	ListBox	on	the
form.

ListView
Click	this	toolbar	button,	then	click	the	form,	to	place	a	ListView	on	the
form.

Icon	View
Click	this	toolbar	button,	then	click	the	form,	to	place	an	IconView	on	the
form.

Table
Click	this	toolbar	button,	then	click	the	form	to	place	a	Table	on	the	form.

Database	Toolbuttons

Database

DataTable
Click	this	toolbar	button,	then	click	the	form,	to	place	a	DataTable	on	the
form.

DataBrowser
Click	this	toolbar	button,	then	click	the	form,	to	place	a	DataBrowser	on	the
form.

DataView
Click	this	toolbar	button,	then	click	the	form,	to	place	a	DataView	on	the
form.

Input	Toolbuttons

Input

LineEdit
Click	this	toolbar	button,	then	click	the	form,	to	place	a	LineEdit	on	the
form.

SpinBox
Click	this	toolbar	button,	then	click	the	form,	to	place	a	SpinBox	on	the
form.

DateEdit
Click	this	toolbar	button,	then	click	the	form,	to	place	a	DateEdit	on	the
form.

TimeEdit

Click	this	toolbar	button,	then	click	the	form,	to	place	a	TimeEdit	on	the
form.

DateTimeEdit
Click	this	toolbar	button,	then	click	the	form,	to	place	a	DateTimeEdit	on
the	form.

TextEdit
Click	this	toolbar	button,	then	click	the	form,	to	place	a	TextEdit	on	the
form.

ComboBox
Click	this	toolbar	button,	then	click	the	form,	to	place	a	ComboBox	on	the
form.

Slider
Click	this	toolbar	button,	then	click	the	form,	to	place	a	Slider	on	the	form.

ScrollBar
Click	this	toolbar	button,	then	click	the	form,	to	place	a	Scrollbar	on	the
form.

Dial
Click	this	toolbar	button,	then	click	the	form,	to	place	a	Dial	on	the	form.

Display	Toolbuttons

Display

TextLabel
Click	this	toolbar	button,	then	click	the	form,	to	place	a	TextLabel	on	the
form.

PixmapLabel
Click	this	toolbar	button,	then	click	the	form,	to	place	a	PixmapLabel	on	the
form.

LCDNumber
Click	this	toolbar	button,	then	click	the	form,	to	place	a	LCDNumber	on	the
form.

Line
Click	this	toolbar	button,	then	click	the	form,	to	place	a	Line	on	the	form.

ProgressBar
Click	this	toolbar	button,	then	click	the	form,	to	place	a	ProgressBar	on	the
form.

TextBrowser
Click	this	toolbar	button,	then	click	the	form,	to	place	a	TextBrowser	on	the
form.

Custom	Widget	Toolbutton

Custom

My	Custom	Widget
Click	this	toolbar	button,	then	click	the	form,	to	place	a	Custom	Widget	on
the	form.	Note:	this	toolbar	button	only	appears	if	you	have	created	a
custom	widget	using	Tools|Custom|Edit	Custom	Widgets.

Layout	Toolbuttons

The	Layout	Toolbar	Buttons

Adjust	Size
Click	this	toolbar	button	(or	press	Ctrl+J)	to	adjust	the	size	of	the	widget	to
it's	recommended	size.

Lay	Out	Horizontally
Click	this	toolbar	button	(or	press	Ctrl+H)	to	lay	out	the	selected	widgets

or	layouts	side	by	side.	Use	Shift+Click	to	select	each	widget	or	layout,
and	then	choose	this	toolbar	button	to	group	them	horizontally.	Note	that
for	complex	widgets	it	is	sometimes	easiest	to	select	widgets	and	layouts	by
clicking	them	in	the	Widgets	tab	of	the	Object	Explorer	Window.

Lay	Out	Vertically
Click	this	toolbar	button	(or	press	Ctrl+L)	to	lay	out	the	selected	widgets
one	above	the	other.	Use	Shift+Click	to	select	each	widget	or	layout,	and
then	choose	this	toolbar	button	to	group	them	vertically.	Note	that	for
complex	widgets	it	is	sometimes	easiest	to	select	widgets	and	layouts	by
clicking	them	in	the	Widgets	tab	of	the	Object	Explorer	Window.

Lay	out	in	a	Grid
Click	the	widgets	you	want	and	then	click	this	toolbar	button	(or	press
Ctrl+G)	to	lay	out	widgets	in	a	grid.

Lay	Out	Horizontally	(in	Splitter)
Click	this	toolbar	button	to	lay	out	the	selected	groups	of	widgets	or	layouts
side	by	side	with	a	splitter	between	each	group.	Use	Shift+Click	to	select
each	widget	or	layout,	and	then	choose	this	toolbar	button	to	group	them
horizontally.	Note	that	for	complex	widgets	it	is	sometimes	easiest	to	select
widgets	and	layouts	by	clicking	them	in	the	Widgets	tab	of	the	Object
Explorer	Window.

Lay	Out	Vertically	(in	Splitter)
Click	this	toolbar	button	to	lay	out	the	selected	groups	of	widgets	or	layouts
one	above	the	other	with	a	splitter	between	each	group.	Use	Shift+Click	to
select	each	widget	or	layout,	and	then	choose	this	toolbar	button	to	group
them	vertically.	Note	that	for	complex	widgets	it	is	sometimes	easiest	to
select	widgets	and	layouts	by	clicking	them	in	the	Widgets	tab	of	the	Object
Explorer	Window.

Break	Layout
Click	this	toolbar	button	(or	press	Ctrl+B)	to	break	a	layout.	Click	on	the
layout	and	select	this	option;	the	layout	is	deleted.

Add	Spacer
Click	this	toolbar	button	to	add	a	spacer	to	widgets	that	take	up	too	much
space	on	the	form.	The	spacer	consumes	extra	space	in	the	layout.

Help	Toolbutton

The	Help	Toolbar	Button

What's	This?
Click	this	menu	option	to	invoke	a	small	question	mark	that	is	attached	to
the	mouse	pointer.	Click	on	a	feature	which	you	would	like	more
information	about.	A	message	box	appears	with	information	about	the
feature.

[Prev:	Reference:	Menu	Options]	[Home]	[Next:	Reference:	Dialogs]

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

[Prev:	Reference:	Toolbar	Buttons]	[Home]	[Next:	Reference:	Wizards]

Reference:	Dialogs

Introduction

This	chapter	describes	and	explains	every	Qt	Designer	dialog.

The	File	Dialogs

New	File	Dialog

New	File	Dialog

Click	File|New	(or	press	Ctrl+N)	to	invoke	the	New	File	dialog.	This	dialog
offers	four	kinds	of	file	to	choose	from:	C++	Project,	Forms,	Source	files,	and
Main	files.

The	'Insert	Into'	drop-down	combobox	lists	the	open	projects,	defaulting	to	the
current	project.	New	files	are	added	to	the	project	displayed	in	this	combobox.
To	add	a	new	file	to	a	different	project,	choose	the	project	you	want	to	use	in	the
'Insert	Into'	combobox.

The	'Dialog'	file	type	is	highlighted	by	default	when	the	New	File	dialog	pops
up.	Click	on	the	file	type	you	want	to	use	and	click	OK	to	create	it.	Click
Cancel	to	leave	the	dialog	without	creating	a	new	file.	Note	that	if	you	select
C++	Project,	the	'Insert	Into'	combobox	will	be	disabled,	since	it	is	not	possible
to	insert	a	new	C++	Project	into	an	existing	project.

C++	Project	Files

Click	C++	Project	to	start	a	new	project.	This	option	invokes	the	Project
Settings	Dialog.	C++	projects	are	saved	as	.pro	files,	which	include	the
information	Qt	Designer	needs	to	manage	projects.	When	you	add	a	form	to
your	project	in	Qt	Designer,	it	is	automatically	added	to	the	FORMS	section	of
the	project	file.	The	.pro	file	contains	the	list	of	forms	(.ui	files)	used	in	the
project.	Qt	Designer	reads	and	writes	.ui	files,	e.g.	form.ui.	The	uic	(user
interface	compiler)	creates	both	a	header	file,	e.g.	form.h,	and	an	implementation
file,	e.g.	form.cpp,	from	the	.ui	file.

Dialog	Forms

Click	Dialog	to	create	a	plain	dialog	form.	Typically,	this	type	of	form	is	used	to
present	the	user	with	configuration	options,	or	to	present	related	sets	of	choices,
for	example,	printer	setting	dialogs	and	find	and	replace	dialogs.

Wizard	Forms

Click	Wizard	to	create	a	wizard	form.	A	wizard	is	a	special	type	of	input	dialog
that	consists	of	a	sequence	of	dialog	pages.	A	wizard's	purpose	is	to	assist	a	user
by	automating	a	task	by	walking	the	user	through	the	process	step	by	step.
Wizards	are	useful	for	complex	or	infrequently	occurring	tasks	that	people	may
find	difficult	to	learn	or	do.	Initially	the	wizard	form	consists	of	a	single	dialog
page.	Use	the	right	click	context	menu	to	add	additional	pages	and	to	change
page	titles.

Widget	Forms

Click	Widget	to	create	a	form	whose	superclass	is	QWidget	rather	than
QDialog.

Main	Window	Form

Click	Main	Window	to	invoke	the	Main	Window	Wizard.	This	wizard	is	used	to
create	actions,	menu	options	and	toolbars	through	which	the	user	can	invoke
actions.	This	form	is	used	to	create	typical	main-window	style	applications.

Configuration	Dialog	Form

Click	Configuration	Dialog	creates	a	form	with	a	listbox	on	the	left,	and	a
tabwidget	filling	the	body	of	the	form,	along	with	Help,	OK	and	Cancel	buttons.

Dialog	with	Buttons	(Bottom)	Form

The	Dialog	with	Buttons	(Bottom)	form	is	a	template	with	default	buttons	at
the	bottom	of	the	form.

Dialog	with	Buttons	Form	(Right)

The	Dialog	with	Buttons	(Right)	form	is	a	template	with	default	buttons	at	the
right	of	the	form.

Tab	Dialog	Form

The	Tab	Dialog	form	has	a	tab	widget	as	its	central	widget,	along	with	Help,	OK
and	Cancel	buttons	along	the	bottom.

C++	Source	File

Click	C++	Source	File	to	create	a	new	empty	C++	file.	The	file	will
automatically	be	added	to	the	project	when	it	is	saved.

C++	Header	File

Click	C++	Header	File	to	create	a	new	empty	C++	header	file.	The	file	will
automatically	be	added	to	the	project	when	it	is	saved.

C++	Main	File

Click	C++	Main	File	to	invoke	the	Configure	Main-File	Dialog	which	will
create	a	basic	main.cpp	file	automatically.

File	Open	Dialog

File	Open	Dialog

Click	File|Open	(or	pressCtrl+O)	to	invoke	the	Open	dialog.	Use	this	dialog	to
open	existing	files.

The	Open	dialog	shows	the	current	directory	and	default	file	type.	To	choose	a
different	directory,	click	the	'Look	In'	combobox.	Choose	a	file	and	the	name
will	appear	in	the	'File	Name'	combobox.	To	choose	a	different	file	type,	click
the	'File	Type'	combobox.	Click	the	'Create	New	Folder'	toolbar	button	to	create
a	new	directory.	Click	the	'List	View'	toolbar	button	to	view	folders	and	files	in	a
list	with	only	the	names	showing.	Click	the	'Details'	toolbar	button	to	view	the
folders	and	file	names	along	with	their	size,	type,	date,	and	attributes.	Click	the
Size,	Type,	Date,	or	Attributes	column	headers	to	sort	the	folders	or	files.

Click	Open	to	open	the	selected	file.	Click	Cancel	to	leave	the	dialog	without

opening	a	new	file.

Note:	For	Windows,	the	System	File	Dialogs	are	used.

Save	As

Save	As

Click	File|Save	As	to	invoke	the	Save	As	dialog.	Use	this	dialog	to	save	files	to	a
directory.

The	Save	As	dialog	shows	the	current	directory	and	default	file	type.	To	choose	a
different	directory,	click	the	'Look	In'	combobox.	Choose	a	file	and	the	name
will	appear	in	the	'File	Name'	combobox.	To	choose	a	different	file	type,	click
the	'File	Type'combobox.	Click	the	'Create	New	Folder'	toolbar	button	to	create	a
new	directory.	Click	the	'List	View'	toolbar	button	to	view	folders	and	files	in	a
list	with	only	the	names	showing.	Click	the	'Details'	toolbar	button	to	view	the
folders	and	file	names	along	with	their	size,	type,	date,	and	attributes.	Click	the
Size,	Type,	Date,	or	Attributes	column	headers	to	sort	the	folders	or	files.

Click	Save	to	save	the	selected	file.	Click	Cancel	to	leave	the	dialog	without
saving	the	file.

Note:	For	Windows,	the	System	File	Dialogs	are	used.

Create	Template

Create	Template	Dialog

Click	File|Create	Template	to	invoke	the	Create	Template	dialog.	Use	this
dialog	to	create	templates.

The	'Template	Name'	line	edit	defaults	to	'New	Template'.	To	change	the	name	to
a	different	name,	type	it	in	the	line	edit.	Click	the	'Baseclass	for	Template'	scroll
bar	to	choose	a	base	class	for	the	template.

Click	Create	to	create	the	template.	Click	Cancel	to	leave	the	dialog	without
creating	a	template.

If	you	create	a	template	it	will	appear	in	the	New	File	Dialog.	Templates	are
useful	when	you	have	to	produce	a	large	number	of	similar	forms,	or	where	you
want	to	'brand'	your	forms.

The	Edit	Dialogs

Edit	Slots

Edit	Slots	Dialog

Click	Edit|Slots	to	invoke	the	Edit	Slots	dialog.	Use	this	dialog	to	edit	or	create
slots	which	are	used	in	conjunction	with	signals	to	provide	communication
between	objects.

When	this	dialog	is	invoked,	all	existing	slots	are	shown	in	the	'Slot'	listbox.	The
column	headers	Slot,	Type,	Specifier,	Access,	and	In-Use	provide	details	about
each	slot	that	is	listed.	Click	on	any	of	the	column	headers	to	sort	the	slots.	To
create	a	new	slot,	click	the	New	Slot	button.	The	new	slot	has	a	default	name
that	you	should	replace	by	typing	the	new	name	in	the	'Slot'	line	edit.	The
'Return	Type'	is	also	a	default	that	can	be	changed	by	typing	in	the	line	edit.	To
change	the	'Specifier'	or	'Access',	click	the	combobox	and	choose	the	required
specifier	or	access.	To	remove	a	slot,	click	the	slot	you	want	to	delete,	and	then
click	the	Delete	Slot	button.

Click	OK	to	save	all	changes	made	to	slots.	Click	Cancel	to	leave	the	dialog
without	making	any	changes	to	slots.

View	Connections

View	Connections	Dialog

Click	Edit|Connections	to	invoke	the	View	Connections	dialog.	This	dialog
displays	the	current	signals	and	slots	connections.

When	this	dialog	is	invoked,	all	existing	connections	are	shown	in	the	listbox.
The	column	headers	Sender,	Signal,	Receiver,	and	Slot	provide	details	about
each	connection.	Click	the	column	headers	to	sort	the	connections.	To	remove	a
connection	from	the	listbox,	click	the	connection	you	want	to	disconnect	and
then	click	Disconnect.	To	edit	a	connection,	click	the	Edit...	button	to	invoke	the
Edit	Connections	Dialog.

Changes	made	in	this	dialog	take	immediate	effect.	Click	the	Close	button	to
leave	the	dialog.

Form	Settings

Form	Settings	Dialog

Click	Edit|Form	Settings	to	invoke	the	Form	Settings	dialog.	Use	this	dialog	to
save	the	form's	settings,	pixmap,	and	layout	properties.

Settings

In	the	Settings	section,	you	can	change	or	add	the	name	of	the	class	that	will	be
created	by	typing	in	the	'Class	Name'	line	edit.	Note	that	the	default	name	is	the
form	name,	but	it	can	be	changed.	You	can	also	enter	text	to	the	'Comment'	and
'Author'	line	edits	or	leave	them	blank,	since	they	are	not	required.

Pixmaps

The	default	(for	projects)	is	'Project	Imagefile'.	This	is	the	recommended	option.
Images	are	handled	automatically,	with	Qt	Designer	storing	the	images	in	a

subdirectory,	and	uic	producing	code	that	contains	the	images	and	the	necessary
supporting	code.	Each	image	is	stored	just	once,	no	matter	how	many	forms	it	is
used	in.

If	you	do	not	want	Qt	Designer	to	handle	the	images,	(or	are	not	using	a	project)
choose	either	'Save	Inline'	or	'Use	Function'.	'Save	Inline'	saves	the	pixmaps	in
the	.ui	files.	The	disadvantage	of	this	approach	is	that	it	stores	images	in	the
forms	in	which	they're	used,	meaning	that	images	cannot	be	shared	across	forms.
Click	'Use	Function'	to	use	your	own	icon-loader	function	for	loading	pixmaps.
Type	the	function's	name	(with	no	signature)	in	the	'Use	Function'	line	edit.	This
function	will	be	used	in	the	generated	code	for	loading	pixmaps.	Your	function
will	be	called	with	the	text	you	put	in	the	pixmap	property	(e.g.	the	image	name)
whenever	an	image	is	required.

Layouts

Click	the	'Default	Margin'	spinbox	or	the	'Default	Spacing'	spinbox	to	change	the
default	layout	of	the	current	form.

Click	OK	to	accept	changes	to	the	form	settings.	Click	Cancel	to	leave	the
dialog	without	making	any	changes.

Preferences	Dialog

Click	Edit|Preferences	to	invoke	the	Preferences	dialog.	This	dialog	has	a	tab
for	'General'	preferences.	If	you	have	the	C++	Editor	plugin,	the	dialog	will	also
have	a	tab	for	the	C++	Editor.

Preferences-	General	Tab

General	Tab

The	'General'	tab	has	sections	for	Background,	Grid,	General,	and	Toolbars.

The	Background	section	defaults	to	'Pixmap'.	To	change	the	default,	click	the
Select	a	Pixmap	button	next	to	the	'Pixmap'	radio	button	to	invoke	the	Choose	a
Pixmap...	Dialog.	Click	the	'Color'	radio	button	to	change	the	background	to	a
color	instead	of	a	pixmap.	Click	the	Choose	a	Color	button	located	to	the	right
of	the	'Color'	radio	button	to	invoke	the	Select	Color	Dialog.

The	'General'	section	of	the	General	tab	has	three	checkboxes	that	are	checked
by	default.	Click	the	'Restore	last	workspace	on	startup'	checkbox	to	save	the
size	and	positions	of	the	windows	and	toolbars	of	Qt	Designer.	The	next	time
you	start	up	Qt	Designer,	the	windows	and	toolbars	are	restored	to	their	last
positions.	Click	the	'Show	Splash	Screen	on	startup'	checkbox	to	display	the	Qt
Designer	splash	screen	when	you	start	up	the	application.	Click	the	'Disable
Database	Auto-Edit	in	Preview'	checkbox	to	disable	the	ability	to	update	or

delete	data	in	the	database	to	which	you	are	connected	when	working	with
database	widgets.	To	change	the	path	Qt	Designer	uses	to	find	it's	online
documentation,	click	the	'Documentation	Path'	line	edit	and	type	a	new	path.	It
would	be	unlikely	to	have	to	change	this	path.	Another	way	to	change	the	path	is
to	click	the	(ellipsis)	button	located	to	the	right	of	the	line	edit.	This	invokes	the
Find	Directory	Dialog.

The	'Grid'	section	has	options	for	customizing	the	grid	on	the	form.	The	'Show
Grid'	checkbox	located	above	the	'Grid'	section	is	checked	by	default.
Developers	using	Qt	Designer	almost	always	use	Qt's	layouts	to	design	their
forms	and	rarely	make	any	use	of	the	grid.	The	grid	is	provided	for	the	rare
occasions	when	a	form	is	created	using	widgets	with	fixed	sizes	and	positions.
When	'Show	Grid'	is	checked,	you	can	customize	the	grid's	appearance.	When	it
is	unchecked,	the	'Grid'	section	is	disabled.	The	'Snap	to	Grid'	checkbox	is	also
checked	by	default.	When	it	is	checked,	widgets	are	placed	on	a	dot	(snap	to	the
grid)	using	the	X|Y	resolution.	When	it	is	unchecked,	the	'Grid-X'	and	'Grid-Y'
spin	boxes	are	disabled.	Click	the	'Grid	X'	and	'Grid	Y'	spinboxes	to	customize
the	grid	settings	for	all	forms.

The	'Toolbars'	section	has	a	'Show	Text	Labels'	checkbox.	Click	the	checkbox	to
display	the	text	labels	for	each	icon	shown	in	the	Qt	Designer	toolbar.

Preferences-	C++	Editor	Tab

C++	Editor	Tab

The	C++	Editor	tab	provides	options	for	customizing	the	editor.	The	'Syntax
Highlighting'	section	lets	you	change	the	way	the	syntax	is	viewed	in	the	editor.
Click	the	'Element'	listbox	and	choose	an	element.	Click	the	'Family'	listbox	to
change	the	font	style	for	that	element.	Click	the	'Size'	spinbox	to	choose	a	font
size.	You	can	change	the	font	to	Bold,	Italic,	or	Underline	by	clicking	the
corresponding	checkbox.	Note,	that	all	the	fonts	used	derive	from	the	'Standard'
element,	so	if	you	want	to	change	the	font	used	for	everything,	change	the
'Standard'	element.	Click	the	Color	button	to	invoke	the	Select	Color	Dialog.	As
you	make	changes	to	each	element,	you	can	view	the	changes	in	the	'Preview'
line	edit.

The	'Options'	section	has	the	Wordwrap,	Completion,	and	Parentheses	Matching
checkboxes	checked	by	default.	Click	the	checkboxes	to	de-select	them.

Click	OK	to	accept	changes	to	Preferences	dialog.	Click	Cancel	to	leave	the

dialog	without	making	any	changes.

The	Project	Dialogs

Add	Dialog

Add	Dialog

Click	Project|Add	File	to	invoke	the	Add	dialog.	Use	this	dialog	to	add	files	to
the	current	project.

The	Add	dialog	defaults	the	directory	and	file	type.	To	choose	a	different
directory,	click	the	'Look	In'	combobox.	Choose	a	file	and	the	name	will	appear
in	the	'File	Name'	combobox.	To	choose	a	different	file	type,	click	the	'File	Type'
combobox.	Click	the	'Create	New	Folder'	toolbar	button	to	create	a	new
directory.	Click	the	'List	View'	toolbar	button	to	view	folders	and	files	in	a	list
with	only	the	names	showing.	Click	the	'Details'	toolbar	button	to	view	the
folders	and	file	names	along	with	their	size,	type,	date,	and	attributes.	Click	the
Size,	Type,	Date,	or	Attributes	column	headers	to	sort	the	folders	or	files.

Click	Open	to	open	the	selected	file.	Click	Cancel	to	leave	the	dialog	without
opening	a	file.

Manage	Image	Collection

Image	Collection	Dialog

Click	Project|Image	Collection	to	invoke	the	Manage	Image	Collection	Dialog.
Use	this	dialog	to	view	the	project's	images,	add	new	images,	or	delete	images.

To	add	an	image,	click	the	Add	button	to	invoke	the	Choose	Images...	Dialog.
To	delete	an	image	from	from	the	iconview,	click	the	image	and	then	click	the
Delete	button.

Changes	made	to	the	image	collection	are	applied	immediately.	Click	the	Close
button	to	leave	the	dialog.

Edit	Database	Connections

Edit	Database	Connections	Dialog

Click	Project|Database	Connections	to	invoke	the	Edit	Database	Connections
Dialog.	Use	this	dialog	to	connect	your	project	to	a	database	or	to	edit	the
current	connections.

Click	New	Connection	to	create	a	new	database	connection.	For	applications
that	use	a	single	database	it	will	probably	be	most	convenient	to	use	the	default
connection	name	of	'(default)'.	If	you	use	more	than	one	database	then	each	one
must	be	given	a	unique	name.	A	driver	must	be	chosen	from	the	Driver	combo
box.	The	database	name	may	be	available	in	the	Database	Name	combo	box	or
may	have	to	be	typed	in.	The	database	name,	username,	password	and	hostname
should	be	provided	by	your	database	system	administrator.	When	the	Connection
information	has	been	completed	click	Connect.	If	the	connection	is	made	the
connection	name	will	appear	in	the	list	box	on	the	left	hand	side	of	the	dialog.

To	remove	a	connection,	click	the	connection	in	the	listbox	and	then	click	the
Delete	Connection	button.

Click	Close	to	leave	the	Database	Connections	dialog.

Project	Settings	Dialog

Click	Project|Project	Settings	to	invoke	the	Project	Settings	Dialog.	Use	this
dialog	to	make	changes	to	the	project	settings.

Project	Settings-	Settings	Tab

Settings	Tab

The	'Settings'	tab	shows	information	about	the	project.	The	Project	File	line	edit
defaults	the	project	name.	To	change	the	name,	type	a	new	name	in	the	line	edit.
To	save	the	project,	click	the	(ellipsis)	button	located	next	to	Project	File	to
invoke	the	Save	As	Dialog.	The	'Language'	combobox	is	disabled.	Click	the
'Description'	line	edit	if	you	want	to	add	additional	information	about	the	project.

Project	Settings-	Files	Tab

Files	Tab

Click	the	'Files'	tab	to	enter	a	name	in	the	'Database	File'	line	edit.	Click	the
(ellipsis)	button	to	invoke	the	Save	As	Dialog.

Project	Settings-	C++	Tab

C++	Tab

Click	the	C++	Tab	to	change	the	qmake	options.	See	the	qmake	documentation
for	details	on	what	these	options	mean.	Click	the	'Template'	combobox	and
choose	application	or	library	to	create	makefiles	for	building	applications	or
libraries.	Click	the	'Config'	combobox	to	select	the	project	configuration	and
compiler	options	for	all	platforms,	or	specific	platforms.	Type	the	Config	value
in	the	line	edit.	Note:	Unix	defaults	to	a	shared	library.	If	you	want	a	shared
library	in	Windows,	type	'dll'	at	the	end	of	the	default	config	command	and	make
sure	you	select	lib	from	the	Template	combobox.	Click	the	'Libs'	combobox	to
select	a	platform.	Type	the	libraries	in	the	line	edit.	Click	the	'Defines'	combobox
and	select	a	platform.	'Defines'	values	are	added	as	compiler	pre-processor
macros.	Type	the	'Defines'	values	in	the	line	edit.	Click	the	'Includepath'
combobox	to	select	a	platform.	Includepath	specifies	the	directories	that	should
be	searched	for	include	files	when	compiling	the	project.	Type	the	'Includepath'
values	in	the	line	edit.

Cick	OK	to	accept	changes	to	the	project	settings.	Click	Cancel	to	exit	the
dialog	without	making	any	changes	to	the	project	settings.

The	Search	Dialogs

Find	Text

Find	Text	Dialog

Click	Search|Find	(or	press	Ctrl+F)	to	invoke	the	Find	Text	Dialog.	Use	this
dialog	to	find	specific	text	in	a	project	file.

To	find	the	text	you	want	in	a	file,	type	the	text	in	the	'Find'	combobox.	You	can
make	the	search	more	specific	by	checking	any	or	all	of	the	checkboxes	in	the
'Options'	section.	Click	the	'Whole	words	only'	checkbox	to	narrow	the	search	to
whole	words.	Click	'Case	Sensitive'	to	search	for	text	that	is	identical	to	the	text
typed	in	the	combobox.	Click	'Start	at	Beginning'	to	start	the	search	from	the
beginning	of	the	file.	The	'Direction'	section	offers	the	'Forward'	radio	button	and
the	'Backward'	radio	button	to	specify	the	direction	to	perform	the	search	in	the
file.	Click	the	Find	button	to	start	the	search.	When	the	text	is	found,	it	is
highlighted	in	the	file.	Continue	clicking	Find	to	search	for	subsequent
occurrences	of	the	search	text.

Click	the	Close	button	to	leave	the	dialog.

Replace	Text

Replace	Text	Dialog

Click	Search|Replace	(or	press	Ctrl+R)	to	invoke	the	Replace	Text	Dialog.	Use
this	dialog	to	replace	text	in	a	project	file.

To	replace	text,	type	the	text	you	would	like	to	replace	in	the	'Find'	combobox.
Type	the	new	text	in	the	'Replace'	combobox.	You	can	make	the	search	more
specific	by	checking	any	or	all	of	the	checkboxes	in	the	'Options'	section.	Click
the	'Whole	words	only'	checkbox	to	narrow	the	search	to	whole	words.	Click
'Case	Sensitive'	to	search	for	text	that	identical	to	the	text	you	typed	in	the
combobox.	Click	'Start	at	Beginning'	to	start	the	search	from	the	beginning	of
the	file.	The	'Direction'	section	offers	the	'Forward'	radio	button	and	the

'Backward'	radio	button	to	specify	the	direction	to	perform	the	search	in	the	file.

Click	the	Replace	button	to	search	and	replace	the	text.	When	the	text	is	found,
it	is	highlighted	in	the	file.	Continue	clicking	Replace	button	to	search	and
replace	each	occurrence	of	the	text	in	the	file.	Click	Replace	All	button	to
replace	all	occurences	of	the	search	text	in	the	file	at	once.

Click	the	Close	button	to	leave	the	dialog.

Goto	Line

Goto	Line	Dialog

Click	Search|Goto	line	(or	press	Alt+G)	to	invoke	the	Goto	Line	Dialog.	Use
this	dialog	to	go	to	a	specific	line	in	the	file.

To	choose	a	line	number,	type	the	number	in	the	'Line'	spinbox,	or	click	the	up
and	down	arrows	in	the	spinbox.	Click	the	Goto	button.	The	cursor	is	placed	at
the	beginning	of	the	line	in	the	file.

Click	the	Close	button	to	leave	the	dialog.

The	Help	Dialogs

Qt	Designer	Dialog

Click	Help|About...	to	invoke	the	Qt	Designer	Dialog.	This	dialog	provides
information	about	Qt	Designer	such	as	the	version,	the	licensing	terms,
conditions,	and	disclaimers.

Click	the	'x'	located	at	the	top	right	corner	of	the	dialog	to	close	the	dialog.

Qt	Designer	Dialog

Click	Help|About	Qt...	to	invoke	the	Qt	Designer	Dialog.	This	dialog	provides
information	about	Qt.

Click	the	'x'	located	at	the	title	of	the	dialog	to	close	the	dialog.

Configure	Main-File	Dialog

Configure	Main-File	Dialog

Click	File|New|C++	Main-File	to	invoke	the	Configure	Main-File	dialog.	Use
this	dialog	to	configure	the	main	file	and	its	forms.

To	change	the	default	file	name,	type	it	in	the	'Filename'	line	edit.	Choose	the
form	to	use	as	the	application's	main	form	from	the	line	edit	by	clicking	it.

Click	OK	to	accept	the	configurations	and	Qt	Designer	will	create	a	default
main.cpp	file.	Click	Cancel	to	leave	the	dialog.

Note	for	database	programmers:	If	you	create	a	main.cpp	file	using	Qt	Designer,
this	file	will	not	include	the	createConnections()	function.	We	do	not	include
this	function	because	it	needs	the	username	and	password	for	the	database
connection,	and	you	may	prefer	to	handle	these	differently	from	our	simple
example	function.	As	a	result,	applications	that	preview	correctly	in	Qt	Designer
will	not	run	unless	you	implement	your	own	database	connections	function.

Save	Project	Settings

Save	Project	Settings	Dialog

The	Save	Project	Settings	message	box	is	invoked	by	clicking	File|Close	or
File|Exit	for	an	open	project	with	unsaved	changes.	The	dialog	displays	the	text
'Save	changes	to	your	project.pro'?.	Click	Yes	to	save	the	changes.	If	the	project
has	any	forms	with	unsaved	changes,	the	Save	Form	As	dialog	is	invoked	when
you	click	Yes.	Click	No	to	close	the	project	without	saving	any	changes.	Click
Cancel	to	leave	the	dialog	without	closing	the	project	and	without	making	any
changes.

Save	Form

Save	Form	Dialog

The	Save	Form	message	is	invoked	in	several	ways.	One	way	is	to	click
File|Close	for	a	form	that	has	never	been	saved,	or	has	been	saved	previously
but	has	had	changes	made	to	it.	The	dialog	is	also	invoked	by	clicking	File|Exit
for	a	form	that	has	never	been	saved,	or	has	been	saved	previously	but	has	had
changes	made	to	it.	The	dialog	displays	'Save	Changes	to	the	Form?'.	Click	Yes
to	save	the	form.	If	the	form	has	not	been	previously	saved,	the	Save	Form	As
Dialog	is	invoked.	Click	No	to	close	the	form	without	saving	any	changes	or
without	saving	the	form	if	it	has	not	been	saved	previously.	Click	Cancel	to
leave	the	dialog	without	closing	or	exiting	the	form	and	without	saving	the	form.

Save	Form	As	Dialog

Save	Form	As	Dialog

The	Save	Form	As	dialog	is	invoked	in	three	different	ways.	One	way	is	to	click
File|Save	for	a	form	in	a	project	that	has	never	saved.	Another	way	to	invoke	the
dialog	is	by	clicking	File|Close	for	a	form	that	has	not	been	previously	saved
and	has	had	changes	made	to	it.	The	third	way	to	invoke	the	dialog	is	by	clicking
File|Exit	for	a	form	that	has	not	been	saved	previously	or	that	has	been	saved
but	has	had	changes	made	to	it.	File|Close	and	File|Exit	invoke	the	Save	Form
Dialog.	Click	Yes	to	invoke	the	Save	Form	As	dialog.

The	Save	Form	As	dialog	shows	the	current	directory	and	the	default	file	type.
To	choose	a	different	directory,	click	the	'Look	In'	combobox.	Choose	a	file	and
the	name	will	appear	in	the	'File	Name'	combobox.	To	choose	a	different	file
type,	click	the	'File	Type'combobox.	Click	the	'Create	New	Folder'	toolbar	button
to	create	a	new	directory.	Click	the	'List	View'	toolbar	button	to	view	folders	and
files	in	a	list	with	only	the	names	showing.	Click	the	'Details'	toolbar	button	to
view	the	folders	and	file	names	along	with	their	size,	type,	date,	and	attributes.
Click	the	Size,	Type,	Date,	or	Attributes	column	headers	to	sort	the	folders	or
files.

Click	Save	to	save	the	selected	form.	Click	Cancel	to	leave	the	dialog	without
saving	the	form.

Edit	Connections

Edit	Connections	Dialog

Invoke	the	Edit	Connections	dialog	to	modify	connections	between	signals	and
slots.

The	top	left	hand	listbox	displays	the	Signals	that	the	widget	can	emit.	The	top
right	combobox	lists	the	form	and	its	widgets.	Beneath	the	combobox	is	the
'Slots'	listbox	which	shows	the	slots	available	in	the	form	or	widget	displayed	in
the	'Slots'	combobox	which	are	compatible	with	the	highlighted	signal.	To
connect	a	signal	to	a	slot,	choose	a	signal	from	the	'Signals'	listbox	by	clicking
on	it.	Then	choose	a	form	or	widget	from	the	'Slots'	combobox.	Choose	a	slot	for
the	widget	or	form	you	select	from	the	listbox.	The	Connect	button	will	flash
and	the	new	connection	will	appear	in	the	'Connections'	listbox,	along	with	any

existing	connections.	Click	the	column	headers	Sender,	Signal,	Receiver,	or	Slot
to	sort	the	connections.	To	disconnect	an	existing	connection,	choose	the
connection	from	the	'Connections'	listbox	and	click	the	Disconnect	button.	Click
Edit	Slots	to	invoke	the	Edit	Slots	Dialog.

Click	OK	to	accept	changes	to	the	connections.	Click	Cancel	to	leave	the	dialog
without	making	changes	to	the	connections.

Find	Directory

Find	Directory	Dialog

Invoke	this	dialog	to	locate	a	directory.

The	Find	Directory	dialog	shows	the	current	directory	and	the	default	file	type.
To	choose	a	different	directory,	click	the	'Look	In'	combobox.	Choose	a	file	and
the	name	will	appear	in	the	'File	Name'	combobox.	To	choose	a	different	file
type,	click	the	'File	Type'	combobox.	Click	the	'Create	New	Folder'	toolbar
button	to	create	a	new	directory.	Click	the	'List	View'	toolbar	button	to	view
folders	and	files	in	a	list	with	only	the	names	showing.	Click	the	'Details'	toolbar
button	to	view	the	folders	and	file	names	along	with	their	size,	type,	date,	and
attributes.	Click	the	Size,	Type,	Date,	or	Attributes	column	headers	to	sort	the

folders	or	files.

Click	OK	to	accept	the	directory.	Click	Cancel	to	leave	the	dialog	without
choosing	a	directory.

Choose	a	Pixmap

Choose	a	Pixmap	Dialog

Invoke	this	dialog	to	select	a	pixmap	to	use	in	the	current	project.

The	Choose	a	Pixmap	dialog	shows	the	current	directory	and	the	default	file
type.	To	choose	a	different	directory,	click	the	'Look	In'	combobox.	Choose	a	file
and	the	name	will	appear	in	the	'File	Name'	combobox.	To	choose	a	different	file
type,	click	the	'File	Type'combobox.	Click	the	'Create	New	Folder'	toolbar	button
to	create	a	new	directory.	Click	the	'List	View'	toolbar	button	to	view	folders	and
files	in	a	list	with	only	the	names	showing.	Click	the	'Details'	toolbar	button	to
view	the	folders	and	file	names	along	with	their	size,	type,	date,	and	attributes.
Click	the	Size,	Type,	Date,	or	Attributes	column	headers	to	sort	the	folders	or
files.	View	a	sample	of	the	pixmap	file	you	select	in	the	preview	box	located	on
the	right	side	of	the	dialog.

Click	OK	to	accept	the	pixmap	file.	Click	Cancel	to	leave	the	dialog	without
choosing	a	pixmap	file.

Edit	Custom	Widgets	Dialog

Invoke	this	dialog	by	clicking	Tools|Custom|Edit	Custom	Widgets.	Use	this
dialog	to	create	custom	widgets.

Custom	widgets	are	created	in	code.	They	may	contain	a	combination	of	existing
widgets	but	with	additional	functionality,	slots	and	signals,	or	they	may	be
written	from	scratch,	or	a	mixture	of	both.	A	custom	widget	is	often	a
specialization	(subclass)	of	another	widget	or	a	combination	of	widgets	working
together	or	a	blend	of	both	these	approaches.	If	you	simply	want	a	collection	of
widgets	in	a	particular	configuration	it	is	easiest	to	create	them,	select	them	as	a
group,	and	copy	and	paste	them	as	required	within	Qt	Designer.	Custom	widgets
are	generally	created	when	you	need	to	add	new	functionality	to	existing	widgets
or	groups	of	widgets.	To	add	create	a	new	widget,	click	the	New	Widget	button.
You	will	find	more	information	about	adding	new	widgets	in	the	'Definitions
Section'.	To	load	a	file	which	contains	descriptions	of	custom	widgets,	click	the
Load	Descriptions	button.	Clicking	this	button	invokes	the	Open	Dialog.	To
save	the	descriptions	of	the	listed	custom	widgets,	click	the	Save	Descriptions
button,	which	invokes	the	Save	As	Dialog.	To	delete	a	widget,	click	the	widget	in
the	listbox	and	then	click	the	Delete	Widget	button.

Click	Close	to	leave	the	Edit	Custom	Widgets	dialog.

Edit	Custom	Widgets-	Definition	Tab

The	Definition	Tab

To	create	a	custom	widget,	click	New	Widget.	Click	the	Definition	tab	if	you	are
not	already	there.	You	should	change	the	'Class'	name	from	'MyCustomWidget'
to	a	unique	name	by	typing	in	the	line	edit.	Type	in	the	'Headerfile'	line	edit	to
change	the	name	or	type	the	name	of	a	header	file	you	want	to	use.	To	search	for
a	saved	header	file	in	a	directory,	click	the	(ellipsis)	button	to	the	right	of	the
Headerfile	line	edit	to	invoke	the	Open	Dialog.	Click	the	'Select	Access'
combobox	to	choose	how	the	file	will	be	included.	Global	include	files	will	be
included	using	angle	brackets	(<>).	Local	files	will	be	included	using	quotation
marks.	If	you	have	a	pixmap	that	you	want	to	use	to	identify	your	widget	on	the
toolbar,	click	the	(ellipsis)	button	to	the	right	of	the	'Pixmap'	label.	This	invokes
the	Choose	a	Pixmap	Dialog.	Click	the	'Size	Hint'	spin	boxes	to	select	the
recommended	size	for	the	widget.	If	you	do	not	want	to	have	a	recommended
size,	enter	-1/-1	in	the	spinboxes.	Click	the	'Size	Policy'	comboboxes	to	select
the	vertical	size	properties	of	the	widget.	Click	the	'Container	Widget'	checkbox
if	the	custom	widget	you	are	creating	should	be	able	to	contain	other	widgets
(children).

Edit	Custom	Widgets-	Signals	Tab

The	Signals	Tab

Click	the	Signals	tab	to	view	a	list	of	all	the	signals	the	selected	custom	widget
can	emit.	To	add	a	new	signal,	click	the	New	Signal	button.	Click	the	'Signal'
line	edit	and	provide	an	argument	for	the	signal	and	give	the	signal	a	unique
name.	To	delete	a	signal	from	the	listbox,	click	the	signal	to	choose	it	and	then
click	the	Delete	Signal	button.

Edit	Custom	Widgets-	Slots	Tab

The	Slots	Tab

Click	the	Slots	tab	to	view	a	list	of	all	the	slots	for	the	selected	custom	widget.
Click	the	'Slot'	or	'Access'	cloumn	headers	to	sort	the	slots	in	the	listbox.	To	add
a	slot,	click	the	New	Slot	button.	Click	the	'Slot'	line	edit	and	provide	an
argument	for	the	slot	and	give	the	slot	a	unique	name.	Click	the	'Access'
combobox	to	choose	between	public	or	protected	access	for	your	widget.	To
delete	a	slot	from	the	listbox,	click	the	slot	and	then	click	Delete	Slot.

Edit	Custom	Widgets-	Properties	Tab

The	Properties	Tab

Click	the	Properties	tab	to	view	the	list	of	properties	for	the	selected	widget.
Click	the	'Property'	or	'Type'	column	headers	to	sort	the	properties	in	the	listbox.
To	add	a	property,	click	the	New	Property	button.	Click	the	'Property	Name'	line
edit	if	you	want	to	change	the	default	name	of	the	property.	Note	that	properties
must	be	implemented	in	the	class	using	the	property	system	of	Qt.	To	choose	a
property	type,	click	the	'Type'	combobox.	To	delete	a	property	from	the	listbox,
click	the	property	and	then	click	the	Delete	Property	button.

Click	Close	to	leave	the	Edit	Custom	Widgets	dialog.

Choose	Images

Choose	Images	Dialog

Invoke	the	Choose	Images	dialog	to	choose	images	to	use	in	a	project.

This	dialog	shows	the	current	the	directory	and	the	default	file	type.	To	choose	a
different	directory,	click	the	'Look	In'	combobox.	Choose	a	file	and	the	name
will	appear	in	the	'File	Name'	combobox.	To	choose	a	different	file	type,	click
the	'File	Type'combobox.	As	you	choose	different	files,	you	can	preview	the
images	in	the	window	located	on	the	right	side	of	the	dialog.	Click	the	'Create
New	Folder'	toolbar	button	to	create	a	new	directory.	Click	the	'List	View'
toolbar	button	to	view	folders	and	files	in	a	list	with	only	the	names	showing.
Click	the	'Details'	toolbar	button	to	view	the	folders	and	file	names	along	with
their	size,	type,	date,	and	attributes.	Click	the	Size,	Type,	Date,	or	Attributes
column	headers	to	sort	the	folders	or	files.

Click	Open	to	open	the	selected	file.	Click	Cancel	to	leave	the	dialog	without
opening	a	file.

Choose	an	Image

Choose	an	Image	Dialog

The	Choose	an	Image	dialog	is	used	to	choose	an	image	to	use	for	a	widget.

To	choose	an	image	from	the	listbox,	click	the	image	and	then	click	OK.	To	add
an	image,	click	the	Add	button	to	invoke	the	Choose	Images...	Dialog.	To	delete
an	image,	click	the	image	in	the	listbox	and	then	click	the	Delete	button.

Click	Cancel	to	leave	the	dialog	without	making	any	changes	to	images.

Select	Color

Select	Color	Dialog

The	Select	Color	dialog	is	used	to	select	color	preferences	or	to	create	color
palettes.

Choose	a	color	from	the	'Basic	Colors'	section	and	a	sample	of	the	color	will
appear	in	the	small	preview	box	at	the	bottom	of	the	dialog.	To	the	right	of	the
color	sample,	you	will	see	line	edits	that	have	information	about	the	location	of
the	color	in	the	color	spectrum.	In	addition,	the	crosshairs	in	the	larger	color
spectrum	window	show	the	location	of	the	color.	You	can	also	create	a	palette	of
custom	colors.	There	are	two	ways	to	do	add	custom	colors.	Click	a	color	on	the
color	spectrum	window.	When	the	color	appears	in	the	small	box	below	the
window,	click	the	color	and	drag	it	to	one	of	the	blank	boxes	in	the	'Custom
Color'	section	of	the	dialog.	You	can	also	click	and	drag	colors	from	the	'Basic
Colors'	section.	Another	way	to	add	colors	is	to	click	the	Add	to	Custom	Colors
when	you	have	chosen	a	color.

Click	OK	to	accept	changes	to	the	Select	Color	dialog.	Click	Cancel	to	exit	the
dialog	without	selecting	a	color	or	adding	custom	colors.

Edit	Palette

Edit	Palette	Dialog

The	Edit	Palette	dialog	is	used	to	change	the	palette	of	the	current	widget	or
form.	You	can	use	a	generated	palette,	or	select	colors	for	each	color	group	and
each	color	role.	The	palette	can	be	tested	with	different	widget	layouts	in	the
preview	section.

The	'Build	Palette'	section	contains	three	buttons	to	help	you	build	the	palette.
Click	the	3-D	Effects	button	to	invoke	the	Select	Color	Dialog.	Click	the
Background	to	invoke	the	Select	Color	Dialog.	Click	the	Tune	Palette	button
to	invoke	the	Tune	Palette	Dialog.	Click	the	'Select	Palette'	combobox	in	the
'Preview'	section	to	choose	a	palette	to	preview.

Click	OK	to	accept	the	changes	to	the	palette.	Click	Cancel	to	leave	the	dialog
without	making	changes	to	the	palette.

Tune	Palette

Tune	Palette	Dialog

The	Tune	Palette	dialog	is	used	to	choose	options	for	a	widget's	palette.

Click	the	'Select	Palette'	combobox	to	choose	options	for	active,	inactive,	or
disabled	palettes.	If	you	choose	'Active	Palette',	the	dialog	presents	three
categories	used	for	designing	the	palette.	The	categories	are	the	Auto,	Central
Color	Roles,	and	3-D	Shadow	Effects.	If	you	choose	'Inactive	Palette'	or
'Disabled	Palette',	all	categories	are	disabled	except	'Auto'.	Click	the	'Auto'
section	checkboxes	to	build	the	inactive	or	disabled	palettes	from	the	active
palette.	For	an	active	palette,	click	the	'Central	color	roles'	combobox	to	select	a
color	role	for	the	palette.	Click	the	Choose	Pixmap	button	to	invoke	the	Choose
a	Pixmap	Dialog.	Click	the	Select	Color	button	to	invoke	the	Select	Color
Dialog.	Check	the	'Build	from	button	color'	checkbox	in	the	'3-D	shadow	effects'
section	to	allow	3-D	effects	colors	to	be	calculated	from	the	button	color.
Uncheck	the	checkbox	to	enable	the	'Choose	3-D	effect	color	role'	combobox.
Click	the	combobox	to	select	a	color	role	for	the	3-D	effects.	Click	the	Select
Color	button	to	invoke	the	Select	Color	Dialog.

Click	OK	to	accept	changes	to	the	palette.	Click	Cancel	to	leave	the	dialog
without	making	changes	to	the	palette.

Select	Font

Select	Font	Dialog

The	Select	Font	dialog	is	used	to	make	changes	to	the	font	size	and	style.

Click	the	'Font'	listbox	to	choose	a	font	type.	The	current	selected	type	appears
in	the	line	edit	above	the	'Font'	listbox.	Click	the	'Font	Style'	listbox	to	choose	a
style	for	the	font.	The	choices	available	in	the	listbox	are	limited	to	the	type	of
font	you	choose.	Not	all	fonts	have	all	styles	available.	The	selected	style
appears	in	the	line	edit	above	the	'Font	Style'	listbox.	Click	the	'Size'	listbox	to
choose	a	size	for	the	font.	The	current	selected	size	appears	in	the	line	edit	above
the	'Size'	line	edit.	Click	the	checkboxes	in	the	'Effects'	section	to	create	a
'Strikeout'	or	'Underline'	effect	for	the	selected	font.	Click	the	'Script'	and	choose
a	style	of	writing.	View	your	font	selections	and	styles	in	the	'Sample'	listbox.

Click	OK	to	accept	changes	to	the	font.	Click	Cancel	to	leave	the	dialog	without
making	any	changes	to	the	font.

Text	Dialog

Text	Dialog

The	Text	dialog	is	used	to	type	text.

Click	OK	to	accept	the	text.	Click	Cancel	to	leave	the	dialog	without	saving	any
text.

Title	Dialog

Title	Dialog

Use	this	dialog	to	change	the	title	of	a	selected	widget	by	typing	the	new	title	in
the	line	edit.

Click	OK	to	accept	changes	to	the	title.	Click	Cancel	to	leave	the	dialog	without
making	changes	to	the	title.

Page	Title	Dialog

Page	Title	Dialog

Right	click	a	tab	widget	on	the	form	and	select	Edit	Page	Title	to	invoke	the
Page	Title	dialog.	Use	this	dialog	to	change	the	name	of	each	tab	in	the	Tab
widget.

Click	OK	to	accept	new	page	titles.	Click	Cancel	to	leave	the	dialog	without
making	any	changes.

Edit	Listbox

Edit	Listbox	Dialog

Right	click	or	double	click	a	Listbox	on	the	form	and	select	'Edit'	to	invoke	the
Edit	Listbox	dialog.	Use	this	dialog	to	add	items	to	the	list	box	and	to	change	the
item's	properties.

To	add	an	item	to	the	listbox,	click	the	New	Item.	If	you	want	to	change	the
default	name	of	the	item,	click	the	'Text'	line	edit	in	the	'Item	Properties'	section
and	type	a	new	name	for	the	item.	Click	the	Select	a	Pixmap	to	invoke	the

Choose	an	Image	Dialog.	Click	a	pixmap	and	then	click	the	Delete	Pixmap
button	to	delete	the	selected	pixmap.	To	delete	an	item	from	the	listbox,	click	the
item	and	then	click	the	Delete	button.	To	move	an	item	up	or	down	in	the
listbox,	click	the	Move	Up	or	Move	Down	buttons.	Click	Apply	to	accept	the
changes.

Click	Apply	to	accept	changes	to	the	listbox	widget.	Click	OK	to	leave	the
dialog	once	the	changes	have	been	accepted.	Click	Cancel	to	leave	the	dialog
without	saving	any	changes.

Edit	Listview

Right	click	or	double	click	a	listview	widget	on	the	form	and	select	'Edit'	to
invoke	the	Edit	Listview	dialog.	Use	this	dialog	to	add	items	to	the	listview.	The
Edit	Listview	dialog	has	two	tabs,	one	for	items	and	one	for	columns.

Edit	Listview-	Items	Tab

The	Items	Tab

The	dialog	defaults	to	the	Items	tab.	Use	this	tab	to	add,	change,	or	remove	items

in	the	listview.	To	add	a	new	item,	click	the	New	Item	button.	The	new	item	is
shown	at	the	top	of	the	listbox.	To	add	sub-items	to	an	existing	item,	click	the
item	and	then	click	the	New	Subitem	button.	Click	the	'Column'	spinbox	to
choose	a	column	for	which	the	item	text	or	pixmap	will	be	placed.	Click	the
'Text'	line	edit	to	type	text	for	a	column,	or	to	change	the	name	of	an	item	or
subitem.	Click	a	pixmap	and	then	click	the	Delete	Pixmap	button	to	delete	the
selected	pixmap.	To	delete	an	item	from	the	listbox,	click	the	item	and	then	click
the	Delete	button.	To	move	an	item	up	or	down	within	the	hierarchy	level,	click
the	Move	Up	or	Move	Down	buttons.	To	move	an	item	up	or	down	one	level,
click	the	Move	Left	or	Move	Right	buttons.

Edit	Listview-	Columns	Tab

The	Columns	Tab

Click	this	tab	to	change	the	column	configuration	of	the	listview.	To	add	a
column,	click	the	New	Column	button.	The	new	column	is	shown	at	the	top	of
the	listbox.	To	change	the	column	name,	click	a	column	in	the	listbox	and	then
click	the	'Text'	line	edit	and	type	a	new	name.	To	add	a	pixmap,	click	the
(ellipsis)	button,	which	invokes	the	Choose	an	Image	Dialog.	To	remove	a
pixmap,	click	the	Delete	Pixmap	button.	Click	the	'Clickable'	checkbox	if	you

want	the	columns	to	respond	to	mouse	clicks.	Click	the	'Resizeable'	checkbox	if
you	want	to	be	able	to	change	the	column's	width.	To	remove	a	column,	click	the
column	in	the	listbox	and	then	click	the	Delete	Column	button.	To	move	a
column	up	or	down	in	the	listbox,	click	the	Move	Up	or	the	Move	Down
buttons.

Click	Apply	to	accept	changes	to	the	listview	widget.	Click	OK	to	leave	the
dialog	once	the	changes	have	been	accepted.	Click	Cancel	to	leave	the	dialog
without	saving	any	changes.

Edit	Iconview

Edit	Iconview

Right	click	or	double	click	an	iconview	widget	on	the	form	and	select	'Edit'	to
invoke	the	Edit	Iconview	dialog.	Use	the	dialog	to	add,	change,	or	remove	items
from	the	iconview.	To	add	an	item	to	the	iconview,	click	the	New	Item	button.
To	change	the	name	of	the	item,	click	the	'Text'	line	edit	and	type	a	new	name.
To	add	a	pixmap,	click	the	(ellipsis)	button,	which	invokes	the	Choose	an	Image
Dialog.	To	remove	a	pixmap,	click	the	Delete	Pixmap	button.	To	delete	an	item
from	the	iconview,	click	the	item	and	then	click	the	Delete	Item	button.

Click	Apply	to	accept	changes	to	the	iconview	widget.	Click	OK	to	leave	the

dialog	once	the	changes	have	been	accepted.	Click	Cancel	to	leave	the	dialog
without	saving	any	changes.

Edit	Table

Right	click	or	double	click	a	table	widget	on	the	form	and	select	'Edit'	to	invoke
the	Edit	Table	dialog.	Use	the	dialog	to	add,	change,	or	remove	columns	or	rows
from	the	table.

Edit	Table-	Columns	Tab

The	Column	Tab

To	add	a	column	to	the	table,	click	the	New	Column	button.	To	delete	a	column
from	the	table,	click	the	column	you	want	to	delete	from	the	table,	or	click	the
column	number	in	the	'Columns'	listbox	and	then	click	the	Delete	Column
button.	To	change	a	column	name,	click	the	'Label'	line	edit	and	type	the	new
text.	To	add	a	pixmap,	click	the	(ellipsis)	button,	which	invokes	the	Choose	an
Image	Dialog.	To	remove	a	pixmap	from	the	current	column	of	the	selected
item,	click	the	Delete	Pixmap	button.	To	move	a	column	in	the	listbox,	click	the

Move	Up	or	Move	Down	buttons.

Edit	Table-	Rows	Tab

The	Rows	Tab

To	add	a	row	to	the	table,	click	the	New	Row	button.	To	delete	a	row	from	the
table,	click	the	row	you	want	to	delete	from	the	table,	or	click	the	row	number	in
the	'Rows'	listbox	and	then	click	the	Delete	Column	button.	To	change	a	row's
name,	click	the	row,	or	the	row	number,	and	then	click	the	'Label'	line	edit	and
type	the	new	text.	To	add	a	pixmap,	click	the	(ellipsis)	button,	which	invokes	the
Choose	an	Image	Dialog.	To	remove	a	pixmap	from	the	current	row	of	the
selected	item,	click	the	Delete	Pixmap	button.	To	move	a	row	in	the	listbox,
click	the	Move	Up	or	Move	Down	buttons.

Click	Apply	to	accept	changes	to	the	table	widget.	Click	OK	to	leave	the	dialog
once	the	changes	have	been	accepted.	Click	Cancel	to	leave	the	dialog	without
saving	any	changes.

Edit	Forward	Declarations

Edit	Forward	Declarations	Dialog

From	the	Source	tab	in	the	Object	Explorer	Window,	right	click	the	'Forward
Declarations'	folder	and	select	'Edit'	from	the	context	menu	to	invoke	the	Edit
Forward	Declarations	dialog.	Use	this	dialog	to	add,	edit,	or	remove
declarations	in	the	source	code.

To	add	a	new	declaration,	click	the	Add	button.	A	line	edit	will	appear	for	you	to
type	the	declaration.	Press	Enter	after	you	have	typed	the	declaration.	To	delete
a	declaration	from	the	listbox,	click	the	declaration	and	then	click	Remove.	To
rename	an	existing	declaration,	click	the	declaration	and	then	click	Rename.
The	cursor	will	appear	in	the	line	edit,	allowing	you	to	change	the	name.

Click	Close	to	leave	the	Edit	Forward	Declarations	dialog.

Edit	Includes	(in	Declaration)

Edit	Includes	(in	Declaration)	Dialog

From	the	Source	tab	in	the	Object	Explorer	Window,	right	click	the	'Includes	(in
Declaration)'	folder	and	select	'Edit'	from	the	context	menu	to	invoke	the	Edit
Includes	(in	Declarations)	dialog.	Use	this	dialog	to	add,	edit,	or	remove
includes	in	the	source	code.

To	add	a	new	include,	click	the	Add	button.	A	line	edit	will	appear	for	you	to
type	the	include.	Press	Enter	after	you	have	typed	the	include.	To	delete	an
include	from	the	listbox,	click	the	include	and	then	click	Remove.	To	rename	an
existing	include,	click	the	include	and	then	click	Rename.	The	cursor	will
appear	in	the	line	edit,	allowing	you	to	change	the	name.

Click	Close	to	leave	the	Edit	Include	(in	Declaration)	dialog.

Edit	Includes	(in	Implementation)

Edit	Includes	(in	Implementation)	Dialog

From	the	Source	tab	in	the	Object	Explorer	Window,	right	click	the	'Includes	(in
Implementation)'	folder	and	select	'Edit'	from	the	context	menu	to	invoke	the
Edit	Includes	(in	Implementation)	dialog.	Use	this	dialog	to	add,	edit,	or	remove
includes	in	the	source	code.

To	add	a	new	include,	click	the	Add	button.	A	line	edit	will	appear	for	you	to
type	the	include.	Press	Enter	after	you	have	typed	the	include.	To	delete	an
include	from	the	listbox,	click	the	include	and	then	click	Remove.	To	rename	an
existing	include,	click	the	include	and	then	click	Rename.	The	cursor	will
appear	in	the	line	edit,	allowing	you	to	change	the	name.

Click	Close	to	leave	the	Edit	Include	(in	Implementation)	dialog.

Edit	Class	Variables

Edit	Class	Variables	Dialog

From	the	Source	tab	in	the	Object	Explorer	Window,	right	click	the	'Class
Variables'	folder	and	select	'Edit'	from	the	context	menu	to	invoke	the	Edit	Class
Variables	dialog.	Use	this	dialog	to	add,	edit,	or	remove	class	variables	in	the
source	code.

To	add	a	new	variable,	click	the	Add	button.	A	line	edit	will	appear	for	you	to
type	the	variable.	Press	enter	after	you	have	typed	the	variable.	To	delete	an
include	from	the	listbox,	click	the	variable	and	then	click	Remove.	To	rename	an
existing	variable,	click	the	variable	and	then	click	Rename.	The	cursor	will
appear	in	the	line	edit,	allowing	you	to	change	the	name.

Click	Close	to	leave	the	Edit	Class	Variables	dialog.

[Prev:	Reference:	Toolbar	Buttons]	[Home]	[Next:	Reference:	Wizards]

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

[Prev:	Reference:	Dialogs]	[Home]	[Next:	Reference:	Windows]

Reference:	Wizards

Introduction

In	Qt	Designer,	some	of	the	toolbars,	menu	options	and	templates	invoke
wizards	to	take	you	step-by-step	through	particular	tasks.	In	this	chapter	we
explain	each	Qt	Designer	wizard.

Main	Window	Wizard

The	Main	Window	Wizard	is	invoked	by	clicking	the	Main	Window	form
template	in	the	New	File	Dialog.	This	wizard	helps	you	to	create	a	main	window
with	actions,	menu	options	and	toolbars.

Choose	Available	Menus	and	Toolbars

The	'Choose	available	menus	and	toolbars'	wizard	page	appears	first.	It	presents
three	categories	of	default	actions,	File	Actions,	Edit	Actions	and	Help	Actions.

For	each	category	you	can	choose	to	have	Qt	Designer	create	menu	items,
toolbar	buttons	and	signal/slots	connections	for	the	relevant	actions.	You	can
always	add	or	delete	actions,	menu	items,	toolbar	buttons	and	connections	later.
Check	or	uncheck	the	checkboxes	to	reflect	your	preferences.

Click	Next	to	move	on	to	the	next	wizard	page.

Setup	Toolbar

The	'Setup	Toolbar'	wizard	page	is	used	to	populate	a	toolbar	with	actions	from
each	of	the	default	action	categories.	Click	the	Category	combobox	to	select
which	set	of	actions	you	wish	to	work	on.	The	Actions	listbox	lists	the	actions
available	for	the	current	category.	The	Toolbar	listbox	lists	the	toolbar	buttons
you	want	to	create.	Click	the	blue	left	and	right	arrow	buttons	to	move	actions
into	or	out	of	the	Toolbar	list	box.	Click	the	blue	up	and	down	arrow	buttons	to
move	actions	up	and	down	within	the	Toolbar	list	box.	Note	that	the
'<Separator>'	item	in	the	Actions	list	box	may	be	moved	to	the	Toolbar	list	box
as	often	as	required	and	will	cause	a	separator	to	appear	in	the	finished	toolbar.

Click	Back	if	you	want	to	return	to	the	'Choose	available	menus	and	toolbars'

wizard	page.	Click	Finish	to	populate	the	main	window	and	to	exit	the	wizard.
Click	Cancel	on	any	of	the	wizard	pages	to	leave	the	wizard	without	making	any
changes.

Data	Table	Wizard

The	Data	Table	Wizard	is	automatically	invoked	by	clicking	the	datatable	widget
and	placing	it	on	the	form.	The	datatable	widget	is	used	to	create	tabular	views
of	database	data.

Choose	the	Database	and	Table

The	'Choose	the	Database	and	Table'	wizard	page	appears	first.	The	available
databases	are	displayed	in	the	'Database	Connection'	listbox.	Choose	a
connection	by	clicking	it.	If	there	are	no	connections	listed	in	the	listbox,	click
Setup	Database	Connections	to	invoke	the	Edit	Database	Connections	Dialog.
The	'Table'	listbox	shows	all	the	tables	and	views	that	are	available	through	the
selected	database	connection.	Select	a	table	or	view	by	clicking	it.

Click	Next	to	move	on	to	the	next	wizard	page.

Displayed	Fields

The	'Displayed	Fields'	wizard	page	is	used	to	select	fields	that	will	be	displayed
in	the	table.	By	default,	every	field	except	the	table	or	view's	primary	key,	is
initially	placed	in	the	'Displayed	Fields'	list.	Click	the	blue	left	and	right	arrow
buttons	to	move	fields	from	the	'Available	Fields'	listbox	and	into	or	out	of	the
'Displayed	Fields'	listbox.	Click	the	blue	up	and	down	arrow	buttons	to	move
fields	up	and	down	within	the	'Displayed	Fields'	listbox.	The	order	in	which
fields	appear	in	the	'Displayed	Fields'	listbox	is	the	order	they	are	shown	in	the
Data	Table,	with	the	top-most	field	being	in	the	left-most	column.

Click	Next	to	move	on	to	the	next	wizard	page.	Click	Back	if	you	want	to	return
to	the	'Choose	the	Database	and	Table'	wizard	page.

Table	Properties

The	'Table	Properties'	wizard	page	is	used	to	set	the	Data	Table's	initial	editing
options.	Check	the	'Read-Only'	checkbox	to	prevent	records	from	being	edited,
deleted	or	added.	Check	the	checkboxes	in	the	'Confirmations'	section	to	force
the	user	to	confirm	their	changes.	By	default	users	must	confirm	deletions.	Click
'Allow	column	sorting'	to	allow	the	user	to	sort	the	data	by	clicking	a	column's
header	(which	displays	the	field	name).

Click	Next	to	move	on	to	the	next	wizard	page.	Click	Back	if	you	want	to	return
to	the	'Displayed	Fields'	wizard	page.

SQL

The	'SQL'	wizard	page	is	used	to	apply	filters	and	sorts	to	the	data	in	the	table.
Click	the	'Filter'	line	edit	and	enter	a	valid	SQL	WHERE	clause	without	the
WHERE	keyword.	The	filter	applies	to	the	data	shown	in	the	table.

To	sort	the	available	fields	in	the	table,	click	the	blue	left	and	right	arrow	buttons
to	move	fields	from	the	'Available	Fields'	listbox	into	or	out	of	the	'Sort	By'
listbox.	Click	the	blue	up	and	down	arrow	buttons	to	move	fields	up	and	down
within	the	'Sort	By'	listbox.	Click	the	A-Z	button	to	change	the	sort	order	of	the
selected	field	in	the	'Sort	By'	listbox	from	ascending	to	descending	and	vice
versa.

Click	Next	to	move	on	to	the	next	wizard	page.	Click	Back	if	you	want	to	return
to	the	'Table	Properties'	wizard	page.

Finish

The	'Finish'	wizard	page	is	used	to	select	auto-editing	and	to	leave	the	wizard.	If
you	want	user	edits,	e.g.	inserts	and	updates,	to	be	automatically	applied	when
the	user	navigates	to	another	record,	check	the	'AutoEditing'	checkbox.	If
'AutoEditing'	is	unchecked,	users	must	press	Enter	to	confirm	their	edit	before
moving	to	another	record,	or	their	edit	will	be	lost.

Click	Finish	to	create	the	datatable	widget	with	all	of	the	options	you	selected	in
the	wizard.	Click	Back	if	you	want	to	return	to	the	'SQL'	wizard	page.	Click
Cancel	on	any	of	the	wizard	pages	to	leave	the	wizard	without	making	any
changes.

Data	Browser	Wizard

The	Data	Browser	wizard	is	automatically	invoked	by	clicking	the	DataBrowser
widget	and	placing	it	on	the	form.	The	DataBrowser	widget	is	used	to	create	a
form	view	of	database	data.

Choose	the	Database	and	Table

The	'Choose	the	Database	and	Table'	wizard	page	appears	first.	The	available
databases	are	displayed	in	the	'Database	Connection'	listbox.	Choose	a
connection	by	clicking	it.	If	there	are	no	connections	listed	in	the	listbox,	click
Setup	Database	Connections	to	invoke	the	Edit	Database	Connections	Dialog.
The	'Table'	listbox	shows	all	the	tables	and	views	that	are	available	through	the
selected	database	connection.	Select	a	table	or	view	by	clicking	it.

Click	Next	to	move	on	to	the	next	wizard	page.

Displayed	Fields

The	'Displayed	Fields'	wizard	page	is	used	to	select	fields	that	will	be	displayed
in	the	table.	Click	the	blue	left	and	right	arrow	buttons	to	move	fields	from	the
'Available	Fields'	listbox	and	into	or	out	of	the	'Displayed	Fields'	listbox.	Click
the	blue	up	and	down	arrow	buttons	to	move	fields	up	and	down	within	the
'Displayed	Fields'	listbox.

Click	Next	to	move	on	to	the	next	wizard	page.	Click	Back	if	you	want	to	return
to	the	'Choose	the	Database	and	Table'	wizard	page.

Navigation	and	Editing

The	'Navigation	and	Editing'	wizard	page	is	used	to	create	navigation	and	editing
buttons.

Check	the	'Include	Navigation	Buttons'	checkbox	to	include	navigation	buttons.
In	the	'Navigation	section,	click	'Previous'	to	display	the	'Previous'	button	on	the
form.	This	option	allows	you	to	navigate	to	the	previous	record	in	the	table.
Click	'Next'	to	display	the	'next'	button	on	the	form.	This	button	allows	you	to
navigate	to	the	next	record	in	the	table.	Click	'First'	to	display	the	'First'	button
on	the	form.	This	option	allows	you	to	navigate	to	the	first	record	in	the	table.
Click	'Last'	to	display	the	'Last'	button	on	the	form.	This	button	allows	you	to
navigate	to	the	last	record	in	the	table.

Click	the	'Include	Edit	Buttons'	checkbox	to	include	editing	buttons.	In	the
'Editing'	section,	check	the	'Insert'	checkbox	to	create	an	'Insert'	button	for
adding	new	records.	Check	the	'Update'	checkbox	to	create	an	'Update'	button
for	updating	existing	records.	Check	the	'Delete'	checkbox	to	create	a	'Delete'
button	for	deleting	records.

The	navigation	buttons,	and	'Update'	and	'Delete'	buttons	will	work	without
requiring	any	code.	Since	most	database	designs	expect	new	records	to	be
created	with	a	unique	key	the	'Insert'	button	will	not	work.	This	can	easily	be
fixed	by	generating	the	key	in	a	slot	connected	to	the
QDataBrowser::beforeInsert()	signal.

Click	Next	to	move	on	to	the	next	wizard	page.	Click	Back	if	you	want	to	return
to	the	'Displayed	Fields'	wizard	page.

SQL

The	'SQL'	wizard	page	is	used	to	apply	filters	and	sorts	to	the	data	in	the	table.
Click	the	'Filter'	line	edit	and	type	a	valid	SQL	WHERE	clause	without	the
WHERE	keyword.	The	filter	applies	to	the	data	shown	in	the	table.

To	sort	the	available	fields	in	the	table,	click	the	blue	left	and	right	arrow	buttons
to	move	fields	from	the	'Available	Fields'	listbox	into	or	out	of	the	'Sort	By'
listbox.	Click	the	blue	up	and	down	arrow	buttons	to	move	fields	up	and	down

within	the	'Sort	By'	listbox.	Click	the	A-Z	button	to	change	the	sort	order	of	the
selected	field	in	the	'Sort	By'	listbox	from	ascending	to	descending	and	vice
versa.

Click	Next	to	move	on	to	the	next	wizard	page.	Click	Back	if	you	want	to	return
to	the	'Navigation	and	Editing'	wizard	page.

Layout

The	'Layout'	wizard	page	is	used	to	design	the	layout	of	the	database	browser.	To
choose	the	number	of	columns	the	form	will	use,	click	the	'Number	of	Columns'
spinbox.	To	make	labels	appear	to	the	left	of	the	data	entry	fields,	click	the
'Labels	to	left'	radio	button.	To	make	labels	appear	above	the	data	entry	fields,
click	the	'Labels	on	top'	radio	button.

Click	the	'Create	layout	for	fields'	checkbox	to	arrange	all	fields	inside	of	a	box
layout.	Click	the	'Create	layout	for	buttons'	checkbox	to	arrange	all	buttons
inside	of	a	box	layout.	Click	'Create	layout	for	all'	to	create	a	box	layout	for	the
whole	widget.

You	can	always	break	the	layouts	and	redo	them	later	if	you	change	your	mind.

Click	Next	to	move	on	to	the	next	wizard	page.	Click	Back	if	you	want	to	return
to	the	'SQL'	wizard	page.

Finish

The	'Finish'	wizard	page	is	used	to	select	auto-editing	and	to	leave	the	wizard.	If
you	want	user	edits,	e.g.	inserts	and	updates,	to	be	automatically	applied	when
the	user	navigates	to	another	record,	check	the	'AutoEditing'	checkbox.	If
'AutoEditing'	is	unchecked,	users	must	press	Enter	to	confirm	their	edit	before
moving	to	another	record,	or	their	edit	will	be	lost.	This	property	can	be	changed
later	if	desired.

Click	Finish	to	create	the	databrowser	widget	with	all	of	the	options	you
selected	in	the	wizard.	Click	Back	if	you	want	to	return	to	the	'Layout'	wizard
page.	Click	Cancel	on	any	of	the	wizard	pages	to	leave	the	wizard	without
making	any	changes.

Data	View	Wizard

The	Data	View	wizard	is	automatically	invoked	by	clicking	the	dataview	widget
and	placing	it	on	the	form.	The	Dataview	widget	is	used	to	create	a	read-only
form	view	of	database	data.

Choose	the	Database	and	Table

The	'Choose	the	Database	and	Table'	wizard	page	appears	first.	The	available
databases	are	displayed	in	the	'Database	Connection'	listbox.	Choose	a
connection	by	clicking	it.	If	there	are	no	connections	listed	in	the	listbox,	click
Setup	Database	Connections	to	invoke	the	Edit	Database	Connections	Dialog.
The	'Table'	listbox	shows	all	the	tables	and	views	that	are	available	through	the
selected	database	connection.	Select	a	table	or	view	by	clicking	it.

Click	Next	to	move	on	to	the	next	wizard	page.

Displayed	Fields

The	'Displayed	Fields'	wizard	page	is	used	to	select	fields	that	will	be	displayed
in	the	table.	Click	the	blue	left	and	right	arrow	buttons	to	move	fields	from	the
'Available	Fields'	listbox	and	into	or	out	of	the	'Displayed	Fields'	listbox.	Click
the	blue	up	and	down	arrow	buttons	to	move	fields	up	and	down	within	the
'Displayed	Fields'	listbox.

Click	Next	to	move	on	to	the	next	wizard	page.	Click	Back	if	you	want	to	return
to	the	'Choose	the	Database	and	Table'	wizard	page.

Layout

The	'Layout'	wizard	page	is	used	to	design	the	layout	of	the	data	view.	To	choose
the	number	of	columns	the	form	will	use,	click	the	'Number	of	Columns'
spinbox.	To	make	labels	appear	to	the	left	of	the	data	entry	fields,	click	the
'Labels	to	left'	radio	button.	To	make	labels	appear	above	the	data	entry	fields,
click	the	'Labels	on	top'	radio	button.

Click	Next	to	move	on	to	the	next	wizard	page.	Click	Back	if	you	want	to	return
to	the	'Displayed	Fields'	wizard	page.

Finish

The	'Finish'	wizard	page	is	used	to	create	the	wizard	once	you	have	selected	all
the	option	you	want	on	the	previous	wizard	pages.

Click	Finish	to	create	the	databrowser	widget	with	all	of	the	options	you
selected	in	the	wizard.	Click	Back	if	you	want	to	return	to	the	'Layout'	wizard
page.	Click	Cancel	on	any	of	the	wizard	pages	to	leave	the	wizard	without
making	any	changes.

[Prev:	Reference:	Dialogs]	[Home]	[Next:	Reference:	Windows]

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

[Prev:	Reference:	Wizards]	[Home]	[Next:	Reference:	The	.ui	File	Format]

Reference:	Windows

Introduction

By	default	Qt	Designer	starts	up	with	three	windows	on	the	left	hand	side.	They
are	the	File	Overview	Window,	the	Object	Explorer	Window,	and	the	Property
Editor/Signal	Handlers	Window.	This	chapter	explains	each	window	in	detail.

File	Overview	Window

File	Overview	Window

This	window	lists	all	the	files	associated	with	the	project.	To	open	a	form	or	file
single	click	it	in	the	Files	list.	To	rapidly	switch	between	forms	and	files,	type
the	name	of	the	file	in	the	line	edit	above	the	files	list	and	Qt	Designer	will
perform	an	incremental	search	to	show	any	matching	files	or	forms.

Right-click	a	file	(or	the	project)	to	get	a	context	menu	of	options,	for	example,
'Open	form'	or	'Remove	form	from	project'.

Object	Explorer	Window

The	Object	Explorer	window	lists	the	current	form's	widgets	and	slots.	The
window	contains	two	tabs,	the	Widgets	tab	and	the	Source	tab.

Widget	Tab

Widget	Tab

Click	the	Widgets	tab	to	view	all	the	widgets	for	the	current	form.	The	widgets
are	listed	by	name	and	class.	Click	a	widget	in	the	list	to	highlight	it	in	the
corresponding	form.

Source	Tab

Source	Tab

Click	the	Source	tab	to	view	the	current	form's	slots,	forward	declarations,
includes,	and	class	variables.	The	Source	tab	uses	a	tree	view	to	display	its
information.	Items	which	have	a	'+'	sign	have	sub-items	which	are	revealed	by
clicking	the	'+'.	Right	click	any	item	in	the	tree	view	to	popup	a	context	menu.

To	edit	or	add	slots,	right	click	the	Slots	folder	and	select	'Edit'	to	invoke	the	Edit
Slots	Dialog.	Right	click	the	Public,	Protected,	or	Private	subdirectories	and
click	'New'	to	invoke	the	Edit	Slots	Dialog.	Right	click	a	slot	in	the	list	to	invoke
a	menu	with	additional	options	for	the	slot.	To	add	new	slots,	choose	'New'	from
the	menu,	which	invokes	the	Edit	Slots	Dialog.	To	change	the	properties	of	the
selected	slot,	choose	'Properties'	which	invokes	the	Edit	Slots	Dialog.	To	open
the	C++	editor	and	jump	to	the	implementation	of	the	selected	slot,	choose	'Goto
Implementation'.	To	remove	the	selected	slot,	choose	'Delete'.	Signals	can	be
added	or	deleted	in	the	same	way	as	slots.

Right	click	'Forward	Declarations',	'Includes	(in	declaration)',	'Class	Variables',
and	'Includes	(in	implementation)'	to	invoke	a	context	menu	with	the	'new'	or
'edit'	options.	Choose	'New'	to	invoke	a	line	edit	for	typing	a	declaration,
variable,	or	include.	Right	click	'Forward	Declarations'	and	choose	'Edit'	to
invoke	the	Edit	Forward	Declarations	Dialog.	Right	click	'Includes	(in
declaration)'	and	choose'Edit'	to	invoke	the	Edit	Includes	(in	Declaration)
Dialog.	Right	click	'Class	variables'	and	choose	'Edit'	to	invoke	the	Edit	Class
Variables	Dialog.	Right	click	'Includes	(in	Implementation)'	and	choose	'Edit'	to
invoke	the	Edit	Includes	(in	Implementation)	Dialog.

Property	Editor/Signal	Handlers	Window

Click	the	Property	Editor/Signal	Handlers	window	to	view	and	change	the
properties	of	forms,	widgets	and	menus.	This	window	has	a	'Properties'	tab	and	a
'Signal	Handlers'	tab.

Properties	Tab

The	Properties	Tab

Click	the	'Properties'	tab	to	change	the	appearance	and	behaviour	of	the	selected
widget.	(For	menus,	click	the	menu	bar	to	show	the	menu	item	properties	in	the
Property	Editor.)	The	Property	Editor	has	two	columns,	the	Property	column
which	lists	property	names	and	the	Value	column	which	lists	the	values.	Click
the	column	headers	to	sort	the	properties	or	values.	Some	property	names	have	a
plus	sign	'+'	in	a	square	to	their	left;	this	signifies	that	the	property	name	is	the
collective	name	for	a	set	of	related	properties.

Some	properties	have	simple	values,	for	example,	the	name	property	has	a	text
value,	the	width	property	(within	minimumSize	for	example)	has	a	numeric
value.	To	change	a	text	value	click	the	existing	text	and	type	in	your	new	text.	To
change	a	numeric	value	click	the	value	and	either	type	in	a	new	number,	or	use
the	spin	buttons	to	increase	or	decrease	the	existing	number	until	it	reaches	the
value	you	want.	Some	properties	have	a	fixed	list	of	values,	for	example	the
mouseTracking	property	is	boolean	and	can	take	the	values	True	or	False.	The
cursor	property	also	has	a	fixed	list	of	values.	If	you	click	the	cursor	property	or

the	mouseTracking	property	the	value	will	be	shown	in	a	drop	down	combobox;
click	the	down	arrow	to	see	what	values	are	available.

Some	properties	have	complex	sets	of	values;	for	example	the	font	property.	If
you	click	the	font	property	an	ellipsis	button	(...)	will	appear;	click	this	button
and	a	Select	Font	dialog	will	pop	up	which	you	can	use	to	change	any	of	the	font
settings.	Other	properties	have	ellipsis	buttons	which	lead	to	different	dialogs
depending	on	what	settings	the	property	can	have.	For	example,	if	you	have	a	lot
of	text	to	enter	for	a	text	property	you	could	click	the	ellipsis	button	to	invoke
the	multi-line	text	editor	dialog.	The	names	of	properties	which	have	changed
are	shown	in	bold.	If	you've	changed	a	property	but	want	to	revert	it	to	its	default
value	click	the	property's	value	and	then	click	the	red	'X'	button	to	the	right	of
the	value.	Some	properties	have	an	initial	value,	e.g.	'TextEdit1',	but	no	default
value;	if	you	revert	a	property	that	has	an	initial	value	but	no	default	value	(by
clicking	the	red	'X')	the	value	will	become	empty	unless	the	property,	e.g.	name,
is	not	allowed	to	be	empty.

The	property	editor	fully	supports	Undo	and	Redo	(Ctrl+Z	and	Ctrl+Y,	also
available	from	the	Edit	menu).

Signal	Handlers	Tab

The	Signal	Handlers	Tab

Click	the	'Signal	Handlers'	tab	to	view	or	create	the	connections	between	signals
of	widgets	and	custom	slots	of	the	form.

[Prev:	Reference:	Wizards]	[Home]	[Next:	Reference:	The	.ui	File	Format]

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

[Prev:	Reference:	Windows]	[Home]

Reference:	The	.ui	File	Format

Qt	Designer	stores	forms	in	.ui	files.	These	files	use	an	XML	format	to
represent	form	elements	and	their	characteristics.	This	document	provides	an
overview	of	the	XML	format	used,	and	should	provide	enough	information	for
developers	to	write	their	own	.ui	parsers	so	that	they	can	read	and	modify	.ui
files	programatically.

One	way	to	parse	a	.ui	file	is	to	use	Qt	and	the	QDomDocument	class;	this	is
how	Qt	Designer	does	it:	see	the	uilib/qwidgetfactory.h	and
uilib/qwidgetfactory.cpp	source	files.	For	information	on	dynamically
loading	and	running	.ui	files	see	Loading	and	Executing	a	Dynamic	Dialog.

The	doctype	of	a	.ui	file	is	simply	"UI",	so	the	doctype	tag	is:

<!DOCTYPE	UI>

The	root	element	is	a	"UI",	which	encloses	the	entire	contents:

<UI	version="3.0"	stdsetdef="1">

...

</UI>

Within	the	UI	entity,	there	may	one	or	zero	of	the	following	element	types:

actions	-	actions,	for	QMainWindow	forms

author	-	the	form's	author

class	-	the	form's	class	name

comment	-	comments,	e.g.	copyright	notices

connections	-	signal/slot	connections

customwidgets	-	custom	widgets	(old-style)

exportmacro	-	Windows-specific

forwards	-	forward	declarations

images	-	embedded	images:	only	for	.ui	files	than	include	embedded
images;	images	are	normally	stored	in	a	separate	images	directory

includes	-	include	files

layoutdefaults	-	default	values	for	layout	attributes

menubar	-	menu	bar,	for	QMainWindow	forms

pixmapfunction	-	the	name	of	the	function	to	use	for	retrieving	pixmaps	if
neither	embedded	nor	external	pixmaps	are	being	used

pixmapinproject	-	an	element	whose	presence	ndicates	that	the	pixmaps	are
handled	by	the	.pro	file

signals	-	signal	declarations

slots	-	slot	declarations

tabstops	-	the	form's	tab	order

toolbars	-	toolbars,	for	QMainWindow	forms

variables	-	class	variables

widget	-	the	form	itself;	this	element	may	contain	other	elements,	including
other	widget	elements

forward	-	Qt	3.x	beta	backwards	compatibility

include	-	Qt	2.x	backwards	compatibility

variable	-	Qt	3.x	beta	backwards	compatibility

The	ordering	of	elements	is	arbitrary,	although	it	is	common	for	the	class
element	to	be	first.

UI	Elements

actions

This	element	is	used	to	store	the	form's	actions.	It	only	occurs	in	QMainWindow
forms.

The	actions	element	contains	one	or	more	action	elements.	Each	action
element	contains	one	or	more	properties.	Each	property	has	a	name	attribute,	and
a	single	value	which	is	contained	within	a	datatype	element.

<actions>

				<action>

								<property	name="name">

												<cstring>fileNewAction</cstring>

								</property>

								<property	name="iconSet">

												<iconset>filenew</iconset>

								</property>

								<property	name="text">

												<string>New</string>

								</property>

								<property	name="menuText">

												<string>&New</string>

								</property>

								<property	name="accel">

												<number>4194382</number>

								</property>

				</action>

				...

</actions>

author

This	element	is	used	to	store	the	author's	name	as	a	simple	string.

<author>Barney	Rubble</author>

class

This	element	is	used	to	store	the	form's	class	name	as	a	simple	string.

<class>InsuranceForm</class>

comment

This	element	is	used	to	store	comments,	for	example,	copyright	notices,	as	a

simple	string.

<comment>***

**	Copyright	(C)	2002	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	Qt	Designer.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

***</comment>

</comment>

connections

This	element	is	used	to	record	the	signals	and	slots	connections	in	the	form.

The	connections	element	contains	one	or	more	connection	elements	and	one	or
more	slot	elements.	Each	connection	element	identifies	the	signaling	object
and	its	signal,	and	the	receiving	object	and	its	slot.	Each	slot	element	provides	a
slot's	prototype.

<connections>

				...

				<connection	language="C++">

								<sender>alignActionGroup</sender>

								<signal>selected(QAction*)</signal>

								<receiver>EditorForm</receiver>

								<slot>changeAlignment(QAction*)</slot>

				</connection>

				...

				<slot	access="public"	specifier="virtual"	language="C++"	

	 returnType="void">changeAlignment(QAction*	align)</slot>

				...

</connections>

customwidgets

Qt	Designer	can	operate	with	custom	widgets.	A	custom	widget	is	represented	in
a	.ui	file	using	the	<customwidget>	element.

Note	that	these	are	the	'old-style'	custom	widgets	that	show	up	on	the	form	as
grey	rectangles.	Use	plugins	to	seamlessly	integrate	your	custom	widgets	into	Qt
Designer	--	see	Creating	Custom	Widgets	with	Plugins.

Each	custom	widget	has	a	class	name	and	a	header	file.	They	also	have	a	size
hint	and	size	policy.	A	pixmap	can	be	specified;	this	is	displayed	on	a	Qt
Designer	toolbar	button	which	the	user	can	use	to	create	an	instance	of	the
custom	widget.	Custom	widgets	usually	emit	signals,	and	these	are	listed.	The
name	and	type	of	any	properties	that	the	widget	has	are	also	included.

<customwidgets>

				<customwidget>

								<class>StyledButton</class>

								<header	location="local">styledbutton.h</header>

								<sizehint>

												<width>40</width>

												<height>25</height>

								</sizehint>

								<container>0</container>

								<sizepolicy>

												<hordata>5</hordata>

												<verdata>5</verdata>

								</sizepolicy>

								<pixmap>image0</pixmap>

								<signal>clicked()</signal>

								<signal>changed()</signal>

								<property	type="Color">color</property>

								<property	type="Pixmap">pixmap</property>

								<property	type="Bool">scale</property>

				</customwidget>

</customwidgets>

exportmacro

This	tag	is	only	relevant	to	Windows	users.

If	you	have	a	class	that	requires	some	Windows-specific	export	macro,	e.g.	for
classes	in	a	DLL	that	need	to	be	declared	like	this:	class

win_specific_declaration_goes_here	Class,	you	can	use	the	<exportmacro>
tag.	(In	standard	Qt	we	use	the	Q_EXPORT	macro,	e.g.	class	Q_EXPORT	QWidget.)
If	you	use	this	tag	you	must	also:

1.	 include	the	file	which	contains	the	macro	definition;

2.	 add	the	export	macro	to	the	form	--	this	is	achieved	by	entering	the	macro's
name	in	the	'export	macro'	sub-property	of	the	form's	name	property.

Following	these	steps	will	ensure	that	uic	will	create	the	correct	class
YOUR_MACRO	Form	declarations.

<exportmacro>EDITOR_EXPORT</exportmacro>

forwards

It	is	sometimes	necessary	to	forward	declare	classes,	particularly	if	code	is	being
written	in	.ui.h	files	within	Qt	Designer.	Each	forward	declaration	is	listed	as	it
should	appear	in	the	generated	C++	code.

<forwards>

				<forward>class	QStringList;</forward>

</forwards>

images

Images	are	normally	stored	in	their	own	files	and	associated	with	forms	using
project	files.	This	has	the	advantage	that	images	can	be	shared	across	any
number	of	forms	in	a	project,	and	between	projects.

In	some	cases	it	may	be	desireable	to	store	image	data	directly	in	a	form,	and	the


</images>

includes

It	is	sometimes	necessary	to	#include	header	files	in	a	.ui	file.	Header	files
may	be	'local',	i.e.	relative	to	the	project's	directory,	or	'global',	i.e.	part	of	Qt	or
the	compilers	standard	libraries.	Header	files	are	declared	in	the	implementation
wherever	possible,	although	sometimes	it	is	necessary	to	declare	them	in	the
declaration	(header)	file.

Qt	Designer	automatically	adds	<include>	tags	for	a	.ui's	.ui.h	file.

<includes>

				<include	location="local"	impldecl="in	implementation">pixmapcollection.h</include>

				<include	location="local"	impldecl="in	implementation">pixmapchooser.h</include>

				<include	location="local"	impldecl="in	implementation">project.h</include>

				<include	location="global"	impldecl="in	implementation">qfileinfo.h</include>

				<include	location="global"	impldecl="in	implementation">qimage.h</include>

				<include	location="global"	impldecl="in	declaration">qpixmap.h</include>

				<include	location="local"	impldecl="in	implementation">pixmapcollectioneditor.ui.h</include>

</includes>

layoutdefaults

Every	form	has	a	default	spacing	and	margin	size.	These	can	be	overridden	on	a
case-by-case	basis.

<layoutdefaults	spacing="6"	margin="11"/>

menubar

Applications	that	use	QMainWindow	often	have	a	menubar.	The	menubar	has	a
name	property	and	one	or	more	popup	menu	items.	Each	menu	item	has	one	or
more	actions	and	optionally	separators.

<menubar>

				<property	name="name">

								<cstring>menubar</cstring>

				</property>

				<item	text="&File"	name="PopupMenu">

								<action	name="fileSaveAction"/>

								<separator/>

								<action	name="fileExitAction"/>

				</item>

				<item	text="&Help"	name="PopupMenu_2">

								<action	name="helpAboutAction"/>

								<action	name="helpAboutQtAction"/>

				</item>

</menubar>

pixmapfunction

Images	are	normally	included	by	listing	their	filenames	in	project	files.	Images
can	also	be	included	inline	using	the	images	tag.	Another	way	of	dealing	with
images	is	to	specify	a	function	name.	This	function	will	be	called,	with	the	name
(or	'key')	of	the	relevant	image,	and	is	responsible	for	loading	the	appropriate
image.	To	specify	such	a	function	the	<pixmapfunction>	tag	is	used.

<pixmapfunction>splashScreen</pixmapfunction>

pixmapinproject

Most	applications	store	their	images	as	separate	files	listed	in	the	application's
project	file.	This	can	be	signified	by	including	the	<pixmapinproject>	tag.

<pixmapinproject/>

signals

See	connections.

slots

See	connections.

tabstops

Tabstops	indicate	the	widgets	that	get	the	focus	as	the	user	tabs	through	the	form.
The	<tabstops>	tag	contains	a	list	of	tabstops,	in	order,	each	of	which	holds	the
name	of	a	widget.

<tabstops>

				<tabstop>templateView</tabstop>

				<tabstop>helpButton</tabstop>

				<tabstop>buttonOk</tabstop>

				<tabstop>buttonCancel</tabstop>

</tabstops>

toolbars

Forms	that	have	toolbars	(dock	windows)	use	the	<toolbars>	tag	to	hold	the
details.	These	forms	are	normally	QMainWindows	(or	subclasses).	Each	toolbar
has	a	dock	attribute	which	identifies	which	dock	window	the	toolbar	initially
belongs	to.	They	also	have	both	name	and	label	properties.	Each	toolbar	button
is	represented	by	an	action.	Toolbars	can	also	hold	other	widgets,	in	which	case
the	<toolbar>	tag	includes	appropriate	<widget>	tags	which	give	the	class,
name	and	any	non-default	property	values	for	the	relevant	widget.

<toolbars>

				<toolbar	dock="2">

								<property	name="name">

												<cstring>toolBar</cstring>

								</property>

								<property	name="label">

												<string>Tools</string>

								</property>

								<action	name="fileNewAction"/>

								<action	name="fileOpenAction"/>

								<action	name="fileSaveAction"/>

								<separator/>

								<action	name="editUndoAction"/>

								<action	name="editRedoAction"/>

								<action	name="editCutAction"/>

								<action	name="editCopyAction"/>

								<action	name="editPasteAction"/>

				</toolbar>

				<toolbar	dock="2">

								<property	name="name">

												<cstring>Toolbar</cstring>

								</property>

								<property	name="label">

												<string>Toolbar</string>

								</property>

								<action	name="leftAlignAction"/>

								<action	name="centerAlignAction"/>

								<action	name="rightAlignAction"/>

								<separator/>

								<action	name="boldAction"/>

								<action	name="italicAction"/>

								<action	name="underlineAction"/>

								<separator/>

								<widget	class="QComboBox">

												<property	name="name">

																<cstring>fontComboBox</cstring>

												</property>

								</widget>

								<widget	class="QSpinBox">

												<property	name="name">

																<cstring>SpinBox2</cstring>

												</property>

												<property	name="minValue">

																<number>6</number>

												</property>

												<property	name="value">

																<number>10</number>

												</property>

								</widget>

				</toolbar>

</toolbars>

variables

Module	variables	are	held	in	the	<variables>	tag.	Variable	type	names	often
include	<	and	>,	which	must	be	stored	as	entities.

<variables>

				<variable>SettingsDialog	*	settings;</variable>

				<variable>QMap<int,	QString>	bookmarks;</variable>

				<variable>HelpWindow	*browser;</variable>

				<variable>HelpDialog	*helpDock;</variable>

				<variable>QGuardedPtr<FindDialog>	findDialog;</variable>

				<variable>static	QPtrList<MainWindow>	*windows;</variable>

</variables>

widget

Widgets	are	used	at	multiple	levels	within	a	.ui	file.	The	whole	form	itself	is	a
widget,	and	it	contains	other	widgets,	usually	within	the	context	of	layouts	such
as	hboxes,	vboxes	and	grids.

Below	is	an	example	of	a	complete	.ui	file.	The	form	itself	is	a	QWidget	with
various	non-default	properties	set.	This	widget	contains	a	single	hbox,	which

also	has	some	non-default	properties,	and	which	contains	a	single	QTextBrowser
widget.

<!DOCTYPE	UI><UI	version="3.0"	stdsetdef="1">

<class>WinIntroPage</class>

<widget	class="QWidget">

				<property	name="name">

								<cstring>WinIntroPage</cstring>

				</property>

				<property	name="geometry">

								<rect>

												<x>0</x>

												<y>0</y>

												<width>387</width>

												<height>228</height>

								</rect>

				</property>

				<property	name="caption">

								<string>Form1</string>

				</property>

				<hbox>

								<property	name="name">

												<cstring>unnamed</cstring>

								</property>

								<property	name="margin">

												<number>11</number>

								</property>

								<property	name="spacing">

												<number>6</number>

								</property>

								<widget	class="QTextBrowser">

												<property	name="name">

																<cstring>TextBrowser1</cstring>

												</property>

												<property	name="text">

																<string>This	program	installs	Qt.</string>

												</property>

								</widget>

				</hbox>

</widget>

<layoutdefaults	spacing="6"	margin="11"/>

</UI>

forward

This	tag	is	included	for	Qt	3.x	beta	backwards	compatibility,	and	should	not	be
used.	Use	forwards	instead.

include

This	tag	is	included	for	Qt	2.x	beta	backwards	compatibility,	and	should	not	be
used.	Use	includes	instead.

variable

This	tag	is	included	for	Qt	3.x	beta	backwards	compatibility,	and	should	not	be
used.	Use	variables	instead.

Datatype	Elements

bool	-	a	boolean	value	(0	or	1),	e.g.	<bool>1</bool>

color	-	a	color,	e.g.	<color><red>192</red><green>0</green>
<blue>255</blue></color>

cstring	-	a	C	string	value	(8-bit),	e.g.	<cstring>Some	text</cstring>

cursor	-	an	integer	which	indicates	the	cursor	type,	e.g.
<cursor>4</cursor>.	The	valid	integers	for	the	cursor	type	are:

0	-	ArrowCursor

1	-	UpArrowCursor

2	-	CrossCursor

3	-	WaitCursor

4	-	IbeamCursor

5	-	SizeVerCursor

6	-	SizeHorCursor

7	-	SizeBDiagCursor

8	-	SizeFDiagCursor

9	-	SizeAllCursor

10	-	BlankCursor

11	-	SplitVCursor

12	-	SplitHCursor

13	-	PointingHandCursor

14	-	ForbiddenCursor

enum	-	an	enum	name,	e.g.	<enum>StrongFocus</enum>

font	-	a	font	description,	e.g.

				<family>Helvetica</family>

				<pointsize>16</pointsize>

				<weight>50</weight>

				<italic>1</italic>

				<underline>0</underline>

				<strikeout>0</strikeout>

iconset	-	an	iconset	(see	pixmap),	e.g.	<iconset>filenew</iconset>

number	-	an	integer	with	an	optional	sign,	e.g.	<number>947</number>

palette	-	a	palette

pixmap	-	a	pixmap,	normally	the	name	or	"key"	of	the	pixmap;	the	name	is
used	if	pixmaps	are	stored	in	the	project,	the	key	is	used	if	a	user	defined
function	is	used	to	access	the	pixmap.	It	is	also	possible	for	pixmaps	to	be
included	inline.	Example:	<pixmap>chair</pixmap>

point	-	a	point,	e.g.	<point><x>15</x><y>95</y></point>

rect	-	a	rectangle,	e.g.

<rect>

				<x>20</x>

				<y>35</y>

				<width>225</width>

				<height>45</height>

</rect>

set	-	a	list	of	names	separated	by	|'s,	e.g.	<set>AlignLeft|AlignTop</set>

size	-	a	size,	e.g.	<size><width>150</width><height>105</height>
</size>

sizepolicy	-	an	integer	which	indicates	the	size	type,	e.g.
<hsizetype>5</hsizetype><vsizetype>4</vsizetype>.	The	valid
integers	for	the	size	type	are:

0	-	Fixed

1	-	Minimum

3	-	MinimumExpanding

4	-	Maximum

5	-	Preferred

7	-	Expanding

string	-	a	Unicode	string	value	(in	UTF8),	e.g.	<string>Some
text</string>

Complex	Datatype	Elements

palette

This	element	holds	colors	for	user	interface	elements	for	each	color	group.	For
example:

<palette>

		<active>

				<color>	...	Foreground				...	</color>

				<color>	...	Button								...	</color>

				<color>	...	Light									...	</color>

				<color>	...	Midlight						...	</color>

				<color>	...	Dark	 						...	</color>

				<color>	...	Mid	 						...	</color>

				<color>	...	Text										...	</color>

				<color>	...	BrightText				...	</color>

				<color>	...	ButtonText				...	</color>

				<color>	...	Base										...	</color>

				<color>	...	Background				...	</color>

				<color>	...	Shadow	 						...	</color>

				<color>	...	Highlight					...	</color>

				<color>	...	HighlightText	...	</color>

		</active>

		<disabled>

				<color><red>128</red><green>128</green><blue>128</blue></color>

				...

				<color><red>255</red><green>255</green><blue>255</blue></color>

		</disabled>

		<inactive>

				<color><red>0</red><green>0</green><blue>0</blue></color>

				...

				<color><red>255</red><green>255</green><blue>255</blue></color>

		</inactive>

</palette>

See	color	for	the	format	of	the	<color>	element.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Qt

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

[Qt]	[]

QtQt

lupdate lrelease

Qt

QtQt

Qt Qt Qt

open öffnen“open	file”“” aufbauen“open	internet
connection”“”

“&Quit”“Q”“Avslutt”——

“The	25	files	selected	will	take	63	seconds	to	process”

Qt

Qtbugqt-bugs

[Qt]	[]

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

mailto:doc@trolltech.com?subject=Translation_Tutorial
mailto:qt-bugs@trolltech.com?subject=Translation_Tutorial
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

[]	[Qt]	[]

lupdatelreleaseqmake qmake

Qt

lupdatelrelease.proQt TRANSLATIONS

				TRANSLATIONS				=	tt2_fr.ts	\

																						tt2_nl.ts

.pro

				HEADERS									=	main-dlg.h	\

	 	 						options-dlg.h

				SOURCES									=	main-dlg.cpp	\

	 	 						options-dlg.cpp	\

	 	 						main.cpp	

				FORMS											=	search-dlg.ui

				TRANSLATIONS				=	superapp_dk.ts	\

	 	 						superapp_fi.ts	\

	 	 						superapp_no.ts	\

	 	 						superapp_se.ts

QApplication::setDefaultCodec()tr()8 tr()Latin-1

QApplication::defaultCodec() Qt.proDEFAULTCODEC

				DEFAULTCODEC				=	ISO-8859-5

lupdate

lupdate	myproject.pro

lupdateQt.pro.ts Qt

lupdate

lupdate lupdatebeta

.tsXML

lrelease

lrelease	myproject.pro

Qt .pro.ts.qm .qm

.qmalpha .qm

lrelease“done”

lupdatelrelease.ts

[]	[Qt]	[]

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

[Prev:	Release	Manager]	[Home]	[Next:	Programmers]

Translators

Linguist	Main	Window

The	One	Minute	Guide	to	Using	Qt	Linguist

Qt	Linguist	is	a	tool	for	adding	translations	to	Qt	applications.	It	introduces	the
concept	of	a	translation	"context"	which	means	a	group	of	phrases	that	appear
together	on	the	screen	e.g.	in	the	same	menu	or	dialog.

To	start,	run	Qt	Linguist,	either	from	the	taskbar	menu,	or	by	double	clicking	the

desktop	icon,	or	type	linguist	(followed	by	Enter)	at	the	command	line.	Once
Qt	Linguist	has	started	choose	File|Open	from	the	menu	bar	and	select	a	.ts
translation	source	file	to	work	on.

Qt	Linguist's	main	window	is	divided	into	four	main	areas.	The	left	hand	side
contains	the	Context	list,	the	top	right	is	the	Source	text	area,	the	middle	right	is
the	translation	area	and	the	bottom	right	is	the	phrases	and	guesses	area.	We'll
describe	them	in	detail	later.

Click	on	one	of	the	contexts	in	the	context	list	(left	hand	side)	and	then	click	on
one	of	the	phrases	that	appears	in	the	Source	text	area	(top	right).	The	phrase
will	be	copied	into	the	translation	area	(middle	right).	Click	under	the	word
'Translation'	and	type	in	the	translation.	Click	Ctrl+Enter	(Done	&	Next)	to
confirm	that	you	have	completed	the	translation	and	to	move	on	to	the	next
phrase	that	requires	translation.

The	cycle	of	entering	a	translation	then	pressing	Ctrl+Enter	can	be	repeated
until	all	the	translations	are	done	or	until	you	finish	the	session.	Linguist	will
attempt	to	fill	the	"phrases	and	guesses"	area	with	possible	translations	from	any
open	phrase	books	and	any	previous	translations.	Each	has	a	keyboard	shortcut,
e.g.	Ctrl+1,	Ctrl+2,	etc.,	which	you	can	use	to	copy	the	guess	into	the
Translation	area.	(Mouse	users	can	double	click	a	phrase	or	guess	to	move	it	into
the	Translation	area.)	At	the	end	of	the	session	choose	File|Save	from	the	menu
bar	and	then	File|Exit	to	quit.

Qt	Linguist's	Main	Window

Context	List

This	appears	at	the	left	hand	side	of	the	main	window	by	default.	The	first
column,	'Done',	identifies	whether	or	not	the	translations	for	the	context	have
been	done.	A	tick	indicates	that	all	the	translations	have	been	done	and	are	valid.
A	question	mark	indicates	that	one	or	more	translations	have	not	been	done	or
have	failed	validation.	The	second	column,	'Context'	is	the	name	of	the	context
in	which	the	translation	phrases	appear.	The	third	column,	'Items'	shows	two
numbers,	the	first	is	the	number	of	translations	that	have	been	done,	and	the
second	is	the	number	of	phrases	that	are	in	the	context;	if	the	numbers	are	equal
then	all	the	translations	have	been	done.	Note	that	a	greyed	out	tick	indicates	an
obsolete	translation,	i.e.	a	phrase	that	was	translated	in	a	previous	version	of	the

application	but	which	does	not	occur	in	the	new	version.

The	contexts	are	ordered	alphabetically.	The	phrases	within	each	context	are	in
the	order	in	which	they	appear	in	the	source	program	and	this	may	not	be	the
order	in	which	they	are	shown	on	screen.

The	Context	List	is	a	dockable	window	so	it	can	be	dragged	to	another	position
in	the	main	window,	or	dragged	out	of	the	main	window	to	be	a	window	in	its
own	right.	If	you	move	the	Context	List,	Qt	Linguist	will	remember	its	position
and	restore	it	whenever	you	start	the	program.

Source	Text	Area

This	appears	at	the	top	right	of	the	main	window	by	default.	The	first	column,
'Done',	signifies	the	status	of	the	translation.	A	tick	indicates	that	the	phrase	has
been	translated	and	passed	validation.	A	question	mark	indicates	that	the
translation	has	not	been	done.	An	exclamation	mark	indicates	that	the	translation
has	failed	validation.	The	second	column	'Source	text'	shows	the	text	that	must
be	translated.	The	third	column	shows	the	translation.

Qt	Linguist	provides	three	kinds	of	validation:	accelerator,	punctuation	and
phrase.	If	the	source	text	contains	an	accelerator	i.e.	an	ampersand,	'&'	and	the
translated	text	does	not	contain	an	ampersand	the	translation	will	fail	the
accelerator	validation.	Similarly,	if	the	source	text	ends	with	a	particular
punctuation	mark,	e.g.	'?',	'!'	or	'.'	and	the	translation	ends	with	a	different
punctuation	mark	the	translation	will	fail	the	punctuation	validation.	If	the
source	text	has	a	translation	in	one	of	the	open	phrase	books	that	differs	from	the
translation	used	the	translation	will	fail	phrase	validation.	(See	Validation.)

The	Source	Text	Area	is	a	dockable	window.

Translation	Area

This	area	appears	at	the	middle	right	of	the	main	window	by	default.	It	is
comprised	of	three	vertical	sections.	The	first	section	is	labelled	'Source	text'
below	which	the	source	text	appears.	The	second	section	contains	contextual
information	on	a	light	blue	background	that	the	programmer	has	added	to	assist
the	translator.	If	no	contextual	information	has	been	given	this	section	does	not
appear.	The	third	section	is	labelled	'Translation'	and	this	is	where	you	enter	the

translation	of	the	source	text.

Phrases	and	Guesses	Area

This	area	appears	at	the	bottom	right	of	the	main	window	by	default.	When	you
move	to	a	new	phrase	if	the	phrase	is	in	one	of	the	phrase	books	that	has	been
loaded	the	phrase	will	appear	in	this	area	with	its	translation.	If	the	phrase	is	the
same	or	similar	to	another	phrase	that	has	already	been	translated	the	phrase	and
translation	will	be	shown	in	this	area.	To	copy	a	translation	from	the	phrases	and
guesses	area	press	F6	to	move	to	the	phrases	and	guesses	area,	use	the	up	and
down	arrow	keys	to	move	to	the	phrase	you	want	to	use	and	press	Enter	to	copy
it.	If	you	decide	that	you	don't	want	to	copy	a	phrase	after	all,	press	Esc.	In	both
cases	the	focus	will	return	to	the	Translation	area.	Alternatively,	double	click	the
translation	you	want	to	use	and	it	will	be	copied	into	the	translation	area.

The	Phrases	and	Guesses	Area	is	a	dockable	window.

Common	Tasks

Leaving	a	Translation	for	Later

If	you	wish	to	leave	a	translation	press	Ctrl+L	(Next	Unfinished)	to	move	to	the
next	unfinished	translation.	An	unfinished	translation	is	one	that	either	has	not
been	translated	at	all	or	one	which	fails	validation.	To	move	to	the	next	phrase
press	Shift+Ctrl+L.	You	can	also	navigate	using	the	Translation	menu.	If	you
want	to	go	to	a	different	context	entirely,	click	the	context	you	want	to	work	on
in	the	Context	list,	then	click	the	source	text	in	the	Source	Text	area.

Phrases	That	Require	Multiple	Translations	Depending	on	Context

The	same	phrase	may	occur	in	two	or	more	contexts	without	conflict.	Once	a
phrase	has	been	translated	in	one	context,	Qt	Linguist	notes	that	the	translation
has	been	made	and	when	the	translator	reaches	a	later	occurrence	of	the	same
phrase	Qt	Linguist	will	provide	the	previous	translation	as	a	possible	translation
candidate	in	the	phrases	and	guesses	area.	If	the	previous	translation	is
acceptable	just	click	the	Done	&	Next	button	(press	Alt+Enter)	to	move	on	to
the	next	unfinished	phrase.

If	a	phrase	occurs	more	than	once	in	a	particular	context	it	will	only	be	shown
once	in	Qt	Linguist's	context	list	and	the	translation	will	be	applied	to	every
occurrence	within	the	context.	If	the	same	phrase	needs	to	be	translated
differently	within	the	same	context	the	programmer	must	provide	a
distinguishing	comment	for	each	of	the	phrases	concerned.	If	such	comments	are
used	the	duplicate	phrases	will	appear	in	the	context	list.	The	programmers
comments	will	appear	in	the	translation	area	on	a	light	blue	background.

Changing	Keyboard	Accelerators

A	keyboard	accelerator	is	a	key	combination	that	when	pressed	will	cause	an
application	to	perform	an	action.	Keyboard	accelerators	normally	come	in	two
forms:	Alt	key	and	Ctrl	key	accelerators.

Alt	key	accelerators	are	used	for	menus	and	buttons.	The	underlining	signifies
that	pressing	the	Alt	key	with	the	underlined	letter	is	the	same	as	clicking	the
menu	item	with	the	mouse.	For	example,	most	applications	have	a	File	menu
with	the	"F"	in	the	word	"file"	underlined.	In	these	applications	the	file	menu	can
be	invoked	either	by	clicking	the	word	"File"	on	the	menu	bar	or	by	pressing
Alt+F.	The	accelerator	key	which	is	underlined	is	signified	by	preceeding	it	with
an	ampersand,	e.g.	&File.	If	a	source	phrase	appears	with	an	ampersand	in	it
then	the	translation	should	also	contain	an	ampersand,	preferably	in	front	of	the
same	letter.	The	meaning	of	Alt	key	accelerators	can	be	determined	from	the
phrase	in	which	the	ampersand	is	embedded.	The	translator	may	need	to	change
the	letter	used	with	the	Alt	key,	e.g.	if	the	translated	phrase	does	not	contain	the
original	accelerator	letter.	Conflicts	with	other	keys,	i.e.	having	two	Alt	key
accelerators	using	the	same	letter	in	the	same	context,	must	be	avoided.	Note
that	some	Alt	key	accelerators,	usually	those	on	the	menu	bar,	may	apply	in
other	contexts.

Ctrl	key	accelerators	can	exist	independently	of	any	visual	control.	They	are
often	used	to	invoke	actions	in	menus	that	would	otherwise	take	several
keystrokes	or	mouse	clicks.	They	may	also	be	used	to	perform	actions	that	do
not	appear	in	any	menu	or	on	any	button.	For	example,	most	applications	that
have	a	File	menu	have	a	submenu	item	called	New.	In	many	applications	this
will	appear	as	"New...	Ctrl+N".	This	menu	option	could	be	invoked	by	clicking
File	then	clicking	New	with	the	mouse.	Or	you	could	press	Alt+F	then	press	N
since	these	letters	are	underlined.	But	the	same	thing	can	be	achieved	simply	by
pressing	Ctrl+Enter.	Accelerators	that	use	the	Ctrl	key	are	shown	literally	in	the

source	text,	e.g.	Ctrl+Enter.	Ctrl	key	accelerators	have	no	phrase	so	the
translator	must	rely	on	the	programmer	to	add	a	"comment"	which	appears	in	the
top	right	hand	pane.	This	comment	should	explain	what	action	the	Ctrl	key
accelerator	performs.	Ideally	Ctrl	key	accelerators	are	translated	simply	by
copying	them	by	clicking	the	Begin	from	Source	button.	However	in	some	cases
the	letter	will	not	make	sense	in	the	target	language	and	must	be	changed.
Whatever	letter	(or	digit)	is	chosen,	the	translation	should	always	be	in	the	form
"Ctrl+"	followed	by	the	letter	or	digit	in	upper	case.	As	with	Alt	key
accelerators,	if	the	translator	changes	the	key	it	must	not	conflict	with	any	other
Ctrl	key	accelerator.

Later	versions	of	Qt	Linguist	are	expected	to	help	the	translator	avoid	accelerator
conflicts.

Dealing	with	Phrases	that	Contain	Variables

Some	phrases	contain	variables.	Variables	are	placeholders	for	items	of	text	that
are	filled	in	at	runtime.	They	are	signified	in	the	source	text	with	a	percent	sign
followed	by	a	digit,	e.g.	After	processing	file	%1,	file	%2	is	next	in	line.	In	this
example,	%1	will	be	replaced	at	runtime	with	the	name	of	the	first	file	to	be
processed	and	%2	with	the	name	of	the	next	file	to	be	processed.	In	the	translated
version	the	variables	must	still	appear.	For	example	a	German	translation	might
reverse	the	phrases,	e.g.	Datei	%2	wird	bearbeitet,	wenn.	Datei	%1	fertig	ist.
Note	that	both	variables	are	still	used	but	their	order	has	changed.	The	order	in
which	variables	appear	does	not	matter;	%1	will	always	be	replaced	by	the	same
text	at	runtime	no	matter	where	it	appears	in	the	source	text	or	translation	and
similarly	%2,	etc.

Reusing	Translations

If	the	translated	text	is	similar	to	the	source	text,	click	the	Begin	from	Source
button	(press	Alt+T)	which	will	copy	the	source	text	into	the	translation	area.

Qt	Linguist	automatically	lists	phrases	from	the	open	phrase	books	and	similar	or
identical	phrases	that	have	already	been	translated	in	the	Phrases	and	guesses
area.

Creating	and	Using	Phrase	Books

Phrase	Book	Dialog

A	Qt	Linguist	phrase	book	is	a	set	of	source	phrases,	target	(translated)	phrases,
and	optional	definitions.	Phrase	Books	are	created	independently	of	any
application,	although	typically	one	phrase	book	will	be	created	per	application	or
family	of	applications.

If	the	translator	reaches	an	untranslated	phrase	that	is	the	same	as	a	source
phrase	in	the	phrase	book,	Qt	Linguist	will	show	the	phrase	book	entry	in	the
Relevant	phrases	panel	at	the	bottom	right	of	the	main	window.	Phrases	which
have	translations	that	conflict	with	those	given	in	the	phrase	book	are	marked
with	a	question	mark	in	the	source	text	pane.	Phrase	Books	are	used	to	provide	a
common	set	of	translations	to	help	ensure	consistency.	They	can	also	be	used	to
avoid	duplication	of	effort	since	the	translations	for	a	family	of	applications	can
be	produced	once	in	the	phrase	book	and	the	phrase	book	used	for	the	majority
of	translations	in	each	application.

Before	a	phrase	book	can	be	edited	it	must	be	created	or	if	it	already	exists,
opened.	Create	a	new	phrase	book	by	selecting	Phrase|New	Phrase	Book	from
the	menu	bar.	You	must	enter	a	filename	and	may	change	the	location	of	the	file
if	you	wish.	A	newly	created	phrase	book	is	automatically	opened.	Open	an
existing	phrase	book	by	choosing	Phrase|Open	Phrase	Book	from	the	menu
bar.

To	add	a	new	phrase	click	the	New	Phrase	button	(or	press	Alt+N)	and	type	in	a
new	source	phrase.	Press	Tab	and	type	in	the	translation.	Optionally	press	Tab

and	enter	a	definition	--	this	is	useful	to	distinguish	different	translations	of	the
same	source	phrase.	This	process	may	be	repeated	as	often	as	necessary.

You	can	delete	a	phrase	by	selecting	it	in	the	phrases	list	and	clicking	Remove
Phrase.

Click	the	Save	button	(press	Alt+S)	and	then	click	the	Close	button	(press	Esc)
once	you've	finished	adding	(and	removing)	phrases.

When	a	phrase	or	set	of	phrases	appears	in	the	phrase	book	double	clicking	the
required	target	phrase	will	copy	it	to	the	translation	pane	at	the	text	cursor
position.	If	you	want	to	replace	the	text	in	the	translation	pane	with	the	target
phrase,	click	the	translation	pane,	choose	Edit|Select	All	(press	Alt+A)	and	then
double	click	the	target	phrase.

Validation

Qt	Linguist	provides	three	kinds	of	validation	on	translated	phrases.

1.	 Accelerator	validation	detects	translated	phrases	that	do	not	have	an
ampersand	when	the	source	phrase	does	and	vice	versa.

2.	 Punctuation	validation	detects	differences	in	the	terminating	punctuation
between	source	and	translated	phrases	when	this	may	be	significant,	e.g.
warns	if	the	source	phrase	ends	with	an	ellipsis,	exclamation	mark	or
question	mark,	and	the	translated	phrase	doesn't	and	vice	versa.

3.	 Phrases	validation	detects	source	phrases	that	are	also	in	the	phrase	book
but	whose	translation	differs	from	that	given	in	the	phrase	book.

Validation	may	be	switched	on	or	off	from	the	menu	bar's	Validation	item	or
using	the	toolbar	buttons.	Phrases	that	fail	validation	are	marked	with	a	question
mark	in	the	source	text	pane.	If	you	switch	validation	off	and	then	switch	it	on
later,	Qt	Linguist	will	recheck	all	phrases	and	mark	any	that	fail	validation.

If	any	phrase	in	a	context	is	invalid	then	the	context	itself	will	be	marked	with	a
question	mark;	if	all	the	phrases	in	a	context	are	done	and	are	valid	the	context
will	be	marked	with	a	tick.

Note	that	only	phrases	which	are	marked	as	done	(with	a	tick)	will	appear	in	the

application.	Invalid	phrases	and	phrases	which	are	translated	but	not	marked	as
done	are	kept	in	the	translation	source	file	but	are	not	used	by	the	application.

Qt	Linguist	Reference

File	Types

Qt	Linguist	makes	use	of	three	kinds	of	file:

.ts	translation	source	files	are	human-readable	XML	files	containing
source	phrases	and	their	translations.	These	files	are	usually	created	and
updated	by	lupdate	and	are	specific	to	an	application.

.qm	Qt	message	files	
are	binary	files	that	contain	translations	used	by	an	application	at	runtime.
These	files	are	generated	by	lrelease,	but	can	also	be	generated	by	Qt
Linguist.

.qph	Qt	phrase	book	files	
are	human-readable	XML	files	containing	standard	phrases	and	their
translations.	These	files	are	created	and	updated	by	Qt	Linguist	and	may	be
used	by	any	number	of	projects	and	applications.

The	Menu	Bar

Menu	Bar

File

Open...	Ctrl+O	
pops	up	an	open	file	dialog	from	which	a	translation	source	.ts	file
can	be	chosen.

Save	Ctrl+S	
saves	the	current	translation	source	.ts	file.

Save	As...	

pops	up	a	save	as	file	dialog	so	that	the	current	translation	source	.ts
file	may	be	saved	with	a	different	name	and/or	put	in	a	different
location.

Release...	
pops	up	a	save	as	file	dialog.	The	filename	entered	will	be	a	Qt
message	.qm	file	of	the	translation	based	on	the	current	translation
source	file.	The	release	manager's	command	line	tool	lrelease	performs
the	same	function	on	all	of	an	application's	translation	source	files.

Print...	Ctrl+P	
pops	up	a	print	dialog.	If	you	click	OK	the	translation	source	and	the
translations	will	be	printed.

Recently	opened	files	
shows	the	.ts	files	that	have	been	opened	recently,	click	one	to	open
it.

Exit	Ctrl+Q	
closes	Qt	Linguist.

Edit

Undo	Ctrl+Z	
undoes	the	last	editing	action	in	the	translation	pane.

Redo	Ctrl+Y	
redoes	the	last	editing	action	in	the	translation	pane.

Cut	Ctrl+X	
deletes	any	highlighted	text	in	the	translation	pane	and	saves	a	copy	to
the	clipboard.

Copy	Ctrl+C	
copies	the	highlighted	text	in	the	translation	pane	to	the	clipboard.

Paste	Ctrl+V	
pastes	the	clipboard	text	into	the	translation	pane.

Select	All	Ctrl+A	

selects	all	the	text	in	the	translation	pane	ready	for	copying	or	deleting.

Find...	Ctrl+F	
pops	up	the	Find	dialog.	When	the	dialog	pops	up	enter	the	text	to	be
found	and	click	the	Find	Next	button.	Source	phrases,	translations	and
comments	may	be	searched.

Find	Next	F3	
finds	the	next	occurrence	of	the	text	that	was	last	entered	in	the	Find
dialog.

Translation

Prev	Unfinished	Ctrl+K	
moves	to	the	nearest	previous	unfinished	source	phrase	(unfinished
means	untranslated	or	translated	but	failed	validation).

Next	Unfinished	Ctrl+L	
moves	to	the	next	unfinished	source	phrase.

Prev	Shift+Ctrl+K	
moves	to	the	previous	source	phrase.

Next	Shift+Ctrl+L	
moves	to	the	next	source	phrase.

Done	&	NextCtrl+Enter	
mark	this	phrase	as	'done'	(translated)	and	move	to	the	next	unfinished
source	phrase.

Begin	from	Source	Ctrl+B	
copies	the	source	text	into	the	translation.

Validation	(See	the	Validation	section)

Accelerators	
toggles	validation	on	or	off	for	Alt	accelerators.

Ending	Punctuation	
switches	validation	on	or	off	for	phrase	ending	punctuation,	e.g.

ellipsis,	exclamation	mark,	question	mark,	etc.

Phrase	Matches	
sets	validation	on	or	off	for	matching	against	translations	that	are	in
the	current	phrase	book.

Phrase	(See	the	section	Creating	and	Using	Phrase	Books	for	details.)

New	Phrase	Book...	Ctrl+N	
pops	up	a	save	as	file	dialog.	You	must	enter	a	filename	to	be	used	for
the	phrase	book	and	save	the	file.	Once	saved	you	should	open	the
phrase	book	to	begin	using	it.

Open	Phrase	Book...	Ctrl+H	
pops	up	an	open	file	dialog.	Find	and	choose	a	phrase	book	to	open.

Close	Phrase	Book	
closes	the	current	phrase	book.	This	will	stop	any	further	phrase
validation	taking	place.	The	same	effect	can	be	achieved	by	switching
off	phrase	validation	using	the	Validation	menu	or	the	phrase	toolbar
button.

Edit	Phrase	Book...	
pops	up	the	phrase	book	dialog	where	you	can	add,	edit	or	delete
phrases.

Print	Phrase	Book...	
pops	up	a	print	dialog.	If	you	click	OK	the	phrase	book	will	be	printed.

View

Revert	Sorting	
puts	the	phrases	in	the	source	text	pane	into	their	original	order.

Display	Guesses	
turns	the	display	of	phrases	and	guesses	on	or	off.

Views	
toggles	the	visibility	of	the	Context,	Source	text	and	Phrase	views.

Toolbars	
toggles	the	visibility	of	the	different	toolbars.

The	Toolbar

Toolbar

	
Pops	up	the	open	file	dialog	to	open	a	new	translation	source	.ts	file.

	
Saves	the	current	translation	source	.ts	file.

	
Prints	the	current	translation	source	.ts	file.

	
Pops	up	the	file	open	dialog	to	open	a	new	phrase	book	.qph	file.

	
Undoes	the	last	editing	action	in	the	translation	pane.

	
Redoes	the	last	editing	action	in	the	translation	pane.

	
Deletes	any	highlighted	text	in	the	translation	pane	and	save	a	copy	to	the
clipboard.

	
Copies	the	highlighted	text	in	the	translation	pane	to	the	clipboard.

	
Pastes	the	clipboard	text	into	the	translation	pane.

	

Pops	up	the	Find	dialog.

	
Moves	to	the	previous	source	phrase.

	
Moves	to	the	next	source	phrase.

	
Moves	to	the	previous	unfinished	source	phrase.

	
Moves	to	the	next	unfinished	source	phrase.

	
Marks	the	phrase	as	'done'	(translated)	and	move	to	the	next	unfinished
source	phrase.

	
Toggles	accelerator	validation	on	and	off.

	
Toggles	phrase	ending	punctuation	validation	on	and	off.

	
Toggles	phrase	book	validation	on	or	off.

The	Find	Dialog

The	Find	Dialog

Choose	Edit|Find	from	the	menu	bar	or	press	Ctrl+F	to	pop	up	the	Find	dialog.

Press	F3	to	repeat	the	last	search.	By	default	the	source	phrases,	translations	and
comments	will	all	be	searched	and	the	search	will	be	case-insensitive.	These
settings	can	be	changed	by	checking	or	unchecking	the	checkboxes	to	reflect
your	preferences.

The	Phrase	Dialog

This	dialog	is	explained	in	the	Creating	and	Using	Phrase	Books	section.

[Prev:	Release	Manager]	[Home]	[Next:	Programmers]

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

[Prev:	Translators]	[Home]

Programmers

Support	for	multiple	languages	is	extremely	simple	in	Qt	applications	and	adds
little	overhead	to	the	programmer's	workload.

Qt	minimizes	the	performance	cost	of	using	translations	by	translating	the
phrases	for	each	window	as	they	are	created.	In	most	applications	the	main
window	is	created	just	once.	Dialogs	are	often	created	once	and	then	shown	and
hidden	as	required.	Once	the	initial	translation	has	taken	place	there	is	no	further
runtime	overhead	for	the	translated	windows.	Only	those	windows	that	are
created,	destroyed	and	subsequently	created	will	have	a	translation	performance
cost	--	although	the	overhead	is	still	very	low.

Creating	applications	that	can	switch	language	at	runtime	is	possible	with	Qt,	but
requires	a	certain	amount	of	programmer	intervention	and	will	of	course	incur
some	runtime	performance	cost.

Making	the	Application	Translation	Aware

Programmers	should	make	their	application	look	for	and	load	the	appropriate
translation	file	and	mark	user-visible	text	and	Ctrl	keyboard	accelerators	as
targets	for	translation.

Each	piece	of	text	that	requires	translating	requires	context	to	help	the	translator
identify	where	in	the	program	the	text	occurs.	In	the	case	of	multiple	identical
texts	that	require	different	translations	the	translator	also	requires	some
information	to	disambiguate	the	source	texts.	Marking	text	for	translation	will
automatically	cause	the	class	name	to	be	used	as	basic	context	information.	In
some	cases	the	programmer	may	be	required	to	add	additional	information	to
help	the	translator.

Creating	Translation	Files

Translation	files	consist	of	all	the	user-visible	text	and	Ctrl	key	accelerators	in	an
application	and	translations	of	that	text.	Translation	files	are	created	as	follows:

1.	 Run	lupdate	initially	to	generate	the	first	set	of	.ts	translation	source	files

with	all	the	user-visible	text	but	no	translations.

2.	 The	.ts	files	are	given	to	the	translator	who	adds	translations	using	Qt
Linguist.	Qt	Linguist	takes	care	of	any	changed	or	deleted	source	text.

3.	 Run	lupdate	to	incorporate	any	new	text	added	to	the	application.	lupdate
synchronizes	the	user-visible	text	from	the	application	with	the	translations;
it	does	not	destroy	any	data.

4.	 Steps	2	and	3	are	repeated	as	often	as	necessary.

5.	 When	a	release	of	the	application	is	needed	lrelease	is	run	to	read	the	.ts
files	and	produce	the	.qm	files	used	by	the	application	at	runtime.

For	lupdate	to	work	successfully,	it	must	know	which	translation	files	to
produce.	The	files	are	simply	listed	in	the	application's	.pro	Qt	project	file,	for
example:

				TRANSLATIONS				=	tt2_fr.ts	\

																						tt2_nl.ts

See	the	"lupdate"	and	"lrelease"	sections.

Loading	Translations

				int	main(int	argc,	char	**argv)

				{

								QApplication	app(argc,	argv);

This	is	how	a	simple	main()	function	of	a	Qt	application	begins.

				int	main(int	argc,	char	**argv)

				{

								QApplication	app(argc,	argv);

								QTranslator	translator(0);

								translator.load("tt1_la",	".");

								app.installTranslator(&translator);

For	a	translation-aware	application	a	translator	object	is	created,	a	translation	is
loaded	and	the	translator	object	installed	into	the	application.

				int	main(int	argc,	char	**argv)

				{

								QApplication	app(argc,	argv);

								QTranslator	translator(0);

								translator.load(QString("tt2_")	+	QTextCodec::locale(),	".");

								app.installTranslator(&translator);

In	production	applications	a	more	flexible	approach,	for	example,	loading
translations	according	to	locale,	might	be	more	appropriate.	If	the	.ts	files	are
all	named	according	to	a	convention	such	as	appname_locale,	e.g.	tt2_fr,
tt2_de	etc,	then	the	code	above	will	load	the	current	locale's	translation	at
runtime.

If	there	is	no	translation	file	for	the	current	locale	the	application	will	fall	back	to
using	the	original	source	text.

Making	the	Application	Translate	User-Visible	Strings

User-visible	strings	are	marked	as	translation	targets	by	wrapping	them	in	a	tr()
call,	for	example:

				button	=	new	QPushButton("&Quit",	this);

would	become

				button	=	new	QPushButton(tr("&Quit"),	this);

All	QObject	subclasses	that	use	the	Q_OBJECT	macro	have	a	reimplementation	of
the	tr()	function.

Although	the	tr()	call	is	normally	made	directly	since	it	is	usually	called	as	a
member	function	of	a	QObject	subclass,	in	other	cases	an	explicit	class	name	can
be	supplied,	for	example:

				QPushButton::tr("&Quit")

or

				QObject::tr("&Quit")

Distinguishing	Identical	Strings	That	Require	Different	Translations

The	lupdate	program	automatically	provides	a	context	for	every	source	text.	This
context	is	the	class	name	of	the	class	that	contains	the	tr()	call.	This	is
sufficient	in	the	vast	majority	of	cases.	Sometimes	however,	the	translator	will
need	further	information	to	uniquely	identify	a	source	text;	for	example,	a	dialog
that	contained	two	separate	frames,	each	of	which	contained	an	"Enabled"	option
would	need	each	identified	because	in	some	languages	the	translation	would
differ	between	the	two.	This	is	easily	achieved	using	the	two	argument	form	of
the	tr()	call,	e.g.

				rbc	=	new	QRadioButton(tr("Enabled",	"Color	frame"),	this);

and

				rbh	=	new	QRadioButton(tr("Enabled",	"Hue	frame"),	this);

Ctrl	key	accelerators	are	also	translatable:

								file->insertItem(tr("E&xit"),	qApp,	SLOT(quit()),

																										QAccel::stringToKey(tr("Ctrl+Q",	"Quit")));

It	is	strongly	recommended	that	the	two	argument	form	of	tr()	is	used	for	Ctrl
key	accelerators.	The	second	argument	is	the	only	clue	the	translator	has	as	to
the	function	performed	by	the	accelerator.

Helping	The	Translator	With	Navigation	Information

In	large	complex	applications	it	may	be	difficult	for	the	translator	to	see	where	a
particular	source	text	comes	from.	This	problem	can	be	solved	by	adding	a
comment	using	the	keyword	TRANSLATOR	which	describes	the	navigation	steps
to	reach	the	text	in	question;	e.g.

				/*		TRANSLATOR	FindDialog

	 Choose	Edit|Find	from	the	menu	bar	or	press	Ctrl+F	to	pop	up	the

	 Find	dialog.

				*/

These	comments	are	particularly	useful	for	widget	classes.

Coping	With	C++	Namespaces

C++	namespaces	and	the	using	namespace	statement	can	confuse	lupdate.	It
will	interpret	MyClass::tr()	as	meaning	just	that,	not	as
MyNamespace::MyClass::tr(),	even	if	MyClass	is	defined	in	the	MyNamespace
namespace.	Run-time	translation	of	these	strings	will	fail	because	of	that.

You	can	work	around	this	limitation	by	putting	a	TRANSLATOR	comment	at	the
beginning	of	the	source	files	that	use	MyClass::tr():

				/*	TRANSLATOR	MyNamespace::MyClass	*/

After	the	comment,	all	references	to	MyClass::tr()	will	be	understood	as
meaning	MyNamespace::MyClass::tr().

Translating	Text	that	is	Outside	of	a	QObject	subclass

Using	QApplication::translate()

If	the	quoted	text	is	not	in	a	member	function	of	a	QObject	subclass,	use	either
the	tr()	function	of	an	appropriate	class,	or	the	QApplication::translate()	function
directly:

				void	some_global_function(LoginWidget	*logwid)

				{

								QLabel	*label	=	new	QLabel(

																LoginWidget::tr("Password:"),	logwid);

				}

				void	same_global_function(LoginWidget	*logwid)

				{

								QLabel	*label	=	new	QLabel(

																qApp->translate("LoginWidget",	"Password:"),

																logwid);

				}

Using	QT_TR_NOOP	and	QT_TRANSLATE_NOOP

If	you	need	to	have	translatable	text	completely	outside	a	function,	there	are	two
macros	to	help:	QT_TR_NOOP()	and	QT_TRANSLATE_NOOP().	These
macros	merely	mark	the	text	for	extraction	by	lupdate.	The	macros	expand	to
just	the	text	(without	the	context).

Example	of	QT_TR_NOOP():

				QString	FriendlyConversation::greeting(int	greet_type)

				{

								static	const	char*	greeting_strings[]	=	{

												QT_TR_NOOP("Hello"),

												QT_TR_NOOP("Goodbye")

								};

								return	tr(greeting_strings[greet_type]);

				}

Example	of	QT_TRANSLATE_NOOP():

				static	const	char*	greeting_strings[]	=	{

								QT_TRANSLATE_NOOP("FriendlyConversation",	"Hello"),

								QT_TRANSLATE_NOOP("FriendlyConversation",	"Goodbye")

				};

				QString	FriendlyConversation::greeting(int	greet_type)

				{

								return	tr(greeting_strings[greet_type]);

				}

				QString	global_greeting(int	greet_type)

				{

								return	qApp->translate("FriendlyConversation",

																																greeting_strings[greet_type]);

				}

Tutorials

Three	tutorials	are	presented.	The	first	demonstrates	the	creation	of	a
QTranslator	object.	It	also	shows	the	simplest	use	of	the	tr()	function	to	mark
user-visible	source	text	for	translation.	The	second	tutorial	explains	how	to	make
the	application	load	the	translation	file	applicable	to	the	current	locale.	It	also
shows	the	use	of	the	two-argument	form	of	tr()	which	provides	additional
information	to	the	translator.	The	third	tutorial	explains	how	identical	source
texts	can	be	distinguished	even	when	they	occur	in	the	same	context.	This
tutorial	also	discusses	how	the	translation	tools	help	minimize	the	translator's
work	when	an	application	is	upgraded.

Tutorial	1:	Loading	and	Using	Translations

Tutorial	1	Screenshot,	English	version

TEMPLATE								=	app

CONFIG										+=	qt	warn_on

SOURCES									=	main.cpp

TRANSLATIONS				=	tt1_la.ts

tt1.pro

/**

**

**	Translation	tutorial	1

**

**/

#include	<qapplication.h>

#include	<qpushbutton.h>

#include	<qtranslator.h>

int	main(int	argc,	char	**argv)

{

				QApplication	app(argc,	argv);

				QTranslator	translator(0);

				translator.load("tt1_la",	".");

				app.installTranslator(&translator);

				QPushButton	hello(QPushButton::tr("Hello	world!"),	0);

				app.setMainWidget(&hello);

				hello.show();

				return	app.exec();

}

main.cpp

This	example	is	a	reworking	of	the	"hello-world"	example	from	Tutorial	#1,	with
a	Latin	translation.	The	Tutorial	1	Screenshot,	English	version,	above,	shows	the
English	version.

Line	by	Line	Walk-through

				#include	<qtranslator.h>

This	line	includes	the	definition	of	the	QTranslator	class.	Objects	of	this	class

provide	translations	for	user-visible	text.

								QTranslator	translator(0);

Creates	a	QTranslator	object	without	a	parent.

								translator.load("tt1_la",	".");

Try	to	load	a	file	called	tt1_la.qm	(the	.qm	file	extension	is	implicit)	that
contains	Latin	translations	for	the	source	texts	used	in	the	program.	No	error	will
occur	if	the	file	is	not	found.

								app.installTranslator(&translator);

Add	the	translations	from	tt1_la.qm	to	the	pool	of	translations	used	by	the
program.	No	error	will	occur	if	the	file	is	not	found.

								QPushButton	hello(QPushButton::tr("Hello	world!"),	0);

Creates	a	push	button	that	displays	"Hello	world!".	If	tt1_la.qm	was	found	and
contains	a	translation	for	"Hello	world!",	the	translation	appears;	if	not,	the
source	text	appears.

All	classes	that	inherit	QObject	have	a	tr()	function.	Inside	a	member	function
of	a	QObject	class,	we	simply	write	tr("Hello	world!")	instead	of
QPushButton::tr("Hello	world!")	or	QObject::tr("Hello	world!").

Running	the	Application	in	English

Since	we	haven't	made	the	translation	file	tt1_la.qm,	the	source	text	is	shown
when	we	run	the	application:

Tutorial	1	Screenshot,	English	version

Creating	a	Latin	Message	File

The	first	step	is	to	create	a	project	file,	tt1.pro,	that	lists	all	the	source	files	for
the	project.	The	project	file	can	be	a	qmake	project	file,	or	even	an	ordinary

makefile.	Any	file	that	contains

				SOURCES									=	main.cpp

				TRANSLATIONS				=	tt1_la.ts

will	work.	TRANSLATIONS	specifies	the	message	files	we	want	to	maintain.	In
this	example,	we	just	maintain	one	set	of	translations,	namely	Latin.

Note	that	the	file	extension	is	.ts,	not	.qm.	The	.ts	translation	source	format	is
designed	for	use	during	the	application's	development.	Programmers	or	release
managers	run	the	lupdate	program	to	generate	and	update	.ts	files	with	the
source	text	that	is	extracted	from	the	source	code.	Translators	read	and	update
the	.ts	files	using	Qt	Linguist	adding	and	editing	their	translations.

The	.ts	format	is	human-readable	XML	that	can	be	emailed	directly	and	is	easy
to	put	under	version	control.	If	you	edit	this	file	manually,	be	aware	that	the
default	encoding	for	XML	is	UTF-8,	not	Latin-1	(ISO	8859-1).	One	way	to	type
in	a	Latin-1	character	such	as	'ø'	(Norwegian	o	with	slash)	is	to	use	an	XML
entity:	"ø".	This	will	work	for	any	Unicode	character.

Once	the	translations	are	complete	the	lrelease	program	is	used	to	convert	the
.ts	files	into	the	.qm	Qt	message	file	format.	The	.qm	format	is	a	compact	binary
format	designed	to	deliver	very	fast	lookup	performance.	Both	lupdate	and
lrelease	read	all	the	project's	source	and	header	files	(as	specified	in	the
HEADERS	and	SOURCES	lines	of	the	project	file)	and	extract	the	strings	that
appear	in	tr()	function	calls.

lupdate	is	used	to	create	and	update	the	message	files	(tt1_la.ts	in	this	case)	to
keep	them	in	sync	with	the	source	code.	It	is	safe	to	run	lupdate	at	any	time,	as
lupdate	does	not	remove	any	information.	For	example,	you	can	put	it	in	the
makefile,	so	the	.ts	files	are	updated	whenever	the	source	changes.

Try	running	lupdate	right	now,	like	this:

				lupdate	tt1.pro

You	should	now	have	a	file	tt1_la.ts	in	the	current	directory,	containing	this

				<!DOCTYPE	TS><TS>

				<context>

								<name>QPushButton</name>

								<message>

												<source>Hello	world!</source>

												<translation	type="unfinished"></translation>

								</message>

				</context>

				</TS>

You	don't	need	to	understand	the	file	format	since	it	is	read	and	updated	using
tools,	e.g.	lupdate	and	Qt	Linguist.

Translating	to	Latin	with	Qt	Linguist

We	will	use	Qt	Linguist	to	provide	the	translation,	although	you	can	use	any
XML	or	plain	text	editor	to	enter	a	translation	into	a	.ts	file.

To	start	Qt	Linguist,	type

				linguist	tt1_la.ts

You	should	now	see	the	text	"QPushButton"	in	the	top	left	pane.	Double-click	it,
then	click	on	"Hello	world!"	and	enter	"Orbis,	te	saluto!"	in	the	Translation	pane
(the	middle	right	of	the	window).	Don't	forget	the	exclamation	mark!

Click	the	Done	checkbox	and	choose	File|Save	from	the	menu	bar.	The	.ts	file
will	no	longer	contain

				<translation	type='unfinished'></translation>

but	instead	will	have

				<translation>Orbis,	te	saluto!</translation>

Running	the	Application	in	Latin

To	see	the	application	running	in	Latin,	we	have	to	generate	a	.qm	file	from	the
.ts	file.	Generating	a	.qm	file	can	be	achieved	either	from	within	Qt	Linguist
(for	a	single	.ts	file),	or	by	using	the	command	line	program	lrelease	which	will
produce	one	.qm	file	for	each	of	the	.ts	files	listed	in	the	project	file.	Generate
tt1_la.qm	from	tt1_la.ts	by	choosing	File|Release	from	Qt	Linguist's	menu
bar	and	pressing	Save	in	the	file	save	dialog	that	pops	up.	Now	run	the	tt1
example	program	again.	This	time	the	button	will	be	labelled	"Orbis,	te	saluto!".

Tutorial	1	Screenshot,	Latin	version

Tutorial	2:	Using	Two	or	More	Languages

Tutorial	2	Screenshot,	English	version

TEMPLATE								=	app

CONFIG										+=	qt	warn_on

HEADERS									=	arrowpad.h	\

																		mainwindow.h

SOURCES									=	arrowpad.cpp	\

																		main.cpp	\

																		mainwindow.cpp

TRANSLATIONS				=	tt2_fr.ts	\

																		tt2_nl.ts

tt2.pro

This	example	is	a	slightly	more	involved	and	introduces	a	key	Qt	Linguist
concept:	"contexts".

arrowpad.h	contains	the	definition	of	ArrowPad,	a	custom	widget;

arrowpad.cpp	contains	the	implementation	of	ArrowPad;

mainwindow.h	contains	the	definition	of	MainWindow,	a	subclass	of
QMainWindow

mainwindow.cpp	contains	the	implementation	of	MainWindow;

main.cpp	contains	main().

We	will	use	two	translations,	French	and	Dutch,	although	there	is	no	effective
limit	on	the	number	of	possible	translations	that	can	be	used	with	an	application.
The	relevant	lines	of	tt2.pro	are

				HEADERS									=	arrowpad.h	\

																						mainwindow.h

				SOURCES									=	arrowpad.cpp	\

																						main.cpp	\

																						mainwindow.cpp

				TRANSLATIONS				=	tt2_fr.ts	\

																						tt2_nl.ts

Run	lupdate;	it	should	produce	two	identical	message	files	tt2_fr.ts	and
tt2_nl.ts.	These	files	will	contain	all	the	source	texts	marked	for	translation
with	tr()	calls	and	their	contexts.

Line	by	Line	Walk-through

In	arrowpad.h	we	define	the	ArrowPad	subclass	which	is	a	subclass	of	QWidget.
In	the	Tutorial	2	Screenshot,	English	version,	above,	the	central	widget	with	the
four	buttons	is	an	ArrowPad.

				class	ArrowPad	:	public	QGrid

When	lupdate	is	run	it	not	only	extracts	the	source	texts	but	it	also	groups	them
into	contexts.	A	context	is	the	name	of	the	class	in	which	the	source	text	appears.
Thus,	in	this	example,	"ArrowPad"	is	a	context:	it	is	the	context	of	the	texts	in
the	ArrowPad	class.	The	Q_OBJECT	macro	defines	tr(x)	in	ArrowPad	like	this

				qApp->translate("ArrowPad",	x)

Knowing	which	class	each	source	text	appears	in	enables	Qt	Linguist	to	group
texts	that	are	logically	related	together,	e.g.	all	the	text	in	a	dialog	will	have	the
context	of	the	dialog's	class	name	and	will	be	shown	together.	This	provides
useful	information	for	the	translator	since	the	context	in	which	text	appears	may
influence	how	it	should	be	translated.	For	some	translations	keyboard
accelerators	may	need	to	be	changed	and	having	all	the	source	texts	in	a
particular	context	(class)	grouped	together	makes	it	easier	for	the	translator	to
perform	any	accelerator	changes	without	introducing	conflicts.

In	arrowpad.cpp	we	implement	the	ArrowPad	class.

								(void)	new	QPushButton(tr("&Up"),	this);

We	call	ArrowPad::tr()	for	each	button's	label	since	the	labels	are	user-visible
text.

Tutorial	2	Screenshot,	English	version

				class	MainWindow	:	public	QMainWindow

				{

								Q_OBJECT

In	the	Tutorial	2	Screenshot,	English	version,	above,	the	whole	window	is	a
MainWindow.	This	is	defined	in	the	mainwindow.h	header	file.	Here	too,	we	use
Q_OBJECT,	so	that	MainWindow	will	become	a	context	in	Qt	Linguist.

In	the	implementation	of	MainWindow,	mainwindow.cpp,	we	create	an	instance	of
our	ArrowPad	class

								ArrowPad	*ap	=	new	ArrowPad(this,	"arrow	pad");

We	also	call	MainWindow::tr()	twice,	once	for	the	menu	item	and	once	for	the
accelerator.

								file->insertItem(tr("E&xit"),	qApp,	SLOT(quit()),

																										QAccel::stringToKey(tr("Ctrl+Q",	"Quit")));

Note	the	use	of	QAccel::stringToKey()	to	support	different	keys	in	other
languages.	"Ctrl+Q"	is	a	good	choice	for	Quit	in	English,	but	a	Dutch	translator
might	want	to	use	"Ctrl+A"	(for	Afsluiten)	and	a	German	translator	"Strg+E"
(for	Beenden).	When	using	tr()	for	Ctrl	key	accelerators	the	two	argument	form
should	be	used	with	the	second	argument	describing	the	function	that	the
accelerator	performs.

Our	main()	function	is	defined	in	main.cpp	as	usual.

								QTranslator	translator(0);

								translator.load(QString("tt2_")	+	QTextCodec::locale(),	".");

								app.installTranslator(&translator);

We	choose	which	translation	to	use	according	to	the	current	locale.
QTextCodec::locale()	can	be	influenced	by	setting	the	LANG	environment
variable,	for	example.	Notice	that	the	use	of	a	naming	convention	that
incorporates	the	locale	for	.qm	message	files,	(and	.ts	files),	makes	it	easy	to
implement	choosing	the	translation	file	according	to	locale.

If	there	is	no	.qm	message	file	for	the	locale	chosen	the	original	source	text	will
be	used	and	no	error	raised.

Translating	to	French	and	Dutch

We'll	begin	by	translating	the	example	application	into	French.	Start	Qt	Linguist
with	tt2_fr.ts.	You	should	get	the	seven	source	texts	("&Up",	"&Left",	etc.)
grouped	in	two	contexts	("ArrowPad"	and	"MainWindow").

Now,	enter	the	following	translations:

ArrowPad

&Up	-	&Haut

&Left	-	&Gauche

&Right	-	&Droite

&Down	-	&Bas

MainWindow

E&xit	-	&Quitter

Ctrl+Q	-	Ctrl+Q

&File	-	&Fichier

It's	quickest	to	press	Alt+D	(which	clicks	the	Done	&	Next	button)	after	typing
each	translation,	since	this	marks	the	translation	as	done	and	moves	on	to	the

next	source	text.

Save	the	file	and	do	the	same	for	Dutch	working	with	tt2_nl.ts:

ArrowPad

&Up	-	&Boven

&Left	-	&Links

&Right	-	&Rechts

&Down	-	&Onder

MainWindow

E&xit	-	&Afsluiten

Ctrl+Q	-	Ctrl+A

File	-	&Bestand

We	have	to	convert	the	tt1_fr.ts	and	tt1_nl.ts	translation	source	files	into
.qm	files.	We	could	use	Qt	Linguist	as	we've	done	before;	however	using	the
command	line	tool	lrelease	ensures	that	all	the	.qm	files	for	the	application	are
created	without	us	having	to	remember	to	load	and	File|Release	each	one
individually	from	Qt	Linguist.

In	practice	we	would	include	calls	to	lupdate	and	lrelease	in	the	application's
makefile	to	ensure	that	the	latest	translations	are	used.

Type

				lrelease	tt2.pro

This	should	create	both	tt2_fr.qm	and	tt2_nl.qm.	Set	the	LANG	environment
variable	to	fr.	In	Unix,	one	of	the	two	following	commands	should	work

				export	LANG=fr

				setenv	LANG	fr

In	Windows,	either	modify	autoexec.bat	or	run

				set	LANG=fr

When	you	run	the	program,	you	should	now	see	the	French	version:

Tutorial	2	Screenshot,	French	version

Try	the	same	with	Dutch,	by	setting	LANG=nl.	Now	the	Dutch	version	should
appear:

Tutorial	2	Screenshot,	Dutch	version

Exercises

Mark	one	of	the	translations	in	Qt	Linguist	as	not	done,	i.e.	by	unchecking	the
"done"	checkbox;	run	lupdate,	then	lrelease,	then	the	example.	What	effect	did
this	change	have?

Set	LANG=fr_CA	(French	Canada)	and	run	the	example	program	again.	Explain
why	the	result	is	the	same	as	with	LANG=fr.

Change	one	of	the	accelerators	in	the	Dutch	translation	to	eliminate	the	conflict
between	&Bestand	and	&Boven.

Tutorial	3:	Disambiguating	Identical	Strings

Tutorial	3	Screenshot,	"Troll	Print	1.0",	English	version

TEMPLATE								=	app

CONFIG										+=	qt	warn_on

HEADERS									=	mainwindow.h	\

																		printpanel.h

SOURCES									=	main.cpp	\

																		mainwindow.cpp	\

																		printpanel.cpp

TRANSLATIONS				=	tt3_pt.ts

tt3.pro

We've	included	a	translation	file,	tt3_pt.ts,	which	contains	some	Portuguese
translations	for	this	example.

We	will	consider	two	releases	of	the	same	application:	Troll	Print	1.0	and	1.1.
We	will	learn	to	reuse	the	translations	created	for	one	release	in	a	subsequent
release.	(In	this	tutorial,	you	have	to	edit	some	source	files.	It's	probably	best	to
copy	all	the	files	to	a	new	temporary	directory	and	work	from	there.)

Troll	Print	is	a	toy	example	application	that	lets	the	user	choose	printer	settings.
It	comes	in	two	versions:	English	and	Portuguese.

Version	1.0	consists	of	these	files:

printpanel.h	contains	the	definition	of	PrintPanel;

printpanel.cpp	contains	the	implementation	of	PrintPanel;

mainwindow.h	contains	the	definition	of	MainWindow;

mainwindow.cpp	contains	the	implementation	of	MainWindow;

main.cpp	contains	main();

tt3.pro	is	the	qmake	project	file.

tt3_pt.ts	is	the	Portuguese	message	file.

Line	by	Line	Walk-through

The	PrintPanel	is	defined	in	printpanel.h.

				class	PrintPanel	:	public	QVBox

				{

								Q_OBJECT

PrintPanel	is	a	QWidget.	It	needs	the	Q_OBJECT	macro	for	tr()	to	work	properly.

The	implementation	file	is	printpanel.cpp.

				/*

								QLabel	*lab	=	new	QLabel(tr("TROLL	PRINT"),	this);

								lab->setAlignment(AlignCenter);

				*/

Some	of	the	code	is	commented	out	in	Troll	Print	1.0;	you	will	uncomment	it
later,	for	Troll	Print	1.1.

								QHButtonGroup	*twoSided	=	new	QHButtonGroup(this);

								twoSided->setTitle(tr("2-sided"));

								but	=	new	QRadioButton(tr("Enabled"),	twoSided);

								but	=	new	QRadioButton(tr("Disabled"),	twoSided);

								but->toggle();

								QHButtonGroup	*colors	=	new	QHButtonGroup(this);

								colors->setTitle(tr("Colors"));

								but	=	new	QRadioButton(tr("Enabled"),	colors);

								but	=	new	QRadioButton(tr("Disabled"),	colors);

								but->toggle();

Notice	the	two	occurrences	of	tr("Enabled")	and	of	tr("Disabled")	in
PrintPanel.	Since	both	"Enabled"s	and	"Disabled"s	appear	in	the	same	context	Qt
Linguist	will	only	display	one	occurrence	of	each	and	will	use	the	same
translations	for	the	duplicates	that	it	doesn't	display.	Whilst	this	is	a	useful
timesaver,	in	some	languages,	such	as	Portuguese,	the	second	occurrence

requires	a	separate	translation.	We	will	see	how	Qt	Linguist	can	be	made	to
display	all	the	occurrences	for	separate	translation	shortly.

The	header	file	for	MainWindow,	mainwindow.h,	contains	no	surprises.	In	the
implementation,	mainwindow.cpp,	we	have	some	user-visible	source	texts	that
must	be	marked	for	translation.

								setCaption(tr("Troll	Print	1.0"));

We	must	translate	the	window's	caption.

								file->insertItem(tr("E&xit"),	qApp,	SLOT(quit()),

																										QAccel::stringToKey(tr("Ctrl+Q",	"Quit")));

								QPopupMenu	*help	=	new	QPopupMenu(this);

								help->insertItem(tr("&About"),	this,	SLOT(about()),	Key_F1);

								help->insertItem(tr("About	&Qt"),	this,	SLOT(aboutQt()));

								menuBar()->insertItem(tr("&File"),	file);

								menuBar()->insertSeparator();

								menuBar()->insertItem(tr("&Help"),	help);

We	also	need	to	translate	the	menu	items.	Note	that	the	two	argument	form	of
tr()	is	used	for	the	keyboard	accelerator,	"Ctrl+Q",	since	the	second	argument	is
the	only	clue	the	translator	has	to	indicate	what	function	that	accelerator	will
perform.

								QTranslator	translator(0);

								translator.load(QString("tt3_")	+	QTextCodec::locale(),	".");

								app.installTranslator(&translator);

The	main()	function	in	main.cpp	is	the	same	as	the	one	in	Tutorial	2.	In
particular	it	chooses	a	translation	file	based	on	the	current	locale.

Running	Troll	Print	1.0	in	English	and	in	Portuguese

We	will	use	the	translations	in	the	tt3_pt.ts	file	that	is	provided.

Set	the	LANG	environment	variable	to	pt,	and	then	run	tt3.	You	should	still	see
the	English	version,	as	shown	in	the	Tutorial	3	Screenshot,	"Troll	Print	1.0",
English	version,	above.	Now	run	lrelease,	e.g.	lrelease	tt3.pro,	and	then	run
the	example	again.	Now	you	should	see	the	Portuguese	edition	(Troll	Imprimir
1.0):

Tutorial	3	Screenshot,	"Troll	Imprimir	1.0",	(Bad)	Portuguese	version

Whilst	the	translation	has	appeared	correctly,	it	is	in	fact	wrong.	In	good
Portuguese,	the	second	occurrence	of	"Enabled"	should	be	"Ativadas",	not
"Ativado"	and	the	ending	for	the	second	translation	of	"Disabled"	must	change
similarly	too.

If	you	open	tt3_pt.ts	using	Qt	Linguist,	you	will	see	that	there	is	just	one
occurrence	of	"Enabled"	and	of	"Disabled"	in	the	translation	source	file,	even
though	there	are	two	of	each	in	the	source	code.	This	is	because	Qt	Linguist	tries
to	minimize	the	translator's	work	by	using	the	same	translation	for	duplicate
source	texts.	In	cases	such	as	this	where	an	identical	translation	is	wrong,	the
programmer	must	disambiguate	the	duplicate	occurrences.	This	is	easily
achieved	by	using	the	two	argument	form	of	tr().

We	can	easily	determine	which	file	must	be	changed	because	the	translator's
"context"	is	in	fact	the	class	name	for	the	class	where	the	texts	that	must	be
changed	appears.	In	this	case	the	file	is	printpanel.cpp,	where	the	there	are
four	lines	to	change.	Add	the	second	argument	"two-sided"	in	the	appropriate
tr()	calls	to	the	first	pair	of	radio	buttons:

				but	=	new	QRadioButton(tr("Enabled",	"two-sided"),	twoSided);

				but	=	new	QRadioButton(tr("Disabled",	"two-sided"),	twoSided);

and	add	the	second	argument	"colors"	in	the	appropriate	tr()	calls	for	the
second	pair	of	radio	buttons:

				but	=	new	QRadioButton(tr("Enabled",	"colors"),	colors);

				but	=	new	QRadioButton(tr("Disabled",	"colors"),	colors);

Now	run	lupdate	and	open	tt3_pt.ts	with	Qt	Linguist.	You	should	now	see	two
changes.

First,	the	translation	source	file	now	contains	three	"Enabled",	"Disabled"	pairs.
The	first	pair	is	marked	"(obs.)"	signifying	that	they	are	obsolete.	This	is	because
these	texts	appeared	in	tr()	calls	that	have	been	replaced	by	new	calls	with	two
arguments.	The	second	pair	has	"two-sided"	as	their	comment,	and	the	third	pair
has	"colors"	as	their	comment.	The	comments	are	shown	in	the	Source	text	and
comments	area	in	Qt	Linguist.

Second,	the	translation	text	"Ativado"	and	"Desativado"	have	been	automatically
used	as	translations	for	the	new	"Enabled"	and	"Disabled"	texts,	again	to
minimize	the	translator's	work.	Of	course	in	this	case	these	are	not	correct	for	the
second	occurrence	of	each	word,	but	they	provide	a	good	starting	point.

Change	the	second	"Ativado"	into	"Ativadas"	and	the	second	"Desativado"	into
"Desativadas",	then	save	and	quit.	Run	lrelease	to	obtain	an	up-to-date	binary
tt3_pt.qm	file,	and	run	Troll	Print	(or	rather	Troll	Imprimir).

Tutorial	3	Screenshot,	"Troll	Imprimir	1.0",	(Good)	Portuguese	version

The	second	argument	to	tr()	calls,	called	"comments"	in	Qt	Linguist,
distinguish	between	identical	source	texts	that	occur	in	the	same	context	(class).
They	are	also	useful	in	other	cases	to	give	clues	to	the	translator,	and	in	the	case
of	Ctrl	key	accelerators	are	the	only	means	of	conveying	the	function	performed
by	the	accelerator	to	the	translator.

An	additional	way	of	helping	the	translator	is	to	provide	information	on	how	to
navigate	to	the	particular	part	of	the	application	that	contains	the	source	texts
they	must	translate.	This	helps	them	see	the	context	in	which	the	translation
appears	and	also	helps	them	to	find	and	test	the	translations.	This	can	be
achieved	by	using	a	TRANSLATOR	comment	in	the	source	code:

				/*	TRANSLATOR	MainWindow

							In	this	application	the	whole	application	is	a	MainWindow.

							Choose	Help|About	from	the	menu	bar	to	see	some	text

							belonging	to	MainWindow.

				*/

Try	adding	these	comments	to	some	source	files,	particularly	to	dialog	classes,
describing	the	navigation	necessary	to	reach	the	dialogs.	You	could	also	add
them	to	the	example	files,	e.g.	mainwindow.cpp	and	printpanel.cpp	are
appropriate	files.	Run	lupdate	and	then	start	Qt	Linguist	and	load	in	tt3_pt.ts.
You	should	see	the	comments	in	the	Source	text	and	comments	area	as	you
browse	through	the	list	of	source	texts.

Sometimes,	particularly	with	large	programs,	it	can	be	difficult	for	the	translator
to	find	their	translations	and	check	that	they're	correct.	Comments	that	provide
good	navigation	information	can	save	them	time:

				/*	TRANSLATOR	ZClientErrorDialog

	 Choose	Client|Edit	to	reach	the	Client	Edit	dialog,	then	choose

	 Client	Specification	from	the	drop	down	list	at	the	top	and	pick

	 client	Bartel	Leendert	van	der	Waerden.		Now	check	the	Profile

	 checkbox	and	then	click	the	Start	Processing	button.		You	should

	 now	see	a	pop	up	window	with	the	text	"Error:	Name	too	long!".

	 This	window	is	a	ZClientErrorDialog.

				*/

Troll	Print	1.1

We'll	now	prepare	release	1.1	of	Troll	Print.	Start	your	favorite	text	editor	and
follow	these	steps:

Uncomment	the	two	lines	that	create	a	QLabel	with	the	text	"TROLL
PRINT"	in	printpanel.cpp.

Word-tidying:	Replace	"2-sided"	by	"Two-sided"	in	printpanel.cpp.

Replace	"1.0"	with	"1.1"	everywhere	it	occurs	in	mainwindow.cpp.

Update	the	copyright	year	to	1999-2000	in	mainwindow.cpp.

(Of	course	the	version	number	and	copyright	year	would	be	consts	or	#defines	in
a	real	application.)

Once	finished,	run	lupdate,	then	open	tt3_pt.ts	in	Qt	Linguist.	The	following
items	are	of	special	interest:

MainWindow

Troll	Print	1.0	-	marked	"(obs.)",	obsolete

About	Troll	Print	1.0	-	marked	"(obs.)",	obsolete

Troll	Print	1.0.	Copyright	1999	Macroshaft,	Inc.	-	marked	"(obs.)",
obsolete

Troll	Print	1.1	-	automatically	translated	as	"Troll	Imprimir	1.1"

About	Troll	Print	1.1	-	automatically	translated	as	"Troll	Imprimir	1.1"

Troll	Print	1.1.	Copyright	1999-2000	Macroshaft,	Inc.	-	automatically
translated	as	"Troll	Imprimir	1.1.	Copyright	1999-2000	Macroshaft,
Inc."

PrintPanel

2-sided	-	marked	"(obs.)",	obsolete

TROLL	PRINT	-	unmarked,	i.e.	untranslated

Two-sided	-	unmarked,	i.e.	untranslated.

Notice	that	lupdate	works	hard	behind	the	scenes	to	make	revisions	easier,	and
it's	pretty	smart	with	numbers.

Go	over	the	translations	in	MainWindow	and	mark	these	as	"done".	Translate	"
TROLL	PRINT"	as	"TROLL	IMPRIMIR".	When	you're
translating	"Two-sided",	press	the	Guess	Again	button	to	translate	"Two-sided",
but	change	the	"2"	into	"Dois".

Save	and	quit,	then	run	lrelease.	The	Portuguese	version	should	look	like	this:

Tutorial	3	Screenshot,	"Troll	Imprimir	1.1",	Portuguese	version

Choose	Ajuda|Sobre,	(Help|About),	to	see	the	about	box

Tutorial	3	Screenshot,	About	box,	Portuguese	version

If	you	choose	Ajuda|Sobre	Qt,	(Help|About	Qt),	you'll	get	an	English	dialog...
oops!	Qt	itself	needs	to	be	translated.	See	the	document	Internationalization	with
Qt	for	details.

Now	set	LANG=en	to	get	the	original	English	version:

Tutorial	3	Screenshot,	"Troll	Print	1.1",	English	version

Summary

These	tutorials	cover	all	that	you	need	to	know	to	prepare	your	Qt	applications
for	translation.

At	the	beginning	of	a	project	add	the	translation	source	files	to	be	used	to	the
project	file	and	add	calls	to	lupdate	and	lrelease	to	the	make	file.

During	the	project	all	the	programmer	must	do	is	wrap	any	user-visible	text	in
tr()	calls.	They	should	also	use	the	two	argument	form	for	Ctrl	key
accelerators,	or	when	asked	by	the	translator	for	the	cases	where	the	same	text
translates	into	two	different	forms	in	the	same	context.	The	programmer	should
also	include	TRANSLATION	comments	to	help	the	translator	navigate	the
application.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QtQt

Qt

1Qt

Qt

Copyright	©	2002	Trolltech Trademarks :SKyPP Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

[Qt]	[Qt]

QtQtQtQtQt

Qt

1Qt

Qt

[Qt]	[Qt]

Copyright	©	2002	Trolltech Trademarks :SKyPP Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

[]	[Qt]	[1Qt]

Qt

Qt.cpp

APIAPI

Qt1,500HTML(2,500)Qt

	QtAPI

	

	

	Qt

	Qt

QtQt$QTDIR/examples

[]	[Qt]	[1Qt]

Copyright	©	2002	Trolltech Trademarks :SKyPP Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

[Prev:	Introduction	to	the	Qt	Reference	Documentation]	[Home]	[Next:	Qt
Assistant	in	More	Detail]

The	1	Minute	Guide	to	using	Qt	Assistant

Under	Windows,	Qt	Assistant	is	available	as	a	menu	option	on	the	Qt	menu.	On
Unix,	run	$QTDIR/bin/assistant	from	an	xterm.

When	you	start	up	Qt	Assistant,	you	will	be	presented	with	a	standard	main-
window	style	application,	with	a	menu	bar	and	toolbar.	Below	these,	on	the	left
hand	side	is	a	navigation	window	called	the	Sidebar,	and	on	the	right,	taking	up
most	of	the	space,	is	the	documentation	window.	By	default,	the	Qt	Reference
Documentation's	home	page	is	shown	in	the	documentation	window.

Qt	Assistant	works	in	a	similar	way	to	a	web	browser.	If	you	click	underlined
text	(which	signifies	a	cross-reference),	the	documentation	window	will	present
the	relevant	page.	You	can	bookmark	pages	of	particular	interest	and	you	can
click	the	Previous	and	Next	toolbar	buttons	to	navigate	within	the	pages	you've
visited.

Although	Qt	Assistant	can	be	used	just	like	a	web	browser	to	navigate	through
the	Qt	documentation	set,	Qt	Assistant	offers	a	powerful	means	of	navigation
that	web	browsers	don't	provide.	Qt	Assistant	uses	an	intelligent	algorithm	to
index	all	the	pages	in	the	documentation	sets	that	it	presents	so	that	you	can
search	for	particular	words	and	phrases.

To	perform	a	search,	click	the	Index	tab	on	the	Sidebar	(or	click	Ctrl+I).	In	the
'Look	For'	line	edit	enter	a	word,	e.g.	'homedirpath'.	As	you	type,	words	are
found	and	highlighted	in	a	list	beneath	the	line	edit.	If	the	highlighted	text
matches	what	you're	looking	for,	double	click	it,	(or	press	Enter)	and	the
documentation	window	will	display	the	relevant	page.	You	rarely	have	to	type	in
the	whole	word	before	Qt	Assistant	finds	a	match.

For	some	words	there	may	be	more	than	one	possible	page	that	is	relevant.	For
example,	enter	'setenabled'	in	the	'Look	For'	line	edit.	As	you	type,	words	are
found	and	highlighted	in	the	list	beneath	the	line	edit,	as	before.	Once	the
highlighted	text	matches	what	you're	looking	for,	double	click	it,	(or	press
Enter).	In	the	case	of	setEnabled,	it	is	a	function	name	which	occurs	in	several
classes,	so	a	dialog	pops	up	listing	the	possible	choices.	Click	the	choice	you're
interested	in	(or	move	to	it	using	the	Up	and	Down	arrow	keys	and	press	Enter).
The	relevant	page	will	display	in	the	documentation	window.

[Prev:	Introduction	to	the	Qt	Reference	Documentation]	[Home]	[Next:	Qt
Assistant	in	More	Detail]

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

[Prev:	The	1	Minute	Guide	to	using	Qt	Assistant]	[Home]

Qt	Assistant	in	More	Detail

The	Sidebar

The	sidebar	provides	three	ways	of	navigating	documentation:

1.	 The	Contents	tab	presents	a	tree	view	of	the	documentation	sets	that	are
available.	If	you	click	an	item,	its	documentation	will	appear	in	the
documentation	window.	If	you	double	click	an	item	or	click	a	'+'	sign	to	the
left	of	an	item,	the	item's	sub-items	will	appear.	Click	a	sub-item	to	make	its
page	appear	in	the	documentation	window.	Click	a	'-'	sign	to	the	left	of	an
item	to	hide	its	sub-items.

2.	 The	Index	tab	is	used	to	look	up	key	words	or	phrases.	See	The	1	Minute
Guide	to	using	Qt	Assistant	for	how	to	use	this	tab.

3.	 The	Bookmarks	tab	lists	any	bookmarks	you've	made.	Double	click	a
bookmark	to	make	its	page	appear	in	the	documentation	window.	The
Bookmarks	tab	has	a	New	Bookmark	button	and	a	Delete	Bookmark
button	at	the	bottom.	Click	New	Bookmark	to	bookmark	the	page	that	is
showing	in	the	documentation	window.	Click	a	bookmark	in	the	list,	then
click	Delete	Bookmark	to	delete	the	highlighted	bookmark.

If	you	want	the	documentation	window	to	use	as	much	space	as	possible,	you
can	easily	hide	or	show	the	Sidebar.	If	the	Sidebar	is	showing,	press	Ctrl+T,
Ctrl+I	or	Ctrl+B	to	hide	it.	If	the	Sidebar	is	hidden,	press	Ctrl+T	to	show	it	on
the	Contents	tab,	or	press	Ctrl+I	to	show	it	on	the	Index	tab	(with	the	focus	in
the	'Look	For'	line	edit	box),	or	press	Ctrl+B	to	show	it	on	the	Bookmarks	tab.

The	Sidebar	is	a	dock	window,	so	you	can	drag	it	to	the	top,	left,	right	or	bottom
of	Qt	Assistant's	window,	or	you	can	drag	it	outside	Qt	Assistant	to	float	it.

The	Toolbar

The	toolbar	provides	fast	access	to	the	most	common	actions.

Previous	takes	you	to	the	previous	page.	The	menu	option	is	Go|Previous
and	the	keyboard	shortcut	is	Alt+Left	Arrow.

Next	takes	you	to	the	next	page.	The	menu	option	is	Go|Next	and	the
keyboard	shortcut	is	Alt+Right	Arrow.

Home	takes	you	to	the	home	page	(normally	the	home	page	of	the	Qt
Reference	Documentation).	The	menu	option	is	Go|Home	and	the	keyboard
shortcut	is	Ctrl+Home.

Copy	copies	any	selected	text	to	the	clipboard.	The	menu	option	is
Edit|Copy	and	the	keyboard	shortcut	is	Ctrl+C.

Find	in	Text	invokes	the	Find	Text	dialog.	The	menu	option	is	Edit|Find	in
Text	and	the	keyboard	shortcut	is	Ctrl+F.

Print	invokes	the	Print	dialog.	The	menu	option	is	File|Print	and	the
keyboard	shortcut	is	Ctrl+P.

Zoom	in	increases	the	font	size.	The	menu	option	is	View|Zoom	in	and	the
keyboard	shortcut	is	Ctrl++.

Zoom	out	decreases	the	font	size.	The	menu	option	is	View|Zoom	out	and
the	keyboard	shortcut	is	Ctrl+-.

The	remaining	toolbar	buttons	are	bookmarks	and	will	vary	depending	on	your
configuration.

The	Menus

The	File	Menu

File|Print	invokes	the	Print	dialog.

File|Exit	terminates	Qt	Assistant.

The	Edit	Menu

Edit|Copy	copies	any	selected	text	to	the	clipboard.

Edit|Find	in	Text	invokes	the	Find	Text	dialog.

Edit|Settings	invokes	the	Settings	dialog.

The	View	Menu

View|Zoom	in	increases	the	font	size.

View|Zoom	out	decreases	the	font	size.

View|Views|Sidebar	toggles	the	display	of	the	Sidebar.

View|Views|Toolbar	toggles	the	display	of	the	Toolbar.

View|Views|Line	up	lines	up	the	toolbar	buttons	in	the	Toolbar.

The	Go	Menu

Go|Previous	display	the	previous	page.

Go|Next	display	the	next	page.

Go|home	go	to	the	home	page.

This	menu	also	has	additional	items;	these	are	pre-defined	bookmarks	that	vary
depending	on	your	configuration.

The	Bookmarks	Menu

Bookmarks|Add	add	the	current	page	to	the	list	of	bookmarks.

This	menu	may	have	additional	items,	i.e.	any	bookmarks	that	you	have	already
made.	If	you	want	to	delete	a	bookmark	go	to	the	Bookmarks	tab	on	the	Sidebar.

The	Dialogs

The	Print	Dialog

This	dialog	is	platform-specific.	It	gives	access	to	various	printer	options	and
can	be	used	to	print	the	current	page.

The	Find	Text	Dialog

This	dialog	is	used	to	find	text	in	the	current	page.	Enter	the	text	you	want	to
find	in	the	Find	line	edit.	If	you	check	the	'Whole	words	only'	checkbox,	the
search	will	only	consider	whole	words,	i.e.	if	you	search	for	'spin'	with	this
checkbox	checked	it	will	not	match	'spinbox',	but	will	match	'spin'.	If	you	check
the	'Case	sensitive'	check	box	then,	for	example,	'spin'	will	match	'spin'	but	not
'Spin'.	You	can	search	Forward	or	Backward	from	your	current	position	in	the
page	by	clicking	one	of	the	Direction	radio	buttons.	Click	the	Find	button	to
search	(or	search	again),	and	click	the	Close	button	to	finish.

The	Settings	Dialog

This	dialog	is	used	to	set	your	preferences	for	Qt	Assistant.	You	can	change	the
base	font	used	throughout	by	choosing	a	new	font	from	the	Font	combobox.	You
can	choose	a	new	fixed-width	font,	e.g.	used	to	show	code	snippets,	by	choosing
a	new	font	from	the	'Fixed	font'	combobox.	You	can	change	the	color	of
hypertext	links	by	clicking	the	'Link	color'	color	button.	Uncheck	the	'Underline
links'	checkbox	if	you	don't	want	underlined	links.	Click	OK	to	confirm	your
changes	or	click	Cancel	to	keep	the	previous	settings.

Qt	Assistant	will	remember	your	settings	between	sessions,	including	window
sizes	and	positions,	and	which	page(s)	you	have	open.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qmake
qmake

qmake

10qmake

qmake

qmake

qmake

qmake

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

[qmake]	[qmake]

qmake

qmake

qmakeTrolltechMakefile

MakefileMakefile qmake“” qmakeMakefile qmakeTrolltech
qmakeQtQt

qmakeQt mocuic

[qmake]	[qmake]

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

[qmake]	[qmake]	[10qmake]

qmake

qmake

Qt qmake

qmakeqmake 10qmake

qmake

Qt

QMAKESPEC	
	
WindowsMicrosoft	Visual	Studio
g++

QMAKESPEC

aix-64	hpux-cc	irix-032	netbsd-g++	solaris-cc	unixware7-g++	aix-g++
hpux-g++	linux-cxx	openbsd-g++	solaris-g++	win32-borland	aix-xlc	hpux-
n64	linux-g++	openunix-cc	sunos-g++	win32-g++	bsdi-g++	hpux-o64
linux-icc	qnx-g++	tru64-cxx	win32-msvc	dgux-g++	hurd-g++	linux-kcc
reliant-64	tru64-g++	win32-watc	freebsd-g++	irix-64	macx-pbuilder
reliant-cds	ultrix-g++	win32-visa	hpux-acc	irix-g++	macx-g++	sco-g++
unixware-g	hpux-acc	irix-n32	solaris-64	unixware7-cc

envvarqws/envvar

linux-arm-g++	linux-generic-g++	linux-mips-g++	linux-x86-g++	linux-
freebsd-g++	linux-ipaq-g++	linux-solaris-g++	qnx-rtp-g++

QTDIR	
Qt c:\qt/local/qt

qmake $QTDIR/qmakeC:\qt\qmakemakenmake

qmake

[qmake]	[qmake]	[10qmake]

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

[qmake]	[qmake]	[qmake]

10qmake

qmake.proMakefile

				SOURCES	=	hello.cpp

				HEADERS	=	hello.h

				CONFIG	+=	qt	warn_on	release

				SOURCES	=	hello.cpp

hello.cpp

				SOURCES	=	hello.cpp	main.cpp

				SOURCES	=	hello.cpp	\

	 	 main.cpp

				SOURCES	+=	hello.cpp

				SOURCES	+=	main.cpp

“+=”“=”

HEADERS

				HEADERS	+=	hello.h

CONFIGqmake

				CONFIG	+=	qt	warn_on	release

“+=”“=”

CONFIGqtqmakeQt qmakeQt

CONFIGwarn_onqmake

CONFIGreleaseqmake debugrelease

vimxemacs“.pro”“hello.pro”Windows
“hello.exe”Unix“hello”

Makefile

Makefile

Makefile“.pro”

				qmake	-o	Makefile	hello.pro	

Visual	Studio qmake“.dsp”

				qmake	-t	vcapp	-o	hello.dsp	hello.pro

[qmake]	[qmake]	[qmake]

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

[10qmake]	[qmake]	[qmake]

qmake

qmake

qmakeqmake

hello.cpp

hello.h

main.cpp

qt/qmake/exampleQt qt/qmake/tutorialhello.pro qmake

SOURCES SOURCES	+=hello.cpp

				SOURCES	+=	hello.cpp

				SOURCES	+=	hello.cpp

				SOURCES	+=	main.cpp

Make

				SOURCES	=	hello.cpp	\

	 						main.cpp

HEADERS

				HEADERS	+=	hello.h

				SOURCES	+=	hello.cpp	

				SOURCES	+=	main.cpp	

“hello.pro”Windows“hello.exe”Unix“hello”

				TARGET	=	helloworld

CONFIGQt“qt”CONFIG qmake mocuicMakefile

				CONFIG	+=	qt

				HEADERS	+=	hello.h

				SOURCES	+=	hello.cpp

				SOURCES	+=	main.cpp	

qmakeMakefile

				qmake	-o	Makefile	hello.pro

makenmake

CONFIG“debug”

				CONFIG	+=	qt	debug

				HEADERS	+=	hello.h

				SOURCES	+=	hello.cpp

				SOURCES	+=	main.cpp	

qmakeMakefile

hello_win.cpphello_x11.cppSOURCESMakefile qmake

Windows

				win32	{

	 SOURCES	+=	hello_win.cpp

				}

qmakeWindows hello_win.cpp qmakeX11

				CONFIG	+=	qt	debug

				HEADERS	+=	hello.h

				SOURCES	+=	hello.cpp

				SOURCES	+=	main.cpp	

				win32	{

	 SOURCES	+=	hello_win.cpp

				}

				x11	{

	 SOURCES	+=	hello_x11.cpp

				}

qmakeMakefile

qmake

Makefileexists()error() qmakemain.cpp

				!exists(main.cpp)	{

	 error("No	main.cpp	file	found")

				}

“!” exists(main.cpp) !exists(main.cpp)

				CONFIG	+=	qt	debug

				HEADERS	+=	hello.h

				SOURCES	+=	hello.cpp

				SOURCES	+=	main.cpp	

				win32	{

	 SOURCES	+=	hello_win.cpp

				}

				x11	{

	 SOURCES	+=	hello_x11.cpp

				}

				!exists(main.cpp)	{

	 error("No	main.cpp	file	found")

				}

qmakeMakefile main.cpp qmake

WindowsqDebug()console consoleCONFIGWindows
MakefileWindows

				win32	{

	 debug	{

	 				CONFIG	+=	console

	 }

				}

				CONFIG	+=	qt	debug

				HEADERS	+=	hello.h

				SOURCES	+=	hello.cpp

				SOURCES	+=	main.cpp	

				win32	{

	 SOURCES	+=	hello_win.cpp

				}

				x11	{

	 SOURCES	+=	hello_x11.cpp

				}

				!exists(main.cpp)	{

	 error("No	main.cpp	file	found")

				}

				win32:debug	{

	 CONFIG	+=	console

				}

qmake

[10qmake]	[qmake]	[qmake]

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

[qmake]	[qmake]	[qmake]

qmake

qmake

qmakemakefileTrolltech qmakemakefilemakefile qmakeQtQt

qmakemakefile qmakeMicrosoft	Visual	Studio

qmake

QMAKESPEC

WindowsMicrosoft	Visual	StudioQMAKESPEC win32-msvcSolarisgcc
QMAKESPEC solaris-g++

qt/mkspecs qmake.conf qmake qmake.conf

(.pro)

qmakemakefile

“#”

“#”

qmakemakefile

app	-	makefile

lib	-	makefile

vcapp	-	Visual	Studio

vclib	-	Visual	Studio

subdirs	-	makefilemakemakefile

“app”

“app” qmakemakefile qmake.pro

HEADERS	-	

SOURCES	-	

FORMS	-	.ui Qt

LEXSOURCES	-	lex

YACCSOURCES	-	yacc

TARGET	-	

DESTDIR	-	

DEFINES	-	

INCLUDEPATH	-	

DEPENDPATH	-	

VPATH	-	

DEF_FILE	-	Windows.def

RC_FILE	-	Windows

RES_FILE	-	Windows

INCLUDEPATH qmake

TEMPLATE	=	app

DESTDIR		=	c:\helloapp

HEADERS	+=	hello.h

SOURCES	+=	hello.cpp	

SOURCES	+=	main.cpp

DEFINES	+=	QT_DLL

CONFIG		+=	qt	warn_on	release

template“=”“+=” “=” DEFINES=QT_DLL

“lib”

“lib” qmakemakefile“app” VERSION.pro

VERSION	-	2.3.1

“subdirs”

“subdirs”qmakemakefilemakefilemake

SUBDIRS qmake“myapp” myapp.pro

CONFIG

qmake

release	-	release“debug”

debug	-	debug

warn_on	-	“warn_off”

warn_off	-	

/

qt	-	QtQt

thread	-	

x11	-	X11

windows	-	“app”Windows

console	-	“app”Windows

dll	-	“lib”dll

staticlib	-	“lib”

plugin	-	“lib”dll

Qt

				CONFIG	+=	qt	thread	debug

“+=”“=” qmakeQtQt

[qmake]	[qmake]	[qmake]

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

[qmake]	[qmake]	[qmake]

qmake

qmake

qmake name	=	valuename	+=	value qmakemakefile

=+=

“=”

				TARGET	=	myapp

TARGETmyappTARGET

“+=”

				DEFINES	+=	QT_DLL

QT_DLLmakefile

“-=”

				DEFINES	-=	QT_DLL

makefileQT_DLL

“*=”

				DEFINES	*=	QT_DLL

QT_DLL

“~=”

				DEFINES	~=	s/QT_[DT].+/QT

QTQT_DQT_TQT_DQT_T

“if”

				win32	{

								DEFINES	+=	QT_DLL

				}

Windows qmakeQT_DLLmakefileWindows qmakeqmake/

				win32:DEFINES	+=	QT_DLL

Windows

				!win32	{

								DEFINES	+=	QT_DLL

				}

CONFIG

				CONFIG	+=	warn_on

“warn_on”CONFIGmakefile

				CONFIG	+=	qt	warn_on	debug

				debug	{

								TARGET	=	myappdebug

				}

				release	{

								TARGET	=	myapp

				}

CONFIG debugCONFIGTARGET myappdebugrelease
CONFIGTARGET myapp

Windows

				win32	{

								thread	{

												DEFINES	+=	QT_THREAD_SUPPORT

								}

				}

				win32:thread	{

								DEFINES	+=	QT_THREAD_SUPPORT

				}

else/elseif“else”

				win32:thread	{

								DEFINES	+=	QT_THREAD_SUPPORT

				}	else:debug	{

								DEFINES	+=	QT_NOTHREAD_DEBUG

				}	else	{

								warning("Unknown	configuration")

				}

DEFINESSOURCESHEADERS

				MY_VARIABLE	=	value

qmake

$$

				MY_DEFINES	=	$$DEFINES

MY_DEFINESDEFINES

	

				MY_DEFINES	=	$${DEFINES}

qmake$(VALUE)makefile$$()

				MY_DEFINES	=	$$(ENV_DEFINES)

MY_DEFINESENV_DEFINES.pro

join(variablename,	glue,	before,	after)

variablenameglue beforeaftervariablename gluebeforeafter

member(variablename,	position)

variablenameposition variablename variablename

find(variablename,	substr)

variablenamesubstr substr

				MY_VAR	=	one	two	three	four

				MY_VAR2	=	$$join(MY_VAR,	"	-L",	-L)	-Lfive

				MY_VAR3	=	$$member(MY_VAR,	2)	$$find(MY_VAR,	t.*)

MY_VAR2“-Lone	-Ltwo	-Lthree	-Lfour	-Lfive”MYVAR3“three	two
three”

system(program_and_args)

/

				UNAME	=	$$system(uname	-s)

				contains(UNAME,	[lL]inux):message(This	looks	like	Linux	($$UNAME)	to	me)

qmake

contains(variablename,	value)

valuevariablename

				contains(CONFIG,	thread)	{

								DEFINES	+=	QT_THREAD_SUPPORT

				}

threadCONFIGQT_THREAD_SUPPORT DEFINES

count(variablename,	number)

numbervariablename

				count(DEFINES,	5)	{

								CONFIG	+=	debug

				}

error(string)

qmake

				error("An	error	has	occured")

“An	error	has	occured” qmake

exists(filename)

				exists(/local/qt/qmake/main.cpp)	{

								SOURCES	+=	main.cpp

				}

/local/qt/qmake/main.cppmain.cpp

“/”

include(filename)

	

				include(myotherapp.pro)

myotherapp.pro

isEmpty(variablename)

count(variablename,	0) variablename

				isEmpty(CONFIG)	{

								CONFIG	+=	qt	warn_on	debug

				}

message(string)

				message("This	is	a	message")

“This	is	a	message”

system(command)

1

				system(ls	/bin)	{

								SOURCES	+=	bin/main.cpp

								HEADERS	+=	bin/main.h

				}

ls	/bin1 bin/main.cppbin/main.h

infile(filename,	var,	val)

filenameqmake valvar val var

[qmake]	[qmake]	[qmake]

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

[Prev:	qmake's	Advanced	Concepts]	[Home]

qmake	Command	Reference

qmake	Command	Reference

About	This	Reference

Command	Line	Options

System	Variables

Functions

Environment	Variables	and	Configuration

About	This	Reference

This	reference	is	a	detailed	index	of	all	command	line	options,	configurations
and	internal	variables	used	by	the	cross-platform	makefile	generation	utility
qmake.

In	addition	to	the	variables	and	functions	described	in	the	following	sections,
qmake	project	files	may	also	include	comments.	Comments	begin	with	the	'#'
symbol	and	run	to	the	end	of	the	line.

Command	Line	Options

Syntax

qmake	[options]	files

Options

The	following	options	can	be	specified	on	the	command	line	to	qmake:

-o	file	
qmake	output	will	be	directed	to	file.	if	this	argument	is	not	specified,	then
qmake	will	try	to	guess	a	suitable	name.	If	'-'	is	specified,	output	is	directed

to	stdout.

-unix	
qmake	will	run	in	unix	mode.	In	this	mode,	Unix	file	naming	and	path
conventions	will	be	used,	additionally	testing	for	unix	(as	a	scope)	will
succeed.	This	is	the	default	mode	on	all	Unices.

-macx	
qmake	will	run	in	Mac	OS	X	mode.	In	this	mode,	Unix	file	naming	and
path	conventions	will	be	used,	additionally	testing	for	macx	(as	a	scope)
will	succeed.	This	is	the	default	mode	on	Mac	OS	X.

-win32	
qmake	will	run	in	win32	mode.	In	this	mode,	Windows	file	naming	and
path	conventions	will	be	used,	additionally	testing	for	win32	(as	a	scope)
will	succeed.	This	is	the	default	mode	on	Windows.

-d	
qmake	will	output	(hopefully)	useful	debugging	information.

-t	tmpl	
qmake	will	override	any	set	TEMPLATE	variables	with	tmpl.

-help	
qmake	will	go	over	these	features	and	give	some	useful	help.

There	are	also	warning	options	that	can	help	to	find	problems	in	your	project
file:

-Wall	
With	this	qmake	will	turn	on	all	known	warnings.

-Wnone	
No	warning	information	will	be	generated	by	qmake.

-Wparser	
qmake	will	only	generate	parser	warnings,	this	will	alert	you	to	common
pitfalls,	and	potential	problems	in	the	parsing	of	your	.pro	files.

-Wlogic	

Again	qmake	will	warn	of	common	pitfalls,	and	potential	problems.	This
can	include	(but	not	limited	to)	checking	if	a	file	is	placed	into	a	list	of	files
multiple	times,	if	a	file	cannot	be	found,	etc.

qmake	supports	two	different	modes	of	operation.	The	first	mode,	which	is	the
default	is	makefile	generation.	In	this	mode,	qmake	will	take	a	.pro	file	and	turn
it	into	a	makefile.	Creating	makefiles	is	covered	by	this	reference	guide,	there	is
another	mode	which	generates	.pro	files.

To	toggle	between	these	modes	you	must	specify	in	the	first	argument	what
mode	you	want	to	use.	If	no	mode	is	specified,	qmake	will	assume	you	want
makefile	mode.	The	available	modes	are:

-makefile	
qmake	output	will	be	a	makefile	(Makefile	mode).

-project	
qmake	output	will	be	a	project	file	(Project	file	mode).

Makefile	Mode

In	Makefile	mode	qmake	will	generate	a	makefile.	Additionally	you	may	supply
the	following	arguments	in	this	mode:

-after	
qmake	will	process	assignments	given	on	the	commandline	after	the
specified	files.

-nocache	
qmake	will	ignore	the	.qmake.cache	file.

-nodepend	
qmake	will	not	generate	any	dependency	information.

-cache	file	
qmake	will	use	file	as	the	cache	file,	ignoring	any	other	.qmake.cache	file
found

-spec	spec	
qmake	will	use	spec	as	a	path	to	platform-compiler	information	and

QMAKESPEC	will	be	ignored.

The	files	argument	can	be	a	list	of	one	or	more	project	files,	separated	by
spaces.	You	may	also	pass	qmake	assignments	on	the	command	line	here	and
they	will	be	processed	before	all	files	specified,	for	example:

qmake	-makefile	-unix	-o	Makefile	"CONFIG+=test"	test.pro

If	however	you	are	certain	you	want	your	variables	processed	after	the	the	files
specified,	then	you	may	pass	the	-after	argument.	When	this	is	specified	all
assignments	on	the	commandline	after	the	-after	option	will	be	postponed	until
after	the	specified	files	are	parsed.

This	will	generate	a	Makefile,	from	test.pro	with	Unix	pathnames.	However
many	of	these	arguments	aren't	necessary	as	they	are	the	default.	Therefore	the
line	can	be	simplified	on	Unix	to:

qmake	"CONFIG+=test"	test.pro

Projectfile	Mode

In	Projectfile	mode	qmake	will	generate	a	project	file.	Additionally,	you	may
supply	the	following	arguments	in	this	mode:

-r	
qmake	will	look	through	supplied	directories	recursively

-nopwd	
qmake	will	not	look	in	your	current	working	directory	for	source	code	and
only	use	the	specified	files

The	files	argument	can	be	a	list	of	files	or	directories.	If	a	directory	is
specified,	then	it	will	be	included	in	the	DEPENDPATH	variable	and	relevant
code	from	there	will	be	included	in	the	generated	project	file,	if	a	file	is	given	it
will	go	into	the	correct	variable	depending	on	extension	(i.e.	.ui	files	go	into
FORMS,	.cpp	files	go	into	SOURCES,	etc).	Here	too	you	may	pass	assignments
on	the	commandline,	when	doing	so	these	assignments	will	be	placed	last	in	the
generated	.pro	file.

System	Variables

Frequently	Used	System	Variables

Rarely	Used	System	Variables

Frequently	Used	System	Variables

The	following	variables	are	recognized	by	qmake	and	are	used	most	frequently
when	creating	project	files.

CONFIG

The	CONFIG	variable	specifies	project	configuration	and	compiler	options.	The
values	will	be	recognized	internally	by	qmake	and	have	special	meaning.	They
are	as	follows.

These	CONFIG	values	control	compilation	flags:

release	-	Compile	with	optimization	enabled,	ignored	if	"debug"	is	specified

debug	-	Compile	with	debug	options	enabled

warn_on	-	The	compiler	should	emit	more	warnings	than	normally,	ignored
if	"warn_off"	is	specified

warn_off	-	The	compiler	should	only	emit	severe	warnings.

These	options	define	the	application/library	type:

qt	-	The	target	is	a	Qt	application/library	and	requires	the	Qt	header
files/library.	The	proper	include	and	library	paths	for	the	Qt	library	will
automatically	be	added	to	the	project.

opengl	-	The	target	requires	the	OpenGL	(or	Mesa)	headers/libraries.	The
proper	include	and	library	paths	for	these	libraries	will	automatically	be
added	to	the	project.

thread	-	The	target	is	a	multi-threaded	application	or	library.	The	proper
defines	and	compiler	flags	will	automatically	be	added	to	the	project.

x11	-	The	target	is	a	X11	application	or	library.	The	proper	include	paths

and	libraries	will	automatically	be	added	to	the	project.

windows	-	The	target	is	a	Win32	window	application	(app	only).	The
proper	include	paths,compiler	flags	and	libraries	will	automatically	be
added	to	the	project.

console	-	The	target	is	a	Win32	console	application	(app	only).	The	proper
include	paths,	compiler	flags	and	libraries	will	automatically	be	added	to
the	project.

dll	-	The	target	is	a	shared	object/DLL.The	proper	include	paths,	compiler
flags	and	libraries	will	automatically	be	added	to	the	project.

staticlib	-	The	target	is	a	static	library	(lib	only).	The	proper	compiler	flags
will	automatically	be	added	to	the	project.

plugin	-	The	target	is	a	plugin	(lib	only).	This	enables	dll	as	well.

The	CONFIG	variable	will	also	be	checked	when	resolving	scopes.	You	may
assign	anything	to	this	variable.

For	example:

CONFIG	+=	qt	console	newstuff

...

newstuff	{

	 SOURCES	+=	new.cpp

	 HEADERS	+=	new.h

}

DEFINES

qmake	adds	the	values	of	this	variable	as	compiler	C	preprocessor	macros	(-D
option).

For	example:

	

DEFINES	+=	USE_MY_STUFF	QT_DLL

DEF_FILE

This	is	only	used	on	Windows	when	using	the	'app'	template.

Specifies	a	.def	file	to	be	included	in	the	project.

DESTDIR

Specifies	where	to	put	the	target	file.

For	example:

	

		DESTDIR	=	../../lib

DLLDESTDIR

Specifies	where	to	copy	the	target	dll.

HEADERS

Defines	the	header	files	for	the	project.

qmake	will	generate	dependency	information	(unless	-nodepend	is	specified	on
the	command	line)	for	the	specified	headers.	qmake	will	also	automatically
detect	if	moc	is	required	by	the	classes	in	these	headers,	and	add	the	appropriate
dependencies	and	files	to	the	project	for	generating	and	linking	the	moc	files.

For	example:

HEADERS	=	myclass.h	\

	 		login.h	\

	 		mainwindow.h

See	also	SOURCES.

INCLUDEPATH

This	variable	specifies	the	#include	directories	which	should	be	searched	when
compiling	the	project.	Use	';'	or	a	space	as	the	directory	separator.

For	example:

		INCLUDEPATH	=	c:\msdev\include	d:\stl\include

FORMS

This	variable	specifies	the	.ui	files	(see	Qt	Designer)	to	be	processed	through	uic
before	compiling.	All	dependencies,	headers	and	source	files	required	to	build
these	.ui	files	will	automatically	be	added	to	the	project.

For	example:

FORMS	=	mydialog.ui	\

	 mywidget.ui	\

								myconfig.ui

LEXSOURCES

This	variable	contains	a	list	of	lex	source	files.	All	dependencies,	headers	and
source	files	will	automatically	be	added	to	the	project	for	building	these	lex	files.

For	example:

LEXSOURCES	=	lexer.l

LIBS

This	variable	contains	a	list	of	libraries	to	be	linked	into	the	project.	If	you	are
more	comfortable	with	the	Unix	convension	of	-L/-l	flags	you	are	free	to	use
them	in	a	cross-platform	manner	and	qmake	will	do	the	correct	thing	with	these
libraries	on	Windows	(namely	this	means	passing	the	full	path	of	the	library	to
the	linker).	The	only	limitation	to	this	is	the	library	must	exist,	for	qmake	to	find
which	directory	a	-l	lib	lives	in.

For	example:

unix:LIBS	+=	-lmath	-L/usr/local/lib

win32:LIBS	+=	c:\mylibs\math.lib

MOC_DIR

This	variable	specifies	the	directory	where	all	intermediate	moc	files	should	be
placed.

For	example:

unix:MOC_DIR	=	../myproject/tmp

win32:MOC_DIR	=	c:\myproject\tmp

OBJECTS_DIR

This	variable	specifies	the	directory	where	all	intermediate	objects	should	be
placed.

For	example:

unix:OBJECTS_DIR	=	../myproject/tmp

win32:OBJECTS__DIR	=	c:\myproject\tmp

UI_DIR

This	variable	specifies	the	directory	where	all	intermediate	files	from	uic	should
be	placed.	This	variable	overrides	both	UI_SOURCES_DIR	and
UI_HEADERS_DIR.

For	example:

unix:UI_DIR	=	../myproject/ui

win32:UI_DIR	=	c:\myproject\ui

UI_HEADERS_DIR

This	variable	specifies	the	directory	where	all	declaration	files	(as	generated	by
uic)	should	be	placed.

For	example:

unix:UI_HEADERS_DIR	=	../myproject/ui/include

win32:UI_HEADERS_DIR	=	c:\myproject\ui\include

UI_SOURCES_DIR

This	variable	specifies	the	directory	where	all	implementation	files	(as	generated
by	uic)	should	be	placed.

For	example:

unix:UI_SOURCES_DIR	=	../myproject/ui/src

win32:UI_SOURCES_DIR	=	c:\myproject\ui\src

REQUIRES

This	is	a	special	variable	processed	by	qmake.	If	the	contents	of	this	variable	do
not	appear	in	CONFIG	by	the	time	this	variable	is	assigned,	then	a	minimal
makefile	will	be	generated	that	states	what	dependencies	(the	values	assigned	to
REQUIRES)	are	missing.

This	is	mainly	used	in	Qt's	build	system	for	building	the	examples.

SOURCES

This	variable	contains	the	name	of	all	source	files	in	the	project.

For	example:

SOURCES	=	myclass.cpp	\

	 		login.cpp	\

	 		mainwindow.cpp

See	also	HEADERS

SUBDIRS

This	variable,	when	used	with	the	'subdir'	TEMPLATE	contains	the	names	of	all
subdirectories	to	look	for	a	project	file.

For	example:

SUBDIRS	=	kernel	\

	 		tools

TARGET

This	specifies	the	name	of	the	target	file.

For	example:

TEMPLATE	=	app

TARGET	=	myapp

SOURCES	=	main.cpp

The	project	file	above	would	produce	an	executable	named	'myapp'	on	unix	and
'myapp.exe'	on	windows.

TEMPLATE

This	variable	contains	the	name	of	the	template	to	use	when	generating	the
project.	The	allowed	values	are:

app	-	Creates	a	makefile	for	building	applications	(the	default)

lib	-	Creates	a	makefile	for	building	libraries

subdirs	-	Creates	a	makefile	for	building	targets	in	subdirectories

vcapp	-	win32	only	Creates	an	application	project	file

vclib	-	win32	only	Creates	a	library	project	file

For	example:

TEMPLATE	=	lib

SOURCES	=	main.cpp

TARGET	=	mylib

VERSION

This	variable	contains	the	version	number	of	the	library	if	the	'lib'	TEMPLATE
is	specified.

For	example:

VERSION	=	1.2.3

DISTFILES

This	variable	contains	a	list	of	files	to	be	included	in	the	dist	target.	This	feature
is	supported	by	UnixMake	specs	only.

For	example:

DISTFILES	+=	../program.txt

YACCSOURCES

This	variable	contains	a	list	of	yacc	source	files	to	be	included	in	the	project.	All
dependencies,	headers	and	source	files	will	automatically	be	included	in	the
project.

For	example:

YACCSOURCES	=	moc.y

Rarely	Used	System	Variables

The	following	variables	are	also	recognized	by	qmake	but	are	either	internal	or
very	rarely	used.

DESTDIR_TARGET

This	variable	is	set	internally	by	qmake,	which	is	basically	the	DESTDIR
variable	with	the	TARGET	variable	appened	at	the	end.	The	value	of	this
variable	is	typically	handled	by	qmake	or	qmake.conf	and	rarely	needs	to	be
modified.

DSP_TEMPLATE

This	variable	is	set	internally	by	qmake,	which	specifies	where	the	dsp	template
file	for	basing	generated	dsp	files	is	stored.	The	value	of	this	variable	is	typically
handled	by	qmake	or	qmake.conf	and	rarely	needs	to	be	modified.

LEXIMPLS

This	variable	contains	a	list	of	lex	implementation	files.	The	value	of	this
variable	is	typically	handled	by	qmake	or	qmake.conf	and	rarely	needs	to	be
modified.

LEXOBJECTS

This	variable	contains	the	names	of	intermediate	lex	object	files.The	value	of

this	variable	is	typically	handled	by	qmake	and	rarely	needs	to	be	modified.

MAKEFILE

This	variable	specifies	the	name	of	the	makefile	which	qmake	should	use	when
outputting	the	dependency	information	for	building	a	project.	The	value	of	this
variable	is	typically	handled	by	qmake	or	qmake.conf	and	rarely	needs	to	be
modified.

MAKEFILE_GENERATOR

This	variable	contains	the	name	of	the	makefile	generator	to	use	when
generating	a	makefile.	The	value	of	this	variable	is	typically	handled	internally
by	qmake	and	rarely	needs	to	be	modified.

OBJECTS

This	variable	is	generated	from	the	SOURCES	variable.	The	extension	of	each
source	file	will	have	been	replaced	by	.o	(Unix)	or	.obj	(Win32).	The	value	of
this	variable	is	typically	handled	by	qmake	or	qmake.conf	and	rarely	needs	to	be
modified.

OBJMOC

This	variable	is	set	by	qmake	if	files	can	be	found	that	contain	the	Q_OBJECT
macro.	OBJMOC	contains	the	name	of	all	intermediate	moc	object	files.	The	value
of	this	variable	is	typically	handled	by	qmake	or	qmake.conf	and	rarely	needs	to
be	modified.

PRECOMPH

This	variable	contains	a	list	of	header	files	that	require	some	sort	of	pre-
compilation	step	(such	as	with	moc).	The	value	of	this	variable	is	typically
handled	by	qmake	or	qmake.conf	and	rarely	needs	to	be	modified.

QMAKE

This	variable	contains	the	name	of	the	qmake	program	itself	and	is	placed	in
generated	makefiles.	The	value	of	this	variable	is	typically	handled	by	qmake	or

qmake.conf	and	rarely	needs	to	be	modified.

QMAKESPEC

This	variable	contains	the	name	of	the	qmake	configuration	to	use	when
generating	makefiles.	The	value	of	this	variable	is	typically	handled	by	qmake	or
qmake.conf	and	rarely	needs	to	be	modified.	Use	the	QMAKESPEC
environment	variable	instead.

QMAKE_AIX_SHLIB

If	this	variable	is	not	empty,	then	this	variable	tells	qmake	to	generate	the
TARGET	as	an	AIX	shared	library.

QMAKE_APP_FLAG

This	variable	is	empty	unless	the	'app'	TEMPLATE	is	specified.	The	value	of
this	variable	is	typically	handled	by	qmake	or	qmake.conf	and	rarely	needs	to	be
modified.	Use	the	following	instead:

app	{

	 #conditional	code	for	'app'	template	here

}

QMAKE_APP_OR_DLL

This	variable	is	empty	unless	the	'app'	or	'dll'	TEMPLATE	is	specified.	The
value	of	this	variable	is	typically	handled	by	qmake	or	qmake.conf	and	rarely
needs	to	be	modified.

QMAKE_AR_CMD

This	is	used	on	Unix	platforms	only

This	variable	contains	the	command	for	invoking	the	program	which	creates,
modifies	and	extracts	archives.	The	value	of	this	variable	is	typically	handled	by
qmake	or	qmake.conf	and	rarely	needs	to	be	modified.

QMAKE_CFLAGS_DEBUG

This	variable	contains	the	flags	for	the	C	compiler	in	debug	mode.The	value	of
this	variable	is	typically	handled	by	qmake	or	qmake.conf	and	rarely	needs	to	be
modified.

QMAKE_CFLAGS_MT

This	variable	contains	the	compiler	flags	for	creating	a	multi-threaded
application.	The	value	of	this	variable	is	typically	handled	by	qmake	or
qmake.conf	and	rarely	needs	to	be	modified.

QMAKE_CFLAGS_MT_DBG

This	variable	contains	the	compiler	flags	for	creating	a	debuggable	multi-
threaded	application.	The	value	of	this	variable	is	typically	handled	by	qmake	or
qmake.conf	and	rarely	needs	to	be	modified.

QMAKE_CFLAGS_MT_DLL

This	is	used	on	Windows	only

This	variable	contains	the	compiler	flags	for	creating	a	multi-threaded	dll.	The
value	of	this	variable	is	typically	handled	by	qmake	or	qmake.conf	and	rarely
needs	to	be	modified.

QMAKE_CFLAGS_MT_DLLDBG

This	is	used	on	Windows	only

This	variable	contains	the	compiler	flags	for	creating	a	debuggable	multi-
threaded	dll.	The	value	of	this	variable	is	typically	handled	by	qmake	or
qmake.conf	and	rarely	needs	to	be	modified.

QMAKE_CFLAGS_RELEASE

This	variable	contains	the	compiler	flags	for	creating	a	non-debuggable
application.	The	value	of	this	variable	is	typically	handled	by	qmake	or
qmake.conf	and	rarely	needs	to	be	modified.

QMAKE_CFLAGS_SHLIB

This	is	used	on	Unix	platforms	only

This	variable	contains	the	compiler	flags	for	creating	a	shared	library.	The	value
of	this	variable	is	typically	handled	by	qmake	or	qmake.conf	and	rarely	needs	to
be	modified.

QMAKE_CFLAGS_THREAD

This	variable	contains	the	compiler	flags	for	creating	a	multi-threaded
application.	The	value	of	this	variable	is	typically	handled	by	qmake	or
qmake.conf	and	rarely	needs	to	be	modified.

QMAKE_CFLAGS_WARN_OFF

This	variable	is	not	empty	if	the	warn_off	TEMPLATE	option	is	specified.	The
value	of	this	variable	is	typically	handled	by	qmake	or	qmake.conf	and	rarely
needs	to	be	modified.

QMAKE_CFLAGS_WARN_ON

This	variable	is	not	empty	if	the	warn_on	TEMPLATE	option	is	specified.	The
value	of	this	variable	is	typically	handled	by	qmake	or	qmake.conf	and	rarely
needs	to	be	modified.

QMAKE_CLEAN

This	variable	contains	any	files	which	are	not	generated	files	(such	as	moc	and
uic	generated	files)	and	object	files	that	should	be	removed	when	using	"make
clean".

QMAKE_CXXFLAGS_DEBUG

This	variable	contains	the	C++	compiler	flags	for	creating	a	debuggable
application.	The	value	of	this	variable	is	typically	handled	by	qmake	or
qmake.conf	and	rarely	needs	to	be	modified.

QMAKE_CXXFLAGS_MT

This	variable	contains	the	C++	compiler	flags	for	creating	a	multi-threaded

application.	The	value	of	this	variable	is	typically	handled	by	qmake	or
qmake.conf	and	rarely	needs	to	be	modified.

QMAKE_CXXFLAGS_MT_DBG

This	variable	contains	the	C++	compiler	flags	for	creating	a	debuggable	multi-
threaded	application.	The	value	of	this	variable	is	typically	handled	by	qmake	or
qmake.conf	and	rarely	needs	to	be	modified.

QMAKE_CXXFLAGS_MT_DLL

This	is	used	on	Windows	only

This	variable	contains	the	C++	compiler	flags	for	creating	a	multi-threaded	dll.
The	value	of	this	variable	is	typically	handled	by	qmake	or	qmake.conf	and
rarely	needs	to	be	modified.

QMAKE_CXXFLAGS_MT_DLLDBG

This	is	used	on	Windows	only

This	variable	contains	the	C++	compiler	flags	for	creating	a	multi-threaded
debuggable	dll.	The	value	of	this	variable	is	typically	handled	by	qmake	or
qmake.conf	and	rarely	needs	to	be	modified.

QMAKE_CXXFLAGS_RELEASE

This	variable	contains	the	C++	compiler	flags	for	creating	an	application.	The
value	of	this	variable	is	typically	handled	by	qmake	or	qmake.conf	and	rarely
needs	to	be	modified.

QMAKE_CXXFLAGS_SHLIB

This	variable	contains	the	C++	compiler	flags	for	creating	a	shared	library.	The
value	of	this	variable	is	typically	handled	by	qmake	or	qmake.conf	and	rarely
needs	to	be	modified.

QMAKE_CXXFLAGS_THREAD

This	variable	contains	the	C++	compiler	flags	for	creating	a	multi-threaded

application.	The	value	of	this	variable	is	typically	handled	by	qmake	or
qmake.conf	and	rarely	needs	to	be	modified.

QMAKE_CXXFLAGS_WARN_OFF

This	variable	contains	the	C++	compiler	flags	for	suppressing	compiler
warnings.	The	value	of	this	variable	is	typically	handled	by	qmake	or
qmake.conf	and	rarely	needs	to	be	modified.

QMAKE_CXXFLAGS_WARN_ON

This	variable	contains	C++	compiler	flags	for	generating	compiler	warnings.
The	value	of	this	variable	is	typically	handled	by	qmake	or	qmake.conf	and
rarely	needs	to	be	modified.

QMAKE_EXTENSION_SHLIB

This	variable	contains	the	extention	for	shared	libraries.	The	value	of	this
variable	is	typically	handled	by	qmake	or	qmake.conf	and	rarely	needs	to	be
modified.

QMAKE_FAILED_REQUIREMENTS

This	variable	contains	the	list	of	requirements	that	were	failed	to	be	met	when
qmake	was	used.	For	example,	the	sql	module	is	needed	and	wasn't	compiled
into	Qt.	The	value	of	this	variable	is	typically	handled	by	qmake	or	qmake.conf
and	rarely	needs	to	be	modified.

QMAKE_FILETAGS

This	variable	contains	the	file	tags	needed	to	be	entered	into	the	makefile,	such
as	SOURCES	and	HEADERS.	The	value	of	this	variable	is	typically	handled	by
qmake	or	qmake.conf	and	rarely	needs	to	be	modified.

QMAKE_HPUX_SHLIB

This	is	used	on	Unix	platforms	only

If	this	variable	is	not	empty	then	this	variable	tells	qmake	to	generate	the

TARGET	as	an	HPUX	shared	library.	The	value	of	this	variable	is	typically
handled	by	qmake	or	qmake.conf	and	rarely	needs	to	be	modified.

QMAKE_HPUX_SHLIBS

This	is	used	on	Unix	platforms	only

If	this	variable	is	not	empty	then	this	variable	tells	qmake	to	generate	the
TARGET	as	an	HPUX	shared	library.	The	value	of	this	variable	is	typically
handled	by	qmake	or	qmake.conf	and	rarely	needs	to	be	modified.

QMAKE_INCDIR

This	variable	contains	the	location	of	all	known	header	files	to	be	added	to
INCLUDEPATH	when	building	an	application.	The	value	of	this	variable	is
typically	handled	by	qmake	or	qmake.conf	and	rarely	needs	to	be	modified.

TARGETDEPS

All	libraries	that	the	target	depends	on	can	be	listed	in	this	variable.	Some
backends	do	not	support	this,	these	include	MSVC	Dsp,	and	ProjectBuilder
.pbproj	files.	Generally	this	is	support	internally	by	these	build	tools,	this	is
usefull	for	explicitly	listing	dependant	static	libraries.

QMAKE_INCDIR_OPENGL

This	variable	contains	the	location	of	OpenGL	header	files	to	be	added	to
INCLUDEPATH	when	building	an	application	with	OpenGL	support.	The	value
of	this	variable	is	typically	handled	by	qmake	or	qmake.conf	and	rarely	needs	to
be	modified.

QMAKE_INCDIR_QT

This	variable	contains	the	location	of	all	known	header	file	paths	to	be	added	to
INCLUDEPATH	when	building	a	Qt	application.	The	value	of	this	variable	is
typically	handled	by	qmake	or	qmake.conf	and	rarely	needs	to	be	modified.

QMAKE_INCDIR_THREAD

This	variable	contains	the	location	of	all	known	header	file	paths	to	be	added	to
INCLUDEPATH	when	building	a	multi-threaded	application.	The	value	of	this
variable	is	typically	handled	by	qmake	or	qmake.conf	and	rarely	needs	to	be
modified.

QMAKE_INCDIR_X11

This	is	used	on	Unix	platforms	only

This	variable	contains	the	location	of	X11	header	file	paths	to	be	added	to
INCLUDEPATH	when	building	a	X11	application.	The	value	of	this	variable	is
typically	handled	by	qmake	or	qmake.conf	and	rarely	needs	to	be	modified.

QMAKE_LFLAGS_CONSOLE

This	is	used	on	Windows	only

This	variable	contains	link	flags	when	building	console	programs.	The	value	of
this	variable	is	typically	handled	by	qmake	or	qmake.conf	and	rarely	needs	to	be
modified.

QMAKE_LFLAGS_CONSOLE_DLL

This	is	used	on	Windows	only

This	variable	contains	link	flags	when	building	console	dlls.	The	value	of	this
variable	is	typically	handled	by	qmake	or	qmake.conf	and	rarely	needs	to	be
modified.

QMAKE_LFLAGS_DEBUG

This	variable	contains	link	flags	when	building	debuggable	applications.	The
value	of	this	variable	is	typically	handled	by	qmake	or	qmake.conf	and	rarely
needs	to	be	modified.

QMAKE_LFLAGS_PLUGIN

This	variable	contains	link	flags	when	building	plugins.	The	value	of	this
variable	is	typically	handled	by	qmake	or	qmake.conf	and	rarely	needs	to	be

modified.

QMAKE_LFLAGS_QT_DLL

This	variable	contains	link	flags	when	building	programs	that	use	the	Qt	library
built	as	a	dll.	The	value	of	this	variable	is	typically	handled	by	qmake	or
qmake.conf	and	rarely	needs	to	be	modified.

QMAKE_LFLAGS_RELEASE

This	variable	contains	link	flags	when	building	applications	for	release.	The
value	of	this	variable	is	typically	handled	by	qmake	or	qmake.conf	and	rarely
needs	to	be	modified.

QMAKE_LFLAGS_SHAPP

This	variable	contains	link	flags	when	building	applications	which	are	using	the
'app'	template.	The	value	of	this	variable	is	typically	handled	by	qmake	or
qmake.conf	and	rarely	needs	to	be	modified.

QMAKE_LFLAGS_SHLIB

This	variable	contains	link	flags	when	building	shared	libraries	The	value	of	this
variable	is	typically	handled	by	qmake	or	qmake.conf	and	rarely	needs	to	be
modified.

QMAKE_LFLAGS_SONAME

This	variable	specifies	the	name	of	shared	objects,	such	as	.so	or	.dll.	The	value
of	this	variable	is	typically	handled	by	qmake	or	qmake.conf	and	rarely	needs	to
be	modified.

QMAKE_LFLAGS_THREAD

This	variable	contains	link	flags	when	building	multi-threaded	projects.	The
value	of	this	variable	is	typically	handled	by	qmake	or	qmake.conf	and	rarely
needs	to	be	modified.

QMAKE_LFLAGS_WINDOWS

This	is	used	on	Windows	only

This	variable	contains	link	flags	when	building	windows	projects.	The	value	of
this	variable	is	typically	handled	by	qmake	or	qmake.conf	and	rarely	needs	to	be
modified.

QMAKE_LFLAGS_WINDOWS_DLL

This	is	used	on	Windows	only

This	variable	contains	link	flags	when	building	windows	dll	projects.	The	value
of	this	variable	is	typically	handled	by	qmake	or	qmake.conf	and	rarely	needs	to
be	modified.

QMAKE_LIBDIR

This	variable	contains	the	location	of	all	known	library	directories.The	value	of
this	variable	is	typically	handled	by	qmake	or	qmake.conf	and	rarely	needs	to	be
modified.

QMAKE_LIBDIR_FLAGS

This	is	used	on	Unix	platforms	only

This	variable	contains	the	location	of	all	library	directory	with	-L	prefixed.	The
value	of	this	variable	is	typically	handled	by	qmake	or	qmake.conf	and	rarely
needs	to	be	modified.

VPATH

This	variable	tells	qmake	where	to	search	for	files	it	cannot	open.	With	this	you
may	tell	qmake	where	it	may	look	for	things	like	SOURCES,	and	if	it	finds	an
entry	in	SOURCES	that	cannot	be	opened	it	will	look	through	the	entire	VPATH
list	to	see	if	it	can	find	the	file	on	its	own.

See	also	DEPENDPATH.

DEPENDPATH

This	variable	contains	the	list	of	all	directories	to	look	in	to	resolve

dependencies.	This	will	be	used	when	crawling	through	'included'	files.

QMAKE_LIBDIR_OPENGL

This	variable	contains	the	location	of	the	OpenGL	library	directory.The	value	of
this	variable	is	typically	handled	by	qmake	or	qmake.conf	and	rarely	needs	to	be
modified.

QMAKE_LIBDIR_QT

This	variable	contains	the	location	of	the	Qt	library	directory.The	value	of	this
variable	is	typically	handled	by	qmake	or	qmake.conf	and	rarely	needs	to	be
modified.

QMAKE_LIBDIR_X11

This	is	used	on	Unix	platforms	only

This	variable	contains	the	location	of	the	X11	library	directory.The	value	of	this
variable	is	typically	handled	by	qmake	or	qmake.conf	and	rarely	needs	to	be
modified.

QMAKE_LIBS

This	variable	contains	all	project	libraries.	The	value	of	this	variable	is	typically
handled	by	qmake	or	qmake.conf	and	rarely	needs	to	be	modified.

QMAKE_LIBS_CONSOLE

This	is	used	on	Windows	only

This	variable	contains	all	project	libraries	that	should	be	linked	against	when
building	a	console	application.	The	value	of	this	variable	is	typically	handled	by
qmake	or	qmake.conf	and	rarely	needs	to	be	modified.

QMAKE_LIBS_OPENGL

This	variable	contains	all	OpenGL	libraries.	The	value	of	this	variable	is
typically	handled	by	qmake	or	qmake.conf	and	rarely	needs	to	be	modified.

QMAKE_LIBS_OPENGL_QT

This	variable	contains	all	OpenGL	Qt	libraries.The	value	of	this	variable	is
typically	handled	by	qmake	or	qmake.conf	and	rarely	needs	to	be	modified.

QMAKE_LIBS_QT

This	variable	contains	all	Qt	libraries.The	value	of	this	variable	is	typically
handled	by	qmake	or	qmake.conf	and	rarely	needs	to	be	modified.

QMAKE_LIBS_QT_DLL

This	is	used	on	Windows	only

This	variable	contains	all	Qt	libraries	when	Qt	is	built	as	a	dll.	The	value	of	this
variable	is	typically	handled	by	qmake	or	qmake.conf	and	rarely	needs	to	be
modified.

QMAKE_LIBS_QT_OPENGL

This	variable	contains	all	the	libraries	needed	to	link	against	if	OpenGL	support
is	turned	on.	The	value	of	this	variable	is	typically	handled	by	qmake	or
qmake.conf	and	rarely	needs	to	be	modified.

QMAKE_LIBS_QT_THREAD

This	variable	contains	all	the	libraries	needed	to	link	against	if	thread	support	is
turned	on.	The	value	of	this	variable	is	typically	handled	by	qmake	or
qmake.conf	and	rarely	needs	to	be	modified.

QMAKE_LIBS_RT

This	is	used	with	Borland	compilers	only

This	variable	contains	the	runtime	library	needed	to	link	against	when	building
an	application.	The	value	of	this	variable	is	typically	handled	by	qmake	or
qmake.conf	and	rarely	needs	to	be	modified.

QMAKE_LIBS_RTMT

This	is	used	with	Borland	compilers	only

This	variable	contains	the	runtime	library	needed	to	link	against	when	building	a
multi-threaded	application.	The	value	of	this	variable	is	typically	handled	by
qmake	or	qmake.conf	and	rarely	needs	to	be	modified.

QMAKE_LIBS_THREAD

This	is	used	on	Unix	platforms	only

This	variable	contains	all	libraries	that	need	to	be	linked	against	when	building	a
multi-threaded	application.	The	value	of	this	variable	is	typically	handled	by
qmake	or	qmake.conf	and	rarely	needs	to	be	modified.

QMAKE_LIBS_WINDOWS

This	is	used	on	Windows	only

This	variable	contains	all	windows	libraries.The	value	of	this	variable	is
typically	handled	by	qmake	or	qmake.conf	and	rarely	needs	to	be	modified.

QMAKE_LIBS_X11

This	is	used	on	Unix	platforms	only

This	variable	contains	all	X11	libraries.The	value	of	this	variable	is	typically
handled	by	qmake	or	qmake.conf	and	rarely	needs	to	be	modified.

QMAKE_LIBS_X11SM

This	is	used	on	Unix	platforms	only

This	variable	contains	all	X11	session	management	libraries.	The	value	of	this
variable	is	typically	handled	by	qmake	or	qmake.conf	and	rarely	needs	to	be
modified.

QMAKE_LIB_FLAG

This	variable	is	not	empty	if	the	'lib'	template	is	specified.	The	value	of	this
variable	is	typically	handled	by	qmake	or	qmake.conf	and	rarely	needs	to	be

modified.

QMAKE_LINK_SHLIB_CMD

This	variable	contains	the	command	to	execute	when	creating	a	shared	library.
The	value	of	this	variable	is	typically	handled	by	qmake	or	qmake.conf	and
rarely	needs	to	be	modified.

QMAKE_LN_SHLIB

This	variable	contains	the	command	to	execute	when	creating	a	link	to	a	shared
library.	The	value	of	this	variable	is	typically	handled	by	qmake	or	qmake.conf
and	rarely	needs	to	be	modified.

QMAKE_MAKEFILE

This	variable	contains	the	name	of	the	makefile	to	create.	The	value	of	this
variable	is	typically	handled	by	qmake	or	qmake.conf	and	rarely	needs	to	be
modified.

QMAKE_MOC_SRC

This	variable	contains	the	names	of	all	moc	source	files	to	generate	and	include
in	the	project.	The	value	of	this	variable	is	typically	handled	by	qmake	or
qmake.conf	and	rarely	needs	to	be	modified.

QMAKE_QMAKE

This	variable	contains	the	location	of	qmake	if	it	is	not	in	the	path.	The	value	of
this	variable	is	typically	handled	by	qmake	or	qmake.conf	and	rarely	needs	to	be
modified.

QMAKE_QT_DLL

This	variable	is	not	empty	if	Qt	was	built	as	a	dll.	The	value	of	this	variable	is
typically	handled	by	qmake	or	qmake.conf	and	rarely	needs	to	be	modified.

QMAKE_RUN_CC

This	variable	specifies	the	individual	rule	needed	to	build	an	object.	The	value	of
this	variable	is	typically	handled	by	qmake	or	qmake.conf	and	rarely	needs	to	be
modified.

QMAKE_RUN_CC_IMP

This	variable	specifies	the	individual	rule	needed	to	build	an	object.	The	value	of
this	variable	is	typically	handled	by	qmake	or	qmake.conf	and	rarely	needs	to	be
modified.

QMAKE_RUN_CXX

This	variable	specifies	the	individual	rule	needed	to	build	an	object.	The	value	of
this	variable	is	typically	handled	by	qmake	or	qmake.conf	and	rarely	needs	to	be
modified.

QMAKE_RUN_CXX_IMP

This	variable	specifies	the	individual	rule	needed	to	build	an	object.	The	value	of
this	variable	is	typically	handled	by	qmake	or	qmake.conf	and	rarely	needs	to	be
modified.

QMAKE_TARGET

This	variable	contains	the	name	of	the	project	target.	The	value	of	this	variable	is
typically	handled	by	qmake	or	qmake.conf	and	rarely	needs	to	be	modified.

RC_FILE

This	variable	contains	the	name	of	the	resource	file	for	the	application.	The
value	of	this	variable	is	typically	handled	by	qmake	or	qmake.conf	and	rarely
needs	to	be	modified.

RES_FILE

This	variable	contains	the	name	of	the	resource	file	for	the	application.	The
value	of	this	variable	is	typically	handled	by	qmake	or	qmake.conf	and	rarely
needs	to	be	modified.

SRCMOC

This	variable	is	set	by	qmake	if	files	can	be	found	that	contain	the	Q_OBJECT
macro.	SRCMOC	contains	the	name	of	all	the	generated	moc	files.	The	value	of	this
variable	is	typically	handled	by	qmake	or	qmake.conf	and	rarely	needs	to	be
modified.

TARGET_EXT

This	variable	specifies	the	target's	extension.	The	value	of	this	variable	is
typically	handled	by	qmake	or	qmake.conf	and	rarely	needs	to	be	modified.

TARGET_x

This	variable	specifies	the	target's	extension	with	a	major	version	number.	The
value	of	this	variable	is	typically	handled	by	qmake	or	qmake.conf	and	rarely
needs	to	be	modified.

TARGET_x.y.z

This	variable	specifies	the	target's	extension	with	version	number.	The	value	of
this	variable	is	typically	handled	by	qmake	or	qmake.conf	and	rarely	needs	to	be
modified.

UICIMPLS

This	variable	contains	a	list	of	the	generated	implementation	files	by	UIC.	The
value	of	this	variable	is	typically	handled	by	qmake	or	qmake.conf	and	rarely
needs	to	be	modified.

UICOBJECTS

This	variable	is	generated	from	the	UICIMPLS	variable.	The	extension	of	each
file	will	have	been	replaced	by	.o	(Unix)	or	.obj	(Win32).	The	value	of	this
variable	is	typically	handled	by	qmake	or	qmake.conf	and	rarely	needs	to	be
modified.

VER_MAJ

This	variable	contains	the	major	version	number	of	the	library,	if	the	'lib'
template	is	specified.

VER_MIN

This	variable	contains	the	minor	version	number	of	the	library,	if	the	'lib'
template	is	specified.

VER_PAT

This	variable	contains	the	patch	version	number	of	the	library,	if	the	'lib'
template	is	specified.

QMAKE_EXT_MOC

This	variable	changes	the	extention	used	on	included	moc	files.

See	also	File	Extensions.

QMAKE_EXT_UI

This	variable	changes	the	extention	used	on	/e	Designer	UI	files.

See	also	File	Extensions.

QMAKE_EXT_PRL

This	variable	changes	the	extention	used	on	created	PRL	files.

See	also	File	Extensions,	Library	Dependencies.

QMAKE_EXT_LEX

This	variable	changes	the	extention	used	on	files	given	to	lex.

See	also	File	Extensions,	LEXSOURCES.

QMAKE_EXT_YACC	This	variable	changes	the	extention	used	on	files	given	to	yacc.

See	also	File	Extensions,	YACCSOURCES.

QMAKE_EXT_OBJ

This	variable	changes	the	extention	used	on	generated	object	files.

See	also	File	Extensions.

QMAKE_EXT_CPP

This	variable	changes	the	interpretation	of	all	suffixes	in	this	list	of	values	as
files	of	type	C++	source	code.

See	also	File	Extensions.

QMAKE_EXT_H

This	variable	changes	the	interpretation	of	all	suffixes	in	this	list	of	values	as
files	of	type	C	header	files.

See	also	File	Extensions.

YACCIMPLS

This	variable	contains	a	list	of	yacc	source	files.	The	value	of	this	variable	is
typically	handled	by	qmake	or	qmake.conf	and	rarely	needs	to	be	modified.

YACCOBJECTS

This	variable	contains	a	list	of	yacc	object	files.	The	value	of	this	variable	is
typically	handled	by	qmake	or	qmake.conf	and	rarely	needs	to	be	modified.

Functions

qmake	recognizes	the	following	functions:

include(filename)

This	function	will	include	the	contents	of	filename	into	the	current	project	at	the
point	where	was	included.	The	function	succeeds	if	filename	was	included,
otherwise	it	fails.	You	can	check	the	return	value	of	this	function	using	a	scope.

For	example:

include(shared.pri)

OPTIONS	=	standard	custom

!include(options.pri)	{

	 message("No	custom	build	options	specified")

	 OPTIONS	-=	custom

}

exists(file)

This	function	will	test	if	file	exists.	If	the	file	exists,	then	it	will	succeed;
otherwise	it	will	fail.	You	can	specify	a	regular	expression	in	file	and	it	will
succeed	if	any	file	matches	the	regular	expression	specified.

For	example:

exists($(QTDIR)/lib/qt-mt*)	{

						message("Configuring	for	multi-threaded	Qt...")

						CONFIG	+=	thread

}

contains(variablename,	value)

This	function	will	succeed	if	the	variable	variablename	contains	the	value	value.
You	can	check	the	return	value	of	this	function	using	a	scope.

For	example:

contains(drivers,	network)	{

	 #	drivers	contains	'network'

	 message("Configuring	for	network	build...")

	 HEADERS	+=	network.h

	 SOURCES	+=	network.cpp

}

count(variablename,	number)

This	function	will	succeed	if	the	variable	variablename	contains	number
elements,	otherwise	it	will	fail.	You	can	check	the	return	value	of	this	function
using	a	scope.

For	example:

MYVAR	=	one	two	three

count(MYVAR,	3)	{

	 #	always	true

}

infile(filename,	var,	val)

This	function	will	succeed	if	the	file	filename	(when	parsed	by	qmake	itself)
contains	the	variable	var	with	a	value	of	val.	You	may	also	not	pass	in	a	third
argument	(val)	and	the	function	will	only	test	if	var	has	been	assigned	to	in	the
file.

isEmpty(variablename)

This	function	will	succeed	if	the	variable	variablename	is	empty	(same	as
count(variable,	0)).

system(command)

This	function	will	execute	command	in	a	secondary	shell	and	will	succeed	if	the
command	exits	with	an	exit	status	of	1.	You	can	check	the	return	value	of	this
function	using	a	scope.

For	example:

		system(ls	/bin):HAS_BIN=FALSE

message(string)

This	function	will	always	succeed,	and	will	display	the	given	string	to	the	user.

error(string)

This	function	will	never	return	a	value.	It	will	display	the	given	string	to	the
user,	and	then	exit	qmake.	This	function	should	only	be	used	for	very	fatal
configurations.

For	example:

		release:debug:error(You	can't	have	release	and	debug	at	the	same	time!)

Environment	Variables	and	Configuration

QMAKESPEC

qmake	requires	a	platform	and	compiler	description	file	which	contains	many
default	values	used	to	generate	appropriate	makefiles.	The	standard	Qt
distribution	comes	with	many	of	these	files,	located	in	the	'mkspecs'	subdirectory
of	the	Qt	installation.

The	QMAKESPEC	environment	variable	can	contain	any	of	the	following:

A	complete	path	to	a	directory	containing	a	qmake.conf	file.	In	this	case
qmake	will	open	the	qmake.conf	file	from	within	that	directory.	If	the	file
does	not	exist,	qmake	will	exit	with	an	error.

The	name	of	a	platform-compiler	combination.	In	this	case,	qmake	will
search	in	the	directory	specified	by	the	QTDIR	environment	variable.

Note:	the	QMAKESPEC	path	will	automatically	be	added	to	the
INCLUDEPATH	system	variable.

INSTALLS

It	is	common	on	UNIX	to	be	able	to	install	from	the	same	utility	as	you	build
with	(e.g	make	install).	For	this	qmake	has	introduce	the	concept	of	an	install	set.
The	notation	for	this	is	quite	simple,	first	you	fill	in	an	"object"	in	qmake	for
example:

		documentation.path	=	/usr/local/program/doc

		documentation.files	=	docs/*

In	this	way	you	are	telling	qmake	several	things	about	this	install,	first	that	you
plan	to	install	to	/usr/local/program/doc	(the	path	member),	second	that	you	plan
to	copy	everything	in	the	docs	directory.	Once	this	is	done	you	may	insert	it	in
the	install	list:

		INSTALLS	+=	documentation

Now	qmake	will	take	over	making	sure	the	correct	things	are	copied	to	the
specified	places.	If	however	you	require	greater	control	you	may	use	the	'extra'
member	of	the	object:

		unix:documentation.extra	=	create_docs;	mv	master.doc	toc.doc

Then	qmake	will	run	the	things	in	extra	(this	is	of	course	platform	specific,	so
you	may	need	to	test	for	your	platform	first,	this	case	we	test	for	unix).	Then	it
will	do	the	normal	processings	of	the	files	member.	Finally	if	you	appened	a
builtin	install	to	INSTALLS	qmake	(and	do	not	specify	a	files	or	extra	member)
will	decide	what	needs	to	be	copied	for	you,	currently	the	only	supported	builtin
is	target:

		target.path	=	/usr/local/myprogram

		INSTALLS	+=	target

With	this	qmake	will	know	what	you	plan	need	copied,	and	do	this	for	you.

Cache	File

The	cache	file	(mentioned	above	in	the	options)	is	a	special	file	qmake	will	read
to	find	settings	not	specified	in	the	qmake.conf	file,	the	.pro	file,	or	the
command	line.	If	-nocache	is	specified,	qmake	will	try	to	find	a	file	called
.qmake.cache	in	parent	directories.	If	it	fails	to	find	this	file,	it	will	silently
ignore	this	step	of	processing.

Library	Dependencies

Often	when	linking	against	a	library	qmake	relies	on	the	underlying	platform	to
know	what	other	libraries	this	library	links	against,	and	lets	the	platform	pull
them	in.	In	many	cases,	however,	this	is	not	sufficent.	For	example	when
statically	linking	a	library	there	are	no	libraries	linked	against,	and	therefore	no
dependencies	to	those	libraries	are	created	-	however	an	application	that	later
links	against	this	library	will	need	to	know	where	to	find	the	symbols	that	the
linked	in	library	will	require.	To	help	with	this	situation	qmake	will	follow	a
library's	dependencies	when	it	feels	appropriate,	however	this	behaviour	must	be
enabled	in	qmake.	To	enable	requires	two	steps.	First,	you	must	enable	it	in	the
library	-	to	do	this	you	must	tell	qmake	to	save	information	about	this	library:

		CONFIG	+=	create_prl

This	is	only	relevant	to	the	lib	template,	and	will	be	ignored	for	all	others.	When
this	option	is	enabled	qmake	will	create	a	file	(called	a	.prl	file)	which	will	save
some	meta	information	about	the	library.	This	metafile	is	itself	just	a	qmake
project	file,	but	with	all	internal	variables.	You	are	free	to	view	this	file,	and	if
deleted	qmake	will	know	to	recreate	it	when	necesary	(either	when	the	.pro	file
is	later	read,	or	if	a	dependent	library	(described	below)	has	changed).	When
installing	this	library	(by	using	target	in	INSTALLS,	above)	qmake	will
automatically	copy	the	.prl	file	to	your	install	path.

The	second	step	to	enabling	this	processing	is	to	turn	on	reading	of	the	meta
information	created	above:

		CONFIG	+=	link_prl

When	this	is	turned	on	qmake	will	process	all	libraries	linked	to,	and	find	their
meta	information.	With	this	meta	information	qmake	will	figure	out	what	is
relevant	to	linking,	specifically	it	will	add	to	your	list	of	DEFINES	as	well	as
LIBS.	Once	qmake	has	processed	this	file,	it	will	then	look	through	the	newly
introduced	LIBS	and	find	their	dependent	.prl	files,	and	continue	until	all
libraries	have	been	resolved.	At	this	point	the	makefile	is	created	as	usual,	and
the	libraries	are	linked	explicity	against	your	program.

The	internals	of	the	.prl	file	are	left	closed	so	they	can	easily	change	later.	It	is
not	designed	to	be	changed	by	hand	however,	and	should	only	be	created	by
qmake	-	these	.prl	files	should	also	not	be	transfered	from	operating	system	to
operating	system	as	they	may	be	platform	dependent	(like	a	makefile).

File	Extensions

Under	normal	circumstances	qmake	will	try	to	use	appropriate	file	extensions	for
your	platform.	There	may	be	times,	however,	that	you	would	like	to	override	the
behavior	of	these	extensions.	To	do	this,	you	must	modify	builtin	variables	in
your	.pro	file,	which	will	in	turn	changes	qmake's	interpretation	of	these	files.
You	may	do	this	as:

		QMAKE_EXT_MOC	=	.mymoc

The	variables	are	as	follows:

QMAKE_EXT_MOC	-	This	modifies	the	extension	placed	on	included
moc	files.

QMAKE_EXT_UI	-	This	modifies	the	extension	used	for	designer	UI	files
(usually	in	FORMS).

QMAKE_EXT_PRL	-	This	modifies	the	extension	placed	on	library
dependency	files.

QMAKE_EXT_LEX	-	This	changes	the	suffix	used	in	files	(usually	in
LEXSOURCES).

QMAKE_EXT_YACC	-	This	changes	the	suffix	used	in	files	(usually	in
YACCSOURCES).

QMAKE_EXT_OBJ	-	This	changes	the	suffix	used	on	generated	object
files.

All	the	above	accept	just	the	first	value,	so	you	must	assign	to	it	one	value	that
will	be	used	through	your	makefile.	There	are	two	variables	that	accept	a	list	of
values,	they	are:

QMAKE_EXT_CPP	-	Changes	interpretation	all	files	with	these	suffixes	to
be	C++	source	files.

QMAKE_EXT_H	-	Changes	interpretation	all	files	with	these	suffixes	to	be
C	header	files.

Customizing	Makefile	Output

qmake	often	tries	to	be	all	things	to	all	build	tools,	this	is	often	less	than	ideal
when	you	really	need	to	run	special	platform	dependent	commands.	This	can	be
achieved	with	specific	instructions	to	the	different	qmake	backends	(currently
this	is	only	supported	by	the	UNIX	generator).

The	interfaces	to	customizing	the	Makefile	are	done	through	"objects"	as	in
other	places	in	qmake.	The	notation	for	this	is	quite	simple,	first	you	fill	in	an
"object"	in	qmake	for	example:

		mytarget.target	=	.buildfile

		mytarget.commands	=	touch	$$mytarget.target

		mytarget.depends	=	mytarget2

		mytarget2.commands	=	@echo	Building	$$mytarget.target

The	information	above	defines	a	qmake	target	called	mytarget	which	contains	a
Makefile	target	called	.buildfile,	.buildfile	is	generated	by	'touch	.buildfile',	and
finally	that	this	Makefile	target	depends	on	the	qmake	target	mytarget2.
Additionally	we've	defined	the	qmake	target	mytarget2	which	simply	echo's
something	to	stdout.

The	final	step	to	making	use	of	the	above	is	to	instruct	qmake	that	this	is	actually
an	object	used	by	the	target	building	parts	of	qmake	by:

QMAKE_EXTRA_UNIX_TARGETS	+=	mytarget	mytarget2

This	is	all	you	need	to	do	to	actually	build	custom	targets	in	qmake,	of	course
you	may	want	to	tie	one	of	these	targets	to	actually	building	the	qmake	build
target.	To	do	this,	you	simply	need	to	include	your	Makefile	target	in	the	list	of
TARGETDEPS.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

mocQt C++

C++ Q_OBJECT

C++#include

qmakeMakefile Qt

				class	MyClass	:	public	QObject

				{

								Q_OBJECT

				public:

								MyClass(QObject	*	parent=0,	const	char	*	name=0);

								~MyClass();

				signals:

								void	mySignal();

				public	slots:

								void	mySlot();

				};

Q_PROPERTYQ_ENUMS	
priority()setPriority()

				class	MyClass	:	public	QObject

				{

								Q_OBJECT

								Q_PROPERTY(Priority	priority	READ	priority	WRITE	setPriority)

								Q_ENUMS(Priority)

				public:

								MyClass(QObject	*	parent=0,	const	char	*	name=0);

								~MyClass();

								enum	Priority	{	High,	Low,	VeryHigh,	VeryLow	};

								void	setPriority(Priority);

								Priority	priority()	const;

				};

Q_OVERRIDEQ_SETSQ_CLASSINFO/

				class	MyClass	:	public	QObject

				{

								Q_OBJECT

								Q_CLASSINFO("Author",	"Oscar	Peterson")

								Q_CLASSINFO("Status",	"Very	nice	class")

				public:

								MyClass(QObject	*	parent=0,	const	char	*	name=0);

								~MyClass();

				};

C++

.h

myclass.h moc_myclass.cpp moc_myclass.oUnix
moc_myclass.objWindows

.cpp

myclass.cpp myclass.moc#include myclass.cpp

				#include	"myclass.moc"

myclass.cpp

Q_OBJECT

Makefile

Makefile

Trolltechmakefile qmakeMakefileMakefile

Makefile

Q_OBJECTGNUmakemakefile

				moc_%.cpp:	%.h

												moc	$<	-o	$@

makefile

				moc_NAME.cpp:	NAME.h

												moc	$<	-o	$@

moc_NAME.cppSOURCES moc_NAME.omoc_NAME.objOBJECTS

C++.cpp.C.cc.CC.cxx.c++

.cppQ_OBJECTmakefile

				NAME.o:	NAME.moc

				NAME.moc:	NAME.cpp

												moc	-i	$<	-o	$@

make NAME.cpp

				#include	"NAME.moc"

NAME.cpp

moc

moc

-o	file
file

-f
#include \.[hH][^.]*Hh

-i
#includeC++.cpp#include-i-f

-nw

-ldbg
lex

-p	path
#include path/

-q	path
qt	#include path/

MOC_SKIP_BEGINMOC_SKIP_ENDC++//
MOC_SKIP_BEGINMOC_SKIP_END

Q_OBJECT

YourClass::className()YourClassvtbl#includeC++

#include#define

C++

				class	SomeTemplate<int>	:	public	QFrame	{

								Q_OBJECT

								...

				signals:

								void	bugInMocDetected(int);

				};

QObject

QObject QObject

				class	SomeClass	:	public	QObject,	public	OtherClass	{

								...

				};

#include#defineQObject

/

				class	SomeClass	:	public	QObject	{

								Q_OBJECT

								...

				public	slots:

								//	

								void	apply(void	(*apply)(List	*,	void	*),	char	*);

				};

				typedef	void	(*ApplyFunctionType)(List	*,	void	*);

				class	SomeClass	:	public	QObject	{

								Q_OBJECT

								...

				public	slots:

								void	apply(ApplyFunctionType,	char	*);

				};

				class	SomeClass	:	public	QObject	{

								Q_OBJECT

								...

				signals:

								friend	class	ClassTemplate<char>;	//	

				};

C++

				class	Whatever	:	public	QButtonGroup	{

								...

				public	slots:

								void	QButtonGroup::buttonPressed;	//	

								...

				};

QButtonGroup::buttonPressed()

C++

1.	
2.	 C++

#define

				#ifdef	ultrix

				#define	SIGNEDNESS(a)	unsigned	a

				#else

				#define	SIGNEDNESS(a)	a

				#endif

				class	Whatever	:	public	QObject	{

								...

				signals:

								void	someSignal(SIGNEDNESS(int));

								...

				};

#define

				class	A	{

								Q_OBJECT

				public:

								class	B	{

								public	slots:			//	

												void	b();

												...

								};

				signals:

								class	B	{							//	

												void	b();

												...

								}:

				};

				class	SomeClass	:	public	QObject	{

								Q_OBJECT

				public	slots:

								SomeClass(QObject	*parent,	const	char	*name)

												:	QObject(parent,	name)	{	}	//	

								...

				};

				class	SomeClass	:	public	QObject	{

								Q_OBJECT

				public:

								...

								Q_PROPERTY(Priority	priority	READ	priority	WRITE	setPriority)	//	

								Q_ENUMS(Priority)	//	

								enum	Priority	{	High,	Low,	VeryHigh,	VeryLow	};

								void	setPriority(Priority);

								Priority	priority()	const;

								...

				};

Q_OBJECT

				class	SomeClass	:	public	QObject	{

								Q_OBJECT

								Q_PROPERTY(Priority	priority	READ	priority	WRITE	setPriority)

								Q_ENUMS(Priority)

				public:

								...

								enum	Priority	{	High,	Low,	VeryHigh,	VeryLow	};

								void	setPriority(Priority);

								Priority	priority()	const;

								...

				};

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

User	Interface	Compiler	(uic)
This	page	documents	the	User	Interface	Compiler	for	the	Qt	GUI	application
framework.	The	uic	reads	a	user	interface	definition	(.ui)	file	in	XML	as
generated	by	Qt	Designer	and	creates	corresponding	C++	header	or	source	files.
It	can	also	generate	an	image	file	to	embed	raw	image	data	in	C++	source	code.

Options

File	Generation	Options

Generate	declaration:

uic		[options]		<file>

Generate	implementation:

uic		[options]	-impl	<headerfile>	<file>

<headerfile>	-	name	of	the	declaration	file

Generate	image	collection:

uic		[options]	-embed	<project>	<image1>	<image2>	<image3>	...

<project>	-	project	name
<image[0..n]>	-	image	files

For	convenience,	uic	can	also	generate	declaration	or	implementation	stubs	for
subclasses.

Generate	subclass	declaration:

uic		[options]	-subdecl	<classname>	<headerfile>	<file>

<classname>	-	name	of	the	subclass	to	generate
<headerfile>	-	declaration	file	of	the	baseclass

Generate	subclass	implementation:

uic		[options]	-subimpl	<classname>	<headerfile>	<file>

<classname>	-	name	of	the	subclass	to	generate
<headerfile>	-	declaration	file	of	the	subclass

General	Options

-o	file	-	write	output	to	'file'	rather	than	to	stdout.
-nofwd	-	omit	forward	declarations	of	custom	classes	in	the	generated
header	file.	This	is	necessary	if	typedef	classes	are	used.
-tr	func	-	use	func(sourceText,	comment)	rather	than	trUtf8(sourceText,
comment)	for	internationalization.

Usage

uic	is	almost	always	invoked	by	make	(1),	rather	than	by	hand.

Here	are	useful	makefile	rules	if	you	only	use	GNU	make:

				%.h:	%.ui

								uic	$<	-o	$@

				%.cpp:	%.ui

								uic	-impl	$*.h	$<	-o	$@

If	you	want	to	write	portably,	you	can	use	individual	rules	of	the	following	form:

				NAME.h:	NAME.ui

								uic	$<	-o	$@

				NAME.cpp:	NAME.ui

								uic	-impl	$*.h	$<	-o	$@

You	must	also	remember	to	add	NAME.cpp	to	your	SOURCES	(substitute	your
favorite	name)	variable	and	NAME.o	to	your	OBJECTS	variable.

(While	we	prefer	to	name	our	C++	source	files	.cpp,	the	uic	doesn't	care,	so	you
can	use	.C,	.cc,	.CC,	.cxx	or	even	.c++	if	you	prefer.)

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Standard	Accelerator	Keys
Applications	invariably	need	to	define	accelerator	keys	for	actions.	Qt	fully
supports	accelerators,	for	example	with	QAccel::shortcutKey().

Here	are	Microsoft's	recommendations	for	accelerator	keys,	with	comments
about	the	Open	Group's	recommendations	where	they	exist	and	differ.	For	most
commands,	the	Open	Group	either	has	no	advice	or	agrees	with	Microsoft.

The	emboldened	letter	plus	Alt	is	Microsoft's	recommended	choice,	and	we
recommend	supporting	it.	For	an	Apply	button,	for	example,	we	recommend
QButton::setText(tr("&Apply"));

If	you	have	conflicting	commands	(e.g.	About	and	Apply	buttons	in	the	same
dialog),	you	must	decide	for	yourself.

About
Always	on	Top
Apply
Back
Browse
Close	(CDE:	Alt+F4;	Alt+F4	is	"close	window"	in	Windows)
Copy	(CDE:	Ctrl+C,	Ctrl+Insert)
Copy	Here
Create	Shortcut
Create	Shortcut	Here
Cut
Delete
Edit
Exit
Explore
File
Find
Help
Help	Topics
Hide
Insert

Insert	Object
Link	Here
Maximize
Minimize
Move
Move	Here
New
Next
No
Open
Open	With
Page	Setup
Paste
Paste	Link
Paste	Shortcut
Paste	Special
Pause
Play
Print
Print	Here
Properties
Quick	View
Redo	(CDE:	Ctrl+Y,	Alt+Backspace)
Repeat
Restore
Resume
Retry
Run
Save
Save	As
Select	All
Send	To
Show
Size
Split
Stop
Undo	(CDE:	Ctrl+Z	or	Alt+Backspace)
View
What's	This?

Window
Yes

There	are	also	a	lot	of	other	keys	and	actions	(that	use	other	modifier	keys	than
Alt).	See	the	Microsoft	and	The	Open	Group	documentation	for	details.

The	Microsoft	book	has	ISBN	0735605661.	The	corresponding	Open	Group
book	is	very	hard	to	find,	rather	expensive	and	we	cannot	recommend	it.
However,	if	you	really	want	it,	OGPubs@opengroup.org	might	be	able	to	help.
Ask	them	for	ISBN	1859121047.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.amazon.com/exec/obidos/ASIN/0735605661/trolltech/t
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Qt	Free	Edition	License	Agreement
The	Qt	Free	Edition	is	distributed	under	the	Q	Public	License	(QPL).	It	allows
free	use	of	Qt	Free	Edition	for	running	software	developed	by	others,	and	free
use	of	Qt	Free	Edition	for	development	of	free/Open	Source	software.	There	is
more	information	about	the	QPL	at	the	Trolltech	web	site.

Note	that	the	Qt/Embedded	Free	Edition	is	not	distributed	under	the	QPL,	but
under	the	GNU	General	Public	License	(GPL).

For	development	non-free/proprietary	software,	the	Qt	Professional	Edition	is
available.	It	has	a	normal	commercial	library	license,	with	none	of	the	special
restrictions	of	the	QPL	or	the	GPL.

http://www.trolltech.com/qpl/

THE	Q	PUBLIC	LICENSE	version	1.0

Copyright	(C)	1999-2000	Trolltech	AS,	Norway.
Everyone	is	permitted	to	copy	and	distribute	this	license	document.

The	intent	of	this	license	is	to	establish	freedom	to	share	and	change	the	software
regulated	by	this	license	under	the	open	source	model.

This	license	applies	to	any	software	containing	a	notice	placed	by	the	copyright
holder	saying	that	it	may	be	distributed	under	the	terms	of	the	Q	Public	License
version	1.0.	Such	software	is	herein	referred	to	as	the	Software.	This	license
covers	modification	and	distribution	of	the	Software,	use	of	third-party
application	programs	based	on	the	Software,	and	development	of	free	software
which	uses	the	Software.

Granted	Rights

1.	You	are	granted	the	non-exclusive	rights	set	forth	in	this	license	provided	you
agree	to	and	comply	with	any	and	all	conditions	in	this	license.	Whole	or	partial
distribution	of	the	Software,	or	software	items	that	link	with	the	Software,	in	any
form	signifies	acceptance	of	this	license.

2.	You	may	copy	and	distribute	the	Software	in	unmodified	form	provided	that
the	entire	package,	including	-	but	not	restricted	to	-	copyright,	trademark	notices
and	disclaimers,	as	released	by	the	initial	developer	of	the	Software,	is
distributed.

3.	You	may	make	modifications	to	the	Software	and	distribute	your
modifications,	in	a	form	that	is	separate	from	the	Software,	such	as	patches.	The
following	restrictions	apply	to	modifications:

a.	Modifications	must	not	alter	or	remove	any	copyright	notices	in	the
Software.

b.	When	modifications	to	the	Software	are	released	under	this	license,	a
non-exclusive	royalty-free	right	is	granted	to	the	initial	developer	of	the
Software	to	distribute	your	modification	in	future	versions	of	the	Software
provided	such	versions	remain	available	under	these	terms	in	addition	to

any	other	license(s)	of	the	initial	developer.

4.	You	may	distribute	machine-executable	forms	of	the	Software	or	machine-
executable	forms	of	modified	versions	of	the	Software,	provided	that	you	meet
these	restrictions:

a.	You	must	include	this	license	document	in	the	distribution.

b.	You	must	ensure	that	all	recipients	of	the	machine-executable	forms	are
also	able	to	receive	the	complete	machine-readable	source	code	to	the
distributed	Software,	including	all	modifications,	without	any	charge
beyond	the	costs	of	data	transfer,	and	place	prominent	notices	in	the
distribution	explaining	this.

c.	You	must	ensure	that	all	modifications	included	in	the	machine-
executable	forms	are	available	under	the	terms	of	this	license.

5.	You	may	use	the	original	or	modified	versions	of	the	Software	to	compile,	link
and	run	application	programs	legally	developed	by	you	or	by	others.

6.	You	may	develop	application	programs,	reusable	components	and	other
software	items	that	link	with	the	original	or	modified	versions	of	the	Software.
These	items,	when	distributed,	are	subject	to	the	following	requirements:

a.	You	must	ensure	that	all	recipients	of	machine-executable	forms	of	these
items	are	also	able	to	receive	and	use	the	complete	machine-readable	source
code	to	the	items	without	any	charge	beyond	the	costs	of	data	transfer.

b.	You	must	explicitly	license	all	recipients	of	your	items	to	use	and	re-
distribute	original	and	modified	versions	of	the	items	in	both	machine-
executable	and	source	code	forms.	The	recipients	must	be	able	to	do	so
without	any	charges	whatsoever,	and	they	must	be	able	to	re-distribute	to
anyone	they	choose.

c.	If	the	items	are	not	available	to	the	general	public,	and	the	initial
developer	of	the	Software	requests	a	copy	of	the	items,	then	you	must
supply	one.

Limitations	of	Liability

In	no	event	shall	the	initial	developers	or	copyright	holders	be	liable	for	any
damages	whatsoever,	including	-	but	not	restricted	to	-	lost	revenue	or	profits	or
other	direct,	indirect,	special,	incidental	or	consequential	damages,	even	if	they
have	been	advised	of	the	possibility	of	such	damages,	except	to	the	extent
invariable	law,	if	any,	provides	otherwise.

No	Warranty

The	Software	and	this	license	document	are	provided	AS	IS	with	NO
WARRANTY	OF	ANY	KIND,	INCLUDING	THE	WARRANTY	OF	DESIGN,
MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

Choice	of	Law

This	license	is	governed	by	the	Laws	of	Norway.	Disputes	shall	be	settled	by
Oslo	City	Court.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

GNU	General	Public	License
The	Qt	GUI	Toolkit	is	Copyright	(C)	1994-2002	Trolltech	AS.

The	Qt	Free	Edition	and	the	Qt/Embedded	Free	Edition	are	available	under	the
GPL.	The	Qt	Free	Edition	(for	Unix/X11)	is	also	available	under	the	QPL.

	You	may	use,	distribute	and	copy	the	Qt	GUI	Toolkit	under	the	terms	of

	GNU	General	Public	License	version	2,	which	is	displayed	below.

																				GNU	GENERAL	PUBLIC	LICENSE

																							Version	2,	June	1991

	Copyright	(C)	1989,	1991	Free	Software	Foundation,	Inc.

																										675	Mass	Ave,	Cambridge,	MA	02139,	USA

	Everyone	is	permitted	to	copy	and	distribute	verbatim	copies

	of	this	license	document,	but	changing	it	is	not	allowed.

																												Preamble

		The	licenses	for	most	software	are	designed	to	take	away	your

freedom	to	share	and	change	it.		By	contrast,	the	GNU	General	Public

License	is	intended	to	guarantee	your	freedom	to	share	and	change	free

software--to	make	sure	the	software	is	free	for	all	its	users.		This

General	Public	License	applies	to	most	of	the	Free	Software

Foundation's	software	and	to	any	other	program	whose	authors	commit	to

using	it.		(Some	other	Free	Software	Foundation	software	is	covered	by

the	GNU	Library	General	Public	License	instead.)		You	can	apply	it	to

your	programs,	too.

		When	we	speak	of	free	software,	we	are	referring	to	freedom,	not

price.		Our	General	Public	Licenses	are	designed	to	make	sure	that	you

have	the	freedom	to	distribute	copies	of	free	software	(and	charge	for

this	service	if	you	wish),	that	you	receive	source	code	or	can	get	it

if	you	want	it,	that	you	can	change	the	software	or	use	pieces	of	it

in	new	free	programs;	and	that	you	know	you	can	do	these	things.

		To	protect	your	rights,	we	need	to	make	restrictions	that	forbid

anyone	to	deny	you	these	rights	or	to	ask	you	to	surrender	the	rights.

These	restrictions	translate	to	certain	responsibilities	for	you	if	you

distribute	copies	of	the	software,	or	if	you	modify	it.

		For	example,	if	you	distribute	copies	of	such	a	program,	whether

gratis	or	for	a	fee,	you	must	give	the	recipients	all	the	rights	that

you	have.		You	must	make	sure	that	they,	too,	receive	or	can	get	the

source	code.		And	you	must	show	them	these	terms	so	they	know	their

rights.

		We	protect	your	rights	with	two	steps:	(1)	copyright	the	software,	and

(2)	offer	you	this	license	which	gives	you	legal	permission	to	copy,

distribute	and/or	modify	the	software.

		Also,	for	each	author's	protection	and	ours,	we	want	to	make	certain

that	everyone	understands	that	there	is	no	warranty	for	this	free

software.		If	the	software	is	modified	by	someone	else	and	passed	on,	we

want	its	recipients	to	know	that	what	they	have	is	not	the	original,	so

that	any	problems	introduced	by	others	will	not	reflect	on	the	original

authors'	reputations.

		Finally,	any	free	program	is	threatened	constantly	by	software

patents.		We	wish	to	avoid	the	danger	that	redistributors	of	a	free

program	will	individually	obtain	patent	licenses,	in	effect	making	the

program	proprietary.		To	prevent	this,	we	have	made	it	clear	that	any

patent	must	be	licensed	for	everyone's	free	use	or	not	licensed	at	all.

		The	precise	terms	and	conditions	for	copying,	distribution	and

modification	follow.

																				GNU	GENERAL	PUBLIC	LICENSE

			TERMS	AND	CONDITIONS	FOR	COPYING,	DISTRIBUTION	AND	MODIFICATION

		0.	This	License	applies	to	any	program	or	other	work	which	contains

a	notice	placed	by	the	copyright	holder	saying	it	may	be	distributed

under	the	terms	of	this	General	Public	License.		The	"Program",	below,

refers	to	any	such	program	or	work,	and	a	"work	based	on	the	Program"

means	either	the	Program	or	any	derivative	work	under	copyright	law:

that	is	to	say,	a	work	containing	the	Program	or	a	portion	of	it,

either	verbatim	or	with	modifications	and/or	translated	into	another

language.		(Hereinafter,	translation	is	included	without	limitation	in

the	term	"modification".)		Each	licensee	is	addressed	as	"you".

Activities	other	than	copying,	distribution	and	modification	are	not

covered	by	this	License;	they	are	outside	its	scope.		The	act	of

running	the	Program	is	not	restricted,	and	the	output	from	the	Program

is	covered	only	if	its	contents	constitute	a	work	based	on	the

Program	(independent	of	having	been	made	by	running	the	Program).

Whether	that	is	true	depends	on	what	the	Program	does.

		1.	You	may	copy	and	distribute	verbatim	copies	of	the	Program's

source	code	as	you	receive	it,	in	any	medium,	provided	that	you

conspicuously	and	appropriately	publish	on	each	copy	an	appropriate

copyright	notice	and	disclaimer	of	warranty;	keep	intact	all	the

notices	that	refer	to	this	License	and	to	the	absence	of	any	warranty;

and	give	any	other	recipients	of	the	Program	a	copy	of	this	License

along	with	the	Program.

You	may	charge	a	fee	for	the	physical	act	of	transferring	a	copy,	and

you	may	at	your	option	offer	warranty	protection	in	exchange	for	a	fee.

		2.	You	may	modify	your	copy	or	copies	of	the	Program	or	any	portion

of	it,	thus	forming	a	work	based	on	the	Program,	and	copy	and

distribute	such	modifications	or	work	under	the	terms	of	Section	1

above,	provided	that	you	also	meet	all	of	these	conditions:

				a)	You	must	cause	the	modified	files	to	carry	prominent	notices

				stating	that	you	changed	the	files	and	the	date	of	any	change.

				b)	You	must	cause	any	work	that	you	distribute	or	publish,	that	in

				whole	or	in	part	contains	or	is	derived	from	the	Program	or	any

				part	thereof,	to	be	licensed	as	a	whole	at	no	charge	to	all	third

				parties	under	the	terms	of	this	License.

				c)	If	the	modified	program	normally	reads	commands	interactively

				when	run,	you	must	cause	it,	when	started	running	for	such

				interactive	use	in	the	most	ordinary	way,	to	print	or	display	an

				announcement	including	an	appropriate	copyright	notice	and	a

				notice	that	there	is	no	warranty	(or	else,	saying	that	you	provide

				a	warranty)	and	that	users	may	redistribute	the	program	under

				these	conditions,	and	telling	the	user	how	to	view	a	copy	of	this

				License.		(Exception:	if	the	Program	itself	is	interactive	but

				does	not	normally	print	such	an	announcement,	your	work	based	on

				the	Program	is	not	required	to	print	an	announcement.)

These	requirements	apply	to	the	modified	work	as	a	whole.		If

identifiable	sections	of	that	work	are	not	derived	from	the	Program,

and	can	be	reasonably	considered	independent	and	separate	works	in

themselves,	then	this	License,	and	its	terms,	do	not	apply	to	those

sections	when	you	distribute	them	as	separate	works.		But	when	you

distribute	the	same	sections	as	part	of	a	whole	which	is	a	work	based

on	the	Program,	the	distribution	of	the	whole	must	be	on	the	terms	of

this	License,	whose	permissions	for	other	licensees	extend	to	the

entire	whole,	and	thus	to	each	and	every	part	regardless	of	who	wrote	it.

Thus,	it	is	not	the	intent	of	this	section	to	claim	rights	or	contest

your	rights	to	work	written	entirely	by	you;	rather,	the	intent	is	to

exercise	the	right	to	control	the	distribution	of	derivative	or

collective	works	based	on	the	Program.

In	addition,	mere	aggregation	of	another	work	not	based	on	the	Program

with	the	Program	(or	with	a	work	based	on	the	Program)	on	a	volume	of

a	storage	or	distribution	medium	does	not	bring	the	other	work	under

the	scope	of	this	License.

		3.	You	may	copy	and	distribute	the	Program	(or	a	work	based	on	it,

under	Section	2)	in	object	code	or	executable	form	under	the	terms	of

Sections	1	and	2	above	provided	that	you	also	do	one	of	the	following:

				a)	Accompany	it	with	the	complete	corresponding	machine-readable

				source	code,	which	must	be	distributed	under	the	terms	of	Sections

				1	and	2	above	on	a	medium	customarily	used	for	software	interchange;	or,

				b)	Accompany	it	with	a	written	offer,	valid	for	at	least	three

				years,	to	give	any	third	party,	for	a	charge	no	more	than	your

				cost	of	physically	performing	source	distribution,	a	complete

				machine-readable	copy	of	the	corresponding	source	code,	to	be

				distributed	under	the	terms	of	Sections	1	and	2	above	on	a	medium

				customarily	used	for	software	interchange;	or,

				c)	Accompany	it	with	the	information	you	received	as	to	the	offer

				to	distribute	corresponding	source	code.		(This	alternative	is

				allowed	only	for	noncommercial	distribution	and	only	if	you

				received	the	program	in	object	code	or	executable	form	with	such

				an	offer,	in	accord	with	Subsection	b	above.)

The	source	code	for	a	work	means	the	preferred	form	of	the	work	for

making	modifications	to	it.		For	an	executable	work,	complete	source

code	means	all	the	source	code	for	all	modules	it	contains,	plus	any

associated	interface	definition	files,	plus	the	scripts	used	to

control	compilation	and	installation	of	the	executable.		However,	as	a

special	exception,	the	source	code	distributed	need	not	include

anything	that	is	normally	distributed	(in	either	source	or	binary

form)	with	the	major	components	(compiler,	kernel,	and	so	on)	of	the

operating	system	on	which	the	executable	runs,	unless	that	component

itself	accompanies	the	executable.

If	distribution	of	executable	or	object	code	is	made	by	offering

access	to	copy	from	a	designated	place,	then	offering	equivalent

access	to	copy	the	source	code	from	the	same	place	counts	as

distribution	of	the	source	code,	even	though	third	parties	are	not

compelled	to	copy	the	source	along	with	the	object	code.

		4.	You	may	not	copy,	modify,	sublicense,	or	distribute	the	Program

except	as	expressly	provided	under	this	License.		Any	attempt

otherwise	to	copy,	modify,	sublicense	or	distribute	the	Program	is

void,	and	will	automatically	terminate	your	rights	under	this	License.

However,	parties	who	have	received	copies,	or	rights,	from	you	under

this	License	will	not	have	their	licenses	terminated	so	long	as	such

parties	remain	in	full	compliance.

		5.	You	are	not	required	to	accept	this	License,	since	you	have	not

signed	it.		However,	nothing	else	grants	you	permission	to	modify	or

distribute	the	Program	or	its	derivative	works.		These	actions	are

prohibited	by	law	if	you	do	not	accept	this	License.		Therefore,	by

modifying	or	distributing	the	Program	(or	any	work	based	on	the

Program),	you	indicate	your	acceptance	of	this	License	to	do	so,	and

all	its	terms	and	conditions	for	copying,	distributing	or	modifying

the	Program	or	works	based	on	it.

		6.	Each	time	you	redistribute	the	Program	(or	any	work	based	on	the

Program),	the	recipient	automatically	receives	a	license	from	the

original	licensor	to	copy,	distribute	or	modify	the	Program	subject	to

these	terms	and	conditions.		You	may	not	impose	any	further

restrictions	on	the	recipients'	exercise	of	the	rights	granted	herein.

You	are	not	responsible	for	enforcing	compliance	by	third	parties	to

this	License.

		7.	If,	as	a	consequence	of	a	court	judgment	or	allegation	of	patent

infringement	or	for	any	other	reason	(not	limited	to	patent	issues),

conditions	are	imposed	on	you	(whether	by	court	order,	agreement	or

otherwise)	that	contradict	the	conditions	of	this	License,	they	do	not

excuse	you	from	the	conditions	of	this	License.		If	you	cannot

distribute	so	as	to	satisfy	simultaneously	your	obligations	under	this

License	and	any	other	pertinent	obligations,	then	as	a	consequence	you

may	not	distribute	the	Program	at	all.		For	example,	if	a	patent

license	would	not	permit	royalty-free	redistribution	of	the	Program	by

all	those	who	receive	copies	directly	or	indirectly	through	you,	then

the	only	way	you	could	satisfy	both	it	and	this	License	would	be	to

refrain	entirely	from	distribution	of	the	Program.

If	any	portion	of	this	section	is	held	invalid	or	unenforceable	under

any	particular	circumstance,	the	balance	of	the	section	is	intended	to

apply	and	the	section	as	a	whole	is	intended	to	apply	in	other

circumstances.

It	is	not	the	purpose	of	this	section	to	induce	you	to	infringe	any

patents	or	other	property	right	claims	or	to	contest	validity	of	any

such	claims;	this	section	has	the	sole	purpose	of	protecting	the

integrity	of	the	free	software	distribution	system,	which	is

implemented	by	public	license	practices.		Many	people	have	made

generous	contributions	to	the	wide	range	of	software	distributed

through	that	system	in	reliance	on	consistent	application	of	that

system;	it	is	up	to	the	author/donor	to	decide	if	he	or	she	is	willing

to	distribute	software	through	any	other	system	and	a	licensee	cannot

impose	that	choice.

This	section	is	intended	to	make	thoroughly	clear	what	is	believed	to

be	a	consequence	of	the	rest	of	this	License.

		8.	If	the	distribution	and/or	use	of	the	Program	is	restricted	in

certain	countries	either	by	patents	or	by	copyrighted	interfaces,	the

original	copyright	holder	who	places	the	Program	under	this	License

may	add	an	explicit	geographical	distribution	limitation	excluding

those	countries,	so	that	distribution	is	permitted	only	in	or	among

countries	not	thus	excluded.		In	such	case,	this	License	incorporates

the	limitation	as	if	written	in	the	body	of	this	License.

		9.	The	Free	Software	Foundation	may	publish	revised	and/or	new	versions

of	the	General	Public	License	from	time	to	time.		Such	new	versions	will

be	similar	in	spirit	to	the	present	version,	but	may	differ	in	detail	to

address	new	problems	or	concerns.

Each	version	is	given	a	distinguishing	version	number.		If	the	Program

specifies	a	version	number	of	this	License	which	applies	to	it	and	"any

later	version",	you	have	the	option	of	following	the	terms	and	conditions

either	of	that	version	or	of	any	later	version	published	by	the	Free

Software	Foundation.		If	the	Program	does	not	specify	a	version	number	of

this	License,	you	may	choose	any	version	ever	published	by	the	Free	Software

Foundation.

		10.	If	you	wish	to	incorporate	parts	of	the	Program	into	other	free

programs	whose	distribution	conditions	are	different,	write	to	the	author

to	ask	for	permission.		For	software	which	is	copyrighted	by	the	Free

Software	Foundation,	write	to	the	Free	Software	Foundation;	we	sometimes

make	exceptions	for	this.		Our	decision	will	be	guided	by	the	two	goals

of	preserving	the	free	status	of	all	derivatives	of	our	free	software	and

of	promoting	the	sharing	and	reuse	of	software	generally.

																												NO	WARRANTY

		11.	BECAUSE	THE	PROGRAM	IS	LICENSED	FREE	OF	CHARGE,	THERE	IS	NO	WARRANTY

FOR	THE	PROGRAM,	TO	THE	EXTENT	PERMITTED	BY	APPLICABLE	LAW.		EXCEPT	WHEN

OTHERWISE	STATED	IN	WRITING	THE	COPYRIGHT	HOLDERS	AND/OR	OTHER	PARTIES

PROVIDE	THE	PROGRAM	"AS	IS"	WITHOUT	WARRANTY	OF	ANY	KIND,	EITHER	EXPRESSED

OR	IMPLIED,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF

MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.		THE	ENTIRE	RISK	AS

TO	THE	QUALITY	AND	PERFORMANCE	OF	THE	PROGRAM	IS	WITH	YOU.		SHOULD	THE

PROGRAM	PROVE	DEFECTIVE,	YOU	ASSUME	THE	COST	OF	ALL	NECESSARY	SERVICING,

REPAIR	OR	CORRECTION.

		12.	IN	NO	EVENT	UNLESS	REQUIRED	BY	APPLICABLE	LAW	OR	AGREED	TO	IN	WRITING

WILL	ANY	COPYRIGHT	HOLDER,	OR	ANY	OTHER	PARTY	WHO	MAY	MODIFY	AND/OR

REDISTRIBUTE	THE	PROGRAM	AS	PERMITTED	ABOVE,	BE	LIABLE	TO	YOU	FOR	DAMAGES,

INCLUDING	ANY	GENERAL,	SPECIAL,	INCIDENTAL	OR	CONSEQUENTIAL	DAMAGES	ARISING

OUT	OF	THE	USE	OR	INABILITY	TO	USE	THE	PROGRAM	(INCLUDING	BUT	NOT	LIMITED

TO	LOSS	OF	DATA	OR	DATA	BEING	RENDERED	INACCURATE	OR	LOSSES	SUSTAINED	BY

YOU	OR	THIRD	PARTIES	OR	A	FAILURE	OF	THE	PROGRAM	TO	OPERATE	WITH	ANY	OTHER

PROGRAMS),	EVEN	IF	SUCH	HOLDER	OR	OTHER	PARTY	HAS	BEEN	ADVISED	OF	THE

POSSIBILITY	OF	SUCH	DAMAGES.

																					END	OF	TERMS	AND	CONDITIONS

								Appendix:	How	to	Apply	These	Terms	to	Your	New	Programs

		If	you	develop	a	new	program,	and	you	want	it	to	be	of	the	greatest

possible	use	to	the	public,	the	best	way	to	achieve	this	is	to	make	it

free	software	which	everyone	can	redistribute	and	change	under	these	terms.

		To	do	so,	attach	the	following	notices	to	the	program.		It	is	safest

to	attach	them	to	the	start	of	each	source	file	to	most	effectively

convey	the	exclusion	of	warranty;	and	each	file	should	have	at	least

the	"copyright"	line	and	a	pointer	to	where	the	full	notice	is	found.

				<one	line	to	give	the	program's	name	and	a	brief	idea	of	what	it	does.>

				Copyright	(C)	19yy		<name	of	author>

				This	program	is	free	software;	you	can	redistribute	it	and/or	modify

				it	under	the	terms	of	the	GNU	General	Public	License	as	published	by

				the	Free	Software	Foundation;	either	version	2	of	the	License,	or

				(at	your	option)	any	later	version.

				This	program	is	distributed	in	the	hope	that	it	will	be	useful,

				but	WITHOUT	ANY	WARRANTY;	without	even	the	implied	warranty	of

				MERCHANTABILITY	or	FITNESS	FOR	A	PARTICULAR	PURPOSE.		See	the

				GNU	General	Public	License	for	more	details.

				You	should	have	received	a	copy	of	the	GNU	General	Public	License

				along	with	this	program;	if	not,	write	to	the	Free	Software

				Foundation,	Inc.,	675	Mass	Ave,	Cambridge,	MA	02139,	USA.

Also	add	information	on	how	to	contact	you	by	electronic	and	paper	mail.

If	the	program	is	interactive,	make	it	output	a	short	notice	like	this

when	it	starts	in	an	interactive	mode:

				Gnomovision	version	69,	Copyright	(C)	19yy	name	of	author

				Gnomovision	comes	with	ABSOLUTELY	NO	WARRANTY;	for	details	type	`show	w'.

				This	is	free	software,	and	you	are	welcome	to	redistribute	it

				under	certain	conditions;	type	`show	c'	for	details.

The	hypothetical	commands	`show	w'	and	`show	c'	should	show	the	appropriate

parts	of	the	General	Public	License.		Of	course,	the	commands	you	use	may

be	called	something	other	than	`show	w'	and	`show	c';	they	could	even	be

mouse-clicks	or	menu	items--whatever	suits	your	program.

You	should	also	get	your	employer	(if	you	work	as	a	programmer)	or	your

school,	if	any,	to	sign	a	"copyright	disclaimer"	for	the	program,	if

necessary.		Here	is	a	sample;	alter	the	names:

		Yoyodyne,	Inc.,	hereby	disclaims	all	copyright	interest	in	the	program

		`Gnomovision'	(which	makes	passes	at	compilers)	written	by	James	Hacker.

		<signature	of	Ty	Coon>,	1	April	1989

		Ty	Coon,	President	of	Vice

This	General	Public	License	does	not	permit	incorporating	your	program	into

proprietary	programs.		If	your	program	is	a	subroutine	library,	you	may

consider	it	more	useful	to	permit	linking	proprietary	applications	with	the

library.		If	this	is	what	you	want	to	do,	use	the	GNU	Library	General

Public	License	instead	of	this	License.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Licenses	for	Code	Used	in	Qt
Qt	contains	a	little	code	that	is	not	under	the	QPL,	the	GPL,	or	the	Qt
Commercial	License	Agreement,	but	rather	under	specific	highly	permissive
license	from	the	original	authors.	This	page	lists	the	licenses	used	for	that	code,
names	the	authors,	and	links	to	the	points	where	it	is	used.

Trolltech	gratefully	acknowledges	these	and	others	contribution	to	Qt.	We
recommend	that	all	programs	that	use	Qt	also	acknowledge	these	contributions,
and	quote	all	these	license	statements	in	an	appendix	to	the	documentation.

Copyright	(C)	1989,	1991	by	Jef	Poskanzer.

Permission	to	use,	copy,	modify,	and	distribute	this	software	and	its
documentation	for	any	purpose	and	without	fee	is	hereby	granted,	provided	that
the	above	copyright	notice	appear	in	all	copies	and	that	both	that	copyright
notice	and	this	permission	notice	appear	in	supporting	documentation.	This
software	is	provided	"as	is"	without	express	or	implied	warranty.

QImage::smoothScale

Copyright	(C)	2000	TurboLinux,	Inc.	Written	by	Justin	Yu	and	Sean	Chen.
Copyright	(C)	2001	Turbolinux,	Inc.	Written	by	James	Su.	Copyright	(C)	2001
ThizLinux	Laboratory	Ltd.	Written	by	Anthony	Fok.

Redistribution	and	use	in	source	and	binary	forms,	with	or	without	modification,
are	permitted	provided	that	the	following	conditions	are	met:

1.	 Redistributions	of	source	code	must	retain	the	above	copyright	notice,	this
list	of	conditions	and	the	following	disclaimer.

2.	 Redistributions	in	binary	form	must	reproduce	the	above	copyright	notice,
this	list	of	conditions	and	the	following	disclaimer	in	the	documentation
and/or	other	materials	provided	with	the	distribution.

THIS	SOFTWARE	IS	PROVIDED	BY	THE	AUTHOR	AND

CONTRIBUTORS	``AS	IS''	AND	ANY	EXPRESS	OR	IMPLIED
WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED
WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A
PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO	EVENT	SHALL	THE
REGENTS	OR	CONTRIBUTORS	BE	LIABLE	FOR	ANY	DIRECT,
INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL
DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,	PROCUREMENT	OF
SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;
OR	BUSINESS	INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY
THEORY	OF	LIABILITY,	WHETHER	IN	CONTRACT,	STRICT	LIABILITY,
OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN
ANY	WAY	OUT	OF	THE	USE	OF	THIS	SOFTWARE,	EVEN	IF	ADVISED
OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

QGb18030Codec

Copyright	(c)	1999	Mizi	Research	Inc.	All	rights	reserved.

Redistribution	and	use	in	source	and	binary	forms,	with	or	without	modification,
are	permitted	provided	that	the	following	conditions	are	met:

1.	 Redistributions	of	source	code	must	retain	the	above	copyright	notice,	this
list	of	conditions	and	the	following	disclaimer.

2.	 Redistributions	in	binary	form	must	reproduce	the	above	copyright	notice,
this	list	of	conditions	and	the	following	disclaimer	in	the	documentation
and/or	other	materials	provided	with	the	distribution.

THIS	SOFTWARE	IS	PROVIDED	BY	THE	AUTHOR	AND
CONTRIBUTORS	"AS	IS"	AND	ANY	EXPRESS	OR	IMPLIED
WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED
WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A
PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO	EVENT	SHALL	THE
REGENTS	OR	CONTRIBUTORS	BE	LIABLE	FOR	ANY	DIRECT,
INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL
DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,	PROCUREMENT	OF
SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;
OR	BUSINESS	INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY
THEORY	OF	LIABILITY,	WHETHER	IN	CONTRACT,	STRICT	LIABILITY,

OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN
ANY	WAY	OUT	OF	THE	USE	OF	THIS	SOFTWARE,	EVEN	IF	ADVISED
OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

QEucKrCodec

Copyright	(c)	1999	Serika	Kurusugawa.	All	rights	reserved.

Redistribution	and	use	in	source	and	binary	forms,	with	or	without	modification,
are	permitted	provided	that	the	following	conditions	are	met:

1.	 Redistributions	of	source	code	must	retain	the	above	copyright	notice,	this
list	of	conditions	and	the	following	disclaimer.

2.	 Redistributions	in	binary	form	must	reproduce	the	above	copyright	notice,
this	list	of	conditions	and	the	following	disclaimer	in	the	documentation
and/or	other	materials	provided	with	the	distribution.

THIS	SOFTWARE	IS	PROVIDED	BY	THE	AUTHOR	AND
CONTRIBUTORS	"AS	IS".	ANY	EXPRESS	OR	IMPLIED	WARRANTIES,
INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF
MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE	ARE
DISCLAIMED.	IN	NO	EVENT	SHALL	THE	REGENTS	OR
CONTRIBUTORS	BE	LIABLE	FOR	ANY	DIRECT,	INDIRECT,
INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL
DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,	PROCUREMENT	OF
SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;
OR	BUSINESS	INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY
THEORY	OF	LIABILITY,	WHETHER	IN	CONTRACT,	STRICT	LIABILITY,
OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN
ANY	WAY	OUT	OF	THE	USE	OF	THIS	SOFTWARE,	EVEN	IF	ADVISED
OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

QEucJpCodec
QJisCodec
QSjisCodec

Copyright	1995,	Trinity	College	Computing	Center.	Written	by	David	Chappell.

Permission	to	use,	copy,	modify,	and	distribute	this	software	and	its
documentation	for	any	purpose	and	without	fee	is	hereby	granted,	provided	that
the	above	copyright	notice	appear	in	all	copies	and	that	both	that	copyright
notice	and	this	permission	notice	appear	in	supporting	documentation.	This
software	is	provided	"as	is"	without	express	or	implied	warranty.

TrueType	font	support.	These	functions	allow	PPR	to	generate	PostScript	fonts
from	Microsoft	compatible	TrueType	font	files.

The	functions	in	this	file	do	most	of	the	work	to	convert	a	TrueType	font	to	a
type	3	PostScript	font.

Most	of	the	material	in	this	file	is	derived	from	a	program	called	"ttf2ps"	which
L.	S.	Ng	posted	to	the	usenet	news	group	"comp.sources.postscript".	The	author
did	not	provide	a	copyright	notice	or	indicate	any	restrictions	on	use.

Last	revised	11	July	1995.

QPrinter

Copyright	1996	Daniel	Dardailler.

Permission	to	use,	copy,	modify,	distribute,	and	sell	this	software	for	any
purpose	is	hereby	granted	without	fee,	provided	that	the	above	copyright	notice
appear	in	all	copies	and	that	both	that	copyright	notice	and	this	permission	notice
appear	in	supporting	documentation,	and	that	the	name	of	Daniel	Dardailler	not
be	used	in	advertising	or	publicity	pertaining	to	distribution	of	the	software
without	specific,	written	prior	permission.	Daniel	Dardailler	makes	no
representations	about	the	suitability	of	this	software	for	any	purpose.	It	is
provided	"as	is"	without	express	or	implied	warranty.

Modifications	Copyright	1999	Matt	Koss,	under	the	same	license	as	above.

Drag	and	Drop

Copyright	2000	Hans	Petter	Bieker	.	All	rights	reserved.

Redistribution	and	use	in	source	and	binary	forms,	with	or	without	modification,

are	permitted	provided	that	the	following	conditions	are	met:

1.	 Redistributions	of	source	code	must	retain	the	above	copyright	notice,	this
list	of	conditions	and	the	following	disclaimer.

2.	 Redistributions	in	binary	form	must	reproduce	the	above	copyright	notice,
this	list	of	conditions	and	the	following	disclaimer	in	the	documentation
and/or	other	materials	provided	with	the	distribution.

THIS	SOFTWARE	IS	PROVIDED	BY	THE	AUTHOR	AND
CONTRIBUTORS	``AS	IS''	AND	ANY	EXPRESS	OR	IMPLIED
WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED
WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A
PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO	EVENT	SHALL	THE
REGENTS	OR	CONTRIBUTORS	BE	LIABLE	FOR	ANY	DIRECT,
INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL
DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,	PROCUREMENT	OF
SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;
OR	BUSINESS	INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY
THEORY	OF	LIABILITY,	WHETHER	IN	CONTRACT,	STRICT	LIABILITY,
OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN
ANY	WAY	OUT	OF	THE	USE	OF	THIS	SOFTWARE,	EVEN	IF	ADVISED
OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

QTsciiCodec

Qt	supports	GIF	reading	if	it	is	configured	that	way	during	installation	(see
qgif.h).	If	it	is,	we	are	required	to	state	that	"The	Graphics	Interchange	Format(c)
is	the	Copyright	property	of	CompuServe	Incorporated.	GIF(sm)	is	a	Service
Mark	property	of	CompuServe	Incorporated."

Warning:	If	you	are	in	a	country	that	recognizes	software	patents	and	in	which
Unisys	holds	a	patent	on	LZW	compression	and/or	decompression	and	you	want
to	use	GIF,	Unisys	may	require	you	to	license	that	technology.	Such	countries
include	Canada,	Japan,	the	USA,	France,	Germany,	Italy	and	the	UK.

GIF	support	may	be	removed	completely	in	a	future	version	of	Qt.	We
recommend	using	the	MNG	or	PNG	format.

QImageDecoder

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Thanks!
The	following	(and	probably	many	others)	have	provided	bug	reports,
suggestions,	patches,	beta	testing,	or	done	us	other	favors.	We	thank	you	all:

Adam	P.	Jenkins	<ajenkins	at	cs.umass.edu>
Ahmed	Metwally	<ametwaly	at	auc-cs28.eun.eg>
Aidas	Kasparas	<kaspar	at	soften.ktu.lt>
Alejandro	Aguilar	Sierra	<asierra	at	servidor.unam.mx>
Alex	<steeper	at	dial.pipex.com>
Alex	Kambis	<kambis	at	eos913c.gsfc.nasa.gov>
Alexander	Kozlov	<alex	at	hale.appl.sci-nnov.ru>
Alexander	Sanda	<alex	at	darkstar.ping.at>
Amos	Leffler	<leffler	at	netaxs.com>
Anders	Hanson	<andhan	at	lls.se>
Andreas	Schlempp	<schlempp	at	egd.igd.fhg.de>
Andrew	Bell	<abell	at	vsys.com>
Andrew	Gillham	<gillhaa	at	ghost.whirlpool.com>
Andrew	J.	Robinson	<robinson	at	eclipse.net>
Andrew	Pavlomanolakos	<app	at	novanet.net.au>
Andrew	R.	Tefft	<teffta	at	crypt.erie.ge.com>
Andrew	Vajoczki	<vajoczki	at	interlog.com>
André	Johansen	<Andre.Johansen	at	funcom.no>
Andy	Shaw	<andy	at	east.no>
Andy	Brice	<andyb	at	suntail.net>
Anton	Keyter	<ant	at	intekom.co.za>
Arnt	Gulbrandsen	<arnt	at	gulbrandsen.priv.no>
Ashley	Winters	<jql	at	accessone.com>
Aubrey	Soper	<azdak	at	ix.netcom.com>
Axel	Schwenke	<schwenke	at	HTWM.DE>
Ben	Bergen	<ben	at	gmg.com>
Bernard	Leach	<B.Leach	at	compsoc.cs.latrobe.edu.au>
Bernd	Johannes	Wuebben	<wuebben	at	math.cornell.edu>
Bernd	S.	Brentrup	<bsb	at	uni-muenster.de>
Bert	Haverkamp	<b.r.j.haverkamp	at	et.tudelft.nl>
Bjorn	Reese	<breese	at	dit.ou.dk>

Brian	Beattie	<beattie	at	drcpdx.stt3.com>
Brian	P.	Theodore	<theodore	at	std.saic.com>
Brian	White	<bcwhite	at	verisim.com>
Bryan	Scattergood	<bryan	at	fsel.com>
Carsten	Steckel	<carsten	at	cs.newcastle.edu.au>
Chao-Hsin,	Lin	<linchao	at	charlie.cns.iit.edu>
Chip	Salzenberg	<chip	at	atlantic.net>
Chris	Zwilling	<crzwlng	at	cloudnet.com>
Christian	Czezatke	<e9025461	at	student.tuwien.ac.at>
Christopher	Andrew	Spiking	<cas	at	Cs.Nott.AC.UK>
Christopher	J.	White	<cjwhite	at	rgit.wustl.edu>
Claus	Werner	<lzu96cw	at	reading.ac.uk>
Cloyce	D.	Spradling	<cloyce	at	austin.ibm.com>
Colin	Paul	Adams	<colin	at	colina.demon.co.uk>
Cristiano	Verondini	<cverond	at	deis219.deis.unibo.it>
Damyan	Pepper	<damyanp	at	cogs.susx.ac.uk>
Dan	Nickerson	<nickersond	at	uthscsa.edu>
Daniel	Brahneborg	<basic	at	well.com>
Daniel	Gruner	<dgruner	at	tikva.chem.utoronto.ca>
Daniel	J	Mitchell	<dan	at	rebellion.co.uk>
Danilo	Fiorenzano	<danilo	at	terranet.ab.ca>
Dante	Profeta	<profeta	at	neomedia.it>
Darryl	Ruggles	<001654r	at	dragon.acadiau.ca>
Dave	<dave	at	stellacore.com>
Dave	Steffen	<steffend	at	glitch.physics.colostate.edu>
Dean	Hall	<dwhall	at	deskstation.com>
Denis	Y.	Pershin	<dyp	at	isis.nsu.ru>
Diedrich	Vorberg	<Diedrich_Vorberg	at	cp.prima.ruhr.de>
Dietmar	Schaefer	<dietmar	at	cs.newcastle.edu.au>
Dimitri	Papadopoulos	<dpo	at	club-internet.fr>
Dirk	Mueller	<mueller	at	kde.org>
Dirk	Schwartmann	<dirk.schwartmann	at	dlr.de>
Dominik	Jergus	<djergus	at	ics.uci.edu>
Don	Sanders	<sanders	at	kde.org>
Donald	A.	Seielstad	<donald	at	gromit.scs.uiuc.edu>
Donna	J.	Armijo	<donna	at	KachinaTech.COM>
Doug	Boreland	<dborel	at	amex-trs.com>
Douglas	Lenz	<dlenz	at	spedsoft.com>
Dr	Mek	Buhl	Nielsen	<m.b.nielsen	at	bham.ac.uk>

Dr	Willem	A.	Schreuder	<Willem.Schreuder	at	prinmath.com>
E.	Kevin	Hall	<hall	at	boston.sgi.com>
Ed	Mackey	<emackey	at	Early.com>
Edmund	Taylor	<etaylor	at	interaccess.com>
Eric	Bos	<Eric.Bos	at	adelaide.maptek.com.au>
Eric	Brunson	<brunson	at	brunson.com>
Eric	Jansen	<jansen	at	photon.com>
Erik	Norell	<erik	at	Astrakan.HGS.SE>
Erik	Thiele	<erik	at	unterland.de>
Ernie	Pasveer	<erniep	at	vsl.com>
FRBall	<frb	at	umr.edu>
FUJIMOTO	Koji	<kochan	at	mbox.kyoto-inet.or.jp>
Fergal	Mc	Carthy	<fergal	at	ilo.dec.com>
Frank	Gockel	<gockel	at	etecs4.uni-duisburg.de>
Frank	Roscher	<frank	at	chemnitz.abs-rz.de>
Fredrik	Markström	<fredrik	at	zod.campus.luth.se>
Fredrik	Nehr	<fredrik_nehr	at	ivab.se>
FrenzelBhv	at	aol.com
Frugal	<frugal	at	wardrobe.demon.co.uk>
Frugal	the	Curious	<Chris.Ward	at	softcare.co.uk>
Gabor	V.	Gulyas	<gabor	at	robiomat.com>
Gary	E.	Sherman	<sherman	at	mrcc.com>
Geoff	Carpenter	<GCC	at	watson.ibm.com>
Geoffrey	Higginson	<ghiggins	at	gulf.uvic.ca>
Georg	Filios	<Georg.Filios	at	post.rwth-aachen.de>
George	Simunovich	<george	at	cia-g.com>
Giovanni	Carapelli	<gcarapel	at	mbox.vol.it>
Greg	Tomalesky	<tomalesk	at	yrkpa.kias.com>
Gregg	Jensen	<gwj	at	stl.nexen.com>
Gustav	"Gurre"	Kalvesten	<a94guska	at	ida.his.se>
Hal	DeVore	<hdevore	at	crow.bmc.com>
Hans	Flaechsig	<hans	at	hannes.owl.de>
Hans	Schlenker	<schlenkh	at	informatik.uni-muenchen.de>
Hardo	Mueller	<hardo	at	ipb.uni-bonn.de>
Henty	Waker	<henty	at	foxbat.sur.uct.ac.za>
Hrafnkell	Eiriksson	<hkelle	at	mmedia.is>
Ildefonso	Junquero	Martin-Arroyo	<junquero	at	sainsel.es>
Ingo	Stapel	<ingo.stapel	at	tu-clausthal.de>
J.	Solomon	Kostelnik	<roz	at	one.net>

Jae	Cho	<cs184-dc	at	ute.CS.Berkeley.EDU>
James	McIninch	<james	at	amber.biology.gatech.edu>
Jan	Aarsaether	<jaa	at	metis.no>
Jaromir	Dolecek	<dolecek	at	ics.muni.cz>
Jason	Evans	<evans911	at	cs.uidaho.edu>
Jay	Painter	<jay	at	a42.com>
Jean-Philippe	Langlois	<jpl	at	iname.com>
Jeff	Harris	<jharris	at	cis.ohio-state.edu>
Jeff	Largent	<jlargent	at	iu.net>
Jeffrey	Vetter	<vetter	at	lanl.gov>
Jeremy	Wohl	<jeremy	at	godzilli.cs.sunysb.edu>
Jim	Lauchlan	<jim.lauchlan	at	gecm.com>
Joachim	Backes	<backes	at	rhrk.uni-kl.de>
Jochen	Scharrlach	<jscharrl	at	BA-Stuttgart.De>
Joe	Croft	<jcroft	at	swbell.net>
Joel	Lindholm	<wizball	at	kewl.campus.luth.se>
John	H.	Reppy	<jhr	at	research.att.com>
John	Huertas	-	Jourda	<octarine	at	gte.net>
John	Ouellette	<ouellet	at	beluga.phys.UVic.CA>
John	Vidar	Larring	<larring	at	weatherone.tv>
Jon	Brumfitt	<jbrumfit	at	astro.estec.esa.nl>
Jose	Castro	<jocastro	at	erols.com>
Julian	Enticknap	<Julian.Enticknap	at	UK.Sun.COM>
Jussi-Pekka	Sairanen	<jussi-pekka.sairanen	at	research.nokia.com>
Kalle	Dalheimer	<kalle	at	dalheimer.hh.eunet.de>
Karl	Robillard	<karl	at	skygames.com>
Keith	Brown	<ksbrown	at	ix.netcom.com>
Keith	Dowsett	<kdowsett	at	rpms.ac.uk>
Ken	Hollis	<khollis	at	northwest.com>
Kirill	Konyagin	<kirill	at	asplinux.ru>
Klaus	Ebner	<klaus	at	gaspode.ndh.com>
Klaus-Georg	Adams	<Klaus-Georg.Adams	at	chemie.uni-karlsruhe.de>
Kristof	Depraetere	<Kristof.Depraetere	at	rug.ac.be>
Kurt	L	Anderson	<kurt+	at	osu.edu>
Larry	Lee	<lclee	at	primenet.com>
Lars	Knoll	<knoll	at	mpi-hd.mpg.de>
M.	G.	Berberich	<berberic	at	fmi.uni-passau.de>
Maas-Maarten	Zeeman	<mzeeman	at	cs.vu.nl>
Magnus	Persson	<mpersson	at	eritel.se>

Mario	Weilguni	<mweilguni	at	arctica.sime.com>
Mariya	<muha	at	iclub.nsu.ru>
Mark	Summerfield	<summer	at	perlpress.com>
Markku	Hihnala	<mah	at	ee.oulu.fi>
Marko	Macek	<Marko.Macek	at	snet.fer.uni-lj.si>
Martin	Baehr	<mbaehr	at	email.archlab.tuwien.ac.at>
Martin	Mueller	<mm	at	lunetix.de>
Martin	van	Velsen	<vvelsen	at	ronix.ptf.hro.nl>
Matthias	Ettrich	<ettrich	at	fisher.informatik.uni-tuebingen.de>
Matthias	Suencksen	<msuencks	at	techfak.uni-bielefeld.de>
Mattias	Engdegård	<f91-men	at	nada.kth.se>
Michael	Figley	<figley	at	ibmoto.com>
Michael	George	<george	at	quark.im4u.net>
Michael	Graff	<explorer	at	flame.org>
Michael	H.	Price	II	<price	at	ERC.MsState.Edu>
Michael	Harnois	<mharnois	at	sbt.net>
Michael	Hohmuth	<hohmuth	at	inf.tu-dresden.de>
Michael	Leodolter	<michael	at	lab1.psy.univie.ac.at>
Michael	Roth	<mroth	at	nessie.de>
Michael	Schwendt	<Michael_Schwendt	at	public.uni-hamburg.de>
Michal	Polak	<mpolak	at	fi.muni.cz>
Mikael	Bourges-Sevenier	<bourges	at	int-evry.fr>
Mike	Fearn	<hp003	at	dra.hmg.gb>
Mike	Perik	<mikep	at	crt.com>
Mike	Sharkey	<msharkey	at	softarc.com>
Miroslav	Flidr	<flidr	at	kky.zcu.cz>
Miyata	Shigeru	<miyata	at	kusm.kyoto-u.ac.jp>
Myron	Uecker	<muecker	at	csd.net>
NGOk	YUK	YAU	<zzy	at	compuserve.com>
Neal	Sanche	<neal	at	nsdev.org>
Niclas	Anderberg	<agony	at	sparta.lu.se>
Oliver	Eiden	<o.eiden	at	pop.ruhr.de>
Oliver	Elphick	<olly	at	lfix.co.uk>
Olivier	Verloove	<overloov	at	ulb.ac.be>
Osku	Salerma	<osku	at	iki.fi>
P.	J.	Leonard	<eespjl	at	ee.bath.ac.uk>
Paolo	Galatola	<paolo	at	iris.polito.it>
Pat	Dowler	<dowler	at	pt1B1106.FSH.UVic.CA>
Patrice	TROGNON	<trognon	at	apogee-com.fr>

Patrick	Voigt	<Patrick.Voigt	at	Informatik.TU-Chemnitz.DE>
Paul	Bucheit	<ptb	at	k2.cwru.edu>
Paul	Kendall	<paul	at	kcbbs.gen.nz>
Paul	Marquis	<pmarquis	at	iddptm.iddis.com>
Peter	Bender	<bender	at	iib.bauwesen.th-darmstadt.de>
Peter	Klotz	<p.klotz	at	icoserve.com>
Peter	Pletcher	<peter	at	delilah>
Pierre	Rocque	<rocque	at	CRHSC.Umontreal.CA>
Pohorecki	Wladyslaw	<POHORECKI	at	novell.ftj.agh.edu.pl>
R.S.	MALLOZZI,	ES-84,	205-544-0887	<MALLOZZI	at
bowie.msfc.nasa.gov>
ROHLFS	Reiner	<Reiner.Rohlfs	at	obs.unige.ch>
Ralf	Stanke	<ralf	at	mcshh.hanse.de>
Reggie	Stadlbauer	<reggie	at	kde.org>	Richard	D.	Jackson	<rjackson	at
bga.com>
Richard	Keech	<rkeech	at	colesmyer.com.au>
Richard	Moore	<moorer	at	cs.man.ac.uk>
Rick	Brohl	<rbrohl	at	uswest.com>
Robert	Anderson	<Robert.E.Anderson	at	unh.edu>
Robert	Cimrman	<cimrman	at	marius.univ-mrs.fr>
Roberto	Alsina	<ralsina	at	ultra7.unl.edu.ar>
Salman	Sheikh	<salman	at	vdragon.gsfc.nasa.gov>
Sandro	Sigala	<ssigala	at	globalnet.it>
Scott	Coppen	<scoppen	at	emerald.tufts.edu>
Sean	Vyain	<svyain	at	mail.tds.net>
Sirtaj	Singh	Kang	<ssk	at	physics.unimelb.EDU.AU>
Sivan	Toledo
Stefan	Cronert	<d93-scr	at	nada.kth.se>
Stefan	Taferner	<taf	at	porsche.co.at>
Steffen	Hansen	<stefh	at	dit.ou.dk>
Stephan	Pfab	<pfab	at	mathematik.uni-ulm.de>
Stephane	Zermatten	<szermat	at	ibm.net>
Sven	Fischer	<sven	at	comnets.rwth-aachen.de>
Sven	Riedel	<lynx	at	heim8.tu-clausthal.de>
Terje	Dalen	<terje	at	norcontrol.no>
Thomas	Lineal	<thomas	at	ricci.allcon.com>
Thomas	Rath	<rath	at	mac-info-link.de>
Thorsten	Ende	<the	at	is-bremen.de>
Tiaan	Wessels	<tiaan	at	inetsys.alt.za>

Tim	D.	Gilman	<tdgilman	at	best.com>
Tom	Houlder	<thoulder	at	icor.fr>
Tony	Albrecht	<Tony.Albrecht	at	adelaide.maptek.com.au>
Torgeir	Hovden	<hovden	at	akkurat.idt.ntnu.no>
Trond	Hellem	Bø	<s638	at	ii.uib.no>
Trond	Solli	<Trond.Solli	at	marintek.sintef.no>
Ulf	Stelbe	<ust	at	egd.igd.fhg.de>
Ulrich	Hertlein	<uhe	at	cs.tu-berlin.de>
Ulrich	Ring	<ur	at	daveg.com>
Uwe	Thiem	<uwe	at	uwix.alt.na>
Vadim	Zaliva	<lord	at	crocodile.org>
Val	Gough	<val	at	stellacore.com>
Vilhelm	Sjöberg	<ville	at	swipnet.se>
Vlad	Karpinsky	<vlad	at	crocodile.org>
Volker	Poplawski	<volkerp	at	stepnet.de>
Warwick	Allison	<warwick	at	it.uq.edu.au>
Xiaojian	Li	<lixj	at	monte.rutgers.edu>
Ximenes	<ximenes	at	netset.com>
Y.	N.	Lo	<ynlo	at	netcom.ca>
Zyklon	<zyk	at	dds.nl>
atsushi	konno	<jibe	at	ppp.bekkoame.or.jp>
berry	at	hxi.com
boris	passek	<boris	at	ice.fb12.TU-Berlin.DE>
fidaire	<fidaire	at	bip.fr>
joeh	at	sugar-river.net
rinsch	at	aea.ruhr-uni-bochum.de
tsutsui	at	kekvax.kek.jp
vandevod	at	cs.rpi.edu
vinckeg	at	sebb.bel.alcatel.be
yleffler	at	ucis.vill.edu

We	hope	there	are	not	too	many	omissions	from	the	list.	Any	omissions	are	bugs
and	should	be	reported	to	qt-bugs@trolltech.com	like	other	bugs	in	the	Qt	code
or	documentation.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

mailto:qt-bugs@trolltech.com
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Key	Features	in	Qt	3.0
Qt	3.0	adds	a	lot	of	new	features	and	improvements	over	the	Qt	2.x	series.	Some
internals	have	undergone	major	redesign	and	new	classes	and	methods	have	been
added.

We	have	tried	to	keep	the	API	of	Qt	3.0	as	compatible	as	possible	with	the	Qt	2.x
series.	For	most	applications	only	minor	changes	will	be	needed	to	compile	and
run	them	successfully	using	Qt	3.0.

One	of	the	major	new	features	that	has	been	added	in	the	3.0	release	is	a	module
allowing	you	to	easily	work	with	databases.	The	API	is	platform	independent
and	database	neutral.	This	module	is	seamlessly	integrated	into	Qt	Designer,
greatly	simplifying	the	process	of	building	database	applications	and	using	data
aware	widgets.

Other	major	new	features	include	a	plugin	architecture.	You	can	use	your	own
and	third	party	plugins	your	own	applications.	The	Unicode	support	of	Qt	2.x
has	been	greatly	enhanced,	it	now	includes	full	support	for	scripts	written	from
right	to	left	(e.g.	Arabic	and	Hebrew)	and	also	provides	improved	support	for
Asian	languages.

Many	new	classes	have	been	added	to	the	Qt	Library.	Amongst	them	are	classes
that	provide	a	docking	architecture	(QDockArea/QDockWindow),	a	powerful
rich	text	editor	(QTextEdit),	a	class	to	store	and	access	application	settings
(QSettings)	and	a	class	to	create	and	communicate	with	processes	(QProcess).

Apart	from	the	changes	in	the	library	itself	a	lot	has	been	done	to	make	the
development	of	Qt	applications	with	Qt	3.0	even	easier	than	before.	Two	new
applications	have	been	added:	Qt	Linguist	is	a	tool	to	help	you	translate	your
application	into	different	languages;	Qt	Assistant	is	an	easy	to	use	help	browser
for	the	Qt	documentation	that	supports	bookmarks	and	can	search	by	keyword.

Another	change	concerns	the	Qt	build	system,	which	has	been	reworked	to	make
it	a	lot	easier	to	port	Qt	to	new	platforms.	You	can	use	this	platform	independent
build	system	for	your	own	applications.

The	Qt	Library

A	large	number	of	new	features	has	been	added	to	Qt	3.0.	The	following	list
gives	an	overview	of	the	most	important	new	and	changed	aspects	of	the	Qt
library.	A	full	list	of	every	new	method	follows	the	overview.

Database	support

One	of	the	major	new	features	in	Qt	3.0	is	the	SQL	module	that	provides
multiplatform	access	to	SQL	databases,	making	database	application
programming	with	Qt	seamless	and	portable.	The	API,	built	with	standard	SQL,
is	database-neutral	and	software	development	is	independent	of	the	underlying
database.

A	collection	of	tightly	focused	C++	classes	are	provided	to	give	the	programmer
direct	access	to	SQL	databases.	Developers	can	send	raw	SQL	to	the	database
server	or	have	the	Qt	SQL	classes	generate	SQL	queries	automatically.	Drivers
for	Oracle,	PostgreSQL,	MySQL	and	ODBC	are	available	and	writing	new
drivers	is	straightforward.

Tying	the	results	of	SQL	queries	to	GUI	components	is	fully	supported	by	Qt's
SQL	widgets.	These	classes	include	a	tabular	data	widget	(for	spreadsheet-like
data	presentation	with	in-place	editing),	a	form-based	data	browser	(which
provides	data	navigation	and	edit	functions)	and	a	form-based	data	viewer
(which	provides	read-only	forms).	This	framework	can	be	extended	by	using
custom	field	editors,	allowing	for	example,	a	data	table	to	use	custom	widgets
for	in-place	editing.	The	SQL	module	fully	supports	Qt's	signal/slots	mechanism,
making	it	easy	for	developers	to	include	their	own	data	validation	and	auditing
code.

Qt	Designer	fully	supports	Qt's	SQL	module.	All	SQL	widgets	can	be	laid	out
within	Qt	Designer,	and	relationships	can	be	established	between	controls
visually.	Many	interactions	can	be	defined	purely	in	terms	of	Qt's	signals/slots
mechanism	directly	in	Qt	Designer.

Plugins

The	QLibrary	class	provides	a	platform	independent	wrapper	for	runtime	loading
of	shared	libraries.	QPluginManager	makes	it	trivial	to	implement	plugin	support
in	applications.	The	Qt	library	is	able	to	load	additional	styles,	database	drivers
and	text	codecs	from	plugins.

Qt	Designer	supports	custom	widgets	in	plugins,	and	will	use	the	widgets	both
when	designing	and	previewing	forms.

See	the	plugins	documentation.

Rich	text	engine	and	editor

The	rich	text	engine	originally	introduced	in	Qt	2.0	has	been	further	optimized
and	extended	to	support	editing.	It	allows	editing	formatted	text	with	different
fonts,	colors,	paragraph	styles,	tables	and	images.	The	editor	supports	different
word	wrap	modes,	command-based	undo/redo,	multiple	selections,	drag	and
drop,	and	many	other	features.	The	new	QTextEdit	engine	is	highly	optimized
for	proccesing	and	displaying	large	documents	quickly	and	efficiently.

Unicode

Apart	from	the	rich	text	engine,	another	new	feature	of	Qt	3.0	that	relates	to	text
handling	is	the	greatly	improved	Unicode	support.	Qt	3.0	includes	an
implementation	of	the	bidirectional	algorithm	(BiDi)	as	defined	in	the	Unicode
standard	and	a	shaping	engine	for	Arabic,	which	gives	full	native	language
support	to	Arabic	and	Hebrew	speaking	people.	At	the	same	time	the	support	for
Asian	languages	has	been	greatly	enhanced.

The	support	is	almost	transparent	for	the	developer	using	Qt	to	develop	their
applications.	This	means	that	developers	who	developed	applications	using	Qt
2.x	will	automatically	gain	the	full	support	for	these	languages	when	switching
to	Qt	3.0.	Developers	can	rely	on	their	application	to	work	for	people	using
writing	systems	different	from	Latin1,	without	having	to	worry	about	the
complexities	involved	with	these	scripts,	as	Qt	takes	care	of	this	automatically.

Docked	and	Floating	Windows

Qt	3.0	introduces	the	concept	of	Dock	Windows	and	Dock	Areas.	Dock	windows
are	widgets,	that	can	be	attached	to,	and	detached	from,	dock	areas.	The

commonest	kind	of	dock	window	is	a	tool	bar.	Any	number	of	dock	windows
may	be	placed	in	a	dock	area.	A	main	window	can	have	dock	areas,	for	example,
QMainWindow	provides	four	dock	areas	(top,	left,	bottom,	right)	by	default.	The
user	can	freely	move	dock	windows	and	place	them	at	a	convenient	place	in	a
dock	area,	or	drag	them	out	of	the	application	and	have	them	float	freely	as	top
level	windows	in	their	own	right.	Dock	windows	can	also	be	minimized	or
hidden.

For	developers,	dock	windows	behave	just	like	ordinary	widgets.	QToolbar	for
example	is	now	a	specialized	subclass	of	a	dock	window.	The	API	of
QMainWindow	and	QToolBar	is	source	compatible	with	Qt	2.x,	so	existing	code
which	uses	these	classes	will	continue	to	work.

Regular	Expressions

Qt	has	always	provided	regular	expression	support,	but	that	support	was	pretty
much	limited	to	what	was	required	in	common	GUI	control	elements	such	as	file
dialogs.	Qt	3.0	introduces	a	new	regular	expression	engine,	QRegExp,	that
supports	most	of	Perl's	regex	features	and	is	Unicode	based.	The	most	useful
additions	are	support	for	parentheses	(capturing	and	non-capturing)	and
backreferences.

Storing	application	settings

Most	programs	will	need	to	store	some	settings	between	runs,	for	example,	user
selected	fonts,	colors	and	other	preferences,	or	a	list	of	recently	used	files.	The
new	QSettings	class	provides	a	platform	independent	way	to	achieve	this	goal.
The	API	makes	it	easy	to	store	and	retrieve	most	of	the	basic	data	types	used	in
Qt	(such	as	basic	C++	types,	strings,	lists,	colors,	etc).	The	class	uses	the	registry
on	the	Windows	platform	and	traditional	resource	files	on	Unix.

Creating	and	controlling	other	processes

QProcess	is	a	class	that	allows	you	to	start	other	programs	from	within	a	Qt
application	in	a	platform	independent	manner.	It	gives	you	full	control	over	the
started	program,	for	example	you	can	redirect	the	input	and	output	of	console
applications.

Accessibility

Accessibility	means	making	software	usable	and	accessible	to	a	wide	range	of
users,	including	those	with	disabilities.	In	Qt	3.0,	most	widgets	provide
accessibility	information	for	assistive	tools	that	can	be	used	by	a	wide	range	of
disabled	users.	Qt	standard	widgets	like	buttons	or	range	controls	are	fully
supported.	Support	for	complex	widgets,	like	e.g.	QListView,	is	in	development.
Existing	applications	that	make	use	of	standard	widgets	will	become	accessible
just	by	using	Qt	3.0.

Qt	uses	the	Active	Accessibility	infrastructure	on	Windows,	and	needs	the
MSAA	SDK,	which	is	part	of	most	platform	SDKs.	With	improving
standardization	of	accessibility	on	other	platforms,	Qt	will	support	assistive
technologies	on	other	systems,	too.

XML	Improvements

The	XML	framework	introduced	in	Qt	2.2	has	been	vastly	improved.	Qt	2.2
already	supported	level	1	of	the	Document	Object	Model	(DOM),	a	W3C
standard	for	accessing	and	modifying	XML	documents.	Qt	3.0	has	added	support
for	DOM	Level	2	and	XML	namespaces.

The	XML	parser	has	been	extended	to	allow	incremental	parsing	of	XML
documents.	This	allows	you	to	start	parsing	the	document	directly	after	the	first
parts	of	the	data	have	arrived,	and	to	continue	whenever	new	data	is	available.
This	is	especially	useful	if	the	XML	document	is	read	from	a	slow	source,	e.g.
over	the	network,	as	it	allows	the	application	to	start	working	on	the	data	at	a
very	early	stage.

SVG	support

SVG	is	a	W3C	standard	for	"Scalable	Vector	Graphics".	Qt	3.0's	XML	support
means	that	QPicture	can	optionally	generate	and	import	static	SVG	documents.
All	the	SVG	features	that	have	an	equivalent	in	QPainter	are	supported.

Multihead	support

Many	professional	applications,	such	as	DTP	and	CAD	software,	are	able	to

display	data	on	two	or	more	monitors.	In	Qt	3.0	the	QDesktopWidget	class
provides	the	application	with	runtime	information	about	the	number	and
geometry	of	the	desktops	on	the	different	monitors	and	such	allows	applications
to	efficiently	use	a	multi-monitor	setup.

The	virtual	desktop	of	Mac	OS	X,	Windows	98,	and	2000	is	supported,	as	well
as	the	traditional	multi-screen	and	the	newer	Xinerama	multihead	setups	on	X11.

X11	specific	enhancements

Qt	3.0	now	complies	with	the	NET	WM	Specification,	recently	adopted	by	KDE
2.0.	This	allows	easy	integration	and	proper	execution	with	desktop
environments	that	support	the	NET	WM	specification.

The	font	handling	on	X11	has	undergone	major	changes.	QFont	no	longer	has	a
one-to-one	relation	with	window	system	fonts.	QFont	is	now	a	logical	font	that
can	load	multiple	window	system	fonts	to	simplify	Unicode	text	display.	This
completely	removes	the	burden	of	changing/setting	fonts	for	a	specific
locale/language	from	the	programmer.	For	end-users,	any	font	can	be	used	in	any
locale.	For	example,	a	user	in	Norway	will	be	able	to	see	Korean	text	without
having	to	set	their	locale	to	Korean.

Qt	3.0	also	supports	the	new	render	extension	recently	added	to	XFree86.	This
adds	support	for	anti	aliased	text	and	pixmaps	with	alpha	channel	(semi
transparency)	on	the	systems	that	support	the	rendering	extension	(at	the
moment	XFree	4.0.3	and	later).

Printing

Printing	support	has	been	enhanced	on	all	platforms.	The	QPrinter	class	now
supports	setting	a	virtual	resolution	for	the	painting	process.	This	makes
WYSIWYG	printing	trivial,	and	also	allows	you	to	take	full	advantage	of	the
high	resolution	of	a	printer	when	painting	on	it.

The	postscript	driver	built	into	Qt	and	used	on	Unix	has	been	greatly	enhanced.
It	supports	the	embedding	of	true/open	type	and	type1	fonts	into	the	document,
and	can	correctly	handle	and	display	Unicode.	Support	for	fonts	built	into	the
printer	has	been	enhanced	and	Qt	now	knows	about	the	most	common	printer
fonts	used	for	Asian	languages.

QHttp

This	class	provides	a	simple	interface	for	HTTP	downloads	and	uploads.

Compatibility	with	the	Standard	Template	Library	(STL)

Support	for	the	C++	Standard	Template	Library	has	been	added	to	the	Qt
Template	Library	(QTL).	The	QTL	classes	now	contain	appropriate	copy
constructors	and	typedefs	so	that	they	can	be	freely	mixed	with	other	STL
containers	and	algorithms.	In	addition,	new	member	functions	have	been	added
to	QTL	template	classes	which	correspond	to	STL-style	naming	conventions
(e.g.,	push_back()).

Qt	Designer

Qt	Designer	was	a	pure	dialog	editor	in	Qt	2.2	but	has	now	been	extended	to
provide	the	full	functionality	of	a	GUI	design	tool.

This	includes	the	ability	to	lay	out	main	windows	with	menus	and	toolbars.
Actions	can	be	edited	within	Qt	Designer	and	then	plugged	into	toolbars	and
menu	bars	via	drag	and	drop.	Splitters	can	now	be	used	in	a	way	similar	to
layouts	to	group	widgets	horizontally	or	vertically.

In	Qt	2.2,	many	of	the	dialogs	created	by	Qt	Designer	had	to	be	subclassed	to
implement	functionality	beyond	the	predefined	signal	and	slot	connections.
Whilst	the	subclassing	approach	is	still	fully	supported,	Qt	Designer	now	offers
an	alternative:	a	plugin	for	editing	slots.	The	editor	offers	features	such	as	syntax
highlighting,	completion,	parentheses	matching	and	incremental	search.

The	functionality	of	Qt	Designer	can	now	be	extended	via	plugins.	Using	Qt
Designer's	interface	or	by	implementing	one	of	the	provided	interfaces	in	a
plugin,	a	two	way	communication	between	plugin	and	Qt	Designer	can	be
established.	This	functionality	is	used	to	implement	plugins	for	custom	widgets,
so	that	they	can	be	used	as	real	widgets	inside	the	designer.

Basic	support	for	project	management	has	been	added.	This	allows	you	to	read
and	edit	*.pro	files,	add	and	remove	files	to/from	the	project	and	do	some	global
operations	on	the	project.	You	can	now	open	the	project	file	and	have	one-click
access	to	all	the	*.ui	forms	in	the	project.

In	addition	to	generating	code	via	uic,	Qt	Designer	now	supports	the	dynamic
creation	of	widgets	directly	from	XML	user	interface	description	files	(*.ui	files)
at	runtime.	This	eliminates	the	need	of	recompiling	your	application	when	the
GUI	changes,	and	could	be	used	to	enable	your	customers	to	do	their	own
customizations.	Technically,	the	feature	is	provided	by	a	new	class,
QWidgetFactory	in	the	QResource	library.

Qt	Linguist

Qt	Linguist	is	a	GUI	utility	to	support	translating	the	user-visible	text	in
applications	written	with	Qt.	It	comes	with	two	command-line	tools:	lupdate	and
lrelease.

Translation	of	a	Qt	application	is	a	three-step	process:

Run	lupdate	to	extract	user-visible	text	from	the	C++	source	code	of	the	Qt
application,	resulting	in	a	translation	source	file	(a	*.ts	file).
Provide	translations	for	the	source	texts	in	the	*.ts	file	using	Qt	Linguist.
Run	lrelease	to	obtain	a	light-weight	message	file	(a	*.qm	file)	from	the	*.ts
file,	which	provides	very	fast	lookup	for	released	applications.

Qt	Linguist	is	a	tool	suitable	for	use	by	translators.	Each	user-visible	(source)
text	is	characterized	by	the	text	itself,	a	context	(usually	the	name	of	the	C++
class	containing	the	text),	and	an	optional	comment	to	help	the	translator.	The
C++	class	name	will	usually	be	the	name	of	the	relevant	dialog,	and	the
comment	will	often	contain	instructions	that	describe	how	to	navigate	to	the
relevant	dialog.

You	can	create	phrase	books	for	Qt	Linguist	to	provide	common	translations	to
help	ensure	consistency	and	to	speed	up	the	translation	process.	Whenever	a
translator	navigates	to	a	new	text	to	translate,	Qt	Linguist	uses	an	intelligent
algorithm	to	provide	a	list	of	possible	translations:	the	list	is	composed	of
relevant	text	from	any	open	phrase	books	and	also	from	identical	or	similar	text
that	has	already	been	translated.

Once	a	translation	is	complete	it	can	be	marked	as	"done";	such	translations	are
included	in	the	*.qm	file.	Text	that	has	not	been	"done"	is	included	in	the	*.qm
file	in	its	original	form.	Although	Qt	Linguist	is	a	GUI	application	with	dock
windows	and	mouse	control,	toolbars,	etc.,	it	has	a	full	set	of	keyboard	shortcuts
to	make	translation	as	fast	and	efficient	as	possible.

When	the	Qt	application	that	you're	developing	evolves	(e.g.	from	version	1.0	to
version	1.1),	the	utility	lupdate	merges	the	source	texts	from	the	new	version
with	the	previous	translation	source	file,	reusing	existing	translations.	In	some
typical	cases,	lupdate	may	suggest	translations.	These	translations	are	marked	as

unfinished,	so	you	can	easily	find	and	check	them.

Qt	Assistant

Thanks	to	the	positive	feedback	we	received	about	the	help	system	built	into	Qt
Designer,	we	decided	to	offer	this	part	as	a	separate	application	called	Qt
Assistant.	Qt	Assistant	can	be	used	to	browse	the	Qt	class	documentation	as	well
as	the	manuals	for	Qt	Designer	and	Qt	Linguist.	It	offers	index	searching,	a
contents	overview,	bookmarks	history	and	incremental	search.	Qt	Assistant	is
used	by	both	Qt	Designer	and	Qt	Linguist	for	browsing	their	help
documentation.

qmake

To	ease	portability	we	now	provide	the	qmake	utility	to	replace	tmake.	QMake	is
a	C++	version	of	tmake	which	offers	additional	functionallity	that	is	difficult	to
reproduce	in	tmake.	Trolltech	uses	qmake	in	its	build	system	for	Qt	and	related
products	and	we	have	released	it	as	free	software.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Porting	to	Qt	3.x
This	document	describes	porting	applications	from	Qt	2.x	to	Qt	3.x.

If	you	haven't	yet	made	the	decision	about	porting,	or	are	unsure	about	whether
it	is	worth	it,	take	a	look	at	the	key	features	offered	by	Qt	3.x.

The	Qt	3.x	series	is	not	binary	compatible	with	the	2.x	series.	This	means
programs	compiled	for	Qt	2.x	must	be	recompiled	to	work	with	Qt	3.x.	Qt	3.x	is
also	not	completely	source	compatible	with	2.x,	however	all	points	of
incompatibility	cause	compiler	errors	or	run-time	messages	(rather	than
mysterious	results).	Qt	3.x	includes	many	additional	features	and	discards
obsolete	functionality.	Porting	from	Qt	2.x	to	Qt	3.x	is	straightforward,	and	once
completed	makes	the	considerable	additional	power	and	flexibility	of	Qt	3.x
available	for	use	in	your	applications.

To	port	code	from	Qt	2.x	to	Qt	3.x:

1.	 Briefly	read	the	porting	notes	below	to	get	an	idea	of	what	to	expect.
2.	 Be	sure	your	code	compiles	and	runs	well	on	all	your	target	platforms	with

Qt	2.x.
3.	 Recompile	with	Qt	3.x.	For	each	error,	search	below	for	related	identifiers

(e.g.	function	names,	class	names).	This	document	mentions	all	relevant
identifiers	to	help	you	get	the	information	you	need	at	the	cost	of	being	a
little	verbose.

4.	 If	you	get	stuck,	ask	on	the	qt-interest	mailing	list,	or	Trolltech	Technical
Support	if	you're	a	registered	licensee.

Table	of	contents:

Link	errors	on	Windows
Header	file	inclusion	changes
Namespace
Removed	Functions
Obsoleted	Functions
Collection	Class	Renaming
QButtonGroup

http://qt-interest.trolltech.com/

QDate
QFont
QInputDialog
QLayout	and	Other	Abstract	Layout	Classes
QMultiLineEdit
QPrinter
QRegExp

New	special	characters
QRegExp::operator=()
QRegExp::match()
QRegExp::find()
QString::findRev()	and	QString::contains()
QString::replace()

QSemiModal
QSortedList
QTableView
QToolButton
QTextStream
QTranslator
QWidget
QXml	Classes

QXmlInputSource
QXmlLocator

Asynchronous	I/O	Classes
Transparent	widgets
Bezier	Curves
Locale-aware	String	Comparisons	in	QIconView,	QListBox,	QListView	and
QTable

Link	errors	on	Windows

On	Windows,	originally	in	Qt	2.x,	the	default	configuration	of	the	Qt	library	is
static.	If	you	just	use	the	default	configuration	you	don't	need	to	set	certain
preprocessor	defines.	In	Qt	3.0,	the	default	configuration	of	the	Qt	library	is	to
build	it	as	a	shared	library,	therefore	the	preprocessor	define	QT_DLL	is	needed.

If	you	use	tmake	with	Qt	2.x,	and	now	use	qmake	with	Qt	3.x,	then	the	cause	of
the	problem	is	with	the	project	file.	In	the	project	file,	there	is	usually	line	that
looks	like:

CONFIG	=	...

this	should	be	changed	to

CONFIG	+=	...

so	that	qmake	can	look	at	the	configuration	that	Qt	was	built	with	and	set	any
relevant	preprocessor	defines	in	the	makefile.

Header	file	inclusion	changes

Qt	3.x	remove	some	unnecessary	nested	#include	directives	from	header	files.
This	speeds	up	compilation	when	you	don't	need	those	nested	header	files.	But	in
some	cases	you	will	find	you	need	to	add	an	extra	#include	to	your	files.

For	example,	if	you	get	a	message	about	QStringList	or	its	functions	not	being
defined,	then	add	#include	<qstringlist.h>	at	the	top	of	the	file	giving	the
error.

Header	files	that	you	might	need	to	add	#include	directives	for	include:

<qcursor.h>

<qpainter.h>

<qpen.h>

<qstringlist.h>

<qregexp.h>

<qstrlist.h>

<qstyle.h>

<qvaluelist.h>

Namespace

Qt	3.x	is	namespace	clean.	A	few	global	identifiers	that	had	been	left	in	Qt	2.x
have	been	discarded.

Enumeration	Qt::CursorShape	and	its	values	are	now	part	of	the	special	Qt	class
defined	in	qnamespace.h.	If	you	get	compilation	errors	about	these	being
missing	(unlikely,	since	most	of	your	code	will	be	in	classes	that	inherit	from	the
Qt	namespace	class),	then	apply	the	following	changes:

QCursorShape	becomes	Qt::CursorShape
ArrowCursor	becomes	Qt::ArrowCursor
UpArrowCursor	becomes	Qt::UpArrowCursor
CrossCursor	becomes	Qt::CrossCursor
WaitCursor	becomes	Qt::WaitCursor
IbeamCursor	becomes	Qt::IbeamCursor
SizeVerCursor	becomes	Qt::SizeVerCursor
SizeHorCursor	becomes	Qt::SizeHorCursor
SizeBDiagCursor	becomes	Qt::SizeBDiagCursor
SizeFDiagCursor	becomes	Qt::SizeFDiagCursor
SizeAllCursor	becomes	Qt::SizeAllCursor
BlankCursor	becomes	Qt::BlankCursor
SplitVCursor	becomes	Qt::SplitVCursor
SplitHCursor	becomes	Qt::SplitHCursor
PointingHandCursor	becomes	Qt::PointingHandCursor
BitmapCursor	becomes	Qt::BitmapCursor

The	names	of	some	debugging	macro	variables	have	been	changed.	We	have
tried	not	to	break	source	compatibility	as	much	as	possible.	If	you	observe	error
messages	on	the	UNIX	console	or	the	Windows	debugging	stream	that	were
previously	disabled,	please	check	these	macro	variables:

DEBUG	becomes	QT_DEBUG
NO_DEBUG	becomes	QT_NO_DEBUG
NO_CHECK	becomes	QT_NO_CHECK
CHECK_STATE	becomes	QT_CHECK_STATE
CHECK_RANGE	becomes	QT_CHECK_RANGE
CHECK_NULL	becomes	QT_CHECK_NULL

CHECK_MATH	becomes	QT_CHECK_MATH

The	name	of	some	debugging	macro	functions	has	been	changed	as	well	but
source	compatibility	should	not	be	affected	if	the	macro	variable
QT_CLEAN_NAMESPACE	is	not	defined:

ASSERT	becomes	Q_ASSERT
CHECK_PTR	becomes	Q_CHECK_PTR

For	the	record,	undocumented	macro	variables	that	are	not	part	of	the	API	have
been	changed:

OS*_	becomes	Q_OS_*
WS*_	becomes	Q_WS_*
CC*_	becomes	Q_CC_*

Removed	Functions

All	these	functions	have	been	removed	in	Qt	3.x:

QFont::charSet()
QFont::setCharSet()
QMenuBar::setActItem()
QMenuBar::setWindowsAltMode()
QPainter::drawQuadBezier()
QPointArray::quadBezier()
QRegExp::find()
QSpinBox::downButton()
QSpinBox::upButton()
QString::basicDirection()
QString::visual()
QStyle::set...()	functions
QWidget::setFontPropagation()
QWidget::setPalettePropagation()

Also,	to	avoid	conflicts	with	<iostream>,	the	following	three	global	functions
have	been	renamed:

setw()	(renamed	qSetW())
setfill()	(renamed	qSetFill())
setprecision()	(renamed	qSetPrecision())

Obsoleted	Functions

The	following	functions	have	been	obsoleted	in	Qt	3.0.	The	documentation	of
each	of	these	functions	should	explain	how	to	replace	them	in	Qt	3.0.

Warning:	It	is	best	to	consult	http://doc.trolltech.com/3.0/	rather	than	the
documentation	supplied	with	Qt	to	obtain	the	latest	information	regarding
obsolete	functions	and	how	to	replace	them	in	new	code.

QAccel::keyToString(QKeySequence	k)
QAccel::stringToKey(const	QString	&	s)
QActionGroup::insert(QAction	*a)
QButton::autoResize()	const
QButton::setAutoResize(bool)
QCanvasItem::active()	const
QCanvasItem::enabled()	const
QCanvasItem::selected()	const
QCanvasItem::visible()	const
QCanvasPixmapArray::QCanvasPixmapArray(QPtrList<QPixmap>	list,
QPtrList<QPoint>	hotspots)
QCanvasPixmapArray::operator!()
QColorGroup::QColorGroup(const	QColor	&	foreground,	const	QColor	&
background,	const	QColor	&	light,	const	QColor	&	dark,	const	QColor	&
mid,	const	QColor	&	text,	const	QColor	&	base)
QComboBox::autoResize()	const
QComboBox::setAutoResize(bool)
QDate::dayName(int	weekday)
QDate::monthName(int	month)
QDir::encodedEntryList(const	QString	&	nameFilter,	int	filterSpec	=
DefaultFilter,	int	sortSpec	=	DefaultSort)	const
QDir::encodedEntryList(int	filterSpec	=	DefaultFilter,	int	sortSpec	=
DefaultSort)	const
QDockWindow::isHorizontalStretchable()	const
QDockWindow::isVerticalStretchable()	const
QDockWindow::setHorizontalStretchable(bool	b)
QDockWindow::setVerticalStretchable(bool	b)
QFont::defaultFont()

http://doc.trolltech.com/3.0/

QFont::setDefaultFont(const	QFont	&	f)
QFont::setPixelSizeFloat(float	pixelSize)
QFontDatabase::bold(const	QString	&	family,	const	QString	&	style,	const
QString	&)	const
QFontDatabase::families(bool)	const
QFontDatabase::font(const	QString	&	familyName,	const	QString	&	style,
int	pointSize,	const	QString	&)
QFontDatabase::isBitmapScalable(const	QString	&	family,	const	QString
&	style,	const	QString	&)	const
QFontDatabase::isFixedPitch(const	QString	&	family,	const	QString	&
style,	const	QString	&)	const
QFontDatabase::isScalable(const	QString	&	family,	const	QString	&	style,
const	QString	&)	const
QFontDatabase::isSmoothlyScalable(const	QString	&	family,	const
QString	&	style,	const	QString	&)	const
QFontDatabase::italic(const	QString	&	family,	const	QString	&	style,	const
QString	&)	const
QFontDatabase::pointSizes(const	QString	&	family,	const	QString	&	style,
const	QString	&)
QFontDatabase::smoothSizes(const	QString	&	family,	const	QString	&
style,	const	QString	&)
QFontDatabase::styles(const	QString	&	family,	const	QString	&)	const
QFontDatabase::weight(const	QString	&	family,	const	QString	&	style,
const	QString	&)	const
QLabel::autoResize()	const
QLabel::setAutoResize(bool	enable)
QLineEdit::cursorLeft(bool	mark,	int	steps	=	1)
QLineEdit::cursorRight(bool	mark,	int	steps	=	1)
QLineEdit::hasMarkedText()	const
QLineEdit::markedText()	const
QLineEdit::repaintArea(int,	int)
QListBox::cellHeight(int	i)	const
QListBox::cellHeight()	const
QListBox::cellWidth()	const
QListBox::findItem(int	yPos)	const
QListBox::inSort(const	QListBoxItem	*lbi)
QListBox::inSort(const	QString	&	text)
QListBox::itemYPos(int	index,	int	*yPos)	const
QListBox::numCols()	const

QListBox::totalHeight()	const
QListBox::totalWidth()	const
QListBoxItem::current()	const
QListBoxItem::selected()	const
QListView::removeItem(QListViewItem	*item)
QListViewItem::removeItem(QListViewItem	*item)
QMainWindow::addToolBar(QDockWindow	*,	Dock	=	DockTop,	bool
newLine	=	FALSE)
QMainWindow::addToolBar(QDockWindow	*,	const	QString	&	label,
Dock	=	DockTop,	bool	newLine	=	FALSE)
QMainWindow::lineUpToolBars(bool	keepNewLines	=	FALSE)
QMainWindow::moveToolBar(QDockWindow	*,	Dock	=	DockTop)
QMainWindow::moveToolBar(QDockWindow	*,	Dock,	bool	nl,	int	index,
int	extraOffset	=	-1)
QMainWindow::removeToolBar(QDockWindow	*)
QMainWindow::setToolBarsMovable(bool)
QMainWindow::toolBarPositionChanged(QToolBar	*)
QMainWindow::toolBarsMovable()	const
QMessageBox::message(const	QString	&	caption,	const	QString	&	text,
const	QString	&	buttonText	=	QString::null,	QWidget	*parent	=	0,	const
char	*=	0)
QMessageBox::query(const	QString	&	caption,	const	QString	&	text,	const
QString	&	yesButtonText	=	QString::null,	const	QString	&	noButtonText	=
QString::null,	QWidget	*parent	=	0,	const	char	*=	0)
QMessageBox::standardIcon(Icon	icon,	GUIStyle	style)
QPalette::normal()
QRegExp::match(const	QString	&	str,	int	index	=	0,	int	*len	=	0,	bool
indexIsStart	=	TRUE)	const
QScrollView::childIsVisible(QWidget	*child)
QScrollView::showChild(QWidget	*child,	bool	show	=	TRUE)
QSignal::block(bool	b)
QSignal::isBlocked()	const
QSignal::parameter()	const
QSignal::setParameter(int	value)
QSimpleRichText::draw(QPainter	*p,	int	x,	int	y,	const	QRegion	&
clipRegion,	const	QColorGroup	&	cg,	const	QBrush	*paper	=	0)	const
QString::ascii()	const
QString::data()	const
QString::setExpand(uint	index,	QChar	c)

QStyle::defaultFrameWidth()	const
QStyle::scrollBarExtent()	const
QStyle::tabbarMetrics(const	QWidget	*t,	int	&	hf,	int	&	vf,	int	&	ov)
const
QTabDialog::isTabEnabled(const	char	*name)	const
QTabDialog::selected(const	QString	&)
QTabDialog::selected(const	QString	&	tabLabel)
QTabDialog::setTabEnabled(const	char	*name,	bool	enable)
QTextStream::QTextStream(QString	&	str,	int	filemode)
QToolBar::QToolBar(const	QString	&	label,	QMainWindow	*,
ToolBarDock	=	DockTop,	bool	newLine	=	FALSE,	const	char	*name	=	0)
QToolButton::iconSet(bool	on)	const
QToolButton::offIconSet()	const
QToolButton::onIconSet()	const
QToolButton::setIconSet(const	QIconSet	&	set,	bool	on)
QToolButton::setOffIconSet(const	QIconSet	&)
QToolButton::setOnIconSet(const	QIconSet	&)
QToolTip::enabled()
QToolTip::setEnabled(bool	enable)
QTranslator::find(const	char	*context,	const	char	*sourceText,	const	char
*comment	=	0)	const
QTranslator::insert(const	char	*context,	const	char	*sourceText,	const
QString	&	translation)
QTranslator::remove(const	char	*context,	const	char	*sourceText)
QUriDrag::setFilenames(const	QStringList	&	fnames)
QWidget::backgroundColor()	const
QWidget::backgroundPixmap()	const
QWidget::iconify()
QWidget::setBackgroundColor(const	QColor	&	c)
QWidget::setBackgroundPixmap(const	QPixmap	&	pm)
QWidget::setFont(const	QFont	&	f,	bool)
QWidget::setPalette(const	QPalette	&	p,	bool)
QWizard::setFinish(QWidget	*,	bool)
QXmlInputSource::QXmlInputSource(QFile	&	file)
QXmlInputSource::QXmlInputSource(QTextStream	&	stream)
QXmlReader::parse(const	QXmlInputSource	&	input)

Additionally,	these	preprocessor	directives	have	been	removed:

#define	strlen	qstrlen

#define	strcpy	qstrcpy

#define	strcmp	qstrcmp

#define	strncmp	qstrncmp

#define	stricmp	qstricmp

#define	strnicmp	qstrnicmp

See	the	changes-3.0.0	document	for	an	explanation	of	why	this	had	to	be	done.
You	might	have	been	relying	on	the	non-portable	and	unpredictable	behavior
resulting	from	these	directives.	We	strongly	recommend	that	you	either	make	use
of	the	safe	qstr*	variants	directly	or	ensure	that	no	0	pointer	is	passed	to	the
standard	C	functions	in	your	code	base.

Collection	Class	Renaming

The	classes	QArray,	QCollection,	QList,	QListIterator,	QQueue,	QStack	and
QVector	have	been	renamed.	To	ease	porting,	the	old	names	and	the	old	header-
file	names	are	still	supported.

Old	Name New	Name New	Header	File
QArray QMemArray <qmemarray.h>

QCollection QPtrCollection <qptrcollection.h>

QList QPtrList <qptrlist.h>

QListIterator QPtrListIterator <qptrlist.h>
QQueue QPtrQueue <qptrqueue.h>

QStack QPtrStack <qptrstack.h>

QVector QPtrVector <qptrvector.h>

QButtonGroup

In	Qt	2.x,	the	function	QButtonGroup::selected()	returns	the	selected	radio
button	(QRadioButton).	In	Qt	3.0,	it	returns	the	selected	toggle	button
(QButton::toggleButton),	a	more	general	concept.	This	might	affect	programs
that	use	QButtonGroups	that	contain	a	mixture	of	radio	buttons	and	non-radio
(e.g.	QCheckBox)	toggle	buttons.

QDate

Two	QDate	member	functions	that	were	virtual	in	Qt	2.0	are	not	virtual	in	Qt
3.0.	This	is	only	relevant	if	you	subclassed	QDate	and	reimplemented	these
functions:

QString	QDate::monthName(int	month)	const
QString	QDate::dayName(int	weekday)	const

In	addition	to	no	longer	being	virtual,	QDate::monthName()	and
QDate::dayName()	have	been	renamed	QDate::shortMonthName()	and
QDate::shortDayName()	and	have	been	made	static	(as	they	should	had	been	in
the	first	place).	The	old	names	are	still	provided	for	source	compatibility.

QFont

The	internals	of	QFont	have	changed	significantly	between	Qt	2.2	and	Qt	3.0,	to
give	better	Unicode	support	and	to	make	developing	internationalized
applications	easier.	The	original	API	has	been	preserved	with	minimal	changes.
The	CharSet	enum	and	its	related	functions	have	disappeared.	This	is	because	Qt
now	handles	all	charset	related	issues	internally,	and	removes	this	burden	from
the	developer.

If	you	used	the	CharSet	enum	or	its	related	functions,	e.g	QFont::charSet()	or
QFont::setCharSet(),	just	remove	them	from	your	code.	There	are	a	few
functions	that	took	a	QFont::CharSet	as	a	parameter;	in	these	cases	simply
remove	the	charset	from	the	parameter	list.

QInputDialog

The	two	static	getText(...)	methods	in	QInputDialog	have	been	merged.	The
echo	parameter	is	the	third	parameter	and	defaults	to	QLineEdit::Normal.

If	you	used	calls	to	QInputDialog::getText(...)	that	provided	more	than	the	first
two	required	parameters	you	will	must	add	a	value	for	the	echo	parameter.

QLayout	and	Other	Abstract	Layout	Classes

The	definitions	of	QGLayoutIterator,	QLayout,	QLayoutItem,	QLayoutIterator,
QSpacerItem	and	QWidgetItem	have	been	moved	from	<qabstractlayout.h>
to	<qlayout.h>.	The	header	<qabstractlayout.h>	now	includes	<qlayout.h>
for	compatibility.	It	might	be	removed	in	a	future	version.

QMultiLineEdit

The	QMultiLineEdit	was	a	simple	editor	widget	in	previous	Qt	versions.	Since
Qt	3.0	includes	a	new	richtext	engine,	which	also	supports	editing,
QMultiLineEdit	is	obsolete.	For	the	sake	of	compatibility	QMultiLineEdit	is	still
provided.	It	is	now	a	subclass	of	QTextEdit	which	wraps	the	old	QMultiLineEdit
so	that	it	is	mostly	source	compatible	to	keep	old	applications	working.

For	new	applications	and	when	maintaining	existing	applications	we	recommend
that	you	use	QTextEdit	instead	of	QMultiLineEdit	wherever	possible.

Although	most	of	the	old	QMultiLineEdit	API	is	still	available,	there	is	one
important	difference.	The	old	QMultiLineEdit	operated	in	terms	of	lines,
whereas	QTextEdit	operates	in	terms	of	paragraphs.	This	is	because	lines	change
all	the	time	during	wordwrap,	whereas	paragraphs	remain	paragraphs.	The
consequence	of	this	change	is	that	functions	which	previously	operated	on	lines,
e.g.	numLines(),	textLine(),	etc.,	now	work	on	paragraphs.

Also	the	function	getString()	has	been	removed	since	it	published	the	internal
data	structure.

In	most	cases,	applications	that	used	QMultiLineEdit	will	continue	to	work
without	problems.	Applications	that	worked	in	terms	of	lines	may	require	some
porting.

The	source	code	for	the	old	2.x	version	of	QMultiLineEdit	can	be	found	in
$QTDIR/src/attic/qtmultilineedit.h/cpp.	Note	that	the	class	has	been
renamed	to	QtMultiLineEdit	to	avoid	name	clashes.	If	you	really	need	to	keep
compatibility	with	the	old	QMultiLineEdit,	simply	include	this	class	in	your
project	and	rename	QMultiLineEdit	to	QtMultiLineEdit	throughout.

QPrinter

QPrinter	has	undergone	some	changes,	to	make	it	more	flexible	and	to	ensure	it
has	the	same	runtime	behaviour	on	both	Unix	and	Windows.	In	2.x,	QPrinter
behaved	differently	on	Windows	and	Unix,	when	using	view	transformations	on
the	QPainter.	This	has	changed	now,	and	QPrinter	behaves	consistently	across	all
platforms.	A	compatibilty	mode	has	been	added	that	forces	the	old	behaviour,	to
ease	porting	from	Qt	2.x	to	Qt	3.x.	This	compatibilty	mode	can	be	enabled	by
passing	the	QPrinter::Compatible	flag	to	the	QPrinter	constructor.

On	X11,	QPrinter	used	to	generate	encapsulated	postscript	when	fullPage()	was
TRUE	and	only	one	page	was	printed.	This	does	not	happen	by	default	anymore,
providing	a	more	consistent	printing	output.

QRegExp

The	QRegExp	class	has	been	rewritten	to	support	many	of	the	features	of	Perl
regular	expressions.	Both	the	regular	expression	syntax	and	the	QRegExp
interface	have	been	modified.

Be	also	aware	that	<qregexp.h>	is	no	longer	included	automatically	when	you
include	<qstringlist.h>.	See	above	for	details.

New	special	characters

There	are	five	new	special	characters:	(,),	{,	|	and	}	(parentheses,	braces	and
pipe).	When	porting	old	regular	expressions,	you	must	add	\	(backslash)	in	front
of	any	of	these	(actually,	\\	in	C++	strings),	unless	it	is	already	there.

Example:	Old	code	like

				QRegExp	rx("([0-9|]*\\)");								//	works	in	Qt	2.x

should	be	converted	into

				QRegExp	rx("\\([0-9\\|]*\\)");						//	works	in	Qt	2.x	and	3.x

(Within	character	classes,	the	backslash	is	not	necessary	in	front	of	certain
characters,	e.g.	|,	but	it	doesn't	hurt.)

Wildcard	patterns	need	no	conversion.	Here	are	two	examples:

				QRegExp	wild("(*.*)");

				wild.setWildcard(TRUE);

				//	TRUE	as	third	argument	means	wildcard

				QRegExp	wild("(*.*)",	FALSE,	TRUE);

However,	when	they	are	used,	make	sure	to	use	QRegExp::exactMatch()	rather
than	the	obsolete	QRegExp::match().	QRegExp::match(),	like	QRegExp::find(),
tries	to	find	a	match	somewhere	in	the	target	string,	while
QRegExp::exactMatch()	tries	to	match	the	whole	target	string.

QRegExp::operator=()

This	function	has	been	replaced	by	QRegExp::setPattern()	in	Qt	2.2.	Old	code
such	as

				QRegExp	rx("alpha");

				rx.setCaseSensitive(FALSE);

				rx.setWildcard(TRUE);

				rx	=	"beta";

still	compiles	with	Qt	3,	but	produces	a	different	result	(the	case	sensitivity	and
wildcard	options	are	forgotten).	This	way,

				rx	=	"beta";

is	the	same	as

				rx	=	QRegExp("beta");

which	is	what	one	expects.

QRegExp::match()

The	following	function	is	now	obsolete,	as	it	has	an	unwieldy	parameter	list	and
was	poorly	named:

bool	QRegExp::match(const	QString	&	str,	int	index	=	0,	int	*	len	=	0,
bool	indexIsStart	=	TRUE)	const

It	will	be	removed	in	a	future	version	of	Qt.	Its	documentation	explains	how	to
replace	it.

QRegExp::find()

This	function	was	removed,	after	a	brief	appearance	in	Qt	2.2.	Its	name	clashed
with	QString::find().	Use	QRegExp::search()	or	QString::find()	instead.

QString::findRev()	and	QString::contains()

QString::findRev()'s	and	QString::contains()'s	semantics	have	changed	between
2.0	and	3.0	to	be	more	consistent	with	the	other	overloads.

For	example,

				QString("").contains(QRegExp(""))

returns	1	in	Qt	2.0;	it	returns	0	in	Qt	3.0.	Also,	"^"	now	really	means	start	of
input,	so

				QString("Heisan	Hoppsan").contains(QRegExp("^.*$"))

returns	1,	not	13	or	14.

This	change	affect	very	few	existing	programs.

QString::replace()

With	Qt	1.0	and	2.0,	a	QString	is	converted	implicitly	into	a	QRegExp	as	the
first	argument	to	QString::replace():

				QString	text	=	fetch_it_from_somewhere();

				text.replace(QString("[A-Z]+"),	"");

With	Qt	3.0,	the	compiler	gives	an	error.	The	solution	is	to	use	a	QRegExp	cast:

				text.replace(QRegExp("[A-Z]+"),	"");

This	change	makes	it	possible	to	introduce	a	QString::replace(QString,	QString)
overload	in	a	future	version	of	Qt	without	breaking	source	compatibility.

QSemiModal

The	QSemiModal	class	is	now	obsolete.	You	should	call	show()	on	a	modal
dialog	instead.

QSortedList

The	QSortedList	class	is	now	obsolete.	Consider	using	a	QDict,	a	QMap	or	a
plain	QPtrList	instead.

QTableView

The	QTableView	class	has	been	obsoleted	and	is	no	longer	a	part	of	the	Qt	API.
Either	use	the	powerful	QTable	class	or	the	simplistic	QGridView	in	any	new
code	you	create.	If	you	really	need	the	old	table	view	for	compatibility	you	can
find	it	in	$QTDIR/src/attic/qttableview.{cpp,h}.	Note	that	the	class	has
been	renamed	from	QTableView	to	QtTableView	to	avoid	name	clashes.	To	use
it,	simply	include	it	in	your	project	and	rename	QTableView	to	QtTableView
throughout.

QToolButton

The	QToolButton	class	used	to	distinguish	between	"on"	and	"off"	icons.	In	3.0,
this	mechanism	was	moved	into	the	QIconSet	class	(see	QIconSet::State).

The	old	QToolButton::onIconSet	and	QToolButton::offIconSet	properties	are
still	provided	so	that	old	source	will	compile,	but	their	semantics	have	changed:
they	are	now	synonyms	for	QToolButton::iconSet.	If	you	used	that	distinction	in
Qt	2.x,	you	will	need	to	adjust	your	code	to	use	the	QIconSet	On/Off
mechanism.

Likewise,	the	on	parameter	of	these	two	functions	is	now	ignored:

void	QToolButton::setIconSet	(const	QIconSet	&	set,	bool	on)
QIconSet	QToolButton::iconSet	(bool	on)	const

These	functions	are	only	provided	for	ease	of	porting.	New	code	should	use	the
following	instead:

void	QToolButton::setIconSet(const	QIconSet	&	set)
QIconSet	QToolButton::iconSet()	const

Finally,	this	function	is	no	longer	virtual:

void	QToolButton::setIconSet(const	QIconSet	&	set,	bool	on)

If	you	have	a	class	that	inherits	QToolButton	and	that	reimplements
QToolButton::setIconSet(),	you	should	make	the	signature	of	the
reimplementation	agree	with	the	new	QToolButton::setIconSet(),	a	virtual
function.

QTextStream

The	global	QTextStream	manipulators	setw(),	setfill()	and	setprecison()	were
renamed	to	qSetW(),	qSetFill()	and	qSetPrecision()	to	avoid	conflicts	with
<iostream.h>.	If	you	used	them,	you	must	rename	the	occurrences	to	the	new
names.

QTranslator

The	QTranslator	class	was	extended	in	Qt	2.2,	and	these	extensions	lead	to	a	new
interface.	This	interface	is	used	mainly	by	translation	tools	(for	example,	Qt
Linguist).	For	source	compatibility,	no	member	function	was	effectively
removed.	The	QTranslator	documentation	points	out	which	functions	are
obsolete.

This	function	is	no	longer	virtual:

QString	QTranslator::find(const	char	*	context,	const	char	*	sourceText)
const

If	you	have	a	class	that	inherits	QTranslator	and	which	reimplements
QTranslator::find(),	you	should	reimplement	QTranslator::findMessage()
instead.	In	fact,	find()	is	now	defined	in	terms	of	findMessage().	By	doing	the
conversion,	you	will	also	gain	support	for	translator	comments	and	for	any
future	extensions.

QWidget

QWidget::backgroundColor(),	QWidget::setBackgroundColor(),
QWidget::backgroundPixmap()	and	QWidget::setBackgroundPixmap()	have
often	been	the	source	of	much	confusion	in	previous	releases.	Qt	3.0	addresses
this	by	obsoleting	these	functions	and	by	remplacing	them	with	eight	new
functions:	QWidget::eraseColor(),	QWidget::setEraseColor(),
QWidget::erasePixmap(),	QWidget::setErasePixmap(),
QWidget::paletteBackgroundColor(),	QWidget::setPaletteBackgroundColor(),
QWidget::paletteBackgroundPixmap()	and
QWidget::setPaletteBackgroundPixmap().	See	their	documentation	for	details.

QXml	Classes

QXmlInputSource

The	semantics	of	QXmlInputSource	has	changed	slightly.	This	change	only
affects	code	that	parses	the	same	data	from	the	same	input	source	multiple	times.
In	such	cases	you	must	call	QXmlInputSource::reset()	before	the	second	call	to
QXmlSimpleReader::parse().

So	code	like

				QXmlInputSource	source(&xmlFile);

				QXmlSimpleReader	reader;

				...

				reader.parse(source);

				...

				reader.parse(source);

must	be	changed	to

				QXmlInputSource	source(&xmlFile);

				QXmlSimpleReader	reader;

				...

				reader.parse(source);

				...

				source.reset();

				reader.parse(source);

QXmlLocator

Due	to	some	internal	changes,	it	was	necessary	to	clean-up	the	semantics	of
QXmlLocator:	this	class	is	now	an	abstract	class.	This	shouldn't	cause	any
problems,	since	programmers	usually	used	the	QXmlLocator	that	was	reported
by	QXmlContentHandler::setDocumentLocator().	If	you	used	this	class	in	some
other	way,	you	must	adjust	your	code	to	use	the	QXmlLocator	that	is	reported	by
the	QXmlContentHandler::setDocumentLocator()	function.

Asynchronous	I/O	Classes

QASyncIO,	QDataSink,	QDataSource,	QIODeviceSource	and	QDataPump	were
used	internally	in	previous	versions	of	Qt,	but	are	not	used	anymore.	They	are
now	obsolete.

Transparent	widgets

In	Qt	2.x,	the	AutoMask	property	was	used	to	obtain	a	transparent-looking
widget.	In	general,	this	approach	is	slow	and	processor	hungry.	Qt	3.0	uses	the
BackgroundOrigin	which	provides	vastly	improved	performance	and	more
flexibility	in	most	cases.	The	few	classes	for	which	the	AutoMask	property	is
still	the	best	approach	are	QCheckBox,	QComboBox,	QPushButton,
QRadioButton	and	QTabWidget.

Bezier	Curves

The	function	names	for	Bezier	curves	in	QPainter	and	QPointArray	have	been
corrected.	They	now	properly	reflect	their	cubic	form	instead	of	a	quadratic	one.
If	you	have	been	using	either	QPainter::drawQuadBezier()	or
QPointArray::quadBezier()	you	must	replace	these	calls	with

void	QPainter::drawCubicBezier(const	QPointArray	&,	int	index=0)	and
QPointArray	QPointArray::cubicBezier()	const

respectively.	Neither	the	arguments	nor	the	resulting	curve	have	changed.

Locale-aware	String	Comparisons	in	QIconView,
QListBox,	QListView	and	QTable

In	Qt	2.x,	QString	only	provided	string	comparisons	using	the	Unicode	values	of
the	characters	of	a	string.	This	is	efficient	and	reliable,	but	it	is	not	the
appropriate	order	for	most	languages.	For	example,	French	users	expect	'é'	(e
acute)	to	be	treated	essentially	as	'e'	and	not	put	after	'z'.

In	Qt	3.0,	QString::localeAwareCompare()	implements	locale	aware	string
comparisions	on	certain	platforms.	The	classes	QIconView,	QListBox,
QListView	and	QTable	now	use	QString::localeAwareCompare()	instead	of
QString::compare().	If	you	want	to	control	the	behaviour	yourself	you	can
always	reimplement	QIconViewItem::compare(),	QListBox::text(),
QListViewItem::compare()	or	QTableItem::key()	as	appropriate.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Company	Information
Trolltech	AS	is	a	computer	software	company.	We	provide	software
development	tools	and	libraries,	as	well	as	expert	consultancy	services.

Our	flagship	product	is	Qt,	the	multi-platform,	C++	Graphical	User	Interfaces
toolkit.	Qt	enables	you	to	build	professional,	efficient,	portable	and	maintainable
GUI	applications	quickly	and	easily.

http://www.trolltech.com/products/qt.html

Software	that	makes	Sense

Our	motto	expresses	the	vision	behind	our	products.	We	design	our	products	to
give	our	customers	the	feeling	of	"this	is	the	way	that	things	were	always	meant
to	be".

We	know	that	it	is	crucial	for	our	customers	to	have	good	tools	for	making	good
software.	Therefore,	we	do	not	compromise	our	demands	for	superior	design	and
technical	quality	when	we	develop	our	products.

Trolltech	is	also	known	for	providing	top	quality	technical	support	to	our
customers.	At	Trolltech,	support	inquiries	are	handled	by	the	most	qualified
developers	and	designers	themselves.

History

Trolltech	was	founded	in	1994.	The	core	team	of	designers	at	Trolltech	started
developing	Qt	in	1992,	and	since	then	Qt	has	steadily	expanded	and	improved.
The	first	commercial	version	of	Qt	was	in	1995.	Since	then,	Trolltech	has
experienced	rapid	growth,	and	Qt	is	currently	used	in	hundreds	of	successful
software	development	projects	world	wide.

Contact	Information

Email
info@trolltech.com sales@trolltech.com

General	inquiries	and	questions.	Please
check	the	FAQ	to	see	if	your	question	is
already	answered	there.

Inquires	related	to	purchasing,
pricing	and	availability	of	Trolltech
products

www@trolltech.com qt-bugs@trolltech.com

Comments	about	our	web	pages
For	bug	reports.	Please	check	the
Platform	Notes	and	FAQ	to	see	if
the	issue	is	already	solved.

Note	that	Trolltech	uses	the	RBL	and	RSS	databases	to	cut	down	on	spam.	If
your	mail	server	is	listed,	you	will	regrettably	not	be	able	to	send	us	mail.	The
MAPS	TSI	pages	provide	information	about	how	to	secure	your	server.
	
	

Norway	Office
Telephone Street/Mail	Address
General	inquiries:	+47	21	60	48	00 Waldemar	Thranes	gate	98

N-0175	Oslo
Norway

Telefax
All	inquiries:	+47	21	60	48	01

	
	

USA	Office
Telephone Street/Mail	Address
General	inquiries:	+1	408	567	0212 3350	Scott	Blvd.

Building	55,	Suite	2
Santa	Clara
CA	95054
USA

Telefax

All	inquiries:	+1	408	567	0264

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

mailto:info@trolltech.com
mailto:sales@trolltech.com
http://www.trolltech.com/faq/
mailto:www@trolltech.com
mailto:qt-bugs@trolltech.com
http://www.trolltech.com/platforms/
http://www.trolltech.com/faq/
http://mail-abuse.org/rbl/
http://work-rss.mail-abuse.org/rss/
http://www.mail-abuse.org/tsi/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

bug
Qtbug

bug FAQ

bug

1.	
2.	
3.	 Qt

bug qt-bugs@trolltech.com

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/developer/faqs/
http://www.trolltech.com/platforms/
mailto:qt-bugs@trolltech.com
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Mailing	Lists
Trolltech	operates	several	mailing	lists	for	Qt	users	including	qt-announce,	qt-
interest	and	snapshot-users.

See	http://www.trolltech.com/developer/mailinglists/.

http://www.trolltech.com/developer/mailinglists/

qt-announce

The	subscribers	to	this	mailing	list	receives	all	official	Trolltech	announcements
when	new	versions	of	Qt	and	other	Trolltech	products	are	released,	and	other
Trolltech	announcements	of	general	interest.

To	subscribe	to	the	qt-announce	mailing	list,	simply	press	the	button	below.

Subscribe	to	Qt	Announcement	Mailing	List

You	can	also	subscribe	by	sending	an	email	containing	just	the	word	subscribe
or	subscribe	your@email.address	to	qt-announce-request@trolltech.com.

To	unsubscribe	yourself	from	the	qt-announce	mailing	list,	similarly	send	an
email	containing	just	the	word	unsubscribe	or	unsubscribe
your@email.address	to	qt-announce-request@trolltech.com.

mailto:qt-announce-request@trolltech.com
mailto:qt-announce-request@trolltech.com

qt-interest

This	mailing	list	is	a	discussion	forum	for	Qt	users.	Typical	traffic	is	10	to	20
messages	per	day.

An	archive	of	the	messages	from	qt-interest	is	available	on	the	Trolltech	web
site:	Qt	Mailing	List	Archive.

To	subscribe	to	the	qt-interest	mailing	list,	send	an	email	containing	just	the
word	subscribe	or	subscribe	your@email.address	to	qt-interest-
request@trolltech.com.

To	unsubscribe	yourself	from	the	qt-interest	mailing	list,	similarly	send	an
email	containing	just	the	word	unsubscribe	or	unsubscribe
your@email.address	to	qt-interest-request@trolltech.com.

This	list	is	now	available	as	network	news	using	the	NNTP	protocol	from
news://nntp.trolltech.com/trolltech.qt-interest/.

http://lists.trolltech.com/qt-interest/
mailto:qt-interest-request@trolltech.com
mailto:qt-interest-request@trolltech.com
news://nntp.trolltech.com/trolltech.qt-interest/

snapshot-users

There	is	a	special	mailing	list,	snapshot-users@trolltech.com,	for	discussion
of	Qt	snapshot-related	issues.	To	subscribe,	send	a	message	containing	just	the
word	"subscribe"	(without	the	quotes)	to	snapshot-users-request@trolltech.com.
We	encourage	you	to	use	this	mailing	list	instead	of	qt-interest	for	snapshot-
specific	issues.

Trolltech	does	not	sell	or	in	any	way	redistribute	the	addresses	on	our	mailing	lists.	We	also	employ	active
filtering	to	ensure	the	mailing	lists	are	virtually	free	from	spam.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

mailto:snapshot-users-request@trolltech.com
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Qt/	

1.	 QObject
2.	 Q_OBJECT
3.	 moc

mocC++	Q_OBJECTQ_OBJECT	C++#include	

	QObject

className()	C++RTTI

inherits()	QObject

tr()trUtf8()	

setProperty()property()	

metaObject()	

QObjectQ_OBJECT	Q_OBJECT	QObject	
className()	 QObject	Q_OBJECT

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Qt/Embedded	Performance	Tuning
When	building	embedded	applications	on	low-powered	devices,	a	number	of
options	are	available	that	would	not	be	considered	in	a	desktop	application
environment.	These	options	reduce	the	memory	and/or	CPU	requirements	at	the
cost	of	other	factors.

Tuning	the	functionality	of	Qt
General	programming	style
Static	vs.	Dynamic	linking
Alternative	memory	allocation

General	programming	style

The	following	guidelines	will	improve	CPU	performance:

Create	dialogs	and	widgets	once,	then	QWidget::hide()	and
QWidget::show()	them,	rather	than	creating	them	and	deleting	them	every
time	they	are	needed.	This	will	use	a	little	more	memory,	but	will	be	much
faster.	Try	to	create	them	the	first	time	"lazily"	to	avoid	slow	startup	(only
create	the	Find	dialog	the	first	time	the	user	invokes	it).

Static	vs.	Dynamic	linking

Much	CPU	and	memory	is	used	by	the	ELF	linking	process.	You	can	make
significant	savings	by	using	a	static	build	of	your	application	suite.	This	means
that	rather	than	having	a	dynamic	library	(libqte.so)	and	a	collection	of
executables	which	link	dynamically	to	that	library,	you	build	all	the	applications
into	a	single	executable	and	statically	link	that	with	a	static	library	(libqt.a).
This	improves	start-up	time,	and	reduces	memory	usage,	at	the	expense	of
flexibility	(to	add	a	new	application,	you	must	recompile	the	single	executable)
and	robustness	(if	one	application	has	a	bug,	it	might	harm	other	applications).	If
you	need	to	install	end-user	applications,	this	may	not	be	an	option,	but	if	you
are	building	a	single	application	suite	for	a	device	with	limited	CPU	power	and
memory,	this	option	could	be	very	beneficial.

To	compile	Qt	as	a	static	library,	add	the	-static	options	when	you	run
configure.

To	build	your	application	suite	as	an	all-in-one	application,	design	each
application	as	a	stand-alone	widget	or	set	of	widgets,	with	only	minimal	code	in
the	main()	function.	Then,	write	an	application	that	gives	some	way	to	switch
between	the	applications	(eg.	a	QIconView).	The	QPE	is	an	example	of	this.	It
can	be	built	either	as	a	set	of	dynamically-linked	executables,	or	as	a	single	static
application.

Note	that	you	should	generally	still	link	dynamically	against	the	standard	C
library	and	any	other	libraries	which	might	be	used	by	other	applications	on	your
device.

http://www.trolltech.com/products/qt/embedded/qpe.html

Alternative	memory	allocation

We	have	found	that	the	libraries	shipped	with	some	C++	compilers	on	some
platforms	have	poor	performance	in	the	built-in	"new"	and	"delete"	operators.
You	might	gain	performance	by	re-implementing	these	functions.	For	example,
you	can	switch	to	the	plain	C	allocators	by	adding	the	following	to	your	code:

				void*	operator	new[](size_t	size)

				{

								return	malloc(size);

				}

				void*	operator	new(size_t	size)

				{

								return	malloc(size);

				}

				void	operator	delete[](void	*p)

				{

								free(p);

				}

				void	operator	delete[](void	*p,	size_t	size)

				{

								free(p);

				}

				void	operator	delete(void	*p)

				{

								free(p);

				}

				void	operator	delete(void	*p,	size_t	size)

				{

								free(p);

				}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Running	Qt/Embedded	applications
A	Qt/Embedded	application	requires	a	master	application	to	be	running	or	to	be
a	master	application	itself.	The	master	application	is	primarily	responsible	for
managing	top-level	window	regions,	and	pointer	and	keyboard	input.

Any	Qt/Embedded	application	can	be	a	master	application	by	constructing	the
QApplication	object	with	the	QApplication::GuiServer	type,	or	running	the
application	with	the	-qws	command	line	option.

This	document	assumes	you	have	the	Linux	framebuffer	configured	correctly
and	no	master	process	is	running.	If	you	do	not	have	a	working	Linux
framebuffer	you	can	use	the	Qt/Embedded	virtual	framebuffer,	or	you	can	run
Qt/Embedded	as	a	VNC	server.

Change	to	a	Linux	console	and	select	an	example	to	run,	e.g.	examples/widgets.
Make	sure	$QTDIR	is	set	to	the	directory	where	you	installed	Qt/Embedded	and
add	the	$QTDIR/lib	directory	to	$LD_LIBRARY_PATH,	e.g.:

export	QTDIR=$HOME/qt-VERSION

export	LD_LIBRARY_PATH=$QTDIR/lib:$LD_LIBRARY_PATH

Run	the	application	with	the	-qws	option:

cd	$QTDIR/examples/widgets

./widgets	-qws

You	should	see	the	widgets	example	appear.	If	your	mouse	doesn't	work
correctly	you	need	to	specify	the	type	of	mouse	to	use.	You	can	exit	the	master
application	at	any	time	using	Ctrl+Alt+Backspace.

If	you	wish	to	run	additional	applications	you	should	run	them	as	clients	i.e.
without	the	-qws	option.

Displays

Qt/Embedded	allows	multiple	displays	to	be	used	simultaneously	by	running
multiple	Qt/Embedded	master	processes.	This	is	achieved	using	the	-display
command	line	parameter	or	the	$QWS_DISPLAY	environment	variable.

The	-display	parameter's	syntax	is:

				[gfx	driver][:driver	specific	options][:display	number]

for	example	if	you	want	to	use	the	mach64	driver	on	fb1	as	display	2:

				$./launcher	-display	Mach64:/dev/fb1:2

To	try	this	functionality	you	can	do	the	following:

1.	 Change	to	VC	1	and	run	the	launcher:

				$	cd	examples/launcher

				$./launcher

2.	 Switch	to	VC	2	and	run	another	one:

				$	cd	examples/launcher

				$./launcher	-display	:1

Another	launcher	will	be	started.	Start	an	application	in	this	launcher.

3.	 Press	Ctrl+Alt+F1	-	back	to	display	0.	You	can	also	start	additional
applications	on	a	particular	display	by	specifying	the	display	id.	Change	to
VC	3:

				$	cd	examples/widgets

				$./widgets	-display	:1

will	display	the	widgets	example	on	dislpay	:1	(VC	2).

Only	the	master	process	needs	to	specify	the	driver/device	part	explicitly.	The
clients	get	the	information	they	need	from	the	master	when	they	connect.	So
once	you	have	a	master	server	running	using	a	particular	driver,	you	can	just	use
"client	-display	:n"	to	use	display	n.

Mouse	Input

At	the	time	of	writing	Qt/Embedded	supports	MouseMan	(default),	Microsoft,
IntelliMouse	and	some	other	devices	specific	to	certain	hardware	(e.g.	Vr	touch
panel).	To	specify	the	mouse	to	use	set	the	$QWS_MOUSE_PROTO
environment	variable,	e.g.:

export	QWS_MOUSE_PROTO=IntelliMouse

See	also	Qt/Embedded	Pointer	Handling.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Porting	your	applications	to
Qt/Embedded

Existing	Qt	applications	should	require	no	porting	provided	there	is	no	platform
dependent	code.	Platform	dependent	code	includes	system	calls,	calls	to	the
underlying	window	system	(Windows	or	X11),	and	Qt	platform	specific	methods
such	as	QApplication::x11EventFilter().

For	cases	where	it	is	necessary	to	use	platform	dependent	code	there	are	macros
defined	that	can	be	used	to	enable/disable	code	for	each	platform	using	#ifdef
directives:

Platform Macro
Qt/X11 Q_WS_X11
Qt/Windows Q_WS_WIN
Qt/Embedded Q_WS_QWS

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Fonts	in	Qt/Embedded

Supported	Formats

Qt/Embedded	supports	four	font	formats:

TrueType	(TTF)	-	the	scalable	font	technology	now	standard	on	MS-
Windows	and	Apple	Macintosh,	and	becoming	popular	on	X11.
Postscript	Type1	(PFA/PFB)	-	scalable	fonts	often	used	by	printers,	also
popular	on	X11.	These	are	similar	in	functionality	to	TTF	fonts	and	are	not
discussed	further	in	this	document.
Bitmap	Distribution	Format	fonts	(BDF)	-	a	standard	format	for	non-
scalable	fonts.	A	large	number	of	BDF	fonts	are	supplied	as	part	of	standard
X11	distributions	-	most	of	these	can	be	used	with	Qt/Embedded.	You
should	not	use	these	in	a	production	system:	they	are	very	slow	to	load	and
take	up	a	lot	of	storage	space.	Instead,	render	the	BDF	to	a	QPF.
Qt	Prerendered	Font	(QPF)	-	a	light-weight	non-scalable	font	format
specific	to	Qt/Embedded.

Support	for	each	of	these	font	formats,	except	QPF	which	is	always	enabled,	can
be	enabled	or	disabled	independently	by	using	the	Qt/Embedded	Features
Definition.	There	is	support	in	Qt/Embedded	for	writing	a	QPF	font	file	from
any	font,	thus	you	can	initially	enable	TTF	and	BDF	formats,	save	QPF	files	for
the	fonts	and	sizes	you	need,	then	remove	TTF	and	BDF	support.

See	tools/makeqpf	for	a	tool	that	helps	produce	QPF	files	from	the	TTF	and
BDF,	or	just	run	your	application	with	the	-savefonts	option.

Memory	Requirements

With	TTF	fonts,	each	character	in	the	font	at	a	given	point	size	is	only	rendered
when	first	used	in	a	drawing	or	metrics	operation.	With	BDF	fonts	all	characters
are	rendered	when	the	font	is	used.	With	QPF	fonts,	the	characters	are	stored	in
the	same	format	as	Qt	uses	when	drawing.

For	example,	a	10-point	Times	font	containing	the	ASCII	characters	uses	around
1300	bytes	when	stored	in	QPF	format.

Taking	advantage	of	the	way	the	QPF	format	is	structured,	Qt/Embedded
memory-maps	the	data	rather	than	reading	and	parsing	it.	This	reduces	RAM
consumption	even	further.

Scalable	fonts	use	a	larger	amount	of	memory	per	font,	but	these	fonts	provide	a
memory	saving	if	many	different	sizes	of	each	font	are	needed.

Smooth	Fonts

TTF,	PFA,	and	QPF	fonts	can	be	rendered	as	smooth	anti-aliased	fonts	to	give
superior	readability,	especially	on	low-resolution	devices.	The	difference
between	smooth	and	non-smooth	fonts	is	illustrated	below	(you	may	need	to
change	your	display	to	low	resolution	to	see	the	difference):

In	Qt/Embedded	2.2.1,	smooth	fonts	use	8	times	as	much	memory	as	non-
smooth	fonts.	This	multiplier	will	be	reduced	to	a	configurable	2	or	4	(ie.	4-level
and	16-level	shading	rather	than	the	current	excessive	256-level	shading).

Unicode

All	fonts	used	by	Qt/Embedded	use	the	Unicode	character	encoding.	Most	fonts
available	today	use	this	encoding,	but	they	usually	don't	contain	all	the	Unicode
characters.	A	complete	16-point	Unicode	font	uses	over	1	MB	of	memory.

The	font	definition	file

When	Qt/Embedded	applications	run,	they	look	for	a	file	called
$QTDIR/lib/fonts/fontdir	or	/usr/local/qt-embedded/lib/fonts/fontdir.
This	file	defines	the	fonts	available	to	the	application.	It	has	the	following
format:

name	file	renderer	italic	weight	size	flags

where

Field Value
name Helvetica,	Times,	etc.
file helvR0810.bdf,	verdana.ttf,	etc.
renderer BDF	or	FT
italic y	or	n
weight 50	is	normal,	75	is	bold,	etc.
size 0	for	scalable	or	pointsize	times	10	(e.g.,	120	for	12pt)

flags
s:	smooth	(anti-aliased)
u:	unicode	range	when	saving	(default	is	Latin-1)
a:	ascii	range	when	saving	(default	is	Latin-1)

The	font	definition	file	does	not	specify	QPF	fonts;	these	are	loaded	directly
from	the	directory	containing	the	fontdir	file,	and	must	be	named
name_size_weightitalicflag.qpf,	where

Field Value
name helvetica,	times,	etc.	(in	lowercase)
size pointsize	times	10	(e.g.,	120	for	12pt)
italicflag i	for	italic,	otherwise	nothing.
weight 50	is	normal,	75	is	bold,	etc.

If	an	application	is	run	with	the	-savefonts	command-line	option,	then
whenever	a	font	other	than	a	QPF	font	is	used,	a	corresponding	QPF	file	is

saved.	This	allows	you	to	easily	find	the	font	usage	of	your	applications	and	to
generate	QPF	files	so	that	you	can	eventually	reduce	the	memory	usage	of	your
applications	by	disabling	TTF	and	BDF	support	from	Qt/Embedded,	or	by
modifying	the	initialization	of	qws_savefonts	in
kernel/qapplication_qws.cpp	of	the	Qt/Embedded	library	source	code.	In
extreme	cases	of	memory-saving,	it	is	possible	to	save	partially-rendered	fonts
(eg.	only	the	characters	in	"Product	NameTM")	if	you	are	certain	that	these	are
the	only	characters	you	will	need	from	the	font.	See
QMemoryManager::savePrerenderedFont()	for	this	functionality.

Notes

The	font	definition	file,	naming	conventions	for	font	files,	and	the	format	of	QPF
files	may	change	in	versions	of	Qt/Embedded	after	2.2.1.

When	enabled,	Qt/Embedded	uses	the	powerful	FreeType2	library	to	implement
TrueType	and	Type1	support.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Character	input	in	Qt/Embedded
Internally	in	the	client/server	protocol,	each	key	press	and	key	release	is	sent	as	a
QWSKeyEvent.	A	QWSKeyEvent	contains	the	following	fields:

unicode

Unicode	value

keycode

Qt	keycode	value	as	defined	in	qnamespace.h

modifier

A	bitfield	consisting	of	some	of	Qt::ShiftButton,	Qt::ControlButton,	and
Qt::AltButton.

is_press

TRUE	if	this	is	a	key	press,	FALSE	if	it	is	a	key	release.

is_auto_repeat

TRUE	if	this	event	is	caused	by	auto	repeat.

When	the	server	receives	a	key	event,	it	is	sent	to	each	client	process,	which	is
responsible	for	processing	the	key	event	and	sending	it	to	the	right	window,	if
any.	Key	events	may	come	from	several	different	sources.

Keyboard	drivers

A	keyboard	driver	reads	data	from	a	device	and	gives	key	events	to	the	server.

Keyboard	drivers	are	currently	compiled	into	the	library.	They	are	defined	in	the
file	src/kernel/qkeyboard_qws.cpp.	At	the	time	of	writing,	the	following
drivers	are	defined:

QWSTtyKeyboardHandler Input	from	the	system	console	(tty)

QWSVr41xxButtonsHandler
Input	handler	for	the	buttons	on	Cassiopeia-style
PDAs

QWSVFbKeyboardHandler Virtual	framebuffer	key	input

The	keyboard	drivers	all	follow	the	same	pattern.	They	read	keyboard	data	from
a	device,	find	out	which	keys	were	pressed,	and	then	call	the	static	function
QWSServer::processKeyEvent()	with	the	key	information.

At	present,	the	console	keyboard	driver	also	handles	console	switching
(Ctrl+Alt-F1...Ctrl+Alt+F10)	and	termination	(Ctrl+Alt+Backspace).

To	add	a	keyboard	driver	for	a	new	device,	make	a	subclass	of
QWSKeyboardHandler	and	instantiate	it	in	QWSServer::newKeyboardHandler()
(in	qkeyboard_qws.cpp).

Key	event	filters	(input	methods)

When	the	server	receives	a	key	event	from	a	keyboard	driver,	it	first	passes	it
through	a	filter.

This	can	be	used	to	implement	input	methods,	providing	input	of	characters	that
are	not	on	the	keyboard.

To	make	an	input	method,	subclass	QWSServer::KeyboardFilter	(in
src/kernel/qwindowsystem_qws.h)	and	implement	the	virtual	function
filter().	If	filter()	returns	FALSE,	the	event	will	be	sent	to	the	clients	(using
QWSServer::sendKeyEvent()).	If	filter()	returns	TRUE,	the	event	will	be
stopped.	To	generate	new	key	events,	use	QWSServer::sendKeyEvent().	(Do	not
use	processKeyEvent(),	since	this	will	lead	to	infinite	recursion.)

To	install	a	keyboard	event	filter,	use	QWSServer::setKeyboardFilter().
Currently,	only	one	filter	can	be	installed	at	a	time.

Filtering	must	be	done	in	the	server	process.

The	launcher	example	contains	an	example	of	a	simple	input	method,	SimpleIM
which	reads	a	substitution	table	from	a	file.

Pen	input

Key	events	do	not	need	to	come	from	a	keyboard	device.	The	server	process
may	call	QWSServer::sendKeyEvent()	at	any	time.

Typically,	this	is	done	by	popping	up	a	widget,	and	letting	the	user	specify
characters	with	the	pointer	device.

Note:	the	key	input	widget	should	not	take	focus,	since	the	server	would	then
just	send	the	key	events	back	to	the	input	widget.	One	way	to	make	sure	that	the
input	widget	never	takes	focus	is	to	set	the	WStyle_Customize	and	WStyle_Tool
widget	flags	in	the	QWidget	constructor.

The	Qt	Palmtop	environment	contains	various	input	widgets	such	as
Handwriting	Recognition	and	Virtual	Keyboard.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/products/palmtop/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Qt/Embedded	Pointer	Handling
Pointer	handling	in	Qt/Embedded	works	for	any	mouse	or	mouse-like	device
such	as	touchpanels	and	trackballs.

Usually	only	one	pointer	device	is	supported	in	an	embedded	device,	but	for
demonstration	purposes,	Qt/Embedded	includes	a	large	number	of	supported
devices.

Mouse	Protocols

Qt/Embedded	normally	auto-detects	the	mouse	type	and	device	if	it	is	one	of	the
supported	types	on	/dev/psaux	or	one	of	the	/dev/ttyS?	serial	lines.	If	multiple
mice	are	detected,	all	may	be	used	simultaneously.

Alternatively,	you	may	set	the	environment	variable	QWS_MOUSE_PROTO	to
determine	which	mouse	to	use.	This	environment	variable	may	be	set	to:

<protocol>:<device>

where	<protocol>	is	one	of:

MouseMan
IntelliMouse
Microsoft

and	<device>	is	the	mouse	device,	often	/dev/mouse.	If	no	such	variable	is
specified,	the	built-in	default	is	Auto,	which	enables	auto-detection	of	the	mouse
protocol	and	device.

To	add	another	protocol,	new	subclasses	of	QAutoMouseSubHandler	or
QMouseHandler	can	be	written	in	kernel/qwsmouse_qws.cpp.

Touch	Panels

Qt/Embedded	ships	with	support	for	the	NEC	Vr41XX	touchpanel	and	the	iPAQ
touchpanel.	These	are	subclasses	of	QCalibratedMouseHandler	which	is	in	turn
a	subclass	of	QMouseHandler	in	kernel/qwsmouse_qws.cpp.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

The	Feature	Definition	File
The	file	src/tools/qfeatures.h	includes	the	file	src/tools/qconfig.h.	By
modifying	qconfig.h,	you	can	define	a	subset	of	the	full	Qt	functionality	that
you	wish	to	have	available	on	your	installation.

Note	that	such	modification	is	only	supported	on	Qt/Embedded	platforms,	where
reducing	the	size	of	Qt	is	important	and	the	application-set	is	often	fixed.

The	config.h	definition	file	simply	defines	macros	to	disable	features.	Some
features	are	dependent	on	other	features	and	these	dependencies	are	expressed	in
qfeatures.h.

The	available	options	are:

Macro Disables
Images	(QImageIO)

QT_NO_IMAGEIO_BMP The	Microsoft	Bitmap	image
file	format. 	

QT_NO_IMAGEIO_PPM The	Portable	Pixmap	image	file
format. 	

QT_NO_IMAGEIO_XBM The	X11	Bitmap	image	file
format. 	

QT_NO_IMAGEIO_XPM The	X11	Pixmap	image	file
format. 	

QT_NO_IMAGEIO_PNG The	Portable	Network	Graphics
image	file	format. 	

Animation
QT_NO_ASYNC_IO Asynchronous	I/O	(QAsyncIO) 	

QT_NO_ASYNC_IMAGE_IO
Asynchronous	Image	I/O	and
GIF	image	support
(QImageDecoder,	...)

	

QT_NO_MOVIE Animation	support	(QMovie) QT_NO_ASYNC_IO,
QT_NO_ASYNC_IMAGE_IO

Fonts

QT_NO_TRUETYPE
TrueType	(TTF	and	TTC)	font
file	format,	only	used	by
Qt/Embedded.

	

QT_NO_BDF
Bitmap	Distribution	Format
(BDF)	font	file	format,	only
used	by	Qt/Embedded.

	

QT_NO_FONTDATABASE Font	database. 	
Internationalization

QT_NO_I18N Conversions	between	Unicode
and	8-bit	encodings. 	

QT_NO_UNICODETABLES

Large	tables	defining	such
things	as	upper	and	lowercase
conversions	for	all	Unicode
characters.

	

MIME

QT_NO_MIME

Multipurpose	Internet	Mail
Extensions,	an	internet	standard
for	encoding	and	tagging	typed
data	(eg.	text,	images,	colors)
(QMimeSource)

	

QT_NO_RICHTEXT HTML-like	text	(QStyleSheet,
QLabel) QT_NO_MIME

QT_NO_DRAGANDDROP Drag-and-drop	data	between
applications	(QDragObject) QT_NO_MIME

QT_NO_CLIPBOARD Cut-and-paste	data	between
applications	(QClipboard) QT_NO_MIME

Sound
QT_NO_SOUND Playing	audio	files	(QSound) 	

Scipting

QT_NO_PROPERTIES Scripting	of	Qt-based
applications. 	

Qt/Embedded-specific

QT_NO_QWS_CURSOR

The	cursor	sprite	on
Qt/Embedded.	Pen-operated
devices	would	not	normally
need	this	feature.

	

QT_NO_QWS_DEPTH_8GRAYSCALE
8	bits	per	pixel:	256	levels	of
gray.	Incompatible	with
QWS_DEPTH_8.

	

QT_NO_QWS_DEPTH_8

8	bits	per	pixel:	216-color	cube
with	40	auxiliary	colors.
Incompatible	with
QWS_DEPTH_8GRAYSCALE.

	

QT_NO_QWS_DEPTH_15 15	bits	per	pixel:	32	levels	for
each	of	red,	green	and	blue. 	

QT_NO_QWS_DEPTH_16
16	bits	per	pixel:	64	levels	of
green,	32	levels	for	red	and	for
blue.

	

QT_NO_QWS_DEPTH_32 32	bits	per	pixel:	256	levels	for
each	of	red,	green	and	blue. 	

QT_NO_QWS_MACH64 Mach64	accelerated	driver
(demonstration	only). 	

QT_NO_QWS_VFB
Virtual	framebuffer	running	on
X11	(see	reference
documentation).

	

Networking

QT_NO_NETWORKPROTOCOL
Abstract	multi-protocol	data
retrieval,	with	local	file	retrieval
included	(QNetworkProtocol)

	

QT_NO_NETWORKPROTOCOL_FTP FTP-protocol	data	retrieval. QT_NO_NETWORKPROTOCOL
QT_NO_NETWORKPROTOCOL_HTTP HTTP-protocol	data	retrieval. QT_NO_NETWORKPROTOCOL

Painting/drawing

QT_NO_COLORNAMES

Color	names	such	as	"red",	used
by	some	QColor	constructors
and	by	some	HTML	documents
(QColor,	QStyleSheet)

	

QT_NO_TRANSFORMATIONS

Used	by	a	number	of	classes	in
Qt.	With	this,	rotation	and
scaling	are	possible.	Without	it,
only	co-ordinate	translation
(QWMatrix)

	

QT_NO_PSPRINTER PostScript	printer	support. 	

QT_NO_PRINTER Printer	support	(QPrinter) QT_NO_PSPRINTER	(Unix	only)

QT_NO_PICTURE Save	Qt	drawing	commands	to	a
files	(QPicture) 	

Widgets

QT_NO_WIDGETS Disabling	this	disables	all
widgets	except	QWidget. 	

QT_NO_TEXTVIEW HTML	document	viewing
(QTextView)

QT_NO_WIDGETS,
QT_NO_RICHTEXT

QT_NO_TEXTBROWSER HTML	document	browsing
(QTextBrowser) QT_NO_TEXTVIEW

QT_NO_ICONVIEW Labelled	icons	(QIconView) QT_NO_WIDGETS,
QT_NO_DRAGANDDROP

QT_NO_LISTVIEW Lists	of	information
(QListView) QT_NO_WIDGETS

QT_NO_CANVAS Object	canvas	(QCanvas) QT_NO_WIDGETS
QT_NO_DIAL Value	control	(QDial) QT_NO_WIDGETS

QT_NO_WORKSPACE Multi-document	interface
(QWorkspace) QT_NO_WIDGETS

QT_NO_LCDNUMBER LCD-like	number	display
(QLCDNumber) QT_NO_WIDGETS

GUI	Styles

QT_NO_STYLE_WINDOWS Microsoft	Windows	style
(QWindowsStyle) QT_NO_WIDGETS

QT_NO_STYLE_MOTIF OSF	Motif	style	(QMotifStyle) QT_NO_WIDGETS

QT_NO_STYLE_CDE Open	Group	CDE	style
(QCDEStyle) QT_NO_STYLE_MOTIF

QT_NO_STYLE_AQUA MacOS	X	style	(QAquaStyle)

QT_NO_STYLE_PLATINUM MacOS	9	style
(QPlatinumStyle) QT_NO_WIDGETS

QT_NO_STYLE_SGI SGI	style	(QSGIStyle) QT_NO_STYLE_MOTIF
Dialogs

QT_NO_DIALOGS Disabling	this	disables	all
common	dialogs	QWidget. QT_NO_WIDGETS

QT_NO_FILEDIALOG The	file	selection	dialog
(QFileDialog)

QT_NO_DIALOGS,
QT_NO_NETWORKPROTOCOL,

QT_NO_LISTVIEW

QT_NO_FONTDIALOG The	font	selection	dialog
(QFontDialog)

QT_NO_DIALOGS,
QT_NO_FONTDATABASE

QT_NO_COLORDIALOG The	color	selection	dialog
(QColorDialog) QT_NO_DIALOGS

QT_NO_INPUTDIALOG Text	input	dialog
(QInputDialog) QT_NO_DIALOGS

QT_NO_MESSAGEBOX Message/prompting	dialog
(QMessageBox) QT_NO_DIALOGS

QT_NO_PROGRESSDIALOG Long-computation	progress
dialog	(QProgressDialog) QT_NO_DIALOGS

QT_NO_TABDIALOG Tabbed-pages	dialog
(QTabDialog) QT_NO_DIALOGS

QT_NO_WIZARD Multi-step	dialog	(QWizard) QT_NO_DIALOGS

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Qt/Embedded	Case	Study	-
Cassiopeia	E-100

Introduction

This	document	describes	the	steps	involved	in	installing	Linux	on	an	embedded
device	and	building	a	Qt/Embedded	application.	The	target	device	is	the
Cassiopeia	E-100/E-105.	The	device	has	a	MIPS	Vr4121	processor,	16MB	RAM
(32MB	in	the	E-105),	a	Compact	Flash	slot	and	a	240x320	16	bit	per	pixel	LCD
display.

The	only	part	of	this	document	that	is	specific	to	the	Cassiopeia	is	the
installation	of	Linux	and	the	development	tools.	The	example	application	can	be
compiled	and	run	on	your	desktop	machine.

Installing	Linux

All	the	information	and	software	required	to	get	Linux	running	on	the	VR	series
of	processors	is	available	from	the	Linux	VR	web	site.	In	Summary:

Install	the	tools

Follow	the	instructions	at	http://www.linux-vr.org/tools.html.

Build	the	kernel

Get	a	sample	root	ramdisk	from
ftp://ftp.ltc.com/pub/linux/mips/ramdisk/ramdisk.

Follow	the	instructions	at	http://www.linux-vr.org/ramdisk.html	to	create	a
ramdisk.o	file.

Now	build	your	kernel	http://www.linux-vr.org/kernel.html	using	this	ramdisk
object.	Make	sure	you	have	at	least	the	following	configuration:

Development/incomplete	drivers
Casio	E105	Platform
Network	and	System	V	IPC
RAM	disk	and	Initial	RAM	disk	support
Support	for	console	on	virtual	terminal	(so	that	you	can	see	boot	messages)
/proc	and	ext2	filesystem	support
Simple	Frame	Buffer	with	HPC	device	control

Booting	Linux

Follow	the	instructions	at	http://www.linux-vr.org/booting.html.

You	should	see	the	linux	boot	messages	on	the	LCD	display.

http://www.linux-vr.org/
http://www.linux-vr.org/tools.html
ftp://ftp.ltc.com/pub/linux/mips/ramdisk/ramdisk
http://www.linux-vr.org/ramdisk.html
http://www.linux-vr.org/kernel.html
http://www.linux-vr.org/booting.html

A	Qt/Embedded	Application

Usually	a	device	such	as	the	Cassiopeia	would	have	a	shell,	configured	as	the
Qt/Embedded	server,	that	allows	client	applications	to	be	launched.	For	the
purposes	of	this	tutorial,	we	will	write	a	simple	application	that	serves	as	the
Qt/Embedded	server	and	client.	A	more	complete	Qt/Embbeded	server	can	be
found	in	$QTDIR/examples/compact.

The	application	that	we	will	write	is	a	simple	note	pad.	It	will	allow	notes	to	be
created,	viewed	and	deleted.	Since	the	Cassiopeia	doesn't	have	a	keyboard,	we
will	include	a	simple	on-screen	keyboard	for	input.

Note	Pad

Our	note	pad	user	interface	is	very	simple.	It	consists	of	a	toolbar	with	"New"
and	"Delete"	buttons,	a	combo	box	to	select	the	note	to	view	and	an	editing	area.

Take	a	moment	to	browse	the	source	code	for	Note	Pad	in
$QTDIR/examples/notepad/.	The	code	is	quite	simple,	but	there	are	some	things
worth	noting:

1.	 Two	fonts	are	set	-	helvetica	10	point	as	the	application's	default	font,	and
helvetica	12	point	for	the	editor.	Since	we	will	use	prerendered	fonts	these
fonts	must	be	prepared	as	described	here.

2.	 The	QApplication	is	constructed	with	the	QApplication::GuiServer	type
specified.	This	makes	the	note	pad	a	Qt/Embedded	server.	One	server	must
be	running	for	Qt/Embedded	clients	to	run.	In	this	case	our	application	is
both	server	and	client	because	it	is	the	only	application	we	wish	to	run	on
our	device.

3.	 The	Cassiopeia	(usually)	has	no	keyboard	so	we	must	provide	some	means
of	character	input	with	the	pen.	The	simplest	method	is	to	display	a	small
keyboard.	The	compact	example	includes	a	keyboard,	so	we	use	this	code.
Key	and	pointer	input	is	Qt/Embedded	specific,	so	it	is	surrounded	by
#ifdef	Q_WS_QWS	...	#endif	so	that	we	can	compile	the	example	with
Qt/X11	or	Qt/Windows	if	we	wish.

4.	 The	touch	panel	needs	to	be	calibrated.	There	is	a	calibration	module
included	in	the	compact	demo,	so	we	use	this.

Creating	a	suitable	Qt/Embedded	Library

Since	our	application	is	quite	simple	we	can	remove	some	unnecessary	features
from	Qt/Embedded.	Edit	$QTDIR/src/tools/qconfig.h	and	disable	the
following	features:

				#define	QT_NO_IMAGEIO_BMP

				#define	QT_NO_IMAGEIO_PPM

				#define	QT_NO_IMAGEIO_XBM

				#define	QT_NO_IMAGEIO_PNG

				#define	QT_NO_ASYNC_IO

				#define	QT_NO_ASYNC_IMAGE_IO

				#define	QT_NO_TRUETYPE

				#define	QT_NO_BDF

				#define	QT_NO_FONTDATABASE

				#define	QT_NO_MIME

				#define	QT_NO_SOUND

				#define	QT_NO_PROPERTIES

				#define	QT_NO_CURSOR

				#define	QT_NO_NETWORKPROTOCOL

				#define	QT_NO_COLORNAMES

				#define	QT_NO_TRANSFORMATIONS

				#define	QT_NO_PSPRINTER

				#define	QT_NO_PICTURE

				#define	QT_NO_LISTVIEW

				#define	QT_NO_CANVAS

				#define	QT_NO_DIAL

				#define	QT_NO_WORKSPACE

				#define	QT_NO_TABLE

				#define	QT_NO_LCDNUMBER

				#define	QT_NO_STYLE_MOTIF

				#define	QT_NO_STYLE_PLATINUM

				#define	QT_NO_COLORDIALOG

				#define	QT_NO_PROGRESSDIALOG

				#define	QT_NO_TABDIALOG

				#define	QT_NO_WIZARD

				#define	QT_NO_EFFECTS

See	Qt	Features	for	a	description	of	the	features	that	can	be	disabled.	This	leaves
us	with	a	small	set	of	widgets	and	dialogs	necessary	for	our	application.	Cross-
compile	the	library	for	the	mips	target	on	the	x86	platform:

				cd	$QTDIR

				./configure	-xplatform	linux-mips-g++	-platform	linux-x86-g++

				make

				mipsel-linux-strip	$QTDIR/lib/libqt.so.2.2.0

The	library	is	stripped	to	conserve	ramdisk	space.

Installation

Compile	the	application:

				cd	examples/notepad

				make

				mipsel-linux-strip	notepad

We	have	chosen	to	link	the	application	dynamically.	While	this	is	important	if
we	plan	to	run	multiple	applications,	it	is	a	waste	of	space	in	an	application	such
as	notepad	that	is	supposed	to	be	the	only	application	running.	You	can	link
statically	by	configuring	with:

				./configure	-static	-xplatform	linux-mips-g++	-platform	linux-x86-g++

We	must	install	our	application	and	its	support	files	in	the	ramdisk.	Mount	the
ramdisk	using	loopback	device	(you	will	need	loopback	device	support	in	your
kernel):

				mkdir	/mnt/ramdisk

				mount	-o	loop	~/ramdisk	/mnt/ramdisk

Copy	the	Qt/Embedded	library	to	the	ramdisk	/lib	directory	and	make	the
necessary	links:

				cd	/mnt/ramdisk/lib

				cp	$QTDIR/lib/libqt.so.2.2.0	.

				ln	-s	libqt.so.2.2.0	libqt.so.2.2

				ln	-s	libqt.so.2.2.0	libqt.so.2

The	fonts	must	be	installed	in	/usr/local/qt-embedded/etc/fonts:

				cd	/mnt/ramdisk

				mkdir	usr/local

				mkdir	usr/local/qt-embedded

				mkdir	usr/local/qt-embedded/etc

				mkdir	usr/local/qt-embedded/etc/fonts

				cp	helvetica_100_50.qlf	helvetica_120_50.qlf	usr/local/qt-embedded/etc/fonts

When	the	kernel	boots	it	looks	for	several	files	to	run.	In	order	to	have	our
application	run	when	the	kernel	boots,	we	change	its	name	to	/bin/sh.	A	/tmp

directory	is	also	used	by	Qt/Embedded:

				cp	$QTDIR/examples/notepad/notepad	/mnt/ramdisk/bin/sh

				mkdir	/mnt/ramdisk/tmp

				umount	/mnt/ramdisk

Create	a	ramdisk	object,	link	it	with	the	kernel,	copy	it	to	the	compact	flash	and
boot	Linux.	You	should	see	the	calibration	screen	appear	on	the	LCD	display.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Enabling	the	Linux	Framebuffer
This	is	only	a	short	guide.	See	/usr/src/linux/README	and
/usr/src/linux/Documentation/fb/	for	detailed	information.	There	is	also	a
detailed	explanation	at	http://www.linuxdoc.org/HOWTO/Framebuffer-
HOWTO.html.

1.	 Make	sure	that	you	have	the	Linux	kernel	source	code	in	/usr/src/linux/.

2.	 Log	in	as	root	and	cd	/usr/src/linux

3.	 Configure	the	kernel:

Run:

				make	menuconfig

Select	"Code	maturity	level	options"	and	set	"Prompt	for	development
and/or	incomplete	code/drivers".

Then	select	"Console	drivers"	and	set	"Support	for	frame	buffer	devices"	to
built-in	(even	if	it	says	EXPERIMENTAL).	Then	configure	the	driver.	Most
modern	graphics	cards	can	use	the	"VESA	VGA	graphics	console";	use	that
or	a	driver	that	specifically	matches	your	video	card.	Finally,	enable
"Advanced	low	level	driver	options"	and	make	sure	that	16	and	32	bpp
packed	pixel	support	are	enabled.

When	you	are	finished,	chose	exit	and	save.

4.	 Compile	the	kernel

First	do:

				make	dep

then:

				make	bzImage

http://www.linuxdoc.org/HOWTO/Framebuffer-HOWTO.html

The	new	kernel	should	now	be	in	arch/i386/boot/bzImage.

5.	 Copy	the	kernel	to	the	boot	directory:

				cp	arch/i386/boot/bzImage	/boot/linux.vesafb

6.	 Edit	/etc/lilo.conf.

Warning:	Keep	a	backup	of	/etc/lilo.conf,	and	have	a	rescue	disk	available.
If	you	make	a	mistake,	the	machine	may	not	boot.

The	file	/etc/lilo.conf	specifies	how	the	system	boots.	The	precise	contents
of	the	file	varies	from	system	to	system.	Here	is	an	example:

#	LILO	configuration	file

boot	=	/dev/hda3

delay	=	30	

image	=	/boot/vmlinuz

		root	=	/dev/hda3

		label	=	Linux

		read-only	#	Non-UMSDOS	filesystems	should	be	mounted	read-only	for	checking

other=/dev/hda1

								label=nt

								table=/dev/hda

Make	a	new	"image"	section	that	is	a	copy	of	the	first	one,	but	with

		image	=	/boot/linux.vesafb	

and

		label	=	Linux-vesafb

endcode

		Place	it	just	above	the	first	image	section.

		Add	a	line	before	the	image	section	saying	\c{vga	=	791}.	(Meaning

		1024x768,	16	bpp.)	

		With	the	above	example,	lilo.conf	would	now	be:

\code

#	LILO	configuration	file

boot	=	/dev/hda3

delay	=	30	

vga	=	791

image	=	/boot/linux.vesafb

		root	=	/dev/hda3

		label	=	Linux-vesafb

		read-only	#	Non-UMSDOS	filesystems	should	be	mounted	read-only	for	checking

image	=	/boot/vmlinuz

		root	=	/dev/hda3

		label	=	Linux

		read-only	#	Non-UMSDOS	filesystems	should	be	mounted	read-only	for	checking

other=/dev/hda1

								label=nt

								table=/dev/hda

Do	not	change	any	existing	lines	in	the	file;	just	add	new	ones.

7.	 To	make	the	new	changes	take	effect,	run	the	lilo	program:

				lilo

8.	 Reboot	the	system.	You	should	now	see	a	penguin	logo	while	the	system	is
booting.	(Or	more	than	one	on	a	multi-processor	machine.)

9.	 If	it	does	not	boot	properly	with	the	new	kernel,	you	can	boot	with	the	old
kernel	by	entering	the	label	of	the	old	image	section	at	the	LILO	prompt.
(with	the	example	lilo.conf	file,	the	old	label	is	Linux.)

If	that	does	not	work	(probably	because	of	an	error	in	lilo.conf),	boot	the
machine	using	your	rescue	disk,	restore	/etc/lilo.conf	from	backup	and	re-
run	lilo.

10.	 Testing:	Here's	a	short	program	that	opens	the	frame	buffer	and	draws	a
gradient-filled	red	square.

#include	<unistd.h>

#include	<stdio.h>

#include	<fcntl.h>

#include	<linux/fb.h>

#include	<sys/mman.h>

int	main()

{

				int	fbfd	=	0;

				struct	fb_var_screeninfo	vinfo;

				struct	fb_fix_screeninfo	finfo;

				long	int	screensize	=	0;

				char	*fbp	=	0;

				int	x	=	0,	y	=	0;

				long	int	location	=	0;

				//	Open	the	file	for	reading	and	writing

				fbfd	=	open("/dev/fb0",	O_RDWR);

				if	(!fbfd)	{

								printf("Error:	cannot	open	framebuffer	device.\n");

								exit(1);

				}

				printf("The	framebuffer	device	was	opened	successfully.\n");

				//	Get	fixed	screen	information

				if	(ioctl(fbfd,	FBIOGET_FSCREENINFO,	&finfo))	{

								printf("Error	reading	fixed	information.\n");

								exit(2);

				}

				//	Get	variable	screen	information

				if	(ioctl(fbfd,	FBIOGET_VSCREENINFO,	&vinfo))	{

								printf("Error	reading	variable	information.\n");

								exit(3);

				}

				printf("%dx%d,	%dbpp\n",	vinfo.xres,	vinfo.yres,	vinfo.bits_per_pixel);

				//	Figure	out	the	size	of	the	screen	in	bytes

				screensize	=	vinfo.xres	*	vinfo.yres	*	vinfo.bits_per_pixel	/	8;

				//	Map	the	device	to	memory

				fbp	=	(char	*)mmap(0,	screensize,	PROT_READ	|	PROT_WRITE,	MAP_SHARED,

																							fbfd,	0);

				if	((int)fbp	==	-1)	{

								printf("Error:	failed	to	map	framebuffer	device	to	memory.\n");

								exit(4);

				}

				printf("The	framebuffer	device	was	mapped	to	memory	successfully.\n");

				x	=	100;	y	=	100;							//	Where	we	are	going	to	put	the	pixel

				//	Figure	out	where	in	memory	to	put	the	pixel

				for	(y	=	100;	y	<	300;	y++)

								for	(x	=	100;	x	<	300;	x++)	{

												location	=	(x+vinfo.xoffset)	*	(vinfo.bits_per_pixel/8)	+

																							(y+vinfo.yoffset)	*	finfo.line_length;

												if	(vinfo.bits_per_pixel	==	32)	{

																*(fbp	+	location)	=	100;								//	Some	blue

																*(fbp	+	location	+	1)	=	15+(x-100)/2;					//	A	little	green

																*(fbp	+	location	+	2)	=	200-(y-100)/5;				//	A	lot	of	red

																*(fbp	+	location	+	3)	=	0;						//	No	transparency

												}	else		{	//assume	16bpp

																int	b	=	10;

																int	g	=	(x-100)/6;					//	A	little	green

																int	r	=	31-(y-100)/16;				//	A	lot	of	red

																unsigned	short	int	t	=	r<<11	|	g	<<	5	|	b;

																((unsigned	short	int)(fbp	+	location))	=	t;

												}

								}

				munmap(fbp,	screensize);

				close(fbfd);

				return	0;

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Qt	——	

t8/lcdrange.hLCDRange
t8/lcdrange.cppLCDRange
t8/cannon.hCannonField
t8/cannon.cppCannonField
t8/main.cppMyWidgetmain

t8/lcdrange.h

lcdrange.hsetRange()

								void	setRange(int	minVal,	int	maxVal);

LCDRange099

t8/lcdrange.cpp

				void	LCDRange::setRange(int	minVal,	int	maxVal)

				{

								if	(minVal	<	0	||	maxVal	>	99	||	minVal	>	maxVal)	{

										qWarning("LCDRange::setRange(%d,%d)\n"

																			"\tRange	must	be	0..99\n"

																			"\tand	minVal	must	not	be	greater	than	maxVal",

																			minVal,	maxVal);

										return;

								}

								slider->setRange(minVal,	maxVal);

				}

setRange()LCDRange QLCDNumber minVal

-9Qt qWarning
::qInstallMsgHandler()

t8/cannon.h

CanonField

				class	CannonField	:	public	QWidget

				{

								Q_OBJECT

				public:

								CannonField(QWidget	*parent=0,	const	char	*name=0);

CanonField QWidgetLCDRange

								int	angle()	const	{	return	ang;	}

								QSizePolicy	sizePolicy()	const;

				public	slots:

								void	setAngle(int	degrees);

				signals:

								void	angleChanged(int);

CanonFieldLCDRange

				protected:

								void	paintEvent(QPaintEvent	*);

QWidgetQt

t8/cannon.cpp

				CannonField::CannonField(QWidget	*parent,	const	char	*name)

												:	QWidget(parent,	name)

				{

LCDRange

								ang	=	45;

								setPalette(QPalette(QColor(250,	250,	200)));

				}

45

				void	CannonField::setAngle(int	degrees)

				{

								if	(degrees	<	5)

												degrees	=	5;

								if	(degrees	>	70)

												degrees	=	70;

								if	(ang	==	degrees)

												return;

								ang	=	degrees;

								repaint();

								emit	angleChanged(ang);

				}

570degrees

angleChanged()

QWidget::repaint()

angleChanged() emitQtC++

				void	CannonField::paintEvent(QPaintEvent	*)

				{

								QString	s	=	"Angle	=	"	+	QString::number(ang);

								QPainter	p(this);

								p.drawText(200,	200,	s);

				}

QPaintEvent

t8/main.cpp

				#include	"cannon.h"

				class	MyWidget:	public	QWidget

				{

				public:

								MyWidget(QWidget	*parent=0,	const	char	*name=0);

				};

LCDRangeCanonField

								LCDRange	*angle	=	new	LCDRange(this,	"angle");

LCDRange

								angle->setRange(5,	70);

LCDRange570

								CannonField	*cannonField

												=	new	CannonField(this,	"cannonField");

CannonField

								connect(angle,	SIGNAL(valueChanged(int)),

																	cannonField,	SLOT(setAngle(int)));

								connect(cannonField,	SIGNAL(angleChanged(int)),

																	angle,	SLOT(setValue(int)));

LCDRangevalueChanged()CannonFieldsetAngle()LCDRangeCannonField
CannonFieldLCDRangeCannonFieldconnect()

angleChanged()LCDRangeCanonField

								QGridLayout	*grid	=	new	QGridLayout(this,	2,	2,	10);

								//2×210

QVBoxQGrid QGridLayoutQGridLayout

102*2 QGridLayout

								grid->addWidget(quit,	0,	0);

Quit0,0

								grid->addWidget(angle,	1,	0,	Qt::AlignTop);

angleLCDRangeQGridLayoutQGrid

								grid->addWidget(cannonField,	1,	1);

CannonField

								grid->setColStretch(1,	10);

QGridLayout1 0QGridLayoutMyWidgetCannonField

								angle->setValue(60);

LCDRangeCannonField

								angle->setFocus();

angleLCDRange

LCDRangekeyPressEvent()

								setFocusProxy(slider);

LCDRangeLCDRange

——HomeEndPageUpPageDown

CannonFiledCannonField

8Windows

makefile

AlignTopLCDRange

setFocus()

QButton::setText()“Quit”“&Quit;”Alt+QMeta+Q

CannonField

[]	[]	[]

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Qt	——	

LCDRange

t12/lcdrange.hLCDRange
t12/lcdrange.cppLCDRange
t12/cannon.hCannonField
t12/cannon.cppCannonField
t12/main.cppMyWidgetmain

t12/lcdrange.h

LCDRange

				class	QLabel;

QLabelQLabel

				class	LCDRange	:	public	QVBox

				{

								Q_OBJECT

				public:

								LCDRange(QWidget	*parent=0,	const	char	*name=0);

								LCDRange(const	char	*s,	QWidget	*parent=0,

																		const	char	*name=0);

								const	char	*text()		const;

								void	setText(const	char	*);

				private:

								void	init();

init()

								QLabel						*label;

QLabelQLabelQtpixmap

t12/lcdrange.cpp

				#include	<qlabel.h>

QLabel

				LCDRange::LCDRange(QWidget	*parent,	const	char	*name)

												:	QVBox(parent,	name)

				{

								init();

				}

init()

				LCDRange::LCDRange(const	char	*s,	QWidget	*parent,

																								const	char	*name)

												:	QVBox(parent,	name)

				{

								init();

								setText(s);

				}

init()

				void	LCDRange::init()

				{

								QLCDNumber	*lcd		=	new	QLCDNumber(2,	this,	"lcd");

								slider	=	new	QSlider(Horizontal,	this,	"slider");

								slider->setRange(0,	99);

								slider->setValue(0);

								label	=	new	QLabel("	",	this,	"label");

								label->setAlignment(AlignCenter);

								connect(slider,	SIGNAL(valueChanged(int)),

																	lcd,	SLOT(display(int)));

								connect(slider,	SIGNAL(valueChanged(int)),

																	SIGNAL(valueChanged(int)));

								setFocusProxy(slider);

				}

lcdslider QLabelconnect()

				const	char	*LCDRange::text()	const

				{

								return	label->text();

				}

				void	LCDRange::setText(const	char	*s)

				{

								label->setText(s);

				}

t12/cannon.h

CannonFieldhit()missed()

								void		newTarget();

				signals:

								void		hit();

								void		missed();

hit()missed()

								void		paintTarget(QPainter	*);

								QRect	targetRect()	const;

								QPoint	target;

t12/cannon.cpp

				#include	<qdatetime.h>

QDateQTimeQDateTime

				#include	<stdlib.h>

stdlibrand()

								newTarget();

“”newTarget()CannonFieldQtrepaint()

				void		CannonField::newTarget()

				{

								static	bool	first_time	=	TRUE;

								if	(first_time)	{

												first_time	=	FALSE;

												QTime	midnight(0,	0,	0);

												srand(midnight.secsTo(QTime::currentTime()));

								}

								QRegion	r(targetRect());

								target	=	QPoint(200	+	rand()	%	190,

																									10		+	rand()	%	255);

								repaint(r.unite(targetRect()));

				}

“”

rand()rand()

if iffirst_timeFALSE

QTimemidnight00:00:00 QDateQTimeQDateTime

x=200y=35width=190height=255xyx=200~389
y=35~289yyXx

rand()>=0

				void	CannonField::moveShot()

				{

								QRegion	r(shotRect());

								timerCount++;

								QRect	shotR	=	shotRect();

								if	(shotR.intersects(targetRect()))	{

												autoShootTimer->stop();

												emit	hit();

ifhit()

CannonField

								}	else	if	(shotR.x()	>	width()	||	shotR.y()	>	height())	{

												autoShootTimer->stop();

												emit	missed();

ifmissed()

								}	else	{

CannonField::paintEvent()	is	as	before,	except	that	this	has	been	added:

								if	(updateR.intersects(targetRect()))

												paintTarget(&p);

				void	CannonField::paintTarget(QPainter	*p)

				{

								p->setBrush(red);

								p->setPen(black);

								p->drawRect(targetRect());

				}

				QRect	CannonField::targetRect()	const

				{

								QRect	r(0,	0,	20,	10);

								r.moveCenter(QPoint(target.x(),height()	-	1	-	target.y()));

								return	r;

				}

newTarget() target0y QRect::moveCenter

t12/main.cpp

MyWidgetLCDRange

								LCDRange	*angle		=	new	LCDRange("ANGLE",	this,	"angle");

“ANGLE”

								LCDRange	*force		=	new	LCDRange("FORCE",	this,	"force");

“FORCE”

LCDRange—— QVBox

makefile

CannonField

“”shotRect() QRegionshotRegion()

QWidget::setMinimumSize

[]	[]	[]

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qapplication.h
qapplication.hTrolltech

/**

**	$Id:		qt/qapplication.h			3.0.5			edited	May	28	11:20	$

**

**	Definition	of	QApplication	class

**

**	Created	:	931107

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QAPPLICATION_H

#define	QAPPLICATION_H

#ifndef	QT_H

#include	"qdesktopwidget.h"

#include	"qasciidict.h"

#include	"qpalette.h"

#include	"qtranslator.h"

#include	"qstrlist.h"

#include	"qstringlist.h"

#endif	//	QT_H

class	QSessionManager;

class	QStyle;

class	QTranslator;

#if	defined(Q_WS_QWS)

class	QWSDecoration;

#endif

template	<class	type>	class	QPtrList;

class	QApplication;

extern	Q_EXPORT	QApplication	*qApp;	 	 //	global	application	object

#if	defined(QT_THREAD_SUPPORT)

class	QMutex;

#endif

class	Q_EXPORT	QApplication	:	public	QObject

{

				Q_OBJECT

public:

				QApplication(int	&argc,	char	**argv);

				QApplication(int	&argc,	char	**argv,	bool	GUIenabled);

				enum	Type	{	Tty,	GuiClient,	GuiServer	};

				QApplication(int	&argc,	char	**argv,	Type);

#if	defined(Q_WS_X11)

				QApplication(Display*	dpy,	HANDLE	visual	=	0,	HANDLE	cmap	=	0);

				QApplication(Display	*dpy,	int	argc,	char	**argv,

	 	 		HANDLE	visual	=	0,	HANDLE	cmap=	0);

#endif

				virtual	~QApplication();

				int		 				argc()	 const;

				char	 		**argv()	 const;

				Type	type()	const;

#ifndef	QT_NO_STYLE

				static	QStyle		&style();

				static	void					setStyle(QStyle*);

				static	QStyle*		setStyle(const	QString&);

#endif

#ifndef	Q_QDOC

				enum	ColorMode	{	NormalColors,	CustomColors	};

				static	ColorMode	colorMode();

				static	void						setColorMode(QApplication::ColorMode);

#endif

				enum	ColorSpec	{	NormalColor=0,	CustomColor=1,	ManyColor=2	};

				static	int	 					colorSpec();

				static	void						setColorSpec(int);

#ifndef	QT_NO_CURSOR

				static	QCursor		*overrideCursor();

				static	void						setOverrideCursor(const	QCursor	&,	bool	replace=FALSE);

				static	void						restoreOverrideCursor();

#endif

				static	bool						hasGlobalMouseTracking();

				static	void						setGlobalMouseTracking(bool	enable);

#ifndef	QT_NO_PALETTE

				static	QPalette		palette(const	QWidget*	=	0);

				static	void						setPalette(const	QPalette	&,	bool	informWidgets=FALSE,

	 	 	 	 	const	char*	className	=	0);

#endif

				static	QFont					font(const	QWidget*	=	0);

				static	void						setFont(const	QFont	&,	bool	informWidgets=FALSE,

	 	 	 						const	char*	className	=	0);

				static	QFontMetrics	fontMetrics();

				QWidget	 				*mainWidget()		const;

				virtual	void					setMainWidget(QWidget	*);

				virtual	void					polish(QWidget	*);

				static	QWidgetList	*allWidgets();

				static	QWidgetList	*topLevelWidgets();

				static	QDesktopWidget			*desktop();

				static	QWidget					*activePopupWidget();

				static	QWidget					*activeModalWidget();

#ifndef	QT_NO_CLIPBOARD

				static	QClipboard		*clipboard();

#endif

				QWidget	 							*focusWidget()	const;

				QWidget	 							*activeWindow()	const;

				static	QWidget		*widgetAt(int	x,	int	y,	bool	child=FALSE);

				static	QWidget		*widgetAt(const	QPoint	&,	bool	child=FALSE);

				int		 					exec();

				void	 					processEvents();

				void	 					processEvents(int	maxtime);

				void	 					processOneEvent();

				bool	 					hasPendingEvents();

				int		 					enter_loop();

				void	 					exit_loop();

				int		 					loopLevel()	const;

				static	void						exit(int	retcode=0);

				static	bool						sendEvent(QObject	*receiver,	QEvent	*event);

				static	void						postEvent(QObject	*receiver,	QEvent	*event);

				static	void						sendPostedEvents(QObject	*receiver,	int	event_type);

				static	void						sendPostedEvents();

				static	void						removePostedEvents(QObject	*receiver);

				virtual	bool					notify(QObject	*,	QEvent	*);

				static	bool						startingUp();

				static	bool						closingDown();

				static	void						flushX();

				static	void	flush();

				static	void						syncX();

				static	void						beep();

#ifndef	QT_NO_TRANSLATION

				void	 					setDefaultCodec(QTextCodec	*);

				QTextCodec*						defaultCodec()	const;

				void	 					installTranslator(QTranslator	*);

				void	 					removeTranslator(QTranslator	*);

#endif

				enum	Encoding	{	DefaultCodec,	UnicodeUTF8	};

				QString	 					translate(const	char	*	context,

	 	 	 	 const	char	*	key,

	 	 	 	 const	char	*	comment	=	0,

	 	 	 	 Encoding	encoding	=	DefaultCodec)	const;

#ifndef	QT_NO_PALETTE

				//	obsolete	functions

				static	void						setWinStyleHighlightColor(const	QColor	&c)	{

	 QPalette	p(palette());

	 p.setColor(QColorGroup::Highlight,	c);

	 setPalette(p,	TRUE);

				}

				static	const	QColor	&winStyleHighlightColor()	{

	 return	palette().active().highlight();

				}

#endif

				static	void						setDesktopSettingsAware(bool);

				static	bool						desktopSettingsAware();

				static	void						setCursorFlashTime(int);

				static	int							cursorFlashTime();

				static	void						setDoubleClickInterval(int);

				static	int							doubleClickInterval();

#ifndef	QT_NO_WHEELEVENT

				static	void						setWheelScrollLines(int);

				static	int							wheelScrollLines();

#endif

				static	void						setGlobalStrut(const	QSize	&);

				static	QSize					globalStrut();

#ifndef	QT_NO_COMPONENT

				static	void						setLibraryPaths(const	QStringList	&);

				static	QStringList	libraryPaths();

				static	void						addLibraryPath(const	QString	&);

				static	void						removeLibraryPath(const	QString	&);

#endif	//QT_NO_COMPONENT

				static	void	setStartDragTime(int	ms);

				static	int	startDragTime();

				static	void	setStartDragDistance(int	l);

				static	int	startDragDistance();

				static	void	setReverseLayout(bool	b);

				static	bool	reverseLayout();

				static	int	horizontalAlignment(int	align);

				static	bool					isEffectEnabled(Qt::UIEffect);

				static	void					setEffectEnabled(Qt::UIEffect,	bool	enable	=	TRUE);

#if	defined(Q_WS_MAC)

				virtual	bool					macEventFilter(EventRef);

#endif

#if	defined(Q_WS_WIN)

				virtual	bool					winEventFilter(MSG	*);

#endif

#if	defined(Q_WS_X11)

				virtual	bool					x11EventFilter(XEvent	*);

				virtual	int						x11ClientMessage(QWidget*,	XEvent*,	bool	passive_only);

				int														x11ProcessEvent(XEvent*);

#endif

#if	defined(Q_WS_QWS)

				virtual	bool					qwsEventFilter(QWSEvent	*);

				int														qwsProcessEvent(QWSEvent*);

				void													qwsSetCustomColors(QRgb	*colortable,	int	start,	int	numColors);

#ifndef	QT_NO_QWS_MANAGER

				static	QWSDecoration	&qwsDecoration();

				static	void						qwsSetDecoration(QWSDecoration	*);

#endif

#endif

#if	defined(Q_WS_WIN)

				static	WindowsVersion	winVersion();

				void	 					winFocus(QWidget	*,	bool);

				static	void						winMouseButtonUp();

#endif

#ifndef	QT_NO_SESSIONMANAGER

				//	session	management

				bool	 					isSessionRestored()	const;

				QString	 					sessionId()	const;

				virtual	void					commitData(QSessionManager&	sm);

				virtual	void					saveState(QSessionManager&	sm);

#endif

#if	defined(Q_WS_X11)

				static	void	create_xim();

				static	void	close_xim();

				static	bool	x11_apply_settings();

#endif

				void	 					wakeUpGuiThread();

#if	defined(QT_THREAD_SUPPORT)

				void	 					lock();

				void	 					unlock(bool	wakeUpGui	=	TRUE);

				bool	 					locked();

				bool													tryLock();

#endif

signals:

				void	 					lastWindowClosed();

				void	 					aboutToQuit();

				void	 					guiThreadAwake();

public	slots:

				void	 					quit();

				void	 					closeAllWindows();

private:

				void	 					construct(int	&argc,	char	**argv,	Type);

				bool	 					processNextEvent(bool);

				void	 					initialize(int,	char	**);

				void	 					init_precmdline();

				void	 					process_cmdline(int*	argcptr,	char	**	argv);

				bool	 					internalNotify(QObject	*,	QEvent	*);

#if	defined(Q_WS_QWS)

				static	QWidget	*findChildWidget(const	QWidget	*p,	const	QPoint	&pos);

				static	QWidget	*findWidget(const	QObjectList&,	const	QPoint	&,	bool	rec);

#endif

#if	defined(Q_WS_MAC)

				bool	 					do_mouse_down(Point	*);

				static	QMAC_PASCAL	OSStatus	globalEventProcessor(EventHandlerCallRef,		EventRef,	void	*);

				static	QMAC_PASCAL	void	qt_context_timer_callbk(EventLoopTimerRef,	void	*);

				static	QMAC_PASCAL	void	qt_select_timer_callbk(EventLoopTimerRef,	void	*);

				static	bool	qt_mac_apply_settings();

				friend	class	QMacInputMethod;

				friend	bool	qt_set_socket_handler(int,	int,	QObject	*,	bool);

				friend	void	qt_mac_destroy_widget(QWidget	*);

				friend	void	qt_init(int	*,	char	**,	QApplication::Type);

#endif

#if	defined(QT_THREAD_SUPPORT)

				static	QMutex	*	qt_mutex;

#endif

				int		 					app_argc;

				char	 			**app_argv;

				bool	 					quit_now;

				int		 					quit_code;

				static	QStyle			*app_style;

				static	int	 					app_cspec;

#ifndef	QT_NO_PALETTE

				static	QPalette	*app_pal;

#endif

				static	QFont				*app_font;

#ifndef	QT_NO_CURSOR

				static	QCursor		*app_cursor;

#endif

				static	int	 					app_tracking;

				static	bool						is_app_running;

				static	bool						is_app_closing;

				static	bool						app_exit_loop;

				static	int	 					loop_level;

				static	QWidget		*main_widget;

				static	QWidget		*focus_widget;

				static	QWidget		*active_window;

				static	bool						obey_desktop_settings;

				static	int	 					cursor_flash_time;

				static	int	 					mouse_double_click_time;

				static	int	 					wheel_scroll_lines;

				static	bool						animate_ui;

				static	bool						animate_menu;

				static	bool						animate_tooltip;

				static	bool						animate_combo;

				static	bool						fade_menu;

				static	bool						fade_tooltip;

				QPtrList<QTranslator>	*translators;

#ifndef	QT_NO_SESSIONMANAGER

				QSessionManager	*session_manager;

				QString	 					session_id;

				bool	 					is_session_restored;

#endif

#if	defined(Q_WS_X11)	&&	!defined	(QT_NO_STYLE)

				static	void	x11_initialize_style();

#endif

				static	QSize					app_strut;

				static	QStringList	*app_libpaths;

				static	QAsciiDict<QPalette>	*app_palettes;

				static	QAsciiDict<QFont>				*app_fonts;

				static	QWidgetList	*popupWidgets;

				bool	 					inPopupMode()	const;

				void	 					closePopup(QWidget	*popup);

				void	 					openPopup(QWidget	*popup);

				void	 					setActiveWindow(QWidget*	act);

				static	bool						sendSpontaneousEvent(QObject	*receiver,	QEvent	*event);

				static	void						removePostedEvent(QEvent	*);

				friend	class	QWidget;

				friend	class	QETWidget;

				friend	class	QEvent;

				friend	Q_EXPORT	void	qt_ucm_initialize(QApplication	*);

#if	defined(Q_WS_WIN)

				friend	bool	qt_sendSpontaneousEvent(QObject*,	QEvent*);

#endif

private:	//	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QApplication(const	QApplication	&);

				QApplication	&operator=(const	QApplication	&);

#endif

};

inline	int	QApplication::argc()	const

{

				return	app_argc;

}

inline	char	**QApplication::argv()	const

{

				return	app_argv;

}

#ifndef	QT_NO_CURSOR

inline	QCursor	*QApplication::overrideCursor()

{

				return	app_cursor;

}

#endif

inline	bool	QApplication::hasGlobalMouseTracking()

{

				return	app_tracking	>	0;

}

inline	QWidget	*QApplication::mainWidget()	const

{

				return	main_widget;

}

inline	QWidget	*QApplication::focusWidget()	const

{

				return	focus_widget;

}

inline	QWidget	*QApplication::activeWindow()	const

{

				return	active_window;

}

inline	QWidget	*QApplication::widgetAt(const	QPoint	&p,	bool	child)

{

				return	widgetAt(p.x(),	p.y(),	child);

}

inline	bool	QApplication::inPopupMode()	const

{

				return	popupWidgets	!=	0;

}

#ifndef	QT_NO_SESSIONMANAGER

inline	bool	QApplication::isSessionRestored()	const

{

				return	is_session_restored;

}

inline	QString	QApplication::sessionId()	const

{

				return	session_id;

}

#endif

inline	QSize	QApplication::globalStrut()

{

				return	app_strut;

}

inline	bool	QApplication::sendEvent(QObject	*receiver,	QEvent	*event)

{	return	qApp	?	qApp->notify(receiver,	event)	:	FALSE;	}

inline	bool	QApplication::sendSpontaneousEvent(QObject	*receiver,	QEvent	*event)

{	if	(event)	event->spont	=	TRUE;	return	qApp	?	qApp->notify(receiver,	event)	:	FALSE;	}

#ifdef	QT_NO_TRANSLATION

//	Simple	versions

inline	QString	QApplication::translate(const	char	*,	const	char	*sourceText,

	 	 	 	 	 const	char	*,	Encoding	encoding)	const

{

#ifndef	QT_NO_TEXTCODEC

				if	(encoding	==	UnicodeUTF8)

	 return	QString::fromUtf8(sourceText);

				else

#endif

	 return	QString::fromLatin1(sourceText);

}

#endif

inline	int	QApplication::horizontalAlignment(int	align)

{

				align	&=	AlignHorizontal_Mask;

				if	(align	==	AlignAuto)	{

	 if	(reverseLayout())

	 				align	=	AlignRight;

	 else

	 				align	=	AlignLeft;

				}

				return	align;

}

#endif	//	QAPPLICATION_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qpushbutton.h
qpushbutton.hTrolltech

/**

**	$Id:		qt/qpushbutton.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QPushButton	class

**

**	Created	:	940221

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QPUSHBUTTON_H

#define	QPUSHBUTTON_H

#ifndef	QT_H

#include	"qbutton.h"

#include	"qiconset.h"

#endif	//	QT_H

#ifndef	QT_NO_PUSHBUTTON

class	QPushButtonPrivate;

class	QPopupMenu;

class	Q_EXPORT	QPushButton	:	public	QButton

{

				Q_OBJECT

				Q_PROPERTY(bool	autoDefault	READ	autoDefault	WRITE	setAutoDefault)

				Q_PROPERTY(bool	default	READ	isDefault	WRITE	setDefault)

				Q_PROPERTY(bool	menuButton	READ	isMenuButton	DESIGNABLE	false)

				Q_PROPERTY(QIconSet	iconSet	READ	iconSet	WRITE	setIconSet)

				Q_OVERRIDE(bool	toggleButton	WRITE	setToggleButton)

				Q_OVERRIDE(bool	on	WRITE	setOn)

				Q_PROPERTY(bool	flat	READ	isFlat	WRITE	setFlat)

				Q_OVERRIDE(bool	autoMask	DESIGNABLE	true	SCRIPTABLE	true)

public:

				QPushButton(QWidget	*parent,	const	char*	name=0);

				QPushButton(const	QString	&text,	QWidget	*parent,	const	char*	name=0);

				QPushButton(const	QIconSet&	icon,	const	QString	&text,	QWidget	*parent,	const	char*	name=0);

				~QPushButton();

				QSize	 sizeHint()	const;

				void	 move(int	x,	int	y);

				void	 move(const	QPoint	&p);

				void	 resize(int	w,	int	h);

				void	 resize(const	QSize	&);

				void	 setGeometry(int	x,	int	y,	int	w,	int	h);

				void	 setGeometry(const	QRect	&);

				void	setToggleButton(bool);

				bool	 autoDefault()	 const	 {	return	autoDefButton;	}

				virtual	void	setAutoDefault(bool	autoDef);

				bool	 isDefault()	 const	 {	return	defButton;	}

				virtual	void	setDefault(bool	def);

				virtual	void	setIsMenuButton(bool	enable)	{		//	obsolete	functions

	 if	((bool)hasMenuArrow	==	enable)

	 				return;

	 hasMenuArrow	=	enable	?	1	:	0;

	 update();

	 updateGeometry();

				}

				bool	 isMenuButton()	const	{	return	hasMenuArrow;	}

				void	setPopup(QPopupMenu*	popup);

				QPopupMenu*	popup()	const;

				void	setIconSet(const	QIconSet&);

				QIconSet*	iconSet()	const;

				void	setFlat(bool);

				bool	isFlat()	const;

public	slots:

				virtual	void	setOn(bool);

protected:

				void	 drawButton(QPainter	*);

				void	 drawButtonLabel(QPainter	*);

				void	 focusInEvent(QFocusEvent	*);

				void	 focusOutEvent(QFocusEvent	*);

				void	 resizeEvent(QResizeEvent	*);

				void	 updateMask();

private	slots:

				void	popupPressed();

private:

				void	 init();

				uint	 autoDefButton	 :	1;

				uint	 defButton	 :	1;

				uint	 flt	 	 :	1;

				uint	 reserved	 	 :	1;	//	UNUSED

				uint	 lastEnabled	 :	1;	//	UNUSED

				uint	 hasMenuArrow	 :	1;

				QPushButtonPrivate*	d;

				friend	class	QDialog;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QPushButton(const	QPushButton	&);

				QPushButton	&operator=(const	QPushButton	&);

#endif

};

#endif	//	QT_NO_PUSHBUTTON

#endif	//	QPUSHBUTTON_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QApplication
QApplication	 ……

#include	<qapplication.h>

QObject

QXtApplication

QApplication	(int	&	argc,	char	**	argv)
QApplication	(int	&	argc,	char	**	argv,	bool	GUIenabled)
enum	Type	{	Tty,	GuiClient,	GuiServer	}
QApplication	(int	&	argc,	char	**	argv,	Type	type)
QApplication	(Display	*	dpy,	HANDLE	visual	=	0,	HANDLE	colormap	=
0)
QApplication	(Display	*	dpy,	int	argc,	char	**	argv,	HANDLE	visual	=	0,
HANDLE	colormap	=	0)
virtual	~QApplication	()
int	argc	()	const
char	**	argv	()	const
Type	type	()	const
enum	ColorSpec	{	NormalColor	=	0,	CustomColor	=	1,	ManyColor	=	2	}
QWidget	*	mainWidget	()	const
virtual	void	setMainWidget	(QWidget	*	mainWidget)
virtual	void	polish	(QWidget	*	w)
QWidget	*	focusWidget	()	const
QWidget	*	activeWindow	()	const
int	exec	()
void	processEvents	()
void	processEvents	(int	maxtime)
void	processOneEvent	()
bool	hasPendingEvents	()
int	enter_loop	()
void	exit_loop	()
int	loopLevel	()	const
virtual	bool	notify	(QObject	*	receiver,	QEvent	*	e)
void	setDefaultCodec	(QTextCodec	*	codec)
QTextCodec	*	defaultCodec	()	const
void	installTranslator	(QTranslator	*	mf)
void	removeTranslator	(QTranslator	*	mf)
enum	Encoding	{	DefaultCodec,	UnicodeUTF8	}
QString	translate	(const	char	*	context,	const	char	*	sourceText,
const	char	*	comment	=	0,	Encoding	encoding	=	DefaultCodec)	const
virtual	bool	macEventFilter	(EventRef)

virtual	bool	winEventFilter	(MSG	*)
virtual	bool	x11EventFilter	(XEvent	*)
int	x11ProcessEvent	(XEvent	*	event)
virtual	bool	qwsEventFilter	(QWSEvent	*)
void	qwsSetCustomColors	(QRgb	*	colorTable,	int	start,	int	numColors)
void	winFocus	(QWidget	*	widget,	bool	gotFocus)
bool	isSessionRestored	()	const
QString	sessionId	()	const
virtual	void	commitData	(QSessionManager	&	sm)
virtual	void	saveState	(QSessionManager	&	sm)
void	wakeUpGuiThread	()
void	lock	()
void	unlock	(bool	wakeUpGui	=	TRUE)
bool	locked	()
bool	tryLock	()

void	quit	()
void	closeAllWindows	()

void	lastWindowClosed	()
void	aboutToQuit	()
void	guiThreadAwake	()

QStyle	&	style	()
void	setStyle	(QStyle	*	style)
QStyle	*	setStyle	(const	QString	&	style)
int	colorSpec	()
void	setColorSpec	(int	spec)
QCursor	*	overrideCursor	()
void	setOverrideCursor	(const	QCursor	&	cursor,	bool	replace	=	FALSE
)
void	restoreOverrideCursor	()
bool	hasGlobalMouseTracking	()
void	setGlobalMouseTracking	(bool	enable)
QPalette	palette	(const	QWidget	*	w	=	0)
void	setPalette	(const	QPalette	&	palette,	bool	informWidgets	=	FALSE,
const	char	*	className	=	0)
QFont	font	(const	QWidget	*	w	=	0)
void	setFont	(const	QFont	&	font,	bool	informWidgets	=	FALSE,
const	char	*	className	=	0)
QFontMetrics	fontMetrics	()
QWidgetList	*	allWidgets	()
QWidgetList	*	topLevelWidgets	()
QDesktopWidget	*	desktop	()
QWidget	*	activePopupWidget	()
QWidget	*	activeModalWidget	()
QClipboard	*	clipboard	()
QWidget	*	widgetAt	(int	x,	int	y,	bool	child	=	FALSE)
QWidget	*	widgetAt	(const	QPoint	&	pos,	bool	child	=	FALSE)
void	exit	(int	retcode	=	0)
bool	sendEvent	(QObject	*	receiver,	QEvent	*	event)
void	postEvent	(QObject	*	receiver,	QEvent	*	event)
void	sendPostedEvents	(QObject	*	receiver,	int	event_type)
void	sendPostedEvents	()
void	removePostedEvents	(QObject	*	receiver)
bool	startingUp	()
bool	closingDown	()
void	flushX	()

void	flush	()
void	syncX	()
void	beep	()
void	setWinStyleHighlightColor	(const	QColor	&	c)		(obsolete)
const	QColor	&	winStyleHighlightColor	()		(obsolete)
void	setDesktopSettingsAware	(bool	on)
bool	desktopSettingsAware	()
void	setCursorFlashTime	(int	msecs)
int	cursorFlashTime	()
void	setDoubleClickInterval	(int	ms)
int	doubleClickInterval	()
void	setWheelScrollLines	(int	n)
int	wheelScrollLines	()
void	setGlobalStrut	(const	QSize	&	strut)
QSize	globalStrut	()
void	setLibraryPaths	(const	QStringList	&	paths)
QStringList	libraryPaths	()
void	addLibraryPath	(const	QString	&	path)
void	removeLibraryPath	(const	QString	&	path)
void	setStartDragTime	(int	ms)
int	startDragTime	()
void	setStartDragDistance	(int	l)
int	startDragDistance	()
void	setReverseLayout	(bool	b)
bool	reverseLayout	()
int	horizontalAlignment	(int	align)
bool	isEffectEnabled	(Qt::UIEffect	effect)
void	setEffectEnabled	(Qt::UIEffect	effect,	bool	enable	=	TRUE)
QWSDecoration	&	qwsDecoration	()
void	qwsSetDecoration	(QWSDecoration	*	d)
WindowsVersion	winVersion	()

void	qAddPostRoutine	(QtCleanUpFunction	p)
const	char	*	qVersion	()
bool	qSysInfo	(int	*	wordSize,	bool	*	bigEndian)
void	qDebug	(const	char	*	msg,	...)
void	qWarning	(const	char	*	msg,	...)
void	qFatal	(const	char	*	msg,	...)
void	qSystemWarning	(const	char	*	msg,	int	code)
void	Q_ASSERT	(bool	test)
void	Q_CHECK_PTR	(void	*	p)
QtMsgHandler	qInstallMsgHandler	(QtMsgHandler	h)

QApplication

QtQApplication012

QApplication qApp

palette() font()doubleClickInterval()

QStyle setStyle()

setColorSpec()

setDefaultCodec() translate()

desktop()clipboard()

widgetAt() topLevelWidgets() closeAllWindows

setOverrideCursor()setGlobalMouseTracking

X flushX()syncX()

isSessionRestored() sessionId() commitData
saveState()

QApplicationmain()

QApplication

argvX11 setMainWidget()-geometry

desktopSettingsAware() setDesktopSettingsAware() cursorFlashTime() setCursorFlashTime
exec() processEvents() enter_loop() exit_loop() exit() quit()
sendEvent() postEvent() sendPostedEvents() removePostedEvents() hasPendingEvents
style() setStyle() polish()
colorSpec() setColorSpec() qwsSetCustomColors()
setDefaultCodec() installTranslator() removeTranslator() translate()
mainWidget() setMainWidget() allWidgets() topLevelWidgets() desktop()
hasGlobalMouseTracking() setGlobalMouseTracking() overrideCursor() setOverrideCursor

X flushX() syncX()
isSessionRestored() sessionId() commitData() saveState()
lock() unlock() locked() tryLock() wakeUpGuiThread()
closeAllWindows() startingUp() closingDown() type()

QtQApplication

QApplication::ColorSpec

QApplication::NormalColor	-	
QApplication::CustomColor	-	X11NormalColorWindows
QApplication::ManyColor	-	

setColorSpec()

QApplication::Encoding

translate()8

QApplication::DefaultCodec	-	defaultCodec()Latin-1
QApplication::UnicodeUTF8	-	UTF-8

QObject::tr() QObject::trUtf8()QString::fromUtf8()

QApplication::Type

QApplication

QApplication::Tty	-	
QApplication::GuiClient	-	
QApplication::GuiServer	-	

QApplication::QApplication	(int	&	argc,	char	**	argv)

argvargc

qApp

argcargvQt argcargvqApp->argc()qApp->argv() argv()

QtQtQT_NO_DEBUG

-nograbQt
-dograb	X11-nograb-dograb
-sync	X11

Qt

-style=	style motifwindowsplatinumQt -style

-style	style
-session=	session
-session	session

X11QtX11

-display	displayX$DISPLAY
-geometry	geometry
-fn -font	fontX
-bg -background	color
-fg -foreground	color
-btn -button	color
-name	name
-title	title
-visual	TrueColor8

-ncols	countQApplication::ManyColor8 count2166x6x666
62x3x1
-cmap8

argc()argv()

QApplication::QApplication	(int	&	argc,	char	**	argv,
bool	GUIenabled)

argvargc GUIenabled

GUIenabled

X11 GUIenabled GUIenabledXWindowsMacintosh
GUIenabledQt

Qt

		int	main(int	argc,	char	**argv)

		{

#ifdef	Q_WS_X11

				bool	useGUI	=	getenv("DISPLAY")	!=	0;

#else

				bool	useGUI	=	TRUE;

#endif

				QApplication	app(argc,	argv,	useGUI);

				if	(useGUI)	{

							//

							...

				}	else	{

							//

							...

				}

				return	app.exec();

		}

QApplication::QApplication	(int	&	argc,	char	**	argv,	Type	type
)

argvargc

Qt/Embedded typeQApplication::GuiServer-qws

QApplication::QApplication	(Display	*	dpy,	HANDLE	visual	=	0,
HANDLE	colormap	=	0)

dpyvisualcolormapVisualColormap

X11

QApplication::QApplication	(Display	*	dpy,	int	argc,
char	**	argv,	HANDLE	visual	=	0,	HANDLE	colormap	=	0)

argvargc dpyvisualcolormapVisualColormap

X11

QApplication::~QApplication	()	[]

qApp0

void	QApplication::aboutToQuit	()	[]

quit()

quit()

QWidget	*	QApplication::activeModalWidget	()	[]

QDialog

activePopupWidget()topLevelWidgets()

QWidget	*	QApplication::activePopupWidget	()	[]

WType_PopupQPopupMenu

activeModalWidget()topLevelWidgets()

QWidget	*	QApplication::activeWindow	()	const

0

QWidget::setFocus() QWidget::focusfocusWidget()

network/mail/smtp.cpp

void	QApplication::addLibraryPath	(const	QString	&	path)	[
]

path path $QTDIR/plugins

removeLibraryPath() libraryPaths()setLibraryPaths()

QWidgetList	*	QApplication::allWidgets	()	[]

new

QPtrList::isEmpty()

				QWidgetList		*list	=	QApplication::allWidgets();

				QWidgetListIt	it(*list);									//	

				QWidget	*	w;

				while	((w=it.current())	!=	0)	{		//	……

								++it;

								w->update();

				}

				delete	list;																						//	

		

QWidgetList qwidgetlist.h

topLevelWidgets() QWidget::visibleQPtrList::isEmpty()

int	QApplication::argc	()	const

argv()

argv()QApplication::QApplication()

chart/main.cppscribble/scribble.cpp

char	**	QApplication::argv	()	const

argv()[0] argv()[1]argv()[argc()-1]

QApplication main()argcargvQtX11Qt -display-font

				//	showargs.cpp	-	

				#include	<qapplication.h>

				#include	<qlistbox.h>

				int	main(int	argc,	char	**argv)

				{

								QApplication	a(argc,	argv);

								QListBox	b;

								a.setMainWidget(&b);

								for	(int	i	=	0;	i	<	a.argc();	i++)		//	a.argc()	==	argc

												b.insertItem(a.argv()[i]);						//	a.argv()[i]	==	argv[i]

								b.show();

								return	a.exec();

				}

		

X11 showargs	-display	unix:0	-font	9x15bold	hello	world

“showargs”“hello”“world”

argc()QApplication::QApplication()

chart/main.cppscribble/scribble.cpp

void	QApplication::beep	()	[]

QClipboard	*	QApplication::clipboard	()	[]

showimg/showimg.cpp

void	QApplication::closeAllWindows	()	[]

“Quit”

				//	“Quit”

				QPopupMenu*	file	=	new	QPopupMenu(this);

				file->insertItem("&Quit",	qApp,	SLOT(closeAllWindows()),	CTRL+Key_Q);

				//	

				connect(qApp,	SIGNAL(lastWindowClosed()),	qApp,	SLOT(quit()));

		

QWidget::close() QWidget::closeEvent() lastWindowClosed() quit() topLevelWidgets

QWidget::isTopLevel

action/application.cppapplication/application.cpphelpviewer/helpwindow.cppmdi/application.cpp
qwerty/qwerty.cpp

bool	QApplication::closingDown	()	[]

startingUp()

int	QApplication::colorSpec	()	[]

QApplication::setColorSpec()

showimg/showimg.cpp

void	QApplication::commitData	(QSessionManager	&	sm)	[]

QSessionManager

sm QSessionManager::allowsInteraction()
QSessionManager::allowsErrorInteraction()

isSessionRestored() sessionId()saveState()

int	QApplication::cursorFlashTime	()	[]

X111000Windows

setCursorFlashTime()

QTextCodec	*	QApplication::defaultCodec	()	const

setDefaultCodec()0

QDesktopWidget	*	QApplication::desktop	()	[]

				QDesktopWidget	*d	=	QApplication::desktop();

				int	w	=	d->width();					//	

				int	h	=	d->height();				//	

		

canvas/main.cppdesktop/desktop.cpphelpviewer/main.cppi18n/main.cppqmag/qmag.cpp
scribble/main.cpp

bool	QApplication::desktopSettingsAware	()	[]

setDesktopSettingsAware()

setDesktopSettingsAware()

int	QApplication::doubleClickInterval	()	[]

X11400Windows

setDoubleClickInterval()

int	QApplication::enter_loop	()

exit_loop()loopLevel()

int	QApplication::exec	()

exit()exit() quit()exit()0

exec() QMessageBoxexec()exec()

quit() exit() processEvents()setMainWidget()

biff/main.cppchart/main.cppfonts/simple-qfont-demo/simple-qfont-
demo.cpplife/main.cppt1/main.cppt4/main.cppxml/outliner/main.cpp

void	QApplication::exit	(int	retcode	=	0)	[]

exec()exec() retcode

0 retcode

C ——

quit()exec()

chart/chartform.cpppicture/picture.cpp

void	QApplication::exit_loop	()

enter_loop()loopLevel()

void	QApplication::flush	()	[]

X11Mac	OS	XSplash	Screen

flushX() sendPostedEvents()QPainter::flush()

void	QApplication::flushX	()	[]

X11X

syncX()

xform/xform.cpp

QWidget	*	QApplication::focusWidget	()	const

0

QWidget::setFocus() QWidget::focusactiveWindow()

QFont	QApplication::font	(const	QWidget	*	w	=	0)	[]

w w0

setFont() fontMetrics()QWidget::font

qfd/fontdisplayer.cppthemes/metal.cppthemes/themes.cpp

QFontMetrics	QApplication::fontMetrics	()	[]

font() setFont() QWidget::fontMetrics()QPainter::fontMetrics()

QSize	QApplication::globalStrut	()	[]

strut

strutstrut

setGlobalStrut()

void	QApplication::guiThreadAwake	()	[]

wakeUpGuiThread()

bool	QApplication::hasGlobalMouseTracking	()	[]

setGlobalMouseTracking()

bool	QApplication::hasPendingEvents	()

int	QApplication::horizontalAlignment	(int	align)	[]

AlignAuto alignAlignLeftAlignRight

void	QApplication::installTranslator	(QTranslator	*	mf)

mf

removeTranslator() translate()QTranslator::load()

i18n/main.cpp

bool	QApplication::isEffectEnabled	(Qt::UIEffect	effect)	[]

effect

Qt setDesktopSettingsAware(FALSE)

setEffectEnabled()Qt::UIEffect

bool	QApplication::isSessionRestored	()	const

sessionId() commitData()saveState()

void	QApplication::lastWindowClosed	()	[]

quit

mainWidget() topLevelWidgets() QWidget::isTopLevelQWidget::close()

action/main.cppaddressbook/main.cppchart/main.cpphelpviewer/main.cppqwerty/main.cpp
showimg/main.cpp

QStringList	QApplication::libraryPaths	()	[]

$QTDIR/plugins

				QStringList	list	=	app.libraryPaths();

				QStringList::Iterator	it	=	list.begin();

				while(it	!=	list.end())	{

								myProcessing(*it);

								++it;

				}

				

setLibraryPaths() addLibraryPath() removeLibraryPath()QLibrary

void	QApplication::lock	()

Qt

unlock() locked()Qt

bool	QApplication::locked	()

Qt

lock() unlock()Qt

int	QApplication::loopLevel	()	const

enter_loop()exit_loop()

bool	QApplication::macEventFilter	(EventRef)	[]

Macintosh

QApplicationMac	OSCarbon

QWidget	*	QApplication::mainWidget	()	const

0

setMainWidget()

bool	QApplication::notify	(QObject	*	receiver,	QEvent	*	e)	[]

ereceiverreceiver->event(e)

1.	 qApp

2.	 qApp

3.	 QObject::event() QWidgetTab

4.	 TabShift-Tab

5.	 paintEvent()mousePressEvent()

QObject::event()installEventFilter()

QCursor	*	QApplication::overrideCursor	()	[]

0

setOverrideCursor()restoreOverrideCursor()

QPalette	QApplication::palette	(const	QWidget	*	w	=	0)	[]

wWindows

setPalette()QWidget::palette

desktop/desktop.cppthemes/metal.cppthemes/wood.cpp

void	QApplication::polish	(QWidget	*	w)	[]

w

QWidget QObject::className()

QStyle::polish() QWidget::polish() setPalette()setFont()

void	QApplication::postEvent	(QObject	*	receiver,

QEvent	*	event)	[]

eventreceiver

notify()

sendEvent() QThread::postEvent()notify()

void	QApplication::processEvents	()

3

exec()QTimer

fileiconview/qfileiconview.cpp

void	QApplication::processEvents	(int	maxtime)

maxtime

exec()QTimer

void	QApplication::processOneEvent	()

Qt

processEvents() exec()QTimer

void	QApplication::quit	()	[]

0 QApplication::exit(0)

lastWindowClosed()quit() QButton::clicked()QActionQPopupMenu
QMenuBar

				QPushButton	*quitButton	=	new	QPushButton("Quit");

				connect(quitButton,	SIGNAL(clicked()),	qApp,	SLOT(quit()));

		

exit() aboutToQuit() lastWindowClosed()QAction

addressbook/main.cpphelpviewer/main.cppqwerty/main.cppshowimg/main.cppt2/main.cpp
t6/main.cpp

QWSDecoration	&	QApplication::qwsDecoration	()	[]

QWSDecoration

Qt/Embedded

QWSDecoration

bool	QApplication::qwsEventFilter	(QWSEvent	*)	[]

Qt/Embedded

QApplicationQWSQQWS

void	QApplication::qwsSetCustomColors	(QRgb	*	colorTable,
int	start,	int	numColors)

Qt/Embedded

Qt/Embedded821640QWS

colorTable40 start039 numColors140

Qt/Embedded

void	QApplication::qwsSetDecoration	(QWSDecoration	*	d)	[
]

Qt/Embedded QWSDecorationd

Qt/Embedded

QWSDecoration

void	QApplication::removeLibraryPath	(const	QString	&	path)
[]

pathpath

addLibraryPath() libraryPaths()setLibraryPaths()

void	QApplication::removePostedEvents	(QObject	*	receiver)
[]

postEvent()receiver

receiver

void	QApplication::removeTranslator	(QTranslator	*	mf)

mf

installTranslator() translate()QObject::tr()

i18n/main.cpp

void	QApplication::restoreOverrideCursor	()	[]

setOverrideCursor()

setOverrideCursor() restoreOverrideCursor()

setOverrideCursor()overrideCursor()

showimg/showimg.cpp

bool	QApplication::reverseLayout	()	[]

setReverseLayout()

void	QApplication::saveState	(QSessionManager	&	sm)	[]

sm QSessionManager::allowsInteraction()
QSessionManager::allowsErrorInteraction()

isSessionRestored() sessionId()commitData()

bool	QApplication::sendEvent	(QObject	*	receiver,
QEvent	*	event)	[]

notify()eventreceiver

				QMouseEvent	me(QEvent::MouseButtonPress,	pos,	0,	0);

				QApplication::sendEvent(mainWindow,	&me);

				

postEvent()notify()

popup/popup.cpp

void	QApplication::sendPostedEvents	(QObject	*	receiver,
int	event_type)	[]

QApplication::postEvent()receiverevent_type

processEvents()

void	QApplication::sendPostedEvents	()	[]

QString	QApplication::sessionId	()	const

isSessionRestored() commitData()saveState()

void	QApplication::setColorSpec	(int	spec)	[]

spec

8/256

QApplication

QApplication::NormalColorX11Windows

QApplication::CustomColorX11NormalColorWindows
QtWindows

QApplication::ManyColorX11
2562566*6*6216“”
256256Silicon	GraphicsX8

WindowsQtWindows

CustomColorManyColor

		int	main(int	argc,	char	**argv)

		{

						QApplication::setColorSpec(QApplication::ManyColor);

						QApplication	a(argc,	argv);

						...

		}

		

QColor QColor::enterAllocContext()

QApplication QColor::numBitPlanes

*	0x00,	0x33,	0x66,	0x99,	0xCC,	or	0xFF.	*	Qt2160x000x33
0x660x990xCC0xFF

colorSpec() QColor::numBitPlanes()QColor::enterAllocContext()

helpviewer/main.cppshowimg/main.cppt9/main.cpptetrix/tetrix.cpp
themes/main.cpp

void	QApplication::setCursorFlashTime	(int	msecs)	[]

msecs msecs/2 msecs/2

Microsoft	Windows

cursorFlashTime()

void	QApplication::setDefaultCodec	(QTextCodec	*	codec)

codec

Latin1eucKRmain()

				int	main(int	argc,	char**	argv)

				{

								QApplication	app(argc,	argv);

								...	install	any	additional	codecs	...

								app.setDefaultCodec(QTextCodec::codecForName("eucKR"));

								...

				}

		

tr() Qt

Qttr()

void	QApplication::setDesktopSettingsAware	(bool	on)	[]

Qt

This	static	function	must	be	called	before	creating	the	QApplication	object,	like
this:

		int	main(int	argc,	char**	argv)	{

				QApplication::setDesktopSettingsAware(FALSE);	//	

				QApplication	myApp(argc,	argv);	//	&

				...

		}

		

desktopSettingsAware()

void	QApplication::setDoubleClickInterval	(int	ms)	[]

ms

Microsoft	Windows

doubleClickInterval()

void	QApplication::setEffectEnabled	(Qt::UIEffect	effect,
bool	enable	=	TRUE)	[]

enable effect

isEffectEnabled() Qt::UIEffectsetDesktopSettingsAware()

void	QApplication::setFont	(const	QFont	&	font,
bool	informWidgets	=	FALSE,	const	char	*	className	=	0)
[]

fontinformWidgets informWidgets className
QObject::inherits()

font() fontMetrics()QWidget::font

desktop/desktop.cppqfd/qfd.cppshowimg/main.cppthemes/metal.cpp
themes/themes.cpp

void	QApplication::setGlobalMouseTracking	(bool	enable)	[]

enable enable

mouseMoveEvent()

setGlobalMouseTracking(TRUE)setGlobalMouseTracking(FALSE)

								//	

								QApplication::setGlobalMouseTracking(TRUE);

								QApplication::setGlobalMouseTracking(TRUE);

								QApplication::setGlobalMouseTracking(FALSE);

								//	

								QApplication::setGlobalMouseTracking(FALSE);

								//	

				

hasGlobalMouseTracking()QWidget::mouseTracking

void	QApplication::setGlobalStrut	(const	QSize	&	strut)	[]

strut strut

strutstrut

strut

		QSize&	WidgetClass::sizeHint()	const

		{

						return	QSize(80,	25).expandedTo(QApplication::globalStrut());

		}

		

globalStrut()

void	QApplication::setLibraryPaths	(const	QStringList	&	paths)
[]

pathspaths paths

libraryPaths() addLibraryPath() removeLibraryPath()QLibrary

void	QApplication::setMainWidget	(QWidget	*	mainWidget)
[]

mainWidget

lastWindowClosed()quit()

X11 -geometry setMainWidget() QWidget::setGeometry

mainWidget() exec()quit()

canvas/main.cppchart/main.cppfonts/simple-qfont-demo/simple-qfont-
demo.cpplife/main.cppt1/main.cppt4/main.cppxml/outliner/main.cpp

void	QApplication::setOverrideCursor	(const	QCursor	&	cursor,
bool	replace	=	FALSE)	[]

cursor

restoreOverrideCursor()setOverrideCursor

setOverrideCursor()restoreOverrideCursor()setOverrideCursor()
restoreOverrideCursor()

replace replace

								QApplication::setOverrideCursor(Qt::WaitCursor);

								calculateHugeMandelbrot();														//	……

								QApplication::restoreOverrideCursor();

				

overrideCursor() restoreOverrideCursor()QWidget::cursor

showimg/showimg.cpp

void	QApplication::setPalette	(const	QPalette	&	palette,
bool	informWidgets	=	FALSE,	const	char	*	className	=	0)
[]

paletteinformWidgets informWidgets

className className QObject::inherits() className0

QStyle::polish()

QWidget::palettepalette()QStyle::polish()

i18n/main.cppthemes/metal.cppthemes/themes.cppthemes/wood.cpp

void	QApplication::setReverseLayout	(bool	b)	[]

b b

reverseLayout()

void	QApplication::setStartDragDistance	(int	l)	[]

l

startDragDistance()

void	QApplication::setStartDragTime	(int	ms)	[]

ms

startDragTime()

void	QApplication::setStyle	(QStyle	*	style)	[]

styleQApplicationQApplication

				QApplication::setStyle(new	QWindowStyle);

		

style() QStylesetPalette()desktopSettingsAware()

themes/themes.cpp

QStyle	*	QApplication::setStyle	(const	QString	&	style)	[]

QStyleFactorystyleQStyle

QStyleFactory::keys()
“windows”“motif”“cde”“motifplus”“platinum”“sgi”“compact”
“windowsxp”“aqua”“macintosh”

style0

void	QApplication::setWheelScrollLines	(int	n)	[]

n

/

wheelScrollLines()

void	QApplication::setWinStyleHighlightColor	(
const	QColor	&	c)	[]

darkBlue

winStyleHighlightColor()

int	QApplication::startDragDistance	()	[]

startPos currPos

		if	((startPos	-	currPos).manhattanLength()	>

							QApplication::startDragDistance())

				startTheDrag();

		

Qt QFileDialog

4

setStartDragDistance() startDragTime()QPoint::manhattanLength()

int	QApplication::startDragTime	()	[]

QtQTextView QLineEdit

500

setStartDragTime()startDragDistance()

bool	QApplication::startingUp	()	[]

closingDown()

QStyle	&	QApplication::style	()	[]

setStyle()QStyle

void	QApplication::syncX	()	[]

X11X

flushX()

QWidgetList	*	QApplication::topLevelWidgets	()	[]

new

QPtrList::isEmpty()

				//	

				QWidgetList		*list	=	QApplication::topLevelWidgets();

				QWidgetListIt	it(*list);		//	

				QWidget	*	w;

				while	((w=it.current())	!=	0)	{			//	

								++it;

								if	(!w->isVisible())

												w->show();

				}

				delete	list;																//	

		

	

allWidgets() QWidget::isTopLevelQWidget::visibleQPtrList::isEmpty()

QString	QApplication::translate	(const	char	*	context,
const	char	*	sourceText,	const	char	*	comment	=	0,
Encoding	encoding	=	DefaultCodec)	const

sourceText

QObject::tr()QObject::trUtf8()

context“MyDialog” sourceText

comment sourceText encoding8

QTranslator

contextsourceText sourceTextQStringsourceTextencoding

QTranslator

QObject::tr() installTranslator()defaultCodec()

bool	QApplication::tryLock	()

Qt

unlock()

lock() unlock()Qt

Type	QApplication::type	()	const

TtyGuiClientGuiServer

void	QApplication::unlock	(bool	wakeUpGui	=	TRUE)

Qt wakeUpGui QApplication::wakeUpGuiThread()

lock() locked()Qt

void	QApplication::wakeUpGuiThread	()

guiThreadAwake()Qt

int	QApplication::wheelScrollLines	()	[]

setWheelScrollLines()

QWidget	*	QApplication::widgetAt	(int	x,	int	y,	bool	child	=
FALSE)	[]

(x,	y)Qt0

child(x,	y) child (x,	y)

QCursor::pos() QWidget::grabMouse()QWidget::grabKeyboard()

QWidget	*	QApplication::widgetAt	(const	QPoint	&	pos,
bool	child	=	FALSE)	[]

	 pos

childpos child pos

bool	QApplication::winEventFilter	(MSG	*)	[]

Qt msg

void	QApplication::winFocus	(QWidget	*	widget,	bool	gotFocus)

gotFocus widgetNULL

const	QColor	&	QApplication::winStyleHighlightColor	()	[]

setWinStyleHighlightColor()

WindowsVersion	QApplication::winVersion	()	[]

Windows

Qt::WV_95	-	Windows	95
Qt::WV_98	-	Windows	98
Qt::WV_Me	-	Windows	Me
Qt::WV_NT	-	Windows	NT	4.x
Qt::WV_2000	-	Windows	2000	NT5
Qt::WV_XP	-	Windows	XP

QtWindows

bool	QApplication::x11EventFilter	(XEvent	*)	[]

X11

QApplicationXX

x11ProcessEvent()

int	QApplication::x11ProcessEvent	(XEvent	*	event)

X eventQt

1 event0 event-1

x11EventFilter()

void	Q_ASSERT	(bool	test)

test

qglobal.h

Q_ASSERT

				//

				//	File:	div.cpp

				//

				#include	<qglobal.h>

				int	divide(int	a,	int	b)

				{

								Q_ASSERT(b	!=	0);																					//	9

								return	a/b;

				}

		

b0Q_ASSERT qWarning()

				ASSERT:	"b	==	0"	in	div.cpp	(9)

		

qWarning()

void	Q_CHECK_PTR	(void	*	p)

p p

qglobal.h

				int	*a;

				Q_CHECK_PTR(a	=	new	int[80]);					//	

						//	

				a	=	new	int[80];

				Q_CHECK_PTR(a);																			//	

		

qFatal()

void	qAddPostRoutine	(QtCleanUpFunction	p)

QApplication

p

				static	int	*global_ptr	=	0;

				static	void	cleanup_ptr()

				{

								delete	[]	global_ptr;

								global_ptr	=	0;

				}

				void	init_ptr()

				{

								global_ptr	=	new	int[100];						//	

								qAddPostRoutine(cleanup_ptr);	//	

				}

		

qAddPostRoutine()QApplication

Qt

				class	MyPrivateInitStuff:	public	QObject	{

				private:

								MyPrivateInitStuff(QObject	*	parent):	QObject(parent)	{

												//	

								}

								MyPrivateInitStuff	*	p;

				public:

								static	MyPrivateInitStuff	*	initStuff(QObject	*	parent)	{

												if	(!p)

																p	=	new	MyPrivateInitStuff(parent);

												return	p;

								}

								~MyPrivateInitStuff()	{

												//	“”

								}

				}

		

/

void	qDebug	(const	char	*	msg,	...)

msg

Cprintf()

				qDebug("my	window	handle	=	%x",	myWidget->id());

		

X11Windows

81960

qWarning() qFatal() qInstallMsgHandler()Debugging

void	qFatal	(const	char	*	msg,	...)

msg

Cprintf()

				int	divide(int	a,	int	b)

				{

								if	(b	==	0)																											//	

												qFatal("divide:	cannot	divide	by	zero");

								return	a/b;

				}

		

X11Windows

81960

qDebug() qWarning() qInstallMsgHandler()Debugging

QtMsgHandler	qInstallMsgHandler	(QtMsgHandler	h)

Qt h

Qt

X11Windows

qInstallMsgHandler(0)

				#include	<qapplication.h>

				#include	<stdio.h>

				#include	<stdlib.h>

				void	myMessageOutput(QtMsgType	type,	const	char	*msg)

				{

								switch	(type)	{

												case	QtDebugMsg:

																fprintf(stderr,	"Debug:	%s\n",	msg);

																break;

												case	QtWarningMsg:

																fprintf(stderr,	"	%s\n",	msg);

																break;

												case	QtFatalMsg:

																fprintf(stderr,	"Fatal:	%s\n",	msg);

																abort();																								//	

								}

				}

				int	main(int	argc,	char	**argv)

				{

								qInstallMsgHandler(myMessageOutput);

								QApplication	a(argc,	argv);

								...

								return	a.exec();

				}

		

qDebug() qWarning() qFatal()

bool	qSysInfo	(int	*	wordSize,	bool	*	bigEndian)

wordSize32 bigEndian

1632

void	qSystemWarning	(const	char	*	msg,	int	code)

msgcode code-1

QtQT_NO_DEBUG

const	char	*	qVersion	()

Qt“1.44”“2.3.0”

void	qWarning	(const	char	*	msg,	...)

msg

Cprintf()

				void	f(int	c)

				{

								if	(c	>	200)

												qWarning("f:	bad	argument,	c	==	%d",	c);

				}

		

X11Windows

81960

qDebug() qFatal() qInstallMsgHandler()Debugging

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QPushButton
QPushButton	 ……

#include	<qpushbutton.h>

QButton

QPushButton	(QWidget	*	parent,	const	char	*	name	=	0)
QPushButton	(const	QString	&	text,	QWidget	*	parent,	const	char	*	name
=	0)
QPushButton	(const	QIconSet	&	icon,	const	QString	&	text,
QWidget	*	parent,	const	char	*	name	=	0)
~QPushButton	()
void	setToggleButton	(bool)
bool	autoDefault	()	const
virtual	void	setAutoDefault	(bool	autoDef)
bool	isDefault	()	const
virtual	void	setDefault	(bool	def)
virtual	void	setIsMenuButton	(bool	enable)		
bool	isMenuButton	()	const		
void	setPopup	(QPopupMenu	*	popup)
QPopupMenu	*	popup	()	const
void	setIconSet	(const	QIconSet	&)
QIconSet	*	iconSet	()	const
void	setFlat	(bool)
bool	isFlat	()	const

virtual	void	setOn	(bool)

QString	text	()	const
virtual	void	setText	(const	QString	&)
const	QPixmap	*	pixmap	()	const
virtual	void	setPixmap	(const	QPixmap	&)
QKeySequence	accel	()	const
virtual	void	setAccel	(const	QKeySequence	&)
bool	isToggleButton	()	const
virtual	void	setDown	(bool)
bool	isDown	()	const
bool	isOn	()	const
ToggleState	state	()	const
bool	autoRepeat	()	const
virtual	void	setAutoRepeat	(bool)
bool	isExclusiveToggle	()	const
QButtonGroup	*	group	()	const
void	toggle	()
void	pressed	()
void	released	()
void	clicked	()
void	toggled	(bool	on)
void	stateChanged	(int	state)

bool	autoDefault	-	
bool	autoMask	-		
bool	default	-	
bool	flat	-	
QIconSet	iconSet	-	
bool	menuButton	-		
bool	on	-	
bool	toggleButton	-	

QPushButton

OKApplyCancelCloseYes
NoHelp

“&”

				QPushButton	*pb	=	new	QPushButton("&Download",	this);

		

Alt+DDownload

clicked() pressed()

MicrosoftWindows10

“”

QToolButton

setToggleButton() setAutoRepeat()

QRadioButton QCheckBox

	

Qt QButtonQPushButtonQButton

QToolButtonQRadioButtonQCheckBoxGUI	Design	Handbook:	Push	Button

QPushButton::QPushButton	(QWidget	*	parent,
const	char	*	name	=	0)

parentnameQWidget

QPushButton::QPushButton	(const	QString	&	text,
QWidget	*	parent,	const	char	*	name	=	0)

nameparenttext

QPushButton::QPushButton	(const	QIconSet	&	icon,
const	QString	&	text,	QWidget	*	parent,	const	char	*	name	=
0)

icontext

QPixmapC++

parentnameQWidget

QPushButton::~QPushButton	()

QKeySequence	QButton::accel	()	const

“accel”

bool	QPushButton::autoDefault	()	const

“autoDefault”

bool	QButton::autoRepeat	()	const

“autoRepeat”

void	QButton::clicked	()	[]

QButtonGroup::clicked()

pressed() released() toggled() autoRepeatdown

fonts/simple-qfont-
demo/viewer.cpplistbox/listbox.cppnetwork/clientserver/client/client.cppnetwork/ftpclient/ftpmainwindow.cpp
richtext/richtext.cppt2/main.cppt4/main.cpp

QButtonGroup	*	QButton::group	()	const

QButtonGroup0

QButtonGroup

QIconSet	*	QPushButton::iconSet	()	const

“iconSet”

bool	QPushButton::isDefault	()	const

“default”

bool	QButton::isDown	()	const

“down”

bool	QButton::isExclusiveToggle	()	const

“exclusiveToggle”

bool	QPushButton::isFlat	()	const

“flat”

bool	QPushButton::isMenuButton	()	const

“menuButton”

bool	QButton::isOn	()	const

“on”

bool	QButton::isToggleButton	()	const

“toggleButton”

const	QPixmap	*	QButton::pixmap	()	const

“pixmap”

QPopupMenu	*	QPushButton::popup	()	const

0

setPopup()

void	QButton::pressed	()	[]

released()clicked()

network/httpd/httpd.cpppopup/popup.cpp

void	QButton::released	()	[]

pressed() clicked()toggled()

void	QButton::setAccel	(const	QKeySequence	&)	[]

“accel”

void	QPushButton::setAutoDefault	(bool	autoDef)	[]

autoDef“autoDefault”

void	QButton::setAutoRepeat	(bool)	[]

autoRepeat “autoRepeat”

void	QPushButton::setDefault	(bool	def)	[]

def“default”

void	QButton::setDown	(bool)	[]

“down”

void	QPushButton::setFlat	(bool)

“flat”

void	QPushButton::setIconSet	(const	QIconSet	&)

“iconSet”

void	QPushButton::setIsMenuButton	(bool	enable)	[]

void	QPushButton::setOn	(bool)	[]

“on”

void	QButton::setPixmap	(const	QPixmap	&)	[]

“pixmap”

void	QPushButton::setPopup	(QPopupMenu	*	popup)

popup

popup()

qdir/qdir.cpp

void	QButton::setText	(const	QString	&)	[]

“text”

void	QPushButton::setToggleButton	(bool)

“toggleButton”

ToggleState	QButton::state	()	const

“toggleState”

void	QButton::stateChanged	(int	state)	[]

state2 “” 10

toggle() setState(),setOn()

clicked()

QString	QButton::text	()	const

“text”

void	QButton::toggle	()	[]

ontoggled()toggleButton

void	QButton::toggled	(bool	on)	[]

on

toggle()setOn()

clicked()

listbox/listbox.cpp

QKeySequence	accel

00

setAccel()accel()

bool	autoDefault

3Qt

QDialog

setAutoDefault()autoDefault()

bool	autoMask

QWidget::autoMask

bool	autoRepeat

autoRepeat clicked()autoRepeat

setAutoRepeat()autoRepeat()

bool	default

setDefault()isDefault()

bool	flat

setFlat()isFlat()

QIconSet	iconSet

0

setIconSet()iconSet()

bool	menuButton

isMenuButton()

bool	on

ontoggle() toggled()toggleButton

isOn()

QPixmap	pixmap

QBitmap1

pixmap()0

setPixmap()pixmap()

QString	text

“&”“&”

setText()text()

bool	toggleButton

/

ontoggle() toggleButtontoggled()

setToggleButton()

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QWidget
QWidget	 ……

#include	<qwidget.h>

QObjectQPaintDevice

Q
ButtonQFrameQDialogQComboBoxQDataBrowserQDataViewQDateTimeEditQDesktopWidget
QXtWidget

QWidget	(QWidget	*	parent	=	0,	const	char	*	name	=	0,	WFlags	f	=	0)
~QWidget	()
WId	winId	()	const
QStyle	&	style	()	const
void	setStyle	(QStyle	*	style)
QStyle	*	setStyle	(const	QString	&	style)
bool	isTopLevel	()	const
bool	isDialog	()	const
bool	isPopup	()	const
bool	isDesktop	()	const
bool	isModal	()	const
bool	isEnabled	()	const
bool	isEnabledTo	(QWidget	*	ancestor)	const
bool	isEnabledToTLW	()	const		(obsolete)
QRect	frameGeometry	()	const
const	QRect	&	geometry	()	const
int	x	()	const
int	y	()	const
QPoint	pos	()	const
QSize	frameSize	()	const
QSize	size	()	const
int	width	()	const
int	height	()	const
QRect	rect	()	const
QRect	childrenRect	()	const
QRegion	childrenRegion	()	const
QSize	minimumSize	()	const
QSize	maximumSize	()	const
int	minimumWidth	()	const
int	minimumHeight	()	const
int	maximumWidth	()	const
int	maximumHeight	()	const
void	setMinimumSize	(const	QSize	&)
virtual	void	setMinimumSize	(int	minw,	int	minh)
void	setMaximumSize	(const	QSize	&)

virtual	void	setMaximumSize	(int	maxw,	int	maxh)
void	setMinimumWidth	(int	minw)
void	setMinimumHeight	(int	minh)
void	setMaximumWidth	(int	maxw)
void	setMaximumHeight	(int	maxh)
QSize	sizeIncrement	()	const
void	setSizeIncrement	(const	QSize	&)
virtual	void	setSizeIncrement	(int	w,	int	h)
QSize	baseSize	()	const
void	setBaseSize	(const	QSize	&)
void	setBaseSize	(int	basew,	int	baseh)
void	setFixedSize	(const	QSize	&	s)
void	setFixedSize	(int	w,	int	h)
void	setFixedWidth	(int	w)
void	setFixedHeight	(int	h)
QPoint	mapToGlobal	(const	QPoint	&	pos)	const
QPoint	mapFromGlobal	(const	QPoint	&	pos)	const
QPoint	mapToParent	(const	QPoint	&	pos)	const
QPoint	mapFromParent	(const	QPoint	&	pos)	const
QPoint	mapTo	(QWidget	*	parent,	const	QPoint	&	pos)	const
QPoint	mapFrom	(QWidget	*	parent,	const	QPoint	&	pos)	const
QWidget	*	topLevelWidget	()	const
BackgroundMode	backgroundMode	()	const
virtual	void	setBackgroundMode	(BackgroundMode)
void	setBackgroundMode	(BackgroundMode	m,	BackgroundMode	visual
)
const	QColor	&	foregroundColor	()	const
const	QColor	&	eraseColor	()	const
virtual	void	setEraseColor	(const	QColor	&	color)
const	QPixmap	*	erasePixmap	()	const
virtual	void	setErasePixmap	(const	QPixmap	&	pixmap)
const	QColorGroup	&	colorGroup	()	const
const	QPalette	&	palette	()	const
bool	ownPalette	()	const
virtual	void	setPalette	(const	QPalette	&)
void	unsetPalette	()
const	QColor	&	paletteForegroundColor	()	const
void	setPaletteForegroundColor	(const	QColor	&)
const	QColor	&	paletteBackgroundColor	()	const

virtual	void	setPaletteBackgroundColor	(const	QColor	&)
const	QPixmap	*	paletteBackgroundPixmap	()	const
virtual	void	setPaletteBackgroundPixmap	(const	QPixmap	&)
const	QBrush	&	backgroundBrush	()	const
QFont	font	()	const
bool	ownFont	()	const
virtual	void	setFont	(const	QFont	&)
void	unsetFont	()
QFontMetrics	fontMetrics	()	const
QFontInfo	fontInfo	()	const
const	QCursor	&	cursor	()	const
bool	ownCursor	()	const
virtual	void	setCursor	(const	QCursor	&)
virtual	void	unsetCursor	()
QString	caption	()	const
const	QPixmap	*	icon	()	const
QString	iconText	()	const
bool	hasMouseTracking	()	const
bool	hasMouse	()	const
virtual	void	setMask	(const	QBitmap	&	bitmap)
virtual	void	setMask	(const	QRegion	&	region)
void	clearMask	()
const	QColor	&	backgroundColor	()	const		(obsolete)
virtual	void	setBackgroundColor	(const	QColor	&	c)		(obsolete)
const	QPixmap	*	backgroundPixmap	()	const		(obsolete)
virtual	void	setBackgroundPixmap	(const	QPixmap	&	pm)		(obsolete)
enum	FocusPolicy	{	NoFocus	=	0,	TabFocus	=	0x1,	ClickFocus	=	0x2,
StrongFocus	=	0x3,	WheelFocus	=	0x7	}
bool	isActiveWindow	()	const
virtual	void	setActiveWindow	()
bool	isFocusEnabled	()	const
FocusPolicy	focusPolicy	()	const
virtual	void	setFocusPolicy	(FocusPolicy)
bool	hasFocus	()	const
virtual	void	setFocusProxy	(QWidget	*	w)
QWidget	*	focusProxy	()	const
void	grabMouse	()
void	grabMouse	(const	QCursor	&	cursor)
void	releaseMouse	()

void	grabKeyboard	()
void	releaseKeyboard	()
bool	isUpdatesEnabled	()	const
virtual	bool	close	(bool	alsoDelete)
bool	isVisible	()	const
bool	isVisibleTo	(QWidget	*	ancestor)	const
bool	isVisibleToTLW	()	const		(obsolete)
QRect	visibleRect	()	const
bool	isHidden	()	const
bool	isMinimized	()	const
bool	isMaximized	()	const
virtual	QSize	sizeHint	()	const
virtual	QSize	minimumSizeHint	()	const
virtual	QSizePolicy	sizePolicy	()	const
virtual	void	setSizePolicy	(QSizePolicy)
virtual	int	heightForWidth	(int	w)	const
virtual	void	adjustSize	()
QLayout	*	layout	()	const
void	updateGeometry	()
virtual	void	reparent	(QWidget	*	parent,	WFlags	f,	const	QPoint	&	p,
bool	showIt	=	FALSE)
void	reparent	(QWidget	*	parent,	const	QPoint	&	p,	bool	showIt	=	FALSE
)
void	recreate	(QWidget	*	parent,	WFlags	f,	const	QPoint	&	p,	bool	showIt
=	FALSE)		(obsolete)
void	erase	()
void	erase	(int	x,	int	y,	int	w,	int	h)
void	erase	(const	QRect	&	r)
void	erase	(const	QRegion	&	reg)
void	scroll	(int	dx,	int	dy)
void	scroll	(int	dx,	int	dy,	const	QRect	&	r)
void	drawText	(int	x,	int	y,	const	QString	&	str)
void	drawText	(const	QPoint	&	pos,	const	QString	&	str)
QWidget	*	focusWidget	()	const
QRect	microFocusHint	()	const
bool	acceptDrops	()	const
virtual	void	setAcceptDrops	(bool	on)
virtual	void	setAutoMask	(bool)
bool	autoMask	()	const

enum	BackgroundOrigin	{	WidgetOrigin,	ParentOrigin,	WindowOrigin	}
virtual	void	setBackgroundOrigin	(BackgroundOrigin)
BackgroundOrigin	backgroundOrigin	()	const
virtual	bool	customWhatsThis	()	const
QWidget	*	parentWidget	(bool	sameWindow	=	FALSE)	const
WFlags	testWFlags	(WFlags	f)	const
QWidget	*	childAt	(int	x,	int	y,	bool	includeThis	=	FALSE)	const
QWidget	*	childAt	(const	QPoint	&	p,	bool	includeThis	=	FALSE)	const
void	setPalette	(const	QPalette	&	p,	bool)		(obsolete)
void	setFont	(const	QFont	&	f,	bool)		(obsolete)

virtual	void	setEnabled	(bool)
void	setDisabled	(bool	disable)
virtual	void	setCaption	(const	QString	&)
virtual	void	setIcon	(const	QPixmap	&)
virtual	void	setIconText	(const	QString	&)
virtual	void	setMouseTracking	(bool	enable)
virtual	void	setFocus	()
void	clearFocus	()
virtual	void	setUpdatesEnabled	(bool	enable)
void	update	()
void	update	(int	x,	int	y,	int	w,	int	h)
void	update	(const	QRect	&	r)
void	repaint	()
void	repaint	(bool	erase)
void	repaint	(int	x,	int	y,	int	w,	int	h,	bool	erase	=	TRUE)
void	repaint	(const	QRect	&	r,	bool	erase	=	TRUE)
void	repaint	(const	QRegion	&	reg,	bool	erase	=	TRUE)
virtual	void	show	()
virtual	void	hide	()
void	iconify	()		(obsolete)
virtual	void	showMinimized	()
virtual	void	showMaximized	()
void	showFullScreen	()
virtual	void	showNormal	()
virtual	void	polish	()
void	constPolish	()	const
bool	close	()
void	raise	()
void	lower	()
void	stackUnder	(QWidget	*	w)
virtual	void	move	(int	x,	int	y)
void	move	(const	QPoint	&)
virtual	void	resize	(int	w,	int	h)
void	resize	(const	QSize	&)
virtual	void	setGeometry	(int	x,	int	y,	int	w,	int	h)

virtual	void	setGeometry	(const	QRect	&)

void	setTabOrder	(QWidget	*	first,	QWidget	*	second)
QWidget	*	mouseGrabber	()
QWidget	*	keyboardGrabber	()
QWidget	*	find	(WId	id)

bool	acceptDrops	-	
bool	autoMask	-	
QBrush	backgroundBrush	-		
BackgroundMode	backgroundMode	-	
BackgroundOrigin	backgroundOrigin	-	
QSize	baseSize	-	
QString	caption	-	
QRect	childrenRect	-		
QRegion	childrenRegion	-		
QColorGroup	colorGroup	-		
QCursor	cursor	-	
bool	customWhatsThis	-	“”	
bool	enabled	-	
bool	focus	-		
bool	focusEnabled	-		
FocusPolicy	focusPolicy	-	
QFont	font	-	
QRect	frameGeometry	-		
QSize	frameSize	-		
QRect	geometry	-	
int	height	-		
bool	hidden	-		
QPixmap	icon	-	
QString	iconText	-	
bool	isActiveWindow	-		
bool	isDesktop	-		
bool	isDialog	-		
bool	isModal	-		
bool	isPopup	-		
bool	isTopLevel	-		
int	maximumHeight	-	
QSize	maximumSize	-	
int	maximumWidth	-	
QRect	microFocusHint	-		
bool	minimized	-		

int	minimumHeight	-	
QSize	minimumSize	-	
QSize	minimumSizeHint	-		
int	minimumWidth	-	
bool	mouseTracking	-	
bool	ownCursor	-		
bool	ownFont	-		
bool	ownPalette	-		
QPalette	palette	-	
QColor	paletteBackgroundColor	-	
QPixmap	paletteBackgroundPixmap	-	
QColor	paletteForegroundColor	-	
QPoint	pos	-	
QRect	rect	-		
QSize	size	-	
QSize	sizeHint	-		
QSize	sizeIncrement	-	
QSizePolicy	sizePolicy	-	
bool	underMouse	-		
bool	updatesEnabled	-	
bool	visible	-		
QRect	visibleRect	-		
int	width	-		
int	x	-	x	
int	y	-	y	

virtual	bool	event	(QEvent	*	e)
virtual	void	mousePressEvent	(QMouseEvent	*	e)
virtual	void	mouseReleaseEvent	(QMouseEvent	*	e)
virtual	void	mouseDoubleClickEvent	(QMouseEvent	*	e)
virtual	void	mouseMoveEvent	(QMouseEvent	*	e)
virtual	void	wheelEvent	(QWheelEvent	*	e)
virtual	void	keyPressEvent	(QKeyEvent	*	e)
virtual	void	keyReleaseEvent	(QKeyEvent	*	e)
virtual	void	focusInEvent	(QFocusEvent	*)
virtual	void	focusOutEvent	(QFocusEvent	*)
virtual	void	enterEvent	(QEvent	*)
virtual	void	leaveEvent	(QEvent	*)
virtual	void	paintEvent	(QPaintEvent	*)
virtual	void	moveEvent	(QMoveEvent	*)
virtual	void	resizeEvent	(QResizeEvent	*)
virtual	void	closeEvent	(QCloseEvent	*	e)
virtual	void	contextMenuEvent	(QContextMenuEvent	*	e)
virtual	void	imStartEvent	(QIMEvent	*	e)
virtual	void	imComposeEvent	(QIMEvent	*	e)
virtual	void	imEndEvent	(QIMEvent	*	e)
virtual	void	tabletEvent	(QTabletEvent	*	e)
virtual	void	dragEnterEvent	(QDragEnterEvent	*)
virtual	void	dragMoveEvent	(QDragMoveEvent	*)
virtual	void	dragLeaveEvent	(QDragLeaveEvent	*)
virtual	void	dropEvent	(QDropEvent	*)
virtual	void	showEvent	(QShowEvent	*)
virtual	void	hideEvent	(QHideEvent	*)
virtual	bool	macEvent	(MSG	*)
virtual	bool	winEvent	(MSG	*)
virtual	bool	x11Event	(XEvent	*)
virtual	bool	qwsEvent	(QWSEvent	*)
virtual	void	updateMask	()
virtual	void	styleChange	(QStyle	&	oldStyle)
virtual	void	enabledChange	(bool	oldEnabled)
virtual	void	paletteChange	(const	QPalette	&	oldPalette)

virtual	void	fontChange	(const	QFont	&	oldFont)
virtual	void	windowActivationChange	(bool	oldActive)
virtual	int	metric	(int	m)	const
void	resetInputContext	()
virtual	void	create	(WId	window	=	0,	bool	initializeWindow	=	TRUE,
bool	destroyOldWindow	=	TRUE)
virtual	void	destroy	(bool	destroyWindow	=	TRUE,
bool	destroySubWindows	=	TRUE)
WFlags	getWFlags	()	const
virtual	void	setWFlags	(WFlags	f)
void	clearWFlags	(WFlags	f)
virtual	bool	focusNextPrevChild	(bool	next)
QFocusData	*	focusData	()
virtual	void	setKeyCompression	(bool	compress)
virtual	void	setMicroFocusHint	(int	x,	int	y,	int	width,	int	height,	bool	text
=	TRUE,	QFont	*	f	=	0)

QWidget

Z

QDialogQt QMainWindowQDialog

QtQDialog

QWidgetQWidget

show() hide() raise() lower() close()
caption() setCaption() icon() setIcon() iconText() setIconText() isActiveWindow
update() repaint() erase() scroll() updateMask()
pos() size() rect() x() y() width() height() sizePolicy() setSizePolicy()
isVisible() isVisibleTo() visibleRect() isMinimized() isDesktop() isEnabled
style() setStyle() cursor() setCursor() font() setFont() palette() setPalette
isFocusEnabled() setFocusPolicy() focusPolicy() hasFocus() setFocus()
grabMouse() releaseMouse() grabKeyboard() releaseKeyboard() mouseGrabber
event() mousePressEvent() mouseReleaseEvent() mouseDoubleClickEvent
enabledChange() fontChange() paletteChange() styleChange() windowActivationChange
parentWidget() topLevelWidget() reparent() polish() winId() find() metric
customWhatsThis()
focusNextPrevChild()wmapper() clearWFlags() getWFlags() setWFlags()

1.	 QWidget	*parent	=	00 parent parent
WType_TopLevel

2.	 const	char	*name	=	0 name() Qt Qt
dumpObjectTree()

3.	 WFlags	f	=	0

tictac/tictac.cpp

paintEvent()	-	 paintEvent()

resizeEvent()	-	

mousePressEvent()	-	 grabMouse()

mouseReleaseEvent()	-	

mouseDoubleClickEvent()	-	

keyPressEvent()	-	TabShift+Tab QWidget::event()

focusInEvent()	-	 setFocusPolicy()

focusOutEvent()	-	

mouseMoveEvent()	-	 setMouseTracking(TRUE)
X

keyReleaseEvent()	-	TabShift+Tab QWidget::event()

wheelEvent()	--	

enterEvent()	-	

leaveEvent()	-	

moveEvent()	-	

closeEvent()	-	 close()

qevent.hevent()event()TabShift+Tab

sizeHint()setSizePolicy(),sizeHint()“”

setCaption()setIcon()

QEventQPainterQGridLayoutQBoxLayout

QWidget::BackgroundOrigin

QWidget::WidgetOrigin	-	
QWidget::ParentOrigin	-	
QWidget::WindowOrigin	-	

QWidget::FocusPolicy

policy

QWidget::TabFocus	-	Tab
QWidget::ClickFocus	-	
QWidget::StrongFocus	-	Tab
QWidget::WheelFocus	-	StrongFocus
QWidget::NoFocus	-	

QWidget::QWidget	(QWidget	*	parent	=	0,	const	char	*	name	=
0,	WFlags	f	=	0)

parent namef

parent0 parent parent parent

nameQObject

f0 parent0 WStyle_CustomizeQt::WidgetFlags

QtX11X11QtWindowsQt

				QLabel	*splashScreen	=	new	QLabel(0,	"mySplashScreen",

																																WStyle_Customize	|	WStyle_NoBorder	|

																																WStyle_Tool);

				

QWidget::~QWidget	()

bool	QWidget::acceptDrops	()	const

“acceptDrops”

void	QWidget::adjustSize	()	[]

sizeHint()0

sizeHintchildrenRect

xform/xform.cpp

QMessageBox

bool	QWidget::autoMask	()	const

“autoMask”

const	QBrush	&	QWidget::backgroundBrush	()	const

“backgroundBrush”

const	QColor	&	QWidget::backgroundColor	()	const

paletteBackgroundColor()eraseColor()

BackgroundMode	QWidget::backgroundMode	()	const

“backgroundMode”

BackgroundOrigin	QWidget::backgroundOrigin	()	const

“backgroundOrigin”

const	QPixmap	*	QWidget::backgroundPixmap	()	const

paletteBackgroundPixmap()erasePixmap()

themes/metal.cppthemes/wood.cpp

QSize	QWidget::baseSize	()	const

“baseSize”

QString	QWidget::caption	()	const

“caption”

QWidget	*	QWidget::childAt	(int	x,	int	y,	bool	includeThis	=
FALSE)	const

(x,	y)

includeThis (x,	y)

QWidget	*	QWidget::childAt	(const	QPoint	&	p,
bool	includeThis	=	FALSE)	const

p

includeThis p

QRect	QWidget::childrenRect	()	const

“childrenRect”

QRegion	QWidget::childrenRegion	()	const

“childrenRegion”

void	QWidget::clearFocus	()	[]

setFocusPolicy

focussetFocus() focusInEvent() focusOutEvent() focusPolicy
QApplication::focusWidget()

void	QWidget::clearMask	()

setMask()

setMask()

void	QWidget::clearWFlags	(WFlags	f)	[]

f

Qt::WidgetFlags

testWFlags() getWFlags()setWFlags()

bool	QWidget::close	()	[]

QCloseEvent QWidget::closeEvent()

QApplication::lastWindowClosed()

mdi/application.cpppopup/popup.cpp

bool	QWidget::close	(bool	alsoDelete)	[]

alsoDeleteWDestructiveClose QCloseEvent

QApplication::lastWindowClosed()

QApplication::mainWidget()

closeEvent() QCloseEventhide() QApplication::quit() QApplication::setMainWidget
QApplication::lastWindowClosed()

void	QWidget::closeEvent	(QCloseEvent	*	e)	[]

e

e->accept() QCloseEvent

event() hide(),	close()QCloseEvent

action/application.cppapplication/application.cppi18n/mywidget.cpppopup/popup.cpp
qwerty/qwerty.cpp

const	QColorGroup	&	QWidget::colorGroup	()	const

“colorGroup”

void	QWidget::constPolish	()	const	[]

polish()

sizeHint()constPolish() show()

constPolish()

polish()

void	QWidget::contextMenuEvent	(QContextMenuEvent	*	e)	[
]

e

e->accept() QContextMenuEvent

event()QContextMenuEvent

void	QWidget::create	(WId	window	=	0,	bool	initializeWindow	=
TRUE,	bool	destroyOldWindow	=	TRUE)	[]

window window

initializeWindow initializeWindow window

destroyOldWindow destroyOldWindow

QWidget create(0,TRUE,TRUE)

const	QCursor	&	QWidget::cursor	()	const

“cursor”

bool	QWidget::customWhatsThis	()	const	[]

“customWhatsThis”

void	QWidget::destroy	(bool	destroyWindow	=	TRUE,
bool	destroySubWindows	=	TRUE)	[]

destroyWindow

destroy() destroySubWindowsdestroyWindow

QWidget

void	QWidget::dragEnterEvent	(QDragEnterEvent	*)	[]

QTextDragQImageDragQDragEnterEvent

iconview/simple_dd/main.cpp

void	QWidget::dragLeaveEvent	(QDragLeaveEvent	*)	[]

QTextDragQImageDragQDragLeaveEvent

void	QWidget::dragMoveEvent	(QDragMoveEvent	*)	[]

QTextDragQImageDragQDragMoveEvent

void	QWidget::drawText	(int	x,	int	y,	const	QString	&	str)

(x,	y)str

y

painter

fontforegroundColor()QPainter::drawText()

void	QWidget::drawText	(const	QPoint	&	pos,
const	QString	&	str)

posstr

void	QWidget::dropEvent	(QDropEvent	*)	[]

QTextDragQImageDragQDropEvent

iconview/simple_dd/main.cpp

void	QWidget::enabledChange	(bool	oldEnabled)	[]

isEnabled().	setEnabled() oldEnabled isEnabled()

enabledenabledrepaint() update()visibleRect

void	QWidget::enterEvent	(QEvent	*)	[]

leaveEvent() mouseMoveEvent()event()

void	QWidget::erase	(int	x,	int	y,	int	w,	int	h)

(x,	y,	w,	h)

w width()-x h height()-y

repaint()

void	QWidget::erase	()

void	QWidget::erase	(const	QRect	&	r)

r

void	QWidget::erase	(const	QRegion	&	reg)

reg

const	QColor	&	QWidget::eraseColor	()	const

setEraseColor() setErasePixmap()backgroundColor()

const	QPixmap	*	QWidget::erasePixmap	()	const

setErasePixmap()eraseColor()

bool	QWidget::event	(QEvent	*	e)	[]

e

event()TabShift+TabTabShift+Tabevent()

closeEvent() focusInEvent() focusOutEvent() enterEvent() keyPressEvent()
mouseReleaseEvent() moveEvent() paintEvent() resizeEvent() QObject::event
QObject::timerEvent()

QObject

QWidget	*	QWidget::find	(WId	id)	[]

/ id

qwindowdefs.h0

QFocusData	*	QWidget::focusData	()	[]

Tab

focusNextPrevChild()

void	QWidget::focusInEvent	(QFocusEvent	*)	[]

setFocusPolicy()NoFocus setFocus()

focusPolicy() setMicroFocusHint

focusOutEvent(),	focusPolicykeyPressEvent() keyReleaseEvent() event()
QFocusEvent

QtMultiLineEdit

bool	QWidget::focusNextPrevChild	(bool	next)	[]

TabShift+Tab

next“” next“”

“”“”

focusNextPrevChild()

focusData()

void	QWidget::focusOutEvent	(QFocusEvent	*)	[]

setFocusPolicy()NoFocus setFocus()

repaint() colorGroup() setMicroFocusHint()

focusInEvent() focusPolicykeyPressEvent() keyReleaseEvent() event()
QFocusEvent.

qmag/qmag.cpp

FocusPolicy	QWidget::focusPolicy	()	const

“focusPolicy”

QWidget	*	QWidget::focusProxy	()	const

0

setFocusProxy()

QWidget	*	QWidget::focusWidget	()	const

QApplication::focusWidget()

QFont	QWidget::font	()	const

“font”

void	QWidget::fontChange	(const	QFont	&	oldFont)	[]

setFont() oldFont font()

fontfontupdate()updateGeometry()

QFontInfo	QWidget::fontInfo	()	const

QFontInto(widget->font())

fontfontMetrics()font

QFontMetrics	QWidget::fontMetrics	()	const

	 QFontMetrics(widget->font())

fontfontInfo()font

drawdemo/drawdemo.cppqmag/qmag.cpp

const	QColor	&	QWidget::foregroundColor	()	const

paletteForegroundColor()

QRect	QWidget::frameGeometry	()	const

“frameGeometry”

QSize	QWidget::frameSize	()	const

“frameSize”

const	QRect	&	QWidget::geometry	()	const

“geometry”

WFlags	QWidget::getWFlags	()	const	[]

Qt::WidgetFlags

testWFlags(),	setWFlags()clearWFlags()

void	QWidget::grabKeyboard	()

releaseKeyboard()

setFocus()releaseKeyboard()

releaseKeyboard() grabMouse() releaseMouse()focusWidget()

void	QWidget::grabMouse	()

releaseMouse()

bug-nograb

QtQtQt

isVisible() grabMouse

releaseMouse() grabKeyboard() releaseKeyboard() grabKeyboard()
focusWidget()

void	QWidget::grabMouse	(const	QCursor	&	cursor)

cursor releaseMouse()

releaseMouse() grabKeyboard() releaseKeyboard()cursor

bool	QWidget::hasFocus	()	const

“focus”

bool	QWidget::hasMouse	()	const

“underMouse”

bool	QWidget::hasMouseTracking	()	const

“mouseTracking”

int	QWidget::height	()	const

“height”

int	QWidget::heightForWidth	(int	w)	const	[]

w0

QMenuBarQTextEdit

void	QWidget::hide	()	[]

hideEvent

hideEvent() hiddenshow() showMinimized() visibleclose()

mdi/application.cppnetwork/ftpclient/ftpmainwindow.cpppopup/popup.cpp
progress/progress.cppscrollview/scrollview.cppxform/xform.cpp

QMenuBar

void	QWidget::hideEvent	(QHideEvent	*)	[]

event()QHideEvent

QScrollBar

const	QPixmap	*	QWidget::icon	()	const

“icon”

QString	QWidget::iconText	()	const

“iconText”

void	QWidget::iconify	()	[]

void	QWidget::imComposeEvent	(QIMEvent	*	e)	[]

e->ignore() QIMEvent

event()QIMEvent

void	QWidget::imEndEvent	(QIMEvent	*	e)	[]

e->ignore() QIMEvent

event()QIMEvent

void	QWidget::imStartEvent	(QIMEvent	*	e)	[]

e->ignore() QIMEvent

event()QIMEvent

bool	QWidget::isActiveWindow	()	const

“isActiveWindow”

bool	QWidget::isDesktop	()	const

“isDesktop”

bool	QWidget::isDialog	()	const

“isDialog”

bool	QWidget::isEnabled	()	const

“enabled”

bool	QWidget::isEnabledTo	(QWidget	*	ancestor)	const

ancestor

ancestor

isEnabledTo(0)isEnabled()

enabledenabled

bool	QWidget::isEnabledToTLW	()	const

isEnabled()

bool	QWidget::isFocusEnabled	()	const

“focusEnabled”

bool	QWidget::isHidden	()	const

“hidden”

bool	QWidget::isMaximized	()	const

X11Qt

showMaximized()

bool	QWidget::isMinimized	()	const

“minimized”

bool	QWidget::isModal	()	const

“isModal”

bool	QWidget::isPopup	()	const

“isPopup”

bool	QWidget::isTopLevel	()	const

“isTopLevel”

bool	QWidget::isUpdatesEnabled	()	const

“updatesEnabled”

bool	QWidget::isVisible	()	const

“visible”

bool	QWidget::isVisibleTo	(QWidget	*	ancestor)	const

ancestor

ancestor

isVisibleTo(0)isVisible()

show() hide()visible

bool	QWidget::isVisibleToTLW	()	const

isVisible()

void	QWidget::keyPressEvent	(QKeyEvent	*	e)	[]

setFocusPolicy()

ignore()

Esc

keyReleaseEvent() QKeyEvent::ignore() focusPolicy,
focusInEvent() focusOutEvent() event()QKeyEvent

picture/picture.cpp

QLineEditQTextEditQtMultiLineEdit

void	QWidget::keyReleaseEvent	(QKeyEvent	*	e)	[]

setFocusPolicy()

ignore()

keyPressEvent() QKeyEvent::ignore() focusPolicyfocusInEvent() focusOutEvent
QKeyEvent

QWidget	*	QWidget::keyboardGrabber	()	[]

0

grabMouse()mouseGrabber()

QLayout	*	QWidget::layout	()	const

layout()

sizePolicy

chart/optionsform.cppfonts/simple-qfont-demo/viewer.cpp

void	QWidget::leaveEvent	(QEvent	*)	[]

enterEvent() mouseMoveEvent()event()

void	QWidget::lower	()	[]

raise()stackUnder()

bool	QWidget::macEvent	(MSG	*)	[]

Macintosh

QtQtQt

QApplication::macEventFilter()

QPoint	QWidget::mapFrom	(QWidget	*	parent,
const	QPoint	&	pos)	const

parentpos parent0

mapTo() mapFromParent() mapFromGlobal()underMouse

QPoint	QWidget::mapFromGlobal	(const	QPoint	&	pos)	const

pos

mapToGlobal() mapFrom()mapFromParent()

QPoint	QWidget::mapFromParent	(const	QPoint	&	pos)	const

pos

mapFromGlobal()

mapToParent() mapFrom() mapFromGlobal()underMouse

QPoint	QWidget::mapTo	(QWidget	*	parent,	const	QPoint	&	pos
)	const

posparent parent0

mapFrom() mapToParent() mapToGlobal()underMouse

QPoint	QWidget::mapToGlobal	(const	QPoint	&	pos)	const

pos

mapToGlobal(QPoint(0,0))

mapFromGlobal() mapTo()mapToParent()

scribble/scribble.cpp

QPoint	QWidget::mapToParent	(const	QPoint	&	pos)	const

pos

mapToGlobal()

mapFromParent() mapTo() mapToGlobal()underMouse

int	QWidget::maximumHeight	()	const

“maximumHeight”

QSize	QWidget::maximumSize	()	const

“maximumSize”

int	QWidget::maximumWidth	()	const

“maximumWidth”

int	QWidget::metric	(int	m)	const	[]

QPaintDevice::metric()

QPaintDeviceMetrics

m

QRect	QWidget::microFocusHint	()	const

“microFocusHint”

int	QWidget::minimumHeight	()	const

“minimumHeight”

QSize	QWidget::minimumSize	()	const

“minimumSize”

QSize	QWidget::minimumSizeHint	()	const	[]

“minimumSizeHint”

QLineEditQtMultiLineEdit

int	QWidget::minimumWidth	()	const

“minimumWidth”

void	QWidget::mouseDoubleClickEvent	(QMouseEvent	*	e)	[
]

mouseDoubleClickEvent() mousePressEvent()mouseReleaseEvent

mousePressEvent() mouseReleaseEvent()	 mouseMoveEvent() event()
QMouseEvent

QWidget	*	QWidget::mouseGrabber	()	[]

0

grabMouse()keyboardGrabber()

void	QWidget::mouseMoveEvent	(QMouseEvent	*	e)	[]

QMouseEvent::pos()Qt

mouseTrackingmousePressEvent()
mouseReleaseEvent() mouseDoubleClickEvent() event()QMouseEvent

aclock/aclock.cppdrawlines/connect.cppiconview/simple_dd/main.cpplife/life.cpp
scribble/scribble.cpp

QSizeGrip

void	QWidget::mousePressEvent	(QMouseEvent	*	e)	[]

mousePressEvent() mouseReleaseEvent()X11

mouseReleaseEvent() mouseDoubleClickEvent() mouseMoveEvent() event()
QMouseEvent

biff/biff.cppdrawlines/connect.cppiconview/simple_dd/main.cpp,
life/life.cpp,	qmag/qmag.cppscribble/scribble.cpptooltip/tooltip.cpp

QSizeGrip

void	QWidget::mouseReleaseEvent	(QMouseEvent	*	e)	[]

mouseDoubleClickEvent() mouseMoveEvent() event()QMouseEvent

drawlines/connect.cpphello/hello.cpppopup/popup.cppqmag/qmag.cppscribble/scribble.cpp
t14/cannon.cpp

void	QWidget::move	(const	QPoint	&)	[]

“pos”

void	QWidget::move	(int	x,	int	y)	[]

move(QSize(x,	y))

void	QWidget::moveEvent	(QMoveEvent	*)	[]

QMoveEvent::oldPos()

resizeEvent() event() posQMoveEvent

bool	QWidget::ownCursor	()	const

“ownCursor”

bool	QWidget::ownFont	()	const

“ownFont”

bool	QWidget::ownPalette	()	const

“ownPalette”

void	QWidget::paintEvent	(QPaintEvent	*)	[]

repaint()update()

Qtupdate()Qt

setBackgroundMode() setPaletteBackgroundColor()setBackgroundPixmap
setBackgroundMode()

event() repaint() update() QPainterQPixmapQPaintEvent

drawdemo/drawdemo.cppdrawlines/connect.cppqmag/qmag.cppscribble/scribble.cpp
t9/cannon.cpp

QButtonQFrameQGLWidgetQSizeGripQStatusBarQTabBar

const	QPalette	&	QWidget::palette	()	const

“palette”

const	QColor	&	QWidget::paletteBackgroundColor	()	const

“paletteBackgroundColor”

const	QPixmap	*	QWidget::paletteBackgroundPixmap	()	const

“paletteBackgroundPixmap”

void	QWidget::paletteChange	(const	QPalette	&	oldPalette)	[
]

setPalette() oldPalette palette()

palettepalette

const	QColor	&	QWidget::paletteForegroundColor	()	const

“paletteForegroundColor”

QWidget	*	QWidget::parentWidget	(bool	sameWindow	=	FALSE
)	const

sameWindow0

mdi/application.cpp

void	QWidget::polish	()	[]

QApplication::polish()

QWidget

constPolish()QApplication::polish()

menu/menu.cpp

QPoint	QWidget::pos	()	const

“pos”

bool	QWidget::qwsEvent	(QWSEvent	*)	[]

Qt/Embedded

QtQtQt

QApplication::qwsEventFilter()

void	QWidget::raise	()	[]

lower()stackUnder()

showimg/showimg.cpp

void	QWidget::recreate	(QWidget	*	parent,	WFlags	f,
const	QPoint	&	p,	bool	showIt	=	FALSE)

Qt	1.02.0Qt	2.0 reparent()

QRect	QWidget::rect	()	const

“rect”

void	QWidget::releaseKeyboard	()

grabKeyboard() grabMouse()releaseMouse()

void	QWidget::releaseMouse	()

grabMouse() grabKeyboard()releaseKeyboard()

void	QWidget::repaint	(int	x,	int	y,	int	w,	int	h,	bool	erase	=
TRUE)	[]

paintEvent()

eraseQtpaintEvent() (x,y,w,h)

w width()-x h height()-y

repaint() update()Qt

repaint()paintEvent()update()

update() paintEvent() updatesEnablederase()

qwerty/qwerty.cpp

void	QWidget::repaint	()	[]

void	QWidget::repaint	(bool	erase)	[]

void	QWidget::repaint	(const	QRect	&	r,	bool	erase	=	TRUE)
[]

paintEvent()

erase r

void	QWidget::repaint	(const	QRegion	&	reg,	bool	erase	=	TRUE

)	[]

paintEvent()

erase reg

repaint()update()

repaint()paintEvent()update()

update() paintEvent() updatesEnablederase()

void	QWidget::reparent	(QWidget	*	parent,	WFlags	f,
const	QPoint	&	p,	bool	showIt	=	FALSE)	[]

parentf0 p

showIt show()

reparent()tab

QWidgetStackQWizard

getWFlags()

void	QWidget::reparent	(QWidget	*	parent,	const	QPoint	&	p,
bool	showIt	=	FALSE)

reparent(parent,	getWFlags()	&	~WType_Mask,	p,	showIt)

void	QWidget::resetInputContext	()	[]

void	QWidget::resize	(const	QSize	&)	[]

“size”

void	QWidget::resize	(int	w,	int	h)	[]

resize(QSize(w,	h))

void	QWidget::resizeEvent	(QResizeEvent	*)	[]

resizeEvent()

WResizeNoErase

updateMask()

moveEvent() event() sizeQResizeEventpaintEvent()

drawdemo/drawdemo.cppmainlyQt/editor.cppmainlyXt/editor.cpp
menu/menu.cppqmag/qmag.cppscribble/scribble.cpptooltip/tooltip.cpp

QFrameQGLWidget

void	QWidget::scroll	(int	dx,	int	dy)

dxdy dxdy

scroll()1010

QScrollViewerase()bitBlt()

void	QWidget::scroll	(int	dx,	int	dy,	const	QRect	&	r)

r

r

QScrollViewerase()bitBlt()

void	QWidget::setAcceptDrops	(bool	on)	[]

on“acceptDrops”

void	QWidget::setActiveWindow	()	[]

X11

WindowsMicrosoft

isActiveWindowtopLevelWidget()show()

QXtWidget

void	QWidget::setAutoMask	(bool)	[]

“autoMask”

void	QWidget::setBackgroundColor	(const	QColor	&	c)	[]

setPaletteBackgroundColor()setEraseColor()

customlayout/main.cppdesktop/desktop.cpphello/main.cppmovies/main.cpp
splitter/splitter.cpp

void	QWidget::setBackgroundMode	(BackgroundMode)	[]

“backgroundMode”

void	QWidget::setBackgroundMode	(BackgroundMode	m,
BackgroundMode	visual)

mvisualbackgroundColorforegroundColorbackgroundPixmap

PaletteBackground
backgroundColor Qt

void	QWidget::setBackgroundOrigin	(BackgroundOrigin)	[]

“backgroundOrigin”

void	QWidget::setBackgroundPixmap	(const	QPixmap	&	pm)
[]

setPaletteBackgroundPixmap()setErasePixmap()

desktop/desktop.cpp

void	QWidget::setBaseSize	(const	QSize	&)

“baseSize”

void	QWidget::setBaseSize	(int	basew,	int	baseh)

setBaseSize(QSize(basew,	baseh)) basewbaseh

void	QWidget::setCaption	(const	QString	&)	[]

“caption”

void	QWidget::setCursor	(const	QCursor	&)	[]

“cursor”

void	QWidget::setDisabled	(bool	disable)	[]

disable

enabled

isEnabledTo() QKeyEventQMouseEventenabledChange()

void	QWidget::setEnabled	(bool)	[]

“enabled”

void	QWidget::setEraseColor	(const	QColor	&	color)	[]

color

paintEvent() setErasePixmap()

erasePixmap() backgroundColor() backgroundModepalette

void	QWidget::setErasePixmap	(const	QPixmap	&	pixmap)	[]

pixmap

paintEvent()

void	QWidget::setFixedHeight	(int	h)

h

sizeHintminimumSizemaximumSizesetFixedSize()

fonts/simple-qfont-demo/viewer.cpplayout/layout.cppqdir/qdir.cpp
showimg/showimg.cpp

void	QWidget::setFixedSize	(const	QSize	&	s)

s

maximumSizeminimumSize

void	QWidget::setFixedSize	(int	w,	int	h)

wh

void	QWidget::setFixedWidth	(int	w)

h

sizeHintminimumSizemaximumSizesetFixedSize()

network/ftpclient/ftpmainwindow.cppprogressbar/progressbar.cpp
qdir/qdir.cpp

void	QWidget::setFocus	()	[]

setFocus() grabKeyboard()

setFocus() focusOutEvent()focusInEvent()

focusclearFocus() focusInEvent() focusOutEvent() focusPolicyQApplication::focusWidget
grabMouse()

addressbook/centralwidget.cpplineedits/lineedits.cppmdi/application.cpppopup/popup.cpp
wizard/wizard.cpp

void	QWidget::setFocusPolicy	(FocusPolicy)	[]

“focusPolicy”

void	QWidget::setFocusProxy	(QWidget	*	w)	[]

ww0

QComboBox“”QComboBox QLineEdit

“” setFocusProxy()
focusPolicy() setFocusPolicy() setFocus()hasFocus()

focusProxy()

void	QWidget::setFont	(const	QFont	&)	[]

“font”

QComboBoxQLabelQTabDialog

void	QWidget::setFont	(const	QFont	&	f,	bool)

setFont(const	QFont&	font)

void	QWidget::setGeometry	(const	QRect	&)	[]

“geometry”

void	QWidget::setGeometry	(int	x,	int	y,	int	w,	int	h)	[]

setGeometry(QRect(x,	y,	w,	h))

void	QWidget::setIcon	(const	QPixmap	&)	[]

“icon”

void	QWidget::setIconText	(const	QString	&)	[]

“iconText”

void	QWidget::setKeyCompression	(bool	compress)	[]

compress compress

Qt

CPU QKeyEvent::text

unicode

QtEscapeReturnBackspacePrintScreen

QKeyEvent::text().

void	QWidget::setMask	(const	QBitmap	&	bitmap)	[]

bitmap1 rect()

clearMask()

void	QWidget::setMask	(const	QRegion	&	region)	[]

region rect()

clearMask()

void	QWidget::setMaximumHeight	(int	maxh)

maxh“maximumHeight”

void	QWidget::setMaximumSize	(const	QSize	&)

“maximumSize”

void	QWidget::setMaximumSize	(int	maxw,	int	maxh)	[]

setMaximumSize(QSize(maxw,	maxh)) maxwmaxh

void	QWidget::setMaximumWidth	(int	maxw)

maxw“maximumWidth”

void	QWidget::setMicroFocusHint	(int	x,	int	y,	int	width,
int	height,	bool	text	=	TRUE,	QFont	*	f	=	0)	[]

—— xywidthem>heightsetMicroFocusHint

text

WindowsQt text

X11Qt textXIM“spot”

f

microFocusHint

void	QWidget::setMinimumHeight	(int	minh)

minh“minimumHeight”

void	QWidget::setMinimumSize	(const	QSize	&)

“minimumSize”

void	QWidget::setMinimumSize	(int	minw,	int	minh)	[]

setMinimumSize(QSize(minw,	minh)) minwminh

void	QWidget::setMinimumWidth	(int	minw)

minw“minimumWidth”

void	QWidget::setMouseTracking	(bool	enable)	[]

enable“mouseTracking”

void	QWidget::setPalette	(const	QPalette	&)	[]

“palette”

QComboBoxQScrollBarQSlider

void	QWidget::setPalette	(const	QPalette	&	p,	bool)

setPalette(const	QPalette&	p)

void	QWidget::setPaletteBackgroundColor	(const	QColor	&)
[]

“paletteBackgroundColor”

void	QWidget::setPaletteBackgroundPixmap	(const	QPixmap	&
)	[]

“paletteBackgroundPixmap”

void	QWidget::setPaletteForegroundColor	(const	QColor	&)

“paletteForegroundColor”

void	QWidget::setSizeIncrement	(const	QSize	&)

“sizeIncrement”

void	QWidget::setSizeIncrement	(int	w,	int	h)	[]

x wy h

void	QWidget::setSizePolicy	(QSizePolicy)	[]

“sizePolicy”

void	QWidget::setStyle	(QStyle	*	style)

style

QApplication::style()

Qt

style() QStyleQApplication::style()QApplication::setStyle()

grapher/grapher.cppprogressbar/progressbar.cpp

QStyle	*	QWidget::setStyle	(const	QString	&	style)

QStyleFactorystyle

void	QWidget::setTabOrder	(QWidget	*	first,	QWidget	*	second

)	[]

secondTab firstsecond

secondtab

				setTabOrder(a,	b);	//	ab

				setTabOrder(b,	c);	//	abc

				setTabOrder(c,	d);	//	abcd

		

				setTabOrder(c,	d);	//	cd

				setTabOrder(a,	b);	//	abcd

				setTabOrder(b,	c);	//	abccd

		

firstsecond setTabOrder()/

focusPolicysetFocusProxy()

customlayout/main.cpp.

void	QWidget::setUpdatesEnabled	(bool	enable)	[]

enable“updatesEnabled”

void	QWidget::setWFlags	(WFlags	f)	[]

f

Qt::WidgetFlags

testWFlags() getWFlags()clearWFlags()

void	QWidget::show	()	[]

Qt

showEvent

showEvent() hide() showMinimized() showMaximized() showNormal() visible
polish()

canvas/main.cppfonts/simple-qfont-demo/simple-qfont-
demo.cpplife/main.cpppopup/popup.cppt1/main.cppt3/main.cppt4/main.cpp

QDialogQMenuBar

void	QWidget::showEvent	(QShowEvent	*)	[]

event()QShowEvent

qdir/qdir.cpp

void	QWidget::showFullScreen	()	[]

showNormal()

WindowsXX11ICCCMICCCMMOTIF

WX11BypassWM

ICCCMX11

showNormal() showMaximized() show() hide()visible

void	QWidget::showMaximized	()	[]

X11

showNormal() showMinimized() show() hide()visible

canvas/main.cpphelpviewer/main.cppmdi/application.cppqwerty/main.cppqwerty/qwerty.cpp
scribble/main.cpp

void	QWidget::showMinimized	()	[]

showNormal() showMaximized() show() hide(),	visibleminimized

void	QWidget::showNormal	()	[]

showMinimized() showMaximized() show() hide()visible

mdi/application.cpp

QSize	QWidget::size	()	const

“size”

QSize	QWidget::sizeHint	()	const	[]

“sizeHint”

QSizeGrip

QSize	QWidget::sizeIncrement	()	const

“sizeIncrement”

QSizePolicy	QWidget::sizePolicy	()	const	[]

“sizePolicy”

void	QWidget::stackUnder	(QWidget	*	w)	[]

w

w

raise()lower()

QStyle	&	QWidget::style	()	const

QWidget::setStyle() QApplication::setStyle()QApplication::style()

void	QWidget::styleChange	(QStyle	&	oldStyle)	[]

oldStyle style()

QApplication::setStyle() style() update()updateGeometry()

void	QWidget::tabletEvent	(QTabletEvent	*	e)	[]

ignore()

QTabletEvent::ignore() QTabletEvent::accept() event()QTabletEvent

WFlags	QWidget::testWFlags	(WFlags	f)	const

fAND

Qt::WidgetFlags

getWFlags() setWFlags()clearWFlags()

QWidget	*	QWidget::topLevelWidget	()	const

								aWidget->topLevelWidget()->setCaption("New	Caption");

				

isTopLevel

void	QWidget::unsetCursor	()	[]

“cursor”

void	QWidget::unsetFont	()

“font”

void	QWidget::unsetPalette	()

“palette”

void	QWidget::update	()	[]

——QtQt

update()paintEvent()

QtpaintEvent()WRepaintNoErase

repaint() paintEvent() updatesEnablederase()setWFlags()

desktop/desktop.cppscrollview/scrollview.cpp

void	QWidget::update	(int	x,	int	y,	int	w,	int	h)	[]

(x,	y,	w,	h)

——QtQt

update()paintEvent()

w width()-x h height()-y

QtpaintEvent()WRepaintNoErase

repaint(),	paintEvent(),	updatesEnabled	and	erase().

void	QWidget::update	(const	QRect	&	r)	[]

r

——QtQt

update()paintEvent()

void	QWidget::updateGeometry	()

sizeHint()sizePolicy()

updateGeometry()

void	QWidget::updateMask	()	[]

autoMasksetMask()clearMask()

QRect	QWidget::visibleRect	()	const

“visibleRect”

void	QWidget::wheelEvent	(QWheelEvent	*	e)	[]

ignore()

QWheelEvent::ignore() QWheelEvent::accept() event()QWheelEvent

int	QWidget::width	()	const

“width”

bool	QWidget::winEvent	(MSG	*)	[]

Windows

QtQtQt

QApplication::winEventFilter()

WId	QWidget::winId	()	const

find()

mainlyXt/editor.cpp.

void	QWidget::windowActivationChange	(bool	oldActive)	[
]

oldActive isActiveWindow

setActiveWindow() isActiveWindowupdate()palette

int	QWidget::x	()	const

x “x”

bool	QWidget::x11Event	(XEvent	*)	[]

X11

QtQtQt

QApplication::x11EventFilter()

QXtWidget

int	QWidget::y	()	const

y “y”

bool	acceptDrops

QWidget::isDesktop() acceptDrops()

setAcceptDrops()acceptDrops()

bool	autoMask

QWidget updateMask()updateMask() setMask()

resizeEvent() focusInEvent()focusOutEvent

				if	(autoMask())

								updateMask();

		

updateMask() setMask() clearMask()backgroundOrigin

setAutoMask()autoMask()

QBrush	backgroundBrush

backgroundColor() backgroundPixmap() eraseColor() palette

QApplication::setPalette()

backgroundBrush()

BackgroundMode	backgroundMode

setPaletteBackgroundColor()palette

PaletteBackground PaletteBase

QListBox

				setBackgroundMode(PaletteBase);

				

Qt

setBackgroundMode() FixedPixmapFixedColor setBackgroundPixmap
setPaletteBackgroundColor()

setBackgroundMode()backgroundMode()

BackgroundOrigin	backgroundOrigin

WidgetOriginParentOriginWindowOrigin

WindowOrigin

backgroundPixmap()backgroundMode

setBackgroundOrigin()backgroundOrigin()

QSize	baseSize

sizeIncrement()

sizeIncrement

setBaseSize()baseSize()

QString	caption

This	property	holds	the	window	caption	(title).	

QString::null

icon	and	iconText

setCaption()caption()

QRect	childrenRect

childrenRegiongeometry

childrenRect()

QRegion	childrenRegion

childrenRectgeometry

childrenRegion()

QColorGroup	colorGroup

This	property	holds	the	current	color	group	of	the	widget	palette.	

QPalette::disabled() QPalette::active() QPalette::inactive()

palette

colorGroup()

QCursor	cursor

I

								setCursor(IbeamCursor);

				

unsetCursor()unsetCursor()

QApplication::setOverrideCursor()

setCursor() cursor()unsetCursor()

bool	customWhatsThis

“”

customWhatsThis()“”

QWhatsThis::leaveWhatsThisMode()“”

“”customWhatsThis()

QWhatsThis::inWhatsThisMode()QWhatsThis::leaveWhatsThisMode()

customWhatsThis()

bool	enabled

enabledisEnabledTo() QKeyEventQMouseEventenabledChange()

setEnabled()isEnabled()

bool	focus

qApp->focusWidget()	==	this

setFocus()a	href="#clearFocus">clearFocus() focusPolicy
QApplication::focusWidget()

hasFocus()

bool	focusEnabled

focusPolicy()	==	QWidget::NoFocus

focusPolicyfocusInEvent() focusOutEvent() keyPressEvent() keyReleaseEvent
enabled

isFocusEnabled()

FocusPolicy	focusPolicy

tabQWidget::TabFocusQWidget::ClickFocus

QWidget::StrongFocusQWidgetQWidget::NoFocus

focusEnabledfocusInEvent() focusOutEvent() keyPressEvent() keyReleaseEvent
enabled

setFocusPolicy()focusPolicy()

QFont	font

fontInfo()

unsetFont()

12helvetica

				QFont	f("Helvetica",	12,	QFont::Bold);

				setFont(f);

				

setFont()

fontChange() fontInfo() fontMetrics()ownFont

setFont() font()unsetFont()

QRect	frameGeometry

geometryxa	href="#y-prop">ypos

frameGeometry()

QSize	frameSize

frameSize()

QRect	geometry

moveEvent()/ resizeEvent()

minimumSize()maximumSize()

setGeometry()QtsetGeometry()

resizeEvent()moveEvent()setGeometry()

frameGeometryrectpossizemoveEvent() resizeEvent() minimumSize
maximumSize

setGeometry()geometry()

int	height

geometrywidthsize

height()

bool	hidden

hide() show() visibleisVisibleTo()

isHidden()

QPixmap	icon

icon()0

iconTextcaption

setIcon()icon()

QString	iconText

QString::null

iconcaption

setIconText()iconText()

bool	isActiveWindow

setActiveWindow()QApplication::activeWindow()

isActiveWindow()

bool	isDesktop

isTopLevelQApplication::desktop()

isDesktop()

bool	isDialog

isTopLevelQDialog

isDialog()

bool	isModal

isTopLevelisDialogQDialog

isModal()

bool	isPopup

WType_Popup

isTopLevel

isPopup()

bool	isTopLevel

This	property	holds	whether	the	widget	is	a	top-level	widget.	

QDialogQMainWindow WType_TopLevel

topLevelWidget() isDialogisModalisPopupisDesktopparentWidget()

isTopLevel()

int	maximumHeight

maximumSize().height()

maximumSizemaximumWidth

setMaximumHeight()maximumHeight().

QSize	maximumSize

maximumWidthmaximumHeightmaximumSizeminimumSizesizeIncrement

setMaximumSize()maximumSize()

int	maximumWidth

maximumSize().width()

maximumSizemaximumHeight

setMaximumWidth()maximumWidth()

QRect	microFocusHint

setMicroFocusHint()

microFocusHint()

bool	minimized

showMinimized() visibleshow() hide()showNormal()

isMinimized()

int	minimumHeight

minimumSize().height()

minimumSizeminimumWidth

setMinimumHeight()minimumHeight()

QSize	minimumSize

setMinimumSize

minimumWidthminimumHeightmaximumSizesizeIncrement
QLayout::resizeMode

setMinimumSize()minimumSize()

QSize	minimumSizeHint

minimumSizeHint()minimumSizeHint()

QLayoutminimumSizeHint

QSize::isValid() sizeminimumSizesizePolicy

minimumSizeHint()

int	minimumWidth

minimumSize().width()

minimumSizeminimumHeight

setMinimumWidth()minimumWidth()

bool	mouseTracking

mouseMoveEvent()QApplication::setGlobalMouseTracking()

setMouseTracking()hasMouseTracking()

bool	ownCursor

cursor

ownCursor()

bool	ownFont

font

ownFont()

bool	ownPalette

palette

ownPalette()

QPalette	palette

unsetPalette()

paletteBackgroundColorpaletteBackgroundPixmap

ownPalettecolorGroupQApplication::palette()

setPalette() palette()unsetPalette()

QColor	paletteBackgroundColor

setBackgroundMode() setPaletteBackgroundColor()
setPaletteBackgroundColor() setPalette()QPalette PaletteButton
QColorGroup::Button

setPaletteBackgroundPixmap()

paletteBackgroundPixmappaletteForegroundColorpalettecolorGroup

setPaletteBackgroundColor() paletteBackgroundColor()unsetPalette()

QPixmap	paletteBackgroundPixmap

setBackgroundMode() setPaletteBackgroundPixmap()
setPaletteBackgroundPixmap() setPalette()QPalette
QColorGroup::Button

setPaletteBackgroundColor()0

paletteBackgroundColorpaletteForegroundColorpalettecolorGroup

setPaletteBackgroundPixmap() paletteBackgroundPixmap()unsetPalette()

QColor	paletteForegroundColor

setPaletteForegroundColor()setPalette()QPalette PaletteButton
QColorGroup::ButtonText

paletteQApplication::setPalette() backgroundModeforegroundColor() backgroundMode
setEraseColor()

setPaletteForegroundColor() paletteForegroundColor()unsetPalette().

QPoint	pos

moveEvent()

move()Qtmove()

moveEvent()move()setGeometry()

frameGeometrysizexy

move()pos()

QRect	rect

QRect(0,	0,	width(),	height())

size

rect()

QSize	size

resizeEvent()

minimumSize()a	href="#maximumSize">maximumSize()
1)

resize()Qtresize()

resizeEvent()resize()setGeometry()

posgeometryminimumSizemaximumSizeresizeEvent()

resize()size()

QSize	sizeHint

sizeHint()

QSize::isValid() minimumSizeHintsizePolicyminimumSizeupdateGeometry()

sizeHint()

QSize	sizeIncrement

sizeIncrement().width()sizeIncrement.height() baseSize()	ij

								width	=	baseSize().width()	+	i	*	sizeIncrement().width();

								height	=	baseSize().height()	+	j	*	sizeIncrement().height();

				

WindowsX

sizeminimumSizemaximumSize

setSizeIncrement()sizeIncrement()

QSizePolicy	sizePolicy

QLayoutQLayout

/ sizeHint()
QProgressBar QToolButton QSliderQScrollBarQHeader

QScrollViewsizeHint()

sizeHintQLayoutQSizePolicyupdateGeometry()

setSizePolicy()sizePolicy()

bool	underMouse

QEvent::EnterQEvent::Leave

hasMouse()

bool	updatesEnabled

update()repaint()

setUpdatesEnabled()

				setUpdatesEnabled(FALSE);

				bigVisualChanges();

				setUpdatesEnabled(TRUE);

				repaint();

		

update() repaint()paintEvent()

setUpdatesEnabled()isUpdatesEnabled()

bool	visible

show()

hide()

isMinimized()

CPU

show(),	hide() hiddenisVisibleTo() minimizedshowEvent()hideEvent()

isVisible()

QRect	visibleRect

				repaint(w->visibleRect());

		

				repaint(w->visibleRect(),	FALSE);

		

visibleRect()

int	width

geometryheightsize

width()

int	x

x

frameGeometryypos

x()

int	y

y

frameGeometryxpos

y()

Qt		©	1995-2002	 Trolltech

Copyright	©	2002

http://www.trolltech.com/

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QPixmap	Class	Reference
The	QPixmap	class	is	an	off-screen,	pixel-based	paint	device.	More...

#include	<qpixmap.h>

Inherits	QPaintDevice	and	Qt.

Inherited	by	QBitmap	and	QCanvasPixmap.

List	of	all	member	functions.

Public	Members

enum	ColorMode	{	Auto,	Color,	Mono	}
enum	Optimization	{	DefaultOptim,	NoOptim,	MemoryOptim	=
NoOptim,	NormalOptim,	BestOptim	}
QPixmap	()
QPixmap	(const	QImage	&	image)
QPixmap	(int	w,	int	h,	int	depth	=	-1,	Optimization	optimization	=
DefaultOptim)
QPixmap	(const	QSize	&	size,	int	depth	=	-1,	Optimization	optimization	=
DefaultOptim)
QPixmap	(const	QString	&	fileName,	const	char	*	format	=	0,
ColorMode	mode	=	Auto)
QPixmap	(const	QString	&	fileName,	const	char	*	format,
int	conversion_flags)
QPixmap	(const	char	*	xpm[])
QPixmap	(const	QByteArray	&	img_data)
QPixmap	(const	QPixmap	&	pixmap)
~QPixmap	()
QPixmap	&	operator=	(const	QPixmap	&	pixmap)
QPixmap	&	operator=	(const	QImage	&	image)
bool	isNull	()	const
int	width	()	const
int	height	()	const
QSize	size	()	const
QRect	rect	()	const
int	depth	()	const
void	fill	(const	QColor	&	fillColor	=	Qt::white)
void	fill	(const	QWidget	*	widget,	int	xofs,	int	yofs)
void	fill	(const	QWidget	*	widget,	const	QPoint	&	ofs)
void	resize	(int	w,	int	h)
void	resize	(const	QSize	&	size)
const	QBitmap	*	mask	()	const
void	setMask	(const	QBitmap	&	newmask)
bool	selfMask	()	const
QBitmap	createHeuristicMask	(bool	clipTight	=	TRUE)	const
QPixmap	xForm	(const	QWMatrix	&	matrix)	const

QImage	convertToImage	()	const
bool	convertFromImage	(const	QImage	&	image,	ColorMode	mode	=
Auto)
bool	convertFromImage	(const	QImage	&	img,	int	conversion_flags)
bool	load	(const	QString	&	fileName,	const	char	*	format	=	0,
ColorMode	mode	=	Auto)
bool	load	(const	QString	&	fileName,	const	char	*	format,
int	conversion_flags)
bool	loadFromData	(const	uchar	*	buf,	uint	len,	const	char	*	format	=	0,
ColorMode	mode	=	Auto)
bool	loadFromData	(const	uchar	*	buf,	uint	len,	const	char	*	format,
int	conversion_flags)
bool	loadFromData	(const	QByteArray	&	buf,	const	char	*	format	=	0,
int	conversion_flags	=	0)
bool	save	(const	QString	&	fileName,	const	char	*	format,	int	quality	=	-1
)	const
int	serialNumber	()	const
Optimization	optimization	()	const
void	setOptimization	(Optimization	optimization)
virtual	void	detach	()
bool	isQBitmap	()	const

Static	Public	Members

int	defaultDepth	()
QPixmap	grabWindow	(WId	window,	int	x	=	0,	int	y	=	0,	int	w	=	-1,	int	h
=	-1)
QPixmap	grabWidget	(QWidget	*	widget,	int	x	=	0,	int	y	=	0,	int	w	=	-1,
int	h	=	-1)
QWMatrix	trueMatrix	(const	QWMatrix	&	matrix,	int	w,	int	h)
const	char	*	imageFormat	(const	QString	&	fileName)
Optimization	defaultOptimization	()
void	setDefaultOptimization	(Optimization	optimization)

Protected	Members

QPixmap	(int	w,	int	h,	const	uchar	*	bits,	bool	isXbitmap)
virtual	int	metric	(int	m)	const

Related	Functions

QDataStream	&	operator<<	(QDataStream	&	s,	const	QPixmap	&	pixmap
)
QDataStream	&	operator>>	(QDataStream	&	s,	QPixmap	&	pixmap)

Detailed	Description

The	QPixmap	class	is	an	off-screen,	pixel-based	paint	device.

QPixmap	is	one	of	the	two	classes	Qt	provides	for	dealing	with	images;	the	other
is	QImage.	QPixmap	is	designed	and	optimized	for	drawing;	QImage	is	designed
and	optimized	for	I/O	and	for	direct	pixel	access/manipulation.	There	are	(slow)
functions	to	convert	between	QImage	and	QPixmap:	convertToImage()	and
convertFromImage().

One	common	use	of	the	QPixmap	class	is	to	enable	smooth	updating	of	widgets.
Whenever	something	complex	needs	to	be	drawn,	you	can	use	a	pixmap	to
obtain	flicker-free	drawing,	like	this:

1.	 Create	a	pixmap	with	the	same	size	as	the	widget.
2.	 Fill	the	pixmap	with	the	widget	background	color.
3.	 Paint	the	pixmap.
4.	 bitBlt()	the	pixmap	contents	onto	the	widget.

Pixel	data	in	a	pixmap	is	internal	and	is	managed	by	the	underlying	window
system.	Pixels	can	be	accessed	only	through	QPainter	functions,	through
bitBlt(),	and	by	converting	the	QPixmap	to	a	QImage.

You	can	easily	display	a	QPixmap	on	the	screen	using	QLabel::setPixmap().	For
example,	all	the	QButton	subclasses	support	pixmap	use.

The	QPixmap	class	uses	copy-on-write,	so	it	is	practical	to	pass	QPixmap
objects	by	value.

You	can	retrieve	the	width(),	height(),	depth()	and	size()	of	a	pixmap.	The
enclosing	rectangle	is	given	by	rect().	Pixmaps	can	be	filled	with	fill()	and
resized	with	resize().	You	can	create	and	set	a	mask	with	createHeuristicMask()
and	setMask().	Use	selfMask()	to	see	if	the	pixmap	is	identical	to	its	mask.

In	addition	to	loading	a	pixmap	from	file	using	load()	you	can	also
loadFromData().	You	can	control	optimization	with	setOptimization()	and	obtain
a	transformed	version	of	the	pixmap	using	xForm()

Note	regarding	Windows	95	and	98:	on	Windows	9x	the	system	crashes	if	you
create	more	than	about	1000	pixmaps,	independent	of	the	size	of	the	pixmaps	or
installed	RAM.	Windows	NT	and	2000	do	not	have	this	limitation.

Qt	tries	to	work	around	the	resource	limitation.	If	you	set	the	pixmap
optimization	to	QPixmap::MemoryOptim	and	the	width	of	your	pixmap	is	less
than	or	equal	to	128	pixels,	Qt	stores	the	pixmap	in	a	way	that	is	very	memory-
efficient	when	there	are	many	pixmaps.

If	your	application	uses	dozens	or	hundreds	of	pixmaps	(for	example	on	tool	bar
buttons	and	in	popup	menus),	and	you	plan	to	run	it	on	Windows	95	or	Windows
98,	we	recommend	using	code	like	this:

								QPixmap::setDefaultOptimization(QPixmap::MemoryOptim);

								while	(...)	{

												//	load	tool	bar	pixmaps	etc.

												QPixmap	*pixmap	=	new	QPixmap(fileName);

								}

								QPixmap::setDefaultOptimization(QPixmap::NormalOptim);

				

See	also	QBitmap,	QImage,	QImageIO,	Shared	Classes,	Graphics	Classes,
Image	Processing	Classes	and	Implicitly	and	Explicitly	Shared	Classes.

Member	Type	Documentation

QPixmap::ColorMode

This	enum	type	defines	the	color	modes	that	exist	for	converting	QImage	objects
to	QPixmap.

QPixmap::Auto	-	Select	Color	or	Mono	on	a	case-by-case	basis.
QPixmap::Color	-	Always	create	colored	pixmaps.
QPixmap::Mono	-	Always	create	bitmaps.

QPixmap::Optimization

QPixmap	has	the	choice	of	optimizing	for	speed	or	memory	in	a	few	places;	the
best	choice	varies	from	pixmap	to	pixmap	but	can	generally	be	derived
heuristically.	This	enum	type	defines	a	number	of	optimization	modes	that	you
can	set	for	any	pixmap	to	tweak	the	speed/memory	tradeoffs:

QPixmap::DefaultOptim	-	Whatever	QPixmap::defaultOptimization()
returns.	A	pixmap	with	this	optimization	will	have	whatever	the	current
default	optimization	is.	If	the	default	optimization	is	changed	using
setDefaultOptimization(),	then	this	will	not	effect	any	pixmaps	that	have
already	been	created.
QPixmap::NoOptim	-	No	optimization	(currently	the	same	as
MemoryOptim).
QPixmap::MemoryOptim	-	Optimize	for	minimal	memory	use.
QPixmap::NormalOptim	-	Optimize	for	typical	usage.	Often	uses	more
memory	than	MemoryOptim,	and	is	often	faster.
QPixmap::BestOptim	-	Optimize	for	pixmaps	that	are	drawn	very	often	and
where	performance	is	critical.	Generally	uses	more	memory	than
NormalOptim	and	may	provide	a	little	more	speed.

We	recommend	using	DefaultOptim.

Member	Function	Documentation

QPixmap::QPixmap	()

Constructs	a	null	pixmap.

See	also	isNull().

QPixmap::QPixmap	(const	QImage	&	image)

Constructs	a	pixmap	from	the	QImage	image.

See	also	convertFromImage().

QPixmap::QPixmap	(int	w,	int	h,	int	depth	=	-1,
Optimization	optimization	=	DefaultOptim)

Constructs	a	pixmap	with	w	width,	h	height	and	depth	bits	per	pixel.	The	pixmap
is	optimized	in	accordance	with	the	optimization	value.

The	contents	of	the	pixmap	is	uninitialized.

The	depth	can	be	either	1	(monochrome)	or	the	depth	of	the	current	video	mode.
If	depth	is	negative,	then	the	hardware	depth	of	the	current	video	mode	will	be
used.

If	either	w	or	h	is	zero,	a	null	pixmap	is	constructed.

See	also	isNull()	and	QPixmap::Optimization.

QPixmap::QPixmap	(const	QSize	&	size,	int	depth	=	-1,
Optimization	optimization	=	DefaultOptim)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Constructs	a	pixmap	of	size	size,	depth	bits	per	pixel,	optimized	in	accordance

with	the	optimization	value.

QPixmap::QPixmap	(const	QString	&	fileName,
const	char	*	format	=	0,	ColorMode	mode	=	Auto)

Constructs	a	pixmap	from	the	file	fileName.	If	the	file	does	not	exist	or	is	of	an
unknown	format,	the	pixmap	becomes	a	null	pixmap.

The	fileName,	format	and	mode	parameters	are	passed	on	to	load().	This	means
that	the	data	in	fileName	is	not	compiled	into	the	binary.	If	fileName	contains	a
relative	path	(e.g.	the	filename	only)	the	relevant	file	must	be	found	relative	to
the	runtime	working	directory.

See	also	QPixmap::ColorMode,	isNull(),	load(),	loadFromData(),	save()	and
imageFormat().

QPixmap::QPixmap	(const	QString	&	fileName,
const	char	*	format,	int	conversion_flags)

Constructs	a	pixmap	from	the	file	fileName.	If	the	file	does	not	exist	or	is	of	an
unknown	format,	the	pixmap	becomes	a	null	pixmap.

The	fileName,	format	and	conversion_flags	parameters	are	passed	on	to	load().
This	means	that	the	data	in	fileName	is	not	compiled	into	the	binary.	If	fileName
contains	a	relative	path	(e.g.	the	filename	only)	the	relevant	file	must	be	found
relative	to	the	runtime	working	directory.

If	the	image	needs	to	be	modified	to	fit	in	a	lower-resolution	result	(e.g.
converting	from	32-bit	to	8-bit),	use	the	conversion_flags	to	specify	how	you'd
prefer	this	to	happen.

See	also	Qt::ImageConversionFlags,	isNull(),	load(),	loadFromData(),	save()	and
imageFormat().

QPixmap::QPixmap	(const	char	*	xpm[])

Constructs	a	pixmap	from	xpm,	which	must	be	a	valid	XPM	image.

Errors	are	silently	ignored.

Note	that	it's	possible	to	squeeze	the	XPM	variable	a	little	bit	by	using	an
unusual	declaration:

								static	const	char	*	const	start_xpm[]={

												"16	15	8	1",

												"a	c	#cec6bd",

							

				

The	extra	const	makes	the	entire	definition	read-only,	which	is	slightly	more
efficient	(for	example,	when	the	code	is	in	a	shared	library)	and	ROMable	when
the	application	is	to	be	stored	in	ROM.

In	order	to	use	that	sort	of	declaration	you	must	cast	the	variable	back	to	const
char	**	when	you	create	the	QPixmap.

QPixmap::QPixmap	(const	QByteArray	&	img_data)

Constructs	a	pixmaps	by	loading	from	img_data.	The	data	can	be	in	any	image
format	supported	by	Qt.

See	also	loadFromData().

QPixmap::QPixmap	(const	QPixmap	&	pixmap)

Constructs	a	pixmap	that	is	a	copy	of	pixmap.

QPixmap::QPixmap	(int	w,	int	h,	const	uchar	*	bits,
bool	isXbitmap)	[protected]

Constructs	a	monochrome	pixmap,	with	width	w	and	height	h,	that	is	initialized
with	the	data	in	bits.	The	isXbitmap	indicates	whether	the	data	is	an	X	bitmap
and	defaults	to	FALSE.	This	constructor	is	protected	and	used	by	the	QBitmap
class.

QPixmap::~QPixmap	()

Destroys	the	pixmap.

bool	QPixmap::convertFromImage	(const	QImage	&	img,
int	conversion_flags)

Converts	image	img	and	sets	this	pixmap.	Returns	TRUE	if	successful;
otherwise	returns	FALSE.

The	conversion_flags	argument	is	a	bitwise-OR	of	the
Qt::ImageConversionFlags.	Passing	0	for	conversion_flags	sets	all	the	default
options.

Note	that	even	though	a	QPixmap	with	depth	1	behaves	much	like	a	QBitmap,
isQBitmap()	returns	FALSE.

If	a	pixmap	with	depth	1	is	painted	with	color0	and	color1	and	converted	to	an
image,	the	pixels	painted	with	color0	will	produce	pixel	index	0	in	the	image	and
those	painted	with	color1	will	produce	pixel	index	1.

See	also	convertToImage(),	isQBitmap(),	QImage::convertDepth(),
defaultDepth()	and	QImage::hasAlphaBuffer().

Examples:	canvas/canvas.cpp,	qtimage/qtimage.cpp	and	themes/wood.cpp.

bool	QPixmap::convertFromImage	(const	QImage	&	image,
ColorMode	mode	=	Auto)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Converts	image	and	sets	this	pixmap	using	color	mode	mode.	Returns	TRUE	if
successful;	otherwise	returns	FALSE.

See	also	QPixmap::ColorMode.

QImage	QPixmap::convertToImage	()	const

Converts	the	pixmap	to	a	QImage.	Returns	a	null	image	if	it	fails.

If	the	pixmap	has	1-bit	depth,	the	returned	image	will	also	be	1	bit	deep.	If	the
pixmap	has	2-	to	8-bit	depth,	the	returned	image	has	8-bit	depth.	If	the	pixmap

has	greater	than	8-bit	depth,	the	returned	image	has	32-bit	depth.

Note	that	for	the	moment,	alpha	masks	on	monochrome	images	are	ignored.

See	also	convertFromImage().

Example:	qmag/qmag.cpp.

QBitmap	QPixmap::createHeuristicMask	(bool	clipTight	=
TRUE)	const

Creates	and	returns	a	heuristic	mask	for	this	pixmap.	It	works	by	selecting	a
color	from	one	of	the	corners	and	then	chipping	away	pixels	of	that	color,
starting	at	all	the	edges.

The	mask	may	not	be	perfect	but	it	should	be	reasonable,	so	you	can	do	things
such	as	the	following:

				pm->setMask(pm->createHeuristicMask());

				

This	function	is	slow	because	it	involves	transformation	to	a	QImage,	non-trivial
computations	and	a	transformation	back	to	a	QBitmap.

If	clipTight	is	TRUE	the	mask	is	just	large	enough	to	cover	the	pixels;	otherwise,
the	mask	is	larger	than	the	data	pixels.

See	also	QImage::createHeuristicMask().

int	QPixmap::defaultDepth	()	[static]

Returns	the	default	pixmap	depth,	i.e.	the	depth	a	pixmap	gets	if	-1	is	specified.

See	also	depth().

Optimization	QPixmap::defaultOptimization	()	[static]

Returns	the	default	pixmap	optimization	setting.

See	also	setDefaultOptimization(),	setOptimization()	and	optimization().

int	QPixmap::depth	()	const

Returns	the	depth	of	the	pixmap.

The	pixmap	depth	is	also	called	bits	per	pixel	(bpp)	or	bit	planes	of	a	pixmap.	A
null	pixmap	has	depth	0.

See	also	defaultDepth(),	isNull()	and	QImage::convertDepth().

void	QPixmap::detach	()	[virtual]

This	is	a	special-purpose	function	that	detaches	the	pixmap	from	shared	pixmap
data.

A	pixmap	is	automatically	detached	by	Qt	whenever	its	contents	is	about	to
change.	This	is	done	in	all	QPixmap	member	functions	that	modify	the	pixmap
(fill(),	resize(),	convertFromImage(),	load(),	etc.),	in	bitBlt()	for	the	destination
pixmap	and	in	QPainter::begin()	on	a	pixmap.

It	is	possible	to	modify	a	pixmap	without	letting	Qt	know.	You	can	first	obtain
the	system-dependent	handle()	and	then	call	system-specific	functions	(for
instance,	BitBlt	under	Windows)	that	modify	the	pixmap	contents.	In	such	cases,
you	can	call	detach()	to	cut	the	pixmap	loose	from	other	pixmaps	that	share	data
with	this	one.

detach()	returns	immediately	if	there	is	just	a	single	reference	or	if	the	pixmap
has	not	been	initialized	yet.

void	QPixmap::fill	(const	QColor	&	fillColor	=	Qt::white)

Fills	the	pixmap	with	the	color	fillColor.

Examples:	chart/setdataform.cpp,	desktop/desktop.cpp,	grapher/grapher.cpp,
hello/hello.cpp,	t10/cannon.cpp,	themes/metal.cpp	and	xform/xform.cpp.

void	QPixmap::fill	(const	QWidget	*	widget,	int	xofs,	int	yofs)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Fills	the	pixmap	with	the	widget's	background	color	or	pixmap.	If	the
background	is	empty,	nothing	is	done.	xofs,	yofs	is	an	offset	in	the	widget.

void	QPixmap::fill	(const	QWidget	*	widget,	const	QPoint	&	ofs)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Fills	the	pixmap	with	the	widget's	background	color	or	pixmap.	If	the
background	is	empty,	nothing	is	done.

The	ofs	point	is	an	offset	in	the	widget.

The	point	ofs	is	a	point	in	the	widget's	coordinate	system.	The	pixmap's	top-left
pixel	will	be	mapped	to	the	point	ofs	in	the	widget.	This	is	significant	if	the
widget	has	a	background	pixmap;	otherwise	the	pixmap	will	simply	be	filled
with	the	background	color	of	the	widget.

Example:

				void	CuteWidget::paintEvent(QPaintEvent	*e)

				{

								QRect	ur	=	e->rect();												//	rectangle	to	update

								QPixmap	pix(ur.size());								//	Pixmap	for	double-buffering

								pix.fill(this,	ur.topLeft());		//	fill	with	widget	background

								QPainter	p(&pix);

								p.translate(-ur.x(),	-ur.y());	//	use	widget	coordinate	system

																																									//	when	drawing	on	pixmap

								//				...	draw	on	pixmap	...

								p.end();

								bitBlt(this,	ur.topLeft(),	&pix);

				}

				

QPixmap	QPixmap::grabWidget	(QWidget	*	widget,	int	x	=	0,
int	y	=	0,	int	w	=	-1,	int	h	=	-1)	[static]

Creates	a	pixmap	and	paints	widget	in	it.

If	the	widget	has	any	children,	then	they	are	also	painted	in	the	appropriate
positions.

If	you	specify	x,	y,	w	or	h,	only	the	rectangle	you	specify	is	painted.	The	defaults
are	0,	0	(top-left	corner)	and	-1,-1	(which	means	the	entire	widget).

(If	w	is	negative,	the	function	copies	everything	to	the	right	border	of	the
window.	If	h	is	negative,	the	function	copies	everything	to	the	bottom	of	the
window.)

If	widget	is	0,	or	if	the	rectangle	defined	by	x,	y,	the	modified	w	and	the	modified
h	does	not	overlap	the	widget->rect(),	this	function	will	return	a	null	QPixmap.

This	function	actually	asks	widget	to	paint	itself	(and	its	children	to	paint
themselves).	QPixmap::grabWindow()	grabs	pixels	off	the	screen,	which	is	a	bit
faster	and	picks	up	exactly	what's	on-screen.	This	function	works	by	calling
paintEvent()	with	painter	redirection	turned	on.	If	there	are	overlaying	windows,
grabWindow()	will	see	them,	but	not	this	function.

If	there	is	overlap,	it	returns	a	pixmap	of	the	size	you	want,	containing	a
rendering	of	widget.	If	the	rectangle	you	ask	for	is	a	superset	of	widget,	the	areas
outside	widget	are	covered	with	the	widget's	background.

See	also	grabWindow(),	QPainter::redirect()	and	QWidget::paintEvent().

QPixmap	QPixmap::grabWindow	(WId	window,	int	x	=	0,	int	y	=
0,	int	w	=	-1,	int	h	=	-1)	[static]

Grabs	the	contents	of	the	window	window	and	makes	a	pixmap	out	of	it.	Returns
the	pixmap.

The	arguments	(x,	y)	specify	the	offset	in	the	window,	whereas	(w,	h)	specify	the
width	and	height	of	the	area	to	be	copied.

If	w	is	negative,	the	function	copies	everything	to	the	right	border	of	the	window.
If	h	is	negative,	the	function	copies	everything	to	the	bottom	of	the	window.

Note	that	grabWindows()	grabs	pixels	from	the	screen,	not	from	the	window.	If
there	is	another	window	partially	or	entirely	over	the	one	you	grab,	you	get
pixels	from	the	overlying	window,	too.

Note	also	that	the	mouse	cursor	is	generally	not	grabbed.

The	reason	we	use	a	window	identifier	and	not	a	QWidget	is	to	enable	grabbing
of	windows	that	are	not	part	of	the	application,	window	system	frames,	and	so
on.

Warning:	Grabbing	an	area	outside	the	screen	is	not	safe	in	general.	This
depends	on	the	underlying	window	system.

See	also	grabWidget().

Example:	qmag/qmag.cpp.

int	QPixmap::height	()	const

Returns	the	height	of	the	pixmap.

See	also	width(),	size()	and	rect().

Examples:	desktop/desktop.cpp,	movies/main.cpp,	qtimage/qtimage.cpp,
scribble/scribble.cpp,	scrollview/scrollview.cpp,	t10/cannon.cpp	and
xform/xform.cpp.

const	char	*	QPixmap::imageFormat	(const	QString	&	fileName
)	[static]

Returns	a	string	that	specifies	the	image	format	of	the	file	fileName,	or	0	if	the
file	cannot	be	read	or	if	the	format	cannot	be	recognized.

The	QImageIO	documentation	lists	the	supported	image	formats.

See	also	load()	and	save().

bool	QPixmap::isNull	()	const

Returns	TRUE	if	this	is	a	null	pixmap;	otherwise	returns	FALSE.

A	null	pixmap	has	zero	width,	zero	height	and	no	contents.	You	cannot	draw	in	a

null	pixmap	or	bitBlt()	anything	to	it.

Resizing	an	existing	pixmap	to	(0,	0)	makes	a	pixmap	into	a	null	pixmap.

See	also	resize().

Examples:	movies/main.cpp,	qdir/qdir.cpp,	qmag/qmag.cpp	and
scrollview/scrollview.cpp.

bool	QPixmap::isQBitmap	()	const

Returns	TRUE	if	this	is	a	QBitmap;	otherwise	returns	FALSE.

bool	QPixmap::load	(const	QString	&	fileName,
const	char	*	format,	int	conversion_flags)

Loads	a	pixmap	from	the	file	fileName	at	runtime.	Returns	TRUE	if	successful;
otherwise	returns	FALSE.

If	format	is	specified,	the	loader	attempts	to	read	the	pixmap	using	the	specified
format.	If	format	is	not	specified	(default),	the	loader	reads	a	few	bytes	from	the
header	to	guess	the	file's	format.

See	the	convertFromImage()	documentation	for	a	description	of	the
conversion_flags	argument.

The	QImageIO	documentation	lists	the	supported	image	formats	and	explains
how	to	add	extra	formats.

See	also	loadFromData(),	save(),	imageFormat(),	QImage::load()	and
QImageIO.

Examples:	picture/picture.cpp,	scrollview/scrollview.cpp	and	xform/xform.cpp.

bool	QPixmap::load	(const	QString	&	fileName,
const	char	*	format	=	0,	ColorMode	mode	=	Auto)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Loads	a	pixmap	from	the	file	fileName	at	runtime.

If	format	is	specified,	the	loader	attempts	to	read	the	pixmap	using	the	specified
format.	If	format	is	not	specified	(default),	the	loader	reads	a	few	bytes	from	the
header	to	guess	the	file's	format.

The	mode	is	used	to	specify	the	color	mode	of	the	pixmap.

See	also	QPixmap::ColorMode.

bool	QPixmap::loadFromData	(const	uchar	*	buf,	uint	len,
const	char	*	format,	int	conversion_flags)

Loads	a	pixmap	from	the	binary	data	in	buf	(len	bytes).	Returns	TRUE	if
successful;	otherwise	returns	FALSE.

If	format	is	specified,	the	loader	attempts	to	read	the	pixmap	using	the	specified
format.	If	format	is	not	specified	(default),	the	loader	reads	a	few	bytes	from	the
header	to	guess	the	file's	format.

See	the	convertFromImage()	documentation	for	a	description	of	the
conversion_flags	argument.

The	QImageIO	documentation	lists	the	supported	image	formats	and	explains
how	to	add	extra	formats.

See	also	load(),	save(),	imageFormat(),	QImage::loadFromData()	and
QImageIO.

bool	QPixmap::loadFromData	(const	uchar	*	buf,	uint	len,
const	char	*	format	=	0,	ColorMode	mode	=	Auto)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Loads	a	pixmap	from	the	binary	data	in	buf	(len	bytes)	using	color	mode	mode.
Returns	TRUE	if	successful;	otherwise	returns	FALSE.

If	format	is	specified,	the	loader	attempts	to	read	the	pixmap	using	the	specified

format.	If	format	is	not	specified	(default),	the	loader	reads	a	few	bytes	from	the
header	to	guess	the	file's	format.

See	also	QPixmap::ColorMode.

bool	QPixmap::loadFromData	(const	QByteArray	&	buf,
const	char	*	format	=	0,	int	conversion_flags	=	0)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

const	QBitmap	*	QPixmap::mask	()	const

Returns	the	mask	bitmap,	or	0	if	no	mask	has	been	set.

See	also	setMask()	and	QBitmap.

int	QPixmap::metric	(int	m)	const	[virtual	protected]

Internal	implementation	of	the	virtual	QPaintDevice::metric()	function.

Use	the	QPaintDeviceMetrics	class	instead.

m	is	the	metric	to	get.

QPixmap	&	QPixmap::operator=	(const	QPixmap	&	pixmap)

Assigns	the	pixmap	pixmap	to	this	pixmap	and	returns	a	reference	to	this
pixmap.

QPixmap	&	QPixmap::operator=	(const	QImage	&	image)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Converts	the	image	image	to	a	pixmap	that	is	assigned	to	this	pixmap.	Returns	a
reference	to	the	pixmap.

See	also	convertFromImage().

Optimization	QPixmap::optimization	()	const

Returns	the	optimization	setting	for	this	pixmap.

The	default	optimization	setting	is	QPixmap::NormalOptim.	You	can	change	this
setting	in	two	ways:

Call	setDefaultOptimization()	to	set	the	default	optimization	for	all	new
pixmaps.
Call	setOptimization()	to	set	the	optimization	for	individual	pixmaps.

See	also	setOptimization(),	setDefaultOptimization()	and	defaultOptimization().

QRect	QPixmap::rect	()	const

Returns	the	enclosing	rectangle	(0,0,width(),height())	of	the	pixmap.

See	also	width(),	height()	and	size().

Example:	xform/xform.cpp.

void	QPixmap::resize	(int	w,	int	h)

Resizes	the	pixmap	to	w	width	and	h	height.	If	either	w	or	h	is	0,	the	pixmap
becomes	a	null	pixmap.

If	both	w	and	h	are	greater	than	0,	a	valid	pixmap	is	created.	New	pixels	will	be
uninitialized	(random)	if	the	pixmap	is	expanded.

Examples:	desktop/desktop.cpp	and	grapher/grapher.cpp.

void	QPixmap::resize	(const	QSize	&	size)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Resizes	the	pixmap	to	size	size.

bool	QPixmap::save	(const	QString	&	fileName,

const	char	*	format,	int	quality	=	-1)	const

Saves	the	pixmap	to	the	file	fileName	using	the	image	file	format	format	and	a
quality	factor	quality.	quality	must	be	in	the	range	[0,100]	or	-1.	Specify	0	to
obtain	small	compressed	files,	100	for	large	uncompressed	files,	and	-1	to	use
the	default	settings.	Returns	TRUE	if	successful;	otherwise	returns	FALSE.

See	also	load(),	loadFromData(),	imageFormat(),	QImage::save()	and
QImageIO.

Example:	qmag/qmag.cpp.

bool	QPixmap::selfMask	()	const

Returns	TRUE	if	the	pixmap's	mask	is	identical	to	the	pixmap	itself;	otherwise
returns	FALSE.

See	also	mask().

int	QPixmap::serialNumber	()	const

Returns	a	number	that	uniquely	identifies	the	contents	of	this	QPixmap	object.
This	means	that	multiple	QPixmap	objects	can	have	the	same	serial	number	as
long	as	they	refer	to	the	same	contents.

An	example	of	where	this	is	useful	is	for	caching	QPixmaps.

See	also	QPixmapCache.

void	QPixmap::setDefaultOptimization	(
Optimization	optimization)	[static]

Sets	the	default	pixmap	optimization.

All	new	pixmaps	that	are	created	will	use	this	default	optimization.	You	may	also
set	optimization	for	individual	pixmaps	using	the	setOptimization()	function.

The	initial	default	optimization	setting	is	QPixmap::Normal.

See	also	defaultOptimization(),	setOptimization()	and	optimization().

void	QPixmap::setMask	(const	QBitmap	&	newmask)

Sets	a	mask	bitmap.

The	newmask	bitmap	defines	the	clip	mask	for	this	pixmap.	Every	pixel	in
newmask	corresponds	to	a	pixel	in	this	pixmap.	Pixel	value	1	means	opaque	and
pixel	value	0	means	transparent.	The	mask	must	have	the	same	size	as	this
pixmap.

Warning:	Setting	the	mask	on	a	pixmap	will	cause	any	alpha	channel	data	to	be
cleared.	For	example:

								QPixmap	alpha("image-with-alpha.png");

								QPixmap	alphacopy	=	alpha;

								alphacopy.setMask(alphacopy.mask());

				

Now,	alpha	and	alphacopy	are	visually	different.

Setting	a	null	mask	resets	the	mask.

See	also	mask(),	createHeuristicMask()	and	QBitmap.

void	QPixmap::setOptimization	(Optimization	optimization)

Sets	pixmap	drawing	optimization	for	this	pixmap.

The	optimization	setting	affects	pixmap	operations,	in	particular	drawing	of
transparent	pixmaps	(bitBlt()	a	pixmap	with	a	mask	set)	and	pixmap
transformations	(the	xForm()	function).

Pixmap	optimization	involves	keeping	intermediate	results	in	a	cache	buffer	and
using	the	cache	to	speed	up	bitBlt()	and	xForm().	The	cost	is	more	memory
consumption,	up	to	twice	as	much	as	an	unoptimized	pixmap.

Use	the	setDefaultOptimization()	to	change	the	default	optimization	for	all	new
pixmaps.

See	also	optimization(),	setDefaultOptimization()	and	defaultOptimization().

Example:	desktop/desktop.cpp.

QSize	QPixmap::size	()	const

Returns	the	size	of	the	pixmap.

See	also	width(),	height()	and	rect().

Examples:	movies/main.cpp	and	qtimage/qtimage.cpp.

QWMatrix	QPixmap::trueMatrix	(const	QWMatrix	&	matrix,
int	w,	int	h)	[static]

Returns	the	actual	matrix	used	for	transforming	a	pixmap	with	w	width	and	h
height	and	matrix	matrix.

When	transforming	a	pixmap	with	xForm(),	the	transformation	matrix	is
internally	adjusted	to	compensate	for	unwanted	translation,	i.e.	xForm()	returns
the	smallest	pixmap	containing	all	transformed	points	of	the	original	pixmap.

This	function	returns	the	modified	matrix,	which	maps	points	correctly	from	the
original	pixmap	into	the	new	pixmap.

See	also	xForm()	and	QWMatrix.

int	QPixmap::width	()	const

Returns	the	width	of	the	pixmap.

See	also	height(),	size()	and	rect().

Examples:	desktop/desktop.cpp,	movies/main.cpp,	qtimage/qtimage.cpp,
scribble/scribble.cpp,	scrollview/scrollview.cpp	and	xform/xform.cpp.

QPixmap	QPixmap::xForm	(const	QWMatrix	&	matrix)	const

Returns	a	copy	of	the	pixmap	that	is	transformed	using	matrix.	The	original
pixmap	is	not	changed.

The	transformation	matrix	is	internally	adjusted	to	compensate	for	unwanted
translation,	i.e.	xForm()	returns	the	smallest	image	that	contains	all	the
transformed	points	of	the	original	image.

See	also	trueMatrix(),	QWMatrix,	QPainter::setWorldMatrix()	and
QImage::xForm().

Examples:	desktop/desktop.cpp,	fileiconview/qfileiconview.cpp,
movies/main.cpp,	qmag/qmag.cpp,	qtimage/qtimage.cpp	and	xform/xform.cpp.

Related	Functions

QDataStream	&	operator<<	(QDataStream	&	s,
const	QPixmap	&	pixmap)

Writes	the	pixmap	pixmap	to	the	stream	s	as	a	PNG	image.

See	also	QPixmap::save()	and	Format	of	the	QDataStream	operators.

QDataStream	&	operator>>	(QDataStream	&	s,
QPixmap	&	pixmap)

Reads	a	pixmap	from	the	stream	s	into	the	pixmap	pixmap.

See	also	QPixmap::load()	and	Format	of	the	QDataStream	operators.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qfont.h
This	is	the	verbatim	text	of	the	qfont.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	Id

**

**	Definition	of	QFont	class

**

**	Created	:	940514

**

**	Copyright	(C)	1992-2002	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QFONT_H

#define	QFONT_H

#ifndef	QT_H

#include	"qwindowdefs.h"

#include	"qstring.h"

#endif	//	QT_H

class	QFontPrivate;																																					/*	don't	touch	*/

class	QStringList;

class	Q_EXPORT	QFont

{

public:

				enum	StyleHint	{

	 Helvetica,		SansSerif	=	Helvetica,

	 Times,						Serif	=	Times,

	 Courier,				TypeWriter	=	Courier,

	 OldEnglish,	Decorative	=	OldEnglish,

	 System,

	 AnyStyle

				};

				enum	StyleStrategy	{

	 PreferDefault	=	0x0001,

	 PreferBitmap		=	0x0002,

	 PreferDevice		=	0x0004,

	 PreferOutline	=	0x0008,

	 ForceOutline		=	0x0010,

	 PreferMatch			=	0x0020,

	 PreferQuality	=	0x0040,

	 PreferAntialias	=	0x0080,

	 NoAntialias	=	0x0100

				};

				enum	Weight	{

	 Light				=	25,

	 Normal			=	50,

	 DemiBold	=	63,

	 Bold					=	75,

	 Black	 	=	87

				};

				//	default	font

				QFont();

				//	specific	font

				QFont(const	QString	&family,	int	pointSize	=	12,	int	weight	=	Normal,

	 			bool	italic	=	FALSE);

				//	copy	constructor

				QFont(const	QFont	&);

				~QFont();

				QString	family()	const;

				void	setFamily(const	QString	&);

				int	pointSize()	const;

				float	pointSizeFloat()	const;

				void	setPointSize(int);

				void	setPointSizeFloat(float);

				int	pixelSize()	const;

				void	setPixelSize(int);

				void	setPixelSizeFloat(float);

				int	weight()	const;

				void	setWeight(int);

				bool	bold()	const;

				void	setBold(bool);

				bool	italic()	const;

				void	setItalic(bool);

				bool	underline()	const;

				void	setUnderline(bool);

				bool	strikeOut()	const;

				void	setStrikeOut(bool);

				bool	fixedPitch()	const;

				void	setFixedPitch(bool);

				StyleHint	styleHint()	const;

				StyleStrategy	styleStrategy()	const;

				void	setStyleHint(StyleHint,	StyleStrategy	=	PreferDefault);

				void	setStyleStrategy(StyleStrategy	s);

				//	is	raw	mode	still	needed?

				bool	rawMode()	const;

				void	setRawMode(bool);

				//	dupicated	from	QFontInfo

				bool	exactMatch()	const;

				QFont	&operator=(const	QFont	&);

				bool	operator==(const	QFont	&)	const;

				bool	operator!=(const	QFont	&)	const;

				bool	isCopyOf(const	QFont	&)	const;

#ifdef	Q_WS_WIN

				HFONT	handle()	const;

#else	//	!Q_WS_WIN

				Qt::HANDLE	handle()	const;

#endif	//	Q_WS_WIN

				//	needed	for	X11

				void	setRawName(const	QString	&);

				QString	rawName()	const;

				QString	key()	const;

#ifndef	QT_NO_STRINGLIST

				QString	toString()	const;

				bool	fromString(const	QString	&);

				static	QString	substitute(const	QString	&);

				static	QStringList	substitutes(const	QString	&);

				static	QStringList	substitutions();

				static	void	insertSubstitution(const	QString&,	const	QString	&);

				static	void	insertSubstitutions(const	QString&,	const	QStringList	&);

				static	void	removeSubstitution(const	QString	&);

#endif	//QT_NO_STRINGLIST

				static	void	initialize();

				static	void	cleanup();

				static	void	cacheStatistics();

#if	defined(Q_WS_QWS)

				void	qwsRenderToDisk(bool	all=TRUE);

#endif

				enum	Script	{

	 //	European	Alphabetic	Scripts

	 Latin,

	 Greek,

	 Cyrillic,

	 Armenian,

	 Georgian,

	 Runic,

	 Ogham,

	 SpacingModifiers,

	 CombiningMarks,

	 //	Middle	Eastern	Scripts

	 Hebrew,

	 Arabic,

	 Syriac,

	 Thaana,

	 //	South	and	Southeast	Asian	Scripts

	 Devanagari,

	 Bengali,

	 Gurmukhi,

	 Gujarati,

	 Oriya,

	 Tamil,

	 Telugu,

	 Kannada,

	 Malayalam,

	 Sinhala,

	 Thai,

	 Lao,

	 Tibetan,

	 Myanmar,

	 Khmer,

	 //	East	Asian	Scripts

	 Han,

	 Hiragana,

	 Katakana,

	 Hangul,

	 Bopomofo,

	 Yi,

	 //	Additional	Scripts

	 Ethiopic,

	 Cherokee,

	 CanadianAboriginal,

	 Mongolian,

	 //	Symbols

	 CurrencySymbols,

	 LetterlikeSymbols,

	 NumberForms,

	 MathematicalOperators,

	 TechnicalSymbols,

	 GeometricSymbols,

	 MiscellaneousSymbols,

	 EnclosedAndSquare,

	 Braille,

	 Unicode,

	 //	End

	 NScripts,

	 UnknownScript	=	NScripts,

	 NoScript,

	 //	--

	 //	Dear	User,	you	can	see	values	>	Unicode,

	 //	but	they	are	internal	-	do	not	touch.

								//	only	used	on	X11	to	get	some	char	displayed	for	all	of	the	Han	area.

	 HanX11,

	 LatinBasic	=	Latin,													//	from	ISO-8859-1

	 LatinExtendedA_2	=	HanX11	+	1,		//	from	ISO-8859-2

	 LatinExtendedA_3,															//	from	ISO-8859-3

	 LatinExtendedA_4,															//	from	ISO-8859-4

	 LatinExtendedA_14,														//	from	ISO-8859-14

	 LatinExtendedA_15,														//	from	ISO-8859-15

	 LastPrivateScript

				};

				QString	defaultFamily()	const;

				QString	lastResortFamily()	const;

				QString	lastResortFont()	const;

#ifndef	QT_NO_COMPAT

				static	QFont	defaultFont();

				static	void	setDefaultFont(const	QFont	&);

#endif	//	QT_NO_COMPAT

protected:

				//	why	protected?

				bool	dirty()	const;

				int	deciPointSize()	const;

private:

				QFont(QFontPrivate	*,	bool	deep	=	TRUE);

				QFont(QFontPrivate	*,	QPaintDevice	*pd);

				void	detach();

#if	defined(Q_WS_MAC)

				void	macSetFont(QPaintDevice	*);

#endif

#if	defined(Q_WS_WIN)

				void	*textMetric()	const;

#endif

				friend	class	QFontMetrics;

				friend	class	QFontInfo;

				friend	class	QPainter;

				friend	class	QPSPrinterFont;

#ifndef	QT_NO_DATASTREAM

				friend	Q_EXPORT	QDataStream	&operator<<(QDataStream	&,	const	QFont	&);

				friend	Q_EXPORT	QDataStream	&operator>>(QDataStream	&,	QFont	&);

#endif

				QFontPrivate	*d;

};

inline	bool	QFont::bold()	const

{	return	weight()	>	Normal;	}

inline	void	QFont::setBold(bool	enable)

{	setWeight(enable	?	Bold	:	Normal);	}

/***

		QFont	stream	functions

	***/

#ifndef	QT_NO_DATASTREAM

Q_EXPORT	QDataStream	&operator<<(QDataStream	&,	const	QFont	&);

Q_EXPORT	QDataStream	&operator>>(QDataStream	&,	QFont	&);

#endif

#endif	//	QFONT_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QObject
QObjectQt	 ……

#include	<qobject.h>

Qt

Q
AccelQAccessibleObjectQActionQApplicationQDataPumpQWidgetQCanvasQStyle
QWSMouseHandler

QObject	(QObject	*	parent	=	0,	const	char	*	name	=	0)
virtual	~QObject	()
const	char	*	className	()	const
QString	tr	(const	char	*	sourceText,	const	char	*	comment)	const
QString	trUtf8	(const	char	*	sourceText,	const	char	*	comment)	const
QMetaObject	*	metaObject	()	const
virtual	bool	event	(QEvent	*	e)
virtual	bool	eventFilter	(QObject	*	watched,	QEvent	*	e)
bool	isA	(const	char	*	clname)	const
bool	inherits	(const	char	*	clname)	const
const	char	*	name	()	const
const	char	*	name	(const	char	*	defaultName)	const
virtual	void	setName	(const	char	*	name)
bool	isWidgetType	()	const
bool	highPriority	()	const
bool	signalsBlocked	()	const
void	blockSignals	(bool	block)
int	startTimer	(int	interval)
void	killTimer	(int	id)
void	killTimers	()
QObject	*	child	(const	char	*	objName,	const	char	*	inheritsClass	=	0,
bool	recursiveSearch	=	TRUE)
const	QObjectList	*	children	()	const
QObjectList	*	queryList	(const	char	*	inheritsClass	=	0,
const	char	*	objName	=	0,	bool	regexpMatch	=	TRUE,
bool	recursiveSearch	=	TRUE)	const
virtual	void	insertChild	(QObject	*	obj)
virtual	void	removeChild	(QObject	*	obj)
void	installEventFilter	(const	QObject	*	obj)
void	removeEventFilter	(const	QObject	*	obj)
bool	connect	(const	QObject	*	sender,	const	char	*	signal,
const	char	*	member)	const
bool	disconnect	(const	char	*	signal	=	0,	const	QObject	*	receiver	=	0,
const	char	*	member	=	0)
bool	disconnect	(const	QObject	*	receiver,	const	char	*	member	=	0)

void	dumpObjectTree	()
void	dumpObjectInfo	()
virtual	bool	setProperty	(const	char	*	name,	const	QVariant	&	value)
virtual	QVariant	property	(const	char	*	name)	const
QObject	*	parent	()	const

void	deleteLater	()

void	destroyed	()
void	destroyed	(QObject	*	obj)

const	QObjectList	*	objectTrees	()
bool	connect	(const	QObject	*	sender,	const	char	*	signal,
const	QObject	*	receiver,	const	char	*	member)
bool	disconnect	(const	QObject	*	sender,	const	char	*	signal,
const	QObject	*	receiver,	const	char	*	member)

QCString	name	-	

const	QObject	*	sender	()
virtual	void	timerEvent	(QTimerEvent	*)
virtual	void	childEvent	(QChildEvent	*)
virtual	void	customEvent	(QCustomEvent	*)
virtual	void	connectNotify	(const	char	*	signal)
virtual	void	disconnectNotify	(const	char	*	signal)
virtual	bool	checkConnectArgs	(const	char	*	signal,
const	QObject	*	receiver,	const	char	*	member)

QCString	normalizeSignalSlot	(const	char	*	signalSlot)

void	*	qt_find_obj_child	(QObject	*	parent,	const	char	*	type,
const	char	*	name)

QObjectQt

QObject Qt connect()disconnect() blockSignals()
connectNotify()disconnectNotify()

QObjectQObject
objectTrees()

name() className()QObject inherits()

destroyed()QObject QGuardedPtr

QObject event() installEventFilter()eventFilter() childEvent()

QObjectQt

Q_OBJECT moc QObject

QtQObject isWidgetType() inherits("QWidget")

QObject children() objectTrees()queryList()QObjectListQObjectList
QObject QPtrListQObjectListsQPtrListsQObjectListIt

QObject::QObject	(QObject	*	parent	=	0,	const	char	*	name	=	0
)

parentname

“OK”“Cancel”

parent0

QObject Qt child() queryList

parent() namechild()queryList()

QObject::~QObject	()	[]

QObject::destroyed()

void	QObject::blockSignals	(bool	block)

block block

rot13/rot13.cpp

bool	QObject::checkConnectArgs	(const	char	*	signal,
const	QObject	*	receiver,	const	char	*	member)	[]

signalmember receiver

QObject	*	QObject::child	(const	char	*	objName,
const	char	*	inheritsClass	=	0,	bool	recursiveSearch	=	TRUE)

inheritsClassobjName inheritsClass

recursiveSearch child()

0

void	QObject::childEvent	(QChildEvent	*)	[]

QEvent::type() QEvent::ChildInserted QApplication::postEvent

ChildInserted ChildRemoved ChildRemoved

ChildInserted QWidget::constPolish()

								QApplication::sendPostedEvents(this,	QEvent::ChildInserted);

				

QWidget::sizeHint()

event()QChildEvent

QMainWindowQSplitter

const	QObjectList	*	QObject::children	()	const

0

QObjectListqobjectlist.h

QWidget

child() queryList() parent() insertChild()removeChild()

const	char	*	QObject::className	()	const

Q_OBJECT

nameinherits() isA()isWidgetType()

sql/overview/custom1/main.cpp

bool	QObject::connect	(const	QObject	*	sender,
const	char	*	signal,	const	QObject	*	receiver,
const	char	*	member)	[]

sendersignalreceivermember

signalmemberSIGNAL()SLOT()

				QLabel					*label		=	new	QLabel;

				QScrollBar	*scroll	=	new	QScrollBar;

				QObject::connect(scroll,	SIGNAL(valueChanged(int)),

																						label,		SLOT(setNum(int)));

				

label

				class	MyWidget	:	public	QWidget

				{

								Q_OBJECT

				public:

								MyWidget();

				signals:

								void	myUsefulSignal();

				private:

								QPushButton	*aButton;

				};

				MyWidget::MyWidget()

				{

								aButton	=	new	QPushButton(this);

								connect(aButton,	SIGNAL(clicked()),	SIGNAL(myUsefulSignal()));

				}

				

MyWidgetMyWidget

QObject

disconnect()

action/actiongroup/editor.cppaction/main.cppaddressbook/main.cppapplication/main.cpp
t2/main.cpp

bool	QObject::connect	(const	QObject	*	sender,
const	char	*	signal,	const	char	*	member)	const

sendersignalmember

QObject::connect(sender,	signal,	this,	member)

disconnect()

void	QObject::connectNotify	(const	char	*	signal)	[]

signal

connect()	and	disconnectNotify().

void	QObject::customEvent	(QCustomEvent	*)	[]

QEvent::Type

event()QCustomEvent

void	QObject::deleteLater	()	[]

Qt

void	QObject::destroyed	()	[]

void	QObject::destroyed	(QObject	*	obj)	[]

obj

bool	QObject::disconnect	(const	QObject	*	sender,
const	char	*	signal,	const	QObject	*	receiver,
const	char	*	member)	[]

sendersignalreceivermember

——

disconnect()

1.	

							disconnect(myObject,	0,	0,	0);

							

							myObject->disconnect();

							

2.	

							disconnect(myObject,	SIGNAL(mySignal()),	0,	0);

							

							myObject->disconnect(SIGNAL(mySignal()));

							

3.	

							disconnect(myObject,	0,	myReceiver,	0);

							

							myObject->disconnect(myReceiver);

							

0“”“”“”

sender0

signal0 receivermember

receiver0 signal receiver

member0 receiver member receiver member0

connect()

bool	QObject::disconnect	(const	char	*	signal	=	0,
const	QObject	*	receiver	=	0,	const	char	*	member	=	0)

receivermembersignal

——

bool	QObject::disconnect	(const	QObject	*	receiver,
const	char	*	member	=	0)

receivermember

——

void	QObject::disconnectNotify	(const	char	*	signal)	[]

signal

disconnect()	and	connectNotify().

void	QObject::dumpObjectInfo	()

void	QObject::dumpObjectTree	()

bool	QObject::event	(QEvent	*	e)	[]

e

event()

installEventFilter() timerEvent() QApplication::sendEvent() QApplication::postEvent
QWidget::event()

QWidget

bool	QObject::eventFilter	(QObject	*	watched,	QEvent	*	e)	[]

watched

e

Qt

installEventFilter()

QAccelQScrollViewQSpinBox

bool	QObject::highPriority	()	const

QObject

bool	QObject::inherits	(const	char	*	clname)	const

clname clnameQObject

								QTimer	*t	=	new	QTimer;									//	QTimerQObject

								t->inherits("QTimer");								//	TRUE

								t->inherits("QObject");							//	TRUE

								t->inherits("QButton");							//	FALSE

								//	QScrollBarQWidgetQRangeControl

								QScrollBar	*s	=	new	QScrollBar(0);

								s->inherits("QWidget");							//	TRUE

								s->inherits("QRangeControl");	//	FALSE

				

QRangeControlQObject

isA()metaObject()

table/statistics/statistics.cppthemes/metal.cppthemes/wood.cpp

void	QObject::insertChild	(QObject	*	obj)	[]

obj

QWidget::reparent()

removeChild()QWidget::reparent()

void	QObject::installEventFilter	(const	QObject	*	obj)

obj

				#include	<qwidget.h>

				class	MyWidget	:	public	QWidget

				{

								Q_OBJECT

				public:

								MyWidget(QWidget	*parent	=	0,	const	char	*name	=	0);

				protected:

								bool	eventFilter(QObject	*,	QEvent	*);

				};

				MyWidget::MyWidget(QWidget	*parent,	const	char	*name)

								:	QWidget(parent,	name)

				{

								//	

								if	(parent)

												parent->installEventFilter(this);

				}

				bool	MyWidget::eventFilter(QObject	*o,	QEvent	*e)

				{

								if	(e->type()	==	QEvent::KeyPress)	{

												//	

												QKeyEvent	*k	=	(QKeyEvent	*)e;

												qDebug("Ate	key	press	%d",	k->key());

												return	TRUE;	//	

								}	else	{

												//	

												return	QWidget::eventFilter(o,	e);

								}

				}

				

QAccel

eventFilter()Qt

removeEventFilter() eventFilter()event()

bool	QObject::isA	(const	char	*	clname)	const

clname

				QTimer	*t	=	new	QTimer;	//	QTimerQObject

				t->isA("QTimer");					//	TRUE

				t->isA("QObject");				//	FALSE

		

inherits()metaObject()

bool	QObject::isWidgetType	()	const

inherits("QWidget")

void	QObject::killTimer	(int	id)

id

startTimer()

timerEvent() startTimer()killTimers()

void	QObject::killTimers	()

bug QTimerkillTimer()

timerEvent() startTimer()killTimer()

QMetaObject	*	QObject::metaObject	()	const

QObject

/ isA()inherits()

const	char	*	QObject::name	()	const

“name”

const	char	*	QObject::name	(const	char	*	defaultName)	const

defaultName

QCString	QObject::normalizeSignalSlot	(const	char	*	signalSlot
)	[]

signalSlot

const	QObjectList	*	QObject::objectTrees	()	[]

0

QObjectListqobjectlist.h

children() parent() insertChild()removeChild()

QObject	*	QObject::parent	()	const

children()

QVariant	QObject::property	(const	char	*	name)	const	[]

name

metaObject()

setProperty() QVariant::isValid() metaObject() QMetaObject::propertyNames
QMetaObject::property()

QObjectList	*	QObject::queryList	(const	char	*	inheritsClass	=
0,	const	char	*	objName	=	0,	bool	regexpMatch	=	TRUE,
bool	recursiveSearch	=	TRUE)	const

inheritsClassobjName inheritsClass

regexpMatch objNameQRegExpregexpMatch objName

inheritsClassQObject inherits()inherits() QMenuBarQWidget
QMenuDataQt

recursiveSearch queryList()n

child()

				QObjectList	*l	=	topLevelWidget()->queryList("QButton");

				QObjectListIt	it(*l);	//	

				QObject	*obj;

				while	((obj	=	it.current())	!=	0)	{

								//	……

								++it;

								((QButton*)obj)->setEnabled(FALSE);

				}

				delete	l;	//	

				

QObjectListqobjectlist.h

child() children() parent() inherits() nameQRegExp

void	QObject::removeChild	(QObject	*	obj)	[]

obj

insertChild()QWidget::reparent()

void	QObject::removeEventFilter	(const	QObject	*	obj)

obj

eventFilter()

installEventFilter() eventFilter()event()

const	QObject	*	QObject::sender	()	[]

—Qt	3.02.x

C++

void	QObject::setName	(const	char	*	name)	[]

name

bool	QObject::setProperty	(const	char	*	name,
const	QVariant	&	value)	[]

namevalue

metaObject()

property() metaObject() QMetaObject::propertyNames()
QMetaObject::property()

bool	QObject::signalsBlocked	()	const

blockSignals()

int	QObject::startTimer	(int	interval)

0

intervalkillTimer()killTimers() interval0

timerEvent()QTimerEvent

QTimerEvent::timerId()

				class	MyObject	:	public	QObject

				{

								Q_OBJECT

				public:

								MyObject(QObject	*parent	=	0,	const	char	*name	=	0);

				protected:

								void	timerEvent(QTimerEvent	*);

				};

				MyObject::MyObject(QObject	*parent,	const	char	*name)

								:	QObject(parent,	name)

				{

								startTimer(50);				//	50

								startTimer(1000);		//	1

								startTimer(60000);	//	1

				}

				void	MyObject::timerEvent(QTimerEvent	*e)

				{

								qDebug("timer	event,	id	%d",	e->timerId());

				}

				

1 QTimer20Qt

QTimer

timerEvent() killTimer()killTimers()

void	QObject::timerEvent	(QTimerEvent	*)	[]

QTimer

startTimer() killTimer() killTimers()event()

biff/biff.cppdclock/dclock.cppforever/forever.cppgrapher/grapher.cppqmag/qmag.cpp
xform/xform.cpp

QString	QObject::tr	(const	char	*	sourceText,
const	char	*	comment)	const

sourceText sourceText commentQObject Q_OBJECTQObject

trUtf8() QApplication::translate()Qt

network/networkprotocol/view.cpp

QString	QObject::trUtf8	(const	char	*	sourceText,
const	char	*	comment)	const

sourceText QString::fromUtf8(sourceText) tr(sourceText,	comment)

tr()QApplication::translate()

QCString	name

child() queryList()

setName()Qt

name()“unnamed”printf() qDebug()name(0)

								qDebug("MyClass::setPrecision():	(%s)	invalid	precision	%f",

																name(),	newPrecision);

				

className() child()queryList()

setName()name()

void	*	qt_find_obj_child	(QObject	*	parent,	const	char	*	type,
const	char	*	name)

parenttypename

0

								QListBox	*c	=	(QListBox	*)	qt_find_obj_child(myWidget,	"QListBox",

																																																						"my	list	box");

								if	(c)

												c->insertItem("another	string");

				

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QButton
QButton	 ……

#include	<qbutton.h>

QWidget

QCheckBoxQPushButtonQRadioButtonQToolButton

QButton	(QWidget	*	parent	=	0,	const	char	*	name	=	0,	WFlags	f	=	0)
~QButton	()
QString	text	()	const
virtual	void	setText	(const	QString	&)
const	QPixmap	*	pixmap	()	const
virtual	void	setPixmap	(const	QPixmap	&)
QKeySequence	accel	()	const
virtual	void	setAccel	(const	QKeySequence	&)
bool	isToggleButton	()	const
enum	ToggleType	{	SingleShot,	Toggle,	Tristate	}
ToggleType	toggleType	()	const
virtual	void	setDown	(bool)
bool	isDown	()	const
bool	isOn	()	const
enum	ToggleState	{	Off,	NoChange,	On	}
ToggleState	state	()	const
bool	autoResize	()	const		(obsolete)
void	setAutoResize	(bool)		(obsolete)
bool	autoRepeat	()	const
virtual	void	setAutoRepeat	(bool)
bool	isExclusiveToggle	()	const
QButtonGroup	*	group	()	const

void	animateClick	()
void	toggle	()

void	pressed	()
void	released	()
void	clicked	()
void	toggled	(bool	on)
void	stateChanged	(int	state)

QKeySequence	accel	-	
bool	autoRepeat	-	
bool	autoResize	-		
bool	down	-	
bool	exclusiveToggle	-		
bool	on	-		
QPixmap	pixmap	-	
QString	text	-	
bool	toggleButton	-		
ToggleState	toggleState	-		
ToggleType	toggleType	-		

void	setToggleButton	(bool	b)
virtual	void	setToggleType	(ToggleType	type)
void	setOn	(bool	on)
virtual	void	setState	(ToggleState	s)
virtual	bool	hitButton	(const	QPoint	&	pos)	const
virtual	void	drawButton	(QPainter	*)
virtual	void	drawButtonLabel	(QPainter	*)
virtual	void	paintEvent	(QPaintEvent	*)

QButton

QPushButton

QButton

QButton QRadioButtonQCheckBoxQPushButton QToolButton

setText()setPixmap()/“”

QButton

isDown()
isOn()
isEnabled()
setAutoRepeat()
setToggleButton()

isDown()isOn()	

QPushButton::setDefault()QPushButton::setAutoDefault

QButton

1.	 pressed()
2.	 released()
3.	 animateClick() clicked
4.	 toggled(bool)
5.	 stateChanged(int)

“&”QButton“Rock	&	Roll”cAlt+C

				QPushButton	*p	=	new	QPushButton("Ro&ck	&&	Roll",	this);

		

Alt+CanimateClick()

setAccel()

				QPushButton	*p;

				p->setPixmap(QPixmap("print.png"));

				p->setAccel(ALT+Key_F7);

		

Qt QPushButtonQToolButtonQCheckBoxQRadioButton

QButton drawButton() drawButtonLabel()
hitButton()

QButton::paintEvent()drawButton()QButton paintEvent()

QButtonGroup

QButton::ToggleState

QButton::Off	-	“”
QButton::NoChange	-	/
QButton::On	-	“”

QButton::ToggleType

/

QButton::SingleShot	-	
QButton::Toggle	-	 OnOff
QButton::Tristate	-	 OnOffNoChange

QButton::QButton	(QWidget	*	parent	=	0,	const	char	*	name	=	0,
WFlags	f	=	0)

parentnamef

parentQButtonGroupQButtonGroup::insert()

QButton::~QButton	()

QKeySequence	QButton::accel	()	const

“accel”

void	QButton::animateClick	()	[]

pressed() released() clicked() toggled()stateChanged()

accel

bool	QButton::autoRepeat	()	const

autoRepeat “autoRepeat”

bool	QButton::autoResize	()	const

autoResize “autoResize”

void	QButton::clicked	()	[]

QButtonGroup::clicked()

pressed() released() toggled() autoRepeatdown

fonts/simple-qfont-
demo/viewer.cpplistbox/listbox.cppnetwork/clientserver/client/client.cppnetwork/ftpclient/ftpmainwindow.cpp
t4/main.cpp

void	QButton::drawButton	(QPainter	*)	[]

drawButtonLabel

drawButtonLabel()paintEvent()

void	QButton::drawButtonLabel	(QPainter	*)	[]

drawButton()

drawButton()paintEvent()

QButtonGroup	*	QButton::group	()	const

QButtonGroup0

QButtonGroup

bool	QButton::hitButton	(const	QPoint	&	pos)	const	[]

pos

bool	QButton::isDown	()	const

“down”

bool	QButton::isExclusiveToggle	()	const

“exclusiveToggle”

bool	QButton::isOn	()	const

“on”

bool	QButton::isToggleButton	()	const

“toggleButton”

void	QButton::paintEvent	(QPaintEvent	*)	[]

drawButtonLabel().	 drawButton()drawButtonLabel()

drawButton()drawButtonLabel()

QWidget

const	QPixmap	*	QButton::pixmap	()	const

“pixmap”

void	QButton::pressed	()	[]

released()clicked()

network/httpd/httpd.cpppopup/popup.cpp

void	QButton::released	()	[]

pressed() clicked()toggled()

void	QButton::setAccel	(const	QKeySequence	&)	[]

“accel”

void	QButton::setAutoRepeat	(bool)	[]

autoRepeat “autoRepeat”

void	QButton::setAutoResize	(bool)

autoResize “autoResize”

void	QButton::setDown	(bool)	[]

“down”

void	QButton::setOn	(bool	on)	[protected]

on

toggleState

void	QButton::setPixmap	(const	QPixmap	&)	[]

“pixmap”

void	QButton::setState	(ToggleState	s)	[]

ssOffNoChangeOn

void	QButton::setText	(const	QString	&)	[]

“text”

void	QButton::setToggleButton	(bool	b)	[protected]

b b

toggleButton

void	QButton::setToggleType	(ToggleType	type)	[]

type

typeSingleShotToggleTriState

ToggleState	QButton::state	()	const

“toggleState”

void	QButton::stateChanged	(int	state)	[]

state2 “” 10

toggle() setState()setOn()

clicked()

QString	QButton::text	()	const

“text”

void	QButton::toggle	()	[]

onsetOn() toggled()toggleButton

ToggleType	QButton::toggleType	()	const

“toggleType”

void	QButton::toggled	(bool	on)	[]

on on

toggle() setOn()

clicked()

listbox/listbox.cpp

QKeySequence	accel

00

setAccel()accel()

bool	autoRepeat

autoRepeat

autoRepeat clicked()autoRepeat

setAutoRepeat()autoRepeat()

bool	autoResize

autoResize

autoResize

setAutoResize()autoResize()

bool	down

pressed()clicked()

setDown()isDown()

bool	exclusiveToggle

QButtonGroup

isExclusiveToggle()

bool	on

isOn()

QPixmap	pixmap

QBitmap1

pixmap()0

setPixmap()pixmap()

QString	text

“&”“&”

setText()text().

bool	toggleButton

isToggleButton()

ToggleState	toggleState

state()

ToggleType	toggleType

SingleShot

toggleType()

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QFont	Class	Reference
The	QFont	class	specifies	a	font	used	for	drawing	text.	More...

#include	<qfont.h>

List	of	all	member	functions.

Public	Members

enum	StyleHint	{	Helvetica,	SansSerif	=	Helvetica,	Times,	Serif	=	Times,
Courier,	TypeWriter	=	Courier,	OldEnglish,	Decorative	=	OldEnglish,
System,	AnyStyle	}
enum	StyleStrategy	{	PreferDefault	=	0x0001,	PreferBitmap	=	0x0002,
PreferDevice	=	0x0004,	PreferOutline	=	0x0008,	ForceOutline	=	0x0010,
PreferMatch	=	0x0020,	PreferQuality	=	0x0040,	PreferAntialias	=	0x0080,
NoAntialias	=	0x0100	}
enum	Weight	{	Light	=	25,	Normal	=	50,	DemiBold	=	63,	Bold	=	75,	Black
=	87	}
QFont	()
QFont	(const	QString	&	family,	int	pointSize	=	12,	int	weight	=	Normal,
bool	italic	=	FALSE)
QFont	(const	QFont	&	font)
~QFont	()
QString	family	()	const
void	setFamily	(const	QString	&	family)
int	pointSize	()	const
float	pointSizeFloat	()	const
void	setPointSize	(int	pointSize)
void	setPointSizeFloat	(float	pointSize)
int	pixelSize	()	const
void	setPixelSize	(int	pixelSize)
void	setPixelSizeFloat	(float	pixelSize)		(obsolete)
int	weight	()	const
void	setWeight	(int	weight)
bool	bold	()	const
void	setBold	(bool	enable)
bool	italic	()	const
void	setItalic	(bool	enable)
bool	underline	()	const
void	setUnderline	(bool	enable)
bool	strikeOut	()	const
void	setStrikeOut	(bool	enable)
bool	fixedPitch	()	const
void	setFixedPitch	(bool	enable)

StyleHint	styleHint	()	const
StyleStrategy	styleStrategy	()	const
void	setStyleHint	(StyleHint	hint,	StyleStrategy	strategy	=	PreferDefault)
void	setStyleStrategy	(StyleStrategy	s)
bool	rawMode	()	const
void	setRawMode	(bool	enable)
bool	exactMatch	()	const
QFont	&	operator=	(const	QFont	&	font)
bool	operator==	(const	QFont	&	f)	const
bool	operator!=	(const	QFont	&	f)	const
bool	isCopyOf	(const	QFont	&	f)	const
HFONT	handle	()	const
void	setRawName	(const	QString	&	name)
QString	rawName	()	const
QString	key	()	const
QString	toString	()	const
bool	fromString	(const	QString	&	descrip)
void	qwsRenderToDisk	(bool	all	=	TRUE)
enum	Script	{	Latin,	Greek,	Cyrillic,	Armenian,	Georgian,	Runic,	Ogham,
SpacingModifiers,	CombiningMarks,	Hebrew,	Arabic,	Syriac,	Thaana,
Devanagari,	Bengali,	Gurmukhi,	Gujarati,	Oriya,	Tamil,	Telugu,	Kannada,
Malayalam,	Sinhala,	Thai,	Lao,	Tibetan,	Myanmar,	Khmer,	Han,	Hiragana,
Katakana,	Hangul,	Bopomofo,	Yi,	Ethiopic,	Cherokee,
CanadianAboriginal,	Mongolian,	CurrencySymbols,	LetterlikeSymbols,
NumberForms,	MathematicalOperators,	TechnicalSymbols,
GeometricSymbols,	MiscellaneousSymbols,	EnclosedAndSquare,	Braille,
Unicode,	NScripts,	UnknownScript	=	NScripts,	NoScript,	HanX11,
LatinBasic	=	Latin,	LatinExtendedA_2	=	HanX11	+	1,	LatinExtendedA_3,
LatinExtendedA_4,	LatinExtendedA_14,	LatinExtendedA_15,
LastPrivateScript	}
QString	defaultFamily	()	const
QString	lastResortFamily	()	const
QString	lastResortFont	()	const

Static	Public	Members

QString	substitute	(const	QString	&	familyName)
QStringList	substitutes	(const	QString	&	familyName)
QStringList	substitutions	()
void	insertSubstitution	(const	QString	&	familyName,
const	QString	&	substituteName)
void	insertSubstitutions	(const	QString	&	familyName,
const	QStringList	&	substituteNames)
void	removeSubstitution	(const	QString	&	familyName)
QFont	defaultFont	()		(obsolete)
void	setDefaultFont	(const	QFont	&	f)		(obsolete)

Protected	Members

bool	dirty	()	const
int	deciPointSize	()	const

Related	Functions

QDataStream	&	operator<<	(QDataStream	&	s,	const	QFont	&	font)
QDataStream	&	operator>>	(QDataStream	&	s,	QFont	&	font)

Detailed	Description

The	QFont	class	specifies	a	font	used	for	drawing	text.

When	you	create	a	QFont	object	you	specify	various	attributes	that	you	want	the
font	to	have.	Qt	will	use	the	font	with	the	specified	attributes,	or	if	no	matching
font	exists,	Qt	will	use	the	closest	matching	installed	font.	The	attributes	of	the
font	that	is	actually	used	are	retrievable	from	a	QFontInfo	object.	If	the	window
system	provides	an	exact	match	exactMatch()	returns	TRUE.	Use	QFontMetrics
to	get	measurements,	e.g.	the	pixel	length	of	a	string	using
QFontMetrics::width().

Use	QApplication::setFont()	to	set	the	application's	default	font.

If	a	choosen	X11	font	does	not	include	all	the	characters	that	need	to	be
displayed,	QFont	will	try	to	find	the	characters	in	the	nearest	equivalent	fonts.
When	a	QPainter	draws	a	character	from	a	font	the	QFont	will	report	whether	or
not	it	has	the	character;	if	it	does	not,	QPainter	will	draw	an	unfilled	square.

Create	QFonts	like	this:

				QFont	serifFont("Times",	10,	Bold);

				QFont	sansFont("Helvetica	[Cronyx]",	12);

				

The	attributes	set	in	the	constructor	can	also	be	set	later,	e.g.	setFamily(),
setPointSize(),	setPointSizeFloat(),	setWeight()	and	setItalic().	The	remaining
attributes	must	be	set	after	contstruction,	e.g.	setBold(),	setUnderline(),
setStrikeOut()	and	setFixedPitch().	QFontInfo	objects	should	be	created	after	the
font's	attributes	have	been	set.	A	QFontInfo	object	will	not	change,	even	if	you
change	the	font's	attributes.	The	corresponding	"get"	functions,	e.g.	family(),
pointSize(),	etc.,	return	the	values	that	were	set,	even	though	the	values	used
may	differ.	The	actual	values	are	available	from	a	QFontInfo	object.

If	the	requested	font	family	is	unavailable	you	can	influence	the	font	matching
algorithm	by	choosing	a	particular	QFont::StyleHint	and	QFont::StyleStrategy
with	setStyleHint().	The	default	family	(corresponding	to	the	current	style	hint)
is	returned	by	defaultFamily().

The	font-matching	algorithm	has	a	lastResortFamily()	and	lastResortFont()	in
cases	where	a	suitable	match	cannot	be	found.	You	can	provide	substitutions	for
font	family	names	using	insertSubstitution()	and	insertSubstitutions().
Substitutions	can	be	removed	with	removeSubstitution().	Use	substitute()	to
retrieve	a	family's	first	substitute,	or	the	family	name	itself	if	it	has	no
substitutes.	Use	substitutes()	to	retrieve	a	list	of	a	family's	substitutes	(which
may	be	empty).

Every	QFont	has	a	key()	which	you	can	use,	for	example,	as	the	key	in	a	cache
or	dictionary.	If	you	want	to	store	a	user's	font	preferences	you	could	use
QSettings,	writing	the	font	information	with	toString()	and	reading	it	back	with
fromString().	The	operator<<()	and	operator>>()	functions	are	also	available,	but
they	work	on	a	data	stream.

It	is	possible	to	set	the	height	of	characters	shown	on	the	screen	to	a	specified
number	of	pixels	with	setPixelSize();	however	using	setPointSize()	has	a	similar
effect	and	provides	device	independence.

Under	the	X	Window	System	you	can	set	a	font	using	its	system	specific	name
with	setRawName().

Loading	fonts	can	be	expensive,	especially	on	X11.	QFont	contains	extensive
optimizations	to	make	the	copying	of	QFont	objects	fast,	and	to	cache	the	results
of	the	slow	window	system	functions	it	depends	upon.

The	font	matching	algorithm	works	as	follows:

1.	 The	specified	font	family	is	searched	for.
2.	 If	not	found,	the	styleHint()	is	used	to	select	a	replacement	family.
3.	 Each	replacement	font	family	is	searched	for.
4.	 If	none	of	these	are	found	or	there	was	no	styleHint(),	"helvetica"	will	be

searched	for.
5.	 If	"helvetica"	isn't	found	Qt	will	try	the	lastResortFamily().
6.	 If	the	lastResortFamily()	isn't	found	Qt	will	try	the	lastResortFont()	which

will	always	return	a	name	of	some	kind.

Once	a	font	is	found,	the	remaining	attributes	are	matched	in	order	of	priority:

1.	 fixedPitch()
2.	 pointSize()	(see	below)

3.	 weight()
4.	 italic()

If	you	have	a	font	which	matches	on	family,	even	if	none	of	the	other	attributes
match,	this	font	will	be	chosen	in	preference	to	a	font	which	doesn't	match	on
family	but	which	does	match	on	the	other	attributes.	This	is	because	font	family
is	the	dominant	search	criteria.

The	point	size	is	defined	to	match	if	it	is	within	20%	of	the	requested	point	size.
When	several	fonts	match	and	are	only	distinguished	by	point	size,	the	font	with
the	closest	point	size	to	the	one	requested	will	be	chosen.

The	actual	family,	font	size,	weight	and	other	font	attributes	used	for	drawing
text	will	depend	on	what's	available	for	the	chosen	family	under	the	window
system.	A	QFontInfo	object	can	be	used	to	determine	the	actual	values	used	for
drawing	the	text.

Examples:

				QFont	f("Helvetica");

				

If	you	had	both	an	Adobe	and	a	Cronyx	Helvetica,	you	might	get	either.

				QFont	f1("Helvetica	[Cronyx]");		//	Qt	3.x

				QFont	f2("Cronyx-Helvetica");				//	Qt	2.x	compatibility

				

You	can	specify	the	foundry	you	want	in	the	family	name.	Both	fonts,	f1	and	f2,
in	the	above	example	will	be	set	to	"Helvetica	[Cronyx]".

To	determine	the	attributes	of	the	font	actually	used	in	the	window	system,	use	a
QFontInfo	object,	e.g.

				QFontInfo	info(f1);

				QString	family	=	info.family();

				

To	find	out	font	metrics	use	a	QFontMetrics	object,	e.g.

				QFontMetrics	fm(f1);

				int	pixelWidth	=	fm.width("How	many	pixels	wide	is	this	text?");

				int	pixelHeight	=	fm.height();

				

For	more	general	information	on	fonts,	see	the	comp.fonts	FAQ.	Information	on
encodings	can	be	found	from	Roman	Czyborra's	page.

See	also	QFontMetrics,	QFontInfo,	QFontDatabase,	QApplication::setFont(),
QWidget::font,	QPainter::setFont(),	QFont::StyleHint,	QFont::Weight,	Widget
Appearance	and	Style,	Graphics	Classes	and	Implicitly	and	Explicitly	Shared
Classes.

http://www.nwalsh.com/comp.fonts/FAQ/
http://czyborra.com/

Member	Type	Documentation

QFont::Script

This	enum	represents	Unicode	allocated	scripts.	For	exhaustive	coverage	see
The	Unicode	Standard	Version	3.0.	The	following	scripts	are	supported:

Modern	European	alphabetic	scripts	(left	to	right):

QFont::Latin	-	consists	of	most	alphabets	based	on	the	original	Latin
alphabet.
QFont::Greek	-	covers	ancient	and	modern	Greek	and	Coptic.
QFont::Cyrillic	-	covers	the	Slavic	and	non-Slavic	languages	using
cyrillic	alphabets.
QFont::Armenian	-	contains	the	Armenian	alphabet	used	with	the
Armenian	language.
QFont::Georgian	-	covers	at	least	the	language	Georgian.
QFont::Runic	-	covers	the	known	constituents	of	the	Runic	alphabets	used
by	the	early	and	medieval	societies	in	the	Germanic,	Scandinavian,	and
Anglo-Saxon	areas.
QFont::Ogham	-	is	an	alphabetical	script	used	to	write	a	very	early	form	of
Irish.
QFont::SpacingModifiers	-	are	small	signs	indicating	modifications	to	the
preceeding	letter.
QFont::CombiningMarks	-	consist	of	diacritical	marks	not	specific	to	a
particular	alphabet,	diacritical	marks	used	in	combination	with
mathematical	and	technical	symbols,	and	glyph	encodings	applied	to
multiple	letterforms.

Middle	Eastern	scripts	(right	to	left):

QFont::Hebrew	-	is	used	for	writing	Hebrew,	Yiddish,	and	some	other
languages.
QFont::Arabic	-	covers	the	Arabic	language	as	well	as	Persian,	Urdu,
Kurdish	and	some	others.
QFont::Syriac	-	is	used	to	write	the	active	liturgical	languages	and	dialects
of	several	Middle	Eastern	and	Southeast	Indian	communities.
QFont::Thaana	-	is	used	to	write	the	Maledivian	Dhivehi	language.

http://www.amazon.com/exec/obidos/ASIN/0201616335/trolltech/t

South	and	Southeast	Asian	scripts	(left	to	right	with	few	historical	exceptions):

QFont::Devanagari	-	covers	classical	Sanskrit	and	modern	Hindi	as	well	as
several	other	languages.
QFont::Bengali	-	is	a	relative	to	Devanagari	employed	to	write	the	Bengali
language	used	in	West	Bengal/India	and	Bangladesh	as	well	as	several
minority	languages.
QFont::Gurmukhi	-	is	another	Devanagari	relative	used	to	write	Punjabi.
QFont::Gujarati	-	is	closely	related	to	Devanagari	and	used	to	write	the
Gujarati	language	of	the	Gujarat	state	in	India.
QFont::Oriya	-	is	used	to	write	the	Oriya	language	of	Orissa	state/India.
QFont::Tamil	-	is	used	to	write	the	Tamil	language	of	Tamil	Nadu
state/India,	Sri	Lanka,	Singapore	and	parts	of	Malaysia	as	well	as	some
minority	languages.
QFont::Telugu	-	is	used	to	write	the	Telugu	language	of	Andhra	Pradesh
state/India	and	some	minority	languages.
QFont::Kannada	-	is	another	South	Indian	script	used	to	write	the	Kannada
language	of	Karnataka	state/India	and	some	minority	languages.
QFont::Malayalam	-	is	used	to	write	the	Malayalam	language	of	Kerala
state/India.
QFont::Sinhala	-	is	used	for	Sri	Lanka's	majority	language	Sinhala	and	is
also	employed	to	write	Pali,	Sanskrit,	and	Tamil.
QFont::Thai	-	is	used	to	write	Thai	and	other	Southeast	Asian	languages.
QFont::Lao	-	is	a	language	and	script	quite	similar	to	Thai.
QFont::Tibetan	-	is	the	script	used	to	write	Tibetan	in	several	countries
like	Tibet,	the	bordering	Indian	regions	and	Nepal.	It	is	also	used	in	the
Buddist	philosophy	and	liturgy	of	the	Mongolian	cultural	area.
QFont::Myanmar	-	is	mainly	used	to	write	the	Burmese	language	of
Myanmar	(former	Burma).
QFont::Khmer	-	is	the	official	language	of	Kampuchea.

East	Asian	scripts	(traditionally	top-down,	right	to	left,	modern	often	horizontal
left	to	right):

QFont::Han	-	consists	of	the	CJK	(Chinese,	Japanese,	Korean)	idiographic
characters.
QFont::Hiragana	-	is	a	cursive	syllabary	used	to	indicate	phonetics	and
pronounciation	of	Japanese	words.
QFont::Katakana	-	is	a	non-cursive	syllabic	script	used	to	write	Japanese

words	with	visual	emphasis	and	non-Japanese	words	in	a	phonetical
manner.
QFont::Hangul	-	is	a	Korean	script	consisting	of	alphabetic	components.
QFont::Bopomofo	-	is	a	phonetic	alphabet	for	Chinese	(mainly	Mandarin).
QFont::Yi	-	(also	called	Cuan	or	Wei)	is	a	syllabary	used	to	write	the	Yi
language	of	Southwestern	China,	Myanmar,	Laos,	and	Vietnam.

Additional	scripts	that	do	not	fit	well	into	the	script	categories	above:

QFont::Ethiopic	-	is	a	syllabary	used	by	several	Central	East	African
languages.
QFont::Cherokee	-	is	a	left-to-right	syllabic	script	used	to	write	the
Cherokee	language.
QFont::CanadianAboriginal	-	consists	of	the	syllabics	used	by	some
Canadian	aboriginal	societies.
QFont::Mongolian	-	is	the	traditional	(and	recently	reintroduced)	script
used	to	write	Mongolian.

Symbols:

QFont::CurrencySymbols	-	contains	currency	symbols	not	encoded	in	other
scripts.
QFont::LetterlikeSymbols	-	consists	of	symbols	derived	from	ordinary
letters	of	an	alphabetical	script.
QFont::NumberForms	-	are	provided	for	compatibility	with	other	existing
character	sets.
QFont::MathematicalOperators	-	consists	of	encodings	for	operators,
relations	and	other	symbols	like	arrows	used	in	a	mathematical	context.
QFont::TechnicalSymbols	-	contains	representations	for	control	codes,	the
space	symbol,	APL	symbols	and	other	symbols	mainly	used	in	the	context
of	electronic	data	processing.
QFont::GeometricSymbols	-	covers	block	elements	and	geometric	shapes.
QFont::MiscellaneousSymbols	-	consists	of	a	heterogeneous	collection	of
symbols	that	do	not	fit	any	other	Unicode	character	block,	e.g.	Dingbats.
QFont::EnclosedAndSquare	-	is	provided	for	compatibility	with	some	East
Asian	standards.
QFont::Braille	-	is	an	international	writing	system	used	by	blind	people.
This	script	encodes	the	256	eight-dot	patterns	with	the	64	six-dot	patterns	as
a	subset.

QFont::Unicode	-	includes	all	the	above	scripts.

The	values	below	are	provided	for	completeness	and	must	not	be	used	in	user
programs.

QFont::HanX11	-	For	internal	use	only.
QFont::LatinBasic	-	For	internal	use	only.
QFont::LatinExtendedA_2	-	For	internal	use	only.
QFont::LatinExtendedA_3	-	For	internal	use	only.
QFont::LatinExtendedA_4	-	For	internal	use	only.
QFont::LatinExtendedA_14	-	For	internal	use	only.
QFont::LatinExtendedA_15	-	For	internal	use	only.
QFont::LastPrivateScript	-	For	internal	use	only.
QFont::NScripts	-	For	internal	use	only.
QFont::NoScript	-	For	internal	use	only.
QFont::UnknownScript	-	For	internal	use	only.

QFont::StyleHint

Style	hints	are	used	by	the	font	matching	algorithm	to	find	an	appropriate	default
family	if	a	selected	font	family	is	not	available.

QFont::AnyStyle	-	leaves	the	font	matching	algorithm	to	choose	the
family.	This	is	the	default.
QFont::SansSerif	-	the	font	matcher	prefer	sans	serif	fonts.
QFont::Helvetica	-	is	a	synonym	for	SansSerif.
QFont::Serif	-	the	font	matcher	prefers	serif	fonts.
QFont::Times	-	is	a	synonym	for	Serif.
QFont::TypeWriter	-	the	font	matcher	prefers	fixed	pitch	fonts.
QFont::Courier	-	a	synonym	for	TypeWriter.
QFont::OldEnglish	-	the	font	matcher	prefers	decorative	fonts.
QFont::Decorative	-	is	a	synonym	for	OldEnglish.
QFont::System	-	the	font	matcher	prefers	system	fonts.

QFont::StyleStrategy

The	style	strategy	tells	the	font	matching	algorithm	what	type	of	fonts	should	be
used	to	find	an	appropriate	default	family.

The	following	strategies	are	available:

QFont::PreferDefault	-	the	default	style	strategy.	It	does	not	prefer	any
type	of	font.
QFont::PreferBitmap	-	prefers	bitmap	fonts	(as	opposed	to	outline	fonts).
On	X11,	this	will	cause	Qt	to	disregard	fonts	from	the	Xft	font	extension.
QFont::PreferDevice	-	prefers	device	fonts.
QFont::PreferOutline	-	prefers	outline	fonts	(as	opposed	to	bitmap	fonts).
QFont::ForceOutline	-	forces	the	use	of	outline	fonts.
QFont::NoAntialias	-	don't	antialias	the	fonts.
QFont::PreferAntialias	-	antialias	if	possible.

Any	of	these	may	be	OR-ed	with	one	of	these	flags:

QFont::PreferMatch	-	prefer	an	exact	match.	The	font	matcher	will	try	to
use	the	exact	font	size	that	has	been	specified.
QFont::PreferQuality	-	prefer	the	best	quality	font.	The	font	matcher	will
use	the	nearest	standard	point	size	that	the	font	supports.

QFont::Weight

Qt	uses	a	weighting	scale	from	0	to	99	similar	to,	but	not	the	same	as,	the	scales
used	in	Windows	or	CSS.	A	weight	of	0	is	ultralight,	whilst	99	will	be	an
extremely	black.

This	enum	contains	the	predefined	font	weights:

QFont::Light	-	25
QFont::Normal	-	50
QFont::DemiBold	-	63
QFont::Bold	-	75
QFont::Black	-	87

Member	Function	Documentation

QFont::QFont	()

Constructs	a	font	object	that	uses	the	application's	default	font.

See	also	QApplication::setFont()	and	QApplication::font().

QFont::QFont	(const	QString	&	family,	int	pointSize	=	12,
int	weight	=	Normal,	bool	italic	=	FALSE)

Constructs	a	font	object	with	the	specified	family,	pointSize,	weight	and	italic
settings.

If	pointSize	is	<=	0	it	is	set	to	1.

The	family	name	may	optionally	also	include	a	foundry	name,	e.g.	"Helvetica
[Cronyx]".	(The	Qt	2.x	syntax,	i.e.	"Cronyx-Helvetica",	is	also	supported.)	If	the
family	is	available	from	more	than	one	foundry	and	the	foundry	isn't	specified,
an	arbitrary	foundry	is	chosen.	If	the	family	isn't	available	a	family	will	be	set
using	the	font	matching	algorithm.

See	also	Weight,	setFamily(),	setPointSize(),	setWeight(),	setItalic(),
setStyleHint()	and	QApplication::font().

QFont::QFont	(const	QFont	&	font)

Constructs	a	font	that	is	a	copy	of	font.

QFont::~QFont	()

Destroys	the	font	object	and	frees	all	allocated	resources.

bool	QFont::bold	()	const

Returns	TRUE	if	weight()	is	a	value	greater	than	QFont::Normal;	otherwise
returns	FALSE.

See	also	weight(),	setBold()	and	QFontInfo::bold().

Example:	chart/optionsform.cpp.

int	QFont::deciPointSize	()	const	[protected]

Returns	the	point	size	in	1/10ths	of	a	point.

The	returned	value	will	be	-1	if	the	font	size	has	been	specified	in	pixels.

See	also	pointSize()	and	pointSizeFloat().

QString	QFont::defaultFamily	()	const

Returns	the	family	name	that	corresponds	to	the	current	style	hint.

See	also	StyleHint,	styleHint()	and	setStyleHint().

QFont	QFont::defaultFont	()	[static]

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Please	use	QApplication::font()	instead.

bool	QFont::dirty	()	const	[protected]

Returns	TRUE	if	the	font	attributes	have	been	changed	and	the	font	has	to	be
(re)loaded;	otherwise	returns	FALSE.

bool	QFont::exactMatch	()	const

Returns	TRUE	if	a	window	system	font	exactly	matching	the	settings	of	this	font
is	available.

See	also	QFontInfo.

QString	QFont::family	()	const

Returns	the	requested	font	family	name,	i.e.	the	name	set	in	the	constructor	or
the	last	setFont()	call.

See	also	setFamily(),	substitutes()	and	substitute().

Examples:	chart/optionsform.cpp	and	fonts/simple-qfont-demo/viewer.cpp.

bool	QFont::fixedPitch	()	const

Returns	TRUE	if	fixed	pitch	has	been	set;	otherwise	returns	FALSE.

See	also	setFixedPitch()	and	QFontInfo::fixedPitch().

bool	QFont::fromString	(const	QString	&	descrip)

Sets	this	font	to	match	the	description	descrip.	The	description	is	a	comma-
separated	list	of	the	font	attributes,	as	returned	by	toString().

See	also	toString()	and	operator>>().

HFONT	QFont::handle	()	const

Returns	the	window	system	handle	to	the	font,	for	low-level	access.	Using	this
function	is	not	portable.

void	QFont::insertSubstitution	(const	QString	&	familyName,
const	QString	&	substituteName)	[static]

Inserts	the	family	name	substituteName	into	the	substitution	table	for
familyName.

See	also	insertSubstitutions(),	removeSubstitution(),	substitutions(),	substitute()
and	substitutes().

Example:	fonts/simple-qfont-demo/viewer.cpp.

void	QFont::insertSubstitutions	(const	QString	&	familyName,
const	QStringList	&	substituteNames)	[static]

Inserts	the	list	of	families	substituteNames	into	the	substitution	list	for
familyName.

See	also	insertSubstitution(),	removeSubstitution(),	substitutions()	and
substitute().

Example:	fonts/simple-qfont-demo/viewer.cpp.

bool	QFont::isCopyOf	(const	QFont	&	f)	const

Returns	TRUE	if	this	font	and	f	are	copies	of	each	other,	i.e.	one	of	them	was
created	as	a	copy	of	the	other	and	neither	has	been	modified	since.	This	is	much
stricter	than	equality.

See	also	operator=()	and	operator==().

bool	QFont::italic	()	const

Returns	TRUE	if	italic	has	been	set;	otherwise	returns	FALSE.

See	also	setItalic().

Example:	chart/optionsform.cpp.

QString	QFont::key	()	const

Returns	the	font's	key,	a	textual	representation	of	a	font.	It	is	typically	used	as
the	key	for	a	cache	or	dictionary	of	fonts.

See	also	QMap.

QString	QFont::lastResortFamily	()	const

Returns	the	"last	resort"	font	family	name.

The	current	implementation	tries	a	wide	variety	of	common	fonts,	returning	the
first	one	it	finds.	Is	is	possible	that	no	family	is	found	in	which	case	a	null	string
is	returned.

See	also	lastResortFont().

QString	QFont::lastResortFont	()	const

Returns	a	"last	resort"	font	name	for	the	font	matching	algorithm.	This	is	used	if
the	last	resort	family	is	not	available.	It	will	always	return	a	name,	if	necessary
returning	something	like	"fixed"	or	"system".

The	current	implementation	tries	a	wide	variety	of	common	fonts,	returning	the
first	one	it	finds.	The	implementation	may	change	at	any	time,	but	this	function
will	always	return	a	string	containing	something.

It	is	theoretically	possible	that	there	really	isn't	a	lastResortFont()	in	which	case
Qt	will	abort	with	an	error	message.	We	have	not	been	able	to	identify	a	case
where	this	happens.	Please	report	it	as	a	bug	if	it	does,	preferably	with	a	list	of
the	fonts	you	have	installed.

See	also	lastResortFamily()	and	rawName().

bool	QFont::operator!=	(const	QFont	&	f)	const

Returns	TRUE	if	this	font	is	different	from	f;	otherwise	returns	FALSE.

Two	QFonts	are	considered	to	be	different	if	their	font	attributes	are	different.	If
rawMode()	is	enabled	for	both	fonts,	only	the	family	fields	are	compared.

See	also	operator==().

QFont	&	QFont::operator=	(const	QFont	&	font)

Assigns	font	to	this	font	and	returns	a	reference	to	it.

bool	QFont::operator==	(const	QFont	&	f)	const

Returns	TRUE	if	this	font	is	equal	to	f;	otherwise	returns	FALSE.

Two	QFonts	are	considered	equal	if	their	font	attributes	are	equal.	If	rawMode()
is	enabled	for	both	fonts,	only	the	family	fields	are	compared.

See	also	operator!=()	and	isCopyOf().

int	QFont::pixelSize	()	const

Returns	the	pixel	size	of	the	font	if	it	was	set	with	setPixelSize().	Returns	-1	if
the	size	was	set	with	setPointSize()	or	setPointSizeFloat().

See	also	setPixelSize(),	pointSize(),	QFontInfo::pointSize()	and
QFontInfo::pixelSize().

int	QFont::pointSize	()	const

Returns	the	point	size	of	the	font.	Returns	-1	if	the	font	size	was	specified	in
pixels.

See	also	setPointSize(),	deciPointSize()	and	pointSizeFloat().

Examples:	chart/optionsform.cpp	and	fonts/simple-qfont-demo/viewer.cpp.

float	QFont::pointSizeFloat	()	const

Returns	the	point	size	of	the	font.	Returns	-1	if	the	font	size	was	specified	in
pixels.

See	also	pointSize(),	setPointSizeFloat(),	pixelSize(),	QFontInfo::pointSize()	and
QFontInfo::pixelSize().

void	QFont::qwsRenderToDisk	(bool	all	=	TRUE)

Saves	the	glyphs	in	the	font	that	have	previously	been	accessed	as	a	QPF	file.	If
all	is	TRUE	(the	default),	then	before	saving,	all	glyphs	are	marked	as	used.

If	the	font	is	large	and	you	are	sure	that	only	a	subset	of	characters	will	ever	be
required	on	the	target	device,	passing	FALSE	for	the	all	parameter	can	save	a
significant	amount	of	disk	space.

Note	that	this	function	is	only	applicable	on	Qt/Embedded.

bool	QFont::rawMode	()	const

Returns	TRUE	if	raw	mode	is	used	for	font	name	matching;	otherwise	returns
FALSE.

See	also	setRawMode()	and	rawName().

QString	QFont::rawName	()	const

Returns	the	name	of	the	font	within	the	underlying	window	system.	On
Windows,	this	is	usually	just	the	family	name	of	a	TrueType	font.	Under	X,	it	is
an	XLFD	(X	Logical	Font	Description).	Using	the	return	value	of	this	function	is
usually	not	portable.

See	also	setRawName().

void	QFont::removeSubstitution	(const	QString	&	familyName)
[static]

Removes	all	the	substitutions	for	familyName.

See	also	insertSubstitutions(),	insertSubstitution(),	substitutions()	and
substitute().

void	QFont::setBold	(bool	enable)

If	enable	is	true	sets	the	font's	weight	to	QFont::Bold;	otherwise	sets	the	weight
to	QFont::Normal.

For	finer	boldness	control	use	setWeight().

See	also	bold()	and	setWeight().

Examples:	menu/menu.cpp	and	themes/metal.cpp.

void	QFont::setDefaultFont	(const	QFont	&	f)	[static]

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Please	use	QApplication::setFont()	instead.

void	QFont::setFamily	(const	QString	&	family)

Sets	the	family	name	of	the	font.	The	name	is	case	insensitive	and	may	include	a
foundry	name.

The	family	name	may	optionally	also	include	a	foundry	name,	e.g.	"Helvetica
[Cronyx]".	(The	Qt	2.x	syntax,	i.e.	"Cronyx-Helvetica",	is	also	supported.)	If	the
family	is	available	from	more	than	one	foundry	and	the	foundry	isn't	specified,
an	arbitrary	foundry	is	chosen.	If	the	family	isn't	available	a	family	will	be	set
using	the	font	matching	algorithm.

See	also	family(),	setStyleHint()	and	QFontInfo.

void	QFont::setFixedPitch	(bool	enable)

If	enable	is	TRUE,	sets	fixed	pitch	on;	otherwise	sets	fixed	pitch	off.

See	also	fixedPitch()	and	QFontInfo.

void	QFont::setItalic	(bool	enable)

If	enable	is	TRUE,	italic	is	set	on;	otherwise	italic	is	set	off.

See	also	italic()	and	QFontInfo.

Examples:	fileiconview/qfileiconview.cpp,	fonts/simple-qfont-demo/viewer.cpp
and	themes/metal.cpp.

void	QFont::setPixelSize	(int	pixelSize)

Sets	the	font	size	to	pixelSize	pixels.

Using	this	function	makes	the	font	device	dependent.	Use	setPointSize()	or
setPointSizeFloat()	to	set	the	size	of	the	font	in	a	device	independent	manner.

See	also	pixelSize().

Example:	qwerty/qwerty.cpp.

void	QFont::setPixelSizeFloat	(float	pixelSize)

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Sets	the	logical	pixel	height	of	font	characters	when	shown	on	the	screen	to
pixelSize.

void	QFont::setPointSize	(int	pointSize)

Sets	the	point	size	to	pointSize.	The	point	size	must	be	greater	than	zero.

See	also	pointSize()	and	setPointSizeFloat().

Example:	fonts/simple-qfont-demo/viewer.cpp.

void	QFont::setPointSizeFloat	(float	pointSize)

Sets	the	point	size	to	pointSize.	The	point	size	must	be	greater	than	zero.	The
requested	precision	may	not	be	achieved	on	all	platforms.

See	also	pointSizeFloat(),	setPointSize()	and	setPixelSize().

void	QFont::setRawMode	(bool	enable)

If	enable	is	TRUE,	turns	raw	mode	on;	otherwise	turns	raw	mode	off.	This
function	only	has	an	effect	under	X11.

If	raw	mode	is	enabled,	Qt	will	search	for	an	X	font	with	a	complete	font	name
matching	the	family	name,	ignoring	all	other	values	set	for	the	QFont.	If	the	font
name	matches	several	fonts,	Qt	will	use	the	first	font	returned	by	X.	QFontInfo
cannot	be	used	to	fetch	information	about	a	QFont	using	raw	mode	(it	will	return
the	values	set	in	the	QFont	for	all	parameters,	including	the	family	name).

Warning:	Do	not	use	raw	mode	unless	you	really,	really	need	it!	In	most	(if	not
all)	cases,	setRawName()	is	a	much	better	choice.

See	also	rawMode()	and	setRawName().

void	QFont::setRawName	(const	QString	&	name)

Sets	a	font	by	its	system	specific	name.	The	function	is	particularly	useful	under
X,	where	system	font	settings	(for	example	X	resources)	are	usually	available	in
XLFD	(X	Logical	Font	Description)	form	only.	You	can	pass	an	XLFD	as	name
to	this	function.

In	Qt	2.0	and	later,	a	font	set	with	setRawName()	is	still	a	full-featured	QFont.	It
can	be	queried	(for	example	with	italic())	or	modified	(for	example	with
setItalic())	and	is	therefore	also	suitable	for	rendering	rich	text.

If	Qt's	internal	font	database	cannot	resolve	the	raw	name,	the	font	becomes	a
raw	font	with	name	as	its	family.

Note	that	the	present	implementation	does	not	handle	wildcards	in	XLFDs	well,
and	that	font	aliases	(file	fonts.alias	in	the	font	directory	on	X11)	are	not
supported.

See	also	rawName(),	setRawMode()	and	setFamily().

void	QFont::setStrikeOut	(bool	enable)

If	enable	is	TRUE,	sets	strikeout	on;	otherwise	sets	strikeout	off.

See	also	strikeOut()	and	QFontInfo.

void	QFont::setStyleHint	(StyleHint	hint,	StyleStrategy	strategy
=	PreferDefault)

Sets	the	style	hint	and	strategy	to	hint	and	strategy,	respectively.

If	these	aren't	set	explicitly	the	style	hint	will	default	to	AnyStyle	and	the	style
strategy	to	PreferDefault.

See	also	StyleHint,	styleHint(),	StyleStrategy,	styleStrategy()	and	QFontInfo.

Examples:	desktop/desktop.cpp	and	fonts/simple-qfont-demo/viewer.cpp.

void	QFont::setStyleStrategy	(StyleStrategy	s)

Sets	the	style	strategy	for	the	font	to	s.

See	also	QFont::StyleStrategy.

void	QFont::setUnderline	(bool	enable)

If	enable	is	TRUE,	sets	underline	on;	otherwise	sets	underline	off.

See	also	underline()	and	QFontInfo.

Examples:	fonts/simple-qfont-demo/viewer.cpp	and	menu/menu.cpp.

void	QFont::setWeight	(int	weight)

Sets	the	weight	the	font	to	weight,	which	should	be	a	value	from	the
QFont::Weight	enumeration.

See	also	weight()	and	QFontInfo.

Example:	fonts/simple-qfont-demo/viewer.cpp.

bool	QFont::strikeOut	()	const

Returns	TRUE	if	strikeout	has	been	set;	otherwise	returns	FALSE.

See	also	setStrikeOut().

StyleHint	QFont::styleHint	()	const

Returns	the	StyleHint.

The	style	hint	affects	the	font	matching	algorithm.	See	QFont::StyleHint	for	the
list	of	strategies.

See	also	setStyleHint(),	QFont::StyleStrategy	and	QFontInfo::styleHint().

StyleStrategy	QFont::styleStrategy	()	const

Returns	the	StyleStrategy.

The	style	strategy	affects	the	font	matching	algorithm.	See	QFont::StyleStrategy
for	the	list	of	strategies.

See	also	setStyleHint()	and	QFont::StyleHint.

QString	QFont::substitute	(const	QString	&	familyName)
[static]

Returns	the	first	family	name	to	be	used	whenever	familyName	is	specified.	The
lookup	is	case	insensitive.

If	there	is	no	substitution	for	familyName,	familyName	is	returned.

To	obtain	a	list	of	substitutions	use	substitutes().

See	also	setFamily(),	insertSubstitutions(),	insertSubstitution()	and
removeSubstitution().

QStringList	QFont::substitutes	(const	QString	&	familyName)
[static]

Returns	a	list	of	family	names	to	be	used	whenever	familyName	is	specified.	The
lookup	is	case	insensitive.

If	there	is	no	substitution	for	familyName,	an	empty	list	is	returned.

See	also	substitute(),	insertSubstitutions(),	insertSubstitution()	and
removeSubstitution().

Example:	fonts/simple-qfont-demo/viewer.cpp.

QStringList	QFont::substitutions	()	[static]

Returns	a	sorted	list	of	substituted	family	names.

See	also	insertSubstitution(),	removeSubstitution()	and	substitute().

QString	QFont::toString	()	const

Returns	a	description	of	the	font.	The	description	is	a	comma-separated	list	of
the	attributes,	perfectly	suited	for	use	in	QSettings.

See	also	fromString()	and	operator<<().

bool	QFont::underline	()	const

Returns	TRUE	if	underline	has	been	set;	otherwise	returns	FALSE.

See	also	setUnderline().

int	QFont::weight	()	const

Returns	the	weight	of	the	font	which	is	one	of	the	enumerated	values	from
QFont::Weight.

See	also	setWeight(),	Weight	and	QFontInfo.

Related	Functions

QDataStream	&	operator<<	(QDataStream	&	s,
const	QFont	&	font)

Writes	the	font	font	to	the	data	stream	s.	(toString()	writes	to	a	text	stream.)

See	also	Format	of	the	QDataStream	operators.

QDataStream	&	operator>>	(QDataStream	&	s,	QFont	&	font)

Reads	the	font	font	from	the	data	stream	s.	(fromString()	reads	from	a	text
stream.)

See	also	Format	of	the	QDataStream	operators.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QFontMetrics	Class	Reference
The	QFontMetrics	class	provides	font	metrics	information.	More...

#include	<qfontmetrics.h>

List	of	all	member	functions.

Public	Members

QFontMetrics	(const	QFont	&	font)
QFontMetrics	(const	QFontMetrics	&	fm)
~QFontMetrics	()
QFontMetrics	&	operator=	(const	QFontMetrics	&	fm)
int	ascent	()	const
int	descent	()	const
int	height	()	const
int	leading	()	const
int	lineSpacing	()	const
int	minLeftBearing	()	const
int	minRightBearing	()	const
int	maxWidth	()	const
bool	inFont	(QChar	ch)	const
int	leftBearing	(QChar	ch)	const
int	rightBearing	(QChar	ch)	const
int	width	(const	QString	&	str,	int	len	=	-1)	const
int	width	(QChar	ch)	const
int	width	(char	c)	const		(obsolete)
int	charWidth	(const	QString	&	str,	int	pos)	const
QRect	boundingRect	(const	QString	&	str,	int	len	=	-1)	const
QRect	boundingRect	(QChar	ch)	const
QRect	boundingRect	(int	x,	int	y,	int	w,	int	h,	int	flgs,	const	QString	&	str,
int	len	=	-1,	int	tabstops	=	0,	int	*	tabarray	=	0,	QTextParag	**	intern	=	0)
const
QSize	size	(int	flgs,	const	QString	&	str,	int	len	=	-1,	int	tabstops	=	0,
int	*	tabarray	=	0,	QTextParag	**	intern	=	0)	const
int	underlinePos	()	const
int	strikeOutPos	()	const
int	lineWidth	()	const

Detailed	Description

The	QFontMetrics	class	provides	font	metrics	information.

QFontMetrics	functions	calculate	the	size	of	characters	and	strings	for	a	given
font.	There	are	three	ways	you	can	create	a	QFontMetrics	object:

1.	 Calling	the	QFontMetrics	constructor	with	a	QFont	creates	a	font	metrics
object	for	a	screen-compatible	font,	i.e.	the	font	cannot	be	a	printer	font*.	If
the	font	is	changed	later,	the	font	metrics	object	is	not	updated.

2.	 QWidget::fontMetrics()	returns	the	font	metrics	for	a	widget's	font.	This	is
equivalent	to	QFontMetrics(widget->font()).	If	the	widget's	font	is	changed
later,	the	font	metrics	object	is	not	updated.

3.	 QPainter::fontMetrics()	returns	the	font	metrics	for	a	painter's	current	font.
The	font	metrics	object	is	automatically	updated	if	you	set	a	new	painter
font.

*	If	you	use	a	printer	font	the	values	returned	will	almost	certainly	be	inaccurate.
Printer	fonts	are	not	always	accessible	so	the	nearest	screen	font	is	used	if	a
printer	font	is	supplied.

Once	created,	the	object	provides	functions	to	access	the	individual	metrics	of
the	font,	its	characters,	and	for	strings	rendered	in	the	font.

There	are	several	functions	that	operate	on	the	font:	ascent(),	descent(),	height(),
leading()	and	lineSpacing()	return	the	basic	size	properties	of	the	font.	The
underlinePos(),	strikeOutPos()	and	lineWidth()	functions,	return	the	properties	of
the	line	that	underlines	or	strikes	out	the	characters.	These	functions	are	all	fast.

There	are	also	some	functions	that	operate	on	the	set	of	glyphs	in	the	font:
minLeftBearing(),	minRightBearing()	and	maxWidth().	These	are	by	necessity
slow,	and	we	recommend	avoiding	them	if	possible.

For	each	character,	you	can	get	its	width(),	leftBearing()	and	rightBearing()	and
find	out	whether	it	is	in	the	font	using	inFont().	You	can	also	treat	the	character
as	a	string,	and	use	the	string	functions	on	it.

The	string	functions	include	width(),	to	return	the	width	of	a	string	in	pixels	(or
points,	for	a	printer),	boundingRect(),	to	return	a	rectangle	large	enough	to
contain	the	rendered	string,	and	size(),	to	return	the	size	of	that	rectangle.

Example:

				QFont	font("times",	24);

				QFontMetrics	fm(font);

				int	pixelsWide	=	fm.width("What's	the	width	of	this	text?");

				int	pixelsHigh	=	fm.height();

				

See	also	QFont,	QFontInfo,	QFontDatabase,	Graphics	Classes	and	Implicitly	and
Explicitly	Shared	Classes.

Member	Function	Documentation

QFontMetrics::QFontMetrics	(const	QFont	&	font)

Constructs	a	font	metrics	object	for	font.

The	font	must	be	screen-compatible,	i.e.	a	font	you	use	when	drawing	text	in
widgets	or	pixmaps,	not	QPicture	or	QPrinter.

The	font	metrics	object	holds	the	information	for	the	font	that	is	passed	in	the
constructor	at	the	time	it	is	created,	and	is	not	updated	if	the	font's	attributes	are
changed	later.

Use	QPainter::fontMetrics()	to	get	the	font	metrics	when	painting.	This	is	a	little
slower	than	using	this	constructor,	but	it	always	gives	correct	results	because	the
font	info	data	is	updated.

QFontMetrics::QFontMetrics	(const	QFontMetrics	&	fm)

Constructs	a	copy	of	fm.

QFontMetrics::~QFontMetrics	()

Destroys	the	font	metrics	object	and	frees	all	allocated	resources.

int	QFontMetrics::ascent	()	const

Returns	the	ascent	of	the	font.

The	ascent	of	a	font	is	the	distance	from	the	baseline	to	the	highest	position
characters	extend	to.	In	practice,	some	font	designers	break	this	rule,	e.g.	when
they	put	more	than	one	accent	on	top	of	a	character,	or	to	accommodate	an
unusual	character	in	an	exotic	language,	so	it	is	possible	(though	rare)	that	this
value	will	be	too	small.

See	also	descent().

Examples:	drawdemo/drawdemo.cpp	and	scrollview/scrollview.cpp.

QRect	QFontMetrics::boundingRect	(const	QString	&	str,	int	len
=	-1)	const

Returns	the	bounding	rectangle	of	the	first	len	characters	of	str,	which	is	the	set
of	pixels	the	text	would	cover	if	drawn	at	(0,	0).

If	len	is	negative	(the	default),	the	entire	string	is	used.

Note	that	the	bounding	rectangle	may	extend	to	the	left	of	(0,	0),	e.g.	for
italicized	fonts,	and	that	the	text	output	may	cover	all	pixels	in	the	bounding
rectangle.

Newline	characters	are	processed	as	normal	characters,	not	as	linebreaks.

Due	to	the	different	actual	character	heights,	the	height	of	the	bounding	rectangle
of	e.g.	"Yes"	and	"yes"	may	be	different.

See	also	width()	and	QPainter::boundingRect().

Example:	xform/xform.cpp.

QRect	QFontMetrics::boundingRect	(QChar	ch)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	the	bounding	rectangle	of	the	character	ch	relative	to	the	left-most	point
on	the	base	line.

Note	that	the	bounding	rectangle	may	extend	to	the	left	of	(0,	0),	e.g.	for
italicized	fonts,	and	that	the	text	output	may	cover	all	pixels	in	the	bounding
rectangle.

Note	that	the	rectangle	usually	extends	both	above	and	below	the	base	line.

See	also	width().

QRect	QFontMetrics::boundingRect	(int	x,	int	y,	int	w,	int	h,
int	flgs,	const	QString	&	str,	int	len	=	-1,	int	tabstops	=	0,
int	*	tabarray	=	0,	QTextParag	**	intern	=	0)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	the	bounding	rectangle	of	the	first	len	characters	of	str,	which	is	the	set
of	pixels	the	text	would	cover	if	drawn	at	(0,	0).	The	drawing,	and	hence	the
bounding	rectangle,	is	constrained	to	the	rectangle	(x,	y,	w,	h).

If	len	is	negative	(which	is	the	default),	the	entire	string	is	used.

The	flgs	argument	is	the	bitwise	OR	of	the	following	flags:

AlignAuto	aligns	to	the	left	border	for	all	languages	except	Arabic	and
Hebrew	where	it	aligns	to	the	right.
AlignLeft	aligns	to	the	left	border.
AlignRight	aligns	to	the	right	border.
AlignJustify	produces	justified	text.
AlignHCenter	aligns	horizontally	centered.
AlignTop	aligns	to	the	top	border.
AlignBottom	aligns	to	the	bottom	border.
AlignVCenter	aligns	vertically	centered
AlignCenter	(==	AlignHCenter	|	AlignVCenter)
SingleLine	ignores	newline	characters	in	the	text.
ExpandTabs	expands	tabs	(see	below)
ShowPrefix	interprets	"&x"	as	"x",	i.e.	underlined.
WordBreak	breaks	the	text	to	fit	the	rectangle.

Horizontal	alignment	defaults	to	AlignAuto	and	vertical	alignment	defaults	to
AlignTop.

If	several	of	the	horizontal	or	several	of	the	vertical	alignment	flags	are	set,	the
resulting	alignment	is	undefined.

These	flags	are	defined	in	qnamespace.h.

If	ExpandTabs	is	set	in	flgs,	then:	if	tabarray	is	non-null,	it	specifies	a	0-

terminated	sequence	of	pixel-positions	for	tabs;	otherwise	if	tabstops	is	non-
zero,	it	is	used	as	the	tab	spacing	(in	pixels).

Note	that	the	bounding	rectangle	may	extend	to	the	left	of	(0,	0),	e.g.	for
italicized	fonts,	and	that	the	text	output	may	cover	all	pixels	in	the	bounding
rectangle.

Newline	characters	are	processed	as	linebreaks.

Despite	the	different	actual	character	heights,	the	heights	of	the	bounding
rectangles	of	"Yes"	and	"yes"	are	the	same.

The	bounding	rectangle	given	by	this	function	is	somewhat	larger	than	that
calculated	by	the	simpler	boundingRect()	function.	This	function	uses	the
maximum	left	and	right	font	bearings	as	is	necessary	for	multi-line	text	to	align
correctly.	Also,	fontHeight()	and	lineSpacing()	are	used	to	calculate	the	height,
rather	than	individual	character	heights.

The	intern	argument	should	not	be	used.

See	also	width(),	QPainter::boundingRect()	and	Qt::AlignmentFlags.

int	QFontMetrics::charWidth	(const	QString	&	str,	int	pos)
const

Returns	the	width	of	the	character	at	position	pos	in	the	string	str.

The	whole	string	is	needed,	as	the	glyph	drawn	may	change	depending	on	the
context	(the	letter	before	and	after	the	current	one)	for	some	languages	(e.g.
Arabic).

This	function	also	takes	non	spacing	marks	and	ligatures	into	account.

int	QFontMetrics::descent	()	const

Returns	the	descent	of	the	font.

The	descent	is	the	distance	from	the	base	line	to	the	lowest	point	characters
extend	to.	(Note	that	this	is	different	from	X,	which	adds	1	pixel.)	In	practice,

some	font	designers	break	this	rule,	e.g.	to	accommodate	an	unusual	character	in
an	exotic	language,	so	it	is	possible	(though	rare)	that	this	value	will	be	too
small.

See	also	ascent().

Examples:	drawdemo/drawdemo.cpp	and	hello/hello.cpp.

int	QFontMetrics::height	()	const

Returns	the	height	of	the	font.

This	is	always	equal	to	ascent()+descent()+1	(the	1	is	for	the	base	line).

See	also	leading()	and	lineSpacing().

Examples:	grapher/grapher.cpp,	hello/hello.cpp	and	qfd/fontdisplayer.cpp.

bool	QFontMetrics::inFont	(QChar	ch)	const

Returns	TRUE	if	character	ch	is	a	valid	character	in	the	font;	otherwise	returns
FALSE.

Example:	qfd/fontdisplayer.cpp.

int	QFontMetrics::leading	()	const

Returns	the	leading	of	the	font.

This	is	the	natural	inter-line	spacing.

See	also	height()	and	lineSpacing().

int	QFontMetrics::leftBearing	(QChar	ch)	const

Returns	the	left	bearing	of	character	ch	in	the	font.

The	left	bearing	is	the	right-ward	distance	of	the	left-most	pixel	of	the	character
from	the	logical	origin	of	the	character.	This	value	is	negative	if	the	pixels	of	the

character	extend	to	the	left	of	the	logical	origin.

See	width(QChar)	for	a	graphical	description	of	this	metric.

See	also	rightBearing(),	minLeftBearing()	and	width().

Example:	qfd/fontdisplayer.cpp.

int	QFontMetrics::lineSpacing	()	const

Returns	the	distance	from	one	base	line	to	the	next.

This	value	is	always	equal	to	leading()+height().

See	also	height()	and	leading().

Examples:	action/application.cpp,	application/application.cpp,
mdi/application.cpp,	qfd/fontdisplayer.cpp,	qwerty/qwerty.cpp	and
scrollview/scrollview.cpp.

int	QFontMetrics::lineWidth	()	const

Returns	the	width	of	the	underline	and	strikeout	lines,	adjusted	for	the	point	size
of	the	font.

See	also	underlinePos()	and	strikeOutPos().

int	QFontMetrics::maxWidth	()	const

Returns	the	width	of	the	widest	character	in	the	font.

Example:	qfd/fontdisplayer.cpp.

int	QFontMetrics::minLeftBearing	()	const

Returns	the	minimum	left	bearing	of	the	font.

This	is	the	smallest	leftBearing(char)	of	all	characters	in	the	font.

Note	that	this	function	can	be	very	slow	if	the	font	is	large.

See	also	minRightBearing()	and	leftBearing().

Example:	qfd/fontdisplayer.cpp.

int	QFontMetrics::minRightBearing	()	const

Returns	the	minimum	right	bearing	of	the	font.

This	is	the	smallest	rightBearing(char)	of	all	characters	in	the	font.

Note	that	this	function	can	be	very	slow	if	the	font	is	large.

See	also	minLeftBearing()	and	rightBearing().

Example:	qfd/fontdisplayer.cpp.

QFontMetrics	&	QFontMetrics::operator=	(
const	QFontMetrics	&	fm)

Assigns	the	font	metrics	fm.

int	QFontMetrics::rightBearing	(QChar	ch)	const

Returns	the	right	bearing	of	character	ch	in	the	font.

The	right	bearing	is	the	left-ward	distance	of	the	right-most	pixel	of	the	character
from	the	logical	origin	of	a	subsequent	character.	This	value	is	negative	if	the
pixels	of	the	character	extend	to	the	right	of	the	width()	of	the	character.

See	width()	for	a	graphical	description	of	this	metric.

See	also	leftBearing(),	minRightBearing()	and	width().

Example:	qfd/fontdisplayer.cpp.

QSize	QFontMetrics::size	(int	flgs,	const	QString	&	str,	int	len	=
-1,	int	tabstops	=	0,	int	*	tabarray	=	0,	QTextParag	**	intern	=

0)	const

Returns	the	size	in	pixels	of	the	first	len	characters	of	str.

If	len	is	negative	(the	default),	the	entire	string	is	used.

The	flgs	argument	is	the	bitwise	OR	of	the	following	flags:

SingleLine	ignores	newline	characters.
ExpandTabs	expands	tabs	(see	below)
ShowPrefix	interprets	"&x"	as	"x",	i.e.	underlined.
WordBreak	breaks	the	text	to	fit	the	rectangle.

These	flags	are	defined	in	qnamespace.h.

If	ExpandTabs	is	set	in	flgs,	then:	if	tabarray	is	non-null,	it	specifies	a	0-
terminated	sequence	of	pixel-positions	for	tabs;	otherwise	if	tabstops	is	non-
zero,	it	is	used	as	the	tab	spacing	(in	pixels).

Newline	characters	are	processed	as	linebreaks.

Despite	the	different	actual	character	heights,	the	heights	of	the	bounding
rectangles	of	"Yes"	and	"yes"	are	the	same.

The	intern	argument	should	not	be	used.

See	also	boundingRect().

int	QFontMetrics::strikeOutPos	()	const

Returns	the	distance	from	the	base	line	to	where	the	strikeout	line	should	be
drawn.

See	also	underlinePos()	and	lineWidth().

int	QFontMetrics::underlinePos	()	const

Returns	the	distance	from	the	base	line	to	where	an	underscore	should	be	drawn.

See	also	strikeOutPos()	and	lineWidth().

int	QFontMetrics::width	(const	QString	&	str,	int	len	=	-1)	const

Returns	the	width	in	pixels	of	the	first	len	characters	of	str.	If	len	is	negative	(the
default),	the	entire	string	is	used.

Note	that	this	value	is	not	equal	to	boundingRect().width();	boundingRect()
returns	a	rectangle	describing	the	pixels	this	string	will	cover	whereas	width()
returns	the	distance	to	where	the	next	string	should	be	drawn.

See	also	boundingRect().

Examples:	drawdemo/drawdemo.cpp,	hello/hello.cpp,	movies/main.cpp,
qfd/fontdisplayer.cpp	and	scrollview/scrollview.cpp.

int	QFontMetrics::width	(QChar	ch)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	the	logical	width	of	character	ch	in
pixels.	This	is	a	distance	appropriate	for
drawing	a	subsequent	character	after	ch.

Some	of	the	metrics	are	described	in	the
image	to	the	right.	The	central	dark
rectangles	cover	the	logical	width()	of	each
character.	The	outer	pale	rectangles	cover	the	leftBearing()	and	rightBearing()	of
each	character.	Notice	that	the	bearings	of	"f"	in	this	particular	font	are	both
negative,	while	the	bearings	of	"o"	are	both	positive.

Warning:	This	function	will	produce	incorrect	results	for	Arabic	characters	or
non	spacing	marks	in	the	middle	of	a	string,	as	the	glyph	shaping	and	positioning
of	marks	that	happens	when	processing	strings	cannot	be	taken	into	account.	Use
charWidth()	instead	if	you	aren't	looking	for	the	width	of	isolated	characters.

See	also	boundingRect()	and	charWidth().

int	QFontMetrics::width	(char	c)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Provided	to	aid	porting	from	Qt	1.x.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qvbox.h
This	is	the	verbatim	text	of	the	qvbox.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qvbox.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	vertical	box	layout	widget	class

**

**	Created	:	990124

**

**	Copyright	(C)	1999-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QVBOX_H

#define	QVBOX_H

#ifndef	QT_H

#include	"qhbox.h"

#endif	//	QT_H

#ifndef	QT_NO_VBOX

class	Q_EXPORT	QVBox	:	public	QHBox

{

				Q_OBJECT

public:

				QVBox(QWidget*	parent=0,	const	char*	name=0,	WFlags	f=0);

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QVBox(const	QVBox	&);

				QVBox&	operator=(const	QVBox	&);

#endif

};

#endif	//	QT_NO_VBOX

#endif	//	QVBOX_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QVBox	Class	Reference
The	QVBox	widget	provides	vertical	geometry	management	of	its	child	widgets.
More...

#include	<qvbox.h>

Inherits	QHBox.

List	of	all	member	functions.

Public	Members

QVBox	(QWidget	*	parent	=	0,	const	char	*	name	=	0,	WFlags	f	=	0)

Detailed	Description

The	QVBox	widget	provides	vertical	geometry	management	of	its	child	widgets.

All	its	child	widgets	will	be	placed	vertically	and	sized	according	to	their
sizeHint()s.

See	also	QHBox,	Widget	Appearance	and	Style,	Layout	Management	and
Organizers.

Member	Function	Documentation

QVBox::QVBox	(QWidget	*	parent	=	0,	const	char	*	name	=	0,
WFlags	f	=	0)

Constructs	a	vbox	widget	called	name	with	parent	parent	and	widget	flags	f.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qslider.h
This	is	the	verbatim	text	of	the	qslider.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	Id

**

**	Definition	of	QSlider	class

**

**	Created	:	961019

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QSLIDER_H

#define	QSLIDER_H

#ifndef	QT_H

#include	"qwidget.h"

#include	"qrangecontrol.h"

#endif	//	QT_H

#ifndef	QT_NO_SLIDER

struct	QSliderPrivate;

class	QTimer;

class	Q_EXPORT	QSlider	:	public	QWidget,	public	QRangeControl

{

				Q_OBJECT

				Q_ENUMS(TickSetting)

				Q_PROPERTY(int	minValue	READ	minValue	WRITE	setMinValue)

				Q_PROPERTY(int	maxValue	READ	maxValue	WRITE	setMaxValue)

				Q_PROPERTY(int	lineStep	READ	lineStep	WRITE	setLineStep)

				Q_PROPERTY(int	pageStep	READ	pageStep	WRITE	setPageStep)

				Q_PROPERTY(int	value	READ	value	WRITE	setValue)

				Q_PROPERTY(bool	tracking	READ	tracking	WRITE	setTracking)

				Q_PROPERTY(Orientation	orientation	READ	orientation	WRITE	setOrientation)

				Q_PROPERTY(TickSetting	tickmarks	READ	tickmarks	WRITE	setTickmarks)

				Q_PROPERTY(int	tickInterval	READ	tickInterval	WRITE	setTickInterval)

	

public:

				enum	TickSetting	{	NoMarks	=	0,	Above	=	1,	Left	=	Above,

	 	 							Below	=	2,	Right	=	Below,	Both	=	3	};

				QSlider(QWidget	*parent,	const	char*	name=0);

				QSlider(Orientation,	QWidget	*parent,	const	char*	name=0);

				QSlider(int	minValue,	int	maxValue,	int	pageStep,	int	value,	Orientation,

	 					QWidget	*parent,	const	char*	name=0);

				virtual	void	 setOrientation(Orientation);

				Orientation	orientation()	const;

				virtual	void	 setTracking(bool	enable);

				bool	 tracking()	const;

				virtual	void		 setPalette(const	QPalette	&);

				int		 sliderStart()	const;

				QRect	 sliderRect()	const;

				QSize	 sizeHint()	const;

				QSizePolicy	sizePolicy()	const;

				QSize	 minimumSizeHint()	const;

				virtual	void	setTickmarks(TickSetting);

				TickSetting	tickmarks()	const	{	return	ticks;	}

				virtual	void	setTickInterval(int);

				int		 tickInterval()	const	{	return	tickInt;	}

				int		minValue()	const;

				int		maxValue()	const;

				void	setMinValue(int);

				void	setMaxValue(int);

				int		lineStep()	const;

				int		pageStep()	const;

				void	setLineStep(int);

				void	setPageStep(int);

				int		value()	const;

public	slots:

				virtual	void	 setValue(int);

				void	 addStep();

				void	 subtractStep();

signals:

				void	 valueChanged(int	value);

				void	 sliderPressed();

				void	 sliderMoved(int	value);

				void	 sliderReleased();

protected:

				void	 resizeEvent(QResizeEvent	*);

				void	 paintEvent(QPaintEvent	*);

				void	 keyPressEvent(QKeyEvent	*);

				void	 mousePressEvent(QMouseEvent	*);

				void	 mouseReleaseEvent(QMouseEvent	*);

				void	 mouseMoveEvent(QMouseEvent	*);

#ifndef	QT_NO_WHEELEVENT

				void	 wheelEvent(QWheelEvent	*);

#endif

				void	 focusInEvent(QFocusEvent	*e);

				void	 focusOutEvent(QFocusEvent	*e);

				void	 styleChange(QStyle&);

				void	 valueChange();

				void	 rangeChange();

private	slots:

				void	 repeatTimeout();

private:

				enum	State	{	Idle,	Dragging,	TimingUp,	TimingDown	};

				void	 init();

				int		 positionFromValue(int)	const;

				int		 valueFromPosition(int)	const;

				void	 moveSlider(int);

				void	 reallyMoveSlider(int);

				void	 resetState();

				int		 available()	const;

				int		 goodPart(const	QPoint&)	const;

				void	 initTicks();

				QSliderPrivate	*extra;

				QTimer	 *timer;

				QCOORD	 sliderPos;

				int		 sliderVal;

				QCOORD	 clickOffset;

				State	 state;

				bool	 track;

				QCOORD	 tickOffset;

				TickSetting	ticks;

				int		 tickInt;

				Orientation	orient;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QSlider(const	QSlider	&);

				QSlider	&operator=(const	QSlider	&);

#endif

};

inline	bool	QSlider::tracking()	const

{

				return	track;

}

inline	QSlider::Orientation	QSlider::orientation()	const

{

				return	orient;

}

inline	int	QSlider::sliderStart()	const

{

				return	sliderPos;

}

#endif	//	QT_NO_SLIDER

#endif	//	QSLIDER_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qlcdnumber.h
This	is	the	verbatim	text	of	the	qlcdnumber.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qlcdnumber.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QLCDNumber	class

**

**	Created	:	940518

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QLCDNUMBER_H

#define	QLCDNUMBER_H

#ifndef	QT_H

#include	"qframe.h"

#include	"qbitarray.h"

#endif	//	QT_H

#ifndef	QT_NO_LCDNUMBER

class	QLCDNumberPrivate;

class	Q_EXPORT	QLCDNumber	:	public	QFrame	 	 //	LCD	number	widget

{

				Q_OBJECT

				Q_ENUMS(Mode	SegmentStyle)

				Q_PROPERTY(bool	smallDecimalPoint	READ	smallDecimalPoint	WRITE	setSmallDecimalPoint)

				Q_PROPERTY(int	numDigits	READ	numDigits	WRITE	setNumDigits)

				Q_PROPERTY(Mode	mode	READ	mode	WRITE	setMode)

				Q_PROPERTY(SegmentStyle	segmentStyle	READ	segmentStyle	WRITE	setSegmentStyle)

				Q_PROPERTY(double	value	READ	value	WRITE	display)

				Q_PROPERTY(int	intValue	READ	intValue	WRITE	display)

public:

				QLCDNumber(QWidget*	parent=0,	const	char*	name=0);

				QLCDNumber(uint	numDigits,	QWidget*	parent=0,	const	char*	name=0);

				~QLCDNumber();

				enum	Mode	{	Hex,	Dec,	Oct,	Bin,	HEX	=	Hex,	DEC	=	Dec,	OCT	=	Oct,

	 	 BIN	=	Bin	};

				enum	SegmentStyle	{	Outline,	Filled,	Flat	};

				bool				smallDecimalPoint()	const;

				int					numDigits()	const;

				virtual	void	setNumDigits(int	nDigits);

				bool				checkOverflow(double	num)	const;

				bool				checkOverflow(int	 		num)	const;

				Mode	mode()	const;

				virtual	void	setMode(Mode);

				SegmentStyle	segmentStyle()	const;

				virtual	void	setSegmentStyle(SegmentStyle);

				double		value()	const;

				int					intValue()	const;

				QSize	sizeHint()	const;

public	slots:

				void				display(const	QString	&str);

				void				display(int	num);

				void				display(double	num);

				virtual	void	setHexMode();

				virtual	void	setDecMode();

				virtual	void	setOctMode();

				virtual	void	setBinMode();

				virtual	void	setSmallDecimalPoint(bool);

signals:

				void				overflow();

protected:

				void				drawContents(QPainter	*);

private:

				void				init();

				void				internalDisplay(const	QString	&);

				void				internalSetString(const	QString&	s);

				void				drawString(const	QString&	s,	QPainter	&,	QBitArray	*	=	0,

	 	 	 bool	=	TRUE);

				//void				drawString(const	QString	&,	QPainter	&,	QBitArray	*	=	0)	const;

				void				drawDigit(const	QPoint	&,	QPainter	&,	int,	char,

	 	 							char	=	'	');

				void				drawSegment(const	QPoint	&,	char,	QPainter	&,	int,	bool	=	FALSE);

				int					ndigits;

				double		val;

				uint				base	 :	2;

				uint				smallPoint	 :	1;

				uint				fill	 :	1;

				uint				shadow	 :	1;

				QString	digitStr;

				QBitArray	points;

				QLCDNumberPrivate	*	d;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QLCDNumber(const	QLCDNumber	&);

				QLCDNumber	&operator=(const	QLCDNumber	&);

#endif

};

inline	bool	QLCDNumber::smallDecimalPoint()	const

{	return	(bool)smallPoint;	}

inline	int	QLCDNumber::numDigits()	const

{	return	ndigits;	}

#endif	//	QT_NO_LCDNUMBER

#endif	//	QLCDNUMBER_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QLCDNumber	Class	Reference
The	QLCDNumber	widget	displays	a	number	with	LCD-like	digits.	More...

#include	<qlcdnumber.h>

Inherits	QFrame.

List	of	all	member	functions.

Public	Members

QLCDNumber	(QWidget	*	parent	=	0,	const	char	*	name	=	0)
QLCDNumber	(uint	numDigits,	QWidget	*	parent	=	0,	const	char	*	name
=	0)
~QLCDNumber	()
enum	Mode	{	Hex,	Dec,	Oct,	Bin,	HEX	=	Hex,	DEC	=	Dec,	OCT	=	Oct,
BIN	=	Bin	}
enum	SegmentStyle	{	Outline,	Filled,	Flat	}
bool	smallDecimalPoint	()	const
int	numDigits	()	const
virtual	void	setNumDigits	(int	nDigits)
bool	checkOverflow	(double	num)	const
bool	checkOverflow	(int	num)	const
Mode	mode	()	const
virtual	void	setMode	(Mode)
SegmentStyle	segmentStyle	()	const
virtual	void	setSegmentStyle	(SegmentStyle)
double	value	()	const
int	intValue	()	const

Public	Slots

void	display	(const	QString	&	s)
void	display	(int	num)
void	display	(double	num)
virtual	void	setHexMode	()
virtual	void	setDecMode	()
virtual	void	setOctMode	()
virtual	void	setBinMode	()
virtual	void	setSmallDecimalPoint	(bool)

Signals

void	overflow	()

Properties

int	intValue	-	the	displayed	value	rounded	to	the	nearest	integer
Mode	mode	-	the	current	display	mode	(number	base)
int	numDigits	-	the	current	number	of	digits	displayed
SegmentStyle	segmentStyle	-	the	style	of	the	LCDNumber
bool	smallDecimalPoint	-	the	style	of	the	decimal	point
double	value	-	the	displayed	value

Protected	Members

virtual	void	drawContents	(QPainter	*	p)

Detailed	Description

The	QLCDNumber	widget	displays	a	number	with	LCD-like	digits.

It	can	display	a	number	in	just	about	any	size.	It	can	display	decimal,
hexadecimal,	octal	or	binary	numbers.	It	is	easy	to	connect	to	data	sources	using
the	display()	slot,	which	is	overloaded	to	take	any	of	five	argument	types.

There	are	also	slots	to	change	the	base	with	setMode()	and	the	decimal	point
with	setSmallDecimalPoint().

QLCDNumber	emits	the	overflow()	signal	when	it	is	asked	to	display	something
beyond	its	range.	The	range	is	set	by	setNumDigits(),	but
setSmallDecimalPoint()	also	influences	it.	If	the	display	is	set	to	hexadecimal,
octal	or	binary,	the	integer	equivalent	of	the	value	is	displayed.

These	digits	and	other	symbols	can	be	shown:	0/O,	1,	2,	3,	4,	5/S,	6,	7,	8,	9/g,
minus,	decimal	point,	A,	B,	C,	D,	E,	F,	h,	H,	L,	o,	P,	r,	u,	U,	Y,	colon,	degree	sign
(which	is	specified	as	single	quote	in	the	string)	and	space.	QLCDNumber
substitutes	spaces	for	illegal	characters.

It	is	not	possible	to	retrieve	the	contents	of	a	QLCDNumber	object,	although	you
can	retrieve	the	numeric	value	with	value().	If	you	really	need	the	text,	we
recommend	that	you	connect	the	signals	that	feed	the	display()	slot	to	another
slot	as	well	and	store	the	value	there.

Incidentally,	QLCDNumber	is	the	very	oldest	part	of	Qt,	tracing	back	to	a
BASIC	program	on	the	Sinclair	Spectrum.

	

See	also	QLabel,	QFrame	and	Basic	Widgets.

http://www.nvg.ntnu.no/sinclair/spectrum.htm

Member	Type	Documentation

QLCDNumber::Mode

This	type	determines	how	numbers	are	shown.	The	possible	values	are:

QLCDNumber::Hex	-	Hexadecimal
QLCDNumber::Dec	-	Decimal
QLCDNumber::Oct	-	Octal
QLCDNumber::Bin	-	Binary

If	the	display	is	set	to	hexadecimal,	octal	or	binary,	the	integer	equivalent	of	the
value	is	displayed.

QLCDNumber::SegmentStyle

This	type	determines	the	visual	appearance	of	the	QLCDNumber	widget.	The
possible	values	are:

QLCDNumber::Outline	-	gives	raised	segments	filled	with	the	background
brush.
QLCDNumber::Filled	-	gives	raised	segments	filled	with	the	foreground
brush.
QLCDNumber::Flat	-	gives	flat	segments	filled	with	the	foreground	brush.

Member	Function	Documentation

QLCDNumber::QLCDNumber	(QWidget	*	parent	=	0,
const	char	*	name	=	0)

Constructs	an	LCD	number,	sets	the	number	of	digits	to	5,	the	base	to	decimal,
the	decimal	point	mode	to	'small'	and	the	frame	style	to	a	raised	box.	The
segmentStyle()	is	set	to	Outline.

The	parent	and	name	arguments	are	passed	to	the	QFrame	constructor.

See	also	numDigits	and	smallDecimalPoint.

QLCDNumber::QLCDNumber	(uint	numDigits,
QWidget	*	parent	=	0,	const	char	*	name	=	0)

Constructs	an	LCD	number,	sets	the	number	of	digits	to	numDigits,	the	base	to
decimal,	the	decimal	point	mode	to	'small'	and	the	frame	style	to	a	raised	box.
The	segmentStyle()	is	set	to	Outline.

The	parent	and	name	arguments	are	passed	to	the	QFrame	constructor.

See	also	numDigits	and	smallDecimalPoint.

QLCDNumber::~QLCDNumber	()

Destroys	the	LCD	number.

bool	QLCDNumber::checkOverflow	(double	num)	const

Returns	TRUE	if	num	is	too	big	to	be	displayed	in	its	entirety;	otherwise	returns
FALSE.

See	also	intValue,	numDigits	and	smallDecimalPoint.

bool	QLCDNumber::checkOverflow	(int	num)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	TRUE	if	num	is	too	big	to	be	displayed	in	its	entirety;	otherwise	returns
FALSE.

See	also	intValue,	numDigits	and	smallDecimalPoint.

void	QLCDNumber::display	(int	num)	[slot]

Sets	the	displayed	value	rounded	to	the	nearest	integer	to	num.	See	the
"intValue"	property	for	details.

void	QLCDNumber::display	(const	QString	&	s)	[slot]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Displays	the	number	represented	by	the	string	s.

This	version	of	the	function	disregards	mode()	and	smallDecimalPoint().

These	digits	and	other	symbols	can	be	shown:	0/O,	1,	2,	3,	4,	5/S,	6,	7,	8,	9/g,
minus,	decimal	point,	A,	B,	C,	D,	E,	F,	h,	H,	L,	o,	P,	r,	u,	U,	Y,	colon,	degree	sign
(which	is	specified	as	single	quote	in	the	string)	and	space.	QLCDNumber
substitutes	spaces	for	illegal	characters.

void	QLCDNumber::display	(double	num)	[slot]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Displays	the	number	num.

void	QLCDNumber::drawContents	(QPainter	*	p)	[virtual
protected]

Draws	the	LCD	number	using	painter	p.	This	function	is	called	from
QFrame::paintEvent().

Reimplemented	from	QFrame.

int	QLCDNumber::intValue	()	const

Returns	the	displayed	value	rounded	to	the	nearest	integer.	See	the	"intValue"
property	for	details.

Mode	QLCDNumber::mode	()	const

Returns	the	current	display	mode	(number	base).	See	the	"mode"	property	for
details.

int	QLCDNumber::numDigits	()	const

Returns	the	current	number	of	digits	displayed.	See	the	"numDigits"	property	for
details.

void	QLCDNumber::overflow	()	[signal]

This	signal	is	emitted	whenever	the	QLCDNumber	is	asked	to	display	a	too-
large	number	or	a	too-long	string.

It	is	never	emitted	by	setNumDigits().

SegmentStyle	QLCDNumber::segmentStyle	()	const

Returns	the	style	of	the	LCDNumber.	See	the	"segmentStyle"	property	for
details.

void	QLCDNumber::setBinMode	()	[virtual	slot]

Calls	setMode(BIN).	Provided	for	convenience	(e.g.	for	connecting	buttons	to
it).

See	also	mode,	setHexMode(),	setDecMode(),	setOctMode()	and	mode.

void	QLCDNumber::setDecMode	()	[virtual	slot]

Calls	setMode(DEC).	Provided	for	convenience	(e.g.	for	connecting	buttons	to
it).

See	also	mode,	setHexMode(),	setOctMode(),	setBinMode()	and	mode.

void	QLCDNumber::setHexMode	()	[virtual	slot]

Calls	setMode(HEX).	Provided	for	convenience	(e.g.	for	connecting	buttons	to
it).

See	also	mode,	setDecMode(),	setOctMode(),	setBinMode()	and	mode.

void	QLCDNumber::setMode	(Mode)	[virtual]

Sets	the	current	display	mode	(number	base).	See	the	"mode"	property	for
details.

void	QLCDNumber::setNumDigits	(int	nDigits)	[virtual]

Sets	the	current	number	of	digits	displayed	to	nDigits.	See	the	"numDigits"
property	for	details.

void	QLCDNumber::setOctMode	()	[virtual	slot]

Calls	setMode(OCT).	Provided	for	convenience	(e.g.	for	connecting	buttons	to
it).

See	also	mode,	setHexMode(),	setDecMode(),	setBinMode()	and	mode.

void	QLCDNumber::setSegmentStyle	(SegmentStyle)	[virtual]

Sets	the	style	of	the	LCDNumber.	See	the	"segmentStyle"	property	for	details.

void	QLCDNumber::setSmallDecimalPoint	(bool)	[virtual
slot]

Sets	the	style	of	the	decimal	point.	See	the	"smallDecimalPoint"	property	for
details.

bool	QLCDNumber::smallDecimalPoint	()	const

Returns	the	style	of	the	decimal	point.	See	the	"smallDecimalPoint"	property	for
details.

double	QLCDNumber::value	()	const

Returns	the	displayed	value.	See	the	"value"	property	for	details.

Property	Documentation

int	intValue

This	property	holds	the	displayed	value	rounded	to	the	nearest	integer.

This	property	corresponds	to	the	nearest	integer	to	the	current	value	displayed	by
the	LCDNumber.	This	is	the	value	used	for	hexadecimal,	octal	and	binary
modes.

If	the	displayed	value	is	not	a	number,	the	property	has	a	value	of	0.

Set	this	property's	value	with	display()	and	get	this	property's	value	with
intValue().

Mode	mode

This	property	holds	the	current	display	mode	(number	base).

Corresponds	to	the	current	display	mode,	which	is	one	of	BIN,	OCT,	DEC	(the
default)	and	HEX.	DEC	mode	can	display	floating	point	values,	the	other	modes
display	the	integer	equivalent.

See	also	smallDecimalPoint,	setHexMode(),	setDecMode(),	setOctMode()	and
setBinMode().

Set	this	property's	value	with	setMode()	and	get	this	property's	value	with
mode().

int	numDigits

This	property	holds	the	current	number	of	digits	displayed.

Corresponds	to	the	current	number	of	digits.	If
QLCDNumber::smallDecimalPoint	is	FALSE,	the	decimal	point	occupies	one
digit	position.

If	the	display	is	set	to	hexadecimal,	octal	or	binary,	the	integer	equivalent	of	the

value	is	displayed.

See	also	smallDecimalPoint.

Set	this	property's	value	with	setNumDigits()	and	get	this	property's	value	with
numDigits().

SegmentStyle	segmentStyle

This	property	holds	the	style	of	the	LCDNumber.

The	style	of	the	QLCDNumber	is	one	of:

Outline	gives	raised	segments	filled	with	the	background	color	(this	is	the
default).
Filled	gives	raised	segments	filled	with	the	foreground	color.
Flat	gives	flat	segments	filled	with	the	foreground	color.

Outline	and	Filled	will	additionally	use	QColorGroup::light()	and
QColorGroup::dark()	for	shadow	effects.

Set	this	property's	value	with	setSegmentStyle()	and	get	this	property's	value
with	segmentStyle().

bool	smallDecimalPoint

This	property	holds	the	style	of	the	decimal	point.

If	TRUE	the	decimal	point	is	drawn	between	two	digit	positions.	Otherwise	it
occupies	a	digit	position	of	its	own,	i.e.	is	drawn	in	a	digit	position.	The	default
is	FALSE.

The	inter-digit	space	is	made	slightly	wider	when	the	decimal	point	is	drawn
between	the	digits.

See	also	mode.

Set	this	property's	value	with	setSmallDecimalPoint()	and	get	this	property's
value	with	smallDecimalPoint().

double	value

This	property	holds	the	displayed	value.

This	property	corresponds	to	the	current	value	displayed	by	the	LCDNumber.

If	the	displayed	value	is	not	a	number,	the	property	has	a	value	of	0.

Set	this	property's	value	with	display()	and	get	this	property's	value	with	value().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QSlider	Class	Reference
The	QSlider	widget	provides	a	vertical	or	horizontal	slider.	More...

#include	<qslider.h>

Inherits	QWidget	and	QRangeControl.

List	of	all	member	functions.

Public	Members

enum	TickSetting	{	NoMarks	=	0,	Above	=	1,	Left	=	Above,	Below	=	2,
Right	=	Below,	Both	=	3	}
QSlider	(QWidget	*	parent,	const	char	*	name	=	0)
QSlider	(Orientation	orientation,	QWidget	*	parent,	const	char	*	name	=	0
)
QSlider	(int	minValue,	int	maxValue,	int	pageStep,	int	value,
Orientation	orientation,	QWidget	*	parent,	const	char	*	name	=	0)
virtual	void	setOrientation	(Orientation)
Orientation	orientation	()	const
virtual	void	setTracking	(bool	enable)
bool	tracking	()	const
virtual	void	setPalette	(const	QPalette	&	p)
int	sliderStart	()	const
QRect	sliderRect	()	const
virtual	void	setTickmarks	(TickSetting)
TickSetting	tickmarks	()	const
virtual	void	setTickInterval	(int)
int	tickInterval	()	const
int	minValue	()	const
int	maxValue	()	const
void	setMinValue	(int)
void	setMaxValue	(int)
int	lineStep	()	const
int	pageStep	()	const
void	setLineStep	(int)
void	setPageStep	(int)
int	value	()	const

Public	Slots

virtual	void	setValue	(int)
void	addStep	()
void	subtractStep	()

Signals

void	valueChanged	(int	value)
void	sliderPressed	()
void	sliderMoved	(int	value)
void	sliderReleased	()

Important	Inherited	Members

void	setRange	(int	minValue,	int	maxValue)

Properties

int	lineStep	-	the	current	line	step
int	maxValue	-	the	current	maximum	value	of	the	slider
int	minValue	-	the	current	minimum	value	of	the	slider
Orientation	orientation	-	the	orientation	of	the	slider
int	pageStep	-	the	current	page	step
int	tickInterval	-	the	interval	between	tickmarks
TickSetting	tickmarks	-	the	tickmark	settings	for	this	slider
bool	tracking	-	whether	slider	tracking	is	enabled
int	value	-	the	current	slider	value

Protected	Members

virtual	void	valueChange	()
virtual	void	rangeChange	()

Detailed	Description

The	QSlider	widget	provides	a	vertical	or	horizontal	slider.

The	slider	is	the	classic	widget	for	controlling	a	bounded	value.	It	lets	the	user
move	a	slider	along	a	horizontal	or	vertical	groove	and	translates	the	slider's
position	into	an	integer	value	within	the	legal	range.

QSlider	inherits	QRangeControl,	which	provides	the	"integer"	side	of	the	slider.
setRange()	and	value()	are	likely	to	be	used	by	practically	all	slider	users;	see	the
QRangeControl	documentation	for	information	about	the	many	other	functions
that	class	provides.

The	main	functions	offered	by	the	slider	itself	are	tickmark	and	orientation
control;	you	can	use	setTickmarks()	to	indicate	where	you	want	the	tickmarks	to
be,	setTickInterval()	to	indicate	how	many	of	them	you	want	and
setOrientation()	to	indicate	whether	the	slider	is	to	be	horizontal	or	vertical.

A	slider	has	a	default	focusPolicy()	of	WeakWheelFocus,	i.e.	it	accepts	focus	on
Tab	and	uses	the	mouse	wheel	and	a	suitable	keyboard	interface.

	

See	also	QScrollBar,	QSpinBox,	GUI	Design	Handbook:	Slider	and	Basic
Widgets.

Member	Type	Documentation

QSlider::TickSetting

This	enum	specifies	where	the	tickmarks	are	to	be	drawn	relative	to	the	slider's
groove	and	the	handle	the	user	moves.	The	possible	values	are:

QSlider::NoMarks	-	do	not	draw	any	tickmarks.
QSlider::Both	-	draw	tickmarks	on	both	sides	of	the	groove.
QSlider::Above	-	draw	tickmarks	above	the	(horizontal)	slider
QSlider::Below	-	draw	tickmarks	below	the	(horizontal)	slider
QSlider::Left	-	draw	tickmarks	to	the	left	of	the	(vertical)	slider
QSlider::Right	-	draw	tickmarks	to	the	right	of	the	(vertical)	slider

Member	Function	Documentation

QSlider::QSlider	(QWidget	*	parent,	const	char	*	name	=	0)

Constructs	a	vertical	slider.

The	parent	and	name	arguments	are	sent	to	the	QWidget	constructor.

QSlider::QSlider	(Orientation	orientation,	QWidget	*	parent,
const	char	*	name	=	0)

Constructs	a	slider.

The	orientation	must	be	Qt::Vertical	or	Qt::Horizontal.

The	parent	and	name	arguments	are	sent	to	the	QWidget	constructor.

QSlider::QSlider	(int	minValue,	int	maxValue,	int	pageStep,
int	value,	Orientation	orientation,	QWidget	*	parent,
const	char	*	name	=	0)

Constructs	a	slider	whose	value	can	never	be	smaller	than	minValue	or	greater
than	maxValue,	whose	page	step	size	is	pageStep	and	whose	value	is	initially
value	(which	is	guaranteed	to	be	in	range	using	bound()).

If	orientation	is	Qt::Vertical	the	slider	is	vertical	and	if	it	is	Qt::Horizontal	the
slider	is	horizontal.

The	parent	and	name	arguments	are	sent	to	the	QWidget	constructor.

void	QSlider::addStep	()	[slot]

Moves	the	slider	one	pageStep()	up	or	right.

int	QSlider::lineStep	()	const

Returns	the	current	line	step.	See	the	"lineStep"	property	for	details.

int	QSlider::maxValue	()	const

Returns	the	current	maximum	value	of	the	slider.	See	the	"maxValue"	property
for	details.

int	QSlider::minValue	()	const

Returns	the	current	minimum	value	of	the	slider.	See	the	"minValue"	property
for	details.

Orientation	QSlider::orientation	()	const

Returns	the	orientation	of	the	slider.	See	the	"orientation"	property	for	details.

int	QSlider::pageStep	()	const

Returns	the	current	page	step.	See	the	"pageStep"	property	for	details.

void	QSlider::rangeChange	()	[virtual	protected]

Implements	the	virtual	QRangeControl	function.

Reimplemented	from	QRangeControl.

void	QSlider::setLineStep	(int)

Sets	the	current	line	step.	See	the	"lineStep"	property	for	details.

void	QSlider::setMaxValue	(int)

Sets	the	current	maximum	value	of	the	slider.	See	the	"maxValue"	property	for
details.

void	QSlider::setMinValue	(int)

Sets	the	current	minimum	value	of	the	slider.	See	the	"minValue"	property	for
details.

void	QSlider::setOrientation	(Orientation)	[virtual]

Sets	the	orientation	of	the	slider.	See	the	"orientation"	property	for	details.

void	QSlider::setPageStep	(int)

Sets	the	current	page	step.	See	the	"pageStep"	property	for	details.

void	QSlider::setPalette	(const	QPalette	&	p)	[virtual]

Reimplements	the	virtual	function	QWidget::setPalette().

Sets	the	background	color	to	the	mid	color	for	Motif	style	sliders	using	palette	p.

Reimplemented	from	QWidget.

void	QRangeControl::setRange	(int	minValue,	int	maxValue)

Sets	the	range	control's	min	value	to	minValue	and	its	max	value	to	maxValue.

Calls	the	virtual	rangeChange()	function	if	one	or	both	of	the	new	min	and	max
values	are	different	from	the	previous	setting.	Calls	the	virtual	valueChange()
function	if	the	current	value	is	adjusted	because	it	was	outside	the	new	range.

If	maxValue	is	smaller	than	minValue,	minValue	becomes	the	only	legal	value.

See	also	minValue	and	maxValue.

Examples:	listbox/listbox.cpp,	t12/lcdrange.cpp,	t5/main.cpp,	t6/main.cpp,
t8/lcdrange.cpp	and	xform/xform.cpp.

void	QSlider::setTickInterval	(int)	[virtual]

Sets	the	interval	between	tickmarks.	See	the	"tickInterval"	property	for	details.

void	QSlider::setTickmarks	(TickSetting)	[virtual]

Sets	the	tickmark	settings	for	this	slider.	See	the	"tickmarks"	property	for	details.

void	QSlider::setTracking	(bool	enable)	[virtual]

Sets	whether	slider	tracking	is	enabled	to	enable.	See	the	"tracking"	property	for
details.

void	QSlider::setValue	(int)	[virtual	slot]

Sets	the	current	slider	value.	See	the	"value"	property	for	details.

void	QSlider::sliderMoved	(int	value)	[signal]

This	signal	is	emitted	when	the	slider	is	dragged,	with	the	new	slider	value	as	an
argument.

void	QSlider::sliderPressed	()	[signal]

This	signal	is	emitted	when	the	user	presses	the	slider	with	the	mouse.

QRect	QSlider::sliderRect	()	const

Returns	the	slider	handle	rectangle.	(This	is	the	visual	marker	that	the	user	can
move.)

void	QSlider::sliderReleased	()	[signal]

This	signal	is	emitted	when	the	user	releases	the	slider	with	the	mouse.

int	QSlider::sliderStart	()	const

Returns	the	start	position	of	the	slider.

void	QSlider::subtractStep	()	[slot]

Moves	the	slider	one	pageStep()	down	or	left.

int	QSlider::tickInterval	()	const

Returns	the	interval	between	tickmarks.	See	the	"tickInterval"	property	for
details.

TickSetting	QSlider::tickmarks	()	const

Returns	the	tickmark	settings	for	this	slider.	See	the	"tickmarks"	property	for
details.

bool	QSlider::tracking	()	const

Returns	TRUE	if	slider	tracking	is	enabled;	otherwise	returns	FALSE.	See	the
"tracking"	property	for	details.

int	QSlider::value	()	const

Returns	the	current	slider	value.	See	the	"value"	property	for	details.

void	QSlider::valueChange	()	[virtual	protected]

Implements	the	virtual	QRangeControl	function.

Reimplemented	from	QRangeControl.

void	QSlider::valueChanged	(int	value)	[signal]

This	signal	is	emitted	when	the	slider	value	is	changed,	with	the	new	slider	value
as	an	argument.

Examples:	rangecontrols/rangecontrols.cpp,	t12/lcdrange.cpp,	t5/main.cpp,
t6/main.cpp,	t7/lcdrange.cpp	and	xform/xform.cpp.

Property	Documentation

int	lineStep

This	property	holds	the	current	line	step.

When	setting	lineStep,	the	virtual	stepChange()	function	will	be	called	if	the	new
line	step	is	different	from	the	previous	setting.

See	also	setSteps(),	QRangeControl::pageStep()	and	setRange().

Set	this	property's	value	with	setLineStep()	and	get	this	property's	value	with
lineStep().

int	maxValue

This	property	holds	the	current	maximum	value	of	the	slider.

When	setting	this	property,	the	QSlider::minValue	is	adjusted,	if	necessary,	to
ensure	that	the	range	remains	valid.

See	also	setRange().

Set	this	property's	value	with	setMaxValue()	and	get	this	property's	value	with
maxValue().

int	minValue

This	property	holds	the	current	minimum	value	of	the	slider.

When	setting	this	property,	the	QSlider::maxValue	is	adjusted,	if	necessary,	to
ensure	that	the	range	remains	valid.

See	also	setRange().

Set	this	property's	value	with	setMinValue()	and	get	this	property's	value	with
minValue().

Orientation	orientation

This	property	holds	the	orientation	of	the	slider.

The	orientation	must	be	Qt::Vertical	(the	default)	or	Qt::Horizontal.

Set	this	property's	value	with	setOrientation()	and	get	this	property's	value	with
orientation().

int	pageStep

This	property	holds	the	current	page	step.

When	setting	pageStep,	the	virtual	stepChange()	function	will	be	called	if	the
new	page	step	is	different	from	the	previous	setting.

See	also	QRangeControl::setSteps(),	lineStep	and	setRange().

Set	this	property's	value	with	setPageStep()	and	get	this	property's	value	with
pageStep().

int	tickInterval

This	property	holds	the	interval	between	tickmarks.

This	is	a	value	interval,	not	a	pixel	interval.	If	it	is	0,	the	slider	will	choose
between	lineStep()	and	pageStep().	The	initial	value	of	tickInterval	is	0.

See	also	QRangeControl::lineStep()	and	QRangeControl::pageStep().

Set	this	property's	value	with	setTickInterval()	and	get	this	property's	value	with
tickInterval().

TickSetting	tickmarks

This	property	holds	the	tickmark	settings	for	this	slider.

The	valid	values	are	in	QSlider::TickSetting.	The	default	is	NoMarks.

See	also	tickInterval.

Set	this	property's	value	with	setTickmarks()	and	get	this	property's	value	with
tickmarks().

bool	tracking

This	property	holds	whether	slider	tracking	is	enabled.

If	tracking	is	enabled	(the	default),	the	slider	emits	the	valueChanged()	signal
whenever	the	slider	is	being	dragged.	If	tracking	is	disabled,	the	slider	emits	the
valueChanged()	signal	when	the	user	releases	the	mouse	button	(unless	the	value
happens	to	be	the	same	as	before).

Set	this	property's	value	with	setTracking()	and	get	this	property's	value	with
tracking().

int	value

This	property	holds	the	current	slider	value.

Set	this	property's	value	with	setValue()	and	get	this	property's	value	with
value().

See	also	QRangeControl::value()	and	prevValue().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QRangeControl
QRangeControl	 ……

#include	<qrangecontrol.h>

QDialQScrollBarQSliderQSpinBox

QRangeControl	()
QRangeControl	(int	minValue,	int	maxValue,	int	lineStep,	int	pageStep,
int	value)
virtual	~QRangeControl	()
int	value	()	const
void	setValue	(int	value)
void	addPage	()
void	subtractPage	()
void	addLine	()
void	subtractLine	()
int	minValue	()	const
int	maxValue	()	const
void	setRange	(int	minValue,	int	maxValue)
void	setMinValue	(int	minVal)
void	setMaxValue	(int	maxVal)
int	lineStep	()	const
int	pageStep	()	const
void	setSteps	(int	lineStep,	int	pageStep)
int	bound	(int	v)	const

int	positionFromValue	(int	logical_val,	int	span)	const
int	valueFromPosition	(int	pos,	int	span)	const
void	directSetValue	(int	value)
int	prevValue	()	const
virtual	void	valueChange	()
virtual	void	rangeChange	()
virtual	void	stepChange	()

QRangeControl

QRangeControl QScrollBar QSliderQSpinBox

1.	 QRangeControl value() setValue()

2.	 value() minValue() setRange()

3.	 value() maxValue() setRange()

4.	 QRangeControl
lineStep()

5.	 QRangeControlPageUpPageDown
addPage()substractPage()pageStep()

1 setValue() n minValue()	+	n	*	lineStep()lineStep()
pageStep()

QRangeControl

QRangeControl bound()

QRangeControlvalueChanged()addStep()
substractPage()

QRangeControlQRangeControl

QRangeControl::QRangeControl	()

0991100

QRangeControl::QRangeControl	(int	minValue,	int	maxValue,
int	lineStep,	int	pageStep,	int	value)

minValuemaxValuelineSteppageStepvalue bound()

QRangeControl::~QRangeControl	()	[]

void	QRangeControl::addLine	()

setValue(value()	+	lineStep())

valueChange()

subtractLine() addPage()setValue()

void	QRangeControl::addPage	()

setValue(value()	+	pageStep())

valueChange()

subtractPage() addLine()setValue()

int	QRangeControl::bound	(int	v)	const

vminValue()maxValue()

value()QRangeControl

setValue() value() minValue()maxValue()

void	QRangeControl::directSetValue	(int	value)	[]

valueChange()value

value

valueChange()

setValue()

int	QRangeControl::lineStep	()	const

setSteps()pageStep()

int	QRangeControl::maxValue	()	const

setMaxValue() setRange()minValue()

int	QRangeControl::minValue	()	const

setMinValue() setRange()maxValue()

int	QRangeControl::pageStep	()	const

setSteps()lineStep()

int	QRangeControl::positionFromValue	(int	logical_val,	int	span
)	const	[]

logical_val minValue()0 maxValue()span

QScrollBar

valueFromPosition()

int	QRangeControl::prevValue	()	const	[]

“”

setRange() prevValue()[0,	1000]500setRange(0,	400)value()400
prevValue()500

value()setRange()

void	QRangeControl::rangeChange	()	[]

setRange() valueChange()stepChange()

QDialQSliderQSpinBox

void	QRangeControl::setMaxValue	(int	maxVal)

maxVal

minValue()

maxValue()setMinValue()

void	QRangeControl::setMinValue	(int	minVal)

minValue

maxValue()

minValue()setMaxValue()

void	QRangeControl::setRange	(int	minValue,	int	maxValue)

minValuemaxValue

rangeChange()

maxValueminValueminValue

minValue()maxValue()

listbox/listbox.cppt12/lcdrange.cppt5/main.cppt6/main.cpp	 t8/lcdrange.cpp
xform/xform.cpp

void	QRangeControl::setSteps	(int	lineStep,	int	pageStep)

lineSteppageStep

/ stepChange()

lineStep() pageStep()setRange()

void	QRangeControl::setValue	(int	value)

value

valueChange() prevValue()

value().

void	QRangeControl::stepChange	()	[]

/

setSteps() rangeChange()valueChange()

void	QRangeControl::subtractLine	()

setValue(value()	-	lineStep())

valueChange()

addLine() subtractPage()setValue()

void	QRangeControl::subtractPage	()

setValue(value()	-	pageStep())

valueChange()

addPage() subtractLine()setValue()

int	QRangeControl::value	()	const

[minValue(),	 maxValue()]

setValue()prevValue()

void	QRangeControl::valueChange	()	[]

prevValue()

setValue() addPage() subtractPage() addLine() subtractLine() rangeChange
stepChange()

QDialQSliderQSpinBox

int	QRangeControl::valueFromPosition	(int	pos,	int	span)	const
[]

pos0 minValue() spanmaxValue()

QScrollBar

positionFromValue()

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QSpinBox	Class	Reference
The	QSpinBox	class	provides	a	spin	box	widget	(spin	button).	More...

#include	<qspinbox.h>

Inherits	QWidget	and	QRangeControl.

List	of	all	member	functions.

Public	Members

QSpinBox	(QWidget	*	parent	=	0,	const	char	*	name	=	0)
QSpinBox	(int	minValue,	int	maxValue,	int	step	=	1,	QWidget	*	parent	=
0,	const	char	*	name	=	0)
~QSpinBox	()
QString	text	()	const
virtual	QString	prefix	()	const
virtual	QString	suffix	()	const
virtual	QString	cleanText	()	const
virtual	void	setSpecialValueText	(const	QString	&	text)
QString	specialValueText	()	const
virtual	void	setWrapping	(bool	on)
bool	wrapping	()	const
enum	ButtonSymbols	{	UpDownArrows,	PlusMinus	}
virtual	void	setButtonSymbols	(ButtonSymbols)
ButtonSymbols	buttonSymbols	()	const
virtual	void	setValidator	(const	QValidator	*	v)
const	QValidator	*	validator	()	const
int	minValue	()	const
int	maxValue	()	const
void	setMinValue	(int)
void	setMaxValue	(int)
int	lineStep	()	const
void	setLineStep	(int)
int	value	()	const
QRect	upRect	()	const
QRect	downRect	()	const

Public	Slots

virtual	void	setValue	(int	value)
virtual	void	setPrefix	(const	QString	&	text)
virtual	void	setSuffix	(const	QString	&	text)
virtual	void	stepUp	()
virtual	void	stepDown	()
virtual	void	selectAll	()

Signals

void	valueChanged	(int	value)
void	valueChanged	(const	QString	&	valueText)

Properties

ButtonSymbols	buttonSymbols	-	the	current	button	symbol	mode
QString	cleanText	-	the	text	of	the	spin	box	with	any	prefix()	or	suffix()
and	any	whitespace	at	the	start	and	end	removed		(read	only)
int	lineStep	-	the	line	step
int	maxValue	-	the	maximum	value	of	the	spin	box
int	minValue	-	the	minimum	value	of	the	spin	box
QString	prefix	-	the	prefix	of	the	spin	box
QString	specialValueText	-	the	special-value	text
QString	suffix	-	the	suffix	of	the	spin	box
QString	text	-	the	text	of	the	spin	box,	including	any	prefix()	and	suffix()
	(read	only)
int	value	-	the	value	of	the	spin	box
bool	wrapping	-	whether	it	is	possible	to	step	the	value	from	the	highest
value	to	the	lowest	value	and	vice	versa

Protected	Members

virtual	QString	mapValueToText	(int	v)
virtual	int	mapTextToValue	(bool	*	ok)
QString	currentValueText	()
virtual	void	updateDisplay	()
virtual	void	interpretText	()
QLineEdit	*	editor	()	const
virtual	void	valueChange	()
virtual	void	rangeChange	()
virtual	bool	eventFilter	(QObject	*	obj,	QEvent	*	ev)

Protected	Slots

void	textChanged	()

Detailed	Description

The	QSpinBox	class	provides	a	spin	box	widget	(spin	button).

QSpinBox	allows	the	user	to	choose	a	value	either	by	clicking	the	up/down
buttons	to	increase/decrease	the	value	currently	displayed	or	by	typing	the	value
directly	into	the	spin	box.	If	the	value	is	entered	directly	into	the	spin	box,	\Key
Enter	must	be	pressed	to	apply	the	new	value.	The	value	is	usually	an	integer.

Every	time	the	value	changes	QSpinBox	emits	the	valueChanged()	signal.	The
current	value	can	be	fetched	with	value()	and	set	with	setValue().

The	spin	box	keeps	the	value	within	a	numeric	range,	and	to	multiples	of	the
lineStep()	size	(see	QRangeControl	for	details).	Clicking	the	up/down	buttons	or
using	the	keyboard	accelerator's	up	and	down	arrows	will	increase	or	decrease
the	current	value	in	steps	of	size	lineStep().	The	minimum	and	maximum	value
and	the	step	size	can	be	set	using	one	of	the	constructors,	and	can	be	changed
later	with	setMinValue(),	setMaxValue()	and	setLineStep().

Most	spin	boxes	are	directional,	but	QSpinBox	can	also	operate	as	a	circular	spin
box,	i.e.	if	the	range	is	0-99	and	the	current	value	is	99,	clicking	"up"	will	give	0.
Use	setWrapping()	if	you	want	circular	behavior.

The	displayed	value	can	be	prepended	and	appended	with	arbitrary	strings
indicating,	for	example,	currency	or	the	unit	of	measurement.	See	setPrefix()	and
setSuffix().	The	text	in	the	spin	box	is	retrieved	with	text()	(which	includes	any
prefix()	and	suffix()),	or	with	cleanText()	(which	has	no	prefix(),	no	suffix()	and
no	leading	or	trailing	whitespace).	currentValueText()	returns	the	spin	box's
current	value	as	text.

Normally	the	spin	box	displays	up	and	down	arrows	in	the	buttons.	You	can	use
setButtonSymbols()	to	change	the	display	to	show	+	and	-	symbols	if	this	is
clearer	for	your	intended	purpose.	In	either	case	the	up	and	down	arrow	keys
work	as	expected.

It	is	often	desirable	to	give	the	user	a	special	(often	default)	choice	in	addition	to
the	range	of	numeric	values.	See	setSpecialValueText()	for	how	to	do	this	with
QSpinBox.

The	default	QWidget::focusPolicy()	is	StrongFocus.

If	using	prefix(),	suffix()	and	specialValueText()	don't	provide	enough	control,
you	can	ignore	them	and	subclass	QSpinBox	instead.

QSpinBox	can	easily	be	subclassed	to	allow	the	user	to	input	things	other	than
an	integer	value	as	long	as	the	allowed	input	can	be	mapped	to	a	range	of
integers.	This	can	be	done	by	overriding	the	virtual	functions	mapValueToText()
and	mapTextToValue(),	and	setting	another	suitable	validator	using
setValidator().

For	example,	these	functions	could	be	changed	so	that	the	user	provided	values
from	0.0	to	10.0,	or	-1	to	signify	'Auto',	while	the	range	of	integers	used	inside
the	program	would	be	-1	to	100:

				class	MySpinBox	:	public	QSpinBox

				{

								Q_OBJECT

				public:

								...

								QString	mapValueToText(int	value)

								{

												if	(value	==	-1)	//	special	case

																return	QString("Auto");

												return	QString("%1.%2")	//	0.0	to	10.0

																			.arg(value	/	10).arg(value	%	10);

								}

								int	mapTextToValue(bool	*ok)

								{

												if	(text()	==	"Auto")	//	special	case

																return	-1;

												return	(int)	(10	*	text().toFloat());	//	0	to	100

								}

				};

		

	

See	also	QScrollBar,	QSlider,	GUI	Design	Handbook:	Spin	Box	and	Basic
Widgets.

Member	Type	Documentation

QSpinBox::ButtonSymbols

This	enum	type	determines	what	the	buttons	in	a	spin	box	show.	The	currently
defined	values	are:

QSpinBox::UpDownArrows	-	the	buttons	show	little	arrows	in	the	classic
style.
QSpinBox::PlusMinus	-	the	buttons	show	+	and	-	symbols.

See	also	QSpinBox::buttonSymbols.

Member	Function	Documentation

QSpinBox::QSpinBox	(QWidget	*	parent	=	0,	const	char	*	name
=	0)

Constructs	a	spin	box	with	the	default	QRangeControl	range	and	step	values.	It
has	the	parent	parent	and	the	name	name.

See	also	minValue,	maxValue,	setRange(),	lineStep	and	setSteps().

QSpinBox::QSpinBox	(int	minValue,	int	maxValue,	int	step	=	1,
QWidget	*	parent	=	0,	const	char	*	name	=	0)

Constructs	a	spin	box	that	allows	values	from	minValue	to	maxValue	inclusive,
with	step	amount	step.	The	value	is	initially	set	to	minValue.

The	widget's	parent	is	parent	and	the	spin	box	is	called	name.

See	also	minValue,	maxValue,	setRange(),	lineStep	and	setSteps().

QSpinBox::~QSpinBox	()

Destroys	the	spin	box,	freeing	all	memory	and	other	resources.

ButtonSymbols	QSpinBox::buttonSymbols	()	const

Returns	the	current	button	symbol	mode.	See	the	"buttonSymbols"	property	for
details.

QString	QSpinBox::cleanText	()	const	[virtual]

Returns	the	text	of	the	spin	box	with	any	prefix()	or	suffix()	and	any	whitespace
at	the	start	and	end	removed.	See	the	"cleanText"	property	for	details.

QString	QSpinBox::currentValueText	()	[protected]

Returns	the	full	text	calculated	from	the	current	value,	including	any	prefix	and
suffix.	If	there	is	special	value	text	and	the	value	is	minValue()	the
specialValueText()	is	returned.

QRect	QSpinBox::downRect	()	const

Returns	the	geometry	of	the	"down"	button.

QLineEdit	*	QSpinBox::editor	()	const	[protected]

Returns	a	pointer	to	the	embedded	QLineEdit.

bool	QSpinBox::eventFilter	(QObject	*	obj,	QEvent	*	ev)
[virtual	protected]

Intercepts	and	handles	the	events	coming	to	the	embedded	QLineEdit	that	have
special	meaning	for	the	QSpinBox.	The	object	is	passed	as	obj	and	the	event	is
passed	as	ev.

Reimplemented	from	QObject.

void	QSpinBox::interpretText	()	[virtual	protected]

QSpinBox	calls	this	after	the	user	has	manually	edited	the	contents	of	the	spin
box	(i.e.	by	typing	in	the	embedded	QLineEdit,	rather	than	using	the	up/down
buttons/keys).

The	default	implementation	of	this	function	interprets	the	new	text	using
mapTextToValue().	If	mapTextToValue()	is	successful,	it	changes	the	spin	box's
value;	if	not,	the	value	is	left	unchanged.

See	also	editor().

int	QSpinBox::lineStep	()	const

Returns	the	line	step.	See	the	"lineStep"	property	for	details.

int	QSpinBox::mapTextToValue	(bool	*	ok)	[virtual

protected]

This	virtual	function	is	used	by	the	spin	box	whenever	it	needs	to	interpret	text
entered	by	the	user	as	a	value.	The	text	is	available	as	text()	and	as	cleanText(),
and	this	function	must	parse	it	if	possible,	and	set	the	bool	*ok	to	TRUE	if
successful	and	to	FALSE	otherwise.

Subclasses	that	need	to	display	spin	box	values	in	a	non-numeric	way	need	to
reimplement	this	function.

Note	that	Qt	handles	specialValueText()	separately;	this	function	is	only
concerned	with	the	other	values.

The	default	implementation	tries	to	interpret	the	text()	as	an	integer	in	the
standard	way	and	returns	the	integer	value.

See	also	interpretText()	and	mapValueToText().

QString	QSpinBox::mapValueToText	(int	v)	[virtual
protected]

This	virtual	function	is	used	by	the	spin	box	whenever	it	needs	to	display	value
v.	The	default	implementation	returns	a	string	containing	v	printed	in	the
standard	way.	Reimplementations	may	return	anything.	(See	the	example	in	the
detailed	description.)

Note	that	Qt	does	not	call	this	function	for	specialValueText()	and	that	neither
prefix()	nor	suffix()	are	included	in	the	return	value.

If	you	reimplement	this,	you	may	also	need	to	reimplement	mapTextToValue().

See	also	updateDisplay()	and	mapTextToValue().

int	QSpinBox::maxValue	()	const

Returns	the	maximum	value	of	the	spin	box.	See	the	"maxValue"	property	for
details.

int	QSpinBox::minValue	()	const

Returns	the	minimum	value	of	the	spin	box.	See	the	"minValue"	property	for
details.

QString	QSpinBox::prefix	()	const	[virtual]

Returns	the	prefix	of	the	spin	box.	See	the	"prefix"	property	for	details.

void	QSpinBox::rangeChange	()	[virtual	protected]

This	virtual	function	is	called	by	QRangeControl	whenever	the	range	has
changed.	It	adjusts	the	default	validator	and	updates	the	display;	if	you	need
additional	processing,	you	may	reimplement	this	function.

Reimplemented	from	QRangeControl.

void	QSpinBox::selectAll	()	[virtual	slot]

Selects	all	the	text	in	the	editor	of	the	spinbox.

void	QSpinBox::setButtonSymbols	(ButtonSymbols)	[virtual]

Sets	the	current	button	symbol	mode.	See	the	"buttonSymbols"	property	for
details.

void	QSpinBox::setLineStep	(int)

Sets	the	line	step.	See	the	"lineStep"	property	for	details.

void	QSpinBox::setMaxValue	(int)

Sets	the	maximum	value	of	the	spin	box.	See	the	"maxValue"	property	for
details.

void	QSpinBox::setMinValue	(int)

Sets	the	minimum	value	of	the	spin	box.	See	the	"minValue"	property	for	details.

void	QSpinBox::setPrefix	(const	QString	&	text)	[virtual	slot]

Sets	the	prefix	of	the	spin	box	to	text.	See	the	"prefix"	property	for	details.

void	QSpinBox::setSpecialValueText	(const	QString	&	text)
[virtual]

Sets	the	special-value	text	to	text.	See	the	"specialValueText"	property	for
details.

void	QSpinBox::setSuffix	(const	QString	&	text)	[virtual	slot]

Sets	the	suffix	of	the	spin	box	to	text.	See	the	"suffix"	property	for	details.

void	QSpinBox::setValidator	(const	QValidator	*	v)	[virtual]

Sets	the	validator	to	v.	The	validator	controls	what	keyboard	input	is	accepted
when	the	user	is	editing	in	the	value	field.	The	default	is	to	use	a	suitable
QIntValidator.

Use	setValidator(0)	to	turn	off	input	validation	(entered	input	will	still	be
clamped	to	the	range	of	the	spinbox).

void	QSpinBox::setValue	(int	value)	[virtual	slot]

Sets	the	value	of	the	spin	box	to	value.	See	the	"value"	property	for	details.

void	QSpinBox::setWrapping	(bool	on)	[virtual]

Sets	whether	it	is	possible	to	step	the	value	from	the	highest	value	to	the	lowest
value	and	vice	versa	to	on.	See	the	"wrapping"	property	for	details.

QString	QSpinBox::specialValueText	()	const

Returns	the	special-value	text.	See	the	"specialValueText"	property	for	details.

void	QSpinBox::stepDown	()	[virtual	slot]

Decreases	the	spin	box's	value	one	lineStep(),	wrapping	as	necessary.	This	is	the
same	as	clicking	on	the	pointing-down	button	and	can	be	used	for	keyboard

accelerators,	for	example.

See	also	stepUp(),	subtractLine(),	lineStep,	setSteps(),	value	and	value.

void	QSpinBox::stepUp	()	[virtual	slot]

Increases	the	spin	box's	value	by	one	lineStep(),	wrapping	as	necessary.	This	is
the	same	as	clicking	on	the	pointing-up	button	and	can	be	used	for	keyboard
accelerators,	for	example.

See	also	stepDown(),	addLine(),	lineStep,	setSteps(),	value	and	value.

QString	QSpinBox::suffix	()	const	[virtual]

Returns	the	suffix	of	the	spin	box.	See	the	"suffix"	property	for	details.

QString	QSpinBox::text	()	const

Returns	the	text	of	the	spin	box,	including	any	prefix()	and	suffix().	See	the
"text"	property	for	details.

void	QSpinBox::textChanged	()	[protected	slot]

This	slot	is	called	whenever	the	user	edits	the	text	of	the	spin	box.

QRect	QSpinBox::upRect	()	const

Returns	the	geometry	of	the	"up"	button.

void	QSpinBox::updateDisplay	()	[virtual	protected]

Updates	the	contents	of	the	embedded	QLineEdit	to	reflect	the	current	value
using	mapValueToText().	Also	enables/disables	the	up/down	push	buttons
accordingly.

See	also	mapValueToText().

const	QValidator	*	QSpinBox::validator	()	const

Returns	the	validator	that	constrains	editing	for	this	spin	box	if	there	is	any;
otherwise	returns	0.

See	also	setValidator()	and	QValidator.

int	QSpinBox::value	()	const

Returns	the	value	of	the	spin	box.	See	the	"value"	property	for	details.

void	QSpinBox::valueChange	()	[virtual	protected]

This	virtual	function	is	called	by	QRangeControl	whenever	the	value	has
changed.	The	QSpinBox	reimplementation	updates	the	display	and	emits	the
valueChanged()	signals;	if	you	need	additional	processing,	either	reimplement
this	or	connect	to	one	of	the	valueChanged()	signals.

Reimplemented	from	QRangeControl.

void	QSpinBox::valueChanged	(int	value)	[signal]

This	signal	is	emitted	every	time	the	value	of	the	spin	box	changes;	the	new
value	is	passed	in	value.	This	signal	will	be	emitted	as	a	result	of	a	call	to
setValue(),	or	because	the	user	changed	the	value	by	using	a	keyboard
accelerator	or	mouse	click,	etc.

Note	that	the	valueChanged()	signal	is	emitted	every	time,	not	just	for	the	"final"
step;	i.e.	if	the	user	clicks	"up"	three	times,	this	signal	is	emitted	three	times.

See	also	value.

Examples:	listbox/listbox.cpp,	qfd/fontdisplayer.cpp	and	scribble/scribble.cpp.

void	QSpinBox::valueChanged	(const	QString	&	valueText)
[signal]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

This	signal	is	emitted	whenever	the	valueChanged(int)	signal	is	emitted,	i.e.

every	time	the	value	of	the	spin	box	changes	(whatever	the	cause,	e.g.	by
setValue(),	by	a	keyboard	accelerator,	by	mouse	clicks,	etc.).

The	valueText	parameter	is	the	same	string	that	is	displayed	in	the	edit	field	of
the	spin	box.

See	also	value,	prefix,	suffix	and	specialValueText.

bool	QSpinBox::wrapping	()	const

Returns	TRUE	if	it	is	possible	to	step	the	value	from	the	highest	value	to	the
lowest	value	and	vice	versa;	otherwise	returns	FALSE.	See	the	"wrapping"
property	for	details.

Property	Documentation

ButtonSymbols	buttonSymbols

This	property	holds	the	current	button	symbol	mode.

The	possible	values	can	be	either	UpDownArrows	or	PlusMinus.	The	default	is
UpDownArrows.

See	also	ButtonSymbols.

Set	this	property's	value	with	setButtonSymbols()	and	get	this	property's	value
with	buttonSymbols().

QString	cleanText

This	property	holds	the	text	of	the	spin	box	with	any	prefix()	or	suffix()	and	any
whitespace	at	the	start	and	end	removed.

Get	this	property's	value	with	cleanText().

See	also	text,	prefix	and	suffix.

int	lineStep

This	property	holds	the	line	step.

When	the	user	uses	the	arrows	to	change	the	spin	box's	value	the	value	will	be
incremented/decremented	by	the	amount	of	the	line	step.

The	setLineStep()	function	calls	the	virtual	stepChange()	function	if	the	new	line
step	is	different	from	the	previous	setting.

See	also	QRangeControl::setSteps()	and	setRange().

Set	this	property's	value	with	setLineStep()	and	get	this	property's	value	with
lineStep().

int	maxValue

This	property	holds	the	maximum	value	of	the	spin	box.

When	setting	this	property,	the	QSpinBox::minValue	is	adjusted	so	that	the	range
remains	valid	if	necessary.

See	also	setRange()	and	specialValueText.

Set	this	property's	value	with	setMaxValue()	and	get	this	property's	value	with
maxValue().

int	minValue

This	property	holds	the	minimum	value	of	the	spin	box.

When	setting	this	property,	the	QSpinBox::maxValue	is	adjusted	so	that	the
range	remains	valid	if	necessary.

See	also	setRange()	and	specialValueText.

Set	this	property's	value	with	setMinValue()	and	get	this	property's	value	with
minValue().

QString	prefix

This	property	holds	the	prefix	of	the	spin	box.

The	prefix	is	prepended	to	the	start	of	the	displayed	value.	Typical	use	is	to
indicate	the	unit	of	measurement	to	the	user.	For	example:

				sb->setPrefix("$");

		

To	turn	off	the	prefix	display,	set	this	property	to	an	empty	string.	The	default	is
no	prefix.	The	prefix	is	not	displayed	for	the	minValue()	if	specialValueText()	is
not	empty.

If	no	prefix	is	set,	prefix()	returns	a	null	string.

See	also	suffix.

Set	this	property's	value	with	setPrefix()	and	get	this	property's	value	with
prefix().

QString	specialValueText

This	property	holds	the	special-value	text.

If	set,	the	spin	box	will	display	this	text	instead	of	a	numeric	value	whenever	the
current	value	is	equal	to	minVal().	Typical	use	is	to	indicate	that	this	choice	has	a
special	(default)	meaning.

For	example,	if	your	spin	box	allows	the	user	to	choose	the	margin	width	in	a
print	dialog	and	your	application	is	able	to	automatically	choose	a	good	margin
width,	you	can	set	up	the	spin	box	like	this:

				QSpinBox	marginBox(-1,	20,	1,	parent,	"marginBox");

				marginBox->setSuffix("	mm");

				marginBox->setSpecialValueText("Auto");

		

The	user	will	then	be	able	to	choose	a	margin	width	from	0-20	millimeters	or
select	"Auto"	to	leave	it	to	the	application	to	choose.	Your	code	must	then
interpret	the	spin	box	value	of	-1	as	the	user	requesting	automatic	margin	width.

All	values	are	displayed	with	the	prefix()	and	suffix()	(if	set),	except	for	the
special	value,	which	only	shows	the	special	value	text.

To	turn	off	the	special-value	text	display,	call	this	function	with	an	empty	string.
The	default	is	no	special-value	text,	i.e.	the	numeric	value	is	shown	as	usual.

If	no	special-value	text	is	set,	specialValueText()	returns	a	null	string.

Set	this	property's	value	with	setSpecialValueText()	and	get	this	property's	value
with	specialValueText().

QString	suffix

This	property	holds	the	suffix	of	the	spin	box.

The	suffix	is	appended	to	the	end	of	the	displayed	value.	Typical	use	is	to
indicate	the	unit	of	measurement	to	the	user.	For	example:

				sb->setSuffix("	km");

		

To	turn	off	the	suffix	display,	set	this	property	to	an	empty	string.	The	default	is
no	suffix.	The	suffix	is	not	displayed	for	the	minValue()	if	specialValueText()	is
not	empty.

If	no	suffix	is	set,	suffix()	returns	a	null	string.

See	also	prefix.

Set	this	property's	value	with	setSuffix()	and	get	this	property's	value	with
suffix().

QString	text

This	property	holds	the	text	of	the	spin	box,	including	any	prefix()	and	suffix().

There	is	no	default	text.

See	also	value.

Get	this	property's	value	with	text().

int	value

This	property	holds	the	value	of	the	spin	box.

Set	this	property's	value	with	setValue()	and	get	this	property's	value	with
value().

See	also	QRangeControl::setValue().

bool	wrapping

This	property	holds	whether	it	is	possible	to	step	the	value	from	the	highest
value	to	the	lowest	value	and	vice	versa.

By	default,	wrapping	is	turned	off.

If	you	have	a	range	of	0..100	and	wrapping	is	off	when	the	user	reaches	100	and
presses	the	Up	Arrow	nothing	will	happen;	but	if	wrapping	is	on	the	value	will
change	from	100	to	0,	then	to	1,	etc.	When	wrapping	is	on,	navigating	past	the
highest	value	takes	you	to	the	lowest	and	vice	versa.

See	also	minValue,	maxValue	and	setRange().

Set	this	property's	value	with	setWrapping()	and	get	this	property's	value	with
wrapping().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qgrid.h
qgrid.hTrolltech

/**

**	$Id:		qt/qgrid.h			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QGRID_H

#define	QGRID_H

#ifndef	QT_H

#include	"qframe.h"

#endif	//	QT_H

#ifndef	QT_NO_GRID

class	QGridLayout;

class	Q_EXPORT	QGrid	:	public	QFrame

{

				Q_OBJECT

public:

				QGrid(int	n,	QWidget*	parent=0,	const	char*	name=0,	WFlags	f	=	0);

				QGrid(int	n,	Orientation	orient,	QWidget*	parent=0,	const	char*	name=0,

	 			WFlags	f	=	0);

				void	setSpacing(int);

				QSize	sizeHint()	const;

#ifndef	QT_NO_COMPAT

				typedef	Orientation	Direction;

#endif

protected:

				void	frameChanged();

private:

				QGridLayout	*lay;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QGrid(const	QGrid	&);

				QGrid&	operator=(const	QGrid	&);

#endif

};

#endif	//	QT_NO_GRID

#endif	//	QGRID_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

t7/lcdrange.h	Example	File
/**

**

**	Definition	of	LCDRange	class,	Qt	tutorial	7

**

**/

#ifndef	LCDRANGE_H

#define	LCDRANGE_H

#include	<qvbox.h>

class	QSlider;

class	LCDRange	:	public	QVBox

{

				Q_OBJECT

public:

				LCDRange(QWidget	*parent=0,	const	char	*name=0);

				int	value()	const;

public	slots:

				void	setValue(int);

signals:

				void	valueChanged(int);

private:

				QSlider	*slider;

};

#endif	//	LCDRANGE_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

t7/lcdrange.cpp	Example	File
/**

**

**	Implementation	of	LCDRange	class,	Qt	tutorial	7

**

**/

#include	"lcdrange.h"

#include	<qslider.h>

#include	<qlcdnumber.h>

LCDRange::LCDRange(QWidget	*parent,	const	char	*name)

								:	QVBox(parent,	name)

{

				QLCDNumber	*lcd		=	new	QLCDNumber(2,	this,	"lcd");

				slider	=	new	QSlider(Horizontal,	this,	"slider");

				slider->setRange(0,	99);

				slider->setValue(0);

				connect(slider,	SIGNAL(valueChanged(int)),

													lcd,	SLOT(display(int)));

				connect(slider,	SIGNAL(valueChanged(int)),

													SIGNAL(valueChanged(int)));

}

int	LCDRange::value()	const

{

				return	slider->value();

}

void	LCDRange::setValue(int	value)

{

				slider->setValue(value);

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

t7/main.cpp	Example	File
/**

**

**	Qt	tutorial	7

**

**/

#include	<qapplication.h>

#include	<qpushbutton.h>

#include	<qlcdnumber.h>

#include	<qfont.h>

#include	<qvbox.h>

#include	<qgrid.h>

#include	"lcdrange.h"

class	MyWidget	:	public	QVBox

{

public:

				MyWidget(QWidget	*parent=0,	const	char	*name=0);

};

MyWidget::MyWidget(QWidget	*parent,	const	char	*name)

								:	QVBox(parent,	name)

{

				QPushButton	*quit	=	new	QPushButton("Quit",	this,	"quit");

				quit->setFont(QFont("Times",	18,	QFont::Bold));

				connect(quit,	SIGNAL(clicked()),	qApp,	SLOT(quit()));

				QGrid	*grid	=	new	QGrid(4,	this);

				LCDRange	*previous	=	0;

				for(int	r	=	0	;	r	<	4	;	r++)	{

								for(int	c	=	0	;	c	<	4	;	c++)	{

												LCDRange*	lr	=	new	LCDRange(grid);

												if	(previous)

																connect(lr,	SIGNAL(valueChanged(int)),

																									previous,	SLOT(setValue(int)));

												previous	=	lr;

								}

				}

}

int	main(int	argc,	char	**argv)

{

				QApplication	a(argc,	argv);

				MyWidget	w;

				a.setMainWidget(&w);

				w.show();

				return	a.exec();

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qwidget.h
qwidget.hTrolltech

/**

**	$Id:		qt/qwidget.h			3.0.5			edited	Apr	30	21:58	$

**

**	Definition	of	QWidget	class

**

**	Created	:	931029

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QWIDGET_H

#define	QWIDGET_H

#ifndef	QT_H

#include	"qwindowdefs.h"

#include	"qobject.h"

#include	"qpaintdevice.h"

#include	"qpalette.h"

#include	"qfont.h"

#include	"qfontmetrics.h"

#include	"qfontinfo.h"

#include	"qsizepolicy.h"

#endif	//	QT_H

class	QLayout;

struct	QWExtra;

struct	QTLWExtra;

class	QFocusData;

class	QCursor;

class	QWSRegionManager;

class	QStyle;

class	Q_EXPORT	QWidget	:	public	QObject,	public	QPaintDevice

{

				Q_OBJECT

				Q_ENUMS(BackgroundMode	FocusPolicy	BackgroundOrigin)

				Q_PROPERTY(bool	isTopLevel	READ	isTopLevel)

				Q_PROPERTY(bool	isDialog	READ	isDialog)

				Q_PROPERTY(bool	isModal	READ	isModal)

				Q_PROPERTY(bool	isPopup	READ	isPopup)

				Q_PROPERTY(bool	isDesktop	READ	isDesktop)

				Q_PROPERTY(bool	enabled	READ	isEnabled	WRITE	setEnabled)

				Q_PROPERTY(QRect	geometry	READ	geometry	WRITE	setGeometry)

				Q_PROPERTY(QRect	frameGeometry	READ	frameGeometry)

				Q_PROPERTY(int	x	READ	x)

				Q_PROPERTY(int	y	READ	y)

				Q_PROPERTY(QPoint	pos	READ	pos	WRITE	move	DESIGNABLE	false	STORED	false)

				Q_PROPERTY(QSize	frameSize	READ	frameSize)

				Q_PROPERTY(QSize	size	READ	size	WRITE	resize	DESIGNABLE	false	STORED	false)

				Q_PROPERTY(int	width	READ	width)

				Q_PROPERTY(int	height	READ	height)

				Q_PROPERTY(QRect	rect	READ	rect)

				Q_PROPERTY(QRect	childrenRect	READ	childrenRect)

				Q_PROPERTY(QRegion	childrenRegion	READ	childrenRegion)

				Q_PROPERTY(QSizePolicy	sizePolicy	READ	sizePolicy	WRITE	setSizePolicy)

				Q_PROPERTY(QSize	minimumSize	READ	minimumSize	WRITE	setMinimumSize)

				Q_PROPERTY(QSize	maximumSize	READ	maximumSize	WRITE	setMaximumSize)

				Q_PROPERTY(int	minimumWidth	READ	minimumWidth	WRITE	setMinimumWidth	STORED	false	DESIGNABLE	false)

				Q_PROPERTY(int	minimumHeight	READ	minimumHeight	WRITE	setMinimumHeight	STORED	false	DESIGNABLE	false)

				Q_PROPERTY(int	maximumWidth	READ	maximumWidth	WRITE	setMaximumWidth	STORED	false	DESIGNABLE	false)

				Q_PROPERTY(int	maximumHeight	READ	maximumHeight	WRITE	setMaximumHeight	STORED	false	DESIGNABLE	false)

				Q_PROPERTY(QSize	sizeIncrement	READ	sizeIncrement	WRITE	setSizeIncrement)

				Q_PROPERTY(QSize	baseSize	READ	baseSize	WRITE	setBaseSize)

				Q_PROPERTY(BackgroundMode	backgroundMode	READ	backgroundMode	WRITE	setBackgroundMode	DESIGNABLE	false)

				Q_PROPERTY(QColor	paletteForegroundColor	READ	paletteForegroundColor	WRITE	setPaletteForegroundColor	RESET	unsetPalette)

				Q_PROPERTY(QColor	paletteBackgroundColor	READ	paletteBackgroundColor	WRITE	setPaletteBackgroundColor	RESET	unsetPalette)

				Q_PROPERTY(QPixmap	paletteBackgroundPixmap	READ	paletteBackgroundPixmap	WRITE	setPaletteBackgroundPixmap	RESET	unsetPalette)

				Q_PROPERTY(QBrush	backgroundBrush	READ	backgroundBrush)

				Q_PROPERTY(QColorGroup	colorGroup	READ	colorGroup)

				Q_PROPERTY(QPalette	palette	READ	palette	WRITE	setPalette	RESET	unsetPalette		STORED	ownPalette)

				Q_PROPERTY(BackgroundOrigin	backgroundOrigin	READ	backgroundOrigin	WRITE	setBackgroundOrigin)

				Q_PROPERTY(bool	ownPalette	READ	ownPalette)

				Q_PROPERTY(QFont	font	READ	font	WRITE	setFont	RESET	unsetFont	STORED	ownFont)

				Q_PROPERTY(bool	ownFont	READ	ownFont)

#ifndef	QT_NO_CURSOR

				Q_PROPERTY(QCursor	cursor	READ	cursor	WRITE	setCursor	RESET	unsetCursor	STORED	ownCursor)

				Q_PROPERTY(bool	ownCursor	READ	ownCursor)

#endif

#ifndef	QT_NO_WIDGET_TOPEXTRA

				Q_PROPERTY(QString	caption	READ	caption	WRITE	setCaption)

				Q_PROPERTY(QPixmap	icon	READ	icon	WRITE	setIcon)

				Q_PROPERTY(QString	iconText	READ	iconText	WRITE	setIconText)

#endif

				Q_PROPERTY(bool	mouseTracking	READ	hasMouseTracking	WRITE	setMouseTracking)

				Q_PROPERTY(bool	underMouse	READ	hasMouse)

				Q_PROPERTY(bool	isActiveWindow	READ	isActiveWindow)

				Q_PROPERTY(bool	focusEnabled	READ	isFocusEnabled)

				Q_PROPERTY(FocusPolicy	focusPolicy	READ	focusPolicy	WRITE	setFocusPolicy)

				Q_PROPERTY(bool	focus	READ	hasFocus)

				Q_PROPERTY(bool	updatesEnabled	READ	isUpdatesEnabled	WRITE	setUpdatesEnabled	DESIGNABLE	false)

				Q_PROPERTY(bool	visible	READ	isVisible)

				Q_PROPERTY(QRect	visibleRect	READ	visibleRect)

				Q_PROPERTY(bool	hidden	READ	isHidden)

				Q_PROPERTY(bool	minimized	READ	isMinimized)

				Q_PROPERTY(QSize	sizeHint	READ	sizeHint)

				Q_PROPERTY(QSize	minimumSizeHint	READ	minimumSizeHint)

				Q_PROPERTY(QRect	microFocusHint	READ	microFocusHint)

				Q_PROPERTY(bool	acceptDrops	READ	acceptDrops	WRITE	setAcceptDrops)

				Q_PROPERTY(bool	autoMask	READ	autoMask	WRITE	setAutoMask	DESIGNABLE	false	SCRIPTABLE	false)

				Q_PROPERTY(bool	customWhatsThis	READ	customWhatsThis)

public:

				QWidget(QWidget*	parent=0,	const	char*	name=0,	WFlags	f=0);

				~QWidget();

				WId		 	winId()	const;

				void	 	setName(const	char	*name);

#ifndef	QT_NO_STYLE

				//	GUI	style	setting

				QStyle					&style()	const;

				void								setStyle(QStyle	*);

				QStyle*	 setStyle(const	QString&);

#endif

				//	Widget	types	and	states

				bool	 	isTopLevel()	 const;

				bool	 	isDialog()	 const;

				bool	 	isPopup()	 const;

				bool	 	isDesktop()	 const;

				bool	 	isModal()	 const;

				bool	 	isEnabled()	 const;

				bool	 	isEnabledTo(QWidget*)	const;

				bool	 	isEnabledToTLW()	const;

public	slots:

				virtual	void	setEnabled(bool);

				void	setDisabled(bool);

				//	Widget	coordinates

public:

				QRect	 	frameGeometry()	const;

				const	QRect	&geometry()	 const;

				int		 	x()	 	 const;

				int		 	y()	 	 const;

				QPoint	 	pos()	 	 const;

				QSize	 	frameSize()				const;

				QSize	 	size()		 const;

				int		 	width()	 const;

				int		 	height()	 const;

				QRect	 	rect()		 const;

				QRect	 	childrenRect()	const;

				QRegion	 	childrenRegion()	const;

				QSize	 	minimumSize()	 	const;

				QSize	 	maximumSize()	 	const;

				int		 	minimumWidth()		const;

				int		 	minimumHeight()	const;

				int		 	maximumWidth()		const;

				int		 	maximumHeight()	const;

				void	 	setMinimumSize(const	QSize	&);

				virtual	void	setMinimumSize(int	minw,	int	minh);

				void	 	setMaximumSize(const	QSize	&);

				virtual	void	setMaximumSize(int	maxw,	int	maxh);

				void	 	setMinimumWidth(int	minw);

				void	 	setMinimumHeight(int	minh);

				void	 	setMaximumWidth(int	maxw);

				void	 	setMaximumHeight(int	maxh);

				QSize	 	sizeIncrement()	const;

				void	 	setSizeIncrement(const	QSize	&);

				virtual	void	setSizeIncrement(int	w,	int	h);

				QSize	 	baseSize()	const;

				void	 	setBaseSize(const	QSize	&);

				void	 	setBaseSize(int	basew,	int	baseh);

				void	 setFixedSize(const	QSize	&);

				void	 setFixedSize(int	w,	int	h);

				void	 setFixedWidth(int	w);

				void	 setFixedHeight(int	h);

				//	Widget	coordinate	mapping

				QPoint	 	mapToGlobal(const	QPoint	&)	 	const;

				QPoint	 	mapFromGlobal(const	QPoint	&)	const;

				QPoint	 	mapToParent(const	QPoint	&)	 	const;

				QPoint	 	mapFromParent(const	QPoint	&)	const;

				QPoint	 	mapTo(QWidget	*,	const	QPoint	&)	const;

				QPoint	 	mapFrom(QWidget	*,	const	QPoint	&)	const;

				QWidget	 *topLevelWidget()			const;

				//	Widget	attribute	functions

				BackgroundMode	 backgroundMode()	const;

				virtual	void	 setBackgroundMode(BackgroundMode);

				void		 	 setBackgroundMode(BackgroundMode,	BackgroundMode);

				const	QColor	&	 foregroundColor()	const;

				const	QColor	&	 eraseColor()	const;

				virtual	void	 setEraseColor(const	QColor	&);

				const	QPixmap	*	 erasePixmap()	const;

				virtual	void	 setErasePixmap(const	QPixmap	&);

#ifndef	QT_NO_PALETTE

				const	QColorGroup	&	colorGroup()	const;

				const	QPalette	&	 palette()				const;

				bool	 	 ownPalette()	const;

				virtual	void	 setPalette(const	QPalette	&);

				void	 	 unsetPalette();

#endif

				const	QColor	&	 paletteForegroundColor()	const;

				void	 	 setPaletteForegroundColor(const	QColor	&);

				const	QColor	&	 paletteBackgroundColor()	const;

				virtual	void	 setPaletteBackgroundColor(const	QColor	&);

				const	QPixmap	*	 paletteBackgroundPixmap()	const;

				virtual	void		 setPaletteBackgroundPixmap(const	QPixmap	&);

				const	QBrush&	 backgroundBrush()	const;

				QFont	 	 font()	const;

				bool	 	 ownFont()	const;

				virtual	void	 setFont(const	QFont	&);

				void	 	 unsetFont();

				QFontMetrics	 fontMetrics()	const;

				QFontInfo	 		 fontInfo()	const;

#ifndef	QT_NO_CURSOR

				const	QCursor						&cursor()	const;

				bool	 	 ownCursor()	const;

				virtual	void	 setCursor(const	QCursor	&);

				virtual	void	 unsetCursor();

#endif

#ifndef	QT_NO_WIDGET_TOPEXTRA

				QString	 	 caption()	const;

				const	QPixmap						*icon()	const;

				QString	 	 iconText()	const;

#endif

				bool	 	 hasMouseTracking()	const;

				bool	 	 hasMouse()	const;

				virtual	void	 setMask(const	QBitmap	&);

				virtual	void	 setMask(const	QRegion	&);

				void	 	 clearMask();

				const	QColor	&	 backgroundColor()	const;	//	obsolete,	use	eraseColor()

				virtual	void	 setBackgroundColor(const	QColor	&);	//	obsolete,	use	setEraseColor()

				const	QPixmap	*	 backgroundPixmap()	const;	//	obsolete,	use	erasePixmap()

				virtual	void	 setBackgroundPixmap(const	QPixmap	&);	//	obsolete,	use	setErasePixmap()

public	slots:

#ifndef	QT_NO_WIDGET_TOPEXTRA

				virtual	void	 setCaption(const	QString	&);

				virtual	void	 setIcon(const	QPixmap	&);

				virtual	void	 setIconText(const	QString	&);

#endif

				virtual	void	 setMouseTracking(bool	enable);

				//	Keyboard	input	focus	functions

				virtual	void	 setFocus();

				void	 	 clearFocus();

public:

				enum	FocusPolicy	{

	 NoFocus	=	0,

	 TabFocus	=	0x1,

	 ClickFocus	=	0x2,

	 StrongFocus	=	0x3,

	 WheelFocus	=	0x7

				};

				bool	 	 isActiveWindow()	const;

				virtual	void	 setActiveWindow();

				bool	 	 isFocusEnabled()	const;

				FocusPolicy		 focusPolicy()	const;

				virtual	void	 setFocusPolicy(FocusPolicy);

				bool	 	 hasFocus()	const;

				static	void		 setTabOrder(QWidget	*,	QWidget	*);

				virtual	void	 setFocusProxy(QWidget	*);

				QWidget	*	 	 focusProxy()	const;

				//	Grab	functions

				void	 	 grabMouse();

#ifndef	QT_NO_CURSOR

				void	 	 grabMouse(const	QCursor	&);

#endif

				void	 	 releaseMouse();

				void	 	 grabKeyboard();

				void	 	 releaseKeyboard();

				static	QWidget	*	 mouseGrabber();

				static	QWidget	*	 keyboardGrabber();

				//	Update/refresh	functions

				bool	 		 isUpdatesEnabled()	const;

#if	0	//def	Q_WS_QWS

				void	 	 repaintUnclipped(const	QRegion	&,	bool	erase	=	TRUE);

#endif

public	slots:

				virtual	void	 setUpdatesEnabled(bool	enable);

				void	 	 update();

				void	 	 update(int	x,	int	y,	int	w,	int	h);

				void	 	 update(const	QRect&);

				void	 	 repaint();

				void	 	 repaint(bool	erase);

				void	 	 repaint(int	x,	int	y,	int	w,	int	h,	bool	erase=TRUE);

				void	 	 repaint(const	QRect	&,	bool	erase	=	TRUE);

				void	 	 repaint(const	QRegion	&,	bool	erase	=	TRUE);

				//	Widget	management	functions

				virtual	void	 show();

				virtual	void	 hide();

#ifndef	QT_NO_COMPAT

				void	 	 iconify()	 {	showMinimized();	}

#endif

				virtual	void	 showMinimized();

				virtual	void	 showMaximized();

				void	 	 showFullScreen();	//	virtual	3.0

				virtual	void	 showNormal();

				virtual	void	 polish();

				void		 	 constPolish()	const;

				bool	 	 close();

				void	 	 raise();

				void	 	 lower();

				void	 	 stackUnder(QWidget*);

				virtual	void	 move(int	x,	int	y);

				void	 	 move(const	QPoint	&);

				virtual	void	 resize(int	w,	int	h);

				void	 	 resize(const	QSize	&);

				virtual	void	 setGeometry(int	x,	int	y,	int	w,	int	h);

				virtual	void	 setGeometry(const	QRect	&);

public:

				virtual	bool	 close(bool	alsoDelete);

				bool	 	 isVisible()	 const;

				bool	 	 isVisibleTo(QWidget*)	const;

				bool	 	 isVisibleToTLW()	const;	//	obsolete

				QRect	 	 visibleRect()	const;

				bool		 	 isHidden()	const;

				bool	 	 isMinimized()	const;

				bool	 	 isMaximized()	const;

				virtual	QSize	 sizeHint()	const;

				virtual	QSize	 minimumSizeHint()	const;

				virtual	QSizePolicy	sizePolicy()	const;

				virtual	void	 	 setSizePolicy(QSizePolicy);

				virtual	int	heightForWidth(int)	const;

				virtual	void			 adjustSize();

#ifndef	QT_NO_LAYOUT

				QLayout	*	 	 layout()	const	{	return	lay_out;	}

#endif

				void	 	 updateGeometry();

				virtual	void		 reparent(QWidget	*parent,	WFlags,	const	QPoint	&,

	 	 	 	 		bool	showIt=FALSE);

				void	 	 reparent(QWidget	*parent,	const	QPoint	&,

	 	 	 	 		bool	showIt=FALSE);

#ifndef	QT_NO_COMPAT

				void	 	 recreate(QWidget	*parent,	WFlags	f,	const	QPoint	&	p,

	 	 	 	 		bool	showIt=FALSE)	{	reparent(parent,f,p,showIt);	}

#endif

				void	 	 erase();

				void	 	 erase(int	x,	int	y,	int	w,	int	h);

				void	 	 erase(const	QRect	&);

				void	 	 erase(const	QRegion	&);

				void	 	 scroll(int	dx,	int	dy);

				void	 	 scroll(int	dx,	int	dy,	const	QRect&);

				void	 	 drawText(int	x,	int	y,	const	QString	&);

				void	 	 drawText(const	QPoint	&,	const	QString	&);

				//	Misc.	functions

				QWidget	*	 	 focusWidget()	const;

				QRect															microFocusHint()	const;

				//	drag	and	drop

				bool	 	 acceptDrops()	const;

				virtual	void	 setAcceptDrops(bool	on);

				//	transparency	and	pseudo	transparency

				virtual	void	 setAutoMask(bool);

				bool	 	 autoMask()	const;

				enum	BackgroundOrigin	{	WidgetOrigin,	ParentOrigin,	WindowOrigin	};

				virtual	void	setBackgroundOrigin(BackgroundOrigin);

				BackgroundOrigin	backgroundOrigin()	const;

				//	whats	this	help

				virtual	bool	customWhatsThis()	const;

				QWidget	*	 	 parentWidget(bool	sameWindow	=	FALSE)	const;

				WState	 	 testWState(WState	s)	const;

				WFlags	 	 testWFlags(WFlags	f)	const;

				static	QWidget	*	 find(WId);

				static	QWidgetMapper	*wmapper();

				QWidget		*childAt(int	x,	int	y,	bool	includeThis	=	FALSE)	const;

				QWidget		*childAt(const	QPoint	&,	bool	includeThis	=	FALSE)	const;

#if	defined(Q_WS_QWS)

				virtual	QGfx	*	graphicsContext(bool	clip_children=TRUE)	const;

#endif

#if	defined(Q_WS_MAC)

				QRegion	clippedRegion(bool	do_children=TRUE);

				uint	clippedSerial(bool	do_children=TRUE);

#ifndef	QMAC_NO_QUARTZ

				CGContextRef	macCGContext(bool	clipped=TRUE)	const;

#endif

#endif

protected:

				//	Event	handlers

				bool	 	event(QEvent	*);

				virtual	void	mousePressEvent(QMouseEvent	*);

				virtual	void	mouseReleaseEvent(QMouseEvent	*);

				virtual	void	mouseDoubleClickEvent(QMouseEvent	*);

				virtual	void	mouseMoveEvent(QMouseEvent	*);

#ifndef	QT_NO_WHEELEVENT

				virtual	void	wheelEvent(QWheelEvent	*);

#endif

				virtual	void	keyPressEvent(QKeyEvent	*);

				virtual	void	keyReleaseEvent(QKeyEvent	*);

				virtual	void	focusInEvent(QFocusEvent	*);

				virtual	void	focusOutEvent(QFocusEvent	*);

				virtual	void	enterEvent(QEvent	*);

				virtual	void	leaveEvent(QEvent	*);

				virtual	void	paintEvent(QPaintEvent	*);

				virtual	void	moveEvent(QMoveEvent	*);

				virtual	void	resizeEvent(QResizeEvent	*);

				virtual	void	closeEvent(QCloseEvent	*);

				virtual	void	contextMenuEvent(QContextMenuEvent	*);

				virtual	void	imStartEvent(QIMEvent	*);

				virtual	void	imComposeEvent(QIMEvent	*);

				virtual	void	imEndEvent(QIMEvent	*);

				virtual	void	tabletEvent(QTabletEvent	*);

#ifndef	QT_NO_DRAGANDDROP

				virtual	void	dragEnterEvent(QDragEnterEvent	*);

				virtual	void	dragMoveEvent(QDragMoveEvent	*);

				virtual	void	dragLeaveEvent(QDragLeaveEvent	*);

				virtual	void	dropEvent(QDropEvent	*);

#endif

				virtual	void	showEvent(QShowEvent	*);

				virtual	void	hideEvent(QHideEvent	*);

#if	defined(Q_WS_MAC)

				virtual	bool	macEvent(MSG	*);

#endif

#if	defined(Q_WS_WIN)

				virtual	bool	winEvent(MSG	*);

#endif

#if	defined(Q_WS_X11)

				virtual	bool	x11Event(XEvent	*);

#endif

#if	defined(Q_WS_QWS)

				virtual	bool	qwsEvent(QWSEvent	*);

				virtual	unsigned	char	*scanLine(int)	const;

				virtual	int	bytesPerLine()	const;

#endif

				virtual	void	updateMask();

				//	Misc.	protected	functions

#ifndef	QT_NO_STYLE

				virtual	void	styleChange(QStyle&);

#endif

				virtual	void	enabledChange(bool	oldEnabled);

#ifndef	QT_NO_PALETTE

				virtual	void	paletteChange(const	QPalette	&);

#endif

				virtual	void	fontChange(const	QFont	&);

				virtual	void	windowActivationChange(bool	oldActive);

				int		 	metric(int)	 const;

				void	 	resetInputContext();

				virtual	void	create(WId	=	0,	bool	initializeWindow	=	TRUE,

	 	 	 	bool	destroyOldWindow	=	TRUE);

				virtual	void	destroy(bool	destroyWindow	=	TRUE,

	 	 	 		bool	destroySubWindows	=	TRUE);

				uint	 	getWState()	const;

				virtual	void	setWState(uint);

				void	 	clearWState(uint	n);

				WFlags	 	getWFlags()	const;

				virtual	void	setWFlags(WFlags);

				void	 	clearWFlags(WFlags	n);

				virtual	bool	focusNextPrevChild(bool	next);

				QWExtra	 *extraData();

				QTLWExtra	 *topData();

				QFocusData	 *focusData();

				virtual	void	setKeyCompression(bool);

				virtual	void	setMicroFocusHint(int	x,	int	y,	int	w,	int	h,	bool	text=TRUE,	QFont	*f	=	0);

#if	defined(Q_WS_MAC)

				void	dirtyClippedRegion(bool);

				bool	isClippedRegionDirty();

#endif

private	slots:

				void	 	focusProxyDestroyed();

private:

				void	 	setFontSys(QFont	*f	=	0);

#if	defined(Q_WS_X11)

				void	 	createInputContext();

				void	 	destroyInputContext();

				void	 	focusInputContext();

				void	 	checkChildrenDnd();

#elif	defined(Q_WS_MAC)

				uint				own_id	:	1,	macDropEnabled	:	1;

				EventHandlerRef	window_event;

				//mac	event	functions

				void				propagateUpdates();

				void				update(const	QRegion&);

				//friends,	way	too	many	-	fix	this	immediatly!

				friend	void	qt_clean_root_win();

				friend	bool	qt_recreate_root_win();

				friend	QPoint	posInWindow(QWidget	*);

				friend	QWidget	*qt_recursive_match(QWidget	*widg,	int	x,	int	y);

				friend	void	qt_paint_children(QWidget	*,QRegion	&,	uchar	ops);

				friend	void	qt_event_request_updates(QWidget	*,	QRegion	&);

				friend	bool	qt_window_rgn(WId,	short,	RgnHandle,	bool);

				friend	class	QDragManager;

#endif

#ifndef	QT_NO_LAYOUT

				void		 	setLayout(QLayout	*l);

#endif

				void	 	setWinId(WId);

				void	 	showWindow();

				void	 	hideWindow();

				void	 	sendShowEventsToChildren(bool	spontaneous);

				void	 	sendHideEventsToChildren(bool	spontaneous);

				void	 	reparentSys(QWidget	*parent,	WFlags,	const	QPoint	&,		bool	showIt);

				void	 	createTLExtra();

				void	 	createExtra();

				void	 	deleteExtra();

				void	 	createSysExtra();

				void	 	deleteSysExtra();

				void	 	createTLSysExtra();

				void	 	deleteTLSysExtra();

				void	 	deactivateWidgetCleanup();

				void	 	internalSetGeometry(int,	int,	int,	int,	bool);

				void	 	reparentFocusWidgets(QWidget	*);

				QFocusData	 *focusData(bool	create);

				void									setBackgroundFromMode();

				void									setBackgroundColorDirect(const	QColor	&);

				void				 	setBackgroundPixmapDirect(const	QPixmap	&);

				void									setBackgroundModeDirect(BackgroundMode);

				void									setBackgroundEmpty();

				void	 	updateFrameStrut()	const;

#if	defined(Q_WS_X11)

				void									setBackgroundX11Relative();

#endif

				WId		 	winid;

				uint	 	widget_state;

				uint	 	widget_flags;

				uint	 	focus_policy	:	4;

				uint		 	own_font	:1;

				uint		 	own_palette	:1;

				uint		 	sizehint_forced	:1;

				uint		 	is_closing	:1;

				uint		 	in_show	:	1;

				uint		 	in_show_maximized	:	1;

				uint	 	fstrut_dirty	:	1;

				QRect	 	crect;

				QColor	 	bg_col;

#ifndef	QT_NO_PALETTE

				QPalette	 	pal;

#endif

				QFont	 	fnt;

#ifndef	QT_NO_LAYOUT

				QLayout		 *lay_out;

#endif

				QWExtra	 *extra;

#if	defined(Q_WS_QWS)

				QRegion	 	req_region;	 	 	 //	Requested	region

				mutable	QRegion	 	paintable_region;	 //	Paintable	region

				mutable	bool									paintable_region_dirty;//	needs	to	be	recalculated

				mutable	QRegion						alloc_region;										//	Allocated	region

				mutable	bool									alloc_region_dirty;				//	needs	to	be	recalculated

				mutable	int										overlapping_children;		//	Handle	overlapping	children

				int		 	alloc_region_index;

				int		 	alloc_region_revision;

				void	updateOverlappingChildren()	const;

				void	setChildrenAllocatedDirty();

				bool	isAllocatedRegionDirty()	const;

				QRegion	requestedRegion()	const;

				QRegion	allocatedRegion()	const;

				QRegion	paintableRegion()	const;

				//	used	to	accumulate	dirty	region	when	children	moved/resized.

				QRegion	dirtyChildren;

				bool	isSettingGeometry;

				friend	class	QWSManager;

#endif

				static	void		createMapper();

				static	void		destroyMapper();

				static	QWidgetList	 	*wList();

				static	QWidgetList	 	*tlwList();

				static	QWidgetMapper	*mapper;

				friend	class	QApplication;

				friend	class	QBaseApplication;

				friend	class	QPainter;

				friend	class	QFontMetrics;

				friend	class	QFontInfo;

				friend	class	QETWidget;

				friend	class	QLayout;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QWidget(const	QWidget	&);

				QWidget	&operator=(const	QWidget	&);

#endif

public:	//	obsolete	functions	to	dissappear	or	to	become	inline	in	3.0

#ifndef	QT_NO_PALETTE

				void	setPalette(const	QPalette	&p,	bool)	{	setPalette(p);	}

#endif

				void	setFont(const	QFont	&f,	bool)	{	setFont(f);	}

};

inline	Qt::WState	QWidget::testWState(WState	s)	const

{	return	(widget_state	&	s);	}

inline	Qt::WFlags	QWidget::testWFlags(WFlags	f)	const

{	return	(widget_flags	&	f);	}

inline	WId	QWidget::winId()	const

{	return	winid;	}

inline	bool	QWidget::isTopLevel()	const

{	return	testWFlags(WType_TopLevel);	}

inline	bool	QWidget::isDialog()	const

{	return	testWFlags(WType_Dialog);	}

inline	bool	QWidget::isPopup()	const

{	return	testWFlags(WType_Popup);	}

inline	bool	QWidget::isDesktop()	const

{	return	testWFlags(WType_Desktop);	}

inline	bool	QWidget::isEnabled()	const

{	return	!testWState(WState_Disabled);	}

inline	bool	QWidget::isModal()	const

{	return	testWFlags(WShowModal);	}

inline	bool	QWidget::isEnabledToTLW()	const

{	return	isEnabled();	}

inline	const	QRect	&QWidget::geometry()	const

{	return	crect;	}

inline	QSize	QWidget::size()	const

{	return	crect.size();	}

inline	int	QWidget::width()	const

{	return	crect.width();	}

inline	int	QWidget::height()	const

{	return	crect.height();	}

inline	QRect	QWidget::rect()	const

{	return	QRect(0,0,crect.width(),crect.height());	}

inline	int	QWidget::minimumWidth()	const

{	return	minimumSize().width();	}

inline	int	QWidget::minimumHeight()	const

{	return	minimumSize().height();	}

inline	int	QWidget::maximumWidth()	const

{	return	maximumSize().width();	}

inline	int	QWidget::maximumHeight()	const

{	return	maximumSize().height();	}

inline	void	QWidget::setMinimumSize(const	QSize	&s)

{	setMinimumSize(s.width(),s.height());	}

inline	void	QWidget::setMaximumSize(const	QSize	&s)

{	setMaximumSize(s.width(),s.height());	}

inline	void	QWidget::setSizeIncrement(const	QSize	&s)

{	setSizeIncrement(s.width(),s.height());	}

inline	void	QWidget::setBaseSize(const	QSize	&s)

{	setBaseSize(s.width(),s.height());	}

inline	const	QColor	&QWidget::eraseColor()	const

{	return	bg_col;	}

#ifndef	QT_NO_PALETTE

inline	const	QPalette	&QWidget::palette()	const

{	return	pal;	}

#endif

inline	QFont	QWidget::font()	const

{	return	fnt;	}

inline	QFontMetrics	QWidget::fontMetrics()	const

{	return	QFontMetrics(font());	}

inline	QFontInfo	QWidget::fontInfo()	const

{	return	QFontInfo(font());	}

inline	bool	QWidget::hasMouseTracking()	const

{	return	testWState(WState_MouseTracking);	}

inline	bool	QWidget::hasMouse()	const

{	return	testWState(WState_HasMouse);	}

inline	bool		QWidget::isFocusEnabled()	const

{	return	(FocusPolicy)focus_policy	!=	NoFocus;	}

inline	QWidget::FocusPolicy	QWidget::focusPolicy()	const

{	return	(FocusPolicy)focus_policy;	}

inline	bool	QWidget::isUpdatesEnabled()	const

{	return	!testWState(WState_BlockUpdates);	}

inline	void	QWidget::update(const	QRect	&r)

{	update(r.x(),	r.y(),	r.width(),	r.height());	}

inline	void	QWidget::repaint()

{	repaint(0,	0,	crect.width(),	crect.height(),	TRUE);	}

inline	void	QWidget::repaint(bool	erase)

{	repaint(0,	0,	crect.width(),	crect.height(),	erase);	}

inline	void	QWidget::repaint(const	QRect	&r,	bool	erase)

{	repaint(r.x(),	r.y(),	r.width(),	r.height(),	erase);	}

inline	void	QWidget::erase()

{	erase(0,	0,	crect.width(),	crect.height());	}

inline	void	QWidget::erase(const	QRect	&r)

{	erase(r.x(),	r.y(),	r.width(),	r.height());	}

inline	bool	QWidget::close()

{	return	close(FALSE);	}

inline	bool	QWidget::isVisible()	const

{	return	testWState(WState_Visible);	}

inline	bool	QWidget::isVisibleToTLW()	const	//	obsolete

{	return	isVisible();	}

inline	bool	QWidget::isHidden()	const

{	return	testWState(WState_ForceHide);	}

inline	void	QWidget::move(const	QPoint	&p)

{	move(p.x(),	p.y());	}

inline	void	QWidget::resize(const	QSize	&s)

{	resize(s.width(),	s.height());	}

inline	void	QWidget::setGeometry(const	QRect	&r)

{	setGeometry(r.left(),	r.top(),	r.width(),	r.height());	}

inline	void	QWidget::drawText(const	QPoint	&p,	const	QString	&s)

{	drawText(p.x(),	p.y(),	s);	}

inline	QWidget	*QWidget::parentWidget(bool	sameWindow)	const

{

				if	(sameWindow)

	 return	isTopLevel()	?	0	:	(QWidget	*)QObject::parent();

				return	(QWidget	*)QObject::parent();

}

inline	QWidgetMapper	*QWidget::wmapper()

{	return	mapper;	}

inline	uint	QWidget::getWState()	const

{	return	widget_state;	}

inline	void	QWidget::setWState(uint	f)

{	widget_state	|=	f;	}

inline	void	QWidget::clearWState(uint	f)

{	widget_state	&=	~f;	}

inline	Qt::WFlags	QWidget::getWFlags()	const

{	return	widget_flags;	}

inline	void	QWidget::setWFlags(WFlags	f)

{	widget_flags	|=	f;	}

inline	void	QWidget::clearWFlags(WFlags	f)

{	widget_flags	&=	~f;	}

inline	void	QWidget::constPolish()	const

{

				if	(!testWState(WState_Polished))	{

	 QWidget*	that	=	(QWidget*)	this;

	 that->polish();

								that->setWState(WState_Polished);	//	be	on	the	safe	side...

				}

}

#ifndef	QT_NO_CURSOR

inline	bool	QWidget::ownCursor()	const

{

				return	testWState(WState_OwnCursor);

}

#endif

inline	bool	QWidget::ownFont()	const

{

				return	own_font;

}

#ifndef	QT_NO_PALETTE

inline	bool	QWidget::ownPalette()	const

{

				return	own_palette;

}

#endif

//	Extra	QWidget	data

//		-	to	minimize	memory	usage	for	members	that	are	seldom	used.

//		-	top-level	widgets	have	extra	extra	data	to	reduce	cost	further

class	QFocusData;

class	QWSManager;

#if	defined(Q_WS_WIN)

class	QOleDropTarget;

#endif

#if	defined(Q_WS_MAC)

class	QMacDndExtra;

#endif

struct	Q_EXPORT	QTLWExtra	{

#ifndef	QT_NO_WIDGET_TOPEXTRA

				QString		caption;	 	 	 	 //	widget	caption

				QString		iconText;	 	 	 	 //	widget	icon	text

				QPixmap	*icon;	 	 	 	 //	widget	icon

#endif

				QFocusData	*focusData;	 	 	 //	focus	data	(for	TLW)

				short				incw,	inch;	 	 	 //	size	increments

				//	frame	strut

				ulong				fleft,	fright,	ftop,	fbottom;

				uint					iconic:	1;		 	 	 //	iconified	[cur.	win32	only]

				uint					fullscreen	:	1;	 	 	 //	full-screen	mode

				uint					showMode:	2;	 	 	 //	0	normal,	1	minimized,	2	maximized,	3	reset

				short				basew,	baseh;	 	 	 //	base	sizes

#if	defined(Q_WS_X11)

				WId		parentWinId;	 	 	 //	parent	window	Id	(valid	after	reparenting)

				uint					embedded	:	1;	 	 	 //	window	is	embedded	in	another	Qt	application

				uint					reserved:	2;	 	 	 //	reserved

				uint					dnd	:	1;		 	 	 	 //	DND	properties	installed

				uint					uspos	:	1;																									//	User	defined	position

				uint					ussize	:	1;																								//	User	defined	size

				void				*xic;	 	 	 	 //	XIM	Input	Context

#endif

#if	defined(Q_WS_MAC)

				WindowGroupRef	group;

#endif

#if	defined(Q_WS_QWS)	&&	!defined	(QT_NO_QWS_MANAGER)

				QRegion	decor_allocated_region;	 	 //	decoration	allocated	region

				QWSManager	*qwsManager;

#endif

#if	defined(Q_WS_WIN)

				HICON				winIcon;	 	 	 	 //	internal	Windows	icon

#endif

				QRect				normalGeometry;	 	 	 //	used	by	showMin/maximized/FullScreen

};

#define	QWIDGETSIZE_MAX	32767

//	dear	user:	you	can	see	this	struct,	but	it	is	internal.	do	not	touch.

struct	Q_EXPORT	QWExtra	{

				Q_INT16		minw,	minh;	 	 	 //	minimum	size

				Q_INT16		maxw,	maxh;	 	 	 //	maximum	size

				QPixmap	*bg_pix;	 	 	 	 //	background	pixmap

				QWidget	*focus_proxy;

#ifndef	QT_NO_CURSOR

				QCursor	*curs;

#endif

				QTLWExtra	*topextra;	 	 	 //	only	useful	for	TLWs

#if	defined(Q_WS_WIN)

				QOleDropTarget	*dropTarget;		 	 //	drop	target

#endif

#if	defined(Q_WS_X11)

				WId	xDndProxy;	 	 	 //	XDND	forwarding	to	embedded	windows

#endif

#if	defined(Q_WS_MAC)

				QRegion	clip_saved,	clip_sibs,	clip_children;

				QMacDndExtra	*macDndExtra;

				QRegion	dirty_area;

				uint	clip_dirty	:	1,	clip_serial	:	15;

				uint	child_dirty	:	1,	child_serial	:	15;

#ifndef	QMAC_NO_QUARTZ

				uint	ctx_children_clipped:1;

#endif

				uint	has_dirty_area:1;

#endif

				uint	bg_origin	:	2;

#if	defined(Q_WS_X11)

				uint	children_use_dnd	:	1;

#endif

#if	defined(Q_WS_QWS)	||	defined(Q_WS_MAC)

				QRegion	mask;	 	 	 	 //	widget	mask

#endif

				char					bg_mode;	 	 	 	 //	background	mode

				char					bg_mode_visual;	 	 	 	 //	visual	background	mode

#ifndef	QT_NO_STYLE

				QStyle*	style;

#endif

				QRect	micro_focus_hint;																					//	micro	focus	hint

				QSizePolicy	size_policy;

};

#endif	//	QWIDGET_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

t9/lcdrange.h	Example	File
/**

**

**	Definition	of	LCDRange	class,	Qt	tutorial	8

**

**/

#ifndef	LCDRANGE_H

#define	LCDRANGE_H

#include	<qvbox.h>

class	QSlider;

class	LCDRange	:	public	QVBox

{

				Q_OBJECT

public:

				LCDRange(QWidget	*parent=0,	const	char	*name=0);

				int	value()	const;

public	slots:

				void	setValue(int);

				void	setRange(int	minVal,	int	maxVal);

signals:

				void	valueChanged(int);

private:

				QSlider		*slider;

};

#endif	//	LCDRANGE_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

t9/lcdrange.cpp	Example	File
/**

**

**	Implementation	of	LCDRange	class,	Qt	tutorial	8

**

**/

#include	"lcdrange.h"

#include	<qslider.h>

#include	<qlcdnumber.h>

LCDRange::LCDRange(QWidget	*parent,	const	char	*name)

								:	QVBox(parent,	name)

{

				QLCDNumber	*lcd		=	new	QLCDNumber(2,	this,	"lcd");

				slider	=	new	QSlider(Horizontal,	this,	"slider");

				slider->setRange(0,	99);

				slider->setValue(0);

				connect(slider,	SIGNAL(valueChanged(int)),

													lcd,	SLOT(display(int)));

				connect(slider,	SIGNAL(valueChanged(int)),

													SIGNAL(valueChanged(int)));

				setFocusProxy(slider);

}

int	LCDRange::value()	const

{

				return	slider->value();

}

void	LCDRange::setValue(int	value)

{

				slider->setValue(value);

}

void	LCDRange::setRange(int	minVal,	int	maxVal)

{

				if	(minVal	<	0	||	maxVal	>	99	||	minVal	>	maxVal)	{

						qWarning("LCDRange::setRange(%d,%d)\n"

															"\tRange	must	be	0..99\n"

															"\tand	minVal	must	not	be	greater	than	maxVal",

															minVal,	maxVal);

						return;

				}

				slider->setRange(minVal,	maxVal);

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

t9/cannon.h	Example	File
/**

**

**	Definition	of	CannonField	class,	Qt	tutorial	8

**

**/

#ifndef	CANNON_H

#define	CANNON_H

#include	<qwidget.h>

class	CannonField	:	public	QWidget

{

				Q_OBJECT

public:

				CannonField(QWidget	*parent=0,	const	char	*name=0);

				int	angle()	const	{	return	ang;	}

				QSizePolicy	sizePolicy()	const;

public	slots:

				void	setAngle(int	degrees);

signals:

				void	angleChanged(int);

protected:

				void	paintEvent(QPaintEvent	*);

private:

				int	ang;

};

#endif	//	CANNON_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

t9/cannon.cpp	Example	File
/**

**

**	Implementation	CannonField	class,	Qt	tutorial	9

**

**/

#include	"cannon.h"

#include	<qpainter.h>

CannonField::CannonField(QWidget	*parent,	const	char	*name)

								:	QWidget(parent,	name)

{

				ang	=	45;

				setPalette(QPalette(QColor(250,	250,	200)));

}

void	CannonField::setAngle(int	degrees)

{

				if	(degrees	<	5)

								degrees	=	5;

				if	(degrees	>	70)

								degrees	=	70;

				if	(ang	==	degrees)

								return;

				ang	=	degrees;

				repaint();

				emit	angleChanged(ang);

}

void	CannonField::paintEvent(QPaintEvent	*)

{

				QPainter	p(this);

				p.setBrush(blue);

				p.setPen(NoPen);

				p.translate(0,	rect().bottom());

				p.drawPie(QRect(-35,	-35,	70,	70),	0,	90*16);

				p.rotate(-ang);

				p.drawRect(QRect(33,	-4,	15,	8));

}

QSizePolicy	CannonField::sizePolicy()	const

{

				return	QSizePolicy(QSizePolicy::Expanding,	QSizePolicy::Expanding);

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

t9/main.cpp	Example	File
/**

**

**	Qt	tutorial	9

**

**/

#include	<qapplication.h>

#include	<qpushbutton.h>

#include	<qlcdnumber.h>

#include	<qfont.h>

#include	<qlayout.h>

#include	"lcdrange.h"

#include	"cannon.h"

class	MyWidget:	public	QWidget

{

public:

				MyWidget(QWidget	*parent=0,	const	char	*name=0);

};

MyWidget::MyWidget(QWidget	*parent,	const	char	*name)

								:	QWidget(parent,	name)

{

				QPushButton	*quit	=	new	QPushButton("&Quit",	this,	"quit");

				quit->setFont(QFont("Times",	18,	QFont::Bold));

				connect(quit,	SIGNAL(clicked()),	qApp,	SLOT(quit()));

				LCDRange	*angle	=	new	LCDRange(this,	"angle");

				angle->setRange(5,	70);

				CannonField	*cannonField	=	new	CannonField(this,	"cannonField");

				connect(angle,	SIGNAL(valueChanged(int)),

													cannonField,	SLOT(setAngle(int)));

				connect(cannonField,	SIGNAL(angleChanged(int)),

													angle,	SLOT(setValue(int)));

				QGridLayout	*grid	=	new	QGridLayout(this,	2,	2,	10);

				grid->addWidget(quit,	0,	0);

				grid->addWidget(angle,	1,	0,	Qt::AlignTop);

				grid->addWidget(cannonField,	1,	1);

				grid->setColStretch(1,	10);

				angle->setValue(60);

				angle->setFocus();

}

int	main(int	argc,	char	**argv)

{

				QApplication::setColorSpec(QApplication::CustomColor);

				QApplication	a(argc,	argv);

				MyWidget	w;

				w.setGeometry(100,	100,	500,	355);

				a.setMainWidget(&w);

				w.show();

				return	a.exec();

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QPaintEvent	Class	Reference
The	QPaintEvent	class	contains	event	parameters	for	paint	events.	More...

#include	<qevent.h>

Inherits	QEvent.

List	of	all	member	functions.

Public	Members

QPaintEvent	(const	QRegion	&	paintRegion,	bool	erased	=	TRUE)
QPaintEvent	(const	QRect	&	paintRect,	bool	erased	=	TRUE)
const	QRect	&	rect	()	const
const	QRegion	&	region	()	const
bool	erased	()	const

Detailed	Description

The	QPaintEvent	class	contains	event	parameters	for	paint	events.

Paint	events	are	sent	to	widgets	that	need	to	update	themselves,	for	instance
when	part	of	a	widget	is	exposed	because	a	covering	widget	is	moved.

The	event	contains	a	region()	that	needs	to	be	updated,	and	a	rect()	that	is	the
bounding	rectangle	of	that	region.	Both	are	provided	because	many	widgets	can't
make	much	use	of	region(),	and	rect()	can	be	much	faster	than
region().boundingRect().	Painting	is	clipped	to	region()	during	processing	of	a
paint	event.

The	erased()	function	returns	TRUE	if	the	region()	has	been	cleared	to	the
widget's	background	(see	QWidget::backgroundMode()),	and	FALSE	if	the
region's	contents	are	arbitrary.

See	also	QPainter,	QWidget::update(),	QWidget::repaint(),
QWidget::paintEvent(),	QWidget::backgroundMode,	QRegion	and	Event
Classes.

Member	Function	Documentation

QPaintEvent::QPaintEvent	(const	QRegion	&	paintRegion,
bool	erased	=	TRUE)

Constructs	a	paint	event	object	with	the	region	that	should	be	updated.	The
region	is	given	by	paintRegion.	If	erased	is	TRUE	the	region	will	be	cleared
before	repainting.

QPaintEvent::QPaintEvent	(const	QRect	&	paintRect,
bool	erased	=	TRUE)

Constructs	a	paint	event	object	with	the	rectangle	that	should	be	updated.	The
region	is	given	by	paintRect.	If	erased	is	TRUE	the	region	will	be	cleared	before
repainting.

bool	QPaintEvent::erased	()	const

Returns	TRUE	if	the	paint	event	region	(or	rectangle)	has	been	erased	with	the
widget's	background;	otherwise	returns	FALSE.

const	QRect	&	QPaintEvent::rect	()	const

Returns	the	rectangle	that	should	be	updated.

See	also	region()	and	QPainter::setClipRect().

Examples:	life/life.cpp,	qfd/fontdisplayer.cpp,	showimg/showimg.cpp,
t10/cannon.cpp,	t11/cannon.cpp,	t13/cannon.cpp	and	tooltip/tooltip.cpp.

const	QRegion	&	QPaintEvent::region	()	const

Returns	the	region	that	should	be	updated.

See	also	rect()	and	QPainter::setClipRegion().

Examples:	qfd/fontdisplayer.cpp	and	scribble/scribble.cpp.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QPainter
QPainter	 ……

#include	<qpainter.h>

Qt

QDirectPainter

enum	CoordinateMode	{	CoordDevice,	CoordPainter	}
QPainter	()
QPainter	(const	QPaintDevice	*	pd,	bool	unclipped	=	FALSE)
QPainter	(const	QPaintDevice	*	pd,	const	QWidget	*	copyAttributes,
bool	unclipped	=	FALSE)
~QPainter	()
bool	begin	(const	QPaintDevice	*	pd,	bool	unclipped	=	FALSE)
bool	begin	(const	QPaintDevice	*	pd,	const	QWidget	*	copyAttributes,
bool	unclipped	=	FALSE)
bool	end	()
QPaintDevice	*	device	()	const
QGfx	*	internalGfx	()
bool	isActive	()	const
void	flush	(const	QRegion	&	region,	CoordinateMode	cm	=	CoordDevice)
void	flush	()
void	save	()
void	restore	()
QFontMetrics	fontMetrics	()	const
QFontInfo	fontInfo	()	const
const	QFont	&	font	()	const
void	setFont	(const	QFont	&	font)
const	QPen	&	pen	()	const
void	setPen	(const	QPen	&	pen)
void	setPen	(PenStyle	style)
void	setPen	(const	QColor	&	color)
const	QBrush	&	brush	()	const
void	setBrush	(const	QBrush	&	brush)
void	setBrush	(BrushStyle	style)
void	setBrush	(const	QColor	&	color)
QPoint	pos	()	const
const	QColor	&	backgroundColor	()	const
void	setBackgroundColor	(const	QColor	&	c)
BGMode	backgroundMode	()	const
void	setBackgroundMode	(BGMode	m)
RasterOp	rasterOp	()	const

void	setRasterOp	(RasterOp	r)
const	QPoint	&	brushOrigin	()	const
void	setBrushOrigin	(int	x,	int	y)
void	setBrushOrigin	(const	QPoint	&	p)
bool	hasViewXForm	()	const
bool	hasWorldXForm	()	const
void	setViewXForm	(bool	enable)
QRect	window	()	const
void	setWindow	(const	QRect	&	r)
void	setWindow	(int	x,	int	y,	int	w,	int	h)
QRect	viewport	()	const
void	setViewport	(const	QRect	&	r)
void	setViewport	(int	x,	int	y,	int	w,	int	h)
void	setWorldXForm	(bool	enable)
const	QWMatrix	&	worldMatrix	()	const
void	setWorldMatrix	(const	QWMatrix	&	m,	bool	combine	=	FALSE)
void	saveWorldMatrix	()		(obsolete)
void	restoreWorldMatrix	()		(obsolete)
void	scale	(double	sx,	double	sy)
void	shear	(double	sh,	double	sv)
void	rotate	(double	a)
void	translate	(double	dx,	double	dy)
void	resetXForm	()
QPoint	xForm	(const	QPoint	&	pv)	const
QRect	xForm	(const	QRect	&	rv)	const
QPointArray	xForm	(const	QPointArray	&	av)	const
QPointArray	xForm	(const	QPointArray	&	av,	int	index,	int	npoints)
const
QPoint	xFormDev	(const	QPoint	&	pd)	const
QRect	xFormDev	(const	QRect	&	rd)	const
QPointArray	xFormDev	(const	QPointArray	&	ad)	const
QPointArray	xFormDev	(const	QPointArray	&	ad,	int	index,	int	npoints)
const
void	setClipping	(bool	enable)
bool	hasClipping	()	const
QRegion	clipRegion	(CoordinateMode	m	=	CoordDevice)	const
void	setClipRect	(const	QRect	&	r,	CoordinateMode	m	=	CoordDevice)
void	setClipRect	(int	x,	int	y,	int	w,	int	h,	CoordinateMode	m	=
CoordDevice)

void	setClipRegion	(const	QRegion	&	rgn,	CoordinateMode	m	=
CoordDevice)
void	drawPoint	(int	x,	int	y)
void	drawPoint	(const	QPoint	&	p)
void	drawPoints	(const	QPointArray	&	a,	int	index	=	0,	int	npoints	=	-1)
void	moveTo	(int	x,	int	y)
void	moveTo	(const	QPoint	&	p)
void	lineTo	(int	x,	int	y)
void	lineTo	(const	QPoint	&	p)
void	drawLine	(int	x1,	int	y1,	int	x2,	int	y2)
void	drawLine	(const	QPoint	&	p1,	const	QPoint	&	p2)
void	drawRect	(int	x,	int	y,	int	w,	int	h)
void	drawRect	(const	QRect	&	r)
void	drawWinFocusRect	(int	x,	int	y,	int	w,	int	h)
void	drawWinFocusRect	(int	x,	int	y,	int	w,	int	h,
const	QColor	&	bgColor)
void	drawWinFocusRect	(const	QRect	&	r)
void	drawWinFocusRect	(const	QRect	&	r,	const	QColor	&	bgColor)
void	drawRoundRect	(int	x,	int	y,	int	w,	int	h,	int	xRnd	=	25,	int	yRnd	=
25)
void	drawRoundRect	(const	QRect	&	r,	int	xRnd	=	25,	int	yRnd	=	25)
void	drawEllipse	(int	x,	int	y,	int	w,	int	h)
void	drawEllipse	(const	QRect	&	r)
void	drawArc	(int	x,	int	y,	int	w,	int	h,	int	a,	int	alen)
void	drawArc	(const	QRect	&	r,	int	a,	int	alen)
void	drawPie	(int	x,	int	y,	int	w,	int	h,	int	a,	int	alen)
void	drawPie	(const	QRect	&	r,	int	a,	int	alen)
void	drawChord	(int	x,	int	y,	int	w,	int	h,	int	a,	int	alen)
void	drawChord	(const	QRect	&	r,	int	a,	int	alen)
void	drawLineSegments	(const	QPointArray	&	a,	int	index	=	0,	int	nlines
=	-1)
void	drawPolyline	(const	QPointArray	&	a,	int	index	=	0,	int	npoints	=	-1
)
void	drawPolygon	(const	QPointArray	&	a,	bool	winding	=	FALSE,
int	index	=	0,	int	npoints	=	-1)
void	drawConvexPolygon	(const	QPointArray	&	pa,	int	index	=	0,
int	npoints	=	-1)
void	drawCubicBezier	(const	QPointArray	&	a,	int	index	=	0)
void	drawPixmap	(int	x,	int	y,	const	QPixmap	&	pixmap,	int	sx	=	0,	int	sy

=	0,	int	sw	=	-1,	int	sh	=	-1)
void	drawPixmap	(const	QPoint	&	p,	const	QPixmap	&	pm,
const	QRect	&	sr)
void	drawPixmap	(const	QPoint	&	p,	const	QPixmap	&	pm)
void	drawPixmap	(const	QRect	&	r,	const	QPixmap	&	pm)
void	drawImage	(int	x,	int	y,	const	QImage	&	image,	int	sx	=	0,	int	sy	=	0,
int	sw	=	-1,	int	sh	=	-1,	int	conversionFlags	=	0)
void	drawImage	(const	QPoint	&,	const	QImage	&,	const	QRect	&	sr,
int	conversionFlags	=	0)
void	drawImage	(const	QPoint	&	p,	const	QImage	&	i,
int	conversion_flags	=	0)
void	drawImage	(const	QRect	&	r,	const	QImage	&	i)
void	drawTiledPixmap	(int	x,	int	y,	int	w,	int	h,
const	QPixmap	&	pixmap,	int	sx	=	0,	int	sy	=	0)
void	drawTiledPixmap	(const	QRect	&	r,	const	QPixmap	&	pm,
const	QPoint	&	sp)
void	drawTiledPixmap	(const	QRect	&	r,	const	QPixmap	&	pm)
void	drawPicture	(const	QPicture	&	pic)		(obsolete)
void	drawPicture	(int	x,	int	y,	const	QPicture	&	pic)
void	drawPicture	(const	QPoint	&	p,	const	QPicture	&	pic)
void	fillRect	(int	x,	int	y,	int	w,	int	h,	const	QBrush	&	brush)
void	fillRect	(const	QRect	&	r,	const	QBrush	&	brush)
void	eraseRect	(int	x,	int	y,	int	w,	int	h)
void	eraseRect	(const	QRect	&	r)
enum	TextDirection	{	Auto,	RTL,	LTR	}
void	drawText	(int	x,	int	y,	const	QString	&,	int	len	=	-1,	TextDirection	dir
=	Auto)
void	drawText	(const	QPoint	&,	const	QString	&,	int	len	=	-1,
TextDirection	dir	=	Auto)
void	drawText	(int	x,	int	y,	const	QString	&,	int	pos,	int	len,
TextDirection	dir	=	Auto)
void	drawText	(const	QPoint	&	p,	const	QString	&,	int	pos,	int	len,
TextDirection	dir	=	Auto)
void	drawText	(int	x,	int	y,	int	w,	int	h,	int	flags,	const	QString	&,	int	len	=
-1,	QRect	*	br	=	0,	QTextParag	**	internal	=	0)
void	drawText	(const	QRect	&	r,	int	tf,	const	QString	&	str,	int	len	=	-1,
QRect	*	brect	=	0,	QTextParag	**	internal	=	0)
QRect	boundingRect	(int	x,	int	y,	int	w,	int	h,	int	flags,	const	QString	&,
int	len	=	-1,	QTextParag	**	intern	=	0)

QRect	boundingRect	(const	QRect	&	r,	int	flags,	const	QString	&	str,
int	len	=	-1,	QTextParag	**	internal	=	0)
int	tabStops	()	const
void	setTabStops	(int	ts)
int	*	tabArray	()	const
void	setTabArray	(int	*	ta)
HDC	handle	()	const

void	redirect	(QPaintDevice	*	pdev,	QPaintDevice	*	replacement)

void	qDrawShadeLine	(QPainter	*	p,	int	x1,	int	y1,	int	x2,	int	y2,
const	QColorGroup	&	g,	bool	sunken,	int	lineWidth,	int	midLineWidth)
void	qDrawShadeRect	(QPainter	*	p,	int	x,	int	y,	int	w,	int	h,
const	QColorGroup	&	g,	bool	sunken,	int	lineWidth,	int	midLineWidth,
const	QBrush	*	fill)
void	qDrawShadePanel	(QPainter	*	p,	int	x,	int	y,	int	w,	int	h,
const	QColorGroup	&	g,	bool	sunken,	int	lineWidth,	const	QBrush	*	fill)
void	qDrawWinButton	(QPainter	*	p,	int	x,	int	y,	int	w,	int	h,
const	QColorGroup	&	g,	bool	sunken,	const	QBrush	*	fill)
void	qDrawWinPanel	(QPainter	*	p,	int	x,	int	y,	int	w,	int	h,
const	QColorGroup	&	g,	bool	sunken,	const	QBrush	*	fill)
void	qDrawPlainRect	(QPainter	*	p,	int	x,	int	y,	int	w,	int	h,
const	QColor	&	c,	int	lineWidth,	const	QBrush	*	fill)

QPainter

QPainter“”

99QPainter

				void	SimpleExampleWidget::paintEvent()

				{

								QPainter	paint(this);

								paint.setPen(Qt::blue);

								paint.drawText(rect(),	AlignCenter,	"The	Text");

				}

				

font()Qtfont() setFont()	fontInfo()

brush()

pen()

backgroundMode()OpaqueTransparentbackgroundColor()

backgroundMode()Opaquepen()backgroundColor()

rasterOp()

brushOrigin()

viewport() window() worldMatrix()

clipping() clipRegion

pos() moveTo()lineTo()

QWidget::font() QPainter::begin
QWidget::setFont()

restore()

QPainter
drawPoint() drawPoints() drawLine() drawRect() drawWinFocusRect()

drawCubicBezier()

/ drawPixmap() drawImage()drawTiledPixmap()drawPixmap()
drawImage()drawPixmap()drawImage() QPrinter

drawText() boundingRect()drawText()

drawPicture()QPicturedrawPicture()QPicture

QPainterQPainter

scale() rotate() translate()shear() worldMatrix() setWorldMatrix
worldMatrix()

setViewport()QPainter setWindow() viewport() window()
viewport()

QPainterQPainter
setClipRect()

QPainterclipRegion()hasClipping()

QPainter

isActive() begin() end() device()

QPaintDeviceQPainter redirect()

setTabStops()setTabArray()tab

QPainter+/-4000

QPaintDeviceQWidgetQPixmapQPrinterQPicture

QPainter::CoordinateMode

QPainter::CoordDevice

QPainter::CoordPainter

clipRegion()

QPainter::TextDirection

QPainter::Auto

QPainter::RTL	-	
QPainter::LTR	-	

drawText()

QPainter::QPainter	()

setPensetBrush begin()

begin()end()

QPainter::QPainter	(const	QPaintDevice	*	pd,	bool	unclipped	=
FALSE)

pd unclipped

begin()QPainterend()

begin()end()

								void	MyWidget::paintEvent(QPaintEvent	*)

								{

												QPainter	p;

												p.begin(this);

												p.drawLine(...);		//	

												p.end();

								}

				

								void	MyWidget::paintEvent(QPaintEvent	*)

								{

												QPainter	p(this);

												p.drawLine(...);		//	

								}

				

begin()end()

QPainter::QPainter	(const	QPaintDevice	*	pd,

const	QWidget	*	copyAttributes,	bool	unclipped	=	FALSE)

pd copyAttributesunclipped

begin()

QPainter::~QPainter	()

const	QColor	&	QPainter::backgroundColor	()	const

setBackgroundColor()QColor

BGMode	QPainter::backgroundMode	()	const

setBackgroundMode()BGMode

bool	QPainter::begin	(const	QPaintDevice	*	pd,	bool	unclipped	=
FALSE)

pd unclipped

								p->begin(0);	//	——0

								QPixmap	pm(0,	0);

								p->begin(pm);	//	——pm. isNull();

								p->begin(myWidget);

								p2->begin(myWidget);	//	——

				

begin() end()

end()flush()

aclock/aclock.cppapplication/application.cppdesktop/desktop.cpphello/hello.cpppicture/picture.cpp
xform/xform.cpp

bool	QPainter::begin	(const	QPaintDevice	*	pd,
const	QWidget	*	copyAttributes,	bool	unclipped	=	FALSE)

pdcopyAttributes unclipped

								QPainter	p;

								p.begin(pd);

								p.setPen(copyAttributes->foregroundColor());

								p.setBackgroundColor(copyAttributes->backgroundColor());

								p.setFont(copyAttributes->font());

				

bitBlt

								void	MyWidget::paintEvent(QPaintEvent	*)

								{

												QPixmap	pm(size());

												QPainter	p;

												p.begin(&pm,	this);

												//	…………

												p.end();

												bitBlt(this,	0,	0,	&pm);

								}

				

end()

QRect	QPainter::boundingRect	(int	x,	int	y,	int	w,	int	h,	int	flags,
const	QString	&,	int	len	=	-1,	QTextParag	**	intern	=	0)

drawText() len>-1 len len-1 (x,	y)wh

flags

AlignAuto
AlignLeft
AlignRight
AlignHCenter
AlignTop
AlignBottom
AlignVCenter
AlignCenter == AlignHCenter	|	AlignVCenter
SingleLine
ExpandTabs tab
ShowPrefix “&x;”“ x”
WordBreak

AlignLeftAlignTop

intern

Qt::TextFlags

QRect	QPainter::boundingRect	(const	QRect	&	r,	int	flags,
const	QString	&	str,	int	len	=	-1,	QTextParag	**	internal	=	0)

drawText() len>-1 len len-1 r

intern

drawText() fontMetrics() QFontMetrics::boundingRect()Qt::TextFlags

const	QBrush	&	QPainter::brush	()	const

QPainter::setBrush()

themes/metal.cppthemes/wood.cpp

const	QPoint	&	QPainter::brushOrigin	()	const

setBrushOrigin()

QRegion	QPainter::clipRegion	(CoordinateMode	m	=
CoordDevice)	const

mCoordDevice

setClipRegion() setClipRect() setClipping()QPainter::CoordinateMode

	 themes/wood.cpp

QPaintDevice	*	QPainter::device	()	const

0

QPaintDevice::paintingActive()

helpviewer/helpwindow.cpplistboxcombo/listboxcombo.cpp

void	QPainter::drawArc	(int	x,	int	y,	int	w,	int	h,	int	a,	int	alen)

(x,	y,	w,	h) aalen

aalen1/16576016*360 aalen03

								QPainter	p(myWidget);

								p.drawArc(10,10,	70,100,	100*16,	160*16);	//	“(”

				

drawPie()drawChord()

void	QPainter::drawArc	(const	QRect	&	r,	int	a,	int	alen)

r aalen

void	QPainter::drawChord	(int	x,	int	y,	int	w,	int	h,	int	a,	int	alen
)

(x,	y,	w,	h) aalen

brush()

aalen1/16576016*360 aalen03

drawArc()drawPie()

void	QPainter::drawChord	(const	QRect	&	r,	int	a,	int	alen)

r aalen

void	QPainter::drawConvexPolygon	(const	QPointArray	&	pa,
int	index	=	0,	int	npoints	=	-1)

papa[index]index0 npoints

X drawPolygon()

	 aclock/aclock.cpp

void	QPainter::drawCubicBezier	(const	QPointArray	&	a,
int	index	=	0)

aa[index]index0

a[index	+	3]

void	QPainter::drawEllipse	(int	x,	int	y,	int	w,	int	h)

(x	+	w/2,	y	+	h/2)(w,	h)

drawdemo/drawdemo.cpppicture/picture.cpptictac/tictac.cpp

void	QPainter::drawEllipse	(const	QRect	&	r)

r

void	QPainter::drawImage	(int	x,	int	y,	const	QImage	&	image,
int	sx	=	0,	int	sy	=	0,	int	sw	=	-1,	int	sh	=	-1,
int	conversionFlags	=	0)

(x,	y)(sx,	sy) swsh conversionFlagsconversionFlags0
convertFromImage()

device()QPixmapQWidgetimagedevice() QPrinterQPicture

QPrinteralpha

drawPixmap()QPixmap::convertFromImage()

	 canvas/canvas.cpp

void	QPainter::drawImage	(const	QPoint	&,	const	QImage	&,
const	QRect	&	sr,	int	conversionFlags	=	0)

sr

void	QPainter::drawImage	(const	QPoint	&	p,	const	QImage	&	i,
int	conversion_flags	=	0)

pi

328 conversion_flags

Qt::ImageConversionFlags

void	QPainter::drawImage	(const	QRect	&	r,	const	QImage	&	i)

ri

void	QPainter::drawLine	(int	x1,	int	y1,	int	x2,	int	y2)

(x1,	y1)(x2,	y2)(x2,	y2)

pen()

aclock/aclock.cppdrawlines/connect.cppprogress/progress.cppsplitter/splitter.cppthemes/metal.cpp
themes/wood.cpp

void	QPainter::drawLine	(const	QPoint	&	p1,	const	QPoint	&	p2
)

p1p2

void	QPainter::drawLineSegments	(const	QPointArray	&	a,
int	index	=	0,	int	nlines	=	-1)

a a[index]index0 nlines nlines-1(a.size()-index)/2

a[index]a[index+1]a[index+2]a[index+3]

drawPolyline() drawPolygon()QPen

void	QPainter::drawPicture	(int	x,	int	y,	const	QPicture	&	pic)

(x,	y)pic

(x,	y)	=	(0,	0) QPicture::play()

picture/picture.cppxform/xform.cpp

void	QPainter::drawPicture	(const	QPicture	&	pic)

(0,	0) QPainter::drawPicture()

void	QPainter::drawPicture	(const	QPoint	&	p,
const	QPicture	&	pic)

ppic

void	QPainter::drawPie	(int	x,	int	y,	int	w,	int	h,	int	a,	int	alen)

(x,	y,	w,	h) aalen

brush()

aalen1/16576016*360 aalen03

drawArc()drawChord()

drawdemo/drawdemo.cppgrapher/grapher.cppt10/cannon.cppt9/cannon.cpp

void	QPainter::drawPie	(const	QRect	&	r,	int	a,	int	alen)

r aalen

void	QPainter::drawPixmap	(int	x,	int	y,
const	QPixmap	&	pixmap,	int	sx	=	0,	int	sy	=	0,	int	sw	=	-1,
int	sh	=	-1)

pixmap (x,	y)

(x,	y) (sx,	sy)pixmap(0,	0)

(sw,	sh)pixmap(-1,	-1)

QPrinteralpha

bitBlt()QPixmap::setMask()

grapher/grapher.cpppicture/picture.cppqdir/qdir.cppqtimage/qtimage.cppshowimg/showimg.cpp
xform/xform.cpp

void	QPainter::drawPixmap	(const	QPoint	&	p,
const	QPixmap	&	pm,	const	QRect	&	sr)

pmsrp

void	QPainter::drawPixmap	(const	QPoint	&	p,
const	QPixmap	&	pm)

pmp

void	QPainter::drawPixmap	(const	QRect	&	r,
const	QPixmap	&	pm)

rpm

void	QPainter::drawPoint	(int	x,	int	y)

(x,	y)

QPen

desktop/desktop.cppdrawlines/connect.cpp

void	QPainter::drawPoint	(const	QPoint	&	p)

p

void	QPainter::drawPoints	(const	QPointArray	&	a,	int	index	=
0,	int	npoints	=	-1)

a

index0 index npoints index index0 index

void	QPainter::drawPolygon	(const	QPointArray	&	a,
bool	winding	=	FALSE,	int	index	=	0,	int	npoints	=	-1)

a a[index]index0 npoints

npoints1a.size()-index

brush() windingwinding	fill	algorithm windingeven-
odd	(alternative)	fill	algorithm

drawLineSegments() drawPolyline()QPen

desktop/desktop.cpppicture/picture.cpp

void	QPainter::drawPolyline	(const	QPointArray	&	a,	int	index	=
0,	int	npoints	=	-1)

a a[index]index0 npoints

npoints1a.size()-index

drawLineSegments() drawPolygon()QPen

scribble/scribble.cppthemes/metal.cpp

void	QPainter::drawRect	(int	x,	int	y,	int	w,	int	h)

(x,	y)wh

QPendrawRoundRect()

drawdemo/drawdemo.cpppicture/picture.cppt10/cannon.cppt11/cannon.cppt9/cannon.cpp
trivial/trivial.cpp

void	QPainter::drawRect	(const	QRect	&	r)

r

void	QPainter::drawRoundRect	(int	x,	int	y,	int	w,	int	h,	int	xRnd
=	25,	int	yRnd	=	25)

(x,	y)wh

xRndyRnd099

drawRect()QPen

drawdemo/drawdemo.cppthemes/wood.cpp

void	QPainter::drawRoundRect	(const	QRect	&	r,	int	xRnd	=	25,
int	yRnd	=	25)

rxxRndyyRnd

void	QPainter::drawText	(const	QPoint	&	p,	const	QString	&,
int	pos,	int	len,	TextDirection	dir	=	Auto)

ppos len-1 len dir

QPainter::TextDirection

desktop/desktop.cppdrawdemo/drawdemo.cppgrapher/grapher.cpppicture/picture.cpp
trivial/trivial.cpp

void	QPainter::drawText	(int	x,	int	y,	const	QString	&,	int	len	=
-1,	TextDirection	dir	=	Auto)

(x,	y) len1 len dir

QPainter::TextDirection

void	QPainter::drawText	(const	QPoint	&,	const	QString	&,
int	len	=	-1,	TextDirection	dir	=	Auto)

QPainter::TextDirection

void	QPainter::drawText	(int	x,	int	y,	const	QString	&,	int	pos,
int	len,	TextDirection	dir	=	Auto)

(x,	y)pos len-1 len dir

void	QPainter::drawText	(int	x,	int	y,	int	w,	int	h,	int	flags,
const	QString	&,	int	len	=	-1,	QRect	*	br	=	0,
QTextParag	**	internal	=	0)

(x,	y) wh len-1 len flagsQt::AlignmentFlagsQt::TextFlags
br

void	QPainter::drawText	(const	QRect	&	r,	int	tf,
const	QString	&	str,	int	len	=	-1,	QRect	*	brect	=	0,
QTextParag	**	internal	=	0)

rstrlen

r.y()drawText()

tfQt::AlignmentFlagsQt::TextFlags

AlignAutoAlignTop

brect internal

boundingRect()

void	QPainter::drawTiledPixmap	(int	x,	int	y,	int	w,	int	h,
const	QPixmap	&	pixmap,	int	sx	=	0,	int	sy	=	0)

pixmap

(x,	y) wh (sx,	sy)pixmap(0,	0)

drawTiledPixmap()drawPixmap()

drawPixmap()

void	QPainter::drawTiledPixmap	(const	QRect	&	r,
const	QPixmap	&	pm,	const	QPoint	&	sp)

sprpm

void	QPainter::drawTiledPixmap	(const	QRect	&	r,
const	QPixmap	&	pm)

rpm

void	QPainter::drawWinFocusRect	(int	x,	int	y,	int	w,	int	h,
const	QColor	&	bgColor)

(x,	y)wh bgColor

XOR QApplication::style()WindowStyle

bgColorQColor::gray()

drawRect()QApplication::style()

void	QPainter::drawWinFocusRect	(int	x,	int	y,	int	w,	int	h)

(x,	y)wh

XOR QApplication::style()WindowStyle

drawRect()QApplication::style()

void	QPainter::drawWinFocusRect	(const	QRect	&	r)

r

void	QPainter::drawWinFocusRect	(const	QRect	&	r,
const	QColor	&	bgColor)

bgColorr

bool	QPainter::end	()

end()

								QPainter	p(myPixmap,	this)

								//	...

								p.end();	//	myPixmap

								p.begin(this);

								p.drawPixmap(myPixmap);

				

QPixmap

begin()isActive()

aclock/aclock.cppapplication/application.cppdesktop/desktop.cpphello/hello.cpppicture/picture.cpp
xform/xform.cpp

void	QPainter::eraseRect	(int	x,	int	y,	int	w,	int	h)

xywh fillRect(x,	y,	w,	h,	backgroundColor())

listboxcombo/listboxcombo.cppshowimg/showimg.cpp

void	QPainter::eraseRect	(const	QRect	&	r)

r

void	QPainter::fillRect	(int	x,	int	y,	int	w,	int	h,
const	QBrush	&	brush)

(x,	y,	w,	h)brush

QColorbrushQBrushQColor

drawRect()

listboxcombo/listboxcombo.cppprogress/progress.cppqdir/qdir.cppqfd/fontdisplayer.cpp
themes/wood.cpp

void	QPainter::fillRect	(const	QRect	&	r,	const	QBrush	&	brush
)

rbrush

void	QPainter::flush	(const	QRegion	&	region,
CoordinateMode	cm	=	CoordDevice)

cmregion

CoordinateMode

void	QPainter::flush	()

const	QFont	&	QPainter::font	()	const

setFont()QFont

	 fileiconview/qfileiconview.cpp

QFontInfo	QPainter::fontInfo	()	const

fontMetrics()isActive()

QFontMetrics	QPainter::fontMetrics	()	const

fontInfo()isActive()

action/application.cppapplication/application.cppdesktop/desktop.cppdrawdemo/drawdemo.cpp
qwerty/qwerty.cpp

HDC	QPainter::handle	()	const

bool	QPainter::hasClipping	()	const

setClipping()

	 themes/wood.cpp

bool	QPainter::hasViewXForm	()	const

setViewXForm()xForm()

bool	QPainter::hasWorldXForm	()	const

setWorldXForm()

bool	QPainter::isActive	()	const

begin()end()

QPaintDevice::paintingActive()

	 desktop/desktop.cpp

void	QPainter::lineTo	(int	x,	int	y)

(x,	y)(x,	y)

QPenmoveTo() drawLine()pos()

void	QPainter::lineTo	(const	QPoint	&	p)

p

void	QPainter::moveTo	(int	x,	int	y)

(x,	y)

lineTo()pos()

void	QPainter::moveTo	(const	QPoint	&	p)

p

const	QPen	&	QPainter::pen	()	const

setPen()

progress/progress.cppthemes/wood.cpp

QPoint	QPainter::pos	()	const

moveTo()

RasterOp	QPainter::rasterOp	()	const

setRasterOp()RasterOp

void	QPainter::redirect	(QPaintDevice	*	pdev,
QPaintDevice	*	replacement)	[static]

pdevreplacementreplacement0 replacement0 pdev

QPixmap::grabWidget()QPixmap::grabWindow()

void	QPainter::resetXForm	()

translate() scale() shear() rotate() setWorldMatrix() setViewport()

setWindow()

worldMatrix() viewport()window()

void	QPainter::restore	()

save()

	 aclock/aclock.cpp

void	QPainter::restoreWorldMatrix	()

restore()

void	QPainter::rotate	(double	a)

a

translate() scale() shear() resetXForm() setWorldMatrix()xForm()

aclock/aclock.cppt10/cannon.cppt9/cannon.cpp

void	QPainter::save	()

save()restore() end()

restore()

	 aclock/aclock.cpp

void	QPainter::saveWorldMatrix	()

save()

void	QPainter::scale	(double	sx,	double	sy)

(sx,	sy)

translate() shear() rotate() resetXForm() setWorldMatrix()xForm()

	 xform/xform.cpp

void	QPainter::setBackgroundColor	(const	QColor	&	c)

c

backgroundColor() setBackgroundMode()BackgroundMode

void	QPainter::setBackgroundMode	(BGMode	m)

mTransparentMode OpaqueMode

QPixmap::setMask()

backgroundMode()setBackgroundColor()

	 picture/picture.cpp

void	QPainter::setBrush	(BrushStyle	style)

style

brush()QBrush

aclock/aclock.cppdrawdemo/drawdemo.cpppicture/picture.cppt10/cannon.cppt9/cannon.cpp
tooltip/tooltip.cpp

void	QPainter::setBrush	(const	QBrush	&	brush)

brush

brush

brush()

void	QPainter::setBrush	(const	QColor	&	color)

SolidPatterncolor

brush()QBrush

void	QPainter::setBrushOrigin	(int	x,	int	y)

(x,	y)

(0,	0)

brushOrigin()

void	QPainter::setBrushOrigin	(const	QPoint	&	p)

p

void	QPainter::setClipRect	(int	x,	int	y,	int	w,	int	h,
CoordinateMode	m	=	CoordDevice)

xywh m

mCoordDevice mCoordPainter

setClipRegion() clipRegion() setClipping()QPainter::CoordinateMode

grapher/grapher.cppprogress/progress.cppqtimage/qtimage.cppshowimg/showimg.cpp
trivial/trivial.cpp

void	QPainter::setClipRect	(const	QRect	&	r,	CoordinateMode	m
=	CoordDevice)

r m

CoordinateMode

void	QPainter::setClipRegion	(const	QRegion	&	rgn,
CoordinateMode	m	=	CoordDevice)

rgn m

setClipRect() clipRegion() setClipping()CoordinateMode

qfd/fontdisplayer.cppthemes/wood.cpp

void	QPainter::setClipping	(bool	enable)

enable enable

hasClipping() setClipRect()setClipRegion()

	 themes/wood.cpp

void	QPainter::setFont	(const	QFont	&	font)

font

drawText()

font()drawText()

application/application.cppdrawdemo/drawdemo.cppgrapher/grapher.cpphello/hello.cpp
xform/xform.cpp

void	QPainter::setPen	(const	QPen	&	pen)

pen

pen()

desktop/desktop.cppdrawdemo/drawdemo.cppprogress/progress.cppt10/cannon.cpp
themes/wood.cpp

void	QPainter::setPen	(PenStyle	style)

style0

pen()QPen

void	QPainter::setPen	(const	QColor	&	color)

SolidLine0color

pen()QPen

void	QPainter::setRasterOp	(RasterOp	r)

rCopyROP

rasterOp()Qt::RasterOp

void	QPainter::setTabArray	(int	*	ta)

tab	stop tatab	stopta[0]ta[1]

tabtab	stoptab

tabArray() setTabStops() drawText()fontMetrics()

void	QPainter::setTabStops	(int	ts)

tab	stop tsts2*ts3*tstab	stop

ExpandTabstab	stoptabtab	stop

tabStops() setTabArray() drawText()fontMetrics()

void	QPainter::setViewXForm	(bool	enable)

enable enable

hasViewXForm() setWindow() setViewport() setWorldMatrix() setWorldXForm
xForm()

void	QPainter::setViewport	(int	x,	int	y,	int	w,	int	h)

xywh window()

viewport() setWindow() setViewXForm() setWorldMatrix() setWorldXForm
xForm()

	 aclock/aclock.cpp

void	QPainter::setViewport	(const	QRect	&	r)

r

void	QPainter::setWindow	(int	x,	int	y,	int	w,	int	h)

xywh viewport()

window() setViewport() setViewXForm() setWorldMatrix()
setWorldXForm()

aclock/aclock.cppdrawdemo/drawdemo.cpp

void	QPainter::setWindow	(const	QRect	&	r)

r

void	QPainter::setWorldMatrix	(const	QWMatrix	&	m,
bool	combine	=	FALSE)

m

combine m m

mcombine setWorldXForm(FALSE) QWMatrix::m11()
QWMatrix::m22()1.00.0

windowviewport

QWMatrix

translate()
scale()
shear()
rotate()

worldMatrix()

								void	QPainter::rotate(double	a)

								{

												QWMatrix	m;

												m.rotate(a);

												setWorldMatrix(m,	TRUE);

								}

				

QPicture combinetranslate()scale()

worldMatrix() setWorldXForm() setWindow() setViewport() setViewXForm
QWMatrix

drawdemo/drawdemo.cppxform/xform.cpp

void	QPainter::setWorldXForm	(bool	enable)

enable enable

setWorldMatrix() setWindow() setViewport() setViewXForm()xForm()

void	QPainter::shear	(double	sh,	double	sv)

(sh,	sv)

translate() scale() rotate() resetXForm() setWorldMatrix()xForm()

int	*	QPainter::tabArray	()	const

tab	stop

setTabArray()

int	QPainter::tabStops	()	const

tab	stop

setTabStops()

void	QPainter::translate	(double	dx,	double	dy)

(dx,	dy) (dx,	dy)

								void	MyWidget::paintEvent()

								{

												QPainter	paint(this);

												paint.drawPoint(0,	0);

												paint.translate(100.0,	40.0);

												paint.drawPoint(-100,	-40);

								}

				

scale() shear() rotate() resetXForm() setWorldMatrix()xForm()

helpviewer/helpwindow.cppt10/cannon.cppt9/cannon.cppthemes/metal.cppthemes/wood.cpp
xform/xform.cpp

QRect	QPainter::viewport	()	const

setViewport()setViewXForm()

	 aclock/aclock.cpp

QRect	QPainter::window	()	const

setWindow()setViewXForm()

const	QWMatrix	&	QPainter::worldMatrix	()	const

setWorldMatrix()

QPoint	QPainter::xForm	(const	QPoint	&	pv)	const

pv

xFormDev()QWMatrix::map()

QRect	QPainter::xForm	(const	QRect	&	rv)	const

rv

xFormDev()QWMatrix::map()

QPointArray	QPainter::xForm	(const	QPointArray	&	av)	const

av

xFormDev()QWMatrix::map()

QPointArray	QPainter::xForm	(const	QPointArray	&	av,
int	index,	int	npoints)	const

av indexnpoints npoints av[index]

								QPointArray	a(10);

								QPointArray	b;

								b	=	painter.xForm(a,	2,	4);		//	b.size()	==	4

								b	=	painter.xForm(a,	2,	-1);	//	b.size()	==	8

				

xFormDev()QWMatrix::map()

QRect	QPainter::xFormDev	(const	QRect	&	rd)	const

rd

xForm()QWMatrix::map()

QPoint	QPainter::xFormDev	(const	QPoint	&	pd)	const

pd

xForm()QWMatrix::map()

QPointArray	QPainter::xFormDev	(const	QPointArray	&	ad)
const

ad

xForm()QWMatrix::map()

QPointArray	QPainter::xFormDev	(const	QPointArray	&	ad,
int	index,	int	npoints)	const

ad indexnpoints npoints ad[index]

								QPointArray	a(10);

								QPointArray	b;

								b	=	painter.xFormDev(a,	1,	3);		//	b.size()	==	3

								b	=	painter.xFormDev(a,	1,	-1);	//	b.size()	==	9

				

xForm()QWMatrix::map()

void	qDrawPlainRect	(QPainter	*	p,	int	x,	int	y,	int	w,	int	h,
const	QColor	&	c,	int	lineWidth,	const	QBrush	*	fill)

#include	<qdrawutil.h>

pxywh

c

lineWidth

fill0 *fill

QFrame QFrame::setFrameStyle(QFrame::Box	|	QFrame::Plain)

QWidget::style()QApplication::style() QStyle

qDrawShadeRect()QStyle::drawPrimitive()

void	qDrawShadeLine	(QPainter	*	p,	int	x1,	int	y1,	int	x2,	int	y2,
const	QColorGroup	&	g,	bool	sunken,	int	lineWidth,
int	midLineWidth)

#include	<qdrawutil.h>

py1	==	y2x1	==	x2

y1	!=	y2x1	!=	x2

glightdarkmiddle

sunken sunken

lineWidth

midLineWidthQColorGroup::mid()

QFrame QFrame::setFrameStyle(QFrame::HLine	|	QFrame::Sunken

)

QWidget::style()QApplication::style() QStyle

qDrawShadeRect() qDrawShadePanel()QStyle::drawPrimitive()

void	qDrawShadePanel	(QPainter	*	p,	int	x,	int	y,	int	w,	int	h,
const	QColorGroup	&	g,	bool	sunken,	int	lineWidth,
const	QBrush	*	fill)

#include	<qdrawutil.h>

pxywh

glightdarkmiddle

sunken sunken

lineWidth

fill0 *fill

QFrame QFrame::setFrameStyle(QFrame::Panel	|	QFrame::Sunken

)

QWidget::style()QApplication::style() QStyle

qDrawWinPanel() qDrawShadeLine() qDrawShadeRect()
QStyle::drawPrimitive()

void	qDrawShadeRect	(QPainter	*	p,	int	x,	int	y,	int	w,	int	h,
const	QColorGroup	&	g,	bool	sunken,	int	lineWidth,
int	midLineWidth,	const	QBrush	*	fill)

#include	<qdrawutil.h>

pxywh

glightdarkmiddle

sunken sunken

lineWidth

midLineWidthQColorGroup::mid()

fill0 *fill

QFrame QFrame::setFrameStyle(QFrame::Box	|	QFrame::Raised)

QWidget::style()QApplication::style() QStyle

qDrawShadeLine() qDrawShadePanel() qDrawPlainRect() QStyle::drawItem()
QStyle::drawComplexControl()

void	qDrawWinButton	(QPainter	*	p,	int	x,	int	y,	int	w,	int	h,
const	QColorGroup	&	g,	bool	sunken,	const	QBrush	*	fill)

#include	<qdrawutil.h>

pxywhWindows

glightdarkmiddle

sunken sunken

2

fill0 *fill

QWidget::style()QApplication::style() QStyle

qDrawWinPanel()QStyle::drawControl()

void	qDrawWinPanel	(QPainter	*	p,	int	x,	int	y,	int	w,	int	h,
const	QColorGroup	&	g,	bool	sunken,	const	QBrush	*	fill)

#include	<qdrawutil.h>

pxywhWindows

glightdarkmiddle

sunken sunken

2

fill0 *fill

QFrameWindows QFrame::setFrameStyle(QFrame::WinPanel	|

QFrame::Raised)

QWidget::style()QApplication::style() QStyle

qDrawShadePanel() qDrawWinButton()QStyle::drawPrimitive()

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Qt QWidgetQPixmapQPictureQPrinter QPainter

XY

				void	MyWidget::paintEvent(QPaintEvent	*)

				{

								QPainter	p(this);

								p.setPen(darkGray);

								p.drawRect(1,2,	5,4);

								p.setPen(lightGray);

								p.drawLine(9,2,	7,7);

				}

applies	to	all	the	relevant	functions	in	QPainter.	drawRect()5*4Qt
QPainter

drawLine()

QPointQt QPoint QPainter::drawPoint()

QSizeQPoint QSizeQSize QWidget::resize()

QRect QRect QWidget::setGeometry()

QRegion QRegion::intersect() QRegion
QPainter::setClipRegion() QWidget::repaint()QPaintEvent::region()

QPainter QPrinter::newPage() QPainter

QPaintDeviceQPainter QPrinterQPictureQPainter
QIODevice

Qt QPainter

Foley	&	Van	Dam	and	the	OpenGL	Programming	Guide

Qt QPainter::rotate

QPainter::save()QPainter::restore() QWMatrix QPainter::worldMatrix()
QPainter::setWorldMatrix()

QPainter::setWindow()

QWidgetQPixmap

QPainter::worldMatrix() QPainter::window() QPainter::viewport

aclock/aclock.cpp

				void	AnalogClock::drawClock(QPainter	*paint)

				{

								paint->save();

								paint->setWindow(-500,-500,	1000,1000);

1000*100000)

								QRect	v	=	paint->viewport();

								int	d	=	QMIN(v.width(),	v.height());

								paint->setViewport(v.left()	+	(v.width()-d)/2,

																												v.top()	+	(v.height()-d)/2,	d,	d);

http://www.amazon.com/exec/obidos/ASIN/0201848406/trolltech/t
http://www.amazon.com/exec/obidos/ASIN/0201604582/trolltech/t

001000*1000

								//	time	=	QTime::currentTime();

								QPointArray	pts;

pts

								paint->save();

								paint->rotate(30*(time.hour()%12-3)	+	time.minute()/2);

								pts.setPoints(4,	-20,0,		0,-20,	300,0,	0,20);

								paint->drawConvexPolygon(pts);

pts

								paint->restore();

rotate(-30)save()restore()

								paint->save();

								paint->rotate((time.minute()-15)*6);

								pts.setPoints(4,	-10,0,	0,-10,	400,0,	0,10);

								paint->drawConvexPolygon(pts);

								paint->restore();

								for	(int	i=0;	i<12;	i++)	{

												paint->drawLine(440,0,	460,0);

												paint->rotate(30);

								}

								paint->restore();

				}

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QRect
QRect	 ……

#include	<qrect.h>

QRect	()
QRect	(const	QPoint	&	topLeft,	const	QPoint	&	bottomRight)
QRect	(const	QPoint	&	topLeft,	const	QSize	&	size)
QRect	(int	left,	int	top,	int	width,	int	height)
bool	isNull	()	const
bool	isEmpty	()	const
bool	isValid	()	const
QRect	normalize	()	const
int	left	()	const
int	top	()	const
int	right	()	const
int	bottom	()	const
QCOORD	&	rLeft	()
QCOORD	&	rTop	()
QCOORD	&	rRight	()
QCOORD	&	rBottom	()
int	x	()	const
int	y	()	const
void	setLeft	(int	pos)
void	setTop	(int	pos)
void	setRight	(int	pos)
void	setBottom	(int	pos)
void	setX	(int	x)
void	setY	(int	y)
QPoint	topLeft	()	const
QPoint	bottomRight	()	const
QPoint	topRight	()	const
QPoint	bottomLeft	()	const
QPoint	center	()	const
void	rect	(int	*	x,	int	*	y,	int	*	w,	int	*	h)	const
void	coords	(int	*	xp1,	int	*	yp1,	int	*	xp2,	int	*	yp2)	const
void	moveTopLeft	(const	QPoint	&	p)
void	moveBottomRight	(const	QPoint	&	p)
void	moveTopRight	(const	QPoint	&	p)
void	moveBottomLeft	(const	QPoint	&	p)

void	moveCenter	(const	QPoint	&	p)
void	moveBy	(int	dx,	int	dy)
void	setRect	(int	x,	int	y,	int	w,	int	h)
void	setCoords	(int	xp1,	int	yp1,	int	xp2,	int	yp2)
void	addCoords	(int	xp1,	int	yp1,	int	xp2,	int	yp2)
QSize	size	()	const
int	width	()	const
int	height	()	const
void	setWidth	(int	w)
void	setHeight	(int	h)
void	setSize	(const	QSize	&	s)
QRect	operator|	(const	QRect	&	r)	const
QRect	operator&	(const	QRect	&	r)	const
QRect	&	operator|=	(const	QRect	&	r)
QRect	&	operator&=	(const	QRect	&	r)
bool	contains	(const	QPoint	&	p,	bool	proper	=	FALSE)	const
bool	contains	(int	x,	int	y,	bool	proper	=	FALSE)	const
bool	contains	(const	QRect	&	r,	bool	proper	=	FALSE)	const
QRect	unite	(const	QRect	&	r)	const
QRect	intersect	(const	QRect	&	r)	const
bool	intersects	(const	QRect	&	r)	const

bool	operator==	(const	QRect	&	r1,	const	QRect	&	r2)
bool	operator!=	(const	QRect	&	r1,	const	QRect	&	r2)
QDataStream	&	operator<<	(QDataStream	&	s,	const	QRect	&	r)
QDataStream	&	operator>>	(QDataStream	&	s,	QRect	&	r)

QRect

QCOORD intqwindowdefs.hQCOORD
QCOORD_MIN-2147483648QCOORD_MAX2147483647

1

width	=	right	-	left	+	1height	=	bottom	-	top	+	11

(0,0)yx

QRectQPoint QPointQSize
setLeft() setRight() setTop()setBottom() setWidth() setHeight()
setSize() moveBy() moveCenter()moveBottomRight() addCoords()

contains()QRect intersects()QRect intersect() unite()QRect

QPointQSize

QRect::QRect	()

QRect::QRect	(const	QPoint	&	topLeft,
const	QPoint	&	bottomRight)

topLeftbottomRight

QRect::QRect	(const	QPoint	&	topLeft,	const	QSize	&	size)

topLeftsize

QRect::QRect	(int	left,	int	top,	int	width,	int	height)

topleftwidthheight

								QRect	r1(QPoint(100,200),	QPoint(110,215));

								QRect	r2(QPoint(100,200),	QSize(11,16));

								QRect	r3(100,	200,	11,	16);

				

void	QRect::addCoords	(int	xp1,	int	yp1,	int	xp2,	int	yp2)

xp1yp1xp2yp2

int	QRect::bottom	()	const

top() setBottom() bottomLeft()bottomRight()

desktop/desktop.cpphelpviewer/helpwindow.cppqfd/fontdisplayer.cppscribble/scribble.cpp

themes/wood.cpp

QPoint	QRect::bottomLeft	()	const

moveBottomLeft() bottomRight() topLeft() topRight() bottom()left()

tictac/tictac.cpp

QPoint	QRect::bottomRight	()	const

moveBottomRight() bottomLeft() topLeft() topRight() bottom()right()

tictac/tictac.cpp

QPoint	QRect::center	()	const

moveCenter() topLeft() topRight() bottomLeft()bottomRight()

tooltip/tooltip.cpp

bool	QRect::contains	(const	QPoint	&	p,	bool	proper	=	FALSE)
const

p

proper p

t14/cannon.cpp

bool	QRect::contains	(int	x,	int	y,	bool	proper	=	FALSE)	const

xy

proper p

bool	QRect::contains	(const	QRect	&	r,	bool	proper	=	FALSE)
const

r

proper p

unite() intersect()intersects()

void	QRect::coords	(int	*	xp1,	int	*	yp1,	int	*	xp2,	int	*	yp2)
const

*xp1*yp1*xp2*yp2

setCoords()rect()

themes/metal.cppthemes/wood.cpp

int	QRect::height	()	const

height	=	bottom	-	top	+	1

width() size()setHeight()

aclock/aclock.cppdesktop/desktop.cppmovies/main.cppscribble/scribble.cppthemes/metal.cpp
xform/xform.cpp

QRect	QRect::intersect	(const	QRect	&	r)	const

r r.intersect(s)r&s

bool	QRect::intersects	(const	QRect	&	r)	const

r

intersect()contains()

t11/cannon.cppt12/cannon.cppt13/cannon.cppt14/cannon.cpp

bool	QRect::isEmpty	()	const

left()>right()top()>bottom()

isEmpty()==!isValid()

isNull()isValid()

bool	QRect::isNull	()	const

0 right()==left()-1bottom()==top()-1

right()==left()bottom()==top()1

isEmpty()isValid()

bool	QRect::isValid	()	const

Returns	TRUE	if	the	rectangle	is	valid	or	FALSE	if	it	is	invalid	(empty)	

left()<=right()top()<=bottom()

isValid()==!isEmpty()

isNull() isEmpty()normalize()

themes/metal.cpptooltip/tooltip.cpp

int	QRect::left	()	const

. x().

x() top() right() setLeft() topLeft()bottomLeft()

aclock/aclock.cppdesktop/desktop.cppqfd/fontdisplayer.cppscribble/scribble.cpptictac/tictac.cpp
xform/xform.cpp

void	QRect::moveBottomLeft	(const	QPoint	&	p)

p

bottomLeft() moveBottomRight() moveTopLeft() moveTopRight() setBottom
setLeft()

t10/cannon.cpp

void	QRect::moveBottomRight	(const	QPoint	&	p)

p

bottomRight() moveBottomLeft() moveTopLeft() moveTopRight() setBottom
setRight()

void	QRect::moveBy	(int	dx,	int	dy)

x dxydy/

helpviewer/helpwindow.cppthemes/wood.cppxform/xform.cpp

void	QRect::moveCenter	(const	QPoint	&	p)

p

center() moveTopLeft() moveTopRight() moveBottomLeft()
moveBottomRight()

t11/cannon.cppt12/cannon.cpp

void	QRect::moveTopLeft	(const	QPoint	&	p)

p

topLeft() moveTopRight() moveBottomLeft() moveBottomRight() setTop()
setLeft()

xform/xform.cpp

void	QRect::moveTopRight	(const	QPoint	&	p)

p

topRight() moveTopLeft() moveBottomLeft() moveBottomRight() setTop()
setRight()

QRect	QRect::normalize	()	const

left()>right() top()>bottom()

isValid()

scribble/scribble.cpp

QRect	QRect::operator&	(const	QRect	&	r)	const

r

operator&=() operator|() isEmpty() intersects()contains()

QRect	&	QRect::operator&=	(const	QRect	&	r)

r

QRect	QRect::operator|	(const	QRect	&	r)	const

r

operator|=() operator&() intersects()contains()

QRect	&	QRect::operator|=	(const	QRect	&	r)

r

QCOORD	&	QRect::rBottom	()

rLeft() rTop()rRight()

QCOORD	&	QRect::rLeft	()

rTop() rRight()rBottom()

QCOORD	&	QRect::rRight	()

rLeft() rTop()rBottom()

QCOORD	&	QRect::rTop	()

rLeft() rRight()rBottom()

void	QRect::rect	(int	*	x,	int	*	y,	int	*	w,	int	*	h)	const

*x*y*w*h

setRect()coords()

themes/metal.cppthemes/wood.cpp

int	QRect::right	()	const

left() setRight() topRight()bottomRight()

customlayout/flow.cppdesktop/desktop.cpphelpviewer/helpwindow.cppqfd/fontdisplayer.cpp
themes/wood.cpp

void	QRect::setBottom	(int	pos)

pos

bottom() setTop()setHeight()

scribble/scribble.cpp

void	QRect::setCoords	(int	xp1,	int	yp1,	int	xp2,	int	yp2)

(xp1,yp1)(xp2,yp2)

coords()setRect()

void	QRect::setHeight	(int	h)

h

height() setTop() setBottom()setSize()

desktop/desktop.cpp

void	QRect::setLeft	(int	pos)

pos

setX()

left() setTop()setWidth()

scribble/scribble.cpp

void	QRect::setRect	(int	x,	int	y,	int	w,	int	h)

(x,y)(w,h)

rect()setCoords()

themes/wood.cpp

void	QRect::setRight	(int	pos)

pos

right() setLeft()setWidth()

scribble/scribble.cpp

void	QRect::setSize	(const	QSize	&	s)

s

size() setWidth()setHeight()

xform/xform.cpp

void	QRect::setTop	(int	pos)

pos

setY()

top() setBottom()setHeight()

scribble/scribble.cpp

void	QRect::setWidth	(int	w)

Sets	the	width	of	the	rectangle	to	w	The	right	edge	is	changed,	but	not	the	left
edge.	 w

width() setLeft() setRight()setSize()

desktop/desktop.cpp

void	QRect::setX	(int	x)

x x

setLeft()

x()setY()

void	QRect::setY	(int	y)

y y

setTop()

y()setX()

QSize	QRect::size	()	const

width()height()

desktop/desktop.cppmovies/main.cppt10/cannon.cpp

int	QRect::top	()	const

y()

y() left() bottom() setTop() topLeft()topRight()

aclock/aclock.cppdesktop/desktop.cpphelpviewer/helpwindow.cppscribble/scribble.cpp
xform/xform.cpp

QPoint	QRect::topLeft	()	const

moveTopLeft() topRight() bottomLeft() bottomRight() left()top()

t10/cannon.cpptictac/tictac.cpp

QPoint	QRect::topRight	()	const

moveTopRight() topLeft() bottomLeft() bottomRight() top()right()

tictac/tictac.cpp

QRect	QRect::unite	(const	QRect	&	r)	const

r r.unite(s)r|s

t11/cannon.cppt12/cannon.cppxform/xform.cpp

int	QRect::width	()	const

width	=	right	-	left	+	1

height() size()setHeight()

aclock/aclock.cppcustomlayout/border.cppdesktop/desktop.cppmovies/main.cppthemes/metal.cpp
xform/xform.cpp

int	QRect::x	()	const

left()

left() y()setX()

customlayout/border.cppdesktop/desktop.cppmovies/main.cppscribble/scribble.cpp
themes/wood.cpp

int	QRect::y	()	const

top()

top() x()setY()

desktop/desktop.cppmovies/main.cppscribble/scribble.cppt12/cannon.cppt14/cannon.cpp
themes/wood.cpp

bool	operator!=	(const	QRect	&	r1,	const	QRect	&	r2)

r1r2

QDataStream	&	operator<<	(QDataStream	&	s,	const	QRect	&	r
)

QRect rs

QDataStream

bool	operator==	(const	QRect	&	r1,	const	QRect	&	r2)

r1r2

QDataStream	&	operator>>	(QDataStream	&	s,	QRect	&	r)

sQRectr

QDataStream

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

t10/lcdrange.h	Example	File
/**

**

**	Definition	of	LCDRange	class,	Qt	tutorial	8

**

**/

#ifndef	LCDRANGE_H

#define	LCDRANGE_H

#include	<qvbox.h>

class	QSlider;

class	LCDRange	:	public	QVBox

{

				Q_OBJECT

public:

				LCDRange(QWidget	*parent=0,	const	char	*name=0);

				int	value()	const;

public	slots:

				void	setValue(int);

				void	setRange(int	minVal,	int	maxVal);

signals:

				void	valueChanged(int);

private:

				QSlider		*slider;

};

#endif	//	LCDRANGE_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

t10/lcdrange.cpp	Example	File
/**

**

**	Implementation	of	LCDRange	class,	Qt	tutorial	8

**

**/

#include	"lcdrange.h"

#include	<qslider.h>

#include	<qlcdnumber.h>

LCDRange::LCDRange(QWidget	*parent,	const	char	*name)

								:	QVBox(parent,	name)

{

				QLCDNumber	*lcd		=	new	QLCDNumber(2,	this,	"lcd");

				slider	=	new	QSlider(Horizontal,	this,	"slider");

				slider->setRange(0,	99);

				slider->setValue(0);

				connect(slider,	SIGNAL(valueChanged(int)),

													lcd,	SLOT(display(int)));

				connect(slider,	SIGNAL(valueChanged(int)),

													SIGNAL(valueChanged(int)));

				setFocusProxy(slider);

}

int	LCDRange::value()	const

{

				return	slider->value();

}

void	LCDRange::setValue(int	value)

{

				slider->setValue(value);

}

void	LCDRange::setRange(int	minVal,	int	maxVal)

{

				if	(minVal	<	0	||	maxVal	>	99	||	minVal	>	maxVal)	{

						qWarning("LCDRange::setRange(%d,%d)\n"

															"\tRange	must	be	0..99\n"

															"\tand	minVal	must	not	be	greater	than	maxVal",

															minVal,	maxVal);

						return;

				}

				slider->setRange(minVal,	maxVal);

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

t10/cannon.h	Example	File
/**

**

**	Definition	of	CannonField	class,	Qt	tutorial	10

**

**/

#ifndef	CANNON_H

#define	CANNON_H

#include	<qwidget.h>

class	CannonField	:	public	QWidget

{

				Q_OBJECT

public:

				CannonField(QWidget	*parent=0,	const	char	*name=0);

				QSizePolicy	sizePolicy()	const;

				int			angle()	const	{	return	ang;	}

				int			force()	const	{	return	f;	}

public	slots:

				void		setAngle(int	degrees);

				void		setForce(int	newton);

signals:

				void		angleChanged(int);

				void		forceChanged(int);

protected:

				void		paintEvent(QPaintEvent	*);

private:

				QRect	cannonRect()	const;

				int	ang;

				int	f;

};

#endif	//	CANNON_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

t10/cannon.cpp	Example	File
/**

**

**	Implementation	CannonField	class,	Qt	tutorial	10

**

**/

#include	"cannon.h"

#include	<qpainter.h>

#include	<qpixmap.h>

CannonField::CannonField(QWidget	*parent,	const	char	*name)

								:	QWidget(parent,	name)

{

				ang	=	45;

				f	=	0;

				setPalette(QPalette(QColor(250,	250,	200)));

}

void	CannonField::setAngle(int	degrees)

{

				if	(degrees	<	5)

								degrees	=	5;

				if	(degrees	>	70)

								degrees	=	70;

				if	(ang	==	degrees)

								return;

				ang	=	degrees;

				repaint(cannonRect(),	FALSE);

				emit	angleChanged(ang);

}

void	CannonField::setForce(int	newton)

{

				if	(newton	<	0)

								newton	=	0;

				if	(f	==	newton)

								return;

				f	=	newton;

				emit	forceChanged(f);

}

void	CannonField::paintEvent(QPaintEvent	*e)

{

				if	(!e->rect().intersects(cannonRect()))

								return;

				QRect	cr	=	cannonRect();

				QPixmap	pix(cr.size());

				pix.fill(this,	cr.topLeft());

				QPainter	p(&pix);

				p.setBrush(blue);

				p.setPen(NoPen);

				p.translate(0,	pix.height()	-	1);

				p.drawPie(QRect(-35,-35,	70,	70),	0,	90*16);

				p.rotate(-ang);

				p.drawRect(QRect(33,	-4,	15,	8));

				p.end();

				p.begin(this);

				p.drawPixmap(cr.topLeft(),	pix);

}

QRect	CannonField::cannonRect()	const

{

				QRect	r(0,	0,	50,	50);

				r.moveBottomLeft(rect().bottomLeft());

				return	r;

}

QSizePolicy	CannonField::sizePolicy()	const

{

				return	QSizePolicy(QSizePolicy::Expanding,	QSizePolicy::Expanding);

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

t10/main.cpp	Example	File
/**

**

**	Qt	tutorial	10

**

**/

#include	<qapplication.h>

#include	<qpushbutton.h>

#include	<qlcdnumber.h>

#include	<qfont.h>

#include	<qlayout.h>

#include	"lcdrange.h"

#include	"cannon.h"

class	MyWidget:	public	QWidget

{

public:

				MyWidget(QWidget	*parent=0,	const	char	*name=0);

};

MyWidget::MyWidget(QWidget	*parent,	const	char	*name)

								:	QWidget(parent,	name)

{

				QPushButton	*quit	=	new	QPushButton("&Quit",	this,	"quit");

				quit->setFont(QFont("Times",	18,	QFont::Bold));

				connect(quit,	SIGNAL(clicked()),	qApp,	SLOT(quit()));

				LCDRange	*angle	=	new	LCDRange(this,	"angle");

				angle->setRange(5,	70);

				LCDRange	*force		=	new	LCDRange(this,	"force");

				force->setRange(10,	50);

				CannonField	*cannonField	=	new	CannonField(this,	"cannonField");

				connect(angle,	SIGNAL(valueChanged(int)),

													cannonField,	SLOT(setAngle(int)));

				connect(cannonField,	SIGNAL(angleChanged(int)),

													angle,	SLOT(setValue(int)));

				connect(force,	SIGNAL(valueChanged(int)),

													cannonField,	SLOT(setForce(int)));

				connect(cannonField,	SIGNAL(forceChanged(int)),

													force,	SLOT(setValue(int)));

				QGridLayout	*grid	=	new	QGridLayout(this,	2,	2,	10);

				grid->addWidget(quit,	0,	0);

				grid->addWidget(cannonField,	1,	1);

				grid->setColStretch(1,	10);

				QVBoxLayout	*leftBox	=	new	QVBoxLayout;

				grid->addLayout(leftBox,	1,	0);

				leftBox->addWidget(angle);

				leftBox->addWidget(force);

				angle->setValue(60);

				force->setValue(25);

				angle->setFocus();

}

int	main(int	argc,	char	**argv)

{

				QApplication::setColorSpec(QApplication::CustomColor);

				QApplication	a(argc,	argv);

				MyWidget	w;

				w.setGeometry(100,	100,	500,	355);

				a.setMainWidget(&w);

				w.show();

				return	a.exec();

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qpixmap.h
This	is	the	verbatim	text	of	the	qpixmap.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qpixmap.h			3.0.5			edited	Oct	17	2001	$

**

**	Definition	of	QPixmap	class

**

**	Created	:	940501

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QPIXMAP_H

#define	QPIXMAP_H

#ifndef	QT_H

#include	"qpaintdevice.h"

#include	"qcolor.h"	//	char*->QColor	conversion

#include	"qstring.h"	//	char*->QString	conversion

#include	"qnamespace.h"

#endif	//	QT_H

class	QGfx;

class	QPixmapPrivate;

#if	defined(Q_WS_WIN)

//	Internal	pixmap	memory	optimization	class	for	Windows	9x

class	QMultiCellPixmap;

#endif

class	Q_EXPORT	QPixmap	:	public	QPaintDevice,	public	Qt

{

public:

				enum	ColorMode	{	Auto,	Color,	Mono	};

				enum	Optimization	{	DefaultOptim,	NoOptim,	MemoryOptim=NoOptim,

	 	 	 NormalOptim,	BestOptim	};

				QPixmap();

				QPixmap(const	QImage&	image);

				QPixmap(int	w,	int	h,		int	depth	=	-1,	Optimization	=	DefaultOptim);

				QPixmap(const	QSize	&,	int	depth	=	-1,	Optimization	=	DefaultOptim);

#ifndef	QT_NO_IMAGEIO

				QPixmap(const	QString&	fileName,	const	char	*format=0,

	 					ColorMode	mode=Auto);

				QPixmap(const	QString&	fileName,	const	char	*format,

	 					int	conversion_flags);

				QPixmap(const	char	*xpm[]);	//	###	in	4.0,	'const	char	*	const	xpm[]'?

				QPixmap(const	QByteArray	&data);

#endif

				QPixmap(const	QPixmap	&);

			~QPixmap();

				QPixmap				&operator=(const	QPixmap	&);

				QPixmap				&operator=(const	QImage		&);

				bool	 isNull()	 const;

				int		 width()		 const	{	return	data->w;	}

				int		 height()	 const	{	return	data->h;	}

				QSize	 size()	 	 const	{	return	QSize(data->w,data->h);	}

				QRect	 rect()	 	 const	{	return	QRect(0,0,data->w,data->h);	}

				int		 depth()		 const	{	return	data->d;	}

				static	int	 defaultDepth();

				void	 fill(const	QColor	&fillColor	=	Qt::white);

				void	 fill(const	QWidget	*,	int	xofs,	int	yofs);

				void	 fill(const	QWidget	*,	const	QPoint	&ofs);

				void	 resize(int	width,	int	height);

				void	 resize(const	QSize	&);

				const	QBitmap	*mask()	const;

				void	 setMask(const	QBitmap	&);

				bool	 selfMask()	const;

#ifndef	QT_NO_IMAGE_HEURISTIC_MASK

				QBitmap	 createHeuristicMask(bool	clipTight	=	TRUE)	const;

#endif

				static		QPixmap	grabWindow(WId,	int	x=0,	int	y=0,	int	w=-1,	int	h=-1);

				static		QPixmap	grabWidget(QWidget	*	widget,

	 	 	 	 int	x=0,	int	y=0,	int	w=-1,	int	h=-1);

#ifndef	QT_NO_PIXMAP_TRANSFORMATION

				QPixmap	 				xForm(const	QWMatrix	&)	const;

				static	QWMatrix	trueMatrix(const	QWMatrix	&,	int	w,	int	h);

#endif

				QImage	 convertToImage()	const;

				bool	 convertFromImage(const	QImage	&,	ColorMode	mode=Auto);

				bool	 convertFromImage(const	QImage	&,	int	conversion_flags);

#ifndef	QT_NO_IMAGEIO

				static	const	char*	imageFormat(const	QString	&fileName);

				bool	 load(const	QString&	fileName,	const	char	*format=0,

	 	 						ColorMode	mode=Auto);

				bool	 load(const	QString&	fileName,	const	char	*format,

	 	 						int	conversion_flags);

				bool	 loadFromData(const	uchar	*buf,	uint	len,

	 	 	 						const	char*	format=0,

	 	 	 						ColorMode	mode=Auto);

				bool	 loadFromData(const	uchar	*buf,	uint	len,

	 	 	 						const	char*	format,

	 	 	 						int	conversion_flags);

				bool	 loadFromData(const	QByteArray	&data,

	 	 	 						const	char*	format=0,

	 	 	 						int	conversion_flags=0);

				bool	 save(const	QString&	fileName,	const	char*	format,	int	quality	=	-1)	const;

#endif

#if	defined(Q_WS_WIN)

				HBITMAP	 hbm()	 	 const;

#endif

				int		 serialNumber()	 const;

				Optimization	 optimization()	const;

				void	 	 setOptimization(Optimization);

				static	Optimization	defaultOptimization();

				static	void		 setDefaultOptimization(Optimization);

				virtual	void	detach();

				bool	 isQBitmap()	const;

#if	defined(Q_WS_WIN)

				//	These	functions	are	internal	and	used	by	Windows	9x	only

				bool	 isMultiCellPixmap()	const;

				HDC		 multiCellHandle()	const;

				HBITMAP	 multiCellBitmap()	const;

				int		 multiCellOffset()	const;

				int		 allocCell();

				void	 freeCell(bool	=	FALSE);

#endif

#if	defined(Q_WS_QWS)

				virtual	QGfx	*	graphicsContext(bool	clip_children=TRUE)	const;

				virtual	unsigned	char	*	scanLine(int)	const;

				virtual	int	bytesPerLine()	const;

				QRgb	*	clut()	const;

				int	numCols()	const;

#elif	defined(Q_WS_X11)

				static	int	x11SetDefaultScreen(int	screen);

				void	x11SetScreen(int	screen);

#endif

#if	defined(Q_FULL_TEMPLATE_INSTANTIATION)

				bool	operator==(const	QPixmap&)	const	{	return	FALSE;	}

#endif

protected:

				QPixmap(int	w,	int	h,	const	uchar	*data,	bool	isXbitmap);

				int	metric(int)	const;

#if	defined(Q_WS_WIN)

				struct	QMCPI	{	 	 	 	 //	mem	optim	for	win9x

	 QMultiCellPixmap	*mcp;

	 int	 offset;

				};

#endif

				struct	QPixmapData	:	public	QShared	{	 //	internal	pixmap	data

	 QCOORD	 w,	h;

	 short	 d;

	 uint	 uninit	 	:	1;

	 uint	 bitmap	 	:	1;

	 uint	 selfmask	:	1;

#if	defined(Q_WS_WIN)

	 uint	 mcp	 	:	1;

#endif

	 int	 ser_no;

	 QBitmap	*mask;

#if	defined(Q_WS_WIN)

	 void			*bits;

	 QPixmap	*maskpm;

	 union	{

	 				HBITMAP	hbm;				//	if	mcp	==	FALSE

	 				QMCPI		*mcpi;			//	if	mcp	==	TRUE

	 }	hbm_or_mcpi;

	 bool	hasRealAlpha;

#elif	defined(Q_WS_X11)

	 void			*ximage;

	 void			*maskgc;

	 QPixmap	*alphapm;

#elif	defined(Q_WS_MAC)

	 ColorTable	*clut;

#elif	defined(Q_WS_QWS)

	 int	id;	//	###	should	use	QPaintDevice::hd,	since	it	is	there

	 QRgb	*	clut;

	 int	numcols;

	 int	rw;

	 int	rh;

	 bool	hasAlpha;

#endif

	 Optimization	optim;

				}	*data;

private:

				QPixmap(int	w,	int	h,	int	depth,	bool,	Optimization);

				void	 init(int,	int,	int,	bool,	Optimization);

				void	 deref();

				QPixmap	 copy(bool	ignoreMask	=	FALSE)	const;

				static	Optimization	defOptim;

				friend	Q_EXPORT	void	bitBlt(QPaintDevice	*,	int,	int,

	 	 	 	 	const	QPaintDevice	*,

	 	 	 	 	int,	int,	int,	int,	RasterOp,	bool);

				friend	Q_EXPORT	void	bitBlt(QPaintDevice	*,	int,	int,

	 	 	 	 	const	QImage*	src,

	 	 	 	 	int,	int,	int,	int,	int	conversion_flags);

#if	defined(Q_WS_X11)	&&	!defined(QT_NO_XRENDER)

				friend	void	qt_x11_copy_alpha_pixmap(QPixmap	*dst,	const	QPixmap	*src);

				friend	void	qt_x11_blit_alpha_pixmap(QPixmap	*dst,	int	dx,	int	dy,

	 	 	 	 	 	const	QPixmap	*src,	int	sx	=	0,	int	sy	=	0,

	 	 	 	 	 	int	sw	=	-1,	int	sh	=	-1);

#endif

				friend	class	QBitmap;

				friend	class	QPaintDevice;

				friend	class	QPainter;

};

inline	bool	QPixmap::isNull()	const

{

				return	data->w	==	0;

}

inline	void	QPixmap::fill(const	QWidget	*w,	const	QPoint	&ofs)

{

				fill(w,	ofs.x(),	ofs.y());

}

inline	void	QPixmap::resize(const	QSize	&s)

{

				resize(s.width(),	s.height());

}

inline	const	QBitmap	*QPixmap::mask()	const

{

				return	data->mask;

}

inline	bool	QPixmap::selfMask()	const

{

				return	data->selfmask;

}

#if	defined(Q_WS_WIN)

inline	HBITMAP	QPixmap::hbm()	const

{

				return	data->mcp	?	0	:	data->hbm_or_mcpi.hbm;

}

#endif

inline	int	QPixmap::serialNumber()	const

{

				return	data->ser_no;

}

inline	QPixmap::Optimization	QPixmap::optimization()	const

{

				return	data->optim;

}

inline	bool	QPixmap::isQBitmap()	const

{

				return	data->bitmap;

}

#if	defined(Q_WS_WIN)

inline	bool	QPixmap::isMultiCellPixmap()	const

{

				return	data->mcp;

}

#endif

/***

		QPixmap	stream	functions

	***/

#if	!defined(QT_NO_DATASTREAM)	&&	!defined(QT_NO_IMAGEIO)

Q_EXPORT	QDataStream	&operator<<(QDataStream	&,	const	QPixmap	&);

Q_EXPORT	QDataStream	&operator>>(QDataStream	&,	QPixmap	&);

#endif

/***

		QPixmap	(and	QImage)	helper	functions

	***/

#ifndef	QT_NO_PIXMAP_TRANSFORMATION

#		define	QT_XFORM_TYPE_MSBFIRST	0

#		define	QT_XFORM_TYPE_LSBFIRST	1

#		if	defined(Q_WS_WIN)

#				define	QT_XFORM_TYPE_WINDOWSPIXMAP	2

#		endif

bool	qt_xForm_helper(const	QWMatrix&,	int,	int,	int,	uchar*,	int,	int,	int,	uchar*,	int,	int,	int);

#endif

#endif	//	QPIXMAP_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QVBoxLayout	Class	Reference
The	QVBoxLayout	class	lines	up	widgets	vertically.	More...

#include	<qlayout.h>

Inherits	QBoxLayout.

List	of	all	member	functions.

Public	Members

QVBoxLayout	(QWidget	*	parent,	int	margin	=	0,	int	spacing	=	-1,
const	char	*	name	=	0)
QVBoxLayout	(QLayout	*	parentLayout,	int	spacing	=	-1,
const	char	*	name	=	0)
QVBoxLayout	(int	spacing	=	-1,	const	char	*	name	=	0)
~QVBoxLayout	()

Detailed	Description

The	QVBoxLayout	class	lines	up	widgets	vertically.

This	class	is	used	to	construct	vertical	box	layout	objects.	See	QBoxLayout	for
more	details.

The	simplest	use	of	the	class	is	like	this:

								QBoxLayout	*	l	=	new	QVBoxLayout(widget);

								l->addWidget(aWidget);

								l->addWidget(anotherWidget);

				

See	also	QHBoxLayout,	QGridLayout,	the	Layout	overview,	Widget
Appearance	and	Style	and	Layout	Management.

Member	Function	Documentation

QVBoxLayout::QVBoxLayout	(QWidget	*	parent,	int	margin	=
0,	int	spacing	=	-1,	const	char	*	name	=	0)

Constructs	a	new	top-level	vertical	box	called	name,	with	parent	parent.

The	margin	is	the	number	of	pixels	between	the	edge	of	the	widget	and	its
managed	children.	The	spacing	is	the	default	number	of	pixels	between
neighboring	children.	If	spacing	is	-1	the	value	of	margin	is	used	for	spacing.

QVBoxLayout::QVBoxLayout	(QLayout	*	parentLayout,
int	spacing	=	-1,	const	char	*	name	=	0)

Constructs	a	new	vertical	box	called	name	name	and	adds	it	to	parentLayout.

The	spacing	is	the	default	number	of	pixels	between	neighboring	children.	If
spacing	is	-1,	this	QVBoxLayout	will	inherit	its	parent's	spacing().

QVBoxLayout::QVBoxLayout	(int	spacing	=	-1,
const	char	*	name	=	0)

Constructs	a	new	vertical	box	called	name	name.	You	must	add	it	to	another
layout.

The	spacing	is	the	default	number	of	pixels	between	neighboring	children.	If
spacing	is	-1,	this	QVBoxLayout	will	inherit	its	parent's	spacing().

QVBoxLayout::~QVBoxLayout	()

Destroys	this	box	layout.

The	layout's	widgets	are	not	destroyed.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

http://www.trolltech.com/

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QGridLayout	Class	Reference
The	QGridLayout	class	lays	out	widgets	in	a	grid.	More...

#include	<qlayout.h>

Inherits	QLayout.

List	of	all	member	functions.

Public	Members

QGridLayout	(QWidget	*	parent,	int	nRows	=	1,	int	nCols	=	1,	int	margin
=	0,	int	space	=	-1,	const	char	*	name	=	0)
QGridLayout	(int	nRows	=	1,	int	nCols	=	1,	int	spacing	=	-1,
const	char	*	name	=	0)
QGridLayout	(QLayout	*	parentLayout,	int	nRows	=	1,	int	nCols	=	1,
int	spacing	=	-1,	const	char	*	name	=	0)
~QGridLayout	()
virtual	QSize	sizeHint	()	const
virtual	QSize	minimumSize	()	const
virtual	QSize	maximumSize	()	const
virtual	void	setRowStretch	(int	row,	int	stretch)
virtual	void	setColStretch	(int	col,	int	stretch)
int	rowStretch	(int	row)	const
int	colStretch	(int	col)	const
int	numRows	()	const
int	numCols	()	const
QRect	cellGeometry	(int	row,	int	col)	const
virtual	bool	hasHeightForWidth	()	const
virtual	int	heightForWidth	(int	w)	const
virtual	QSizePolicy::ExpandData	expanding	()	const
virtual	void	invalidate	()
virtual	void	addItem	(QLayoutItem	*	item)
void	addItem	(QLayoutItem	*	item,	int	row,	int	col)
void	addMultiCell	(QLayoutItem	*	item,	int	fromRow,	int	toRow,
int	fromCol,	int	toCol,	int	alignment	=	0)
void	addWidget	(QWidget	*	w,	int	row,	int	col,	int	alignment	=	0)
void	addMultiCellWidget	(QWidget	*	w,	int	fromRow,	int	toRow,
int	fromCol,	int	toCol,	int	alignment	=	0)
void	addLayout	(QLayout	*	layout,	int	row,	int	col)
void	addMultiCellLayout	(QLayout	*	layout,	int	fromRow,	int	toRow,
int	fromCol,	int	toCol,	int	alignment	=	0)
void	addRowSpacing	(int	row,	int	minsize)
void	addColSpacing	(int	col,	int	minsize)
void	expand	(int	nRows,	int	nCols)
enum	Corner	{	TopLeft,	TopRight,	BottomLeft,	BottomRight	}

void	setOrigin	(Corner	c)
Corner	origin	()	const
virtual	void	setGeometry	(const	QRect	&	r)

Protected	Members

bool	findWidget	(QWidget	*	w,	int	*	row,	int	*	col)
void	add	(QLayoutItem	*	item,	int	row,	int	col)

Detailed	Description

The	QGridLayout	class	lays	out	widgets	in	a	grid.

QGridLayout	takes	the	space	made	available	to	it	(by	its	parent	layout	or	by	the
mainWidget()),	divides	it	up	into	rows	and	columns,	and	puts	each	widget	it
manages	into	the	correct	cell.

Columns	and	rows	behave	identically;	we	will	discuss	columns,	but	there	are
equivalent	functions	for	rows.

Each	column	has	a	minimum	width	and	a	stretch	factor.	The	minimum	width	is
the	greatest	of	that	set	using	addColSpacing()	and	the	minimum	width	of	each
widget	in	that	column.	The	stretch	factor	is	set	using	setColStretch()	and
determines	how	much	of	the	available	space	the	column	will	get	over	and	above
its	necessary	minimum.

Normally,	each	managed	widget	or	layout	is	put	into	a	cell	of	its	own	using
addWidget(),	addLayout()	or	by	the	auto-add	facility.	It	is	also	possible	for	a
widget	to	occupy	multiple	cells	using	addMultiCellWidget().	If	you	do	this,
QGridLayout	will	guess	how	to	distribute	the	size	over	the	columns/rows	(based
on	the	stretch	factors).

To	remove	a	widget	from	a	layout,	either	delete	it	or	reparent	it	with
QWidget::reparent().	Hiding	a	widget	with	QWidget::hide()	also	effectively
removes	the	widget	from	the	layout,	until	QWidget::show()	is	called.

This	illustration	shows	a	fragment	of	a	dialog	with	a	five-column,	three-row	grid
(the	grid	is	shown	overlaid	in	magenta):

Columns	0,	2	and	4	in	this	dialog	fragment	are	made	up	of	a	QLabel,	a

QLineEdit,	and	a	QListBox.	Columns	1	and	3	are	placeholders	made	with
addColSpacing().	Row	0	consists	of	three	QLabel	objects,	row	1	of	three
QLineEdit	objects	and	row	2	of	three	QListBox	objects.	We	used	placeholder
columns	(1	and	3)	to	get	the	right	amount	of	space	between	the	columns.

Note	that	the	columns	and	rows	are	not	equally	wide	or	tall.	If	you	want	two
columns	to	have	the	same	width,	you	must	set	their	minimum	widths	and	stretch
factors	to	be	the	same	yourself.	You	do	this	using	addColSpacing()	and
setColStretch().

If	the	QGridLayout	is	not	the	top-level	layout	(i.e.	does	not	manage	all	of	the
widget's	area	and	children),	you	must	add	it	to	its	parent	layout	when	you	create
it,	but	before	you	do	anything	with	it.	The	normal	way	to	add	a	layout	is	by
calling	parentLayout->addLayout().

Once	you	have	added	your	layout	you	can	start	putting	widgets	and	other	layouts
into	the	cells	of	your	grid	layout	using	addWidget(),	addLayout()	and
addMultiCellWidget().

QGridLayout	also	includes	two	margin	widths:	the	border	and	the	spacing.	The
border	is	the	width	of	the	reserved	space	along	each	of	the	QGridLayout's	four
sides.	The	spacing	is	the	width	of	the	automatically	allocated	spacing	between
neighboring	boxes.

Both	the	border	and	the	spacing	are	parameters	of	the	constructor	and	default	to
0.

See	also	QGrid,	Layout	Overview,	Widget	Appearance	and	Style	and	Layout
Management.

Member	Type	Documentation

QGridLayout::Corner

This	enum	identifies	which	corner	is	the	origin	(0,	0)	of	the	layout.

QGridLayout::TopLeft	-	the	top-left	corner
QGridLayout::TopRight	-	the	top-right	corner
QGridLayout::BottomLeft	-	the	bottom-left	corner
QGridLayout::BottomRight	-	the	bottom-right	corner

Member	Function	Documentation

QGridLayout::QGridLayout	(QWidget	*	parent,	int	nRows	=	1,
int	nCols	=	1,	int	margin	=	0,	int	space	=	-1,	const	char	*	name
=	0)

Constructs	a	new	QGridLayout	with	nRows	rows,	nCols	columns	and	parent
widget,	parent.	parent	may	not	be	0.	The	grid	layout	is	called	name.

margin	is	the	number	of	pixels	between	the	edge	of	the	widget	and	its	managed
children.	space	is	the	default	number	of	pixels	between	cells.	If	space	is	-1,	the
value	of	margin	is	used.

QGridLayout::QGridLayout	(int	nRows	=	1,	int	nCols	=	1,
int	spacing	=	-1,	const	char	*	name	=	0)

Constructs	a	new	grid	with	nRows	rows	and	nCols	columns.	If	spacing	is	-1,	this
QGridLayout	inherits	its	parent's	spacing();	otherwise	spacing	is	used.	The	grid
layout	is	called	name.

You	must	insert	this	grid	into	another	layout.	You	can	insert	widgets	and	layouts
into	this	layout	at	any	time,	but	laying	out	will	not	be	performed	before	this	is
inserted	into	another	layout.

QGridLayout::QGridLayout	(QLayout	*	parentLayout,
int	nRows	=	1,	int	nCols	=	1,	int	spacing	=	-1,
const	char	*	name	=	0)

Constructs	a	new	grid	that	is	placed	inside	parentLayout	with	nRows	rows	and
nCols	columns.	If	spacing	is	-1,	this	QGridLayout	inherits	its	parent's	spacing();
otherwise	spacing	is	used.	The	grid	layout	is	called	name.

This	grid	is	placed	according	to	parentLayout's	default	placement	rules.

QGridLayout::~QGridLayout	()

Destroys	the	grid	layout.	Geometry	management	is	terminated	if	this	is	a	top-
level	grid.

The	layout's	widgets	are	not	destroyed.

void	QGridLayout::add	(QLayoutItem	*	item,	int	row,	int	col)
[protected]

Adds	item	at	position	row,	col.	The	layout	takes	ownership	of	the	item.

void	QGridLayout::addColSpacing	(int	col,	int	minsize)

Sets	the	minimum	width	of	column	col	to	minsize	pixels.

void	QGridLayout::addItem	(QLayoutItem	*	item,	int	row,
int	col)

Adds	item	at	position	row,	col.	The	layout	takes	ownership	of	the	item.

void	QGridLayout::addItem	(QLayoutItem	*	item)	[virtual]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Adds	item	to	the	next	free	position	of	this	layout.

Reimplemented	from	QLayout.

void	QGridLayout::addLayout	(QLayout	*	layout,	int	row,
int	col)

Places	the	layout	at	position	(row,	col)	in	the	grid.	The	top-left	position	is	(0,	0).

Examples:	listbox/listbox.cpp,	progressbar/progressbar.cpp,	t10/main.cpp	and
t13/gamebrd.cpp.

void	QGridLayout::addMultiCell	(QLayoutItem	*	item,
int	fromRow,	int	toRow,	int	fromCol,	int	toCol,	int	alignment

=	0)

Adds	the	item	to	the	cell	grid,	spanning	multiple	rows/columns.

The	cell	will	span	from	fromRow,	fromCol	to	toRow,	toCol.	Alignment	is
specified	by	alignment,	which	is	a	bitwise	OR	of	Qt::AlignmentFlags	values.
The	default	alignment	is	0,	which	means	that	the	widget	fills	the	entire	cell.

void	QGridLayout::addMultiCellLayout	(QLayout	*	layout,
int	fromRow,	int	toRow,	int	fromCol,	int	toCol,	int	alignment
=	0)

Adds	the	layout	layout	to	the	cell	grid,	spanning	multiple	rows/columns.	The	cell
will	span	from	fromRow,	fromCol	to	toRow,	toCol.

Alignment	is	specified	by	alignment,	which	is	a	bitwise	OR	of
Qt::AlignmentFlags	values.	The	default	alignment	is	0,	which	means	that	the
widget	fills	the	entire	cell.

A	non-zero	alignment	indicates	that	the	layout	should	not	grow	to	fill	the
available	space	but	should	be	sized	according	to	sizeHint().

void	QGridLayout::addMultiCellWidget	(QWidget	*	w,
int	fromRow,	int	toRow,	int	fromCol,	int	toCol,	int	alignment
=	0)

Adds	the	widget	w	to	the	cell	grid,	spanning	multiple	rows/columns.	The	cell
will	span	from	fromRow,	fromCol	to	toRow,	toCol.

Alignment	is	specified	by	alignment,	which	is	a	bitwise	OR	of
Qt::AlignmentFlags	values.	The	default	alignment	is	0,	which	means	that	the
widget	fills	the	entire	cell.

A	non-zero	alignment	indicates	that	the	widget	should	not	grow	to	fill	the
available	space	but	should	be	sized	according	to	sizeHint().

Examples:	cursor/cursor.cpp,	layout/layout.cpp	and	progressbar/progressbar.cpp.

void	QGridLayout::addRowSpacing	(int	row,	int	minsize)

Sets	the	minimum	height	of	row	row	to	minsize	pixels.

void	QGridLayout::addWidget	(QWidget	*	w,	int	row,	int	col,
int	alignment	=	0)

Adds	the	widget	w	to	the	cell	grid	at	row,	col.	The	top-left	position	is	(0,	0)	by
default.

Alignment	is	specified	by	alignment,	which	is	a	bitwise	OR	of
Qt::AlignmentFlags	values.	The	default	alignment	is	0,	which	means	that	the
widget	fills	the	entire	cell.

You	should	not	call	this	if	you	have	enabled	the	auto-add	facility	of	the
layout.

From	Qt	3.0,	the	alignment	parameter	is	interpreted	more	aggressively	than
in	previous	versions	of	Qt.	A	non-default	alignment	now	indicates	that	the
widget	should	not	grow	to	fill	the	available	space,	but	should	be	sized
according	to	sizeHint().

Examples:	addressbook/centralwidget.cpp,	layout/layout.cpp,	rot13/rot13.cpp,
sql/overview/form1/main.cpp,	sql/overview/form2/main.cpp,	t14/gamebrd.cpp
and	t8/main.cpp.

QRect	QGridLayout::cellGeometry	(int	row,	int	col)	const

Returns	the	geometry	of	the	cell	with	row	row	and	column	col	in	the	grid.
Returns	an	invalid	rectangle	if	row	or	col	is	outside	the	grid.

Warning:	in	the	current	version	of	Qt	this	function	does	not	return	valid	results
until	setGeometry()	has	been	called,	i.e.	after	the	mainWidget()	is	visible.

int	QGridLayout::colStretch	(int	col)	const

Returns	the	stretch	factor	for	column	col.

See	also	setColStretch().

void	QGridLayout::expand	(int	nRows,	int	nCols)

Expands	this	grid	so	that	it	will	have	nRows	rows	and	nCols	columns.	Will	not
shrink	the	grid.	You	should	not	need	to	call	this	function	because	QGridLayout
expands	automatically	as	new	items	are	inserted.

QSizePolicy::ExpandData	QGridLayout::expanding	()	const
[virtual]

Returns	the	expansiveness	of	this	layout.

Reimplemented	from	QLayout.

bool	QGridLayout::findWidget	(QWidget	*	w,	int	*	row,	int	*	col
)	[protected]

Searches	for	widget	w	in	this	layout	(not	including	child	layouts).	If	w	is	found,
it	sets	*row	and	*col	to	the	row	and	column	and	returns
TRUE;	otherwise	returns	FALSE.

Note:	if	a	widget	spans	multiple	rows/columns,	the	top-left	cell	is	returned.

bool	QGridLayout::hasHeightForWidth	()	const	[virtual]

Returns	TRUE	if	this	layout's	preferred	height	depends	on	its	width;	otherwise
returns	FALSE.

Reimplemented	from	QLayoutItem.

int	QGridLayout::heightForWidth	(int	w)	const	[virtual]

Returns	the	layout's	preferred	height	when	it	is	w	pixels	wide.

Reimplemented	from	QLayoutItem.

void	QGridLayout::invalidate	()	[virtual]

Resets	cached	information.

Reimplemented	from	QLayout.

QSize	QGridLayout::maximumSize	()	const	[virtual]

Returns	the	maximum	size	needed	by	this	grid.

Reimplemented	from	QLayout.

QSize	QGridLayout::minimumSize	()	const	[virtual]

Returns	the	minimum	size	needed	by	this	grid.

Reimplemented	from	QLayout.

int	QGridLayout::numCols	()	const

Returns	the	number	of	columns	in	this	grid.

int	QGridLayout::numRows	()	const

Returns	the	number	of	rows	in	this	grid.

Corner	QGridLayout::origin	()	const

Returns	the	corner	that's	used	for	the	grid's	origin,	i.e.	for	position	(0,	0).

int	QGridLayout::rowStretch	(int	row)	const

Returns	the	stretch	factor	for	row	row.

See	also	setRowStretch().

void	QGridLayout::setColStretch	(int	col,	int	stretch)	[virtual]

Sets	the	stretch	factor	of	column	col	to	stretch.	The	first	column	is	number	0.

The	stretch	factor	is	relative	to	the	other	columns	in	this	grid.	Columns	with	a
higher	stretch	factor	take	more	of	the	available	space.

The	default	stretch	factor	is	0.	If	the	stretch	factor	is	0	and	no	other	column	in
this	table	can	grow	at	all,	the	column	may	still	grow.

See	also	colStretch(),	addColSpacing()	and	setRowStretch().

Examples:	layout/layout.cpp,	t14/gamebrd.cpp	and	t8/main.cpp.

void	QGridLayout::setGeometry	(const	QRect	&	r)	[virtual]

Resizes	managed	widgets	within	the	rectangle	r.

Reimplemented	from	QLayout.

void	QGridLayout::setOrigin	(Corner	c)

Sets	the	grid's	origin	corner,	i.e.	position	(0,	0),	to	c.

void	QGridLayout::setRowStretch	(int	row,	int	stretch)
[virtual]

Sets	the	stretch	factor	of	row	row	to	stretch.	The	first	row	is	number	0.

The	stretch	factor	is	relative	to	the	other	rows	in	this	grid.	Rows	with	a	higher
stretch	factor	take	more	of	the	available	space.

The	default	stretch	factor	is	0.	If	the	stretch	factor	is	0	and	no	other	row	in	this
table	can	grow	at	all,	the	row	may	still	grow.

See	also	rowStretch(),	addRowSpacing()	and	setColStretch().

Example:	addressbook/centralwidget.cpp.

QSize	QGridLayout::sizeHint	()	const	[virtual]

Returns	the	preferred	size	of	this	grid.

Reimplemented	from	QLayoutItem.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QBoxLayout	Class	Reference
The	QBoxLayout	class	lines	up	child	widgets	horizontally	or	vertically.	More...

#include	<qlayout.h>

Inherits	QLayout.

Inherited	by	QHBoxLayout	and	QVBoxLayout.

List	of	all	member	functions.

Public	Members

enum	Direction	{	LeftToRight,	RightToLeft,	TopToBottom,	BottomToTop,
Down	=	TopToBottom,	Up	=	BottomToTop	}
QBoxLayout	(QWidget	*	parent,	Direction	d,	int	margin	=	0,	int	spacing	=
-1,	const	char	*	name	=	0)
QBoxLayout	(QLayout	*	parentLayout,	Direction	d,	int	spacing	=	-1,
const	char	*	name	=	0)
QBoxLayout	(Direction	d,	int	spacing	=	-1,	const	char	*	name	=	0)
~QBoxLayout	()
virtual	void	addItem	(QLayoutItem	*	item)
Direction	direction	()	const
void	setDirection	(Direction	direction)
void	addSpacing	(int	size)
void	addStretch	(int	stretch	=	0)
void	addWidget	(QWidget	*	widget,	int	stretch	=	0,	int	alignment	=	0)
void	addLayout	(QLayout	*	layout,	int	stretch	=	0)
void	addStrut	(int	size)
void	insertSpacing	(int	index,	int	size)
void	insertStretch	(int	index,	int	stretch	=	0)
void	insertWidget	(int	index,	QWidget	*	widget,	int	stretch	=	0,
int	alignment	=	0)
void	insertLayout	(int	index,	QLayout	*	layout,	int	stretch	=	0)
bool	setStretchFactor	(QWidget	*	w,	int	stretch)
bool	setStretchFactor	(QLayout	*	l,	int	stretch)
virtual	QSize	sizeHint	()	const
virtual	QSize	minimumSize	()	const
virtual	QSize	maximumSize	()	const
virtual	bool	hasHeightForWidth	()	const
virtual	int	heightForWidth	(int	w)	const
virtual	QSizePolicy::ExpandData	expanding	()	const
virtual	void	invalidate	()
virtual	void	setGeometry	(const	QRect	&	r)
int	findWidget	(QWidget	*	w)

Protected	Members

void	insertItem	(int	index,	QLayoutItem	*	item)

Detailed	Description

The	QBoxLayout	class	lines	up	child	widgets	horizontally	or	vertically.

QBoxLayout	takes	the	space	it	gets	(from	its	parent	layout	or	from	the
mainWidget()),	divides	it	up	into	a	row	of	boxes,	and	makes	each	managed
widget	fill	one	box.

If	the	QBoxLayout's	orientation	is	Horizontal	the	boxes	are	placed	in	a	row,	with
suitable	sizes.	Each	widget	(or	other	box)	will	get	at	least	its	minimum	size	and
at	most	its	maximum	size.	Any	excess	space	is	shared	according	to	the	stretch
factors	(more	about	that	below).

If	the	QBoxLayout's	orientation	is	Vertical,	the	boxes	are	placed	in	a	column,
again	with	suitable	sizes.

The	easiest	way	to	create	a	QBoxLayout	is	to	use	one	of	the	convenience
classes,	e.g.	QHBoxLayout	(for	Horizontal	boxes)	or	QVBoxLayout	(for	Vertical
boxes).	You	can	also	use	the	QBoxLayout	constructor	directly,	specifying	its
direction	as	LeftToRight,	Down,	RightToLeft	or	Up.

If	the	QBoxLayout	is	not	the	top-level	layout	(i.e.	it	is	not	managing	all	of	the
widget's	area	and	children),	you	must	add	it	to	its	parent	layout	before	you	can
do	anything	with	it.	The	normal	way	to	add	a	layout	is	by	calling	parentLayout-
>addLayout().

Once	you	have	done	this,	you	can	add	boxes	to	the	QBoxLayout	using	one	of
four	functions:

addWidget()	to	add	a	widget	to	the	QBoxLayout	and	set	the	widget's	stretch
factor.	(The	stretch	factor	is	along	the	row	of	boxes.)

addSpacing()	to	create	an	empty	box;	this	is	one	of	the	functions	you	use	to
create	nice	and	spacious	dialogs.	See	below	for	ways	to	set	margins.

addStretch()	to	create	an	empty,	stretchable	box.

addLayout()	to	add	a	box	containing	another	QLayout	to	the	row	and	set
that	layout's	stretch	factor.

Use	insertWidget(),	insertSpacing(),	insertStretch()	or	insertLayout()	to	insert	a
box	at	a	specified	position	in	the	layout.

QBoxLayout	also	includes	two	margin	widths:

setMargin()	sets	the	width	of	the	outer	border.	This	is	the	width	of	the
reserved	space	along	each	of	the	QBoxLayout's	four	sides.
setSpacing()	sets	the	width	between	neighboring	boxes.	(You	can	use
addSpacing()	to	get	more	space	at	a	particular	spot.)

The	margin	defaults	to	0.	The	spacing	defaults	to	the	same	as	the	margin	width
for	a	top-level	layout,	or	to	the	same	as	the	parent	layout.	Both	are	parameters	to
the	constructor.

To	remove	a	widget	from	a	layout,	either	delete	it	or	reparent	it	with
QWidget::reparent().	Hiding	a	widget	with	QWidget::hide()	also	effectively
removes	the	widget	from	the	layout,	until	QWidget::show()	is	called.

You	will	almost	always	want	to	use	QVBoxLayout	and	QHBoxLayout	rather
than	QBoxLayout	because	of	their	convenient	constructors.

See	also	QGrid,	Layout	Overview,	Widget	Appearance	and	Style	and	Layout
Management.

Member	Type	Documentation

QBoxLayout::Direction

This	type	is	used	to	determine	the	direction	of	a	box	layout.

QBoxLayout::LeftToRight	-	Horizontal,	from	left	to	right
QBoxLayout::RightToLeft	-	Horizontal,	from	right	to	left
QBoxLayout::TopToBottom	-	Vertical,	from	top	to	bottom
QBoxLayout::Down	-	The	same	as	TopToBottom
QBoxLayout::BottomToTop	-	Vertical,	from	bottom	to	top
QBoxLayout::Up	-	The	same	as	BottomToTop

Member	Function	Documentation

QBoxLayout::QBoxLayout	(QWidget	*	parent,	Direction	d,
int	margin	=	0,	int	spacing	=	-1,	const	char	*	name	=	0)

Constructs	a	new	QBoxLayout	with	direction	d	and	main	widget	parent.	parent
may	not	be	0.

The	margin	is	the	number	of	pixels	between	the	edge	of	the	widget	and	its
managed	children.	The	spacing	is	the	default	number	of	pixels	between
neighboring	children.	If	spacing	is	-1	the	value	of	margin	is	used	for	spacing.

name	is	the	internal	object	name.

See	also	direction().

QBoxLayout::QBoxLayout	(QLayout	*	parentLayout,
Direction	d,	int	spacing	=	-1,	const	char	*	name	=	0)

Constructs	a	new	QBoxLayout	called	name,	with	direction	d,	and	inserts	it	into
parentLayout.

The	spacing	is	the	default	number	of	pixels	between	neighboring	children.	If
spacing	is	-1,	the	layout	will	inherit	its	parent's	spacing().

QBoxLayout::QBoxLayout	(Direction	d,	int	spacing	=	-1,
const	char	*	name	=	0)

Constructs	a	new	QBoxLayout	called	name,	with	direction	d.

If	spacing	is	-1,	the	layout	will	inherit	its	parent's	spacing();	otherwise	spacing	is
used.

You	must	insert	this	box	into	another	layout.

QBoxLayout::~QBoxLayout	()

Destroys	this	box	layout.

The	layout's	widgets	are	not	destroyed.

void	QBoxLayout::addItem	(QLayoutItem	*	item)	[virtual]

Adds	item	to	the	end	of	this	box	layout.

Examples:	chart/optionsform.cpp	and	chart/setdataform.cpp.

Reimplemented	from	QLayout.

void	QBoxLayout::addLayout	(QLayout	*	layout,	int	stretch	=	0)

Adds	layout	to	the	end	of	the	box,	with	serial	stretch	factor	stretch.

See	also	insertLayout(),	setAutoAdd(),	addWidget()	and	addSpacing().

Examples:	chart/optionsform.cpp,	chart/setdataform.cpp,	fonts/simple-qfont-
demo/viewer.cpp,	listbox/listbox.cpp	and	tictac/tictac.cpp.

void	QBoxLayout::addSpacing	(int	size)

Adds	a	non-stretchable	space	with	size	size	to	the	end	of	this	box	layout.
QBoxLayout	provides	default	margin	and	spacing.	This	function	adds	additional
space.

See	also	insertSpacing()	and	addStretch().

Example:	listbox/listbox.cpp.

void	QBoxLayout::addStretch	(int	stretch	=	0)

Adds	a	stretchable	space	with	zero	minimum	size	and	stretch	factor	stretch	to	the
end	of	this	box	layout.

See	also	addSpacing().

Examples:	layout/layout.cpp,	listbox/listbox.cpp	and	t13/gamebrd.cpp.

void	QBoxLayout::addStrut	(int	size)

Limits	the	perpendicular	dimension	of	the	box	(e.g.	height	if	the	box	is
LeftToRight)	to	a	minimum	of	size.	Other	constraints	may	increase	the	limit.

void	QBoxLayout::addWidget	(QWidget	*	widget,	int	stretch	=	0,
int	alignment	=	0)

Adds	widget	to	the	end	of	this	box	layout,	with	a	stretch	factor	of	stretch	and
alignment	alignment.

The	stretch	factor	applies	only	in	the	direction	of	the	QBoxLayout,	and	is
relative	to	the	other	boxes	and	widgets	in	this	QBoxLayout.	Widgets	and	boxes
with	higher	stretch	factors	grow	more.

If	the	stretch	factor	is	0	and	nothing	else	in	the	QBoxLayout	has	a	stretch	factor
greater	than	zero,	the	space	is	distributed	according	to	the	QWidget:sizePolicy()
of	each	widget	that's	involved.

Alignment	is	specified	by	alignment	which	is	a	bitwise	OR	of
Qt::AlignmentFlags	values.	The	default	alignment	is	0,	which	means	that	the
widget	fills	the	entire	cell.

From	Qt	3.0,	the	alignment	parameter	is	interpreted	more	aggressively	than	in
previous	versions	of	Qt.	A	non-default	alignment	now	indicates	that	the	widget
should	not	grow	to	fill	the	available	space,	but	should	be	sized	according	to
sizeHint().

See	also	insertWidget(),	setAutoAdd(),	addLayout()	and	addSpacing().

Examples:	chart/optionsform.cpp,	fonts/simple-qfont-demo/viewer.cpp,
layout/layout.cpp,	lineedits/lineedits.cpp,	listbox/listbox.cpp,	t13/gamebrd.cpp
and	t13/lcdrange.cpp.

Direction	QBoxLayout::direction	()	const

Returns	the	direction	of	the	box.	addWidget()	and	addSpacing()	work	in	this
direction;	the	stretch	stretches	in	this	direction.

See	also	QBoxLayout::Direction,	addWidget()	and	addSpacing().

QSizePolicy::ExpandData	QBoxLayout::expanding	()	const
[virtual]

Returns	the	expansiveness	of	this	layout.

Reimplemented	from	QLayout.

int	QBoxLayout::findWidget	(QWidget	*	w)

Searches	for	widget	w	in	this	layout	(not	including	child	layouts).

Returns	the	index	of	w,	or	-1	if	w	is	not	found.

bool	QBoxLayout::hasHeightForWidth	()	const	[virtual]

Returns	TRUE	if	this	layout's	preferred	height	depends	on	its	width;	otherwise
returns	FALSE.

Reimplemented	from	QLayoutItem.

int	QBoxLayout::heightForWidth	(int	w)	const	[virtual]

Returns	the	layout's	preferred	height	when	it	is	w	pixels	wide.

Reimplemented	from	QLayoutItem.

void	QBoxLayout::insertItem	(int	index,	QLayoutItem	*	item)
[protected]

Inserts	item	into	this	box	layout	at	position	index.	If	index	is	negative,	the	item	is
added	at	the	end.

Warning:	Does	not	call	QLayout::insertChildLayout()	if	item	is	a	QLayout.

See	also	addItem()	and	findWidget().

void	QBoxLayout::insertLayout	(int	index,	QLayout	*	layout,

int	stretch	=	0)

Inserts	layout	at	position	index,	with	stretch	factor	stretch.	If	index	is	negative,
the	layout	is	added	at	the	end.

See	also	setAutoAdd(),	insertWidget()	and	insertSpacing().

void	QBoxLayout::insertSpacing	(int	index,	int	size)

Inserts	a	non-stretchable	space	at	position	index,	with	size	size.	If	index	is
negative	the	space	is	added	at	the	end.

The	box	layout	has	default	margin	and	spacing.	This	function	adds	additional
space.

See	also	insertStretch().

void	QBoxLayout::insertStretch	(int	index,	int	stretch	=	0)

Inserts	a	stretchable	space	at	position	index,	with	zero	minimum	size	and	stretch
factor	stretch.	If	index	is	negative	the	space	is	added	at	the	end.

See	also	insertSpacing().

void	QBoxLayout::insertWidget	(int	index,	QWidget	*	widget,
int	stretch	=	0,	int	alignment	=	0)

Inserts	widget	at	position	index,	with	stretch	factor	stretch	and	alignment
alignment.	If	index	is	negative,	the	widget	is	added	at	the	end.

The	stretch	factor	applies	only	in	the	direction	of	the	QBoxLayout,	and	is
relative	to	the	other	boxes	and	widgets	in	this	QBoxLayout.	Widgets	and	boxes
with	higher	stretch	factors	grow	more.

If	the	stretch	factor	is	0	and	nothing	else	in	the	QBoxLayout	has	a	stretch	factor
greater	than	zero,	the	space	is	distributed	according	to	the	QWidget:sizePolicy()
of	each	widget	that's	involved.

Alignment	is	specified	by	alignment,	which	is	a	bitwise	OR	of

Qt::AlignmentFlags	values.	The	default	alignment	is	0,	which	means	that	the
widget	fills	the	entire	cell.

From	Qt	3.0,	the	alignment	parameter	is	interpreted	more	aggressively	than	in
previous	versions	of	Qt.	A	non-default	alignment	now	indicates	that	the	widget
should	not	grow	to	fill	the	available	space,	but	should	be	sized	according	to
sizeHint().

See	also	setAutoAdd(),	insertLayout()	and	insertSpacing().

void	QBoxLayout::invalidate	()	[virtual]

Resets	cached	information.

Reimplemented	from	QLayout.

QSize	QBoxLayout::maximumSize	()	const	[virtual]

Returns	the	maximum	size	needed	by	this	box	layout.

Reimplemented	from	QLayout.

QSize	QBoxLayout::minimumSize	()	const	[virtual]

Returns	the	minimum	size	needed	by	this	box	layout.

Reimplemented	from	QLayout.

void	QBoxLayout::setDirection	(Direction	direction)

Sets	the	direction	of	this	layout	to	direction.

void	QBoxLayout::setGeometry	(const	QRect	&	r)	[virtual]

Resizes	managed	widgets	within	the	rectangle	r.

Reimplemented	from	QLayout.

bool	QBoxLayout::setStretchFactor	(QWidget	*	w,	int	stretch)

Sets	the	stretch	factor	for	widget	w	to	stretch	and	returns	TRUE	if	w	is	found	in
this	layout	(not	including	child	layouts);	otherwise	returns	FALSE.

bool	QBoxLayout::setStretchFactor	(QLayout	*	l,	int	stretch)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Sets	the	stretch	factor	for	the	layout	l	to	stretch	and	returns	TRUE	if	l	is	found	in
this	layout	(not	including	child	layouts);	otherwise	returns	FALSE.

QSize	QBoxLayout::sizeHint	()	const	[virtual]

Returns	the	preferred	size	of	this	box	layout.

Reimplemented	from	QLayoutItem.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QAccel
QAccel	 ……

#include	<qaccel.h>

QObject

QAccel	(QWidget	*	parent,	const	char	*	name	=	0)
QAccel	(QWidget	*	watch,	QObject	*	parent,	const	char	*	name	=	0)
~QAccel	()
bool	isEnabled	()	const
void	setEnabled	(bool	enable)
uint	count	()	const
int	insertItem	(const	QKeySequence	&	key,	int	id	=	-1)
void	removeItem	(int	id)
void	clear	()
QKeySequence	key	(int	id)
int	findKey	(const	QKeySequence	&	key)	const
bool	isItemEnabled	(int	id)	const
void	setItemEnabled	(int	id,	bool	enable)
bool	connectItem	(int	id,	const	QObject	*	receiver,	const	char	*	member)
bool	disconnectItem	(int	id,	const	QObject	*	receiver,
const	char	*	member)
void	repairEventFilter	()
void	setWhatsThis	(int	id,	const	QString	&	text)
QString	whatsThis	(int	id)	const

void	activated	(int	id)

QKeySequence	shortcutKey	(const	QString	&	str)
QString	keyToString	(QKeySequence	k)		(obsolete)
QKeySequence	stringToKey	(const	QString	&	s)		(obsolete)

virtual	bool	eventFilter	(QObject	*	o,	QEvent	*	e)

QAccel

QAction QMenuData::insertItem()QMenuData::setAccel
QButtonQGroupBoxQLabel QLabel::setBuddy() QMenuBarQTabBar

								QPushButton	p("&Exit",	parent);	//	ALT+Key_E

								QPopupMenu	*fileMenu	=	new	fileMenu(parent);

								fileMenu->insertItem("Undo",	parent,	SLOT(undo()),	CTRL+Key_Z);

				

QAccel insertItem() removeItem()

	 QKeySequence(SHIFTCTRLALT		 UNICODE_ACCEL) CTRL	+

Key_p qnamespace.h UNICODE_ACCELunicode
UNICODE_ACCEL	+	'A'	Key_A

	 activated()(connectItem()		 disconnectItem())

	 setEnabled()	 setItemEnabled()	QAccel

What's	This	 setWhatsThis()	

QAccelparent	 QWidget::topLevelWidget()	 parent

								QAccel	*a	=	new	QAccel(myWindow);								//	myWindow

								a->connectItem(a->insertItem(Key_P+CTRL),	//	Ctrl+P

																								myWindow,																		//	myWindow

																								SLOT(printDoc()));								//	printDoc()

				

QKeyEventQWidget::keyPressEvent() QMenuData::setAccel() QButton::accel
Design	Handbook:	Keyboard	Shortcuts

QAccel::QAccel	(QWidget	*	parent,	const	char	*	name	=	0)

nameparentQAccel parent

QAccel::QAccel	(QWidget	*	watch,	QObject	*	parent,
const	char	*	name	=	0)

QAccel name watch parent

QAccel::~QAccel	()

void	QAccel::activated	(int	id)	[]

id	

void	QAccel::clear	()

bool	QAccel::connectItem	(int	id,	const	QObject	*	receiver,
const	char	*	member)

idreceivermember

								a->connectItem(201,	mainView,	SLOT(quit()));

				

	 member

disconnectItem()

:	 t14/gamebrd.cpp

uint	QAccel::count	()	const

bool	QAccel::disconnectItem	(int	id,	const	QObject	*	receiver,
const	char	*	member)

memberidreceiver

	 connectItem()

bool	QAccel::eventFilter	(QObject	*	o,	QEvent	*	e)	[]

e		 o	

	 QObject	

int	QAccel::findKey	(const	QKeySequence	&	key)	const

	 key-1

int	QAccel::insertItem	(const	QKeySequence	&	key,	int	id	=	-1)

key	SHIFTCTRL		ALT id	

	 id	-1

								QAccel	*a	=	new	QAccel(myWindow)								//	myWindowaccels

								a->insertItem(CTRL	+	Key_p,	200)								//	Ctrl+p,	

								a->insertItem(ALT	+	Key_X,	201)									//	Alt+X,	

								a->insertItem(UNICODE_ACCEL	+	'q',	202)	//		'q',	

								a->insertItem(Key_D)																				//	1

								a->insertItem(CTRL	+	SHIFT	+	Key_p)					//	1

		

	 t14/gamebrd.cpp

bool	QAccel::isEnabled	()	const

TRUEFALSE

	 setEnabled()		 isItemEnabled()

bool	QAccel::isItemEnabled	(int	id)	const

idTRUEFALSE

	 setItemEnabled()		 isEnabled()

QKeySequence	QAccel::key	(int	id)

id(0)

QString	QAccel::keyToString	(QKeySequence	k)	[]

	

	 k	CTRL+Key_O"Ctrl+O""Ctrl"	 QObject::tr())
"QAccel"

QKeySequence	k		 QString	

void	QAccel::removeItem	(int	id)

	 id	

void	QAccel::repairEventFilter	()

void	QAccel::setEnabled	(bool	enable)

	 enable	TRUE	 enable	FALSE

	 setItemEnabled()	QAccel

	 isEnabled()		 setItemEnabled()

void	QAccel::setItemEnabled	(int	id,	bool	enable)

	 enable	TRUE	 id	

	 enable	FALSE	 id	

QAccel

	 isItemEnabled()		 isEnabled()

void	QAccel::setWhatsThis	(int	id,	const	QString	&	text)

	 id	What's	This	 text	

What's	This

What's	This QMenuData::setWhatsThis().

whatsThis() QWhatsThis::inWhatsThisMode() QMenuData::setWhatsThis()
	 QAction::whatsThis

QKeySequence	QAccel::shortcutKey	(const	QString	&	str)	[]

	 str		 str	(0)

shortcutKey("E&xit")	ALT+Key_X,	shortcutKey("&Quit")	
ALT+Key_Q		shortcutKey("Quit")		0(QtQt::ALT+Qt::Key_Q.)

MicrosofuOpen	Group

QKeySequence	QAccel::stringToKey	(const	QString	&	s)	[]

	

	 s	"Ctrl+O"	CTRL+UNICODE_ACCEL+'O'
"Ctrl""Shift""Alt""QAccel"(QObject::tr

	 tr()

	 						QpopupMenu	*file	=	new	QpopupMenu(this)

								file->insertItem(p1,	tr("&Open..."),	this,	SLOT(open())

								QAccel::stringToKey(tr("Ctrl+O",	"File|Open")))

		

"File|Open"

	 s	QKeySequence

QObject::tr()		 Internationalization	with	Qt

i18n/mywidget.cpp

QString	QAccel::whatsThis	(int	id)	const

	 id	What's	This		 QString::null

setWhatsThis()

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :allexit Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

t11/lcdrange.h	Example	File
/**

**

**	Definition	of	LCDRange	class,	Qt	tutorial	8

**

**/

#ifndef	LCDRANGE_H

#define	LCDRANGE_H

#include	<qvbox.h>

class	QSlider;

class	LCDRange	:	public	QVBox

{

				Q_OBJECT

public:

				LCDRange(QWidget	*parent=0,	const	char	*name=0);

				int	value()	const;

public	slots:

				void	setValue(int);

				void	setRange(int	minVal,	int	maxVal);

signals:

				void	valueChanged(int);

private:

				QSlider		*slider;

};

#endif	//	LCDRANGE_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

t11/lcdrange.cpp	Example	File
/**

**

**	Implementation	of	LCDRange	class,	Qt	tutorial	8

**

**/

#include	"lcdrange.h"

#include	<qslider.h>

#include	<qlcdnumber.h>

LCDRange::LCDRange(QWidget	*parent,	const	char	*name)

								:	QVBox(parent,	name)

{

				QLCDNumber	*lcd		=	new	QLCDNumber(2,	this,	"lcd");

				slider	=	new	QSlider(Horizontal,	this,	"slider");

				slider->setRange(0,	99);

				slider->setValue(0);

				connect(slider,	SIGNAL(valueChanged(int)),

													lcd,	SLOT(display(int)));

				connect(slider,	SIGNAL(valueChanged(int)),

													SIGNAL(valueChanged(int)));

				setFocusProxy(slider);

}

int	LCDRange::value()	const

{

				return	slider->value();

}

void	LCDRange::setValue(int	value)

{

				slider->setValue(value);

}

void	LCDRange::setRange(int	minVal,	int	maxVal)

{

				if	(minVal	<	0	||	maxVal	>	99	||	minVal	>	maxVal)	{

						qWarning("LCDRange::setRange(%d,%d)\n"

															"\tRange	must	be	0..99\n"

															"\tand	minVal	must	not	be	greater	than	maxVal",

															minVal,	maxVal);

						return;

				}

				slider->setRange(minVal,	maxVal);

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

t11/cannon.h	Example	File
/**

**

**	Definition	of	CannonField	class,	Qt	tutorial	11

**

**/

#ifndef	CANNON_H

#define	CANNON_H

class	QTimer;

#include	<qwidget.h>

class	CannonField	:	public	QWidget

{

				Q_OBJECT

public:

				CannonField(QWidget	*parent=0,	const	char	*name=0);

				int			angle()	const	{	return	ang;	}

				int			force()	const	{	return	f;	}

				QSizePolicy	sizePolicy()	const;

public	slots:

				void		setAngle(int	degrees);

				void		setForce(int	newton);

				void		shoot();

private	slots:

				void		moveShot();

signals:

				void		angleChanged(int);

				void		forceChanged(int);

protected:

				void		paintEvent(QPaintEvent	*);

private:

				void		paintShot(QPainter	*);

				void		paintCannon(QPainter	*);

				QRect	cannonRect()	const;

				QRect	shotRect()	const;

				int	ang;

				int	f;

				int	timerCount;

				QTimer	*	autoShootTimer;

				float	shoot_ang;

				float	shoot_f;

};

#endif	//	CANNON_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

t11/cannon.cpp	Example	File
/**

**

**	Implementation	CannonField	class,	Qt	tutorial	11

**

**/

#include	"cannon.h"

#include	<qtimer.h>

#include	<qpainter.h>

#include	<qpixmap.h>

#include	<math.h>

CannonField::CannonField(QWidget	*parent,	const	char	*name)

								:	QWidget(parent,	name)

{

				ang	=	45;

				f	=	0;

				timerCount	=	0;

				autoShootTimer	=	new	QTimer(this,	"movement	handler");

				connect(autoShootTimer,	SIGNAL(timeout()),

													this,	SLOT(moveShot()));

				shoot_ang	=	0;

				shoot_f	=	0;

				setPalette(QPalette(QColor(250,	250,	200)));

}

void	CannonField::setAngle(int	degrees)

{

				if	(degrees	<	5)

								degrees	=	5;

				if	(degrees	>	70)

								degrees	=	70;

				if	(ang	==	degrees)

								return;

				ang	=	degrees;

				repaint(cannonRect(),	FALSE);

				emit	angleChanged(ang);

}

void	CannonField::setForce(int	newton)

{

				if	(newton	<	0)

								newton	=	0;

				if	(f	==	newton)

								return;

				f	=	newton;

				emit	forceChanged(f);

}

void	CannonField::shoot()

{

				if	(autoShootTimer->isActive())

								return;

				timerCount	=	0;

				shoot_ang	=	ang;

				shoot_f	=	f;

				autoShootTimer->start(50);

}

void	CannonField::moveShot()

{

				QRegion	r(shotRect());

				timerCount++;

				QRect	shotR	=	shotRect();

				if	(shotR.x()	>	width()	||	shotR.y()	>	height())

								autoShootTimer->stop();

				else

								r	=	r.unite(QRegion(shotR));

				repaint(r);

}

void	CannonField::paintEvent(QPaintEvent	*e)

{

				QRect	updateR	=	e->rect();

				QPainter	p(this);

				if	(updateR.intersects(cannonRect()))

								paintCannon(&p);

				if	(autoShootTimer->isActive()	&&

									updateR.intersects(shotRect()))

								paintShot(&p);

}

void	CannonField::paintShot(QPainter	*p)

{

				p->setBrush(black);

				p->setPen(NoPen);

				p->drawRect(shotRect());

}

const	QRect	barrelRect(33,	-4,	15,	8);

void	CannonField::paintCannon(QPainter	*p)

{

				QRect	cr	=	cannonRect();

				QPixmap	pix(cr.size());

				pix.fill(this,	cr.topLeft());

				QPainter	tmp(&pix);

				tmp.setBrush(blue);

				tmp.setPen(NoPen);

				tmp.translate(0,	pix.height()	-	1);

				tmp.drawPie(QRect(-35,-35,	70,	70),	0,	90*16);

				tmp.rotate(-ang);

				tmp.drawRect(barrelRect);

				tmp.end();

				p->drawPixmap(cr.topLeft(),	pix);

}

QRect	CannonField::cannonRect()	const

{

				QRect	r(0,	0,	50,	50);

				r.moveBottomLeft(rect().bottomLeft());

				return	r;

}

QRect	CannonField::shotRect()	const

{

				const	double	gravity	=	4;

				double	time						=	timerCount	/	4.0;

				double	velocity		=	shoot_f;

				double	radians			=	shoot_ang*3.14159265/180;

				double	velx						=	velocity*cos(radians);

				double	vely						=	velocity*sin(radians);

				double	x0								=	(barrelRect.right()		+	5)*cos(radians);

				double	y0								=	(barrelRect.right()		+	5)*sin(radians);

				double	x									=	x0	+	velx*time;

				double	y									=	y0	+	vely*time	-	0.5*gravity*time*time;

				QRect	r	=	QRect(0,	0,	6,	6);

				r.moveCenter(QPoint(qRound(x),	height()	-	1	-	qRound(y)));

				return	r;

}

QSizePolicy	CannonField::sizePolicy()	const

{

				return	QSizePolicy(QSizePolicy::Expanding,	QSizePolicy::Expanding);

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

t11/main.cpp	Example	File
/**

**

**	Qt	tutorial	11

**

**/

#include	<qapplication.h>

#include	<qpushbutton.h>

#include	<qlcdnumber.h>

#include	<qfont.h>

#include	<qlayout.h>

#include	"lcdrange.h"

#include	"cannon.h"

class	MyWidget:	public	QWidget

{

public:

				MyWidget(QWidget	*parent=0,	const	char	*name=0);

};

MyWidget::MyWidget(QWidget	*parent,	const	char	*name)

								:	QWidget(parent,	name)

{

				QPushButton	*quit	=	new	QPushButton("&Quit",	this,	"quit");

				quit->setFont(QFont("Times",	18,	QFont::Bold));

				connect(quit,	SIGNAL(clicked()),	qApp,	SLOT(quit()));

				LCDRange	*angle	=	new	LCDRange(this,	"angle");

				angle->setRange(5,	70);

				LCDRange	*force		=	new	LCDRange(this,	"force");

				force->setRange(10,	50);

				CannonField	*cannonField	=	new	CannonField(this,	"cannonField");

				connect(angle,	SIGNAL(valueChanged(int)),

													cannonField,	SLOT(setAngle(int)));

				connect(cannonField,	SIGNAL(angleChanged(int)),

													angle,	SLOT(setValue(int)));

				connect(force,	SIGNAL(valueChanged(int)),

													cannonField,	SLOT(setForce(int)));

				connect(cannonField,	SIGNAL(forceChanged(int)),

													force,	SLOT(setValue(int)));

				QPushButton	*shoot	=	new	QPushButton("&Shoot",	this,	"shoot");

				shoot->setFont(QFont("Times",	18,	QFont::Bold));

				connect(shoot,	SIGNAL(clicked()),	cannonField,	SLOT(shoot()));

				QGridLayout	*grid	=	new	QGridLayout(this,	2,	2,	10);

				grid->addWidget(quit,	0,	0);

				grid->addWidget(cannonField,	1,	1);

				grid->setColStretch(1,	10);

				QVBoxLayout	*leftBox	=	new	QVBoxLayout;

				grid->addLayout(leftBox,	1,	0);

				leftBox->addWidget(angle);

				leftBox->addWidget(force);

				QHBoxLayout	*topBox	=	new	QHBoxLayout;

				grid->addLayout(topBox,	0,	1);

				topBox->addWidget(shoot);

				topBox->addStretch(1);

				angle->setValue(60);

				force->setValue(25);

				angle->setFocus();

}

int	main(int	argc,	char	**argv)

{

				QApplication::setColorSpec(QApplication::CustomColor);

				QApplication	a(argc,	argv);

				MyWidget	w;

				w.setGeometry(100,	100,	500,	355);

				a.setMainWidget(&w);

				w.show();

				return	a.exec();

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QTimer
QTimer	 ……

#include	<qtimer.h>

QObject

QTimer	(QObject	*	parent	=	0,	const	char	*	name	=	0)
~QTimer	()
bool	isActive	()	const
int	start	(int	msec,	bool	sshot	=	FALSE)
void	changeInterval	(int	msec)
void	stop	()

void	timeout	()

void	singleShot	(int	msec,	QObject	*	receiver,	const	char	*	member)

QTimer

QTimerQTimer start()timeout()timeout()

QTimer

								QTimer	*timer	=	new	QTimer(myObject);

								connect(timer,	SIGNAL(timeout()),	myObject,	SLOT(timerDone()));

								timer->start(2000,	TRUE);	//	2

				

singleShot()

0QTimer

								QTimer	*t	=	new	QTimer(myObject);

								connect(t,	SIGNAL(timeout()),	SLOT(processOneThing()));

								t->start(0,	FALSE);

				

myObject->processOneThing()Qt

QTimer20Qt

QTimer QObject::startTimer() QObjectQObject::timerEvent
timerEvent()

Qt

QTimer::QTimer	(QObject	*	parent	=	0,	const	char	*	name	=	0)

nameparent

QTimer::~QTimer	()

void	QTimer::changeInterval	(int	msec)

msec

start()isActive()

bool	QTimer::isActive	()	const

t11/cannon.cpp

void	QTimer::singleShot	(int	msec,	QObject	*	receiver,
const	char	*	member)	[]

timerEventQTimer

								#include	<qapplication.h>

								#include	<qtimer.h>

								int	main(int	argc,	char	**argv)

								{

												QApplication	a(argc,	argv);

												QTimer::singleShot(10*60*1000,	&a,	SLOT(quit()));

																...	//	

												return	a.exec();

								}

				

10600000

receivermember msec

int	QTimer::start	(int	msec,	bool	sshot	=	FALSE)

msec

sshot

singleShot() stop() changeInterval()isActive()

aclock/aclock.cppdirview/dirview.cppforever/forever.cpphello/hello.cppt11/cannon.cpp
t13/cannon.cpp

void	QTimer::stop	()

start()

dirview/dirview.cppt11/cannon.cppt12/cannon.cppt13/cannon.cpp

void	QTimer::timeout	()	[]

aclock/aclock.cppdirview/dirview.cppforever/forever.cpphello/hello.cpp
t11/cannon.cpp

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QRegion	Class	Reference
The	QRegion	class	specifies	a	clip	region	for	a	painter.	More...

#include	<qregion.h>

List	of	all	member	functions.

Public	Members

enum	RegionType	{	Rectangle,	Ellipse	}
QRegion	()
QRegion	(int	x,	int	y,	int	w,	int	h,	RegionType	t	=	Rectangle)
QRegion	(const	QRect	&	r,	RegionType	t	=	Rectangle)
QRegion	(const	QPointArray	&	a,	bool	winding	=	FALSE)
QRegion	(const	QRegion	&	r)
QRegion	(const	QBitmap	&	bm)
~QRegion	()
QRegion	&	operator=	(const	QRegion	&	r)
bool	isNull	()	const
bool	isEmpty	()	const
bool	contains	(const	QPoint	&	p)	const
bool	contains	(const	QRect	&	r)	const
void	translate	(int	dx,	int	dy)
QRegion	unite	(const	QRegion	&	r)	const
QRegion	intersect	(const	QRegion	&	r)	const
QRegion	subtract	(const	QRegion	&	r)	const
QRegion	eor	(const	QRegion	&	r)	const
QRect	boundingRect	()	const
QMemArray<QRect>	rects	()	const
const	QRegion	operator|	(const	QRegion	&	r)	const
const	QRegion	operator+	(const	QRegion	&	r)	const
const	QRegion	operator&	(const	QRegion	&	r)	const
const	QRegion	operator-	(const	QRegion	&	r)	const
const	QRegion	operator^	(const	QRegion	&	r)	const
QRegion	&	operator|=	(const	QRegion	&	r)
QRegion	&	operator+=	(const	QRegion	&	r)
QRegion	&	operator&=	(const	QRegion	&	r)
QRegion	&	operator-=	(const	QRegion	&	r)
QRegion	&	operator^=	(const	QRegion	&	r)
bool	operator==	(const	QRegion	&	r)	const
bool	operator!=	(const	QRegion	&	r)	const
HRGN	handle	()	const

Related	Functions

QDataStream	&	operator<<	(QDataStream	&	s,	const	QRegion	&	r)
QDataStream	&	operator>>	(QDataStream	&	s,	QRegion	&	r)

Detailed	Description

The	QRegion	class	specifies	a	clip	region	for	a	painter.

QRegion	is	used	with	QPainter::setClipRegion()	to	limit	the	paint	area	to	what
needs	to	be	painted.	There	is	also	a	QWidget::repaint()	that	takes	a	QRegion
parameter.	QRegion	is	the	best	tool	for	reducing	flicker.

A	region	can	be	created	from	a	rectangle,	an	ellipse,	a	polygon	or	a	bitmap.
Complex	regions	may	be	created	by	combining	simple	regions	using	unite(),
intersect(),	subtract()	or	eor()	(exclusive	or).	You	can	move	a	region	using
translate().

You	can	test	whether	a	region	isNull(),	isEmpty()	or	if	it	contains()	a	QPoint	or
QRect.	The	bounding	rectangle	is	given	by	boundingRect().

The	function	rects()	gives	a	decomposition	of	the	region	into	rectangles.

Example	of	using	complex	regions:

								void	MyWidget::paintEvent(QPaintEvent	*)

								{

												QPainter	p;																									//	our	painter

												QRegion	r1(QRect(100,100,200,80),		//	r1	=	elliptic	region

																								QRegion::Ellipse);

												QRegion	r2(QRect(100,120,90,30));	//	r2	=	rectangular	region

												QRegion	r3	=	r1.intersect(r2);				//	r3	=	intersection

												p.begin(this);																				//	start	painting	widget

												p.setClipRegion(r3);														//	set	clip	region

												...																																	//	paint	clipped	graphics

												p.end();																												//	painting	done

								}

				

QRegion	is	an	implicitly	shared	class.

Due	to	window	system	limitations,	the	width	and	height	of	a	region	is	limited	to
65535	on	Unix/X11.

See	also	QPainter::setClipRegion(),	QPainter::setClipRect(),	Graphics	Classes
and	Image	Processing	Classes.

Member	Type	Documentation

QRegion::RegionType

Specifies	the	shape	of	the	region	to	be	created.

QRegion::Rectangle	-	the	region	covers	the	entire	rectangle.
QRegion::Ellipse	-	the	region	is	an	ellipse	inside	the	rectangle.

Member	Function	Documentation

QRegion::QRegion	()

Constructs	a	null	region.

See	also	isNull().

QRegion::QRegion	(int	x,	int	y,	int	w,	int	h,	RegionType	t	=
Rectangle)

Constructs	a	rectangular	or	elliptic	region.

If	t	is	Rectangle,	the	region	is	the	filled	rectangle	(x,	y,	w,	h).	If	t	is	Ellipse,	the
region	is	the	filled	ellipse	with	center	at	(x	+	w	/	2,	y	+	h	/	2)	and	size	(w	,h).

QRegion::QRegion	(const	QRect	&	r,	RegionType	t	=	Rectangle)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Create	a	region	based	on	the	rectange	r	with	region	type	t.

If	the	rectangle	is	invalid	a	null	region	will	be	created.

See	also	QRegion::RegionType.

QRegion::QRegion	(const	QPointArray	&	a,	bool	winding	=
FALSE)

Constructs	a	polygon	region	from	the	point	array	a.

If	winding	is	TRUE,	the	polygon	region	is	filled	using	the	winding	algorithm,
otherwise	the	default	even-odd	fill	algorithm	is	used.

This	constructor	may	create	complex	regions	that	will	slow	down	painting	when
used.

QRegion::QRegion	(const	QRegion	&	r)

Constructs	a	new	region	which	is	equal	to	region	r.

QRegion::QRegion	(const	QBitmap	&	bm)

Constructs	a	region	from	the	bitmap	bm.

The	resulting	region	consists	of	the	pixels	in	bitmap	bm	that	are	color1,	as	if
each	pixel	was	a	1	by	1	rectangle.

This	constructor	may	create	complex	regions	that	will	slow	down	painting	when
used.	Note	that	drawing	masked	pixmaps	can	be	done	much	faster	using
QPixmap::setMask().

QRegion::~QRegion	()

Destroys	the	region.

QRect	QRegion::boundingRect	()	const

Returns	the	bounding	rectangle	of	this	region.	An	empty	region	gives	a	rectangle
that	is	QRect::isNull().

bool	QRegion::contains	(const	QPoint	&	p)	const

Returns	TRUE	if	the	region	contains	the	point	p;	otherwise	returns	FALSE.

bool	QRegion::contains	(const	QRect	&	r)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	TRUE	if	the	region	overlaps	the	rectangle	r;	otherwise	returns	FALSE.

QRegion	QRegion::eor	(const	QRegion	&	r)	const

Returns	a	region	which	is	the	exclusive	or	(XOR)	of	this	region	and	r.

The	figure	shows	the	exclusive	or	of	two	elliptical	regions.

HRGN	QRegion::handle	()	const

Returns	the	region's	handle.

QRegion	QRegion::intersect	(const	QRegion	&	r)	const

Returns	a	region	which	is	the	intersection	of	this	region	and	r.

The	figure	shows	the	intersection	of	two	elliptical	regions.

bool	QRegion::isEmpty	()	const

Returns	TRUE	if	the	region	is	empty;	otherwise	returns	FALSE.	An	empty
region	is	a	region	that	contains	no	points.

Example:

								QRegion	r1(10,	10,	20,	20);

								QRegion	r2(40,	40,	20,	20);

								QRegion	r3;

								r1.isNull();													//	FALSE

								r1.isEmpty();												//	FALSE

								r3.isNull();													//	TRUE

								r3.isEmpty();												//	TRUE

								r3	=	r1.intersect(r2);	//	r3	=	intersection	of	r1	and	r2

								r3.isNull();													//	FALSE

								r3.isEmpty();												//	TRUE

								r3	=	r1.unite(r2);					//	r3	=	union	of	r1	and	r2

								r3.isNull();													//	FALSE

								r3.isEmpty();												//	FALSE

				

See	also	isNull().

bool	QRegion::isNull	()	const

Returns	TRUE	if	the	region	is	a	null	region;	otherwise	returns	FALSE.

A	null	region	is	a	region	that	has	not	been	initialized.	A	null	region	is	always
empty.

See	also	isEmpty().

bool	QRegion::operator!=	(const	QRegion	&	r)	const

Returns	TRUE	if	the	region	is	different	from	r;	otherwise	returns	FALSE.

const	QRegion	QRegion::operator&	(const	QRegion	&	r)	const

Applies	the	intersect()	function	to	this	region	and	r.	r1&r2	is	equivalent	to
r1.intersect(r2)

See	also	intersect().

QRegion	&	QRegion::operator&=	(const	QRegion	&	r)

Applies	the	intersect()	function	to	this	region	and	r	and	assigns	the	result	to	this
region.	r1&=r2	is	equivalent	to	r1=r1.intersect(r2)

See	also	intersect().

const	QRegion	QRegion::operator+	(const	QRegion	&	r)	const

Applies	the	unite()	function	to	this	region	and	r.	r1+r2	is	equivalent	to
r1.unite(r2)

See	also	unite()	and	operator|().

QRegion	&	QRegion::operator+=	(const	QRegion	&	r)

Applies	the	unite()	function	to	this	region	and	r	and	assigns	the	result	to	this
region.	r1+=r2	is	equivalent	to	r1=r1.unite(r2)

See	also	intersect().

const	QRegion	QRegion::operator-	(const	QRegion	&	r)	const

Applies	the	subtract()	function	to	this	region	and	r.	r1-r2	is	equivalent	to
r1.subtract(r2)

See	also	subtract().

QRegion	&	QRegion::operator-=	(const	QRegion	&	r)

Applies	the	subtract()	function	to	this	region	and	r	and	assigns	the	result	to	this
region.	r1-=r2	is	equivalent	to	r1=r1.subtract(r2)

See	also	subtract().

QRegion	&	QRegion::operator=	(const	QRegion	&	r)

Assigns	r	to	this	region	and	returns	a	reference	to	the	region.

bool	QRegion::operator==	(const	QRegion	&	r)	const

Returns	TRUE	if	the	region	is	equal	to	r;	otherwise	returns	FALSE.

const	QRegion	QRegion::operator^	(const	QRegion	&	r)	const

Applies	the	eor()	function	to	this	region	and	r.	r1^r2	is	equivalent	to
r1.eor(r2)

See	also	eor().

QRegion	&	QRegion::operator^=	(const	QRegion	&	r)

Applies	the	eor()	function	to	this	region	and	r	and	assigns	the	result	to	this
region.	r1^=r2	is	equivalent	to	r1=r1.eor(r2)

See	also	eor().

const	QRegion	QRegion::operator|	(const	QRegion	&	r)	const

Applies	the	unite()	function	to	this	region	and	r.	r1|r2	is	equivalent	to
r1.unite(r2)

See	also	unite()	and	operator+().

QRegion	&	QRegion::operator|=	(const	QRegion	&	r)

Applies	the	unite()	function	to	this	region	and	r	and	assigns	the	result	to	this
region.	r1|=r2	is	equivalent	to	r1=r1.unite(r2)

See	also	unite().

QMemArray<QRect>	QRegion::rects	()	const

Returns	an	array	of	non-overlapping	rectangles	that	make	up	the	region.

The	union	of	all	the	rectangles	is	equal	to	the	original	region.

QRegion	QRegion::subtract	(const	QRegion	&	r)	const

Returns	a	region	which	is	r	subtracted	from	this	region.

The	figure	shows	the	result	when	the	ellipse	on	the	right	is	subtracted	from	the
ellipse	on	the	left.	(left-right)

void	QRegion::translate	(int	dx,	int	dy)

Translates	(moves)	the	region	dx	along	the	X	axis	and	dy	along	the	Y	axis.

QRegion	QRegion::unite	(const	QRegion	&	r)	const

Returns	a	region	which	is	the	union	of	this	region	and	r.

The	figure	shows	the	union	of	two	elliptical	regions.

Related	Functions

QDataStream	&	operator<<	(QDataStream	&	s,
const	QRegion	&	r)

Writes	the	region	r	to	the	stream	s	and	returns	a	reference	to	the	stream.

See	also	Format	of	the	QDataStream	operators.

QDataStream	&	operator>>	(QDataStream	&	s,	QRegion	&	r)

Reads	a	region	from	the	stream	s	into	r	and	returns	a	reference	to	the	stream.

See	also	Format	of	the	QDataStream	operators.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

t13/lcdrange.h	Example	File
/**

**

**	Definition	of	LCDRange	class,	Qt	tutorial	12

**

**/

#ifndef	LCDRANGE_H

#define	LCDRANGE_H

#include	<qwidget.h>

class	QSlider;

class	QLabel;

class	LCDRange	:	public	QWidget

{

				Q_OBJECT

public:

				LCDRange(QWidget	*parent=0,	const	char	*name=0);

				LCDRange(const	char	*s,	QWidget	*parent=0,	const	char	*name=0);

				int									value()	const;

				const	char	*text()		const;

public	slots:

				void	setValue(int);

				void	setRange(int	minVal,	int	maxVal);

				void	setText(const	char	*);

signals:

				void	valueChanged(int);

private:

				void	init();

				QSlider					*slider;

				QLabel						*label;

};

#endif	//	LCDRANGE_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

t13/lcdrange.cpp	Example	File
/**

**

**	Implementation	of	LCDRange	class,	Qt	tutorial	12

**

**/

#include	"lcdrange.h"

#include	<qslider.h>

#include	<qlcdnumber.h>

#include	<qlabel.h>

#include	<qlayout.h>

LCDRange::LCDRange(QWidget	*parent,	const	char	*name)

								:	QWidget(parent,	name)

{

				init();

}

LCDRange::LCDRange(const	char	*s,	QWidget	*parent,	const	char	*name)

								:	QWidget(parent,	name)

{

				init();

				setText(s);

}

void	LCDRange::init()

{

				QLCDNumber	*lcd		=	new	QLCDNumber(2,	this,	"lcd");

				slider	=	new	QSlider(Horizontal,	this,	"slider");

				slider->setRange(0,	99);

				slider->setValue(0);

				label	=	new	QLabel("	",	this,	"label");

				label->setAlignment(AlignCenter);

				connect(slider,	SIGNAL(valueChanged(int)),

													lcd,	SLOT(display(int)));

				connect(slider,	SIGNAL(valueChanged(int)),

													SIGNAL(valueChanged(int)));

				setFocusProxy(slider);

				QVBoxLayout	*	l	=	new	QVBoxLayout(this);

				l->addWidget(lcd,	1);

				l->addWidget(slider);

				l->addWidget(label);

}

int	LCDRange::value()	const

{

				return	slider->value();

}

const	char	*LCDRange::text()	const

{

				return	label->text();

}

void	LCDRange::setValue(int	value)

{

				slider->setValue(value);

}

void	LCDRange::setRange(int	minVal,	int	maxVal)

{

				if	(minVal	<	0	||	maxVal	>	99	||	minVal	>	maxVal)	{

								qWarning("LCDRange::setRange(%d,%d)\n"

																		"\tRange	must	be	0..99\n"

																		"\tand	minVal	must	not	be	greater	than	maxVal",

																		minVal,	maxVal);

								return;

				}

				slider->setRange(minVal,	maxVal);

}

void	LCDRange::setText(const	char	*s)

{

				label->setText(s);

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

t13/cannon.h	Example	File
/**

**

**	Definition	of	CannonField	class,	Qt	tutorial	13

**

**/

#ifndef	CANNON_H

#define	CANNON_H

class	QTimer;

#include	<qwidget.h>

class	CannonField	:	public	QWidget

{

				Q_OBJECT

public:

				CannonField(QWidget	*parent=0,	const	char	*name=0);

				int			angle()	const	{	return	ang;	}

				int			force()	const	{	return	f;	}

				bool		gameOver()	const	{	return	gameEnded;	}

				bool		isShooting()	const;

				QSizePolicy	sizePolicy()	const;

public	slots:

				void		setAngle(int	degrees);

				void		setForce(int	newton);

				void		shoot();

				void		newTarget();

				void		setGameOver();

				void		restartGame();

private	slots:

				void		moveShot();

signals:

				void		hit();

				void		missed();

				void		angleChanged(int);

				void		forceChanged(int);

				void		canShoot(bool);

protected:

				void		paintEvent(QPaintEvent	*);

private:

				void		paintShot(QPainter	*);

				void		paintTarget(QPainter	*);

				void		paintCannon(QPainter	*);

				QRect	cannonRect()	const;

				QRect	shotRect()	const;

				QRect	targetRect()	const;

				int	ang;

				int	f;

				int	timerCount;

				QTimer	*	autoShootTimer;

				float	shoot_ang;

				float	shoot_f;

				QPoint	target;

				bool	gameEnded;

};

#endif	//	CANNON_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

t13/cannon.cpp	Example	File
/**

**

**	Implementation	CannonField	class,	Qt	tutorial	13

**

**/

#include	"cannon.h"

#include	<qtimer.h>

#include	<qpainter.h>

#include	<qpixmap.h>

#include	<qdatetime.h>

#include	<math.h>

#include	<stdlib.h>

CannonField::CannonField(QWidget	*parent,	const	char	*name)

								:	QWidget(parent,	name)

{

				ang	=	45;

				f	=	0;

				timerCount	=	0;

				autoShootTimer	=	new	QTimer(this,	"movement	handler");

				connect(autoShootTimer,	SIGNAL(timeout()),

													this,	SLOT(moveShot()));

				shoot_ang	=	0;

				shoot_f	=	0;

				target	=	QPoint(0,	0);

				gameEnded	=	FALSE;

				setPalette(QPalette(QColor(250,	250,	200)));

				newTarget();

}

void	CannonField::setAngle(int	degrees)

{

				if	(degrees	<	5)

								degrees	=	5;

				if	(degrees	>	70)

								degrees	=	70;

				if	(ang	==	degrees)

								return;

				ang	=	degrees;

				repaint(cannonRect(),	FALSE);

				emit	angleChanged(ang);

}

void	CannonField::setForce(int	newton)

{

				if	(newton	<	0)

								newton	=	0;

				if	(f	==	newton)

								return;

				f	=	newton;

				emit	forceChanged(f);

}

void	CannonField::shoot()

{

				if	(isShooting())

								return;

				timerCount	=	0;

				shoot_ang	=	ang;

				shoot_f	=	f;

				autoShootTimer->start(50);

				emit	canShoot(FALSE);

}

void		CannonField::newTarget()

{

				static	bool	first_time	=	TRUE;

				if	(first_time)	{

								first_time	=	FALSE;

								QTime	midnight(0,	0,	0);

								srand(midnight.secsTo(QTime::currentTime()));

				}

				QRegion	r(targetRect());

				target	=	QPoint(200	+	rand()	%	190,

																					10		+	rand()	%	255);

				repaint(r.unite(targetRect()));

}

void	CannonField::setGameOver()

{

				if	(gameEnded)

								return;

				if	(isShooting())

								autoShootTimer->stop();

				gameEnded	=	TRUE;

				repaint();

}

void	CannonField::restartGame()

{

				if	(isShooting())

								autoShootTimer->stop();

				gameEnded	=	FALSE;

				repaint();

				emit	canShoot(TRUE);

}

void	CannonField::moveShot()

{

				QRegion	r(shotRect());

				timerCount++;

				QRect	shotR	=	shotRect();

				if	(shotR.intersects(targetRect()))	{

								autoShootTimer->stop();

								emit	hit();

								emit	canShoot(TRUE);

				}	else	if	(shotR.x()	>	width()	||	shotR.y()	>	height())	{

								autoShootTimer->stop();

								emit	missed();

								emit	canShoot(TRUE);

				}	else	{

								r	=	r.unite(QRegion(shotR));

				}

				repaint(r);

}

void	CannonField::paintEvent(QPaintEvent	*e)

{

				QRect	updateR	=	e->rect();

				QPainter	p(this);

				if	(gameEnded)	{

								p.setPen(black);

								p.setFont(QFont("Courier",	48,	QFont::Bold));

								p.drawText(rect(),	AlignCenter,	"Game	Over");

				}

				if	(updateR.intersects(cannonRect()))

								paintCannon(&p);

				if	(isShooting()	&&	updateR.intersects(shotRect()))

								paintShot(&p);

				if	(!gameEnded	&&	updateR.intersects(targetRect()))

								paintTarget(&p);

}

void	CannonField::paintShot(QPainter	*p)

{

				p->setBrush(black);

				p->setPen(NoPen);

				p->drawRect(shotRect());

}

void	CannonField::paintTarget(QPainter	*p)

{

				p->setBrush(red);

				p->setPen(black);

				p->drawRect(targetRect());

}

const	QRect	barrelRect(33,	-4,	15,	8);

void	CannonField::paintCannon(QPainter	*p)

{

				QRect	cr	=	cannonRect();

				QPixmap	pix(cr.size());

				pix.fill(this,	cr.topLeft());

				QPainter	tmp(&pix);

				tmp.setBrush(blue);

				tmp.setPen(NoPen);

				tmp.translate(0,	pix.height()	-	1);

				tmp.drawPie(QRect(-35,-35,	70,	70),	0,	90*16);

				tmp.rotate(-ang);

				tmp.drawRect(barrelRect);

				tmp.end();

				p->drawPixmap(cr.topLeft(),	pix);

}

QRect	CannonField::cannonRect()	const

{

				QRect	r(0,	0,	50,	50);

				r.moveBottomLeft(rect().bottomLeft());

				return	r;

}

QRect	CannonField::shotRect()	const

{

				const	double	gravity	=	4;

				double	time						=	timerCount	/	4.0;

				double	velocity		=	shoot_f;

				double	radians			=	shoot_ang*3.14159265/180;

				double	velx						=	velocity*cos(radians);

				double	vely						=	velocity*sin(radians);

				double	x0								=	(barrelRect.right()		+	5)*cos(radians);

				double	y0								=	(barrelRect.right()		+	5)*sin(radians);

				double	x									=	x0	+	velx*time;

				double	y									=	y0	+	vely*time	-	0.5*gravity*time*time;

				QRect	r	=	QRect(0,	0,	6,	6);

				r.moveCenter(QPoint(qRound(x),	height()	-	1	-	qRound(y)));

				return	r;

}

QRect	CannonField::targetRect()	const

{

				QRect	r(0,	0,	20,	10);

				r.moveCenter(QPoint(target.x(),height()	-	1	-	target.y()));

				return	r;

}

bool	CannonField::isShooting()	const

{

				return	autoShootTimer->isActive();

}

QSizePolicy	CannonField::sizePolicy()	const

{

				return	QSizePolicy(QSizePolicy::Expanding,	QSizePolicy::Expanding);

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

t13/gamebrd.h	Example	File
/**

**

**	Definition	of	GameBoard	class,	Qt	tutorial	13

**

**/

#ifndef	GAMEBRD_H

#define	GAMEBRD_H

#include	<qwidget.h>

class	QPushButton;

class	LCDRange;

class	QLCDNumber;

class	CannonField;

#include	"lcdrange.h"

#include	"cannon.h"

class	GameBoard	:	public	QWidget

{

				Q_OBJECT

public:

				GameBoard(QWidget	*parent=0,	const	char	*name=0);

protected	slots:

				void		fire();

				void		hit();

				void		missed();

				void		newGame();

private:

				QLCDNumber		*hits;

				QLCDNumber		*shotsLeft;

				CannonField	*cannonField;

};

#endif	//	GAMEBRD_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

t13/gamebrd.cpp	Example	File
/**

**

**	Implementation	of	GameBoard	class,	Qt	tutorial	13

**

**/

#include	"gamebrd.h"

#include	<qfont.h>

#include	<qapplication.h>

#include	<qlabel.h>

#include	<qpushbutton.h>

#include	<qlcdnumber.h>

#include	<qlayout.h>

#include	"lcdrange.h"

#include	"cannon.h"

GameBoard::GameBoard(QWidget	*parent,	const	char	*name)

								:	QWidget(parent,	name)

{

				QPushButton	*quit	=	new	QPushButton("&Quit",	this,	"quit");

				quit->setFont(QFont("Times",	18,	QFont::Bold));

				connect(quit,	SIGNAL(clicked()),	qApp,	SLOT(quit()));

				LCDRange	*angle		=	new	LCDRange("ANGLE",	this,	"angle");

				angle->setRange(5,	70);

				LCDRange	*force		=	new	LCDRange("FORCE",	this,	"force");

				force->setRange(10,	50);

				cannonField	=	new	CannonField(this,	"cannonField");

				connect(angle,	SIGNAL(valueChanged(int)),

													cannonField,	SLOT(setAngle(int)));

				connect(cannonField,	SIGNAL(angleChanged(int)),

													angle,	SLOT(setValue(int)));

				connect(force,	SIGNAL(valueChanged(int)),

													cannonField,	SLOT(setForce(int)));

				connect(cannonField,	SIGNAL(forceChanged(int)),

													force,	SLOT(setValue(int)));

				connect(cannonField,	SIGNAL(hit()),

													this,	SLOT(hit()));

				connect(cannonField,	SIGNAL(missed()),

													this,	SLOT(missed()));

				QPushButton	*shoot	=	new	QPushButton("&Shoot",	this,	"shoot");

				shoot->setFont(QFont("Times",	18,	QFont::Bold));

				connect(shoot,	SIGNAL(clicked()),	SLOT(fire()));

				connect(cannonField,	SIGNAL(canShoot(bool)),

													shoot,	SLOT(setEnabled(bool)));

				QPushButton	*restart

								=	new	QPushButton("&New	Game",	this,	"newgame");

				restart->setFont(QFont("Times",	18,	QFont::Bold));

				connect(restart,	SIGNAL(clicked()),	this,	SLOT(newGame()));

				hits	=	new	QLCDNumber(2,	this,	"hits");

				shotsLeft	=	new	QLCDNumber(2,	this,	"shotsleft");

				QLabel	*hitsL	=	new	QLabel("HITS",	this,	"hitsLabel");

				QLabel	*shotsLeftL

								=	new	QLabel("SHOTS	LEFT",	this,	"shotsleftLabel");

				QGridLayout	*grid	=	new	QGridLayout(this,	2,	2,	10);

				grid->addWidget(quit,	0,	0);

				grid->addWidget(cannonField,	1,	1);

				grid->setColStretch(1,	10);

				QVBoxLayout	*leftBox	=	new	QVBoxLayout;

				grid->addLayout(leftBox,	1,	0);

				leftBox->addWidget(angle);

				leftBox->addWidget(force);

				QHBoxLayout	*topBox	=	new	QHBoxLayout;

				grid->addLayout(topBox,	0,	1);

				topBox->addWidget(shoot);

				topBox->addWidget(hits);

				topBox->addWidget(hitsL);

				topBox->addWidget(shotsLeft);

				topBox->addWidget(shotsLeftL);

				topBox->addStretch(1);

				topBox->addWidget(restart);

				angle->setValue(60);

				force->setValue(25);

				angle->setFocus();

				newGame();

}

void	GameBoard::fire()

{

				if	(cannonField->gameOver()	||	cannonField->isShooting())

								return;

				shotsLeft->display(shotsLeft->intValue()	-	1);

				cannonField->shoot();

}

void	GameBoard::hit()

{

				hits->display(hits->intValue()	+	1);

				if	(shotsLeft->intValue()	==	0)

								cannonField->setGameOver();

				else

								cannonField->newTarget();

}

void	GameBoard::missed()

{

				if	(shotsLeft->intValue()	==	0)

								cannonField->setGameOver();

}

void	GameBoard::newGame()

{

				shotsLeft->display(15);

				hits->display(0);

				cannonField->restartGame();

				cannonField->newTarget();

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

t13/main.cpp	Example	File
/**

**

**	Qt	tutorial	13

**

**/

#include	<qapplication.h>

#include	"gamebrd.h"

int	main(int	argc,	char	**argv)

{

				QApplication::setColorSpec(QApplication::CustomColor);

				QApplication	a(argc,	argv);

				GameBoard	gb;

				gb.setGeometry(100,	100,	500,	355);

				a.setMainWidget(&gb);

				gb.show();

				return	a.exec();

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qlayout.h
This	is	the	verbatim	text	of	the	qlayout.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	Id

**

**	Definition	of	layout	classes

**

**	Created	:	960416

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QLAYOUT_H

#define	QLAYOUT_H

#ifndef	QT_H

#include	"qobject.h"

#include	"qsizepolicy.h"

#include	"qwidget.h"

#endif	//	QT_H

#ifndef	QT_NO_LAYOUT

#if	0

Q_OBJECT

#endif

//static	const	int	QLAYOUTSIZE_MAX=INT_MAX/256/16;	//wait	for	3.1

/*

		First	comes	the	definition	of	QLayout	and	of	related	abstract

		classes	that	used	to	be	defined	in	qabstractlayout.h.

*/

class	QMenuBar;

class	QWidget;

struct	QLayoutData;

class	QLayoutItem;

class	QLayout;

class	QSpacerItem;

class	Q_EXPORT	QGLayoutIterator	:	public	QShared

{

public:

				virtual	~QGLayoutIterator();

				virtual	QLayoutItem	*next()	=	0;

				virtual	QLayoutItem	*current()	=	0;

				virtual	QLayoutItem	*takeCurrent()	=	0;

};

class	Q_EXPORT	QLayoutIterator

{

public:

				QLayoutIterator(QGLayoutIterator	*i)	:it(i)	{	}

				QLayoutIterator(const	QLayoutIterator	&i)	:it(i.it)

				{	if	(it)	it->ref();	}

				~QLayoutIterator()	{	if	(it	&&	it->deref())	delete	it;	}

				QLayoutIterator	&operator=(const	QLayoutIterator	&i)

				{

	 if	(i.it)	i.it->ref();

	 if	(it	&&	it->deref())	delete	it;

	 it	=	i.it;

	 return	*this;

				}

				QLayoutItem	*operator++()	{	return	it	?	it->next()	:	0;	}

				QLayoutItem	*current()	{	return	it	?	it->current()	:	0;	}

				QLayoutItem	*takeCurrent()	{	return	it	?	it->takeCurrent()	:	0;	}

				void	deleteCurrent();

private:

				QGLayoutIterator	*it;

};

class	Q_EXPORT	QLayoutItem

{

public:

				QLayoutItem(int	alignment	=	0)	:	align(alignment)	{	}

				virtual	~QLayoutItem();

				virtual	QSize	sizeHint()	const	=	0;

				virtual	QSize	minimumSize()	const	=	0;

				virtual	QSize	maximumSize()	const	=	0;

				virtual	QSizePolicy::ExpandData	expanding()	const	=	0;

				virtual	void	setGeometry(const	QRect&)	=	0;

				virtual	QRect	geometry()	const	=	0;

				virtual	bool	isEmpty()	const	=	0;

				virtual	bool	hasHeightForWidth()	const;

				virtual	int	heightForWidth(int)	const;

				virtual	void	invalidate();

				virtual	QWidget	*widget();

				virtual	QLayoutIterator	iterator();

				virtual	QLayout	*layout();

				virtual	QSpacerItem	*spacerItem();

				int	alignment()	const	{	return	align;	}

				virtual	void	setAlignment(int	a);

protected:

				int	align;

};

class	Q_EXPORT	QSpacerItem	:	public	QLayoutItem

{

	public:

				QSpacerItem(int	w,	int	h,

	 	 	QSizePolicy::SizeType	hData=QSizePolicy::Minimum,

	 	 	QSizePolicy::SizeType	vData=	QSizePolicy::Minimum)

	 :	width(w),	height(h),	sizeP(hData,	vData)	{	}

				void	changeSize(int	w,	int	h,

	 	 					QSizePolicy::SizeType	hData=QSizePolicy::Minimum,

	 	 					QSizePolicy::SizeType	vData=QSizePolicy::Minimum);

				QSize	sizeHint()	const;

				QSize	minimumSize()	const;

				QSize	maximumSize()	const;

				QSizePolicy::ExpandData	expanding()	const;

				bool	isEmpty()	const;

				void	setGeometry(const	QRect&);

				QRect	geometry()	const;

				QSpacerItem	*spacerItem();

private:

				int	width;

				int	height;

				QSizePolicy	sizeP;

				QRect	rect;

};

class	Q_EXPORT	QWidgetItem	:	public	QLayoutItem

{

public:

				QWidgetItem(QWidget	*w)	:	wid(w)	{	}

				QSize	sizeHint()	const;

				QSize	minimumSize()	const;

				QSize	maximumSize()	const;

				QSizePolicy::ExpandData	expanding()	const;

				bool	isEmpty()	const;

				void	setGeometry(const	QRect&);

				QRect	geometry()	const;

				virtual	QWidget	*widget();

				bool	hasHeightForWidth()	const;

				int	heightForWidth(int)	const;

private:

				QWidget	*wid;

};

class	Q_EXPORT	QLayout	:	public	QObject,	public	QLayoutItem

{

				Q_OBJECT

				Q_ENUMS(ResizeMode)

				Q_PROPERTY(int	margin	READ	margin	WRITE	setMargin)

				Q_PROPERTY(int	spacing	READ	spacing	WRITE	setSpacing)

				Q_PROPERTY(ResizeMode	resizeMode	READ	resizeMode	WRITE	setResizeMode)

public:

				QLayout(QWidget	*parent,	int	margin	=	0,	int	spacing	=	-1,

	 					const	char	*name	=	0);

				QLayout(QLayout	*parentLayout,	int	spacing	=	-1,	const	char	*name	=	0);

				QLayout(int	spacing	=	-1,	const	char	*name	=	0);

				~QLayout();

				int	margin()	const	{	return	outsideBorder;	}

				int	spacing()	const	{	return	insideSpacing;	}

				virtual	void	setMargin(int);

				virtual	void	setSpacing(int);

				//enum	{	unlimited	=	QLAYOUTSIZE_MAX	};	//in	3.1

				enum	{	unlimited	=	QWIDGETSIZE_MAX	};

				int	defaultBorder()	const	{	return	insideSpacing;	}

				void	freeze(int	w,	int	h);

				void	freeze()	{	setResizeMode(Fixed);	}

				enum	ResizeMode	{	FreeResize,	Minimum,	Fixed	};

				void	setResizeMode(ResizeMode);

				ResizeMode	resizeMode()	const;

#ifndef	QT_NO_MENUBAR

				virtual	void		setMenuBar(QMenuBar	*w);

				QMenuBar	*menuBar()	const	{	return	menubar;	}

#endif

				QWidget	*mainWidget();

				bool	isTopLevel()	const	{	return	topLevel;	}

				virtual	void	setAutoAdd(bool);

				bool	autoAdd()	const	{	return	autoNewChild;	}

				void	invalidate();

				QRect	geometry()	const;

				bool	activate();

				void	add(QWidget	*w)	{	addItem(new	QWidgetItem(w));	}

				virtual	void	addItem	(QLayoutItem	*)	=	0;

				QSizePolicy::ExpandData	expanding()	const;

				QSize	minimumSize()	const;

				QSize	maximumSize()	const;

				void	setGeometry(const	QRect&)=0;

				QLayoutIterator	iterator()=0;

				bool	isEmpty()	const;

				int	totalHeightForWidth(int	w)	const;

				QSize	totalMinimumSize()	const;

				QSize	totalMaximumSize()	const;

				QSize	totalSizeHint()	const;

				QLayout	*layout();

				bool	supportsMargin()	const	{	return	marginImpl;	}

				void	setEnabled(bool);

				bool	isEnabled()	const;

protected:

				bool	eventFilter(QObject	*,	QEvent	*);

				void	childEvent(QChildEvent	*e);

				void	addChildLayout(QLayout	*l);

				void	deleteAllItems();

				void	setSupportsMargin(bool);

				QRect	alignmentRect(const	QRect&)	const;

private:

				void	setWidgetLayout(QWidget	*,	QLayout	*);

				void	init();

				int	insideSpacing;

				int	outsideBorder;

				uint	topLevel	:	1;

				uint	autoMinimum	:	1;

				uint	autoNewChild	:	1;

				uint	frozen	:	1;

				uint	activated	:	1;

				uint	marginImpl	:	1;

				uint	enabled	:	1;

				QRect	rect;

				QLayoutData	*extraData;

#ifndef	QT_NO_MENUBAR

				QMenuBar	*menubar;

#endif

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QLayout(const	QLayout	&);

				QLayout	&operator=(const	QLayout	&);

#endif

};

inline	void	QLayoutIterator::deleteCurrent()

{

				delete	takeCurrent();

}

/*

		Follow	the	Q*Layout	classes,	that	always	belonged	to	qlayout.h.

*/

class	QGridLayoutData;

class	QGridLayoutBox;

class	Q_EXPORT	QGridLayout	:	public	QLayout

{

				Q_OBJECT

public:

				QGridLayout(QWidget	*parent,	int	nRows	=	1,	int	nCols	=	1,	int	border	=	0,

	 	 	int	spacing	=	-1,	const	char	*name	=	0);

				QGridLayout(int	nRows	=	1,	int	nCols	=	1,	int	spacing	=	-1,

	 	 	const	char	*name	=	0);

				QGridLayout(QLayout	*parentLayout,	int	nRows	=	1,	int	nCols	=	1,

	 	 	int	spacing	=	-1,	const	char	*name	=	0);

				~QGridLayout();

				QSize	sizeHint()	const;

				QSize	minimumSize()	const;

				QSize	maximumSize()	const;

				virtual	void	setRowStretch(int	row,	int	stretch);

				virtual	void	setColStretch(int	col,	int	stretch);

				int	rowStretch(int	row)	const;

				int	colStretch(int	col)	const;

				int	numRows()	const;

				int	numCols()	const;

				QRect	cellGeometry(int	row,	int	col)	const;

				bool	hasHeightForWidth()	const;

				int	heightForWidth(int)	const;

				QSizePolicy::ExpandData	expanding()	const;

				void	invalidate();

				void	addItem(QLayoutItem	*);

				void	addItem(QLayoutItem	*item,	int	row,	int	col);

				void	addMultiCell(QLayoutItem	*,	int	fromRow,	int	toRow,

	 	 	 							int	fromCol,	int	toCol,	int	align	=	0);

				//	void	setAlignment(QWidget*);

				void	addWidget(QWidget	*,	int	row,	int	col,	int	align	=	0);

				void	addMultiCellWidget(QWidget	*,	int	fromRow,	int	toRow,

	 	 	 					int	fromCol,	int	toCol,	int	align	=	0);

				void	addLayout(QLayout	*layout,	int	row,	int	col);

				void	addMultiCellLayout(QLayout	*layout,	int	fromRow,	int	toRow,

	 	 	 					int	fromCol,	int	toCol,	int	align	=	0);

				void	addRowSpacing(int	row,	int	minsize);

				void	addColSpacing(int	col,	int	minsize);

				void	expand(int	rows,	int	cols);

				enum	Corner	{	TopLeft,	TopRight,	BottomLeft,	BottomRight	};

				void	setOrigin(Corner);

				Corner	origin()	const;

				QLayoutIterator	iterator();

				void	setGeometry(const	QRect&);

protected:

				bool	findWidget(QWidget*	w,	int	*r,	int	*c);

				void	add(QLayoutItem*,	int	row,	int	col);

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QGridLayout(const	QGridLayout	&);

				QGridLayout	&operator=(const	QGridLayout	&);

#endif

				void	init(int	rows,	int	cols);

				QGridLayoutData	*data;

};

class	QBoxLayoutData;

class	QDockWindow;

class	Q_EXPORT	QBoxLayout	:	public	QLayout

{

				Q_OBJECT

public:

				enum	Direction	{	LeftToRight,	RightToLeft,	TopToBottom,	BottomToTop,

	 	 					Down	=	TopToBottom,	Up	=	BottomToTop	};

				QBoxLayout(QWidget	*parent,	Direction,	int	border=0,

	 	 int	spacing	=	-1,	const	char	*name=0);

				QBoxLayout(QLayout	*parentLayout,	Direction,	int	spacing	=	-1,

	 	 const	char	*name=0);

				QBoxLayout(Direction,	int	spacing	=	-1,

	 	 const	char	*name=0);

				~QBoxLayout();

				void	addItem(QLayoutItem	*);

				Direction	direction()	const	{	return	dir;	}

				void	setDirection(Direction);

				void	addSpacing(int	size);

				void	addStretch(int	stretch	=	0);

				void	addWidget(QWidget	*,	int	stretch	=	0,	int	alignment	=	0);

				void	addLayout(QLayout	*layout,	int	stretch	=	0);

				void	addStrut(int);

				void	insertSpacing(int	index,	int	size);

				void	insertStretch(int	index,	int	stretch	=	0);

				void	insertWidget(int	index,	QWidget	*widget,	int	stretch	=	0,

	 	 							int	alignment	=	0);

				void	insertLayout(int	index,	QLayout	*layout,	int	stretch	=	0);

				bool	setStretchFactor(QWidget*,	int	stretch);

				bool	setStretchFactor(QLayout	*l,	int	stretch);

				QSize	sizeHint()	const;

				QSize	minimumSize()	const;

				QSize	maximumSize()	const;

				bool	hasHeightForWidth()	const;

				int	heightForWidth(int)	const;

				QSizePolicy::ExpandData	expanding()	const;

				void	invalidate();

				QLayoutIterator	iterator();

				void	setGeometry(const	QRect&);

				int	findWidget(QWidget*	w);

protected:

				void	insertItem(int	index,	QLayoutItem	*);

private:	 //	Disabled	copy	constructor	and	operator=

				friend	class	QDockWindow;

#if	defined(Q_DISABLE_COPY)

				QBoxLayout(const	QBoxLayout	&);

				QBoxLayout	&operator=(const	QBoxLayout	&);

#endif

				void	setupGeom();

				int	calcHfw(int);

				QBoxLayoutData	*data;

				Direction	dir;

				QBoxLayout	*createTmpCopy();

};

class	Q_EXPORT	QHBoxLayout	:	public	QBoxLayout

{

				Q_OBJECT

public:

				QHBoxLayout(QWidget	*parent,	int	border	=	0,

	 	 	int	spacing	=	-1,	const	char	*name	=	0);

				QHBoxLayout(QLayout	*parentLayout,

	 	 	int	spacing	=	-1,	const	char	*name	=	0);

				QHBoxLayout(int	spacing	=	-1,	const	char	*name	=	0);

				~QHBoxLayout();

};

class	Q_EXPORT	QVBoxLayout	:	public	QBoxLayout

{

				Q_OBJECT

public:

				QVBoxLayout(QWidget	*parent,	int	border	=	0,

	 	 	int	spacing	=	-1,	const	char	*name	=	0);

				QVBoxLayout(QLayout	*parentLayout,

	 	 	int	spacing	=	-1,	const	char	*name	=	0);

				QVBoxLayout(int	spacing	=	-1,	const	char	*name	=	0);

				~QVBoxLayout();

};

#endif	//	QT_NO_LAYOUT

#endif	//	QLAYOUT_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QHBoxLayout	Class	Reference
The	QHBoxLayout	class	lines	up	widgets	horizontally.	More...

#include	<qlayout.h>

Inherits	QBoxLayout.

List	of	all	member	functions.

Public	Members

QHBoxLayout	(QWidget	*	parent,	int	margin	=	0,	int	spacing	=	-1,
const	char	*	name	=	0)
QHBoxLayout	(QLayout	*	parentLayout,	int	spacing	=	-1,
const	char	*	name	=	0)
QHBoxLayout	(int	spacing	=	-1,	const	char	*	name	=	0)
~QHBoxLayout	()

Detailed	Description

The	QHBoxLayout	class	lines	up	widgets	horizontally.

This	class	is	used	to	construct	horizontal	box	layout	objects.	See	QBoxLayout
for	more	details.

The	simplest	use	of	the	class	is	like	this:

								QBoxLayout	*	l	=	new	QHBoxLayout(widget);

								l->setAutoAdd(TRUE);

								new	QSomeWidget(widget);

								new	QSomeOtherWidget(widget);

								new	QAnotherWidget(widget);

				

or	like	this:

								QBoxLayout	*	l	=	new	QHBoxLayout(widget);

								l->addWidget(existingChildOfWidget);

								l->addWidget(anotherChildOfWidget);

				

See	also	QVBoxLayout,	QGridLayout,	the	Layout	overview,	Widget
Appearance	and	Style	and	Layout	Management.

Member	Function	Documentation

QHBoxLayout::QHBoxLayout	(QWidget	*	parent,	int	margin	=
0,	int	spacing	=	-1,	const	char	*	name	=	0)

Constructs	a	new	top-level	horizontal	box	called	name,	with	parent	parent.

The	margin	is	the	number	of	pixels	between	the	edge	of	the	widget	and	its
managed	children.	The	spacing	is	the	default	number	of	pixels	between
neighboring	children.	If	spacing	is	-1	the	value	of	margin	is	used	for	spacing.

QHBoxLayout::QHBoxLayout	(QLayout	*	parentLayout,
int	spacing	=	-1,	const	char	*	name	=	0)

Constructs	a	new	horizontal	box	called	name	name	and	adds	it	to	parentLayout.

The	spacing	is	the	default	number	of	pixels	between	neighboring	children.	If
spacing	is	-1,	this	QHBoxLayout	will	inherit	its	parent's	spacing().

QHBoxLayout::QHBoxLayout	(int	spacing	=	-1,
const	char	*	name	=	0)

Constructs	a	new	horizontal	box	called	name	name.	You	must	add	it	to	another
layout.

The	spacing	is	the	default	number	of	pixels	between	neighboring	children.	If
spacing	is	-1,	this	QHBoxLayout	will	inherit	its	parent's	spacing().

QHBoxLayout::~QHBoxLayout	()

Destroys	this	box	layout.

The	layout's	widgets	are	not	destroyed.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

http://www.trolltech.com/

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QLabel	Class	Reference
The	QLabel	widget	provides	a	text	or	image	display.	More...

#include	<qlabel.h>

Inherits	QFrame.

List	of	all	member	functions.

Public	Members

QLabel	(QWidget	*	parent,	const	char	*	name	=	0,	WFlags	f	=	0)
QLabel	(const	QString	&	text,	QWidget	*	parent,	const	char	*	name	=	0,
WFlags	f	=	0)
QLabel	(QWidget	*	buddy,	const	QString	&	text,	QWidget	*	parent,
const	char	*	name	=	0,	WFlags	f	=	0)
~QLabel	()
QString	text	()	const
QPixmap	*	pixmap	()	const
QPicture	*	picture	()	const
QMovie	*	movie	()	const
TextFormat	textFormat	()	const
void	setTextFormat	(TextFormat)
int	alignment	()	const
virtual	void	setAlignment	(int)
int	indent	()	const
void	setIndent	(int)
bool	autoResize	()	const		(obsolete)
virtual	void	setAutoResize	(bool	enable)		(obsolete)
bool	hasScaledContents	()	const
void	setScaledContents	(bool)
virtual	void	setBuddy	(QWidget	*	buddy)
QWidget	*	buddy	()	const
virtual	void	setFont	(const	QFont	&	f)

Public	Slots

virtual	void	setText	(const	QString	&)
virtual	void	setPixmap	(const	QPixmap	&)
virtual	void	setPicture	(const	QPicture	&	picture)
virtual	void	setMovie	(const	QMovie	&	movie)
virtual	void	setNum	(int	num)
virtual	void	setNum	(double	num)
void	clear	()

Properties

Alignment	alignment	-	the	alignment	of	the	label's	contents
int	indent	-	the	label's	text	indent	in	pixels
QPixmap	pixmap	-	the	label's	pixmap
bool	scaledContents	-	whether	the	label	will	scale	its	contents	to	fill	all
available	space
QString	text	-	the	label	text
TextFormat	textFormat	-	the	label's	text	format

Protected	Members

virtual	void	drawContents	(QPainter	*	p)

Detailed	Description

The	QLabel	widget	provides	a	text	or	image	display.

QLabel	is	used	for	displaying	information	in	the	form	of	text	or	an	image.	No
user	interaction	functionality	is	provided.	The	visual	appearance	of	the	label	can
be	configured	in	various	ways,	and	it	can	be	used	for	specifying	a	focus
accelerator	key	for	another	widget.

A	QLabel	can	contain	any	of	the	following	content	types:

Plain	text:	set	by	passing	a	QString	to	setText().
Rich	text:	set	by	passing	a	QString	that	contains	rich	text	to	setText().
A	pixmap:	set	by	passing	a	QPixmap	to	setPixmap().
A	movie:	set	by	passing	a	QMovie	to	setMovie().
A	number:	set	by	passing	an	int	or	a	double	to	setNum(),	which	converts	the
number	to	plain	text.
Nothing:	the	same	as	an	empty	plain	text.	This	is	the	default.	Set	by	clear().

When	the	content	is	changed	using	any	of	these	functions,	any	previous	content
is	cleared.

The	look	of	a	QLabel	can	be	tuned	in	several	ways.	All	the	settings	of	QFrame
are	available	for	specifying	a	widget	frame.	The	positioning	of	the	content
within	the	QLabel	widget	area	can	be	tuned	with	setAlignment()	and	setIndent().
For	example,	this	code	sets	up	a	sunken	panel	with	a	two-line	text	in	the	bottom
right	corner	(both	lines	being	flush	with	the	right	side	of	the	label):

				QLabel	*label	=	new	QLabel;

				label->setFrameStyle(QFrame::Panel	|	QFrame::Sunken);

				label->setText("first	line\nsecond	line");

				label->setAlignment(AlignBottom	|	AlignRight);

		

A	QLabel	is	often	used	as	a	label	for	an	interactive	widget.	For	this	use	QLabel
provides	a	useful	mechanism	for	adding	an	accelerator	key	(see	QAccel)	that
will	set	the	keyboard	focus	to	the	other	widget	(called	the	QLabel's	"buddy").
Example:

					QLineEdit*	phoneEdit	=	new	QLineEdit(this,	"phoneEdit");

					QLabel*	phoneLabel	=	new	QLabel(phoneEdit,	"&Phone:",	this,	"phoneLabel");

		

In	this	example,	keyboard	focus	is	transferred	to	the	label's	buddy	(the
QLineEdit)	when	the	user	presses	Alt-P.	You	can	also	use	the	setBuddy()
function	to	accomplish	the	same	thing.

	

See	also	QLineEdit,	QTextView,	QPixmap,	QMovie,	GUI	Design	Handbook:
Label,	Basic	Widgets	and	Text	Related	Classes.

Member	Function	Documentation

QLabel::QLabel	(QWidget	*	parent,	const	char	*	name	=	0,
WFlags	f	=	0)

Constructs	an	empty	label.

The	parent,	name	and	widget	flag	f,	arguments	are	passed	to	the	QFrame
constructor.

See	also	alignment,	setFrameStyle()	and	indent.

QLabel::QLabel	(const	QString	&	text,	QWidget	*	parent,
const	char	*	name	=	0,	WFlags	f	=	0)

Constructs	a	label	that	displays	the	text,	text.

The	parent,	name	and	widget	flag	f,	arguments	are	passed	to	the	QFrame
constructor.

See	also	text,	alignment,	setFrameStyle()	and	indent.

QLabel::QLabel	(QWidget	*	buddy,	const	QString	&	text,
QWidget	*	parent,	const	char	*	name	=	0,	WFlags	f	=	0)

Constructs	a	label	that	displays	the	text	text.	The	label	has	a	buddy	widget,
buddy.

If	the	text	contains	an	underlined	letter	(a	letter	preceded	by	an	ampersand,	&),
and	the	text	is	in	plain	text	format,	when	the	user	presses	Alt+	the	underlined
letter,	focus	is	passed	to	the	buddy	widget.

The	parent,	name	and	widget	flag,	f,	arguments	are	passed	to	the	QFrame
constructor.

See	also	text,	setBuddy(),	alignment,	setFrameStyle()	and	indent.

QLabel::~QLabel	()

Destroys	the	label.

int	QLabel::alignment	()	const

Returns	the	alignment	of	the	label's	contents.	See	the	"alignment"	property	for
details.

bool	QLabel::autoResize	()	const

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Returns	TRUE	if	auto-resizing	is	enabled,	or	FALSE	if	auto-resizing	is	disabled.

Auto-resizing	is	disabled	by	default.

See	also	setAutoResize().

QWidget	*	QLabel::buddy	()	const

Returns	the	buddy	of	this	label,	or	0	if	no	buddy	is	currently	set.

See	also	setBuddy().

void	QLabel::clear	()	[slot]

Clears	any	label	contents.	Equivalent	to	setText("").

void	QLabel::drawContents	(QPainter	*	p)	[virtual
protected]

Draws	the	label	contents	using	the	painter	p.

Reimplemented	from	QFrame.

bool	QLabel::hasScaledContents	()	const

Returns	TRUE	if	the	label	will	scale	its	contents	to	fill	all	available	space;
otherwise	returns	FALSE.	See	the	"scaledContents"	property	for	details.

int	QLabel::indent	()	const

Returns	the	label's	text	indent	in	pixels.	See	the	"indent"	property	for	details.

QMovie	*	QLabel::movie	()	const

If	the	label	contains	a	movie,	returns	a	pointer	to	it.	Otherwise,	returns	0.

See	also	setMovie().

QPicture	*	QLabel::picture	()	const

Returns	the	label's	picture	or	0	if	the	label	doesn't	have	a	picture.

QPixmap	*	QLabel::pixmap	()	const

Returns	the	label's	pixmap.	See	the	"pixmap"	property	for	details.

void	QLabel::setAlignment	(int)	[virtual]

Sets	the	alignment	of	the	label's	contents.	See	the	"alignment"	property	for
details.

void	QLabel::setAutoResize	(bool	enable)	[virtual]

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Enables	auto-resizing	if	enable	is	TRUE,	or	disables	it	if	enable	is	FALSE.

When	auto-resizing	is	enabled	the	label	will	resize	itself	to	fit	the	contents
whenever	the	contents	change.	The	top-left	corner	is	not	moved.	This	is	useful
for	QLabel	widgets	that	are	not	managed	by	a	QLayout	(e.g.,	top-level	widgets).

Auto-resizing	is	disabled	by	default.

See	also	autoResize(),	adjustSize()	and	sizeHint.

void	QLabel::setBuddy	(QWidget	*	buddy)	[virtual]

Sets	the	buddy	of	this	label	to	buddy.

When	the	user	presses	the	accelerator	key	indicated	by	this	label,	the	keyboard
focus	is	transferred	to	the	label's	buddy	widget.

The	buddy	mechanism	is	available	only	for	QLabels	that	contain	plain	text	in
which	one	letter	is	prefixed	with	an	ampersand,	&.	This	letter	is	set	as	the
accelerator	key.	The	letter	is	displayed	underlined,	and	the	'&'	is	not	displayed
(i.e.	the	ShowPrefix	alignment	flag	is	turned	on;	see	setAlignment()).

In	a	dialog,	you	might	create	two	data	entry	widgets	and	a	label	for	each,	and	set
up	the	geometry	layout	so	each	label	is	just	to	the	left	of	its	data	entry	widget	(its
"buddy"),	perhaps	like	this:

				QLineEdit	*nameEd		=	new	QLineEdit(this);

				QLabel				*nameLb		=	new	QLabel("&Name:",	this);

				nameLb->setBuddy(nameEd);

				QLineEdit	*phoneEd	=	new	QLineEdit(this);

				QLabel				*phoneLb	=	new	QLabel("&Phone:",	this);

				phoneLb->setBuddy(phoneEd);

				//	(layout	setup	not	shown)

		

With	the	code	above,	the	focus	jumps	to	the	Name	field	when	the	user	presses
Alt-N,	and	to	the	Phone	field	when	the	user	presses	Alt-P.

To	unset	a	previously	set	buddy,	call	this	function	with	buddy	set	to	0.

See	also	buddy(),	text,	QAccel	and	alignment.

Examples:	addressbook/centralwidget.cpp	and	chart/optionsform.cpp.

void	QLabel::setFont	(const	QFont	&	f)	[virtual]

Sets	the	font	used	on	the	QLabel	to	font	f.

Reimplemented	from	QWidget.

void	QLabel::setIndent	(int)

Sets	the	label's	text	indent	in	pixels.	See	the	"indent"	property	for	details.

void	QLabel::setMovie	(const	QMovie	&	movie)	[virtual	slot]

Sets	the	label	contents	to	movie.	Any	previous	content	is	cleared.

The	buddy	accelerator,	if	any,	is	disabled.

The	label	resizes	itself	if	auto-resizing	is	enabled.

See	also	movie()	and	setBuddy().

void	QLabel::setNum	(int	num)	[virtual	slot]

Sets	the	label	contents	to	plain	text	containing	the	printed	representation	of
integer	num.	Any	previous	content	is	cleared.	Does	nothing	if	the	integer's	string
representation	is	the	same	as	the	current	contents	of	the	label.

The	buddy	accelerator,	if	any,	is	disabled.

The	label	resizes	itself	if	auto-resizing	is	enabled.

See	also	text,	QString::setNum()	and	setBuddy().

void	QLabel::setNum	(double	num)	[virtual	slot]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Sets	the	label	contents	to	plain	text	containing	the	printed	representation	of
double	num.	Any	previous	content	is	cleared.	Does	nothing	if	the	double's	string
representation	is	the	same	as	the	current	contents	of	the	label.

The	buddy	accelerator,	if	any,	is	disabled.

The	label	resizes	itself	if	auto-resizing	is	enabled.

See	also	text,	QString::setNum()	and	setBuddy().

void	QLabel::setPicture	(const	QPicture	&	picture)	[virtual
slot]

Sets	the	label	contents	to	picture.	Any	previous	content	is	cleared.

The	buddy	accelerator,	if	any,	is	disabled.

See	also	picture()	and	setBuddy().

void	QLabel::setPixmap	(const	QPixmap	&)	[virtual	slot]

Sets	the	label's	pixmap.	See	the	"pixmap"	property	for	details.

void	QLabel::setScaledContents	(bool)

Sets	whether	the	label	will	scale	its	contents	to	fill	all	available	space.	See	the
"scaledContents"	property	for	details.

void	QLabel::setText	(const	QString	&)	[virtual	slot]

Sets	the	label	text.	See	the	"text"	property	for	details.

void	QLabel::setTextFormat	(TextFormat)

Sets	the	label's	text	format.	See	the	"textFormat"	property	for	details.

QString	QLabel::text	()	const

Returns	the	label	text.	See	the	"text"	property	for	details.

TextFormat	QLabel::textFormat	()	const

Returns	the	label's	text	format.	See	the	"textFormat"	property	for	details.

Property	Documentation

Alignment	alignment

This	property	holds	the	alignment	of	the	label's	contents.

The	alignment	is	a	bitwise	OR	of	Qt::AlignmentFlags	and	Qt::TextFlags	values.
The	ExpandTabs,	SingleLine	and	ShowPrefix	flags	apply	only	if	the	label
contains	plain	text;	otherwise	they	are	ignored.	The	DontClip	flag	is	always
ignored.	WordBreak	applies	to	both	rich	text	and	plain	text	labels.

If	the	label	has	a	buddy,	the	ShowPrefix	flag	is	forced	to	TRUE.

The	default	alignment	is	AlignAuto	|	AlignVCenter	|	ExpandTabs	if	the	label
doesn't	have	a	buddy	and	AlignAuto	|	AlignVCenter	|	ExpandTabs	|
ShowPrefix	if	the	label	has	a	buddy.	If	the	label	contains	rich	text,	additionally
WordBreak	is	turned	on.

See	also	Qt::AlignmentFlags,	setBuddy()	and	text.

Set	this	property's	value	with	setAlignment()	and	get	this	property's	value	with
alignment().

int	indent

This	property	holds	the	label's	text	indent	in	pixels.

If	a	label	displays	text,	the	indent	applies	to	the	left	edge	if	alignment()	is
AlignLeft,	to	the	right	edge	if	alignment()	is	AlignRight,	to	the	top	edge	if
alignment()	is	AlignTop,	and	to	to	the	bottom	edge	if	alignment()	is
AlignBottom.

If	indent	is	negative,	or	if	no	indent	has	been	set,	the	label	computes	the	effective
indent	as	follows:	If	frameWidth()	is	0,	the	effective	indent	becomes	0.	If
frameWidth()	is	greater	than	0,	the	effective	indent	becomes	half	the	width	of	the
"x"	character	of	the	widget's	current	font().

See	also	alignment,	frameWidth	and	font.

Set	this	property's	value	with	setIndent()	and	get	this	property's	value	with
indent().

QPixmap	pixmap

This	property	holds	the	label's	pixmap.

If	no	pixmap	has	been	set	this	will	return	an	invalid	pixmap.

Setting	the	pixmap	clears	any	previous	content,	and	resizes	the	label	if
QLabel::autoResize()	is	TRUE.	The	buddy	accelerator,	if	any,	is	disabled.

Set	this	property's	value	with	setPixmap()	and	get	this	property's	value	with
pixmap().

bool	scaledContents

This	property	holds	whether	the	label	will	scale	its	contents	to	fill	all	available
space.

When	enabled	and	the	label	shows	a	pixmap,	it	will	scale	the	pixmap	to	fill	the
available	space.

This	property's	default	is	FALSE.

See	also	scaledContents.

Set	this	property's	value	with	setScaledContents()	and	get	this	property's	value
with	hasScaledContents().

QString	text

This	property	holds	the	label	text.

If	no	text	has	been	set	this	will	return	an	empty	string.	Setting	the	text	clears	any
previous	content,	unless	they	are	the	same.

The	text	will	be	interpreted	either	as	a	plain	text	or	as	a	rich	text,	depending	on
the	text	format	setting;	see	setTextFormat().	The	default	setting	is	AutoText,	i.e.

QLabel	will	try	to	auto-detect	the	format	of	the	text	set.

If	the	text	is	interpreted	as	a	plain	text	and	a	buddy	has	been	set,	the	buddy
accelerator	key	is	updated	from	the	new	text.

The	label	resizes	itself	if	auto-resizing	is	enabled.

Note	that	Qlabel	is	well-suited	to	display	small	rich	text	documents	only.	Those
small	documents	get	their	document	specific	settings	(font,	text	color,	link	color)
from	the	label's	palette	and	font	properties.	For	large	documents,	use	QTextView
instead.	QTextView	will	flicker	less	on	resize	and	can	also	provide	a	scrollbar,
when	necessary.

See	also	textFormat,	setBuddy()	and	alignment.

Set	this	property's	value	with	setText()	and	get	this	property's	value	with	text().

TextFormat	textFormat

This	property	holds	the	label's	text	format.

See	the	Qt::TextFormat	enum	for	an	explanation	of	the	possible	options.

The	default	format	is	AutoText.

See	also	text.

Set	this	property's	value	with	setTextFormat()	and	get	this	property's	value	with
textFormat().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

t14/lcdrange.h	Example	File
/**

**

**	Definition	of	LCDRange	class,	Qt	tutorial	12

**

**/

#ifndef	LCDRANGE_H

#define	LCDRANGE_H

#include	<qwidget.h>

class	QSlider;

class	QLabel;

class	LCDRange	:	public	QWidget

{

				Q_OBJECT

public:

				LCDRange(QWidget	*parent=0,	const	char	*name=0);

				LCDRange(const	char	*s,	QWidget	*parent=0,	const	char	*name=0);

				int									value()	const;

				const	char	*text()		const;

public	slots:

				void	setValue(int);

				void	setRange(int	minVal,	int	maxVal);

				void	setText(const	char	*);

signals:

				void	valueChanged(int);

private:

				void	init();

				QSlider					*slider;

				QLabel						*label;

};

#endif	//	LCDRANGE_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

t14/lcdrange.cpp	Example	File
/**

**

**	Implementation	of	LCDRange	class,	Qt	tutorial	12

**

**/

#include	"lcdrange.h"

#include	<qslider.h>

#include	<qlcdnumber.h>

#include	<qlabel.h>

#include	<qlayout.h>

LCDRange::LCDRange(QWidget	*parent,	const	char	*name)

								:	QWidget(parent,	name)

{

				init();

}

LCDRange::LCDRange(const	char	*s,	QWidget	*parent,	const	char	*name)

								:	QWidget(parent,	name)

{

				init();

				setText(s);

}

void	LCDRange::init()

{

				QLCDNumber	*lcd		=	new	QLCDNumber(2,	this,	"lcd");

				slider	=	new	QSlider(Horizontal,	this,	"slider");

				slider->setRange(0,	99);

				slider->setValue(0);

				label	=	new	QLabel("	",	this,	"label");

				label->setAlignment(AlignCenter);

				connect(slider,	SIGNAL(valueChanged(int)),

													lcd,	SLOT(display(int)));

				connect(slider,	SIGNAL(valueChanged(int)),

													SIGNAL(valueChanged(int)));

				setFocusProxy(slider);

				QVBoxLayout	*	l	=	new	QVBoxLayout(this);

				l->addWidget(lcd,	1);

				l->addWidget(slider);

				l->addWidget(label);

}

int	LCDRange::value()	const

{

				return	slider->value();

}

const	char	*LCDRange::text()	const

{

				return	label->text();

}

void	LCDRange::setValue(int	value)

{

				slider->setValue(value);

}

void	LCDRange::setRange(int	minVal,	int	maxVal)

{

				if	(minVal	<	0	||	maxVal	>	99	||	minVal	>	maxVal)	{

								qWarning("LCDRange::setRange(%d,%d)\n"

																		"\tRange	must	be	0..99\n"

																		"\tand	minVal	must	not	be	greater	than	maxVal",

																		minVal,	maxVal);

								return;

				}

				slider->setRange(minVal,	maxVal);

}

void	LCDRange::setText(const	char	*s)

{

				label->setText(s);

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

t14/cannon.h	Example	File
/**

**

**	Definition	of	CannonField	class,	Qt	tutorial	14

**

**/

#ifndef	CANNON_H

#define	CANNON_H

class	QTimer;

#include	<qwidget.h>

class	CannonField	:	public	QWidget

{

				Q_OBJECT

public:

				CannonField(QWidget	*parent=0,	const	char	*name=0);

				int			angle()	const	{	return	ang;	}

				int			force()	const	{	return	f;	}

				bool		gameOver()	const	{	return	gameEnded;	}

				bool		isShooting()	const;

				QSize	sizeHint()	const;

				QSizePolicy	sizePolicy()	const;

public	slots:

				void		setAngle(int	degrees);

				void		setForce(int	newton);

				void		shoot();

				void		newTarget();

				void		setGameOver();

				void		restartGame();

private	slots:

				void		moveShot();

signals:

				void		hit();

				void		missed();

				void		angleChanged(int);

				void		forceChanged(int);

				void		canShoot(bool);

protected:

				void		paintEvent(QPaintEvent	*);

				void		mousePressEvent(QMouseEvent	*);

				void		mouseMoveEvent(QMouseEvent	*);

				void		mouseReleaseEvent(QMouseEvent	*);

private:

				void		paintShot(QPainter	*);

				void		paintTarget(QPainter	*);

				void		paintBarrier(QPainter	*);

				void		paintCannon(QPainter	*);

				QRect	cannonRect()	const;

				QRect	shotRect()	const;

				QRect	targetRect()	const;

				QRect	barrierRect()	const;

				bool		barrelHit(const	QPoint	&)	const;

				int	ang;

				int	f;

				int	timerCount;

				QTimer	*	autoShootTimer;

				float	shoot_ang;

				float	shoot_f;

				QPoint	target;

				bool	gameEnded;

				bool	barrelPressed;

};

#endif	//	CANNON_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

t14/cannon.cpp	Example	File
/**

**

**	Implementation	CannonField	class,	Qt	tutorial	14

**

**/

#include	"cannon.h"

#include	<qtimer.h>

#include	<qpainter.h>

#include	<qpixmap.h>

#include	<qdatetime.h>

#include	<math.h>

#include	<stdlib.h>

CannonField::CannonField(QWidget	*parent,	const	char	*name)

								:	QWidget(parent,	name)

{

				ang	=	45;

				f	=	0;

				timerCount	=	0;

				autoShootTimer	=	new	QTimer(this,	"movement	handler");

				connect(autoShootTimer,	SIGNAL(timeout()),

													this,	SLOT(moveShot()));

				shoot_ang	=	0;

				shoot_f	=	0;

				target	=	QPoint(0,	0);

				gameEnded	=	FALSE;

				barrelPressed	=	FALSE;

				setPalette(QPalette(QColor(250,	250,	200)));

				newTarget();

}

void	CannonField::setAngle(int	degrees)

{

				if	(degrees	<	5)

								degrees	=	5;

				if	(degrees	>	70)

								degrees	=	70;

				if	(ang	==	degrees)

								return;

				ang	=	degrees;

				repaint(cannonRect(),	FALSE);

				emit	angleChanged(ang);

}

void	CannonField::setForce(int	newton)

{

				if	(newton	<	0)

								newton	=	0;

				if	(f	==	newton)

								return;

				f	=	newton;

				emit	forceChanged(f);

}

void	CannonField::shoot()

{

				if	(isShooting())

								return;

				timerCount	=	0;

				shoot_ang	=	ang;

				shoot_f	=	f;

				autoShootTimer->start(50);

				emit	canShoot(FALSE);

}

void		CannonField::newTarget()

{

				static	bool	first_time	=	TRUE;

				if	(first_time)	{

								first_time	=	FALSE;

								QTime	midnight(0,	0,	0);

								srand(midnight.secsTo(QTime::currentTime()));

				}

				QRegion	r(targetRect());

				target	=	QPoint(200	+	rand()	%	190,

																					10		+	rand()	%	255);

				repaint(r.unite(targetRect()));

}

void	CannonField::setGameOver()

{

				if	(gameEnded)

								return;

				if	(isShooting())

								autoShootTimer->stop();

				gameEnded	=	TRUE;

				repaint();

}

void	CannonField::restartGame()

{

				if	(isShooting())

								autoShootTimer->stop();

				gameEnded	=	FALSE;

				repaint();

				emit	canShoot(TRUE);

}

void	CannonField::moveShot()

{

				QRegion	r(shotRect());

				timerCount++;

				QRect	shotR	=	shotRect();

				if	(shotR.intersects(targetRect()))	{

								autoShootTimer->stop();

								emit	hit();

								emit	canShoot(TRUE);

				}	else	if	(shotR.x()	>	width()	||	shotR.y()	>	height()	||

																shotR.intersects(barrierRect()))	{

								autoShootTimer->stop();

								emit	missed();

								emit	canShoot(TRUE);

				}	else	{

								r	=	r.unite(QRegion(shotR));

				}

				repaint(r);

}

void	CannonField::mousePressEvent(QMouseEvent	*e)

{

				if	(e->button()	!=	LeftButton)

								return;

				if	(barrelHit(e->pos()))

								barrelPressed	=	TRUE;

}

void	CannonField::mouseMoveEvent(QMouseEvent	*e)

{

				if	(!barrelPressed)

								return;

				QPoint	pnt	=	e->pos();

				if	(pnt.x()	<=	0)

								pnt.setX(1);

				if	(pnt.y()	>=	height())

								pnt.setY(height()	-	1);

				double	rad	=	atan(((double)rect().bottom()-pnt.y())/pnt.x());

				setAngle(qRound	(rad*180/3.14159265));

}

void	CannonField::mouseReleaseEvent(QMouseEvent	*e)

{

				if	(e->button()	==	LeftButton)

								barrelPressed	=	FALSE;

}

void	CannonField::paintEvent(QPaintEvent	*e)

{

				QRect	updateR	=	e->rect();

				QPainter	p(this);

				if	(gameEnded)	{

								p.setPen(black);

								p.setFont(QFont("Courier",	48,	QFont::Bold));

								p.drawText(rect(),	AlignCenter,	"Game	Over");

				}

				if	(updateR.intersects(cannonRect()))

								paintCannon(&p);

				if	(updateR.intersects(barrierRect()))

								paintBarrier(&p);

				if	(isShooting()	&&	updateR.intersects(shotRect()))

								paintShot(&p);

				if	(!gameEnded	&&	updateR.intersects(targetRect()))

								paintTarget(&p);

}

void	CannonField::paintShot(QPainter	*p)

{

				p->setBrush(black);

				p->setPen(NoPen);

				p->drawRect(shotRect());

}

void	CannonField::paintTarget(QPainter	*p)

{

				p->setBrush(red);

				p->setPen(black);

				p->drawRect(targetRect());

}

void	CannonField::paintBarrier(QPainter	*p)

{

				p->setBrush(yellow);

				p->setPen(black);

				p->drawRect(barrierRect());

}

const	QRect	barrelRect(33,	-4,	15,	8);

void	CannonField::paintCannon(QPainter	*p)

{

				QRect	cr	=	cannonRect();

				QPixmap	pix(cr.size());

				pix.fill(this,	cr.topLeft());

				QPainter	tmp(&pix);

				tmp.setBrush(blue);

				tmp.setPen(NoPen);

				tmp.translate(0,	pix.height()	-	1);

				tmp.drawPie(QRect(-35,-35,	70,	70),	0,	90*16);

				tmp.rotate(-ang);

				tmp.drawRect(barrelRect);

				tmp.end();

				p->drawPixmap(cr.topLeft(),	pix);

}

QRect	CannonField::cannonRect()	const

{

				QRect	r(0,	0,	50,	50);

				r.moveBottomLeft(rect().bottomLeft());

				return	r;

}

QRect	CannonField::shotRect()	const

{

				const	double	gravity	=	4;

				double	time						=	timerCount	/	4.0;

				double	velocity		=	shoot_f;

				double	radians			=	shoot_ang*3.14159265/180;

				double	velx						=	velocity*cos(radians);

				double	vely						=	velocity*sin(radians);

				double	x0								=	(barrelRect.right()		+	5)*cos(radians);

				double	y0								=	(barrelRect.right()		+	5)*sin(radians);

				double	x									=	x0	+	velx*time;

				double	y									=	y0	+	vely*time	-	0.5*gravity*time*time;

				QRect	r	=	QRect(0,	0,	6,	6);

				r.moveCenter(QPoint(qRound(x),	height()	-	1	-	qRound(y)));

				return	r;

}

QRect	CannonField::targetRect()	const

{

				QRect	r(0,	0,	20,	10);

				r.moveCenter(QPoint(target.x(),height()	-	1	-	target.y()));

				return	r;

}

QRect	CannonField::barrierRect()	const

{

				return	QRect(145,	height()	-	100,	15,	100);

}

bool	CannonField::barrelHit(const	QPoint	&p)	const

{

				QWMatrix	mtx;

				mtx.translate(0,	height()	-	1);

				mtx.rotate(-ang);

				mtx	=	mtx.invert();

				return	barrelRect.contains(mtx.map(p));

}

bool	CannonField::isShooting()	const

{

				return	autoShootTimer->isActive();

}

QSize	CannonField::sizeHint()	const

{

				return	QSize(400,	300);

}

QSizePolicy	CannonField::sizePolicy()	const

{

				return	QSizePolicy(QSizePolicy::Expanding,	QSizePolicy::Expanding);

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

t14/gamebrd.h	Example	File
/**

**

**	Definition	of	GameBoard	class,	Qt	tutorial	14

**

**/

#ifndef	GAMEBRD_H

#define	GAMEBRD_H

#include	<qwidget.h>

class	QPushButton;

class	LCDRange;

class	QLCDNumber;

class	CannonField;

#include	"lcdrange.h"

#include	"cannon.h"

class	GameBoard	:	public	QWidget

{

				Q_OBJECT

public:

				GameBoard(QWidget	*parent=0,	const	char	*name=0);

protected	slots:

				void		fire();

				void		hit();

				void		missed();

				void		newGame();

private:

				QLCDNumber		*hits;

				QLCDNumber		*shotsLeft;

				CannonField	*cannonField;

};

#endif	//	GAMEBRD_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

t14/gamebrd.cpp	Example	File
/**

**

**	Implementation	of	GameBoard	class,	Qt	tutorial	14

**

**/

#include	"gamebrd.h"

#include	<qfont.h>

#include	<qapplication.h>

#include	<qlabel.h>

#include	<qaccel.h>

#include	<qpushbutton.h>

#include	<qlcdnumber.h>

#include	<qlayout.h>

#include	<qvbox.h>

#include	"lcdrange.h"

#include	"cannon.h"

GameBoard::GameBoard(QWidget	*parent,	const	char	*name)

								:	QWidget(parent,	name)

{

				QPushButton	*quit	=	new	QPushButton("&Quit",	this,	"quit");

				quit->setFont(QFont("Times",	18,	QFont::Bold));

				connect(quit,	SIGNAL(clicked()),	qApp,	SLOT(quit()));

				LCDRange	*angle		=	new	LCDRange("ANGLE",	this,	"angle");

				angle->setRange(5,	70);

				LCDRange	*force		=	new	LCDRange("FORCE",	this,	"force");

				force->setRange(10,	50);

				QVBox	*box	=	new	QVBox(this,	"cannonFrame");

				box->setFrameStyle(QFrame::WinPanel	|	QFrame::Sunken);

				cannonField	=	new	CannonField(box,	"cannonField");

				connect(angle,	SIGNAL(valueChanged(int)),

													cannonField,	SLOT(setAngle(int)));

				connect(cannonField,	SIGNAL(angleChanged(int)),

													angle,	SLOT(setValue(int)));

				connect(force,	SIGNAL(valueChanged(int)),

													cannonField,	SLOT(setForce(int)));

				connect(cannonField,	SIGNAL(forceChanged(int)),

													force,	SLOT(setValue(int)));

				connect(cannonField,	SIGNAL(hit()),

													this,	SLOT(hit()));

				connect(cannonField,	SIGNAL(missed()),

													this,	SLOT(missed()));

				QPushButton	*shoot	=	new	QPushButton("&Shoot",	this,	"shoot");

				shoot->setFont(QFont("Times",	18,	QFont::Bold));

				connect(shoot,	SIGNAL(clicked()),	SLOT(fire()));

				connect(cannonField,	SIGNAL(canShoot(bool)),

													shoot,	SLOT(setEnabled(bool)));

				QPushButton	*restart

								=	new	QPushButton("&New	Game",	this,	"newgame");

				restart->setFont(QFont("Times",	18,	QFont::Bold));

				connect(restart,	SIGNAL(clicked()),	this,	SLOT(newGame()));

				hits	=	new	QLCDNumber(2,	this,	"hits");

				shotsLeft	=	new	QLCDNumber(2,	this,	"shotsleft");

				QLabel	*hitsL	=	new	QLabel("HITS",	this,	"hitsLabel");

				QLabel	*shotsLeftL

								=	new	QLabel("SHOTS	LEFT",	this,	"shotsleftLabel");

				QAccel	*accel	=	new	QAccel(this);

				accel->connectItem(accel->insertItem(Key_Enter),

																								this,	SLOT(fire()));

				accel->connectItem(accel->insertItem(Key_Return),

																								this,	SLOT(fire()));

				accel->connectItem(accel->insertItem(CTRL+Key_Q),

																								qApp,	SLOT(quit()));

				QGridLayout	*grid	=	new	QGridLayout(this,	2,	2,	10);

				grid->addWidget(quit,	0,	0);

				grid->addWidget(box,	1,	1);

				grid->setColStretch(1,	10);

				QVBoxLayout	*leftBox	=	new	QVBoxLayout;

				grid->addLayout(leftBox,	1,	0);

				leftBox->addWidget(angle);

				leftBox->addWidget(force);

				QHBoxLayout	*topBox	=	new	QHBoxLayout;

				grid->addLayout(topBox,	0,	1);

				topBox->addWidget(shoot);

				topBox->addWidget(hits);

				topBox->addWidget(hitsL);

				topBox->addWidget(shotsLeft);

				topBox->addWidget(shotsLeftL);

				topBox->addStretch(1);

				topBox->addWidget(restart);

				angle->setValue(60);

				force->setValue(25);

				angle->setFocus();

				newGame();

}

void	GameBoard::fire()

{

				if	(cannonField->gameOver()	||	cannonField->isShooting())

								return;

				shotsLeft->display(shotsLeft->intValue()	-	1);

				cannonField->shoot();

}

void	GameBoard::hit()

{

				hits->display(hits->intValue()	+	1);

				if	(shotsLeft->intValue()	==	0)

								cannonField->setGameOver();

				else

								cannonField->newTarget();

}

void	GameBoard::missed()

{

				if	(shotsLeft->intValue()	==	0)

								cannonField->setGameOver();

}

void	GameBoard::newGame()

{

				shotsLeft->display(15);

				hits->display(0);

				cannonField->restartGame();

				cannonField->newTarget();

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

t14/main.cpp	Example	File
/**

**

**	Qt	tutorial	14

**

**/

#include	<qapplication.h>

#include	"gamebrd.h"

int	main(int	argc,	char	**argv)

{

				QApplication::setColorSpec(QApplication::CustomColor);

				QApplication	a(argc,	argv);

				GameBoard	gb;

				gb.setGeometry(100,	100,	500,	355);

				a.setMainWidget(&gb);

				gb.show();

				return	a.exec();

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QMouseEvent	Class	Reference
The	QMouseEvent	class	contains	parameters	that	describe	a	mouse	event.
More...

#include	<qevent.h>

Inherits	QEvent.

List	of	all	member	functions.

Public	Members

QMouseEvent	(Type	type,	const	QPoint	&	pos,	int	button,	int	state)
QMouseEvent	(Type	type,	const	QPoint	&	pos,	const	QPoint	&	globalPos,
int	button,	int	state)
const	QPoint	&	pos	()	const
const	QPoint	&	globalPos	()	const
int	x	()	const
int	y	()	const
int	globalX	()	const
int	globalY	()	const
ButtonState	button	()	const
ButtonState	state	()	const
ButtonState	stateAfter	()	const
bool	isAccepted	()	const
void	accept	()
void	ignore	()

Detailed	Description

The	QMouseEvent	class	contains	parameters	that	describe	a	mouse	event.

Mouse	events	occur	when	a	mouse	button	is	pressed	or	released	inside	a	widget
or	when	the	mouse	cursor	is	moved.

Mouse	move	events	will	occur	only	when	a	mouse	button	is	pressed	down,
unless	mouse	tracking	has	been	enabled	with	QWidget::setMouseTracking().

Qt	automatically	grabs	the	mouse	when	a	mouse	button	is	pressed	inside	a
widget;	the	widget	will	continue	to	receive	mouse	events	until	the	last	mouse
button	is	released.

A	mouse	event	contains	a	special	accept	flag	that	indicates	whether	the	receiver
wants	the	event.	You	should	call	QMouseEvent::ignore()	if	the	mouse	event	is
not	handled	by	your	widget.	A	mouse	event	is	propagated	up	the	parent	widget
chain	until	a	widget	accepts	it	with	QMouseEvent::accept()	or	an	event	filter
consumes	it.

The	functions	pos(),	x()	and	y()	give	the	cursor	position	relative	to	the	widget
that	receives	the	mouse	event.	If	you	move	the	widget	as	a	result	of	the	mouse
event,	use	the	global	position	returned	by	globalPos()	to	avoid	a	shaking	motion.

The	QWidget::setEnabled()	function	can	be	used	to	enable	or	disable	mouse	and
keyboard	events	for	a	widget.

The	event	handlers	QWidget::mousePressEvent(),
QWidget::mouseReleaseEvent(),	QWidget::mouseDoubleClickEvent()	and
QWidget::mouseMoveEvent()	receive	mouse	events.

See	also	QWidget::mouseTracking,	QWidget::grabMouse(),	QCursor::pos()	and
Event	Classes.

Member	Function	Documentation

QMouseEvent::QMouseEvent	(Type	type,	const	QPoint	&	pos,
int	button,	int	state)

Constructs	a	mouse	event	object.

The	type	parameter	must	be	one	of	QEvent::MouseButtonPress,
QEvent::MouseButtonRelease,	QEvent::MouseButtonDblClick	or
QEvent::MouseMove.

The	pos	parameter	specifies	the	position	relative	to	the	receiving	widget.	button
specifies	the	button	that	caused	the	event,	which	should	be	Qt::NoButton	(0),	if
type	is	MouseMove.	state	is	the	ButtonState	at	the	time	of	the	event.

The	globalPos()	is	initialized	to	QCursor::pos(),	which	may	not	be	appropriate.
Use	the	other	constructor	to	specify	the	global	position	explicitly.

QMouseEvent::QMouseEvent	(Type	type,	const	QPoint	&	pos,
const	QPoint	&	globalPos,	int	button,	int	state)

Constructs	a	mouse	event	object.

The	type	parameter	must	be	QEvent::MouseButtonPress,
QEvent::MouseButtonRelease,	QEvent::MouseButtonDblClick	or
QEvent::MouseMove.

The	pos	parameter	specifies	the	position	relative	to	the	receiving	widget.
globalPos	is	the	position	in	absolute	coordinates.	button	specifies	the	button	that
caused	the	event,	which	should	be	Qt::NoButton	(0),	if	type	is	MouseMove.	state
is	the	ButtonState	at	the	time	of	the	event.

void	QMouseEvent::accept	()

Sets	the	accept	flag	of	the	mouse	event	object.

Setting	the	accept	parameter	indicates	that	the	receiver	of	the	event	wants	the

mouse	event.	Unwanted	mouse	events	are	sent	to	the	parent	widget.

The	accept	flag	is	set	by	default.

See	also	ignore().

ButtonState	QMouseEvent::button	()	const

Returns	the	button	that	caused	the	event.

Possible	return	values	are	LeftButton,	RightButton,	MidButton	and	NoButton.

Note	that	the	returned	value	is	always	NoButton	for	mouse	move	events.

See	also	state()	and	Qt::ButtonState.

Examples:	dclock/dclock.cpp,	life/life.cpp	and	t14/cannon.cpp.

const	QPoint	&	QMouseEvent::globalPos	()	const

Returns	the	global	position	of	the	mouse	pointer	at	the	time	of	the	event.	This	is
important	on	asynchronous	window	systems	like	X11.	Whenever	you	move	your
widgets	around	in	response	to	mouse	events,	globalPos()	may	differ	a	lot	from
the	current	pointer	position	QCursor::pos(),	and	from	QWidget::mapToGlobal(
pos()).

See	also	globalX()	and	globalY().

Example:	aclock/aclock.cpp.

int	QMouseEvent::globalX	()	const

Returns	the	global	x-position	of	the	mouse	pointer	at	the	time	of	the	event.

See	also	globalY()	and	globalPos().

int	QMouseEvent::globalY	()	const

Returns	the	global	y-position	of	the	mouse	pointer	at	the	time	of	the	event.

See	also	globalX()	and	globalPos().

void	QMouseEvent::ignore	()

Clears	the	accept	flag	parameter	of	the	mouse	event	object.

Clearing	the	accept	parameter	indicates	that	the	event	receiver	does	not	want	the
mouse	event.	Unwanted	mouse	events	are	sent	to	the	parent	widget.

The	accept	flag	is	set	by	default.

See	also	accept().

bool	QMouseEvent::isAccepted	()	const

Returns	TRUE	if	the	receiver	of	the	event	wants	to	keep	the	key;	otherwise
returns	FALSE.

const	QPoint	&	QMouseEvent::pos	()	const

Returns	the	position	of	the	mouse	pointer	relative	to	the	widget	that	received	the
event.

If	you	move	the	widget	as	a	result	of	the	mouse	event,	use	the	global	position
returned	by	globalPos()	to	avoid	a	shaking	motion.

See	also	x(),	y()	and	globalPos().

Examples:	chart/canvasview.cpp,	drawlines/connect.cpp,	life/life.cpp,
popup/popup.cpp,	qmag/qmag.cpp,	t14/cannon.cpp	and	tooltip/tooltip.cpp.

ButtonState	QMouseEvent::state	()	const

Returns	the	button	state	(a	combination	of	mouse	buttons	and	keyboard
modifiers),	i.e.	what	buttons	and	keys	were	being	pressed	immediately	before	the
event	was	generated.

Note	that	this	means	that	for	QEvent::MouseButtonPress	and
QEvent::MouseButtonDblClick,	the	flag	for	the	button()	itself	will	not	be	set	in

the	state,	whereas	for	QEvent::MouseButtonRelease	it	will.

This	value	is	mainly	interesting	for	QEvent::MouseMove;	for	the	other	cases,
button()	is	more	useful.

The	returned	value	is	LeftButton,	RightButton,	MidButton,	ShiftButton,
ControlButton	and	AltButton	OR'ed	together.

See	also	button(),	stateAfter()	and	Qt::ButtonState.

Examples:	popup/popup.cpp	and	showimg/showimg.cpp.

ButtonState	QMouseEvent::stateAfter	()	const

Returns	the	state	of	buttons	after	the	event.

See	also	state()	and	Qt::ButtonState.

int	QMouseEvent::x	()	const

Returns	the	x-position	of	the	mouse	pointer,	relative	to	the	widget	that	received
the	event.

See	also	y()	and	pos().

Example:	showimg/showimg.cpp.

int	QMouseEvent::y	()	const

Returns	the	y-position	of	the	mouse	pointer,	relative	to	the	widget	that	received
the	event.

See	also	x()	and	pos().

Example:	showimg/showimg.cpp.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

http://www.trolltech.com/

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QPoint
QPoint	 ……

#include	<qpoint.h>

QPoint	()
QPoint	(int	xpos,	int	ypos)
bool	isNull	()	const
int	x	()	const
int	y	()	const
void	setX	(int	x)
void	setY	(int	y)
int	manhattanLength	()	const
QCOORD	&	rx	()
QCOORD	&	ry	()
QPoint	&	operator+=	(const	QPoint	&	p)
QPoint	&	operator-=	(const	QPoint	&	p)
QPoint	&	operator*=	(int	c)
QPoint	&	operator*=	(double	c)
QPoint	&	operator/=	(int	c)
QPoint	&	operator/=	(double	c)

bool	operator==	(const	QPoint	&	p1,	const	QPoint	&	p2)
bool	operator!=	(const	QPoint	&	p1,	const	QPoint	&	p2)
const	QPoint	operator+	(const	QPoint	&	p1,	const	QPoint	&	p2)
const	QPoint	operator-	(const	QPoint	&	p1,	const	QPoint	&	p2)
const	QPoint	operator*	(const	QPoint	&	p,	int	c)
const	QPoint	operator*	(int	c,	const	QPoint	&	p)
const	QPoint	operator*	(const	QPoint	&	p,	double	c)
const	QPoint	operator*	(double	c,	const	QPoint	&	p)
const	QPoint	operator-	(const	QPoint	&	p)
const	QPoint	operator/	(const	QPoint	&	p,	int	c)
const	QPoint	operator/	(const	QPoint	&	p,	double	c)
QDataStream	&	operator<<	(QDataStream	&	s,	const	QPoint	&	p)
QDataStream	&	operator>>	(QDataStream	&	s,	QPoint	&	p)

QPoint

xy

QCOORD32 QCOORDQCOORD_MIN-2147483648
QCOORD_MAX2147483647

x()y() setX()setY()rx()ry()

p

								p.setX(p.x()	+	1);

								p	+=	QPoint(1,	0);

								p.rx()++;

				

QPointQPointQPoint

Example:

								//QPoint	oldPos

								MyWidget::mouseMoveEvent(QMouseEvent	*e)

								{

												QPoint	vector	=	e->pos()	-	oldPos;

												if	(vector.manhattanLength()	>	3)

												...	//oldPos3

								}

				

QPointQStreamQStream

QPointArrayQSizeQRect

QPoint::QPoint	()

(0,0) isNull()

QPoint::QPoint	(int	xpos,	int	ypos)

x xposyypos

bool	QPoint::isNull	()	const

xy0

int	QPoint::manhattanLength	()	const

x()y()“”

sqrt(pow(x(),2)+pow(y(),2))

QPoint	&	QPoint::operator*=	(int	c)

cxy

								QPoint	p(-1,	4);

								p	*=	2;												//	p(-2,8)

				

QPoint	&	QPoint::operator*=	(double	c)

cxy

								QPoint	p(-1,	4);

								p	*=	2.5;										//	p(-3,10)

				

QPoint	&	QPoint::operator+=	(const	QPoint	&	p)

p

								QPoint	p(3,	7);

								QPoint	q(-1,	4);

								p	+=	q;												//	p(2,11)

				

QPoint	&	QPoint::operator-=	(const	QPoint	&	p)

p

								QPoint	p(3,	7);

								QPoint	q(-1,	4);

								p	-=	q;												//	p(4,3)

				

QPoint	&	QPoint::operator/=	(int	c)

xy c

								QPoint	p(-2,	8);

								p	/=	2;												//	p(-1,4)

				

QPoint	&	QPoint::operator/=	(double	c)

xy c

								QPoint	p(-3,	10);

								p	/=	2.5;											//	p(-1,4)

				

QCOORD	&	QPoint::rx	()

x

x

								QPoint	p(1,	2);

								p.rx()--;									//	p(0,	2)

				

ry()

QCOORD	&	QPoint::ry	()

y

y

								QPoint	p(1,	2);

								p.ry()++;									//	p(1,	3)

				

rx()

void	QPoint::setX	(int	x)

x x

x()setY()

t14/cannon.cpp

void	QPoint::setY	(int	y)

y y

y()setX()

t14/cannon.cpp

int	QPoint::x	()	const

x

setX()y()

canvas/canvas.cppchart/canvasview.cppdirview/dirview.cppfileiconview/qfileiconview.cpp
themes/wood.cpp

int	QPoint::y	()	const

y

setY()x()

canvas/canvas.cppchart/canvasview.cppfileiconview/qfileiconview.cpplife/life.cpp
themes/wood.cpp

bool	operator!=	(const	QPoint	&	p1,	const	QPoint	&	p2)

p1p2

const	QPoint	operator*	(const	QPoint	&	p,	int	c)

pcQPoint

const	QPoint	operator*	(int	c,	const	QPoint	&	p)

pcQPoint

const	QPoint	operator*	(const	QPoint	&	p,	double	c)

pcQPoint

const	QPoint	operator*	(double	c,	const	QPoint	&	p)

pcQPoint

const	QPoint	operator+	(const	QPoint	&	p1,	const	QPoint	&	p2)

p1p2

const	QPoint	operator-	(const	QPoint	&	p1,	const	QPoint	&	p2)

p1p2

const	QPoint	operator-	(const	QPoint	&	p)

pQPoint QPoint(0,0)	-	p

const	QPoint	operator/	(const	QPoint	&	p,	int	c)

pcQPoint

const	QPoint	operator/	(const	QPoint	&	p,	double	c)

pcQPoint

QDataStream	&	operator<<	(QDataStream	&	s,
const	QPoint	&	p)

ps

QDataStream

bool	operator==	(const	QPoint	&	p1,	const	QPoint	&	p2)

p1p2

QDataStream	&	operator>>	(QDataStream	&	s,	QPoint	&	p)

sQPointp

QDataStream

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QWMatrix	Class	Reference
The	QWMatrix	class	specifies	2D	transformations	of	a	coordinate	system.
More...

#include	<qwmatrix.h>

List	of	all	member	functions.

Public	Members

QWMatrix	()
QWMatrix	(double	m11,	double	m12,	double	m21,	double	m22,
double	dx,	double	dy)
void	setMatrix	(double	m11,	double	m12,	double	m21,	double	m22,
double	dx,	double	dy)
double	m11	()	const
double	m12	()	const
double	m21	()	const
double	m22	()	const
double	dx	()	const
double	dy	()	const
void	map	(int	x,	int	y,	int	*	tx,	int	*	ty)	const
void	map	(double	x,	double	y,	double	*	tx,	double	*	ty)	const
QRect	mapRect	(const	QRect	&	rect)	const
QPoint	map	(const	QPoint	&	p)	const		(obsolete)
QRect	map	(const	QRect	&	r)	const		(obsolete)
QPointArray	map	(const	QPointArray	&	a)	const		(obsolete)
void	reset	()
bool	isIdentity	()	const
QWMatrix	&	translate	(double	dx,	double	dy)
QWMatrix	&	scale	(double	sx,	double	sy)
QWMatrix	&	shear	(double	sh,	double	sv)
QWMatrix	&	rotate	(double	a)
bool	isInvertible	()	const
QWMatrix	invert	(bool	*	invertible	=	0)	const
bool	operator==	(const	QWMatrix	&	m)	const
bool	operator!=	(const	QWMatrix	&	m)	const
QWMatrix	&	operator*=	(const	QWMatrix	&	m)
QPoint	operator*	(const	QPoint	&	p)	const
QRegion	operator*	(const	QRect	&	r)	const
QRegion	operator*	(const	QRegion	&	r)	const
QPointArray	operator*	(const	QPointArray	&	a)	const

Related	Functions

QWMatrix	operator*	(const	QWMatrix	&	m1,	const	QWMatrix	&	m2)
QDataStream	&	operator<<	(QDataStream	&	s,	const	QWMatrix	&	m)
QDataStream	&	operator>>	(QDataStream	&	s,	QWMatrix	&	m)

Detailed	Description

The	QWMatrix	class	specifies	2D	transformations	of	a	coordinate	system.

The	standard	coordinate	system	of	a	paint	device	has	the	origin	located	at	the
top-left	position.	X	values	increase	to	the	right;	Y	values	increase	downward.

This	coordinate	system	is	default	for	the	QPainter,	which	renders	graphics	in	a
paint	device.	A	user-defined	coordinate	system	can	be	specified	by	setting	a
QWMatrix	for	the	painter.

Example:

				MyWidget::paintEvent(QPaintEvent	*)

				{

						QPainter	p;																							//	our	painter

						QWMatrix	m;																							//	our	transformation	matrix

						m.rotate(22.5);																	//	rotated	coordinate	system

						p.begin(this);																		//	start	painting

						p.setWorldMatrix(m);												//	use	rotated	coordinate	system

						p.drawText(30,20,	"detator");			//	draw	rotated	text	at	30,20

						p.end();																										//	painting	done

				}

		

A	matrix	specifies	how	to	translate,	scale,	shear	or	rotate	the	graphics;	the	actual
transformation	is	performed	by	the	drawing	routines	in	QPainter	and	by
QPixmap::xForm().

The	QWMatrix	class	contains	a	3*3	matrix	of	the	form:

				m11		m12		0

				m21		m22		0

				dx			dy			1

		

A	matrix	transforms	a	point	in	the	plane	to	another	point:

				x'	=	m11*x	+	m21*y	+	dx

				y'	=	m22*y	+	m12*x	+	dy

		

The	point	(x,	y)	is	the	original	point,	and	(x',	y')	is	the	transformed	point.	(x',	y')
can	be	transformed	back	to	(x,	y)	by	performing	the	same	operation	on	the
inverted	matrix.

The	elements	dx	and	dy	specify	horizontal	and	vertical	translation.	The	elements
m11	and	m22	specify	horizontal	and	vertical	scaling.	The	elements	m12	and	m21
specify	horizontal	and	vertical	shearing.

The	identity	matrix	has	m11	and	m22	set	to	1;	all	others	are	set	to	0.	This	matrix
maps	a	point	to	itself.

Translation	is	the	simplest	transformation.	Setting	dx	and	dy	will	move	the
coordinate	system	dx	units	along	the	X	axis	and	dy	units	along	the	Y	axis.

Scaling	can	be	done	by	setting	m11	and	m22.	For	example,	setting	m11	to	2	and
m22	to	1.5	will	double	the	height	and	increase	the	width	by	50%.

Shearing	is	controlled	by	m12	and	m21.	Setting	these	elements	to	values
different	from	zero	will	twist	the	coordinate	system.

Rotation	is	achieved	by	carefully	setting	both	the	shearing	factors	and	the	scaling
factors.	The	QWMatrix	has	a	function	that	sets	rotation	directly.

QWMatrix	lets	you	combine	transformations	like	this:

				QWMatrix	m;											//	identity	matrix

				m.translate(10,	-20);	//	first	translate	(10,-20)

				m.rotate(25);									//	then	rotate	25	degrees

				m.scale(1.2,	0.7);				//	finally	scale	it

		

Here's	the	same	example	using	basic	matrix	operations:

				double	a				=	pi/180	*	25;									//	convert	25	to	radians

				double	sina	=	sin(a);

				double	cosa	=	cos(a);

				QWMatrix	m1(0,	0,	0,	0,	10,	-20);		//	translation	matrix

				QWMatrix	m2(cosa,	sina,											//	rotation	matrix

																	-sina,	cosa,	0,	0);

				QWMatrix	m3(1.2,	0,	0,	0.7,	0,	0);	//	scaling	matrix

				QWMatrix	m;

				m	=	m3	*	m2	*	m1;																		//	combine	all	transformations

		

QPainter	has	functions	to	translate,	scale,	shear	and	rotate	the	coordinate	system
without	using	a	QWMatrix.	Although	these	functions	are	very	convenient,	it	can
be	more	efficient	to	build	a	QWMatrix	and	call	QPainter::setWorldMatrix()	if
you	want	to	perform	more	than	a	single	transform	operation.

See	also	QPainter::setWorldMatrix(),	QPixmap::xForm(),	Graphics	Classes	and
Image	Processing	Classes.

Member	Function	Documentation

QWMatrix::QWMatrix	()

Constructs	an	identity	matrix.	All	elements	are	set	to	zero	except	m11	and	m22
(scaling),	which	are	set	to	1.

QWMatrix::QWMatrix	(double	m11,	double	m12,	double	m21,
double	m22,	double	dx,	double	dy)

Constructs	a	matrix	with	the	elements,	m11,	m12,	m21,	m22,	dx	and	dy.

double	QWMatrix::dx	()	const

Returns	the	horizontal	translation.

double	QWMatrix::dy	()	const

Returns	the	vertical	translation.

QWMatrix	QWMatrix::invert	(bool	*	invertible	=	0)	const

Returns	the	inverted	matrix.

If	the	matrix	is	singular	(not	invertible),	the	identity	matrix	is	returned.

If	invertible	is	not	null,	the	value	of	*invertible	is	set	to	TRUE	if	the	matrix	is
invertible	or	to	FALSE	if	the	matrix	is	not	invertible.

See	also	isInvertible().

Example:	t14/cannon.cpp.

bool	QWMatrix::isIdentity	()	const

Returns	TRUE	if	the	matrix	is	the	identity	matrix;	otherwise	returns	FALSE.

See	also	reset().

bool	QWMatrix::isInvertible	()	const

Returns	TRUE	if	the	matrix	is	invertible;	otherwise	returns	FALSE.

See	also	invert().

double	QWMatrix::m11	()	const

Returns	the	X	scaling	factor.

double	QWMatrix::m12	()	const

Returns	the	vertical	shearing	factor.

double	QWMatrix::m21	()	const

Returns	the	horizontal	shearing	factor.

double	QWMatrix::m22	()	const

Returns	the	Y	scaling	factor.

void	QWMatrix::map	(int	x,	int	y,	int	*	tx,	int	*	ty)	const

Transforms	(x,	y)	to	(*tx,	*ty)	using	the	formulae:

				*tx	=	m11*x	+	m21*y	+	dx		(rounded	to	the	nearest	integer)

				*ty	=	m22*y	+	m12*x	+	dy		(rounded	to	the	nearest	integer)

		

Examples:	t14/cannon.cpp	and	xform/xform.cpp.

void	QWMatrix::map	(double	x,	double	y,	double	*	tx,
double	*	ty)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Transforms	(x,	y)	to	(*tx,	*ty)	using	the	following	formulae:

				*tx	=	m11*x	+	m21*y	+	dx

				*ty	=	m22*y	+	m12*x	+	dy

		

QPoint	QWMatrix::map	(const	QPoint	&	p)	const

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Does	the	same	as	operator	*(const	QPoint	&)

QRect	QWMatrix::map	(const	QRect	&	r)	const

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Please	use	QWMatrix::mapRect()	instead.

Note	that	this	method	does	return	the	bounding	rectangle	of	the	r,	when	shearing
or	rotations	are	used.

QPointArray	QWMatrix::map	(const	QPointArray	&	a)	const

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Does	the	same	as	operator	*(const	QPointArray	&)

QRect	QWMatrix::mapRect	(const	QRect	&	rect)	const

Returns	the	transformed	rectangle	rect.

The	bounding	rectangle	is	returned	if	rotation	or	shearing	has	been	specified.

If	you	need	to	know	the	exact	region	rect	maps	to	use	operator*().

See	also	operator*().

bool	QWMatrix::operator!=	(const	QWMatrix	&	m)	const

Returns	TRUE	if	this	matrix	is	not	equal	to	m;	otherwise	returns	FALSE.

QPoint	QWMatrix::operator*	(const	QPoint	&	p)	const

Transforms	p	to	using	the	formulae:

				retx	=	m11*px	+	m21*py	+	dx		(rounded	to	the	nearest	integer)

				rety	=	m22*py	+	m12*px	+	dy		(rounded	to	the	nearest	integer)

		

QRegion	QWMatrix::operator*	(const	QRect	&	r)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Transforms	the	rectangle	r.

Rotation	and	shearing	a	rectangle	results	in	a	more	general	region,	which	is
returned	here.

Calling	this	method	can	be	rather	expensive,	if	rotations	or	shearing	are	used.	If
you	just	need	to	know	the	bounding	rectangle	of	the	returned	region,	use
mapRect()	which	is	a	lot	faster	than	this	function.

See	also	QWMatrix::mapRect().

QRegion	QWMatrix::operator*	(const	QRegion	&	r)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Transforms	the	region	r.

Calling	this	method	can	be	rather	expensive,	if	rotations	or	shearing	are	used.

QPointArray	QWMatrix::operator*	(const	QPointArray	&	a)
const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	the	point	array	a	transformed	by	calling	map	for	each	point.

QWMatrix	&	QWMatrix::operator*=	(const	QWMatrix	&	m)

Returns	the	result	of	multiplying	this	matrix	with	matrix	m.

bool	QWMatrix::operator==	(const	QWMatrix	&	m)	const

Returns	TRUE	if	this	matrix	is	equal	to	m;	otherwise	returns	FALSE.

void	QWMatrix::reset	()

Resets	the	matrix	to	an	identity	matrix.

All	elements	are	set	to	zero,	except	m11	and	m22	(scaling)	that	are	set	to	1.

See	also	isIdentity().

QWMatrix	&	QWMatrix::rotate	(double	a)

Rotates	the	coordinate	system	a	degrees	counterclockwise.

Returns	a	reference	to	the	matrix.

See	also	translate(),	scale()	and	shear().

Examples:	canvas/canvas.cpp,	desktop/desktop.cpp,	drawdemo/drawdemo.cpp,
t14/cannon.cpp	and	xform/xform.cpp.

QWMatrix	&	QWMatrix::scale	(double	sx,	double	sy)

Scales	the	coordinate	system	unit	by	sx	horizontally	and	sy	vertically.

Returns	a	reference	to	the	matrix.

See	also	translate(),	shear()	and	rotate().

Examples:	canvas/canvas.cpp,	fileiconview/qfileiconview.cpp,	movies/main.cpp,
qmag/qmag.cpp,	qtimage/qtimage.cpp,	showimg/showimg.cpp	and
xform/xform.cpp.

void	QWMatrix::setMatrix	(double	m11,	double	m12,
double	m21,	double	m22,	double	dx,	double	dy)

Sets	the	matrix	elements	to	the	specified	values,	m11,	m12,	m21,	m22,	dx	and	dy.

QWMatrix	&	QWMatrix::shear	(double	sh,	double	sv)

Shears	the	coordinate	system	by	sh	horizontally	and	sv	vertically.

Returns	a	reference	to	the	matrix.

See	also	translate(),	scale()	and	rotate().

Examples:	drawdemo/drawdemo.cpp	and	xform/xform.cpp.

QWMatrix	&	QWMatrix::translate	(double	dx,	double	dy)

Moves	the	coordinate	system	dx	along	the	X-axis	and	dy	along	the	Y-axis.

Returns	a	reference	to	the	matrix.

See	also	scale(),	shear()	and	rotate().

Examples:	canvas/canvas.cpp,	drawdemo/drawdemo.cpp,	t14/cannon.cpp	and
xform/xform.cpp.

Related	Functions

QWMatrix	operator*	(const	QWMatrix	&	m1,
const	QWMatrix	&	m2)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	the	product	of	m1	*	m2.

Note	that	matrix	multiplication	is	not	commutative,	i.e.	a*b	!=	b*a.

QDataStream	&	operator<<	(QDataStream	&	s,
const	QWMatrix	&	m)

Writes	the	matrix	m	to	the	stream	s	and	returns	a	reference	to	the	stream.

See	also	Format	of	the	QDataStream	operators.

QDataStream	&	operator>>	(QDataStream	&	s,	QWMatrix	&	m
)

Reads	the	matrix	m	from	the	stream	s	and	returns	a	reference	to	the	stream.

See	also	Format	of	the	QDataStream	operators.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qaccel.h
qaccel.hTrolltech

/**

**	$Id:		qt/qaccel.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QAccel	class

**

**	Created	:	950419

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QACCEL_H

#define	QACCEL_H

#ifndef	QT_H

#include	"qobject.h"

#include	"qkeysequence.h"

#endif	//	QT_H

#ifndef	QT_NO_ACCEL

class	QAccelPrivate;

class	Q_EXPORT	QAccel	:	public	QObject	 	 	 //	accelerator	class

{

				Q_OBJECT

public:

				QAccel(QWidget	*parent,	const	char	*name=0);

				QAccel(QWidget*	watch,	QObject	*parent,	const	char	*name=0);

				~QAccel();

				bool	isEnabled()	const;

				void	setEnabled(bool);

				uint	count()	const;

				int	insertItem(const	QKeySequence&	key,	int	id=-1);

				void	removeItem(int	id);

				void	clear();

				QKeySequence	key(int	id);

				int	findKey(const	QKeySequence&	key)	const;

				bool	isItemEnabled(int	id)	const;

				void	setItemEnabled(int	id,	bool	enable);

				bool	connectItem(int	id,		const	QObject	*receiver,	const	char*	member);

				bool	disconnectItem(int	id,		const	QObject	*receiver,	const	char*	member);

				void	repairEventFilter();

				void	setWhatsThis(int	id,	const	QString&);

				QString	whatsThis(int	id)	const;

				void	setIgnoreWhatsThis(bool);

				bool	ignoreWhatsThis()	const;

				static	QKeySequence	shortcutKey(const	QString	&);

				static	QString	keyToString(QKeySequence	k);

				static	QKeySequence	stringToKey(const	QString	&);

signals:

				void	activated(int	id);

protected:

				bool	eventFilter(QObject	*,	QEvent	*);

private:

				QAccelPrivate	*	d;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QAccel(const	QAccel	&);

				QAccel	&operator=(const	QAccel	&);

#endif

};

#endif	//	QT_NO_ACCEL

#endif	//	QACCEL_H

Copyright	©	2002	Trolltech Trademarks :allexit Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QFrame
QFrame	 ……

#include	<qframe.h>

QWidget

Q
GroupBoxQScrollViewQDockWindowQGridQHBoxQLabelQLCDNumberQLineEdit
QWidgetStack

QFrame	(QWidget	*	parent	=	0,	const	char	*	name	=	0,	WFlags	f	=	0)
int	frameStyle	()	const
virtual	void	setFrameStyle	(int	style)
int	frameWidth	()	const
QRect	contentsRect	()	const
enum	Shape	{	NoFrame	=	0,	Box	=	0x0001,	Panel	=	0x0002,	WinPanel	=
0x0003,	HLine	=	0x0004,	VLine	=	0x0005,	StyledPanel	=	0x0006,
PopupPanel	=	0x0007,	MenuBarPanel	=	0x0008,	ToolBarPanel	=	0x0009,
LineEditPanel	=	0x000a,	TabWidgetPanel	=	0x000b,	MShape	=	0x000f	}
enum	Shadow	{	Plain	=	0x0010,	Raised	=	0x0020,	Sunken	=	0x0030,
MShadow	=	0x00f0	}
Shape	frameShape	()	const
void	setFrameShape	(Shape)
Shadow	frameShadow	()	const
void	setFrameShadow	(Shadow)
int	lineWidth	()	const
virtual	void	setLineWidth	(int)
int	margin	()	const
virtual	void	setMargin	(int)
int	midLineWidth	()	const
virtual	void	setMidLineWidth	(int)
QRect	frameRect	()	const
virtual	void	setFrameRect	(const	QRect	&)

QRect	contentsRect	-		
QRect	frameRect	-	
Shadow	frameShadow	-	
Shape	frameShape	-	
int	frameWidth	-		
int	lineWidth	-	
int	margin	-	
int	midLineWidth	-	

virtual	void	paintEvent	(QPaintEvent	*	event)
virtual	void	resizeEvent	(QResizeEvent	*	e)
virtual	void	drawFrame	(QPainter	*	p)
virtual	void	drawContents	(QPainter	*)
virtual	void	frameChanged	()

QFrame

drawContents() drawFrame()frameChanged

QPopupMenu“” QProgressBar“” QLabel

				QLabel	label(...);

				label.setFrameStyle(QFrame::Panel	|	QFrame::Raised);

				label.setLineWidth(2);

				QProgressBar	pbar(...);

				label.setFrameStyle(QFrame::NoFrame);

		

QFrame QHBox

frameStyle() lineWidth() midLineWidth()margin()

NoFrameBoxPanelStyledPanelPopupPanelWinPanelToolBarPanelMenuBarPanel
VLinePlainRaisedSunken

QFrame::Shadow

QFrame

QFrame::Plain	-	
QFrame::Raised	-	
QFrame::Sunken	-	
QFrame::MShadow	-	

ShadowQFrame::Shape lineWidth()midLineWidth()

QFrame::ShapelineWidthmidLineWidth

QFrame::Shape

QFrame

NoFrame	-	QFrame
Box	-	QFrame
Panel	-	QFrame
WinPanel	-	 PanelQFrameMicrosoft	Windows	95
ToolBarPanel	-	QFrameQStyle::drawToolBarPanel()
MenuBarPanel	-	QFrameQStyle::drawMenuBarPanel()
HLine	-	QFrame
VLine	-	QFrame
StyledPanel	-	QFrameQStyle::drawPanel()
PopupPanel	-	QFrameQStyle::drawPopupPanel()

QStyleShapeQFrame::Shadow lineWidth()midLineWidth()

QFrame::ShadowQFrame::style()QStyle::drawPrimitive()

QFrame::QFrame	(QWidget	*	parent	=	0,	const	char	*	name	=	0,
WFlags	f	=	0)

NoFrame1

parentnamefQWidget

QRect	QFrame::contentsRect	()	const

“contentsRect”

void	QFrame::drawContents	(QPainter	*)	[]

QPainter

contentsRect()

contentsRectQPainter::setClipRect()

QLabela	href="qlcdnumber.html#drawContents">QLCDNumber QMenuBar
QPopupMenu

void	QFrame::drawFrame	(QPainter	*	p)	[]

p

QPainter

frameRectcontentsRectdrawContents()a	href="#frameStyle">frameStyle()
palette

void	QFrame::frameChanged	()	[]

update()

QRect	QFrame::frameRect	()	const

“frameRect”

Shadow	QFrame::frameShadow	()	const

“frameShadow”

Shape	QFrame::frameShape	()	const

“frameShape”

int	QFrame::frameStyle	()	const

QFrame::NoFrame

setFrameStyle() frameShapeframeShadow

scrollview/scrollview.cpp

int	QFrame::frameWidth	()	const

“frameWidth”

int	QFrame::lineWidth	()	const

“lineWidth”

int	QFrame::margin	()	const

“margin”

int	QFrame::midLineWidth	()	const

“midLineWidth”

void	QFrame::paintEvent	(QPaintEvent	*	event)	[]

event

drawFrame() drawContents()

life/life.cppqfd/fontdisplayer.cpp

QWidget

a	href="qttableview.html#paintEvent">QtTableView

void	QFrame::resizeEvent	(QResizeEvent	*	e)	[]

e

setMinimumSize()

life/life.cpp

QWidget

void	QFrame::setFrameRect	(const	QRect	&)	[]

“frameRect”

void	QFrame::setFrameShadow	(Shadow)

“frameShadow”

void	QFrame::setFrameShape	(Shape)

“frameShape”

void	QFrame::setFrameStyle	(int	style)	[]

style

style

NoFrame
Box
Panel
StyledPanelGUI
PopupPanelGUI
ToolBarPanelGUI
MenuBarPanelGUI
LineEditPanelGUI
TabWidgetPanelTabGUI
WinPanelWindows	952WinPanelGUIStyledPanel
HLine
VLine

Plain
Raised
Sunken

0 RaisedSunkenBox÷HLineVLine

IllustrationframeStyle() colorGroupQColorGroup

cursor/cursor.cpplayout/layout.cpplistboxcombo/listboxcombo.cpprangecontrols/rangecontrols.cpp

tictac/tictac.cpp

void	QFrame::setLineWidth	(int)	[]

“lineWidth”

void	QFrame::setMargin	(int)	[]

“margin”

void	QFrame::setMidLineWidth	(int)	[]

“midLineWidth”

QRect	contentsRect

contentsRect()

frameRectdrawContents()

QRect	frameRect

QRect(0,	0,	0,	0)

contentsRect

setFrameRect()frameRect()

Shadow	frameShadow

setFrameShadow()frameShadow()

frameStyle()frameShape

Shape	frameShape

setFrameShape()frameShape()

frameStyle()frameShadow

int	frameWidth

NoFrame0 Panel

lineWidthmidLineWidthframeStyle()margin

frameWidth()

int	lineWidth

This	property	holds	the	line	width.	

HLineVLineframeWidth() lineWidth()

1

midLineWidthframeWidth

setLineWidth()lineWidth()

int	margin

contentsRect() frameWidth()

backgroundMode()

0

lineWidthframeWidth

setMargin()margin()

int	midLineWidth

0

lineWidthframeWidth

setMidLineWidth()midLineWidth()

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QCanvasView	Class	Reference
[canvas	module]

The	QCanvasView	class	provides	an	on-screen	view	of	a	QCanvas.	More...

#include	<qcanvas.h>

Inherits	QScrollView.

List	of	all	member	functions.

Public	Members

QCanvasView	(QWidget	*	parent	=	0,	const	char	*	name	=	0,	WFlags	f	=
0)
QCanvasView	(QCanvas	*	canvas,	QWidget	*	parent	=	0,
const	char	*	name	=	0,	WFlags	f	=	0)
~QCanvasView	()
QCanvas	*	canvas	()	const
void	setCanvas	(QCanvas	*	canvas)
const	QWMatrix	&	worldMatrix	()	const
const	QWMatrix	&	inverseWorldMatrix	()	const
bool	setWorldMatrix	(const	QWMatrix	&	wm)

Protected	Members

virtual	void	drawContents	(QPainter	*	p,	int	cx,	int	cy,	int	cw,	int	ch)

Detailed	Description

The	QCanvasView	class	provides	an	on-screen	view	of	a	QCanvas.

A	QCanvasView	is	widget	which	provides	a	view	of	a	QCanvas.

If	you	want	users	to	be	able	to	interact	with	a	canvas	view,	subclass
QCanvasView.	You	might	then	reimplement
QScrollView::contentsMousePressEvent()	for	example:

				void	MyCanvasView::contentsMousePressEvent(QMouseEvent*	e)

				{

								QCanvasItemList	l	=	canvas()->collisions(e->pos());

								for	(QCanvasItemList::Iterator	it=l.begin();	it!=l.end();	++it)	{

												if	((*it)->rtti()	==	QCanvasRectangle::RTTI)

																qDebug("A	QCanvasRectangle	lies	somewhere	at	this	point");

								}

				}

		

Set	the	canvas	that	the	view	shows	with	setCanvas()	and	retrieve	the	canvas
which	the	view	is	showing	with	canvas().

A	transformation	matrix	can	be	used	to	transform	the	view	of	the	canvas	in
various	ways,	for	example,	zooming	in	or	out	or	rotating.	For	example:

				QWMatrix	wm;

				wm.scale(2,	2);			//	Zooms	in	by	2	times

				wm.rotate(90);				//	Rotates	90	degrees	counter	clockwise

																								//	around	the	origin.

				wm.translate(0,	-canvas->height());

																								//	moves	the	canvas	down	so	what	was	visible

																								//	before	is	still	visible.

				myCanvasView->setWorldMatrix(wm);

		

Use	setWorldMatrix()	to	set	the	canvas	view's	world	matrix:	you	must	ensure
that	the	world	matrix	is	invertible.	The	current	world	matrix	is	retrievable	with
worldMatrix(),	and	its	inversion	is	retrievable	with	inverseWorldMatrix().

Example:

The	following	code	finds	the	part	of	the	canvas	that	is	visible	in	this	view,	i.e.	the
bounding	rectangle	of	the	view	in	canvas	coordinates.

				QRect	rc	=	QRect(myCanvasView->contentsX(),	myCanvasView->contentsY(),

																						myCanvasView->visibleWidth(),	myCanvasView->visibleHeight());

				QRect	canvasRect	=	myCanvasView->inverseWorldMatrix().mapRect(rc);

		

See	also	QWMatrix,	QPainter::setWorldMatrix(),	Graphics	Classes	and	Image
Processing	Classes.

Member	Function	Documentation

QCanvasView::QCanvasView	(QWidget	*	parent	=	0,
const	char	*	name	=	0,	WFlags	f	=	0)

Constructs	a	QCanvasView	with	parent	parent,	and	name	name,	using	the	widget
flags	f.	The	canvas	view	is	not	associated	with	a	canvas,	so	you	will	need	to	call
setCanvas()	to	display	a	canvas.

QCanvasView::QCanvasView	(QCanvas	*	canvas,
QWidget	*	parent	=	0,	const	char	*	name	=	0,	WFlags	f	=	0)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Constructs	a	QCanvasView	which	views	canvas	canvas,	with	parent	parent,	and
name	name,	using	the	widget	flags	f.

QCanvasView::~QCanvasView	()

Destroys	the	canvas	view.	The	associated	canvas	is	not	deleted.

QCanvas	*	QCanvasView::canvas	()	const

Returns	a	pointer	to	the	canvas	which	the	QCanvasView	is	currently	showing.

void	QCanvasView::drawContents	(QPainter	*	p,	int	cx,	int	cy,
int	cw,	int	ch)	[virtual	protected]

Repaints	part	of	the	QCanvas	that	the	canvas	view	is	showing	starting	at	cx	by
cy,	with	a	width	of	cw	and	a	height	of	ch	using	the	painter	p.

Reimplemented	from	QScrollView.

const	QWMatrix	&	QCanvasView::inverseWorldMatrix	()	const

Returns	a	reference	to	the	inverse	of	the	canvas	view's	current	transformation
matrix.

See	also	setWorldMatrix()	and	worldMatrix().

void	QCanvasView::setCanvas	(QCanvas	*	canvas)

Sets	the	canvas	that	the	QCanvasView	is	showing	to	the	canvas	canvas.

bool	QCanvasView::setWorldMatrix	(const	QWMatrix	&	wm)

Sets	the	transformation	matrix	of	the	QCanvasView	to	wm.	The	matrix	must	be
invertible	(i.e.	if	you	create	a	world	matrix	that	zooms	out	by	2	times,	then	the
inverse	of	this	matrix	is	one	that	will	zoom	in	by	2	times).

When	you	use	this,	you	should	note	that	the	performance	of	the	QCanvasView
will	decrease	considerably.

Returns	FALSE	if	wm	is	not	invertable;	otherwise	returns	TRUE.

See	also	worldMatrix(),	inverseWorldMatrix()	and	QWMatrix::isInvertible().

Example:	canvas/canvas.cpp.

const	QWMatrix	&	QCanvasView::worldMatrix	()	const

Returns	a	reference	to	the	canvas	view's	current	transformation	matrix.

See	also	setWorldMatrix()	and	inverseWorldMatrix().

Example:	canvas/canvas.cpp.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QCanvas	Class	Reference
[canvas	module]

The	QCanvas	class	provides	a	2D	area	that	can	contain	QCanvasItem	objects.
More...

#include	<qcanvas.h>

Inherits	QObject.

List	of	all	member	functions.

Public	Members

QCanvas	(QObject	*	parent	=	0,	const	char	*	name	=	0)
QCanvas	(int	w,	int	h)
QCanvas	(QPixmap	p,	int	h,	int	v,	int	tilewidth,	int	tileheight)
virtual	~QCanvas	()
virtual	void	setTiles	(QPixmap	p,	int	h,	int	v,	int	tilewidth,	int	tileheight)
virtual	void	setBackgroundPixmap	(const	QPixmap	&	p)
QPixmap	backgroundPixmap	()	const
virtual	void	setBackgroundColor	(const	QColor	&	c)
QColor	backgroundColor	()	const
virtual	void	setTile	(int	x,	int	y,	int	tilenum)
int	tile	(int	x,	int	y)	const
int	tilesHorizontally	()	const
int	tilesVertically	()	const
int	tileWidth	()	const
int	tileHeight	()	const
virtual	void	resize	(int	w,	int	h)
int	width	()	const
int	height	()	const
QSize	size	()	const
QRect	rect	()	const
bool	onCanvas	(int	x,	int	y)	const
bool	onCanvas	(const	QPoint	&	p)	const
bool	validChunk	(int	x,	int	y)	const
bool	validChunk	(const	QPoint	&	p)	const
int	chunkSize	()	const
virtual	void	retune	(int	chunksze,	int	mxclusters	=	100)
virtual	void	setAllChanged	()
virtual	void	setChanged	(const	QRect	&	area)
virtual	void	setUnchanged	(const	QRect	&	area)
QCanvasItemList	allItems	()
QCanvasItemList	collisions	(const	QPoint	&	p)	const
QCanvasItemList	collisions	(const	QRect	&	r)	const
QCanvasItemList	collisions	(const	QPointArray	&	chunklist,
const	QCanvasItem	*	item,	bool	exact)	const
void	drawArea	(const	QRect	&	clip,	QPainter	*	painter,	bool	dbuf	=

FALSE)
virtual	void	setAdvancePeriod	(int	ms)
virtual	void	setUpdatePeriod	(int	ms)
virtual	void	setDoubleBuffering	(bool	y)

Public	Slots

virtual	void	advance	()
virtual	void	update	()

Signals

void	resized	()

Protected	Members

virtual	void	drawBackground	(QPainter	&	painter,	const	QRect	&	clip)
virtual	void	drawForeground	(QPainter	&	painter,	const	QRect	&	clip)

Detailed	Description

The	QCanvas	class	provides	a	2D	area	that	can	contain	QCanvasItem	objects.

The	QCanvas	class	manages	its	2D	graphic	area	and	all	the	canvas	items	the	area
contains.	The	canvas	is	displayed	on	screen	with	a	QCanvasView	widget.
Multiple	QCanvasView	widgets	may	be	associated	with	a	canvas	to	provide
multiple	views	of	the	same	canvas.

The	canvas	is	optimized	for	large	numbers	of	items.	Qt	provides	a	rich	set	of
canvas	item	classes,	e.g.	QCanvasEllipse,	QCanvasLine,	QCanvasPolygon,
QCanvasPolygonalItem,	QCanvasRectangle,	QCanvasSpline,	QCanvasSprite
and	QCanvasText.	You	can	subclass	to	create	your	own	canvas	items;
QCanvasPolygonalItem	is	the	most	common	base	class	used	for	this	purpose.

Items	appear	on	the	canvas	after	their	show()	function	has	been	called	(or
setVisible(TRUE)),	and	after	update()	has	been	called.	The	canvas	only	shows
items	that	are	visible,	and	then	only	if	update()	is	called.	If	you	created	the
canvas	without	passing	a	width	and	height	to	the	constructor	you'll	also	need	to
call	resize().

Although	a	canvas	may	appear	to	be	similar	to	a	widget	with	child	widgets,	there
are	several	notable	differences:

Canvas	items	are	usually	far	faster	to	manipulate	and	redraw	than	child
widgets,	with	the	speed	advantage	becoming	especially	great	when	there
are	many	canvas	items	and	non-rectangular	items.	In	most	situations	canvas
items	are	also	a	lot	more	memory	efficient	than	child	widgets.

It's	easy	to	detect	overlapping	items	(collision	detection).

The	canvas	can	be	larger	than	a	widget.	A	million-by-million	canvas	is
perfectly	possible.	At	such	a	size	a	widget	might	be	very	inefficient,	and
some	window	systems	might	not	support	it	at	all,	whereas	QCanvas	scales
well.	Even	with	a	billion	pixels	and	a	million	items,	finding	a	particular
canvas	item,	detecting	collisions,	etc.,	is	still	fast	(though	the	memory
consumption	may	be	prohibitive	at	such	an	extreme).

Two	or	more	QCanvasView	objects	can	view	the	same	canvas.

An	arbitrary	transformation	matrix	can	be	set	on	each	QCanvasView	which
makes	it	easy	to	zoom,	rotate	or	shear	the	viewed	canvas.

Widgets	provide	a	lot	more	functionality,	such	as	input	(QKeyEvent,
QMouseEvent	etc.)	and	layout	management	(QGridLayout	etc.).

A	canvas	consists	of	a	background,	a	number	of	canvas	items	organized	by	x,	y
and	z	coordinates,	and	a	foreground.	A	canvas	item's	z	coordinate	may	be	treated
as	a	layer	number	--	canvas	items	with	a	higher	z	coordinate	appear	in	front	of
canvas	items	with	a	lower	z	coordinate.

The	background	is	white	by	default,	but	can	be	set	to	a	different	color	using
setBackgroundColor(),	or	to	a	repeated	pixmap	using	setBackgroundPixmap()	or
to	a	mosaic	of	smaller	pixmaps	using	setTiles().	Individual	tiles	can	be	set	with
setTile().	There	are	corresponding	get	functions,	e.g.	backgroundColor()	and
backgroundPixmap().

Note	that	QCanvas	does	not	inherit	from	QWidget,	even	though	it	has	some
functions	which	provide	the	same	functionality	as	those	in	QWidget.	One	of
these	is	setBackgroundPixmap();	some	others	are	resize(),	size(),	width()	and
height().	QCanvasView	is	the	widget	used	to	display	a	canvas	on	the	screen.

Canvas	items	are	added	to	a	canvas	by	constructing	them	and	passing	the	canvas
to	the	canvas	item's	constructor.	An	item	can	be	moved	to	a	different	canvas
using	QCanvasItem::setCanvas().

Canvas	items	are	movable	(and	in	the	case	of	QCanvasSprites,	animated)	objects
that	inherit	QCanvasItem.	Each	canvas	item	has	a	position	on	the	canvas	(x,	y
coordinates)	and	a	height	(z	coordinate),	all	of	which	are	held	as	floating-point
numbers.	Moving	canvas	items	also	have	x	and	y	velocities.	It's	possible	for	a
canvas	item	to	be	outside	the	canvas	(for	example	QCanvasItem::x()	is	greater
than	width()).	When	a	canvas	item	is	off	the	canvas,	onCanvas()	returns	FALSE
and	the	canvas	disregards	the	item.	(Canvas	items	off	the	canvas	do	not	slow
down	any	of	the	common	operations	on	the	canvas.)

Canvas	items	can	be	moved	with	QCanvasItem::move().	The	advance()	function
moves	all	QCanvasItem::animated()	canvas	items	and	setAdvancePeriod()
makes	QCanvas	move	them	automatically	on	a	periodic	basis.	In	the	context	of

the	QCanvas	classes,	to	`animate'	a	canvas	item	is	to	set	it	in	motion,	i.e.	using
QCanvasItem::setVelocity().	Animation	of	a	canvas	item	itself,	i.e.	items	which
change	over	time,	is	enabled	by	calling	QCanvasSprite::setFrameAnimation(),	or
more	generally	by	subclassing	and	reimplementing	QCanvasItem::advance().	To
detect	collisions	use	one	of	the	QCanvasItem::collisions()	functions.

The	changed	parts	of	the	canvas	are	redrawn	(if	they	are	visible	in	a	canvas
view)	whenever	update()	is	called.	You	can	either	call	update()	manually	after
having	changed	the	contents	of	the	canvas,	or	force	periodic	updates	using
setUpdatePeriod().	If	you	have	moving	objects	on	the	canvas,	you	need	to	call
advance()	every	time	the	objects	should	move	one	step	further.	Periodic	calls	to
advance()	can	be	forced	using	setAdvancePeriod().	The	advance()	function	will
call	QCanvasItem::advance()	on	every	item	that	is	animated	and	trigger	an
update	of	the	affected	areas	afterwards.	(A	canvas	item	that	is	`animated'	is
simply	a	canvas	item	that	is	in	motion.)

QCanvas	organizes	its	canvas	items	into	chunks;	these	are	areas	on	the	canvas
that	are	used	to	speed	up	most	operations.	Many	operations	start	by	eliminating
most	chunks	(i.e.	those	which	haven't	changed)	and	then	process	only	the	canvas
items	that	are	in	the	few	interesting	(i.e.	changed)	chunks.	A	valid	chunk,
validChunk(),	is	one	which	is	on	the	canvas.

The	chunk	size	is	a	key	factor	to	QCanvas's	speed:	if	there	are	too	many	chunks,
the	speed	benefit	of	grouping	canvas	items	into	chunks	is	reduced.	If	the	chunks
are	too	large,	it	takes	too	long	to	process	each	one.	The	QCanvas	constructor
picks	a	hopefully	suitable	size,	but	you	can	call	retune()	to	change	it	at	any	time.
The	chunkSize()	function	returns	the	current	chunk	size.

The	canvas	items	always	make	sure	they're	in	the	right	chunks;	all	you	need	to
make	sure	of	is	that	the	canvas	uses	the	right	chunk	size.	A	good	rule	of	thumb	is
that	the	size	should	be	a	bit	smaller	than	the	average	canvas	item	size.	If	you
have	moving	objects,	the	chunk	size	should	be	a	bit	smaller	than	the	average	size
of	the	moving	items.

The	foreground	is	normally	nothing,	but	if	you	reimplement	drawForeground(),
you	can	draw	things	in	front	of	all	canvas	items.

Areas	can	be	set	as	changed	with	setChanged()	and	set	unchanged	with
setUnchanged().	The	entire	canvas	can	be	set	as	changed	with	setAllChanged().

A	list	of	all	the	items	on	the	canvas	is	returned	by	allItems().

An	area	can	be	copied	(painted)	to	a	QPainter	with	drawArea().

If	the	canvas	is	resized	it	emits	the	resized()	signal.

The	examples/canvas	application	and	the	2D	graphics	page	of	the
examples/demo	application	demonstrate	many	of	QCanvas's	facilities.

See	also	QCanvasView,	QCanvasItem,	Abstract	Widget	Classes,	Graphics
Classes	and	Image	Processing	Classes.

Member	Function	Documentation

QCanvas::QCanvas	(QObject	*	parent	=	0,	const	char	*	name	=	0
)

Create	a	QCanvas	with	no	size.	parent	and	name	are	passed	to	the	QObject
superclass.

Warning:	You	must	call	resize()	at	some	time	after	creation	to	be	able	to	use	the
canvas.

QCanvas::QCanvas	(int	w,	int	h)

Constructs	a	QCanvas	that	is	w	pixels	wide	and	h	pixels	high.

QCanvas::QCanvas	(QPixmap	p,	int	h,	int	v,	int	tilewidth,
int	tileheight)

Constructs	a	QCanvas	which	will	be	composed	of	h	tiles	horizontally	and	v	tiles
vertically.	Each	tile	will	be	an	image	tilewidth	by	tileheight	pixels	taken	from
pixmap	p.

The	pixmap	p	is	a	list	of	tiles,	arranged	left	to	right,	(and	in	the	case	of	pixmaps
that	have	multiple	rows	of	tiles,	top	to	bottom),	with	tile	0	in	the	top-left	corner,
tile	1	next	to	the	right,	and	so	on,	e.g.

0 1 2 3
4 5 6 7

The	QCanvas	is	initially	sized	to	show	exactly	the	given	number	of	tiles
horizontally	and	vertically.	If	it	is	resized	to	be	larger,	the	entire	matrix	of	tiles
will	be	repeated	as	much	as	necessary	to	cover	the	area.	If	it	is	smaller,	tiles	to
the	right	and	bottom	will	not	be	visible.

See	also	setTiles().

QCanvas::~QCanvas	()	[virtual]

Destroys	the	canvas	and	all	the	canvas's	canvas	items.

void	QCanvas::advance	()	[virtual	slot]

Moves	all	QCanvasItem::animated()	canvas	items	on	the	canvas	and	refreshes	all
changes	to	all	views	of	the	canvas.	(An	`animated'	item	is	an	item	that	is	in
motion;	see	setVelocity().)

The	advance	takes	place	in	two	phases.	In	phase	0,	the	QCanvasItem::advance()
function	of	each	QCanvasItem::animated()	canvas	item	is	called	with	paramater
0.	Then	all	these	canvas	items	are	called	again,	with	parameter	1.	In	phase	0,	the
canvas	items	should	not	change	position,	merely	examine	other	items	on	the
canvas	for	which	special	processing	is	required,	such	as	collisions	between
items.	In	phase	1,	all	canvas	items	should	change	positions,	ignoring	any	other
items	on	the	canvas.	This	two-phase	approach	allows	for	considerations	of
"fairness",	although	no	QCanvasItem	subclasses	supplied	with	Qt	do	anything
interesting	in	phase	0.

The	canvas	can	be	configured	to	call	this	function	periodically	with
setAdvancePeriod().

See	also	update().

QCanvasItemList	QCanvas::allItems	()

Returns	a	list	of	all	items	in	the	canvas.

QColor	QCanvas::backgroundColor	()	const

Returns	the	color	set	by	setBackgroundColor().	By	default,	this	is	white.

This	function	is	not	a	reimplementation	of	QWidget::backgroundColor()
(QCanvas	is	not	a	subclass	of	QWidget),	but	all	QCanvasViews	that	are	viewing
the	canvas	will	set	their	backgrounds	to	this	color.

See	also	setBackgroundColor()	and	backgroundPixmap().

QPixmap	QCanvas::backgroundPixmap	()	const

Returns	the	pixmap	set	by	setBackgroundPixmap().	By	default,	this	is	a	null
pixmap.

See	also	setBackgroundPixmap()	and	backgroundColor().

int	QCanvas::chunkSize	()	const

Returns	the	chunk	size	of	the	canvas.

See	also	retune().

QCanvasItemList	QCanvas::collisions	(const	QPoint	&	p)	const

Returns	a	list	of	canvas	items	that	intersect	with	the	point	p.	The	list	is	ordered
by	z	coordinates,	from	highest	z	coordinate	(front-most	item)	to	lowest	z
coordinate	(rear-most	item).

QCanvasItemList	QCanvas::collisions	(const	QRect	&	r)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	a	list	of	items	which	intersect	with	the	rectangle	r.	The	list	is	ordered	by
z	coordinates,	from	highest	z	coordinate	(front-most	item)	to	lowest	z	coordinate
(rear-most	item).

QCanvasItemList	QCanvas::collisions	(
const	QPointArray	&	chunklist,	const	QCanvasItem	*	item,
bool	exact)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	a	list	of	canvas	items	which	intersect	with	the	chunks	listed	in	chunklist,
excluding	item.	If	exact	is	TRUE,	only	those	which	actually
QCanvasItem::collidesWith()	item	are	returned;	otherwise	canvas	items	are

included	just	for	being	in	the	chunks.

This	is	a	utility	function	mainly	used	to	implement	the	simpler
QCanvasItem::collisions()	function.

void	QCanvas::drawArea	(const	QRect	&	clip,
QPainter	*	painter,	bool	dbuf	=	FALSE)

Paints	all	canvas	items	that	are	in	the	area	clip	to	painter,	using	double-buffering
if	dbuf	is	TRUE.

e.g.	to	print	the	canvas	to	a	printer:

		QPrinter	pr;

		if	(pr.setup())	{

				QPainter	p(&pr);

				canvas.drawArea(canvas.rect(),	&p);

		}

		

Example:	canvas/canvas.cpp.

void	QCanvas::drawBackground	(QPainter	&	painter,
const	QRect	&	clip)	[virtual	protected]

This	virtual	function	is	called	for	all	updates	of	the	canvas.	It	renders	any
background	graphics	using	the	painter	painter,	in	the	area	clip.	If	the	canvas	has
a	background	pixmap	or	a	tiled	background,	that	graphic	is	used,	otherwise	the
canvas	is	cleared	using	the	background	color.

If	the	graphics	for	an	area	change,	you	must	explicitly	call	setChanged(const
QRect&)	for	the	result	to	be	visible	when	update()	is	next	called.

See	also	setBackgroundColor(),	setBackgroundPixmap()	and	setTiles().

void	QCanvas::drawForeground	(QPainter	&	painter,
const	QRect	&	clip)	[virtual	protected]

This	virtual	function	is	called	for	all	updates	of	the	canvas.	It	renders	any
foreground	graphics	using	the	painter	painter,	in	the	area	clip.

If	the	graphics	for	an	area	change,	you	must	explicitly	call	setChanged(const
QRect&)	for	the	result	to	be	visible	when	update()	is	next	called.

The	default	is	to	draw	nothing.

int	QCanvas::height	()	const

Returns	the	height	of	the	canvas,	in	pixels.

Example:	canvas/canvas.cpp.

bool	QCanvas::onCanvas	(int	x,	int	y)	const

Returns	TRUE	if	the	pixel	position	(x,	y)	is	on	the	canvas;	otherwise	returns
FALSE.

See	also	validChunk().

bool	QCanvas::onCanvas	(const	QPoint	&	p)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	TRUE	if	the	pixel	position	p	is	on	the	canvas;	otherwise	returns	FALSE.

See	also	validChunk().

QRect	QCanvas::rect	()	const

Returns	a	rectangle	the	size	of	the	canvas.

void	QCanvas::resize	(int	w,	int	h)	[virtual]

Changes	the	size	of	the	canvas	to	have	a	width	of	w	and	a	height	of	h.	This	is	a
slow	operation.

Examples:	canvas/canvas.cpp	and	chart/chartform.cpp.

void	QCanvas::resized	()	[signal]

This	signal	is	emitted	whenever	the	canvas	is	resized.	Each	QCanvasView
connects	to	this	signal	to	keep	the	scrollview	size	correct.

void	QCanvas::retune	(int	chunksze,	int	mxclusters	=	100)
[virtual]

Change	the	efficiency	tuning	parameters	to	mxclusters	clusters,	each	of	size
chunksze.	This	is	a	slow	operation	if	there	are	many	objects	on	the	canvas.

The	canvas	is	divided	into	chunks	which	are	rectangular	areas	of	the	canvas
chunksze	wide	by	chunksze	high.	Use	a	chunk	size	which	is	about	the	average
size	of	the	canvas	items.	If	you	choose	a	chunk	size	which	is	too	small	it	will
increase	the	amount	of	calculation	required	when	drawing	since	each	change
will	affect	many	chunks.	If	you	choose	a	chunk	size	which	is	too	large	the
amount	of	drawing	required	will	increase	because	for	each	change,	a	lot	of
drawing	will	be	required	since	there	will	be	many	(unchanged)	canvas	items
which	are	in	the	same	chunk	as	the	changed	canvas	items.

Internally,	a	canvas	uses	a	low-resolution	"chunk	matrix"	to	keep	track	of	all	the
items	in	the	canvas.	A	64x64	chunk	matrix	is	the	default	for	a	1024x1024	pixel
canvas,	where	each	chunk	collects	canvas	items	in	a	16x16	pixel	square.	This
default	is	also	affected	by	setTiles().	You	can	tune	this	default	with	this	function.
For	example	if	you	have	a	very	large	canvas	and	want	to	trade	off	speed	for
memory	then	you	might	set	the	chunk	size	to	32	or	64.

The	mxclusters	argument	is	the	number	of	rectangular	groups	of	chunks	that	will
be	separately	drawn.	If	the	canvas	has	a	large	number	of	small,	dispersed	items,
this	should	be	about	that	number.	Our	testing	suggests	that	a	large	number	of
clusters	is	almost	always	best.

void	QCanvas::setAdvancePeriod	(int	ms)	[virtual]

Sets	the	canvas	to	call	advance()	every	ms	milliseconds.	Any	previous	setting	by
setAdvancePeriod()	or	setUpdatePeriod()	is	overridden.

If	ms	is	less	than	0	advancing	will	be	stopped.

Example:	canvas/main.cpp.

void	QCanvas::setAllChanged	()	[virtual]

Marks	the	whole	canvas	as	changed.	All	views	of	the	canvas	will	be	entirely
redrawn	when	update()	is	called	next.

void	QCanvas::setBackgroundColor	(const	QColor	&	c)
[virtual]

Sets	the	solid	background	to	be	the	color	c.

See	also	backgroundColor(),	setBackgroundPixmap()	and	setTiles().

void	QCanvas::setBackgroundPixmap	(const	QPixmap	&	p)
[virtual]

Sets	the	solid	background	to	be	the	pixmap	p	repeated	as	necessary	to	cover	the
entire	canvas.

See	also	backgroundPixmap(),	setBackgroundColor()	and	setTiles().

void	QCanvas::setChanged	(const	QRect	&	area)	[virtual]

Marks	area	as	changed.	This	area	will	be	redrawn	in	all	views	that	are	showing	it
when	update()	is	called	next.

void	QCanvas::setDoubleBuffering	(bool	y)	[virtual]

If	y	is	TRUE	(the	default)	double-buffering	is	switched	on;	otherwise	double-
buffering	is	switched	off.

Turning	off	double-buffering	causes	the	redrawn	areas	to	flicker	a	bit	and	also
gives	a	(usually	small)	performance	improvement.

Example:	canvas/canvas.cpp.

void	QCanvas::setTile	(int	x,	int	y,	int	tilenum)	[virtual]

Sets	the	tile	at	(x,	y)	to	use	tile	number	tilenum,	which	is	an	index	into	the	tile
pixmaps.	The	canvas	will	update	appropriately	when	update()	is	next	called.

The	images	are	taken	from	the	pixmap	set	by	setTiles()	and	are	arranged	left	to
right,	(and	in	the	case	of	pixmaps	that	have	multiple	rows	of	tiles,	top	to	bottom),
with	tile	0	in	the	top-left	corner,	tile	1	next	to	the	right,	and	so	on,	e.g.

0 1 2 3
4 5 6 7

See	also	tile()	and	setTiles().

void	QCanvas::setTiles	(QPixmap	p,	int	h,	int	v,	int	tilewidth,
int	tileheight)	[virtual]

Sets	the	QCanvas	to	be	composed	of	h	tiles	horizontally	and	v	tiles	vertically.
Each	tile	will	be	an	image	tilewidth	by	tileheight	pixels	from	pixmap	p.

The	pixmap	p	is	a	list	of	tiles,	arranged	left	to	right,	(and	in	the	case	of	pixmaps
that	have	multiple	rows	of	tiles,	top	to	bottom),	with	tile	0	in	the	top-left	corner,
tile	1	next	to	the	right,	and	so	on,	e.g.

0 1 2 3
4 5 6 7

If	the	canvas	is	larger	than	the	matrix	of	tiles,	the	entire	matrix	is	repeated	as
necessary	to	cover	the	whole	canvas.	If	it	is	smaller,	tiles	to	the	right	and	bottom
are	not	visible.

The	width	and	height	of	p	must	be	a	multiple	of	tilewidth	and	tileheight.	If	they
are	not	the	function	will	do	nothing.

void	QCanvas::setUnchanged	(const	QRect	&	area)	[virtual]

Marks	area	as	unchanged.	The	area	will	not	be	redrawn	in	the	views	for	the	next
update(),	unless	it	is	marked	or	changed	again	before	the	next	call	to	update().

void	QCanvas::setUpdatePeriod	(int	ms)	[virtual]

Sets	the	canvas	to	call	update()	every	ms	milliseconds.	Any	previous	setting	by
setAdvancePeriod()	or	setUpdatePeriod()	is	overridden.

If	ms	is	less	than	0	automatic	updating	will	be	stopped.

QSize	QCanvas::size	()	const

Returns	the	size	of	the	canvas,	in	pixels.

int	QCanvas::tile	(int	x,	int	y)	const

Returns	the	tile	at	position	(x,	y).	Initially,	all	tiles	are	0.

The	parameters	must	be	within	range,	i.e.	0	<	x	<	tilesHorizontally()	and	0	<	y	<
tilesVertically().

See	also	setTile().

int	QCanvas::tileHeight	()	const

Returns	the	height	of	each	tile.

int	QCanvas::tileWidth	()	const

Returns	the	width	of	each	tile.

int	QCanvas::tilesHorizontally	()	const

Returns	the	number	of	tiles	horizontally.

int	QCanvas::tilesVertically	()	const

Returns	the	number	of	tiles	vertically.

void	QCanvas::update	()	[virtual	slot]

Repaints	changed	areas	in	all	views	of	the	canvas.

See	also	advance().

bool	QCanvas::validChunk	(int	x,	int	y)	const

Returns	TRUE	if	the	chunk	position	(x,	y)	is	on	the	canvas;	otherwise	returns
FALSE.

See	also	onCanvas().

bool	QCanvas::validChunk	(const	QPoint	&	p)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	TRUE	if	the	chunk	position	p	is	on	the	canvas;	otherwise	returns
FALSE.

See	also	onCanvas().

int	QCanvas::width	()	const

Returns	the	width	of	the	canvas,	in	pixels.

Example:	canvas/canvas.cpp.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QCanvasText	Class	Reference
[canvas	module]

The	QCanvasText	class	provides	a	text	object	on	a	QCanvas.	More...

#include	<qcanvas.h>

Inherits	QCanvasItem.

List	of	all	member	functions.

Public	Members

QCanvasText	(QCanvas	*	canvas)
QCanvasText	(const	QString	&	t,	QCanvas	*	canvas)
QCanvasText	(const	QString	&	t,	QFont	f,	QCanvas	*	canvas)
virtual	~QCanvasText	()
void	setText	(const	QString	&	t)
void	setFont	(const	QFont	&	f)
void	setColor	(const	QColor	&	c)
QString	text	()	const
QFont	font	()	const
QColor	color	()	const
int	textFlags	()	const
void	setTextFlags	(int	f)
virtual	QRect	boundingRect	()	const
virtual	int	rtti	()	const

Protected	Members

virtual	void	draw	(QPainter	&	painter)

Detailed	Description

The	QCanvasText	class	provides	a	text	object	on	a	QCanvas.

A	canvas	text	item	has	text	with	font,	color	and	alignment	attributes.	The	text
and	font	can	be	set	in	the	constructor	or	set	or	changed	later	with	setText()	and
setFont().	The	color	is	set	with	setColor()	and	the	alignment	with	setTextFlags().
The	text	item's	bounding	rectangle	is	retrieved	with	boundingRect().

The	text	can	be	drawn	on	a	painter	with	draw().

Like	any	other	canvas	item	text	items	can	be	moved	with	QCanvasItem::move()
and	QCanvasItem::moveBy(),	or	by	setting	coordinates	with
QCanvasItem::setX(),	QCanvasItem::setY()	and	QCanvasItem::setZ().

See	also	Graphics	Classes	and	Image	Processing	Classes.

Member	Function	Documentation

QCanvasText::QCanvasText	(QCanvas	*	canvas)

Constructs	a	QCanvasText	with	the	text	"<text>",	on	canvas.

QCanvasText::QCanvasText	(const	QString	&	t,
QCanvas	*	canvas)

Constructs	a	QCanvasText	with	the	text	t,	on	canvas	canvas.

QCanvasText::QCanvasText	(const	QString	&	t,	QFont	f,
QCanvas	*	canvas)

Constructs	a	QCanvasText	with	the	text	t	and	font	f,	on	the	canvas	canvas.

QCanvasText::~QCanvasText	()	[virtual]

Destroys	the	canvas	text	item.

QRect	QCanvasText::boundingRect	()	const	[virtual]

Returns	the	bounding	rectangle	of	the	text.

Reimplemented	from	QCanvasItem.

QColor	QCanvasText::color	()	const

Returns	the	color	of	the	text.

See	also	setColor().

void	QCanvasText::draw	(QPainter	&	painter)	[virtual
protected]

Draws	the	text	using	the	painter	painter.

Reimplemented	from	QCanvasItem.

QFont	QCanvasText::font	()	const

Returns	the	font	in	which	the	text	is	drawn.

See	also	setFont().

int	QCanvasText::rtti	()	const	[virtual]

Returns	3	(QCanvasItem::Rtti_Text).

See	also	QCanvasItem::rtti().

Reimplemented	from	QCanvasItem.

void	QCanvasText::setColor	(const	QColor	&	c)

Sets	the	color	of	the	text	to	the	color	c.

See	also	color()	and	setFont().

Example:	chart/chartform_canvas.cpp.

void	QCanvasText::setFont	(const	QFont	&	f)

Sets	the	font	in	which	the	text	is	drawn	to	font	f.

See	also	font().

void	QCanvasText::setText	(const	QString	&	t)

Sets	the	text	item's	text	to	t.	The	text	may	contain	newlines.

See	also	text(),	setFont(),	setColor()	and	setTextFlags().

Example:	canvas/canvas.cpp.

void	QCanvasText::setTextFlags	(int	f)

Sets	the	alignment	flags	to	f.	These	are	a	bitwise	OR	of	the	flags	available	to
QPainter::drawText()	--	see	Qt::AlignmentFlags.

See	also	setFont()	and	setColor().

QString	QCanvasText::text	()	const

Returns	the	text	item's	text.

See	also	setText().

int	QCanvasText::textFlags	()	const

Returns	the	currently	set	alignment	flags.

See	also	setTextFlags()	and	Qt::AlignmentFlags.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QColor	Class	Reference
The	QColor	class	provides	colors	based	on	RGB	or	HSV	values.	More...

#include	<qcolor.h>

List	of	all	member	functions.

Public	Members

enum	Spec	{	Rgb,	Hsv	}
QColor	()
QColor	(int	r,	int	g,	int	b)
QColor	(int	x,	int	y,	int	z,	Spec	colorSpec)
QColor	(QRgb	rgb,	uint	pixel	=	0xffffffff)
QColor	(const	QString	&	name)
QColor	(const	char	*	name)
QColor	(const	QColor	&	c)
QColor	&	operator=	(const	QColor	&	c)
bool	isValid	()	const
QString	name	()	const
void	setNamedColor	(const	QString	&	name)
void	rgb	(int	*	r,	int	*	g,	int	*	b)	const
QRgb	rgb	()	const
void	setRgb	(int	r,	int	g,	int	b)
void	setRgb	(QRgb	rgb)
int	red	()	const
int	green	()	const
int	blue	()	const
void	hsv	(int	*	h,	int	*	s,	int	*	v)	const
void	getHsv	(int	&	h,	int	&	s,	int	&	v)	const		(obsolete)
void	setHsv	(int	h,	int	s,	int	v)
QColor	light	(int	factor	=	150)	const
QColor	dark	(int	factor	=	200)	const
bool	operator==	(const	QColor	&	c)	const
bool	operator!=	(const	QColor	&	c)	const
uint	alloc	()
uint	pixel	()	const

Static	Public	Members

int	maxColors	()
int	numBitPlanes	()
int	enterAllocContext	()
void	leaveAllocContext	()
int	currentAllocContext	()
void	destroyAllocContext	(int	context)
void	initialize	()
void	cleanup	()

Related	Functions

QDataStream	&	operator<<	(QDataStream	&	s,	const	QColor	&	c)
QDataStream	&	operator>>	(QDataStream	&	s,	QColor	&	c)
int	qRed	(QRgb	rgb)
int	qGreen	(QRgb	rgb)
int	qBlue	(QRgb	rgb)
int	qAlpha	(QRgb	rgba)
QRgb	qRgb	(int	r,	int	g,	int	b)
QRgb	qRgba	(int	r,	int	g,	int	b,	int	a)
int	qGray	(int	r,	int	g,	int	b)
int	qGray	(qRgb	rgb)

Detailed	Description

The	QColor	class	provides	colors	based	on	RGB	or	HSV	values.

A	color	is	normally	specified	in	terms	of	RGB	(red,	green	and	blue)	components,
but	it	is	also	possible	to	specify	HSV	(hue,	saturation	and	value)	or	set	a	color
name	(the	names	are	copied	from	from	the	X11	color	database).

In	addition	to	the	RGB	value,	a	QColor	also	has	a	pixel	value	and	a	validity.	The
pixel	value	is	used	by	the	underlying	window	system	to	refer	to	a	color.	It	can	be
thought	of	as	an	index	into	the	display	hardware's	color	table.

The	validity	(isValid())	indicates	whether	the	color	is	legal	at	all.	For	example,	a
RGB	color	with	RGB	values	out	of	range	is	illegal.	For	performance	reasons,
QColor	mostly	disregards	illegal	colors.	The	result	of	using	an	invalid	color	is
unspecified	and	will	usually	be	surprising.

There	are	19	predefined	QColor	objects:	white,	black,	red,	darkRed,	green,
darkGreen,	blue,	darkBlue,	cyan,	darkCyan,	magenta,	darkMagenta,	yellow,
darkYellow,	gray,	darkGray,	lightGray,	color0	and	color1.

The	colors	color0	(zero	pixel	value)	and	color1	(non-zero	pixel	value)	are
special	colors	for	drawing	in	bitmaps.	Painting	with	color0	sets	the	bitmap	bits
to	0	(transparent,	i.e.	background),	and	painting	with	color1	sets	the	bits	to	1
(opaque,	i.e.	foreground).

The	QColor	class	has	an	efficient,	dynamic	color	allocation	strategy.	A	color	is
normally	allocated	the	first	time	it	is	used	(lazy	allocation),	that	is,	whenever	the
pixel()	function	is	called:

1.	 Is	the	pixel	value	valid?	If	it	is,	just	return	it;	otherwise,	allocate	a	pixel
value.

2.	 Check	an	internal	hash	table	to	see	if	we	allocated	an	equal	RGB	value
earlier.	If	we	did,	set	the	pixel	value	and	return.

3.	 Try	to	allocate	the	RGB	value.	If	we	succeed,	we	get	a	pixel	value	that	we
save	in	the	internal	table	with	the	RGB	value.	Return	the	pixel	value.

4.	 The	color	could	not	be	allocated.	Find	the	closest	matching	color	and	save	it
in	the	internal	table.

A	color	can	be	set	by	passing	setNamedColor()	an	RGB	string	like	"#112233",	or
a	color	name,	e.g.	"blue".	The	names	are	taken	from	X11's	rgb.txt	database	but
can	also	be	used	under	Windows.	To	get	a	lighter	or	darker	color	use	light()	and
dark()	respectively.	Colors	can	also	be	set	using	setRgb()	and	setHsv().	The	color
components	can	be	accessed	in	one	go	with	rgb()	and	hsv(),	or	individually	with
red(),	green()	and	blue().

Use	maxColors()	and	numBitPlanes()	to	determine	the	maximum	number	of
colors	and	the	number	of	bit	planes	supported	by	the	underlying	window	system,

If	you	need	to	allocate	many	colors	temporarily,	for	example	in	an	image	viewer
application,	enterAllocContext(),	leaveAllocContext()	and
destroyAllocContext()	will	prove	useful.

HSV	Colors

Because	many	people	don't	know	the	HSV	color	model	very	well,	we'll	cover	it
briefly	here.

The	RGB	model	is	hardware-oriented.	Its	representation	is	close	to	what	most
monitors	show.	In	contrast,	HSV	represents	color	in	a	way	more	suited	to	the

human	perception	of	color.	For	example,	the	relationships	"stronger	than",
"darker	than"	and	"the	opposite	of"	are	easily	expressed	in	HSV	but	are	much
harder	to	express	in	RGB.

HSV,	like	RGB,	has	three	components:

H,	for	hue,	is	either	0-359	if	the	color	is	chromatic	(not	gray),	or
meaningless	if	it	is	gray.	It	represents	degrees	on	the	color	wheel	familiar	to
most	people.	Red	is	0	(degrees),	green	is	120	and	blue	is	240.

S,	for	saturation,	is	0-255,	and	the	bigger	it	is,	the	stronger	the	color	is.
Grayish	colors	have	saturation	near	0;	very	strong	colors	have	saturation
near	255.

V,	for	value,	is	0-255	and	represents	lightness	or	brightness	of	the	color.	0	is
black;	255	is	as	far	from	black	as	possible.

Here	are	some	examples:	Pure	red	is	H=0,	S=255,	V=255.	A	dark	red,	moving
slightly	towards	the	magenta,	could	be	H=350	(equivalent	to	-10),	S=255,
V=180.	A	grayish	light	red	could	have	H	about	0	(say	350-359	or	0-10),	S	about
50-100,	and	S=255.

Qt	returns	a	hue	value	of	-1	for	achromatic	colors.	If	you	pass	a	too-big	hue
value,	Qt	forces	it	into	range.	Hue	360	or	720	is	treated	as	0;	hue	540	is	treated
as	180.

See	also	QPalette,	QColorGroup,	QApplication::setColorSpec(),	Color	FAQ,
Widget	Appearance	and	Style,	Graphics	Classes	and	Image	Processing	Classes.

http://www.inforamp.net/~poynton/Poynton-color.html

Member	Type	Documentation

QColor::Spec

The	type	of	color	specified,	either	RGB	or	HSV,	e.g.	in	the	QColor::QColor(x,
y,	z,	colorSpec)	constructor.

QColor::Rgb

QColor::Hsv

Member	Function	Documentation

QColor::QColor	()

Constructs	an	invalid	color	with	the	RGB	value	(0,	0,	0).	An	invalid	color	is	a
color	that	is	not	properly	set	up	for	the	underlying	window	system.

The	alpha	value	of	an	invalid	color	is	unspecified.

See	also	isValid().

QColor::QColor	(int	r,	int	g,	int	b)

Constructs	a	color	with	the	RGB	value	r,	g,	b,	in	the	same	way	as	setRgb().

The	color	is	left	invalid	if	any	or	the	arguments	are	illegal.

See	also	setRgb().

QColor::QColor	(int	x,	int	y,	int	z,	Spec	colorSpec)

Constructs	a	color	with	the	RGB	or	HSV	value	x,	y,	z.

The	arguments	are	an	RGB	value	if	colorSpec	is	QColor::Rgb.	x	(red),	y	(green),
and	z	(blue).	All	of	them	must	be	in	the	range	0-255.

The	arguments	are	an	HSV	value	if	colorSpec	is	QColor::Hsv.	x	(hue)	must	be	-1
for	achromatic	colors	and	0-359	for	chromatic	colors;	y	(saturation)	and	z	(value)
must	both	be	in	the	range	0-255.

See	also	setRgb()	and	setHsv().

QColor::QColor	(QRgb	rgb,	uint	pixel	=	0xffffffff)

Constructs	a	color	with	the	RGB	value	rgb	and	a	custom	pixel	value	pixel.

If	pixel	==	0xffffffff	(the	default),	then	the	color	uses	the	RGB	value	in	a
standard	way.	If	pixel	is	something	else,	then	the	pixel	value	is	set	directly	to

pixel,	skipping	the	normal	allocation	procedure.

QColor::QColor	(const	QString	&	name)

Constructs	a	named	color	in	the	same	way	as	setNamedColor()	using	name
name.

The	color	is	left	invalid	if	name	cannot	be	parsed.

See	also	setNamedColor().

QColor::QColor	(const	char	*	name)

Constructs	a	named	color	in	the	same	way	as	setNamedColor()	using	name
name.

The	color	is	left	invalid	if	name	cannot	be	parsed.

See	also	setNamedColor().

QColor::QColor	(const	QColor	&	c)

Constructs	a	color	that	is	a	copy	of	c.

uint	QColor::alloc	()

Allocates	the	RGB	color	and	returns	the	pixel	value.

Allocating	a	color	means	to	obtain	a	pixel	value	from	the	RGB	specification.
The	pixel	value	is	an	index	into	the	global	color	table,	but	should	be	considered
to	be	an	arbitrary	platform-dependent	value.

The	pixel()	function	calls	alloc()	if	necessary,	so	in	general	you	don't	need	to	call
this	function.

See	also	enterAllocContext().

int	QColor::blue	()	const

Returns	the	B	(blue)	component	of	the	RGB	value.

void	QColor::cleanup	()	[static]

Internal	clean	up	required	for	QColor.	This	function	is	called	from	the
QApplication	destructor.

See	also	initialize().

int	QColor::currentAllocContext	()	[static]

Returns	the	current	color	allocation	context.

The	default	context	is	0.

See	also	enterAllocContext()	and	leaveAllocContext().

QColor	QColor::dark	(int	factor	=	200)	const

Returns	a	darker	(or	lighter)	color,	but	does	not	change	this	object.

Returns	a	darker	color	if	factor	is	greater	than	100.	Setting	factor	to	300	returns
a	color	that	has	one-third	the	brightness.

Returns	a	lighter	color	if	factor	is	less	than	100.	We	recommend	using	lighter()
for	this	purpose.	If	factor	is	0	or	negative,	the	return	value	is	unspecified.

(This	function	converts	the	current	RGB	color	to	HSV,	divides	V	by	factor	and
converts	back	to	RGB.)

See	also	light().

Examples:	desktop/desktop.cpp	and	themes/wood.cpp.

void	QColor::destroyAllocContext	(int	context)	[static]

Destroys	a	color	allocation	context,	context.

This	function	deallocates	all	colors	that	were	allocated	in	the	specified	context.	If

context	==	-1,	it	frees	up	all	colors	that	the	application	has	allocated.	If	context
==	-2,	it	frees	up	all	colors	that	the	application	has	allocated,	except	those	in	the
default	context.

The	function	does	nothing	for	true	color	displays.

See	also	enterAllocContext()	and	alloc().

Example:	showimg/showimg.cpp.

int	QColor::enterAllocContext	()	[static]

Enters	a	color	allocation	context	and	returns	a	non-zero	unique	identifier.

Color	allocation	contexts	are	useful	for	programs	that	need	to	allocate	many
colors	and	throw	them	away	later,	like	image	viewers.	The	allocation	context
functions	work	for	true	color	displays	as	well	as	for	colormap	displays,	except
that	QColor::destroyAllocContext()	does	nothing	for	true	color.

Example:

				QPixmap	loadPixmap(QString	fileName)

				{

								static	int	alloc_context	=	0;

								if	(alloc_context)

												QColor::destroyAllocContext(alloc_context);

								alloc_context	=	QColor::enterAllocContext();

								QPixmap	pm(fileName);

								QColor::leaveAllocContext();

								return	pm;

				}

				

The	example	code	loads	a	pixmap	from	file.	It	frees	up	all	colors	that	were
allocated	the	last	time	loadPixmap()	was	called.

The	initial/default	context	is	0.	Qt	keeps	a	list	of	colors	associated	with	their
allocation	contexts.	You	can	call	destroyAllocContext()	to	get	rid	of	all	colors
that	were	allocated	in	a	specific	context.

Calling	enterAllocContext()	enters	an	allocation	context.	The	allocation	context
lasts	until	you	call	leaveAllocContext().	QColor	has	an	internal	stack	of

allocation	contexts.	Each	call	to	enterAllocContex()	must	have	a	corresponding
leaveAllocContext().

								//	context	0	active

				int	c1	=	QColor::enterAllocContext();				//	enter	context	c1

								//	context	c1	active

				int	c2	=	QColor::enterAllocContext();				//	enter	context	c2

								//	context	c2	active

				QColor::leaveAllocContext();													//	leave	context	c2

								//	context	c1	active

				QColor::leaveAllocContext();													//	leave	context	c1

								//	context	0	active

								//	Now,	free	all	colors	that	were	allocated	in	context	c2

				QColor::destroyAllocContext(c2);

				

You	may	also	want	to	set	the	application's	color	specification.	See
QApplication::setColorSpec()	for	more	information.

See	also	leaveAllocContext(),	currentAllocContext(),	destroyAllocContext()	and
QApplication::setColorSpec().

Example:	showimg/showimg.cpp.

void	QColor::getHsv	(int	&	h,	int	&	s,	int	&	v)	const

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

int	QColor::green	()	const

Returns	the	G	(green)	component	of	the	RGB	value.

void	QColor::hsv	(int	*	h,	int	*	s,	int	*	v)	const

Returns	the	current	RGB	value	as	HSV.	The	contents	of	the	h,	s	and	v	pointers
are	set	to	the	HSV	values.	If	any	of	the	three	pointers	are	null,	the	function	does
nothing.

The	hue	(which	h	points	to)	is	set	to	-1	if	the	color	is	achromatic.

See	also	setHsv()	and	rgb().

Example:	themes/metal.cpp.

void	QColor::initialize	()	[static]

Internal	initialization	required	for	QColor.	This	function	is	called	from	the
QApplication	constructor.

See	also	cleanup().

bool	QColor::isValid	()	const

Returns	FALSE	if	the	color	is	invalid,	i.e.	it	was	constructed	using	the	default
constructor;	otherwise	returns	TRUE.

Examples:	chart/element.cpp,	chart/setdataform.cpp	and	scribble/scribble.cpp.

void	QColor::leaveAllocContext	()	[static]

Leaves	a	color	allocation	context.

See	enterAllocContext()	for	a	detailed	explanation.

See	also	enterAllocContext()	and	currentAllocContext().

Example:	showimg/showimg.cpp.

QColor	QColor::light	(int	factor	=	150)	const

Returns	a	lighter	(or	darker)	color,	but	does	not	change	this	object.

Returns	a	lighter	color	if	factor	is	greater	than	100.	Setting	factor	to	150	returns
a	color	that	is	50%	brighter.

Returns	a	darker	color	if	factor	is	less	than	100.	We	recommend	using	dark()	for
this	purpose.	If	factor	is	0	or	negative,	the	return	value	is	unspecified.

(This	function	converts	the	current	RGB	color	to	HSV,	multiplies	V	by	factor,
and	converts	the	result	back	to	RGB.)

See	also	dark().

Examples:	desktop/desktop.cpp	and	themes/wood.cpp.

int	QColor::maxColors	()	[static]

Returns	the	maximum	number	of	colors	supported	by	the	underlying	window
system.

QString	QColor::name	()	const

Returns	the	name	of	the	color	in	the	format	"#RRGGBB",	i.e.	a	"#"	character
followed	by	three	two-digit	hexadecimal	numbers.

See	also	setNamedColor().

Example:	chart/setdataform.cpp.

int	QColor::numBitPlanes	()	[static]

Returns	the	number	of	color	bit	planes	for	the	underlying	window	system.

The	returned	value	is	equal	to	the	default	pixmap	depth.

See	also	QPixmap::defaultDepth().

bool	QColor::operator!=	(const	QColor	&	c)	const

Returns	TRUE	if	this	color	has	a	different	RGB	value	from	c;	otherwise	returns
FALSE.

QColor	&	QColor::operator=	(const	QColor	&	c)

Assigns	a	copy	of	the	color	c	and	returns	a	reference	to	this	color.

bool	QColor::operator==	(const	QColor	&	c)	const

Returns	TRUE	if	this	color	has	the	same	RGB	value	as	c;	otherwise	returns
FALSE.

uint	QColor::pixel	()	const

Returns	the	pixel	value.

This	value	is	used	by	the	underlying	window	system	to	refer	to	a	color.	It	can	be
thought	of	as	an	index	into	the	display	hardware's	color	table,	but	the	value	is	an
arbitrary	32-bit	value.

See	also	alloc().

int	QColor::red	()	const

Returns	the	R	(red)	component	of	the	RGB	value.

void	QColor::rgb	(int	*	r,	int	*	g,	int	*	b)	const

Sets	the	contents	pointed	to	by	r,	g	and	b	to	the	red,	green	and	blue	components
of	the	RGB	value	respectively.	The	value	range	for	a	component	is	0..255.

See	also	setRgb()	and	hsv().

QRgb	QColor::rgb	()	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	the	RGB	value.

The	return	type	QRgb	is	equivalent	to	unsigned	int.

For	an	invalid	color,	the	alpha	value	of	the	returned	color	is	unspecified.

See	also	setRgb(),	hsv(),	qRed(),	qBlue(),	qGreen()	and	isValid().

void	QColor::setHsv	(int	h,	int	s,	int	v)

Sets	a	HSV	color	value.	h	is	the	hue,	s	is	the	saturation	and	v	is	the	value	of	the
HSV	color.

If	s	or	v	are	not	in	the	range	0-255,	or	h	is	<	-1,	the	color	is	not	changed.

See	also	hsv()	and	setRgb().

Examples:	drawdemo/drawdemo.cpp,	grapher/grapher.cpp	and
progress/progress.cpp.

void	QColor::setNamedColor	(const	QString	&	name)

Sets	the	RGB	value	to	name,	which	may	be	in	one	of	these	formats:

#RGB	(each	of	R,	G	and	B	is	a	single	hex	digit)
#RRGGBB
#RRRGGGBBB
#RRRRGGGGBBBB
A	name	from	the	X	color	database	(rgb.txt)	(e.g.	"steelblue"	or
"gainsboro").	These	color	names	also	work	under	Windows.

The	color	is	left	invalid	if	name	cannot	be	parsed.

void	QColor::setRgb	(int	r,	int	g,	int	b)

Sets	the	RGB	value	to	r,	g,	b.	The	arguments,	r,	g	and	b	must	all	be	in	the	range
0..255.	If	any	of	them	are	outside	the	legal	range,	the	color	is	not	changed.

See	also	rgb()	and	setHsv().

void	QColor::setRgb	(QRgb	rgb)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Sets	the	RGB	value	to	rgb.

The	type	QRgb	is	equivalent	to	unsigned	int.

See	also	rgb()	and	setHsv().

Related	Functions

QDataStream	&	operator<<	(QDataStream	&	s,
const	QColor	&	c)

Writes	a	color	object,	c	to	the	stream,	s.

See	also	Format	of	the	QDataStream	operators.

QDataStream	&	operator>>	(QDataStream	&	s,	QColor	&	c)

Reads	a	color	object,	c,	from	the	stream,	s.

See	also	Format	of	the	QDataStream	operators.

int	qAlpha	(QRgb	rgba)

Returns	the	alpha	component	of	the	RGBA	quadruplet	rgba.

int	qBlue	(QRgb	rgb)

Returns	the	blue	component	of	the	RGB	triplet	rgb.

See	also	qRgb()	and	QColor::blue().

int	qGray	(int	r,	int	g,	int	b)

Returns	a	gray	value	0..255	from	the	(r,	g,	b)	triplet.

The	gray	value	is	calculated	using	the	formula	(r*11	+	g*16	+	b*5)/32.

int	qGray	(qRgb	rgb)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	a	gray	value	0..255	from	the	given	rgb	colour.

int	qGreen	(QRgb	rgb)

Returns	the	green	component	of	the	RGB	triplet	rgb.

See	also	qRgb()	and	QColor::green().

int	qRed	(QRgb	rgb)

Returns	the	red	component	of	the	RGB	triplet	rgb.

See	also	qRgb()	and	QColor::red().

QRgb	qRgb	(int	r,	int	g,	int	b)

Returns	the	RGB	triplet	(r,g,b).

The	return	type	QRgb	is	equivalent	to	unsigned	int.

See	also	qRgba(),	qRed(),	qGreen()	and	qBlue().

QRgb	qRgba	(int	r,	int	g,	int	b,	int	a)

Returns	the	RGBA	quadruplet	(r,g,b,a).

The	return	type	QRgba	is	equivalent	to	unsigned	int.

See	also	qRgb(),	qRed(),	qGreen()	and	qBlue().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QString
QStringUnicodeC	 ……

#include	<qstring.h>

QString	()
QString	(QChar	ch)
QString	(const	QString	&	s)
QString	(const	QByteArray	&	ba)
QString	(const	QChar	*	unicode,	uint	length)
QString	(const	char	*	str)
~QString	()
QString	&	operator=	(const	QString	&	s)
QString	&	operator=	(const	char	*	str)
QString	&	operator=	(const	QCString	&	cs)
QString	&	operator=	(QChar	c)
QString	&	operator=	(char	c)
bool	isNull	()	const
bool	isEmpty	()	const
uint	length	()	const
void	truncate	(uint	newLen)
QString	&	fill	(QChar	c,	int	len	=	-1)
QString	copy	()	const		(obsolete)
QString	arg	(long	a,	int	fieldwidth	=	0,	int	base	=	10)	const
QString	arg	(ulong	a,	int	fieldwidth	=	0,	int	base	=	10)	const
QString	arg	(int	a,	int	fieldwidth	=	0,	int	base	=	10)	const
QString	arg	(uint	a,	int	fieldwidth	=	0,	int	base	=	10)	const
QString	arg	(short	a,	int	fieldwidth	=	0,	int	base	=	10)	const
QString	arg	(ushort	a,	int	fieldwidth	=	0,	int	base	=	10)	const
QString	arg	(char	a,	int	fieldwidth	=	0)	const
QString	arg	(QChar	a,	int	fieldwidth	=	0)	const
QString	arg	(const	QString	&	a,	int	fieldwidth	=	0)	const
QString	arg	(double	a,	int	fieldwidth	=	0,	char	fmt	=	'g',	int	prec	=	-1)
const
QString	&	sprintf	(const	char	*	cformat,	...)
int	find	(QChar	c,	int	index	=	0,	bool	cs	=	TRUE)	const
int	find	(char	c,	int	index	=	0,	bool	cs	=	TRUE)	const
int	find	(const	QString	&	str,	int	index	=	0,	bool	cs	=	TRUE)	const
int	find	(const	QRegExp	&	rx,	int	index	=	0)	const
int	find	(const	char	*	str,	int	index	=	0)	const

int	findRev	(QChar	c,	int	index	=	-1,	bool	cs	=	TRUE)	const
int	findRev	(char	c,	int	index	=	-1,	bool	cs	=	TRUE)	const
int	findRev	(const	QString	&	str,	int	index	=	-1,	bool	cs	=	TRUE)	const
int	findRev	(const	QRegExp	&	rx,	int	index	=	-1)	const
int	findRev	(const	char	*	str,	int	index	=	-1)	const
int	contains	(QChar	c,	bool	cs	=	TRUE)	const
int	contains	(char	c,	bool	cs	=	TRUE)	const
int	contains	(const	char	*	str,	bool	cs	=	TRUE)	const
int	contains	(const	QString	&	str,	bool	cs	=	TRUE)	const
int	contains	(const	QRegExp	&	rx)	const
enum	SectionFlags	{	SectionDefault	=	0x00,	SectionSkipEmpty	=	0x01,
SectionIncludeLeadingSep	=	0x02,	SectionIncludeTrailingSep	=	0x04,
SectionCaseInsensitiveSeps	=	0x08	}
QString	section	(QChar	sep,	int	start,	int	end	=	0xffffffff,	int	flags	=
SectionDefault)	const
QString	section	(char	sep,	int	start,	int	end	=	0xffffffff,	int	flags	=
SectionDefault)	const
QString	section	(const	char	*	sep,	int	start,	int	end	=	0xffffffff,	int	flags	=
SectionDefault)	const
QString	section	(const	QString	&	sep,	int	start,	int	end	=	0xffffffff,	int	flags
=	SectionDefault)	const
QString	section	(const	QRegExp	&	reg,	int	start,	int	end	=	0xffffffff,
int	flags	=	SectionDefault)	const
QString	left	(uint	len)	const
QString	right	(uint	len)	const
QString	mid	(uint	index,	uint	len	=	0xffffffff)	const
QString	leftJustify	(uint	width,	QChar	fill	=	'	',	bool	truncate	=	FALSE)
const
QString	rightJustify	(uint	width,	QChar	fill	=	'	',	bool	truncate	=	FALSE)
const
QString	lower	()	const
QString	upper	()	const
QString	stripWhiteSpace	()	const
QString	simplifyWhiteSpace	()	const
QString	&	insert	(uint	index,	const	QString	&	s)
QString	&	insert	(uint	index,	const	QChar	*	s,	uint	len)
QString	&	insert	(uint	index,	QChar	c)
QString	&	insert	(uint	index,	char	c)
QString	&	append	(char	ch)

QString	&	append	(QChar	ch)
QString	&	append	(const	QString	&	str)
QString	&	prepend	(char	ch)
QString	&	prepend	(QChar	ch)
QString	&	prepend	(const	QString	&	s)
QString	&	remove	(uint	index,	uint	len)
QString	&	replace	(uint	index,	uint	len,	const	QString	&	s)
QString	&	replace	(uint	index,	uint	len,	const	QChar	*	s,	uint	slen)
QString	&	replace	(const	QRegExp	&	rx,	const	QString	&	str)
short	toShort	(bool	*	ok	=	0,	int	base	=	10)	const
ushort	toUShort	(bool	*	ok	=	0,	int	base	=	10)	const
int	toInt	(bool	*	ok	=	0,	int	base	=	10)	const
uint	toUInt	(bool	*	ok	=	0,	int	base	=	10)	const
long	toLong	(bool	*	ok	=	0,	int	base	=	10)	const
ulong	toULong	(bool	*	ok	=	0,	int	base	=	10)	const
float	toFloat	(bool	*	ok	=	0)	const
double	toDouble	(bool	*	ok	=	0)	const
QString	&	setNum	(short	n,	int	base	=	10)
QString	&	setNum	(ushort	n,	int	base	=	10)
QString	&	setNum	(int	n,	int	base	=	10)
QString	&	setNum	(uint	n,	int	base	=	10)
QString	&	setNum	(long	n,	int	base	=	10)
QString	&	setNum	(ulong	n,	int	base	=	10)
QString	&	setNum	(float	n,	char	f	=	'g',	int	prec	=	6)
QString	&	setNum	(double	n,	char	f	=	'g',	int	prec	=	6)
void	setExpand	(uint	index,	QChar	c)		(obsolete)
QString	&	operator+=	(const	QString	&	str)
QString	&	operator+=	(QChar	c)
QString	&	operator+=	(char	c)
QChar	at	(uint	i)	const
QChar	operator[]	(int	i)	const
QCharRef	at	(uint	i)
QCharRef	operator[]	(int	i)
QChar	constref	(uint	i)	const
QChar	&	ref	(uint	i)
const	QChar	*	unicode	()	const
const	char	*	ascii	()	const		(obsolete)
const	char	*	latin1	()	const
QCString	utf8	()	const

QCString	local8Bit	()	const
bool	operator!	()	const
operator	const	char	*	()	const
QString	&	setUnicode	(const	QChar	*	unicode,	uint	len)
QString	&	setUnicodeCodes	(const	ushort	*	unicode_as_ushorts,	uint	len)
QString	&	setLatin1	(const	char	*	str,	int	len	=	-1)
int	compare	(const	QString	&	s)	const
int	localeAwareCompare	(const	QString	&	s)	const
void	compose	()
const	char	*	data	()	const		(obsolete)
bool	startsWith	(const	QString	&	s)	const
bool	endsWith	(const	QString	&	s)	const
void	setLength	(uint	newLen)

QString	number	(long	n,	int	base	=	10)
QString	number	(ulong	n,	int	base	=	10)
QString	number	(int	n,	int	base	=	10)
QString	number	(uint	n,	int	base	=	10)
QString	number	(double	n,	char	f	=	'g',	int	prec	=	6)
QString	fromLatin1	(const	char	*	chars,	int	len	=	-1)
QString	fromUtf8	(const	char	*	utf8,	int	len	=	-1)
QString	fromLocal8Bit	(const	char	*	local8Bit,	int	len	=	-1)
int	compare	(const	QString	&	s1,	const	QString	&	s2)
int	localeAwareCompare	(const	QString	&	s1,	const	QString	&	s2)

bool	operator==	(const	QString	&	s1,	const	QString	&	s2)
bool	operator==	(const	QString	&	s1,	const	char	*	s2)
bool	operator==	(const	char	*	s1,	const	QString	&	s2)
bool	operator!=	(const	QString	&	s1,	const	QString	&	s2)
bool	operator!=	(const	QString	&	s1,	const	char	*	s2)
bool	operator!=	(const	char	*	s1,	const	QString	&	s2)
bool	operator<	(const	QString	&	s1,	const	char	*	s2)
bool	operator<	(const	char	*	s1,	const	QString	&	s2)
bool	operator<=	(const	QString	&	s1,	const	char	*	s2)
bool	operator<=	(const	char	*	s1,	const	QString	&	s2)
bool	operator>	(const	QString	&	s1,	const	char	*	s2)
bool	operator>	(const	char	*	s1,	const	QString	&	s2)
bool	operator>=	(const	QString	&	s1,	const	char	*	s2)
bool	operator>=	(const	char	*	s1,	const	QString	&	s2)
const	QString	operator+	(const	QString	&	s1,	const	QString	&	s2)
const	QString	operator+	(const	QString	&	s1,	const	char	*	s2)
const	QString	operator+	(const	char	*	s1,	const	QString	&	s2)
const	QString	operator+	(const	QString	&	s,	char	c)
const	QString	operator+	(char	c,	const	QString	&	s)
QDataStream	&	operator<<	(QDataStream	&	s,	const	QString	&	str)
QDataStream	&	operator>>	(QDataStream	&	s,	QString	&	str)

QStringUnicodeC

QString

QString const	char	* const	char	*CASCII const	char	*

char	*CQString0QString QChar unicode()QStringC
latin1()

QString0“”'\0'QString QString (const	char	*)	0QString
QString QString::nullQString if	(!str.isNull())

!str) operator!()

QCStringQStringQByteArray QCString0
QString

QStringList QStringList::split() QStringList::join() QStringList::grep
regex

C

C++QString QString

				QString	boolToString(bool	b)

				{

								QString	result;

								if	(b)

												result	=	"True";

								else

												result	=	"False";

								return	result;

				}

		

resultreturn

QtQString

				QString	func(const	QString&	input)

				{

								QString	output	=	input;

								//	

								return	output;

				}

		

inputoutput“”QString

UnicodeQString QStringQChar*

				QString	a("abcd");

				QString	b(a.unicode(),	b.length());

		

QStringconst	char*

				QString	a("abcd");

				QString	b(a.latin1());

		

QCharQCStringQByteArrayQConstString

QString::SectionFlags

QString::SectionDefault	-	
QString::SectionSkipEmpty	-	 startend
QString::SectionIncludeLeadingSep	-	
QString::SectionIncludeTrailingSep	-	
QString::SectionCaseInsensitiveSeps	-	

section()

QString::QString	()

0

isNull()

QString::QString	(QChar	ch)

ch

QString::QString	(const	QString	&	s)

s

QString::QString	(const	QByteArray	&	ba)

C ba

QString::QString	(const	QChar	*	unicode,	uint	length)

QCharlength

unicodelength0

unicode0 length——QString setLength()

isNull()setLength()

QString::QString	(const	char	*	str)

C str

str

Latin1const	char*QStringQT_NO_CAST_ASCII

setLatin1() fromLatin1() fromLocal8Bit()fromUtf8()QString

isNull()

QString::~QString	()

“”

QString	&	QString::append	(const	QString	&	str)

str

				string	=	"Test";

				string.append("ing");								//	string	==	"Testing"

		

operator+=()

dirview/dirview.cpp

QString	&	QString::append	(char	ch)

ch

operator+=()

QString	&	QString::append	(QChar	ch)

ch

operator+=()

QString	QString::arg	(const	QString	&	a,	int	fieldwidth	=	0)
const

a%ii'1''2'……'9'

fieldwidtha

				QString	firstName("Joe");

				QString	lastName("Bloggs");

				QString	fullName;

				fullName	=	QString("First	name	is	'%1',	last	name	is	'%2'")

															.arg(firstName)

															.arg(lastName);

				//	fullName	==	First	name	is	'Joe',	last	name	is	'Bloggs'

		

arg()“”tr()

%i qWarning()

QObject::tr()

QString	QString::arg	(long	a,	int	fieldwidth	=	0,	int	base	=	10)
const

fieldwidtha

abase10236

				QString	str;

				str	=	QString("Decimal	63	is	%1	in	hexadecimal")

										.arg(63,	0,	16);

				//	str	==	"Decimal	63	is	3f	in	hexadecimal"

		

QString	QString::arg	(ulong	a,	int	fieldwidth	=	0,	int	base	=	10)
const

abase10236

QString	QString::arg	(int	a,	int	fieldwidth	=	0,	int	base	=	10)

const

abase10236

QString	QString::arg	(uint	a,	int	fieldwidth	=	0,	int	base	=	10)
const

abase10236

QString	QString::arg	(short	a,	int	fieldwidth	=	0,	int	base	=	10)
const

abase10236

QString	QString::arg	(ushort	a,	int	fieldwidth	=	0,	int	base	=	10)
const

abase10236

QString	QString::arg	(char	a,	int	fieldwidth	=	0)	const

aLatin1

QString	QString::arg	(QChar	a,	int	fieldwidth	=	0)	const

QString	QString::arg	(double	a,	int	fieldwidth	=	0,	char	fmt	=	'g',

int	prec	=	-1)	const

fmt a g

e	-	[-]9.9e[+|-]999
E	-	[-]9.9E[+|-]999
f	-	[-]9.9
g	-	ef
G	-	Ef

prec

				double	d	=	12.34;

				QString	ds	=	QString("'E'	format,	precision	3,	gives	%1")

																	.arg(d,	0,	'E',	3);

				//	ds	==	"1.234E+001"

		

const	char	*	QString::ascii	()	const

latin1()

network/networkprotocol/nntp.cpp

QChar	QString::at	(uint	i)	const

i i0

				const	QString	string("abcdefgh");

				QChar	ch	=	string.at(4);

				//	ch	==	'e'

		

QStringconst	QStringconst&const	QString&

QCharRef	QString::at	(uint	i)

i

iQChar::null

int	QString::compare	(const	QString	&	s1,	const	QString	&	s2)
[]

s1s2 s1 s20

Unicode

				int	a	=	QString::compare("def",	"abc");			//	a	>	0

				int	b	=	QString::compare("abc",	"def");			//	b	<	0

				int	c	=	QString::compare("	abc",	"abc");			//	c	==	0

		

int	QString::compare	(const	QString	&	s)	const

s s0

void	QString::compose	()

Qt	3.0

QString
diaresisQChar(0x00c4)A

QChar	QString::constref	(uint	i)	const

iQChar

at(i)

ref()

int	QString::contains	(QChar	c,	bool	cs	=	TRUE)	const

c

cs cs

				QString	string("Trolltech	and	Qt");

				int	i	=	string.contains('t',	FALSE);		//	i	==	3

		

fileiconview/qfileiconview.cppmdi/application.cpp

int	QString::contains	(char	c,	bool	cs	=	TRUE)	const

int	QString::contains	(const	char	*	str,	bool	cs	=	TRUE)	const

str

cs cs

int	QString::contains	(const	QString	&	str,	bool	cs	=	TRUE)
const

str

cs cs

“bananas”“ana”

				QString	str("bananas");

				int	i	=	str.contains("ana");		//	i	==	2

		

findRev()

int	QString::contains	(const	QRegExp	&	rx)	const

rx

“ana”“ama”

				QString	str	=	"banana	and	panama";

				QRegExp	rxp	=	QRegExp("a[nm]a",	TRUE,	FALSE);

				int	i	=	str.contains(rxp);				//	i	==	4

		

find()findRev()

QString	QString::copy	()	const

Qt	2.0

const	char	*	QString::data	()	const

C

Qt	1.xchar*Qt	2.xQStringUnicodechar*

bool	QString::endsWith	(const	QString	&	s)	const

s

startsWith()

chart/main.cpp

QString	&	QString::fill	(QChar	c,	int	len	=	-1)

lenc

len

				QString	str;

				str.fill('g',	5);						//	string	==	"ggggg"

		

int	QString::find	(const	QRegExp	&	rx,	int	index	=	0)	const

index rx index-1-1 findRev()

rx rx-1

				QString	string("bananas");

				int	i	=	string.find(QRegExp("an"),	0);				//	i	==	1

		

findRev() replace()contains()

network/mail/smtp.cpp

int	QString::find	(QChar	c,	int	index	=	0,	bool	cs	=	TRUE)	const

index c index-1-1 findRev()

cs cs

c c-1

int	QString::find	(char	c,	int	index	=	0,	bool	cs	=	TRUE)	const

index c

cs cs

int	QString::find	(const	QString	&	str,	int	index	=	0,	bool	cs	=
TRUE)	const

index str index-1-1 findRev()

cs cs

str str-1

int	QString::find	(const	char	*	str,	int	index	=	0)	const

find(QString(str),	index)

int	QString::findRev	(const	char	*	str,	int	index	=	-1)	const

findRev(QString(str),	index)

int	QString::findRev	(QChar	c,	int	index	=	-1,	bool	cs	=	TRUE)
const

index c index-1-1

c c-1

cs cs

				QString	string("bananas");

				int	i	=	string.findRev('a');						//	i	==	5

		

int	QString::findRev	(char	c,	int	index	=	-1,	bool	cs	=	TRUE)
const

index c

cs cs

int	QString::findRev	(const	QString	&	str,	int	index	=	-1,	bool	cs
=	TRUE)	const

index str index-1-1

str str-1

cs cs

				QString	string("bananas");

				int	i	=	string.findRev("ana");						//	i	==	3

		

int	QString::findRev	(const	QRegExp	&	rx,	int	index	=	-1)	const

index rx index-1-1

rx rx-1

				QString	string("bananas");

				int	i	=	string.findRev(QRegExp("an"));						//	i	==	3

		

find()

QString	QString::fromLatin1	(const	char	*	chars,	int	len	=	-1)
[]

charslenUnicode chars len-1 chars lenchars chars

QString(const	char*)QT_NO_CAST_ASCIILatin-1QString

				QString	str	=	QString::fromLatin1("123456789",	5);

				//	str	==	"12345"

		

listbox/listbox.cppnetwork/mail/smtp.cpp

QString	QString::fromLocal8Bit	(const	char	*	local8Bit,	int	len	=
-1)	[]

local8BitlenUnicode local8Bit len-1 local8Bit lenchars
local8Bit

				QString	str	=	QString::fromLocal8Bit("123456789",	5);

				//	str	==	"12345"

		

local8Bit

Unicode/ QTextCodec

QString	QString::fromUtf8	(const	char	*	utf8,	int	len	=	-1)	[]

utf8lenUnicode utf8 len-1 utf8 lenchars utf8

				QString	str	=	QString::fromUtf8("123456789",	5);

				//	str	==	"12345"

		

Unicode/ QTextCodec

fonts/simple-qfont-demo/viewer.cpp

QString	&	QString::insert	(uint	index,	const	QString	&	s)

sindex

index indexs

				QString	string("I	like	fish");

				str	=	string.insert(2,	"don't	");

				//	str	==	"I	don't	like	fish"

		

remove()replace()

themes/themes.cppxform/xform.cpp

QString	&	QString::insert	(uint	index,	const	QChar	*	s,	uint	len)

sindexlen

QString	&	QString::insert	(uint	index,	QChar	c)

cindex

indexASCII32 indexs

QString	&	QString::insert	(uint	index,	char	c)

indexc

bool	QString::isEmpty	()	const

length()	==	0

				QString	a("");

				a.isEmpty();								//	

				a.isNull();									//	

				QString	b;

				b.isEmpty();								//	

				b.isNull();									//	

		

isNull()length()

addressbook/mainwindow.cppchart/chartform.cppchart/chartform_canvas.cppnetwork/networkprotocol/nntp.cpp
qwerty/qwerty.cpp

bool	QString::isNull	()	const

				QString	a;										//	a.unicode()	==	0a. length()	==	0

				a.isNull();									//	a. unicode()	==	0

				a.isEmpty();								//	

		

isEmpty()length()

i18n/main.cppqdir/qdir.cpp

const	char	*	QString::latin1	()	const

Latin-1Latin-1Unicode

Unicode

utf8()local8Bit()

fileiconview/qfileiconview.cppnetwork/networkprotocol/nntp.cpp

QString	QString::left	(uint	len)	const

len

len

				QString	s	=	"Pineapple";

				QString	t	=	s.left(4);				//	t	==	"Pine"

		

right() mid()isEmpty()

themes/themes.cpp

QString	QString::leftJustify	(uint	width,	QChar	fill	=	'	',
bool	truncate	=	FALSE)	const

width fill

truncatewidth

truncatewidthwidth

				QString	s("apple");

				QString	t	=	s.leftJustify(8,	'.');								//	t	==	"apple..."

		

rightJustify()

uint	QString::length	()	const

0

isNull()isEmpty()

fileiconview/qfileiconview.cppnetwork/networkprotocol/nntp.cpprot13/rot13.cpp
themes/themes.cpp

QCString	QString::local8Bit	()	const

X11 QTextCodec::codecForLocale()WindowsMac	OS	X
utf8

Unicode/ QTextCodec

QString::fromLocal8Bit() latin1()utf8()

int	QString::localeAwareCompare	(const	QString	&	s1,
const	QString	&	s2)	[]

s1s2 s1 s20

QString::compare()QTextCodec::locale()

int	QString::localeAwareCompare	(const	QString	&	s)	const

s

QString	QString::lower	()	const

				QString	string("TROlltECH");

				str	=	string.lower();			//	str	==	"trolltech"

		

upper()

scribble/scribble.cpp

QString	QString::mid	(uint	index,	uint	len	=	0xffffffff)	const

indexlen

index index+len index

				QString	s("Five	pineapples");

				QString	t	=	s.mid(5,	4);																		//	t	==	"pine"

		

left()right()

network/mail/smtp.cppqmag/qmag.cppthemes/themes.cpp

QString	QString::number	(long	n,	int	base	=	10)	[]

n nbase10236

				long	a	=	63;

				QString	str	=	QString::number(a,	16);													//	str	==	"3f"

				QString	str	=	QString::number(a,	16).upper();					//	str	==	"3F"

		

setNum()

action/application.cppapplication/application.cppchart/chartform.cppfonts/simple-
qfont-demo/viewer.cppmdi/application.cppsql/overview/extract/main.cpp

QString	QString::number	(ulong	n,	int	base	=	10)	[]

setNum()

QString	QString::number	(int	n,	int	base	=	10)	[]

setNum()

QString	QString::number	(uint	n,	int	base	=	10)	[]

n nbase10236

setNum()

QString	QString::number	(double	n,	char	f	=	'g',	int	prec	=	6)	[
]

fmt n g

e	-	[-]9.9e[+|-]999
E	-	[-]9.9E[+|-]999
f	-	[-]9.9
g	-	ef
G	-	Ef

prec

				double	d	=	12.34;

				QString	ds	=	QString("'E'	format,	precision	3,	gives	%1")

																	.arg(d,	0,	'E',	3);

				//	ds	==	"1.234E+001"

		

setNum()

QString::operator	const	char	*	()	const

latin1()UnicodeQT_NO_ASCII_CAST operator!()

bool	QString::operator!	()	const

				QString	name	=	getName();

				if	(!name)

								name	=	"Rodney";

		

				QString	name	=	getName();

				if	(name)

								doSomethingWith(name);

		

“operator	const	char*()”UnicodeQT_NO_ASCII_CAST

				QString	name	=	getName();

				if	(!name.isNull())

								doSomethingWith(name);

		

QString	&	QString::operator+=	(const	QString	&	str)

str

QString	&	QString::operator+=	(QChar	c)

c

QString	&	QString::operator+=	(char	c)

c

QString	&	QString::operator=	(QChar	c)

c

QString	&	QString::operator=	(const	QString	&	s)

s

QString	&	QString::operator=	(const	char	*	str)

C str

str0

isNull()

QString	&	QString::operator=	(const	QCString	&	cs)

C cs

QString	&	QString::operator=	(char	c)

c

QChar	QString::operator[]	(int	i)	const

i iQChar::null

QStringconst	QStringconst&const	QString&operator[]

QCharRef	QString::operator[]	(int	i)

i

iQChar::null QCharRef

QCharRef QCharQStringQChar

QString	&	QString::prepend	(const	QString	&	s)

s

insert(0,	s)

				QString	string	=	"42";

				string.prepend("The	answer	is	");

				//	string	==	"The	answer	is	42"

		

insert()

QString	&	QString::prepend	(char	ch)

ch

insert(0,	ch)

insert()

QString	&	QString::prepend	(QChar	ch)

ch

insert(0,	ch)

insert()

QChar	&	QString::ref	(uint	i)

iQCharQChar::null

				QString	string("ABCDEF");

				QChar	ch	=	string.ref(3);									//	ch	==	'D'

		

constref()

QString	&	QString::remove	(uint	index,	uint	len)

indexlen

index index indexlen index

				QString	string("Montreal");

				string.remove(1,	4);						//	string	==	"Meal"

		

insert()replace()

QString	&	QString::replace	(uint	index,	uint	len,
const	QString	&	s)

indexslen

index s	 indexindexlen index s

				QString	string("Say	yes!");

				string	=	string.replace(4,	3,	"NO");

				//	string	==	"Say	NO!"

		

insert()remove()

listviews/listviews.cppnetwork/networkprotocol/nntp.cppqmag/qmag.cpp

QString	&	QString::replace	(uint	index,	uint	len,
const	QChar	*	s,	uint	slen)

indexsslenQCharlen

insert()remove()

QString	&	QString::replace	(const	QRegExp	&	rx,
const	QString	&	str)

strrx

				QString	string	=	"banana";

				string	=	string.replace(QRegExp("an"),	"");	//	string	==	"ba"

		

find()findRev()

QString	QString::right	(uint	len)	const

len

len

				QString	string("Pineapple");

				QString	t	=	string.right(5);			//	t	==	"apple"

		

left() mid()isEmpty()

fileiconview/qfileiconview.cpp

QString	QString::rightJustify	(uint	width,	QChar	fill	=	'	',
bool	truncate	=	FALSE)	const

width fill

truncatewidth

truncatewidthwidth

				QString	string("apple");

				QString	t	=	string.rightJustify(8,	'.');		//	t	==	"...apple"

		

leftJustify()

QString	QString::section	(QChar	sep,	int	start,	int	end	=
0xffffffff,	int	flags	=	SectionDefault)	const

sep startend end start012-1-2

flags SectionFlags

				QString	csv("forename,middlename,surname,phone");

				QString	s	=	csv.section(',',	2,	2);			//	s	==	"surname"

				QString	path("/usr/local/bin/myapp");	//	First	field	is	empty

				QString	s	=	path.section('/',	3,	4);		//	s	==	"bin/myapp"

				QString	s	=	path.section('/',	3,	3,	SectionSkipEmpty);	//	s	==	"myapp"

				

startend-1-2

				QString	csv("forename,middlename,surname,phone");

				QString	s	=	csv.section(',',	-3,	-2);		//	s	==	"middlename,surname"

				QString	path("/usr/local/bin/myapp");	//	First	field	is	empty

				QString	s	=	path.section('/',	-1);	//	s	==	"myapp"

				

QStringList::split()

chart/element.cpp

QString	QString::section	(char	sep,	int	start,	int	end	=	0xffffffff,
int	flags	=	SectionDefault)	const

QString	QString::section	(const	char	*	sep,	int	start,	int	end	=
0xffffffff,	int	flags	=	SectionDefault)	const

QString	QString::section	(const	QString	&	sep,	int	start,	int	end
=	0xffffffff,	int	flags	=	SectionDefault)	const

sep startend end start012-1-2

flags SectionFlags

				QString	data("forename**middlename**surname**phone");

				QString	s	=	data.section("**",	2,	2);	//	s	==	"surname"

				

startend-1-2

				QString	data("forename**middlename**surname**phone");

				QString	s	=	data.section("**",	-3,	-2);	//	s	==	"middlename**surname"

				

QStringList::split()

QString	QString::section	(const	QRegExp	&	reg,	int	start,
int	end	=	0xffffffff,	int	flags	=	SectionDefault)	const

reg startend end start012-1-2

flags SectionFlags

				QString	line("forename\tmiddlename		surname	\t	\t	phone");

				QRegExp	sep("\s+");

				QString	s	=	line.section(sep,	2,	2);	//	s	==	"surname"

				

startend-1-2

				QString	line("forename\tmiddlename		surname	\t	\t	phone");

				QRegExp	sep("\\s+");

				QString	s	=	line.section(sep,	-3,	-2);	//	s	==	"middlename		surname"

				

	QRegExp

QStringList::split()simplifyWhiteSpace()

void	QString::setExpand	(uint	index,	QChar	c)

indexc

Qt	3.xoperator[]

QString	&	QString::setLatin1	(const	char	*	str,	int	len	=	-1)

Latin1C strlen-1strlen(str)

str0 str“”

isNull()isEmpty()

void	QString::setLength	(uint	newLen)

newLen newLen

newLen0

				QString	result;

				int	resultLength	=	0;

				result.setLength(newLen)	//	

				while	(...)	{

								result[resultLength++]	=	...	//	

				}

				result.truncate[resultLength];	//	

		

newLen

truncate() isNull() isEmpty()length()

QString	&	QString::setNum	(long	n,	int	base	=	10)

nnbase

base10236

				QString	string;

				string	=	string.setNum(1234);					//	string	==	"1234"

		

QString	&	QString::setNum	(short	n,	int	base	=	10)

	

base10236

QString	&	QString::setNum	(ushort	n,	int	base	=	10)

	

base10236

QString	&	QString::setNum	(int	n,	int	base	=	10)

	

base10236

QString	&	QString::setNum	(uint	n,	int	base	=	10)

	

base10236

QString	&	QString::setNum	(ulong	n,	int	base	=	10)

	

base10236

QString	&	QString::setNum	(float	n,	char	f	=	'g',	int	prec	=	6)

fprecn

f“f”“F”“e”“E”“g”“G” arg()

QString	&	QString::setNum	(double	n,	char	f	=	'g',	int	prec	=	6)

fprecn

f“f”“F”“e”“E”“g”“G” arg()

QString	&	QString::setUnicode	(const	QChar	*	unicode,	uint	len
)

lenunicode unicode lenlen0

setLatin1()isNull()

QString	&	QString::setUnicodeCodes	(
const	ushort	*	unicode_as_ushorts,	uint	len)

lenunicode_as_ushortsX11

unicode_as_ushorts lenlen0

setLatin1()isNull()

QString	QString::simplifyWhiteSpace	()	const

QChar::isSpace()9TAB10LF11VT12FF13CR
32SpaceUNICODE

				QString	string	=	"		lots\t	of\nwhite				space	";

				QString	t	=	string.simplifyWhiteSpace();

				//	t	==	"lots	of	white	space"

		

stripWhiteSpace()

QString	&	QString::sprintf	(const	char	*	cformat,	...)

cformat

%s utf8() cformatLatin1Unicode arg()Unicode QTextOStream

				QString	str;

				QString	s	=	...;

				int	x	=	...;

				QTextOStream(&str)	<<	s	<<	"	:	"	<<	x;

		

arg()Unicode

arg()

dclock/dclock.cppforever/forever.cpplayout/layout.cppqmag/qmag.cppscrollview/scrollview.cpp
xform/xform.cpp

bool	QString::startsWith	(const	QString	&	s)	const

s

				QString	string("Bananas");

				bool	a	=	string.startsWith("Ban");						//		a	==	TRUE

		

endsWith()

QString	QString::stripWhiteSpace	()	const

QChar::isSpace()9TAB10LF11VT12FF13CR
32SpaceUNICODE

				QString	string	=	"			white	space			";

				QString	s	=	string.stripWhiteSpace();							//	s	==	"white	space"

		

simplifyWhiteSpace()

double	QString::toDouble	(bool	*	ok	=	0)	const

double

*ok ok00 *ok

				QString	string("1234.56");

				double	a	=	string.toDouble();			//	a	==	1234.56

		

number()

float	QString::toFloat	(bool	*	ok	=	0)	const

float

*ok ok00 *ok

number()

int	QString::toInt	(bool	*	ok	=	0,	int	base	=	10)	const

int base10236

*ok ok00 *ok

				QString	str("FF");

				bool	ok;

				int	hex	=	str.toInt(&ok,	16);					//	hex	==	255,	ok	==	TRUE

				int	dec	=	str.toInt(&ok,	10);					//	dec	==	0,	ok	==	FALSE

		

number()

long	QString::toLong	(bool	*	ok	=	0,	int	base	=	10)	const

long base10236

*ok ok00 *ok

number()

short	QString::toShort	(bool	*	ok	=	0,	int	base	=	10)	const

short base10236

*ok ok00 *ok

uint	QString::toUInt	(bool	*	ok	=	0,	int	base	=	10)	const

unsigned	int base10236

*ok ok00 *ok

number()

ulong	QString::toULong	(bool	*	ok	=	0,	int	base	=	10)	const

unsigned	long base10236

*ok ok00 *ok

number()

ushort	QString::toUShort	(bool	*	ok	=	0,	int	base	=	10)	const

unsigned	short base10236

*ok ok00 *ok

void	QString::truncate	(uint	newLen)

newLen newLen

				QString	s	=	"truncate	me";

				s.truncate(5);												//	s	==	"trunc"

		

setLength()

network/mail/smtp.cpp

const	QChar	*	QString::unicode	()	const

Unicode

QString	QString::upper	()	const

				QString	string("TeXt");

				str	=	string.upper();					//	t	==	"TEXT"

		

lower()

scribble/scribble.cppsql/overview/custom1/main.cpp

QCString	QString::utf8	()	const

UTF8

Unicode/ QTextCodec

QString::fromUtf8() local8Bit()latin1()

bool	operator!=	(const	QString	&	s1,	const	QString	&	s2)

s1s2

compare(s1,	s2)	!=	0

bool	operator!=	(const	QString	&	s1,	const	char	*	s2)

s1s2

compare(s1,	s2)	!=	0

bool	operator!=	(const	char	*	s1,	const	QString	&	s2)

s1s2

compare(s1,	s2)	!=	0

const	QString	operator+	(const	QString	&	s1,	const	QString	&	s2
)

s1s2

s1.append(s2)

const	QString	operator+	(const	QString	&	s1,	const	char	*	s2)

s1s2

s1.append(s2)

const	QString	operator+	(const	char	*	s1,	const	QString	&	s2)

s1s2

const	QString	operator+	(const	QString	&	s,	char	c)

sc

s.append(c)

const	QString	operator+	(char	c,	const	QString	&	s)

cs

s.prepend(c)

bool	operator<	(const	QString	&	s1,	const	char	*	s2)

s1s2

compare(s1,	s2)	<	0

bool	operator<	(const	char	*	s1,	const	QString	&	s2)

s1s2

compare(s1,	s2)	<	0

QDataStream	&	operator<<	(QDataStream	&	s,

const	QString	&	str)

strs

QDataStream

bool	operator<=	(const	QString	&	s1,	const	char	*	s2)

s1s2

compare(s1,s2)	<=	0

bool	operator<=	(const	char	*	s1,	const	QString	&	s2)

s1s2

compare(s1,s2)	<=	0

bool	operator==	(const	QString	&	s1,	const	QString	&	s2)

s1s2

compare(s1,	s2)	!=	0

bool	operator==	(const	QString	&	s1,	const	char	*	s2)

s1s2

compare(s1,	s2)	!=	0

bool	operator==	(const	char	*	s1,	const	QString	&	s2)

s1s2

compare(s1,	s2)	!=	0

bool	operator>	(const	QString	&	s1,	const	char	*	s2)

s1s2

compare(s1,	s2)	>	0

bool	operator>	(const	char	*	s1,	const	QString	&	s2)

s1s2

compare(s1,	s2)	>	0

bool	operator>=	(const	QString	&	s1,	const	char	*	s2)

s1s2

compare(s1,	s2)	>=	0

bool	operator>=	(const	char	*	s1,	const	QString	&	s2)

s1s2

compare(s1,	s2)	>=	0

QDataStream	&	operator>>	(QDataStream	&	s,	QString	&	str)

sstr

QDataStream

Qt		©	1995-2002	 Trolltech

http://www.trolltech.com/

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qcolor.h
This	is	the	verbatim	text	of	the	qcolor.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qcolor.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QColor	class

**

**	Created	:	940112

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QCOLOR_H

#define	QCOLOR_H

#ifndef	QT_H

#include	"qwindowdefs.h"

#endif	//	QT_H

const	QRgb		RGB_MASK				=	0x00ffffff;	 	 //	masks	RGB	values

Q_EXPORT	inline	int	qRed(QRgb	rgb)	 	 //	get	red	part	of	RGB

{	return	(int)((rgb	>>	16)	&	0xff);	}

Q_EXPORT	inline	int	qGreen(QRgb	rgb)	 	 //	get	green	part	of	RGB

{	return	(int)((rgb	>>	8)	&	0xff);	}

Q_EXPORT	inline	int	qBlue(QRgb	rgb)	 	 //	get	blue	part	of	RGB

{	return	(int)(rgb	&	0xff);	}

Q_EXPORT	inline	int	qAlpha(QRgb	rgb)	 	 //	get	alpha	part	of	RGBA

{	return	(int)((rgb	>>	24)	&	0xff);	}

Q_EXPORT	inline	QRgb	qRgb(int	r,	int	g,	int	b)//	set	RGB	value

{	return	(0xff	<<	24)	|	((r	&	0xff)	<<	16)	|	((g	&	0xff)	<<	8)	|	(b	&	0xff);	}

Q_EXPORT	inline	QRgb	qRgba(int	r,	int	g,	int	b,	int	a)//	set	RGBA	value

{	return	((a	&	0xff)	<<	24)	|	((r	&	0xff)	<<	16)	|	((g	&	0xff)	<<	8)	|	(b	&	0xff);	}

Q_EXPORT	inline	int	qGray(int	r,	int	g,	int	b)//	convert	R,G,B	to	gray	0..255

{	return	(r*11+g*16+b*5)/32;	}

Q_EXPORT	inline	int	qGray(QRgb	rgb)	 	 //	convert	RGB	to	gray	0..255

{	return	qGray(qRed(rgb),	qGreen(rgb),	qBlue(rgb));	}

class	Q_EXPORT	QColor

{

public:

				enum	Spec	{	Rgb,	Hsv	};

				QColor();

				QColor(int	r,	int	g,	int	b);

				QColor(int	x,	int	y,	int	z,	Spec);

				QColor(QRgb	rgb,	uint	pixel=0xffffffff);

				QColor(const	QString&	name);

				QColor(const	char	*name);

				QColor(const	QColor	&);

				QColor	&operator=(const	QColor	&);

				bool			isValid()	const;

				bool			isDirty()	const;

#ifndef	QT_NO_SPRINTF

				QString	name()	const;

#endif				

				void			setNamedColor(const	QString&	name);

				void			rgb(int	*r,	int	*g,	int	*b)	const;

				QRgb			rgb()				const;

				void			setRgb(int	r,	int	g,	int	b);

				void			setRgb(QRgb	rgb);

				int				red()				const;

				int				green()		const;

				int				blue()			const;

				void			hsv(int	*h,	int	*s,	int	*v)	const;

				void			getHsv(int	&h,	int	&s,	int	&v)	const	{	hsv(&h,	&s,	&v);	}

				void			setHsv(int	h,	int	s,	int	v);

				QColor	light(int	f	=	150)	const;

				QColor	dark(int	f	=	200)	 const;

				bool			operator==(const	QColor	&c)	const;

				bool			operator!=(const	QColor	&c)	const;

				uint			alloc();

				uint			pixel()		const;

				static	int		maxColors();

				static	int		numBitPlanes();

				static	int		enterAllocContext();

				static	void	leaveAllocContext();

				static	int		currentAllocContext();

				static	void	destroyAllocContext(int);

#if	defined(Q_WS_WIN)

				static	const	QRgb*	palette(int*	numEntries	=	0);

				static	int	setPaletteEntries(const	QRgb*	entries,	int	numEntries,

	 	 	 	 		int	base	=	-1);

				static	HPALETTE	hPal()		{	return	hpal;	}

				static	uint	realizePal(QWidget	*);

#endif

				static	void	initialize();

				static	void	cleanup();

				enum	{	Dirt	=	0x44495254,	Invalid	=	0x49000000	};

private:

				void	setSystemNamedColor(const	QString&	name);

				void	setPixel(uint	pixel);

				static	void	initGlobalColors();

				static	uint	argbToPix32(QRgb);

				static	QColor*	globalColors();

				static	bool	color_init;

				static	bool	globals_init;

#if	defined(Q_WS_WIN)

				static	HPALETTE	hpal;

#endif

				static	enum	ColorModel	{	d8,	d32	}	colormodel;

				union	{

	 QRgb	argb;

	 struct	{

	 				QRgb	argb;

	 				uchar	pix;

	 				uchar	invalid;

	 				uchar	dirty;

	 				uchar	direct;

	 }	d8;

	 struct	D32	{

	 				QRgb	argb;

	 				uint	pix;

	 				bool	invalid()	const	{	return	argb	==	QColor::Invalid	&&	pix	==	QColor::Dirt;	}

	 				bool	probablyDirty()	const	{	return	pix	==	QColor::Dirt;	}

	 }	d32;

				}	d;

};

inline	QColor::QColor()

{	d.d32.argb	=	Invalid;	d.d32.pix	=	Dirt;	}

inline	QColor::QColor(int	r,	int	g,	int	b)

{	setRgb(r,	g,	b);	}

inline	QRgb	QColor::rgb()	const

{	return	d.argb;	}

inline	int	QColor::red()	const

{	return	qRed(d.argb);	}

inline	int	QColor::green()	const

{	return	qGreen(d.argb);	}

inline	int	QColor::blue()	const

{	return	qBlue(d.argb);	}

inline	bool	QColor::isValid()	const

{

				if	(colormodel	==	d8)

	 return	!d.d8.invalid;

				else

	 return	!d.d32.invalid();

}

inline	bool	QColor::operator==(const	QColor	&c)	const

{

				return	d.argb	==	c.d.argb	&&	isValid()	==	c.isValid();

}

inline	bool	QColor::operator!=(const	QColor	&c)	const

{

				return	!operator==(c);

}

/***

		QColor	stream	functions

	***/

#ifndef	QT_NO_DATASTREAM

Q_EXPORT	QDataStream	&operator<<(QDataStream	&,	const	QColor	&);

Q_EXPORT	QDataStream	&operator>>(QDataStream	&,	QColor	&);

#endif

#endif	//	QCOLOR_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qnamespace.h
This	is	the	verbatim	text	of	the	qnamespace.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	Id

**

**	Definition	of	Qt	namespace	(as	class	for	compiler	compatibility)

**

**	Created	:	980927

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QNAMESPACE_H

#define	QNAMESPACE_H

#ifndef	QT_H

#include	"qglobal.h"

#endif	//	QT_H

class	QColor;

class	QCursor;

class	Q_EXPORT	Qt	{

public:

				QT_STATIC_CONST	QColor	&	color0;

				QT_STATIC_CONST	QColor	&	color1;

				QT_STATIC_CONST	QColor	&	black;

				QT_STATIC_CONST	QColor	&	white;

				QT_STATIC_CONST	QColor	&	darkGray;

				QT_STATIC_CONST	QColor	&	gray;

				QT_STATIC_CONST	QColor	&	lightGray;

				QT_STATIC_CONST	QColor	&	red;

				QT_STATIC_CONST	QColor	&	green;

				QT_STATIC_CONST	QColor	&	blue;

				QT_STATIC_CONST	QColor	&	cyan;

				QT_STATIC_CONST	QColor	&	magenta;

				QT_STATIC_CONST	QColor	&	yellow;

				QT_STATIC_CONST	QColor	&	darkRed;

				QT_STATIC_CONST	QColor	&	darkGreen;

				QT_STATIC_CONST	QColor	&	darkBlue;

				QT_STATIC_CONST	QColor	&	darkCyan;

				QT_STATIC_CONST	QColor	&	darkMagenta;

				QT_STATIC_CONST	QColor	&	darkYellow;

				//	documented	in	qevent.cpp

				enum	ButtonState	{	 	 	 	 //	mouse/keyboard	state	values

	 NoButton	 =	0x0000,

	 LeftButton	 =	0x0001,

	 RightButton	 =	0x0002,

	 MidButton	 =	0x0004,

	 MouseButtonMask	=	0x00ff,

	 ShiftButton	 =	0x0100,

	 ControlButton			=	0x0200,

	 AltButton	 =	0x0400,

	 MetaButton	 =	0x0800,

	 KeyButtonMask	 =	0x0fff,

	 Keypad	 	 =	0x4000

				};

				//	documented	in	qobject.cpp

				//	ideally	would	start	at	1,	as	in	QSizePolicy,	but	that	breaks	other	things

				enum	Orientation	{

								Horizontal	=	0,

	 Vertical

				};

				//	Text	formatting	flags	for	QPainter::drawText	and	QLabel

				//	the	following	four	enums	can	be	combined	to	one	integer	which

				//	is	passed	as	textflag	to	drawText	and	qt_format_text.

				//	documented	in	qpainter.cpp

				enum	AlignmentFlags	{

	 AlignAuto	 	 =	0x0000,		 //	text	alignment

	 AlignLeft	 	 =	0x0001,

	 AlignRight	 	 =	0x0002,

	 AlignHCenter	 	 =	0x0004,

	 AlignJustify	 	 =	0x0008,

	 AlignHorizontal_Mask	 =	AlignLeft	|	AlignRight	|	AlignHCenter	|	AlignJustify,

	 AlignTop	 	 =	0x0010,

	 AlignBottom	 	 =	0x0020,

	 AlignVCenter	 	 =	0x0040,

	 AlignVertical_Mask		 =	AlignTop	|	AlignBottom	|	AlignVCenter,

	 AlignCenter	 	 =	AlignVCenter	|	AlignHCenter

				};

				//	documented	in	qpainter.cpp

				enum	TextFlags	{

	 SingleLine	 =	0x0080,	 	 //	misc.	flags

	 DontClip	 =	0x0100,

	 ExpandTabs	 =	0x0200,

	 ShowPrefix	 =	0x0400,

	 WordBreak	 =	0x0800,

	 BreakAnywhere	=	0x1000,

	 DontPrint	 =	0x2000,	 	 //	internal

	 NoAccel	=	0x4000

				};

				//	Widget	flags;	documented	in	qwidget.cpp

				typedef	uint	WState;

				//	QWidget	state	flags	(internal,	barely	documented	in	qwidget.cpp)

				enum	WidgetState	{

	 WState_Created	 	 =	0x00000001,

	 WState_Disabled		 =	0x00000002,

	 WState_Visible	 	 =	0x00000004,

	 WState_ForceHide	 =	0x00000008,

	 WState_OwnCursor	 =	0x00000010,

	 WState_MouseTracking	 =	0x00000020,

	 WState_CompressKeys	 =	0x00000040,

	 WState_BlockUpdates	 =	0x00000080,

	 WState_InPaintEvent	 =	0x00000100,

	 WState_Reparented	 =	0x00000200,

	 WState_ConfigPending	 =	0x00000400,

	 WState_Resized	 	 =	0x00000800,

	 WState_AutoMask		 =	0x00001000,

	 WState_Polished		 =	0x00002000,

	 WState_DND	 	 =	0x00004000,

	 WState_Reserved0	 =	0x00008000,

	 WState_Reserved1	 =	0x00010000,

	 WState_Reserved2	 =	0x00020000,

	 WState_Reserved3	 =	0x00040000,

	 WState_Maximized	 =	0x00080000,

	 WState_Minimized	 =	0x00100000,

	 WState_ForceDisabled	 =	0x00200000,

	 WState_Exposed	 	 =	0x00400000,

	 WState_HasMouse		 =	0x00800000

				};

				//	Widget	flags2;	documented	in	qwidget.cpp

				typedef	uint	WFlags;

				//	documented	in	qwidget.cpp

				enum	WidgetFlags	{

	 WType_TopLevel	 	 =	0x00000001,	 //	widget	type	flags

	 WType_Dialog	 	 =	0x00000002,

	 WType_Popup	 	 =	0x00000004,

	 WType_Desktop	 	 =	0x00000008,

	 WType_Mask	 	 =	0x0000000f,

	 WStyle_Customize	 =	0x00000010,	 //	window	style	flags

	 WStyle_NormalBorder	 =	0x00000020,

	 WStyle_DialogBorder	 =	0x00000040,	//	MS-Windows	only

	 WStyle_NoBorder		 =	0x00002000,

	 WStyle_Title	 	 =	0x00000080,

	 WStyle_SysMenu	 	 =	0x00000100,

	 WStyle_Minimize		 =	0x00000200,

	 WStyle_Maximize		 =	0x00000400,

	 WStyle_MinMax	 	 =	WStyle_Minimize	|	WStyle_Maximize,

	 WStyle_Tool	 	 =	0x00000800,

	 WStyle_StaysOnTop	 =	0x00001000,

	 WStyle_ContextHelp	 =	0x00004000,

	 WStyle_Reserved		 =	0x00008000,

	 WStyle_Mask	 	 =	0x0000fff0,

	 WDestructiveClose	 =	0x00010000,	 //	misc	flags

	 WPaintDesktop	 	 =	0x00020000,

	 WPaintUnclipped		 =	0x00040000,

	 WPaintClever	 	 =	0x00080000,

	 WResizeNoErase	 	 =	0x00100000,

	 WMouseNoMask	 	 =	0x00200000,

	 WStaticContents		 =	0x00400000,

	 WRepaintNoErase		 =	0x00800000,

#ifdef	Q_WS_X11

	 WX11BypassWM	 	 =	0x01000000,

	 WWinOwnDC	 	 =	0x00000000,

#else

	 WX11BypassWM	 	 =	0x00000000,

	 WWinOwnDC	 	 =	0x01000000,

#endif

	 WGroupLeader		 	 =	0x02000000,

	 WShowModal		 								=	0x04000000,

	 WNoMousePropagation	 =	0x08000000,

	 WSubWindow														=	0x10000000

#ifndef	QT_NO_COMPAT

	 ,

	 WNorthWestGravity	 =	WStaticContents,

	 WType_Modal	 	 =	WType_Dialog	|	WShowModal,

	 WStyle_Dialog		 	 =	WType_Dialog,

	 WStyle_NoBorderEx	 =	WStyle_NoBorder

#endif

				};

				//	Image	conversion	flags.		The	unusual	ordering	is	caused	by

				//	compatibility	and	default	requirements.

				//	Documented	in	qimage.cpp

				enum	ImageConversionFlags	{

	 ColorMode_Mask	 	 =	0x00000003,

	 AutoColor	 	 =	0x00000000,

	 ColorOnly	 	 =	0x00000003,

	 MonoOnly	 	 =	0x00000002,

	 //	 		Reserved	 =	0x00000001,

	 AlphaDither_Mask	 =	0x0000000c,

	 ThresholdAlphaDither	 =	0x00000000,

	 OrderedAlphaDither	 =	0x00000004,

	 DiffuseAlphaDither	 =	0x00000008,

	 NoAlpha		 	 =	0x0000000c,	//	Not	supported

	 Dither_Mask	 	 =	0x00000030,

	 DiffuseDither	 	 =	0x00000000,

	 OrderedDither	 	 =	0x00000010,

	 ThresholdDither		 =	0x00000020,

	 //	 		ReservedDither=	0x00000030,

	 DitherMode_Mask		 =	0x000000c0,

	 AutoDither	 	 =	0x00000000,

	 PreferDither	 	 =	0x00000040,

	 AvoidDither	 	 =	0x00000080

				};

				//	documented	in	qpainter.cpp

				enum	BGMode	{	 	 	 	 //	background	mode

	 TransparentMode,

	 OpaqueMode

				};

#ifndef	QT_NO_COMPAT

				//	documented	in	qpainter.cpp

				enum	PaintUnit	{	 	 	 	 //	paint	unit

	 PixelUnit,

	 LoMetricUnit,	//	OBSOLETE

	 HiMetricUnit,	//	OBSOLETE

	 LoEnglishUnit,	//	OBSOLETE

	 HiEnglishUnit,	//	OBSOLETE

	 TwipsUnit	//	OBSOLETE

				};

#endif

				//	documented	in	qstyle.cpp

#ifdef	QT_NO_COMPAT

				enum	GUIStyle	{

	 WindowsStyle	=	1,					//	###	Qt	4.0:	either	remove	the	obsolete	enums	or	clean	up	compat	vs.

	 MotifStyle	=	4								//	###	QT_NO_COMPAT	by	reordering	or	combination	into	one	enum.

				};

#else

				enum	GUIStyle	{

	 MacStyle,	//	OBSOLETE

	 WindowsStyle,

	 Win3Style,	//	OBSOLETE

	 PMStyle,	//	OBSOLETE

	 MotifStyle

				};

#endif

				//	documented	in	qevent.cpp

				enum	Modifier	{	 	 //	accelerator	modifiers

	 SHIFT									=	0x00200000,

	 CTRL										=	0x00400000,

	 ALT											=	0x00800000,

	 MODIFIER_MASK	=	0x00e00000,

	 UNICODE_ACCEL	=	0x10000000,

	 ASCII_ACCEL	=	UNICODE_ACCEL	//	1.x	compat

				};

				//	documented	in	qevent.cpp

				enum	Key	{

	 Key_Escape	=	0x1000,	 	 //	misc	keys

	 Key_Tab	=	0x1001,

	 Key_Backtab	=	0x1002,	Key_BackTab	=	Key_Backtab,

	 Key_Backspace	=	0x1003,	Key_BackSpace	=	Key_Backspace,

	 Key_Return	=	0x1004,

	 Key_Enter	=	0x1005,

	 Key_Insert	=	0x1006,

	 Key_Delete	=	0x1007,

	 Key_Pause	=	0x1008,

	 Key_Print	=	0x1009,

	 Key_SysReq	=	0x100a,

	 Key_Home	=	0x1010,	 	 //	cursor	movement

	 Key_End	=	0x1011,

	 Key_Left	=	0x1012,

	 Key_Up	=	0x1013,

	 Key_Right	=	0x1014,

	 Key_Down	=	0x1015,

	 Key_Prior	=	0x1016,	Key_PageUp	=	Key_Prior,

	 Key_Next	=	0x1017,	Key_PageDown	=	Key_Next,

	 Key_Shift	=	0x1020,	 	 //	modifiers

	 Key_Control	=	0x1021,

	 Key_Meta	=	0x1022,

	 Key_Alt	=	0x1023,

	 Key_CapsLock	=	0x1024,

	 Key_NumLock	=	0x1025,

	 Key_ScrollLock	=	0x1026,

	 Key_F1	=	0x1030,	 	 //	function	keys

	 Key_F2	=	0x1031,

	 Key_F3	=	0x1032,

	 Key_F4	=	0x1033,

	 Key_F5	=	0x1034,

	 Key_F6	=	0x1035,

	 Key_F7	=	0x1036,

	 Key_F8	=	0x1037,

	 Key_F9	=	0x1038,

	 Key_F10	=	0x1039,

	 Key_F11	=	0x103a,

	 Key_F12	=	0x103b,

	 Key_F13	=	0x103c,

	 Key_F14	=	0x103d,

	 Key_F15	=	0x103e,

	 Key_F16	=	0x103f,

	 Key_F17	=	0x1040,

	 Key_F18	=	0x1041,

	 Key_F19	=	0x1042,

	 Key_F20	=	0x1043,

	 Key_F21	=	0x1044,

	 Key_F22	=	0x1045,

	 Key_F23	=	0x1046,

	 Key_F24	=	0x1047,

	 Key_F25	=	0x1048,	 	 //	F25	..	F35	only	on	X11

	 Key_F26	=	0x1049,

	 Key_F27	=	0x104a,

	 Key_F28	=	0x104b,

	 Key_F29	=	0x104c,

	 Key_F30	=	0x104d,

	 Key_F31	=	0x104e,

	 Key_F32	=	0x104f,

	 Key_F33	=	0x1050,

	 Key_F34	=	0x1051,

	 Key_F35	=	0x1052,

	 Key_Super_L	=	0x1053,		 	 //	extra	keys

	 Key_Super_R	=	0x1054,

	 Key_Menu	=	0x1055,

	 Key_Hyper_L	=	0x1056,

	 Key_Hyper_R	=	0x1057,

	 Key_Help	=	0x1058,

	 Key_Direction_L	=	0x1059,

	 Key_Direction_R	=	0x1060,

	 Key_Space	=	0x20,	 	 //	7	bit	printable	ASCII

	 Key_Any	=	Key_Space,

	 Key_Exclam	=	0x21,

	 Key_QuoteDbl	=	0x22,

	 Key_NumberSign	=	0x23,

	 Key_Dollar	=	0x24,

	 Key_Percent	=	0x25,

	 Key_Ampersand	=	0x26,

	 Key_Apostrophe	=	0x27,

	 Key_ParenLeft	=	0x28,

	 Key_ParenRight	=	0x29,

	 Key_Asterisk	=	0x2a,

	 Key_Plus	=	0x2b,

	 Key_Comma	=	0x2c,

	 Key_Minus	=	0x2d,

	 Key_Period	=	0x2e,

	 Key_Slash	=	0x2f,

	 Key_0	=	0x30,

	 Key_1	=	0x31,

	 Key_2	=	0x32,

	 Key_3	=	0x33,

	 Key_4	=	0x34,

	 Key_5	=	0x35,

	 Key_6	=	0x36,

	 Key_7	=	0x37,

	 Key_8	=	0x38,

	 Key_9	=	0x39,

	 Key_Colon	=	0x3a,

	 Key_Semicolon	=	0x3b,

	 Key_Less	=	0x3c,

	 Key_Equal	=	0x3d,

	 Key_Greater	=	0x3e,

	 Key_Question	=	0x3f,

	 Key_At	=	0x40,

	 Key_A	=	0x41,

	 Key_B	=	0x42,

	 Key_C	=	0x43,

	 Key_D	=	0x44,

	 Key_E	=	0x45,

	 Key_F	=	0x46,

	 Key_G	=	0x47,

	 Key_H	=	0x48,

	 Key_I	=	0x49,

	 Key_J	=	0x4a,

	 Key_K	=	0x4b,

	 Key_L	=	0x4c,

	 Key_M	=	0x4d,

	 Key_N	=	0x4e,

	 Key_O	=	0x4f,

	 Key_P	=	0x50,

	 Key_Q	=	0x51,

	 Key_R	=	0x52,

	 Key_S	=	0x53,

	 Key_T	=	0x54,

	 Key_U	=	0x55,

	 Key_V	=	0x56,

	 Key_W	=	0x57,

	 Key_X	=	0x58,

	 Key_Y	=	0x59,

	 Key_Z	=	0x5a,

	 Key_BracketLeft	=	0x5b,

	 Key_Backslash	=	0x5c,

	 Key_BracketRight	=	0x5d,

	 Key_AsciiCircum	=	0x5e,

	 Key_Underscore	=	0x5f,

	 Key_QuoteLeft	=	0x60,

	 Key_BraceLeft	=	0x7b,

	 Key_Bar	=	0x7c,

	 Key_BraceRight	=	0x7d,

	 Key_AsciiTilde	=	0x7e,

	 //	Latin	1	codes	adapted	from	X:	keysymdef.h,v	1.21	94/08/28	16:17:06

	 Key_nobreakspace	=	0x0a0,

	 Key_exclamdown	=	0x0a1,

	 Key_cent	=	0x0a2,

	 Key_sterling	=	0x0a3,

	 Key_currency	=	0x0a4,

	 Key_yen	=	0x0a5,

	 Key_brokenbar	=	0x0a6,

	 Key_section	=	0x0a7,

	 Key_diaeresis	=	0x0a8,

	 Key_copyright	=	0x0a9,

	 Key_ordfeminine	=	0x0aa,

	 Key_guillemotleft	=	0x0ab,	 //	left	angle	quotation	mark

	 Key_notsign	=	0x0ac,

	 Key_hyphen	=	0x0ad,

	 Key_registered	=	0x0ae,

	 Key_macron	=	0x0af,

	 Key_degree	=	0x0b0,

	 Key_plusminus	=	0x0b1,

	 Key_twosuperior	=	0x0b2,

	 Key_threesuperior	=	0x0b3,

	 Key_acute	=	0x0b4,

	 Key_mu	=	0x0b5,

	 Key_paragraph	=	0x0b6,

	 Key_periodcentered	=	0x0b7,

	 Key_cedilla	=	0x0b8,

	 Key_onesuperior	=	0x0b9,

	 Key_masculine	=	0x0ba,

	 Key_guillemotright	=	0x0bb,	 //	right	angle	quotation	mark

	 Key_onequarter	=	0x0bc,

	 Key_onehalf	=	0x0bd,

	 Key_threequarters	=	0x0be,

	 Key_questiondown	=	0x0bf,

	 Key_Agrave	=	0x0c0,

	 Key_Aacute	=	0x0c1,

	 Key_Acircumflex	=	0x0c2,

	 Key_Atilde	=	0x0c3,

	 Key_Adiaeresis	=	0x0c4,

	 Key_Aring	=	0x0c5,

	 Key_AE	=	0x0c6,

	 Key_Ccedilla	=	0x0c7,

	 Key_Egrave	=	0x0c8,

	 Key_Eacute	=	0x0c9,

	 Key_Ecircumflex	=	0x0ca,

	 Key_Ediaeresis	=	0x0cb,

	 Key_Igrave	=	0x0cc,

	 Key_Iacute	=	0x0cd,

	 Key_Icircumflex	=	0x0ce,

	 Key_Idiaeresis	=	0x0cf,

	 Key_ETH	=	0x0d0,

	 Key_Ntilde	=	0x0d1,

	 Key_Ograve	=	0x0d2,

	 Key_Oacute	=	0x0d3,

	 Key_Ocircumflex	=	0x0d4,

	 Key_Otilde	=	0x0d5,

	 Key_Odiaeresis	=	0x0d6,

	 Key_multiply	=	0x0d7,

	 Key_Ooblique	=	0x0d8,

	 Key_Ugrave	=	0x0d9,

	 Key_Uacute	=	0x0da,

	 Key_Ucircumflex	=	0x0db,

	 Key_Udiaeresis	=	0x0dc,

	 Key_Yacute	=	0x0dd,

	 Key_THORN	=	0x0de,

	 Key_ssharp	=	0x0df,

	 Key_agrave	=	0x0e0,

	 Key_aacute	=	0x0e1,

	 Key_acircumflex	=	0x0e2,

	 Key_atilde	=	0x0e3,

	 Key_adiaeresis	=	0x0e4,

	 Key_aring	=	0x0e5,

	 Key_ae	=	0x0e6,

	 Key_ccedilla	=	0x0e7,

	 Key_egrave	=	0x0e8,

	 Key_eacute	=	0x0e9,

	 Key_ecircumflex	=	0x0ea,

	 Key_ediaeresis	=	0x0eb,

	 Key_igrave	=	0x0ec,

	 Key_iacute	=	0x0ed,

	 Key_icircumflex	=	0x0ee,

	 Key_idiaeresis	=	0x0ef,

	 Key_eth	=	0x0f0,

	 Key_ntilde	=	0x0f1,

	 Key_ograve	=	0x0f2,

	 Key_oacute	=	0x0f3,

	 Key_ocircumflex	=	0x0f4,

	 Key_otilde	=	0x0f5,

	 Key_odiaeresis	=	0x0f6,

	 Key_division	=	0x0f7,

	 Key_oslash	=	0x0f8,

	 Key_ugrave	=	0x0f9,

	 Key_uacute	=	0x0fa,

	 Key_ucircumflex	=	0x0fb,

	 Key_udiaeresis	=	0x0fc,

	 Key_yacute	=	0x0fd,

	 Key_thorn	=	0x0fe,

	 Key_ydiaeresis	=	0x0ff,

	 Key_unknown	=	0xffff

				};

				//	documented	in	qcommonstyle.cpp

				enum	ArrowType	{

	 UpArrow,

	 DownArrow,

	 LeftArrow,

	 RightArrow

				};

				//	documented	in	qpainter.cpp

				enum	RasterOp	{	//	raster	op	mode

	 CopyROP,

	 OrROP,

	 XorROP,

	 NotAndROP,	EraseROP=NotAndROP,

	 NotCopyROP,

	 NotOrROP,

	 NotXorROP,

	 AndROP,	NotEraseROP=AndROP,

	 NotROP,

	 ClearROP,

	 SetROP,

	 NopROP,

	 AndNotROP,

	 OrNotROP,

	 NandROP,

	 NorROP,	LastROP=NorROP

				};

				//	documented	in	qpainter.cpp

				enum	PenStyle	{	//	pen	style

	 NoPen,

	 SolidLine,

	 DashLine,

	 DotLine,

	 DashDotLine,

	 DashDotDotLine,

	 MPenStyle	=	0x0f

				};

				//	documented	in	qpainter.cpp

				enum	PenCapStyle	{	//	line	endcap	style

	 FlatCap	=	0x00,

	 SquareCap	=	0x10,

	 RoundCap	=	0x20,

	 MPenCapStyle	=	0x30

				};

				//	documented	in	qpainter.cpp

				enum	PenJoinStyle	{	//	line	join	style

	 MiterJoin	=	0x00,

	 BevelJoin	=	0x40,

	 RoundJoin	=	0x80,

	 MPenJoinStyle	=	0xc0

				};

				//	documented	in	qpainter.cpp

				enum	BrushStyle	{	//	brush	style

	 NoBrush,

	 SolidPattern,

	 Dense1Pattern,

	 Dense2Pattern,

	 Dense3Pattern,

	 Dense4Pattern,

	 Dense5Pattern,

	 Dense6Pattern,

	 Dense7Pattern,

	 HorPattern,

	 VerPattern,

	 CrossPattern,

	 BDiagPattern,

	 FDiagPattern,

	 DiagCrossPattern,

	 CustomPattern=24

				};

				//	documented	in	qapplication_win.cpp

				enum	WindowsVersion	{

	 WV_32s			 =	0x0001,

	 WV_95		 	 =	0x0002,

	 WV_98	 	 =	0x0003,

	 WV_Me	 	 =	0x0004,

	 WV_DOS_based	 =	0x000f,

	 WV_NT		 	 =	0x0010,

	 WV_2000		 =	0x0020,

	 WV_XP	 	 =	0x0030,

	 WV_NT_based	 =	0x00f0

				};

				//	documented	in	qstyle.cpp

				enum	UIEffect	{

	 UI_General,

	 UI_AnimateMenu,

	 UI_FadeMenu,

	 UI_AnimateCombo,

	 UI_AnimateTooltip,

	 UI_FadeTooltip

				};

				//	documented	in	qcursor.cpp

				enum	CursorShape	{

	 ArrowCursor,

	 UpArrowCursor,

	 CrossCursor,

	 WaitCursor,

	 IbeamCursor,

	 SizeVerCursor,

	 SizeHorCursor,

	 SizeBDiagCursor,

	 SizeFDiagCursor,

	 SizeAllCursor,

	 BlankCursor,

	 SplitVCursor,

	 SplitHCursor,

	 PointingHandCursor,

	 ForbiddenCursor,

	 WhatsThisCursor,

	 LastCursor	 =	WhatsThisCursor,

	 BitmapCursor	 =	24

				};

				//	Global	cursors

				QT_STATIC_CONST	QCursor	&	arrowCursor;	 //	standard	arrow	cursor

				QT_STATIC_CONST	QCursor	&	upArrowCursor;	 //	upwards	arrow

				QT_STATIC_CONST	QCursor	&	crossCursor;	 //	crosshair

				QT_STATIC_CONST	QCursor	&	waitCursor;	 //	hourglass/watch

				QT_STATIC_CONST	QCursor	&	ibeamCursor;	 //	ibeam/text	entry

				QT_STATIC_CONST	QCursor	&	sizeVerCursor;	 //	vertical	resize

				QT_STATIC_CONST	QCursor	&	sizeHorCursor;	 //	horizontal	resize

				QT_STATIC_CONST	QCursor	&	sizeBDiagCursor;	 //	diagonal	resize	(/)

				QT_STATIC_CONST	QCursor	&	sizeFDiagCursor;	 //	diagonal	resize	(\)

				QT_STATIC_CONST	QCursor	&	sizeAllCursor;	 //	all	directions	resize

				QT_STATIC_CONST	QCursor	&	blankCursor;	 //	blank/invisible	cursor

				QT_STATIC_CONST	QCursor	&	splitVCursor;	 //	vertical	bar	with	left-right

	 	 	 	 	 	 //	arrows

				QT_STATIC_CONST	QCursor	&	splitHCursor;	 //	horizontal	bar	with	up-down

	 	 	 	 	 	 //	arrows

				QT_STATIC_CONST	QCursor	&	pointingHandCursor;	 //	pointing	hand

				QT_STATIC_CONST	QCursor	&	forbiddenCursor;	 //	forbidden	cursor	(slashed	circle)

				QT_STATIC_CONST	QCursor	&	whatsThisCursor;		//	arrow	with	a	question	mark

				enum	TextFormat	{

	 PlainText,

	 RichText,

	 AutoText

				};

				//	Documented	in	qmainwindow.cpp

				enum	Dock	{

	 DockUnmanaged,

	 DockTornOff,

	 DockTop,

	 DockBottom,

	 DockRight,

	 DockLeft,

	 DockMinimized

#ifndef	QT_NO_COMPAT

								,

	 Unmanaged	=	DockUnmanaged,

	 TornOff	=	DockTornOff,

	 Top	=	DockTop,

	 Bottom	=	DockBottom,

	 Right	=	DockRight,

	 Left	=	DockLeft,

	 Minimized	=	DockMinimized

#endif

				};

				//	compatibility

				typedef	Dock	ToolBarDock;

				//	documented	in	qdatetime.cpp

				enum	DateFormat	{

	 TextDate,						//	default	Qt

	 ISODate,							//	ISO	8601

	 LocalDate						//	locale	dependant

				};

				//	documented	in	qwidget.cpp

				enum	BackgroundMode	{

	 FixedColor,

	 FixedPixmap,

	 NoBackground,

	 PaletteForeground,

	 PaletteButton,

	 PaletteLight,

	 PaletteMidlight,

	 PaletteDark,

	 PaletteMid,

	 PaletteText,

	 PaletteBrightText,

	 PaletteBase,

	 PaletteBackground,

	 PaletteShadow,

	 PaletteHighlight,

	 PaletteHighlightedText,

	 PaletteButtonText,

	 PaletteLink,

	 PaletteLinkVisited,

	 X11ParentRelative

				};

				typedef	uint	ComparisonFlags;

				//	Documented	in	qstring.cpp

				enum	StringComparisonMode	{

								CaseSensitive			=	0x00001,	//	0	0001

								BeginsWith						=	0x00002,	//	0	0010

								EndsWith								=	0x00004,	//	0	0100

								Contains								=	0x00008,	//	0	1000

								ExactMatch						=	0x00010		//	1	0000

				};

				//	"handle"	type	for	system	objects.	Documented	as	\internal	in

				//	qapplication.cpp

#if	defined(Q_WS_MAC)

				typedef	void	*	HANDLE;

#elif	defined(Q_WS_WIN)

				typedef	void	*HANDLE;

#elif	defined(Q_WS_X11)

				typedef	unsigned	long	HANDLE;

#elif	defined(Q_WS_QWS)

				typedef	void	*	HANDLE;

#endif

};

class	Q_EXPORT	QInternal	{

public:

				enum	PaintDeviceFlags	{

	 UndefinedDevice	=	0x00,

	 Widget	=	0x01,

	 Pixmap	=	0x02,

	 Printer	=	0x03,

	 Picture	=	0x04,

	 System	=	0x05,

	 DeviceTypeMask	=	0x0f,

	 ExternalDevice	=	0x10,

	 //	used	to	emulate	some	of	the	behaviour	different	between	Qt2	and	Qt3	(mainly	for	printing)

	 CompatibilityMode	=	0x20

				};

};

#endif	//	QNAMESPACE_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qstring.h
qstring.hTrolltech

/**

**	Id

**

**	Definition	of	the	QString	class,	and	related	Unicode

**	functions.

**

**	Created	:	920609

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	tools	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QSTRING_H

#define	QSTRING_H

#ifndef	QT_H

#include	"qcstring.h"

#endif	//	QT_H

/***

		QString	class

	***/

class	QRegExp;

class	QString;

class	QCharRef;

class	Q_EXPORT	QChar	{

public:

				QChar();

				QChar(char	c);

				QChar(uchar	c);

				QChar(uchar	c,	uchar	r);

				QChar(const	QChar&	c);

				QChar(ushort	rc);

				QChar(short	rc);

				QChar(uint	rc);

				QChar(int	rc);

				QT_STATIC_CONST	QChar	null;												//	0000

				QT_STATIC_CONST	QChar	replacement;					//	FFFD

				QT_STATIC_CONST	QChar	byteOrderMark;					//	FEFF

				QT_STATIC_CONST	QChar	byteOrderSwapped;					//	FFFE

				QT_STATIC_CONST	QChar	nbsp;												//	00A0

				//	Unicode	information

				enum	Category

				{

								NoCategory,

								Mark_NonSpacing,										//			Mn

								Mark_SpacingCombining,				//			Mc

								Mark_Enclosing,											//			Me

								Number_DecimalDigit,						//			Nd

								Number_Letter,												//			Nl

								Number_Other,													//			No

								Separator_Space,										//			Zs

								Separator_Line,											//			Zl

								Separator_Paragraph,						//			Zp

								Other_Control,												//			Cc

								Other_Format,													//			Cf

								Other_Surrogate,										//			Cs

								Other_PrivateUse,									//			Co

								Other_NotAssigned,								//			Cn

								Letter_Uppercase,									//			Lu

								Letter_Lowercase,									//			Ll

								Letter_Titlecase,									//			Lt

								Letter_Modifier,										//			Lm

								Letter_Other,													//			Lo

								Punctuation_Connector,				//			Pc

								Punctuation_Dash,									//			Pd

								Punctuation_Dask	=	Punctuation_Dash,	//	oops

								Punctuation_Open,									//			Ps

								Punctuation_Close,								//			Pe

								Punctuation_InitialQuote,	//			Pi

								Punctuation_FinalQuote,			//			Pf

								Punctuation_Other,								//			Po

								Symbol_Math,														//			Sm

								Symbol_Currency,										//			Sc

								Symbol_Modifier,										//			Sk

								Symbol_Other														//			So

				};

				enum	Direction

				{

								DirL,	DirR,	DirEN,	DirES,	DirET,	DirAN,	DirCS,	DirB,	DirS,	DirWS,	DirON,

								DirLRE,	DirLRO,	DirAL,	DirRLE,	DirRLO,	DirPDF,	DirNSM,	DirBN

				};

				enum	Decomposition

				{

								Single,	Canonical,	Font,	NoBreak,	Initial,	Medial,

								Final,	Isolated,	Circle,	Super,	Sub,	Vertical,

								Wide,	Narrow,	Small,	Square,	Compat,	Fraction

				};

				enum	Joining

				{

								OtherJoining,	Dual,	Right,	Center

				};

				enum	CombiningClass

				{

								Combining_BelowLeftAttached							=	200,

								Combining_BelowAttached											=	202,

								Combining_BelowRightAttached						=	204,

								Combining_LeftAttached												=	208,

								Combining_RightAttached											=	210,

								Combining_AboveLeftAttached							=	212,

								Combining_AboveAttached											=	214,

								Combining_AboveRightAttached						=	216,

								Combining_BelowLeft															=	218,

								Combining_Below																			=	220,

								Combining_BelowRight														=	222,

								Combining_Left																				=	224,

								Combining_Right																			=	226,

								Combining_AboveLeft															=	228,

								Combining_Above																			=	230,

								Combining_AboveRight														=	232,

								Combining_DoubleBelow													=	233,

								Combining_DoubleAbove													=	234,

								Combining_IotaSubscript											=	240

				};

				//	******	WHEN	ADDING	FUNCTIONS,	CONSIDER	ADDING	TO	QCharRef	TOO

				int	digitValue()	const;

				QChar	lower()	const;

				QChar	upper()	const;

				Category	category()	const;

				Direction	direction()	const;

				Joining	joining()	const;

				bool	mirrored()	const;

				QChar	mirroredChar()	const;

				const	QString	&decomposition()	const;

				Decomposition	decompositionTag()	const;

				unsigned	char	combiningClass()	const;

				char	latin1()	const	{	return	ucs	>	0xff	?	0	:	(char)	ucs;	}

				ushort	unicode()	const	{	return	ucs;	}

				ushort	&unicode()	{	return	ucs;	}

#ifndef	QT_NO_CAST_ASCII

				//	like	all	ifdef'd	code	this	is	undocumented

				operator	char()	const	{	return	latin1();	}

#endif

				bool	isNull()	const	{	return	unicode()==0;	}

				bool	isPrint()	const;

				bool	isPunct()	const;

				bool	isSpace()	const;

				bool	isMark()	const;

				bool	isLetter()	const;

				bool	isNumber()	const;

				bool	isLetterOrNumber()	const;

				bool	isDigit()	const;

				bool	isSymbol()	const;

				uchar	cell()	const	{	return	((uchar)	ucs	&	0xff);	}

				uchar	row()	const	{	return	((uchar)	(ucs>>8)&0xff);	}

				void	setCell(uchar	cell)	{	ucs	=	(ucs	&	0xff00)	+	cell;	}

				void	setRow(uchar	row)	{	ucs	=	(((ushort)	row)<<8)	+	(ucs&0xff);	}

				static	bool	networkOrdered()	{

	 int	wordSize;

	 bool	bigEndian	=	FALSE;

	 qSysInfo(&wordSize,	&bigEndian);

	 return	bigEndian;

				}

				friend	inline	bool	operator==(char	ch,	QChar	c);

				friend	inline	bool	operator==(QChar	c,	char	ch);

				friend	inline	bool	operator==(QChar	c1,	QChar	c2);

				friend	inline	bool	operator!=(QChar	c1,	QChar	c2);

				friend	inline	bool	operator!=(char	ch,	QChar	c);

				friend	inline	bool	operator!=(QChar	c,	char	ch);

				friend	inline	bool	operator<=(QChar	c,	char	ch);

				friend	inline	bool	operator<=(char	ch,	QChar	c);

				friend	inline	bool	operator<=(QChar	c1,	QChar	c2);

private:

				ushort	ucs;

#if	defined(QT_QSTRING_UCS_4)

				ushort	grp;

#endif

}	Q_PACKED;

inline	QChar::QChar()

{

				ucs	=	0;

#ifdef	QT_QSTRING_UCS_4

				grp	=	0;

#endif

}

inline	QChar::QChar(char	c)

{

				ucs	=	(uchar)c;

#ifdef	QT_QSTRING_UCS_4

				grp	=	0;

#endif

}

inline	QChar::QChar(uchar	c)

{

				ucs	=	c;

#ifdef	QT_QSTRING_UCS_4

				grp	=	0;

#endif

}

inline	QChar::QChar(uchar	c,	uchar	r)

{

				ucs	=	(r	<<	8)	|	c;

#ifdef	QT_QSTRING_UCS_4

				grp	=	0;

#endif

}

inline	QChar::QChar(const	QChar&	c)

{

				ucs	=	c.ucs;

#ifdef	QT_QSTRING_UCS_4

				grp	=	c.grp;

#endif

}

inline	QChar::QChar(ushort	rc)

{

				ucs	=	rc;

#ifdef	QT_QSTRING_UCS_4

				grp	=	0;

#endif

}

inline	QChar::QChar(short	rc)

{

				ucs	=	(ushort)	rc;

#ifdef	QT_QSTRING_UCS_4

				grp	=	0;

#endif

}

inline	QChar::QChar(uint	rc)

{

				ucs	=	(ushort)	(rc	&	0xffff);

#ifdef	QT_QSTRING_UCS_4

				grp	=	(ushort)	((rc	>>	16)	&	0xffff);

#endif

}

inline	QChar::QChar(int	rc)

{

				ucs	=	(ushort)	(rc	&	0xffff);

#ifdef	QT_QSTRING_UCS_4

				grp	=	(ushort)	((rc	>>	16)	&	0xffff);

#endif

}

inline	bool	operator==(char	ch,	QChar	c)

{

				return	((uchar)	ch)	==	c.ucs;

}

inline	bool	operator==(QChar	c,	char	ch)

{

				return	((uchar)	ch)	==	c.ucs;

}

inline	bool	operator==(QChar	c1,	QChar	c2)

{

				return	c1.ucs	==	c2.ucs;

}

inline	bool	operator!=(QChar	c1,	QChar	c2)

{

				return	c1.ucs	!=	c2.ucs;

}

inline	bool	operator!=(char	ch,	QChar	c)

{

				return	((uchar)ch)	!=	c.ucs;

}

inline	bool	operator!=(QChar	c,	char	ch)

{

				return	((uchar)	ch)	!=	c.ucs;

}

inline	bool	operator<=(QChar	c,	char	ch)

{

				return	c.ucs	<=	((uchar)	ch);

}

inline	bool	operator<=(char	ch,	QChar	c)

{

				return	((uchar)	ch)	<=	c.ucs;

}

inline	bool	operator<=(QChar	c1,	QChar	c2)

{

				return	c1.ucs	<=	c2.ucs;

}

inline	bool	operator>=(QChar	c,	char	ch)	{	return	ch	<=	c;	}

inline	bool	operator>=(char	ch,	QChar	c)	{	return	c	<=	ch;	}

inline	bool	operator>=(QChar	c1,	QChar	c2)	{	return	c2	<=	c1;	}

inline	bool	operator<(QChar	c,	char	ch)	{	return	!(ch<=c);	}

inline	bool	operator<(char	ch,	QChar	c)	{	return	!(c<=ch);	}

inline	bool	operator<(QChar	c1,	QChar	c2)	{	return	!(c2<=c1);	}

inline	bool	operator>(QChar	c,	char	ch)	{	return	!(ch>=c);	}

inline	bool	operator>(char	ch,	QChar	c)	{	return	!(c>=ch);	}

inline	bool	operator>(QChar	c1,	QChar	c2)	{	return	!(c2>=c1);	}

//	internal

struct	Q_EXPORT	QStringData	:	public	QShared	{

				QStringData()	:

								unicode(0),	ascii(0),	len(0),	simpletext(1),	maxl(0),	dirty(0)	{	ref();	}

				QStringData(QChar	*u,	uint	l,	uint	m)	:

								unicode(u),	ascii(0),	len(l),	simpletext(1),	maxl(m),	dirty(1)	{	}

				~QStringData()	{	if	(unicode)	delete[]	((char*)unicode);

																					if	(ascii)	delete[]	ascii;	}

				void	deleteSelf();

				QChar	*unicode;

				char	*ascii;

				void	setDirty()	{

	 if	(ascii)	{

	 				delete	[]	ascii;

	 				ascii	=	0;

	 }

	 dirty	=	1;

				}

#ifdef	Q_OS_MAC9

				uint	len;

#else

				uint	len	:	30;

#endif

				uint	simpletext	:	1;

#ifdef	Q_OS_MAC9

				uint	maxl;

#else

				uint	maxl	:	30;

#endif

				uint	dirty	:	1;

};

class	Q_EXPORT	QString

{

public:

				QString();																																		//	make	null	string

				QString(QChar);																											//	one-char	string

				QString(const	QString	&);																	//	impl-shared	copy

				QString(const	QByteArray&);															//	deep	copy

				QString(const	QChar*	unicode,	uint	length);	//	deep	copy

#ifndef	QT_NO_CAST_ASCII

				QString(const	char	*str);																	//	deep	copy

#endif

				~QString();

				QString				&operator=(const	QString	&);			//	impl-shared	copy

#ifndef	QT_NO_CAST_ASCII

				QString				&operator=(const	char	*);						//	deep	copy

#endif

				QString				&operator=(const	QCString&);			//	deep	copy

				QString				&operator=(QChar	c);

				QString				&operator=(char	c);

				QT_STATIC_CONST	QString	null;

				bool								isNull()								const;

				bool								isEmpty()							const;

				uint								length()								const;

				void								truncate(uint	pos);

				QString	&			fill(QChar	c,	int	len	=	-1);

				QString					copy()		const;

				QString	arg(long	a,	int	fieldwidth=0,	int	base=10)	const;

				QString	arg(ulong	a,	int	fieldwidth=0,	int	base=10)	const;

				QString	arg(int	a,	int	fieldwidth=0,	int	base=10)	const;

				QString	arg(uint	a,	int	fieldwidth=0,	int	base=10)	const;

				QString	arg(short	a,	int	fieldwidth=0,	int	base=10)	const;

				QString	arg(ushort	a,	int	fieldwidth=0,	int	base=10)	const;

				QString	arg(char	a,	int	fieldwidth=0)	const;

				QString	arg(QChar	a,	int	fieldwidth=0)	const;

				QString	arg(const	QString&	a,	int	fieldwidth=0)	const;

				QString	arg(double	a,	int	fieldwidth=0,	char	fmt='g',	int	prec=-1)	const;

#ifndef	QT_NO_SPRINTF

				QString				&sprintf(const	char*	format,	...)

#if	defined(Q_CC_GNU)	&&	!defined(__INSURE__)

								__attribute__	((format	(printf,	2,	3)))

#endif

								;

#endif

				int									find(QChar	c,	int	index=0,	bool	cs=TRUE)	const;

				int									find(char	c,	int	index=0,	bool	cs=TRUE)	const;

				int									find(const	QString	&str,	int	index=0,	bool	cs=TRUE)	const;

#ifndef	QT_NO_REGEXP

				int									find(const	QRegExp	&,	int	index=0)	const;

#endif

#ifndef	QT_NO_CAST_ASCII

				int									find(const	char*	str,	int	index=0)	const;

#endif

				int									findRev(QChar	c,	int	index=-1,	bool	cs=TRUE)	const;

				int									findRev(char	c,	int	index=-1,	bool	cs=TRUE)	const;

				int									findRev(const	QString	&str,	int	index=-1,	bool	cs=TRUE)	const;

#ifndef	QT_NO_REGEXP

				int									findRev(const	QRegExp	&,	int	index=-1)	const;

#endif

#ifndef	QT_NO_CAST_ASCII

				int									findRev(const	char*	str,	int	index=-1)	const;

#endif

				int									contains(QChar	c,	bool	cs=TRUE)	const;

				int									contains(char	c,	bool	cs=TRUE)	const

																				{	return	contains(QChar(c),	cs);	}

#ifndef	QT_NO_CAST_ASCII

				int									contains(const	char*	str,	bool	cs=TRUE)	const;

#endif

				int									contains(const	QString	&str,	bool	cs=TRUE)	const;

#ifndef	QT_NO_REGEXP

				int									contains(const	QRegExp	&)	const;

#endif

				enum	SectionFlags	{

	 SectionDefault													=	0x00,

	 SectionSkipEmpty											=	0x01,

	 SectionIncludeLeadingSep			=	0x02,

	 SectionIncludeTrailingSep		=	0x04,

	 SectionCaseInsensitiveSeps	=	0x08

				};

				QString					section(QChar	sep,	int	start,	int	end	=	0xffffffff,	int	flags	=	SectionDefault)	const;

				QString					section(char	sep,	int	start,	int	end	=	0xffffffff,	int	flags	=	SectionDefault)	const;

#ifndef	QT_NO_CAST_ASCII

				QString						section(const	char	*in_sep,	int	start,	int	end	=	0xffffffff,	int	flags	=	SectionDefault)	const;

#endif

				QString					section(const	QString	&in_sep,	int	start,	int	end	=	0xffffffff,	int	flags	=	SectionDefault)	const;

#ifndef	QT_NO_REGEXP

				QString					section(const	QRegExp	®,	int	start,	int	end	=	0xffffffff,	int	flags	=	SectionDefault)	const;

#endif

				QString					left(uint	len)		const;

				QString					right(uint	len)	const;

				QString					mid(uint	index,	uint	len=0xffffffff)	const;

				QString					leftJustify(uint	width,	QChar	fill='	',	bool	trunc=FALSE)const;

				QString					rightJustify(uint	width,	QChar	fill='	',bool	trunc=FALSE)const;

				QString					lower()	const;

				QString					upper()	const;

				QString					stripWhiteSpace()							const;

				QString					simplifyWhiteSpace()				const;

				QString				&insert(uint	index,	const	QString	&);

				QString				&insert(uint	index,	const	QChar*,	uint	len);

				QString				&insert(uint	index,	QChar);

				QString				&insert(uint	index,	char	c)	{	return	insert(index,QChar(c));	}

				QString				&append(char);

				QString				&append(QChar);

				QString				&append(const	QString	&);

				QString				&prepend(char);

				QString				&prepend(QChar);

				QString				&prepend(const	QString	&);

				QString				&remove(uint	index,	uint	len);

				QString				&replace(uint	index,	uint	len,	const	QString	&);

				QString				&replace(uint	index,	uint	len,	const	QChar*,	uint	clen);

#ifndef	QT_NO_REGEXP

				QString				&replace(const	QRegExp	&,	const	QString	&);

#endif

				short							toShort(bool	*ok=0,	int	base=10)						const;

				ushort						toUShort(bool	*ok=0,	int	base=10)					const;

				int									toInt(bool	*ok=0,	int	base=10)								const;

				uint								toUInt(bool	*ok=0,	int	base=10)							const;

				long								toLong(bool	*ok=0,	int	base=10)							const;

				ulong							toULong(bool	*ok=0,	int	base=10)						const;

				float							toFloat(bool	*ok=0)			const;

				double						toDouble(bool	*ok=0)		const;

				QString				&setNum(short,	int	base=10);

				QString				&setNum(ushort,	int	base=10);

				QString				&setNum(int,	int	base=10);

				QString				&setNum(uint,	int	base=10);

				QString				&setNum(long,	int	base=10);

				QString				&setNum(ulong,	int	base=10);

				QString				&setNum(float,	char	f='g',	int	prec=6);

				QString				&setNum(double,	char	f='g',	int	prec=6);

				static	QString	number(long,	int	base=10);

				static	QString	number(ulong,	int	base=10);

				static	QString	number(int,	int	base=10);

				static	QString	number(uint,	int	base=10);

				static	QString	number(double,	char	f='g',	int	prec=6);

				void								setExpand(uint	index,	QChar	c);

				QString				&operator+=(const	QString	&str);

				QString				&operator+=(QChar	c);

				QString				&operator+=(char	c);

				QChar	at(uint	i)	const

								{	return	i	<	d->len	?	d->unicode[i]	:	QChar::null;	}

				QChar	operator[](int	i)	const	{	return	at((uint)i);	}

				QCharRef	at(uint	i);

				QCharRef	operator[](int	i);

				QChar	constref(uint	i)	const

								{	return	at(i);	}

				QChar&	ref(uint	i)

								{	//	Optimized	for	easy-inlining	by	simple	compilers.

												if	(d->count	!=	1	||	i	>=	d->len)

																subat(i);

												d->setDirty();

												return	d->unicode[i];

								}

				const	QChar*	unicode()	const	{	return	d->unicode;	}

				const	char*	ascii()	const	{	return	latin1();	}

				const	char*	latin1()	const;

				static	QString	fromLatin1(const	char*,	int	len=-1);

#ifndef	QT_NO_TEXTCODEC

				QCString	utf8()	const;

				static	QString	fromUtf8(const	char*,	int	len=-1);

#endif

				QCString	local8Bit()	const;

				static	QString	fromLocal8Bit(const	char*,	int	len=-1);

				bool	operator!()	const;

#ifndef	QT_NO_ASCII_CAST

				operator	const	char	*()	const	{	return	latin1();	}

#endif

				QString	&setUnicode(const	QChar*	unicode,	uint	len);

				QString	&setUnicodeCodes(const	ushort*	unicode_as_ushorts,	uint	len);

				QString	&setLatin1(const	char*,	int	len=-1);

				int	compare(const	QString&	s)	const;

				static	int	compare(const	QString&	s1,	const	QString&	s2)

				{	return	s1.compare(s2);	}

				int	localeAwareCompare(const	QString&	s)	const;

				static	int	localeAwareCompare(const	QString&	s1,	const	QString&	s2)

				{	return	s1.localeAwareCompare(s2);	}

#ifndef	QT_NO_DATASTREAM

				friend	Q_EXPORT	QDataStream	&operator>>(QDataStream	&,	QString	&);

#endif

				void	compose();

#ifndef	QT_NO_COMPAT

				const	char*	data()	const	{	return	latin1();	}

#endif

				bool	startsWith(const	QString&)	const;

				bool	endsWith(const	QString&)	const;

				void	setLength(uint	newLength);

				bool	simpleText()	const	{	if	(d->dirty)	checkSimpleText();	return	(bool)d->simpletext;	}

				bool	isRightToLeft()	const;

private:

				/*

						In	Qt	1.0	and	2.0,	users	could	write

						str.replace(QString("foo"),	QString("bar"))	and	"foo"	was

						automatically	converted	into	a	regexp.

						In	Qt	3.0,	this	gives	a	compiler	error.	Users	have	to	write

						QRegExp("foo").	In	Qt	3.1	or	4.0,	we	will	move	replace()	to	the

						public	API.

				*/

				QString&	replace(const	QString	&,	const	QString	&)	{	return	*this;	}

				QString(int	size,	bool	/*	dummy	*/);	 //	allocate	size	incl.	\0

				void	deref();

				void	real_detach();

				void	subat(uint);

				bool	findArg(int&	pos,	int&	len)	const;

				void	checkSimpleText()	const;

				static	QChar*	asciiToUnicode(const	char*,	uint	*	len,	uint	maxlen=(uint)-1);

				static	QChar*	asciiToUnicode(const	QByteArray&,	uint	*	len);

				static	char*	unicodeToAscii(const	QChar*,	uint	len);

				QStringData	*d;

				static	QStringData*	shared_null;

				static	QStringData*	makeSharedNull();

				friend	class	QConstString;

				friend	class	QTextStream;

				QString(QStringData*	dd,	bool	/*	dummy	*/)	:	d(dd)	{	}

};

class	Q_EXPORT	QCharRef	{

				friend	class	QString;

				QString&	s;

				uint	p;

				QCharRef(QString*	str,	uint	pos)	:	s(*str),	p(pos)	{	}

public:

				//	most	QChar	operations	repeated	here...

				//	all	this	is	not	documented:	We	just	say	"like	QChar"	and	let	it	be.

#ifndef	Q_QDOC

				ushort	unicode()	const	{	return	s.constref(p).unicode();	}

				char	latin1()	const	{	return	s.constref(p).latin1();	}

				//	An	operator=	for	each	QChar	cast	constructor...

				QCharRef	operator=(char	c)	{	s.ref(p)=c;	return	*this;	}

				QCharRef	operator=(uchar	c)	{	s.ref(p)=c;	return	*this;	}

				QCharRef	operator=(QChar	c)	{	s.ref(p)=c;	return	*this;	}

				QCharRef	operator=(const	QCharRef&	c)	{	s.ref(p)=c.unicode();	return	*this;	}

				QCharRef	operator=(ushort	rc)	{	s.ref(p)=rc;	return	*this;	}

				QCharRef	operator=(short	rc)	{	s.ref(p)=rc;	return	*this;	}

				QCharRef	operator=(uint	rc)	{	s.ref(p)=rc;	return	*this;	}

				QCharRef	operator=(int	rc)	{	s.ref(p)=rc;	return	*this;	}

				operator	QChar	()	const	{	return	s.constref(p);	}

				//	each	function...

				bool	isNull()	const	{	return	unicode()==0;	}

				bool	isPrint()	const	{	return	s.constref(p).isPrint();	}

				bool	isPunct()	const	{	return	s.constref(p).isPunct();	}

				bool	isSpace()	const	{	return	s.constref(p).isSpace();	}

				bool	isMark()	const	{	return	s.constref(p).isMark();	}

				bool	isLetter()	const	{	return	s.constref(p).isLetter();	}

				bool	isNumber()	const	{	return	s.constref(p).isNumber();	}

				bool	isLetterOrNumber()	{	return	s.constref(p).isLetterOrNumber();	}

				bool	isDigit()	const	{	return	s.constref(p).isDigit();	}

				int	digitValue()	const	{	return	s.constref(p).digitValue();	}

				QChar	lower()	const	{	return	s.constref(p).lower();	}

				QChar	upper()	const	{	return	s.constref(p).upper();	}

				QChar::Category	category()	const	{	return	s.constref(p).category();	}

				QChar::Direction	direction()	const	{	return	s.constref(p).direction();	}

				QChar::Joining	joining()	const	{	return	s.constref(p).joining();	}

				bool	mirrored()	const	{	return	s.constref(p).mirrored();	}

				QChar	mirroredChar()	const	{	return	s.constref(p).mirroredChar();	}

				const	QString	&decomposition()	const	{	return	s.constref(p).decomposition();	}

				QChar::Decomposition	decompositionTag()	const	{	return	s.constref(p).decompositionTag();	}

				unsigned	char	combiningClass()	const	{	return	s.constref(p).combiningClass();	}

				//	Not	the	non-const	ones	of	these.

				uchar	cell()	const	{	return	s.constref(p).cell();	}

				uchar	row()	const	{	return	s.constref(p).row();	}

#endif

};

inline	QCharRef	QString::at(uint	i)	{	return	QCharRef(this,i);	}

inline	QCharRef	QString::operator[](int	i)	{	return	at((uint)i);	}

class	Q_EXPORT	QConstString	:	private	QString	{

public:

				QConstString(const	QChar*	unicode,	uint	length);

				~QConstString();

				const	QString&	string()	const	{	return	*this;	}

};

/***

		QString	stream	functions

	***/

#ifndef	QT_NO_DATASTREAM

Q_EXPORT	QDataStream	&operator<<(QDataStream	&,	const	QString	&);

Q_EXPORT	QDataStream	&operator>>(QDataStream	&,	QString	&);

#endif

/***

		QString	inline	functions

	***/

//	These	two	move	code	into	makeSharedNull()	and	deletesData()

//	to	improve	cache-coherence	(and	reduce	code	bloat),	while

//	keeping	the	common	cases	fast.

//

//	No	safe	way	to	pre-init	shared_null	on	ALL	compilers/linkers.

inline	QString::QString()	:

				d(shared_null	?	shared_null	:	makeSharedNull())

{

				d->ref();

}

//

inline	QString::~QString()

{

				if	(d->deref())	{

								if	(d	==	shared_null)

												shared_null	=	0;

								d->deleteSelf();

				}

}

inline	QString	QString::section(QChar	sep,	int	start,	int	end,	int	flags)	const

{	return	section(QString(sep),	start,	end,	flags);	}

inline	QString	QString::section(char	sep,	int	start,	int	end,	int	flags)	const

{	return	section(QChar(sep),	start,	end,	flags);	}

#ifndef	QT_NO_CAST_ASCII

inline	QString	QString::section(const	char	*in_sep,	int	start,	int	end,	int	flags)	const

{	return	section(QString(in_sep),	start,	end,	flags);	}

#endif

inline	QString	&QString::operator=(QChar	c)

{	return	*this	=	QString(c);	}

inline	QString	&QString::operator=(char	c)

{	return	*this	=	QString(QChar(c));	}

inline	bool	QString::isNull()	const

{	return	unicode()	==	0;	}

inline	bool	QString::operator!()	const

{	return	isNull();	}

inline	uint	QString::length()	const

{	return	d->len;	}

inline	bool	QString::isEmpty()	const

{	return	length()	==	0;	}

inline	QString	QString::copy()	const

{	return	QString(*this);	}

inline	QString	&QString::prepend(const	QString	&	s)

{	return	insert(0,s);	}

inline	QString	&QString::prepend(QChar	c)

{	return	insert(0,c);	}

inline	QString	&QString::prepend(char	c)

{	return	insert(0,c);	}

inline	QString	&QString::append(const	QString	&	s)

{	return	operator+=(s);	}

inline	QString	&QString::append(QChar	c)

{	return	operator+=(c);	}

inline	QString	&QString::append(char	c)

{	return	operator+=(c);	}

inline	QString	&QString::setNum(short	n,	int	base)

{	return	setNum((long)n,	base);	}

inline	QString	&QString::setNum(ushort	n,	int	base)

{	return	setNum((ulong)n,	base);	}

inline	QString	&QString::setNum(int	n,	int	base)

{	return	setNum((long)n,	base);	}

inline	QString	&QString::setNum(uint	n,	int	base)

{	return	setNum((ulong)n,	base);	}

inline	QString	&QString::setNum(float	n,	char	f,	int	prec)

{	return	setNum((double)n,f,prec);	}

inline	QString	QString::arg(int	a,	int	fieldwidth,	int	base)	const

{	return	arg((long)a,	fieldwidth,	base);	}

inline	QString	QString::arg(uint	a,	int	fieldwidth,	int	base)	const

{	return	arg((ulong)a,	fieldwidth,	base);	}

inline	QString	QString::arg(short	a,	int	fieldwidth,	int	base)	const

{	return	arg((long)a,	fieldwidth,	base);	}

inline	QString	QString::arg(ushort	a,	int	fieldwidth,	int	base)	const

{	return	arg((ulong)a,	fieldwidth,	base);	}

inline	int	QString::find(char	c,	int	index,	bool	cs)	const

{	return	find(QChar(c),	index,	cs);	}

inline	int	QString::findRev(char	c,	int	index,	bool	cs)	const

{	return	findRev(QChar(c),	index,	cs);	}

#ifndef	QT_NO_CAST_ASCII

inline	int	QString::find(const	char*	str,	int	index)	const

{	return	find(QString::fromLatin1(str),	index);	}

inline	int	QString::findRev(const	char*	str,	int	index)	const

{	return	findRev(QString::fromLatin1(str),	index);	}

#endif

/***

		QString	non-member	operators

	***/

Q_EXPORT	bool	operator!=(const	QString	&s1,	const	QString	&s2);

Q_EXPORT	bool	operator<(const	QString	&s1,	const	QString	&s2);

Q_EXPORT	bool	operator<=(const	QString	&s1,	const	QString	&s2);

Q_EXPORT	bool	operator==(const	QString	&s1,	const	QString	&s2);

Q_EXPORT	bool	operator>(const	QString	&s1,	const	QString	&s2);

Q_EXPORT	bool	operator>=(const	QString	&s1,	const	QString	&s2);

#ifndef	QT_NO_CAST_ASCII

Q_EXPORT	bool	operator!=(const	QString	&s1,	const	char	*s2);

Q_EXPORT	bool	operator<(const	QString	&s1,	const	char	*s2);

Q_EXPORT	bool	operator<=(const	QString	&s1,	const	char	*s2);

Q_EXPORT	bool	operator==(const	QString	&s1,	const	char	*s2);

Q_EXPORT	bool	operator>(const	QString	&s1,	const	char	*s2);

Q_EXPORT	bool	operator>=(const	QString	&s1,	const	char	*s2);

Q_EXPORT	bool	operator!=(const	char	*s1,	const	QString	&s2);

Q_EXPORT	bool	operator<(const	char	*s1,	const	QString	&s2);

Q_EXPORT	bool	operator<=(const	char	*s1,	const	QString	&s2);

Q_EXPORT	bool	operator==(const	char	*s1,	const	QString	&s2);

//Q_EXPORT	bool	operator>(const	char	*s1,	const	QString	&s2);	//	MSVC++

Q_EXPORT	bool	operator>=(const	char	*s1,	const	QString	&s2);

#endif

Q_EXPORT	inline	const	QString	operator+(const	QString	&s1,	const	QString	&s2)

{

				QString	tmp(s1);

				tmp	+=	s2;

				return	tmp;

}

#ifndef	QT_NO_CAST_ASCII

Q_EXPORT	inline	const	QString	operator+(const	QString	&s1,	const	char	*s2)

{

				QString	tmp(s1);

				tmp	+=	QString::fromLatin1(s2);

				return	tmp;

}

Q_EXPORT	inline	const	QString	operator+(const	char	*s1,	const	QString	&s2)

{

				QString	tmp	=	QString::fromLatin1(s1);

				tmp	+=	s2;

				return	tmp;

}

#endif

Q_EXPORT	inline	const	QString	operator+(const	QString	&s1,	QChar	c2)

{

				QString	tmp(s1);

				tmp	+=	c2;

				return	tmp;

}

Q_EXPORT	inline	const	QString	operator+(const	QString	&s1,	char	c2)

{

				QString	tmp(s1);

				tmp	+=	c2;

				return	tmp;

}

Q_EXPORT	inline	const	QString	operator+(QChar	c1,	const	QString	&s2)

{

				QString	tmp;

				tmp	+=	c1;

				tmp	+=	s2;

				return	tmp;

}

Q_EXPORT	inline	const	QString	operator+(char	c1,	const	QString	&s2)

{

				QString	tmp;

				tmp	+=	c1;

				tmp	+=	s2;

				return	tmp;

}

#if	defined(Q_OS_WIN32)

extern	Q_EXPORT	QString	qt_winQString(void*);

extern	Q_EXPORT	const	void*	qt_winTchar(const	QString&	str,	bool	addnul);

extern	Q_EXPORT	void*	qt_winTchar_new(const	QString&	str);

extern	Q_EXPORT	QCString	qt_winQString2MB(const	QString&	s,	int	len=-1);

extern	Q_EXPORT	QString	qt_winMB2QString(const	char*	mb,	int	len=-1);

#endif

#endif	//	QSTRING_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qvaluevector.h
This	is	the	verbatim	text	of	the	qvaluevector.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**

**	Definition	of	QValueVector	class

**

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	tools	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QVALUEVECTOR_H

#define	QVALUEVECTOR_H

#ifndef	QT_H

#include	"qtl.h"

#include	"qshared.h"

#include	"qdatastream.h"

#endif	//	QT_H

#ifndef	QT_NO_STL

#include	<vector>

#endif

template	<class	T>

class	QValueVectorPrivate	

				:	public	QShared

{

public:

				typedef	T	value_type;

				typedef	T*	pointer;

				QValueVectorPrivate()

	 :	start(0),	finish(0),	end(0)

				{

				}

				QValueVectorPrivate(const	QValueVectorPrivate<T>&	x);

				QValueVectorPrivate(size_t	size);

				void	derefAndDelete()	//	###	hack	to	get	around	hp-cc	brain	damage

				{

	 if	(deref())

	 				delete	this;

				}

#if	defined(Q_TEMPLATEDLL)

				//	Workaround	MS	bug	in	memory	de/allocation	in	DLL	vs.	EXE

				virtual

#endif

				~QValueVectorPrivate()

				{

	 delete[]	start;

				}

				size_t	size()	const

				{

	 return	finish	-	start;

				}

				bool	empty()	const

				{

	 return	start	==	finish;

				}

				size_t	capacity()	const

				{

	 return	end	-	start;

				}

				void	insert(pointer	pos,	const	T&	x);

				void	insert(pointer	pos,	size_t	n,	const	T&	x);

				void	reserve(size_t	n);

				void	clear()

				{

	 delete[]	start;

	 start	=	0;

	 finish	=	0;

	 end	=	0;

				}

				pointer	start;

				pointer	finish;

				pointer	end;

private:

				pointer	growAndCopy(size_t	n,	pointer	s,	pointer	f);

				QValueVectorPrivate&	operator=(const	QValueVectorPrivate<T>&	x);

};

template	<class	T>

Q_INLINE_TEMPLATES	QValueVectorPrivate<T>::QValueVectorPrivate(const	QValueVectorPrivate<T>&	x)

				:	QShared()

{

				if	(x.size()	>	0)	{

	 start	=	new	T[x.size()];

	 finish	=	start	+	x.size();

	 end	=	start	+	x.size();

	 qCopy(x.start,	x.finish,	start);

				}	else	{

	 start	=	0;

	 finish	=	0;

	 end	=	0;

				}

}

template	<class	T>

Q_INLINE_TEMPLATES	QValueVectorPrivate<T>::QValueVectorPrivate(size_t	size)

{

				if	(size	>	0)	{

	 start	=	new	T[size];

	 finish	=	start	+	size;

	 end	=	start	+	size;

				}	else	{

	 start	=	0;

	 finish	=	0;

	 end	=	0;

				}

}

template	<class	T>

Q_INLINE_TEMPLATES	void	QValueVectorPrivate<T>::insert(pointer	pos,	const	T&	x)

{

				const	size_t	lastSize	=	size();

				const	size_t	n	=	lastSize	!=0	?	2*lastSize	:	1;

				const	size_t	offset	=	pos	-	start;

				pointer	newStart	=	new	T[n];

				pointer	newFinish	=	newStart	+	offset;

				qCopy(start,	pos,	newStart);

				*newFinish	=	x;

				qCopy(pos,	finish,	++newFinish);

				delete[]	start;

				start	=	newStart;

				finish	=	newStart	+	lastSize	+	1;

				end	=	newStart	+	n;

}

template	<class	T>

Q_INLINE_TEMPLATES	void	QValueVectorPrivate<T>::insert(pointer	pos,	size_t	n,	const	T&	x)

{

				if	(size_t(end	-	finish)	>=	n)	{

	 //	enough	room

	 const	size_t	elems_after	=	finish	-	pos;

	 pointer	old_finish	=	finish;

	 if	(elems_after	>	n)	{

	 				qCopy(finish	-	n,	finish,	finish);

	 				finish	+=	n;

	 				qCopyBackward(pos,	old_finish	-	n,	old_finish);

	 				qFill(pos,	pos	+	n,	x);

	 }	else	{

	 				pointer	filler	=	finish;

	 				size_t	i	=	n	-	elems_after;

	 				for	(;	i	>	0;	--i,	++filler)

	 	 *filler	=	x;

	 				finish	+=	n	-	elems_after;

	 				qCopy(pos,	old_finish,	finish);

	 				finish	+=	elems_after;

	 				qFill(pos,	old_finish,	x);

	 }

				}	else	{

	 //	not	enough	room

	 const	size_t	lastSize	=	size();

	 const	size_t	len	=	lastSize	+	QMAX(lastSize,	n);

	 pointer	newStart	=	new	T[len];

	 pointer	newFinish	=	qCopy(start,	pos,	newStart);

	 //	fill	up	inserted	space

	 size_t	i	=	n;

	 for	(;	i	>	0;	--i,	++newFinish)

	 				*newFinish	=	x;

	 newFinish	=	qCopy(pos,	finish,	newFinish);

	 delete[]	start;

	 start	=	newStart;

	 finish	=	newFinish;

	 end	=	newStart	+	len;

				}

}

template	<class	T>

Q_INLINE_TEMPLATES	void	QValueVectorPrivate<T>::reserve(size_t	n)

{

				const	size_t	lastSize	=	size();

				pointer	tmp	=	growAndCopy(n,	start,	finish);

				start	=	tmp;

				finish	=	tmp	+	lastSize;

				end	=	start	+	n;

}

template	<class	T>

Q_INLINE_TEMPLATES	Q_TYPENAME	QValueVectorPrivate<T>::pointer	QValueVectorPrivate<T>::growAndCopy(size_t	n,	pointer	s,	pointer	f)

{

				pointer	newStart	=	new	T[n];

				qCopy(s,	f,	newStart);

				delete[]	start;

				return	newStart;

}

template	<class	T>

class	QValueVector

{

public:

				typedef	T	value_type;

				typedef	value_type*	pointer;

				typedef	const	value_type*	const_pointer;

				typedef	value_type*	iterator;

				typedef	const	value_type*	const_iterator;

				typedef	value_type&	reference;

				typedef	const	value_type&	const_reference;

				typedef	size_t	size_type;

#ifndef	QT_NO_STL

				typedef	ptrdiff_t		difference_type;

#else

				typedef	int	difference_type;

#endif

				QValueVector()

				{

	 sh	=	new	QValueVectorPrivate<T>;

				}

				QValueVector(const	QValueVector<T>&	v)

				{

	 sh	=	v.sh;

	 sh->ref();

				}

				QValueVector(size_type	n,	const	T&	val	=	T());

#ifndef	QT_NO_STL

				QValueVector(std::vector<T>&	v)

				{

	 sh	=	new	QValueVectorPrivate<T>(v.size());

	 qCopy(v.begin(),	v.end(),	begin());

				}

#endif

				~QValueVector()

				{

	 sh->derefAndDelete();

				}

				QValueVector<T>&	operator=	(const	QValueVector<T>&	v)

				{

	 v.sh->ref();

	 sh->derefAndDelete();

	 sh	=	v.sh;

	 return	*this;

				}

#ifndef	QT_NO_STL

				QValueVector<T>&	operator=	(const	std::vector<T>&	v)

				{

	 clear();

	 resize(v.size());

	 qCopy(v.begin(),	v.end(),	begin());

	 return	*this;

				}

#endif

				size_type	size()	const

				{

	 return	sh->size();

				}

				bool	empty()	const

				{

	 return	sh->empty();

				}

				size_type	capacity()	const

				{

	 return	size_type(sh->capacity());

				}

				iterator	begin()

				{

	 detach();

	 return	sh->start;

				}

				const_iterator	begin()	const

				{

	 return	sh->start;

				}

				iterator	end()

				{

	 detach();

	 return	sh->finish;

				}

				const_iterator	end()	const

				{

	 return	sh->finish;

				}

				reference	at(size_type	i,	bool*	ok	=	0)

				{

	 detach();

	 if	(ok)	{

	 				if	(i	<	size())

	 	 *ok	=	TRUE;

	 				else

	 	 *ok	=	FALSE;

	 }

	 return	*(begin()	+	i);

				}

				const_reference	at(size_type	i,	bool*	ok	=	0)	const

				{

	 if	(ok)	{

	 				if	(i	<	size())

	 	 *ok	=	TRUE;

	 				else

	 	 *ok	=	FALSE;

	 }

	 return	*(begin()	+	i);

				}

				reference	operator[](size_type	i)

				{

	 detach();

	 return	*(begin()	+	i);

				}

				const_reference	operator[](size_type	i)	const

				{

	 return	*(begin()	+	i);

				}

				reference	front()

				{

	 Q_ASSERT(!empty());

	 detach();

	 return	*begin();

				}

				const_reference	front()	const

				{

	 Q_ASSERT(!empty());

	 return	*begin();

				}

				reference	back()

				{

	 Q_ASSERT(!empty());

	 detach();

	 return	*(end()	-	1);

				}

				const_reference	back()	const

				{

	 Q_ASSERT(!empty());

	 return	*(end()	-	1);

				}

				void	push_back(const	T&	x)

				{

	 detach();

	 if	(sh->finish	==	sh->end)	{

	 				sh->reserve(size()+1);

	 }

	 *sh->finish	=	x;

	 ++sh->finish;

				}

				void	pop_back()

				{

	 detach();

	 if	(empty())

	 				return;

	 --sh->finish;

				}

				iterator	insert(iterator	pos,	const	T&	x);

				iterator	insert(iterator	pos,	size_type	n,	const	T&	x);

				

				void	reserve(size_type	n)

				{

	 if	(capacity()	<	n)	{

	 				detach();

	 				sh->reserve(n);

	 }

				}

				void	resize(size_type	n,	const	T&	val	=	T())

				{

	 if	(n	<	size())

	 				erase(begin()	+	n,	end());

	 else

	 				insert(end(),	n	-	size(),	val);

				}

				void	clear()

				{

	 detach();

	 sh->clear();

				}

				iterator	erase(iterator	pos)

				{

	 detach();

	 if	(pos	+	1	!=	end())

	 				qCopy(pos	+	1,	sh->finish,	pos);

	 --sh->finish;

	 return	pos;

				}

				iterator	erase(iterator	first,	iterator	last)

				{

	 detach();

	 qCopy(last,	sh->finish,	first);

	 sh->finish	=	sh->finish	-	(last	-	first);

	 return	first;

				}

				bool	operator==(const	QValueVector<T>&	x)

				{

	 return	qEqual(begin(),	end(),	x.begin());

				}

				bool	operator==(const	QValueVector<T>&	x)	const

				{

	 return	qEqual(begin(),	end(),	x.begin());

				}

protected:

				void	detach()

				{

	 if	(sh->count	>	1)	{	detachInternal();	}

				}

				void	detachInternal();

				QValueVectorPrivate<T>*	sh;

};

template	<class	T>

Q_INLINE_TEMPLATES	QValueVector<T>::QValueVector(size_type	n,	const	T&	val)

{

				sh	=	new	QValueVectorPrivate<T>(n);

				qFill(begin(),	end(),	val);

}

template	<class	T>

Q_INLINE_TEMPLATES	void	QValueVector<T>::detachInternal()

{

				sh->deref();

				sh	=	new	QValueVectorPrivate<T>(*sh);

}

template	<class	T>

Q_INLINE_TEMPLATES	Q_TYPENAME	QValueVector<T>::iterator	QValueVector<T>::insert(iterator	pos,	const	T&	x)

{

				size_type	offset	=	pos	-	sh->start;

				detach();

				if	(pos	==	end())	{

	 if	(sh->finish	==	sh->end)

	 				push_back(x);

	 else	{

	 				*sh->finish	=	x;

	 				++sh->finish;

	 }

				}	else	{

	 if	(sh->finish	==	sh->end)	{

	 				sh->insert(pos,	x);

	 }	else	{

	 				*sh->finish	=	*(sh->finish	-	1);

	 				++sh->finish;

	 				qCopyBackward(pos,	sh->finish	-	2,	sh->finish	-	1);

	 				*pos	=	x;

	 }

				}

				return	begin()	+	offset;

}

template	<class	T>

Q_INLINE_TEMPLATES	Q_TYPENAME	QValueVector<T>::iterator	QValueVector<T>::insert(iterator	pos,	size_type	n,	const	T&	x)

{

				if	(n	!=	0)	{

	 size_type	offset	=	pos	-	sh->start;

	 detach();

	 pos	=	begin()	+	offset;

	 sh->insert(pos,	n,	x);

				}

				return	pos;

}

#ifndef	QT_NO_DATASTREAM

template<class	T>

Q_INLINE_TEMPLATES	QDataStream&	operator>>(QDataStream&	s,	QValueVector<T>&	v)

{

				v.clear();

				Q_UINT32	c;

				s	>>	c;

				v.resize(c);

				for(Q_UINT32	i	=	0;	i	<	c;	++i)

				{

	 T	t;

	 s	>>	t;

	 v[i]	=	t;

				}

				return	s;

}

template<class	T>

Q_INLINE_TEMPLATES	QDataStream&	operator<<(QDataStream&	s,	const	QValueVector<T>&	v)

{

				s	<<	(Q_UINT32)v.size();

				//	###	use	typename	QValueVector<T>::const_iterator	once	all	supported

				//	###	compilers	know	about	the	'typename'	keyword.

				const	T*	it	=	v.begin();

				for(;	it	!=	v.end();	++it)

	 s	<<	*it;

				return	s;

}

#endif	//	QT_NO_DATASTREAM

#endif

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QValueVector	Class	Reference
The	QValueVector	class	is	a	value-based	template	class	that	provides	a	dynamic
array.	More...

#include	<qvaluevector.h>

List	of	all	member	functions.

Public	Members

typedef	T	value_type
typedef	value_type	*	pointer
typedef	const	value_type	*	const_pointer
typedef	value_type	*	iterator
typedef	const	value_type	*	const_iterator
typedef	value_type	&	reference
typedef	const	value_type	&	const_reference
typedef	size_t	size_type
typedef	ptrdiff_t	difference_type
QValueVector	()
QValueVector	(const	QValueVector<T>	&	v)
QValueVector	(size_type	n,	const	T	&	val	=	T	())
QValueVector	(std::vector<T>	&	v)
~QValueVector	()
QValueVector<T>	&	operator=	(const	QValueVector<T>	&	v)
QValueVector<T>	&	operator=	(const	std::vector<T>	&	v)
size_type	size	()	const
bool	empty	()	const
size_type	capacity	()	const
iterator	begin	()
const_iterator	begin	()	const
iterator	end	()
const_iterator	end	()	const
reference	at	(size_type	i,	bool	*	ok	=	0)
const_reference	at	(size_type	i,	bool	*	ok	=	0)	const
reference	operator[]	(size_type	i)
const_reference	operator[]	(size_type	i)	const
reference	front	()
const_reference	front	()	const
reference	back	()
const_reference	back	()	const
void	push_back	(const	T	&	x)
void	pop_back	()
iterator	insert	(iterator	pos,	const	T	&	x)
iterator	insert	(iterator	pos,	size_type	n,	const	T	&	x)

void	reserve	(size_type	n)
void	resize	(size_type	n,	const	T	&	val	=	T	())
void	clear	()
iterator	erase	(iterator	pos)
iterator	erase	(iterator	first,	iterator	last)
bool	operator==	(const	QValueVector<T>	&	x)
bool	operator==	(const	QValueVector<T>	&	x)	const

Protected	Members

void	detach	()

Detailed	Description

The	QValueVector	class	is	a	value-based	template	class	that	provides	a	dynamic
array.

QValueVector	is	a	Qt	implementation	of	an	STL-like	vector	container.	It	can	be
used	in	your	application	if	the	standard	vector	is	not	available.	QValueVector	is
part	of	the	Qt	Template	Library.

QValueVector<T>	defines	a	template	instance	to	create	a	vector	of	values	that	all
have	the	class	T.	Please	note	that	QValueVector	does	not	store	pointers	to	the
members	of	the	vector;	it	holds	a	copy	of	every	member.	QValueVector	is	said	to
be	value	based;	in	contrast,	QPtrList	and	QDict	are	pointer	based.

QValueVector	contains	and	manages	a	collection	of	objects	of	type	T	and
provides	random	access	iterators	that	allow	the	contained	objects	to	be
addressed.	QValueVector	owns	the	contained	elements.	For	more	relaxed
ownership	semantics,	see	QPtrCollection	and	friends	which	are	pointer-based
containers.

QValueVector	provides	good	performance	if	you	append	or	remove	elements
from	the	end	of	the	vector.	If	you	insert	or	remove	elements	from	anywhere	but
the	end,	performance	is	very	bad.	The	reason	for	this	is	that	elements	will	need
to	be	copied	into	new	positions.

Some	classes	cannot	be	used	within	a	QValueVector	-	for	example,	all	classes
derived	from	QObject	and	thus	all	classes	that	implement	widgets.	Only	values
can	be	used	in	a	QValueVector.	To	qualify	as	a	value	the	class	must	provide:

A	copy	constructor
An	assignment	operator
A	default	constructor,	i.e.,	a	constructor	that	does	not	take	any	arguments.

Note	that	C++	defaults	to	field-by-field	assignment	operators	and	copy
constructors	if	no	explicit	version	is	supplied.	In	many	cases	this	is	sufficient.

QValueVector	uses	an	STL-like	syntax	to	manipulate	and	address	the	objects	it
contains.	See	this	document	for	more	information.

Example:

				#include	<qvaluevector.h>

				#include	<qstring.h>

				#include	<stdio.h>

				class	Employee

				{

				public:

								Employee():	s(0)	{}

								Employee(const	QString&	name,	int	salary)

												:	n(name),	s(salary)

								{}

								QString					name()			const														{	return	n;	}

								int									salary()	const														{	return	s;	}

								void								setSalary(int	salary)					{	s	=	salary;	}

				private:

								QString					n;

								int									s;

				};

				int	main()

				{

								typedef	QValueVector<Employee>	EmployeeVector;

								EmployeeVector	vec(4);								//	vector	of	4	Employees

								vec[0]	=	Employee("Bill",	50000);

								vec[1]	=	Employee("Steve",80000);

								vec[2]	=	Employee("Ron",		60000);

								Employee	joe("Joe",	50000);

								vec.push_back(joe);

								joe.setSalary(4000);

								

								EmployeeVector::iterator	it;

								for(it	=	vec.begin();	it	!=	vec.end();	++it)

												printf("%s	earns	%d\n",	(*it).name().latin1(),	(*it).salary());

								return	0;

				}

		

Program	output:

								Bill	earns	50000

								Steve	earns	80000

								Ron	earns	60000

								Joe	earns	50000

		

As	you	can	see,	the	latest	changes	to	Joe's	salary	did	not	affect	the	value	in	the
vector	because	the	vector	created	a	copy	of	Joe's	entry.

Many	Qt	functions	return	const	value	vectors;	to	iterate	over	these	you	should
make	a	copy	and	iterate	over	the	copy.

There	are	several	ways	to	find	items	in	the	vector.	The	begin()	and	end()
functions	return	iterators	to	the	beginning	and	end	of	the	vector.	The	advantage
of	getting	an	iterator	is	that	you	can	now	move	forward	or	backward	from	this
position	by	incrementing/decrementing	the	iterator.	The	iterator	returned	by
end()	points	to	the	element	which	is	one	past	the	last	element	in	the	container.
The	past-the-end	iterator	is	still	associated	with	the	vector	it	belongs	to,	however
it	is	not	dereferenceable;	operator*()	will	not	return	a	well-defined	value.	If	the
vector	is	empty(),	the	iterator	returned	by	begin()	will	equal	the	iterator	returned
by	end().

The	fastest	way	to	access	an	element	of	a	vector	is	by	using	operator[].	This
function	provides	random	access	and	will	return	a	reference	to	the	element
located	at	the	specified	index.	Thus,	you	can	access	every	element	directly,	in
constant	time,	providing	you	know	the	location	of	the	element.	It	is	undefined	to
access	an	element	that	does	not	exist	(your	application	will	probably	crash).	For
example:

		QValueVector<int>	vec1;		//	an	empty	vector

		vec1[10]	=	4;		//	WARNING:	undefined,	probably	a	crash

		QValueVector<QString>	vec2(25);	//	initialize	with	25	elements

		vec2[10]	=	"Dave";		//	OK

Whenever	inserting,	removing	or	referencing	elements	in	a	vector,	always	make
sure	you	are	referring	to	valid	positions.	For	example:

		void	func(QValueVector<int>&	vec)

		{

						if	(vec.size()	>	10)	{

										vec[9]	=	99;	//	OK

						}

		};

The	iterators	provided	by	vector	are	random	access	iterators,	therefore	you	can

use	them	with	many	generic	algorithms,	for	example,	algorithms	provided	by	the
STL	or	the	QTL.

Another	way	to	find	an	element	in	the	vector	is	by	using	the	std::find()	or
qFind()	algorithms.	For	example:

		QValueVector<int>	vec;

		...

		QValueVector<int>::const_iterator	it	=	qFind(vec.begin(),	vec.end

		if	(it	!=	vector.end())

						//	'it'	points	to	the	found	element

It	is	safe	to	have	multiple	iterators	on	the	vector	at	the	same	time.	Since
QValueVector	manages	memory	dynamically,	all	iterators	can	become	invalid	if
a	memory	reallocation	occurs.	For	example,	if	some	member	of	the	vector	is
removed,	iterators	that	point	to	the	removed	element	and	to	all	following
elements	become	invalidated.	Inserting	into	the	middle	of	the	vector	will
invalidate	all	iterators.	For	convenience,	the	function	back()	returns	a	reference
to	the	last	element	in	the	vector,	and	front()	one	for	the	first.	If	the	vector	is
empty(),	both	back()	and	front()	have	undefined	behavior	(your	application	will
crash	or	do	unpredictable	things).	Use	back()	and	front()	with	caution,	for
example:

		QValueVector<int>	vec(3);

		vec.push_back(1);

		vec.push_back(2);

		vec.push_back(3);

		...

		if	(!vec.empty())	{

						//	OK:	modify	the	first	element

						int&	i	=	vec.front();

						i	=	18;

		}

		...

		QValueVector<double>	dvec;

		double	d	=	dvec.back();	//	undefined	behavior

Because	QValueVector	manages	memory	dynamically,	it	is	recommended	to
contruct	a	vector	with	an	initial	size.	Inserting	and	removing	elements	happens
fastest	when:

Inserting	or	removing	elements	happens	at	the	end()	of	the	vector
The	vector	does	not	need	to	allocate	additional	memory

By	creating	a	QValueVector	with	a	sufficiently	large	initial	size,	there	will	be
less	memory	allocations.	Do	not	use	an	initial	size	that	is	too	big,	since	it	will
still	take	time	to	construct	all	the	empty	entries,	and	the	extra	space	may	be
wasted	if	it	is	never	used.

Because	QValueVector	is	value-based	there	is	no	need	to	be	careful	about
deleting	elements	in	the	vector.	The	vector	holds	its	own	copies	and	will	free
them	if	the	corresponding	member	or	the	vector	itself	is	deleted.	You	can	force
the	vector	to	free	all	of	its	items	with	clear().

QValueVector	is	shared	implicitly,	which	means	it	can	be	copied	in	constant
time.	If	multiple	QValueVector	instances	share	the	same	data	and	one	needs	to
modify	its	contents,	this	modifying	instance	makes	a	copy	and	modifies	its
private	copy;	it	thus	does	not	affect	the	other	instances.	This	is	often	called
"copy	on	write".	If	a	QValueVector	is	being	used	in	a	multi-threaded	program,
you	must	protect	all	access	to	the	vector.	See	QMutex.

There	are	several	ways	to	insert	elements	into	the	vector.	The	push_back()
function	insert	elements	into	the	end	of	the	vector.	The	insert()	can	be	used	to
add	elements	at	specific	positions	within	the	vector	(normally,	inserting	elements
at	the	end()	of	the	vector	is	fastest).

Items	can	be	also	be	removed	from	the	vector	in	several	ways.	There	are	several
variants	of	the	erase()	function	which	removes	a	specific	element,	or	range	of
elements,	from	the	vector.

Vectors	can	be	also	sorted	with	various	STL	algorithms	,	or	it	can	be	sorted	using
the	Qt	Template	Library.	For	example	with	qBubbleSort():

Example:

				QValueVector<int>	v(4);

				v.push_back(5);

				v.push_back(8);

				v.push_back(3);

				v.push_back(4);

				qBubbleSort(v);

		

QValueVector	stores	its	elements	in	contiguous	memory.	This	means	that	you
can	use	a	QValueVector	in	any	situation	that	requires	an	array.

See	also	Qt	Template	Library	Classes,	Implicitly	and	Explicitly	Shared	Classes
and	Non-GUI	Classes.

Member	Type	Documentation

QValueVector::const_iterator

The	vector's	const	iterator	type.

QValueVector::const_pointer

The	const	pointer	to	T	type.

QValueVector::const_reference

The	const	reference	to	T	type.

QValueVector::difference_type

A	signed	integral	type	used	to	represent	the	distance	between	two	iterators.

QValueVector::iterator

The	vector's	iterator	type.

QValueVector::pointer

The	pointer	to	T	type.

QValueVector::reference

The	reference	to	T	type.

QValueVector::size_type

An	unsigned	integral	type,	used	to	represent	various	sizes.

QValueVector::value_type

The	type	of	the	object	stored	in	the	vector.

Member	Function	Documentation

QValueVector::QValueVector	()

Constructs	an	empty	vector	without	any	elements.	To	create	a	vector	which
reserves	an	initial	amount	of	space	for	elements,	use	QValueVector(size_type
n).

QValueVector::QValueVector	(const	QValueVector<T>	&	v)

Constructs	a	copy	of	v.

This	operation	costs	O(1)	time	because	QValueVector	is	shared	implicitly.

The	first	modification	to	the	vector	does	however	take	O(n)	time.

QValueVector::QValueVector	(size_type	n,	const	T	&	val	=	T	())

Constructs	a	vector	with	an	initial	size	of	n	elements.	Each	element	is	initialized
with	the	value	of	val.

QValueVector::QValueVector	(std::vector<T>	&	v)

Constructs	a	copy	of	v.

This	operation	costs	O(n)	time	because	v	is	copied.

QValueVector::~QValueVector	()

Destroys	the	vector,	destroying	all	elements	and	freeing	the	memory.	References
to	the	values	in	the	vector	and	all	iterators	of	this	vector	become	invalidated.
Note	that	it	is	impossible	for	an	iterator	to	check	whether	or	not	it	is	valid	-
QValueVector	is	tuned	for	performance,	not	error	checking.

reference	QValueVector::at	(size_type	i,	bool	*	ok	=	0)

Returns	a	reference	to	the	element	with	index	i.	If	ok	is	non-null,	and	the	index	i

is	out	of	range,	*ok	is	set	to	FALSE	and	the	returned	reference	is	undefined.	If
the	index	i	is	within	the	range	of	the	vector,	and	ok	is	non-null,	*ok	is	set	to
TRUE	and	the	returned	reference	is	well	defined.

const_reference	QValueVector::at	(size_type	i,	bool	*	ok	=	0)
const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	a	const	reference	to	the	element	with	index	i.	If	ok	is	non-null,	and	the
index	i	is	out	of	range,	*ok	is	set	to	FALSE	and	the	returned	reference	is
undefined.	If	the	index	i	is	within	the	range	of	the	vector,	and	ok	is	non-null,	*ok
is	set	to	TRUE	and	the	returned	reference	is	well	defined.

reference	QValueVector::back	()

Returns	a	reference	to	the	last	element	in	the	vector.	If	there	is	no	last	element,
this	function	has	undefined	behavior.

const_reference	QValueVector::back	()	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	a	const	reference	to	the	last	element	in	the	vector.	If	there	is	no	last
element,	this	function	has	undefined	behavior.

iterator	QValueVector::begin	()

Returns	an	iterator	pointing	to	the	beginning	of	the	vector.	If	the	vector	is
empty(),	the	returned	iterator	will	equal	end().

const_iterator	QValueVector::begin	()	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	a	const	iterator	pointing	to	the	beginning	of	the	vector.	If	the	vector	is
empty(),	the	returned	iterator	will	equal	end().

size_type	QValueVector::capacity	()	const

Returns	the	maximum	number	of	elements	possible	without	memory
reallocation.	If	memory	reallocation	takes	place,	some	or	all	iterators	may
become	invalidated.

void	QValueVector::clear	()

Removes	all	elements	from	the	vector.

void	QValueVector::detach	()	[protected]

If	the	vector	does	not	share	its	data	with	another	QValueVector	instance,	nothing
happens.	Otherwise	the	function	creates	a	new	copy	of	this	data	and	detaches
from	the	shared	one.	This	function	is	called	whenever	the	vector	is	modified.
The	implicit	sharing	mechanism	is	implemented	this	way.

bool	QValueVector::empty	()	const

Returns	TRUE	if	the	vector	is	empty,	otherwise	FALSE.	Equivalent	to	size()==0,
but	is	faster.

iterator	QValueVector::end	()

Returns	an	iterator	pointing	behind	the	last	element	of	the	vector.

const_iterator	QValueVector::end	()	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	a	const	iterator	pointing	behind	the	last	element	of	the	vector.

iterator	QValueVector::erase	(iterator	pos)

Removes	the	element	at	position	pos	and	returns	the	position	of	the	next
element.

iterator	QValueVector::erase	(iterator	first,	iterator	last)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Removes	all	elements	from	first	up	to	but	not	including	last	and	returns	the
position	of	the	next	element.

reference	QValueVector::front	()

Returns	a	reference	to	the	first	element	in	the	vector.	If	there	is	no	first	element,
this	function	has	undefined	behavior.

const_reference	QValueVector::front	()	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	a	const	reference	to	the	first	element	in	the	vector.	If	there	is	no	first
element,	this	function	has	undefined	behavior.

iterator	QValueVector::insert	(iterator	pos,	const	T	&	x)

Inserts	a	copy	of	x	at	the	position	immediately	before	pos.

iterator	QValueVector::insert	(iterator	pos,	size_type	n,
const	T	&	x)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	n	copies	of	x	immediately	before	position	x.

QValueVector<T>	&	QValueVector::operator=	(
const	QValueVector<T>	&	v)

Assigns	v	to	this	vector	and	returns	a	reference	to	this	vector.

All	iterators	of	the	current	vector	become	invalidated	by	this	operation.	The	cost
of	such	an	assignment	is	O(1)	since	QValueVector	is	implicitly	shared.

QValueVector<T>	&	QValueVector::operator=	(
const	std::vector<T>	&	v)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Assigns	v	to	this	vector	and	returns	a	reference	to	this	vector.

All	iterators	of	the	current	vector	become	invalidated	by	this	operation.	The	cost
of	this	assignment	is	O(n)	since	v	is	copied.

bool	QValueVector::operator==	(const	QValueVector<T>	&	x)
const

Returns	TRUE	if	each	element	in	this	vector	equals	each	corresponding	element
in	x;	otherwise	returns	FALSE.

bool	QValueVector::operator==	(const	QValueVector<T>	&	x)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	TRUE	if	each	element	in	this	vector	equals	each	corresponding	element
in	x;	otherwise	returns	FALSE.

reference	QValueVector::operator[]	(size_type	i)

Returns	a	reference	to	the	element	at	index	i.	If	i	is	out	of	range,	this	function	has
undefined	behavior.

const_reference	QValueVector::operator[]	(size_type	i)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves

essentially	like	the	above	function.

Returns	a	const	reference	to	the	element	at	index	i.	If	i	is	out	of	range,	this
function	has	undefined	behavior.

void	QValueVector::pop_back	()

Removes	the	last	element	from	the	vector.

void	QValueVector::push_back	(const	T	&	x)

Appends	a	copy	of	x	to	the	end	of	the	vector.

void	QValueVector::reserve	(size_type	n)

Increases	the	vector's	capacity.	If	n	is	less	than	or	equal	to	capacity(),	nothing
happens.	Otherwise,	additional	memory	is	allocated	so	that	capacity()	will	be
increased	to	a	value	greater	than	or	equal	to	n.	All	iterators	will	then	become
invalidated.	Note	that	the	vector's	size()	and	the	values	of	existing	elements
remain	unchanged.

void	QValueVector::resize	(size_type	n,	const	T	&	val	=	T	())

Changes	the	size	of	the	vector	to	n.	If	n	is	greater	than	the	current	size(),
elements	are	added	to	the	end	and	initialized	with	the	value	of	val.	If	n	is	less
than	size(),	elements	are	removed	from	the	end.	If	n	is	equal	to	size()	nothing
happens.

size_type	QValueVector::size	()	const

Returns	the	number	of	elements	in	the	vector.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Collection	Classes
A	collection	class	is	a	container	which	holds	a	number	of	items	in	a	certain	data
structure	and	performs	operations	on	the	contained	items;	insert,	remove,	find
etc.

Qt	has	several	value-based	and	several	pointer-based	collection	classes.	The
pointer-based	collection	classes	work	with	pointers	to	items,	while	the	value-
based	classes	store	copies	of	their	items.	The	value-based	collections	are	very
similar	to	STL	container	classes,	and	can	be	used	with	STL	algorithms	and
containers.	See	the	Qt	Template	Library	documentation	for	details.

The	value-based	collections	are:

QValueList,	a	value-based	list
QValueVector,	a	value-based	vector	structure
QValueStack,	a	value-based	stack	structure
QMap,	a	value-based	dictionary	structure

The	pointer-based	collections	are:

QCache	and	QIntCache,	LRU	(least	recently	used)	cache	structures.
QDict,	QIntDict	and	QPtrDict	dictionary	structures.
QPtrList,	a	double	linked	list	structure.
QPtrQueue,	a	FIFO	(first	in,	first	out)	queue	structure.
QPtrStack,	a	LIFO	(last	in,	first	out)	stack	structure.
QPtrVector,	a	vector	structure.

QMemArray	is	exceptional;	it	is	neither	pointer	nor	value	based,	but	memory
based.	For	maximum	efficiency	with	the	simple	data	types	usually	used	in
arrays,	it	uses	bitwise	operations	to	copy	and	compare	array	elements.

Some	of	these	classes	have	corresponding	iterators.	An	iterator	is	a	class	for
traversing	the	items	in	a	collection:

QCacheIterator	and	QIntCacheIterator
QDictIterator,	QIntDictIterator,	and	QPtrDictIterator

QPtrListIterator
QValueListIterator,	and	QValueListConstIterator
QMapIterator,	and	QMapConstIterator

The	value-based	collections	plus	algorithms	operating	on	them	are	grouped
together	in	the	Qt	Template	Library.	See	the	respective	documentation	for
details.

The	rest	of	this	page	dicusses	the	pointer-based	containers.

Architecture	of	the	pointer-based	containers

There	are	four	internal	base	classes	for	the	pointer-based	containers	(QGCache,
QGDict,	QGList	and	QGVector)	that	operate	on	void	pointers.	A	thin	template
layer	implements	the	actual	collections	by	casting	item	pointers	to	and	from	void
pointers.

This	strategy	allows	Qt's	templates	to	be	very	economical	on	space	(instantiating
one	of	these	templates	adds	only	inlinable	calls	to	the	base	classes),	while	it	does
not	hurt	performance.

A	QPtrList	Example

This	example	shows	how	to	store	Employee	items	in	a	list	and	prints	them	out	in
the	reverse	order:

				#include	<qptrlist.h>

				#include	<qstring.h>

				#include	<stdio.h>

				class	Employee

				{

				public:

								Employee(const	char	*name,	int	salary)	{	n=name;	s=salary;	}

								const	char	*name()			const															{	return	n;	}

								int									salary()	const															{	return	s;	}

				private:

								QString					n;

								int									s;

				};

				int	main()

				{

								QPtrList<Employee>	list;																//	list	of	pointers	to	Employee

								list.setAutoDelete(TRUE);					//	delete	items	when	they	are	removed

								list.append(new	Employee("Bill",	50000));

								list.append(new	Employee("Steve",80000));

								list.append(new	Employee("Ron",		60000));

								QPtrListIterator<Employee>	it(list);	//	iterator	for	employee	list

								for	(it.toLast();	it.current();	--it))	{

												Employee	*emp	=	it.current();

												printf("%s	earns	%d\n",	emp->name(),	emp->salary());

								}

								return	0;

				}

Program	output:

				Ron	earns	60000

				Steve	earns	80000

				Bill	earns	50000

Managing	Collection	Items

All	pointer-based	collections	inherit	the	QPtrCollection	base	class.	This	class
knows	only	the	number	of	items	in	the	collection	and	the	delete	strategy.

Items	in	a	collection	are	by	default	not	deleted	when	they	are	removed	from	the
collection.	The	QPtrCollection::setAutoDelete()	function	specifies	the	delete
strategy.	In	the	list	example,	we	enable	auto-deletion	to	make	the	list	delete	the
items	when	they	are	removed	from	the	list.

When	inserting	an	item	into	a	collection,	only	the	pointer	is	copied,	not	the	item
itself.	This	is	called	a	shallow	copy.	It	is	possible	to	make	the	collection	copy	all
of	the	item's	data	(known	as	a	deep	copy)	when	an	item	is	inserted.	All	collection
functions	that	insert	an	item	call	the	virtual	function	QPtrCollection::newItem()
for	the	item	to	be	inserted.	Inherit	a	collection	and	reimplement	it	if	you	want	to
have	deep	copies	in	your	collection.

When	removing	an	item	from	a	list,	the	virtual	function
QPtrCollection::deleteItem()	is	called.	The	default	implementation	in	all
collection	classes	deletes	the	item	if	auto-deletion	is	enabled.

Usage

A	pointer-based	collection	class,	such	as	QPtrList<type>,	defines	a	collection	of
pointers	to	type	objects.	The	pointer	(*)	is	implicit.

We	discuss	QPtrList	here,	but	the	same	techniques	apply	for	all	pointer-based
collection	classes	and	all	collection	class	iterators.

Template	instantiation:

				QPtrList<Employee>	list;												//	wherever	the	list	is	used

The	item's	class	or	type,	Employee	in	our	example,	must	be	defined	prior	to	the
list	definition.

				//	Does	not	work:	Employee	is	not	defined

				class	Employee;

				QPtrList<Employee>	list;

				//	This	works:	Employee	is	defined	before	it	is	used

				class	Employee	{

								...

				};

				QPtrList<Employee>	list;

Iterators

Although	QPtrList	has	member	functions	to	traverse	the	list,	it	can	often	be
better	to	make	use	of	an	iterator.	QPtrListIterator	is	very	safe	and	can	traverse
lists	that	are	being	modified	at	the	same	time.	Multiple	iterators	can	work
independently	on	the	same	collection.

A	QPtrList	has	an	internal	list	of	all	iterators	that	are	currently	operating	on	the
list.	When	a	list	entry	is	removed,	the	list	updates	all	iterators	to	point	to	this
entry.

The	QDict	and	QCache	collections	have	no	traversal	functions.	To	traverse	these
collections,	you	must	use	QDictIterator	or	QCacheIterator.

Predefined	Collections

Qt	has	the	following	predefined	collection	classes:

String	lists:	QStrList,	QStrIList	(qstrlist.h)	and	QStringList	(qstringlist.h)
String	vectors:	QStrVec	and	QStrIVec	(qstrvec.h);	these	are	obsolete

In	almost	all	cases	you	would	choose	QStringList,	a	value	list	of	implicitly
shared	QString	unicode	strings.	QPtrStrList	and	QPtrStrIList	store	only	char
pointers,	not	the	strings	themselves.

List	of	Pointer-based	Collection	Classes	and	Related
Iterator	Classes

QAsciiCache Template	class	that	provides	a	cache	based	on	char*	keys
QAsciiCacheIterator Iterator	for	QAsciiCache	collections

QAsciiDict Template	class	that	provides	a	dictionary	based	on	char*
keys

QAsciiDictIterator Iterator	for	QAsciiDict	collections
QBitArray Array	of	bits
QBitVal Internal	class,	used	with	QBitArray
QBuffer I/O	device	that	operates	on	a	QByteArray
QByteArray Array	of	bytes

QCache Template	class	that	provides	a	cache	based	on	QString
keys

QCacheIterator Iterator	for	QCache	collections

QCString Abstraction	of	the	classic	C	zero-terminated	char	array
(char	*)

QDict Template	class	that	provides	a	dictionary	based	on
QString	keys

QDictIterator Iterator	for	QDict	collections
QIntCache Template	class	that	provides	a	cache	based	on	long	keys
QIntCacheIterator Iterator	for	QIntCache	collections

QIntDict Template	class	that	provides	a	dictionary	based	on	long
keys

QIntDictIterator Iterator	for	QIntDict	collections
QObjectList QPtrList	of	QObjects
QObjectListIt Iterator	for	QObjectLists
QPtrCollection The	base	class	of	most	pointer-based	Qt	collections

QPtrDict Template	class	that	provides	a	dictionary	based	on	void*
keys

QPtrDictIterator Iterator	for	QPtrDict	collections
QPtrList Template	class	that	provides	doubly-linked	lists

QPtrListIterator Iterator	for	QPtrList	collections
QPtrQueue Template	class	that	provides	a	queue

QStrIList Doubly-linked	list	of	char*	with	case-insensitive
comparison

QStrList Doubly-linked	list	of	char*

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QTextStream
QTextStreamQIODevice	 ……

#include	<qtextstream.h>

QTextIStreamQTextOStream

enum	Encoding	{	Locale,	Latin1,	Unicode,	UnicodeNetworkOrder,
UnicodeReverse,	RawUnicode,	UnicodeUTF8	}
void	setEncoding	(Encoding	e)
void	setCodec	(QTextCodec	*	codec)
QTextStream	()
QTextStream	(QIODevice	*	iod)
QTextStream	(QString	*	str,	int	filemode)
QTextStream	(QString	&	str,	int	filemode)		(obsolete)
QTextStream	(QByteArray	a,	int	mode)
QTextStream	(FILE	*	fh,	int	mode)
virtual	~QTextStream	()
QIODevice	*	device	()	const
void	setDevice	(QIODevice	*	iod)
void	unsetDevice	()
bool	atEnd	()	const
bool	eof	()	const		(obsolete)
QTextStream	&	operator>>	(QChar	&	c)
QTextStream	&	operator>>	(char	&	c)
QTextStream	&	operator>>	(signed	short	&	i)
QTextStream	&	operator>>	(unsigned	short	&	i)
QTextStream	&	operator>>	(signed	int	&	i)
QTextStream	&	operator>>	(unsigned	int	&	i)
QTextStream	&	operator>>	(signed	long	&	i)
QTextStream	&	operator>>	(unsigned	long	&	i)
QTextStream	&	operator>>	(float	&	f)
QTextStream	&	operator>>	(double	&	f)
QTextStream	&	operator>>	(char	*	s)
QTextStream	&	operator>>	(QString	&	str)
QTextStream	&	operator>>	(QCString	&	str)
QTextStream	&	operator<<	(QChar	c)
QTextStream	&	operator<<	(char	c)
QTextStream	&	operator<<	(signed	short	i)
QTextStream	&	operator<<	(unsigned	short	i)
QTextStream	&	operator<<	(signed	int	i)
QTextStream	&	operator<<	(unsigned	int	i)

QTextStream	&	operator<<	(signed	long	i)
QTextStream	&	operator<<	(unsigned	long	i)
QTextStream	&	operator<<	(float	f)
QTextStream	&	operator<<	(double	f)
QTextStream	&	operator<<	(const	char	*	s)
QTextStream	&	operator<<	(const	QString	&	s)
QTextStream	&	operator<<	(const	QCString	&	s)
QTextStream	&	operator<<	(void	*	ptr)
QTextStream	&	readRawBytes	(char	*	s,	uint	len)
QTextStream	&	writeRawBytes	(const	char	*	s,	uint	len)
QString	readLine	()
QString	read	()
void	skipWhiteSpace	()
int	flags	()	const
int	flags	(int	f)
int	setf	(int	bits)
int	setf	(int	bits,	int	mask)
int	unsetf	(int	bits)
void	reset	()
int	width	()	const
int	width	(int	w)
int	fill	()	const
int	fill	(int	f)
int	precision	()	const
int	precision	(int	p)

QTextStream QIODevice

C++iostreamiostreamQTextStreamQIODeviceiostreamFILE	*

Qtiostream

binQTextStream/
octQTextStream/
decQTextStream/
hexQTextStream/
endl
flushQIODevice
ws
resetQTextStream reset()
qSetW(int)
qSetFill(int)
qSetPrecision(int)

QTextStream“0”“0100”64

QTextStream QDataStream

8Unicode QString setEncoding
”8

QIODevice setDevice() atEnd() operator>>() read() readLine()
skipWhiteSpace() flags()setf() width() precision()	 fill() reset()

QDataStream/ .

QTextStream::Encoding

QTextStream::Locale

QTextStream::Latin1

QTextStream::Unicode

QTextStream::UnicodeNetworkOrder

QTextStream::UnicodeReverse

QTextStream::RawUnicode

QTextStream::UnicodeUTF8

QTextStream::QTextStream	()

IO

QTextStream::QTextStream	(QIODevice	*	iod)

iodIO

QTextStream::QTextStream	(QString	*	str,	int	filemode)

Unicode QStringstr filemodeopen() QIODevice::mode

setEncoding()setCodec()QString

				QString	str;

				QTextStream	ts(&str,	IO_WriteOnly);

				ts	<<	"pi	=	"	<<	3.14;	//	str	==	"pi	=	3.14"

		

				QString	str	=	"pi	=	3.14";

				QTextStream	ts(&str,	IO_WriteOnly);

				ts	<<		"2+2	=	"	<<	2+2;	//	str	==	"2+2	=	414"

		

QStringUnicode readRawBytes()writeRawBytes

QTextStream::QTextStream	(QString	&	str,	int	filemode)

QString*

QTextStream::QTextStream	(QByteArray	a,	int	mode)

QBuffera filemodeopen() QIODevice::mode()

				QByteArray	array;

				QTextStream	ts(array,	IO_WriteOnly);

				ts	<<	"pi	=	"	<<	3.14	<<	'\0';	//	array	==	"pi	=	3.14"

		

QBuffer

				QByteArray	array;

				QBuffer	buf(array);

				buf.open(IO_WriteOnly);

				QTextStream	ts(&buf);

				ts	<<	"pi	=	"	<<	3.14	<<	'\0';	//	array	==	"pi	=	3.14"

				buf.close();

		

QTextStream::QTextStream	(FILE	*	fh,	int	mode)

QFilefh filemodeopen() QIODevice::mode()

QTextStream cout

QTextStream::~QTextStream	()	[]

IO

bool	QTextStream::atEnd	()	const

IOIO

QIODevice::atEnd()

addressbook/centralwidget.cppgrapher/grapher.cpp

QIODevice	*	QTextStream::device	()	const

IO

setDevice()unsetDevice()

bool	QTextStream::eof	()	const

atEnd()

QIODevice::atEnd()

chart/chartform_files.cpp

int	QTextStream::fill	()	const

“	”

int	QTextStream::fill	(int	f)

f

int	QTextStream::flags	()	const

0

skipws	-	
left	-	
right	-	
internal	-	+/-
bin	-	
oct	-	
dec	-	
hex	-	
showbase	-	binocthex0b00x

showpoint	-	
uppercase	-	0B0X0b0x
showpos	-	+
scientific	-	
fixed	-	

binoctdechex00x0b

setf()unsetf()

int	QTextStream::flags	(int	f)

f

setf()unsetf()

QTextStream	&	QTextStream::operator<<	(QChar	c)

c

cQTextStreamLatin1

QTextStream	&	QTextStream::operator<<	(char	c)

c

QTextStream	&	QTextStream::operator<<	(signed	short	i)

i

QTextStream	&	QTextStream::operator<<	(unsigned	short	i)

i

QTextStream	&	QTextStream::operator<<	(signed	int	i)

i

QTextStream	&	QTextStream::operator<<	(unsigned	int	i)

i

QTextStream	&	QTextStream::operator<<	(signed	long	i)

i

QTextStream	&	QTextStream::operator<<	(unsigned	long	i)

i

QTextStream	&	QTextStream::operator<<	(float	f)

f

QTextStream	&	QTextStream::operator<<	(double	f)

f

QTextStream	&	QTextStream::operator<<	(const	char	*	s)

sQTextStreamLatin1

QTextStream	&	QTextStream::operator<<	(const	QString	&	s)

s

QTextStream	&	QTextStream::operator<<	(const	QCString	&	s)

s

sQTextStreamLatin1

QTextStream	&	QTextStream::operator<<	(void	*	ptr)

ptr

QTextStream	&	QTextStream::operator>>	(QChar	&	c)

c	

QTextStream	&	QTextStream::operator>>	(char	&	c)

c

QTextStream	&	QTextStream::operator>>	(signed	short	&	i)

i flags()

QTextStream	&	QTextStream::operator>>	(unsigned	short	&	i)

i flags()

QTextStream	&	QTextStream::operator>>	(signed	int	&	i)

i flags()

QTextStream	&	QTextStream::operator>>	(unsigned	int	&	i)

i flags()

QTextStream	&	QTextStream::operator>>	(signed	long	&	i)

i flags()

QTextStream	&	QTextStream::operator>>	(unsigned	long	&	i)

i flags()

QTextStream	&	QTextStream::operator>>	(float	&	f)

f flags()

QTextStream	&	QTextStream::operator>>	(double	&	f)

f flags()

QTextStream	&	QTextStream::operator>>	(char	*	s)

“” s

isspace()

QTextStream	&	QTextStream::operator>>	(QString	&	str)

“” str

isspace()

QTextStream	&	QTextStream::operator>>	(QCString	&	str)

“” str

isspace()

int	QTextStream::precision	()	const

6

int	QTextStream::precision	(int	p)

p

QString	QTextStream::read	()

QIODevice::readLine().

action/application.cppapplication/application.cppmdi/application.cppqdir/qdir.cpp
qwerty/qwerty.cpp

QString	QTextStream::readLine	()

QIODevice::readLine()

EOF QStringQString

QIODevice::readLine()

addressbook/centralwidget.cppchart/element.cpp

QTextStream	&	QTextStream::readRawBytes	(char	*	s,	uint	len)

lens

s

UnicodeLatin1

QIODevice::readBlock()

void	QTextStream::reset	()

0
0
“	”
6

setf() width() fill()precision()

void	QTextStream::setCodec	(QTextCodec	*	codec)

codecUnicode

/

setEncoding()

qwerty/qwerty.cpp

void	QTextStream::setDevice	(QIODevice	*	iod)

IO iod

device()unsetDevice()

void	QTextStream::setEncoding	(Encoding	e)

ee

Locale	-	Latin1Unicodeutf16
Unicode	-	Unicodeutf16
UnicodeUTF8	-	Unicodeutf8utf16utf8
Latin1	-	ISO-8859-1utf16
UnicodeNetworkOrder	-	Unicodeutf16Unicode
UnicodeReverse	-	Unicodeutf16bugWindowsUnicode
RawUnicode	-	Unicode

LocaleUnicode RawUnicode

/

setCodec()

network/httpd/httpd.cppqwerty/qwerty.cpp

int	QTextStream::setf	(int	bits)

bits

flags(flags()	|	bits)

unsetf()

int	QTextStream::setf	(int	bits,	int	mask)

	 bits

flags((flags()	&	~mask)	|	(bits	&	mask))

unsetf()

void	QTextStream::skipWhiteSpace	()

void	QTextStream::unsetDevice	()

IO setDevice(0)

device()setDevice()

int	QTextStream::unsetf	(int	bits)

bits

flags(flags()	&	~mask)

setf()

int	QTextStream::width	()	const

0

int	QTextStream::width	(int	w)

w

QTextStream	&	QTextStream::writeRawBytes	(const	char	*	s,
uint	len)

slen

QIODevice::writeBlock()

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qstringlist.h
This	is	the	verbatim	text	of	the	qstringlist.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qstringlist.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QStringList	class

**

**	Created	:	990406

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	tools	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QSTRINGLIST_H

#define	QSTRINGLIST_H

#ifndef	QT_H

#include	"qvaluelist.h"

#include	"qstring.h"

#include	"qstrlist.h"

#endif	//	QT_H

#ifndef	QT_NO_STRINGLIST

class	QRegExp;

class	Q_EXPORT	QStringList	:	public	QValueList<QString>

{

public:

				QStringList()	{	}

				QStringList(const	QStringList&	l)	:	QValueList<QString>(l)	{	}

				QStringList(const	QValueList<QString>&	l)	:	QValueList<QString>(l)	{	}

				QStringList(const	QString&	i)	{	append(i);	}

#ifndef	QT_NO_CAST_ASCII

				QStringList(const	char*	i)	{	append(i);	}

#endif

				static	QStringList	fromStrList(const	QStrList&);

				void	sort();

				static	QStringList	split(const	QString	&sep,	const	QString	&str,	bool	allowEmptyEntries	=	FALSE);

				static	QStringList	split(const	QChar	&sep,	const	QString	&str,	bool	allowEmptyEntries	=	FALSE);

				static	QStringList	split(const	QRegExp	&sep,	const	QString	&str,	bool	allowEmptyEntries	=	FALSE);

				QString	join(const	QString	&sep)	const;

				QStringList	grep(const	QString	&str,	bool	cs	=	TRUE)	const;

				QStringList	grep(const	QRegExp	&expr)	const;

};

#ifndef	QT_NO_DATASTREAM

class	QDataStream;

extern	Q_EXPORT	QDataStream	&operator>>(QDataStream	&,	QStringList&);

extern	Q_EXPORT	QDataStream	&operator<<(QDataStream	&,	const	QStringList&);

#endif

#endif	//	QT_NO_STRINGLIST

#endif	//	QSTRINGLIST_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qtextstream.h
qtextstream.hTrolltech

/**

**	$Id:		qt/qtextstream.h			3.0.5			edited	May	22	16:20	$

**

**	Definition	of	QTextStream	class

**

**	Created	:	940922

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	tools	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QTEXTSTREAM_H

#define	QTEXTSTREAM_H

#ifndef	QT_H

#include	"qiodevice.h"

#include	"qstring.h"

#include	<stdio.h>

#endif	//	QT_H

#ifndef	QT_NO_TEXTSTREAM

class	QTextCodec;

class	QTextDecoder;

class	QTextStreamPrivate;

class	Q_EXPORT	QTextStream	 	 	 	 //	text	stream	class

{

public:

				enum	Encoding	{	Locale,	Latin1,	Unicode,	UnicodeNetworkOrder,

	 	 				UnicodeReverse,	RawUnicode,	UnicodeUTF8	};

				void	 setEncoding(Encoding);

#ifndef	QT_NO_TEXTCODEC

				void	 setCodec(QTextCodec*);

#endif

				//				Encoding	encoding()	const	{	return	cmode;	}

				QTextStream();

				QTextStream(QIODevice	*);

				QTextStream(QString*,	int	mode);

				QTextStream(QString&,	int	mode);	 	 //	obsolete

				QTextStream(QByteArray,	int	mode);

				QTextStream(FILE	*,	int	mode);

				virtual	~QTextStream();

				QIODevice	 *device()	const;

				void	 	setDevice(QIODevice	*);

				void	 	unsetDevice();

				bool	 	atEnd()	const;

				bool	 	eof()	const;

				QTextStream	&operator>>(QChar	&);

				QTextStream	&operator>>(char	&);

				QTextStream	&operator>>(signed	short	&);

				QTextStream	&operator>>(unsigned	short	&);

				QTextStream	&operator>>(signed	int	&);

				QTextStream	&operator>>(unsigned	int	&);

				QTextStream	&operator>>(signed	long	&);

				QTextStream	&operator>>(unsigned	long	&);

				QTextStream	&operator>>(float	&);

				QTextStream	&operator>>(double	&);

				QTextStream	&operator>>(char	*);

				QTextStream	&operator>>(QString	&);

				QTextStream	&operator>>(QCString	&);

				QTextStream	&operator<<(QChar);

				QTextStream	&operator<<(char);

				QTextStream	&operator<<(signed	short);

				QTextStream	&operator<<(unsigned	short);

				QTextStream	&operator<<(signed	int);

				QTextStream	&operator<<(unsigned	int);

				QTextStream	&operator<<(signed	long);

				QTextStream	&operator<<(unsigned	long);

				QTextStream	&operator<<(float);

				QTextStream	&operator<<(double);

				QTextStream	&operator<<(const	char*);

				QTextStream	&operator<<(const	QString	&);

				QTextStream	&operator<<(const	QCString	&);

				QTextStream	&operator<<(void	*);	 	 //	any	pointer

				QTextStream	&readRawBytes(char	*,	uint	len);

				QTextStream	&writeRawBytes(const	char*	,	uint	len);

				QString	 readLine();

				QString	 read();

				void	 skipWhiteSpace();

				enum	{

	 skipws	 		=	0x0001,	 	 	 //	skip	whitespace	on	input

	 left	 		=	0x0002,	 	 	 //	left-adjust	output

	 right	 		=	0x0004,	 	 	 //	right-adjust	output

	 internal		=	0x0008,	 	 	 //	pad	after	sign

	 bin	 		=	0x0010,	 	 	 //	binary	format	integer

	 oct	 		=	0x0020,	 	 	 //	octal	format	integer

	 dec	 		=	0x0040,	 	 	 //	decimal	format	integer

	 hex	 		=	0x0080,	 	 	 //	hex	format	integer

	 showbase		=	0x0100,	 	 	 //	show	base	indicator

	 showpoint	=	0x0200,	 	 	 //	force	decimal	point	(float)

	 uppercase	=	0x0400,	 	 	 //	upper-case	hex	output

	 showpos			=	0x0800,	 	 	 //	add	'+'	to	positive	integers

	 scientific=	0x1000,	 	 	 //	scientific	float	output

	 fixed	 		=	0x2000	 	 	 //	fixed	float	output

				};

				static	const	int	basefield;		 	 //	bin	|	oct	|	dec	|	hex

				static	const	int	adjustfield;	 	 //	left	|	right	|	internal

				static	const	int	floatfield;	 	 //	scientific	|	fixed

				int			flags()	const;

				int			flags(int	f);

				int			setf(int	bits);

				int			setf(int	bits,	int	mask);

				int			unsetf(int	bits);

				void		reset();

				int			width()	 const;

				int			width(int);

				int			fill()	 const;

				int			fill(int);

				int			precision()	 const;

				int			precision(int);

private:

				long	 input_int();

				void	 init();

				QTextStream	&output_int(int,	ulong,	bool);

				QIODevice	 *dev;

				int		 fflags;

				int		 fwidth;

				int		 fillchar;

				int		 fprec;

				bool	 doUnicodeHeader;

				bool	 owndev;

				QTextCodec		*mapper;

				QTextStreamPrivate	*	d;

				QChar	 unused1;	//	###	remove	in	Qt	4.0

				bool	 latin1;

				bool		 internalOrder;

				bool	 networkOrder;

				void	 *unused2;	//	###	remove	in	Qt	4.0

				QChar	 eat_ws();

				uint		 ts_getline(QChar*);

				void	 ts_ungetc(QChar);

				QChar	 ts_getc();

				uint	 ts_getbuf(QChar*,	uint);

				void	 ts_putc(int);

				void	 ts_putc(QChar);

				bool	 ts_isspace(QChar);

				bool	 ts_isdigit(QChar);

				ulong	 input_bin();

				ulong	 input_oct();

				ulong	 input_dec();

				ulong	 input_hex();

				double	 input_double();

				QTextStream	&writeBlock(const	char*	p,	uint	len);

				QTextStream	&writeBlock(const	QChar*	p,	uint	len);

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QTextStream(const	QTextStream	&);

				QTextStream	&operator=(const	QTextStream	&);

#endif

};

typedef	QTextStream	QTS;

class	Q_EXPORT	QTextIStream	:	public	QTextStream	{

public:

				QTextIStream(const	QString*	s)	:

	 QTextStream((QString*)s,IO_ReadOnly)	{	}

				QTextIStream(QByteArray	ba)	:

	 QTextStream(ba,IO_ReadOnly)	{	}

				QTextIStream(FILE	*f)	:

	 QTextStream(f,IO_ReadOnly)	{	}

};

class	Q_EXPORT	QTextOStream	:	public	QTextStream	{

public:

				QTextOStream(QString*	s)	:

	 QTextStream(s,IO_WriteOnly)	{	}

				QTextOStream(QByteArray	ba)	:

	 QTextStream(ba,IO_WriteOnly)	{	}

				QTextOStream(FILE	*f)	:

	 QTextStream(f,IO_WriteOnly)	{	}

};

/***

		QTextStream	inline	functions

	***/

inline	QIODevice	*QTextStream::device()	const

{	return	dev;	}

inline	bool	QTextStream::atEnd()	const

{	return	dev	?	dev->atEnd()	:	FALSE;	}

inline	bool	QTextStream::eof()	const

{	return	atEnd();	}

inline	int	QTextStream::flags()	const

{	return	fflags;	}

inline	int	QTextStream::flags(int	f)

{	int	oldf	=	fflags;		fflags	=	f;		return	oldf;	}

inline	int	QTextStream::setf(int	bits)

{	int	oldf	=	fflags;		fflags	|=	bits;		return	oldf;	}

inline	int	QTextStream::setf(int	bits,	int	mask)

{	int	oldf	=	fflags;		fflags	=	(fflags	&	~mask)	|	(bits	&	mask);	return	oldf;	}

inline	int	QTextStream::unsetf(int	bits)

{	int	oldf	=	fflags;		fflags	&=	~bits;	 return	oldf;	}

inline	int	QTextStream::width()	const

{	return	fwidth;	}

inline	int	QTextStream::width(int	w)

{	int	oldw	=	fwidth;		fwidth	=	w;		return	oldw;		}

inline	int	QTextStream::fill()	const

{	return	fillchar;	}

inline	int	QTextStream::fill(int	f)

{	int	oldc	=	fillchar;	 fillchar	=	f;		return	oldc;		}

inline	int	QTextStream::precision()	const

{	return	fprec;	}

inline	int	QTextStream::precision(int	p)

{	int	oldp	=	fprec;		fprec	=	p;		return	oldp;		}

/*!

		Returns	one	character	from	the	stream,	or	EOF.

*/

inline	QChar	QTextStream::ts_getc()

{	QChar	r;	return	(ts_getbuf(&r,1)	==	1	?	r	:	QChar((ushort)0xffff));	}

/***

		QTextStream	manipulators

	***/

typedef	QTextStream	&	(*QTSFUNC)(QTextStream	&);//	manipulator	function

typedef	int	(QTextStream::*QTSMFI)(int);	 //	manipulator	w/int	argument

class	Q_EXPORT	QTSManip	{	 	 	 //	text	stream	manipulator

public:

				QTSManip(QTSMFI	m,	int	a)	{	mf=m;	arg=a;	}

				void	exec(QTextStream	&s)	{	(s.*mf)(arg);	}

private:

				QTSMFI	mf;	 	 	 	 	 //	QTextStream	member	function

				int				arg;		 	 	 	 //	member	function	argument

};

Q_EXPORT	inline	QTextStream	&operator>>(QTextStream	&s,	QTSFUNC	f)

{	return	(*f)(s);	}

Q_EXPORT	inline	QTextStream	&operator<<(QTextStream	&s,	QTSFUNC	f)

{	return	(*f)(s);	}

Q_EXPORT	inline	QTextStream	&operator<<(QTextStream	&s,	QTSManip	m)

{	m.exec(s);	return	s;	}

Q_EXPORT	QTextStream	&bin(QTextStream	&s);	 //	set	bin	notation

Q_EXPORT	QTextStream	&oct(QTextStream	&s);	 //	set	oct	notation

Q_EXPORT	QTextStream	&dec(QTextStream	&s);	 //	set	dec	notation

Q_EXPORT	QTextStream	&hex(QTextStream	&s);	 //	set	hex	notation

Q_EXPORT	QTextStream	&endl(QTextStream	&s);	 //	insert	EOL	('\n')

Q_EXPORT	QTextStream	&flush(QTextStream	&s);	 //	flush	output

Q_EXPORT	QTextStream	&ws(QTextStream	&s);	 //	eat	whitespace	on	input

Q_EXPORT	QTextStream	&reset(QTextStream	&s);	 //	set	default	flags

Q_EXPORT	inline	QTSManip	qSetW(int	w)

{

				QTSMFI	func	=	&QTextStream::width;

				return	QTSManip(func,w);

}

Q_EXPORT	inline	QTSManip	qSetFill(int	f)

{

				QTSMFI	func	=	&QTextStream::fill;

				return	QTSManip(func,f);

}

Q_EXPORT	inline	QTSManip	qSetPrecision(int	p)

{

				QTSMFI	func	=	&QTextStream::precision;

				return	QTSManip(func,p);

}

#endif	//	QT_NO_TEXTSTREAM

#endif	//	QTEXTSTREAM_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QStringList	Class	Reference
The	QStringList	class	provides	a	list	of	strings.	More...

#include	<qstringlist.h>

Inherits	QValueList<QString>.

List	of	all	member	functions.

Public	Members

QStringList	()
QStringList	(const	QStringList	&	l)
QStringList	(const	QValueList<QString>	&	l)
QStringList	(const	QString	&	i)
QStringList	(const	char	*	i)
void	sort	()
QString	join	(const	QString	&	sep)	const
QStringList	grep	(const	QString	&	str,	bool	cs	=	TRUE)	const
QStringList	grep	(const	QRegExp	&	expr)	const

Static	Public	Members

QStringList	fromStrList	(const	QStrList	&	ascii)
QStringList	split	(const	QString	&	sep,	const	QString	&	str,
bool	allowEmptyEntries	=	FALSE)
QStringList	split	(const	QChar	&	sep,	const	QString	&	str,
bool	allowEmptyEntries	=	FALSE)
QStringList	split	(const	QRegExp	&	sep,	const	QString	&	str,
bool	allowEmptyEntries	=	FALSE)

Detailed	Description

The	QStringList	class	provides	a	list	of	strings.

It	is	used	to	store	and	manipulate	strings	that	logically	belong	together.	Basically
QStringList	is	a	QValueList	of	QString	objects.	As	opposed	to	QStrList,	which
stores	pointers	to	characters,	QStringList	deals	with	real	QString	objects.	It	is	the
class	of	choice	whenever	you	work	with	Unicode	strings.	QStringList	is	part	of
the	Qt	Template	Library.

Like	QString	itself,	QStringList	objects	are	implicitly	shared.	Passing	them
around	as	value-parameters	is	both	fast	and	safe.

Strings	can	be	added	to	a	list	using	append(),	operator+=()	or	operator<<(),	e.g.

				QStringList	fonts;

				fonts.append("Times");

				fonts	+=	"Courier";

				fonts	+=	"Courier	New";

				fonts	<<	"Helvetica	[Cronyx]"	<<	"Helvetica	[Adobe]";

				

String	lists	have	an	iterator,	QStringList::Iterator(),	e.g.

				for	(QStringList::Iterator	it	=	fonts.begin();	it	!=	fonts.end();	++it)	{

								cout	<<	*it	<<	":";

				}

				cout	<<	endl;

				//	Output:

				//		Times:Courier:Courier	New:Helvetica	[Cronyx]:Helvetica	[Adobe]:

				

Many	Qt	functions	return	const	string	lists;	to	iterate	over	these	you	should	make
a	copy	and	iterate	over	the	copy.

You	can	concatenate	all	the	strings	in	a	string	list	into	a	single	string	(with	an
optional	separator)	using	join(),	e.g.

				QString	allFonts	=	fonts.join(",	");

				cout	<<	allFonts	<<	endl;

				//	Output:

				//		Times,	Courier,	Courier	New,	Helvetica	[Cronyx],	Helvetica	[Adobe]

				

You	can	sort	the	list	with	sort(),	and	extract	a	new	list	which	contains	only	those
strings	which	contain	a	particular	substring	(or	match	a	particular	regular
expression)	using	the	grep()	functions,	e.g.

				fonts.sort();

				cout	<<	fonts.join(",	")	<<	endl;

				//	Output:

				//		Courier,	Courier	New,	Helvetica	[Adobe],	Helvetica	[Cronyx],	Times

				QStringList	helveticas	=	fonts.grep("Helvetica");

				cout	<<	helveticas.join(",	")	<<	endl;

				//	Output:

				//		Helvetica	[Adobe],	Helvetica	[Cronyx]

				

Existing	strings	can	be	split	into	string	lists	with	character,	string	or	regular
expression	separators,	e.g.

				QString	s	=	"Red\tGreen\tBlue";

				QStringList	colors	=	QStringList::split("\t",	s);

				cout	<<	colors.join(",	")	<<	endl;

				//	Output:

				//		Red,	Green,	Blue

				

See	also	Implicitly	and	Explicitly	Shared	Classes,	Text	Related	Classes	and	Non-
GUI	Classes.

Member	Function	Documentation

QStringList::QStringList	()

Creates	an	empty	string	list.

QStringList::QStringList	(const	QStringList	&	l)

Creates	a	copy	of	the	list	l.	This	function	is	very	fast	because	QStringList	is
implicitly	shared.	However,	for	the	programmer	this	is	the	same	as	a	deep	copy.
If	this	list	or	the	original	one	or	some	other	list	referencing	the	same	shared	data
is	modified,	the	modifying	list	first	makes	a	copy,	i.e.	copy-on-write.

QStringList::QStringList	(const	QValueList<QString>	&	l)

Constructs	a	new	string	list	that	is	a	copy	of	l.

QStringList::QStringList	(const	QString	&	i)

Constructs	a	string	list	consisting	of	the	single	string	i.	Longer	lists	are	easily
created	as	follows:

				QStringList	items;

				items	<<	"Buy"	<<	"Sell"	<<	"Update"	<<	"Value";

				

QStringList::QStringList	(const	char	*	i)

Constructs	a	string	list	consisting	of	the	single	latin-1	string	i.

QStringList	QStringList::fromStrList	(const	QStrList	&	ascii)
[static]

Converts	from	an	ASCII-QStrList	ascii	to	a	QStringList	(Unicode).

QStringList	QStringList::grep	(const	QString	&	str,	bool	cs	=
TRUE)	const

Returns	a	list	of	all	strings	containing	the	substring	str.

If	cs	is	TRUE,	the	grep	is	done	case-sensitively;	otherwise	case	is	ignored.

QStringList	QStringList::grep	(const	QRegExp	&	expr)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	a	list	of	all	the	strings	that	contain	a	substring	that	matches	the	regular
expression	expr.

QString	QStringList::join	(const	QString	&	sep)	const

Joins	the	string	list	into	a	single	string	with	each	element	separated	by	the	string
sep.

See	also	split().

void	QStringList::sort	()

Sorts	the	list	of	strings	in	ascending	case-sensitive	order.

Sorting	is	very	fast.	It	uses	the	Qt	Template	Library's	efficient	HeapSort
implementation	that	has	a	time	complexity	of	O(n*log	n).

If	you	want	to	sort	your	strings	in	an	arbitrary	order	consider	using	a	QMap.	For
example	you	could	use	a	QMap<QString,QString>	to	create	a	case-insensitive
ordering	(e.g.	mapping	the	lowercase	text	to	the	text),	or	a	QMap<int,QString>
to	sort	the	strings	by	some	integer	index,	etc.

Example:	themes/themes.cpp.

QStringList	QStringList::split	(const	QRegExp	&	sep,
const	QString	&	str,	bool	allowEmptyEntries	=	FALSE)
[static]

Splits	the	string	str	into	strings	wherever	the	regular	expression	sep	occurs,	and
returns	the	list	of	those	strings.

If	allowEmptyEntries	is	TRUE,	an	empty	string	is	inserted	in	the	list	wherever
the	separator	matches	twice	without	intervening	text.

For	example,	if	you	split	the	string	"a,,b,c"	on	commas,	split()	returns	the	three-
item	list	"a",	"b",	"c"	if	allowEmptyEntries	is	FALSE	(the	default),	and	the	four-
item	list	"a",	"",	"b",	"c"	if	allowEmptyEntries	is	TRUE.

If	sep	does	not	match	anywhere	in	str,	split()	returns	a	list	consisting	of	the
single	string	str.

See	also	join()	and	QString::section().

Examples:	chart/element.cpp,	dirview/dirview.cpp	and	network/httpd/httpd.cpp.

QStringList	QStringList::split	(const	QString	&	sep,
const	QString	&	str,	bool	allowEmptyEntries	=	FALSE)
[static]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

This	version	of	the	function	uses	a	QString	as	separator,	rather	than	a	regular
expression.

If	sep	is	an	empty	string,	the	return	value	is	a	list	of	one-character	strings:	split(
QString(""),	"mfc")	returns	the	three-item	list,	"m",	"f",	"c".

If	allowEmptyEntries	is	TRUE,	an	empty	string	is	inserted	in	the	list	wherever
the	separator	matches	twice	without	intervening	text.

See	also	join()	and	QString::section().

QStringList	QStringList::split	(const	QChar	&	sep,
const	QString	&	str,	bool	allowEmptyEntries	=	FALSE)
[static]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

This	version	of	the	function	uses	a	QChar	as	separator,	rather	than	a	regular
expression.

See	also	join()	and	QString::section().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QValueList
QValueList	 ……

#include	<qvaluelist.h>

QCanvasItemListQStringListQValueStack

typedef	QValueListIterator<T>	iterator
typedef	QValueListConstIterator<T>	const_iterator
typedef	T	value_type
typedef	value_type	*	pointer
typedef	const	value_type	*	const_pointer
typedef	value_type	&	reference
typedef	const	value_type	&	const_reference
typedef	size_t	size_type
QValueList	()
QValueList	(const	QValueList<T>	&	l)
QValueList	(const	std::list<T>	&	l)
~QValueList	()
QValueList<T>	&	operator=	(const	QValueList<T>	&	l)
QValueList<T>	&	operator=	(const	std::list<T>	&	l)
bool	operator==	(const	std::list<T>	&	l)	const
bool	operator==	(const	QValueList<T>	&	l)	const
bool	operator!=	(const	QValueList<T>	&	l)	const
iterator	begin	()
const_iterator	begin	()	const
iterator	end	()
const_iterator	end	()	const
iterator	insert	(iterator	it,	const	T	&	x)
uint	remove	(const	T	&	x)
void	clear	()
QValueList<T>	&	operator<<	(const	T	&	x)
size_type	size	()	const
bool	empty	()	const
void	push_front	(const	T	&	x)
void	push_back	(const	T	&	x)
iterator	erase	(iterator	it)
iterator	erase	(iterator	first,	iterator	last)
reference	front	()
const_reference	front	()	const
reference	back	()
const_reference	back	()	const

void	pop_front	()
void	pop_back	()
void	insert	(iterator	pos,	size_type	n,	const	T	&	x)
QValueList<T>	operator+	(const	QValueList<T>	&	l)	const
QValueList<T>	&	operator+=	(const	QValueList<T>	&	l)
iterator	fromLast	()
const_iterator	fromLast	()	const
bool	isEmpty	()	const
iterator	append	(const	T	&	x)
iterator	prepend	(const	T	&	x)
iterator	remove	(iterator	it)
T	&	first	()
const	T	&	first	()	const
T	&	last	()
const	T	&	last	()	const
T	&	operator[]	(size_type	i)
const	T	&	operator[]	(size_type	i)	const
iterator	at	(size_type	i)
const_iterator	at	(size_type	i)	const
iterator	find	(const	T	&	x)
const_iterator	find	(const	T	&	x)	const
iterator	find	(iterator	it,	const	T	&	x)
const_iterator	find	(const_iterator	it,	const	T	&	x)	const
int	findIndex	(const	T	&	x)	const
size_type	contains	(const	T	&	x)	const
size_type	count	()	const
QValueList<T>	&	operator+=	(const	T	&	x)
typedef	QValueListIterator<T>	Iterator
typedef	QValueListConstIterator<T>	ConstIterator

QDataStream	&	operator>>	(QDataStream	&	s,	QValueList<T>	&	l)
QDataStream	&	operator<<	(QDataStream	&	s,	const	QValueList<T>	&	l
)

QValueList

QValueListSTLQt QValueList Qt

QValueList<T>TQValueList“”

QValueListTQValueList

QValueList QObjectQValueList

C++

QValueListQt count() isEmpty()QValueListSTL
STL list

class	Employee

{

public:

				Employee():	sn(0)	{}

				Employee(const	QString&	forename,	const	QString&	surname,	int	salary)

								:	fn(forename),	sn(surname),	sal(salary)

				{}

				QString	forename()	const	{	return	fn;	}

				QString	surname()	const	{	return	sn;	}

				int	salary()	const	{	return	sal;	}

				void	setSalary(int	salary)	{	sal	=	salary;	}

private:

				QString	fn;

				QString	sn;

				int	sal;

};

				typedef	QValueList<Employee>	EmployeeList;

				EmployeeList	list;

				list.append(Employee("John",	"Doe",	50000));

				list.append(Employee("Jane",	"Williams",	80000));

				list.append(Employee("Tom",	"Jones",	60000));

				Employee	mary("Mary",	"Hawthorne",	90000);

				list.append(mary);

				mary.setSalary(100000);

				EmployeeList::iterator	it;

				for	(it	=	list.begin();	it	!=	list.end();	++it)

								cout	<<	(*it).surname().latin1()	<<	",	"	<<

																(*it).forename().latin1()	<<	"	earns	"	<<

																(*it).salary()	<<	endl;

				//	

				//	Doe,	John	earns	50000

				//	Williams,	Jane	earns	80000

				//	Hawthorne,	Mary	earns	90000

				//	Jones,	Tom	earns	60000

		

MaryMary

begin()end()//end() operator*
begin()end()

qFind()

				QValueList<int>	list;

				...

				QValueList<int>::iterator	it	=	qFind(list.begin(),	list.end(),	3);

				if	(it	!=	list.end())

								//	it

first()

				QValueList<int>	list;

				list.append(1);

				list.append(2);

				list.append(3);

				...

				if	(!list.empty())	{

								//	OK,	modify	the	first	item

								int&	i	=	list.first();

								i	=	18;

				}

				...

				QValueList<double>	dlist;

				double	d	=	dlist.last();	//	undefined

QValueList

QValueList QValueList“”QValueList QMutex

prepend()append() insert()

remove()remove()

sort() QtqHeapSort()

				QValueList<int>	l;

				l.append(5);

				l.append(8);

				l.append(3);

				l.append(4);

				qHeapSort(l);

		

QValueListIteratorQtGUI

QValueList::ConstIterator

QValueListConstIteratorQValueListQValueList<int>
ConstIteratorQValueListConstIterator<int> QValueList::begin

IteratorConstIteratorConstIterator

QValueListIteratorIterator

QValueList::Iterator

QValueListIteratorQValueListQValueList<int>Iterator
QValueListIterator<int> QValueList::begin()

ConstIteratorConstIteratorConstIterator

QValueListIteratorConstIterator

QValueList::const_iterator

QValueListConstIterator

QValueList::const_pointer

T

QValueList::const_reference

T

QValueList::iterator

QValueListIterator

QValueList::pointer

T

QValueList::reference

T

QValueList::size_type

QValueList::value_type

T

QValueList::QValueList	()

QValueList::QValueList	(const	QValueList<T>	&	l)

l

O(1)QValueList

O(n)

QValueList::QValueList	(const	std::list<T>	&	l)

l

STL

QValueList::~QValueList	()

——QValueList

iterator	QValueList::append	(const	T	&	x)

x

insert()prepend()

checklists/checklists.cppfonts/simple-qfont-demo/viewer.cpp

const_iterator	QValueList::at	(size_type	i)	const

i end()

QValueList QValueVector

iterator	QValueList::at	(size_type	i)

i end()

reference	QValueList::back	()

empty()

STL last()

front()

const_reference	QValueList::back	()	const

const_iterator	QValueList::begin	()	const

end()

first()end()

chart/canvasview.cppchart/element.cppchecklists/checklists.cppfonts/simple-
qfont-demo/viewer.cppnetwork/ftpclient/ftpview.cpptable/statistics/statistics.cpp
themes/themes.cpp

iterator	QValueList::begin	()

end()

first()end()

void	QValueList::clear	()

remove()

size_type	QValueList::contains	(const	T	&	x)	const

x

size_type	QValueList::count	()	const

isEmpty()

chart/element.cpptable/statistics/statistics.cpp

bool	QValueList::empty	()	const

size()

iterator	QValueList::end	()

begin()

last()begin()

chart/canvasview.cppchart/element.cppchecklists/checklists.cppfonts/simple-
qfont-
demo/viewer.cppnetwork/ftpclient/ftpview.cppsql/overview/insert/main.cpp
table/statistics/statistics.cpp

const_iterator	QValueList::end	()	const

begin()

last()begin()

iterator	QValueList::erase	(iterator	it)

it it it end()

STL remove()

iterator	QValueList::erase	(iterator	first,	iterator	last)

firstlast last last

iterator	QValueList::find	(const	T	&	x)

x

end()

const_iterator	QValueList::find	(const	T	&	x)	const

x

end()

iterator	QValueList::find	(iterator	it,	const	T	&	x)

itx

end()

const_iterator	QValueList::find	(const_iterator	it,	const	T	&	x)
const

itx

end()

int	QValueList::findIndex	(const	T	&	x)	const

x-1

T	&	QValueList::first	()

empty()

last()

network/mail/smtp.cpp

const	T	&	QValueList::first	()	const

const_iterator	QValueList::fromLast	()	const

end()

end()

				QValueList<int>	l;

				……

				QValueList<int>::iterator	it	=	l.end();

				--it;

				if	(it	!=	end())

								//	……

iterator	QValueList::fromLast	()

end()

end()

				QValueList<int>	l;

				……

				QValueList<int>::iterator	it	=	l.end();

				--it;

				if	(it	!=	end())

								//	……

reference	QValueList::front	()

empty()

STL first()

back()

const_reference	QValueList::front	()	const

iterator	QValueList::insert	(iterator	it,	const	T	&	x)

itx

append()prepend()

themes/themes.cpp

void	QValueList::insert	(iterator	pos,	size_type	n,	const	T	&	x)

pos xn

bool	QValueList::isEmpty	()	const

count()

fonts/simple-qfont-demo/viewer.cppnetwork/ftpclient/ftpmainwindow.cpp
network/mail/smtp.cpp

T	&	QValueList::last	()

empty()

const	T	&	QValueList::last	()	const

bool	QValueList::operator!=	(const	QValueList<T>	&	l)	const

l

QValueList<T>	QValueList::operator+	(
const	QValueList<T>	&	l)	const

l

QValueList<T>	&	QValueList::operator+=	(
const	QValueList<T>	&	l)

l

QValueList<T>	&	QValueList::operator+=	(const	T	&	x)

x

QValueList<T>	&	QValueList::operator<<	(const	T	&	x)

x

QValueList<T>	&	QValueList::operator=	(
const	QValueList<T>	&	l)

l

O(1)QValueList

QValueList<T>	&	QValueList::operator=	(const	std::list<T>	&	l
)

l

bool	QValueList::operator==	(const	QValueList<T>	&	l)	const

l

bool	QValueList::operator==	(const	std::list<T>	&	l)	const

l

STL

const	T	&	QValueList::operator[]	(size_type	i)	const

i count() i

QValueList QValueVector

T	&	QValueList::operator[]	(size_type	i)

Returns	a	non-const	reference	to	the	item	with	index	i.

void	QValueList::pop_back	()

STL

void	QValueList::pop_front	()

STL

iterator	QValueList::prepend	(const	T	&	x)

x

insert()append()

void	QValueList::push_back	(const	T	&	x)

x

STL append()

void	QValueList::push_front	(const	T	&	x)

x

STL prepend()

iterator	QValueList::remove	(iterator	it)

it it it end()

clear()

uint	QValueList::remove	(const	T	&	x)

x

size_type	QValueList::size	()	const

Returns	the	number	of	items	in	the	list.

STL count()

empty()

network/ftpclient/ftpview.cpp

QDataStream	&	operator<<	(QDataStream	&	s,
const	QValueList<T>	&	l)

lsT

QDataStream	&	operator>>	(QDataStream	&	s,
QValueList<T>	&	l)

slT

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Format	of	the	QDataStream
Operators

The	QDataStream	allows	you	to	serialize	some	of	the	Qt	data	types.	The	table
below	lists	the	data	types	that	QDataStream	can	serialize	and	how	they	are
represented.

Q_INT8
signed	byte

Q_INT16
signed	16	bit	integer

Q_INT32
signed	32	bit	integer

Q_UINT8
unsigned	byte

Q_UINT16
unsigned	16	bit	integer

Q_UINT32
unsigned	32	bit	integer

float
32-bit	floating	point	number	using	the	standard	IEEE-754	format

double
64-bit	floating	point	number	using	the	standard	IEEE-754	format

char	*
The	size	of	the	string	including	the	terminating	0	(Q_UINT32)
The	string	bytes	including	the	terminating	0

The	null	string	is	represented	as	(Q_UINT32)	0.
QBitArray

The	array	size	(Q_UINT32)
The	array	bits,	i.e.	(size	+	7)/8	bytes

QBrush
The	brush	style	(Q_UINT8)
The	brush	color	(QColor)
If	style	is	CustomPattern,	the	brush	pixmap	(QPixmap)

QByteArray

The	array	size	(Q_UINT32)
The	array	bytes,	i.e.	size	bytes

QCString
The	size	of	the	string	including	the	terminating	0	(Q_UINT32)
The	string	bytes	including	the	terminating	0

The	null	string	is	represented	as	(Q_UINT32)	0.
QColor

RGB	value	serialized	as	a	Q_UINT32
QColorGroup

foreground	(QBrush)
button	(QBrush)
light	(QBrush)
midLight	(QBrush)
dark	(QBrush)
mid	(QBrush)
text	(QBrush)
brightText	(QBrush)
ButtonText	(QBrush)
base	(QBrush)
background	(QBrush)
shadow	(QBrush)
highlight	(QBrush)
highlightedText	(QBrush)

QCursor
Shape	id	(Q_INT16)
If	shape	is	BitmapCursor:	The	bitmap	(QPixmap),	mask	(QPixmap)
and	hot	spot	(QPoint)

QDate
Julian	day	(Q_UINT32)

QDateTime
Date	(QDate)
Time	(QTime)

QFont
The	point	size	(Q_INT16)
The	style	hint	(Q_UINT8)
The	char	set	(Q_UINT8)
The	weight	(Q_UINT8)
The	font	bits	(Q_UINT8)

QImage

Save	it	as	a	PNG	image.
QMap

The	number	of	items	(Q_UINT32)
For	all	items,	the	key	and	value

QPalette
active	(QColorGroup)
disabled	(QColorGroup)
inactive	(QColorGroup)

QPen
The	pen	styles	(Q_UINT8)
The	pen	width	(Q_UINT8)
The	pen	color	(QColor)

QPicture
The	size	of	the	picture	data	(Q_UINT32)
The	raw	bytes	of	picture	data	(char)

QPixmap
Save	it	as	a	PNG	image.

QPoint
The	x	coordinate	(Q_INT32)
The	y	coordinate	(Q_INT32)

QPointArray
The	array	size	(Q_UINT32)
The	array	points	(QPoint)

QRect
left	(Q_INT32)
top	(Q_INT32)
right	(Q_INT32)
bottom	(Q_INT32)

QRegion
The	size	of	the	data,	i.e.	8	+	16	*	(number	of	rectangles)	(Q_UINT32)
QRGN_RECTS	(Q_INT32)
The	number	of	rectangles	(Q_UINT32)
The	rectangles	in	sequential	order	(QRect)

QSize
width	(Q_INT32)
height	(Q_INT32)

QString
If	the	string	is	null:	0xffffffff	(Q_UINT32)
Otherwise:	The	string	length	(Q_UINT32)	followed	by	the	data	in

UTF-16
QTime

Milliseconds	since	midnight	(Q_UINT32)
QValueList

The	number	of	list	elements	(Q_UINT32)
All	the	elements	in	sequential	order

QVariant
The	type	of	the	data	(Q_UINT32)
The	data	of	the	specified	type

QWMatrix
m11	(double)
m12	(double)
m21	(double)
m22	(double)
dx	(double)
dy	(double)

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QMainWindow
QMainWindow	

#include	<qmainwindow.h>

QWidget

QMainWindow	(QWidget	*	parent	=	0,	const	char	*	name	=	0,	WFlags	f	=
WType_TopLevel)
~QMainWindow	()
QMenuBar	*	menuBar	()	const
QStatusBar	*	statusBar	()	const
QToolTipGroup	*	toolTipGroup	()	const
virtual	void	setCentralWidget	(QWidget	*	w)
QWidget	*	centralWidget	()	const
virtual	void	setDockEnabled	(Dock	dock,	bool	enable)
bool	isDockEnabled	(Dock	dock)	const
bool	isDockEnabled	(QDockArea	*	area)	const
virtual	void	setDockEnabled	(QDockWindow	*	dw,	Dock	dock,
bool	enable)
bool	isDockEnabled	(QDockWindow	*	tb,	Dock	dock)	const
bool	isDockEnabled	(QDockWindow	*	dw,	QDockArea	*	area)	const
virtual	void	addDockWindow	(QDockWindow	*	dockWindow,
Dock	edge	=	DockTop,	bool	newLine	=	FALSE)
virtual	void	addDockWindow	(QDockWindow	*	dockWindow,
const	QString	&	label,	Dock	edge	=	DockTop,	bool	newLine	=	FALSE)
virtual	void	moveDockWindow	(QDockWindow	*	dockWindow,
Dock	edge	=	DockTop)
virtual	void	moveDockWindow	(QDockWindow	*	dockWindow,
Dock	edge,	bool	nl,	int	index,	int	extraOffset	=	-1)
virtual	void	removeDockWindow	(QDockWindow	*	dockWindow)
bool	rightJustification	()	const
bool	usesBigPixmaps	()	const
bool	usesTextLabel	()	const
bool	dockWindowsMovable	()	const
bool	opaqueMoving	()	const
bool	getLocation	(QDockWindow	*	dw,	Dock	&	dock,	int	&	index,
bool	&	nl,	int	&	extraOffset)	const
QPtrList<QDockWindow>	dockWindows	(Dock	dock)	const
QPtrList<QDockWindow>	dockWindows	()	const
void	lineUpDockWindows	(bool	keepNewLines	=	FALSE)
bool	isDockMenuEnabled	()	const

bool	hasDockWindow	(QDockWindow	*	dw)
void	addToolBar	(QDockWindow	*,	Dock	=	DockTop,	bool	newLine	=
FALSE)		
void	addToolBar	(QDockWindow	*,	const	QString	&	label,	Dock	=
DockTop,	bool	newLine	=	FALSE)		
void	moveToolBar	(QDockWindow	*,	Dock	=	DockTop)		
void	moveToolBar	(QDockWindow	*,	Dock,	bool	nl,	int	index,
int	extraOffset	=	-1)		
void	removeToolBar	(QDockWindow	*)		
bool	toolBarsMovable	()	const		
QPtrList<QToolBar>	toolBars	(Dock	dock)	const
void	lineUpToolBars	(bool	keepNewLines	=	FALSE)		
QDockArea	*	leftDock	()	const
QDockArea	*	rightDock	()	const
QDockArea	*	topDock	()	const
QDockArea	*	bottomDock	()	const
virtual	bool	isCustomizable	()	const
bool	appropriate	(QDockWindow	*	dw)	const
enum	DockWindows	{	OnlyToolBars,	NoToolBars,	AllDockWindows	}
QPopupMenu	*	createDockWindowMenu	(DockWindows	dockWindows
=	AllDockWindows)	const

virtual	void	setRightJustification	(bool)
virtual	void	setUsesBigPixmaps	(bool)
virtual	void	setUsesTextLabel	(bool)
virtual	void	setDockWindowsMovable	(bool)
virtual	void	setOpaqueMoving	(bool)
virtual	void	setDockMenuEnabled	(bool	b)
virtual	void	whatsThis	()
virtual	void	setAppropriate	(QDockWindow	*	dw,	bool	a)
virtual	void	customize	()
void	setToolBarsMovable	(bool)		

void	pixmapSizeChanged	(bool)
void	usesTextLabelChanged	(bool)
void	dockWindowPositionChanged	(QDockWindow	*	dockWindow)
void	toolBarPositionChanged	(QToolBar	*)		

bool	dockWindowsMovable	-	
bool	opaqueMoving	-	
bool	rightJustification	-	
bool	usesBigPixmaps	-	
bool	usesTextLabel	-	

virtual	void	childEvent	(QChildEvent	*	e)

virtual	void	setUpLayout	()
virtual	bool	showDockMenu	(const	QPoint	&	globalPos)
void	menuAboutToShow	()

QTextStream	&	operator<<	(QTextStream	&	ts,
const	QMainWindow	&	mainWindow)
QTextStream	&	operator>>	(QTextStream	&	ts,
QMainWindow	&	mainWindow)

QMainWindow

QMainWindow

				QMainWindow	*mw	=	new	QMainWindow;

				QTextEdit	*edit	=	new	QTextEdit(mw,	"editor");

				edit->setFocus();

				mw->setCaption("Main	Window");

				mw->setCentralWidget(edit);

				mw->show();

				

QMainWindow setCentralWidget()

								ApplicationWindow	*	mw	=	new	ApplicationWindow();

								mw->setCaption("Qt	Example	-	Application");

								mw->show();

ApplicationWindowQMainWindowQMainWindow
application/main.cppapplication/application.cppaction/main.cpp
action/application.cpp

QMainWindowQMainWindow

								QPopupMenu	*	help	=	new	QPopupMenu(this);

								menuBar()->insertItem("&Help",	help);

								help->insertItem("&About",	this,	SLOT(about()),	Key_F1);

QMainWindow

								QToolBar	*	fileTools	=	new	QToolBar(this,	"file	operations");

								fileTools->setLabel("File	Operations");

								QToolButton	*	fileOpen

												=	new	QToolButton(openIcon,	"Open	File",	QString::null,

																															this,	SLOT(choose()),	fileTools,	"open	file");

QMainWindowQMainWindow	
addDockWindow()QMainWindow

								e	=	new	QTextEdit(this,	"editor");

								e->setFocus();

								setCentralWidget(e);

								statusBar()->message("Ready",	2000);

“”“”

								QAction	*	fileOpenAction;

								fileOpenAction	=	new	QAction("Open	File",	QPixmap(fileopen),	"&Open",

																																						CTRL+Key_O,	this,	"open");

								connect(fileOpenAction,	SIGNAL(activated())	,	this,	SLOT(choose()));

“&Open;”

								QPopupMenu	*	file	=	new	QPopupMenu(this);

								menuBar()->insertItem("&File",	file);

								fileOpenAction->addTo(file);

QMainWindow

								QToolBar	*	fileTools	=	new	QToolBar(this,	"file	operations");

								fileTools->setLabel("File	Operations");

								fileOpenAction->addTo(fileTools);

QMainWindow

QMainWindow

QMainWindowQMainWindow
menuBar()statusBar()

QMainWindow QToolTipGrouptoolTipGroup()QToolTipGroup

addDockWindow()QMainWindow moveDockWindow
removeDockWindow()QMainWindow
setDockEnabled()/“”

TopLeftRightBottomMinimized	“” TornOff
Qt::Dock*ToolBar*DockWindowQToolBar QDockWindow
Minimized

QMainWindow

QDockWindow::setHorizontalStretchable()
QDockWindow::setVerticalStretchable()
setUsesBigPixmaps() QIconSet
setUsesTextLabel() QToolButton

“”

Minimized QDockWindow::caption()
QToolBar::label() Minimized MinimizedmoveDockWindow()

getLocation()
topDock() leftDock() rightDock()bottomDock() isCustomizable()
isCustomizable() customize()

QMenuBar

				QToolBar	*tb	=	new	QToolBar(this);

				addDockWindow(tb,	tr("Menubar"),	Top,	FALSE);

				QMenuBar	*mb	=	new	QMenuBar(tb);

				mb->setFrameStyle(QFrame::NoFrame);

				tb->setStretchableWidget(mb);

				setDockEnabled(tb,	Left,	FALSE);

				setDockEnabled(tb,	Right,	FALSE);

				

QMainWindow

		QFile	f(filename);

		if	(f.open(IO_WriteOnly))	{

						QTextStream	ts(&f);

						ts	<<	*mainWindow;

						f.close();

		}

		

		QFile	f(filename);

		if	(f.open(IO_ReadOnly))	{

						QTextStream	ts(&f);

						ts	>>	*mainWindow;

						f.close();

		}

		

QSettings

QMainWindow QDockArea

MDI QWorkspace

QMainWindow

	

QToolBarQDockWindowQStatusBarQActionQMenuBarQPopupMenuQToolTipGroup

QMainWindow::DockWindows

createDockWindowMenu()

QMainWindow::OnlyToolBars	-	
QMainWindow::NoToolBars	-	
QMainWindow::AllDockWindows	-	

QMainWindow::QMainWindow	(QWidget	*	parent	=	0,
const	char	*	name	=	0,	WFlags	f	=	WType_TopLevel)

parentnamefQWidget

WType_TopLevelQWidget0QMainWindow

QMainWindow::~QMainWindow	()

void	QMainWindow::addDockWindow	(
QDockWindow	*	dockWindow,	Dock	edge	=	DockTop,
bool	newLine	=	FALSE)	[]

dockWindowedge

newLine dockWindowedge Minimized newLine
dockWindow

dockWindow

void	QMainWindow::addDockWindow	(
QDockWindow	*	dockWindow,	const	QString	&	label,
Dock	edge	=	DockTop,	bool	newLine	=	FALSE)	[]

labeldockWindowedge

newLine dockWindowedge Minimized newLine
dockWindow

dockWindow

void	QMainWindow::addToolBar	(QDockWindow	*,	Dock	=
DockTop,	bool	newLine	=	FALSE)

void	QMainWindow::addToolBar	(QDockWindow	*,
const	QString	&	label,	Dock	=	DockTop,	bool	newLine	=
FALSE)

bool	QMainWindow::appropriate	(QDockWindow	*	dw)	const

dw

setAppropriate()

setAppropriate()

QDockArea	*	QMainWindow::bottomDock	()	const

Bottom

topDock() leftDock()rightDock()

QWidget	*	QMainWindow::centralWidget	()	const

setCentralWidget()

qfd/qfd.cpp

void	QMainWindow::childEvent	(QChildEvent	*	e)	[]

e

QObject

QPopupMenu	*	QMainWindow::createDockWindowMenu	(
DockWindows	dockWindows	=	AllDockWindows)	const

dockWindowsOnlyToolBars dockWindowsNoToolBars
dockWindowsAllDockWindows——

isDockMenuEnabled()

setAppropriate()

isCustomizable()Customize customize()isCustomizable()
customize()

void	QMainWindow::customize	()	[]

Customize

isCustomizable()Customize

QtCustomizeisCustomizable()

isCustomizable()

void	QMainWindow::dockWindowPositionChanged	(
QDockWindow	*	dockWindow)	[]

dockWindow MinimizedTearOff

getLocation()

QPtrList<QDockWindow>	QMainWindow::dockWindows	(
Dock	dock)	const

dock

TornOff

QPtrList<QDockWindow>	QMainWindow::dockWindows	()
const

bool	QMainWindow::dockWindowsMovable	()	const

“dockWindowsMovable”

bool	QMainWindow::getLocation	(QDockWindow	*	dw,
Dock	&	dock,	int	&	index,	bool	&	nl,	int	&	extraOffset)	const

dw

dw dockdwindexdw dw nl extraOffsetdw

dw dockindexnlextraOffset

operator>>()operator<<()

operator>>()operator<<()

bool	QMainWindow::hasDockWindow	(QDockWindow	*	dw)

dw

bool	QMainWindow::isCustomizable	()	const	[]

Customizecustomize()Customize

customize()

bool	QMainWindow::isDockEnabled	(Dock	dock)	const

dock

setDockEnabled()

bool	QMainWindow::isDockEnabled	(QDockArea	*	area)	const

area

setDockEnabled()

bool	QMainWindow::isDockEnabled	(QDockWindow	*	tb,
Dock	dock)	const

docktb

setDockEnabled()

bool	QMainWindow::isDockEnabled	(QDockWindow	*	dw,
QDockArea	*	area)	const

areatb

setDockEnabled()

bool	QMainWindow::isDockMenuEnabled	()	const

appropriate()“Line	Up	Dock	Windows” isCustomizable
“Customize”

setDockEnabled() lineUpDockWindows() appropriate()setAppropriate()

QDockArea	*	QMainWindow::leftDock	()	const

Left

rightDock() topDock()bottomDock()

void	QMainWindow::lineUpDockWindows	(bool	keepNewLines
=	FALSE)

TopLeftRightBottom

keepNewLines keepNewLines

dockWindowsMovable()

void	QMainWindow::lineUpToolBars	(bool	keepNewLines	=
FALSE)

void	QMainWindow::menuAboutToShow	()	[]

aboutToShow()

createDockWindowMenu

QMenuBar	*	QMainWindow::menuBar	()	const

menuBar()

statusBar()

void	QMainWindow::moveDockWindow	(
QDockWindow	*	dockWindow,	Dock	edge	=	DockTop)	[]

dockWindowedge

Minimized

dockWindow

void	QMainWindow::moveDockWindow	(
QDockWindow	*	dockWindow,	Dock	edge,	bool	nl,	int	index,
int	extraOffset	=	-1)	[]

dockWindowedgeindex

index

nl

extraOffset

dockWindow

void	QMainWindow::moveToolBar	(QDockWindow	*,	Dock	=
DockTop)

void	QMainWindow::moveToolBar	(QDockWindow	*,	Dock,
bool	nl,	int	index,	int	extraOffset	=	-1)

bool	QMainWindow::opaqueMoving	()	const

“opaqueMoving”

void	QMainWindow::pixmapSizeChanged	(bool)	[]

setUsesBigPixmaps()

void	QMainWindow::removeDockWindow	(
QDockWindow	*	dockWindow)	[]

dockWindow dockWindow

void	QMainWindow::removeToolBar	(QDockWindow	*)

QDockArea	*	QMainWindow::rightDock	()	const

Right

leftDock() topDock()bottomDock()

bool	QMainWindow::rightJustification	()	const

“rightJustification”

void	QMainWindow::setAppropriate	(QDockWindow	*	dw,
bool	a)	[]

dw

a dw a dw

showDockMenu() isCustomizable()customize()

void	QMainWindow::setCentralWidget	(QWidget	*	w)	[]

w

centralWidget()

void	QMainWindow::setDockEnabled	(Dock	dock,	bool	enable)
[]

enable dock enable dock

void	QMainWindow::setDockEnabled	(QDockWindow	*	dw,
Dock	dock,	bool	enable)	[]

enable dock enable dock

void	QMainWindow::setDockMenuEnabled	(bool	b)	[]

b b

appropriate()“Line	Up	Dock	Windows” isCustomizable
“Customize”

lineUpDockWindows()isDockMenuEnabled()

void	QMainWindow::setDockWindowsMovable	(bool)	[]

“dockWindowsMovable”

void	QMainWindow::setOpaqueMoving	(bool)	[]

“opaqueMoving”

void	QMainWindow::setRightJustification	(bool)	[]

“rightJustification”

void	QMainWindow::setToolBarsMovable	(bool)	[slot]

void	QMainWindow::setUpLayout	()	[]

void	QMainWindow::setUsesBigPixmaps	(bool)	[]

“usesBigPixmaps”

void	QMainWindow::setUsesTextLabel	(bool)	[]

“usesTextLabel”

bool	QMainWindow::showDockMenu	(const	QPoint	&	globalPos
)	[]

globalPos

createDockWindowMenu()createDockWindowMenu()

QStatusBar	*	QMainWindow::statusBar	()	const

statusBar()

menuBar()toolTipGroup()

qfd/qfd.cpp

void	QMainWindow::toolBarPositionChanged	(QToolBar	*)	[
]

QPtrList<QToolBar>	QMainWindow::toolBars	(Dock	dock)
const

dock

TornOff

dockWindows()

bool	QMainWindow::toolBarsMovable	()	const

QToolTipGroup	*	QMainWindow::toolTipGroup	()	const

toolTipGroup()

menuBar()statusBar()

QDockArea	*	QMainWindow::topDock	()	const

Top

bottomDock() leftDock()rightDock()

bool	QMainWindow::usesBigPixmaps	()	const

“usesBigPixmaps”

bool	QMainWindow::usesTextLabel	()	const

“usesTextLabel”

void	QMainWindow::usesTextLabelChanged	(bool)	[]

setUsesTextLabel()

void	QMainWindow::whatsThis	()	[]

“”

QWhatsThis::enterWhatsThisMode()

				QPopupMenu	*	help	=	new	QPopupMenu(this);

				help->insertItem("What's	&This",	this	,	SLOT(whatsThis()),	SHIFT+Key_F1);

		

QWhatsThis::enterWhatsThisMode()

bool	dockWindowsMovable

This	property	holds	whether	the	dock	windows	are	movable.	

QMainWindow TearOff Minimized
QMainWindow

setDockEnabled()opaqueMoving

setDockWindowsMovable()dockWindowsMovable()

bool	opaqueMoving

setOpaqueMoving()opaqueMoving()

bool	rightJustification

QDockWindow::setVerticalStretchable()
QDockWindow::setHorizontalStretchable()

setRightJustification()rightJustification()

bool	usesBigPixmaps

setUsesBigPixmaps()usesBigPixmaps()

bool	usesTextLabel

QToolButton::usesTextLabel

setUsesTextLabel()usesTextLabel()

QTextStream	&	operator<<	(QTextStream	&	ts,
const	QMainWindow	&	mainWindow)

QMainWindow	 mainWindow MinimizedTornOff ts

QSettings

operator>>()

QTextStream	&	operator>>	(QTextStream	&	ts,
QMainWindow	&	mainWindow)

tsQMainWindow	mainWindow MinimizedTornOff operator<<

QSettings

operator<<()

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QPopupMenu	Class	Reference
The	QPopupMenu	class	provides	a	popup	menu	widget.	More...

#include	<qpopupmenu.h>

Inherits	QFrame	and	QMenuData.

List	of	all	member	functions.

Public	Members

QPopupMenu	(QWidget	*	parent	=	0,	const	char	*	name	=	0)
~QPopupMenu	()
void	popup	(const	QPoint	&	pos,	int	indexAtPoint	=	-1)
virtual	void	updateItem	(int	id)
virtual	void	setCheckable	(bool)
bool	isCheckable	()	const
int	exec	()
int	exec	(const	QPoint	&	pos,	int	indexAtPoint	=	0)
virtual	void	setActiveItem	(int	i)
int	idAt	(int	index)	const
int	idAt	(const	QPoint	&	pos)	const
int	insertTearOffHandle	(int	id	=	-1,	int	index	=	-1)

Signals

void	activated	(int	id)
void	highlighted	(int	id)
void	aboutToShow	()
void	aboutToHide	()

Important	Inherited	Members

int	insertItem	(const	QString	&	text,	const	QObject	*	receiver,
const	char	*	member,	const	QKeySequence	&	accel	=	0,	int	id	=	-1,
int	index	=	-1)
int	insertItem	(const	QIconSet	&	icon,	const	QString	&	text,
const	QObject	*	receiver,	const	char	*	member,
const	QKeySequence	&	accel	=	0,	int	id	=	-1,	int	index	=	-1)
int	insertItem	(const	QPixmap	&	pixmap,	const	QObject	*	receiver,
const	char	*	member,	const	QKeySequence	&	accel	=	0,	int	id	=	-1,
int	index	=	-1)
int	insertItem	(const	QIconSet	&	icon,	const	QPixmap	&	pixmap,
const	QObject	*	receiver,	const	char	*	member,
const	QKeySequence	&	accel	=	0,	int	id	=	-1,	int	index	=	-1)
int	insertItem	(const	QString	&	text,	int	id	=	-1,	int	index	=	-1)
int	insertItem	(const	QIconSet	&	icon,	const	QString	&	text,	int	id	=	-1,
int	index	=	-1)
int	insertItem	(const	QString	&	text,	QPopupMenu	*	popup,	int	id	=	-1,
int	index	=	-1)
int	insertItem	(const	QIconSet	&	icon,	const	QString	&	text,
QPopupMenu	*	popup,	int	id	=	-1,	int	index	=	-1)
int	insertItem	(const	QPixmap	&	pixmap,	int	id	=	-1,	int	index	=	-1)
int	insertItem	(const	QIconSet	&	icon,	const	QPixmap	&	pixmap,	int	id	=
-1,	int	index	=	-1)
int	insertItem	(const	QPixmap	&	pixmap,	QPopupMenu	*	popup,	int	id	=
-1,	int	index	=	-1)
int	insertItem	(const	QIconSet	&	icon,	const	QPixmap	&	pixmap,
QPopupMenu	*	popup,	int	id	=	-1,	int	index	=	-1)
int	insertItem	(QWidget	*	widget,	int	id	=	-1,	int	index	=	-1)
int	insertItem	(const	QIconSet	&	icon,	QCustomMenuItem	*	custom,
int	id	=	-1,	int	index	=	-1)
int	insertItem	(QCustomMenuItem	*	custom,	int	id	=	-1,	int	index	=	-1)
int	insertSeparator	(int	index	=	-1)
void	removeItem	(int	id)
void	removeItemAt	(int	index)
void	clear	()
QKeySequence	accel	(int	id)	const

void	setAccel	(const	QKeySequence	&	key,	int	id)
QIconSet	*	iconSet	(int	id)	const
QString	text	(int	id)	const
QPixmap	*	pixmap	(int	id)	const
void	setWhatsThis	(int	id,	const	QString	&	text)
QString	whatsThis	(int	id)	const
void	changeItem	(int	id,	const	QString	&	text)
void	changeItem	(int	id,	const	QPixmap	&	pixmap)
void	changeItem	(int	id,	const	QIconSet	&	icon,	const	QString	&	text)
void	changeItem	(int	id,	const	QIconSet	&	icon,	const	QPixmap	&	pixmap
)
bool	isItemEnabled	(int	id)	const
void	setItemEnabled	(int	id,	bool	enable)
bool	isItemChecked	(int	id)	const
void	setItemChecked	(int	id,	bool	check)
bool	connectItem	(int	id,	const	QObject	*	receiver,	const	char	*	member)
bool	disconnectItem	(int	id,	const	QObject	*	receiver,
const	char	*	member)
bool	setItemParameter	(int	id,	int	param)
int	itemParameter	(int	id)	const

Properties

bool	checkable	-	whether	the	display	of	check	marks	on	menu	items	is
enabled

Protected	Members

int	itemHeight	(int	row)	const
int	itemHeight	(QMenuItem	*	mi)	const
void	drawItem	(QPainter	*	p,	int	tab_,	QMenuItem	*	mi,	bool	act,	int	x,
int	y,	int	w,	int	h)
virtual	void	drawContents	(QPainter	*	p)
int	columns	()	const

Detailed	Description

The	QPopupMenu	class	provides	a	popup	menu	widget.

A	popup	menu	widget	is	a	selection	menu.	It	can	be	either	a	pull-down	menu	in	a
menu	bar	or	a	standalone	context	(popup)	menu.	Pull-down	menus	are	shown	by
the	menu	bar	when	the	user	clicks	on	the	respective	item	or	hits	the	specified
shortcut	key.	Use	QMenuBar::insertItem()	to	insert	a	popup	menu	into	a	menu
bar.	Show	a	context	menu	either	asynchronously	with	popup()	or	synchronously
with	exec().

Technically,	a	popup	menu	consists	of	a	list	of	menu	items.	You	add	items	with
insertItem().	An	item	is	either	a	string,	a	pixmap	or	a	custom	item	that	provides
its	own	drawing	function	(see	QCustomMenuItem).	In	addition,	items	can	have
an	optional	icon	drawn	on	the	very	left	side	and	an	accelerator	key	such	as
"Ctrl+X".

There	are	three	kinds	of	menu	items:	separators,	menu	items	that	perform	an
action	and	menu	items	that	show	a	submenu.	Separators	are	inserted	with
insertSeparator().	For	submenus,	you	pass	a	pointer	to	a	QPopupMenu	in	your
call	to	insertItem().	All	other	items	are	considered	action	items.

When	inserting	action	items	you	usually	specify	a	receiver	and	a	slot.	The
receiver	will	be	notifed	whenever	the	item	is	selected.	In	addition,	QPopupMenu
provides	two	signals,	activated()	and	highlighted(),	which	signal	the	identifier	of
the	respective	menu	item.	It	is	sometimes	practical	to	connect	several	items	to
one	slot.	To	distinguish	between	them,	specify	a	slot	that	takes	an	integer
argument	and	use	setItemParameter()	to	associate	a	unique	value	with	each	item.

You	clear	a	popup	menu	with	clear()	and	remove	single	items	with	removeItem()
or	removeItemAt().

A	popup	menu	can	display	check	marks	for	certain	items	when	enabled	with
setCheckable(TRUE).	You	check	or	uncheck	items	with	setItemChecked().

Items	are	either	enabled	or	disabled.	You	toggle	their	state	with
setItemEnabled().	Just	before	a	popup	menu	becomes	visible,	it	emits	the
aboutToShow()	signal.	You	can	use	this	signal	to	set	the	correct	enabled/disabled

states	of	all	menu	items	before	the	user	sees	it.	The	corresponding	aboutToHide()
signal	is	emitted	when	the	menu	hides	again.

You	can	provide	What's	This?	help	for	single	menu	items	with	setWhatsThis().
See	QWhatsThis	for	general	information	about	this	kind	of	lightweight	online
help.

For	ultimate	flexibility,	you	can	also	add	entire	widgets	as	items	into	a	popup
menu	(for	example,	a	color	selector).

A	QPopupMenu	can	also	provide	a	tear-off	menu.	A	tear-off	menu	is	a	top-level
window	that	contains	a	copy	of	the	menu.	This	makes	it	possible	for	the	user	to
"tear	off"	frequently	used	menus	and	position	them	in	a	convenient	place	on	the
screen.	If	you	want	that	functionality	for	a	certain	menu,	insert	a	tear-off	handle
with	insertTearOffHandle().	If	you	want	to	include	custom	widgets	in	a	tear-off
menu,	you	should	connect	to	the	popup	menu's	signal	(using	connectItem()	and
the	item	ID	that	insertTearOffHandle()	returns),	and	add	the	custom	widgets	you
want	to	include.	When	using	tear-off	menus,	bear	in	mind	that	the	concept	isn't
typically	used	on	Microsoft	Windows	so	users	may	not	be	familiar	with	it.
Consider	using	a	QToolBar	instead.

menu/menu.cpp	is	a	typical	example	of	QMenuBar	and	QPopupMenu	use.

	

See	also	QMenuBar,	GUI	Design	Handbook:	Menu,	Drop-Down	and	Pop-Up,
Main	Window	and	Related	Classes	and	Basic	Widgets.

Member	Function	Documentation

QPopupMenu::QPopupMenu	(QWidget	*	parent	=	0,
const	char	*	name	=	0)

Constructs	a	popup	menu	with	parent	as	a	parent	and	name	as	object	name.

Although	a	popup	menu	is	always	a	top-level	widget,	if	a	parent	is	passed	the
popup	menu	will	be	deleted	when	that	parent	is	destroyed	(as	with	any	other
QObject).

QPopupMenu::~QPopupMenu	()

Destroys	the	popup	menu.

void	QPopupMenu::aboutToHide	()	[signal]

This	signal	is	emitted	just	before	the	popup	menu	is	hidden	after	it	has	been
displayed.

Warning:	Do	not	open	a	widget	in	a	slot	connected	to	this	signal.

See	also	aboutToShow(),	setItemEnabled(),	setItemChecked(),	insertItem()	and
removeItem().

void	QPopupMenu::aboutToShow	()	[signal]

This	signal	is	emitted	just	before	the	popup	menu	is	displayed.	You	can	connect
it	to	any	slot	that	sets	up	the	menu	contents	(e.g.	to	ensure	that	the	right	items	are
enabled).

See	also	aboutToHide(),	setItemEnabled(),	setItemChecked(),	insertItem()	and
removeItem().

Example:	mdi/application.cpp.

QKeySequence	QMenuData::accel	(int	id)	const

Returns	the	accelerator	key	that	has	been	defined	for	the	menu	item	id,	or	0	if	it
has	no	accelerator	key.

See	also	setAccel(),	QAccel	and	qnamespace.h.

void	QPopupMenu::activated	(int	id)	[signal]

This	signal	is	emitted	when	a	menu	item	is	selected;	id	is	the	id	of	the	selected
item.

Normally,	you	connect	each	menu	item	to	a	single	slot	using
QMenuData::insertItem(),	but	sometimes	you	will	want	to	connect	several	items
to	a	single	slot	(most	often	if	the	user	selects	from	an	array).	This	signal	is	useful
in	such	cases.

See	also	highlighted()	and	QMenuData::insertItem().

Examples:	grapher/grapher.cpp,	helpviewer/helpwindow.cpp,	qdir/qdir.cpp,
qwerty/qwerty.cpp,	scrollview/scrollview.cpp	and	showimg/showimg.cpp.

void	QMenuData::changeItem	(int	id,	const	QString	&	text)

Changes	the	text	of	the	menu	item	id	to	text.	If	the	item	has	an	icon,	the	icon
remains	unchanged.

See	also	text().

void	QMenuData::changeItem	(int	id,	const	QPixmap	&	pixmap
)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Changes	the	pixmap	of	the	menu	item	id	to	the	pixmap	pixmap.	If	the	item	has
an	icon,	the	icon	is	unchanged.

See	also	pixmap().

void	QMenuData::changeItem	(int	id,	const	QIconSet	&	icon,

const	QString	&	text)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Changes	the	iconset	and	text	of	the	menu	item	id	to	the	icon	and	text
respectively.

See	also	pixmap().

void	QMenuData::changeItem	(int	id,	const	QIconSet	&	icon,
const	QPixmap	&	pixmap)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Changes	the	iconset	and	pixmap	of	the	menu	item	id	to	icon	and	pixmap
respectively.

See	also	pixmap().

void	QMenuData::clear	()

Removes	all	menu	items.

See	also	removeItem()	and	removeItemAt().

Examples:	mdi/application.cpp	and	qwerty/qwerty.cpp.

int	QPopupMenu::columns	()	const	[protected]

If	a	popup	menu	does	not	fit	on	the	screen	it	lays	itself	out	so	that	it	does	fit,	it	is
style	dependant	what	layout	means	(ie	on	Windows	it	will	use	multiple
columns).

This	functions	returns	the	number	of	columns	necessary.

See	also	sizeHint.

bool	QMenuData::connectItem	(int	id,	const	QObject	*	receiver,
const	char	*	member)

Connects	the	menu	item	with	identifier	id	to	receiver's	member	slot	or	signal.

The	receiver's	slot/signal	is	activated	when	the	menu	item	is	activated.

See	also	disconnectItem()	and	setItemParameter().

Example:	menu/menu.cpp.

bool	QMenuData::disconnectItem	(int	id,
const	QObject	*	receiver,	const	char	*	member)

Disconnects	the	receiver's	member	from	the	menu	item	with	identifier	id.

All	connections	are	removed	when	the	menu	data	object	is	destroyed.

See	also	connectItem()	and	setItemParameter().

void	QPopupMenu::drawContents	(QPainter	*	p)	[virtual
protected]

Draws	all	menu	items	using	painter	p.

Reimplemented	from	QFrame.

void	QPopupMenu::drawItem	(QPainter	*	p,	int	tab_,
QMenuItem	*	mi,	bool	act,	int	x,	int	y,	int	w,	int	h)
[protected]

Draws	menu	item	mi	in	the	area	x,	y,	w,	h,	using	painter	p.	The	item	is	drawn
active	if	act	is	TRUE	or	drawn	inactive	if	act	is	FALSE.	The	rightmost	tab_
pixels	are	used	for	accelerator	text.

See	also	QStyle::drawControl().

int	QPopupMenu::exec	()

Executes	this	popup	synchronously.

This	is	equivalent	to	exec(mapToGlobal(QPoint(0,0))).	In	most	situations
you'll	want	to	specify	the	position	yourself,	for	example	at	the	current	mouse
position:

						exec(QCursor::pos());

		

or	aligned	to	a	widget:

						exec(somewidget.mapToGlobal(QPoint(0,0)));

		

Examples:	fileiconview/qfileiconview.cpp	and	scribble/scribble.cpp.

int	QPopupMenu::exec	(const	QPoint	&	pos,	int	indexAtPoint	=	0
)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Executes	this	popup	synchronously.

Opens	the	popup	menu	so	that	the	item	number	indexAtPoint	will	be	at	the
specified	global	position	pos.	To	translate	a	widget's	local	coordinates	into
global	coordinates,	use	QWidget::mapToGlobal().

The	return	code	is	the	id	of	the	selected	item	in	either	the	popup	menu	or	one	of
its	submenus,	or	-1	if	no	item	is	selected	(normally	because	the	user	presses
Escape).

Note	that	all	signals	are	emitted	as	usual.	If	you	connect	a	menu	item	to	a	slot
and	call	the	menu's	exec(),	you	get	the	result	both	via	the	signal-slot	connection
and	in	the	return	value	of	exec().

Common	usage	is	to	position	the	popup	at	the	current	mouse	position:

						exec(QCursor::pos());

		

or	aligned	to	a	widget:

						exec(somewidget.mapToGlobal(QPoint(0,0)));

		

When	positioning	a	popup	with	exec()	or	popup(),	bear	in	mind	that	you	cannot
rely	on	the	popup	menu's	current	size().	For	performance	reasons,	the	popup
adapts	its	size	only	when	necessary.	So	in	many	cases,	the	size	before	and	after
the	show	is	different.	Instead,	use	sizeHint().	It	calculates	the	proper	size
depending	on	the	menu's	current	contents.

See	also	popup()	and	sizeHint.

void	QPopupMenu::highlighted	(int	id)	[signal]

This	signal	is	emitted	when	a	menu	item	is	highlighted;	id	is	the	id	of	the
highlighted	item.

See	also	activated()	and	QMenuData::insertItem().

QIconSet	*	QMenuData::iconSet	(int	id)	const

Returns	the	icon	set	that	has	been	set	for	menu	item	id,	or	0	if	no	icon	set	has
been	set.

See	also	changeItem(),	text()	and	pixmap().

int	QPopupMenu::idAt	(int	index)	const

Returns	the	identifier	of	the	menu	item	at	position	index	in	the	internal	list,	or	-1
if	index	is	out	of	range.

See	also	QMenuData::setId()	and	QMenuData::indexOf().

Example:	scrollview/scrollview.cpp.

int	QPopupMenu::idAt	(const	QPoint	&	pos)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	the	id	of	the	item	at	pos,	or	-1	if	there	is	no	item	there	or	if	it	is	a
separator	item.

int	QMenuData::insertItem	(const	QString	&	text,
const	QObject	*	receiver,	const	char	*	member,
const	QKeySequence	&	accel	=	0,	int	id	=	-1,	int	index	=	-1)

The	family	of	insertItem()	functions	inserts	menu	items	into	a	popup	menu	or	a
menu	bar.

A	menu	item	is	usually	either	a	text	string	or	a	pixmap,	both	with	an	optional
icon	or	keyboard	accelerator.	For	special	cases	it	is	also	possible	to	insert	custom
items	(see	QCustomMenuItem)	or	even	widgets	into	popup	menus.

Some	insertItem()	members	take	a	popup	menu	as	an	additional	argument.	Use
this	to	insert	submenus	to	existing	menus	or	pulldown	menus	to	a	menu	bar.

The	number	of	insert	functions	may	look	confusing,	but	they	are	actually	quite
simple	to	use.

This	default	version	inserts	a	menu	item	with	the	text	text,	the	accelerator	key
accel,	an	id	and	an	optional	index	and	connects	it	to	the	slot	member	in	the
object	receiver.

Example:

				QMenuBar			*mainMenu	=	new	QMenuBar;

				QPopupMenu	*fileMenu	=	new	QPopupMenu;

				fileMenu->insertItem("New",		myView,	SLOT(newFile()),	CTRL+Key_N);

				fileMenu->insertItem("Open",	myView,	SLOT(open()),				CTRL+Key_O);

				mainMenu->insertItem("File",	fileMenu);

		

Not	all	insert	functions	take	an	object/slot	parameter	or	an	accelerator	key.	Use
connectItem()	and	setAccel()	on	these	items.

If	you	need	to	translate	accelerators,	use	tr()	with	a	string	description	that	use
pass	to	the	QKeySequence	constructor:

				fileMenu->insertItem(tr("Open"),	myView,	SLOT(open()),

																									tr("Ctrl+O"));

		

In	the	example	above,	pressing	Ctrl+N	or	selecting	"Open"	from	the	menu
activates	the	myView->open()	function.

Some	insert	functions	take	a	QIconSet	parameter	to	specify	the	little	menu	item
icon.	Note	that	you	can	always	pass	a	QPixmap	object	instead.

The	index	specifies	the	position	in	the	menu.	The	menu	item	is	appended	at	the
end	of	the	list	if	index	is	negative.

Note	that	keyboard	accelerators	in	Qt	are	not	application-global,	instead	they	are
bound	to	a	certain	top-level	window.	For	example,	accelerators	in	QPopupMenu
items	only	work	for	menus	that	are	associated	with	a	certain	window.	This	is	true
for	popup	menus	that	live	in	a	menu	bar	since	their	accelerators	will	then	be
installed	in	the	menu	bar	itself.	This	also	applies	to	stand-alone	popup	menus
that	have	a	top-level	widget	in	their	parentWidget()	chain.	The	menu	will	then
install	its	accelerator	object	on	that	top-level	widget.	For	all	other	cases	use	an
independent	QAccel	object.

Warning:	Be	careful	when	passing	a	literal	0	to	insertItem()	because	some	C++
compilers	choose	the	wrong	overloaded	function.	Cast	the	0	to	what	you	mean,
e.g.	(QObject*)0.

Returns	the	allocated	menu	identifier	number	(id	if	id	>=	0).

See	also	removeItem(),	changeItem(),	setAccel(),	connectItem(),	QAccel	and
qnamespace.h.

Examples:	addressbook/mainwindow.cpp,	canvas/canvas.cpp,
mdi/application.cpp,	menu/menu.cpp,	qwerty/qwerty.cpp,
scrollview/scrollview.cpp	and	showimg/showimg.cpp.

int	QMenuData::insertItem	(const	QIconSet	&	icon,
const	QString	&	text,	const	QObject	*	receiver,
const	char	*	member,	const	QKeySequence	&	accel	=	0,	int	id
=	-1,	int	index	=	-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves

essentially	like	the	above	function.

Inserts	a	menu	item	with	icon	icon,	text	text,	accelerator	accel,	optional	id	id,
and	optional	index.	The	menu	item	is	connected	it	to	the	receiver's	member	slot.
The	icon	will	be	displayed	to	the	left	of	the	text	in	the	item.

Returns	the	allocated	menu	identifier	number	(id	if	id	>=	0).

See	also	removeItem(),	changeItem(),	setAccel(),	connectItem(),	QAccel	and
qnamespace.h.

int	QMenuData::insertItem	(const	QPixmap	&	pixmap,
const	QObject	*	receiver,	const	char	*	member,
const	QKeySequence	&	accel	=	0,	int	id	=	-1,	int	index	=	-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	a	menu	item	with	pixmap	pixmap,	accelerator	accel,	optional	id	id,	and
optional	index.	The	menu	item	is	connected	it	to	the	receiver's	member	slot.	The
icon	will	be	displayed	to	the	left	of	the	text	in	the	item.

To	look	best	when	being	highlighted	as	a	menu	item,	the	pixmap	should	provide
a	mask	(see	QPixmap::mask()).

Returns	the	allocated	menu	identifier	number	(id	if	id	>=	0).

See	also	removeItem(),	changeItem(),	setAccel()	and	connectItem().

int	QMenuData::insertItem	(const	QIconSet	&	icon,
const	QPixmap	&	pixmap,	const	QObject	*	receiver,
const	char	*	member,	const	QKeySequence	&	accel	=	0,	int	id
=	-1,	int	index	=	-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	a	menu	item	with	icon	icon,	pixmap	pixmap,	accelerator	accel,	optional
id	id,	and	optional	index.	The	icon	will	be	displayed	to	the	left	of	the	pixmap	in

the	item.	The	item	is	connected	to	the	member	slot	in	the	receiver	object.

To	look	best	when	being	highlighted	as	a	menu	item,	the	pixmap	should	provide
a	mask	(see	QPixmap::mask()).

Returns	the	allocated	menu	identifier	number	(id	if	id	>=	0).

See	also	removeItem(),	changeItem(),	setAccel(),	connectItem(),	QAccel	and
qnamespace.h.

int	QMenuData::insertItem	(const	QString	&	text,	int	id	=	-1,
int	index	=	-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	a	menu	item	with	text	text,	optional	id	id,	and	optional	index.

Returns	the	allocated	menu	identifier	number	(id	if	id	>=	0).

See	also	removeItem(),	changeItem(),	setAccel()	and	connectItem().

int	QMenuData::insertItem	(const	QIconSet	&	icon,
const	QString	&	text,	int	id	=	-1,	int	index	=	-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	a	menu	item	with	icon	icon,	text	text,	optional	id	id,	and	optional	index.
The	icon	will	be	displayed	to	the	left	of	the	text	in	the	item.

Returns	the	allocated	menu	identifier	number	(id	if	id	>=	0).

See	also	removeItem(),	changeItem(),	setAccel()	and	connectItem().

int	QMenuData::insertItem	(const	QString	&	text,
QPopupMenu	*	popup,	int	id	=	-1,	int	index	=	-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves

essentially	like	the	above	function.

Inserts	a	menu	item	with	text	text,	submenu	popup,	optional	id	id,	and	optional
index.

The	popup	must	be	deleted	by	the	programmer	or	by	its	parent	widget.	It	is	not
deleted	when	this	menu	item	is	removed	or	when	the	menu	is	deleted.

Returns	the	allocated	menu	identifier	number	(id	if	id	>=	0).

See	also	removeItem(),	changeItem(),	setAccel()	and	connectItem().

int	QMenuData::insertItem	(const	QIconSet	&	icon,
const	QString	&	text,	QPopupMenu	*	popup,	int	id	=	-1,
int	index	=	-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	a	menu	item	with	icon	icon,	text	text,	submenu	popup,	optional	id	id,	and
optional	index.	The	icon	will	be	displayed	to	the	left	of	the	text	in	the	item.

The	popup	must	be	deleted	by	the	programmer	or	by	its	parent	widget.	It	is	not
deleted	when	this	menu	item	is	removed	or	when	the	menu	is	deleted.

Returns	the	allocated	menu	identifier	number	(id	if	id	>=	0).

See	also	removeItem(),	changeItem(),	setAccel()	and	connectItem().

int	QMenuData::insertItem	(const	QPixmap	&	pixmap,	int	id	=
-1,	int	index	=	-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	a	menu	item	with	pixmap	pixmap,	optional	id	id,	and	optional	index.

To	look	best	when	being	highlighted	as	a	menu	item,	the	pixmap	should	provide
a	mask	(see	QPixmap::mask()).

Returns	the	allocated	menu	identifier	number	(id	if	id	>=	0).

See	also	removeItem(),	changeItem(),	setAccel()	and	connectItem().

int	QMenuData::insertItem	(const	QIconSet	&	icon,
const	QPixmap	&	pixmap,	int	id	=	-1,	int	index	=	-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	a	menu	item	with	icon	icon,	pixmap	pixmap,	optional	id	id,	and	optional
index.	The	icon	will	be	displayed	to	the	left	of	the	pixmap	in	the	item.

Returns	the	allocated	menu	identifier	number	(id	if	id	>=	0).

See	also	removeItem(),	changeItem(),	setAccel()	and	connectItem().

int	QMenuData::insertItem	(const	QPixmap	&	pixmap,
QPopupMenu	*	popup,	int	id	=	-1,	int	index	=	-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	a	menu	item	with	pixmap	pixmap,	submenu	popup,	optional	id	id,	and
optional	index.

The	popup	must	be	deleted	by	the	programmer	or	by	its	parent	widget.	It	is	not
deleted	when	this	menu	item	is	removed	or	when	the	menu	is	deleted.

Returns	the	allocated	menu	identifier	number	(id	if	id	>=	0).

See	also	removeItem(),	changeItem(),	setAccel()	and	connectItem().

int	QMenuData::insertItem	(const	QIconSet	&	icon,
const	QPixmap	&	pixmap,	QPopupMenu	*	popup,	int	id	=	-1,
int	index	=	-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	a	menu	item	with	icon	icon,	pixmap	pixmap	submenu	popup,	optional	id
id,	and	optional	index.	The	icon	will	be	displayed	to	the	left	of	the	pixmap	in	the
item.

The	popup	must	be	deleted	by	the	programmer	or	by	its	parent	widget.	It	is	not
deleted	when	this	menu	item	is	removed	or	when	the	menu	is	deleted.

Returns	the	allocated	menu	identifier	number	(id	if	id	>=	0).

See	also	removeItem(),	changeItem(),	setAccel()	and	connectItem().

int	QMenuData::insertItem	(QWidget	*	widget,	int	id	=	-1,
int	index	=	-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	a	menu	item	that	consists	of	the	widget	widget	with	optional	id	id,	and
optional	index.

Ownership	of	widget	is	transferred	to	the	popup	menu	or	to	the	menu	bar.

Theoretically,	any	widget	can	be	inserted	into	a	popup	menu.	In	practice,	this
only	makes	sense	with	certain	widgets.

If	a	widget	is	not	focus-enabled	(see	QWidget::isFocusEnabled()),	the	menu
treats	it	as	a	separator;	this	means	that	the	item	is	not	selectable	and	will	never
get	focus.	In	this	way	you	can,	for	example,	simply	insert	a	QLabel	if	you	need	a
popup	menu	with	a	title.

If	the	widget	is	focus-enabled	it	will	get	focus	when	the	user	traverses	the	popup
menu	with	the	arrow	keys.	If	the	widget	does	not	accept	ArrowUp	and
ArrowDown	in	its	key	event	handler,	the	focus	will	move	back	to	the	menu
when	the	respective	arrow	key	is	hit	one	more	time.	This	works	with	a
QLineEdit,	for	example.	If	the	widget	accepts	the	arrow	key	itself,	it	must	also
provide	the	possibility	to	put	the	focus	back	on	the	menu	again	by	calling
QWidget::focusNextPrevChild().	Futhermore,	if	the	embedded	widget	closes	the
menu	when	the	user	made	a	selection,	this	can	be	done	safely	by	calling

				if	(isVisible()	&&

									parentWidget()	&&

									parentWidget()->inherits("QPopupMenu"))

								parentWidget()->close();

		

Returns	the	allocated	menu	identifier	number	(id	if	id	>=	0).

See	also	removeItem().

int	QMenuData::insertItem	(const	QIconSet	&	icon,
QCustomMenuItem	*	custom,	int	id	=	-1,	int	index	=	-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	a	custom	menu	item	custom	with	an	icon	and	with	optional	id	id,	and
optional	index.

This	only	works	with	popup	menus.	It	is	not	supported	for	menu	bars.
Ownership	of	custom	is	transferred	to	the	popup	menu.

If	you	want	to	connect	a	custom	item	to	a	certain	slot,	use	connectItem().

Returns	the	allocated	menu	identifier	number	(id	if	id	>=	0).

See	also	connectItem(),	removeItem()	and	QCustomMenuItem.

int	QMenuData::insertItem	(QCustomMenuItem	*	custom,	int	id
=	-1,	int	index	=	-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	a	custom	menu	item	custom	with	optional	id	id,	and	optional	index.

This	only	works	with	popup	menus.	It	is	not	supported	for	menu	bars.
Ownership	of	custom	is	transferred	to	the	popup	menu.

If	you	want	to	connect	a	custom	item	to	a	certain	slot,	use	connectItem().

Returns	the	allocated	menu	identifier	number	(id	if	id	>=	0).

See	also	connectItem(),	removeItem()	and	QCustomMenuItem.

int	QMenuData::insertSeparator	(int	index	=	-1)

Inserts	a	separator	at	position	index.	The	separator	becomes	the	last	menu	item	if
index	is	negative.

In	a	popup	menu	a	separator	is	rendered	as	a	horizontal	line.	In	a	Motif	menu	bar
a	separator	is	spacing,	so	the	rest	of	the	items	(normally	just	"Help")	are	drawn
right-justified.	In	a	Windows	menu	bar	separators	are	ignored	(to	comply	with
the	Windows	style	guidelines).

Examples:	addressbook/mainwindow.cpp,	mdi/application.cpp,	menu/menu.cpp,
progress/progress.cpp,	scrollview/scrollview.cpp,	showimg/showimg.cpp	and
sound/sound.cpp.

int	QPopupMenu::insertTearOffHandle	(int	id	=	-1,	int	index	=	-1
)

Inserts	a	tear-off	handle	into	the	menu.	A	tear-off	handle	is	a	special	menu	item
that	creates	a	copy	of	the	menu	when	the	menu	is	selected.	This	"torn-off"	copy
lives	in	a	separate	window.	It	contains	the	same	menu	items	as	the	original
menu,	with	the	exception	of	the	tear-off	handle.

The	handle	item	is	assigned	the	identifier	id	or	an	automatically	generated
identifier	if	id	is	<	0.	The	generated	identifiers	(negative	integers)	are	guaranteed
to	be	unique	within	the	entire	application.

The	index	specifies	the	position	in	the	menu.	The	tear-off	handle	is	appended	at
the	end	of	the	list	if	index	is	negative.

Example:	menu/menu.cpp.

bool	QPopupMenu::isCheckable	()	const

Returns	TRUE	if	the	display	of	check	marks	on	menu	items	is	enabled;
otherwise	returns	FALSE.	See	the	"checkable"	property	for	details.

bool	QMenuData::isItemChecked	(int	id)	const

Returns	TRUE	if	the	menu	item	with	the	id	id	has	been	checked;	otherwise
returns	FALSE.

See	also	setItemChecked().

Examples:	canvas/canvas.cpp,	progress/progress.cpp	and
showimg/showimg.cpp.

bool	QMenuData::isItemEnabled	(int	id)	const

Returns	TRUE	if	the	item	with	identifier	id	is	enabled;	otherwise	returns	FALSE

See	also	setItemEnabled().

int	QPopupMenu::itemHeight	(int	row)	const	[protected]

Calculates	the	height	in	pixels	of	the	item	in	row	row.

int	QPopupMenu::itemHeight	(QMenuItem	*	mi)	const
[protected]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Calculates	the	height	in	pixels	of	the	menu	item	mi.

int	QMenuData::itemParameter	(int	id)	const

Returns	the	parameter	of	the	activation	signal	of	item	id.

If	no	parameter	has	been	specified	for	this	item	with	setItemParameter(),	the
value	defaults	to	id.

See	also	connectItem(),	disconnectItem()	and	setItemParameter().

QPixmap	*	QMenuData::pixmap	(int	id)	const

Returns	the	pixmap	that	has	been	set	for	menu	item	id,	or	0	if	no	pixmap	has
been	set.

See	also	changeItem(),	text()	and	iconSet().

void	QPopupMenu::popup	(const	QPoint	&	pos,	int	indexAtPoint
=	-1)

Displays	the	popup	menu	so	that	the	item	number	indexAtPoint	will	be	at	the
specified	global	position	pos.	To	translate	a	widget's	local	coordinates	into
global	coordinates,	use	QWidget::mapToGlobal().

When	positioning	a	popup	with	exec()	or	popup(),	bear	in	mind	that	you	cannot
rely	on	the	popup	menu's	current	size().	For	performance	reasons,	the	popup
adapts	its	size	only	when	necessary,	so	in	many	cases,	the	size	before	and	after
the	show	is	different.	Instead,	use	sizeHint().	It	calculates	the	proper	size
depending	on	the	menu's	current	contents.

Examples:	listviews/listviews.cpp	and	qtimage/qtimage.cpp.

void	QMenuData::removeItem	(int	id)

Removes	the	menu	item	that	has	the	identifier	id.

See	also	removeItemAt()	and	clear().

Example:	chart/chartform.cpp.

void	QMenuData::removeItemAt	(int	index)

Removes	the	menu	item	at	position	index.

See	also	removeItem()	and	clear().

void	QMenuData::setAccel	(const	QKeySequence	&	key,	int	id)

Sets	the	accelerator	key	for	the	menu	item	id	to	key.

An	accelerator	key	consists	of	a	key	code	and	a	combination	of	the	modifiers

SHIFT,	CTRL,	ALT	or	UNICODE_ACCEL	(OR'ed	or	added).	The	header	file
qnamespace.h	contains	a	list	of	key	codes.

Defining	an	accelerator	key	produces	a	text	that	is	added	to	the	menu	item;	for
instance,	CTRL	+	Key_O	produces	"Ctrl+O".	The	text	is	formatted	differently
for	different	platforms.

Note	that	keyboard	accelerators	in	Qt	are	not	application-global,	instead	they	are
bound	to	a	certain	top-level	window.	For	example,	accelerators	in	QPopupMenu
items	only	work	for	menus	that	are	associated	with	a	certain	window.	This	is	true
for	popup	menus	that	live	in	a	menu	bar	since	their	accelerators	will	then	be
installed	in	the	menu	bar	itself.	This	also	applies	to	stand-alone	popup	menus
that	have	a	top-level	widget	in	their	parentWidget()	chain.	The	menu	will	then
install	its	accelerator	object	on	that	top-level	widget.	For	all	other	cases	use	an
independent	QAccel	object.

Example:

				QMenuBar	*mainMenu	=	new	QMenuBar;

				QPopupMenu	*fileMenu	=	new	QPopupMenu;							//	file	sub	menu

				fileMenu->insertItem("Open	Document",	67);	//	add	"Open"	item

				fileMenu->setAccel(CTRL	+	Key_O,	67);						//	Control	and	O	to	open

				fileMenu->insertItem("Quit",	69);										//	add	"Quit"	item

				fileMenu->setAccel(CTRL	+	ALT	+	Key_Delete,	69);

				mainMenu->insertItem("File",	fileMenu);				//	add	the	file	menu

		

If	you	need	to	translate	accelerators,	use	tr()	with	a	string:

				fileMenu->setAccel(tr("Ctrl+O"),	67);

		

You	can	also	specify	the	accelerator	in	the	insertItem()	function.	You	may	prefer
to	use	QAction	to	associate	accelerators	with	menu	items.

See	also	accel(),	insertItem(),	QAccel	and	QAction.

Example:	menu/menu.cpp.

void	QPopupMenu::setActiveItem	(int	i)	[virtual]

Sets	the	currently	active	item	to	i	and	repaints	as	necessary.

void	QPopupMenu::setCheckable	(bool)	[virtual]

Sets	whether	the	display	of	check	marks	on	menu	items	is	enabled.	See	the
"checkable"	property	for	details.

void	QMenuData::setItemChecked	(int	id,	bool	check)

If	check	is	TRUE,	checks	the	menu	item	with	id	id;	otherwise	unchecks	the
menu	item	with	id	id.	Calls	QPopupMenu::setCheckable(TRUE)	if	necessary.

See	also	isItemChecked().

Examples:	canvas/canvas.cpp,	grapher/grapher.cpp,	mdi/application.cpp,
menu/menu.cpp,	progress/progress.cpp,	scrollview/scrollview.cpp	and
showimg/showimg.cpp.

void	QMenuData::setItemEnabled	(int	id,	bool	enable)

If	enable	is	TRUE,	enables	the	menu	item	with	identifier	id;	otherwise	disables
the	menu	item	with	identifier	id.

See	also	isItemEnabled().

Examples:	mdi/application.cpp,	menu/menu.cpp,	progress/progress.cpp	and
showimg/showimg.cpp.

bool	QMenuData::setItemParameter	(int	id,	int	param)

Sets	the	parameter	of	the	activation	signal	of	item	id	to	param.

If	any	receiver	takes	an	integer	parameter,	this	value	is	passed.

See	also	connectItem(),	disconnectItem()	and	itemParameter().

Example:	mdi/application.cpp.

void	QMenuData::setWhatsThis	(int	id,	const	QString	&	text)

Sets	text	as	What's	This	help	for	the	menu	item	with	identifier	id.

See	also	whatsThis().

Examples:	application/application.cpp	and	mdi/application.cpp.

QString	QMenuData::text	(int	id)	const

Returns	the	text	that	has	been	set	for	menu	item	id,	or	a	null	string	if	no	text	has
been	set.

See	also	changeItem(),	pixmap()	and	iconSet().

Examples:	qdir/qdir.cpp	and	showimg/showimg.cpp.

void	QPopupMenu::updateItem	(int	id)	[virtual]

Updates	the	item	with	identity	id.

Reimplemented	from	QMenuData.

QString	QMenuData::whatsThis	(int	id)	const

Returns	the	What's	This	help	text	for	the	item	with	identifier	id	or	QString::null
if	no	text	has	yet	been	defined.

See	also	setWhatsThis().

Property	Documentation

bool	checkable

This	property	holds	whether	the	display	of	check	marks	on	menu	items	is
enabled.

When	TRUE,	the	display	of	check	marks	on	menu	items	is	enabled.	Checking	is
always	enabled	when	in	Windows-style.

See	also	QMenuData::setItemChecked().

Set	this	property's	value	with	setCheckable()	and	get	this	property's	value	with
isCheckable().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QAction
QAction	 ……

#include	<qaction.h>

Inherits	QObject

Inherited	by	QActionGroup

QAction	(QObject	*	parent,	const	char	*	name	=	0,	bool	toggle	=	FALSE)
QAction	(const	QString	&	text,	const	QIconSet	&	icon,
const	QString	&	menuText,	QKeySequence	accel,	QObject	*	parent,
const	char	*	name	=	0,	bool	toggle	=	FALSE)
QAction	(const	QString	&	text,	const	QString	&	menuText,
QKeySequence	accel,	QObject	*	parent,	const	char	*	name	=	0,	bool	toggle
=	FALSE)
~QAction	()
virtual	void	setIconSet	(const	QIconSet	&)
QIconSet	iconSet	()	const
virtual	void	setText	(const	QString	&)
QString	text	()	const
virtual	void	setMenuText	(const	QString	&)
QString	menuText	()	const
virtual	void	setToolTip	(const	QString	&)
QString	toolTip	()	const
virtual	void	setStatusTip	(const	QString	&)
QString	statusTip	()	const
virtual	void	setWhatsThis	(const	QString	&)
QString	whatsThis	()	const
virtual	void	setAccel	(const	QKeySequence	&	key)
QKeySequence	accel	()	const
virtual	void	setToggleAction	(bool)
bool	isToggleAction	()	const
bool	isOn	()	const
bool	isEnabled	()	const
virtual	bool	addTo	(QWidget	*	w)
virtual	bool	removeFrom	(QWidget	*	w)

void	toggle	()
virtual	void	setOn	(bool)
virtual	void	setEnabled	(bool)

void	activated	()
void	toggled	(bool)

QKeySequence	accel	-	
bool	enabled	-	
QIconSet	iconSet	-	
QString	menuText	-	
bool	on	-	
QString	statusTip	-	
QString	text	-	
bool	toggleAction	-	
QString	toolTip	-	
QString	whatsThis	-	“”

virtual	void	addedTo	(QWidget	*	actionWidget,	QWidget	*	container)
virtual	void	addedTo	(int	index,	QPopupMenu	*	menu)

QAction

QAction
setIconSet() setText() setMenuText() setToolTip() setStatusTip() setWhatsThis
setAccel()

“”“”
setToggleAction() isToggleAction()“” isOn()“”isOn()

addTo() removeFrom()

QAction

								fileSaveAction	=	new	QAction("Save	File",	QPixmap(filesave),

																																						"&Save",	CTRL+Key_S,	this,	"save");

								connect(fileSaveAction,	SIGNAL(activated())	,	this,	SLOT(save()));

“(&S;)” Ctrl+S“”fileSaveAction activated

								QToolBar	*	fileTools	=	new	QToolBar(this,	"file	operations");

								fileSaveAction->addTo(fileTools);

								QPopupMenu	*	file	=	new	QPopupMenu(this);

								menuBar()->insertItem("&File",	file);

								fileSaveAction->addTo(file);

fileSaveActionfileSaveAction

QAction

QAction::QAction	(QObject	*	parent,	const	char	*	name	=	0,
bool	toggle	=	FALSE)

parentname

toggle

parentQActionGroupparent

parent

QAction::QAction	(const	QString	&	text,	const	QIconSet	&	icon,
const	QString	&	menuText,	QKeySequence	accel,
QObject	*	parent,	const	char	*	name	=	0,	bool	toggle	=
FALSE)

texticonmenuTextaccelparentnametoggle

parentQActionGroupparent

parent

textaccel setToolTip()setStatusTip()

QAction::QAction	(const	QString	&	text,
const	QString	&	menuText,	QKeySequence	accel,
QObject	*	parent,	const	char	*	name	=	0,	bool	toggle	=
FALSE)

textmenuTextaccelparentnametoggle

parentQActionGroupparent

parent

textaccel setToolTip()setStatusTip()

QAction::~QAction	()

QKeySequence	QAction::accel	()	const

“accel”

void	QAction::activated	()	[]

toggled()

action/application.cppchart/chartform.cppthemes/themes.cpp

bool	QAction::addTo	(QWidget	*	w)	[]

w

QToolBarQPopupMenu

addTo() wQToolBarQPopupMenu

removeFrom()

action/application.cppaction/toggleaction/toggleaction.cppchart/chartform.cpp
textedit/textedit.cpp

QActionGroup

void	QAction::addedTo	(QWidget	*	actionWidget,
QWidget	*	container)	[]

containeractionWidget addTo()

void	QAction::addedTo	(int	index,	QPopupMenu	*	menu)	[
]

menuindex addTo()

QIconSet	QAction::iconSet	()	const

“iconSet”

bool	QAction::isEnabled	()	const

“enabled”

bool	QAction::isOn	()	const

“on”

bool	QAction::isToggleAction	()	const

“toggleAction”

QString	QAction::menuText	()	const

“menuText”

bool	QAction::removeFrom	(QWidget	*	w)	[]

w

addTo()

void	QAction::setAccel	(const	QKeySequence	&	key)	[]

key“accel”

void	QAction::setEnabled	(bool)	[]

“enabled”

void	QAction::setIconSet	(const	QIconSet	&)	[]

“iconSet”

void	QAction::setMenuText	(const	QString	&)	[]

“menuText”

void	QAction::setOn	(bool)	[]

“on”

void	QAction::setStatusTip	(const	QString	&)	[]

“statusTip”

void	QAction::setText	(const	QString	&)	[]

“text”

void	QAction::setToggleAction	(bool)	[]

“toggleAction”

void	QAction::setToolTip	(const	QString	&)	[]

“toolTip”

void	QAction::setWhatsThis	(const	QString	&)	[]

“” “whatsThis”

QString	QAction::statusTip	()	const

“statusTip”

QString	QAction::text	()	const

“text”

void	QAction::toggle	()	[]

ontoggled()toggleAction

void	QAction::toggled	(bool)	[]

QActionGroups toggled()

bool

								QMainWindow	*	window	=	new	QMainWindow;

								QAction	*	labelonoffaction	=	new	QAction(window,	"labelonoff",	TRUE);

								QObject::connect(labelonoffaction,	SIGNAL(toggled(bool)),

																										window,	SLOT(setUsesTextLabel(bool)));

activated() toggleActionon

action/toggleaction/toggleaction.cpp

QString	QAction::toolTip	()	const

“toolTip”

QString	QAction::whatsThis	()	const

“” “whatsThis”

QKeySequence	accel

Qt::KeyQt::Modifier

setAccel()accel()

bool	enabled

/

“” QAction::whatsThis

setEnabled()isEnabled()

QIconSet	iconSet

action/toggleaction/toggleaction.cpp

setIconSet()iconSet()

QString	menuText

setMenuText()

text

setMenuText()menuText()

bool	on

QActionGroup setOn()

toggleAction

setOn()isOn()

QString	statusTip

statusTiptoolTip

setStatusTip()statusTip()

QString	text

QMainWindow::usesTextLabel

menuTexttoolTipstatusTip

setText()text()

bool	toggleAction

/“”

“”“”“”
QActionGroup::exclusive

setToggleAction()isToggleAction()

QString	toolTip

statusTipaccel

setToolTip()toolTip()

QString	whatsThis

“”

“”HTML—— QStyleSheet“”

QWhatsThis

setWhatsThis()whatsThis()

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QPrinter	Class	Reference
The	QPrinter	class	is	a	paint	device	that	paints	on	a	printer.	More...

#include	<qprinter.h>

Inherits	QPaintDevice.

List	of	all	member	functions.

Public	Members

enum	PrinterMode	{	ScreenResolution,	PrinterResolution,
HighResolution,	Compatible	}
QPrinter	(PrinterMode	m	=	ScreenResolution)
~QPrinter	()
enum	Orientation	{	Portrait,	Landscape	}
enum	PageSize	{	A4,	B5,	Letter,	Legal,	Executive,	A0,	A1,	A2,	A3,	A5,
A6,	A7,	A8,	A9,	B0,	B1,	B10,	B2,	B3,	B4,	B6,	B7,	B8,	B9,	C5E,
Comm10E,	DLE,	Folio,	Ledger,	Tabloid,	Custom,	NPageSize	=	Custom	}
enum	PageOrder	{	FirstPageFirst,	LastPageFirst	}
enum	ColorMode	{	GrayScale,	Color	}
enum	PaperSource	{	OnlyOne,	Lower,	Middle,	Manual,	Envelope,
EnvelopeManual,	Auto,	Tractor,	SmallFormat,	LargeFormat,
LargeCapacity,	Cassette,	FormSource	}
QString	printerName	()	const
virtual	void	setPrinterName	(const	QString	&	name)
bool	outputToFile	()	const
virtual	void	setOutputToFile	(bool	enable)
QString	outputFileName	()	const
virtual	void	setOutputFileName	(const	QString	&	fileName)
QString	printProgram	()	const
virtual	void	setPrintProgram	(const	QString	&	printProg)
QString	printerSelectionOption	()	const
virtual	void	setPrinterSelectionOption	(const	QString	&	option)
QString	docName	()	const
virtual	void	setDocName	(const	QString	&	name)
QString	creator	()	const
virtual	void	setCreator	(const	QString	&	creator)
Orientation	orientation	()	const
virtual	void	setOrientation	(Orientation	orientation)
PageSize	pageSize	()	const
virtual	void	setPageSize	(PageSize	newPageSize)
short	winPageSize	()	const
virtual	void	setPageOrder	(PageOrder	newPageOrder)
PageOrder	pageOrder	()	const
virtual	void	setResolution	(int	dpi)

virtual	int	resolution	()	const
virtual	void	setColorMode	(ColorMode	newColorMode)
ColorMode	colorMode	()	const
virtual	void	setFullPage	(bool	fp)
bool	fullPage	()	const
QSize	margins	()	const
int	fromPage	()	const
int	toPage	()	const
virtual	void	setFromTo	(int	fromPage,	int	toPage)
int	minPage	()	const
int	maxPage	()	const
virtual	void	setMinMax	(int	minPage,	int	maxPage)
int	numCopies	()	const
virtual	void	setNumCopies	(int	numCopies)
bool	newPage	()
bool	abort	()
bool	aborted	()	const
bool	setup	(QWidget	*	parent	=	0)
PaperSource	paperSource	()	const
virtual	void	setPaperSource	(PaperSource	source)

Detailed	Description

The	QPrinter	class	is	a	paint	device	that	paints	on	a	printer.

On	Windows	it	uses	the	built-in	printer	drivers.	On	X11	it	generates	postscript
and	sends	that	to	lpr,	lp,	or	another	print	command.

QPrinter	is	used	in	much	the	same	way	as	QWidget	and	QPixmap	are	used.	The
big	difference	is	that	you	must	keep	track	of	the	pages.

QPrinter	supports	a	number	of	settable	parameters,	most	of	which	can	be
changed	by	the	end	user	when	the	application	calls	QPrinter::setup().

The	most	important	parameters	are:

setOrientation()	tells	QPrinter	which	page	orientation	to	use	(virtual).
setPageSize()	tells	QPrinter	what	page	size	to	expect	from	the	printer.
setResolution()	tells	QPrinter	what	resolution	you	wish	the	printer	to
provide	(in	dpi).
setFullPage()	tells	QPrinter	whether	you	want	to	deal	with	the	full	page	or
just	with	the	part	the	printer	can	draw	on.	The	default	is	FALSE,	so	that	by
default	you	should	be	able	to	paint	on	(0,0).	If	TRUE	the	origin	of	the
coordinate	system	will	be	in	the	top	left	corner	of	the	paper	and	most
probably	the	printer	will	not	be	able	to	paint	something	there	due	to	it's
physical	margins.
setNumCopies()	tells	QPrinter	how	many	copies	of	the	document	it	should
print.
setMinMax()	tells	QPrinter	and	QPrintDialog	what	the	allowed	range	for
fromPage()	and	toPage()	are.

Except	where	noted,	you	can	only	call	the	set	functions	before	setup(),	or
between	QPainter::end()	and	setup().	(Some	may	take	effect	between	setup()	and
begin(),	or	between	begin()	and	end(),	but	that's	strictly	undocumented	and	such
behaviour	may	differ	depending	on	platform.)

There	are	also	some	settings	that	the	user	sets	(through	the	printer	dialog)	and
that	applications	are	expected	to	obey:

pageOrder()	tells	the	application	program	whether	to	print	first-page-first	or
last-page-first.

colorMode()	tells	the	application	program	whether	to	print	in	color	or
grayscale.	(If	you	print	in	color	and	the	printer	does	not	support	color,	Qt
will	try	to	approximate.	The	document	may	take	longer	to	print,	but	the
quality	should	not	be	made	visibly	poorer.)

fromPage()	and	toPage()	indicate	what	pages	the	application	program
should	print.

paperSource()	tells	the	application	progam	which	paper	source	to	print
from.

You	can	of	course	call	these	functions	to	establish	defaults	before	you	ask	the
user	through	QPrinter::setup().

Once	you	start	printing,	calling	newPage()	is	essential.	You	will	probably	also
need	to	look	at	the	QPaintDeviceMetrics	for	the	printer	(see	the	print	function	in
the	Application	walk-through).	Note	that	the	paint	device	metrics	are	valid	only
after	the	QPrinter	has	been	set	up,	i.e.	after	setup()	has	returned	successfully.

If	you	want	to	abort	the	print	job,	abort()	will	try	its	best	to	stop	printing.	It	may
cancel	the	entire	job	or	just	some	of	it.

The	TrueType	font	embedding	for	Qt's	postscript	driver	uses	code	by	David
Chappell	of	Trinity	College	Computing	Center.

Copyright	1995,	Trinity	College	Computing	Center.	Written	by	David	Chappell.

Permission	to	use,	copy,	modify,	and	distribute	this	software	and	its
documentation	for	any	purpose	and	without	fee	is	hereby	granted,	provided	that
the	above	copyright	notice	appear	in	all	copies	and	that	both	that	copyright
notice	and	this	permission	notice	appear	in	supporting	documentation.	This
software	is	provided	"as	is"	without	express	or	implied	warranty.

TrueType	font	support.	These	functions	allow	PPR	to	generate	PostScript	fonts
from	Microsoft	compatible	TrueType	font	files.

The	functions	in	this	file	do	most	of	the	work	to	convert	a	TrueType	font	to	a

type	3	PostScript	font.

Most	of	the	material	in	this	file	is	derived	from	a	program	called	"ttf2ps"	which
L.	S.	Ng	posted	to	the	usenet	news	group	"comp.sources.postscript".	The	author
did	not	provide	a	copyright	notice	or	indicate	any	restrictions	on	use.

Last	revised	11	July	1995.

See	also	Graphics	Classes	and	Image	Processing	Classes.

Member	Type	Documentation

QPrinter::ColorMode

This	enum	type	is	used	to	indicate	whether	QPrinter	should	print	in	color	or	not.

QPrinter::Color	-	print	in	color	if	available,	otherwise	in	grayscale.
QPrinter::GrayScale	-	print	in	grayscale,	even	on	color	printers.	Might	be
a	little	faster	than	Color.	This	is	the	default.

QPrinter::Orientation

This	enum	type	(not	to	be	confused	with	Qt::Orientation)	is	used	to	specify	each
page's	orientation.

QPrinter::Portrait	-	the	page's	height	is	greater	than	its	width	(the
default).
QPrinter::Landscape	-	the	page's	width	is	greater	than	its	height.

This	type	interacts	with	QPrinter::PageSize	and	QPrinter::setFullPage()	to
determine	the	final	size	of	the	page	available	to	the	application.

QPrinter::PageOrder

This	enum	type	is	used	by	QPrinter	to	tell	the	application	program	how	to	print.

QPrinter::FirstPageFirst	-	the	lowest-numbered	page	should	be	printed
first.
QPrinter::LastPageFirst	-	the	highest-numbered	page	should	be	printed
first.

QPrinter::PageSize

This	enum	type	specifies	what	paper	size	QPrinter	should	use.	QPrinter	does	not
check	that	the	paper	size	is	available;	it	just	uses	this	information,	together	with
QPrinter::Orientation	and	QPrinter::setFullPage(),	to	determine	the	printable
area	(see	QPaintDeviceMetrics).

The	defined	sizes	(with	setFullPage(TRUE))	are:

QPrinter::A0	-	841	x	1189	mm
QPrinter::A1	-	594	x	841	mm
QPrinter::A2	-	420	x	594	mm
QPrinter::A3	-	297	x	420	mm
QPrinter::A4	-	210	x	297	mm,	8.26	x	11.7	inches
QPrinter::A5	-	148	x	210	mm
QPrinter::A6	-	105	x	148	mm
QPrinter::A7	-	74	x	105	mm
QPrinter::A8	-	52	x	74	mm
QPrinter::A9	-	37	x	52	mm
QPrinter::B0	-	1030	x	1456	mm
QPrinter::B1	-	728	x	1030	mm
QPrinter::B10	-	32	x	45	mm
QPrinter::B2	-	515	x	728	mm
QPrinter::B3	-	364	x	515	mm
QPrinter::B4	-	257	x	364	mm
QPrinter::B5	-	182	x	257	mm,	7.17	x	10.13	inches
QPrinter::B6	-	128	x	182	mm
QPrinter::B7	-	91	x	128	mm
QPrinter::B8	-	64	x	91	mm
QPrinter::B9	-	45	x	64	mm
QPrinter::C5E	-	163	x	229	mm
QPrinter::Comm10E	-	105	x	241	mm,	US	Common	#10	Envelope
QPrinter::DLE	-	110	x	220	mm
QPrinter::Executive	-	7.5	x	10	inches,	191	x	254	mm
QPrinter::Folio	-	210	x	330	mm
QPrinter::Ledger	-	432	x	279	mm
QPrinter::Legal	-	8.5	x	14	inches,	216	x	356	mm
QPrinter::Letter	-	8.5	x	11	inches,	216	x	279	mm
QPrinter::Tabloid	-	279	x	432	mm
QPrinter::Custom

QPrinter::NPageSize	-	(internal)

With	setFullPage(FALSE)	(the	default),	the	metrics	will	be	a	bit	smaller;	how
much	depends	on	the	printer	in	use.

QPrinter::PaperSource

This	enum	type	specifies	what	paper	source	QPrinter	is	to	use.	QPrinter	does	not
check	that	the	paper	source	is	available;	it	just	uses	this	information	to	try	and
set	the	paper	source.	Whether	it	will	set	the	paper	source	depends	on	whether	the
printer	has	that	particular	source.

Note:	this	is	currently	only	implemented	for	Windows.

QPrinter::OnlyOne

QPrinter::Lower

QPrinter::Middle

QPrinter::Manual

QPrinter::Envelope

QPrinter::EnvelopeManual

QPrinter::Auto

QPrinter::Tractor

QPrinter::SmallFormat

QPrinter::LargeFormat

QPrinter::LargeCapacity

QPrinter::Cassette

QPrinter::FormSource

QPrinter::PrinterMode

This	enum	describes	the	mode	the	printer	should	work	in.	It	basically	presets	a
certain	resolution	and	working	mode.

QPrinter::ScreenResolution	-	Sets	the	resolution	of	the	print	device	to
the	screen	resolution.	This	has	the	big	advantage	that	the	results	obtained
when	painting	on	the	printer	will	match	more	or	less	exactly	the	visible
output	on	the	screen.	It	is	the	easiest	to	use,	as	font	metrics	on	the	screen
and	on	the	printer	are	the	same.	This	is	the	default	value.
QPrinter::PrinterResolution	-	Use	the	physical	resolution	of	the	printer
on	Windows.	On	Unix,	set	the	postscript	resolution	to	72	dpi.
QPrinter::HighResolution	-	Use	printer	resolution	on	windows,	set	the
resolution	of	the	postscript	driver	to	600dpi.
QPrinter::Compatible	-	Almost	the	same	as	PrinterResolution,	but	keeps
some	peculiarities	of	the	Qt	2.x	printer	driver.	This	is	useful	for	applications
ported	from	Qt	2.x	to	Qt	3.x.

Member	Function	Documentation

QPrinter::QPrinter	(PrinterMode	m	=	ScreenResolution)

Constructs	a	printer	paint	device	with	mode	m.

See	also	QPrinter::PrinterMode.

QPrinter::~QPrinter	()

Destroys	the	printer	paint	device	and	cleans	up.

bool	QPrinter::abort	()

Aborts	the	print	job.	Returns	TRUE	if	successful;	otherwise	returns	FALSE.

See	also	aborted().

bool	QPrinter::aborted	()	const

Returns	TRUE	is	the	printer	job	was	aborted;	otherwise	returns	FALSE.

See	also	abort().

ColorMode	QPrinter::colorMode	()	const

Returns	the	current	color	mode.	The	default	color	mode	is	Color.

See	also	setColorMode().

QString	QPrinter::creator	()	const

Returns	the	name	of	the	application	that	created	the	document.

See	also	setCreator().

QString	QPrinter::docName	()	const

Returns	the	document	name.

See	also	setDocName().

int	QPrinter::fromPage	()	const

Returns	the	from-page	setting.	The	default	value	is	0.

If	fromPage()	and	toPage()	both	return	0	this	signifies	'print	the	whole
document'.

The	programmer	is	responsible	for	reading	this	setting	and	printing	accordingly.

See	also	setFromTo()	and	toPage().

bool	QPrinter::fullPage	()	const

Returns	TRUE	if	the	origin	of	the	printer's	coordinate	system	is	at	the	corner	of
the	sheet	and	FALSE	if	it	is	at	the	edge	of	the	printable	area.

See	setFullPage()	for	details	and	caveats.

See	also	setFullPage(),	PageSize	and	QPaintDeviceMetrics.

QSize	QPrinter::margins	()	const

Returns	the	width	of	the	left	margin	and	the	height	of	the	top	margin	of	the
printer.	On	Unix,	this	is	a	best-effort	guess,	not	based	on	perfect	knowledge.

If	you	have	called	setFullPage(TRUE),	margins().width()	may	be	treated	as	the
smallest	sane	left/right	margin	you	can	use,	and	margins().height()	as	the
smallest	sane	top/bottom	margins	you	can	use.

If	you	have	called	setFullPage(FALSE)	(this	is	the	default),	margins()	is
automatically	subtracted	from	the	pageSize()	by	QPrinter.

See	also	setFullPage(),	QPaintDeviceMetrics	and	PageSize.

int	QPrinter::maxPage	()	const

Returns	the	max-page	setting.	A	user	can't	choose	a	higher	page	number	than
maxPage()	when	they	select	a	print	range.	The	default	value	is	0.

See	also	minPage(),	setMinMax()	and	setFromTo().

int	QPrinter::minPage	()	const

Returns	the	min-page	setting,	i.e.	the	lowest	page	number	a	user	is	allowed	to
choose.	The	default	value	is	0.

See	also	maxPage(),	setMinMax()	and	setFromTo().

bool	QPrinter::newPage	()

Advances	to	a	new	page	on	the	printer.	Returns	TRUE	if	successful;	otherwise
returns	FALSE.

Examples:	action/application.cpp,	application/application.cpp,
helpviewer/helpwindow.cpp	and	mdi/application.cpp.

int	QPrinter::numCopies	()	const

Returns	the	number	of	copies	to	be	printed.	The	default	value	is	1.

See	also	setNumCopies().

Orientation	QPrinter::orientation	()	const

Returns	the	orientation	setting.	The	default	value	is	QPrinter::Portrait.

See	also	setOrientation().

QString	QPrinter::outputFileName	()	const

Returns	the	name	of	the	output	file.	There	is	no	default	file	name.

See	also	setOutputFileName()	and	setOutputToFile().

bool	QPrinter::outputToFile	()	const

Returns	TRUE	if	the	output	should	be	written	to	a	file,	or	FALSE	if	the	output
should	be	sent	directly	to	the	printer.	The	default	setting	is	FALSE.

This	function	is	currently	only	supported	under	X11.

See	also	setOutputToFile()	and	setOutputFileName().

PageOrder	QPrinter::pageOrder	()	const

Returns	the	current	page	order.

The	default	page	order	is	FirstPageFirst.

PageSize	QPrinter::pageSize	()	const

Returns	the	printer	page	size.	The	default	value	is	system-dependent.

See	also	setPageSize().

PaperSource	QPrinter::paperSource	()	const

Returns	the	currently	set	paper	source	of	the	printer.

See	also	setPaperSource().

QString	QPrinter::printProgram	()	const

Returns	the	name	of	the	program	that	sends	the	print	output	to	the	printer.

The	default	is	to	return	a	null	string;	meaning	that	QPrinter	will	try	to	be	smart	in
a	system-dependent	way.	On	X11	only,	you	can	set	it	to	something	different	to
use	a	specific	print	program.

On	Windows,	this	function	returns	the	name	of	the	printer	device	driver.

See	also	setPrintProgram()	and	setPrinterSelectionOption().

QString	QPrinter::printerName	()	const

Returns	the	printer	name.	This	value	is	initially	set	to	the	name	of	the	default
printer.

See	also	setPrinterName().

QString	QPrinter::printerSelectionOption	()	const

Returns	the	printer	options	selection	string.	This	is	useful	only	if	the	print
command	has	been	explicitly	set.

The	default	value	(a	null	string)	implies	that	the	printer	should	be	selected	in	a
system-dependent	manner.

Any	other	value	implies	that	the	given	value	should	be	used.

See	also	setPrinterSelectionOption().

int	QPrinter::resolution	()	const	[virtual]

Returns	the	current	assumed	resolution	of	the	printer,	as	set	by	setResolution()	or
by	the	printer	subsystem.

See	also	setResolution().

void	QPrinter::setColorMode	(ColorMode	newColorMode)
[virtual]

Sets	the	printer's	color	mode	to	newColorMode,	which	can	be	either	Color	(the
default)	or	GrayScale.

See	also	colorMode().

void	QPrinter::setCreator	(const	QString	&	creator)	[virtual]

Sets	the	name	of	the	application	that	created	the	document	to	creator.

This	function	is	only	applicable	to	the	X11	version	of	Qt.	If	no	creator	name	is
specified,	the	creator	will	be	set	to	"Qt"	followed	by	some	version	number.

See	also	creator().

void	QPrinter::setDocName	(const	QString	&	name)	[virtual]

Sets	the	document	name	to	name.

void	QPrinter::setFromTo	(int	fromPage,	int	toPage)	[virtual]

Sets	the	from-page	and	to-page	settings	to	fromPage	and	toPage	respectively.

The	from-page	and	to-page	settings	specify	what	pages	to	print.

If	fromPage()	and	toPage()	both	return	0	this	signifies	'print	the	whole
document'.

This	function	is	useful	mostly	to	set	a	default	value	that	the	user	can	override	in
the	print	dialog	when	you	call	setup().

See	also	fromPage(),	toPage(),	setMinMax()	and	setup().

void	QPrinter::setFullPage	(bool	fp)	[virtual]

Sets	QPrinter	to	have	the	origin	of	the	coordinate	system	at	the	top-left	corner	of
the	paper	if	fp	is	TRUE,	or	where	it	thinks	the	top-left	corner	of	the	printable
area	is	if	fp	is	FALSE.

The	default	is	FALSE.	You	can	(probably)	print	on	(0,0),	and
QPaintDeviceMetrics	will	report	something	smaller	than	the	size	indicated	by
PageSize.	(Note	that	QPrinter	may	be	wrong	on	Unix	systems	-	it	does	not	have
perfect	knowledge	of	the	physical	printer.)

If	you	set	fp	to	TRUE,	QPaintDeviceMetrics	will	report	the	exact	same	size	as
indicated	by	PageSize,	but	you	cannot	print	on	all	of	that	-	you	must	take	care	of
the	output	margins	yourself.

See	also	PageSize,	setPageSize(),	QPaintDeviceMetrics	and	fullPage().

Example:	helpviewer/helpwindow.cpp.

void	QPrinter::setMinMax	(int	minPage,	int	maxPage)
[virtual]

Sets	the	min-page	and	max-page	settings	to	minPage	and	maxPage	respectively.

The	min-page	and	max-page	restrict	the	from-page	and	to-page	settings.	When
the	printer	setup	dialog	appears,	the	user	cannot	select	a	from	page	or	a	to	page
that	are	outside	the	range	specified	by	min	and	max	pages.

See	also	minPage(),	maxPage(),	setFromTo()	and	setup().

void	QPrinter::setNumCopies	(int	numCopies)	[virtual]

Sets	the	number	of	pages	to	be	printed	to	numCopies.

The	printer	driver	reads	this	setting	and	prints	the	specified	number	of	copies.

See	also	numCopies()	and	setup().

void	QPrinter::setOrientation	(Orientation	orientation)
[virtual]

Sets	the	print	orientation	to	orientation.

The	orientation	can	be	either	QPrinter::Portrait	or	QPrinter::Landscape.

The	printer	driver	reads	this	setting	and	prints	using	the	specified	orientation.	On
Windows	this	setting	won't	take	effect	until	the	printer	dialog	is	shown	(using
QPrinter::setup()).

See	also	orientation().

void	QPrinter::setOutputFileName	(const	QString	&	fileName)
[virtual]

Sets	the	name	of	the	output	file	to	fileName.

Setting	a	null	or	empty	name	(0	or	"")	disables	output	to	a	file,	i.e.	calls
setOutputToFile(FALSE).	Setting	a	non-empty	name	enables	output	to	a	file,	i.e.

calls	setOutputToFile(TRUE).

This	function	is	currently	only	supported	under	X11.

See	also	outputFileName()	and	setOutputToFile().

void	QPrinter::setOutputToFile	(bool	enable)	[virtual]

Specifies	whether	the	output	should	be	written	to	a	file	or	sent	directly	to	the
printer.

Will	output	to	a	file	if	enable	is	TRUE,	or	will	output	directly	to	the	printer	if
enable	is	FALSE.

This	function	is	currently	only	supported	under	X11.

See	also	outputToFile()	and	setOutputFileName().

void	QPrinter::setPageOrder	(PageOrder	newPageOrder)
[virtual]

Sets	the	page	order	to	newPageOrder.

The	page	order	can	be	QPrinter::FirstPageFirst	or	QPrinter::LastPageFirst.	The
application	programmer	is	responsible	for	reading	the	page	order	and	printing
accordingly.

This	function	is	useful	mostly	for	setting	a	default	value	that	the	user	can
override	in	the	print	dialog	when	you	call	setup().

void	QPrinter::setPageSize	(PageSize	newPageSize)	[virtual]

Sets	the	printer	page	size	to	newPageSize	if	that	size	is	supported.	The	result	if
undefined	if	newPageSize	is	not	supported.

The	default	page	size	is	system-dependent.

This	function	is	useful	mostly	for	setting	a	default	value	that	the	user	can
override	in	the	print	dialog	when	you	call	setup().

See	also	pageSize(),	PageSize,	setFullPage()	and	setResolution().

void	QPrinter::setPaperSource	(PaperSource	source)	[virtual]

Sets	the	paper	source	setting	to	source.

See	also	paperSource().

void	QPrinter::setPrintProgram	(const	QString	&	printProg)
[virtual]

Sets	the	name	of	the	program	that	should	do	the	print	job	to	printProg.

On	X11,	this	function	sets	the	program	to	call	with	the	PostScript	output.	On
other	platforms,	it	has	no	effect.

See	also	printProgram().

void	QPrinter::setPrinterName	(const	QString	&	name)
[virtual]

Sets	the	printer	name	to	name.

The	default	printer	will	be	used	if	no	printer	name	is	set.

Under	X11,	the	PRINTER	environment	variable	defines	the	default	printer.	Under
any	other	window	system,	the	window	system	defines	the	default	printer.

See	also	printerName().

void	QPrinter::setPrinterSelectionOption	(
const	QString	&	option)	[virtual]

Sets	the	printer	to	use	option	to	select	the	printer.	option	is	null	by	default	(which
implies	that	Qt	should	be	smart	enough	to	guess	correctly),	but	it	can	be	set	to
other	values	to	use	a	specific	printer	selection	option.

If	the	printer	selection	option	is	changed	while	the	printer	is	active,	the	current
print	job	may	or	may	not	be	affected.

See	also	printerSelectionOption().

void	QPrinter::setResolution	(int	dpi)	[virtual]

Requests	that	the	printer	prints	at	dpi	or	as	near	to	dpi	as	possible.

This	setting	affects	the	coordinate	system	as	returned	by,	for	example,
QPaintDeviceMetrics	and	QPainter::viewport().

The	value	depends	on	the	PrintingMode	used	in	the	QPrinter	constructor.	By
default,	the	dpi	value	of	the	screen	is	used.

This	function	must	be	called	before	setup()	to	have	an	effect	on	all	platforms.

See	also	resolution()	and	setPageSize().

bool	QPrinter::setup	(QWidget	*	parent	=	0)

Opens	a	printer	setup	dialog,	with	parent	parent,	and	asks	the	user	to	specify
which	printer	they	wish	to	use	and	what	settings	it	should	have.

Returns	TRUE	if	the	user	pressed	"OK"	to	print,	or	FALSE	if	the	user	cancelled
the	operation.

Examples:	action/application.cpp,	application/application.cpp,
drawdemo/drawdemo.cpp,	helpviewer/helpwindow.cpp	and	mdi/application.cpp.

int	QPrinter::toPage	()	const

Returns	the	to-page	setting.	The	default	value	is	0.

If	fromPage()	and	toPage()	both	return	0	this	signifies	'print	the	whole
document'.

The	programmer	is	responsible	for	reading	this	setting	and	printing	accordingly.

See	also	setFromTo()	and	fromPage().

short	QPrinter::winPageSize	()	const

Returns	the	Windows	page	size	value	as	used	by	the	DEVMODE	struct	(Windows
only).	Using	this	function	is	not	portable.

Use	pageSize()	to	get	the	PageSize,	e.g.	'A4',	'Letter',	etc.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QActionGroup
QActionGroup	 ……

#include	<qaction.h>

QAction

QActionGroup	(QObject	*	parent,	const	char	*	name	=	0,	bool	exclusive
=	TRUE)
~QActionGroup	()
void	setExclusive	(bool)
bool	isExclusive	()	const
void	add	(QAction	*	action)
void	addSeparator	()
virtual	bool	addTo	(QWidget	*	w)
void	setUsesDropDown	(bool	enable)
bool	usesDropDown	()	const
void	insert	(QAction	*	a)		(obsolete)

void	selected	(QAction	*)

bool	exclusive	-	
bool	usesDropDown	-	

virtual	void	addedTo	(QWidget	*	actionWidget,	QWidget	*	container,
QAction	*	a)
virtual	void	addedTo	(int	index,	QPopupMenu	*	menu,	QAction	*	a)

QActionGroup

examples/textedit

								QActionGroup	*grp	=	new	QActionGroup(this);

								grp->setExclusive(TRUE);

								connect(grp,	SIGNAL(selected(QAction*)),	this,	SLOT(textAlign(

setExclusive()

								actionAlignLeft	=	new	QAction(tr("Left"),	QPixmap("textleft.xpm"),	tr("&Left"),	CTRL	+	Key_L,	grp,	"textLeft");

								actionAlignLeft->addTo(tb);

								actionAlignLeft->addTo(menu);

								actionAlignLeft->setToggleAction(TRUE);

activated() toggled()

setExclusive() toggleAction

setUsesDropDown

add() addSeparator() addTo()

QActionGroup::QActionGroup	(QObject	*	parent,
const	char	*	name	=	0,	bool	exclusive	=	TRUE)

parentname

exclusive

QActionGroup::~QActionGroup	()

void	QActionGroup::add	(QAction	*	action)

action

addTo()

void	QActionGroup::addSeparator	()

bool	QActionGroup::addTo	(QWidget	*	w)	[virtual]

w

usesDropDown()exclusive setExclusive() w w

usesDropDown() menuText()text()

exclusiveusesDropDownremoveFrom()

action/actiongroup/editor.cppthemes/themes.cpp

QAction

void	QActionGroup::addedTo	(QWidget	*	actionWidget,
QWidget	*	container,	QAction	*	a)	[]

containeraactionWidget addTo()

void	QActionGroup::addedTo	(int	index,	QPopupMenu	*	menu,
QAction	*	a)	[]

menuindex addTo()

void	QActionGroup::insert	(QAction	*	a)

add()

bool	QActionGroup::isExclusive	()	const

“exclusive”

void	QActionGroup::selected	(QAction	*)	[]

“”

								QActionGroup	*	colors	=	new	QActionGroup(this,	"colors",	TRUE);

								QObject::connect(colors,	SIGNAL(selected(QAction	*)),

																										this,	SLOT(setFontColor(QAction	*)));

selected()setFontColor() QAction

QActionGroup

exclusiveon

action/actiongroup/editor.cppchart/chartform.cpptextedit/textedit.cpp

void	QActionGroup::setExclusive	(bool)

“exclusive”

void	QActionGroup::setUsesDropDown	(bool	enable)

enable“usesDropDown”

bool	QActionGroup::usesDropDown	()	const

“usesDropDown”

bool	exclusive

exclusive

QAction::toggleAction

setExclusive()isExclusive()

bool	usesDropDown

QAction::textQAction::iconSet QAction::iconSet——
QMainWindow::usesTextLabel()——text()

usersDropDown subsequentaddTo()

setUsesDropDown()usesDropDown()

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QToolBar
QToolBar	 ……

#include	<qtoolbar.h>

QDockWindow

QToolBar	(const	QString	&	label,	QMainWindow	*,	ToolBarDock	=
DockTop,	bool	newLine	=	FALSE,	const	char	*	name	=	0)		(obsolete)
QToolBar	(const	QString	&	label,	QMainWindow	*	mainWindow,
QWidget	*	parent,	bool	newLine	=	FALSE,	const	char	*	name	=	0,
WFlags	f	=	0)
QToolBar	(QMainWindow	*	parent	=	0,	const	char	*	name	=	0)
void	addSeparator	()
QMainWindow	*	mainWindow	()	const
virtual	void	setStretchableWidget	(QWidget	*	w)
virtual	void	setLabel	(const	QString	&)
QString	label	()	const
virtual	void	clear	()

QString	label	-	

QToolBar

QToolBar QDockWindowQDockWindow

QToolBarQToolBarQMainWindow
addSeparator() setLabel()

								QToolBar	*	fileTools	=	new	QToolBar(this,	"file	operations");

								fileTools->setLabel("File	Operations");

								fileOpenAction->addTo(fileTools);

								fileSaveAction->addTo(fileTools);

application/application.cpp QMainWindowQAction

QToolButton QComboBox

QToolBar

QToolBarQDockWindowQDockAreaQMainWindowQDockArea
QMainWindow
QMainWindow::moveDockWindow()QDockarea

V“»”“”

setHorizontalStretchable() setVerticalStretchable
setStretchableWidget()

orientation() QDockArea setOrientation

clear()

QToolbar

QToolButtonQMainWindowParts	of	Isys	on	Visual	Design

http://www.iarchitect.com/visual.htm

QToolBar::QToolBar	(const	QString	&	label,	QMainWindow	*,
ToolBarDock	=	DockTop,	bool	newLine	=	FALSE,
const	char	*	name	=	0)

QToolBar::QToolBar	(const	QString	&	label,
QMainWindow	*	mainWindow,	QWidget	*	parent,
bool	newLine	=	FALSE,	const	char	*	name	=	0,	WFlags	f	=	0)

parentmainWindow labelnewLine	
QMainWindow::addDockWindow() namef

QToolBar::QToolBar	(QMainWindow	*	parent	=	0,
const	char	*	name	=	0)

parentparentname

void	QToolBar::addSeparator	()

/

chart/chartform.cppfileiconview/mainwindow.cpphelpviewer/helpwindow.cppqfd/fontdisplayer.cpp
scribble/scribble.cpp

void	QToolBar::clear	()	[]

QString	QToolBar::label	()	const

“label”

QMainWindow	*	QToolBar::mainWindow	()	const

QMainWindow

void	QToolBar::setLabel	(const	QString	&)	[]

“label”

void	QToolBar::setStretchableWidget	(QWidget	*	w)	[]

w

QMainWindow isVerticalStretchable()isHorizontalStretchable()

setStretchable()

QMainWindow::rightJustificationsetVerticalStretchable()
setHorizontalStretchable()

fileiconview/mainwindow.cpphelpviewer/helpwindow.cpp

QString	label

setLabel()label()

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QSettings	Class	Reference
The	QSettings	class	provides	persistent	platform-independent	application
settings.	More...

#include	<qsettings.h>

List	of	all	member	functions.

Public	Members

QSettings	()
~QSettings	()
enum	System	{	Unix	=	0,	Windows,	Mac	}
bool	writeEntry	(const	QString	&	key,	bool	value)
bool	writeEntry	(const	QString	&	key,	double	value)
bool	writeEntry	(const	QString	&	key,	int	value)
bool	writeEntry	(const	QString	&	key,	const	QString	&	value)
bool	writeEntry	(const	QString	&	key,	const	QStringList	&	value)
bool	writeEntry	(const	QString	&	key,	const	QStringList	&	value,
const	QChar	&	separator)
QStringList	entryList	(const	QString	&	key)	const
QStringList	subkeyList	(const	QString	&	key)	const
QStringList	readListEntry	(const	QString	&	key,	bool	*	ok	=	0)
QStringList	readListEntry	(const	QString	&	key,
const	QChar	&	separator,	bool	*	ok	=	0)
QString	readEntry	(const	QString	&	key,	const	QString	&	def	=
QString::null,	bool	*	ok	=	0)
int	readNumEntry	(const	QString	&	key,	int	def	=	0,	bool	*	ok	=	0)
double	readDoubleEntry	(const	QString	&	key,	double	def	=	0,	bool	*	ok
=	0)
bool	readBoolEntry	(const	QString	&	key,	bool	def	=	0,	bool	*	ok	=	0)
bool	removeEntry	(const	QString	&	key)
void	insertSearchPath	(System	s,	const	QString	&	path)
void	removeSearchPath	(System	s,	const	QString	&	path)

Detailed	Description

The	QSettings	class	provides	persistent	platform-independent	application
settings.

On	Unix	systems,	QSettings	uses	text	files	to	store	settings.	On	Windows
systems,	QSettings	uses	the	system	registry.	On	Mac	OS	X,	QSettings	will
behave	as	on	Unix,	and	store	to	text	files.

Each	setting	comprises	an	identifying	key	and	the	data	associated	with	the	key.	A
key	is	a	unicode	string	which	consists	of	two	or	more	subkeys.	A	subkey	is	a
slash,	'/',	followed	by	one	or	more	unicode	characters	(excluding	slashes,
newlines,	carriage	returns	and	equals,	'=',	signs).	The	associated	data,	called	the
entry	or	value,	may	be	a	boolean,	an	integer,	a	double,	a	string	or	a	list	of	strings.
Entry	strings	may	contain	any	unicode	characters.

If	you	want	to	save	and	restore	the	entire	desktop's	settings,	i.e.	which
applications	are	running,	use	QSettings	to	save	the	settings	for	each	individual
application	and	QSessionManager	to	save	the	desktop's	session.

Example	settings:

				/MyCompany/MyApplication/background	color

				/MyCompany/MyApplication/foreground	color

				/MyCompany/MyApplication/geometry/x

				/MyCompany/MyApplication/geometry/y

				/MyCompany/MyApplication/geometry/width

				/MyCompany/MyApplication/geometry/height

				/MyCompany/MyApplication/recent	files/1

				/MyCompany/MyApplication/recent	files/2

				/MyCompany/MyApplication/recent	files/3

				

Each	line	above	is	a	complete	key,	made	up	of	subkeys.

A	typical	usage	pattern	for	application	startup:

				QSettings	settings;

				settings.insertSearchPath(QSettings::Windows,	"/MyCompany");

				//	No	search	path	needed	for	Unix;	see	notes	further	on.

				//	Use	default	values	if	the	keys	don't	exist

				QString	bgColor	=	settings.readEntry("/MyApplication/background	color",	"white");

				int	width	=	settings.readNumEntry("/MyApplication/geometry/width",	640);

				//	...

				

A	typical	usage	pattern	for	application	exit	or	'save	preferences':

				QSettings	settings;

				settings.insertSearchPath(QSettings::Windows,	"/MyCompany");

				//	No	search	path	needed	for	Unix;	see	notes	further	on.

				settings.writeEntry("/MyApplication/background	color",	bgColor);

				settings.writeEntry("/MyApplication/geometry/width",	width);

				//	...

				

You	can	get	a	list	of	entry-holding	keys	by	calling	entryList(),	and	a	list	of	key-
holding	keys	using	subkeyList().

				QStringList	keys	=	entryList("/MyApplication");

				//	keys	contains	'background	color'	and	'foreground	color'.

				QStringList	keys	=	entryList("/MyApplication/recent	files");

				//	keys	contains	'1',	'2'	and	'3'.

				QStringList	subkeys	=	subkeyList("/MyApplication");

				//	subkeys	contains	'geometry'	and	'recent	files'

				QStringList	subkeys	=	subkeyList("/MyApplication/recent	files");

				//	subkeys	is	empty.

				

If	you	wish	to	use	a	different	search	path	call	insertSearchPath()	as	often	as
necessary	to	add	your	preferred	paths.	Call	removeSearchPath()	to	remove	any
unwanted	paths.

Since	settings	for	Windows	are	stored	in	the	registry	there	are	size	limits	as
follows:

A	subkey	may	not	exceed	255	characters.
An	entry's	value	may	not	exceed	16,300	characters.
All	the	values	of	a	key	(for	example,	all	the	'recent	files'	subkeys	values),
may	not	exceed	65,535	characters.

These	limitations	are	not	enforced	on	Unix.

Notes	for	Unix	Applications

There	is	no	universally	accepted	place	for	storing	application	settings	under
Unix.	In	the	examples	the	settings	file	will	be	searched	for	in	the	following
directories:

1.	 $QT_INSTALL_PREFIX/etc/settings
2.	 /opt/MyCompany/share/etc
3.	 /opt/MyCompany/share/MyApplication/etc
4.	 $HOME/.qt

When	reading	settings	the	files	are	searched	in	the	order	shown	above,	with	later
settings	overriding	earlier	settings.	Files	for	which	the	user	doesn't	have	read
permission	are	ignored.	When	saving	settings	QSettings	works	in	the	order
shown	above,	writing	to	the	first	settings	file	for	which	the	user	has	write
permission.	($QT_INSTALL_PREFIX	is	the	directory	where	Qt	was	installed.
This	can	be	modified	by	using	the	configure	script's	-prefix	argument)

If	you	want	to	put	the	settings	in	a	particular	place	in	the	filesystem	you	could	do
this:

				settings.insertSearchPath(QSettings::Unix,	"/opt/MyCompany/share");

				

But	in	practice	you	may	prefer	not	to	use	a	search	path	for	Unix.	For	example
the	following	code:

				settings.writeEntry("/MyApplication/geometry/width",	width);

				

will	end	up	writing	the	"geometry/width"	setting	to	the	file
$HOME/.qt/myapplicationrc	(assuming	that	the	application	is	being	run	by	an
ordinary	user,	i.e.	not	by	root).

For	multiplatform	applications	you	should	ensure	that	the	Windows	size
limitations	are	not	exceeded.

See	also	Input/Output	and	Networking	and	Miscellaneous	Classes.

Member	Type	Documentation

QSettings::System

QSettings::Mac	-	Macintosh	execution	environments
QSettings::Unix	-	Mac	OS	X,	Unix,	Linux	and	Unix-like	execution
environments
QSettings::Windows	-	Windows	execution	environments

Member	Function	Documentation

QSettings::QSettings	()

Creates	a	settings	object.

QSettings::~QSettings	()

Destroys	the	settings	object.	All	modifications	made	to	the	settings	will
automatically	be	saved.

QStringList	QSettings::entryList	(const	QString	&	key)	const

Returns	a	list	of	the	keys	which	contain	entries	under	key.	Does	not	return	any
keys	that	contain	keys.

Example	settings:

				/MyCompany/MyApplication/background	color

				/MyCompany/MyApplication/foreground	color

				/MyCompany/MyApplication/geometry/x

				/MyCompany/MyApplication/geometry/y

				/MyCompany/MyApplication/geometry/width

				/MyCompany/MyApplication/geometry/height

				

				QStringList	keys	=	entryList("/MyCompany/MyApplication");

				

keys	contains	'background	color'	and	'foreground	color'.	It	does	not	contain
'geometry'	because	this	key	contains	keys	not	entries.

To	access	the	geometry	values	could	either	use	subkeyList()	to	read	the	keys	and
then	read	each	entry,	or	simply	read	each	entry	directly	by	specifying	its	full	key,
e.g.	"/MyCompany/MyApplication/geometry/y".

See	also	subkeyList().

void	QSettings::insertSearchPath	(System	s,

const	QString	&	path)

Inserts	path	into	the	settings	search	path.	The	semantics	of	path	depends	on	the
system	s.

When	s	is	Windows	and	the	execution	environment	is	not	Windows	the	function
does	nothing.	Similarly	when	s	is	Unix	and	the	execution	environment	is	not
Unix	the	function	does	nothing.

When	s	is	Windows,	and	the	execution	environment	is	Windows,	the	search	path
list	will	be	used	as	the	first	subfolder	of	the	"Software"	folder	in	the	registry.

When	reading	settings	the	folders	are	searched	forwards	from	the	first	folder
(listed	below)	to	the	last,	with	later	settings	overriding	settings	found	earlier,	and
ignoring	any	folders	for	which	the	user	doesn't	have	read	permission.

1.	 HKEY_CURRENT_USER/Software/MyCompany/MyApplication
2.	 HKEY_CURRENT_USER/Software/MyApplication
3.	 HKEY_LOCAL_MACHINE/Software/MyCompany/MyApplication
4.	 HKEY_LOCAL_MACHINE/Software/MyApplication

		QSettings	settings;

		settings.insertSearchPath(QSettings::Windows,	"/MyCompany");

		settings.writeEntry("/MyApplication/Tip	of	the	day",	TRUE);

		

The	code	above	will	write	the	subkey	"Tip	of	the	day"	into	the	first	of	the
registry	folders	listed	below	that	is	found	and	for	which	the	user	has	write
permission.

1.	 HKEY_LOCAL_MACHINE/Software/MyApplication
2.	 HKEY_LOCAL_MACHINE/Software/MyCompany/MyApplication
3.	 HKEY_CURRENT_USER/Software/MyApplication
4.	 HKEY_CURRENT_USER/Software/MyCompany/MyApplication

When	s	is	Unix,	and	the	execution	environment	is	Unix,	the	search	path	list	will
be	used	when	trying	to	determine	a	suitable	filename	for	reading	and	writing
settings	files.	By	default,	there	are	two	entries	in	the	search	path:

1.	 $QTDIR/etc	-	where	$QTDIR	is	the	directory	where	Qt	was	installed.
2.	 $HOME/.qt/	-	where	$HOME	is	the	user's	home	directory.

All	insertions	into	the	search	path	will	go	before	$HOME/.qt/.	For	example:

		QSettings	settings;

		settings.insertSearchPath(QSettings::Unix,	"/opt/MyCompany/share/etc");

		settings.insertSearchPath(QSettings::Unix,	"/opt/MyCompany/share/MyApplication/etc");

		//	...

		

Will	result	in	a	search	path	of:

1.	 $QTDIR/etc
2.	 /opt/MyCompany/share/etc
3.	 /opt/MyCompany/share/MyApplication/etc
4.	 $HOME/.qt

When	reading	settings	the	files	are	searched	in	the	order	shown	above,	with	later
settings	overriding	earlier	settings.	Files	for	which	the	user	doesn't	have	read
permission	are	ignored.	When	saving	settings	QSettings	works	in	the	order	as
shown	above,	writing	to	the	first	settings	file	for	which	the	user	has	write
permission.	($QTDIR	is	the	directory	where	Qt	was	installed.)

Settings	under	Unix	are	stored	in	files	whose	names	are	based	on	the	first	subkey
of	the	key	(not	including	the	search	path).	The	algorithm	for	creating	names	is
essentially:	lowercase	the	first	subkey,	replace	spaces	with	underscores	and	add
'rc',	e.g.	/MyCompany/MyApplication/background	color	will	be	stored	in
myapplicationrc	(assuming	that	/MyCompany	is	part	of	the	search	path).

See	also	removeSearchPath().

Example:	chart/chartform.cpp.

bool	QSettings::readBoolEntry	(const	QString	&	key,	bool	def	=
0,	bool	*	ok	=	0)

Reads	the	entry	specified	by	key,	and	returns	a	bool,	or	the	default	value,	def,	if
the	entry	couldn't	be	read.	If	ok	is	non-null,	*ok	is	set	to	TRUE	if	the	key	was
read,	FALSE	otherwise.

See	also	readEntry(),	readNumEntry(),	readDoubleEntry(),	writeEntry()	and
removeEntry().

double	QSettings::readDoubleEntry	(const	QString	&	key,
double	def	=	0,	bool	*	ok	=	0)

Reads	the	entry	specified	by	key,	and	returns	a	double,	or	the	default	value,	def,
if	the	entry	couldn't	be	read.	If	ok	is	non-null,	*ok	is	set	to	TRUE	if	the	key	was
read,	FALSE	otherwise.

See	also	readEntry(),	readNumEntry(),	readBoolEntry(),	writeEntry()	and
removeEntry().

QString	QSettings::readEntry	(const	QString	&	key,
const	QString	&	def	=	QString::null,	bool	*	ok	=	0)

Reads	the	entry	specified	by	key,	and	returns	a	QString,	or	the	default	value,	def,
if	the	entry	couldn't	be	read.	If	ok	is	non-null,	*ok	is	set	to	TRUE	if	the	key	was
read,	FALSE	otherwise.

See	also	readListEntry(),	readNumEntry(),	readDoubleEntry(),	readBoolEntry(),
writeEntry()	and	removeEntry().

Example:	chart/chartform.cpp.

QStringList	QSettings::readListEntry	(const	QString	&	key,
bool	*	ok	=	0)

Reads	the	entry	specified	by	key	as	a	string.	If	ok	is	non-null,	*ok	is	set	to	TRUE
if	the	key	was	read,	FALSE	otherwise.

Note	that	if	you	want	to	iterate	over	the	list,	you	should	iterate	over	a	copy,	e.g.

				QStringList	list	=	mySettings.readListEntry("recentfiles");

				QStringList::Iterator	it	=	list.begin();

				while(it	!=	list.end())	{

								myProcessing(*it);

								++it;

				}

				

See	also	readEntry(),	readDoubleEntry(),	readBoolEntry(),	writeEntry(),
removeEntry()	and	QStringList::split().

QStringList	QSettings::readListEntry	(const	QString	&	key,
const	QChar	&	separator,	bool	*	ok	=	0)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Reads	the	entry	specified	by	key	as	a	string.	The	separator	is	used	to	create	a
QStringList	by	calling	QStringList::split(separator,	entry).	If	ok	is	non-null,	*ok
is	set	to	TRUE	if	the	key	was	read,	FALSE	otherwise.

Note	that	if	you	want	to	iterate	over	the	list,	you	should	iterate	over	a	copy,	e.g.

				QStringList	list	=	mySettings.readListEntry("size",	"	");

				QStringList::Iterator	it	=	list.begin();

				while(it	!=	list.end())	{

								myProcessing(*it);

								++it;

				}

				

See	also	readEntry(),	readDoubleEntry(),	readBoolEntry(),	writeEntry(),
removeEntry()	and	QStringList::split().

int	QSettings::readNumEntry	(const	QString	&	key,	int	def	=	0,
bool	*	ok	=	0)

Reads	the	entry	specified	by	key,	and	returns	an	integer,	or	the	default	value,	def,
if	the	entry	couldn't	be	read.	If	ok	is	non-null,	*ok	is	set	to	TRUE	if	the	key	was
read,	FALSE	otherwise.

See	also	readEntry(),	readDoubleEntry(),	readBoolEntry(),	writeEntry()	and
removeEntry().

Example:	chart/chartform.cpp.

bool	QSettings::removeEntry	(const	QString	&	key)

Removes	the	entry	specified	by	key.

Returns	TRUE	if	the	entry	existed	and	was	removed;	otherwise	returns	FALSE.

See	also	readEntry()	and	writeEntry().

void	QSettings::removeSearchPath	(System	s,
const	QString	&	path)

Removes	all	occurrences	of	path	(using	exact	matching)	from	the	settings	search
path	for	system	s.	Note	that	the	default	search	paths	cannot	be	removed.

See	also	insertSearchPath().

QStringList	QSettings::subkeyList	(const	QString	&	key)	const

Returns	a	list	of	the	keys	which	contain	keys	under	key.	Does	not	return	any	keys
that	contain	entries.

Example	settings:

				/MyCompany/MyApplication/background	color

				/MyCompany/MyApplication/foreground	color

				/MyCompany/MyApplication/geometry/x

				/MyCompany/MyApplication/geometry/y

				/MyCompany/MyApplication/geometry/width

				/MyCompany/MyApplication/geometry/height

				/MyCompany/MyApplication/recent	files/1

				/MyCompany/MyApplication/recent	files/2

				/MyCompany/MyApplication/recent	files/3

				

				QStringList	keys	=	subkeyList("/MyCompany/MyApplication");

				

keys	contains	'geometry'	and	'recent	files'.	It	does	not	contain	'background	color'
or	'foreground	color'	because	they	are	keys	which	contain	entries	not	keys.	To
get	a	list	of	keys	that	have	values	rather	than	subkeys	use	entryList().

See	also	entryList().

bool	QSettings::writeEntry	(const	QString	&	key,	bool	value)

Writes	the	boolean	entry	value	into	key	key.	The	key	is	created	if	it	doesn't	exist.
Any	previous	value	is	overwritten	by	value.

If	an	error	occurs	the	settings	are	left	unchanged	and	FALSE	is	returned;
otherwise	TRUE	is	returned.

See	also	readListEntry(),	readNumEntry(),	readDoubleEntry(),	readBoolEntry()
and	removeEntry().

Example:	chart/chartform.cpp.

bool	QSettings::writeEntry	(const	QString	&	key,	double	value)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Writes	the	double	entry	value	into	key	key.	The	key	is	created	if	it	doesn't	exist.
Any	previous	value	is	overwritten	by	value.

If	an	error	occurs	the	settings	are	left	unchanged	and	FALSE	is	returned;
otherwise	TRUE	is	returned.

See	also	readListEntry(),	readNumEntry(),	readDoubleEntry(),	readBoolEntry()
and	removeEntry().

bool	QSettings::writeEntry	(const	QString	&	key,	int	value)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Writes	the	integer	entry	value	into	key	key.	The	key	is	created	if	it	doesn't	exist.
Any	previous	value	is	overwritten	by	value.

If	an	error	occurs	the	settings	are	left	unchanged	and	FALSE	is	returned;
otherwise	TRUE	is	returned.

See	also	readListEntry(),	readNumEntry(),	readDoubleEntry(),	readBoolEntry()
and	removeEntry().

bool	QSettings::writeEntry	(const	QString	&	key,
const	QString	&	value)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Writes	the	string	entry	value	into	key	key.	The	key	is	created	if	it	doesn't	exist.
Any	previous	value	is	overwritten	by	value.	If	value	is	an	empty	string	or	a	null
string	the	key's	value	will	be	an	empty	string.

If	an	error	occurs	the	settings	are	left	unchanged	and	FALSE	is	returned;
otherwise	TRUE	is	returned.

See	also	readListEntry(),	readNumEntry(),	readDoubleEntry(),	readBoolEntry()
and	removeEntry().

bool	QSettings::writeEntry	(const	QString	&	key,
const	QStringList	&	value)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Writes	the	string	list	entry	value	into	key	key.	The	key	is	created	if	it	doesn't
exist.	Any	previous	value	is	overwritten	by	value.

If	an	error	occurs	the	settings	are	left	unchanged	and	FALSE	is	returned;
otherwise	TRUE	is	returned.

See	also	readListEntry(),	readNumEntry(),	readDoubleEntry(),	readBoolEntry()
and	removeEntry().

bool	QSettings::writeEntry	(const	QString	&	key,
const	QStringList	&	value,	const	QChar	&	separator)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Writes	the	string	list	entry	value	into	key	key.	The	key	is	created	if	it	doesn't
exist.	Any	previous	value	is	overwritten	by	value.	The	list	is	stored	as	a	sequence
of	strings	separated	by	separator,	so	none	of	the	strings	in	the	list	should	contain
the	separator.	If	the	list	is	empty	or	null	the	key's	value	will	be	an	empty	string.

If	an	error	occurs	the	settings	are	left	unchanged	and	FALSE	is	returned;
otherwise	TRUE	is	returned.

See	also	readListEntry(),	readNumEntry(),	readDoubleEntry(),	readBoolEntry()
and	removeEntry().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QMessageBox
QMessageBox	 ……

#include	<qmessagebox.h>

QDialog

enum	Icon	{	NoIcon	=	0,	Information	=	1,	Warning	=	2,	Critical	=	3	}
QMessageBox	(QWidget	*	parent	=	0,	const	char	*	name	=	0)
QMessageBox	(const	QString	&	caption,	const	QString	&	text,	Icon	icon,
int	button0,	int	button1,	int	button2,	QWidget	*	parent	=	0,
const	char	*	name	=	0,	bool	modal	=	TRUE,	WFlags	f	=
WStyle_DialogBorder)
~QMessageBox	()
QString	text	()	const
void	setText	(const	QString	&)
Icon	icon	()	const
void	setIcon	(Icon)
const	QPixmap	*	iconPixmap	()	const
void	setIconPixmap	(const	QPixmap	&)
QString	buttonText	(int	button)	const
void	setButtonText	(int	button,	const	QString	&	text)
virtual	void	adjustSize	()
TextFormat	textFormat	()	const
void	setTextFormat	(TextFormat)

int	information	(QWidget	*	parent,	const	QString	&	caption,
const	QString	&	text,	int	button0,	int	button1	=	0,	int	button2	=	0)
int	information	(QWidget	*	parent,	const	QString	&	caption,
const	QString	&	text,	const	QString	&	button0Text	=	QString::null,
const	QString	&	button1Text	=	QString::null,	const	QString	&	button2Text
=	QString::null,	int	defaultButtonNumber	=	0,	int	escapeButtonNumber	=
-1)
int	warning	(QWidget	*	parent,	const	QString	&	caption,
const	QString	&	text,	int	button0,	int	button1,	int	button2	=	0)
int	warning	(QWidget	*	parent,	const	QString	&	caption,
const	QString	&	text,	const	QString	&	button0Text	=	QString::null,
const	QString	&	button1Text	=	QString::null,	const	QString	&	button2Text
=	QString::null,	int	defaultButtonNumber	=	0,	int	escapeButtonNumber	=
-1)
int	critical	(QWidget	*	parent,	const	QString	&	caption,
const	QString	&	text,	int	button0,	int	button1,	int	button2	=	0)
int	critical	(QWidget	*	parent,	const	QString	&	caption,
const	QString	&	text,	const	QString	&	button0Text	=	QString::null,
const	QString	&	button1Text	=	QString::null,	const	QString	&	button2Text
=	QString::null,	int	defaultButtonNumber	=	0,	int	escapeButtonNumber	=
-1)
void	about	(QWidget	*	parent,	const	QString	&	caption,
const	QString	&	text)
void	aboutQt	(QWidget	*	parent,	const	QString	&	caption	=	QString::null
)
int	message	(const	QString	&	caption,	const	QString	&	text,
const	QString	&	buttonText	=	QString::null,	QWidget	*	parent	=	0,	const
char	*	=	0)		(obsolete)
bool	query	(const	QString	&	caption,	const	QString	&	text,
const	QString	&	yesButtonText	=	QString::null,
const	QString	&	noButtonText	=	QString::null,	QWidget	*	parent	=	0,	const
char	*	=	0)		(obsolete)
QPixmap	standardIcon	(Icon	icon,	GUIStyle	style)		(obsolete)
QPixmap	standardIcon	(Icon	icon)

Icon	icon	-	
QPixmap	iconPixmap	-	
QString	text	-	
TextFormat	textFormat	-	

QMessageBox

QMessageBox

QMessageBox::information(this,	"Application	name",

				"Unable	to	find	the	user	preferences	file.\n"

				"The	factory	default	will	be	used	instead.");

warning()

switch(QMessageBox::warning(this,	"Application	name",

								"Could	not	connect	to	the	<mumble>	server.\n"

								"This	program	can't	function	correctly	"

								"without	the	server.\n\n",

								"Retry",

								"Quit",	0,	0,	1))

				case	0:	//	“”

								//	

								break;

				case	1:	//	“”Esc

								//	

								break;

}

QStyleSheet::convertFromPlainText()setTextFormat()

switch(QMessageBox::information(this,	"Application	name	here",

								"The	document	contains	unsaved	changes\n"

								"Do	you	want	to	save	the	changes	before	exiting?",

								"&Save",	"&Discard",	"Cancel",

								0,						//	Enter	==	button	0

								2))	{	//	Escape	==	button	2

				case	0:	//	SaveAlt+SEnter

								//	

								break;

				case	1:	//	DiscardAlt+D

								//	

								break;

				case	2:	//	CancelAlt+CEscape

								//	

								break;

}

EscapeEnter

switch(QMessageBox::warning(this,	"Application	name	here",

								"Could	not	save	the	user	preferences,\n"

								"because	the	disk	is	full.		You	can	delete\n"

								"some	files	and	press	Retry,	or	you	can\n"

								"abort	the	Save	Preferences	operation.",

								QMessageBox::Retry	|	QMessageBox::Default,

								QMessageBox::Abort	|	QMessageBox::Escape))	{

				case	QMessageBox::Retry:	//	RetryEnter

								//	

								break;

				case	QMessageBox::Abort:	//	AbortEscape

								//	

								break;

}

critical()errorDetails QStringconst	char*QString

QMessageBox::critical(0,	"Application	name	here",

								QString("An	internal	error	occurred.	Please	")	+

								"call	technical	support	at	123456789	and	report\n"+

								"these	numbers:\n\n"	+	errorDetails	+

								"\n\n<Application>	will	now	exit.");

“OK”

QMessageBox

QMessageBox::about(this,	"About	<Application>",

								"<Application>	is	a	<one-paragraph	blurb>\n\n"

								"Copyright	1951-2002	Such-and-such.		"

								"<License	words	here.>\n\n"

								"For	technical	support,	call	123456789	or	see\n"

								"http://www.such-and-such.com/Application/\n");

about()

Qt“Qt”

QMessageBox

QMessageBox	mb("Application	name	here",

								"Saving	the	file	will	overwrite	the	original	file	on	the	disk.\n"

								"Do	you	really	want	to	save?",

								QMessageBox::Information,

								QMessageBox::Yes	|	QMessageBox::Default,

								QMessageBox::No,

								QMessageBox::Cancel	|	QMessageBox::Escape);

mb.setButtonText(QMessageBox::Yes,	"Save");

mb.setButtonText(QMessageBox::No,	"Discard");

switch(mb.exec())	{

				case	QMessageBox::Yes:

								//	

								break;

				case	QMessageBox::No:

								//	

								break;

				case	QMessageBox::Cancel:

								//	

								break;

}

QMessageBoxIconIcon
information() warning()critical() standardIcon()

Ok	-	
Cancel	-	 Escape
Yes
No
Abort
Retry
Ignore

“|”

Default	-	EnterOKYes
Escape	-	EscapeAbortCancel

text() icon()iconPixmap()

setButtonText()buttonText() setText() setIcon()setIconPixmap()setIcon()
setIconPixmap()QMessageBox::Icon

QMessageBox

	

QDialogIsys	on	error	messages

http://www.iarchitect.com/errormsg.htm

QMessageBox::Icon

QMessageBox::NoIcon	-	
QMessageBox::Information	-	
QMessageBox::Warning	-	
QMessageBox::Critical	-	

QMessageBox::QMessageBox	(QWidget	*	parent	=	0,
const	char	*	name	=	0)

“OK”

parent0 parent parent

parentnameQDialog

QMessageBox::QMessageBox	(const	QString	&	caption,
const	QString	&	text,	Icon	icon,	int	button0,	int	button1,
int	button2,	QWidget	*	parent	=	0,	const	char	*	name	=	0,
bool	modal	=	TRUE,	WFlags	f	=	WStyle_DialogBorder)

captiontexticon

icon

QMessageBox::NoIcon
QMessageBox::Information
QMessageBox::Warning
QMessageBox::Critical

button0button1button2

QMessageBox::NoButton
QMessageBox::Ok
QMessageBox::Cancel
QMessageBox::Yes
QMessageBox::No
QMessageBox::Abort
QMessageBox::Retry
QMessageBox::Ignore

QMessageBox::NoButton

QMessageBox::DefaultEnter

QMessageBox::EscapeEscape

QMessageBox	mb("Application	Name",

								"Hardware	failure.\n\nDisk	error	detected\nDo	you	want	to	stop?",

								QMessageBox::NoIcon,

								QMessageBox::Yes	|	QMessageBox::Default,

								QMessageBox::No		|	QMessageBox::Escape,	

								QMessageBox::NoButton);

if	(mb.exec()	==	QMessageBox::No)

				//	

parent0 parent parent

modal

parentnamemodalfQDialog

captiontexticon

QMessageBox::~QMessageBox	()

void	QMessageBox::about	(QWidget	*	parent,
const	QString	&	caption,	const	QString	&	text)	[]

captiontext parent

about()

1.	 parent->icon()
2.	 parent
3.	
4.	

OK

QWidget::iconQApplication::mainWidget()

action/application.cppapplication/application.cppchart/chartform.cpphelpviewer/helpwindow.cpp
themes/themes.cpp

void	QMessageBox::aboutQt	(QWidget	*	parent,
const	QString	&	caption	=	QString::null)	[]

captionparent parent0QtQt

examples/menu/menu.cpp

action/application.cppapplication/application.cppchart/chartform.cpphelpviewer/helpwindow.cpp
trivial/trivial.cpp

void	QMessageBox::adjustSize	()	[]

QDialog::exec()QDialog::show()

QWidget

QString	QMessageBox::buttonText	(int	button)	const

button

setButtonText()

int	QMessageBox::critical	(QWidget	*	parent,
const	QString	&	caption,	const	QString	&	text,	int	button0,
int	button1,	int	button2	=	0)	[]

captiontext button0button1button2

QMessageBox::NoButton
QMessageBox::Ok

QMessageBox::Cancel
QMessageBox::Yes
QMessageBox::No
QMessageBox::Abort
QMessageBox::Retry
QMessageBox::Ignore

QMessageBox::NoButton

QMessageBox::OkQMessageBox::No

parent0 parent parent

information()warning()

network/ftpclient/ftpmainwindow.cppprocess/process.cpp
xml/outliner/outlinetree.cpp

int	QMessageBox::critical	(QWidget	*	parent,
const	QString	&	caption,	const	QString	&	text,
const	QString	&	button0Text	=	QString::null,
const	QString	&	button1Text	=	QString::null,
const	QString	&	button2Text	=	QString::null,
int	defaultButtonNumber	=	0,	int	escapeButtonNumber	=	-1)
[]

captiontext123012

button0Text button0Text“OK” button1Textbutton2Text
defaultButtonNumber012ReturnEnter0
escapeButtonNumberEscapeEscape-1Escape012

Escape

parent0 parent parent

information()warning()

Icon	QMessageBox::icon	()	const

“icon”

const	QPixmap	*	QMessageBox::iconPixmap	()	const

“iconPixmap”

int	QMessageBox::information	(QWidget	*	parent,
const	QString	&	caption,	const	QString	&	text,	int	button0,
int	button1	=	0,	int	button2	=	0)	[]

captiontext button0button1button2

QMessageBox::NoButton
QMessageBox::Ok
QMessageBox::Cancel
QMessageBox::Yes
QMessageBox::No
QMessageBox::Abort
QMessageBox::Retry
QMessageBox::Ignore

QMessageBox::NoButton

QMessageBox::OkQMessageBox::No

parent0 parent parent

warning()critical()

action/application.cppapplication/application.cppchart/chartform.cppdirview/dirview.cpp
qwerty/qwerty.cpp

int	QMessageBox::information	(QWidget	*	parent,
const	QString	&	caption,	const	QString	&	text,
const	QString	&	button0Text	=	QString::null,

const	QString	&	button1Text	=	QString::null,
const	QString	&	button2Text	=	QString::null,
int	defaultButtonNumber	=	0,	int	escapeButtonNumber	=	-1)
[]

captiontext123012

button0Text button0Text“OK” button1Textbutton2Text
defaultButtonNumber012ReturnEnter0
escapeButtonNumberEscapeEscape-1Escape012

Escape

parent0 parent parent

warning()critical()

int	QMessageBox::message	(const	QString	&	caption,
const	QString	&	text,	const	QString	&	buttonText	=
QString::null,	QWidget	*	parent	=	0,	const	char	*	=	0)	[]

information() warning()critical()

grapher/grapher.cpp

bool	QMessageBox::query	(const	QString	&	caption,
const	QString	&	text,	const	QString	&	yesButtonText	=
QString::null,	const	QString	&	noButtonText	=	QString::null,
QWidget	*	parent	=	0,	const	char	*	=	0)	[]

caption

information() warning()critical()

void	QMessageBox::setButtonText	(int	button,
const	QString	&	text)

buttontext

buttonText()

void	QMessageBox::setIcon	(Icon)

“icon”

void	QMessageBox::setIconPixmap	(const	QPixmap	&)

“iconPixmap”

void	QMessageBox::setText	(const	QString	&)

“text”

void	QMessageBox::setTextFormat	(TextFormat)

“textFormat”

QPixmap	QMessageBox::standardIcon	(Icon	icon)	[]

iconQMessageBox::InformationQMessageBox::Warning
QMessageBox::Critical

QPixmap	QMessageBox::standardIcon	(Icon	icon,	GUIStyle	style
)	[]

iconQMessageBox::InformationQMessageBox::Warning
QMessageBox::Critical

style

QString	QMessageBox::text	()	const

“text”

TextFormat	QMessageBox::textFormat	()	const

“textFormat”

int	QMessageBox::warning	(QWidget	*	parent,
const	QString	&	caption,	const	QString	&	text,	int	button0,
int	button1,	int	button2	=	0)	[]

captiontext button0button1button2

QMessageBox::NoButton
QMessageBox::Ok
QMessageBox::Cancel
QMessageBox::Yes
QMessageBox::No
QMessageBox::Abort
QMessageBox::Retry
QMessageBox::Ignore

QMessageBox::NoButton

QMessageBox::OkQMessageBox::No

parent0 parent parent

information()critical()

chart/chartform.cppi18n/main.cppnetwork/mail/smtp.cppqwerty/qwerty.cppshowimg/showimg.cpp
sound/sound.cpp

int	QMessageBox::warning	(QWidget	*	parent,

const	QString	&	caption,	const	QString	&	text,
const	QString	&	button0Text	=	QString::null,
const	QString	&	button1Text	=	QString::null,
const	QString	&	button2Text	=	QString::null,
int	defaultButtonNumber	=	0,	int	escapeButtonNumber	=	-1)
[]

captiontext123012

button0Text button0Text“OK” button1Textbutton2Text
defaultButtonNumber012ReturnEnter0
escapeButtonNumberEscapeEscape-1Escape012

Escape

parent0 parent parent

information()critical()

Icon	icon

QMessageBox::NoIcon
QMessageBox::Information
QMessageBox::Warning
QMessageBox::Critical

QMessageBox::iconPixmapQMessageBox::NoIcon

iconPixmap

setIcon()icon()

QPixmap	iconPixmap

MotifWindows

icon

setIconPixmap()iconPixmap()

QString	text

This	property	holds	the	message	box	text	to	be	displayed.	

QMessageBox::textFormat AutoText

QString::null

textFormat

setText()text()

TextFormat	textFormat

This	property	holds	the	format	of	the	text	displayed	by	the	message	box.	

Qt::TextFormat

AutoText

text

setTextFormat()textFormat()

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QFileDialog
QFileDialog	 ……

#include	<qfiledialog.h>

QDialog

QFileDialog	(const	QString	&	dirName,	const	QString	&	filter	=
QString::null,	QWidget	*	parent	=	0,	const	char	*	name	=	0,	bool	modal	=
FALSE)
QFileDialog	(QWidget	*	parent	=	0,	const	char	*	name	=	0,	bool	modal	=
FALSE)
~QFileDialog	()
QString	selectedFile	()	const
QString	selectedFilter	()	const
virtual	void	setSelectedFilter	(const	QString	&	mask)
virtual	void	setSelectedFilter	(int	n)
void	setSelection	(const	QString	&	filename)
void	selectAll	(bool	b)
QStringList	selectedFiles	()	const
QString	dirPath	()	const
void	setDir	(const	QDir	&	dir)
const	QDir	*	dir	()	const
void	setShowHiddenFiles	(bool	s)
bool	showHiddenFiles	()	const
void	rereadDir	()
void	resortDir	()
enum	Mode	{	AnyFile,	ExistingFile,	Directory,	ExistingFiles,
DirectoryOnly	}
void	setMode	(Mode)
Mode	mode	()	const
enum	ViewMode	{	Detail,	List	}
enum	PreviewMode	{	NoPreview,	Contents,	Info	}
void	setViewMode	(ViewMode	m)
ViewMode	viewMode	()	const
void	setPreviewMode	(PreviewMode	m)
PreviewMode	previewMode	()	const
bool	isInfoPreviewEnabled	()	const
bool	isContentsPreviewEnabled	()	const
void	setInfoPreviewEnabled	(bool)
void	setContentsPreviewEnabled	(bool)
void	setInfoPreview	(QWidget	*	w,	QFilePreview	*	preview)

void	setContentsPreview	(QWidget	*	w,	QFilePreview	*	preview)
QUrl	url	()	const
void	addFilter	(const	QString	&	filter)

void	setDir	(const	QString	&	pathstr)
void	setUrl	(const	QUrlOperator	&	url)
void	setFilter	(const	QString	&	newFilter)
void	setFilters	(const	QString	&	filters)
void	setFilters	(const	char	**	types)
void	setFilters	(const	QStringList	&)

void	fileHighlighted	(const	QString	&)
void	fileSelected	(const	QString	&)
void	filesSelected	(const	QStringList	&)
void	dirEntered	(const	QString	&)
void	filterSelected	(const	QString	&)

QString	getOpenFileName	(const	QString	&	startWith	=	QString::null,
const	QString	&	filter	=	QString::null,	QWidget	*	parent	=	0,
const	char	*	name	=	0,	const	QString	&	caption	=	QString::null,
QString	*	selectedFilter	=	0,	bool	resolveSymlinks	=	TRUE)
QString	getSaveFileName	(const	QString	&	startWith	=	QString::null,
const	QString	&	filter	=	QString::null,	QWidget	*	parent	=	0,
const	char	*	name	=	0,	const	QString	&	caption	=	QString::null,
QString	*	selectedFilter	=	0,	bool	resolveSymlinks	=	TRUE)
QString	getExistingDirectory	(const	QString	&	dir	=	QString::null,
QWidget	*	parent	=	0,	const	char	*	name	=	0,	const	QString	&	caption	=
QString::null,	bool	dirOnly	=	TRUE,	bool	resolveSymlinks	=	TRUE)
QStringList	getOpenFileNames	(const	QString	&	filter	=	QString::null,
const	QString	&	dir	=	QString::null,	QWidget	*	parent	=	0,
const	char	*	name	=	0,	const	QString	&	caption	=	QString::null,
QString	*	selectedFilter	=	0,	bool	resolveSymlinks	=	TRUE)
void	setIconProvider	(QFileIconProvider	*	provider)
QFileIconProvider	*	iconProvider	()

bool	contentsPreview	-	
QString	dirPath	-		
bool	infoPreview	-	
Mode	mode	-	
PreviewMode	previewMode	-	
QString	selectedFile	-		
QStringList	selectedFiles	-		
QString	selectedFilter	-		
bool	showHiddenFiles	-	
ViewMode	viewMode	-	

void	addWidgets	(QLabel	*	l,	QWidget	*	w,	QPushButton	*	b)
void	addToolButton	(QButton	*	b,	bool	separator	=	FALSE)
void	addLeftWidget	(QWidget	*	w)
void	addRightWidget	(QWidget	*	w)

QFileDialog

QFileDialog

QFileDialogWindowsWindowsMac	OS	XMac	OS	X

				QString	s	=	QFileDialog::getOpenFileName(

																				"/home",

																				"Images	(*.png	*.xpm	*.jpg)",

																				this,

																				"open	file	dialog"

																				"Choose	a	file");

		

“/home”“Images	(*.png	*.xpm	*.jpg)”
dialog”“Choose	a	file”

QFileDialog setMode()QFileDialog

				QFileDialog*	fd	=	new	QFileDialog(this,	"file	dialog",	TRUE);

				fd->setMode(QFileDialog::AnyFile);

		

AnyFile“File	Save	As” ExistingFile
QFileDialog::Mode

mode() setFilter()

				fd->setFilter("Images	(*.png	*.xpm	*.jpg)");

		

“Images	(*.png	*.xpm	*.jpg)”
addFilter() setSelectedFilter() filterSelected()

QFileDialog::ListQFileDialog::Detail

				fd->setViewMode(QFileDialog::Detail);

		

selectedFile()

				QString	fileName;

				if	(fd->exec()	==	QDialog::Accepted)

								fileName	=	fd->selectedFile();

		

OK

ExistingFiles selectedFiles()QStringList

setDir() setShowHiddenFiles() rereadDir()resortDir()

QFileDialog setContentsPreview()setInfoPreview

QFileDialog

				class	Preview	:	public	QLabel,	public	QFilePreview

				{

				public:

								Preview(QWidget	*parent=0)	:	QLabel(parent)	{}

								void	previewUrl(const	QUrl	&u)

								{

												QString	path	=	u.path();

												QPixmap	pix(path);

												if	(pix.isNull())

																setText("This	is	not	a	pixmap");

												else

																setPixmap(pix);

								}

				};

		

QLabelQFilePreview QFilePreview

QFilePreview::previewUrl()

				Preview*	p	=	new	Preview;

				QFileDialog*	fd	=	new	QFileDialog(this);

				fd->setContentsPreviewEnabled(TRUE);

				fd->setContentsPreview(p,	p);

				fd->setPreviewMode(QFileDialog::Contents);

				fd->show();

		

setContentsPreviewEnabled
setPreviewMode()Contents

QFilePreview QFilePreview

	

QFileDialog::Mode

OK

QFileDialog::AnyFile	-	
QFileDialog::ExistingFile	-	
QFileDialog::Directory	-	
QFileDialog::DirectoryOnly	-	
QFileDialog::ExistingFiles	-	0

setMode()

QFileDialog::PreviewMode

QFileDialog::NoPreview	-	
QFileDialog::Contents	-	
QFileDialog::Info	-	

setPreviewMode() setContentsPreview()setInfoPreview()

QFileDialog::ViewMode

QFileDialog::List	-	
QFileDialog::Detail	-	

setViewMode()

QFileDialog::QFileDialog	(const	QString	&	dirName,
const	QString	&	filter	=	QString::null,	QWidget	*	parent	=	0,
const	char	*	name	=	0,	bool	modal	=	FALSE)

parentname modal

dirName filter

QFileDialog::QFileDialog	(QWidget	*	parent	=	0,
const	char	*	name	=	0,	bool	modal	=	FALSE)

parentname modal

QFileDialog::~QFileDialog	()

void	QFileDialog::addFilter	(const	QString	&	filter)

filter

				QFileDialog*	fd	=	new	QFileDialog(this);

				fd->addFilter("Images	(*.png	*.jpg	*.xpm)");

				fd->show();

		

“Images	(*.png	*.jpg	*.xpm)”“All	Files	(*)”

setFilter()setFilters()

void	QFileDialog::addLeftWidget	(QWidget	*	w)	[]

w

addRightWidget() addWidgets()addToolButton()

void	QFileDialog::addRightWidget	(QWidget	*	w)	[]

w

addLeftWidget() addWidgets()addToolButton()

void	QFileDialog::addToolButton	(QButton	*	b,	bool	separator	=
FALSE)	[]

b separator b

addWidgets() addLeftWidget()addRightWidget()

void	QFileDialog::addWidgets	(QLabel	*	l,	QWidget	*	w,
QPushButton	*	b)	[]

l“file	name”“file	types” w

				MyFileDialog::MyFileDialog(QWidget*	parent,	const	char*	name)	:

								QFileDialog(parent,	name)

				{

								QLabel*	label	=	new	QLabel("Added	widgets",	this);

								QLineEdit*	lineedit	=	new	QLineEdit(this);

								QToolButton*	toolbutton	=	new	QToolButton(this);

								addWidgets(label,	lineedit,	toolbutton);

				}

		

0

addToolButton() addLeftWidget()addRightWidget()

const	QDir	*	QFileDialog::dir	()	const

QDir

setDir()

void	QFileDialog::dirEntered	(const	QString	&)	[]

dir()

QString	QFileDialog::dirPath	()	const

“dirPath”

void	QFileDialog::fileHighlighted	(const	QString	&)	[]

fileSelected()filesSelected()

void	QFileDialog::fileSelected	(const	QString	&)	[]

filesSelected() fileHighlighted()selectedFile

void	QFileDialog::filesSelected	(const	QStringList	&)	[]

ExistingFiles

fileSelected() fileHighlighted()selectedFiles

void	QFileDialog::filterSelected	(const	QString	&)	[]

selectedFilter

QString	QFileDialog::getExistingDirectory	(const	QString	&	dir
=	QString::null,	QWidget	*	parent	=	0,	const	char	*	name	=	0,

const	QString	&	caption	=	QString::null,	bool	dirOnly	=
TRUE,	bool	resolveSymlinks	=	TRUE)	[]

				QString	s	=	QFileDialog::getExistingDirectory(

																				"/home",

																				this,

																				"get	existing	directory"

																				"Choose	a	directory",

																				TRUE);

		

parentname0

dircaptionQString::null

dirOnly

Unix/X11/usr/tmp/var/tmp/usr/tmp/var/tmp
resolveSymlinks

getOpenFileName() getOpenFileNames()getSaveFileName()

QString	QFileDialog::getOpenFileName	(
const	QString	&	startWith	=	QString::null,
const	QString	&	filter	=	QString::null,	QWidget	*	parent	=	0,
const	char	*	name	=	0,	const	QString	&	caption	=
QString::null,	QString	*	selectedFilter	=	0,
bool	resolveSymlinks	=	TRUE)	[]

Cancel

				QString	s	=	QFileDialog::getOpenFileName(

																				"/home",

																				"Images	(*.png	*.xpm	*.jpg)",

																				this,

																				"open	file	dialog",

																				"Choose	a	file	to	open");

		

parentname0

startWithstartWith filter selectedFilterstartWithselectedFilter
QString::null

captioncaption

WindowsMac	OS	XQFileDialog

Unix/X11/usr/tmp/var/tmp/usr/tmp/var/tmp
resolveSymlinks

getOpenFileNames(),	getSaveFileName()	and	getExistingDirectory().

action/application.cppaddressbook/mainwindow.cppapplication/application.cppchart/chartform.cpp
showimg/showimg.cpp

QStringList	QFileDialog::getOpenFileNames	(
const	QString	&	filter	=	QString::null,	const	QString	&	dir	=
QString::null,	QWidget	*	parent	=	0,	const	char	*	name	=	0,
const	QString	&	caption	=	QString::null,
QString	*	selectedFilter	=	0,	bool	resolveSymlinks	=	TRUE)
[]

				QStringList	files	=	QFileDialog::getOpenFileNames(

																												"Images	(*.png	*.xpm	*.jpg)",

																												"/home",

																												this,

																												"open	files	dialog"

																												"Select	one	or	more	files	to	open");

		

parentname0

dirdir filter selectedFilterdirselectedFilterfilterQString::null

captioncaption

WindowsMac	OS	XQFileDialog

Unix/X11/usr/tmp/var/tmp/usr/tmp/var/tmp
resolveSymlinks

				QStringList	list	=	files;

				QStringList::Iterator	it	=	list.begin();

				while(it	!=	list.end())	{

								myProcessing(*it);

								++it;

				}

				

getOpenFileName() getSaveFileName()getExistingDirectory()

QString	QFileDialog::getSaveFileName	(
const	QString	&	startWith	=	QString::null,
const	QString	&	filter	=	QString::null,	QWidget	*	parent	=	0,
const	char	*	name	=	0,	const	QString	&	caption	=
QString::null,	QString	*	selectedFilter	=	0,
bool	resolveSymlinks	=	TRUE)	[]

parentname0

				QString	s	=	QFileDialog::getSaveFileName(

																				"/home",

																				"Images	(*.png	*.xpm	*.jpg)",

																				this,

																				"save	file	dialog"

																				"Choose	a	filename	to	save	under");

		

startWithstartWith filter selectedFilterstartWithselectedFilter
QString::null

captioncaption

WindowsMac	OS	XQFileDialog

Unix/X11/usr/tmp/var/tmp/usr/tmp/var/tmp
resolveSymlinks

getOpenFileName() getOpenFileNames()getExistingDirectory()

action/application.cppaddressbook/mainwindow.cppapplication/application.cppchart/chartform.cpp
showimg/showimg.cpp

QFileIconProvider	*	QFileDialog::iconProvider	()	[]

0

setIconProvider()QFileIconProvider

bool	QFileDialog::isContentsPreviewEnabled	()	const

“contentsPreview”

bool	QFileDialog::isInfoPreviewEnabled	()	const

“infoPreview”

Mode	QFileDialog::mode	()	const

Returns	the	file	dialog's	mode.	See	the	"mode"	property	for	details.

PreviewMode	QFileDialog::previewMode	()	const

“previewMode”

void	QFileDialog::rereadDir	()

resortDir()

void	QFileDialog::resortDir	()

rereadDir()

void	QFileDialog::selectAll	(bool	b)

b

QString	QFileDialog::selectedFile	()	const

“selectedFile”

QStringList	QFileDialog::selectedFiles	()	const

“selectedFiles”

QString	QFileDialog::selectedFilter	()	const

“selectedFilter”

void	QFileDialog::setContentsPreview	(QWidget	*	w,
QFilePreview	*	preview)

wQFilePreview	preview

QWidgetQFilePreview

				class	Preview	:	public	QLabel,	public	QFilePreview

				{

				public:

								Preview(QWidget	*parent=0)	:	QLabel(parent)	{}

								void	previewUrl(const	QUrl	&u)

								{

												QString	path	=	u.path();

												QPixmap	pix(path);

												if	(pix.isNull())

																setText("This	is	not	a	pixmap");

												else

																setPixmap(pix);

								}

				};

		//...

		int	main(int	argc,	char**	argv)

		{

				Preview*	p	=	new	Preview;

				QFileDialog*	fd	=	new	QFileDialog(this);

				fd->setContentsPreviewEnabled(TRUE);

				fd->setContentsPreview(p,	p);

				fd->setPreviewMode(QFileDialog::Contents);

				fd->show();

		}

		

contentsPreviewsetInfoPreview()previewMode

qdir/qdir.cpp

void	QFileDialog::setContentsPreviewEnabled	(bool)

“contentsPreview”

void	QFileDialog::setDir	(const	QDir	&	dir)

dir

dir()

void	QFileDialog::setDir	(const	QString	&	pathstr)	[]

pathstr

dir()

void	QFileDialog::setFilter	(const	QString	&	newFilter)	[]

newFilter

newFilteranything*something

					fd->setFilter("All	C++	files	(*.cpp	*.cc	*.C	*.cxx	*.c++)");

					fd->setFilter("*.cpp	*.cc	*.C	*.cxx	*.c++");

					fd->setFilter("All	C++	files	(*.cpp;*.cc;*.C;*.cxx;*.c++)");

					fd->setFilter("*.cpp;*.cc;*.C;*.cxx;*.c++");

		

setFilters()

void	QFileDialog::setFilters	(const	QString	&	filters)	[]

filters;;

				QString	types("*.png;;*.xpm;;*.jpg");

				QFileDialog	fd	=	new	QFileDialog(this);

				fd->setFilters(types);

				fd->show();

		

void	QFileDialog::setFilters	(const	char	**	types)	[]

void	QFileDialog::setFilters	(const	QStringList	&)	[]

void	QFileDialog::setIconProvider	(QFileIconProvider	*	provider
)	[]

QFileIconProviderprovider

QFileIconProviderQFileDialog

QFileIconProvidericonProvider()

showimg/main.cpp

void	QFileDialog::setInfoPreview	(QWidget	*	w,
QFilePreview	*	preview)

wQFilePreview	preview

QWidgetQFilePreview

				class	Preview	:	public	QLabel,	public	QFilePreview

				{

				public:

								Preview(QWidget	*parent=0)	:	QLabel(parent)	{}

								void	previewUrl(const	QUrl	&u)

								{

												QString	path	=	u.path();

												QPixmap	pix(path);

												if	(pix.isNull())

																setText("This	is	not	a	pixmap");

												else

																setText("This	is	a	pixmap");

								}

				};

		//...

		int	main(int	argc,	char**	argv)

		{

				Preview*	p	=	new	Preview;

				QFileDialog*	fd	=	new	QFileDialog(this);

				fd->setInfoPreviewEnabled(TRUE);

				fd->setInfoPreview(p,	p);

				fd->setPreviewMode(QFileDialog::Info);

				fd->show();

		}

		

setContentsPreview() infoPreviewpreviewMode

void	QFileDialog::setInfoPreviewEnabled	(bool)

“infoPreview”

void	QFileDialog::setMode	(Mode)

“mode”

void	QFileDialog::setPreviewMode	(PreviewMode	m)

m“previewMode”

void	QFileDialog::setSelectedFilter	(const	QString	&	mask)	[]

mask

void	QFileDialog::setSelectedFilter	(int	n)	[]

n

filterSelected() selectedFilterselectedFilesselectedFile

void	QFileDialog::setSelection	(const	QString	&	filename)

filenamefilename setDir()filename

qdir/qdir.cpp

void	QFileDialog::setShowHiddenFiles	(bool	s)

s“showHiddenFiles”

void	QFileDialog::setUrl	(const	QUrlOperator	&	url)	[]

url

url()

void	QFileDialog::setViewMode	(ViewMode	m)

m“viewMode”

bool	QFileDialog::showHiddenFiles	()	const

“showHiddenFiles”

QUrl	QFileDialog::url	()	const

URL

setUrl()

network/networkprotocol/view.cpp

ViewMode	QFileDialog::viewMode	()	const

“viewMode”

bool	contentsPreview

setContentsPreview()infoPreview

setContentsPreviewEnabled()isContentsPreviewEnabled()

QString	dirPath

dirPath()

dir()setDir()

bool	infoPreview

setInfoPreviewEnabled()isInfoPreviewEnabled()

Mode	mode

ExistingFile

setMode()mode()

PreviewMode	previewMode

NoPreview setInfoPreview()setContentsPreview()setInfoPreviewEnabled()
setContentsPreviewEnabled()

infoPreviewcontentsPreviewviewMode

setPreviewMode()previewMode()

QString	selectedFile

selectedFileselectedFile

QString::isEmpty() selectedFilesselectedFilter

selectedFile()

QStringList	selectedFiles

selectedFilesExistingFilesselectedFiles

ExistingFileDirectoryDirectoryOnlyselectedFile()

				QStringList	list	=	myFileDialog.selectedFiles();

				QStringList::Iterator	it	=	list.begin();

				while(it	!=	list.end())	{

								myProcessing(*it);

								++it;

				}

				

selectedFileselectedFilterQValueList::empty()

selectedFiles()

QString	selectedFilter

selectedFilter()

filterSelected() selectedFilesselectedFile

bool	showHiddenFiles

setShowHiddenFiles()showHiddenFiles()

ViewMode	viewMode

Detail

List

QFileDialog::ViewMode

setViewMode()viewMode()

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QFile
QFile/	 ……

#include	<qfile.h>

	 QIODevice

QFile	()
QFile	(const	QString	&	name)
~QFile	()
QString	name	()	const
void	setName	(const	QString	&	name)
typedef	QCString	(*	EncoderFn)	(const	QString	&	fileName)
typedef	QString	(*	DecoderFn)	(const	QCString	&	localfileName)
bool	exists	()	const
bool	remove	()
virtual	bool	open	(int	m)
bool	open	(int	m,	FILE	*	f)
bool	open	(int	m,	int	f)
virtual	void	close	()
virtual	void	flush	()
virtual	Offset	size	()	const
virtual	Offset	at	()	const
virtual	bool	at	(Offset	pos)
virtual	bool	atEnd	()	const
virtual	Q_LONG	readBlock	(char	*	p,	Q_ULONG	len)
virtual	Q_LONG	readLine	(char	*	p,	Q_ULONG	maxlen)
Q_LONG	readLine	(QString	&	s,	Q_ULONG	maxlen)
virtual	int	getch	()
virtual	int	putch	(int	ch)
virtual	int	ungetch	(int	ch)
int	handle	()	const

QCString	encodeName	(const	QString	&	fileName)
QString	decodeName	(const	QCString	&	localFileName)
void	setEncodingFunction	(EncoderFn	f)
void	setDecodingFunction	(DecoderFn	f)
bool	exists	(const	QString	&	fileName)
bool	remove	(const	QString	&	fileName)

virtual	QByteArray	readAll	()

QFile/

QFile/QFile

setName() exists()remove()

open() close() flush()QDataStreamQTextStream readBlock
readLine() writeBlock()QFile getch()	 ungetch()putch()

size() at() atEnd() handle()

QTextStream

				QStringList	lines;

				QFile	file("file.txt");

				if	(file.open(IO_ReadOnly))	{

								QTextStream	stream(&file);

								QString	line;

								int	n	=	1;

								while	(!stream.eof())	{

												line	=	stream.readLine();	//	“\n”

												printf("%3d:	%s\n",	n++,	line.latin1());

												lines	+=	line;

								}

								file.close();

				}

		

				QFile	file("file.txt");

				if	(file.open(IO_WriteOnly))	{

								QTextStream	stream(&file);

								for	(QStringList::Iterator	it	=	lines.begin();	it	!=	lines.end();	++it)

												stream	<<	*it	<<	"\n";

								file.close();

				}

		

QFileInfo

QDir

QtUnicodeUnix/ encodeName

QDataStreamQTextStream/

QFile::DecoderFn

QFile::setDecodingFunction()

QFile::EncoderFn

QFile::setEncodingFunction()

QFile::QFile	()

QFile

QFile::QFile	(const	QString	&	name)

nameQFile

setName()

QFile::~QFile	()

QFile close()

bool	QFile::at	(Offset	pos)	[]

pos

				QFile	f("data.bin");

				f.open(IO_ReadOnly);																						//	0

				f.at(100);																																//	100

				f.at(f.at()+50);																										//	150

				f.at(f.size()-80);																								//	EOF80

				f.close();

		

at()

IO_Appendopen()

size()open()

QIODevice

Offset	QFile::at	()	const	[]

size()

QIODevice

bool	QFile::atEnd	()	const	[]

size()

QIODevice

void	QFile::close	()	[]

“”

open()flush()

application/application.cppchart/chartform_files.cpphelpviewer/helpwindow.cppmdi/application.cpp
xml/outliner/outlinetree.cpp

QIODevice

QString	QFile::decodeName	(const	QCString	&	localFileName)
[]

localFileNameQFile::encodeName()

setDecodingFunction()

QCString	QFile::encodeName	(const	QString	&	fileName)	[]

QFileQt QFileInfoQDirUnicodeUnix8Unix/
Windows	NTUnicodeWindows	95Latin1

fileName87ASCII

setEncodingFunction()utf-8

decodeName()

bool	QFile::exists	(const	QString	&	fileName)	[]

fileName

chart/chartform.cppdirview/dirview.cpphelpviewer/helpwindow.cpp

bool	QFile::exists	()	const

name()

void	QFile::flush	()	[]

close()

QIODevice

int	QFile::getch	()	[]

/

/-1

putch()ungetch()

QIODevice

int	QFile::handle	()	const

fdopen()fcntl()C QSocketNotifier

handle()-1

QSocketNotifier

QString	QFile::name	()	const

setName()

setName()QFileInfo::fileName()

bool	QFile::open	(int	m)	[]

m

m

IO_Raw	
IO_ReadOnly	
IO_WriteOnly	
IO_ReadWrite	/ (IO_ReadOnly	|	IO_WriteOnly)

IO_Append	 at()
IO_Truncate	
IO_Translate	MS-DOSWindowsOS/2

/4

flush()

flush()seek()

IO_WriteOnlyIO_ReadWrite

				QFile	f1("/tmp/data.bin");

				QFile	f2("readme.txt");

				f1.open(IO_Raw	|	IO_ReadWrite	|	IO_Append);

				f2.open(IO_ReadOnly	|	IO_Translate);

		

name()	 close() isOpen()flush()

action/application.cppapplication/application.cppchart/chartform_files.cpphelpviewer/helpwindow.cpp
xml/outliner/outlinetree.cpp

QIODevice

bool	QFile::open	(int	m,	FILE	*	f)

mf

				#include	<stdio.h>

				void	printError(const	char*	msg)

				{

								QFile	f;

								f.open(IO_WriteOnly,	stderr);

								f.writeBlock(msg,	qstrlen(msg));						//	stderr

								f.close();

				}

		

QFile close()

fstdin stdout stderr QIODevice::isSequentialAccess()

close()

bool	QFile::open	(int	m,	int	f)

mf

QFile close()

QFile/

f0stdin1stdout2stderr size()INT_MAXlimits.h

close()

int	QFile::putch	(int	ch)	[]

ch

ch-1

getch()ungetch()

QIODevice

QByteArray	QIODevice::readAll	()	[]

Q_LONG	QFile::readBlock	(char	*	p,	Q_ULONG	len)	[]

maxlenp

-1

C readBlock()flush()

writeBlock()

qwerty/qwerty.cpp

QIODevice

Q_LONG	QFile::readLine	(char	*	p,	Q_ULONG	maxlen)	[]

maxlenp-1

IO_RawreadLine()

readBlock()QTextStream::readLine()

QIODevice

Q_LONG	QFile::readLine	(QString	&	s,	Q_ULONG	maxlen)

maxlens-1

IO_RawreadLine()

Latin1Unicode

readBlock()QTextStream::readLine()

bool	QFile::remove	()

bool	QFile::remove	(const	QString	&	fileName)	[]

fileName

void	QFile::setDecodingFunction	(DecoderFn	f)	[]

8 f8

encodeName()decodeName()

void	QFile::setEncodingFunction	(EncoderFn	f)	[]

Unicode f8

encodeName()

void	QFile::setName	(const	QString	&	name)

name

open()

					QFile	f;

					QDir::setCurrent("/tmp");

					f.setName("readme.txt");

					QDir::setCurrent("/home");

					f.open(IO_ReadOnly);								//	Unix“/home/readme.txt”

		

Qt“/”

name() QFileInfoQDir

Offset	QFile::size	()	const	[]

at()

table/statistics/statistics.cpp

QIODevice

int	QFile::ungetch	(int	ch)	[]

ch

“” getch()

ch-1

getch()putch()

QIODevice

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QMenuData	Class	Reference
The	QMenuData	class	is	a	base	class	for	QMenuBar	and	QPopupMenu.	More...

#include	<qmenudata.h>

Inherited	by	QMenuBar	and	QPopupMenu.

List	of	all	member	functions.

Public	Members

QMenuData	()
virtual	~QMenuData	()
uint	count	()	const
int	insertItem	(const	QString	&	text,	const	QObject	*	receiver,
const	char	*	member,	const	QKeySequence	&	accel	=	0,	int	id	=	-1,
int	index	=	-1)
int	insertItem	(const	QIconSet	&	icon,	const	QString	&	text,
const	QObject	*	receiver,	const	char	*	member,
const	QKeySequence	&	accel	=	0,	int	id	=	-1,	int	index	=	-1)
int	insertItem	(const	QPixmap	&	pixmap,	const	QObject	*	receiver,
const	char	*	member,	const	QKeySequence	&	accel	=	0,	int	id	=	-1,
int	index	=	-1)
int	insertItem	(const	QIconSet	&	icon,	const	QPixmap	&	pixmap,
const	QObject	*	receiver,	const	char	*	member,
const	QKeySequence	&	accel	=	0,	int	id	=	-1,	int	index	=	-1)
int	insertItem	(const	QString	&	text,	int	id	=	-1,	int	index	=	-1)
int	insertItem	(const	QIconSet	&	icon,	const	QString	&	text,	int	id	=	-1,
int	index	=	-1)
int	insertItem	(const	QString	&	text,	QPopupMenu	*	popup,	int	id	=	-1,
int	index	=	-1)
int	insertItem	(const	QIconSet	&	icon,	const	QString	&	text,
QPopupMenu	*	popup,	int	id	=	-1,	int	index	=	-1)
int	insertItem	(const	QPixmap	&	pixmap,	int	id	=	-1,	int	index	=	-1)
int	insertItem	(const	QIconSet	&	icon,	const	QPixmap	&	pixmap,	int	id	=
-1,	int	index	=	-1)
int	insertItem	(const	QPixmap	&	pixmap,	QPopupMenu	*	popup,	int	id	=
-1,	int	index	=	-1)
int	insertItem	(const	QIconSet	&	icon,	const	QPixmap	&	pixmap,
QPopupMenu	*	popup,	int	id	=	-1,	int	index	=	-1)
int	insertItem	(QWidget	*	widget,	int	id	=	-1,	int	index	=	-1)
int	insertItem	(const	QIconSet	&	icon,	QCustomMenuItem	*	custom,
int	id	=	-1,	int	index	=	-1)
int	insertItem	(QCustomMenuItem	*	custom,	int	id	=	-1,	int	index	=	-1)
int	insertSeparator	(int	index	=	-1)
void	removeItem	(int	id)

void	removeItemAt	(int	index)
void	clear	()
QKeySequence	accel	(int	id)	const
void	setAccel	(const	QKeySequence	&	key,	int	id)
QIconSet	*	iconSet	(int	id)	const
QString	text	(int	id)	const
QPixmap	*	pixmap	(int	id)	const
void	setWhatsThis	(int	id,	const	QString	&	text)
QString	whatsThis	(int	id)	const
void	changeItem	(int	id,	const	QString	&	text)
void	changeItem	(int	id,	const	QPixmap	&	pixmap)
void	changeItem	(int	id,	const	QIconSet	&	icon,	const	QString	&	text)
void	changeItem	(int	id,	const	QIconSet	&	icon,	const	QPixmap	&	pixmap
)
void	changeItem	(const	QString	&	text,	int	id)		(obsolete)
void	changeItem	(const	QPixmap	&	pixmap,	int	id)		(obsolete)
void	changeItem	(const	QIconSet	&	icon,	const	QString	&	text,	int	id)
	(obsolete)
bool	isItemActive	(int	id)	const
bool	isItemEnabled	(int	id)	const
void	setItemEnabled	(int	id,	bool	enable)
bool	isItemChecked	(int	id)	const
void	setItemChecked	(int	id,	bool	check)
virtual	void	updateItem	(int	id)
int	indexOf	(int	id)	const
int	idAt	(int	index)	const
virtual	void	setId	(int	index,	int	id)
bool	connectItem	(int	id,	const	QObject	*	receiver,	const	char	*	member)
bool	disconnectItem	(int	id,	const	QObject	*	receiver,
const	char	*	member)
bool	setItemParameter	(int	id,	int	param)
int	itemParameter	(int	id)	const
QMenuItem	*	findItem	(int	id)	const
QMenuItem	*	findItem	(int	id,	QMenuData	**	parent)	const
virtual	void	activateItemAt	(int	index)

Protected	Members

virtual	void	menuContentsChanged	()
virtual	void	menuStateChanged	()
virtual	void	menuInsPopup	(QPopupMenu	*)
virtual	void	menuDelPopup	(QPopupMenu	*)

Detailed	Description

The	QMenuData	class	is	a	base	class	for	QMenuBar	and	QPopupMenu.

QMenuData	has	an	internal	list	of	menu	items.	A	menu	item	is	a	text,	pixmap	or
separator,	and	may	also	have	a	popup	menu	(separators	have	no	popup	menus).

The	menu	item	sends	out	an	activated()	signal	when	it	is	selected	and	a
highlighted()	signal	when	it	receives	the	user	input	focus.

Menu	items	are	assigned	the	menu	identifier	id	that	is	passed	in	insertItem()	or
an	automatically	generated	identifier	if	id	is	<	0	(the	default).	The	generated
identifiers	(negative	integers)	are	guaranteed	to	be	unique	within	the	entire
application.	The	identifier	is	used	to	access	the	menu	item	in	other	functions.

Menu	items	can	be	removed	with	removeItem()	or	changed	with	changeItem().
Accelerators	can	be	changed	or	set	with	setAccel().	Checkable	items	can	be
checked	or	unchecked	with	setItemChecked().	Items	can	be	enabled	or	disabled
using	setItemEnabled()	and	connected	and	disconnected	with	connectItem()	and
disconnectItem()	respectively.

Menu	items	are	stored	in	a	list.	Use	findItem()	to	find	an	item	by	its	list	position
or	by	its	menu	identifier.

See	also	QAccel,	QPopupMenu,	QAction	and	Miscellaneous	Classes.

Member	Function	Documentation

QMenuData::QMenuData	()

Constructs	an	empty	menu	data	list.

QMenuData::~QMenuData	()	[virtual]

Removes	all	menu	items	and	disconnects	any	signals	that	have	been	connected.

QKeySequence	QMenuData::accel	(int	id)	const

Returns	the	accelerator	key	that	has	been	defined	for	the	menu	item	id,	or	0	if	it
has	no	accelerator	key.

See	also	setAccel(),	QAccel	and	qnamespace.h.

void	QMenuData::activateItemAt	(int	index)	[virtual]

Activates	the	menu	item	at	position	index.

If	the	index	is	invalid	(for	example,	-1),	the	object	itself	is	deactivated.

void	QMenuData::changeItem	(int	id,	const	QString	&	text)

Changes	the	text	of	the	menu	item	id	to	text.	If	the	item	has	an	icon,	the	icon
remains	unchanged.

See	also	text().

void	QMenuData::changeItem	(int	id,	const	QPixmap	&	pixmap
)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Changes	the	pixmap	of	the	menu	item	id	to	the	pixmap	pixmap.	If	the	item	has

an	icon,	the	icon	is	unchanged.

See	also	pixmap().

void	QMenuData::changeItem	(int	id,	const	QIconSet	&	icon,
const	QString	&	text)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Changes	the	iconset	and	text	of	the	menu	item	id	to	the	icon	and	text
respectively.

See	also	pixmap().

void	QMenuData::changeItem	(int	id,	const	QIconSet	&	icon,
const	QPixmap	&	pixmap)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Changes	the	iconset	and	pixmap	of	the	menu	item	id	to	icon	and	pixmap
respectively.

See	also	pixmap().

void	QMenuData::changeItem	(const	QString	&	text,	int	id)

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Changes	the	text	of	the	menu	item	id.	If	the	item	has	an	icon,	the	icon	remains
unchanged.

See	also	text().

void	QMenuData::changeItem	(const	QPixmap	&	pixmap,	int	id
)

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Changes	the	pixmap	of	the	menu	item	id.	If	the	item	has	an	icon,	the	icon
remains	unchanged.

See	also	pixmap().

void	QMenuData::changeItem	(const	QIconSet	&	icon,
const	QString	&	text,	int	id)

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Changes	the	icon	and	text	of	the	menu	item	id.

See	also	pixmap().

void	QMenuData::clear	()

Removes	all	menu	items.

See	also	removeItem()	and	removeItemAt().

Examples:	mdi/application.cpp	and	qwerty/qwerty.cpp.

bool	QMenuData::connectItem	(int	id,	const	QObject	*	receiver,
const	char	*	member)

Connects	the	menu	item	with	identifier	id	to	receiver's	member	slot	or	signal.

The	receiver's	slot/signal	is	activated	when	the	menu	item	is	activated.

See	also	disconnectItem()	and	setItemParameter().

Example:	menu/menu.cpp.

uint	QMenuData::count	()	const

Returns	the	number	of	items	in	the	menu.

bool	QMenuData::disconnectItem	(int	id,
const	QObject	*	receiver,	const	char	*	member)

Disconnects	the	receiver's	member	from	the	menu	item	with	identifier	id.

All	connections	are	removed	when	the	menu	data	object	is	destroyed.

See	also	connectItem()	and	setItemParameter().

QMenuItem	*	QMenuData::findItem	(int	id)	const

Returns	a	pointer	to	the	menu	item	with	identifier	id,	or	0	if	there	is	no	item	with
this	identifier.

See	also	indexOf().

Example:	chart/chartform.cpp.

QMenuItem	*	QMenuData::findItem	(int	id,
QMenuData	**	parent)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	a	pointer	to	the	menu	item	with	identifier	id,	or	0	if	there	is	no	item	with
this	identifier.	Changes	*parent	to	point	to	the	parent	of	the	return	value.

See	also	indexOf().

QIconSet	*	QMenuData::iconSet	(int	id)	const

Returns	the	icon	set	that	has	been	set	for	menu	item	id,	or	0	if	no	icon	set	has
been	set.

See	also	changeItem(),	text()	and	pixmap().

int	QMenuData::idAt	(int	index)	const

Returns	the	identifier	of	the	menu	item	at	position	index	in	the	internal	list,	or	-1
if	index	is	out	of	range.

See	also	setId()	and	indexOf().

int	QMenuData::indexOf	(int	id)	const

Returns	the	index	of	the	menu	item	with	identifier	id,	or	-1	if	there	is	no	item
with	this	identifier.

See	also	idAt()	and	findItem().

Example:	scrollview/scrollview.cpp.

int	QMenuData::insertItem	(const	QString	&	text,
const	QObject	*	receiver,	const	char	*	member,
const	QKeySequence	&	accel	=	0,	int	id	=	-1,	int	index	=	-1)

The	family	of	insertItem()	functions	inserts	menu	items	into	a	popup	menu	or	a
menu	bar.

A	menu	item	is	usually	either	a	text	string	or	a	pixmap,	both	with	an	optional
icon	or	keyboard	accelerator.	For	special	cases	it	is	also	possible	to	insert	custom
items	(see	QCustomMenuItem)	or	even	widgets	into	popup	menus.

Some	insertItem()	members	take	a	popup	menu	as	an	additional	argument.	Use
this	to	insert	submenus	to	existing	menus	or	pulldown	menus	to	a	menu	bar.

The	number	of	insert	functions	may	look	confusing,	but	they	are	actually	quite
simple	to	use.

This	default	version	inserts	a	menu	item	with	the	text	text,	the	accelerator	key
accel,	an	id	and	an	optional	index	and	connects	it	to	the	slot	member	in	the
object	receiver.

Example:

				QMenuBar			*mainMenu	=	new	QMenuBar;

				QPopupMenu	*fileMenu	=	new	QPopupMenu;

				fileMenu->insertItem("New",		myView,	SLOT(newFile()),	CTRL+Key_N);

				fileMenu->insertItem("Open",	myView,	SLOT(open()),				CTRL+Key_O);

				mainMenu->insertItem("File",	fileMenu);

		

Not	all	insert	functions	take	an	object/slot	parameter	or	an	accelerator	key.	Use
connectItem()	and	setAccel()	on	these	items.

If	you	need	to	translate	accelerators,	use	tr()	with	a	string	description	that	use
pass	to	the	QKeySequence	constructor:

				fileMenu->insertItem(tr("Open"),	myView,	SLOT(open()),

																									tr("Ctrl+O"));

		

In	the	example	above,	pressing	Ctrl+N	or	selecting	"Open"	from	the	menu
activates	the	myView->open()	function.

Some	insert	functions	take	a	QIconSet	parameter	to	specify	the	little	menu	item
icon.	Note	that	you	can	always	pass	a	QPixmap	object	instead.

The	index	specifies	the	position	in	the	menu.	The	menu	item	is	appended	at	the
end	of	the	list	if	index	is	negative.

Note	that	keyboard	accelerators	in	Qt	are	not	application-global,	instead	they	are
bound	to	a	certain	top-level	window.	For	example,	accelerators	in	QPopupMenu
items	only	work	for	menus	that	are	associated	with	a	certain	window.	This	is	true
for	popup	menus	that	live	in	a	menu	bar	since	their	accelerators	will	then	be
installed	in	the	menu	bar	itself.	This	also	applies	to	stand-alone	popup	menus
that	have	a	top-level	widget	in	their	parentWidget()	chain.	The	menu	will	then
install	its	accelerator	object	on	that	top-level	widget.	For	all	other	cases	use	an
independent	QAccel	object.

Warning:	Be	careful	when	passing	a	literal	0	to	insertItem()	because	some	C++
compilers	choose	the	wrong	overloaded	function.	Cast	the	0	to	what	you	mean,
e.g.	(QObject*)0.

Returns	the	allocated	menu	identifier	number	(id	if	id	>=	0).

See	also	removeItem(),	changeItem(),	setAccel(),	connectItem(),	QAccel	and
qnamespace.h.

Examples:	addressbook/mainwindow.cpp,	canvas/canvas.cpp,
mdi/application.cpp,	menu/menu.cpp,	qwerty/qwerty.cpp,
scrollview/scrollview.cpp	and	showimg/showimg.cpp.

int	QMenuData::insertItem	(const	QIconSet	&	icon,
const	QString	&	text,	const	QObject	*	receiver,
const	char	*	member,	const	QKeySequence	&	accel	=	0,	int	id
=	-1,	int	index	=	-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	a	menu	item	with	icon	icon,	text	text,	accelerator	accel,	optional	id	id,
and	optional	index.	The	menu	item	is	connected	it	to	the	receiver's	member	slot.
The	icon	will	be	displayed	to	the	left	of	the	text	in	the	item.

Returns	the	allocated	menu	identifier	number	(id	if	id	>=	0).

See	also	removeItem(),	changeItem(),	setAccel(),	connectItem(),	QAccel	and
qnamespace.h.

int	QMenuData::insertItem	(const	QPixmap	&	pixmap,
const	QObject	*	receiver,	const	char	*	member,
const	QKeySequence	&	accel	=	0,	int	id	=	-1,	int	index	=	-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	a	menu	item	with	pixmap	pixmap,	accelerator	accel,	optional	id	id,	and
optional	index.	The	menu	item	is	connected	it	to	the	receiver's	member	slot.	The
icon	will	be	displayed	to	the	left	of	the	text	in	the	item.

To	look	best	when	being	highlighted	as	a	menu	item,	the	pixmap	should	provide
a	mask	(see	QPixmap::mask()).

Returns	the	allocated	menu	identifier	number	(id	if	id	>=	0).

See	also	removeItem(),	changeItem(),	setAccel()	and	connectItem().

int	QMenuData::insertItem	(const	QIconSet	&	icon,
const	QPixmap	&	pixmap,	const	QObject	*	receiver,
const	char	*	member,	const	QKeySequence	&	accel	=	0,	int	id
=	-1,	int	index	=	-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	a	menu	item	with	icon	icon,	pixmap	pixmap,	accelerator	accel,	optional
id	id,	and	optional	index.	The	icon	will	be	displayed	to	the	left	of	the	pixmap	in
the	item.	The	item	is	connected	to	the	member	slot	in	the	receiver	object.

To	look	best	when	being	highlighted	as	a	menu	item,	the	pixmap	should	provide
a	mask	(see	QPixmap::mask()).

Returns	the	allocated	menu	identifier	number	(id	if	id	>=	0).

See	also	removeItem(),	changeItem(),	setAccel(),	connectItem(),	QAccel	and
qnamespace.h.

int	QMenuData::insertItem	(const	QString	&	text,	int	id	=	-1,
int	index	=	-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	a	menu	item	with	text	text,	optional	id	id,	and	optional	index.

Returns	the	allocated	menu	identifier	number	(id	if	id	>=	0).

See	also	removeItem(),	changeItem(),	setAccel()	and	connectItem().

int	QMenuData::insertItem	(const	QIconSet	&	icon,
const	QString	&	text,	int	id	=	-1,	int	index	=	-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	a	menu	item	with	icon	icon,	text	text,	optional	id	id,	and	optional	index.
The	icon	will	be	displayed	to	the	left	of	the	text	in	the	item.

Returns	the	allocated	menu	identifier	number	(id	if	id	>=	0).

See	also	removeItem(),	changeItem(),	setAccel()	and	connectItem().

int	QMenuData::insertItem	(const	QString	&	text,
QPopupMenu	*	popup,	int	id	=	-1,	int	index	=	-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	a	menu	item	with	text	text,	submenu	popup,	optional	id	id,	and	optional
index.

The	popup	must	be	deleted	by	the	programmer	or	by	its	parent	widget.	It	is	not
deleted	when	this	menu	item	is	removed	or	when	the	menu	is	deleted.

Returns	the	allocated	menu	identifier	number	(id	if	id	>=	0).

See	also	removeItem(),	changeItem(),	setAccel()	and	connectItem().

int	QMenuData::insertItem	(const	QIconSet	&	icon,
const	QString	&	text,	QPopupMenu	*	popup,	int	id	=	-1,
int	index	=	-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	a	menu	item	with	icon	icon,	text	text,	submenu	popup,	optional	id	id,	and
optional	index.	The	icon	will	be	displayed	to	the	left	of	the	text	in	the	item.

The	popup	must	be	deleted	by	the	programmer	or	by	its	parent	widget.	It	is	not
deleted	when	this	menu	item	is	removed	or	when	the	menu	is	deleted.

Returns	the	allocated	menu	identifier	number	(id	if	id	>=	0).

See	also	removeItem(),	changeItem(),	setAccel()	and	connectItem().

int	QMenuData::insertItem	(const	QPixmap	&	pixmap,	int	id	=
-1,	int	index	=	-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	a	menu	item	with	pixmap	pixmap,	optional	id	id,	and	optional	index.

To	look	best	when	being	highlighted	as	a	menu	item,	the	pixmap	should	provide
a	mask	(see	QPixmap::mask()).

Returns	the	allocated	menu	identifier	number	(id	if	id	>=	0).

See	also	removeItem(),	changeItem(),	setAccel()	and	connectItem().

int	QMenuData::insertItem	(const	QIconSet	&	icon,
const	QPixmap	&	pixmap,	int	id	=	-1,	int	index	=	-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	a	menu	item	with	icon	icon,	pixmap	pixmap,	optional	id	id,	and	optional
index.	The	icon	will	be	displayed	to	the	left	of	the	pixmap	in	the	item.

Returns	the	allocated	menu	identifier	number	(id	if	id	>=	0).

See	also	removeItem(),	changeItem(),	setAccel()	and	connectItem().

int	QMenuData::insertItem	(const	QPixmap	&	pixmap,
QPopupMenu	*	popup,	int	id	=	-1,	int	index	=	-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	a	menu	item	with	pixmap	pixmap,	submenu	popup,	optional	id	id,	and
optional	index.

The	popup	must	be	deleted	by	the	programmer	or	by	its	parent	widget.	It	is	not
deleted	when	this	menu	item	is	removed	or	when	the	menu	is	deleted.

Returns	the	allocated	menu	identifier	number	(id	if	id	>=	0).

See	also	removeItem(),	changeItem(),	setAccel()	and	connectItem().

int	QMenuData::insertItem	(const	QIconSet	&	icon,
const	QPixmap	&	pixmap,	QPopupMenu	*	popup,	int	id	=	-1,
int	index	=	-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	a	menu	item	with	icon	icon,	pixmap	pixmap	submenu	popup,	optional	id
id,	and	optional	index.	The	icon	will	be	displayed	to	the	left	of	the	pixmap	in	the
item.

The	popup	must	be	deleted	by	the	programmer	or	by	its	parent	widget.	It	is	not
deleted	when	this	menu	item	is	removed	or	when	the	menu	is	deleted.

Returns	the	allocated	menu	identifier	number	(id	if	id	>=	0).

See	also	removeItem(),	changeItem(),	setAccel()	and	connectItem().

int	QMenuData::insertItem	(QWidget	*	widget,	int	id	=	-1,
int	index	=	-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	a	menu	item	that	consists	of	the	widget	widget	with	optional	id	id,	and
optional	index.

Ownership	of	widget	is	transferred	to	the	popup	menu	or	to	the	menu	bar.

Theoretically,	any	widget	can	be	inserted	into	a	popup	menu.	In	practice,	this
only	makes	sense	with	certain	widgets.

If	a	widget	is	not	focus-enabled	(see	QWidget::isFocusEnabled()),	the	menu
treats	it	as	a	separator;	this	means	that	the	item	is	not	selectable	and	will	never
get	focus.	In	this	way	you	can,	for	example,	simply	insert	a	QLabel	if	you	need	a

popup	menu	with	a	title.

If	the	widget	is	focus-enabled	it	will	get	focus	when	the	user	traverses	the	popup
menu	with	the	arrow	keys.	If	the	widget	does	not	accept	ArrowUp	and
ArrowDown	in	its	key	event	handler,	the	focus	will	move	back	to	the	menu
when	the	respective	arrow	key	is	hit	one	more	time.	This	works	with	a
QLineEdit,	for	example.	If	the	widget	accepts	the	arrow	key	itself,	it	must	also
provide	the	possibility	to	put	the	focus	back	on	the	menu	again	by	calling
QWidget::focusNextPrevChild().	Futhermore,	if	the	embedded	widget	closes	the
menu	when	the	user	made	a	selection,	this	can	be	done	safely	by	calling

				if	(isVisible()	&&

									parentWidget()	&&

									parentWidget()->inherits("QPopupMenu"))

								parentWidget()->close();

		

Returns	the	allocated	menu	identifier	number	(id	if	id	>=	0).

See	also	removeItem().

int	QMenuData::insertItem	(const	QIconSet	&	icon,
QCustomMenuItem	*	custom,	int	id	=	-1,	int	index	=	-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	a	custom	menu	item	custom	with	an	icon	and	with	optional	id	id,	and
optional	index.

This	only	works	with	popup	menus.	It	is	not	supported	for	menu	bars.
Ownership	of	custom	is	transferred	to	the	popup	menu.

If	you	want	to	connect	a	custom	item	to	a	certain	slot,	use	connectItem().

Returns	the	allocated	menu	identifier	number	(id	if	id	>=	0).

See	also	connectItem(),	removeItem()	and	QCustomMenuItem.

int	QMenuData::insertItem	(QCustomMenuItem	*	custom,	int	id

=	-1,	int	index	=	-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	a	custom	menu	item	custom	with	optional	id	id,	and	optional	index.

This	only	works	with	popup	menus.	It	is	not	supported	for	menu	bars.
Ownership	of	custom	is	transferred	to	the	popup	menu.

If	you	want	to	connect	a	custom	item	to	a	certain	slot,	use	connectItem().

Returns	the	allocated	menu	identifier	number	(id	if	id	>=	0).

See	also	connectItem(),	removeItem()	and	QCustomMenuItem.

int	QMenuData::insertSeparator	(int	index	=	-1)

Inserts	a	separator	at	position	index.	The	separator	becomes	the	last	menu	item	if
index	is	negative.

In	a	popup	menu	a	separator	is	rendered	as	a	horizontal	line.	In	a	Motif	menu	bar
a	separator	is	spacing,	so	the	rest	of	the	items	(normally	just	"Help")	are	drawn
right-justified.	In	a	Windows	menu	bar	separators	are	ignored	(to	comply	with
the	Windows	style	guidelines).

Examples:	addressbook/mainwindow.cpp,	mdi/application.cpp,	menu/menu.cpp,
progress/progress.cpp,	scrollview/scrollview.cpp,	showimg/showimg.cpp	and
sound/sound.cpp.

bool	QMenuData::isItemActive	(int	id)	const

Returns	TRUE	if	the	menu	item	with	the	id	id	is	currently	active;	otherwise
returns	FALSE.

bool	QMenuData::isItemChecked	(int	id)	const

Returns	TRUE	if	the	menu	item	with	the	id	id	has	been	checked;	otherwise
returns	FALSE.

See	also	setItemChecked().

Examples:	canvas/canvas.cpp,	progress/progress.cpp	and
showimg/showimg.cpp.

bool	QMenuData::isItemEnabled	(int	id)	const

Returns	TRUE	if	the	item	with	identifier	id	is	enabled;	otherwise	returns	FALSE

See	also	setItemEnabled().

int	QMenuData::itemParameter	(int	id)	const

Returns	the	parameter	of	the	activation	signal	of	item	id.

If	no	parameter	has	been	specified	for	this	item	with	setItemParameter(),	the
value	defaults	to	id.

See	also	connectItem(),	disconnectItem()	and	setItemParameter().

void	QMenuData::menuContentsChanged	()	[virtual
protected]

Virtual	function;	notifies	subclasses	that	one	or	more	items	have	been	inserted	or
removed.

Reimplemented	in	QMenuBar.

void	QMenuData::menuDelPopup	(QPopupMenu	*)	[virtual
protected]

Virtual	function;	notifies	subclasses	that	a	popup	menu	item	has	been	removed.

void	QMenuData::menuInsPopup	(QPopupMenu	*)	[virtual
protected]

Virtual	function;	notifies	subclasses	that	a	popup	menu	item	has	been	inserted.

void	QMenuData::menuStateChanged	()	[virtual	protected]

Virtual	function;	notifies	subclasses	that	one	or	more	items	have	changed	state
(enabled/disabled	or	checked/unchecked).

Reimplemented	in	QMenuBar.

QPixmap	*	QMenuData::pixmap	(int	id)	const

Returns	the	pixmap	that	has	been	set	for	menu	item	id,	or	0	if	no	pixmap	has
been	set.

See	also	changeItem(),	text()	and	iconSet().

void	QMenuData::removeItem	(int	id)

Removes	the	menu	item	that	has	the	identifier	id.

See	also	removeItemAt()	and	clear().

Example:	chart/chartform.cpp.

void	QMenuData::removeItemAt	(int	index)

Removes	the	menu	item	at	position	index.

See	also	removeItem()	and	clear().

void	QMenuData::setAccel	(const	QKeySequence	&	key,	int	id)

Sets	the	accelerator	key	for	the	menu	item	id	to	key.

An	accelerator	key	consists	of	a	key	code	and	a	combination	of	the	modifiers
SHIFT,	CTRL,	ALT	or	UNICODE_ACCEL	(OR'ed	or	added).	The	header	file
qnamespace.h	contains	a	list	of	key	codes.

Defining	an	accelerator	key	produces	a	text	that	is	added	to	the	menu	item;	for
instance,	CTRL	+	Key_O	produces	"Ctrl+O".	The	text	is	formatted	differently	for
different	platforms.

Note	that	keyboard	accelerators	in	Qt	are	not	application-global,	instead	they	are

bound	to	a	certain	top-level	window.	For	example,	accelerators	in	QPopupMenu
items	only	work	for	menus	that	are	associated	with	a	certain	window.	This	is	true
for	popup	menus	that	live	in	a	menu	bar	since	their	accelerators	will	then	be
installed	in	the	menu	bar	itself.	This	also	applies	to	stand-alone	popup	menus
that	have	a	top-level	widget	in	their	parentWidget()	chain.	The	menu	will	then
install	its	accelerator	object	on	that	top-level	widget.	For	all	other	cases	use	an
independent	QAccel	object.

Example:

				QMenuBar	*mainMenu	=	new	QMenuBar;

				QPopupMenu	*fileMenu	=	new	QPopupMenu;							//	file	sub	menu

				fileMenu->insertItem("Open	Document",	67);	//	add	"Open"	item

				fileMenu->setAccel(CTRL	+	Key_O,	67);						//	Control	and	O	to	open

				fileMenu->insertItem("Quit",	69);										//	add	"Quit"	item

				fileMenu->setAccel(CTRL	+	ALT	+	Key_Delete,	69);

				mainMenu->insertItem("File",	fileMenu);				//	add	the	file	menu

		

If	you	need	to	translate	accelerators,	use	tr()	with	a	string:

				fileMenu->setAccel(tr("Ctrl+O"),	67);

		

You	can	also	specify	the	accelerator	in	the	insertItem()	function.	You	may	prefer
to	use	QAction	to	associate	accelerators	with	menu	items.

See	also	accel(),	insertItem(),	QAccel	and	QAction.

Example:	menu/menu.cpp.

void	QMenuData::setId	(int	index,	int	id)	[virtual]

Sets	the	menu	identifier	of	the	item	at	index	to	id.

If	index	is	out	of	range,	the	operation	is	ignored.

See	also	idAt().

void	QMenuData::setItemChecked	(int	id,	bool	check)

If	check	is	TRUE,	checks	the	menu	item	with	id	id;	otherwise	unchecks	the

menu	item	with	id	id.	Calls	QPopupMenu::setCheckable(TRUE)	if	necessary.

See	also	isItemChecked().

Examples:	canvas/canvas.cpp,	grapher/grapher.cpp,	mdi/application.cpp,
menu/menu.cpp,	progress/progress.cpp,	scrollview/scrollview.cpp	and
showimg/showimg.cpp.

void	QMenuData::setItemEnabled	(int	id,	bool	enable)

If	enable	is	TRUE,	enables	the	menu	item	with	identifier	id;	otherwise	disables
the	menu	item	with	identifier	id.

See	also	isItemEnabled().

Examples:	mdi/application.cpp,	menu/menu.cpp,	progress/progress.cpp	and
showimg/showimg.cpp.

bool	QMenuData::setItemParameter	(int	id,	int	param)

Sets	the	parameter	of	the	activation	signal	of	item	id	to	param.

If	any	receiver	takes	an	integer	parameter,	this	value	is	passed.

See	also	connectItem(),	disconnectItem()	and	itemParameter().

Example:	mdi/application.cpp.

void	QMenuData::setWhatsThis	(int	id,	const	QString	&	text)

Sets	text	as	What's	This	help	for	the	menu	item	with	identifier	id.

See	also	whatsThis().

Examples:	application/application.cpp	and	mdi/application.cpp.

QString	QMenuData::text	(int	id)	const

Returns	the	text	that	has	been	set	for	menu	item	id,	or	a	null	string	if	no	text	has

been	set.

See	also	changeItem(),	pixmap()	and	iconSet().

Examples:	qdir/qdir.cpp	and	showimg/showimg.cpp.

void	QMenuData::updateItem	(int	id)	[virtual]

Virtual	function;	notifies	subclasses	about	an	item	with	id	that	has	been	changed.

Reimplemented	in	QPopupMenu.

QString	QMenuData::whatsThis	(int	id)	const

Returns	the	What's	This	help	text	for	the	item	with	identifier	id	or	QString::null
if	no	text	has	yet	been	defined.

See	also	setWhatsThis().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QDialog
QDialog	 ……

#include	<qdialog.h>

QWidget

Q
ColorDialogQErrorMessageQFileDialogQFontDialogQInputDialogQMessageBox
QWizard

QDialog	(QWidget	*	parent	=	0,	const	char	*	name	=	0,	bool	modal	=
FALSE,	WFlags	f	=	0)
~QDialog	()
enum	DialogCode	{	Rejected,	Accepted	}
int	result	()	const
virtual	void	show	()
void	setOrientation	(Orientation	orientation)
Orientation	orientation	()	const
void	setExtension	(QWidget	*	extension)
QWidget	*	extension	()	const
void	setSizeGripEnabled	(bool)
bool	isSizeGripEnabled	()	const

int	exec	()

bool	sizeGripEnabled	-	

void	setResult	(int	i)

virtual	void	done	(int	r)
virtual	void	accept	()
virtual	void	reject	()
void	showExtension	(bool	showIt)

QDialog

QDialogQDialog

QDialogQt

1.	 exec()exec() exec()“OK” accept()
“Cancel” reject() done() AcceptedRejected

2.	 show()show()show()show()

3.	 	“” QApplication::processEvents() QProgressDialog

“”
QPushButton::autoDefault()

“”“”
showExtension()

“OK”“Cancel”
result() WDestructiveCloseexec()

								QFileDialog	*dlg	=	new	QFileDialog(workingDirectory,

																QString::null,	0,	0,	TRUE);

								dlg->setCaption(QFileDialog::tr("Open"));

								dlg->setMode(QFileDialog::ExistingFile);

								QString	result;

								if	(dlg->exec()	==	QDialog::Accepted)	{

												result	=	dlg->selectedFile();

												workingDirectory	=	dlg->url();

								}

								delete	dlg;

								return	result;

show()

				int	main(int	argc,	char	**argv)

				{

								QApplication	a(argc,	argv);

								int	scale	=	10;

								LifeDialog	*life	=	new	LifeDialog(scale);

								a.setMainWidget(life);

								life->setCaption("Qt	Example	-	Life");

								life->show();

								return	a.exec();

				}

QProgressDialog

QTabDialogQWidgetQProgressDialogGUI	Design	Handbook:	Dialogs,	Standard

QDialog::DialogCode

QDialog::Accepted

QDialog::Rejected

QDialog::QDialog	(QWidget	*	parent	=	0,	const	char	*	name	=	0,
bool	modal	=	FALSE,	WFlags	f	=	0)

parentname

modal show() modal exec() modalshow()

fQWidget

“” fWStyle_Customize	|	WStyle_NormalBorder	|
WStyle_Title	|	WStyle_SysMenu

QWidget::setWFlags()Qt::WidgetFlags

QDialog::~QDialog	()

void	QDialog::accept	()	[]

Accepted

reject()done()

chart/setdataform.cpp

void	QDialog::done	(int	r)	[]

r exec()r

WDestructiveClose done()

accept() reject() QApplication::mainWidget()QApplication::quit()

int	QDialog::exec	()	[]

show()result()

chart/chartform.cppi18n/main.cppnetwork/networkprotocol/view.cppa
href="qdir-example.html#x1805">qdir/qdir.cpp showimg/showimg.cpp
wizard/main.cpp

QWidget	*	QDialog::extension	()	const

0

setExtension()

bool	QDialog::isSizeGripEnabled	()	const

“sizeGripEnabled”

Orientation	QDialog::orientation	()	const

setOrientation()

void	QDialog::reject	()	[]

Rejected

accept()done()

int	QDialog::result	()	const

AcceptedRejected

WDestructiveClose exec()

void	QDialog::setExtension	(QWidget	*	extension)

extension0

showExtension() setOrientation()extension()

void	QDialog::setOrientation	(Orientation	orientation)

orientationHorizontal orientationVertical

orientation()setExtension()

void	QDialog::setResult	(int	i)	[]

i

void	QDialog::setSizeGripEnabled	(bool)

“sizeGripEnabled”

void	QDialog::show	()	[]

QApplication::processEvents()

Qt	2.x show()exec()exec()Trolltech

exec()

movies/main.cppshowimg/showimg.cppsql/overview/form1/main.cpp

QWidget

void	QDialog::showExtension	(bool	showIt)	[]

showIt

QPushButtonQButton::toggled()

show() setExtension()setOrientation()

bool	sizeGripEnabled

QSizeGrip

setSizeGripEnabled()isSizeGripEnabled()

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QCanvasItemList	Class	Reference
[canvas	module]

The	QCanvasItemList	class	is	a	list	of	QCanvasItems.	More...

#include	<qcanvas.h>

Inherits	QValueList<QCanvasItem	*	>.

List	of	all	member	functions.

Detailed	Description

The	QCanvasItemList	class	is	a	list	of	QCanvasItems.

QCanvasItemList	is	a	QValueList	of	pointers	to	QCanvasItems.	This	class	is
used	by	some	methods	in	QCanvas	that	need	to	return	a	list	of	canvas	items.

The	QValueList	documentation	describes	how	to	use	this	list.

See	also	Graphics	Classes	and	Image	Processing	Classes.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QPen	Class	Reference
The	QPen	class	defines	how	a	QPainter	should	draw	lines	and	outlines	of	shapes.
More...

#include	<qpen.h>

Inherits	Qt.

List	of	all	member	functions.

Public	Members

QPen	()
QPen	(PenStyle	style)
QPen	(const	QColor	&	color,	uint	width	=	0,	PenStyle	style	=	SolidLine)
QPen	(const	QColor	&	cl,	uint	w,	PenStyle	s,	PenCapStyle	c,
PenJoinStyle	j)
QPen	(const	QPen	&	p)
~QPen	()
QPen	&	operator=	(const	QPen	&	p)
PenStyle	style	()	const
void	setStyle	(PenStyle	s)
uint	width	()	const
void	setWidth	(uint	w)
const	QColor	&	color	()	const
void	setColor	(const	QColor	&	c)
PenCapStyle	capStyle	()	const
void	setCapStyle	(PenCapStyle	c)
PenJoinStyle	joinStyle	()	const
void	setJoinStyle	(PenJoinStyle	j)
bool	operator==	(const	QPen	&	p)	const
bool	operator!=	(const	QPen	&	p)	const

Related	Functions

QDataStream	&	operator<<	(QDataStream	&	s,	const	QPen	&	p)
QDataStream	&	operator>>	(QDataStream	&	s,	QPen	&	p)

Detailed	Description

The	QPen	class	defines	how	a	QPainter	should	draw	lines	and	outlines	of	shapes.

A	pen	has	a	style,	width,	color,	cap	style	and	join	style.

The	pen	style	defines	the	line	type.	The	default	pen	style	is	Qt::SolidLine.
Setting	the	style	to	NoPen	tells	the	painter	to	not	draw	lines	or	outlines.

When	drawing	1	pixel	wide	diagonal	lines	you	can	either	use	a	very	fast
algorithm	(specified	by	a	line	width	of	0,	which	is	the	default),	or	a	slower	but
more	accurate	algorithm	(specified	by	a	line	width	of	1).	For	horizontal	and
vertical	lines	a	line	width	of	0	is	the	same	as	a	line	width	of	1.	The	cap	and	join
style	have	no	effect	on	0-width	lines.

The	pen	color	defines	the	color	of	lines	and	text.	The	default	line	color	is	black.
The	QColor	documentation	lists	predefined	colors.

The	cap	style	defines	how	the	end	points	of	lines	are	drawn.	The	join	style
defines	how	the	joins	between	two	lines	are	drawn	when	multiple	connected
lines	are	drawn	(QPainter::drawPolyLine()	etc.).	The	cap	and	join	styles	only
apply	to	wide	lines,	i.e.	when	the	width	is	1	or	greater.

Use	the	QBrush	class	to	specify	fill	styles.

Example:

				QPainter	painter;

				QPen					pen(red,	2);													//	red	solid	line,	2	pixels	wide

				painter.begin(&anyPaintDevice);			//	paint	something

				painter.setPen(pen);														//	set	the	red,	wide	pen

				painter.drawRect(40,30,	200,100);	//	draw	a	rectangle

				painter.setPen(blue);													//	set	blue	pen,	0	pixel	width

				painter.drawLine(40,30,	240,130);	//	draw	a	diagonal	in	rectangle

				painter.end();																						//	painting	done

				

See	the	Qt::PenStyle	enum	type	for	a	complete	list	of	pen	styles.

With	reference	to	the	end	points	of	lines,	for	wide	(non-0-width)	pens	it	depends

on	the	cap	style	whether	the	end	point	is	drawn	or	not.	QPainter	will	try	to	make
sure	that	the	end	point	is	drawn	for	0-width	pens,	but	this	cannot	be	absolutely
guaranteed	because	the	underlying	drawing	engine	is	free	to	use	any	(typically
accelerated)	algorithm	for	drawing	0-width	lines.	On	all	tested	systems,
however,	the	end	point	of	at	least	all	non-diagonal	lines	are	drawn.

A	pen's	color(),	width(),	style(),	capStyle()	and	joinStyle()	can	be	set	in	the
constructor	or	later	with	setColor(),	setWidth(),	setStyle(),	setCapStyle()	and
setJoinStyle().	Pens	may	also	be	compared	and	streamed.

See	also	QPainter,	QPainter::setPen(),	Graphics	Classes,	Image	Processing
Classes	and	Implicitly	and	Explicitly	Shared	Classes.

Member	Function	Documentation

QPen::QPen	()

Constructs	a	default	black	solid	line	pen	with	0	width,	which	renders	lines	1
pixel	wide	(fast	diagonals).

QPen::QPen	(PenStyle	style)

Constructs	a	black	pen	with	0	width	(fast	diagonals)	and	style	style.

See	also	setStyle().

QPen::QPen	(const	QColor	&	color,	uint	width	=	0,
PenStyle	style	=	SolidLine)

Constructs	a	pen	with	the	specified	color,	width	and	style.

See	also	setWidth(),	setStyle()	and	setColor().

QPen::QPen	(const	QColor	&	cl,	uint	w,	PenStyle	s,
PenCapStyle	c,	PenJoinStyle	j)

Constructs	a	pen	with	the	specified	color	cl	and	width	w.	The	pen	style	is	set	to
s,	the	pen	cap	style	to	c	and	the	pen	join	style	to	j.

A	line	width	of	0	will	produce	a	1	pixel	wide	line	using	a	fast	algorithm	for
diagonals.	A	line	width	of	1	will	also	produce	a	1	pixel	wide	line,	but	uses	a
slower	more	accurate	algorithm	for	diagonals.	For	horizontal	and	vertical	lines	a
line	width	of	0	is	the	same	as	a	line	width	of	1.	The	cap	and	join	style	have	no
effect	on	0-width	lines.

See	also	setWidth(),	setStyle()	and	setColor().

QPen::QPen	(const	QPen	&	p)

Constructs	a	pen	that	is	a	copy	of	p.

QPen::~QPen	()

Destroys	the	pen.

PenCapStyle	QPen::capStyle	()	const

Returns	the	pen's	cap	style.

See	also	setCapStyle().

const	QColor	&	QPen::color	()	const

Returns	the	pen	color.

See	also	setColor().

Example:	scribble/scribble.h.

PenJoinStyle	QPen::joinStyle	()	const

Returns	the	pen's	join	style.

See	also	setJoinStyle().

bool	QPen::operator!=	(const	QPen	&	p)	const

Returns	TRUE	if	the	pen	is	different	from	p;	otherwise	returns	FALSE.

Two	pens	are	different	if	they	have	different	styles,	widths	or	colors.

See	also	operator==().

QPen	&	QPen::operator=	(const	QPen	&	p)

Assigns	p	to	this	pen	and	returns	a	reference	to	this	pen.

bool	QPen::operator==	(const	QPen	&	p)	const

Returns	TRUE	if	the	pen	is	equal	to	p;	otherwise	returns	FALSE.

Two	pens	are	equal	if	they	have	equal	styles,	widths	and	colors.

See	also	operator!=().

void	QPen::setCapStyle	(PenCapStyle	c)

Sets	the	pen's	cap	style	to	c.

The	default	value	is	FlatCap.	The	cap	style	has	no	effect	on	0-width	pens.

Warning:	On	Windows	95/98	and	Macintosh,	the	cap	style	setting	has	no	effect.
Wide	lines	are	rendered	as	if	the	cap	style	was	SquareCap.

See	also	capStyle().

Example:	themes/wood.cpp.

void	QPen::setColor	(const	QColor	&	c)

Sets	the	pen	color	to	c.

See	also	color().

Examples:	progress/progress.cpp	and	scribble/scribble.h.

void	QPen::setJoinStyle	(PenJoinStyle	j)

Sets	the	pen's	join	style	to	j.

The	default	value	is	MiterJoin.	The	join	style	has	no	effect	on	0-width	pens.

Warning:	On	Windows	95/98	and	Macintosh,	the	join	style	setting	has	no	effect.
Wide	lines	are	rendered	as	if	the	join	style	was	BevelJoin.

See	also	joinStyle().

Example:	themes/wood.cpp.

void	QPen::setStyle	(PenStyle	s)

Sets	the	pen	style	to	s.

See	the	Qt::PenStyle	documentation	for	a	list	of	all	the	styles.

Warning:	On	Windows	95/98	and	Macintosh,	the	style	setting	(other	than
NoPen	and	SolidLine)	has	no	effect	for	lines	with	width	greater	than	1.

See	also	style().

Example:	chart/chartform_canvas.cpp.

void	QPen::setWidth	(uint	w)

Sets	the	pen	width	to	w.

A	line	width	of	0	will	produce	a	1	pixel	wide	line	using	a	fast	algorithm	for
diagonals.	A	line	width	of	1	will	also	produce	a	1	pixel	wide	line,	but	uses	a
slower	more	accurate	algorithm	for	diagonals.	For	horizontal	and	vertical	lines	a
line	width	of	0	is	the	same	as	a	line	width	of	1.	The	cap	and	join	style	have	no
effect	on	0-width	lines.

See	also	width().

Examples:	progress/progress.cpp	and	scribble/scribble.h.

PenStyle	QPen::style	()	const

Returns	the	pen	style.

See	also	setStyle().

uint	QPen::width	()	const

Returns	the	pen	width.

See	also	setWidth().

Example:	scribble/scribble.h.

Related	Functions

QDataStream	&	operator<<	(QDataStream	&	s,	const	QPen	&	p
)

Writes	the	pen	p	to	the	stream	s	and	returns	a	reference	to	the	stream.

See	also	Format	of	the	QDataStream	operators.

QDataStream	&	operator>>	(QDataStream	&	s,	QPen	&	p)

Reads	a	pen	from	the	stream	s	into	p	and	returns	a	reference	to	the	stream.

See	also	Format	of	the	QDataStream	operators.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QCanvasRectangle	Class	Reference
[canvas	module]

The	QCanvasRectangle	class	provides	a	rectangle	on	a	QCanvas.	More...

#include	<qcanvas.h>

Inherits	QCanvasPolygonalItem.

List	of	all	member	functions.

Public	Members

QCanvasRectangle	(QCanvas	*	canvas)
QCanvasRectangle	(const	QRect	&	r,	QCanvas	*	canvas)
QCanvasRectangle	(int	x,	int	y,	int	width,	int	height,	QCanvas	*	canvas)
~QCanvasRectangle	()
int	width	()	const
int	height	()	const
void	setSize	(int	width,	int	height)
QSize	size	()	const
QRect	rect	()	const
virtual	int	rtti	()	const

Protected	Members

virtual	void	drawShape	(QPainter	&	p)
virtual	QPointArray	chunks	()	const

Detailed	Description

The	QCanvasRectangle	class	provides	a	rectangle	on	a	QCanvas.

This	item	paints	a	single	rectangle	which	may	have	any	pen()	and	brush(),	but
may	not	be	tilted/rotated.	For	rotated	rectangles,	use	QCanvasPolygon.

The	rectangle's	size	and	initial	position	can	be	set	in	the	constructor.	The	size	can
be	set	or	changed	later	using	setSize().	Use	height()	and	width()	to	retrieve	the
rectangle's	dimensions.

The	rectangle	can	be	drawn	on	a	painter	with	drawShape().

Like	any	other	canvas	item	rectangles	can	be	moved	with	QCanvasItem::move()
and	QCanvasItem::moveBy(),	or	by	setting	coordinates	with
QCanvasItem::setX(),	QCanvasItem::setY()	and	QCanvasItem::setZ().

See	also	Graphics	Classes	and	Image	Processing	Classes.

Member	Function	Documentation

QCanvasRectangle::QCanvasRectangle	(QCanvas	*	canvas)

Constructs	a	rectangle	at	position	(0,0)	with	both	width	and	height	set	to	32
pixels	on	canvas.

QCanvasRectangle::QCanvasRectangle	(const	QRect	&	r,
QCanvas	*	canvas)

Constructs	a	rectangle	positioned	and	sized	by	r	on	canvas.

QCanvasRectangle::QCanvasRectangle	(int	x,	int	y,	int	width,
int	height,	QCanvas	*	canvas)

Constructs	a	rectangle	at	position	(x,	y)	and	size	width	by	height,	on	canvas.

QCanvasRectangle::~QCanvasRectangle	()

Destroys	the	rectangle.

QPointArray	QCanvasRectangle::chunks	()	const	[virtual
protected]

Simply	calls	QCanvasItem::chunks().

void	QCanvasRectangle::drawShape	(QPainter	&	p)	[virtual
protected]

Draws	the	rectangle	on	painter	p.

Example:	canvas/canvas.cpp.

Reimplemented	from	QCanvasPolygonalItem.

int	QCanvasRectangle::height	()	const

Returns	the	height	of	the	rectangle.

QRect	QCanvasRectangle::rect	()	const

Returns	the	integer-converted	x(),	y()	position	and	size()	of	the	rectangle	as	a
QRect.

int	QCanvasRectangle::rtti	()	const	[virtual]

Returns	5	(QCanvasItem::Rtti_Rectangle).

See	also	QCanvasItem::rtti().

Reimplemented	from	QCanvasPolygonalItem.

void	QCanvasRectangle::setSize	(int	width,	int	height)

Sets	the	width	and	height	of	the	rectangle.

QSize	QCanvasRectangle::size	()	const

Returns	the	width()	and	height()	of	the	rectangle.

See	also	rect()	and	setSize().

int	QCanvasRectangle::width	()	const

Returns	the	width	of	the	rectangle.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QCanvasPolygonalItem	Class
Reference

[canvas	module]
The	QCanvasPolygonalItem	class	provides	a	polygonal	canvas	item	on	a
QCanvas.	More...

#include	<qcanvas.h>

Inherits	QCanvasItem.

Inherited	by	QCanvasRectangle,	QCanvasPolygon,	QCanvasLine	and
QCanvasEllipse.

List	of	all	member	functions.

Public	Members

QCanvasPolygonalItem	(QCanvas	*	canvas)
virtual	~QCanvasPolygonalItem	()
virtual	void	setPen	(QPen	p)
virtual	void	setBrush	(QBrush	b)
QPen	pen	()	const
QBrush	brush	()	const
virtual	QPointArray	areaPoints	()	const	=	0
virtual	QPointArray	areaPointsAdvanced	()	const
virtual	QRect	boundingRect	()	const
virtual	int	rtti	()	const

Protected	Members

virtual	void	draw	(QPainter	&	p)
virtual	void	drawShape	(QPainter	&	p)	=	0
bool	winding	()	const
void	setWinding	(bool	enable)

Detailed	Description

The	QCanvasPolygonalItem	class	provides	a	polygonal	canvas	item	on	a
QCanvas.

The	mostly	rectangular	classes,	such	as	QCanvasSprite	and	QCanvasText,	use
the	object's	bounding	rectangle	for	movement,	repainting	and	collision
calculations.	For	most	other	items,	the	bounding	rectangle	can	be	far	too	large	--
a	diagonal	line	being	the	worst	case,	and	there	are	many	other	cases	which	are
also	bad.	QCanvasPolygonalItem	provides	polygon-based	bounding	rectangle
handling,	etc.,	which	is	much	faster	for	non-rectangular	items.

Derived	classes	should	try	to	define	as	small	an	area	as	possible	to	maximize
efficiency,	but	the	polygon	must	definitely	be	contained	completely	within	the
polygonal	area.	Calculating	the	exact	requirements	is	usually	difficult,	but	if	you
allow	a	small	overestimate	it	can	be	easy	and	quick,	while	still	getting	almost	all
of	QCanvasPolygonalItem's	speed.

Note	that	all	subclasses	must	call	hide()	in	their	destructor	since	hide()	needs	to
be	able	to	access	areaPoints().

Normally,	QCanvasPolygonalItem	uses	the	odd-even	algorithm	for	determining
whether	an	object	intersects	this	object.	You	can	change	this	to	the	winding
algorithm	using	setWinding().

The	bounding	rectangle	is	available	using	boundingRect().	The	points	bounding
the	polygonal	item	are	retrieved	with	areaPoints().	Use	areaPointsAdvanced()	to
retrieve	the	bounding	points	the	polygonal	item	will	have	after
QCanvasItem::advance(1)	has	been	called.

By	default,	QCanvasPolygonalItem	objects	have	a	black	pen	and	no	brush	(the
default	QPen	and	QBrush	constructors).	You	can	change	this	with	setPen()	and
setBrush(),	but	note	that	some	QCanvasPolygonalItem	subclasses	only	use	the
brush,	ignoring	the	pen	setting.

The	polygonal	item	can	be	drawn	on	a	painter	with	draw().	Subclasses	must
reimplement	drawShape()	to	draw	themselves.

Like	any	other	canvas	item	polygonal	items	can	be	moved	with
QCanvasItem::move()	and	QCanvasItem::moveBy(),	or	by	setting	coordinates
with	QCanvasItem::setX(),	QCanvasItem::setY()	and	QCanvasItem::setZ().

See	also	Graphics	Classes	and	Image	Processing	Classes.

Member	Function	Documentation

QCanvasPolygonalItem::QCanvasPolygonalItem	(
QCanvas	*	canvas)

Constructs	a	QCanvasPolygonalItem	on	the	canvas	canvas.

QCanvasPolygonalItem::~QCanvasPolygonalItem	()	[virtual]

Note	that	all	subclasses	must	call	hide()	in	their	destructor	since	hide()	needs	to
be	able	to	access	areaPoints().

QPointArray	QCanvasPolygonalItem::areaPoints	()	const	[pure
virtual]

This	function	must	be	reimplemented	by	subclasses.	It	must	return	the	points
bounding	(i.e.	outside	and	not	touching)	the	shape	or	drawing	errors	will	occur.

Reimplemented	in	QCanvasPolygon.

QPointArray	QCanvasPolygonalItem::areaPointsAdvanced	()
const	[virtual]

Returns	the	points	the	polygonal	item	will	have	after	QCanvasItem::advance(1)
is	called,	i.e.	what	the	points	are	when	advanced	by	the	current	xVelocity()	and
yVelocity().

QRect	QCanvasPolygonalItem::boundingRect	()	const	[virtual]

Returns	the	bounding	rectangle	of	the	polygonal	item,	based	on	areaPoints().

Reimplemented	from	QCanvasItem.

QBrush	QCanvasPolygonalItem::brush	()	const

Returns	the	QBrush	used	to	fill	the	item,	if	filled.

See	also	setBrush().

void	QCanvasPolygonalItem::draw	(QPainter	&	p)	[virtual
protected]

Reimplemented	from	QCanvasItem,	this	draws	the	polygonal	item	by	setting	the
pen	and	brush	for	the	item	on	the	painter	p	and	calling	drawShape().

Reimplemented	from	QCanvasItem.

void	QCanvasPolygonalItem::drawShape	(QPainter	&	p)	[pure
virtual	protected]

Subclasses	must	reimplement	this	function	to	draw	their	shape.	The	pen	and
brush	of	p	are	already	set	to	pen()	and	brush()	prior	to	calling	this	function.

See	also	draw().

Reimplemented	in	QCanvasRectangle,	QCanvasPolygon	and	QCanvasEllipse.

QPen	QCanvasPolygonalItem::pen	()	const

Returns	the	QPen	used	to	draw	the	outline	of	the	item,	if	any.

See	also	setPen().

int	QCanvasPolygonalItem::rtti	()	const	[virtual]

Returns	2	(QCanvasItem::Rtti_PolygonalItem).

See	also	QCanvasItem::rtti().

Reimplemented	from	QCanvasItem.

Reimplemented	in	QCanvasRectangle,	QCanvasPolygon,	QCanvasLine	and
QCanvasEllipse.

void	QCanvasPolygonalItem::setBrush	(QBrush	b)	[virtual]

Sets	the	QBrush	used	when	drawing	the	polygonal	item	to	the	brush	b.

See	also	setPen(),	brush()	and	drawShape().

Examples:	canvas/canvas.cpp	and	chart/chartform_canvas.cpp.

void	QCanvasPolygonalItem::setPen	(QPen	p)	[virtual]

Sets	the	QPen	used	when	drawing	the	item	to	the	pen	p.	Note	that	many
QCanvasPolygonalItems	do	not	use	the	pen	value.

See	also	setBrush(),	pen()	and	drawShape().

Examples:	canvas/canvas.cpp	and	chart/chartform_canvas.cpp.

void	QCanvasPolygonalItem::setWinding	(bool	enable)
[protected]

If	enable	is	TRUE,	the	polygonal	item	will	use	the	winding	algorithm	to
determine	the	"inside"	of	the	polygon;	otherwise	the	odd-even	algorithm	will	be
used.

The	default	is	to	use	the	odd-even	algorithm.

See	also	winding().

bool	QCanvasPolygonalItem::winding	()	const	[protected]

Returns	TRUE	if	the	polygonal	item	uses	the	winding	algorithm	to	determine	the
"inside"	of	the	polygon.	Returns	FALSE	if	it	uses	the	odd-even	algorithm.

The	default	is	to	use	the	odd-even	algorithm.

See	also	setWinding().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

http://www.trolltech.com/

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QCanvasItem	Class	Reference
[canvas	module]

The	QCanvasItem	class	provides	an	abstract	graphic	object	on	a	QCanvas.
More...

#include	<qcanvas.h>

Inherits	Qt.

Inherited	by	QCanvasSprite,	QCanvasPolygonalItem	and	QCanvasText.

List	of	all	member	functions.

Public	Members

QCanvasItem	(QCanvas	*	canvas)
virtual	~QCanvasItem	()
double	x	()	const
double	y	()	const
double	z	()	const
virtual	void	moveBy	(double	dx,	double	dy)
void	move	(double	x,	double	y)
void	setX	(double	x)
void	setY	(double	y)
void	setZ	(double	z)
bool	animated	()	const
virtual	void	setAnimated	(bool	y)
virtual	void	setVelocity	(double	vx,	double	vy)
void	setXVelocity	(double	vx)
void	setYVelocity	(double	vy)
double	xVelocity	()	const
double	yVelocity	()	const
virtual	void	advance	(int	phase)
virtual	bool	collidesWith	(const	QCanvasItem	*	other)	const	=	0
QCanvasItemList	collisions	(bool	exact)	const
virtual	void	setCanvas	(QCanvas	*	c)
virtual	void	draw	(QPainter	&	painter)	=	0
void	show	()
void	hide	()
virtual	void	setVisible	(bool	yes)
bool	isVisible	()	const
virtual	void	setSelected	(bool	yes)
bool	isSelected	()	const
virtual	void	setEnabled	(bool	yes)
bool	isEnabled	()	const
virtual	void	setActive	(bool	yes)
bool	isActive	()	const
bool	visible	()	const		(obsolete)
bool	selected	()	const		(obsolete)
bool	enabled	()	const		(obsolete)

bool	active	()	const		(obsolete)
enum	RttiValues	{	Rtti_Item	=	0,	Rtti_Sprite	=	1,	Rtti_PolygonalItem	=	2,
Rtti_Text	=	3,	Rtti_Polygon	=	4,	Rtti_Rectangle	=	5,	Rtti_Ellipse	=	6,
Rtti_Line	=	7,	Rtti_Spline	=	8	}
virtual	int	rtti	()	const
virtual	QRect	boundingRect	()	const	=	0
virtual	QRect	boundingRectAdvanced	()	const
QCanvas	*	canvas	()	const

Protected	Members

void	update	()

Detailed	Description

The	QCanvasItem	class	provides	an	abstract	graphic	object	on	a	QCanvas.

A	variety	of	QCanvasItem	subclasses	provide	immediately	usable	behaviour.
This	class	is	a	pure	abstract	superclass	providing	the	behaviour	that	is	shared
among	all	the	concrete	canvas	item	classes.	QCanvasItem	is	not	intended	for
direct	subclassing.	It	is	much	easier	to	subclass	one	of	its	subclasses,	e.g.
QCanvasPolygonalItem	(the	commonest	base	class),	QCanvasRectangle,
QCanvasSprite,	QCanvasEllipse	or	QCanvasText.

Canvas	items	are	added	to	a	canvas	by	constructing	them	and	passing	the	canvas
to	the	canvas	item's	constructor.	An	item	can	be	moved	to	a	different	canvas
using	setCanvas().

Items	appear	on	the	canvas	after	their	show()	function	has	been	called	(or
setVisible(TRUE)),	and	after	update()	has	been	called.	The	canvas	only	shows
items	that	are	visible,	and	then	only	if	update()	is	called.	If	you	created	the
canvas	without	passing	a	width	and	height	to	the	constructor	you'll	also	need	to
call	resize().

A	QCanvasItem	object	can	be	moved	in	the	x(),	y()	and	z()	dimensions	using
functions	such	as	move(),	moveBy(),	setX(),	setY()	and	setZ().	A	canvas	item
can	be	set	in	motion,	`animated',	using	setAnimated()	and	given	a	velocity	in	the
x	and	y	directions	with	setXVelocity()	and	setYVelocity()	--	the	same	effect	can
be	achieved	by	calling	setVelocity().	Use	the	collidesWith()	function	to	see	if	the
canvas	item	will	collide	on	the	next	advance(1)	and	use	collisions()	to	see	what
collisions	have	occurred.

Use	QCanvasSprite	or	your	own	subclass	of	QCanvasSprite	to	create	canvas
items	which	are	animated,	i.e.	which	change	over	time.

The	size	of	a	canvas	item	is	given	by	boundingRect().	Use
boundingRectAdvanced()	to	see	what	the	size	of	the	canvas	item	will	be	after
the	next	advance(1)	call.

The	rtti()	function	is	used	for	identifying	subclasses	of	QCanvasItem.	The
canvas()	function	returns	a	pointer	to	the	canvas	which	contains	the	canvas	item.

QCanvasItem	provides	the	show()	and	isVisible()	functions	like	those	in
QWidget.

QCanvasItem	also	provides	the	setEnabled(),	setActive()	and	setSelected()
functions;	these	functions	set	the	relevant	boolean	and	cause	a	repaint	but	the
boolean	values	they	set	are	not	used	in	QCanvasItem	itself.	You	can	make	use	of
these	booleans	in	your	subclasses.

By	default,	canvas	items	have	no	velocity,	no	size,	and	are	not	in	motion.	The
subclasses	provided	in	Qt	do	not	change	these	defaults	except	where	noted.

See	also	Graphics	Classes	and	Image	Processing	Classes.

Member	Type	Documentation

QCanvasItem::RttiValues

This	enum	is	used	to	name	the	different	types	of	canvas	item.

QCanvasItem::Rtti_Item	-	Canvas	item	abstract	base	class
QCanvasItem::Rtti_Ellipse

QCanvasItem::Rtti_Line

QCanvasItem::Rtti_Polygon

QCanvasItem::Rtti_PolygonalItem

QCanvasItem::Rtti_Rectangle

QCanvasItem::Rtti_Spline

QCanvasItem::Rtti_Sprite

QCanvasItem::Rtti_Text

Member	Function	Documentation

QCanvasItem::QCanvasItem	(QCanvas	*	canvas)

Constructs	a	QCanvasItem	on	canvas	canvas.

See	also	setCanvas().

QCanvasItem::~QCanvasItem	()	[virtual]

Destroys	the	QCanvasItem	and	removes	it	from	its	canvas.

bool	QCanvasItem::active	()	const

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Use	isActive()	instead.

void	QCanvasItem::advance	(int	phase)	[virtual]

The	default	implementation	moves	the	canvas	item,	if	it	is	animated(),	by	the
preset	velocity	if	phase	is	1,	and	does	nothing	if	phase	is	0.

Note	that	if	you	reimplement	this	function,	the	reimplementation	must	not
change	the	canvas	in	any	way,	for	example	it	must	not	add	or	remove	items.

See	also	QCanvas::advance()	and	setVelocity().

Example:	canvas/canvas.cpp.

Reimplemented	in	QCanvasSprite.

bool	QCanvasItem::animated	()	const

Returns	TRUE	is	the	canvas	item	is	in	motion;	otherwise	returns	FALSE.

See	also	setVelocity()	and	setAnimated().

QRect	QCanvasItem::boundingRect	()	const	[pure	virtual]

Returns	the	bounding	rectangle	in	pixels	that	the	canvas	item	covers.

See	also	boundingRectAdvanced().

Reimplemented	in	QCanvasSprite,	QCanvasPolygonalItem	and	QCanvasText.

QRect	QCanvasItem::boundingRectAdvanced	()	const	[virtual]

Returns	the	bounding	rectangle	of	pixels	that	the	canvas	item	will	cover	after
advance(1)	is	called.

See	also	boundingRect().

QCanvas	*	QCanvasItem::canvas	()	const

Returns	the	canvas	containing	the	canvas	item.

bool	QCanvasItem::collidesWith	(const	QCanvasItem	*	other)
const	[pure	virtual]

Returns	TRUE	if	the	canvas	item	will	collide	with	the	other	item	after	they	have
moved	by	their	current	velocities;	otherwise	returns	FALSE.

See	also	collisions().

Example:	canvas/canvas.cpp.

QCanvasItemList	QCanvasItem::collisions	(bool	exact)	const

Returns	the	list	of	canvas	items	that	this	canvas	item	has	collided	with.

A	collision	is	generally	defined	as	occurring	when	the	pixels	of	one	item	draw	on
the	pixels	of	another	item,	but	not	all	subclasses	are	so	precise.	Also,	since	pixel-
wise	collision	detection	can	be	slow,	this	function	works	in	either	exact	or
inexact	mode,	according	to	the	exact	parameter.

If	exact	is	TRUE,	the	canvas	items	returned	have	been	accurately	tested	for
collision	with	the	canvas	item.

If	exact	is	FALSE,	the	canvas	items	returned	are	near	the	canvas	item.	You	can
test	the	canvas	items	returned	using	collidesWith()	if	any	are	interesting	collision
candidates.	By	using	this	approach,	you	can	ignore	some	canvas	items	for	which
collisions	are	not	relevant.

The	returned	list	is	a	list	of	QCanvasItems,	but	often	you	will	need	to	cast	the
items	to	their	subclass	types.	The	safe	way	to	do	this	is	to	use	rtti()	before
casting.	This	provides	some	of	the	functionality	of	the	standard	C++	dynamic
cast	operation	even	on	compilers	where	dynamic	casts	are	not	available.

Note	that	a	canvas	item	may	be	`on'	a	canvas,	e.g.	it	was	created	with	the	canvas
as	parameter,	even	though	its	coordinates	place	it	beyond	the	edge	of	the
canvas's	area.	Collision	detection	only	works	for	canvas	items	which	are	wholly
or	partly	within	the	canvas's	area.

void	QCanvasItem::draw	(QPainter	&	painter)	[pure	virtual]

This	abstract	virtual	function	draws	the	canvas	item	using	painter.

Reimplemented	in	QCanvasSprite,	QCanvasPolygonalItem	and	QCanvasText.

bool	QCanvasItem::enabled	()	const

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Use	isEnabled()	instead.

void	QCanvasItem::hide	()

Shorthand	for	setVisible(FALSE).

bool	QCanvasItem::isActive	()	const

Returns	TRUE	if	the	QCanvasItem	is	active;	otherwise	returns	FALSE.

bool	QCanvasItem::isEnabled	()	const

Returns	TRUE	if	the	QCanvasItem	is	enabled;	otherwise	returns	FALSE.

bool	QCanvasItem::isSelected	()	const

Returns	TRUE	if	the	canvas	item	is	selected;	otherwise	returns	FALSE.

bool	QCanvasItem::isVisible	()	const

Returns	TRUE	if	the	canvas	item	is	visible;	otherwise	returns	FALSE.

Note	that	in	this	context	TRUE	does	not	mean	that	the	canvas	item	is	currently
in	a	view,	merely	that	if	a	view	is	showing	the	area	where	the	canvas	item	is
positioned,	and	the	item	is	not	obscured	by	items	with	higher	z	values,	and	the
view	is	not	obscured	by	overlaying	windows,	it	would	be	visible.

See	also	setVisible()	and	z().

void	QCanvasItem::move	(double	x,	double	y)

Moves	the	canvas	item	to	the	absolute	position	(x,	y).

Example:	canvas/canvas.cpp.

void	QCanvasItem::moveBy	(double	dx,	double	dy)	[virtual]

Moves	the	canvas	item	relative	to	its	current	position	by	(dx,	dy).

Example:	canvas/canvas.cpp.

int	QCanvasItem::rtti	()	const	[virtual]

Returns	0	(QCanvasItem::Rtti_Item).

Make	your	derived	classes	return	their	own	values	for	rtti(),	so	that	you	can
distinguish	between	objects	returned	by	QCanvas::at().	You	should	use	values
greater	than	1000	to	allow	for	extensions	to	this	class.

Overuse	of	this	functionality	can	damage	it's	extensibility.	For	example,	once
you	have	identified	a	base	class	of	a	QCanvasItem	found	by	QCanvas::at(),	cast
it	to	that	type	and	call	meaningful	methods	rather	than	acting	upon	the	object
based	on	its	rtti	value.

For	example:

				QCanvasItem*	item;

				//	Find	an	item,	eg.	with	QCanvasItem::collisions().

				...

				if	(item->rtti()	==	MySprite::RTTI)	{

								MySprite*	s	=	(MySprite*)item;

								if	(s->isDamagable())	s->loseHitPoints(1000);

								if	(s->isHot())	myself->loseHitPoints(1000);

								...

				}

Example:	canvas/canvas.cpp.

Reimplemented	in	QCanvasSprite,	QCanvasPolygonalItem	and	QCanvasText.

bool	QCanvasItem::selected	()	const

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Use	isSelected()	instead.

void	QCanvasItem::setActive	(bool	yes)	[virtual]

Sets	the	active	flag	of	the	item	to	yes.	If	this	changes	the	item's	active	state	the
item	will	be	redrawn	when	QCanvas::update()	is	next	called.

The	QCanvas,	QCanvasItem	and	the	Qt-supplied	QCanvasItem	subclasses	do
not	make	use	of	this	value.	The	setActive()	function	is	supplied	because	many
applications	need	it,	but	it	is	up	to	you	how	you	use	the	isActive()	value.

void	QCanvasItem::setAnimated	(bool	y)	[virtual]

Sets	the	canvas	item	to	be	in	motion	if	y	is	TRUE,	or	not	if	y	is	FALSE.	The
speed	and	direction	of	the	motion	is	set	with	setVelocity(),	or	setXVelocity()	and

setYVelocity().

See	also	advance()	and	QCanvas::advance().

void	QCanvasItem::setCanvas	(QCanvas	*	c)	[virtual]

Sets	the	QCanvas	upon	which	the	canvas	item	is	to	be	drawn	to	c.

See	also	canvas().

void	QCanvasItem::setEnabled	(bool	yes)	[virtual]

Sets	the	enabled	flag	of	the	item	to	yes.	If	this	changes	the	item's	enabled	state
the	item	will	be	redrawn	when	QCanvas::update()	is	next	called.

The	QCanvas,	QCanvasItem	and	the	Qt-supplied	QCanvasItem	subclasses	do
not	make	use	of	this	value.	The	setEnabled()	function	is	supplied	because	many
applications	need	it,	but	it	is	up	to	you	how	you	use	the	isEnabled()	value.

void	QCanvasItem::setSelected	(bool	yes)	[virtual]

Sets	the	selected	flag	of	the	item	to	yes.	If	this	changes	the	item's	selected	state
the	item	will	be	redrawn	when	QCanvas::update()	is	next	called.

The	QCanvas,	QCanvasItem	and	the	Qt-supplied	QCanvasItem	subclasses	do
not	make	use	of	this	value.	The	setSelected()	function	is	supplied	because	many
applications	need	it,	but	it	is	up	to	you	how	you	use	the	isSelected()	value.

void	QCanvasItem::setVelocity	(double	vx,	double	vy)	[virtual]

Sets	the	canvas	item	to	be	in	motion,	moving	by	vx	and	vy	pixels	in	the
horizontal	and	vertical	directions	respectively.

See	also	advance().

void	QCanvasItem::setVisible	(bool	yes)	[virtual]

Makes	the	canvas	item	visible	if	yes	is	TRUE,	or	invisible	if	yes	is	FALSE.	The
change	takes	effect	when	QCanvas::update()	is	next	called.

void	QCanvasItem::setX	(double	x)

Moves	the	canvas	item	so	that	its	x-position	is	x.

See	also	x()	and	move().

Example:	chart/chartform_canvas.cpp.

void	QCanvasItem::setXVelocity	(double	vx)

Sets	the	horizontal	component	of	the	canvas	item's	velocity	to	vx.

void	QCanvasItem::setY	(double	y)

Moves	the	canvas	item	so	that	its	y-position	is	y.

See	also	y()	and	move().

Example:	chart/chartform_canvas.cpp.

void	QCanvasItem::setYVelocity	(double	vy)

Sets	the	vertical	component	of	the	canvas	item's	velocity	to	vy.

void	QCanvasItem::setZ	(double	z)

Sets	the	z	index	of	the	canvas	item	to	z.	Higher-z	items	obscure	(are	in	front	of)
lower-z	items.

See	also	z()	and	move().

Examples:	canvas/canvas.cpp	and	chart/chartform_canvas.cpp.

void	QCanvasItem::show	()

Shorthand	for	setVisible(TRUE).

Examples:	canvas/canvas.cpp	and	chart/chartform_canvas.cpp.

void	QCanvasItem::update	()	[protected]

Call	this	function	to	repaint	the	canvas's	changed	chunks.

bool	QCanvasItem::visible	()	const

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Use	isVisible()	instead.

double	QCanvasItem::x	()	const

Returns	the	horizontal	position	of	the	canvas	item.	Note	that	subclasses	often
have	an	origin	other	than	the	top-left	corner.

Example:	canvas/canvas.cpp.

double	QCanvasItem::xVelocity	()	const

Returns	the	horizontal	velocity	component	of	the	canvas	item.

double	QCanvasItem::y	()	const

Returns	the	vertical	position	of	the	canvas	item.	Note	that	subclasses	often	have
an	origin	other	than	the	top-left	corner.

Example:	canvas/canvas.cpp.

double	QCanvasItem::yVelocity	()	const

Returns	the	vertical	velocity	component	of	the	canvas	item.

double	QCanvasItem::z	()	const

Returns	the	z	index	of	the	canvas	item,	which	is	used	for	visual	order:	higher-z
items	obscure	(are	in	front	of)	lower-z	items.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QResizeEvent	Class	Reference
The	QResizeEvent	class	contains	event	parameters	for	resize	events.	More...

#include	<qevent.h>

Inherits	QEvent.

List	of	all	member	functions.

Public	Members

QResizeEvent	(const	QSize	&	size,	const	QSize	&	oldSize)
const	QSize	&	size	()	const
const	QSize	&	oldSize	()	const

Detailed	Description

The	QResizeEvent	class	contains	event	parameters	for	resize	events.

Resize	events	are	sent	to	widgets	that	have	been	resized.

The	event	handler	QWidget::resizeEvent()	receives	resize	events.

See	also	QWidget::size,	QWidget::geometry	and	Event	Classes.

Member	Function	Documentation

QResizeEvent::QResizeEvent	(const	QSize	&	size,
const	QSize	&	oldSize)

Constructs	a	resize	event	with	the	new	and	old	widget	sizes,	size	and	oldSize
respectively.

const	QSize	&	QResizeEvent::oldSize	()	const

Returns	the	old	size	of	the	widget.

const	QSize	&	QResizeEvent::size	()	const

Returns	the	new	size	of	the	widget,	which	is	the	same	as	QWidget::size().

Examples:	chart/canvasview.cpp	and	life/life.cpp.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QContextMenuEvent	Class	Reference
The	QContextMenuEvent	class	contains	parameters	that	describe	a	context	menu
event.	More...

#include	<qevent.h>

Inherits	QEvent.

List	of	all	member	functions.

Public	Members

enum	Reason	{	Mouse,	Keyboard,	Other	}
QContextMenuEvent	(Reason	reason,	const	QPoint	&	pos,
const	QPoint	&	globalPos,	int	state)
QContextMenuEvent	(Reason	reason,	const	QPoint	&	pos,	int	state)
int	x	()	const
int	y	()	const
int	globalX	()	const
int	globalY	()	const
const	QPoint	&	pos	()	const
const	QPoint	&	globalPos	()	const
ButtonState	state	()	const
bool	isAccepted	()	const
bool	isConsumed	()	const
void	consume	()
void	accept	()
void	ignore	()
Reason	reason	()	const

Detailed	Description

The	QContextMenuEvent	class	contains	parameters	that	describe	a	context	menu
event.

Context	menu	events	are	sent	to	widgets	when	a	user	triggers	a	context	menu.
What	triggers	this	is	platform	dependent.	For	example,	on	Windows,	pressing	the
menu	button	or	releasing	the	right	mouse	button	will	cause	this	event	to	be	sent.

When	this	event	occurs	it	is	customary	to	show	a	QPopupMenu	with	a	context
menu,	if	this	is	relevant	to	the	context.

Context	menu	events	contain	a	special	accept	flag	that	indicates	whether	the
receiver	accepted	the	event.	If	the	event	handler	does	not	accept	the	event,	then
whatever	triggered	the	event	will	be	handled	as	a	regular	input	event	if	possible.

See	also	QPopupMenu	and	Event	Classes.

Member	Type	Documentation

QContextMenuEvent::Reason

This	enum	describes	the	reason	the	ContextMenuEvent	was	sent.	The	values	are:

QContextMenuEvent::Mouse	-	The	mouse	caused	the	event	to	be	sent.
Normally	this	means	the	right	mouse	button	was	clicked,	but	this	is
platform	specific.
QContextMenuEvent::Keyboard	-	The	keyboard	caused	this	event	to	be
sent.	On	Windows	this	means	the	menu	button	was	pressed.
QContextMenuEvent::Other	-	The	event	was	sent	by	some	other	means
(i.e.	not	by	the	mouse	or	keyboard).

Member	Function	Documentation

QContextMenuEvent::QContextMenuEvent	(Reason	reason,
const	QPoint	&	pos,	const	QPoint	&	globalPos,	int	state)

Constructs	a	context	menu	event	object	with	the	accept	parameter	flag	set	to
FALSE.

The	reason	parameter	must	be	QContextMenuEvent::Mouse	or
QContextMenuEvent::Keyboard.

The	pos	parameter	specifies	the	mouse	position	relative	to	the	receiving	widget.
globalPos	is	the	mouse	position	in	absolute	coordinates.	state	is	the	ButtonState
at	the	time	of	the	event.

QContextMenuEvent::QContextMenuEvent	(Reason	reason,
const	QPoint	&	pos,	int	state)

Constructs	a	context	menu	event	object	with	the	accept	parameter	flag	set	to
FALSE.

The	reason	parameter	must	be	QContextMenuEvent::Mouse	or
QContextMenuEvent::Keyboard.

The	pos	parameter	specifies	the	mouse	position	relative	to	the	receiving	widget.
state	is	the	ButtonState	at	the	time	of	the	event.

The	globalPos()	is	initialized	to	QCursor::pos(),	which	may	not	be	appropriate.
Use	the	other	constructor	to	specify	the	global	position	explicitly.

void	QContextMenuEvent::accept	()

Sets	the	accept	flag	of	the	context	event	object.

Setting	the	accept	flag	indicates	that	the	receiver	of	this	event	has	processed	the
event.	Processing	the	event	means	you	did	something	with	it	and	it	will	be
implicitly	consumed.

The	accept	flag	is	not	set	by	default.

See	also	ignore()	and	consume().

void	QContextMenuEvent::consume	()

Sets	the	consume	flag	of	the	context	event	object.

Setting	the	consume	flag	indicates	that	the	receiver	of	this	event	does	not	want
the	event	to	be	propagated	further	(i.e.	not	sent	to	parent	classes.)

The	consumed	flag	is	not	set	by	default.

See	also	ignore()	and	accept().

const	QPoint	&	QContextMenuEvent::globalPos	()	const

Returns	the	global	position	of	the	mouse	pointer	at	the	time	of	the	event.

See	also	x(),	y()	and	pos().

int	QContextMenuEvent::globalX	()	const

Returns	the	global	x-position	of	the	mouse	pointer	at	the	time	of	the	event.

See	also	globalY()	and	globalPos().

int	QContextMenuEvent::globalY	()	const

Returns	the	global	y-position	of	the	mouse	pointer	at	the	time	of	the	event.

See	also	globalX()	and	globalPos().

void	QContextMenuEvent::ignore	()

Clears	the	accept	flag	of	the	context	event	object.

Clearing	the	accept	flag	indicates	that	the	receiver	of	this	event	does	not	need	to
show	a	context	menu.	This	will	implicitly	remove	the	consumed	flag	as	well.

The	accept	flag	is	not	set	by	default.

See	also	accept()	and	consume().

bool	QContextMenuEvent::isAccepted	()	const

Returns	TRUE	if	the	receiver	has	processed	the	event;	otherwise	returns	FALSE.

See	also	accept(),	ignore()	and	consume().

bool	QContextMenuEvent::isConsumed	()	const

Returns	TRUE	(which	stops	propagation	of	the	event)	if	the	receiver	has	blocked
the	event;	otherwise	returns	FALSE.

See	also	accept(),	ignore()	and	consume().

const	QPoint	&	QContextMenuEvent::pos	()	const

Returns	the	position	of	the	mouse	pointer	relative	to	the	widget	that	received	the
event.

See	also	x(),	y()	and	globalPos().

Reason	QContextMenuEvent::reason	()	const

Returns	the	reason	for	this	context	event.

ButtonState	QContextMenuEvent::state	()	const

Returns	the	button	state	(a	combination	of	mouse	buttons	and	keyboard
modifiers),	i.e.	what	buttons	and	keys	were	being	pressed	immediately	before	the
event	was	generated.

The	returned	value	is	LeftButton,	RightButton,	MidButton,	ShiftButton,
ControlButton	and	AltButton	OR'ed	together.

int	QContextMenuEvent::x	()	const

Returns	the	x-position	of	the	mouse	pointer,	relative	to	the	widget	that	received
the	event.

See	also	y()	and	pos().

int	QContextMenuEvent::y	()	const

Returns	the	y-position	of	the	mouse	pointer,	relative	to	the	widget	that	received
the	event.

See	also	x()	and	pos().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QScrollView
QScrollView	 ……

#include	<qscrollview.h>

QFrame

QCanvasViewQTableQGridViewQIconViewQListBoxQListViewQTextEdit

QScrollView	(QWidget	*	parent	=	0,	const	char	*	name	=	0,	WFlags	f	=	0
)
~QScrollView	()
enum	ResizePolicy	{	Default,	Manual,	AutoOne,	AutoOneFit	}
virtual	void	setResizePolicy	(ResizePolicy)
ResizePolicy	resizePolicy	()	const
void	removeChild	(QWidget	*	child)
virtual	void	addChild	(QWidget	*	child,	int	x	=	0,	int	y	=	0)
virtual	void	moveChild	(QWidget	*	child,	int	x,	int	y)
int	childX	(QWidget	*	child)
int	childY	(QWidget	*	child)
bool	childIsVisible	(QWidget	*	child)		(obsolete)
void	showChild	(QWidget	*	child,	bool	y	=	TRUE)		(obsolete)
enum	ScrollBarMode	{	Auto,	AlwaysOff,	AlwaysOn	}
ScrollBarMode	vScrollBarMode	()	const
virtual	void	setVScrollBarMode	(ScrollBarMode)
ScrollBarMode	hScrollBarMode	()	const
virtual	void	setHScrollBarMode	(ScrollBarMode)
QWidget	*	cornerWidget	()	const
virtual	void	setCornerWidget	(QWidget	*	corner)
QScrollBar	*	horizontalScrollBar	()	const
QScrollBar	*	verticalScrollBar	()	const
QWidget	*	viewport	()	const
QWidget	*	clipper	()	const
int	visibleWidth	()	const
int	visibleHeight	()	const
int	contentsWidth	()	const
int	contentsHeight	()	const
int	contentsX	()	const
int	contentsY	()	const
void	updateContents	(int	x,	int	y,	int	w,	int	h)
void	updateContents	(const	QRect	&	r)
void	updateContents	()
void	repaintContents	(int	x,	int	y,	int	w,	int	h,	bool	erase	=	TRUE)
void	repaintContents	(const	QRect	&	r,	bool	erase	=	TRUE)

void	repaintContents	(bool	erase	=	TRUE)
void	contentsToViewport	(int	x,	int	y,	int	&	vx,	int	&	vy)	const
void	viewportToContents	(int	vx,	int	vy,	int	&	x,	int	&	y)	const
QPoint	contentsToViewport	(const	QPoint	&	p)	const
QPoint	viewportToContents	(const	QPoint	&	vp)	const
void	enableClipper	(bool	y)
void	setStaticBackground	(bool	y)
bool	hasStaticBackground	()	const
QSize	viewportSize	(int	x,	int	y)	const
virtual	void	setDragAutoScroll	(bool	b)
bool	dragAutoScroll	()	const

virtual	void	resizeContents	(int	w,	int	h)
void	scrollBy	(int	dx,	int	dy)
virtual	void	setContentsPos	(int	x,	int	y)
void	ensureVisible	(int	x,	int	y)
void	ensureVisible	(int	x,	int	y,	int	xmargin,	int	ymargin)
void	center	(int	x,	int	y)
void	center	(int	x,	int	y,	float	xmargin,	float	ymargin)
void	updateScrollBars	()

void	contentsMoving	(int	x,	int	y)

int	contentsHeight	-		
int	contentsWidth	-		
int	contentsX	-	X	
int	contentsY	-	Y	
bool	dragAutoScroll	-	
ScrollBarMode	hScrollBarMode	-	
ResizePolicy	resizePolicy	-	
ScrollBarMode	vScrollBarMode	-	
int	visibleHeight	-		
int	visibleWidth	-		

virtual	void	drawContents	(QPainter	*	p,	int	clipx,	int	clipy,	int	clipw,
int	cliph)
virtual	void	drawContentsOffset	(QPainter	*	p,	int	offsetx,	int	offsety,
int	clipx,	int	clipy,	int	clipw,	int	cliph)
virtual	void	contentsMousePressEvent	(QMouseEvent	*)
virtual	void	contentsMouseReleaseEvent	(QMouseEvent	*)
virtual	void	contentsMouseDoubleClickEvent	(QMouseEvent	*)
virtual	void	contentsMouseMoveEvent	(QMouseEvent	*)
virtual	void	contentsDragEnterEvent	(QDragEnterEvent	*)
virtual	void	contentsDragMoveEvent	(QDragMoveEvent	*)
virtual	void	contentsDragLeaveEvent	(QDragLeaveEvent	*)
virtual	void	contentsDropEvent	(QDropEvent	*)
virtual	void	contentsWheelEvent	(QWheelEvent	*	e)
virtual	void	contentsContextMenuEvent	(QContextMenuEvent	*	e)
virtual	void	viewportPaintEvent	(QPaintEvent	*	pe)
virtual	void	viewportResizeEvent	(QResizeEvent	*)
virtual	void	setMargins	(int	left,	int	top,	int	right,	int	bottom)
int	leftMargin	()	const
int	topMargin	()	const
int	rightMargin	()	const
int	bottomMargin	()	const
virtual	void	setHBarGeometry	(QScrollBar	&	hbar,	int	x,	int	y,	int	w,	int	h
)
virtual	void	setVBarGeometry	(QScrollBar	&	vbar,	int	x,	int	y,	int	w,	int	h
)
virtual	bool	eventFilter	(QObject	*	obj,	QEvent	*	e)

QScrollView

QScrollView——32000QScrollViewQWidget

QScrollView drawContents()resizeContents

QScrollView

QScrollView4000X11QScrollView
addChild()

				QScrollView*	sv	=	new	QScrollView(...);

				QVBox*	big_box	=	new	QVBox(sv->viewport());

				sv->addChild(big_box);

				QLabel*	child1	=	new	QLabel("CHILD",	big_box);

				QLabel*	child2	=	new	QLabel("CHILD",	big_box);

				QLabel*	child3	=	new	QLabel("CHILD",	big_box);

				...

QScrollViewviewport() verticalScrollBar() horizontalScrollBar
cornerWidget()viewport()—— QVBoxQVBoxQLabelQVBox

QScrollView4000
addChild()

				QScrollView*	sv	=	new	QScrollView(...);

				QLabel*	child1	=	new	QLabel("CHILD",	sv->viewport());

				sv->addChild(child1);

				QLabel*	child2	=	new	QLabel("CHILD",	sv->viewport());

				sv->addChild(child2);

				QLabel*	child3	=	new	QLabel("CHILD",	sv->viewport());

				sv->addChild(child3);

QScrollViewviewport() verticalScrollBar() horizontalScrollBar
cornerWidget() viewport()QLabel

	

QScrollView4000
enableClipper(TRUE)viewport() addChild()

				QScrollView*	sv	=	new	QScrollView(...);

				sv->enableClipper(TRUE);

				QLabel*	child1	=	new	QLabel("CHILD",	sv->viewport());

				sv->addChild(child1);

				QLabel*	child2	=	new	QLabel("CHILD",	sv->viewport());

				sv->addChild(child2);

				QLabel*	child3	=	new	QLabel("CHILD",	sv->viewport());

				sv->addChild(child3);

QScrollView clipper()
viewport() verticalScrollBar() horizontalScrollBar()cornerWidget()
clipper()viewport()viewport()viewport()

viewport()QScrollViewviewport()->setMouseTracking(TRUE)

QScrollView setAcceptDrops(TRUE)QScrollView
viewportToContents()

mousePressEvent()QScrollView——“”

QScrollView viewport()QScrollViewQWidget
WResizeNoEraseWStaticContentsWRepaintNoEraseWPaintClever
Qt::WidgetFlags

WResizeNoErase|WStaticContents

WResizeNoErase WStaticContents

WRepaintNoErase WStaticContents

addChild()moveChild() childX()childY()

setCornerWidget() horizontalScrollBar()verticalScrollBar()
scrollBy() ensureVisible() setContentsPos()center()

visibleWidth()visibleHeight() contentsWidth()contentsHeight()
repaintContents()updateContents()

contentsToViewport()viewportToContents()

contentsMoving()

WResizeNoEraseQt

	

QScrollView::ResizePolicy

QScrollView

QScrollView::Default	-	QScrollViewQt resizeContents()
QScrollView Manual AutoOne
QScrollView::Manual	-	resizeContents()
QScrollView::AutoOne	-	
QScrollView::AutoOneFit	-	 sizeHint()sizeHint()

QScrollView::ScrollBarMode

QScrollView

QScrollView::Auto	-	QScrollView
QScrollView::AlwaysOff	-	QScrollView
QScrollView::AlwaysOn	-	QScrollView

QScrollView::QScrollView	(QWidget	*	parent	=	0,
const	char	*	name	=	0,	WFlags	f	=	0)

parentnamefQScrollView

WStaticContents	 WRepaintNoEraseWPaintCleverviewport()

QScrollView::~QScrollView	()

QScrollView addChild()

void	QScrollView::addChild	(QWidget	*	child,	int	x	=	0,	int	y	=	0
)	[]

child(x,	y)(0,	0)

enableClipper(TRUE)

scrollview/scrollview.cpp

int	QScrollView::bottomMargin	()	const	[]

setMargins()

void	QScrollView::center	(int	x,	int	y)	[]

(x,	y)

scrollview/scrollview.cpp

void	QScrollView::center	(int	x,	int	y,	float	xmargin,
float	ymargin)	[]

(x,	y)xmarginymargin

0.0(x,	y)
0.5(x,	y)50
1.0(x,	y)

bool	QScrollView::childIsVisible	(QWidget	*	child)

childchild->isVisible()

int	QScrollView::childX	(QWidget	*	child)

childX QWidget::x()

int	QScrollView::childY	(QWidget	*	child)

childY QWidget::y()

QWidget	*	QScrollView::clipper	()	const

clipperclipper

visibleWidthvisibleHeight

void	QScrollView::contentsContextMenuEvent	(
QContextMenuEvent	*	e)	[]

QScrollView contextMenuEvent()——

chart/canvasview.cpp

void	QScrollView::contentsDragEnterEvent	(QDragEnterEvent	*

)	[]

QScrollView dragEnterEvent()——

QTable

void	QScrollView::contentsDragLeaveEvent	(
QDragLeaveEvent	*)	[]

QScrollView dragLeaveEvent()——

QTable

void	QScrollView::contentsDragMoveEvent	(QDragMoveEvent	*
)	[]

QScrollView dragMoveEvent()——

QTable

void	QScrollView::contentsDropEvent	(QDropEvent	*)	[]

QScrollView dropEvent()——

QTable

int	QScrollView::contentsHeight	()	const

“contentsHeight”

void	QScrollView::contentsMouseDoubleClickEvent	(
QMouseEvent	*)	[]

QScrollView mouseDoubleClickEvent()——

QListView

void	QScrollView::contentsMouseMoveEvent	(QMouseEvent	*)

[]

QScrollView mouseMoveEvent()——

canvas/canvas.cppchart/canvasview.cpp

QListView

void	QScrollView::contentsMousePressEvent	(QMouseEvent	*)
[]

QScrollView mousePressEvent()——

canvas/canvas.cppchart/canvasview.cpp

QListView

void	QScrollView::contentsMouseReleaseEvent	(QMouseEvent	*
)	[]

QScrollView mouseReleaseEvent()——

QListView

void	QScrollView::contentsMoving	(int	x,	int	y)	[signal]

(x,	y)

contentsXcontentsY

void	QScrollView::contentsToViewport	(int	x,	int	y,	int	&	vx,
int	&	vy)	const

(x,	y)viewport()(vx,	vy)

QPoint	QScrollView::contentsToViewport	(const	QPoint	&	p)
const

viewport()p

void	QScrollView::contentsWheelEvent	(QWheelEvent	*	e)	[
]

QScrollView wheelEvent()——

int	QScrollView::contentsWidth	()	const

“contentsWidth”

int	QScrollView::contentsX	()	const

X “contentsX”

int	QScrollView::contentsY	()	const

Y “contentsY”

QWidget	*	QScrollView::cornerWidget	()	const

scrollview/scrollview.cpp

bool	QScrollView::dragAutoScroll	()	const

“dragAutoScroll”

void	QScrollView::drawContents	(QPainter	*	p,	int	clipx,
int	clipy,	int	clipw,	int	cliph)	[]

p(clipx,	clipy,	clipw,	cliph)

		{

				//	(100000,150000)40000*50000

				//	……

				int	x1	=	100000,	y1	=	150000;

				int	x2	=	x1+40000-1,	y2	=	y1+50000-1;

				//	X/Windows……

				if	(x1	<	clipx)	x1=clipx;

				if	(y1	<	clipy)	y1=clipy;

				if	(x2	>	clipx+clipw-1)	x2=clipx+clipw-1;

				if	(y2	>	clipy+cliph-1)	y2=clipy+cliph-1;

				//	……

				if	(x2	>=	x1	&&	y2	>=	y1)

								p->fillRect(x1,	y1,	x2-x1+1,	y2-y1+1,	red);

		}

		

p

qdir/qdir.cpp

QCanvasViewQTable

void	QScrollView::drawContentsOffset	(QPainter	*	p,	int	offsetx,
int	offsety,	int	clipx,	int	clipy,	int	clipw,	int	cliph)	[]

drawContents(QPainter*,int,int,int,int)

drawContents(QPainter*,int,int,int,int)
drawContents

QListView

void	QScrollView::enableClipper	(bool	y)

enableClipper()

scrollview/scrollview.cpp

void	QScrollView::ensureVisible	(int	x,	int	y)	[]

(x,	y)50

void	QScrollView::ensureVisible	(int	x,	int	y,	int	xmargin,
int	ymargin)	[]

(x,	y)xmarginymargin

bool	QScrollView::eventFilter	(QObject	*	obj,	QEvent	*	e)	[
]

QScrollView

QObject

QListView

ScrollBarMode	QScrollView::hScrollBarMode	()	const

“hScrollBarMode”

bool	QScrollView::hasStaticBackground	()	const

QScrollView

setStaticBackground()

QScrollBar	*	QScrollView::horizontalScrollBar	()	const

bar->setSteps(rate,	bar->pageStep())

0

int	QScrollView::leftMargin	()	const	[]

setMargins()

void	QScrollView::moveChild	(QWidget	*	child,	int	x,	int	y)	[]

child(x,	y) addChild()

void	QScrollView::removeChild	(QWidget	*	child)

child child

void	QScrollView::repaintContents	(int	x,	int	y,	int	w,	int	h,
bool	erase	=	TRUE)

xywhrepaint() erase

updateContents()

void	QScrollView::repaintContents	(const	QRect	&	r,	bool	erase
=	TRUE)

r erase

void	QScrollView::repaintContents	(bool	erase	=	TRUE)

erase

void	QScrollView::resizeContents	(int	w,	int	h)	[virtual	slot]

w h

ResizePolicy	QScrollView::resizePolicy	()	const

“resizePolicy”

int	QScrollView::rightMargin	()	const	[]

setMargins()

void	QScrollView::scrollBy	(int	dx,	int	dy)	[]

dxdy

void	QScrollView::setContentsPos	(int	x,	int	y)	[virtual	slot]

(x,	y)

process/process.cpp

void	QScrollView::setCornerWidget	(QWidget	*	corner)	[]

corner

AlwaysOn

0

corner

setCornerWidget()

QScrollView0

vScrollBarModehScrollBarMode

scrollview/scrollview.cpp

void	QScrollView::setDragAutoScroll	(bool	b)	[]

b“dragAutoScroll”

void	QScrollView::setHBarGeometry	(QScrollBar	&	hbar,	int	x,
int	y,	int	w,	int	h)	[]

hbarxywh

setVBarGeometry()

void	QScrollView::setHScrollBarMode	(ScrollBarMode)	[]

“hScrollBarMode”

void	QScrollView::setMargins	(int	left,	int	top,	int	right,
int	bottom)	[]

lefttoprightbottom“” frameRect() drawContents

0

frameChanged()

void	QScrollView::setResizePolicy	(ResizePolicy)	[]

“resizePolicy”

void	QScrollView::setStaticBackground	(bool	y)

y y

hasStaticBackground()

void	QScrollView::setVBarGeometry	(QScrollBar	&	vbar,	int	x,
int	y,	int	w,	int	h)	[]

vbarxywh

setHBarGeometry()

void	QScrollView::setVScrollBarMode	(ScrollBarMode)	[]

“vScrollBarMode”

void	QScrollView::showChild	(QWidget	*	child,	bool	y	=	TRUE)

child QWidget::show()QWidget::hide()

int	QScrollView::topMargin	()	const	[]

setMargins()

void	QScrollView::updateContents	(int	x,	int	y,	int	w,	int	h)

xywhupdate()

repaintContents()

void	QScrollView::updateContents	(const	QRect	&	r)

r

void	QScrollView::updateContents	()

void	QScrollView::updateScrollBars	()	[]

——

ScrollBarMode	QScrollView::vScrollBarMode	()	const

“vScrollBarMode”

QScrollBar	*	QScrollView::verticalScrollBar	()	const

bar->setSteps(rate,	bar->pageStep())

0

QWidget	*	QScrollView::viewport	()	const

scrollview/scrollview.cpp

void	QScrollView::viewportPaintEvent	(QPaintEvent	*	pe)	[
]

drawContents() QPainter

void	QScrollView::viewportResizeEvent	(QResizeEvent	*)	[
]

QWidget::resizeEvent()

chart/canvasview.cpp

QSize	QScrollView::viewportSize	(int	x,	int	y)	const

(x,	y)

(x,	y)

void	QScrollView::viewportToContents	(int	vx,	int	vy,	int	&	x,
int	&	y)	const

viewport()(vx,	vy)(x,	y)

QPoint	QScrollView::viewportToContents	(const	QPoint	&	vp)
const

vp

int	QScrollView::visibleHeight	()	const

“visibleHeight”

int	QScrollView::visibleWidth	()	const

“visibleWidth”

int	contentsHeight

contentsHeight()

int	contentsWidth

contentsWidth()

int	contentsX

X

contentsX()

int	contentsY

Y

contentsY()

bool	dragAutoScroll

QScrollView

setDragAutoScroll()dragAutoScroll()

ScrollBarMode	hScrollBarMode

QScrollView::Auto

vScrollBarMode

setHScrollBarMode()hScrollBarMode()

ResizePolicy	resizePolicy

Default

ResizePolicy

setResizePolicy()resizePolicy()

ScrollBarMode	vScrollBarMode

QScrollView::Auto

hScrollBarMode

setVScrollBarMode()vScrollBarMode()

int	visibleHeight

visibleHeight()

int	visibleWidth

visibleWidth()

Qt		©	1995-2002	 Trolltech

http://www.trolltech.com/

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QCursor	Class	Reference
The	QCursor	class	provides	a	mouse	cursor	with	an	arbitrary	shape.	More...

#include	<qcursor.h>

Inherits	Qt.

List	of	all	member	functions.

Public	Members

QCursor	()
QCursor	(int	shape)
QCursor	(const	QBitmap	&	bitmap,	const	QBitmap	&	mask,	int	hotX	=
-1,	int	hotY	=	-1)
QCursor	(const	QPixmap	&	pixmap,	int	hotX	=	-1,	int	hotY	=	-1)
QCursor	(const	QCursor	&	c)
~QCursor	()
QCursor	&	operator=	(const	QCursor	&	c)
int	shape	()	const
void	setShape	(int	shape)
const	QBitmap	*	bitmap	()	const
const	QBitmap	*	mask	()	const
QPoint	hotSpot	()	const
HCURSOR	handle	()	const
QCursor	(HCURSOR	handle)
HANDLE	handle	()	const

Static	Public	Members

QPoint	pos	()
void	setPos	(int	x,	int	y)
void	setPos	(const	QPoint	&)
void	initialize	()
void	cleanup	()

Related	Functions

QDataStream	&	operator<<	(QDataStream	&	s,	const	QCursor	&	c)
QDataStream	&	operator>>	(QDataStream	&	s,	QCursor	&	c)

Detailed	Description

The	QCursor	class	provides	a	mouse	cursor	with	an	arbitrary	shape.

This	class	is	mainly	used	to	create	mouse	cursors	that	are	associated	with
particular	widgets	and	to	get	and	set	the	position	of	the	mouse	cursor.

Qt	has	a	number	of	standard	cursor	shapes,	but	you	can	also	make	custom	cursor
shapes	based	on	a	QBitmap,	a	mask	and	a	hotspot.

To	associate	a	cursor	with	a	widget,	use	QWidget::setCursor().	To	associate	a
cursor	with	all	widgets	(normally	for	a	short	period	of	time),	use
QApplication::setOverrideCursor().

To	set	a	cursor	shape	use	QCursor::setShape()	or	use	the	QCursor	constructor
which	takes	the	shape	as	argument,	or	you	can	use	one	of	the	predefined	cursors
defined	in	the	CursorShape	enum.

If	you	want	to	create	a	cursor	with	your	own	bitmap,	either	use	the	QCursor
constructor	which	takes	a	bitmap	and	a	mask	or	the	constructor	which	takes	a
pixmap	as	arguments.

To	set	or	get	the	position	of	the	mouse	cursor	use	the	static	methods
QCursor::pos()	and	QCursor::setPos().

See	also	QWidget,	GUI	Design	Handbook:	Cursors,	Widget	Appearance	and
Style	and	Implicitly	and	Explicitly	Shared	Classes.

Member	Function	Documentation

QCursor::QCursor	()

Constructs	a	cursor	with	the	default	arrow	shape.

QCursor::QCursor	(int	shape)

Constructs	a	cursor	with	the	specified	shape.

See	CursorShape	for	a	list	of	shapes.

See	also	setShape().

QCursor::QCursor	(const	QBitmap	&	bitmap,
const	QBitmap	&	mask,	int	hotX	=	-1,	int	hotY	=	-1)

Constructs	a	custom	bitmap	cursor.

bitmap	and	mask	make	up	the	bitmap.	hotX	and	hotY	define	the	cursor's	hot	spot.

If	hotX	is	negative,	it	is	set	to	the	bitmap().width()/2.	If	hotY	is	negative,	it	is
set	to	the	bitmap().height()/2.

The	cursor	bitmap	(B)	and	mask	(M)	bits	are	combined	like	this:

B=1	and	M=1	gives	black.
B=0	and	M=1	gives	white.
B=0	and	M=0	gives	transparent.
B=1	and	M=0	gives	an	undefined	result.

Use	the	global	color	color0	to	draw	0-pixels	and	color1	to	draw	1-pixels	in	the
bitmaps.

Valid	cursor	sizes	depend	on	the	display	hardware	(or	the	underlying	window
system).	We	recommend	using	32x32	cursors,	because	this	size	is	supported	on
all	platforms.	Some	platforms	also	support	16x16,	48x48	and	64x64	cursors.

See	also	QBitmap::QBitmap()	and	QBitmap::setMask().

QCursor::QCursor	(const	QPixmap	&	pixmap,	int	hotX	=	-1,
int	hotY	=	-1)

Constructs	a	custom	pixmap	cursor.

pixmap	is	the	image.	It	is	usual	to	give	it	a	mask	(set	using
QPixmap::setMask()).	hotX	and	hotY	define	the	cursor's	hot	spot.

If	hotX	is	negative,	it	is	set	to	the	pixmap().width()/2.	If	hotY	is	negative,	it	is
set	to	the	pixmap().height()/2.

Valid	cursor	sizes	depend	on	the	display	hardware	(or	the	underlying	window
system).	We	recommend	using	32x32	cursors,	because	this	size	is	supported	on
all	platforms.	Some	platforms	also	support	16x16,	48x48	and	64x64	cursors.

Currently,	only	black-and-white	pixmaps	can	be	used.

See	also	QPixmap::QPixmap()	and	QPixmap::setMask().

QCursor::QCursor	(const	QCursor	&	c)

Constructs	a	copy	of	the	cursor	c.

QCursor::QCursor	(HCURSOR	handle)

Creates	a	cursor	with	the	specified	window	system	handle	handle.

Warning:	Portable	in	principle,	but	if	you	use	it	you	are	probably	about	to	do
something	non-portable.	Be	careful.

QCursor::~QCursor	()

Destroys	the	cursor.

const	QBitmap	*	QCursor::bitmap	()	const

Returns	the	cursor	bitmap,	or	0	if	it	is	one	of	the	standard	cursors.

void	QCursor::cleanup	()	[static]

Internal	function	that	deinitializes	the	predefined	cursors.	This	function	is	called
from	the	QApplication	destructor.

See	also	initialize().

HANDLE	QCursor::handle	()	const

Returns	the	window	system	cursor	handle.

Warning:	Portable	in	principle,	but	if	you	use	it	you	are	probably	about	to	do
something	non-portable.	Be	careful.

QPoint	QCursor::hotSpot	()	const

Returns	the	cursor	hot	spot,	or	(0,	0)	if	it	is	one	of	the	standard	cursors.

void	QCursor::initialize	()	[static]

Internal	function	that	initializes	the	predefined	cursors.	This	function	is	called
from	the	QApplication	constructor.

See	also	cleanup().

const	QBitmap	*	QCursor::mask	()	const

Returns	the	cursor	bitmap	mask,	or	0	if	it	is	one	of	the	standard	cursors.

QCursor	&	QCursor::operator=	(const	QCursor	&	c)

Assigns	c	to	this	cursor	and	returns	a	reference	to	this	cursor.

QPoint	QCursor::pos	()	[static]

Returns	the	position	of	the	cursor	(hot	spot)	in	global	screen	coordinates.

You	can	call	QWidget::mapFromGlobal()	to	translate	it	to	widget	coordinates.

See	also	setPos(),	QWidget::mapFromGlobal()	and	QWidget::mapToGlobal().

Examples:	chart/canvasview.cpp	and	fileiconview/qfileiconview.cpp.

void	QCursor::setPos	(int	x,	int	y)	[static]

Moves	the	cursor	(hot	spot)	to	the	global	screen	position	(x,	y).

You	can	call	QWidget::mapToGlobal()	to	translate	widget	coordinates	to	global
screen	coordinates.

See	also	pos(),	QWidget::mapFromGlobal()	and	QWidget::mapToGlobal().

void	QCursor::setPos	(const	QPoint	&)	[static]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

void	QCursor::setShape	(int	shape)

Sets	the	cursor	to	the	shape	identified	by	shape.

See	CursorShape	for	the	list	of	cursor	shapes.

See	also	shape().

int	QCursor::shape	()	const

Returns	the	cursor	shape	identifier.	The	return	value	is	one	of	the	CursorShape
enum	values	(cast	to	an	int).

See	also	setShape().

Related	Functions

QDataStream	&	operator<<	(QDataStream	&	s,
const	QCursor	&	c)

Writes	the	cursor	c	to	the	stream	s.

See	also	Format	of	the	QDataStream	operators.

QDataStream	&	operator>>	(QDataStream	&	s,	QCursor	&	c)

Reads	a	cursor	from	the	stream	s	and	sets	c	to	the	read	data.

See	also	Format	of	the	QDataStream	operators.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QCanvasEllipse	Class	Reference
[canvas	module]

The	QCanvasEllipse	class	provides	an	ellipse	or	ellipse	segment	on	a	QCanvas.
More...

#include	<qcanvas.h>

Inherits	QCanvasPolygonalItem.

List	of	all	member	functions.

Public	Members

QCanvasEllipse	(QCanvas	*	canvas)
QCanvasEllipse	(int	width,	int	height,	QCanvas	*	canvas)
QCanvasEllipse	(int	width,	int	height,	int	startangle,	int	angle,
QCanvas	*	canvas)
~QCanvasEllipse	()
int	width	()	const
int	height	()	const
void	setSize	(int	width,	int	height)
void	setAngles	(int	start,	int	length)
int	angleStart	()	const
int	angleLength	()	const
virtual	int	rtti	()	const

Protected	Members

virtual	void	drawShape	(QPainter	&	p)

Detailed	Description

The	QCanvasEllipse	class	provides	an	ellipse	or	ellipse	segment	on	a	QCanvas.

A	canvas	item	that	paints	an	ellipse	or	ellipse	segment	with	a	QBrush.	The
ellipse's	height,	width,	start	angle	and	angle	length	can	be	set	at	construction
time.	The	size	can	be	changed	at	runtime	with	setSize(),	and	the	angles	can	be
changed	(if	you're	displaying	an	ellipse	segment	rather	than	a	whole	ellipse)	with
setAngles().

Note	that	angles	are	specified	in	16ths	of	a	degree.

If	a	start	angle	and	length	angle	are	set	then	an	ellipse	segment	will	be	drawn.
The	start	angle	is	the	angle	that	goes	from	zero	in	a	counter-clockwise	direction
(shown	in	green	in	the	diagram).	The	length	angle	is	the	angle	from	the	start
angle	in	a	counter-clockwise	direction	(shown	in	blue	in	the	diagram).	The	blue
segment	is	the	segment	of	the	ellipse	that	would	be	drawn.	If	no	start	angle	and
length	angle	are	specified	the	entire	ellipse	is	drawn.

The	ellipse	can	be	drawn	on	a	painter	with	drawShape().

Like	any	other	canvas	item	ellipses	can	be	moved	with	move()	and	moveBy(),	or
by	setting	coordinates	with	setX(),	setY()	and	setZ().

See	also	Graphics	Classes	and	Image	Processing	Classes.

Member	Function	Documentation

QCanvasEllipse::QCanvasEllipse	(QCanvas	*	canvas)

Constructs	a	32x32	ellipse,	centered	at	(0,	0)	on	canvas.

QCanvasEllipse::QCanvasEllipse	(int	width,	int	height,
QCanvas	*	canvas)

Constructs	a	width	by	height	pixel	ellipse,	centered	at	(0,0)	on	canvas.

QCanvasEllipse::QCanvasEllipse	(int	width,	int	height,
int	startangle,	int	angle,	QCanvas	*	canvas)

Constructs	a	width	by	height	pixel	ellipse,	centered	at	(0,0)	on	canvas.	Only	a
segment	of	the	ellipse	is	drawn,	starting	at	angle	startangle,	and	extending	for
angle	angle	(the	angle	length).

Note	that	angles	are	specified	in	1/16ths	of	a	degree.

QCanvasEllipse::~QCanvasEllipse	()

Destroys	the	ellipse.

int	QCanvasEllipse::angleLength	()	const

Returns	the	length	angle	(the	extent	of	the	ellipse	segment)	in	16ths	of	a	degree.
Initially	this	will	be	360	*	16	(a	complete	ellipse).

See	also	setAngles()	and	angleStart().

int	QCanvasEllipse::angleStart	()	const

Returns	the	start	angle	in	16ths	of	a	degree.	Initially	this	will	be	0.

See	also	setAngles()	and	angleLength().

void	QCanvasEllipse::drawShape	(QPainter	&	p)	[virtual
protected]

Draws	the	ellipse,	centered	at	x(),	y()	using	the	painter	p.

Note	that	QCanvasEllipse	does	not	support	an	outline	(pen	is	always	NoPen).

Reimplemented	from	QCanvasPolygonalItem.

int	QCanvasEllipse::height	()	const

Returns	the	height	of	the	ellipse.

int	QCanvasEllipse::rtti	()	const	[virtual]

Returns	6	(QCanvasItem::Rtti_Ellipse).

See	also	QCanvasItem::rtti().

Reimplemented	from	QCanvasPolygonalItem.

void	QCanvasEllipse::setAngles	(int	start,	int	length)

Sets	the	angles	for	the	ellipse.	The	start	angle	is	start	and	the	extent	of	the
segment	is	length	(the	angle	length)	from	the	start.	The	angles	are	specified	in
16ths	of	a	degree.	By	default	the	ellipse	will	start	at	0	and	have	an	angle	length
of	360	*	16	(a	complete	ellipse).

See	also	angleStart()	and	angleLength().

void	QCanvasEllipse::setSize	(int	width,	int	height)

Sets	the	width	and	height	of	the	ellipse.

int	QCanvasEllipse::width	()	const

Returns	the	width	of	the	ellipse.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QTable
[]

QTable	 ……

#include	<qtable.h>

QScrollView

QDataTable

QTable	(QWidget	*	parent	=	0,	const	char	*	name	=	0)
QTable	(int	numRows,	int	numCols,	QWidget	*	parent	=	0,
const	char	*	name	=	0)
~QTable	()
QHeader	*	horizontalHeader	()	const
QHeader	*	verticalHeader	()	const
enum	SelectionMode	{	Single,	Multi,	SingleRow,	MultiRow,	NoSelection
}
virtual	void	setSelectionMode	(SelectionMode	mode)
SelectionMode	selectionMode	()	const
virtual	void	setItem	(int	row,	int	col,	QTableItem	*	item)
virtual	void	setText	(int	row,	int	col,	const	QString	&	text)
virtual	void	setPixmap	(int	row,	int	col,	const	QPixmap	&	pix)
virtual	QTableItem	*	item	(int	row,	int	col)	const
virtual	QString	text	(int	row,	int	col)	const
virtual	QPixmap	pixmap	(int	row,	int	col)	const
virtual	void	clearCell	(int	row,	int	col)
virtual	QRect	cellGeometry	(int	row,	int	col)	const
virtual	int	columnWidth	(int	col)	const
virtual	int	rowHeight	(int	row)	const
virtual	int	columnPos	(int	col)	const
virtual	int	rowPos	(int	row)	const
virtual	int	columnAt	(int	x)	const
virtual	int	rowAt	(int	y)	const
virtual	int	numRows	()	const
virtual	int	numCols	()	const
void	updateCell	(int	row,	int	col)
int	currentRow	()	const
int	currentColumn	()	const
void	ensureCellVisible	(int	row,	int	col)
bool	isSelected	(int	row,	int	col)	const
bool	isRowSelected	(int	row,	bool	full	=	FALSE)	const
bool	isColumnSelected	(int	col,	bool	full	=	FALSE)	const
int	numSelections	()	const
QTableSelection	selection	(int	num)	const

virtual	int	addSelection	(const	QTableSelection	&	s)
virtual	void	removeSelection	(const	QTableSelection	&	s)
virtual	void	removeSelection	(int	num)
virtual	int	currentSelection	()	const
bool	showGrid	()	const
bool	columnMovingEnabled	()	const
bool	rowMovingEnabled	()	const
virtual	void	sortColumn	(int	col,	bool	ascending	=	TRUE,
bool	wholeRows	=	FALSE)
bool	sorting	()	const
virtual	void	takeItem	(QTableItem	*	i)
virtual	void	setCellWidget	(int	row,	int	col,	QWidget	*	e)
virtual	QWidget	*	cellWidget	(int	row,	int	col)	const
virtual	void	clearCellWidget	(int	row,	int	col)
virtual	QRect	cellRect	(int	row,	int	col)	const
virtual	void	paintCell	(QPainter	*	p,	int	row,	int	col,	const	QRect	&	cr,
bool	selected)
virtual	void	paintCell	(QPainter	*	p,	int	row,	int	col,	const	QRect	&	cr,
bool	selected,	const	QColorGroup	&	cg)
virtual	void	paintFocus	(QPainter	*	p,	const	QRect	&	cr)
bool	isReadOnly	()	const
bool	isRowReadOnly	(int	row)	const
bool	isColumnReadOnly	(int	col)	const
void	repaintSelections	()
enum	FocusStyle	{	FollowStyle,	SpreadSheet	}
virtual	void	setFocusStyle	(FocusStyle	fs)
FocusStyle	focusStyle	()	const

virtual	void	setNumRows	(int	r)
virtual	void	setNumCols	(int	r)
virtual	void	setShowGrid	(bool	b)
virtual	void	hideRow	(int	row)
virtual	void	hideColumn	(int	col)
virtual	void	showRow	(int	row)
virtual	void	showColumn	(int	col)
virtual	void	setColumnWidth	(int	col,	int	w)
virtual	void	setRowHeight	(int	row,	int	h)
virtual	void	adjustColumn	(int	col)
virtual	void	adjustRow	(int	row)
virtual	void	setColumnStretchable	(int	col,	bool	stretch)
virtual	void	setRowStretchable	(int	row,	bool	stretch)
bool	isColumnStretchable	(int	col)	const
bool	isRowStretchable	(int	row)	const
virtual	void	setSorting	(bool	b)
virtual	void	swapRows	(int	row1,	int	row2,	bool	swapHeader	=	FALSE)
virtual	void	swapColumns	(int	col1,	int	col2,	bool	swapHeader	=	FALSE)
virtual	void	swapCells	(int	row1,	int	col1,	int	row2,	int	col2)
virtual	void	setLeftMargin	(int	m)
virtual	void	setTopMargin	(int	m)
virtual	void	setCurrentCell	(int	row,	int	col)
void	clearSelection	(bool	repaint	=	TRUE)
virtual	void	setColumnMovingEnabled	(bool	b)
virtual	void	setRowMovingEnabled	(bool	b)
virtual	void	setReadOnly	(bool	b)
virtual	void	setRowReadOnly	(int	row,	bool	ro)
virtual	void	setColumnReadOnly	(int	col,	bool	ro)
virtual	void	setDragEnabled	(bool	b)
bool	dragEnabled	()	const
virtual	void	insertRows	(int	row,	int	count	=	1)
virtual	void	insertColumns	(int	col,	int	count	=	1)
virtual	void	removeRow	(int	row)
virtual	void	removeRows	(const	QMemArray<int>	&	rows)
virtual	void	removeColumn	(int	col)

virtual	void	removeColumns	(const	QMemArray<int>	&	cols)
virtual	void	editCell	(int	row,	int	col,	bool	replace	=	FALSE)

void	currentChanged	(int	row,	int	col)
void	clicked	(int	row,	int	col,	int	button,	const	QPoint	&	mousePos)
void	doubleClicked	(int	row,	int	col,	int	button,	const	QPoint	&	mousePos
)
void	pressed	(int	row,	int	col,	int	button,	const	QPoint	&	mousePos)
void	selectionChanged	()
void	valueChanged	(int	row,	int	col)
void	contextMenuRequested	(int	row,	int	col,	const	QPoint	&	pos)
void	dropped	(QDropEvent	*	e)

bool	columnMovingEnabled	-	
FocusStyle	focusStyle	-	
int	numCols	-	
int	numRows	-	
bool	readOnly	-	
bool	rowMovingEnabled	-	
SelectionMode	selectionMode	-	
bool	showGrid	-	
bool	sorting	-	

enum	EditMode	{	NotEditing,	Editing,	Replacing	}
virtual	void	drawContents	(QPainter	*	p,	int	cx,	int	cy,	int	cw,	int	ch)
void	setEditMode	(EditMode	mode,	int	row,	int	col)
virtual	void	contentsDragEnterEvent	(QDragEnterEvent	*	e)
virtual	void	contentsDragMoveEvent	(QDragMoveEvent	*	e)
virtual	void	contentsDragLeaveEvent	(QDragLeaveEvent	*	e)
virtual	void	contentsDropEvent	(QDropEvent	*	e)
virtual	QDragObject	*	dragObject	()
virtual	void	startDrag	()
virtual	void	paintEmptyArea	(QPainter	*	p,	int	cx,	int	cy,	int	cw,	int	ch)
virtual	void	activateNextCell	()
virtual	QWidget	*	createEditor	(int	row,	int	col,	bool	initFromCell)	const
virtual	void	setCellContentFromEditor	(int	row,	int	col)
virtual	QWidget	*	beginEdit	(int	row,	int	col,	bool	replace)
virtual	void	endEdit	(int	row,	int	col,	bool	accept,	bool	replace)
virtual	void	resizeData	(int	len)
virtual	void	insertWidget	(int	row,	int	col,	QWidget	*	w)
int	indexOf	(int	row,	int	col)	const
bool	isEditing	()	const
EditMode	editMode	()	const
int	currEditRow	()	const
int	currEditCol	()	const

virtual	void	columnWidthChanged	(int	col)
virtual	void	rowHeightChanged	(int	row)
virtual	void	columnIndexChanged	(int	section,	int	fromIndex,	int	toIndex
)
virtual	void	rowIndexChanged	(int	section,	int	fromIndex,	int	toIndex)
virtual	void	columnClicked	(int	col)

QTable

QTableAPIQTable headers rowscolumns cells
selections QTablein-place	editing dragdrop QTableQTable

				QTable	*table	=	new	QTable(100,	250,	this);

				table->setPixmap(3,	2,	pix);

				table->setText(3,	2,	"A	pixmap");

				

pixmapQTable QTableItemQComboTableItemQCheckTableItem
1QTable

mouse	tracking viewport setMouseTracking(TRUE)	
QScrollView

QTablelabel verticalHeader()horizontalHeader()
QHeader::setLabel() setLeftMargin() setTopMargin()
setShowGrid() hide()setTopMargin(0)

section	number QHeaderQTableoverrided“”

setRowHeight()setColumnWidth()item adjustRow()
adjustColumn() setRowStretchable()setColumnStretchable()

hideRow() hideColumn() showRow()showColumn() insertRows()
insertColumns() setNumRows()setNumCols()numRows()numCols()

removeRow()removeColumn() removeRows()removeColumns

rowMovingEnabled()columnMovingEnabled() QHeaderQTable
QTableQHeadersectionQTableQHeader

sortColumn() setSorting()TRUE swapRows() swapColumns()
swapCells()

setReadOnly() setRowReadOnly()setColumnReadOnly()
QTableItem::EditType

currentRow()currentColumn()

QTable indexOf()

QTable

QTableItemQTableItemQTableItem

setText()QTableItem QLineEditsetPixmap()
QTableItemQTableItem setItem()

QComboTableItem QCheckTableItem

								for	(int	j	=	0;	j	<	numRows;	++j)

												table.setItem(j,	1,	new	QCheckTableItem(&table,	"Check	me"));

QCheckTableItemsetItem()

QTableQTableItem takeItem() swapCells()

QTableItemQComboTableItemQCheckTableItem
QTableItem::EditType beginEdit()endEdit()

item() QTableItem text() pixmap() cellGeometry()
updateCell() clearCell() ensureCellVisible() isSelected()

setCellWidget()QTableItem clearCellWidget()

QTableItem

paintCell() createEditor()setCellContentFromEditor() resizeData()
QTable item() setItem() clearCell() insertWidget
clearCellWidget() swapRows() swapCells()swapColumns()

QTableItemQWidget table/bigtable/main.cpp

QTableItem

QTable setSelectionMode() isSelected() isRowSelected()
isColumnSelected()

QTable addSelection() numSelections() currentSelection()
removeSelection() clearSelection() QTableSelection

currentChanged() clicked() doubleClicked()pressed()
selectionChanged() valueChanged()
contextMenuRequested() dropped()drop	event

QTable::EditMode

QTable::NotEditing	-	
QTable::Editing	-	
QTable::Replacing	-	

QTable::FocusStyle

QTable::FollowStyle	-	style
QTable::SpreadSheet	-	——

QTable::SelectionMode

QTable::NoSelection	-	
QTable::Single	-	
QTable::Multi	-	
QTable::SingleRow	-	
QTable::MultiRow	-	

QTable::QTable	(QWidget	*	parent	=	0,	const	char	*	name	=	0)

nameparent

QTableItem setNumRows()setNumCols()

QWidget::clearWFlags()Qt::WidgetFlags

QTable::QTable	(int	numRows,	int	numCols,	QWidget	*	parent	=
0,	const	char	*	name	=	0)

namenumRowsnumColsparent

QTableItem QTableItemQComboTableItemQCheckTableItemsetItem()
QTableItem

QWidget::clearWFlags()Qt::WidgetFlags

QTable::~QTable	()

DestructorQTableQTableItem

void	QTable::activateNextCell	()	[virtual	protected]

int	QTable::addSelection	(const	QTableSelection	&	s)	[virtual]

s-1

QTableSelection::init()QTableSelection::expandTo()
QTableSelection::isActive()

numSelections() removeSelection()clearSelection()

void	QTable::adjustColumn	(int	col)	[virtual	slot]

col

adjustRow()

QDataTable

void	QTable::adjustRow	(int	row)	[virtual	slot]

row

adjustColumn()

QWidget	*	QTable::beginEdit	(int	row,	int	col,	bool	replace)
[virtual	protected]

rowcol createEditor() setCellWidget() endEdit()
replaceTRUE

endEdit()

QRect	QTable::cellGeometry	(int	row,	int	col)	const	[virtual]

content	coordinates rowcolbounding	rectangle

QRect	QTable::cellRect	(int	row,	int	col)	const	[virtual]

rowcolgeometry paintCell() QRect(QPoint(0,0) cellGeometry(row,
col) size());

cellGeometry()

chart/setdataform.cpp

QWidget	*	QTable::cellWidget	(int	row,	int	col)	const	[virtual]

rowcol0

QTableItem

clearCellWidget()setCellWidget()

chart/setdataform.cpp

void	QTable::clearCell	(int	row,	int	col)	[virtual]

rowcolQTableItem

QTableItem

void	QTable::clearCellWidget	(int	row,	int	col)	[virtual]

rowcol

QTableItem

rowcol QObject::deleteLater()

cellWidget()setCellWidget()

void	QTable::clearSelection	(bool	repaint	=	TRUE)	[slot]

repaintTRUE

removeSelection()

void	QTable::clicked	(int	row,	int	col,	int	button,
const	QPoint	&	mousePos)	[signal]

button rowcolmousePos

chart/setdataform.cpp

int	QTable::columnAt	(int	x)	const	[virtual]

x x

columnPos()rowAt()

void	QTable::columnClicked	(int	col)	[virtual	protected	slot]

col sorting()TRUE

void	QTable::columnIndexChanged	(int	section,	int	fromIndex,
int	toIndex)	[virtual	protected	slot]

fromIndextoIndexsection

swapRows()swapColumns()

QHeader::indexChange()rowIndexChanged()

bool	QTable::columnMovingEnabled	()	const

TRUEFALSE "columnMovingEnabled"

int	QTable::columnPos	(int	col)	const	[virtual]

colx

columnAt()rowPos()

int	QTable::columnWidth	(int	col)	const	[virtual]

col

setColumnWidth()rowHeight()

void	QTable::columnWidthChanged	(int	col)	[virtual
protected	slot]

col

void	QTable::contentsDragEnterEvent	(QDragEnterEvent	*	e)
[virtual	protected]

event	handlerQTable QDragEnterEvent	e

QDragEnterEvent

QScrollView

void	QTable::contentsDragLeaveEvent	(QDragLeaveEvent	*	e)
[virtual	protected]

eQTable

QScrollView

void	QTable::contentsDragMoveEvent	(QDragMoveEvent	*	e)
[virtual	protected]

QTableQDragMoveEvent	e

QDragMoveEvent

QScrollView

void	QTable::contentsDropEvent	(QDropEvent	*	e)	[virtual
protected]

QTable e

QScrollView

void	QTable::contextMenuRequested	(int	row,	int	col,
const	QPoint	&	pos)	[signal]

context	menu rowcol pos

QWidget	*	QTable::createEditor	(int	row,	int	col,
bool	initFromCell)	const	[virtual	protected]

rowcol

initFromCellTRUE initFromCellFALSE

initFromCellTRUE QTableItemQTableItem::isReplaceable()FALSE
QTableItem::createEditor() QLineEdit

QTableItemQTableItem::createEditor()

QTableItemQLineEditQTable

				QTableItem	*i	=	item(row,	col);

				if	(initFromCell	||	(i	&&	!i->isReplaceable()))

								//	If	we	had	a	QTableItem	ask	the	base	class	to	create	the	editor

								return	QTable::createEditor(row,	col,	initFromCell);

				else

								return	...(create	your	editor)

		

0 setCellContentFromEditor()

QTableItem::createEditor()

int	QTable::currEditCol	()	const	[protected]

int	QTable::currEditRow	()	const	[protected]

void	QTable::currentChanged	(int	row,	int	col)	[signal]

rowcol

chart/setdataform.cpp

int	QTable::currentColumn	()	const

currentRow()

chart/setdataform.cpp

int	QTable::currentRow	()	const

currentColumn()

chart/setdataform.cpp

int	QTable::currentSelection	()	const	[virtual]

-1

numSelections()

void	QTable::doubleClicked	(int	row,	int	col,	int	button,
const	QPoint	&	mousePos)	[signal]

button rowcolmousePos

bool	QTable::dragEnabled	()	const	[slot]

TRUE

setDragEnabled()

QDragObject	*	QTable::dragObject	()	[virtual	protected]

dragEnabled()TRUE dragObject()0

0 QDragObject

dropped()

void	QTable::drawContents	(QPainter	*	p,	int	cx,	int	cy,	int	cw,
int	ch)	[virtual	protected]

painter p cxcy cw ch

drawContents()

QScrollView

void	QTable::dropped	(QDropEvent	*	e)	[signal]

e

void	QTable::editCell	(int	row,	int	col,	bool	replace	=	FALSE)
[virtual	slot]

rowcol

replaceTRUE

beginEdit()

EditMode	QTable::editMode	()	const	[protected]

void	QTable::endEdit	(int	row,	int	col,	bool	accept,	bool	replace)
[virtual	protected]

rowcol

acceptFALSE

acceptTRUE replaceTRUE QTableItem	QTableItem

QTableItem setCellContentFromEditor()

QTableItem QTableItem::setContentFromEditor()

clearCellWidget()

setCellContentFromEditor()beginEdit()

void	QTable::ensureCellVisible	(int	row,	int	col)

rowcol

FocusStyle	QTable::focusStyle	()	const

"focusStyle"

void	QTable::hideColumn	(int	col)	[virtual	slot]

col

showColumn()hideRow()

void	QTable::hideRow	(int	row)	[virtual	slot]

row

showRow()hideColumn()

QHeader	*	QTable::horizontalHeader	()	const

QHeader

QHeader::setLabel()

								horizontalHeader()->setLabel(0,	tr("File"));

verticalHeader() setTopMargin()QHeader

chart/setdataform.cpptable/small-table-demo/main.cpp

int	QTable::indexOf	(int	row,	int	col)	const	[protected]

rowcol

QIntDict

void	QTable::insertColumns	(int	col,	int	count	=	1)	[virtual
slot]

colcount

insertRows()removeColumn()

void	QTable::insertRows	(int	row,	int	count	=	1)	[virtual	slot]

rowcount

insertColumns()removeRow()

void	QTable::insertWidget	(int	row,	int	col,	QWidget	*	w)
[virtual	protected]

rowcolwsetCellWidget()

QTableItem

bool	QTable::isColumnReadOnly	(int	col)	const

col

EditType QTableItem::EditType

setColumnReadOnly()isRowReadOnly()

bool	QTable::isColumnSelected	(int	col,	bool	full	=	FALSE)	const

colTRUEFALSE

fullFALSE“” fullTRUE“”

isRowSelected()isSelected()

bool	QTable::isColumnStretchable	(int	col)	const	[slot]

colTRUEFALSE

setColumnStretchable()isRowStretchable()

bool	QTable::isEditing	()	const	[protected]

EditMode EditingReplacingTRUEEditMode NotEditingFALSE

QTable::EditMode

bool	QTable::isReadOnly	()	const

TRUEFALSE "readOnly"

bool	QTable::isRowReadOnly	(int	row)	const

row

EditType QTableItem::EditType

setRowReadOnly()isColumnReadOnly()

bool	QTable::isRowSelected	(int	row,	bool	full	=	FALSE)	const

rowTRUEFALSE

fullFALSE“” fullTRUE“”

isColumnSelected()isSelected()

bool	QTable::isRowStretchable	(int	row)	const	[slot]

rowTRUEFALSE

setRowStretchable()isColumnStretchable()

bool	QTable::isSelected	(int	row,	int	col)	const

rowcolTRUEFALSE

isRowSelected()isColumnSelected()

QTableItem	*	QTable::item	(int	row,	int	col)	const	[virtual]

QTableItemrowcol

rowcol item()0

QTableItem

setItem()

int	QTable::numCols	()	const	[virtual]

"numCols"

QDataTable

int	QTable::numRows	()	const	[virtual]

"numRows"

QDataTable

int	QTable::numSelections	()	const

currentSelection()

void	QTable::paintCell	(QPainter	*	p,	int	row,	int	col,
const	QRect	&	cr,	bool	selected,	const	QColorGroup	&	cg)
[virtual]

prowcol cr

selectedTRUE

cg

paintCell() QTableItemQTableItem::paint()

QTableItemQTableItem::paint()paintCell()paintCell()
QTableItems

				p->setClipRect(cellRect(row,	col),	QPainter::CoordPainter);

				//...	your	drawing	code

				p->setClipping(FALSE);

				

void	QTable::paintCell	(QPainter	*	p,	int	row,	int	col,
const	QRect	&	cr,	bool	selected)	[virtual]

paintCell()

void	QTable::paintEmptyArea	(QPainter	*	p,	int	cx,	int	cy,
int	cw,	int	ch)	[virtual	protected]

p cxcy cw ch

paintEmptyArea()drawContents()

void	QTable::paintFocus	(QPainter	*	p,	const	QRect	&	cr)
[virtual]

currentRow() currentColumn()

p cr

QPixmap	QTable::pixmap	(int	row,	int	col)	const	[virtual]

rowcolnull-pixmap

setPixmap()

chart/setdataform.cpp

void	QTable::pressed	(int	row,	int	col,	int	button,
const	QPoint	&	mousePos)	[signal]

button rowcolmousePos

void	QTable::removeColumn	(int	col)	[virtual	slot]

col

removeColumns() hideColumn() insertColumns()removeRow()

void	QTable::removeColumns	(const	QMemArray<int>	&	cols)
[virtual	slot]

cols

0 numCols()	-	1

removeColumn() insertColumns()removeRows()

void	QTable::removeRow	(int	row)	[virtual	slot]

row

hideRow() insertRows() removeColumn()removeRows()

void	QTable::removeRows	(const	QMemArray<int>	&	rows)
[virtual	slot]

rows

0 numRows()	-	1

removeRow() insertRows()removeColumns()

void	QTable::removeSelection	(const	QTableSelection	&	s)
[virtual]

s

addSelection()numSelections()

void	QTable::removeSelection	(int	num)	[virtual]

num

numSelections() addSelection()clearSelection()

void	QTable::repaintSelections	()

void	QTable::resizeData	(int	len)	[virtual	protected]

QTablelen

QTableItem

int	QTable::rowAt	(int	y)	const	[virtual]

y y

rowPos()columnAt()

int	QTable::rowHeight	(int	row)	const	[virtual]

row

setRowHeight()columnWidth()

table/small-table-demo/main.cpp

void	QTable::rowHeightChanged	(int	row)	[virtual	protected
slot]

row

void	QTable::rowIndexChanged	(int	section,	int	fromIndex,
int	toIndex)	[virtual	protected	slot]

fromIndextoIndexsection

swapRows()swapColumns()

QHeader::indexChange()columnIndexChanged()

bool	QTable::rowMovingEnabled	()	const

TRUEFALSE "rowMovingEnabled"

int	QTable::rowPos	(int	row)	const	[virtual]

rowy

rowAt()columnPos()

QTableSelection	QTable::selection	(int	num)	const

num QTableSelectionnumQTableSelection::isNull()

void	QTable::selectionChanged	()	[signal]

QTableSelection

SelectionMode	QTable::selectionMode	()	const

"selectionMode"

void	QTable::setCellContentFromEditor	(int	row,	int	col)
[virtual	protected]

rowcol QTableItem clearCell()

QTableItem

QTableItem

QTableItem::setContentFromEditor()createEditor()

void	QTable::setCellWidget	(int	row,	int	col,	QWidget	*	e)
[virtual]

erowcol

numRows()×numCols() insertWidget()
insertWidget() cellWidget()clearCellWidget()

“new”setCellWidget()

chart/setdataform.cpp

void	QTable::setColumnMovingEnabled	(bool	b)	[virtual
slot]

b"columnMovingEnabled"

void	QTable::setColumnReadOnly	(int	col,	bool	ro)	[virtual
slot]

roTRUE col

EditType QTableItem::EditType

isColumnReadOnly() setRowReadOnly()readOnly

chart/setdataform.cpp

void	QTable::setColumnStretchable	(int	col,	bool	stretch)
[virtual	slot]

stretchTRUE col

isColumnStretchable() setRowStretchable()adjustColumn()

void	QTable::setColumnWidth	(int	col,	int	w)	[virtual	slot]

colw

columnWidth()setRowHeight()

chart/setdataform.cpp

Reimplemented	in	QDataTable

void	QTable::setCurrentCell	(int	row,	int	col)	[virtual	slot]

rowcol

currentRow()currentColumn()

void	QTable::setDragEnabled	(bool	b)	[virtual	slot]

bTRUE dragObject()

void	QTable::setEditMode	(EditMode	mode,	int	row,	int	col)
[protected]

moderowcol

EditMode

void	QTable::setFocusStyle	(FocusStyle	fs)	[virtual]

fs"focusStyle"

void	QTable::setItem	(int	row,	int	col,	QTableItem	*	item)
[virtual]

itemrowcolumn	col item

QTableItem

item()takeItem()

table/small-table-demo/main.cpp

void	QTable::setLeftMargin	(int	m)	[virtual	slot]

m

verticalHeader()

arabichebrew localizationverticalHeader()

leftMargin() setTopMargin()verticalHeader()

void	QTable::setNumCols	(int	r)	[virtual	slot]

r"numCols"

void	QTable::setNumRows	(int	r)	[virtual	slot]

r"numRows"

void	QTable::setPixmap	(int	row,	int	col,	const	QPixmap	&	pix)
[virtual]

rowcolpix

EditType OnTypingQTableItem pix

QComboTableItemQCheckTableItem

pixmap() setText() setItem()QTableItem::setPixmap()

chart/setdataform.cpptable/small-table-demo/main.cpp

void	QTable::setReadOnly	(bool	b)	[virtual	slot]

b"readOnly"

void	QTable::setRowHeight	(int	row,	int	h)	[virtual	slot]

rowh

rowHeight()setColumnWidth()

void	QTable::setRowMovingEnabled	(bool	b)	[virtual	slot]

b"rowMovingEnabled"

void	QTable::setRowReadOnly	(int	row,	bool	ro)	[virtual
slot]

roTRUE row

EditType QTableItem::EditType

isRowReadOnly() setColumnReadOnly()readOnly

void	QTable::setRowStretchable	(int	row,	bool	stretch)	[virtual
slot]

stretchTRUE row

isRowStretchable()setColumnStretchable()

void	QTable::setSelectionMode	(SelectionMode	mode)
[virtual]

mode"selectionMode"

void	QTable::setShowGrid	(bool	b)	[virtual	slot]

b"showGrid"

void	QTable::setSorting	(bool	b)	[virtual	slot]

b"sorting"

void	QTable::setText	(int	row,	int	col,	const	QString	&	text)
[virtual]

rowcoltext

EditType OnTypingQTableItem text

text() setPixmap() setItem()QTableItem::setText()

chart/setdataform.cpptable/small-table-demo/main.cpp

void	QTable::setTopMargin	(int	m)	[virtual	slot]

m

horizontalHeader()

topMargin()setLeftMargin()

void	QTable::showColumn	(int	col)	[virtual	slot]

col

hideColumn()showRow()

bool	QTable::showGrid	()	const

TRUEFALSE "showGrid"

void	QTable::showRow	(int	row)	[virtual	slot]

row

hideRow()showColumn()

void	QTable::sortColumn	(int	col,	bool	ascending	=	TRUE,
bool	wholeRows	=	FALSE)	[virtual]

col ascendingTRUE

wholeRowsTRUE swapRows() swapCells()

QTableItemswapRows()swapCells()

swapRows()

table/statistics/statistics.cpp

QDataTable

bool	QTable::sorting	()	const

TRUEFALSE "sorting"

void	QTable::startDrag	()	[virtual	protected]

dragObject()

void	QTable::swapCells	(int	row1,	int	col1,	int	row2,	int	col2)
[virtual	slot]

row1col1row2col2

QTableItem

swapColumns()swapRows()

void	QTable::swapColumns	(int	col1,	int	col2,	bool	swapHeader	=
FALSE)	[virtual	slot]

col1col2

setColumnMovingEnabled()

QTableItem

swapHeaderTRUE

swapCells()

void	QTable::swapRows	(int	row1,	int	row2,	bool	swapHeader	=
FALSE)	[virtual	slot]

row1row2

setRowMovingEnabled()

QTableItem

swapHeaderTRUE

swapColumns()swapCells()

void	QTable::takeItem	(QTableItem	*	i)	[virtual]

i setItem()

setItem()

swapCells()

QString	QTable::text	(int	row,	int	col)	const	[virtual]

rowcol

setText()setPixmap()

chart/setdataform.cpp

QDataTable

void	QTable::updateCell	(int	row,	int	col)

rowcol

void	QTable::valueChanged	(int	row,	int	col)	[signal]

rowcol

chart/setdataform.cpp

QHeader	*	QTable::verticalHeader	()	const

QHeader

horizontalHeader() setLeftMargin()QHeader

bool	columnMovingEnabled

FALSE

rowMovingEnabled

setColumnMovingEnabled() columnMovingEnabled()

FocusStyle	focusStyle

SpreadSheet

QTable::FocusStyle

setFocusStyle() focusStyle()

int	numCols

setNumCols() numCols()

numRows

int	numRows

setNumRows() numRows()

numCols

bool	readOnly

EditType QTableItem::EditType

QWidget::enabledsetColumnReadOnly()setRowReadOnly()

setReadOnly() isReadOnly()

bool	rowMovingEnabled

FALSE

columnMovingEnabled

setRowMovingEnabled() rowMovingEnabled()

SelectionMode	selectionMode

Multi

SelectionModeselectionMode

setSelectionMode() selectionMode()

bool	showGrid

setShowGrid() showGrid()

bool	sorting

setSorting() sorting()

sortColumn()

Copyright	©	2002	Trolltech Trademarks :farfareast Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QHeader
QHeaderlistview	 ……

#include	<qheader.h>

QWidget

QHeader	(QWidget	*	parent	=	0,	const	char	*	name	=	0)
QHeader	(int	n,	QWidget	*	parent	=	0,	const	char	*	name	=	0)
~QHeader	()
int	addLabel	(const	QString	&	s,	int	size	=	-1)
int	addLabel	(const	QIconSet	&	iconset,	const	QString	&	s,	int	size	=	-1)
void	removeLabel	(int	section)
virtual	void	setLabel	(int	section,	const	QString	&	s,	int	size	=	-1)
virtual	void	setLabel	(int	section,	const	QIconSet	&	iconset,
const	QString	&	s,	int	size	=	-1)
QString	label	(int	section)	const
QIconSet	*	iconSet	(int	section)	const
virtual	void	setOrientation	(Orientation)
Orientation	orientation	()	const
virtual	void	setTracking	(bool	enable)
bool	tracking	()	const
virtual	void	setClickEnabled	(bool	enable,	int	section	=	-1)
virtual	void	setResizeEnabled	(bool	enable,	int	section	=	-1)
virtual	void	setMovingEnabled	(bool)
virtual	void	setStretchEnabled	(bool	b,	int	section)
void	setStretchEnabled	(bool	b)
bool	isClickEnabled	(int	section	=	-1)	const
bool	isResizeEnabled	(int	section	=	-1)	const
bool	isMovingEnabled	()	const
bool	isStretchEnabled	()	const
bool	isStretchEnabled	(int	section)	const
void	resizeSection	(int	section,	int	s)
int	sectionSize	(int	section)	const
int	sectionPos	(int	section)	const
int	sectionAt	(int	pos)	const
int	count	()	const
int	headerWidth	()	const
QRect	sectionRect	(int	section)	const
virtual	void	setCellSize	(int	section,	int	s)		(obsolete)
int	cellSize	(int	i)	const		(obsolete)
int	cellPos	(int	i)	const		(obsolete)

int	cellAt	(int	pos)	const		(obsolete)
int	offset	()	const
int	mapToSection	(int	index)	const
int	mapToIndex	(int	section)	const
int	mapToLogical	(int	a)	const		(obsolete)
int	mapToActual	(int	l)	const		(obsolete)
void	moveSection	(int	section,	int	toIndex)
virtual	void	moveCell	(int	fromIdx,	int	toIdx)		(obsolete)
void	setSortIndicator	(int	section,	bool	increasing	=	TRUE)
void	adjustHeaderSize	()

virtual	void	setOffset	(int	pos)

void	clicked	(int	section)
void	pressed	(int	section)
void	released	(int	section)
void	sizeChange	(int	section,	int	oldSize,	int	newSize)
void	indexChange	(int	section,	int	fromIndex,	int	toIndex)
void	sectionClicked	(int	index)		(obsolete)
void	moved	(int	fromIndex,	int	toIndex)		(obsolete)

int	count	-	section	 (read	only)
bool	moving	-	
int	offset	-	
Orientation	orientation	-	
bool	stretching	-	
bool	tracking	-	sizeChange()

QRect	sRect	(int	index)
virtual	void	paintSection	(QPainter	*	p,	int	index,	const	QRect	&	fr)
virtual	void	paintSectionLabel	(QPainter	*	p,	int	index,	const	QRect	&	fr
)

QHeaderlistview

QTableQListView

iconset setSortIndicator()

addLabel() removeLabel()addLabel() setLabel() count()

setOrientation() setStretchEnabled()TRUE setResizeEnabled()
TRUE adjustHeaderSize()

moveSection() setMovingEnabled()TRUE addLabel()
QHeaderAPIsection	number

mapToIndex()addLabel() mapToSection()

mapToSection()mapToIndex()

0 1 2 3

Sect	0 Sect	1 Sect	2 Sect	3

Sect	0 Sect	2 Sect	3 Sect	1

kmapToSection(k) mapToIndex(k)
0 0 0
1 2 3
2 3 1
3 1 2

3 mapToSection(3)112 mapToIndex(2)1

QHeaderclicked() pressed()released() sizeChange()sizeChange()

setTracking() indexChange()

	

QListViewQTable

QHeader::QHeader	(QWidget	*	parent	=	0,	const	char	*	name	=
0)

nameparent

QHeader::QHeader	(int	n,	QWidget	*	parent	=	0,
const	char	*	name	=	0)

namen parent

QHeader::~QHeader	()

int	QHeader::addLabel	(const	QString	&	s,	int	size	=	-1)

s sizesize	<	0 s

int	QHeader::addLabel	(const	QIconSet	&	iconset,
const	QString	&	s,	int	size	=	-1)

iconsets sizesize	<	0

void	QHeader::adjustHeaderSize	()

isStretchEnabled()TRUE

int	QHeader::cellAt	(int	pos)	const

sectionAt()

Returns	the	index	at	which	the	section	is	displayed,	which	contains	pos	in	widget
coordinates,	or	-1	if	pos	is	outside	the	header	sections.

int	QHeader::cellPos	(int	i)	const

sectionPos()

Returns	the	position	in	pixels	of	the	section	that	is	displayed	at	the	index	i	The
position	is	measured	from	the	start	of	the	header.

int	QHeader::cellSize	(int	i)	const

sectionSize()

Returns	the	size	in	pixels	of	the	section	that	is	displayed	at	the	index	i

void	QHeader::clicked	(int	section)	[]

isClickEnabled()TRUE section

pressed()released()

int	QHeader::count	()	const

"count"

int	QHeader::headerWidth	()	const

QIconSet	*	QHeader::iconSet	(int	section)	const

section0

void	QHeader::indexChange	(int	section,	int	fromIndex,
int	toIndex)	[]

sectionfromIndextoIndex

bool	QHeader::isClickEnabled	(int	section	=	-1)	const

sectionTRUEFALSE

section count()	-	1TRUEFALSE

setClickEnabled()

bool	QHeader::isMovingEnabled	()	const

TRUEFALSE "moving"

bool	QHeader::isResizeEnabled	(int	section	=	-1)	const

sectionTRUEFALSE

section-1TRUEFALSE

setResizeEnabled()

bool	QHeader::isStretchEnabled	()	const

TRUEFALSE	 "stretching"

bool	QHeader::isStretchEnabled	(int	section)	const

sectionTRUEFALSE

setStretchEnabled()

QString	QHeader::label	(int	section)	const

section

int	QHeader::mapToActual	(int	l)	const

mapToIndex()

Translates	from	logical	index	l	to	actual	index	(index	at	which	the	section	l	is
displayed)	.	Returns	-1	if	l	is	outside	the	legal	range.

mapToLogical()

int	QHeader::mapToIndex	(int	section)	const

section

mapTo

int	QHeader::mapToLogical	(int	a)	const

mapToSection()

Translates	from	actual	index	a	(index	at	which	the	section	is	displayed)	to	logical
index	of	the	section.	Returns	-1	if	a	is	outside	the	legal	range.

mapToActual()

int	QHeader::mapToSection	(int	index)	const

index

mapTo

void	QHeader::moveCell	(int	fromIdx,	int	toIdx)	[]

moveSection()

Moves	the	section	that	is	currently	displayed	at	index	fromIdx	to	index	toIdx

void	QHeader::moveSection	(int	section,	int	toIndex)

sectiontoIndex

void	QHeader::moved	(int	fromIndex,	int	toIndex)	[]

indexChange()

This	signal	is	emitted	when	the	user	has	moved	the	section	which	is	displayed	at
the	index	fromIndex	to	the	index	toIndex

int	QHeader::offset	()	const

	 "offset"

Orientation	QHeader::orientation	()	const

	 "orientation"

void	QHeader::paintSection	(QPainter	*	p,	int	index,
const	QRect	&	fr)	[]

fr pindex

paintSectionLabel()

void	QHeader::paintSectionLabel	(QPainter	*	p,	int	index,
const	QRect	&	fr)	[]

fr pindex

paintSection()

void	QHeader::pressed	(int	section)	[]

section

released()

void	QHeader::released	(int	section)	[]

section

pressed()

void	QHeader::removeLabel	(int	section)

section

void	QHeader::resizeSection	(int	section,	int	s)

sections

QRect	QHeader::sRect	(int	index)	[protected]

index

int	QHeader::sectionAt	(int	pos)	const

pos

offset

void	QHeader::sectionClicked	(int	index)	[]

clicked()

This	signal	is	emitted	when	a	part	of	the	header	is	clicked.	index	is	the	index	at
which	the	section	is	displayed.

In	a	list	view	this	signal	would	typically	be	connected	to	a	slot	that	sorts	the
specified	column	(or	row)

int	QHeader::sectionPos	(int	section)	const

section

offset

QRect	QHeader::sectionRect	(int	section)	const

section

int	QHeader::sectionSize	(int	section)	const

section

void	QHeader::setCellSize	(int	section,	int	s)	[]

resizeSection()

Sets	the	size	of	the	section	section	to	s	pixels.

	does	not	repaint	or	send	out	signals

void	QHeader::setClickEnabled	(bool	enable,	int	section	=	-1)
[]

enableTRUE sectionclicked()

section-1 enable

movingsetResizeEnabled()

void	QHeader::setLabel	(int	section,	const	QString	&	s,	int	size	=
-1)	[]

sectionssize	>=	0 size

chart/setdataform.cpptable/small-table-demo/main.cpp

void	QHeader::setLabel	(int	section,	const	QIconSet	&	iconset,
const	QString	&	s,	int	size	=	-1)	[]

sectioniconsetssize	>=	0 size

void	QHeader::setMovingEnabled	(bool)	[]

"moving"

void	QHeader::setOffset	(int	pos)	[]

pos"offset"

void	QHeader::setOrientation	(Orientation)	[]

"orientation"

void	QHeader::setResizeEnabled	(bool	enable,	int	section	=	-1)
[]

enableTRUE section

section enable	

				//	Allow	resizing	of	all	current	and	future	sections

				header->setResizeEnabled(TRUE);

				//	Disable	resizing	of	section	3,	(the	fourth	section	added)

				header->setResizeEnabled(FALSE,	3);

				

sizeChange()

movingsetClickEnabled()tracking

void	QHeader::setSortIndicator	(int	section,	bool	increasing	=
TRUE)

QHeader

increasingTRUE

section-1

void	QHeader::setStretchEnabled	(bool	b,	int	section)	[]

bTRUE section section

section-1 bTRUE

adjustHeaderSize()

void	QHeader::setStretchEnabled	(bool	b)

b	"stretching"

void	QHeader::setTracking	(bool	enable)	[]

sizeChange()enable	"tracking"

void	QHeader::sizeChange	(int	section,	int	oldSize,	int	newSize)
[]

sectionoldSizenewSize

bool	QHeader::tracking	()	const

sizeChange()TRUEFALSE	 "tracking"

int	count

count()

bool	moving

TRUE indexChange()

setClickEnabled()setResizeEnabled()

setMovingEnabled() isMovingEnabled()

int	offset

offset

setOffset() offset()

Orientation	orientation

QHeader::VerticalQHeader::Horizontal

setOrientation()

setOrientation() orientation()

bool	stretching

setStretchEnabled() isStretchEnabled()

bool	tracking

sizeChange()

trackingsizeChange()

TrackingFALSE

setTracking() tracking()

Copyright	©	2002	Trolltech Trademarks :farfareast Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QSpacerItem	Class	Reference
The	QSpacerItem	class	provides	blank	space	in	a	layout.	More...

#include	<qlayout.h>

Inherits	QLayoutItem.

List	of	all	member	functions.

Public	Members

QSpacerItem	(int	w,	int	h,	QSizePolicy::SizeType	hData	=
QSizePolicy::Minimum,	QSizePolicy::SizeType	vData	=
QSizePolicy::Minimum)
void	changeSize	(int	w,	int	h,	QSizePolicy::SizeType	hData	=
QSizePolicy::Minimum,	QSizePolicy::SizeType	vData	=
QSizePolicy::Minimum)
virtual	QSize	sizeHint	()	const
virtual	QSize	minimumSize	()	const
virtual	QSize	maximumSize	()	const
virtual	QSizePolicy::ExpandData	expanding	()	const
virtual	bool	isEmpty	()	const
virtual	void	setGeometry	(const	QRect	&	r)

Detailed	Description

The	QSpacerItem	class	provides	blank	space	in	a	layout.

This	class	is	used	by	custom	layouts.

See	also	QLayout,	QLayout::spacerItem(),	Widget	Appearance	and	Style	and
Layout	Management.

Member	Function	Documentation

QSpacerItem::QSpacerItem	(int	w,	int	h,
QSizePolicy::SizeType	hData	=	QSizePolicy::Minimum,
QSizePolicy::SizeType	vData	=	QSizePolicy::Minimum)

Constructs	a	spacer	item	with	preferred	width	w,	preferred	height	h,	horizontal
size	policy	hData	and	vertical	size	policy	vData.

The	default	values	provide	a	gap	that	is	able	to	stretch	if	nothing	else	wants	the
space.

void	QSpacerItem::changeSize	(int	w,	int	h,
QSizePolicy::SizeType	hData	=	QSizePolicy::Minimum,
QSizePolicy::SizeType	vData	=	QSizePolicy::Minimum)

Changes	this	spacer	item	to	have	preferred	width	w,	preferred	height	h,
horizontal	size	policy	hData	and	vertical	size	policy	vData.

The	default	values	provide	a	gap	that	is	able	to	stretch	if	nothing	else	wants	the
space.

QSizePolicy::ExpandData	QSpacerItem::expanding	()	const
[virtual]

Returns	TRUE	if	this	spacer	item	is	expanding;	otherwise	returns	FALSE.

Reimplemented	from	QLayoutItem.

bool	QSpacerItem::isEmpty	()	const	[virtual]

Returns	TRUE	because	a	spacer	item	never	contains	widgets.

Reimplemented	from	QLayoutItem.

QSize	QSpacerItem::maximumSize	()	const	[virtual]

Returns	the	maximum	size	of	this	spacer	item.

Reimplemented	from	QLayoutItem.

QSize	QSpacerItem::minimumSize	()	const	[virtual]

Returns	the	minimum	size	of	this	spacer	item.

Reimplemented	from	QLayoutItem.

void	QSpacerItem::setGeometry	(const	QRect	&	r)	[virtual]

Stores	the	spacer	item's	rect	r	so	that	it	can	be	returned	by	geometry().

Reimplemented	from	QLayoutItem.

QSize	QSpacerItem::sizeHint	()	const	[virtual]

Returns	the	preferred	size	of	this	spacer	item.

Reimplemented	from	QLayoutItem.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QComboBox	Class	Reference
The	QComboBox	widget	is	a	combined	button	and	popup	list.	More...

#include	<qcombobox.h>

Inherits	QWidget.

List	of	all	member	functions.

Public	Members

QComboBox	(QWidget	*	parent	=	0,	const	char	*	name	=	0)
QComboBox	(bool	rw,	QWidget	*	parent	=	0,	const	char	*	name	=	0)
~QComboBox	()
int	count	()	const
void	insertStringList	(const	QStringList	&	list,	int	index	=	-1)
void	insertStrList	(const	QStrList	&	list,	int	index	=	-1)
void	insertStrList	(const	QStrList	*	list,	int	index	=	-1)
void	insertStrList	(const	char	**	strings,	int	numStrings	=	-1,	int	index	=
-1)
void	insertItem	(const	QString	&	t,	int	index	=	-1)
void	insertItem	(const	QPixmap	&	pixmap,	int	index	=	-1)
void	insertItem	(const	QPixmap	&	pixmap,	const	QString	&	text,
int	index	=	-1)
void	removeItem	(int	index)
int	currentItem	()	const
virtual	void	setCurrentItem	(int	index)
QString	currentText	()	const
virtual	void	setCurrentText	(const	QString	&)
QString	text	(int	index)	const
const	QPixmap	*	pixmap	(int	index)	const
void	changeItem	(const	QString	&	t,	int	index)
void	changeItem	(const	QPixmap	&	im,	int	index)
void	changeItem	(const	QPixmap	&	im,	const	QString	&	t,	int	index)
bool	autoResize	()	const		(obsolete)
virtual	void	setAutoResize	(bool)		(obsolete)
virtual	void	setPalette	(const	QPalette	&	palette)
virtual	void	setFont	(const	QFont	&	font)
virtual	void	setSizeLimit	(int)
int	sizeLimit	()	const
virtual	void	setMaxCount	(int)
int	maxCount	()	const
enum	Policy	{	NoInsertion,	AtTop,	AtCurrent,	AtBottom,	AfterCurrent,
BeforeCurrent	}
virtual	void	setInsertionPolicy	(Policy	policy)
Policy	insertionPolicy	()	const

virtual	void	setValidator	(const	QValidator	*	v)
const	QValidator	*	validator	()	const
virtual	void	setListBox	(QListBox	*	newListBox)
QListBox	*	listBox	()	const
virtual	void	setLineEdit	(QLineEdit	*	edit)
QLineEdit	*	lineEdit	()	const
virtual	void	setAutoCompletion	(bool)
bool	autoCompletion	()	const
void	setDuplicatesEnabled	(bool	enable)
bool	duplicatesEnabled	()	const
bool	editable	()	const
void	setEditable	(bool)
virtual	void	popup	()

Public	Slots

void	clear	()
void	clearValidator	()
void	clearEdit	()
virtual	void	setEditText	(const	QString	&	newText)

Signals

void	activated	(int	index)
void	highlighted	(int	index)
void	activated	(const	QString	&	string)
void	highlighted	(const	QString	&	string)
void	textChanged	(const	QString	&	string)

Properties

bool	autoCompletion	-	whether	auto-completion	is	enabled
bool	autoMask	-	whether	the	combobox	is	automatically	masked		(read
only)
bool	autoResize	-	whether	auto	resize	is	enabled		(obsolete)
int	count	-	the	number	of	items	in	the	combobox		(read	only)
int	currentItem	-	the	index	of	the	current	item	in	the	combobox
QString	currentText	-	the	text	of	the	combobox's	current	item
bool	duplicatesEnabled	-	whether	duplicates	are	allowed
bool	editable	-	whether	the	combobox	is	editable
Policy	insertionPolicy	-	the	position	of	the	items	inserted	by	the	user
int	maxCount	-	the	maximum	number	of	items	allowed	in	the	combobox
int	sizeLimit	-	the	maximum	on-screen	size	of	the	combobox

Detailed	Description

The	QComboBox	widget	is	a	combined	button	and	popup	list.

A	combobox	is	a	selection	widget	which	displays	the	current	item	and	can	pop
up	a	list	of	items.	A	combobox	may	be	editable	in	which	case	the	user	can	enter
arbitrary	strings.

Since	comboboxes	occupy	little	screen	space	and	always	display	the	current
item,	they	are	well	suited	to	displaying	items	that	the	user	will	want	to	see,	such
as	font	family	or	size.	Using	a	combobox	the	user	can	always	see	which	item
they've	selected	with	the	minimum	amount	of	screen	space	being	used.

QComboBox	supports	three	different	display	styles:	Aqua/Motif	1.x,	Motif	2.0
and	Windows	95.	In	Motif	1.x,	a	combobox	was	called	XmOptionMenu.	In
Motif	2.0,	OSF	introduced	an	improved	combobox	and	named	that
XmComboBox.	QComboBox	provides	both.

QComboBox	provides	two	different	constructors.	The	simplest	constructor
creates	an	old-style	combobox	in	Motif	(or	Aqua)	style:

						QComboBox	*c	=	new	QComboBox(this,	"read-only	combobox");

		

The	other	constructor	creates	a	new-style	combobox	in	Motif	style,	and	can
create	both	read-only	and	read-write	comboboxes:

						QComboBox	*c1	=	new	QComboBox(FALSE,	this,	"read-only	combobox");

						QComboBox	*c2	=	new	QComboBox(TRUE,	this,	"read-write	combobox");

		

New-style	comboboxes	use	a	list	box	in	both	Motif	and	Windows	styles,	and
both	the	content	size	and	the	on-screen	size	of	the	list	box	can	be	limited	with
sizeLimit()	and	setMaxCount()	respectively.	Old-style	comboboxes	use	a	popup
in	Aqua	and	Motif	style,	and	that	popup	will	happily	grow	larger	than	the
desktop	if	you	put	enough	data	into	it.

The	two	constructors	create	identical-looking	comboboxes	in	Windows	style.

Comboboxes	can	contain	pixmaps	as	well	as	strings;	the	insertItem()	and

changeItem()	functions	are	suitably	overloaded.	For	read-write	comboboxes,	the
function	clearEdit()	is	provided,	to	clear	the	displayed	string	without	changing
the	combobox's	contents.

A	combobox	emits	two	signals,	activated()	and	highlighted(),	when	a	new	item
has	been	activated	(selected)	or	highlighted	(made	current).	Both	signals	exist	in
two	versions,	one	with	a	QString	argument	and	one	with	an	int	argument.	If	the
user	highlights	or	activates	a	pixmap,	only	the	int	signals	are	emitted.	Whenever
the	text	of	an	editable	combobox	is	changed	the	textChanged()	signal	is	emitted.

When	the	user	enters	a	new	string	in	a	read-write	combobox,	the	widget	may	or
may	not	insert	it,	and	it	can	insert	it	in	several	locations.	The	default	policy	is	is
AtBottom	but	you	can	change	this	using	setInsertionPolicy().

It	is	possible	to	constrain	the	input	to	an	editable	combobox	using	QValidator;
see	setValidator().	By	default,	all	input	is	accepted.

If	the	combo	box	is	not	editable	then	it	has	a	default	focusPolicy()	of	TabFocus,
i.e.	it	will	not	grab	focus	if	clicked.	This	differs	from	both	Windows	and	Motif.
If	the	combo	box	is	editable	then	it	has	a	default	focusPolicy()	of	StrongFocus,
i.e.	it	will	grab	focus	if	clicked.

A	combobox	can	be	populated	using	the	insert	functions,	insertStringList()	and
insertItem()	for	example.	Items	can	be	changed	with	changeItem().	An	item	can
be	removed	with	removeItem()	and	all	items	can	be	removed	with	clear().	The
text	of	the	current	item	is	returned	by	currentText(),	and	the	text	of	a	numbered
item	is	returned	with	text().	The	current	item	can	be	set	with	setCurrentItem()	or
setCurrentText().	The	number	of	items	in	the	combobox	is	returned	by	count();
the	maximum	number	of	items	can	be	set	with	setMaxCount().	You	can	allow
editing	using	setEditable().	For	editable	comboboxes	you	can	set	auto-
completion	using	setAutoCompletion()	and	whether	or	not	the	user	can	add
duplicates	is	set	with	setDuplicatesEnabled().

(Motif	1,	read-only)

(Motif	2,	read-write)

(Motif	2,	read-only)

(Windows	style)

See	also	QLineEdit,	QListBox,	QSpinBox,	QRadioButton,	QButtonGroup,	GUI
Design	Handbook:	Combo	Box,	GUI	Design	Handbook:	Drop-Down	List	Box
and	Basic	Widgets.

Member	Type	Documentation

QComboBox::Policy

This	enum	specifies	what	the	QComboBox	should	do	when	a	new	string	is
entered	by	the	user.	The	following	policies	are	defined:

QComboBox::NoInsertion	-	the	string	will	not	be	inserted	into	the
combobox.
QComboBox::AtTop	-	insert	the	string	as	the	first	item	in	the	combobox.
QComboBox::AtCurrent	-	replace	the	previously	selected	item	with	the
string	the	user	has	entered.
QComboBox::AtBottom	-	insert	the	string	as	the	last	item	in	the	combobox.
QComboBox::AfterCurrent	-	insert	the	string	after	the	previously	selected
item.
QComboBox::BeforeCurrent	-	insert	the	string	before	the	previously
selected	item.

activated()	is	always	emitted	when	the	string	is	entered.

If	inserting	the	new	string	would	cause	the	combobox	to	breach	its	content	size
limit,	the	item	at	the	other	end	of	the	list	is	deleted.	The	definition	of	"other	end"
is	implementation-dependent.

Member	Function	Documentation

QComboBox::QComboBox	(QWidget	*	parent	=	0,
const	char	*	name	=	0)

Constructs	a	combobox	widget	with	parent	parent	and	name	name.

This	constructor	creates	a	popup	list	if	the	program	uses	Motif	(or	Aqua)	look
and	feel;	this	is	compatible	with	Motif	1.x	and	Aqua.

QComboBox::QComboBox	(bool	rw,	QWidget	*	parent	=	0,
const	char	*	name	=	0)

Constructs	a	combobox	with	a	maximum	size	and	either	Motif	2.0	or	Windows
look	and	feel.

The	input	field	can	be	edited	if	rw	is	TRUE,	otherwise	the	user	may	only	choose
one	of	the	items	in	the	combobox.

The	parent	and	name	arguments	are	passed	on	to	the	QWidget	constructor.

QComboBox::~QComboBox	()

Destroys	the	combobox.

void	QComboBox::activated	(int	index)	[signal]

This	signal	is	emitted	when	a	new	item	has	been	activated	(selected).	The	index
is	the	position	of	the	item	in	the	combobox.

Examples:	fileiconview/mainwindow.cpp,	helpviewer/helpwindow.cpp,
lineedits/lineedits.cpp,	listboxcombo/listboxcombo.cpp,
network/ftpclient/ftpmainwindow.cpp	and	qmag/qmag.cpp.

void	QComboBox::activated	(const	QString	&	string)	[signal]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves

essentially	like	the	above	function.

This	signal	is	emitted	when	a	new	item	has	been	activated	(selected).	string	is
the	selected	string.

You	can	also	use	the	activated(int)	signal,	but	be	aware	that	its	argument	is
meaningful	only	for	selected	strings,	not	for	user	entered	strings.

bool	QComboBox::autoCompletion	()	const

Returns	TRUE	if	auto-completion	is	enabled;	otherwise	returns	FALSE.	See	the
"autoCompletion"	property	for	details.

bool	QComboBox::autoResize	()	const

Returns	TRUE	if	auto	resize	is	enabled;	otherwise	returns	FALSE.	See	the
"autoResize"	property	for	details.

void	QComboBox::changeItem	(const	QString	&	t,	int	index)

Replaces	the	item	at	position	index	with	the	text	t.

void	QComboBox::changeItem	(const	QPixmap	&	im,	int	index)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Replaces	the	item	at	position	index	with	the	pixmap	im,	unless	the	combobox	is
editable.

See	also	insertItem().

void	QComboBox::changeItem	(const	QPixmap	&	im,
const	QString	&	t,	int	index)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Replaces	the	item	at	position	index	with	the	pixmap	im	and	the	text	t.

See	also	insertItem().

void	QComboBox::clear	()	[slot]

Removes	all	combobox	items.

void	QComboBox::clearEdit	()	[slot]

Clears	the	line	edit	without	changing	the	combobox's	contents.	Does	nothing	if
the	combobox	isn't	editable.

This	is	particularly	handy	when	using	a	combobox	as	a	line	edit	with	history.	For
example	you	can	connect	the	combobox's	activated()	signal	to	clearEdit()	in
order	to	present	the	user	with	a	new,	empty	line	as	soon	as	Return	is	pressed.

See	also	setEditText().

void	QComboBox::clearValidator	()	[slot]

This	slot	is	equivalent	to	setValidator(0).

int	QComboBox::count	()	const

Returns	the	number	of	items	in	the	combobox.	See	the	"count"	property	for
details.

int	QComboBox::currentItem	()	const

Returns	the	index	of	the	current	item	in	the	combobox.	See	the	"currentItem"
property	for	details.

QString	QComboBox::currentText	()	const

Returns	the	text	of	the	combobox's	current	item.	See	the	"currentText"	property
for	details.

bool	QComboBox::duplicatesEnabled	()	const

Returns	TRUE	if	duplicates	are	allowed;	otherwise	returns	FALSE.	See	the
"duplicatesEnabled"	property	for	details.

bool	QComboBox::editable	()	const

Returns	TRUE	if	the	combobox	is	editable;	otherwise	returns	FALSE.	See	the
"editable"	property	for	details.

void	QComboBox::highlighted	(int	index)	[signal]

This	signal	is	emitted	when	a	new	item	has	been	set	to	current.	The	index	is	the
position	of	the	item	in	the	combobox.

void	QComboBox::highlighted	(const	QString	&	string)
[signal]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

This	signal	is	emitted	when	a	new	item	has	been	highlighted.	string	is	the
highlighted	string.

You	can	also	use	highlighted(int)	signal.

void	QComboBox::insertItem	(const	QString	&	t,	int	index	=	-1)

Inserts	a	text	item	with	text	t,	at	position	index.	The	item	will	be	appended	if
index	is	negative.

Examples:	chart/optionsform.cpp,	fileiconview/mainwindow.cpp,
helpviewer/helpwindow.cpp,	lineedits/lineedits.cpp,
listboxcombo/listboxcombo.cpp,	network/ftpclient/ftpmainwindow.cpp	and
tictac/tictac.cpp.

void	QComboBox::insertItem	(const	QPixmap	&	pixmap,
int	index	=	-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	a	pixmap	item	at	position	index.	The	item	will	be	appended	if	index	is
negative.

void	QComboBox::insertItem	(const	QPixmap	&	pixmap,
const	QString	&	text,	int	index	=	-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	a	pixmap	item	with	additional	text	text	at	position	index.	The	item	will	be
appended	if	index	is	negative.

void	QComboBox::insertStrList	(const	char	**	strings,
int	numStrings	=	-1,	int	index	=	-1)

Inserts	the	array	of	char	*	strings	at	position	index	in	the	combobox.

The	numStrings	argument	is	the	number	of	strings.	If	numStrings	is	-1	(default),
the	strings	array	must	be	terminated	with	0.

Example:

				static	const	char*	items[]	=	{	"red",	"green",	"blue",	0	};

				combo->insertStrList(items);

		

Example:	qmag/qmag.cpp.

void	QComboBox::insertStrList	(const	QStrList	&	list,	int	index
=	-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	the	list	of	strings	at	position	index	in	the	combobox.

This	is	only	for	compatibility,	as	it	does	not	support	Unicode	strings.	See
insertStringList().

void	QComboBox::insertStrList	(const	QStrList	*	list,	int	index	=
-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	the	list	of	strings	at	position	index	in	the	combobox.

This	is	only	for	compatibility,	as	it	does	not	support	Unicode	strings.	See
insertStringList().

void	QComboBox::insertStringList	(const	QStringList	&	list,
int	index	=	-1)

Inserts	the	list	of	strings	at	position	index	in	the	combobox.

Policy	QComboBox::insertionPolicy	()	const

Returns	the	position	of	the	items	inserted	by	the	user.	See	the	"insertionPolicy"
property	for	details.

QLineEdit	*	QComboBox::lineEdit	()	const

Returns	the	line	editor,	or	0	if	there	is	no	line	editor.

Only	editable	listboxes	have	a	line	editor.

QListBox	*	QComboBox::listBox	()	const

Returns	the	current	list	box,	or	0	if	there	is	no	list	box.	(QComboBox	can	use
QPopupMenu	instead	of	QListBox.)	Provided	to	match	setListBox().

See	also	setListBox().

Example:	listboxcombo/listboxcombo.cpp.

int	QComboBox::maxCount	()	const

Returns	the	maximum	number	of	items	allowed	in	the	combobox.	See	the
"maxCount"	property	for	details.

const	QPixmap	*	QComboBox::pixmap	(int	index)	const

Returns	the	pixmap	item	at	position	index,	or	0	if	the	item	is	not	a	pixmap.

void	QComboBox::popup	()	[virtual]

Pops	up	the	combobox	popup	list.

If	the	list	is	empty,	no	items	appear.

void	QComboBox::removeItem	(int	index)

Removes	the	item	at	position	index.

void	QComboBox::setAutoCompletion	(bool)	[virtual]

Sets	whether	auto-completion	is	enabled.	See	the	"autoCompletion"	property	for
details.

void	QComboBox::setAutoResize	(bool)	[virtual]

Sets	whether	auto	resize	is	enabled.	See	the	"autoResize"	property	for	details.

void	QComboBox::setCurrentItem	(int	index)	[virtual]

Sets	the	index	of	the	current	item	in	the	combobox	to	index.	See	the
"currentItem"	property	for	details.

void	QComboBox::setCurrentText	(const	QString	&)	[virtual]

Sets	the	text	of	the	combobox's	current	item.	See	the	"currentText"	property	for
details.

void	QComboBox::setDuplicatesEnabled	(bool	enable)

Sets	whether	duplicates	are	allowed	to	enable.	See	the	"duplicatesEnabled"
property	for	details.

void	QComboBox::setEditText	(const	QString	&	newText)
[virtual	slot]

Sets	the	text	in	the	line	edit	to	newText	without	changing	the	combobox's
contents.	Does	nothing	if	the	combobox	isn't	editable.

This	is	useful	e.g.	for	providing	a	good	starting	point	for	the	user's	editing	and
entering	the	change	in	the	combobox	only	when	the	user	presses	Enter.

See	also	clearEdit()	and	insertItem().

Example:	network/ftpclient/ftpmainwindow.cpp.

void	QComboBox::setEditable	(bool)

Sets	whether	the	combobox	is	editable.	See	the	"editable"	property	for	details.

void	QComboBox::setFont	(const	QFont	&	font)	[virtual]

Reimplements	QWidget::setFont().

Sets	the	font	for	both	the	combobox	button	and	the	combobox	popup	list	to	font.

Reimplemented	from	QWidget.

void	QComboBox::setInsertionPolicy	(Policy	policy)	[virtual]

Sets	the	position	of	the	items	inserted	by	the	user	to	policy.	See	the
"insertionPolicy"	property	for	details.

void	QComboBox::setLineEdit	(QLineEdit	*	edit)	[virtual]

Sets	the	lineedit	to	use	edit	instead	of	the	current	lineedit.

void	QComboBox::setListBox	(QListBox	*	newListBox)
[virtual]

Sets	the	combobox	to	use	newListBox	instead	of	the	current	list	box	or	popup.
As	a	side	effect,	it	clears	the	combobox	of	its	current	contents.

Warning:	QComboBox	assumes	that	newListBox->text(n)	returns	non-null	for
0	<=	n	<	newListbox->count().	This	assumption	is	necessary	because	of	the	line
edit	in	QComboBox.

void	QComboBox::setMaxCount	(int)	[virtual]

Sets	the	maximum	number	of	items	allowed	in	the	combobox.	See	the
"maxCount"	property	for	details.

void	QComboBox::setPalette	(const	QPalette	&	palette)
[virtual]

Reimplements	QWidget::setPalette().

Sets	the	palette	for	both	the	combobox	button	and	the	combobox	popup	list	to
palette.

Reimplemented	from	QWidget.

void	QComboBox::setSizeLimit	(int)	[virtual]

Sets	the	maximum	on-screen	size	of	the	combobox.	See	the	"sizeLimit"	property
for	details.

void	QComboBox::setValidator	(const	QValidator	*	v)
[virtual]

Applies	the	validator	v	to	the	combobox	so	that	only	text	which	is	valid
according	to	v	is	accepted.

This	function	does	nothing	if	the	combo	is	not	editable.

See	also	validator(),	clearValidator()	and	QValidator.

int	QComboBox::sizeLimit	()	const

Returns	the	maximum	on-screen	size	of	the	combobox.	See	the	"sizeLimit"
property	for	details.

QString	QComboBox::text	(int	index)	const

Returns	the	text	item	at	position	index,	or	null	string	if	the	item	is	not	a	string.

See	also	currentText.

Examples:	fileiconview/mainwindow.cpp	and	helpviewer/helpwindow.cpp.

void	QComboBox::textChanged	(const	QString	&	string)
[signal]

This	signal	is	used	for	editable	comboboxes.	It	is	emitted	whenever	the	contents
of	the	text	entry	field	changes.	string	contains	the	new	text.

const	QValidator	*	QComboBox::validator	()	const

Returns	the	validator	which	constrains	editing	for	this	combobox	if	there	is	one,
otherwise	returns	0.

See	also	setValidator(),	clearValidator()	and	QValidator.

Property	Documentation

bool	autoCompletion

This	property	holds	whether	auto-completion	is	enabled.

This	property	can	only	be	set	for	editable	comboboxes,	for	non-editable
comboboxes	it	has	no	effect.	It	is	FALSE	by	default.

Set	this	property's	value	with	setAutoCompletion()	and	get	this	property's	value
with	autoCompletion().

bool	autoMask

This	property	holds	whether	the	combobox	is	automatically	masked.

See	also	QWidget::autoMask.

bool	autoResize

This	property	holds	whether	auto	resize	is	enabled.

This	property	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

If	this	property	is	set	to	TRUE	then	the	combobox	will	resize	itself	whenever	its
contents	change.	The	default	is	FALSE.

Set	this	property's	value	with	setAutoResize()	and	get	this	property's	value	with
autoResize().

int	count

This	property	holds	the	number	of	items	in	the	combobox.

Get	this	property's	value	with	count().

int	currentItem

This	property	holds	the	index	of	the	current	item	in	the	combobox.

Set	this	property's	value	with	setCurrentItem()	and	get	this	property's	value	with
currentItem().

QString	currentText

This	property	holds	the	text	of	the	combobox's	current	item.

Set	this	property's	value	with	setCurrentText()	and	get	this	property's	value	with
currentText().

bool	duplicatesEnabled

This	property	holds	whether	duplicates	are	allowed.

If	the	combobox	is	editable	and	the	user	enters	some	text	in	the	lineedit	of	the
combobox	and	presses	Enter	(and	the	insertionPolicy()	is	different	from
NoInsertion),	then	what	happens	is	as	follows:

If	the	text	is	not	already	in	the	list,	the	text	is	inserted.
If	the	text	is	in	the	list	and	this	property	is	TRUE	(the	default),	the	text	is
inserted.
If	the	text	is	in	the	list	and	this	property	is	FALSE,	the	text	is	not	inserted;
instead	the	item	which	has	matching	text	becomes	the	current	item.

This	property	only	affects	user-interaction.	You	can	use	insertItem()	to	insert
duplicates	if	you	wish	regardless	of	this	setting.

Set	this	property's	value	with	setDuplicatesEnabled()	and	get	this	property's
value	with	duplicatesEnabled().

bool	editable

This	property	holds	whether	the	combobox	is	editable.

This	property's	default	is	FALSE.	Note	that	the	combobox	will	be	cleared	if	this

property	is	set	to	TRUE	for	a	1.x	Motif	style	combobox.	To	avoid	this,	use
setEditable()	before	inserting	any	items.	Also	note	that	the	1.x	version	of	Motif
didn't	have	any	editable	comboboxes,	so	the	combobox	will	change	it's
appearance	to	a	2.0	style	Motif	combobox	is	it	is	set	to	be	editable.

Set	this	property's	value	with	setEditable()	and	get	this	property's	value	with
editable().

Policy	insertionPolicy

This	property	holds	the	position	of	the	items	inserted	by	the	user.

The	default	insertion	policy	is	AtBottom.

Set	this	property's	value	with	setInsertionPolicy()	and	get	this	property's	value
with	insertionPolicy().

int	maxCount

This	property	holds	the	maximum	number	of	items	allowed	in	the	combobox.

Set	this	property's	value	with	setMaxCount()	and	get	this	property's	value	with
maxCount().

int	sizeLimit

This	property	holds	the	maximum	on-screen	size	of	the	combobox.

This	is	disregarded	in	Motif	1.x	style.	The	default	limit	is	ten	lines.	If	the	number
of	items	in	the	combobox	is	or	grows	larger	than	lines,	a	scrollbar	is	added.

Set	this	property's	value	with	setSizeLimit()	and	get	this	property's	value	with
sizeLimit().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QTableItem
[]

QTableItemQTable	 ……

#include	<qtable.h>

Qt

QComboTableItemQCheckTableItem

enum	EditType	{	Never,	OnTyping,	WhenCurrent,	Always	}
QTableItem	(QTable	*	table,	EditType	et,	const	QString	&	text)
QTableItem	(QTable	*	table,	EditType	et,	const	QString	&	text,
const	QPixmap	&	p)
virtual	~QTableItem	()
virtual	QPixmap	pixmap	()	const
virtual	QString	text	()	const
virtual	void	setPixmap	(const	QPixmap	&	p)
virtual	void	setText	(const	QString	&	str)
QTable	*	table	()	const
virtual	int	alignment	()	const
virtual	void	setWordWrap	(bool	b)
bool	wordWrap	()	const
EditType	editType	()	const
virtual	QWidget	*	createEditor	()	const
virtual	void	setContentFromEditor	(QWidget	*	w)
virtual	void	setReplaceable	(bool	b)
bool	isReplaceable	()	const
virtual	QString	key	()	const
virtual	QSize	sizeHint	()	const
virtual	void	setSpan	(int	rs,	int	cs)
int	rowSpan	()	const
int	colSpan	()	const
virtual	void	setRow	(int	r)
virtual	void	setCol	(int	c)
int	row	()	const
int	col	()	const
virtual	void	paint	(QPainter	*	p,	const	QColorGroup	&	cg,
const	QRect	&	cr,	bool	selected)
virtual	void	setEnabled	(bool	b)
bool	isEnabled	()	const
virtual	int	rtti	()	const

QTableItemQTable

QTableItemQTableQTableItem

QTableItemEditType QLineEdit QCheckTableItem
QComboTableItemEditType setReplaceable()

setText()setPixmap() setWordWrap()

QLineEdit createEditor()setContentFromEditor() paint()

key() ()key()

QTable::setItem()

				for	(int	row	=	0;	row	<	table->numRows();	row++)	{

								for	(int	col	=	0;	col	<	table->numCols();	col++)	{

												table->setItem(row,	col,

																new	QTableItem(table,	WhenCurrent,	QString::number(row	*	col)));

								}

				}

				

QTable::takeItem()QTable::setItem() QTable::swapCells()

QCheckTableItemQComboTableItem

QTableItem::EditType

QTableItem::Always	-	

EditTypecreateEditor() QLineEdit

AlwayscreateEditor()

QTableItem::WhenCurrent	-	 QTable::setCurrentCell()
QTableItem::OnTyping	-	 WhenCurrent

QTableItemQTable::setText()QTable::setPixmap() OnTyping

QTableItem::Never	-	

QTable::isRowReadOnly()FALSE QTable::isColumnReadOnly()FALSE
QTable::isReadOnly()FALSE

QComboTableItemisEditable()QComboTableItemEditType

QTableItem::QTableItem	(QTable	*	table,	EditType	et,
const	QString	&	text)

texttable EditTypeet

QLineEdit QTable::setItem()

QTableItem::QTableItem	(QTable	*	table,	EditType	et,
const	QString	&	text,	const	QPixmap	&	p)

textptable EditTypeet

QLineEdit QTable::setItem()

QTableItem::~QTableItem	()	[virtual]

setItem()

int	QTableItem::alignment	()	const	[virtual]

Qt::AlignmentFlags

int	QTableItem::col	()	const

row()setCol()

int	QTableItem::colSpan	()	const

1

setSpan()rowSpan()

QWidget	*	QTableItem::createEditor	()	const	[virtual]

QLineEdit

0

QTable::viewport()

setContentFromEditor() sizeHint()

				QWidget	*ComboItem::createEditor()	const

				{

								//	create	an	editor	-	a	combobox	in	our	case

								((ComboItem*)this)->cb	=	new	QComboBox(table()->viewport());

								QObject::connect(cb,	SIGNAL(activated(int)),	table(),	SLOT(doValueChanged()));

								cb->insertItem("Yes");

								cb->insertItem("No");

								//	and	initialize	it

								cb->setCurrentItem(text()	==	"No"	?	1	:	0);

								return	cb;

QTable::createEditor() setContentFromEditor()QTable::viewport()

table/statistics/statistics.cpp

EditType	QTableItem::editType	()	const

EditTypeQTableItem()

bool	QTableItem::isEnabled	()	const

TRUEFALSE

setEnabled()

bool	QTableItem::isReplaceable	()	const

EditTypeEditType

setReplaceable()EditType

QString	QTableItem::key	()	const	[virtual]

text()

QTable::sorting

void	QTableItem::paint	(QPainter	*	p,	const	QColorGroup	&	cg,
const	QRect	&	cr,	bool	selected)	[virtual]

cr pcg

selectedTRUE

				p->setClipRect(table()->cellRect(row,	col),	QPainter::ClipPainter);

				//...	your	drawing	code

				p->setClipping(FALSE);

				

table/statistics/statistics.cpp

QPixmap	QTableItem::pixmap	()	const	[virtual]

setPixmap()text()

int	QTableItem::row	()	const

col()setRow()

int	QTableItem::rowSpan	()	const

1

setSpan()colSpan()

int	QTableItem::rtti	()	const	[virtual]

Returns	the	Run	Time	Type	IdentificationQTableItem0

puristQTable

QTableItem rtti()1000

QCheckTableItem::rtti()QComboTableItem::rtti()

QComboTableItemQCheckTableItem

void	QTableItem::setCol	(int	c)	[virtual]

c

col() setRow()colSpan()

void	QTableItem::setContentFromEditor	(QWidget	*	w)
[virtual]

w QTableQTableItem

createEditor() QLineEdit

				void	ComboItem::setContentFromEditor(QWidget	*w)

				{

								//	the	user	changed	the	value	of	the	combobox,	so	synchronize	the

								//	value	of	the	item	(its	text),	with	the	value	of	the	combobox

								if	(w->inherits("QComboBox"))

												setText(((QComboBox*)w)->currentText());

								else

												QTableItem::setContentFromEditor(w);

QTable::setCellContentFromEditor()

table/statistics/statistics.cpp

void	QTableItem::setEnabled	(bool	b)	[virtual]

bTRUE bFALSE

isEnabled()

void	QTableItem::setPixmap	(const	QPixmap	&	p)	[virtual]

p

setPixmap() QTable::updateCell()

QComboTableItemQCheckTableItem

QTable::setPixmap() pixmap()setText()

void	QTableItem::setReplaceable	(bool	b)	[virtual]

bTRUEQTableItem bFALSE

EditTypeEditType

isReplaceable()

void	QTableItem::setRow	(int	r)	[virtual]

r

row() setCol()rowSpan()

void	QTableItem::setSpan	(int	rs,	int	cs)	[virtual]

QTableItem rscs

QTable::setItem() rscs

rowSpan()colSpan()

void	QTableItem::setText	(const	QString	&	str)	[virtual]

str

setText() QTable::updateCell()

QTable::setText() text() setPixmap()QTable::updateCell()

table/statistics/statistics.cpp

void	QTableItem::setWordWrap	(bool	b)	[virtual]

bTRUE

wordWrap() QTable::adjustColumn()QTable::setColumnStretchable()

QSize	QTableItem::sizeHint	()	const	[virtual]

QTableItem

QTable	*	QTableItem::table	()	const

QTable

QTable::setItem()QTableItem()

QString	QTableItem::text	()	const	[virtual]

editMode()AlwayssetContentFromEditor()

editMode() QLineEditsetContentFromEditor()Tab
text()setContentFromEditor()

setText()pixmap()

bool	QTableItem::wordWrap	()	const

TRUEFALSE

setWordWrap()

Copyright	©	2002	Trolltech Trademarks :farfareast Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QComboTableItem
[]

QComboTableItemQTable	 ……

#include	<qtable.h>

QTableItem

QComboTableItem	(QTable	*	table,	const	QStringList	&	list,
bool	editable	=	FALSE)
virtual	void	setCurrentItem	(int	i)
virtual	void	setCurrentItem	(const	QString	&	s)
int	currentItem	()	const
QString	currentText	()	const
int	count	()	const
QString	text	(int	i)	const
virtual	void	setEditable	(bool	b)
bool	isEditable	()	const
virtual	void	setStringList	(const	QStringList	&	l)
virtual	int	rtti	()	const

QComboTableItemQTable

QComboTableItemQComboTableItem QTableQComboTableItem
QComboTableItem QComboTableItem

QComboTableItemWhenCurrent EditTypeQComboTableItem QStringList

setStringList() setCurrentItem() currentItem() currentText() text()

isEditable()TRUEQComboTableItem

QTable::setItemQComboTableItem

QComboTableItems	may	be	deleted	with	QTable::clearCell()

rtti()QComboTableItem QTableItemQCheckTableItem

QCheckTableItemQTableItem

QComboTableItem::QComboTableItem	(QTable	*	table,
const	QStringList	&	list,	bool	editable	=	FALSE)

table list editableTRUE editableFALSE

isReplaceable()FALSEQComboTableItem

QTable::clearCell()EditType

int	QComboTableItem::count	()	const

int	QComboTableItem::currentItem	()	const

setCurrentItem()

QString	QComboTableItem::currentText	()	const

currentItem()text()

bool	QComboTableItem::isEditable	()	const

setEditable()

int	QComboTableItem::rtti	()	const	[virtual]

QComboTableItem1

QTableItem::rtti()

QTableItem

void	QComboTableItem::setCurrentItem	(int	i)	[virtual]

i

currentItem()

table/small-table-demo/main.cpp

void	QComboTableItem::setCurrentItem	(const	QString	&	s)
[virtual]

s

currentItem()

void	QComboTableItem::setEditable	(bool	b)	[virtual]

bTRUE bFALSE

isEditable()

void	QComboTableItem::setStringList	(const	QStringList	&	l)
[virtual]

QComboTableIteml

QString	QComboTableItem::text	(int	i)	const

i

currentText()

Copyright	©	2002	Trolltech Trademarks :farfareast Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QColorDialog
QColorDialog	 ……

#include	<qcolordialog.h>

QDialog

QColor	getColor	(const	QColor	&	initial	=	white,	QWidget	*	parent	=	0,
const	char	*	name	=	0)
QRgb	getRgba	(QRgb	initial,	bool	*	ok	=	0,	QWidget	*	parent	=	0,
const	char	*	name	=	0)
int	customCount	()
QRgb	customColor	(int	i)
void	setCustomColor	(int	i,	QRgb	c)

QColorDialog

——

getColor() getRgba()alpha

customCount() setCustomColor() customColor()

QRgb	QColorDialog::customColor	(int	i)	[]

iQRgb

int	QColorDialog::customCount	()	[]

QColorDialog

QColor	QColorDialog::getColor	(const	QColor	&	initial	=	white,
QWidget	*	parent	=	0,	const	char	*	name	=	0)	[]

initial parentname

chart/setdataform.cppscribble/scribble.cpp

QRgb	QColorDialog::getRgba	(QRgb	initial,	bool	*	ok	=	0,
QWidget	*	parent	=	0,	const	char	*	name	=	0)	[]

alphaalpha initial

okOK *okCancel

Cancel initial

void	QColorDialog::setCustomColor	(int	i,	QRgb	c)	[]

iQRgbc

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QButtonGroup
QButtonGroupQButton	 ……

#include	<qbuttongroup.h>

QGroupBox

QHButtonGroupQVButtonGroup

QButtonGroup	(QWidget	*	parent	=	0,	const	char	*	name	=	0)
QButtonGroup	(const	QString	&	title,	QWidget	*	parent	=	0,
const	char	*	name	=	0)
QButtonGroup	(int	strips,	Orientation	orientation,	QWidget	*	parent	=	0,
const	char	*	name	=	0)
QButtonGroup	(int	strips,	Orientation	orientation,	const	QString	&	title,
QWidget	*	parent	=	0,	const	char	*	name	=	0)
bool	isExclusive	()	const
bool	isRadioButtonExclusive	()	const
virtual	void	setExclusive	(bool)
virtual	void	setRadioButtonExclusive	(bool)
int	insert	(QButton	*	button,	int	id	=	-1)
void	remove	(QButton	*	button)
QButton	*	find	(int	id)	const
int	id	(QButton	*	button)	const
int	count	()	const
virtual	void	setButton	(int	id)
virtual	void	moveFocus	(int	key)
QButton	*	selected	()	const

void	pressed	(int	id)
void	released	(int	id)
void	clicked	(int	id)

bool	exclusive	-	
bool	radioButtonExclusive	-	

QButtonGroup QButton

exclusive setRadioButtonExclusive()

parent012QButtonGroup

remove() find() id() setButton() count()

	

QButtonQPushButtonQCheckBoxQRadioButton

QButtonGroup::QButtonGroup	(QWidget	*	parent	=	0,
const	char	*	name	=	0)

parentnameQWidget

QButtonGroup::QButtonGroup	(const	QString	&	title,
QWidget	*	parent	=	0,	const	char	*	name	=	0)

title

parentnameQWidget

QButtonGroup::QButtonGroup	(int	strips,
Orientation	orientation,	QWidget	*	parent	=	0,
const	char	*	name	=	0)

strips orientation

parentnameQWidget

QButtonGroup::QButtonGroup	(int	strips,
Orientation	orientation,	const	QString	&	title,
QWidget	*	parent	=	0,	const	char	*	name	=	0)

title strips orientation

parentnameQWidget

void	QButtonGroup::clicked	(int	id)	[]

id

QButton::clicked()insert()

drawdemo/drawdemo.cppxform/xform.cpp

int	QButtonGroup::count	()	const

QButton	*	QButtonGroup::find	(int	id)	const

id

int	QButtonGroup::id	(QButton	*	button)	const

button button-1

int	QButtonGroup::insert	(QButton	*	button,	int	id	=	-1)

idbutton

012

id id	>=	0 id	==	-1 id-2	<=	-2-1

find(),	remove()exclusive

listbox/listbox.cppxform/xform.cpp

bool	QButtonGroup::isExclusive	()	const

“exclusive”

bool	QButtonGroup::isRadioButtonExclusive	()	const

“radioButtonExclusive”

void	QButtonGroup::moveFocus	(int	key)	[]

key

keyKey_UpKey_DownKey_LeftKey_Right

void	QButtonGroup::pressed	(int	id)	[]

pressed id

void	QButtonGroup::released	(int	id)	[]

released id

void	QButtonGroup::remove	(QButton	*	button)

button

insert()

QButton	*	QButtonGroup::selected	()	const

0

void	QButtonGroup::setButton	(int	id)	[]

id

void	QButtonGroup::setExclusive	(bool)	[]

“exclusive”

void	QButtonGroup::setRadioButtonExclusive	(bool)	[]

“radioButtonExclusive”

bool	exclusive

setExclusive()isExclusive()

bool	radioButtonExclusive

setRadioButtonExclusive()isRadioButtonExclusive()

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QRadioButton	Class	Reference
The	QRadioButton	widget	provides	a	radio	button	with	a	text	or	pixmap	label.
More...

#include	<qradiobutton.h>

Inherits	QButton.

List	of	all	member	functions.

Public	Members

QRadioButton	(QWidget	*	parent,	const	char	*	name	=	0)
QRadioButton	(const	QString	&	text,	QWidget	*	parent,
const	char	*	name	=	0)
bool	isChecked	()	const

Public	Slots

virtual	void	setChecked	(bool	check)

Important	Inherited	Members

QString	text	()	const
virtual	void	setText	(const	QString	&)
const	QPixmap	*	pixmap	()	const
virtual	void	setPixmap	(const	QPixmap	&)
QKeySequence	accel	()	const
virtual	void	setAccel	(const	QKeySequence	&)
bool	isToggleButton	()	const
virtual	void	setDown	(bool)
bool	isDown	()	const
bool	isOn	()	const
ToggleState	state	()	const
bool	autoRepeat	()	const
virtual	void	setAutoRepeat	(bool)
bool	isExclusiveToggle	()	const
QButtonGroup	*	group	()	const
void	toggle	()
void	pressed	()
void	released	()
void	clicked	()
void	toggled	(bool	on)
void	stateChanged	(int	state)

Properties

bool	autoMask	-	whether	the	radio	button	is	automatically	masked		(read
only)
bool	checked	-	whether	the	radio	button	is	checked

Detailed	Description

The	QRadioButton	widget	provides	a	radio	button	with	a	text	or	pixmap	label.

QRadioButton	and	QCheckBox	are	both	option	buttons.	That	is,	they	can	be
switched	on	(checked)	or	off	(unchecked).	The	classes	differ	in	how	the	choices
for	the	user	are	restricted.	Check	boxes	define	"many	of	many"	choices,	whereas
radio	buttons	provide	a	"one	of	many"	choice.	In	a	group	of	radio	buttons	only
one	button	at	a	time	can	be	checked;	if	the	user	selects	another	button,	the
previously	selected	button	is	switched	off.

The	easiest	way	to	implement	a	"one	of	many"	choice	is	simply	to	put	the	radio
buttons	into	QButtonGroup.

Whenever	a	button	is	switched	on	or	off	it	emits	the	signal	toggled().	Connect	to
this	signal	if	you	want	to	trigger	an	action	each	time	the	button	changes	state.
Otherwise,	use	isChecked()	to	query	whether	or	not	a	particular	button	is
selected.

Just	like	QPushButton,	a	radio	button	can	display	text	or	a	pixmap.	The	text	can
be	set	in	the	constructor	or	with	setText();	the	pixmap	is	set	with	setPixmap().

	

See	also	QPushButton,	QToolButton,	GUI	Design	Handbook:	Radio	Button	and
Basic	Widgets.

Member	Function	Documentation

QRadioButton::QRadioButton	(QWidget	*	parent,
const	char	*	name	=	0)

Constructs	a	radio	button	with	no	text.

The	parent	and	name	arguments	are	sent	to	the	QWidget	constructor.

QRadioButton::QRadioButton	(const	QString	&	text,
QWidget	*	parent,	const	char	*	name	=	0)

Constructs	a	radio	button	with	the	text	text.

The	parent	and	name	arguments	are	sent	to	the	QWidget	constructor.

QKeySequence	QButton::accel	()	const

Returns	the	accelerator	associated	with	the	button.	See	the	"accel"	property	for
details.

bool	QButton::autoRepeat	()	const

Returns	TRUE	if	autoRepeat	is	enabled;	otherwise	returns	FALSE.	See	the
"autoRepeat"	property	for	details.

void	QButton::clicked	()	[signal]

This	signal	is	emitted	when	the	button	is	activated	(i.e.	first	pressed	down	and
then	released	when	the	mouse	cursor	is	inside	the	button),	when	the	accelerator
key	is	typed	or	when	animateClick()	is	called.	This	signal	is	not	emitted	if	you
call	setDown().

The	QButtonGroup::clicked()	signal	does	the	same	job,	if	you	want	to	connect
several	buttons	to	the	same	slot.

See	also	pressed(),	released(),	toggled(),	autoRepeat	and	down.

Examples:	fonts/simple-qfont-demo/viewer.cpp,	listbox/listbox.cpp,
network/clientserver/client/client.cpp,	network/ftpclient/ftpmainwindow.cpp,
richtext/richtext.cpp,	t2/main.cpp	and	t4/main.cpp.

QButtonGroup	*	QButton::group	()	const

Returns	a	pointer	to	the	group	of	which	this	button	is	a	member.

If	the	button	is	not	a	member	of	any	QButtonGroup,	this	function	returns	0.

See	also	QButtonGroup.

bool	QRadioButton::isChecked	()	const

Returns	TRUE	if	the	radio	button	is	checked;	otherwise	returns	FALSE.	See	the
"checked"	property	for	details.

bool	QButton::isDown	()	const

Returns	TRUE	if	the	button	is	pressed;	otherwise	returns	FALSE.	See	the
"down"	property	for	details.

bool	QButton::isExclusiveToggle	()	const

Returns	TRUE	if	the	button	is	an	exclusive	toggle;	otherwise	returns	FALSE.
See	the	"exclusiveToggle"	property	for	details.

bool	QButton::isOn	()	const

Returns	TRUE	if	the	button	is	toggled;	otherwise	returns	FALSE.	See	the	"on"
property	for	details.

bool	QButton::isToggleButton	()	const

Returns	TRUE	if	the	button	is	a	toggle	button;	otherwise	returns	FALSE.	See	the
"toggleButton"	property	for	details.

const	QPixmap	*	QButton::pixmap	()	const

Returns	the	pixmap	shown	on	the	button.	See	the	"pixmap"	property	for	details.

void	QButton::pressed	()	[signal]

This	signal	is	emitted	when	the	button	is	pressed	down.

See	also	released()	and	clicked().

Examples:	network/httpd/httpd.cpp	and	popup/popup.cpp.

void	QButton::released	()	[signal]

This	signal	is	emitted	when	the	button	is	released.

See	also	pressed(),	clicked()	and	toggled().

void	QButton::setAccel	(const	QKeySequence	&)	[virtual]

Sets	the	accelerator	associated	with	the	button.	See	the	"accel"	property	for
details.

void	QButton::setAutoRepeat	(bool)	[virtual]

Sets	whether	autoRepeat	is	enabled.	See	the	"autoRepeat"	property	for	details.

void	QRadioButton::setChecked	(bool	check)	[virtual	slot]

Sets	whether	the	radio	button	is	checked	to	check.	See	the	"checked"	property
for	details.

void	QButton::setDown	(bool)	[virtual]

Sets	whether	the	button	is	pressed.	See	the	"down"	property	for	details.

void	QButton::setPixmap	(const	QPixmap	&)	[virtual]

Sets	the	pixmap	shown	on	the	button.	See	the	"pixmap"	property	for	details.

void	QButton::setText	(const	QString	&)	[virtual]

Sets	the	text	shown	on	the	button.	See	the	"text"	property	for	details.

ToggleState	QButton::state	()	const

Returns	TRUE	if	the	button	is	toggled;	otherwise	returns	FALSE.	See	the
"toggleState"	property	for	details.

void	QButton::stateChanged	(int	state)	[signal]

This	signal	is	emitted	whenever	a	toggle	button	changes	status.	state	is	2	if	the
button	is	on,	1	if	it	is	in	the	"no	change"	state	or	0	if	the	button	is	off.

This	may	be	the	result	of	a	user	action,	toggle()	slot	activation,	setState(),	or
because	setOn()	was	called.

See	also	clicked().

QString	QButton::text	()	const

Returns	the	text	shown	on	the	button.	See	the	"text"	property	for	details.

void	QButton::toggle	()	[slot]

Toggles	the	state	of	a	toggle	button.

See	also	on,	setOn(),	toggled()	and	toggleButton.

void	QButton::toggled	(bool	on)	[signal]

This	signal	is	emitted	whenever	a	toggle	button	changes	status.	on	is	TRUE	if
the	button	is	on,	or	FALSE	if	the	button	is	off.

This	may	be	the	result	of	a	user	action,	toggle()	slot	activation,	or	because
setOn()	was	called.

See	also	clicked().

Example:	listbox/listbox.cpp.

Property	Documentation

QKeySequence	accel

This	property	holds	the	accelerator	associated	with	the	button.

This	property	is	0	if	there	is	no	accelerator	set.	If	you	set	this	property	to	0	then
any	current	accelerator	is	removed.

Set	this	property's	value	with	setAccel()	and	get	this	property's	value	with
accel().

bool	autoMask

This	property	holds	whether	the	radio	button	is	automatically	masked.

See	also	QWidget::autoMask.

bool	autoRepeat

This	property	holds	whether	autoRepeat	is	enabled.

If	autoRepeat	is	enabled	then	the	clicked()	signal	is	emitted	at	regular	intervals	if
the	button	is	down.	This	property	has	no	effect	on	toggle	buttons.	autoRepeat	is
off	by	default.

Set	this	property's	value	with	setAutoRepeat()	and	get	this	property's	value	with
autoRepeat().

bool	checked

This	property	holds	whether	the	radio	button	is	checked.

This	property	will	not	effect	any	other	radio	buttons	unless	they	have	been
placed	in	the	same	QButtonGroup.	The	default	value	is	FALSE	(unchecked).

Set	this	property's	value	with	setChecked()	and	get	this	property's	value	with
isChecked().

QPixmap	pixmap

This	property	holds	the	pixmap	shown	on	the	button.

If	the	pixmap	is	monochrome	(i.e.,	it	is	a	QBitmap	or	its	depth	is	1)	and	it	does
not	have	a	mask,	this	property	will	set	the	pixmap	to	be	its	own	mask.	The
purpose	of	this	is	to	draw	transparent	bitmaps	which	are	important	for	toggle
buttons,	for	example.

pixmap()	returns	0	if	no	pixmap	was	set.

Set	this	property's	value	with	setPixmap()	and	get	this	property's	value	with
pixmap().

QString	text

This	property	holds	the	text	shown	on	the	button.

This	property	will	return	a	null	string	if	the	button	has	no	text.	If	the	text	has	an
ampersand	('&')	in	it,	then	an	accelerator	is	automatically	created	for	it	using	the
character	after	the	'&'	as	the	accelerator	key.

There	is	no	default	text.

Set	this	property's	value	with	setText()	and	get	this	property's	value	with	text().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QGroupBox
QGroupBox	 ……

#include	<qgroupbox.h>

QFrame

QButtonGroupQHGroupBoxQVGroupBox

QGroupBox	(QWidget	*	parent	=	0,	const	char	*	name	=	0)
QGroupBox	(const	QString	&	title,	QWidget	*	parent	=	0,
const	char	*	name	=	0)
QGroupBox	(int	strips,	Orientation	orientation,	QWidget	*	parent	=	0,
const	char	*	name	=	0)
QGroupBox	(int	strips,	Orientation	orientation,	const	QString	&	title,
QWidget	*	parent	=	0,	const	char	*	name	=	0)
virtual	void	setColumnLayout	(int	strips,	Orientation	direction)
QString	title	()	const
virtual	void	setTitle	(const	QString	&)
int	alignment	()	const
virtual	void	setAlignment	(int)
int	columns	()	const
void	setColumns	(int)
Orientation	orientation	()	const
void	setOrientation	(Orientation)
int	insideMargin	()	const
int	insideSpacing	()	const
void	setInsideMargin	(int	m)
void	setInsideSpacing	(int	s)
void	addSpace	(int	size)

Alignment	alignment	-	
int	columns	-	 orientation
Orientation	orientation	-	
QString	title	-	

QGroupBox

orientation() columns() addSpace

QGroupBox title() alignment()

setInsideMargin()setInsideSpacing()

QButtonGroup

QGroupBox::QGroupBox	(QWidget	*	parent	=	0,
const	char	*	name	=	0)

parentnameQWidget

QGroupBox::QGroupBox	(const	QString	&	title,
QWidget	*	parent	=	0,	const	char	*	name	=	0)

title

parentnameQWidget

QGroupBox::QGroupBox	(int	strips,	Orientation	orientation,
QWidget	*	parent	=	0,	const	char	*	name	=	0)

strips orientation

parentnameQWidget

QGroupBox::QGroupBox	(int	strips,	Orientation	orientation,
const	QString	&	title,	QWidget	*	parent	=	0,
const	char	*	name	=	0)

title strips orientation

parentnameQWidget

void	QGroupBox::addSpace	(int	size)

size0

int	QGroupBox::alignment	()	const

“alignment”

int	QGroupBox::columns	()	const

orientation “columns”

int	QGroupBox::insideMargin	()	const

11

setInsideMargin()orientation

int	QGroupBox::insideSpacing	()	const

5

setInsideSpacing()orientation

Orientation	QGroupBox::orientation	()	const

“orientation”

void	QGroupBox::setAlignment	(int)	[]

“alignment”

void	QGroupBox::setColumnLayout	(int	strips,
Orientation	direction)	[]

Qt

orientationcolumns

chart/optionsform.cpp

void	QGroupBox::setColumns	(int)

orientation “columns”

void	QGroupBox::setInsideMargin	(int	m)

m

insideSpacing()

void	QGroupBox::setInsideSpacing	(int	s)

m

void	QGroupBox::setOrientation	(Orientation)

“orientation”

void	QGroupBox::setTitle	(const	QString	&)	[]

“title”

QString	QGroupBox::title	()	const

“title”

Alignment	alignment

AlignAuto
AlignLeft
AlignRight
AlignHCenter

AlignAuto

Qt::AlignmentFlags

setAlignment()alignment()

int	columns

orientation

setColumns()columns()

Orientation	orientation

setOrientation()orientation()

QString	title

&

						g->setTitle("&User	information");

		

“User	information”UAlt+U

setTitle()title()

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QLayoutItem	Class	Reference
The	QLayoutItem	class	provides	an	abstract	item	that	a	QLayout	manipulates.
More...

#include	<qlayout.h>

Inherited	by	QLayout,	QSpacerItem	and	QWidgetItem.

List	of	all	member	functions.

Public	Members

QLayoutItem	(int	alignment	=	0)
virtual	~QLayoutItem	()
virtual	QSize	sizeHint	()	const	=	0
virtual	QSize	minimumSize	()	const	=	0
virtual	QSize	maximumSize	()	const	=	0
virtual	QSizePolicy::ExpandData	expanding	()	const	=	0
virtual	void	setGeometry	(const	QRect	&	r)	=	0
virtual	QRect	geometry	()	const	=	0
virtual	bool	isEmpty	()	const	=	0
virtual	bool	hasHeightForWidth	()	const
virtual	int	heightForWidth	(int	w)	const
virtual	void	invalidate	()
virtual	QWidget	*	widget	()
virtual	QLayoutIterator	iterator	()
virtual	QLayout	*	layout	()
virtual	QSpacerItem	*	spacerItem	()
int	alignment	()	const
virtual	void	setAlignment	(int	a)

Detailed	Description

The	QLayoutItem	class	provides	an	abstract	item	that	a	QLayout	manipulates.

This	is	used	by	custom	layouts.

Pure	virtual	functions	are	provided	to	return	information	about	the	layout,
including,	sizeHint(),	minimumSize(),	maximumSize()	and	expanding().

The	layout's	geometry	can	be	set	and	retrieved	with	setGeometry()	and
geometry(),	and	its	alignment	with	setAlignment()	and	alignment().

isEmpty()	returns	whether	the	layout	is	empty.	iterator()	returns	an	iterator	for
the	layout's	children.	If	the	concrete	item	is	a	QWidget,	it	can	be	retrieved	using
widget().	Similarly	for	layout()	and	spacerItem().

See	also	QLayout,	Widget	Appearance	and	Style	and	Layout	Management.

Member	Function	Documentation

QLayoutItem::QLayoutItem	(int	alignment	=	0)

Constructs	a	layout	item	with	an	alignment	that	is	a	bitwise	OR	of	the
Qt::AlignmentFlags.	Not	all	subclasses	support	alignment.

QLayoutItem::~QLayoutItem	()	[virtual]

Destroys	the	QLayoutItem.

int	QLayoutItem::alignment	()	const

Returns	the	alignment	of	this	item.

QSizePolicy::ExpandData	QLayoutItem::expanding	()	const
[pure	virtual]

Implemented	in	subclasses	to	return	whether	this	item	"wants"	to	expand.

Reimplemented	in	QLayout,	QSpacerItem	and	QWidgetItem.

QRect	QLayoutItem::geometry	()	const	[pure	virtual]

Returns	the	rectangle	covered	by	this	layout	item.

Example:	customlayout/border.cpp.

bool	QLayoutItem::hasHeightForWidth	()	const	[virtual]

Returns	TRUE	if	this	layout's	preferred	height	depends	on	its	width;	otherwise
returns	FALSE.	The	default	implementation	returns	FALSE.

Reimplement	this	function	in	layout	managers	that	support	height	for	width.

See	also	heightForWidth()	and	QWidget::heightForWidth().

Examples:	customlayout/border.cpp	and	customlayout/flow.cpp.

Reimplemented	in	QGridLayout	and	QBoxLayout.

int	QLayoutItem::heightForWidth	(int	w)	const	[virtual]

Returns	the	preferred	height	for	this	layout	item,	given	the	width	w.

The	default	implementation	returns	-1,	indicating	that	the	preferred	height	is
independent	of	the	width	of	the	item.	Using	the	function	hasHeightForWidth()
will	typically	be	much	faster	than	calling	this	function	and	testing	for	-1.

Reimplement	this	function	in	layout	managers	that	support	height	for	width.	A
typical	implementation	will	look	like	this:

								int	MyLayout::heightForWidth(int	w)	const

								{

												if	(cache_dirty	||	cached_width	!=	w)	{

																//	not	all	C++	compilers	support	"mutable"

																MyLayout	*that	=	(MyLayout*)this;

																int	h	=	calculateHeightForWidth(w);

																that->cached_hfw	=	h;

																return	h;

												}

												return	cached_hfw;

								}

				

Caching	is	strongly	recommended;	without	it	layout	will	take	exponential	time.

See	also	hasHeightForWidth().

Example:	customlayout/flow.cpp.

Reimplemented	in	QGridLayout	and	QBoxLayout.

void	QLayoutItem::invalidate	()	[virtual]

Invalidates	any	cached	information	in	this	layout	item.

Reimplemented	in	QLayout.

bool	QLayoutItem::isEmpty	()	const	[pure	virtual]

Implemented	in	subclasses	to	return	whether	this	item	is	empty,	i.e.	whether	it
contains	any	widgets.

Reimplemented	in	QLayout,	QSpacerItem	and	QWidgetItem.

QLayoutIterator	QLayoutItem::iterator	()	[virtual]

Returns	an	iterator	over	this	item's	QLayoutItem	children.	The	default
implementation	returns	an	empty	iterator.

Reimplement	this	function	in	subclasses	that	can	have	children.

Reimplemented	in	QLayout.

QLayout	*	QLayoutItem::layout	()	[virtual]

If	this	item	is	a	QLayout,	it	is	returned	as	a	QLayout;	otherwise	0	is	returned.
This	function	provides	type-safe	casting.

QSize	QLayoutItem::maximumSize	()	const	[pure	virtual]

Implemented	in	subclasses	to	return	the	maximum	size	of	this	item.

Reimplemented	in	QLayout,	QSpacerItem	and	QWidgetItem.

QSize	QLayoutItem::minimumSize	()	const	[pure	virtual]

Implemented	in	subclasses	to	return	the	minimum	size	of	this	item.

Examples:	customlayout/border.cpp,	customlayout/card.cpp	and
customlayout/flow.cpp.

Reimplemented	in	QLayout,	QSpacerItem	and	QWidgetItem.

void	QLayoutItem::setAlignment	(int	a)	[virtual]

Sets	the	alignment	of	this	item	to	a,	which	is	a	bitwise	OR	of	the

Qt::AlignmentFlags.	Not	all	subclasses	support	alignment.

Example:	chart/optionsform.cpp.

void	QLayoutItem::setGeometry	(const	QRect	&	r)	[pure
virtual]

Implemented	in	subclasses	to	set	this	item's	geometry	to	r.

Examples:	customlayout/border.cpp,	customlayout/card.cpp	and
customlayout/flow.cpp.

Reimplemented	in	QLayout,	QSpacerItem	and	QWidgetItem.

QSize	QLayoutItem::sizeHint	()	const	[pure	virtual]

Implemented	in	subclasses	to	return	the	preferred	size	of	this	item.

Examples:	customlayout/border.cpp,	customlayout/card.cpp	and
customlayout/flow.cpp.

Reimplemented	in	QSpacerItem,	QWidgetItem,	QGridLayout	and	QBoxLayout.

QSpacerItem	*	QLayoutItem::spacerItem	()	[virtual]

If	this	item	is	a	QSpacerItem,	it	is	returned	as	a	QSpacerItem;	otherwise	0	is
returned.	This	function	provides	type-safe	casting.

QWidget	*	QLayoutItem::widget	()	[virtual]

If	this	item	is	a	QWidget,	it	is	returned	as	a	QWidget;	otherwise	0	is	returned.
This	function	provides	type-safe	casting.

Reimplemented	in	QWidgetItem.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

http://www.trolltech.com/

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QFontDialog
QFontDialog	 ……

#include	<qfontdialog.h>

QDialog

QFont	getFont	(bool	*	ok,	const	QFont	&	initial,	QWidget	*	parent	=	0,
const	char	*	name	=	0)
QFont	getFont	(bool	*	ok,	QWidget	*	parent	=	0,	const	char	*	name	=	0)

QFontDialog

getFont()

				bool	ok;

				QFont	font	=	QFontDialog::getFont(

																				&ok,	QFont("Helvetica	[Cronyx]",	10),	this);

				if	(ok)	{

								//	font

				}	else	{

								//	fontHelvetica	[Cronyx],	10

				}

		

				myWidget.setFont(QFontDialog::getFont(0,	myWidget.font()));

		

OKmyWidgetCancel

QFontQFontInfoQFontMetrics

	

QFont	QFontDialog::getFont	(bool	*	ok,	const	QFont	&	initial,
QWidget	*	parent	=	0,	const	char	*	name	=	0)	[]

OKCancel initial

parentnameinitial okOK *okCancel

QFontDialog

				bool	ok;

				QFont	font	=	QFontDialog::getFont(&ok,	QFont("Times",	12),	this);

				if	(ok)	{

								//	font

				}	else	{

								//	fontTimes,	12

				}

		

				myWidget.setFont(QFontDialog::getFont(0,	myWidget.font()));

		

OKCancel

chart/chartform.cppchart/optionsform.cppqfd/fontdisplayer.cppqwerty/qwerty.cpp
xform/xform.cpp

QFont	QFontDialog::getFont	(bool	*	ok,	QWidget	*	parent	=	0,
const	char	*	name	=	0)	[]

OKCancelQt

parentnameinitial okOK *okCancel

QFontDialog

				bool	ok;

				QFont	font	=	QFontDialog::getFont(&ok,	this);

				if	(ok)	{

								//	font

				}	else	{

								//	fontQApplication:: font()

				}

		

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QValidator
QValidator	 ……

#include	<qvalidator.h>

QObject

QIntValidatorQDoubleValidatorQRegExpValidator

QValidator	(QObject	*	parent,	const	char	*	name	=	0)
~QValidator	()
enum	State	{	Invalid,	Intermediate,	Valid	=	Intermediate,	Acceptable	}
virtual	State	validate	(QString	&	input,	int	&	pos)	const	=	0
virtual	void	fixup	(QString	&	input)	const

QValidator

QIntValidatorQDoubleValidator QRegExpValidator

QValidator validate()fixup

validate() InvalidIntermediateAcceptable

Invalid Intermediate——QValidator Intermediate
Acceptable AcceptableIntermediate

099942666 Acceptable1114Intermediate

URLURL Acceptable“http://www.trolltech.com/,”
URL“http:///./”

“11cm”“1in” Acceptable“11” Intermediate
“http://www.trolltech.com”“hour” Invalid

fixup() QLineEditfixup() InvalidAcceptable

QValidatorQLineEdit QSpinBoxQComboBox

QValidator::State

QValidator::Invalid	-	
QValidator::Intermediate	-	
QValidator::Acceptable	-	

QValidator::QValidator	(QObject	*	parent,	const	char	*	name	=
0)

parentnameQObject

QValidator::~QValidator	()

void	QValidator::fixup	(QString	&	input)	const	[]

input——

inputISBN“-”ISBN

State	QValidator::validate	(QString	&	input,	int	&	pos)	const	[
]

input Invalid1099“4” Intermediate Acceptable

inputpos

QIntValidatorQDoubleValidatorQRegExpValidator

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QAction	Examples
The	following	example	programs	show	how	to	use	the	QAction	and
QActionGroup	classes.

A	Tiny	Example	Featuring	QActionGroup
A	Complete	Application	Window	with	Actions
A	Tiny	Example	Featuring	a	Toggle	Action

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QFont	Examples
The	following	example	programs	show	how	to	use	the	classes	QFont,
QFontMetrics,	QFontInfo,	and	QFontDatabase.

A	simple	demonstration	of	QFont	member	functions

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QProcess	Examples
The	following	example	programs	show	how	to	use	the	QProcess	class.

Starting	processes	with	IO	redirection

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Qt	XML	Examples
The	following	example	programs	show	how	to	use	the	Qt	XML	classes.

Outliner	to	show	use	of	DOM
A	tiny	SAX2	parser
Demonstration	of	SAX2	features

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Network	Examples
The	following	example	programs	demonstrate	the	use	of	the	Qt	network	module.

A	small	client-server	example
An	FTP	client
A	simple	HTTP	daemon
A	simple	mail	client
A	simple	NNTP	implementation

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

OpenGL	Examples
The	following	example	programs	demonstrate	the	use	of	the	Qt	OpenGL
module.

OpenGL	Box	Example
OpenGL	Gear	Example
OpenGL	Overlay	Example
OpenGL	Overlay	X11	Example
OpenGL	Pixmap	Example
OpenGL	Shared	Box	Example
OpenGL	Texture	Example

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Qt

Copyright	©	2002	Trolltech Trademarks :farfareast Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Qt	SQL	Examples
The	following	example	programs	show	how	to	use	the	Qt	SQL	classes.

SQL	Table

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

LiveConnect	Examples
The	following	example	programs	show	how	to	write	plugins	that	can	be	used
with	web	browsers	supporting	the	LiveConnect	protocol.

For	more	information	see	the	Plugin	Howto.

Grapher	Plugin
Display	Images	in	Qt-supported	Formats
Trivial	Example

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Analog	Clock
This	example	displays	an	analog	clock	widget.

Header	file:

/**

**	$Id:		qt/aclock.h			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	ACLOCK_H

#define	ACLOCK_H

#include	<qwidget.h>

#include	<qdatetime.h>

class	AnalogClock	:	public	QWidget														//	analog	clock	widget

{

				Q_OBJECT

public:

				AnalogClock(QWidget	*parent=0,	const	char	*name=0);

				void	setAutoMask(bool	b);

public	slots:

				void	setTime(const	QTime	&	t);

protected:

				void	updateMask();

				void	paintEvent(QPaintEvent	*);

				void	mousePressEvent(QMouseEvent	*);

				void	mouseMoveEvent(QMouseEvent	*);

private	slots:

				void	drawClock(QPainter*);

				void								timeout();

private:

				QPoint	clickPos;

				QTime							time;

};

#endif	//	ACLOCK_H

Implementation:

/**

**	$Id:		qt/aclock.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"aclock.h"

#include	<qtimer.h>

#include	<qpainter.h>

#include	<qbitmap.h>

//

//	Constructs	an	analog	clock	widget	that	uses	an	internal	QTimer.

//

AnalogClock::AnalogClock(QWidget	*parent,	const	char	*name)

				:	QWidget(parent,	name)

{

				time	=	QTime::currentTime();																//	get	current	time

				QTimer	*internalTimer	=	new	QTimer(this);	//	create	internal	timer

				connect(internalTimer,	SIGNAL(timeout()),	SLOT(timeout()));

				internalTimer->start(5000);															//	emit	signal	every	5	seconds

}

void	AnalogClock::mousePressEvent(QMouseEvent	*e)

{

				if(isTopLevel())

								clickPos	=	e->pos()	+	QPoint(geometry().topLeft()	-	frameGeometry().topLeft());

}

void	AnalogClock::mouseMoveEvent(QMouseEvent	*e)

{

				if(isTopLevel())

								move(e->globalPos()	-	clickPos);

}

void	AnalogClock::setTime(const	QTime	&	t)

{

				time	=	t;

				timeout();

}

//

//	The	QTimer::timeout()	signal	is	received	by	this	slot.

//

void	AnalogClock::timeout()

{

				QTime	new_time	=	QTime::currentTime();						//	get	the	current	time

				time	=	time.addSecs(5);

				if	(new_time.minute()	!=	time.minute())	{	//	minute	has	changed

								if	(autoMask())

												updateMask();

								else

												update();

				}

}

void	AnalogClock::paintEvent(QPaintEvent	*)

{

				if	(autoMask())

								return;

				QPainter	paint(this);

				paint.setBrush(colorGroup().foreground());

				drawClock(&paint);

}

//	If	the	clock	is	transparent,	we	use	updateMask()

//	instead	of	paintEvent()

void	AnalogClock::updateMask()		//	paint	clock	mask

{

				QBitmap	bm(size());

				bm.fill(color0);																		//transparent

				QPainter	paint;

				paint.begin(&bm,	this);

				paint.setBrush(color1);											//	use	non-transparent	color

				paint.setPen(color1);

				drawClock(&paint);

				paint.end();

				setMask(bm);

}

//

//	The	clock	is	painted	using	a	1000x1000	square	coordinate	system,	in

//	the	a	centered	square,	as	big	as	possible.		The	painter's	pen	and

//	brush	colors	are	used.

//

void	AnalogClock::drawClock(QPainter	*paint)

{

				paint->save();

				paint->setWindow(-500,-500,	1000,1000);

				QRect	v	=	paint->viewport();

				int	d	=	QMIN(v.width(),	v.height());

				paint->setViewport(v.left()	+	(v.width()-d)/2,

																								v.top()	+	(v.height()-d)/2,	d,	d);

				//	time	=	QTime::currentTime();

				QPointArray	pts;

				paint->save();

				paint->rotate(30*(time.hour()%12-3)	+	time.minute()/2);

				pts.setPoints(4,	-20,0,		0,-20,	300,0,	0,20);

				paint->drawConvexPolygon(pts);

				paint->restore();

				paint->save();

				paint->rotate((time.minute()-15)*6);

				pts.setPoints(4,	-10,0,	0,-10,	400,0,	0,10);

				paint->drawConvexPolygon(pts);

				paint->restore();

				for	(int	i=0;	i<12;	i++)	{

								paint->drawLine(440,0,	460,0);

								paint->rotate(30);

				}

				paint->restore();

}

void	AnalogClock::setAutoMask(bool	b)

{

				if	(b)

								setBackgroundMode(PaletteForeground);

				else

								setBackgroundMode(PaletteBackground);

				QWidget::setAutoMask(b);

}

Main:

/**

**	$Id:		qt/main.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"aclock.h"

#include	<qapplication.h>

int	main(int	argc,	char	**argv)

{

				QApplication	a(argc,	argv);

				AnalogClock	*clock	=	new	AnalogClock;

				if	(argc	==	2	&&	strcmp(argv[1],	"-transparent")	==	0)

								clock->setAutoMask(TRUE);

				clock->resize(100,	100);

				a.setMainWidget(clock);

				clock->setCaption("Qt	Example	-	Analog	Clock");

				clock->show();

				int	result	=	a.exec();

				delete	clock;

				return	result;

}

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Simple	Addressbook
This	examples	shows	how	to	write	a	very	simple,	but	complete	application	using
an	addressbook	as	the	example.

Header	file	of	the	mainwindow:

/**

**	$Id:		qt/mainwindow.h			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	AB_MAINWINDOW_H

#define	AB_MAINWINDOW_H

#include	<qmainwindow.h>

#include	<qstring.h>

class	QToolBar;

class	QPopupMenu;

class	ABCentralWidget;

class	ABMainWindow:	public	QMainWindow

{

				Q_OBJECT

public:

				ABMainWindow();

				~ABMainWindow();

protected	slots:

				void	fileNew();

				void	fileOpen();

				void	fileSave();

				void	fileSaveAs();

				void	filePrint();

				void	closeWindow();

protected:

				void	setupMenuBar();

				void	setupFileTools();

				void	setupStatusBar();

				void	setupCentralWidget();

				QToolBar	*fileTools;

				QString	filename;

				ABCentralWidget	*view;

};

#endif

Implementation	of	the	mainwindow:

/**

**	$Id:		qt/mainwindow.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"mainwindow.h"

#include	"centralwidget.h"

#include	<qtoolbar.h>

#include	<qtoolbutton.h>

#include	<qpopupmenu.h>

#include	<qmenubar.h>

#include	<qstatusbar.h>

#include	<qapplication.h>

#include	<qfiledialog.h>

ABMainWindow::ABMainWindow()

				:	QMainWindow(0,	"example	addressbook	application"),

						filename(QString::null)

{

				setupMenuBar();

				setupFileTools();

				setupStatusBar();

				setupCentralWidget();

}

ABMainWindow::~ABMainWindow()

{

}

void	ABMainWindow::setupMenuBar()

{

				QPopupMenu	*file	=	new	QPopupMenu(this);

				menuBar()->insertItem("&File",	file);

				file->insertItem("New",	this,	SLOT(fileNew()),	CTRL	+	Key_N);

				file->insertItem(QPixmap("fileopen.xpm"),	"Open",	this,	SLOT(fileOpen()),	CTRL	+	Key_O);

				file->insertSeparator();

				file->insertItem(QPixmap("filesave.xpm"),	"Save",	this,	SLOT(fileSave()),	CTRL	+	Key_S);

				file->insertItem("Save	As...",	this,	SLOT(fileSaveAs()));

				file->insertSeparator();

				file->insertItem(QPixmap("fileprint.xpm"),	"Print...",	this,	SLOT(filePrint()),	CTRL	+	Key_P);

				file->insertSeparator();

				file->insertItem("Close",	this,	SLOT(closeWindow()),	CTRL	+	Key_W);

				file->insertItem("Quit",	qApp,	SLOT(quit()),	CTRL	+	Key_Q);

}

void	ABMainWindow::setupFileTools()

{

				//fileTools	=	new	QToolBar(this,	"file	operations");

}

void	ABMainWindow::setupStatusBar()

{

				//statusBar()->message("Ready",	2000);

}

void	ABMainWindow::setupCentralWidget()

{

				view	=	new	ABCentralWidget(this);

				setCentralWidget(view);

}

void	ABMainWindow::closeWindow()

{

				close();

}

void	ABMainWindow::fileNew()

{

}

void	ABMainWindow::fileOpen()

{

				QString	fn	=	QFileDialog::getOpenFileName(QString::null,	QString::null,	this);

				if	(!fn.isEmpty())	{

								filename	=	fn;

								view->load(filename);

				}

}

void	ABMainWindow::fileSave()

{

				if	(filename.isEmpty())	{

								fileSaveAs();

								return;

				}

				view->save(filename);

}

void	ABMainWindow::fileSaveAs()

{

				QString	fn	=	QFileDialog::getSaveFileName(QString::null,	QString::null,	this);

				if	(!fn.isEmpty())	{

								filename	=	fn;

								fileSave();

				}

}

void	ABMainWindow::filePrint()

{

}

Header	file	of	the	centralwidget:

/**

**	$Id:		qt/centralwidget.h			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	AB_CENTRALWIDGET_H

#define	AB_CENTRALWIDGET_H

#include	<qwidget.h>

#include	<qstring.h>

class	QTabWidget;

class	QListView;

class	QGridLayout;

class	QLineEdit;

class	QPushButton;

class	QListViewItem;

class	QCheckBox;

class	ABCentralWidget	:	public	QWidget

{

				Q_OBJECT

public:

				ABCentralWidget(QWidget	*parent,	const	char	*name	=	0);

				void	save(const	QString	&filename);

				void	load(const	QString	&filename);

protected	slots:

				void	addEntry();

				void	changeEntry();

				void	itemSelected(QListViewItem*);

				void	selectionChanged();

				void	toggleFirstName();

				void	toggleLastName();

				void	toggleAddress();

				void	toggleEMail();

				void	findEntries();

protected:

				void	setupTabWidget();

				void	setupListView();

				QGridLayout	*mainGrid;

				QTabWidget	*tabWidget;

				QListView	*listView;

				QPushButton	*add,	*change,	*find;

				QLineEdit	*iFirstName,	*iLastName,	*iAddress,	*iEMail,

								*sFirstName,	*sLastName,	*sAddress,	*sEMail;

				QCheckBox	*cFirstName,	*cLastName,	*cAddress,	*cEMail;

};

#endif

Implementation	of	the	centralwidget:

/**

**	$Id:		qt/centralwidget.cpp			3.0.5			edited	Apr	3	15:01	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"centralwidget.h"

#include	<qtabwidget.h>

#include	<qlistview.h>

#include	<qlayout.h>

#include	<qwidget.h>

#include	<qlabel.h>

#include	<qpushbutton.h>

#include	<qlineedit.h>

#include	<qlabel.h>

#include	<qcheckbox.h>

#include	<qfile.h>

#include	<qtextstream.h>

ABCentralWidget::ABCentralWidget(QWidget	*parent,	const	char	*name)

				:	QWidget(parent,	name)

{

				mainGrid	=	new	QGridLayout(this,	2,	1,	5,	5);

				setupTabWidget();

				setupListView();

				mainGrid->setRowStretch(0,	0);

				mainGrid->setRowStretch(1,	1);

}

void	ABCentralWidget::save(const	QString	&filename)

{

				if	(!listView->firstChild())

								return;

				QFile	f(filename);

				if	(!f.open(IO_WriteOnly))

								return;

				QTextStream	t(&f);

				QListViewItemIterator	it(listView);

				for	(;	it.current();	++it)

								for	(unsigned	int	i	=	0;	i	<	4;	i++)

												t	<<	it.current()->text(i)	<<	"\n";

				f.close();

}

void	ABCentralWidget::load(const	QString	&filename)

{

				listView->clear();

				QFile	f(filename);

				if	(!f.open(IO_ReadOnly))

								return;

				QTextStream	t(&f);

				while	(!t.atEnd())	{

								QListViewItem	*item	=	new	QListViewItem(listView);

								for	(unsigned	int	i	=	0;	i	<	4;	i++)

												item->setText(i,	t.readLine());

				}

				f.close();

}

void	ABCentralWidget::setupTabWidget()

{

				tabWidget	=	new	QTabWidget(this);

				QWidget	*input	=	new	QWidget(tabWidget);

				QGridLayout	*grid1	=	new	QGridLayout(input,	2,	5,	5,	5);

				QLabel	*liFirstName	=	new	QLabel("First	&Name",	input);

				liFirstName->resize(liFirstName->sizeHint());

				grid1->addWidget(liFirstName,	0,	0);

				QLabel	*liLastName	=	new	QLabel("&Last	Name",	input);

				liLastName->resize(liLastName->sizeHint());

				grid1->addWidget(liLastName,	0,	1);

				QLabel	*liAddress	=	new	QLabel("Add&ress",	input);

				liAddress->resize(liAddress->sizeHint());

				grid1->addWidget(liAddress,	0,	2);

				QLabel	*liEMail	=	new	QLabel("&E-Mail",	input);

				liEMail->resize(liEMail->sizeHint());

				grid1->addWidget(liEMail,	0,	3);

				add	=	new	QPushButton("A&dd",	input);

				add->resize(add->sizeHint());

				grid1->addWidget(add,	0,	4);

				connect(add,	SIGNAL(clicked()),	this,	SLOT(addEntry()));

				iFirstName	=	new	QLineEdit(input);

				iFirstName->resize(iFirstName->sizeHint());

				grid1->addWidget(iFirstName,	1,	0);

				liFirstName->setBuddy(iFirstName);

				iLastName	=	new	QLineEdit(input);

				iLastName->resize(iLastName->sizeHint());

				grid1->addWidget(iLastName,	1,	1);

				liLastName->setBuddy(iLastName);

				iAddress	=	new	QLineEdit(input);

				iAddress->resize(iAddress->sizeHint());

				grid1->addWidget(iAddress,	1,	2);

				liAddress->setBuddy(iAddress);

				iEMail	=	new	QLineEdit(input);

				iEMail->resize(iEMail->sizeHint());

				grid1->addWidget(iEMail,	1,	3);

				liEMail->setBuddy(iEMail);

				change	=	new	QPushButton("&Change",	input);

				change->resize(change->sizeHint());

				grid1->addWidget(change,	1,	4);

				connect(change,	SIGNAL(clicked()),	this,	SLOT(changeEntry()));

				tabWidget->addTab(input,	"&Add/Change	Entry");

				//	--------------------------------------

				QWidget	*search	=	new	QWidget(this);

				QGridLayout	*grid2	=	new	QGridLayout(search,	2,	5,	5,	5);

				cFirstName	=	new	QCheckBox("First	&Name",	search);

				cFirstName->resize(cFirstName->sizeHint());

				grid2->addWidget(cFirstName,	0,	0);

				connect(cFirstName,	SIGNAL(clicked()),	this,	SLOT(toggleFirstName()));

				cLastName	=	new	QCheckBox("&Last	Name",	search);

				cLastName->resize(cLastName->sizeHint());

				grid2->addWidget(cLastName,	0,	1);

				connect(cLastName,	SIGNAL(clicked()),	this,	SLOT(toggleLastName()));

				cAddress	=	new	QCheckBox("Add&ress",	search);

				cAddress->resize(cAddress->sizeHint());

				grid2->addWidget(cAddress,	0,	2);

				connect(cAddress,	SIGNAL(clicked()),	this,	SLOT(toggleAddress()));

				cEMail	=	new	QCheckBox("&E-Mail",	search);

				cEMail->resize(cEMail->sizeHint());

				grid2->addWidget(cEMail,	0,	3);

				connect(cEMail,	SIGNAL(clicked()),	this,	SLOT(toggleEMail()));

				sFirstName	=	new	QLineEdit(search);

				sFirstName->resize(sFirstName->sizeHint());

				grid2->addWidget(sFirstName,	1,	0);

				sLastName	=	new	QLineEdit(search);

				sLastName->resize(sLastName->sizeHint());

				grid2->addWidget(sLastName,	1,	1);

				sAddress	=	new	QLineEdit(search);

				sAddress->resize(sAddress->sizeHint());

				grid2->addWidget(sAddress,	1,	2);

				sEMail	=	new	QLineEdit(search);

				sEMail->resize(sEMail->sizeHint());

				grid2->addWidget(sEMail,	1,	3);

				find	=	new	QPushButton("F&ind",	search);

				find->resize(find->sizeHint());

				grid2->addWidget(find,	1,	4);

				connect(find,	SIGNAL(clicked()),	this,	SLOT(findEntries()));

				cFirstName->setChecked(TRUE);

				sFirstName->setEnabled(TRUE);

				sLastName->setEnabled(FALSE);

				sAddress->setEnabled(FALSE);

				sEMail->setEnabled(FALSE);

				tabWidget->addTab(search,	"&Search");

				mainGrid->addWidget(tabWidget,	0,	0);

}

void	ABCentralWidget::setupListView()

{

				listView	=	new	QListView(this);

				listView->addColumn("First	Name");

				listView->addColumn("Last	Name");

				listView->addColumn("Address");

				listView->addColumn("E-Mail");

				listView->setSelectionMode(QListView::Single);

				connect(listView,	SIGNAL(clicked(QListViewItem*)),	this,	SLOT(itemSelected(

				mainGrid->addWidget(listView,	1,	0);

				listView->setAllColumnsShowFocus(TRUE);

}

void	ABCentralWidget::addEntry()

{

				if	(!iFirstName->text().isEmpty()	||	!iLastName->text().isEmpty()	||

									!iAddress->text().isEmpty()	||	!iEMail->text().isEmpty())	{

								QListViewItem	*item	=	new	QListViewItem(listView);

								item->setText(0,	iFirstName->text());

								item->setText(1,	iLastName->text());

								item->setText(2,	iAddress->text());

								item->setText(3,	iEMail->text());

				}

				iFirstName->setText("");

				iLastName->setText("");

				iAddress->setText("");

				iEMail->setText("");

}

void	ABCentralWidget::changeEntry()

{

				QListViewItem	*item	=	listView->currentItem();

				if	(item	&&

									(!iFirstName->text().isEmpty()	||	!iLastName->text().isEmpty()	||

											!iAddress->text().isEmpty()	||	!iEMail->text().isEmpty()))	{

								item->setText(0,	iFirstName->text());

								item->setText(1,	iLastName->text());

								item->setText(2,	iAddress->text());

								item->setText(3,	iEMail->text());

				}

}

void	ABCentralWidget::selectionChanged()

{

				iFirstName->setText("");

				iLastName->setText("");

				iAddress->setText("");

				iEMail->setText("");

}

void	ABCentralWidget::itemSelected(QListViewItem	*item)

{

				if	(!item)

								return;

				item->setSelected(TRUE);

				item->repaint();

				iFirstName->setText(item->text(0));

				iLastName->setText(item->text(1));

				iAddress->setText(item->text(2));

				iEMail->setText(item->text(3));

}

void	ABCentralWidget::toggleFirstName()

{

				sFirstName->setText("");

				if	(cFirstName->isChecked())	{

								sFirstName->setEnabled(TRUE);

								sFirstName->setFocus();

				}

				else

								sFirstName->setEnabled(FALSE);

}

void	ABCentralWidget::toggleLastName()

{

				sLastName->setText("");

				if	(cLastName->isChecked())	{

								sLastName->setEnabled(TRUE);

								sLastName->setFocus();

				}

				else

								sLastName->setEnabled(FALSE);

}

void	ABCentralWidget::toggleAddress()

{

				sAddress->setText("");

				if	(cAddress->isChecked())	{

								sAddress->setEnabled(TRUE);

								sAddress->setFocus();

				}

				else

								sAddress->setEnabled(FALSE);

}

void	ABCentralWidget::toggleEMail()

{

				sEMail->setText("");

				if	(cEMail->isChecked())	{

								sEMail->setEnabled(TRUE);

								sEMail->setFocus();

				}

				else

								sEMail->setEnabled(FALSE);

}

void	ABCentralWidget::findEntries()

{

				if	(!cFirstName->isChecked()	&&

									!cLastName->isChecked()	&&

									!cAddress->isChecked()	&&

									!cEMail->isChecked())	{

								listView->clearSelection();

								return;

				}

				QListViewItemIterator	it(listView);

				for	(;	it.current();	++it)	{

								bool	select	=	TRUE;

								if	(cFirstName->isChecked())	{

												if	(select	&&	it.current()->text(0).contains(sFirstName->

																select	=	TRUE;

												else

																select	=	FALSE;

								}

								if	(cLastName->isChecked())	{

												if	(select	&&	it.current()->text(1).contains(sLastName->

																select	=	TRUE;

												else

																select	=	FALSE;

								}

								if	(cAddress->isChecked())	{

												if	(select	&&	it.current()->text(2).contains(sAddress->

																select	=	TRUE;

												else

																select	=	FALSE;

								}

								if	(cEMail->isChecked())	{

												if	(select	&&	it.current()->text(3).contains(sEMail->

																select	=	TRUE;

												else

																select	=	FALSE;

								}

								if	(select)

												it.current()->setSelected(TRUE);

								else

												it.current()->setSelected(FALSE);

								it.current()->repaint();

				}

}

Main:

/**

**	$Id:		qt/main.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	"mainwindow.h"

int	main(int	argc,	char	**	argv)

{

				QApplication	a(argc,	argv);

				ABMainWindow	*mw	=	new	ABMainWindow();

				mw->setCaption("Qt	Example	-	Addressbook");

				a.setMainWidget(mw);

				mw->show();

				a.connect(&a,	SIGNAL(lastWindowClosed()),	&a,	SLOT(quit()));

				int	result	=	a.exec();

				delete	mw;

				return	result;

}

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Biff	(UNIX	only)
Biff	is	a	simple	graphical	program	to	indicate	whether	there	is	new	mail;	it	looks
exactly	like	xbiff	but	is	much	shorter.

Header	file:

/**

**	$Id:		qt/biff.h			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	BIFF_H

#define	BIFF_H

#include	<qwidget.h>

#include	<qdatetime.h>

#include	<qpixmap.h>

class	Biff	:	public	QWidget

{

				Q_OBJECT

public:

				Biff(QWidget	*parent=0,	const	char	*name=0);

protected:

				void								timerEvent(QTimerEvent	*);

				void								paintEvent(QPaintEvent	*);

				void								mousePressEvent(QMouseEvent	*);

private:

				QDateTime			lastModified;

				QPixmap					hasNewMail;

				QPixmap					noNewMail;

				QString					mailbox;

				bool								gotMail;

};

#endif	//	BIFF_H

biff.cpp	implements	this	custom	widget.	Note	in	particular	how	two	images
(hasmail_bmp_data	and	nomail_bmp_data,	both	from	bmp.cpp)	are	included
into	the	executable.

/**

**	$Id:		qt/biff.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"biff.h"

#include	<qstring.h>

#include	<qfileinfo.h>

#include	<qpainter.h>

#include	<unistd.h>

#include	<stdlib.h>

#include	"bmp.cpp"

Biff::Biff(QWidget	*parent,	const	char	*name)

				:	QWidget(parent,	name,	WType_Modal)

{

				QFileInfo	fi	=	QString(getenv("MAIL"));

				if	(!fi.exists())	{

								QString	s("/var/spool/mail/");

								s	+=	getlogin();

								fi.setFile(s);

				}

				if	(fi.exists())	{

								mailbox	=	fi.absFilePath();

								startTimer(1000);

				}

				setMinimumSize(48,	48);

				setMaximumSize(48,	48);

				resize(48,	48);

				hasNewMail.loadFromData(hasmail_bmp_data,	hasmail_bmp_len);

				noNewMail.loadFromData(nomail_bmp_data,	nomail_bmp_len);

				gotMail	=	FALSE;

				lastModified	=	fi.lastModified();

}

void	Biff::timerEvent(QTimerEvent	*)

{

				QFileInfo	fi(mailbox);

				bool	newState	=	(fi.lastModified()	!=	lastModified	&&

																						fi.lastModified()	>	fi.lastRead());

				if	(newState	!=	gotMail)	{

								if	(gotMail)

												lastModified	=	fi.lastModified();

								gotMail	=	newState;

								repaint(FALSE);

				}

}

void	Biff::paintEvent(QPaintEvent	*)

{

				if	(gotMail)

								bitBlt(this,	0,	0,	&hasNewMail);

				else

								bitBlt(this,	0,	0,	&noNewMail);

}

void	Biff::mousePressEvent(QMouseEvent	*)

{

				QFileInfo	fi(mailbox);

				lastModified	=	fi.lastModified();

}

Main:

/**

**	$Id:		qt/main.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	"biff.h"

int	main(int	argc,	char	**	argv)

{

				QApplication	a(argc,	argv);

				Biff	b;

				a.setMainWidget(&b);

				b.show();

				return	a.exec();

}

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Buttons	and	Groupboxes
This	example	shows	different	types	of	groupboxes	(buttongroups,	etc.)	and
different	kinds	of	buttons	(checkboxes,	radiobuttons,	pushbuttons,	etc.).

Header	file:

/**

**	$Id:		qt/buttongroups.h			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	BUTTONS_GROUPS_H

#define	BUTTONS_GROUPS_H

#include	<qwidget.h>

class	QCheckBox;

class	QRadioButton;

class	ButtonsGroups	:	public	QWidget

{

				Q_OBJECT

public:

				ButtonsGroups(QWidget	*parent	=	0,	const	char	*name	=	0);

protected:

				QCheckBox	*state;

				QRadioButton	*rb21,	*rb22,	*rb23;

protected	slots:

				void	slotChangeGrp3State();

};

#endif

Implementation:

/**

**	$Id:		qt/buttongroups.cpp			3.0.5			edited	Jun	4	09:54	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"buttongroups.h"

#include	<qbuttongroup.h>

#include	<qlayout.h>

#include	<qradiobutton.h>

#include	<qcheckbox.h>

#include	<qgroupbox.h>

#include	<qpushbutton.h>

/*

	*	Constructor

	*

	*	Creates	all	child	widgets	of	the	ButtonGroups	window

	*/

ButtonsGroups::ButtonsGroups(QWidget	*parent,	const	char	*name)

				:	QWidget(parent,	name)

{

				//	Create	Widgets	which	allow	easy	layouting

				QVBoxLayout	*vbox	=	new	QVBoxLayout(this,	11,	6);

				QHBoxLayout	*box1	=	new	QHBoxLayout(vbox);

				QHBoxLayout	*box2	=	new	QHBoxLayout(vbox);

				//	-------	first	group

				//	Create	an	exclusive	button	group

				QButtonGroup	*bgrp1	=	new	QButtonGroup(1,	QGroupBox::Horizontal,	"Button	Group	&1	(exclusive)",	this);

				box1->addWidget(bgrp1);

				bgrp1->setExclusive(TRUE);

				//	insert	3	radiobuttons

				QRadioButton	*rb11	=	new	QRadioButton("&Radiobutton	1",	bgrp1);

				rb11->setChecked(TRUE);

				(void)new	QRadioButton("R&adiobutton	2",	bgrp1);

				(void)new	QRadioButton("Ra&diobutton	3",	bgrp1);

				//	-------	second	group

				//	Create	a	non-exclusive	buttongroup

				QButtonGroup	*bgrp2	=	new	QButtonGroup(1,	QGroupBox::Horizontal,	"Button	Group	&2	(non-exclusive)",	this);

				box1->addWidget(bgrp2);

				bgrp2->setExclusive(FALSE);

				//	insert	3	checkboxes

				(void)new	QCheckBox("&Checkbox	1",	bgrp2);

				QCheckBox	*cb12	=	new	QCheckBox("C&heckbox	2",	bgrp2);

				cb12->setChecked(TRUE);

				QCheckBox	*cb13	=	new	QCheckBox("Triple	&State	Button",	bgrp2);

				cb13->setTristate(TRUE);

				cb13->setChecked(TRUE);

				//	------------	third	group

				//	create	a	buttongroup	which	is	exclusive	for	radiobuttons	and	non-exclusive	for	all	other	buttons

				QButtonGroup	*bgrp3	=	new	QButtonGroup(1,	QGroupBox::Horizontal,	"Button	Group	&3	(Radiobutton-exclusive)",	this);

				box2->addWidget(bgrp3);

				bgrp3->setRadioButtonExclusive(TRUE);

				//	insert	three	radiobuttons

				rb21	=	new	QRadioButton("Rad&iobutton	1",	bgrp3);

				rb22	=	new	QRadioButton("Radi&obutton	2",	bgrp3);

				rb23	=	new	QRadioButton("Radio&button	3",	bgrp3);

				rb23->setChecked(TRUE);

				//	insert	a	checkbox...

				state	=	new	QCheckBox("E&nable	Radiobuttons",	bgrp3);

				state->setChecked(TRUE);

				//	...and	connect	its	SIGNAL	clicked()	with	the	SLOT	slotChangeGrp3State()

				connect(state,	SIGNAL(clicked()),	this,	SLOT(slotChangeGrp3State()));

				//	------------	fourth	group

				//	create	a	groupbox	which	layouts	its	childs	in	a	columns

				QGroupBox	*bgrp4	=	new	QButtonGroup(1,	QGroupBox::Horizontal,	"Groupbox	with	&normal	buttons",	this);

				box2->addWidget(bgrp4);

				//	insert	three	pushbuttons...

				(void)new	QPushButton("&Push	Button",	bgrp4);

				QPushButton	*tb2	=	new	QPushButton("&Toggle	Button",	bgrp4);

				QPushButton	*tb3	=	new	QPushButton("&Flat	Button",	bgrp4);

				//	...	and	make	the	second	one	a	toggle	button

				tb2->setToggleButton(TRUE);

				tb2->setOn(TRUE);

				//	...	and	make	the	third	one	a	flat	button

				tb3->setFlat(TRUE);

}

/*

	*	SLOT	slotChangeGrp3State()

	*

	*	enables/disables	the	radiobuttons	of	the	third	buttongroup

	*/

void	ButtonsGroups::slotChangeGrp3State()

{

				rb21->setEnabled(state->isChecked());

				rb22->setEnabled(state->isChecked());

				rb23->setEnabled(state->isChecked());

}

Main:

/**

**	$Id:		qt/main.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"buttongroups.h"

#include	<qapplication.h>

int	main(int	argc,	char	**argv)

{

				QApplication	a(argc,	argv);

				ButtonsGroups	buttonsgroups;

				buttonsgroups.resize(500,	250);

				buttonsgroups.setCaption("Qt	Example	-	Buttongroups");

				a.setMainWidget(&buttonsgroups);

				buttonsgroups.show();

				return	a.exec();

}

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Canvas	Example
This	example	shows	a	QCanvas	and	some	QCanvasItems	in	action.	You	can	do	a
lot	more	with	QCanvas	than	we	show	here,	but	the	example	provides	a	taste	of
what	can	be	done.

Header	file:

#ifndef	EXAMPLE_H

#define	EXAMPLE_H

#include	<qpopupmenu.h>

#include	<qmainwindow.h>

#include	<qintdict.h>

#include	<qcanvas.h>

class	BouncyLogo	:	public	QCanvasSprite	{

				void	initPos();

				void	initSpeed();

public:

				BouncyLogo(QCanvas*);

				void	advance(int);

				int	rtti()	const;

};

class	FigureEditor	:	public	QCanvasView	{

				Q_OBJECT

public:

				FigureEditor(QCanvas&,	QWidget*	parent=0,	const	char*	name=0,	WFlags	f=0);

				void	clear();

protected:

				void	contentsMousePressEvent(QMouseEvent*);

				void	contentsMouseMoveEvent(QMouseEvent*);

signals:

				void	status(const	QString&);

private:

				QCanvasItem*	moving;

				QPoint	moving_start;

};

class	Main	:	public	QMainWindow	{

				Q_OBJECT

public:

				Main(QCanvas&,	QWidget*	parent=0,	const	char*	name=0,	WFlags	f=0);

				~Main();

public	slots:

				void	help();

private	slots:

				void	aboutQt();

				void	newView();

				void	clear();

				void	init();

				void	addSprite();

				void	addCircle();

				void	addHexagon();

				void	addPolygon();

				void	addSpline();

				void	addText();

				void	addLine();

				void	addRectangle();

				void	addMesh();

				void	addLogo();

				void	addButterfly();

				void	enlarge();

				void	shrink();

				void	rotateClockwise();

				void	rotateCounterClockwise();

				void	zoomIn();

				void	zoomOut();

				void	mirror();

				void	moveL();

				void	moveR();

				void	moveU();

				void	moveD();

				void	print();

				void	toggleDoubleBuffer();

private:

				QCanvas&	canvas;

				FigureEditor	*editor;

				QPopupMenu*	options;

				QPrinter*	printer;

				int	dbf_id;

};

#endif

Implementation:

#include	<qdatetime.h>

#include	<qmainwindow.h>

#include	<qstatusbar.h>

#include	<qmessagebox.h>

#include	<qmenubar.h>

#include	<qapplication.h>

#include	<qpainter.h>

#include	<qprinter.h>

#include	<qlabel.h>

#include	<qimage.h>

#include	<qprogressdialog.h>

#include	"canvas.h"

#include	<stdlib.h>

//	We	use	a	global	variable	to	save	memory	-	all	the	brushes	and	pens	in

//	the	mesh	are	shared.

static	QBrush	*tb	=	0;

static	QPen	*tp	=	0;

class	EdgeItem;

class	NodeItem;

class	EdgeItem:	public	QCanvasLine

{

public:

				EdgeItem(NodeItem*,	NodeItem*,	QCanvas	*canvas);

				void	setFromPoint(int	x,	int	y)	;

				void	setToPoint(int	x,	int	y);

				static	int	count()	{	return	c;	}

				void	moveBy(double	dx,	double	dy);

private:

				static	int	c;

};

static	const	int	imageRTTI	=	984376;

class	ImageItem:	public	QCanvasRectangle

{

public:

				ImageItem(QImage	img,	QCanvas	*canvas);

				int	rtti	()	const	{	return	imageRTTI;	}

				bool	hit(const	QPoint&)	const;

protected:

				void	drawShape(QPainter	&);

private:

				QImage	image;

				QPixmap	pixmap;

};

ImageItem::ImageItem(QImage	img,	QCanvas	*canvas)

				:	QCanvasRectangle(canvas),	image(img)

{

				setSize(image.width(),	image.height());

#if	!defined(Q_WS_QWS)

				pixmap.convertFromImage(image,	OrderedAlphaDither);

#endif

}

void	ImageItem::drawShape(QPainter	&p)

{

//	On	Qt/Embedded,	we	can	paint	a	QImage	as	fast	as	a	QPixmap,

//	but	on	other	platforms,	we	need	to	use	a	QPixmap.

#if	defined(Q_WS_QWS)

				p.drawImage(int(x()),	int(y()),	image,	0,	0,	-1,	-1,	OrderedAlphaDither);

#else

				p.drawPixmap(int(x()),	int(y()),	pixmap);

#endif

}

bool	ImageItem::hit(const	QPoint	&p)	const

{

				int	ix	=	p.x()-int(x());

				int	iy	=	p.y()-int(y());

				if	(!image.valid(ix	,	iy))

								return	FALSE;

				QRgb	pixel	=	image.pixel(ix,	iy);

				return	qAlpha(pixel)	!=	0;

}

class	NodeItem:	public	QCanvasEllipse

{

public:

				NodeItem(QCanvas	*canvas);

				~NodeItem()	{}

				void	addInEdge(EdgeItem	*edge)	{	inList.append(edge);	}

				void	addOutEdge(EdgeItem	*edge)	{	outList.append(edge);	}

				void	moveBy(double	dx,	double	dy);

				//				QPoint	center()	{	return	boundingRect().center();	}

private:

				QPtrList<EdgeItem>	inList;

				QPtrList<EdgeItem>	outList;

};

int	EdgeItem::c	=	0;

void	EdgeItem::moveBy(double,	double)

{

				//nothing

}

EdgeItem::EdgeItem(NodeItem	*from,	NodeItem	*to,	QCanvas	*canvas)

				:	QCanvasLine(canvas)

{

				c++;

				setPen(*tp);

				setBrush(*tb);

				from->addOutEdge(this);

				to->addInEdge(this);

				setPoints(int(from->x()),	int(from->y()),	int(to->x()),	int(to->y()));

				setZ(127);

}

void	EdgeItem::setFromPoint(int	x,	int	y)

{

				setPoints(x,y,	endPoint().x(),	endPoint().y());

}

void	EdgeItem::setToPoint(int	x,	int	y)

{

				setPoints(startPoint().x(),	startPoint().y(),	x,	y);

}

void	NodeItem::moveBy(double	dx,	double	dy)

{

				QCanvasEllipse::moveBy(dx,	dy);

				QPtrListIterator<EdgeItem>	it1(inList);

				EdgeItem	*edge;

				while	((edge	=	it1.current()))	{

								++it1;

								edge->setToPoint(int(x()),	int(y()));

				}

				QPtrListIterator<EdgeItem>	it2(outList);

				while	((edge	=	it2.current()))	{

								++it2;

								edge->setFromPoint(int(x()),	int(y()));

				}

}

NodeItem::NodeItem(QCanvas	*canvas)

				:	QCanvasEllipse(6,	6,	canvas)

{

				setPen(*tp);

				setBrush(*tb);

				setZ(128);

}

FigureEditor::FigureEditor(

								QCanvas&	c,	QWidget*	parent,

								const	char*	name,	WFlags	f)	:

				QCanvasView(&c,parent,name,f)

{

}

void	FigureEditor::contentsMousePressEvent(QMouseEvent*	e)

{

				QPoint	p	=	inverseWorldMatrix().map(e->pos());

				QCanvasItemList	l=canvas()->collisions(p);

				for	(QCanvasItemList::Iterator	it=l.begin();	it!=l.end();	++it)	{

								if	((*it)->rtti()	==	imageRTTI)	{

												ImageItem	*item=	(ImageItem*)(*it);

												if	(!item->hit(p))

																	continue;

								}

								moving	=	*it;

								moving_start	=	p;

								return;

				}

				moving	=	0;

}

void	FigureEditor::clear()

{

				QCanvasItemList	list	=	canvas()->allItems();

				QCanvasItemList::Iterator	it	=	list.begin();

				for	(;	it	!=	list.end();	++it)	{

								if	(*it)

												delete	*it;

				}

}

void	FigureEditor::contentsMouseMoveEvent(QMouseEvent*	e)

{

				if	(moving)	{

								QPoint	p	=	inverseWorldMatrix().map(e->pos());

								moving->moveBy(p.x()	-	moving_start.x(),

																							p.y()	-	moving_start.y());

								moving_start	=	p;

								canvas()->update();

				}

}

BouncyLogo::BouncyLogo(QCanvas*	canvas)	:

				QCanvasSprite(0,canvas)

{

				static	QCanvasPixmapArray	logo("qt-trans.xpm");

				setSequence(&logo);

				setAnimated(TRUE);

				initPos();

}

const	int	logo_rtti	=	1234;

int	BouncyLogo::rtti()	const

{

				return	logo_rtti;

}

void	BouncyLogo::initPos()

{

				initSpeed();

				int	trial=1000;

				do	{

								move(rand()%canvas()->width(),rand()%canvas()->height());

								advance(0);

				}	while	(trial--	&&	xVelocity()==0.0	&&	yVelocity()==0.0);

}

void	BouncyLogo::initSpeed()

{

				const	double	speed	=	4.0;

				double	d	=	(double)(rand()%1024)	/	1024.0;

				setVelocity(d*speed*2-speed,	(1-d)*speed*2-speed);

}

void	BouncyLogo::advance(int	stage)

{

				switch	(stage)	{

						case	0:	{

								double	vx	=	xVelocity();

								double	vy	=	yVelocity();

								if	(vx	==	0.0	&&	vy	==	0.0)	{

												//	stopped	last	turn

												initSpeed();

												vx	=	xVelocity();

												vy	=	yVelocity();

								}

								double	nx	=	x()	+	vx;

								double	ny	=	y()	+	vy;

								if	(nx	<	0	||	nx	>=	canvas()->width())

												vx	=	-vx;

								if	(ny	<	0	||	ny	>=	canvas()->height())

												vy	=	-vy;

								for	(int	bounce=0;	bounce<4;	bounce++)	{

												QCanvasItemList	l=collisions(FALSE);

												for	(QCanvasItemList::Iterator	it=l.begin();	it!=l.end();	++it)	{

																QCanvasItem	*hit	=	*it;

																if	(hit->rtti()==logo_rtti	&&	hit->collidesWith(this))	{

																				switch	(bounce)	{

																						case	0:

																								vx	=	-vx;

																								break;

																						case	1:

																								vy	=	-vy;

																								vx	=	-vx;

																								break;

																						case	2:

																								vx	=	-vx;

																								break;

																						case	3:

																								//	Stop	for	this	turn

																								vx	=	0;

																								vy	=	0;

																								break;

																				}

																				setVelocity(vx,vy);

																				break;

																}

												}

								}

								if	(x()+vx	<	0	||	x()+vx	>=	canvas()->width())

												vx	=	0;

								if	(y()+vy	<	0	||	y()+vy	>=	canvas()->height())

												vy	=	0;

								setVelocity(vx,vy);

						}	break;

						case	1:

								QCanvasItem::advance(stage);

								break;

				}

}

static	uint	mainCount	=	0;

static	QImage	*butterflyimg;

static	QImage	*logoimg;

Main::Main(QCanvas&	c,	QWidget*	parent,	const	char*	name,	WFlags	f)	:

				QMainWindow(parent,name,f),

				canvas(c)

{

				editor	=	new	FigureEditor(canvas,this);

				QMenuBar*	menu	=	menuBar();

				QPopupMenu*	file	=	new	QPopupMenu(menu);

				file->insertItem("&Fill	canvas",	this,	SLOT(init()),	CTRL+Key_F);

				file->insertItem("&Erase	canvas",	this,	SLOT(clear()),	CTRL+Key_E);

				file->insertItem("&New	view",	this,	SLOT(newView()),	CTRL+Key_N);

				file->insertSeparator();

				file->insertItem("&Print",	this,	SLOT(print()),	CTRL+Key_P);

				file->insertSeparator();

				file->insertItem("E&xit",	qApp,	SLOT(quit()),	CTRL+Key_Q);

				menu->insertItem("&File",	file);

				QPopupMenu*	edit	=	new	QPopupMenu(menu);

				edit->insertItem("Add	&Circle",	this,	SLOT(addCircle()),	ALT+Key_C);

				edit->insertItem("Add	&Hexagon",	this,	SLOT(addHexagon()),	ALT+Key_H);

				edit->insertItem("Add	&Polygon",	this,	SLOT(addPolygon()),	ALT+Key_P);

				edit->insertItem("Add	Spl&ine",	this,	SLOT(addSpline()),	ALT+Key_I);

				edit->insertItem("Add	&Text",	this,	SLOT(addText()),	ALT+Key_T);

				edit->insertItem("Add	&Line",	this,	SLOT(addLine()),	ALT+Key_L);

				edit->insertItem("Add	&Rectangle",	this,	SLOT(addRectangle()),	ALT+Key_R);

				edit->insertItem("Add	&Sprite",	this,	SLOT(addSprite()),	ALT+Key_S);

				edit->insertItem("Create	&Mesh",	this,	SLOT(addMesh()),	ALT+Key_M);

				edit->insertItem("Add	&Alpha-blended	image",	this,	SLOT(addButterfly()),	ALT+Key_A);

				menu->insertItem("&Edit",	edit);

				QPopupMenu*	view	=	new	QPopupMenu(menu);

				view->insertItem("&Enlarge",	this,	SLOT(enlarge()),	SHIFT+CTRL+Key_Plus);

				view->insertItem("Shr&ink",	this,	SLOT(shrink()),	SHIFT+CTRL+Key_Minus);

				view->insertSeparator();

				view->insertItem("&Rotate	clockwise",	this,	SLOT(rotateClockwise()),	CTRL+Key_PageDown);

				view->insertItem("Rotate	&counterclockwise",	this,	SLOT(rotateCounterClockwise()),	CTRL+Key_PageUp);

				view->insertItem("&Zoom	in",	this,	SLOT(zoomIn()),	CTRL+Key_Plus);

				view->insertItem("Zoom	&out",	this,	SLOT(zoomOut()),	CTRL+Key_Minus);

				view->insertItem("Translate	left",	this,	SLOT(moveL()),	CTRL+Key_Left);

				view->insertItem("Translate	right",	this,	SLOT(moveR()),	CTRL+Key_Right);

				view->insertItem("Translate	up",	this,	SLOT(moveU()),	CTRL+Key_Up);

				view->insertItem("Translate	down",	this,	SLOT(moveD()),	CTRL+Key_Down);

				view->insertItem("&Mirror",	this,	SLOT(mirror()),	CTRL+Key_Home);

				menu->insertItem("&View",	view);

				options	=	new	QPopupMenu(menu);

				dbf_id	=	options->insertItem("Double	buffer",	this,	SLOT(toggleDoubleBuffer()));

				options->setItemChecked(dbf_id,	TRUE);

				menu->insertItem("&Options",options);

				menu->insertSeparator();

				QPopupMenu*	help	=	new	QPopupMenu(menu);

				help->insertItem("&About",	this,	SLOT(help()),	Key_F1);

				help->setItemChecked(dbf_id,	TRUE);

				menu->insertItem("&Help",help);

				statusBar();

				setCentralWidget(editor);

				printer	=	0;

				init();

}

void	Main::init()

{

				clear();

				static	int	r=24;

				srand(++r);

				mainCount++;

				butterflyimg	=	0;

				logoimg	=	0;

				int	i;

				for	(i=0;	i<canvas.width()	/	56;	i++)	{

								addButterfly();

				}

				for	(i=0;	i<canvas.width()	/	85;	i++)	{

								addHexagon();

				}

				for	(i=0;	i<canvas.width()	/	128;	i++)	{

								addLogo();

				}

}

Main::~Main()

{

				delete	printer;

				if	(!--mainCount)	{

								delete[]	butterflyimg;

								butterflyimg	=	0;

								delete[]	logoimg;

								logoimg	=	0;

				}

}

void	Main::newView()

{

				//	Open	a	new	view...	have	it	delete	when	closed.

				Main	*m	=	new	Main(canvas,	0,	0,	WDestructiveClose);

				qApp->setMainWidget(m);

				m->show();

				qApp->setMainWidget(0);

}

void	Main::clear()

{

				editor->clear();

}

void	Main::help()

{

				static	QMessageBox*	about	=	new	QMessageBox("Qt	Canvas	Example",

												"<h3>The	QCanvas	classes	example</h3>"

												""

																"	Press	ALT-S	for	some	sprites."

																"	Press	ALT-C	for	some	circles."

																"	Press	ALT-L	for	some	lines."

																"	Drag	the	objects	around."

																"	Read	the	code!"

												"",	QMessageBox::Information,	1,	0,	0,	this,	0,	FALSE);

				about->setButtonText(1,	"Dismiss");

				about->show();

}

void	Main::aboutQt()

{

				QMessageBox::aboutQt(this,	"Qt	Canvas	Example");

}

void	Main::toggleDoubleBuffer()

{

				bool	s	=	!options->isItemChecked(dbf_id);

				options->setItemChecked(dbf_id,s);

				canvas.setDoubleBuffering(s);

}

void	Main::enlarge()

{

				canvas.resize(canvas.width()*4/3,	canvas.height()*4/3);

}

void	Main::shrink()

{

				canvas.resize(canvas.width()*3/4,	canvas.height()*3/4);

}

void	Main::rotateClockwise()

{

				QWMatrix	m	=	editor->worldMatrix();

				m.rotate(22.5);

				editor->setWorldMatrix(m);

}

void	Main::rotateCounterClockwise()

{

				QWMatrix	m	=	editor->worldMatrix();

				m.rotate(-22.5);

				editor->setWorldMatrix(m);

}

void	Main::zoomIn()

{

				QWMatrix	m	=	editor->worldMatrix();

				m.scale(2.0,	2.0);

				editor->setWorldMatrix(m);

}

void	Main::zoomOut()

{

				QWMatrix	m	=	editor->worldMatrix();

				m.scale(0.5,	0.5);

				editor->setWorldMatrix(m);

}

void	Main::mirror()

{

				QWMatrix	m	=	editor->worldMatrix();

				m.scale(-1,	1);

				editor->setWorldMatrix(m);

}

void	Main::moveL()

{

				QWMatrix	m	=	editor->worldMatrix();

				m.translate(-16,	0);

				editor->setWorldMatrix(m);

}

void	Main::moveR()

{

				QWMatrix	m	=	editor->worldMatrix();

				m.translate(+16,	0);

				editor->setWorldMatrix(m);

}

void	Main::moveU()

{

				QWMatrix	m	=	editor->worldMatrix();

				m.translate(0,	-16);

				editor->setWorldMatrix(m);

}

void	Main::moveD()

{

				QWMatrix	m	=	editor->worldMatrix();

				m.translate(0,	+16);

				editor->setWorldMatrix(m);

}

void	Main::print()

{

				if	(!printer)	printer	=	new	QPrinter;

				if	(printer->setup(this))	{

								QPainter	pp(printer);

								canvas.drawArea(QRect(0,0,canvas.width(),canvas.height()),&pp,FALSE);

				}

}

void	Main::addSprite()

{

				QCanvasItem*	i	=	new	BouncyLogo(&canvas);

				i->setZ(rand()%256);

				i->show();

}

QString	butterfly_fn;

QString	logo_fn;

void	Main::addButterfly()

{

				if	(butterfly_fn.isEmpty())

								return;

				if	(!butterflyimg)	{

								butterflyimg	=	new	QImage[4];

								butterflyimg[0].load(butterfly_fn);

								butterflyimg[1]	=	butterflyimg[0].smoothScale(int(butterflyimg[0].width()*0.75),

																int(butterflyimg[0].height()*0.75));

								butterflyimg[2]	=	butterflyimg[0].smoothScale(int(butterflyimg[0].width()*0.5),

																int(butterflyimg[0].height()*0.5));

								butterflyimg[3]	=	butterflyimg[0].smoothScale(int(butterflyimg[0].width()*0.25),

																int(butterflyimg[0].height()*0.25));

				}

				QCanvasPolygonalItem*	i	=	new	ImageItem(butterflyimg[rand()%4],&canvas);

				i->move(rand()%(canvas.width()-butterflyimg->width()),

												rand()%(canvas.height()-butterflyimg->height()));

				i->setZ(rand()%256+250);

				i->show();

}

void	Main::addLogo()

{

				if	(logo_fn.isEmpty())

								return;

				if	(!logoimg)	{

								logoimg	=	new	QImage[4];

								logoimg[0].load(logo_fn);

								logoimg[1]	=	logoimg[0].smoothScale(int(logoimg[0].width()*0.75),

																int(logoimg[0].height()*0.75));

								logoimg[2]	=	logoimg[0].smoothScale(int(logoimg[0].width()*0.5),

																int(logoimg[0].height()*0.5));

								logoimg[3]	=	logoimg[0].smoothScale(int(logoimg[0].width()*0.25),

																int(logoimg[0].height()*0.25));

				}

				QCanvasPolygonalItem*	i	=	new	ImageItem(logoimg[rand()%4],&canvas);

				i->move(rand()%(canvas.width()-logoimg->width()),

												rand()%(canvas.height()-logoimg->width()));

				i->setZ(rand()%256+256);

				i->show();

}

void	Main::addCircle()

{

				QCanvasPolygonalItem*	i	=	new	QCanvasEllipse(50,50,&canvas);

				i->setBrush(QColor(rand()%32*8,rand()%32*8,rand()%32*8));

				i->move(rand()%canvas.width(),rand()%canvas.height());

				i->setZ(rand()%256);

				i->show();

}

void	Main::addHexagon()

{

				QCanvasPolygon*	i	=	new	QCanvasPolygon(&canvas);

				const	int	size	=	canvas.width()	/	25;

				QPointArray	pa(6);

				pa[0]	=	QPoint(2*size,0);

				pa[1]	=	QPoint(size,-size*173/100);

				pa[2]	=	QPoint(-size,-size*173/100);

				pa[3]	=	QPoint(-2*size,0);

				pa[4]	=	QPoint(-size,size*173/100);

				pa[5]	=	QPoint(size,size*173/100);

				i->setPoints(pa);

				i->setBrush(QColor(rand()%32*8,rand()%32*8,rand()%32*8));

				i->move(rand()%canvas.width(),rand()%canvas.height());

				i->setZ(rand()%256);

				i->show();

}

void	Main::addPolygon()

{

				QCanvasPolygon*	i	=	new	QCanvasPolygon(&canvas);

				const	int	size	=	canvas.width()/2;

				QPointArray	pa(6);

				pa[0]	=	QPoint(0,0);

				pa[1]	=	QPoint(size,size/5);

				pa[2]	=	QPoint(size*4/5,size);

				pa[3]	=	QPoint(size/6,size*5/4);

				pa[4]	=	QPoint(size*3/4,size*3/4);

				pa[5]	=	QPoint(size*3/4,size/4);

				i->setPoints(pa);

				i->setBrush(QColor(rand()%32*8,rand()%32*8,rand()%32*8));

				i->move(rand()%canvas.width(),rand()%canvas.height());

				i->setZ(rand()%256);

				i->show();

}

void	Main::addSpline()

{

				QCanvasSpline*	i	=	new	QCanvasSpline(&canvas);

				const	int	size	=	canvas.width()/6;

				QPointArray	pa(12);

				pa[0]	=	QPoint(0,0);

				pa[1]	=	QPoint(size/2,0);

				pa[2]	=	QPoint(size,size/2);

				pa[3]	=	QPoint(size,size);

				pa[4]	=	QPoint(size,size*3/2);

				pa[5]	=	QPoint(size/2,size*2);

				pa[6]	=	QPoint(0,size*2);

				pa[7]	=	QPoint(-size/2,size*2);

				pa[8]	=	QPoint(size/4,size*3/2);

				pa[9]	=	QPoint(0,size);

				pa[10]=	QPoint(-size/4,size/2);

				pa[11]=	QPoint(-size/2,0);

				i->setControlPoints(pa);

				i->setBrush(QColor(rand()%32*8,rand()%32*8,rand()%32*8));

				i->move(rand()%canvas.width(),rand()%canvas.height());

				i->setZ(rand()%256);

				i->show();

}

void	Main::addText()

{

				QCanvasText*	i	=	new	QCanvasText(&canvas);

				i->setText("QCanvasText");

				i->move(rand()%canvas.width(),rand()%canvas.height());

				i->setZ(rand()%256);

				i->show();

}

void	Main::addLine()

{

				QCanvasLine*	i	=	new	QCanvasLine(&canvas);

				i->setPoints(rand()%canvas.width(),	rand()%canvas.height(),

																		rand()%canvas.width(),	rand()%canvas.height());

				i->setPen(QPen(QColor(rand()%32*8,rand()%32*8,rand()%32*8),	6));

				i->setZ(rand()%256);

				i->show();

}

void	Main::addMesh()

{

				int	x0	=	0;

				int	y0	=	0;

				if	(!tb)	tb	=	new	QBrush(Qt::red);

				if	(!tp)	tp	=	new	QPen(Qt::black);

				int	nodecount	=	0;

				int	w	=	canvas.width();

				int	h	=	canvas.height();

				const	int	dist	=	30;

				int	rows	=	h	/	dist;

				int	cols	=	w	/	dist;

#ifndef	QT_NO_PROGRESSDIALOG

				QProgressDialog	progress("Creating	mesh...",	"Abort",	rows,

																														this,	"progress",	TRUE);

#endif

				QMemArray<NodeItem*>	lastRow(cols);

				for	(int	j	=	0;	j	<	rows;	j++)	{

								int	n	=	j%2	?	cols-1	:	cols;

								NodeItem	*prev	=	0;

								for	(int	i	=	0;	i	<	n;	i++)	{

												NodeItem	*el	=	new	NodeItem(&canvas);

												nodecount++;

												int	r	=	rand();

												int	xrand	=	r	%20;

												int	yrand	=	(r/20)	%20;

												el->move(xrand	+	x0	+	i*dist	+	(j%2	?	dist/2	:	0),

																						yrand	+	y0	+	j*dist);

												if	(j	>	0)	{

																if	(i	<	cols-1)

																				(new	EdgeItem(lastRow[i],	el,	&canvas))->show();

																if	(j%2)

																				(new	EdgeItem(lastRow[i+1],	el,	&canvas))->show();

																else	if	(i	>	0)

																				(new	EdgeItem(lastRow[i-1],	el,	&canvas))->show();

												}

												if	(prev)	{

																(new	EdgeItem(prev,	el,	&canvas))->show();

												}

												if	(i	>	0)	lastRow[i-1]	=	prev;

												prev	=	el;

												el->show();

								}

								lastRow[n-1]=prev;

#ifndef	QT_NO_PROGRESSDIALOG

								progress.setProgress(j);

								if	(progress.wasCancelled())

												break;

#endif

				}

#ifndef	QT_NO_PROGRESSDIALOG

				progress.setProgress(rows);

#endif

				//	qDebug("%d	nodes,	%d	edges",	nodecount,	EdgeItem::count());

}

void	Main::addRectangle()

{

				QCanvasPolygonalItem	*i	=	new	QCanvasRectangle(rand()%canvas.width

																												canvas.width()/5,canvas.width()/5,&canvas);

				int	z	=	rand()%256;

				i->setBrush(QColor(z,z,z));

				i->setPen(QPen(QColor(rand()%32*8,rand()%32*8,rand()%32*8),	6));

				i->setZ(z);

				i->show();

}

Main:

#include	<qstatusbar.h>

#include	<qmessagebox.h>

#include	<qmenubar.h>

#include	<qapplication.h>

#include	<qimage.h>

#include	"canvas.h"

#include	<stdlib.h>

extern	QString	butterfly_fn;

extern	QString	logo_fn;

int	main(int	argc,	char**	argv)

{

				QApplication	app(argc,argv);

				/*

				qDebug("sizeof(QCanvasPolygonalItem)=%d",sizeof(QCanvasPolygonalItem));

				qDebug("sizeof(QCanvasText)=%d",sizeof(QCanvasText));

				qDebug("sizeof(QWidget)=%d",sizeof(QWidget));

				qDebug("sizeof(QLabel)=%d",sizeof(QLabel));

				*/

				if	(argc	>	1)

								butterfly_fn	=	argv[1];

				else

								butterfly_fn	=	"butterfly.png";

				if	(argc	>	2)

								logo_fn	=	argv[2];

				else

								logo_fn	=	"qtlogo.png";

				QCanvas	canvas(800,600);

				canvas.setAdvancePeriod(30);

				Main	m(canvas);

				m.resize(m.sizeHint());

				qApp->setMainWidget(&m);

				m.setCaption("Qt	Example	-	Canvas");

				if	(QApplication::desktop()->width()	>	m.width()	+	10

									&&	QApplication::desktop()->height()	>	m.height()	+30)

								m.show();

				else

								m.showMaximized();

				m.show();

				//				m.help();

				qApp->setMainWidget(0);

				QObject::connect(qApp,	SIGNAL(lastWindowClosed()),	qApp,	SLOT(quit

				return	app.exec();

}

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Listviews	with	Checkable	Items
This	example	program	shows	how	to	use	listviews	with	different	types	of
checkable	items.

Header	file:

/**

**	$Id:		qt/checklists.h			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	CHECKLISTS_H

#define	CHECKLISTS_H

#include	<qwidget.h>

class	QListView;

class	QLabel;

class	CheckLists	:	public	QWidget

{

				Q_OBJECT

public:

				CheckLists(QWidget	*parent	=	0,	const	char	*name	=	0);

protected:

				QListView	*lv1,	*lv2;

				QLabel	*label;

protected	slots:

				void	copy1to2();

				void	copy2to3();

};

#endif

Implementation:

/**

**	$Id:		qt/checklists.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"checklists.h"

#include	<qlistview.h>

#include	<qvbox.h>

#include	<qlabel.h>

#include	<qvaluelist.h>

#include	<qstring.h>

#include	<qpushbutton.h>

#include	<qlayout.h>

/*

	*	Constructor

	*

	*	Create	all	child	widgets	of	the	CheckList	Widget

	*/

CheckLists::CheckLists(QWidget	*parent,	const	char	*name)

				:	QWidget(parent,	name)

{

				QHBoxLayout	*lay	=	new	QHBoxLayout(this);

				lay->setMargin(5);

				//	create	a	widget	which	layouts	its	childs	in	a	column

				QVBoxLayout	*vbox1	=	new	QVBoxLayout(lay);

				vbox1->setMargin(5);

				//	First	child:	a	Label

				vbox1->addWidget(new	QLabel("Check	some	items!",	this));

				//	Second	child:	the	ListView

				lv1	=	new	QListView(this);

				vbox1->addWidget(lv1);

				lv1->addColumn("Items");

				lv1->setRootIsDecorated(TRUE);

				//	create	a	list	with	4	ListViewItems	which	will	be	parent	items	of	other	ListViewItems

				QValueList<QListViewItem	*>	parentList;

				parentList.append(new	QListViewItem(lv1,	"Parent	Item	1"));

				parentList.append(new	QListViewItem(lv1,	"Parent	Item	2"));

				parentList.append(new	QListViewItem(lv1,	"Parent	Item	3"));

				parentList.append(new	QListViewItem(lv1,	"Parent	Item	4"));

				QListViewItem	*item	=	0;

				unsigned	int	num	=	1;

				//	go	through	the	list	of	parent	items...

				for	(QValueList<QListViewItem*>::Iterator	it	=	parentList.begin

										(*it)->setOpen(TRUE),	++it,	num++)	{

								item	=	*it;

								//	...and	create	5	checkable	child	ListViewItems	for	each	parent	item

								for	(unsigned	int	i	=	1;	i	<=	5;	i++)

												(void)new	QCheckListItem(item,	QString("%1.	Child	of	Parent	%2").arg(i).arg(num),	QCheckListItem::CheckBox);

				}

				//	Create	another	widget	for	layouting

				QVBoxLayout	*tmp	=	new	QVBoxLayout(lay);

				tmp->setMargin(5);

				//	create	a	pushbutton

				QPushButton	*copy1	=	new	QPushButton("		->		",	this);

				tmp->addWidget(copy1);

				copy1->setMaximumWidth(copy1->sizeHint().width());

				//	connect	the	SIGNAL	clicked()	of	the	pushbutton	with	the	SLOT	copy1to2()

				connect(copy1,	SIGNAL(clicked()),	this,	SLOT(copy1to2()));

				//	another	widget	for	layouting

				QVBoxLayout	*vbox2	=	new	QVBoxLayout(lay);

				vbox2->setMargin(5);

				//	and	another	label

				vbox2->addWidget(new	QLabel("Check	one	item!",	this));

				//	create	the	second	listview

				lv2	=	new	QListView(this);

				vbox2->addWidget(lv2);

				lv2->addColumn("Items");

				lv2->setRootIsDecorated(TRUE);

				//	another	widget	needed	for	layouting	only

				tmp	=	new	QVBoxLayout(lay);

				tmp->setMargin(5);

				//	create	another	pushbutton...

				QPushButton	*copy2	=	new	QPushButton("		->		",	this);

				lay->addWidget(copy2);

				copy2->setMaximumWidth(copy2->sizeHint().width());

				//	...and	connect	its	clicked()	SIGNAL	to	the	copy2to3()	SLOT

				connect(copy2,	SIGNAL(clicked()),	this,	SLOT(copy2to3()));

				tmp	=	new	QVBoxLayout(lay);

				tmp->setMargin(5);

				//	and	create	a	label	which	will	be	at	the	right	of	the	window

				label	=	new	QLabel("No	Item	yet...",	this);

				tmp->addWidget(label);

}

/*

	*	SLOT	copy1to2()

	*

	*	Copies	all	checked	ListViewItems	from	the	first	ListView	to

	*	the	second	one,	and	inserts	them	as	Radio-ListViewItem.

	*/

void	CheckLists::copy1to2()

{

				//	create	an	iterator	which	operates	on	the	first	ListView

				QListViewItemIterator	it(lv1);

				lv2->clear();

				//	Insert	first	a	controller	Item	into	the	second	ListView.	Always	if	Radio-ListViewItems

				//	are	inserted	into	a	Listview,	the	parent	item	of	these	MUST	be	a	controller	Item!

				QCheckListItem	*item	=	new	QCheckListItem(lv2,	"Controller",	QCheckListItem::Controller);

				item->setOpen(TRUE);

				//	iterate	through	the	first	ListView...

				for	(;	it.current();	++it)

								//	...check	state	of	childs,	and...

								if	(it.current()->parent())

												//	...if	the	item	is	checked...

												if	(((QCheckListItem*)it.current())->isOn())

																//	...insert	a	Radio-ListViewItem	with	the	same	text	into	the	second	ListView

																(void)new	QCheckListItem(item,	it.current()->text(0),	QCheckListItem::RadioButton);

				if	(item->firstChild())

								((QCheckListItem*)item->firstChild())->setOn(TRUE);

}

/*

	*	SLOT	copy2to3()

	*

	*	Copies	the	checked	item	of	the	second	ListView	into	the

	*	Label	at	the	right.

	*/

void	CheckLists::copy2to3()

{

				//	create	an	iterator	which	operates	on	the	second	ListView

				QListViewItemIterator	it(lv2);

				label->setText("No	Item	checked");

				//	iterate	through	the	second	ListView...

				for	(;	it.current();	++it)

								//	...check	state	of	childs,	and...

								if	(it.current()->parent())

												//	...if	the	item	is	checked...

												if	(((QCheckListItem*)it.current())->isOn())

																//	...set	the	text	of	the	item	to	the	label

																label->setText(it.current()->text(0));

}

Main:

/**

**	$Id:		qt/main.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"checklists.h"

#include	<qapplication.h>

int	main(int	argc,	char	**argv)

{

				QApplication	a(argc,	argv);

				CheckLists	checklists;

				checklists.resize(650,	350);

				checklists.setCaption("Qt	Example	-	CheckLists");

				a.setMainWidget(&checklists);

				checklists.show();

				return	a.exec();

}

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Cursors
This	example	shows	how	to	set	a	mouse	cursor	for	a	widget.

Implementation:

/**

**	$Id:		qt/cursor.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qlabel.h>

#include	<qbitmap.h>

#include	<qapplication.h>

#include	<qlayout.h>

#include	<qcursor.h>

//	cb_bits	and	cm_bits	were	generated	by	X	bitmap	program.

#define	cb_width		32

#define	cb_height	32

static	unsigned	char	cb_bits[]	=	{														//	cursor	bitmap

			0x00,	0x00,	0x00,	0x00,	0x00,	0x00,	0x00,	0x00,	0x00,	0xf8,	0x0f,	0x00,

			0x00,	0x06,	0x30,	0x00,	0x80,	0x01,	0xc0,	0x00,	0x40,	0x00,	0x00,	0x01,

			0x20,	0x00,	0x00,	0x02,	0x10,	0x00,	0x00,	0x04,	0x08,	0x3e,	0x3e,	0x08,

			0x08,	0x03,	0xe0,	0x08,	0xc4,	0x00,	0x00,	0x11,	0x04,	0x1e,	0x78,	0x10,

			0x02,	0x0c,	0x30,	0x20,	0x02,	0x40,	0x00,	0x20,	0x02,	0x40,	0x00,	0x20,

			0x02,	0x40,	0x00,	0x20,	0x02,	0x20,	0x04,	0x20,	0x02,	0x20,	0x04,	0x20,

			0x02,	0x10,	0x08,	0x20,	0x02,	0x08,	0x08,	0x20,	0x02,	0xf0,	0x07,	0x20,

			0x04,	0x00,	0x00,	0x10,	0x04,	0x00,	0x00,	0x10,	0x08,	0x00,	0xc0,	0x08,

			0x08,	0x3c,	0x30,	0x08,	0x10,	0xe6,	0x19,	0x04,	0x20,	0x00,	0x0f,	0x02,

			0x40,	0x00,	0x00,	0x01,	0x80,	0x01,	0xc0,	0x00,	0x00,	0x06,	0x30,	0x00,

			0x00,	0xf8,	0x0f,	0x00,	0x00,	0x00,	0x00,	0x00};

#define	cm_width		32

#define	cm_height	32

static	unsigned	char	cm_bits[]	=	{														//	cursor	bitmap	mask

			0x00,	0x00,	0x00,	0x00,	0x00,	0xf8,	0x1f,	0x00,	0x00,	0xfe,	0x3f,	0x00,

			0x80,	0x07,	0xf0,	0x00,	0xc0,	0x01,	0xc0,	0x01,	0x60,	0x00,	0x00,	0x03,

			0x30,	0x00,	0x00,	0x06,	0x18,	0x00,	0x00,	0x0c,	0x0c,	0x3e,	0x3e,	0x18,

			0x0e,	0x03,	0xe0,	0x18,	0xc6,	0x00,	0x00,	0x31,	0x07,	0x1e,	0x78,	0x30,

			0x03,	0x0c,	0x30,	0x60,	0x03,	0x40,	0x00,	0x60,	0x03,	0x40,	0x00,	0x60,

			0x03,	0x40,	0x00,	0x60,	0x03,	0x20,	0x04,	0x60,	0x03,	0x20,	0x04,	0x60,

			0x03,	0x10,	0x08,	0x60,	0x03,	0x08,	0x08,	0x60,	0x03,	0xf0,	0x07,	0x60,

			0x06,	0x00,	0x00,	0x30,	0x06,	0x00,	0x00,	0x30,	0x0c,	0x00,	0xc0,	0x18,

			0x0c,	0x3c,	0x30,	0x18,	0x18,	0xe6,	0x19,	0x0c,	0x30,	0x00,	0x0f,	0x06,

			0x60,	0x00,	0x00,	0x03,	0xc0,	0x01,	0xc0,	0x01,	0x80,	0x07,	0xf0,	0x00,

			0x00,	0xfe,	0x3f,	0x00,	0x00,	0xf8,	0x0f,	0x00};

//

//	The	CursorView	contains	many	labels	with	different	cursors.

//

class	CursorView	:	public	QWidget															//	cursor	view

{

public:

				CursorView();

};

//

//	Constructs	a	cursor	view.

//

CursorView::CursorView()																								//	construct	view

{

				struct	List	{

								CursorShape					shape;

								const	char*					name;																			//	cursor	name

				};

				static	List	list[]	=	{

								{	ArrowCursor,										"arrowCursor"	},

								{	UpArrowCursor,								"upArrowCursor"	},

								{	CrossCursor,										"crossCursor"	},

								{	WaitCursor,											"waitCursor"	},

								{	IbeamCursor,										"ibeamCursor"	},

								{	SizeVerCursor,								"sizeVerCursor"	},

								{	SizeHorCursor,								"sizeHorCursor"	},

								{	SizeBDiagCursor,						"sizeBDiagCursor"	},

								{	SizeFDiagCursor,						"sizeFDiagCursor"	},

								{	SizeAllCursor,								"sizeAllCursor"	},

								{	BlankCursor,										"blankCursor"	},

								{	SplitVCursor,									"splitVCursor"	},

								{	SplitHCursor,									"splitHCursor"	},

								{	PointingHandCursor,			"pointingHandCursor"	},

								{	ForbiddenCursor,						"forbiddenCursor"	},

								{	WhatsThisCursor,						"whatsThisCursor"	}

				};

				setCaption("CursorView");																	//	set	window	caption

				QGridLayout*	grid	=	new	QGridLayout(this,	5,	4,	20);

				QLabel	*label;

				int	i=0;

				for	(int	y=0;	y<4;	y++)	{																	//	create	the	small	labels

								for	(int	x=0;	x<4;	x++)	{

												label	=	new	QLabel(this);

												label->setCursor(QCursor(list[i].shape));

												label->setText(list[i].name);

												label->setAlignment(AlignCenter);

												label->setFrameStyle(QFrame::Box	|	QFrame::Raised);

												grid->addWidget(label,	x,	y);

												i++;

								}

				}

				QBitmap	cb(cb_width,	cb_height,	cb_bits,	TRUE);

				QBitmap	cm(cm_width,	cm_height,	cm_bits,	TRUE);

				QCursor	custom(cb,	cm);																			//	create	bitmap	cursor

				label	=	new	QLabel(this);																	//	create	the	big	label

				label->setCursor(custom);

				label->setText("Custom	bitmap	cursor");

				label->setAlignment(AlignCenter);

				label->setFrameStyle(QFrame::Box	|	QFrame::Sunken);

				grid->addMultiCellWidget(label,	4,	4,	0,	3);

}

//

//	Create	and	display	a	CursorView.

//

int	main(int	argc,	char	**argv)

{

				QApplication	a(argc,	argv);															//	application	object

				CursorView			v;																													//	cursor	view

				a.setMainWidget(&v);

				v.setCaption("Qt	Example	-	Cursors");

				v.show();

				return	a.exec();

}

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Customized	Layoutmanager
This	examples	demonstrates	how	to	write	customized	layout	(geometry)
managers	like	card	layouts,	border	layout	and	flow	layouts.

See	also:	Documentation	of	Geometry	Management.

Header	file	of	the	flow	layout:

/**

**	$Id:		qt/flow.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	simple	flow	layout	for	custom	layout	example

**

**	Created	:	979899

**

**	Copyright	(C)	1997	by	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	FLOW_H

#define	FLOW_H

#include	<qlayout.h>

#include	<qptrlist.h>

class	SimpleFlow	:	public	QLayout

{

public:

				SimpleFlow(QWidget	*parent,	int	border=0,	int	space=-1,

																const	char	*name=0)

								:	QLayout(parent,	border,	space,	name),

								cached_width(0)	{}

				SimpleFlow(QLayout*	parent,	int	space=-1,	const	char	*name=0)

								:	QLayout(parent,	space,	name),

								cached_width(0)	{}

				SimpleFlow(int	space=-1,	const	char	*name=0)

								:	QLayout(space,	name),

								cached_width(0)	{}

				~SimpleFlow();

				void	addItem(QLayoutItem	*item);

				bool	hasHeightForWidth()	const;

				int	heightForWidth(int)	const;

				QSize	sizeHint()	const;

				QSize	minimumSize()	const;

				QLayoutIterator	iterator();

				QSizePolicy::ExpandData	expanding()	const;

protected:

				void	setGeometry(const	QRect&);

private:

				int	doLayout(const	QRect&,	bool	testonly	=	FALSE);

				QPtrList<QLayoutItem>	list;

				int	cached_width;

				int	cached_hfw;

};

#endif

Implementation	of	the	flow	layout:

/**

**	$Id:		qt/flow.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Implementing	your	own	layout:	flow	example

**

**	Copyright	(C)	1996	by	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"flow.h"

class	SimpleFlowIterator	:public	QGLayoutIterator

{

public:

				SimpleFlowIterator(QPtrList<QLayoutItem>	*l)	:idx(0),	list(l)		{}

				uint	count()	const;

				QLayoutItem	*current();

				QLayoutItem	*next();

				QLayoutItem	*takeCurrent();

private:

				int	idx;

				QPtrList<QLayoutItem>	*list;

};

uint	SimpleFlowIterator::count()	const

{

				return	list->count();

}

QLayoutItem	*SimpleFlowIterator::current()

{

				return	idx	<	int(count())	?	list->at(idx)	:	0;

}

QLayoutItem	*SimpleFlowIterator::next()

{

				idx++;	return	current();

}

QLayoutItem	*SimpleFlowIterator::takeCurrent()

{

				return	idx	<	int(count())	?	list->take(idx)	:	0;

}

SimpleFlow::~SimpleFlow()

{

				deleteAllItems();

}

int	SimpleFlow::heightForWidth(int	w)	const

{

				if	(cached_width	!=	w)	{

								//Not	all	C++	compilers	support	"mutable"	yet:

								SimpleFlow	*	mthis	=	(SimpleFlow*)this;

								int	h	=	mthis->doLayout(QRect(0,0,w,0),	TRUE);

								mthis->cached_hfw	=	h;

								return	h;

				}

				return	cached_hfw;

}

void	SimpleFlow::addItem(QLayoutItem	*item)

{

				list.append(item);

}

bool	SimpleFlow::hasHeightForWidth()	const

{

				return	TRUE;

}

QSize	SimpleFlow::sizeHint()	const

{

				return	minimumSize();

}

QSizePolicy::ExpandData	SimpleFlow::expanding()	const

{

				return	QSizePolicy::NoDirection;

}

QLayoutIterator	SimpleFlow::iterator()

{

				return	QLayoutIterator(new	SimpleFlowIterator(&list));

}

void	SimpleFlow::setGeometry(const	QRect	&r)

{

				QLayout::setGeometry(r);

				doLayout(r);

}

int	SimpleFlow::doLayout(const	QRect	&r,	bool	testonly)

{

				int	x	=	r.x();

				int	y	=	r.y();

				int	h	=	0;										//height	of	this	line	so	far.

				QPtrListIterator<QLayoutItem>	it(list);

				QLayoutItem	*o;

				while	((o=it.current())	!=	0)	{

								++it;

								int	nextX	=	x	+	o->sizeHint().width()	+	spacing();

								if	(nextX	-	spacing()	>	r.right()	&&	h	>	0)	{

												x	=	r.x();

												y	=	y	+	h	+	spacing();

												nextX	=	x	+	o->sizeHint().width()	+	spacing();

												h	=	0;

								}

								if	(!testonly)

												o->setGeometry(QRect(QPoint(x,	y),	o->sizeHint()));

								x	=	nextX;

								h	=	QMAX(h,		o->sizeHint().height());

				}

				return	y	+	h	-	r.y();

}

QSize	SimpleFlow::minimumSize()	const

{

				QSize	s(0,0);

				QPtrListIterator<QLayoutItem>	it(list);

				QLayoutItem	*o;

				while	((o=it.current())	!=	0)	{

								++it;

								s	=	s.expandedTo(o->minimumSize());

				}

				return	s;

}

Header	file	of	the	border	layout:

/**

**	$Id:		qt/border.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	simple	flow	layout	for	custom	layout	example

**

**	Created	:	979899

**

**	Copyright	(C)	1997	by	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	BORDER_H

#define	BORDER_H

#include	<qlayout.h>

#include	<qptrlist.h>

class	BorderWidgetItem	:	public	QWidgetItem

{

public:

				BorderWidgetItem(QWidget	*w)

								:	QWidgetItem(w)

				{}

				void	setGeometry(const	QRect	&r)

				{	widget()->setGeometry(r);	}

};

class	BorderLayout	:	public	QLayout

{

public:

				enum	Position	{

								West	=	0,

								North,

								South,

								East,

								Center

				};

				struct	BorderLayoutStruct

				{

								BorderLayoutStruct(QLayoutItem	*i,	Position	p)	{

												item	=	i;

												pos	=	p;

								}

								QLayoutItem	*item;

								Position	pos;

				};

				enum	SizeType	{

								Minimum	=	0,

								SizeHint

				};

				BorderLayout(QWidget	*parent,	int	border	=	0,	int	autoBorder	=	-1,

																		const	char	*name	=	0)

								:	QLayout(parent,	border,	autoBorder,	name),	cached(0,	0),	mcached(0,	0),

										sizeDirty(TRUE),	msizeDirty(TRUE)

				{}

				BorderLayout(QLayout*	parent,	int	autoBorder	=	-1,	const	char	*name	=	0)

								:	QLayout(parent,	autoBorder,	name),	cached(0,	0),	mcached(0,	0),

										sizeDirty(TRUE),	msizeDirty(TRUE)

				{}

				BorderLayout(int	autoBorder	=	-1,	const	char	*name	=	0)

								:	QLayout(autoBorder,	name),	cached(0,	0),	mcached(0,	0),

										sizeDirty(TRUE),	msizeDirty(TRUE)

				{}

				~BorderLayout();

				void	addItem(QLayoutItem	*item);

				void	addWidget(QWidget	*widget,	Position	pos);

				void	add(QLayoutItem	*item,	Position	pos);

				bool	hasHeightForWidth()	const;

				QSize	sizeHint()	const;

				QSize	minimumSize()	const;

				QLayoutIterator	iterator();

				QSizePolicy::ExpandData	expanding()	const;

protected:

				void	setGeometry(const	QRect	&rect);

private:

				void	doLayout(const	QRect	&rect,	bool	testonly	=	FALSE);

				void	calcSize(SizeType	st);

				QPtrList<BorderLayoutStruct>	list;

				QSize	cached,	mcached;

				bool	sizeDirty,	msizeDirty;

};

#endif

Implementation	of	the	border	layout:

/**

**	$Id:		qt/border.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Implementing	your	own	layout:	flow	example

**

**	Copyright	(C)	1996	by	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"border.h"

class	BorderLayoutIterator	:	public	QGLayoutIterator

{

public:

				BorderLayoutIterator(const	QPtrList<BorderLayout::BorderLayoutStruct>	*l)

								:	idx(0)	,	list((QPtrList<BorderLayout::BorderLayoutStruct>*)l)

				{}

				uint	count()	const;

				QLayoutItem	*current();

				BorderLayout::BorderLayoutStruct	*currentStruct();

				void	toFirst();

				QLayoutItem	*next();

				QLayoutItem	*takeCurrent();

				BorderLayoutIterator	&operator++();

private:

				int	idx;

				QPtrList<BorderLayout::BorderLayoutStruct>	*list;

};

uint	BorderLayoutIterator::count()	const

{

				return	list->count();

}

QLayoutItem	*BorderLayoutIterator::current()

{

				return	idx	<	(int)count()	?	list->at(idx)->item	:	0;

}

BorderLayout::BorderLayoutStruct	*BorderLayoutIterator::currentStruct()

{

				return	idx	<	(int)count()	?	list->at(idx)	:	0;

}

void	BorderLayoutIterator::toFirst()

{

				idx	=	0;

}

QLayoutItem	*BorderLayoutIterator::next()

{

				idx++;

				return	current();

}

QLayoutItem	*BorderLayoutIterator::takeCurrent()

{

				BorderLayout::BorderLayoutStruct	*b

								=	idx	<	int(list->count())	?	list->take(idx)	:	0;

				QLayoutItem	*item	=		b	?	b->item	:	0;

				delete	b;

				return	item;

}

BorderLayoutIterator	&BorderLayoutIterator::operator++()

{

				next();

				return	*this;

}

BorderLayout::~BorderLayout()

{

				deleteAllItems();

}

void	BorderLayout::addItem(QLayoutItem	*item)

{

				add(item,	West);

}

void	BorderLayout::addWidget(QWidget	*widget,	Position	pos)

{

				add(new	BorderWidgetItem(widget),	pos);

}

void	BorderLayout::add(QLayoutItem	*item,	Position	pos)

{

				list.append(new	BorderLayoutStruct(item,	pos));

				sizeDirty	=	TRUE;	msizeDirty	=	TRUE;

				calcSize(SizeHint);	calcSize(Minimum);

}

bool	BorderLayout::hasHeightForWidth()	const

{

				return	FALSE;

}

QSize	BorderLayout::sizeHint()	const

{

				return	cached;

}

QSize	BorderLayout::minimumSize()	const

{

				return	cached;

}

QSizePolicy::ExpandData	BorderLayout::expanding()	const

{

				return	QSizePolicy::BothDirections;

}

QLayoutIterator	BorderLayout::iterator()

{

				return	QLayoutIterator(new	BorderLayoutIterator(&list));

}

void	BorderLayout::setGeometry(const	QRect	&rct)

{

				QLayout::setGeometry(rct);

				doLayout(rct);

}

void	BorderLayout::doLayout(const	QRect	&rct,	bool	/*testonly*/)

{

				int	ew	=	0,	ww	=	0,	nh	=	0,	sh	=	0;

				int	h	=	0;

				BorderLayoutIterator	it(&list);

				BorderLayoutStruct	*o;

				BorderLayoutStruct	*center	=	0;

				while	((o	=	it.currentStruct())	!=	0)	{

								++it;

								if	(o->pos	==	North)	{

												o->item->setGeometry(QRect(rct.x(),	nh,	rct.width(),	o->item->

												nh	+=	o->item->geometry().height()	+	spacing();

								}

								if	(o->pos	==	South)	{

												o->item->setGeometry(QRect(o->item->geometry().x(),	o->item->

																																									rct.width(),	o->item->sizeHint

												sh	+=	o->item->geometry().height()	+	spacing();

												o->item->setGeometry(QRect(rct.x(),	rct.y()	+	rct.height

																																									o->item->geometry().width(),	o->item->

								}

								if	(o->pos	==	Center)

												center	=	o;

				}

				h	=	rct.height()	-	nh	-	sh;

				it.toFirst();

				while	((o	=	it.currentStruct())	!=	0)	{

								++it;

								if	(o->pos	==	West)	{

												o->item->setGeometry(QRect(rct.x()	+	ww,	nh,	o->item->

												ww	+=	o->item->geometry().width()	+	spacing();

								}

								if	(o->pos	==	East)	{

												o->item->setGeometry(QRect(o->item->geometry().x(),	o->item->

																																									o->item->sizeHint().width(),	h));

												ew	+=	o->item->geometry().width()	+	spacing();

												o->item->setGeometry(QRect(rct.x()	+	rct.width()	-	ew	+	spacing(),	nh,

																																									o->item->geometry().width(),	o->item->

								}

				}

				if	(center)

								center->item->setGeometry(QRect(ww,	nh,	rct.width()	-	ew	-	ww,	h));

}

void	BorderLayout::calcSize(SizeType	st)

{

				if	((st	==	Minimum	&&	!msizeDirty)	||

									(st	==	SizeHint	&&	!sizeDirty))

								return;

				int	w	=	0,	h	=	0;

				BorderLayoutIterator	it(&list);

				BorderLayoutStruct	*o;

				while	((o	=	it.currentStruct())	!=	0)	{

								++it;

								if	(o->pos	==	North	||

													o->pos	==	South)	{

												if	(st	==	Minimum)

																h	+=	o->item->minimumSize().height();

												else

																h	+=	o->item->sizeHint().height();

								}

								else	if	(o->pos	==	West	||

																		o->pos	==	East)	{

												if	(st	==	Minimum)

																w	+=	o->item->minimumSize().width();

												else

																w	+=	o->item->sizeHint().width();

								}	else	{

												if	(st	==	Minimum)	{

																h	+=	o->item->minimumSize().height();

																w	+=	o->item->minimumSize().width();

												}

												else	{

																h	+=	o->item->sizeHint().height();

																w	+=	o->item->sizeHint().width();

												}

								}

				}

				if	(st	==	Minimum)	{

								msizeDirty	=	FALSE;

								mcached	=	QSize(w,	h);

				}	else	{

								sizeDirty	=	FALSE;

								cached	=	QSize(w,	h);

				}

				return;

}

Header	file	of	the	card	layout:

/**

**	$Id:		qt/card.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	simple	flow	layout	for	custom	layout	example

**

**	Created	:	979899

**

**	Copyright	(C)	1997	by	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	CARD_H

#define	CARD_H

#include	<qlayout.h>

#include	<qptrlist.h>

class	CardLayout	:	public	QLayout

{

public:

				CardLayout(QWidget	*parent,	int	dist)

								:	QLayout(parent,	0,	dist)	{}

				CardLayout(QLayout*	parent,	int	dist)

								:	QLayout(parent,	dist)	{}

				CardLayout(int	dist)

								:	QLayout(dist)	{}

				~CardLayout();

				void	addItem(QLayoutItem	*item);

				QSize	sizeHint()	const;

				QSize	minimumSize()	const;

				QLayoutIterator	iterator();

				void	setGeometry(const	QRect	&rect);

private:

				QPtrList<QLayoutItem>	list;

};

#endif

Implementation	of	the	card	layout:

/**

**	$Id:		qt/card.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Implementing	your	own	layout:	flow	example

**

**	Copyright	(C)	1996	by	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"card.h"

class	CardLayoutIterator	:public	QGLayoutIterator

{

public:

				CardLayoutIterator(QPtrList<QLayoutItem>	*l)

								:	idx(0),	list(l)		{}

				QLayoutItem	*current();

				QLayoutItem	*next();

				QLayoutItem	*takeCurrent();

private:

				int	idx;

				QPtrList<QLayoutItem>	*list;

};

QLayoutItem	*CardLayoutIterator::current()

{

				return	idx	<	int(list->count())	?	list->at(idx)	:	0;

}

QLayoutItem	*CardLayoutIterator::next()

{

				idx++;	return	current();

}

QLayoutItem	*CardLayoutIterator::takeCurrent()

{

				return	idx	<	int(list->count())	?list->take(idx)	:	0;

}

QLayoutIterator	CardLayout::iterator()

{

				return	QLayoutIterator(new	CardLayoutIterator(&list));

}

CardLayout::~CardLayout()

{

				deleteAllItems();

}

void	CardLayout::addItem(QLayoutItem	*item)

{

				list.append(item);

}

void	CardLayout::setGeometry(const	QRect	&rct)

{

				QLayout::setGeometry(rct);

				QPtrListIterator<QLayoutItem>	it(list);

				if	(it.count()	==	0)

								return;

				QLayoutItem	*o;

				int	i	=	0;

				int	w	=	rct.width()	-	(list.count()	-	1)	*	spacing();

				int	h	=	rct.height()	-	(list.count()	-	1)	*	spacing();

				while	((o=it.current())	!=	0)	{

								++it;

								QRect	geom(rct.x()	+	i	*	spacing(),	rct.y()	+	i	*	spacing(),

																				w,	h);

								o->setGeometry(geom);

								++i;

				}

}

QSize	CardLayout::sizeHint()	const

{

				QSize	s(0,0);

				int	n	=	list.count();

				if	(n	>	0)

								s	=	QSize(100,70);	//start	with	a	nice	default	size

				QPtrListIterator<QLayoutItem>	it(list);

				QLayoutItem	*o;

				while	((o=it.current())	!=	0)	{

								++it;

								s	=	s.expandedTo(o->minimumSize());

				}

				return	s	+	n*QSize(spacing(),spacing());

}

QSize	CardLayout::minimumSize()	const

{

				QSize	s(0,0);

				int	n	=	list.count();

				QPtrListIterator<QLayoutItem>	it(list);

				QLayoutItem	*o;

				while	((o=it.current())	!=	0)	{

								++it;

								s	=	s.expandedTo(o->minimumSize());

				}

				return	s	+	n*QSize(spacing(),spacing());

}

Main:

/**

**	$Id:		qt/main.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Main	for	custom	layout	example

**

**	Copyright	(C)	1996	by	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"flow.h"

#include	"border.h"

#include	"card.h"

#include	<qapplication.h>

#include	<qlabel.h>

#include	<qcolor.h>

#include	<qgroupbox.h>

#include	<qpushbutton.h>

#include	<qmultilineedit.h>

#include	<qcolor.h>

int	main(int	argc,	char	**argv)

{

				QApplication	a(argc,	argv);

				QWidget	*f	=	new	QWidget;

				QBoxLayout	*gm	=	new	QVBoxLayout(f,	5);

				SimpleFlow	*b1	=	new	SimpleFlow(gm);

				b1->add(new	QPushButton("Short",	f));

				b1->add(new	QPushButton("Longer",	f));

				b1->add(new	QPushButton("Different	text",	f));

				b1->add(new	QPushButton("More	text",	f));

				b1->add(new	QPushButton("Even	longer	button	text",	f));

				QPushButton*	qb	=	new	QPushButton("Quit",	f);

				a.connect(qb,	SIGNAL(clicked()),	SLOT(quit()));

				b1->add(qb);

				QWidget	*wid	=	new	QWidget(f);

				BorderLayout	*large	=	new	BorderLayout(wid);

				large->setSpacing(5);

				large->addWidget(new	QPushButton("North",	wid),	BorderLayout::North);

				large->addWidget(new	QPushButton("West",	wid),	BorderLayout::West);

				QMultiLineEdit*	m	=	new	QMultiLineEdit(wid);

				m->setText("Central\nWidget");

				large->addWidget(m,	BorderLayout::Center);

				QWidget	*east1	=	new	QPushButton("East",	wid);

				large->addWidget(east1,	BorderLayout::East);

				QWidget	*east2	=	new	QPushButton("East	2",	wid);

				large->addWidget(east2	,	BorderLayout::East);

				large->addWidget(new	QPushButton("South",	wid),	BorderLayout::South);

				//Left-to-right	tab	order	looks	better:

				QWidget::setTabOrder(east2,	east1);

				gm->addWidget(wid);

				wid	=	new	QWidget(f);

				CardLayout	*card	=	new	CardLayout(wid,	10);

				QWidget	*crd	=	new	QWidget(wid);

				crd->setBackgroundColor(Qt::red);

				card->add(crd);

				crd	=	new	QWidget(wid);

				crd->setBackgroundColor(Qt::green);

				card->add(crd);

				crd	=	new	QWidget(wid);

				crd->setBackgroundColor(Qt::blue);

				card->add(crd);

				crd	=	new	QWidget(wid);

				crd->setBackgroundColor(Qt::white);

				card->add(crd);

				crd	=	new	QWidget(wid);

				crd->setBackgroundColor(Qt::black);

				card->add(crd);

				crd	=	new	QWidget(wid);

				crd->setBackgroundColor(Qt::yellow);

				card->add(crd);

				gm->addWidget(wid);

				QLabel*	s	=	new	QLabel(f);

				s->setText("outermost	box");

				s->setFrameStyle(QFrame::Panel	|	QFrame::Sunken);

				s->setAlignment(Qt::AlignVCenter	|	Qt::AlignHCenter);

				gm->addWidget(s);

				a.setMainWidget(f);

				f->setCaption("Qt	Example	-	Custom	Layout");

				f->show();

				int	result	=	a.exec();

				delete	f;

				return	result;

}

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Digital	Clock
This	example	displays	a	digital	LCD	clock	that	can	switch	between	time	and
date.

Header	file:

/**

**	$Id:		qt/dclock.h			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	DCLOCK_H

#define	DCLOCK_H

#include	<qlcdnumber.h>

class	DigitalClock	:	public	QLCDNumber										//	digital	clock	widget

{

				Q_OBJECT

public:

				DigitalClock(QWidget	*parent=0,	const	char	*name=0);

protected:																																						//	event	handlers

				void								timerEvent(QTimerEvent	*);

				void								mousePressEvent(QMouseEvent	*);

private	slots:																																		//	internal	slots

				void								stopDate();

				void								showTime();

private:																																								//	internal	data

				void								showDate();

				bool								showingColon;

				int									normalTimer;

				int									showDateTimer;

};

#endif	//	DCLOCK_H

Implementation:

/**

**	$Id:		qt/dclock.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"dclock.h"

#include	<qdatetime.h>

//

//	Constructs	a	DigitalClock	widget	with	a	parent	and	a	name.

//

DigitalClock::DigitalClock(QWidget	*parent,	const	char	*name)

				:	QLCDNumber(parent,	name)

{

				showingColon	=	FALSE;

				setFrameStyle(QFrame::Panel	|	QFrame::Raised);

				setLineWidth(2);																										//	set	frame	line	width

				showTime();																																	//	display	the	current	time

				normalTimer	=	startTimer(500);												//	1/2	second	timer	events

				showDateTimer	=	-1;																									//	not	showing	date

}

//

//	Handles	timer	events	for	the	digital	clock	widget.

//	There	are	two	different	timers;	one	timer	for	updating	the	clock

//	and	another	one	for	switching	back	from	date	mode	to	time	mode.

//

void	DigitalClock::timerEvent(QTimerEvent	*e)

{

				if	(e->timerId()	==	showDateTimer)								//	stop	showing	date

								stopDate();

				else	{																																						//	normal	timer

								if	(showDateTimer	==	-1)														//	not	showing	date

												showTime();

				}

}

//

//	Enters	date	mode	when	the	left	mouse	button	is	pressed.

//

void	DigitalClock::mousePressEvent(QMouseEvent	*e)

{

				if	(e->button()	==	QMouseEvent::LeftButton)															//	left	button	pressed

								showDate();

}

//

//	Shows	the	current	date	in	the	internal	lcd	widget.

//	Fires	a	timer	to	stop	showing	the	date.

//

void	DigitalClock::showDate()

{

				if	(showDateTimer	!=	-1)																		//	already	showing	date

								return;

				QDate	date	=	QDate::currentDate();

				QString	s;

				s.sprintf("%2d	%2d",	date.month(),	date.day());

				display(s);																															//	sets	the	LCD	number/text

				showDateTimer	=	startTimer(2000);									//	keep	this	state	for	2	secs

}

//

//	Stops	showing	the	date.

//

void	DigitalClock::stopDate()

{

				killTimer(showDateTimer);

				showDateTimer	=	-1;

				showTime();

}

//

//	Shows	the	current	time	in	the	internal	lcd	widget.

//

void	DigitalClock::showTime()

{

				showingColon	=	!showingColon;															//	toggle/blink	colon

				QString	s	=	QTime::currentTime().toString().left(5);

				if	(!showingColon)

								s[2]	=	'	';

				if	(s[0]	==	'0')

								s[0]	=	'	';

				display(s);																															//	set	LCD	number/text

}

Main:

/**

**	$Id:		qt/main.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"dclock.h"

#include	<qapplication.h>

int	main(int	argc,	char	**argv)

{

				QApplication	a(argc,	argv);

				DigitalClock	*clock	=	new	DigitalClock;

				clock->resize(170,	80);

				a.setMainWidget(clock);

				clock->setCaption("Qt	Example	-	Digital	Clock");

				clock->show();

				return	a.exec();

}

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Qt	Demo
This	program	shows	off	some	of	Qt's	widgets	and	functionality.	It	isn't	intended
as	a	code	example,	but	rather	as	a	single	application	that	you	can	run	to	see
many	of	Qt's	features.

See	$QTDIR/examples/demo	for	the	source	code.

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Painting	on	the	Desktop
The	desktop	demo	contains	three	routines,	each	of	which	draws	something	on
the	desktop.	It	does	some	nice	stuff	with	QPainter,	and	also	demonstrates	how
one	can	treat	the	desktop	as	a	widget	like	any	other.

Implementation:

/**

**	$Id:		qt/desktop.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qimage.h>

#include	<qbitmap.h>

#include	<qpainter.h>

#include	<qapplication.h>

#include	<qdropsite.h>

#include	<qdragobject.h>

#include	<stdio.h>

static	double	seed	=	0.353535353535;

static	const	int	KINDA_RAND_MAX	=	32767;

static	int	kindaRand()

{

				seed	=	seed*147;

				seed	=	seed	-	(double)	((int)	seed);

				return	(int)	(seed*(KINDA_RAND_MAX	+	1));

}

static	int	velocity(int	i)																				//	change	velocity

{

				const	int	velmax	=	15;

				const	int	velmin	=	4;

				if	(i	==	1	||	i	==	2)

								i	=	(kindaRand()&0x7fff	%	velmax)/3	+	velmin;

				else

								i	=	(kindaRand()&0x7fff	%	velmax)	+	velmin;

				return	i;

}

//

//	Draw	polygon	on	desktop.

//

void	poly()

{

				QWidget	*d	=	QApplication::desktop();

				d->setBackgroundColor(Qt::white);									//	white	desktop

				const	int	maxpoints	=	5;

				const	int	maxcurves	=	8;

				static	int	xvel[maxpoints];

				static	int	yvel[maxpoints];

				int	head	=	0;

				int	tail	=	-maxcurves	+	2;

				QPointArray	*a	=	new	QPointArray[maxcurves];

				register	QPointArray	*p;

				QRect	r	=	d->rect();																								//	desktop	rectangle

				int	i;

				for	(i=0;	i<maxcurves;	i++)

								a[i].resize(maxpoints);

				p	=	&a[0];

				for	(i=0;	i<maxpoints;	i++)	{													//	setup	first	polygon	points

								p->setPoint(i,	(kindaRand()&0x7fff)	%	r.width(),

																								(kindaRand()&0x7fff)	%	r.height());

								xvel[i]	=	velocity(i);

								yvel[i]	=	velocity(i);

				}

				QPainter	paint;

				paint.begin(d);																											//	start	painting	desktop

				for	(int	ntimes=0;	ntimes<2000;	ntimes++)	{

								paint.setBrush(QColor(kindaRand()%360,	180,	255,	QColor::Hsv));

								paint.drawPolygon(a[head]);

								if	(++tail	>=	maxcurves)

												tail	=	0;

								int	minx=r.left(),	maxx=r.right();

								int	miny=r.top(),		maxy=r.bottom();

								int	x,	y;

								p	=	&a[head];

								if	(++head	>=	maxcurves)

												head	=	0;

								for	(i=0;	i<maxpoints;	i++)	{									//	calc	new	curve

												p->point(i,	&x,	&y);

												x	+=	xvel[i];

												y	+=	yvel[i];

												if	(x	>=	maxx)	{

																x	=	maxx	-	(x	-	maxx	+	1);

																xvel[i]	=	-velocity(i);

												}

												if	(x	<=	minx)	{

																x	=	minx	+	(minx	-	x	+	1);

																xvel[i]	=	velocity(i);

												}

												if	(y	>=	maxy)	{

																y	=	maxy	-	(y	-	maxy	+	1);

																yvel[i]	=	-velocity(i);

												}

												if	(y	<=	miny)	{

																y	=	miny	+	(miny	-	y	+	1);

																yvel[i]	=	velocity(i);

												}

												a[head].setPoint(i,	x,	y);

								}

				}

				paint.end();																																//	painting	done

				delete[]	a;

}

//

//	Rotate	pattern	on	desktop.

//

void	rotate()

{

				int	i;

				const	int	w	=	64;

				const	int	h	=	64;

				QImage	image(w,	h,	8,	128);															//	create	image

				for	(i=0;	i<128;	i++)																					//	build	color	table

								image.setColor(i,	qRgb(i,0,0));

				for	(int	y=0;	y<h;	y++)	{																	//	set	image	pixels

								uchar	*p	=	image.scanLine(y);

								for	(int	x=0;	x<w;	x++)

												*p++	=	(x+y)%128;

				}

				QPixmap	pm;

				pm	=	image;																																	//	convert	image	to	pixmap

				pm.setOptimization(QPixmap::BestOptim);			//	rotation	will	be	faster

				QWidget	*d	=	QApplication::desktop();							//	w	=	desktop	widget

				for	(i=0;	i<=360;	i	+=	2)	{

								QWMatrix	m;

								m.rotate(i);																										//	rotate	coordinate	system

								QPixmap	rpm	=	pm.xForm(m);												//	rpm	=	rotated	pixmap

								d->setBackgroundPixmap(rpm);										//	set	desktop	pixmap

								d->update();																												//	repaint	desktop

				}

}

//

//	Generates	a	marble-like	pattern	in	pm.

//

void	generateStone(QPixmap	*pm,

																				const	QColor	&c1,	const	QColor	&c2,	const	QColor

{

				QPainter	p;

				QPen	p1	(c1,	0);

				QPen	p2	(c2,	0);

				QPen	p3	(c3,	0);

				p.begin(pm);

				for(int	i	=	0	;	i	<	pm->width()	;	i++)

								for(int	j	=	0	;	j	<	pm->height()	;	j++)	{

												int	r	=	kindaRand();

												if	(r	<	KINDA_RAND_MAX	/	3)

																p.setPen(p1);

												else	if	(r	<	KINDA_RAND_MAX	/	3	*	2)

																p.setPen(p2);

												else

																p.setPen(p3);

												p.drawPoint(i,j);

								}

				p.end();

}

void	drawShadeText(QPainter	*p,	int	x,	int	y,	const	char	*text,

																				const	QColor	&topColor,	const	QColor	&bottomColor,

																				int	sw	=	2)

{

				if	(!p->isActive())

								return;

				p->setPen(bottomColor);

				p->drawText(x+sw,	y+sw,	text);

				p->setPen(topColor);

				p->drawText(x,	y,	text);

}

//	NOTE:	desktop	drag/drop	is	experimental

class	DesktopWidget	:	public	QWidget,	private	QDropSite

{

public:

				DesktopWidget(const	char	*s,	QWidget	*parent=0,	const	char	*name=0);

			~DesktopWidget();

				void	paintEvent(QPaintEvent	*);

				void	dragEnterEvent(QDragEnterEvent	*e)

				{

								if	(QImageDrag::canDecode(e))

												e->accept();

				}

				void	dragLeaveEvent(QDragLeaveEvent	*)

				{

				}

				void	dragMoveEvent(QDragMoveEvent	*e)

				{

								e->accept();

				}

				void	dropEvent(QDropEvent	*	e)

				{

								QPixmap	pmp;

								if	(QImageDrag::decode(e,	pmp))	{

												setBackgroundPixmap(pmp);

												update();

								}

				}

private:

				QPixmap	*pm;

				QString	text;

};

DesktopWidget::DesktopWidget(const	char	*s,	QWidget	*parent,	const	char	*name)

				:	QWidget(parent,	name,	WType_Desktop	|	WPaintDesktop),

								QDropSite(this)

{

				text	=	s;

				pm			=	0;

}

DesktopWidget::~DesktopWidget()

{

				delete	pm;

}

void	DesktopWidget::paintEvent(QPaintEvent	*)

{

				QColor	c1	=	backgroundColor();

				QColor	c2	=	c1.light(104);

				QColor	c3	=	c1.dark(106);

				if	(!pm)	{

								pm	=	new	QPixmap(64,	64);

								generateStone(pm,	c1,	c2,	c3);

								setBackgroundPixmap(*pm);

								update();

				}

				QRect	br	=	fontMetrics().boundingRect(text);

				QPixmap	offscreen(br.width(),	br.height());

				int	x	=	width()/2		-	br.width()/2;

				int	y	=	height()/2	-	br.height()/2;

				offscreen.fill(this,	x,	y);

				QPainter	p;

				p.begin(&offscreen);

				drawShadeText(&p,	-br.x(),	-br.y(),	text,	c2,	c3,	3);

				p.end();

				bitBlt(this,	x,	y,	&offscreen);

}

void	desktopWidget(const	char	*s	=	"Trolltech")

{

				DesktopWidget	*t	=	new	DesktopWidget(s);

				t->update();

				qApp->exec();

				delete	t;

}

void	desktopText(const	char	*s	=	"Trolltech")

{

				const	int	border	=	20;

				QColor	c1	=		qApp->palette().inactive().background();

				QColor	c2	=	c1.light(104);

				QColor	c3	=	c1.dark(106);

				QPixmap	pm(10,10);

				QPainter	p;

				p.begin(&pm);

				QRect	r	=	p.fontMetrics().boundingRect(s);

				p.end();

				int	appWidth		=		qApp->desktop()->width();

				int	appHeight	=		qApp->desktop()->height();

				if	(r.width()	>	appWidth	-	border*2)

								r.setWidth(appWidth	-	border*2);

				if	(r.height()	>	appHeight	-	border*2)

								r.setHeight(appHeight	-	border*2);

				pm.resize(r.size()	+	QSize(border*2,	border*2));

				generateStone(&pm,	c1,	c2,	c3);

				p.begin(&pm);

				drawShadeText(&p,	-r.x()	+	border,	-r.y()	+	border,	s,	c2,	c3);

				p.end();

				qApp->desktop()->setBackgroundPixmap(pm);

}

//

//	The	program	starts	here.

//

int	main(int	argc,	char	**argv)

{

				QApplication	app(argc,	argv);

				if	(argc	>	1)	{

								QFont	f("charter",	96,	QFont::Black);

								f.setStyleHint(QFont::Times);

								app.setFont(f);

				}

				bool	validOptions	=	FALSE;

				if	(argc	==	2)	{

								validOptions	=	TRUE;

								if	(strcmp(argv[1],"-poly")	==	0)

												poly();

								else	if	(strcmp(argv[1],"-rotate")	==	0)

												rotate();

								else	if	(strcmp(argv[1],"-troll")	==	0)

												desktopText();

								else	if	(strcmp(argv[1],"-trollwidget")	==	0)

												desktopWidget();

								else

												validOptions	=	FALSE;

				}

				if	(argc	==	3)	{

								validOptions	=	TRUE;

								if	(strcmp(argv[1],"-shadetext")	==	0)

												desktopText(argv[2]);

								else	if	(strcmp(argv[1],"-shadewidget")	==	0)

												desktopWidget(argv[2]);

								else

												validOptions	=	FALSE;

				}

				if	(!validOptions)	{

								fprintf(stderr,	"Usage:\n\tdesktop	-poly"

																															"\n\tdesktop	-rotate"

																															"\n\tdesktop	-troll"

																															"\n\tdesktop	-trollwidget"

																															"\n\tdesktop	-shadetext	<text>"

																															"\n\tdesktop	-shadewidget	<text>\n");

								rotate();

				}

				return	0;

}

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

A	Directory	Browser
This	example	program	demonstrates	how	to	use	a	listview	and	listview	items	to
build	a	multi-column	hierarchical,	memory-	and	CPU-efficient	directory
browser.	It	also	demonstrates	how	to	use	Drag&Drop;	in	a	listview.

Header	file:

/**

**	$Id:		qt/dirview.h			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	DIRVIEW_H

#define	DIRVIEW_H

#include	<qlistview.h>

#include	<qstring.h>

#include	<qfile.h>

#include	<qfileinfo.h>

#include	<qtimer.h>

class	QWidget;

class	QDragEnterEvent;

class	QDragMoveEvent;

class	QDragLeaveEvent;

class	QDropEvent;

class	FileItem	:	public	QListViewItem

{

public:

				FileItem(QListViewItem	*parent,	const	QString	&s1,	const	QString

								:	QListViewItem(parent,	s1,	s2),	pix(0)	{}

				const	QPixmap	*pixmap(int	i)	const;

				void	setPixmap(QPixmap	*p);

private:

				QPixmap	*pix;

};

class	Directory	:	public	QListViewItem

{

public:

				Directory(QListView	*	parent,	const	QString&	filename);

				Directory(Directory	*	parent,	const	QString&	filename,	const	QString

								:	QListViewItem(parent,	filename,	col2),	pix(0)	{}

				Directory(Directory	*	parent,	const	QString&	filename);

				QString	text(int	column)	const;

				QString	fullName();

				void	setOpen(bool);

				void	setup();

				const	QPixmap	*pixmap(int	i)	const;

				void	setPixmap(QPixmap	*p);

private:

				QFile	f;

				Directory	*	p;

				bool	readable;

				bool	showDirsOnly;

				QPixmap	*pix;

};

class	DirectoryView	:	public	QListView

{

				Q_OBJECT

public:

				DirectoryView(QWidget	*parent	=	0,	const	char	*name	=	0,	bool	sdo	=	FALSE);

				bool	showDirsOnly()	{	return	dirsOnly;	}

public	slots:

				void	setDir(const	QString	&);

signals:

				void	folderSelected(const	QString	&);

protected	slots:

				void	slotFolderSelected(QListViewItem	*);

				void	openFolder();

protected:

				void	contentsDragEnterEvent(QDragEnterEvent	*e);

				void	contentsDragMoveEvent(QDragMoveEvent	*e);

				void	contentsDragLeaveEvent(QDragLeaveEvent	*e);

				void	contentsDropEvent(QDropEvent	*e);

				void	contentsMouseMoveEvent(QMouseEvent	*e);

				void	contentsMousePressEvent(QMouseEvent	*e);

				void	contentsMouseReleaseEvent(QMouseEvent	*e);

private:

				QString	fullPath(QListViewItem*	item);

				bool	dirsOnly;

				QListViewItem	*oldCurrent;

				QListViewItem	*dropItem;

				QTimer*	autoopen_timer;

				QPoint	presspos;

				bool	mousePressed;

};

#endif

And	here	is	the	main	implementation	file.	Note	the	way	the	program	scans
subdirectories	only	when	it	has	to.	This	allows	the	program	to	handle	very	large
file	systems	efficiently.	The	same	technique	can	be	used	in	any	other	trees.

/**

**	$Id:		qt/dirview.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"dirview.h"

#include	<qdir.h>

#include	<qfile.h>

#include	<qfileinfo.h>

#include	<qpixmap.h>

#include	<qevent.h>

#include	<qpoint.h>

#include	<qmessagebox.h>

#include	<qdragobject.h>

#include	<qmime.h>

#include	<qstrlist.h>

#include	<qstringlist.h>

#include	<qapplication.h>

#include	<qheader.h>

static	const	char*	folder_closed_xpm[]={

				"16	16	9	1",

				"g	c	#808080",

				"b	c	#c0c000",

				"e	c	#c0c0c0",

				"#	c	#000000",

				"c	c	#ffff00",

				".	c	None",

				"a	c	#585858",

				"f	c	#a0a0a4",

				"d	c	#ffffff",

				"..###...........",

				".#abc##.........",

				".#daabc#####....",

				".#ddeaabbccc#...",

				".#dedeeabbbba...",

				".#edeeeeaaaab#..",

				".#deeeeeeefe#ba.",

				".#eeeeeeefef#ba.",

				".#eeeeeefeff#ba.",

				".#eeeeefefff#ba.",

				".##geefeffff#ba.",

				"...##gefffff#ba.",

				".....##fffff#ba.",

				".......##fff#b##",

				".........##f#b##",

				"...........####."};

static	const	char*	folder_open_xpm[]={

				"16	16	11	1",

				"#	c	#000000",

				"g	c	#c0c0c0",

				"e	c	#303030",

				"a	c	#ffa858",

				"b	c	#808080",

				"d	c	#a0a0a4",

				"f	c	#585858",

				"c	c	#ffdca8",

				"h	c	#dcdcdc",

				"i	c	#ffffff",

				".	c	None",

				"....###.........",

				"....#ab##.......",

				"....#acab####...",

				"###.#acccccca#..",

				"#ddefaaaccccca#.",

				"#bdddbaaaacccab#",

				".eddddbbaaaacab#",

				".#bddggdbbaaaab#",

				"..edgdggggbbaab#",

				"..#bgggghghdaab#",

				"...ebhggghicfab#",

				"....#edhhiiidab#",

				"......#egiiicfb#",

				"........#egiibb#",

				"..........#egib#",

				"............#ee#"};

static	const	char	*	folder_locked[]={

				"16	16	10	1",

				"h	c	#808080",

				"b	c	#ffa858",

				"f	c	#c0c0c0",

				"e	c	#c05800",

				"#	c	#000000",

				"c	c	#ffdca8",

				".	c	None",

				"a	c	#585858",

				"g	c	#a0a0a4",

				"d	c	#ffffff",

				"..#a#...........",

				".#abc####.......",

				".#daa#eee#......",

				".#ddf#e##b#.....",

				".#dfd#e#bcb##...",

				".#fdccc#daaab#..",

				".#dfbbbccgfg#ba.",

				".#ffb#ebbfgg#ba.",

				".#ffbbe#bggg#ba.",

				".#fffbbebggg#ba.",

				".##hf#ebbggg#ba.",

				"...###e#gggg#ba.",

				".....#e#gggg#ba.",

				"......###ggg#b##",

				".........##g#b##",

				"...........####."};

static	const	char	*	pix_file	[]={

				"16	16	7	1",

				"#	c	#000000",

				"b	c	#ffffff",

				"e	c	#000000",

				"d	c	#404000",

				"c	c	#c0c000",

				"a	c	#ffffc0",

				".	c	None",

				"................",

				".........#......",

				"......#.#a##....",

				".....#b#bbba##..",

				"....#b#bbbabbb#.",

				"...#b#bba##bb#..",

				"..#b#abb#bb##...",

				".#a#aab#bbbab##.",

				"#a#aaa#bcbbbbbb#",

				"#ccdc#bcbbcbbb#.",

				".##c#bcbbcabb#..",

				"...#acbacbbbe...",

				"..#aaaacaba#....",

				"...##aaaaa#.....",

				".....##aa#......",

				".......##......."};

QPixmap	*folderLocked	=	0;

QPixmap	*folderClosed	=	0;

QPixmap	*folderOpen	=	0;

QPixmap	*fileNormal	=	0;

/***

	*

	*	Class	Directory

	*

	***/

Directory::Directory(Directory	*	parent,	const	QString&	filename)

				:	QListViewItem(parent),	f(filename),

						showDirsOnly(parent->showDirsOnly),

						pix(0)

{

				p	=	parent;

				readable	=	QDir(fullName()).isReadable();

				if	(!readable)

								setPixmap(folderLocked);

				else

								setPixmap(folderClosed);

}

Directory::Directory(QListView	*	parent,	const	QString&	filename)

				:	QListViewItem(parent),	f(filename),

						showDirsOnly(((DirectoryView*)parent)->showDirsOnly()),

						pix(0)

{

				p	=	0;

				readable	=	QDir(fullName()).isReadable();

}

void	Directory::setPixmap(QPixmap	*px)

{

				pix	=	px;

				setup();

				widthChanged(0);

				invalidateHeight();

				repaint();

}

const	QPixmap	*Directory::pixmap(int	i)	const

{

				if	(i)

								return	0;

				return	pix;

}

void	Directory::setOpen(bool	o)

{

				if	(o)

								setPixmap(folderOpen);

				else

								setPixmap(folderClosed);

				if	(o	&&	!childCount())	{

								QString	s(fullName());

								QDir	thisDir(s);

								if	(!thisDir.isReadable())	{

												readable	=	FALSE;

												setExpandable(FALSE);

												return;

								}

								listView()->setUpdatesEnabled(FALSE);

								const	QFileInfoList	*	files	=	thisDir.entryInfoList();

								if	(files)	{

												QFileInfoListIterator	it(*files);

												QFileInfo	*	fi;

												while((fi=it.current())	!=	0)	{

																++it;

																if	(fi->fileName()	==	"."	||	fi->fileName()	==	"..")

																				;	//	nothing

																else	if	(fi->isSymLink()	&&	!showDirsOnly)	{

																				FileItem	*item	=	new	FileItem(this,	fi->fileName

																																																					"Symbolic	Link");

																				item->setPixmap(fileNormal);

																}

																else	if	(fi->isDir())

																				(void)new	Directory(this,	fi->fileName());

																else	if	(!showDirsOnly)	{

																				FileItem	*item

																								=	new	FileItem(this,	fi->fileName(),

																																													fi->isFile()?"File":"Special");

																				item->setPixmap(fileNormal);

																}

												}

								}

								listView()->setUpdatesEnabled(TRUE);

				}

				QListViewItem::setOpen(o);

}

void	Directory::setup()

{

				setExpandable(TRUE);

				QListViewItem::setup();

}

QString	Directory::fullName()

{

				QString	s;

				if	(p)	{

								s	=	p->fullName();

								s.append(f.name());

								s.append("/");

				}	else	{

								s	=	f.name();

				}

				return	s;

}

QString	Directory::text(int	column)	const

{

				if	(column	==	0)

								return	f.name();

				else	if	(readable)

								return	"Directory";

				else

								return	"Unreadable	Directory";

}

/***

	*

	*	Class	DirectoryView

	*

	***/

DirectoryView::DirectoryView(QWidget	*parent,	const	char	*name,	bool	sdo)

				:	QListView(parent,	name),	dirsOnly(sdo),	oldCurrent(0),

						dropItem(0),	mousePressed(FALSE)

{

				autoopen_timer	=	new	QTimer(this);

				if	(!folderLocked)	{

								folderLocked	=	new	QPixmap(folder_locked);

								folderClosed	=	new	QPixmap(folder_closed_xpm);

								folderOpen	=	new	QPixmap(folder_open_xpm);

								fileNormal	=	new	QPixmap(pix_file);

				}

				connect(this,	SIGNAL(doubleClicked(QListViewItem	*)),

													this,	SLOT(slotFolderSelected(QListViewItem	*)));

				connect(this,	SIGNAL(returnPressed(QListViewItem	*)),

													this,	SLOT(slotFolderSelected(QListViewItem	*)));

				setAcceptDrops(TRUE);

				viewport()->setAcceptDrops(TRUE);

				connect(autoopen_timer,	SIGNAL(timeout()),

													this,	SLOT(openFolder()));

}

void	DirectoryView::slotFolderSelected(QListViewItem	*i)

{

				if	(!i	||	!showDirsOnly())

								return;

				Directory	*dir	=	(Directory*)i;

				emit	folderSelected(dir->fullName());

}

void	DirectoryView::openFolder()

{

				autoopen_timer->stop();

				if	(dropItem	&&	!dropItem->isOpen())	{

								dropItem->setOpen(TRUE);

								dropItem->repaint();

				}

}

static	const	int	autoopenTime	=	750;

void	DirectoryView::contentsDragEnterEvent(QDragEnterEvent	*e)

{

				if	(!QUriDrag::canDecode(e))	{

								e->ignore();

								return;

				}

				oldCurrent	=	currentItem();

				QListViewItem	*i	=	itemAt(contentsToViewport(e->pos()));

				if	(i)	{

								dropItem	=	i;

								autoopen_timer->start(autoopenTime);

				}

}

void	DirectoryView::contentsDragMoveEvent(QDragMoveEvent	*e)

{

				if	(!QUriDrag::canDecode(e))	{

								e->ignore();

								return;

				}

				QPoint	vp	=	contentsToViewport(((QDragMoveEvent*)e)->pos());

				QListViewItem	*i	=	itemAt(vp);

				if	(i)	{

								setSelected(i,	TRUE);

								e->accept();

								if	(i	!=	dropItem)	{

												autoopen_timer->stop();

												dropItem	=	i;

												autoopen_timer->start(autoopenTime);

								}

								switch	(e->action())	{

								case	QDropEvent::Copy:

												break;

								case	QDropEvent::Move:

												e->acceptAction();

												break;

								case	QDropEvent::Link:

												e->acceptAction();

												break;

								default:

												;

								}

				}	else	{

								e->ignore();

								autoopen_timer->stop();

								dropItem	=	0;

				}

}

void	DirectoryView::contentsDragLeaveEvent(QDragLeaveEvent	*)

{

				autoopen_timer->stop();

				dropItem	=	0;

				setCurrentItem(oldCurrent);

				setSelected(oldCurrent,	TRUE);

}

void	DirectoryView::contentsDropEvent(QDropEvent	*e)

{

				autoopen_timer->stop();

				if	(!QUriDrag::canDecode(e))	{

								e->ignore();

								return;

				}

				QListViewItem	*item	=	itemAt(contentsToViewport(e->pos()));

				if	(item)	{

								QStrList	lst;

								QUriDrag::decode(e,	lst);

								QString	str;

								switch	(e->action())	{

												case	QDropEvent::Copy:

												str	=	"Copy";

												break;

												case	QDropEvent::Move:

												str	=	"Move";

												e->acceptAction();

												break;

												case	QDropEvent::Link:

												str	=	"Link";

												e->acceptAction();

												break;

												default:

												str	=	"Unknown";

								}

								str	+=	"\n\n";

								e->accept();

								for	(uint	i	=	0;	i	<	lst.count();	++i)	{

												QString	filename	=	lst.at(i);

												str	+=	filename	+	"\n";

								}

								str	+=	QString("\nTo\n\n			%1")

															.arg(fullPath(item));

								QMessageBox::information(this,	"Drop	target",	str,	"Not	implemented");

				}	else

								e->ignore();

}

QString	DirectoryView::fullPath(QListViewItem*	item)

{

				QString	fullpath	=	item->text(0);

				while	((item=item->parent()))	{

								if	(item->parent())

												fullpath	=	item->text(0)	+	"/"	+	fullpath;

								else

												fullpath	=	item->text(0)	+	fullpath;

				}

				return	fullpath;

}

void	DirectoryView::contentsMousePressEvent(QMouseEvent*	e)

{

				QListView::contentsMousePressEvent(e);

				QPoint	p(contentsToViewport(e->pos()));

				QListViewItem	*i	=	itemAt(p);

				if	(i)	{

								//	if	the	user	clicked	into	the	root	decoration	of	the	item,	don't	try	to	start	a	drag!

								if	(p.x()	>	header()->cellPos(header()->mapToActual(0))	+

													treeStepSize()	*	(i->depth()	+	(rootIsDecorated()	?	1	:	0))	+	itemMargin()	||

													p.x()	<	header()->cellPos(header()->mapToActual(0)))	{

												presspos	=	e->pos();

												mousePressed	=	TRUE;

								}

				}

}

void	DirectoryView::contentsMouseMoveEvent(QMouseEvent*	e)

{

				if	(mousePressed	&&	(presspos	-	e->pos()).manhattanLength()	>	QApplication::

								mousePressed	=	FALSE;

								QListViewItem	*item	=	itemAt(contentsToViewport(presspos));

								if	(item)	{

												QString	source	=	fullPath(item);

												if	(QFile::exists(source))	{

																QUriDrag*	ud	=	new	QUriDrag(viewport());

																ud->setUnicodeUris(source);

																if	(ud->drag())

																				QMessageBox::information(this,	"Drag	source",

																																														QString("Delete	")+source,	"Not	implemented");

												}

								}

				}

}

void	DirectoryView::contentsMouseReleaseEvent(QMouseEvent	*)

{

				mousePressed	=	FALSE;

}

void	DirectoryView::setDir(const	QString	&s)

{

				QListViewItemIterator	it(this);

				++it;

				for	(;	it.current();	++it)	{

								it.current()->setOpen(FALSE);

				}

				QStringList	lst(QStringList::split("/",	s));

				QListViewItem	*item	=	firstChild();

				QStringList::Iterator	it2	=	lst.begin();

				for	(;	it2	!=	lst.end();	++it2)	{

								while	(item)	{

												if	(item->text(0)	==	*it2)	{

																item->setOpen(TRUE);

																break;

												}

												item	=	item->itemBelow();

								}

				}

				if	(item)

								setCurrentItem(item);

}

void	FileItem::setPixmap(QPixmap	*p)

{

				pix	=	p;

				setup();

				widthChanged(0);

				invalidateHeight();

				repaint();

}

const	QPixmap	*FileItem::pixmap(int	i)	const

{

				if	(i)

								return	0;

				return	pix;

}

Main:

/**

**	$Id:		qt/main.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	<qfileinfo.h>

#include	<qdir.h>

#include	"dirview.h"

int	main(int	argc,	char	**	argv)

{

				QApplication	a(argc,	argv);

				DirectoryView	mw;

				mw.addColumn("Name");

				mw.addColumn("Type");

				mw.setTreeStepSize(20);

				const	QFileInfoList*	roots	=	QDir::drives();

				QPtrListIterator<QFileInfo>	i(*roots);

				QFileInfo*	fi;

				while	((fi	=	*i))	{

								++i;

								Directory	*	root	=	new	Directory(&mw,	fi->filePath());

								if	(roots->count()	<=	1)

												root->setOpen(TRUE);	//	be	interesting

				}

				mw.resize(400,	400);

				mw.setCaption("Qt	Example	-	Directory	Browser");

				mw.setAllColumnsShowFocus(TRUE);

				a.setMainWidget(&mw);

				mw.show();

				return	a.exec();

}

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Drag	and	Drop
This	program	demonstrates	Qt's	drag	and	drop	functionality.

See	$QTDIR/examples/dragdrop	for	the	source	code.

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Draw	Demo
This	example	demonstrates	several	drawing	functions	and	printer	output.	You
can	easily	add	you	own	drawing	functions.

Implementation:

/**

**	$Id:		qt/drawdemo.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qwidget.h>

#include	<qpainter.h>

#include	<qprinter.h>

#include	<qpushbutton.h>

#include	<qradiobutton.h>

#include	<qbuttongroup.h>

#include	<qapplication.h>

#include	<math.h>

//

//	First	we	define	the	functionality	our	demo	should	present

//	to	the	user.	You	might	add	different	demo-modes	if	you	wish	so.

//

//

//	This	function	draws	a	color	wheel.

//	The	coordinate	system	x=(0..500),	y=(0..500)	spans	the	paint	device.

//

void	drawColorWheel(QPainter	*p)

{

				QFont	f("times",	18,	QFont::Bold);

				p->setFont(f);

				p->setPen(Qt::black);

				p->setWindow(0,	0,	500,	500);													//	defines	coordinate	system

				for	(int	i=0;	i<36;	i++)	{																//	draws	36	rotated	rectangles

								QWMatrix	matrix;

								matrix.translate(250.0F,	250.0F);					//	move	to	center

								matrix.shear(0.0F,	0.3F);													//	twist	it

								matrix.rotate((float)i*10);											//	rotate	0,10,20,..	degrees

								p->setWorldMatrix(matrix);												//	use	this	world	matrix

								QColor	c;

								c.setHsv(i*10,	255,	255);													//	rainbow	effect

								p->setBrush(c);																							//	solid	fill	with	color	c

								p->drawRect(70,	-10,	80,	10);									//	draw	the	rectangle

								QString	n;

								n.sprintf("H=%d",	i*10);

								p->drawText(80+70+5,	0,	n);											//	draw	the	hue	number

				}

}

//

//	This	function	draws	a	few	lines	of	text	using	different	fonts.

//

void	drawFonts(QPainter	*p)

{

				static	const	char	*fonts[]	=	{	"Helvetica",	"Courier",	"Times",	0	};

				static	int			sizes[]	=	{	10,	12,	18,	24,	36,	0	};

				int	f	=	0;

				int	y	=	0;

				while	(fonts[f])	{

								int	s	=	0;

								while	(sizes[s])	{

												QFont	font(fonts[f],	sizes[s]);

												p->setFont(font);

												QFontMetrics	fm	=	p->fontMetrics();

												y	+=	fm.ascent();

												p->drawText(10,	y,	"Quartz	Glyph	Job	Vex'd	Cwm	Finks");

												y	+=	fm.descent();

												s++;

								}

								f++;

				}

}

//

//	This	function	draws	some	shapes

//

void	drawShapes(QPainter	*p)

{

				QBrush	b1(Qt::blue);

				QBrush	b2(Qt::green,	Qt::Dense6Pattern);										//	green	12%	fill

				QBrush	b3(Qt::NoBrush);																											//	void	brush

				QBrush	b4(Qt::CrossPattern);																						//	black	cross	pattern

				p->setPen(Qt::red);

				p->setBrush(b1);

				p->drawRect(10,	10,	200,	100);

				p->setBrush(b2);

				p->drawRoundRect(10,	150,	200,	100,	20,	20);

				p->setBrush(b3);

				p->drawEllipse(250,	10,	200,	100);

				p->setBrush(b4);

				p->drawPie(250,	150,	200,	100,	45*16,	90*16);

}

typedef	void	(*draw_func)(QPainter*);

struct	DrawThing	{

				draw_func				f;

				const	char		*name;

};

//

//	All	previously	implemented	functions	are	collected

//	in	the	following	"table".

//	If	you	implement	different	functionality,	your	new	draw

//	function	must	be	assigned	here	with	a	function	pointer	and

//	description.

//	Leave	the	zeros	at	the	end,	they	will	be	used

//	as	markers	referring	to	the	end	of	the	array.

//

DrawThing	ourDrawFunctions[]	=	{

//	name	of	the	function,	title	presented	to	the	user

				{	drawColorWheel,			"Draw	color	wheel"	},

				{	drawFonts,								"Draw	fonts"	},

				{	drawShapes,							"Draw	shapes"	},

				{	0,																0	}	};

class	DrawView	:	public	QWidget

{

				Q_OBJECT

public:

				DrawView();

				~DrawView();

public	slots:

				void			updateIt(int);

				void			printIt();

protected:

				void			drawIt(QPainter	*);

				void			paintEvent(QPaintEvent	*);

				void			resizeEvent(QResizeEvent	*);

private:

				QPrinter					*printer;

				QButtonGroup	*bgroup;

				QPushButton		*print;

				int											drawindex;

				int											maxindex;

};

//

//	Construct	the	DrawView	with	buttons.

//

DrawView::DrawView()

{

				setCaption("Qt	Draw	Demo	Application");

				setBackgroundColor(white);

				//	Create	a	button	group	to	contain	all	buttons

				bgroup	=	new	QButtonGroup(this);

				bgroup->resize(200,	200);

				connect(bgroup,	SIGNAL(clicked(int)),	SLOT(updateIt(int)));

				//	Calculate	the	size	for	the	radio	buttons

				int	maxwidth	=	80;

				int	maxheight	=	10;

				int	i;

				const	char	*n;

				QFontMetrics	fm	=	bgroup->fontMetrics();

				//	Find	out	the	longest	function	description.

				//	Here	we	make	use	of	the	last	"0,0"-entry	in	the

				//	ourDrawFunctions-array.

				for	(i=0;	(n=ourDrawFunctions[i].name)	!=	0;	i++)	{

								int	w	=	fm.width(n);

								maxwidth	=	QMAX(w,maxwidth);	//	QMAX	is	a	macro	defined	in	qglobal.h

																																					//	and	returns	the	biggest	of	to	values.

								//	Due	to	its	macro	nature	one	should	use	it	with	care	and	with

								//	constant	parameters	only.

				}

				maxwidth	=	maxwidth	+	30;																			//	allow	30	pixels	for	radiobuttons

				for	(i=0;	(n=ourDrawFunctions[i].name)	!=	0;	i++)	{

								QRadioButton	*rb	=	new	QRadioButton(n,	bgroup);

								rb->setGeometry(10,	i*30+10,	maxwidth,	30);

								maxheight	+=	30;

								if	(i	==	0)

												rb->setChecked(TRUE);

				}

				maxheight	+=	10;																												//	maxheight	is	now	10	pixels	upper	margin

																																																//	plus	number_of_drawfunctions	*	30

																																																//	plus	10	pixels	lower	margin

				drawindex	=	0;																														//	draw	first	thing

				maxindex		=	i;

				maxwidth	+=	20;																													//	add	some	margin,	this	results	in	the

																																																//	final	width	of	bgroup

				bgroup->resize(maxwidth,	maxheight);						//	resize	bgroup	to	its	final	size

																																																//	when	no	printersupport	is	provided

//	If	--	at	compile	time	--	printer	support	will	be	disabled,

//	we	won't	set	up	printing	functionality.

#ifndef	QT_NO_PRINTER

				printer	=	new	QPrinter;

				//	Create	and	setup	the	print	button

				print	=	new	QPushButton("Print...",	bgroup);

				print->resize(80,	30);

				print->move(maxwidth/2	-	print->width()/2,	maxindex*30+20);

				connect(print,	SIGNAL(clicked()),	SLOT(printIt()));

				//	Resize	bgroup	to	its	final	size	when	printersupport	is	given.

				bgroup->resize(maxwidth,	print->y()+print->height()+10);

#endif

				resize(640,300);

}

//

//	Clean	up.

//

DrawView::~DrawView()

{

#ifndef	QT_NO_PRINTER

				delete	printer;

#endif

}

//

//	Called	when	a	radio	button	is	clicked.

//

void	DrawView::updateIt(int	index)

{

				if	(index	<	maxindex)	{

								drawindex	=	index;

								update();

				}

}

//

//	Calls	the	drawing	function	as	specified	by	the	radio	buttons.

//

void	DrawView::drawIt(QPainter	*p)

{

				(*ourDrawFunctions[drawindex].f)(p);

}

//

//	Called	when	the	print	button	is	clicked.

//

void	DrawView::printIt()

{

				if	(printer->setup(this))	{

								QPainter	paint(printer);

								drawIt(&paint);

				}

}

//

//	Called	when	the	widget	needs	to	be	updated.

//

void	DrawView::paintEvent(QPaintEvent	*)

{

				QPainter	paint(this);

				drawIt(&paint);

}

//

//	Called	when	the	widget	has	been	resized.

//	Moves	the	button	group	to	the	upper	right	corner

//	of	the	widget.

void	DrawView::resizeEvent(QResizeEvent	*)

{

				bgroup->move(width()-bgroup->width(),	0);

}

//

//	Create	and	display	our	widget.

//

#include	"drawdemo.moc"

int	main(int	argc,	char	**argv)

{

				QApplication	app(argc,	argv);

				DrawView			draw;

				app.setMainWidget(&draw);

				draw.setCaption("Qt	Example	-	Drawdemo");

				draw.show();

				return	app.exec();

}

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Connect	the	Points
This	example	shows	very	simple	mouse-based	user	interaction	and	painting
without	any	world	transform	matrix	or	other	advanced	features.	Run	the
program,	click	the	button,	move	the	mouse,	release	the	button,	and	watch	the
lines	get	drawn.

Implementation:

/**

**	$Id:		qt/connect.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qwidget.h>

#include	<qpainter.h>

#include	<qapplication.h>

#include	<stdlib.h>

const	int	MAXPOINTS	=	2000;																					//	maximum	number	of	points

const	int	MAXCOLORS	=	40;

//

//	ConnectWidget	-	draws	connected	lines

//

class	ConnectWidget	:	public	QWidget

{

public:

				ConnectWidget(QWidget	*parent=0,	const	char	*name=0);

			~ConnectWidget();

protected:

				void								paintEvent(QPaintEvent	*);

				void								mousePressEvent(QMouseEvent	*);

				void								mouseReleaseEvent(QMouseEvent	*);

				void								mouseMoveEvent(QMouseEvent	*);

private:

				QPoint					*points;																									//	point	array

				QColor					*colors;																									//	color	array

				int									count;																										//	count	=	number	of	points

				bool								down;																											//	TRUE	if	mouse	down

};

//

//	Constructs	a	ConnectWidget.

//

ConnectWidget::ConnectWidget(QWidget	*parent,	const	char	*name)

				:	QWidget(parent,	name,	WStaticContents)

{

				setBackgroundColor(white);																//	white	background

				count	=	0;

				down	=	FALSE;

				points	=	new	QPoint[MAXPOINTS];

				colors	=	new	QColor[MAXCOLORS];

				for	(int	i=0;	i<MAXCOLORS;	i++)											//	init	color	array

								colors[i]	=	QColor(rand()&255,	rand()&255,	rand()&255);

}

ConnectWidget::~ConnectWidget()

{

				delete[]	points;																												//	cleanup

				delete[]	colors;

}

//

//	Handles	paint	events	for	the	connect	widget.

//

void	ConnectWidget::paintEvent(QPaintEvent	*)

{

				QPainter	paint(this);

				for	(int	i=0;	i<count-1;	i++)	{											//	connect	all	points

								for	(int	j=i+1;	j<count;	j++)	{

												paint.setPen(colors[rand()%MAXCOLORS]);	//	set	random	pen	color

												paint.drawLine(points[i],	points[j]);	//	draw	line

								}

				}

}

//

//	Handles	mouse	press	events	for	the	connect	widget.

//

void	ConnectWidget::mousePressEvent(QMouseEvent	*)

{

				down	=	TRUE;

				count	=	0;																																		//	start	recording	points

				erase();																																				//	erase	widget	contents

}

//

//	Handles	mouse	release	events	for	the	connect	widget.

//

void	ConnectWidget::mouseReleaseEvent(QMouseEvent	*)

{

				down	=	FALSE;																															//	done	recording	points

				update();																																			//	draw	the	lines

}

//

//	Handles	mouse	move	events	for	the	connect	widget.

//

void	ConnectWidget::mouseMoveEvent(QMouseEvent	*e)

{

				if	(down	&&	count	<	MAXPOINTS)	{

								QPainter	paint(this);

								points[count++]	=	e->pos();													//	add	point

								paint.drawPoint(e->pos());												//	plot	point

				}

}

//

//	Create	and	display	a	ConnectWidget.

//

int	main(int	argc,	char	**argv)

{

				QApplication	a(argc,	argv);

				ConnectWidget	connect;

#ifndef	QT_NO_WIDGET_TOPEXTRA			//	for	Qt/Embedded	minimal	build

				connect.setCaption("Qt	Example	-	Draw	lines");

#endif

				a.setMainWidget(&connect);

				connect.show();

				return	a.exec();

}

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Simple	Filemanager
This	example	implements	a	simple	and	not	fully	functional	file	manager	using	a
widget	derived	from	QIconView	to	display	the	current	directory.	To	display	the
directory	tree	the	widget	written	in	the	dirview	example	is	used.

Header	file	of	the	file	icon	view:

/**

**	$Id:		qt/qfileiconview.h			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	QTFILEICONVIEW_H

#define	QTFILEICONVIEW_H

#include	<qiconset.h>

#include	<qstring.h>

#include	<qfileinfo.h>

#include	<qdir.h>

#include	<qtimer.h>

#include	<qiconview.h>

class	QtFileIconView;

class	QDragObject;

class	QResizeEvent;

/***

	*

	*	Class	QtFileIconDrag

	*

	***/

class	QtFileIconDrag	:	public	QIconDrag

{

				Q_OBJECT

public:

				QtFileIconDrag(QWidget	*	dragSource,	const	char*	name	=	0);

				const	char*	format(int	i)	const;

				QByteArray	encodedData(const	char*	mime)	const;

				static	bool	canDecode(QMimeSource*	e);

				void	append(const	QIconDragItem	&item,	const	QRect	&pr,	const	QRect

private:

				QStringList	urls;

};

/***

	*

	*	Class	QtFileIconView

	*

	***/

class	QtFileIconViewItem;

class	QtFileIconView	:	public	QIconView

{

				Q_OBJECT

public:

				QtFileIconView(const	QString	&dir,	QWidget	*parent	=	0,	const	char	*name	=	0);

				enum	ViewMode	{	Large,	Small	};

				void	setViewMode(ViewMode	m);

				ViewMode	viewMode()	const	{	return	vm;	}

				void	setOpenItem(QtFileIconViewItem	*i)	{

								openItem	=	i;

				}

public	slots:

				void	setDirectory(const	QString	&dir);

				void	setDirectory(const	QDir	&dir);

				void	newDirectory();

				QDir	currentDir();

signals:

				void	directoryChanged(const	QString	&);

				void	startReadDir(int	dirs);

				void	readNextDir();

				void	readDirDone();

				void	enableUp();

				void	disableUp();

				void	enableMkdir();

				void	disableMkdir();

protected	slots:

				void	itemDoubleClicked(QIconViewItem	*i);

				void	slotDropped(QDropEvent	*e,	const	QValueList<QIconDragItem>	&);

				void	viewLarge();

				void	viewSmall();

				void	viewBottom();

				void	viewRight();

				void	flowEast();

				void	flowSouth();

				void	itemTextTruncate();

				void	itemTextWordWrap();

				void	sortAscending();

				void	sortDescending();

				void	arrangeItemsInGrid()	{

								QIconView::arrangeItemsInGrid(TRUE);

				}

				void	slotRightPressed(QIconViewItem	*item);

				void	openFolder();

protected:

				void	readDir(const	QDir	&dir);

				virtual	QDragObject	*dragObject();

				virtual	void	keyPressEvent(QKeyEvent	*e);

				QDir	viewDir;

				int	newFolderNum;

				QSize	sz;

				QPixmap	pix;

				ViewMode	vm;

				QtFileIconViewItem	*openItem;

};

/***

	*

	*	Class	QtFileIconViewItem

	*

	***/

class	QtFileIconViewItem	:	public	QIconViewItem

{

				friend	class	QtFileIconView;

public:

				enum	ItemType	{

								File	=	0,

								Dir,

								Link

				};

				QtFileIconViewItem(QtFileIconView	*parent,	QFileInfo	*fi);

				virtual	~QtFileIconViewItem();

				ItemType	type()	const

				{	return	itemType;	}

				QString	filename()	const	{	return	itemFileName;	}

				virtual	bool	acceptDrop(const	QMimeSource	*e)	const;

				virtual	void	setText(const	QString	&text);

				virtual	QPixmap	*pixmap()	const;

				virtual	void	dragEntered();

				virtual	void	dragLeft();

				void	viewModeChanged(QtFileIconView::ViewMode	m);

				void	paintItem(QPainter	*p,	const	QColorGroup	&cg);

protected:

				virtual	void	dropped(QDropEvent	*e,	const	QValueList<QIconDragItem>	&);

				QString	itemFileName;

				QFileInfo	*itemFileInfo;

				ItemType	itemType;

				bool	checkSetText;

				QTimer	timer;

				QtFileIconView::ViewMode	vm;

};

#endif

Implementation	of	the	file	icon	view:

/**

**	$Id:		qt/qfileiconview.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"qfileiconview.h"

#include	<qpainter.h>

#include	<qstringlist.h>

#include	<qpixmap.h>

#include	<qmime.h>

#include	<qstrlist.h>

#include	<qdragobject.h>

#include	<qmessagebox.h>

#include	<qevent.h>

#include	<qpopupmenu.h>

#include	<qcursor.h>

#include	<qapplication.h>

#include	<qwmatrix.h>

#include	<stdlib.h>

static	const	char	*	file_icon[]={

				"32	32	17	1",

				"#	c	#000000",

				"a	c	#ffffff",

				"j	c	#808080",

				"n	c	#a0a0a4",

				"g	c	#c0c0c0",

				"m	c	#004000",

				"o	c	#000000",

				"l	c	#004040",

				"k	c	#404000",

				"i	c	#c0c000",

				"h	c	#ffff00",

				"b	c	#ffffc0",

				"e	c	#ff8000",

				"f	c	#c05800",

				"c	c	#ffa858",

				"d	c	#ffdca8",

				".	c	None",

				"................................",

				"................................",

				"................................",

				"................................",

				".............#....###...........",

				"...###......#a##.#aba##.........",

				"..#cdb#....#aaaa#aaaaaa##.......",

				"..#ecdb#..#aaaa#aaaaaaaba##.....",

				"..#fecdb##aaaa#aaaaaaaaaaab##...",

				"...#fecdb#aaa#aaaaaaabaabaaaa##.",

				"....#fecdb#a#baaaaa#baaaaaabaaa#",

				".....#fecdb#aaaaab#a##baaaaaaa#.",

				".....##fecdb#bbba#aaaa##baaab#..",

				"....#bb#fecdb#ba#aaaaaaa##aa#...",

				"...#bbbb#fecdb##aaabaaaaaa##....",

				"..#bbbb#b#fecdb#aaaaaaabaaaa##..",

				".#bbbb#bbb#fecdg#aaaaaaaaaaaba#.",

				"#hhbb#bbbbb#fegg#iiaaaaaaaaaaaa#",

				"#jhhhklibbbk#ggj#aaiiaaaaaaaaa#j",

				".#mjhhhkmikab####aaabiiaaaaaa#j.",

				"...##jhhhmaaibbaaiibaaaiiaab#n..",

				".....##j#baaaiiabaaiibaabaa#n...",

				"......##baibaabiibaaaiiabb#j....",

				"......#bbbbiiaabbiiaaaaabon.....",

				".....#bbbbbbbiiabbaiiaab#n......",

				".....#jbbbbbbbbiibaabba#n.......",

				"......##jbbbbbbbbiiaabmj........",

				"........##jbbbbbbbbbb#j.........",

				"..........##nbbbbbbbmj..........",

				"............##jbbbb#j...........",

				"..............#mjj#n............",

				"................##n............."};

static	const	char	*	folder_icon[]={

				"32	32	11	1",

				"#	c	#000000",

				"b	c	#c0c000",

				"d	c	#585858",

				"a	c	#ffff00",

				"i	c	#400000",

				"h	c	#a0a0a4",

				"e	c	#000000",

				"c	c	#ffffff",

				"f	c	#303030",

				"g	c	#c0c0c0",

				".	c	None",

				"...###..........................",

				"...#aa##........................",

				".###baaa##......................",

				".#cde#baaa##....................",

				".#cccdeebaaa##..##f.............",

				".#cccccdeebaaa##aaa##...........",

				".#cccccccdeebaaaaaaaa##.........",

				".#cccccccccdeebababaaa#.........",

				".#cccccgcgghhebbbbbbbaa#........",

				".#ccccccgcgggdebbbbbbba#........",

				".#cccgcgcgcgghdeebiebbba#.......",

				".#ccccgcggggggghdeddeeba#.......",

				".#cgcgcgcggggggggghghdebb#......",

				".#ccgcggggggggghghghghd#b#......",

				".#cgcgcggggggggghghghhd#b#......",

				".#gcggggggggghghghhhhhd#b#......",

				".#cgcggggggggghghghhhhd#b#......",

				".#ggggggggghghghhhhhhhdib#......",

				".#gggggggggghghghhhhhhd#b#......",

				".#hhggggghghghhhhhhhhhd#b#......",

				".#ddhhgggghghghhhhhhhhd#b#......",

				"..##ddhhghghhhhhhhhhhhdeb#......",

				"....##ddhhhghhhhhhhhhhd#b#......",

				"......##ddhhhhhhhhhhhhd#b#......",

				"........##ddhhhhhhhhhhd#b#......",

				"..........##ddhhhhhhhhd#b#......",

				"............##ddhhhhhhd#b###....",

				"..............##ddhhhhd#b#####..",

				"................##ddhhd#b######.",

				"..................##dddeb#####..",

				"....................##d#b###....",

				"......................####......"};

static	const	char	*	link_icon[]={

				"32	32	12	1",

				"#	c	#000000",

				"h	c	#a0a0a4",

				"b	c	#c00000",

				"d	c	#585858",

				"i	c	#400000",

				"c	c	#ffffff",

				"e	c	#000000",

				"g	c	#c0c0c0",

				"a	c	#ff0000",

				"f	c	#303030",

				"n	c	white",

				".	c	None",

				"...###..........................",

				"...#aa##........................",

				".###baaa##......................",

				".#cde#baaa##....................",

				".#cccdeebaaa##..##f.............",

				".#cccccdeebaaa##aaa##...........",

				".#cccccccdeebaaaaaaaa##.........",

				".#cccccccccdeebababaaa#.........",

				".#cccccgcgghhebbbbbbbaa#........",

				".#ccccccgcgggdebbbbbbba#........",

				".#cccgcgcgcgghdeebiebbba#.......",

				".#ccccgcggggggghdeddeeba#.......",

				".#cgcgcgcggggggggghghdebb#......",

				".#ccgcggggggggghghghghd#b#......",

				".#cgcgcggggggggghghghhd#b#......",

				".#gcggggggggghghghhhhhd#b#......",

				".#cgcggggggggghghghhhhd#b#......",

				".#ggggggggghghghhhhhhhdib#......",

				".#gggggggggghghghhhhhhd#b#......",

				".#hhggggghghghhhhhhhhhd#b#......",

				".#ddhhgggghghghhhhhhhhd#b#......",

				"..##ddhhghghhhhhhhhhhhdeb#......",

				"############hhhhhhhhhhd#b#......",

				"#nnnnnnnnnn#hhhhhhhhhhd#b#......",

				"#nnnnnnnnnn#hhhhhhhhhhd#b#......",

				"#nn#nn#nnnn#ddhhhhhhhhd#b#......",

				"#nn##n##nnn###ddhhhhhhd#b###....",

				"#nnn#####nn#..##ddhhhhd#b#####..",

				"#nnnnn##nnn#....##ddhhd#b######.",

				"#nnnnn#nnnn#......##dddeb#####..",

				"#nnnnnnnnnn#........##d#b###....",

				"############..........####......"};

static	const	char	*	folder_locked_icon[]={

				"32	32	12	1",

				"#	c	#000000",

				"g	c	#808080",

				"h	c	#c0c0c0",

				"f	c	#c05800",

				"c	c	#ffffff",

				"d	c	#585858",

				"b	c	#ffa858",

				"a	c	#ffdca8",

				"e	c	#000000",

				"i	c	#a0a0a4",

				"j	c	#c0c0c0",

				".	c	None",

				"...###..........................",

				"...#aa##........................",

				".###baaa##......................",

				".#cde#baaa##....................",

				".#cccdeeba#######...............",

				".#cccccde##fffff##..............",

				".#cccccc##fffgggg#..............",

				".#ccccccc#ffg####a##............",

				".#ccccchc#ffg#eebbaa##..........",

				".#ccccccc#ffg#ddeebbba##........",

				".#ccchccc#ffg#ihddeebbba##......",

				".#cccccaa#ffg#ihhhddeeba##......",

				".#chchhbbaafg#ihhhihidebb#......",

				".#cchccbbbbaa#ihhihihid#b#......",

				".#chchhbb#bbbaaiihihiid#b#......",

				".#hchhcbb#fbbbafhiiiiid#b#......",

				".#chchhbb#ffgbbfihiiiid#b#......",

				".#hhhhhbb#ffg#bfiiiiiid#b#......",

				".#hhhhhbbaffg#bfiiiiiid#b#......",

				".#iihhhjbbaab#bfiiiiiid#b#......",

				".#ddiihhh#bbbabfiiiiiid#b#......",

				"..##ddiih#ffbbbfiiiiiid#b#......",

				"....##ddi#ffg#biiiiiiid#b#......",

				"......##d#ffg#iiiiiiiid#b#......",

				"........##ffg#iiiiiiiid#b#......",

				".........#ffg#iiiiiiiid#b#......",

				".........#ffg#ddiiiiiid#b###....",

				".........##fg###ddiiiid#b#####..",

				"...........####.##ddiid#b######.",

				"..................##dddeb#####..",

				"....................##d#b###....",

				"......................####......"};

static	QPixmap	*iconFolderLockedLarge	=	0;

static	QPixmap	*iconFolderLarge	=	0;

static	QPixmap	*iconFileLarge	=	0;

static	QPixmap	*iconLinkLarge	=	0;

static	QPixmap	*iconFolderLockedSmall	=	0;

static	QPixmap	*iconFolderSmall	=	0;

static	QPixmap	*iconFileSmall	=	0;

static	QPixmap	*iconLinkSmall	=	0;

static	void	cleanup()

{

				delete	iconFolderLockedLarge;

				iconFolderLockedLarge	=	0;

				delete	iconFolderLarge;

				iconFolderLarge	=	0;

				delete	iconFileLarge;

				iconFileLarge	=	0;

				delete	iconLinkLarge;

				iconLinkLarge	=	0;

				delete	iconFolderLockedSmall;

				iconFolderLockedSmall	=	0;

				delete	iconFolderSmall;

				iconFolderSmall	=	0;

				delete	iconFileSmall;

				iconFileSmall	=	0;

				delete	iconLinkSmall;

				iconLinkSmall	=	0;

}

/***

	*

	*	Class	QtFileIconDrag

	*

	***/

QtFileIconDrag::QtFileIconDrag(QWidget	*	dragSource,	const	char*	name)

				:	QIconDrag(dragSource,	name)

{

}

const	char*	QtFileIconDrag::format(int	i)	const

{

				if	(i	==	0)

								return	"application/x-qiconlist";

				else	if	(i	==	1)

								return	"text/uri-list";

				else

								return	0;

}

QByteArray	QtFileIconDrag::encodedData(const	char*	mime)	const

{

				QByteArray	a;

				if	(QString(mime)	==	"application/x-qiconlist")	{

								a	=	QIconDrag::encodedData(mime);

				}	else	if	(QString(mime)	==	"text/uri-list")	{

								QString	s	=	urls.join("\r\n");

								a.resize(s.length());

								memcpy(a.data(),	s.latin1(),	s.length());

				}

				return	a;

}

bool	QtFileIconDrag::canDecode(QMimeSource*	e)

{

				return	e->provides("application/x-qiconlist")	||

								e->provides("text/uri-list");

}

void	QtFileIconDrag::append(const	QIconDragItem	&item,	const	QRect	&pr,

																													const	QRect	&tr,	const	QString	&url)

{

				QIconDrag::append(item,	pr,	tr);

				urls	<<	url;

}

/***

	*

	*	Class	QtFileIconViewItem

	*

	***/

QtFileIconViewItem::QtFileIconViewItem(QtFileIconView	*parent,	QFileInfo	*fi)

				:	QIconViewItem(parent,	fi->fileName()),	itemFileName(fi->filePath

						itemFileInfo(fi),	checkSetText(FALSE)

{

				vm	=	QtFileIconView::Large;

				if	(itemFileInfo->isDir())

								itemType	=	Dir;

				else	if	(itemFileInfo->isFile())

								itemType	=	File;

				if	(itemFileInfo->isSymLink())

								itemType	=	Link;

				viewModeChanged(((QtFileIconView*)iconView())->viewMode());

				if	(itemFileInfo->fileName()	==	"."	||

									itemFileInfo->fileName()	==	"..")

								setRenameEnabled(FALSE);

				checkSetText	=	TRUE;

				QObject::connect(&timer,	SIGNAL(timeout()),

																						iconView(),	SLOT(openFolder()));

}

void	QtFileIconViewItem::paintItem(QPainter	*p,	const	QColorGroup	&cg)

{

				if	(itemFileInfo->isSymLink())	{

								QFont	f(p->font());

								f.setItalic(TRUE);

								p->setFont(f);

				}

				QIconViewItem::paintItem(p,	cg);

}

void	QtFileIconViewItem::viewModeChanged(QtFileIconView::ViewMode	m)

{

				vm	=	m;

				setDropEnabled(itemType	==	Dir	&&	QDir(itemFileName).isReadable());

				calcRect();

}

QPixmap	*QtFileIconViewItem::pixmap()	const

{

				switch	(itemType)	{

				case	Dir:

								{

												if	(!QDir(itemFileName).isReadable())	{

																if	(vm	==	QtFileIconView::Small)

																				return	iconFolderLockedSmall;

																else

																				return	iconFolderLockedLarge;

												}	else	{

																if	(vm	==	QtFileIconView::Small)

																				return	iconFolderSmall;

																else

																				return	iconFolderLarge;

												}

								}

				case	Link:

								{

												if	(vm	==	QtFileIconView::Small)

																return	iconLinkSmall;

												else

																return	iconLinkLarge;

								}

				default:

								{

												if	(vm	==	QtFileIconView::Small)

																return	iconFileSmall;

												else

																return	iconFileLarge;

								}

				}

}

QtFileIconViewItem::~QtFileIconViewItem()

{

				delete	itemFileInfo;

}

void	QtFileIconViewItem::setText(const	QString	&text)

{

				if	(checkSetText)	{

								if	(text	==	"."	||	text	==	"."	||	text.isEmpty())

												return;

								QDir	dir(itemFileInfo->dir());

								if	(dir.rename(itemFileInfo->fileName(),	text))	{

												itemFileName	=	itemFileInfo->dirPath(TRUE)	+	"/"	+	text;

												delete	itemFileInfo;

												itemFileInfo	=	new	QFileInfo(itemFileName);

												QIconViewItem::setText(text);

								}

				}	else	{

								QIconViewItem::setText(text);

				}

}

bool	QtFileIconViewItem::acceptDrop(const	QMimeSource	*e)	const

{

				if	(type()	==	Dir	&&	e->provides("text/uri-list")	&&

									dropEnabled())

								return	TRUE;

				return	FALSE;

}

void	QtFileIconViewItem::dropped(QDropEvent	*e,	const	QValueList<QIconDragItem>	&)

{

				timer.stop();

				if	(!QUriDrag::canDecode(e))	{

								e->ignore();

								return;

				}

				QStrList	lst;

				QUriDrag::decode(e,	lst);

				QString	str;

				if	(e->action()	==	QDropEvent::Copy)

								str	=	"Copy\n\n";

				else

								str	=	"Move\n\n";

				for	(uint	i	=	0;	i	<	lst.count();	++i)

								str	+=	QString("			%1\n").arg(lst.at(i));

				str	+=	QString("\n"

																				"To\n\n"

																				"			%1").arg(filename());

				QMessageBox::information(iconView(),	e->action()	==	QDropEvent::Copy	?	"Copy"	:	"Move"	,	str,	"Not	Implemented");

				if	(e->action()	==	QDropEvent::Move)

								QMessageBox::information(iconView(),	"Remove"	,	str,	"Not	Implemented");

				e->acceptAction();

}

void	QtFileIconViewItem::dragEntered()

{

				if	(type()	!=	Dir	||

									type()	==	Dir	&&	!QDir(itemFileName).isReadable())

								return;

				((QtFileIconView*)iconView())->setOpenItem(this);

				timer.start(1500);

}

void	QtFileIconViewItem::dragLeft()

{

				if	(type()	!=	Dir	||

									type()	==	Dir	&&	!QDir(itemFileName).isReadable())

								return;

				timer.stop();

}

/***

	*

	*	Class	QtFileIconView

	*

	***/

QtFileIconView::QtFileIconView(const	QString	&dir,	QWidget	*parent,	const	char	*name)

				:	QIconView(parent,	name),	viewDir(dir),	newFolderNum(0)

{

				if	(!iconFolderLockedLarge)	{

								qAddPostRoutine(cleanup);

								QWMatrix	m;

								m.scale(0.6,	0.6);

								QPixmap	iconpix(folder_locked_icon);

								iconFolderLockedLarge	=	new	QPixmap(folder_locked_icon);

								iconpix	=	iconpix.xForm(m);

								iconFolderLockedSmall	=	new	QPixmap(iconpix);

								iconpix	=	QPixmap(folder_icon);

								iconFolderLarge	=	new	QPixmap(folder_icon);

								iconpix	=	iconpix.xForm(m);

								iconFolderSmall	=	new	QPixmap(iconpix);

								iconpix	=	QPixmap(file_icon);

								iconFileLarge	=	new	QPixmap(file_icon);

								iconpix	=	iconpix.xForm(m);

								iconFileSmall	=	new	QPixmap(iconpix);

								iconpix	=	QPixmap(link_icon);

								iconLinkLarge	=	new	QPixmap(link_icon);

								iconpix	=	iconpix.xForm(m);

								iconLinkSmall	=	new	QPixmap(iconpix);

				}

				vm	=	Large;

				setGridX(75);

				setResizeMode(Adjust);

				setWordWrapIconText(FALSE);

				connect(this,	SIGNAL(doubleClicked(QIconViewItem	*)),

													this,	SLOT(itemDoubleClicked(QIconViewItem	*)));

				connect(this,	SIGNAL(returnPressed(QIconViewItem	*)),

													this,	SLOT(itemDoubleClicked(QIconViewItem	*)));

				connect(this,	SIGNAL(dropped(QDropEvent	*,	const	QValueList<QIconDragItem>	&)),

													this,	SLOT(slotDropped(QDropEvent	*,	const	QValueList

				connect(this,	SIGNAL(contextMenuRequested(QIconViewItem	*,	const	

													this,	SLOT(slotRightPressed(QIconViewItem	*)));

				setHScrollBarMode(AlwaysOff);

				setVScrollBarMode(Auto);

				setAutoArrange(TRUE);

				setSorting(TRUE);

				openItem	=	0;

}

void	QtFileIconView::openFolder()

{

				if	(!openItem)

								return;

				if	(openItem->type()	!=	QtFileIconViewItem::Dir	||

									openItem->type()	==	QtFileIconViewItem::Dir	&&

									!QDir(openItem->itemFileName).isReadable())

								return;

				openItem->timer.stop();

				setDirectory(openItem->itemFileName);

}

void	QtFileIconView::setDirectory(const	QString	&dir)

{

				viewDir	=	QDir(dir);

				readDir(viewDir);

}

void	QtFileIconView::setDirectory(const	QDir	&dir)

{

				viewDir	=	dir;

				readDir(viewDir);

}

void	QtFileIconView::newDirectory()

{

				setAutoArrange(FALSE);

				selectAll(FALSE);

				if	(viewDir.mkdir(QString("New	Folder	%1").arg(++newFolderNum)))	{

								QFileInfo	*fi	=	new	QFileInfo(viewDir,	QString("New	Folder	%1").arg(newFolderNum));

								QtFileIconViewItem	*item	=	new	QtFileIconViewItem(this,	new	

								item->setKey(QString("000000%1").arg(fi->fileName()));

								delete	fi;

								repaintContents(contentsX(),	contentsY(),	contentsWidth(),	contentsHeight(),	FALSE);

								ensureItemVisible(item);

								item->setSelected(TRUE,	TRUE);

								setCurrentItem(item);

								repaintItem(item);

								qApp->processEvents();

								item->rename();

				}

				setAutoArrange(TRUE);

}

QDir	QtFileIconView::currentDir()

{

				return	viewDir;

}

static	bool	isRoot(const	QString	&s)

{

#if	defined(Q_OS_UNIX)

				if	(s	==	"/")

								return	TRUE;

#elif	defined(Q_OS_WIN32)

				QString	p	=	s;

				if	(p.length()	==	3	&&

									p.right(2)	==	":/")

								return	TRUE;

				if	(p[0]	==	'/'	&&	p[1]	==	'/')	{

								int	slashes	=	p.contains('/');

								if	(slashes	<=	3)

												return	TRUE;

								if	(slashes	==	4	&&	p[(int)p.length()	-	1]	==	'/')

												return	TRUE;

				}

#endif

				return	FALSE;

}

void	QtFileIconView::readDir(const	QDir	&dir)

{

				if	(!dir.isReadable())

								return;

				if	(isRoot(dir.absPath()))

								emit	disableUp();

				else

								emit	enableUp();

				clear();

				emit	directoryChanged(dir.absPath());

				const	QFileInfoList	*filist	=	dir.entryInfoList(QDir::DefaultFilter,	QDir::DirsFirst	|	QDir::Name);

				emit	startReadDir(filist->count());

				QFileInfoListIterator	it(*filist);

				QFileInfo	*fi;

				bool	allowRename	=	FALSE,	allowRenameSet	=	FALSE;

				while	((fi	=	it.current())	!=	0)	{

								++it;

								if	(fi	&&	fi->fileName()	==	".."	&&	(fi->dirPath()	==	"/"	||	fi->

												continue;

								emit	readNextDir();

								QtFileIconViewItem	*item	=	new	QtFileIconViewItem(this,	new	

								if	(fi->isDir())

												item->setKey(QString("000000%1").arg(fi->fileName()));

								else

												item->setKey(fi->fileName());

								if	(!allowRenameSet)	{

												if	(!QFileInfo(fi->absFilePath()).isWritable()	||

																	item->text()	==	"."	||	item->text()	==	"..")

																allowRename	=	FALSE;

												else

																allowRename	=	TRUE;

												if	(item->text()	==	"."	||	item->text()	==	"..")

																allowRenameSet	=	FALSE;

												else

																allowRenameSet	=	TRUE;

								}

								item->setRenameEnabled(allowRename);

				}

				if	(!QFileInfo(dir.absPath()).isWritable())

								emit	disableMkdir();

				else

								emit	enableMkdir();

				emit	readDirDone();

}

void	QtFileIconView::itemDoubleClicked(QIconViewItem	*i)

{

				QtFileIconViewItem	*item	=	(QtFileIconViewItem*)i;

				if	(item->type()	==	QtFileIconViewItem::Dir)	{

								viewDir	=	QDir(item->filename());

								readDir(viewDir);

				}	else	if	(item->type()	==	QtFileIconViewItem::Link	&&

																QFileInfo(QFileInfo(item->filename()).readLink()).isDir())	{

								viewDir	=	QDir(QFileInfo(item->filename()).readLink());

								readDir(viewDir);

				}

}

QDragObject	*QtFileIconView::dragObject()

{

				if	(!currentItem())

								return	0;

				QPoint	orig	=	viewportToContents(viewport()->mapFromGlobal(QCursor::

				QtFileIconDrag	*drag	=	new	QtFileIconDrag(viewport());

				drag->setPixmap(*currentItem()->pixmap(),

																					QPoint(currentItem()->pixmapRect().width()	/	2,	currentItem()->pixmapRect().height()	/	2));

				for	(QtFileIconViewItem	*item	=	(QtFileIconViewItem*)firstItem();	item;

										item	=	(QtFileIconViewItem*)item->nextItem())	{

								if	(item->isSelected())	{

												QIconDragItem	id;

												id.setData(QCString(item->filename()));

												drag->append(id,

																										QRect(item->pixmapRect(FALSE).x()	-	orig.

																																	item->pixmapRect(FALSE).y()	-	orig.

																																	item->pixmapRect().width(),	item->pixmapRect

																										QRect(item->textRect(FALSE).x()	-	orig.

																																	item->textRect(FALSE).y()	-	orig.

																																	item->textRect().width(),	item->textRect

																										QString(item->filename()));

								}

				}

				return	drag;

}

void	QtFileIconView::keyPressEvent(QKeyEvent	*e)

{

				if	(e->key()	==	Key_N	&&

									(e->state()	&	ControlButton))

								newDirectory();

				else

								QIconView::keyPressEvent(e);

}

void	QtFileIconView::slotDropped(QDropEvent	*e,	const	QValueList<QIconDragItem>	&)

{

				if	(openItem)

								openItem->timer.stop();

				if	(!QUriDrag::canDecode(e))	{

								e->ignore();

								return;

				}

				QStrList	lst;

				QUriDrag::decode(e,	lst);

				QString	str;

				if	(e->action()	==	QDropEvent::Copy)

								str	=	"Copy\n\n";

				else

								str	=	"Move\n\n";

				for	(uint	i	=	0;	i	<	lst.count();	++i)

								str	+=	QString("			%1\n").arg(lst.at(i));

				str	+=	QString("\n"

																				"To\n\n"

																				"			%1").arg(viewDir.absPath());

				QMessageBox::information(this,	e->action()	==	QDropEvent::Copy	?	"Copy"	:	"Move"	,	str,	"Not	Implemented");

				if	(e->action()	==	QDropEvent::Move)

								QMessageBox::information(this,	"Remove"	,	str,	"Not	Implemented");

				e->acceptAction();

				openItem	=	0;

}

void	QtFileIconView::viewLarge()

{

				setViewMode(Large);

}

void	QtFileIconView::viewSmall()

{

				setViewMode(Small);

}

void	QtFileIconView::viewBottom()

{

				setItemTextPos(Bottom);

}

void	QtFileIconView::viewRight()

{

				setItemTextPos(Right);

}

void	QtFileIconView::flowEast()

{

				setHScrollBarMode(AlwaysOff);

				setVScrollBarMode(Auto);

				setArrangement(LeftToRight);

}

void	QtFileIconView::flowSouth()

{

				setVScrollBarMode(AlwaysOff);

				setHScrollBarMode(Auto);

				setArrangement(TopToBottom);

}

void	QtFileIconView::sortAscending()

{

				sort(TRUE);

}

void	QtFileIconView::sortDescending()

{

				sort(FALSE);

}

void	QtFileIconView::itemTextTruncate()

{

				setWordWrapIconText(FALSE);

}

void	QtFileIconView::itemTextWordWrap()

{

				setWordWrapIconText(TRUE);

}

void	QtFileIconView::slotRightPressed(QIconViewItem	*item)

{

				if	(!item)	{	//	right	pressed	on	viewport

								QPopupMenu	menu(this);

								menu.insertItem("&Large	view",	this,	SLOT(viewLarge()));

								menu.insertItem("&Small	view",	this,	SLOT(viewSmall()));

								menu.insertSeparator();

								menu.insertItem("Text	at	the	&bottom",	this,	SLOT(viewBottom()));

								menu.insertItem("Text	at	the	&right",	this,	SLOT(viewRight()));

								menu.insertSeparator();

								menu.insertItem("Arrange	l&eft	to	right",	this,	SLOT(flowEast()));

								menu.insertItem("Arrange	t&op	to	bottom",	this,	SLOT(flowSouth()));

								menu.insertSeparator();

								menu.insertItem("&Truncate	item	text",	this,	SLOT(itemTextTruncate()));

								menu.insertItem("&Wordwrap	item	text",	this,	SLOT(itemTextWordWrap()));

								menu.insertSeparator();

								menu.insertItem("Arrange	items	in	&grid",	this,	SLOT(arrangeItemsInGrid

								menu.insertSeparator();

								menu.insertItem("Sort	&ascending",	this,	SLOT(sortAscending()));

								menu.insertItem("Sort	&descending",	this,	SLOT(sortDescending()));

								menu.setMouseTracking(TRUE);

								menu.exec(QCursor::pos());

				}	else	{	//	on	item

								QPopupMenu	menu(this);

								int	RENAME_ITEM	=	menu.insertItem("Rename	Item");

								int	REMOVE_ITEM	=	menu.insertItem("Remove	Item");

								menu.setMouseTracking(TRUE);

								int	id	=	menu.exec(QCursor::pos());

								if	(id	==	-1)

												return;

								if	(id	==	RENAME_ITEM	&&	item->renameEnabled())	{

												item->rename();

								}	else	if	(id	==	REMOVE_ITEM)	{

												delete	item;

												QMessageBox::information(this,	"Not	implemented!",	"Deleting	files	not	implemented	yet,\n"

																																						"The	item	has	only	been	removed	from	the	view!	");

								}

				}

}

void	QtFileIconView::setViewMode(ViewMode	m)

{

				if	(m	==	vm)

								return;

				vm	=	m;

				QtFileIconViewItem	*item	=	(QtFileIconViewItem*)firstItem();

				for	(;	item;	item	=	(QtFileIconViewItem*)item->nextItem())

								item->viewModeChanged(vm);

				arrangeItemsInGrid();

}

Header	file	of	the	main	window:

/**

**	$Id:		qt/mainwindow.h			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	MAINWIN_H

#define	MAINWIN_H

#include	<qmainwindow.h>

class	QtFileIconView;

class	DirectoryView;

class	QProgressBar;

class	QLabel;

class	QComboBox;

class	QToolButton;

class	FileMainWindow	:	public	QMainWindow

{

				Q_OBJECT

public:

				FileMainWindow();

				QtFileIconView	*fileView()	{	return	fileview;	}

				DirectoryView	*dirList()	{	return	dirlist;	}

				void	show();

protected:

				void	setup();

				void	setPathCombo();

				QtFileIconView	*fileview;

				DirectoryView	*dirlist;

				QProgressBar	*progress;

				QLabel	*label;

				QComboBox	*pathCombo;

				QToolButton	*upButton,	*mkdirButton;

protected	slots:

				void	directoryChanged(const	QString	&);

				void	slotStartReadDir(int	dirs);

				void	slotReadNextDir();

				void	slotReadDirDone();

				void	cdUp();

				void	newFolder();

				void	changePath(const	QString	&path);

				void	enableUp();

				void	disableUp();

				void	enableMkdir();

				void	disableMkdir();

};

#endif

Implementation	of	the	main	window:

/**

**	$Id:		qt/mainwindow.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"mainwindow.h"

#include	"qfileiconview.h"

#include	"../dirview/dirview.h"

#include	<qsplitter.h>

#include	<qprogressbar.h>

#include	<qlabel.h>

#include	<qstatusbar.h>

#include	<qtoolbar.h>

#include	<qcombobox.h>

#include	<qpixmap.h>

#include	<qtoolbutton.h>

#include	<qdir.h>

#include	<qfileinfo.h>

static	const	char*	cdtoparent_xpm[]={

				"15	13	3	1",

				".	c	None",

				"*	c	#000000",

				"a	c	#ffff99",

				"..*****........",

				".*aaaaa*.......",

				"***************",

				"*aaaaaaaaaaaaa*",

				"*aaaa*aaaaaaaa*",

				"*aaa***aaaaaaa*",

				"*aa*****aaaaaa*",

				"*aaaa*aaaaaaaa*",

				"*aaaa*aaaaaaaa*",

				"*aaaa******aaa*",

				"*aaaaaaaaaaaaa*",

				"*aaaaaaaaaaaaa*",

				"***************"};

static	const	char*	newfolder_xpm[]	=	{

				"15	14	4	1",

				"			c	None",

				".		c	#000000",

				"+		c	#FFFF00",

				"@		c	#FFFFFF",

				"										.				",

				"															",

				"										.				",

				"							.					.	",

				"			",

				"	.+@+@.		.	.			",

				"..........		.	.",

				".@+@+@+@+@..			",

				".+@+@+@+@+.	.		",

				".@+@+@+@+@.		.	",

				".+@+@+@+@+.				",

				".@+@+@+@+@.				",

				".+@+@+@+@+.				",

				"...........				"};

FileMainWindow::FileMainWindow()

				:	QMainWindow()

{

				setup();

}

void	FileMainWindow::show()

{

				QMainWindow::show();

}

void	FileMainWindow::setup()

{

				QSplitter	*splitter	=	new	QSplitter(this);

				dirlist	=	new	DirectoryView(splitter,	"dirlist",	TRUE);

				dirlist->addColumn("Name");

				dirlist->addColumn("Type");

				Directory	*root	=	new	Directory(dirlist,	"/");

				root->setOpen(TRUE);

				splitter->setResizeMode(dirlist,	QSplitter::KeepSize);

				fileview	=	new	QtFileIconView("/",	splitter);

				fileview->setSelectionMode(QIconView::Extended);

				setCentralWidget(splitter);

				QToolBar	*toolbar	=	new	QToolBar(this,	"toolbar");

				setRightJustification(TRUE);

				(void)new	QLabel(tr("	Path:	"),	toolbar);

				pathCombo	=	new	QComboBox(TRUE,	toolbar);

				pathCombo->setAutoCompletion(TRUE);

				toolbar->setStretchableWidget(pathCombo);

				connect(pathCombo,	SIGNAL(activated(const	QString	&)),

													this,	SLOT	(changePath(const	QString	&)));

				toolbar->addSeparator();

				QPixmap	pix;

				pix	=	QPixmap(cdtoparent_xpm);

				upButton	=	new	QToolButton(pix,	"One	directory	up",	QString::null

																																this,	SLOT(cdUp()),	toolbar,	"cd	up");

				pix	=	QPixmap(newfolder_xpm);

				mkdirButton	=	new	QToolButton(pix,	"New	Folder",	QString::null,

																																			this,	SLOT(newFolder()),	toolbar,	"new	folder");

				connect(dirlist,	SIGNAL(folderSelected(const	QString	&)),

													fileview,	SLOT	(setDirectory(const	QString	&)));

				connect(fileview,	SIGNAL(directoryChanged(const	QString	&)),

													this,	SLOT(directoryChanged(const	QString	&)));

				connect(fileview,	SIGNAL(startReadDir(int)),

													this,	SLOT(slotStartReadDir(int)));

				connect(fileview,	SIGNAL(readNextDir()),

													this,	SLOT(slotReadNextDir()));

				connect(fileview,	SIGNAL(readDirDone()),

													this,	SLOT(slotReadDirDone()));

				setDockEnabled(DockLeft,	FALSE);

				setDockEnabled(DockRight,	FALSE);

				label	=	new	QLabel(statusBar());

				statusBar()->addWidget(label,	2,	TRUE);

				progress	=	new	QProgressBar(statusBar());

				statusBar()->addWidget(progress,	1,	TRUE);

				connect(fileview,	SIGNAL(enableUp()),

													this,	SLOT(enableUp()));

				connect(fileview,	SIGNAL(disableUp()),

													this,	SLOT(disableUp()));

				connect(fileview,	SIGNAL(enableMkdir()),

													this,	SLOT(enableMkdir()));

				connect(fileview,	SIGNAL(disableMkdir()),

													this,	SLOT(disableMkdir()));

}

void	FileMainWindow::setPathCombo()

{

				QString	dir	=	caption();

				int	i	=	0;

				bool	found	=	FALSE;

				for	(i	=	0;	i	<	pathCombo->count();	++i)	{

								if	(pathCombo->text(i)	==	dir)	{

												found	=	TRUE;

												break;

								}

				}

				if	(found)

								pathCombo->setCurrentItem(i);

				else	{

								pathCombo->insertItem(dir);

								pathCombo->setCurrentItem(pathCombo->count()	-	1);

				}

}

void	FileMainWindow::directoryChanged(const	QString	&dir)

{

				setCaption(dir);

				setPathCombo();

}

void	FileMainWindow::slotStartReadDir(int	dirs)

{

				label->setText(tr("	Reading	Directory..."));

				progress->reset();

				progress->setTotalSteps(dirs);

}

void	FileMainWindow::slotReadNextDir()

{

				int	p	=	progress->progress();

				progress->setProgress(++p);

}

void	FileMainWindow::slotReadDirDone()

{

				label->setText(tr("	Reading	Directory	Done."));

				progress->setProgress(progress->totalSteps());

}

void	FileMainWindow::cdUp()

{

				QDir	dir	=	fileview->currentDir();

				dir.cd("..");

				fileview->setDirectory(dir);

}

void	FileMainWindow::newFolder()

{

				fileview->newDirectory();

}

void	FileMainWindow::changePath(const	QString	&path)

{

				if	(QFileInfo(path).exists())

								fileview->setDirectory(path);

				else

								setPathCombo();

}

void	FileMainWindow::enableUp()

{

				upButton->setEnabled(TRUE);

}

void	FileMainWindow::disableUp()

{

				upButton->setEnabled(FALSE);

}

void	FileMainWindow::enableMkdir()

{

				mkdirButton->setEnabled(TRUE);

}

void	FileMainWindow::disableMkdir()

{

				mkdirButton->setEnabled(FALSE);

}

Main:

/**

**	$Id:		qt/main.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"mainwindow.h"

#include	"qfileiconview.h"

#include	<qapplication.h>

int	main(int	argc,	char	**argv)

{

				QApplication	a(argc,	argv);

				FileMainWindow	mw;

				mw.resize(680,	480);

				a.setMainWidget(&mw);

				mw.fileView()->setDirectory("/");

				mw.show();

				return	a.exec();

}

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

A	Rectangle	Draw	"Benchmark"
This	example	continuously	draws	rectangles	in	a	window	and	has	another	widget
that	counts	the	number	of	rectangles	that	are	drawn	per	second.

Header	file:

/**

**	$Id:		qt/forever.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	something	or	other

**

**	Created	:	979899

**

**	Copyright	(C)	1997	by	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	FOREVER_H

#define	FOREVER_H

#include	<qwidget.h>

const	int	numColors	=	120;

class	Forever	:	public	QWidget

{

				Q_OBJECT

public:

				Forever(QWidget	*parent=0,	const	char	*name=0);

protected:

				void								paintEvent(QPaintEvent	*);

				void								timerEvent(QTimerEvent	*);

private	slots:

				void								updateCaption();

private:

				int									rectangles;

				QColor						colors[numColors];

};

#endif

Implementation:

/**

**	$Id:		qt/forever.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qtimer.h>

#include	<qpainter.h>

#include	<qapplication.h>

#include	<stdlib.h>																													//	defines	rand()	function

#include	"forever.h"

//

//	Forever	-	a	widget	that	draws	rectangles	forever.

//

//

//	Constructs	a	Forever	widget.

//

Forever::Forever(QWidget	*parent,	const	char	*name)

				:	QWidget(parent,	name)

{

				for	(int	a=0;	a<numColors;	a++)	{

								colors[a]	=	QColor(rand()&255,

																												rand()&255,

																												rand()&255);

				}

				rectangles	=	0;

				startTimer(0);																												//	run	continuous	timer

				QTimer	*	counter	=	new	QTimer(this);

				connect(counter,	SIGNAL(timeout()),

													this,	SLOT(updateCaption()));

				counter->start(1000);

}

void	Forever::updateCaption()

{

				QString	s;

				s.sprintf("Qt	Example	-	Forever	-	%d	rectangles/second",	rectangles);

				rectangles	=	0;

				setCaption(s);

}

//

//	Handles	paint	events	for	the	Forever	widget.

//

void	Forever::paintEvent(QPaintEvent	*)

{

				QPainter	paint(this);																					//	painter	object

				int	w	=	width();

				int	h	=	height();

				if(w	<=	0	||	h	<=	0)

								return;

				paint.setPen(NoPen);																						//	do	not	draw	outline

				paint.setBrush(colors[rand()	%	numColors]);//	set	random	brush	color

				QPoint	p1(rand()%w,	rand()%h);				//	p1	=	top	left

				QPoint	p2(rand()%w,	rand()%h);				//	p2	=	bottom	right

				QRect	r(p1,	p2);

				paint.drawRect(r);																								//	draw	filled	rectangle

}

//

//	Handles	timer	events	for	the	Forever	widget.

//

void	Forever::timerEvent(QTimerEvent	*)

{

				for	(int	i=0;	i<100;	i++)	{

								repaint(FALSE);																							//	repaint,	don't	erase

								rectangles++;

				}

}

//

//	Create	and	display	Forever	widget.

//

int	main(int	argc,	char	**argv)

{

				QApplication	a(argc,	argv);															//	create	application	object

				Forever	always;																													//	create	widget

				a.setMainWidget(&always);																	//	set	as	main	widget

				always.setCaption("Qt	Example	-	Forever");

				always.show();																														//	show	widget

				return	a.exec();																												//	run	event	loop

}

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Hello,	World
This	example	brings	up	the	words	"Hello,	World"	moving	up	and	down,	and	in
different	colors.

Header	file:

/**

**	$Id:		qt/hello.h			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	HELLO_H

#define	HELLO_H

#include	<qwidget.h>

class	Hello	:	public	QWidget

{

				Q_OBJECT

public:

				Hello(const	char	*text,	QWidget	*parent=0,	const	char	*name=0);

signals:

				void	clicked();

protected:

				void	mouseReleaseEvent(QMouseEvent	*);

				void	paintEvent(QPaintEvent	*);

private	slots:

				void	animate();

private:

				QString	t;

				int					b;

};

#endif

Implementation:

/**

**	$Id:		qt/hello.cpp			3.0.5			edited	May	7	17:30	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"hello.h"

#include	<qpushbutton.h>

#include	<qtimer.h>

#include	<qpainter.h>

#include	<qpixmap.h>

/*

		Constructs	a	Hello	widget.	Starts	a	40	ms	animation	timer.

*/

Hello::Hello(const	char	*text,	QWidget	*parent,	const	char	*name)

				:	QWidget(parent,name),	t(text),	b(0)

{

				QTimer	*timer	=	new	QTimer(this);

				connect(timer,	SIGNAL(timeout()),	SLOT(animate()));

				timer->start(40);

				resize(260,	130);

}

/*

		This	private	slot	is	called	each	time	the	timer	fires.

*/

void	Hello::animate()

{

				b	=	(b	+	1)	&	15;

				repaint(FALSE);

}

/*

		Handles	mouse	button	release	events	for	the	Hello	widget.

		We	emit	the	clicked()	signal	when	the	mouse	is	released	inside

		the	widget.

*/

void	Hello::mouseReleaseEvent(QMouseEvent	*e)

{

				if	(rect().contains(e->pos()))

								emit	clicked();

}

/*

		Handles	paint	events	for	the	Hello	widget.

		Flicker-free	update.	The	text	is	first	drawn	in	the	pixmap	and	the

		pixmap	is	then	blt'ed	to	the	screen.

*/

void	Hello::paintEvent(QPaintEvent	*)

{

				static	int	sin_tbl[16]	=	{

								0,	38,	71,	92,	100,	92,	71,	38,	0,	-38,	-71,	-92,	-100,	-92,	-71,	-38};

				if	(t.isEmpty())

								return;

				//	1:	Compute	some	sizes,	positions	etc.

				QFontMetrics	fm	=	fontMetrics();

				int	w	=	fm.width(t)	+	20;

				int	h	=	fm.height()	*	2;

				int	pmx	=	width()/2	-	w/2;

				int	pmy	=	height()/2	-	h/2;

				//	2:	Create	the	pixmap	and	fill	it	with	the	widget's	background

				QPixmap	pm(w,	h);

				pm.fill(this,	pmx,	pmy);

				//	3:	Paint	the	pixmap.	Cool	wave	effect

				QPainter	p;

				int	x	=	10;

				int	y	=	h/2	+	fm.descent();

				int	i	=	0;

				p.begin(&pm);

				p.setFont(font());

				while	(!t[i].isNull())	{

								int	i16	=	(b+i)	&	15;

								p.setPen(QColor((15-i16)*16,255,255,QColor::Hsv));

								p.drawText(x,	y-sin_tbl[i16]*h/800,	t.mid(i,1),	1);

								x	+=	fm.width(t[i]);

								i++;

				}

				p.end();

				//	4:	Copy	the	pixmap	to	the	Hello	widget

				bitBlt(this,	pmx,	pmy,	&pm);

}

Main:

/**

**	$Id:		qt/main.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"hello.h"

#include	<qapplication.h>

/*

		The	program	starts	here.	It	parses	the	command	line	and	builds	a	message

		string	to	be	displayed	by	the	Hello	widget.

*/

int	main(int	argc,	char	**argv)

{

				QApplication	a(argc,argv);

				QString	s;

				for	(int	i=1;	i<argc;	i++)	{

								s	+=	argv[i];

								if	(i<argc-1)

												s	+=	"	";

				}

				if	(s.isEmpty())

								s	=	"Hello,	World";

				Hello	h(s);

#ifndef	QT_NO_WIDGET_TOPEXTRA			//	for	Qt/Embedded	minimal	build

				h.setCaption("Qt	says	hello");

#endif

				QObject::connect(&h,	SIGNAL(clicked()),	&a,	SLOT(quit()));

				h.setFont(QFont("times",32,QFont::Bold));									//	default	font

				h.setBackgroundColor(Qt::white);																		//	default	bg	color

				a.setMainWidget(&h);

				h.show();

				return	a.exec();

}

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Simple	HTML	Help	Browser
This	example	implements	a	simple	HTML	help	browser	using	Qt's	richtext
capabilities.

Header	file:

/**

**	$Id:		qt/helpwindow.h			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	HELPWINDOW_H

#define	HELPWINDOW_H

#include	<qmainwindow.h>

#include	<qtextbrowser.h>

#include	<qstringlist.h>

#include	<qmap.h>

#include	<qdir.h>

class	QComboBox;

class	QPopupMenu;

class	HelpWindow	:	public	QMainWindow

{

				Q_OBJECT

public:

				HelpWindow(const	QString&	home_,		const	QString&	path,	QWidget*	parent	=	0,	const	char	*name=0);

				~HelpWindow();

private	slots:

				void	setBackwardAvailable(bool);

				void	setForwardAvailable(bool);

				void	textChanged();

				void	about();

				void	aboutQt();

				void	openFile();

				void	newWindow();

				void	print();

				void	pathSelected(const	QString	&);

				void	histChosen(int);

				void	bookmChosen(int);

				void	addBookmark();

private:

				void	readHistory();

				void	readBookmarks();

				QTextBrowser*	browser;

				QComboBox	*pathCombo;

				int	backwardId,	forwardId;

				QString	selectedURL;

				QStringList	history,	bookmarks;

				QMap<int,	QString>	mHistory,	mBookmarks;

				QPopupMenu	*hist,	*bookm;

};

#endif

Implementation:

/**

**	$Id:		qt/helpwindow.cpp			3.0.5			edited	May	27	19:35	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"helpwindow.h"

#include	<qstatusbar.h>

#include	<qpixmap.h>

#include	<qpopupmenu.h>

#include	<qmenubar.h>

#include	<qtoolbar.h>

#include	<qtoolbutton.h>

#include	<qiconset.h>

#include	<qfile.h>

#include	<qtextstream.h>

#include	<qstylesheet.h>

#include	<qmessagebox.h>

#include	<qfiledialog.h>

#include	<qapplication.h>

#include	<qcombobox.h>

#include	<qevent.h>

#include	<qlineedit.h>

#include	<qobjectlist.h>

#include	<qfileinfo.h>

#include	<qfile.h>

#include	<qdatastream.h>

#include	<qprinter.h>

#include	<qsimplerichtext.h>

#include	<qpainter.h>

#include	<qpaintdevicemetrics.h>

#include	<ctype.h>

HelpWindow::HelpWindow(const	QString&	home_,	const	QString&	_path,

																								QWidget*	parent,	const	char	*name)

				:	QMainWindow(parent,	name,	WDestructiveClose),

						pathCombo(0),	selectedURL()

{

				readHistory();

				readBookmarks();

				browser	=	new	QTextBrowser(this);

				browser->mimeSourceFactory()->setFilePath(_path);

				browser->setFrameStyle(QFrame::Panel	|	QFrame::Sunken);

				connect(browser,	SIGNAL(textChanged()),

													this,	SLOT(textChanged()));

				setCentralWidget(browser);

				if	(!home_.isEmpty())

								browser->setSource(home_);

				connect(browser,	SIGNAL(highlighted(const	QString&)),

													statusBar(),	SLOT(message(const	QString&)));

				resize(640,700);

				QPopupMenu*	file	=	new	QPopupMenu(this);

				file->insertItem(tr("&New	Window"),	this,	SLOT(newWindow()),	CTRL+Key_N);

				file->insertItem(tr("&Open	File"),	this,	SLOT(openFile()),	CTRL+Key_O);

				file->insertItem(tr("&Print"),	this,	SLOT(print()),	CTRL+Key_P);

				file->insertSeparator();

				file->insertItem(tr("&Close"),	this,	SLOT(close()),	CTRL+Key_Q);

				file->insertItem(tr("E&xit"),	qApp,	SLOT(closeAllWindows()),	CTRL+Key_X);

				//	The	same	three	icons	are	used	twice	each.

				QIconSet	icon_back(QPixmap("back.xpm"));

				QIconSet	icon_forward(QPixmap("forward.xpm"));

				QIconSet	icon_home(QPixmap("home.xpm"));

				QPopupMenu*	go	=	new	QPopupMenu(this);

				backwardId	=	go->insertItem(icon_back,

																																	tr("&Backward"),	browser,	SLOT(backward

																																	CTRL+Key_Left);

				forwardId	=	go->insertItem(icon_forward,

																																tr("&Forward"),	browser,	SLOT(forward

																																CTRL+Key_Right);

				go->insertItem(icon_home,	tr("&Home"),	browser,	SLOT(home()));

				QPopupMenu*	help	=	new	QPopupMenu(this);

				help->insertItem(tr("&About	..."),	this,	SLOT(about()));

				help->insertItem(tr("About	&Qt	..."),	this,	SLOT(aboutQt()));

				hist	=	new	QPopupMenu(this);

				QStringList::Iterator	it	=	history.begin();

				for	(;	it	!=	history.end();	++it)

								mHistory[hist->insertItem(*it)]	=	*it;

				connect(hist,	SIGNAL(activated(int)),

													this,	SLOT(histChosen(int)));

				bookm	=	new	QPopupMenu(this);

				bookm->insertItem(tr("Add	Bookmark"),	this,	SLOT(addBookmark()));

				bookm->insertSeparator();

				QStringList::Iterator	it2	=	bookmarks.begin();

				for	(;	it2	!=	bookmarks.end();	++it2)

								mBookmarks[bookm->insertItem(*it2)]	=	*it2;

				connect(bookm,	SIGNAL(activated(int)),

													this,	SLOT(bookmChosen(int)));

				menuBar()->insertItem(tr("&File"),	file);

				menuBar()->insertItem(tr("&Go"),	go);

				menuBar()->insertItem(tr("History"),	hist);

				menuBar()->insertItem(tr("Bookmarks"),	bookm);

				menuBar()->insertSeparator();

				menuBar()->insertItem(tr("&Help"),	help);

				menuBar()->setItemEnabled(forwardId,	FALSE);

				menuBar()->setItemEnabled(backwardId,	FALSE);

				connect(browser,	SIGNAL(backwardAvailable(bool)),

													this,	SLOT(setBackwardAvailable(bool)));

				connect(browser,	SIGNAL(forwardAvailable(bool)),

													this,	SLOT(setForwardAvailable(bool)));

				QToolBar*	toolbar	=	new	QToolBar(this);

				addToolBar(toolbar,	"Toolbar");

				QToolButton*	button;

				button	=	new	QToolButton(icon_back,	tr("Backward"),	"",	browser,	SLOT(

				connect(browser,	SIGNAL(backwardAvailable(bool)),	button,	SLOT(

				button->setEnabled(FALSE);

				button	=	new	QToolButton(icon_forward,	tr("Forward"),	"",	browser,	SLOT(

				connect(browser,	SIGNAL(forwardAvailable(bool)),	button,	SLOT(

				button->setEnabled(FALSE);

				button	=	new	QToolButton(icon_home,	tr("Home"),	"",	browser,	SLOT(

				toolbar->addSeparator();

				pathCombo	=	new	QComboBox(TRUE,	toolbar);

				connect(pathCombo,	SIGNAL(activated(const	QString	&)),

													this,	SLOT(pathSelected(const	QString	&)));

				toolbar->setStretchableWidget(pathCombo);

				setRightJustification(TRUE);

				setDockEnabled(DockLeft,	FALSE);

				setDockEnabled(DockRight,	FALSE);

				pathCombo->insertItem(home_);

				browser->setFocus();

}

void	HelpWindow::setBackwardAvailable(bool	b)

{

				menuBar()->setItemEnabled(backwardId,	b);

}

void	HelpWindow::setForwardAvailable(bool	b)

{

				menuBar()->setItemEnabled(forwardId,	b);

}

void	HelpWindow::textChanged()

{

				if	(browser->documentTitle().isNull())

								setCaption("Qt	Example	-	Helpviewer	-	"	+	browser->context());

				else

								setCaption("Qt	Example	-	Helpviewer	-	"	+	browser->documentTitle

				selectedURL	=	browser->context();

				if	(!selectedURL.isEmpty()	&&	pathCombo)	{

								bool	exists	=	FALSE;

								int	i;

								for	(i	=	0;	i	<	pathCombo->count();	++i)	{

												if	(pathCombo->text(i)	==	selectedURL)	{

																exists	=	TRUE;

																break;

												}

								}

								if	(!exists)	{

												pathCombo->insertItem(selectedURL,	0);

												pathCombo->setCurrentItem(0);

												mHistory[hist->insertItem(selectedURL)]	=	selectedURL;

								}	else

												pathCombo->setCurrentItem(i);

								selectedURL	=	QString::null;

				}

}

HelpWindow::~HelpWindow()

{

				history.clear();

				QMap<int,	QString>::Iterator	it	=	mHistory.begin();

				for	(;	it	!=	mHistory.end();	++it)

								history.append(*it);

				QFile	f(QDir::currentDirPath()	+	"/.history");

				f.open(IO_WriteOnly);

				QDataStream	s(&f);

				s	<<	history;

				f.close();

				bookmarks.clear();

				QMap<int,	QString>::Iterator	it2	=	mBookmarks.begin();

				for	(;	it2	!=	mBookmarks.end();	++it2)

								bookmarks.append(*it2);

				QFile	f2(QDir::currentDirPath()	+	"/.bookmarks");

				f2.open(IO_WriteOnly);

				QDataStream	s2(&f2);

				s2	<<	bookmarks;

				f2.close();

}

void	HelpWindow::about()

{

				QMessageBox::about(this,	"HelpViewer	Example",

																								"<p>This	example	implements	a	simple	HTML	help	viewer	"

																								"using	Qt's	rich	text	capabilities</p>"

																								"<p>It's	just	about	100	lines	of	C++	code,	so	don't	expect	too	much	:-)</p>"

);

}

void	HelpWindow::aboutQt()

{

				QMessageBox::aboutQt(this,	"QBrowser");

}

void	HelpWindow::openFile()

{

#ifndef	QT_NO_FILEDIALOG

				QString	fn	=	QFileDialog::getOpenFileName(QString::null,	QString::null,	this);

				if	(!fn.isEmpty())

								browser->setSource(fn);

#endif

}

void	HelpWindow::newWindow()

{

				(new	HelpWindow(browser->source(),	"qbrowser"))->show();

}

void	HelpWindow::print()

{

#ifndef	QT_NO_PRINTER

				QPrinter	printer;

				printer.setFullPage(TRUE);

				if	(printer.setup(this))	{

								QPainter	p(&printer);

								QPaintDeviceMetrics	metrics(p.device());

								int	dpix	=	metrics.logicalDpiX();

								int	dpiy	=	metrics.logicalDpiY();

								const	int	margin	=	72;	//	pt

								QRect	body(margin*dpix/72,	margin*dpiy/72,

																			metrics.width()-margin*dpix/72*2,

																			metrics.height()-margin*dpiy/72*2);

								QFont	font("times",	10);

								QSimpleRichText	richText(browser->text(),	font,

																																		browser->context(),

																																		browser->styleSheet(),

																																		browser->mimeSourceFactory(),

																																		body.height());

								richText.setWidth(&p,	body.width());

								QRect	view(body);

								int	page	=	1;

								do	{

												richText.draw(&p,	body.left(),	body.top(),	view,	colorGroup());

												view.moveBy(0,	body.height());

												p.translate(0	,	-body.height());

												p.setFont(font);

												p.drawText(view.right()	-	p.fontMetrics().width(QString::

																								view.bottom()	+	p.fontMetrics().ascent()	+	5,	QString::number(page));

												if	(view.top()		>=	body.top()	+	richText.height())

																break;

												printer.newPage();

												page++;

								}	while	(TRUE);

				}

#endif

}

void	HelpWindow::pathSelected(const	QString	&_path)

{

				browser->setSource(_path);

				QMap<int,	QString>::Iterator	it	=	mHistory.begin();

				bool	exists	=	FALSE;

				for	(;	it	!=	mHistory.end();	++it)	{

								if	(*it	==	_path)	{

												exists	=	TRUE;

												break;

								}

				}

				if	(!exists)

								mHistory[hist->insertItem(_path)]	=	_path;

}

void	HelpWindow::readHistory()

{

				if	(QFile::exists(QDir::currentDirPath()	+	"/.history"))	{

								QFile	f(QDir::currentDirPath()	+	"/.history");

								f.open(IO_ReadOnly);

								QDataStream	s(&f);

								s	>>	history;

								f.close();

								while	(history.count()	>	20)

												history.remove(history.begin());

				}

}

void	HelpWindow::readBookmarks()

{

				if	(QFile::exists(QDir::currentDirPath()	+	"/.bookmarks"))	{

								QFile	f(QDir::currentDirPath()	+	"/.bookmarks");

								f.open(IO_ReadOnly);

								QDataStream	s(&f);

								s	>>	bookmarks;

								f.close();

				}

}

void	HelpWindow::histChosen(int	i)

{

				if	(mHistory.contains(i))

								browser->setSource(mHistory[i]);

}

void	HelpWindow::bookmChosen(int	i)

{

				if	(mBookmarks.contains(i))

								browser->setSource(mBookmarks[i]);

}

void	HelpWindow::addBookmark()

{

				mBookmarks[bookm->insertItem(caption())]	=	browser->context();

}

Main:

/**

**	$Id:		qt/main.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"helpwindow.h"

#include	<qapplication.h>

#include	<qwindowsstyle.h>

#include	<qstylesheet.h>

#include	<stdlib.h>

int	main(int	argc,	char	**	argv)

{

				QApplication::setColorSpec(QApplication::ManyColor);

				QApplication	a(argc,	argv);

				QString	home;

				if	(argc	>	1)

								home	=	argv[1];

				else

								home	=	QString(getenv("QTDIR"))	+	"/doc/html/index.html";

				HelpWindow	*help	=	new	HelpWindow(home,	".",	0,	"help	viewer");

				help->setCaption("Qt	Example	-	Helpviewer");

				if	(QApplication::desktop()->width()	>	400

									&&	QApplication::desktop()->height()	>	500)

								help->show();

				else

								help->showMaximized();

				QObject::connect(&a,	SIGNAL(lastWindowClosed()),

																						&a,	SLOT(quit()));

				return	a.exec();

}

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Internationalization
This	example	shows	how	to	internationalize	applications.	Start	it	with

#	i18n	de

to	get	a	german	version	and	with

#	i18n	en

to	get	the	english	version.

Refer	also	to	the	internationalization	documentation.

Header	file:

/**

**	$Id:		qt/mywidget.h			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	MYWIDGET_H

#define	MYWIDGET_H

#include	<qmainwindow.h>

#include	<qstring.h>

class	MyWidget	:	public	QMainWindow

{

				Q_OBJECT

public:

				MyWidget(QWidget*	parent=0,	const	char*	name	=	0);

signals:

				void	closed();

protected:

				void	closeEvent(QCloseEvent*);

private:

				static	void	initChoices(QWidget*	parent);

};

#endif

Implementation:

/**

**	$Id:		qt/mywidget.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qbuttongroup.h>

#include	<qradiobutton.h>

#include	<qlabel.h>

#include	<qlistbox.h>

#include	<qcombobox.h>

#include	<qlabel.h>

#include	<qhbox.h>

#include	<qvbox.h>

#include	<qaccel.h>

#include	<qpopupmenu.h>

#include	<qmenubar.h>

#include	<qstatusbar.h>

#include	<qapplication.h>

#include	"mywidget.h"

MyWidget::MyWidget(QWidget*	parent,	const	char*	name)

								:	QMainWindow(parent,	name)

{

				QVBox*	central	=	new	QVBox(this);

				central->setMargin(5);

				central->setSpacing(5);

				setCentralWidget(central);

				QPopupMenu*	file	=	new	QPopupMenu(this);

				file->insertItem(tr("E&xit"),	qApp,	SLOT(quit()),

												QAccel::stringToKey(tr("Ctrl+Q")));

				menuBar()->insertItem(tr("&File"),	file);

				setCaption(tr("Internationalization	Example"));

				QString	l;

				statusBar()->message(tr("Language:	English"));

				(void)new	QLabel(tr("The	Main	Window"),	central);

				QButtonGroup*	gbox	=	new	QButtonGroup(1,	QGroupBox::Horizontal,

																																						tr("View"),	central);

				(void)new	QRadioButton(tr("Perspective"),	gbox);

				(void)new	QRadioButton(tr("Isometric"),	gbox);

				(void)new	QRadioButton(tr("Oblique"),	gbox);

				initChoices(central);

}

static	const	char*	choices[]	=	{

				QT_TRANSLATE_NOOP("MyWidget",	"First"),

				QT_TRANSLATE_NOOP("MyWidget",	"Second"),

				QT_TRANSLATE_NOOP("MyWidget",	"Third"),

				0

};

void	MyWidget::initChoices(QWidget*	parent)

{

				QListBox*	lb	=	new	QListBox(parent);

				for	(int	i	=	0;	choices[i];	i++)

								lb->insertItem(tr(choices[i]));

}

void	MyWidget::closeEvent(QCloseEvent*	e)

{

				QWidget::closeEvent(e);

				emit	closed();

}

Main:

/**

**	$Id:		qt/main.cpp			3.0.5			edited	Dec	6	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	<qtranslator.h>

#include	<qfileinfo.h>

#include	<qmessagebox.h>

#include	<qcheckbox.h>

#include	<qvbox.h>

#include	<qlayout.h>

#include	<qbuttongroup.h>

#include	<qpushbutton.h>

#include	<qsignalmapper.h>

#include	<qtextcodec.h>

#include	<stdlib.h>

#if	defined(Q_OS_UNIX)

#include	<unistd.h>

#endif

#include	"mywidget.h"

//#define	USE_I18N_FONT

class	QVDialog	:	public	QDialog	{

public:

				QVDialog(QWidget	*parent=0,	const	char	*name=0,	bool	modal=FALSE,

													WFlags	f=0)	:	QDialog(parent,name,modal,f)

				{

								QVBoxLayout*	vb	=	new	QVBoxLayout(this,8);

								vb->setAutoAdd(TRUE);

								hb	=	0;

								sm	=	new	QSignalMapper(this);

								connect(sm,SIGNAL(mapped(int)),this,SLOT(done(int)));

				}

				void	addButtons(const	QString&	cancel=QString::null,

																				const	QString&	ok=QString::null,

																				const	QString&	mid1=QString::null,

																				const	QString&	mid2=QString::null,

																				const	QString&	mid3=QString::null)

				{

								addButton(ok.isNull()	?	tr("OK")	:	ok,	1);

								if	(!mid1.isNull())	addButton(mid1,2);

								if	(!mid2.isNull())	addButton(mid2,3);

								if	(!mid3.isNull())	addButton(mid3,4);

								addButton(cancel.isNull()	?	tr("Cancel")	:	cancel,	0);

				}

				void	addButton(const	QString&	text,	int	result)

				{

								if	(!hb)

												hb	=	new	QHBox(this);

								QPushButton	*c	=	new	QPushButton(text,	hb);

								sm->setMapping(c,result);

								connect(c,SIGNAL(clicked()),sm,SLOT(map()));

				}

private:

				QSignalMapper	*sm;

				QHBox	*hb;

};

MyWidget*	showLang(QString	lang)

{

				static	QTranslator	*translator	=	0;

				qApp->setPalette(QPalette(QColor(220-rand()%64,220-rand()%64,220-rand()%64)));

				lang	=	"mywidget_"	+	lang	+	".qm";

				QFileInfo	fi(lang);

				if	(!fi.exists())	{

								QMessageBox::warning(0,	"File	error",

																														QString("Cannot	find	translation	for	language:	"+lang+

																																						"\n(try	eg.	'de',	'ko'	or	'no')"));

								return	0;

				}

				if	(translator)	{

								qApp->removeTranslator(translator);

								delete	translator;

				}

				translator	=	new	QTranslator(0);

				translator->load(lang,	".");

				qApp->installTranslator(translator);

				MyWidget	*m	=	new	MyWidget;

				m->setCaption("Qt	Example	-	i18n	-	"	+	m->caption());

				return	m;

}

int	main(int	argc,	char**	argv)

{

				QApplication	app(argc,	argv);

				const	char*	qm[]=

								{	"cs",	"de",	"el",	"en",	"eo",	"fr",	"it",	"jp",	"ko",	"no",	"ru",	"zh",	0	};

#if	defined(Q_OS_UNIX)

				srand(getpid()	<<	2);

#endif

				QString	lang;

				if	(argc	==	2)

								lang	=	argv[1];

				if	(argc	!=	2	||	lang	==	"all")	{

								QVDialog	dlg(0,0,TRUE);

								QCheckBox*	qmb[sizeof(qm)/sizeof(qm[0])];

								int	r;

								if	(lang	==	"all")	{

												r	=	2;

								}	else	{

												QButtonGroup	*bg	=	new	QButtonGroup(4,Qt::Vertical,"Choose	Locales",&dlg);

												QString	loc	=	QTextCodec::locale();

												for	(int	i=0;	qm[i];	i++)	{

																qmb[i]	=	new	QCheckBox((const	char*)qm[i],bg);

																qmb[i]->setChecked(loc	==	qm[i]);

												}

												dlg.addButtons("Cancel","OK","All");

												r	=	dlg.exec();

								}

								if	(r)	{

												bool	tight	=	qApp->desktop()->screen()->width()	<	1024;

												int	x=5;

												int	y=25;

												for	(int	i=0;	qm[i];	i++)	{

																if	(r	==	2	||	qmb[i]->isChecked())	{

																				MyWidget*	w	=	showLang((const	char*)qm[i]);

																				if(w	==	0)	exit(0);

																				QObject::connect(w,	SIGNAL(closed()),	qApp,	SLOT(

																				w->setGeometry(x,y,197,356);

																				w->show();

																				if	(tight)	{

																								x	+=	8;

																								y	+=	8;

																				}	else	{

																								x	+=	205;

																								if	(x	>	1000)	{

																												x	=	5;

																												y	+=	384;

																								}

																				}

																}

												}

								}	else	{

												exit(0);

								}

				}	else	{

								QString	lang	=	argv[1];

								QWidget*	m	=	showLang(lang);

								app.setMainWidget(m);

								m->setCaption("Qt	Example	-	i18n");

								m->show();

				}

#ifdef	USE_I18N_FONT

				memorymanager->savePrerenderedFont(font.handle(),FALSE);

#endif

				//	While	we	run	"all",	kill	them	all

				return	app.exec();

}

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Iconview
This	example	implements	a	flexible	icon	view	which	can	store	lots	of	icon	items.
It	supports	Drag&Drop;,	different	selection	modes,	view	modes,	rubberband
selection,	etc.

Main:

/**

**	$Id:		qt/main.cpp			3.0.5			edited	Nov	13	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qiconview.h>

#include	<qapplication.h>

#include	<qdragobject.h>

#include	<qpixmap.h>

#include	<qiconset.h>

#include	<qmime.h>

#include	<stdio.h>

class	ListenDND	:	public	QObject

{

				Q_OBJECT

public:

				ListenDND(QWidget	*w)

								:	view(w)

				{}

public	slots:

				void	dropped(QDropEvent	*mime)	{

								qDebug("Dropped	Mimesource	%p	into	the	view	%p",	mime,	view);

								qDebug("		Formats:");

								int	i	=	0;

								const	char	*str	=	mime->format(i);

								qDebug("				%s",	str);

								while	(str)	{

												qDebug("				%s",	str);

												str	=	mime->format(++i);

								}

				};

				void	moved()	{

								qDebug("All	selected	items	were	moved	to	another	widget");

				}

protected:

				QWidget	*view;

};

int	main(int	argc,	char	**argv)

{

				QApplication	a(argc,	argv);

				QIconView	qiconview;

				qiconview.setSelectionMode(QIconView::Extended);

				for	(unsigned	int	i	=	0;	i	<	3000;	i++)	{

								QIconViewItem	*item	=	new	QIconViewItem(&qiconview,	QString("Item	%1").arg(i	+	1));

								item->setRenameEnabled(TRUE);

				}

				qiconview.setCaption("Qt	Example	-	Iconview");

				ListenDND	listen_dnd(&qiconview);

				QObject::connect(&qiconview,	SIGNAL(dropped(QDropEvent	*,	const	

																						&listen_dnd,	SLOT(dropped(QDropEvent	*)));

				QObject::connect(&qiconview,	SIGNAL(moved()),	&listen_dnd,	SLOT(moved()));

				a.setMainWidget(&qiconview);

				qiconview.show();

				qiconview.resize(qiconview.sizeHint());

				return	a.exec();

}

#include	"main.moc"

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Layout	Managers
This	example	shows	simple	and	intermediate	use	of	Qt's	layout	classes,
QGridLayout,	QBoxLayout	etc.

Implementation:

/**

**	$Id:		qt/layout.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	<qlabel.h>

#include	<qcolor.h>

#include	<qpushbutton.h>

#include	<qlayout.h>

#include	<qlineedit.h>

#include	<qmultilineedit.h>

#include	<qmenubar.h>

#include	<qpopupmenu.h>

class	ExampleWidget	:	public	QWidget

{

public:

				ExampleWidget(QWidget	*parent	=	0,	const	char	*name	=	0);

				~ExampleWidget();

};

ExampleWidget::ExampleWidget(QWidget	*parent,	const	char	*name)

				:	QWidget(parent,	name)

{

				//	Make	the	top-level	layout;	a	vertical	box	to	contain	all	widgets

				//	and	sub-layouts.

				QBoxLayout	*topLayout	=	new	QVBoxLayout(this,	5);

				//	Create	a	menubar...

				QMenuBar	*menubar	=	new	QMenuBar(this);

				menubar->setSeparator(QMenuBar::InWindowsStyle);

				QPopupMenu*	popup;

				popup	=	new	QPopupMenu(this);

				popup->insertItem("&Quit",	qApp,	SLOT(quit()));

				menubar->insertItem("&File",	popup);

				//	...and	tell	the	layout	about	it.

				topLayout->setMenuBar(menubar);

				//	Make	an	hbox	that	will	hold	a	row	of	buttons.

				QBoxLayout	*buttons	=	new	QHBoxLayout(topLayout);

				int	i;

				for	(i	=	1;	i	<=	4;	i++)	{

								QPushButton*	but	=	new	QPushButton(this);

								QString	s;

								s.sprintf("Button	%d",	i);

								but->setText(s);

								//	Set	horizontal	stretch	factor	to	10	to	let	the	buttons

								//	stretch	horizontally.	The	buttons	will	not	stretch

								//	vertically,	since	bigWidget	below	will	take	up	vertical

								//	stretch.

								buttons->addWidget(but,	10);

								//	(Actually,	the	result	would	have	been	the	same	with	a

								//	stretch	factor	of	0;	if	no	items	in	a	layout	have	non-zero

								//	stretch,	the	space	is	divided	equally	between	members.)

				}

				//	Make	another	hbox	that	will	hold	a	left-justified	row	of	buttons.

				QBoxLayout	*buttons2	=	new	QHBoxLayout(topLayout);

				QPushButton*	but	=	new	QPushButton("Button	five",	this);

				buttons2->addWidget(but);

				but	=	new	QPushButton("Button	6",	this);

				buttons2->addWidget(but);

				//	Fill	up	the	rest	of	the	hbox	with	stretchable	space,	so	that

				//	the	buttons	get	their	minimum	width	and	are	pushed	to	the	left.

				buttons2->addStretch(10);

				//	Make		a	big	widget	that	will	grab	all	space	in	the	middle.

				QMultiLineEdit	*bigWidget	=	new	QMultiLineEdit(this);

				bigWidget->setText("This	widget	will	get	all	the	remaining	space");

				bigWidget->setFrameStyle(QFrame::Panel	|	QFrame::Plain);

				//	Set	vertical	stretch	factor	to	10	to	let	the	bigWidget	stretch

				//	vertically.	It	will	stretch	horizontally	because	there	are	no

				//	widgets	beside	it	to	take	up	horizontal	stretch.

				//				topLayout->addWidget(bigWidget,	10);

				topLayout->addWidget(bigWidget);

				//	Make	a	grid	that	will	hold	a	vertical	table	of	QLabel/QLineEdit

				//	pairs	next	to	a	large	QMultiLineEdit.

				//	Don't	use	hard-coded	row/column	numbers	in	QGridLayout,	you'll

				//	regret	it	when	you	have	to	change	the	layout.

				const	int	numRows	=	3;

				const	int	labelCol	=	0;

				const	int	linedCol	=	1;

				const	int	multiCol	=	2;

				//	Let	the	grid-layout	have	a	spacing	of	10	pixels	between

				//	widgets,	overriding	the	default	from	topLayout.

				QGridLayout	*grid	=	new	QGridLayout(topLayout,	0,	0,	10);

				int	row;

				for	(row	=	0;	row	<	numRows;	row++)	{

								QLineEdit	*ed	=	new	QLineEdit(this);

								//	The	line	edit	goes	in	the	second	column

								grid->addWidget(ed,	row,	linedCol);

								//	Make	a	label	that	is	a	buddy	of	the	line	edit

								QString	s;

								s.sprintf("Line	&%d",	row+1);

								QLabel	*label	=	new	QLabel(ed,	s,	this);

								//	The	label	goes	in	the	first	column.

								grid->addWidget(label,	row,	labelCol);

				}

				//	The	multiline	edit	will	cover	the	entire	vertical	range	of	the

				//	grid	(rows	0	to	numRows)	and	stay	in	column	2.

				QMultiLineEdit	*med	=	new	QMultiLineEdit(this);

				grid->addMultiCellWidget(med,	0,	-1,	multiCol,	multiCol);

				//	The	labels	will	take	the	space	they	need.	Let	the	remaining

				//	horizontal	space	be	shared	so	that	the	multiline	edit	gets

				//	twice	as	much	as	the	line	edit.

				grid->setColStretch(linedCol,	10);

				grid->setColStretch(multiCol,	20);

				//	Add	a	widget	at	the	bottom.

				QLabel*	sb	=	new	QLabel(this);

				sb->setText("Let's	pretend	this	is	a	status	bar");

				sb->setFrameStyle(QFrame::Panel	|	QFrame::Sunken);

				//	This	widget	will	use	all	horizontal	space,	and	have	a	fixed	height.

				//	we	should	have	made	a	subclass	and	implemented	sizePolicy	there...

				sb->setFixedHeight(sb->sizeHint().height());

				sb->setAlignment(AlignVCenter	|	AlignLeft);

				topLayout->addWidget(sb);

				topLayout->activate();

}

ExampleWidget::~ExampleWidget()

{

				//	All	child	widgets	are	deleted	by	Qt.

				//	The	top-level	layout	and	all	its	sub-layouts	are	deleted	by	Qt.

}

int	main(int	argc,	char	**argv)

{

				QApplication	a(argc,	argv);

				ExampleWidget	f;

				a.setMainWidget(&f);

				f.setCaption("Qt	Example	-	Caption");

				f.show();

				return	a.exec();

}

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Conway's	Game	of	Life

Header	file:

/**

**	$Id:		qt/life.h			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	LIFE_H

#define	LIFE_H

#include	<qframe.h>

class	LifeWidget	:	public	QFrame

{

				Q_OBJECT

public:

				LifeWidget(int	s	=	10,	QWidget	*parent	=	0,	const	char	*name	=	0);

				void								setPoint(int	i,	int	j);

				int									maxCol()	{	return	maxi;	}

				int									maxRow()	{	return	maxj;	}

public	slots:

				void								nextGeneration();

				void								clear();

protected:

				virtual	void	paintEvent(QPaintEvent	*);

				virtual	void	mouseMoveEvent(QMouseEvent	*);

				virtual	void	mousePressEvent(QMouseEvent	*);

				virtual	void	resizeEvent(QResizeEvent	*);

				void									mouseHandle(const	QPoint	&pos);

private:

				enum	{	MAXSIZE	=	50,	MINSIZE	=	10,	BORDER	=	5	};

				bool								cells[2][MAXSIZE	+	2][MAXSIZE	+	2];

				int									current;

				int									maxi,	maxj;

				int	pos2index(int	x)

				{

								return	(x	-	BORDER)	/	SCALE	+	1;

				}

				int	index2pos(int	i)

				{

								return		(i	-	1)	*	SCALE	+	BORDER;

				}

				int	SCALE;

};

#endif	//	LIFE_H

Implementation:

/**

**	$Id:		qt/life.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"life.h"

#include	<qpainter.h>

#include	<qdrawutil.h>

#include	<qcheckbox.h>

#include	<qevent.h>

#include	<qapplication.h>

//	The	main	game	of	life	widget

LifeWidget::LifeWidget(int	s,	QWidget	*parent,	const	char	*name)

				:	QFrame(parent,	name)

{

				SCALE	=	s;

				maxi	=	maxj	=	50;

				setMinimumSize(MINSIZE	*	SCALE	+	2	*	BORDER,

																			MINSIZE	*	SCALE	+	2	*	BORDER);

				setMaximumSize(MAXSIZE	*	SCALE	+	2	*	BORDER,

																			MAXSIZE	*	SCALE	+	2	*	BORDER);

				setSizeIncrement(SCALE,	SCALE);

				clear();

				resize(maxi	*	SCALE	+	2	*	BORDER	,	maxj	*	SCALE	+	2	*	BORDER);

}

void	LifeWidget::clear()

{

				current	=	0;

				for	(int	t	=	0;	t	<	2;	t++)

								for	(int	i	=	0;	i	<	MAXSIZE	+	2;	i++)

												for	(int	j	=	0;	j	<	MAXSIZE	+	2;	j++)

																cells[t][i][j]	=	FALSE;

				repaint();

}

//	We	assume	that	the	size	will	never	be	beyond	the	maximum	size	set

//	this	is	not	in	general	TRUE,	but	in	practice	it's	good	enough	for

//	this	program

void	LifeWidget::resizeEvent(QResizeEvent	*	e)

{

				maxi	=	(e->size().width()		-	2	*	BORDER)	/	SCALE;

				maxj	=	(e->size().height()	-	2	*	BORDER)	/	SCALE;

}

void	LifeWidget::setPoint(int	i,	int	j)

{

				if	(i	<	1	||	i	>	maxi	||	j	<	1	||	j	>	maxi)

								return;

				cells[current][i][j]	=	TRUE;

				repaint(index2pos(i),	index2pos(j),	SCALE,	SCALE,	FALSE);

}

void	LifeWidget::mouseHandle(const	QPoint	&pos)

{

				int	i	=	pos2index(pos.x());

				int	j	=	pos2index(pos.y());

				setPoint(i,	j);

}

void	LifeWidget::mouseMoveEvent(QMouseEvent	*e)

{

				mouseHandle(e->pos());

}

void	LifeWidget::mousePressEvent(QMouseEvent	*e)

{

				if	(e->button()	==	QMouseEvent::LeftButton)

								mouseHandle(e->pos());

}

void	LifeWidget::nextGeneration()

{

				for	(int	i	=	1;	i	<=	MAXSIZE;	i++)	{

								for	(int	j	=	1;	j	<=	MAXSIZE;	j++)	{

												int	t	=	cells[current][i	-	1][j	-	1]

												+	cells[current][i	-	1][j]

												+	cells[current][i	-	1][j	+	1]

												+	cells[current][i][j	-	1]

												+	cells[current][i][j	+	1]

												+	cells[current][i	+	1][j	-	1]

												+	cells[current][i	+	1][j]

												+	cells[current][i	+	1][j	+	1];

												cells[!current][i][j]	=	(t	==	3	||

																																						t	==	2	&&	cells[current][i][j]);

								}

				}

				current	=	!current;

				repaint(FALSE);											//	repaint	without	erase

}

void	LifeWidget::paintEvent(QPaintEvent	*	e)

{

				int	starti	=	pos2index(e->rect().left());

				int	stopi		=	pos2index(e->rect().right());

				int	startj	=	pos2index(e->rect().top());

				int	stopj		=	pos2index(e->rect().bottom());

				if	(stopi	>	maxi)

								stopi	=	maxi;

				if	(stopj	>	maxj)

								stopj	=	maxj;

				QPainter	paint(this);

				for	(int	i	=	starti;	i	<=	stopi;	i++)	{

								for	(int	j	=	startj;	j	<=	stopj;	j++)	{

												if	(cells[current][i][j])

																qDrawShadePanel(&paint,	index2pos(i),	index2pos(j),

																																	SCALE	-	1,	SCALE	-	1,	colorGroup());

												else	if	(cells[!current][i][j])

																erase(index2pos(i),	index2pos(j),	SCALE	-	1,	SCALE	-	1);

								}

				}

				drawFrame(&paint);

}

Main:

/**

**	$Id:		qt/main.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"lifedlg.h"

#include	<qapplication.h>

#include	<stdlib.h>

void	usage()

{

				qWarning("Usage:	life	[-scale	scale]");

}

int	main(int	argc,	char	**argv)

{

				QApplication	a(argc,	argv);

				int	scale	=	10;

				for	(int	i	=	1;	i	<	argc;	i++){

								QString	arg	=	argv[i];

								if	(arg	==	"-scale")

												scale	=	atoi(argv[++i]);

								else	{

												usage();

												exit(1);

								}

				}

				if	(scale	<	2)

								scale	=	2;

				LifeDialog	*life	=	new	LifeDialog(scale);

				a.setMainWidget(life);

				life->setCaption("Qt	Example	-	Life");

				life->show();

				return	a.exec();

}

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Line	Edits
This	example	shows	how	to	work	with	single	lineedit	widgets,	and	how	to	use
different	echo	modes	and	validators.

Header	file:

/**

**	$Id:		qt/lineedits.h			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	LINEDITS_H

#define	LINEDITS_H

#include	<qgroupbox.h>

class	QLineEdit;

class	QComboBox;

class	LineEdits	:	public	QGroupBox

{

				Q_OBJECT

public:

				LineEdits(QWidget	*parent	=	0,	const	char	*name	=	0);

protected:

				QLineEdit	*lined1,	*lined2,	*lined3,	*lined4;

				QComboBox	*combo1,	*combo2,	*combo3,	*combo4;

protected	slots:

				void	slotEchoChanged(int);

				void	slotValidatorChanged(int);

				void	slotAlignmentChanged(int);

				void	slotReadOnlyChanged(int);

};

#endif

Implementation:

/**

**	$Id:		qt/lineedits.cpp			3.0.5			edited	May	7	17:30	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"lineedits.h"

#include	<qlineedit.h>

#include	<qcombobox.h>

#include	<qframe.h>

#include	<qvalidator.h>

#include	<qlabel.h>

#include	<qlayout.h>

#include	<qhbox.h>

/*

	*	Constructor

	*

	*	Creates	child	widgets	of	the	LineEdits	widget

	*/

LineEdits::LineEdits(QWidget	*parent,	const	char	*name)

				:	QGroupBox(0,	Horizontal,	"Line	edits",	parent,	name)

{

				setMargin(10);

				QVBoxLayout*	box	=	new	QVBoxLayout(layout());

				QHBoxLayout	*row1	=	new	QHBoxLayout(box);

				row1->setMargin(5);

				//	Create	a	Label

				QLabel*	label	=	new	QLabel("Echo	Mode:	",	this);

				row1->addWidget(label);

				//	Create	a	Combobox	with	three	items...

				combo1	=	new	QComboBox(FALSE,	this);

				row1->addWidget(combo1);

				combo1->insertItem("Normal",	-1);

				combo1->insertItem("Password",	-1);

				combo1->insertItem("No	Echo",	-1);

				//	...and	connect	the	activated()	SIGNAL	with	the	slotEchoChanged()	SLOT	to	be	able

				//	to	react	when	an	item	is	selected

				connect(combo1,	SIGNAL(activated(int)),	this,	SLOT(slotEchoChanged(int)));

				//	insert	the	first	LineEdit

				lined1	=	new	QLineEdit(this);

				box->addWidget(lined1);

				//	another	widget	which	is	used	for	layouting

				QHBoxLayout	*row2	=	new	QHBoxLayout(box);

				row2->setMargin(5);

				//	and	the	second	label

				label	=	new	QLabel("Validator:	",	this);

				row2->addWidget(label);

				//	A	second	Combobox	with	again	three	items...

				combo2	=	new	QComboBox(FALSE,	this);

				row2->addWidget(combo2);

				combo2->insertItem("No	Validator",	-1);

				combo2->insertItem("Integer	Validator",	-1);

				combo2->insertItem("Double	Validator",	-1);

				//	...and	again	the	activated()	SIGNAL	gets	connected	with	a	SLOT

				connect(combo2,	SIGNAL(activated(int)),	this,	SLOT(slotValidatorChanged(int)));

				//	and	the	second	LineEdit

				lined2	=	new	QLineEdit(this);

				box->addWidget(lined2);

				//	yet	another	widget	which	is	used	for	layouting

				QHBoxLayout	*row3	=	new	QHBoxLayout(box);

				row3->setMargin(5);

				//	we	need	a	label	for	this	too

				label	=	new	QLabel("Alignment:	",	this);

				row3->addWidget(label);

				//	A	combo	box	for	setting	alignment

				combo3	=	new	QComboBox(FALSE,	this);

				row3->addWidget(combo3);

				combo3->insertItem("Left",	-1);

				combo3->insertItem("Centered",	-1);

				combo3->insertItem("Right",	-1);

				//	...and	again	the	activated()	SIGNAL	gets	connected	with	a	SLOT

				connect(combo3,	SIGNAL(activated(int)),	this,	SLOT(slotAlignmentChanged(int)));

				//	and	the	third	lineedit

				lined3	=	new	QLineEdit(this);

				box->addWidget(lined3);

				//	last	widget	used	for	layouting

				QHBox	*row4	=	new	QHBox(this);

				box->addWidget(row4);

				row4->setMargin(5);

				//	last	label

				(void)new	QLabel("Read-Only:	",	row4);

				//	A	combo	box	for	setting	alignment

				combo4	=	new	QComboBox(FALSE,	row4);

				combo4->insertItem("False",	-1);

				combo4->insertItem("True",	-1);

				//	...and	again	the	activated()	SIGNAL	gets	connected	with	a	SLOT

				connect(combo4,	SIGNAL(activated(int)),	this,	SLOT(slotReadOnlyChanged(int)));

				//	and	the	last	lineedit

				lined4	=	new	QLineEdit(this);

				box->addWidget(lined4);

				//	give	the	first	LineEdit	the	focus	at	the	beginning

				lined1->setFocus();

}

/*

	*	SLOT	slotEchoChanged(int	i)

	*

	*	i	contains	the	number	of	the	item	which	the	user	has	been	chosen	in	the

	*	first	Combobox.	According	to	this	value,	we	set	the	Echo-Mode	for	the

	*	first	LineEdit.

	*/

void	LineEdits::slotEchoChanged(int	i)

{

				switch	(i)	{

				case	0:

								lined1->setEchoMode(QLineEdit::Normal);

								break;

				case	1:

								lined1->setEchoMode(QLineEdit::Password);

								break;

				case	2:

								lined1->setEchoMode(QLineEdit::NoEcho);

								break;

				}

				lined1->setFocus();

}

/*

	*	SLOT	slotValidatorChanged(int	i)

	*

	*	i	contains	the	number	of	the	item	which	the	user	has	been	chosen	in	the

	*	second	Combobox.	According	to	this	value,	we	set	a	validator	for	the

	*	second	LineEdit.	A	validator	checks	in	a	LineEdit	each	character	which

	*	the	user	enters	and	accepts	it	if	it	is	valid,	else	the	character	gets

	*	ignored	and	not	inserted	into	the	lineedit.

	*/

void	LineEdits::slotValidatorChanged(int	i)

{

				switch	(i)	{

				case	0:

								lined2->setValidator(0);

								break;

				case	1:

								lined2->setValidator(new	QIntValidator(lined2));

								break;

				case	2:

								lined2->setValidator(new	QDoubleValidator(-999.0,	999.0,	2,

																																																				lined2));

								break;

				}

				lined2->setText("");

				lined2->setFocus();

}

/*

	*	SLOT	slotAlignmentChanged(int	i)

	*

	*	i	contains	the	number	of	the	item	which	the	user	has	been	chosen	in

	*	the	third	Combobox.		According	to	this	value,	we	set	an	alignment

	*	third	LineEdit.

	*/

void	LineEdits::slotAlignmentChanged(int	i)

{

				switch	(i)	{

				case	0:

								lined3->setAlignment(QLineEdit::AlignLeft);

								break;

				case	1:

								lined3->setAlignment(QLineEdit::AlignCenter);

								break;

				case	2:

								lined3->setAlignment(QLineEdit::AlignRight);

								break;

				}

				lined3->setFocus();

}

/*

	*	SLOT	slotReadOnlyChanged(int	i)

	*

	*	i	contains	the	number	of	the	item	which	the	user	has	been	chosen	in

	*	the	fourth	Combobox.		According	to	this	value,	we	toggle	read-only.

	*/

void	LineEdits::slotReadOnlyChanged(int	i)

{

				switch	(i)	{

				case	0:

								lined4->setReadOnly(FALSE);

								break;

				case	1:

								lined4->setReadOnly(TRUE);

								break;

				}

				lined4->setFocus();

}

Main:

/**

**	$Id:		qt/main.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"lineedits.h"

#include	<qapplication.h>

int	main(int	argc,	char	**argv)

{

				QApplication	a(argc,	argv);

				LineEdits	lineedits;

				lineedits.setCaption("Qt	Example	-	Lineedits");

				a.setMainWidget(&lineedits);

				lineedits.show();

				return	a.exec();

}

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Listboxes	and	Comboboxes
This	example	program	demonstrates	how	to	use	listboxes	(with	single	selection
and	multi	selection)	and	comboboxes	(editable	and	non-editable).

Header	file:

/**

**	$Id:		qt/listboxcombo.h			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	LISTBOX_COMBO_H

#define	LISTBOX_COMBO_H

#include	<qvbox.h>

class	QListBox;

class	QLabel;

class	ListBoxCombo	:	public	QVBox

{

				Q_OBJECT

public:

				ListBoxCombo(QWidget	*parent	=	0,	const	char	*name	=	0);

protected:

				QListBox	*lb1,	*lb2;

				QLabel	*label1,	*label2;

protected	slots:

				void	slotLeft2Right();

				void	slotCombo1Activated(const	QString	&s);

				void	slotCombo2Activated(const	QString	&s);

};

#endif

Implementation:

/**

**	$Id:		qt/listboxcombo.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"listboxcombo.h"

#include	<qcombobox.h>

#include	<qlistbox.h>

#include	<qhbox.h>

#include	<qpushbutton.h>

#include	<qstring.h>

#include	<qpixmap.h>

#include	<qlabel.h>

#include	<qimage.h>

#include	<qpainter.h>

#include	<qstyle.h>

class	MyListBoxItem	:	public	QListBoxItem

{

public:

				MyListBoxItem()

								:	QListBoxItem()

				{

								setCustomHighlighting(TRUE);

				}

protected:

				virtual	void	paint(QPainter	*);

				virtual	int	width(const	QListBox*)	const	{	return	100;	}

				virtual	int	height(const	QListBox*)	const	{	return	16;	}

};

void	MyListBoxItem::paint(QPainter	*painter)

{

				//	evil	trick:	find	out	whether	we	are	painted	onto	our	listbox

				bool	in_list_box	=	listBox()	&&	listBox()->viewport()	==	painter->

				QRect	r	(0,	0,	width(listBox()),	height(listBox()));

				if	(in_list_box	&&	isSelected())

								painter->eraseRect(r);

				painter->fillRect(5,	5,	width(listBox())	-	10,	height(listBox())	-	10,	Qt::red);

				if	(in_list_box	&&	isCurrent())

								listBox()->style().drawPrimitive(QStyle::PE_FocusRect,	painter,	r,	listBox()->colorGroup());

}

/*

	*	Constructor

	*

	*	Creates	child	widgets	of	the	ListBoxCombo	widget

	*/

ListBoxCombo::ListBoxCombo(QWidget	*parent,	const	char	*name)

				:	QVBox(parent,	name)

{

				setMargin(5);

				setSpacing(5);

				unsigned	int	i;

				QString	str;

				QHBox	*row1	=	new	QHBox(this);

				row1->setSpacing(5);

				//	Create	a	multi-selection	ListBox...

				lb1	=	new	QListBox(row1);

				lb1->setSelectionMode(QListBox::Multi);

				//	...insert	a	pixmap	item...

				lb1->insertItem(QPixmap("qtlogo.png"));

				//	...and	100	text	items

				for	(i	=	0;	i	<	100;	i++)	{

								str	=	QString("Listbox	Item	%1").arg(i);

								if	(!(i	%	4))

												lb1->insertItem(QPixmap("fileopen.xpm"),	str);

								else

												lb1->insertItem(str);

				}

				//	Create	a	pushbutton...

				QPushButton	*arrow1	=	new	QPushButton("	->	",	row1);

				//	...and	connect	the	clicked	SIGNAL	with	the	SLOT	slotLeft2Right

				connect(arrow1,	SIGNAL(clicked()),	this,	SLOT(slotLeft2Right()));

				//	create	an	empty	single-selection	ListBox

				lb2	=	new	QListBox(row1);

				QHBox	*row2	=	new	QHBox(this);

				row2->setSpacing(5);

				QVBox	*box1	=	new	QVBox(row2);

				box1->setSpacing(5);

				//	Create	a	non-editable	Combobox	and	a	label	below...

				QComboBox	*cb1	=	new	QComboBox(FALSE,	box1);

				label1	=	new	QLabel("Current	Item:	Combobox	Item	0",	box1);

				label1->setMaximumHeight(label1->sizeHint().height()	*	2);

				label1->setFrameStyle(QFrame::Panel	|	QFrame::Sunken);

				//...and	insert	50	items	into	the	Combobox

				for	(i	=	0;	i	<	50;	i++)	{

								str	=	QString("Combobox	Item	%1").arg(i);

								if	(i	%	9)

												cb1->insertItem(str);

								else

												cb1->listBox()->insertItem(new	MyListBoxItem);

				}

				QVBox	*box2	=	new	QVBox(row2);

				box2->setSpacing(5);

				//	Create	an	editable	Combobox	and	a	label	below...

				QComboBox	*cb2	=	new	QComboBox(TRUE,	box2);

				label2	=	new	QLabel("Current	Item:	Combobox	Item	0",	box2);

				label2->setMaximumHeight(label2->sizeHint().height()	*	2);

				label2->setFrameStyle(QFrame::Panel	|	QFrame::Sunken);

				//	...	and	insert	50	items	into	the	Combobox

				for	(i	=	0;	i	<	50;	i++)	{

								str	=	QString("Combobox	Item	%1").arg(i);

								if	(!(i	%	4))

												cb2->insertItem(QPixmap("fileopen.xpm"),	str);

								else

												cb2->insertItem(str);

				}

				//	Connect	the	activated	SIGNALs	of	the	Comboboxes	with	SLOTs

				connect(cb1,	SIGNAL(activated(const	QString	&)),	this,	SLOT(slotCombo1Activated(const	

				connect(cb2,	SIGNAL(activated(const	QString	&)),	this,	SLOT(slotCombo2Activated(const	

}

/*

	*	SLOT	slotLeft2Right

	*

	*	Copies	all	selected	items	of	the	first	ListBox	into	the

	*	second	ListBox

	*/

void	ListBoxCombo::slotLeft2Right()

{

				//	Go	through	all	items	of	the	first	ListBox

				for	(unsigned	int	i	=	0;	i	<	lb1->count();	i++)	{

								QListBoxItem	*item	=	lb1->item(i);

								//	if	the	item	is	selected...

								if	(item->isSelected())	{

												//	...and	it	is	a	text	item...

												if	(item->pixmap()	&&	!item->text().isEmpty())

																lb2->insertItem(*item->pixmap(),	item->text());

												else	if	(!item->pixmap())

																lb2->insertItem(item->text());

												else	if	(item->text().isEmpty())

																lb2->insertItem(*item->pixmap());

								}

				}

}

/*

	*	SLOT	slotCombo1Activated(const	QString	&s)

	*

	*	Sets	the	text	of	the	item	which	the	user	just	selected

	*	in	the	first	Combobox	(and	is	now	the	value	of	s)	to

	*	the	first	Label.

	*/

void	ListBoxCombo::slotCombo1Activated(const	QString	&s)

{

				label1->setText(QString("Current	Item:	%1").arg(s));

}

/*

	*	SLOT	slotCombo2Activated(const	QString	&s)

	*

	*	Sets	the	text	of	the	item	which	the	user	just	selected

	*	in	the	second	Combobox	(and	is	now	the	value	of	s)	to

	*	the	second	Label.

	*/

void	ListBoxCombo::slotCombo2Activated(const	QString	&s)

{

				label2->setText(QString("Current	Item:	%1").arg(s));

}

Main:

/**

**	$Id:		qt/main.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"listboxcombo.h"

#include	<qapplication.h>

int	main(int	argc,	char	**argv)

{

				QApplication	a(argc,	argv);

				ListBoxCombo	listboxcombo;

				listboxcombo.resize(400,	270);

				listboxcombo.setCaption("Qt	Example	-	Listboxes	and	Comboboxes");

				a.setMainWidget(&listboxcombo);

				listboxcombo.show();

				return	a.exec();

}

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Listviews
This	examples	shows	how	to	work	with	listviews	(hierarchical	and	multi-
column).	It	also	shows	how	to	subclass	listview	items	for	special	reasons.	It
looks	and	works	like	the	main	window	of	a	mail	client.

Header	file:

/**

**	$Id:		qt/listviews.h			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	LISTVIEWS_H

#define	LISTVIEWS_H

#include	<qsplitter.h>

#include	<qstring.h>

#include	<qobject.h>

#include	<qdatetime.h>

#include	<qptrlist.h>

#include	<qlistview.h>

class	QListView;

class	QLabel;

class	QPainter;

class	QColorGroup;

class	QObjectList;

class	QPopupMenu;

//	---

class	MessageHeader

{

public:

				MessageHeader(const	QString	&_sender,	const	QString	&_subject,	const	

								:	msender(_sender),	msubject(_subject),	mdatetime(_datetime)

				{}

				MessageHeader(const	MessageHeader	&mh);

				MessageHeader	&operator=(const	MessageHeader	&mh);

				QString	sender()	{	return	msender;	}

				QString	subject()	{	return	msubject;	}

				QDateTime	datetime()	{	return	mdatetime;	}

protected:

				QString	msender,	msubject;

				QDateTime	mdatetime;

};

//	---

class	Message

{

public:

				enum	State	{	Read	=	0,

																	Unread};

				Message(const	MessageHeader	&mh,	const	QString	&_body)

								:	mheader(mh),	mbody(_body),	mstate(Unread)

				{}

				Message(const	Message	&m)

								:	mheader(m.mheader),	mbody(m.mbody),	mstate(m.mstate)

				{}

				MessageHeader	header()	{	return	mheader;	}

				QString	body()	{	return	mbody;	}

				void	setState(const	State	&s)	{	mstate	=	s;	}

				State	state()	{	return	mstate;	}

protected:

				MessageHeader	mheader;

				QString	mbody;

				State	mstate;

};

//	---

class	Folder	:	public	QObject

{

				Q_OBJECT

public:

				Folder(Folder	*parent,	const	QString	&name);

				~Folder()

				{}

				void	addMessage(Message	*m)

				{	lstMessages.append(m);	}

				QString	folderName()	{	return	fName;	}

				Message	*firstMessage()	{	return	lstMessages.first();	}

				Message	*nextMessage()	{	return	lstMessages.next();	}

protected:

				QString	fName;

				QPtrList<Message>	lstMessages;

};

//	---

class	FolderListItem	:	public	QListViewItem

{

public:

				FolderListItem(QListView	*parent,	Folder	*f);

				FolderListItem(FolderListItem	*parent,	Folder	*f);

				void	insertSubFolders(const	QObjectList	*lst);

				Folder	*folder()	{	return	myFolder;	}

protected:

				Folder	*myFolder;

};

//	---

class	MessageListItem	:	public	QListViewItem

{

public:

				MessageListItem(QListView	*parent,	Message	*m);

				virtual	void	paintCell(QPainter	*p,	const	QColorGroup	&cg,

																												int	column,	int	width,	int	alignment);

				Message	*message()	{	return	myMessage;	}

protected:

				Message	*myMessage;

};

//	---

class	ListViews	:	public	QSplitter

{

				Q_OBJECT

public:

				ListViews(QWidget	*parent	=	0,	const	char	*name	=	0);

				~ListViews()

				{}

protected:

				void	initFolders();

				void	initFolder(Folder	*folder,	unsigned	int	&count);

				void	setupFolders();

				QListView	*messages,	*folders;

				QLabel	*message;

				QPopupMenu*	menu;

				QPtrList<Folder>	lstFolders;

protected	slots:

				void	slotFolderChanged(QListViewItem*);

				void	slotMessageChanged();

				void	slotRMB(QListViewItem*,	const	QPoint	&,	int);

};

#endif

Implementation:

/**

**	$Id:		qt/listviews.cpp			3.0.5			edited	Feb	11	15:31	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"listviews.h"

#include	<qlabel.h>

#include	<qpainter.h>

#include	<qpalette.h>

#include	<qobjectlist.h>

#include	<qpopupmenu.h>

#include	<qheader.h>

#include	<qregexp.h>

//	---

MessageHeader::MessageHeader(const	MessageHeader	&mh)

{

				msender	=	mh.msender;

				msubject	=	mh.msubject;

				mdatetime	=	mh.mdatetime;

}

MessageHeader	&MessageHeader::operator=(const	MessageHeader	&mh)

{

				msender	=	mh.msender;

				msubject	=	mh.msubject;

				mdatetime	=	mh.mdatetime;

				return	*this;

}

//	---

Folder::Folder(Folder	*parent,	const	QString	&name)

				:	QObject(parent,	name),	fName(name)

{

				lstMessages.setAutoDelete(TRUE);

}

//	---

FolderListItem::FolderListItem(QListView	*parent,	Folder	*f)

				:	QListViewItem(parent)

{

				myFolder	=	f;

				setText(0,	f->folderName());

				if	(myFolder->children())

								insertSubFolders(myFolder->children());

}

FolderListItem::FolderListItem(FolderListItem	*parent,	Folder	*f)

				:	QListViewItem(parent)

{

				myFolder	=	f;

				setText(0,	f->folderName());

				if	(myFolder->children())

								insertSubFolders(myFolder->children());

}

void	FolderListItem::insertSubFolders(const	QObjectList	*lst)

{

				Folder	*f;

				for	(f	=	(Folder*)((QObjectList*)lst)->first();	f;	f	=	(Folder*)((

								(void)new	FolderListItem(this,	f);

}

//	---

MessageListItem::MessageListItem(QListView	*parent,	Message	*m)

				:	QListViewItem(parent)

{

				myMessage	=	m;

				setText(0,	myMessage->header().sender());

				setText(1,	myMessage->header().subject());

				setText(2,	myMessage->header().datetime().toString());

}

void	MessageListItem::paintCell(QPainter	*p,	const	QColorGroup	&cg,

																																	int	column,	int	width,	int	alignment)

{

				QColorGroup	_cg(cg);

				QColor	c	=	_cg.text();

				if	(myMessage->state()	==	Message::Unread)

								_cg.setColor(QColorGroup::Text,	Qt::red);

				QListViewItem::paintCell(p,	_cg,	column,	width,	alignment);

				_cg.setColor(QColorGroup::Text,	c);

}

//	---

ListViews::ListViews(QWidget	*parent,	const	char	*name)

				:	QSplitter(Qt::Horizontal,	parent,	name)

{

				lstFolders.setAutoDelete(TRUE);

				folders	=	new	QListView(this);

				folders->header()->setClickEnabled(FALSE);

				folders->addColumn("Folder");

				initFolders();

				setupFolders();

				folders->setRootIsDecorated(TRUE);

				setResizeMode(folders,	QSplitter::KeepSize);

				QSplitter	*vsplitter	=	new	QSplitter(Qt::Vertical,	this);

				messages	=	new	QListView(vsplitter);

				messages->addColumn("Sender");

				messages->addColumn("Subject");

				messages->addColumn("Date");

				messages->setColumnAlignment(1,	Qt::AlignRight);

				messages->setAllColumnsShowFocus(TRUE);

				messages->setShowSortIndicator(TRUE);

				menu	=	new	QPopupMenu(messages);

				for(int	i	=	1;	i	<=	10;	i++)

								menu->insertItem(QString("Context	Item	%1").arg(i));

				connect(messages,	SIGNAL(contextMenuRequested(QListViewItem	*,	const	

												this,	SLOT(slotRMB(QListViewItem	*,	const	QPoint	&,	int)));

				vsplitter->setResizeMode(messages,	QSplitter::KeepSize);

				message	=	new	QLabel(vsplitter);

				message->setAlignment(Qt::AlignTop);

				message->setBackgroundMode(PaletteBase);

				connect(folders,	SIGNAL(selectionChanged(QListViewItem*)),

													this,	SLOT(slotFolderChanged(QListViewItem*)));

				connect(messages,	SIGNAL(selectionChanged()),

													this,	SLOT(slotMessageChanged()));

				connect(messages,	SIGNAL(currentChanged(QListViewItem	*)),

													this,	SLOT(slotMessageChanged()));

				messages->setSelectionMode(QListView::Extended);

				//	some	preperationes

				folders->firstChild()->setOpen(TRUE);

				folders->firstChild()->firstChild()->setOpen(TRUE);

				folders->setCurrentItem(folders->firstChild()->firstChild()->firstChild());

				folders->setSelected(folders->firstChild()->firstChild()->firstChild(),	TRUE);

				messages->setSelected(messages->firstChild(),	TRUE);

				messages->setCurrentItem(messages->firstChild());

				message->setMargin(5);

				QValueList<int>	lst;

				lst.append(170);

				setSizes(lst);

}

void	ListViews::initFolders()

{

				unsigned	int	mcount	=	1;

				for	(unsigned	int	i	=	1;	i	<	20;	i++)	{

								QString	str;

								str	=	QString("Folder	%1").arg(i);

								Folder	*f	=	new	Folder(0,	str);

								for	(unsigned	int	j	=	1;	j	<	5;	j++)	{

												QString	str2;

												str2	=	QString("Sub	Folder	%1").arg(j);

												Folder	*f2	=	new	Folder(f,	str2);

												for	(unsigned	int	k	=	1;	k	<	3;	k++)	{

																QString	str3;

																str3	=	QString("Sub	Sub	Folder	%1").arg(k);

																Folder	*f3	=	new	Folder(f2,	str3);

																initFolder(f3,	mcount);

												}

								}

								lstFolders.append(f);

				}

}

void	ListViews::initFolder(Folder	*folder,	unsigned	int	&count)

{

				for	(unsigned	int	i	=	0;	i	<	15;	i++,	count++)	{

								QString	str;

								str	=	QString("Message	%1		").arg(count);

								QDateTime	dt	=	QDateTime::currentDateTime();

								dt	=	dt.addSecs(60	*	count);

								MessageHeader	mh("Trolltech	<info@trolltech.com>		",	str,	dt);

								QString	body;

								body	=	QString("This	is	the	message	number	%1	of	this	application,	\n"

																								"which	shows	how	to	use	QListViews,	QListViewItems,	\n"

																								"QSplitters	and	so	on.	The	code	should	show	how	easy\n"

																								"this	can	be	done	in	Qt.").arg(count);

								Message	*msg	=	new	Message(mh,	body);

								folder->addMessage(msg);

				}

}

void	ListViews::setupFolders()

{

				folders->clear();

				for	(Folder*	f	=	lstFolders.first();	f;	f	=	lstFolders.next())

								(void)new	FolderListItem(folders,	f);

}

void	ListViews::slotRMB(QListViewItem*	Item,	const	QPoint	&	point,	int)

{

				if(Item)

								menu->popup(point);

}

void	ListViews::slotFolderChanged(QListViewItem	*i)

{

				if	(!i)

								return;

				messages->clear();

				message->setText("");

				FolderListItem	*item	=	(FolderListItem*)i;

				for	(Message*	msg	=	item->folder()->firstMessage();	msg;

										msg	=	item->folder()->nextMessage())

								(void)new	MessageListItem(messages,	msg);

}

void	ListViews::slotMessageChanged()

{

				QListViewItem	*i	=	messages->currentItem();

				if	(!i)

								return;

				if	(!i->isSelected())	{

								message->setText("");

								return;

				}

				MessageListItem	*item	=	(MessageListItem*)i;

				Message	*msg	=	item->message();

				QString	text;

				QString	tmp	=	msg->header().sender();

				tmp	=	tmp.replace(QRegExp("<"),	"<");

				tmp	=	tmp.replace(QRegExp(">"),	">");

				text	=	QString("<i>From:</i>	%1
"

																				"<i>Subject:</i>	<big><big>%2</big></big>
"

																				"<i>Date:</i>	%3

"

																				"%4").

											arg(tmp).arg(msg->header().subject()).

											arg(msg->header().datetime().toString()).arg(msg->body());

				message->setText(text);

				msg->setState(Message::Read);

}

Main:

/**

**	$Id:		qt/main.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"listviews.h"

#include	<qapplication.h>

int	main(int	argc,	char	**argv)

{

				QApplication	a(argc,	argv);

				ListViews	listViews;

				listViews.resize(640,	480);

				listViews.setCaption("Qt	Example	-	Listview");

				a.setMainWidget(&listViews);

				listViews.show();

				return	a.exec();

}

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

A	MDI	Application
This	example	program	is	just	like	the	application	example,	but	designed	as
Multiple	Document	Interface	(MDI).

Header	file:

/**

**	$Id:		qt/application.h			3.0.5			edited	Jun	5	14:11	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	APPLICATION_H

#define	APPLICATION_H

#include	<qmainwindow.h>

#include	<qptrlist.h>

class	QMultiLineEdit;

class	QToolBar;

class	QPopupMenu;

class	QWorkspace;

class	QPopupMenu;

class	QMovie;

class	MDIWindow:	public	QMainWindow

{

				Q_OBJECT

public:

				MDIWindow(QWidget*	parent,	const	char*	name,	int	wflags);

				~MDIWindow();

				void	load(const	QString&	fn);

				void	save();

				void	saveAs();

				void	print(QPrinter*);

signals:

				void	message(const	QString&,	int);

private:

				QMultiLineEdit*	medit;

				QMovie	*	mmovie;

				QString	filename;

};

class	ApplicationWindow:	public	QMainWindow

{

				Q_OBJECT

public:

				ApplicationWindow();

				~ApplicationWindow();

private	slots:

				MDIWindow*	newDoc();

				void	load();

				void	save();

				void	saveAs();

				void	print();

				void	closeWindow();

				void	tileHorizontal();

				void	about();

				void	aboutQt();

				void	windowsMenuAboutToShow();

				void	windowsMenuActivated(int	id);

private:

				QPrinter	*printer;

				QWorkspace*	ws;

				QToolBar	*fileTools;

				QPopupMenu*	windowsMenu;

};

#endif

Implementation:

/**

**	$Id:		qt/application.cpp			3.0.5			edited	Jun	5	14:13	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"application.h"

#include	<qworkspace.h>

#include	<qimage.h>

#include	<qpixmap.h>

#include	<qtoolbar.h>

#include	<qtoolbutton.h>

#include	<qpopupmenu.h>

#include	<qmenubar.h>

#include	<qmovie.h>

#include	<qmultilineedit.h>

#include	<qfile.h>

#include	<qfiledialog.h>

#include	<qlabel.h>

#include	<qstatusbar.h>

#include	<qmessagebox.h>

#include	<qprinter.h>

#include	<qapplication.h>

#include	<qpushbutton.h>

#include	<qaccel.h>

#include	<qtextstream.h>

#include	<qpainter.h>

#include	<qpaintdevicemetrics.h>

#include	<qwhatsthis.h>

#include	<qobjectlist.h>

#include	<qvbox.h>

#include	"filesave.xpm"

#include	"fileopen.xpm"

#include	"fileprint.xpm"

const	char	*	fileOpenText	=	"Click	this	button	to	open	a	new	file.	

"

"You	can	also	select	the	Open	command	from	the	File	menu.";

const	char	*	fileSaveText	=	"Click	this	button	to	save	the	file	you	are	"

"editing.		You	will	be	prompted	for	a	file	name.\n\n"

"You	can	also	select	the	Save	command	from	the	File	menu.\n\n"

"Note	that	implementing	this	function	is	left	as	an	exercise	for	the	reader.";

const	char	*	filePrintText	=	"Click	this	button	to	print	the	file	you	"

"are	editing.\n\n"

"You	can	also	select	the	Print	command	from	the	File	menu.";

ApplicationWindow::ApplicationWindow()

				:	QMainWindow(0,	"example	application	main	window",	WDestructiveClose)

{

				int	id;

				QPixmap	openIcon,	saveIcon;

				fileTools	=	new	QToolBar(this,	"file	operations");

				addToolBar(fileTools,	tr("File	Operations"),	DockTop,	TRUE);

				openIcon	=	QPixmap(fileopen);

				QToolButton	*	fileOpen

								=	new	QToolButton(openIcon,	"Open	File",	QString::null,

																											this,	SLOT(load()),	fileTools,	"open	file");

				saveIcon	=	QPixmap(filesave);

				QToolButton	*	fileSave

								=	new	QToolButton(saveIcon,	"Save	File",	QString::null,

																											this,	SLOT(save()),	fileTools,	"save	file");

#ifndef	QT_NO_PRINTER

				printer	=	new	QPrinter;

				QPixmap	printIcon;

				printIcon	=	QPixmap(fileprint);

				QToolButton	*	filePrint

								=	new	QToolButton(printIcon,	"Print	File",	QString::null,

																											this,	SLOT(print()),	fileTools,	"print	file");

				QWhatsThis::add(filePrint,	filePrintText);

#endif

				(void)QWhatsThis::whatsThisButton(fileTools);

				QWhatsThis::add(fileOpen,	fileOpenText);

				QWhatsThis::add(fileSave,	fileSaveText);

				QPopupMenu	*	file	=	new	QPopupMenu(this);

				menuBar()->insertItem("&File",	file);

				file->insertItem("&New",	this,	SLOT(newDoc()),	CTRL+Key_N);

				id	=	file->insertItem(openIcon,	"&Open...",

																											this,	SLOT(load()),	CTRL+Key_O);

				file->setWhatsThis(id,	fileOpenText);

				id	=	file->insertItem(saveIcon,	"&Save",

																											this,	SLOT(save()),	CTRL+Key_S);

				file->setWhatsThis(id,	fileSaveText);

				id	=	file->insertItem("Save	&As...",	this,	SLOT(saveAs()));

				file->setWhatsThis(id,	fileSaveText);

#ifndef	QT_NO_PRINTER

				file->insertSeparator();

				id	=	file->insertItem(printIcon,	"&Print...",

																											this,	SLOT(print()),	CTRL+Key_P);

				file->setWhatsThis(id,	filePrintText);

#endif

				file->insertSeparator();

				file->insertItem("&Close",	this,	SLOT(closeWindow()),	CTRL+Key_W);

				file->insertItem("&Quit",	qApp,	SLOT(closeAllWindows()),	CTRL+Key_Q);

				windowsMenu	=	new	QPopupMenu(this);

				windowsMenu->setCheckable(TRUE);

				connect(windowsMenu,	SIGNAL(aboutToShow()),

													this,	SLOT(windowsMenuAboutToShow()));

				menuBar()->insertItem("&Windows",	windowsMenu);

				menuBar()->insertSeparator();

				QPopupMenu	*	help	=	new	QPopupMenu(this);

				menuBar()->insertItem("&Help",	help);

				help->insertItem("&About",	this,	SLOT(about()),	Key_F1);

				help->insertItem("About	&Qt",	this,	SLOT(aboutQt()));

				help->insertSeparator();

				help->insertItem("What's	&This",	this,	SLOT(whatsThis()),	SHIFT+Key_F1);

				QVBox*	vb	=	new	QVBox(this);

				vb->setFrameStyle(QFrame::StyledPanel	|	QFrame::Sunken);

				ws	=	new	QWorkspace(vb);

				ws->setScrollBarsEnabled(TRUE);

				setCentralWidget(vb);

				statusBar()->message("Ready",	2000);

}

ApplicationWindow::~ApplicationWindow()

{

#ifndef	QT_NO_PRINTER

				delete	printer;

#endif

}

MDIWindow*	ApplicationWindow::newDoc()

{

				MDIWindow*	w	=	new	MDIWindow(ws,	0,	WDestructiveClose);

				connect(w,	SIGNAL(message(const	QString&,	int)),	statusBar(),	SLOT(message(const	

				w->setCaption("unnamed	document");

				w->setIcon(QPixmap("document.xpm"));

				//	show	the	very	first	window	in	maximized	mode

				if	(ws->windowList().isEmpty())

								w->showMaximized();

				else

								w->show();

				return	w;

}

void	ApplicationWindow::load()

{

				QString	fn	=	QFileDialog::getOpenFileName(QString::null,	QString::null,	this);

				if	(!fn.isEmpty())	{

								MDIWindow*	w	=	newDoc();

								w->load(fn);

				}		else	{

								statusBar()->message("Loading	aborted",	2000);

				}

}

void	ApplicationWindow::save()

{

				MDIWindow*	m	=	(MDIWindow*)ws->activeWindow();

				if	(m)

								m->save();

}

void	ApplicationWindow::saveAs()

{

				MDIWindow*	m	=	(MDIWindow*)ws->activeWindow();

				if	(m)

								m->saveAs();

}

void	ApplicationWindow::print()

{

#ifndef	QT_NO_PRINTER

				MDIWindow*	m	=	(MDIWindow*)ws->activeWindow();

				if	(m)

								m->print(printer);

#endif

}

void	ApplicationWindow::closeWindow()

{

				MDIWindow*	m	=	(MDIWindow*)ws->activeWindow();

				if	(m)

								m->close();

}

void	ApplicationWindow::about()

{

				QMessageBox::about(this,	"Qt	Application	Example",

																								"This	example	demonstrates	simple	use	of\n	"

																								"Qt's	Multiple	Document	Interface	(MDI).");

}

void	ApplicationWindow::aboutQt()

{

				QMessageBox::aboutQt(this,	"Qt	Application	Example");

}

void	ApplicationWindow::windowsMenuAboutToShow()

{

				windowsMenu->clear();

				int	cascadeId	=	windowsMenu->insertItem("&Cascade",	ws,	SLOT(cascade

				int	tileId	=	windowsMenu->insertItem("&Tile",	ws,	SLOT(tile()));

				int	horTileId	=	windowsMenu->insertItem("Tile	&Horizontally",	this,	SLOT(tileHorizontal()));

				if	(ws->windowList().isEmpty())	{

								windowsMenu->setItemEnabled(cascadeId,	FALSE);

								windowsMenu->setItemEnabled(tileId,	FALSE);

								windowsMenu->setItemEnabled(horTileId,	FALSE);

				}

				windowsMenu->insertSeparator();

				QWidgetList	windows	=	ws->windowList();

				for	(int	i	=	0;	i	<	int(windows.count());	++i)	{

								int	id	=	windowsMenu->insertItem(windows.at(i)->caption(),

																																									this,	SLOT(windowsMenuActivated(int)));

								windowsMenu->setItemParameter(id,	i);

								windowsMenu->setItemChecked(id,	ws->activeWindow()	==	windows.at(i));

				}

}

void	ApplicationWindow::windowsMenuActivated(int	id)

{

				QWidget*	w	=	ws->windowList().at(id);

				if	(w)

								w->showNormal();

				w->setFocus();

}

void	ApplicationWindow::tileHorizontal()

{

				//	primitive	horizontal	tiling

				QWidgetList	windows	=	ws->windowList();

				if	(!windows.count())

								return;

				int	heightForEach	=	ws->height()	/	windows.count();

				int	y	=	0;

				for	(int	i	=	0;	i	<	int(windows.count());	++i)	{

								QWidget	*window	=	windows.at(i);

								if	(window->testWState(WState_Maximized))	{

												//	prevent	flicker

												window->hide();

												window->showNormal();

								}

								int	preferredHeight	=	window->minimumHeight()+window->parentWidget

								int	actHeight	=	QMAX(heightForEach,	preferredHeight);

								window->parentWidget()->setGeometry(0,	y,	ws->width(),	actHeight);

								y	+=	actHeight;

				}

}

MDIWindow::MDIWindow(QWidget*	parent,	const	char*	name,	int	wflags)

				:	QMainWindow(parent,	name,	wflags)

{

				mmovie	=	0;

				medit	=	new	QMultiLineEdit(this);

				setFocusProxy(medit);

				setCentralWidget(medit);

}

MDIWindow::~MDIWindow()

{

				delete	mmovie;

}

void	MDIWindow::load(const	QString&	fn)

{

				filename		=	fn;

				QFile	f(filename);

				if	(!f.open(IO_ReadOnly))

								return;

				if(fn.contains(".gif"))	{

								QWidget	*	tmp=new	QWidget(this);

								setFocusProxy(tmp);

								setCentralWidget(tmp);

								medit->hide();

								delete	medit;

								QMovie	*	qm=new	QMovie(fn);

#ifdef	Q_WS_QWS	//	temporary	speed-test	hack

								qm->setDisplayWidget(tmp);

#endif

								tmp->setBackgroundMode(QWidget::NoBackground);

								tmp->show();

								mmovie=qm;

				}	else	{

								mmovie	=	0;

								QTextStream	t(&f);

								QString	s	=	t.read();

								medit->setText(s);

								f.close();

				}

				setCaption(filename);

				emit	message(QString("Loaded	document	%1").arg(filename),	2000);

}

void	MDIWindow::save()

{

				if	(filename.isEmpty())	{

								saveAs();

								return;

				}

				QString	text	=	medit->text();

				QFile	f(filename);

				if	(!f.open(IO_WriteOnly))	{

								emit	message(QString("Could	not	write	to	%1").arg(filename),

																						2000);

								return;

				}

				QTextStream	t(&f);

				t	<<	text;

				f.close();

				setCaption(filename);

				emit	message(QString("File	%1	saved").arg(filename),	2000);

}

void	MDIWindow::saveAs()

{

				QString	fn	=	QFileDialog::getSaveFileName(filename,	QString::null,	this);

				if	(!fn.isEmpty())	{

								filename	=	fn;

								save();

				}	else	{

								emit	message("Saving	aborted",	2000);

				}

}

void	MDIWindow::print(QPrinter*	printer)

{

#ifndef	QT_NO_PRINTER

				const	int	Margin	=	10;

				int	pageNo	=	1;

				if	(printer->setup(this))	{															//	printer	dialog

								emit	message("Printing...",	0);

								QPainter	p;

								if	(!p.begin(printer))

												return;																													//	paint	on	printer

								p.setFont(medit->font());

								int	yPos								=	0;																				//	y	position	for	each	line

								QFontMetrics	fm	=	p.fontMetrics();

								QPaintDeviceMetrics	metrics(printer);	//	need	width/height

								//	of	printer	surface

								for(int	i	=	0	;	i	<	medit->numLines()	;	i++)	{

												if	(Margin	+	yPos	>	metrics.height()	-	Margin)	{

																QString	msg("Printing	(page	");

																msg	+=	QString::number(++pageNo);

																msg	+=	")...";

																emit	message(msg,	0);

																printer->newPage();													//	no	more	room	on	this	page

																yPos	=	0;																							//	back	to	top	of	page

												}

												p.drawText(Margin,	Margin	+	yPos,

																								metrics.width(),	fm.lineSpacing(),

																								ExpandTabs	|	DontClip,

																								medit->textLine(i));

												yPos	=	yPos	+	fm.lineSpacing();

								}

								p.end();																																//	send	job	to	printer

								emit	message("Printing	completed",	2000);

				}	else	{

								emit	message("Printing	aborted",	2000);

				}

#endif

}

Main:

/**

**	$Id:		qt/main.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	"application.h"

int	main(int	argc,	char	**	argv)	{

				QApplication	a(argc,	argv);

				ApplicationWindow	*	mw	=	new	ApplicationWindow();

				mw->setCaption("Qt	Example	-	Multiple	Documents	Interface	(MDI)");

				mw->show();

				a.connect(&a,	SIGNAL(lastWindowClosed()),	&a,	SLOT(quit()));

				int	res	=	a.exec();

				return	res;

}

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Using	menus
This	example	demonstrates	simple	use	of	menus	(a	menu	bar	and	pull-down
menus).	Qt	also	supports	popup	menus,	although	this	example	doesn't	contain
any.

Header	file:

/**

**	$Id:		qt/menu.h			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	MENU_H

#define	MENU_H

#include	<qwidget.h>

#include	<qmenubar.h>

#include	<qlabel.h>

class	MenuExample	:	public	QWidget

{

				Q_OBJECT

public:

				MenuExample(QWidget	*parent=0,	const	char	*name=0);

public	slots:

				void	open();

				void	news();

				void	save();

				void	closeDoc();

				void	undo();

				void	redo();

				void	normal();

				void	bold();

				void	underline();

				void	about();

				void	aboutQt();

				void	printer();

				void	file();

				void	fax();

				void	printerSetup();

protected:

				void				resizeEvent(QResizeEvent	*);

signals:

				void				explain(const	QString&);

private:

				QMenuBar	*menu;

				QLabel			*label;

				bool	isBold;

				bool	isUnderline;

				int	boldID,	underlineID;

};

#endif	//	MENU_H

Implementation:

/**

**	$Id:		qt/menu.cpp			3.0.5			edited	Jan	29	19:01	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"menu.h"

#include	<qpopupmenu.h>

#include	<qapplication.h>

#include	<qmessagebox.h>

#include	<qpixmap.h>

#include	<qpainter.h>

/*	XPM	*/

static	const	char	*	p1_xpm[]	=	{

"16	16	3	1",

"							c	None",

".						c	#000000000000",

"X						c	#FFFFFFFF0000",

"																",

"																",

"											",

"								.XXXX.		",

"	",

"	.XXXXXXXXXXXX.	",

"	.XXXXXXXXXXXX.	",

"	.XXXXXXXXXXXX.	",

"	.XXXXXXXXXXXX.	",

"	.XXXXXXXXXXXX.	",

"	.XXXXXXXXXXXX.	",

"	.XXXXXXXXXXXX.	",

"	.XXXXXXXXXXXX.	",

"	.XXXXXXXXXXXX.	",

"	",

"																"};

/*	XPM	*/

static	const	char	*	p2_xpm[]	=	{

"16	16	3	1",

"							c	None",

".						c	#000000000000",

"X						c	#FFFFFFFFFFFF",

"																",

"									",

"			.XXX.X.						",

"			.XXX.XX.					",

"			.XXX.XXX.				",

"			.XXX.....				",

"			.XXXXXXX.				",

"			.XXXXXXX.				",

"			.XXXXXXX.				",

"			.XXXXXXX.				",

"			.XXXXXXX.				",

"			.XXXXXXX.				",

"			.XXXXXXX.				",

"						",

"																",

"																"};

/*	XPM	*/

static	const	char	*	p3_xpm[]	=	{

"16	16	3	1",

"							c	None",

".						c	#000000000000",

"X						c	#FFFFFFFFFFFF",

"																",

"																",

"						",

"				",

"				",

"				",

"				",

"				",

"				",

"		...XXXXX...			",

"		...XXXXX...			",

"		...XXXXX...			",

"		...XXXXX...			",

"						",

"																",

"																"};

/*

		Auxiliary	class	to	provide	fancy	menu	items	with	different

		fonts.	Used	for	the	"bold"	and	"underline"	menu	items	in	the	options

		menu.

	*/

class	MyMenuItem	:	public	QCustomMenuItem

{

public:

				MyMenuItem(const	QString&	s,	const	QFont&	f)

								:	string(s),	font(f){};

				~MyMenuItem(){}

				void	paint(QPainter*	p,	const	QColorGroup&	/*cg*/,	bool	/*act*/,	bool	/*enabled*/,	int	x,	int	y,	int	w,	int	h)

				{

								p->setFont	(font);

								p->drawText(x,	y,	w,	h,	AlignLeft	|	AlignVCenter	|	DontClip,	string);

				}

				QSize	sizeHint()

				{

								return	QFontMetrics(font).size(AlignLeft	|	AlignVCenter	|	ShowPrefix	|	DontClip,		string);

				}

private:

				QString	string;

				QFont	font;

};

MenuExample::MenuExample(QWidget	*parent,	const	char	*name)

				:	QWidget(parent,	name)

{

				QPixmap	p1(p1_xpm);

				QPixmap	p2(p2_xpm);

				QPixmap	p3(p3_xpm);

				QPopupMenu	*print	=	new	QPopupMenu(this);

				Q_CHECK_PTR(print);

				print->insertTearOffHandle();

				print->insertItem("&Print	to	printer",	this,	SLOT(printer()));

				print->insertItem("Print	to	&file",	this,	SLOT(file()));

				print->insertItem("Print	to	fa&x",	this,	SLOT(fax()));

				print->insertSeparator();

				print->insertItem("Printer	&Setup",	this,	SLOT(printerSetup()));

				QPopupMenu	*file	=	new	QPopupMenu(this);

				Q_CHECK_PTR(file);

				file->insertItem(p1,	"&Open",		this,	SLOT(open()),	CTRL+Key_O);

				file->insertItem(p2,	"&New",	this,	SLOT(news()),	CTRL+Key_N);

				file->insertItem(p3,	"&Save",	this,	SLOT(save()),	CTRL+Key_S);

				file->insertItem("&Close",	this,	SLOT(closeDoc()),	CTRL+Key_W);

				file->insertSeparator();

				file->insertItem("&Print",	print,	CTRL+Key_P);

				file->insertSeparator();

				file->insertItem("E&xit",		qApp,	SLOT(quit()),	CTRL+Key_Q);

				QPopupMenu	*edit	=	new	QPopupMenu(this);

				Q_CHECK_PTR(edit);

				int	undoID	=	edit->insertItem("&Undo",	this,	SLOT(undo()));

				int	redoID	=	edit->insertItem("&Redo",	this,	SLOT(redo()));

				edit->setItemEnabled(undoID,	FALSE);

				edit->setItemEnabled(redoID,	FALSE);

				QPopupMenu*	options	=	new	QPopupMenu(this);

				Q_CHECK_PTR(options);

				options->insertTearOffHandle();

				options->setCaption("Options");

				options->insertItem("&Normal	Font",	this,	SLOT(normal()));

				options->insertSeparator();

				options->polish();	//	adjust	system	settings

				QFont	f	=	options->font();

				f.setBold(TRUE);

				boldID	=	options->insertItem(new	MyMenuItem("Bold",	f));

				options->setAccel(CTRL+Key_B,	boldID);

				options->connectItem(boldID,	this,	SLOT(bold()));

				f	=	font();

				f.setUnderline(TRUE);

				underlineID	=	options->insertItem(new	MyMenuItem("Underline",	f));

				options->setAccel(CTRL+Key_U,	underlineID);

				options->connectItem(underlineID,	this,	SLOT(underline()));

				isBold	=	FALSE;

				isUnderline	=	FALSE;

				options->setCheckable(TRUE);

				QPopupMenu	*help	=	new	QPopupMenu(this);

				Q_CHECK_PTR(help);

				help->insertItem("&About",	this,	SLOT(about()),	CTRL+Key_H);

				help->insertItem("About	&Qt",	this,	SLOT(aboutQt()));

				menu	=	new	QMenuBar(this);

				Q_CHECK_PTR(menu);

				menu->insertItem("&File",	file);

				menu->insertItem("&Edit",	edit);

				menu->insertItem("&Options",	options);

				menu->insertSeparator();

				menu->insertItem("&Help",	help);

				menu->setSeparator(QMenuBar::InWindowsStyle);

				label	=	new	QLabel(this);

				Q_CHECK_PTR(label);

				label->setGeometry(20,	rect().center().y()-20,	width()-40,	40);

				label->setFrameStyle(QFrame::Box	|	QFrame::Raised);

				label->setLineWidth(1);

				label->setAlignment(AlignCenter);

				connect(this,		SIGNAL(explain(const	QString&)),

													label,	SLOT(setText(const	QString&)));

				setMinimumSize(100,	80);

}

void	MenuExample::open()

{

				emit	explain("File/Open	selected");

}

void	MenuExample::news()

{

				emit	explain("File/New	selected");

}

void	MenuExample::save()

{

				emit	explain("File/Save	selected");

}

void	MenuExample::closeDoc()

{

				emit	explain("File/Close	selected");

}

void	MenuExample::undo()

{

				emit	explain("Edit/Undo	selected");

}

void	MenuExample::redo()

{

				emit	explain("Edit/Redo	selected");

}

void	MenuExample::normal()

{

				isBold	=	FALSE;

				isUnderline	=	FALSE;

				menu->setItemChecked(boldID,	isBold);

				menu->setItemChecked(underlineID,	isUnderline);

				emit	explain("Options/Normal	selected");

}

void	MenuExample::bold()

{

				isBold	=	!isBold;

				menu->setItemChecked(boldID,	isBold);

				emit	explain("Options/Bold	selected");

}

void	MenuExample::underline()

{

				isUnderline	=	!isUnderline;

				menu->setItemChecked(underlineID,	isUnderline);

				emit	explain("Options/Underline	selected");

}

void	MenuExample::about()

{

				QMessageBox::about(this,	"Qt	Menu	Example",

																								"This	example	demonstrates	simple	use	of	Qt	menus.\n"

																								"You	can	cut	and	paste	lines	from	it	to	your	own\n"

																								"programs.");

}

void	MenuExample::aboutQt()

{

				QMessageBox::aboutQt(this,	"Qt	Menu	Example");

}

void	MenuExample::printer()

{

				emit	explain("File/Printer/Print	selected");

}

void	MenuExample::file()

{

				emit	explain("File/Printer/Print	To	File	selected");

}

void	MenuExample::fax()

{

				emit	explain("File/Printer/Print	To	Fax	selected");

}

void	MenuExample::printerSetup()

{

				emit	explain("File/Printer/Printer	Setup	selected");

}

void	MenuExample::resizeEvent(QResizeEvent	*)

{

				label->setGeometry(20,	rect().center().y()-20,	width()-40,	40);

}

int	main(int	argc,	char	**	argv)

{

				QApplication	a(argc,	argv);

				MenuExample	m;

				m.setCaption("Qt	Examples	-	Menus");

				a.setMainWidget(&m);

				m.show();

				return	a.exec();

}

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Movies	or	the	Story	of	the	Animated
GIF	file

The	Movies	example	displays	animated	GIF	files	using	the	QMovie	and	QLabel
classes.

Main:

/**

**	$Id:		qt/main.cpp			3.0.5			edited	Dec	18	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	<qfiledialog.h>

#include	<qpushbutton.h>

#include	<qlabel.h>

#include	<qpainter.h>

#include	<qmessagebox.h>

#include	<qmovie.h>

#include	<qvbox.h>

class	MovieScreen	:	public	QFrame	{

				Q_OBJECT

				QMovie	movie;

				QString	filename;

				QSize	sh;

public:

				MovieScreen(const	char*	fname,	QMovie	m,	QWidget*	p=0,	const	char*	name=0,	WFlags	f=0)	:

								QFrame(p,	name,	f),

								sh(100,100)

				{

								setCaption(fname);

								filename	=	fname;

								movie	=	m;

								//	Set	a	frame	around	the	movie.

								setFrameStyle(QFrame::WinPanel|QFrame::Sunken);

								//	No	background	needed,	since	we	draw	on	the	whole	widget.

								movie.setBackgroundColor(backgroundColor());

								setBackgroundMode(NoBackground);

								//	Get	the	movie	to	tell	use	when	interesting	things	happen.

								movie.connectUpdate(this,	SLOT(movieUpdated(const	QRect&)));

								movie.connectResize(this,	SLOT(movieResized(const	QSize&)));

								movie.connectStatus(this,	SLOT(movieStatus(int)));

								setSizePolicy(QSizePolicy(QSizePolicy::Expanding,QSizePolicy::Expanding));

				}

				QSize	sizeHint()	const

				{

								return	sh;

				}

protected:

				//	Draw	the	contents	of	the	QFrame	-	the	movie	and	on-screen-display

				void	drawContents(QPainter*	p)

				{

								//	Get	the	current	movie	frame.

								QPixmap	pm	=	movie.framePixmap();

								//	Get	the	area	we	have	to	draw	in.

								QRect	r	=	contentsRect();

								if	(!pm.isNull())	{

												//	Only	rescale	is	we	need	to	-	it	can	take	CPU!

												if	(r.size()	!=	pm.size())	{

																QWMatrix	m;

																m.scale((double)r.width()/pm.width(),

																								(double)r.height()/pm.height());

																pm	=	pm.xForm(m);

												}

												//	Draw	the	[possibly	scaled]	frame.		movieUpdated()	below	calls

												//	repaint	with	only	the	changed	area,	so	clipping	will	ensure	we

												//	only	do	the	minimum	amount	of	rendering.

												//

												p->drawPixmap(r.x(),	r.y(),	pm);

								}

								//	The	on-screen	display

								const	char*	message	=	0;

								if	(movie.paused())	{

												message	=	"PAUSED";

								}	else	if	(movie.finished())	{

												message	=	"THE	END";

								}	else	if	(movie.steps()	>	0)	{

												message	=	"FF	>>";

								}

								if	(message)	{

												//	Find	a	good	font	size...

												p->setFont(QFont("Helvetica",	24));

												QFontMetrics	fm	=	p->fontMetrics();

												if	(fm.width(message)	>	r.width()-10)

																p->setFont(QFont("Helvetica",	18));

												fm	=	p->fontMetrics();

												if	(fm.width(message)	>	r.width()-10)

																p->setFont(QFont("Helvetica",	14));

												fm	=	p->fontMetrics();

												if	(fm.width(message)	>	r.width()-10)

																p->setFont(QFont("Helvetica",	12));

												fm	=	p->fontMetrics();

												if	(fm.width(message)	>	r.width()-10)

																p->setFont(QFont("Helvetica",	10));

												//	"Shadow"	effect.

												p->setPen(black);

												p->drawText(1,	1,	width()-1,	height()-1,	AlignCenter,	message);

												p->setPen(white);

												p->drawText(0,	0,	width()-1,	height()-1,	AlignCenter,	message);

								}

				}

public	slots:

				void	restart()

				{

								movie.restart();

								repaint();

				}

				void	togglePause()

				{

								if	(movie.paused())

												movie.unpause();

								else

												movie.pause();

								repaint();

				}

				void	step()

				{

								movie.step();

								repaint();

				}

				void	step10()

				{

								movie.step(10);

								repaint();

				}

private	slots:

				void	movieUpdated(const	QRect&	area)

				{

								if	(!isVisible())

												show();

								//	The	given	area	of	the	movie	has	changed.

								QRect	r	=	contentsRect();

								if	(r.size()	!=	movie.framePixmap().size())	{

												//	Need	to	scale	-	redraw	whole	frame.

												repaint(r);

								}	else	{

												//	Only	redraw	the	changed	area	of	the	frame

												repaint(area.x()+r.x(),	area.y()+r.x(),

																					area.width(),	area.height());

								}

				}

				void	movieResized(const	QSize&	size)

				{

								//	The	movie	changed	size,	probably	from	its	initial	zero	size.

								int	fw	=	frameWidth();

								sh	=	QSize(size.width()	+	fw*2,	size.height()	+	fw*2);

								updateGeometry();

								if	(parentWidget()	&&	parentWidget()->isHidden())

												parentWidget()->show();

				}

				void	movieStatus(int	status)

				{

								//	The	movie	has	sent	us	a	status	message.

								if	(status	<	0)	{

												QString	msg;

												msg.sprintf("Could	not	play	movie	\"%s\"",	(const	char*)filename);

												QMessageBox::warning(this,	"movies",	msg);

												parentWidget()->close();

								}	else	if	(status	==	QMovie::Paused	||	status	==	QMovie::EndOfMovie)	{

												repaint();	//	Ensure	status	text	is	displayed

								}

				}

};

class	MoviePlayer	:	public	QVBox	{

				MovieScreen*	movie;

public:

				MoviePlayer(const	char*	fname,	QMovie	m,	QWidget*	p=0,	const	char*	name=0,	WFlags	f=0)	:

								QVBox(p,name,f)

				{

								movie	=	new	MovieScreen(fname,	m,	this);

								QHBox*	hb	=	new	QHBox(this);

								QPushButton*	btn;

								btn	=	new	QPushButton("<<",	hb);

								connect(btn,	SIGNAL(clicked()),	movie,	SLOT(restart()));

								btn	=	new	QPushButton("||",	hb);

								connect(btn,	SIGNAL(clicked()),	movie,	SLOT(togglePause()));

								btn	=	new	QPushButton(">|",	hb);

								connect(btn,	SIGNAL(clicked()),	movie,	SLOT(step()));

								btn	=	new	QPushButton(">>|",	hb);

								connect(btn,	SIGNAL(clicked()),	movie,	SLOT(step10()));

				}

};

//	A	QFileDialog	that	chooses	movies.

//

class	MovieStarter:	public	QFileDialog	{

				Q_OBJECT

public:

				MovieStarter(const	char	*dir);

public	slots:

				void	startMovie(const	QString&	filename);

				//	QDialog's	method	-	normally	closes	the	file	dialog.

				//	We	want	it	left	open,	and	we	want	Cancel	to	quit	everything.

				void	done(int	r);

};

MovieStarter::MovieStarter(const	char	*dir)

				:	QFileDialog(dir,	"*.gif	*.mng")

{

				//behave	as	in	getOpenFilename

				setMode(ExistingFile);

				//	When	a	file	is	selected,	show	it	as	a	movie.

				connect(this,	SIGNAL(fileSelected(const	QString&)),

												this,	SLOT(startMovie(const	QString&)));

}

void	MovieStarter::startMovie(const	QString&	filename)

{

				if	(filename)	//	Start	a	new	movie	-	have	it	delete	when	closed.

								(new	MoviePlayer(filename,	QMovie(filename),	0,	0,

																															WDestructiveClose))->show();

}

void	MovieStarter::done(int	r)

{

				if	(r	!=	Accepted)

								qApp->quit();	//	end	on	Cancel

				setResult(r);

				//	And	don't	hide.

}

int	main(int	argc,	char	**argv)

{

				QApplication	a(argc,	argv);

				if	(argc	>	1)	{

								//	Commandline	mode	-	show	movies	given	on	the	command	line

								//

								bool	gui=TRUE;

								for	(int	arg=1;	arg<argc;	arg++)	{

												if	(QString(argv[arg])	==	"-i")

																gui	=	!gui;

												else	if	(gui)

																(void)new	MoviePlayer(argv[arg],	QMovie(argv[arg]),	0,	0,

																																						Qt::WDestructiveClose);

												else

																(void)new	MovieScreen(argv[arg],	QMovie(argv[arg]),	0,	0,

																																						Qt::WDestructiveClose);

								}

								QObject::connect(qApp,	SIGNAL(lastWindowClosed()),	qApp,	SLOT(

				}	else	{

								//	"GUI"	mode	-	open	a	chooser	for	movies

								//

								MovieStarter*	fd	=	new	MovieStarter(".");

								fd->show();

				}

				//	Go!

				return	a.exec();

}

#include	"main.moc"

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Picture
This	example	shows	how	to	make	a	picture,	store	it	to	a	file,	and	read	it	as	a	set
of	drawing	commands.

Implementation:

/**

**	$Id:		qt/picture.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	<qpainter.h>

#include	<qpicture.h>

#include	<qpixmap.h>

#include	<qwidget.h>

#include	<qmessagebox.h>

#include	<qfile.h>

#include	<ctype.h>

void	paintCar(QPainter	*p)																				//	paint	a	car

{

				QPointArray	a;

				QBrush	brush(Qt::yellow,	Qt::SolidPattern);

				p->setBrush(brush);																							//	use	solid,	yellow	brush

				a.setPoints(5,	50,50,	350,50,	450,120,	450,250,	50,250);

				p->drawPolygon(a);																								//	draw	car	body

				QFont	f("courier",	12,	QFont::Bold);

				p->setFont(f);

				QColor	windowColor(120,	120,	255);								//	a	light	blue	color

				brush.setColor(windowColor);														//	set	this	brush	color

				p->setBrush(brush);																							//	set	brush

				p->drawRect(80,	80,	250,	70);													//	car	window

				p->drawText(180,	80,	150,	70,	Qt::AlignCenter,	"--		Qt		--\nTrolltech	AS");

				QPixmap	pixmap;

				if	(pixmap.load("flag.bmp"))														//	load	and	draw	image

								p->drawPixmap(100,	85,	pixmap);

				p->setBackgroundMode(Qt::OpaqueMode);					//	set	opaque	mode

				p->setBrush(Qt::DiagCrossPattern);								//	black	diagonal	cross	pattern

				p->drawEllipse(90,	210,	80,	80);										//	back	wheel

				p->setBrush(Qt::CrossPattern);												//	black	cross	fill	pattern

				p->drawEllipse(310,	210,	80,	80);									//	front	wheel

}

class	PictureDisplay	:	public	QWidget											//	picture	display	widget

{

public:

				PictureDisplay(const	char	*fileName);

			~PictureDisplay();

protected:

				void								paintEvent(QPaintEvent	*);

				void								keyPressEvent(QKeyEvent	*);

private:

				QPicture			*pict;

				QString					name;

};

PictureDisplay::PictureDisplay(const	char	*fileName)

{

				pict	=	new	QPicture;

				name	=	fileName;

				if	(!pict->load(fileName))	{														//	cannot	load	picture

								delete	pict;

								pict	=	0;

								name.sprintf("Not	able	to	load	picture:	%s",	fileName);

				}

}

PictureDisplay::~PictureDisplay()

{

				delete	pict;

}

void	PictureDisplay::paintEvent(QPaintEvent	*)

{

				QPainter	paint(this);																					//	paint	widget

				if	(pict)

								paint.drawPicture(*pict);													//	draw	picture

				else

								paint.drawText(rect(),	AlignCenter,	name);

}

void	PictureDisplay::keyPressEvent(QKeyEvent	*k)

{

				switch	(tolower(k->ascii()))	{

								case	'r':																															//	reload

												pict->load(name);

												update();

												break;

								case	'q':																															//	quit

												QApplication::exit();

												break;

				}

}

int	main(int	argc,	char	**argv)

{

				QApplication	a(argc,	argv);															//	QApplication	required!

				const	char	*fileName	=	"car.pic";											//	default	picture	file	name

				if	(argc	==	2)																												//	use	argument	as	file	name

								fileName	=	argv[1];

				if	(!QFile::exists(fileName))	{

								QPicture	pict;																										//	our	picture

								QPainter	paint;																									//	our	painter

								paint.begin(&pict);																			//	begin	painting	onto	picture

								paintCar(&paint);																					//	paint!

								paint.end();																												//	painting	done

								pict.save(fileName);																		//	save	picture

								QMessageBox::information(0,	"Qt	Example	-	Picture",	"Saved.		Run	me	again!");

								return	0;

				}	else	{

								PictureDisplay	test(fileName);								//	create	picture	display

								a.setMainWidget(&test);																//	set	main	widget

								test.setCaption("Qt	Example	-	Picture");

								test.show();																												//	show	it

								return	a.exec();																								//	start	event	loop

				}

}

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Popup	Widgets
This	example	shows	how	to	implement	widgets	that	should	pop	up.

Header	file:

/**

**	$Id:		qt/popup.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	something	or	other

**

**	Created	:	979899

**

**	Copyright	(C)	1997	by	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	POPUP_H

#define	POPUP_H

#include	<qlabel.h>

#include	<qpushbutton.h>

#include	<qlineedit.h>

class	FancyPopup	:	public	QLabel

{

				Q_OBJECT

public:

				FancyPopup(QWidget*	parent	=	0,	const	char*		name=0);

				void	popup(QWidget*	parent	=	0);

protected:

				virtual	void	mouseMoveEvent(QMouseEvent	*);

				virtual	void	mouseReleaseEvent(QMouseEvent	*);

				virtual	void	closeEvent(QCloseEvent	*);

private:

				QWidget*	popupParent;

				int	moves;

};

	class	Frame	:	public	QFrame

	{

					Q_OBJECT

	public:

					Frame(QWidget	*parent=0,	const	char*		name=0);

	protected:

	private	slots:

					void	button1Clicked();

					void	button2Pressed();

	private:

					QPushButton	*button1;

					QPushButton	*button2;

					QFrame*	popup1;

					FancyPopup*	popup2;

	};

#endif

Implementation:

/**

**	$Id:		qt/popup.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"popup.h"

#include	<qapplication.h>

#include	<qlayout.h>

FancyPopup::FancyPopup(QWidget*	parent,	const	char*		name):

				QLabel(parent,	name,	WType_Popup){

								setFrameStyle(WinPanel|Raised);

								setAlignment(AlignCenter);

								resize(150,100);

								moves	=	0;

								setMouseTracking(TRUE);

}

void	FancyPopup::mouseMoveEvent(QMouseEvent	*	e){

				moves++;

				QString	s;

				s.sprintf("%d/%d",	e->pos().x(),	e->pos().y());

				if	(e->state()	&	QMouseEvent::LeftButton)

								s	+=	"	(down)";

				setText(s);

}

void	FancyPopup::mouseReleaseEvent(QMouseEvent	*	e){

				if		(rect().contains(e->pos())	||	moves	>	5)

								close();

}

void	FancyPopup::closeEvent(QCloseEvent	*e){

				e->accept();

				moves	=	0;

				if	(!popupParent)

								return;

				//	remember	that	we	(as	a	popup)	might	recieve	the	mouse	release

				//	event	instead	of	the	popupParent.	This	is	due	to	the	fact	that

				//	the	popupParent	popped	us	up	in	its	mousePressEvent	handler.	To

				//	avoid	the	button	remaining	in	pressed	state	we	simply	send	a

				//	faked	mouse	button	release	event	to	it.

				QMouseEvent	me(QEvent::MouseButtonRelease,	QPoint(0,0),	QPoint(0,0),	QMouseEvent::LeftButton,	QMouseEvent::NoButton);

				QApplication::sendEvent(popupParent,	&me);

}

void	FancyPopup::popup(QWidget*	parent)	{

				popupParent	=	parent;

				setText("Move	the	mouse!");

				if	(popupParent)

								move(popupParent->mapToGlobal(popupParent->rect().bottomLeft()));

				show();

}

Frame::Frame(QWidget*	parent,	const	char*	name):	QFrame(parent,	name){

				button1	=	new	QPushButton("Simple	Popup",	this);

				connect	(button1,	SIGNAL(clicked()),	SLOT(button1Clicked()));

				button2	=	new	QPushButton("Fancy	Popup",	this);

				connect	(button2,	SIGNAL(pressed()),	SLOT(button2Pressed()));

				QBoxLayout	*	l	=	new	QHBoxLayout(this);

				button1->setMaximumSize(button1->sizeHint());

				button2->setMaximumSize(button2->sizeHint());

				l->addWidget(button1);

				l->addWidget(button2);

				l->activate();

//					button1->setGeometry(20,20,100,30);

//					button2->setGeometry(140,20,100,30);

				resize(270,	70);

				//create	a	very	simple	popup:	it	is	just	composed	with	other

				//widget	and	will	be	shown	after	clicking	on	button1

				popup1	=	new	QFrame(this	,0,	WType_Popup);

				popup1->setFrameStyle(WinPanel|Raised);

				popup1->resize(150,100);

				QLineEdit	*tmpE	=	new	QLineEdit(popup1);

				connect(tmpE,	SIGNAL(returnPressed()),	popup1,	SLOT(hide()));

				tmpE->setGeometry(10,10,	130,	30);

				tmpE->setFocus();

				QPushButton	*tmpB	=	new	QPushButton("Click	me!",	popup1);

				connect(tmpB,	SIGNAL(clicked()),	popup1,	SLOT(close()));

				tmpB->setGeometry(10,	50,	130,	30);

				//	the	fancier	version	uses	its	own	class.	It	will	be	shown	when

				//	pressing	button2,	so	they	behavior	is	more	like	a	modern	menu

				//	or	toolbar.

				popup2	=	new	FancyPopup(this);

				//	you	might	also	add	new	widgets	to	the	popup,	just	like	you	do

				//	it	with	any	other	widget.		The	next	four	lines	(if	not

				//	commented	out)	will	for	instance	add	a	line	edit	widget.

//					tmpE	=	new	QLineEdit(popup2);

//					tmpE->setFocus();

//					connect(tmpE,	SIGNAL(returnPressed()),	popup2,	SLOT(close

//					tmpE->setGeometry(10,	10,	130,	30);

}

void	Frame::button1Clicked(){

				popup1->move(mapToGlobal(button1->geometry().bottomLeft()));

				popup1->show();

}

void	Frame::button2Pressed(){

				popup2->popup(button2);

}

int	main(int	argc,	char	**argv)

{

				QApplication	a(argc,argv);

				Frame	frame;

				frame.setCaption("Qt	Example	-	Custom	Popups");

				a.setMainWidget(&frame);

				frame.show();

				return	a.exec();

}

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Progress	Bar	and	Dialog	Example
This	example	displays	either	a	simple	(text-only)	or	a	custom-labelled	(user-
supplied	widget)	progress	dialog.	It	also	demonstrates	simple	use	of	menus.

Implementation:

/**

**	$Id:		qt/progress.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qprogressdialog.h>

#include	<qapplication.h>

#include	<qmenubar.h>

#include	<qpopupmenu.h>

#include	<qpainter.h>

#include	<stdlib.h>

class	AnimatedThingy	:	public	QLabel	{

public:

				AnimatedThingy(QWidget*	parent,	const	QString&	s)	:

								QLabel(parent),

								label(s),

								step(0)

				{

								label+="\n...	and	wasting	CPU\nwith	this	animation!\n";

								for	(int	i=0;	i<nqix;	i++)

												ox[0][i]	=	oy[0][i]	=	ox[1][i]	=	oy[1][i]	=	0;

								x0	=	y0	=	x1	=	y1	=	0;

								dx0	=	rand()%8+2;

								dy0	=	rand()%8+2;

								dx1	=	rand()%8+2;

								dy1	=	rand()%8+2;

				}

				void	show()

				{

								if	(!isVisible())	startTimer(100);

								QWidget::show();

				}

				void	hide()

				{

								QWidget::hide();

								killTimers();

				}

				QSize	sizeHint()	const

				{

								return	QSize(120,100);

				}

protected:

				void	timerEvent(QTimerEvent*)

				{

								QPainter	p(this);

								QPen	pn=p.pen();

								pn.setWidth(2);

								pn.setColor(backgroundColor());

								p.setPen(pn);

								step	=	(step	+	1)	%	nqix;

								p.drawLine(ox[0][step],	oy[0][step],	ox[1][step],	oy[1][step]);

								inc(x0,	dx0,	width());

								inc(y0,	dy0,	height());

								inc(x1,	dx1,	width());

								inc(y1,	dy1,	height());

								ox[0][step]	=	x0;

								oy[0][step]	=	y0;

								ox[1][step]	=	x1;

								oy[1][step]	=	y1;

								QColor	c;

								c.setHsv((step*255)/nqix,	255,	255);	//	rainbow	effect

								pn.setColor(c);

								p.setPen(pn);

								p.drawLine(ox[0][step],	oy[0][step],	ox[1][step],	oy[1][step]);

								p.setPen(colorGroup().text());

								p.drawText(rect(),	AlignCenter,	label);

				}

				void	paintEvent(QPaintEvent*	event)

				{

								QPainter	p(this);

								QPen	pn=p.pen();

								pn.setWidth(2);

								p.setPen(pn);

								p.setClipRect(event->rect());

								for	(int	i=0;	i<nqix;	i++)	{

												QColor	c;

												c.setHsv((i*255)/nqix,	255,	255);	//	rainbow	effect

												pn.setColor(c);

												p.setPen(pn);

												p.drawLine(ox[0][i],	oy[0][i],	ox[1][i],	oy[1][i]);

								}

								p.setPen(colorGroup().text());

								p.drawText(rect(),	AlignCenter,	label);

				}

private:

				void	inc(int&	x,	int&	dx,	int	b)

				{

								x+=dx;

								if	(x<0)	{	x=0;	dx=rand()%8+2;	}

								else	if	(x>=b)	{	x=b-1;	dx=-(rand()%8+2);	}

				}

				enum	{nqix=10};

				int	ox[2][nqix];

				int	oy[2][nqix];

				int	x0,y0,x1,y1;

				int	dx0,dy0,dx1,dy1;

				QString	label;

				int	step;

};

class	CPUWaster	:	public	QWidget

{

				Q_OBJECT

				enum	{	first_draw_item	=	1000,	last_draw_item	=	1006	};

				int	drawItemRects(int	id)

				{

								int	n	=	id	-	first_draw_item;

								int	r	=	100;

								while	(n--)	r*=(n%3	?	5	:	4);

								return	r;

				}

				QString	drawItemText(int	id)

				{

								QString	str;

								str.sprintf("%d	Rectangles",	drawItemRects(id));

								return	str;

				}

public:

				CPUWaster()	:

								pb(0)

				{

								menubar	=	new	QMenuBar(this,	"menu");

								Q_CHECK_PTR(menubar);

								QPopupMenu*	file	=	new	QPopupMenu();

								Q_CHECK_PTR(file);

								menubar->insertItem("&File",	file);

								for	(int	i=first_draw_item;	i<=last_draw_item;	i++)

												file->insertItem(drawItemText(i),	i);

								connect(menubar,	SIGNAL(activated(int)),	this,	SLOT(doMenuItem(int)));

								file->insertSeparator();

								file->insertItem("Quit",	qApp,		SLOT(quit()));

								options	=	new	QPopupMenu();

								Q_CHECK_PTR(options);

								menubar->insertItem("&Options",	options);

								td_id	=	options->insertItem("Timer	driven",	this,	SLOT(timerDriven()));

								ld_id	=	options->insertItem("Loop	driven",	this,	SLOT(loopDriven()));

								options->insertSeparator();

								dl_id	=	options->insertItem("Default	label",	this,	SLOT(defaultLabel()));

								cl_id	=	options->insertItem("Custom	label",	this,	SLOT(customLabel()));

								options->insertSeparator();

								md_id	=	options->insertItem("No	minimum	duration",	this,	SLOT(toggleMinimumDuration()));

								options->setCheckable(TRUE);

								loopDriven();

								defaultLabel();

								setFixedSize(400,	300);

								setBackgroundColor(black);

				}

public	slots:

				void	doMenuItem(int	id)

				{

								if	(id	>=	first_draw_item	&&	id	<=	last_draw_item)

												draw(drawItemRects(id));

				}

				void	stopDrawing()	{	got_stop	=	TRUE;	}

				void	timerDriven()

				{

								timer_driven	=	TRUE;

								options->setItemChecked(td_id,	TRUE);

								options->setItemChecked(ld_id,	FALSE);

				}

				void	loopDriven()

				{

								timer_driven	=	FALSE;

								options->setItemChecked(ld_id,	TRUE);

								options->setItemChecked(td_id,	FALSE);

				}

				void	defaultLabel()

				{

								default_label	=	TRUE;

								options->setItemChecked(dl_id,	TRUE);

								options->setItemChecked(cl_id,	FALSE);

				}

				void	customLabel()

				{

								default_label	=	FALSE;

								options->setItemChecked(dl_id,	FALSE);

								options->setItemChecked(cl_id,	TRUE);

				}

				void	toggleMinimumDuration()

				{

								options->setItemChecked(md_id,

											!options->isItemChecked(md_id));

				}

private:

				void	timerEvent(QTimerEvent*)

				{

								pb->setProgress(pb->totalSteps()	-	rects);

								rects--;

								{

												QPainter	p(this);

												int	ww	=	width();

												int	wh	=	height();

												if	(ww	>	8	&&	wh	>	8)	{

																QColor	c(rand()%255,	rand()%255,	rand()%255);

																int	x	=	rand()	%	(ww-8);

																int	y	=	rand()	%	(wh-8);

																int	w	=	rand()	%	(ww-x);

																int	h	=	rand()	%	(wh-y);

																p.fillRect(x,	y,	w,	h,	c);

												}

								}

								if	(!rects	||	got_stop)	{

												pb->setProgress(pb->totalSteps());

												QPainter	p(this);

												p.fillRect(0,	0,	width(),	height(),	backgroundColor());

												enableDrawingItems(TRUE);

												killTimers();

												delete	pb;

												pb	=	0;

								}

				}

				QProgressDialog*	newProgressDialog(const	char*	label,	int	steps,	bool	modal)

				{

								QProgressDialog	*d	=	new	QProgressDialog(label,	"Cancel",	steps,	this,

																																																	"progress",	modal);

								if	(options->isItemChecked(md_id))

												d->setMinimumDuration(0);

								if	(!default_label)

												d->setLabel(new	AnimatedThingy(d,label));

								return	d;

				}

				void	enableDrawingItems(bool	yes)

				{

								for	(int	i=first_draw_item;	i<=last_draw_item;	i++)	{

												menubar->setItemEnabled(i,	yes);

								}

				}

				void	draw(int	n)

				{

								if	(timer_driven)	{

												if	(pb)	{

																qWarning("This	cannot	happen!");

																return;

												}

												rects	=	n;

												pb	=	newProgressDialog("Drawing	rectangles.\n"

																																			"Using	timer	event.",	n,	FALSE);

												pb->setCaption("Please	Wait");

												connect(pb,	SIGNAL(cancelled()),	this,	SLOT(stopDrawing()));

												enableDrawingItems(FALSE);

												startTimer(0);

												got_stop	=	FALSE;

								}	else	{

												QProgressDialog*	lpb	=	newProgressDialog(

																								"Drawing	rectangles.\nUsing	loop.",	n,	TRUE);

												lpb->setCaption("Please	Wait");

												QPainter	p(this);

												for	(int	i=0;	i<n;	i++)	{

																lpb->setProgress(i);

																if	(lpb->wasCancelled())

																				break;

																QColor	c(rand()%255,	rand()%255,	rand()%255);

																int	x	=	rand()%(width()-8);

																int	y	=	rand()%(height()-8);

																int	w	=	rand()%(width()-x);

																int	h	=	rand()%(height()-y);

																p.fillRect(x,y,w,h,c);

												}

												p.fillRect(0,	0,	width(),	height(),	backgroundColor());

												delete	lpb;

								}

				}

				QMenuBar*	menubar;

				QProgressDialog*	pb;

				QPopupMenu*	options;

				int	td_id,	ld_id;

				int	dl_id,	cl_id;

				int	md_id;

				int	rects;

				bool	timer_driven;

				bool	default_label;

				bool	got_stop;

};

int	main(int	argc,	char	**argv)

{

				QApplication	a(argc,	argv);

				int	wincount	=	argc	>	1	?	atoi(argv[1])	:	1;

				for	(int	i=0;	i<wincount;	i++)	{

								CPUWaster*	cpuw	=	new	CPUWaster;

								if	(i	==	0)	a.setMainWidget(cpuw);

								cpuw->show();

				}

				return	a.exec();

}

#include	"progress.moc"

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Progress	Bar
This	example	shows	how	to	use	a	progress	bar.

Header	file:

/**

**	$Id:		qt/progressbar.h			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	PROGRESSBAR_H

#define	PROGRESSBAR_H

#include	<qbuttongroup.h>

#include	<qtimer.h>

class	QRadioButton;

class	QPushButton;

class	QProgressBar;

class	ProgressBar	:	public	QButtonGroup

{

				Q_OBJECT

public:

				ProgressBar(QWidget	*parent	=	0,	const	char	*name	=	0);

protected:

				QRadioButton	*slow,	*normal,	*fast;

				QPushButton	*start,	*pause,	*reset;

				QProgressBar	*progress;

				QTimer	timer;

protected	slots:

				void	slotStart();

				void	slotReset();

				void	slotTimeout();

};

#endif

Implementation:

/**

**	$Id:		qt/progressbar.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"progressbar.h"

#include	<qradiobutton.h>

#include	<qpushbutton.h>

#include	<qprogressbar.h>

#include	<qlayout.h>

#include	<qmotifstyle.h>

/*

	*	Constructor

	*

	*	Creates	child	widgets	of	the	ProgressBar	widget

	*/

ProgressBar::ProgressBar(QWidget	*parent,	const	char	*name)

				:	QButtonGroup(0,	Horizontal,	"Progress	Bar",	parent,	name),	timer()

{

				setMargin(10);

				QGridLayout*	toplayout	=	new	QGridLayout(layout(),	2,	2,	5);

				setRadioButtonExclusive(TRUE);

				//	insert	three	radiobuttons	which	the	user	can	use

				//	to	set	the	speed	of	the	progress	and	two	pushbuttons

				//	to	start/pause/continue	and	reset	the	progress

				slow	=	new	QRadioButton("&Slow",	this);

				normal	=	new	QRadioButton("&Normal",	this);

				fast	=	new	QRadioButton("&Fast",	this);

				QVBoxLayout*	vb1	=	new	QVBoxLayout;

				toplayout->addLayout(vb1,	0,	0);

				vb1->addWidget(slow);

				vb1->addWidget(normal);

				vb1->addWidget(fast);

				//	two	push	buttons,	one	for	start,	for	for	reset.

				start	=	new	QPushButton("&Start",	this);

				reset	=	new	QPushButton("&Reset",	this);

				QVBoxLayout*	vb2	=	new	QVBoxLayout;

				toplayout->addLayout(vb2,	0,	1);

				vb2->addWidget(start);

				vb2->addWidget(reset);

				//	Create	the	progressbar

				progress	=	new	QProgressBar(100,	this);

				//				progress->setStyle(new	QMotifStyle());

				toplayout->addMultiCellWidget(progress,	1,	1,	0,	1);

				//	connect	the	clicked()	SIGNALs	of	the	pushbuttons	to	SLOTs

				connect(start,	SIGNAL(clicked()),	this,	SLOT(slotStart()));

				connect(reset,	SIGNAL(clicked()),	this,	SLOT(slotReset()));

				//	connect	the	timeout()	SIGNAL	of	the	progress-timer	to	a	SLOT

				connect(&timer,	SIGNAL(timeout()),	this,	SLOT(slotTimeout()));

				//	Let's	start	with	normal	speed...

				normal->setChecked(TRUE);

				//	some	contraints

				start->setFixedWidth(80);

				setMinimumWidth(300);

}

/*

	*	SLOT	slotStart

	*

	*	This	SLOT	is	called	if	the	user	clicks	start/pause/continue

	*	button

	*/

void	ProgressBar::slotStart()

{

				//	If	the	progress	bar	is	at	the	beginning...

				if	(progress->progress()	==	-1)	{

								//	...set	according	to	the	checked	speed-radiobutton

								//	the	number	of	steps	which	are	needed	to	complete	the	process

								if	(slow->isChecked())

												progress->setTotalSteps(10000);

								else	if	(normal->isChecked())

												progress->setTotalSteps(1000);

								else

												progress->setTotalSteps(50);

								//	disable	the	speed-radiobuttons

								slow->setEnabled(FALSE);

								normal->setEnabled(FALSE);

								fast->setEnabled(FALSE);

				}

				//	If	the	progress	is	not	running...

				if	(!timer.isActive())	{

								//	...start	the	timer	(and	so	the	progress)	with	a	interval	of	1	ms...

								timer.start(1);

								//	...and	rename	the	start/pause/continue	button	to	Pause

								start->setText("&Pause");

				}	else	{	//	if	the	prgress	is	running...

								//	...stop	the	timer	(and	so	the	prgress)...

								timer.stop();

								//	...and	rename	the	start/pause/continue	button	to	Continue

								start->setText("&Continue");

				}

}

/*

	*	SLOT	slotReset

	*

	*	This	SLOT	is	called	when	the	user	clicks	the	reset	button

	*/

void	ProgressBar::slotReset()

{

				//	stop	the	timer	and	progress

				timer.stop();

				//	rename	the	start/pause/continue	button	to	Start...

				start->setText("&Start");

				//	...and	enable	this	button

				start->setEnabled(TRUE);

				//	enable	the	speed-radiobuttons

				slow->setEnabled(TRUE);

				normal->setEnabled(TRUE);

				fast->setEnabled(TRUE);

				//	reset	the	progressbar

				progress->reset();

}

/*

	*	SLOT	slotTimeout

	*

	*	This	SLOT	is	called	each	ms	when	the	timer	is

	*	active	(==	progress	is	running)

	*/

void	ProgressBar::slotTimeout()

{

				int	p	=	progress->progress();

#if	1

				//	If	the	progress	is	complete...

				if	(p	==	progress->totalSteps())		{

								//	...rename	the	start/pause/continue	button	to	Start...

								start->setText("&Start");

								//	...and	disable	it...

								start->setEnabled(FALSE);

								//	...and	return

								return;

				}

#endif

				//	If	the	process	is	not	complete	increase	it

				progress->setProgress(++p);

}

Main:

/**

**	$Id:		qt/main.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"progressbar.h"

#include	<qapplication.h>

int	main(int	argc,char	**argv)

{

				QApplication	a(argc,argv);

				ProgressBar	progressbar;

				progressbar.setCaption("Qt	Example	-	ProgressBar");

				a.setMainWidget(&progressbar);

				progressbar.show();

				return	a.exec();

}

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QDir

Main:

/**

**	$Id:		qt/qdir.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"../dirview/dirview.h"

#include	"qdir.h"

#include	<qapplication.h>

#include	<qtextview.h>

#include	<qfileinfo.h>

#include	<qfile.h>

#include	<qtextstream.h>

#include	<qhbox.h>

#include	<qspinbox.h>

#include	<qlabel.h>

#include	<qmultilineedit.h>

#include	<qheader.h>

#include	<qevent.h>

#include	<qpainter.h>

#include	<qpopupmenu.h>

#include	<qpushbutton.h>

#include	<qtoolbutton.h>

#include	<qfile.h>

#include	<qtextstream.h>

#include	<qtooltip.h>

#include	<stdlib.h>

/*	XPM	*/

static	const	char	*bookmarks[]={

				"22	14	8	1",

				"#	c	#000080",

				"a	c	#585858",

				"b	c	#000000",

				"c	c	#ffffff",

				"d	c	#ffffff",

				"e	c	#ffffff",

				"f	c	#000000",

				".	c	None",

				"...bb.................",

				"..bacb....bbb.........",

				"..badcb.bbccbab.......",

				"..bacccbadccbab.......",

				"..baecdbcccdbab.......",

				"..bacccbacccbab.......",

				"..badcdbcecdfab.......",

				"..bacecbacccbab.......",

				"..baccdbcccdbab.......",

				"...badcbacdbbab.......",

				"....bacbcbbccab.......",

				".....babbaaaaab.......",

				".....bbabbbbbbb.......",

				"......bb.............."

};

/*	XPM	*/

static	const	char	*home[]={

				"16	15	4	1",

				"#	c	#000000",

				"a	c	#ffffff",

				"b	c	#c0c0c0",

				".	c	None",

				".......##.......",

				"..#...####......",

				"..#..#aabb#.....",

				"..#.#aaaabb#....",

				"..##aaaaaabb#...",

				"..#aaaaaaaabb#..",

				".#aaaaaaaaabbb#.",

				"###aaaaaaaabb###",

				"..#aaaaaaaabb#..",

				"..#aaa###aabb#..",

				"..#aaa#.#aabb#..",

				"..#aaa#.#aabb#..",

				"..#aaa#.#aabb#..",

				"..#aaa#.#aabb#..",

				"..#####.######.."

};

//	**

PixmapView::PixmapView(QWidget	*parent)

				:	QScrollView(parent)

{

				viewport()->setBackgroundMode(PaletteBase);

}

void	PixmapView::setPixmap(const	QPixmap	&pix)

{

				pixmap	=	pix;

				resizeContents(pixmap.size().width(),	pixmap.size().height());

				viewport()->repaint(FALSE);

}

void	PixmapView::drawContents(QPainter	*p,	int	cx,	int	cy,	int	cw,	int	ch)

{

				p->fillRect(cx,	cy,	cw,	ch,	colorGroup().brush(QColorGroup::Base));

				p->drawPixmap(0,	0,	pixmap);

}

//	**

Preview::Preview(QWidget	*parent)

				:	QWidgetStack(parent)

{

				normalText	=	new	QMultiLineEdit(this);

				normalText->setReadOnly(TRUE);

				html	=	new	QTextView(this);

				pixmap	=	new	PixmapView(this);

				raiseWidget(normalText);

}

void	Preview::showPreview(const	QUrl	&u,	int	size)

{

				if	(u.isLocalFile())	{

								QString	path	=	u.path();

								QFileInfo	fi(path);

								if	(fi.isFile()	&&	(int)fi.size()	>	size	*	1000)	{

												normalText->setText(tr("The	File\n%1\nis	too	large,	so	I	don't	show	it!").arg(path));

												raiseWidget(normalText);

												return;

								}

								QPixmap	pix(path);

								if	(pix.isNull())	{

												if	(fi.isFile())	{

																QFile	f(path);

																if	(f.open(IO_ReadOnly))	{

																				QTextStream	ts(&f);

																				QString	text	=	ts.read();

																				f.close();

																				if	(fi.extension().lower().contains("htm"))	{

																								QString	url	=	html->mimeSourceFactory()->makeAbsolute(path,	html->

																								html->setText(text,	url);

																								raiseWidget(html);

																								return;

																				}	else	{

																								normalText->setText(text);

																								raiseWidget(normalText);

																								return;

																				}

																}

												}

												normalText->setText(QString::null);

												raiseWidget(normalText);

								}	else	{

												pixmap->setPixmap(pix);

												raiseWidget(pixmap);

								}

				}	else	{

								normalText->setText("I	only	show	local	files!");

								raiseWidget(normalText);

				}

}

//	**

PreviewWidget::PreviewWidget(QWidget	*parent)

				:	QVBox(parent),	QFilePreview()

{

				setSpacing(5);

				setMargin(5);

				QHBox	*row	=	new	QHBox(this);

				row->setSpacing(5);

				(void)new	QLabel(tr("Only	show	files	smaller	than:	"),	row);

				sizeSpinBox	=	new	QSpinBox(1,	10000,	1,	row);

				sizeSpinBox->setSuffix("	KB");

				sizeSpinBox->setValue(64);

				row->setFixedHeight(10	+	sizeSpinBox->sizeHint().height());

				preview	=	new	Preview(this);

}

void	PreviewWidget::previewUrl(const	QUrl	&u)

{

				preview->showPreview(u,	sizeSpinBox->value());

}

//	**

CustomFileDialog::CustomFileDialog()

				:		QFileDialog(0,	0,	TRUE)

{

				setDir("/");

				dirView	=	new	DirectoryView(this,	0,	TRUE);

				dirView->addColumn("");

				dirView->header()->hide();

				::Directory	*root	=	new	::Directory(dirView,	"/");

				root->setOpen(TRUE);

				dirView->setFixedWidth(150);

				addLeftWidget(dirView);

				QPushButton	*p	=	new	QPushButton(this);

				p->setPixmap(QPixmap(bookmarks));

				QToolTip::add(p,	tr("Bookmarks"));

				bookmarkMenu	=	new	QPopupMenu(this);

				connect(bookmarkMenu,	SIGNAL(activated(int)),

													this,	SLOT(bookmarkChosen(int)));

				addId	=	bookmarkMenu->insertItem(tr("Add	bookmark"));

				bookmarkMenu->insertSeparator();

				QFile	f(".bookmarks");

				if	(f.open(IO_ReadOnly))	{

								QDataStream	ds(&f);

								ds	>>	bookmarkList;

								f.close();

								QStringList::Iterator	it	=	bookmarkList.begin();

								for	(;	it	!=	bookmarkList.end();	++it)	{

												bookmarkMenu->insertItem(*it);

								}

				}

				p->setPopup(bookmarkMenu);

				addToolButton(p,	TRUE);

				connect(dirView,	SIGNAL(folderSelected(const	QString	&)),

													this,	SLOT(setDir2(const	QString	&)));

				connect(this,	SIGNAL(dirEntered(const	QString	&)),

													dirView,	SLOT(setDir(const	QString	&)));

				QToolButton	*b	=	new	QToolButton(this);

				QToolTip::add(b,	tr("Go	Home!"));

				b->setPixmap(QPixmap(home));

				connect(b,	SIGNAL(clicked()),

													this,	SLOT(goHome()));

				addToolButton(b);

				resize(width()	+	width()	/	3,	height());

}

CustomFileDialog::~CustomFileDialog()

{

				if	(!bookmarkList.isEmpty())	{

								QFile	f(".bookmarks");

								if	(f.open(IO_WriteOnly))	{

												QDataStream	ds(&f);

												ds	<<	bookmarkList;

												f.close();

								}

				}

}

void	CustomFileDialog::setDir2(const	QString	&s)

{

				blockSignals(TRUE);

				setDir(s);

				blockSignals(FALSE);

}

void	CustomFileDialog::showEvent(QShowEvent	*e)

{

				QFileDialog::showEvent(e);

				dirView->setDir(dirPath());

}

void	CustomFileDialog::bookmarkChosen(int	i)

{

				if	(i	==	addId)	{

								bookmarkList	<<	dirPath();

								bookmarkMenu->insertItem(dirPath());

				}	else	{

								setDir(bookmarkMenu->text(i));

				}

}

void	CustomFileDialog::goHome()

{

				if	(getenv("HOME"))

								setDir(getenv("HOME"));

				else

								setDir("/");

}

//	**

int	main(int	argc,	char	**	argv)

{

				QFileDialog::Mode	mode	=	QFileDialog::ExistingFile;

				QString	start;

				QString	filter;

				QString	caption;

				bool	preview	=	FALSE;

				bool	custom	=	FALSE;

				QApplication	a(argc,	argv);

				for	(int	i=1;	i<argc;	i++)	{

								QString	arg	=	argv[i];

								if	(arg	==	"-any")

												mode	=	QFileDialog::AnyFile;

								else	if	(arg	==	"-dir")

												mode	=	QFileDialog::Directory;

								else	if	(arg	==	"-default")

												start	=	argv[++i];

								else	if	(arg	==	"-filter")

												filter	=	argv[++i];

								else	if	(arg	==	"-preview")

												preview	=	TRUE;

								else	if	(arg	==	"-custom")

												custom	=	TRUE;

								else	if	(arg[0]	==	'-')	{

												qDebug("Usage:	qdir	[-any	|	-dir	|	-custom]	[-preview]	[-default	f]	{-filter	f}	[caption	...]\n"

																			"						-any									Get	any	filename,	need	not	exist.\n"

																			"						-dir									Return	a	directory	rather	than	a	file.\n"

																			"						-custom						Opens	a	customized	QFileDialog	with	\n"

																			"																			dir	browser,	bookmark	menu,	etc.\n"

																			"						-preview					Show	a	preview	widget.\n"

																			"						-default	f			Start	from	directory/file	f.\n"

																			"						-filter	f				eg.	'*.gif'	'*.bmp'\n"

																			"						caption	...		Caption	for	dialog.\n"

);

												return	1;

								}	else	{

												if	(!caption.isNull())

																caption	+=	'	';

												caption	+=	arg;

								}

				}

				if	(!start)

								start	=	QDir::currentDirPath();

				if	(!caption)

								caption	=	mode	==	QFileDialog::Directory

																				?	"Choose	directory..."	:	"Choose	file...";

				if	(!custom)	{

								QFileDialog	fd(QString::null,	filter,	0,	0,	TRUE);

								fd.setMode(mode);

								if	(preview)	{

												fd.setContentsPreviewEnabled(TRUE);

												PreviewWidget	*pw	=	new	PreviewWidget(&fd);

												fd.setContentsPreview(pw,	pw);

												fd.setViewMode(QFileDialog::List);

												fd.setPreviewMode(QFileDialog::Contents);

								}

								fd.setCaption(caption);

								fd.setSelection(start);

								if	(fd.exec()	==	QDialog::Accepted)	{

												QString	result	=	fd.selectedFile();

												printf("%s\n",	(const	char*)result);

												return	0;

								}	else	{

												return	1;

								}

				}	else	{

								CustomFileDialog	fd;

								fd.exec();

								return	1;

				}

}

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Font	Displayer
This	example	program	displays	all	characters	of	a	font.

Header	file:

/**

**	$Id:		qt/fontdisplayer.h			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	FontDisplayer_H

#define	FontDisplayer_H

#include	<qframe.h>

#include	<qmainwindow.h>

class	QSlider;

class	FontRowTable	:	public	QFrame	{

				Q_OBJECT

public:

				FontRowTable(QWidget*	parent=0,	const	char*	name=0);

				QSize	sizeHint()	const;

signals:

				void	fontInformation(const	QString&);

public	slots:

				void	setRow(int);

				void	chooseFont();

protected:

				QSize	cellSize()	const;

				void	paintEvent(QPaintEvent*);

private:

				QFont	tablefont;

				int	row;

};

class	FontDisplayer	:	public	QMainWindow	{

				Q_OBJECT

public:

				FontDisplayer(QWidget*	parent=0,	const	char*	name=0);

};

#endif

Implementation:

/**

**	$Id:		qt/fontdisplayer.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"fontdisplayer.h"

#include	<qapplication.h>

#include	<qslider.h>

#include	<qspinbox.h>

#include	<qpainter.h>

#include	<qtoolbar.h>

#include	<qstatusbar.h>

#include	<qlabel.h>

#include	<qpushbutton.h>

#include	<qfontdialog.h>

#include	<stdlib.h>

FontRowTable::FontRowTable(QWidget*	parent,	const	char*	name)	:

				QFrame(parent,name)

{

				setBackgroundMode(PaletteBase);

				setFrameStyle(Panel|Sunken);

				setMargin(8);

				setRow(0);

				tablefont	=	QApplication::font();

}

QSize	FontRowTable::sizeHint()	const

{

				return	16*cellSize()+QSize(2,2)*(margin()+frameWidth());

}

QSize	FontRowTable::cellSize()	const

{

				QFontMetrics	fm	=	fontMetrics();

				return	QSize(fm.maxWidth(),	fm.lineSpacing()+1);

}

void	FontRowTable::paintEvent(QPaintEvent*	e)

{

				QFrame::paintEvent(e);

				QPainter	p(this);

				p.setClipRegion(e->region());

				QRect	r	=	e->rect();

				QFontMetrics	fm	=	fontMetrics();

				int	ml	=	frameWidth()+margin()	+	1	+	QMAX(0,-fm.minLeftBearing());

				int	mt	=	frameWidth()+margin();

				QSize	cell((width()-15-ml)/16,(height()-15-mt)/16);

				if	(!cell.width()	||	!cell.height())

								return;

				int	mini	=	r.left()	/	cell.width();

				int	maxi	=	(r.right()+cell.width()-1)	/	cell.width();

				int	minj	=	r.top()	/	cell.height();

				int	maxj	=	(r.bottom()+cell.height()-1)	/	cell.height();

				int	h	=	fm.height();

				QColor	body(255,255,192);

				QColor	negative(255,192,192);

				QColor	positive(192,192,255);

				QColor	rnegative(255,128,128);

				QColor	rpositive(128,128,255);

				for	(int	j	=	minj;	j<=maxj;	j++)	{

								for	(int	i	=	mini;	i<=maxi;	i++)	{

												if	(i	<	16	&&	j	<	16)	{

																int	x	=	i*cell.width();

																int	y	=	j*cell.height();

																QChar	ch	=	QChar(j*16+i,row);

																if	(fm.inFont(ch))	{

																				int	w	=	fm.width(ch);

																				int	l	=	fm.leftBearing(ch);

																				int	r	=	fm.rightBearing(ch);

																				x	+=	ml;

																				y	+=	mt+h;

																				p.fillRect(x,y,w,-h,body);

																				if	(w)	{

																								if	(l)	{

																												p.fillRect(x+(l>0?0:l),	y-h/2,	abs(l),-h/2,

																																							l	<	0	?	negative	:	positive);

																								}

																								if	(r)	{

																												p.fillRect(x+w-(r>0?r:0),y+2,	abs(r),-h/2,

																																							r	<	0	?	rnegative	:	rpositive);

																								}

																				}

																				QString	s;

																				s	+=	ch;

																				p.setPen(QPen(Qt::black));

																				p.drawText(x,y,s);

																}

												}

								}

				}

}

void	FontRowTable::setRow(int	r)

{

				row	=	r;

				QFontMetrics	fm	=	fontMetrics();

				QString	str;

				str.sprintf("mLB=%d	mRB=%d	mW=%d",

								fm.minLeftBearing(),

								fm.minRightBearing(),

								fm.maxWidth()

);

				emit	fontInformation(str);

				update();

}

void	FontRowTable::chooseFont()

{

				bool	ok;

				QFont	oldfont	=	tablefont;

				tablefont	=	QFontDialog::getFont(&ok,	oldfont,	this);

				if	(ok)

								setFont(tablefont);

				else

								tablefont	=	oldfont;

}

FontDisplayer::FontDisplayer(QWidget*	parent,	const	char*	name)	:

				QMainWindow(parent,name)

{

				FontRowTable*	table	=	new	FontRowTable(this);

				QToolBar*	controls	=	new	QToolBar(this);

				(void)	new	QLabel(tr("Row:"),	controls);

				QSpinBox	*row	=	new	QSpinBox(0,255,1,controls);

				controls->addSeparator();

				QPushButton	*fontbutton	=	new	QPushButton(tr("Font..."),	controls);

				connect(row,SIGNAL(valueChanged(int)),table,SLOT(setRow(int)));

				connect(fontbutton,	SIGNAL(clicked()),	table,	SLOT(chooseFont()));

				connect(table,SIGNAL(fontInformation(const	QString&)),

												statusBar(),SLOT(message(const	QString&)));

				table->setRow(0);

				setCentralWidget(table);

}

Main:

/**

**	$Id:		qt/qfd.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"fontdisplayer.h"

#include	<qapplication.h>

#include	<qslider.h>

#include	<qpainter.h>

#include	<qstatusbar.h>

int	main(int	argc,	char**	argv)

{

				//	Use	an	interesting	font

				QApplication::setFont(QFont("unifont",16));

				QApplication	app(argc,argv);

				FontDisplayer	m;

				QSize	sh	=	m.centralWidget()->sizeHint();

				m.resize(sh.width(),

													sh.height()+3*m.statusBar()->height());

				app.setMainWidget(&m);

				m.setCaption("Qt	Example	-	QFD");

				m.show();

				return	app.exec();

}

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QMag
This	is	a	simple	magnifier-type	program.	It	shows	how	one	can	do	some	quite
low-level	operations	in	a	portable	way	using	Qt.

Run	it,	click	in	the	magnifier	window,	then	click	where	you	want	to	magnify	or
drag	out	a	rectangle.	Two	combo	boxes	let	you	select	amplification	and	refresh
frequency,	a	text	label	tells	you	the	color	of	the	pixel	the	cursor	is	on,	and	a
button	lets	you	save	the	magnified	area	as	a	.bmp	file.

Implementation:

/**

**	$Id:		qt/qmag.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qcombobox.h>

#include	<qpushbutton.h>

#include	<qpixmap.h>

#include	<qimage.h>

#include	<qlabel.h>

#include	<qfiledialog.h>

#include	<qregexp.h>

#include	<qapplication.h>

#include	<qpainter.h>

#include	<qwmatrix.h>

class	MagWidget	:	public	QWidget

{

				Q_OBJECT

public:

				MagWidget(QWidget	*parent=0,	const	char	*name=0);

public	slots:

				void								setZoom(int);

				void								setRefresh(int);

				void								save();

				void								multiSave();

protected:

				void								paintEvent(QPaintEvent	*);

				void								mousePressEvent(QMouseEvent	*);

				void								mouseReleaseEvent(QMouseEvent	*);

				void								mouseMoveEvent(QMouseEvent	*);

				void								focusOutEvent(QFocusEvent	*);

				void								timerEvent(QTimerEvent	*);

				void								resizeEvent(QResizeEvent	*);

private:

				void								grabAround(QPoint	pos);

				void								grab();

				QComboBox			*zoom;

				QComboBox			*refresh;

				QPushButton	*saveButton;

				QPushButton	*multiSaveButton;

				QPushButton	*quitButton;

				QPixmap					pm;													//	pixmap,	magnified

				QPixmap					p;														//	pixmap

				QImage						image;										//	image	of	pixmap	(for	RGB)

				QLabel						*rgb;

				int									yoffset;								//	pixels	in	addition	to	the	actual	picture

				int									z;														//	magnification	factor

				int									r;														//	autorefresh	rate	(index	into	refreshrates)

				bool								grabbing;							//	TRUE	if	qmag	is	currently	grabbing

				int									grabx,	graby;

				QString					multifn;								//	filename	for	multisave

};

#ifdef	COMPLEX_GUI

static	const	char	*zoomfactors[]	=	{

				"100%",	"200%",	"300%",	"400%",	"500%",

				"600%",	"700%",	"800%",	"1600%",	0	};

static	const	char	*refreshrates[]	=	{

				"No	autorefresh",	"50	per	second",	"4	per	second",	"3	per	second",	"2	per	second",

				"Every	second",	"Every	two	seconds",	"Every	three	seconds",

				"Every	five	seconds",	"Every	ten	seconds",	0	};

#endif

static	const	int	timer[]	=	{

				0,	20,	250,	333,	500,	1000,	2000,	3000,	5000,	10000	};

MagWidget::MagWidget(QWidget	*parent,	const	char	*name)

				:	QWidget(parent,	name)

{

				z	=	1;																						//	default	zoom	(100%)

				r	=	0;																						//	default	refresh	(none)

#ifdef	COMPLEX_GUI

				int	w=0,	x=0,	n;

				zoom	=	new	QComboBox(FALSE,	this);

				Q_CHECK_PTR(zoom);

				zoom->insertStrList(zoomfactors,	9);

				connect(zoom,	SIGNAL(activated(int)),	SLOT(setZoom(int)));

				refresh	=	new	QComboBox(FALSE,	this);

				Q_CHECK_PTR(refresh);

				refresh->insertStrList(refreshrates,	9);

				connect(refresh,	SIGNAL(activated(int)),	SLOT(setRefresh(int)));

				for(n=0;	n<9;	n++)	{

								int	w2	=	zoom->fontMetrics().width(zoomfactors[n]);

								w	=	QMAX(w2,	w);

				}

				zoom->setGeometry(2,	2,	w+30,	20);

				x	=	w+34;

				w	=	0;

				for(n=0;	n<9;	n++)	{

								int	w2	=	refresh->fontMetrics().width(refreshrates[n]);

								w	=	QMAX(w2,	w);

				}

				refresh->setGeometry(x,	2,	w+30,	20);

				saveButton	=	new	QPushButton(this);

				Q_CHECK_PTR(saveButton);

				connect(saveButton,	SIGNAL(clicked()),	this,	SLOT(save()));

				saveButton->setText("Save");

				saveButton->setGeometry(x+w+30+2,	2,

																													10+saveButton->fontMetrics().width("Save"),	20);

				multiSaveButton	=	new	QPushButton(this);

				multiSaveButton->setToggleButton(TRUE);

				Q_CHECK_PTR(multiSaveButton);

				connect(multiSaveButton,	SIGNAL(clicked()),	this,	SLOT(multiSave()));

				multiSaveButton->setText("MultiSave");

				multiSaveButton->setGeometry(saveButton->geometry().right()	+	2,	2,

																													10+multiSaveButton->fontMetrics().width("MultiSave"),	20);

				quitButton	=	new	QPushButton(this);

				Q_CHECK_PTR(quitButton);

				connect(quitButton,	SIGNAL(clicked()),	qApp,	SLOT(quit()));

				quitButton->setText("Quit");

				quitButton->setGeometry(multiSaveButton->geometry().right()	+	2,	2,

																													10+quitButton->fontMetrics().width("Quit"),	20);

#else

				zoom	=	0;

				multiSaveButton	=	0;

#endif

				setRefresh(1);

				setZoom(5);

				rgb	=	new	QLabel(this);

				Q_CHECK_PTR(rgb);

				rgb->setText("");

				rgb->setAlignment(AlignVCenter);

				rgb->resize(width(),	rgb->fontMetrics().height()	+	4);

#ifdef	COMPLEX_GUI

				yoffset	=	zoom->height()				//	top	buttons

								+	4																					//	space	around	top	buttons

								+	rgb->height();								//	color-value	text	height

				setMinimumSize(quitButton->pos().x(),	yoffset+20);

				resize(quitButton->geometry().topRight().x()	+	2,	yoffset+60);

#else

				yoffset	=	0;

				resize(350,350);

#endif

				grabx	=	graby	=	-1;

				grabbing	=	FALSE;

				setMouseTracking(TRUE);			//	and	do	let	me	know	what	pixel	I'm	at,	eh?

				grabAround(QPoint(grabx=qApp->desktop()->width()/2,	graby=qApp->

}

void	MagWidget::setZoom(int	index)

{

				if	(index	==	8)

								z	=	16;

				else

								z	=	index+1;

				grab();

}

void	MagWidget::setRefresh(int	index)

{

				r	=	index;

				killTimers();

				if	(index	&&	!grabbing)

								startTimer(timer[r]);

}

void	MagWidget::save()

{

				if	(!p.isNull())	{

								killTimers();

								QString	fn	=	QFileDialog::getSaveFileName();

								if	(!fn.isEmpty())

												p.save(fn,	"BMP");

								if	(r)

												startTimer(timer[r]);

				}

}

void	MagWidget::multiSave()

{

				if	(!p.isNull())	{

								multifn	=	"";	//	stops	saving

								multifn	=	QFileDialog::getSaveFileName();

								if	(multifn.isEmpty())

												multiSaveButton->setOn(FALSE);

								if	(!r)

												p.save(multifn,	"BMP");

				}	else	{

								multiSaveButton->setOn(FALSE);

				}

}

void	MagWidget::grab()

{

				if	(!isVisible())

								return;																	//	don't	eat	resources	when	iconified

				if	(grabx	<	0	||	graby	<	0)

								return;																	//	don't	grab	until	the	user	has	said	to

				int	x,y,	w,h;

				w	=	(width()+z-1)/z;

				h	=	(height()+z-1-yoffset)/z;

				if	(w<1	||	h<1)

								return;																	//	don't	ask	too	much	from	the	window	system	:)

				x	=	grabx-w/2;														//	find	a	suitable	position	to	grab	from

				y	=	graby-h/2;

				if	(x	+	w	>	QApplication::desktop()->width())

								x	=	QApplication::desktop()->width()-w;

				else	if	(x	<	0)

								x	=	0;

				if	(y	+	h	>	QApplication::desktop()->height())

								y	=	QApplication::desktop()->height()-h;

				else	if	(y	<	0)

								y	=	0;

				p	=	QPixmap::grabWindow(QApplication::desktop()->winId(),		x,	y,	w,	h);

				image	=	p.convertToImage();

				QWMatrix	m;																	//	after	getting	it,	scale	it

				m.scale((double)z,	(double)z);

				pm	=	p.xForm(m);

				if	(!multiSaveButton	||	!multiSaveButton->isOn())

								repaint(FALSE);															//	and	finally	repaint,	flicker-free

}

void	MagWidget::paintEvent(QPaintEvent	*)

{

				if	(!pm.isNull())	{

								QPainter	paint(this);

								paint.drawPixmap(0,	zoom	?	zoom->height()+4	:	0,	pm,

																														0,0,	width(),	height()-yoffset);

				}

}

void	MagWidget::mousePressEvent(QMouseEvent	*e)

{

				if	(!grabbing)	{										//	prepare	to	grab...

								grabbing	=	TRUE;

								killTimers();

								grabMouse(crossCursor);

								grabx	=	-1;

								graby	=	-1;

				}	else	{																				//	REALLY	prepare	to	grab

								grabx	=	mapToGlobal(e->pos()).x();

								graby	=	mapToGlobal(e->pos()).y();

				}

}

void	MagWidget::mouseReleaseEvent(QMouseEvent	*	e)

{

				if	(grabbing	&&	grabx	>=	0	&&	graby	>=	0)	{

								grabbing	=	FALSE;

								grabAround(e->pos());

								releaseMouse();

				}

}

void	MagWidget::grabAround(QPoint	pos)

{

				int	rx,	ry;

				rx	=	mapToGlobal(pos).x();

				ry	=	mapToGlobal(pos).y();

				int	w	=	QABS(rx-grabx);

				int	h	=	QABS(ry-graby);

				if	(w	>	10	&&	h	>	10)	{

								int	pz;

								pz	=	1;

								while	(w*pz*h*pz	<	width()*(height()-yoffset)	&&

																w*pz	<	QApplication::desktop()->width()	&&

																h*pz	<	QApplication::desktop()->height())

												pz++;

								if	((w*pz*h*pz	-	width()*(height()-yoffset))	>

													(width()*(height()-yoffset)	-	w*(pz-1)*h*(pz-1)))

												pz--;

								if	(pz	<	1)

												pz	=	1;

								if	(pz	>	8)

												pz	=	8;

								if	(zoom)

												zoom->setCurrentItem(pz-1);

								z	=	pz;

								grabx	=	QMIN(rx,	grabx)	+	w/2;

								graby	=	QMIN(ry,	graby)	+	h/2;

								resize(w*z,	h*z+yoffset);

				}

				grab();

				if	(r)

								startTimer(timer[r]);

}

void	MagWidget::mouseMoveEvent(QMouseEvent	*e)

{

				if	(grabbing	||	pm.isNull()	||

									e->pos().y()	>	height()	-	(zoom	?	zoom->fontMetrics().height()	-	4	:	0)	||

									e->pos().y()	<	(zoom	?	zoom->height()+4	:	4))	{

								rgb->setText("");

				}	else	{

								int	x,y;

								x	=	e->pos().x()	/	z;

								y	=	(e->pos().y()	-	(zoom	?	zoom->height()	:	0)	-	4)	/	z;

								QString	pixelinfo;

								if	(image.valid(x,y))

								{

												QRgb	px	=	image.pixel(x,y);

												pixelinfo.sprintf("	%3d,%3d,%3d		#%02x%02x%02x",

																qRed(px),	qGreen(px),	qBlue(px),

																qRed(px),	qGreen(px),	qBlue(px));

								}

								QString	label;

								label.sprintf("x=%d,	y=%d	%s",

												x+grabx,	y+graby,	(const	char*)pixelinfo);

								rgb->setText(label);

				}

}

void	MagWidget::focusOutEvent(QFocusEvent	*)

{

				rgb->setText("");

}

void	MagWidget::timerEvent(QTimerEvent	*)

{

				grab();

/*

				if	(multiSaveButton->isOn()	&&	!multifn.isEmpty())	{

								QRegExp	num("[0-9][0-9]*");

								int	start;

								int	len;

								if	((start=num.match(multifn,0,&len))>=0)

												multifn.replace(num,

																QString().setNum(multifn.mid(start,len).toInt()+1)

);

								p.save(multifn,	"BMP");

				}

*/

}

void	MagWidget::resizeEvent(QResizeEvent	*)

{

				rgb->setGeometry(0,	height()	-	rgb->height(),	width(),	rgb->height

				grab();

}

#include	"qmag.moc"

int	main(int	argc,	char	**argv)

{

				QApplication	a(argc,	argv);

				MagWidget	m;

				a.setMainWidget(&m);

				m.show();

				return	a.exec();

}

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

A	Tiny	QTL	Example
This	tiny	example	shows	a	QValueListIterator.

Implementation:

/**

**	$Id:		qt/qvaluelistiterator.cpp			3.0.5			edited	Jun	25	11:41	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qvaluelist.h>

#include	<qstring.h>

#include	<qwindowdefs.h>

#include	<stdio.h>

class	Employee

{

public:

				Employee():	s(0)	{}

				Employee(const	QString&	name,	int	salary)

								:	n(name),	s(salary)	{}

				QString	name()	const	{	return	n;	}

				int	salary()	const	{	return	s;	}

				void	setSalary(int	salary)	{	s	=	salary;	}

				//	this	is	here	to	support	very	old	compilers

#if	defined(Q_FULL_TEMPLATE_INSTANTIATION)

				bool	operator==(const	Employee	&)	const	{	return	FALSE;	}

#endif

private:

				QString	n;

				int	s;

};

int	main(int,	char**)

{

				typedef	QValueList<Employee>	EmployeeList;

				EmployeeList	list;

				list.append(Employee("Bill",	50000));

				list.append(Employee("Steve",80000));

				list.append(Employee("Ron",		60000));

				Employee	joe("Joe",	50000);

				list.append(joe);

				joe.setSalary(4000);

				EmployeeList::ConstIterator	it	=	list.begin();

				while(it	!=	list.end())	{

								printf("%s	earns	%d\n",	(*it).name().latin1(),	(*it).salary());

								++it;

				}

				return	0;

}

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Simple	HTML	Browser

Header	file:

/**

**	$Id:		qt/qwerty.h			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	QWERTY_H

#define	QWERTY_H

#include	<qwidget.h>

#include	<qmenubar.h>

#include	<qmultilineedit.h>

#include	<qprinter.h>

class	Editor	:	public	QWidget

{

				Q_OBJECT

public:

				Editor(QWidget	*parent=0,	const	char	*name="qwerty");

			~Editor();

				void	load(const	QString&	fileName,	int	code=-1);

public	slots:

				void	newDoc();

				void	load();

				bool	save();

				void	print();

				void	addEncoding();

				void	toUpper();

				void	toLower();

				void	font();

protected:

				void	resizeEvent(QResizeEvent	*);

				void	closeEvent(QCloseEvent	*);

private	slots:

				void	saveAsEncoding(int);

				void	openAsEncoding(int);

				void	textChanged();

private:

				bool	saveAs(const	QString&	fileName,	int	code=-1);

				void	rebuildCodecList();

				QMenuBar							*m;

				QMultiLineEdit	*e;

#ifndef	QT_NO_PRINTER

				QPrinter								printer;

#endif

				QPopupMenu					*save_as;

				QPopupMenu					*open_as;

				bool	changed;

};

#endif	//	QWERTY_H

Implementation:

/**

**	$Id:		qt/qwerty.cpp			3.0.5			edited	Jan	29	13:47	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"qwerty.h"

#include	<qapplication.h>

#include	<qfile.h>

#include	<qfiledialog.h>

#include	<qpopupmenu.h>

#include	<qtextstream.h>

#include	<qpainter.h>

#include	<qmessagebox.h>

#include	<qpaintdevicemetrics.h>

#include	<qptrlist.h>

#include	<qfontdialog.h>

#include	<qtextcodec.h>

const	bool	no_writing	=	FALSE;

static	QPtrList<QTextCodec>	*codecList	=	0;

enum	{	Uni	=	0,	MBug	=	1,	Lat1	=	2,	Local	=	3,	Guess	=	4,	Codec	=	5	};

Editor::Editor(QWidget	*	parent	,	const	char	*	name)

				:	QWidget(parent,	name,	WDestructiveClose)

{

				m	=	new	QMenuBar(this,	"menu");

				QPopupMenu	*	file	=	new	QPopupMenu();

				Q_CHECK_PTR(file);

				m->insertItem("&File",	file);

				file->insertItem("&New",			this,	SLOT(newDoc()),			ALT+Key_N);

				file->insertItem("&Open...",		this,	SLOT(load()),					ALT+Key_O);

				file->insertItem("&Save...",		this,	SLOT(save()),					ALT+Key_S);

				file->insertSeparator();

				open_as	=	new	QPopupMenu();

				file->insertItem("Open	&As",		open_as);

				save_as	=	new	QPopupMenu();

				file->insertItem("Sa&ve	As",		save_as);

				file->insertItem("Add	&Encoding",	this,	SLOT(addEncoding()));

#ifndef	QT_NO_PRINTER

				file->insertSeparator();

				file->insertItem("&Print...",	this,	SLOT(print()),				ALT+Key_P);

#endif

				file->insertSeparator();

				file->insertItem("&Close",	this,	SLOT(close()),ALT+Key_W);

				file->insertItem("&Quit",		qApp,	SLOT(closeAllWindows()),					ALT+Key_Q);

				connect(save_as,	SIGNAL(activated(int)),	this,	SLOT(saveAsEncoding(int)));

				connect(open_as,	SIGNAL(activated(int)),	this,	SLOT(openAsEncoding(int)));

				rebuildCodecList();

				QPopupMenu	*	edit	=	new	QPopupMenu();

				Q_CHECK_PTR(edit);

				m->insertItem("&Edit",	edit);

				edit->insertItem("To	&Uppercase",			this,	SLOT(toUpper()),			ALT+Key_U);

				edit->insertItem("To	&Lowercase",			this,	SLOT(toLower()),			ALT+Key_L);

#ifndef	QT_NO_FONTDIALOG

				edit->insertSeparator();

				edit->insertItem("&Select	Font"	,			this,	SLOT(font()),					ALT+Key_T);

#endif

				changed	=	FALSE;

				e	=	new	QMultiLineEdit(this,	"editor");

				connect(e,	SIGNAL(textChanged()),	this,	SLOT(textChanged()));

				//	We	use	Unifont	-	if	you	have	it	installed	you'll	see	all

				//	Unicode	character	glyphs.

				//

				//	Unifont	only	comes	in	one	pixel	size,	so	we	cannot	let

				//	it	change	pixel	size	as	the	display	DPI	changes.

				//

				QFont	unifont("unifont",16,50);	unifont.setPixelSize(16);

				e->setFont(unifont);

				e->setFocus();

}

Editor::~Editor()

{

}

void	Editor::font()

{

#ifndef	QT_NO_FONTDIALOG

				bool	ok;

				QFont	f	=	QFontDialog::getFont(&ok,	e->font());

				if	(ok)	{

								e->setFont(f);

				}

#endif

}

void	Editor::rebuildCodecList()

{

				delete	codecList;

				codecList	=	new	QPtrList<QTextCodec>;

				QTextCodec	*codec;

				int	i;

				for	(i	=	0;	(codec	=	QTextCodec::codecForIndex(i));	i++)

								codecList->append(codec);

				int	n	=	codecList->count();

				for	(int	pm=0;	pm<2;	pm++)	{

								QPopupMenu*	menu	=	pm	?	open_as	:	save_as;

								menu->clear();

								QString	local	=	"Local	(";

								local	+=	QTextCodec::codecForLocale()->name();

								local	+=	")";

								menu->insertItem(local,	Local);

								menu->insertItem("Unicode",	Uni);

								menu->insertItem("Latin1",	Lat1);

								menu->insertItem("Microsoft	Unicode",	MBug);

								if	(pm)

												menu->insertItem("[guess]",	Guess);

								for	(i	=	0;	i	<	n;	i++)

												menu->insertItem(codecList->at(i)->name(),	Codec	+	i);

				}

}

void	Editor::newDoc()

{

				Editor	*ed	=	new	Editor;

				if	(qApp->desktop()->size().width()	<	450

									||	qApp->desktop()->size().height()	<	450)	{

								ed->showMaximized();

				}	else	{

								ed->resize(400,	400);

								ed->show();

				}

}

void	Editor::load()

{

#ifndef	QT_NO_FILEDIALOG

				QString	fn	=	QFileDialog::getOpenFileName(QString::null,	QString::null,	this);

				if	(!fn.isEmpty())

								load(fn,	-1);

#endif

}

void	Editor::load(const	QString&	fileName,	int	code)

{

				QFile	f(fileName);

				if	(!f.open(IO_ReadOnly))

								return;

				e->setAutoUpdate(FALSE);

				QTextStream	t(&f);

				if	(code	>=	Codec)

								t.setCodec(codecList->at(code-Codec));

				else	if	(code	==	Uni)

								t.setEncoding(QTextStream::Unicode);

				else	if	(code	==	MBug)

								t.setEncoding(QTextStream::UnicodeReverse);

				else	if	(code	==	Lat1)

								t.setEncoding(QTextStream::Latin1);

				else	if	(code	==	Guess)	{

								QFile	f(fileName);

								f.open(IO_ReadOnly);

								char	buffer[256];

								int	l	=	256;

								l=f.readBlock(buffer,l);

								QTextCodec*	codec	=	QTextCodec::codecForContent(buffer,	l);

								if	(codec)	{

												QMessageBox::information(this,"Encoding",QString("Codec:	")+codec->

												t.setCodec(codec);

								}

				}

				e->setText(t.read());

				f.close();

				e->setAutoUpdate(TRUE);

				e->repaint();

				setCaption(fileName);

				changed	=	FALSE;

}

void	Editor::openAsEncoding(int	code)

{

#ifndef	QT_NO_FILEDIALOG

				//storing	filename	(proper	save)	is	left	as	an	exercise...

				QString	fn	=	QFileDialog::getOpenFileName(QString::null,	QString::null,	this);

				if	(!fn.isEmpty())

								(void)	load(fn,	code);

#endif

}

bool	Editor::save()

{

#ifndef	QT_NO_FILEDIALOG

				//storing	filename	(proper	save)	is	left	as	an	exercise...

				QString	fn	=	QFileDialog::getSaveFileName(QString::null,	QString::null,	this);

				if	(!fn.isEmpty())

								return	saveAs(fn);

				return	FALSE;

#endif

}

void	Editor::saveAsEncoding(int	code)

{

#ifndef	QT_NO_FILEDIALOG

				//storing	filename	(proper	save)	is	left	as	an	exercise...

				QString	fn	=	QFileDialog::getSaveFileName(QString::null,	QString::null,	this);

				if	(!fn.isEmpty())

								(void)	saveAs(fn,	code);

#endif

}

void	Editor::addEncoding()

{

#ifndef	QT_NO_FILEDIALOG

				QString	fn	=	QFileDialog::getOpenFileName(QString::null,	"*.map",	this);

				if	(!fn.isEmpty())	{

								QFile	f(fn);

								if	(f.open(IO_ReadOnly))	{

												if	(QTextCodec::loadCharmap(&f))	{

																rebuildCodecList();

												}	else	{

																QMessageBox::warning(0,"Charmap	error",

																				"The	file	did	not	contain	a	valid	charmap.\n\n"

																				"A	charmap	file	should	look	like	this:\n"

																							"		<code_set_name>	thename\n"

																							"		<escape_char>	/\n"

																							"		%	alias	thealias\n"

																							"		CHARMAP\n"

																							"		<tokenname>	/x12	<U3456>\n"

																							"		<tokenname>	/xAB/x12	<U0023>\n"

																							"		...\n"

																							"		END	CHARMAP\n"

);

												}

								}

				}

#endif

}

bool	Editor::saveAs(const	QString&	fileName,	int	code)

{

				QFile	f(fileName);

				if	(no_writing	||	!f.open(IO_WriteOnly))	{

								QMessageBox::warning(this,"I/O	Error",

																				QString("The	file	could	not	be	opened.\n\n")

																								+fileName);

								return	FALSE;

				}

				QTextStream	t(&f);

				if	(code	>=	Codec)

								t.setCodec(codecList->at(code-Codec));

				else	if	(code	==	Uni)

								t.setEncoding(QTextStream::Unicode);

				else	if	(code	==	MBug)

								t.setEncoding(QTextStream::UnicodeReverse);

				else	if	(code	==	Lat1)

								t.setEncoding(QTextStream::Latin1);

				t	<<	e->text();

				f.close();

				setCaption(fileName);

				changed	=	FALSE;

				return	TRUE;

}

void	Editor::print()

{

#ifndef	QT_NO_PRINTER

				if	(printer.setup(this))	{																//	opens	printer	dialog

								printer.setFullPage(TRUE);														//	we'll	set	our	own	margins

								QPainter	p;

								p.begin(&printer);																				//	paint	on	printer

								p.setFont(e->font());

								QFontMetrics	fm	=	p.fontMetrics();

								QPaintDeviceMetrics	metrics(&printer);	//	need	width/height

																																																	//	of	printer	surface

								const	int	MARGIN	=	metrics.logicalDpiX()	/	2;	//	half-inch	margin

								int	yPos								=	MARGIN;															//	y	position	for	each	line

								for(int	i	=	0	;	i	<	e->numLines()	;	i++)	{

												if	(printer.aborted())

																break;

												if	(yPos	+	fm.lineSpacing()	>	metrics.height()	-	MARGIN)	{

																//	no	more	room	on	this	page

																if	(!printer.newPage())										//	start	new	page

																				break;																											//	some	error

																yPos	=	MARGIN;																			//	back	to	top	of	page

												}

												p.drawText(MARGIN,	yPos,	metrics.width()	-	2*MARGIN,

																								fm.lineSpacing(),	ExpandTabs,	e->textLine(i));

												yPos	+=	fm.lineSpacing();

								}

								p.end();																																//	send	job	to	printer

				}

#endif

}

void	Editor::resizeEvent(QResizeEvent	*)

{

				if	(e	&&	m)

								e->setGeometry(0,	m->height(),	width(),	height()	-	m->height

}

void	Editor::closeEvent(QCloseEvent	*event)

{

				event->accept();

				if	(changed)	{	//	the	text	has	been	changed

								switch	(QMessageBox::warning(this,	"Qwerty",

																																								"Save	changes	to	Document?",

																																								tr("&Yes"),

																																								tr("&No"),

																																								tr("Cancel"),

																																								0,	2))	{

								case	0:	//	yes

												if	(save())

																event->accept();

												else

																event->ignore();

												break;

								case	1:	//	no

												event->accept();

												break;

								default:	//	cancel

												event->ignore();

												break;

								}

				}

}

void	Editor::toUpper()

{

				e->setText(e->text().upper());

}

void	Editor::toLower()

{

				e->setText(e->text().lower());

}

void	Editor::textChanged()

{

				changed	=	TRUE;

}

Main:

/**

**	$Id:		qt/main.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	"qwerty.h"

int	main(int	argc,	char	**argv)

{

				QApplication	a(argc,	argv);

				bool	isSmall	=		qApp->desktop()->size().width()	<	450

																		||	qApp->desktop()->size().height()	<	450;

				int	i;

				for	(i=	argc	<=	1	?	0	:	1;	i<argc;	i++)	{

								Editor	*e	=	new	Editor;

								e->setCaption("Qt	Example	-	QWERTY");

								if	(i	>	0)

												e->load(argv[i]);

								if	(isSmall)	{

												e->showMaximized();

								}	else	{

												e->resize(400,	400);

												e->show();

								}

				}

				a.connect(&a,	SIGNAL(lastWindowClosed()),	&a,	SLOT(quit()));

				return	a.exec();

}

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Range	controls
This	examples	shows	various	types	of	range	controls	that	are	supported	by	Qt:
dials,	spin	boxes	and	sliders.

Header	file:

/**

**	$Id:		qt/rangecontrols.h			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	RANGECONTROLS_H

#define	RANGECONTROLS_H

#include	<qvbox.h>

class	QCheckBox;

class	RangeControls	:	public	QVBox

{

				Q_OBJECT

public:

				RangeControls(QWidget	*parent	=	0,	const	char	*name	=	0);

private:

				QCheckBox	*notches,	*wrapping;

};

#endif

Implementation:

/**

**	$Id:		qt/rangecontrols.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"rangecontrols.h"

#include	<qhbox.h>

#include	<qlcdnumber.h>

#include	<qspinbox.h>

#include	<qlabel.h>

#include	<qstring.h>

#include	<qslider.h>

#include	<qcheckbox.h>

#include	<limits.h>

RangeControls::RangeControls(QWidget	*parent,	const	char	*name)

				:	QVBox(parent,	name)

{

				QHBox	*row1	=	new	QHBox(this);

				QVBox	*cell2	=	new	QVBox(row1);

				cell2->setMargin(10);

				cell2->setFrameStyle(QFrame::WinPanel	|	QFrame::Sunken);

				(void)new	QWidget(cell2);

				QLabel	*label1	=	new	QLabel(QString("Enter	a	value	between\n%1	and	%2:").arg(-INT_MAX).arg(INT_MAX),	cell2);

				label1->setMaximumHeight(label1->sizeHint().height());

				QSpinBox	*sb1	=	new	QSpinBox(-INT_MAX,	INT_MAX,	1,	cell2);

				sb1->setValue(0);

				QLabel	*label2	=	new	QLabel("Enter	a	zoom	value:",	cell2);

				label2->setMaximumHeight(label2->sizeHint().height());

				QSpinBox	*sb2	=	new	QSpinBox(0,	1000,	10,	cell2);

				sb2->setSuffix("	%");

				sb2->setSpecialValueText("Automatic");

				QLabel	*label3	=	new	QLabel("Enter	a	price:",	cell2);

				label3->setMaximumHeight(label3->sizeHint().height());

				QSpinBox	*sb3	=	new	QSpinBox(0,	INT_MAX,	1,	cell2);

				sb3->setPrefix("$");

				sb3->setValue(355);

				(void)new	QWidget(cell2);

				QHBox	*row2	=	new	QHBox(this);

				QVBox	*cell3	=	new	QVBox(row2);

				cell3->setMargin(10);

				cell3->setFrameStyle(QFrame::WinPanel	|	QFrame::Sunken);

				QSlider	*hslider	=	new	QSlider(0,	64,	1,	33,	Qt::Horizontal,	cell3);

				QLCDNumber	*lcd2	=	new	QLCDNumber(2,	cell3);

				lcd2->display(33);

				lcd2->setSegmentStyle(QLCDNumber::Filled);

				connect(hslider,	SIGNAL(valueChanged(int)),	lcd2,	SLOT(display

				QHBox	*cell4	=	new	QHBox(row2);

				cell4->setFrameStyle(QFrame::WinPanel	|	QFrame::Sunken);

				cell4->setMargin(10);

				QSlider	*vslider	=	new	QSlider(0,	64,	1,	8,	Qt::Vertical,	cell4);

				QLCDNumber	*lcd3	=	new	QLCDNumber(3,	cell4);

				lcd3->display(8);

				connect(vslider,	SIGNAL(valueChanged(int)),	lcd3,	SLOT(display

}

Main:

/**

**	$Id:		qt/main.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"rangecontrols.h"

#include	<qapplication.h>

int	main(int	argc,	char	**argv)

{

				QApplication	a(argc,	argv);

				RangeControls	rangecontrols;

				rangecontrols.resize(500,	300);

				rangecontrols.setCaption("Qt	Example	-	Range	Control	Widgets");

				a.setMainWidget(&rangecontrols);

				rangecontrols.show();

				return	a.exec();

}

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Richtext
In	this	example	we	demonstrate	how	to	display	rich	text	in	a	widget.	To	do	this
some	sayings	taken	from	the	famous	Unix	"fortune"	are	displayed	nicely
formatted.

Header	file:

/**

**	$Id:		qt/richtext.h			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	RICHTEXT_H

#define	RICHTEXT_H

#include	<qvbox.h>

class	QTextView;

class	QPushButton;

class	MyRichText	:	public	QVBox

{

				Q_OBJECT

public:

				MyRichText(QWidget	*parent	=	0,	const	char	*name	=	0);

protected:

				QTextView	*view;

				QPushButton	*bClose,	*bNext,	*bPrev;

				int	num;

protected	slots:

				void	prev();

				void	next();

};

#endif

Implementation:

/**

**	$Id:		qt/richtext.cpp			3.0.5			edited	Oct	22	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"richtext.h"

#include	<qhbox.h>

#include	<qhbox.h>

#include	<qpushbutton.h>

#include	<qtextview.h>

#include	<qbrush.h>

#include	<qapplication.h>

static	const	char*	sayings[]	=	{

				"Saying	1:
"

				"<hr>

"

				"<big>Evil	is	that	which	one	believes	of	others.		It	is	a	sin	to	believe	evil	"

				"of	others,	but	it	is	seldom	a	mistake.</big>

"

				"<center><i>--	H.L.	Mencken</i></center>",

				"Saying	2:
"

				"<hr>

"

				"<big>A	well-used	door	needs	no	oil	on	its	hinges.
"

				"A	swift-flowing	steam	does	not	grow	stagnant.
"

				"Neither	sound	nor	thoughts	can	travel	through	a	vacuum.
"

				"Software	rots	if	not	used.

"

				"These	are	great	mysteries.</big>

"

				"<center><i>--	Geoffrey	James,	\"The	Tao	of	Programming\"</i></center>",

				"Saying	3:
"

				"<hr>

"

				"<big>Show	business	is	just	like	high	school,	except	you	get	paid.</big>

"

				"<center><i>--	Martin	Mull</i></center>",

				"Saying	4:
"

				"<hr>

"

				"<big>The	Least	Successful	Executions
"

				"<twocolumn><p>						History	has	furnished	us	with	two	executioners	worthy	of	attention.	"

				"The	first	performed	in	Sydney	in	Australia.		In	1803	three	attempts	were	"

				"made	to	hang	a	Mr.	Joseph	Samuels.		On	the	first	two	of	these	the	rope	"

				"snapped,	while	on	the	third	Mr.	Samuels	just	hung	there	peacefully	until	he	"

				"and	everyone	else	got	bored.		Since	he	had	proved	unsusceptible	to	capital	"

				"punishment,	he	was	reprieved.</p>"

				"<p>								The	most	important	British	executioner	was	Mr.	James	Berry	who	"

				"tried	three	times	in	1885	to	hang	Mr.	John	Lee	at	Exeter	Jail,	but	on	each	"

				"occasion	failed	to	get	the	trap	door	open.<!p>"

				"<p>								In	recognition	of	this	achievement,	the	Home	Secretary	commuted	"

				"Lee's	sentence	to	\"life\"	imprisonment.		He	was	released	in	1917,	emigrated	"

				"to	America	and	lived	until	1933.</p></twocolumn></big>

"

				"<center><i>--	Stephen	Pile,	\"The	Book	of	Heroic	Failures\"</i></center>",

				"Saying	5:
"

				"<hr>

"

				"<big>If	you	can,	help	others.		If	you	can't,	at	least	don't	hurt	others.</big>

"

				"<center><i>--	the	Dalai	Lama</i></center>",

				"Saying	6:
"

				"<hr>

"

				"<big>Television	has	brought	back	murder	into	the	home	--	where	it	belongs.</big>

"

				"<center><i>--	Alfred	Hitchcock</i></center>",

				"Saying	7:
"

				"<hr>

"

				"<big>I	don't	know	who	my	grandfather	was;	I	am	much	more	concerned	to	know	"

				"what	his	grandson	will	be.</big>

"

				"<center><i>--	Abraham	Lincoln</i></center>",

				0

};

MyRichText::MyRichText(QWidget	*parent,	const	char	*name)

				:	QVBox(parent,	name)

{

				setMargin(5);

				view	=	new	QTextView(this);

				view->setText("This	is	a	Test	with	<i>italic</i>	<u>stuff</u>");

				QBrush	paper;

				paper.setPixmap(QPixmap("../richtext/marble.png"));

				if	(paper.pixmap()	!=	0)

								view->setPaper(paper);

				else

								view->setPaper(white);

				view->setText(sayings[0]);

				view->setMinimumSize(450,	250);

				QHBox	*buttons	=	new	QHBox(this);

				buttons->setMargin(5);

				bClose	=	new	QPushButton("&Close",	buttons);

				bPrev	=	new	QPushButton("<<	&Prev",	buttons);

				bNext	=	new	QPushButton("&Next	>>",	buttons);

				bPrev->setEnabled(FALSE);

				connect(bClose,	SIGNAL(clicked()),	qApp,	SLOT(quit()));

				connect(bPrev,	SIGNAL(clicked()),	this,	SLOT(prev()));

				connect(bNext,	SIGNAL(clicked()),	this,	SLOT(next()));

				num	=	0;

}

void	MyRichText::prev()

{

				if	(num	<=	0)

								return;

				num--;

				view->setText(sayings[num]);

				if	(num	==	0)

								bPrev->setEnabled(FALSE);

				bNext->setEnabled(TRUE);

}

void	MyRichText::next()

{

				if	(!sayings[++num])

								return;

				view->setText(sayings[num]);

				if	(!sayings[num	+	1])

								bNext->setEnabled(FALSE);

				bPrev->setEnabled(TRUE);

}

Main:

/**

**	$Id:		qt/main.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"richtext.h"

#include	<qapplication.h>

int	main(int	argc,	char	**argv)

{

				QApplication	a(argc,	argv);

				MyRichText	richtext;

				richtext.resize(450,	350);

				richtext.setCaption("Qt	Example	-	Richtext");

				a.setMainWidget(&richtext);

				richtext.show();

				return	a.exec();

}

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Rot13
This	example	lets	you	enter	a	text	into	a	mulitilineedit	widget.	It	will	be
displayed	in	the	edit	widget	to	the	right	transformed	using	the	rot13	algorithm.

Header	file:

/**

**	$Id:		qt/rot13.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	something	or	other

**

**	Created	:	979899

**

**	Copyright	(C)	1997	by	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	ROT13_H

#define	ROT13_H

#include	<qwidget.h>

class	QMultiLineEdit;

class	Rot13:	public	QWidget	{

				Q_OBJECT

public:

				Rot13();

				QString	rot13(const	QString	&)	const;

private	slots:

				void	changeLeft();

				void	changeRight();

private:

				QMultiLineEdit	*	left,	*	right;

};

#endif

Implementation:

/**

**	$Id:		qt/rot13.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"rot13.h"

#include	<qmultilineedit.h>

#include	<qpushbutton.h>

#include	<qapplication.h>

#include	<qlayout.h>

Rot13::Rot13()

{

				left	=	new	QMultiLineEdit(this,	"left");

				right	=	new	QMultiLineEdit(this,	"right");

				connect(left,	SIGNAL(textChanged()),	this,	SLOT(changeRight()));

				connect(right,	SIGNAL(textChanged()),	this,	SLOT(changeLeft()));

				QPushButton	*	quit	=	new	QPushButton("&Quit",	this);

				quit->setFocusPolicy(NoFocus);

				connect(quit,	SIGNAL(clicked()),	qApp,	SLOT(quit()));

				QGridLayout	*	l	=	new	QGridLayout(this,	2,	2,	5);

				l->addWidget(left,	0,	0);

				l->addWidget(right,	0,	1);

				l->addWidget(quit,	1,	1,	AlignRight);

				left->setFocus();

}

void	Rot13::changeLeft()

{

				left->blockSignals(TRUE);

				left->setText(rot13(right->text()));

				left->blockSignals(FALSE);

}

void	Rot13::changeRight()

{

				right->blockSignals(TRUE);

				right->setText(rot13(left->text()));

				right->blockSignals(FALSE);

}

QString	Rot13::rot13(const	QString	&	input)	const

{

				QString	r	=	input;

				int	i	=	r.length();

				while(i--)	{

								if	(r[i]	>=	QChar('A')	&&	r[i]	<=	QChar('M')	||

													r[i]	>=	QChar('a')	&&	r[i]	<=	QChar('m'))

												r[i]	=	(char)((int)QChar(r[i])	+	13);

								else	if		(r[i]	>=	QChar('N')	&&	r[i]	<=	QChar('Z')	||

																			r[i]	>=	QChar('n')	&&	r[i]	<=	QChar('z'))

												r[i]	=	(char)((int)QChar(r[i])	-	13);

				}

				return	r;

}

int	main(int	argc,	char	**	argv)

{

				QApplication	a(argc,	argv);

				Rot13	r;

				r.resize(400,	400);

				a.setMainWidget(&r);

				r.setCaption("Qt	Example	-	ROT13");

				r.show();

				return	a.exec();

}

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Simple	Painting	Application
This	example	implements	the	famous	scribble	example.	You	can	draw	around	in
the	canvas	with	different	pens	and	save	the	result	as	picture.

Header	file:

/**

**	$Id:		qt/scribble.h			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	SCRIBBLE_H

#define	SCRIBBLE_H

#include	<qmainwindow.h>

#include	<qpen.h>

#include	<qpoint.h>

#include	<qpixmap.h>

#include	<qwidget.h>

#include	<qstring.h>

#include	<qpointarray.h>

class	QMouseEvent;

class	QResizeEvent;

class	QPaintEvent;

class	QToolButton;

class	QSpinBox;

class	Canvas	:	public	QWidget

{

				Q_OBJECT

public:

				Canvas(QWidget	*parent	=	0,	const	char	*name	=	0);

				void	setPenColor(const	QColor	&c)

				{	pen.setColor(c);	}

				void	setPenWidth(int	w)

				{	pen.setWidth(w);	}

				QColor	penColor()

				{	return	pen.color();	}

				int	penWidth()

				{	return	pen.width();	}

				void	save(const	QString	&filename,	const	QString	&format);

				void	clearScreen();

protected:

				void	mousePressEvent(QMouseEvent	*e);

				void	mouseReleaseEvent(QMouseEvent	*e);

				void	mouseMoveEvent(QMouseEvent	*e);

				void	resizeEvent(QResizeEvent	*e);

				void	paintEvent(QPaintEvent	*e);

				QPen	pen;

				QPointArray	polyline;

				bool	mousePressed;

				QPixmap	buffer;

};

class	Scribble	:	public	QMainWindow

{

				Q_OBJECT

public:

				Scribble(QWidget	*parent	=	0,	const	char	*name	=	0);

protected:

				Canvas*	canvas;

				QSpinBox	*bPWidth;

				QToolButton	*bPColor,	*bSave,	*bClear;

protected	slots:

				void	slotSave();

				void	slotColor();

				void	slotWidth(int);

				void	slotClear();

};

#endif

Implementation:

/**

**	$Id:		qt/scribble.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"scribble.h"

#include	<qapplication.h>

#include	<qevent.h>

#include	<qpainter.h>

#include	<qtoolbar.h>

#include	<qtoolbutton.h>

#include	<qspinbox.h>

#include	<qtooltip.h>

#include	<qrect.h>

#include	<qpoint.h>

#include	<qcolordialog.h>

#include	<qfiledialog.h>

#include	<qcursor.h>

#include	<qimage.h>

#include	<qstrlist.h>

#include	<qpopupmenu.h>

#include	<qintdict.h>

const	bool	no_writing	=	FALSE;

Canvas::Canvas(QWidget	*parent,	const	char	*name)

				:	QWidget(parent,	name,	WStaticContents),	pen(Qt::red,	3),	polyline(3),

						mousePressed(FALSE),	buffer(width(),	height())

{

				if	((qApp->argc()	>	0)	&&	!buffer.load(qApp->argv()[1]))

								buffer.fill(colorGroup().base());

				setBackgroundMode(QWidget::PaletteBase);

#ifndef	QT_NO_CURSOR

				setCursor(Qt::crossCursor);

#endif

}

void	Canvas::save(const	QString	&filename,	const	QString	&format)

{

				if	(!no_writing)

								buffer.save(filename,	format.upper());

}

void	Canvas::clearScreen()

{

				buffer.fill(colorGroup().base());

				repaint(FALSE);

}

void	Canvas::mousePressEvent(QMouseEvent	*e)

{

				mousePressed	=	TRUE;

				polyline[2]	=	polyline[1]	=	polyline[0]	=	e->pos();

}

void	Canvas::mouseReleaseEvent(QMouseEvent	*)

{

				mousePressed	=	FALSE;

}

void	Canvas::mouseMoveEvent(QMouseEvent	*e)

{

				if	(mousePressed)	{

								QPainter	painter;

								painter.begin(&buffer);

								painter.setPen(pen);

								polyline[2]	=	polyline[1];

								polyline[1]	=	polyline[0];

								polyline[0]	=	e->pos();

								painter.drawPolyline(polyline);

								painter.end();

								QRect	r	=	polyline.boundingRect();

								r	=	r.normalize();

								r.setLeft(r.left()	-	penWidth());

								r.setTop(r.top()	-	penWidth());

								r.setRight(r.right()	+	penWidth());

								r.setBottom(r.bottom()	+	penWidth());

								bitBlt(this,	r.x(),	r.y(),	&buffer,	r.x(),	r.y(),	r.width(),	r.

				}

}

void	Canvas::resizeEvent(QResizeEvent	*e)

{

				QWidget::resizeEvent(e);

				int	w	=	width()	>	buffer.width()	?

												width()	:	buffer.width();

				int	h	=	height()	>	buffer.height()	?

												height()	:	buffer.height();

				QPixmap	tmp(buffer);

				buffer.resize(w,	h);

				buffer.fill(colorGroup().base());

				bitBlt(&buffer,	0,	0,	&tmp,	0,	0,	tmp.width(),	tmp.height());

}

void	Canvas::paintEvent(QPaintEvent	*e)

{

				QWidget::paintEvent(e);

				QMemArray<QRect>	rects	=	e->region().rects();

				for	(uint	i	=	0;	i	<	rects.count();	i++)	{

								QRect	r	=	rects[(int)i];

								bitBlt(this,	r.x(),	r.y(),	&buffer,	r.x(),	r.y(),	r.width(),	r.

				}

}

//--

Scribble::Scribble(QWidget	*parent,	const	char	*name)

				:	QMainWindow(parent,	name)

{

				canvas	=	new	Canvas(this);

				setCentralWidget(canvas);

				QToolBar	*tools	=	new	QToolBar(this);

				bSave	=	new	QToolButton(QPixmap(),	"Save",	"Save	as	PNG	image",	this,	SLOT(slotSave()),	tools);

				bSave->setText("Save	as...");

				tools->addSeparator();

				bPColor	=	new	QToolButton(QPixmap(),	"Choose	Pen	Color",	"Choose	Pen	Color",	this,	SLOT(slotColor()),	tools);

				bPColor->setText("Choose	Pen	Color...");

				tools->addSeparator();

				bPWidth	=	new	QSpinBox(1,	20,	1,	tools);

				QToolTip::add(bPWidth,	"Choose	Pen	Width");

				connect(bPWidth,	SIGNAL(valueChanged(int)),	this,	SLOT(slotWidth(int)));

				bPWidth->setValue(3);

				tools->addSeparator();

				bClear	=	new	QToolButton(QPixmap(),	"Clear	Screen",	"Clear	Screen",	this,	SLOT(slotClear()),	tools);

				bClear->setText("Clear	Screen");

}

void	Scribble::slotSave()

{

				QPopupMenu	*menu	=	new	QPopupMenu(0);

				QIntDict<QString>	formats;

				formats.setAutoDelete(TRUE);

				for	(unsigned	int	i	=	0;	i	<	QImageIO::outputFormats().count();	i++)	{

								QString	str	=	QString(QImageIO::outputFormats().at(i));

								formats.insert(menu->insertItem(QString("%1...").arg(str)),	new	

				}

				menu->setMouseTracking(TRUE);

				int	id	=	menu->exec(bSave->mapToGlobal(QPoint(0,	bSave->height

				if	(id	!=	-1)	{

								QString	format	=	*formats[id];

								QString	filename	=	QFileDialog::getSaveFileName(QString::null

								if	(!filename.isEmpty())

												canvas->save(filename,	format);

				}

				delete	menu;

}

void	Scribble::slotColor()

{

				QColor	c	=	QColorDialog::getColor(canvas->penColor(),	this);

				if	(c.isValid())

								canvas->setPenColor(c);

}

void	Scribble::slotWidth(int	w)

{

				canvas->setPenWidth(w);

}

void	Scribble::slotClear()

{

				canvas->clearScreen();

}

Main:

/**

**	$Id:		qt/main.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"scribble.h"

#include	<qapplication.h>

int	main(int	argc,	char	**argv)

{

				QApplication	a(argc,	argv);

				Scribble	scribble;

				scribble.resize(500,	350);

				scribble.setCaption("Qt	Example	-	Scribble");

				a.setMainWidget(&scribble);

				if	(QApplication::desktop()->width()	>	550

									&&	QApplication::desktop()->height()	>	366)

								scribble.show();

				else

								scribble.showMaximized();

				return	a.exec();

}

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Scrollview
This	example	shows	how	to	use	Qt's	scrollview.	This	is	a	widget	optimized	for
very	large	contents.

Implementation:

/**

**	$Id:		qt/scrollview.cpp			3.0.5			edited	Oct	15	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qscrollview.h>

#include	<qapplication.h>

#include	<qmenubar.h>

#include	<qpopupmenu.h>

#include	<qpushbutton.h>

#include	<qpainter.h>

#include	<qpixmap.h>

#include	<qmessagebox.h>

#include	<qlayout.h>

#include	<qlabel.h>

#include	<qmultilineedit.h>

#include	<qsizegrip.h>

#include	<stdlib.h>

static	const	int	style_id							=	0x1000;

static	const	int	lw_id										=	0x2000;

static	const	int	mlw_id									=	0x4000;

static	const	int	mw_id										=	0x8000;

static	const	int	max_lw									=	16;

static	const	int	max_mlw								=	5;

static	const	int	max_mw									=	10;

class	BigShrinker	:	public	QFrame	{

				Q_OBJECT

public:

				BigShrinker(QWidget*	parent)	:

								QFrame(parent)

				{

								setFrameStyle(QFrame::Box|QFrame::Sunken);

								int	h=35;

								int	b=0;

								for	(int	y=0;	y<2000-h;	y+=h+10)	{

												if	(y	==	0)	{

																QButton*	q=new	QPushButton("Quit",	this);

																connect(q,	SIGNAL(clicked()),	qApp,	SLOT(quit()));

												}	else	{

																QString	str;

																if	(b	>	0)	{

																				str.sprintf("Button	%d",	b++);

																}	else	{

																				str	=	"I'm	shrinking!";

																				++b;

																}

																(new	QPushButton(str,	this))->move(y/2,y);

												}

								}

								resize(1000,2000);

								startTimer(250);

				}

				void	timerEvent(QTimerEvent*)

				{

								int	w=width();

								int	h=height();

								if	(w	>	50)	w	-=	1;

								if	(h	>	50)	h	-=	2;

								resize(w,h);

				}

				void	mouseReleaseEvent(QMouseEvent*	e)

				{

								emit	clicked(e->x(),	e->y());

				}

signals:

				void	clicked(int,int);

};

class	BigMatrix	:	public	QScrollView	{

				QMultiLineEdit	*dragging;

public:

				BigMatrix(QWidget*	parent)	:

								QScrollView(parent,"matrix",	WStaticContents),

								bg("bg.ppm")

				{

								bg.load("bg.ppm");

								resizeContents(400000,300000);

								dragging	=	0;

				}

				void	viewportMousePressEvent(QMouseEvent*	e)

				{

								int	x,	y;

								viewportToContents(e->x(),		e->y(),	x,	y);

								dragging	=	new	QMultiLineEdit(viewport(),"Another");

								dragging->setText("Thanks!");

								dragging->resize(100,100);

								addChild(dragging,	x,	y);

								showChild(dragging);

				}

				void	viewportMouseReleaseEvent(QMouseEvent*)

				{

								dragging	=	0;

				}

				void	viewportMouseMoveEvent(QMouseEvent*	e)

				{

								if	(dragging)	{

												int	mx,	my;

												viewportToContents(e->x(),		e->y(),	mx,	my);

												int	cx	=	childX(dragging);

												int	cy	=	childY(dragging);

												int	w	=	mx	-	cx	+	1;

												int	h	=	my	-	cy	+	1;

												QString	msg;

												msg.sprintf("at	(%d,%d)	%d	by	%d",cx,cy,w,h);

												dragging->setText(msg);

												dragging->resize(w,h);

								}

				}

protected:

				void	drawContents(QPainter*	p,	int	cx,	int	cy,	int	cw,	int	ch)

				{

								//	The	Background

								if	(!bg.isNull())	{

												int	rowheight=bg.height();

												int	toprow=cy/rowheight;

												int	bottomrow=(cy+ch+rowheight-1)/rowheight;

												int	colwidth=bg.width();

												int	leftcol=cx/colwidth;

												int	rightcol=(cx+cw+colwidth-1)/colwidth;

												for	(int	r=toprow;	r<=bottomrow;	r++)	{

																int	py=r*rowheight;

																for	(int	c=leftcol;	c<=rightcol;	c++)	{

																				int	px=c*colwidth;

																				p->drawPixmap(px,	py,	bg);

																}

												}

								}	else	{

												p->fillRect(cx,	cy,	cw,	ch,	QColor(240,222,208));

								}

								//	The	Numbers

								{

												QFontMetrics	fm=p->fontMetrics();

												int	rowheight=fm.lineSpacing();

												int	toprow=cy/rowheight;

												int	bottomrow=(cy+ch+rowheight-1)/rowheight;

												int	colwidth=fm.width("00000,000000	")+3;

												int	leftcol=cx/colwidth;

												int	rightcol=(cx+cw+colwidth-1)/colwidth;

												QString	str;

												for	(int	r=toprow;	r<=bottomrow;	r++)	{

																int	py=r*rowheight;

																for	(int	c=leftcol;	c<=rightcol;	c++)	{

																				int	px=c*colwidth;

																				str.sprintf("%d,%d",c,r);

																				p->drawText(px+3,	py+fm.ascent(),	str);

																}

												}

												//	The	Big	Hint

												if	(leftcol<10	&&	toprow<5)	{

																p->setFont(QFont("Charter",30));

																p->setPen(red);

																QString	text;

																text.sprintf("HINT:		Look	at	%d,%d",215000/colwidth,115000/rowheight);

																p->drawText(100,50,text);

												}

								}

								//	The	Big	X

								{

												if	(cx+cw>200000	&&	cy+ch>100000	&&	cx<230000	&&	cy<130000)	{

																//	Note	that	some	X	server	cannot	even	handle	co-ordinates

																//	beyond	about	4000,	so	you	might	not	see	this.

																p->drawLine(200000,100000,229999,129999);

																p->drawLine(229999,100000,200000,129999);

																//	X	marks	the	spot!

																p->setFont(QFont("Charter",100));

																p->setPen(blue);

																p->drawText(215000-500,115000-100,1000,200,AlignCenter,"YOU	WIN!!!!!");

												}

								}

				}

private:

				QPixmap	bg;

};

class	ScrollViewExample	:	public	QWidget	{

				Q_OBJECT

public:

				ScrollViewExample(int	technique,	QWidget*	parent=0,	const	char*	name=0)	:

								QWidget(parent,name)

				{

								QMenuBar*	menubar	=	new	QMenuBar(this);

								Q_CHECK_PTR(menubar);

								QPopupMenu*	file	=	new	QPopupMenu(menubar);

								Q_CHECK_PTR(file);

								menubar->insertItem("&File",	file);

								file->insertItem("Quit",	qApp,		SLOT(quit()));

								vp_options	=	new	QPopupMenu(menubar);

								Q_CHECK_PTR(vp_options);

								vp_options->setCheckable(TRUE);

								menubar->insertItem("&ScrollView",	vp_options);

								connect(vp_options,	SIGNAL(activated(int)),

												this,	SLOT(doVPMenuItem(int)));

								vauto_id	=	vp_options->insertItem("Vertical	Auto");

								vaoff_id	=	vp_options->insertItem("Vertical	AlwaysOff");

								vaon_id	=	vp_options->insertItem("Vertical	AlwaysOn");

								vp_options->insertSeparator();

								hauto_id	=	vp_options->insertItem("Horizontal	Auto");

								haoff_id	=	vp_options->insertItem("Horizontal	AlwaysOff");

								haon_id	=	vp_options->insertItem("Horizontal	AlwaysOn");

								vp_options->insertSeparator();

								corn_id	=	vp_options->insertItem("cornerWidget");

								if	(technique	==	1)	{

												vp	=	new	QScrollView(this);

												BigShrinker	*bs	=	new	BigShrinker(0);//(vp->viewport());

												vp->addChild(bs);

												bs->setAcceptDrops(TRUE);

												QObject::connect(bs,	SIGNAL(clicked(int,int)),

																												vp,	SLOT(center(int,int)));

								}	else	{

												vp	=	new	BigMatrix(this);

												if	(technique	==	3)

																vp->enableClipper(TRUE);

												srand(1);

												for	(int	i=0;	i<30;	i++)	{

																QMultiLineEdit	*l	=	new	QMultiLineEdit(vp->viewport(),"First");

																l->setText("Drag	out	more	of	these.");

																l->resize(100,100);

																vp->addChild(l,	rand()%800,	rand()%10000);

												}

												vp->viewport()->setBackgroundMode(NoBackground);

								}

								f_options	=	new	QPopupMenu(menubar);

								Q_CHECK_PTR(f_options);

								f_options->setCheckable(TRUE);

								menubar->insertItem("F&rame",	f_options);

								connect(f_options,	SIGNAL(activated(int)),

												this,	SLOT(doFMenuItem(int)));

								f_options->insertItem("No	Frame",	style_id);

								f_options->insertItem("Box",	style_id|QFrame::Box);

								f_options->insertItem("Panel",	style_id|QFrame::Panel);

								f_options->insertItem("WinPanel",	style_id|QFrame::WinPanel);

								f_options->insertSeparator();

								f_options->insertItem("Plain",	style_id|QFrame::Plain);

								f_options->insertItem("Raised",	style_id|QFrame::Raised);

								f_laststyle	=	f_options->indexOf(

												f_options->insertItem("Sunken",	style_id|QFrame::Sunken));

								f_options->insertSeparator();

								lw_options	=	new	QPopupMenu(menubar);

								Q_CHECK_PTR(lw_options);

								lw_options->setCheckable(TRUE);

								for	(int	lw	=	1;	lw	<=	max_lw;	lw++)	{

												QString	str;

												str.sprintf("%d	Pixels",	lw);

												lw_options->insertItem(str,	lw_id	|	lw);

								}

								f_options->insertItem("Line	Width",	lw_options);

								connect(lw_options,	SIGNAL(activated(int)),

												this,	SLOT(doFMenuItem(int)));

								mlw_options	=	new	QPopupMenu(menubar);

								Q_CHECK_PTR(mlw_options);

								mlw_options->setCheckable(TRUE);

								for	(int	mlw	=	0;	mlw	<=	max_mlw;	mlw++)	{

												QString	str;

												str.sprintf("%d	Pixels",	mlw);

												mlw_options->insertItem(str,	mlw_id	|	mlw);

								}

								f_options->insertItem("Midline	Width",	mlw_options);

								connect(mlw_options,	SIGNAL(activated(int)),

												this,	SLOT(doFMenuItem(int)));

								mw_options	=	new	QPopupMenu(menubar);

								Q_CHECK_PTR(mw_options);

								mw_options->setCheckable(TRUE);

								for	(int	mw	=	0;	mw	<=	max_mw;	mw++)	{

												QString	str;

												str.sprintf("%d	Pixels",	mw);

												mw_options->insertItem(str,	mw_id	|	mw);

								}

								f_options->insertItem("Margin	Width",	mw_options);

								connect(mw_options,	SIGNAL(activated(int)),

												this,	SLOT(doFMenuItem(int)));

								setVPMenuItems();

								setFMenuItems();

								QVBoxLayout*	vbox	=	new	QVBoxLayout(this);

								vbox->setMenuBar(menubar);

								menubar->setSeparator(QMenuBar::InWindowsStyle);

								vbox->addWidget(vp);

								vbox->activate();

								corner	=	new	QSizeGrip(this);

								corner->hide();

				}

private	slots:

				void	doVPMenuItem(int	id)

				{

								if	(id	==	vauto_id)	{

												vp->setVScrollBarMode(QScrollView::Auto);

								}	else	if	(id	==	vaoff_id)	{

												vp->setVScrollBarMode(QScrollView::AlwaysOff);

								}	else	if	(id	==	vaon_id)	{

												vp->setVScrollBarMode(QScrollView::AlwaysOn);

								}	else	if	(id	==	hauto_id)	{

												vp->setHScrollBarMode(QScrollView::Auto);

								}	else	if	(id	==	haoff_id)	{

												vp->setHScrollBarMode(QScrollView::AlwaysOff);

								}	else	if	(id	==	haon_id)	{

												vp->setHScrollBarMode(QScrollView::AlwaysOn);

								}	else	if	(id	==	corn_id)	{

												bool	corn	=	!vp->cornerWidget();

												vp->setCornerWidget(corn	?	corner	:	0);

								}	else	{

												return;	//	Not	for	us	to	process.

								}

								setVPMenuItems();

				}

				void	setVPMenuItems()

				{

								QScrollView::ScrollBarMode	vm	=	vp->vScrollBarMode();

								vp_options->setItemChecked(vauto_id,	vm	==	QScrollView::Auto);

								vp_options->setItemChecked(vaoff_id,	vm	==	QScrollView::AlwaysOff);

								vp_options->setItemChecked(vaon_id,	vm	==	QScrollView::AlwaysOn);

								QScrollView::ScrollBarMode	hm	=	vp->hScrollBarMode();

								vp_options->setItemChecked(hauto_id,	hm	==	QScrollView::Auto);

								vp_options->setItemChecked(haoff_id,	hm	==	QScrollView::AlwaysOff);

								vp_options->setItemChecked(haon_id,	hm	==	QScrollView::AlwaysOn);

								vp_options->setItemChecked(corn_id,	!!vp->cornerWidget());

				}

				void	doFMenuItem(int	id)

				{

								if	(id	&	style_id)	{

												int	sty;

												if	(id	==	style_id)	{

																sty	=	0;

												}	else	if	(id	&	QFrame::MShape)	{

																sty	=	vp->frameStyle()&QFrame::MShadow;

																sty	=	(sty	?	sty	:	QFrame::Plain)	|	(id&QFrame::MShape);

												}	else	{

																sty	=	vp->frameStyle()&QFrame::MShape;

																sty	=	(sty	?	sty	:	QFrame::Box)	|	(id&QFrame::MShadow);

												}

												vp->setFrameStyle(sty);

								}	else	if	(id	&	lw_id)	{

												vp->setLineWidth(id&~lw_id);

								}	else	if	(id	&	mlw_id)	{

												vp->setMidLineWidth(id&~mlw_id);

								}	else	{

												vp->setMargin(id&~mw_id);

								}

								vp->update();

								setFMenuItems();

				}

				void	setFMenuItems()

				{

								int	sty	=	vp->frameStyle();

								f_options->setItemChecked(style_id,	!sty);

								for	(int	i=1;	i	<=	f_laststyle;	i++)	{

												int	id	=	f_options->idAt(i);

												if	(id	&	QFrame::MShape)

																f_options->setItemChecked(id,

																				((id&QFrame::MShape)	==	(sty&QFrame::MShape)));

												else

																f_options->setItemChecked(id,

																				((id&QFrame::MShadow)	==	(sty&QFrame::MShadow)));

								}

								for	(int	lw=1;	lw<=max_lw;	lw++)

												lw_options->setItemChecked(lw_id|lw,	vp->lineWidth()	==	lw);

								for	(int	mlw=0;	mlw<=max_mlw;	mlw++)

												mlw_options->setItemChecked(mlw_id|mlw,	vp->midLineWidth

								for	(int	mw=0;	mw<=max_mw;	mw++)

												mw_options->setItemChecked(mw_id|mw,	vp->margin()	==	mw);

				}

private:

				QScrollView*	vp;

				QPopupMenu*	vp_options;

				QPopupMenu*	f_options;

				QPopupMenu*	lw_options;

				QPopupMenu*	mlw_options;

				QPopupMenu*	mw_options;

				QSizeGrip*	corner;

				int	vauto_id,	vaoff_id,	vaon_id,

								hauto_id,	haoff_id,	haon_id,

								corn_id;

				int	f_laststyle;

};

int	main(int	argc,	char	**argv)

{

				QApplication	a(argc,	argv);

				ScrollViewExample	ve1(1,0,"ve1");

				ScrollViewExample	ve2(2,0,"ve2");

				ScrollViewExample	ve3(3,0,"ve3");

				ve1.setCaption("Qt	Example	-	Scrollviews");

				ve1.show();

				ve2.setCaption("Qt	Example	-	Scrollviews");

				ve2.show();

				ve3.setCaption("Qt	Example	-	Scrollviews");

				ve3.show();

				QObject::connect(qApp,	SIGNAL(lastWindowClosed()),	qApp,	SLOT(quit

				return	a.exec();

}

#include	"scrollview.moc"

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Show	Image
This	example	reads	and	displays	an	image	in	any	supported	image	format	(GIF,
BMP,	PPM,	XMP,	etc.).

Header	file:

/**

**	$Id:		qt/showimg.h			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	SHOWIMG_H

#define	SHOWIMG_H

#include	<qwidget.h>

#include	<qimage.h>

class	QLabel;

class	QMenuBar;

class	QPopupMenu;

class	ImageViewer	:	public	QWidget

{

				Q_OBJECT

public:

				ImageViewer(QWidget	*parent=0,	const	char	*name=0,	int	wFlags=0);

				~ImageViewer();

				bool								loadImage(const	char	*fileName);

protected:

				void								paintEvent(QPaintEvent	*);

				void								resizeEvent(QResizeEvent	*);

				void								mousePressEvent(QMouseEvent	*);

				void								mouseReleaseEvent(QMouseEvent	*);

				void								mouseMoveEvent(QMouseEvent	*);

private:

				void								scale();

				int									conversion_flags;

				bool								smooth()	const;

				bool								useColorContext()	const;

				int									alloc_context;

				bool								convertEvent(QMouseEvent*	e,	int&	x,	int&	y);

				const	char*	filename;

				QImage						image;																		//	the	loaded	image

				QPixmap					pm;																					//	the	converted	pixmap

				QPixmap					pmScaled;															//	the	scaled	pixmap

				QMenuBar			*menubar;

				QPopupMenu		*file;

				QPopupMenu			*saveimage;

				QPopupMenu			*savepixmap;

				QPopupMenu		*edit;

				QPopupMenu		*options;

				QWidget				*helpmsg;

				QLabel					*status;

				int									si,	sp,	ac,	co,	mo,	fd,	bd,	//	Menu	item	ids

																td,	ta,	ba,	fa,	au,	ad,	dd,

																ss,	cc,	t1,	t8,	t32;

				void								updateStatus();

				void								setMenuItemFlags();

				bool								reconvertImage();

				int									pickx,	picky;

				int									clickx,	clicky;

				bool								may_be_other;

				static	ImageViewer*	other;

				void								setImage(const	QImage&	newimage);

private	slots:

				void								to1Bit();

				void								to8Bit();

				void								to32Bit();

				void								toBitDepth(int);

				void								copy();

				void								paste();

				void								hFlip();

				void								vFlip();

				void								rot180();

				void								editText();

				void								newWindow();

				void								openFile();

				void								saveImage(int);

				void								savePixmap(int);

				void								giveHelp();

				void								doOption(int);

				void								copyFrom(ImageViewer*);

};

#endif	//	SHOWIMG_H

Implementation:

/**

**	$Id:		qt/showimg.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"showimg.h"

#include	"imagetexteditor.h"

#include	<qmenubar.h>

#include	<qfiledialog.h>

#include	<qmessagebox.h>

#include	<qpopupmenu.h>

#include	<qlabel.h>

#include	<qpainter.h>

#include	<qapplication.h>

#include	<qclipboard.h>

/*

		In	the	constructor,	we	just	pass	the	standard	parameters	on	to

		QWidget.

		The	menu	uses	a	single	slot	to	simplify	the	process	of	adding

		more	items	to	the	options	menu.

*/

ImageViewer::ImageViewer(QWidget	*parent,	const	char	*name,	int	wFlags)

				:	QWidget(parent,	name,	wFlags),

						conversion_flags(PreferDither),

						filename(0),

						helpmsg(0)

{

				pickx	=	-1;

				picky	=	-1;

				clickx	=	-1;

				clicky	=	-1;

				alloc_context	=	0;

				menubar	=	new	QMenuBar(this);

				menubar->setSeparator(QMenuBar::InWindowsStyle);

				QStrList	fmt	=	QImage::outputFormats();

				saveimage	=	new	QPopupMenu(menubar);

				savepixmap	=	new	QPopupMenu(menubar);

				for	(const	char*	f	=	fmt.first();	f;	f	=	fmt.next())	{

								saveimage->insertItem(f);

								savepixmap->insertItem(f);

				}

				connect(saveimage,	SIGNAL(activated(int)),	this,	SLOT(saveImage(int)));

				connect(savepixmap,	SIGNAL(activated(int)),	this,	SLOT(savePixmap(int)));

				file	=	new	QPopupMenu(menubar);

				menubar->insertItem("&File",	file);

				file->insertItem("&New	window",	this,		SLOT(newWindow()),	CTRL+Key_N);

				file->insertItem("&Open...",	this,		SLOT(openFile()),	CTRL+Key_O);

				si	=	file->insertItem("Save	image",	saveimage);

				sp	=	file->insertItem("Save	pixmap",	savepixmap);

				file->insertSeparator();

				file->insertItem("E&xit",	qApp,		SLOT(quit()),	CTRL+Key_Q);

				edit	=		new	QPopupMenu(menubar);

				menubar->insertItem("&Edit",	edit);

				edit->insertItem("&Copy",	this,	SLOT(copy()),	CTRL+Key_C);

				edit->insertItem("&Paste",	this,	SLOT(paste()),	CTRL+Key_V);

				edit->insertSeparator();

				edit->insertItem("&Horizontal	flip",	this,	SLOT(hFlip()),	ALT+Key_H);

				edit->insertItem("&Vertical	flip",	this,	SLOT(vFlip()),	ALT+Key_V);

				edit->insertItem("&Rotate	180",	this,	SLOT(rot180()),	ALT+Key_R);

				edit->insertSeparator();

				edit->insertItem("&Text...",	this,	SLOT(editText()));

				edit->insertSeparator();

				t1	=	edit->insertItem("Convert	to	&1	bit",	this,	SLOT(to1Bit()));

				t8	=	edit->insertItem("Convert	to	&8	bit",	this,	SLOT(to8Bit()));

				t32	=	edit->insertItem("Convert	to	&32	bit",	this,	SLOT(to32Bit()));

				options	=		new	QPopupMenu(menubar);

				menubar->insertItem("&Options",	options);

				ac	=	options->insertItem("AutoColor");

				co	=	options->insertItem("ColorOnly");

				mo	=	options->insertItem("MonoOnly");

				options->insertSeparator();

				fd	=	options->insertItem("DiffuseDither");

				bd	=	options->insertItem("OrderedDither");

				td	=	options->insertItem("ThresholdDither");

				options->insertSeparator();

				ta	=	options->insertItem("ThresholdAlphaDither");

				ba	=	options->insertItem("OrderedAlphaDither");

				fa	=	options->insertItem("DiffuseAlphaDither");

				options->insertSeparator();

				ad	=	options->insertItem("PreferDither");

				dd	=	options->insertItem("AvoidDither");

				options->insertSeparator();

				ss	=	options->insertItem("Smooth	scaling");

				cc	=	options->insertItem("Use	color	context");

				if	(QApplication::colorSpec()	==	QApplication::ManyColor)

								options->setItemEnabled(cc,	FALSE);

				options->setCheckable(TRUE);

				setMenuItemFlags();

				menubar->insertSeparator();

				QPopupMenu*	help	=	new	QPopupMenu(menubar);

				menubar->insertItem("&Help",	help);

				help->insertItem("Help!",	this,	SLOT(giveHelp()),	CTRL+Key_H);

				connect(options,	SIGNAL(activated(int)),	this,	SLOT(doOption(int)));

				status	=	new	QLabel(this);

				status->setFrameStyle(QFrame::WinPanel	|	QFrame::Sunken);

				status->setFixedHeight(fontMetrics().height()	+	4);

				setMouseTracking(TRUE);

}

ImageViewer::~ImageViewer()

{

				if	(alloc_context)

								QColor::destroyAllocContext(alloc_context);

				if	(other	==	this)

								other	=	0;

}

/*

		This	function	modifies	the	conversion_flags	when	an	options	menu	item

		is	selected,	then	ensures	all	menu	items	are	up	to	date,	and	reconverts

		the	image	if	possibly	necessary.

*/

void	ImageViewer::doOption(int	item)

{

				if	(item	==	ss	||	item	==	cc)	{

								//	Toggle

								bool	newbool	=	!options->isItemChecked(item);

								options->setItemChecked(item,	newbool);

								//	And	reconvert...

								reconvertImage();

								repaint(image.hasAlphaBuffer());								//	show	image	in	widget

								return;

				}

				if	(options->isItemChecked(item))	return;	//	They	are	all	radio	buttons

				int	ocf	=	conversion_flags;

				if	(item	==	ac)	{

								conversion_flags	=	conversion_flags	&	~ColorMode_Mask	|	AutoColor;

				}	else	if	(item	==	co)	{

								conversion_flags	=	conversion_flags	&	~ColorMode_Mask	|	ColorOnly;

				}	else	if	(item	==	mo)	{

								conversion_flags	=	conversion_flags	&	~ColorMode_Mask	|	MonoOnly;

				}	else	if	(item	==	fd)	{

								conversion_flags	=	conversion_flags	&	~Dither_Mask	|	DiffuseDither;

				}	else	if	(item	==	bd)	{

								conversion_flags	=	conversion_flags	&	~Dither_Mask	|	OrderedDither;

				}	else	if	(item	==	td)	{

								conversion_flags	=	conversion_flags	&	~Dither_Mask	|	ThresholdDither;

				}	else	if	(item	==	ta)	{

								conversion_flags	=	conversion_flags	&	~AlphaDither_Mask	|	ThresholdAlphaDither;

				}	else	if	(item	==	fa)	{

								conversion_flags	=	conversion_flags	&	~AlphaDither_Mask	|	DiffuseAlphaDither;

				}	else	if	(item	==	ba)	{

								conversion_flags	=	conversion_flags	&	~AlphaDither_Mask	|	OrderedAlphaDither;

				}	else	if	(item	==	ad)	{

								conversion_flags	=	conversion_flags	&	~DitherMode_Mask	|	PreferDither;

				}	else	if	(item	==	dd)	{

								conversion_flags	=	conversion_flags	&	~DitherMode_Mask	|	AvoidDither;

				}

				if	(ocf	!=	conversion_flags)	{

								setMenuItemFlags();

								//	And	reconvert...

								reconvertImage();

								repaint(image.hasAlphaBuffer());								//	show	image	in	widget

				}

}

/*

		Set	the	options	menu	to	reflect	the	conversion_flags	value.

*/

void	ImageViewer::setMenuItemFlags()

{

				//	File

				bool	valid_image	=	pm.size()	!=	QSize(0,	0);

				file->setItemEnabled(si,	valid_image);

				file->setItemEnabled(sp,	valid_image);

				//	Edit

				edit->setItemEnabled(t1,	image.depth()	!=	1);

				edit->setItemEnabled(t8,	image.depth()	!=	8);

				edit->setItemEnabled(t32,	image.depth()	!=	32);

				//	Options

				bool	may_need_color_dithering	=

												!valid_image

								||	image.depth()	==	32	&&	QPixmap::defaultDepth()	<	24;

				bool	may_need_dithering	=	may_need_color_dithering

									||	image.depth()	>	1	&&	options->isItemChecked(mo)

									||	image.depth()	>	1	&&	QPixmap::defaultDepth()	==	1;

				bool	has_alpha_mask	=	!valid_image	||	image.hasAlphaBuffer();

				options->setItemEnabled(fd,	may_need_dithering);

				options->setItemEnabled(bd,	may_need_dithering);

				options->setItemEnabled(td,	may_need_dithering);

				options->setItemEnabled(ta,	has_alpha_mask);

				options->setItemEnabled(fa,	has_alpha_mask);

				options->setItemEnabled(ba,	has_alpha_mask);

				options->setItemEnabled(ad,	may_need_color_dithering);

				options->setItemEnabled(dd,	may_need_color_dithering);

				options->setItemChecked(ac,	(conversion_flags	&	ColorMode_Mask)	==	AutoColor);

				options->setItemChecked(co,	(conversion_flags	&	ColorMode_Mask)	==	ColorOnly);

				options->setItemChecked(mo,	(conversion_flags	&	ColorMode_Mask)	==	MonoOnly);

				options->setItemChecked(fd,	(conversion_flags	&	Dither_Mask)	==	DiffuseDither);

				options->setItemChecked(bd,	(conversion_flags	&	Dither_Mask)	==	OrderedDither);

				options->setItemChecked(td,	(conversion_flags	&	Dither_Mask)	==	ThresholdDither);

				options->setItemChecked(ta,	(conversion_flags	&	AlphaDither_Mask)	==	ThresholdAlphaDither);

				options->setItemChecked(fa,	(conversion_flags	&	AlphaDither_Mask)	==	DiffuseAlphaDither);

				options->setItemChecked(ba,	(conversion_flags	&	AlphaDither_Mask)	==	OrderedAlphaDither);

				options->setItemChecked(ad,	(conversion_flags	&	DitherMode_Mask)	==	PreferDither);

				options->setItemChecked(dd,	(conversion_flags	&	DitherMode_Mask)	==	AvoidDither);

}

void	ImageViewer::updateStatus()

{

				if	(pm.size()	==	QSize(0,	0))	{

								if	(filename)

												status->setText("Could	not	load	image");

								else

												status->setText("No	image	-	select	Open	from	File	menu.");

				}	else	{

								QString	message,	moremsg;

								message.sprintf("%dx%d",	image.width(),	image.height());

								if	(pm.size()	!=	pmScaled.size())	{

												moremsg.sprintf("	[%dx%d]",	pmScaled.width(),

																pmScaled.height());

												message	+=	moremsg;

								}

								moremsg.sprintf(",	%d	bits	",	image.depth());

								message	+=	moremsg;

								if	(image.valid(pickx,picky))	{

												moremsg.sprintf("(%d,%d)=#%0*x	",

																										pickx,	picky,

																										image.hasAlphaBuffer()	?	8	:	6,

																										image.pixel(pickx,picky));

												message	+=	moremsg;

								}

								if	(image.numColors()	>	0)	{

												if	(image.valid(pickx,picky))	{

																moremsg.sprintf(",	%d/%d	colors",	image.pixelIndex(pickx,picky),

																				image.numColors());

												}	else	{

																moremsg.sprintf(",	%d	colors",	image.numColors());

												}

												message	+=	moremsg;

								}

								if	(image.hasAlphaBuffer())	{

												if	(image.depth()	==	8)	{

																int	i;

																bool	alpha[256];

																int	nalpha=0;

																for	(i=0;	i<256;	i++)

																				alpha[i]	=	FALSE;

																for	(i=0;	i<image.numColors();	i++)	{

																				int	alevel	=	image.color(i)	>>	24;

																				if	(!alpha[alevel])	{

																								alpha[alevel]	=	TRUE;

																								nalpha++;

																				}

																}

																moremsg.sprintf(",	%d	alpha	levels",	nalpha);

												}	else	{

																//	Too	many	pixels	to	bother	counting.

																moremsg	=	",	8-bit	alpha	channel";

												}

												message	+=	moremsg;

								}

								status->setText(message);

				}

}

/*

		This	function	saves	the	image.

*/

void	ImageViewer::saveImage(int	item)

{

				const	char*	fmt	=	saveimage->text(item);

				QString	savefilename	=	QFileDialog::getSaveFileName(QString::null,	

																																								this,	filename);

				if	(!savefilename.isEmpty())

								if	(!image.save(savefilename,	fmt))

												QMessageBox::warning(this,	"Save	failed",	"Error	saving	file");

}

/*

		This	function	saves	the	converted	image.

*/

void	ImageViewer::savePixmap(int	item)

{

				const	char*	fmt	=	savepixmap->text(item);

				QString	savefilename	=	QFileDialog::getSaveFileName(QString::null,

																																								QString::null,	this,	filename);

				if	(!savefilename.isEmpty())

								if	(!pmScaled.save(savefilename,	fmt))

												QMessageBox::warning(this,	"Save	failed",	"Error	saving	file");

}

void	ImageViewer::newWindow()

{

				ImageViewer*	that	=	new	ImageViewer(0,	"new	window",	WDestructiveClose);

				that->options->setItemChecked(that->cc,	useColorContext());

				that->show();

}

/*

		This	function	is	the	slot	for	processing	the	Open	menu	item.

*/

void	ImageViewer::openFile()

{

				QString	newfilename	=	QFileDialog::getOpenFileName();

				if	(!newfilename.isEmpty())	{

								loadImage(newfilename)	;

								repaint();																						//	show	image	in	widget

				}

}

/*

		This	function	loads	an	image	from	a	file	and	resizes	the	widget	to

		exactly	fit	the	image	size.	If	the	file	was	not	found	or	the	image

		format	was	unknown	it	will	resize	the	widget	to	fit	the	errorText

		message	(see	above)	displayed	in	the	current	font.

		Returns	TRUE	if	the	image	was	successfully	loaded.

*/

bool	ImageViewer::loadImage(const	char	*fileName)

{

				filename	=	fileName;

				bool	ok	=	FALSE;

				if	(filename)	{

								QApplication::setOverrideCursor(waitCursor);	//	this	might	take	time

								ok	=	image.load(filename,	0);

								pickx	=	-1;

								clickx	=	-1;

								if	(ok)

												ok	=	reconvertImage();

								if	(ok)	{

												setCaption(filename);																					//	set	window	caption

												int	w	=	pm.width();

												int	h	=	pm.height();

												const	int	reasonable_width	=	128;

												if	(w	<	reasonable_width)	{

																//	Integer	scale	up	to	something	reasonable

																int	multiply	=	(reasonable_width	+	w	-	1)	/	w;

																w	*=	multiply;

																h	*=	multiply;

												}

												h	+=	menubar->heightForWidth(w)	+	status->height();

												resize(w,	h);																													//	we	resize	to	fit	image

								}	else	{

												pm.resize(0,0);																													//	couldn't	load	image

												update();

								}

								QApplication::restoreOverrideCursor();		//	restore	original	cursor

				}

				updateStatus();

				setMenuItemFlags();

				return	ok;

}

bool	ImageViewer::reconvertImage()

{

				bool	success	=	FALSE;

				if	(image.isNull())	return	FALSE;

				if	(alloc_context)	{

								QColor::destroyAllocContext(alloc_context);

								alloc_context	=	0;

				}

				if	(useColorContext())	{

								alloc_context	=	QColor::enterAllocContext();

								//	Clear	the	image	to	hide	flickering	palette

								QPainter	painter(this);

								painter.eraseRect(0,	menubar->heightForWidth(width()),	width(),	height());

				}

				QApplication::setOverrideCursor(waitCursor);	//	this	might	take	time

				if	(pm.convertFromImage(image,	conversion_flags))

				{

								pmScaled	=	QPixmap();

								scale();

								resize(width(),	height());

								success	=	TRUE;																									//	load	successful

				}	else	{

								pm.resize(0,0);																									//	couldn't	load	image

				}

				updateStatus();

				setMenuItemFlags();

				QApplication::restoreOverrideCursor();						//	restore	original	cursor

				if	(useColorContext())

								QColor::leaveAllocContext();

				return	success;																													//	TRUE	if	loaded	OK

}

bool	ImageViewer::smooth()	const

{

				return	options->isItemChecked(ss);

}

bool	ImageViewer::useColorContext()	const

{

				return	options->isItemChecked(cc);

}

/*

		This	functions	scales	the	pixmap	in	the	member	variable	"pm"	to	fit	the

		widget	size	and		puts	the	resulting	pixmap	in	the	member	variable	"pmScaled".

*/

void	ImageViewer::scale()

{

				int	h	=	height()	-	menubar->heightForWidth(width())	-	status->

				if	(image.isNull())	return;

				QApplication::setOverrideCursor(waitCursor);	//	this	might	take	time

				if	(width()	==	pm.width()	&&	h	==	pm.height())

				{																																											//	no	need	to	scale	if	widget

								pmScaled	=	pm;																										//	size	equals	pixmap	size

				}	else	{

								if	(smooth())	{

												pmScaled.convertFromImage(image.smoothScale(width(),	h),

																conversion_flags);

								}	else	{

												QWMatrix	m;																									//	transformation	matrix

												m.scale(((double)width())/pm.width(),//	define	scale	factors

																				((double)h)/pm.height());

												pmScaled	=	pm.xForm(m);											//	create	scaled	pixmap

								}

				}

				QApplication::restoreOverrideCursor();						//	restore	original	cursor

}

/*

		The	resize	event	handler,	if	a	valid	pixmap	was	loaded	it	will	call

		scale()	to	fit	the	pixmap	to	the	new	widget	size.

*/

void	ImageViewer::resizeEvent(QResizeEvent	*)

{

				status->setGeometry(0,	height()	-	status->height(),

																								width(),	status->height());

				if	(pm.size()	==	QSize(0,	0))											//	we	couldn't	load	the	image

								return;

				int	h	=	height()	-	menubar->heightForWidth(width())	-	status->

				if	(width()	!=	pmScaled.width()	||	h	!=	pmScaled.height())

				{																																											//	if	new	size,

								scale();																																//	scale	pmScaled	to	window

								updateStatus();

				}

				if	(image.hasAlphaBuffer())

								erase();

}

bool	ImageViewer::convertEvent(QMouseEvent*	e,	int&	x,	int&	y)

{

				if	(pm.size()	!=	QSize(0,	0))	{

								int	h	=	height()	-	menubar->heightForWidth(width())	-	status->

								int	nx	=	e->x()	*	image.width()	/	width();

								int	ny	=	(e->y()-menubar->heightForWidth(width()))	*	image.height()	/	h;

								if	(nx	!=	x	||	ny	!=	y)	{

												x	=	nx;

												y	=	ny;

												updateStatus();

												return	TRUE;

								}

				}

				return	FALSE;

}

void	ImageViewer::mousePressEvent(QMouseEvent	*e)

{

				may_be_other	=	convertEvent(e,	clickx,	clicky);

}

void	ImageViewer::mouseReleaseEvent(QMouseEvent	*)

{

				if	(may_be_other)

								other	=	this;

}

/*

		Record	the	pixel	position	of	interest.

*/

void	ImageViewer::mouseMoveEvent(QMouseEvent	*e)

{

				if	(convertEvent(e,pickx,picky))	{

								updateStatus();

								if	((e->state()&LeftButton))	{

												may_be_other	=	FALSE;

												if	(clickx	>=	0	&&	other)	{

																copyFrom(other);

												}

								}

				}

}

/*

		Draws	the	portion	of	the	scaled	pixmap	that	needs	to	be	updated	or	prints

		an	error	message	if	no	legal	pixmap	has	been	loaded.

*/

void	ImageViewer::paintEvent(QPaintEvent	*e)

{

				if	(pm.size()	!=	QSize(0,	0))	{									//	is	an	image	loaded?

								QPainter	painter(this);

								painter.setClipRect(e->rect());

								painter.drawPixmap(0,	menubar->heightForWidth(width()),	pmScaled);

				}

}

/*

		Explain	anything	that	might	be	confusing.

*/

void	ImageViewer::giveHelp()

{

				if	(!helpmsg)	{

								QString	helptext	=

												"Usage:	<tt>showimg	[-m]	<i>filename	...</i></tt>"

												"<blockquote>"

																"<tt>-m</tt>	-	use	<i>ManyColor</i>	color	spec"

												"</blockquote>"

												"<p>Supported	input	formats:"

												"<blockquote>";

								helptext	+=	QImage::inputFormatList().join(",	");

								helptext	+=	"</blockquote>";

								helpmsg	=	new	QMessageBox("Help",	helptext,

												QMessageBox::Information,	QMessageBox::Ok,	0,	0,	0,	0,	FALSE);

				}

				helpmsg->show();

				helpmsg->raise();

}

void	ImageViewer::copyFrom(ImageViewer*	s)

{

				if	(clickx	>=	0)	{

								int	dx	=	clickx;

								int	dy	=	clicky;

								int	sx	=	s->clickx;

								int	sy	=	s->clicky;

								int	sw	=	QABS(clickx	-	pickx)+1;

								int	sh	=	QABS(clicky	-	picky)+1;

								if	(clickx	>	pickx)	{

												dx	=	pickx;

												sx	-=	sw-1;

								}

								if	(clicky	>	picky)	{

												dy	=	picky;

												sy	-=	sh-1;

								}

								bitBlt(&image,	dx,	dy,	&s->image,	sx,	sy,	sw,	sh);

								reconvertImage();

								repaint(image.hasAlphaBuffer());

				}

}

ImageViewer*	ImageViewer::other	=	0;

void	ImageViewer::hFlip()

{

				setImage(image.mirror(TRUE,FALSE));

}

void	ImageViewer::vFlip()

{

				setImage(image.mirror(FALSE,TRUE));

}

void	ImageViewer::rot180()

{

				setImage(image.mirror(TRUE,TRUE));

}

void	ImageViewer::copy()

{

#ifndef	QT_NO_MIMECLIPBOARD

				QApplication::clipboard()->setImage(image);	//	Less	information	loss

#endif

}

void	ImageViewer::paste()

{

#ifndef	QT_NO_MIMECLIPBOARD

				QImage	p	=	QApplication::clipboard()->image();

				if	(!p.isNull())	{

								filename	=	"pasted";

								setImage(p);

				}

#endif

}

void	ImageViewer::setImage(const	QImage&	newimage)

{

				image	=	newimage;

				pickx	=	-1;

				clickx	=	-1;

				setCaption(filename);																					//	set	window	caption

				int	w	=	image.width();

				int	h	=	image.height();

				if	(!w)

								return;

				const	int	reasonable_width	=	128;

				if	(w	<	reasonable_width)	{

								//	Integer	scale	up	to	something	reasonable

								int	multiply	=	(reasonable_width	+	w	-	1)	/	w;

								w	*=	multiply;

								h	*=	multiply;

				}

				h	+=	menubar->heightForWidth(w)	+	status->height();

				resize(w,	h);																													//	we	resize	to	fit	image

				reconvertImage();

				repaint(image.hasAlphaBuffer());

				updateStatus();

				setMenuItemFlags();

}

void	ImageViewer::editText()

{

				ImageTextEditor	editor(image,this);

				editor.exec();

}

void	ImageViewer::to1Bit()

{

				toBitDepth(1);

}

void	ImageViewer::to8Bit()

{

				toBitDepth(8);

}

void	ImageViewer::to32Bit()

{

				toBitDepth(32);

}

void	ImageViewer::toBitDepth(int	d)

{

				image	=	image.convertDepth(d);

				reconvertImage();

				repaint(image.hasAlphaBuffer());

}

Main:

/**

**	$Id:		qt/main.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"showimg.h"

#include	"imagefip.h"

#include	<qapplication.h>

#include	<qimage.h>

int	main(int	argc,	char	**argv)

{

				if	(argc	>	1	&&	QString(argv[1])	==	"-m")	{

								QApplication::setColorSpec(QApplication::ManyColor);

								argc--;

								argv++;

				}

				else	if	(argc	>	1	&&	QString(argv[1])	==	"-n")	{

								QApplication::setColorSpec(QApplication::NormalColor);

								argc--;

								argv++;

				}

				else	{

								QApplication::setColorSpec(QApplication::CustomColor);

				}

				QApplication::setFont(QFont("Helvetica",	12));

				QApplication	a(argc,	argv);

				ImageIconProvider	iip;

				QFileDialog::setIconProvider(&iip);

				if	(argc	<=	1)	{

								//	Create	a	window	which	looks	after	its	own	existence.

								ImageViewer	*w	=

												new	ImageViewer(0,	"new	window",	Qt::WDestructiveClose	|	Qt::WResizeNoErase);

								w->setCaption("Qt	Example	-	Image	Viewer");

								w->show();

				}	else	{

								for	(int	i=1;	i<argc;	i++)	{

												//	Create	a	window	which	looks	after	its	own	existence.

												ImageViewer	*w	=

																new	ImageViewer(0,	argv[i],	Qt::WDestructiveClose	|	Qt::WResizeNoErase);

												w->setCaption("Qt	Example	-	Image	Viewer");

												w->loadImage(argv[i]);

												w->show();

								}

				}

				QObject::connect(qApp,	SIGNAL(lastWindowClosed()),	qApp,	SLOT(quit

				return	a.exec();

}

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

A	Complete	Application	Window
This	example	program	looks	like	a	complete	modern	application.	It	has	a	menu
bar,	it	has	a	tool	bar,	it	has	a	status	bar	and	works	like	a	simple	text	editor.

There	is	a	walkthrough	of	this	example.

Header	file:

/**

**	$Id:		qt/application.h			3.0.5			edited	May	7	17:30	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	APPLICATION_H

#define	APPLICATION_H

#include	<qmainwindow.h>

class	QTextEdit;

class	ApplicationWindow:	public	QMainWindow

{

				Q_OBJECT

public:

				ApplicationWindow();

				~ApplicationWindow();

protected:

				void	closeEvent(QCloseEvent*);

private	slots:

				void	newDoc();

				void	choose();

				void	load(const	QString	&fileName);

				void	save();

				void	saveAs();

				void	print();

				void	about();

				void	aboutQt();

private:

				QPrinter	*printer;

				QTextEdit	*e;

				QString	filename;

};

#endif

Implementation:

/**

**	Id

**

**	Copyright	(C)	1992-2002	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"application.h"

#include	<qimage.h>

#include	<qpixmap.h>

#include	<qtoolbar.h>

#include	<qtoolbutton.h>

#include	<qpopupmenu.h>

#include	<qmenubar.h>

#include	<qtextedit.h>

#include	<qfile.h>

#include	<qfiledialog.h>

#include	<qstatusbar.h>

#include	<qmessagebox.h>

#include	<qprinter.h>

#include	<qapplication.h>

#include	<qaccel.h>

#include	<qtextstream.h>

#include	<qpainter.h>

#include	<qpaintdevicemetrics.h>

#include	<qwhatsthis.h>

#include	"filesave.xpm"

#include	"fileopen.xpm"

#include	"fileprint.xpm"

ApplicationWindow::ApplicationWindow()

				:	QMainWindow(0,	"example	application	main	window",	WDestructiveClose)

{

				printer	=	new	QPrinter;

				QPixmap	openIcon,	saveIcon,	printIcon;

				QToolBar	*	fileTools	=	new	QToolBar(this,	"file	operations");

				fileTools->setLabel("File	Operations");

				openIcon	=	QPixmap(fileopen);

				QToolButton	*	fileOpen

								=	new	QToolButton(openIcon,	"Open	File",	QString::null,

																											this,	SLOT(choose()),	fileTools,	"open	file");

				saveIcon	=	QPixmap(filesave);

				QToolButton	*	fileSave

								=	new	QToolButton(saveIcon,	"Save	File",	QString::null,

																											this,	SLOT(save()),	fileTools,	"save	file");

				printIcon	=	QPixmap(fileprint);

				QToolButton	*	filePrint

								=	new	QToolButton(printIcon,	"Print	File",	QString::null,

																											this,	SLOT(print()),	fileTools,	"print	file");

				(void)QWhatsThis::whatsThisButton(fileTools);

				const	char	*	fileOpenText	=	"<p>	"

																	"Click	this	button	to	open	a	new	file.	
"

																	"You	can	also	select	the	Open	command	"

																	"from	the	File	menu.</p>";

				QWhatsThis::add(fileOpen,	fileOpenText);

				QMimeSourceFactory::defaultFactory()->setPixmap("fileopen",	openIcon);

				const	char	*	fileSaveText	=	"<p>Click	this	button	to	save	the	file	you	"

																	"are	editing.	You	will	be	prompted	for	a	file	name.\n"

																	"You	can	also	select	the	Save	command	"

																	"from	the	File	menu.</p>";

				QWhatsThis::add(fileSave,	fileSaveText);

				const	char	*	filePrintText	=	"Click	this	button	to	print	the	file	you	"

																	"are	editing.\n	You	can	also	select	the	Print	"

																	"command	from	the	File	menu.";

				QWhatsThis::add(filePrint,	filePrintText);

				QPopupMenu	*	file	=	new	QPopupMenu(this);

				menuBar()->insertItem("&File",	file);

				file->insertItem("&New",	this,	SLOT(newDoc()),	CTRL+Key_N);

				int	id;

				id	=	file->insertItem(openIcon,	"&Open...",

																											this,	SLOT(choose()),	CTRL+Key_O);

				file->setWhatsThis(id,	fileOpenText);

				id	=	file->insertItem(saveIcon,	"&Save",

																											this,	SLOT(save()),	CTRL+Key_S);

				file->setWhatsThis(id,	fileSaveText);

				id	=	file->insertItem("Save	&As...",	this,	SLOT(saveAs()));

				file->setWhatsThis(id,	fileSaveText);

				file->insertSeparator();

				id	=	file->insertItem(printIcon,	"&Print...",

																											this,	SLOT(print()),	CTRL+Key_P);

				file->setWhatsThis(id,	filePrintText);

				file->insertSeparator();

				file->insertItem("&Close",	this,	SLOT(close()),	CTRL+Key_W);

				file->insertItem("&Quit",	qApp,	SLOT(closeAllWindows()),	CTRL+Key_Q);

				menuBar()->insertSeparator();

				QPopupMenu	*	help	=	new	QPopupMenu(this);

				menuBar()->insertItem("&Help",	help);

				help->insertItem("&About",	this,	SLOT(about()),	Key_F1);

				help->insertItem("About	&Qt",	this,	SLOT(aboutQt()));

				help->insertSeparator();

				help->insertItem("What's	&This",	this,	SLOT(whatsThis()),	SHIFT+Key_F1);

				e	=	new	QTextEdit(this,	"editor");

				e->setFocus();

				setCentralWidget(e);

				statusBar()->message("Ready",	2000);

				resize(450,	600);

}

ApplicationWindow::~ApplicationWindow()

{

				delete	printer;

}

void	ApplicationWindow::newDoc()

{

				ApplicationWindow	*ed	=	new	ApplicationWindow;

				ed->setCaption("Qt	Example	-	Application");

				ed->show();

}

void	ApplicationWindow::choose()

{

				QString	fn	=	QFileDialog::getOpenFileName(QString::null,	QString::null,

																																															this);

				if	(!fn.isEmpty())

								load(fn);

				else

								statusBar()->message("Loading	aborted",	2000);

}

void	ApplicationWindow::load(const	QString	&fileName)

{

				QFile	f(fileName);

				if	(!f.open(IO_ReadOnly))

								return;

				QTextStream	ts(&f);

				e->setText(ts.read());

				e->setModified(FALSE);

				setCaption(fileName);

				statusBar()->message("Loaded	document	"	+	fileName,	2000);

}

void	ApplicationWindow::save()

{

				if	(filename.isEmpty())	{

								saveAs();

								return;

				}

				QString	text	=	e->text();

				QFile	f(filename);

				if	(!f.open(IO_WriteOnly))	{

								statusBar()->message(QString("Could	not	write	to	%1").arg(filename),

																														2000);

								return;

				}

				QTextStream	t(&f);

				t	<<	text;

				f.close();

				e->setModified(FALSE);

				setCaption(filename);

				statusBar()->message(QString("File	%1	saved").arg(filename),	2000);

}

void	ApplicationWindow::saveAs()

{

				QString	fn	=	QFileDialog::getSaveFileName(QString::null,	QString::null,

																																															this);

				if	(!fn.isEmpty())	{

								filename	=	fn;

								save();

				}	else	{

								statusBar()->message("Saving	aborted",	2000);

				}

}

void	ApplicationWindow::print()

{

				//	######	Rewrite	to	use	QSimpleRichText	to	print	here	as	well

				const	int	Margin	=	10;

				int	pageNo	=	1;

				if	(printer->setup(this))	{															//	printer	dialog

								statusBar()->message("Printing...");

								QPainter	p;

								if(!p.begin(printer))															//	paint	on	printer

												return;

								p.setFont(e->font());

								int	yPos								=	0;																				//	y-position	for	each	line

								QFontMetrics	fm	=	p.fontMetrics();

								QPaintDeviceMetrics	metrics(printer);	//	need	width/height

																																																//	of	printer	surface

								for(int	i	=	0	;	i	<	e->lines()	;	i++)	{

												if	(Margin	+	yPos	>	metrics.height()	-	Margin)	{

																QString	msg("Printing	(page	");

																msg	+=	QString::number(++pageNo);

																msg	+=	")...";

																statusBar()->message(msg);

																printer->newPage();													//	no	more	room	on	this	page

																yPos	=	0;																							//	back	to	top	of	page

												}

												p.drawText(Margin,	Margin	+	yPos,

																								metrics.width(),	fm.lineSpacing(),

																								ExpandTabs	|	DontClip,

																								e->text(i));

												yPos	=	yPos	+	fm.lineSpacing();

								}

								p.end();																																//	send	job	to	printer

								statusBar()->message("Printing	completed",	2000);

				}	else	{

								statusBar()->message("Printing	aborted",	2000);

				}

}

void	ApplicationWindow::closeEvent(QCloseEvent*	ce)

{

				if	(!e->isModified())	{

								ce->accept();

								return;

				}

				switch(QMessageBox::information(this,	"Qt	Application	Example",

																																						"Do	you	want	to	save	the	changes"

																																						"	to	the	document?",

																																						"Yes",	"No",	"Cancel",

																																						0,	1))	{

				case	0:

								save();

								ce->accept();

								break;

				case	1:

								ce->accept();

								break;

				case	2:

				default:	//	just	for	sanity

								ce->ignore();

								break;

				}

}

void	ApplicationWindow::about()

{

				QMessageBox::about(this,	"Qt	Application	Example",

																								"This	example	demonstrates	simple	use	of	"

																								"QMainWindow,\nQMenuBar	and	QToolBar.");

}

void	ApplicationWindow::aboutQt()

{

				QMessageBox::aboutQt(this,	"Qt	Application	Example");

}

Main:

/**

**	$Id:		qt/main.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	"application.h"

int	main(int	argc,	char	**	argv)	{

				QApplication	a(argc,	argv);

				ApplicationWindow	*	mw	=	new	ApplicationWindow();

				mw->setCaption("Qt	Example	-	Application");

				mw->show();

				a.connect(&a,	SIGNAL(lastWindowClosed()),	&a,	SLOT(quit()));

				return	a.exec();

}

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Drag	and	Drop	(Simple)
This	provides	a	very	simple	example	of	Qt's	drag	and	drop	functionality.

For	a	more	complete	example	see	the	Drag	and	Drop	example.

Header	file:

/**

**	Id

**

**	Copyright	(C)	1992-2001	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	<qcursor.h>

#include	<qsplitter.h>

#include	<qlistbox.h>

#include	<qiconview.h>

#include	<qpixmap.h>

class	QDragEnterEvent;

class	QDragDropEvent;

class	DDListBox	:	public	QListBox

{

				Q_OBJECT

public:

				DDListBox(QWidget	*	parent	=	0,	const	char	*	name	=	0,	WFlags	f	=	0);

				//	Low-level	drag	and	drop

				void	dragEnterEvent(QDragEnterEvent	*evt);

				void	dropEvent(QDropEvent	*evt);

				void	mousePressEvent(QMouseEvent	*evt);

				void	mouseMoveEvent(QMouseEvent	*);

private:

				int	dragging;

};

class	DDIconViewItem	:	public	QIconViewItem

{

public:

				DDIconViewItem(QIconView	*parent,	const	QString&	text,	const	QPixmap

								QIconViewItem(parent,	text,	icon)	{}

				DDIconViewItem(QIconView	*parent,	const	QString	&text)	:

								QIconViewItem(parent,	text)	{}

				//	High-level	drag	and	drop

				bool	acceptDrop(const	QMimeSource	*mime)	const;

				void	dropped(QDropEvent	*evt,	const	QValueList<QIconDragItem>&);

};

class	DDIconView	:	public	QIconView

{

				Q_OBJECT

public:

				DDIconView(QWidget	*	parent	=	0,	const	char	*	name	=	0,	WFlags	f	=	0)	:

								QIconView(parent,	name,	f)	{}

				//	High-level	drag	and	drop

				QDragObject	*dragObject();

public	slots:

				void	slotNewItem(QDropEvent	*evt,	const	QValueList<QIconDragItem>&	list);

};

Implementation:

/**

**	Id

**

**	Copyright	(C)	1992-2001	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"main.h"

const	char*	red_icon[]={

"16	16	2	1",

"r	c	red",

".	c	None",

"................",

"................",

"..rrrrrrrrrrrr..",

"..rrrrrrrrrrrr..",

"..rrrrrrrrrrrr..",

"..rrr......rrr..",

"..rrr......rrr..",

"..rrr......rrr..",

"..rrr......rrr..",

"..rrr......rrr..",

"..rrr......rrr..",

"..rrrrrrrrrrrr..",

"..rrrrrrrrrrrr..",

"..rrrrrrrrrrrr..",

"................",

"................"};

const	char*	blue_icon[]={

"16	16	2	1",

"b	c	blue",

".	c	None",

"................",

"................",

"..bbbbbbbbbbbb..",

"..bbbbbbbbbbbb..",

"..bbbbbbbbbbbb..",

"..bbb......bbb..",

"..bbb......bbb..",

"..bbb......bbb..",

"..bbb......bbb..",

"..bbb......bbb..",

"..bbb......bbb..",

"..bbbbbbbbbbbb..",

"..bbbbbbbbbbbb..",

"..bbbbbbbbbbbb..",

"................",

"................"};

const	char*	green_icon[]={

"16	16	2	1",

"g	c	green",

".	c	None",

"................",

"................",

"..gggggggggggg..",

"..gggggggggggg..",

"..gggggggggggg..",

"..ggg......ggg..",

"..ggg......ggg..",

"..ggg......ggg..",

"..ggg......ggg..",

"..ggg......ggg..",

"..ggg......ggg..",

"..gggggggggggg..",

"..gggggggggggg..",

"..gggggggggggg..",

"................",

"................"};

//	ListBox	--	low	level	drag	and	drop

DDListBox::DDListBox(QWidget	*	parent,	const	char	*	name,	WFlags	f)	:

				QListBox(parent,	name,	f)

{

				setAcceptDrops(TRUE);

				dragging	=	FALSE;

}

void	DDListBox::dragEnterEvent(QDragEnterEvent	*evt)

{

				if	(QTextDrag::canDecode(evt))

								evt->accept();

}

void	DDListBox::dropEvent(QDropEvent	*evt)

{

				QString	text;

				if	(QTextDrag::decode(evt,	text))

								insertItem(text);

}

void	DDListBox::mousePressEvent(QMouseEvent	*evt)

{

				QListBox::mousePressEvent(evt);

				dragging	=	TRUE;

}

void	DDListBox::mouseMoveEvent(QMouseEvent	*)

{

				if	(dragging)	{

								QDragObject	*d	=	new	QTextDrag(currentText(),	this);

								d->dragCopy();	//	do	NOT	delete	d.

								dragging	=	FALSE;

				}

}

//	IconViewIcon	--	high	level	drag	and	drop

bool	DDIconViewItem::acceptDrop(const	QMimeSource	*mime)	const

{

				if	(mime->provides("text/plain"))

								return	TRUE;

				return	FALSE;

}

void	DDIconViewItem::dropped(QDropEvent	*evt,	const	QValueList<QIconDragItem>&)

{

				QString	label;

				if	(QTextDrag::decode(evt,	label))

								setText(label);

}

//	IconView	--	high	level	drag	and	drop

QDragObject	*DDIconView::dragObject()

{

		return	new	QTextDrag(currentItem()->text(),	this);

}

void	DDIconView::slotNewItem(QDropEvent	*evt,	const	QValueList<QIconDragItem>&)

{

				QString	label;

				if	(QTextDrag::decode(evt,	label))	{

								DDIconViewItem	*item	=	new	DDIconViewItem(this,	label);

								item->setRenameEnabled(TRUE);

				}

}

int	main(int	argc,	char	*argv[])

{

				QApplication	app(argc,	argv);

				//	Create	and	show	the	widgets

				QSplitter	*split	=	new	QSplitter();

				DDIconView	*iv			=	new	DDIconView(split);

				(void)													new	DDListBox(split);

				app.setMainWidget(split);

				split->resize(600,	400);

				split->show();

				//	Set	up	the	connection	so	that	we	can	drop	items	into	the	icon	view

				QObject::connect(

								iv,	SIGNAL(dropped(QDropEvent*,	const	QValueList<QIconDragItem>&)),

								iv,	SLOT(slotNewItem(QDropEvent*,	const	QValueList<QIconDragItem>&)));

				//	Populate	the	QIconView	with	icons

				DDIconViewItem	*item;

				item	=	new	DDIconViewItem(iv,	"Red",			QPixmap(red_icon));

				item->setRenameEnabled(TRUE);

				item	=	new	DDIconViewItem(iv,	"Green",	QPixmap(green_icon));

				item->setRenameEnabled(TRUE);

				item	=	new	DDIconViewItem(iv,	"Blue",		QPixmap(blue_icon));

				item->setRenameEnabled(TRUE);

				return	app.exec();

}

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Sound	Example
This	example	shows	how	easy	it	is	to	play	sounds,	e.g.	.WAV	files,	if	your
machine	is	set	up	to	play	audio.

Header	file:

/**

**	Id

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	PLAY_H

#define	PLAY_H

#include	"qsound.h"

#include	<qmainwindow.h>

class	SoundPlayer	:	public	QMainWindow	{

				Q_OBJECT

public:

				SoundPlayer();

public	slots:

				void	doPlay1();

				void	doPlay2();

				void	doPlay3();

				void	doPlay4();

				void	doPlay34();

				void	doPlay1234();

private:

				QSound	bucket3;

				QSound	bucket4;

};

#endif

Implementation:

/**

**	Id

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

//

//	Very	simple	example	of	QSound::play(filename)

//

//	99%	of	this	program	is	just	boilerplate	Qt	code	to	put	up	a	nice

//	window	so	you	think	something	special	is	happening.

//

#include	"sound.h"

#include	<qapplication.h>

#include	<qmessagebox.h>

#include	<qmenubar.h>

SoundPlayer::SoundPlayer()	:

				QMainWindow(),

				bucket3("sounds/3.wav"),

				bucket4("sounds/4.wav")

{

				if	(!QSound::isAvailable())	{

								//	Bail	out.		Programs	in	which	sound	is	not	critical

								//	could	just	silently	(hehe)	ignore	the	lack	of	a	server.

								//

								QMessageBox::warning(this,"No	Sound",

																"<p>Sorry,	you	are	not	running	the	Network	Audio	System."

																"<p>If	you	have	the	`au'	command,	run	it	in	the	background	before	this	program.	"

																"The	latest	release	of	the	Network	Audio	System	can	be	obtained	from:"

																"<pre>\n"

																"	 \n"

																"			ftp.ncd.com:/pub/ncd/technology/src/nas\n"

																"			ftp.x.org:/contrib/audio/nas\n"

																"</pre>"

																"<p>Release	1.2	of	NAS	is	also	included	with	the	X11R6"

																"contrib	distribution."

																"<p>After	installing	NAS,	you	will	then	need	to	reconfigure	Qt	with	NAS	sound	support");

				}

				QPopupMenu	*file	=	new	QPopupMenu;

				file->insertItem("Play	&1",		this,	SLOT(doPlay1()),	CTRL+Key_1);

				file->insertItem("Play	&2",		this,	SLOT(doPlay2()),	CTRL+Key_2);

				file->insertItem("Play	from	bucket	&3",		this,	SLOT(doPlay3()),	CTRL+Key_3);

				file->insertItem("Play	from	bucket	&4",		this,	SLOT(doPlay4()),	CTRL+Key_4);

				file->insertSeparator();

				file->insertItem("Play	3	and	4	together",		this,	SLOT(doPlay34()));

				file->insertItem("Play	all	together",		this,	SLOT(doPlay1234()));

				file->insertSeparator();

				file->insertItem("E&xit",		qApp,	SLOT(quit()));

				menuBar()->insertItem("&File",	file);

}

void	SoundPlayer::doPlay1()

{

				QSound::play("sounds/1.wav");

}

void	SoundPlayer::doPlay2()

{

				QSound::play("sounds/2.wav");

}

void	SoundPlayer::doPlay3()

{

				bucket3.play();

}

void	SoundPlayer::doPlay4()

{

				bucket4.play();

}

void	SoundPlayer::doPlay34()

{

				//	Some	sound	platforms	will	only	play	one	sound	at	a	time

				bucket3.play();

				bucket4.play();

}

void	SoundPlayer::doPlay1234()

{

				//	Some	sound	platforms	will	only	play	one	sound	at	a	time

				QSound::play("sounds/1.wav");

				QSound::play("sounds/2.wav");

				bucket3.play();

				bucket4.play();

}

int	main(int	argc,	char**	argv)

{

				QApplication	app(argc,argv);

				SoundPlayer	sp;

				app.setMainWidget(&sp);

				sp.setCaption("Qt	Example	-	Sounds");

				sp.show();

				return	app.exec();

}

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Splitter
This	example	shows	how	to	use	splitters.	With	their	help	users	can	decide
herself/himself,	how	much	space	each	of	the	multiple	child	items	should	get.

Implementation:

/**

**	$Id:		qt/splitter.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	<qlabel.h>

#include	<qsplitter.h>

#include	<qmultilineedit.h>

#include	<qpainter.h>

class	Test	:	public	QWidget	{

public:

				Test(QWidget*	parent=0,	const	char*	name=0,	int	f=0);

				void	paintEvent(QPaintEvent*	e);

private:

};

Test::Test(QWidget*	parent,	const	char*	name,	int	f)	:

				QWidget(parent,	name,	f)

{

}

void	Test::paintEvent(QPaintEvent*	e)

{

				QPainter	p(this);

				p.setClipRect(e->rect());

				const	int	d	=	1000;	//large	number

				int	x1	=	0;

				int	x2	=	width()-1;

				int	y1	=	0;

				int	y2	=	height()-1;

				int	x	=	(x1+x2)/2;

				p.drawLine(x,	y1,	x+d,	y1+d);

				p.drawLine(x,	y1,	x-d,	y1+d);

				p.drawLine(x,	y2,	x+d,	y2-d);

				p.drawLine(x,	y2,	x-d,	y2-d);

				int	y	=	(y1+y2)/2;

				p.drawLine(x1,	y,	x1+d,	y+d);

				p.drawLine(x1,	y,	x1+d,	y-d);

				p.drawLine(x2,	y,	x2-d,	y+d);

				p.drawLine(x2,	y,	x2-d,	y-d);

}

int	main(int	argc,	char	**	argv)

{

				QApplication	a(argc,	argv);

				QSplitter	*s1	=	new	QSplitter(QSplitter::Vertical,	0	,	"main");

				QSplitter	*s2	=	new	QSplitter(QSplitter::Horizontal,	s1,	"top");

				Test	*t1	=	new	Test(s2,	"topLeft");

				t1->setBackgroundColor(Qt::blue.light(180));

				t1->setMinimumSize(50,	0);

				Test	*t2	=	new	Test(s2,	"topRight");

				t2->setBackgroundColor(Qt::green.light(180));

				s2->setResizeMode(t2,	QSplitter::KeepSize);

				s2->moveToFirst(t2);

				QSplitter	*s3	=	new	QSplitter(QSplitter::Horizontal,		s1,	"bottom");

				Test	*t3	=	new	Test(s3,	"bottomLeft");

				t3->setBackgroundColor(Qt::red);

				Test	*t4	=	new	Test(s3,	"bottomMiddle");

				t4->setBackgroundColor(Qt::white);

				Test	*t5	=	new	Test(s3,	"bottomRight");

				t5->setMaximumHeight(250);

				t5->setMinimumSize(80,	50);

				t5->setBackgroundColor(Qt::yellow);

#ifdef	Q_WS_QWS

				//	Qt/Embedded	XOR	drawing	not	yet	implemented.

				s1->setOpaqueResize(TRUE);

#endif

				s2->setOpaqueResize(TRUE);

				s3->setOpaqueResize(TRUE);

				a.setMainWidget(s1);

				s1->setCaption("Qt	Example	-	Splitters");

				s1->show();

				int	result	=	a.exec();

				delete	s1;

				return	result;

}

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Tabdialog
This	example	shows	how	to	use	a	dialog	with	multiple	tabs	(pages).	To	start	the
program	you	have	to	specify	a	filename	as	the	first	argument.	The	dialog	shows
information	about	the	file	separated	onto	different	tabs.

Header	file:

/**

**	$Id:		qt/tabdialog.h			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	TABDIALOG_H

#define	TABDIALOG_H

#include	<qtabdialog.h>

#include	<qstring.h>

#include	<qfileinfo.h>

class	TabDialog	:	public	QTabDialog

{

				Q_OBJECT

public:

				TabDialog(QWidget	*parent,	const	char	*name,	const	QString	&_filename);

protected:

				QString	filename;

				QFileInfo	fileinfo;

				void	setupTab1();

				void	setupTab2();

				void	setupTab3();

};

#endif

Implementation:

/**

**	$Id:		qt/tabdialog.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"tabdialog.h"

#include	<qvbox.h>

#include	<qlabel.h>

#include	<qlineedit.h>

#include	<qdatetime.h>

#include	<qbuttongroup.h>

#include	<qcheckbox.h>

#include	<qlistbox.h>

#include	<qapplication.h>

TabDialog::TabDialog(QWidget	*parent,	const	char	*name,	const	QString

				:	QTabDialog(parent,	name),	filename(_filename),	fileinfo(filename)

{

				setupTab1();

				setupTab2();

				setupTab3();

				connect(this,	SIGNAL(applyButtonPressed()),	qApp,	SLOT(quit()));

}

void	TabDialog::setupTab1()

{

				QVBox	*tab1	=	new	QVBox(this);

				tab1->setMargin(5);

				(void)new	QLabel("Filename:",	tab1);

				QLineEdit	*fname	=	new	QLineEdit(filename,	tab1);

				fname->setFocus();

				(void)new	QLabel("Path:",	tab1);

				QLabel	*path	=	new	QLabel(fileinfo.dirPath(TRUE),	tab1);

				path->setFrameStyle(QFrame::Panel	|	QFrame::Sunken);

				(void)new	QLabel("Size:",	tab1);

				QLabel	*size	=	new	QLabel(QString("%1	KB").arg(fileinfo.size()),	tab1);

				size->setFrameStyle(QFrame::Panel	|	QFrame::Sunken);

				(void)new	QLabel("Last	Read:",	tab1);

				QLabel	*lread	=	new	QLabel(fileinfo.lastRead().toString(),	tab1);

				lread->setFrameStyle(QFrame::Panel	|	QFrame::Sunken);

				(void)new	QLabel("Last	Modified:",	tab1);

				QLabel	*lmodif	=	new	QLabel(fileinfo.lastModified().toString(),	tab1);

				lmodif->setFrameStyle(QFrame::Panel	|	QFrame::Sunken);

				addTab(tab1,	"General");

}

void	TabDialog::setupTab2()

{

				QVBox	*tab2	=	new	QVBox(this);

				tab2->setMargin(5);

				QButtonGroup	*bg	=	new	QButtonGroup(1,	QGroupBox::Horizontal,	"Permissions",	tab2);

				QCheckBox	*readable	=	new	QCheckBox("Readable",	bg);

				if	(fileinfo.isReadable())

								readable->setChecked(TRUE);

				QCheckBox	*writable	=	new	QCheckBox("Writeable",	bg);

				if	(fileinfo.isWritable())

								writable->setChecked(TRUE);

				QCheckBox	*executable	=	new	QCheckBox("Executable",	bg);

				if	(fileinfo.isExecutable())

								executable->setChecked(TRUE);

				QButtonGroup	*bg2	=	new	QButtonGroup(2,	QGroupBox::Horizontal,	"Owner",	tab2);

				(void)new	QLabel("Owner",	bg2);

				QLabel	*owner	=	new	QLabel(fileinfo.owner(),	bg2);

				owner->setFrameStyle(QFrame::Panel	|	QFrame::Sunken);

				(void)new	QLabel("Group",	bg2);

				QLabel	*group	=	new	QLabel(fileinfo.group(),	bg2);

				group->setFrameStyle(QFrame::Panel	|	QFrame::Sunken);

				addTab(tab2,	"Permissions");

}

void	TabDialog::setupTab3()

{

				QVBox	*tab3	=	new	QVBox(this);

				tab3->setMargin(5);

				tab3->setSpacing(5);

				(void)new	QLabel(QString("Open	%1	with:").arg(filename),	tab3);

				QListBox	*prgs	=	new	QListBox(tab3);

				for	(unsigned	int	i	=	0;	i	<	30;	i++)	{

								QString	prg	=	QString("Application	%1").arg(i);

								prgs->insertItem(prg);

				}

				prgs->setCurrentItem(3);

				(void)new	QCheckBox(QString("Open	files	with	the	extension	'%1'	always	with	this	application").arg(fileinfo.extension()),	tab3);

				addTab(tab3,	"Applications");

}

Main:

/**

**	$Id:		qt/main.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"tabdialog.h"

#include	<qapplication.h>

#include	<qstring.h>

int	main(int	argc,	char	**argv)

{

				QApplication	a(argc,	argv);

				TabDialog	tabdialog(0,	"tabdialog",	QString(argc	<	2	?	"."	:	argv[1]));

				tabdialog.resize(450,	350);

				tabdialog.setCaption("Qt	Example	-	Tabbed	Dialog");

				a.setMainWidget(&tabdialog);

				tabdialog.show();

				return	a.exec();

}

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Tablet	Example
This	example	shows	how	to	interact	with	a	tablet	device.

See	$QTDIR/examples/tablet	for	the	source	code.

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Tetrix
This	is	the	Qt	implementation	of	the	well	known	game	Tetris.

Main:

/**

**	$Id:		qt/tetrix.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"qtetrix.h"

#include	"qdragapp.h"

#include	"qfont.h"

int	main(int	argc,	char	**argv)

{

				QApplication::setColorSpec(QApplication::CustomColor);

				QDragApplication	a(argc,argv);

				QTetrix	*tetrix	=	new	QTetrix;

				tetrix->setCaption("Tetrix");

				a.setMainWidget(tetrix);

				tetrix->setCaption("Qt	Example	-	Tetrix");

				tetrix->show();

				return	a.exec();

}

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Text	Edit	Example
This	example	displays	a	text	editor	with	the	user	interface	written	in	pure	C++.

A	similar	example	which	uses	Qt	Designer	to	produce	the	user	interface	is	in	the
Qt	Designer	manual.

See	$QTDIR/examples/textedit	for	the	source	code.

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Themes	(Styles)
This	examples	demonstrates	how	to	let	widgets	be	drawn	in	different	styles
(themes).	As	an	example,	themes	looking	like	wood	and	metal	are	implemented.
You	can	switch	between	the	different	styles	during	runtime	using	the	pulldown
menu.

Header	file	of	the	Wood	theme:

/**

**	Id

**

**	Definition	of	something	or	other

**

**	Created	:	979899

**

**	Copyright	(C)	1997	by	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	WOOD_H

#define	WOOD_H

#include	<qwindowsstyle.h>

#include	<qpalette.h>

#ifndef	QT_NO_STYLE_WINDOWS

class	NorwegianWoodStyle	:	public	QWindowsStyle

{

public:

				NorwegianWoodStyle();

				void	polish(QApplication*);

				void	polish(QWidget*);

				void	unPolish(QWidget*);

				void	unPolish(QApplication*);

				void	drawPrimitive(PrimitiveElement	pe,

																								QPainter	*p,

																								const	QRect	&r,

																								const	QColorGroup	&cg,

																								SFlags	flags	=	Style_Default,

																								const	QStyleOption&	=	QStyleOption::Default)	const;

				void	drawControl(ControlElement	element,

																						QPainter	*p,

																						const	QWidget	*widget,

																						const	QRect	&r,

																						const	QColorGroup	&cg,

																						SFlags	how	=	Style_Default,

																						const	QStyleOption&	=	QStyleOption::Default)	const;

				void	drawControlMask(ControlElement	element,

																										QPainter	*p,

																										const	QWidget	*widget,

																										const	QRect	&r,

																										const	QStyleOption&	=	QStyleOption::Default)	const;

				void	drawComplexControl(ComplexControl	cc,

																													QPainter	*p,

																													const	QWidget	*widget,

																													const	QRect	&r,

																													const	QColorGroup	&cg,

																													SFlags	how	=	Style_Default,

																													SCFlags	sub	=	SC_All,

																													SCFlags	subActive	=	SC_None,

																													const	QStyleOption&	=	QStyleOption::Default)	const;

				void	drawComplexControlMask(ComplexControl	control,

																																	QPainter	*p,

																																	const	QWidget	*widget,

																																	const	QRect	&r,

																																	const	QStyleOption&	=	QStyleOption::Default)	const;

				QRect	querySubControlMetrics(ComplexControl	control,

																																		const	QWidget	*widget,

																																		SubControl	sc,

																																		const	QStyleOption&	=	QStyleOption::Default)	const;

				QRect	subRect(SubRect	r,	const	QWidget	*widget)	const;

private:

				void	drawSemicircleButton(QPainter	*p,	const	QRect	&r,	int	dir,

																														bool	sunken,	const	QColorGroup	&g)	const;

				QPalette	oldPalette;

				QPixmap	*sunkenDark;

				QPixmap	*sunkenLight;

};

#endif

#endif

Implementation	of	the	Wood	theme:

/**

**	Id

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"wood.h"

#ifndef	QT_NO_STYLE_WINDOWS

#include	"qapplication.h"

#include	"qcombobox.h"

#include	"qpainter.h"

#include	"qdrawutil.h"	//	for	now

#include	"qpixmap.h"	//	for	now

#include	"qpalette.h"	//	for	now

#include	"qwidget.h"

#include	"qlabel.h"

#include	"qimage.h"

#include	"qpushbutton.h"

#include	"qwidget.h"

#include	"qrangecontrol.h"

#include	"qscrollbar.h"

#include	<limits.h>

#include	"qstylefactory.h"

/*	XPM	*/

static	const	char	*polish_xpm[]	=	{

/*	width	height	num_colors	chars_per_pixel	*/

"				96				96						254												2",

/*	colors	*/

"..	c	#9c4a34",

".#	c	#a4825c",

".a	c	#bc5e2c",

".b	c	#d48432",

".c	c	#dc9f51",

".d	c	#bc6e1c",

".e	c	#d4855d",

".f	c	#94664c",

".g	c	#bc714e",

".h	c	#8c6664",

".i	c	#d4923c",

".j	c	#bc8444",

".k	c	#d49360",

".l	c	#d4794e",

".m	c	#ecaf68",

".n	c	#bc8365",

".o	c	#d47439",

".p	c	#a46954",

".q	c	#dc9f70",

".r	c	#e48544",

".s	c	#bc7b51",

".t	c	#a47761",

".u	c	#bc7b42",

".v	c	#a4523c",

".w	c	#e4945e",

".x	c	#9c784c",

".y	c	#d4844a",

".z	c	#eca053",

".A	c	#bc614c",

".B	c	#e4855c",

".C	c	#bc8350",

".D	c	#c48e68",

".E	c	#b16634",

".F	c	#e49339",

".G	c	#bc703a",

".H	c	#bc7c67",

".I	c	#a45f34",

".J	c	#cc714d",

".K	c	#d48c5f",

".L	c	#a47057",

".M	c	#cc703a",

".N	c	#dca674",

".O	c	#b47859",

".P	c	#bc6729",

".Q	c	#d49475",

".R	c	#d48b4a",

".S	c	#cc8351",

".T	c	#cc8466",

".U	c	#ac6841",

".V	c	#e4a651",

".W	c	#e49576",

".X	c	#d47d31",

".Y	c	#ac6e4b",

".Z	c	#c07650",

".0	c	#e48c43",

".1	c	#e49452",

".2	c	#9c745f",

".3	c	#e47e54",

".4	c	#cc7c4f",

".5	c	#cc7c32",

".6	c	#b46133",

".7	c	#d49a68",

".8	c	#d67e4f",

".9	c	#bc7643",

"#.	c	#b47056",

"##	c	#d48b3a",

"#a	c	#dc9f5e",

"#b	c	#e49a60",

"#c	c	#cc6a31",

"#d	c	#8c6244",

"#e	c	#dc9a41",

"#f	c	#eca753",

"#g	c	#bc8a58",

"#h	c	#d48c76",

"#i	c	#bc693f",

"#j	c	#bc715d",

"#k	c	#9c6857",

"#l	c	#f4b171",

"#m	c	#bc8a6a",

"#n	c	#eca16d",

"#o	c	#a87e58",

"#p	c	#a4613f",

"#q	c	#a48569",

"#r	c	#d4846d",

"#s	c	#dc935f",

"#t	c	#c47c50",

"#u	c	#dc8449",

"#v	c	#bc6950",

"#w	c	#cc9678",

"#x	c	#c4703a",

"#y	c	#cc7b67",

"#z	c	#dc8c5e",

"#A	c	#ac7067",

"#B	c	#eca86e",

"#C	c	#b4786d",

"#D	c	#dc8c4a",

"#E	c	#b46842",

"#F	c	#d47c41",

"#G	c	#e48d51",

"#H	c	#e59a52",

"#I	c	#9c6e3f",

"#J	c	#d49351",

"#K	c	#cc843b",

"#L	c	#ecb678",

"#M	c	#9c5a38",

"#N	c	#d4795c",

"#O	c	#c47b39",

"#P	c	#ec9560",

"#Q	c	#ac764c",

"#R	c	#c48351",

"#S	c	#c48e74",

"#T	c	#cc7650",

"#U	c	#cc8a84",

"#V	c	#bc6a5c",

"#W	c	#e4af74",

"#X	c	#b46855",

"#Y	c	#e4a06e",

"#Z	c	#ac775b",

"#0	c	#e48d5d",

"#1	c	#c47d65",

"#2	c	#cc763f",

"#3	c	#b47e5d",

"#4	c	#cc8a55",

"#5	c	#cc8a67",

"#6	c	#bf622f",

"#7	c	#dc853b",

"#8	c	#e49f4a",

"#9	c	#9c505c",

"a.	c	#8c5644",

"a#	c	#cc7329",

"aa	c	#a45a51",

"ab	c	#b48264",

"ac	c	#9c7a7c",

"ad	c	#9c5f4f",

"ae	c	#b4844c",

"af	c	#a46749",

"ag	c	#dca664",

"ah	c	#b46e1c",

"ai	c	#c4762c",

"aj	c	#a45a3c",

"ak	c	#dc9a74",

"al	c	#ac7e46",

"am	c	#ac6a6c",

"an	c	#eca862",

"ao	c	#e49a41",

"ap	c	#e49a78",

"aq	c	#bc7660",

"ar	c	#d57e5e",

"as	c	#9c6e5c",

"at	c	#ab7e65",

"au	c	#cc8a44",

"av	c	#9c6240",

"aw	c	#bc6244",

"ax	c	#bc5d3f",

"ay	c	#e48550",

"az	c	#eca060",

"aA	c	#cc7160",

"aB	c	#cc7c42",

"aC	c	#b46241",

"aD	c	#b4726c",

"aE	c	#eca67f",

"aF	c	#9c6a3c",

"aG	c	#94685a",

"aH	c	#c48240",

"aI	c	#c48465",

"aJ	c	#dc7640",

"aK	c	#cc8f54",

"aL	c	#e4a76f",

"aM	c	#c4692e",

"aN	c	#dc9474",

"aO	c	#ac6050",

"aP	c	#b47048",

"aQ	c	#94614b",

"aR	c	#ac836c",

"aS	c	#a47048",

"aT	c	#b4764a",

"aU	c	#ec8e5c",

"aV	c	#dc9a53",

"aW	c	#cc765e",

"aX	c	#b48a64",

"aY	c	#dc9a63",

"aZ	c	#c47640",

"a0	c	#ec9a60",

"a1	c	#c48a54",

"a2	c	#c48a67",

"a3	c	#ac5a3c",

"a4	c	#ac8458",

"a5	c	#dc855d",

"a6	c	#c4714d",

"a7	c	#dc9243",

"a8	c	#dc794e",

"a9	c	#ac6955",

"b.	c	#cc8f67",

"b#	c	#ac6032",

"ba	c	#ac7056",

"bb	c	#dc7a34",

"bc	c	#ec9553",

"bd	c	#dc8d3b",

"be	c	#e4a060",

"bf	c	#f4a654",

"bg	c	#c46842",

"bh	c	#c46f62",

"bi	c	#ac613d",

"bj	c	#dc866c",

"bk	c	#c4694e",

"bl	c	#dc7d42",

"bm	c	#ec8d4f",

"bn	c	#dc9351",

"bo	c	#cc9177",

"bp	c	#c4695f",

"bq	c	#ecb075",

"br	c	#e4a75f",

"bs	c	#d4843c",

"bt	c	#bc722c",

"bu	c	#d4936c",

"bv	c	#d47644",

"bw	c	#bc7d5c",

"bx	c	#ac563c",

"by	c	#e4956c",

"bz	c	#a47a4c",

"bA	c	#d48454",

"bB	c	#bc825c",

"bC	c	#e49544",

"bD	c	#bc7044",

"bE	c	#bc7e74",

"bF	c	#d48d6c",

"bG	c	#cc7144",

"bH	c	#b47864",

"bI	c	#bc6a34",

"bJ	c	#d49684",

"bK	c	#d48b54",

"bL	c	#cc845c",

"bM	c	#cc8474",

"bN	c	#ac684c",

"bO	c	#cc7d5c",

"bP	c	#eca27c",

"bQ	c	#dc946c",

"bR	c	#c47c5c",

"bS	c	#dc8554",

"bT	c	#c47244",

"bU	c	#dc8c6c",

"bV	c	#dc8c54",

"bW	c	#b4684c",

"bX	c	#cc8344",

"bY	c	#c47b44",

"bZ	c	#c4825c",

"b0	c	#e4a17c",

"b1	c	#ac7a64",

"b2	c	#e48c6c",

"b3	c	#c47a74",

"b4	c	#e49f54",

"b5	c	#9c674c",

"b6	c	#946764",

"b7	c	#c48674",

/*	pixels	*/

"#u#G#G#P#G#G#G.1#G#G.1.1.1.w#G.r#D.1.1.1#D#DbVbV.K.K.K.KbO.Z.Z#TaP.GaT.Z.O.O.O.H.9aP.ZaPaPaPbZbo.i.k#J.k#JbKbnbn#b#sbVbV#G#G.r.ray.r.0#G.0#G.1bc.r.0.0bc.0.0.0.r.1.1.1.1#G#D.0#D.0.0.0bcbcbc.1.0",

"#aagaLbrag#a#a#a#DbVbn#G#0.1#0#Da5#za5.4.J.Jbk#vbt.G#x.9bY.4#tbYbw.saPaP.Ub#af.Y.s.s.Z.saP#E.gbw.U.U.UaObWbWbWaPb#b#.E#t.K.K#z#s#s#sbQ#s#sbn#s#sbn#s.w#s.w#s#sbn.ybV#s#sbV#s#sbQ#aak.7.k.7.k.k.k",

"#..g#.#.#j#.#XbW#Z#o.O.O#3.n.n.Halalalala4aXaXa4#t.u.9#R#5bu.k#5bob7aIaI.nbwbw#m#5aIa2#5#5aIb7#5.DbBbB#3bwbw.C.O#oabab.naI.C#t#R.9#tbY#tbY.ZbY.s#t#t#t#R.sbY.s#tbD.Z.Z#t.9.Z#t.4bBbw.s.saT.9aTaT",

".ybS.ybSbVbVbVbVbl#u#u#ubSaybSay#s#za5#z#z#z.KbA.Qb.aIbZbZbB.g.U.gaP#.aP#.aPaP.O.9aP.g.s.O.ZaP.Z#CaD#Aamamamam#X#3#Z.OaPaPaPaP.saZbY#t#t#tbY#tbY#t#tbLbZ.SbR#t#tbZbRbZbRbR.sbRbR.4aBaB.4bY.4.4.4",

"bKbV#zbKbA.ybK#zbV#z#0bS#0#0#0aya5bA.4.4.4#T#xbgbwaq.O.g.O#j#.aPaCaC#v.g.gaPaP.Z#R#R#t#t#t.Z.s.Z#O#O.5aH#KbY.S#4bD.G#xaZaZ#2.SbVbV#s.wbV#zbSbAa5.e.KbQbQbU#s#z.K#5.K#5.T#4#5.Kb..4bZbL.T.ebL.K.K",

"#A#A#C#C#AaD#CbEatataRb1b1abb1.t#I.f#IaSbz.x.#.##v.g.g#1bR.T#5#hbObO.T.K.K#5.KbubL.4.4#t.4.Z#tbL.e#r.K.K.e.e.T#r.K#z.K#z#sbVbS#zbV#u#ubVbl#F.8.l#2.4.8bAbA.l.4bva6.g#x.g#x#i#i#i.L.Lba#Z#Z#Z#Zba",

"aPaT.u.u.s.C.C.C.SbA.S.4.SbA.8.8#r#rbF#h.TbO.T#h.KbF.e.e.S.S.S.S#u.y.8bA.e.4bA.e.K#zbQ#s.K.KbUbQ.y.R.y.yaB#O#xbT#t.4bLbLbL.4bL.S.4.S.4#T.Za6.Z.JbD.g.Z.g.Z.g.Z.ZaP.g#iaP#i#E#EaC.Obababa.ObH#Z.O",

"#zbSbA.e#za5.e.8bV.KbV.ybAbK#zbK.8.ybV#z.y#F.y#sbKbA.Rbn#sbn#b#b#Y.w#sbV.y.4.lbA.y.y.ybA#T.MbG.4bObO.4.SbLbOaq#..O.Yaf#p#p.I.U.UaT.Z.O.Oaq.O.H.Hb1b1#Z#Z.L#Zat#3bw.s.HbBb7aIaIaIbA.l.4aBbAbA.e.e",

"#DbVbn.w#s.w#sbVbAbSbSbV#D#GbS#0.1#H#H#H#b.1bn.1#4.S#t#t.S.TbL.S.K.K.K.S.SbK.e.S#t.4#t#tbDaPb#b#.U#E.9.S.ebVbS#G.K.K#r.l#y#T.Z.Z#2aB.S.ybS#u.8#F#Kau.y.S.y.y.R.y#z#z#sbn.1bna7bd#F#DbVbVbV#s.w#s",

".1#s.1#s.1bVbS.y.K#z#sbVbVbA.8#FbA.8ar.8.e#r.e#NbKbA.S.S.S.SbLbLaBaBaB#2aB.SbKbAbVbVbV#s.w#YbebQ.KbA.e.KbV.ybl.ybsbsbs#D#u#D#u.R.y#D#DbVbV#s#0.wbebe#b#bbQ.wbn#GbV#G#D#G#D#GbV#D.ybV#sbV#s#s.w#s",

".wbn.w.w#bbQbVbV.4.4.ybKbnbV#z#z#G#D#D#D#u#D.y.R#2aB#2.M#x.M#2#2#z#s.w#sbV#s.w#s.1.w.w#b.w.1#G#G#s#zbVbVbVbSbVbVbd#ubd.r#D#D#D#D.1bC.1.1.1.1#D.1bV#G#0#0#G.w.1a0bC#G.0aybS.Ba5a5bVbVbV.w#z.w#sbV",

"#ubVbVbVbV#GbV#D#s#sbn#b.w.w.1bVb2b2a5#z#z.K#zbA.w#s.w#sbV#s#z#s.w#b.w.w#GbV.w.w.X#Da0a0#G.1bcaz#G#GbS#GbV#ubV#0#z#0#0a5#0#0b2#0.0.r.0.0#u#u#F.o.M.M.M#F#ubV#G.1#b#P.w.w.w#0aya5.y#u.y.ybVbnbVbV",

".wbV#GbV#G#s#G#0.1#G.1.1.1#G#G.0#0#0.w.wby.wbQbn.w.w#G.w.wa0#b#P#u#G#G#0#G#G#G.w#baz#Yaz.1.0#D.0#G#G#G#GbVbl.8blbva8.8.B#z.Ba5#0ay#G#G#z#G#z#z#z#zbU#z#z#zbQbybQ#zbK#z#s#sbn.R.y#2#2aB.8bVbV#0bV",

".w.w.w#z.w.w.w.w#GbV.r.0.0#G#G#Gbda7a7#H#8#8#8#H#u#u#F#u#D#GbV#u#G#G.w.1.w#G.wa0bV#D#DbV.w#baz.w#G#G#G#G#0.BbSa5#u#u#D.1.1bn.0#7#z#0bSbSbSa5#z#z#r.e.e.4.4#2#2bT.4.4.4.S.R.Rbn.i#s.K#zbV#s#0bV.w",

"#u.8#u#u#ubV#GbVby.wbQ.w#b.wbVbl#T#T.l.ear.Ba5.8.w#G#G#G.w.1.1.1.1#G#G.w.1#G#G.w#P.w#G.1.w#P.w#0#D#DbV.w.w#0#0#0.w#b#baVaVbn.1#G.y.y#F#F#2.obv#Fay#z#GbVbV#z.e.e#z#z#zbV#s#s#s#sbQbQ#sbQ.wbV#G#0",

"#0#0#0#G#0#u#ublbDbT.4#4#zbQ.e.e#s#s#s#z.w#0#0aU#DbSbVbV#D#D#D#G.w#G#G.w#P.w.w.w#Gbmbmbmay#u#G.waz#b.w.w#Ga5bl#uaraW#i#i#ia6.4.ebVbnbQ#b.w.w#GbV#u.r.r#G#G#G#0a5.1.wbV#zbSar.J.JbT#x#2.y#F.8#u#G",

"#5.TbL#tbD#i.g.Z.SbA#zbAbKbSbSbA#u#D#G#u#u#u#DbV#GbVay#G#0#G#G.r#D#Gbn.w#b#b#HaY.1bVbV.y#u.y#F#Fbv.o.M#2#2#2aBbG.9#OaB.y#D.1.1.1.w#s.1.w#G#G#G.rbdbda7bdbnbn#sbQ.nbw.s.Z.4.8.8.8.obl#u#zbV#z.K.K",

"#i#x.Z#tbL.K.kbQbAbVbK#u.ybSbV#z#G.w.w#G#D#G#0#G.1#G#D.1.1.1.1.1bVbV#z.yaBaM.M.5.y.y.y#ubV.w#P.w.w.w#b.1.1.w.wby#b.w#b.w#b.w.1.1#u#u#ubVbAbK#z.S.T.TbO.Z#vbga3axbD#xaZ.8bAbAbAbA.e#4bA#ta6.P.6.6",

".S.4bL.e.e.e.ebA.8bSbSbSbVay#0#G.1.1a0.1#ba0#H#bbc#Hbc#Ha0bc.1.0#z.8#T.J.l.ebVbV#G#G#G.w.w.w.w#P.w#b#n#b.1.1.w#n.1.1.1#G#G#D#ublbl#2.4.4.g.Z#ZbN#9#9aa#X.g.ZbOar.Mbvbla5#z#zbA.laPbNbi.U.U#..Zbw",

"bL.e.e.e#zbSbSbl#u#DbS#G#G#0#G#G.1.1.1.1bc#Ha0.1#G.1.1a0#b.1#u#F.e.4#T.8by#b#na0a0#b.w.w.w.w#P#0bVbV.1.1#G#G#u#G.1#G#G#ubS.8.l#T.Z.g#ibW.UbNa9#p.UaP.9.S.ybVbV#Dayay#z#z.e.4bT#i.pad#pbN#.bRaI.T",

".4.e.KbS.8blblbSbSbS#GbV#G#0#G#G#G.0.1.1bcaz#H.1#G.1.w#P.w.w#z.8bK.KbQbQbV#u#D.1#0#G#G#G#G#G.1#P.1.1beazbe.1#G#u#zbK.K.4bO.Z#j#v#A#ka9.YbW.ZbL.4.R.R.ibn#D#u#F#FbS.S.4aqaPbNbi.I#.bWaP.gbObL.8bL",

".K.K#z.e#F.lbv#F#z#GbS#u#u#G.w#G#u#G#G#G.1a0bc.1#P#P#P.w#GbVarar.R#J#HaY.1.1.1#H#H#b.1.1bc.1#P.1.w#b#bazbe.w#zbA#t#t.Z.Z.Z.g#.#.b1ba#..Z.Z.lbS#u.y#u#ubSbS#N.laA#j.ga9#kad#ka9#..g.g#tbO.e.e.ebA",

".l.l.8.y.8bAbAa5bSbS#ubSbS#0.w#G#G#G#G#G.1bc.1bCbm.1.1.0#Dblbv#T#D.R.ybVbe#nazanananbeaz#b#bbc#H.wa0.1#sbV.S.S#t#t.s.Z.sbwaIaIaI#t#t.4bA.lbl#ubl.3a5a5.e.4bh#V#XbN#k#kaG#k.L.OaIbL.e.K.ebA.y.4.8",

"bSbAbAa5.ebA.8.4.8.ybS#z#G.w#0bSay#0bm#G#G.0.1.0bc#H.zbf.zbe.1#z.KbVbSbA.y#D#D.1bebebe#HbeazazazazazbebV.S.4#1bMbZbR.Z.Z.Z#t#tbYbl.o#ubS#Gay#0#uarbl.laB#t.uaT.Oad#kaGb6#ka9.g.Z#t#t.4.4#t.4bK.K",

"aBbs.y.ybA.l.lar.4aBaB.8.y#F#u.wbn#D#D#G.0.0a7.FbdbCbc.1.1.0.1bc.F#8#H.1.ybG.4.ebn#s#s#baY#saYaV#b.w#s#J.SaZbD.sbR#t.S#z#ubs#F.R#D#D.0#G#G#G#G.0#D.R.yaBbDbDaP.g#Zb1.L.fb6.h.hac.I.YaT.u#t.Z.Z#2",

"b3bR#1.4.4.4bX.R.K.KbV.ybl#F#F#F#za5a5.B#z#0#sby.1#G.1.1.1bm#G.1a0a0#H#H#b#b#s.ya#.X.y.ybVbn.w#bbebeaY#sbAbRbZa2au.S.R#s#z.y.e#zbs#ubn.1.1.1#G#D.0#D#D.RbA.4bO.4aPbD#Eb#af.I#Maf.2.x.L.L#Z.O.n#S",

"aObi#Xbw.s.sbY.SbXbK#z#z.w.w.wa0#z#za5bS.l.l.8bVbSbVbS#G#G#G.w#Pbe.w#b#bazbrb4#Hbebebe.1#u#F.5.X#F.y#s#Y.NaN.Q.Q.T.Tbu.w#sbn.1be#sbVbV.y.y.ybn#b#G#G#G#G#0bn#zbSbn#bbn#D.R.RaBbX#3.O.Yaf.I.Ibi#E",

"aVbX.G.6a3aCb3#U.y#z#s#0#z.w.w#s#H#H.1.1.0#G#Hb4bVbV#u#u#u#D.0#D.1.1.1#D#7#D#Hb4bCbc.1.w#b#b#n#nbe.1#u.yaBbX.S.kb4.cb4aYbA#T.4#r.4.K.K#s#s#s#D.y#GaybV.w.w.w.w.w#G.w.w.w#b.1bn.1#P.w.w#0#0aybS#G",

"bnaVaYbeaNarbp.A.P#2#F.y#u#s.w#sb4b4.1.1.1.1#H#H#nbeaz#b#HbnbCa7.zbe.z.1#D#D.w#Baz.z#H.w#P.w.w.wbebeanbrbebn.RbX.4bQb0aL#BaYa7.bbA.4#xaMaZ.ybK.kbA.4.4#F.8.ybA.ybv#u#ubS#sbV#D#zbl.ray#G#G#P.w#P",

".w#0bSbVbV#D#D.1aY#b.w#zbS#FaBaB#x.M.l.8a5byap#bbn.1bebebebebeaza7.0bd#u#ubSbS.BbC#D.0#D#G.w.w.1anazb4bebebebr#B.V.c#D#Oai.S#s.WaE#Y#Y#YaY.kaB#x#4.S.S.4aBbX.y.y.y.K#z.KbV#z.ybV.ybKbKbK.K.K#z.k",

".8.8#u#G.w#HaV.1#s.w#s#0#zbV.wbQ#na0by#0a5bSbvbg.M#F.y#ubSbA#z.k.w.w.w.wa0a0.w.w#H.w#HbV#D#u#G.1.1.1#b.w.1.1#D#DbVakaLaLaLbq#B.VaB.XaB.ybKbQaLaL.q.qaY#a#b.w#b#b#b#b.wbn#s#D.y#D#s#s#s#JbKau.SbA",

"b4#Hbe#baY#s.K.S.y#F.ybSbS.R#zbe#H#H.1#Gbc#b#bbn.w#bbybQ.4#xbga6#T.l#za5bV#G#Gbc.w#b#b.wbV#D.1beby.wbVbV#z#s.w#Y#bbeaY#J#s#Ybe.1#B#B#Bbr#s.RbA.KbKbnaV.w#b.w#Ha0b4anbe#Hbe.1.1#bbC#8bc#Ha0a0#Pbc",

"b4#8#8#H#HbCbC.1b4#b.w.1#P#G#G.0akbVbXaB#2#2.4bAbA.KbAbV#s#b#YaY.1bV.8aZ.GbYaB.S.RaV#abebn.1#8az#b.w.w#b#ba0by.w.1#Hazbebe.1#s#b#ebnbnbnaVaVaYbnbnb4bebe#abe#abebnbnbnbn.ibnbnbn##a7#8#8#ea7beaL",

"#Y.w.w#s.w#0#z#0#D#DbVbVbVbV#bana7#D.1.1#b.1#D#D#u#u#Fa#.o.y#D#D.r.r.w#b#Y#b#b.w.gbkbg#Tar#za5a5####.5.b.Ra7.1bn#HaV#H#Hbn#D#D.ybQbQ#z.K.e.K.e.ea7bnaVa7bnaY#aaL.m#Wbrbr#Ybr#W.m#L#L#L.mbeb4.w#b",

"#sbK.ybS#z#zbSbS.k.k.K.S.SbAbKbn.w.1#D#GbV#GbV.w#G#G#G#u#u#ubl#7.r#G#G#0#zayay.0#Y.wa5bS#zbS.8.M.4.Z#xbka6#TbObO#D.Rbn#s#bbebebebV.R.R.y.R#D#DbVbebe#BbqaLbebn.Rbnbnbebr#BbrbeaV#Da7bran.mbr.1#D",

"anazbean#Banbe#H.y#O#x#x.ybKbK.R.Jbvar.ebja5#N#TbvbS#z#0#0.1#0bV#G#u#u.o#Fbb#7bm#F#7#u#D#Dbn#bbe#s#s#sbn.w#zbVbVbkbpbpbpbhbhbhbhaAaAaWaW#N#r#rbFbs.ybKbn#b#YaLbq#Bbrbebebebr#BbqbeaLbe#Y#B#B#B#B",

"a7#DbCb4azananan#BaL#b#Yby#b#G#ub0aN.e#x#i#xaWbObAa5.e.8.4#2.4.4.w.wbQ#zbSbSbVbV.w#z#zbS.JbGbG.l#D#GbV.1.w.1#G#G#H#8#8#8aoa7#8#8#D#Dbn.1bnbC.1bC#b.w#D#D.y.5bs.y##a7#Hbranbe.1.i#sbn#D.Rbsbs#ubs",

"#b#0.y.8#2#2#2#2#F#u#G.w#0#G#Pazb4b4beb4bnbn##.5#xaB.4.4.4.e#z.K.e.SbA.8bA.ebK.K#zbV.y#ubVbVbVbVar.8ara8ara8a5ar.RbV#zbVbA.y#D#sbSa5a5bV#zbSbVbS#G#DbV#b#b.1bn#bananbeb4b4anananbean#B#B#Bazbebe",

"#0a5bSbV.w#Y#BaE.1#0.wbSay#uay#Gbd.FbCbC#H.zanaz#b#b#b.w#zbA#2#c.P#6#6.M#2.e.K.k#KaB.Xbsbn.1.1#7#Hbna7#D#D#D#D.0#0#zbVbV#u#F#FblbdbCbC.1bC#G.1.1bV#u#D#G#Hbean.manbeanan#B.manan.mbebe.1bV.1.1.1",

".zbCa7#Hazanb4#8#Y.w.y.8#z.w#G#D#G#0#P#0#0#0#uaJ#D#u#ubl#D#0.wb2.w.1#0#0.w#z.4.G#vbhbRbO#rar#N.l#4bL.S.4.4.4.4bLay#D#uay.1#Ha0.w.1.w.1.w#G#s#0.w#G.1.1an#Bazb4b4anazb4b4.zananan#f#f#8#b#H.w.1#b",

"b4#Hbd#Ha7#H.1.0a7#H#b.wbV#s.w#0#D#D#D#D#G#u#u#G#G#G#GbV#u.8.y#ubs#7#G.1.1bn#D.y#xbXbAbAbYbt.Z#RbXbK#s.k.R.S.RbAbl#F.o.o#Fbv.yblbV#u#7#G.1.z.z.z.w.1#G#u#D.0#G#nb4#H.1.1#b.zb4.z#H.1.1.1#Hbe.m#B",

"#Y.w#D.1ay.w.w#Ga7#H#H.w#G#G#G#G#D.wbV#G.1.w#G.1#D#D#ubSbA#u.KbV#s#G#u#u#ubVbn#s.zb4b4#sbO.g#V#X.MaB.yaBaB#2aZ#2.y.y.R.KbQ.KbQbu#zbAbK#s#bbe#Ybea0be#bbn.w#D.y#G.1bC.1.1a0#b.z.z.zbc#H.zbCao#HbC",

".wbS#0.wa0a0#na0azaz#b#H.1#G.0.0.w#P.w#G#0#G#uay#D#DbAbK#z.KbSbK.l.4bv.8#F.l.e.S#ubAbA.RbK.K.K#s.4bAa5#z#z#z#z#z#w#m#3ba.p.p.L.L.ZaZbD#t#R.SaKaKakap#Y#bak#s#zakbn#D#u#D.y#7bs#7#F#F#u#0#0#0by.w",

"bna7anbran#8az#8.1#ba0#bbcbeaza0a0.w#G#G.1bm#G#0.1#z#GbV#z#0#s#G.e#z#z#za5.8bGbgaAbv#T.l#F#Da7a7bQbybQ#z.e#z.ebAblblay.0ay.raJ.obR.s#tbR#t.s.s#tbDaZa6bT.Z.gbT.SbA.S.S.KbQ.q.q#YbqaLbeaV#D#u#D#u",

"auauaL#W#Wbr#L#Wbe#nbe.w.w.w.1a7.1#H.1.0#u#7#7.r.0#ubl#uay#Gay#u#z#za5#u#ubS#za5#D#u#u.8.8.8.8#r.4bYaZ.G.GaZaZaZ#t.SbLbFb.#5bO.Z#t.Z.Z#t.Z#iaC.E.Z#1.g.ga6#ibWbR.C.s#..OaPbNbi.Ua9ajaO#X#v#y#r#h",

"bL#1b.aI.g.I.UaP.GaZ#t.4.SbK#sbQbe#Bbe#b.1#D#D.w#G#DbSbl.8bl#u#F.8aB#F#F#F#ubV.w.ybSbS#u.8.8a5#z.k.K.KbK.KbQaYakbu.K.S.4.4.4.S.e.4.8.4.ebF.Kb.#h.gbR#taq.ZbW#E.gaP.YbNba#.babaaP#3.u.s#R#R.S.KbK",

"a6a6.Z.ebO.T.QaNa2a2aIaT.Ub#.6.EbIaZaZ.4.S.SbA.kakbQ.k.KbF.ebA.y.e.ebSbS#u.8#FbG#r#r#r.e#F.ybsbdbV#zbV.yaBaB#2#2#MavaS#Z.O.O.OaPa6#i#i.ZbRaI.H.n.ZaIaI.T#5aIbRb.b.bLaIbRbR.gbWaP.g#v.g.Z#x.gbT#i",

"#H.1#DaY.ybV.SaB.Y.O.O#.#X.ObBaIbR.T#1#t#1.Z.g.ZaP.U.U#EbW.g.g.g#T#T.4.l.l.8bS.e#F.8#F.l.8arararblbSa5#0bS.BbS#ubV#u#ubl#ublblbl#5bZ.gaP#.babN.pb##E#E#E.Z.g.gaIaB#2.ZbL.T.e.e.K#z.kby#b#b#Y#Baz",

"brbrb4#Hb4.1#D.0.R.y.y#F.yaBbvaB.Z.g.g.g#jaOaxbxaFaS.Y.O.s.s#ta2#Fbla5bSay#ua8bl.y.y.RbK#J.KbKbK.S#F.y.8.8bA#F.l.y.y.8.8.4.4.4.4aPbtaPaP#E.YaPbNaP.Z.sbwbw.C.CbZbB.C.Z#..O.H.OaP#RbX.SbK#JbnaV#a",

"aZ#taZ.Z.4bLbO.ebLbR.S.TbL.T#4buaK.S#R#R#4.Sbw#t#3aT.Z.ZbD#i.E#i#Z#ZafafbN#Z.na2.3ay.B.Bay.B.8a8bn.y.4.4.4.8.8bAbl.y.ybKbS.e.e.8#F.K#s#s.k.KbLbObL#t.Z.9.G.GbI.E.G.9aP.g.ZbZbZ#tbJaI#.#EbW#E.g.Z",

"aKaKaH.u.C.C.sbw.O.O.O.O.Y.Uba.O.uaPbtaT.u.s.s#Rb.#4#5bLbL#T.Z.4.4#t.4.4#t.4.y.ebKbAbV.KbAbAbA.K.KbVbAa5#z#z#z.y#z#zbS.8aB#2.M#2.o#F#ubl#F#u#G.wbQbKbKbnbQ#YaL#Y#saY.KbAbYaBaBbY#.bibiaPaI.Tb7bR",

"#h#5#1#X#jaOaaaa#M#paf.Ybaba.n#S.H#.#.aDaqaqaq.HaPbW#x.Z.4.Z.4bR#RbLb.b..k#4#R.4#RaH.u.u.u.ja1aK#F.S.4.K#zbQ#zbVbSbSbS.ybS#DbVbVayayayblbbbl#u#G#D#u#u#D.1.1#b#H#H#b#b#GbV#s#b.1#L#WaL#WbqaLbK#K",

".zanbeb4be#aaY#aak.k#4bL#t.G.G#i#1#j#j.gaq#j#.bW.ZaT#tbRbObRbLb.#u.r.r.r.r.rbmbm#za5bv.la5a5a5a5.K.4#xbg#xbg.MaM#2.8bV#s.w#sbV#ubS#z.1#z#G#G.1#G.1.1.1.1.1.1bc.1.1.1.1#G.wazaz#Bb4#8bC#Hbebe#H#b",

"#D#G#G#u#0#zbSbSbVbVbAbAbV#z#z#s#JbK.R#s#saYaVaYb.#4.SbL.4.Z#t#t.L.LaS.Lba.O.n#mbQ#z.K#zbQ#0.e#2bQ.K.K.K#z#s#z#D.y#F#F#F#F#F.oaB.8.y.8.y#ubV#0#D#u.r#G.0#G#G#Gbc.1#G#G#G#G#Hbc.1#naz#b.w.1#0#0#P",

".z.zbcbCbcbC.0.0be#b#ba0#H.1.1.w#Dbdbdbn#H#8.z.z#BaL#b.w#sbV#z#s.K.K.K#z.K.K#z.K#R.C.j#RauaubYbt.6#6a6bL#zak#bak#D#D#D.y#u#u#0#0.w#sbV#u#F#Fbl#u.w#0#G#G.1#G.1#G.r#GbV#GbV.1bc#H.w.w.wa0#0bS#G#0",

".w.w.1#G.1#P#G#P.w.1#H.1.1#D#D.1by#0#0#G#P.w.w#b#Hbc#Gay#G.r.1.wbv#F.l#F.laJbvblbA.8.l.8a5#z#zbS.K#4bO.4#TaBaB#Fb4#baz#b#P#zbl.o#F#D#0#G#G#GaU#0.B#u#u#u#G#G#0.1.w.w.w.w#0#G.1.1b4anbraz#8.1#8az",

"b4.1bnbC.1b4.zaz#f#fbr#fb4#8.Van#f#8#8ananbe#G#u.1#G#DbC.1.1.w.1.w.1#G#G#GbS#ubSaiaB.SbXaB#2.4bKbvar.ebF.T#1#j.gah#O##bnbn#D#baY.1#D#DbS#u#D#7#7.o#u#0.wbya0a0#0.wbn#0bSbAbS#z#0#8#8an.z.1bd.1a0",

"#b.1.1bn.1bebran#W.man.manbran.m.m#Bbebe.1#D#D#bbCbCbC#GbC#G.1#G#u.8#ubSbVbS#z#z.w#s#D#ubV.1.w.w#Da7bd#Dbs.5.5#O.Q.Q.K#N.Jbgawax#O.y#z#s#z#z#b#B.zazaz.1#GbC.0bd#7#D#ubSbV#G.wbebr.Vbe#8#D#7#7#G",

"#b#b#b#b.w#b#bbeb4#H.cbebe#bbnbK.e#z#z#sbVbs#D#G#z#z#za5a5#za5a5#sbn#z#z#z.y.8bAbl#F.o.o#u#G#G.r.1bnbn#D#DbV#z.w#T#x.MbGbla5a5.eaB.S.SbT.6.a#2bK.1bn.1bn.1bean#lazazbe.1.R#F.5a#.S.e.ebUbU.W.Wap",

".ybAbAbKbK#DbV.waV#HbebebeaYbnbn#z#FaB#F.y#D#Dbnbe#H.1bn.1#Dbnbn#8#eao#e#8#8#8#8#0#0#0.w#G#G.ray#2.J#2#2.la5#z.w#b.1#u#Gbnbn#D#DbAbA.4.4.8bA#z#z.e.8#T.J#x.l.K#z#D#0.w.w#b.qbraLanbr.Vbr#8bd.b.b",

"#B#B#Bazbrbebebe#8brbrbrbe.zbrbr.mbrb4#H#b#sbVbV#NaW#T#T.J.JbkbkaAbp#Vbpbhbpbpbp.e#zbQ.w.w#s.1.w#H#b.1#G#D#7#7#FbS.8.l.l.8a5#sbybV#G#0.w#0#z#Fa#.4#NbOar#r#r#z#za8.ybS.8.4aB.SbK.cb4anan.mbeanan",

"brbrbebrazbr#f.Vbr#f.manb4bebean.V.V.m.maL.1bA.y.Rbnbnbnbnbn#Hb4#Y.w#saYbQbnbK.RbT.GaM#2.4bVbVbK.8#F#u#z.wbybyby#G#G#zbV#u#F#F.obb#uay#0#0.w.w.w#b#b#sbn#D.X.5.b#z#0#za5bAbA.K#s#TaAbObO#T#T#raN",

"bnbnbnbeanbq#l#Lan.maLbrbebebrbeaVb4b4aVbnbn.wbe#T.4.ybAbK.KbQbQ#D.R#D.1.1#H.1#H#Y#s#zbVbV#z#u.ya5a5ar.l#T.J#vawa7#Hb4be#b.1.0.0#G#ublbv#c#c#2#u#Dbd#D.1.w#Hbean#b.w.wbVbSbVbVbVbVbV#D.1bV.1#ban",

"#Bbebe#abebeaVbnbn#sbn#D#s#a#b.w.q#b.q#Y#Ybe#HbnaY#baY#baVbnaVaV#bbn.w#bbebeaV#H#D.1bebe.w#G.wa0.z.z#HaV#HaYbnaV.ebLa6a6a6bOa5b2.w#b.w#zbU#s#s#zbA.lbv#T#T.l.y#0#8.1#D.1.wazaza0.w#P.wbebe#H#baz",

"az.1bcbc.1.1bCa0#H#8b4b4#H#Hbebr#b#bbn.ybXbK#s.c.ia7bebe#zbV.8a5bnaY.caLaLbe#H#H.kbKbKbK#s#b#b#H#bbV#DbV.wbe.w.1bCbCbn#D#2bg#i#i.J.lbA#s#b#bbQbQ#JbVbVbS#G#u.R.R.SaB#2#2aB#Fbd#H.z.1.wa0#b#Ybe#Y",

"au.S.S#J.k.R.kaY#DbVbV#sbn#s#s#b#Y#Y#Y#Yak.q#Y.N#Y#Y#a.R.y.y.ybV#ebrbq#WaL#B#bbV.i.RbVbn.1#bb4b4#s#D.y#ubV.1#b#H.1.1#bbe#Y#b#s#z#z#z#D#7bs#u.y.lai.5#F#u#0.wbebe.qakbQbQ#baY#b#b.1.1.0#G#D#ubb#F",

".k#s.k.k.K.KbK.KbA.KbK.K#z#s#z.K.5aBbX.4bY#RaHbY.Z.4.e#s#sbnb4#H.q#Y#sai.dbs#8anbeanan#Ybe#H#H#8#b#H.wbV#G#G.0.1.wbV#u#F#7#D.1b4#bbebebeazb4.1bVbebe.w#z#u#FaBai.4#2.4.ebQbQ.w#Y.w#G#GbVay#u#z.w",

"bm#G#Gaybl#ublblbAbA.8bSbAa5bS#F#D.1#zbnbVbK.K.K.K.e.4aB.y#Dbnbea7#8brbq#Y.K.ebU#Hbe#Yanazbeazanazaz#n#n.w.1.1.1.w.w.1#Pa0#b.1.0bV#G.1.1az#b.w#s#sbVbV#ubVbV.1#s#z.yaB#2bG.M#xbgbG.8#z#Yb0#b#s#z",

"bS#GaybS#G.w#b#b#zbV#0bV.w.w#G#G#G#G.1#G#zbV#D#u.y#D#z#s#s.K.8aiar.4.4bV#sbn.cbr#s#u#2.M#x.y#D#b.1#b#b#b#na0a0a0a0.1.0.X#7#u.1a0#z#D#u#F#u#ubVbV#n#n#b#Pby#b#Y#n#bbn#D#DbV.KbV#z.K#1#i.6.6bDbL.Q",

"#Ebi#p.U.Y#Z#C#3bAbAbKbV#s#G#s#0#D#G.w.w#0bc#Gay.1#D#7#F.ya5#s.WaV.cbebn#sbQ#h.T.K.kbQb0aE#YbV.X.y.y.y.ybV.w#b.1#8.1azazaza0a0.wa0.w#0#GbV#z#z#0#F#F#F#F#F#u#ubVbe#b.1aY.wbV.ybAbRbR.Zaq.Z#E.U.U",

".n#Z.p.Las.faQ.fafaf.U.UaPbD.Z#t.4bK#za5#z#G#G#G#G#G.w#G#GbV#u.ybUbQ#z#zbV#JbKbYb.#R.Z#tbA.wbe#n.R#D.y.y.8#Dbn#D#Y.w.wbn.w.waza0.1.1#H#b#P.w#GbV.w#0bV#u#u#u#u#ubv.o#F.y#DbK#z.K#z#4.4.S.TbL#t#t",

"bLaZbD#R#taP.U#Z.hb6as.L#k.pba#ZbD.s.ZbTbG.8bS#Gay.B#G#0#G#D.0#D#s.y.ybVbV.4.ZbL.s.s#R#4#s.w#H.1aY.qbebQ#s#s#sbnar.l.l#u.1#HbC.FbC.1bC.1.1.1.1.1aybVbV.w#s.w#s#0by#za5#u.y.4.l#r.y.8#F.8.K.e.4#T",

"#4#4.S.4#taZ#T#2aZaTbNaQ#daQ.fasaS#QaT.s.4.8ararbl#ubVbV#ubl#F.XbT.G#t.S#tbkbT.T.uaH#OaB#D.1.zaz.z#f.z.zb4.za0.z#Jbn#JbK.ybAbK#s#z#baz.z.z.zaobc.0.1#G.0#G#u#G#G#ubS#0bVa5bS#uaBaB.y.y#u#F#FbA.K",

"#zbK.e.S.8.S.S.T.O#Z.LaQaQaQb5af#..Z#t.4#F.yblblbl#ubVbVbK.S#t.saI#tbwbZaI#t#t.S.n#1.TbF#zbQby.wbebranbraz#b.1.wan#nbe.w#z.y#FaB.8.ybn#Haobcbcbc.1.1.1.1#G#G#G#0#G#0#GbV#ubVbVbV.8bAblbAbSbS.K.K",

"#F.l.8.4bLbRbRbR#Z.L#kafafbN#..Zbg.Jbv.8#u#D.0#7#ubS.y#t.s.Obaas#3baaP.Z.sbD.Z.Z.y#JaY#a#Ybe#b.wb4#b#bbebebebe#bbm.0#u#G.w.w#0bVbGbAbVbV.1.1.w#P.1#Ha0bc.1#Day#D#0.1bS#u#ubV#zbVar.8.l.8a5a5.e#N",

"#T.4.4bObw#.bNad#k.pba#.bR.4bAa5ara5#zbVbV#u.y.4.K#t.gbi#pb5.p#k.ZaP.Z#t.S.y#Dbna7bCb4.zazb4ao.1#b.1.1bVaybV#G.wa0.w#G#z#0#z.K.y.8bV.w.1.1.1bc.1bcbc#Ha0.1.0#G#G#G#G#G#G#GbVbV#ubla8a8blbSa5.8.4",

".e.T#1bw#..paQa.#E#v.Z.8.ebSbSay#FblbA.y.S.T.TaIaDbN#paj.U#v.g#ta6#TbAbSbS#G.1bc#GaU#P.w#0#GbSbS#G#Gay.r#D#G.w#P#D.y.8.4.4.e.e.e#u.1#P.1bc.1.1.1.0#Ha0#Hbc.1.1.way#0.w#0bV#GbV.ybl#F#u#zbVbKbA.y",

".g#.bW.UaOa9#..O.4.8bAbSbS#u.lbv.K.K.S#x#Eb#.v...Yba#..Z#T.4#Fbvbl#ubS#G.0#GbCbc#Pbc#P#P#G.w.w#P#Gbc.w.w.w.w#P.wb0.qbQ.K#r.S.S.S#G.1b4#P#H.1bc.1.1bca0.1#P.w.w.w#G#z#GbVbVbSbSbS#DbV#s.K#4.S.4.4",

"#EaC#i.gbT.4.4bAbAbAbSbAbA.4.ZaPa3.6#6#E#x.4bLbL.4bAbKbAbSbS#ubS#0#P#P.w.w.1.w.1#H.1a7bCbn#H#H#Hbybyby#z#z.8.4.4aM#xaZ#2.8.y#GbV#Gbc.w.1#G.w.1.wbcbC#G#G.1#G#GaybSbSbS.8bla5bA.8#z#z.KbZbRaT.ZaP",

".4#r.K#z#z#G#ubb.8.y.y.y#R.O#Z.tbMbM#5.ebA.R#D#Day.rayaybV#G.wby.1#G.w#G.w.wbV#u.TbObO.Z.Za6bD#ia6bTbDbD#iaP.s#t.K#s.wbya0#P.1bm#G#0#0.BbSayb2#0.1#G#u#GbVay.8.8blbSa5bSa5#za5bAar.Z.gbaa9baba.O",

"b2bS.8#N#T.Ja6bk.M.M.lbS#z#G#z.w#ubV#GbV.1#G#D.ra7bnaV#H#Hbnbn#D.l.4#2.E.6.6bT.T.X.X#u#D.1.1b4be.1#G#G#G.0#Gbcbc.1.1.w.1.w.1#D#G#D.0.0#D#GbVaybS#G.1.1#Dbn#DbnbV.SbA.KbVbK.4aZbD#F#ubVbSaybV.wbn",

"#D.0#Dbn.1#sbQ#s#za5#z.w#zbS.y#ubV.kbVbVbVbVbVbnaW.l.l.4#Narar.8bCbn#HaVbnaVbebea0.w.w.1.1a7#u#7.1#s#H.1.w#Ha0#b#G.w.w.w.1.w#G#G.0#G.1#0.w#0#0.wbS.ebS.e.l.4.JbG.y#u#D.w.w.w#sbQbV#s#0ay#ubV#D#D",

".0bn#Gbn#D.R.R.RbV#G#z#0bV#u#u.y.SaBbYaB#t.4bA.ea5#zb2bSbSbVbV.w.0.0a7#Hb4#Hbn#7a5#z#z.w.wa0a0#bbeaz#b#b#bbn#D.y.1#G#G#G#G#u#G#u.1.1#b.1aybl#Fa8bG#T.8.eby.Wb0bP#G#Gbm#Gbm#G#G#G#sbn.w#z#G#G#zbn",

"#z.w.w#zar.4#T.Jbv#F.ybSbV#ubSbVaY#s#s.Ka5.K#z.Kbl#u#D#G#D.rbd.ra5#0bS.BbVa5#ua8.ybla8#u#0#G#G#G.0#D#G.wbe#B#Ybe#P.w.w.w.1#0#G#G#G.1#P.w.w#0#0.w#baY#s.wbn.0#D#7ay.rbm.r#G#G#G#GbV#0#z#0#G#z.1.w",

".8ara5.Ka5.ear.e.w.w.wa0#bby.w#b#0#0bV#u#F#FbGbv.8.8ay#z#0#0#0#0#z#0a5aya5ayb2#0bV#GbV#D#u#u#D#Ga0a0bc.1bc#G#D#u#Day#D#GbV#G.w#s.w.w.w.w.w#z.w.waBbs.y#D#DbC.1bCbV#G#0.1#0#G#0#zbKbSbSbS#u#ubVbV",

"#Hb4bebeazbeaz#Y#ubV#u#z#u.y.8#F.w.w.w.w#0.w#0#z#G#ubl#F#u#u#u#Fbd#u#D.0#7#7#7#D#u#D#GbV#G.w#bbebc.1#G#G.1.w#P.w#b.wby#s.w.w#s.w#z#z.KbA.4#F#T#2ar.e.ebA.ebAbAbSbQ.w#s.w#z#zbK.4.y.8bSbS#0bSbVbn",

"bn.1a7bnbn#D###u.1#0bn.w#G#z#D#0#0bV.w.w.w#bbe#bb4b4#HbCa7#Dbd.ybs.R#D#u#u#F#7bs#u#u#u.ybA.S.4bLap#b.WbQ#z#s#z#z.8.4.8#2#2bG.MbT.4.SbA.S.4.S.K.Kararar.ea5.ebS.e.8.8.ybS#z#z#s.KbAbla5#0#0.w#s.w",

"#s#z#s#z#z#z#za5#D#D#GbV.wbV#z#0.Ka5bKbAau.R.S.R.lbAa5.e#r#NaAaAa6.ZaW#N#N.e.e.e.BbSa5.earbOa6#Ebi#EbDbDa6#t.4.4.ebA.SbA.e.K.K#zbL.T.KbL#t#TbL.Kbn.1.1.1.w#Hbeb4bV#z#z#G.w#z#z.K#za5#zby#0bVbV#z",

"#u#D#DbV#u#ua8#ubXau.y.y.ybs#DbsbK.SbL#RaIaI.C#3bw#t#R#R.S.S.S.y#t.gaPaP.gaT.Z.ObabaaP.Z.Z.Z.4.l#F#2#2#O.S.ebA.8.S#2aB.y#zbKbS.y#u#D.1.w.1bnbVbn#zbK.y.SbK#4.S#tbSbV#u.8.8#u.8#ubV.y.y.y#ubA#ubV",

".##q#qat.tas.2.2#A#A#AbH.H#C.H#CaMbI#x.GaZ.9bD.G.9bD.GbT#2#2aBaBbK.ybAbKbK.S.S.S#t.Z.Z.4bAbK#zbV#sbV.K.K.K#s.KbV.K.y.SbA.KbK.y.S.4.ybAbK.K.K.K.K.K.K.e.K#4.K#4bLa2#5.D#5a2aIaIa2aIbBbZbwbw.s.OaP",

"ba.O.Obaba#.#.#..A.A#v.Abkbkbk.A.y.8.SbA.e.S.S.4.K.e.e.e.e#z#z#0bS#ubV#zbV.y.ybS#4.SbY.S.y.yaBaB.4#t#t#t#t.S.S.S.e.4.4.S.K.KbL.S#hbF.TbR.gaPbWaP#Z#ZbaaS.p#kb5b5bNa9#..O.O.Oaq.ObaaP.O.O#Zba.Y.Y",

"#D#u#u#uaybSbS#u#s#s#z.w#s#s.1bnbQbQbQbQbQ.Q.K.T#t.4.Z#2#T.4.4.4bAbA.SbA.S.S.K.KbQ.K.K.K#5bLbL.SbO#R.T#5b.#5.K.kb.#5bLbZbZbR.Z.gaP#.aPbNbNbN.O.Hbwbwbwbw#3.O.O.O#2.4.8.8.8.8.ybAbA.e#z#s#z#s#z#s",

"#5.TbLbL.TbLbLbL#m#gae.CaX.Caeae.Z.4#tbLbLbZbR#tbObR#tbR.4.4.4#t.saP.U#E.YaP.U#..UbWbibWbNbNa9#..gbW.Z.sbwaP.G.9aP#E.U#E#EaPaP.U.Y#3bBaIbw.Cb.#w.ybSa5bVbSbV#z.w#z#z#z.K.K.e.ea5bAa5.ea5.ea5a5.e",

".U.Y.YaTaT.Z.O.gbRbRbwbw#tbB.s.ZbTbT.Z#t.4.4.4a6#t.Z#t#t#t#ta6bDaIbZbB.n#m.n#3#3#X#.aq.HbH#..H#m.TbRaIa2.DaI.T#4bwbRbwbwbZb.bob.#4b.buaK#R.s.9#t#3.O.O.Obw.sbw.sbwbwbwbw#tbwbRbB.Z.gaP.gaP.gaP.g",

"aB#FbSbVbV#D#ubVaya8bl.8aybS#u#u#zbVbV#zbV#zbK#u#u#u.y.8.ybA.ybA.4bY.4.4#t#tbDaZ#tbR.4#t.4#t#tbL.K#tbwaI#5aIbLbFaIaIbwbD.U#E.Ubi#EbDbD.ZbT#xbT#xabaRaR#oabat.O#Z.s#t.SbLaI#4aKb.b.b..Kbu.7.Qbub.",

".w#b#b#Y.w#0.1#G#z#G#z#G#b#b#b#s.1#G#G#G.1bc#G#G#G#Day#G#G#G#G#G.w#G#GbV.1#z.w#b.kbnbKbn#s#DbVbV.K#t#iaP.ZbW.g.Z.s.s.gaPaP.Zbw.Za6.Z.Z.8#r#z#ra5#D.r.r.r#Gbcbmbm#G.1.w.wbc.w#G#G#G#G#G#Ga0#P.1.r"

};

/*	XPM	*/

static	const	char	*button_xpm[]	=	{

/*	width	height	num_colors	chars_per_pixel	*/

"				96				96						254												2",

/*	colors	*/

"..	c	#9c3218",

".#	c	#a4733e",

".a	c	#bc450a",

".b	c	#d4700c",

".c	c	#dc8c29",

".d	c	#bc5e00",

".e	c	#d46b37",

".f	c	#945431",

".g	c	#bc5a2c",

".h	c	#8c4e4b",

".i	c	#d47e16",

".j	c	#bc7422",

".k	c	#d47d3a",

".l	c	#d45e28",

".m	c	#ec9b3e",

".n	c	#bc6b43",

".o	c	#d45a13",

".p	c	#a45236",

".q	c	#dc8848",

".r	c	#e46b1b",

".s	c	#bc652f",

".t	c	#a46243",

".u	c	#bc6920",

".v	c	#a4391e",

".w	c	#e47b35",

".x	c	#9c6b30",

".y	c	#d46d24",

".z	c	#ec8a29",

".A	c	#bc452a",

".B	c	#e46833",

".C	c	#bc702e",

".D	c	#c47845",

".E	c	#b15314",

".F	c	#e47e10",

".G	c	#bc5a18",

".H	c	#bc6145",

".I	c	#a44d16",

".J	c	#cc5728",

".K	c	#d47439",

".L	c	#a45b39",

".M	c	#cc5815",

".N	c	#dc8f4c",

".O	c	#b46239",

".P	c	#bc5307",

".Q	c	#d4794f",

".R	c	#d47624",

".S	c	#cc6c2c",

".T	c	#cc6941",

".U	c	#ac5222",

".V	c	#e49328",

".W	c	#e4754d",

".X	c	#d4650b",

".Y	c	#ac592c",

".Z	c	#c05e2d",

".0	c	#e4751a",

".1	c	#e47d29",

".2	c	#9c6143",

".3	c	#e45f2b",

".4	c	#cc632a",

".5	c	#cc660d",

".6	c	#b44b13",

".7	c	#d48442",

".8	c	#d66228",

".9	c	#bc6221",

"#.	c	#b45736",

"##	c	#d47714",

"#a	c	#dc8936",

"#b	c	#e48237",

"#c	c	#cc530c",

"#d	c	#8c522b",

"#e	c	#dc8819",

"#f	c	#ec9129",

"#g	c	#bc7936",

"#h	c	#d46f50",

"#i	c	#bc521d",

"#j	c	#bc553b",

"#k	c	#9c523b",

"#l	c	#f49a45",

"#m	c	#bc7548",

"#n	c	#ec8643",

"#o	c	#a86d3a",

"#p	c	#a44d21",

"#q	c	#a4754b",

"#r	c	#d46547",

"#s	c	#dc7937",

"#t	c	#c4642d",

"#u	c	#dc6c21",

"#v	c	#bc4d2e",

"#w	c	#cc7e53",

"#x	c	#c45917",

"#y	c	#cc5c42",

"#z	c	#dc7036",

"#A	c	#ac5448",

"#B	c	#ec8f44",

"#C	c	#b45c4d",

"#D	c	#dc7622",

"#E	c	#b45222",

"#F	c	#d4651b",

"#G	c	#e47328",

"#H	c	#e58429",

"#I	c	#9c5f23",

"#J	c	#d47f2b",

"#K	c	#cc7116",

"#L	c	#eca24e",

"#M	c	#9c471c",

"#N	c	#d45b36",

"#O	c	#c46716",

"#P	c	#ec7836",

"#Q	c	#ac642d",

"#R	c	#c46f2e",

"#S	c	#c47551",

"#T	c	#cc5b2b",

"#U	c	#cc685f",

"#V	c	#bc4b3a",

"#W	c	#e49a4b",

"#X	c	#b44c35",

"#Y	c	#e48745",

"#Z	c	#ac613c",

"#0	c	#e47234",

"#1	c	#c46242",

"#2	c	#cc5e1a",

"#3	c	#b4683d",

"#4	c	#cc7430",

"#5	c	#cc7042",

"#6	c	#bf4b0d",

"#7	c	#dc6e13",

"#8	c	#e48c21",

"#9	c	#9c3445",

"a.	c	#8c432b",

"a#	c	#cc5e04",

"aa	c	#a43f33",

"ab	c	#b46d44",

"ac	c	#9c5e62",

"ad	c	#9c4833",

"ae	c	#b4742c",

"af	c	#a4522b",

"ag	c	#dc943c",

"ah	c	#b46000",

"ai	c	#c46309",

"aj	c	#a4441e",

"ak	c	#dc7f4c",

"al	c	#ac6e27",

"am	c	#ac4b4e",

"an	c	#ec9238",

"ao	c	#e48518",

"ap	c	#e47c4f",

"aq	c	#bc5c3e",

"ar	c	#d56238",

"as	c	#9c5840",

"at	c	#ab6946",

"au	c	#cc761f",

"av	c	#9c5024",

"aw	c	#bc4922",

"ax	c	#bc421d",

"ay	c	#e46927",

"az	c	#ec8836",

"aA	c	#cc513b",

"aB	c	#cc661d",

"aC	c	#b44a21",

"aD	c	#b4544c",

"aE	c	#ec8a55",

"aF	c	#9c5a20",

"aG	c	#94533f",

"aH	c	#c4701d",

"aI	c	#c46b42",

"aJ	c	#dc5a18",

"aK	c	#cc7b2f",

"aL	c	#e49046",

"aM	c	#c4520b",

"aN	c	#dc774c",

"aO	c	#ac4631",

"aP	c	#b45b28",

"aQ	c	#944e30",

"aR	c	#ac6e4d",

"aS	c	#a45f2a",

"aT	c	#b4612a",

"aU	c	#ec7032",

"aV	c	#dc872b",

"aW	c	#cc5939",

"aX	c	#b47844",

"aY	c	#dc843b",

"aZ	c	#c4601d",

"a0	c	#ec7f36",

"a1	c	#c47531",

"a2	c	#c47344",

"a3	c	#ac431d",

"a4	c	#ac7439",

"a5	c	#dc6735",

"a6	c	#c4582a",

"a7	c	#dc7c1b",

"a8	c	#dc5d26",

"a9	c	#ac5036",

"b.	c	#cc7742",

"b#	c	#ac4b13",

"ba	c	#ac5a37",

"bb	c	#dc5f0c",

"bc	c	#ec7a29",

"bd	c	#dc7813",

"be	c	#e48b37",

"bf	c	#f48e28",

"bg	c	#c44e1f",

"bh	c	#c44e3f",

"bi	c	#ac4b1e",

"bj	c	#dc6544",

"bk	c	#c44c2b",

"bl	c	#dc611a",

"bm	c	#ec7125",

"bn	c	#dc7d29",

"bo	c	#cc7752",

"bp	c	#c4473c",

"bq	c	#ec994b",

"br	c	#e49336",

"bs	c	#d46f16",

"bt	c	#bc600a",

"bu	c	#d47a46",

"bv	c	#d45b1e",

"bw	c	#bc653a",

"bx	c	#ac3c1d",

"by	c	#e47943",

"bz	c	#a46b2e",

"bA	c	#d46b2e",

"bB	c	#bc6c3a",

"bC	c	#e47f1b",

"bD	c	#bc5b22",

"bE	c	#bc6052",

"bF	c	#d47346",

"bG	c	#cc561f",

"bH	c	#b46044",

"bI	c	#bc5312",

"bJ	c	#d4775e",

"bK	c	#d4732e",

"bL	c	#cc6b37",

"bM	c	#cc644f",

"bN	c	#ac512d",

"bO	c	#cc6137",

"bP	c	#ec8552",

"bQ	c	#dc7944",

"bR	c	#c46339",

"bS	c	#dc6a2c",

"bT	c	#c45a21",

"bU	c	#dc6f44",

"bV	c	#dc732c",

"bW	c	#b4502c",

"bX	c	#cc6d1f",

"bY	c	#c46521",

"bZ	c	#c46939",

"b0	c	#e48653",

"b1	c	#ac6445",

"b2	c	#e46e43",

"b3	c	#c45851",

"b4	c	#e48b2b",

"b5	c	#9c5430",

"b6	c	#944d49",

"b7	c	#c46a51",

/*	pixels	*/

".waB.U#5#Dba.##u#sbn#H.8#z.0#Db2.4#E.g.e#T#F#z#4bL.n#EbSbm.kauaz#Bbnbr#B.y#b#bb4.w.z#D.z#haKaZbr#Ha6bLaubn.w#Yb4.z#0#ba7an#s#Yb4b4.8.wbnaVaOb3aBbS.l.K.4bL.S#i#5#0#u.w.w#u.w.1#D#zaP#AbK.y#.#a#u",

"#b#F.Y.T#u.O#q#D#z.1b4ar.wbn.0bS#raC#..T.4.lbK#4aZ#Zbi#G#G#s.S.1bebnbr#BbA#b.1.1.w.z#Gan#5aK#tbr.1a6#1aua7bS.w#HbCa5#0#DazbK.w#8#H.8#0aVbXbibRbsbA.l.K.e.e.4#x.T#0.8.wbVbVbn#sbVbSaT#AbVbS.gag#G",

"#bbS.YbL#u.O#q#D#sa7bea5.w#G#D.8.K#ibW#1.4.8.e.SbD.p#pay#G.k.Sbcbebnbe#BbA#b.1bn.1bc#Gbe#1aHaZb4#D.Zb.aLan#0#Dbda7bS.ybCbe.y.w#8be#ubSaY.G#X#1.ybA.8#z.K.ebL.ZbL#0#u.w#GbV.w.1bnbA.u#C#z.y#.aL#G",

"#YbVaTbL#ubaatbV#zbnbe.K#zbnbn#N#z.g.UbwbO.4.S.4#R.L.UbSay.k#Jbc#abebrazbK#bbnbC#GbC#ub4#X.u.Z#HaY.eaI#Wbr.w.1#H#HbV.8b4anbS#s#H#b#GbVbe.6bw.4.ya5.y.ebS.e.e#t#t#G#u#zbVbV.w#s.w.e.u#CbKbS#.br#P",

".wbVaT.Tayba.t#u#zbnaza5ar#D.1#T#zbTaO#.bwbL.8#t#tas.Y#Gbl.K.k.1beanazbrbK.w.1.1.1bc#0be#j.C.4b4.ybO.g#Wana0aya7az.w#2az#B#z.w#HaY.wbVaNa3.s.4bA.e.8#F.8#z.ebLbD#0#u.w#GbV#b.1#s#z.s#AbAbV#jag#G",

"#0#D.ZbLbS#.as#u#z#Dbe.e.4.R#s.J#G.4a9.p#.bR.SaZaP.f#Z.w#u.K.R.1bebqbrbe#D#bbeb4#PbC#z#aaO.CbL.1bV.T.Ibr#8a0.w#Han#Y#2anan#z#0bC#s#H#DaraC.s.4.lbAbA.lblbS.e.K#i#ubV.w#s#GbQbV.wa5.CaD.ybV#.#a#G",

".1#u.ObLbS#..2a8#z##azar#T.RbQa6#u.4#.aQbNbR.S#T.UaQ#C#bblbK.kbCaV#l#fbebV#bbr.z#G.0bSaYaa.sbO#D.S.Q.U#Laz#n.w.1b4#B#2anbebS#zbC.KaV#Dbpb3bYbX.l.8bAbvblbS.e.k.g#u#G.w#GbVbVbS#s.e.C#CbKbV#X#a#G",

"#GbV.gbL#u#..2#ua5#u#Y.e.J.R#sbkbbbA.Oa.adbR.T#2#Z.f#3#bbl.KaYa0bn#L.Vbe.wbeanaz#P.0bS#aaabw.e.0aBaNaP#W#8a0#G.0#8aE#2an#HbS#0.1.S.1.1.A#U.S.Rar.4a5#FbSblbAbQ.ZblbV.w#0#DbV.ybV.8.CbE#zbVbW#a.1",

"#zaybR#m#s.A#AbX#D.1#u.wbvbV#z.M.8bA.4#E#k#Z.OaZ.hafbA#zbAbA#D#Hbnanbr#8aVb4#W#f.wbebVak#M.ObL.R.Ya2.Gbe.1aza7a7#Y.1#F#B.y.k#Db4.y#saY.P.ybX.K.4.8bS#zbS#u.8bA.SbDby#G.1#s.4.KbAbV.SatbVbl#Z#D#G",

"#Ga8bR#g#s.A#Aau#D#0bV.w#F#Ga5.M.ybA.8#v.p.L#ZaTb6afbAbVbA.KbV#8#s.m#fbr#H#H.m#f.1#bbV.k#p.ObR.y.Oa2aZ#n#baz#H#H.w#0#uaL#O.k#D#b#F.w#b#2#zbK.KaB.ybS#GbS#DbSbVbAbT.wbV#G#s.4#zbS.KbAat#z#u#obV#G",

"#zblbwae#z#v#A.y#Gbn#u.w.y#z#z.l.ybSbA.Zba#k.LbNas.UbK#0.8bKbVb4bnaL.mbrbe.canbr#H#bbA#4af.O.S.y.OaI#tbea0#b#H#b.y.w#G#b#x.KbV.w.y#s.w#F#s#zbVaBbS#ubS#GbSbSbK#z.4bQ.r.1bn.y#sbSbV.SaR#0#u.Obn.1",

"#G.8bw.C.w.AbH.ybV.w#za0bS#0.wbS.ybAbS.8#.afaQaQ.L.UbVbVbS.K#sb4#Dbranbrbebe.m#f.1a0bAbL.Y.O.T#F#.aT.4.w#b#H.w.w.8bS.w#Y#x.SbV.1bS#0#z.y#0#z.y.8#zbS#ubV#GbS#ubA#4.w.0.1#bbKbVbV.y.4b1bS#u.O#G.1",

"#bay#taX#sbk.H.y.w#G#u#bbVbV#z#z#RbAbS.ebRafaQ#d#kaP#s.wbA#zbn#H#sbeb4bebebeanb4.1#HbV#tba.YbL.y#X.U.S.wbc.1#GbV#zay#0by.y.SbV#PbS#zbS#u#z.wbl.y#GbS#u#G#GbV.ybK#z#b.0.1.wbnbV#DbA.Sb1#0bS#3#0.1",

"#bbSbB.C#sbk#CbsbV#z.yby#u#ubS#G.O.4#ubS.4bNaQaQ.pbD#G.wa5#s#s#H#abebe.zaY#bbr#8#D.1#z.Gba.U.TaB.Ob#bK.wbe#G#G#s.w#u#G#bbKbAbV#G.RbV#F#s.w.w#F#F.w#0#G#0#0aybSbSbQ.w#G#G.wbVbA#GbKbAab#0ay.n.1.w",

"#b#u.sae.1bk.H#D#z#D.8.wbS#u.y#z#Z.Z.lbSbA#.b5.fba.Z#s#GbS#z#sbe#bbrbebrbnbnan.V#D.1#z.G.nba#4bvbB.6#s.1az.0#G.w#Gay#P#GbKbK#b#G#z.waB.w.w.w#F#u#0.w.w#G#G#0bVbS.ebV#G#G.1#z.8bS#z.8b1#0bS.n#0#G",

"#s#u.Zaebn.A#Cbs#0#0#F#bbV.y#u.w.taPbvaya5.Zafas#Z#t#0#G#F.K#bbr.wbeanbrbnbK.man.1.w#s#i#S.ObuaBaI.EbQa7a0.0#G#0#D#Gaz#u.Rbnan.0bebQaB#s#sa0#F.wbS#G#G#G#G#G#zbA.ebl#G.0bV#z#F#0bK.8.tayay.H#D.r",

".1#zbT.ZbQ.yaMbK.K#0.w#0aY.SbV#ubMa3.K#Farbg#.aSbD.4#D#G#D.5#Y#b.qaV.V.m#z.e.m#fby#D#J#1.H.uaK.ZbRbIbe.1a0.w#D#D#Gbdb4b0.J.wa7ak#H#n#xb4#H#z#zbnay#G#u#G.1.1#G#u#s#Tbd#0b2#GbA.1.8#r#Ia5#sala5#D",

"#GbVbT.4bQ.8bI.Sa5bV.w#0#saB.kbVbM.6.Kbla5.J.Z#Q.sbK#G#G.1aB#Y#b#bb4.Vbr#F#z#B#8#0bdbK#j#.aP.S.g.TaZ#B#H.w#P.w#D#0.Fb4aNbv.1#DbV#Ha0.Mb4#H#za5#D#0#G#G.0.1.1.w#D#s#Ta7#0b2#D.8#H.y#r.fbA#zal#z.1",

"#GbV.Z#tbQ.S#xbLbK.w.wbV#sbYbV#G#5#6.SbA#zbv#taT.Z#z.w.1#zbX#Ybn.qb4.mb4aB#zbe#8#0bd.R#j#.bt#R.g#1aZbe.1#G.wbV#D#PbCbe.ear#D.1bX.1by.l.1.1a5a5#Dbm#G#G.1.1a0.w#G#s.la7.wa5#Dar#HbVbF#I.4a5ala5.1",

"#G#z#tbLbQbA.G#RbA.w.w#u.KaBbVbV.e#E#x.ybV.8.4.sbTa5.w#Gbn.4#Y.y#YaV.m#H#F#sbean#Gbn#s.gaDaT#R.g#t.4#b.0#G#G#G#D#0bCb4#x.e#G.1aB#G#0.8.1.1bS.B#G#G#G#G.1.1.1#G#u#z.e#H.w#z#D.8#H#z#haS.4#zal.4.1",

".1bV.4bLbQ.eaZaIau.w#0#Fa5#tbV.1bA#x#E.SbV#u#F.4bG#z#0#zbVbYakbX#YbnaL#b.ybV.1an#P#H#saqaq.u#4#j#1.S.1#u.1#0.1#G#0#Hbn#ibjbV#b#2bca5a5.1.0.l#z.0#G.1.1bcbc#b#D#u.war#8by#z#u.e#b.y.Tbz.4#za4.J#D",

"bc#z.4bZ.Q.S.9aI.R#b.w#F.K.4bV#G.R.4b#.T#u#D.y.8.8#GbcbVbK#R.qbKbebn.1#s#Dbs#Dbe.w#8aY#jaq.s.SaO.Z.S#D#7bm#G.w#u#0.zbn#xa5#G.1#2#bbSby.1#G.l#0.0.0bca0az#Ha0#G#u#0.B#8.w.K#D#r.1#FbO.x#T#zaX.J#D",

"#GbK.4bR.K.SbD.C.Sbe#0bG#zbAbV#D#DbL.v.T.y.0blarbS#G#G#D.KaH#Y#s#H.wbAbV#D#D#D#G.w.zaV#.aq.sbwax.gbA#D#7#G#u#G#u#uan##aW#NbV#D.4#bbvap#H#H.8#sa7.1.1bc#Ha0#H#0#D#0a5#8bQ#z.y.ebn.y.T.##x.KaXbkbV",

"#G#ua6#t.T.4.G#3.R#b#zbv.K.ebn.r#DbL..aI.4#7blar#G#Gay#u.KbY.N.cbnbe.ybVbn#G#b#u#b.zaYbW.H#R#tbx.Z.k.w.r#0ay.1#GaJaz.5bO#T.w#DbAbnbg#b#Hb4bVby.F.0bC.1.1.1#b#GbVaU.8#HbnbA.R#N.1#s#h.#bgbAa4#vbV",

"#G#u#tbO#t.K.9bw.lb4#G.8bla5aWa7ay.4.YaD.K#ublblay#G.1.y.K.Z#Y.iaY#T.R#Nbe#zbC.1#H#Bb..ZaPb.#3aFaPak#G.0.1#D#D#G#D#b#xbAbv#G#ubA.w.Mbn#nbVbS.1bdbcbm#P#G#Gbc.1#G#D.w#u.w.w#2bK#4bK.K#vbw.Q#tbt.K",

"#D#u.ZbR.4.ebD#tbAb4#u.8#u#z.lbn.rbAbabN#tbS#u#u.B#G#D#D.e.4#Ya7#b.4bnaW#H#zbC#GbcaL#4aTbW#4aTaS.UbQ#D#u#z#D#D#G#u#baBa5bS#G#u.K#b#F.1bebVbV#GbC#H.1#P.1.1#H#GbVbS#G#u.w#saBbA.SbAbF.gaqb..u.G.K",

"ay.y#t#t.Z.e.G#Ra5#Hblay#Db2.laVaybK#.#p.g.ybVbV#G.w#7#z.4.e#abeaY.ybn#T.1#zbC#D#G#b.S#t#x#5.Z.Y.U.kbSbl#GbA#u#G#u#b.4.e#z#G#FbAby.ybeaz#ubS.1bc.z.1#P.w.1bc#DaybV#G#F#G.w#2.S#t.R.e.g.OaI.9#x.K",

"#G.8#tbR#2.ebT#R.ebC#F#z#GbS.4#HaybA.Zajbi#tbVbV#0#G#F#saB#s.Rbe#bbAbn#Tbna5#GbCay.wbLbR.ZbL.Z.O#E.Kbl#ubVbKbSbVbl.w.4.8#0#ua#bVbQ#ube#b#u#G.1.1bf.0.w#Pa0#H.1#GbV#G#u.w#s.M.S#tbn.e#1.gbZ#R.9.K",

"#G.y#t.4#T.e#2.S#ra7#u#0#DbS#N#HbVbS#T.U#p.sbK#u#G#G.y#s.y#s.y#zaVbKbn.J.1a5bC.1#G#s.4bO.4bLbD.sbWbF.8ay#z#zbA#u#D#z.4.4#0#u.o#s.4bSbe#H#u#G.1.1.z#D#G.w#ba0.1#0#D.w#D.wbV#x.S.S#s.SbR.ObZ#5bYbO",

"#GbA#t.4.4#z#2.S#N#D#u#0.rbVarbn#GbS.4#vb5.O.Sbl#DbVa5.K#Dbn.ybVbn.Kbn.J#D#z#G.1.rbV.ZbR.Z#T#i.s.g.ebl#G#0.K#u.8#0bA.e#2.1#u.y#b#xbAbebn#D#Gbm.0beblbV.w.1bc.1#G#D.1#Ga0#s.M.S.Tbn.S.T#jbBbu.4.Z",

"#G.ya6.4.4#zaB.SaAbd#u#0bdbVarbn.w#u#F.g.pba#t#F.0#u#s.8bnb4.y.8aVbQ#Hbkbna5.1.w.1#z#tbL.4.Z.E#t.gbA#uay#sbS.K.y.w#2#z.4#0bl#D#Ybg#zbebC.0.w#G.1.1bvar#z#u.1.1#G#D.1bV#b#z#2bLbL#b.S#5#..g.k#t.Z",

"#GbAbD#t.4#0aB.yaA.y#F#0.r.w.8#DbybSbv#t#kas.s.X#D.y.Waibe#HbVa5aVbQb4bkbna5#G.1.w#s#tb.bR.4#ia2.g.y#F#u#GbKbV#ub2#c.K.4bV#7#DaYa6.kaza7#D#P.1bc#z#Tar.8#F.0.1.r#G.1#u#P#s#2bL.S#b.S#haP.U#5bY#T",

".w.4aI.sbAbSbK#ta6bsbd#za5.0bC.l.1#0bla6.Z#3aIbT#sbUaVara7.q#ebn#b#D#YaA#8#s#u.wbv.K.L#u#R.4#Z#F#T.e.8#z.e.l#sbs.w.P.e.w#G.r.r.1#T.wa7.z.1bea0.F.K#D.RbK.e#zbV#D.w.1#G#u.w#zaB.K#Y#ubOaC.gbobwaP",

"#GbYbZaPbA#u.y.g.Z.R#u#0#0.0bn.4#G#P#u#TaPba#t.G.ybQ.c.4#8#YbraYbn.R.wbp#ebn.8.1#F.K.L.rbL#t#Zbl#T.eaB#z#z.4#G#7.1#6.S.w#u#G.rbV.l.w.0be.1.wa0#8bV.R#J.K.4.8bV#G#G#G#G#G#b#saB.K.w.ybOaCaPb7.s.G",

"#G.4bB.U.SbVbAaPaW#D#Da5bSa7#H#2.w#PbSbA.ZaPbw#t.y#zbe.4br#sbq.c.w#D#s#Vao#z#u#G.l.KaS.rb..4afa5.4bS#Fa5#zbv#u#G#0#6bAbQ#u#G.w.8#z.wbd.z.1#b#H#HbS.y#HbQ#T#T#zbn#G#G.w#G.w.waB.K#s.8.T#v#.aIaPaT",

"bV.4.n#EbA#zbKaP#N#u.0ay.B#HaV.E#G.w#GbS#t.ZbZ.SbV#zbnbVbqai#WaL#b.1aYbp#e#zbS#G#F#z.L.rb..4afbS.lbS#F#u#z.8#u.1#0.M.8#z.o#0#baZa5.w#u.1#D#b#H.1bAbVaYbQ.8.J.y.w.w.w.1#0.w#s#2.SbVbA.K.gaPaIaP.Z",

".1#t#m.Y.SbVbK.g#N#u#7a5bVb4bn.6.w.w.0bS.S.saI#tbVbV#s#s#Y.daLaLbe.1bQbh#8#zbV#G.l.Kba.r.k#tbNay.l#u#F#ua5#F#u.1.w#2bAbS#F#z#Y.GbVa0#u#D#7az#b.y.ybe.1bVby.laB#b#P.1.w#G#GbVaB.S.y.e.K.g#..n.U.O",

"#z#t.naP.S.y.SaT.e#F#7aya5#HaV.6.w.1#G#G.ybD#tbk.4#JbQbn.Kbs#Bbebe#Hbnbp#8.ybSbSaJ.K.O.r#4.4#Z#u.8.8#ubS.8.lbVbn#z.e.ebSbbay#bbY#Ga0bS#D#Dbr#bbG#D#n.1#u#b.eaM#b.w#G#G#GbV#s.SbK.4.4#5aPaPbwb#.O",

".wbD#3.U.K.y.S.Z.e#7#7b2#ubnbebTbV.wbC.1#D.Z#tbT.ZbK#h.c.e#8#b#HaV.1bKbp#8.8#z#ubv#z.nbm#R.y.na8bS#FbV#zbG.ebn#D.4.KbKbV#7ay#baB#G.wbS.w#Hb4#s.4#Daz.1#D#nbV.M#H.w#G.w#G.w.wbK.e.lbA.KaPaPbwaf.O",

"#baZ#3#..KbS.S.O.ebs#D#0a8#7be.T#u.1bcbcbn.Z.S.TbLbY.TbrbUanbV#H#H#H.Rbp#8bA#zbSbl.K#mbm.4.ea2bl.ebG.wa5bg.S#s.y.G.k.KbVbm.0.w.Sbc.w.B#Bb4#H.y.e.1an#H.1a0bV.5aY.w.wa0.w.w#sbA.SbA.ebu.Z.O#m.Y.H",

".k#t#X.UbQ#4#tba.B#u#ubV.ya5a0.X.T#H#P#Ga7.y.n.u.sb..K#s#Hbe.i.k#D#YbT.e#0bl.waibA#RbQ#z#RbK.3.y#F#r.y#DaA#u.z#x#v#K#z.w#F#Y.g.R.w#HbCazbCbea#bnbean#H#0a0#G.y.1#G#PbV#b.X.1bV#t.y.KbL#R.9#5.s.9",

"bnbR#.bW.K.S.ZbabS#u#D#Gbl#z.w.XbO.1bcaUbC#J#1aH.s#R.k#ubean.RbK.1#s.G#z#0#F#saB.8.C#za5aHbAay.y.8#rbS#ubvbAb4bXbhaBbV#z#7.wbkaV#b.w#D.zbcbe.X#sbean#b#G#b#G.ybVbm.w#Daz#D.wbV.4.y#z.4#RaPaI.saP",

"bK.4aqbi.KbY.ZaPa5#u#GbVa8#z.w#ubOa7#P#Pb4aY.T#O#R.ZbQ#2#YanbVbKbe#zaMbQ#0.o#D.S.l.j.Kbv.ubV.B.R#F#rbS#u#TbAb4bAbR.X.y#z#ua5bg#a#b#H.0#H.1be.y#sbebe.1#G.w#G.ybVbm#G#D#Ya0.wbV#t.ybQ.4#t.ga2.Z.Z",

"bn#t.HbW.K.S.4.Z.e.ybV#D#u.w.1#D.ZbC#P.w.z#abFaB#4#tb0.Man#YbnbKbebV#2.w.w.o#ubX.8#R#z.l.u.K.BbK.l.e#u.8.l.R#sbAbObs#ubS#DbS#Tbe.wbV#D.w.w.1.y#b#Haz.1#G.w.w#u.ybm.1bVaza0#b#s#tbA#s#t#t.s#5.saP",

"#s.4bHbN#5.ybA.ZarbA#G#u#0.w.1.1.Zbn#G#0az#Y#z#D#sbAaE#xazbe.1#s.wbV.4.w#G#ubVaBa5aubQa5.ubAay#J.8#F.8.8#FbKbObY#rbnbV.J#D#zarbnbV#D#G#P#b#ubVaYbe#bbc#G.w.wbV#uay.w.w.1#G.w.wbD#T.K.4#t.O#5aPaP",

"#D#t#.bNbL.ybK.ZbO.S.w#u#Ga0a7.1a6#H.w#Gb4bebQ.1.w.w#Y.ybe#H#b#b#G#zbV#s#G#G.1#2#zau#0a5.jbA.B.Kar.y.8.8#D.K.gbtar.1bVbGbnbS#z.1#D#u.w.w#b#Fbn#saz#b.1#G.w.w.w.y#u#P#b.0.1.1#YaP.M.K.Z.Z.ZaI#EaP",

"bV#t.Ha9bLaB#z.4a6.4#b#D#Ga0#ub4bD#H.wbSao#bby.z#HbebV#Daz#Hb4#b.w#ubV.1.r#G.w.4#zbY.ea5a1bA.8bKarbsa5.8a7.K#V.Z#N.1bVbG#b.8a5#8.1#G.w.w#n.5.waYazbc#P.1#P.w#P#F#G.waz#Dbc#Gbeb#bGbU#t.saPb7.gbZ",

"bVbL#m#..SaBbV.l#EbLbe#G#G#b#7be#i#H#PbS.1.w.waz.1#n.X#ban#8b4#Ha0.ybK.way.r.wbKbSbt#2a5aK.Ka8bKarbd#z#ra7#s#X#R.l#7bV.lbe.Ma5azbe.1.1.w#n.X#baVaz#H.1#P#0#P.w#F.w#0.w.0az#GbQb#.4bQbL.Z.Z#5bwbo",

".K.K.T.gbO.4#s#Fbiapbca0.0be.1.1a6by#G#G#bb4be.zaY.R.y.1az#b#s#b.za5.8#H#2.1#Dbv.K.6bQ.K#F.Kbn.SblbV.k.4bQ.4.MbX#4#Har#D#s.4###bby.1anbebe#Fbe#baz.w.w.1bV.w.wbvaz#D#G#G#G#s.K.UbO.y.e#O#C.D.U.i",

"#t#tbRbW#R#tbV#2#E#b.1a0#Daz#s#GbTbybc#G.1#bbr#f.q#D.y#baz#H#DbV.za5#F#b.Jbna7ar#4#6.K.4.SbV.y#FbS#z.KbYbybAaBbKbLbn.8#G#s.Z##.w.w.1azbe.1.ybe.waza0#b.1bV#b.w.o#b#D#G#G#G#zbA#EbO.R#r#OaDbB.U.k",

"#ibwaI.Z.T#t.K#2bD.W#Gbc#G#b#H#GbDby.way.1#ban.zbe.y.y#b#n.w.y#D#Har#u.1#2bnbd.ebOa6.K#x.4bA.4.ya5bV.KaZbQa5.y#s.Sa7arbV#s#x.5.wbV#bb4an#u#saY#sbe.1#bbe.1#n#b.M.wbV#G#GbSbV.e.9.4.y.K.5#AbB.U#J",

"aPaIa2.s#5#t.K#ObDbQ#G.1.w#b.1#GbD#z.w.rbVbebr.zbQ.y.y#b#nbV#ubVaV.l#z#G#2#D#DbF.4bL.Kbg.Ka5.4.8#0.ybK.G#z#zaB.k.4#Da8.1bnbk.b#bbV.wbebr.y#Y#s#JbV#sazaz.1#b.1#2.w.w#G#G#GbV.K.S.S.y.KaHam#3aO.k",

".Z#5.Dbwb.#t.K.Sa6#z.1bcbe#b.w.0#i#z.w#Daybeazb4#s.8bV#n.w#GbV.w#H#T.w#D.l#Dbs.T#T#z#z#x#z#z.4.8bSaB.K.G.e#zaB.R.4#Dar.w.wa6.R#b#z.1bebeaB.NbA.S.SbVbebe#G.1.1#2#G.w#0bVbVbVbV.ebLaB.e#KambwbW#J",

"bWaIaIaP#5.S#s.e#t#s.w#G#Bbn#H#GaP.8.w#GbVbe#b.z#s#D.wa0.1#G.1beaY.Jby#7a5bV.5#1aBak#sbgbQ#z.8bA.BaBbQaZ#z#z#2.S.4#Da8.1#z#Ta7a0#s.1bebnbXaNbRaZ.4.S.w.1#G.1.w#2a5#0.Bbl#ubS.ybVbO#O.ebYambwbWbK",

".gbL.T.G.K.S.KbA.4#z#P#D#Y#Da0bc.s.4#P.w#Gbe.1a0#sbn#ba0.1.0#b.wbn#vby#7#z#z.5#jaB#b#z.M#z#z.8#FbS#2aYaZ.e#zaZ.R.4#Da5#GbVbO.1by.w#Dbr.R.S.QbZbD#1.S#z#G#u.w.waBbl#0bS.8bVbVblbSaq#x.T.Sam.CbWbn",

".ZbF#4.9.k.SbV.8.4#z.w#ube.y#bbc#t.4.w#P.w#b.w.zbn#D.1a0.1.1#H.1aVawby#F.w.w#O.g#Fak#DaMbV.ybA.l#u#2akaZbA#z#2bAbL.0ar#GbVbObn.w#Y#D#BbX.k.Qa2.sbM#tbA#u#G#nbybG#u#0a5bl#0bV.y#G#.bT#r#4#X.OaPbn",

".saIbwaPb..e.K.S.e.8#b#D#P.1#G.1.KaMb0#Da0bman#Jar#Y#8a0.w.w.1bC.ea7#GbS#b#T.Qahb4#D.y#2bS#zbl.ybV#Mbu#tbl#w.yblay#0.R#Hbk#D#H.1#bbV.V.4b4.TaubRbZ#t#t#z.1.1#b.9ar.w#ubv#zbdbs.K.O#t.KbD#3#ob##b",

".saIbR#E#5.4.y#2bA.4.way.w#G.w.1#s#x.q.y.w.0#nbn.l.w.1.1.wbV.1bCbL#H#G.8.1#x.Q#O#b#D#F.8bS#z.y.y#uav.K.Sbl#m.y#F#D#zbV#8bp.RaV#Hbeak.cbQ.c.T.S#tbR.s#tbK#G.1.w#OaW#b#ua8#0#ubs.K.Y.4#z.G#Zabb##s",

".gbwbw.UbL.4.SaB.S.8by#D.w#G.w.w.waZbQ.8#G#ube#J.l.waz.0.1#u#bbna6b4#z.l#u.M.K##az#D#FbVbSbS.y.8#uaS.SbLay#3.R.o#ubV#z#8bpbn#HazaYaL#Db0b4bu.R.S.Z.Z.Z.K#G.1#baB#i#b#D.8#0bdbs#rafbL.K#x.Oab.EbV",

"aPbDbw#EbZ.SbA.ybA#2#s#G.w#G.w.1by#2.K.4#z#G.wbK#ubnaz.X#P#Fbe#Da6bebV.l#GbG#Nbn#b.y#F#s.y.8bK.8bl#Z.4bF.0ba.K.oaybVbV#8bp#s#Hbe#JaL#OaLaY.w#s#z.Z.s.Z.4#u#G.w.y#iaV.1.Ba5.r#D.l#pbL#zaZaP.n#tbV",

"aP.UbZ#EbZ.K.K#z.e#2.wbV.1#G.1.wa0.8#r.4#0.w#z.y.1.waz#7a0#7#Y#2a6#b#u.8bnbl.Jbn#P#u#F.wbSaBbS.4#u.O.4b.ay.pbQ#F.1#ubAaobh#bbnbe#saLai#BbA#s#z#u.Zbw.ZbObS#G#b#D#iaV.1#z#0#D#u#y#pbL#saZaPaI.K#G",

".Z#Eb.aPbR.KbKbK.KbG.w#G#0#u.w.1#P.y.S.e#z.w.ybA#H.wa0#u#b#D#bbgbO.1#Fa5bna5bg#D#z#u#F#s#D#2.e.4bl.O.4#5.r.p.Kbv#H#F.ya7bhbe#D.1#Ybq.SaY#Tbn.ybs#taI.g.Z.8#D.w.1a6bnbn.B#0#D#D#T.I.4bV#2aP.C.K#G",

"bw.UboaP.ZbL.ybS.K.M#s.w#G#G#G#D.1#G.S.e.K#0#FbKbCaza0.1.1.1#s#ia5.0#F#s#Da5aw#bbl#0.obVbV.M.e.4bl.O.SbOaJ.LbQ.ya0#F#D#8bhbe#D#sbe#B#sa7.4.1.e#F#taI#.#j.l#u.1.1.4.1.0a5b2#D#u.Z.UbLbS.SaP#t#z.r",

".Zbib..U.g.S.S.y#zbT.w#s#G#u#G#GbmbV.S.e.ybVaB#s.Fa0.wa0.0b4#z#ib2.0.oby#D.eaxaY.o#0aB#ubV#2.8.4blaP.e.Z.o.Lbubl.wbl#s#8bhbe.y#b.1.V.W.b#rbe#z.RbYaI#.#v#Tbl.1.1.e#G#7#0#0#D.R.Z.U.S#zbV.s#R#s.r",

"a6#E#4.YaP#h.4#ubL.4#z.w#G.1.0#D#G#G#G#u.8bG.8#zbC.1a0#zbV#b#z.J.w#GbbbVbAaB#O.1#F.w.8bSay.o#FaP#5a6.4#tbR.Z#zbV.1bdbS#DaAbVbQ#e#BaBaEbA.4#sbs#Dbl#tb1#A.Zbl#u.wbV.y#zay.0.1.y#2aT.4bVbVaZ.9#say",

".ZbDb.#3#.bF.y#D.T.S#z.w.1.1#G.0#0bc.1.1bVbA.y#b.1.1.w#D#Gbe#z.l#b#u#u#GbA.S.y#D#D#s.y#zay#F.KbtbZ#i.8.Z.saZbA#u.wbCa5#DaA.RbQbn#B.X#Y.4.KbV#u#D.o#tba#k.g#2#u#sbn.y#0#G.rbC#DaB.Z.S#u#sbY#t#s.r",

".ZbDbubBaP.TbA.1.KbA.K.w#P#b.1.0#0.wb4#P.wbVbnazbC#H#0#u.1be#DbA.wblay#0.4.S#z#D#0bV.8.1ay#u#saP.g#i.4.Z#tbDbK#7.1bCa5bnaW.R#zbn#BaB#Y#x.KbVbn.0#u.4#.a9#i.4#u.1bQ#FbS#G.0.1#D.S.O.4#u.w#tbYbQ.0",

".8.ZaKaIbNbRbK.wbL.SbA.w.w.1#0#D.B.1#P.1.1bV#H.z.1#b#G#F.1be#7#s#zbv#0.w.4bT#sbS#G#u.y#zblbl#saPaP.Z.e#tbR#t#s#G.w.1bV.1aW.y.Kbnbr.y#YaM#s.y.1#GbSbA.Z.YbW.4bV.w#b#FbS#z.0.1bV.y.O#TbVbV#t#t#s#G",

"#rbT#RbwbN.g.K.1#t.4.4.w.way.w#GbS#G#Hbc.1.1ao.z.1#PbV#uazazbs#bbU#c#0#0.8.6#z#u#G#F#u#Gbb#F.k#E#.bRbF.Z#t#R#b.1#GbC#zbn#N.R.eaV#sbKaYaZ#s.y.1#G#G.l.ZbW.U.gbA#G.w#2bS#G#u.1bVbSaq.Zbl#z#tbY#s.0",

"#z#x.s.CbNaP.Kbn#T.S#F#z#0bl#0bVay.w.1.1.1.1bc.z.1.w#z#u#bb4#u#b#s#c.w#zbA.a#z#D#G#FbV#Gbl#u.K.YbaaI.K#i.s.Sbe.z#s#GbSbC#r#D.KaV.RbQ.k.y#s.y.1#Gaybl.l.ZbN.ZbK#G.w.oa5#z#u.1#s#u.Oa6#FbSbY.Zbn#G",

"#rbT.9b..ObW.KbVbL.K#T.w#0#F#0ayb2.1bc.1bc.wbcao.1#G#zbV.w.1.ybQ#s#2.w#F#z#2#b#7aUbl#0.1#u#GbLaPbN.Hb.aC.saK#Y.z#0.1bV.1#r#D.eaYbAaLaBbK#Dbn#G#G#0#ubSbLa9#Z#z#G#Gbv#z#z#F#D#0.8.H.Z.8bA#tbY#s.1",

"a5#x#t#w.HaP.Kbn.K.K#2.w.wa8.wbS#0.w.1.1.1#Pbcbc.1bV#0bV#sbV.lbQ#z#u.wa##zbK#B#7#0#u#D#G#G.wbObN.p.n#h.E#taKbe.z.w.1bSbCbFbV.ebn.KaL#x.k.y#b#D.0#ubl#u.4#pbN.S.rbV#F#z#z.o.1.w#F.H.J.la5bY.s#sbc",

"#Dab#3.ybw#Z.K#zbnararaB#bbGbS#G.1bc.1.0bc.1.1.0ay.w#F#n#sbeai#JbA#D#b.4.e.1.z.o.B.w#u.1#DbQbLaPb#.Z.g.ZbDaka0.w#GbV#G#bbsbea7bnbK.q#4bA#G#G.0#Dar.3.y.R.U#9.Tbd#uay#r#z.MbVbe#Kb1bD#2.e#t#tbn.r",

".raR.ObSbw#Z.KbK.1ar.ebsaY#T.e.1#GbCbc#Hbc#H.1.1bV#0#F#nbVbe.5bV.lbd#b#N.8bnaz#u#u#0.r.1#ubK#t.Z#EaIbR#1aZapbe.1.1#u#D.w.ybebnb4bn.q.S.4ay#G#D.Rbla5#u.RaP#9.Tbd.r#z.ebU.M#Gbeaub1.g.4.K#t#t#s.0",

".raR.Oa5bwba.e.y.1ar.e.y#s.8bS.1#u#Ga0a0#Ha0.1#GbVbV#F#bbV.w#FbVbv#D#sbO#T.1az#0#u#G#G.1#ubK.Z.s#EaI#t.ga6#Y#b#G.1#DbV#DbK#BaVbeaVaY.S.4bV#G#D.y.la5#u.i.9aabOa7.r#G.e#z.M#0#b.y#Z.Z.8bQbL#t.w.0",

".r#o.ObVbwaS.K.S.1.ebA#D.w.e.e#D#G#G.1#Ha0bc.1.0.w#u#F#P#u#z#ubS#T.1bnar.Jbn.1.w#u#G.0.1#Dbn.9bw#E.Taq.gbT#bbn#uan#G#b#Dbnbqa7be.w#a.4#F.w#G.RaBaB.ebSbn.S#X.Zbd#GbV.4#z#F#0#b.S#Z.gbAbQbZ#R#sbc",

"#GabbwbS#3.p#4bK.wa5.e#Dbnby.lbnbV.1#Pbc.1.1#G#G#s#u#FbybV#u#0#G#T.w#D#r#x.1#Gby#G.1#G.1.1bQ.Gbw.Z#5.Za6.Zak.w#D#B#H#b.y#baLbn#a#b#baB.8.w#0bAbD#t.4bS#D.y.g#vbn#GbV.4#z#u#GbQ.y.L.ZbAbU.S.s.w.0",

"bcat.sbV.O#k.K#4#H.ebAbC.0.W.4#Day#G.w.1.0#D#G#u.w#u#u#bbV#F.w#u.l#H.X#r.lbebCa0#G#G#G.1.1#Y.G.C.gaIbW#i.g#s#D.0azbe.1.5#YbeaYbe.w.wbX.y.wbn.4bD.ubh#N#ubV.Zbgbn#G#z#2bQbV.w.w.y#Z.g.l#sbRbY#s.0",

"bm.Obw#z.Ob5#4.SbebSbA.1#Db0.Jbn.8#G.w.1#Gay#G#G#s#u#u#Y.1aBbe.R.ybe.5#z.Kan.0a0#0.1#Gbc#baLbI.C.gbR#EbWbT#z.y#Gb4anbnbsaLbn#a#a#H#b.ybA.w#zbOaPaT#V.l#FbVbOa3#s#0.e#2by#G.1bn.Rat.Z.4#z#t.s#s.0",

"bm#Z.s.w.Ob5bL#tb4.ebSbC#7bPbGbV.8ay.w.w#G#D#0#G#0#ubV#n#saibe.R#0an.b#z#z#lbd#0.1#Gbc.1#H#Y.EbZaIb..gbR.Sak#G#nb4.m#b.ybq.RaLbea0#b.y.y.wbS.4.g.O#XaA#F#DaraxbQa5.ebTbQ.1a0#G.y#3.Zbv.K#t#tbn.r",

"#G.sbw#z#2bNa2bSbV.8bQbVay#G.y.SblbS#Gay#G#0#G#ubybvbe#b#z.4.q.S#8#b#za8#Daz#7.w.w.r.1.1#H#s.GbBaBb.aP.CbAbn.1b4ananan###Bbn.mbnb4#b.ybv#GbnaP#ZadbN#jbSay.MbD.n.1#z.4#z#bbCbV#zbwaPa6#5bZbD.y.1",

".1#tbw#z.4a9#5bV#z.8.w#G.r#G#ubAbSbS#z#0#G.1#0bS#z.o#bbn.y#2akaB.1.w#0.y#0az#Dbn.w#G#G.1#baY.9.C#2bL.Y.s.S#DbC#Hazbeana7brbn#Wbnan#b.K#u.w#bbDb1#k#k.g.Saybv#xbw.w#z.4bK#P#G#G#z.s.g.g.KbR.ZbV.1",

".w.Sbw#z.8#..D#u#z.y#s#0bmbm#D.Ka5bS#G.w#GbS#G#0a5#F.1#DaB.4bQ#2#D.w#zbS.wbe#u#0.wbV#G.1#b.KaP.Z.ZaIbN#..S#u.1.1b4anbe#Hbebebrbnbe.w#z#u.wbn#E.LaG#ka9.4#zblaZ.sbV#z.4#z.w.0#D#s.H#i#x#5bZ.Z#s.1",

".wbLbw.K.8.O#5.8#GbS.w.1.r#G.wbVbS.8bV#0#G#ubVbV#u.yaY#D#2.ebQ#2.1bVa5.8.w.1bSbS.w#G#G#G#GbA.g#.bLbRba.O.K#D.1.1b4anb4brbebrbrbn#Hbn.KbS.w#Db#.fb6aG#kaq#za5.8.Z#zbV.S#s.way#GbnbBaP.g.TbR#t#s.1",

"bcaI#t.K.8.Oa2.8.w#z#z#0#Gbm.wbKa5blbVbV#G#u#ua5.y#D.wbVbGbQ#baB.wbSbA.4#b.RbVbA#0bV#G.wbVbY.Z.O.TbR#.aPbQ.ya0#b.z#Bb4anbe#B#Y.ibe#sbV#s#b.Rafb6#k#kadaP.e#zbA.4bS#s.R#s.wbS#D.1b7#i#x#4bR.9bV#G",

".w#4bw.e.8.OaI#u#z#z#z#G#G#G.w.4#za5bS#GbVbVbVbS.4bKbV.K.MbQaY#FazbVbAaB.q#F#GbS#G.1#Haz#saBbZ.H.e.gbabN.q#7#b.zan.manbebrbrbrbn.1#D#zbV.1.R.I.ha9.L#kbN.4#zbA.8ar#s.Rbn#0.B#GbnaI#E#i#5.s.Z#s#D",

"#GaKbR.e.yaqaI.8#z#sbK#0#G#G#saZa5bAbSbVbV#zbV#u.l#z.ybV#x.w#bbdazbV.K.Sbr.5.w#z.1bcbcaz#baBbZ.O.ebWbabi.qbs.zb4ananan.1#Bbe#Wbn.1.y.y#DbnaB#M.h.g.Oa9bibTbAbA.8.J#sbn.Raya5bVa7aI#E#i.KbR#t#s.0",

"#Gb.bBa5bA.Oa2#u.K.K.4#z#G#GbQbDbA.8bS.y#ubVbVaB#r.KbA#zbg#Y#b#Ha0bV#sbKaLa#be#0.1#H.1#B.1bY#taP.KaPaP.U#Y#7.z.zananan.ibqaV.mbn#b#DbV#z.1bXafac.ZaI#..I#i.lbA.8.J#s.i.ya5a5#DbdaIaC#ib.bR.4bQ#D",

"#Gb..ZbAbAbaaIbV#zbA.ybKbV#sbV#Far#z#Dblblar.8aB.y#zbR.KbG.w.1.z.wbV#T.can.Sbr#8b4.w#nb4#L#.bJ#R#z.g#3a9bq#F.z#H#f.mbe#sbe#D#L##bC#s.ybl#P#3.2.I#tbL.g#..paP.e.obTbQ#s#2.ybV.y#FbA.O.L.4.4bB#a.0",

"#Gb..ga5.eaPbB.ya5bl.8bS#0bn#s#u.Z#zbV#Fa8.8bA.y.8#4bR#1.8#G.1.1#PbVaAb4br.e.V#8an.waz#8#WbiaIbX.k#v.uajaL#Fbc.1#fbeanbnaLa7#La7#8#sbK.r.w.O.x.Y#t.e.gbWadbN#4bl#xbQ.K#2#ubVbV#D.lba.LbZaBbwak.0",

"#G.KaP.e#z.ObZ.y#za5bSbS#z.w#0bV.g.K#s#ua8.lbl.y#F.4.Z#i#z#G.0.w.w#DbOan.V.ebeanbr.w#bbCaLbi#..Sby.g.saObe#u#H.1#8be#B#Dbebr#L#8bc#sbKay.w.Y.LaT.4.K#taP#pbibA#u#2#s#zaB.ybV#sbV.4bababLaB.s.7.0",

"#Gbu.ga5#s.Obw.yby#0bSbS#0#zaybSbabZ.K#zbl.8bA#u.8.Saq.6#YbV#Ga0be.1bOanbrbU#8.zaza0.w#H#WaP#EbK#b.Z#R#XaV#0.z.1#b.1#B.R#Yan.m#8#H#JbK#G#0af.L.u.4.ebO.gbN.U#t#z.ybQbV.8.y.wbVbVaBba#Z.T.4.s.kbc",

"a0.7aP.e#z#Zbw#u#0#0#0#u#G#G#uaya9bR#4bVbSa5bS#F.K.T.Z.6b0ay#D#bbebV#T.m#8bU#D.1#8#0.1bebqaIbW#J#b#x#R#v#D#0bC#H#HbV#Bbs#B.mbe#ea0bK.K#G#0.I#Z#t#tbA.ebO#..Ua6bV#F.w#sbVbV#z#sbVbA.O#Z.ebYaT.7bc",

"#P.Q.ga5#sba.sbAbV.wbS#u#z#GbVbVbaaT.SbKa5a5bS#F.ebL#EbD#b#u#u#Y#H.1#Tbebd.W#7bd.1bS#0beaL.T#Ebn#Y.g.S#y#u#0aobe.w.1azbs#Bbrb4a7a0au.K#Pay.I.O.Z.4.y.ebLbR#..P#z.8bV#0bVbn.w#s#sbAbH#ZbL.4.9.kbc",

".1buaPa5#z.Y.O#ubV#sbVbV.1#z#D.wba.Z.4bA.8.e.KbA.4#t.UbL#s#zbbbe#b#b#ran.b.W#7.1#8#G#0#HbKb7.gaV#BbT.K#r#Dby#H.m.1.1be#u#B.1.wbe#P.S#z.wbSbi.n.ZbK.4.e.8aI.Z.6.K#u#GbV#0bV#s.w.w.e#Z#Z.K.4aT.k.1",

".rb..g.e#s.YaPbV#z.wbnbV.wbn#Dbn.OaP.4.y.4#N.K.K#T#t.U.Q#z.w#F#YazanaNan.bap#Ga0az#0#P#b#KbR.Z#aaz#ibK#h#u.wbC#B#b.1bebs#B#D#baLbcbA.k#P#G#E#S#2.K.8bAbL.Tbw.6.K#G#0.wbVbVbV#s#s.e.Oba.K.4aT.k.0"

};

static	void	drawroundrect(QPainter	*p,	QCOORD	x,	QCOORD	y,

																											QCOORD	w,	QCOORD	h,	QCOORD	d);

static	inline	int	buttonthickness(int	d);

static	QRegion	roundRectRegion(const	QRect&	g,	int	r);

static	void	get_combo_parameters(const	QRect	&r,

																																		int	&ew,	int	&awh,	int	&ax,

																																		int	&ay,	int	&sh,	int	&dh,

																																		int	&sy);

static	int	get_combo_extra_width(int	h,	int	*return_awh	=	0);

enum	{	PointUp,	PointDown,	PointLeft,	PointRight	};

NorwegianWoodStyle::NorwegianWoodStyle()	:	QWindowsStyle()

{

}

/*!

		Reimplementation	from	QStyle

	*/

void	NorwegianWoodStyle::polish(QApplication	*app)

{

				oldPalette	=	app->palette();

				//	we	simply	create	a	nice	QColorGroup	with	a	couple	of	fancy	wood

				//	pixmaps	here	and	apply	to	it	all	widgets

				QImage	img(button_xpm);

				QImage	orig	=	img;

				orig.detach();

				QPixmap	button;

				button.convertFromImage(img);

				int	i;

				for	(i=0;	i<img.numColors();	i++)	{

								QRgb	rgb	=	img.color(i);

								QColor	c(rgb);

								rgb	=	c.dark(120).rgb();

								img.setColor(i,rgb);

				}

				QPixmap	mid;

				mid.convertFromImage(img);

				img	=	orig;

				img.detach();

				for	(i=0;	i<img.numColors();	i++)	{

								QRgb	rgb	=	img.color(i);

								QColor	c(rgb);

								rgb	=	c.light().rgb();

								img.setColor(i,rgb);

				}

				QPixmap	light;

				light.convertFromImage(img);

				img	=	orig;

				img.detach();

				for	(i=0;	i<img.numColors();	i++)	{

								QRgb	rgb	=	img.color(i);

								QColor	c(rgb);

								rgb	=	c.dark(180).rgb();

								img.setColor(i,rgb);

				}

				QPixmap	dark;

				dark.convertFromImage(img);

				QImage	bgimage(polish_xpm);

				QPixmap	background;

				background.convertFromImage(bgimage);

				img	=	bgimage;

				img.detach();

				for	(i=0;	i<img.numColors();	i++)	{

								QRgb	rgb	=	img.color(i);

								QColor	c(rgb);

								rgb	=	c.dark(180).rgb();

								img.setColor(i,rgb);

				}

				sunkenDark	=	new	QPixmap;

				sunkenDark->convertFromImage(img);

				img	=	bgimage;

				img.detach();

				for	(i=0;	i<img.numColors();	i++)	{

								QRgb	rgb	=	img.color(i);

								QColor	c(rgb);

								rgb	=	c.light(130).rgb();

								img.setColor(i,rgb);

				}

				sunkenLight=	new	QPixmap;

				sunkenLight->convertFromImage(img);

				QPalette	op(QColor(212,140,95));

				//	QPalette	op(white);

				QColorGroup	active	(op.active().foreground(),

																					QBrush(op.active().button(),button),

																					QBrush(op.active().light(),	light),

																					QBrush(op.active().dark(),	dark),

																					QBrush(op.active().mid(),	mid),

																					op.active().text(),

																					Qt::white,

																					QColor(236,182,120),

																					QBrush(op.active().background(),	background)

);

				QColorGroup	disabled	(op.disabled().foreground(),

																					QBrush(op.disabled().button(),button),

																					QBrush(op.disabled().light(),	light),

																					op.disabled().dark(),

																					QBrush(op.disabled().mid(),	mid),

																					op.disabled().text(),

																					Qt::white,

																					QColor(236,182,120),

																					QBrush(op.disabled().background(),	background)

);

			app->setPalette(QPalette(active,	disabled,	active),	TRUE);

}

void	NorwegianWoodStyle::unPolish(QApplication	*app)

{

				app->setPalette(oldPalette,	TRUE);

}

/*!

		Reimplementation	from	QStyle

	*/

void	NorwegianWoodStyle::polish(QWidget*	w)

{

				//	the	polish	function	sets	some	widgets	to	transparent	mode	and

				//	some	to	translate	background	mode	in	order	to	get	the	full

				//	benefit	from	the	nice	pixmaps	in	the	color	group.

				if	(!w->isTopLevel())	{

								if	(w->inherits("QPushButton")

													||	w->inherits("QToolButton")

													||	w->inherits("QComboBox"))	{

												w->setAutoMask(TRUE);

												return;

								}

								if	(w->backgroundPixmap())

												w->setBackgroundOrigin(QWidget::WindowOrigin);

				}

}

void	NorwegianWoodStyle::unPolish(QWidget*	w)

{

				//	the	polish	function	sets	some	widgets	to	transparent	mode	and

				//	some	to	translate	background	mode	in	order	to	get	the	full

				//	benefit	from	the	nice	pixmaps	in	the	color	group.

				if	(!w->isTopLevel())	{

								if	(w->inherits("QPushButton")

													||	w->inherits("QToolButton")

													||	w->inherits("QComboBox"))	{

												w->setAutoMask(FALSE);

												return;

								}

								if	(w->backgroundPixmap())

												w->setBackgroundOrigin(QWidget::WidgetOrigin);

				}

}

void	NorwegianWoodStyle::drawPrimitive(PrimitiveElement	pe,

																																								QPainter	*p,

																																								const	QRect	&r,

																																								const	QColorGroup	&cg,

																																								SFlags	flags,	const	QStyleOption

{

				int	x,	y,	w,	h;

				r.rect(&x,	&y,	&w,	&h);

				switch	(pe)	{

				case	PE_ButtonCommand:

								{

												int	d	=	QMIN(w,	h)	/	2;

												int	b	=	buttonthickness(d);

												QRegion	internR	=	roundRectRegion(QRect(x	+	b,	y	+	b,

																																																							w	-	2	*	b,

																																																							h	-	2	*	b),	d	-	b);

												QPen	oldPen	=	p->pen();

												QBrush	brush(flags	&	Style_Sunken	?	cg.brush(QColorGroup::Mid)	:

																										cg.brush(QColorGroup::Button));

												p->setClipRegion(internR);

												p->fillRect(r,	brush);

												int	e	=	QMIN(w,	h)	/	2;

												QPoint	p2(x	+	w	-	1	-	e,	y	+	e);

												QPoint	p3(x	+	e,	y	+	h	-	1	-	e);

												QPointArray	a;

												a.setPoints(5,	x,y,	x+w-1,	y,	p2.x(),	p2.y(),	p3.x(),	p3.

																									x,	y	+	h	-	1);

												p->setClipRegion(QRegion(a)	-	internR);

												p->fillRect(r,	(flags	&	Style_Sunken	?	QBrush(cg.dark(),	*sunkenDark)

																																													:	cg.brush(QColorGroup::Light)));

												//	A	little	inversion	is	needed	the	buttons

												//	(but	not	flat)

												if	(flags	&	Style_Raised	||	flags	&	Style_Sunken)	{

																a.setPoint(0,	x	+	w	-	1,	y	+	w	-	1);

																p->setClipRegion(QRegion(a)	-	internR);

																p->fillRect(r,	(flags	&	Style_Sunken	?	QBrush(cg.light

												}

												p->setClipRegion(internR);

												p->setClipping(FALSE);

												p->setPen(cg.foreground());

												drawroundrect(p,	x,	y,	w,	h,	d);

												p->setPen(oldPen);

												break;

								}

				case	PE_ScrollBarAddLine:

								if	(flags	&	Style_Horizontal)

												drawSemicircleButton(p,	r,	PointRight,	flags	&	Style_Down,	cg);

								else

												drawSemicircleButton(p,	r,	PointDown,	flags	&	Style_Down,	cg);

								break;

				case	PE_ScrollBarSubLine:

								if	(flags	&	Style_Horizontal)

												drawSemicircleButton(p,	r,	PointLeft,	flags	&	Style_Down,	cg);

								else

												drawSemicircleButton(p,	r,	PointUp,	flags	&	Style_Down,	cg);

								break;

				default:

								QWindowsStyle::drawPrimitive(pe,	p,	r,	cg,	flags,	opt);

								break;

				}

}

void	NorwegianWoodStyle::drawControl(ControlElement	element,

																																						QPainter	*p,

																																						const	QWidget	*widget,

																																						const	QRect	&r,

																																						const	QColorGroup	&cg,

																																						SFlags	how,	const	QStyleOption

{

				switch(element)	{

				case	CE_PushButton:

								{

												const	QPushButton	*btn;

												btn	=	(const	QPushButton	*)widget;

												QColorGroup	myCg(cg);

												SFlags	flags	=	Style_Default;

												if	(btn->isOn())

																flags	|=	Style_On;

												if	(btn->isDown())

																flags	|=	Style_Down;

												if	(btn->isOn()	||	btn->isDown())

																flags	|=	Style_Sunken;

												if	(btn->isDefault())

																flags	|=	Style_Default;

												if	(!	btn->isFlat()	&&	!(flags	&	Style_Down))

																flags	|=	Style_Raised;

												int	x1,	y1,	x2,	y2;

												r.coords(&x1,	&y1,	&x2,	&y2);

												p->setPen(cg.foreground());

												p->setBrush(QBrush(cg.button(),	NoBrush));

												QBrush	fill;

												if	(btn->isDown())

																fill	=	cg.brush(QColorGroup::Mid);

												else	if	(btn->isOn())

																fill	=	QBrush(cg.mid(),	Dense4Pattern);

												else

																fill	=	cg.brush(QColorGroup::Button);

												myCg.setBrush(QColorGroup::Mid,	fill);

												if	(btn->isDefault())	{

																x1	+=	2;

																y1	+=	2;

																x2	-=	2;

																y2	-=	2;

												}

												drawPrimitive(PE_ButtonCommand,	p,

																											QRect(x1,	y1,	x2	-	x1	+	1,	y2	-	y1	+	1),

																											myCg,	flags,	opt);

												if	(btn->isDefault())	{

																QPen	pen(Qt::black,	4);

																pen.setCapStyle(Qt::RoundCap);

																pen.setJoinStyle(Qt::RoundJoin);

																p->setPen(pen);

																drawroundrect(p,	x1	-	1,	y1	-	1,	x2	-	x1	+	3,	y2	-	y1	+	3,	8);

												}

												if	(btn->isMenuButton())	{

																int	dx	=	(y1	-	y2	-	4)	/	3;

																//	reset	the	flags

																flags	=	Style_Default;

																if	(btn->isEnabled())

																				flags	|=	Style_Enabled;

																drawPrimitive(PE_ArrowDown,	p,

																															QRect(x2	-	dx,	dx,	y1,	y2	-	y1),

																															myCg,	flags,	opt);

												}

												if	(p->brush().style()	!=	NoBrush)

																p->setBrush(NoBrush);

												break;

								}

				case	CE_PushButtonLabel:

								{

												const	QPushButton	*btn;

												btn	=	(const	QPushButton*)widget;

												int	x,	y,	w,	h;

												r.rect(&x,	&y,	&w,	&h);

												int	x1,	y1,	x2,	y2;

												r.coords(&x1,	&y1,	&x2,	&y2);

												int	dx	=	0;

												int	dy	=	0;

												if	(btn->isMenuButton())

																dx	=	(y2	-	y1)	/	3;

												if	(dx	||	dy)

																p->translate(dx,	dy);

												x	+=	2;

												y	+=	2;

												w	-=	4;

												h	-=	4;

												drawItem(p,	QRect(x,	y,	w,	h),

																						AlignCenter	|	ShowPrefix,

																						cg,	btn->isEnabled(),

																						btn->pixmap(),	btn->text(),	-1,

																						(btn->isDown()	||	btn->isOn())	?	&cg.brightText

																						:	&cg.buttonText());

												if	(dx	||	dy)

																p->translate(-dx,	-dy);

												break;

								}

				default:

								QWindowsStyle::drawControl(element,	p,	widget,	r,	cg,	how,	opt);

								break;

				}

}

void	NorwegianWoodStyle::drawControlMask(ControlElement	element,

																																										QPainter	*p,

																																										const	QWidget	*widget,

																																										const	QRect	&r,

																																										const	QStyleOption&	opt)	const

{

				switch(element)	{

				case	CE_PushButton:

								{

												int	d	=	QMIN(r.width(),	r.height())	/	2;

												p->setPen(color1);

												p->setBrush(color1);

												drawroundrect(p,	r.x(),	r.y(),	r.width(),	r.height(),	d);

												break;

								}

				default:

								QWindowsStyle::drawControlMask(element,	p,	widget,	r,	opt);

								break;

				}

}

void	NorwegianWoodStyle::drawComplexControl(ComplexControl	cc,

																																													QPainter	*p,

																																													const	QWidget	*widget,

																																													const	QRect	&r,

																																													const	QColorGroup	&cg,

																																													SFlags	how,

																																													SCFlags	sub,

																																													SCFlags	subActive,

																																													const	QStyleOption&	opt)	const

{

				switch(cc)	{

				case	CC_ComboBox:

								{

												const	QComboBox	*cmb;

												cmb	=	(const	QComboBox*)widget;

												int	awh,	ax,	ay,	sh,	sy,	dh,	ew;

												get_combo_parameters(subRect(SR_PushButtonContents,	widget),

																																		ew,	awh,	ax,	ay,	sh,	dh,	sy);

												drawPrimitive(PE_ButtonCommand,	p,	r,	cg,	Style_Raised,	opt);

												QStyle	*mstyle	=	QStyleFactory::create("Motif");

												if	(mstyle)

																mstyle->drawPrimitive(PE_ArrowDown,	p,

																																							QRect(ax,	ay,	awh,	awh),	cg,	how,	opt);

												else

																drawPrimitive(PE_ArrowDown,	p,

																															QRect(ax,	ay,	awh,	awh),	cg,	how,	opt);

												QPen	oldPen	=	p->pen();

												p->setPen(cg.light());

												p->drawLine(ax,	sy,	ax	+	awh	-	1,	sy);

												p->drawLine(ax,	sy,	ax,	sy	+	sh	-	1);

												p->setPen(cg.dark());

												p->drawLine(ax	+	1,	sy	+	sh	-	1,	ax	+	awh	-	1,	sy	+	sh	-	1);

												p->drawLine(ax	+	awh	-	1,	sy	+	1,	ax	+	awh	-	1,	sy	+	sh	-	1);

												p->setPen(oldPen);

												if	(cmb->editable())	{

																QRect	r(querySubControlMetrics(CC_ComboBox,	widget,

																																																SC_ComboBoxEditField,	opt));

																qDrawShadePanel(p,	r,	cg,	TRUE,	1,

																																	&cg.brush(QColorGroup::Button));

												}

												break;

								}

				default:

								QWindowsStyle::drawComplexControl(cc,	p,	widget,	r,	cg,	how,

																																											sub,	subActive,	opt);

								break;

				}

}

void	NorwegianWoodStyle::drawComplexControlMask(ComplexControl	control,

																																																	QPainter	*p,

																																																	const	QWidget	*widget,

																																																	const	QRect	&r,

																																																	const	QStyleOption&	opt)	const

{

				switch	(control)	{

				case	CC_ComboBox:

								{

												int	d	=	QMIN(r.width(),	r.height())	/	2;

												p->setPen(color1);

												p->setBrush(color1);

												drawroundrect(p,	r.x(),	r.y(),	r.width(),	r.height(),	d);

												break;

								}

				default:

								QWindowsStyle::drawComplexControlMask(control,	p,	widget,	r,	opt);

								break;

				}

}

QRect	NorwegianWoodStyle::querySubControlMetrics(ComplexControl	control,

																																																		const	QWidget	*widget,

																																																		SubControl	sc,

																																																		const	QStyleOption

{

				QRect	rect;

				switch	(control)	{

				case	CC_ComboBox:

								{

												switch(sc)	{

												case	SC_ComboBoxEditField:

																{

																				rect	=	subRect(SR_PushButtonContents,	widget);

																				int	ew	=	get_combo_extra_width(rect.height(),	0);

																				rect.setRect(rect.x()	+	1,	rect.y()	+	1,

																																		rect.width()	-	2	-	ew,	rect.height

																				break;

																}

												default:

																rect	=	QWindowsStyle::querySubControlMetrics(control,	widget,

																																																														sc,	opt);

																break;

												}

												break;

								}

				case	CC_ScrollBar:

								{

												const	QScrollBar*	sb;

												sb	=	(const	QScrollBar*)widget;

												bool	horz	=	sb->orientation()	==	QScrollBar::Horizontal;

												int	b	=	2;

												int	w	=	horz	?	sb->height()	:	sb->width();

												switch	(sc)	{

												case	SC_ScrollBarAddLine:

																rect.setRect(b,	b,	w	-	2	*	b,	w	-	2	*	b);

																if	(horz)

																				rect.moveBy(sb->width()	-	w,	0);

																else

																				rect.moveBy(0,	sb->height()	-	w);

																break;

												case	SC_ScrollBarSubLine:

																rect.setRect(b,	b,	w	-	2	*	b,	w	-	2	*	b);

																break;

												default:

																rect	=	QWindowsStyle::querySubControlMetrics(control,	widget,

																																																														sc,	opt);

																break;

												}

												break;

								}

				default:

								rect	=	QWindowsStyle::querySubControlMetrics(control,	widget,

																																																						sc,	opt);

								break;

				}

				return	rect;

}

QRect	NorwegianWoodStyle::subRect(SubRect	sr,	const	QWidget	*	widget)	const

{

				QRect	r;

				switch	(sr)	{

				case	SR_PushButtonContents:

								{

												const	QPushButton	*btn;

												btn	=	(const	QPushButton*)widget;

												r	=	btn->rect();

												int	d	=	QMIN(r.width(),	r.height())	/	2;

												int	b	=	buttonthickness(d);

												d	-=	b;

												b++;

												if	(r.width()	<	r.height())

																r.setRect(r.x()	+	b,	r.y()	+	d,

																											r.width()	-	2	*	b,	r.height()	-	2	*	d);

												else

																r.setRect(r.x()	+	d,	r.y()	+	b,

																											r.width()	-	2	*	d,	r.height()	-	2	*	b);

												break;

								}

				case	SR_ComboBoxFocusRect:

								{

												r	=	subRect(SR_PushButtonContents,	widget);

												int	ew	=	get_combo_extra_width(r.height());

												r.setRect(r.x()	+	1,	r.y()	+	1,	r.width()	-	2	-	ew,

																							r.height()	-	2);

												break;

								}

				default:

								r	=	QWindowsStyle::subRect(sr,	widget);

								break;

				}

				return	r;

}

static	void	drawroundrect(QPainter	*p,	QCOORD	x,	QCOORD	y,

																											QCOORD	w,	QCOORD	h,	QCOORD	d)

{

				int	rx	=	(200*d)/w;

				int	ry	=	(200*d)/h;

				p->drawRoundRect(x,	y,	w,	h,	rx,	ry);

}

static	QRegion	roundRectRegion(const	QRect&	g,	int	r)

{

				QPointArray	a;

				a.setPoints(8,	g.x()+r,	g.y(),	g.right()-r,	g.y(),

																	g.right(),	g.y()+r,	g.right(),	g.bottom()-r,

																	g.right()-r,	g.bottom(),	g.x()+r,	g.bottom(),

																	g.x(),	g.bottom()-r,	g.x(),	g.y()+r);

				QRegion	reg(a);

				int	d	=	r*2-1;

				reg	+=	QRegion(g.x(),g.y(),r*2,r*2,	QRegion::Ellipse);

				reg	+=	QRegion(g.right()-d,g.y(),r*2,r*2,	QRegion::Ellipse);

				reg	+=	QRegion(g.x(),g.bottom()-d,r*2,r*2,	QRegion::Ellipse);

				reg	+=	QRegion(g.right()-d,g.bottom()-d,r*2,r*2,	QRegion::Ellipse);

				return	reg;

}

static	int	get_combo_extra_width(int	h,	int	*return_awh)

{

				int	awh;

				if	(h	<	8)	{

								awh	=	6;

				}	else	if	(h	<	14)	{

								awh	=	h	-	2;

				}	else	{

								awh	=	h/2;

				}

				if	(return_awh)

								*return_awh	=	awh;

				return	awh*3/2;

}

static	void	get_combo_parameters(const	QRect	&r,

																																		int	&ew,	int	&awh,	int	&ax,

																																		int	&ay,	int	&sh,	int	&dh,

																																		int	&sy)

{

				ew	=	get_combo_extra_width(r.height(),	&awh);

				sh	=	(awh+3)/4;

				if	(sh	<	3)

								sh	=	3;

				dh	=	sh/2	+	1;

				ay	=	r.y()	+	(r.height()-awh-sh-dh)/2;

				if	(ay	<	0)	{

								//panic	mode

								ay	=	0;

								sy	=	r.height();

				}	else	{

								sy	=	ay+awh+dh;

				}

				ax	=	r.x()	+	r.width()	-	ew	+(ew-awh)/2;

}

static	inline	int	buttonthickness(int	d)

{	return		d	>	20	?	5	:	(d	<	10	?	2:	3);	}

void	NorwegianWoodStyle::drawSemicircleButton(QPainter	*p,	const	QRect

																																															int	dir,	bool	sunken,

																																															const	QColorGroup	&g)	const

{

				int	b	=		pixelMetric(PM_ScrollBarExtent)	>	20	?	3	:	2;

					QRegion	extrn(r.x(),			r.y(),			r.width(),					r.height(),					QRegion::Ellipse);

					QRegion	intern(r.x()+b,	r.y()+b,	r.width()-2*b,	r.height()-2*b,	QRegion::Ellipse);

				int	w2	=	r.width()/2;

				int	h2	=	r.height()/2;

				int	bug	=	1;	//off-by-one	somewhere!!!???

				switch(dir)	{

				case	PointRight:

								extrn	+=		QRegion(r.x(),		r.y(),			w2,					r.height());

								intern	+=	QRegion(r.x()+b,r.y()+b,	w2-2*b,	r.height()-2*b);

								break;

				case	PointLeft:

								extrn	+=		QRegion(r.x()+w2,		r.y(),			w2,					r.height());

								intern	+=	QRegion(r.x()+w2+b,r.y()+b,	w2-2*b,	r.height()-2*b);

								break;

				case	PointUp:

								extrn	+=		QRegion(r.x(),		r.y()+h2,			r.width(),					h2);

								intern	+=	QRegion(r.x()+b,r.y()+h2+b,	r.width()-2*b-bug,	h2-2*b-bug);

								break;

				case	PointDown:

								extrn	+=		QRegion(r.x(),		r.y(),			r.width(),					h2);

								intern	+=	QRegion(r.x()+b,r.y()+b,	r.width()-2*b-bug,	h2-2*b-bug);

								break;

				}

				extrn	=	extrn	-	intern;

				QPointArray	a;

				a.setPoints(3,	r.x(),	r.y(),	r.x(),	r.bottom(),	r.right(),	r.top

				QRegion	oldClip	=	p->clipRegion();

				bool	bReallyClip	=	p->hasClipping();		//	clip	only	if	we	really	want.

				p->setClipRegion(intern);

				p->fillRect(r,	g.brush(QColorGroup::Button));

				p->setClipRegion(QRegion(a)&extrn);

				p->fillRect(r,	sunken	?	g.dark()	:	g.light());

				a.setPoints(3,	r.right(),	r.bottom(),	r.x(),	r.bottom(),

																	r.right(),	r.top());

				p->setClipRegion(QRegion(a)	&		extrn);

				p->fillRect(r,	sunken	?	g.light()	:	g.dark());

				p->setClipRegion(oldClip);

				p->setClipping(bReallyClip);

}

#endif

Header	file	of	the	Metal	theme:

/**

**	$Id:		qt/metal.h			3.0.5			edited	Dec	4	2001	$

**

**	Definition	of	the	Metal	Style	for	the	themes	example

**

**	Created	:	979899

**

**	Copyright	(C)	1997	by	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	METAL_H

#define	METAL_H

#include	<qwindowsstyle.h>

#include	<qpalette.h>

#ifndef	QT_NO_STYLE_WINDOWS

class	MetalStyle	:	public	QWindowsStyle

{

public:

				MetalStyle();

				void	polish(QApplication*);

				void	unPolish(QApplication*);

				void	polish(QWidget*);

				void	unPolish(QWidget*);

				void	drawPrimitive(PrimitiveElement	pe,

																								QPainter	*p,

																								const	QRect	&r,

																								const	QColorGroup	&cg,

																								SFlags	flags	=	Style_Default,

																								const	QStyleOption&	=	QStyleOption::Default)	const;

				void	drawControl(ControlElement	element,

																						QPainter	*p,

																						const	QWidget	*widget,

																						const	QRect	&r,

																						const	QColorGroup	&cg,

																						SFlags	how	=	Style_Default,

																						const	QStyleOption&	=	QStyleOption::Default)	const;

				void	drawComplexControl(ComplexControl	cc,

																													QPainter	*p,

																													const	QWidget	*widget,

																													const	QRect	&r,

																													const	QColorGroup	&cg,

																													SFlags	how	=	Style_Default,

																													SCFlags	sub	=	SC_All,

																													SCFlags	subActive	=	SC_None,

																													const	QStyleOption&	=	QStyleOption::Default)	const;

				int	pixelMetric(PixelMetric,	const	QWidget	*)	const;

private:

				void	drawMetalFrame(QPainter	*p,	int	x,	int	y,	int	w,	int	h)	const;

				void	drawMetalGradient(QPainter	*p,	int	x,	int	y,	int	w,	int	h,

																										bool	sunken,	bool	horz,	bool	flat=FALSE)	const;

				void	drawMetalButton(QPainter	*p,	int	x,	int	y,	int	w,	int	h,

																										bool	sunken,	bool	horz,	bool	flat=FALSE)	const;

				QPalette	oldPalette;

};

#endif

#endif

Implementation	of	the	Metal	theme:

/**

**	$Id:		qt/metal.cpp			3.0.5			edited	Dec	4	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"metal.h"

#ifndef	QT_NO_STYLE_WINDOWS

#include	"qapplication.h"

#include	"qcombobox.h"

#include	"qpainter.h"

#include	"qdrawutil.h"	//	for	now

#include	"qpixmap.h"	//	for	now

#include	"qpalette.h"	//	for	now

#include	"qwidget.h"

#include	"qlabel.h"

#include	"qimage.h"

#include	"qpushbutton.h"

#include	"qwidget.h"

#include	"qrangecontrol.h"

#include	"qscrollbar.h"

#include	"qslider.h"

#include	<limits.h>

///

#include	"stonedark.xpm"

#include	"stone1.xpm"

#include	"marble.xpm"

///

MetalStyle::MetalStyle()	:	QWindowsStyle()	{	}

/*!

		Reimplementation	from	QStyle

	*/

void	MetalStyle::polish(QApplication	*app)

{

				oldPalette	=	app->palette();

				//	we	simply	create	a	nice	QColorGroup	with	a	couple	of	fancy

				//	pixmaps	here	and	apply	to	it	all	widgets

				QFont	f("times",	app->font().pointSize());

				f.setBold(TRUE);

				f.setItalic(TRUE);

				app->setFont(f,	TRUE,	"QMenuBar");

				app->setFont(f,	TRUE,	"QPopupMenu");

				//				QPixmap	button(stonedark_xpm);

				QColor	gold("#B9B9A5A54040");	//same	as	topgrad	below

				QPixmap	button(1,	1);	button.fill(gold);

				QPixmap	background(marble_xpm);

				QPixmap	dark(1,	1);	dark.fill(red.dark());

				QPixmap	mid(stone1_xpm);

				QPixmap	light(stone1_xpm);//1,	1);	light.fill(green);

				QPalette	op	=	app->palette();

				QColor	backCol(227,227,227);

				//	QPalette	op(white);

				QColorGroup	active	(op.active().foreground(),

																					QBrush(op.active().button(),button),

																					QBrush(op.active().light(),	light),

																					QBrush(op.active().dark(),	dark),

																					QBrush(op.active().mid(),	mid),

																					op.active().text(),

																					Qt::white,

																					op.active().base(),//																			QColor(236,182,120),

																					QBrush(backCol,	background)

);

				active.setColor(QColorGroup::ButtonText,		Qt::white);

				active.setColor(QColorGroup::Shadow,		Qt::black);

				QColorGroup	disabled	(op.disabled().foreground(),

																					QBrush(op.disabled().button(),button),

																					QBrush(op.disabled().light(),	light),

																					op.disabled().dark(),

																					QBrush(op.disabled().mid(),	mid),

																					op.disabled().text(),

																					Qt::white,

																					op.disabled().base(),//																	QColor(236,182,120),

																					QBrush(backCol,	background)

);

				QPalette	newPalette(active,	disabled,	active);

				app->setPalette(newPalette,	TRUE);

}

/*!

		Reimplementation	from	QStyle

	*/

void	MetalStyle::unPolish(QApplication	*app)

{

				app->setPalette(oldPalette,	TRUE);

				app->setFont(app->font(),	TRUE);

}

/*!

		Reimplementation	from	QStyle

	*/

void	MetalStyle::polish(QWidget*	w)

{

			//	the	polish	function	sets	some	widgets	to	transparent	mode	and

				//	some	to	translate	background	mode	in	order	to	get	the	full

				//	benefit	from	the	nice	pixmaps	in	the	color	group.

				if	(w->inherits("QPushButton")){

								w->setBackgroundMode(QWidget::NoBackground);

								return;

				}

				if	(!w->isTopLevel())	{

								if	(w->backgroundPixmap())

												w->setBackgroundOrigin(QWidget::WindowOrigin);

				}

}

void	MetalStyle::unPolish(QWidget*	w)

{

			//	the	polish	function	sets	some	widgets	to	transparent	mode	and

				//	some	to	translate	background	mode	in	order	to	get	the	full

				//	benefit	from	the	nice	pixmaps	in	the	color	group.

				if	(w->inherits("QPushButton")){

								w->setBackgroundMode(QWidget::PaletteButton);

								return;

				}

				if	(!w->isTopLevel())	{

								if	(w->backgroundPixmap())

												w->setBackgroundOrigin(QWidget::WidgetOrigin);

				}

}

void	MetalStyle::drawPrimitive(PrimitiveElement	pe,

																																QPainter	*p,

																																const	QRect	&r,

																																const	QColorGroup	&cg,

																																SFlags	flags,	const	QStyleOption&	opt)	const

{

				switch(pe)	{

				case	PE_HeaderSection:

								if	(flags	&	Style_Sunken)

												flags	^=	Style_Sunken	|	Style_Raised;

								//	fall	through

				case	PE_ButtonBevel:

				case	PE_ButtonCommand:

												drawMetalButton(p,	r.x(),	r.y(),	r.width(),	r.height(),

																													(flags	&	(Style_Sunken|Style_On|Style_Down)),

																													TRUE,	!(flags	&	Style_Raised));

												break;

				case	PE_PanelMenuBar:

								drawMetalFrame(p,	r.x(),	r.y(),	r.width(),	r.height());

								break;

				case	PE_ScrollBarAddLine:

								drawMetalButton(p,	r.x(),	r.y(),	r.width(),	r.height(),

																									flags	&	Style_Down,	!(flags	&	Style_Horizontal));

								drawPrimitive((flags	&	Style_Horizontal)	?	PE_ArrowRight	:PE_ArrowDown,

																							p,	r,	cg,	flags,	opt);

								break;

				case	PE_ScrollBarSubLine:

								drawMetalButton(p,	r.x(),	r.y(),	r.width(),	r.height(),

																									flags	&	Style_Down,	!(flags	&	Style_Horizontal));

								drawPrimitive((flags	&	Style_Horizontal)	?	PE_ArrowLeft	:	PE_ArrowUp,

																							p,	r,	cg,	flags,	opt);

								break;

				case	PE_ScrollBarSlider:

								drawMetalButton(p,	r.x(),	r.y(),	r.width(),	r.height(),	FALSE,

																									flags	&	Style_Horizontal);

								break;

				default:

								QWindowsStyle::drawPrimitive(pe,	p,	r,	cg,	flags,	opt);

								break;

				}

}

void	MetalStyle::drawControl(ControlElement	element,

																														QPainter	*p,

																														const	QWidget	*widget,

																														const	QRect	&r,

																														const	QColorGroup	&cg,

																														SFlags	how,

																														const	QStyleOption&	opt)	const

{

				switch(element)	{

				case	CE_PushButton:

								{

												const	QPushButton	*btn;

												btn	=	(const	QPushButton*)widget;

												int	x1,	y1,	x2,	y2;

												r.coords(&x1,	&y1,	&x2,	&y2);

												p->setPen(cg.foreground());

												p->setBrush(QBrush(cg.button(),	NoBrush));

												QBrush	fill;

												if	(btn->isDown())

																fill	=	cg.brush(QColorGroup::Mid);

												else	if	(btn->isOn())

																fill	=	QBrush(cg.mid(),	Dense4Pattern);

												else

																fill	=	cg.brush(QColorGroup::Button);

												if	(btn->isDefault())	{

																QPointArray	a;

																a.setPoints(9,

																													x1,	y1,	x2,	y1,	x2,	y2,	x1,	y2,	x1,	y1+1,

																													x2-1,	y1+1,	x2-1,	y2-1,	x1+1,	y2-1,	x1+1,	y1+1);

																p->setPen(Qt::black);

																p->drawPolyline(a);

																x1	+=	2;

																y1	+=	2;

																x2	-=	2;

																y2	-=	2;

												}

												SFlags	flags	=	Style_Default;

												if	(btn->isOn())

																flags	|=	Style_On;

												if	(btn->isDown())

																flags	|=	Style_Down;

												if	(!btn->isFlat()	&&	!btn->isDown())

																flags	|=	Style_Raised;

												drawPrimitive(PE_ButtonCommand,	p,

																											QRect(x1,	y1,	x2	-	x1	+	1,	y2	-	y1	+	1),

																											cg,	flags,	opt);

												if	(btn->isMenuButton())	{

																flags	=	Style_Default;

																if	(btn->isEnabled())

																				flags	|=	Style_Enabled;

																int	dx	=	(y1	-	y2	-	4)	/	3;

																drawPrimitive(PE_ArrowDown,	p,

																															QRect(x2	-	dx,	dx,	y1,	y2	-	y1),

																															cg,	flags,	opt);

												}

												if	(p->brush().style()	!=	NoBrush)

																p->setBrush(NoBrush);

												break;

								}

				case	CE_PushButtonLabel:

								{

												const	QPushButton	*btn;

												btn	=	(const	QPushButton*)widget;

												int	x,	y,	w,	h;

												r.rect(&x,	&y,	&w,	&h);

												int	x1,	y1,	x2,	y2;

												r.coords(&x1,	&y1,	&x2,	&y2);

												int	dx	=	0;

												int	dy	=	0;

												if	(btn->isMenuButton())

																dx	=	(y2	-	y1)	/	3;

												if	(btn->isOn()	||	btn->isDown())	{

																dx--;

																dy--;

												}

												if	(dx	||	dy)

																p->translate(dx,	dy);

												x	+=	2;

												y	+=	2;

												w	-=	4;

												h	-=	4;

												drawItem(p,	QRect(x,	y,	w,	h),

																						AlignCenter|ShowPrefix,

																						cg,	btn->isEnabled(),

																						btn->pixmap(),	btn->text(),	-1,

																						(btn->isDown()	||	btn->isOn())?	&cg.brightText

												if	(dx	||	dy)

																p->translate(-dx,	-dy);

												break;

								}

				default:

								QWindowsStyle::drawControl(element,	p,	widget,	r,	cg,	how,	opt);

								break;

				}

}

void	MetalStyle::drawComplexControl(ComplexControl	cc,

																																					QPainter	*p,

																																					const	QWidget	*widget,

																																					const	QRect	&r,

																																					const	QColorGroup	&cg,

																																					SFlags	how,

																																					SCFlags	sub,

																																					SCFlags	subActive,

																																					const	QStyleOption&	opt)	const

{

				switch	(cc)	{

				case	CC_Slider:

								{

												const	QSlider	*slider	=	(const	QSlider*)	widget;

												QRect	handle	=	querySubControlMetrics(CC_Slider,	widget,

																																																			SC_SliderHandle,	opt);

												if	(sub	&	SC_SliderGroove)

																QWindowsStyle::drawComplexControl(cc,	p,	widget,	r,	cg,	how,

																																																			SC_SliderGroove,	subActive,	opt);

												if	((sub	&	SC_SliderHandle)	&&	handle.isValid())

																drawMetalButton(p,	handle.x(),	handle.y(),	handle.width

																																	handle.height(),	FALSE,

																																	slider->orientation()	==	QSlider::Horizontal);

												break;

								}

				case	CC_ComboBox:

								{

												//	not	exactly	correct...

												const	QComboBox	*cmb	=	(const	QComboBox*)	widget;

												qDrawWinPanel(p,	r.x(),	r.y(),	r.width(),	r.height(),	cg,	TRUE,

																											cmb->isEnabled()	?	&cg.brush(QColorGroup::Base)	:

																																														&cg.brush(QColorGroup::Background));

												drawMetalButton(p,	r.x()	+	r.width()	-	2	-	16,	r.y()	+	2,	16,	r.

																													how	&	Style_Sunken,	TRUE);

												drawPrimitive(PE_ArrowDown,	p,

																											QRect(r.x()	+	r.width()	-	2	-	16	+	2,

																																		r.y()	+	2	+	2,	16	-	4,	r.height()	-	4	-4),

																											cg,

																											cmb->isEnabled()	?	Style_Enabled	:	Style_Default,

																											opt);

												break;

								}

				default:

								QWindowsStyle::drawComplexControl(cc,	p,	widget,	r,	cg,	how,	sub,	subActive,

																																											opt);

								break;

				}

}

/*!

		Draw	a	metallic	button,	sunken	if	\a	sunken	is	TRUE,	horizontal	if

		/a	horz	is	TRUE.

*/

void	MetalStyle::drawMetalButton(QPainter	*p,	int	x,	int	y,	int	w,	int	h,

																																		bool	sunken,	bool	horz,	bool	flat)	const

{

				drawMetalFrame(p,	x,	y,	w,	h);

				drawMetalGradient(p,	x,	y,	w,	h,	sunken,	horz,	flat);

}

void	MetalStyle::drawMetalFrame(QPainter	*p,	int	x,	int	y,	int	w,	int	h)	const

{

				QColor	top1("#878769691515");

				QColor	top2("#C6C6B4B44949");

				QColor	bot2("#70705B5B1414");

				QColor	bot1("#56564A4A0E0E");	//first	from	the	bottom

				int	x2	=	x	+	w	-	1;

				int	y2	=	y	+	h	-	1;

				//frame:

				p->setPen(top1);

				p->drawLine(x,	y2,	x,	y);

				p->drawLine(x,	y,	x2-1,	y);

				p->setPen(top2);

				p->drawLine(x+1,	y2	-1,	x+1,	y+1);

				p->drawLine(x+1,	y+1	,	x2-2,	y+1);

				p->setPen(bot1);

				p->drawLine(x+1,	y2,	x2,	y2);

				p->drawLine(x2,	y2,	x2,	y);

				p->setPen(bot2);

				p->drawLine(x+1,	y2-1,	x2-1,	y2-1);

				p->drawLine(x2-1,	y2-1,	x2-1,	y+1);

}

void	MetalStyle::drawMetalGradient(QPainter	*p,	int	x,	int	y,	int	w,	int	h,

																																				bool	sunken,	bool	horz,	bool	flat)	const

{

				QColor	highlight("#E8E8DDDD6565");

				QColor	subh1("#CECEBDBD5151");

				QColor	subh2("#BFBFACAC4545");

				QColor	topgrad("#B9B9A5A54040");

				QColor	botgrad("#89896C6C1A1A");

				if	(flat	&&	!sunken)	{

												p->fillRect(x	+	2,	y	+	2,	w	-	4,h	-4,	topgrad);

				}	else	{

								//	highlight:

								int	i	=	0;

								int	x1	=	x	+	2;

								int	y1	=	y	+	2;

								int	x2	=	x	+	w	-	1;

								int	y2	=	y	+	h	-	1;

								if	(horz)

												x2	=	x2	-	2;

								else

												y2	=	y2	-	2;

#define	DRAWLINE	if	(horz)	\

																				p->drawLine(x1,	y1+i,	x2,	y1+i);	\

																	else	\

																				p->drawLine(x1+i,	y1,	x1+i,	y2);	\

																	i++;

								if	(!sunken)	{

												p->setPen(highlight);

												DRAWLINE;

												DRAWLINE;

												p->setPen(subh1);

												DRAWLINE;

												p->setPen(subh2);

												DRAWLINE;

								}

								//	gradient:

								int	ng	=	(horz	?	h	:	w)	-	8;	//	how	many	lines	for	the	gradient?

								int	h1,	h2,	s1,	s2,	v1,	v2;

								if	(!sunken)	{

												topgrad.hsv(&h1,	&s1,	&v1);

												botgrad.hsv(&h2,	&s2,	&v2);

								}	else	{

												botgrad.hsv(&h1,	&s1,	&v1);

												topgrad.hsv(&h2,	&s2,	&v2);

								}

								if	(ng	>	1)	{

												for	(int	j	=0;	j	<	ng;	j++)	{

																p->setPen(QColor(h1	+	((h2-h1)*j)/(ng-1),

																																			s1	+	((s2-s1)*j)/(ng-1),

																																			v1	+	((v2-v1)*j)/(ng-1),		QColor::Hsv));

																DRAWLINE;

												}

								}	else	if	(ng	==	1)	{

												p->setPen(QColor((h1+h2)/2,	(s1+s2)/2,	(v1+v2)/2,	QColor::Hsv));

												DRAWLINE;

								}

								if	(sunken)	{

												p->setPen(subh2);

												DRAWLINE;

												p->setPen(subh1);

												DRAWLINE;

												p->setPen(highlight);

												DRAWLINE;

												DRAWLINE;

								}

				}

}

int	MetalStyle::pixelMetric(PixelMetric	metric,	const	QWidget	*w)	const

{

				switch	(metric)	{

				case	PM_MenuBarFrameWidth:

								return	2;

				default:

								return	QWindowsStyle::pixelMetric(metric,	w);

				}

}

#endif

Header	file	of	the	example:

/**

**	$Id:		qt/themes.h			3.0.5			edited	Nov	23	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	THEMES_H

#define	THEMES_H

#include	<qmainwindow.h>

#include	<qfont.h>

class	QTabWidget;

class	Themes:	public	QMainWindow

{

				Q_OBJECT

public:

				Themes(QWidget	*parent	=	0,	const	char	*name	=	0,	WFlags	f	=	WType_TopLevel);

protected:

				QTabWidget	*tabwidget;

protected	slots:

				void	makeStyle(const	QString	&);

				void	about();

				void	aboutQt();

private:

				QFont	appFont;

};

#endif

Implementation	of	the	example:

/**

**	$Id:		qt/themes.cpp			3.0.5			edited	Dec	4	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"themes.h"

#include	"wood.h"

#include	"metal.h"

#include	"../buttongroups/buttongroups.h"

#include	"../lineedits/lineedits.h"

#include	"../listboxcombo/listboxcombo.h"

#include	"../checklists/checklists.h"

#include	"../progressbar/progressbar.h"

#include	"../rangecontrols/rangecontrols.h"

#include	"../richtext/richtext.h"

#include	<qtabwidget.h>

#include	<qapplication.h>

#include	<qpopupmenu.h>

#include	<qmenubar.h>

#include	<qmessagebox.h>

#include	<qfont.h>

#include	<qstylefactory.h>

#include	<qaction.h>

#include	<qsignalmapper.h>

#include	<qdict.h>

Themes::Themes(QWidget	*parent,	const	char	*name,	WFlags	f)

				:	QMainWindow(parent,	name,	f)

{

				appFont	=	QApplication::font();

				tabwidget	=	new	QTabWidget(this);

				tabwidget->addTab(new	ButtonsGroups(tabwidget),	"Buttons/Groups");

				QHBox	*hbox	=	new	QHBox(tabwidget);

				hbox->setMargin(5);

				(void)new	LineEdits(hbox);

				(void)new	ProgressBar(hbox);

				tabwidget->addTab(hbox,	"Lineedits/Progressbar");

				tabwidget->addTab(new	ListBoxCombo(tabwidget),	"Listboxes/Comboboxes");

				tabwidget->addTab(new	CheckLists(tabwidget),	"Listviews");

				tabwidget->addTab(new	RangeControls(tabwidget),	"Rangecontrols");

				tabwidget->addTab(new	MyRichText(tabwidget),	"Fortune");

				setCentralWidget(tabwidget);

				QPopupMenu	*style	=	new	QPopupMenu(this);

				style->setCheckable(TRUE);

				menuBar()->insertItem("&Style"	,	style);

				style->setCheckable(TRUE);

				QActionGroup	*ag	=	new	QActionGroup(this,	0);

				ag->setExclusive(TRUE);

				QSignalMapper	*styleMapper	=	new	QSignalMapper(this);

				connect(styleMapper,	SIGNAL(mapped(const	QString&)),	this,	SLOT(makeStyle(const	

				QStringList	list	=	QStyleFactory::keys();

				list.sort();

#ifndef	QT_NO_STYLE_WINDOWS

				list.insert(list.begin(),	"Norwegian	Wood");

				list.insert(list.begin(),	"Metal");

#endif

				QDict<int>	stylesDict(17,	FALSE);

				for	(QStringList::Iterator	it	=	list.begin();	it	!=	list.end();	++it)	{

								QString	styleStr	=	*it;

								QString	styleAccel	=	styleStr;

								if	(stylesDict[styleAccel.left(1)])	{

												for	(uint	i	=	0;	i	<	styleAccel.length();	i++)	{

																if	(!stylesDict[styleAccel.mid(i,	1)])	{

																				stylesDict.insert(styleAccel.mid(i,	1),	(const	int	*)1);

																				styleAccel	=	styleAccel.insert(i,	'&');

																				break;

																}

												}

								}	else	{

												stylesDict.insert(styleAccel.left(1),	(const	int	*)1);

												styleAccel	=	"&"+styleAccel;

								}

								QAction	*a	=	new	QAction(styleStr,	QIconSet(),	styleAccel,	0,	ag,	0,	ag->

								connect(a,	SIGNAL(activated()),	styleMapper,	SLOT(map()));

								styleMapper->setMapping(a,	a->text());

				}

				ag->addTo(style);

				style->insertSeparator();

				style->insertItem("&Quit",	qApp,	SLOT(quit()),	CTRL	|	Key_Q);

				QPopupMenu	*	help	=	new	QPopupMenu(this);

				menuBar()->insertSeparator();

				menuBar()->insertItem("&Help",	help);

				help->insertItem("&About",	this,	SLOT(about()),	Key_F1);

				help->insertItem("About	&Qt",	this,	SLOT(aboutQt()));

#ifndef	QT_NO_STYLE_WINDOWS

				qApp->setStyle(new	NorwegianWoodStyle);

#endif

}

void	Themes::makeStyle(const	QString	&style)

{

				if(style	==	"Norwegian	Wood")	{

#ifndef	QT_NO_STYLE_WINDOWS

								qApp->setStyle(new	NorwegianWoodStyle);

#endif

				}	else	if(style	==	"Metal")	{

#ifndef	QT_NO_STYLE_WINDOWS

								qApp->setStyle(new	MetalStyle);

#endif

				}	else	{

								qApp->setStyle(style);

								if(style	==	"Platinum")	{

												QPalette	p(QColor(239,	239,	239));

												qApp->setPalette(p,	TRUE);

												qApp->setFont(appFont,	TRUE);

								}	else	if(style	==	"Windows")	{

												qApp->setFont(appFont,	TRUE);

								}	else	if(style	==	"CDE")	{

												QPalette	p(QColor(75,	123,	130));

												p.setColor(QPalette::Active,	QColorGroup::Base,	QColor(55,	77,	78));

												p.setColor(QPalette::Inactive,	QColorGroup::Base,	QColor(55,	77,	78));

												p.setColor(QPalette::Disabled,	QColorGroup::Base,	QColor(55,	77,	78));

												p.setColor(QPalette::Active,	QColorGroup::Highlight,	Qt::white);

												p.setColor(QPalette::Active,	QColorGroup::HighlightedText,	QColor(55,	77,	78));

												p.setColor(QPalette::Inactive,	QColorGroup::Highlight,	Qt::white);

												p.setColor(QPalette::Inactive,	QColorGroup::HighlightedText,	QColor(55,	77,	78));

												p.setColor(QPalette::Disabled,	QColorGroup::Highlight,	Qt::white);

												p.setColor(QPalette::Disabled,	QColorGroup::HighlightedText,	QColor(55,	77,	78));

												p.setColor(QPalette::Active,	QColorGroup::Foreground,	Qt::white);

												p.setColor(QPalette::Active,	QColorGroup::Text,	Qt::white);

												p.setColor(QPalette::Active,	QColorGroup::ButtonText,	Qt::white);

												p.setColor(QPalette::Inactive,	QColorGroup::Foreground,	Qt::white);

												p.setColor(QPalette::Inactive,	QColorGroup::Text,	Qt::white);

												p.setColor(QPalette::Inactive,	QColorGroup::ButtonText,	Qt::white);

												p.setColor(QPalette::Disabled,	QColorGroup::Foreground,	Qt::lightGray);

												p.setColor(QPalette::Disabled,	QColorGroup::Text,	Qt::lightGray);

												p.setColor(QPalette::Disabled,	QColorGroup::ButtonText,	Qt::lightGray);

												qApp->setPalette(p,	TRUE);

												qApp->setFont(QFont("times",	appFont.pointSize()),	TRUE);

								}	else	if(style	==	"Motif"	||	style	==	"MotifPlus")	{

												QPalette	p(QColor(192,	192,	192));

												qApp->setPalette(p,	TRUE);

												qApp->setFont(appFont,	TRUE);

								}

				}

}

void	Themes::about()

{

				QMessageBox::about(this,	"Qt	Themes	Example",

																								"<p>This	example	demonstrates	the	concept	of	"

																								"generalized	GUI	styles		first	introduced	"

																								"	with	the	2.0	release	of	Qt.</p>");

}

void	Themes::aboutQt()

{

				QMessageBox::aboutQt(this,	"Qt	Themes	Example");

}

Main:

/**

**	$Id:		qt/main.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	<qwindowsstyle.h>

#include	"themes.h"

#include	"metal.h"

int	main(int	argc,	char	**	argv)

{

				QApplication::setColorSpec(QApplication::ManyColor);

				QApplication	a(argc,	argv);

				Themes	themes;

				themes.setCaption("Qt	Example	-	Themes	(QStyle)");

				themes.resize(640,	400);

				a.setMainWidget(&themes);

				themes.show();

				return	a.exec();

}

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Tic	Tac	Toe
This	is	an	implementation	of	the	Tic-tac-toe	game.

We	didn't	put	much	effort	in	making	a	clever	algorithm	so	it's	not	a	challenge	to
play	against	the	computer.	Instead,	study	the	source	code	to	see	how	you	can
make	reusable	components	such	as	the	TicTacGameBoard	widget.

Header	file:

/**

**	$Id:		qt/tictac.h			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	TICTAC_H

#define	TICTAC_H

#include	<qpushbutton.h>

#include	<qptrvector.h>

class	QComboBox;

class	QLabel;

//	--

//	TicTacButton	implements	a	single	tic-tac-toe	button

//

class	TicTacButton	:	public	QPushButton

{

				Q_OBJECT

public:

				TicTacButton(QWidget	*parent);

				enum	Type	{	Blank,	Circle,	Cross	};

				Type								type()	const												{	return	t;	}

				void								setType(Type	type)				{	t	=	type;	repaint();	}

				QSizePolicy	sizePolicy()	const

				{	return	QSizePolicy(QSizePolicy::Preferred,	QSizePolicy::Preferred);	}

				QSize	sizeHint()	const	{	return	QSize(32,	32);	}

				QSize	minimumSizeHint()	const	{	return	QSize(10,	10);	}

protected:

				void								drawButtonLabel(QPainter	*);

private:

				Type	t;

};

//	Using	template	vector	to	make	vector-class	of	TicTacButton.

//	This	vector	is	used	by	the	TicTacGameBoard	class	defined	below.

typedef	QPtrVector<TicTacButton>								TicTacButtons;

typedef	QMemArray<int>										TicTacArray;

//	--

//	TicTacGameBoard	implements	the	tic-tac-toe	game	board.

//	TicTacGameBoard	is	a	composite	widget	that	contains	N	x	N	TicTacButtons.

//	N	is	specified	in	the	constructor.

//

class	TicTacGameBoard	:	public	QWidget

{

				Q_OBJECT

public:

				TicTacGameBoard(int	n,	QWidget	*parent=0,	const	char	*name=0);

			~TicTacGameBoard();

				enum								State	{	Init,	HumansTurn,	HumanWon,	ComputerWon,	NobodyWon	};

				State							state()	const											{	return	st;	}

				void								computerStarts(bool	v);

				void								newGame();

signals:

				void								finished();																					//	game	finished

private	slots:

				void								buttonClicked();

private:

				void								setState(State	state)	{	st	=	state;	}

				void								updateButtons();

				int	checkBoard(TicTacArray	*);

				void								computerMove();

				State							st;

				int									nBoard;

				bool								comp_starts;

				TicTacArray	*btArray;

				TicTacButtons	*buttons;

};

//	--

//	TicTacToe	implements	the	complete	game.

//	TicTacToe	is	a	composite	widget	that	contains	a	TicTacGameBoard	and

//	two	push	buttons	for	starting	the	game	and	quitting.

//

class	TicTacToe	:	public	QWidget

{

				Q_OBJECT

public:

				TicTacToe(int	boardSize=3,	QWidget	*parent=0,	const	char	*name=0);

private	slots:

				void								newGameClicked();

				void								gameOver();

private:

				void								newState();

				QComboBox			*whoStarts;

				QPushButton	*newGame;

				QPushButton	*quit;

				QLabel						*message;

				TicTacGameBoard	*board;

};

#endif	//	TICTAC_H

Implementation:

/**

**	$Id:		qt/tictac.cpp			3.0.5			edited	Nov	14	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"tictac.h"

#include	<qapplication.h>

#include	<qpainter.h>

#include	<qdrawutil.h>

#include	<qcombobox.h>

#include	<qcheckbox.h>

#include	<qlabel.h>

#include	<qlayout.h>

#include	<stdlib.h>																													//	rand()	function

#include	<qdatetime.h>																										//	seed	for	rand()

//***

//*	TicTacButton	member	functions

//***

//	--

//	Creates	a	TicTacButton

//

TicTacButton::TicTacButton(QWidget	*parent)	:	QPushButton(parent)

{

				t	=	Blank;																																		//	initial	type

}

//	--

//	Paints	TicTacButton

//

void	TicTacButton::drawButtonLabel(QPainter	*p)

{

				QRect	r	=	rect();

				p->setPen(QPen(white,2));															//	set	fat	pen

				if	(t	==	Circle)	{

								p->drawEllipse(r.left()+4,	r.top()+4,	r.width()-8,	r.height

				}	else	if	(t	==	Cross)	{																		//	draw	cross

								p->drawLine(r.topLeft()			+QPoint(4,4),	r.bottomRight()-QPoint(4,4));

								p->drawLine(r.bottomLeft()+QPoint(4,-4),r.topRight()			-QPoint(4,-4));

				}

}

//***

//*	TicTacGameBoard	member	functions

//***

//	--

//	Creates	a	game	board	with	N	x	N	buttons	and	connects	the	"clicked()"

//	signal	of	all	buttons	to	the	"buttonClicked()"	slot.

//

TicTacGameBoard::TicTacGameBoard(int	n,	QWidget	*parent,	const	char	*name)

				:	QWidget(parent,	name)

{

				st	=	Init;																																		//	initial	state

				nBoard	=	n;

				n	*=	n;																																					//	make	square

				comp_starts	=	FALSE;																								//	human	starts

				buttons	=	new	TicTacButtons(n);													//	create	real	buttons

				btArray	=	new	TicTacArray(n);															//	create	button	model

				QGridLayout	*	grid	=	new	QGridLayout(this,	nBoard,	nBoard,	4);

				QPalette	p(blue);

				for	(int	i=0;	i<n;	i++)	{																	//	create	and	connect	buttons

								TicTacButton	*ttb	=	new	TicTacButton(this);

								ttb->setPalette(p);

								ttb->setEnabled(FALSE);

								connect(ttb,	SIGNAL(clicked()),	SLOT(buttonClicked()));

								grid->addWidget(ttb,	i%nBoard,	i/nBoard);

								buttons->insert(i,	ttb);

								btArray->at(i)	=	TicTacButton::Blank;			//	initial	button	type

				}

				QTime	t	=	QTime::currentTime();													//	set	random	seed

				srand(t.hour()*12+t.minute()*60+t.second()*60);

}

TicTacGameBoard::~TicTacGameBoard()

{

				delete	buttons;

				delete	btArray;

}

//	--

//	TicTacGameBoard::computerStarts(bool	v)

//

//	Computer	starts	if	v=TRUE.	The	human	starts	by	default.

//

void	TicTacGameBoard::computerStarts(bool	v)

{

				comp_starts	=	v;

}

//	--

//	TicTacGameBoard::newGame()

//

//	Clears	the	game	board	and	prepares	for	a	new	game

//

void	TicTacGameBoard::newGame()

{

				st	=	HumansTurn;

				for	(int	i=0;	i<nBoard*nBoard;	i++)

								btArray->at(i)	=	TicTacButton::Blank;

				if	(comp_starts)

								computerMove();

				else

								updateButtons();

}

//	--

//	TicTacGameBoard::buttonClicked()													-	SLOT

//

//	This	slot	is	activated	when	a	TicTacButton	emits	the	signal	"clicked()",

//	i.e.	the	user	has	clicked	on	a	TicTacButton.

//

void	TicTacGameBoard::buttonClicked()

{

				if	(st	!=	HumansTurn)																					//	not	ready

								return;

				int	i	=	buttons->findRef((TicTacButton*)sender());

				TicTacButton	*b	=	buttons->at(i);											//	get	piece	that	was	pressed

				if	(b->type()	==	TicTacButton::Blank)	{			//	empty	piece?

								btArray->at(i)	=	TicTacButton::Circle;

								updateButtons();

								if	(checkBoard(btArray)	==	0)							//	not	a	winning	move?

												computerMove();

								int	s	=	checkBoard(btArray);

								if	(s)	{																														//	any	winners	yet?

												st	=	s	==	TicTacButton::Circle	?	HumanWon	:	ComputerWon;

												emit	finished();

								}

				}

}

//	--

//	TicTacGameBoard::updateButtons()

//

//	Updates	all	buttons	that	have	changed	state

//

void	TicTacGameBoard::updateButtons()

{

				for	(int	i=0;	i<nBoard*nBoard;	i++)	{

								if	(buttons->at(i)->type()	!=	btArray->at(i))

												buttons->at(i)->setType((TicTacButton::Type)btArray->at(i));

								buttons->at(i)->setEnabled(buttons->at(i)->type()	==

																																				TicTacButton::Blank);

				}

}

//	--

//	TicTacGameBoard::checkBoard()

//

//	Checks	if	one	of	the	players	won	the	game,	works	for	any	board	size.

//

//	Returns:

//		-	TicTacButton::Cross		if	the	player	with	X	buttons	won

//		-	TicTacButton::Circle	if	the	player	with	O	buttons	won

//		-	Zero	(0)	if	there	is	no	winner	yet

//

int	TicTacGameBoard::checkBoard(TicTacArray	*a)

{

				int		t	=	0;

				int		row,	col;

				bool	won	=	FALSE;

				for	(row=0;	row<nBoard	&&	!won;	row++)	{		//	check	horizontal

								t	=	a->at(row*nBoard);

								if	(t	==	TicTacButton::Blank)

												continue;

								col	=	1;

								while	(col<nBoard	&&	a->at(row*nBoard+col)	==	t)

												col++;

								if	(col	==	nBoard)

												won	=	TRUE;

				}

				for	(col=0;	col<nBoard	&&	!won;	col++)	{		//	check	vertical

								t	=	a->at(col);

								if	(t	==	TicTacButton::Blank)

												continue;

								row	=	1;

								while	(row<nBoard	&&	a->at(row*nBoard+col)	==	t)

												row++;

								if	(row	==	nBoard)

												won	=	TRUE;

				}

				if	(!won)	{																															//	check	diagonal	top	left

								t	=	a->at(0);																											//			to	bottom	right

								if	(t	!=	TicTacButton::Blank)	{

												int	i	=	1;

												while	(i<nBoard	&&	a->at(i*nBoard+i)	==	t)

																i++;

												if	(i	==	nBoard)

																won	=	TRUE;

								}

				}

				if	(!won)	{																															//	check	diagonal	bottom	left

								int	j	=	nBoard-1;																							//			to	top	right

								int	i	=	0;

								t	=	a->at(i+j*nBoard);

								if	(t	!=	TicTacButton::Blank)	{

												i++;	j--;

												while	(i<nBoard	&&	a->at(i+j*nBoard)	==	t)	{

																i++;	j--;

												}

												if	(i	==	nBoard)

																won	=	TRUE;

								}

				}

				if	(!won)																																	//	no	winner

								t	=	0;

				return	t;

}

//	--

//	TicTacGameBoard::computerMove()

//

//	Puts	a	piece	on	the	game	board.	Very,	very	simple.

//

void	TicTacGameBoard::computerMove()

{

				int	numButtons	=	nBoard*nBoard;

				int	*altv	=	new	int[numButtons];												//	buttons	alternatives

				int	altc	=	0;

				int	stopHuman	=	-1;

				TicTacArray	a	=	btArray->copy();

				int	i;

				for	(i=0;	i<numButtons;	i++)	{												//	try	all	positions

								if	(a[i]	!=	TicTacButton::Blank)						//	already	a	piece	there

												continue;

								a[i]	=	TicTacButton::Cross;													//	test	if	computer	wins

								if	(checkBoard(&a)	==	a[i])	{									//	computer	will	win

												st	=	ComputerWon;

												stopHuman	=	-1;

												break;

								}

								a[i]	=	TicTacButton::Circle;												//	test	if	human	wins

								if	(checkBoard(&a)	==	a[i])	{									//	oops...

												stopHuman	=	i;																						//	remember	position

												a[i]	=	TicTacButton::Blank;									//	restore	button

												continue;																											//	computer	still	might	win

								}

								a[i]	=	TicTacButton::Blank;													//	restore	button

								altv[altc++]	=	i;																							//	remember	alternative

				}

				if	(stopHuman	>=	0)																							//	must	stop	human	from	winning

								a[stopHuman]	=	TicTacButton::Cross;

				else	if	(i	==	numButtons)	{															//	tried	all	alternatives

								if	(altc	>	0)																									//	set	random	piece

												a[altv[rand()%(altc--)]]	=	TicTacButton::Cross;

								if	(altc	==	0)	{																						//	no	more	blanks

												st	=	NobodyWon;

												emit	finished();

								}

				}

				*btArray	=	a;																															//	update	model

				updateButtons();																												//	update	buttons

				delete[]	altv;

}

//***

//*	TicTacToe	member	functions

//***

//	--

//	Creates	a	game	widget	with	a	game	board	and	two	push	buttons,	and	connects

//	signals	of	child	widgets	to	slots.

//

TicTacToe::TicTacToe(int	boardSize,	QWidget	*parent,	const	char	*name)

				:	QWidget(parent,	name)

{

				QVBoxLayout	*	l	=	new	QVBoxLayout(this,	6);

				//	Create	a	message	label

				message	=	new	QLabel(this);

				message->setFrameStyle(QFrame::WinPanel	|	QFrame::Sunken);

				message->setAlignment(AlignCenter);

				l->addWidget(message);

				//	Create	the	game	board	and	connect	the	signal	finished()	to	this

				//	gameOver()	slot

				board	=	new	TicTacGameBoard(boardSize,	this);

				connect(board,	SIGNAL(finished()),	SLOT(gameOver()));

				l->addWidget(board);

				//	Create	a	horizontal	frame	line

				QFrame	*line	=	new	QFrame(this);

				line->setFrameStyle(QFrame::HLine	|	QFrame::Sunken);

				l->addWidget(line);

				//	Create	the	combo	box	for	deciding	who	should	start,	and

				//	connect	its	clicked()	signals	to	the	buttonClicked()	slot

				whoStarts	=	new	QComboBox(this);

				whoStarts->insertItem("Computer	starts");

				whoStarts->insertItem("Human	starts");

				l->addWidget(whoStarts);

				//	Create	the	push	buttons	and	connect	their	clicked()	signals

				//	to	this	right	slots.

				newGame	=	new	QPushButton("Play!",	this);

				connect(newGame,	SIGNAL(clicked()),	SLOT(newGameClicked()));

				quit	=	new	QPushButton("Quit",	this);

				connect(quit,	SIGNAL(clicked()),	qApp,	SLOT(quit()));

				QHBoxLayout	*	b	=	new	QHBoxLayout;

				l->addLayout(b);

				b->addWidget(newGame);

				b->addWidget(quit);

				newState();

}

//	--

//	TicTacToe::newGameClicked()																		-	SLOT

//

//	This	slot	is	activated	when	the	new	game	button	is	clicked.

//

void	TicTacToe::newGameClicked()

{

				board->computerStarts(whoStarts->currentItem()	==	0);

				board->newGame();

				newState();

}

//	--

//	TicTacToe::gameOver()																								-	SLOT

//

//	This	slot	is	activated	when	the	TicTacGameBoard	emits	the	signal

//	"finished()",	i.e.	when	a	player	has	won	or	when	it	is	a	draw.

//

void	TicTacToe::gameOver()

{

				newState();																																	//	update	text	box

}

//	--

//	Updates	the	message	to	reflect	a	new	state.

//

void	TicTacToe::newState()

{

				static	const	char	*msg[]	=	{																//	TicTacGameBoard::State	texts

								"Click	Play	to	start",	"Make	your	move",

								"You	won!",	"Computer	won!",	"It's	a	draw"	};

				message->setText(msg[board->state()]);

				return;

}

Main:

/**

**	$Id:		qt/main.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	<stdlib.h>

#include	"tictac.h"

int	main(int	argc,	char	**argv)

{

				QApplication	a(argc,	argv);

				int	n	=	3;

				if	(argc	==	2)																												//	get	board	size	n

								n	=	atoi(argv[1]);

				if	(n	<	3	||	n	>	10)	{																				//	out	of	range

								qWarning("%s:	Board	size	must	be	from	3x3	to	10x10",	argv[0]);

								return	1;

				}

				TicTacToe	ttt(n);																									//	create	game

				a.setMainWidget(&ttt);

				ttt.setCaption("Qt	Example	-	TicTac");

				ttt.show();																																	//	show	widget

				return	a.exec();																												//	go

}

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Advanced	use	of	tool	tips
This	example	widget	demonstrates	how	to	use	tool	tips	for	static	and	dynamic
regions	within	a	widget.

It	displays	two	blue	and	one	red	rectangle.	The	blue	ones	move	every	time	you
click	on	them,	the	red	one	is	static.	There	are	dynamic	tool	tips	on	the	blue
rectangles	and	a	static	tool	tip	on	the	red	one.

Header	file:

/**

**	$Id:		qt/tooltip.h			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qwidget.h>

#include	<qtooltip.h>

class	DynamicTip	:	public	QToolTip

{

public:

				DynamicTip(QWidget	*	parent);

protected:

				void	maybeTip(const	QPoint	&);

};

class	TellMe	:	public	QWidget

{

				Q_OBJECT

public:

				TellMe(QWidget	*	parent	=	0,	const	char	*	name	=	0);

				~TellMe();

				QRect	tip(const	QPoint	&);

protected:

				void	paintEvent(QPaintEvent	*);

				void	mousePressEvent(QMouseEvent	*);

				void	resizeEvent(QResizeEvent	*);

private:

				QRect	randomRect();

				QRect	r1,	r2,	r3;

				DynamicTip	*	t;

};

Implementation:

/**

**	$Id:		qt/tooltip.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"tooltip.h"

#include	<qapplication.h>

#include	<qpainter.h>

#include	<stdlib.h>

DynamicTip::DynamicTip(QWidget	*	parent)

				:	QToolTip(parent)

{

				//	no	explicit	initialization	needed

}

void	DynamicTip::maybeTip(const	QPoint	&pos)

{

				if	(!parentWidget()->inherits("TellMe"))

								return;

				QRect	r(((TellMe*)parentWidget())->tip(pos));

				if	(!r.isValid())

								return;

				QString	s;

				s.sprintf("position:	%d,%d",	r.center().x(),	r.center().y());

				tip(r,	s);

}

TellMe::TellMe(QWidget	*	parent	,	const	char	*	name)

				:	QWidget(parent,	name)

{

				setMinimumSize(30,	30);

				r1	=	randomRect();

				r2	=	randomRect();

				r3	=	randomRect();

				t	=	new	DynamicTip(this);

				QToolTip::add(this,	r3,	"this	color	is	called	red");	//	<-	helpful

}

TellMe::~TellMe()

{

				delete	t;

				t	=	0;

}

void	TellMe::paintEvent(QPaintEvent	*	e)

{

				QPainter	p(this);

				//	I	try	to	be	efficient	here,	and	repaint	only	what's	needed

				if	(e->rect().intersects(r1))	{

								p.setBrush(blue);

								p.drawRect(r1);

				}

				if	(e->rect().intersects(r2))	{

								p.setBrush(blue);

								p.drawRect(r2);

				}

				if	(e->rect().intersects(r3))	{

								p.setBrush(red);

								p.drawRect(r3);

				}

}

void	TellMe::mousePressEvent(QMouseEvent	*	e)

{

				if	(r1.contains(e->pos()))

								r1	=	randomRect();

				if	(r2.contains(e->pos()))

								r2	=	randomRect();

				repaint();

}

void	TellMe::resizeEvent(QResizeEvent	*)

{

				if	(!rect().contains(r1))

									r1	=	randomRect();

				if	(!rect().contains(r2))

									r2	=	randomRect();

}

QRect	TellMe::randomRect()

{

				return	QRect(::rand()	%	(width()	-	20),	::rand()	%	(height()	-	20),

																		20,	20);

}

QRect	TellMe::tip(const	QPoint	&	p)

{

				if	(r1.contains(p))

								return	r1;

				else	if	(r2.contains(p))

								return	r2;

				else

								return	QRect(0,0,	-1,-1);

}

Main:

/**

**	$Id:		qt/main.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	"tooltip.h"

int	main(int	argc,	char	**	argv)

{

				QApplication	a(argc,	argv);

				TellMe	mw;

				mw.setCaption("Qt	Example	-	Dynamic	Tool	Tips");

				a.setMainWidget(&mw);

				mw.show();

				return	a.exec();

}

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Widgets	Example
This	example	shows	most	of	Qt's	widgets	in	action.	It	is	similar	to	the	demo
example	in	$QTDIR/examples/demo.

Run	the	program,	then	click	the	right	mouse	button	+	Ctrl	to	identify	a	widget.

See	$QTDIR/examples/widgets	for	the	source	code.

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Wizard
This	example	shows	the	usage	of	Qt's	wizard	class.	A	wizard	should	be	used	to
help	a	user	with	complicated	actions.

Header	file:

/**

**	$Id:		qt/wizard.h			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	WIZARD_H

#define	WIZARD_H

#include	<qwizard.h>

class	QWidget;

class	QHBox;

class	QLineEdit;

class	QLabel;

class	Wizard	:	public	QWizard

{

				Q_OBJECT

public:

				Wizard(QWidget	*parent	=	0,	const	char	*name	=	0);

				void	showPage(QWidget*	page);

protected:

				void	setupPage1();

				void	setupPage2();

				void	setupPage3();

				QHBox	*page1,	*page2,	*page3;

				QLineEdit	*key,	*firstName,	*lastName,	*address,	*phone,	*email;

				QLabel	*lKey,	*lFirstName,	*lLastName,	*lAddress,	*lPhone,	*lEmail;

protected	slots:

				void	keyChanged(const	QString	&);

				void	dataChanged(const	QString	&);

};

#endif

Implementation:

/**

**	Id

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"wizard.h"

#include	<qwidget.h>

#include	<qhbox.h>

#include	<qvbox.h>

#include	<qlabel.h>

#include	<qlineedit.h>

#include	<qpushbutton.h>

#include	<qvalidator.h>

#include	<qapplication.h>

Wizard::Wizard(QWidget	*parent,	const	char	*name)

				:	QWizard(parent,	name,	TRUE)

{

				setupPage1();

				setupPage2();

				setupPage3();

				key->setFocus();

}

void	Wizard::setupPage1()

{

				page1	=	new	QHBox(this);

				page1->setSpacing(8);

				QLabel	*info	=	new	QLabel(page1);

				info->setPalette(yellow);

				info->setText("Enter	your	personal\n"

																			"key	here.\n\n"

																			"Your	personal	key\n"

																			"consists	of	4	digits");

				info->setIndent(8);

				info->setMaximumWidth(info->sizeHint().width());

				QVBox	*page	=	new	QVBox(page1);

				QHBox	*row1	=	new	QHBox(page);

				(void)new	QLabel("Key:",	row1);

				key	=	new	QLineEdit(row1);

				key->setMaxLength(4);

				key->setValidator(new	QIntValidator(1000,	9999,	key));

				connect(key,	SIGNAL(textChanged(const	QString	&)),

													this,	SLOT(keyChanged(const	QString	&)));

				addPage(page1,	"Personal	Key");

				setNextEnabled(page1,	FALSE);

				setHelpEnabled(page1,	FALSE);

}

void	Wizard::setupPage2()

{

				page2	=	new	QHBox(this);

				page2->setSpacing(8);

				QLabel	*info	=	new	QLabel(page2);

				info->setPalette(yellow);

				info->setText("\n"

																			"		Enter	your	personal		\n"

																			"		data	here.		\n\n"

																			"		The	required	fields	are		\n"

																			"		First	Name,	Last	Name	\n"

																			"		and	E-Mail.		\n");

				info->setIndent(8);

				info->setMaximumWidth(info->sizeHint().width());

				QVBox	*page	=	new	QVBox(page2);

				QHBox	*row1	=	new	QHBox(page);

				QHBox	*row2	=	new	QHBox(page);

				QHBox	*row3	=	new	QHBox(page);

				QHBox	*row4	=	new	QHBox(page);

				QHBox	*row5	=	new	QHBox(page);

				QLabel	*label1	=	new	QLabel("	First	Name:	",	row1);

				label1->setAlignment(Qt::AlignVCenter);

				QLabel	*label2	=	new	QLabel("	Last	Name:	",	row2);

				label2->setAlignment(Qt::AlignVCenter);

				QLabel	*label3	=	new	QLabel("	Address:	",	row3);

				label3->setAlignment(Qt::AlignVCenter);

				QLabel	*label4	=	new	QLabel("	Phone	Number:	",	row4);

				label4->setAlignment(Qt::AlignVCenter);

				QLabel	*label5	=	new	QLabel("	E-Mail:	",	row5);

				label5->setAlignment(Qt::AlignVCenter);

				label1->setMinimumWidth(label4->sizeHint().width());

				label2->setMinimumWidth(label4->sizeHint().width());

				label3->setMinimumWidth(label4->sizeHint().width());

				label4->setMinimumWidth(label4->sizeHint().width());

				label5->setMinimumWidth(label4->sizeHint().width());

				firstName	=	new	QLineEdit(row1);

				lastName	=	new	QLineEdit(row2);

				address	=	new	QLineEdit(row3);

				phone	=	new	QLineEdit(row4);

				email	=	new	QLineEdit(row5);

				connect(firstName,	SIGNAL(textChanged(const	QString	&)),

													this,	SLOT(dataChanged(const	QString	&)));

				connect(lastName,	SIGNAL(textChanged(const	QString	&)),

													this,	SLOT(dataChanged(const	QString	&)));

				connect(email,	SIGNAL(textChanged(const	QString	&)),

													this,	SLOT(dataChanged(const	QString	&)));

				addPage(page2,	"Personal	Data");

				setHelpEnabled(page2,	FALSE);

}

void	Wizard::setupPage3()

{

				page3	=	new	QHBox(this);

				page3->setSpacing(8);

				QLabel	*info	=	new	QLabel(page3);

				info->setPalette(yellow);

				info->setText("\n"

																			"		Look	here	to	see	of		\n"

																			"		the	data	you	entered		\n"

																			"		is	correct.	To	confirm,		\n"

																			"		press	the	[Finish]	button		\n"

																			"		else	go	back	to	correct		\n"

																			"		mistakes.");

				info->setIndent(8);

				info->setAlignment(AlignTop|AlignLeft);

				info->setMaximumWidth(info->sizeHint().width());

				QVBox	*page	=	new	QVBox(page3);

				QHBox	*row1	=	new	QHBox(page);

				QHBox	*row2	=	new	QHBox(page);

				QHBox	*row3	=	new	QHBox(page);

				QHBox	*row4	=	new	QHBox(page);

				QHBox	*row5	=	new	QHBox(page);

				QHBox	*row6	=	new	QHBox(page);

				QLabel	*label1	=	new	QLabel("	Personal	Key:	",	row1);

				label1->setAlignment(Qt::AlignVCenter);

				QLabel	*label2	=	new	QLabel("	First	Name:	",	row2);

				label2->setAlignment(Qt::AlignVCenter);

				QLabel	*label3	=	new	QLabel("	Last	Name:	",	row3);

				label3->setAlignment(Qt::AlignVCenter);

				QLabel	*label4	=	new	QLabel("	Address:	",	row4);

				label4->setAlignment(Qt::AlignVCenter);

				QLabel	*label5	=	new	QLabel("	Phone	Number:	",	row5);

				label5->setAlignment(Qt::AlignVCenter);

				QLabel	*label6	=	new	QLabel("	E-Mail:	",	row6);

				label6->setAlignment(Qt::AlignVCenter);

				label1->setMinimumWidth(label1->sizeHint().width());

				label2->setMinimumWidth(label1->sizeHint().width());

				label3->setMinimumWidth(label1->sizeHint().width());

				label4->setMinimumWidth(label1->sizeHint().width());

				label5->setMinimumWidth(label1->sizeHint().width());

				label6->setMinimumWidth(label1->sizeHint().width());

				lKey	=	new	QLabel(row1);

				lFirstName	=	new	QLabel(row2);

				lLastName	=	new	QLabel(row3);

				lAddress	=	new	QLabel(row4);

				lPhone	=	new	QLabel(row5);

				lEmail	=	new	QLabel(row6);

				addPage(page3,	"Finish");

				setFinishEnabled(page3,	TRUE);

				setHelpEnabled(page3,	FALSE);

}

void	Wizard::showPage(QWidget*	page)

{

				if	(page	==	page1)	{

				}	else	if	(page	==	page2)	{

				}	else	if	(page	==	page3)	{

								lKey->setText(key->text());

								lFirstName->setText(firstName->text());

								lLastName->setText(lastName->text());

								lAddress->setText(address->text());

								lPhone->setText(phone->text());

								lEmail->setText(email->text());

				}

				QWizard::showPage(page);

				if	(page	==	page1)	{

								keyChanged(key->text());

								key->setFocus();

				}	else	if	(page	==	page2)	{

								dataChanged(firstName->text());

								firstName->setFocus();

				}	else	if	(page	==	page3)	{

								finishButton()->setEnabled(TRUE);

								finishButton()->setFocus();

				}

}

void	Wizard::keyChanged(const	QString	&text)

{

				QString	t	=	text;

				int	p	=	0;

				bool	on	=	(key->validator()->validate(t,	p)	==	QValidator::Acceptable);

				nextButton()->setEnabled(on);

}

void	Wizard::dataChanged(const	QString	&)

{

				if	(!firstName->text().isEmpty()	&&

									!lastName->text().isEmpty()	&&

									!email->text().isEmpty())

								nextButton()->setEnabled(TRUE);

				else

								nextButton()->setEnabled(FALSE);

}

Main:

/**

**	$Id:		qt/main.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"wizard.h"

#include	<qapplication.h>

int	main(int	argc,char	**argv)

{

				QApplication	a(argc,argv);

				Wizard	wizard;

				wizard.setCaption("Qt	Example	-	Wizard");

				return	wizard.exec();

}

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Transformed	Graphics	Demo
This	example	lets	the	user	rotate,	shear	and	scale	text	and	graphics	arbitrarily.

Implementation:

/**

**	$Id:		qt/xform.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	<qdialog.h>

#include	<qlabel.h>

#include	<qlineedit.h>

#include	<qpushbutton.h>

#include	<qcheckbox.h>

#include	<qradiobutton.h>

#include	<qbuttongroup.h>

#include	<qlcdnumber.h>

#include	<qslider.h>

#include	<qmenubar.h>

#include	<qfontdialog.h>

#include	<qlayout.h>

#include	<qvbox.h>

#include	<qwidgetstack.h>

#include	<qpainter.h>

#include	<qpixmap.h>

#include	<qpicture.h>

#include	<stdlib.h>

class	ModeNames	{

public:

				enum	Mode	{	Text,	Image,	Picture	};

};

class	XFormControl	:	public	QVBox,	public	ModeNames

{

				Q_OBJECT

public:

				XFormControl(const	QFont	&initialFont,	QWidget	*parent=0,	const	char	*name=0);

			~XFormControl()	{}

				QWMatrix	matrix();

signals:

				void	newMatrix(QWMatrix);

				void	newText(const	QString&);

				void	newFont(const	QFont	&);

				void	newMode(int);

private	slots:

				void	newMtx();

				void	newTxt(const	QString&);

				void	selectFont();

				void	fontSelected(const	QFont	&);

				void	changeMode(int);

				void	timerEvent(QTimerEvent*);

private:

				Mode	mode;

				QSlider						*rotS;																//	Rotation	angle	scroll	bar

				QSlider						*shearS;														//	Shear	value	scroll	bar

				QSlider						*magS;																//	Magnification	value	scroll	bar

				QLCDNumber			*rotLCD;														//	Rotation	angle	LCD	display

				QLCDNumber			*shearLCD;												//	Shear	value	LCD	display

				QLCDNumber			*magLCD;														//	Magnification	value	LCD	display

				QCheckBox				*mirror;														//	Checkbox	for	mirror	image	on/of

				QWidgetStack*	optionals;

				QLineEdit				*textEd;														//	Inp[ut	field	for	xForm	text

				QPushButton		*fpb;																	//	Select	font	push	button

				QRadioButton	*rb_txt;														//	Radio	button	for	text

				QRadioButton	*rb_img;														//	Radio	button	for	image

				QRadioButton	*rb_pic;														//	Radio	button	for	picture

				QFont	currentFont;

};

/*

		ShowXForm	displays	a	text	or	a	pixmap	(QPixmap)	using	a	coordinate

		transformation	matrix	(QWMatrix)

*/

class	ShowXForm	:	public	QWidget,	public	ModeNames

{

				Q_OBJECT

public:

				ShowXForm(const	QFont	&f,	QWidget	*parent=0,	const	char	*name=0);

			~ShowXForm()	{}

				void	showIt();																						//	(Re)displays	text	or	pixmap

				Mode	mode()	const	{	return	m;	}

public	slots:

				void	setText(const	QString&);

				void	setMatrix(QWMatrix);

				void	setFont(const	QFont	&f);

				void	setPixmap(QPixmap);

				void	setPicture(const	QPicture&);

				void	setMode(int);

private:

				QSizePolicy	sizePolicy()	const;

				QSize	sizeHint()	const;

				void	paintEvent(QPaintEvent	*);

				void	resizeEvent(QResizeEvent	*);

				QWMatrix		mtx;																						//	coordinate	transform	matrix

				QString			text;																					//	text	to	be	displayed

				QPixmap			pix;																						//	pixmap	to	be	displayed

				QPicture		picture;																		//	text	to	be	displayed

				QRect					eraseRect;																//	covers	last	displayed	text/pixmap

				Mode						m;

};

XFormControl::XFormControl(const	QFont	&initialFont,

																												QWidget	*parent,	const	char	*name)

								:	QVBox(parent,	name)

{

				setSpacing(6);

				setMargin(6);

				currentFont	=	initialFont;

				mode	=	Image;

				rotLCD						=	new	QLCDNumber(4,	this,	"rotateLCD");

				rotS								=	new	QSlider(QSlider::Horizontal,	this,

																																		"rotateSlider");

				shearLCD				=	new	QLCDNumber(5,this,	"shearLCD");

				shearS						=	new	QSlider(QSlider::Horizontal,	this,

																																		"shearSlider");

				mirror						=	new	QCheckBox(this,	"mirrorCheckBox");

				rb_txt	=	new	QRadioButton(this,	"text");

				rb_img	=	new	QRadioButton(this,	"image");

				rb_pic	=	new	QRadioButton(this,	"picture");

				optionals	=	new	QWidgetStack(this);

				QVBox*	optionals_text	=	new	QVBox(optionals);

				optionals_text->setSpacing(6);

				QVBox*	optionals_other	=	new	QVBox(optionals);

				optionals_other->setSpacing(6);

				optionals->addWidget(optionals_text,0);

				optionals->addWidget(optionals_other,1);

				fpb									=	new	QPushButton(optionals_text,	"text");

				textEd						=	new	QLineEdit(optionals_text,	"text");

				textEd->setFocus();

				rotLCD->display("		0'");

				rotS->setRange(-180,	180);

				rotS->setValue(0);

				connect(rotS,	SIGNAL(valueChanged(int)),	SLOT(newMtx()));

				shearLCD->display("0.00");

				shearS->setRange(-25,	25);

				shearS->setValue(0);

				connect(shearS,	SIGNAL(valueChanged(int)),	SLOT(newMtx()));

				mirror->setText(tr("Mirror"));

				connect(mirror,	SIGNAL(clicked()),	SLOT(newMtx()));

				QButtonGroup	*bg	=	new	QButtonGroup(this);

				bg->hide();

				bg->insert(rb_txt,0);

				bg->insert(rb_img,1);

				bg->insert(rb_pic,2);

				rb_txt->setText(tr("Text"));

				rb_img->setText(tr("Image"));

				rb_img->setChecked(TRUE);

				rb_pic->setText(tr("Picture"));

				connect(bg,	SIGNAL(clicked(int)),	SLOT(changeMode(int)));

				fpb->setText(tr("Select	font..."));

				connect(fpb,	SIGNAL(clicked()),	SLOT(selectFont()));

				textEd->setText("Troll");

				connect(textEd,	SIGNAL(textChanged(const	QString&)),

																					SLOT(newTxt(const	QString&)));

				magLCD	=	new	QLCDNumber(4,optionals_other,	"magLCD");

				magLCD->display("100");

				magS	=	new	QSlider(QSlider::Horizontal,	optionals_other,

																											"magnifySlider");

				magS->setRange(0,	800);

				connect(magS,	SIGNAL(valueChanged(int)),	SLOT(newMtx()));

				magS->setValue(0);

				connect(magS,	SIGNAL(valueChanged(int)),	magLCD,	SLOT(display(int)));

				optionals_text->adjustSize();

				optionals_other->adjustSize();

				changeMode(Image);

				startTimer(20);	//	start	an	initial	animation

}

void	XFormControl::timerEvent(QTimerEvent*)

{

				int	v	=	magS->value();

				v	=	(v+2)+v/10;

				if	(v	>=	200)	{

								v	=	200;

								killTimers();

				}

				magS->setValue(v);

}

/*

				Called	whenever	the	user	has	changed	one	of	the	matrix	parameters

				(i.e.	rotate,	shear	or	magnification)

*/

void	XFormControl::newMtx()

{

				emit	newMatrix(matrix());

}

void	XFormControl::newTxt(const	QString&	s)

{

				emit	newText(s);

				changeMode(Text);

}

/*

				Calculates	the	matrix	appropriate	for	the	current	controls,

				and	updates	the	displays.

*/

QWMatrix	XFormControl::matrix()

{

				QWMatrix	m;

				if	(mode	!=	Text)	{

								double	magVal	=	1.0*magS->value()/100;

								m.scale(magVal,	magVal);

				}

				double	shearVal	=	1.0*shearS->value()/25;

				m.shear(shearVal,	shearVal);

				m.rotate(rotS->value());

				if	(mirror->isChecked())	{

								m.scale(1,	-1);

								m.rotate(180);

				}

				QString	tmp;

				tmp.sprintf("%1.2f",	shearVal);

				if	(shearVal	>=	0)

								tmp.insert(0,	"	");

				shearLCD->display(tmp);

				int	rot	=	rotS->value();

				if	(rot	<	0)

								rot	=	rot	+	360;

				tmp.sprintf("%3i'",	rot);

				rotLCD->display(tmp);

				return	m;

}

void	XFormControl::selectFont()

{

				bool	ok;

				QFont	f	=	QFontDialog::getFont(&ok,	currentFont);

				if	(ok)	{

								currentFont	=	f;

								fontSelected(f);

				}

}

void	XFormControl::fontSelected(const	QFont	&font)

{

				emit	newFont(font);

				changeMode(Text);

}

/*

				Sets	the	mode	-	Text,	Image,	or	Picture.

*/

void	XFormControl::changeMode(int	m)

{

				mode	=	(Mode)m;

				emit	newMode(m);

				newMtx();

				if	(mode	==	Text)	{

								optionals->raiseWidget(0);

								rb_txt->setChecked(TRUE);

				}	else	{

								optionals->raiseWidget(1);

								if	(mode	==	Image)

												rb_img->setChecked(TRUE);

								else

												rb_pic->setChecked(TRUE);

				}

				qApp->flushX();

}

ShowXForm::ShowXForm(const	QFont	&initialFont,

																						QWidget	*parent,	const	char	*name)

								:	QWidget(parent,	name,	WResizeNoErase)

{

				setFont(initialFont);

				setBackgroundColor(white);

				m	=	Text;

				eraseRect	=	QRect(0,	0,	0,	0);

}

QSizePolicy	ShowXForm::sizePolicy()	const

{

				return	QSizePolicy(QSizePolicy::Expanding,	QSizePolicy::Expanding);

}

QSize	ShowXForm::sizeHint()	const

{

				return	QSize(400,400);

}

void	ShowXForm::paintEvent(QPaintEvent	*)

{

				showIt();

}

void	ShowXForm::resizeEvent(QResizeEvent	*)

{

				eraseRect	=	QRect(width()/2,	height()/2,	0,	0);

				repaint(rect());

}

void	ShowXForm::setText(const	QString&	s)

{

				text	=	s;

				showIt();

}

void	ShowXForm::setMatrix(QWMatrix	w)

{

				mtx	=	w;

				showIt();

}

void	ShowXForm::setFont(const	QFont	&f)

{

				m	=	Text;

				QWidget::setFont(f);

}

void	ShowXForm::setPixmap(QPixmap	pm)

{

				pix		=	pm;

				m				=	Image;

				showIt();

}

void	ShowXForm::setPicture(const	QPicture&	p)

{

				picture	=	p;

				m	=	Picture;

				showIt();

}

void	ShowXForm::setMode(int	mode)

{

				m	=	(Mode)mode;

}

void	ShowXForm::showIt()

{

				QPainter	p;

				QRect	r;						//	rectangle	covering	new	text/pixmap	in	virtual	coordinates

				QWMatrix	um;		//	copy	user	specified	transform

				int	textYPos	=	0;	//	distance	from	boundingRect	y	pos	to	baseline

				int	textXPos	=	0;	//	distance	from	boundingRect	x	pos	to	text	start

				QRect	br;

				QFontMetrics	fm(fontMetrics());			//	get	widget	font	metrics

				switch	(mode())	{

						case	Text:

								br	=	fm.boundingRect(text);			//	rectangle	covering	text

								r		=	br;

								textYPos	=	-r.y();

								textXPos	=	-r.x();

								br.moveTopLeft(QPoint(-br.width()/2,	-br.height()/2));

								break;

						case	Image:

								r	=	pix.rect();

								break;

						case	Picture:

								//	###	need	QPicture::boundingRect()

								r	=	QRect(0,0,1000,1000);

								break;

				}

				r.moveTopLeft(QPoint(-r.width()/2,	-r.height()/2));

										//	compute	union	of	new	and	old	rect

										//	the	resulting	rectangle	will	cover	what	is	already	displayed

										//	and	have	room	for	the	new	text/pixmap

				eraseRect	=	eraseRect.unite(mtx.map(r));

				eraseRect.moveBy(-1,	-1);	//	add	border	for	matrix	round	off

				eraseRect.setSize(QSize(eraseRect.width()	+	2,eraseRect.height

				int	pw	=	QMIN(eraseRect.width(),width());

				int	ph	=	QMIN(eraseRect.height(),height());

				QPixmap	pm(pw,	ph);															//	off-screen	drawing	pixmap

				pm.fill(backgroundColor());

				p.begin(&pm);

				um.translate(pw/2,	ph/2);	//	0,0	is	center

				um	=	mtx	*	um;

				p.setWorldMatrix(um);

				switch	(mode())	{

						case	Text:

								p.setFont(font());												//	use	widget	font

								p.drawText(r.left()	+	textXPos,	r.top()	+	textYPos,	text);

#if	0

								p.setPen(red);

								p.drawRect(br);

#endif

								break;

						case	Image:

								p.drawPixmap(-pix.width()/2,	-pix.height()/2,	pix);

								//QPixmap	rotated	=	pix.xForm(mtx);

								//bitBlt(&pm,	pm.width()/2	-	rotated.width()/2,

																//pm.height()/2	-	rotated.height()/2,	&rotated);

								break;

						case	Picture:

								//	###	need	QPicture::boundingRect()

								p.scale(0.25,0.25);

								p.translate(-230,-180);

								p.drawPicture(picture);

				}

				p.end();

				int	xpos	=	width()/2		-	pw/2;

				int	ypos	=	height()/2	-	ph/2;

				bitBlt(this,	xpos,	ypos,																			//	copy	pixmap	to	widget

												&pm,	0,	0,	-1,	-1);

				eraseRect	=		mtx.map(r);

}

/*

				Grand	unifying	widget,	putting	ShowXForm	and	XFormControl

				together.

*/

class	XFormCenter	:	public	QHBox,	public	ModeNames

{

				Q_OBJECT

public:

				XFormCenter(QWidget	*parent=0,	const	char	*name=0);

public	slots:

				void	setFont(const	QFont	&f)	{	sx->setFont(f);	}

				void	newMode(int);

private:

				ShowXForm			*sx;

				XFormControl	*xc;

};

void	XFormCenter::newMode(int	m)

{

				static	bool	first_i	=	TRUE;

				static	bool	first_p	=	TRUE;

				if	(sx->mode()	==	m)

								return;

				if	(m	==	Image	&&	first_i)	{

								first_i	=	FALSE;

								QPixmap	pm;

								if	(pm.load("image.any"))

												sx->setPixmap(pm);

								return;

				}

				if	(m	==	Picture	&&	first_p)	{

								first_p	=	FALSE;

								QPicture	p;

								if	(p.load("picture.any"))

												sx->setPicture(p);

								return;

				}

				sx->setMode(m);

}

XFormCenter::XFormCenter(QWidget	*parent,	const	char	*name)

				:	QHBox(parent,	name)

{

				QFont	f("Charter",	36,	QFont::Bold);

				xc	=	new	XFormControl(f,	this);

				sx	=	new	ShowXForm(f,	this);

				setStretchFactor(sx,1);

				xc->setFrameStyle(QFrame::Panel	|	QFrame::Raised);

				xc->setLineWidth(2);

				connect(xc,	SIGNAL(newText(const	QString&)),	sx,

																	SLOT(setText(const	QString&)));

				connect(xc,	SIGNAL(newMatrix(QWMatrix)),

													sx,	SLOT(setMatrix(QWMatrix)));

				connect(xc,	SIGNAL(newFont(const	QFont&)),	sx,

																	SLOT(setFont(const	QFont&)));

				connect(xc,	SIGNAL(newMode(int)),	SLOT(newMode(int)));

				sx->setText("Troll");

				newMode(Image);

				sx->setMatrix(xc->matrix());

}

int	main(int	argc,	char	**argv)

{

				QApplication	a(argc,	argv);

				XFormCenter	*xfc	=	new	XFormCenter;

				a.setMainWidget(xfc);

				xfc->setCaption("Qt	Example	-	XForm");

				xfc->show();

				return	a.exec();

}

#include	"xform.moc"																		//	include	metadata	generated	by	the	

See	also	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Walkthrough:	A	Tiny	Editor
Illustrating	QActionGroup

In	the	following	we	will	step	through	a	very	rudimental	editor	program	that
shows	one	of	the	most	common	uses	of	the	QActionGroup	class:	how	to
combine	several	toggle	actions	in	a	way	that	allows	one-of-many	choices.

If	you're	not	yet	familiar	with	the	concept	of	actions,	please	refer	to	the	Simple
Application	Walkthrough	featuring	QAction.

A	tiny	main	program
				#include	<qapplication.h>

				#include	"editor.h"

				int	main(int	argc,	char	**	argv)

				{

								QApplication	app(argc,	argv);

								Editor	editor;

								editor.setCaption("Qt	Example	-	Actiongroup");

								app.setMainWidget(&editor);

								editor.show();

								return	app.exec();

				}

This	tiny	editor	is	a	very	small	program.	It	might	be	unusual	for	an	editor	but	it
does	not	even	provide	the	possibility	to	open	a	file	given	as	a	commandline
argument.	The	reason	for	this	is	simple:	It	has	nothing	to	to	with
QActionGroups.

The	crucial	point	in	the	above	main()	is	that	we	make	editor,	an	object
constructed	from	a	self-written	class	Editor,	the	main	widget	in	our	application.
This	class	is	defined	in	editor.h.

When	you	read	through	the	code	and	happen	to	be	unsure	about	something:	The
Simple	Application	Walkthrough	explains	the	elements	of	a	typical	Qt	main
program	in	detail.

The	interface	of	the	Editor	class

Before	implementing	the	Editor	class	we	should	think	about	what	it	is	supposed
to	do.	Fortunately	Qt	provides	a	full-featured	rich	text	editor	class,	QTextEdit.
The	only	thing	left	for	us	is	to	give	it	a	user	interface.

				#include	<qmainwindow.h>

				class	QTextEdit;

				class	QAction;

				class	Editor	:	public	QMainWindow

				{

								Q_OBJECT

				public:

								Editor();

				private	slots:

								void	setFontColor(QAction	*);

				private:

								QTextEdit	*	editor;

								QAction	*	setRedFont;

				};

As	we	look	for	a	means	to	implement	one-of-many	choices,	a	nice	example
would	involve	two	buttons	that	make	the	user	change	the	font	color:	If	he	or	she
invokes	the	setRedFont	action	the	font	color	changes	from	default	black	to	red.

To	do	this	color	change	we	need	a	slot,	setFontColor()	that	takes	care	about	the
signal	the	action	emits.

The	Editor	class	itself	is	derived	from	QMainWindow.	Only	the	constructor
might	be	called	from	outside	the	class.

Action!
				#include	"editor.h"

				#include	<qtextedit.h>

				#include	<qmenubar.h>

				#include	<qpopupmenu.h>

				#include	<qtoolbar.h>

				#include	<qaction.h>

It's	not	that	much	that	we	need	for	our	tiny	editor:	QTextEdit,	QMenuBar,
QToolBar,	QPopupMenu	and	last	but	not	least	QAction	and	QActionGroup	from
qaction.h.

				Editor::Editor()

								:	QMainWindow(0,	"main	window")

				{

								QActionGroup	*	colors	=	new	QActionGroup(this,	"colors",	TRUE);

If	one	of	the	buttons	is	on,	the	other	one	must	be	off.	The	easiest	way	to	to	this	is
to	create	an	action	group,	colors,	that	controls	this	exclusive	behaviour.	This	is
done	by	setting	the	third	argument	of	the	QActionGroup	constructor	to	TRUE
(we	could	omit	it	because	it's	the	default).	As	simple	as	this	we	get	an	exclusive
action	group	that	will	look	after	its	member	actions	and	switch	off	all	other
toggle	actions	except	the	one	that	is	on.

								QAction	*	setBlackFont	=	new	QAction("black",	QPixmap((const	char**)black_xpm),

																																														"Font	color:	black",	CTRL+Key_B,

																																														colors,	"blackfontcolor",	TRUE);

Then	we	create	our	first	action,	the	one	that	sets	the	font	color	back	to	default
black.	It	is	called	setBlackFont	and	is	equipped	with	a	descriptive
QAction::text()	reading	black,	a	QAction::menuText()	reading	Font	color:	black,
a	QAction::iconSet()	derived	from	the	pixmap	black_xpm	and	ALT+B	as
keyboard	accelerator.

The	last	argument	of	the	action	constructor,	TRUE,	is	responsible	for	making
setBlackFont	a	toggle	action	that	can	be	switched	on	or	off.	Most	importantly
setBlackFont	becomes	a	member	of	the	colors	action	group	at	creation	time:
colors	is	defined	to	be	its	parent.

								setRedFont	=	new	QAction("red",	QPixmap((const	char**)red_xpm),	"Font	color:	red",

																																		CTRL+Key_R,	colors,	"redfontcolor",	TRUE);

The	same	way	we	create	the	other	toggle	action,	setRedFont,	as	a	child	of	colors.

Whenever	one	of	the	two	members	of	the	colors	group	emits	the
QAction::toggled()	signal	the	QActionGroup	is	notified	internally	and	emits	the
QActionGroup::selected()	signal	in	turn.	QActionGroup::selected()	carries	the
action	that	caused	the	signal	as	its	argument.

All	we	have	to	do	now	is	to	connect	this	signal	to	a	slot	that	changes	the	font
color	to	red	or	black	depending	on	the	toggled	action:

								QObject::connect(colors,	SIGNAL(selected(QAction	*)),

																										this,	SLOT(setFontColor(QAction	*)));

This	is	the	entire	trick.	Thus	let's	recall	what	we	have	done	so	far:	We	created
two	toggle	actions,	setRedFont	and	setBlackFont.	Because	they	are	children	of
an	exclusive	QActionGroup	named	colors	it	is	impossible	for	the	user	to	type	red
and	black	at	the	same	time:	Whenever	he	or	she	invokes	one	of	the	actions	the
other	one	changes	state	to	off,	colors	emits	a	QActionGroup::selected()	signal
and	the	setFontColor()	slot	takes	care	of	it.

All	we	have	to	do	now	is	to	add	our	two	actions	to	the	Editor	window.

								QToolBar	*	toolbar	=	new	QToolBar(this,	"toolbar");

First	we	create	a	tool	bar.

								colors->addTo(toolbar);

But	instead	of	adding	each	action	manually	we	simply	add	their	parent	action
group	to	toolbar	and	are	done.	colors	makes	sure	that	setBlackFont	and
setRedFont	find	themselves	presented	in	the	tool	bar:	setBlackFont	as	a	tool
button	decorated	with	the	black_xpm	pixmap	on	the	left,	setRedFont	(because	it
was	added	to	colors	later)	to	its	right.

								QPopupMenu	*	font	=	new	QPopupMenu(this);

								menuBar()->insertItem("&Font",	font);

Next	we	create	a	popup	menu	and	insert	it	into	the	menu	bar	under	the	Font
entry.

In	a	menu	with	this	name	a	user	would	certainly	expect	to	find	more	than	just
two	entries	to	change	the	font	color.	You	might	want	to	add	other	font	related
actions	in	the	future,	and	therefore	it	would	be	nice	to	group	setBlackFont	and
setRedFont	in	a	submenu	entirely	dedicated	to	the	purpose	of	changing	font
colors.

With	an	action	group	this	is	easy.	We	simply	tell	colors	to	group	together	all	of
its	members	in	a	single	submenu:

								colors->setUsesDropDown(TRUE);

This	however	causes	a	problem:	a	submenu	entry	must	have	a	menu	text,	and	up
to	now	we	don't	have	any.

When	we	recall	that	action	groups	intrinsically	are	QActions	themselves	the
solution	becomes	obvious:

								colors->setMenuText("Font	Color");

We	simply	assign	the	menu	text	Font	Color	to	colors.

The	rest	is	business	as	usual:

								colors->addTo(font);

We	add	the	new	and	improved	QActionGroup	as	a	submenu	to	the	font	popup
menu.

								editor	=	new	QTextEdit(this,	"editor");

Last	but	not	least	we	create	the	heart	of	Editor,	the	rich	text	editor	...

								setCentralWidget(editor);

...	and	make	it	the	central	widget	in	our	window.

				}

The	only	thing	left	to	implement	is	the	setFontColor	slot	that	is	responsible	for
changing	the	font	color	to	red	or	black	depending	on	which	action	was	toggled
on.

				void	Editor::setFontColor(QAction	*	coloraction)

				{

As	the	QActionGroup::selected()	signal	carries	the	relevant	action	as	its
argument,	the	first	thing	we	have	to	do	is	to	preserve	it	in	the	coloraction
variable	for	later	use.

								if	(coloraction	==	setRedFont)

												editor->setColor(red);

If	coloraction	is	the	same	as	setRedFont	we	change	the	editor's	font	color	to	red.

								else

												editor->setColor(black);

Otherwise	it	is	set	to	black.

				}

See	also	Step-by-step	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

A	Complete	Canvas	Application
This	is	a	complete	example	program	with	a	main	window,	menus	and	toolbars.
The	main	widget	is	a	QCanvas,	and	this	example	demonstrates	basic	canvas
usage.

Project	file:

TEMPLATE	=	app

CONFIG		+=	warn_on

HEADERS	+=		element.h	\

												canvastext.h	\

												canvasview.h	\

												chartform.h	\

												optionsform.h	\

												setdataform.h

SOURCES	+=		element.cpp	\

												canvasview.cpp	\

												chartform.cpp	\

												chartform_canvas.cpp	\

												chartform_files.cpp	\

												optionsform.cpp	\

												setdataform.cpp	\

												main.cpp

Header	files:

#ifndef	ELEMENT_H

#define	ELEMENT_H

#include	<qcolor.h>

#include	<qnamespace.h>

#include	<qstring.h>

#include	<qvaluevector.h>

class	Element;

typedef	QValueVector<Element>	ElementVector;

/*

				Elements	are	valid	if	they	have	a	value	which	is	>	EPSILON.

*/

const	double	EPSILON	=	0.0000001;	//	Must	be	>	INVALID.

class	Element

{

public:

				enum	{	INVALID	=	-1	};

				enum	{	NO_PROPORTION	=	-1	};

				enum	{	MAX_PROPOINTS	=	3	};	//	One	proportional	point	per	chart	type

				Element(double	value	=	INVALID,	QColor	valueColor	=	Qt::gray,

													int	valuePattern	=	Qt::SolidPattern,

													const	QString&	label	=	QString::null,

													QColor	labelColor	=	Qt::black)	{

								init(value,	valueColor,	valuePattern,	label,	labelColor);

								for	(int	i	=	0;	i	<	MAX_PROPOINTS	*	2;	++i)

												m_propoints[i]	=	NO_PROPORTION;

				}

				~Element()	{}

				bool	isValid()	const	{	return	m_value	>	EPSILON;	}

				double	value()	const	{	return	m_value;	}

				QColor	valueColor()	const	{	return	m_valueColor;	}

				int	valuePattern()	const	{	return	m_valuePattern;	}

				QString	label()	const	{	return	m_label;	}

				QColor	labelColor()	const	{	return	m_labelColor;	}

				double	proX(int	index)	const;

				double	proY(int	index)	const;

				void	set(double	value	=	INVALID,	QColor	valueColor	=	Qt::gray,

														int	valuePattern	=	Qt::SolidPattern,

														const	QString&	label	=	QString::null,

														QColor	labelColor	=	Qt::black)	{

								init(value,	valueColor,	valuePattern,	label,	labelColor);

				}

				void	setValue(double	value)	{	m_value	=	value;	}

				void	setValueColor(QColor	valueColor)	{	m_valueColor	=	valueColor;	}

				void	setValuePattern(int	valuePattern);

				void	setLabel(const	QString&	label)	{	m_label	=	label;	}

				void	setLabelColor(QColor	labelColor)	{	m_labelColor	=	labelColor;	}

				void	setProX(int	index,	double	value);

				void	setProY(int	index,	double	value);

private:

				void	init(double	value,	QColor	valueColor,	int	valuePattern,

															const	QString&	label,	QColor	labelColor);

				double	m_value;

				QColor	m_valueColor;

				int	m_valuePattern;

				QString	m_label;

				QColor	m_labelColor;

				double	m_propoints[2	*	MAX_PROPOINTS];

};

Q_EXPORT	QTextStream	&operator<<(QTextStream&,	const	Element&);

Q_EXPORT	QTextStream	&operator>>(QTextStream&,	Element&);

#endif

#ifndef	CHARTFORM_H

#define	CHARTFORM_H

#include	"element.h"

#include	<qmainwindow.h>

#include	<qstringlist.h>

class	CanvasView;

class	QAction;

class	QCanvas;

class	QFont;

class	QPrinter;

class	QString;

class	ChartForm:	public	QMainWindow

{

				Q_OBJECT

public:

				enum	{	MAX_ELEMENTS	=	100	};

				enum	{	MAX_RECENTFILES	=	9	};	//	Must	not	exceed	9

				enum	ChartType	{	PIE,	VERTICAL_BAR,	HORIZONTAL_BAR	};

				enum	AddValuesType	{	NO,	YES,	AS_PERCENTAGE	};

				ChartForm(const	QString&	filename);

				~ChartForm();

				int	chartType()	{	return	m_chartType;	}

				void	setChanged(bool	changed	=	true)	{	m_changed	=	changed;	}

				void	drawElements();

				QPopupMenu	*optionsMenu;	//	Why	public?	See	canvasview.cpp

private	slots:

				void	fileNew();

				void	fileOpen();

				void	fileOpenRecent(int	index);

				void	fileSave();

				void	fileSaveAs();

				void	fileSaveAsPixmap();

				void	filePrint();

				void	fileQuit();

				void	optionsSetData();

				void	updateChartType(QAction	*action);

				void	optionsSetFont();

				void	optionsSetOptions();

				void	helpHelp();

				void	helpAbout();

				void	helpAboutQt();

				void	saveOptions();

private:

				void	init();

				void	load(const	QString&	filename);

				bool	okToClear();

				void	drawPieChart(const	double	scales[],	double	total,	int	count);

				void	drawVerticalBarChart(const	double	scales[],	double	total,	int	count);

				void	drawHorizontalBarChart(const	double	scales[],	double	total,	int	count);

				QString	valueLabel(const	QString&	label,	double	value,	double	total);

				void	updateRecentFiles(const	QString&	filename);

				void	updateRecentFilesMenu();

				void	setChartType(ChartType	chartType);

				QPopupMenu	*fileMenu;

				QAction	*optionsPieChartAction;

				QAction	*optionsHorizontalBarChartAction;

				QAction	*optionsVerticalBarChartAction;

				QString	m_filename;

				QStringList	m_recentFiles;

				QCanvas	*m_canvas;

				CanvasView	*m_canvasView;

				bool	m_changed;

				ElementVector	m_elements;

				QPrinter	*m_printer;

				ChartType	m_chartType;

				AddValuesType	m_addValues;

				int	m_decimalPlaces;

				QFont	m_font;

};

#endif

Implementation:

#include	"canvasview.h"

#include	"chartform.h"

#include	"optionsform.h"

#include	"setdataform.h"

#include	<qaction.h>

#include	<qapplication.h>

#include	<qcombobox.h>

#include	<qfile.h>

#include	<qfiledialog.h>

#include	<qfont.h>

#include	<qfontdialog.h>

#include	<qmenubar.h>

#include	<qmessagebox.h>

#include	<qpixmap.h>

#include	<qpopupmenu.h>

#include	<qprinter.h>

#include	<qradiobutton.h>

#include	<qsettings.h>

#include	<qspinbox.h>

#include	<qstatusbar.h>

#include	<qtoolbar.h>

#include	<qtoolbutton.h>

#include	"images/file_new.xpm"

#include	"images/file_open.xpm"

#include	"images/file_save.xpm"

#include	"images/file_print.xpm"

#include	"images/options_setdata.xpm"

#include	"images/options_setfont.xpm"

#include	"images/options_setoptions.xpm"

#include	"images/options_horizontalbarchart.xpm"

#include	"images/options_piechart.xpm"

#include	"images/options_verticalbarchart.xpm"

const	QString	WINDOWS_REGISTRY	=	"/QtExamples";

const	QString	APP_KEY	=	"/Chart/";

ChartForm::ChartForm(const	QString&	filename)

				:	QMainWindow(0,	0,	WDestructiveClose)

{

				setIcon(QPixmap(options_piechart));

				QAction	*fileNewAction;

				QAction	*fileOpenAction;

				QAction	*fileSaveAction;

				QAction	*fileSaveAsAction;

				QAction	*fileSaveAsPixmapAction;

				QAction	*filePrintAction;

				QAction	*fileQuitAction;

				QAction	*optionsSetDataAction;

				QAction	*optionsSetFontAction;

				QAction	*optionsSetOptionsAction;

				fileNewAction	=	new	QAction(

												"New	Chart",	QPixmap(file_new),

												"&New",	CTRL+Key_N,	this,	"new");

				connect(fileNewAction,	SIGNAL(activated()),	this,	SLOT(fileNew()));

				fileOpenAction	=	new	QAction(

												"Open	Chart",	QPixmap(file_open),

												"&Open...",	CTRL+Key_O,	this,	"open");

				connect(fileOpenAction,	SIGNAL(activated()),	this,	SLOT(fileOpen()));

				fileSaveAction	=	new	QAction(

												"Save	Chart",	QPixmap(file_save),

												"&Save",	CTRL+Key_S,	this,	"save");

				connect(fileSaveAction,	SIGNAL(activated()),	this,	SLOT(fileSave()));

				fileSaveAsAction	=	new	QAction(

												"Save	Chart	As",	QPixmap(file_save),

												"Save	&As...",	0,	this,	"save	as");

				connect(fileSaveAsAction,	SIGNAL(activated()),

													this,	SLOT(fileSaveAs()));

				fileSaveAsPixmapAction	=	new	QAction(

												"Save	Chart	As	Bitmap",	QPixmap(file_save),

												"Save	As	&Bitmap...",	CTRL+Key_B,	this,	"save	as	bitmap");

				connect(fileSaveAsPixmapAction,	SIGNAL(activated()),

													this,	SLOT(fileSaveAsPixmap()));

				filePrintAction	=	new	QAction(

												"Print	Chart",	QPixmap(file_print),

												"&Print	Chart...",	CTRL+Key_P,	this,	"print	chart");

				connect(filePrintAction,	SIGNAL(activated()),

													this,	SLOT(filePrint()));

				optionsSetDataAction	=	new	QAction(

												"Set	Data",	QPixmap(options_setdata),

												"Set	&Data...",	CTRL+Key_D,	this,	"set	data");

				connect(optionsSetDataAction,	SIGNAL(activated()),

													this,	SLOT(optionsSetData()));

				QActionGroup	*chartGroup	=	new	QActionGroup(this);	//	Connected	later

				chartGroup->setExclusive(true);

				optionsPieChartAction	=	new	QAction(

												"Pie	Chart",	QPixmap(options_piechart),

												"&Pie	Chart",	CTRL+Key_I,	chartGroup,	"pie	chart");

				optionsPieChartAction->setToggleAction(true);

				optionsHorizontalBarChartAction	=	new	QAction(

												"Horizontal	Bar	Chart",	QPixmap(options_horizontalbarchart),

												"&Horizontal	Bar	Chart",	CTRL+Key_H,	chartGroup,

												"horizontal	bar	chart");

				optionsHorizontalBarChartAction->setToggleAction(true);

				optionsVerticalBarChartAction	=	new	QAction(

												"Vertical	Bar	Chart",	QPixmap(options_verticalbarchart),

												"&Vertical	Bar	Chart",	CTRL+Key_V,	chartGroup,	"Vertical	bar	chart");

				optionsVerticalBarChartAction->setToggleAction(true);

				optionsSetFontAction	=	new	QAction(

												"Set	Font",	QPixmap(options_setfont),

												"Set	&Font...",	CTRL+Key_F,	this,	"set	font");

				connect(optionsSetFontAction,	SIGNAL(activated()),

													this,	SLOT(optionsSetFont()));

				optionsSetOptionsAction	=	new	QAction(

												"Set	Options",	QPixmap(options_setoptions),

												"Set	&Options...",	0,	this,	"set	options");

				connect(optionsSetOptionsAction,	SIGNAL(activated()),

													this,	SLOT(optionsSetOptions()));

				fileQuitAction	=	new	QAction("Quit",	"&Quit",	CTRL+Key_Q,	this,	"quit");

				connect(fileQuitAction,	SIGNAL(activated()),	this,	SLOT(fileQuit()));

				QToolBar*	fileTools	=	new	QToolBar(this,	"file	operations");

				fileTools->setLabel("File	Operations");

				fileNewAction->addTo(fileTools);

				fileOpenAction->addTo(fileTools);

				fileSaveAction->addTo(fileTools);

				fileTools->addSeparator();

				filePrintAction->addTo(fileTools);

				QToolBar	*optionsTools	=	new	QToolBar(this,	"options	operations");

				optionsTools->setLabel("Options	Operations");

				optionsSetDataAction->addTo(optionsTools);

				optionsTools->addSeparator();

				optionsPieChartAction->addTo(optionsTools);

				optionsHorizontalBarChartAction->addTo(optionsTools);

				optionsVerticalBarChartAction->addTo(optionsTools);

				optionsTools->addSeparator();

				optionsSetFontAction->addTo(optionsTools);

				optionsTools->addSeparator();

				optionsSetOptionsAction->addTo(optionsTools);

				fileMenu	=	new	QPopupMenu(this);

				menuBar()->insertItem("&File",	fileMenu);

				fileNewAction->addTo(fileMenu);

				fileOpenAction->addTo(fileMenu);

				fileSaveAction->addTo(fileMenu);

				fileSaveAsAction->addTo(fileMenu);

				fileMenu->insertSeparator();

				fileSaveAsPixmapAction->addTo(fileMenu);

				fileMenu->insertSeparator();

				filePrintAction->addTo(fileMenu);

				fileMenu->insertSeparator();

				fileQuitAction->addTo(fileMenu);

				fileMenu->insertSeparator();

				optionsMenu	=	new	QPopupMenu(this);

				menuBar()->insertItem("&Options",	optionsMenu);

				optionsSetDataAction->addTo(optionsMenu);

				optionsMenu->insertSeparator();

				optionsPieChartAction->addTo(optionsMenu);

				optionsHorizontalBarChartAction->addTo(optionsMenu);

				optionsVerticalBarChartAction->addTo(optionsMenu);

				optionsMenu->insertSeparator();

				optionsSetFontAction->addTo(optionsMenu);

				optionsMenu->insertSeparator();

				optionsSetOptionsAction->addTo(optionsMenu);

				menuBar()->insertSeparator();

				QPopupMenu	*helpMenu	=	new	QPopupMenu(this);

				menuBar()->insertItem("&Help",	helpMenu);

				helpMenu->insertItem("&Help",	this,	SLOT(helpHelp()),	Key_F1);

				helpMenu->insertItem("&About",	this,	SLOT(helpAbout()));

				helpMenu->insertItem("About	&Qt",	this,	SLOT(helpAboutQt()));

				m_printer	=	0;

				m_elements.resize(MAX_ELEMENTS);

				QSettings	settings;

				settings.insertSearchPath(QSettings::Windows,	WINDOWS_REGISTRY);

				int	windowWidth	=	settings.readNumEntry(APP_KEY	+	"WindowWidth",	460);

				int	windowHeight	=	settings.readNumEntry(APP_KEY	+	"WindowHeight",	530);

				int	windowX	=	settings.readNumEntry(APP_KEY	+	"WindowX",	0);

				int	windowY	=	settings.readNumEntry(APP_KEY	+	"WindowY",	0);

				setChartType(ChartType(

												settings.readNumEntry(APP_KEY	+	"ChartType",	int(PIE))));

				m_addValues	=	AddValuesType(

																				settings.readNumEntry(APP_KEY	+	"AddValues",	int(NO)));

				m_decimalPlaces	=	settings.readNumEntry(APP_KEY	+	"Decimals",	2);

				m_font	=	QFont("Helvetica",	18,	QFont::Bold);

				m_font.fromString(

												settings.readEntry(APP_KEY	+	"Font",	m_font.toString()));

				for	(int	i	=	0;	i	<	MAX_RECENTFILES;	++i)	{

								QString	filename	=	settings.readEntry(APP_KEY	+	"File"	+

																																															QString::number(i	+	1));

								if	(!filename.isEmpty())

												m_recentFiles.push_back(filename);

				}

				if	(m_recentFiles.count())

								updateRecentFilesMenu();

				//	Connect	*after*	we've	set	the	chart	type	on	so	we	don't	call

				//	drawElements()	prematurely.

				connect(chartGroup,	SIGNAL(selected(QAction*)),

													this,	SLOT(updateChartType(QAction*)));

				resize(windowWidth,	windowHeight);

				move(windowX,	windowY);

				m_canvas	=	new	QCanvas(this);

				m_canvas->resize(width(),	height());

				m_canvasView	=	new	CanvasView(m_canvas,	&m_elements,	this);

				setCentralWidget(m_canvasView);

				m_canvasView->show();

				if	(!filename.isEmpty())

								load(filename);

				else	{

								init();

								m_elements[0].set(20,	red,				14,	"Red");

								m_elements[1].set(70,	cyan,				2,	"Cyan",			darkGreen);

								m_elements[2].set(35,	blue,			11,	"Blue");

								m_elements[3].set(55,	yellow,		1,	"Yellow",	darkBlue);

								m_elements[4].set(80,	magenta,	1,	"Magenta");

								drawElements();

				}

				statusBar()->message("Ready",	2000);

}

ChartForm::~ChartForm()

{

				delete	m_printer;

}

void	ChartForm::init()

{

				setCaption("Chart");

				m_filename	=	QString::null;

				m_changed	=	false;

				m_elements[0]		=	Element(Element::INVALID,	red);

				m_elements[1]		=	Element(Element::INVALID,	cyan);

				m_elements[2]		=	Element(Element::INVALID,	blue);

				m_elements[3]		=	Element(Element::INVALID,	yellow);

				m_elements[4]		=	Element(Element::INVALID,	green);

				m_elements[5]		=	Element(Element::INVALID,	magenta);

				m_elements[6]		=	Element(Element::INVALID,	darkYellow);

				m_elements[7]		=	Element(Element::INVALID,	darkRed);

				m_elements[8]		=	Element(Element::INVALID,	darkCyan);

				m_elements[9]		=	Element(Element::INVALID,	darkGreen);

				m_elements[10]	=	Element(Element::INVALID,	darkMagenta);

				m_elements[11]	=	Element(Element::INVALID,	darkBlue);

				for	(int	i	=	12;	i	<	MAX_ELEMENTS;	++i)	{

								double	x	=	(double(i)	/	MAX_ELEMENTS)	*	360;

								int	y	=	(int(x	*	256)	%	105)	+	151;

								int	z	=	((i	*	17)	%	105)	+	151;

								m_elements[i]	=	Element(Element::INVALID,	QColor(int(x),	y,	z,	QColor::Hsv));

				}

}

void	ChartForm::fileNew()

{

				if	(okToClear())	{

								init();

								drawElements();

				}

}

void	ChartForm::fileOpen()

{

				if	(!okToClear())

								return;

				QString	filename	=	QFileDialog::getOpenFileName(

																												QString::null,	"Charts	(*.cht)",	this,

																												"file	open",	"Chart	--	File	Open");

				if	(!filename.isEmpty())

								load(filename);

				else

								statusBar()->message("File	Open	abandoned",	2000);

}

void	ChartForm::fileSaveAs()

{

				QString	filename	=	QFileDialog::getSaveFileName(

																												QString::null,	"Charts	(*.cht)",	this,

																												"file	save	as",	"Chart	--	File	Save	As");

				if	(!filename.isEmpty())	{

								int	answer	=	0;

								if	(QFile::exists(filename))

												answer	=	QMessageBox::warning(

																												this,	"Chart	--	Overwrite	File",

																												QString("Overwrite\n\'%1\'?").

																																arg(filename),

																												"&Yes",	"&No",	QString::null,	1,	1);

								if	(answer	==	0)	{

												m_filename	=	filename;

												updateRecentFiles(filename);

												fileSave();

												return;

								}

				}

				statusBar()->message("Saving	abandoned",	2000);

}

void	ChartForm::fileOpenRecent(int	index)

{

				if	(!okToClear())

								return;

				load(m_recentFiles[index]);

}

void	ChartForm::updateRecentFiles(const	QString&	filename)

{

				if	(m_recentFiles.find(filename)	!=	m_recentFiles.end())

								return;

				m_recentFiles.push_back(filename);

				if	(m_recentFiles.count()	>	MAX_RECENTFILES)

								m_recentFiles.pop_front();

				updateRecentFilesMenu();

}

void	ChartForm::updateRecentFilesMenu()

{

				for	(int	i	=	0;	i	<	MAX_RECENTFILES;	++i)	{

								if	(fileMenu->findItem(i))

												fileMenu->removeItem(i);

								if	(i	<	int(m_recentFiles.count()))

												fileMenu->insertItem(QString("&%1	%2").

																																				arg(i	+	1).arg(m_recentFiles[i]),

																																		this,	SLOT(fileOpenRecent(int)),

																																		0,	i);

				}

}

void	ChartForm::fileQuit()

{

				if	(okToClear())	{

								saveOptions();

								qApp->exit(0);

				}

}

bool	ChartForm::okToClear()

{

				if	(m_changed)	{

								QString	msg;

								if	(m_filename.isEmpty())

												msg	=	"Unnamed	chart	";

								else

												msg	=	QString("Chart	'%1'\n").arg(m_filename);

								msg	+=	"has	been	changed.";

								switch(QMessageBox::information(this,	"Chart	--	Unsaved	Changes",

																																										msg,	"&Save",	"Cancel",	"&Abandon",

																																										0,	1))	{

												case	0:

																fileSave();

																break;

												case	1:

												default:

																return	false;

																break;

												case	2:

																break;

								}

				}

				return	true;

}

void	ChartForm::saveOptions()

{

				QSettings	settings;

				settings.insertSearchPath(QSettings::Windows,	WINDOWS_REGISTRY);

				settings.writeEntry(APP_KEY	+	"WindowWidth",	width());

				settings.writeEntry(APP_KEY	+	"WindowHeight",	height());

				settings.writeEntry(APP_KEY	+	"WindowX",	x());

				settings.writeEntry(APP_KEY	+	"WindowY",	y());

				settings.writeEntry(APP_KEY	+	"ChartType",	int(m_chartType));

				settings.writeEntry(APP_KEY	+	"AddValues",	int(m_addValues));

				settings.writeEntry(APP_KEY	+	"Decimals",	m_decimalPlaces);

				settings.writeEntry(APP_KEY	+	"Font",	m_font.toString());

				for	(int	i	=	0;	i	<	int(m_recentFiles.count());	++i)

								settings.writeEntry(APP_KEY	+	"File"	+	QString::number(i	+	1),

																													m_recentFiles[i]);

}

void	ChartForm::optionsSetData()

{

				SetDataForm	*setDataForm	=	new	SetDataForm(&m_elements,	m_decimalPlaces,	this);

				if	(setDataForm->exec())	{

								m_changed	=	true;

								drawElements();

				}

				delete	setDataForm;

}

void	ChartForm::setChartType(ChartType	chartType)

{

				m_chartType	=	chartType;

				switch	(m_chartType)	{

								case	PIE:

												optionsPieChartAction->setOn(true);

												break;

								case	VERTICAL_BAR:

												optionsVerticalBarChartAction->setOn(true);

												break;

								case	HORIZONTAL_BAR:

												optionsHorizontalBarChartAction->setOn(true);

												break;

				}

}

void	ChartForm::updateChartType(QAction	*action)

{

				if	(action	==	optionsPieChartAction)	{

								m_chartType	=	PIE;

				}

				else	if	(action	==	optionsHorizontalBarChartAction)	{

								m_chartType	=	HORIZONTAL_BAR;

				}

				else	if	(action	==	optionsVerticalBarChartAction)	{

								m_chartType	=	VERTICAL_BAR;

				}

				drawElements();

}

void	ChartForm::optionsSetFont()

{

				bool	ok;

				QFont	font	=	QFontDialog::getFont(&ok,	m_font,	this);

				if	(ok)	{

								m_font	=	font;

								drawElements();

				}

}

void	ChartForm::optionsSetOptions()

{

				OptionsForm	*optionsForm	=	new	OptionsForm(this);

				optionsForm->chartTypeComboBox->setCurrentItem(m_chartType);

				optionsForm->setFont(m_font);

				switch	(m_addValues)	{

								case	NO:

												optionsForm->noRadioButton->setChecked(true);

												break;

								case	YES:

												optionsForm->yesRadioButton->setChecked(true);

												break;

								case	AS_PERCENTAGE:

												optionsForm->asPercentageRadioButton->setChecked(true);

												break;

				}

				optionsForm->decimalPlacesSpinBox->setValue(m_decimalPlaces);

				if	(optionsForm->exec())	{

								setChartType(ChartType(

																optionsForm->chartTypeComboBox->currentItem()));

								m_font	=	optionsForm->font();

								if	(optionsForm->noRadioButton->isChecked())

												m_addValues	=	NO;

								else	if	(optionsForm->yesRadioButton->isChecked())

												m_addValues	=	YES;

								else	if	(optionsForm->asPercentageRadioButton->isChecked())

												m_addValues	=	AS_PERCENTAGE;

								m_decimalPlaces	=	optionsForm->decimalPlacesSpinBox->value();

								drawElements();

				}

				delete	optionsForm;

}

void	ChartForm::helpHelp()

{

				statusBar()->message("Help	is	not	implemented	yet",	2000);

}

void	ChartForm::helpAbout()

{

				QMessageBox::about(this,	"Chart	--	About",

																								"<center><h1>Chart</h1></center>"

																								"<p>Chart	your	data	with	<i>chart</i>.</p>"

);

}

void	ChartForm::helpAboutQt()

{

				QMessageBox::aboutQt(this,	"Chart	--	About	Qt");

}

Main:

#include	<qapplication.h>

#include	"chartform.h"

int	main(int	argc,	char	*argv[])

{

				QApplication	app(argc,	argv);

				QString	filename;

				if	(app.argc()	>	1)	{

								filename	=	app.argv()[1];

								if	(!filename.endsWith(".cht"))

												filename	=	QString::null;

				}

				ChartForm	*cf	=	new	ChartForm(filename);

				app.setMainWidget(cf);

				cf->show();

				app.connect(&app,	SIGNAL(lastWindowClosed()),	cf,	SLOT(fileQuit()));

				return	app.exec();

}

See	also	Step-by-step	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Walkthrough:	A	Simple	Application
with	Actions

While	reading	through	the	implementation	of	the	ApplicationWindow	constructor
you	have	maybe	asked	yourself:	"The	fileOpen	tool-button	in	the	toolbar	does
exactly	the	same	thing	as	the	File->Open	menu-entry.	Their	"What's	this?"	help
is	the	same,	the	icons	common,	the	same	slot	is	connected	to	both	them	...
Shouldn't	it	be	possible	to	save	some	code	and	don't	invent	the	wheel	twice?"

Indeed,	it	is.	In	modern	GUI-application	programming	you	will	use	so	called
actions	to	do	this.	An	action	collects	all	the	common	items	(icon,	tooltip,	menu-
entry	text,	shortcuts,	"What's	this?"	help-text	and	what	to	do	--	the	actual	action)
together.	Whenever	this	action	is	required	(in	the	toolbar,	as	a	menu-entry)	all
the	programmer	has	to	do	is	to	insert	the	action	in	the	respective	toolbar	or
menu.	Its	appearance	(as	a	tool-button	or	a	menu-entry)	is	something,	the
programmer	does	not	has	to	worry	about	--	it's	obvious	from	the	context.

With	the	QAction	class,	Qt	provides	you	with	everything	you	need	to	use	this
striking	concept.	So	let's	write	an	ApplicationWindow	constructor	that	makes	use
of	actions.

The	ApplicationWindow	constructor	with	Actions
				ApplicationWindow::ApplicationWindow()

								:	QMainWindow(0,	"example	application	main	window",	WDestructiveClose)

				{

								printer	=	new	QPrinter;

Nothing	new	so	far.	But	with	the	next	lines...

								QAction	*	fileNewAction;

								QAction	*	fileOpenAction;

								QAction	*	fileSaveAction,	*	fileSaveAsAction,	*	filePrintAction;

								QAction	*	fileCloseAction,	*	fileQuitAction;

...	the	difference	becomes	obvious.	Here	we	define	the	actions	our	application	is
supposed	to	undertake:	it	should	create	a	new	editor-instance	(fileNewAction),
open	a	file,	save	a	file,	save	it	under	a	different	name,	print	the	content	of	the
editor,	close	an	editor	window	and	quit	the	entire	application.

								fileNewAction	=	new	QAction("New",	"&New",	CTRL+Key_N,	this,	"new");

The	first	one	has	the	name	new	and	can	be	reached	via	the	accelerator	Ctrl+N.
When	used	as	a	menu-entry	it	will	provide	the	entry	New	and	can	be	reached	via
the	accelerator	Alt-N	(&N;).	As	we	won't	set	a	special	tooltip-text,	the	text	New
with	the	accelerator	Ctrl+N	in	brackets	will	show	up	when	a	user	holds	the
mouse	over	a	tool-button	and	does	nothing.

								connect(fileNewAction,	SIGNAL(activated())	,	this,

																	SLOT(newDoc()));

When	the	action	becomes	activated	(the	user	chooses	the	respective	menu-entry
or	clicks	an	appropriate	tool-button),	it	connects	to	the	newDoc()	slot.

								fileOpenAction	=	new	QAction("Open	File",	QPixmap(fileopen),	"&Open",

																																						CTRL+Key_O,	this,	"open");

								connect(fileOpenAction,	SIGNAL(activated())	,	this,	SLOT(choose()));

The	same	way	we	create	an	Open	File	action	and	connect	its	activated()	signal	to
the	choose()	slot.	There	is	however	a	novelty:	the	fileOpenAction	(unlike
fileNewAction)	is	assigned	a	pixmap	(the	one	included	with	the	fileopen.xpm
file).

								const	char	*	fileOpenText	=	"<p>	"

																									"Click	this	button	to	open	a	new	file.	
"

																									"You	can	also	select	the	Open	command	"

																									"from	the	File	menu.</p>";

For	the	fileOpenAction	we	want	to	provide	"What's	This?"	help	and	therefore
define	an	appropriate	rich-text.

								QMimeSourceFactory::defaultFactory()->setPixmap("fileopen",

																														fileOpenAction->iconSet().pixmap());

As	fileOpenText	makes	use	of	a	pixmap,	we	have	to	inform	the	rich-text	engine
that	it	should	provide	the	pixmap	defined	for	fileOpenAction	whenever	a	rich-
text	asks	for	an	image-source	named	fileopen.

The	slightly	complex	procedure	to	gain	the	pixmap	from	the	action	is	due	to	the
fact	that	a	QAction	is	not	simply	assigned	a	pixmap	but	an	entire	iconset.	A
QIconSet	provides	up	to	six	pixmaps	suited	for	different	sizes	(large,	small)	and
modes	(active,	disabled	etc.).	As	we	initially	fed	fileOpenAction	with	just	one
pixmap	its	iconset	will	be	calculated	from	it	automatically.

For	simplicity	reasons	we	want	the	icon	in	the	"What's	this?"	text	to	be	the	same
we	used	in	the	fileOpenAction	constructor.	This	is	done	by	using
QIconSet::pixmap()	upon	fileOpenAction's	iconSet().

								fileOpenAction->setWhatsThis(fileOpenText);

Finally	we	assign	"What's	this?"	help	to	the	fileOpenAction.

								fileSaveAction	=	new	QAction("Save	File",	QPixmap(filesave),

																																						"&Save",	CTRL+Key_S,	this,	"save");

								connect(fileSaveAction,	SIGNAL(activated())	,	this,	SLOT(save()));

								const	char	*	fileSaveText	=	"<p>Click	this	button	to	save	the	file	you	"

																									"are	editing.	You	will	be	prompted	for	a	file	name.\n"

																									"You	can	also	select	the	Save	command	"

																									"from	the	File	menu.</p>";

								fileSaveAction->setWhatsThis(fileSaveText);

The	same	way	we	create	a	Save	File	action	with	a	pixmap,	"What's	this?"	help
and	the	more	common	items	like	menu-entry	text	and	accelerator.	Note	that	we
don't	have	to	bother	with	the	rich-text	engine	because	the	pixmap	is	not	used	in
fileSaveText.	When	activated	the	fileSaveAction	will	call	the	save()	slot.

								fileSaveAsAction	=	new	QAction("Save	File	As",	"Save	&as",	0,		this,

																																								"save	as");

								connect(fileSaveAsAction,	SIGNAL(activated())	,	this,

																	SLOT(saveAs()));

								fileSaveAsAction->setWhatsThis(fileSaveText);

For	the	Save	File	As	action	we	reuse	fileSaveText	but	do	without	a	pixmap.	On
activation,	this	action	calls	the	saveAs()	slot.

								filePrintAction	=	new	QAction("Print	File",	QPixmap(fileprint),

																																							"&Print",	CTRL+Key_P,	this,	"print");

								connect(filePrintAction,	SIGNAL(activated())	,	this,

																	SLOT(print()));

								const	char	*	filePrintText	=	"Click	this	button	to	print	the	file	you	"

																									"are	editing.\n	You	can	also	select	the	Print	"

																									"command	from	the	File	menu.";

								filePrintAction->setWhatsThis(filePrintText);

The	Print	File	action	--	with	an	activated()	signal	connected	to	print()	--	looks
very	much	like	fileSaveText.

								fileCloseAction	=	new	QAction("Close",	"&Close",	CTRL+Key_W,	this,

																																							"close");

								connect(fileCloseAction,	SIGNAL(activated())	,	this,

																	SLOT(close()));

								fileQuitAction	=	new	QAction("Quit",	"&Quit",	CTRL+Key_Q,	this,

																																						"quit");

								connect(fileQuitAction,	SIGNAL(activated())	,	qApp,

																	SLOT(closeAllWindows()));

For	the	last	two	actions,	fileCloseAction	and	fileQuitAction,	we	do	it	the	easy
way:	no	"What's	this?",	no	pixmaps.	Thus	we	have	defined	all	the	actions	we
need.

The	only	thing	left	is	to	use	them	as	menu-	and	toolbar-entries.

								//	populate	a	tool	bar	with	some	actions

								QToolBar	*	fileTools	=	new	QToolBar(this,	"file	operations");

								fileTools->setLabel("File	Operations");

First	we	create	a	toolbar	in	this	window	and	define	a	caption	for	it.

As	actions	that	weren't	assigned	a	pixmap	are	quite	useless	in	a	toolbar	we'll

restrict	ourselves	to	three	tool-buttons	for	opening,	saving	and	printing	files.

								fileOpenAction->addTo(fileTools);

The	first	tool-button	is	easily	installed:	All	we	have	to	do	is	to	add	the
fileOpenAction	to	the	fileTools	toolbar.

								fileSaveAction->addTo(fileTools);

								filePrintAction->addTo(fileTools);

The	same	easy	procedure	applies	to	fileSaveAction	and	filePrintAction.

								(void)QWhatsThis::whatsThisButton(fileTools);

To	provide	the	user	with	a	means	to	toggle	his	or	her	mouse	in	"What's	this?"
mode,	we	need	a	fourth	icon	in	the	toolbar:	the	(predefined)	"What's	this?"
button.

								//	populate	a	menu	with	all	actions

								QPopupMenu	*	file	=	new	QPopupMenu(this);

								menuBar()->insertItem("&File",	file);

Next	we	install	the	newly	created	file	popup-menu	in	the	menu	bar.	After	we're
done	with	this,	we	populate	the	menu	...

								fileNewAction->addTo(file);

								fileOpenAction->addTo(file);

								fileSaveAction->addTo(file);

								fileSaveAsAction->addTo(file);

...	with	some	menu-entries	derived	from	actions,	...

								file->insertSeparator();

...	a	separator	...

								filePrintAction->addTo(file);

								file->insertSeparator();

								fileCloseAction->addTo(file);

								fileQuitAction->addTo(file);

...	and	more	actions	and	separators.

The	rest	of	the	constructor	...

								menuBar()->insertSeparator();

								//	add	a	help	menu

								QPopupMenu	*	help	=	new	QPopupMenu(this);

								menuBar()->insertItem("&Help",	help);

								help->insertItem("&About",	this,	SLOT(about()),	Key_F1);

								help->insertItem("About	&Qt",	this,	SLOT(aboutQt()));

								help->insertSeparator();

								help->insertItem("What's	&This",	this,	SLOT(whatsThis()),

																										SHIFT+Key_F1);

								//	create	and	define	the	central	widget

								e	=	new	QTextEdit(this,	"editor");

								e->setFocus();

								setCentralWidget(e);

								statusBar()->message("Ready",	2000);

								resize(450,	600);

				}

...	is	exactly	the	same	as	in	the	tool-button	and	menu-entry	version.

See	also	Step-by-step	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Walkthrough:	A	Simple	Application
This	walkthrough	shows	simple	use	of	QMainWindow,	QMenuBar,
QPopupMenu,	QToolBar	and	QStatusBar	-	classes	that	every	modern	application
window	tends	to	use.

It	further	illustrates	some	aspects	of	QWhatsThis	(for	simple	help)	and	a	typical
main()	using	QApplication.

Finally,	it	shows	a	typical	printout	function	based	on	QPrinter.

The	declaration	of	ApplicationWindow

Here's	the	header	file	in	full:

/**

**	$Id:		qt/application.h			3.0.5			edited	May	7	17:30	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	APPLICATION_H

#define	APPLICATION_H

#include	<qmainwindow.h>

class	QTextEdit;

class	ApplicationWindow:	public	QMainWindow

{

				Q_OBJECT

public:

				ApplicationWindow();

				~ApplicationWindow();

protected:

				void	closeEvent(QCloseEvent*);

private	slots:

				void	newDoc();

				void	choose();

				void	load(const	QString	&fileName);

				void	save();

				void	saveAs();

				void	print();

				void	about();

				void	aboutQt();

private:

				QPrinter	*printer;

				QTextEdit	*e;

				QString	filename;

};

#endif

It	declares	a	class	that	inherits	QMainWindow,	with	slots	and	private	variables.
The	class	predeclaration	of	QTextEdit	at	the	beginning	(instead	of	an	include)
helps	to	speed	up	compiles.	With	this	trick,	make	depend	won't	insist	on
recompiling	every	.cpp	file	that	includes	application.h	when	qtextedit.h	changes.

A	simple	main()

Let's	first	have	a	look	at	examples/main.cpp,	in	full	...

/**

**	$Id:		qt/main.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	"application.h"

int	main(int	argc,	char	**	argv)	{

				QApplication	a(argc,	argv);

				ApplicationWindow	*	mw	=	new	ApplicationWindow();

				mw->setCaption("Qt	Example	-	Application");

				mw->show();

				a.connect(&a,	SIGNAL(lastWindowClosed()),	&a,	SLOT(quit()));

				return	a.exec();

}

...	and	go	over	main()	in	detail.

				int	main(int	argc,	char	**	argv)	{

								QApplication	a(argc,	argv);

With	the	above	line,	we	create	a	QApplication	object	with	the	usual	constructor
and	let	it	parse	argc	and	argv.	QApplication	itself	takes	care	of	X11-specific
command-line	options	like	-geometry,	thus	the	program	automatically	behaves
the	way	X	clients	are	expected	to.

								ApplicationWindow	*	mw	=	new	ApplicationWindow();

								mw->setCaption("Qt	Example	-	Application");

								mw->show();

We	create	an	ApplicationWindow	as	a	top-level	widget,	set	its	window	system
caption	to	"Document	1",	and	show()	it.

								a.connect(&a,	SIGNAL(lastWindowClosed()),	&a,	SLOT(quit()));

When	the	application's	last	window	is	closed,	it	should	quit.	Both,	the	signal	and
the	slot	are	predefined	members	of	QApplication.

								return	a.exec();

Having	completed	the	application's	initialization,	we	start	the	main	event	loop
(the	GUI),	and	eventually	return	the	error	code	that	QApplication	returns	when	it
leaves	the	event	loop.

				}

The	Implementation	of	ApplicationWindow

Since	the	implementation	is	quite	large	(almost	300	lines)	we	won't	bore	you
with	the	preliminary	headerfile	#includes.	Before	we	start	with	the	constructor
there	are	however	three	#include	lines	worth	mentioning:

				#include	"filesave.xpm"

				#include	"fileopen.xpm"

				#include	"fileprint.xpm"

The	tool	buttons	in	our	application	wouldn't	be	real	without	icons.	These	icons
can	be	found	in	the	above	xpm	files.	If	you	ever	moved	a	program	to	a	different
location	and	wondered	why	icons	were	missing	afterwards	you	will	probably
agree	that	it	is	a	good	idea	to	compile	them	into	the	binary.	This	is	what	we	are
doing	here.

				ApplicationWindow::ApplicationWindow()

								:	QMainWindow(0,	"example	application	main	window",	WDestructiveClose)

				{

ApplicationWindow	inherits	QMainWindow,	the	Qt	class	that	provides	typical
application	main	windows,	with	menu	bars,	toolbars,	etc.

								printer	=	new	QPrinter;

The	application	example	can	print	things,	and	we	chose	to	have	a	QPrinter	object
lying	around	so	that	when	the	user	changes	a	setting	during	one	printing,	the	new
setting	will	be	the	default	next	time.

								QPixmap	openIcon,	saveIcon,	printIcon;

For	simplicity	reasons,	our	example	has	no	more	than	three	commands	in	the
toolbar.	The	above	variables	are	used	to	hold	an	icon	for	each	of	them.

								QToolBar	*	fileTools	=	new	QToolBar(this,	"file	operations");

We	create	a	toolbar	in	this	window	...

								fileTools->setLabel("File	Operations");

...	and	define	a	title	for	it.	When	a	user	drags	the	toolbar	out	of	its	location	and

drops	it	somewhere	on	the	desktop,	the	toolbar-window	will	show	"File
Operations"	as	caption.

								openIcon	=	QPixmap(fileopen);

								QToolButton	*	fileOpen

												=	new	QToolButton(openIcon,	"Open	File",	QString::null,

																															this,	SLOT(choose()),	fileTools,	"open	file");

Now	we	create	the	first	tool	button	for	the	fileTools	toolbar	with	the	appropriate
icon	and	the	tool-tip	text	"Open	File".	The	fileopen.xpm	we	included	at	the
beginning	contains	the	definition	of	a	pixmap	named	fileopen.	This	we	use	as	the
icon	to	illustrate	our	first	tool	button.

								saveIcon	=	QPixmap(filesave);

								QToolButton	*	fileSave

												=	new	QToolButton(saveIcon,	"Save	File",	QString::null,

																															this,	SLOT(save()),	fileTools,	"save	file");

								printIcon	=	QPixmap(fileprint);

								QToolButton	*	filePrint

												=	new	QToolButton(printIcon,	"Print	File",	QString::null,

																															this,	SLOT(print()),	fileTools,	"print	file");

Likewise	we	create	two	more	tool	buttons	in	this	toolbar,	each	with	appropriate
icons	and	tool-tip	text.	All	three	buttons	are	connected	to	appropriate	slots	in	this
object;	for	example,	the	"Print	File"	button	to	ApplicationWindow::print().

								(void)QWhatsThis::whatsThisButton(fileTools);

The	fourth	button	in	the	toolbar	is	somewhat	peculiar:	it's	the	one	that	provides
"What's	This?"	help.	This	must	be	set	up	using	a	special	function,	as	its	mouse
interface	is	different	from	usual.

								const	char	*	fileOpenText	=	"<p>	"

																					"Click	this	button	to	open	a	new	file.	
"

																					"You	can	also	select	the	Open	command	"

																					"from	the	File	menu.</p>";

								QWhatsThis::add(fileOpen,	fileOpenText);

With	the	above	line	we	add	the	"What's	This?"	help-text	to	the	fileOpen	button...

								QMimeSourceFactory::defaultFactory()->setPixmap("fileopen",	openIcon);

...	and	tell	the	rich-text	engine	that	when	a	help-text	(like	the	one	saved	in

fileOpenText)	requests	an	image	named	"fileopen",	the	openIcon	pixmap	is	used.

								const	char	*	fileSaveText	=	"<p>Click	this	button	to	save	the	file	you	"

																					"are	editing.	You	will	be	prompted	for	a	file	name.\n"

																					"You	can	also	select	the	Save	command	"

																					"from	the	File	menu.</p>";

								QWhatsThis::add(fileSave,	fileSaveText);

								const	char	*	filePrintText	=	"Click	this	button	to	print	the	file	you	"

																					"are	editing.\n	You	can	also	select	the	Print	"

																					"command	from	the	File	menu.";

								QWhatsThis::add(filePrint,	filePrintText);

The	"What's	This?"	help	of	the	remaining	two	buttons	doesn't	make	use	of
pixmaps,	therefore	all	we	have	to	do	is	to	add	the	help-text	to	the	button.	Be
however	careful:	To	invoke	the	rich-text	elements	in	fileSaveText,	the	entire
string	must	be	surrounded	by	<p>	and	</p>.	In	filePrintText,	we	don't	have	rich-
text	elements,	so	this	is	not	necessary.

								QPopupMenu	*	file	=	new	QPopupMenu(this);

								menuBar()->insertItem("&File",	file);

Next	we	create	a	QPopupMenu	for	the	File	menu	and	add	it	to	the	menu	bar.
With	the	ampersand	previous	to	the	letter	F,	we	allow	the	user	to	use	the	shortcut
Alt+F	to	open	this	menu.

								file->insertItem("&New",	this,	SLOT(newDoc()),	CTRL+Key_N);

Its	first	entry	is	connected	to	the	(yet	to	be	implementled)	slot	newDoc().	When
the	user	chooses	this	New	entry	(e.g.	via	typing	the	letter	N	as	marked	by	the
ampersand)	or	uses	the	Ctrl+N	accelerator,	a	new	editor-window	will	pop	up.

								int	id;

								id	=	file->insertItem(openIcon,	"&Open...",

																															this,	SLOT(choose()),	CTRL+Key_O);

								file->setWhatsThis(id,	fileOpenText);

								id	=	file->insertItem(saveIcon,	"&Save",

																															this,	SLOT(save()),	CTRL+Key_S);

								file->setWhatsThis(id,	fileSaveText);

								id	=	file->insertItem("Save	&As...",	this,	SLOT(saveAs()));

								file->setWhatsThis(id,	fileSaveText);

We	populate	the	File	menu	with	three	more	commands	(Open,	Save	and	Save
As),	and	set	"What's	This?"	help	for	them.	Note	in	particular	that	"What's	This?"
help	and	pixmaps	are	used	in	both	the	toolbar	(above)	and	the	menu	bar	(here).

								file->insertSeparator();

Then	we	insert	a	separator,	...

								id	=	file->insertItem(printIcon,	"&Print...",

																															this,	SLOT(print()),	CTRL+Key_P);

								file->setWhatsThis(id,	filePrintText);

								file->insertSeparator();

								file->insertItem("&Close",	this,	SLOT(close()),	CTRL+Key_W);

								file->insertItem("&Quit",	qApp,	SLOT(closeAllWindows()),	CTRL+Key_Q);

...	the	Print	command	with	"What's	This?"	help,	another	separator	and	two	more
commands	(Close	and	Quit)	without	"What's	This?"	and	pixmaps.	In	case	of	the
Close	command,	the	signal	is	connected	to	the	close()	slot	of	the	respective
ApplicationWindow	object	whilst	the	Quit	command	affects	the	entire
application.

Because	ApplicationWindow	is	a	QWidget,	the	close()	function	triggers	a	call	to
closeEvent()	which	we	will	implement	later.

								menuBar()->insertSeparator();

Now	that	we	are	done	with	the	File	menu	we	shift	our	focus	back	to	the	menu
bar	and	insert	a	separator.	From	now	on	further	menu	bar	entries	will	be	aligned
to	the	right	if	the	windows	system	style	suggests	so.

								QPopupMenu	*	help	=	new	QPopupMenu(this);

								menuBar()->insertItem("&Help",	help);

								help->insertItem("&About",	this,	SLOT(about()),	Key_F1);

								help->insertItem("About	&Qt",	this,	SLOT(aboutQt()));

								help->insertSeparator();

								help->insertItem("What's	&This",	this,	SLOT(whatsThis()),	SHIFT+Key_F1);

We	create	a	Help	menu,	add	it	to	the	menu	bar,	and	insert	a	few	commands.
Depending	on	the	style	it	will	appear	on	the	right	hand	side	of	the	menu	bar	or
not.

								e	=	new	QTextEdit(this,	"editor");

								e->setFocus();

								setCentralWidget(e);

Now	we	create	a	simple	text-editor,	set	the	initial	focus	to	it,	and	make	it	the
central	widget	of	this	window.

QMainWindow::centralWidget()	is	the	heart	of	the	entire	application:	It's	what
menu	bar,	statusbar	and	toolbars	are	all	arranged	around.	Since	the	central
widget	is	a	text	editing	widget,	we	reveal	at	this	line	that	our	simple	application
is	a	text	editor.	:)

								statusBar()->message("Ready",	2000);

We	make	the	statusbar	say	"Ready"	for	two	seconds	at	startup,	just	to	tell	the
user	that	this	window	has	finished	initialization	and	can	be	used.

								resize(450,	600);

Finally	it's	time	to	resize	the	new	window	to	a	a	nice	default	size.

				}

At	this	stage,	we	are	done	with	the	constructor.	Among	others	we	have	learned
about	the	classic	way	of	creating	menus	and	toolbars.	There	is	however	a	more
modern	approach	to	deal	with	this:	actions	that	help	you	saving	some	work.	You
may	have	a	look	at	how	the	ApplicationWindow	constructor	is	implemented
using	actions.	Here	we'll	continue	with	the	destructor.

				ApplicationWindow::~ApplicationWindow()

				{

								delete	printer;

				}

The	only	thing	an	ApplicationWindow	widget	needs	to	do	in	its	destructor	is	to
delete	the	printer	it	created.	All	other	objects	are	child	widgets,	which	Qt	will
delete	as	appropriate.

Now	our	task	is	to	implement	all	the	slots	mentioned	in	the	header	file	and	used
in	the	constructor.

				void	ApplicationWindow::newDoc()

				{

								ApplicationWindow	*ed	=	new	ApplicationWindow;

								ed->setCaption("Qt	Example	-	Application");

								ed->show();

				}

This	slot,	connected	to	the	File->New	menu	item,	simply	creates	a	new
ApplicationWindow	and	shows	it.

				void	ApplicationWindow::choose()

				{

								QString	fn	=	QFileDialog::getOpenFileName(QString::null,	QString::null,

																																																			this);

								if	(!fn.isEmpty())

												load(fn);

								else

												statusBar()->message("Loading	aborted",	2000);

				}

The	choose()	slot	is	connected	to	the	Open	menu	item	and	tool	button.	With	a
little	help	from	QFileDialog::getOpenFileName(),	it	asks	the	user	for	a	file	name
and	then	either	loads	that	file	or	gives	an	error	message	in	the	statusbar.

				void	ApplicationWindow::load(const	QString	&fileName)

				{

								QFile	f(fileName);

								if	(!f.open(IO_ReadOnly))

												return;

								QTextStream	ts(&f);

								e->setText(ts.read());

								e->setModified(FALSE);

								setCaption(fileName);

								statusBar()->message("Loaded	document	"	+	fileName,	2000);

				}

This	function	loads	a	file	into	the	editor.	When	it's	done,	it	sets	the	window
system	caption	to	the	file	name	and	displays	a	success	message	in	the	statusbar
for	two	seconds.	With	files	that	exist	but	are	not	readable,	nothing	happens.

				void	ApplicationWindow::save()

				{

								if	(filename.isEmpty())	{

												saveAs();

												return;

								}

								QString	text	=	e->text();

								QFile	f(filename);

								if	(!f.open(IO_WriteOnly))	{

												statusBar()->message(QString("Could	not	write	to	%1").arg(filename),

																																		2000);

												return;

								}

								QTextStream	t(&f);

								t	<<	text;

								f.close();

As	its	name	suggests,	this	function	saves	the	current	file.	If	no	filename	has	been
specified	so	far,	the	saveAs()	routine	is	called.	Unwritable	files	cause	the
ApplicationWindow	object	to	provide	an	error-message	in	the	statusbar.	Note	that
there	are	more	than	one	possibilities	to	achieve	this:	compare	the	above
statusBar()->message()	line	with	the	appropriate	code	in	the	load()	function.

								e->setModified(FALSE);

Tell	the	editor	that	the	contents	haven't	been	edited	since	the	last	save.	When	the
user	does	some	further	editing	and	wishes	to	close	the	window	without	explicit
saving,	ApplicationWindow::closeEvent()	will	ask	about	it.

								setCaption(filename);

It	may	be	that	the	document	was	saved	under	a	different	name	than	the	old
caption	suggests,	so	we	set	the	window	caption	just	to	be	sure.

								statusBar()->message(QString("File	%1	saved").arg(filename),	2000);

				}

With	a	message	in	the	statusbar,	we	inform	the	user	that	the	file	was	saved
successfully.

				void	ApplicationWindow::saveAs()

				{

								QString	fn	=	QFileDialog::getSaveFileName(QString::null,	QString::null,

																																																			this);

								if	(!fn.isEmpty())	{

												filename	=	fn;

												save();

								}	else	{

												statusBar()->message("Saving	aborted",	2000);

								}

				}

This	function	asks	for	a	new	name,	saves	the	document	under	that	name,	and
implicitly	changes	the	window	system	caption	to	the	new	name.

				void	ApplicationWindow::print()

				{

								const	int	Margin	=	10;

								int	pageNo	=	1;

print()	is	called	by	the	File->Print	menu	item	and	the	filePrint	tool	button.

Because	we	don't	want	to	print	to	the	very	edges	of	the	paper,	we	use	a	little
margin:	10	points.	Furthermore	we	keep	track	of	the	page	count.

								if	(printer->setup(this))	{															//	printer	dialog

QPrinter::setup()	invokes	a	print	dialog,	configures	the	printer	object,	and	returns
TRUE	if	the	user	wants	to	print	or	FALSE	if	not.	So	we	test	the	return	value;	if
it's	TRUE,	we...

												statusBar()->message("Printing...");

...	set	a	statusbar	message	in	case	printing	takes	a	while.

												QPainter	p;

												if(!p.begin(printer))															//	paint	on	printer

																return;

We	create	a	painter	for	the	output	and	decide	that	we	wish	to	paint	on	the	printer
or	do	nothing	at	all.

												p.setFont(e->font());

												int	yPos								=	0;																				//	y-position	for	each	line

												QFontMetrics	fm	=	p.fontMetrics();

												QPaintDeviceMetrics	metrics(printer);	//	need	width/height

																																																				//	of	printer	surface

Then	we	select	the	font	our	QTextEdit	object	returns	as	its	current	one,	and	set
up	some	variables	we'll	need.

												for(int	i	=	0	;	i	<	e->lines()	;	i++)	{

As	long	as	the	editing	widget	contains	more	lines,	we	want	to	print	them.

																if	(Margin	+	yPos	>	metrics.height()	-	Margin)	{

Before	we	print	a	line,	we	make	sure	that	there	is	space	for	it	on	the	current
page.	If	not,	we	start	a	new	page:

																				QString	msg("Printing	(page	");

																				msg	+=	QString::number(++pageNo);

																				msg	+=	")...";

																				statusBar()->message(msg);

																				printer->newPage();													//	no	more	room	on	this	page

																				yPos	=	0;																							//	back	to	top	of	page

(Four	lines	to	tell	the	user	what	we're	doing,	two	lines	to	do	it.)

																}

Now	we	know	that	there's	space	for	the	current	line	...

																p.drawText(Margin,	Margin	+	yPos,

																												metrics.width(),	fm.lineSpacing(),

																												ExpandTabs	|	DontClip,

																												e->text(i));

...	and	we	use	the	painter	to	print	it.

In	Qt,	output	to	printers	uses	the	exact	same	code	as	output	to	screen,	pixmaps
and	picture	metafiles.	Therefore,	we	don't	call	a	QPrinter	function	to	draw	text,
but	a	QPainter	function.	QPainter	works	on	all	the	output	devices	mentioned	and
has	a	device	independent	API.	Most	of	its	code	is	device	independent,	too,
therefore	it	is	less	likely	that	your	application	will	have	odd	bugs.	(If	the	same
code	is	used	to	print	and	to	draw	on	the	screen,	it's	less	likely	that	you'll	have
print-only	or	screen-only	bugs.)

																yPos	=	yPos	+	fm.lineSpacing();

With	this	line,	we	keep	count	of	how	much	of	the	paper	we've	used	so	far.

												}

												p.end();																																//	send	job	to	printer

At	this	point	we've	printed	all	of	the	text	in	the	editing	widget	and	told	the
printer	to	finish	off	the	last	page.

												statusBar()->message("Printing	completed",	2000);

Finally	the	user	receives	the	message	that	we're	done.

								}	else	{

												statusBar()->message("Printing	aborted",	2000);

								}

If	the	user	did	not	want	to	print	(and	QPrinter::setup()	returned	FALSE),	we
inform	him	or	her	about	it.

				}

With	this	little	effort	we	have	printed	a	text	document.	So	let's	care	about	what
happens	when	a	user	wishes	to	close()	an	ApplicationWindow.

				void	ApplicationWindow::closeEvent(QCloseEvent*	ce)

				{

This	event	gets	to	process	window	system	close	events.	A	close	event	is	subtly
different	from	a	hide	event:	hide	often	means	"iconify"	whereas	close	means	that
the	window	is	going	away	for	good.

								if	(!e->isModified())	{

												ce->accept();

												return;

								}

If	the	text	hasn't	been	edited,	we	just	accept	the	event.	The	window	will	be
closed,	and	because	we	used	the	WDestructiveClose	widget	flag	in	the	\e
ApplicationWindow()	constructor,	the	widget	will	be	deleted.

								switch(QMessageBox::information(this,	"Qt	Application	Example",

																																										"Do	you	want	to	save	the	changes"

																																										"	to	the	document?",

																																										"Yes",	"No",	"Cancel",

																																										0,	1))	{

Otherwise	we	ask	the	user:	What	do	you	want	to	do?

								case	0:

												save();

												ce->accept();

												break;

If	he/she	wants	to	save	and	then	exit,	we	do	that.

								case	1:

												ce->accept();

												break;

If	the	user	however	doesn't	want	to	exit,	we	ignore	the	close	event	(there	is	a
chance	that	we	can't	block	it	but	we	try).

								case	2:

								default:	//	just	for	sanity

												ce->ignore();

												break;

The	last	case	--	the	user	wants	to	abandon	the	edits	and	exit	--	is	very	simple.

								}

				}

Last	but	not	least	we	implement	the	slots	used	by	the	help	menu	entries.

				void	ApplicationWindow::about()

				{

								QMessageBox::about(this,	"Qt	Application	Example",

																												"This	example	demonstrates	simple	use	of	"

																												"QMainWindow,\nQMenuBar	and	QToolBar.");

				}

				void	ApplicationWindow::aboutQt()

				{

								QMessageBox::aboutQt(this,	"Qt	Application	Example");

				}

These	two	slots	use	ready-made	"about"	functions	to	provide	some	information
about	this	program	and	the	GUI	toolkit	it	uses.	(Although	you	don't	need	to
provide	an	About	Qt	in	your	programs,	if	you	use	Qt	for	free	we	would
appreciate	it	if	you	tell	people	what	you're	using.)

That	was	all	we	needed	to	write	a	complete,	almost	useful	application	with	nice
help-functions,	almost	as	good	as	the	"editors"	some	computer	vendors	ship	with
their	desktops,	in	less	than	300	lines	of	code.	As	we	promised	-	a	simple
application.

See	also	Step-by-step	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Walkthrough:	A	simple	QFont
demonstration

The	following	walkthrough	will	show	you	how	to	make	use	of	the	font	setting
and	manipulation	techniques	provided	by	QFont.

In	addition	it	will	show	some	aspects	of	widget	layout	--	if	you	prefer	leaving
this	job	to	Qt	Designer	simply	skip	the	relevant	paragraphs.	Moreover,	if	you
have	asked	yourself	how	to	add	strings	to	a	QStringList	and	how	to	step	through
its	members,	you	will	know	after	reading	this	walkthrough,	or	skipping	to	the
relevant	explanations	in	Viewer::showFontInfo()	and
Viewer::setFontSubstitutions().

To	get	the	most	out	of	the	walkthrough	you	should	at	least	be	familiar	with
signals	and	slots.

The	example	program	consists	of	a	widget	containing	two	QTextViews	side	by
side.	The	one	on	the	left	shows	greetings	in	English,	Russian,	and	Hebrew.	The
one	on	the	right	shows	some	information	about	the	fonts	used	to	draw	these
greetings.	Three	push	buttons	in	the	bottom	of	the	main	window	change	the	font
used	to	display	the	greetings.

Note	that	the	fonts	and	font	characteristics	in	the	example	have	been	chosen	for
demonstration	purposes	only	--	in	a	real	world	application	they	would	rather
count	for	bad	design.

The	API	of	the	custom	widget

The	widget	used	in	this	example	is	a	custom	widget	named	Viewer.

				#include	<qwidget.h>

				#include	<qfont.h>

As	we	derive	it	from	QWidget	we	include	the	relevant	header	file.	Additionally
we	use	a	QFont	object	as	a	function	argument,	and	therefore	include	the	QFont
class.

				class	QTextView;

				class	QPushButton;

Furthermore	we	declare	the	use	of	the	QTextView	and	the	QPushButton	classes
for	class	variables	(we	don't	need	to	include	them	at	this	stage	yet	because	we
only	use	pointers	to	these	classes).

				class	Viewer	:	public	QWidget

				{

				Q_OBJECT

The	Viewer	widget	will	have	slots,	so	don't	forget	to	add	the	Q_OBJECT	macro.

				public:

								Viewer();

As	we	won't	use	more	than	one	instance	of	this	class	there	is	no	need	for	any
complex	constructors,	a	simple	one	without	any	arguments	should	be	sufficient.

				private	slots:

								void	setDefault();

As	previously	mentioned	we're	going	to	have	three	push	buttons.	When	the	user
clicks	on	them,	something	should	happen.	Thus	we	define	one	slot	that	sets	the
font	in	the	greeting	window	back	to	the	default,	...

								void	setSansSerif();

...	one	that	switches	to	a	sans	serif	font,	and	...

								void	setItalics();

...	one	that	shows	the	greetings	in	italics.

				private:

								void	setFontSubstitutions();

Will	will	write	the	greetings	using	different	alphabets.	For	users	who	don't	have
Unicode	fonts	installed	we	want	to	tell	the	application	to	try	to	exchange	missing
characters	in	one	font	with	appropriate	characters	from	other	fonts.	QFont	does
such	font	substitutions	on	its	own	but	with	this	helper	function	we	can	define	our
preferred	substitution	pattern.

								void	layout();

The	task	of	putting	the	buttons	and	text	views	together	we	will	put	into	a
separate	layout()	function.	This	will	make	the	code	easier	to	understand	and
read.

								void	showFontInfo(QFont	&);

The	last	private	function	reveals	font	information	in	the	text	view	on	the	right.

								QTextView	*	greetings;

								QTextView	*	fontInfo;

								QPushButton	*	defaultButton;

								QPushButton	*	sansSerifButton;

								QPushButton	*	italicsButton;

				};

Last	but	not	least	we	define	the	elements	of	our	GUI	as	private	class	variables.

The	implementation	of	the	Viewer	widget

Now	we	will	implement	the	Viewer	class.

				#include	"viewer.h"

				#include	<qstring.h>

				#include	<qstringlist.h>

				#include	<qtextview.h>

				#include	<qpushbutton.h>

				#include	<qlayout.h>

First	we	include	the	relevant	header	files	--	obviously	the	header	of	the	Viewer
class	itself,	of	the	QPushButton	and	QTextView	widgets,	and	of	the	QString	and
QStringList	classes.	qlayout.h	provides	classes	for	horizontal	and	vertical	layout
and	will	be	used	in	the	layout()	function.

				Viewer::Viewer()

											:QWidget()

				{

As	already	mentioned	the	finger	print	of	the	Viewer	constructor	is	as	simple	as
possible,	without	any	arguments,	derived	from	the	QWidget	default	constructor.

								setFontSubstitutions();

First	we	define	the	font	substitutions	--	for	clarity	reasons	we	do	this	in	a
separate	function.

								QString	greeting_heb	=	QString::fromUtf8("\327\251\327\234\327\225\327\235");

								QString	greeting_ru	=	QString::fromUtf8("\320\227\320\264\321\200\320\260\320\262\321\201\321\202\320\262\321\203\320\271\321\202\320\265");

The	Hebrew	and	the	Russian	greeting	we	have	readily	available	as	UTF8
encoded	strings.	To	use	them	in	a	QString	we	"import"	them	with
QString::fromUtf8().

								QString	greeting_en("Hello");

Dor	the	English	greeting	we	use	a	simple	QString.

								greetings	=	new	QTextView(this,	"textview");

Now	we	create	the	first	widget	as	a	child	of	this	widget,	the	QTextView	with	the
identity	name	textview	that	shows	the	greetings.

								greetings->setText(greeting_en	+	"\n"	+

																											greeting_ru	+	"\n"	+

																											greeting_heb);

Now	we	set	the	text	shown	by	greetings	to	the	three	greetings.

								fontInfo	=	new	QTextView(this,	"fontinfo");

The	second	text	view	we	call	fontinfo	and	create	it	as	a	child	of	this	Viewer
widget.

								setDefault();

Using	the	setDefault()	function	we	apply	the	initial	font	to	the	greetings
greetings	and	fill	the	fontInfo	textview	with	information	about	the	font	used.

								defaultButton	=	new	QPushButton("Default",	this,

																																																							"pushbutton1");

Now	we	create	the	first	of	the	three	push	buttons	--	the	one	that	changes	the	font
to	the	initial	one	--	with	the	label	Default.

								defaultButton->setFont(QFont("times"));

The	label	should	be	printed	in	a	member	font	of	the	Times	family.	In	the	unlikely
case	that	the	user	does	not	have	installed	a	matching	font,	QFont	is	responsible
in	finding	a	replacement.	Note	that	case-sensitivity	is	no	issue	when	specifying
the	font	family.

As	we	don't	explicitly	request	a	font	size	or	weight,	QFont	tries	to	find	a	default
12	pt	font	with	normal	boldness.

								connect(defaultButton,	SIGNAL(clicked()),

																	this,	SLOT(setDefault()));

In	order	to	make	something	happening	when	the	user	clicks	the	defaultButton,
we	connect	the	QPushButton::clicked()	signals	issued	from	it	to	the	Viewer's
setDefault()	slot.

								sansSerifButton	=	new	QPushButton("Sans	Serif",	this,

																																																									"pushbutton2");

								sansSerifButton->setFont(QFont("Helvetica",	12));

The	newly	created	second	button	is	labelled	Sans	Serif	in	a	12	pt	Helvetica	font.
Again	if	this	is	not	possible	because	the	requested	font	is	not	available	on	the
system,	QFont	deals	with	it	and	finds	a	replacement.

								connect(sansSerifButton,	SIGNAL(clicked()),

																	this,	SLOT(setSansSerif()));

We	connect	the	clicked()	signal	of	the	sansSerifButton	to	the	setSansSerif()	slot.

								italicsButton	=	new	QPushButton("Italics",	this,

																																																							"pushbutton3");

								italicsButton->setFont(QFont("lucida",	12,	QFont::Bold,	TRUE));

italicsButton,	the	last	push	button,	is	labelled	Italics.	This	time	we	specify	even
more	characteristics	of	the	label	font.	We	wish	it	to	be	a	12	pt	bold	member	of
the	Lucida	family.	Also	it	should	be	in	italics,	indicated	by	the	fourth	QFont
argument	being	TRUE.

								connect(italicsButton,	SIGNAL(clicked()),

																	this,	SLOT(setItalics()));

Again,	the	italicsButton's	clicked()	signal	is	connected	to	a	slot	of	this	Viewer
object	setItalics().

								layout();

				}

Finally	we	arrange	all	five	child	widgets	of	this	main	window	nicely	using
layout().

				void	Viewer::setDefault()

				{

								QFont	font("Bavaria");

For	demonstration	purposes	on	how	the	QFont	substitution	works	we	use	a	non-
existant	font	family,	Bavaria,	as	the	default	font	for	the	greetings.

								font.setPointSize(24);

This	font	should	have	a	size	of	24	points,	...

								font.setWeight(QFont::Bold);

...	it	should	be	bold,	...

								font.setUnderline(TRUE);

...	and	the	text	written	should	be	underlined.

								greetings->setFont(font);

Now	we	ask	the	greetings	widget	to	use	the	font	font.

As	a	member	of	the	Bavaria	font	family	is	unlikely	to	be	installed	on	your
machine,	run	the	program	and	observe	how	QFont	finds	a	substitute.	Later	on	we
will	define	custom	substitutions	for	Bavaria	in	the	setFontSubstitutions()
function.

								showFontInfo(font);

				}

Finally	we	use	the	function	showFontInfo()	to	display	appropriate	information
about	the	current	font	and	how	it	maybe	differs	from	the	one	requested.

				void	Viewer::setSansSerif()

				{

								QFont	font("Newyork",	18);

The	slot	to	change	the	greeting	font	to	sans	serif	is	quite	similar	to	setDefault().
Here	we	save	a	line	of	code	and	define	the	(non-existant)	font	family	(NewYork)
and	size	(18	points)	at	once.

								font.setStyleHint(QFont::SansSerif);

We	use	a	style	hint	to	ask	QFont	for	a	sans	serif	font	(SansSerif	is	a	member	of
the	QFont::StyleHint	enumeration).

As	a	member	of	the	NewYork	family	is	quite	unlikely	to	be	installed	on	your
computer,	QFont	will	try	to	follow	the	style	hint	and	the	font	size	and	use	this
information	to	find	a	replacement	font.

								greetings->setFont(font);

Finally	we	apply	the	requested	font	to	the	content	of	the	greetings	textview	...

								showFontInfo(font);

				}

...	and	display	the	appropriate	font	information	in	the	fontInfo	textview.

				void	Viewer::setItalics()

				{

								QFont	font("Tokyo");

								font.setPointSize(32);

								font.setWeight(QFont::Bold);

								font.setItalic(TRUE);

The	setItalics()	slot	changes	the	greetings'	font	to	a	32	pt	bold	and	italic	member
of	the	(again	non-existant)	Tokyo	family.	Note	that	setFontSubstitutions()
defines	a	substitution	family	for	Tokyo.

								greetings->setFont(font);

We	set	the	font	of	the	greetings	textview	to	font,	and	...

								showFontInfo(font);

				}

...	display	the	appropriate	font	information	in	the	fontInfo	textview.

				void	Viewer::showFontInfo(QFont	&	font)

				{

Now,	how	do	we	show	the	font	information?

								QFontInfo	info(font);

First	we	obtain	information	about	the	font	that	is	actually	used	when	the	font	font
is	required,	and	store	it	in	info.

								QString	messageText;

								messageText	=	"Font	requested:	\""	+

																						font.family()	+	"\"	"	+

Then	we	start	compiling	the	message	that	we	want	to	show	in	the	fontInfo
textview.	First,	we	print	out	the	requested	font	family	name.	As	we	want	to
frame	the	family	name	with	quotation	marks,	we	have	to	escape	the	"	character
so	that	it	is	not	confused	with	the	C++	quotation	marks	used	to	terminate	strings.

																						QString::number(font.pointSize())	+	"pt
"	+

We	obtain	the	requested	font	size	in	points	and	convert	it	to	a	QString	using
QString::number().	Using	
;	we	add	a	rich-text	linebreak	to	the
messageText	string.

																						"Font	used:	\""	+

After	we	have	displayed	information	about	the	required	font	we	want	to	contrast
it	with	the	one	actually	used.	This	is	stored	in	the	QFontInfo	info	variable.

																						info.family()	+	"\"	"	+

First	we	display	the	font	family,	...

																						QString::number(info.pointSize())	+	"pt<P>";

...	and	then	we	append	the	actual	font	size,	converted	to	a	QString,	to	the
message	string.	The	unit	abbreviation	and	a	rich-text	paragraph	(<P>)	follow.

If	custom	substitutions	are	available	for	the	requested	font,	we're	going	to	show
them	as	well:

								QStringList	substitutions	=	QFont::substitutes(font.family());

First	we	store	the	entire	list	of	substitutes	in	a	string	list.

								if	(!	substitutions.isEmpty()){

If	it	contains	at	least	one	substitute	...

												messageText	+=	"The	following	substitutions	exist	for	"	+	\

																											font.family()	+	":";

...	we	say	so	in	the	messageText,	...

												QStringList::Iterator	i	=	substitutions.begin();

...	and	prepare	ourselves	to	step	through	the	list.	For	this	purpose	we	set	the	list
iterator	i	to	the	first	list	member	of	the	substitutions	string	list.

												while	(i	!=	substitutions.end()){

As	long	as	we	haven't	reached	the	last	list	member	...

																messageText	+=	"\""	+	(*	i)	+	"\"";

we	add	a	bullet	list	entry	()	of	the	current	list	member	(i.e.	the	font	family
name	of	the	substitute),	...

																i++;

												}

...	and	move	the	iterator	one	step	further.

													messageText	+=	"";

Finally	we	add	the	end-of-bullet-list	rich-text	tag	to	the	messageText	string.

								}	else	{

												messageText	+=	"No	substitutions	exist	for	"	+	\

																											font.family()	+	".";

								}

If	the	substitution	list	was	empty,	we	make	a	note	about	it	in	the	messageText
string.

								fontInfo->setText(messageText);

				}

Now	that	we	have	the	messageText	string	ready	we	enter	it	into	the	fontInfo

textview.

				void	Viewer::setFontSubstitutions()

				{

With	this	function	we	finally	reveal	the	secret	of	how	to	define	custom
substitutions	for	a	font	family.

								QStringList	substitutes;

All	we	need	is	a	string	list.

								substitutes.append("Times");

								substitutes	+=		"Mincho",

								substitutes	<<	"Arabic	Newspaper"	<<	"crox";

In	a	real	world	application	you	will	probably	stick	to	one	of	the	above	methods
to	add	strings	to	a	string	list.	Here	all	possible	ones	are	outlined	to	give	you	an
overview.

After	these	append	operations	substitutes	consists	of	four	members:	Times,
Mincho,	Arabic	Newspaper,	and	Crox	in	this	order.	These	are	the	font	families
that	in	the	first	place	are	searched	for	characters	the	base	font	does	not	provide.

								QFont::insertSubstitutions("Bavaria",	substitutes);

In	Viewer	objects,	these	four	families	provide	a	fallback	for	the	Bavaria	font
family	requested	by	the	setDefault()	slot.

								QFont::insertSubstitution("Tokyo",	"Lucida");

				}

For	the	Tokyo	family	used	in	setItalics()	we	provide	only	one	substitute	family,
Lucida.	Because	it	is	only	one	and	not	many	as	for	Bavaria,	we	use
QFont::insertSubstitution()	instead	of	QFont::insertSubstitutions().

If	you	usually	create	your	GUIs	using	Qt	Designer	this	walkthrough	has	already
come	to	an	end.	If	this	is	one	of	your	first	encounters	with	Qt	you	might	however
continue	with	the	explanation	of	the	very	simple	main()	function.

				void	Viewer::layout()

				{

This	last	member	function	of	the	Viewer	class	does	not	cover	any	more	QFont
details.	All	it	does	is	creating	a	nice	automatic	layout	for	the	three	push	buttons
and	the	two	text	views.

The	best	solution	for	this	task	is	to	have	the	two	QTextViews	lined	up
horizontally.	The	same	applies	to	the	QPushButtons.	Finally	both	of	these
layouts	are	placed	together	into	a	vertical	layout	container.	Qt	takes	care	of	the
proportions	so	that	everything	looks	nice.

								QHBoxLayout	*	textViewContainer	=	new	QHBoxLayout();

Let's	create	the	first	layout	that	aligns	its	members	horizontally,	...

								textViewContainer->addWidget(greetings);

...	and	add	the	QTextView	with	the	greetings,	...

								textViewContainer->addWidget(fontInfo);

...	as	well	as	the	text	view	with	the	font	information.	fontInfo	appears	to	the	right
of	greetings	because	it	was	added	later.

								QHBoxLayout	*	buttonContainer	=	new	QHBoxLayout();

Now	we	create	the	second	layout	for	the	push	buttons.

								buttonContainer->addWidget(defaultButton);

defaultButton	is	placed	on	the	left	hand	side	of	the	layout,	...

								buttonContainer->addWidget(sansSerifButton);

...	sansSerifButton	in	the	middle,	...

								buttonContainer->addWidget(italicsButton);

...	and	italicsButton	on	the	right	hand	side.

Unfortunately	we	face	a	tiny	problem:	remember	that	(a	highly	unusual	thing	to
do	in	a	real	world	application)	the	labels	of	the	three	buttons	are	drawn	in
different	fonts.	Whilst	the	automatic	layout	accounts	for	the	fact	all	three	buttons
have	the	same	width,	the	uncommon	occurrence	of	different	character	heights

leads	to	different	button	heights.

To	make	the	application	window	look	nice	we	have	to	help	it	a	little.

								int	maxButtonHeight	=	defaultButton->height();

								if	(sansSerifButton->height()	>	maxButtonHeight)

												maxButtonHeight	=	sansSerifButton->height();

								if	(italicsButton->height()	>	maxButtonHeight)

												maxButtonHeight	=	italicsButton->height();

By	comparing	the	three	button	heights	we	find	the	largest	one	and	store	it	in
maxButtonHeight.

								defaultButton->setFixedHeight(maxButtonHeight);

								sansSerifButton->setFixedHeight(maxButtonHeight);

								italicsButton->setFixedHeight(maxButtonHeight);

Now	we	set	the	height	of	each	button	to	this	maximum	value	and	make	sure	that
the	automatic	layout	does	not	change	it.

This	was	the	hardest	part	of	the	entire	layout	process.	There	is	one	task	left:

								QVBoxLayout	*	container	=	new	QVBoxLayout(this);

We	create	a	layout	that	arranges	its	members	vertically.

								container->addLayout(textViewContainer);

This	container	layout	contains	the	text	views	on	top,	...

								container->addLayout(buttonContainer);

...	and	the	button	row	below.

								resize(700,	250);

				}

Finally	we	set	the	size	of	the	entire	main	window	to	a	width	of	700	pixels	and	a
height	of	250	pixels.

The	main	program

There	is	not	much	to	say	about	the	main	program.

				#include	"viewer.h"

				#include	<qapplication.h>

				int	main(int	argc,	char	**argv)

				{

								QApplication	app(argc,	argv);

								Viewer	*	textViewer	=	new	Viewer();

We	create	an	instance	of	the	Viewer	class,	...

								app.setMainWidget(textViewer);

...	make	it	the	main	widget	of	the	application	object	app,	...

								textViewer->show();

...	display	it	to	the	user	...

								return	app.exec();

				}

...	and	enter	the	application	loop.	Well	done,	that	was	all	for	today	...

See	also	Step-by-step	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Walkthrough:	Using	SAX2	features
with	the	Qt	XML	classes

This	document	assumes	that	you	are	familiar	with	namespaces	in	XML	and	the
concept	of	a	SAX2	parser.	If	features	of	SAX2	readers	are	new	to	you	please
read	the	feature	section	of	the	SAX2	document.

As	a	novice	to	the	Qt	XML	classes	it	is	advisable	to	have	a	look	at	the	tiny
SAX2	parser	walkthrough	before	reading	on.

This	walkthrough	covers	two	topics:	First	of	all	it	shows	how	to	set	SAX2
features	and	secondly	how	to	integrate	the	Qt	XML	functionality	into	a	Qt	GUI
application.

The	resulting	application	allows	you	to	compare	the	output	of	the	reader
depending	on	how	the	two	features	http://xml.org/sax/features/namespace-
prefixes	and	http://xml.org/sax/features/namespaces	are	set.	To	do	this	it	shows
tree	views	of	the	read	XML	file	listing	the	qualified	names	of	elements	and
attributes	and	the	respective	namespace	URIs.

Setting	features

Let's	begin	with	the	main	program	of	the	application.	First	the	boring	part:	we
include	all	the	classes	we	need:

				#include	"structureparser.h"

				#include	<qapplication.h>

				#include	<qfile.h>

				#include	<qxml.h>

				#include	<qlistview.h>

				#include	<qgrid.h>

				#include	<qmainwindow.h>

				#include	<qlabel.h>

structureparser.h	contains	the	API	of	the	XML	parser	that	we	implement	in
structureparser.cpp.

				int	main(int	argc,	char	**argv)

				{

								QApplication	app(argc,	argv);

As	usual	we	then	create	a	Qt	application	object	and	hand	command	line
arguments	over	to	it.

								QFile	xmlFile(argc	==	2	?	argv[1]	:	"fnord.xml");

If	the	user	runs	the	program	with	one	filename	as	an	argument	we	process	this
file,	otherwise	we	use	the	fnord.xml	file	from	the	example	directory	for
demonstration	purposes.

								QXmlInputSource	source(&xmlFile);

We	use	xmlFile	as	the	XML	Input	Source...

								QXmlSimpleReader	reader;

...	and	instantiate	a	reader	object.	Later	we	will	manipulate	its	features	and	thus
influence	how	the	XML	data	are	read.

								QGrid	*	container	=	new	QGrid(3);

Now	let's	think	about	presenting	the	output:	As	described	in	the	Qt	SAX2
documentation	there	are	three	valid	combinations	of
http://xml.org/sax/features/namespace-prefixes	and
http://xml.org/sax/features/namespaces:	TRUE/TRUE,	TRUE/FALSE	and
FALSE/TRUE.	To	show	the	relevant	output	side	by	side	of	each	other	and	mark
them	with	three	labels	makes	up	for	a	grid	layout	consisting	of	three	columns
(and	thus	two	lines).

								QListView	*	nameSpace	=	new	QListView(container,	"table_namespace");

The	most	natural	way	of	presenting	XML	elements	is	in	a	tree.	Thus	we	use	a
listview.	Its	name	nameSpace	indicates	that	this	one	will	be	used	to	present	the
combination	of	http://xml.org/sax/features/namespaces	being	TRUE	and
http://xml.org/sax/features/namespace-prefixes	being	FALSE	--	the	default
configuration	of	a	QXmlSimpleReader.

Being	the	first	grid	entry	the	nameSpace	listview	will	appear	in	the	upper	left
corner	of	the	virtual	grid.

								StructureParser	*	handler	=	new	StructureParser(nameSpace);

Then	we	create	a	handler	that	deals	with	the	XML	data	read	by	the	reader.	As	the
provided	handler	class	QXmlDefaultHandler	simply	does	nothing	with	the	data
from	the	reader,	we	can't	use	it	right	away.	Instead	we	have	to	subclass	our	own
StructureParser	from	it.

								reader.setContentHandler(handler);

The	handler	serves	as	content	handler	for	the	reader.	Note	that	for	simplicity
reasons	we	don't	register	e.g.	an	error	handler.	Thus	our	program	will	not
complain	about	for	example	missing	closing	tags	in	the	parsed	XML	document.

								reader.parse(source);

Finally	we	parse	the	document	with	the	reader's	default	feature	settings.

								QListView	*	namespacePrefix	=	new	QListView(container,

																																																					"table_namespace_prefix");

Now	we	prepare	for	the	parsing	of	the	same	XML	input	source	with	different
reader	settings.	The	output	will	be	presented	in	a	second	QListView,
namespacePrefix.	As	it	is	the	second	member	of	the	container	grid	it	will	appear
in	the	middle	of	the	upper	grid	row.

								handler->setListView(namespacePrefix);

Then	we	ask	the	handler	to	present	the	data	in	the	namespacePrefix	listview.

								reader.setFeature("http://xml.org/sax/features/namespace-prefixes",

																											TRUE);

Now	we	modify	the	behaviour	of	the	reader	and	change
http://xml.org/sax/features/namespace-prefixes	from	the	default	FALSE	to
TRUE.	The	http://xml.org/sax/features/namespaces	feature	has	still	its	default
setting	TRUE.

								source.reset();

We	have	to	reset	the	input	source	to	make	the	new	parsing	start	from	the
beginning	of	the	document	again.

								reader.parse(source);

Finally	we	parse	the	XML	file	a	second	time	with	the	changed	reader	settings
(TRUE/TRUE).

								QListView	*	prefix	=	new	QListView(container,	"table_prefix");

								handler->setListView(prefix);

								reader.setFeature("http://xml.org/sax/features/namespaces",	FALSE);

								source.reset();

								reader.parse(source);

Next	we	prepare	and	use	the	upper	right	listview	to	show	the	reader	results	with
the	feature	setting	http://xml.org/sax/features/namespaces	FALSE	and
http://xml.org/sax/features/namespace-prefixes	TRUE.

								//	namespace	label

								(void)	new	QLabel(

																	"Default:\n"

																	"http://xml.org/sax/features/namespaces:	TRUE\n"

																	"http://xml.org/sax/features/namespace-prefixes:	FALSE\n",

																	container);

								//	namespace	prefix	label

								(void)	new	QLabel(

																	"\n"

																	"http://xml.org/sax/features/namespaces:	TRUE\n"

																	"http://xml.org/sax/features/namespace-prefixes:	TRUE\n",

																	container);

								//	prefix	label

								(void)	new	QLabel(

																	"\n"

																	"http://xml.org/sax/features/namespaces:	FALSE\n"

																	"http://xml.org/sax/features/namespace-prefixes:	TRUE\n",

																	container);

The	second	row	of	the	container	grid	is	filled	with	three	labels	denoting	the
reader	settings	that	belong	to	the	above	listview.

								app.setMainWidget(container);

								container->show();

								return	app.exec();

				}

Same	procedure	as	with	every	Qt	GUI	program:	the	grid	serves	as	the	main
widget	of	our	application	and	is	shown.	After	that	we	enter	the	GUI's	event	loop.

The	handler	API

Let's	have	a	brief	look	at	the	API	of	our	handler	class	StructureParser:

				#include	<qxml.h>

				#include	<qptrstack.h>

				class	QListView;

				class	QListViewItem;

				class	QString;

				class	StructureParser:	public	QXmlDefaultHandler

				{

We	derive	it	from	the	QXmlDefaultHandler	class	that	implements	a	handler	that
simply	does	nothing.

				public:

								StructureParser(QListView	*);

This	makes	it	easy	for	us	to	implement	only	the	functionality	we	in	fact	need.	In
our	case	this	is	the	constructor	that	takes	a	QListView	as	an	argument,

								bool	startElement(const	QString&,	const	QString&,	const	QString

																											const	QXmlAttributes&);

the	function	to	execute	at	the	occurrence	of	element	start	tags	(inherited	from
QXmlContentHandler),	and

								bool	endElement(const	QString&,	const	QString&,	const	QString

the	code	to	run	when	an	end	tag	occurs.

All	we	have	to	implement	so	far	is	content	handling.

								void	setListView(QListView	*);

In	addition	we	have	a	function	that	selects	a	listview	for	the	output.

				private:

								QPtrStack<QListViewItem>	stack;

Keep	in	mind	that	we	write	a	SAX2	parser	that	doesn't	have	an	object	model	to
keep	all	elements	and	attributes	in	memory.	To	display	the	elements	and
attributes	in	a	tree	like	structure	we	must	however	keep	track	of	all	elements	that
haven't	been	closed	yet.

To	do	this	we	use	a	LIFO	stack	of	QListItems.	An	element	will	be	added	to	the
stack	when	its	start	tag	appears	and	removed	as	soon	as	its	end	tag	is	parsed.

								QListView	*	table;

				};

Apart	from	this	we	define	a	member	variable	that	contains	the	currently	used
listview.

The	handler	itself

Now	that	we	defined	the	API	we	have	to	implement	the	relevant	functions.

				#include	"structureparser.h"

				#include	<qstring.h>

				#include	<qlistview.h>

				StructureParser::StructureParser(QListView	*	t)

																				:	QXmlDefaultHandler()

				{

First	we	have	the	constructor	that	takes	a	listview	pointer	as	its	argument.

								setListView(t);

				}

All	we	have	to	do	here	is	to	prepare	the	argument	QListView	before	usage.	This
we	do	with	the	setListView()	function.

				void	StructureParser::setListView(QListView	*	t)

				{

								table	=	t;

First	we	store	the	argument	away.

								table->setSorting(-1);

We	want	the	elements	to	be	listed	as	they	appear	in	the	document	--	and	not	for
example	sorted	alphabetically.	That's	why	we	switch	off	sorting	at	all.

								table->addColumn("Qualified	name");

								table->addColumn("Namespace");

				}

The	listview	now	consists	of	two	columns:	one	for	the	element's	or	attribute's
qualified	names	and	one	for	their	namespace	URIs.	Columns	are	added	from	left
to	right	and	with	the	title	as	an	argument.

Now	let's	deal	with	XML	content	handling.

				bool	StructureParser::startElement(const	QString&	namespaceURI,

																																								const	QString&	,

																																								const	QString&	qName,

																																								const	QXmlAttributes&	attributes)

				{

When	we	come	across	the	start	tag	of	an	element	the	handler	does	the	real	work.
Although	startElement	is	called	with	four	arguments	we	keep	track	of	only	three:
the	namespace	URI	of	the	element,	its	qualified	name	and	its	attributes.	If	an
element	has	no	namespace	assigned	or	if	the	feature	settings	of	the	reader	don't
provide	the	handler	with	namespace	URIs	at	all	namespaceURI	contains	an
empty	string.

Note	that	we	don't	assign	a	variable	to	the	second	argument	--	we're	simply	not
interested	in	the	local	name	of	the	element.

								QListViewItem	*	element;

Whenever	an	element	occurs	we	want	to	show	it	in	the	listview.	Therefore	we
define	a	QListViewItem	variable.

								if	(!	stack.isEmpty()){

												QListViewItem	*lastChild	=	stack.top()->firstChild();

As	long	as	the	element	stack	isn't	empty	the	current	element	is	a	child	of	the
topmost	(last	unclosed)	element	on	the	stack.	Thus	we	create	a	new
QListViewItem	as	a	child	of	QPtrStack::stack.top()	with	the	new	element's
qualified	name	in	the	first	column	and	the	according	namespace	URI	(or
nothing)	in	the	second	one.

The	QListViewItem	is	usally	inserted	as	the	first	child.	This	means	that	we
would	get	the	elements	in	reverse	order.	So	we	first	search	for	the	last	child	of
the	QPtrStack::stack.top()	element	and	insert	it	after	this	element.

In	a	valid	XML	document	this	applies	to	all	elements	except	the	document	root.

												if	(lastChild)	{

																while	(lastChild->nextSibling())

																				lastChild	=	lastChild->nextSibling();

												}

												element	=	new	QListViewItem(stack.top(),	lastChild,	qName,	namespaceURI);

								}	else	{

												element	=	new	QListViewItem(table,	qName,	namespaceURI);

								}

The	root	element	we	have	to	handle	separately	because	it	is	the	first	element	to
go	onto	the	QListViewItem	stack.	Its	listview	item	is	therefore	a	direct	child	of
the	table	listview	itself.

								stack.push(element);

Now	we	put	the	element's	listview	item	on	top	of	the	stack.

								element->setOpen(TRUE);

By	default	a	QListView	presents	all	of	its	nodes	closed.	The	user	may	then	click
on	the	+	icon	to	see	the	child	entries.

We	however	want	to	see	the	entire	element	tree	at	once	when	we	run	the
program.	Therefore	we	open	each	listview	item	manually.

								if	(attributes.length()	>	0)	{

What	do	we	do	if	an	element	has	attributes?

												for	(int	i	=	0	;	i	<	attributes.length();	i++)	{

																new	QListViewItem(element,	attributes.qName(i),	attributes.

												}

								}

For	each	of	them	we	create	a	new	listview	item	to	present	the	attribute's	qualified
name	and	the	relevant	namespace	URI	(or	nothing).	Obviously	attribute	is	a
child	of	the	current	element.

								return	TRUE;

				}

To	prevent	the	reader	from	throwing	an	error	we	have	to	return	TRUE	when	we
successfully	dealt	with	an	element's	start	tag.

				bool	StructureParser::endElement(const	QString&,	const	QString&,

																																						const	QString&)

				{

								stack.pop();

Whenever	we	come	across	an	element's	closing	tag	we	have	to	remove	its
listview	item	from	the	stack	as	it	can't	have	children	any	longer.

								return	TRUE;

				}

And	so	we're	done.

See	also	Step-by-step	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Walkthrough:	How	to	use	the	Qt
SAX2	classes

For	a	general	discussion	of	the	XML	topics	in	Qt	please	refer	to	the	document
XML	Module.	To	learn	more	about	SAX2	see	the	document	describing	the	Qt
SAX2	implementation.

Before	reading	on	you	should	at	least	be	familiar	with	the	Introduction	to	SAX2.

A	tiny	parser

In	this	section	we	will	present	a	small	example	reader	that	outputs	the	names	of
all	elements	in	an	XML	document	on	the	command	line.	The	element	names	are
indented	corresponding	to	their	nesting	level.

As	mentioned	in	Introduction	to	SAX2	we	have	to	implement	the	functions	of
the	handler	classes	that	we	are	interested	in.	In	our	case	these	are	only	three:
QXmlContentHandler::startDocument(),	QXmlContentHandler::startElement()
and	QXmlContentHandler::endElement().

For	this	purpose	we	use	a	subclass	of	the	QXmlDefaultHandler	(remember	that
the	special	handler	classes	are	all	abstract	and	the	default	handler	class	provides
an	implementation	that	does	not	change	the	parsing	behavior):

/**

**	$Id:		qt/structureparser.h			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	STRUCTUREPARSER_H

#define	STRUCTUREPARSER_H

#include	<qxml.h>

class	QString;

class	StructureParser	:	public	QXmlDefaultHandler

{

public:

				bool	startDocument();

				bool	startElement(const	QString&,	const	QString&,	const	QString

																							const	QXmlAttributes&);

				bool	endElement(const	QString&,	const	QString&,	const	QString&);

private:

				QString	indent;

};

#endif

Apart	from	the	private	helper	variable	indent	that	we	will	use	to	get	indentation
right,	there	is	nothing	special	about	our	new	StructureParser	class.

Even	the	implementation	is	straight-forward:

				#include	"structureparser.h"

				#include	<stdio.h>

				#include	<qstring.h>

First	we	overload	QXmlContentHandler::startDocument()	with	a	non-empty
version.

				bool	StructureParser::startDocument()

				{

								indent	=	"";

								return	TRUE;

				}

At	the	beginning	of	the	document	we	simply	set	indent	to	an	empty	string
because	we	want	to	print	out	the	root	element	without	any	indentation.	Also	we
return	TRUE	so	that	the	parser	continues	without	reporting	an	error.

Because	we	want	to	be	informed	when	the	parser	comes	accross	a	start	tag	of	an
element	and	subsequently	print	it	out,	we	have	to	overload
QXmlContentHandler::startElement().

				bool	StructureParser::startElement(const	QString&,	const	QString

																																								const	QString&	qName,

																																								const	QXmlAttributes&)

				{

								printf("%s%s\n",	(const	char*)indent,	(const	char*)qName);

								indent	+=	"				";

								return	TRUE;

				}

This	is	what	the	implementation	does:	The	name	of	the	element	with	preceding
indentation	is	printed	out	followed	by	a	linebreak.	Strictly	speaking	qName
contains	the	local	element	name	without	an	eventual	prefix	denoting	the
namespace.

If	another	element	follows	before	the	current	element's	end	tag	it	should	be

indented.	Therefore	we	add	four	spaces	to	the	indent	string.

Finally	we	return	TRUE	in	order	to	let	the	parser	continue	without	errors.

The	last	functionality	we	need	to	add	is	the	parser's	behaviour	when	an	end	tag
occurs.	This	means	overloading	QXmlContentHandler::endElement().

				bool	StructureParser::endElement(const	QString&,	const	QString&,	const	

				{

								indent.remove(0,	4);

								return	TRUE;

				}

Obviously	we	then	should	shorten	the	indent	string	by	the	four	whitespaces
added	in	startElement().

With	this	we're	done	with	our	parser	and	can	start	writing	the	main()	program.

				#include	"structureparser.h"

				#include	<qfile.h>

				#include	<qxml.h>

				#include	<qwindowdefs.h>

				int	main(int	argc,	char	**argv)

				{

								if	(argc	<	2)	{

												fprintf(stderr,	"Usage:	%s	<xmlfile>\n",	argv[0]);

												return	1;

								}

								for	(int	i=1;	i	<	argc;	i++)	{

Successively	we	deal	with	all	files	given	as	command	line	arguments.

												StructureParser	handler;

The	next	step	is	to	create	an	instance	of	the	StructureParser.

												QFile	xmlFile(argv[i]);

												QXmlInputSource	source(&xmlFile);

Then	we	create	a	QXmlInputSource	for	the	XML	file	to	be	parsed.

												QXmlSimpleReader	reader;

												reader.setContentHandler(&handler);

After	that	we	set	up	the	reader.	As	our	StructureParser	class	deals	with
QXmlContentHandler	functionality	only	we	simply	register	it	as	the	content
handler	of	our	choice.

												reader.parse(source);

Now	we	take	our	input	source	and	start	parsing.

								}

								return	0;

				}

Running	the	program	on	the	following	XML	file...

<animals>

<mammals>

		<monkeys>	<gorilla/>	<orang-utan/>	</monkeys>

</mammals>

<birds>	<pigeon/>	<penguin/>	</birds>

</animals>

...	produces	the	following	output:

animals

				mammals

								monkeys

												gorilla

												orang-utan

				birds

								pigeon

								penguin	

It	will	however	refuse	to	produce	the	correct	result	if	you	e.g.	insert	a	whitespace
between	a	<	and	the	element	name	in	your	test-XML	file.	To	prevent	such
annoyances	you	should	always	install	an	error	handler	with
QXmlReader::setErrorHandler().	This	allows	you	to	report	parsing	errors	to	the
user.

See	also	Step-by-step	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QDockWindow
QDockWindowQDockArea	 ……

#include	<qdockwindow.h>

QFrame

QToolBar

enum	Place	{	InDock,	OutsideDock	}
enum	CloseMode	{	Never	=	0,	Docked	=	1,	Undocked	=	2,	Always	=
Docked	|	Undocked	}
QDockWindow	(Place	p	=	InDock,	QWidget	*	parent	=	0,
const	char	*	name	=	0,	WFlags	f	=	0)
virtual	void	setWidget	(QWidget	*	w)
QWidget	*	widget	()	const
Place	place	()	const
QDockArea	*	area	()	const
virtual	void	setCloseMode	(int	m)
bool	isCloseEnabled	()	const
int	closeMode	()	const
virtual	void	setResizeEnabled	(bool	b)
virtual	void	setMovingEnabled	(bool	b)
bool	isResizeEnabled	()	const
bool	isMovingEnabled	()	const
virtual	void	setHorizontallyStretchable	(bool	b)
virtual	void	setVerticallyStretchable	(bool	b)
bool	isHorizontallyStretchable	()	const
bool	isVerticallyStretchable	()	const
void	setHorizontalStretchable	(bool	b)		(obsolete)
void	setVerticalStretchable	(bool	b)		(obsolete)
bool	isHorizontalStretchable	()	const		(obsolete)
bool	isVerticalStretchable	()	const		(obsolete)
bool	isStretchable	()	const
virtual	void	setOffset	(int	o)
int	offset	()	const
virtual	void	setFixedExtentWidth	(int	w)
virtual	void	setFixedExtentHeight	(int	h)
QSize	fixedExtent	()	const
virtual	void	setNewLine	(bool	b)
bool	newLine	()	const
Qt::Orientation	orientation	()	const
QBoxLayout	*	boxLayout	()
virtual	void	setOpaqueMoving	(bool	b)

bool	opaqueMoving	()	const

virtual	void	undock	()
virtual	void	dock	()
virtual	void	setOrientation	(Orientation	o)

void	orientationChanged	(Orientation	o)
void	placeChanged	(QDockWindow::Place	p)
void	visibilityChanged	(bool	visible)

int	closeMode	-	
bool	horizontallyStretchable	-	
bool	movingEnabled	-	
bool	newLine	-	
int	offset	-	
bool	opaqueMoving	-	
Place	place	-		
bool	resizeEnabled	-	
bool	stretchable	-	orientation()	
bool	verticallyStretchable	-	

QDockWindowQDockArea

QToolBarQDockWindow

QDockAreaQDockWindow QToolBar

QDockWindow

setCloseMode()

QMainWindowQMainWindow QDockArea
QMainWindow

QDockAreaQMainWindow0

				QToolBar	*fileTools	=	new	QToolBar(this,	"File	Actions");

				moveDockWindow(fileTools,	Left);

				

QMainWindow QToolBar

setWidget
setOrientation

Qt

dock()undock()setOrientation() QDockArea::moveDockWindow
QMainWindowQMainWindow::moveDockWindow()
QMainWindow::removeDockWindow()

setOffset() setNewLine() setFixedExtentWidth
setFixedExtentHeight() setHorizontallyStretchable()setVerticallyStretchable()

setMovingEnabled() setOpaqueMoving

visibilityChanged()	 placeChanged

QDockWindow::CloseMode

QDockWindow::Never	-	
QDockWindow::Docked	-	
QDockWindow::Undocked	-	
QDockWindow::Always	-	

QDockWindow::Place

QDockWindow

QDockWindow::InDock	-	QDockArea
QDockWindow::OutsideDock	-	

QDockWindow::QDockWindow	(Place	p	=	InDock,
QWidget	*	parent	=	0,	const	char	*	name	=	0,	WFlags	f	=	0)

parentnamefQDockWindow

pInDockparentQDockAreaQMainWindowparentQMainWindow Top

pOutsideDockparent0

QMainWindow InDock QMainWindow::moveDockWindow

QDockArea	*	QDockWindow::area	()	const

0

QBoxLayout	*	QDockWindow::boxLayout	()

setWidget()

setWidget()setOrientation()

int	QDockWindow::closeMode	()	const

“closeMode”

void	QDockWindow::dock	()	[]

undock()

QSize	QDockWindow::fixedExtent	()	const

setFixedExtentWidth()setFixedExtentHeight()

bool	QDockWindow::isCloseEnabled	()	const

PlaceCloseMode

closeMode

bool	QDockWindow::isHorizontalStretchable	()	const

bool	QDockWindow::isHorizontallyStretchable	()	const

“horizontallyStretchable”

bool	QDockWindow::isMovingEnabled	()	const

“movingEnabled”

bool	QDockWindow::isResizeEnabled	()	const

“resizeEnabled”

bool	QDockWindow::isStretchable	()	const

orientation() “stretchable”

bool	QDockWindow::isVerticalStretchable	()	const

bool	QDockWindow::isVerticallyStretchable	()	const

“verticallyStretchable”

bool	QDockWindow::newLine	()	const

“newLine”

int	QDockWindow::offset	()	const

“offset”

bool	QDockWindow::opaqueMoving	()	const

“opaqueMoving”

Qt::Orientation	QDockWindow::orientation	()	const

orientationChanged()

void	QDockWindow::orientationChanged	(Orientation	o)	[]

o

Place	QDockWindow::place	()	const

“place”

void	QDockWindow::placeChanged	(QDockWindow::Place	p)
[]

pInDockpOutsideDock

QDockArea::moveDockWindow() QDockArea::removeDockWindow() QMainWindow::moveDockWindow
QMainWindow::removeDockWindow()

void	QDockWindow::setCloseMode	(int	m)	[]

m“closeMode”

void	QDockWindow::setFixedExtentHeight	(int	h)	[]

h

setFixedExtentWidth()

void	QDockWindow::setFixedExtentWidth	(int	w)	[]

w

setFixedExtentHeight()

void	QDockWindow::setHorizontalStretchable	(bool	b)

void	QDockWindow::setHorizontallyStretchable	(bool	b)	[]

b“horizontallyStretchable”

void	QDockWindow::setMovingEnabled	(bool	b)	[]

b“movingEnabled”

void	QDockWindow::setNewLine	(bool	b)	[]

b“newLine”

void	QDockWindow::setOffset	(int	o)	[]

o“offset”

void	QDockWindow::setOpaqueMoving	(bool	b)	[]

b“opaqueMoving”

void	QDockWindow::setOrientation	(Orientation	o)	[]

oboxLayout()

void	QDockWindow::setResizeEnabled	(bool	b)	[]

orientation()b“resizeEnabled”

void	QDockWindow::setVerticalStretchable	(bool	b)

void	QDockWindow::setVerticallyStretchable	(bool	b)	[]

See	the	"verticallyStretchable"	property	for	details.	b“verticallyStretchable”

void	QDockWindow::setWidget	(QWidget	*	w)	[]

w

boxLayout()

void	QDockWindow::undock	()	[]

Undocks	the	QDockWindow	from	its	current	dock	area	if	it	is	docked;	otherwise
does	nothing.

dock() QDockArea::moveDockWindow() QDockArea::removeDockWindow()
QMainWindow::removeDockWindow()

void	QDockWindow::visibilityChanged	(bool	visible)	[]

visibleQDockWindow

QMainWindowQMainWindow

QWidget	*	QDockWindow::widget	()	const

setWidget()

int	closeMode

NeverDocked Undocked Always

Never

setCloseMode()closeMode()

bool	horizontallyStretchable

setHorizontallyStretchable(TRUE)setResizeEnabled(TRUE)

resizeEnabled

setHorizontallyStretchable()isHorizontallyStretchable()

bool	movingEnabled

setMovingEnabled()isMovingEnabled()

bool	newLine

setNewLine()newLine()

int	offset

0

setOffset()offset()

bool	opaqueMoving

setOpaqueMoving()opaqueMoving()

Place	place

place() InDockOutsideDock

QDockArea::moveDockWindow() QDockArea::removeDockWindow() QMainWindow::moveDockWindow
QMainWindow::removeDockWindow()

place()

bool	resizeEnabled

setResizeEnabled(TRUE)

verticallyStretchablehorizontallyStretchable

setResizeEnabled()isResizeEnabled()

bool	stretchable

orientation()

setHorizontallyStretchable()setVerticallyStretchable()setResizeEnabled()

resizeEnabled

isStretchable()

bool	verticallyStretchable

setVerticallyStretchable(TRUE)setResizeEnabled(TRUE)

resizeEnabled

setVerticallyStretchable()isVerticallyStretchable()

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QImageFormatPlugin	Class
Reference

The	QImageFormatPlugin	class	provides	an	abstract	base	for	custom	image
format	plugins.	More...

#include	<qimageformatplugin.h>

List	of	all	member	functions.

Public	Members

QImageFormatPlugin	()
~QImageFormatPlugin	()
virtual	QStringList	keys	()	const	=	0
virtual	bool	installIOHandler	(const	QString	&	format)	=	0

Detailed	Description

The	QImageFormatPlugin	class	provides	an	abstract	base	for	custom	image
format	plugins.

The	image	format	plugin	is	a	simple	plugin	interface	that	makes	it	easy	to	create
custom	image	formats	that	can	be	used	transparently	by	applications.

Writing	an	image	format	plugin	is	achieved	by	subclassing	this	base	class,
reimplementing	the	pure	virtual	functions	keys()	and	installIOHandler(),	and
exporting	the	class	with	the	Q_EXPORT_PLUGIN	macro.	See	the	Plugins
documentation	for	details.

See	also	Plugins.

Member	Function	Documentation

QImageFormatPlugin::QImageFormatPlugin	()

Constructs	an	image	format	plugin.	This	is	invoked	automatically	by	the
Q_EXPORT_PLUGIN	macro.

QImageFormatPlugin::~QImageFormatPlugin	()

Destroys	the	image	format	plugin.

You	never	have	to	call	this	explicitly.	Qt	destroys	a	plugin	automatically	when	it
is	no	longer	used.

bool	QImageFormatPlugin::installIOHandler	(
const	QString	&	format)	[pure	virtual]

Installs	a	QImageIO	image	I/O	handler	for	the	image	format	format.

See	also	keys().

QStringList	QImageFormatPlugin::keys	()	const	[pure	virtual]

Returns	the	list	of	image	formats	this	plugin	supports.

See	also	installIOHandler().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QProgressDialog
QProgressDialog	 ……

#include	<qprogressdialog.h>

QDialog

QProgressDialog	(QWidget	*	creator	=	0,	const	char	*	name	=	0,
bool	modal	=	FALSE,	WFlags	f	=	0)
QProgressDialog	(const	QString	&	labelText,
const	QString	&	cancelButtonText,	int	totalSteps,	QWidget	*	creator	=	0,
const	char	*	name	=	0,	bool	modal	=	FALSE,	WFlags	f	=	0)
~QProgressDialog	()
void	setLabel	(QLabel	*	label)
void	setCancelButton	(QPushButton	*	cancelButton)
void	setBar	(QProgressBar	*	bar)
bool	wasCancelled	()	const
int	totalSteps	()	const
int	progress	()	const
virtual	QSize	sizeHint	()	const
QString	labelText	()	const
void	setAutoReset	(bool	b)
bool	autoReset	()	const
void	setAutoClose	(bool	b)
bool	autoClose	()	const
int	minimumDuration	()	const

void	cancel	()
void	reset	()
void	setTotalSteps	(int	totalSteps)
void	setProgress	(int	progress)
void	setLabelText	(const	QString	&)
void	setCancelButtonText	(const	QString	&	cancelButtonText)
void	setMinimumDuration	(int	ms)

void	cancelled	()

bool	autoClose	-	reset()
bool	autoReset	-	progress()totalSteps()reset()
QString	labelText	-	
int	minimumDuration	-	
int	progress	-	
int	totalSteps	-	
bool	wasCancelled	-		

void	forceShow	()

QProgressDialog

QProgessDialog

setTotalSteps()“” setProgress()0
totalSteps()setProgress()

setAutoReset()setAutoClose()

QProgressDialog

QProgressDialogqApp->processEvents()
wasCancelled()

QProgressDialog	progress("Copying	files...",	"Abort	Copy",	numFiles,

																										this,	"progress",	TRUE);

for	(int	i	=	0;	i	<	numFiles;	i++)	{

				progress.setProgress(i);

				qApp->processEvents();

				if	(progress.wasCancelled())

								break;

				//……

}

progress.setProgress(numFiles);

QProgressBar

cancelled() setProgress()

Operation::Operation(QObject	*parent	=	0)

				:	QObject(parent),	steps(0)

{

				pd	=	new	QProgressDialog("Operation	in	progress.",	"Cancel",	100);

				connect(pd,	SIGNAL(cancelled()),	this,	SLOT(cancel()));

				t	=	new	QTimer(this);

				connect(t,	SIGNAL(timeout()),	this,	SLOT(perform()));

				t->start(0);

}

void	Operation::perform()

{

				pd->setProgress(steps);

				//……

				steps++;

				if	(steps	>	pd->totalSteps())

								t->stop();

}

void	Operation::cancel()

{

				t->stop();

				//……

}

setLabel() setBar()setCancelButton()

	

QDialogQProgressBar Dialog	Classes

QProgressDialog::QProgressDialog	(QWidget	*	creator	=	0,
const	char	*	name	=	0,	bool	modal	=	FALSE,	WFlags	f	=	0)

“Cancel”
100

creator namemodalfQDialog::QDialog() modal modal

labelTextsetLabel() setCancelButtonText() setCancelButton()totalSteps

QProgressDialog::QProgressDialog	(const	QString	&	labelText,
const	QString	&	cancelButtonText,	int	totalSteps,
QWidget	*	creator	=	0,	const	char	*	name	=	0,	bool	modal	=
FALSE,	WFlags	f	=	0)

labelText

cancelButtonText0

totalSteps5050 setProgress(0)setProgress(1)
setProgress(2)setProgress(50)

namemodalfQDialog::QDialog() modal modal

creator creator QDialog0

labelTextsetLabel() setCancelButtonText() setCancelButton()totalSteps

QProgressDialog::~QProgressDialog	()

bool	QProgressDialog::autoClose	()	const

reset() “autoClose”

bool	QProgressDialog::autoReset	()	const

progress()totalSteps() reset() “autoReset”

void	QProgressDialog::cancel	()	[]

wasCancelled()

void	QProgressDialog::cancelled	()	[]

cancel()

wasCancelled

progress/progress.cpp

void	QProgressDialog::forceShow	()	[]

minimumDuration

minimumDuration

QString	QProgressDialog::labelText	()	const

“labelText”

int	QProgressDialog::minimumDuration	()	const

“minimumDuration”

int	QProgressDialog::progress	()	const

“progress”

void	QProgressDialog::reset	()	[]

autoClose()

autoCloseautoReset

void	QProgressDialog::setAutoClose	(bool	b)

reset()b“autoClose”

void	QProgressDialog::setAutoReset	(bool	b)

progress()totalSteps() reset()b“autoReset”

void	QProgressDialog::setBar	(QProgressBar	*	bar)

bar barbar

void	QProgressDialog::setCancelButton	(
QPushButton	*	cancelButton)

cancelButtonnew()

setCancelButtonText()

void	QProgressDialog::setCancelButtonText	(
const	QString	&	cancelButtonText)	[]

cancelButtonText

setCancelButton()

void	QProgressDialog::setLabel	(QLabel	*	label)

labelnew()

labelText

progress/progress.cpp

void	QProgressDialog::setLabelText	(const	QString	&)	[]

“labelText”

void	QProgressDialog::setMinimumDuration	(int	ms)	[]

ms“minimumDuration”

void	QProgressDialog::setProgress	(int	progress)	[]

progress“progress”

void	QProgressDialog::setTotalSteps	(int	totalSteps)	[]

totalSteps“totalSteps”

QSize	QProgressDialog::sizeHint	()	const	[]

int	QProgressDialog::totalSteps	()	const

“totalSteps”

bool	QProgressDialog::wasCancelled	()	const

“wasCancelled”

bool	autoClose

reset()

autoReset

setAutoClose()autoClose()

bool	autoReset

progress()totalSteps() reset()

autoClose

setAutoReset()autoReset()

QString	labelText

QString::null

setLabelText()labelText()

int	minimumDuration

04000

setMinimumDuration()minimumDuration()

int	progress

0 QProgressDialog::totalSteps() setProgress()

	 QProgressDialog::QProgressDialog())
QApplication::processEvents() paintEvent()QProgressDialog

totalSteps

setProgress()progress()

int	totalSteps

0

setTotalSteps()totalSteps()

bool	wasCancelled

progress

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QTableSelection
[]

QTableSelectionQTable	 ……

#include	<qtable.h>

QTableSelection	()
void	init	(int	row,	int	col)
void	expandTo	(int	row,	int	col)
bool	operator==	(const	QTableSelection	&	s)	const
bool	operator!=	(const	QTableSelection	&	s)	const
int	topRow	()	const
int	bottomRow	()	const
int	leftCol	()	const
int	rightCol	()	const
int	anchorRow	()	const
int	anchorCol	()	const
bool	isActive	()	const

QTableSelection QTable

selectionQTableanchor	cell init() expandTo()

anchorRow()anchorCol() leftCol() rightCol() topRow()bottomRow()

QTableSelection——isActive()FALSEinit()expandTo()

QTableQTable::addSelection() QTable::selection()

QTableSelection::QTableSelection	()

init()expandTo()

int	QTableSelection::anchorCol	()	const

anchorRow()expandTo()

int	QTableSelection::anchorRow	()	const

anchorCol()expandTo()

int	QTableSelection::bottomRow	()	const

topRow() leftCol()rightCol()

void	QTableSelection::expandTo	(int	row,	int	col)

rowcolrowcolbounding	rectangle

init()

init()isActive()

void	QTableSelection::init	(int	row,	int	col)

rowcol

expandTo()

isActive()

bool	QTableSelection::isActive	()	const

init()expandTo()

int	QTableSelection::leftCol	()	const

topRow() bottomRow()rightCol()

bool	QTableSelection::operator!=	(const	QTableSelection	&	s)
const

sTRUEFALSE

bool	QTableSelection::operator==	(const	QTableSelection	&	s)
const

sTRUEFALSE

int	QTableSelection::rightCol	()	const

topRow() bottomRow()leftCol()

int	QTableSelection::topRow	()	const

bottomRow() leftCol()rightCol()

Copyright	©	2002	Trolltech Trademarks :farfareast Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QAccessible	Class	Reference
The	QAccessible	class	provides	enums	and	static	functions	relating	to
accessibility.	More...

#include	<qaccessible.h>

Inherited	by	QAccessibleInterface.

List	of	all	member	functions.

Public	Members

enum	Event	{	SoundPlayed	=	0x0001,	Alert	=	0x0002,
ForegroundChanged	=	0x0003,	MenuStart	=	0x0004,	MenuEnd	=	0x0005,
PopupMenuStart	=	0x0006,	PopupMenuEnd	=	0x0007,	ContextHelpStart	=
0x000C,	ContextHelpEnd	=	0x000D,	DragDropStart	=	0x000E,
DragDropEnd	=	0x000F,	DialogStart	=	0x0010,	DialogEnd	=	0x0011,
ScrollingStart	=	0x0012,	ScrollingEnd	=	0x0013,	MenuCommand	=
0x0018,	ObjectCreated	=	0x8000,	ObjectDestroyed	=	0x8001,	ObjectShow
=	0x8002,	ObjectHide	=	0x8003,	ObjectReorder	=	0x8004,	Focus	=
0x8005,	Selection	=	0x8006,	SelectionAdd	=	0x8007,	SelectionRemove	=
0x8008,	SelectionWithin	=	0x8009,	StateChanged	=	0x800A,
LocationChanged	=	0x800B,	NameChanged	=	0x800C,
DescriptionChanged	=	0x800D,	ValueChanged	=	0x800E,	ParentChanged	=
0x800F,	HelpChanged	=	0x80A0,	DefaultActionChanged	=	0x80B0,
AcceleratorChanged	=	0x80C0	}
enum	State	{	Normal	=	0x00000000,	Unavailable	=	0x00000001,	Selected
=	0x00000002,	Focused	=	0x00000004,	Pressed	=	0x00000008,	Checked	=
0x00000010,	Mixed	=	0x00000020,	ReadOnly	=	0x00000040,	HotTracked
=	0x00000080,	Default	=	0x00000100,	Expanded	=	0x00000200,	Collapsed
=	0x00000400,	Busy	=	0x00000800,	Floating	=	0x00001000,	Marqueed	=
0x00002000,	Animated	=	0x00004000,	Invisible	=	0x00008000,	Offscreen
=	0x00010000,	Sizeable	=	0x00020000,	Moveable	=	0x00040000,
SelfVoicing	=	0x00080000,	Focusable	=	0x00100000,	Selectable	=
0x00200000,	Linked	=	0x00400000,	Traversed	=	0x00800000,
MultiSelectable	=	0x01000000,	ExtSelectable	=	0x02000000,	AlertLow	=
0x04000000,	AlertMedium	=	0x08000000,	AlertHigh	=	0x10000000,
Protected	=	0x20000000,	Valid	=	0x3fffffff	}
enum	Role	{	NoRole	=	0x00000000,	TitleBar	=	0x00000001,	MenuBar	=
0x00000002,	ScrollBar	=	0x00000003,	Grip	=	0x00000004,	Sound	=
0x00000005,	Cursor	=	0x00000006,	Caret	=	0x00000007,	AlertMessage	=
0x00000008,	Window	=	0x00000009,	Client	=	0x0000000A,	PopupMenu	=
0x0000000B,	MenuItem	=	0x0000000C,	ToolTip	=	0x0000000D,
Application	=	0x0000000E,	Document	=	0x0000000F,	Pane	=	0x00000010,
Chart	=	0x00000011,	Dialog	=	0x00000012,	Border	=	0x00000013,
Grouping	=	0x00000014,	Separator	=	0x00000015,	ToolBar	=	0x00000016,
StatusBar	=	0x00000017,	Table	=	0x00000018,	ColumnHeader	=

0x00000019,	RowHeader	=	0x0000001A,	Column	=	0x0000001B,	Row	=
0x0000001C,	Cell	=	0x0000001D,	Link	=	0x0000001E,	HelpBalloon	=
0x0000001F,	Character	=	0x00000020,	List	=	0x00000021,	ListItem	=
0x00000022,	Outline	=	0x00000023,	OutlineItem	=	0x00000024,	PageTab
=	0x00000025,	PropertyPage	=	0x00000026,	Indicator	=	0x00000027,
Graphic	=	0x00000028,	StaticText	=	0x00000029,	EditableText	=
0x0000002A,	PushButton	=	0x0000002B,	CheckBox	=	0x0000002C,
RadioButton	=	0x0000002D,	ComboBox	=	0x0000002E,	DropLest	=
0x0000002F,	ProgressBar	=	0x00000030,	Dial	=	0x00000031,	HotkeyField
=	0x00000032,	Slider	=	0x00000033,	SpinBox	=	0x00000034,	Diagram	=
0x00000035,	Animation	=	0x00000036,	Equation	=	0x00000037,
ButtonDropDown	=	0x00000038,	ButtonMenu	=	0x00000039,
ButtonDropGrid	=	0x0000003A,	Whitespace	=	0x0000003B,	PageTabList
=	0x0000003C,	Clock	=	0x0000003D	}
enum	NavDirection	{	NavUp	=	0x00000001,	NavDown	=	0x00000002,
NavLeft	=	0x00000003,	NavRight	=	0x00000004,	NavNext	=	0x00000005,
NavPrevious	=	0x00000006,	NavFirstChild	=	0x00000007,	NavLastChild	=
0x00000008,	NavFocusChild	=	0x00000009	}
enum	Text	{	Name	=	0,	Description,	Value,	Help,	Accelerator,
DefaultAction	}

Static	Public	Members

QRESULT	queryAccessibleInterface	(QObject	*	object,
QAccessibleInterface	**	iface)
void	updateAccessibility	(QObject	*	object,	int	control,	Event	reason)

Detailed	Description

The	QAccessible	class	provides	enums	and	static	functions	relating	to
accessibility.

Accessibility	clients	use	implementations	of	the	QAccessibleInterface	to	read	the
information	an	accessible	object	exposes,	or	to	call	functions	to	manipulate	the
accessible	object.

See	the	plugin	documentation	for	more	details	about	how	to	redistribute	Qt
plugins.

See	also	Miscellaneous	Classes.

Member	Type	Documentation

QAccessible::Event

This	enum	type	defines	event	types	when	the	state	of	the	accessible	object	has
changed.	The	event	types	are:

QAccessible::SoundPlayed

QAccessible::Alert

QAccessible::ForegroundChanged

QAccessible::MenuStart

QAccessible::MenuEnd

QAccessible::PopupMenuStart

QAccessible::PopupMenuEnd

QAccessible::ContextHelpStart

QAccessible::ContextHelpEnd

QAccessible::DragDropStart

QAccessible::DragDropEnd

QAccessible::DialogStart

QAccessible::DialogEnd

QAccessible::ScrollingStart

QAccessible::ScrollingEnd

QAccessible::ObjectCreated

QAccessible::ObjectDestroyed

QAccessible::ObjectShow

QAccessible::ObjectHide

QAccessible::ObjectReorder

QAccessible::Focus

QAccessible::Selection

QAccessible::SelectionAdd

QAccessible::SelectionRemove

QAccessible::SelectionWithin

QAccessible::StateChanged

QAccessible::LocationChanged

QAccessible::NameChanged

QAccessible::DescriptionChanged

QAccessible::ValueChanged

QAccessible::ParentChanged

QAccessible::HelpChanged

QAccessible::DefaultActionChanged

QAccessible::AcceleratorChanged

QAccessible::MenuCommand

QAccessible::NavDirection

This	enum	specifies	which	item	to	move	to	when	navigating.

QAccessible::NavUp	-	sibling	above
QAccessible::NavDown	-	sibling	below
QAccessible::NavLeft	-	left	sibling
QAccessible::NavRight	-	right	sibling
QAccessible::NavNext	-	next	sibling
QAccessible::NavPrevious	-	previous	sibling
QAccessible::NavFirstChild	-	first	child
QAccessible::NavLastChild	-	last	child
QAccessible::NavFocusChild	-	child	with	focus

QAccessible::Role

This	enum	defines	a	number	of	roles	an	accessible	object	can	have.	The	roles
are:

QAccessible::NoRole

QAccessible::TitleBar

QAccessible::MenuBar

QAccessible::ScrollBar

QAccessible::Grip

QAccessible::Sound

QAccessible::Cursor

QAccessible::Caret

QAccessible::AlertMessage

QAccessible::Window

QAccessible::Client

QAccessible::PopupMenu

QAccessible::MenuItem

QAccessible::ToolTip

QAccessible::Application

QAccessible::Document

QAccessible::Pane

QAccessible::Chart

QAccessible::Dialog

QAccessible::Border

QAccessible::Grouping

QAccessible::Separator

QAccessible::ToolBar

QAccessible::StatusBar

QAccessible::Table

QAccessible::ColumnHeader

QAccessible::RowHeader

QAccessible::Column

QAccessible::Row

QAccessible::Cell

QAccessible::Link

QAccessible::HelpBalloon

QAccessible::Character

QAccessible::List

QAccessible::ListItem

QAccessible::Outline

QAccessible::OutlineItem

QAccessible::PageTab

QAccessible::PropertyPage

QAccessible::Indicator

QAccessible::Graphic

QAccessible::StaticText

QAccessible::EditableText

QAccessible::PushButton

QAccessible::CheckBox

QAccessible::RadioButton

QAccessible::ComboBox

QAccessible::DropLest

QAccessible::ProgressBar

QAccessible::Dial

QAccessible::HotkeyField

QAccessible::Slider

QAccessible::SpinBox

QAccessible::Diagram

QAccessible::Animation

QAccessible::Equation

QAccessible::ButtonDropDown

QAccessible::ButtonMenu

QAccessible::ButtonDropGrid

QAccessible::Whitespace

QAccessible::PageTabList

QAccessible::Clock

QAccessible::State

This	enum	type	defines	bitflags	that	can	be	combined	to	indicate	the	state	of	the
accessible	object.	The	values	are:

QAccessible::Normal

QAccessible::Unavailable

QAccessible::Selected

QAccessible::Focused

QAccessible::Pressed

QAccessible::Checked

QAccessible::Mixed

QAccessible::ReadOnly

QAccessible::HotTracked

QAccessible::Default

QAccessible::Expanded

QAccessible::Collapsed

QAccessible::Busy

QAccessible::Floating

QAccessible::Marqueed

QAccessible::Animated

QAccessible::Invisible

QAccessible::Offscreen

QAccessible::Sizeable

QAccessible::Moveable

QAccessible::SelfVoicing

QAccessible::Focusable

QAccessible::Selectable

QAccessible::Linked

QAccessible::Traversed

QAccessible::MultiSelectable

QAccessible::ExtSelectable

QAccessible::AlertLow

QAccessible::AlertMedium

QAccessible::AlertHigh

QAccessible::Protected

QAccessible::Valid

QAccessible::Text

This	enum	specifies	string	information	that	an	accessible	object	returns.

QAccessible::Name	-	The	name	of	the	object
QAccessible::Description	-	A	short	text	describing	the	object
QAccessible::Value	-	The	value	of	the	object
QAccessible::Help	-	A	longer	text	giving	information	about	how	to	use
the	object
QAccessible::DefaultAction	-	The	default	method	to	interact	with	the
object
QAccessible::Accelerator	-	The	keyboard	shortcut	that	executes	the
default	action

Member	Function	Documentation

QRESULT	QAccessible::queryAccessibleInterface	(
QObject	*	object,	QAccessibleInterface	**	iface)	[static]

Sets	iface	to	point	to	the	implementation	of	the	QAccessibleInterface	for	object,
and	returns	QS_OK	if	successfull,	or	sets	iface	to	0	and	returns	QE_NOCOMPONENT	if
no	accessibility	implementation	for	object	exists.

The	function	uses	the	classname	of	object	to	find	a	suitable	implementation.	If
no	implementation	for	the	object's	class	is	available	the	function	tries	to	find	an
implementation	for	the	object's	parent	class.

This	function	is	called	to	answer	an	accessibility	client's	request	for	object
information.	You	should	never	need	to	call	this	function	yourself.

void	QAccessible::updateAccessibility	(QObject	*	object,
int	control,	Event	reason)	[static]

Notifies	accessibility	clients	about	a	change	in	object's	accessibility	information.

reason	specifies	the	cause	of	the	change,	for	example,	ValueChange	when	the
position	of	a	slider	has	been	changed.	control	is	the	ID	of	the	child	element	that
has	changed.	When	control	is	0,	the	object	itself	has	changed.

Call	this	function	whenever	the	state	of	your	accessible	object	or	one	of	it's	sub-
elements	has	been	changed	either	programmatically	(e.g.	by	calling
QLabel::setText())	or	by	user	interaction.

If	there	are	no	accessibility	tools	listening	to	this	event,	the	performance	penalty
for	calling	this	function	is	minor.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QDomAttr	Class	Reference
[XML	module]

The	QDomAttr	class	represents	one	attribute	of	a	QDomElement.	More...

#include	<qdom.h>

Inherits	QDomNode.

List	of	all	member	functions.

Public	Members

QDomAttr	()
QDomAttr	(const	QDomAttr	&	x)
QDomAttr	&	operator=	(const	QDomAttr	&	x)
~QDomAttr	()
virtual	QString	name	()	const
virtual	bool	specified	()	const
virtual	QDomElement	ownerElement	()	const
virtual	QString	value	()	const
virtual	void	setValue	(const	QString	&	v)
virtual	QDomNode::NodeType	nodeType	()	const
virtual	bool	isAttr	()	const

Detailed	Description

The	QDomAttr	class	represents	one	attribute	of	a	QDomElement.

For	example,	the	following	piece	of	XML	gives	an	element	with	no	children,	but
two	attributes:

		<link	href="http://www.trolltech.com"	color="red"	/>

		

One	can	use	the	attributes	of	an	element	with	code	like	this:

		QDomElement	e	=	//...

		//...

		QDomAttr	a	=	e.attributeNode("href");

		cout	<<	a.value()	<<	endl	//	gives	"http://www.trolltech.com"

		a.setValue("http://doc.trolltech.com");	//	change	the	node's	attribute

		QDomAttr	a2	=	e.attributeNode("href");

		cout	<<	a2.value()	<<	endl	//	gives	"http://doc.trolltech.com"

		

This	example	also	shows	that	changing	an	attribute	received	from	an	element
changes	the	attribute	of	the	element.	If	you	do	not	want	to	change	the	value	of
the	element's	attribute	you	have	to	use	cloneNode()	to	get	an	independent	copy
of	the	attribute.

QDomAttr	can	return	the	name()	and	value()	of	an	attribute.	An	attribute's	value
is	set	with	setValue().	If	specified	returns	TRUE	the	value	was	either	set	in	the
document	or	set	with	setValue();	otherwise	the	value	hasn't	been	set.	The	node
this	attribute	is	attached	to	(if	any)	is	returned	by	ownerElement().

For	further	information	about	the	Document	Object	Model	see
http://www.w3.org/TR/REC-DOM-Level-1/	and	http://www.w3.org/TR/DOM-
Level-2-Core/.	For	a	more	general	introduction	of	the	DOM	implementation	see
the	QDomDocument	documentation.

See	also	XML.

http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/DOM-Level-2-Core/

Member	Function	Documentation

QDomAttr::QDomAttr	()

Constructs	an	empty	attribute.

QDomAttr::QDomAttr	(const	QDomAttr	&	x)

Constructs	a	copy	of	x.

The	data	of	the	copy	is	shared	(shallow	copy):	modifying	one	node	will	also
change	the	other.	If	you	want	to	make	a	deep	copy,	use	cloneNode().

QDomAttr::~QDomAttr	()

Destroys	the	object	and	frees	its	resources.

bool	QDomAttr::isAttr	()	const	[virtual]

Returns	TRUE.

Reimplemented	from	QDomNode.

QString	QDomAttr::name	()	const	[virtual]

Returns	the	name	of	the	attribute.

QDomNode::NodeType	QDomAttr::nodeType	()	const	[virtual]

Returns	AttributeNode.

Reimplemented	from	QDomNode.

QDomAttr	&	QDomAttr::operator=	(const	QDomAttr	&	x)

Assigns	x	to	this	DOM	attribute.

The	data	of	the	copy	is	shared	(shallow	copy):	modifying	one	node	will	also
change	the	other.	If	you	want	to	make	a	deep	copy,	use	cloneNode().

QDomElement	QDomAttr::ownerElement	()	const	[virtual]

Returns	the	element	node,	this	attribute	is	attached	to.	If	this	attribute	is	not
attached	to	any	element,	a	null	element	node	is	returned	(i.e.	a	node	for	which
QDomNode::isNull()	returns	TRUE).

void	QDomAttr::setValue	(const	QString	&	v)	[virtual]

Sets	the	value	of	the	attribute	to	v.

See	also	value().

bool	QDomAttr::specified	()	const	[virtual]

Returns	TRUE	if	the	attribute	has	either	been	expicitly	specified	in	the	XML
document	or	was	set	by	the	user	with	setValue().	Returns	FALSE	if	the	value
hasn't	been	specified	or	set.

See	also	setValue().

QString	QDomAttr::value	()	const	[virtual]

Returns	the	value	of	the	attribute.	Returns	a	null	string	if	the	attribute	has	not
been	specified.

See	also	specified()	and	setValue().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QImageFormatType	Class	Reference
The	QImageFormatType	class	is	a	factory	that	makes	QImageFormat	objects.
More...

#include	<qasyncimageio.h>

List	of	all	member	functions.

Public	Members

virtual	~QImageFormatType	()
virtual	QImageFormat	*	decoderFor	(const	uchar	*	buffer,	int	length)	=	0
virtual	const	char	*	formatName	()	const	=	0

Protected	Members

QImageFormatType	()

Detailed	Description

The	QImageFormatType	class	is	a	factory	that	makes	QImageFormat	objects.

Whereas	the	QImageIO	class	allows	for	complete	loading	of	images,
QImageFormatType	allows	for	incremental	loading	of	images.

New	image	file	formats	are	installed	by	creating	objects	of	derived	classes	of
QImageFormatType.	They	must	implement	decoderFor()	and	formatName().

QImageFormatType	is	a	very	simple	class.	Its	only	task	is	to	recognize	image
data	in	some	format	and	make	a	new	object,	subclassed	from	QImageFormat,
which	can	decode	that	format.

The	factories	for	formats	built	into	Qt	are	automatically	defined	before	any	other
factory	is	initialized.	If	two	factories	would	recognize	an	image	format,	the
factory	created	last	will	override	the	earlier	one;	you	can	thus	override	current
and	future	built-in	formats.

See	also	Graphics	Classes,	Image	Processing	Classes	and	Multimedia	Classes.

Member	Function	Documentation

QImageFormatType::QImageFormatType	()	[protected]

Constructs	a	factory.	It	automatically	registers	itself	with	QImageDecoder.

QImageFormatType::~QImageFormatType	()	[virtual]

Destroys	a	factory.	It	automatically	unregisters	itself	from	QImageDecoder.

QImageFormat	*	QImageFormatType::decoderFor	(
const	uchar	*	buffer,	int	length)	[pure	virtual]

Returns	a	decoder	for	decoding	an	image	that	starts	with	the	bytes	in	buffer.	The
length	of	the	data	is	given	in	length.	This	function	should	only	return	a	decoder
if	it	is	certain	that	the	decoder	applies	to	data	with	the	given	header.	Returns	0	if
there	is	insufficient	data	in	the	header	to	make	a	positive	identification	or	if	the
data	is	not	recognized.

const	char	*	QImageFormatType::formatName	()	const	[pure
virtual]

Returns	the	name	of	the	format	supported	by	decoders	from	this	factory.	The
string	is	statically	allocated.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QPtrCollection
QPtrCollectionQt	 ……

#include	<qptrcollection.h>

Inherited	by	QAsciiDict,	QCache,	QDict,	QIntDict,	QPtrList,	QPtrDict	and
QPtrVector.

bool	autoDelete	()	const
void	setAutoDelete	(bool	enable)
virtual	uint	count	()	const	=	0
virtual	void	clear	()	=	0
typedef	void	*	Item

QPtrCollection	()
QPtrCollection	(const	QPtrCollection	&	source)
virtual	~QPtrCollection	()
virtual	Item	newItem	(Item	d)
virtual	void	deleteItem	(Item	d)	=	0

QPtrCollectionQt

QPtrCollectionQt QDictQPtrListQt QValueListQMap

QPtrCollection setAutoDelete()

Item void*Item

GUI

QPtrCollection::Item

QPtrCollection“”

QPtrCollection::QPtrCollection	()	[]

QPtrCollection

QPtrCollection::QPtrCollection	(const	QPtrCollection	&	source)
[]

autoDelete() sourceQPtrCollection

sourceautoDelete

QPtrCollection::~QPtrCollection	()	[]

QPtrCollection

bool	QPtrCollection::autoDelete	()	const

FALSE

setAutoDelete()

void	QPtrCollection::clear	()	[]

setAutoDelete()

QAsciiDictQCacheQDictQIntDictQPtrListQPtrDictQPtrVector

uint	QPtrCollection::count	()	const	[]

QAsciiDictQCacheQDictQIntDictQPtrListQPtrDictQPtrVector

void	QPtrCollection::deleteItem	(Item	d)	[]

d

clear()C++ deleteItem()

newItem()setAutoDelete()

Item	QPtrCollection::newItem	(Item	d)	[]

d

deleteItem()

void	QPtrCollection::setAutoDelete	(bool	enable)

enable enable

——

remove()

autoDelete()

grapher/grapher.cppscribble/scribble.cpptable/bigtable/main.cpp

Qt		©	1995-2002	 Trolltech

http://www.trolltech.com/

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QTabletEvent	Class	Reference
The	QTabletEvent	class	contains	parameters	that	describe	a	Tablet	event.	More...

#include	<qevent.h>

Inherits	QEvent.

List	of	all	member	functions.

Public	Members

enum	TabletDevice	{	NoDevice	=	-1,	Puck,	Stylus,	Eraser	}
QTabletEvent	(const	QPoint	&	pos,	int	device,	int	pressure,	int	xTilt,
int	yTilt,	const	QPair<int,	int>	&	uId)
QTabletEvent	(const	QPoint	&	pos,	const	QPoint	&	globalPos,	int	device,
int	pressure,	int	xTilt,	int	yTilt,	const	QPair<int,	int>	&	uId)
int	pressure	()	const
int	xTilt	()	const
int	yTilt	()	const
const	QPoint	&	pos	()	const
const	QPoint	&	globalPos	()	const
int	x	()	const
int	y	()	const
int	globalX	()	const
int	globalY	()	const
TabletDevice	device	()	const
int	isAccepted	()	const
void	accept	()
void	ignore	()
QPair<int,	int>	uniqueId	()

Detailed	Description

The	QTabletEvent	class	contains	parameters	that	describe	a	Tablet	event.

Tablet	Events	are	generated	from	a	Wacom©	tablet.	Most	of	the	time	you	will
want	to	deal	with	events	from	the	tablet	as	if	they	were	events	from	a	mouse,	for
example	retrieving	the	position	with	x(),	y(),	pos(),	globalX(),	globalY()	and
globalPos().	In	some	situations	you	may	wish	to	retrieve	the	extra	information
provided	by	the	tablet	device	driver,	for	example,	you	might	want	to	adjust	color
brightness	based	on	pressure.	QTabletEvent	allows	you	to	get	the	pressure(),	the
xTilt()	and	yTilt(),	as	well	as	the	type	of	device	being	used	with	device()	(see
TabletDevice).

A	tablet	event	contains	a	special	accept	flag	that	indicates	whether	the	receiver
wants	the	event.	You	should	call	QTabletEvent::accept()	if	you	handle	the	tablet
event;	otherwise	it	will	be	sent	to	the	parent	widget.

The	QWidget::setEnabled()	function	can	be	used	to	enable	or	disable	mouse	and
keyboard	events	for	a	widget.

The	event	handler	QWidget::tabletEvent()	receives	tablet	events.

See	also	Event	Classes.

Member	Type	Documentation

QTabletEvent::TabletDevice

This	enum	defines	what	type	of	device	is	generating	the	event.

QTabletEvent::NoDevice	-	No	device,	or	an	unknown	device.
QTabletEvent::Puck	-	A	Puck	(a	device	that	is	similar	to	a	flat	mouse	with
a	transparent	circle	with	cross-hairs).
QTabletEvent::Stylus	-	A	Stylus	(the	narrow	end	of	the	pen).
QTabletEvent::Eraser	-	An	Eraser	(the	broad	end	of	the	pen).

Member	Function	Documentation

QTabletEvent::QTabletEvent	(const	QPoint	&	pos,	int	device,
int	pressure,	int	xTilt,	int	yTilt,	const	QPair<int,	int>	&	uId)

Constructs	a	tablet	event	object.

The	globalPos()	is	initialized	to	QCursor::pos(),	i.e.	pos,	which	is	usually	(but
not	always)	correct.	Use	the	other	constructor	if	you	need	to	specify	the	global
position	explicitly.	device	contains	the	device	type,	pressure	contains	the
pressure	exerted	on	the	device,	xTilt	and	yTilt	contain	the	device's	degrees	of	tilt
from	the	X	and	Y	axis	respectively.	The	uId	contains	an	event	id.

See	also	pos(),	device(),	pressure(),	xTilt()	and	yTilt().

QTabletEvent::QTabletEvent	(const	QPoint	&	pos,
const	QPoint	&	globalPos,	int	device,	int	pressure,	int	xTilt,
int	yTilt,	const	QPair<int,	int>	&	uId)

Constructs	a	tablet	event	object.	The	position	when	the	event	occurred	is	is	given
in	pos	and	globalPos.	device	contains	the	device	type,	pressure	contains	the
pressure	exerted	on	the	device,	xTilt	and	yTilt	contain	the	device's	degrees	of	tilt
from	the	X	and	Y	axis	respectively.	The	uId	contains	an	event	id.

On	Irix,	globalPos	will	contain	the	high-resolution	coordinates	received	from	the
tablet	device	driver,	instead	of	from	the	windowing	system.

See	also	pos(),	globalPos(),	device(),	pressure(),	xTilt()	and	yTilt().

void	QTabletEvent::accept	()

Sets	the	accept	flag	of	the	tablet	event	object.

Setting	the	accept	flag	indicates	that	the	receiver	of	the	event	wants	the	tablet
event.	Unwanted	tablet	events	are	sent	to	the	parent	widget.

The	accept	flag	is	set	by	default.

See	also	ignore().

TabletDevice	QTabletEvent::device	()	const

Returns	the	type	of	device	that	generated	the	event.	Useful	if	you	want	one	end
of	the	pen	to	do	something	different	than	the	other.

See	also	TabletDevice.

const	QPoint	&	QTabletEvent::globalPos	()	const

Returns	the	global	position	of	the	device	at	the	time	of	the	event.	This	is
important	on	asynchronous	windows	systems	like	X11;	whenever	you	move
your	widgets	around	in	response	to	mouse	events,	globalPos()	can	differ
significantly	from	the	current	position	QCursor::pos().

See	also	globalX()	and	globalY().

int	QTabletEvent::globalX	()	const

Returns	the	global	x-position	of	the	mouse	pointer	at	the	time	of	the	event.

See	also	globalY()	and	globalPos().

int	QTabletEvent::globalY	()	const

Returns	the	global	y-position	of	the	mouse	pointer	at	the	time	of	the	event.

See	also	globalX()	and	globalPos().

void	QTabletEvent::ignore	()

Clears	the	accept	flag	parameter	of	the	tablet	event	object.

Clearing	the	accept	flag	indicates	that	the	event	receiver	does	not	want	the	tablet
event.	Unwanted	tablet	events	are	sent	to	the	parent	widget.

The	accept	flag	is	set	by	default.

See	also	accept().

int	QTabletEvent::isAccepted	()	const

Returns	TRUE	if	the	receiver	of	the	event	handles	the	tablet	event;	otherwise
returns	FALSE.

const	QPoint	&	QTabletEvent::pos	()	const

Returns	the	position	of	the	device,	relative	to	the	widget	that	received	the	event.

If	you	move	widgets	around	in	response	to	mouse	events,	use	globalPos()
instead	of	this	function.

See	also	x(),	y()	and	globalPos().

int	QTabletEvent::pressure	()	const

Returns	the	pressure	that	is	exerted	on	the	device.	This	number	is	a	value	from	0
(no	pressure)	to	255	(maximum	pressure).	The	pressure	is	always	scaled	to	be
within	this	range	no	matter	how	many	pressure	levels	the	underlying	hardware
supports.

QPair<int,	int>	QTabletEvent::uniqueId	()

Returns	a	unique	ID	for	the	current	device.	It	is	possible	to	generate	a	unique	ID
for	any	Wacom©	device.	This	makes	it	possible	to	differentiate	between	multiple
devices	being	used	at	the	same	time	on	the	tablet.	The	first	member	contains	a
value	for	the	type,	the	second	member	contains	a	physical	ID	obtained	from	the
device.	Each	combination	of	these	values	is	unique.	Note:	for	different
platforms,	the	first	value	is	different	due	to	different	driver	implementations.

int	QTabletEvent::x	()	const

Returns	the	x-position	of	the	device,	relative	to	the	widget	that	received	the
event.

See	also	y()	and	pos().

int	QTabletEvent::xTilt	()	const

Returns	the	difference	from	the	perpendicular	in	the	X	Axis.	Positive	values	are
towards	the	tablet's	physical	right.	The	angle	is	in	the	range	-60	to	+60	degrees.

See	also	yTilt().

int	QTabletEvent::y	()	const

Returns	the	y-position	of	the	device,	relative	to	the	widget	that	received	the
event.

See	also	x()	and	pos().

int	QTabletEvent::yTilt	()	const

Returns	the	difference	from	the	perpendicular	in	the	Y	Axis.	Positive	values	are
towards	the	bottom	of	the	tablet.	The	angle	is	within	the	range	-60	to	+60
degrees.

See	also	xTilt().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QAccessibleInterface	Class	Reference
The	QAccessibleInterface	class	defines	an	interface	that	exposes	information
about	accessible	objects.	More...

#include	<qaccessible.h>

Inherits	QAccessible.

Inherited	by	QAccessibleObject.

List	of	all	member	functions.

Public	Members

virtual	bool	isValid	()	const	=	0
virtual	int	childCount	()	const	=	0
virtual	QRESULT	queryChild	(int	control,	QAccessibleInterface	**	iface)
const	=	0
virtual	QRESULT	queryParent	(QAccessibleInterface	**	iface)	const	=	0
virtual	int	controlAt	(int	x,	int	y)	const	=	0
virtual	QRect	rect	(int	control)	const	=	0
virtual	int	navigate	(NavDirection	direction,	int	startControl)	const	=	0
virtual	QString	text	(Text	t,	int	control)	const	=	0
virtual	void	setText	(Text	t,	int	control,	const	QString	&	text)	=	0
virtual	Role	role	(int	control)	const	=	0
virtual	State	state	(int	control)	const	=	0
virtual	QMemArray<int>	selection	()	const	=	0
virtual	bool	doDefaultAction	(int	control)	=	0
virtual	bool	setFocus	(int	control)	=	0
virtual	bool	setSelected	(int	control,	bool	on,	bool	extend)	=	0
virtual	void	clearSelection	()	=	0

Detailed	Description

The	QAccessibleInterface	class	defines	an	interface	that	exposes	information
about	accessible	objects.

See	also	Miscellaneous	Classes.

Member	Function	Documentation

int	QAccessibleInterface::childCount	()	const	[pure	virtual]

Returns	the	number	of	children	that	belong	to	this	object.	A	child	can	provide
accessibility	information	on	it's	own	(e.g.	a	child	widget),	or	be	a	sub-element	of
this	accessible	object.

All	objects	provide	this	information.

See	also	queryChild().

void	QAccessibleInterface::clearSelection	()	[pure	virtual]

Removes	any	selection	from	the	object.

See	also	setSelected().

int	QAccessibleInterface::controlAt	(int	x,	int	y)	const	[pure
virtual]

Returns	the	ID	of	the	child	that	contains	the	screen	coordinates	(x,	y).	This
function	returns	0	if	the	point	is	positioned	on	the	object	itself.	If	the	tested	point
is	outside	the	boundaries	of	the	object	this	function	returns	-1.

All	visual	objects	provide	this	information.

bool	QAccessibleInterface::doDefaultAction	(int	control)	[pure
virtual]

Calling	this	function	performs	the	default	action	of	the	child	object	specified	by
control,	or	the	default	action	of	the	object	itself	if	control	is	0.

bool	QAccessibleInterface::isValid	()	const	[pure	virtual]

Returns	TRUE	if	all	the	data	necessary	to	use	this	interface	implementation	is
valid	(e.g.	all	pointers	are	non-null),	otherwise	returns	FALSE.

int	QAccessibleInterface::navigate	(NavDirection	direction,
int	startControl)	const	[pure	virtual]

This	function	traverses	to	another	object,	or	to	a	sub-element	of	the	current
object.	direction	specifies	in	which	direction	to	navigate,	and	startControl
specifies	the	start	point	of	the	navigation,	which	is	either	0	if	the	navigation
starts	at	the	object	itself,	or	an	ID	of	one	of	the	object's	sub-elements.

The	function	returns	the	ID	of	the	sub-element	located	in	the	direction	specified.
If	there	is	nothing	in	the	navigated	direction,	this	function	returns	-1.

All	objects	support	navigation.

QRESULT	QAccessibleInterface::queryChild	(int	control,
QAccessibleInterface	**	iface)	const	[pure	virtual]

Sets	iface	to	point	to	the	implementation	of	the	QAccessibleInterface	for	the
child	specified	with	control.	If	the	child	doesn't	provide	accessibility	information
on	it's	own,	the	value	of	iface	is	set	to	0.	For	those	elements,	this	object	is
responsible	for	exposing	the	child's	properties.

All	objects	provide	this	information.

See	also	childCount()	and	queryParent().

QRESULT	QAccessibleInterface::queryParent	(
QAccessibleInterface	**	iface)	const	[pure	virtual]

Sets	iface	to	point	to	the	implementation	of	the	QAccessibleInterface	for	the
parent	object,	or	to	0	if	there	is	no	such	implementation	or	object.

All	objects	provide	this	information.

See	also	queryChild().

QRect	QAccessibleInterface::rect	(int	control)	const	[pure
virtual]

Returns	the	location	of	the	child	specified	with	control	in	screen	coordinates.
This	function	returns	the	location	of	the	object	itself	if	control	is	0.

All	visual	objects	provide	this	information.

Role	QAccessibleInterface::role	(int	control)	const	[pure
virtual]

Returns	the	role	of	the	object	if	control	is	0,	or	the	role	of	the	object's	sub-
element	with	ID	control.	The	role	of	an	object	is	usually	static.	All	accessible
objects	have	a	role.

See	also	text(),	state()	and	selection().

QMemArray<int>	QAccessibleInterface::selection	()	const	[pure
virtual]

Returns	the	list	of	all	the	element	IDs	that	are	selected.

See	also	text(),	role()	and	state().

bool	QAccessibleInterface::setFocus	(int	control)	[pure
virtual]

Gives	the	focus	to	the	child	object	specified	by	control,	or	to	the	object	itself	if
control	is	0.

Returns	TRUE	if	the	focus	could	be	set;	otherwise	returns	FALSE.

bool	QAccessibleInterface::setSelected	(int	control,	bool	on,
bool	extend)	[pure	virtual]

Sets	the	selection	of	the	child	object	with	ID	control	to	on.	If	extend	is	TRUE,	all
child	elements	between	the	focused	item	and	the	specified	child	object	have	their
selection	set	to	on.

Returns	TRUE	if	the	selection	could	be	set;	otherwise	returns	FALSE.

See	also	setFocus()	and	clearSelection().

void	QAccessibleInterface::setText	(Text	t,	int	control,
const	QString	&	text)	[pure	virtual]

Sets	the	text	property	t	of	the	child	object	control	to	text.	If	control	is	0,	the	text
property	of	the	object	itself	is	set.

State	QAccessibleInterface::state	(int	control)	const	[pure
virtual]

Returns	the	current	state	of	the	object	if	control	is	0,	or	the	state	of	the	object's
sub-element	element	with	ID	control.	All	objects	have	a	state.

See	also	text(),	role()	and	selection().

QString	QAccessibleInterface::text	(Text	t,	int	control)	const
[pure	virtual]

Returns	a	string	property	t	of	the	child	object	specified	by	control,	or	the	string
property	of	the	object	itself	if	control	is	0.

The	Name	is	a	string	used	by	clients	to	identify,	find	or	announce	an	accessible
object	for	the	user.	All	objects	must	have	a	name	that	is	unique	within	their
container.

An	accessible	object's	Description	provides	textual	information	about	an	object's
visual	appearance.	The	description	is	primarily	used	to	provide	greater	context
for	low-vision	or	blind	users,	but	is	also	used	for	context	searching	or	other
applications.	Not	all	objects	have	a	description.	An	"OK"	button	would	not	need
a	description,	but	a	toolbutton	that	shows	a	picture	of	a	smiley	would.

The	Value	of	an	accessible	object	represents	visual	information	contained	by	the
object,	e.g.	the	text	in	a	line	edit.	Usually,	the	value	can	be	modified	by	the	user.
Not	all	objects	have	a	value,	e.g.	static	text	labels	don't,	and	some	objects	have	a
state	that	already	is	the	value,	e.g.	toggle	buttons.

The	Help	text	provides	information	about	the	function	and	usage	of	an	accessible
object.	Not	all	objects	provide	this	information.

An	accessible	object's	DefaultAction	describes	the	object's	primary	method	of

manipulation,	and	should	be	a	verb	or	a	short	phrase,	e.g.	"Press"	for	a	button.

The	accelerator	is	a	keyboard	shortcut	that	activates	the	default	action	of	the
object.	A	keyboard	shortcut	is	the	underlined	character	in	the	text	of	a	menu,
menu	item	or	control,	and	is	either	the	character	itself,	or	a	combination	of	this
character	and	a	modifier	key	like	ALT,	CTRL	or	SHIFT.	Command	controls	like
tool	buttons	also	have	shortcut	keys	and	usually	display	them	in	their	tooltip.

See	also	role(),	state()	and	selection().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QDomCDATASection	Class
Reference

[XML	module]
The	QDomCDATASection	class	represents	an	XML	CDATA	section.	More...

#include	<qdom.h>

Inherits	QDomText.

List	of	all	member	functions.

Public	Members

QDomCDATASection	()
QDomCDATASection	(const	QDomCDATASection	&	x)
QDomCDATASection	&	operator=	(const	QDomCDATASection	&	x)
~QDomCDATASection	()
virtual	QDomNode::NodeType	nodeType	()	const
virtual	bool	isCDATASection	()	const

Detailed	Description

The	QDomCDATASection	class	represents	an	XML	CDATA	section.

CDATA	sections	are	used	to	escape	blocks	of	text	containing	characters	that
would	otherwise	be	regarded	as	markup.	The	only	delimiter	that	is	recognized	in
a	CDATA	section	is	the	"]]>"	string	that	terminates	the	CDATA	section.	CDATA
sections	cannot	be	nested.	Their	primary	purpose	is	for	including	material	such
as	XML	fragments,	without	needing	to	escape	all	the	delimiters.

Adjacent	QDomCDATASection	nodes	are	not	merged	by	the
QDomNode::normalize()	function.

For	further	information	about	the	Document	Object	Model	see
http://www.w3.org/TR/REC-DOM-Level-1/	and	http://www.w3.org/TR/DOM-
Level-2-Core/.	For	a	more	general	introduction	of	the	DOM	implementation	see
the	QDomDocument	documentation.

See	also	XML.

http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/DOM-Level-2-Core/

Member	Function	Documentation

QDomCDATASection::QDomCDATASection	()

Constructs	an	empty	CDATA	section.	To	create	a	CDATA	section	with	content,
use	the	QDomDocument::createCDATASection()	function.

QDomCDATASection::QDomCDATASection	(
const	QDomCDATASection	&	x)

Constructs	a	copy	of	x.

The	data	of	the	copy	is	shared	(shallow	copy):	modifying	one	node	will	also
change	the	other.	If	you	want	to	make	a	deep	copy,	use	cloneNode().

QDomCDATASection::~QDomCDATASection	()

Destroys	the	object	and	frees	its	resources.

bool	QDomCDATASection::isCDATASection	()	const	[virtual]

Returns	TRUE.

Reimplemented	from	QDomNode.

QDomNode::NodeType	QDomCDATASection::nodeType	()	const
[virtual]

Returns	CDATASection.

Reimplemented	from	QDomText.

QDomCDATASection	&	QDomCDATASection::operator=	(
const	QDomCDATASection	&	x)

Assigns	x	to	this	CDATA	section.

The	data	of	the	copy	is	shared	(shallow	copy):	modifying	one	node	will	also
change	the	other.	If	you	want	to	make	a	deep	copy,	use	cloneNode().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QImageIO	Class	Reference
The	QImageIO	class	contains	parameters	for	loading	and	saving	images.	More...

#include	<qimage.h>

List	of	all	member	functions.

Public	Members

QImageIO	()
QImageIO	(QIODevice	*	ioDevice,	const	char	*	format)
QImageIO	(const	QString	&	fileName,	const	char	*	format)
~QImageIO	()
const	QImage	&	image	()	const
int	status	()	const
const	char	*	format	()	const
QIODevice	*	ioDevice	()	const
QString	fileName	()	const
int	quality	()	const
QString	description	()	const
const	char	*	parameters	()	const
float	gamma	()	const
void	setImage	(const	QImage	&	image)
void	setStatus	(int	status)
void	setFormat	(const	char	*	format)
void	setIODevice	(QIODevice	*	ioDevice)
void	setFileName	(const	QString	&	fileName)
void	setQuality	(int	q)
void	setDescription	(const	QString	&	description)
void	setParameters	(const	char	*	parameters)
void	setGamma	(float	gamma)
bool	read	()
bool	write	()

Static	Public	Members

const	char	*	imageFormat	(const	QString	&	fileName)
const	char	*	imageFormat	(QIODevice	*	d)
QStrList	inputFormats	()
QStrList	outputFormats	()
void	defineIOHandler	(const	char	*	format,	const	char	*	header,
const	char	*	flags,	image_io_handler	readImage,
image_io_handler	writeImage)

Detailed	Description

The	QImageIO	class	contains	parameters	for	loading	and	saving	images.

QImageIO	contains	a	QIODevice	object	that	is	used	for	image	data	I/O.	The
programmer	can	install	new	image	file	formats	in	addition	to	those	that	Qt
provides.

Qt	currently	supports	the	following	image	file	formats:	PNG,	BMP,	XBM,	XPM
and	PNM.	It	may	also	support	JPEG,	MNG	and	GIF,	if	specially	configured
during	compilation.	The	different	PNM	formats	are:	PBM	(P1	or	P4),	PGM	(P2
or	P5),	and	PPM	(P3	or	P6).

You	don't	normally	need	to	use	this	class;	QPixmap::load(),	QPixmap::save(),
and	QImage	contain	sufficient	functionality.

For	image	files	that	contain	sequences	of	images,	only	the	first	is	read.	See
QMovie	for	loading	multiple	images.

PBM,	PGM,	and	PPM	format	output	is	always	in	the	more	condensed	raw
format.	PPM	and	PGM	files	with	more	than	256	levels	of	intensity	are	scaled
down	when	reading.

Warning:	If	you	are	in	a	country	which	recognizes	software	patents	and	in
which	Unisys	holds	a	patent	on	LZW	compression	and/or	decompression	and
you	want	to	use	GIF,	Unisys	may	require	you	to	license	the	technology.	Such
countries	include	Canada,	Japan,	the	USA,	France,	Germany,	Italy	and	the	UK.

GIF	support	may	be	removed	completely	in	a	future	version	of	Qt.	We
recommend	using	the	PNG	format.

See	also	QImage,	QPixmap,	QFile,	QMovie,	Graphics	Classes,	Image
Processing	Classes	and	Input/Output	and	Networking.

Member	Function	Documentation

QImageIO::QImageIO	()

Constructs	a	QImageIO	object	with	all	parameters	set	to	zero.

QImageIO::QImageIO	(QIODevice	*	ioDevice,
const	char	*	format)

Constructs	a	QImageIO	object	with	the	I/O	device	ioDevice	and	a	format	tag.

QImageIO::QImageIO	(const	QString	&	fileName,
const	char	*	format)

Constructs	a	QImageIO	object	with	the	file	name	fileName	and	a	format	tag.

QImageIO::~QImageIO	()

Destroys	the	object	and	all	related	data.

void	QImageIO::defineIOHandler	(const	char	*	format,
const	char	*	header,	const	char	*	flags,
image_io_handler	readImage,	image_io_handler	writeImage)
[static]

Defines	an	image	I/O	handler	for	the	image	format	called	format,	which	is
recognized	using	the	regular	expression	header,	read	using	readImage	and
written	using	writeImage.

flags	is	a	string	of	single-character	flags	for	this	format.	The	only	flag	defined
currently	is	T	(upper	case),	so	the	only	legal	value	for	flags	are	"T"	and	the
empty	string.	The	"T"	flag	means	that	the	image	file	is	a	text	file,	and	Qt	should
treat	all	newline	conventions	as	equivalent.	(XPM	files	and	some	PPM	files	are
text	files	for	example.)

format	is	used	to	select	a	handler	to	write	a	QImage;	header	is	used	to	select	a

handler	to	read	an	image	file.

If	readImage	is	a	null	pointer,	the	QImageIO	will	not	be	able	to	read	images	in
format.	If	writeImage	is	a	null	pointer,	the	QImageIO	will	not	be	able	to	write
images	in	format.	If	both	are	null,	the	QImageIO	object	is	valid	but	useless.

Example:

								void	readGIF(QImageIO	*image)

								{

								//	read	the	image	using	the	image->ioDevice()

								}

								void	writeGIF(QImageIO	*image)

								{

								//	write	the	image	using	the	image->ioDevice()

								}

								//	add	the	GIF	image	handler

								QImageIO::defineIOHandler("GIF",

																																			"^GIF[0-9][0-9][a-z]",

																																			0,

																																			readGIF,

																																			writeGIF);

				

Before	the	regex	test,	all	the	0	bytes	in	the	file	header	are	converted	to	1	bytes.
This	is	done	because	when	Qt	was	ASCII-based,	QRegExp	could	not	handle	0
bytes	in	strings.

(Note	that	if	one	handlerIO	supports	writing	a	format	and	another	supports
reading	it,	Qt	supports	both	reading	and	writing.	If	two	handlers	support	the
same	operation,	Qt	chooses	one	arbitrarily.)

QString	QImageIO::description	()	const

Returns	the	image	description	string.

See	also	setDescription().

QString	QImageIO::fileName	()	const

Returns	the	file	name	currently	set.

See	also	setFileName().

const	char	*	QImageIO::format	()	const

Returns	the	image	format	string	or	0	if	no	format	has	been	explicitly	set.

float	QImageIO::gamma	()	const

Returns	the	gamma	value	at	which	the	image	will	be	viewed.

See	also	setGamma().

const	QImage	&	QImageIO::image	()	const

Returns	the	image	currently	set.

See	also	setImage().

const	char	*	QImageIO::imageFormat	(
const	QString	&	fileName)	[static]

Returns	a	string	that	specifies	the	image	format	of	the	file	fileName,	or	null	if	the
file	cannot	be	read	or	if	the	format	is	not	recognized.

const	char	*	QImageIO::imageFormat	(QIODevice	*	d)
[static]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	a	string	that	specifies	the	image	format	of	the	image	read	from	IO	device
d,	or	0	if	the	device	cannot	be	read	or	if	the	format	is	not	recognized.

Make	sure	that	d	is	at	the	right	position	in	the	device	(for	example,	at	the
beginning	of	the	file).

See	also	QIODevice::at().

QStrList	QImageIO::inputFormats	()	[static]

Returns	a	sorted	list	of	image	formats	that	are	supported	for	image	input.

QIODevice	*	QImageIO::ioDevice	()	const

Returns	the	IO	device	currently	set.

See	also	setIODevice().

QStrList	QImageIO::outputFormats	()	[static]

Returns	a	sorted	list	of	image	formats	that	are	supported	for	image	output.

Example:	scribble/scribble.cpp.

const	char	*	QImageIO::parameters	()	const

Returns	the	image's	parameters	string.

See	also	setParameters().

int	QImageIO::quality	()	const

Returns	the	quality	of	the	written	image,	related	to	the	compression	ratio.

See	also	setQuality()	and	QImage::save().

bool	QImageIO::read	()

Reads	an	image	into	memory	and	returns	TRUE	if	the	image	was	successfully
read;	otherwise	returns	FALSE.

Before	reading	an	image	you	must	set	an	IO	device	or	a	file	name.	If	both	an	IO
device	and	a	file	name	have	been	set,	the	IO	device	will	be	used.

Setting	the	image	file	format	string	is	optional.

Note	that	this	function	does	not	set	the	format	used	to	read	the	image.	If	you

need	that	information,	use	the	imageFormat()	static	functions.

Example:

								QImageIO	iio;

								QPixmap		pixmap;

								iio.setFileName("vegeburger.bmp");

								if	(image.read())								//	ok

												pixmap	=	iio.image();		//	convert	to	pixmap

				

See	also	setIODevice(),	setFileName(),	setFormat(),	write()	and
QPixmap::load().

void	QImageIO::setDescription	(const	QString	&	description)

Sets	the	image	description	string	for	image	handlers	that	support	image
descriptions	to	description.

Currently,	no	image	format	supported	by	Qt	uses	the	description	string.

void	QImageIO::setFileName	(const	QString	&	fileName)

Sets	the	name	of	the	file	to	read	or	write	an	image	from	to	fileName.

See	also	setIODevice().

void	QImageIO::setFormat	(const	char	*	format)

Sets	the	image	format	to	format	for	the	image	to	be	read	or	written.

It	is	necessary	to	specify	a	format	before	writing	an	image,	but	it	is	not	necessary
to	specify	a	format	before	reading	an	image.

If	no	format	has	been	set,	Qt	guesses	the	image	format	before	reading	it.	If	a
format	is	set	the	image	will	only	be	read	if	it	has	that	format.

See	also	read(),	write()	and	format().

void	QImageIO::setGamma	(float	gamma)

Sets	the	gamma	value	at	which	the	image	will	be	viewed	to	gamma.	If	the	image
format	stores	a	gamma	value	for	which	the	image	is	intended	to	be	used,	then
this	setting	will	be	used	to	modify	the	image.	Setting	to	0.0	will	disable	gamma
correction	(i.e.	any	specification	in	the	file	will	be	ignored).

The	default	value	is	0.0.

See	also	gamma().

void	QImageIO::setIODevice	(QIODevice	*	ioDevice)

Sets	the	IO	device	to	be	used	for	reading	or	writing	an	image.

Setting	the	IO	device	allows	images	to	be	read/written	to	any	block-oriented
QIODevice.

If	ioDevice	is	not	null,	this	IO	device	will	override	file	name	settings.

See	also	setFileName().

void	QImageIO::setImage	(const	QImage	&	image)

Sets	the	image	to	image.

See	also	image().

void	QImageIO::setParameters	(const	char	*	parameters)

Sets	the	image's	parameter	string	to	parameters.	This	is	for	image	handlers	that
require	special	parameters.

Although	the	current	image	formats	supported	by	Qt	ignore	the	parameters
string,	it	may	be	used	in	future	extensions	or	by	contributions	(for	example,
JPEG).

See	also	parameters().

void	QImageIO::setQuality	(int	q)

Sets	the	quality	of	the	written	image	to	q,	related	to	the	compression	ratio.

q	must	be	in	the	range	-1..100.	Specify	0	to	obtain	small	compressed	files,	100
for	large	uncompressed	files.	(-1	signifies	the	default	compression.)

See	also	quality()	and	QImage::save().

void	QImageIO::setStatus	(int	status)

Sets	the	image	IO	status	to	status.	A	non-zero	value	indicates	an	error,	whereas	0
means	that	the	IO	operation	was	successful.

See	also	status().

int	QImageIO::status	()	const

Returns	the	image's	IO	status.	A	non-zero	value	indicates	an	error,	whereas	0
means	that	the	IO	operation	was	successful.

See	also	setStatus().

bool	QImageIO::write	()

Writes	an	image	to	an	IO	device	and	returns	TRUE	if	the	image	was	successfully
written;	otherwise	returns	FALSE.

Before	writing	an	image	you	must	set	an	IO	device	or	a	file	name.	If	both	an	IO
device	and	a	file	name	have	been	set,	the	IO	device	will	be	used.

The	image	will	be	written	using	the	specified	image	format.

Example:

								QImageIO	iio;

								QImage			im;

								im	=	pixmap;	//	convert	to	image

								iio.setImage(im);

								iio.setFileName("vegeburger.bmp");

								iio.setFormat("BMP");

								if	(iio.write())

												//	returned	TRUE	if	written	successfully

				

See	also	setIODevice(),	setFileName(),	setFormat(),	read()	and	QPixmap::save().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QPtrDict	Class	Reference
The	QPtrDict	class	is	a	template	class	that	provides	a	dictionary	based	on	void*
keys.	More...

#include	<qptrdict.h>

Inherits	QPtrCollection.

List	of	all	member	functions.

Public	Members

QPtrDict	(int	size	=	17)
QPtrDict	(const	QPtrDict<type>	&	dict)
~QPtrDict	()
QPtrDict<type>	&	operator=	(const	QPtrDict<type>	&	dict)
virtual	uint	count	()	const
uint	size	()	const
bool	isEmpty	()	const
void	insert	(void	*	key,	const	type	*	item)
void	replace	(void	*	key,	const	type	*	item)
bool	remove	(void	*	key)
type	*	take	(void	*	key)
type	*	find	(void	*	key)	const
type	*	operator[]	(void	*	key)	const
virtual	void	clear	()
void	resize	(uint	newsize)
void	statistics	()	const

Important	Inherited	Members

bool	autoDelete	()	const
void	setAutoDelete	(bool	enable)

Protected	Members

virtual	QDataStream	&	read	(QDataStream	&	s,
QPtrCollection::Item	&	item)
virtual	QDataStream	&	write	(QDataStream	&	s,	QPtrCollection::Item)
const

Detailed	Description

The	QPtrDict	class	is	a	template	class	that	provides	a	dictionary	based	on	void*
keys.

QPtrDict	is	implemented	as	a	template	class.	Define	a	template	instance
QPtrDict<X>	to	create	a	dictionary	that	operates	on	pointers	to	X	(X*).

A	dictionary	is	a	collection	of	key-value	pairs.	The	key	is	a	void*	used	for
insertion,	removal	and	lookup.	The	value	is	a	pointer.	Dictionaries	provide	very
fast	insertion	and	lookup.

Example:

				QPtrDict<char>	extra;

				QLineEdit	*le1	=	new	QLineEdit(this);

				le1->setText("Simpson");

				QLineEdit	*le2	=	new	QLineEdit(this);

				le2->setText("Homer");

				QLineEdit	*le3	=	new	QLineEdit(this);

				le3->setText("45");

				extra.insert(le1,	"Surname");

				extra.insert(le2,	"Forename");

				extra.insert(le3,	"Age");

				QPtrDictIterator<char>	it(extra);	//	See	QPtrDictIterator

				for(;	it.current();	++it)

								cout	<<	it.current()	<<	endl;

				cout	<<	endl;

				if	(extra[le1])	//	Prints	"Surname:	Simpson"

								cout	<<	extra[le1]	<<	":	"	<<	le1->text()	<<	endl;	

				if	(extra[le2])	//	Prints	"Forename:	Homer"

								cout	<<	extra[le2]	<<	":	"	<<	le2->text()	<<	endl;	

				extra.remove(le1);	//	Removes	le1	from	the	dictionary

				cout	<<	le1->text()	<<	endl;	//	Prints	"Simpson"

				

In	this	example	we	use	a	dictionary	to	add	an	extra	property	(a	char*)	to	the	line
edits	we're	using.

See	QDict	for	full	details,	including	the	choice	of	dictionary	size,	and	how
deletions	are	handled.

See	also	QPtrDictIterator,	QDict,	QAsciiDict,	QIntDict,	Collection	Classes,
Collection	Classes	and	Non-GUI	Classes.

Member	Function	Documentation

QPtrDict::QPtrDict	(int	size	=	17)

Constructs	a	dictionary	using	an	internal	hash	array	with	the	size	size.

Setting	size	to	a	suitably	large	prime	number	(equal	to	or	greater	than	the
expected	number	of	entries)	makes	the	hash	distribution	better	and	hence	the
lookup	faster.

QPtrDict::QPtrDict	(const	QPtrDict<type>	&	dict)

Constructs	a	copy	of	dict.

Each	item	in	dict	is	inserted	into	this	dictionary.	Only	the	pointers	are	copied
(shallow	copy).

QPtrDict::~QPtrDict	()

Removes	all	items	from	the	dictionary	and	destroys	it.

All	iterators	that	access	this	dictionary	will	be	reset.

See	also	setAutoDelete().

bool	QPtrCollection::autoDelete	()	const

Returns	the	setting	of	the	auto-delete	option.	The	default	is	FALSE.

See	also	setAutoDelete().

void	QPtrDict::clear	()	[virtual]

Removes	all	items	from	the	dictionary.

The	removed	items	are	deleted	if	auto-deletion	is	enabled.

All	dictionary	iterators	that	access	this	dictionary	will	be	reset.

See	also	remove(),	take()	and	setAutoDelete().

Reimplemented	from	QPtrCollection.

uint	QPtrDict::count	()	const	[virtual]

Returns	the	number	of	items	in	the	dictionary.

See	also	isEmpty().

Reimplemented	from	QPtrCollection.

type	*	QPtrDict::find	(void	*	key)	const

Returns	the	item	associated	with	key,	or	null	if	the	key	does	not	exist	in	the
dictionary.

This	function	uses	an	internal	hashing	algorithm	to	optimize	lookup.

If	there	are	two	or	more	items	with	equal	keys,	then	the	last	item	that	was
inserted	will	be	found.

Equivalent	to	the	[]	operator.

Warning:	Your	application	will	crash	if	you	call	find()	on	an	empty	dictionary;
you	can	check	with	isEmpty()	or	count().	We	don't	perform	this	check	for
efficiency	reasons.

See	also	operator[]().

void	QPtrDict::insert	(void	*	key,	const	type	*	item)

Inserts	the	key	with	the	item	into	the	dictionary.

The	key	does	not	have	to	be	a	unique	dictionary	key.	If	multiple	items	are
inserted	with	the	same	key,	only	the	last	item	will	be	visible.

Null	items	are	not	allowed.

See	also	replace().

bool	QPtrDict::isEmpty	()	const

Returns	TRUE	if	the	dictionary	is	empty;	otherwise	returns	FALSE.

See	also	count().

QPtrDict<type>	&	QPtrDict::operator=	(
const	QPtrDict<type>	&	dict)

Assigns	dict	to	this	dictionary	and	returns	a	reference	to	this	dictionary.

This	dictionary	is	first	cleared	and	then	each	item	in	dict	is	inserted	into	the
dictionary.	Only	the	pointers	are	copied	(shallow	copy),	unless	newItem()	has
been	reimplemented.

type	*	QPtrDict::operator[]	(void	*	key)	const

Returns	the	item	associated	with	key,	or	null	if	the	key	does	not	exist	in	the
dictionary.

This	function	uses	an	internal	hashing	algorithm	to	optimize	lookup.

If	there	are	two	or	more	items	with	equal	keys,	then	the	last	item	that	was
inserted	will	be	found.

Equivalent	to	the	find()	function.

Warning:	Your	application	will	crash	if	you	call	find()	on	an	empty	dictionary;
you	can	check	with	isEmpty()	or	count().	We	don't	perform	this	check	for
efficiency	reasons.

See	also	find().

QDataStream	&	QPtrDict::read	(QDataStream	&	s,
QPtrCollection::Item	&	item)	[virtual	protected]

Reads	a	dictionary	item	from	the	stream	s	and	returns	a	reference	to	the	stream.

The	default	implementation	sets	item	to	0.

See	also	write().

bool	QPtrDict::remove	(void	*	key)

Removes	the	item	associated	with	key	from	the	dictionary.	Returns	TRUE	if
successful,	or	FALSE	if	the	key	does	not	exist	in	the	dictionary.

If	there	are	two	or	more	items	with	equal	keys,	then	the	last	item	that	was
inserted	of	will	be	removed.

The	removed	item	is	deleted	if	auto-deletion	is	enabled.

All	dictionary	iterators	that	refer	to	the	removed	item	will	be	set	to	point	to	the
next	item	in	the	dictionary	traversal	order.

See	also	take(),	clear()	and	setAutoDelete().

void	QPtrDict::replace	(void	*	key,	const	type	*	item)

If	the	dictionary	has	key	key,	this	key's	item	is	replaced	with	item.	If	the
dictionary	doesn't	contain	key	key,	item	is	inserted	into	the	dictionary	using	key
key.

Null	items	are	not	allowed.

Equivalent	to

				QPtrDict<char>	dict;

								...

				if	(dict.find(key))

								dict.remove(key);

				dict.insert(key,	item);

		

If	there	are	two	or	more	items	with	equal	keys,	then	the	last	inserted	of	these	will
be	replaced.

See	also	insert().

void	QPtrDict::resize	(uint	newsize)

Changes	the	size	of	the	hash	table	to	newsize.	The	contents	of	the	dictionary	are
preserved,	but	all	iterators	on	the	dictionary	become	invalid.

void	QPtrCollection::setAutoDelete	(bool	enable)

Sets	the	collection	to	auto-delete	its	contents	if	enable	is	TRUE	and	to	never
delete	them	if	enable	is	FALSE.

If	auto-deleting	is	turned	on,	all	the	items	in	a	collection	are	deleted	when	the
collection	itself	is	deleted.	This	is	convenient	if	the	collection	has	the	only
pointer	to	the	items.

The	default	setting	is	FALSE,	for	safety.	If	you	turn	it	on,	be	careful	about
copying	the	collection	-	you	might	find	yourself	with	two	collections	deleting	the
same	items.

Note	that	the	auto-delete	setting	may	also	affect	other	functions	in	subclasses.
For	example,	a	subclass	that	has	a	remove()	function	will	remove	the	item	from
its	data	structure,	and	if	auto-delete	is	enabled,	will	also	delete	the	item.

See	also	autoDelete().

Examples:	grapher/grapher.cpp,	scribble/scribble.cpp	and
table/bigtable/main.cpp.

uint	QPtrDict::size	()	const

Returns	the	size	of	the	internal	hash	table	(as	specified	in	the	constructor).

See	also	count().

void	QPtrDict::statistics	()	const

Debugging-only	function	that	prints	out	the	dictionary	distribution	using
qDebug().

type	*	QPtrDict::take	(void	*	key)

Takes	the	item	associated	with	key	out	of	the	dictionary	without	deleting	it	(even
if	auto-deletion	is	enabled).

If	there	are	two	or	more	items	with	equal	keys,	then	the	last	item	that	was
inserted	of	will	be	removed.

Returns	a	pointer	to	the	item	taken	out,	or	null	if	the	key	does	not	exist	in	the
dictionary.

All	dictionary	iterators	that	refer	to	the	taken	item	will	be	set	to	point	to	the	next
item	in	the	dictionary	traversal	order.

See	also	remove(),	clear()	and	setAutoDelete().

QDataStream	&	QPtrDict::write	(QDataStream	&	s,
QPtrCollection::Item)	const	[virtual	protected]

Writes	a	dictionary	item	to	the	stream	s	and	returns	a	reference	to	the	stream.

See	also	read().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QTabWidget	Class	Reference
The	QTabWidget	class	provides	a	stack	of	tabbed	widgets.	More...

#include	<qtabwidget.h>

Inherits	QWidget.

List	of	all	member	functions.

Public	Members

QTabWidget	(QWidget	*	parent	=	0,	const	char	*	name	=	0,	WFlags	f	=	0
)
virtual	void	addTab	(QWidget	*	child,	const	QString	&	label)
virtual	void	addTab	(QWidget	*	child,	const	QIconSet	&	iconset,
const	QString	&	label)
virtual	void	addTab	(QWidget	*	child,	QTab	*	tab)
virtual	void	insertTab	(QWidget	*	child,	const	QString	&	label,	int	index	=
-1)
virtual	void	insertTab	(QWidget	*	child,	const	QIconSet	&	iconset,
const	QString	&	label,	int	index	=	-1)
virtual	void	insertTab	(QWidget	*	child,	QTab	*	tab,	int	index	=	-1)
void	changeTab	(QWidget	*	w,	const	QString	&	label)
void	changeTab	(QWidget	*	w,	const	QIconSet	&	iconset,
const	QString	&	label)
bool	isTabEnabled	(QWidget	*	w)	const
void	setTabEnabled	(QWidget	*	w,	bool	enable)
QString	tabLabel	(QWidget	*	w)	const
void	setTabLabel	(QWidget	*	w,	const	QString	&	l)
QIconSet	tabIconSet	(QWidget	*	w)	const
void	setTabIconSet	(QWidget	*	w,	const	QIconSet	&	iconset)
void	removeTabToolTip	(QWidget	*	w)
void	setTabToolTip	(QWidget	*	w,	const	QString	&	tip)
QString	tabToolTip	(QWidget	*	w)	const
QWidget	*	currentPage	()	const
QWidget	*	page	(int	index)	const
QString	label	(int	index)	const
int	currentPageIndex	()	const
int	indexOf	(QWidget	*	w)	const
enum	TabPosition	{	Top,	Bottom	}
TabPosition	tabPosition	()	const
void	setTabPosition	(TabPosition)
enum	TabShape	{	Rounded,	Triangular	}
TabShape	tabShape	()	const
void	setTabShape	(TabShape	s)
int	margin	()	const

void	setMargin	(int)
int	count	()	const

Public	Slots

void	setCurrentPage	(int)
virtual	void	showPage	(QWidget	*	w)
virtual	void	removePage	(QWidget	*	w)

Signals

void	currentChanged	(QWidget	*)

Properties

bool	autoMask	-	whether	the	tab	widget	is	automatically	masked		(read
only)
int	count	-	the	number	of	tabs	in	the	tab	bar		(read	only)
int	currentPage	-	the	index	position	of	the	current	tab	page
int	margin	-	the	margin	in	this	tab	widget
TabPosition	tabPosition	-	the	position	of	the	tabs	in	this	tab	widget
TabShape	tabShape	-	the	shape	of	the	tabs	in	this	tab	widget

Protected	Members

void	setTabBar	(QTabBar	*	tb)
QTabBar	*	tabBar	()	const

Detailed	Description

The	QTabWidget	class	provides	a	stack	of	tabbed	widgets.

A	tabbed	widget	is	a	widget	that	has	a	tab	bar	of	tabs,	and	for	each	tab	a	"page"
which	is	a	widget.	The	user	selects	which	page	to	see	and	use	by	clicking	on	its
tab	or	by	pressing	the	indicated	Alt+letter	key	combination.

QTabWidget	provides	a	single	row	of	tabs	along	the	top	or	bottom	of	the	pages
(see	TabPosition).

The	normal	way	to	use	QTabWidget	is	to	do	the	following	in	the	constructor:

1.	 Create	a	QTabWidget.
2.	 Create	a	QWidget	for	each	of	the	pages	in	the	tab	dialog,	insert	children

into	it,	set	up	geometry	management	for	it	and	use	addTab()	(or	insertTab())
to	set	up	a	tab	and	keyboard	accelerator	for	it.

3.	 Connect	to	the	signals	and	slots.

The	position	of	the	tabs	is	set	with	setTabPosition(),	their	shape	with
setTabShape(),	and	their	margin	with	setMargin().

If	you	don't	call	addTab()	the	page	you	have	created	will	not	be	visible.	Don't
confuse	the	object	name	you	supply	to	the	QWidget	constructor	and	the	tab	label
you	supply	to	addTab().	addTab()	takes	a	name	which	indicates	an	accelerator
and	is	meaningful	and	descriptive	to	the	user,	whereas	the	widget	name	is	used
primarily	for	debugging.

The	signal	currentChanged()	is	emitted	when	the	user	selects	a	page.

The	current	page	is	available	as	an	index	position	with	currentPageIndex()	or	as
a	wiget	pointer	with	currentPage().	You	can	retrieve	a	pointer	to	a	page	with	a
given	index	using	page(),	and	can	find	the	index	position	of	a	page	with
indexOf().	Use	setCurrentPage()	to	show	a	particular	page	by	index,	or
showPage()	to	show	a	page	by	widget	pointer.

You	can	change	a	tab's	label	and	iconset	using	changeTab()	or	setTabLabel()	and
setTabIconSet().	A	tab	page	can	be	removed	with	removePage().

Each	tab	is	either	enabled	or	disabled	at	any	given	time	(see	setTabEnabled()).	If
a	tab	is	enabled,	the	tab	text	is	drawn	in	black	and	the	user	can	select	that	tab.	If
it	is	disabled,	the	tab	is	drawn	in	a	different	way	and	the	user	cannot	select	that
tab.	Note	that	even	if	a	tab	is	disabled,	the	page	can	still	be	visible,	for	example
if	all	of	the	tabs	happen	to	be	disabled.

Although	tab	widgets	can	be	a	very	good	way	to	split	up	a	complex	dialog,	it's
also	very	easy	to	get	into	a	mess.	See	QTabDialog	for	some	design	hints.

Most	of	the	functionality	in	QTabWidget	is	provided	by	a	QTabBar	(at	the	top,
providing	the	tabs)	and	a	QWidgetStack	(most	of	the	area,	organizing	the
individual	pages).

	

See	also	QTabDialog,	Advanced	Widgets	and	Organizers.

Member	Type	Documentation

QTabWidget::TabPosition

This	enum	type	defines	where	QTabWidget	can	draw	the	tab	row:

QTabWidget::Top	-	above	the	pages
QTabWidget::Bottom	-	below	the	pages

QTabWidget::TabShape

This	enum	type	defines	the	shape	of	the	tabs:

QTabWidget::Rounded	-	rounded	look	(normal)
QTabWidget::Triangular	-	triangular	look	(very	unusual,	included	for
completeness)

Member	Function	Documentation

QTabWidget::QTabWidget	(QWidget	*	parent	=	0,
const	char	*	name	=	0,	WFlags	f	=	0)

Constructs	a	tabbed	widget	with	parent	parent,	name	name,	and	widget	flags	f.

void	QTabWidget::addTab	(QWidget	*	child,
const	QString	&	label)	[virtual]

Adds	another	tab	and	page	to	the	tab	view.

The	new	page	is	child;	the	tab's	label	is	label.	Note	the	difference	between	the
widget	name	(which	you	supply	to	widget	constructors	and	to	setTabEnabled(),
for	example)	and	the	tab	label.	The	name	is	internal	to	the	program	and
invariant,	whereas	the	label	is	shown	on-screen	and	may	vary	according	to
language	and	other	factors.

If	the	tab's	label	contains	an	ampersand,	the	letter	following	the	ampersand	is
used	as	an	accelerator	for	the	tab,	e.g.	if	the	label	is	"Bro&wse;"	then	Alt+W
becomes	an	accelerator	which	will	move	the	focus	to	this	tab.

If	you	call	addTab()	after	show()	the	screen	will	flicker	and	the	user	may	be
confused.

See	also	insertTab().

Examples:	addressbook/centralwidget.cpp	and	themes/themes.cpp.

void	QTabWidget::addTab	(QWidget	*	child,
const	QIconSet	&	iconset,	const	QString	&	label)	[virtual]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Adds	another	tab	and	page	to	the	tab	view.

This	function	is	the	same	as	addTab(),	but	with	an	additional	iconset.

void	QTabWidget::addTab	(QWidget	*	child,	QTab	*	tab)
[virtual]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

This	is	a	low-level	function	for	adding	tabs.	It	is	useful	if	you	are	using
setTabBar()	to	set	a	QTabBar	subclass	with	an	overridden	QTabBar::paint()
routine	for	a	subclass	of	QTab.	The	child	is	the	new	page	and	tab	is	the	tab	to	put
the	child	on.

void	QTabWidget::changeTab	(QWidget	*	w,
const	QString	&	label)

Defines	a	new	label	for	page	w's	tab.

void	QTabWidget::changeTab	(QWidget	*	w,
const	QIconSet	&	iconset,	const	QString	&	label)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Defines	a	new	iconset	and	a	new	label	for	page	w's	tab.

int	QTabWidget::count	()	const

Returns	the	number	of	tabs	in	the	tab	bar.	See	the	"count"	property	for	details.

void	QTabWidget::currentChanged	(QWidget	*)	[signal]

This	signal	is	emitted	whenever	the	current	page	changes.	The	parameter	is	the
new	current	page.

See	also	currentPage(),	showPage()	and	tabLabel().

QWidget	*	QTabWidget::currentPage	()	const

Returns	a	pointer	to	the	page	currently	being	displayed	by	the	tab	dialog.	The	tab
dialog	does	its	best	to	make	sure	that	this	value	is	never	0	(but	if	you	try	hard
enough,	it	can	be).

int	QTabWidget::currentPageIndex	()	const

Returns	the	index	position	of	the	current	tab	page.	See	the	"currentPage"
property	for	details.

int	QTabWidget::indexOf	(QWidget	*	w)	const

Returns	the	index	position	of	page	w,	or	-1	if	the	widget	cannot	be	found.

void	QTabWidget::insertTab	(QWidget	*	child,
const	QString	&	label,	int	index	=	-1)	[virtual]

Inserts	another	tab	and	page	to	the	tab	view.

The	new	page	is	child;	the	tab's	label	is	label.	Note	the	difference	between	the
widget	name	(which	you	supply	to	widget	constructors	and	to	setTabEnabled(),
for	example)	and	the	tab	label.	The	name	is	internal	to	the	program	and
invariant,	whereas	the	label	is	shown	on-screen	and	may	vary	according	to
language	and	other	factors.

If	the	tab's	label	contains	an	ampersand,	the	letter	following	the	ampersand	is
used	as	an	accelerator	for	the	tab,	e.g.	if	the	label	is	"Bro&wse;"	then	Alt+W
becomes	an	accelerator	which	will	move	the	focus	to	this	tab.

If	index	is	not	specified,	the	tab	is	simply	added.	Otherwise	it	is	inserted	at	the
specified	position.

If	you	call	insertTab()	after	show(),	the	screen	will	flicker	and	the	user	may	be
confused.

See	also	addTab().

void	QTabWidget::insertTab	(QWidget	*	child,
const	QIconSet	&	iconset,	const	QString	&	label,	int	index	=

-1)	[virtual]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	another	tab	and	page	to	the	tab	view.

This	function	is	the	same	as	insertTab(),	but	with	an	additional	iconset.

void	QTabWidget::insertTab	(QWidget	*	child,	QTab	*	tab,
int	index	=	-1)	[virtual]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

This	is	a	lower-level	method	for	inserting	tabs,	similar	to	the	other	insertTab()
method.	It	is	useful	if	you	are	using	setTabBar()	to	set	a	QTabBar	subclass	with
an	overridden	QTabBar::paint()	routine	for	a	subclass	of	QTab.	The	child	is	the
new	page,	tab	is	the	tab	to	put	the	child	on	and	index	is	the	position	in	the	tab	bar
that	this	page	should	occupy.

bool	QTabWidget::isTabEnabled	(QWidget	*	w)	const

Returns	TRUE	if	the	page	w	is	enabled;	otherwise	returns	FALSE.

See	also	setTabEnabled()	and	QWidget::enabled.

QString	QTabWidget::label	(int	index)	const

Returns	the	label	of	the	tab	at	index	position	index.

int	QTabWidget::margin	()	const

Returns	the	margin	in	this	tab	widget.	See	the	"margin"	property	for	details.

QWidget	*	QTabWidget::page	(int	index)	const

Returns	the	tab	page	at	index	position	index.

void	QTabWidget::removePage	(QWidget	*	w)	[virtual	slot]

Removes	page	w	from	this	stack	of	widgets.	Does	not	delete	w.

See	also	showPage()	and	QWidgetStack::removeWidget().

void	QTabWidget::removeTabToolTip	(QWidget	*	w)

Removes	the	tab	tool	tip	for	page	w.	If	the	page	does	not	have	a	tip,	nothing
happens.

See	also	setTabToolTip()	and	tabToolTip().

void	QTabWidget::setCurrentPage	(int)	[slot]

Sets	the	index	position	of	the	current	tab	page.	See	the	"currentPage"	property
for	details.

void	QTabWidget::setMargin	(int)

Sets	the	margin	in	this	tab	widget.	See	the	"margin"	property	for	details.

void	QTabWidget::setTabBar	(QTabBar	*	tb)	[protected]

Replaces	the	QTabBar	heading	the	dialog	by	the	tab	bar	tb.	Note	that	this	must
be	called	before	any	tabs	have	been	added,	or	the	behavior	is	undefined.

See	also	tabBar().

void	QTabWidget::setTabEnabled	(QWidget	*	w,	bool	enable)

If	enable	is	TRUE,	page	w	is	enabled;	otherwise	page	w	is	disabled.	The	page's
tab	is	redrawn	appropriately.

QTabWidget	uses	QWidget::setEnabled()	internally,	rather	than	keeping	a
separate	flag.

Note	that	even	a	disabled	tab/page	may	be	visible.	If	the	page	is	visible	already,

QTabWidget	will	not	hide	it;	if	all	the	pages	are	disabled,	QTabWidget	will	show
one	of	them.

See	also	isTabEnabled()	and	QWidget::enabled.

void	QTabWidget::setTabIconSet	(QWidget	*	w,
const	QIconSet	&	iconset)

Sets	the	iconset	for	page	w	to	iconset.

void	QTabWidget::setTabLabel	(QWidget	*	w,	const	QString	&	l
)

Sets	the	tab	label	for	page	w	to	l

void	QTabWidget::setTabPosition	(TabPosition)

Sets	the	position	of	the	tabs	in	this	tab	widget.	See	the	"tabPosition"	property	for
details.

void	QTabWidget::setTabShape	(TabShape	s)

Sets	the	shape	of	the	tabs	in	this	tab	widget	to	s.	See	the	"tabShape"	property	for
details.

void	QTabWidget::setTabToolTip	(QWidget	*	w,
const	QString	&	tip)

Sets	the	tab	tool	tip	for	page	w	to	tip.

See	also	removeTabToolTip()	and	tabToolTip().

void	QTabWidget::showPage	(QWidget	*	w)	[virtual	slot]

Ensures	that	page	w	is	shown.	This	is	useful	mainly	for	accelerators.

Warning:	Used	carelessly,	this	function	can	easily	surprise	or	confuse	the	user.

See	also	QTabBar::currentTab.

QTabBar	*	QTabWidget::tabBar	()	const	[protected]

Returns	the	currently	set	QTabBar.

See	also	setTabBar().

QIconSet	QTabWidget::tabIconSet	(QWidget	*	w)	const

Returns	the	iconset	of	page	w.

QString	QTabWidget::tabLabel	(QWidget	*	w)	const

Returns	the	label	text	for	the	tab	on	page	w.

TabPosition	QTabWidget::tabPosition	()	const

Returns	the	position	of	the	tabs	in	this	tab	widget.	See	the	"tabPosition"	property
for	details.

TabShape	QTabWidget::tabShape	()	const

Returns	the	shape	of	the	tabs	in	this	tab	widget.	See	the	"tabShape"	property	for
details.

QString	QTabWidget::tabToolTip	(QWidget	*	w)	const

Returns	the	tab	tool	tip	for	page	w.

See	also	setTabToolTip()	and	removeTabToolTip().

Property	Documentation

bool	autoMask

This	property	holds	whether	the	tab	widget	is	automatically	masked.

See	also	QWidget::autoMask.

int	count

This	property	holds	the	number	of	tabs	in	the	tab	bar.

Get	this	property's	value	with	count().

int	currentPage

This	property	holds	the	index	position	of	the	current	tab	page.

Set	this	property's	value	with	setCurrentPage()	and	get	this	property's	value	with
currentPageIndex().

See	also	QTabBar::currentTab.

int	margin

This	property	holds	the	margin	in	this	tab	widget.

The	margin	is	the	distance	between	the	innermost	pixel	of	the	frame	and	the
outermost	pixel	of	the	pages.

Set	this	property's	value	with	setMargin()	and	get	this	property's	value	with
margin().

TabPosition	tabPosition

This	property	holds	the	position	of	the	tabs	in	this	tab	widget.

Possible	values	for	this	property	are	QTabWidget::Top	and
QTabWidget::Bottom.

See	also	TabPosition.

Set	this	property's	value	with	setTabPosition()	and	get	this	property's	value	with
tabPosition().

TabShape	tabShape

This	property	holds	the	shape	of	the	tabs	in	this	tab	widget.

Possible	values	for	this	property	are	QTabWidget::Rounded	(default)	or
QTabWidget::Triangular.

See	also	TabShape.

Set	this	property's	value	with	setTabShape()	and	get	this	property's	value	with
tabShape().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QAccessibleObject	Class	Reference
The	QAccessibleObject	class	implements	parts	of	the	QAccessibleInterface	for
QObjects.	More...

#include	<qaccessible.h>

Inherits	QObject	and	QAccessibleInterface.

List	of	all	member	functions.

Public	Members

QAccessibleObject	(QObject	*	object)
virtual	~QAccessibleObject	()

Protected	Members

QObject	*	object	()	const

Detailed	Description

The	QAccessibleObject	class	implements	parts	of	the	QAccessibleInterface	for
QObjects.

This	class	is	mainly	provided	for	convenience.	All	subclasses	of	the
QAccessibleInterface	should	use	this	class	as	the	base	class.

See	also	Miscellaneous	Classes.

Member	Function	Documentation

QAccessibleObject::QAccessibleObject	(QObject	*	object)

Creates	a	QAccessibleObject	for	object.

QAccessibleObject::~QAccessibleObject	()	[virtual]

Destroys	the	QAccessibleObject.

This	only	happens	when	a	call	to	release()	decrements	the	internal	reference
counter	to	zero.

QObject	*	QAccessibleObject::object	()	const	[protected]

Returns	the	QObject	for	which	this	QAccessibleInterface	implementation
provides	information.	Use	isValid()	to	make	sure	the	object	pointer	is	safe	to	use.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QDomCharacterData	Class
Reference

[XML	module]
The	QDomCharacterData	class	represents	a	generic	string	in	the	DOM.	More...

#include	<qdom.h>

Inherits	QDomNode.

Inherited	by	QDomText	and	QDomComment.

List	of	all	member	functions.

Public	Members

QDomCharacterData	()
QDomCharacterData	(const	QDomCharacterData	&	x)
QDomCharacterData	&	operator=	(const	QDomCharacterData	&	x)
~QDomCharacterData	()
virtual	QString	substringData	(unsigned	long	offset,	unsigned	long	count)
virtual	void	appendData	(const	QString	&	arg)
virtual	void	insertData	(unsigned	long	offset,	const	QString	&	arg)
virtual	void	deleteData	(unsigned	long	offset,	unsigned	long	count)
virtual	void	replaceData	(unsigned	long	offset,	unsigned	long	count,
const	QString	&	arg)
virtual	uint	length	()	const
virtual	QString	data	()	const
virtual	void	setData	(const	QString	&	v)
virtual	QDomNode::NodeType	nodeType	()	const
virtual	bool	isCharacterData	()	const

Detailed	Description

The	QDomCharacterData	class	represents	a	generic	string	in	the	DOM.

Character	data	as	used	in	XML	specifies	a	generic	data	string.	More	specialized
versions	of	this	class	are	QDomText,	QDomComment	and
QDomCDATASection.

The	data	string	is	set	with	setData()	and	retrieved	with	data().	You	can	retrieve	a
portion	of	the	data	string	using	substringData().	Extra	data	can	be	appended	with
appendData(),	or	inserted	with	insertData().	Portions	of	the	data	string	can	be
deleted	with	deleteData()	or	replaced	with	replaceData().	The	length	of	the	data
string	is	returned	by	length().

The	node	type	of	the	node	containing	this	character	data	is	returned	by
nodeType().

See	also	QDomText,	QDomComment,	QDomCDATASection	and	XML.

Member	Function	Documentation

QDomCharacterData::QDomCharacterData	()

Constructs	an	empty	character	data	object.

QDomCharacterData::QDomCharacterData	(
const	QDomCharacterData	&	x)

Constructs	a	copy	of	x.

The	data	of	the	copy	is	shared	(shallow	copy):	modifying	one	node	will	also
change	the	other.	If	you	want	to	make	a	deep	copy,	use	cloneNode().

QDomCharacterData::~QDomCharacterData	()

Destroys	the	object	and	frees	its	resources.

void	QDomCharacterData::appendData	(const	QString	&	arg)
[virtual]

Appends	the	string	arg,	to	the	stored	string.

QString	QDomCharacterData::data	()	const	[virtual]

Returns	the	string	stored	in	this	object.

If	the	node	is	a	null	node,	it	will	return	a	null	string.

void	QDomCharacterData::deleteData	(unsigned	long	offset,
unsigned	long	count)	[virtual]

Deletes	a	substring	of	length	count	from	position	offset.

void	QDomCharacterData::insertData	(unsigned	long	offset,
const	QString	&	arg)	[virtual]

Inserts	the	string	arg	into	the	stored	string	at	position	offset.

bool	QDomCharacterData::isCharacterData	()	const	[virtual]

Returns	TRUE.

Reimplemented	from	QDomNode.

uint	QDomCharacterData::length	()	const	[virtual]

Returns	the	length	of	the	stored	string.

QDomNode::NodeType	QDomCharacterData::nodeType	()	const
[virtual]

Returns	the	type	of	node	this	object	refers	to	(i.e.	TextNode,
CDATASectionNode,	CommentNode	or	CharacterDataNode).	For	a	null	node
CharacterDataNode	is	returned.

Reimplemented	from	QDomNode.

Reimplemented	in	QDomText	and	QDomComment.

QDomCharacterData	&	QDomCharacterData::operator=	(
const	QDomCharacterData	&	x)

Assigns	x	to	this	character	data.

The	data	of	the	copy	is	shared	(shallow	copy):	modifying	one	node	will	also
change	the	other.	If	you	want	to	make	a	deep	copy,	use	cloneNode().

void	QDomCharacterData::replaceData	(unsigned	long	offset,
unsigned	long	count,	const	QString	&	arg)	[virtual]

Replaces	the	substring	of	length	count	starting	at	position	offset	with	the	string
arg.

void	QDomCharacterData::setData	(const	QString	&	v)

[virtual]

Sets	the	string	of	this	object	to	v.

QString	QDomCharacterData::substringData	(
unsigned	long	offset,	unsigned	long	count)	[virtual]

Returns	the	substring	of	length	count	from	position	offset.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QIMEvent	Class	Reference
The	QIMEvent	class	provides	parameters	for	input	method	events.	More...

#include	<qevent.h>

Inherits	QEvent.

List	of	all	member	functions.

Public	Members

QIMEvent	(Type	type,	const	QString	&	text,	int	cursorPosition)
const	QString	&	text	()	const
int	cursorPos	()	const
bool	isAccepted	()	const
void	accept	()
void	ignore	()

Detailed	Description

The	QIMEvent	class	provides	parameters	for	input	method	events.

Input	method	events	are	sent	to	widgets	when	an	input	method	is	used	to	enter
text	into	a	widget.	Input	methods	are	widely	used	to	enter	text	in	Asian	and	other
complex	languages.

The	events	are	of	interest	to	widgets	that	accept	keyboard	input	and	want	to	be
able	to	correctly	handle	complex	languages.	Text	input	in	such	languages	is
usually	a	three	step	process.

1.	 Starting	to	Compose	When	the	user	presses	the	first	key	on	a	keyboard	an
input	context	is	created.	This	input	context	will	contain	a	string	with	the
typed	characters.

2.	 Composing
With	every	new	key	pressed,	the	input	method	will	try	to	create	a	matching
string	for	the	text	typed	so	far.	While	the	input	context	is	active,	the	user
can	only	move	the	cursor	inside	the	string	belonging	to	this	input	context.

3.	 Completing
At	some	point,	e.g.	when	the	user	presses	the	Spacebar,	they	get	to	this
stage,	where	they	can	choose	from	a	number	of	strings	that	match	the	text
they	have	typed	so	far.	The	user	can	press	Enter	to	confirm	their	choice	or
Escape	to	cancel	the	input;	in	either	case	the	input	context	will	be	closed.

Note	that	the	particular	key	presses	used	for	a	given	input	context	may	differ
from	those	we've	mentioned	here,	i.e.	they	may	not	be	Spacebar,	Enter	and
Escape.

These	three	stages	are	represented	by	three	different	types	of	events.	The
IMStartEvent,	IMComposeEvent	and	IMEndEvent.	When	a	new	input	context	is
created,	an	IMStartEvent	will	be	sent	to	the	widget	and	delivered	to	the
QWidget::imStartEvent()	function.	The	widget	can	then	update	internal	data
structures	to	reflect	this.

After	this,	an	IMComposeEvent	will	be	sent	to	the	widget	for	every	key	the	user

presses.	It	will	contain	the	current	composition	string	the	widget	has	to	show	and
the	current	cursor	position	within	the	composition	string.	This	string	is
temporary	and	can	change	with	every	key	the	user	types,	so	the	widget	will	need
to	store	the	state	before	the	composition	started	(the	state	it	had	when	it	received
the	IMStartEvent).	IMComposeEvents	will	be	delivered	to	the
QWidget::imComposeEvent()	function.

Usually,	widgets	try	to	mark	the	part	of	the	text	that	is	part	of	the	current
composition	in	a	way	that	is	visible	to	the	user.	A	commonly	used	visual	cue	is
to	use	a	dotted	underline.

After	the	user	has	selected	the	final	string,	an	IMEndEvent	will	be	sent	to	the
widget.	The	event	contains	the	final	string	the	user	selected,	and	could	be	empty
if	they	cancelled	the	composition.	This	string	should	be	accepted	as	the	final	text
the	user	entered,	and	the	intermediate	composition	string	should	be	cleared.
These	events	are	delivered	to	QWidget::imEndEvent().

If	the	user	clicks	another	widget,	taking	the	focus	out	of	the	widget	where	the
composition	is	taking	place	the	IMEndEvent	will	be	sent	and	the	string	it	holds
will	be	the	result	of	the	composition	up	to	that	point	(which	may	be	an	empty
string).

See	also	Event	Classes.

Member	Function	Documentation

QIMEvent::QIMEvent	(Type	type,	const	QString	&	text,
int	cursorPosition)

Constructs	a	new	QIMEvent	with	the	accept	flag	set	to	FALSE.	type	can	be	one
of	QEvent::IMStartEvent,	QEvent::IMComposeEvent	or	QEvent::IMEndEvent.
text	contains	the	current	compostion	string	and	cursorPosition	the	current
position	of	the	cursor	inside	text.

void	QIMEvent::accept	()

Sets	the	accept	flag	of	the	input	method	event	object.

Setting	the	accept	parameter	indicates	that	the	receiver	of	the	event	processed	the
input	method	event.

The	accept	flag	is	not	set	by	default.

See	also	ignore().

int	QIMEvent::cursorPos	()	const

Returns	the	current	cursor	position	inside	the	composition	string.	Will	return	0
for	IMStartEvent	and	IMEndEvent.

void	QIMEvent::ignore	()

Clears	the	accept	flag	parameter	of	the	input	method	event	object.

Clearing	the	accept	parameter	indicates	that	the	event	receiver	does	not	want	the
input	method	event.

The	accept	flag	is	cleared	by	default.

See	also	accept().

bool	QIMEvent::isAccepted	()	const

Returns	TRUE	if	the	receiver	of	the	event	processed	the	event;	otherwise	returns
FALSE.

const	QString	&	QIMEvent::text	()	const

Returns	the	composition	text.	This	is	a	null	string	for	an	IMStartEvent,	and
contains	the	final	accepted	string	(which	may	be	empty)	in	the	IMEndEvent.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QPtrDictIterator	Class	Reference
The	QPtrDictIterator	class	provides	an	iterator	for	QPtrDict	collections.	More...

#include	<qptrdict.h>

List	of	all	member	functions.

Public	Members

QPtrDictIterator	(const	QPtrDict<type>	&	dict)
~QPtrDictIterator	()
uint	count	()	const
bool	isEmpty	()	const
type	*	toFirst	()
operator	type	*	()	const
type	*	current	()	const
void	*	currentKey	()	const
type	*	operator()	()
type	*	operator++	()
type	*	operator+=	(uint	jump)

Detailed	Description

The	QPtrDictIterator	class	provides	an	iterator	for	QPtrDict	collections.

QPtrDictIterator	is	implemented	as	a	template	class.	Define	a	template	instance
QPtrDictIterator<X>	to	create	a	dictionary	iterator	that	operates	on	QPtrDict<X>
(dictionary	of	X*).

Example:

				QPtrDict<char>	extra;

				QLineEdit	*le1	=	new	QLineEdit(this);

				le1->setText("Simpson");

				QLineEdit	*le2	=	new	QLineEdit(this);

				le2->setText("Homer");

				QLineEdit	*le3	=	new	QLineEdit(this);

				le3->setText("45");

				extra.insert(le1,	"Surname");

				extra.insert(le2,	"Forename");

				extra.insert(le3,	"Age");

				QPtrDictIterator<char>	it(extra);

				for(;	it.current();	++it)	{

								QLineEdit	*le	=	(QLineEdit)it.currentKey();

								cout	<<	it.current()	<<	":	"	<<	le->text()	<<	endl;

				}

				cout	<<	endl;

				//	Output	(random	order):

				//		Forename:	Homer

				//		Age:	45

				//		Surname:	Simpson

		

In	the	example	we	insert	some	line	edits	into	a	dictionary,	then	iterate	over	the
dictionary	printing	the	strings	associated	with	those	line	edits.

Multiple	iterators	may	independently	traverse	the	same	dictionary.	A	QPtrDict
knows	about	all	iterators	that	are	operating	on	the	dictionary.	When	an	item	is
removed	from	the	dictionary,	QPtrDict	updates	all	iterators	that	refer	the
removed	item	to	point	to	the	next	item	in	the	traversing	order.

See	also	QPtrDict,	Collection	Classes	and	Non-GUI	Classes.

Member	Function	Documentation

QPtrDictIterator::QPtrDictIterator	(
const	QPtrDict<type>	&	dict)

Constructs	an	iterator	for	dict.	The	current	iterator	item	is	set	to	point	on	the	first
item	in	the	dict.

QPtrDictIterator::~QPtrDictIterator	()

Destroys	the	iterator.

uint	QPtrDictIterator::count	()	const

Returns	the	number	of	items	in	the	dictionary	this	iterator	operates	on.

See	also	isEmpty().

type	*	QPtrDictIterator::current	()	const

Returns	a	pointer	to	the	current	iterator	item.

void	*	QPtrDictIterator::currentKey	()	const

Returns	the	key	for	the	current	iterator	item.

bool	QPtrDictIterator::isEmpty	()	const

Returns	TRUE	if	the	dictionary	is	empty;	otherwise	returns	FALSE.

See	also	count().

QPtrDictIterator::operator	type	*	()	const

Cast	operator.	Returns	a	pointer	to	the	current	iterator	item.	Same	as	current().

type	*	QPtrDictIterator::operator()	()

Makes	the	succeeding	item	current	and	returns	the	original	current	item.

If	the	current	iterator	item	was	the	last	item	in	the	dictionary	or	if	it	was	null,
null	is	returned.

type	*	QPtrDictIterator::operator++	()

Prefix	++	makes	the	succeeding	item	current	and	returns	the	new	current	item.

If	the	current	iterator	item	was	the	last	item	in	the	dictionary	or	if	it	was	null,
null	is	returned.

type	*	QPtrDictIterator::operator+=	(uint	jump)

Sets	the	current	item	to	the	item	jump	positions	after	the	current	item	and	returns
a	pointer	to	that	item.

If	that	item	is	beyond	the	last	item	or	if	the	dictionary	is	empty,	it	sets	the	current
item	to	null	and	returns	null.

type	*	QPtrDictIterator::toFirst	()

Sets	the	current	iterator	item	to	point	to	the	first	item	in	the	dictionary	and
returns	a	pointer	to	the	item.	If	the	dictionary	is	empty,	it	sets	the	current	item	to
null	and	returns	null.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QTextBrowser	Class	Reference
The	QTextBrowser	class	provides	a	rich	text	browser	with	hypertext	navigation.
More...

#include	<qtextbrowser.h>

Inherits	QTextEdit.

List	of	all	member	functions.

Public	Members

QTextBrowser	(QWidget	*	parent	=	0,	const	char	*	name	=	0)
QString	source	()	const

Public	Slots

virtual	void	setSource	(const	QString	&	name)
virtual	void	backward	()
virtual	void	forward	()
virtual	void	home	()
virtual	void	reload	()

Signals

void	backwardAvailable	(bool	available)
void	forwardAvailable	(bool	available)
void	highlighted	(const	QString	&	href)
void	linkClicked	(const	QString	&	link)

Properties

QString	source	-	the	name	of	the	currently	displayed	document

Protected	Members

virtual	void	keyPressEvent	(QKeyEvent	*	e)

Detailed	Description

The	QTextBrowser	class	provides	a	rich	text	browser	with	hypertext	navigation.

This	class	extends	QTextEdit	(in	read-only	mode),	adding	some	navigation
functionality	so	that	users	can	follow	links	in	hypertext	documents.	The	contents
of	QTextEdit	is	set	with	setText(),	but	QTextBrowser	has	an	additional	function,
setSource(),	which	makes	it	possible	to	set	the	text	to	a	named	document.	The
name	is	looked	up	in	the	text	view's	mime	source	factory.	If	a	document	name
ends	with	an	anchor	(for	example,	"#anchor"),	the	text	browser	automatically
scrolls	to	that	position	(using	scrollToAnchor()).	When	the	user	clicks	on	a
hyperlink,	the	browser	will	call	setSource()	itself,	with	the	link's	href	value	as
argument.

QTextBrowser	provides	backward()	and	forward()	slots	which	you	can	use	to
implement	Back	and	Forward	buttons.	The	home()	slot	sets	the	text	to	the	very
first	document	displayed.	The	linkClicked()	signal	is	emitted	when	the	user
clicks	a	link.

By	using	QTextEdit::setMimeSourceFactory()	you	can	provide	your	own
subclass	of	QMimeSourceFactory.	This	makes	it	possible	to	access	data	from
anywhere,	for	example	from	a	network	or	from	a	database.	See
QMimeSourceFactory::data()	for	details.

If	you	intend	using	the	mime	factory	to	read	the	data	directly	from	the	file
system,	you	may	have	to	specify	the	encoding	for	the	file	extension	you	are
using.	For	example:

		mimeSourceFactory()->setExtensionType("qml",	"text/utf8");

		

This	is	to	ensure	that	the	factory	is	able	to	resolve	the	document	names.

If	you	want	to	provide	your	users	with	editable	rich	text	use	QTextEdit.	If	you
want	a	text	browser	without	hypertext	navigation	use	QTextEdit,	and	use
QTextEdit::setReadOnly()	to	disable	editing.	If	you	just	need	to	display	a	small
piece	of	rich	text	use	QSimpleRichText	or	QLabel.

	

See	also	Advanced	Widgets,	Help	System	and	Text	Related	Classes.

Member	Function	Documentation

QTextBrowser::QTextBrowser	(QWidget	*	parent	=	0,
const	char	*	name	=	0)

Constructs	an	empty	QTextBrowser	with	parent	parent	called	name.

void	QTextBrowser::backward	()	[virtual	slot]

Changes	the	document	displayed	to	the	previous	document	in	the	list	of
documents	built	by	navigating	links.	Does	nothing	if	there	is	no	previous
document.

See	also	forward()	and	backwardAvailable().

Example:	helpviewer/helpwindow.cpp.

void	QTextBrowser::backwardAvailable	(bool	available)
[signal]

This	signal	is	emitted	when	the	availability	of	the	backward()	changes.	available
is	FALSE	when	the	user	is	at	home();	otherwise	it	is	TRUE.

Example:	helpviewer/helpwindow.cpp.

void	QTextBrowser::forward	()	[virtual	slot]

Changes	the	document	displayed	to	the	next	document	in	the	list	of	documents
built	by	navigating	links.	Does	nothing	if	there	is	no	next	document.

See	also	backward()	and	forwardAvailable().

Example:	helpviewer/helpwindow.cpp.

void	QTextBrowser::forwardAvailable	(bool	available)	[signal]

This	signal	is	emitted	when	the	availability	of	the	forward()	changes.	available	is

TRUE	after	the	user	navigates	backward()	and	FALSE	when	the	user	navigates
or	goes	forward().

Example:	helpviewer/helpwindow.cpp.

void	QTextBrowser::highlighted	(const	QString	&	href)
[signal]

This	signal	is	emitted	when	the	user	has	selected	but	not	activated	a	link	in	the
document.	href	is	the	value	of	the	href	tag	in	the	link.

Example:	helpviewer/helpwindow.cpp.

void	QTextBrowser::home	()	[virtual	slot]

Changes	the	document	displayed	to	be	the	first	document	the	browser	displayed.

Example:	helpviewer/helpwindow.cpp.

void	QTextBrowser::keyPressEvent	(QKeyEvent	*	e)	[virtual
protected]

The	event	e	is	used	to	provide	the	following	keyboard	shortcuts:

Alt+Left	Arrow	-	backward()
Alt+Right	Arrow	-	forward()
Alt+Up	Arrow	-	home()

Reimplemented	from	QTextEdit.

void	QTextBrowser::linkClicked	(const	QString	&	link)
[signal]

This	signal	is	emitted	when	the	user	clicks	a	link.	The	link	is	the	value	of	the
href	i.e.	the	name	of	the	target	document.

void	QTextBrowser::reload	()	[virtual	slot]

Reloads	the	current	set	source

void	QTextBrowser::setSource	(const	QString	&	name)
[virtual	slot]

Sets	the	name	of	the	currently	displayed	document	to	name.	See	the	"source"
property	for	details.

QString	QTextBrowser::source	()	const

Returns	the	name	of	the	currently	displayed	document.	See	the	"source"	property
for	details.

Property	Documentation

QString	source

This	property	holds	the	name	of	the	currently	displayed	document.

This	is	a	null	string	if	no	document	is	displayed	or	the	source	is	unknown.

Setting	this	property	uses	the	mimeSourceFactory	to	lookup	the	named
document.	It	also	checks	for	optional	anchors	and	scrolls	the	document
accordingly.

If	the	first	tag	in	the	document	is	<qt	type=detail>,	the	document	is	displayed
as	a	popup	rather	than	as	new	document	in	the	browser	window	itself.
Otherwise,	the	document	is	displayed	normally	in	the	text	browser	with	the	text
set	to	the	contents	of	the	named	document	with	setText().

If	you	are	using	the	filesystem	access	capabilities	of	the	mime	source	factory,
you	must	ensure	that	the	factory	knows	about	the	encoding	of	specified	files;
otherwise	no	data	will	be	available.	The	default	factory	handles	a	couple	of
common	file	extensions	such	as	*.html	and	*.txt	with	reasonable	defaults.	See
QMimeSourceFactory::data()	for	details.

Set	this	property's	value	with	setSource()	and	get	this	property's	value	with
source().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QDomComment	Class	Reference
[XML	module]

The	QDomComment	class	represents	an	XML	comment.	More...

#include	<qdom.h>

Inherits	QDomCharacterData.

List	of	all	member	functions.

Public	Members

QDomComment	()
QDomComment	(const	QDomComment	&	x)
QDomComment	&	operator=	(const	QDomComment	&	x)
~QDomComment	()
virtual	QDomNode::NodeType	nodeType	()	const
virtual	bool	isComment	()	const

Detailed	Description

The	QDomComment	class	represents	an	XML	comment.

A	comment	in	the	parsed	XML	such	as	this:

		<!--	this	is	a	comment	-->

		

is	represented	by	QDomComment	objects	in	the	parsed	Dom	tree.

For	further	information	about	the	Document	Object	Model	see
http://www.w3.org/TR/REC-DOM-Level-1/	and	http://www.w3.org/TR/DOM-
Level-2-Core/.	For	a	more	general	introduction	of	the	DOM	implementation	see
the	QDomDocument	documentation.

See	also	XML.

http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/DOM-Level-2-Core/

Member	Function	Documentation

QDomComment::QDomComment	()

Constructs	an	empty	comment.	To	construct	a	comment	with	content,	use	the
QDomDocument::createComment()	function.

QDomComment::QDomComment	(const	QDomComment	&	x)

Constructs	a	copy	of	x.

The	data	of	the	copy	is	shared	(shallow	copy):	modifying	one	node	will	also
change	the	other.	If	you	want	to	make	a	deep	copy,	use	cloneNode().

QDomComment::~QDomComment	()

Destroys	the	object	and	frees	its	resources.

bool	QDomComment::isComment	()	const	[virtual]

Returns	TRUE.

Reimplemented	from	QDomNode.

QDomNode::NodeType	QDomComment::nodeType	()	const
[virtual]

Returns	CommentNode.

Reimplemented	from	QDomCharacterData.

QDomComment	&	QDomComment::operator=	(
const	QDomComment	&	x)

Assigns	x	to	this	DOM	comment.

The	data	of	the	copy	is	shared	(shallow	copy):	modifying	one	node	will	also

change	the	other.	If	you	want	to	make	a	deep	copy,	use	cloneNode().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QInputDialog
QInputDialog	 ……

#include	<qinputdialog.h>

QDialog

QString	getText	(const	QString	&	caption,	const	QString	&	label,
QLineEdit::EchoMode	mode	=	QLineEdit::Normal,	const	QString	&	text	=
QString::null,	bool	*	ok	=	0,	QWidget	*	parent	=	0,	const	char	*	name	=	0)
int	getInteger	(const	QString	&	caption,	const	QString	&	label,	int	num	=
0,	int	from	=	-2147483647,	int	to	=	2147483647,	int	step	=	1,	bool	*	ok	=	0,
QWidget	*	parent	=	0,	const	char	*	name	=	0)
double	getDouble	(const	QString	&	caption,	const	QString	&	label,
double	num	=	0,	double	from	=	-2147483647,	double	to	=	2147483647,
int	decimals	=	1,	bool	*	ok	=	0,	QWidget	*	parent	=	0,	const	char	*	name	=
0)
QString	getItem	(const	QString	&	caption,	const	QString	&	label,
const	QStringList	&	list,	int	current	=	0,	bool	editable	=	TRUE,	bool	*	ok	=
0,	QWidget	*	parent	=	0,	const	char	*	name	=	0)

QInputDialog

getText() getInteger() getDouble()getItem()

		bool	ok	=	FALSE;

		QString	text	=	QInputDialog::getText(

																				tr("Application	name"),

																				tr("Please	enter	your	name"),

																				QLineEdit::Normal,	QString::null,	&ok,	this);

		if	(ok	&&	!text.isEmpty())

						;//	OK

		else

						;//	Cancel

		

double	QInputDialog::getDouble	(const	QString	&	caption,
const	QString	&	label,	double	num	=	0,	double	from	=
-2147483647,	double	to	=	2147483647,	int	decimals	=	1,
bool	*	ok	=	0,	QWidget	*	parent	=	0,	const	char	*	name	=	0)
[]

caption label num fromto decimals

parentnameokOK *okCancel

		bool	ok	=	FALSE;

		double	res	=	QInputDialog::getDouble(

																tr("Application	name"),

																tr("Please	enter	a	decimal	number"),

																33.7,	0,	1000,	2,	&ok,	this);

		if	(ok)

						;//	OK

		else

						;//	Cancel

		

int	QInputDialog::getInteger	(const	QString	&	caption,
const	QString	&	label,	int	num	=	0,	int	from	=	-2147483647,
int	to	=	2147483647,	int	step	=	1,	bool	*	ok	=	0,
QWidget	*	parent	=	0,	const	char	*	name	=	0)	[]

caption label num fromto step

parentnameokOK *okCancel

		bool	ok	=	FALSE;

		int	res	=	QInputDialog::getInteger(

																tr("Application	name"),

																tr("Please	enter	a	number"),	22,	0,	1000,	2,	&ok,	this);

		if	(ok)

						;//	OK

		else

						;//	Cancel

		

QString	QInputDialog::getItem	(const	QString	&	caption,
const	QString	&	label,	const	QStringList	&	list,	int	current	=
0,	bool	editable	=	TRUE,	bool	*	ok	=	0,	QWidget	*	parent	=	0,
const	char	*	name	=	0)	[]

caption label list current

parentnameokOK *okCancel

editable

		QStringList	lst;

		lst	<<	"First"	<<	"Second"	<<	"Third"	<<	"Fourth"	<<	"Fifth";

		bool	ok	=	FALSE;

		QString	res	=	QInputDialog::getItem(

																				tr("Application	name"),

																				tr("Please	select	an	item"),	lst,	1,	TRUE,	&ok,	this);

		if	(ok)

						;//	OK

		else

						;//	Cancel

		

QString	QInputDialog::getText	(const	QString	&	caption,
const	QString	&	label,	QLineEdit::EchoMode	mode	=
QLineEdit::Normal,	const	QString	&	text	=	QString::null,
bool	*	ok	=	0,	QWidget	*	parent	=	0,	const	char	*	name	=	0)
[]

caption label text mode

parentnameokOK *okCancel

		bool	ok	=	FALSE;

		QString	text	=	QInputDialog::getText(

																				tr("Application	name"),

																				tr("Please	enter	your	name"),

																				QLineEdit::Normal,	QString::null,	&ok,	this);

		if	(ok	&&	!text.isEmpty())

						;//	OK

		else

						;//	Cancel

		

network/ftpclient/ftpmainwindow.cpp

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QPtrList
QPtrList	 ……

#include	<qptrlist.h>

QPtrCollection

QObjectListQSortedListQStrList

QPtrList	()
QPtrList	(const	QPtrList<type>	&	list)
~QPtrList	()
QPtrList<type>	&	operator=	(const	QPtrList<type>	&	list)
bool	operator==	(const	QPtrList<type>	&	list)	const
virtual	uint	count	()	const
bool	isEmpty	()	const
bool	insert	(uint	index,	const	type	*	item)
void	inSort	(const	type	*	item)
void	prepend	(const	type	*	item)
void	append	(const	type	*	item)
bool	remove	(uint	index)
bool	remove	()
bool	remove	(const	type	*	item)
bool	removeRef	(const	type	*	item)
void	removeNode	(QLNode	*	node)
bool	removeFirst	()
bool	removeLast	()
type	*	take	(uint	index)
type	*	take	()
type	*	takeNode	(QLNode	*	node)
virtual	void	clear	()
void	sort	()
int	find	(const	type	*	item)
int	findNext	(const	type	*	item)
int	findRef	(const	type	*	item)
int	findNextRef	(const	type	*	item)
uint	contains	(const	type	*	item)	const
uint	containsRef	(const	type	*	item)	const
type	*	at	(uint	index)
int	at	()	const
type	*	current	()	const
QLNode	*	currentNode	()	const
type	*	getFirst	()	const
type	*	getLast	()	const

type	*	first	()
type	*	last	()
type	*	next	()
type	*	prev	()
void	toVector	(QGVector	*	vec)	const

bool	autoDelete	()	const
void	setAutoDelete	(bool	enable)

virtual	int	compareItems	(QPtrCollection::Item	item1,
QPtrCollection::Item	item2)
virtual	QDataStream	&	read	(QDataStream	&	s,
QPtrCollection::Item	&	item)
virtual	QDataStream	&	write	(QDataStream	&	s,
QPtrCollection::Item	item)	const

QPtrList

QValueListSTL

QPtrList<X>XX*

0-1

prepend() insert()append() remove() removeRef() removeFirst()
removeLast() find() findNext() findRef()findNextRef() sort()
contains()containsRef() current() at() getFirst()getLast()
first() last() next()prev()current() setAutoDelete()

				class	Employee

				{

				public:

								Employee()	:	sn(0)	{	}

								Employee(const	QString&	forename,	const	QString&	surname,	int	salary)

												:	fn(forename),	sn(surname),	sal(salary)

								{	}

								void	setSalary(int	salary)	{	sal	=	salary;	}

								QString	forename()	const	{	return	fn;	}

								QString	surname()	const	{	return	sn;	}

								int	salary()	const	{	return	sal;	}

				private:

								QString	fn;

								QString	sn;

								int	sal;

				};

				QPtrList<Employee>	list;

				list.setAutoDelete(TRUE);	//	list

				list.append(new	Employee("John",	"Doe",	50000));

				list.append(new	Employee("Jane",	"Williams",	80000));

				list.append(new	Employee("Tom",	"Jones",	60000));

				Employee	*employee;

				for	(employee	=	list.first();	employee;	employee	=	list.next())

								cout	<<	employee->surname().latin1()	<<	",	"	<<

																employee->forename().latin1()	<<	"	earns	"	<<

																employee->salary()	<<	endl;

				cout	<<	endl;

				//	

				for	(uint	i	=	0;	i	<	list.count();	++i)

								if	(list.at(i))

												cout	<<	list.at(i)->surname().latin1()	<<	endl;

		

				Doe,	John	earns	50000

				Williams,	Jane	earns	80000

				Jones,	Tom	earns	60000

				Doe

				Williams

				Jones

		

QPtrList QPtrListIterator

setAutoDelete(TRUE)

void*QLNode currentNode() removeNode()takeNode()QLNode
QLNode::getData()

QPtrCollection::newItem()

QPtrCollection::deleteItem()QPtrList

compareItems() remove(const	type*) removeRef(const	type*)
compareItems()

qstrlist.hQStrListchar* newItem() deleteItem()compareItems()

QPtrListIteratorGUI

QPtrList::QPtrList	()

QPtrList::QPtrList	(const	QPtrList<type>	&	list)

list

list

QPtrList::~QPtrList	()

setAutoDelete()

void	QPtrList::append	(const	type	*	item)

item

insert(count(),	item)

item

insert() current()prepend()

customlayout/border.cppcustomlayout/card.cppcustomlayout/flow.cppgrapher/grapher.cpp
qwerty/qwerty.cpp

type	*	QPtrList::at	(uint	index)

index

index 0……(count()	-	1)

index

current()

customlayout/border.cppcustomlayout/card.cppcustomlayout/flow.cppdirview/dirview.cpp
qwerty/qwerty.cpp

int	QPtrList::at	()	const

-1

current()

bool	QPtrCollection::autoDelete	()	const

setAutoDelete()

void	QPtrList::clear	()	[]

remove() take()setAutoDelete()

QPtrCollection

int	QPtrList::compareItems	(QPtrCollection::Item	item1,
QPtrCollection::Item	item2)	[]

item1==item20
item1!=item20

intbool

item1	==	item20
item1>item2>0
item1<item2<0

inSort()compareItems()

compareItems()

uint	QPtrList::contains	(const	type	*	item)	const

item

item compareItems()compareItems() containsRef()

containsRef()compareItems()

uint	QPtrList::containsRef	(const	type	*	item)	const

item

contains()contains() compareItems()item

contains()

uint	QPtrList::count	()	const	[]

isEmpty()

customlayout/border.cppcustomlayout/card.cppcustomlayout/flow.cppfileiconview/qfileiconview.cpp
qwerty/qwerty.cpp

QPtrCollection

type	*	QPtrList::current	()	const

-1

at()

QLNode	*	QPtrList::currentNode	()	const

removeNode()

removeNode() takeNode()current()

int	QPtrList::find	(const	type	*	item)

item

-1-1

compareItems()compareItems() findRef()

findNext() findRef() compareItems()current()

int	QPtrList::findNext	(const	type	*	item)

item

-1-1

compareItems()compareItems() findNextRef()

find() findNextRef() compareItems()current()

int	QPtrList::findNextRef	(const	type	*	item)

item

-1-1

findNext()findNext() compareItems()item

findRef() findNext()current()

int	QPtrList::findRef	(const	type	*	item)

item

-1-1

find()find() compareItems()item

findNextRef() find()current()

type	*	QPtrList::first	()

getFirst() last() next() prev()current()

grapher/grapher.cpplistviews/listviews.hshowimg/showimg.cpp

type	*	QPtrList::getFirst	()	const

first()getLast()

type	*	QPtrList::getLast	()	const

Returns	a	pointer	to	the	last	item	in	the	list,	or	null	if	the	list	is	empty.	

last()getFirst()

void	QPtrList::inSort	(const	type	*	item)

item

compareItems() inSort()

item

inSort() sort()inSort()O(n)nO(n^2)sort()O(n*log	n)
inSort()

insert() compareItems() current()sort()

bool	QPtrList::insert	(uint	index,	const	type	*	item)

itemindex

index0 count()count() index==count()

item

append()current()

bool	QPtrList::isEmpty	()	const

count()

type	*	QPtrList::last	()

getLast() first() next() prev()current()

type	*	QPtrList::next	()

first() last() prev()current()

grapher/grapher.cpplistviews/listviews.hshowimg/showimg.cpp

QPtrList<type>	&	QPtrList::operator=	(
const	QPtrList<type>	&	list)

list

list newItem()

bool	QPtrList::operator==	(const	QPtrList<type>	&	list)	const

list

void	QPtrList::prepend	(const	type	*	item)

item

insert(0,	item)

item

append() insert()current()

type	*	QPtrList::prev	()

first() last() next()current()

QDataStream	&	QPtrList::read	(QDataStream	&	s,
QPtrCollection::Item	&	item)	[]

s

item0

write()

bool	QPtrList::remove	(uint	index)

index

index 0……(count()	-	1)count()-1

take() clear() setAutoDelete() current()removeRef()

bool	QPtrList::remove	()

take() clear() setAutoDelete() current()removeRef()

bool	QPtrList::remove	(const	type	*	item)

item

compareItems()compareItems() removeRef()

removeRef() take() clear() setAutoDelete() compareItems()current()

bool	QPtrList::removeFirst	()

removeLast() setAutoDelete() current()remove()

bool	QPtrList::removeLast	()

removeFirst() setAutoDelete()current()

void	QPtrList::removeNode	(QLNode	*	node)

node

takeNode() currentNode() remove()removeRef()

bool	QPtrList::removeRef	(const	type	*	item)

item

item

				if	(list.findRef(item)	!=	-1)

								list.remove();

		

remove() clear() setAutoDelete()current()

void	QPtrCollection::setAutoDelete	(bool	enable)

enable enable

——

remove()

autoDelete().

grapher/grapher.cppscribble/scribble.cpptable/bigtable/main.cpp

void	QPtrList::sort	()

compareItems()

nO(n*log	n)

<==QSortedListcompareItems()

inSort()

type	*	QPtrList::take	(uint	index)

index

0..(count()	-	1)

remove() clear()current()

customlayout/border.cppcustomlayout/card.cppcustomlayout/flow.cpp

type	*	QPtrList::take	()

index

0..(count()	-	1)

remove() clear()current()

type	*	QPtrList::takeNode	(QLNode	*	node)

node

removeNode()currentNode()

void	QPtrList::toVector	(QGVector	*	vec)	const

vec

QDataStream	&	QPtrList::write	(QDataStream	&	s,

QPtrCollection::Item	item)	const	[]

items

read().

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QTextCodec	Class	Reference
The	QTextCodec	class	provides	conversion	between	text	encodings.	More...

#include	<qtextcodec.h>

Inherited	by	QEucJpCodec,	QEucKrCodec,	QGb18030Codec,	QJisCodec,
QHebrewCodec,	QSjisCodec	and	QTsciiCodec.

List	of	all	member	functions.

Public	Members

virtual	~QTextCodec	()
virtual	const	char	*	name	()	const	=	0
virtual	const	char	*	mimeName	()	const
virtual	int	mibEnum	()	const	=	0
virtual	QTextDecoder	*	makeDecoder	()	const
virtual	QTextEncoder	*	makeEncoder	()	const
virtual	QString	toUnicode	(const	char	*	chars,	int	len)	const
virtual	QCString	fromUnicode	(const	QString	&	uc,	int	&	lenInOut)	const
QCString	fromUnicode	(const	QString	&	uc)	const
QString	toUnicode	(const	QByteArray	&	a,	int	len)	const
QString	toUnicode	(const	QByteArray	&	a)	const
QString	toUnicode	(const	QCString	&	a,	int	len)	const
QString	toUnicode	(const	QCString	&	a)	const
QString	toUnicode	(const	char	*	chars)	const
virtual	bool	canEncode	(QChar	ch)	const
virtual	bool	canEncode	(const	QString	&	s)	const
virtual	int	heuristicContentMatch	(const	char	*	chars,	int	len)	const	=	0
virtual	int	heuristicNameMatch	(const	char	*	hint)	const

Static	Public	Members

QTextCodec	*	loadCharmap	(QIODevice	*	iod)
QTextCodec	*	loadCharmapFile	(QString	filename)
QTextCodec	*	codecForMib	(int	mib)
QTextCodec	*	codecForName	(const	char	*	name,	int	accuracy	=	0)
QTextCodec	*	codecForContent	(const	char	*	chars,	int	len)
QTextCodec	*	codecForIndex	(int	i)
QTextCodec	*	codecForLocale	()
void	setCodecForLocale	(QTextCodec	*	c)
void	deleteAllCodecs	()
const	char	*	locale	()

Protected	Members

QTextCodec	()

Static	Protected	Members

int	simpleHeuristicNameMatch	(const	char	*	name,	const	char	*	hint)

Detailed	Description

The	QTextCodec	class	provides	conversion	between	text	encodings.

Qt	uses	Unicode	to	store,	draw	and	manipulate	strings.	In	many	situations	you
may	wish	to	deal	with	data	that	uses	a	different	encoding.	For	example,	most
japanese	documents	are	still	stored	in	Shift-JIS	or	ISO2022,	while	Russian	users
often	have	their	documents	in	KOI8-R	or	CP1251.

Qt	provides	a	set	of	QTextCodec	classes	to	help	with	converting	non-Unicode
formats	to	and	from	Unicode.	You	can	also	create	your	own	codec	classes	(see
later).

The	supported	encodings	are:

Big5	--	Chinese
eucJP	--	Japanese
eucKR	--	Korean
GBK	--	Chinese
JIS7	--	Japanese
Shift-JIS	--	Japanese
TSCII	--	Tamil
utf8	--	Unicode,	8-bit
utf16	--	Unicode
KOI8-R	--	Russian
KOI8-U	--	Ukrainian
ISO8859-1	--	Western
ISO8859-2	--	Central	European
ISO8859-3	--	Central	European
ISO8859-4	--	Baltic
ISO8859-5	--	Cyrillic
ISO8859-6	--	Arabic
ISO8859-7	--	Greek
ISO8859-8	--	Hebrew,	visually	ordered
ISO8859-8-i	--	Hebrew,	logically	ordered
ISO8859-9	--	Turkish
ISO8859-10
ISO8859-13

ISO8859-14
ISO8859-15	--	Western
CP850
CP874
CP1250	--	Central	European
CP1251	--	Cyrillic
CP1252	--	Western
CP1253	--	Greek
CP1254	--	Turkish
CP1255	--	Hebrew
CP1256	--	Arabic
CP1257	--	Baltic
CP1258
Apple	Roman
TIS-620	--	Thai

QTextCodecs	can	be	used	as	follows	to	convert	some	locally	encoded	string	to
Unicode.	Suppose	you	have	some	string	encoded	in	Russian	KOI8-R	encoding,
and	want	to	convert	it	to	Unicode.	The	simple	way	to	do	this	is:

		QCString	locallyEncoded	=	"...";	//	text	to	convert

		QTextCodec	*codec	=	QTextCodec::codecForName("KOI8-R");	//	get	the	codec	for	KOI8-R

		QString	unicodeString	=	codec->toUnicode(locallyEncoded);

		

After	this,	unicodeString	holds	the	text	converted	to	Unicode.	Converting	a
string	from	Unicode	to	the	local	encoding	is	just	as	easy:

		QString	unicodeString	=	"...";	//	any	Unicode	text

		QTextCodec	*codec	=	QTextCodec::codecForName("KOI8-R");	//	get	the	codec	for	KOI8-R

		QCString	locallyEncoded	=	codec->fromUnicode(unicodeString);

		

Some	care	must	be	taken	when	trying	to	convert	the	data	in	chunks,	for	example,
when	receiving	it	over	a	network.	In	such	cases	it	is	possible	that	a	multi-byte
character	will	be	split	over	two	chunks.	At	best	this	might	result	in	the	loss	of	a
character	and	at	worst	cause	the	entire	conversion	to	fail.

The	approach	to	use	in	these	situations	is	to	create	a	QTextDecoder	object	for	the
codec	and	use	this	QTextDecoder	for	the	whole	decoding	process,	as	shown
below:

		QTextCodec	*c	=	QTextCodec::codecForName("Shift-JIS");

		QTextDecoder	*decoder	=	c->makeDecoder();

		QString	unicodeString;

		while(receiving_data)	{

						QByteArray	chunk	=	new_data;

						unicodeString	+=	decoder->toUnicode(chunk.data(),	chunk.length());

		}

		

The	QTextDecoder	object	maintains	state	between	chunks	and	therefore	works
correctly	even	if	a	multi-byte	character	is	split	between	chunks.

Creating	your	own	Codec	class

By	making	objects	of	subclasses	of	QTextCodec,	support	for	new	text	encodings
can	be	added	to	Qt.

More	recently	created	QTextCodec	objects	take	precedence	over	earlier	ones.

You	may	find	it	more	convenient	to	make	your	codec	class	available	as	a	plugin;
see	the	plugin	documentation	for	more	details.

The	abstract	virtual	functions	describe	the	encoder	to	the	system	and	the	coder	is
used	as	required	in	the	different	text	file	formats	supported	by	QTextStream,	and
under	X11,	for	the	locale-specific	character	input	and	output.

To	add	support	for	another	8-bit	encoding	to	Qt,	make	a	subclass	of	QTextCodec
and	implement	at	least	the	following	methods:

			const	char*	name()	const

			

Return	the	official	name	for	the	encoding.

			int	mibEnum()	const

			

Return	the	MIB	enum	for	the	encoding	if	it	is	listed	in	the	IANA	character-sets
encoding	file.

If	the	encoding	is	multi-byte	then	it	will	have	"state";	that	is,	the	interpretation	of
some	bytes	will	be	dependent	on	some	preceding	bytes.	For	such	encodings,	you

http://www.iana.org/assignments/character-sets

must	implement:

			QTextDecoder*	makeDecoder()	const

			

Return	a	QTextDecoder	that	remembers	incomplete	multi-byte	sequence	prefixes
or	other	required	state.

If	the	encoding	does	not	require	state,	you	should	implement:

			QString	toUnicode(const	char*	chars,	int	len)	const

			

Converts	len	characters	from	chars	to	Unicode.

The	base	QTextCodec	class	has	default	implementations	of	the	above	two
functions,	but	they	are	mutually	recursive,	so	you	must	re-implement	at	least	one
of	them,	or	both	for	improved	efficiency.

For	conversion	from	Unicode	to	8-bit	encodings,	it	is	rarely	necessary	to
maintain	state.	However,	two	functions	similar	to	the	two	above	are	used	for
encoding:

			QTextEncoder*	makeEncoder()	const

			

Return	a	QTextDecoder.

			QCString	fromUnicode(const	QString&	uc,	int&	lenInOut)	const

			

Converts	lenInOut	characters	(of	type	QChar)	from	the	start	of	the	string	uc,
returning	a	QCString	result,	and	also	returning	the	length	of	the	result	in
lenInOut.

Again,	these	are	mutually	recursive	so	only	one	needs	to	be	implemented,	or
both	if	greater	efficiency	is	possible.

Finally,	you	must	implement:

			int	heuristicContentMatch(const	char*	chars,	int	len)	const

			

Gives	a	value	indicating	how	likely	it	is	that	len	characters	from	chars	are	in	the

encoding.

A	good	model	for	this	function	is	the
QWindowsLocalCodec::heuristicContentMatch	function	found	in	the	Qt	sources.

A	QTextCodec	subclass	might	have	improved	performance	if	you	also	re-
implement:

			bool	canEncode(QChar)	const

			

Test	if	a	Unicode	character	can	be	encoded.

			bool	canEncode(const	QString&)	const

			

Test	if	a	string	of	Unicode	characters	can	be	encoded.

			int	heuristicNameMatch(const	char*	hint)	const

			

Test	if	a	possibly	non-standard	name	is	referring	to	the	codec.

Codecs	can	also	be	created	as	plugins.

See	also	Internationalization	with	Qt.

Member	Function	Documentation

QTextCodec::QTextCodec	()	[protected]

Constructs	a	QTextCodec,	and	gives	it	the	highest	precedence.	The	QTextCodec
should	always	be	constructed	on	the	heap	(i.e.	with	new()),	and	once	constructed
it	becomes	the	responsibility	of	Qt	to	delete	it	(which	is	done	at	QApplication
destruction).

QTextCodec::~QTextCodec	()	[virtual]

Destroys	the	QTextCodec.	Note	that	you	should	not	delete	codecs	yourself:	once
created	they	become	Qt's	responsibility.

bool	QTextCodec::canEncode	(QChar	ch)	const	[virtual]

Returns	TRUE	if	the	unicode	character	ch	can	be	fully	encoded	with	this	codec;
otherwise	returns	FALSE.	The	default	implementation	tests	if	the	result	of
toUnicode(fromUnicode(ch))	is	the	original	ch.	Subclasses	may	be	able	to
improve	the	efficiency.

bool	QTextCodec::canEncode	(const	QString	&	s)	const
[virtual]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

s	contains	the	string	being	tested	for	encode-ability.

QTextCodec	*	QTextCodec::codecForContent	(
const	char	*	chars,	int	len)	[static]

Searches	all	installed	QTextCodec	objects,	returning	the	one	which	most
recognizes	the	given	content.	May	return	0.

Note	that	this	is	often	a	poor	choice,	since	character	encodings	often	use	most	of
the	available	character	sequences,	and	so	only	by	linguistic	analysis	could	a	true

match	be	made.

chars	contains	the	string	to	check,	and	len	contains	the	number	of	characters	in
the	string	to	use.

See	also	heuristicContentMatch().

Example:	qwerty/qwerty.cpp.

QTextCodec	*	QTextCodec::codecForIndex	(int	i)	[static]

Returns	the	QTextCodec	i	positions	from	the	most	recently	inserted	codec,	or	0
if	there	is	no	such	QTextCodec.	Thus,	codecForIndex(0)	returns	the	most
recently	created	QTextCodec.

Example:	qwerty/qwerty.cpp.

QTextCodec	*	QTextCodec::codecForLocale	()	[static]

Returns	a	pointer	to	the	codec	most	suitable	for	this	locale.

Example:	qwerty/qwerty.cpp.

QTextCodec	*	QTextCodec::codecForMib	(int	mib)	[static]

Returns	the	QTextCodec	which	matches	the	MIBenum	mib.

QTextCodec	*	QTextCodec::codecForName	(const	char	*	name,
int	accuracy	=	0)	[static]

Searches	all	installed	QTextCodec	objects	and	returns	the	one	which	best
matches	name.	Returns	a	null	pointer	if	no	codec's	heuristicNameMatch()	reports
a	match	better	than	accuracy,	or	if	name	is	a	null	string.

See	also	heuristicNameMatch().

void	QTextCodec::deleteAllCodecs	()	[static]

Deletes	all	the	created	codecs.

Warning:	Do	not	call	this	function.

QApplication	calls	this	just	before	exiting,	to	delete	any	QTextCodec	objects	that
may	be	lying	around.	Since	various	other	classes	hold	pointers	to	QTextCodec
objects,	it	is	not	safe	to	call	this	function	earlier.

If	you	are	using	the	utility	classes	(like	QString)	but	not	using	QApplication,
calling	this	function	at	the	very	end	of	your	application	can	be	helpful	to	chase
down	memory	leaks,	as	QTextCodec	objects	will	not	show	up.

QCString	QTextCodec::fromUnicode	(const	QString	&	uc,
int	&	lenInOut)	const	[virtual]

Subclasses	of	QTextCodec	must	reimplement	either	this	function	or
makeEncoder().	It	converts	the	first	lenInOut	characters	of	uc	from	Unicode	to
the	encoding	of	the	subclass.	If	lenInOut	is	negative	or	too	large,	the	length	of	uc
is	used	instead.

Converts	lenInOut	characters	(not	bytes)	from	uc,	producing	a	QCString.
lenInOut	will	be	set	to	the	length	of	the	result	(in	bytes).

The	default	implementation	makes	an	encoder	with	makeEncoder()	and	converts
the	input	with	that.	Note	that	the	default	makeEncoder()	implementation	makes
an	encoder	that	simply	calls	this	function,	hence	subclasses	must	reimplement
one	function	or	the	other	to	avoid	infinite	recursion.

Reimplemented	in	QHebrewCodec.

QCString	QTextCodec::fromUnicode	(const	QString	&	uc)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

uc	is	the	unicode	source	string.

int	QTextCodec::heuristicContentMatch	(const	char	*	chars,
int	len)	const	[pure	virtual]

Subclasses	of	QTextCodec	must	reimplement	this	function.	It	examines	the	first

len	bytes	of	chars	and	returns	a	value	indicating	how	likely	it	is	that	the	string	is
a	prefix	of	text	encoded	in	the	encoding	of	the	subclass.	A	negative	return	value
indicates	that	the	text	is	detectably	not	in	the	encoding	(e.g.	it	contains	characters
undefined	in	the	encoding).	A	return	value	of	0	indicates	that	the	text	should	be
decoded	with	this	codec	rather	than	as	ASCII,	but	there	is	no	particular	evidence.
The	value	should	range	up	to	len.	Thus,	most	decoders	will	return	-1,	0,	or	-len.

The	characters	are	not	null	terminated.

See	also	codecForContent().

int	QTextCodec::heuristicNameMatch	(const	char	*	hint)	const
[virtual]

Returns	a	value	indicating	how	likely	it	is	that	this	decoder	is	appropriate	for
decoding	some	format	that	has	the	given	name.	The	name	is	compared	with	the
hint.

A	good	match	returns	a	positive	number	around	the	length	of	the	string.	A	bad
match	is	negative.

The	default	implementation	calls	simpleHeuristicNameMatch()	with	the	name	of
the	codec.

QTextCodec	*	QTextCodec::loadCharmap	(QIODevice	*	iod)
[static]

Reads	a	POSIX2	charmap	definition	from	iod.	The	parser	recognizes	the
following	lines:

		<code_set_name>	name			<escape_char>	character			%	alias	alias
		CHARMAP			<token>	/xhexbyte	<Uunicode>	...			<token>	/ddecbyte
<Uunicode>	...			<token>	/octbyte	<Uunicode>	...			<token>	/any/any...
<Uunicode>	...			END	CHARMAP

The	resulting	QTextCodec	is	returned	(and	also	added	to	the	global	list	of
codecs).	The	name()	of	the	result	is	taken	from	the	code_set_name.

Note	that	a	codec	constructed	in	this	way	uses	much	more	memory	and	is	slower

than	a	hand-written	QTextCodec	subclass,	since	tables	in	code	are	in	memory
shared	by	all	applications	simultaneously	using	Qt.

See	also	loadCharmapFile().

Example:	qwerty/qwerty.cpp.

QTextCodec	*	QTextCodec::loadCharmapFile	(QString	filename
)	[static]

A	convenience	function	for	loadCharmap()	that	loads	the	charmap	definition
from	the	file	filename.

const	char	*	QTextCodec::locale	()	[static]

Returns	a	string	representing	the	current	language.

Example:	i18n/main.cpp.

QTextDecoder	*	QTextCodec::makeDecoder	()	const	[virtual]

Creates	a	QTextDecoder	which	stores	enough	state	to	decode	chunks	of	char*
data	to	create	chunks	of	Unicode	data.	The	default	implementation	creates	a
stateless	decoder,	which	is	sufficient	for	only	the	simplest	encodings	where	each
byte	corresponds	to	exactly	one	Unicode	character.

The	caller	is	responsible	for	deleting	the	returned	object.

QTextEncoder	*	QTextCodec::makeEncoder	()	const	[virtual]

Creates	a	QTextEncoder	which	stores	enough	state	to	encode	chunks	of	Unicode
data	as	char*	data.	The	default	implementation	creates	a	stateless	encoder,	which
is	sufficient	for	only	the	simplest	encodings	where	each	Unicode	character
corresponds	to	exactly	one	character.

The	caller	is	responsible	for	deleting	the	returned	object.

int	QTextCodec::mibEnum	()	const	[pure	virtual]

Subclasses	of	QTextCodec	must	reimplement	this	function.	It	returns	the
MIBenum	(see	the	IANA	character-sets	encoding	file	for	more	information).	It	is
important	that	each	QTextCodec	subclass	returns	the	correct	unique	value	for
this	function.

Reimplemented	in	QEucJpCodec.

const	char	*	QTextCodec::mimeName	()	const	[virtual]

Returns	the	preferred	mime	name	of	the	encoding	as	defined	in	the	IANA
character-sets	encoding	file.

Reimplemented	in	QEucJpCodec,	QEucKrCodec,	QGbkCodec,	QJisCodec,
QHebrewCodec	and	QSjisCodec.

const	char	*	QTextCodec::name	()	const	[pure	virtual]

Subclasses	of	QTextCodec	must	reimplement	this	function.	It	returns	the	name
of	the	encoding	supported	by	the	subclass.	When	choosing	a	name	for	an
encoding,	consider	these	points:

On	X11,	heuristicNameMatch(const	char	*	hint)	is	used	to	test	if	a	the
QTextCodec	can	convert	between	Unicode	and	the	encoding	of	a	font	with
encoding	hint,	such	as	"iso8859-1"	for	Latin-1	fonts,	"koi8-r"	for	Russian
KOI8	fonts.	The	default	algorithm	of	heuristicNameMatch()	uses	name().
Some	applications	may	use	this	function	to	present	encodings	to	the	end
user.

Example:	qwerty/qwerty.cpp.

void	QTextCodec::setCodecForLocale	(QTextCodec	*	c)
[static]

Set	the	codec	to	c;	this	will	be	returned	by	codecForLocale().	This	might	be
needed	for	some	applications	that	want	to	use	their	own	mechanism	for	setting
the	locale.

See	also	codecForLocale().

ftp://ftp.isi.edu/in-notes/iana/assignments/character-sets
ftp://ftp.isi.edu/in-notes/iana/assignments/character-sets

int	QTextCodec::simpleHeuristicNameMatch	(const	char	*	name,
const	char	*	hint)	[static	protected]

A	simple	utility	function	for	heuristicNameMatch():	it	does	some	very	minor
character-skipping	so	that	almost-exact	matches	score	high.	name	is	the	text
we're	matching	and	hint	is	used	for	the	comparison.

QString	QTextCodec::toUnicode	(const	char	*	chars,	int	len)
const	[virtual]

Subclasses	of	QTextCodec	must	reimplement	this	function	or	makeDecoder().	It
converts	the	first	len	characters	of	chars	to	Unicode.

The	default	implementation	makes	a	decoder	with	makeDecoder()	and	converts
the	input	with	that.	Note	that	the	default	makeDecoder()	implementation	makes	a
decoder	that	simply	calls	this	function,	hence	subclasses	must	reimplement	one
function	or	the	other	to	avoid	infinite	recursion.

QString	QTextCodec::toUnicode	(const	QByteArray	&	a,	int	len)
const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

a	contains	the	source	characters;	len	contains	the	number	of	characters	in	a	to
use.

QString	QTextCodec::toUnicode	(const	QByteArray	&	a)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

a	contains	the	source	characters.

QString	QTextCodec::toUnicode	(const	QCString	&	a,	int	len)
const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves

essentially	like	the	above	function.

a	contains	the	source	characters;	len	contains	the	number	of	characters	in	a	to
use.

QString	QTextCodec::toUnicode	(const	QCString	&	a)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

a	contains	the	source	characters.

QString	QTextCodec::toUnicode	(const	char	*	chars)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

chars	contains	the	source	characters.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QDomDocument	Class	Reference
[XML	module]

The	QDomDocument	class	represents	an	XML	document.	More...

#include	<qdom.h>

Inherits	QDomNode.

List	of	all	member	functions.

Public	Members

QDomDocument	()
QDomDocument	(const	QString	&	name)
QDomDocument	(const	QDomDocumentType	&	doctype)
QDomDocument	(const	QDomDocument	&	x)
QDomDocument	&	operator=	(const	QDomDocument	&	x)
~QDomDocument	()
QDomElement	createElement	(const	QString	&	tagName)
QDomDocumentFragment	createDocumentFragment	()
QDomText	createTextNode	(const	QString	&	value)
QDomComment	createComment	(const	QString	&	value)
QDomCDATASection	createCDATASection	(const	QString	&	value)
QDomProcessingInstruction	createProcessingInstruction	(
const	QString	&	target,	const	QString	&	data)
QDomAttr	createAttribute	(const	QString	&	name)
QDomEntityReference	createEntityReference	(const	QString	&	name)
QDomNodeList	elementsByTagName	(const	QString	&	tagname)	const
QDomNode	importNode	(const	QDomNode	&	importedNode,	bool	deep)
QDomElement	createElementNS	(const	QString	&	nsURI,
const	QString	&	qName)
QDomAttr	createAttributeNS	(const	QString	&	nsURI,
const	QString	&	qName)
QDomNodeList	elementsByTagNameNS	(const	QString	&	nsURI,
const	QString	&	localName)
QDomElement	elementById	(const	QString	&	elementId)
QDomDocumentType	doctype	()	const
QDomImplementation	implementation	()	const
QDomElement	documentElement	()	const
bool	setContent	(const	QCString	&	buffer,	bool	namespaceProcessing,
QString	*	errorMsg	=	0,	int	*	errorLine	=	0,	int	*	errorColumn	=	0)
bool	setContent	(const	QByteArray	&	buffer,	bool	namespaceProcessing,
QString	*	errorMsg	=	0,	int	*	errorLine	=	0,	int	*	errorColumn	=	0)
bool	setContent	(const	QString	&	text,	bool	namespaceProcessing,
QString	*	errorMsg	=	0,	int	*	errorLine	=	0,	int	*	errorColumn	=	0)
bool	setContent	(QIODevice	*	dev,	bool	namespaceProcessing,
QString	*	errorMsg	=	0,	int	*	errorLine	=	0,	int	*	errorColumn	=	0)

bool	setContent	(const	QCString	&	buffer,	QString	*	errorMsg	=	0,
int	*	errorLine	=	0,	int	*	errorColumn	=	0)
bool	setContent	(const	QByteArray	&	buffer,	QString	*	errorMsg	=	0,
int	*	errorLine	=	0,	int	*	errorColumn	=	0)
bool	setContent	(const	QString	&	text,	QString	*	errorMsg	=	0,
int	*	errorLine	=	0,	int	*	errorColumn	=	0)
bool	setContent	(QIODevice	*	dev,	QString	*	errorMsg	=	0,
int	*	errorLine	=	0,	int	*	errorColumn	=	0)
virtual	QDomNode::NodeType	nodeType	()	const
virtual	bool	isDocument	()	const
QString	toString	()	const
QCString	toCString	()	const

Detailed	Description

The	QDomDocument	class	represents	an	XML	document.

The	QDomDocument	class	represents	the	entire	XML	document.	Conceptually,
it	is	the	root	of	the	document	tree,	and	provides	the	primary	access	to	the
document's	data.

Since	elements,	text	nodes,	comments,	processing	instructions,	etc.	cannot	exist
outside	the	context	of	a	document,	the	document	class	also	contains	the	factory
functions	needed	to	create	these	objects.	The	node	objects	created	have	an
ownerDocument()	function	which	associates	them	with	the	document	within
whose	context	they	were	created.	The	DOM	classes	that	will	be	used	most	often
are	QDomNode,	QDomDocument,	QDomElement	and	QDomText.

The	parsed	XML	is	represented	internally	by	a	tree	of	objects	that	can	be
accessed	using	the	various	QDom	classes.	All	QDom	classes	only	reference
objects	in	the	internal	tree.	The	internal	objects	in	the	DOM	tree	will	get	deleted,
once	the	last	QDom	object	referencing	them	and	the	QDomDocument	itself	are
deleted.

Creation	of	elements,	text	nodes,	etc.	is	done	via	the	various	factory	functions
provided	in	this	class.	Using	the	default	constructors	of	the	QDom	classes	will
only	result	in	empty	objects,	that	cannot	be	manipulated	or	inserted	into	the
Document.

The	QDomDocument	class	has	several	functions	for	creating	document	data,	for
example,	createElement(),	createTextNode(),	createComment(),
createCDATASection(),	createProcessingInstruction(),	createAttribute()	and
createEntityReference().	Some	of	these	functions	have	versions	that	support
namespaces,	i.e.	createElementNS()	and	createAttributeNS().	The
createDocumentFragment()	function	is	used	to	hold	parts	of	the	document,	e.g.
for	complex	documents.

The	entire	content	of	the	document	is	set	with	setContent().	This	function	parses
the	string	it	is	passed	as	an	XML	document	and	creates	the	DOM	tree	that
represents	the	document.	The	root	element	is	available	using
documentElement().	The	textual	representation	of	the	document	can	be	obtained

using	toString().

It	is	possible	to	insert	a	node	from	another	document	into	the	document	using
importNode().

You	can	obtain	a	list	of	all	the	elements	that	have	a	particular	tag	with
elementsByTagName()	or	with	elementsByTagNameNS().

The	QDom	classes	are	typically	used	as	follows:

		QDomDocument	doc("mydocument");

		QFile	f("mydocument.xml");

		if	(!f.open(IO_ReadOnly))

						return;

		if	(!doc.setContent(&f))	{

						f.close();

						return;

		}

		f.close();

		//	print	out	the	element	names	of	all	elements	that	are	direct	children

		//	of	the	outermost	element.

		QDomElement	docElem	=	doc.documentElement();

		QDomNode	n	=	docElem.firstChild();

		while(!n.isNull())	{

						QDomElement	e	=	n.toElement();	//	try	to	convert	the	node	to	an	element.

						if(!e.isNull())	{

										cout	<<	e.tagName()	<<	endl;	//	the	node	really	is	an	element.

						}

						n	=	n.nextSibling();

		}

		//	Here	we	append	a	new	element	to	the	end	of	the	document

		QDomElement	elem	=	doc.createElement("img");

		elem.setAttribute("src",	"myimage.png");

		docElem.appendChild(elem);

		

Once	doc	and	elem	go	out	of	scope,	the	whole	internal	tree	representing	the
XML	document	will	get	deleted.

To	create	a	document	using	DOM	use	code	like	this:

				QDomDocument	doc("MyML");

				QDomElement	root	=	doc.createElement("MyML");

				doc.appendChild(root);

				QDomElement	tag	=	doc.createElement("Greeting");

				root.appendChild(tag);

				QDomText	t	=	doc.createTextNode("Hello	World");

				tag.appendChild(t);

				QString	xml	=	doc.toString();

				

For	further	information	about	the	Document	Object	Model	see
http://www.w3.org/TR/REC-DOM-Level-1/	and	http://www.w3.org/TR/DOM-
Level-2-Core/.	For	a	more	general	introduction	of	the	DOM	implementation	see
the	QDomDocument	documentation.

See	also	XML.

http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/DOM-Level-2-Core/

Member	Function	Documentation

QDomDocument::QDomDocument	()

Constructs	an	empty	document.

QDomDocument::QDomDocument	(const	QString	&	name)

Creates	a	document	and	sets	the	name	of	the	document	type	to	name.

QDomDocument::QDomDocument	(
const	QDomDocumentType	&	doctype)

Creates	a	document	with	the	document	type	doctype.

See	also	QDomImplementation::createDocumentType().

QDomDocument::QDomDocument	(const	QDomDocument	&	x)

Constructs	a	copy	of	x.

The	data	of	the	copy	is	shared	(shallow	copy):	modifying	one	node	will	also
change	the	other.	If	you	want	to	make	a	deep	copy,	use	cloneNode().

QDomDocument::~QDomDocument	()

Destroys	the	object	and	frees	its	resources.

QDomAttr	QDomDocument::createAttribute	(
const	QString	&	name)

Creates	a	new	attribute	called	name	that	can	be	inserted	into	an	element,	e.g.
using	QDomElement::setAttributeNode().

See	also	createAttributeNS().

QDomAttr	QDomDocument::createAttributeNS	(
const	QString	&	nsURI,	const	QString	&	qName)

Creates	a	new	attribute	with	namespace	support	that	can	be	inserted	into	an
element.	The	name	of	the	attribute	is	qName	and	the	namespace	URI	is	nsURI.
This	function	also	sets	QDomNode::prefix()	and	QDomNode::localName()	to
appropriate	values	(depending	on	qName).

See	also	createAttribute().

QDomCDATASection	QDomDocument::createCDATASection	(
const	QString	&	value)

Creates	a	new	CDATA	section	for	the	string	value	that	can	be	inserted	into	the
document,	e.g.	using	QDomNode::appendChild().

See	also	QDomNode::appendChild(),	QDomNode::insertBefore()	and
QDomNode::insertAfter().

QDomComment	QDomDocument::createComment	(
const	QString	&	value)

Creates	a	new	comment	for	the	string	value	that	can	be	inserted	into	the
document,	e.g.	using	QDomNode::appendChild().

See	also	QDomNode::appendChild(),	QDomNode::insertBefore()	and
QDomNode::insertAfter().

QDomDocumentFragment
QDomDocument::createDocumentFragment	()

Creates	a	new	document	fragment,	that	can	be	used	to	hold	parts	of	the
document,	e.g.	when	doing	complex	manipulations	of	the	document	tree.

QDomElement	QDomDocument::createElement	(
const	QString	&	tagName)

Creates	a	new	element	called	tagName	that	can	be	inserted	into	the	DOM	tree,
e.g.	using	QDomNode::appendChild().

See	also	createElementNS(),	QDomNode::appendChild(),
QDomNode::insertBefore()	and	QDomNode::insertAfter().

QDomElement	QDomDocument::createElementNS	(
const	QString	&	nsURI,	const	QString	&	qName)

Creates	a	new	element	with	namespace	support	that	can	be	inserted	into	the
DOM	tree.	The	name	of	the	element	is	qName	and	the	namespace	URI	is	nsURI.
This	function	also	sets	QDomNode::prefix()	and	QDomNode::localName()	to
appropriate	values	(depending	on	qName).

See	also	createElement().

QDomEntityReference	QDomDocument::createEntityReference	(
const	QString	&	name)

Creates	a	new	entity	reference	called	name	that	can	be	inserted	into	the
document,	e.g.	using	QDomNode::appendChild().

See	also	QDomNode::appendChild(),	QDomNode::insertBefore()	and
QDomNode::insertAfter().

QDomProcessingInstruction
QDomDocument::createProcessingInstruction	(
const	QString	&	target,	const	QString	&	data)

Creates	a	new	processing	instruction	that	can	be	inserted	into	the	document,	e.g.
using	QDomNode::appendChild().	This	function	sets	the	target	for	the
processing	instruction	to	target	and	the	data	to	data.

See	also	QDomNode::appendChild(),	QDomNode::insertBefore()	and
QDomNode::insertAfter().

QDomText	QDomDocument::createTextNode	(
const	QString	&	value)

Creates	a	text	node	for	the	string	value	that	can	be	inserted	into	the	document
tree,	e.g.	using	QDomNode::appendChild().

See	also	QDomNode::appendChild(),	QDomNode::insertBefore()	and
QDomNode::insertAfter().

QDomDocumentType	QDomDocument::doctype	()	const

Returns	the	document	type	of	this	document.

QDomElement	QDomDocument::documentElement	()	const

Returns	the	root	element	of	the	document.

QDomElement	QDomDocument::elementById	(
const	QString	&	elementId)

Returns	the	element	whose	ID	is	equal	to	elementId.	If	no	element	with	the	ID
was	found,	this	function	returns	a	null	element.

Since	the	actual	version	of	the	QDomClasses	does	not	know	which	attributes	are
element	IDs,	this	function	returns	always	a	null	element.	This	may	change	in	a
future	version.

QDomNodeList	QDomDocument::elementsByTagName	(
const	QString	&	tagname)	const

Returns	a	QDomNodeList,	that	contains	all	the	elements	in	the	document	with
the	name	tagname.	The	order	of	the	node	list	is	the	order	they	are	encountered	in
a	preorder	traversal	of	the	element	tree.

See	also	elementsByTagNameNS()	and	QDomElement::elementsByTagName().

QDomNodeList	QDomDocument::elementsByTagNameNS	(
const	QString	&	nsURI,	const	QString	&	localName)

Returns	a	QDomNodeList	that	contains	all	the	elements	in	the	document	with
the	local	name	localName	and	a	namespace	URI	of	nsURI.	The	order	of	the	node

list,	is	the	order	they	are	encountered	in	a	preorder	traversal	of	the	element	tree.

See	also	elementsByTagName()	and	QDomElement::elementsByTagNameNS().

QDomImplementation	QDomDocument::implementation	()	const

Returns	a	QDomImplementation	object.

QDomNode	QDomDocument::importNode	(
const	QDomNode	&	importedNode,	bool	deep)

Imports	the	node	importedNode	from	another	document	to	this	document.
importedNode	remains	in	the	original	document;	this	function	creates	a	copy	of
it	that	can	be	used	within	this	document.

This	function	returns	the	imported	node	that	belongs	to	this	document.	The
returned	node	has	no	parent.	It	is	not	possible	to	import	QDomDocument	and
QDomDocumentType	nodes.	In	those	cases	this	function	returns	a	null	node.

If	deep	is	TRUE,	this	function	imports	not	only	the	node	importedNode	but	the
whole	subtree;	if	it	is	FALSE,	only	the	importedNode	is	imported.	The	argument
deep	has	no	effect	on	QDomAttr	and	QDomEntityReference	nodes,	since	the
descendants	of	QDomAttr	nodes	are	always	imported	and	those	of
QDomEntityReference	nodes	are	never	imported.

The	behavior	of	this	function	is	slightly	different	depending	on	the	node	types:

QDomAttr	-	The	owner	element	is	set	to	0	and	the	specified	flag	is	set	to
TRUE	on	the	generated	attribute.	The	whole	subtree	of	importedNode	is
always	imported	for	attribute	nodes	-	deep	has	no	effect.
QDomDocument	-	Document	nodes	cannot	be	imported.
QDomDocumentFragment	-	If	deep	is	TRUE,	this	function	imports	the
whole	document	fragment,	otherwise	it	only	generates	an	empty	document
fragment.
QDomDocumentType	-	Document	type	nodes	cannot	be	imported.
QDomElement	-	Attributes	for	which	QDomAttr::specified()	is	TRUE	are
also	imported,	other	attributes	are	not	imported.	If	deep	is	TRUE,	this
function	also	imports	the	subtree	of	importedNode,	otherwise	it	imports
only	the	element	node	(and	some	attributes,	see	above).

QDomEntity	-	Entity	nodes	can	be	imported,	but	at	the	moment	there	is	no
way	to	use	them	since	the	document	type	is	readonly	in	DOM	level	2.
QDomEntityReference	-	Descendants	of	entity	reference	nodes	are	never
imported	-	deep	has	no	effect.
QDomNotation	-	Notation	nodes	can	be	imported,	but	at	the	moment	there
is	no	way	to	use	them	since	the	document	type	is	readonly	in	DOM	level	2.
QDomProcessingInstruction	-	The	target	and	value	of	the	processing
instruction	is	copied	to	the	new	node.
QDomText,	QDomCDATASection	and	QDomComment	-	The	text	is
copied	to	the	new	node.

See	also	QDomElement::setAttribute(),	QDomNode::insertBefore(),
QDomNode::insertAfter(),	QDomNode::replaceChild(),
QDomNode::removeChild()	and	QDomNode::appendChild().

bool	QDomDocument::isDocument	()	const	[virtual]

Returns	TRUE.

Reimplemented	from	QDomNode.

QDomNode::NodeType	QDomDocument::nodeType	()	const
[virtual]

Returns	DocumentNode.

Reimplemented	from	QDomNode.

QDomDocument	&	QDomDocument::operator=	(
const	QDomDocument	&	x)

Assigns	x	to	this	DOM	document.

The	data	of	the	copy	is	shared	(shallow	copy):	modifying	one	node	will	also
change	the	other.	If	you	want	to	make	a	deep	copy,	use	cloneNode().

bool	QDomDocument::setContent	(const	QByteArray	&	buffer,
bool	namespaceProcessing,	QString	*	errorMsg	=	0,

int	*	errorLine	=	0,	int	*	errorColumn	=	0)

This	function	parses	the	XML	document	from	the	byte	array	buffer	and	sets	it	as
the	content	of	the	document.	It	tries	to	detect	the	encoding	of	the	document	as
required	by	the	XML	specification.

If	namespaceProcessing	is	TRUE,	the	parser	recognizes	namespaces	in	the	XML
file	and	sets	the	prefix	name,	local	name	and	namespace	URI	to	appropriate
values.	If	namespaceProcessing	is	FALSE,	the	parser	does	no	namespace
processing	when	it	reads	the	XML	file.

If	a	parse	error	occurs,	the	function	returns	FALSE;	otherwise	TRUE.	If	a	parse
error	occurs	the	error	message	is	placed	in	*errorMsg,	the	line	number	in
*errorLine	and	the	column	number	in	*errorColumn.	These	error	variables	will
only	be	populated	if	they	are	non-null.

If	namespaceProcessing	is	TRUE,	the	function	QDomNode::prefix()	returns	a
string	for	all	elements	and	attributes.	It	returns	an	empty	string	if	the	element	or
attribute	has	no	prefix.

If	namespaceProcessing	is	FALSE,	the	functions	QDomNode::prefix(),
QDomNode::localName()	and	QDomNode::namespaceURI()	return	a	null
string.

See	also	QDomNode::namespaceURI(),	QDomNode::localName(),
QDomNode::prefix(),	QString::isNull()	and	QString::isEmpty().

bool	QDomDocument::setContent	(const	QCString	&	buffer,
bool	namespaceProcessing,	QString	*	errorMsg	=	0,
int	*	errorLine	=	0,	int	*	errorColumn	=	0)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

This	function	reads	the	XML	document	from	the	C	string	buffer.

Use	this	function	with	extreme	care,	since	it	does	not	try	to	detect	the	encoding,
but	rather	assumes	that	the	C	string	is	in	Utf8	encoding.

bool	QDomDocument::setContent	(const	QString	&	text,
bool	namespaceProcessing,	QString	*	errorMsg	=	0,
int	*	errorLine	=	0,	int	*	errorColumn	=	0)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

This	function	reads	the	XML	document	from	the	string	text.	Since	text	is	already
a	unicode	string,	no	encoding	detection	is	done.

bool	QDomDocument::setContent	(QIODevice	*	dev,
bool	namespaceProcessing,	QString	*	errorMsg	=	0,
int	*	errorLine	=	0,	int	*	errorColumn	=	0)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

This	function	reads	the	XML	document	from	the	IO	device	dev.

bool	QDomDocument::setContent	(const	QCString	&	buffer,
QString	*	errorMsg	=	0,	int	*	errorLine	=	0,
int	*	errorColumn	=	0)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

This	function	reads	the	XML	document	from	the	C	string	buffer.

Use	this	function	with	extreme	care,	since	it	does	not	try	to	detect	the	encoding,
but	rather	assumes	that	the	C	string	is	in	Utf8	encoding.

No	namespace	processing	is	done.

bool	QDomDocument::setContent	(const	QByteArray	&	buffer,
QString	*	errorMsg	=	0,	int	*	errorLine	=	0,
int	*	errorColumn	=	0)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

This	function	reads	the	XML	document	from	the	byte	array	buffer.

No	namespace	processing	is	done.

bool	QDomDocument::setContent	(const	QString	&	text,
QString	*	errorMsg	=	0,	int	*	errorLine	=	0,
int	*	errorColumn	=	0)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

This	function	reads	the	XML	document	from	the	string	text.	Since	text	is	already
a	unicode	string,	no	encoding	detection	is	done.

No	namespace	processing	is	done.

bool	QDomDocument::setContent	(QIODevice	*	dev,
QString	*	errorMsg	=	0,	int	*	errorLine	=	0,
int	*	errorColumn	=	0)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

This	function	reads	the	XML	document	from	the	IO	device	dev.

No	namespace	processing	is	done.

QCString	QDomDocument::toCString	()	const

Converts	the	parsed	document	back	to	its	textual	representation	and	returns	a
QCString	for	that	is	encoded	in	UTF-8.

See	also	toString().

QString	QDomDocument::toString	()	const

Converts	the	parsed	document	back	to	its	textual	representation.

See	also	toCString().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QIntCache	Class	Reference
The	QIntCache	class	is	a	template	class	that	provides	a	cache	based	on	long
keys.	More...

#include	<qintcache.h>

List	of	all	member	functions.

Public	Members

QIntCache	(int	maxCost	=	100,	int	size	=	17)
~QIntCache	()
int	maxCost	()	const
int	totalCost	()	const
void	setMaxCost	(int	m)
virtual	uint	count	()	const
uint	size	()	const
bool	isEmpty	()	const
bool	insert	(long	k,	const	type	*	d,	int	c	=	1,	int	p	=	0)
bool	remove	(long	k)
type	*	take	(long	k)
virtual	void	clear	()
type	*	find	(long	k,	bool	ref	=	TRUE)	const
type	*	operator[]	(long	k)	const
void	statistics	()	const

Detailed	Description

The	QIntCache	class	is	a	template	class	that	provides	a	cache	based	on	long
keys.

QIntCache	is	implemented	as	a	template	class.	Define	a	template	instance
QIntCache<X>	to	create	a	cache	that	operates	on	pointers	to	X,	or	X*.

A	cache	is	a	least	recently	used	(LRU)	list	of	cache	items,	accessed	via	long
keys.	Each	cache	item	has	a	cost.	The	sum	of	item	costs,	totalCost(),	will	not
exceed	the	maximum	cache	cost,	maxCost().	If	inserting	a	new	item	would	cause
the	total	cost	to	exceed	the	maximum	cost,	the	least	recently	used	items	in	the
cache	are	removed.

Apart	from	insert(),	by	far	the	most	important	function	is	find()	(which	also
exists	as	operator[]).	This	function	looks	up	an	item,	returns	it,	and	by	default
marks	it	as	being	the	most	recently	used	item.

There	are	also	methods	to	remove()	or	take()	an	object	from	the	cache.	Calling
setAutoDelete(TRUE)	for	a	cache	tells	it	to	delete	items	that	are	removed.	The
default	is	to	not	delete	items	when	they	are	removed	(i.e.	remove()	and	take()	are
equivalent).

When	inserting	an	item	into	the	cache,	only	the	pointer	is	copied,	not	the	item
itself.	This	is	called	a	shallow	copy.	It	is	possible	to	make	the	dictionary	copy	all
of	the	item's	data	(known	as	a	deep	copy)	when	an	item	is	inserted.	insert()	calls
the	virtual	function	QPtrCollection::newItem()	for	the	item	to	be	inserted.	Inherit
a	dictionary	and	reimplement	it	if	you	want	deep	copies.

When	removing	a	cache	item	if	auto-deletion	is	enabled	the	item	will	be
automatically	deleted.

There	is	a	QIntCacheIterator	which	may	be	used	to	traverse	the	items	in	the
cache	in	arbitrary	order.

See	also	QIntCacheIterator,	QCache,	QAsciiCache,	Collection	Classes	and	Non-
GUI	Classes.

Member	Function	Documentation

QIntCache::QIntCache	(int	maxCost	=	100,	int	size	=	17)

Constructs	a	cache	whose	contents	will	never	have	a	total	cost	greater	than
maxCost	and	which	is	expected	to	contain	less	than	size	items.

size	is	actually	the	size	of	an	internal	hash	array;	it's	usually	best	to	make	it
prime	and	at	least	50%	bigger	than	the	largest	expected	number	of	items	in	the
cache.

Each	inserted	item	is	associated	with	a	cost.	When	inserting	a	new	item,	if	the
total	cost	of	all	items	in	the	cache	will	exceed	maxCost,	the	cache	will	start
throwing	out	the	older	(least	recently	used)	items	until	there	is	enough	room	for
the	new	item	to	be	inserted.

QIntCache::~QIntCache	()

Removes	all	items	from	the	cache	and	then	destroys	the	int	cache.	If	auto-
deletion	is	enabled	the	cache's	items	are	deleted.	All	iterators	that	access	this
cache	will	be	reset.

void	QIntCache::clear	()	[virtual]

Removes	all	items	from	the	cache,	and	deletes	them	if	auto-deletion	has	been
enabled.

All	cache	iterators	that	operate	this	on	cache	are	reset.

See	also	remove()	and	take().

uint	QIntCache::count	()	const	[virtual]

Returns	the	number	of	items	in	the	cache.

See	also	totalCost().

type	*	QIntCache::find	(long	k,	bool	ref	=	TRUE)	const

Returns	the	item	associated	with	k,	or	null	if	the	key	does	not	exist	in	the	cache.
If	ref	is	TRUE	(the	default),	the	item	is	moved	to	the	front	of	the	LRU	list.

If	there	are	two	or	more	items	with	equal	keys,	the	one	that	was	inserted	last	is
returned.

bool	QIntCache::insert	(long	k,	const	type	*	d,	int	c	=	1,	int	p	=	0
)

Inserts	the	item	d	into	the	cache	with	key	k	and	cost	c	(default	1).	Returns	TRUE
if	it	succeeds	and	FALSE	if	it	fails.

The	cache's	size	is	limited,	and	if	the	total	cost	is	too	high,	QIntCache	will
remove	old,	least-used	items	until	there	is	room	for	this	new	item.

The	parameter	p	is	internal	and	should	be	left	at	the	default	value	(0).

Warning:	If	this	function	returns	FALSE,	you	must	delete	d	yourself.
Additionally,	be	very	careful	about	using	d	after	calling	this	function.	Any	other
insertions	into	the	cache,	from	anywhere	in	the	application	or	within	Qt	itself,
could	cause	the	object	to	be	discarded	from	the	cache	and	the	pointer	to	become
invalid.

bool	QIntCache::isEmpty	()	const

Returns	TRUE	if	the	cache	is	empty;	otherwise	returns	FALSE.

int	QIntCache::maxCost	()	const

Returns	the	maximum	allowed	total	cost	of	the	cache.

See	also	setMaxCost()	and	totalCost().

type	*	QIntCache::operator[]	(long	k)	const

Returns	the	item	associated	with	k,	or	null	if	k	does	not	exist	in	the	cache,	and

moves	the	item	to	the	front	of	the	LRU	list.

If	there	are	two	or	more	items	with	equal	keys,	the	one	that	was	inserted	last	is
returned.

This	is	the	same	as	find(k,	TRUE).

See	also	find().

bool	QIntCache::remove	(long	k)

Removes	the	item	associated	with	k,	and	returns	TRUE	if	the	item	was	present	in
the	cache	or	FALSE	if	it	was	not.

The	item	is	deleted	if	auto-deletion	has	been	enabled,	i.e.	if	you	have	called
setAutoDelete(TRUE).

If	there	are	two	or	more	items	with	equal	keys,	the	one	that	was	inserted	last	is
removed.

All	iterators	that	refer	to	the	removed	item	are	set	to	point	to	the	next	item	in	the
cache's	traversal	order.

See	also	take()	and	clear().

void	QIntCache::setMaxCost	(int	m)

Sets	the	maximum	allowed	total	cost	of	the	cache	to	m.	If	the	current	total	cost	is
above	m,	some	items	are	removed	immediately.

See	also	maxCost()	and	totalCost().

uint	QIntCache::size	()	const

Returns	the	size	of	the	hash	array	used	to	implement	the	cache.	This	should	be	a
bit	larger	than	count()	is	likely	to	be.

void	QIntCache::statistics	()	const

A	debug-only	utility	function.	Prints	out	cache	usage,	hit/miss,	and	distribution
information	using	qDebug().	This	function	does	nothing	in	the	release	library.

type	*	QIntCache::take	(long	k)

Takes	the	item	associated	with	k	out	of	the	cache	without	deleting	it,	and	returns
a	pointer	to	the	item	taken	out	or	null	if	the	key	does	not	exist	in	the	cache.

If	there	are	two	or	more	items	with	equal	keys,	the	one	that	was	inserted	last	is
taken.

All	iterators	that	refer	to	the	taken	item	are	set	to	point	to	the	next	item	in	the
cache's	traversal	order.

See	also	remove()	and	clear().

int	QIntCache::totalCost	()	const

Returns	the	total	cost	of	the	items	in	the	cache.	This	is	an	integer	in	the	range	0
to	maxCost().

See	also	setMaxCost().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QPtrListIterator
QPtrListIteratorQPtrList	 ……

#include	<qptrlist.h>

QObjectListItQStrListIterator

QPtrListIterator	(const	QPtrList<type>	&	list)
~QPtrListIterator	()
uint	count	()	const
bool	isEmpty	()	const
bool	atFirst	()	const
bool	atLast	()	const
type	*	toFirst	()
type	*	toLast	()
operator	type	*	()	const
type	*	operator*	()
type	*	current	()	const
type	*	operator()	()
type	*	operator++	()
type	*	operator+=	(uint	jump)
type	*	operator--	()
type	*	operator-=	(uint	jump)
QPtrListIterator<type>	&	operator=	(const	QPtrListIterator<type>	&	it)

QPtrListIterator QPtrList

QPtrListIterator<X>QPtrList<X>X*

QPtrListQPtrListIteratorEmployee

				QPtrList<Employee>	list;

				list.append(new	Employee("John",	"Doe",	50000));

				list.append(new	Employee("Jane",	"Williams",	80000));

				list.append(new	Employee("Tom",	"Jones",	60000));

				QPtrListIterator<Employee>	it(list);

				Employee	*employee;

				while	((employee	=	it.current())	!=	0)	{

								++it;

								cout	<<	employee->surname().latin1()	<<	",	"	<<

																employee->forename().latin1()	<<	"	earns	"	<<

																employee->salary()	<<	endl;

				}

		

				Doe,	John	earns	50000

				Williams,	Jane	earns	80000

				Jones,	Tom	earns	60000

		

QPtrListfirst() next() current()

QPtrList::current()

QPtrListGUI	

QPtrListIterator::QPtrListIterator	(const	QPtrList<type>	&	list
)

list list

QPtrListIterator::~QPtrListIterator	()

bool	QPtrListIterator::atFirst	()	const

toFirst()atLast()

bool	QPtrListIterator::atLast	()	const

toLast()atFirst()

uint	QPtrListIterator::count	()	const

isEmpty()

customlayout/card.cpp

type	*	QPtrListIterator::current	()	const

canvas/canvas.cppcustomlayout/card.cppcustomlayout/flow.cpp

bool	QPtrListIterator::isEmpty	()	const

count()

QPtrListIterator::operator	type	*	()	const

current()

type	*	QPtrListIterator::operator()	()

type	*	QPtrListIterator::operator*	()

current()

type	*	QPtrListIterator::operator++	()

++

type	*	QPtrListIterator::operator+=	(uint	jump)

jump

type	*	QPtrListIterator::operator--	()

-

type	*	QPtrListIterator::operator-=	(uint	jump)

jump

QPtrListIterator<type>	&	QPtrListIterator::operator=	(
const	QPtrListIterator<type>	&	it)

it

type	*	QPtrListIterator::toFirst	()

toLast()atFirst()

type	*	QPtrListIterator::toLast	()

toFirst()atLast()

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QTextCodecPlugin	Class	Reference
The	QTextCodecPlugin	class	provides	an	abstract	base	for	custom	QTextCodec
plugins.	More...

#include	<qtextcodecplugin.h>

List	of	all	member	functions.

Public	Members

QTextCodecPlugin	()
~QTextCodecPlugin	()
virtual	QStringList	names	()	const	=	0
virtual	QTextCodec	*	createForName	(const	QString	&	name)	=	0
virtual	QValueList<int>	mibEnums	()	const	=	0
virtual	QTextCodec	*	createForMib	(int	mib)	=	0

Detailed	Description

The	QTextCodecPlugin	class	provides	an	abstract	base	for	custom	QTextCodec
plugins.

The	text	codec	plugin	is	a	simple	plugin	interface	that	makes	it	easy	to	create
custom	text	codecs	that	can	be	loaded	dynamically	into	applications.

Writing	a	text	codec	plugin	is	achieved	by	subclassing	this	base	class,
reimplementing	the	pure	virtual	functions	names(),	createForName(),
mibEnums()	and	createForMib(),	and	exporting	the	class	with	the
Q_EXPORT_PLUGIN	macro.	See	the	Qt	Plugins	documentation	for	details.

See	the	IANA	character-sets	encoding	file	for	more	information	on	mime	names
and	mib	enums.

See	also	Plugins.

http://www.iana.org/assignments/character-sets

Member	Function	Documentation

QTextCodecPlugin::QTextCodecPlugin	()

Constructs	a	text	codec	plugin.	This	is	invoked	automatically	by	the
Q_EXPORT_PLUGIN	macro.

QTextCodecPlugin::~QTextCodecPlugin	()

Destroys	the	text	codec	plugin.

You	never	have	to	call	this	explicitly.	Qt	destroys	a	plugin	automatically	when	it
is	no	longer	used.

QTextCodec	*	QTextCodecPlugin::createForMib	(int	mib)
[pure	virtual]

Creates	a	QTextCodec	object	for	the	mib	enum	mib.

(See	the	IANA	character-sets	encoding	file	for	more	information)

See	also	mibEnums().

QTextCodec	*	QTextCodecPlugin::createForName	(
const	QString	&	name)	[pure	virtual]

Creates	a	QTextCodec	object	for	the	codec	called	name.

See	also	names().

QValueList<int>	QTextCodecPlugin::mibEnums	()	const	[pure
virtual]

Returns	the	list	of	mib	enums	this	plugin	supports.

See	also	createForMib().

ftp://ftp.isi.edu/in-notes/iana/assignments/character-sets

QStringList	QTextCodecPlugin::names	()	const	[pure	virtual]

Returns	the	list	of	mime	names	this	plugin	supports.

See	also	createForName().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QDomDocumentFragment	Class
Reference

[XML	module]
The	QDomDocumentFragment	class	is	a	tree	of	QDomNodes	which	is	not
usually	a	complete	QDomDocument.	More...

#include	<qdom.h>

Inherits	QDomNode.

List	of	all	member	functions.

Public	Members

QDomDocumentFragment	()
QDomDocumentFragment	(const	QDomDocumentFragment	&	x)
QDomDocumentFragment	&	operator=	(
const	QDomDocumentFragment	&	x)
~QDomDocumentFragment	()
virtual	QDomNode::NodeType	nodeType	()	const
virtual	bool	isDocumentFragment	()	const

Detailed	Description

The	QDomDocumentFragment	class	is	a	tree	of	QDomNodes	which	is	not
usually	a	complete	QDomDocument.

If	you	want	to	do	complex	tree	operations	it	is	useful	to	have	a	lightweight	class
to	store	nodes	and	their	relations.	QDomDocumentFragment	stores	a	subtree	of	a
document	which	does	not	necessarily	represent	a	well-formed	XML	document.

QDomDocumentFragment	is	also	useful	if	you	want	to	group	several	nodes	in	a
list	and	insert	them	all	together	as	children	of	some	node.	In	these	cases
QDomDocumentFragment	can	be	used	as	a	temporary	container	for	this	list	of
children.

The	most	important	feature	of	QDomDocumentFragment	is	that	it	is	treated	in	a
special	way	by	QDomNode::insertAfter(),	QDomNode::insertBefore()	and
QDomNode::replaceChild():	instead	of	inserting	the	fragment	itself,	all	the
fragment's	children	are	inserted.

See	also	XML.

Member	Function	Documentation

QDomDocumentFragment::QDomDocumentFragment	()

Constructs	an	empty	document	fragment.

QDomDocumentFragment::QDomDocumentFragment	(
const	QDomDocumentFragment	&	x)

Constructs	a	copy	of	x.

The	data	of	the	copy	is	shared	(shallow	copy):	modifying	one	node	will	also
change	the	other.	If	you	want	to	make	a	deep	copy,	use	cloneNode().

QDomDocumentFragment::~QDomDocumentFragment	()

Destroys	the	object	and	frees	its	resources.

bool	QDomDocumentFragment::isDocumentFragment	()	const
[virtual]

This	function	reimplements	QDomNode::isDocumentFragment().

See	also	nodeType()	and	QDomNode::toDocumentFragment().

Reimplemented	from	QDomNode.

QDomNode::NodeType	QDomDocumentFragment::nodeType	()
const	[virtual]

Returns	DocumentFragment.

See	also	isDocumentFragment()	and	QDomNode::toDocumentFragment().

Reimplemented	from	QDomNode.

QDomDocumentFragment	&

QDomDocumentFragment::operator=	(
const	QDomDocumentFragment	&	x)

Assigns	x	to	this	DOM	document	fragment.

The	data	of	the	copy	is	shared	(shallow	copy):	modifying	one	node	will	also
change	the	other.	If	you	want	to	make	a	deep	copy,	use	cloneNode().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QIntCacheIterator	Class	Reference
The	QIntCacheIterator	class	provides	an	iterator	for	QIntCache	collections.
More...

#include	<qintcache.h>

List	of	all	member	functions.

Public	Members

QIntCacheIterator	(const	QIntCache<type>	&	cache)
QIntCacheIterator	(const	QIntCacheIterator<type>	&	ci)
QIntCacheIterator<type>	&	operator=	(
const	QIntCacheIterator<type>	&	ci)
uint	count	()	const
bool	isEmpty	()	const
bool	atFirst	()	const
bool	atLast	()	const
type	*	toFirst	()
type	*	toLast	()
operator	type	*	()	const
type	*	current	()	const
long	currentKey	()	const
type	*	operator()	()
type	*	operator++	()
type	*	operator+=	(uint	jump)
type	*	operator--	()
type	*	operator-=	(uint	jump)

Detailed	Description

The	QIntCacheIterator	class	provides	an	iterator	for	QIntCache	collections.

Note	that	the	traversal	order	is	arbitrary;	you	are	not	guaranteed	any	particular
order.	If	new	objects	are	inserted	into	the	cache	while	the	iterator	is	active,	the
iterator	may	or	may	not	see	them.

Multiple	iterators	are	completely	independent,	even	when	they	operate	on	the
same	QIntCache.	QIntCache	updates	all	iterators	that	refer	an	item	when	that
item	is	removed.

QIntCacheIterator	provides	an	operator++(),	and	an	operator+=()	to	traverse	the
cache;	current()	and	currentKey()	to	access	the	current	cache	item	and	its	key;
atFirst()	atLast(),	which	return	TRUE	if	the	iterator	points	to	the	first/last	item	in
the	cache;	isEmpty(),	which	returns	TRUE	if	the	cache	is	empty;	and	count(),
which	returns	the	number	of	items	in	the	cache.

Note	that	atFirst()	and	atLast()	refer	to	the	iterator's	arbitrary	ordering,	not	to	the
cache's	internal	LRU	list.

See	also	QIntCache,	Collection	Classes	and	Non-GUI	Classes.

Member	Function	Documentation

QIntCacheIterator::QIntCacheIterator	(
const	QIntCache<type>	&	cache)

Constructs	an	iterator	for	cache.	The	current	iterator	item	is	set	to	point	to	the
first	item	in	the	cache	(or	rather,	the	first	item	is	defined	to	be	the	item	at	which
this	constructor	sets	the	iterator	to	point).

QIntCacheIterator::QIntCacheIterator	(
const	QIntCacheIterator<type>	&	ci)

Constructs	an	iterator	for	the	same	cache	as	ci.	The	new	iterator	starts	at	the
same	item	as	ci.current(),	but	moves	independently	from	there	on.

bool	QIntCacheIterator::atFirst	()	const

Returns	TRUE	if	the	iterator	points	to	the	first	item	in	the	cache;	otherwise
returns	FALSE.	Note	that	this	refers	to	the	iterator's	arbitrary	ordering,	not	to	the
cache's	internal	LRU	list.

See	also	toFirst()	and	atLast().

bool	QIntCacheIterator::atLast	()	const

Returns	TRUE	if	the	iterator	points	to	the	last	item	in	the	cache;	otherwise
returns	FALSE.	Note	that	this	refers	to	the	iterator's	arbitrary	ordering,	not	to	the
cache's	internal	LRU	list.

See	also	toLast()	and	atFirst().

uint	QIntCacheIterator::count	()	const

Returns	the	number	of	items	in	the	cache	on	which	this	iterator	operates.

See	also	isEmpty().

type	*	QIntCacheIterator::current	()	const

Returns	a	pointer	to	the	current	iterator	item.

long	QIntCacheIterator::currentKey	()	const

Returns	the	key	for	the	current	iterator	item.

bool	QIntCacheIterator::isEmpty	()	const

Returns	TRUE	if	the	cache	is	empty;	otherwise	returns	FALSE.

See	also	count().

QIntCacheIterator::operator	type	*	()	const

Cast	operator.	Returns	a	pointer	to	the	current	iterator	item.	Same	as	current().

type	*	QIntCacheIterator::operator()	()

Makes	the	succeeding	item	current	and	returns	the	original	current	item.

If	the	current	iterator	item	was	the	last	item	in	the	cache	or	if	it	was	null,	null	is
returned.

type	*	QIntCacheIterator::operator++	()

Prefix	++	makes	the	iterator	point	to	the	item	just	after	current(),	and	makes	it
the	new	current	item	for	the	iterator.	If	current()	was	the	last	item,	operator--()
returns	0.

type	*	QIntCacheIterator::operator+=	(uint	jump)

Returns	the	item	jump	positions	after	the	current	item,	or	null	if	it	is	beyond	the
last	item.	Makes	this	the	current	item.

type	*	QIntCacheIterator::operator--	()

Prefix	--	makes	the	iterator	point	to	the	item	just	before	current(),	and	makes	it
the	new	current	item	for	the	iterator.	If	current()	was	the	first	item,	operator--()
returns	0.

type	*	QIntCacheIterator::operator-=	(uint	jump)

Returns	the	item	jump	positions	before	the	current	item,	or	null	if	it	is	beyond	the
first	item.	Makes	this	the	current	item.

QIntCacheIterator<type>	&	QIntCacheIterator::operator=	(
const	QIntCacheIterator<type>	&	ci)

Makes	this	an	iterator	for	the	same	cache	as	ci.	The	new	iterator	starts	at	the
same	item	as	ci.current(),	but	moves	independently	thereafter.

type	*	QIntCacheIterator::toFirst	()

Sets	the	iterator	to	point	to	the	first	item	in	the	cache	and	returns	a	pointer	to	the
item.

Sets	the	iterator	to	null	and	returns	null	if	if	the	cache	is	empty.

See	also	toLast()	and	isEmpty().

type	*	QIntCacheIterator::toLast	()

Sets	the	iterator	to	point	to	the	last	item	in	the	cache	and	returns	a	pointer	to	the
item.

Sets	the	iterator	to	null	and	returns	null	if	if	the	cache	is	empty.

See	also	toFirst()	and	isEmpty().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QPtrQueue
QPtrQueue	 ……

#include	<qptrqueue.h>

QPtrQueue	()
QPtrQueue	(const	QPtrQueue<type>	&	queue)
~QPtrQueue	()
QPtrQueue<type>	&	operator=	(const	QPtrQueue<type>	&	queue)
bool	autoDelete	()	const
void	setAutoDelete	(bool	enable)
uint	count	()	const
bool	isEmpty	()	const
void	enqueue	(const	type	*	d)
type	*	dequeue	()
bool	remove	()
void	clear	()
type	*	head	()	const
operator	type	*	()	const
type	*	current	()	const

virtual	QDataStream	&	read	(QDataStream	&	s,
QPtrCollection::Item	&	item)
virtual	QDataStream	&	write	(QDataStream	&	s,
QPtrCollection::Item	item)	const

QPtrQueue

QValueVectorSTL

QPtrQueue<X>XX*

enqueue()dequeue() head()

setAutoDelete()

QPtrCollection current()remove()head()

QPtrListQPtrStackGUI

QPtrQueue::QPtrQueue	()

autoDelete()

QPtrQueue::QPtrQueue	(const	QPtrQueue<type>	&	queue)

queue

autoDelete()

QPtrQueue::~QPtrQueue	()

autoDelete()

bool	QPtrQueue::autoDelete	()	const

setAutoDelete()

void	QPtrQueue::clear	()

autoDelete()

remove()

uint	QPtrQueue::count	()	const

isEmpty()

type	*	QPtrQueue::current	()	const

dequeue()isEmpty()

type	*	QPtrQueue::dequeue	()

enqueue()count()

void	QPtrQueue::enqueue	(const	type	*	d)

d

count()dequeue()

type	*	QPtrQueue::head	()	const

dequeue()isEmpty()

bool	QPtrQueue::isEmpty	()	const

count() dequeue()head()

QPtrQueue::operator	type	*	()	const

dequeue()isEmpty()

QPtrQueue<type>	&	QPtrQueue::operator=	(
const	QPtrQueue<type>	&	queue)

queue

queue

autoDelete() queue

QDataStream	&	QPtrQueue::read	(QDataStream	&	s,
QPtrCollection::Item	&	item)	[virtual	protected]

sitem

item0

write()

bool	QPtrQueue::remove	()

autoDelete()

head() isEmpty()dequeue()

void	QPtrQueue::setAutoDelete	(bool	enable)

enable enable

autoDelete()

QDataStream	&	QPtrQueue::write	(QDataStream	&	s,
QPtrCollection::Item	item)	const	[virtual	protected]

items

read()

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QTextDecoder	Class	Reference
The	QTextDecoder	class	provides	a	state-based	decoder.	More...

#include	<qtextcodec.h>

List	of	all	member	functions.

Public	Members

virtual	~QTextDecoder	()
virtual	QString	toUnicode	(const	char	*	chars,	int	len)	=	0

Detailed	Description

The	QTextDecoder	class	provides	a	state-based	decoder.

The	decoder	converts	a	text	format	into	Unicode,	remembering	any	state	that	is
required	between	calls.

See	also	QTextCodec::makeEncoder()	and	Internationalization	with	Qt.

Member	Function	Documentation

QTextDecoder::~QTextDecoder	()	[virtual]

Destroys	the	decoder.

QString	QTextDecoder::toUnicode	(const	char	*	chars,	int	len)
[pure	virtual]

Converts	the	first	len	bytes	in	chars	to	Unicode,	returning	the	result.

If	not	all	characters	are	used	(e.g.	if	only	part	of	a	multi-byte	encoding	is	at	the
end	of	the	characters),	the	decoder	remembers	enough	state	to	continue	with	the
next	call	to	this	function.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QAsciiCache	Class	Reference
The	QAsciiCache	class	is	a	template	class	that	provides	a	cache	based	on	char*
keys.	More...

#include	<qasciicache.h>

List	of	all	member	functions.

Public	Members

QAsciiCache	(int	maxCost	=	100,	int	size	=	17,	bool	caseSensitive	=
TRUE,	bool	copyKeys	=	TRUE)
~QAsciiCache	()
int	maxCost	()	const
int	totalCost	()	const
void	setMaxCost	(int	m)
virtual	uint	count	()	const
uint	size	()	const
bool	isEmpty	()	const
virtual	void	clear	()
bool	insert	(const	char	*	k,	const	type	*	d,	int	c	=	1,	int	p	=	0)
bool	remove	(const	char	*	k)
type	*	take	(const	char	*	k)
type	*	find	(const	char	*	k,	bool	ref	=	TRUE)	const
type	*	operator[]	(const	char	*	k)	const
void	statistics	()	const

Detailed	Description

The	QAsciiCache	class	is	a	template	class	that	provides	a	cache	based	on	char*
keys.

QAsciiCache	is	implemented	as	a	template	class.	Define	a	template	instance
QAsciiCache<X>	to	create	a	cache	that	operates	on	pointers	to	X	(X*).

A	cache	is	a	least	recently	used	(LRU)	list	of	cache	items.	The	cache	items	are
accessed	via	char*	keys.	For	Unicode	keys	use	the	QCache	template	instead,
which	uses	QString	keys.	A	QCache	has	the	same	performace	as	a	QAsciiCache.

Each	cache	item	has	a	cost.	The	sum	of	item	costs,	totalCost(),	will	not	exceed
the	maximum	cache	cost,	maxCost().	If	inserting	a	new	item	would	cause	the
total	cost	to	exceed	the	maximum	cost,	the	least	recently	used	items	in	the	cache
are	removed.

Apart	from	insert(),	by	far	the	most	important	function	is	find()	(which	also
exists	as	operator[]()).	This	function	looks	up	an	item,	returns	it,	and	by	default
marks	it	as	being	the	most	recently	used	item.

There	are	also	methods	to	remove()	or	take()	an	object	from	the	cache.	Calling
setAutoDelete(TRUE)	tells	the	cache	to	delete	items	that	are	removed.	The
default	is	to	not	delete	items	when	then	are	removed	(i.e.,	remove()	and	take()
are	equivalent).

When	inserting	an	item	into	the	cache,	only	the	pointer	is	copied,	not	the	item
itself.	This	is	called	a	shallow	copy.	It	is	possible	to	make	the	cache	copy	all	of
the	item's	data	(known	as	a	deep	copy)	when	an	item	is	inserted.	insert()	calls	the
virtual	function	QPtrCollection::newItem()	for	the	item	to	be	inserted.	Inherit	a
cache	and	reimplement	it	if	you	want	deep	copies.

When	removing	a	cache	item	the	virtual	function	QPtrCollection::deleteItem()	is
called.	Its	default	implementation	in	QAsciiCache	is	to	delete	the	item	if	auto-
deletion	is	enabled.

There	is	a	QAsciiCacheIterator	which	may	be	used	to	traverse	the	items	in	the
cache	in	arbitrary	order.

See	also	QAsciiCacheIterator,	QCache,	QIntCache,	Collection	Classes	and	Non-
GUI	Classes.

Member	Function	Documentation

QAsciiCache::QAsciiCache	(int	maxCost	=	100,	int	size	=	17,
bool	caseSensitive	=	TRUE,	bool	copyKeys	=	TRUE)

Constructs	a	cache	whose	contents	will	never	have	a	total	cost	greater	than
maxCost	and	which	is	expected	to	contain	less	than	size	items.

size	is	actually	the	size	of	an	internal	hash	array;	it's	usually	best	to	make	it
prime	and	at	least	50%	bigger	than	the	largest	expected	number	of	items	in	the
cache.

Each	inserted	item	has	an	associated	cost.	When	inserting	a	new	item,	if	the	total
cost	of	all	items	in	the	cache	will	exceed	maxCost,	the	cache	will	start	throwing
out	the	older	(least	recently	used)	items	until	there	is	enough	room	for	the	new
item	to	be	inserted.

If	caseSensitive	is	TRUE	(the	default),	the	cache	keys	are	case	sensitive;	if	it	is
FALSE,	they	are	case-insensitive.	Case-insensitive	comparison	includes	only	the
26	letters	in	US-ASCII.	If	copyKeys	is	TRUE	(the	default),	QAsciiCache	makes
a	copy	of	the	cache	keys,	otherwise	it	copies	just	the	const	char	*	pointer	-
slightly	faster	if	you	can	guarantee	that	the	keys	will	never	change,	but	very
risky.

QAsciiCache::~QAsciiCache	()

Removes	all	items	from	the	cache	and	destroys	it.	All	iterators	that	access	this
cache	will	be	reset.

void	QAsciiCache::clear	()	[virtual]

Removes	all	items	from	the	cache,	and	deletes	them	if	auto-deletion	has	been
enabled.

All	cache	iterators	that	operate	on	this	cache	are	reset.

See	also	remove()	and	take().

uint	QAsciiCache::count	()	const	[virtual]

Returns	the	number	of	items	in	the	cache.

See	also	totalCost()	and	size().

type	*	QAsciiCache::find	(const	char	*	k,	bool	ref	=	TRUE)	const

Returns	the	item	with	key	k,	or	null	if	the	key	does	not	exist	in	the	cache.	If	ref	is
TRUE	(the	default),	the	item	is	moved	to	the	front	of	the	least	recently	used	list.

If	there	are	two	or	more	items	with	equal	keys,	the	one	that	was	inserted	last	is
returned.

bool	QAsciiCache::insert	(const	char	*	k,	const	type	*	d,	int	c	=	1,
int	p	=	0)

Inserts	the	item	d	into	the	cache	using	key	k,	and	with	a	cost	of	c.	Returns	TRUE
if	the	item	is	successfully	inserted.	Returns	FALSE	if	the	item	is	not	inserted,	for
example,	if	the	cost	of	the	item	exceeds	maxCost().

The	cache's	size	is	limited,	and	if	the	total	cost	is	too	high,	QAsciiCache	will
remove	old,	least	recently	used	items	until	there	is	room	for	this	new	item.

Items	with	duplicate	keys	may	be	inserted.

The	parameter	p	is	internal	and	should	be	left	at	the	default	value	(0).

Warning:	If	this	function	returns	FALSE,	you	must	delete	d	yourself.
Additionally,	be	very	careful	about	using	d	after	calling	this	function,	because
any	other	insertions	into	the	cache,	from	anywhere	in	the	application	or	within
Qt	itself,	could	cause	the	object	to	be	discarded	from	the	cache	and	the	pointer	to
become	invalid.

bool	QAsciiCache::isEmpty	()	const

Returns	TRUE	if	the	cache	is	empty;	otherwise	returns	FALSE.

int	QAsciiCache::maxCost	()	const

Returns	the	maximum	allowed	total	cost	of	the	cache.

See	also	setMaxCost()	and	totalCost().

type	*	QAsciiCache::operator[]	(const	char	*	k)	const

Returns	the	item	with	key	k,	or	null	if	k	does	not	exist	in	the	cache,	and	moves
the	item	to	the	front	of	the	least	recently	used	list.

If	there	are	two	or	more	items	with	equal	keys,	the	one	that	was	inserted	last	is
returned.

This	is	the	same	as	find(k,	TRUE).

See	also	find().

bool	QAsciiCache::remove	(const	char	*	k)

Removes	the	item	with	key	k	and	returns	TRUE	if	the	item	was	present	in	the
cache;	otherwise	returns	FALSE.

The	item	is	deleted	if	auto-deletion	has	been	enabled,	i.e.,	if	you	have	called
setAutoDelete(TRUE).

If	there	are	two	or	more	items	with	equal	keys,	the	one	that	was	inserted	last	is
removed.

All	iterators	that	refer	to	the	removed	item	are	set	to	point	to	the	next	item	in	the
cache's	traversal	order.

See	also	take()	and	clear().

void	QAsciiCache::setMaxCost	(int	m)

Sets	the	maximum	allowed	total	cost	of	the	cache	to	m.	If	the	current	total	cost	is
greater	than	m,	some	items	are	removed	immediately.

See	also	maxCost()	and	totalCost().

uint	QAsciiCache::size	()	const

Returns	the	size	of	the	hash	array	used	to	implement	the	cache.	This	should	be	a
bit	bigger	than	count()	is	likely	to	be.

void	QAsciiCache::statistics	()	const

A	debug-only	utility	function.	Prints	out	cache	usage,	hit/miss,	and	distribution
information	using	qDebug().	This	function	does	nothing	in	the	release	library.

type	*	QAsciiCache::take	(const	char	*	k)

Takes	the	item	associated	with	k	out	of	the	cache	without	deleting	it	and	returns	a
pointer	to	the	item	taken	out,	or	null	if	the	key	does	not	exist	in	the	cache.

If	there	are	two	or	more	items	with	equal	keys,	the	one	that	was	inserted	last	is
taken.

All	iterators	that	refer	to	the	taken	item	are	set	to	point	to	the	next	item	in	the
cache's	traversal	order.

See	also	remove()	and	clear().

int	QAsciiCache::totalCost	()	const

Returns	the	total	cost	of	the	items	in	the	cache.	This	is	an	integer	in	the	range	0
to	maxCost().

See	also	setMaxCost().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QDomDocumentType	Class
Reference

[XML	module]
The	QDomDocumentType	class	is	the	representation	of	the	DTD	in	the
document	tree.	More...

#include	<qdom.h>

Inherits	QDomNode.

List	of	all	member	functions.

Public	Members

QDomDocumentType	()
QDomDocumentType	(const	QDomDocumentType	&	n)
QDomDocumentType	&	operator=	(const	QDomDocumentType	&	n)
~QDomDocumentType	()
virtual	QString	name	()	const
virtual	QDomNamedNodeMap	entities	()	const
virtual	QDomNamedNodeMap	notations	()	const
virtual	QString	publicId	()	const
virtual	QString	systemId	()	const
virtual	QString	internalSubset	()	const
virtual	QDomNode::NodeType	nodeType	()	const
virtual	bool	isDocumentType	()	const

Detailed	Description

The	QDomDocumentType	class	is	the	representation	of	the	DTD	in	the
document	tree.

The	QDomDocumentType	class	allows	read-only	access	to	some	of	the	data
structures	in	the	DTD:	it	can	return	a	map	of	all	entities()	and	notations().	In
addition	the	function	name()	returns	the	name	of	the	document	type	as	specified
in	the	<!DOCTYPE	name>	tag.	This	class	also	provides	the	publicId(),
systemId()	and	internalSubset()	functions.

See	also	QDomDocument	and	XML.

Member	Function	Documentation

QDomDocumentType::QDomDocumentType	()

Creates	an	empty	QDomDocumentType	object.

QDomDocumentType::QDomDocumentType	(
const	QDomDocumentType	&	n)

Constructs	a	copy	of	n.

The	data	of	the	copy	is	shared	(shallow	copy):	modifying	one	node	will	also
change	the	other.	If	you	want	to	make	a	deep	copy,	use	cloneNode().

QDomDocumentType::~QDomDocumentType	()

Destroys	the	object	and	frees	its	resources.

QDomNamedNodeMap	QDomDocumentType::entities	()	const
[virtual]

Returns	a	map	of	all	entities	described	in	the	DTD.

QString	QDomDocumentType::internalSubset	()	const	[virtual]

Returns	the	internal	subset	of	the	document	type,	if	there	is	any.	Otherwise	this
function	returns	QString::null.

See	also	publicId()	and	systemId().

bool	QDomDocumentType::isDocumentType	()	const	[virtual]

This	function	overloads	QDomNode::isDocumentType().

See	also	nodeType()	and	QDomNode::toDocumentType().

Reimplemented	from	QDomNode.

QString	QDomDocumentType::name	()	const	[virtual]

Returns	the	name	of	the	document	type	as	specified	in	the	<!DOCTYPE	name>
tag.

See	also	nodeName().

QDomNode::NodeType	QDomDocumentType::nodeType	()	const
[virtual]

Returns	DocumentTypeNode.

See	also	isDocumentType()	and	QDomNode::toDocumentType().

Reimplemented	from	QDomNode.

QDomNamedNodeMap	QDomDocumentType::notations	()	const
[virtual]

Returns	a	map	of	all	notations	described	in	the	DTD.

QDomDocumentType	&	QDomDocumentType::operator=	(
const	QDomDocumentType	&	n)

Assigns	n	to	this	document	type.

The	data	of	the	copy	is	shared	(shallow	copy):	modifying	one	node	will	also
change	the	other.	If	you	want	to	make	a	deep	copy,	use	cloneNode().

QString	QDomDocumentType::publicId	()	const	[virtual]

Returns	the	public	identifier	of	the	external	DTD	subset,	if	there	is	any.
Otherwise	this	function	returns	QString::null.

See	also	systemId(),	internalSubset()	and
QDomImplementation::createDocumentType().

QString	QDomDocumentType::systemId	()	const	[virtual]

Returns	the	system	identifier	of	the	external	DTD	subset,	if	there	is	any.
Otherwise	this	function	returns	QString::null.

See	also	publicId(),	internalSubset()	and
QDomImplementation::createDocumentType().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QIntDict	Class	Reference
The	QIntDict	class	is	a	template	class	that	provides	a	dictionary	based	on	long
keys.	More...

#include	<qintdict.h>

Inherits	QPtrCollection.

List	of	all	member	functions.

Public	Members

QIntDict	(int	size	=	17)
QIntDict	(const	QIntDict<type>	&	dict)
~QIntDict	()
QIntDict<type>	&	operator=	(const	QIntDict<type>	&	dict)
virtual	uint	count	()	const
uint	size	()	const
bool	isEmpty	()	const
void	insert	(long	key,	const	type	*	item)
void	replace	(long	key,	const	type	*	item)
bool	remove	(long	key)
type	*	take	(long	key)
type	*	find	(long	key)	const
type	*	operator[]	(long	key)	const
virtual	void	clear	()
void	resize	(uint	newsize)
void	statistics	()	const

Important	Inherited	Members

bool	autoDelete	()	const
void	setAutoDelete	(bool	enable)

Protected	Members

virtual	QDataStream	&	read	(QDataStream	&	s,
QPtrCollection::Item	&	item)
virtual	QDataStream	&	write	(QDataStream	&	s,	QPtrCollection::Item)
const

Detailed	Description

The	QIntDict	class	is	a	template	class	that	provides	a	dictionary	based	on	long
keys.

QMap	is	an	STL-compatible	alternative	to	this	class.

QIntDict	is	implemented	as	a	template	class.	Define	a	template	instance
QIntDict<X>	to	create	a	dictionary	that	operates	on	pointers	to	X	(X*).

A	dictionary	is	a	collection	of	key-value	pairs.	The	key	is	an	long	used	for
insertion,	removal	and	lookup.	The	value	is	a	pointer.	Dictionaries	provide	very
fast	insertion	and	lookup.

Example:

				QIntDict<QLineEdit>	fields;

				for	(int	i	=	0;	i	<	3;	i++)

								fields.insert(i,	new	QLineEdit(this));

				fields[0]->setText("Homer");

				fields[1]->setText("Simpson");

				fields[2]->setText("45");

				QIntDictIterator<char>	it(fields);	//	See	QIntDictIterator

				for	(;	it.current();	++it)

								cout	<<	it.currentKey()	<<	":	"	<<	it.current()->text()	<<	endl;

				

				for	(int	i	=	0;	i	<	3;	i++)

								cout	<<	fields[i]->text()	<<	"	";	//	Prints	"Homer	Simpson	45"

				cout	<<	endl;

				fields.remove(1);	//	Does	not	delete	the	line	edit

				for	(int	i	=	0;	i	<	3;	i++)

								if	(fields[i])

												cout	<<	fields[i]->text()	<<	"	";	//	Prints	"Homer	45"

				

See	QDict	for	full	details,	including	the	choice	of	dictionary	size,	and	how
deletions	are	handled.

See	also	QIntDictIterator,	QDict,	QAsciiDict,	QPtrDict,	Collection	Classes,
Collection	Classes	and	Non-GUI	Classes.

Member	Function	Documentation

QIntDict::QIntDict	(int	size	=	17)

Constructs	a	dictionary	using	an	internal	hash	array	of	size	size.

Setting	size	to	a	suitably	large	prime	number	(equal	to	or	greater	than	the
expected	number	of	entries)	makes	the	hash	distribution	better	and	hence	the
lookup	faster.

QIntDict::QIntDict	(const	QIntDict<type>	&	dict)

Constructs	a	copy	of	dict.

Each	item	in	dict	is	inserted	into	this	dictionary.	Only	the	pointers	are	copied
(shallow	copy).

QIntDict::~QIntDict	()

Removes	all	items	from	the	dictionary	and	destroys	it.

All	iterators	that	access	this	dictionary	will	be	reset.

See	also	setAutoDelete().

bool	QPtrCollection::autoDelete	()	const

Returns	the	setting	of	the	auto-delete	option.	The	default	is	FALSE.

See	also	setAutoDelete().

void	QIntDict::clear	()	[virtual]

Removes	all	items	from	the	dictionary.

The	removed	items	are	deleted	if	auto-deletion	is	enabled.

All	dictionary	iterators	that	access	this	dictionary	will	be	reset.

See	also	remove(),	take()	and	setAutoDelete().

Reimplemented	from	QPtrCollection.

uint	QIntDict::count	()	const	[virtual]

Returns	the	number	of	items	in	the	dictionary.

See	also	isEmpty().

Reimplemented	from	QPtrCollection.

type	*	QIntDict::find	(long	key)	const

Returns	the	item	associated	with	key,	or	null	if	the	key	does	not	exist	in	the
dictionary.

This	function	uses	an	internal	hashing	algorithm	to	optimize	lookup.

If	there	are	two	or	more	items	with	equal	keys,	then	the	last	inserted	of	these	will
be	found.

Equivalent	to	the	[]	operator.

Warning:	Your	application	will	crash	if	you	call	find()	on	an	empty	dictionary;
you	can	check	with	isEmpty()	or	count().	We	don't	perform	this	check	for
efficiency	reasons.

See	also	operator[]().

Example:	table/bigtable/main.cpp.

void	QIntDict::insert	(long	key,	const	type	*	item)

Insert	item	item	into	the	dictionary	using	key	key.

The	key	does	not	have	to	be	unique.	If	multiple	items	are	inserted	with	the	same
key,	only	the	last	item	will	be	visible.

Null	items	are	not	allowed.

See	also	replace().

Example:	scribble/scribble.cpp.

bool	QIntDict::isEmpty	()	const

Returns	TRUE	if	the	dictionary	is	empty;	otherwise	returns	FALSE.

See	also	count().

QIntDict<type>	&	QIntDict::operator=	(
const	QIntDict<type>	&	dict)

Assigns	dict	to	this	dictionary	and	returns	a	reference	to	this	dictionary.

This	dictionary	is	first	cleared	and	then	each	item	in	dict	is	inserted	into	this
dictionary.	Only	the	pointers	are	copied	(shallow	copy),	unless	newItem()	has
been	reimplemented.

type	*	QIntDict::operator[]	(long	key)	const

Returns	the	item	associated	with	key,	or	null	if	the	key	does	not	exist	in	the
dictionary.

This	function	uses	an	internal	hashing	algorithm	to	optimize	lookup.

If	there	are	two	or	more	items	with	equal	keys,	then	the	last	inserted	of	these	will
be	found.

Equivalent	to	the	find()	function.

Warning:	Your	application	will	crash	if	you	call	find()	on	an	empty	dictionary;
you	can	check	with	isEmpty()	or	count().	We	don't	perform	this	check	for
efficiency	reasons.

See	also	find().

QDataStream	&	QIntDict::read	(QDataStream	&	s,
QPtrCollection::Item	&	item)	[virtual	protected]

Reads	a	dictionary	item	from	the	stream	s	and	returns	a	reference	to	the	stream.

The	default	implementation	sets	item	to	0.

See	also	write().

bool	QIntDict::remove	(long	key)

Removes	the	item	associated	with	key	from	the	dictionary.	Returns	TRUE	if
successful;	otherwise	returns	FALSE,	e.g.	if	the	key	does	not	exist	in	the
dictionary.

If	there	are	two	or	more	items	with	equal	keys,	then	the	last	inserted	of	these	will
be	removed.

The	removed	item	is	deleted	if	auto-deletion	is	enabled.

All	dictionary	iterators	that	refer	to	the	removed	item	will	be	set	to	point	to	the
next	item	in	the	dictionary's	traversing	order.

See	also	take(),	clear()	and	setAutoDelete().

Example:	table/bigtable/main.cpp.

void	QIntDict::replace	(long	key,	const	type	*	item)

If	the	dictionary	has	key	key,	this	key's	item	is	replaced	with	item.	If	the
dictionary	doesn't	contain	key	key,	item	is	inserted	into	the	dictionary	using	key
key.

Null	items	are	not	allowed.

Equivalent	to:

				QIntDict<char>	dict;

				//		...

				if	(dict.find(key))

								dict.remove(key);

				dict.insert(key,	item);

		

If	there	are	two	or	more	items	with	equal	keys,	then	the	last	inserted	of	these	will
be	replaced.

See	also	insert().

Example:	table/bigtable/main.cpp.

void	QIntDict::resize	(uint	newsize)

Changes	the	size	of	the	hashtable	to	newsize.	The	contents	of	the	dictionary	are
preserved,	but	all	iterators	on	the	dictionary	become	invalid.

void	QPtrCollection::setAutoDelete	(bool	enable)

Sets	the	collection	to	auto-delete	its	contents	if	enable	is	TRUE	and	to	never
delete	them	if	enable	is	FALSE.

If	auto-deleting	is	turned	on,	all	the	items	in	a	collection	are	deleted	when	the
collection	itself	is	deleted.	This	is	convenient	if	the	collection	has	the	only
pointer	to	the	items.

The	default	setting	is	FALSE,	for	safety.	If	you	turn	it	on,	be	careful	about
copying	the	collection	-	you	might	find	yourself	with	two	collections	deleting	the
same	items.

Note	that	the	auto-delete	setting	may	also	affect	other	functions	in	subclasses.
For	example,	a	subclass	that	has	a	remove()	function	will	remove	the	item	from
its	data	structure,	and	if	auto-delete	is	enabled,	will	also	delete	the	item.

See	also	autoDelete().

Examples:	grapher/grapher.cpp,	scribble/scribble.cpp	and
table/bigtable/main.cpp.

uint	QIntDict::size	()	const

Returns	the	size	of	the	internal	hash	array	(as	specified	in	the	constructor).

See	also	count().

void	QIntDict::statistics	()	const

Debugging-only	function	that	prints	out	the	dictionary	distribution	using
qDebug().

type	*	QIntDict::take	(long	key)

Takes	the	item	associated	with	key	out	of	the	dictionary	without	deleting	it	(even
if	auto-deletion	is	enabled).

If	there	are	two	or	more	items	with	equal	keys,	then	the	last	inserted	of	these	will
be	taken.

Returns	a	pointer	to	the	item	taken	out,	or	null	if	the	key	does	not	exist	in	the
dictionary.

All	dictionary	iterators	that	refer	to	the	taken	item	will	be	set	to	point	to	the	next
item	in	the	dictionary's	traversing	order.

See	also	remove(),	clear()	and	setAutoDelete().

QDataStream	&	QIntDict::write	(QDataStream	&	s,
QPtrCollection::Item)	const	[virtual	protected]

Writes	a	dictionary	item	to	the	stream	s	and	returns	a	reference	to	the	stream.

See	also	read().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QPtrStack
QPtrQueue	 ……

#include	<qptrstack.h>

QPtrStack	()
QPtrStack	(const	QPtrStack<type>	&	s)
~QPtrStack	()
QPtrStack<type>	&	operator=	(const	QPtrStack<type>	&	s)
bool	autoDelete	()	const
void	setAutoDelete	(bool	enable)
uint	count	()	const
bool	isEmpty	()	const
void	push	(const	type	*	d)
type	*	pop	()
bool	remove	()
void	clear	()
type	*	top	()	const
operator	type	*	()	const
type	*	current	()	const

virtual	QDataStream	&	read	(QDataStream	&	s,
QPtrCollection::Item	&	item)
virtual	QDataStream	&	write	(QDataStream	&	s,
QPtrCollection::Item	item)	const

QPtrQueue

QValueStackSTL

QPtrStack<X>XX*

push()pop() top()

setAutoDelete()

QPtrCollection current()remove()top()

QPtrListQPtrQueueGUI

QPtrStack::QPtrStack	()

QPtrStack::QPtrStack	(const	QPtrStack<type>	&	s)

s

QPtrStack::~QPtrStack	()

autoDelete()

bool	QPtrStack::autoDelete	()	const

QPtrCollection::autoDelete()

setAutoDelete()

void	QPtrStack::clear	()

autoDelete()

remove()

uint	QPtrStack::count	()	const

isEmpty()

type	*	QPtrStack::current	()	const

bool	QPtrStack::isEmpty	()	const

QPtrStack::operator	type	*	()	const

QPtrStack<type>	&	QPtrStack::operator=	(
const	QPtrStack<type>	&	s)

s autoDelete()

type	*	QPtrStack::pop	()

void	QPtrStack::push	(const	type	*	d)

d

QDataStream	&	QPtrStack::read	(QDataStream	&	s,
QPtrCollection::Item	&	item)	[virtual	protected]

sitem

item0

write()

bool	QPtrStack::remove	()

autoDelete()

clear()

void	QPtrStack::setAutoDelete	(bool	enable)

QPtrCollection::setAutoDelete()

enable enable

autoDelete()

type	*	QPtrStack::top	()	const

QDataStream	&	QPtrStack::write	(QDataStream	&	s,
QPtrCollection::Item	item)	const	[virtual	protected]

items

read().

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QTextDrag	Class	Reference
The	QTextDrag	class	is	a	drag	and	drop	object	for	transferring	plain	and	Unicode
text.	More...

#include	<qdragobject.h>

Inherits	QDragObject.

List	of	all	member	functions.

Public	Members

QTextDrag	(const	QString	&	text,	QWidget	*	dragSource	=	0,
const	char	*	name	=	0)
QTextDrag	(QWidget	*	dragSource	=	0,	const	char	*	name	=	0)
~QTextDrag	()
virtual	void	setText	(const	QString	&	text)
virtual	void	setSubtype	(const	QCString	&	st)

Static	Public	Members

bool	canDecode	(const	QMimeSource	*	e)
bool	decode	(const	QMimeSource	*	e,	QString	&	str)
bool	decode	(const	QMimeSource	*	e,	QString	&	str,	QCString	&	subtype
)

Detailed	Description

The	QTextDrag	class	is	a	drag	and	drop	object	for	transferring	plain	and	Unicode
text.

Plain	text	is	passed	in	a	QString	which	may	contain	multiple	lines	(i.e.	may
contain	newline	characters).

Qt	provides	no	built-in	mechanism	for	delivering	only	a	single-line.

For	more	information	about	drag	and	drop,	see	the	QDragObject	class	and	the
drag	and	drop	documentation.

See	also	Drag	And	Drop	Classes.

Member	Function	Documentation

QTextDrag::QTextDrag	(const	QString	&	text,
QWidget	*	dragSource	=	0,	const	char	*	name	=	0)

Constructs	a	text	drag	object	and	sets	its	data	to	text.	dragSource	must	be	the
drag	source;	name	is	the	object	name.

QTextDrag::QTextDrag	(QWidget	*	dragSource	=	0,
const	char	*	name	=	0)

Constructs	a	default	text	drag	object.	dragSource	must	be	the	drag	source;	name
is	the	object	name.

QTextDrag::~QTextDrag	()

Destroys	the	text	drag	object	and	frees	up	all	allocated	resources.

bool	QTextDrag::canDecode	(const	QMimeSource	*	e)	[static]

Returns	TRUE	if	the	information	in	e	can	be	decoded	into	a	QString;	otherwise
returns	FALSE.

See	also	decode().

Example:	iconview/simple_dd/main.cpp.

bool	QTextDrag::decode	(const	QMimeSource	*	e,	QString	&	str
)	[static]

Attempts	to	decode	the	dropped	information	in	e	into	str.	Returns	TRUE	if
successful;	otherwise	returns	FALSE.

See	also	canDecode().

Example:	iconview/simple_dd/main.cpp.

bool	QTextDrag::decode	(const	QMimeSource	*	e,	QString	&	str,
QCString	&	subtype)	[static]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Attempts	to	decode	the	dropped	information	in	e	into	str.	Returns	TRUE	if
successful;	otherwise	returns	FALSE.	If	subtype	is	null,	any	text	subtype	is
accepted;	otherwise	only	the	specified	subtype	is	accepted.

See	also	canDecode().

void	QTextDrag::setSubtype	(const	QCString	&	st)	[virtual]

Sets	the	MIME	subtype	of	the	text	being	dragged	to	st.	The	default	subtype	is
"plain",	so	the	default	MIME	type	of	the	text	is	"text/plain".	You	might	use	this
to	declare	that	the	text	is	"text/html"	by	calling	setSubtype("html").

void	QTextDrag::setText	(const	QString	&	text)	[virtual]

Sets	the	text	to	be	dragged	to	text.	You	will	need	to	call	this	if	you	did	not	pass
the	text	during	construction.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QAsciiCacheIterator	Class	Reference
The	QAsciiCacheIterator	class	provides	an	iterator	for	QAsciiCache	collections.
More...

#include	<qasciicache.h>

List	of	all	member	functions.

Public	Members

QAsciiCacheIterator	(const	QAsciiCache<type>	&	cache)
QAsciiCacheIterator	(const	QAsciiCacheIterator<type>	&	ci)
QAsciiCacheIterator<type>	&	operator=	(
const	QAsciiCacheIterator<type>	&	ci)
uint	count	()	const
bool	isEmpty	()	const
bool	atFirst	()	const
bool	atLast	()	const
type	*	toFirst	()
type	*	toLast	()
operator	type	*	()	const
type	*	current	()	const
const	char	*	currentKey	()	const
type	*	operator()	()
type	*	operator++	()
type	*	operator+=	(uint	jump)
type	*	operator--	()
type	*	operator-=	(uint	jump)

Detailed	Description

The	QAsciiCacheIterator	class	provides	an	iterator	for	QAsciiCache	collections.

Note	that	the	traversal	order	is	arbitrary;	you	are	not	guaranteed	any	particular
order.	If	new	objects	are	inserted	into	the	cache	while	the	iterator	is	active,	the
iterator	may	or	may	not	see	them.

Multiple	iterators	are	completely	independent,	even	when	they	operate	on	the
same	QAsciiCache.	QAsciiCache	updates	all	iterators	that	refer	an	item	when
that	item	is	removed.

QAsciiCacheIterator	provides	an	operator++()	and	an	operator+=()	to	traverse
the	cache;	current()	and	currentKey()	to	access	the	current	cache	item	and	its
key.	It	also	provides	atFirst()	and	atLast(),	which	return	TRUE	if	the	iterator
points	to	the	first	or	last	item	in	the	cache	respectively.	The	isEmpty()	function
returns	TRUE	if	the	cache	is	empty;	and	count()	returns	the	number	of	items	in
the	cache.

Note	that	atFirst()	and	atLast()	refer	to	the	iterator's	arbitrary	ordering,	not	to	the
cache's	internal	least	recently	used	list.

See	also	QAsciiCache,	Collection	Classes	and	Non-GUI	Classes.

Member	Function	Documentation

QAsciiCacheIterator::QAsciiCacheIterator	(
const	QAsciiCache<type>	&	cache)

Constructs	an	iterator	for	cache.	The	current	iterator	item	is	set	to	point	to	the
first	item	in	the	cache.

QAsciiCacheIterator::QAsciiCacheIterator	(
const	QAsciiCacheIterator<type>	&	ci)

Constructs	an	iterator	for	the	same	cache	as	ci.	The	new	iterator	starts	at	the
same	item	as	ci.current()	but	moves	independently	from	there	on.

bool	QAsciiCacheIterator::atFirst	()	const

Returns	TRUE	if	the	iterator	points	to	the	first	item	in	the	cache.	Note	that	this
refers	to	the	iterator's	arbitrary	ordering,	not	to	the	cache's	internal	least	recently
used	list.

See	also	toFirst()	and	atLast().

bool	QAsciiCacheIterator::atLast	()	const

Returns	TRUE	if	the	iterator	points	to	the	last	item	in	the	cache.	Note	that	this
refers	to	the	iterator's	arbitrary	ordering,	not	to	the	cache's	internal	least	recently
used	list.

See	also	toLast()	and	atFirst().

uint	QAsciiCacheIterator::count	()	const

Returns	the	number	of	items	in	the	cache	over	which	this	iterator	operates.

See	also	isEmpty().

type	*	QAsciiCacheIterator::current	()	const

Returns	a	pointer	to	the	current	iterator	item.

const	char	*	QAsciiCacheIterator::currentKey	()	const

Returns	the	key	for	the	current	iterator	item.

bool	QAsciiCacheIterator::isEmpty	()	const

Returns	TRUE	if	the	cache	is	empty,	i.e.	count()	==	0;	otherwise	returns	FALSE.

See	also	count().

QAsciiCacheIterator::operator	type	*	()	const

Cast	operator.	Returns	a	pointer	to	the	current	iterator	item.	Same	as	current().

type	*	QAsciiCacheIterator::operator()	()

Makes	the	succeeding	item	current	and	returns	the	original	current	item.

If	the	current	iterator	item	was	the	last	item	in	the	cache	or	if	it	was	null,	null	is
returned.

type	*	QAsciiCacheIterator::operator++	()

Prefix	++	makes	the	iterator	point	to	the	item	just	after	current(),	and	makes	that
the	new	current	item	for	the	iterator.	If	current()	was	the	last	item,	operator++()
returns	0.

type	*	QAsciiCacheIterator::operator+=	(uint	jump)

Returns	the	item	jump	positions	after	the	current	item,	or	null	if	it	is	beyond	the
last	item.	Makes	this	the	current	item.

type	*	QAsciiCacheIterator::operator--	()

Prefix	--	makes	the	iterator	point	to	the	item	just	before	current(),	and	makes	that
the	new	current	item	for	the	iterator.	If	current()	was	the	first	item,	operator--()
returns	0.

type	*	QAsciiCacheIterator::operator-=	(uint	jump)

Returns	the	item	jump	positions	before	the	current	item,	or	null	if	it	is	before	the
first	item.	Makes	this	the	current	item.

QAsciiCacheIterator<type>	&	QAsciiCacheIterator::operator=	(
const	QAsciiCacheIterator<type>	&	ci)

Makes	this	an	iterator	for	the	same	cache	as	ci.	The	new	iterator	starts	at	the
same	item	as	ci.current(),	but	moves	independently	thereafter.

type	*	QAsciiCacheIterator::toFirst	()

Sets	the	iterator	to	point	to	the	first	item	in	the	cache	and	returns	a	pointer	to	the
item.

Sets	the	iterator	to	null	and	returns	null	if	the	cache	is	empty.

See	also	toLast()	and	isEmpty().

type	*	QAsciiCacheIterator::toLast	()

Sets	the	iterator	to	point	to	the	last	item	in	the	cache	and	returns	a	pointer	to	the
item.

Sets	the	iterator	to	null	and	returns	null	if	the	cache	is	empty.

See	also	isEmpty().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QDomElement	Class	Reference
[XML	module]

The	QDomElement	class	represents	one	element	in	the	DOM	tree.	More...

#include	<qdom.h>

Inherits	QDomNode.

List	of	all	member	functions.

Public	Members

QDomElement	()
QDomElement	(const	QDomElement	&	x)
QDomElement	&	operator=	(const	QDomElement	&	x)
~QDomElement	()
QString	attribute	(const	QString	&	name,	const	QString	&	defValue	=
QString::null)	const
void	setAttribute	(const	QString	&	name,	const	QString	&	value)
void	setAttribute	(const	QString	&	name,	int	value)
void	setAttribute	(const	QString	&	name,	uint	value)
void	setAttribute	(const	QString	&	name,	double	value)
void	removeAttribute	(const	QString	&	name)
QDomAttr	attributeNode	(const	QString	&	name)
QDomAttr	setAttributeNode	(const	QDomAttr	&	newAttr)
QDomAttr	removeAttributeNode	(const	QDomAttr	&	oldAttr)
virtual	QDomNodeList	elementsByTagName	(const	QString	&	tagname)
const
bool	hasAttribute	(const	QString	&	name)	const
QString	attributeNS	(const	QString	nsURI,	const	QString	&	localName,
const	QString	&	defValue)	const
void	setAttributeNS	(const	QString	nsURI,	const	QString	&	qName,
const	QString	&	value)
void	setAttributeNS	(const	QString	nsURI,	const	QString	&	qName,
int	value)
void	setAttributeNS	(const	QString	nsURI,	const	QString	&	qName,
uint	value)
void	setAttributeNS	(const	QString	nsURI,	const	QString	&	qName,
double	value)
void	removeAttributeNS	(const	QString	&	nsURI,
const	QString	&	localName)
QDomAttr	attributeNodeNS	(const	QString	&	nsURI,
const	QString	&	localName)
QDomAttr	setAttributeNodeNS	(const	QDomAttr	&	newAttr)
virtual	QDomNodeList	elementsByTagNameNS	(const	QString	&	nsURI,
const	QString	&	localName)	const
bool	hasAttributeNS	(const	QString	&	nsURI,

const	QString	&	localName)	const
QString	tagName	()	const
void	setTagName	(const	QString	&	name)
virtual	QDomNamedNodeMap	attributes	()	const
virtual	QDomNode::NodeType	nodeType	()	const
virtual	bool	isElement	()	const
QString	text	()	const

Detailed	Description

The	QDomElement	class	represents	one	element	in	the	DOM	tree.

Elements	have	a	tagName()	and	zero	or	more	attributes	associated	with	them.
The	tag	name	can	be	changed	with	setTagName().

Attributes	of	the	element	are	represented	by	QDomAttr	objects,	that	can	be
queried	using	the	attribute()	and	attributeNode()	functions.	You	can	set	attributes
with	the	setAttribute()	and	setAttributeNode()	functions.	Attributes	can	be
removed	with	removeAttribute().	There	are	namespace-aware	equivalents	to
these	functions,	i.e.	setAttributeNS(),	setAttributeNodeNS()	and
removeAttributeNS().

If	you	want	to	access	the	text	of	a	node	use	text(),	e.g.

				QDomElement	e	=	//...

				//...

				QString	s	=	e.text()

				

The	text()	function	operates	recursively	to	find	the	text	(since	not	all	elements
contain	text).	If	you	want	to	find	all	the	text	in	all	of	a	node's	children	iterate
over	the	children	looking	for	QDomText	nodes,	e.g.

				QString	text;

				QDomElement	element	=	doc.documentElement();

				for(QDomNode	n	=	element.firstChild();	!n.isNull();	n	=	n.nextSibling

				{

													QDomText	t	=	n.toText();

													if	(!t.isNull())

																					text	+=	t.data();

				}

				

Note	that	we	attempt	to	convert	each	node	to	a	text	node	and	use	text()	rather
than	using	firstChild().toText().data()	or	n.toText().data()	directly	on	the	node,
because	the	node	may	not	be	a	text	element.

You	can	get	a	list	of	all	the	decendents	of	an	element	which	have	a	specified	tag
name	with	elementsByTagName()	or	elementsByTagNameNS().

For	further	information	about	the	Document	Object	Model	see
http://www.w3.org/TR/REC-DOM-Level-1/	and	http://www.w3.org/TR/DOM-
Level-2-Core/.	For	a	more	general	introduction	of	the	DOM	implementation	see
the	QDomDocument	documentation.

See	also	XML.

http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/DOM-Level-2-Core/

Member	Function	Documentation

QDomElement::QDomElement	()

Constructs	an	empty	element.	Use	the	QDomDocument::createElement()
function	to	construct	elements	with	content.

QDomElement::QDomElement	(const	QDomElement	&	x)

Constructs	a	copy	of	x.

The	data	of	the	copy	is	shared	(shallow	copy):	modifying	one	node	will	also
change	the	other.	If	you	want	to	make	a	deep	copy,	use	cloneNode().

QDomElement::~QDomElement	()

Destroys	the	object	and	frees	its	resources.

QString	QDomElement::attribute	(const	QString	&	name,
const	QString	&	defValue	=	QString::null)	const

Returns	the	attribute	called	name.	If	the	attribute	does	not	exist	defValue	is
returned.

See	also	setAttribute(),	attributeNode(),	setAttributeNode()	and	attributeNS().

QString	QDomElement::attributeNS	(const	QString	nsURI,
const	QString	&	localName,	const	QString	&	defValue)	const

Returns	the	attribute	with	the	local	name	localName	and	the	namespace	URI
nsURI.	If	the	attribute	does	not	exist	defValue	is	returned.

See	also	setAttributeNS(),	attributeNodeNS(),	setAttributeNodeNS()	and
attribute().

QDomAttr	QDomElement::attributeNode	(

const	QString	&	name)

Returns	the	QDomAttr	object	that	corresponds	to	the	attribute	called	name.	If	no
such	attribute	exists	a	null	object	is	returned.

See	also	setAttributeNode(),	attribute(),	setAttribute()	and	attributeNodeNS().

QDomAttr	QDomElement::attributeNodeNS	(
const	QString	&	nsURI,	const	QString	&	localName)

Returns	the	QDomAttr	object	that	corresponds	to	the	attribute	with	the	local
name	localName	and	the	namespace	URI	nsURI.	If	no	such	attribute	exists	a	null
object	is	returned.

See	also	setAttributeNode(),	attribute()	and	setAttribute().

QDomNamedNodeMap	QDomElement::attributes	()	const
[virtual]

Returns	a	QDomNamedNodeMap	containing	all	this	element's	attributes.

See	also	attribute(),	setAttribute(),	attributeNode()	and	setAttributeNode().

Reimplemented	from	QDomNode.

QDomNodeList	QDomElement::elementsByTagName	(
const	QString	&	tagname)	const	[virtual]

Returns	a	QDomNodeList	containing	all	descendant	elements	of	this	element
called	tagname.	The	order	they	are	in	the	node	list,	is	the	order	they	are
encountered	in	a	preorder	traversal	of	the	element	tree.

See	also	elementsByTagNameNS()	and
QDomDocument::elementsByTagName().

QDomNodeList	QDomElement::elementsByTagNameNS	(
const	QString	&	nsURI,	const	QString	&	localName)	const
[virtual]

Returns	a	QDomNodeList	containing	all	the	descendant	elements	of	this	element
with	the	local	name	localName	and	the	namespace	URI	nsURI.	The	order	they
are	in	the	node	list,	is	the	order	they	are	encountered	in	a	preorder	traversal	of
the	element	tree.

See	also	elementsByTagName()	and
QDomDocument::elementsByTagNameNS().

bool	QDomElement::hasAttribute	(const	QString	&	name)	const

Returns	TRUE	if	this	element	has	an	attribute	called	name;	otherwise	returns
FALSE.

bool	QDomElement::hasAttributeNS	(const	QString	&	nsURI,
const	QString	&	localName)	const

Returns	TRUE	if	this	element	has	an	attribute	with	the	local	name	localName
and	the	namespace	URI	nsURI;	otherwise	returns	FALSE.

bool	QDomElement::isElement	()	const	[virtual]

Returns	TRUE.

Reimplemented	from	QDomNode.

QDomNode::NodeType	QDomElement::nodeType	()	const
[virtual]

Returns	ElementNode.

Reimplemented	from	QDomNode.

QDomElement	&	QDomElement::operator=	(
const	QDomElement	&	x)

Assigns	x	to	this	DOM	element.

The	data	of	the	copy	is	shared	(shallow	copy):	modifying	one	node	will	also

change	the	other.	If	you	want	to	make	a	deep	copy,	use	cloneNode().

void	QDomElement::removeAttribute	(const	QString	&	name)

Removes	the	attribute	called	name	name	from	this	element.

See	also	setAttribute(),	attribute()	and	removeAttributeNS().

void	QDomElement::removeAttributeNS	(
const	QString	&	nsURI,	const	QString	&	localName)

Removes	the	attribute	with	the	local	name	localName	and	the	namespace	URI
nsURI	from	this	element.

See	also	setAttributeNS(),	attributeNS()	and	removeAttribute().

QDomAttr	QDomElement::removeAttributeNode	(
const	QDomAttr	&	oldAttr)

Removes	the	attribute	oldAttr	from	the	element	and	returns	it.

See	also	attributeNode()	and	setAttributeNode().

void	QDomElement::setAttribute	(const	QString	&	name,
const	QString	&	value)

Adds	an	attribute	called	name	name	with	value	value.	If	an	attribute	with	the
same	name	exists,	its	value	is	replaced	by	value.

See	also	attribute(),	setAttributeNode()	and	setAttributeNS().

void	QDomElement::setAttribute	(const	QString	&	name,
int	value)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

void	QDomElement::setAttribute	(const	QString	&	name,

uint	value)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

void	QDomElement::setAttribute	(const	QString	&	name,
double	value)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

void	QDomElement::setAttributeNS	(const	QString	nsURI,
const	QString	&	qName,	const	QString	&	value)

Adds	an	attribute	with	the	qualified	name	qName	and	the	namespace	URI	nsURI
with	the	value	value.	If	an	attribute	with	the	same	local	name	and	namespace
URI	exists,	its	prefix	is	replaced	by	the	prefix	of	qName	and	its	value	is	repaced
by	value.

Although	qName	is	the	qualified	name,	the	local	name	is	used	to	decide	if	an
existing	attribute's	value	should	be	replaced.

See	also	attributeNS(),	setAttributeNodeNS()	and	setAttribute().

void	QDomElement::setAttributeNS	(const	QString	nsURI,
const	QString	&	qName,	int	value)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

void	QDomElement::setAttributeNS	(const	QString	nsURI,
const	QString	&	qName,	uint	value)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

void	QDomElement::setAttributeNS	(const	QString	nsURI,

const	QString	&	qName,	double	value)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

QDomAttr	QDomElement::setAttributeNode	(
const	QDomAttr	&	newAttr)

Adds	the	attribute	newAttr	to	this	element.

If	the	element	has	another	attribute	that	has	the	same	name	as	newAttr,	this
function	replaces	that	attribute	and	returns	it;	otherwise	the	function	returns	a
null	attribute.

See	also	attributeNode(),	setAttribute()	and	setAttributeNodeNS().

QDomAttr	QDomElement::setAttributeNodeNS	(
const	QDomAttr	&	newAttr)

Adds	the	attribute	newAttr	to	this	element.

If	the	element	has	another	attribute	that	has	the	same	local	name	and	namespace
URI	as	newAttr,	this	function	replaces	that	attribute	and	returns	it;	otherwise	the
function	returns	a	null	attribute.

See	also	attributeNodeNS(),	setAttributeNS()	and	setAttributeNode().

void	QDomElement::setTagName	(const	QString	&	name)

Sets	the	tag	name	of	this	element	to	name.

See	also	tagName().

QString	QDomElement::tagName	()	const

Returns	the	tag	name	of	this	element.	For	an	XML	element	like

		

		

the	tagname	would	return	"img".

See	also	setTagName().

QString	QDomElement::text	()	const

Returns	the	text	contained	inside	this	element.

Example:

		<h1>Hello	Qt	<![CDATA[<xml	is	cool>]]></h1>

		

The	function	text()	of	the	QDomElement	for	the	<h1>	tag,	will	return	"Hello	Qt
<xml	is	cool>".

Comments	are	ignored	by	this	function.	It	only	evaluates	QDomText	and
QDomCDATASection	objects.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QIntDictIterator	Class	Reference
The	QIntDictIterator	class	provides	an	iterator	for	QIntDict	collections.	More...

#include	<qintdict.h>

List	of	all	member	functions.

Public	Members

QIntDictIterator	(const	QIntDict<type>	&	dict)
~QIntDictIterator	()
uint	count	()	const
bool	isEmpty	()	const
type	*	toFirst	()
operator	type	*	()	const
type	*	current	()	const
long	currentKey	()	const
type	*	operator()	()
type	*	operator++	()
type	*	operator+=	(uint	jump)

Detailed	Description

The	QIntDictIterator	class	provides	an	iterator	for	QIntDict	collections.

QIntDictIterator	is	implemented	as	a	template	class.	Define	a	template	instance
QIntDictIterator<X>	to	create	a	dictionary	iterator	that	operates	on	QIntDict<X>
(dictionary	of	X*).

Example:

				QIntDict<QLineEdit>	fields;

				for	(int	i	=	0;	i	<	3;	i++)

								fields.insert(i,	new	QLineEdit(this));

				fields[0]->setText("Homer");

				fields[1]->setText("Simpson");

				fields[2]->setText("45");

				QIntDictIterator<char>	it(fields);	

				for	(;	it.current();	++it)

								cout	<<	it.currentKey()	<<	":	"	<<	it.current()->text()	<<	endl;

				//	Output	(random	order):

				//		0:	Homer

				//		1:	Simpson

				//		2:	45

		

Note	that	the	traversal	order	is	arbitrary;	you	are	not	guaranteed	the	order	above.

Multiple	iterators	may	independently	traverse	the	same	dictionary.	A	QIntDict
knows	about	all	the	iterators	that	are	operating	on	the	dictionary.	When	an	item
is	removed	from	the	dictionary,	QIntDict	updates	all	iterators	that	refer	the
removed	item	to	point	to	the	next	item	in	the	traversing	order.

See	also	QIntDict,	Collection	Classes	and	Non-GUI	Classes.

Member	Function	Documentation

QIntDictIterator::QIntDictIterator	(const	QIntDict<type>	&	dict
)

Constructs	an	iterator	for	dict.	The	current	iterator	item	is	set	to	point	to	the	'first'
item	in	the	dict.	The	first	item	refers	to	the	first	item	in	the	dictionary's	arbitrary
internal	ordering.

QIntDictIterator::~QIntDictIterator	()

Destroys	the	iterator.

uint	QIntDictIterator::count	()	const

Returns	the	number	of	items	in	the	dictionary	this	iterator	operates	over.

See	also	isEmpty().

type	*	QIntDictIterator::current	()	const

Returns	a	pointer	to	the	current	iterator	item.

long	QIntDictIterator::currentKey	()	const

Returns	the	key	for	the	current	iterator	item.

bool	QIntDictIterator::isEmpty	()	const

Returns	TRUE	if	the	dictionary	is	empty;	otherwise	eturns	FALSE.

See	also	count().

QIntDictIterator::operator	type	*	()	const

Cast	operator.	Returns	a	pointer	to	the	current	iterator	item.	Same	as	current().

type	*	QIntDictIterator::operator()	()

Makes	the	succeeding	item	current	and	returns	the	original	current	item.

If	the	current	iterator	item	was	the	last	item	in	the	dictionary	or	if	it	was	null,
null	is	returned.

type	*	QIntDictIterator::operator++	()

Prefix	++	makes	the	succeeding	item	current	and	returns	the	new	current	item.

If	the	current	iterator	item	was	the	last	item	in	the	dictionary	or	if	it	was	null,
null	is	returned.

type	*	QIntDictIterator::operator+=	(uint	jump)

Sets	the	current	item	to	the	item	jump	positions	after	the	current	item,	and
returns	a	pointer	to	that	item.

If	that	item	is	beyond	the	last	item	or	if	the	dictionary	is	empty,	it	sets	the	current
item	to	null	and	returns	null.

type	*	QIntDictIterator::toFirst	()

Sets	the	current	iterator	item	to	point	to	the	first	item	in	the	dictionary	and
returns	a	pointer	to	the	item.	The	first	item	refers	to	the	first	item	in	the
dictionary's	arbitrary	internal	ordering.	If	the	dictionary	is	empty	it	sets	the
current	item	to	null	and	returns	null.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QPtrVector
QPtrVector	 ……

#include	<qptrvector.h>

QPtrCollection

QPtrVector	()
QPtrVector	(uint	size)
QPtrVector	(const	QPtrVector<type>	&	v)
~QPtrVector	()
QPtrVector<type>	&	operator=	(const	QPtrVector<type>	&	v)
bool	operator==	(const	QPtrVector<type>	&	v)	const
type	**	data	()	const
uint	size	()	const
virtual	uint	count	()	const
bool	isEmpty	()	const
bool	isNull	()	const
bool	resize	(uint	size)
bool	insert	(uint	i,	const	type	*	d)
bool	remove	(uint	i)
type	*	take	(uint	i)
virtual	void	clear	()
bool	fill	(const	type	*	d,	int	size	=	-1)
void	sort	()
int	bsearch	(const	type	*	d)	const
int	findRef	(const	type	*	d,	uint	i	=	0)	const
int	find	(const	type	*	d,	uint	i	=	0)	const
uint	containsRef	(const	type	*	d)	const
uint	contains	(const	type	*	d)	const
type	*	operator[]	(int	i)	const
type	*	at	(uint	i)	const
void	toList	(QGList	*	list)	const

bool	autoDelete	()	const
void	setAutoDelete	(bool	enable)

virtual	int	compareItems	(QPtrCollection::Item	d1,
QPtrCollection::Item	d2)
virtual	QDataStream	&	read	(QDataStream	&	s,
QPtrCollection::Item	&	item)
virtual	QDataStream	&	write	(QDataStream	&	s,
QPtrCollection::Item	item)	const

QPtrVector

QValueVectorSTL

QPtrVectorQPtrVector<X>XX*

QPtrVector QMemArrayQPtrVectorQMemArrayQMemArray
QPtrVector

insert()fill() remove() at()

setAutoDelete() deleteItem()

find()sort() compareItems()compareItems() findRef()
contains()containsRef()

QMemArrayGUI

QPtrVector::QPtrVector	()

isNull()

QPtrVector::QPtrVector	(uint	size)

size size==0

size0

size() resize()isNull()

QPtrVector::QPtrVector	(const	QPtrVector<type>	&	v)

v

QPtrVector::~QPtrVector	()

clear()

type	*	QPtrVector::at	(uint	i)	const

i0 isize()

bool	QPtrCollection::autoDelete	()	const

setAutoDelete()

int	QPtrVector::bsearch	(const	type	*	d)	const

d find()

d d-1 d0

compareItems()

sort()find()

void	QPtrVector::clear	()	[]

isNull()

QPtrCollection

int	QPtrVector::compareItems	(QPtrCollection::Item	d1,
QPtrCollection::Item	d2)	[]

d1==d20
d1!=d20

intbool3

d1==d20
d1>d2>0
d1<d2<0

sort()bsearch()compareItems()

compareItems()

uint	QPtrVector::contains	(const	type	*	d)	const

d

compareItems()

containsRef()

uint	QPtrVector::containsRef	(const	type	*	d)	const

d

compareItems()

findRef()

uint	QPtrVector::count	()	const	[]

count()==0

isEmpty()size()

QPtrCollection

type	**	QPtrVector::data	()	const

type*

data()==0

isNull()

bool	QPtrVector::fill	(const	type	*	d,	int	size	=	-1)

d d0

size>=0 size size-1

resize() insert()isEmpty()

int	QPtrVector::find	(const	type	*	d,	uint	i	=	0)	const

d i isize() i0

d d-1

compareItems()

bsearch()

findRef()bsearch()

int	QPtrVector::findRef	(const	type	*	d,	uint	i	=	0)	const

d i isize() i0

d d-1

compareItems()

bsearch()

find()bsearch()

bool	QPtrVector::insert	(uint	i,	const	type	*	d)

idisize() i

at()

bool	QPtrVector::isEmpty	()	const

count()

bool	QPtrVector::isNull	()	const

size()==	0data()==0

size()

QPtrVector<type>	&	QPtrVector::operator=	(
const	QPtrVector<type>	&	v)

v

v

clear()

bool	QPtrVector::operator==	(const	QPtrVector<type>	&	v)
const

v

type	*	QPtrVector::operator[]	(int	i)	const

i0 isize()

at(i)

at()

QDataStream	&	QPtrVector::read	(QDataStream	&	s,
QPtrCollection::Item	&	item)	[]

sitem

item0

write()

bool	QPtrVector::remove	(uint	i)

i isize()

i

take()at()

bool	QPtrVector::resize	(uint	size)

sizesize==0

size0

size()isNull()

void	QPtrCollection::setAutoDelete	(bool	enable)

enable enable

remove()

autoDelete()

grapher/grapher.cppscribble/scribble.cpptable/bigtable/main.cpp

uint	QPtrVector::size	()	const

size()==0

isNull() resize()count()

void	QPtrVector::sort	()

compareItems()

bsearch()

type	*	QPtrVector::take	(uint	i)

i isize() i0

remove() deleteItem()

remove()at()

void	QPtrVector::toList	(QGList	*	list)	const

list listlist

QPtrListQPtrStackQPtrQueue

QDataStream	&	QPtrVector::write	(QDataStream	&	s,
QPtrCollection::Item	item)	const	[]

items

read()

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QTextEdit
QTextEdit	 ……

#include	<qtextedit.h>

QScrollView

QMultiLineEditQTextBrowserQTextView

enum	WordWrap	{	NoWrap,	WidgetWidth,	FixedPixelWidth,
FixedColumnWidth	}
enum	WrapPolicy	{	AtWordBoundary,	Anywhere,	AtWhiteSpace	=
AtWordBoundary	}
enum	KeyboardAction	{	ActionBackspace,	ActionDelete,	ActionReturn,
ActionKill	}
enum	CursorAction	{	MoveBackward,	MoveForward,
MoveWordBackward,	MoveWordForward,	MoveUp,	MoveDown,
MoveLineStart,	MoveLineEnd,	MoveHome,	MoveEnd,	MovePgUp,
MovePgDown	}
enum	VerticalAlignment	{	AlignNormal,	AlignSuperScript,
AlignSubScript	}
QTextEdit	(const	QString	&	text,	const	QString	&	context	=	QString::null,
QWidget	*	parent	=	0,	const	char	*	name	=	0)
QTextEdit	(QWidget	*	parent	=	0,	const	char	*	name	=	0)
QString	text	()	const
QString	text	(int	para)	const
TextFormat	textFormat	()	const
QString	context	()	const
QString	documentTitle	()	const
void	getSelection	(int	*	paraFrom,	int	*	indexFrom,	int	*	paraTo,
int	*	indexTo,	int	selNum	=	0)	const
virtual	bool	find	(const	QString	&	expr,	bool	cs,	bool	wo,	bool	forward	=
TRUE,	int	*	para	=	0,	int	*	index	=	0)
int	paragraphs	()	const
int	lines	()	const
int	linesOfParagraph	(int	para)	const
int	lineOfChar	(int	para,	int	index)
int	length	()	const
QRect	paragraphRect	(int	para)	const
int	paragraphAt	(const	QPoint	&	pos)	const
int	charAt	(const	QPoint	&	pos,	int	*	para)	const
int	paragraphLength	(int	para)	const
QStyleSheet	*	styleSheet	()	const
QMimeSourceFactory	*	mimeSourceFactory	()	const

QBrush	paper	()	const
bool	linkUnderline	()	const
virtual	int	heightForWidth	(int	w)	const
bool	hasSelectedText	()	const
QString	selectedText	()	const
bool	isUndoAvailable	()	const
bool	isRedoAvailable	()	const
WordWrap	wordWrap	()	const
int	wrapColumnOrWidth	()	const
WrapPolicy	wrapPolicy	()	const
int	tabStopWidth	()	const
QString	anchorAt	(const	QPoint	&	pos)
bool	isReadOnly	()	const
void	getCursorPosition	(int	*	para,	int	*	index)	const
bool	isModified	()	const
bool	italic	()	const
bool	bold	()	const
bool	underline	()	const
QString	family	()	const
int	pointSize	()	const
QColor	color	()	const
QFont	font	()	const
int	alignment	()	const
int	undoDepth	()	const
bool	isOverwriteMode	()	const
QColor	paragraphBackgroundColor	(int	para)	const
bool	isUndoRedoEnabled	()	const

virtual	void	setMimeSourceFactory	(QMimeSourceFactory	*	factory)
virtual	void	setStyleSheet	(QStyleSheet	*	styleSheet)
virtual	void	scrollToAnchor	(const	QString	&	name)
virtual	void	setPaper	(const	QBrush	&	pap)
virtual	void	setLinkUnderline	(bool)
virtual	void	setWordWrap	(WordWrap	mode)
virtual	void	setWrapColumnOrWidth	(int)
virtual	void	setWrapPolicy	(WrapPolicy	policy)
virtual	void	copy	()
virtual	void	append	(const	QString	&	text)
void	setText	(const	QString	&	txt)
virtual	void	setText	(const	QString	&	text,	const	QString	&	context)
virtual	void	setTextFormat	(TextFormat	f)
virtual	void	selectAll	(bool	select	=	TRUE)
virtual	void	setTabStopWidth	(int	ts)
virtual	void	zoomIn	(int	range)
virtual	void	zoomIn	()
virtual	void	zoomOut	(int	range)
virtual	void	zoomOut	()
virtual	void	zoomTo	(int	size)
virtual	void	setReadOnly	(bool	b)
virtual	void	undo	()
virtual	void	redo	()
virtual	void	cut	()
virtual	void	paste	()
virtual	void	pasteSubType	(const	QCString	&	subtype)
virtual	void	clear	()
virtual	void	del	()
virtual	void	indent	()
virtual	void	setItalic	(bool	b)
virtual	void	setBold	(bool	b)
virtual	void	setUnderline	(bool	b)
virtual	void	setFamily	(const	QString	&	fontFamily)
virtual	void	setPointSize	(int	s)
virtual	void	setColor	(const	QColor	&	c)

virtual	void	setVerticalAlignment	(VerticalAlignment	a)
virtual	void	setAlignment	(int	a)
virtual	void	setCursorPosition	(int	para,	int	index)
virtual	void	setSelection	(int	paraFrom,	int	indexFrom,	int	paraTo,
int	indexTo,	int	selNum	=	0)
virtual	void	setSelectionAttributes	(int	selNum,	const	QColor	&	back,
bool	invertText)
virtual	void	setModified	(bool	m)
virtual	void	setUndoDepth	(int	d)
virtual	void	ensureCursorVisible	()
virtual	void	placeCursor	(const	QPoint	&	pos,	QTextCursor	*	c	=	0)
virtual	void	moveCursor	(CursorAction	action,	bool	select)
virtual	void	doKeyboardAction	(KeyboardAction	action)
virtual	void	removeSelectedText	(int	selNum	=	0)
virtual	void	removeSelection	(int	selNum	=	0)
virtual	void	setCurrentFont	(const	QFont	&	f)
virtual	void	setOverwriteMode	(bool	b)
virtual	void	scrollToBottom	()
virtual	void	insert	(const	QString	&	text,	bool	indent	=	FALSE,
bool	checkNewLine	=	TRUE,	bool	removeSelected	=	TRUE)
virtual	void	insertAt	(const	QString	&	text,	int	para,	int	index)
virtual	void	removeParagraph	(int	para)
virtual	void	insertParagraph	(const	QString	&	text,	int	para)
virtual	void	setParagraphBackgroundColor	(int	para,	const	QColor	&	bg
)
virtual	void	clearParagraphBackground	(int	para)
virtual	void	setUndoRedoEnabled	(bool	b)

void	textChanged	()
void	selectionChanged	()
void	copyAvailable	(bool	yes)
void	undoAvailable	(bool	yes)
void	redoAvailable	(bool	yes)
void	currentFontChanged	(const	QFont	&	f)
void	currentColorChanged	(const	QColor	&	c)
void	currentAlignmentChanged	(int	a)
void	currentVerticalAlignmentChanged	(VerticalAlignment	a)
void	cursorPositionChanged	(QTextCursor	*	c)
void	cursorPositionChanged	(int	para,	int	pos)
void	returnPressed	()
void	modificationChanged	(bool	m)

QString	documentTitle	-		
bool	hasSelectedText	-	0	
int	length	-		
bool	linkUnderline	-	
bool	modified	-	
bool	overwriteMode	-	
QBrush	paper	-	
bool	readOnly	-	
QString	selectedText	-	00	
int	tabStopWidth	-	tab	stops
QString	text	-	
TextFormat	textFormat	-	
int	undoDepth	-	
bool	undoRedoEnabled	-	/
WordWrap	wordWrap	-	
int	wrapColumnOrWidth	-	
WrapPolicy	wrapPolicy	-	

void	repaintChanged	()
virtual	void	keyPressEvent	(QKeyEvent	*	e)
virtual	bool	focusNextPrevChild	(bool	n)
QTextCursor	*	textCursor	()	const
virtual	QPopupMenu	*	createPopupMenu	(const	QPoint	&	pos)
virtual	QPopupMenu	*	createPopupMenu	()		(obsolete)

QTextEdit

QTextEdit

QTextEdit

QTextEditHTML/

QTextEdit

setTextFormat(PlainText) setText() text() 1.

setTextFormat(RichText) setText() text() 2.

3. setReadOnly(TRUE) setText()append()text() textFormat()
HTML

1.QTextEdit

2.Qt

3.Qt	3.1

setTextFormat() AutoTextsetText()append() RichTextsetText()append()
insert()

QTextEdit00

	--	
	--	

QTextEdit QMimeSourceFactoryHTMLHTML3.24
styleSheet() setStyleSheet() QStyleSheetQMimeSourceFactory
setMimeSourceFactory()

QTextBrowser QLabelQSimpleRichText

QTextEdit setTextFormat(Qt::RichText)HTMLHTML
QStyleSheetsetTextFormat()HTMLXML
setTextFormat(Qt::PlainText)

QtQtQt

QTextEdit

QTextEditHTML

setText()setText()HTML setTextFormat(RichText)setText()
text() insert() paste() pasteSubType()append()append()
cut() clear()removeSelectedText() del()

setText()text()

				QFile	file(fileName);	//	

				if	(file.open(IO_ReadOnly))	{

								QTextStream	ts(&file);

								textEdit->setText(ts.read());

				}

				

				QFile	file(fileName);	//	

				if	(file.open(IO_WriteOnly))	{

								QTextStream	ts(&file);

								ts	<<	textEdit->text();

								textEdit->setModified(FALSE);

				}

				

setWordWrap()
setWrapColumnOrWidth()80 FixedColumnWidthWidgetWidth
setWrapPolicy()

setPaper()

setLinkUnderline()tab	stop setTabStopWidth

zoomIn()zoomOut()zoomOut()

lines()paragraphs() linesOfParagraph() length()

scrollToAnchor()find()

QTextEditQTextEditQTextView

QTextEdit

UpArrow
DownArrow
LeftArrow
RightArrow
PageUp
PageDown
Home
End
Shift+WheelWheel
Ctrl+Wheel

documentTitle()HTML<title>

contextcontextQMimeSourceFactory mimeSourceFactory
QTextEdit() context()

QTextEdit

QTextEdit

setItalic() setBold() setUnderline() setFamily()
setPointSize() setColor()setCurrentFont() setAlignment()

setSelection() setSelectionAttributes() hasSelectedText() getSelection
selectedText() copy() cut() removeSelectedText() selectAll()
QTextEdit0Shift

setCursorPosition()getCursorPosition()
currentFontChanged() currentColorChanged()currentAlignmentChanged()

textChanged() returnPressed() isModified()

QTextEdit setUndoDepth()100 undo()redo()
redoAvailable()

indent() Qt Ctrl+Iindent()

Backspace
Delete
Ctrl+A
Ctrl+B
Ctrl+C Windows Ctrl+Insert
Ctrl+D
Ctrl+E
Ctrl+F
Ctrl+H
Ctrl+K
Ctrl+N
Ctrl+P
Ctrl+V Windows Shift+Insert
Ctrl+X Windows Shift+Delete
Ctrl+Z
Ctrl+Y

LeftArrow
Ctrl+LeftArrow
RightArrow
Ctrl+RightArrow
UpArrow
Ctrl+UpArrow
DownArrow
Ctrl+Down	Arrow
PageUp
PageDown
Home
Ctrl+Home
End
Ctrl+End
Shift+Wheel Wheel
Ctrl+Wheel

Shift Shift+ Shift+Ctrl+

QTextEdit::CursorAction

moveCursor()

QTextEdit::MoveBackward	-	
QTextEdit::MoveWordBackward	-	
QTextEdit::MoveForward	-	
QTextEdit::MoveWordForward	-	
QTextEdit::MoveUp	-	
QTextEdit::MoveDown	-	
QTextEdit::MoveLineStart	-	
QTextEdit::MoveLineEnd	-	
QTextEdit::MoveHome	-	
QTextEdit::MoveEnd	-	
QTextEdit::MovePgUp	-	
QTextEdit::MovePgDown	-	

QTextEdit::KeyboardAction

doKeyboardAction()

QTextEdit::ActionBackspace	-	
QTextEdit::ActionDelete	-	
QTextEdit::ActionReturn	-	
QTextEdit::ActionKill	-	——

QTextEdit::VerticalAlignment

QTextEdit::AlignNormal	-	
QTextEdit::AlignSuperScript	-	
QTextEdit::AlignSubScript	-	

QTextEdit::WordWrap

QTextEdit

QTextEdit::NoWrap	-	
QTextEdit::WidgetWidth	-	 setWrapPolicy()
QTextEdit::FixedPixelWidth	-	 wrapColumnOrWidth()
QTextEdit::FixedColumnWidth	-	wrapColumnOrWidth()
VT100wrapColumnOrWidth()80

wordWrapwordWrap

QTextEdit::WrapPolicy

QTextEdit::AtWhiteSpace	-	
QTextEdit::Anywhere	-	
QTextEdit::AtWordBoundary	-	AtWhiteSpace

wrapPolicy

QTextEdit::QTextEdit	(const	QString	&	text,
const	QString	&	context	=	QString::null,	QWidget	*	parent	=
0,	const	char	*	name	=	0)

parentnameQTextEdit contexttext

contextQMimeSourceFactory mimeSourceFactory()

“path/to/look/in”QMimeSourceFactory
“path/to/look/in/image.png” context
QMimeSourceFactory“/image.png”context
href="target.html">Target“path/to/look/in/target.html”

QTextEdit::QTextEdit	(QWidget	*	parent	=	0,	const	char	*	name
=	0)

parentnameQTextEdit

int	QTextEdit::alignment	()	const

setAlignment()

QString	QTextEdit::anchorAt	(const	QPoint	&	pos)

pos

void	QTextEdit::append	(const	QString	&	text)	[]

text/

network/clientserver/client/client.cppnetwork/clientserver/server/server.cppnetwork/httpd/httpd.cpp

process/process.cpp

bool	QTextEdit::bold	()	const

setBold()

int	QTextEdit::charAt	(const	QPoint	&	pos,	int	*	para)	const

pos para *para pos-1

void	QTextEdit::clear	()	[]

cut(),	removeSelectedText()text

void	QTextEdit::clearParagraphBackground	(int	para)	[]

para

QColor	QTextEdit::color	()	const

setColor()paper

QString	QTextEdit::context	()	const

contextcontext QMimeSourceFactory

text

helpviewer/helpwindow.cppqdir/qdir.cpp

void	QTextEdit::copy	()	[]

0

hasSelectedTextcopyAvailable()

void	QTextEdit::copyAvailable	(bool	yes)	[]

yes yes

yes copy() yescopy()

selectionChanged()

QPopupMenu	*	QTextEdit::createPopupMenu	(
const	QPoint	&	pos)	[]

pos

QPopupMenu	*	QTextEdit::createPopupMenu	()	[]

createPopupMenu(const	QPoint	&)0

void	QTextEdit::currentAlignmentChanged	(int	a)	[]

a

setAlignment()

void	QTextEdit::currentColorChanged	(const	QColor	&	c)	[]

c

setColor()

void	QTextEdit::currentFontChanged	(const	QFont	&	f)	[]

f

setCurrentFont()

void	QTextEdit::currentVerticalAlignmentChanged	(
VerticalAlignment	a)	[]

a

setVerticalAlignment()

void	QTextEdit::cursorPositionChanged	(QTextCursor	*	c)	[]

c

setCursorPosition()

void	QTextEdit::cursorPositionChanged	(int	para,	int	pos)	[]

parapos

setCursorPosition()

void	QTextEdit::cut	()	[]

0

0

QTextEdit::copy(),	paste()pasteSubType()

void	QTextEdit::del	()	[]

00

removeSelectedText()cut()

void	QTextEdit::doKeyboardAction	(KeyboardAction	action)	[
]

action

QString	QTextEdit::documentTitle	()	const

“documentTitle”

void	QTextEdit::ensureCursorVisible	()	[]

setCursorPosition()

QString	QTextEdit::family	()	const

setFamily(),	setCurrentFont()setPointSize()

bool	QTextEdit::find	(const	QString	&	expr,	bool	cs,	bool	wo,
bool	forward	=	TRUE,	int	*	para	=	0,	int	*	index	=	0)	[]

expr expr

paraindex paraindex *para*index

cs wo forward

expr indexpara *para*index

expr indexpara expr *index*para

bool	QTextEdit::focusNextPrevChild	(bool	n)	[]

ntab ntab

QFont	QTextEdit::font	()	const

setCurrentFont(),	setFamily()setPointSize()

action/application.cppapplication/application.cppmdi/application.cpp
qwerty/qwerty.cpp

void	QTextEdit::getCursorPosition	(int	*	para,	int	*	index)	const

*para*index paraindex

setCursorPosition()

void	QTextEdit::getSelection	(int	*	paraFrom,	int	*	indexFrom,
int	*	paraTo,	int	*	indexTo,	int	selNum	=	0)	const

*paraFrom*paraTo *indexFrom*paraFrom*indexTo*paraTo

*paraFrom*indexFrom*paraTo	 *indexTo-1

paraFromindexFromparaToindexTo

selNum0

setSelection()selectedText

bool	QTextEdit::hasSelectedText	()	const

0 “hasSelectedText”

int	QTextEdit::heightForWidth	(int	w)	const	[]

w

QWidget

void	QTextEdit::indent	()	[]

void	QTextEdit::insert	(const	QString	&	text,	bool	indent	=
FALSE,	bool	checkNewLine	=	TRUE,	bool	removeSelected	=
TRUE)	[]

textindent checkNewLine text checkNewLine
checkNewLine text removeSelected0

paste()pasteSubType()

void	QTextEdit::insertAt	(const	QString	&	text,	int	para,
int	index)	[]

paraindextext

void	QTextEdit::insertParagraph	(const	QString	&	text,	int	para
)	[]

paratext para-1

bool	QTextEdit::isModified	()	const

“modified”

bool	QTextEdit::isOverwriteMode	()	const

“overwriteMode”

bool	QTextEdit::isReadOnly	()	const

“readOnly”

bool	QTextEdit::isRedoAvailable	()	const

bool	QTextEdit::isUndoAvailable	()	const

bool	QTextEdit::isUndoRedoEnabled	()	const

/ “undoRedoEnabled”

bool	QTextEdit::italic	()	const

setItalic()

void	QTextEdit::keyPressEvent	(QKeyEvent	*	e)	[]

e

QWidget

QTextBrowser

int	QTextEdit::length	()	const

“length”

int	QTextEdit::lineOfChar	(int	para,	int	index)

paraindex index index-1

int	QTextEdit::lines	()	const

0

	

action/application.cppapplication/application.cpp

int	QTextEdit::linesOfParagraph	(int	para)	const

para para-1

bool	QTextEdit::linkUnderline	()	const

“linkUnderline”

QMimeSourceFactory	*	QTextEdit::mimeSourceFactory	()	const

QMimeSourceFactory

setMimeSourceFactory()

helpviewer/helpwindow.cppqdir/qdir.cpp

void	QTextEdit::modificationChanged	(bool	m)	[]

m

modified

void	QTextEdit::moveCursor	(CursorAction	action,	bool	select)
[]

action select

QBrush	QTextEdit::paper	()	const

“paper”

int	QTextEdit::paragraphAt	(const	QPoint	&	pos)	const

pos pos-1

QColor	QTextEdit::paragraphBackgroundColor	(int	para)	const

parapara

int	QTextEdit::paragraphLength	(int	para)	const

para para-1

QRect	QTextEdit::paragraphRect	(int	para)	const

para para

int	QTextEdit::paragraphs	()	const

0

void	QTextEdit::paste	()	[]

pasteSubType(),	cut()QTextEdit::copy()

void	QTextEdit::pasteSubType	(const	QCString	&	subtype)	[
]

subtype subtype“plain”“html”

subtype

paste(),	cut()QTextEdit::copy()

void	QTextEdit::placeCursor	(const	QPoint	&	pos,
QTextCursor	*	c	=	0)	[]

pos cc0

setCursorPosition()

int	QTextEdit::pointSize	()	const

setFamily(),	setCurrentFont()setPointSize()

void	QTextEdit::redo	()	[]

/

redoAvailable(),	undo()undoDepth

void	QTextEdit::redoAvailable	(bool	yes)	[]

yes redo()redoAvailable(FALSE)

redo()undoDepth

void	QTextEdit::removeParagraph	(int	para)	[]

para

void	QTextEdit::removeSelectedText	(int	selNum	=	0)	[]

selNum0

selectedTextremoveSelection()

void	QTextEdit::removeSelection	(int	selNum	=	0)	[]

selNum0

removeSelectedText()

void	QTextEdit::repaintChanged	()	[]

void	QTextEdit::returnPressed	()	[]

void	QTextEdit::scrollToAnchor	(const	QString	&	name)	[]

nameHTML

void	QTextEdit::scrollToBottom	()	[]

void	QTextEdit::selectAll	(bool	select	=	TRUE)	[]

select0 select0

selectedText

QString	QTextEdit::selectedText	()	const

00 “selectedText”

void	QTextEdit::selectionChanged	()	[]

setSelection()copyAvailable()

void	QTextEdit::setAlignment	(int	a)	[]

aQt::AlignLeftQt::AlignRightQt::AlignJustifyQt::AlignCenter

QMultiLineEdit

void	QTextEdit::setBold	(bool	b)	[]

b

bold()

void	QTextEdit::setColor	(const	QColor	&	c)	[]

c

color()paper

action/actiongroup/editor.cpp

void	QTextEdit::setCurrentFont	(const	QFont	&	f)	[]

f

font(),	setPointSize()setFamily()

void	QTextEdit::setCursorPosition	(int	para,	int	index)	[]

paraindex

getCursorPosition()

void	QTextEdit::setFamily	(const	QString	&	fontFamily)	[]

fontFamily

family()setCurrentFont()

void	QTextEdit::setItalic	(bool	b)	[]

b

italic()

void	QTextEdit::setLinkUnderline	(bool)	[]

“linkUnderline”

void	QTextEdit::setMimeSourceFactory	(
QMimeSourceFactory	*	factory)	[]

mime	 factoryQMimeSourceFactory

mimeSourceFactory()

void	QTextEdit::setModified	(bool	m)	[]

m“modified”

void	QTextEdit::setOverwriteMode	(bool	b)	[]

b“overwriteMode”

void	QTextEdit::setPaper	(const	QBrush	&	pap)	[]

pap“paper”

void	QTextEdit::setParagraphBackgroundColor	(int	para,
const	QColor	&	bg)	[]

parabg

void	QTextEdit::setPointSize	(int	s)	[]

s

s0

pointSize(),	setCurrentFont()setFamily()

void	QTextEdit::setReadOnly	(bool	b)	[]

b“readOnly”

void	QTextEdit::setSelection	(int	paraFrom,	int	indexFrom,
int	paraTo,	int	indexTo,	int	selNum	=	0)	[]

paraFromindexFrom paraToindexToidselNumidselNum

selNum selNum0

selNum0

getSelection()selectedText

void	QTextEdit::setSelectionAttributes	(int	selNum,
const	QColor	&	back,	bool	invertText)	[]

selNumbackinvertText

selNum	>	0 selNum	==	0 colorGroup()

void	QTextEdit::setStyleSheet	(QStyleSheet	*	styleSheet)	[]

styleSheetsetText()append()

styleSheet()

void	QTextEdit::setTabStopWidth	(int	ts)	[]

tab	stopts “tabStopWidth”

void	QTextEdit::setText	(const	QString	&	txt)	[]

txt“text”

void	QTextEdit::setText	(const	QString	&	text,
const	QString	&	context)	[]

txtcontext

text textFormat() AutoTexttext

contextQMimeSourceFactory QTextEdit::QTextEdit()
mimeSourceFactory()

/

texttextFormat

void	QTextEdit::setTextFormat	(TextFormat	f)	[]

f“textFormat”

void	QTextEdit::setUnderline	(bool	b)	[]

b

underline()

void	QTextEdit::setUndoDepth	(int	d)	[]

d“undoDepth”

void	QTextEdit::setUndoRedoEnabled	(bool	b)	[]

/ b“undoRedoEnabled”

void	QTextEdit::setVerticalAlignment	(VerticalAlignment	a)	[
]

a

color()paper

void	QTextEdit::setWordWrap	(WordWrap	mode)	[]

mode“wordWrap”

void	QTextEdit::setWrapColumnOrWidth	(int)	[]

“wrapColumnOrWidth”

void	QTextEdit::setWrapPolicy	(WrapPolicy	policy)	[]

policy“wrapPolicy”

QStyleSheet	*	QTextEdit::styleSheet	()	const

QStyleSheet

setStyleSheet()

helpviewer/helpwindow.cpp

int	QTextEdit::tabStopWidth	()	const

tab	stop “tabStopWidth”

QString	QTextEdit::text	()	const

“text”

QString	QTextEdit::text	(int	para)	const

para

textFormat()RichTextHTML

void	QTextEdit::textChanged	()	[]

textappend()

helpviewer/helpwindow.cppqwerty/qwerty.cpprot13/rot13.cpp

QTextCursor	*	QTextEdit::textCursor	()	const	[]

	QTextCursor

TextFormat	QTextEdit::textFormat	()	const

“textFormat”

bool	QTextEdit::underline	()	const

setUnderline()

void	QTextEdit::undo	()	[]

/

undoAvailable(),	redo()undoDepth

void	QTextEdit::undoAvailable	(bool	yes)	[]

yes undo()undoAvailable(FALSE)

undo()undoDepth

int	QTextEdit::undoDepth	()	const

“undoDepth”

WordWrap	QTextEdit::wordWrap	()	const

“wordWrap”

int	QTextEdit::wrapColumnOrWidth	()	const

“wrapColumnOrWidth”

WrapPolicy	QTextEdit::wrapPolicy	()	const

“wrapPolicy”

void	QTextEdit::zoomIn	(int	range)	[]

range

zoomOut()

void	QTextEdit::zoomIn	()	[]

1

zoomOut()

void	QTextEdit::zoomOut	(int	range)	[]

range

zoomIn()

void	QTextEdit::zoomOut	()	[]

1

zoomIn()

void	QTextEdit::zoomTo	(int	size)	[]

size

QString	documentTitle

PlainText RichText <title>

documentTitle()

bool	hasSelectedText

0

hasSelectedText()

int	length

length()

bool	linkUnderline

setLinkUnderline()linkUnderline()

bool	modified

setModified()isModified()

bool	overwriteMode

setOverwriteMode()isOverwriteMode()

QBrush	paper

setPaper()paper()

bool	readOnly

setReadOnly()isReadOnly()

QString	selectedText

00

PlainTextQtHTML

hasSelectedText

selectedText()

int	tabStopWidth

tab	stop

setTabStopWidth()tabStopWidth()

QString	text

textFormat() AutoText

QTextEdit text() QString

textFormat

setText()text()

TextFormat	textFormat

PlainText	-	
RichText	-	 QStyleSheet::defaultSheet()
AutoText	-	 PlainTextRichText

setTextFormat()textFormat()

int	undoDepth

/100

undo()redo()

setUndoDepth()undoDepth()

bool	undoRedoEnabled

/

setUndoRedoEnabled()isUndoRedoEnabled()

WordWrap	wordWrap

WidgetWidth setWrapPolicy() FixedPixelWidth
FixedColumnWidthsetWrapColumnOrWidth()

WordWrapwrapColumnOrWidthwrapPolicy

setWordWrap()wordWrap()

int	wrapColumnOrWidth

FixedPixelWidth FixedColumnWidth

wordWrap

setWrapColumnOrWidth()wrapColumnOrWidth()

WrapPolicy	wrapPolicy

NoWrap AtWhiteSpace Anywhere

wordWrap

setWrapPolicy()wrapPolicy()

Qt		©	1995-2002	 Trolltech

http://www.trolltech.com/

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QAsciiDict	Class	Reference
The	QAsciiDict	class	is	a	template	class	that	provides	a	dictionary	based	on
char*	keys.	More...

#include	<qasciidict.h>

Inherits	QPtrCollection.

List	of	all	member	functions.

Public	Members

QAsciiDict	(int	size	=	17,	bool	caseSensitive	=	TRUE,	bool	copyKeys	=
TRUE)
QAsciiDict	(const	QAsciiDict<type>	&	dict)
~QAsciiDict	()
QAsciiDict<type>	&	operator=	(const	QAsciiDict<type>	&	dict)
virtual	uint	count	()	const
uint	size	()	const
bool	isEmpty	()	const
void	insert	(const	char	*	key,	const	type	*	item)
void	replace	(const	char	*	key,	const	type	*	item)
bool	remove	(const	char	*	key)
type	*	take	(const	char	*	key)
type	*	find	(const	char	*	key)	const
type	*	operator[]	(const	char	*	key)	const
virtual	void	clear	()
void	resize	(uint	newsize)
void	statistics	()	const

Important	Inherited	Members

bool	autoDelete	()	const
void	setAutoDelete	(bool	enable)

Protected	Members

virtual	QDataStream	&	read	(QDataStream	&	s,
QPtrCollection::Item	&	item)
virtual	QDataStream	&	write	(QDataStream	&	s,	QPtrCollection::Item)
const

Detailed	Description

The	QAsciiDict	class	is	a	template	class	that	provides	a	dictionary	based	on
char*	keys.

QAsciiDict	is	implemented	as	a	template	class.	Define	a	template	instance
QAsciiDict<X>	to	create	a	dictionary	that	operates	on	pointers	to	X	(X*).

A	dictionary	is	a	collection	of	key-value	pairs.	The	key	is	a	char*	used	for
insertion,	removal	and	lookup.	The	value	is	a	pointer.	Dictionaries	provide	very
fast	insertion	and	lookup.

QAsciiDict	cannot	handle	Unicode	keys;	use	the	QDict	template	instead,	which
uses	QString	keys.	A	QDict	has	the	same	performace	as	a	QAsciiDict.

Example:

				QAsciiDict<QLineEdit>	fields;

				fields.insert("forename",	new	QLineEdit(this));

				fields.insert("surname",	new	QLineEdit(this));

				fields["forename"]->setText("Homer");

				fields["surname"]->setText("Simpson");

				QAsciiDictIterator<QLineEdit>	it(fields);	//	See	QAsciiDictIterator

				for(;	it.current();	++it)

								cout	<<	it.currentKey()	<<	":	"	<<	it.current()->text()	<<	endl;

				cout	<<	endl;

				if	(fields["forename"]	&&	fields["surname"])

								cout	<<	fields["forename"]->text()	<<	"	"	

												<<	fields["surname"]->text()	<<	endl;		//	Prints	"Homer	Simpson"

				fields.remove("forename");	//	Does	not	delete	the	line	edit

				if	(!	fields["forename"])

								cout	<<	"forename	is	not	in	the	dictionary"	<<	endl;

				

In	this	example	we	use	a	dictionary	to	keep	track	of	the	line	edits	we're	using.
We	insert	each	line	edit	into	the	dictionary	with	a	unique	name	and	then	access
the	line	edits	via	the	dictionary.	See	QPtrDict,	QIntDict	and	QDict.

See	QDict	for	full	details,	including	the	choice	of	dictionary	size,	and	how

deletions	are	handled.

See	also	QAsciiDictIterator,	QDict,	QIntDict,	QPtrDict,	Collection	Classes,
Collection	Classes	and	Non-GUI	Classes.

Member	Function	Documentation

QAsciiDict::QAsciiDict	(int	size	=	17,	bool	caseSensitive	=	TRUE,
bool	copyKeys	=	TRUE)

Constructs	a	dictionary	optimized	for	less	than	size	entries.

We	recommend	setting	size	to	a	suitably	large	prime	number	(a	bit	larger	than
the	expected	number	of	entries).	This	makes	the	hash	distribution	better	and
hence	the	lookup	faster.

When	caseSensitive	is	TRUE	(the	default)	QAsciiDict	treats	"abc"	and	"Abc"	as
different	keys;	when	it	is	FALSE	"abc"	and	"Abc"	are	the	same.	Case-insensitive
comparison	includes	only	the	26	letters	in	US-ASCII.

If	copyKeys	is	TRUE	(the	default),	the	dictionary	copies	keys	using	strcpy;	if	it
is	FALSE,	the	dictionary	just	copies	the	pointers.

QAsciiDict::QAsciiDict	(const	QAsciiDict<type>	&	dict)

Constructs	a	copy	of	dict.

Each	item	in	dict	is	inserted	into	this	dictionary.	Only	the	pointers	are	copied
(shallow	copy).

QAsciiDict::~QAsciiDict	()

Removes	all	items	from	the	dictionary	and	destroys	it.

The	items	are	deleted	if	auto-delete	is	enabled.

All	iterators	that	access	this	dictionary	will	be	reset.

See	also	setAutoDelete().

bool	QPtrCollection::autoDelete	()	const

Returns	the	setting	of	the	auto-delete	option.	The	default	is	FALSE.

See	also	setAutoDelete().

void	QAsciiDict::clear	()	[virtual]

Removes	all	items	from	the	dictionary.

The	removed	items	are	deleted	if	auto-deletion	is	enabled.

All	dictionary	iterators	that	operate	on	dictionary	are	reset.

See	also	remove(),	take()	and	setAutoDelete().

Reimplemented	from	QPtrCollection.

uint	QAsciiDict::count	()	const	[virtual]

Returns	the	number	of	items	in	the	dictionary.

See	also	isEmpty().

Reimplemented	from	QPtrCollection.

type	*	QAsciiDict::find	(const	char	*	key)	const

Returns	the	item	associated	with	key,	or	null	if	the	key	does	not	exist	in	the
dictionary.

This	function	uses	an	internal	hashing	algorithm	to	optimize	lookup.

If	there	are	two	or	more	items	with	equal	keys,	then	the	item	that	was	most
recently	inserted	will	be	found.

Equivalent	to	the	[]	operator.

Warning:	Your	application	will	crash	if	you	call	find()	on	an	empty	dictionary;
you	can	check	with	isEmpty()	or	count().	We	don't	perform	this	check	for
efficiency	reasons.

See	also	operator[]().

void	QAsciiDict::insert	(const	char	*	key,	const	type	*	item)

Inserts	the	key	with	the	item	into	the	dictionary.

The	key	does	not	have	to	be	a	unique	dictionary	key.	If	multiple	items	are
inserted	with	the	same	key,	only	the	last	item	will	be	visible.

Null	items	are	not	allowed.

See	also	replace().

bool	QAsciiDict::isEmpty	()	const

Returns	TRUE	if	the	dictionary	is	empty,	i.e.	count()	==	0;	otherwise	it	returns
FALSE.

See	also	count().

QAsciiDict<type>	&	QAsciiDict::operator=	(
const	QAsciiDict<type>	&	dict)

Assigns	dict	to	this	dictionary	and	returns	a	reference	to	this	dictionary.

This	dictionary	is	first	cleared	and	then	each	item	in	dict	is	inserted	into	this
dictionary.	Only	the	pointers	are	copied	(shallow	copy)	unless	newItem()	has
been	reimplemented().

type	*	QAsciiDict::operator[]	(const	char	*	key)	const

Returns	the	item	associated	with	key,	or	null	if	the	key	does	not	exist	in	the
dictionary.

This	function	uses	an	internal	hashing	algorithm	to	optimize	lookup.

If	there	are	two	or	more	items	with	equal	keys,	then	the	item	that	was	most
recently	inserted	will	be	found.

Equivalent	to	the	find()	function.

Warning:	Your	application	will	crash	if	you	call	find()	on	an	empty	dictionary;
you	can	check	with	isEmpty()	or	count().	We	don't	perform	this	check	for
efficiency	reasons.

See	also	find().

QDataStream	&	QAsciiDict::read	(QDataStream	&	s,
QPtrCollection::Item	&	item)	[virtual	protected]

Reads	a	dictionary	item	from	the	stream	s	and	returns	a	reference	to	the	stream.

The	default	implementation	sets	item	to	0.

See	also	write().

bool	QAsciiDict::remove	(const	char	*	key)

Removes	the	item	associated	with	key	from	the	dictionary.	Returns	TRUE	if
successful,	or	FALSE	if	the	key	does	not	exist	in	the	dictionary.

If	there	are	two	or	more	items	with	equal	keys,	then	the	last	inserted	of	these	will
be	removed.

The	removed	item	is	deleted	if	auto-deletion	is	enabled.

All	dictionary	iterators	that	refer	to	the	removed	item	will	be	set	to	point	to	the
next	item	in	the	dictionary	traversal	order.

See	also	take(),	clear()	and	setAutoDelete().

void	QAsciiDict::replace	(const	char	*	key,	const	type	*	item)

Replaces	an	item	that	has	a	key	equal	to	key	with	item.

If	the	item	does	not	already	exist,	it	will	be	inserted.

Null	items	are	not	allowed.

Equivalent	to:

				QAsciiDict<char>	dict;

								...

				if	(dict.find(key))

								dict.remove(key);

				dict.insert(key,	item);

		

If	there	are	two	or	more	items	with	equal	keys,	then	the	last	inserted	of	these	will
be	replaced.

See	also	insert().

void	QAsciiDict::resize	(uint	newsize)

Changes	the	size	of	the	hashtable	to	newsize.	The	contents	of	the	dictionary	are
preserved	but	all	iterators	on	the	dictionary	become	invalid.

void	QPtrCollection::setAutoDelete	(bool	enable)

Sets	the	collection	to	auto-delete	its	contents	if	enable	is	TRUE	and	to	never
delete	them	if	enable	is	FALSE.

If	auto-deleting	is	turned	on,	all	the	items	in	a	collection	are	deleted	when	the
collection	itself	is	deleted.	This	is	convenient	if	the	collection	has	the	only
pointer	to	the	items.

The	default	setting	is	FALSE,	for	safety.	If	you	turn	it	on,	be	careful	about
copying	the	collection	-	you	might	find	yourself	with	two	collections	deleting	the
same	items.

Note	that	the	auto-delete	setting	may	also	affect	other	functions	in	subclasses.
For	example,	a	subclass	that	has	a	remove()	function	will	remove	the	item	from
its	data	structure,	and	if	auto-delete	is	enabled,	will	also	delete	the	item.

See	also	autoDelete().

Examples:	grapher/grapher.cpp,	scribble/scribble.cpp	and
table/bigtable/main.cpp.

uint	QAsciiDict::size	()	const

Returns	the	size	of	the	internal	hash	array	(as	specified	in	the	constructor).

See	also	count().

void	QAsciiDict::statistics	()	const

Debugging-only	function	that	prints	out	the	dictionary	distribution	using
qDebug().

type	*	QAsciiDict::take	(const	char	*	key)

Takes	the	item	associated	with	key	out	of	the	dictionary	without	deleting	it	(even
if	auto-deletion	is	enabled).

If	there	are	two	or	more	items	with	equal	keys,	then	the	last	inserted	of	these	will
be	taken.

Returns	a	pointer	to	the	item	taken	out,	or	null	if	the	key	does	not	exist	in	the
dictionary.

All	dictionary	iterators	that	refer	to	the	taken	item	will	be	set	to	point	to	the	next
item	in	the	dictionary	traversal	order.

See	also	remove(),	clear()	and	setAutoDelete().

QDataStream	&	QAsciiDict::write	(QDataStream	&	s,
QPtrCollection::Item)	const	[virtual	protected]

Writes	a	dictionary	item	to	the	stream	s	and	returns	a	reference	to	the	stream.

See	also	read().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

http://www.trolltech.com/

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QDomEntity	Class	Reference
[XML	module]

The	QDomEntity	class	represents	an	XML	entity.	More...

#include	<qdom.h>

Inherits	QDomNode.

List	of	all	member	functions.

Public	Members

QDomEntity	()
QDomEntity	(const	QDomEntity	&	x)
QDomEntity	&	operator=	(const	QDomEntity	&	x)
~QDomEntity	()
virtual	QString	publicId	()	const
virtual	QString	systemId	()	const
virtual	QString	notationName	()	const
virtual	QDomNode::NodeType	nodeType	()	const
virtual	bool	isEntity	()	const

Detailed	Description

The	QDomEntity	class	represents	an	XML	entity.

This	class	represents	an	entity	in	an	XML	document,	either	parsed	or	unparsed.
Note	that	this	models	the	entity	itself	not	the	entity	declaration.

DOM	does	not	support	editing	entity	nodes;	if	a	user	wants	to	make	changes	to
the	contents	of	an	entity,	every	related	QDomEntityReference	node	has	to	be
replaced	in	the	DOM	tree	by	a	clone	of	the	entity's	contents,	and	then	the	desired
changes	must	be	made	to	each	of	the	clones	instead.	All	the	descendants	of	an
entity	node	are	read-only.

An	entity	node	does	not	have	any	parent.

You	can	access	the	entity's	publicId(),	systemId()	and	notationName()	when
available.

For	further	information	about	the	Document	Object	Model	see
http://www.w3.org/TR/REC-DOM-Level-1/	and	http://www.w3.org/TR/DOM-
Level-2-Core/.	For	a	more	general	introduction	of	the	DOM	implementation	see
the	QDomDocument	documentation.

See	also	XML.

http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/DOM-Level-2-Core/

Member	Function	Documentation

QDomEntity::QDomEntity	()

Constructs	an	empty	entity.

QDomEntity::QDomEntity	(const	QDomEntity	&	x)

Constructs	a	copy	of	x.

The	data	of	the	copy	is	shared	(shallow	copy):	modifying	one	node	will	also
change	the	other.	If	you	want	to	make	a	deep	copy,	use	cloneNode().

QDomEntity::~QDomEntity	()

Destroys	the	object	and	frees	its	resources.

bool	QDomEntity::isEntity	()	const	[virtual]

Returns	TRUE.

Reimplemented	from	QDomNode.

QDomNode::NodeType	QDomEntity::nodeType	()	const
[virtual]

Returns	EntityNode.

Reimplemented	from	QDomNode.

QString	QDomEntity::notationName	()	const	[virtual]

For	unparsed	entities	this	function	returns	the	name	of	the	notation	for	the	entity.
For	parsed	entities	this	function	returns	QString::null.

QDomEntity	&	QDomEntity::operator=	(const	QDomEntity	&	x

)

Assigns	x	to	this	DOM	entity.

The	data	of	the	copy	is	shared	(shallow	copy):	modifying	one	node	will	also
change	the	other.	If	you	want	to	make	a	deep	copy,	use	cloneNode().

QString	QDomEntity::publicId	()	const	[virtual]

Returns	the	public	identifier	associated	with	this	entity.	If	the	public	identifier
was	not	specified	QString::null	is	returned.

QString	QDomEntity::systemId	()	const	[virtual]

Returns	the	system	identifier	associated	with	this	entity.	If	the	system	identifier
was	not	specified	QString::null	is	returned.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QIntValidator
QIntValidator	 ……

#include	<qvalidator.h>

QValidator

QIntValidator	(QObject	*	parent,	const	char	*	name	=	0)
QIntValidator	(int	minimum,	int	maximum,	QObject	*	parent,
const	char	*	name	=	0)
~QIntValidator	()
virtual	QValidator::State	validate	(QString	&	input,	int	&)	const
void	setBottom	(int)
void	setTop	(int)
virtual	void	setRange	(int	minimum,	int	maximum)
int	bottom	()	const
int	top	()	const

int	bottom	-	
int	top	-	

QIntValidator

validate()AcceptableIntermediateInvalidAcceptable Intermediate
Invalid

				QIntValidator	v(0,	100,	this);

				QLineEdit*	edit	=	new	QLineEdit(this);

				//	0100

				edit->setValidator(&v);

		

				QString	s;

				QIntValidator	v(0,	100,	this);

				s	=	"10";

				v.validate(s,	0);	//	Acceptable

				s	=	"35";

				v.validate(s,	0);	//	Acceptable

				s	=	"105";

				v.validate(s,	0);	//	Intermediate

				s	=	"-763";

				v.validate(s,	0);	//	Invalid

				s	=	"abc";

				v.validate(s,	0);	//	Invalid

				s	=	"12v";

				v.validate(s,	0);	//	Invalid

		

setRange()setBottom()setTop()

QDoubleValidatorQRegExpValidator

QIntValidator::QIntValidator	(QObject	*	parent,
const	char	*	name	=	0)

parentname

QIntValidator::QIntValidator	(int	minimum,	int	maximum,
QObject	*	parent,	const	char	*	name	=	0)

minimummaximum parentname

QIntValidator::~QIntValidator	()

int	QIntValidator::bottom	()	const

“bottom”

void	QIntValidator::setBottom	(int)

“bottom”

void	QIntValidator::setRange	(int	minimum,	int	maximum)	[]

minimummaximum

void	QIntValidator::setTop	(int)

“top”

int	QIntValidator::top	()	const

“top”

QValidator::State	QIntValidator::validate	(QString	&	input,	int
&)	const	[]

input Acceptableinput Intermediateinput Invalid

				s	=	"35";

				v.validate(s,	0);	//	Acceptable

				s	=	"105";

				v.validate(s,	0);	//	Intermediate

				s	=	"abc";

				v.validate(s,	0);	//	Invalid

		

QValidator

int	bottom

setBottom()bottom()

setRange()

int	top

setTop()top()

setRange()

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QTextEncoder	Class	Reference
The	QTextEncoder	class	provides	a	state-based	encoder.	More...

#include	<qtextcodec.h>

List	of	all	member	functions.

Public	Members

virtual	~QTextEncoder	()
virtual	QCString	fromUnicode	(const	QString	&	uc,	int	&	lenInOut)	=	0

Detailed	Description

The	QTextEncoder	class	provides	a	state-based	encoder.

The	encoder	converts	Unicode	into	another	format,	remembering	any	state	that	is
required	between	calls.

See	also	QTextCodec::makeEncoder()	and	Internationalization	with	Qt.

Member	Function	Documentation

QTextEncoder::~QTextEncoder	()	[virtual]

Destroys	the	encoder.

QCString	QTextEncoder::fromUnicode	(const	QString	&	uc,
int	&	lenInOut)	[pure	virtual]

Converts	lenInOut	characters	(not	bytes)	from	uc,	producing	a	QCString.
lenInOut	will	be	set	to	the	length	of	the	result	(in	bytes).

The	encoder	is	free	to	record	state	to	use	when	subsequent	calls	are	made	to	this
function	(for	example,	it	might	change	modes	with	escape	sequences	if	needed
during	the	encoding	of	one	string,	then	assume	that	mode	applies	when	a
subsequent	call	begins).

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QAsciiDictIterator	Class	Reference
The	QAsciiDictIterator	class	provides	an	iterator	for	QAsciiDict	collections.
More...

#include	<qasciidict.h>

List	of	all	member	functions.

Public	Members

QAsciiDictIterator	(const	QAsciiDict<type>	&	dict)
~QAsciiDictIterator	()
uint	count	()	const
bool	isEmpty	()	const
type	*	toFirst	()
operator	type	*	()	const
type	*	current	()	const
const	char	*	currentKey	()	const
type	*	operator()	()
type	*	operator++	()
type	*	operator+=	(uint	jump)

Detailed	Description

The	QAsciiDictIterator	class	provides	an	iterator	for	QAsciiDict	collections.

QAsciiDictIterator	is	implemented	as	a	template	class.	Define	a	template
instance	QAsciiDictIterator<X>	to	create	a	dictionary	iterator	that	operates	on
QAsciiDict<X>	(dictionary	of	X*).

Example:

				QAsciiDict<QLineEdit>	fields;

				fields.insert("forename",	new	QLineEdit(this));

				fields.insert("surname",	new	QLineEdit(this));

				fields.insert("age",	new	QLineEdit(this));

				fields["forename"]->setText("Homer");

				fields["surname"]->setText("Simpson");

				fields["age"]->setText("45");

				QAsciiDictIterator<QLineEdit>	it(fields);

				for(;	it.current();	++it)

								cout	<<	it.currentKey()	<<	":	"	<<	it.current()->text()	<<	endl;

				cout	<<	endl;

				//	Output	(random	order):

				//		age:	45

				//		surname:	Simpson

				//		forename:	Homer

		

In	the	example	we	insert	some	line	edits	into	a	dictionary,	then	iterate	over	the
dictionary	printing	the	strings	associated	with	those	line	edits.

Note	that	the	traversal	order	is	arbitrary;	you	are	not	guaranteed	any	particular
order.

Multiple	iterators	may	independently	traverse	the	same	dictionary.	A	QAsciiDict
knows	about	all	the	iterators	that	are	operating	on	the	dictionary.	When	an	item
is	removed	from	the	dictionary,	QAsciiDict	updates	all	the	iterators	that	are
referring	the	removed	item	to	point	to	the	next	item	in	the	(arbitrary)	traversal
order.

See	also	QAsciiDict,	Collection	Classes	and	Non-GUI	Classes.

Member	Function	Documentation

QAsciiDictIterator::QAsciiDictIterator	(
const	QAsciiDict<type>	&	dict)

Constructs	an	iterator	for	dict.	The	current	iterator	item	is	set	to	point	on	the	first
item	in	the	dict.

QAsciiDictIterator::~QAsciiDictIterator	()

Destroys	the	iterator.

uint	QAsciiDictIterator::count	()	const

Returns	the	number	of	items	in	the	dictionary	this	iterator	operates	over.

See	also	isEmpty().

type	*	QAsciiDictIterator::current	()	const

Returns	a	pointer	to	the	current	iterator	item.

const	char	*	QAsciiDictIterator::currentKey	()	const

Returns	a	pointer	to	the	key	for	the	current	iterator	item.

bool	QAsciiDictIterator::isEmpty	()	const

Returns	TRUE	if	the	dictionary	is	empty,	i.e.	count()	==	0,	otherwise	returns
FALSE.

See	also	count().

QAsciiDictIterator::operator	type	*	()	const

Cast	operator.	Returns	a	pointer	to	the	current	iterator	item.	Same	as	current().

type	*	QAsciiDictIterator::operator()	()

Makes	the	succeeding	item	current	and	returns	the	original	current	item.

If	the	current	iterator	item	was	the	last	item	in	the	dictionary	or	if	it	was	null,
null	is	returned.

type	*	QAsciiDictIterator::operator++	()

Prefix	++	makes	the	succeeding	item	current	and	returns	the	new	current	item.

If	the	current	iterator	item	was	the	last	item	in	the	dictionary	or	if	it	was	null,
null	is	returned.

type	*	QAsciiDictIterator::operator+=	(uint	jump)

Sets	the	current	item	to	the	item	jump	positions	after	the	current	item,	and
returns	a	pointer	to	that	item.

If	that	item	is	beyond	the	last	item	or	if	the	dictionary	is	empty,	it	sets	the	current
item	to	null	and	returns	null.

type	*	QAsciiDictIterator::toFirst	()

Sets	the	current	iterator	item	to	point	to	the	first	item	in	the	dictionary	and
returns	a	pointer	to	the	item.	If	the	dictionary	is	empty	it	sets	the	current	item	to
null	and	returns	null.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QDomEntityReference	Class
Reference

[XML	module]
The	QDomEntityReference	class	represents	an	XML	entity	reference.	More...

#include	<qdom.h>

Inherits	QDomNode.

List	of	all	member	functions.

Public	Members

QDomEntityReference	()
QDomEntityReference	(const	QDomEntityReference	&	x)
QDomEntityReference	&	operator=	(const	QDomEntityReference	&	x)
~QDomEntityReference	()
virtual	QDomNode::NodeType	nodeType	()	const
virtual	bool	isEntityReference	()	const

Detailed	Description

The	QDomEntityReference	class	represents	an	XML	entity	reference.

A	QDomEntityReference	object	may	be	inserted	into	the	DOM	tree	when	an
entity	reference	is	in	the	source	document,	or	when	the	user	wishes	to	insert	an
entity	reference.

Note	that	character	references	and	references	to	predefined	entities	are	expanded
by	the	XML	processor	so	that	characters	are	represented	by	their	Unicode
equivalent	rather	than	by	an	entity	reference.

Moreover,	the	XML	processor	may	completely	expand	references	to	entities
while	building	the	DOM	tree,	instead	of	providing	QDomEntityReference
objects.

If	it	does	provide	such	objects,	then	for	a	given	entity	reference	node,	it	may	be
that	there	is	no	entity	node	representing	the	referenced	entity;	but	if	such	an
entity	exists,	then	the	child	list	of	the	entity	reference	node	is	the	same	as	that	of
the	entity	node.	As	with	the	entity	node,	all	descendants	of	the	entity	reference
are	read-only.

For	further	information	about	the	Document	Object	Model	see
http://www.w3.org/TR/REC-DOM-Level-1/	and	http://www.w3.org/TR/DOM-
Level-2-Core/.	For	a	more	general	introduction	of	the	DOM	implementation	see
the	QDomDocument	documentation.

See	also	XML.

http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/DOM-Level-2-Core/

Member	Function	Documentation

QDomEntityReference::QDomEntityReference	()

Constructs	an	empty	entity	reference.	Use
QDomDocument::createEntityReference()	to	create	a	entity	reference	with
content.

QDomEntityReference::QDomEntityReference	(
const	QDomEntityReference	&	x)

Constructs	a	copy	of	x.

The	data	of	the	copy	is	shared	(shallow	copy):	modifying	one	node	will	also
change	the	other.	If	you	want	to	make	a	deep	copy,	use	cloneNode().

QDomEntityReference::~QDomEntityReference	()

Destroys	the	object	and	frees	its	resources.

bool	QDomEntityReference::isEntityReference	()	const	[virtual]

Returns	TRUE.

Reimplemented	from	QDomNode.

QDomNode::NodeType	QDomEntityReference::nodeType	()	const
[virtual]

Returns	EntityReference.

Reimplemented	from	QDomNode.

QDomEntityReference	&	QDomEntityReference::operator=	(
const	QDomEntityReference	&	x)

Assigns	x	to	this	entity	reference.

The	data	of	the	copy	is	shared	(shallow	copy):	modifying	one	node	will	also
change	the	other.	If	you	want	to	make	a	deep	copy,	use	cloneNode().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QIODevice
QIODevice/	 ……

#include	<qiodevice.h>

QBufferQFileQSocketQSocketDevice

typedef	off_t	Offset
QIODevice	()
virtual	~QIODevice	()
int	flags	()	const
int	mode	()	const
int	state	()	const
bool	isDirectAccess	()	const
bool	isSequentialAccess	()	const
bool	isCombinedAccess	()	const
bool	isBuffered	()	const
bool	isRaw	()	const
bool	isSynchronous	()	const
bool	isAsynchronous	()	const
bool	isTranslated	()	const
bool	isReadable	()	const
bool	isWritable	()	const
bool	isReadWrite	()	const
bool	isInactive	()	const
bool	isOpen	()	const
int	status	()	const
void	resetStatus	()
virtual	bool	open	(int	mode)	=	0
virtual	void	close	()	=	0
virtual	void	flush	()	=	0
virtual	Offset	size	()	const	=	0
virtual	Offset	at	()	const
virtual	bool	at	(Offset	pos)
virtual	bool	atEnd	()	const
bool	reset	()
virtual	Q_LONG	readBlock	(char	*	data,	Q_ULONG	maxlen)	=	0
virtual	Q_LONG	writeBlock	(const	char	*	data,	Q_ULONG	len)	=	0
virtual	Q_LONG	readLine	(char	*	data,	Q_ULONG	maxlen)
Q_LONG	writeBlock	(const	QByteArray	&	data)
virtual	QByteArray	readAll	()
virtual	int	getch	()	=	0

virtual	int	putch	(int	ch)	=	0
virtual	int	ungetch	(int	ch)	=	0

QIODevice/

//QIODevice

QIODeviceQIODevice
QDataStream

QIODevice

open()	/open()

close()	

readBlock()	

writeBlock()	

readLine()	reads	a	line	(of	text,	usually)	from	the	device.

flush()	

getch()	

ungetch()	getch()

putch()	

size()	

at()	/

atEnd()	

reset()	/

“”QIODevicesetState()

	/QIODevice
isCombinedAccess()/

	/

	HTTP

/	/QIODevice/

	 isReadable() isWritable()isReadWrite()

open() isOpen()

QIODevice

				class	MyDevice	:	public	QIODevice

				{

				public:

								MyDevice();

								~MyDevice();

								bool	open(int	mode);

								void	close();

								void	flush();

								uint	size()	const;

								int		at()	const;								//	

								bool	at(int);									//	

								bool	atEnd()	const;					//	

								int	readBlock(char	*data,	uint	maxlen);

								int	writeBlock(const	char	*data,	uint	len);

								int	readLine(char	*data,	uint	maxlen);

								int	getch();

								int	putch(int);

								int	ungetch(int);

				};

		

QDataStreamQTextStream/

QIODevice::Offset

QIODevice::QIODevice	()

/

QIODevice::~QIODevice	()	[]

/

Offset	QIODevice::at	()	const	[]

/

//

size()

QFileQSocket

bool	QIODevice::at	(Offset	pos)	[]

/ pos pos

size()

QFileQSocket

bool	QIODevice::atEnd	()	const	[]

/

QFileQSocket

void	QIODevice::close	()	[]

/

open()

grapher/grapher.cpp

QFileQSocket

int	QIODevice::flags	()	const

/

mode()state()

void	QIODevice::flush	()	[]

/

QFileQSocket

int	QIODevice::getch	()	[]

//

//-1

putch()ungetch()

QFileQSocket

bool	QIODevice::isAsynchronous	()	const

/

isSynchronous()

bool	QIODevice::isBuffered	()	const

/

isRaw()

bool	QIODevice::isCombinedAccess	()	const

/

bool	QIODevice::isDirectAccess	()	const

/

isSequentialAccess()

bool	QIODevice::isInactive	()	const

/0

isOpen()

bool	QIODevice::isOpen	()	const

/

isInactive()

network/networkprotocol/nntp.cpp

bool	QIODevice::isRaw	()	const

/

isBuffered()

bool	QIODevice::isReadWrite	()	const

/ IO_ReadWrite

isReadable()isWritable()

bool	QIODevice::isReadable	()	const

/ IO_ReadOnlyIO_ReadWrite	

isWritable()isReadWrite()

bool	QIODevice::isSequentialAccess	()	const

/

size()at(int)

isDirectAccess()

bool	QIODevice::isSynchronous	()	const

/

isAsynchronous()

bool	QIODevice::isTranslated	()	const

//

QFileIO_Translate

bool	QIODevice::isWritable	()	const

/ IO_WriteOnlyIO_ReadWrite

isReadable()isReadWrite()

int	QIODevice::mode	()	const

open()

IO_ReadOnlyIO_WriteOnlyIO_ReadWriteIO_AppendIO_TruncateIO_Translate

bool	QIODevice::open	(int	mode)	[]

mode/

mode

IO_Raw	
IO_ReadOnly	
IO_WriteOnly	
IO_ReadWrite	/
IO_Append	
IO_Truncate	
IO_Translate	MS-DOSWindowsMacintoshUnix
IO_Raw

close()

grapher/grapher.cpp

QFileQSocket

int	QIODevice::putch	(int	ch)	[]

/ ch

ch-1

getch()ungetch()

grapher/grapher.cpp

QFileQSocket

QByteArray	QIODevice::readAll	()	[]

Q_LONG	QIODevice::readBlock	(char	*	data,
Q_ULONG	maxlen)	[]

/ maxlendata

-1

writeBlock()

QFileQSocketQSocketDevice

Q_LONG	QIODevice::readLine	(char	*	data,	Q_ULONG	maxlen
)	[]

maxlen\0 data

\0-1

readBlock()QTextStream::readLine()

QFile

bool	QIODevice::reset	()

0

at()

void	QIODevice::resetStatus	()

/ IO_Ok

status()

Offset	QIODevice::size	()	const	[]

/

at()

QFileQSocket

int	QIODevice::state	()	const

IO_Open

int	QIODevice::status	()	const

/

/ open()readBlock()writeBlock()-1

IO_Ok	-	
IO_ReadError	-	
IO_WriteError	-	
IO_FatalError	-	
IO_OpenError	-	
IO_ConnectError	-	
IO_AbortError	-	

IO_TimeOutError	-	
IO_UnspecifiedError	-	

resetStatus()

int	QIODevice::ungetch	(int	ch)	[]

ch/

“” getch()

ch-1

getch()putch()

QFileQSocket

Q_LONG	QIODevice::writeBlock	(const	char	*	data,
Q_ULONG	len)	[]

datalen/

-1

readBlock()

QBufferQSocketQSocketDevice

Q_LONG	QIODevice::writeBlock	(const	QByteArray	&	data)

writeBlock(data.data(),	data.size())

Qt		©	1995-2002	 Trolltech

http://www.trolltech.com/

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QTextIStream
QTextIStream	 ……

#include	<qtextstream.h>

QTextStream

QTextIStream	(const	QString	*	s)
QTextIStream	(QByteArray	ba)
QTextIStream	(FILE	*	f)

QTextIStream

modeQTextStream

				QString	data	=	"123	456";

				int	a,	b;

				QTextIStream(&data)	>>	a	>>	b;

QTextOStream/

QTextIStream::QTextIStream	(const	QString	*	s)

s

QTextIStream::QTextIStream	(QByteArray	ba)

ba

QTextIStream::QTextIStream	(FILE	*	f)

f

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QBitArray
QBitArray	 ……

#include	<qbitarray.h>

QByteArray

QBitArray	()
QBitArray	(uint	size)
QBitArray	(const	QBitArray	&	a)
QBitArray	&	operator=	(const	QBitArray	&	a)
uint	size	()	const
bool	resize	(uint	size)
bool	fill	(bool	v,	int	size	=	-1)
virtual	void	detach	()
QBitArray	copy	()	const
bool	testBit	(uint	index)	const
void	setBit	(uint	index)
void	setBit	(uint	index,	bool	value)
void	clearBit	(uint	index)
bool	toggleBit	(uint	index)
bool	at	(uint	index)	const
QBitVal	operator[]	(int	index)
bool	operator[]	(int	index)	const
QBitArray	&	operator&=	(const	QBitArray	&	a)
QBitArray	&	operator|=	(const	QBitArray	&	a)
QBitArray	&	operator^=	(const	QBitArray	&	a)
QBitArray	operator~	()	const

Related	Functions

QBitArray	operator&	(const	QBitArray	&	a1,	const	QBitArray	&	a2)
QBitArray	operator|	(const	QBitArray	&	a1,	const	QBitArray	&	a2)
QBitArray	operator^	(const	QBitArray	&	a1,	const	QBitArray	&	a2)
QDataStream	&	operator<<	(QDataStream	&	s,	const	QBitArray	&	a)
QDataStream	&	operator>>	(QDataStream	&	s,	QBitArray	&	a)

QBitArray

QBitArray QMemArray

QBitArrayANDORXORNOT

setBit()clearBit()[][]setBit()clearBit()

				QBitArray	a(3);

				a.setBit(0);

				a.clearBit(1);

				a.setBit(2);																						//	a	=	[1	0	1]

				QBitArray	b(3);

				b[0]	=	1;

				b[1]	=	1;

				b[2]	=	0;																											//	b	=	[1	1	0]

				QBitArray	c;

				c	=	~a	&	b;																									//	c	=	[0	1	0]

		

QBitArray fill()01 resize()copy()setBit()clearBit()
testBit()at()

QBitArray&AND|OR^XOR~NOT

GUI

QBitArray::QBitArray	()

QBitArray::QBitArray	(uint	size)

size

fill()

QBitArray::QBitArray	(const	QBitArray	&	a)

a

bool	QBitArray::at	(uint	index)	const

index01

operator[]()

void	QBitArray::clearBit	(uint	index)

index0

setBit()toggleBit()

QBitArray	QBitArray::copy	()	const

detach()

void	QBitArray::detach	()	[]

copy()

QMemArray

bool	QBitArray::fill	(bool	v,	int	size	=	-1)

v v1 v0

size fill()size

size

resize()

QBitArray	&	QBitArray::operator&=	(const	QBitArray	&	a)

aAND

AND0

				QBitArray	a(3),	b(2);

				a[0]	=	1;		a[1]	=	0;		a[2]	=	1;					//	a	=	[1	0	1]

				b[0]	=	1;		b[1]	=	0;																//	b	=	[1	0]

				a	&=	b;																													//	a	=	[1	0	0]

		

operator|=() operator^=()operator~()

QBitArray	&	QBitArray::operator=	(const	QBitArray	&	a)

a

QBitVal	QBitArray::operator[]	(int	index)

[]

QBitVal index

				QBitArray	a(3);

				a[0]	=	0;

				a[1]	=	1;

				a[2]	=	a[0]	^	a[1];

		

testBit() setBit()clearBit()

at()

bool	QBitArray::operator[]	(int	index)	const

[]

QBitArray	&	QBitArray::operator^=	(const	QBitArray	&	a)

aXOR

0

				QBitArray	a(3),	b(2);

				a[0]	=	1;		a[1]	=	0;		a[2]	=	1;					//	a	=	[1	0	1]

				b[0]	=	1;		b[1]	=	0;																//	b	=	[1	0]

				a	^=	b;																													//	a	=	[0	0	1]

		

operator&=() operator|=()operator~()

QBitArray	&	QBitArray::operator|=	(const	QBitArray	&	a)

aOR

0

				QBitArray	a(3),	b(2);

				a[0]	=	1;		a[1]	=	0;		a[2]	=	1;					//	a	=	[1	0	1]

				b[0]	=	1;		b[1]	=	0;																//	b	=	[1	0]

				a	|=	b;																													//	a	=	[1	0	1]

		

operator&=() operator^=()operator~()

QBitArray	QBitArray::operator~	()	const

				QBitArray	a(3),	b;

				a[0]	=	1;		a[1]	=	0;	a[2]	=	1;						//	a	=	[1	0	1]

				b	=	~a;																													//	b	=	[0	1	0]

		

bool	QBitArray::resize	(uint	size)

size

0

size()

void	QBitArray::setBit	(uint	index,	bool	value)

indexvalue

				if	(value)

								setBit(index);

				else

								clearBit(index);

		

clearBit()toggleBit()

void	QBitArray::setBit	(uint	index)

index1

clearBit()toggleBit()

uint	QBitArray::size	()	const

resize()

bool	QBitArray::testBit	(uint	index)	const

index1

setBit()clearBit()

bool	QBitArray::toggleBit	(uint	index)

index

0110

setBit()clearBit()

QBitArray	operator&	(const	QBitArray	&	a1,
const	QBitArray	&	a2)

a1a2AND

QBitArray::operator&=()

QDataStream	&	operator<<	(QDataStream	&	s,
const	QBitArray	&	a)

as

QDataStream

QDataStream	&	operator>>	(QDataStream	&	s,	QBitArray	&	a)

sa

QDataStream

QBitArray	operator^	(const	QBitArray	&	a1,
const	QBitArray	&	a2)

a1a2XOR

QBitArray::operator^()

QBitArray	operator|	(const	QBitArray	&	a1,
const	QBitArray	&	a2)

a1a2OR

QBitArray::operator|=()

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QDomImplementation	Class
Reference

[XML	module]
The	QDomImplementation	class	provides	information	about	the	features	of	the
DOM	implementation.	More...

#include	<qdom.h>

List	of	all	member	functions.

Public	Members

QDomImplementation	()
QDomImplementation	(const	QDomImplementation	&	x)
virtual	~QDomImplementation	()
QDomImplementation	&	operator=	(const	QDomImplementation	&	x)
bool	operator==	(const	QDomImplementation	&	x)	const
bool	operator!=	(const	QDomImplementation	&	x)	const
virtual	bool	hasFeature	(const	QString	&	feature,	const	QString	&	version
)
virtual	QDomDocumentType	createDocumentType	(
const	QString	&	qName,	const	QString	&	publicId,
const	QString	&	systemId)
virtual	QDomDocument	createDocument	(const	QString	&	nsURI,
const	QString	&	qName,	const	QDomDocumentType	&	doctype)
bool	isNull	()

Detailed	Description

The	QDomImplementation	class	provides	information	about	the	features	of	the
DOM	implementation.

This	class	describes	the	features	that	are	supported	by	the	DOM	implementation.
Currently	only	the	XML	subset	of	DOM	Level	1	and	DOM	Level	2	Core	are
supported.

Normally	you	will	use	the	function	QDomDocument::implementation()	to	get
the	implementation	object.

You	can	create	a	new	document	type	with	createDocumentType()	and	a	new
document	with	createDocument().

For	further	information	about	the	Document	Object	Model	see
http://www.w3.org/TR/REC-DOM-Level-1/	and	http://www.w3.org/TR/DOM-
Level-2-Core/.	For	a	more	general	introduction	of	the	DOM	implementation	see
the	QDomDocument	documentation.

See	also	hasFeature()	and	XML.

http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/DOM-Level-2-Core/

Member	Function	Documentation

QDomImplementation::QDomImplementation	()

Constructs	a	QDomImplementation	object.

QDomImplementation::QDomImplementation	(
const	QDomImplementation	&	x)

Constructs	a	copy	of	x.

QDomImplementation::~QDomImplementation	()	[virtual]

Destroys	the	object	and	frees	its	resources.

QDomDocument	QDomImplementation::createDocument	(
const	QString	&	nsURI,	const	QString	&	qName,
const	QDomDocumentType	&	doctype)	[virtual]

Creates	a	DOM	document	with	the	document	type	doctype.	This	function	also
adds	a	root	element	node	with	the	qualified	name	qName	and	the	namespace
URI	nsURI.

QDomDocumentType
QDomImplementation::createDocumentType	(
const	QString	&	qName,	const	QString	&	publicId,
const	QString	&	systemId)	[virtual]

Creates	a	document	type	node	for	the	name	qName.

publicId	specifies	the	public	identifier	of	the	external	subset;	If	you	specify
QString::null	as	the	publicId,	this	means	that	the	document	type	has	no	public
identifier.

Similarly,	you	specify	the	system	identifier	of	the	external	subset	with	systemId.
If	you	specify	QString::null	as	the	systemId,	this	means	that	the	document	type

has	no	system	identifier.	Since	you	cannot	have	a	public	identifier	without	a
system	identifier,	the	public	identifier	is	set	to	QString::null	if	there	is	no	system
identifier.

Other	features	of	a	document	type	declaration	are	not	supported	by	DOM	level
2.

The	only	way	you	can	use	a	document	type	that	was	created	this	way,	is	in
combination	with	the	createDocument()	function	to	create	a	QDomDocument
with	this	document	type.

See	also	createDocument().

bool	QDomImplementation::hasFeature	(
const	QString	&	feature,	const	QString	&	version)	[virtual]

The	function	returns	TRUE	if	QDom	implements	the	requested	version	of	a
feature.

Currently	only	the	feature	"XML"	in	version	"1.0"	is	supported.

bool	QDomImplementation::isNull	()

Returns	FALSE	if	the	object	was	created	by	QDomDocument::implementation();
otherwise	returns	TRUE.

bool	QDomImplementation::operator!=	(
const	QDomImplementation	&	x)	const

Returns	TRUE	if	x	and	this	DOM	implementation	object	were	created	from
different	QDomDocuments.

QDomImplementation	&	QDomImplementation::operator=	(
const	QDomImplementation	&	x)

Assigns	x	to	this	DOM	implementation.

bool	QDomImplementation::operator==	(

const	QDomImplementation	&	x)	const

Returns	TRUE	if	x	and	this	DOM	implementation	object	were	created	from	the
same	QDomDocument.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QJisCodec	Class	Reference
The	QJisCodec	class	provides	conversion	to	and	from	JIS	character	sets.	More...

#include	<qjiscodec.h>

Inherits	QTextCodec.

List	of	all	member	functions.

Public	Members

virtual	const	char	*	mimeName	()	const

Detailed	Description

The	QJisCodec	class	provides	conversion	to	and	from	JIS	character	sets.

More	precisely,	the	QJisCodec	class	subclasses	QTextCodec	to	provide	support
for	JIS	X	0201	Latin,	JIS	X	0201	Kana,	JIS	X	0208	and	JIS	X	0212.

The	environment	variable	UNICODEMAP_JP	can	be	used	to	fine-tune
QJisCodec,	QSjisCodec	and	QEucJpCodec.	The	mapping	names	are	as	for	the
Japanese	XML	working	group's	XML	Japanese	Profile,	because	it	names	and
explains	all	the	widely	used	mappings.	Here	are	brief	descriptions,	written	by
Serika	Kurusugawa:

"unicode-0.9"	or	"unicode-0201"	for	Unicode	style.	This	assumes
JISX0201	for	0x00-0x7f.	(0.9	is	a	table	version	of	jisx02xx	mapping	used
for	Uniocde	spec	version	1.1.)

"unicode-ascii"	This	assumes	US-ASCII	for	0x00-0x7f;	some	chars
(JISX0208	0x2140	and	JISX0212	0x2237)	are	different	from	Unicode	1.1
to	avoid	conflict.

"open-19970715-0201"	("open-0201"	for	convenience)	or	"jisx0221-1995"
for	JISX0221-JISX0201	style.	JIS	X	0221	is	JIS	version	of	Unicode,	but	a
few	chars	(0x5c,	0x7e,	0x2140,	0x216f,	0x2131)	are	different	from	Unicode
1.1.	This	is	used	when	0x5c	is	treated	as	YEN	SIGN.

"open-19970715-ascii"	("open-ascii"	for	convenience)	for	JISX0221-ASCII
style.	This	is	used	when	0x5c	is	treated	as	REVERSE	SOLIDUS.

"open-19970715-ms"	("open-ms"	for	convenience)	or	"cp932"	for
Microsoft	Windows	style.	Windows	Code	Page	932.	Some	chars	(0x2140,
0x2141,	0x2142,	0x215d,	0x2171,	0x2172)	are	different	from	Unicode	1.1.

"jdk1.1.7"	for	Sun's	JDK	style.	Same	as	Unicode	1.1,	except	that	JIS
0x2140	is	mapped	to	UFF3C.	Either	ASCII	or	JISX0201	can	be	used	for
0x00-0x7f.

In	addition,	the	extensions	"nec-vdc",	"ibm-vdc"	and	"udc"	are	supported.

http://www.y-adagio.com/public/standards/tr_xml_jpf/toc.htm

For	example,	if	you	want	to	use	Unicode	style	conversion	but	with	NEC's
extension,	set	UNICODEMAP_JP	to	unicode-0.9,	nec-vdc.	(You	will	probably
need	to	quote	that	in	a	shell	command.)

Most	of	the	code	here	was	written	by	Serika	Kurusugawa,	a.k.a.	Junji	Takagi,
and	is	included	in	Qt	with	the	author's	permission	and	the	grateful	thanks	of	the
Trolltech	team.	Here	is	the	copyright	statement	for	that	code:

Copyright	(c)	1999	Serika	Kurusugawa.	All	rights	reserved.

Redistribution	and	use	in	source	and	binary	forms,	with	or	without	modification,
are	permitted	provided	that	the	following	conditions	are	met:

1.	 Redistributions	of	source	code	must	retain	the	above	copyright	notice,	this
list	of	conditions	and	the	following	disclaimer.

2.	 Redistributions	in	binary	form	must	reproduce	the	above	copyright	notice,
this	list	of	conditions	and	the	following	disclaimer	in	the	documentation
and/or	other	materials	provided	with	the	distribution.

THIS	SOFTWARE	IS	PROVIDED	BY	THE	AUTHOR	AND
CONTRIBUTORS	"AS	IS".	ANY	EXPRESS	OR	IMPLIED	WARRANTIES,
INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF
MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE	ARE
DISCLAIMED.	IN	NO	EVENT	SHALL	THE	REGENTS	OR
CONTRIBUTORS	BE	LIABLE	FOR	ANY	DIRECT,	INDIRECT,
INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL
DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,	PROCUREMENT	OF
SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;
OR	BUSINESS	INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY
THEORY	OF	LIABILITY,	WHETHER	IN	CONTRACT,	STRICT	LIABILITY,
OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN
ANY	WAY	OUT	OF	THE	USE	OF	THIS	SOFTWARE,	EVEN	IF	ADVISED
OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

See	also	Internationalization	with	Qt.

Member	Function	Documentation

const	char	*	QJisCodec::mimeName	()	const	[virtual]

Returns	the	codec's	mime	name.

Reimplemented	from	QTextCodec.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QTextOStream
QTextOStream	 ……

#include	<qtextstream.h>

QTextStream

QTextOStream	(QString	*	s)
QTextOStream	(QByteArray	ba)
QTextOStream	(FILE	*	f)

QTextOStream

modeQTextStream

				QString	result;

				QTextOStream(&result)	<<	"pi	=	"	<<	3.14;

See	also	/

QTextOStream::QTextOStream	(QString	*	s)

s

QTextOStream::QTextOStream	(QByteArray	ba)

ba

QTextOStream::QTextOStream	(FILE	*	f)

f

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QBitmap	Class	Reference
The	QBitmap	class	provides	monochrome	(1-bit	depth)	pixmaps.	More...

#include	<qbitmap.h>

Inherits	QPixmap.

List	of	all	member	functions.

Public	Members

QBitmap	()
QBitmap	(int	w,	int	h,	bool	clear	=	FALSE,
QPixmap::Optimization	optimization	=	QPixmap::DefaultOptim)
QBitmap	(const	QSize	&	size,	bool	clear	=	FALSE,
QPixmap::Optimization	optimization	=	QPixmap::DefaultOptim)
QBitmap	(int	w,	int	h,	const	uchar	*	bits,	bool	isXbitmap	=	FALSE)
QBitmap	(const	QSize	&	size,	const	uchar	*	bits,	bool	isXbitmap	=
FALSE)
QBitmap	(const	QBitmap	&	bitmap)
QBitmap	(const	QString	&	fileName,	const	char	*	format	=	0)
QBitmap	&	operator=	(const	QBitmap	&	bitmap)
QBitmap	&	operator=	(const	QPixmap	&	pixmap)
QBitmap	&	operator=	(const	QImage	&	image)
QBitmap	xForm	(const	QWMatrix	&	matrix)	const

Detailed	Description

The	QBitmap	class	provides	monochrome	(1-bit	depth)	pixmaps.

The	QBitmap	class	is	a	monochrome	off-screen	paint	device	used	mainly	for
creating	custom	QCursor	and	QBrush	objects,	in	QPixmap::setMask()	and	for
QRegion.

A	QBitmap	is	a	QPixmap	with	a	depth	of	1.	If	a	pixmap	with	a	depth	greater
than	1	is	assigned	to	a	bitmap,	the	bitmap	will	be	dithered	automatically.	A
QBitmap	is	guaranteed	to	always	have	the	depth	1,	unless	it	is
QPixmap::isNull()	which	has	depth	0.

When	drawing	in	a	QBitmap	(or	QPixmap	with	depth	1),	we	recommend	using
the	QColor	objects	Qt::color0	and	Qt::color1.	Painting	with	color0	sets	the
bitmap	bits	to	0,	and	painting	with	color1	sets	the	bits	to	1.	For	a	bitmap,	0-bits
indicate	background	(or	transparent)	and	1-bits	indicate	foreground	(or	opaque).
Using	the	black	and	white	QColor	objects	make	no	sense	because	the
QColor::pixel()	value	is	not	necessarily	0	for	black	and	1	for	white.

The	QBitmap	can	be	transformed	(translated,	scaled,	sheared	or	rotated)	using
xForm().

Just	like	the	QPixmap	class,	QBitmap	is	optimized	by	the	use	of	implicit
sharing,	so	it	is	very	efficient	to	pass	QBitmap	objects	as	arguments.

See	also	QPixmap,	QPainter::drawPixmap(),	bitBlt(),	Shared	Classes,	Graphics
Classes,	Image	Processing	Classes	and	Implicitly	and	Explicitly	Shared	Classes.

Member	Function	Documentation

QBitmap::QBitmap	()

Constructs	a	null	bitmap.

See	also	QPixmap::isNull().

QBitmap::QBitmap	(int	w,	int	h,	bool	clear	=	FALSE,
QPixmap::Optimization	optimization	=
QPixmap::DefaultOptim)

Constructs	a	bitmap	with	width	w	and	height	h.

The	contents	of	the	bitmap	is	uninitialized	if	clear	is	FALSE;	otherwise	it	is
filled	with	pixel	value	0	(the	QColor	Qt::color0).

The	optional	optimization	argument	specifies	the	optimization	setting	for	the
bitmap.	The	default	optimization	should	be	used	in	most	cases.	Games	and	other
pixmap-intensive	applications	may	benefit	from	setting	this	argument;	see
QPixmap::Optimization.

See	also	QPixmap::setOptimization()	and	QPixmap::setDefaultOptimization().

QBitmap::QBitmap	(const	QSize	&	size,	bool	clear	=	FALSE,
QPixmap::Optimization	optimization	=
QPixmap::DefaultOptim)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Constructs	a	bitmap	with	the	size	size.

The	contents	of	the	bitmap	is	uninitialized	if	clear	is	FALSE;	otherwise	it	is
filled	with	pixel	value	0	(the	QColor	Qt::color0).

The	optional	optimization	argument	specifies	the	optimization	setting	for	the

bitmap.	The	default	optimization	should	be	used	in	most	cases.	Games	and	other
pixmap-intensive	applications	may	benefit	from	setting	this	argument;	see
QPixmap::Optimization.

QBitmap::QBitmap	(int	w,	int	h,	const	uchar	*	bits,
bool	isXbitmap	=	FALSE)

Constructs	a	bitmap	with	width	w	and	height	h	and	sets	the	contents	to	bits.

The	isXbitmap	flag	should	be	TRUE	if	bits	was	generated	by	the	X11	bitmap
program.	The	X	bitmap	bit	order	is	little	endian.	The	QImage	documentation
discusses	bit	order	of	monochrome	images.

Example	(creates	an	arrow	bitmap):

								uchar	arrow_bits[]	=	{	0x3f,	0x1f,	0x0f,	0x1f,	0x3b,	0x71,	0xe0,	0xc0	};

								QBitmap	bm(8,	8,	arrow_bits,	TRUE);

				

QBitmap::QBitmap	(const	QSize	&	size,	const	uchar	*	bits,
bool	isXbitmap	=	FALSE)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Constructs	a	bitmap	with	the	size	size	and	sets	the	contents	to	bits.

The	isXbitmap	flag	should	be	TRUE	if	bits	was	generated	by	the	X11	bitmap
program.	The	X	bitmap	bit	order	is	little	endian.	The	QImage	documentation
discusses	bit	order	of	monochrome	images.

QBitmap::QBitmap	(const	QBitmap	&	bitmap)

Constructs	a	bitmap	that	is	a	copy	of	bitmap.

QBitmap::QBitmap	(const	QString	&	fileName,
const	char	*	format	=	0)

Constructs	a	pixmap	from	the	file	fileName.	If	the	file	does	not	exist	or	is	of	an

unknown	format,	the	bitmap	becomes	a	null	bitmap.

The	parameters	fileName	and	format	are	passed	on	to	QPixmap::load().
Dithering	will	be	performed	if	the	file	format	uses	more	than	1	bit	per	pixel.

See	also	QPixmap::isNull(),	QPixmap::load(),	QPixmap::loadFromData(),
QPixmap::save()	and	QPixmap::imageFormat().

QBitmap	&	QBitmap::operator=	(const	QBitmap	&	bitmap)

Assigns	the	bitmap	bitmap	to	this	bitmap	and	returns	a	reference	to	this	bitmap.

QBitmap	&	QBitmap::operator=	(const	QPixmap	&	pixmap)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Assigns	the	pixmap	pixmap	to	this	bitmap	and	returns	a	reference	to	this	bitmap.

Dithering	will	be	performed	if	the	pixmap	has	a	QPixmap::depth()	greater	than
1.

QBitmap	&	QBitmap::operator=	(const	QImage	&	image)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Converts	the	image	image	to	a	bitmap	and	assigns	the	result	to	this	bitmap.
Returns	a	reference	to	the	bitmap.

Dithering	will	be	performed	if	the	image	has	a	QImage::depth()	greater	than	1.

QBitmap	QBitmap::xForm	(const	QWMatrix	&	matrix)	const

Returns	a	transformed	copy	of	this	bitmap	by	using	matrix.

This	function	does	exactly	the	same	as	QPixmap::xForm(),	except	that	it	returns
a	QBitmap	instead	of	a	QPixmap.

See	also	QPixmap::xForm().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QDomNamedNodeMap	Class
Reference

[XML	module]
The	QDomNamedNodeMap	class	contains	a	collection	of	nodes	that	can	be
accessed	by	name.	More...

#include	<qdom.h>

List	of	all	member	functions.

Public	Members

QDomNamedNodeMap	()
QDomNamedNodeMap	(const	QDomNamedNodeMap	&	n)
QDomNamedNodeMap	&	operator=	(const	QDomNamedNodeMap	&	n)
bool	operator==	(const	QDomNamedNodeMap	&	n)	const
bool	operator!=	(const	QDomNamedNodeMap	&	n)	const
~QDomNamedNodeMap	()
QDomNode	namedItem	(const	QString	&	name)	const
QDomNode	setNamedItem	(const	QDomNode	&	newNode)
QDomNode	removeNamedItem	(const	QString	&	name)
QDomNode	item	(int	index)	const
QDomNode	namedItemNS	(const	QString	&	nsURI,
const	QString	&	localName)	const
QDomNode	setNamedItemNS	(const	QDomNode	&	newNode)
QDomNode	removeNamedItemNS	(const	QString	&	nsURI,
const	QString	&	localName)
uint	length	()	const
uint	count	()	const
bool	contains	(const	QString	&	name)	const

Detailed	Description

The	QDomNamedNodeMap	class	contains	a	collection	of	nodes	that	can	be
accessed	by	name.

Note	that	QDomNamedNodeMap	does	not	inherit	from	QDomNodeList.
QDomNamedNodeMaps	do	not	provide	any	specific	node	ordering.	Although
nodes	in	a	QDomNamedNodeMap	may	be	accessed	by	an	ordinal	index,	this	is
simply	to	allow	a	convenient	enumeration	of	the	contents	of	a
QDomNamedNodeMap,	and	does	not	imply	that	the	DOM	specifies	an	ordering
of	the	nodes.

The	QDomNamedNodeMap	is	used	in	three	places:

QDomDocumentType::entities()	returns	a	map	of	all	entities	described	in
the	DTD.
QDomDocumentType::notations()	returns	a	map	of	all	notations	described
in	the	DTD.
QDomNode::attributes()	returns	a	map	of	all	attributes	of	the	element.

Items	in	the	map	are	identified	by	the	name	which	QDomNode::name()	returns.
Nodes	are	retrieved	using	namedItem(),	namedItemNS()	or	item().	New	nodes
are	inserted	with	setNamedItem()	or	setNamedItem()	and	removed	with
removeNamedItem()	or	removeNamedItemNS().	Use	contains()	to	see	if	an	item
with	the	given	name	is	in	the	named	node	map.	The	number	of	items	is	returned
by	length().

Terminology:	in	this	class	we	use	"item"	and	"node"	interchangeably.

See	also	XML.

Member	Function	Documentation

QDomNamedNodeMap::QDomNamedNodeMap	()

Constructs	an	empty	named	node	map.

QDomNamedNodeMap::QDomNamedNodeMap	(
const	QDomNamedNodeMap	&	n)

Constructs	a	copy	of	n.

QDomNamedNodeMap::~QDomNamedNodeMap	()

Destroys	the	object	and	frees	its	resources.

bool	QDomNamedNodeMap::contains	(const	QString	&	name)
const

Returns	TRUE	if	the	map	contains	a	node	called	name;	otherwise	returns
FALSE.

uint	QDomNamedNodeMap::count	()	const

Returns	the	number	of	nodes	in	the	map.

This	function	is	the	same	as	length().

QDomNode	QDomNamedNodeMap::item	(int	index)	const

Retrieves	the	node	at	position	index.

This	can	be	used	to	iterate	over	the	map.	Note	that	the	nodes	in	the	map	are
ordered	arbitrarily.

See	also	length().

uint	QDomNamedNodeMap::length	()	const

Returns	the	number	of	nodes	in	the	map.

See	also	item().

QDomNode	QDomNamedNodeMap::namedItem	(
const	QString	&	name)	const

Returns	the	node	called	name.

If	the	named	node	map	does	not	contain	such	a	node,	a	null	node	is	returned.	A
node's	name	is	the	name	returned	by	QDomNode::nodeName().

See	also	setNamedItem()	and	namedItemNS().

QDomNode	QDomNamedNodeMap::namedItemNS	(
const	QString	&	nsURI,	const	QString	&	localName)	const

Returns	the	node	associated	with	the	local	name	localName	and	the	namespace
URI	nsURI.

If	the	map	does	not	contain	such	a	node,	a	null	node	is	returned.

See	also	setNamedItemNS()	and	namedItem().

bool	QDomNamedNodeMap::operator!=	(
const	QDomNamedNodeMap	&	n)	const

Returns	TRUE	if	n	and	this	named	node	map	are	not	equal;	otherwise	returns
FALSE.

QDomNamedNodeMap	&	QDomNamedNodeMap::operator=	(
const	QDomNamedNodeMap	&	n)

Assigns	n	to	this	named	node	map.

bool	QDomNamedNodeMap::operator==	(

const	QDomNamedNodeMap	&	n)	const

Returns	TRUE	if	n	and	this	named	node	map	are	equal;	otherwise	returns
FALSE.

QDomNode	QDomNamedNodeMap::removeNamedItem	(
const	QString	&	name)

Removes	the	node	called	name	from	the	map.

The	function	returns	the	removed	node	or	a	null	node	if	the	map	did	not	contain
a	node	called	name.

See	also	setNamedItem(),	namedItem()	and	removeNamedItemNS().

QDomNode	QDomNamedNodeMap::removeNamedItemNS	(
const	QString	&	nsURI,	const	QString	&	localName)

Removes	the	node	with	the	local	name	localName	and	the	namespace	URI
nsURI	from	the	map.

The	function	returns	the	removed	node	or	a	null	node	if	the	map	did	not	contain
a	node	with	the	local	name	localName	and	the	namespace	URI	nsURI.

See	also	setNamedItemNS(),	namedItemNS()	and	removeNamedItem().

QDomNode	QDomNamedNodeMap::setNamedItem	(
const	QDomNode	&	newNode)

Inserts	the	node	newNode	into	the	named	node	map.	The	name	used	by	the	map
is	the	node	name	of	newNode	as	returned	by	QDomNode::nodeName().

If	the	new	node	replaces	an	existing	node,	i.e.	the	map	contains	a	node	with	the
same	name,	the	replaced	node	is	returned.

See	also	namedItem(),	removeNamedItem()	and	setNamedItemNS().

QDomNode	QDomNamedNodeMap::setNamedItemNS	(

const	QDomNode	&	newNode)

Inserts	the	node	newNode	in	the	map.	If	a	node	with	the	same	namespace	URI
and	the	same	local	name	already	exists	in	the	map,	it	is	replaced	by	newNode.	If
the	new	node	replaces	an	existing	node,	the	replaced	node	is	returned.

See	also	namedItemNS(),	removeNamedItemNS()	and	setNamedItem().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QKeyEvent	Class	Reference
The	QKeyEvent	class	contains	describes	a	key	event.	More...

#include	<qevent.h>

Inherits	QEvent.

List	of	all	member	functions.

Public	Members

QKeyEvent	(Type	type,	int	key,	int	ascii,	int	state,	const	QString	&	text	=
QString::null,	bool	autorep	=	FALSE,	ushort	count	=	1)
int	key	()	const
int	ascii	()	const
ButtonState	state	()	const
ButtonState	stateAfter	()	const
bool	isAccepted	()	const
QString	text	()	const
bool	isAutoRepeat	()	const
int	count	()	const
void	accept	()
void	ignore	()

Detailed	Description

The	QKeyEvent	class	contains	describes	a	key	event.

Key	events	occur	when	a	key	is	pressed	or	released	when	a	widget	has	keyboard
input	focus.

A	key	event	contains	a	special	accept	flag	that	indicates	whether	the	receiver
wants	the	key	event.	You	should	call	QKeyEvent::ignore()	if	the	key	press	or
release	event	is	not	handled	by	your	widget.	A	key	event	is	propagated	up	the
parent	widget	chain	until	a	widget	accepts	it	with	QKeyEvent::accept()	or	an
event	filter	consumes	it.

The	QWidget::setEnable()	function	can	be	used	to	enable	or	disable	mouse	and
keyboard	events	for	a	widget.

The	event	handlers	QWidget::keyPressEvent()	and	QWidget::keyReleaseEvent()
receive	key	events.

See	also	QFocusEvent,	QWidget::grabKeyboard()	and	Event	Classes.

Member	Function	Documentation

QKeyEvent::QKeyEvent	(Type	type,	int	key,	int	ascii,	int	state,
const	QString	&	text	=	QString::null,	bool	autorep	=	FALSE,
ushort	count	=	1)

Constructs	a	key	event	object.

The	type	parameter	must	be	QEvent::KeyPress	or	QEvent::KeyRelease.	If	key	is
0	the	event	is	not	a	result	of	a	known	key	(e.g.	it	may	be	the	result	of	a	compose
sequence	or	keyboard	macro).	ascii	is	the	ASCII	code	of	the	key	that	was
pressed	or	released.	state	holds	the	keyboard	modifiers.	text	is	the	Unicode	text
that	the	key	generated.	If	autorep	is	TRUE,	isAutoRepeat()	will	be	TRUE.	count
is	the	number	of	single	keys.

The	accept	flag	is	set	to	TRUE.

void	QKeyEvent::accept	()

Sets	the	accept	flag	of	the	key	event	object.

Setting	the	accept	parameter	indicates	that	the	receiver	of	the	event	wants	the
key	event.	Unwanted	key	events	are	sent	to	the	parent	widget.

The	accept	flag	is	set	by	default.

See	also	ignore().

int	QKeyEvent::ascii	()	const

Returns	the	ASCII	code	of	the	key	that	was	pressed	or	released.	We	recommend
using	text()	instead.

See	also	text().

Example:	picture/picture.cpp.

int	QKeyEvent::count	()	const

Returns	the	number	of	single	keys	for	this	event.	If	text()	is	not	empty,	this	is
simply	the	length	of	the	string.

However,	Qt	also	compresses	invisible	keycodes	such	as	BackSpace.	For	those,
count()	returns	the	number	of	key	presses/repeats	this	event	represents.

See	also	QWidget::setKeyCompression().

void	QKeyEvent::ignore	()

Clears	the	accept	flag	parameter	of	the	key	event	object.

Clearing	the	accept	parameter	indicates	that	the	event	receiver	does	not	want	the
key	event.	Unwanted	key	events	are	sent	to	the	parent	widget.

The	accept	flag	is	set	by	default.

See	also	accept().

bool	QKeyEvent::isAccepted	()	const

Returns	TRUE	if	the	receiver	of	the	event	wants	to	keep	the	key;	otherwise
returns	FALSE

bool	QKeyEvent::isAutoRepeat	()	const

Returns	TRUE	if	this	event	comes	from	an	auto-repeating	key	and	FALSE	if	it
comes	from	an	initial	key	press.

Note	that	if	the	event	is	a	multiple-key	compressed	event	that	is	partly	due	to
auto-repeat,	this	function	could	return	either	TRUE	or	FALSE	indeterminately.

int	QKeyEvent::key	()	const

Returns	the	code	of	the	key	that	was	pressed	or	released.

See	Qt::Key	for	the	list	of	keyboard	codes.	These	codes	are	independent	of	the

underlying	window	system.

Key	code	0	means	that	the	event	is	not	a	result	of	a	known	key	(e.g.	it	may	be
the	result	of	a	compose	sequence	or	keyboard	macro).

When	key	event	compression	is	turned	on,	this	function's	return	value	is
undefined.	See	QWidget::setKeyCompression()	for	details	on	key	event
compression.

Example:	fileiconview/qfileiconview.cpp.

ButtonState	QKeyEvent::state	()	const

Returns	the	keyboard	modifier	flags	that	existed	immediately	before	the	event
occurred.

The	returned	value	is	ShiftButton,	ControlButton	and	AltButton	OR'ed	together.

See	also	stateAfter().

Example:	fileiconview/qfileiconview.cpp.

ButtonState	QKeyEvent::stateAfter	()	const

Returns	the	keyboard	modifier	flags	that	existed	immediately	after	the	event
occurred.

Warning:	This	function	cannot	be	trusted.

See	also	state().

QString	QKeyEvent::text	()	const

Returns	the	Unicode	text	that	this	key	generated.

See	also	QWidget::setKeyCompression().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

http://www.trolltech.com/

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QBitVal	Class	Reference
The	QBitVal	class	is	an	internal	class,	used	with	QBitArray.	More...

#include	<qbitarray.h>

List	of	all	member	functions.

Public	Members

QBitVal	(QBitArray	*	a,	uint	i)
operator	int	()
QBitVal	&	operator=	(const	QBitVal	&	v)
QBitVal	&	operator=	(bool	v)

Detailed	Description

The	QBitVal	class	is	an	internal	class,	used	with	QBitArray.

The	QBitVal	is	required	by	the	indexing	[]	operator	on	bit	arrays.	Don't	use	it	in
any	other	context.

See	also	Collection	Classes.

Member	Function	Documentation

QBitVal::QBitVal	(QBitArray	*	a,	uint	i)

Constructs	a	reference	to	element	i	in	the	QBitArray	a.	This	is	what
QBitArray::operator[]	constructs	its	return	value	with.

QBitVal::operator	int	()

Returns	the	value	referenced	by	the	QBitVal.

QBitVal	&	QBitVal::operator=	(const	QBitVal	&	v)

Sets	the	value	referenced	by	the	QBitVal	to	that	referenced	by	QBitVal	v.

QBitVal	&	QBitVal::operator=	(bool	v)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Sets	the	value	referenced	by	the	QBitVal	to	v.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QDomNode	Class	Reference
[XML	module]

The	QDomNode	class	is	the	base	class	for	all	the	nodes	in	a	DOM	tree.	More...

#include	<qdom.h>

Inherited	by	QDomDocumentType,	QDomDocument,
QDomDocumentFragment,	QDomCharacterData,	QDomAttr,	QDomElement,
QDomNotation,	QDomEntity,	QDomEntityReference	and
QDomProcessingInstruction.

List	of	all	member	functions.

Public	Members

enum	NodeType	{	ElementNode	=	1,	AttributeNode	=	2,	TextNode	=	3,
CDATASectionNode	=	4,	EntityReferenceNode	=	5,	EntityNode	=	6,
ProcessingInstructionNode	=	7,	CommentNode	=	8,	DocumentNode	=	9,
DocumentTypeNode	=	10,	DocumentFragmentNode	=	11,	NotationNode	=
12,	BaseNode	=	21,	CharacterDataNode	=	22	}
QDomNode	()
QDomNode	(const	QDomNode	&	n)
QDomNode	&	operator=	(const	QDomNode	&	n)
bool	operator==	(const	QDomNode	&	n)	const
bool	operator!=	(const	QDomNode	&	n)	const
virtual	~QDomNode	()
virtual	QDomNode	insertBefore	(const	QDomNode	&	newChild,
const	QDomNode	&	refChild)
virtual	QDomNode	insertAfter	(const	QDomNode	&	newChild,
const	QDomNode	&	refChild)
virtual	QDomNode	replaceChild	(const	QDomNode	&	newChild,
const	QDomNode	&	oldChild)
virtual	QDomNode	removeChild	(const	QDomNode	&	oldChild)
virtual	QDomNode	appendChild	(const	QDomNode	&	newChild)
virtual	bool	hasChildNodes	()	const
virtual	QDomNode	cloneNode	(bool	deep	=	TRUE)	const
virtual	void	normalize	()
virtual	bool	isSupported	(const	QString	&	feature,
const	QString	&	version)	const
virtual	QString	nodeName	()	const
virtual	QDomNode::NodeType	nodeType	()	const
virtual	QDomNode	parentNode	()	const
virtual	QDomNodeList	childNodes	()	const
virtual	QDomNode	firstChild	()	const
virtual	QDomNode	lastChild	()	const
virtual	QDomNode	previousSibling	()	const
virtual	QDomNode	nextSibling	()	const
virtual	QDomNamedNodeMap	attributes	()	const
virtual	QDomDocument	ownerDocument	()	const
virtual	QString	namespaceURI	()	const

virtual	QString	localName	()	const
virtual	bool	hasAttributes	()	const
virtual	QString	nodeValue	()	const
virtual	void	setNodeValue	(const	QString	&	v)
virtual	QString	prefix	()	const
virtual	void	setPrefix	(const	QString	&	pre)
virtual	bool	isAttr	()	const
virtual	bool	isCDATASection	()	const
virtual	bool	isDocumentFragment	()	const
virtual	bool	isDocument	()	const
virtual	bool	isDocumentType	()	const
virtual	bool	isElement	()	const
virtual	bool	isEntityReference	()	const
virtual	bool	isText	()	const
virtual	bool	isEntity	()	const
virtual	bool	isNotation	()	const
virtual	bool	isProcessingInstruction	()	const
virtual	bool	isCharacterData	()	const
virtual	bool	isComment	()	const
QDomNode	namedItem	(const	QString	&	name)	const
bool	isNull	()	const
void	clear	()
QDomAttr	toAttr	()
QDomCDATASection	toCDATASection	()
QDomDocumentFragment	toDocumentFragment	()
QDomDocument	toDocument	()
QDomDocumentType	toDocumentType	()
QDomElement	toElement	()
QDomEntityReference	toEntityReference	()
QDomText	toText	()
QDomEntity	toEntity	()
QDomNotation	toNotation	()
QDomProcessingInstruction	toProcessingInstruction	()
QDomCharacterData	toCharacterData	()
QDomComment	toComment	()
void	save	(QTextStream	&	str,	int	indent)	const

Related	Functions

QTextStream	&	operator<<	(QTextStream	&	str,
const	QDomNode	&	node)

Detailed	Description

The	QDomNode	class	is	the	base	class	for	all	the	nodes	in	a	DOM	tree.

Many	functions	in	the	DOM	return	a	QDomNode.

You	can	find	out	the	type	of	a	node	using	isAttr(),	isCDATASection(),
isDocumentFragment(),	isDocument(),	isDocumentType(),	isElement(),
isEntityReference(),	isText(),	isEntity(),	isNotation(),	isProcessingInstruction(),
isCharacterData()	and	isComment().

A	QDomNode	can	be	converted	into	one	of	its	subclasses	using	toAttr(),
toCDATASection(),	toDocumentFragment(),	toDocument(),	toDocumentType(),
toElement(),	toEntityReference(),	toText(),	toEntity(),	toNotation(),
toProcessingInstruction(),	toCharacterData()	or	toComment().	You	can	convert	a
node	to	a	null	node	with	clear().

Copies	of	the	QDomNode	class	share	their	data;	this	means	modifying	one	node
will	change	all	copies.	This	is	especially	useful	in	combination	with	functions
which	return	a	QDomNode,	e.g.	firstChild().	You	can	make	an	independent
(deep)	copy	of	the	node	with	cloneNode().

Nodes	are	inserted	with	insertBefore(),	insertAfter()	or	appendChild().	You	can
replace	one	node	with	another	using	replaceChild()	and	remove	a	node	with
removeChild().

To	traverse	nodes	use	firstChild()	to	get	a	node's	first	child	(if	any),	and
nextSibling()	to	traverse.	QDomNode	also	provides	lastChild(),
previousSibling()	and	parentNode().	To	find	the	first	child	node	with	a	particular
node	name	use	namedItem().

To	find	out	if	a	node	has	children	use	hasChildNodes()	and	to	get	a	list	of	all	of	a
node's	children	use	childNodes().

The	node's	name	and	value	(the	meaning	of	which	varies	depending	on	its	type)
is	returned	by	nodeName()	and	nodeValue()	respectively.	The	node's	type	is
returned	by	nodeType().	The	node's	value	can	be	set	with	setNodeValue().

The	document	to	which	the	node	belongs	is	returned	by	ownerDocument().

Adjacent	QDomText	nodes	can	be	merged	into	a	single	node	with	normalize().

QDomElement	nodes	have	attributes	which	can	be	retrieved	with	attributes().

QDomElement	and	QDomAttr	nodes	can	have	namespaces	which	can	be
retrieved	with	namespaceURI().	Their	local	name	is	retrieved	with	localName(),
and	their	prefix	with	prefix().	The	prefix	can	be	set	with	setPrefix().

You	can	write	the	XML	representation	of	the	node	to	a	text	stream	with	save().

The	following	example	looks	for	the	first	element	in	an	XML	document	and
prints	the	names	of	all	the	elements	that	are	its	direct	children.

		QDomDocument	d;

		d.setContent(someXML);

		QDomNode	n	=	d.firstChild();

		while	(!n.isNull())	{

						if	(n.isElement())	{

										QDomElement	e	=	n.toElement();

										cout	<<	"Element	name:	"	<<	e.tagName()	<<	endl;

										return;

						}

						n	=	n.nextSibling();

		}

		

For	further	information	about	the	Document	Object	Model	see
http://www.w3.org/TR/REC-DOM-Level-1/	and	http://www.w3.org/TR/DOM-
Level-2-Core/.	For	a	more	general	introduction	of	the	DOM	implementation	see
the	QDomDocument	documentation.

See	also	XML.

http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/DOM-Level-2-Core/

Member	Type	Documentation

QDomNode::NodeType

This	enum	defines	the	type	of	the	node:

QDomNode::ElementNode

QDomNode::AttributeNode

QDomNode::TextNode

QDomNode::CDATASectionNode

QDomNode::EntityReferenceNode

QDomNode::EntityNode

QDomNode::ProcessingInstructionNode

QDomNode::CommentNode

QDomNode::DocumentNode

QDomNode::DocumentTypeNode

QDomNode::DocumentFragmentNode

QDomNode::NotationNode

QDomNode::BaseNode	-	A	QDomNode	object,	i.e.	not	a	QDomNode
subclass.
QDomNode::CharacterDataNode

Member	Function	Documentation

QDomNode::QDomNode	()

Constructs	an	empty	node.

QDomNode::QDomNode	(const	QDomNode	&	n)

Constructs	a	copy	of	n.

The	data	of	the	copy	is	shared	(shallow	copy):	modifying	one	node	will	also
change	the	other.	If	you	want	to	make	a	deep	copy,	use	cloneNode().

QDomNode::~QDomNode	()	[virtual]

Destroys	the	object	and	frees	its	resources.

QDomNode	QDomNode::appendChild	(
const	QDomNode	&	newChild)	[virtual]

Appends	newChild	as	the	node's	last	child.

If	newChild	is	the	child	of	another	node,	it	is	reparented	to	this	node.	If
newChild	is	a	child	of	this	node,	then	its	position	in	the	list	of	children	is
changed.

Returns	a	new	reference	to	newChild.

See	also	insertBefore(),	insertAfter(),	replaceChild()	and	removeChild().

QDomNamedNodeMap	QDomNode::attributes	()	const
[virtual]

Returns	a	named	node	map	of	all	attributes.	Attributes	are	only	provided	for
QDomElement.

Changing	the	attributes	in	the	map	will	also	change	the	attributes	of	this

QDomNode.

Reimplemented	in	QDomElement.

QDomNodeList	QDomNode::childNodes	()	const	[virtual]

Returns	a	list	of	all	direct	child	nodes.

Most	often	you	will	call	this	function	on	a	QDomElement	object.

For	example,	if	the	XML	document	looks	like	this:

		<body>

			<h1>Heading</h1>

			<p>Hello	you</p>

		</body>

		

Then	the	list	of	child	nodes	for	the	"body"-element	will	contain	the	node	created
by	the	<h1>	tag	and	the	node	created	by	the	<p>	tag.

The	nodes	in	the	list	are	not	copied;	so	changing	the	nodes	in	the	list	will	also
change	the	children	of	this	node.

See	also	firstChild()	and	lastChild().

void	QDomNode::clear	()

Dereferences	the	internal	object.	The	node	becomes	a	null	node.

See	also	isNull().

QDomNode	QDomNode::cloneNode	(bool	deep	=	TRUE)	const
[virtual]

Creates	a	real	(not	shallow)	copy	of	the	QDomNode.

If	deep	is	TRUE,	then	the	cloning	is	done	recursively	which	means	that	all	the
node's	children	are	copied,	too.	If	deep	is	FALSE	only	the	node	itself	is	copied
and	the	copy	will	have	no	child	nodes.

QDomNode	QDomNode::firstChild	()	const	[virtual]

Returns	the	first	child	of	the	node.	If	there	is	no	child	node,	a	null	node	is
returned.	Changing	the	returned	node	will	also	change	the	node	in	the	document
tree.

See	also	lastChild()	and	childNodes().

Example:	xml/outliner/outlinetree.cpp.

bool	QDomNode::hasAttributes	()	const	[virtual]

Returns	TRUE	if	the	node	has	attributes;	otherwise	returns	FALSE.

See	also	attributes().

bool	QDomNode::hasChildNodes	()	const	[virtual]

Returns	TRUE	if	the	node	has	one	or	more	children;	otherwise	returns	FALSE.

QDomNode	QDomNode::insertAfter	(
const	QDomNode	&	newChild,	const	QDomNode	&	refChild)
[virtual]

Inserts	the	node	newChild	after	the	child	node	refChild.	refChild	must	be	a	direct
child	of	this	node.	If	refChild	is	null	then	newChild	is	appended	as	this	node's
last	child.

If	newChild	is	the	child	of	another	node,	it	is	reparented	to	this	node.	If
newChild	is	a	child	of	this	node,	then	its	position	in	the	list	of	children	is
changed.

If	newChild	is	a	QDomDocumentFragment,	then	the	children	of	the	fragment	are
removed	from	the	fragment	and	inserted	after	refChild.

Returns	a	new	reference	to	newChild	on	success	or	an	empty	node	on	failure.

See	also	insertBefore(),	replaceChild(),	removeChild()	and	appendChild().

QDomNode	QDomNode::insertBefore	(
const	QDomNode	&	newChild,	const	QDomNode	&	refChild)
[virtual]

Inserts	the	node	newChild	before	the	child	node	refChild.	refChild	must	be	a
direct	child	of	this	node.	If	refChild	is	null	then	newChild	is	inserted	as	the
node's	first	child.

If	newChild	is	the	child	of	another	node,	it	is	reparented	to	this	node.	If
newChild	is	a	child	of	this	node,	then	its	position	in	the	list	of	children	is
changed.

If	newChild	is	a	QDomDocumentFragment,	then	the	children	of	the	fragment	are
removed	from	the	fragment	and	inserted	before	refChild.

Returns	a	new	reference	to	newChild	on	success	or	an	empty	node	on	failure.

See	also	insertAfter(),	replaceChild(),	removeChild()	and	appendChild().

bool	QDomNode::isAttr	()	const	[virtual]

Returns	TRUE	if	the	node	is	an	attribute;	otherwise	returns	FALSE.

If	this	function	returns	TRUE,	it	does	not	imply	that	this	object	is	a
QDomAttribute;	you	can	get	the	QDomAttribute	with	toAttribute().

See	also	toAttr().

Reimplemented	in	QDomAttr.

bool	QDomNode::isCDATASection	()	const	[virtual]

Returns	TRUE	if	the	node	is	a	CDATA	section;	otherwise	returns	FALSE.

If	this	function	returns	TRUE,	it	does	not	imply	that	this	object	is	a
QDomCDATASection;	you	can	get	the	QDomCDATASection	with
toCDATASection().

See	also	toCDATASection().

Reimplemented	in	QDomCDATASection.

bool	QDomNode::isCharacterData	()	const	[virtual]

Returns	TRUE	if	the	node	is	a	character	data	node;	otherwise	returns	FALSE.

If	this	function	returns	TRUE,	it	does	not	imply	that	this	object	is	a
QDomCharacterData;	you	can	get	the	QDomCharacterData	with
toCharacterData().

See	also	toCharacterData().

Reimplemented	in	QDomCharacterData.

bool	QDomNode::isComment	()	const	[virtual]

Returns	TRUE	if	the	node	is	a	comment;	otherwise	returns	FALSE.

If	this	function	returns	TRUE,	it	does	not	imply	that	this	object	is	a
QDomComment;	you	can	get	the	QDomComment	with	toComment().

See	also	toComment().

Reimplemented	in	QDomComment.

bool	QDomNode::isDocument	()	const	[virtual]

Returns	TRUE	if	the	node	is	a	document;	otherwise	returns	FALSE.

If	this	function	returns	TRUE,	it	does	not	imply	that	this	object	is	a
QDomDocument;	you	can	get	the	QDomDocument	with	toDocument().

See	also	toDocument().

Reimplemented	in	QDomDocument.

bool	QDomNode::isDocumentFragment	()	const	[virtual]

Returns	TRUE	if	the	node	is	a	document	fragment;	otherwise	returns	FALSE.

If	this	function	returns	TRUE,	it	does	not	imply	that	this	object	is	a
QDomDocumentFragment;	you	can	get	the	QDomDocumentFragment	with
toDocumentFragment().

See	also	toDocumentFragment().

Reimplemented	in	QDomDocumentFragment.

bool	QDomNode::isDocumentType	()	const	[virtual]

Returns	TRUE	if	the	node	is	a	document	type;	otherwise	returns	FALSE.

If	this	function	returns	TRUE,	it	does	not	imply	that	this	object	is	a
QDomDocumentType;	you	can	get	the	QDomDocumentType	with
toDocumentType().

See	also	toDocumentType().

Reimplemented	in	QDomDocumentType.

bool	QDomNode::isElement	()	const	[virtual]

Returns	TRUE	if	the	node	is	an	element;	otherwise	returns	FALSE.

If	this	function	returns	TRUE,	it	does	not	imply	that	this	object	is	a
QDomElement;	you	can	get	the	QDomElement	with	toElement().

See	also	toElement().

Example:	xml/outliner/outlinetree.cpp.

Reimplemented	in	QDomElement.

bool	QDomNode::isEntity	()	const	[virtual]

Returns	TRUE	if	the	node	is	an	entity;	otherwise	returns	FALSE.

If	this	function	returns	TRUE,	it	does	not	imply	that	this	object	is	a
QDomEntity;	you	can	get	the	QDomEntity	with	toEntity().

See	also	toEntity().

Reimplemented	in	QDomEntity.

bool	QDomNode::isEntityReference	()	const	[virtual]

Returns	TRUE	if	the	node	is	an	entity	reference;	otherwise	returns	FALSE.

If	this	function	returns	TRUE,	it	does	not	imply	that	this	object	is	a
QDomEntityReference;	you	can	get	the	QDomEntityReference	with
toEntityReference().

See	also	toEntityReference().

Reimplemented	in	QDomEntityReference.

bool	QDomNode::isNotation	()	const	[virtual]

Returns	TRUE	if	the	node	is	a	notation;	otherwise	returns	FALSE.

If	this	function	returns	TRUE,	it	does	not	imply	that	this	object	is	a
QDomNotation;	you	can	get	the	QDomNotation	with	toNotation().

See	also	toNotation().

Reimplemented	in	QDomNotation.

bool	QDomNode::isNull	()	const

Returns	TRUE	if	this	node	does	not	reference	any	internal	object;	otherwise
returns	FALSE.

Example:	xml/outliner/outlinetree.cpp.

bool	QDomNode::isProcessingInstruction	()	const	[virtual]

Returns	TRUE	if	the	node	is	a	processing	instruction;	otherwise	returns	FALSE.

If	this	function	returns	TRUE,	it	does	not	imply	that	this	object	is	a

QDomProcessingInstruction;	you	can	get	the	QProcessingInstruction	with
toProcessingInstruction().

See	also	toProcessingInstruction().

Reimplemented	in	QDomProcessingInstruction.

bool	QDomNode::isSupported	(const	QString	&	feature,
const	QString	&	version)	const	[virtual]

Returns	TRUE	if	the	DOM	implementation	implements	the	feature	feature	and
that	feature	is	supported	by	this	node	in	the	version	version.	Otherwise	this
function	returns	FALSE.

See	also	QDomImplementation::hasFeature().

bool	QDomNode::isText	()	const	[virtual]

Returns	TRUE	if	the	node	is	a	text;	otherwise	returns	FALSE.

If	this	function	returns	TRUE,	it	does	not	imply	that	this	object	is	a	QDomText;
you	can	get	the	QDomText	with	toText().

See	also	toText().

Reimplemented	in	QDomText.

QDomNode	QDomNode::lastChild	()	const	[virtual]

Returns	the	last	child	of	the	node.	If	there	is	no	child	node,	a	null	node	is
returned.	Changing	the	returned	node	will	also	change	the	node	in	the	document
tree.

See	also	firstChild()	and	childNodes().

QString	QDomNode::localName	()	const	[virtual]

If	the	node	uses	namespaces,	this	function	returns	the	local	name	of	the	node.
Otherwise	it	returns	QString::null.

Only	nodes	of	type	ElementNode	or	AttributeNode	can	have	namespaces.	A
namespace	must	have	been	specified	at	creation	time;	it	is	not	possible	to	add	a
namespace	afterwards.

See	also	prefix(),	namespaceURI(),	QDomDocument::createElementNS()	and
QDomDocument::createAttributeNS().

QDomNode	QDomNode::namedItem	(const	QString	&	name)
const

Returns	the	first	direct	child	node	for	which	nodeName()	equals	name.

If	no	such	direct	child	exists,	a	null	node	is	returned.

See	also	nodeName().

QString	QDomNode::namespaceURI	()	const	[virtual]

Returns	the	namespace	URI	of	this	node;	if	the	node	has	no	namespace	URI,	this
function	returns	QString::null.

Only	nodes	of	type	ElementNode	or	AttributeNode	can	have	namespaces.	A
namespace	URI	must	be	specified	at	creation	time	and	cannot	be	changed	later.

See	also	prefix(),	localName(),	QDomDocument::createElementNS()	and
QDomDocument::createAttributeNS().

QDomNode	QDomNode::nextSibling	()	const	[virtual]

Returns	the	next	sibling	in	the	document	tree.	Changing	the	returned	node	will
also	change	the	node	in	the	document	tree.

If	you	have	XML	like	this:

		<h1>Heading</h1>

		<p>The	text...</p>

		<h2>Next	heading</h2>

		

and	this	QDomNode	represents	the	<p>	tag,	nextSibling()	will	return	the	node

representing	the	<h2>	tag.

See	also	previousSibling().

Example:	xml/outliner/outlinetree.cpp.

QString	QDomNode::nodeName	()	const	[virtual]

Returns	the	name	of	the	node.

The	meaning	of	the	name	depends	on	the	subclass:

QDomAttr	-	the	name	of	the	attribute
QDomCDATASection	-	the	string	"#cdata-section"
QDomComment	-	the	string	"#comment"
QDomDocument	-	the	string	"#document"
QDomDocumentFragment	-	the	string	"#document-fragment"
QDomDocumentType	-	the	name	of	the	document	type
QDomElement	-	the	tag	name
QDomEntity	-	the	name	of	the	entity
QDomEntityReference	-	the	name	of	the	referenced	entity
QDomNotation	-	the	name	of	the	notation
QDomProcessingInstruction	-	the	target	of	the	processing	instruction
QDomText	-	the	string	"#text"

See	also	nodeValue().

Example:	xml/outliner/outlinetree.cpp.

QDomNode::NodeType	QDomNode::nodeType	()	const	[virtual]

Returns	the	type	of	the	node.

See	also	toAttr(),	toCDATASection(),	toDocumentFragment(),	toDocument(),
toDocumentType(),	toElement(),	toEntityReference(),	toText(),	toEntity(),
toNotation(),	toProcessingInstruction(),	toCharacterData()	and	toComment().

Reimplemented	in	QDomDocumentType,	QDomDocument,
QDomDocumentFragment,	QDomCharacterData,	QDomAttr,	QDomElement,

QDomNotation,	QDomEntity,	QDomEntityReference	and
QDomProcessingInstruction.

QString	QDomNode::nodeValue	()	const	[virtual]

Returns	the	value	of	the	node.

The	meaning	of	the	value	depends	on	the	subclass:

QDomAttr	-	the	attribute	value
QDomCDATASection	-	the	content	of	the	CDATA	section
QDomComment	-	the	comment
QDomProcessingInstruction	-	the	data	of	the	processing	intruction
QDomText	-	the	text

All	other	subclasses	do	not	have	a	node	value	and	will	return	a	null	string.

See	also	setNodeValue()	and	nodeName().

Example:	xml/outliner/outlinetree.cpp.

void	QDomNode::normalize	()	[virtual]

Calling	normalize()	on	an	element	converts	all	its	children	into	a	standard	form.
This	means,	that	adjacent	QDomText	objects	will	be	merged	into	a	single	text
object	(QDomCDATASection	nodes	are	not	merged).

bool	QDomNode::operator!=	(const	QDomNode	&	n)	const

Returns	TRUE	if	n	and	this	DOM	node	are	not	equal;	otherwise	returns	FALSE.

QDomNode	&	QDomNode::operator=	(const	QDomNode	&	n)

Assigns	a	copy	of	n	to	this	DOM	node.

The	data	of	the	copy	is	shared	(shallow	copy):	modifying	one	node	will	also
change	the	other.	If	you	want	to	make	a	deep	copy,	use	cloneNode().

bool	QDomNode::operator==	(const	QDomNode	&	n)	const

Returns	TRUE	if	n	and	this	DOM	node	are	equal;	otherwise	returns	FALSE.

QDomDocument	QDomNode::ownerDocument	()	const
[virtual]

Returns	the	document	to	which	this	node	belongs.

QDomNode	QDomNode::parentNode	()	const	[virtual]

Returns	the	parent	node.	If	this	node	has	no	parent,	a	null	node	is	returned	(i.e.	a
node	for	which	isNull()	returns	TRUE).

QString	QDomNode::prefix	()	const	[virtual]

Returns	the	namespace	prefix	of	the	node;	if	a	node	has	no	namespace	prefix,
this	function	returns	QString::null.

Only	nodes	of	type	ElementNode	or	AttributeNode	can	have	namespaces.	A
namespace	prefix	must	be	specified	at	creation	time.	If	a	node	was	created	with	a
namespace	prefix,	you	can	change	it	later	with	setPrefix().

If	you	create	an	element	or	attribute	with	QDomDocument::createElement()	or
QDomDocument::createAttribute(),	the	prefix	will	be	null.	If	you	use
QDomDocument::createElementNS()	or	QDomDocument::createAttributeNS()
instead,	the	prefix	will	not	be	null	-	although	it	might	be	an	empty	string	if	the
name	does	not	have	a	prefix.

See	also	setPrefix(),	localName(),	namespaceURI(),
QDomDocument::createElementNS()	and
QDomDocument::createAttributeNS().

QDomNode	QDomNode::previousSibling	()	const	[virtual]

Returns	the	previous	sibling	in	the	document	tree.	Changing	the	returned	node
will	also	change	the	node	in	the	document	tree.

For	example,	if	you	have	XML	like	this:

		<h1>Heading</h1>

		<p>The	text...</p>

		<h2>Next	heading</h2>

		

and	this	QDomNode	represents	the	<p>	tag,	previousSibling()	will	return	the
node	representing	the	<h1>	tag.

See	also	nextSibling().

QDomNode	QDomNode::removeChild	(
const	QDomNode	&	oldChild)	[virtual]

Removes	oldChild	from	the	list	of	children.	oldChild	must	be	a	direct	child	of
this	node.

Returns	a	new	reference	to	oldChild	on	success	or	a	null	node	on	failure.

See	also	insertBefore(),	insertAfter(),	replaceChild()	and	appendChild().

QDomNode	QDomNode::replaceChild	(
const	QDomNode	&	newChild,	const	QDomNode	&	oldChild
)	[virtual]

Replaces	oldChild	with	newChild.	oldChild	must	be	a	direct	child	of	this	node.

If	newChild	is	the	child	of	another	node,	it	is	reparented	to	this	node.	If
newChild	is	a	child	of	this	node,	then	its	position	in	the	list	of	children	is
changed.

If	newChild	is	a	QDomDocumentFragment,	then	oldChild	is	replaced	by	all	of
the	children	of	the	fragment.

Returns	a	new	reference	to	oldChild	on	success	or	a	null	node	an	failure.

See	also	insertBefore(),	insertAfter(),	removeChild()	and	appendChild().

void	QDomNode::save	(QTextStream	&	str,	int	indent)	const

Writes	the	XML	representation	of	the	node	and	all	its	children	to	the	stream	str.
This	function	uses	indent	as	the	amount	of	space	to	indent	the	node.

void	QDomNode::setNodeValue	(const	QString	&	v)	[virtual]

Sets	the	value	of	the	node	to	v.

See	also	nodeValue().

void	QDomNode::setPrefix	(const	QString	&	pre)	[virtual]

If	the	node	has	a	namespace	prefix,	this	function	changes	the	namespace	prefix
of	the	node	to	pre.	Otherwise	this	function	has	no	effect.

Only	nodes	of	type	ElementNode	or	AttributeNode	can	have	namespaces.	A
namespace	prefix	must	have	be	specified	at	creation	time;	it	is	not	possible	to
add	a	namespace	prefix	afterwards.

See	also	prefix(),	localName(),	namespaceURI(),
QDomDocument::createElementNS()	and
QDomDocument::createAttributeNS().

QDomAttr	QDomNode::toAttr	()

Converts	a	QDomNode	into	a	QDomAttr.	If	the	node	is	not	an	attribute,	the
returned	object	will	be	null.

See	also	isAttr().

QDomCDATASection	QDomNode::toCDATASection	()

Converts	a	QDomNode	into	a	QDomCDATASection.	If	the	node	is	not	a
CDATA	section,	the	returned	object	will	be	null.

See	also	isCDATASection().

QDomCharacterData	QDomNode::toCharacterData	()

Converts	a	QDomNode	into	a	QDomCharacterData.	If	the	node	is	not	a
character	data	node	the	returned	object	will	be	null.

See	also	isCharacterData().

QDomComment	QDomNode::toComment	()

Converts	a	QDomNode	into	a	QDomComment.	If	the	node	is	not	a	comment	the
returned	object	will	be	null.

See	also	isComment().

QDomDocument	QDomNode::toDocument	()

Converts	a	QDomNode	into	a	QDomDocument.	If	the	node	is	not	a	document
the	returned	object	will	be	null.

See	also	isDocument().

QDomDocumentFragment	QDomNode::toDocumentFragment	()

Converts	a	QDomNode	into	a	QDomDocumentFragment.	If	the	node	is	not	a
document	fragment	the	returned	object	will	be	null.

See	also	isDocumentFragment().

QDomDocumentType	QDomNode::toDocumentType	()

Converts	a	QDomNode	into	a	QDomDocumentType.	If	the	node	is	not	a
document	type	the	returned	object	will	be	null.

See	also	isDocumentType().

QDomElement	QDomNode::toElement	()

Converts	a	QDomNode	into	a	QDomElement.	If	the	node	is	not	an	element	the
returned	object	will	be	null.

See	also	isElement().

Example:	xml/outliner/outlinetree.cpp.

QDomEntity	QDomNode::toEntity	()

Converts	a	QDomNode	into	a	QDomEntity.	If	the	node	is	not	an	entity	the
returned	object	will	be	null.

See	also	isEntity().

QDomEntityReference	QDomNode::toEntityReference	()

Converts	a	QDomNode	into	a	QDomEntityReference.	If	the	node	is	not	an	entity
reference,	the	returned	object	will	be	null.

See	also	isEntityReference().

QDomNotation	QDomNode::toNotation	()

Converts	a	QDomNode	into	a	QDomNotation.	If	the	node	is	not	a	notation	the
returned	object	will	be	null.

See	also	isNotation().

QDomProcessingInstruction	QDomNode::toProcessingInstruction
()

Converts	a	QDomNode	into	a	QDomProcessingInstruction.	If	the	node	is	not	a
processing	instruction	the	returned	object	will	be	null.

See	also	isProcessingInstruction().

QDomText	QDomNode::toText	()

Converts	a	QDomNode	into	a	QDomText.	If	the	node	is	not	a	text,	the	returned
object	will	be	null.

See	also	isText().

Related	Functions

QTextStream	&	operator<<	(QTextStream	&	str,
const	QDomNode	&	node)

Writes	the	XML	representation	of	the	node	node	and	all	its	children	to	the	stream
str.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QKeySequence	Class	Reference
The	QKeySequence	class	encapsulates	a	key	sequence	as	used	by	accelerators.
More...

#include	<qkeysequence.h>

Inherits	Qt.

List	of	all	member	functions.

Public	Members

QKeySequence	()
QKeySequence	(const	QString	&	key)
QKeySequence	(int	key)
operator	QString	()	const
operator	int	()	const
QKeySequence	(const	QKeySequence	&	keysequence)
QKeySequence	&	operator=	(const	QKeySequence	&	keysequence)
~QKeySequence	()
bool	operator==	(const	QKeySequence	&	keysequence)	const
bool	operator!=	(const	QKeySequence	&	keysequence)	const

Related	Functions

QDataStream	&	operator<<	(QDataStream	&	s,
const	QKeySequence	&	keysequence)
QDataStream	&	operator>>	(QDataStream	&	s,
QKeySequence	&	keysequence)

Detailed	Description

The	QKeySequence	class	encapsulates	a	key	sequence	as	used	by	accelerators.

A	key	sequence	consists	of	a	keyboard	code,	optionally	combined	with
modifiers,	e.g.	SHIFT,	CTRL,	ALT	or	UNICODE_ACCEL.	For	example,	CTRL
+	Key_P	might	be	a	sequence	used	as	a	shortcut	for	printing	a	document.	The
key	codes	are	listed	in	qnamespace.h.	As	an	alternative,	use	UNICODE_ACCEL
with	the	unicode	code	point	of	the	character.	For	example,	UNICODE_ACCEL	+
'A'	gives	the	same	key	sequence	as	Key_A.

Key	sequences	can	be	constructed	either	from	an	integer	key	code,	or	from	a
human	readable	translatable	string.	A	key	sequence	can	be	cast	to	a	QString	to
obtain	a	human	readable	translated	version	of	the	sequence.	Translations	are
done	in	the	"QAccel"	context.

See	also	QAccel	and	Miscellaneous	Classes.

Member	Function	Documentation

QKeySequence::QKeySequence	()

Constructs	an	empty	key	sequence.

QKeySequence::QKeySequence	(const	QString	&	key)

Creates	a	key	sequence	from	the	string	key.	For	example	"Ctrl+O"	gives
CTRL+UNICODE_ACCEL+'O'.	The	strings	"Ctrl",	"Shift"	and	"Alt"	are
recognized,	as	well	as	their	translated	equivalents	in	the	"QAccel"	context	(using
QObject::tr()).

This	contructor	is	typically	used	with	tr(),	so	that	accelerator	keys	can	be
replaced	in	translations:

								QPopupMenu	*file	=	new	QPopupMenu(this);

								file->insertItem(tr("&Open..."),	this,	SLOT(open()),

																										QKeySequence(tr("Ctrl+O",	"File|Open")));

				

Note	the	"File|Open"	translator	comment.	It	is	by	no	means	necessary,	but	it
provides	some	context	for	the	human	translator.

QKeySequence::QKeySequence	(int	key)

Constructs	a	key	sequence	from	the	keycode	key.

The	key	codes	are	listed	in	qnamespace.h	and	can	be	combined	with	modifiers,
e.g.	with	SHIFT,	CTRL,	ALT	or	UNICODE_ACCEL.

QKeySequence::QKeySequence	(
const	QKeySequence	&	keysequence)

Copy	constructor.	Makes	a	copy	of	keysequence.

QKeySequence::~QKeySequence	()

Destroys	the	key	sequence.

QKeySequence::operator	QString	()	const

Creates	an	accelerator	string	for	the	key	sequence.	For	example,	CTRL+Key_O
gives	"Ctrl+O".	The	strings,	"Ctrl",	"Shift",	etc.	are	translated	(using
QObject::tr())	in	the	"QAccel"	context.

QKeySequence::operator	int	()	const

For	backward	compatibility:	returns	the	keycode	as	an	integer.

If	QKeySequence	ever	supports	more	than	one	keycode,	this	function	will	return
the	first	one.

bool	QKeySequence::operator!=	(
const	QKeySequence	&	keysequence)	const

Returns	TRUE	if	keysequence	is	not	equal	to	this	key	sequence;	otherwise
returns	FALSE.

QKeySequence	&	QKeySequence::operator=	(
const	QKeySequence	&	keysequence)

Assignment	operator.	Assigns	keysequence	to	this	object.

bool	QKeySequence::operator==	(
const	QKeySequence	&	keysequence)	const

Returns	TRUE	if	keysequence	is	equal	to	this	key	sequence;	otherwise	returns
FALSE.

Related	Functions

QDataStream	&	operator<<	(QDataStream	&	s,
const	QKeySequence	&	keysequence)

Writes	the	key	sequence	keysequence	to	the	stream	s.

See	also	Format	of	the	QDataStream	operators.

QDataStream	&	operator>>	(QDataStream	&	s,
QKeySequence	&	keysequence)

Reads	a	key	sequence	from	the	stream	s	into	the	key	sequence	keysequence.

See	also	Format	of	the	QDataStream	operators.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QRegExp	Class	Reference
The	QRegExp	class	provides	pattern	matching	using	regular	expressions.	More...

#include	<qregexp.h>

List	of	all	member	functions.

Public	Members

QRegExp	()
QRegExp	(const	QString	&	pattern,	bool	caseSensitive	=	TRUE,
bool	wildcard	=	FALSE)
QRegExp	(const	QRegExp	&	rx)
~QRegExp	()
QRegExp	&	operator=	(const	QRegExp	&	rx)
bool	operator==	(const	QRegExp	&	rx)	const
bool	operator!=	(const	QRegExp	&	rx)	const
bool	isEmpty	()	const
bool	isValid	()	const
QString	pattern	()	const
void	setPattern	(const	QString	&	pattern)
bool	caseSensitive	()	const
void	setCaseSensitive	(bool	sensitive)
bool	wildcard	()	const
void	setWildcard	(bool	wildcard)
bool	minimal	()	const
void	setMinimal	(bool	minimal)
bool	exactMatch	(const	QString	&	str)	const
int	match	(const	QString	&	str,	int	index	=	0,	int	*	len	=	0,
bool	indexIsStart	=	TRUE)	const		(obsolete)
int	search	(const	QString	&	str,	int	start	=	0)	const
int	searchRev	(const	QString	&	str,	int	start	=	-1)	const
int	matchedLength	()	const
QStringList	capturedTexts	()
QString	cap	(int	nth	=	0)
int	pos	(int	nth	=	0)

Detailed	Description

The	QRegExp	class	provides	pattern	matching	using	regular	expressions.

Regular	expressions,	or	"regexps",	provide	a	way	to	find	patterns	within	text.
This	is	useful	in	many	contexts,	for	example:

1.	 Validation.	A	regexp	can	be	used	to	check	whether	a	piece	of	text	meets
some	criteria,	e.g.	is	an	integer	or	contains	no	whitespace.

2.	 Searching.	Regexps	provide	a	much	more	powerful	means	of	searching	text
than	simple	string	matching	does.	For	example	we	can	create	a	regexp
which	says	"find	one	of	the	words	'mail',	'letter'	or	'correspondence'	but	not
any	of	the	words	'email',	'mailman'	'mailer',	'letterbox'	etc."

3.	 Search	and	Replace.	A	regexp	can	be	used	to	replace	a	pattern	with	a	piece
of	text,	for	example	replace	all	occurrences	of	'&'	with	'&'	except
where	the	'&'	is	already	followed	by	'amp;'.

4.	 String	Splitting.	A	regexp	can	be	used	to	identify	where	a	string	should	be
split	into	its	component	fields,	e.g.	splitting	tab-delimited	strings.

We	present	a	very	brief	introduction	to	regexps,	a	description	of	Qt's	regexp
language,	some	code	examples,	and	finally	the	function	documentation.
QRegExp	is	modeled	on	Perl's	regexp	language,	and	also	fully	supports
Unicode.	QRegExp	may	also	be	used	in	the	weaker	'wildcard'	(globbing)	mode
which	works	in	a	similar	way	to	command	shells.	A	good	text	on	regexps	is
Mastering	Regular	Expressions:	Powerful	Techniques	for	Perl	and	Other	Tools
by	Jeffrey	E.	Friedl,	ISBN	1565922573.

Experienced	regexp	users	may	prefer	to	skip	the	introduction	and	go	directly	to
the	relevant	information.

Introduction
Characters	and	Abbreviations	for	Sets	of	Characters
Sets	of	Characters
Quantifiers
Capturing	Text
Assertions
Wildcard	Matching	(globbing)
Notes	for	Perl	Users

Code	Examples

Introduction

Regexps	are	built	up	from	expressions,	quantifiers	and	assertions.	The	simplest
form	of	expression	is	simply	a	character,	e.g.	x	or	5.	An	expression	can	also	be	a
set	of	characters.	For	example,	[ABCD],	will	match	an	A	or	a	B	or	a	C	or	a	D.
As	a	shorthand	we	could	write	this	as	[A-D].	If	we	want	to	match	any	of	the
captital	letters	in	the	English	alphabet	we	can	write	[A-Z].	A	quantifier	tells	the
regexp	engine	how	many	occurrences	of	the	expression	we	want,	e.g.	x{1,1}
means	match	an	x	which	occurs	at	least	once	and	at	most	once.	We'll	look	at
assertions	and	more	complex	expressions	later.

Note	that	in	general	regexps	cannot	be	used	to	check	for	balanced	brackets	or
tags.	For	example	if	you	want	to	match	an	opening	html		and	its	closing	
you	can	only	use	a	regexp	if	you	know	that	these	tags	are	not	nested;	the	html
fragment,	bold	bolder	will	not	match	as	expected.	If	you	know
the	maximum	level	of	nesting	it	is	possible	to	create	a	regexp	that	will	match
correctly,	but	for	an	unknown	level	of	nesting	regexps	will	fail.

We'll	start	by	writing	a	regexp	to	match	integers	in	the	range	0	to	99.	We	will
require	at	least	one	digit	so	we	will	start	with	[0-9]{1,1}	which	means	match	a
digit	exactly	once.	This	regexp	alone	will	match	integers	in	the	range	0	to	9.	To
match	one	or	two	digits	we	can	increase	the	maximum	number	of	occurrences	so
the	regexp	becomes	[0-9]{1,2}	meaning	match	a	digit	at	least	once	and	at	most
twice.	However,	this	regexp	as	it	stands	will	not	match	correctly.	This	regexp
will	match	one	or	two	digits	within	a	string.	To	ensure	that	we	match	against	the
whole	string	we	must	use	the	anchor	assertions.	We	need	^	(caret)	which	when	it
is	the	first	character	in	the	regexp	means	that	the	regexp	must	match	from	the
beginning	of	the	string.	And	we	also	need	$	(dollar)	which	when	it	is	the	last
character	in	the	regexp	means	that	the	regexp	must	match	until	the	end	of	the
string.	So	now	our	regexp	is	^[0-9]{1,2}$.	Note	that	assertions,	such	as	^	and	$,
do	not	match	any	characters.

If	you've	seen	regexps	elsewhere	they	may	have	looked	different	from	the	ones
above.	This	is	because	some	sets	of	characters	and	some	quantifiers	are	so
common	that	they	have	special	symbols	to	represent	them.	[0-9]	can	be	replaced
with	the	symbol	\d.	The	quantifier	to	match	exactly	one	occurrence,	{1,1},	can
be	replaced	with	the	expression	itself.	This	means	that	x{1,1}	is	exactly	the	same

as	x	alone.	So	our	0	to	99	matcher	could	be	written	^\d{1,2}$.	Another	way	of
writing	it	would	be	^\d\d{0,1}$,	i.e.	from	the	start	of	the	string	match	a	digit
followed	by	zero	or	one	digits.	In	practice	most	people	would	write	it	^\d\d?$.
The	?	is	a	shorthand	for	the	quantifier	{0,1},	i.e.	a	minimum	of	no	occurrences	a
maximum	of	one	occurrence.	This	is	used	to	make	an	expression	optional.	The
regexp	^\d\d?$	means	"from	the	beginning	of	the	string	match	one	digit
followed	by	zero	or	one	digits	and	then	the	end	of	the	string".

Our	second	example	is	matching	the	words	'mail',	'letter'	or	'correspondence'	but
without	matching	'email',	'mailman',	'mailer',	'letterbox'	etc.	We'll	start	by	just
matching	'mail'.	In	full	the	regexp	is,	m{1,1}a{1,1}i{1,1}l{1,1},	but	since	each
expression	itself	is	automatically	quantified	by	{1,1}	we	can	simply	write	this	as
mail;	an	'm'	followed	by	an	'a'	followed	by	an	'i'	followed	by	an	'l'.	The	symbol	'|'
(bar)	is	used	for	alternation,	so	our	regexp	now	becomes
mail|letter|correspondence	which	means	match	'mail'	or	'letter'	or
'correspondence'.	Whilst	this	regexp	will	find	the	words	we	want	it	will	also	find
words	we	don't	want	such	as	'email'.	We	will	start	by	putting	our	regexp	in
parentheses,	(mail|letter|correspondence).	Parentheses	have	two	effects,	firstly
they	group	expressions	together	and	secondly	they	identify	parts	of	the	regexp
that	we	wish	to	capture.	Our	regexp	still	matches	any	of	the	three	words	but	now
they	are	grouped	together	as	a	unit.	This	is	useful	for	building	up	more	complex
regexps.	It	is	also	useful	because	it	allows	us	to	examine	which	of	the	words
actually	matched.	We	need	to	use	another	assertion,	this	time	\b	"word
boundary":	\b(mail|letter|correspondence)\b.	This	regexp	means	"match	a	word
boundary	followed	by	the	expression	in	parentheses	followed	by	another	word
boundary".	The	\b	assertion	matches	at	a	position	in	the	regexp	not	a	character
in	the	regexp.	A	word	boundary	is	any	non-word	character	such	as	a	space	a
newline	or	the	beginning	or	end	of	the	string.

For	our	third	example	we	want	to	replace	ampersands	with	the	HTML	entity
'&'.	The	regexp	to	match	is	simple:	&,	i.e.	match	one	ampersand.
Unfortunately	this	will	mess	up	our	text	if	some	of	the	ampersands	have	already
been	turned	into	HTML	entities.	So	what	we	really	want	to	say	is	replace	an
ampersand	providing	it	is	not	followed	by	'amp;'.	For	this	we	need	the	negative
lookahead	assertion	and	our	regexp	becomes:	&(?!amp;).	The	negative
lookahead	assertion	is	introduced	with	'(?!'	and	finishes	at	the	')'.	It	means	that
the	text	it	contains,	'amp;'	in	our	example,	must	not	follow	the	expression	that
preceeds	it.

Regexps	provide	a	rich	language	that	can	be	used	in	a	variety	of	ways.	For
example	suppose	we	want	to	count	all	the	occurrences	of	'Eric'	and	'Eirik'	in	a
string.	Two	valid	regexps	to	match	these	are	\b(Eric|Eirik)\b	and	\bEi?ri[ck]\b.
We	need	the	word	boundary	'\b'	so	we	don't	get	'Ericsson'	etc.	The	second	regexp
actually	matches	more	than	we	want,	'Eric',	'Erik',	'Eiric'	and	'Eirik'.

We	will	implement	some	the	examples	above	in	the	code	examples	section.

Characters	and	Abbreviations	for	Sets	of	Characters

c	Any	character	represents	itself	unless	it	has	a	special	regexp	meaning.
Thus	c	matches	the	character	c.

\c	A	character	that	follows	a	backslash	matches	the	character	itself	except
where	mentioned	below.	For	example	if	you	wished	to	match	a	literal	caret
at	the	beginning	of	a	string	you	would	write	\^.

\a	This	matches	the	ASCII	bell	character	(BEL,	0x07).
\f	This	matches	the	ASCII	form	feed	character	(FF,	0x0C).
\n	This	matches	the	ASCII	line	feed	character	(LF,	0x0A,	Unix	newline).
\r	This	matches	the	ASCII	carriage	return	character	(CR,	0x0D).
\t	This	matches	the	ASCII	horizontal	tab	character	(HT,	0x09).
\v	This	matches	the	ASCII	vertical	tab	character	(VT,	0x0B).
\xhhhh	This	matches	the	Unicode	character	corresponding	to	the
hexadecimal	number	hhhh	(between	0x0000	and	0xFFFF).	\0ooo	(i.e.,	\zero
ooo)	matches	the	ASCII/Latin-1	character	corresponding	to	the	octal
number	ooo	(between	0	and	0377).
.	(dot)	This	matches	any	character	(including	newline).
\d	This	matches	a	digit	(see	QChar::isDigit()).
\D	This	matches	a	non-digit.
\s	This	matches	a	whitespace	(see	QChar::isSpace()).
\S	This	matches	a	non-whitespace.
\w	This	matches	a	word	character	(see	QChar::isLetterOrNumber()).
\W	This	matches	a	non-word	character.
\n	The	n-th	backreference,	e.g.	\1,	\2,	etc.

Note	that	the	C++	compiler	transforms	backslashes	in	strings	so	to	include	a	\
in	a	regexp	you	will	need	to	enter	it	twice,	i.e.	\\.

Sets	of	Characters

Square	brackets	are	used	to	match	any	character	in	the	set	of	characters
contained	within	the	square	brackets.	All	the	character	set	abbreviations
described	above	can	be	used	within	square	brackets.	Apart	from	the	character	set
abbreviations	and	the	following	two	exceptions	no	characters	have	special
meanings	in	square	brackets.

^	The	caret	negates	the	character	set	if	it	occurs	as	the	first	character,	i.e.
immediately	after	the	opening	square	bracket.	For	example,	[abc]	matches
'a'	or	'b'	or	'c',	but	[^abc]	matches	anything	except	'a',	'b'	and	'c'.

-	The	dash	is	used	to	indicate	a	range	of	characters,	for	example	[W-Z]
matches	'W'	or	'X'	or	'Y'	or	'Z'.

Using	the	predefined	character	set	abbreviations	is	more	portable	than	using
character	ranges	across	platforms	and	languages.	For	example,	[0-9]	matches	a
digit	in	Western	alphabets	but	\d	matches	a	digit	in	any	alphabet.

Note	that	in	most	regexp	literature	sets	of	characters	are	called	"character
classes".

Quantifiers

By	default	an	expression	is	automatically	quantified	by	{1,1},	i.e.	it	should	occur
exactly	once.	In	the	following	list	E	stands	for	any	expression.	An	expression	is
a	character	or	an	abbreviation	for	a	set	of	characters	or	a	set	of	characters	in
square	brackets	or	any	parenthesised	expression.

E?	Matches	zero	or	one	occurrence	of	E.	This	quantifier	means	"the
previous	expression	is	optional"	since	it	will	match	whether	or	not	the
expression	occurs	in	the	string.	It	is	the	same	as	E{0,1}.	For	example
dents?	will	match	'dent'	and	'dents'.

E+	Matches	one	or	more	occurrences	of	E.	This	is	the	same	as
E{1,MAXINT}.	For	example,	0+	will	match	'0',	'00',	'000',	etc.

E*	Matches	zero	or	more	occurrences	of	E.	This	is	the	same	as
E{0,MAXINT}.	The	*	quantifier	is	often	used	by	a	mistake.	Since	it

matches	zero	or	more	occurrences	it	will	match	no	occurrences	at	all.	For
example	if	we	want	to	match	strings	that	end	in	whitespace	and	use	the
regexp	\s*$	we	would	get	a	match	on	every	string.	This	is	because	we	have
said	find	zero	or	more	whitespace	followed	by	the	end	of	string,	so	even
strings	that	don't	end	in	whitespace	will	match.	The	regexp	we	want	in	this
case	is	\s+$	to	match	strings	that	have	at	least	one	whitespace	at	the	end.

E{n}	Matches	exactly	n	occurrences	of	the	expression.	This	is	the	same	as
repeating	the	expression	n	times.	For	example,	x{5}	is	the	same	as	xxxxx.	It
is	also	the	same	as	E{n,n},	e.g.	x{5,5}.

E{n,}	Matches	at	least	n	occurrences	of	the	expression.	This	is	the	same	as
E{n,MAXINT}.

E{,m}	Matches	at	most	m	occurrences	of	the	expression.	This	is	the	same	as
E{0,m}.

E{n,m}	Matches	at	least	n	occurrences	of	the	expression	and	at	most	m
occurrences	of	the	expression.

(MAXINT	is	implementation	dependent	but	will	not	be	smaller	than	1024.)

If	we	wish	to	apply	a	quantifier	to	more	than	just	the	preceding	character	we	can
use	parentheses	to	group	characters	together	in	an	expression.	For	example,	tag+
matches	a	't'	followed	by	an	'a'	followed	by	at	least	one	'g',	whereas	(tag)+
matches	at	least	one	occurrence	of	'tag'.

Note	that	quantifiers	are	"greedy".	They	will	match	as	much	text	as	they	can.	For
example,	0+	will	match	as	many	zeros	as	it	can	from	the	first	zero	it	finds,	e.g.
'2.0005'.	Quantifiers	can	be	made	non-greedy,	see	setMinimal().

Capturing	Text

Parentheses	allow	us	to	group	elements	together	so	that	we	can	quantify	and
capture	them.	For	example	if	we	have	the	expression
mail|letter|correspondence	that	matches	a	string	we	know	that	one	of	the	words
matched	but	not	which	one.	Using	parentheses	allows	us	to	"capture"	whatever	is
matched	within	their	bounds,	so	if	we	used	(mail|letter|correspondence)	and
matched	this	regexp	against	the	string	"I	sent	you	some	email"	we	can	use	the

cap()	or	capturedTexts()	functions	to	extract	the	matched	characters,	in	this	case
'mail'.

We	can	use	captured	text	within	the	regexp	itself.	To	refer	to	the	captured	text	we
use	backreferences	which	are	indexed	from	1,	the	same	as	for	cap().	For	example
we	could	search	for	duplicate	words	in	a	string	using	\b(\w+)\W+\1\b	which
means	match	a	word	boundary	followed	by	one	or	more	word	characters
followed	by	one	or	more	non-word	characters	followed	by	the	same	text	as	the
first	parenthesised	expression	followed	by	a	word	boundary.

If	we	want	to	use	parentheses	purely	for	grouping	and	not	for	capturing	we	can
use	the	non-capturing	syntax,	e.g.	(?:green|blue).	Non-capturing	parentheses
begin	'(?:'	and	end	')'.	In	this	example	we	match	either	'green'	or	'blue'	but	we	do
not	capture	the	match	so	we	only	know	whether	or	not	we	matched	but	not
which	color	we	actually	found.	Using	non-capturing	parentheses	is	more
efficient	than	using	capturing	parentheses	since	the	regexp	engine	has	to	do	less
book-keeping.

Both	capturing	and	non-capturing	parentheses	may	be	nested.

Assertions

Assertions	make	some	statement	about	the	text	at	the	point	where	they	occur	in
the	regexp	but	they	do	not	match	any	characters.	In	the	following	list	E	stands
for	any	expression.

^	The	caret	signifies	the	beginning	of	the	string.	If	you	wish	to	match	a
literal	^	you	must	escape	it	by	writing	\^.	For	example,	^#include	will	only
match	strings	which	begin	with	the	characters	'#include'.	(When	the	caret	is
the	first	character	of	a	character	set	it	has	a	special	meaning,	see	Sets	of
Characters.)

$	The	dollar	signifies	the	end	of	the	string.	For	example	\d\s*$	will	match
strings	which	end	with	a	digit	optionally	followed	by	whitespace.	If	you
wish	to	match	a	literal	$	you	must	escape	it	by	writing	\$.

\b	A	word	boundary.	For	example	the	regexp	\bOK\b	means	match
immediately	after	a	word	boundary	(e.g.	start	of	string	or	whitespace)	the
letter	'O'	then	the	letter	'K'	immediately	before	another	word	boundary	(e.g.

end	of	string	or	whitespace).	But	note	that	the	assertion	does	not	actually
match	any	whitespace	so	if	we	write	(\bOK\b)	and	we	have	a	match	it	will
only	contain	'OK'	even	if	the	string	is	"Its	OK	now".

\B	A	non-word	boundary.	This	assertion	is	true	wherever	\b	is	false.	For
example	if	we	searched	for	\Bon\B	in	"Left	on"	the	match	would	fail	(space
and	end	of	string	aren't	non-word	boundaries),	but	it	would	match	in
"tonne".

(?=E)	Positive	lookahead.	This	assertion	is	true	if	the	expression	matches	at
this	point	in	the	regexp.	For	example,	const(?=\s+char)	matches	'const'
whenever	it	is	followed	by	'char',	as	in	'static	const	char	*'.	(Compare	with
const\s+char,	which	matches	'static	const	char	*'.)

(?!E)	Negative	lookahead.	This	assertion	is	true	if	the	expression	does	not
match	at	this	point	in	the	regexp.	For	example,	const(?!\s+char)	matches
'const'	except	when	it	is	followed	by	'char'.

Wildcard	Matching	(globbing)

Most	command	shells	such	as	bash	or	cmd	support	"file	globbing",	the	ability	to
identify	a	group	of	files	by	using	wildcards.	The	setWildcard()	function	is	used
to	switch	between	regexp	and	wildcard	mode.	Wildcard	matching	is	much
simpler	than	full	regexps	and	has	only	four	features:

c	Any	character	represents	itself	apart	from	those	mentioned	below.	Thus	c
matches	the	character	c.

?	This	matches	any	single	character.	It	is	the	same	as	.	in	full	regexps.

*	This	matches	zero	or	more	of	any	characters.	It	is	the	same	as	.*	in	full
regexps.

[...]	Sets	of	characters	can	be	represented	in	square	brackets,	similar	to	full
regexps.	Within	the	character	class,	like	outside,	backslash	has	no	special
meaning.

For	example	if	we	are	in	wildcard	mode	and	have	strings	which	contain
filenames	we	could	identify	HTML	files	with	*.html.	This	will	match	zero	or
more	characters	followed	by	a	dot	followed	by	'h',	't',	'm'	and	'l'.

Notes	for	Perl	Users

Most	of	the	character	class	abbreviations	supported	by	Perl	are	supported	by
QRegExp,	see	characters	and	abbreviations	for	sets	of	characters.

In	QRegExp,	apart	from	within	character	classes,	^	always	signifies	the	start	of
the	string,	so	carets	must	always	be	escaped	unless	used	for	that	purpose.	In	Perl
the	meaning	of	caret	varies	automagically	depending	on	where	it	occurs	so
escaping	it	is	rarely	necessary.	The	same	applies	to	$	which	in	QRegExp	always
signifies	the	end	of	the	string.

QRegExp's	quantifiers	are	the	same	as	Perl's	greedy	quantifiers.	Non-greedy
matching	cannot	be	applied	to	individual	quantifiers,	but	can	be	applied	to	all	the
quantifiers	in	the	pattern.	For	example,	to	match	the	Perl	regexp	ro+?m	requires:

				QRegExp	rx("ro+m");

				rx.setMinimal(TRUE);

		

The	equivalent	of	Perl's	/i	option	is	setCaseSensitive(FALSE).

Perl's	/g	option	can	be	emulated	using	a	loop.

In	QRegExp	.	matches	any	character,	therefore	all	QRegExp	regexps	have	the
equivalent	of	Perl's	/s	option.	QRegExp	does	not	have	an	equivalent	to	Perl's	/m
option,	but	this	can	be	emulated	in	various	ways	for	example	by	splitting	the
input	into	lines	or	by	looping	with	a	regexp	that	searches	for	newlines.

Because	QRegExp	is	string	oriented	there	are	no	\A,	\Z	or	\z	assertions.	The	\G
assertion	is	not	supported	but	can	be	emulated	in	a	loop.

Perl's	$&	is	cap(0)	or	capturedTexts()[0].	There	are	no	QRegExp	equivalents	for
$`,	$'	or	$+.	Perl's	capturing	variables,	$1,	$2,	...	correspond	to	cap(1)	or
capturedTexts()[1],	cap(2)	or	capturedTexts()[2],	etc.

To	substitute	a	pattern	use	QString::replace().

Perl's	extended	/x	syntax	is	not	supported,	nor	are	regexp	comments	(?
#comment)	or	directives,	e.g.	(?i).

Both	zero-width	positive	and	zero-width	negative	lookahead	assertions	(?

=pattern)	and	(?!pattern)	are	supported	with	the	same	syntax	as	Perl.	Perl's
lookbehind	assertions,	"independent"	subexpressions	and	conditional
expressions	are	not	supported.

Non-capturing	parentheses	are	also	supported,	with	the	same	(?:pattern)	syntax.

See	QStringList::split()	and	QStringList::join()	for	equivalents	to	Perl's	split	and
join	functions.

Note:	because	C++	transforms	\'s	they	must	be	written	twice	in	code,	e.g.	\b	must
be	written	\\b.

Code	Examples

				QRegExp	rx("^\\d\\d?$");		//	match	integers	0	to	99

				rx.search("123");									//	returns	-1	(no	match)

				rx.search("-6");										//	returns	-1	(no	match)

				rx.search("6");											//	returns	0	(matched	as	position	0)

		

The	third	string	matches	'6'.	This	is	a	simple	validation	regexp	for	integers	in	the
range	0	to	99.

				QRegExp	rx("^\\S+$");					//	match	strings	without	whitespace

				rx.search("Hello	world");	//	returns	-1	(no	match)

				rx.search("This_is-OK");		//	returns	0	(matched	at	position	0)

		

The	second	string	matches	'This_is-OK'.	We've	used	the	character	set
abbreviation	'\S'	(non-whitespace)	and	the	anchors	to	match	strings	which
contain	no	whitespace.

In	the	following	example	we	match	strings	containing	'mail'	or	'letter'	or
'correspondence'	but	only	match	whole	words	i.e.	not	'email'

				QRegExp	rx("\\b(mail|letter|correspondence)\\b");

				rx.search("I	sent	you	an	email");					//	returns	-1	(no	match)

				rx.search("Please	write	the	letter");	//	returns	17

		

The	second	string	matches	"Please	write	the	letter".	The	word	'letter'	is	also
captured	(because	of	the	parentheses).	We	can	see	what	text	we've	captured	like
this:

				QString	captured	=	rx.cap(1);	//	captured	contains	"letter"

		

This	will	capture	the	text	from	the	first	set	of	capturing	parentheses	(counting
capturing	left	parentheses	from	left	to	right).	The	parentheses	are	counted	from	1
since	cap(0)	is	the	whole	matched	regexp	(equivalent	to	'&'	in	most	regexp
engines).

				QRegExp	rx("&(?!amp;)");						//	match	ampersands	but	not	&

				QString	line1	=	"This	&	that";

				line1.replace(rx,	"&");

				//	line1	==	"This	&	that"

				QString	line2	=	"His	&	hers	&	theirs";

				line2.replace(rx,	"&");

				//	line2	==	"His	&	hers	&	theirs"

		

Here	we've	passed	the	QRegExp	to	QString's	replace()	function	to	replace	the
matched	text	with	new	text.

				QString	str	=	"One	Eric	another	Eirik,	and	an	Ericsson."

																		"	How	many	Eiriks,	Eric?";

				QRegExp	rx("\\b(Eric|Eirik)\\b");	//	match	Eric	or	Eirik

				int	pos	=	0;				//	where	we	are	in	the	string

				int	count	=	0;		//	how	many	Eric	and	Eirik's	we've	counted

				while	(pos	>=	0)	{

								pos	=	rx.search(str,	pos);

								if	(pos	>=	0)	{

												pos++;						//	move	along	in	str

												count++;				//	count	our	Eric	or	Eirik

								}

				}

		

We've	used	the	search()	function	to	repeatedly	match	the	regexp	in	the	string.
Note	that	instead	of	moving	forward	by	one	character	at	a	time	pos++	we	could
have	written	pos	+=	rx.matchedLength()	to	skip	over	the	already	matched
string.	The	count	will	equal	3,	matching	'One	Eric	another	Eirik,	and	an
Ericsson.	How	many	Eiriks,	Eric?';	it	doesn't	match	'Ericsson'	or	'Eiriks'	because
they	are	not	bounded	by	non-word	boundaries.

One	common	use	of	regexps	is	to	split	lines	of	delimited	data	into	their
component	fields.

				str	=	"Trolltech	AS\twww.trolltech.com\tNorway";

				QString	company,	web,	country;

				rx.setPattern("^([^\t]+)\t([^\t]+)\t([^\t]+)$");

				if	(rx.search(str)	!=	-1)	{

								company	=	rx.cap(1);

								web	=	rx.cap(2);

								country	=	rx.cap(3);

				}

		

In	this	example	our	input	lines	have	the	format	company	name,	web	address	and
country.	Unfortunately	the	regexp	is	rather	long	and	not	very	versatile	--	the	code
will	break	if	we	add	any	more	fields.	A	simpler	and	better	solution	is	to	look	for
the	separator,	'\t'	in	this	case,	and	take	the	surrounding	text.	The	QStringList
split()	function	can	take	a	separator	string	or	regexp	as	an	argument	and	split	a
string	accordingly.

				QStringList	field	=	QStringList::split("\t",	str);

		

Here	field[0]	is	the	company,	field[1]	the	web	address	and	so	on.

To	imitate	the	matching	of	a	shell	we	can	use	wildcard	mode.

				QRegExp	rx("*.html");					//	invalid	regexp:	*	doesn't	quantify	anything

				rx.setWildcard(TRUE);					//	now	it's	a	valid	wildcard	regexp

				rx.search("index.html");		//	returns	0	(matched	at	position	0)

				rx.search("default.htm");	//	returns	-1	(no	match)

				rx.search("readme.txt");		//	returns	-1	(no	match)

		

Wildcard	matching	can	be	convenient	because	of	its	simplicity,	but	any	wildcard
regexp	can	be	defined	using	full	regexps,	e.g.	.*\.html$.	Notice	that	we	can't
match	both	.html	and	.htm	files	with	a	wildcard	unless	we	use	*.htm*	which
will	also	match	'test.html.bak'.	A	full	regexp	gives	us	the	precision	we	need,
.*\.html?$.

QRegExp	can	match	case	insensitively	using	setCaseSensitive(),	and	can	use
non-greedy	matching,	see	setMinimal().	By	default	QRegExp	uses	full	regexps
but	this	can	be	changed	with	setWildcard().	Searching	can	be	forward	with
search()	or	backward	with	searchRev().	Captured	text	can	be	accessed	using
capturedTexts()	which	returns	a	string	list	of	all	captured	strings,	or	using	cap()
which	returns	the	captured	string	for	the	given	index.	The	pos()	function	takes	a

match	index	and	returns	the	position	in	the	string	where	the	match	was	made	(or
-1	if	there	was	no	match).

See	also	QRegExpValidator,	QString,	QStringList,	Miscellaneous	Classes,
Implicitly	and	Explicitly	Shared	Classes	and	Non-GUI	Classes.

Member	Function	Documentation

QRegExp::QRegExp	()

Constructs	an	empty	regexp.

See	also	isValid().

QRegExp::QRegExp	(const	QString	&	pattern,
bool	caseSensitive	=	TRUE,	bool	wildcard	=	FALSE)

Constructs	a	regular	expression	object	for	the	given	pattern	string.	The	pattern
must	be	given	using	wildcard	notation	if	wildcard	is	TRUE	(default	is	FALSE).
The	pattern	is	case	sensitive,	unless	caseSensitive	is	FALSE.	Matching	is	greedy
(maximal),	but	can	be	changed	by	calling	setMinimal().

See	also	setPattern(),	setCaseSensitive(),	setWildcard()	and	setMinimal().

QRegExp::QRegExp	(const	QRegExp	&	rx)

Constructs	a	regular	expression	as	a	copy	of	rx.

See	also	operator=().

QRegExp::~QRegExp	()

Destroys	the	regular	expression	and	cleans	up	its	internal	data.

QString	QRegExp::cap	(int	nth	=	0)

Returns	the	text	captured	by	the	nth	subexpression.	The	entire	match	has	index	0
and	the	parenthesized	subexpressions	have	indices	starting	from	1	(excluding
non-capturing	parentheses).

				QRegExp	rxlen("(\\d+)(?:\\s*)(cm|inch)");

				int	pos	=	rxlen.search("Length:	189cm");

				if	(pos	>	-1)	{

								QString	value	=	rxlen.cap(1);	//	"189"

								QString	unit	=	rxlen.cap(2);		//	"cm"

								//	...

				}

		

The	order	of	elements	matched	by	cap()	is	as	follows.	The	first	element,	cap(0),
is	the	entire	matching	string.	Each	subsequent	element	corresponds	to	the	next
capturing	open	left	parentheses.	Thus	cap(1)	is	the	text	of	the	first	capturing
parentheses,	cap(2)	is	the	text	of	the	second,	and	so	on.

Some	patterns	may	lead	to	a	number	of	matches	which	cannot	be	determined	in
advance,	for	example:

				QRegExp	rx("(\\d+)");

				str	=	"Offsets:	12	14	99	231	7";

				QStringList	list;

				pos	=	0;

				while	(pos	>=	0)	{

								pos	=	rx.search(str,	pos);

								if	(pos	>	-1)	{

												list	+=	rx.cap(1);

												pos		+=	rx.matchedLength();

								}

				}

				//	list	contains	"12",	"14",	"99",	"231",	"7"

		

See	also	capturedTexts(),	pos(),	exactMatch(),	search()	and	searchRev().

QStringList	QRegExp::capturedTexts	()

Returns	a	list	of	the	captured	text	strings.

The	first	string	in	the	list	is	the	entire	matched	string.	Each	subsequent	list
element	contains	a	string	that	matched	a	(capturing)	subexpression	of	the	regexp.

For	example:

				QRegExp	rx("(\\d+)(\\s*)(cm|inch(es)?)");

				int	pos	=	rx.search("Length:	36	inches");

				QStringList	list	=	rx.capturedTexts();

				//	list	is	now	("36	inches",	"36",	"	",	"inches",	"es")

				

The	above	example	also	captures	elements	that	may	be	present	but	which	we
have	no	interest	in.	This	problem	can	be	solved	by	using	non-capturing
parentheses:

				QRegExp	rx("(\\d+)(?:\\s*)(cm|inch(?:es)?)");

				int	pos	=	rx.search("Length:	36	inches");

				QStringList	list	=	rx.capturedTexts();

				//	list	is	now	("36	inches",	"36",	"inches")

		

Note	that	if	you	want	to	iterate	over	the	list,	you	should	iterate	over	a	copy,	e.g.

				QStringList	list	=	rx.capturedTexts();

				QStringList::Iterator	it	=	list.begin();

				while(it	!=	list.end())	{

								myProcessing(*it);

								++it;

				}

				

Some	regexps	can	match	an	indeterminate	number	of	times.	For	example	if	the
input	string	is	"Offsets:	12	14	99	231	7"	and	the	regexp,	rx,	is	(\d+)+,	we	would
hope	to	get	a	list	of	all	the	numbers	matched.	However,	after	calling
rx.search(str),	capturedTexts()	will	return	the	list	("12",	"12"),	i.e.	the	entire
match	was	"12"	and	the	first	subexpression	matched	was	"12".	The	correct
approach	is	to	use	cap()	in	a	loop.

The	order	of	elements	in	the	string	list	is	as	follows.	The	first	element	is	the
entire	matching	string.	Each	subsequent	element	corresponds	to	the	next
capturing	open	left	parentheses.	Thus	capturedTexts()[1]	is	the	text	of	the	first
capturing	parentheses,	capturedTexts()[2]	is	the	text	of	the	second	and	so	on
(corresponding	to	$1,	$2,	etc.,	in	some	other	regexp	languages).

See	also	cap(),	pos(),	exactMatch(),	search()	and	searchRev().

bool	QRegExp::caseSensitive	()	const

Returns	TRUE	if	case	sensitivity	is	enabled,	otherwise	FALSE.	The	default	is
TRUE.

See	also	setCaseSensitive().

bool	QRegExp::exactMatch	(const	QString	&	str)	const

Returns	TRUE	if	str	is	matched	exactly	by	this	regular	expression	otherwise	it
returns	FALSE.	You	can	determine	how	much	of	the	string	was	matched	by
calling	matchedLength().

For	a	given	regexp	string,	R,	exactMatch("R")	is	the	equivalent	of	search("^R$")
since	exactMatch()	effectively	encloses	the	regexp	in	the	start	of	string	and	end
of	string	anchors,	except	that	it	sets	matchedLength()	differently.

For	example,	if	the	regular	expression	is	blue,	then	exactMatch()	returns	TRUE
only	for	input	blue.	For	inputs	bluebell,	blutak	and	lightblue,	exactMatch()
returns	FALSE	and	matchedLength()	will	return	4,	3	and	0	respectively.

Although	const,	this	function	sets	matchedLength(),	capturedTexts()	and	pos().

See	also	search(),	searchRev()	and	QRegExpValidator.

bool	QRegExp::isEmpty	()	const

Returns	TRUE	if	the	pattern	string	is	empty,	otherwise	FALSE.

If	you	call	exactMatch()	with	an	empty	pattern	on	an	empty	string	it	will	return
TRUE;	otherwise	it	returns	FALSE	since	it	operates	over	the	whole	string.	If	you
call	search()	with	an	empty	pattern	on	any	string	it	will	return	the	start	position
(0	by	default)	since	it	will	match	at	the	start	position,	because	the	empty	pattern
matches	the	'emptiness'	at	the	start	of	the	string,	and	the	length	of	the	match
returned	by	matchedLength()	will	be	0.

See	QString::isEmpty().

bool	QRegExp::isValid	()	const

Returns	TRUE	if	the	regular	expression	is	valid,	or	FALSE	if	it's	invalid.	An
invalid	regular	expression	never	matches.

The	pattern	[a-z	is	an	example	of	an	invalid	pattern,	since	it	lacks	a	closing
square	bracket.

Note	that	the	validity	of	a	regexp	may	also	depend	on	the	setting	of	the	wildcard
flag,	for	example	*.html	is	a	valid	wildcard	regexp	but	an	invalid	full	regexp.

int	QRegExp::match	(const	QString	&	str,	int	index	=	0,	int	*	len
=	0,	bool	indexIsStart	=	TRUE)	const

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Attempts	to	match	in	str,	starting	from	position	index.	Returns	the	position	of	the
match,	or	-1	if	there	was	no	match.

The	length	of	the	match	is	stored	in	*len,	unless	len	is	a	null	pointer.

If	indexIsStart	is	TRUE	(the	default),	the	position	index	in	the	string	will	match
the	start	of	string	anchor,	^,	in	the	regexp,	if	present.	Otherwise,	position	0	in	str
will	match.

Use	search()	and	matchedLength()	instead	of	this	function.

If	you	really	need	the	indexIsStart	functionality,	try	this:

				QRegExp	rx("some	pattern");

				int	pos	=	rx.search(str.mid(index));

				if	(pos	>=	0)

								pos	+=	index;

				int	len	=	rx.matchedLength();

		

Where	performance	is	important,	you	can	replace	str.mid(index)	by
QConstString(str.unicode()	+	index,	str.length()	-	index).string(),
which	avoids	copying	the	character	data.

See	also	QString::mid()	and	QConstString.

Example:	qmag/qmag.cpp.

int	QRegExp::matchedLength	()	const

Returns	the	length	of	the	last	matched	string,	or	-1	if	there	was	no	match.

See	also	exactMatch(),	search()	and	searchRev().

bool	QRegExp::minimal	()	const

Returns	TRUE	if	minimal	(non-greedy)	matching	is	enabled,	otherwise	returns
FALSE.

See	also	setMinimal().

bool	QRegExp::operator!=	(const	QRegExp	&	rx)	const

Returns	TRUE	if	this	regular	expression	is	not	equal	to	rx;	otherwise	FALSE.

See	also	operator==().

QRegExp	&	QRegExp::operator=	(const	QRegExp	&	rx)

Copies	the	regular	expression	rx	and	returns	a	reference	to	the	copy.	The	case
sensitivity,	wildcard	and	minimal	matching	options	are	copied	as	well.

bool	QRegExp::operator==	(const	QRegExp	&	rx)	const

Returns	TRUE	if	this	regular	expression	is	equal	to	rx;	otherwise	returns	FALSE.

Two	QRegExp	objects	are	equal	if	they	have	the	same	pattern	strings	and	the
same	settings	for	case	sensitivity,	wildcard	and	minimal	matching.

QString	QRegExp::pattern	()	const

Returns	the	pattern	string	of	the	regular	expression.	The	pattern	has	either
regular	expression	syntax	or	wildcard	syntax,	depending	on	wildcard().

See	also	setPattern().

int	QRegExp::pos	(int	nth	=	0)

Returns	the	position	of	the	nth	captured	text	in	the	searched	string.	If	nth	is	0
(the	default),	pos()	returns	the	position	of	the	whole	match.

Example:

				QRegExp	rx("/([a-z]+)/([a-z]+)");

				rx.search("Output	/dev/null");				//	returns	7	(position	of	/dev/null)

				rx.pos(0);																								//	returns	7	(position	of	/dev/null)

				rx.pos(1);																								//	returns	8	(position	of	dev)

				rx.pos(2);																								//	returns	12	(position	of	null)

		

For	zero-length	matches,	pos()	always	returns	-1.	(For	example,	if	cap(4)	would
return	an	empty	string,	pos(4)	returns	-1.)	This	is	due	to	an	implementation
tradeoff.

See	also	capturedTexts(),	exactMatch(),	search()	and	searchRev().

int	QRegExp::search	(const	QString	&	str,	int	start	=	0)	const

Attempts	to	find	a	match	in	str	from	position	start	(0	by	default).	If	start	is	-1,
the	search	starts	at	the	last	character;	if	-2,	at	the	next	to	last	character;	etc.

Returns	the	position	of	the	first	match,	or	-1	if	there	was	no	match.

You	might	prefer	to	use	QString::find(),	QString::contains()	or	even
QStringList::grep().	To	replace	matches	use	QString::replace().

Example:

				QString	str	=	"offsets:	1.23	.50	71.00	6.00";

				QRegExp	rx("\\d*\\.\\d+");				//	primitive	floating	point	matching

				int	count	=	0;

				int	pos	=	0;

				while	(pos	>=	0)	{

								pos	=	rx.search(str,	pos);

								pos	+=	rx.matchedLength();

								count++;

				}

				//	pos	will	be	9,	14,	18	and	finally	24;	count	will	end	up	as	4

		

The	above	example	is	slightly	subtle.	When	the	search	fails	to	find	a	match,	it
returns	-1	and	matchedLength()	is	0.	So	pos	+=	matchedLength()	will	leave
pos	as	-1	and	the	loop	will	terminate.

Although	const,	this	function	sets	matchedLength(),	capturedTexts()	and	pos().

See	also	searchRev()	and	exactMatch().

int	QRegExp::searchRev	(const	QString	&	str,	int	start	=	-1)
const

Attempts	to	find	a	match	backwards	in	str	from	position	start.	If	start	is	-1	(the
default),	the	search	starts	at	the	last	character;	if	-2,	at	the	next	to	last	character;
etc.

Returns	the	position	of	the	first	match,	or	-1	if	there	was	no	match.

Although	const,	this	function	sets	matchedLength(),	capturedTexts()	and	pos().

Warning:	Searching	backwards	is	much	slower	than	searching	forwards.

See	also	search()	and	exactMatch().

void	QRegExp::setCaseSensitive	(bool	sensitive)

Sets	case	sensitive	matching	to	sensitive.

If	sensitive	is	TRUE,	\.txt$	matches	readme.txt	but	not	README.TXT.

See	also	caseSensitive().

void	QRegExp::setMinimal	(bool	minimal)

Enables	or	disables	minimal	matching.	If	minimal	is	FALSE,	matching	is	greedy
(maximal)	which	is	the	default.

For	example,	suppose	we	have	the	input	string	"We	must	be	bold,	very
bold!"	and	the	pattern	.*.	With	the	default	greedy	(maximal)
matching,	the	match	is	"We	must	be	bold,	very	bold!".	But
with	minimal	(non-greedy)	matching	the	first	match	is:	"We	must	be
bold,	very	bold!"	and	the	second	match	is	"We	must	be
bold,	very	bold!".	In	practice	we	might	use	the	pattern	
[^<]+,	although	this	will	still	fail	for	nested	tags.

See	also	minimal().

void	QRegExp::setPattern	(const	QString	&	pattern)

Sets	the	pattern	string	to	pattern.	The	case	sensitivity,	wildcard	and	minimal
matching	options	are	not	changed.

See	also	pattern().

void	QRegExp::setWildcard	(bool	wildcard)

Sets	the	wildcard	mode	for	the	regular	expression.	The	default	is	FALSE.

Setting	wildcard	to	TRUE	enables	simple	shell-like	wildcard	matching.	(See
wildcard	matching	(globbing).)

For	example,	r*.txt	matches	the	string	readme.txt	in	wildcard	mode,	but	does
not	match	readme.

See	also	wildcard().

bool	QRegExp::wildcard	()	const

Returns	TRUE	if	wildcard	mode	is	enabled,	otherwise	FALSE.	The	default	is
FALSE.

See	also	setWildcard().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QThread
QThread	 ……

#include	<qthread.h>

Qt

QThread	()
virtual	~QThread	()
bool	wait	(unsigned	long	time	=	ULONG_MAX)
void	start	()
bool	finished	()	const
bool	running	()	const

Qt::HANDLE	currentThread	()
void	postEvent	(QObject	*	receiver,	QEvent	*	event)
void	exit	()

virtual	void	run	()	=	0

void	sleep	(unsigned	long	secs)
void	msleep	(unsigned	long	msecs)
void	usleep	(unsigned	long	usecs)

QThread

QThreadmain()QThread

				class	MyThread	:	public	QThread	{

				public:

								virtual	void	run();

				};

				void	MyThread::run()

				{

								for(int	count	=	0;	count	<	20;	count++)	{

												sleep(1);

												qDebug("Ping!");

								}

				}

				int	main()

				{

								MyThread	a;

								MyThread	b;

								a.start();

								b.start();

								a.wait();

								b.wait();

				}

				

20“Ping!”main() wait
main()

Qt

QThread::QThread	()

start()

QThread::~QThread	()	[]

QThread

QThread finished

Qt::HANDLE	QThread::currentThread	()	[]

Windows

void	QThread::exit	()	[]

bool	QThread::finished	()	const

void	QThread::msleep	(unsigned	long	msecs)	[]

msecs

void	QThread::postEvent	(QObject	*	receiver,	QEvent	*	event)
[]

event

receiver

QThread::postEvent

QThread::postEvent() QApplicationQThread::postEvent()QApplication

QApplication::postEvent()

void	QThread::run	()	[]

wait()

bool	QThread::running	()	const

void	QThread::sleep	(unsigned	long	secs)	[]

secs

void	QThread::start	()

run()QThread

void	QThread::usleep	(unsigned	long	usecs)	[]

usecs

bool	QThread::wait	(unsigned	long	time	=	ULONG_MAX)

POSIX	pthread_join

QThread run()

time timeULONG_MAX run()

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QDomNodeList	Class	Reference
[XML	module]

The	QDomNodeList	class	is	a	list	of	QDomNode	objects.	More...

#include	<qdom.h>

List	of	all	member	functions.

Public	Members

QDomNodeList	()
QDomNodeList	(const	QDomNodeList	&	n)
QDomNodeList	&	operator=	(const	QDomNodeList	&	n)
bool	operator==	(const	QDomNodeList	&	n)	const
bool	operator!=	(const	QDomNodeList	&	n)	const
virtual	~QDomNodeList	()
virtual	QDomNode	item	(int	index)	const
virtual	uint	length	()	const
uint	count	()	const

Detailed	Description

The	QDomNodeList	class	is	a	list	of	QDomNode	objects.

Lists	can	be	obtained	by	QDomDocument::elementsByTagName()	and
QDomNode::childNodes().	The	Document	Object	Model	(DOM)	requires	these
lists	to	be	"live":	whenever	you	change	the	underlying	document,	the	contents	of
the	list	will	get	updated.

You	can	get	a	particular	node	from	the	list	with	item().	The	number	of	items	in
the	list	is	returned	by	count()	(and	by	length()).

For	further	information	about	the	Document	Object	Model	see
http://www.w3.org/TR/REC-DOM-Level-1/	and	http://www.w3.org/TR/DOM-
Level-2-Core/.	For	a	more	general	introduction	of	the	DOM	implementation	see
the	QDomDocument	documentation.

See	also	QDomNode::childNodes(),	QDomDocument::elementsByTagName()
and	XML.

http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/DOM-Level-2-Core/

Member	Function	Documentation

QDomNodeList::QDomNodeList	()

Creates	an	empty	node	list.

QDomNodeList::QDomNodeList	(const	QDomNodeList	&	n)

Constructs	a	copy	of	n.

QDomNodeList::~QDomNodeList	()	[virtual]

Destroys	the	object	and	frees	its	resources.

uint	QDomNodeList::count	()	const

Returns	the	number	of	nodes	in	the	list.

This	function	is	the	same	as	length().

QDomNode	QDomNodeList::item	(int	index)	const	[virtual]

Returns	the	node	at	position	index.

If	index	is	negative	or	if	index	>=	length()	then	a	null	node	is	returned	(i.e.	a
node	for	which	QDomNode::isNull()	returns	TRUE).

See	also	count().

uint	QDomNodeList::length	()	const	[virtual]

Returns	the	number	of	nodes	in	the	list.

This	function	is	the	same	as	count().

bool	QDomNodeList::operator!=	(const	QDomNodeList	&	n)
const

Returns	TRUE	the	node	list	n	and	this	node	list	are	not	equal;	otherwise	returns
FALSE.

QDomNodeList	&	QDomNodeList::operator=	(
const	QDomNodeList	&	n)

Assigns	n	to	this	node	list.

bool	QDomNodeList::operator==	(const	QDomNodeList	&	n)
const

Returns	TRUE	if	the	node	list	n	and	this	node	list	are	equal;	otherwise	returns
FALSE.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QRegExpValidator	Class	Reference
The	QRegExpValidator	class	is	used	to	check	a	string	against	a	regular
expression.	More...

#include	<qvalidator.h>

Inherits	QValidator.

List	of	all	member	functions.

Public	Members

QRegExpValidator	(QObject	*	parent,	const	char	*	name	=	0)
QRegExpValidator	(const	QRegExp	&	rx,	QObject	*	parent,
const	char	*	name	=	0)
~QRegExpValidator	()
virtual	QValidator::State	validate	(QString	&	input,	int	&	pos)	const
void	setRegExp	(const	QRegExp	&	rx)
const	QRegExp	&	regExp	()	const

Detailed	Description

The	QRegExpValidator	class	is	used	to	check	a	string	against	a	regular
expression.

QRegExpValidator	contains	a	regular	expression,	"regexp",	used	to	determine
whether	an	input	string	is	Acceptable,	Intermediate	or	Invalid.

The	regexp	is	treated	as	if	it	begins	with	the	start	of	string	assertion,	^,	and	ends
with	the	end	of	string	assertion	$	so	the	match	is	against	the	entire	input	string,
or	from	the	given	position	if	a	start	position	greater	than	zero	is	given.

For	a	brief	introduction	to	Qt's	regexp	engine	see	QRegExp.

Example	of	use:

				//	regexp:	optional	'-'	followed	by	between	1	and	3	digits

				QRegExp	rx("-?\\d{1,3}");

				QRegExpValidator	validator(rx,	0);

				QLineEdit	*edit	=	new	QLineEdit(split);

				edit->setValidator(&validator);

		

Below	we	present	some	examples	of	validators.	In	practice	they	would	normally
be	associated	with	a	widget	as	in	the	example	above.

				//	integers	1	to	9999

				QRegExp	rx("[1-9]\\d{0,3}");

				//	the	validator	treats	the	regexp	as	"^[1-9]\\d{0,3}$"

				QRegExpValidator	v(rx,	0);

				QString	s;

				s	=	"0";					v.validate(s,	0);				//	returns	Invalid

				s	=	"12345";	v.validate(s,	0);				//	returns	Invalid

				s	=	"1";					v.validate(s,	0);				//	returns	Acceptable

				rx.setPattern("\\S+");												//	one	or	more	non-whitespace	characters

				v.setRegExp(rx);

				s	=	"myfile.txt";		v.validate(s,	0);	//	Returns	Acceptable

				s	=	"my	file.txt";	v.validate(s,	0);	//	Returns	Invalid

				//	A,	B	or	C	followed	by	exactly	five	digits	followed	by	W,	X,	Y	or	Z

				rx.setPattern("[A-C]\\d{5}[W-Z]");

				v.setRegExp(rx);

				s	=	"a12345Z";	v.validate(s,	0);		//	Returns	Invalid

				s	=	"A12345Z";	v.validate(s,	0);		//	Returns	Acceptable

				s	=	"B12";					v.validate(s,	0);		//	Returns	Intermediate

				//	match	most	'readme'	files

				rx.setPattern("read\\S?me(\.(txt|asc|1st))?");

				rx.setCaseSensitive(FALSE);

				v.setRegExp(rx);

				s	=	"readme";						v.validate(s,	0);	//	Returns	Acceptable

				s	=	"README.1ST";		v.validate(s,	0);	//	Returns	Acceptable

				s	=	"read	me.txt";	v.validate(s,	0);	//	Returns	Invalid

				s	=	"readm";							v.validate(s,	0);	//	Returns	Intermediate

		

See	also	QRegExp,	QIntValidator,	QDoubleValidator	and	Miscellaneous
Classes.

Member	Function	Documentation

QRegExpValidator::QRegExpValidator	(QObject	*	parent,
const	char	*	name	=	0)

Constructs	a	validator	that	accepts	any	string	(including	an	empty	one)	as	valid.
The	object's	parent	is	parent	and	its	name	is	name.

QRegExpValidator::QRegExpValidator	(const	QRegExp	&	rx,
QObject	*	parent,	const	char	*	name	=	0)

Constructs	a	validator	which	accepts	all	strings	that	match	the	regular	expression
rx.	The	object's	parent	is	parent	and	its	name	is	name.

The	match	is	made	against	the	entire	string,	e.g.	if	the	regexp	is	[A-Fa-f0-9]+	it
will	be	treated	as	^[A-Fa-f0-9]+$.

QRegExpValidator::~QRegExpValidator	()

Destroys	the	validator,	freeing	any	resources	allocated.

const	QRegExp	&	QRegExpValidator::regExp	()	const

Returns	the	regular	expression	used	for	validation.

See	also	setRegExp().

void	QRegExpValidator::setRegExp	(const	QRegExp	&	rx)

Sets	the	regular	expression	used	for	validation	to	rx.

See	also	regExp().

QValidator::State	QRegExpValidator::validate	(QString	&	input,
int	&	pos)	const	[virtual]

Returns	Acceptable	if	input	is	matched	by	the	regular	expression	for	this
validator,	Intermediate	if	it	has	matched	partially	(i.e.	could	be	a	valid	match	if
additional	valid	characters	are	added),	and	Invalid	if	input	is	not	matched.

The	start	position	is	the	beginning	of	the	string	unless	pos	is	given	and	is	>	0	in
which	case	the	regexp	is	matched	from	pos	until	the	end	of	the	string.

For	example,	if	the	regular	expression	is	\w\d\d	(that	is,	word-character,	digit,
digit)	then	"A57"	is	Acceptable,	"E5"	is	Intermediate	and	"+9"	is	Invalid.

See	also	QRegExp::match().

Reimplemented	from	QValidator.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QTime
QTime	 ……

#include	<qdatetime.h>

QTime	()
QTime	(int	h,	int	m,	int	s	=	0,	int	ms	=	0)
bool	isNull	()	const
bool	isValid	()	const
int	hour	()	const
int	minute	()	const
int	second	()	const
int	msec	()	const
QString	toString	(Qt::DateFormat	f	=	Qt::TextDate)	const
QString	toString	(const	QString	&	format)	const
bool	setHMS	(int	h,	int	m,	int	s,	int	ms	=	0)
QTime	addSecs	(int	nsecs)	const
int	secsTo	(const	QTime	&	t)	const
QTime	addMSecs	(int	ms)	const
int	msecsTo	(const	QTime	&	t)	const
bool	operator==	(const	QTime	&	t)	const
bool	operator!=	(const	QTime	&	t)	const
bool	operator<	(const	QTime	&	t)	const
bool	operator<=	(const	QTime	&	t)	const
bool	operator>	(const	QTime	&	t)	const
bool	operator>=	(const	QTime	&	t)	const
void	start	()
int	restart	()
int	elapsed	()	const

QTime	currentTime	()
QTime	fromString	(const	QString	&	s,	Qt::DateFormat	f	=	Qt::TextDate)
bool	isValid	(int	h,	int	m,	int	s,	int	ms	=	0)

QDataStream	&	operator<<	(QDataStream	&	s,	const	QTime	&	t)
QDataStream	&	operator>>	(QDataStream	&	s,	QTime	&	t)

QTime

QTime

QTime24AM/PM

QTime currentTime

hour() minute() second()msec() toString()

QTimeQTime

addSecs()addMSecs()

QTime start() restart()elapsed()

QDateQDateTime

QTime::QTime	()

000:00:00.000

isValid()

QTime::QTime	(int	h,	int	m,	int	s	=	0,	int	ms	=	0)

hmsms

h023 ms059 ms0999

isValid()

QTime	QTime::addMSecs	(int	ms)	const

ms ms

addSecs()

addSecs()msecsTo()

QTime	QTime::addSecs	(int	nsecs)	const

nsecs nsecs

				QTime	n(14,	0,	0);																//	n	==	14:00:00

				QTime	t;

				t	=	n.addSecs(70);																//	t	==	14:01:10

				t	=	n.addSecs(-70);															//	t	==	13:58:50

				t	=	n.addSecs(10*60*60	+	5);						//	t	==	00:00:05

				t	=	n.addSecs(-15*60*60);									//	t	==	23:00:00

		

addMSecs() secsTo()QDateTime::addSecs()

QTime	QTime::currentTime	()	[]

aclock/aclock.cppdclock/dclock.cppt12/cannon.cpptictac/tictac.cpp

int	QTime::elapsed	()	const

start()restart()

start()restart()240

	start()restart()

start()restart()

QTime	QTime::fromString	(const	QString	&	s,	Qt::DateFormat	f
=	Qt::TextDate)	[]

sfQTime

Qt::LocalDate

int	QTime::hour	()	const

023

tictac/tictac.cpp

bool	QTime::isNull	()	const

00:00:00.000

isValid()

bool	QTime::isValid	()	const

23:30:55.74624:12:30

isNull()

bool	QTime::isValid	(int	h,	int	m,	int	s,	int	ms	=	0)	[]

h023 ms059 ms0999

				QTime::isValid(21,	10,	30);	//	

				QTime::isValid(22,	5,		62);	//	

		

int	QTime::minute	()	const

059

aclock/aclock.cpptictac/tictac.cpp

int	QTime::msec	()	const

0999

int	QTime::msecsTo	(const	QTime	&	t)	const

t t

QTime86400000-8640000086400000

secsTo()

bool	QTime::operator!=	(const	QTime	&	t)	const

t

bool	QTime::operator<	(const	QTime	&	t)	const

t

bool	QTime::operator<=	(const	QTime	&	t)	const

t

bool	QTime::operator==	(const	QTime	&	t)	const

t

bool	QTime::operator>	(const	QTime	&	t)	const

t

bool	QTime::operator>=	(const	QTime	&	t)	const

t

int	QTime::restart	()

start()restart()

start()restart()

start()restart()240

	start()restart()

start() elapsed()currentTime()

int	QTime::second	()	const

059

tictac/tictac.cpp

int	QTime::secsTo	(const	QTime	&	t)	const

t t

QTime86400-8640086400

addSecs()	and	QDateTime::secsTo().

t12/cannon.cpp

bool	QTime::setHMS	(int	h,	int	m,	int	s,	int	ms	=	0)

hmsms

h023 ms059 ms0999

isValid()

void	QTime::start	()

				QTime	t;

				t.start();																					//	

				...	//	

				qDebug("%d\n",	t.elapsed());	//	

		

restart() elapsed()currentTime()

QString	QTime::toString	(const	QString	&	format)	const

format

h	-	0023AM/PM112

hh	-	00023AM/PM0112
m	-	0059
mm	-	00059
s	-	0059
ss	-	00059
z	-	00999
zzz	-	0000999
AP	-	AM/PM AP“AM”“PM”
ap	-	am/pm ap“am”“pm”

QTime14:13:09.042

“hh:mm:ss.zzz”“14:13:09.042”
“h:m:s	ap”“2:13:9	pm”

QDate::toString()QTime::toString()

QString	QTime::toString	(Qt::DateFormat	f	=	Qt::TextDate)
const

f

fQt::TextDateHH:MM:SS“23:59:59”

fQt::ISODateISO	8601HH:MM:SS

fQt::LocalDate

QDataStream	&	operator<<	(QDataStream	&	s,	const	QTime	&	t
)

ts

QDataStream

QDataStream	&	operator>>	(QDataStream	&	s,	QTime	&	t)

st

QDataStream

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QBrush	Class	Reference
The	QBrush	class	defines	the	fill	pattern	of	shapes	drawn	by	a	QPainter.	More...

#include	<qbrush.h>

Inherits	Qt.

List	of	all	member	functions.

Public	Members

QBrush	()
QBrush	(BrushStyle	style)
QBrush	(const	QColor	&	color,	BrushStyle	style	=	SolidPattern)
QBrush	(const	QColor	&	color,	const	QPixmap	&	pixmap)
QBrush	(const	QBrush	&	b)
~QBrush	()
QBrush	&	operator=	(const	QBrush	&	b)
BrushStyle	style	()	const
void	setStyle	(BrushStyle	s)
const	QColor	&	color	()	const
void	setColor	(const	QColor	&	c)
QPixmap	*	pixmap	()	const
void	setPixmap	(const	QPixmap	&	pixmap)
bool	operator==	(const	QBrush	&	b)	const
bool	operator!=	(const	QBrush	&	b)	const

Related	Functions

QDataStream	&	operator<<	(QDataStream	&	s,	const	QBrush	&	b)
QDataStream	&	operator>>	(QDataStream	&	s,	QBrush	&	b)

Detailed	Description

The	QBrush	class	defines	the	fill	pattern	of	shapes	drawn	by	a	QPainter.

A	brush	has	a	style	and	a	color.	One	of	the	brush	styles	is	a	custom	pattern,
which	is	defined	by	a	QPixmap.

The	brush	style	defines	the	fill	pattern.	The	default	brush	style	is	NoBrush
(depending	on	how	you	construct	a	brush).	This	style	tells	the	painter	to	not	fill
shapes.	The	standard	style	for	filling	is	SolidPattern.

The	brush	color	defines	the	color	of	the	fill	pattern.	The	QColor	documentation
lists	the	predefined	colors.

Use	the	QPen	class	for	specifying	line/outline	styles.

Example:

								QPainter	painter;

								QBrush			brush(yellow);											//	yellow	solid	pattern

								painter.begin(&anyPaintDevice);			//	paint	something

								painter.setBrush(brush);										//	set	the	yellow	brush

								painter.setPen(NoPen);												//	do	not	draw	outline

								painter.drawRect(40,30,	200,100);	//	draw	filled	rectangle

								painter.setBrush(NoBrush);								//	do	not	fill

								painter.setPen(black);												//	set	black	pen,	0	pixel	width

								painter.drawRect(10,10,	30,20);			//	draw	rectangle	outline

								painter.end();																						//	painting	done

				

See	the	setStyle()	function	for	a	complete	list	of	brush	styles.

See	also	QPainter,	QPainter::setBrush(),	QPainter::setBrushOrigin(),	Graphics
Classes,	Image	Processing	Classes	and	Implicitly	and	Explicitly	Shared	Classes.

Member	Function	Documentation

QBrush::QBrush	()

Constructs	a	default	black	brush	with	the	style	NoBrush	(will	not	fill	shapes).

QBrush::QBrush	(BrushStyle	style)

Constructs	a	black	brush	with	the	style	style.

See	also	setStyle().

QBrush::QBrush	(const	QColor	&	color,	BrushStyle	style	=
SolidPattern)

Constructs	a	brush	with	the	color	color	and	the	style	style.

See	also	setColor()	and	setStyle().

QBrush::QBrush	(const	QColor	&	color,
const	QPixmap	&	pixmap)

Constructs	a	brush	with	the	color	color	and	a	custom	pattern	stored	in	pixmap.

The	color	will	only	have	an	effect	for	monochrome	pixmaps,	i.e.	for
QPixmap::depth()	==	1.

See	also	setColor()	and	setPixmap().

QBrush::QBrush	(const	QBrush	&	b)

Constructs	a	brush	that	is	a	shallow	copy	of	b.

QBrush::~QBrush	()

Destroys	the	brush.

const	QColor	&	QBrush::color	()	const

Returns	the	brush	color.

See	also	setColor().

bool	QBrush::operator!=	(const	QBrush	&	b)	const

Returns	TRUE	if	the	brush	is	different	from	b;	otherwise	returns	FALSE.

Two	brushes	are	different	if	they	have	different	styles,	colors	or	pixmaps.

See	also	operator==().

QBrush	&	QBrush::operator=	(const	QBrush	&	b)

Assigns	b	to	this	brush	and	returns	a	reference	to	this	brush.

bool	QBrush::operator==	(const	QBrush	&	b)	const

Returns	TRUE	if	the	brush	is	equal	to	b;	otherwise	returns	FALSE.

Two	brushes	are	equal	if	they	have	equal	styles,	colors	and	pixmaps.

See	also	operator!=().

QPixmap	*	QBrush::pixmap	()	const

Returns	a	pointer	to	the	custom	brush	pattern,	or	0	if	no	custom	brush	pattern	has
been	set.

See	also	setPixmap().

Example:	richtext/richtext.cpp.

void	QBrush::setColor	(const	QColor	&	c)

Sets	the	brush	color	to	c.

See	also	color()	and	setStyle().

Example:	picture/picture.cpp.

void	QBrush::setPixmap	(const	QPixmap	&	pixmap)

Sets	the	brush	pixmap	to	pixmap.	The	style	is	set	to	CustomPattern.

The	current	brush	color	will	only	have	an	effect	for	monochrome	pixmaps,	i.e.
for	QPixmap::depth()	==	1.

See	also	pixmap()	and	color().

Example:	richtext/richtext.cpp.

void	QBrush::setStyle	(BrushStyle	s)

Sets	the	brush	style	to	s.

The	brush	styles	are:

Pattern Meaning
NoBrush will	not	fill	shapes	(default).
SolidPattern solid	(100%)	fill	pattern.
Dense1Pattern 94%	fill	pattern.
Dense2Pattern 88%	fill	pattern.
Dense3Pattern 63%	fill	pattern.
Dense4Pattern 50%	fill	pattern.
Dense5Pattern 37%	fill	pattern.
Dense6Pattern 12%	fill	pattern.
Dense7Pattern 6%	fill	pattern.
HorPattern horizontal	lines	pattern.
VerPattern vertical	lines	pattern.
CrossPattern crossing	lines	pattern.
BDiagPattern diagonal	lines	(directed	/)	pattern.
FDiagPattern diagonal	lines	(directed	\)	pattern.

DiagCrossPattern diagonal	crossing	lines	pattern.
CustomPattern set	when	a	pixmap	pattern	is	being	used.

On	Windows,	only	the	dense	patterns	are	transparent.

See	the	Detailed	Description	for	a	picture	of	all	the	styles.

See	also	style().

BrushStyle	QBrush::style	()	const

Returns	the	brush	style.

See	also	setStyle().

Related	Functions

QDataStream	&	operator<<	(QDataStream	&	s,
const	QBrush	&	b)

Writes	the	brush	b	to	the	stream	s	and	returns	a	reference	to	the	stream.

See	also	Format	of	the	QDataStream	operators.

QDataStream	&	operator>>	(QDataStream	&	s,	QBrush	&	b)

Reads	the	brush	b	from	the	stream	s	and	returns	a	reference	to	the	stream.

See	also	Format	of	the	QDataStream	operators.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QDomNotation	Class	Reference
[XML	module]

The	QDomNotation	class	represents	an	XML	notation.	More...

#include	<qdom.h>

Inherits	QDomNode.

List	of	all	member	functions.

Public	Members

QDomNotation	()
QDomNotation	(const	QDomNotation	&	x)
QDomNotation	&	operator=	(const	QDomNotation	&	x)
~QDomNotation	()
QString	publicId	()	const
QString	systemId	()	const
virtual	QDomNode::NodeType	nodeType	()	const
virtual	bool	isNotation	()	const

Detailed	Description

The	QDomNotation	class	represents	an	XML	notation.

A	notation	either	declares,	by	name,	the	format	of	an	unparsed	entity	(see	section
4.7	of	the	XML	1.0	specification),	or	is	used	for	formal	declaration	of	processing
instruction	targets	(see	section	2.6	of	the	XML	1.0	specification).

DOM	does	not	support	editing	notation	nodes;	they	are	therefore	read-only.

A	notation	node	does	not	have	any	parent.

You	can	retrieve	the	publicId()	and	systemId()	from	a	notation	node.

For	further	information	about	the	Document	Object	Model	see
http://www.w3.org/TR/REC-DOM-Level-1/	and	http://www.w3.org/TR/DOM-
Level-2-Core/.	For	a	more	general	introduction	of	the	DOM	implementation	see
the	QDomDocument	documentation.

See	also	XML.

http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/DOM-Level-2-Core/

Member	Function	Documentation

QDomNotation::QDomNotation	()

Constructor.

QDomNotation::QDomNotation	(const	QDomNotation	&	x)

Constructs	a	copy	of	x.

The	data	of	the	copy	is	shared	(shallow	copy):	modifying	one	node	will	also
change	the	other.	If	you	want	to	make	a	deep	copy,	use	cloneNode().

QDomNotation::~QDomNotation	()

Destroys	the	object	and	frees	its	resources.

bool	QDomNotation::isNotation	()	const	[virtual]

Returns	TRUE.

Reimplemented	from	QDomNode.

QDomNode::NodeType	QDomNotation::nodeType	()	const
[virtual]

Returns	NotationNode.

Reimplemented	from	QDomNode.

QDomNotation	&	QDomNotation::operator=	(
const	QDomNotation	&	x)

Assigns	x	to	this	DOM	notation.

The	data	of	the	copy	is	shared	(shallow	copy):	modifying	one	node	will	also
change	the	other.	If	you	want	to	make	a	deep	copy,	use	cloneNode().

QString	QDomNotation::publicId	()	const

Returns	the	public	identifier	of	this	notation.

QString	QDomNotation::systemId	()	const

Returns	the	system	identifier	of	this	notation.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QLayout	Class	Reference
The	QLayout	class	is	the	base	class	of	geometry	managers.	More...

#include	<qlayout.h>

Inherits	QObject	and	QLayoutItem.

Inherited	by	QGridLayout	and	QBoxLayout.

List	of	all	member	functions.

Public	Members

QLayout	(QWidget	*	parent,	int	margin	=	0,	int	spacing	=	-1,
const	char	*	name	=	0)
QLayout	(QLayout	*	parentLayout,	int	spacing	=	-1,	const	char	*	name	=
0)
QLayout	(int	spacing	=	-1,	const	char	*	name	=	0)
int	margin	()	const
int	spacing	()	const
virtual	void	setMargin	(int)
virtual	void	setSpacing	(int)
enum	ResizeMode	{	FreeResize,	Minimum,	Fixed	}
void	setResizeMode	(ResizeMode)
ResizeMode	resizeMode	()	const
virtual	void	setMenuBar	(QMenuBar	*	w)
QMenuBar	*	menuBar	()	const
QWidget	*	mainWidget	()
bool	isTopLevel	()	const
virtual	void	setAutoAdd	(bool	b)
bool	autoAdd	()	const
virtual	void	invalidate	()
bool	activate	()
void	add	(QWidget	*	w)
virtual	void	addItem	(QLayoutItem	*	item)	=	0
virtual	QSizePolicy::ExpandData	expanding	()	const
virtual	QSize	minimumSize	()	const
virtual	QSize	maximumSize	()	const
virtual	void	setGeometry	(const	QRect	&	r)	=	0
virtual	QLayoutIterator	iterator	()	=	0
virtual	bool	isEmpty	()	const
bool	supportsMargin	()	const
void	setEnabled	(bool	enable)
bool	isEnabled	()	const

Properties

int	margin	-	the	width	of	the	outside	border	of	the	layout
ResizeMode	resizeMode	-	the	resize	mode	of	the	layout
int	spacing	-	the	spacing	between	widgets	inside	the	layout

Protected	Members

void	addChildLayout	(QLayout	*	l)
void	deleteAllItems	()
void	setSupportsMargin	(bool	b)
QRect	alignmentRect	(const	QRect	&	r)	const

Detailed	Description

The	QLayout	class	is	the	base	class	of	geometry	managers.

This	is	an	abstract	base	class	inherited	by	the	concrete	classes,	QBoxLayout	and
QGridLayout.

For	users	of	QLayout	subclasses	or	of	QMainWindow	there	is	seldom	any	need
to	use	the	basic	functions	provided	by	QLayout,	such	as	resizeMode	or
setMenuBar().	See	the	layout	overview	page	for	more	information.

To	make	your	own	layout	manager,	subclass	QGLayoutIterator	and	implement
the	functions	addItem(),	sizeHint(),	setGeometry(),	and	iterator().	You	should
also	implement	minimumSize()	to	ensure	your	layout	isn't	resized	to	zero	size	if
there	is	too	little	space.	To	support	children	whose	heights	depend	on	their
widths,	implement	hasHeightForWidth()	and	heightForWidth().	See	the	custom
layout	page	for	an	in-depth	description.

Geometry	management	stops	when	the	layout	manager	is	deleted.

See	also	Widget	Appearance	and	Style	and	Layout	Management.

Member	Type	Documentation

QLayout::ResizeMode

The	possible	values	are:

QLayout::Fixed	-	The	main	widget's	size	is	set	to	sizeHint();	it	cannot	be
resized	at	all.
QLayout::Minimum	-	The	main	widget's	minimum	size	is	set	to
minimumSize();	it	cannot	be	smaller.
QLayout::FreeResize	-	The	widget	is	not	constrained.

Member	Function	Documentation

QLayout::QLayout	(QWidget	*	parent,	int	margin	=	0,
int	spacing	=	-1,	const	char	*	name	=	0)

Constructs	a	new	top-level	QLayout	called	name,	with	main	widget	parent.
parent	may	not	be	0.

The	margin	is	the	number	of	pixels	between	the	edge	of	the	widget	and	the
managed	children.	The	spacing	sets	the	value	of	spacing(),	which	gives	the
spacing	between	the	managed	widgets.	If	spacing	is	-1	(the	default),	spacing	is
set	to	the	value	of	margin.

There	can	be	only	one	top-level	layout	for	a	widget.	It	is	returned	by
QWidget::layout()

QLayout::QLayout	(QLayout	*	parentLayout,	int	spacing	=	-1,
const	char	*	name	=	0)

Constructs	a	new	child	QLayout	called	name,	and	places	it	inside	parentLayout
by	using	the	default	placement	defined	by	addItem().

If	spacing	is	-1,	this	QLayout	inherits	parentLayout's	spacing(),	otherwise	the
value	of	spacing	is	used.

QLayout::QLayout	(int	spacing	=	-1,	const	char	*	name	=	0)

Constructs	a	new	child	QLayout	called	name.	If	spacing	is	-1,	this	QLayout
inherits	its	parent's	spacing();	otherwise	the	value	of	spacing	is	used.

This	layout	has	to	be	inserted	into	another	layout	before	geometry	management
will	work.

bool	QLayout::activate	()

Redoes	the	layout	for	mainWidget().	You	should	generally	not	need	to	call	this
because	it	is	automatically	called	at	the	most	appropriate	times.

However,	if	you	set	up	a	QLayout	for	a	visible	widget	without	resizing	that
widget,	you	will	need	to	call	this	function	in	order	to	lay	it	out.

See	also	QWidget::updateGeometry().

Examples:	layout/layout.cpp,	popup/popup.cpp,	scrollview/scrollview.cpp	and
sql/overview/form1/main.cpp.

void	QLayout::add	(QWidget	*	w)

Adds	widget	w	to	this	layout	in	a	manner	specific	to	the	layout.	This	function
uses	addItem().

Examples:	customlayout/border.cpp	and	customlayout/main.cpp.

void	QLayout::addChildLayout	(QLayout	*	l)	[protected]

This	function	is	called	from	addLayout()	functions	in	subclasses	to	add	layout	l
as	a	sub-layout.

void	QLayout::addItem	(QLayoutItem	*	item)	[pure	virtual]

Implemented	in	subclasses	to	add	an	item.	How	it	is	added	is	specific	to	each
subclass.

The	ownership	of	item	is	transferred	to	the	layout,	and	it's	the	layout's
responsibility	to	delete	it.

Examples:	customlayout/border.cpp,	customlayout/card.cpp	and
customlayout/flow.cpp.

Reimplemented	in	QGridLayout	and	QBoxLayout.

QRect	QLayout::alignmentRect	(const	QRect	&	r)	const
[protected]

Returns	the	rectangle	that	should	be	covered	when	the	geometry	of	this	layout	is
set	to	r,	provided	that	this	layout	supports	setAlignment().

The	result	is	derived	from	sizeHint()	and	expanding().	It	is	never	larger	than	r.

bool	QLayout::autoAdd	()	const

Returns	TRUE	if	this	layout	automatically	grabs	all	new	mainWidget()'s	new
children	and	adds	them	as	defined	by	addItem();	otherwise	returns	FALSE.	This
has	effect	only	for	top-level	layouts,	i.e.	layouts	that	are	direct	children	of	their
mainWidget().

autoAdd()	is	disabled	by	default.

Note	that	a	top-level	layout	is	not	necessarily	associated	with	the	top-level
widget.

See	also	setAutoAdd().

void	QLayout::deleteAllItems	()	[protected]

Removes	and	deletes	all	items	in	this	layout.

QSizePolicy::ExpandData	QLayout::expanding	()	const
[virtual]

Returns	whether	this	layout	can	make	use	of	more	space	than	sizeHint().	A	value
of	Vertical	or	Horizontal	means	that	it	wants	to	grow	in	only	one	dimension,
whereas	BothDirections	means	that	it	wants	to	grow	in	both	dimensions.

The	default	implementation	returns	BothDirections.

Examples:	customlayout/border.cpp	and	customlayout/flow.cpp.

Reimplemented	from	QLayoutItem.

Reimplemented	in	QGridLayout	and	QBoxLayout.

void	QLayout::invalidate	()	[virtual]

Invalidates	cached	information.	Reimplementations	must	call	this.

Reimplemented	from	QLayoutItem.

Reimplemented	in	QGridLayout	and	QBoxLayout.

bool	QLayout::isEmpty	()	const	[virtual]

Returns	TRUE	if	this	layout	is	empty.	The	default	implementation	returns
FALSE.

Reimplemented	from	QLayoutItem.

bool	QLayout::isEnabled	()	const

Returns	TRUE	if	the	layout	is	enabled;	otherwise	returns	FALSE.

See	also	setEnabled().

bool	QLayout::isTopLevel	()	const

Returns	TRUE	if	this	layout	is	a	top-level	layout,	i.e.	not	a	child	of	another
layout;	otherwise	returns	FALSE.

QLayoutIterator	QLayout::iterator	()	[pure	virtual]

Implemented	in	subclasses	to	return	an	iterator	that	iterates	over	this	layout's
children.

A	typical	implementation	will	be:

								QLayoutIterator	MyLayout::iterator()

								{

												QGLayoutIterator	*i	=	new	MyLayoutIterator(internal_data);

												return	QLayoutIterator(i);

								}

				

where	MyLayoutIterator	is	a	subclass	of	QGLayoutIterator.

Examples:	customlayout/border.cpp,	customlayout/card.cpp	and
customlayout/flow.cpp.

Reimplemented	from	QLayoutItem.

QWidget	*	QLayout::mainWidget	()

Returns	the	main	widget	(parent	widget)	of	this	layout,	or	0	if	this	layout	is	a
sub-layout	that	is	not	yet	inserted.

int	QLayout::margin	()	const

Returns	the	width	of	the	outside	border	of	the	layout.	See	the	"margin"	property
for	details.

QSize	QLayout::maximumSize	()	const	[virtual]

Returns	the	maximum	size	of	this	layout.	This	is	the	largest	size	that	the	layout
can	have	while	still	respecting	the	specifications.	Does	not	include	what's	needed
by	margin()	or	menuBar().

The	default	implementation	allows	unlimited	resizing.

Reimplemented	from	QLayoutItem.

Reimplemented	in	QGridLayout	and	QBoxLayout.

QMenuBar	*	QLayout::menuBar	()	const

Returns	the	menu	bar	set	for	this	layout,	or	0	if	no	menu	bar	is	set.

QSize	QLayout::minimumSize	()	const	[virtual]

Returns	the	minimum	size	of	this	layout.	This	is	the	smallest	size	that	the	layout
can	have	while	still	respecting	the	specifications.	Does	not	include	what's	needed
by	margin()	or	menuBar().

The	default	implementation	allows	unlimited	resizing.

Examples:	customlayout/border.cpp,	customlayout/card.cpp	and
customlayout/flow.cpp.

Reimplemented	from	QLayoutItem.

Reimplemented	in	QGridLayout	and	QBoxLayout.

ResizeMode	QLayout::resizeMode	()	const

Returns	the	resize	mode	of	the	layout.	See	the	"resizeMode"	property	for	details.

void	QLayout::setAutoAdd	(bool	b)	[virtual]

If	b	is	TRUE,	auto-add	is	enabled;	otherwise	auto-add	is	disabled.

See	also	autoAdd().

Example:	i18n/main.cpp.

void	QLayout::setEnabled	(bool	enable)

Enables	this	layout	if	enable	is	TRUE,	otherwise	disables	it.

An	enabled	layout	adjusts	dynamically	to	changes;	a	disabled	layout	acts	as	if	it
did	not	exist.

By	default	all	layouts	are	enabled.

See	also	isEnabled().

void	QLayout::setGeometry	(const	QRect	&	r)	[pure	virtual]

This	function	is	reimplemented	in	subclasses	to	perform	layout.

The	default	implementation	maintains	the	geometry()	information	given	by	rect
r.	Reimplementors	must	call	this	function.

Examples:	customlayout/border.cpp,	customlayout/card.cpp	and
customlayout/flow.cpp.

Reimplemented	from	QLayoutItem.

Reimplemented	in	QGridLayout	and	QBoxLayout.

void	QLayout::setMargin	(int)	[virtual]

Sets	the	width	of	the	outside	border	of	the	layout.	See	the	"margin"	property	for
details.

void	QLayout::setMenuBar	(QMenuBar	*	w)	[virtual]

Makes	the	geometry	manager	take	account	of	the	menu	bar	w.	All	child	widgets
are	placed	below	the	bottom	edge	of	the	menu	bar.

A	menu	bar	does	its	own	geometry	management:	never	do	addWidget()	on	a
QMenuBar.

Examples:	layout/layout.cpp	and	scrollview/scrollview.cpp.

void	QLayout::setResizeMode	(ResizeMode)

Sets	the	resize	mode	of	the	layout.	See	the	"resizeMode"	property	for	details.

void	QLayout::setSpacing	(int)	[virtual]

Sets	the	spacing	between	widgets	inside	the	layout.	See	the	"spacing"	property
for	details.

void	QLayout::setSupportsMargin	(bool	b)	[protected]

Sets	the	value	returned	by	supportsMargin().	If	b	is	TRUE,	margin()	handling	is
implemented	by	the	subclass.	If	b	is	FALSE	(the	default),	QLayout	will	add
margin()	around	top-level	layouts.

If	b	is	TRUE,	margin	handling	needs	to	be	implemented	in	setGeometry(),
maximumSize(),	minimumSize(),	sizeHint()	and	heightForWidth().

See	also	supportsMargin().

int	QLayout::spacing	()	const

Returns	the	spacing	between	widgets	inside	the	layout.	See	the	"spacing"
property	for	details.

bool	QLayout::supportsMargin	()	const

Returns	TRUE	if	this	layout	supports	QLayout::margin	on	non-top-level	layouts;
otherwise	returns	FALSE.

See	also	margin.

Property	Documentation

int	margin

This	property	holds	the	width	of	the	outside	border	of	the	layout.

For	some	layout	classes	this	property	has	an	effect	only	on	top-level	layouts;
QBoxLayout	and	QGridLayout	support	margins	for	child	layouts.	The	default
value	is	0.

See	also	spacing.

Set	this	property's	value	with	setMargin()	and	get	this	property's	value	with
margin().

ResizeMode	resizeMode

This	property	holds	the	resize	mode	of	the	layout.

The	default	mode	is	Minimum	for	top-level	widgets	and	FreeResize	for	all
others.

See	also	QLayout::ResizeMode.

Set	this	property's	value	with	setResizeMode()	and	get	this	property's	value	with
resizeMode().

int	spacing

This	property	holds	the	spacing	between	widgets	inside	the	layout.

The	default	value	is	-1,	which	signifies	that	the	layout's	spacing	should	not
override	the	widget's	spacing.

See	also	margin.

Set	this	property's	value	with	setSpacing()	and	get	this	property's	value	with
spacing().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QTimeEdit	Class	Reference
The	QTimeEdit	class	provides	a	time	editor.	More...

#include	<qdatetimeedit.h>

List	of	all	member	functions.

Public	Members

QTimeEdit	(QWidget	*	parent	=	0,	const	char	*	name	=	0)
QTimeEdit	(const	QTime	&	time,	QWidget	*	parent	=	0,
const	char	*	name	=	0)
~QTimeEdit	()
virtual	void	setTime	(const	QTime	&	time)
QTime	time	()	const
virtual	void	setAutoAdvance	(bool	advance)
bool	autoAdvance	()	const
virtual	void	setMinValue	(const	QTime	&	d)
QTime	minValue	()	const
virtual	void	setMaxValue	(const	QTime	&	d)
QTime	maxValue	()	const
virtual	void	setRange	(const	QTime	&	min,	const	QTime	&	max)
QString	separator	()	const
virtual	void	setSeparator	(const	QString	&	s)

Signals

void	valueChanged	(const	QTime	&	time)

Properties

bool	autoAdvance	-	whether	the	editor	automatically	advances	to	the	next
section
QTime	maxValue	-	the	maximum	time	value
QTime	minValue	-	the	minimum	time	value
QTime	time	-	the	time	value	of	the	editor

Protected	Members

virtual	QString	sectionFormattedText	(int	sec)
virtual	void	setHour	(int	h)
virtual	void	setMinute	(int	m)
virtual	void	setSecond	(int	s)

Protected	Slots

void	updateButtons	()

Detailed	Description

The	QTimeEdit	class	provides	a	time	editor.

QTimeEdit	allows	the	user	to	edit	times	by	using	the	keyboard	or	the	arrow	keys
to	increase/decrease	time	values.	The	arrow	keys	can	be	used	to	move	from
section	to	section	within	the	QTimeEdit	box.	The	user	can	automatically	be
moved	to	the	next	section	once	they	complete	a	section	using	setAutoAdvance().
Times	appear	in	hour,	minute,	second	order.	It	is	recommended	that	the
QTimeEdit	be	initialised	with	a	time,	e.g.

				QTime	timeNow	=	QTime::currentTime();

				QTimeEdit	*timeEdit	=	new	QTimeEdit(timeNow,	this);

				timeEdit->setRange(timeNow,	timeNow.addSecs(60	*	60));

				

Here	we've	created	a	QTimeEdit	widget	set	to	the	current	time.	We've	also	set
the	minimum	value	to	the	current	time	and	the	maximum	time	to	one	hour	from
now.

The	maximum	and	minimum	values	for	a	time	value	in	the	time	editor	default	to
the	maximum	and	minimum	values	for	a	QTime.	You	can	change	this	by	calling
setMinValue(),	setMaxValue()	or	setRange().

Terminology:	A	QTimeWidget	consists	of	three	sections,	one	each	for	the	hour,
minute	and	second.	You	can	change	the	separator	character	using	setSeparator(),
by	default	the	separator	is	read	from	the	system's	settings.

See	also	QTime,	QDateEdit,	QDateTimeEdit,	Advanced	Widgets	and	Time	and
Date.

Member	Function	Documentation

QTimeEdit::QTimeEdit	(QWidget	*	parent	=	0,
const	char	*	name	=	0)

Constructs	an	empty	time	edit	with	parent	parent	and	name	name.

QTimeEdit::QTimeEdit	(const	QTime	&	time,	QWidget	*	parent
=	0,	const	char	*	name	=	0)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Constructs	a	time	edit	with	the	initial	time	value,	time,	parent	parent	and	name
name.

QTimeEdit::~QTimeEdit	()

Destroys	the	object	and	frees	any	allocated	resources.

bool	QTimeEdit::autoAdvance	()	const

Returns	TRUE	if	the	editor	automatically	advances	to	the	next	section;	otherwise
returns	FALSE.	See	the	"autoAdvance"	property	for	details.

QTime	QTimeEdit::maxValue	()	const

Returns	the	maximum	time	value.	See	the	"maxValue"	property	for	details.

QTime	QTimeEdit::minValue	()	const

Returns	the	minimum	time	value.	See	the	"minValue"	property	for	details.

QString	QTimeEdit::sectionFormattedText	(int	sec)	[virtual
protected]

Returns	the	formatted	number	for	section	sec.	This	will	correspond	to	either	the
hour,	minute	or	second	section,	depending	on	sec.

QString	QTimeEdit::separator	()	const

Returns	the	separator	for	the	editor.

void	QTimeEdit::setAutoAdvance	(bool	advance)	[virtual]

Sets	whether	the	editor	automatically	advances	to	the	next	section	to	advance.
See	the	"autoAdvance"	property	for	details.

void	QTimeEdit::setHour	(int	h)	[virtual	protected]

Sets	the	hour	to	h,	which	must	be	a	valid	hour,	i.e.	in	the	range	0..24.

void	QTimeEdit::setMaxValue	(const	QTime	&	d)	[virtual]

Sets	the	maximum	time	value	to	d.	See	the	"maxValue"	property	for	details.

void	QTimeEdit::setMinValue	(const	QTime	&	d)	[virtual]

Sets	the	minimum	time	value	to	d.	See	the	"minValue"	property	for	details.

void	QTimeEdit::setMinute	(int	m)	[virtual	protected]

Sets	the	minute	to	m,	which	must	be	a	valid	minute,	i.e.	in	the	range	0..59.

void	QTimeEdit::setRange	(const	QTime	&	min,
const	QTime	&	max)	[virtual]

Sets	the	valid	input	range	for	the	editor	to	be	from	min	to	max	inclusive.	If	min	is
invalid	no	minimum	time	is	set.	Similarly,	if	max	is	invalid	no	maximum	time	is
set.

void	QTimeEdit::setSecond	(int	s)	[virtual	protected]

Sets	the	second	to	s,	which	must	be	a	valid	second,	i.e.	in	the	range	0..59.

void	QTimeEdit::setSeparator	(const	QString	&	s)	[virtual]

Sets	the	separator	to	s.	Note	that	currently	only	the	first	character	of	s	is	used.

void	QTimeEdit::setTime	(const	QTime	&	time)	[virtual]

Sets	the	time	value	of	the	editor	to	time.	See	the	"time"	property	for	details.

QTime	QTimeEdit::time	()	const

Returns	the	time	value	of	the	editor.	See	the	"time"	property	for	details.

void	QTimeEdit::updateButtons	()	[protected	slot]

Enables/disables	the	push	buttons	according	to	the	min/max	time	for	this	widget.

void	QTimeEdit::valueChanged	(const	QTime	&	time)	[signal]

This	signal	is	emitted	whenever	the	editor's	value	changes.	The	time	parameter	is
the	new	value.

Property	Documentation

bool	autoAdvance

This	property	holds	whether	the	editor	automatically	advances	to	the	next
section.

If	autoAdvance	is	TRUE,	the	editor	will	automatically	advance	focus	to	the	next
time	section	if	a	user	has	completed	a	section.	The	default	is	FALSE.

Set	this	property's	value	with	setAutoAdvance()	and	get	this	property's	value
with	autoAdvance().

QTime	maxValue

This	property	holds	the	maximum	time	value.

Setting	the	maximum	time	value	is	equivalent	to	calling	QTimeEdit::setRange(
minValue(),	t),	where	t	is	the	maximum	time.	The	default	maximum	time	is
23:59:59.

Set	this	property's	value	with	setMaxValue()	and	get	this	property's	value	with
maxValue().

QTime	minValue

This	property	holds	the	minimum	time	value.

Setting	the	minimum	time	value	is	equivalent	to	calling	QTimeEdit::setRange(t,
maxValue()),	where	t	is	the	minimum	time.	The	default	minimum	time	is
00:00:00.

Set	this	property's	value	with	setMinValue()	and	get	this	property's	value	with
minValue().

QTime	time

This	property	holds	the	time	value	of	the	editor.

When	changing	the	time	property,	if	the	time	is	less	than	minValue(),	or	is
greater	than	maxValue(),	nothing	happens.

Set	this	property's	value	with	setTime()	and	get	this	property's	value	with	time().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QBuffer
QBufferQByteArray/	 ……

#include	<qbuffer.h>

QIODevice

QBuffer	()
QBuffer	(QByteArray	buf)
~QBuffer	()
QByteArray	buffer	()	const
bool	setBuffer	(QByteArray	buf)
virtual	Q_LONG	writeBlock	(const	char	*	p,	Q_ULONG	len)
Q_LONG	writeBlock	(const	QByteArray	&	data)

QBuffer QByteArray/

QBuffer QTextStreamQDataStreamQBufferQByteArray

QBuffer(QByteArray)QBuffer setBuffer()QBufferQByteArray

open() close()setBuffer()

QBuffer QDataStreamQTextStreamQBufferQDataStream
QByteArrayQBuffer

QTextStream QStringUnicodeQBuffer

QIODevicereadBlock() writeBlock() readLine() at(), getch
ungetch()QBuffer

QFileQDataStreamQTextStreamQByteArray	 /

QBuffer::QBuffer	()

QBuffer::QBuffer	(QByteArray	buf)

buf	 IO_WriteOnlyIO_ReadWrite buf

				QCString	str	=	"abc";

				QBuffer	b(str);

				b.open(IO_WriteOnly);

				b.at(3);	//	\0

				b.writeBlock("def",	4);	//	“def”\0

				b.close();

				//	str“abcdef”\0

		

setBuffer()

QBuffer::~QBuffer	()

QByteArray	QBuffer::buffer	()	const

a	href="#setBuffer">setBuffer()

bool	QBuffer::setBuffer	(QByteArray	buf)

buf

isOpen()

IO_WriteOnlyIO_ReadWrite bufQByteArray

buffer() open()close()

Q_LONG	QBuffer::writeBlock	(const	char	*	p,	Q_ULONG	len)
[]

plen

-1

readBlock()

Reimplemented	from	QIODevice.

Q_LONG	QBuffer::writeBlock	(const	QByteArray	&	data)

datawriteBlock(data.data(),	data.size())

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QDomProcessingInstruction	Class
Reference

[XML	module]
The	QDomProcessingInstruction	class	represents	an	XML	processing
instruction.	More...

#include	<qdom.h>

Inherits	QDomNode.

List	of	all	member	functions.

Public	Members

QDomProcessingInstruction	()
QDomProcessingInstruction	(const	QDomProcessingInstruction	&	x)
QDomProcessingInstruction	&	operator=	(
const	QDomProcessingInstruction	&	x)
~QDomProcessingInstruction	()
virtual	QString	target	()	const
virtual	QString	data	()	const
virtual	void	setData	(const	QString	&	d)
virtual	QDomNode::NodeType	nodeType	()	const
virtual	bool	isProcessingInstruction	()	const

Detailed	Description

The	QDomProcessingInstruction	class	represents	an	XML	processing
instruction.

Processing	instructions	are	used	in	XML	as	a	way	to	keep	processor-specific
information	in	the	text	of	the	document.

The	content	of	the	processing	instruction	is	retrieved	with	data()	and	set	with
setData().	The	processing	instruction's	target	is	retrieved	with	target().

For	further	information	about	the	Document	Object	Model	see
http://www.w3.org/TR/REC-DOM-Level-1/	and	http://www.w3.org/TR/DOM-
Level-2-Core/.	For	a	more	general	introduction	of	the	DOM	implementation	see
the	QDomDocument	documentation.

See	also	XML.

http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/DOM-Level-2-Core/

Member	Function	Documentation

QDomProcessingInstruction::QDomProcessingInstruction	()

Constructs	an	empty	processing	instruction.	Use
QDomDocument::createProcessingInstruction()	to	create	a	processing
instruction	with	content.

QDomProcessingInstruction::QDomProcessingInstruction	(
const	QDomProcessingInstruction	&	x)

Constructs	a	copy	of	x.

The	data	of	the	copy	is	shared	(shallow	copy):	modifying	one	node	will	also
change	the	other.	If	you	want	to	make	a	deep	copy,	use	cloneNode().

QDomProcessingInstruction::~QDomProcessingInstruction	()

Destroys	the	object	and	frees	its	resources.

QString	QDomProcessingInstruction::data	()	const	[virtual]

Returns	the	content	of	this	processing	instruction.

See	also	setData()	and	target().

bool	QDomProcessingInstruction::isProcessingInstruction	()	const
[virtual]

Returns	TRUE.

Reimplemented	from	QDomNode.

QDomNode::NodeType	QDomProcessingInstruction::nodeType	()
const	[virtual]

Returns	ProcessingInstructionNode.

Reimplemented	from	QDomNode.

QDomProcessingInstruction	&
QDomProcessingInstruction::operator=	(
const	QDomProcessingInstruction	&	x)

Assigns	x	to	this	processing	instruction.

The	data	of	the	copy	is	shared	(shallow	copy):	modifying	one	node	will	also
change	the	other.	If	you	want	to	make	a	deep	copy,	use	cloneNode().

void	QDomProcessingInstruction::setData	(const	QString	&	d)
[virtual]

Sets	the	data	contained	in	the	processing	instruction	to	d.

See	also	data().

QString	QDomProcessingInstruction::target	()	const	[virtual]

Returns	the	target	of	this	processing	instruction.

See	also	data().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QDomText	Class	Reference
[XML	module]

The	QDomText	class	represents	text	data	in	the	parsed	XML	document.	More...

#include	<qdom.h>

Inherits	QDomCharacterData.

Inherited	by	QDomCDATASection.

List	of	all	member	functions.

Public	Members

QDomText	()
QDomText	(const	QDomText	&	x)
QDomText	&	operator=	(const	QDomText	&	x)
~QDomText	()
QDomText	splitText	(int	offset)
virtual	QDomNode::NodeType	nodeType	()	const
virtual	bool	isText	()	const

Detailed	Description

The	QDomText	class	represents	text	data	in	the	parsed	XML	document.

You	can	split	the	text	in	a	QDomText	object	over	two	QDomText	objecs	with
splitText().

For	further	information	about	the	Document	Object	Model	see
http://www.w3.org/TR/REC-DOM-Level-1/	and	http://www.w3.org/TR/DOM-
Level-2-Core/.	For	a	more	general	introduction	of	the	DOM	implementation	see
the	QDomDocument	documentation.

See	also	XML.

http://www.w3.org/TR/REC-DOM-Level-1/
http://www.w3.org/TR/DOM-Level-2-Core/

Member	Function	Documentation

QDomText::QDomText	()

Constructs	an	empty	QDomText	object.

To	construct	a	QDomText	with	content,	use	QDomDocument::createTextNode().

QDomText::QDomText	(const	QDomText	&	x)

Constructs	a	copy	of	x.

The	data	of	the	copy	is	shared	(shallow	copy):	modifying	one	node	will	also
change	the	other.	If	you	want	to	make	a	deep	copy,	use	cloneNode().

QDomText::~QDomText	()

Destroys	the	object	and	frees	its	resources.

bool	QDomText::isText	()	const	[virtual]

Returns	TRUE.

Reimplemented	from	QDomNode.

QDomNode::NodeType	QDomText::nodeType	()	const	[virtual]

Returns	TextNode.

Reimplemented	from	QDomCharacterData.

Reimplemented	in	QDomCDATASection.

QDomText	&	QDomText::operator=	(const	QDomText	&	x)

Assigns	x	to	this	DOM	text.

The	data	of	the	copy	is	shared	(shallow	copy):	modifying	one	node	will	also
change	the	other.	If	you	want	to	make	a	deep	copy,	use	cloneNode().

QDomText	QDomText::splitText	(int	offset)

Splits	this	object	at	position	offset	into	two	QDomText	objects.	The	newly
created	object	is	inserted	into	the	document	tree	after	this	object.

The	function	returns	the	newly	created	object.

See	also	QDomNode::normalize().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QLayoutIterator	Class	Reference
The	QLayoutIterator	class	provides	iterators	over	QLayoutItem.	More...

#include	<qlayout.h>

List	of	all	member	functions.

Public	Members

QLayoutIterator	(QGLayoutIterator	*	gi)
QLayoutIterator	(const	QLayoutIterator	&	i)
~QLayoutIterator	()
QLayoutIterator	&	operator=	(const	QLayoutIterator	&	i)
QLayoutItem	*	operator++	()
QLayoutItem	*	current	()
QLayoutItem	*	takeCurrent	()
void	deleteCurrent	()

Detailed	Description

The	QLayoutIterator	class	provides	iterators	over	QLayoutItem.

Use	QLayoutItem::iterator()	to	create	an	iterator	over	a	layout.

QLayoutIterator	uses	explicit	sharing	with	a	reference	count.	If	an	iterator	is
copied	and	one	of	the	copies	is	modified,	both	iterators	will	be	modified.

A	QLayoutIterator	is	not	protected	against	changes	in	its	layout.	If	the	layout	is
modified	or	deleted	the	iterator	will	become	invalid.	It	is	not	possible	to	test	for
validity.	It	is	safe	to	delete	an	invalid	layout;	any	other	access	may	lead	to	an
illegal	memory	reference	and	the	abnormal	termination	of	the	program.

Calling	takeCurrent()	or	deleteCurrent()	leaves	the	iterator	in	a	valid	state,	but
may	invalidate	any	other	iterators	that	access	the	same	layout.

The	following	code	will	draw	a	rectangle	for	each	layout	item	in	the	layout
structure	of	the	widget.

				static	void	paintLayout(QPainter	*p,	QLayoutItem	*lay)

				{

								QLayoutIterator	it	=	lay->iterator();

								QLayoutItem	*child;

								while	((child	=	it.current())	!=	0)	{

												paintLayout(p,	child);

												it.next();

								}

								p->drawRect(lay->geometry());

				}

				void	ExampleWidget::paintEvent(QPaintEvent	*)

				{

								QPainter	p(this);

								if	(layout())

												paintLayout(&p,	layout());

				}

				

All	the	functionality	of	QLayoutIterator	is	implemented	by	subclasses	of
QGLayoutIterator.	QLayoutIterator	itself	is	not	designed	to	be	subclassed.

See	also	Widget	Appearance	and	Style	and	Layout	Management.

Member	Function	Documentation

QLayoutIterator::QLayoutIterator	(QGLayoutIterator	*	gi)

Constructs	an	iterator	based	on	gi.	The	constructed	iterator	takes	ownership	of	gi
and	will	delete	it.

This	constructor	is	provided	for	layout	implementors.	Application	programmers
should	use	QLayoutItem::iterator()	to	create	an	iterator	over	a	layout.

QLayoutIterator::QLayoutIterator	(const	QLayoutIterator	&	i)

Creates	a	shallow	copy	of	i,	i.e.	if	the	copy	is	modified,	then	the	original	will
also	be	modified.

QLayoutIterator::~QLayoutIterator	()

Destroys	the	iterator.

QLayoutItem	*	QLayoutIterator::current	()

Returns	the	current	item,	or	0	if	there	is	no	current	item.

void	QLayoutIterator::deleteCurrent	()

Removes	and	deletes	the	current	child	item	from	the	layout	and	moves	the
iterator	to	the	next	item.	This	iterator	will	still	be	valid,	but	any	other	iterator
over	the	same	layout	may	become	invalid.

QLayoutItem	*	QLayoutIterator::operator++	()

Moves	the	iterator	to	the	next	child	item	and	returns	that	item,	or	0	if	there	is	no
such	item.

QLayoutIterator	&	QLayoutIterator::operator=	(
const	QLayoutIterator	&	i)

Assigns	i	to	this	iterator	and	returns	a	reference	to	this	iterator.

QLayoutItem	*	QLayoutIterator::takeCurrent	()

Removes	the	current	child	item	from	the	layout	without	deleting	it,	and	moves
the	iterator	to	the	next	item.	Returns	the	removed	item,	or	0	if	there	was	no	item
to	be	removed.	This	iterator	will	still	be	valid,	but	any	other	iterator	over	the
same	layout	may	become	invalid.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QScreen	Class	Reference
The	QScreen	class	and	its	descendants	manage	the	framebuffer	and	palette.
More...

#include	<qgfx_qws.h>

List	of	all	member	functions.

Public	Members

QScreen	(int	display_id)
virtual	~QScreen	()
virtual	bool	initDevice	()	=	0
virtual	bool	connect	(const	QString	&	displaySpec)	=	0
virtual	void	disconnect	()	=	0
virtual	int	initCursor	(void	*	end_of_location,	bool	init	=	FALSE)
virtual	void	shutdownDevice	()
virtual	void	setMode	(int,	int,	int)	=	0
virtual	bool	supportsDepth	(int	d)	const
virtual	QGfx	*	createGfx	(unsigned	char	*	bytes,	int	w,	int	h,	int	d,
int	linestep)
virtual	QGfx	*	screenGfx	()
virtual	void	save	()
virtual	void	restore	()
virtual	void	blank	(bool	on)
virtual	int	pixmapOffsetAlignment	()
virtual	int	pixmapLinestepAlignment	()
virtual	bool	onCard	(unsigned	char	*	p)	const
virtual	bool	onCard	(unsigned	char	*	p,	ulong	&	offset)	const
virtual	void	set	(unsigned	int,	unsigned	int,	unsigned	int,	unsigned	int)
virtual	int	alloc	(unsigned	int	r,	unsigned	int	g,	unsigned	int	b)
int	width	()	const
int	height	()	const
int	depth	()	const
virtual	int	pixmapDepth	()	const
int	pixelType	()	const
int	linestep	()	const
int	deviceWidth	()	const
int	deviceHeight	()	const
uchar	*	base	()	const
virtual	uchar	*	cache	(int,	int)
virtual	void	uncache	(uchar	*)
int	screenSize	()	const
int	totalSize	()	const
QRgb	*	clut	()

int	numCols	()
virtual	QSize	mapToDevice	(const	QSize	&	s)	const
virtual	QSize	mapFromDevice	(const	QSize	&	s)	const
virtual	QPoint	mapToDevice	(const	QPoint	&,	const	QSize	&)	const
virtual	QPoint	mapFromDevice	(const	QPoint	&,	const	QSize	&)	const
virtual	QRect	mapToDevice	(const	QRect	&	r,	const	QSize	&)	const
virtual	QRect	mapFromDevice	(const	QRect	&	r,	const	QSize	&)	const
virtual	QImage	mapToDevice	(const	QImage	&	i)	const
virtual	QImage	mapFromDevice	(const	QImage	&	i)	const
virtual	QRegion	mapToDevice	(const	QRegion	&	r,	const	QSize	&)	const
virtual	QRegion	mapFromDevice	(const	QRegion	&	r,	const	QSize	&)
const
virtual	int	transformOrientation	()	const
virtual	bool	isTransformed	()	const
virtual	bool	isInterlaced	()	const
virtual	void	setDirty	(const	QRect	&)
int	*	opType	()
int	*	lastOp	()

Detailed	Description

The	QScreen	class	and	its	descendants	manage	the	framebuffer	and	palette.

QScreens	act	as	factories	for	the	screen	cursor	and	QGfx's.	QLinuxFbScreen
manages	a	Linux	framebuffer;	accelerated	drivers	subclass	QLinuxFbScreen.
There	can	only	be	one	screen	in	a	Qt/Embedded	application.

See	also	Qt/Embedded.

Member	Function	Documentation

QScreen::QScreen	(int	display_id)

Create	a	screen;	the	display_id	is	the	number	of	the	Qt/Embedded	server	to
connect	to.

QScreen::~QScreen	()	[virtual]

Destroys	a	QScreen

int	QScreen::alloc	(unsigned	int	r,	unsigned	int	g,	unsigned	int	b)
[virtual]

Given	an	RGB	value	r	g	b,	return	an	index	which	is	the	closest	match	to	it	in	the
screen's	palette.	Used	in	paletted	modes	only.

uchar	*	QScreen::base	()	const

Returns	a	pointer	to	the	start	of	the	framebuffer.

void	QScreen::blank	(bool	on)	[virtual]

If	on	is	true,	blank	the	screen.	Otherwise	unblank	it.

uchar	*	QScreen::cache	(int,	int)	[virtual]

This	function	is	used	to	store	pixmaps	in	graphics	memory	for	the	use	of	the
accelerated	drivers.	See	QLinuxFbScreen	(where	the	cacheing	is	implemented)
for	more	information.

QRgb	*	QScreen::clut	()

Returns	the	screen's	color	lookup	table	(color	palette).	This	is	only	valid	in
paletted	modes	(8bpp	and	lower).

bool	QScreen::connect	(const	QString	&	displaySpec)	[pure
virtual]

This	function	is	called	by	every	Qt/Embedded	application	on	startup.	It	maps	in
the	framebuffer	and	in	the	accelerated	drivers	the	graphics	card	control	registers.
displaySpec	has	the	following	syntax:

[gfx	driver][:driver	specific	options][:display	number]

for	example	if	you	want	to	use	the	mach64	driver	on	fb1	as	display	2:

Mach64:/dev/fb1:2

displaySpec	is	passed	in	via	the	QWS_DISPLAY	environment	variable	or	the	-
display	command	line	parameter.

QGfx	*	QScreen::createGfx	(unsigned	char	*	bytes,	int	w,	int	h,
int	d,	int	linestep)	[virtual]

Creates	a	gfx	on	an	arbitrary	buffer	bytes,	width	w	and	height	h	in	pixels,	depth	d
and	linestep	(length	in	bytes	of	each	line	in	the	buffer).	Accelerated	drivers	can
check	to	see	if	bytes	points	into	graphics	memory	and	create	an	accelerated	Gfx.

int	QScreen::depth	()	const

Gives	the	depth	in	bits	per	pixel	of	the	framebuffer.	This	is	the	number	of	bits
each	pixel	takes	up	rather	than	the	number	of	significant	bits,	so	24bpp	and
32bpp	express	the	same	range	of	colors	(8	bits	of	red,	green	and	blue)

int	QScreen::deviceHeight	()	const

Gives	the	full	height	of	the	framebuffer	device,	as	opposed	to	the	height	which
Qt/Embedded	will	actually	use.	These	can	differ	if	the	display	is	centered	within
the	framebuffer.

int	QScreen::deviceWidth	()	const

Gives	the	full	width	of	the	framebuffer	device,	as	opposed	to	the	width	which
Qt/Embedded	will	actually	use.	These	can	differ	if	the	display	is	centered	within

the	framebuffer.

void	QScreen::disconnect	()	[pure	virtual]

This	function	is	called	by	every	Qt/Embedded	application	just	before	exitting;
it's	normally	used	to	unmap	the	framebuffer.

int	QScreen::height	()	const

Gives	the	height	in	pixels	of	the	framebuffer.

int	QScreen::initCursor	(void	*	end_of_location,	bool	init	=
FALSE)	[virtual]

This	is	used	to	initialize	the	software	cursor	-	end_of_location	points	to	the
address	after	the	area	where	the	cursor	image	can	be	stored.	init	is	true	for	the
first	application	this	method	is	called	from	(the	Qt/Embedded	server),	false
otherwise.

bool	QScreen::initDevice	()	[pure	virtual]

This	function	is	called	by	the	Qt/Embedded	server	when	initializing	the
framebuffer.	Accelerated	drivers	use	it	to	set	up	the	graphics	card.

bool	QScreen::isInterlaced	()	const	[virtual]

Returns	TRUE	if	the	display	is	interlaced	(for	instance	a	television	screen);
otherwise	returns	FALSE.	If	TRUE,	drawing	is	altered	to	look	better	on	such
displays.

bool	QScreen::isTransformed	()	const	[virtual]

Returns	TRUE	if	the	screen	is	transformed	(for	instance,	rotated	90	degrees);
otherwise	returns	FALSE.	QScreen's	version	always	returns	FALSE.

int	*	QScreen::lastOp	()

Returns	the	screens	last	operation.

int	QScreen::linestep	()	const

Returns	the	length	in	bytes	of	each	scanline	of	the	framebuffer.

QSize	QScreen::mapFromDevice	(const	QSize	&	s)	const
[virtual]

Map	a	framebuffer	coordinate	to	the	coordinate	space	used	by	the	application.
Used	by	the	rotated	driver;	the	QScreen	implementation	simply	returns	s.

QPoint	QScreen::mapFromDevice	(const	QPoint	&,
const	QSize	&)	const	[virtual]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Map	a	framebuffer	coordinate	to	the	coordinate	space	used	by	the	application.
Used	by	the	rotated	driver;	the	QScreen	implementation	simply	returns	the	point.

QRect	QScreen::mapFromDevice	(const	QRect	&	r,
const	QSize	&)	const	[virtual]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Map	a	framebuffer	coordinate	to	the	coordinate	space	used	by	the	application.
Used	by	the	rotated	driver;	the	QScreen	implementation	simply	returns	r.

QImage	QScreen::mapFromDevice	(const	QImage	&	i)	const
[virtual]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Transforms	an	image	so	that	it	matches	the	application	coordinate	space	(e.g.
rotating	it	90	degrees	counter-clockwise).	The	QScreen	implementation	simply
returns	i.

QRegion	QScreen::mapFromDevice	(const	QRegion	&	r,
const	QSize	&)	const	[virtual]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Transforms	a	region	so	that	it	matches	the	application	coordinate	space	(e.g.
rotating	it	90	degrees	counter-clockwise).	The	QScreen	implementation	simply
returns	r.

QSize	QScreen::mapToDevice	(const	QSize	&	s)	const	[virtual]

Map	a	user	coordinate	to	the	one	to	actually	draw.	Used	by	the	rotated	driver;	the
QScreen	implementation	simply	returns	s.

QPoint	QScreen::mapToDevice	(const	QPoint	&,	const	QSize	&)
const	[virtual]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Map	a	user	coordinate	to	the	one	to	actually	draw.	Used	by	the	rotated	driver;	the
QScreen	implementation	simply	returns	the	point	passed	in.

QRect	QScreen::mapToDevice	(const	QRect	&	r,	const	QSize	&)
const	[virtual]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Map	a	user	coordinate	to	the	one	to	actually	draw.	Used	by	the	rotated	driver;	the
QScreen	implementation	simply	returns	r.

QImage	QScreen::mapToDevice	(const	QImage	&	i)	const
[virtual]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Transforms	an	image	so	that	it	fits	the	device	coordinate	space	(e.g.	rotating	it	90
degrees	clockwise).	The	QScreen	implementation	simply	returns	i.

QRegion	QScreen::mapToDevice	(const	QRegion	&	r,
const	QSize	&)	const	[virtual]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Transforms	a	region	so	that	it	fits	the	device	coordinate	space	(e.g.	rotating	it	90
degrees	clockwise).	The	QScreen	implementation	simply	returns	r.

int	QScreen::numCols	()

Returns	the	number	of	entries	in	the	color	table	returned	by	clut().

bool	QScreen::onCard	(unsigned	char	*	p)	const	[virtual]

Returns	true	if	the	buffer	pointed	to	by	p	is	within	graphics	card	memory,	false	if
it's	in	main	RAM.

bool	QScreen::onCard	(unsigned	char	*	p,	ulong	&	offset)	const
[virtual]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

This	checks	whether	the	buffer	specified	by	p	is	on	the	card	(as	per	the	other
version	of	onCard)	and	returns	an	offset	in	bytes	from	the	start	of	graphics	card
memory	in	offset	if	it	is.

int	*	QScreen::opType	()

Returns	the	screen's	operation	type.

int	QScreen::pixelType	()	const

Returns	an	integer	(taking	the	same	values	as	QGfx::PixelType)	that	specifies	the

pixel	storage	format	of	the	screen.

int	QScreen::pixmapDepth	()	const	[virtual]

Gives	the	preferred	depth	for	pixmaps.	By	default	this	is	the	same	as	the	screen
depth,	but	for	the	VGA16	driver	it's	8bpp.

int	QScreen::pixmapLinestepAlignment	()	[virtual]

Returns	the	value	in	bytes	to	which	individual	scanlines	of	pixmaps	held	in
graphics	card	memory	should	be	aligned.	This	is	only	useful	for	accelerated
drivers.	By	default	the	value	returned	is	64	but	it	can	be	overridden	by	individual
accelerated	drivers.

int	QScreen::pixmapOffsetAlignment	()	[virtual]

Returns	the	value	in	bytes	to	which	the	start	address	of	pixmaps	held	in	graphics
card	memory	should	be	aligned.	This	is	only	useful	for	accelerated	drivers.	By
default	the	value	returned	is	64	but	it	can	be	overridden	by	individual	accelerated
drivers.

void	QScreen::restore	()	[virtual]

Restores	the	state	of	the	graphics	card	from	a	previous	save()

void	QScreen::save	()	[virtual]

Saves	the	state	of	the	graphics	card	-	used	so	that,	for	instance,	the	palette	can	be
restored	when	switching	between	linux	virtual	consoles.	Hardware	QScreen
descendants	should	save	register	state	here	if	necessary	if	switching	between
virtual	consoles	(for	example	to/from	X)	is	to	be	permitted.

QGfx	*	QScreen::screenGfx	()	[virtual]

Returns	a	QGfx	(normally	a	QGfxRaster)	initialized	to	point	to	the	screen,	with
an	origin	at	0,0	and	a	clip	region	covering	the	whole	screen.

int	QScreen::screenSize	()	const

Returns	the	size	in	bytes	of	the	screen.	This	is	always	located	at	the	beginning	of
framebuffer	memory	(i.e.	at	base()).

void	QScreen::set	(unsigned	int,	unsigned	int,	unsigned	int,
unsigned	int)	[virtual]

Sets	an	entry	in	the	color	palette.

void	QScreen::setDirty	(const	QRect	&)	[virtual]

Indicates	which	section	of	the	screen	has	been	altered.	Used	by	the	VNC	and
VFB	displays;	the	QScreen	version	does	nothing.

void	QScreen::setMode	(int,	int,	int)	[pure	virtual]

This	function	can	be	used	to	set	the	framebuffer	width,	height	and	depth.	It's
currently	unused.

void	QScreen::shutdownDevice	()	[virtual]

Called	by	the	Qt/Embedded	server	on	shutdown;	never	called	by	a	Qt/Embedded
client.	This	is	intended	to	support	graphics	card	specific	shutdown;	the
unaccelerated	implementation	simply	hides	the	mouse	cursor.

bool	QScreen::supportsDepth	(int	d)	const	[virtual]

Returns	true	if	the	screen	supports	a	particular	color	depth	d.	Possible	values	are
1,4,8,16	and	32.

int	QScreen::totalSize	()	const

Returns	the	size	in	bytes	of	available	graphics	card	memory,	including	the
screen.	Offscreen	memory	is	only	used	by	the	accelerated	drivers.

int	QScreen::transformOrientation	()	const	[virtual]

Used	by	the	rotated	server.	The	QScreeen	implementation	returns	0.

void	QScreen::uncache	(uchar	*)	[virtual]

This	function	is	called	on	pixmap	destruction	to	remove	them	from	graphics	card
memory.

int	QScreen::width	()	const

Gives	the	width	in	pixels	of	the	framebuffer.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QTimerEvent
QTimerEvent	 ……

#include	<qevent.h>

QEvent

QTimerEvent	(int	timerId)
int	timerId	()	const

QTimerEvent

QTimer

QObject::timerEvent()

QTimerQObject::timerEvent() QObject::startTimer() QObject::killTimer() QObject::killTimers

QTimerEvent::QTimerEvent	(int	timerId)

timerId

int	QTimerEvent::timerId	()	const

QObject::startTimer()

dclock/dclock.cpp

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QDoubleValidator
QDoubleValidator	 ……

#include	<qvalidator.h>

QValidator

QDoubleValidator	(QObject	*	parent,	const	char	*	name	=	0)
QDoubleValidator	(double	bottom,	double	top,	int	decimals,
QObject	*	parent,	const	char	*	name	=	0)
~QDoubleValidator	()
virtual	QValidator::State	validate	(QString	&	input,	int	&)	const
virtual	void	setRange	(double	minimum,	double	maximum,	int	decimals	=
0)
void	setBottom	(double)
void	setTop	(double)
void	setDecimals	(int)
double	bottom	()	const
double	top	()	const
int	decimals	()	const

double	bottom	-	
int	decimals	-	
double	top	-	

QDoubleValidator

QDoubleValidator fixup

setRange()setBottom()setTop() setDecimals() validate()

QIntValidatorQRegExpValidator

QDoubleValidator::QDoubleValidator	(QObject	*	parent,
const	char	*	name	=	0)

parentname

QDoubleValidator::QDoubleValidator	(double	bottom,
double	top,	int	decimals,	QObject	*	parent,	const	char	*	name
=	0)

parentnamebottomtopdecimals

QDoubleValidator::~QDoubleValidator	()

double	QDoubleValidator::bottom	()	const

“bottom”

int	QDoubleValidator::decimals	()	const

“decimals”

void	QDoubleValidator::setBottom	(double)

“bottom”

void	QDoubleValidator::setDecimals	(int)

“decimals”

void	QDoubleValidator::setRange	(double	minimum,
double	maximum,	int	decimals	=	0)	[]

minimummaximum decimals

void	QDoubleValidator::setTop	(double)

“top”

double	QDoubleValidator::top	()	const

“top”

QValidator::State	QDoubleValidator::validate	(QString	&	input,
int	&)	const	[]

input Acceptable

input Intermediate

input Invalid

	 QValidator

double	bottom

setBottom()bottom()

setRange()

int	decimals

setDecimals()decimals()

setRange()

double	top

setTop()top()

setRange()

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QScrollBar
QScrollBar	 ……

#include	<qscrollbar.h>

QWidgetQRangeControl

QScrollBar	(QWidget	*	parent,	const	char	*	name	=	0)
QScrollBar	(Orientation	orientation,	QWidget	*	parent,	const	char	*	name
=	0)
QScrollBar	(int	minValue,	int	maxValue,	int	lineStep,	int	pageStep,
int	value,	Orientation	orientation,	QWidget	*	parent,	const	char	*	name	=	0
)
virtual	void	setOrientation	(Orientation)
Orientation	orientation	()	const
virtual	void	setTracking	(bool	enable)
bool	tracking	()	const
bool	draggingSlider	()	const
virtual	void	setPalette	(const	QPalette	&	p)
int	minValue	()	const
int	maxValue	()	const
void	setMinValue	(int)
void	setMaxValue	(int)
int	lineStep	()	const
int	pageStep	()	const
void	setLineStep	(int)
void	setPageStep	(int)
int	value	()	const
int	sliderStart	()	const
QRect	sliderRect	()	const

void	setValue	(int)

void	valueChanged	(int	value)
void	sliderPressed	()
void	sliderMoved	(int	value)
void	sliderReleased	()
void	nextLine	()
void	prevLine	()
void	nextPage	()
void	prevPage	()

bool	draggingSlider	-		
int	lineStep	-	
int	maxValue	-	
int	minValue	-	
Orientation	orientation	-	
int	pageStep	-	
bool	tracking	-	
int	value	-	

virtual	void	hideEvent	(QHideEvent	*)

QScrollBar

line-upline-down“”20
slider“”
page-up/page-down“”

QScrollBar QRangeControlsetValue()
addPage() addLine() subtractPage()subtractLine() setSteps()

pageStep()lineStep() setRange()minValue()maxValue()QScrollBar

WindowsMotifpageStep()

QRangeControlQScrollBar

valueChanged()	-		 tracking()
sliderPressed()	-	
sliderMoved()	-	
sliderReleased()	-	
nextLine()	-	QRangeControl
prevLine()	-	
nextPage()	-	
prevPage()	-	

QScrollBarQScrollBar100000

focusPolicy()NoFocussetFocusPolicy() keyPressEvent

QScrollView

	

QSliderQSpinBoxQScrollViewGUI	Design	Handbook:	Scroll	Bar

QScrollBar::QScrollBar	(QWidget	*	parent,	const	char	*	name	=
0)

parentnameQWidget

QScrollBar::QScrollBar	(Orientation	orientation,
QWidget	*	parent,	const	char	*	name	=	0)

orientationQt::VerticalQt::Horizontal

parentnameQWidget

QScrollBar::QScrollBar	(int	minValue,	int	maxValue,
int	lineStep,	int	pageStep,	int	value,	Orientation	orientation,
QWidget	*	parent,	const	char	*	name	=	0)

minValuemaxValuelineSteppageStepvalue bound()

orientationVerticalHorizontal

parentnameQWidget

bool	QScrollBar::draggingSlider	()	const

“draggingSlider”

void	QScrollBar::hideEvent	(QHideEvent	*)	[]

QWidget

int	QScrollBar::lineStep	()	const

“lineStep”

int	QScrollBar::maxValue	()	const

“maxValue”

int	QScrollBar::minValue	()	const

“minValue”>

void	QScrollBar::nextLine	()	[]

void	QScrollBar::nextPage	()	[]

Orientation	QScrollBar::orientation	()	const

“orientation”

int	QScrollBar::pageStep	()	const

“pageStep”

void	QScrollBar::prevLine	()	[]

void	QScrollBar::prevPage	()	[]

void	QScrollBar::setLineStep	(int)

“lineStep”

void	QScrollBar::setMaxValue	(int)

“maxValue”

void	QScrollBar::setMinValue	(int)

“minValue”

void	QScrollBar::setOrientation	(Orientation)	[]

“orientation”

void	QScrollBar::setPageStep	(int)

“pageStep”

void	QScrollBar::setPalette	(const	QPalette	&	p)	[]

QWidget::setPalette()

pMotif

QWidget

void	QScrollBar::setTracking	(bool	enable)	[]

enable“tracking”

void	QScrollBar::setValue	(int)	[slot]

“value”

void	QScrollBar::sliderMoved	(int	value)	[]

value

trackingvalueChanged() nextLine() prevLine() nextPage()prevPage()

void	QScrollBar::sliderPressed	()	[]

QRect	QScrollBar::sliderRect	()	const

sliderStart()

void	QScrollBar::sliderReleased	()	[]

int	QScrollBar::sliderStart	()	const

sliderRect().y()sliderRect(). x()

bool	QScrollBar::tracking	()	const

“tracking”

int	QScrollBar::value	()	const

“value”

void	QScrollBar::valueChanged	(int	value)	[]

value

bool	draggingSlider

draggingSlider()

int	lineStep

stepChange()

setSteps() QRangeControl::pageStep()setRange()

setLineStep()lineStep()

int	maxValue

QScrollBar::minValue

setRange()

setMaxValue()maxValue()

int	minValue

QScrollBar::maxValue

setRange()

setMinValue()minValue()

Orientation	orientation

Qt::Vertical Qt::Horizontal

setOrientation()orientation()

int	pageStep

stepChange()

QRangeControl::setSteps() lineStepsetRange()

setPageStep()pageStep()

bool	tracking

valueChanged()valueChanged()

setTracking()tracking()

int	value

setValue()value()

QRangeControl::value()prevValue()

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QByteArray
QByteArray	 ……

#include	<qcstring.h>

QMemArray<char>

QBitArrayQCString

QByteArray	()
QByteArray	(int	size)

QByteArray

QByteArray QByteArray QMemArray<char> QMemArray

GUI

QByteArray::QByteArray	()

QByteArray

QByteArray::QByteArray	(int	size)

sizeQByteArray

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QDragEnterEvent	Class	Reference
The	QDragEnterEvent	class	provides	an	event	which	is	sent	to	the	widget	when
a	drag	and	drop	first	drags	onto	the	widget.	More...

#include	<qevent.h>

Inherits	QDragMoveEvent.

List	of	all	member	functions.

Public	Members

QDragEnterEvent	(const	QPoint	&	pos)

Detailed	Description

The	QDragEnterEvent	class	provides	an	event	which	is	sent	to	the	widget	when
a	drag	and	drop	first	drags	onto	the	widget.

This	event	is	always	immediately	followed	by	a	QDragMoveEvent,	so	you	only
need	to	respond	to	one	or	the	other	event.	This	class	inherits	most	of	its
functionality	from	QDragMoveEvent,	which	in	turn	inherits	most	of	its
functionality	from	QDropEvent.

See	also	QDragLeaveEvent,	QDragMoveEvent,	QDropEvent,	Drag	And	Drop
Classes	and	Event	Classes.

Member	Function	Documentation

QDragEnterEvent::QDragEnterEvent	(const	QPoint	&	pos)

Constructs	a	QDragEnterEvent	entering	at	the	given	point,	pos.

Warning:	Do	not	create	a	QDragEnterEvent	yourself	since	these	objects	rely	on
Qt's	internal	state.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QLibrary	Class	Reference
The	QLibrary	class	provides	a	wrapper	for	handling	shared	libraries.	More...

#include	<qlibrary.h>

List	of	all	member	functions.

Public	Members

QLibrary	(const	QString	&	filename)
virtual	~QLibrary	()
void	*	resolve	(const	char	*	symb)
bool	load	()
virtual	bool	unload	()
bool	isLoaded	()	const
bool	autoUnload	()	const
void	setAutoUnload	(bool	enabled)
QString	library	()	const

Static	Public	Members

void	*	resolve	(const	QString	&	filename,	const	char	*	symb)

Detailed	Description

The	QLibrary	class	provides	a	wrapper	for	handling	shared	libraries.

An	instance	of	a	QLibrary	object	can	handle	a	single	shared	library	and	provide
access	to	the	functionality	in	the	library	in	a	platform	independent	way.	If	the
library	is	a	component	server,	QLibrary	provides	access	to	the	exported
component	and	can	directly	query	this	component	for	interfaces.

QLibrary	ensures	that	the	shared	library	is	loaded	and	stays	in	memory	whilst	it
is	in	use.	QLibrary	can	also	unload	the	library	on	destruction	and	release	unused
resources.

A	typical	use	of	QLibrary	is	to	resolve	an	exported	symbol	in	a	shared	object,
and	to	e.g.	call	the	function	that	this	symbol	represents.	This	is	called	"explicit
linking"	in	contrast	to	"implicit	linking",	which	is	done	by	the	link	step	in	the
build	process	when	linking	an	executable	against	a	library.

The	following	code	snippet	loads	a	library,	resolves	the	symbol	"mysymbol",
and	calls	the	function	if	everything	succeeded.	If	something	went	wrong,	e.g.	the
library	file	does	not	exist	or	the	symbol	is	not	defined,	the	function	pointer	will
become	a	null	pointer.	Upon	destruction	of	the	QLibrary	object	the	library	will
be	unloaded,	making	all	references	to	memory	allocated	in	the	library	invalid.

		typedef	void	(*MyPrototype)();

		MyPrototype	myFunction;

		QLibrary	myLib("mylib");

		myFunction	=	(MyProtoype)	myLib.resolve("mysymbol");

		if	(myFunction)	{

						myFunction();

		}

		

Member	Function	Documentation

QLibrary::QLibrary	(const	QString	&	filename)

Creates	a	QLibrary	object	for	the	shared	library	filename.	The	library	will	be
unloaded	in	the	destructor.

Note	that	filename	does	not	need	to	include	the	(platform	specific)	file	extension,
so	calling

		QLibrary	lib("mylib");

		

is	equivalent	to	calling

		QLibrary	lib("mylib.dll");

		

on	Windows.	Specifying	the	extension	is	not	recommended,	since	doing	so
introduces	a	platform	dependency.

If	filename	does	not	include	a	path,	the	library	loader	will	look	for	the	file	in	the
platform	specific	search	paths.

See	also	load(),	unload()	and	setAutoUnload().

QLibrary::~QLibrary	()	[virtual]

Deletes	the	QLibrary	object.

The	library	will	be	unloaded	if	autoUnload()	is	TRUE	(the	default),	otherwise	it
stays	in	memory	until	the	application	is	exited.

See	also	unload()	and	setAutoUnload().

bool	QLibrary::autoUnload	()	const

Returns	TRUE	if	the	library	will	be	automatically	unloaded	when	this	wrapper
object	is	destructed;	otherwise	returns	FALSE.	The	default	is	TRUE.

See	also	setAutoUnload().

bool	QLibrary::isLoaded	()	const

Returns	TRUE	if	the	library	is	loaded;	otherwise	returns	FALSE.

See	also	unload().

QString	QLibrary::library	()	const

Returns	the	filename	of	the	shared	library	this	QLibrary	object	handles,
including	the	platform	specific	file	extension.

For	example:

		QLibrary	lib("mylib");

		QString	str	=	lib.library();

		

will	set	str	to	"mylib.dll"	on	Windows,	and	"libmylib.so"	on	Linux.

bool	QLibrary::load	()

Loads	the	library.	Since	resolve()	always	calls	this	function	before	resolving	any
symbols	it	is	not	necessary	to	call	this	function	explicitly.	In	some	situations	you
might	want	the	library	loaded	in	advance,	in	which	case	you	would	call	this
function.

void	*	QLibrary::resolve	(const	char	*	symb)

Returns	the	address	of	the	exported	symbol	symb.	The	library	is	loaded	if
necessary.	The	function	returns	a	null	pointer	if	the	symbol	could	not	be	resolved
or	the	library	could	not	be	loaded.

		typedef	int	(*avgProc)(int,	int);

		avgProc	avg	=	(avgProc)	library->resolve("avg");

		if	(avg)

						return	avg(5,	8);

		else

						return	-1;

		

void	*	QLibrary::resolve	(const	QString	&	filename,
const	char	*	symb)	[static]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Loads	the	library	filename	and	returns	the	address	of	the	exported	symbol	symb.
Note	that	like	the	constructor,	filename	does	not	need	to	include	the	(platform
specific)	file	extension.	The	library	remains	loaded	until	the	process	exits.

The	function	returns	a	null	pointer	if	the	symbol	could	not	be	resolved	or	the
library	could	not	be	loaded.

This	function	is	useful	only	if	you	want	to	resolve	a	single	symbol,	e.g.	a
function	pointer	from	a	specific	library	once:

		typedef	void	(*FunctionType)();

		static	FunctionType	*ptrFunction	=	0;

		static	bool	triedResolve	=	FALSE;

		if	(!ptrFunction	&&	!triedResolve)

						ptrFunction	=	QLibrary::resolve("foo",	"function");

		if	(ptrFunction)

						ptrFunction();

		else

						...

		

If	you	want	to	resolve	multiple	symbols,	use	a	QLibrary	object	and	call	the	non-
static	version	of	resolve().

See	also

void	QLibrary::setAutoUnload	(bool	enabled)

If	enabled	is	TRUE	(the	default),	the	wrapper	object	is	set	to	automatically
unload	the	library	upon	destruction.	If	enabled	is	FALSE,	the	wrapper	object	is
not	unloaded	unless	you	explicitly	call	unload().

See	also	autoUnload().

bool	QLibrary::unload	()	[virtual]

Unloads	the	library	and	returns	TRUE	if	the	library	could	be	unloaded;
otherwise	returns	FALSE.

This	function	is	called	by	the	destructor	if	autoUnload()	is	enabled.

See	also	resolve().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QToolButton
QToolButtonQToolBar	

#include	<qtoolbutton.h>

QButton

QToolButton	(QWidget	*	parent,	const	char	*	name	=	0)
QToolButton	(const	QIconSet	&	iconSet,	const	QString	&	textLabel,
const	QString	&	grouptext,	QObject	*	receiver,	const	char	*	slot,
QToolBar	*	parent,	const	char	*	name	=	0)
QToolButton	(ArrowType	type,	QWidget	*	parent,	const	char	*	name	=	0)
~QToolButton	()
void	setOnIconSet	(const	QIconSet	&)		
void	setOffIconSet	(const	QIconSet	&)		
void	setIconSet	(const	QIconSet	&	set,	bool	on)		
QIconSet	onIconSet	()	const		
QIconSet	offIconSet	()	const		
QIconSet	iconSet	(bool	on)	const		
virtual	void	setIconSet	(const	QIconSet	&)
QIconSet	iconSet	()	const
bool	usesBigPixmap	()	const
bool	usesTextLabel	()	const
QString	textLabel	()	const
void	setPopup	(QPopupMenu	*	popup)
QPopupMenu	*	popup	()	const
void	setPopupDelay	(int	delay)
int	popupDelay	()	const
void	openPopup	()
void	setAutoRaise	(bool	enable)
bool	autoRaise	()	const

virtual	void	setUsesBigPixmap	(bool	enable)
virtual	void	setUsesTextLabel	(bool	enable)
virtual	void	setTextLabel	(const	QString	&	newLabel,	bool	tipToo)
virtual	void	setToggleButton	(bool	enable)
virtual	void	setOn	(bool	enable)
void	toggle	()
void	setTextLabel	(const	QString	&)

bool	autoRaise	-	
QIconSet	iconSet	-	
QIconSet	offIconSet	-	“”	
bool	on	-	
QIconSet	onIconSet	-	“”	
int	popupDelay	-	
QString	textLabel	-	
bool	toggleButton	-	
bool	usesBigPixmap	-	
bool	usesTextLabel	-	

bool	uses3D	()	const

QToolButton QToolBar

“”QToolButton

QToolButtonQToolBar

QIconSet

setUsesBigPixmap()setUsesTextLabel() QToolBar QMainWindow
QMainWindow::setUsesTextLabel()QMainWindow::setUsesBigPixmaps()

“”

QToolbuttonQToolbar

QPushButtonQToolBarQMainWindow

QToolButton::QToolButton	(QWidget	*	parent,
const	char	*	name	=	0)

parentname

QToolButton::QToolButton	(const	QIconSet	&	iconSet,
const	QString	&	textLabel,	const	QString	&	grouptext,
QObject	*	receiver,	const	char	*	slot,	QToolBar	*	parent,
const	char	*	name	=	0)

parent QToolBarname

iconSettextLabelgrouptextreceiverslot

QToolButton::QToolButton	(ArrowType	type,	QWidget	*	parent,
const	char	*	name	=	0)

ArrowType	 typeLeftArrowRightArrowUpArrowDownArrow

parentnameQWidget

QToolButton::~QToolButton	()

bool	QToolButton::autoRaise	()	const

“autoRaise”

QIconSet	QToolButton::iconSet	()	const

“iconSet”

QIconSet	QToolButton::iconSet	(bool	on)	const

Qt	3.0 QIconSet

oniconSet onQIconSet/

QIconSet	QToolButton::offIconSet	()	const

“” “offIconSet”

QIconSet	QToolButton::onIconSet	()	const

“” “onIconSet”

void	QToolButton::openPopup	()

QPopupMenu	*	QToolButton::popup	()	const

0

setPopup()

int	QToolButton::popupDelay	()	const

“popupDelay”

void	QToolButton::setAutoRaise	(bool	enable)

enable“autoRaise”

void	QToolButton::setIconSet	(const	QIconSet	&)	[]

“iconSet”

void	QToolButton::setIconSet	(const	QIconSet	&	set,	bool	on)

Qt	3.0 QIconSet

oniconSet onQIconSet/

iconSetQIconSet::State

void	QToolButton::setOffIconSet	(const	QIconSet	&)

“” “offIconSet”

void	QToolButton::setOn	(bool	enable)	[]

enable“on”

void	QToolButton::setOnIconSet	(const	QIconSet	&)

“” “onIconSet”

void	QToolButton::setPopup	(QPopupMenu	*	popup)

popup

“”

popup()

void	QToolButton::setPopupDelay	(int	delay)

“popupDelay”

void	QToolButton::setTextLabel	(const	QString	&)	[]

“textLabel”

void	QToolButton::setTextLabel	(const	QString	&	newLabel,
bool	tipToo)	[]

newLabeltipToo newLabel

void	QToolButton::setToggleButton	(bool	enable)	[]

enable“toggleButton”

void	QToolButton::setUsesBigPixmap	(bool	enable)	[]

enable“usesBigPixmap”

void	QToolButton::setUsesTextLabel	(bool	enable)	[]

enable“usesTextLabel”

QString	QToolButton::textLabel	()	const

“textLabel”

void	QToolButton::toggle	()	[]

toggleButtontoggled()

bool	QToolButton::uses3D	()	const	[]

drawButton()

bool	QToolButton::usesBigPixmap	()	const

“usesBigPixmap”

bool	QToolButton::usesTextLabel	()	const

“usesTextLabel”

bool	autoRaise

setAutoRaise()autoRaise()

QIconSet	iconSet

QToolButton::pixmap

pixmaptoggleButtonon

setIconSet()iconSet()

QIconSet	offIconSet

“”

Qt	3.0 QIconSet QToolButton::iconSetQToolButton::onIconSet
QToolButton::offIconSet

oniconSet onQIconSet/

iconSetQIconSet::State

setOffIconSet()offIconSet()

bool	on

toggleButtontoggle()

setOn()

QIconSet	onIconSet

“”

Qt	3.0 QIconSet QToolButton::iconSetQToolButton::onIconSet
QToolButton::offIconSet

oniconSet onQIconSet/

iconSetQIconSet::State

setOnIconSet()onIconSet()

int	popupDelay

0

setPopup()

setPopupDelay()popupDelay()

QString	textLabel

setTextLabel()textLabel()

bool	toggleButton

/

ontoggle()

setToggleButton()

bool	usesBigPixmap

QToolButtonQMainWindow QMainWindow::setUsesBigPixmaps()

	QMainWindowQMainWindow

setUsesBigPixmap()usesBigPixmap()

bool	usesTextLabel

QToolButton QMainWindow

setUsesTextLabel()usesTextLabel()

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QCache	Class	Reference
The	QCache	class	is	a	template	class	that	provides	a	cache	based	on	QString
keys.	More...

#include	<qcache.h>

Inherits	QPtrCollection.

List	of	all	member	functions.

Public	Members

QCache	(int	maxCost	=	100,	int	size	=	17,	bool	caseSensitive	=	TRUE)
~QCache	()
int	maxCost	()	const
int	totalCost	()	const
void	setMaxCost	(int	m)
virtual	uint	count	()	const
uint	size	()	const
bool	isEmpty	()	const
virtual	void	clear	()
bool	insert	(const	QString	&	k,	const	type	*	d,	int	c	=	1,	int	p	=	0)
bool	remove	(const	QString	&	k)
type	*	take	(const	QString	&	k)
type	*	find	(const	QString	&	k,	bool	ref	=	TRUE)	const
type	*	operator[]	(const	QString	&	k)	const
void	statistics	()	const

Important	Inherited	Members

bool	autoDelete	()	const
void	setAutoDelete	(bool	enable)

Detailed	Description

The	QCache	class	is	a	template	class	that	provides	a	cache	based	on	QString
keys.

A	cache	is	a	least	recently	used	(LRU)	list	of	cache	items.	Each	cache	item	has	a
key	and	a	certain	cost.	The	sum	of	item	costs,	totalCost(),	never	exceeds	the
maximum	cache	cost,	maxCost().	If	inserting	a	new	item	would	cause	the	total
cost	to	exceed	the	maximum	cost,	the	least	recently	used	items	in	the	cache	are
removed.

QCache	is	a	template	class.	QCache<X>	defines	a	cache	that	operates	on
pointers	to	X,	or	X*.

Apart	from	insert(),	by	far	the	most	important	function	is	find()	(which	also
exists	as	operator[]()).	This	function	looks	up	an	item,	returns	it,	and	by	default
marks	it	as	being	the	most	recently	used	item.

There	are	also	methods	to	remove()	or	take()	an	object	from	the	cache.	Calling
setAutoDelete(TRUE)	for	a	cache	tells	it	to	delete	items	that	are	removed.	The
default	is	to	not	delete	items	when	they	are	removed	(i.e.,	remove()	and	take()
are	equivalent).

When	inserting	an	item	into	the	cache,	only	the	pointer	is	copied,	not	the	item
itself.	This	is	called	a	shallow	copy.	It	is	possible	to	make	the	cache	copy	all	of
the	item's	data	(known	as	a	deep	copy)	when	an	item	is	inserted.	insert()	calls	the
virtual	function	QPtrCollection::newItem()	for	the	item	to	be	inserted.	Inherit	a
cache	and	reimplement	it	if	you	want	deep	copies.

When	removing	a	cache	item,	the	virtual	function	QPtrCollection::deleteItem()
is	called.	The	default	implementation	deletes	the	item	if	auto-deletion	is	enabled,
and	does	nothing	otherwise.

There	is	a	QCacheIterator	that	can	be	used	to	traverse	the	items	in	the	cache	in
arbitrary	order.

In	QCache,	the	cache	items	are	accessed	via	QString	keys,	which	are	Unicode
strings.	If	you	want	to	use	non-Unicode,	plain	8-bit	char*	keys,	use	the

QAsciiCache	template.	A	QCache	has	the	same	performace	as	a	QAsciiCache.

See	also	QCacheIterator,	QAsciiCache,	QIntCache,	Collection	Classes	and	Non-
GUI	Classes.

Member	Function	Documentation

QCache::QCache	(int	maxCost	=	100,	int	size	=	17,
bool	caseSensitive	=	TRUE)

Constructs	a	cache	whose	contents	will	never	have	a	total	cost	greater	than
maxCost	and	which	is	expected	to	contain	less	than	size	items.

size	is	actually	the	size	of	an	internal	hash	array;	it's	usually	best	to	make	it	a
prime	number	and	at	least	50%	bigger	than	the	largest	expected	number	of	items
in	the	cache.

Each	inserted	item	has	an	associated	cost.	When	inserting	a	new	item,	if	the	total
cost	of	all	items	in	the	cache	will	exceed	maxCost,	the	cache	will	start	throwing
out	the	older	(least	recently	used)	items	until	there	is	enough	room	for	the	new
item	to	be	inserted.

If	caseSensitive	is	TRUE	(the	default),	the	cache	keys	are	case	sensitive;	if	it	is
FALSE,	they	are	case-insensitive.	Case-insensitive	comparison	includes	all
letters	in	Unicode.

QCache::~QCache	()

Removes	all	items	from	the	cache	and	destroys	it.	All	iterators	that	access	this
cache	will	be	reset.

bool	QPtrCollection::autoDelete	()	const

Returns	the	setting	of	the	auto-delete	option.	The	default	is	FALSE.

See	also	setAutoDelete().

void	QCache::clear	()	[virtual]

Removes	all	items	from	the	cache	and	deletes	them	if	auto-deletion	has	been
enabled.

All	cache	iterators	that	operate	this	on	cache	are	reset.

See	also	remove()	and	take().

Reimplemented	from	QPtrCollection.

uint	QCache::count	()	const	[virtual]

Returns	the	number	of	items	in	the	cache.

See	also	totalCost().

Reimplemented	from	QPtrCollection.

type	*	QCache::find	(const	QString	&	k,	bool	ref	=	TRUE)	const

Returns	the	item	associated	with	key	k,	or	null	if	the	key	does	not	exist	in	the
cache.	If	ref	is	TRUE	(the	default),	the	item	is	moved	to	the	front	of	the	least
recently	used	list.

If	there	are	two	or	more	items	with	equal	keys,	the	one	that	was	inserted	last	is
returned.

bool	QCache::insert	(const	QString	&	k,	const	type	*	d,	int	c	=	1,
int	p	=	0)

Inserts	the	item	d	into	the	cache	with	key	k	and	cost	c.	Returns	TRUE	if	it	is
successful	and	FALSE	if	it	fails.

The	cache's	size	is	limited,	and	if	the	total	cost	is	too	high,	QCache	will	remove
old,	least	recently	used	items	until	there	is	room	for	this	new	item.

The	parameter	p	is	internal	and	should	be	left	at	the	default	value	(0).

Warning:	If	this	function	returns	FALSE	you	must	delete	d	yourself.
Additionally,	be	very	careful	about	using	d	after	calling	this	function	because
any	other	insertions	into	the	cache,	from	anywhere	in	the	application	or	within
Qt	itself,	could	cause	the	object	to	be	discarded	from	the	cache	and	the	pointer	to
become	invalid.

bool	QCache::isEmpty	()	const

Returns	TRUE	if	the	cache	is	empty,	or	FALSE	if	there	is	at	least	one	object	in
it.

int	QCache::maxCost	()	const

Returns	the	maximum	allowed	total	cost	of	the	cache.

See	also	setMaxCost()	and	totalCost().

type	*	QCache::operator[]	(const	QString	&	k)	const

Returns	the	item	associated	with	key	k,	or	null	if	k	does	not	exist	in	the	cache,
and	moves	the	item	to	the	front	of	the	least	recently	used	list.

If	there	are	two	or	more	items	with	equal	keys,	the	one	that	was	inserted	last	is
returned.

This	is	the	same	as	find(k,	TRUE).

See	also	find().

bool	QCache::remove	(const	QString	&	k)

Removes	the	item	associated	with	k,	and	returns	TRUE	if	the	item	was	present	in
the	cache	or	FALSE	if	it	was	not.

The	item	is	deleted	if	auto-deletion	has	been	enabled,	i.e.,	you	have	called
setAutoDelete(TRUE).

If	there	are	two	or	more	items	with	equal	keys,	the	one	that	was	inserted	last	is
removed.

All	iterators	that	refer	to	the	removed	item	are	set	to	point	to	the	next	item	in	the
cache's	traversal	order.

See	also	take()	and	clear().

void	QPtrCollection::setAutoDelete	(bool	enable)

Sets	the	collection	to	auto-delete	its	contents	if	enable	is	TRUE	and	to	never
delete	them	if	enable	is	FALSE.

If	auto-deleting	is	turned	on,	all	the	items	in	a	collection	are	deleted	when	the
collection	itself	is	deleted.	This	is	convenient	if	the	collection	has	the	only
pointer	to	the	items.

The	default	setting	is	FALSE,	for	safety.	If	you	turn	it	on,	be	careful	about
copying	the	collection	-	you	might	find	yourself	with	two	collections	deleting	the
same	items.

Note	that	the	auto-delete	setting	may	also	affect	other	functions	in	subclasses.
For	example,	a	subclass	that	has	a	remove()	function	will	remove	the	item	from
its	data	structure,	and	if	auto-delete	is	enabled,	will	also	delete	the	item.

See	also	autoDelete().

Examples:	grapher/grapher.cpp,	scribble/scribble.cpp	and
table/bigtable/main.cpp.

void	QCache::setMaxCost	(int	m)

Sets	the	maximum	allowed	total	cost	of	the	cache	to	m.	If	the	current	total	cost	is
greater	than	m,	some	items	are	deleted	immediately.

See	also	maxCost()	and	totalCost().

uint	QCache::size	()	const

Returns	the	size	of	the	hash	array	used	to	implement	the	cache.	This	should	be	a
bit	bigger	than	count()	is	likely	to	be.

void	QCache::statistics	()	const

A	debug-only	utility	function.	Prints	out	cache	usage,	hit/miss,	and	distribution
information	using	qDebug().	This	function	does	nothing	in	the	release	library.

type	*	QCache::take	(const	QString	&	k)

Takes	the	item	associated	with	k	out	of	the	cache	without	deleting	it	and	returns	a
pointer	to	the	item	taken	out,	or	null	if	the	key	does	not	exist	in	the	cache.

If	there	are	two	or	more	items	with	equal	keys,	the	one	that	was	inserted	last	is
taken.

All	iterators	that	refer	to	the	taken	item	are	set	to	point	to	the	next	item	in	the
cache's	traversal	order.

See	also	remove()	and	clear().

int	QCache::totalCost	()	const

Returns	the	total	cost	of	the	items	in	the	cache.	This	is	an	integer	in	the	range	0
to	maxCost().

See	also	setMaxCost().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QDragLeaveEvent	Class	Reference
The	QDragLeaveEvent	class	provides	an	event	which	is	sent	to	the	widget	when
a	drag	and	drop	leaves	the	widget.	More...

#include	<qevent.h>

Inherits	QEvent.

List	of	all	member	functions.

Public	Members

QDragLeaveEvent	()

Detailed	Description

The	QDragLeaveEvent	class	provides	an	event	which	is	sent	to	the	widget	when
a	drag	and	drop	leaves	the	widget.

This	event	is	always	preceded	by	a	QDragEnterEvent	and	a	series	of
QDragMoveEvents.	It	is	not	sent	if	a	QDropEvent	is	sent	instead.

See	also	QDragEnterEvent,	QDragMoveEvent,	QDropEvent,	Drag	And	Drop
Classes	and	Event	Classes.

Member	Function	Documentation

QDragLeaveEvent::QDragLeaveEvent	()

Constructs	a	QDragLeaveEvent.

Warning:	Do	not	create	a	QDragLeaveEvent	yourself	since	these	objects	rely	on
Qt's	internal	state.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QLineEdit	Class	Reference
The	QLineEdit	widget	is	a	one-line	text	editor.	More...

#include	<qlineedit.h>

Inherits	QFrame.

List	of	all	member	functions.

Public	Members

QLineEdit	(QWidget	*	parent,	const	char	*	name	=	0)
QLineEdit	(const	QString	&	contents,	QWidget	*	parent,
const	char	*	name	=	0)
~QLineEdit	()
QString	text	()	const
QString	displayText	()	const
int	maxLength	()	const
bool	frame	()	const
enum	EchoMode	{	Normal,	NoEcho,	Password	}
EchoMode	echoMode	()	const
bool	isReadOnly	()	const
const	QValidator	*	validator	()	const
virtual	QSize	sizeHint	()	const
virtual	QSize	minimumSizeHint	()	const
int	cursorPosition	()	const
bool	validateAndSet	(const	QString	&	newText,	int	newPos,
int	newMarkAnchor,	int	newMarkDrag)
int	alignment	()	const
void	cursorLeft	(bool	mark,	int	steps	=	1)		(obsolete)
void	cursorRight	(bool	mark,	int	steps	=	1)		(obsolete)
void	cursorForward	(bool	mark,	int	steps	=	1)
void	cursorBackward	(bool	mark,	int	steps	=	1)
void	cursorWordForward	(bool	mark)
void	cursorWordBackward	(bool	mark)
void	backspace	()
void	del	()
void	home	(bool	mark)
void	end	(bool	mark)
void	setEdited	(bool)
bool	edited	()	const
bool	hasSelectedText	()	const
QString	selectedText	()	const
bool	getSelection	(int	*	start,	int	*	end)
bool	isUndoAvailable	()	const
bool	isRedoAvailable	()	const

bool	hasMarkedText	()	const		(obsolete)
QString	markedText	()	const		(obsolete)
void	setPasswordChar	(QChar	c)
QChar	passwordChar	()	const
bool	dragEnabled	()	const
int	characterAt	(int	xpos,	QChar	*	chr)	const

Public	Slots

virtual	void	setText	(const	QString	&)
virtual	void	selectAll	()
virtual	void	deselect	()
virtual	void	clearValidator	()
virtual	void	insert	(const	QString	&	newText)
virtual	void	clear	()
virtual	void	undo	()
virtual	void	redo	()
virtual	void	setMaxLength	(int)
virtual	void	setFrame	(bool)
virtual	void	setEchoMode	(EchoMode)
virtual	void	setReadOnly	(bool)
virtual	void	setValidator	(const	QValidator	*	v)
virtual	void	setSelection	(int	start,	int	length)
virtual	void	setCursorPosition	(int)
virtual	void	setAlignment	(int	flag)
virtual	void	cut	()
virtual	void	copy	()	const
virtual	void	paste	()
virtual	void	setDragEnabled	(bool	b)

Signals

void	textChanged	(const	QString	&)
void	returnPressed	()
void	selectionChanged	()

Properties

Alignment	alignment	-	the	alignment	of	the	line	edit
int	cursorPosition	-	the	current	cursor	position	for	this	line	edit
QString	displayText	-	the	text	that	is	displayed		(read	only)
bool	dragEnabled	-	whether	the	lineedit	starts	a	drag	if	the	user	presses
and	moves	the	mouse	on	some	selected	text
EchoMode	echoMode	-	the	echo	mode	of	the	line	edit
bool	edited	-	the	edited	flag	of	the	line	edit
bool	frame	-	whether	the	line	edit	draws	itself	with	a	frame
bool	hasMarkedText	-	whether	part	of	the	text	has	been	selected	by	the	user
(e.g.	by	clicking	and	dragging)		(read	only)		(obsolete)
bool	hasSelectedText	-	whether	there	is	any	text	selected		(read	only)
QString	markedText	-	the	text	selected	by	the	user	(e.g.	by	clicking	and
dragging),	or	QString::null	if	no	text	is	selected		(read	only)		(obsolete)
int	maxLength	-	the	maximum	permitted	length	of	the	text	in	the	editor
bool	readOnly	-	whether	the	line	edit	is	read	only
bool	redoAvailable	-	whether	redo	is	available		(read	only)
QString	selectedText	-	any	text	selected	by	the	user	or	QString::null		(read
only)
QString	text	-	the	text	in	the	line
bool	undoAvailable	-	whether	undo	is	available		(read	only)

Protected	Members

virtual	void	keyPressEvent	(QKeyEvent	*	e)
void	repaintArea	(int	from,	int	to)		(obsolete)
virtual	QPopupMenu	*	createPopupMenu	()

Detailed	Description

The	QLineEdit	widget	is	a	one-line	text	editor.

A	line	edit	allows	the	user	to	enter	and	edit	a	single	line	of	plain	text	with	a
useful	collection	of	editing	functions,	including	undo	and	redo,	cut	and	paste,
and	drag	and	drop.

By	changing	the	echoMode()	of	a	line	edit,	it	can	also	be	used	as	a	"write-only"
field,	for	inputs	such	as	passwords.

The	length	of	the	field	can	be	constrained	to	maxLength(),	or	the	value	can	be
arbitrarily	constrained	by	setting	a	validator().

A	closely	related	class	is	QTextEdit	which	allows	multi-line,	rich-text	editing.

You	can	change	the	text	with	setText()	or	insert().	The	text	is	retrieved	with
text();	the	displayed	text	(which	may	be	different,	see	EchoMode)	is	retrieved
with	displayText().	Text	can	be	selected	with	setSelection()	or	selectAll(),	and
the	selection	can	be	cut(),	copy()ied	and	paste()d.	The	text	can	be	aligned	with
setAlignment().

When	the	text	changes	the	textChanged()	signal	is	emitted;	when	the	Return	or
Enter	key	is	pressed	the	returnPressed()	signal	is	emitted.

By	default,	QLineEdits	have	a	frame	as	specified	by	the	Windows	and	Motif
style	guides;	you	can	turn	it	off	by	calling	setFrame(FALSE).

The	default	key	bindings	are	described	below.	A	right	mouse	button	menu
presents	some	of	the	editing	commands	to	the	user.

Left	Arrow	-	moves	the	cursor	one	character	to	the	left.
Right	Arrow	-	moves	the	cursor	one	character	to	the	right.
Backspace	-	deletes	the	character	to	the	left	of	the	cursor.
Home	-	moves	the	cursor	to	the	beginning	of	the	line.
End	-	moves	the	cursor	to	the	end	of	the	line.
Delete	-	deletes	the	character	to	the	right	of	the	cursor.
Shift+Left	Arrow	-	moves	and	selects	text	one	character	to	the	left.

Shift+Right	Arrow	-	moves	and	selects	text	one	character	to	the	right.
Ctrl+A	-	moves	the	cursor	to	the	beginning	of	the	line.
Ctrl+B	-	moves	the	cursor	one	character	to	the	left.
Ctrl+C	-	copies	the	selected	text	to	the	clipboard.	(Windows	also	supports
Ctrl+Insert	for	this	operation.)
Ctrl+D	-	deletes	the	character	to	the	right	of	the	cursor.
Ctrl+E	-	moves	the	cursor	to	the	end	of	the	line.
Ctrl+F	-	moves	the	cursor	one	character	to	the	right.
Ctrl+H	-	deletes	the	character	to	the	left	of	the	cursor.
Ctrl+K	-	deletes	to	the	end	of	the	line.
Ctrl+V	-	pastes	the	clipboard	text	into	line	edit.	(Windows	also	supports
Shift+Insert	for	this	operation.)
Ctrl+X	-	deletes	the	selected	text	and	copies	it	to	the	clipboard.	(Windows
also	supports	Shift+Delete	for	this	operation.)
Ctrl+Z	-	undoes	the	last	operation.
Ctrl+Y	-	redoes	the	last	undone	operation.

Any	other	key	sequence,	that	represents	a	valid	character,	will	cause	the
character	to	be	inserted	into	the	line.

	

See	also	QTextEdit,	QLabel,	QComboBox,	GUI	Design	Handbook:	Field,	Entry
and	Basic	Widgets.

Member	Type	Documentation

QLineEdit::EchoMode

This	enum	type	describes	how	a	line	edit	should	display	its	contents.	The	defined
values	are:

QLineEdit::Normal	-	display	characters	as	they	are	entered.	This	is	the
default.
QLineEdit::NoEcho	-	do	not	display	anything.	This	may	be	appropriate	for
passwords	where	even	the	length	of	the	password	should	be	kept	secret.
QLineEdit::Password	-	display	asterisks	instead	of	the	characters	actually
entered.

See	also	echoMode	and	echoMode.

Member	Function	Documentation

QLineEdit::QLineEdit	(QWidget	*	parent,	const	char	*	name	=	0
)

Constructs	a	line	edit	with	no	text.

The	maximum	text	length	is	set	to	32767	characters.

The	parent	and	name	arguments	are	sent	to	the	QWidget	constructor.

See	also	text	and	maxLength.

QLineEdit::QLineEdit	(const	QString	&	contents,
QWidget	*	parent,	const	char	*	name	=	0)

Constructs	a	line	edit	containing	the	text	contents.

The	cursor	position	is	set	to	the	end	of	the	line	and	the	maximum	text	length	to
32767	characters.

The	parent	and	name	arguments	are	sent	to	the	QWidget	constructor.

See	also	text	and	maxLength.

QLineEdit::~QLineEdit	()

Destroys	the	line	edit.

int	QLineEdit::alignment	()	const

Returns	the	alignment	of	the	line	edit.	See	the	"alignment"	property	for	details.

void	QLineEdit::backspace	()

Deletes	the	character	to	the	left	of	the	text	cursor	and	moves	the	cursor	one
position	to	the	left.	If	any	text	has	been	selected	by	the	user	(e.g.	by	clicking	and

dragging),	the	cursor	will	be	put	at	the	beginning	of	the	selected	text	and	the
selected	text	will	be	removed.

See	also	del().

int	QLineEdit::characterAt	(int	xpos,	QChar	*	chr)	const

Returns	the	index	position	of	the	character	which	is	at	xpos	(in	logical
coordinates	from	the	left).	If	chr	is	not	0,	*chr	is	populated	with	the
character	at	this	position.

void	QLineEdit::clear	()	[virtual	slot]

Clears	the	contents	of	the	editor.	This	is	equivalent	to	setText("").

void	QLineEdit::clearValidator	()	[virtual	slot]

This	slot	is	equivalent	to	setValidator(0).

void	QLineEdit::copy	()	const	[virtual	slot]

Copies	the	selected	text	to	the	clipboard,	if	there	is	any,	and	if	echoMode()	is
Normal.

See	also	cut()	and	paste().

QPopupMenu	*	QLineEdit::createPopupMenu	()	[virtual
protected]

This	function	is	called	to	create	the	popup	menu	which	is	shown	when	the	user
clicks	on	the	lineedit	with	the	right	mouse	button.	If	you	want	to	create	a	custom
popup	menu,	reimplement	this	function	and	return	the	popup	menu	you	create.
The	popup	menu's	ownership	is	transferred	to	the	caller.

void	QLineEdit::cursorBackward	(bool	mark,	int	steps	=	1)

Moves	the	cursor	back	steps	characters.	If	mark	is	TRUE	each	character	moved
over	is	added	to	the	selection;	if	mark	is	FALSE	the	selection	is	cleared.

See	also	cursorForward().

void	QLineEdit::cursorForward	(bool	mark,	int	steps	=	1)

Moves	the	cursor	forward	steps	characters.	If	mark	is	TRUE	each	character
moved	over	is	added	to	the	selection;	if	mark	is	FALSE	the	selection	is	cleared.

See	also	cursorBackward().

void	QLineEdit::cursorLeft	(bool	mark,	int	steps	=	1)

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

For	compatibilty	with	older	applications	only.	Use	cursorBackward()	instead.

See	also	cursorBackward().

int	QLineEdit::cursorPosition	()	const

Returns	the	current	cursor	position	for	this	line	edit.	See	the	"cursorPosition"
property	for	details.

void	QLineEdit::cursorRight	(bool	mark,	int	steps	=	1)

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Use	cursorForward()	instead.

See	also	cursorForward().

void	QLineEdit::cursorWordBackward	(bool	mark)

Moves	the	cursor	one	word	backward.	If	mark	is	TRUE,	the	word	is	also
selected.

See	also	cursorWordForward().

void	QLineEdit::cursorWordForward	(bool	mark)

Moves	the	cursor	one	word	forward.	If	mark	is	TRUE,	the	word	is	also	selected.

See	also	cursorWordBackward().

void	QLineEdit::cut	()	[virtual	slot]

Copies	the	selected	text	to	the	clipboard	and	deletes	it,	if	there	is	any,	and	if
echoMode()	is	Normal.

If	the	current	validator	disallows	deleting	the	selected	text,	cut()	will	copy	it	but
not	delete	it.

See	also	copy()	and	paste().

void	QLineEdit::del	()

Deletes	the	character	on	the	right	side	of	the	text	cursor.	If	any	text	has	been
selected	by	the	user	(e.g.	by	clicking	and	dragging),	the	cursor	will	be	put	at	the
beginning	of	the	selected	text	and	the	selected	text	will	be	removed.

See	also	backspace().

void	QLineEdit::deselect	()	[virtual	slot]

De-selects	all	text	(i.e.	removes	highlighting)	and	leaves	the	cursor	at	the	current
position.

See	also	setSelection()	and	selectAll().

QString	QLineEdit::displayText	()	const

Returns	the	text	that	is	displayed.	See	the	"displayText"	property	for	details.

bool	QLineEdit::dragEnabled	()	const

Returns	TRUE	if	the	lineedit	starts	a	drag	if	the	user	presses	and	moves	the

mouse	on	some	selected	text;	otherwise	returns	FALSE.	See	the	"dragEnabled"
property	for	details.

EchoMode	QLineEdit::echoMode	()	const

Returns	the	echo	mode	of	the	line	edit.	See	the	"echoMode"	property	for	details.

bool	QLineEdit::edited	()	const

Returns	the	edited	flag	of	the	line	edit.	See	the	"edited"	property	for	details.

void	QLineEdit::end	(bool	mark)

Moves	the	text	cursor	to	the	end	of	the	line.	If	mark	is	TRUE,	text	is	selected
towards	the	last	position;	otherwise,	any	selected	text	is	unselected	if	the	cursor
is	moved.

See	also	home().

bool	QLineEdit::frame	()	const

Returns	TRUE	if	the	line	edit	draws	itself	with	a	frame;	otherwise	returns
FALSE.	See	the	"frame"	property	for	details.

bool	QLineEdit::getSelection	(int	*	start,	int	*	end)

This	function	sets	*start	to	the	position	in	the	text	where	the
selection	starts	and	*end	to	the	position	where	the	selection	ends.
Returns	TRUE	if	start	and	end	are	not	null	and	if	there	is	some	selected	text;
otherwise	returns	FALSE.

See	also	setSelection().

bool	QLineEdit::hasMarkedText	()	const

Returns	TRUE	if	part	of	the	text	has	been	selected	by	the	user	(e.g.	by	clicking
and	dragging);	otherwise	returns	FALSE.	See	the	"hasMarkedText"	property	for
details.

bool	QLineEdit::hasSelectedText	()	const

Returns	TRUE	if	there	is	any	text	selected;	otherwise	returns	FALSE.	See	the
"hasSelectedText"	property	for	details.

void	QLineEdit::home	(bool	mark)

Moves	the	text	cursor	to	the	beginning	of	the	line.	If	mark	is	TRUE,	text	is
selected	towards	the	first	position;	otherwise,	any	selected	text	is	unselected	if
the	cursor	is	moved.

See	also	end().

void	QLineEdit::insert	(const	QString	&	newText)	[virtual
slot]

Removes	any	selected	text,	inserts	newText,	and	validates	the	result.	If	it	is	valid,
it	sets	it	as	the	new	contents	of	the	line	edit.

bool	QLineEdit::isReadOnly	()	const

Returns	TRUE	if	the	line	edit	is	read	only;	otherwise	returns	FALSE.	See	the
"readOnly"	property	for	details.

bool	QLineEdit::isRedoAvailable	()	const

Returns	TRUE	if	redo	is	available;	otherwise	returns	FALSE.	See	the
"redoAvailable"	property	for	details.

bool	QLineEdit::isUndoAvailable	()	const

Returns	TRUE	if	undo	is	available;	otherwise	returns	FALSE.	See	the
"undoAvailable"	property	for	details.

void	QLineEdit::keyPressEvent	(QKeyEvent	*	e)	[virtual
protected]

Converts	key	press	event	e	into	a	line	edit	action.

If	Return	or	Enter	is	pressed	and	the	current	text	is	valid	(or	can	be	made	valid
by	the	validator),	the	signal	returnPressed	is	emitted.

The	default	key	bindings	are	listed	in	the	detailed	description.

Reimplemented	from	QWidget.

QString	QLineEdit::markedText	()	const

Returns	the	text	selected	by	the	user	(e.g.	by	clicking	and	dragging),	or
QString::null	if	no	text	is	selected.	See	the	"markedText"	property	for	details.

int	QLineEdit::maxLength	()	const

Returns	the	maximum	permitted	length	of	the	text	in	the	editor.	See	the
"maxLength"	property	for	details.

QSize	QLineEdit::minimumSizeHint	()	const	[virtual]

Returns	a	minimum	size	for	the	line	edit.

The	width	returned	is	enough	for	at	least	one	character.

Reimplemented	from	QWidget.

QChar	QLineEdit::passwordChar	()	const

Returns	the	password	character.

See	also	setPasswordChar().

void	QLineEdit::paste	()	[virtual	slot]

Inserts	the	clipboard's	text	at	the	cursor	position,	deleting	any	selected	text.

If	the	end	result	is	not	acceptable	for	the	current	validator,	nothing	happens.

See	also	copy()	and	cut().

void	QLineEdit::redo	()	[virtual	slot]

Redoes	the	last	operation

void	QLineEdit::repaintArea	(int	from,	int	to)	[protected]

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Repaints	all	characters	from	from	to	to.	If	cursorPos	is	between	from	and	to,
ensures	that	cursorPos	is	visible.

void	QLineEdit::returnPressed	()	[signal]

This	signal	is	emitted	when	the	Return	or	Enter	key	is	pressed.

Example:	popup/popup.cpp.

void	QLineEdit::selectAll	()	[virtual	slot]

Selects	all	the	text	(i.e.	highlights	it)	and	moves	the	cursor	to	the	end.	This	is
useful	when	a	default	value	has	been	inserted	because	if	the	user	types	before
clicking	on	the	widget,	the	selected	text	will	be	erased.

See	also	setSelection()	and	deselect().

QString	QLineEdit::selectedText	()	const

Returns	any	text	selected	by	the	user	or	QString::null.	See	the	"selectedText"
property	for	details.

void	QLineEdit::selectionChanged	()	[signal]

This	signal	is	emitted	whenever	the	selection	changes.

See	also	hasSelectedText	and	selectedText.

void	QLineEdit::setAlignment	(int	flag)	[virtual	slot]

Sets	the	alignment	of	the	line	edit	to	flag.	See	the	"alignment"	property	for
details.

void	QLineEdit::setCursorPosition	(int)	[virtual	slot]

Sets	the	current	cursor	position	for	this	line	edit.	See	the	"cursorPosition"
property	for	details.

void	QLineEdit::setDragEnabled	(bool	b)	[virtual	slot]

Sets	whether	the	lineedit	starts	a	drag	if	the	user	presses	and	moves	the	mouse	on
some	selected	text	to	b.	See	the	"dragEnabled"	property	for	details.

void	QLineEdit::setEchoMode	(EchoMode)	[virtual	slot]

Sets	the	echo	mode	of	the	line	edit.	See	the	"echoMode"	property	for	details.

void	QLineEdit::setEdited	(bool)

Sets	the	edited	flag	of	the	line	edit.	See	the	"edited"	property	for	details.

void	QLineEdit::setFrame	(bool)	[virtual	slot]

Sets	whether	the	line	edit	draws	itself	with	a	frame.	See	the	"frame"	property	for
details.

void	QLineEdit::setMaxLength	(int)	[virtual	slot]

Sets	the	maximum	permitted	length	of	the	text	in	the	editor.	See	the
"maxLength"	property	for	details.

void	QLineEdit::setPasswordChar	(QChar	c)

Sets	the	password	character	to	c.

See	also	passwordChar().

void	QLineEdit::setReadOnly	(bool)	[virtual	slot]

Sets	whether	the	line	edit	is	read	only.	See	the	"readOnly"	property	for	details.

void	QLineEdit::setSelection	(int	start,	int	length)	[virtual
slot]

Sets	the	selected	area	of	this	line	edit	to	start	at	position	start	and	be	length
characters	long.

See	also	deselect(),	selectAll()	and	getSelection().

void	QLineEdit::setText	(const	QString	&)	[virtual	slot]

Sets	the	text	in	the	line.	See	the	"text"	property	for	details.

void	QLineEdit::setValidator	(const	QValidator	*	v)	[virtual
slot]

Sets	this	line	edit	to	accept	input	only	as	accepted	by	the	validator,	v,	allowing
arbitrary	constraints	on	the	text	which	may	be	entered.

If	v	==	0,	setValidator()	removes	the	current	input	validator.	The	initial	setting	is
to	have	no	input	validator	(i.e.	any	input	is	accepted	up	to	maxLength()).

See	also	validator()	and	QValidator.

Examples:	lineedits/lineedits.cpp	and	wizard/wizard.cpp.

QSize	QLineEdit::sizeHint	()	const	[virtual]

Returns	a	recommended	size	for	the	widget.

The	width	returned,	in	pixels,	is	usually	enough	for	about	15	to	20	characters.

Example:	addressbook/centralwidget.cpp.

QString	QLineEdit::text	()	const

Returns	the	text	in	the	line.	See	the	"text"	property	for	details.

void	QLineEdit::textChanged	(const	QString	&)	[signal]

This	signal	is	emitted	whenever	the	text	changes.	The	argument	is	the	new	text.

Examples:	wizard/wizard.cpp	and	xform/xform.cpp.

void	QLineEdit::undo	()	[virtual	slot]

Undoes	the	last	operation

bool	QLineEdit::validateAndSet	(const	QString	&	newText,
int	newPos,	int	newMarkAnchor,	int	newMarkDrag)

Validates	and	perhaps	sets	this	line	edit	to	contain	newText	with	the	cursor	at
position	newPos,	with	selected	text	from	newMarkAnchor	to	newMarkDrag.
Returns	TRUE	if	it	changes	the	line	edit;	otherwise	returns	FALSE.

Linebreaks	in	newText	are	converted	to	spaces,	and	the	text	is	truncated	to
maxLength()	before	its	validity	is	tested.

Repaints	and	emits	textChanged()	if	appropriate.

const	QValidator	*	QLineEdit::validator	()	const

Returns	a	pointer	to	the	current	input	validator,	or	0	if	no	validator	has	been	set.

See	also	setValidator().

Example:	wizard/wizard.cpp.

Property	Documentation

Alignment	alignment

This	property	holds	the	alignment	of	the	line	edit.

Possible	Values	are	Qt::AlignAuto,	Qt::AlignLeft,	Qt::AlignRight	and
Qt::AlignHCenter.

Attempting	to	set	the	alignment	to	an	illegal	flag	combination	does	nothing.

See	also	Qt::AlignmentFlags.

Set	this	property's	value	with	setAlignment()	and	get	this	property's	value	with
alignment().

int	cursorPosition

This	property	holds	the	current	cursor	position	for	this	line	edit.

Setting	the	cursor	position	causes	a	repaint	when	appropriate.

Set	this	property's	value	with	setCursorPosition()	and	get	this	property's	value
with	cursorPosition().

QString	displayText

This	property	holds	the	text	that	is	displayed.

If	EchoMode	is	Normal	this	returns	the	same	as	text();	if	EchoMode	is	Password
it	returns	a	string	of	asterisks	the	text().length()	characters	long,	e.g.	"******";	if
EchoMode	is	NoEcho	returns	an	empty	string,	"".

See	also	echoMode,	text	and	EchoMode.

Get	this	property's	value	with	displayText().

bool	dragEnabled

This	property	holds	whether	the	lineedit	starts	a	drag	if	the	user	presses	and
moves	the	mouse	on	some	selected	text.

Set	this	property's	value	with	setDragEnabled()	and	get	this	property's	value	with
dragEnabled().

EchoMode	echoMode

This	property	holds	the	echo	mode	of	the	line	edit.

The	initial	setting	is	Normal,	but	QLineEdit	also	supports	NoEcho	and	Password
modes.

The	widget's	display	and	the	ability	to	copy	or	drag	the	text	is	affected	by	this
setting.

See	also	EchoMode	and	displayText.

Set	this	property's	value	with	setEchoMode()	and	get	this	property's	value	with
echoMode().

bool	edited

This	property	holds	the	edited	flag	of	the	line	edit.

The	edited	flag	is	never	read	by	QLineEdit;	it	has	a	default	value	of	FALSE	and
is	changed	to	TRUE	whenever	the	user	changes	the	line	edit's	contents.

This	is	useful	for	things	that	need	to	provide	a	default	value	but	cannot	find	the
default	at	once.	Just	start	the	line	edit	without	the	best	default;	when	the	default
is	known,	check	the	edited()	return	value	and	set	the	line	edit's	contents	if	the
user	has	not	started	editing	the	line	edit.

Calling	setText()	resets	the	edited	flag	to	FALSE.

Set	this	property's	value	with	setEdited()	and	get	this	property's	value	with
edited().

bool	frame

This	property	holds	whether	the	line	edit	draws	itself	with	a	frame.

If	enabled	(the	default)	the	line	edit	draws	itself	inside	a	two-pixel	frame,
otherwise	the	line	edit	draws	itself	without	any	frame.

Set	this	property's	value	with	setFrame()	and	get	this	property's	value	with
frame().

bool	hasMarkedText

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

This	property	holds	whether	part	of	the	text	has	been	selected	by	the	user	(e.g.
by	clicking	and	dragging).

Get	this	property's	value	with	hasMarkedText().

See	also	selectedText.

bool	hasSelectedText

This	property	holds	whether	there	is	any	text	selected.

hasSelectedText()	returns	TRUE	if	some	or	all	of	the	text	has	been	selected	by
the	user	(e.g.	by	clicking	and	dragging);	otherwise	returns	FALSE.

See	also	selectedText.

Get	this	property's	value	with	hasSelectedText().

QString	markedText

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

This	property	holds	the	text	selected	by	the	user	(e.g.	by	clicking	and	dragging),
or	QString::null	if	no	text	is	selected.

Get	this	property's	value	with	markedText().

See	also	hasSelectedText.

int	maxLength

This	property	holds	the	maximum	permitted	length	of	the	text	in	the	editor.

If	the	text	is	too	long,	it	is	truncated	at	the	limit.

If	truncation	occurs	any	selected	text	will	be	unselected,	the	cursor	position	is	set
to	0	and	the	first	part	of	the	string	is	shown.

Set	this	property's	value	with	setMaxLength()	and	get	this	property's	value	with
maxLength().

bool	readOnly

This	property	holds	whether	the	line	edit	is	read	only.

In	read-only	mode,	the	user	can	still	copy	the	text	to	the	clipboard	or	drag-and-
drop	the	text,	but	cannot	edit	it.

QLineEdit	does	not	show	a	cursor	in	read-only	mode.

See	also	enabled.

Set	this	property's	value	with	setReadOnly()	and	get	this	property's	value	with
isReadOnly().

bool	redoAvailable

This	property	holds	whether	redo	is	available.

Get	this	property's	value	with	isRedoAvailable().

QString	selectedText

This	property	holds	any	text	selected	by	the	user	or	QString::null.

Get	this	property's	value	with	selectedText().

See	also	hasSelectedText.

QString	text

This	property	holds	the	text	in	the	line.

Setting	this	property	clears	the	selection,	moves	the	cursor	to	the	end	of	the	line
and	resets	the	edited	property	to	FALSE.

The	text	is	truncated	to	maxLength()	length.

Set	this	property's	value	with	setText()	and	get	this	property's	value	with	text().

bool	undoAvailable

This	property	holds	whether	undo	is	available.

Get	this	property's	value	with	isUndoAvailable().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QSemaphore
QSemaphore	 ……

#include	<qsemaphore.h>

QSemaphore	(int	maxcount)
virtual	~QSemaphore	()
int	available	()	const
int	total	()	const
int	operator++	(int)
int	operator--	(int)
int	operator+=	(int	n)
int	operator-=	(int	n)
bool	tryAccess	(int	n)

QSemaphore

QSemaphore QMutex

10

109104510

operator++
total() tryAccess()

QSemaphore::QSemaphore	(int	maxcount)

maxcount

QSemaphore::~QSemaphore	()	[]

int	QSemaphore::available	()	const

int	QSemaphore::operator++	(int)

++

available()	==	0 available()	>	0

int	QSemaphore::operator+=	(int	n)

available()	<	n available()	>=	n

int	QSemaphore::operator--	(int)

--

int	QSemaphore::operator-=	(int	n)

n

int	QSemaphore::total	()	const

bool	QSemaphore::tryAccess	(int	n)

available()	<	nIf	 available()	>=	nn

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QToolTip	Class	Reference
The	QToolTip	class	provides	tool	tips	(balloon	help)	for	any	widget	or
rectangular	part	of	a	widget.	More...

#include	<qtooltip.h>

Inherits	Qt.

List	of	all	member	functions.

Public	Members

QToolTip	(QWidget	*	widget,	QToolTipGroup	*	group	=	0)
QWidget	*	parentWidget	()	const
QToolTipGroup	*	group	()	const

Static	Public	Members

void	add	(QWidget	*	widget,	const	QString	&	text)
void	add	(QWidget	*	widget,	const	QString	&	text,
QToolTipGroup	*	group,	const	QString	&	longText)
void	remove	(QWidget	*	widget)
void	add	(QWidget	*	widget,	const	QRect	&	rect,	const	QString	&	text)
void	add	(QWidget	*	widget,	const	QRect	&	rect,	const	QString	&	text,
QToolTipGroup	*	group,	const	QString	&	groupText)
void	remove	(QWidget	*	widget,	const	QRect	&	rect)
QString	textFor	(QWidget	*	widget,	const	QPoint	&	pos	=	QPoint	())
void	hide	()
QFont	font	()
void	setFont	(const	QFont	&	font)
QPalette	palette	()
void	setPalette	(const	QPalette	&	palette)
void	setEnabled	(bool	enable)		(obsolete)
bool	enabled	()		(obsolete)
void	setGloballyEnabled	(bool	enable)
bool	isGloballyEnabled	()

Protected	Members

virtual	void	maybeTip	(const	QPoint	&	p)	=	0
void	tip	(const	QRect	&	rect,	const	QString	&	text)
void	tip	(const	QRect	&	rect,	const	QString	&	text,
const	QString	&	groupText)
void	clear	()

Detailed	Description

The	QToolTip	class	provides	tool	tips	(balloon	help)	for	any	widget	or
rectangular	part	of	a	widget.

The	tip	is	a	short,	single	line	of	text	reminding	the	user	of	the	widget's	or
rectangle's	function.	It	is	drawn	immediately	below	the	region	in	a	distinctive
black-on-yellow	combination.

QToolTipGroup	provides	a	way	for	tool	tips	to	display	another	text	elsewhere
(most	often	in	a	status	bar).

At	any	point	in	time,	QToolTip	is	either	dormant	or	active.	In	dormant	mode	the
tips	are	not	shown	and	in	active	mode	they	are.	The	mode	is	global,	not
particular	to	any	one	widget.

QToolTip	switches	from	dormant	to	active	mode	when	the	user	hovers	the
mouse	on	a	tip-equipped	region	for	a	second	or	so	and	remains	active	until	the
user	either	clicks	a	mouse	button,	presses	a	key,	lets	the	mouse	hover	for	five
seconds	or	moves	the	mouse	outside	all	tip-equipped	regions	for	at	least	a
second.

The	QToolTip	class	can	be	used	in	three	different	ways:

1.	 Adding	a	tip	to	an	entire	widget.
2.	 Adding	a	tip	to	a	fixed	rectangle	within	a	widget.
3.	 Adding	a	tip	to	a	dynamic	rectangle	within	a	widget.

To	add	a	tip	to	a	widget,	call	the	static	function	QToolTip::add()	with	the	widget
and	tip	as	arguments:

				QToolTip::add(quitButton,	"Leave	the	application");

		

This	is	the	simplest	and	most	common	use	of	QToolTip.	The	tip	will	be	deleted
automatically	when	quitButton	is	deleted,	but	you	can	remove	it	yourself,	too:

				QToolTip::remove(quitButton);

		

You	can	also	display	another	text	(typically	in	a	status	bar),	courtesy	of
QToolTipGroup.	This	example	assumes	that	g	is	a	QToolTipGroup	*	and	is
already	connected	to	the	appropriate	status	bar:

				QToolTip::add(quitButton,	"Leave	the	application",	g,

																			"Leave	the	application,	prompting	to	save	if	necessary");

				QToolTip::add(closeButton,	"Close	this	window",	g,

																			"Close	this	window,	prompting	to	save	if	necessary");

		

To	add	a	tip	to	a	fixed	rectangle	within	a	widget,	call	the	static	function
QToolTip::add()	with	the	widget,	rectangle	and	tip	as	arguments.	(See	the
tooltip/tooltip.cpp	example.)	Again,	you	can	supply	a	QToolTipGroup	*	and
another	text	if	you	want.

Both	of	these	are	one-liners	and	cover	the	majority	of	cases.	The	third	and	most
general	way	to	use	QToolTip	requires	you	to	reimplement	a	pure	virtual	function
to	decide	whether	to	pop	up	a	tool	tip.	The	tooltip/tooltip.cpp	example
demonstrates	this	too.	This	mode	can	be	used	to	implement	tips	for	text	that	can
move	as	the	user	scrolls,	for	example.

To	use	QToolTip	like	this,	you	need	to	subclass	QToolTip	and	reimplement
maybeTip().	QToolTip	calls	maybeTip()	when	a	tip	should	pop	up,	and
maybeTip	decides	whether	to	show	a	tip.

Tool	tips	can	be	globally	disabled	using	QToolTip::setGloballyEnabled()	or
disabled	in	groups	with	QToolTipGroup::setEnabled().

You	can	retreive	the	text	of	a	tooltip	for	a	given	position	within	a	widget	using
textFor().

The	global	tooltip	font	and	palette	can	be	set	with	the	static	setFont()	and
setPalette()	functions	respectively.

See	also	QStatusBar,	QWhatsThis,	QToolTipGroup,	GUI	Design	Handbook:
Tool	Tip	and	Help	System.

Member	Function	Documentation

QToolTip::QToolTip	(QWidget	*	widget,
QToolTipGroup	*	group	=	0)

Constructs	a	tool	tip	object.	This	is	necessary	only	if	you	need	tool	tips	on
regions	that	can	move	within	the	widget	(most	often	because	the	widget's
contents	can	scroll).

widget	is	the	widget	you	want	to	add	dynamic	tool	tips	to	and	group	(optional)	is
the	tool	tip	group	they	should	belong	to.

Warning:	QToolTip	is	not	a	subclass	of	QObject,	so	the	instance	of	QToolTip	is
not	deleted	when	widget	is	deleted.

See	also	maybeTip().

void	QToolTip::add	(QWidget	*	widget,	const	QString	&	text)
[static]

Adds	a	tool	tip	to	widget.	text	is	the	text	to	be	shown	in	the	tool	tip.

This	is	the	most	common	entry	point	to	the	QToolTip	class;	it	is	suitable	for
adding	tool	tips	to	buttons,	check	boxes,	combo	boxes	and	so	on.

Examples:	qdir/qdir.cpp,	scribble/scribble.cpp	and	tooltip/tooltip.cpp.

void	QToolTip::add	(QWidget	*	widget,	const	QString	&	text,
QToolTipGroup	*	group,	const	QString	&	longText)
[static]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Adds	a	tool	tip	to	widget	and	to	tool	tip	group	group.

text	is	the	text	shown	in	the	tool	tip	and	longText	is	the	text	emitted	from	group.

Normally,	longText	is	shown	in	a	status	bar	or	similar.

void	QToolTip::add	(QWidget	*	widget,	const	QRect	&	rect,
const	QString	&	text)	[static]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Adds	a	tool	tip	to	a	fixed	rectangle,	rect,	within	widget.	text	is	the	text	shown	in
the	tool	tip.

void	QToolTip::add	(QWidget	*	widget,	const	QRect	&	rect,
const	QString	&	text,	QToolTipGroup	*	group,
const	QString	&	groupText)	[static]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Adds	a	tool	tip	to	an	entire	widget	and	to	tool	tip	group	group.	The	tooltip	will
disappear	when	the	mouse	leaves	the	rect.

text	is	the	text	shown	in	the	tool	tip	and	groupText	is	the	text	emitted	from	group.

Normally,	groupText	is	shown	in	a	status	bar	or	similar.

void	QToolTip::clear	()	[protected]

Immediately	removes	all	tool	tips	for	this	tooltip's	parent	widget.

bool	QToolTip::enabled	()	[static]

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

QFont	QToolTip::font	()	[static]

Returns	the	font	common	to	all	tool	tips.

See	also	setFont().

QToolTipGroup	*	QToolTip::group	()	const

Returns	the	tool	tip	group	this	QToolTip	is	a	member	of	or	0	if	it	isn't	a	member
of	any	group.

The	tool	tip	group	is	the	object	responsible	for	maintaining	contact	between	tool
tips	and	a	status	bar	or	something	else	which	can	show	the	longer	help	text.

See	also	parentWidget()	and	QToolTipGroup.

void	QToolTip::hide	()	[static]

Hides	any	tip	that	is	currently	being	shown.

Normally,	there	is	no	need	to	call	this	function;	QToolTip	takes	care	of	showing
and	hiding	the	tips	as	the	user	moves	the	mouse.

bool	QToolTip::isGloballyEnabled	()	[static]

Returns	whether	tool	tips	are	enabled	globally.

See	also	setGloballyEnabled().

void	QToolTip::maybeTip	(const	QPoint	&	p)	[pure	virtual
protected]

This	pure	virtual	function	is	half	of	the	most	versatile	interface	QToolTip	offers.

It	is	called	when	there	is	a	possibility	that	a	tool	tip	should	be	shown	and	must
decide	whether	there	is	a	tool	tip	for	the	point	p	in	the	widget	that	this	QToolTip
object	relates	to.	If	so,	maybeTip()	must	call	tip()	with	the	rectangle	the	tip
applies	to,	the	tip's	text	and	optionally	the	QToolTipGroup	details.

p	is	given	in	that	widget's	local	coordinates.	Most	maybeTip()	implementations
will	be	of	the	form:

				if	(<something>)	{

								tip(<something>,	<something>);

				}

		

The	first	argument	to	tip()	(a	rectangle)	must	encompass	p,	i.e.	the	tip	must	apply
to	the	current	mouse	position;	otherwise	QToolTip's	operation	is	undefined.

Note	that	the	tip	will	disappear	once	the	mouse	moves	outside	the	rectangle	you
give	to	tip(),	and	will	not	reappear	if	the	mouse	moves	back	in	-	maybeTip()	is
called	again	instead.

See	also	tip().

Example:	tooltip/tooltip.cpp.

QPalette	QToolTip::palette	()	[static]

Returns	the	palette	common	to	all	tool	tips.

See	also	setPalette().

QWidget	*	QToolTip::parentWidget	()	const

Returns	the	widget	this	QToolTip	applies	to.

The	tool	tip	is	destroyed	automatically	when	the	parent	widget	is	destroyed.

See	also	group().

void	QToolTip::remove	(QWidget	*	widget)	[static]

Removes	the	tool	tip	from	widget.

If	there	is	more	than	one	tool	tip	on	widget,	only	the	one	covering	the	entire
widget	is	removed.

void	QToolTip::remove	(QWidget	*	widget,	const	QRect	&	rect)
[static]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Removes	the	tool	tip	for	rect	from	widget.

If	there	is	more	than	one	tool	tip	on	widget,	only	the	one	covering	rectangle	rect
is	removed.

void	QToolTip::setEnabled	(bool	enable)	[static]

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

void	QToolTip::setFont	(const	QFont	&	font)	[static]

Sets	the	font	for	all	tool	tips	to	font.

See	also	font().

void	QToolTip::setGloballyEnabled	(bool	enable)	[static]

If	enable	is	TRUE	sets	all	tool	tips	to	be	enabled	(shown	when	needed);	if
enable	is	FALSE	sets	all	tool	tips	to	be	disabled	(never	shown).

By	default,	tool	tips	are	enabled.	Note	that	this	function	affects	all	tool	tips	in	the
entire	application.

See	also	QToolTipGroup::enabled.

void	QToolTip::setPalette	(const	QPalette	&	palette)	[static]

Sets	the	palette	for	all	tool	tips	to	palette.

See	also	palette().

QString	QToolTip::textFor	(QWidget	*	widget,
const	QPoint	&	pos	=	QPoint	())	[static]

Returns	the	text	for	widget	at	position	pos,	or	a	null	string	if	there	is	no	tool	tip
for	the	widget.

void	QToolTip::tip	(const	QRect	&	rect,	const	QString	&	text)
[protected]

Immediately	pops	up	a	tip	saying	text	and	removes	the	tip	once	the	cursor	moves
out	of	rectangle	rect	(which	is	given	in	the	coordinate	system	of	the	widget	this
QToolTip	relates	to).

The	tip	will	not	reappear	if	the	cursor	moves	back;	your	maybeTip()	has	to
reinstate	it	each	time.

void	QToolTip::tip	(const	QRect	&	rect,	const	QString	&	text,
const	QString	&	groupText)	[protected]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Immediately	pops	up	a	tip	saying	text	and	removes	that	tip	once	the	cursor
moves	out	of	rectangle	rect.	groupText	is	the	text	emitted	from	the	group.

The	tip	will	not	reappear	if	the	cursor	moves	back;	your	maybeTip()	has	to
reinstate	it	each	time.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QCacheIterator	Class	Reference
The	QCacheIterator	class	provides	an	iterator	for	QCache	collections.	More...

#include	<qcache.h>

List	of	all	member	functions.

Public	Members

QCacheIterator	(const	QCache<type>	&	cache)
QCacheIterator	(const	QCacheIterator<type>	&	ci)
QCacheIterator<type>	&	operator=	(const	QCacheIterator<type>	&	ci)
uint	count	()	const
bool	isEmpty	()	const
bool	atFirst	()	const
bool	atLast	()	const
type	*	toFirst	()
type	*	toLast	()
operator	type	*	()	const
type	*	current	()	const
QString	currentKey	()	const
type	*	operator()	()
type	*	operator++	()
type	*	operator+=	(uint	jump)
type	*	operator--	()
type	*	operator-=	(uint	jump)

Detailed	Description

The	QCacheIterator	class	provides	an	iterator	for	QCache	collections.

Note	that	the	traversal	order	is	arbitrary;	you	are	not	guaranteed	any	particular
order.	If	new	objects	are	inserted	into	the	cache	while	the	iterator	is	active,	the
iterator	may	or	may	not	see	them.

Multiple	iterators	are	completely	independent,	even	when	they	operate	on	the
same	QCache.	QCache	updates	all	iterators	that	refer	an	item	when	that	item	is
removed.

QCacheIterator	provides	an	operator++(),	and	an	operator+=()	to	traverse	the
cache.	The	current()	and	currentKey()	functions	are	used	to	access	the	current
cache	item	and	its	key.	The	atFirst()	and	atLast()	return	TRUE	if	the	iterator
points	to	the	first	or	last	item	in	the	cache	respectively.	The	isEmpty()	function
returns	TRUE	if	the	cache	is	empty,	and	count()	returns	the	number	of	items	in
the	cache.

Note	that	atFirst()	and	atLast()	refer	to	the	iterator's	arbitrary	ordering,	not	to	the
cache's	internal	least	recently	used	list.

See	also	QCache,	Collection	Classes	and	Non-GUI	Classes.

Member	Function	Documentation

QCacheIterator::QCacheIterator	(const	QCache<type>	&	cache
)

Constructs	an	iterator	for	cache.	The	current	iterator	item	is	set	to	point	to	the
first	item	in	the	cache.

QCacheIterator::QCacheIterator	(
const	QCacheIterator<type>	&	ci)

Constructs	an	iterator	for	the	same	cache	as	ci.	The	new	iterator	starts	at	the
same	item	as	ci.current(),	but	moves	independently	from	there	on.

bool	QCacheIterator::atFirst	()	const

Returns	TRUE	if	the	iterator	points	to	the	first	item	in	the	cache.	Note	that	this
refers	to	the	iterator's	arbitrary	ordering,	not	to	the	cache's	internal	least	recently
used	list.

See	also	toFirst()	and	atLast().

bool	QCacheIterator::atLast	()	const

Returns	TRUE	if	the	iterator	points	to	the	last	item	in	the	cache.	Note	that	this
refers	to	the	iterator's	arbitrary	ordering,	not	to	the	cache's	internal	least	recently
used	list.

See	also	toLast()	and	atFirst().

uint	QCacheIterator::count	()	const

Returns	the	number	of	items	in	the	cache	on	which	this	iterator	operates.

See	also	isEmpty().

type	*	QCacheIterator::current	()	const

Returns	a	pointer	to	the	current	iterator	item.

QString	QCacheIterator::currentKey	()	const

Returns	the	key	for	the	current	iterator	item.

bool	QCacheIterator::isEmpty	()	const

Returns	TRUE	if	the	cache	is	empty,	i.e.	count()	==	0;	otherwise	it	returns
FALSE.

See	also	count().

QCacheIterator::operator	type	*	()	const

Cast	operator.	Returns	a	pointer	to	the	current	iterator	item.	Same	as	current().

type	*	QCacheIterator::operator()	()

Makes	the	succeeding	item	current	and	returns	the	original	current	item.

If	the	current	iterator	item	was	the	last	item	in	the	cache	or	if	it	was	null,	null	is
returned.

type	*	QCacheIterator::operator++	()

Prefix++	makes	the	iterator	point	to	the	item	just	after	current()	and	makes	that
the	new	current	item	for	the	iterator.	If	current()	was	the	last	item,	operator++()
returns	0.

type	*	QCacheIterator::operator+=	(uint	jump)

Returns	the	item	jump	positions	after	the	current	item,	or	null	if	it	is	beyond	the
last	item.	Makes	this	the	current	item.

type	*	QCacheIterator::operator--	()

Prefix--	makes	the	iterator	point	to	the	item	just	before	current()	and	makes	that
the	new	current	item	for	the	iterator.	If	current()	was	the	first	item,	operator--()
returns	0.

type	*	QCacheIterator::operator-=	(uint	jump)

Returns	the	item	jump	positions	before	the	current	item,	or	null	if	it	is	before	the
first	item.	Makes	this	the	current	item.

QCacheIterator<type>	&	QCacheIterator::operator=	(
const	QCacheIterator<type>	&	ci)

Makes	this	an	iterator	for	the	same	cache	as	ci.	The	new	iterator	starts	at	the
same	item	as	ci.current(),	but	moves	independently	thereafter.

type	*	QCacheIterator::toFirst	()

Sets	the	iterator	to	point	to	the	first	item	in	the	cache	and	returns	a	pointer	to	the
item.

Sets	the	iterator	to	null	and	returns	null	if	the	cache	is	empty.

See	also	toLast()	and	isEmpty().

type	*	QCacheIterator::toLast	()

Sets	the	iterator	to	point	to	the	last	item	in	the	cache	and	returns	a	pointer	to	the
item.

Sets	the	iterator	to	null	and	returns	null	if	the	cache	is	empty.

See	also	toFirst()	and	isEmpty().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QDragMoveEvent	Class	Reference
The	QDragMoveEvent	class	provides	an	event	which	is	sent	while	a	drag	and
drop	is	in	progress.	More...

#include	<qevent.h>

Inherits	QDropEvent.

Inherited	by	QDragEnterEvent.

List	of	all	member	functions.

Public	Members

QDragMoveEvent	(const	QPoint	&	pos,	Type	type	=	DragMove)
QRect	answerRect	()	const
void	accept	(const	QRect	&	r)
void	ignore	(const	QRect	&	r)

Detailed	Description

The	QDragMoveEvent	class	provides	an	event	which	is	sent	while	a	drag	and
drop	is	in	progress.

When	a	widget	accepts	drop	events,	it	will	receive	this	event	repeatedly	while
the	drag	is	within	the	widget's	boundaries.	The	widget	should	examine	the	event
to	see	what	data	it	provides,	and	accept()	the	drop	if	appropriate.

Note	that	this	class	inherits	most	of	its	functionality	from	QDropEvent.

See	also	Drag	And	Drop	Classes	and	Event	Classes.

Member	Function	Documentation

QDragMoveEvent::QDragMoveEvent	(const	QPoint	&	pos,
Type	type	=	DragMove)

Creates	a	QDragMoveEvent	for	which	the	mouse	is	at	point	pos,	and	the	event	is
of	type	type.

Warning:	Do	not	create	a	QDragMoveEvent	yourself	since	these	objects	rely	on
Qt's	internal	state.

void	QDragMoveEvent::accept	(const	QRect	&	r)

The	same	as	accept(),	but	also	notifies	that	future	moves	will	also	be	acceptable
if	they	remain	within	the	rectangle	r	on	the	widget:	this	can	improve
performance,	but	may	also	be	ignored	by	the	underlying	system.

If	the	rectangle	is	empty,	then	drag	move	events	will	be	sent	continuously.	This
is	useful	if	the	source	is	scrolling	in	a	timer	event.

Examples:	desktop/desktop.cpp	and	dirview/dirview.cpp.

QRect	QDragMoveEvent::answerRect	()	const

Returns	the	rectangle	for	which	the	acceptance	of	the	move	event	applies.

void	QDragMoveEvent::ignore	(const	QRect	&	r)

The	opposite	of	accept(const	QRect&),	i.e.	says	that	moves	within	rectangle	r
are	not	acceptable	(will	be	ignored).

Example:	dirview/dirview.cpp.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

http://www.trolltech.com/

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QListBox	Class	Reference
The	QListBox	widget	provides	a	list	of	selectable,	read-only	items.	More...

#include	<qlistbox.h>

Inherits	QScrollView.

List	of	all	member	functions.

Public	Members

QListBox	(QWidget	*	parent	=	0,	const	char	*	name	=	0,	WFlags	f	=	0)
~QListBox	()
uint	count	()	const
void	insertStringList	(const	QStringList	&	list,	int	index	=	-1)
void	insertStrList	(const	QStrList	*	list,	int	index	=	-1)
void	insertStrList	(const	QStrList	&	list,	int	index	=	-1)
void	insertStrList	(const	char	**	strings,	int	numStrings	=	-1,	int	index	=
-1)
void	insertItem	(const	QListBoxItem	*	lbi,	int	index	=	-1)
void	insertItem	(const	QListBoxItem	*	lbi,	const	QListBoxItem	*	after)
void	insertItem	(const	QString	&	text,	int	index	=	-1)
void	insertItem	(const	QPixmap	&	pixmap,	int	index	=	-1)
void	insertItem	(const	QPixmap	&	pixmap,	const	QString	&	text,
int	index	=	-1)
void	removeItem	(int	index)
QString	text	(int	index)	const
const	QPixmap	*	pixmap	(int	index)	const
void	changeItem	(const	QListBoxItem	*	lbi,	int	index)
void	changeItem	(const	QString	&	text,	int	index)
void	changeItem	(const	QPixmap	&	pixmap,	int	index)
void	changeItem	(const	QPixmap	&	pixmap,	const	QString	&	text,
int	index)
void	takeItem	(const	QListBoxItem	*	item)
int	numItemsVisible	()	const
int	currentItem	()	const
QString	currentText	()	const
virtual	void	setCurrentItem	(int	index)
virtual	void	setCurrentItem	(QListBoxItem	*	i)
void	centerCurrentItem	()
int	topItem	()	const
virtual	void	setTopItem	(int	index)
virtual	void	setBottomItem	(int	index)
long	maxItemWidth	()	const
enum	SelectionMode	{	Single,	Multi,	Extended,	NoSelection	}
virtual	void	setSelectionMode	(SelectionMode)

SelectionMode	selectionMode	()	const
void	setMultiSelection	(bool	multi)		(obsolete)
bool	isMultiSelection	()	const		(obsolete)
virtual	void	setSelected	(QListBoxItem	*	item,	bool	select)
void	setSelected	(int	index,	bool	select)
bool	isSelected	(int	i)	const
bool	isSelected	(const	QListBoxItem	*	i)	const
QListBoxItem	*	item	(int	index)	const
int	index	(const	QListBoxItem	*	lbi)	const
QListBoxItem	*	findItem	(const	QString	&	text,
ComparisonFlags	compare	=	BeginsWith)	const
void	triggerUpdate	(bool	doLayout)
bool	itemVisible	(int	index)
bool	itemVisible	(const	QListBoxItem	*	item)
enum	LayoutMode	{	FixedNumber,	FitToWidth,	FitToHeight	=
FitToWidth,	Variable	}
virtual	void	setColumnMode	(LayoutMode)
virtual	void	setColumnMode	(int	columns)
virtual	void	setRowMode	(LayoutMode)
virtual	void	setRowMode	(int	rows)
LayoutMode	columnMode	()	const
LayoutMode	rowMode	()	const
int	numColumns	()	const
int	numRows	()	const
bool	variableWidth	()	const
virtual	void	setVariableWidth	(bool)
bool	variableHeight	()	const
virtual	void	setVariableHeight	(bool)
bool	autoScrollBar	()	const
void	setAutoScrollBar	(bool	enable)
bool	scrollBar	()	const
void	setScrollBar	(bool	enable)
bool	autoBottomScrollBar	()	const
void	setAutoBottomScrollBar	(bool	enable)
bool	bottomScrollBar	()	const
void	setBottomScrollBar	(bool	enable)
int	inSort	(const	QListBoxItem	*	lbi)		(obsolete)
int	inSort	(const	QString	&	text)		(obsolete)
int	cellHeight	(int	i)	const		(obsolete)

int	cellHeight	()	const		(obsolete)
int	cellWidth	()	const		(obsolete)
int	numCols	()	const		(obsolete)
int	itemHeight	(int	index	=	0)	const
QListBoxItem	*	itemAt	(const	QPoint	&	p)	const
QRect	itemRect	(QListBoxItem	*	item)	const
QListBoxItem	*	firstItem	()	const
void	sort	(bool	ascending	=	TRUE)

Public	Slots

void	clear	()
virtual	void	ensureCurrentVisible	()
virtual	void	clearSelection	()
virtual	void	selectAll	(bool	select)
virtual	void	invertSelection	()

Signals

void	highlighted	(int	index)
void	selected	(int	index)
void	highlighted	(const	QString	&)
void	selected	(const	QString	&)
void	highlighted	(QListBoxItem	*)
void	selected	(QListBoxItem	*)
void	selectionChanged	()
void	selectionChanged	(QListBoxItem	*	item)
void	currentChanged	(QListBoxItem	*	item)
void	clicked	(QListBoxItem	*	item)
void	clicked	(QListBoxItem	*	item,	const	QPoint	&	pnt)
void	pressed	(QListBoxItem	*	item)
void	pressed	(QListBoxItem	*	item,	const	QPoint	&	pnt)
void	doubleClicked	(QListBoxItem	*	item)
void	returnPressed	(QListBoxItem	*)
void	rightButtonClicked	(QListBoxItem	*,	const	QPoint	&)
void	rightButtonPressed	(QListBoxItem	*,	const	QPoint	&)
void	mouseButtonPressed	(int	button,	QListBoxItem	*	item,
const	QPoint	&	pos)
void	mouseButtonClicked	(int	button,	QListBoxItem	*	item,
const	QPoint	&	pos)
void	contextMenuRequested	(QListBoxItem	*	item,	const	QPoint	&	pos)
void	onItem	(QListBoxItem	*	i)
void	onViewport	()

Properties

LayoutMode	columnMode	-	the	column	layout	mode	for	this	list	box
uint	count	-	the	number	of	items	in	the	list	box		(read	only)
int	currentItem	-	the	current	highlighted	item
QString	currentText	-	the	text	of	the	current	item		(read	only)
bool	multiSelection	-	whether	or	not	the	list	box	is	in	Multi	selection	mode
	(obsolete)
int	numColumns	-	the	number	of	columns	in	the	list	box		(read	only)
int	numItemsVisible	-	the	number	of	visible	items		(read	only)
int	numRows	-	the	number	of	rows	in	the	list	box		(read	only)
LayoutMode	rowMode	-	the	row	layout	mode	for	this	list	box
SelectionMode	selectionMode	-	the	selection	mode	of	the	list	box
int	topItem	-	the	index	of	an	item	at	the	top	of	the	screen
bool	variableHeight	-	whether	this	list	box	has	variable-height	rows
bool	variableWidth	-	whether	this	list	box	has	variable-width	columns

Protected	Members

void	updateItem	(int	index)
void	updateItem	(QListBoxItem	*	i)
int	totalWidth	()	const		(obsolete)
int	totalHeight	()	const		(obsolete)
virtual	void	paintCell	(QPainter	*	p,	int	row,	int	col)
void	toggleCurrentItem	()
bool	isRubberSelecting	()	const
void	doLayout	()	const
bool	itemYPos	(int	index,	int	*	yPos)	const		(obsolete)
int	findItem	(int	yPos)	const		(obsolete)

Detailed	Description

The	QListBox	widget	provides	a	list	of	selectable,	read-only	items.

This	is	typically	a	single-column	list	in	which	zero	or	one	item	is	selected,	but	it
can	also	be	used	in	many	other	ways.

QListBox	will	add	scroll	bars	as	necessary,	but	it	isn't	intended	for	really	big
lists.	If	you	want	more	than	a	few	thousand	items,	it's	probably	better	to	use	a
different	widget	mainly	because	the	scroll	bars	won't	provide	very	good
navigation,	but	also	because	QListBox	may	become	slow	with	huge	lists.

There	are	a	variety	of	selection	modes	described	in	the
QListBox::SelectionMode	documentation.	The	default	is	Single	selection	mode,
but	you	can	change	it	using	setSelectionMode().	(setMultiSelection()	is	still
provided	for	compatibility	with	Qt	1.x.	We	recomment	using	setSelectionMode()
in	all	code.)

Because	QListBox	offers	multiple	selection	it	must	display	keyboard	focus	and
selection	state	separately.	Therefore	there	are	functions	both	to	set	the	selection
state	of	an	item,	i.e.	setSelected(),	and	to	select	which	item	displays	keyboard
focus,	i.e.	setCurrentItem().

The	list	box	normally	arranges	its	items	in	a	single	column	and	adds	a	vertical
scroll	bar	if	required.	It	is	possible	to	have	a	different	fixed	number	of	columns
(setColumnMode()),	or	as	many	columns	as	will	fit	in	the	list	box's	assigned
screen	space	(setColumnMode(FitToWidth)),	or	to	have	a	fixed	number	of	rows
(setRowMode())	or	as	many	rows	as	will	fit	in	the	list	box's	assigned	screen
space	(setRowMode(FitToHeight)).	In	all	these	cases	QListBox	will	add	scroll
bars,	as	appropriate,	in	at	least	one	direction.

If	multiple	rows	are	used,	each	row	can	be	as	high	as	necessary	(the	normal
setting),	or	you	can	request	that	all	items	will	have	the	same	height	by	calling
setVariableHeight(FALSE).	The	same	applies	to	a	column's	width,	see
setVariableWidth().

The	items	discussed	are	QListBoxItem	objects.	QListBox	provides	methods	to
insert	new	items	as	strings,	as	pixmaps,	and	as	QListBoxItem	*	(insertItem()

with	various	arguments),	and	to	replace	an	existing	item	with	a	new	string,
pixmap	or	QListBoxItem	(changeItem()	with	various	arguments).	You	can	also
remove	items	singly	with	removeItem()	or	clear()	the	entire	list	box.	Note	that	if
you	create	a	QListBoxItem	yourself	and	insert	it,	it	becomes	the	property	of
QListBox	and	you	must	not	delete	it.	(QListBox	will	delete	it	when	appropriate.)

You	can	also	create	a	QListBoxItem,	such	as	QListBoxText	or	QListBoxPixmap,
with	the	list	box	as	first	parameter.	The	item	will	then	append	itself.	When	you
delete	an	item	it	is	automatically	removed	from	the	list	box.

The	list	of	items	can	be	arbitrarily	large;	QListBox	will	add	scroll	bars	if
necessary.	QListBox	can	display	a	single-column	(the	common	case)	or
multiple-columns,	and	offers	both	single	and	multiple	selection.	(QListBox	does
not	support	multiple-column	items,	or	tree	hierarchies;	use	QListView	if	you
require	such	functionality.)

The	list	box	items	can	be	accessed	both	as	QListBoxItem	objects
(recommended)	and	using	integer	indexes	(the	original	QListBox
implementation	used	an	array	of	strings	internally,	and	the	API	still	supports	this
mode	of	operation).	Everything	can	be	done	using	the	new	objects;	most	things
can	be	done	using	the	indexes,	too,	but	unfortunately	not	everything.

Each	item	in	a	QListBox	contains	a	QListBoxItem.	One	of	the	items	can	be	the
current	item.	The	highlighted()	signal	is	emitted	when	a	new	item	gets
highlighted,	e.g.	because	the	user	clicks	on	it	or	QListBox::setCurrentItem()	is
called.	The	selected()	signal	is	emitted	when	the	user	double-clicks	on	an	item	or
presses	Enter	when	an	item	is	highlighted.

If	the	user	does	not	select	anything,	no	signals	are	emitted	and	currentItem()
returns	-1.

A	list	box	has	WheelFocus	as	a	default	focusPolicy(),	i.e.	it	can	get	keyboard
focus	by	tabbing,	clicking	and	through	the	use	of	the	mouse	wheel.

New	items	can	be	inserted	using	insertItem(),	insertStrList()	or
insertStringList().	inSort()	is	obsolete	because	this	method	is	quite	inefficient.
It's	preferable	to	insert	the	items	normally	and	call	sort()	afterwards,	or	to	insert
a	sorted	QStringList().

By	default,	vertical	and	horizontal	scroll	bars	are	added	and	removed	as

necessary.	setHScrollBarMode()	and	setVScrollBarMode()	can	be	used	to
change	this	policy.

If	you	need	to	insert	types	other	than	strings	and	pixmaps,	you	must	define	new
classes	which	inherit	QListBoxItem.

Warning:	The	list	box	assumes	ownership	of	all	list	box	items	and	will	delete
them	when	it	does	not	need	them	any	more.

	

See	also	QListView,	QComboBox,	QButtonGroup,	GUI	Design	Handbook:	List
Box	(two	sections)	and	Advanced	Widgets.

Member	Type	Documentation

QListBox::LayoutMode

This	enum	type	is	used	to	specify	how	QListBox	lays	out	its	rows	and	columns.

The	possible	values	for	each	row	or	column	mode	are:

QListBox::FixedNumber	-	There	is	a	fixed	number	of	rows	(or	columns).
QListBox::FitToWidth	-	There	are	as	many	columns	as	will	fit	on-screen.
QListBox::FitToHeight	-	There	are	as	many	rows	as	will	fit	on-screen.
QListBox::Variable	-	There	are	as	many	rows	as	are	required	by	the
column	mode.	(Or	as	many	columns	as	required	by	the	row	mode.)

Example:	When	you	call	setRowMode(FitToHeight),	columnMode()
automatically	becomes	Variable	to	accommodate	the	row	mode	you've	set.

QListBox::SelectionMode

This	enumerated	type	is	used	by	QListBox	to	indicate	how	it	reacts	to	selection
by	the	user.	It	has	four	values:

QListBox::Single	-	When	the	user	selects	an	item,	any	already-selected
item	becomes	unselected	and	the	user	cannot	unselect	the	selected	item.
This	means	that	the	user	can	never	clear	the	selection,	even	though	the
selection	may	be	cleared	by	the	application	programmer	using
QListBox::clearSelection().
QListBox::Multi	-	When	the	user	selects	an	item	the	selection	status	of
that	item	is	toggled	and	the	other	items	are	left	alone.
QListBox::Extended	-	When	the	user	selects	an	item	the	selection	is
cleared	and	the	new	item	selected.	However,	if	the	user	presses	the	Ctrl	key
when	clicking	on	an	item,	the	clicked	item	gets	toggled	and	all	other	items
are	left	untouched.	And	if	the	user	presses	the	Shift	key	while	clicking	on
an	item,	all	items	between	the	current	item	and	the	clicked	item	get	selected
or	unselected,	depending	on	the	state	of	the	clicked	item.	Also,	multiple
items	can	be	selected	by	dragging	the	mouse	while	the	left	mouse	button	is
kept	pressed.

QListBox::NoSelection	-	Items	cannot	be	selected.

In	other	words,	Single	is	a	real	single-selection	list	box,	Multi	is	a	real	multi-
selection	list	box,	Extended	is	a	list	box	in	which	users	can	select	multiple	items
but	usually	want	to	select	either	just	one	or	a	range	of	contiguous	items,	and
NoSelection	is	for	a	list	box	where	the	user	can	look	but	not	touch.

Member	Function	Documentation

QListBox::QListBox	(QWidget	*	parent	=	0,	const	char	*	name	=
0,	WFlags	f	=	0)

Constructs	a	new	empty	list	box,	with	parent	as	a	parent	and	name	as	object
name.

Performance	is	boosted	by	modifying	the	widget	flags	f	so	that	only	part	of	the
QListBoxItem	children	is	redrawn.	This	may	be	unsuitable	for	custom
QListBoxItem	classes,	in	which	case	WStaticContents	and	WRepaintNoErase
should	be	cleared	immediately	after	construction.

See	also	QWidget::clearWFlags()	and	Qt::WidgetFlags.

QListBox::~QListBox	()

Destroys	the	list	box.	Deletes	all	list	box	items.

bool	QListBox::autoBottomScrollBar	()	const

Returns	TRUE	if	hScrollBarMode()	is	Auto;	otherwise	returns	FALSE.

bool	QListBox::autoScrollBar	()	const

Returns	TRUE	if	vScrollBarMode()	is	Auto;	otherwise	returns	FALSE.

bool	QListBox::bottomScrollBar	()	const

Returns	FALSE	if	vScrollBarMode()	is	AlwaysOff;	otherwise	returns	TRUE.

int	QListBox::cellHeight	(int	i)	const

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Returns	the	item	height	of	item	i.

See	also	itemHeight().

int	QListBox::cellHeight	()	const

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	the	item	height	of	the	first	item,	item	0.

See	also	itemHeight().

int	QListBox::cellWidth	()	const

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Returns	the	maximum	item	width.

See	also	maxItemWidth().

void	QListBox::centerCurrentItem	()

If	there	is	a	current	item,	the	list	box	is	scrolled	so	that	this	item	is	displayed
centered.

See	also	QListBox::ensureCurrentVisible().

void	QListBox::changeItem	(const	QListBoxItem	*	lbi,	int	index)

Replaces	the	item	at	position	index	with	lbi.	If	index	is	negative	or	too	large,
changeItem()	does	nothing.

The	item	that	has	been	changed	will	become	selected.

See	also	insertItem()	and	removeItem().

void	QListBox::changeItem	(const	QString	&	text,	int	index)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Replaces	the	item	at	position	index	with	a	new	list	box	text	item	with	text	text.

The	operation	is	ignored	if	index	is	out	of	range.

See	also	insertItem()	and	removeItem().

void	QListBox::changeItem	(const	QPixmap	&	pixmap,	int	index
)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Replaces	the	item	at	position	index	with	a	new	list	box	pixmap	item	with	pixmap
pixmap.

The	operation	is	ignored	if	index	is	out	of	range.

See	also	insertItem()	and	removeItem().

void	QListBox::changeItem	(const	QPixmap	&	pixmap,
const	QString	&	text,	int	index)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Replaces	the	item	at	position	index	with	a	new	list	box	pixmap	item	with	pixmap
pixmap	and	text	text.

The	operation	is	ignored	if	index	is	out	of	range.

See	also	insertItem()	and	removeItem().

void	QListBox::clear	()	[slot]

Deletes	all	the	items	in	the	list.

See	also	removeItem().

void	QListBox::clearSelection	()	[virtual	slot]

Deselects	all	items,	if	possible.

Note	that	a	Single	selection	list	box	will	automatically	select	an	item	if	it	has
keyboard	focus.

Example:	listbox/listbox.cpp.

void	QListBox::clicked	(QListBoxItem	*	item)	[signal]

This	signal	is	emitted	when	the	user	clicks	any	mouse	button.	If	item	is	non-null,
the	cursor	is	on	item.	If	item	is	null,	the	mouse	cursor	isn't	on	any	item.

Note	that	you	must	not	delete	any	QListBoxItem	objects	in	slots	connected	to
this	signal.

void	QListBox::clicked	(QListBoxItem	*	item,
const	QPoint	&	pnt)	[signal]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

This	signal	is	emitted	when	the	user	clicks	any	mouse	button.	If	item	is	non-null,
the	cursor	is	on	item.	If	item	is	null,	the	mouse	cursor	isn't	on	any	item.

pnt	is	the	position	of	the	mouse	cursor	in	the	global	coordinate	system
(QMouseEvent::globalPos()).	(If	the	click's	press	and	release	differ	by	a	pixel	or
two,	pnt	is	the	position	at	release	time.)

Note	that	you	must	not	delete	any	QListBoxItem	objects	in	slots	connected	to
this	signal.

LayoutMode	QListBox::columnMode	()	const

Returns	the	column	layout	mode	for	this	list	box.	See	the	"columnMode"
property	for	details.

void	QListBox::contextMenuRequested	(QListBoxItem	*	item,
const	QPoint	&	pos)	[signal]

This	signal	is	emitted	when	the	user	invokes	a	context	menu	with	the	right
mouse	button	or	with	special	system	keys,	with	item	being	the	item	under	the
mouse	cursor	or	the	current	item,	respectively.

pos	is	the	position	for	the	context	menu	in	the	global	coordinate	system.

uint	QListBox::count	()	const

Returns	the	number	of	items	in	the	list	box.	See	the	"count"	property	for	details.

void	QListBox::currentChanged	(QListBoxItem	*	item)
[signal]

This	signal	is	emitted	when	the	user	highlights	a	new	current	item.	item	is	the
new	current	list	box	item.

See	also	currentItem	and	currentItem.

int	QListBox::currentItem	()	const

Returns	the	current	highlighted	item.	See	the	"currentItem"	property	for	details.

QString	QListBox::currentText	()	const

Returns	the	text	of	the	current	item.	See	the	"currentText"	property	for	details.

void	QListBox::doLayout	()	const	[protected]

This	function	does	the	hard	layout	work.	You	should	never	need	to	call	it.

void	QListBox::doubleClicked	(QListBoxItem	*	item)	[signal]

This	signal	is	emitted	whenever	an	item	is	double-clicked.	It's	emitted	on	the
second	button	press,	not	the	second	button	release.	item	is	the	item	item	on
which	the	user	did	the	double-click.	item	may	be	0.

void	QListBox::ensureCurrentVisible	()	[virtual	slot]

Ensures	that	the	current	item	is	visible.

QListBoxItem	*	QListBox::findItem	(const	QString	&	text,
ComparisonFlags	compare	=	BeginsWith)	const

Finds	the	first	list	box	item	that	has	the	text	text	and	returns	it,	or	returns	0	of	no
such	item	could	be	found.	If	ComparisonFlags	are	specified	in	compare	then
these	flags	are	used,	otherwise	the	default	is	a	case-insensitive,	begins	with
search.

See	also	Qt::StringComparisonMode.

int	QListBox::findItem	(int	yPos)	const	[protected]

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Returns	the	index	of	the	item	a	point	(0,	yPos).

See	also	index()	and	itemAt().

QListBoxItem	*	QListBox::firstItem	()	const

Returns	the	first	item	in	this	list	box.	If	the	list	box	is	empty	this	will	be	0.

void	QListBox::highlighted	(int	index)	[signal]

This	signal	is	emitted	when	the	user	highlights	a	new	current	item.	index	is	the
index	of	the	highlighted	item.

See	also	selected(),	currentItem	and	selectionChanged().

void	QListBox::highlighted	(const	QString	&)	[signal]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

This	signal	is	emitted	when	the	user	highlights	a	new	current	item	and	the	new
item	is	a	string.	The	argument	is	the	text	of	the	new	current	item.

See	also	selected(),	currentItem	and	selectionChanged().

void	QListBox::highlighted	(QListBoxItem	*)	[signal]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

This	signal	is	emitted	when	the	user	highlights	a	new	current	item.	The	argument
is	a	pointer	to	the	new	current	item.

See	also	selected(),	currentItem	and	selectionChanged().

int	QListBox::inSort	(const	QListBoxItem	*	lbi)

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Using	this	method	is	quite	inefficient.	We	suggest	to	use	insertItem()	for
inserting	and	sort()	afterwards.

Inserts	lbi	at	its	sorted	position	in	the	list	box	and	returns	the	position.

All	items	must	be	inserted	with	inSort()	to	maintain	the	sorting	order.	inSort()
treats	any	pixmap	(or	user-defined	type)	as	lexicographically	less	than	any
string.

See	also	insertItem()	and	sort().

int	QListBox::inSort	(const	QString	&	text)

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We

strongly	advise	against	using	it	in	new	code.

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Using	this	method	is	quite	inefficient.	We	suggest	to	use	insertItem()	for
inserting	and	sort()	afterwards.

Inserts	a	new	item	of	text	at	its	sorted	position	in	the	list	box	and	returns	the
position.

All	items	must	be	inserted	with	inSort()	to	maintain	the	sorting	order.	inSort()
treats	any	pixmap	(or	user-defined	type)	as	lexicographically	less	than	any
string.

See	also	insertItem()	and	sort().

int	QListBox::index	(const	QListBoxItem	*	lbi)	const

Returns	the	index	of	lbi,	or	-1	if	the	item	is	not	in	this	list	box	or	lbi	is	a	null
pointer.

See	also	item().

void	QListBox::insertItem	(const	QListBoxItem	*	lbi,	int	index	=
-1)

Inserts	the	item	lbi	into	the	list	at	position	index.

If	index	is	negative	or	larger	than	the	number	of	items	in	the	list	box,	lbi	is
inserted	at	the	end	of	the	list.

See	also	insertStrList().

Examples:	i18n/mywidget.cpp,	listbox/listbox.cpp,
listboxcombo/listboxcombo.cpp	and	tabdialog/tabdialog.cpp.

void	QListBox::insertItem	(const	QListBoxItem	*	lbi,
const	QListBoxItem	*	after)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	the	item	lbi	into	the	list	after	the	item	after.

If	after	is	0,	lbi	is	inserted	at	the	beginning.

See	also	insertStrList().

void	QListBox::insertItem	(const	QString	&	text,	int	index	=	-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	a	new	list	box	text	item	with	the	text	text	into	the	list	at	position	index.

If	index	is	negative,	text	is	inserted	at	the	end	of	the	list.

See	also	insertStrList().

void	QListBox::insertItem	(const	QPixmap	&	pixmap,	int	index
=	-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	a	new	list	box	pixmap	item	with	the	pixmap	pixmap	into	the	list	at
position	index.

If	index	is	negative,	pixmap	is	inserted	at	the	end	of	the	list.

See	also	insertStrList().

void	QListBox::insertItem	(const	QPixmap	&	pixmap,
const	QString	&	text,	int	index	=	-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	a	new	list	box	pixmap	item	with	the	pixmap	pixmap	and	the	text	text	into
the	list	at	position	index.

If	index	is	negative,	pixmap	is	inserted	at	the	end	of	the	list.

See	also	insertStrList().

void	QListBox::insertStrList	(const	QStrList	*	list,	int	index	=	-1
)

Inserts	the	string	list	list	into	the	list	at	position	index.

If	index	is	negative,	list	is	inserted	at	the	end	of	the	list.	If	index	is	too	large,	the
operation	is	ignored.

Warning:	This	function	uses	const	char	*	rather	than	QString,	so	we
recommend	against	using	it.	It	is	provided	so	that	legacy	code	will	continue	to
work,	and	so	that	programs	that	certainly	will	not	need	to	handle	code	outside	a
single	8-bit	locale	can	use	it.	See	insertStringList()	which	uses	real	QStrings.

Warning:	This	function	is	never	significantly	faster	than	a	loop	around
insertItem().

See	also	insertItem()	and	insertStringList().

void	QListBox::insertStrList	(const	QStrList	&	list,	int	index	=	-1
)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	the	string	list	list	into	the	list	at	position	index.

If	index	is	negative,	list	is	inserted	at	the	end	of	the	list.	If	index	is	too	large,	the
operation	is	ignored.

Warning:	This	function	uses	const	char	*	rather	than	QString,	so	we
recommend	against	using	it.	It	is	provided	so	that	legacy	code	will	continue	to
work,	and	so	that	programs	that	certainly	will	not	need	to	handle	code	outside	a

single	8-bit	locale	can	use	it.	See	insertStringList()	which	uses	real	QStrings.

Warning:	This	function	is	never	significantly	faster	than	a	loop	around
insertItem().

See	also	insertItem()	and	insertStringList().

void	QListBox::insertStrList	(const	char	**	strings,
int	numStrings	=	-1,	int	index	=	-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	the	numStrings	strings	of	the	array	strings	into	the	list	at	position	index.

If	index	is	negative,	insertStrList()	inserts	strings	at	the	end	of	the	list.	If	index	is
too	large,	the	operation	is	ignored.

Warning:	This	function	uses	const	char	*	rather	than	QString,	so	we
recommend	against	using	it.	It	is	provided	so	that	legacy	code	will	continue	to
work,	and	so	that	programs	that	certainly	will	not	need	to	handle	code	outside	a
single	8-bit	locale	can	use	it.	See	insertStringList()	which	uses	real	QStrings.

Warning:	This	function	is	never	significantly	faster	than	a	loop	around
insertItem().

See	also	insertItem()	and	insertStringList().

void	QListBox::insertStringList	(const	QStringList	&	list,
int	index	=	-1)

Inserts	the	string	list	list	into	the	list	at	position	index.

If	index	is	negative,	list	is	inserted	at	the	end	of	the	list.	If	index	is	too	large,	the
operation	is	ignored.

Warning:	This	function	is	never	significantly	faster	than	a	loop	around
insertItem().

See	also	insertItem()	and	insertStrList().

void	QListBox::invertSelection	()	[virtual	slot]

Inverts	the	selection.	Only	works	in	Multi	and	Extended	selection	mode.

bool	QListBox::isMultiSelection	()	const

Returns	TRUE	if	or	not	the	list	box	is	in	Multi	selection	mode;	otherwise	returns
FALSE.	See	the	"multiSelection"	property	for	details.

bool	QListBox::isRubberSelecting	()	const	[protected]

Returns	whether	the	user	is	selecting	items	using	a	rubber	band	rectangle.

bool	QListBox::isSelected	(int	i)	const

Returns	TRUE	if	item	i	is	selected;	otherwise	returns	FALSE.

bool	QListBox::isSelected	(const	QListBoxItem	*	i)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	TRUE	if	item	i	is	selected;	otherwise	returns	FALSE.

QListBoxItem	*	QListBox::item	(int	index)	const

Returns	a	pointer	to	the	item	at	position	index,	or	0	if	index	is	out	of	bounds.

See	also	index().

Example:	listboxcombo/listboxcombo.cpp.

QListBoxItem	*	QListBox::itemAt	(const	QPoint	&	p)	const

Returns	a	pointer	to	the	item	at	point	p,	which	is	in	on-screen	coordinates,	or	a
null	pointer	if	there	is	no	item	at	p.

int	QListBox::itemHeight	(int	index	=	0)	const

Returns	the	height	in	pixels	of	the	item	with	index	index.	index	defaults	to	0.

If	index	is	too	large,	this	function	returns	0.

QRect	QListBox::itemRect	(QListBoxItem	*	item)	const

Returns	the	rectangle	on	the	sizecreen	that	item	occupies	in	viewport()'s
coordinates,	or	an	invalid	rectangle	if	item	is	a	null	pointer	or	is	not	currently
visible.

bool	QListBox::itemVisible	(int	index)

Returns	TRUE	if	the	item	at	position	index	is	at	least	partly	visible;	otherwise
returns	FALSE.

bool	QListBox::itemVisible	(const	QListBoxItem	*	item)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	TRUE	if	item	is	at	least	partly	visible;	otherwise	returns	FALSE.

bool	QListBox::itemYPos	(int	index,	int	*	yPos)	const
[protected]

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Returns	the	vertical	pixel-coordinate	in	*yPos,	of	the	list	box	item	at	position
index	in	the	list.	Returns	FALSE	if	the	item	is	outside	the	visible	area.

long	QListBox::maxItemWidth	()	const

Returns	the	width	of	the	widest	item	in	the	list	box.

void	QListBox::mouseButtonClicked	(int	button,

QListBoxItem	*	item,	const	QPoint	&	pos)	[signal]

This	signal	is	emitted	when	the	user	clicks	mouse	button	button.	If	item	is	non-
null,	the	cursor	is	on	item.	If	item	is	null,	the	mouse	cursor	isn't	on	any	item.

pos	is	the	position	of	the	mouse	cursor	in	the	global	coordinate	system
(QMouseEvent::globalPos()).	(If	the	click's	press	and	release	differ	by	a	pixel	or
two,	pos	is	the	position	at	release	time.)

Note	that	you	must	not	delete	any	QListBoxItem	objects	in	slots	connected	to
this	signal.

void	QListBox::mouseButtonPressed	(int	button,
QListBoxItem	*	item,	const	QPoint	&	pos)	[signal]

This	signal	is	emitted	when	the	user	presses	mouse	button	button.	If	item	is	non-
null,	the	cursor	is	on	item.	If	item	is	null,	the	mouse	cursor	isn't	on	any	item.

pos	is	the	position	of	the	mouse	cursor	in	the	global	coordinate	system
(QMouseEvent::globalPos()).

Note	that	you	must	not	delete	any	QListBoxItem	objects	in	slots	connected	to
this	signal.

int	QListBox::numCols	()	const

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Returns	the	number	of	columns.

See	also	numColumns.

int	QListBox::numColumns	()	const

Returns	the	number	of	columns	in	the	list	box.	See	the	"numColumns"	property
for	details.

int	QListBox::numItemsVisible	()	const

Returns	the	number	of	visible	items.	See	the	"numItemsVisible"	property	for
details.

int	QListBox::numRows	()	const

Returns	the	number	of	rows	in	the	list	box.	See	the	"numRows"	property	for
details.

void	QListBox::onItem	(QListBoxItem	*	i)	[signal]

This	signal	is	emitted	when	the	user	moves	the	mouse	cursor	onto	an	item,
similar	to	the	QWidget::enterEvent()	function.	i	is	the	QListBoxItem	that	the
mouse	has	moved	on.

void	QListBox::onViewport	()	[signal]

This	signal	is	emitted	when	the	user	moves	the	mouse	cursor	from	an	item	to	an
empty	part	of	the	list	box.

void	QListBox::paintCell	(QPainter	*	p,	int	row,	int	col)
[virtual	protected]

Provided	for	compatibility	with	the	old	QListBox.	We	recommend	using
QListBoxItem::paint()

Repaints	the	cell	at	row,	col	using	painter	p.

const	QPixmap	*	QListBox::pixmap	(int	index)	const

Returns	a	pointer	to	the	pixmap	at	position	index,	or	0	if	there	is	no	pixmap
there.

See	also	text().

void	QListBox::pressed	(QListBoxItem	*	item)	[signal]

This	signal	is	emitted	when	the	user	presses	any	mouse	button.	If	item	is	non-
null,	the	cursor	is	on	item.	If	item	is	null,	the	mouse	cursor	isn't	on	any	item.

Note	that	you	must	not	delete	any	QListBoxItem	objects	in	slots	connected	to
this	signal.

void	QListBox::pressed	(QListBoxItem	*	item,
const	QPoint	&	pnt)	[signal]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

This	signal	is	emitted	when	the	user	presses	any	mouse	button.	If	item	is	non-
null,	the	cursor	is	on	item.	If	item	is	null,	the	mouse	cursor	isn't	on	any	item.

pnt	is	the	position	of	the	mouse	cursor	in	the	global	coordinate	system
(QMouseEvent::globalPos()).	(If	the	click's	press	and	release	differ	by	a	pixel	or
two,	pnt	is	the	position	at	release	time.)

Note	that	you	must	not	delete	any	QListBoxItem	objects	in	slots	connected	to
this	signal.

See	also	mouseButtonPressed(),	rightButtonPressed()	and	clicked().

void	QListBox::removeItem	(int	index)

Removes	and	deletes	the	item	at	position	index.	If	index	is	equal	to
currentItem(),	a	new	item	gets	highlighted	and	the	highlighted()	signal	is
emitted.

See	also	insertItem()	and	clear().

void	QListBox::returnPressed	(QListBoxItem	*)	[signal]

This	signal	is	emitted	when	Enter	or	Return	is	pressed.	The	argument	is
currentItem().

void	QListBox::rightButtonClicked	(QListBoxItem	*,
const	QPoint	&)	[signal]

This	signal	is	emitted	when	the	right	button	is	clicked	(i.e.	when	it's	released	at

the	same	point	where	it	was	pressed).	The	arguments	are	the	relevant
QListBoxItem	(may	be	0)	and	the	point	in	global	coordinates.

void	QListBox::rightButtonPressed	(QListBoxItem	*,
const	QPoint	&)	[signal]

This	signal	is	emitted	when	the	right	button	is	pressed.	The	arguments	are	the
relevant	QListBoxItem	(may	be	0)	and	the	point	in	global	coordinates.

LayoutMode	QListBox::rowMode	()	const

Returns	the	row	layout	mode	for	this	list	box.	See	the	"rowMode"	property	for
details.

bool	QListBox::scrollBar	()	const

Returns	FALSE	if	vScrollBarMode()	is	AlwaysOff;	otherwise	returns	TRUE.

void	QListBox::selectAll	(bool	select)	[virtual	slot]

In	Multi	and	Extended	modes,	this	function	sets	all	items	to	be	selected	if	select
is	TRUE,	and	to	be	unselected	if	select	is	FALSE.

In	Single	and	NoSelection	modes,	this	function	only	changes	the	selection	status
of	currentItem().

void	QListBox::selected	(int	index)	[signal]

This	signal	is	emitted	when	the	user	double-clicks	on	an	item	or	presses	Enter
when	an	item	is	highlighted.	index	is	the	index	of	the	selected	item.

See	also	highlighted()	and	selectionChanged().

void	QListBox::selected	(const	QString	&)	[signal]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

This	signal	is	emitted	when	the	user	double-clicks	on	an	item	or	presses	Enter
while	an	item	is	highlighted,	and	the	selected	item	is	(or	has)	a	string.	The
argument	is	the	text	of	the	selected	item.

See	also	highlighted()	and	selectionChanged().

void	QListBox::selected	(QListBoxItem	*)	[signal]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

This	signal	is	emitted	when	the	user	double-clicks	on	an	item	or	presses	Enter
when	an	item	is	highlighted.	The	argument	is	a	pointer	to	the	new	selected	item.

See	also	highlighted()	and	selectionChanged().

void	QListBox::selectionChanged	()	[signal]

This	signal	is	emitted	when	the	selection	set	of	a	list	box	changes.	This	signal	is
emitted	in	each	selection	mode.	If	the	user	selects	five	items	by	drag-selecting,
QListBox	tries	to	emit	just	one	selectionChanged()	signal	so	the	signal	can	be
connected	to	computationally	expensive	slots.

See	also	selected()	and	currentItem.

void	QListBox::selectionChanged	(QListBoxItem	*	item)
[signal]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

This	signal	is	emitted	when	the	selection	in	a	Single	selection	list	box	changes.
item	is	the	new	selected	list	box	item.

See	also	selected()	and	currentItem.

SelectionMode	QListBox::selectionMode	()	const

Returns	the	selection	mode	of	the	list	box.	See	the	"selectionMode"	property	for

details.

void	QListBox::setAutoBottomScrollBar	(bool	enable)

If	enable	is	TRUE	sets	setHScrollBarMode()	to	AlwaysOn;	otherwise	sets
setHScrollBarMode()	to	AlwaysOff.

void	QListBox::setAutoScrollBar	(bool	enable)

If	enable	is	TRUE	sets	setVScrollBarMode()	to	AlwaysOn;	otherwise	sets
setVScrollBarMode()	to	AlwaysOff.

void	QListBox::setBottomItem	(int	index)	[virtual]

Scrolls	the	list	box	so	the	item	at	position	index	in	the	list	is	displayed	in	the
bottom	row	of	the	list	box.

See	also	topItem.

void	QListBox::setBottomScrollBar	(bool	enable)

If	enable	is	TRUE	sets	setHScrollBarMode()	to	AlwaysOn;	otherwise	sets
setHScrollBarMode()	to	AlwaysOff.

void	QListBox::setColumnMode	(LayoutMode)	[virtual]

Sets	the	column	layout	mode	for	this	list	box.	See	the	"columnMode"	property
for	details.

void	QListBox::setColumnMode	(int	columns)	[virtual]

Sets	the	column	layout	mode	for	this	list	box	to	columns.	See	the	"columnMode"
property	for	details.

void	QListBox::setCurrentItem	(int	index)	[virtual]

Sets	the	current	highlighted	item	to	index.	See	the	"currentItem"	property	for
details.

void	QListBox::setCurrentItem	(QListBoxItem	*	i)	[virtual]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Sets	the	current	item	to	the	QListBoxItem	i.

void	QListBox::setMultiSelection	(bool	multi)

Sets	whether	or	not	the	list	box	is	in	Multi	selection	mode	to	multi.	See	the
"multiSelection"	property	for	details.

void	QListBox::setRowMode	(LayoutMode)	[virtual]

Sets	the	row	layout	mode	for	this	list	box.	See	the	"rowMode"	property	for
details.

void	QListBox::setRowMode	(int	rows)	[virtual]

Sets	the	row	layout	mode	for	this	list	box	to	rows.	See	the	"rowMode"	property
for	details.

void	QListBox::setScrollBar	(bool	enable)

If	enable	is	TRUE	sets	setVScrollBarMode()	to	AlwaysOn;	otherwise	sets
setVScrollBarMode()	to	AlwaysOff.

void	QListBox::setSelected	(QListBoxItem	*	item,	bool	select)
[virtual]

Selects	item	if	select	is	TRUE	or	unselects	it	if	select	is	FALSE,	and	repaints	the
item	appropriately.

If	the	list	box	is	a	Single	selection	list	box	and	select	is	TRUE,	setSelected()
calls	setCurrentItem().

If	the	list	box	is	a	Single	selection	list	box,	select	is	FALSE,	setSelected()	calls
clearSelection().

See	also	multiSelection,	currentItem,	clearSelection()	and	currentItem.

void	QListBox::setSelected	(int	index,	bool	select)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

If	select	is	TRUE	the	item	at	position	index	is	selected;	otherwise	the	item	is
deselected.

void	QListBox::setSelectionMode	(SelectionMode)	[virtual]

Sets	the	selection	mode	of	the	list	box.	See	the	"selectionMode"	property	for
details.

void	QListBox::setTopItem	(int	index)	[virtual]

Sets	the	index	of	an	item	at	the	top	of	the	screen	to	index.	See	the	"topItem"
property	for	details.

void	QListBox::setVariableHeight	(bool)	[virtual]

Sets	whether	this	list	box	has	variable-height	rows.	See	the	"variableHeight"
property	for	details.

void	QListBox::setVariableWidth	(bool)	[virtual]

Sets	whether	this	list	box	has	variable-width	columns.	See	the	"variableWidth"
property	for	details.

void	QListBox::sort	(bool	ascending	=	TRUE)

If	ascending	is	TRUE	sorts	the	items	in	ascending	order;	otherwise	sorts	in
descending	order.

To	compare	the	items,	the	text	(QListBoxItem::text())	of	the	items	is	used.

Example:	listbox/listbox.cpp.

void	QListBox::takeItem	(const	QListBoxItem	*	item)

Removes	item	from	the	list	box	and	causes	an	update	of	the	screen	display.	The
item	is	not	deleted.	You	should	normally	not	need	to	call	this	function	because
QListBoxItem::~QListBoxItem()	calls	it.	The	normal	way	to	delete	an	item	is
with	delete.

See	also	QListBox::insertItem().

QString	QListBox::text	(int	index)	const

Returns	the	text	at	position	index,	or	a	null	string	if	there	is	no	text	at	that
position.

See	also	pixmap().

void	QListBox::toggleCurrentItem	()	[protected]

Toggles	the	selection	status	of	currentItem()	and	repaints	if	the	list	box	is	a	Multi
selection	list	box.

See	also	multiSelection.

int	QListBox::topItem	()	const

Returns	the	index	of	an	item	at	the	top	of	the	screen.	See	the	"topItem"	property
for	details.

int	QListBox::totalHeight	()	const	[protected]

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Returns	contentsHeight().

int	QListBox::totalWidth	()	const	[protected]

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We

strongly	advise	against	using	it	in	new	code.

Returns	contentsWidth().

void	QListBox::triggerUpdate	(bool	doLayout)

Ensures	that	a	single	paint	event	will	occur	at	the	end	of	the	current	event	loop
iteration.	If	doLayout	is	TRUE,	the	layout	is	also	redone.

void	QListBox::updateItem	(int	index)	[protected]

Repaints	the	item	at	position	index	in	the	list.

void	QListBox::updateItem	(QListBoxItem	*	i)	[protected]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Repaints	the	QListBoxItem	i.

bool	QListBox::variableHeight	()	const

Returns	TRUE	if	this	list	box	has	variable-height	rows;	otherwise	returns
FALSE.	See	the	"variableHeight"	property	for	details.

bool	QListBox::variableWidth	()	const

Returns	TRUE	if	this	list	box	has	variable-width	columns;	otherwise	returns
FALSE.	See	the	"variableWidth"	property	for	details.

Property	Documentation

LayoutMode	columnMode

This	property	holds	the	column	layout	mode	for	this	list	box.

Set	this	property's	value	with	setColumnMode()	and	get	this	property's	value
with	columnMode().

See	also	rowMode.

setColumnMode()	sets	the	layout	mode	and	adjusts	the	number	of	displayed
columns.	The	row	layout	mode	automatically	becomes	Variable,	unless	the
column	mode	is	Variable.

See	also	rowMode.

uint	count

This	property	holds	the	number	of	items	in	the	list	box.

Get	this	property's	value	with	count().

int	currentItem

This	property	holds	the	current	highlighted	item.

When	setting	this	property,	the	highlighting	is	moved	and	the	list	box	scrolled	as
necessary.

If	no	item	has	been	highlighted,	currentItem()	returns	-1.

Set	this	property's	value	with	setCurrentItem()	and	get	this	property's	value	with
currentItem().

QString	currentText

This	property	holds	the	text	of	the	current	item.

This	is	equivalent	to	text(currentItem()).

Get	this	property's	value	with	currentText().

bool	multiSelection

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

This	property	holds	whether	or	not	the	list	box	is	in	Multi	selection	mode.

Consider	using	the	QListBox::selectionMode	property	instead	of	this	property.

When	setting	this	property,	Multi	selection	mode	is	used	if	set	to	TRUE	and	to
Single	selection	mode	if	set	to	FALSE.

When	getting	this	property,	TRUE	is	returned	if	the	list	box	is	in	Multi	selection
mode	or	Extended	selection	mode,	and	FALSE	if	it	is	in	Single	selection	mode
or	NoSelection	mode.

See	also	selectionMode.

Set	this	property's	value	with	setMultiSelection()	and	get	this	property's	value
with	isMultiSelection().

int	numColumns

This	property	holds	the	number	of	columns	in	the	list	box.

This	is	normally	1,	but	can	be	different	if	QListBox::columnMode	or
QListBox::rowMode	has	been	set.

See	also	columnMode,	rowMode	and	numRows.

Get	this	property's	value	with	numColumns().

int	numItemsVisible

This	property	holds	the	number	of	visible	items.

Both	partially	and	entirely	visible	items	are	counted.

Get	this	property's	value	with	numItemsVisible().

int	numRows

This	property	holds	the	number	of	rows	in	the	list	box.

This	is	equal	to	the	number	of	items	in	the	default	single-column	layout,	but	can
be	different.

See	also	columnMode,	rowMode	and	numColumns.

Get	this	property's	value	with	numRows().

LayoutMode	rowMode

This	property	holds	the	row	layout	mode	for	this	list	box.

This	property	is	normally	Variable.

setRowMode()	sets	the	layout	mode	and	adjusts	the	number	of	displayed	rows.
The	column	layout	mode	automatically	becomes	Variable,	unless	the	row	mode
is	Variable.

See	also	columnMode.

Set	this	property's	value	with	setRowMode()	and	get	this	property's	value	with
rowMode().

SelectionMode	selectionMode

This	property	holds	the	selection	mode	of	the	list	box.

Sets	the	list	box's	selection	mode,	which	may	be	one	of	Single	(the	default),
Extended,	Multi	or	NoSelection.

See	also	SelectionMode.

Set	this	property's	value	with	setSelectionMode()	and	get	this	property's	value

with	selectionMode().

int	topItem

This	property	holds	the	index	of	an	item	at	the	top	of	the	screen.

When	getting	this	property	and	the	listbox	has	multiple	columns,	an	arbitrary
item	is	selected	and	returned.

When	setting	this	property,	the	list	box	is	scrolled	so	the	item	at	position	index	in
the	list	is	displayed	in	the	top	row	of	the	list	box.

Set	this	property's	value	with	setTopItem()	and	get	this	property's	value	with
topItem().

bool	variableHeight

This	property	holds	whether	this	list	box	has	variable-height	rows.

When	the	list	box	has	variable-height	rows	(the	default),	each	row	is	as	high	as
the	highest	item	in	that	row.	When	it	has	same-sized	rows,	all	rows	are	as	high	as
the	highest	item	in	the	list	box.

See	also	variableWidth.

Set	this	property's	value	with	setVariableHeight()	and	get	this	property's	value
with	variableHeight().

bool	variableWidth

This	property	holds	whether	this	list	box	has	variable-width	columns.

When	the	list	box	has	variable-width	columns,	each	column	is	as	wide	as	the
widest	item	in	that	column.	When	it	has	same-sized	columns	(the	default),	all
columns	are	as	wide	as	the	widest	item	in	the	list	box.

See	also	variableHeight.

Set	this	property's	value	with	setVariableWidth()	and	get	this	property's	value

with	variableWidth().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QServerSocket	Class	Reference
[network	module]

The	QServerSocket	class	provides	a	TCP-based	server.	More...

#include	<qserversocket.h>

Inherits	QObject.

List	of	all	member	functions.

Public	Members

QServerSocket	(Q_UINT16	port,	int	backlog	=	1,	QObject	*	parent	=	0,
const	char	*	name	=	0)
QServerSocket	(const	QHostAddress	&	address,	Q_UINT16	port,
int	backlog	=	1,	QObject	*	parent	=	0,	const	char	*	name	=	0)
QServerSocket	(QObject	*	parent	=	0,	const	char	*	name	=	0)
virtual	~QServerSocket	()
bool	ok	()	const
Q_UINT16	port	()	const
int	socket	()	const
virtual	void	setSocket	(int	socket)
QHostAddress	address	()	const
virtual	void	newConnection	(int	socket)	=	0

Protected	Members

QSocketDevice	*	socketDevice	()

Detailed	Description

The	QServerSocket	class	provides	a	TCP-based	server.

This	class	is	a	convenience	class	for	accepting	incoming	TCP	connections.	You
can	specify	the	port	or	have	QServerSocket	pick	one,	and	listen	on	just	one
address	or	on	all	the	machine's	addresses.

Using	the	API	is	very	simple:	subclass	QServerSocket,	call	the	constructor	of
your	choice,	and	implement	newConnection()	to	handle	new	incoming
connections.	There	is	nothing	more	to	do.

(Note	that	due	to	lack	of	support	in	the	underlying	APIs,	QServerSocket	cannot
accept	or	reject	connections	conditionally.)

See	also	QSocket,	QSocketDevice,	QHostAddress,	QSocketNotifier	and
Input/Output	and	Networking.

Member	Function	Documentation

QServerSocket::QServerSocket	(Q_UINT16	port,	int	backlog	=
1,	QObject	*	parent	=	0,	const	char	*	name	=	0)

Creates	a	server	socket	object,	that	will	serve	the	given	port	on	all	the	addresses
of	this	host.	If	port	is	0,	QServerSocket	will	pick	a	suitable	port	in	a	system-
dependent	manner.	Use	backlog	to	specify	how	many	pending	connections	the
server	can	have.

The	parent	and	name	arguments	are	passed	on	to	the	QObject	constructor.

Warning:	On	Tru64	Unix	systems	a	value	of	0	for	backlog	means	that	you	don't
accept	any	connections	at	all;	you	should	specify	a	value	larger	than	0.

QServerSocket::QServerSocket	(const	QHostAddress	&	address,
Q_UINT16	port,	int	backlog	=	1,	QObject	*	parent	=	0,
const	char	*	name	=	0)

Creates	a	server	socket	object,	that	will	serve	the	given	port	only	on	the	given
address.	Use	backlog	to	specify	how	many	pending	connections	the	server	can
have.

The	parent	and	name	arguments	are	passed	on	to	the	QObject	constructor.

Warning:	On	Tru64	Unix	systems	a	value	of	0	for	backlog	means	that	you	don't
accept	any	connections	at	all;	you	should	specify	a	value	larger	than	0.

QServerSocket::QServerSocket	(QObject	*	parent	=	0,
const	char	*	name	=	0)

Construct	an	empty	server	socket.

This	constructor,	in	combination	with	setSocket(),	allows	us	to	use	the
QServerSocket	class	as	a	wrapper	for	other	socket	types	(e.g.	Unix	Domain
Sockets	under	Unix).

The	parent	and	name	arguments	are	passed	on	to	the	QObject	constructor.

See	also	setSocket().

QServerSocket::~QServerSocket	()	[virtual]

Destroys	the	socket.

This	causes	any	backlogged	connections	(connections	that	have	reached	the	host,
but	not	yet	been	completely	set	up	by	calling	QSocketDevice::accept())	to	be
severed.

Existing	connections	continue	to	exist;	this	only	affects	the	acceptance	of	new
connections.

QHostAddress	QServerSocket::address	()	const

Returns	the	address	on	which	this	object	listens,	or	0.0.0.0	if	this	object	listens
on	more	than	one	address.	ok()	must	be	TRUE	before	calling	this	function.

See	also	port()	and	QSocketDevice::address().

void	QServerSocket::newConnection	(int	socket)	[pure
virtual]

This	pure	virtual	function	is	responsible	for	setting	up	a	new	incoming
connection.	socket	is	the	fd	(file	descripor)	for	the	newly	accepted	connection.

bool	QServerSocket::ok	()	const

Returns	TRUE	if	the	construction	succeeded;	otherwise	returns	FALSE.

Q_UINT16	QServerSocket::port	()	const

Returns	the	port	number	on	which	this	server	socket	listens.	This	is	always	non-
zero;	if	you	specify	0	in	the	constructor,	QServerSocket	will	pick	a	non-zero	port
itself.	ok()	must	be	TRUE	before	calling	this	function.

See	also	address()	and	QSocketDevice::port().

Example:	network/httpd/httpd.cpp.

void	QServerSocket::setSocket	(int	socket)	[virtual]

Sets	the	socket	to	use	socket.	bind()	and	listen()	should	already	have	been	called
for	socket.

This	allows	us	to	use	the	QServerSocket	class	as	a	wrapper	for	other	socket
types	(e.g.	Unix	Domain	Sockets	under	Unix).

int	QServerSocket::socket	()	const

Returns	the	operating	system	socket.

QSocketDevice	*	QServerSocket::socketDevice	()	[protected]

Returns	a	pointer	to	the	internal	socket	device.	The	returned	pointer	is	null	if
there	is	no	connection	or	pending	connection.

There	is	normally	no	need	to	manipulate	the	socket	device	directly	since	this
class	does	all	the	necessary	setup	for	most	client	or	server	socket	applications.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QToolTipGroup	Class	Reference
The	QToolTipGroup	class	collects	tool	tips	into	related	groups.	More...

#include	<qtooltip.h>

Inherits	QObject.

List	of	all	member	functions.

Public	Members

QToolTipGroup	(QObject	*	parent,	const	char	*	name	=	0)
~QToolTipGroup	()
bool	delay	()	const
bool	enabled	()	const

Public	Slots

void	setDelay	(bool)
void	setEnabled	(bool)

Signals

void	showTip	(const	QString	&	longText)
void	removeTip	()

Properties

bool	delay	-	whether	the	display	of	the	group	text	is	delayed
bool	enabled	-	whether	tool	tips	in	the	group	are	enabled

Detailed	Description

The	QToolTipGroup	class	collects	tool	tips	into	related	groups.

Tool	tips	can	display	two	texts:	one	in	the	tip	and	(optionally)	one	that	is
typically	in	a	status	bar.	QToolTipGroup	provides	a	way	to	link	tool	tips	to	this
status	bar.

QToolTipGroup	has	practically	no	API;	it	is	used	only	as	an	argument	to
QToolTip's	member	functions,	for	example	like	this:

				QToolTipGroup	*	g	=	new	QToolTipGroup(this,	"tool	tip	relay");

				connect(g,	SIGNAL(showTip(const	QString&)),

													myLabel,	SLOT(setText(const	QString&)));

				connect(g,	SIGNAL(removeTip()),

													myLabel,	SLOT(clear()));

				QToolTip::add(giraffeButton,	"feed	giraffe",

																			g,	"Give	the	giraffe	a	meal");

				QToolTip::add(gorillaButton,	"feed	gorilla",

																			g,	"Give	the	gorilla	a	meal");

		

This	example	makes	the	object	myLabel	(which	you	have	to	supply)	display
(one	assumes,	though	you	can	make	myLabel	do	anything,	of	course)	the	strings
"Give	the	giraffe	a	meal"	and	"Give	the	gorilla	a	meal"	while	the	relevant	tool
tips	are	being	displayed.

Deleting	a	tool	tip	group	removes	the	tool	tips	in	it.

See	also	Help	System.

Member	Function	Documentation

QToolTipGroup::QToolTipGroup	(QObject	*	parent,
const	char	*	name	=	0)

Constructs	a	tool	tip	group	with	parent	parent	and	name	name.

QToolTipGroup::~QToolTipGroup	()

Destroys	this	tool	tip	group	and	all	tool	tips	in	it.

bool	QToolTipGroup::delay	()	const

Returns	TRUE	if	the	display	of	the	group	text	is	delayed;	otherwise	returns
FALSE.	See	the	"delay"	property	for	details.

bool	QToolTipGroup::enabled	()	const

Returns	TRUE	if	tool	tips	in	the	group	are	enabled;	otherwise	returns	FALSE.
See	the	"enabled"	property	for	details.

void	QToolTipGroup::removeTip	()	[signal]

This	signal	is	emitted	when	a	tool	tip	in	this	group	is	hidden.	See	the
QToolTipGroup	documentation	for	an	example	of	use.

See	also	showTip().

void	QToolTipGroup::setDelay	(bool)	[slot]

Sets	whether	the	display	of	the	group	text	is	delayed.	See	the	"delay"	property
for	details.

void	QToolTipGroup::setEnabled	(bool)	[slot]

Sets	whether	tool	tips	in	the	group	are	enabled.	See	the	"enabled"	property	for

details.

void	QToolTipGroup::showTip	(const	QString	&	longText)
[signal]

This	signal	is	emitted	when	one	of	the	tool	tips	in	the	group	is	displayed.
longText	is	the	extra	text	for	the	displayed	tool	tip.

See	also	removeTip().

Property	Documentation

bool	delay

This	property	holds	whether	the	display	of	the	group	text	is	delayed.

If	set	to	TRUE	(the	default),	the	group	text	is	displayed	at	the	time	of	the	tool
tip.	Otherwise,	the	group	text	is	displayed	immediately	when	the	cursor	enters
the	widget.

Set	this	property's	value	with	setDelay()	and	get	this	property's	value	with
delay().

bool	enabled

This	property	holds	whether	tool	tips	in	the	group	are	enabled.

This	property's	default	is	TRUE.

Set	this	property's	value	with	setEnabled()	and	get	this	property's	value	with
enabled().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QDragObject	Class	Reference
The	QDragObject	class	encapsulates	MIME-based	data	transfer.	More...

#include	<qdragobject.h>

Inherits	QObject	and	QMimeSource.

Inherited	by	QStoredDrag,	QTextDrag,	QImageDrag	and	QIconDrag.

List	of	all	member	functions.

Public	Members

QDragObject	(QWidget	*	dragSource	=	0,	const	char	*	name	=	0)
virtual	~QDragObject	()
bool	drag	()
bool	dragMove	()
void	dragCopy	()
void	dragLink	()
virtual	void	setPixmap	(QPixmap	pm)
virtual	void	setPixmap	(QPixmap	pm,	const	QPoint	&	hotspot)
QPixmap	pixmap	()	const
QPoint	pixmapHotSpot	()	const
QWidget	*	source	()
enum	DragMode	{	DragDefault,	DragCopy,	DragMove,	DragLink,
DragCopyOrMove	}

Static	Public	Members

QWidget	*	target	()

Protected	Members

virtual	bool	drag	(DragMode	mode)

Detailed	Description

The	QDragObject	class	encapsulates	MIME-based	data	transfer.

QDragObject	is	the	base	class	for	all	data	that	needs	to	be	transferred	between
and	within	applications,	both	for	drag	and	drop	and	for	the	clipboard.

See	the	Drag-and-drop	documentation	for	an	overview	of	how	to	provide	drag
and	drop	in	your	application.

See	the	QClipboard	documentation	for	an	overview	of	how	to	provide	cut-and-
paste	in	your	application.

The	drag()	function	is	used	to	start	a	drag	operation.	You	can	specify	the
DragMode	in	the	call	or	use	one	of	the	convenience	functions	dragCopy(),
dragMove()	or	dragLink().	The	drag	source	where	the	data	originated	is	retrieved
with	source().	If	the	data	was	dropped	on	a	widget	within	the	application,	target()
will	return	a	pointer	to	that	widget.	Specify	the	pixmap	to	display	during	the
drag	with	setPixmap().

See	also	Drag	And	Drop	Classes.

Member	Type	Documentation

QDragObject::DragMode

This	enum	describes	the	possible	drag	modes.

QDragObject::DragDefault	-	The	mode	is	determined	heuristically.
QDragObject::DragCopy	-	The	data	is	copied,	never	moved.
QDragObject::DragMove	-	The	data	is	moved,	if	dragged	at	all.
QDragObject::DragLink	-	The	data	is	linked,	if	dragged	at	all.
QDragObject::DragCopyOrMove	-	The	user	chooses	the	mode	by	using	a
control	key	to	switch	from	the	default.

Member	Function	Documentation

QDragObject::QDragObject	(QWidget	*	dragSource	=	0,
const	char	*	name	=	0)

Constructs	a	drag	object	called	name,	which	is	a	child	of	dragSource.

Note	that	the	drag	object	will	be	deleted	when	dragSource	is	deleted.

QDragObject::~QDragObject	()	[virtual]

Destroys	the	drag	object,	canceling	any	drag	and	drop	operation	in	which	it	is
involved,	and	frees	up	the	storage	used.

bool	QDragObject::drag	()

Starts	a	drag	operation	using	the	contents	of	this	object,	using	DragDefault
mode.

The	function	returns	TRUE	if	the	caller	should	delete	the	original	copy	of	the
dragged	data	(but	see	target());	otherwise	returns	FALSE.

If	the	drag	contains	references	to	information	(e.g.	file	names	in	a	QUriDrag	are
references)	then	the	return	value	should	always	be	ignored,	as	the	target	is
expected	to	manipulate	the	referred-to	content	directly.	On	X11	the	return	value
should	always	be	correct	anyway,	but	on	Windows	this	is	not	necessarily	the
case	(e.g.	the	file	manager	starts	a	background	process	to	move	files,	so	the
source	must	not	delete	the	files!)

Example:	dirview/dirview.cpp.

bool	QDragObject::drag	(DragMode	mode)	[virtual
protected]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Starts	a	drag	operation	using	the	contents	of	this	object.

At	this	point,	the	object	becomes	owned	by	Qt,	not	the	application.	You	should
not	delete	the	drag	object	or	anything	it	references.	The	actual	transfer	of	data	to
the	target	application	will	be	done	during	future	event	processing	-	after	that	time
the	drag	object	will	be	deleted.

Returns	TRUE	if	the	dragged	data	was	dragged	as	a	move,	indicating	that	the
caller	should	remove	the	original	source	of	the	data	(the	drag	object	must
continue	to	have	a	copy);	otherwise	returns	FALSE.

The	mode	specifies	the	drag	mode	(see	QDragObject::DragMode.)	Normally	one
of	the	simpler	drag(),	dragMove(),	or	dragCopy()	functions	would	be	used
instead.

Warning:	in	Qt	1.x,	drag	operations	all	return	FALSE.

void	QDragObject::dragCopy	()

Starts	a	drag	operation	using	the	contents	of	this	object,	using	DragCopy	mode.
Be	sure	to	read	the	constraints	described	in	drag().

See	also	drag(),	dragMove()	and	dragLink().

Example:	iconview/simple_dd/main.cpp.

void	QDragObject::dragLink	()

Starts	a	drag	operation	using	the	contents	of	this	object,	using	DragLink	mode.
Be	sure	to	read	the	constraints	described	in	drag().

See	also	drag(),	dragCopy()	and	dragMove().

bool	QDragObject::dragMove	()

Starts	a	drag	operation	using	the	contents	of	this	object,	using	DragMove	mode.
Be	sure	to	read	the	constraints	described	in	drag().

See	also	drag(),	dragCopy()	and	dragLink().

QPixmap	QDragObject::pixmap	()	const

Returns	the	currently	set	pixmap	(which	isNull()	if	none	is	set).

QPoint	QDragObject::pixmapHotSpot	()	const

Returns	the	currently	set	pixmap	hotspot.

void	QDragObject::setPixmap	(QPixmap	pm,
const	QPoint	&	hotspot)	[virtual]

Set	the	pixmap	pm	to	display	while	dragging	the	object.	The	platform-specific
implementation	will	use	this	where	it	can	-	so	provide	a	small	masked	pixmap,
and	do	not	assume	that	the	user	will	actually	see	it.	For	example,	cursors	on
Windows	95	are	of	limited	size.

The	hotspot	is	the	point	on	(or	off)	the	pixmap	that	should	be	under	the	cursor	as
it	is	dragged.	It	is	relative	to	the	top-left	pixel	of	the	pixmap.

Example:	fileiconview/qfileiconview.cpp.

void	QDragObject::setPixmap	(QPixmap	pm)	[virtual]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Uses	a	hotspot	that	positions	the	pixmap	below	and	to	the	right	of	the	mouse
pointer.	This	allows	the	user	to	clearly	see	the	point	on	the	window	which	they
are	dragging	the	data	onto.

QWidget	*	QDragObject::source	()

Returns	a	pointer	to	the	drag	source	where	this	object	originated.

QWidget	*	QDragObject::target	()	[static]

After	the	drag	completes,	this	function	will	return	the	QWidget	which	received
the	drop,	or	0	if	the	data	was	dropped	on	another	application.

This	can	be	useful	for	detecting	the	case	where	drag	and	drop	is	to	and	from	the
same	widget.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QListBoxItem	Class	Reference
The	QListBoxItem	class	is	the	base	class	of	all	list	box	items.	More...

#include	<qlistbox.h>

Inherited	by	QListBoxText	and	QListBoxPixmap.

List	of	all	member	functions.

Public	Members

QListBoxItem	(QListBox	*	listbox	=	0)
QListBoxItem	(QListBox	*	listbox,	QListBoxItem	*	after)
virtual	~QListBoxItem	()
virtual	QString	text	()	const
virtual	const	QPixmap	*	pixmap	()	const
virtual	int	height	(const	QListBox	*	lb)	const
virtual	int	width	(const	QListBox	*	lb)	const
bool	isSelected	()	const
bool	isCurrent	()	const
bool	selected	()	const		(obsolete)
bool	current	()	const		(obsolete)
QListBox	*	listBox	()	const
void	setSelectable	(bool	b)
bool	isSelectable	()	const
QListBoxItem	*	next	()	const
QListBoxItem	*	prev	()	const
virtual	int	rtti	()	const

Protected	Members

virtual	void	paint	(QPainter	*	p)	=	0
virtual	void	setText	(const	QString	&	text)
void	setCustomHighlighting	(bool	b)

Detailed	Description

The	QListBoxItem	class	is	the	base	class	of	all	list	box	items.

This	class	is	an	abstract	base	class	used	for	all	list	box	items.	If	you	need	to
insert	customized	items	into	a	QListBox	you	must	inherit	this	class	and
reimplement	paint(),	height()	and	width().

See	also	QListBox	and	Advanced	Widgets.

Member	Function	Documentation

QListBoxItem::QListBoxItem	(QListBox	*	listbox	=	0)

Constructs	an	empty	list	box	item	in	the	list	box	listbox.

QListBoxItem::QListBoxItem	(QListBox	*	listbox,
QListBoxItem	*	after)

Constructs	an	empty	list	box	item	in	the	list	box	listbox	and	inserts	it	after	the
item	after.	If	after	is	0,	the	item	is	inserted	at	the	beginning.

QListBoxItem::~QListBoxItem	()	[virtual]

Destroys	the	list	box	item.

bool	QListBoxItem::current	()	const

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

int	QListBoxItem::height	(const	QListBox	*	lb)	const	[virtual]

Implement	this	function	to	return	the	height	of	your	item.	The	lb	parameter	is	the
same	as	listBox()	and	is	provided	for	convenience	and	compatibility.

See	also	paint()	and	width().

Reimplemented	in	QListBoxText	and	QListBoxPixmap.

bool	QListBoxItem::isCurrent	()	const

Returns	TRUE	if	the	item	is	the	current	item;	otherwise	returns	FALSE.

See	also	QListBox::currentItem,	QListBox::item()	and	isSelected().

bool	QListBoxItem::isSelectable	()	const

Returns	TRUE	if	this	item	is	selectable;	otherwise	returns	FALSE.

See	also	setSelectable().

bool	QListBoxItem::isSelected	()	const

Returns	TRUE	if	the	item	is	selected;	otherwise	returns	FALSE.

See	also	QListBox::isSelected()	and	isCurrent().

Example:	listboxcombo/listboxcombo.cpp.

QListBox	*	QListBoxItem::listBox	()	const

Returns	a	pointer	to	the	list	box	containing	this	item.

QListBoxItem	*	QListBoxItem::next	()	const

Returns	the	item	that	comes	after	this	in	the	list	box.	If	this	is	the	last	item,	a	null
pointer	is	returned.

See	also	prev().

void	QListBoxItem::paint	(QPainter	*	p)	[pure	virtual
protected]

Implement	this	function	to	draw	your	item.	You	will	need	to	pass	the	QPainter
that	will	draw	the	item	in	p.

See	also	height()	and	width().

Example:	listboxcombo/listboxcombo.cpp.

Reimplemented	in	QListBoxText	and	QListBoxPixmap.

const	QPixmap	*	QListBoxItem::pixmap	()	const	[virtual]

Returns	the	pixmap	associated	with	the	item,	if	any.

The	default	implementation	returns	a	null	pointer.

Example:	listboxcombo/listboxcombo.cpp.

Reimplemented	in	QListBoxPixmap.

QListBoxItem	*	QListBoxItem::prev	()	const

Returns	the	item	which	comes	before	this	in	the	list	box.	If	this	is	the	first	item,	a
null	pointer	is	returned.

See	also	next().

int	QListBoxItem::rtti	()	const	[virtual]

Returns	0.

Although	often	frowned	upon	by	purists,	Run	Time	Type	Identification	is	very
useful	in	this	case,	as	it	allows	a	QListBox	to	be	an	efficient	indexed	storage
mechanism.

Make	your	derived	classes	return	their	own	values	for	rtti(),	and	you	can
distinguish	between	listbox	items.	You	should	use	values	greater	than	1000
preferably	a	large	random	number,	to	allow	for	extensions	to	this	class.

bool	QListBoxItem::selected	()	const

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

void	QListBoxItem::setCustomHighlighting	(bool	b)
[protected]

Defines	whether	the	list	box	item	is	responsible	for	drawing	itself	in	a
highlighted	state	when	being	selected.

If	b	is	FALSE	(the	default),	the	list	box	will	draw	some	default	highlight

indicator	before	calling	paint().

See	also	selected()	and	paint().

void	QListBoxItem::setSelectable	(bool	b)

If	b	is	TRUE	then	this	item	can	be	selected	by	the	user;	otherwise	this	item
cannot	be	selected	by	the	user.

See	also	isSelectable().

void	QListBoxItem::setText	(const	QString	&	text)	[virtual
protected]

Sets	the	text	of	the	QListBoxItem	to	text.	This	text	is	also	used	for	sorting.	The
text	is	not	shown	unless	explicitly	drawn	in	paint().

See	also	text().

QString	QListBoxItem::text	()	const	[virtual]

Returns	the	text	of	the	item.	This	text	is	also	used	for	sorting.

See	also	setText().

Example:	listboxcombo/listboxcombo.cpp.

int	QListBoxItem::width	(const	QListBox	*	lb)	const	[virtual]

Implement	this	function	to	return	the	width	of	your	item.	The	lb	parameter	is	the
same	as	listBox()	and	is	provided	for	convenience	and	compatibility.

See	also	paint()	and	height().

Reimplemented	in	QListBoxText	and	QListBoxPixmap.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

http://www.trolltech.com/

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QSessionManager	Class	Reference
The	QSessionManager	class	provides	access	to	the	session	manager.	More...

#include	<qsessionmanager.h>

Inherits	QObject.

List	of	all	member	functions.

Public	Members

QString	sessionId	()	const
void	*	handle	()	const
bool	allowsInteraction	()
bool	allowsErrorInteraction	()
void	release	()
void	cancel	()
enum	RestartHint	{	RestartIfRunning,	RestartAnyway,
RestartImmediately,	RestartNever	}
void	setRestartHint	(RestartHint	hint)
RestartHint	restartHint	()	const
void	setRestartCommand	(const	QStringList	&	command)
QStringList	restartCommand	()	const
void	setDiscardCommand	(const	QStringList	&)
QStringList	discardCommand	()	const
void	setManagerProperty	(const	QString	&	name,	const	QString	&	value
)
void	setManagerProperty	(const	QString	&	name,
const	QStringList	&	value)
bool	isPhase2	()	const
void	requestPhase2	()

Detailed	Description

The	QSessionManager	class	provides	access	to	the	session	manager.

The	session	manager	is	responsible	for	session	management,	most	importantly
for	interruption	and	resumption.	A	"session"	is	a	kind	of	record	of	the	state	of	the
system,	e.g.	which	applications	were	run	at	start	up	and	which	applications	are
currently	running.	The	session	manager	is	used	to	save	the	session,	e.g.	when	the
machine	is	shut	down;	and	to	restore	a	session,	e.g.	when	the	machine	is	started
up.	Use	QSettings	to	save	and	restore	an	individual	application's	settings,	e.g.
window	positions,	recently	used	files,	etc.

QSessionManager	provides	an	interface	between	the	application	and	the	session
manager	so	that	the	program	can	work	well	with	the	session	manager.	In	Qt,
session	management	requests	for	action	are	handled	by	the	two	virtual	functions
QApplication::commitData()	and	QApplication::saveState().	Both	provide	a
reference	to	a	session	manager	object	as	argument,	to	allow	the	application	to
communicate	with	the	session	manager.

During	a	session	management	action	(i.e.	within	commitData()	and	saveState()),
no	user	interaction	is	possible	unless	the	application	got	explicit	permission	from
the	session	manager.	You	ask	for	permission	by	calling	allowsInteraction()	or,	if
it's	really	urgent,	allowsErrorInteraction().	Qt	does	not	enforce	this,	but	the
session	manager	may.

You	can	try	to	abort	the	shutdown	process	by	calling	cancel().	The	default
commitData()	function	does	this	if	some	top-level	window	rejected	its
closeEvent().

For	sophisticated	session	managers	provided	on	Unix/X11,	QSessionManager
offers	further	possibilites	to	fine-tune	an	application's	session	management
behavior:	setRestartCommand(),	setDiscardCommand(),	setRestartHint(),
setProperty(),	requestPhase2().	See	the	respective	function	descriptions	for
further	details.

See	also	Main	Window	and	Related	Classes	and	Environment	Classes.

Member	Type	Documentation

QSessionManager::RestartHint

This	enum	type	defines	the	circumstances	under	which	this	application	wants	to
be	restarted	by	the	session	manager.	The	current	values	are

QSessionManager::RestartIfRunning	-	if	the	application	is	still	running
when	the	session	is	shut	down,	it	wants	to	be	restarted	at	the	start	of	the
next	session.
QSessionManager::RestartAnyway	-	the	application	wants	to	be	started	at
the	start	of	the	next	session,	no	matter	what.	(This	is	useful	for	utilities	that
run	just	after	startup	and	then	quit.)
QSessionManager::RestartImmediately	-	the	application	wants	to	be
started	immediately	whenever	it	is	not	running.
QSessionManager::RestartNever	-	the	application	does	not	want	to	be
restarted	automatically.

The	default	hint	is	RestartIfRunning.

Member	Function	Documentation

bool	QSessionManager::allowsErrorInteraction	()

This	is	similar	to	allowsInteraction(),	but	also	tells	the	session	manager	that	an
error	occurred.	Session	managers	may	give	error	interaction	request	higher
priority,	which	means	that	it	is	more	likely	that	an	error	interaction	is	permitted.
However,	you	are	still	not	guaranteed	that	the	session	manager	will	allow
interaction.

See	also	allowsInteraction(),	release()	and	cancel().

bool	QSessionManager::allowsInteraction	()

Asks	the	session	manager	for	permission	to	interact	with	the	user.	Returns	TRUE
if	interaction	is	permitted;	otherwise	returns	FALSE.

The	rationale	behind	this	mechanism	is	to	make	it	possible	to	synchronize	user
interaction	during	a	shutdown.	Advanced	session	managers	may	ask	all
applications	simultaneously	to	commit	their	data,	resulting	in	a	much	faster
shutdown.

When	the	interaction	is	completed	we	strongly	recommend	releasing	the	user
interaction	semaphore	with	a	call	to	release().	This	way,	other	applications	may
get	the	chance	to	interact	with	the	user	while	your	application	is	still	busy	saving
data.	(The	semaphore	is	implicitly	released	when	the	application	exits.)

If	the	user	decides	to	cancel	the	shutdown	process	during	the	interaction	phase,
you	must	tell	the	session	manager	that	this	has	happened	by	calling	cancel().

Here's	an	example	of	how	an	application's	QApplication::commitData()	might	be
implemented:

void	MyApplication::commitData(QSessionManager&	sm)	{

				if	(sm.allowsInteraction())	{

								switch	(QMessageBox::warning(

																				yourMainWindow,

																				tr("Application	Name"),

																				tr("Save	changes	to	document	Foo?"),

																				tr("&Yes"),

																				tr("&No"),

																				tr("Cancel"),

																				0,	2))	{

								case	0:	//	yes

												sm.release();

												//	save	document	here;	if	saving	fails,	call	sm.cancel()

												break;

								case	1:	//	continue	without	saving

												break;

								default:	//	cancel

												sm.cancel();

												break;

								}

				}	else	{

								//	we	did	not	get	permission	to	interact,	then

								//	do	something	reasonable	instead.

				}

}

If	an	error	occurred	within	the	application	while	saving	its	data,	you	may	want	to
try	allowsErrorInteraction()	instead.

See	also	QApplication::commitData(),	release()	and	cancel().

void	QSessionManager::cancel	()

Tells	the	session	manager	to	cancel	the	shutdown	process.	Applications	should
not	call	this	function	without	first	asking	the	user.

See	also	allowsInteraction()	and	allowsErrorInteraction().

QStringList	QSessionManager::discardCommand	()	const

Returns	the	currently	set	discard	command.

Note	that	if	you	want	to	iterate	over	the	list,	you	should	iterate	over	a	copy,	e.g.

				QStringList	list	=	mySession.discardCommand();

				QStringList::Iterator	it	=	list.begin();

				while(it	!=	list.end())	{

								myProcessing(*it);

								++it;

				}

				

See	also	setDiscardCommand(),	restartCommand()	and	setRestartCommand().

void	*	QSessionManager::handle	()	const

X11	only:	returns	a	handle	to	the	current	SmcConnection.

bool	QSessionManager::isPhase2	()	const

Returns	TRUE	if	the	session	manager	is	currently	performing	a	second	session
management	phase;	otherwise	returns	FALSE.

See	also	requestPhase2().

void	QSessionManager::release	()

Releases	the	session	manager's	interaction	semaphore	after	an	interaction	phase.

See	also	allowsInteraction()	and	allowsErrorInteraction().

void	QSessionManager::requestPhase2	()

Requests	a	second	session	management	phase	for	the	application.	The
application	may	then	return	immediately	from	the	QApplication::commitData()
or	QApplication::saveState()	function,	and	they	will	be	called	again	once	most	or
all	other	applications	have	finished	their	session	management.

The	two	phases	are	useful	for	applications	such	as	the	X11	window	manager	that
need	to	store	information	about	another	application's	windows	and	therefore
have	to	wait	until	these	applications	have	completed	their	respective	session
management	tasks.

Note	that	if	another	application	has	requested	a	second	phase	it	may	get	called
before,	simultaneously	with,	or	after	your	application's	second	phase.

See	also	isPhase2().

QStringList	QSessionManager::restartCommand	()	const

Returns	the	currently	set	restart	command.

Note	that	if	you	want	to	iterate	over	the	list,	you	should	iterate	over	a	copy,	e.g.

				QStringList	list	=	mySession.restartCommand();

				QStringList::Iterator	it	=	list.begin();

				while(it	!=	list.end())	{

								myProcessing(*it);

								++it;

				}

				

See	also	setRestartCommand()	and	restartHint().

RestartHint	QSessionManager::restartHint	()	const

Returns	the	application's	current	restart	hint.	The	default	is	RestartIfRunning.

See	also	setRestartHint().

QString	QSessionManager::sessionId	()	const

Returns	the	identifier	of	the	current	session.

If	the	application	has	been	restored	from	an	earlier	session,	this	identifier	is	the
same	as	it	was	in	that	earlier	session.

See	also	QApplication::sessionId().

void	QSessionManager::setDiscardCommand	(
const	QStringList	&)

See	also	discardCommand()	and	setRestartCommand().

void	QSessionManager::setManagerProperty	(
const	QString	&	name,	const	QStringList	&	value)

Low-level	write	access	to	the	application's	identification	and	state	record	are
kept	in	the	session	manager.

The	property	called	name	has	its	value	set	to	the	string	list	value.

void	QSessionManager::setManagerProperty	(
const	QString	&	name,	const	QString	&	value)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Low-level	write	access	to	the	application's	identification	and	state	records	are
kept	in	the	session	manager.

The	property	called	name	has	its	value	set	to	the	string	value.

void	QSessionManager::setRestartCommand	(
const	QStringList	&	command)

If	the	session	manager	is	capable	of	restoring	sessions	it	will	execute	command
in	order	to	restore	the	application.	The	command	defaults	to

								appname	-session	id

		

The	-session	option	is	mandatory;	otherwise	QApplication	cannot	tell	whether
it	has	been	restored	or	what	the	current	session	identifier	is.	See
QApplication::isSessionRestored()	and	QApplication::sessionId()	for	details.

If	your	application	is	very	simple,	it	may	be	possible	to	store	the	entire
application	state	in	additional	command	line	options.	This	is	usually	a	very	bad
idea	because	command	lines	are	often	limited	to	a	few	hundred	bytes.	Instead,
use	QSettings,	or	temporary	files	or	a	database	for	this	purpose.	By	marking	the
data	with	the	unique	sessionId(),	you	will	be	able	to	restore	the	application	in	a
future	session.

See	also	restartCommand(),	setDiscardCommand()	and	setRestartHint().

void	QSessionManager::setRestartHint	(RestartHint	hint)

Sets	the	application's	restart	hint	to	hint.	On	application	startup	the	hint	is	set	to
RestartIfRunning.

Note	that	these	flags	are	only	hints,	a	session	manager	may	or	may	not	respect

them.

We	recommend	setting	the	restart	hint	in	QApplication::saveState()	because
most	session	managers	perform	a	checkpoint	shortly	after	an	application's
startup.

See	also	restartHint().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QTranslator	Class	Reference
The	QTranslator	class	provides	internationalization	support	for	text	output.
More...

#include	<qtranslator.h>

Inherits	QObject.

List	of	all	member	functions.

Public	Members

QTranslator	(QObject	*	parent,	const	char	*	name	=	0)
~QTranslator	()
QString	find	(const	char	*	context,	const	char	*	sourceText,
const	char	*	comment	=	0)	const		(obsolete)
virtual	QTranslatorMessage	findMessage	(const	char	*	context,
const	char	*	sourceText,	const	char	*	comment)	const
bool	load	(const	QString	&	filename,	const	QString	&	directory	=
QString::null,	const	QString	&	search_delimiters	=	QString::null,
const	QString	&	suffix	=	QString::null)
void	clear	()
enum	SaveMode	{	Everything,	Stripped	}
bool	save	(const	QString	&	filename,	SaveMode	mode	=	Everything)
void	insert	(const	QTranslatorMessage	&	message)
void	insert	(const	char	*	context,	const	char	*	sourceText,
const	QString	&	translation)		(obsolete)
void	remove	(const	QTranslatorMessage	&	message)
void	remove	(const	char	*	context,	const	char	*	sourceText)		(obsolete)
bool	contains	(const	char	*	context,	const	char	*	sourceText,
const	char	*	comment	=	0)	const
void	squeeze	(SaveMode	mode	=	Everything)
void	unsqueeze	()
QValueList<QTranslatorMessage>	messages	()	const

Detailed	Description

The	QTranslator	class	provides	internationalization	support	for	text	output.

An	object	of	this	class	contains	a	set	of	QTranslatorMessage	objects,	each	of
which	specifies	a	translation	from	a	source	language	to	a	target	language.
QTranslator	provides	functions	to	look	up	translations,	add	new	ones,	remove
them,	load	and	save	them,	etc.

The	most	common	use	of	QTranslator	is	to:	load	a	translator	file	created	with	Qt
Linguist,	install	it	using	QApplication::installTranslator(),	and	use	it	via
QObject::tr().	For	example:

				int	main(int	argc,	char	**	argv)

				{

								QApplication	app(argc,	argv);

								QTranslator	translator(0);

								translator.load("french.qm",	".");

								app.installTranslator(&translator);

								MyWidget	m;

								app.setMainWidget(&m);

								m.show();

								return	app.exec();

				}

				

Most	applications	will	never	need	to	do	anything	else	with	this	class.	The	other
functions	provided	by	this	class	are	useful	for	applications	that	work	on
translator	files.

We	call	a	translation	a	"messsage".	For	this	reason,	translation	files	are
sometimes	referred	to	as	"message	files".

It	is	possible	to	lookup	a	translation	using	findMessage()	(as	tr()	and
QApplication::translate()	do)	and	contains(),	to	insert	a	new	translation	messsage
using	insert(),	and	to	remove	one	using	remove().

Translation	tools	often	need	more	information	than	the	bare	source	text	and

translation,	for	example,	context	information	to	help	the	translator.	But	end-user
programs	that	are	using	translations	usually	only	need	lookup.	To	cater	for	these
different	needs,	QTranslator	can	use	stripped	translator	files	that	use	the
minimum	of	memory	and	which	support	little	more	functionality	than
findMessage().

Thus,	load()	may	not	load	enough	information	to	make	anything	more	than
findMessage()	work.	save()	has	an	argument	indicating	whether	to	save	just	this
minimum	of	information	or	to	save	everything.

"Everything"	means	that	for	each	translation	item	the	following	information	is
kept:

The	translated	text	-	the	return	value	from	tr().
The	input	key:

The	source	text	-	usually	the	argument	to	tr().
The	context	-	usually	the	class	name	for	the	tr()	caller.
The	comment	-	a	comment	that	helps	disambiguate	different	uses	of
the	same	text	in	the	same	context.

The	minimum	for	each	item	is	just	the	information	necessary	for	findMessage()
to	return	the	right	text.	This	may	include	the	source,	context	and	comment,	but
usually	it	is	just	a	hash	value	and	the	translated	text.

For	example,	the	"Cancel"	in	a	dialog	might	have	"Anuluj"	when	the	program
runs	in	Polish	(in	this	case	the	source	text	would	be	"Cancel").	The	context
would	(normally)	be	the	dialog's	class	name;	there	would	normally	be	no
comment,	and	the	translated	text	would	be	"Anuluj".

But	it's	not	always	so	simple.	The	Spanish	version	of	a	printer	dialog	with
settings	for	two-sided	printing	and	binding	would	probably	require	both
"Activado"	and	"Activada"	as	translations	for	"Enabled".	In	this	case	the	source
text	would	be	"Enabled"	in	both	cases,	and	the	context	would	be	the	dialog's
class	name,	but	the	two	items	would	have	disambiguating	comments	such	as
"two-sided	printing"	for	one	and	"binding"	for	the	other.	The	comment	enables
the	translator	to	choose	the	appropriate	gender	for	the	Spanish	version,	and
enables	Qt	to	distinguish	between	translations.

Note	that	when	QTranslator	loads	a	stripped	file,	most	functions	do	not	work.
The	functions	that	do	work	with	stripped	files	are	explicitly	documented	as	such.

See	also	QTranslatorMessage,	QApplication::installTranslator(),
QApplication::removeTranslator(),	QObject::tr(),	QApplication::translate(),
Environment	Classes	and	Internationalization	with	Qt.

Member	Type	Documentation

QTranslator::SaveMode

This	enum	type	defines	how	QTranslator	writes	translation	files.	There	are	two
modes:

QTranslator::Everything	-	files	are	saved	with	all	available	information
QTranslator::Stripped	-	files	are	saved	with	just	enough	information	for
end-user	applications

Note	that	when	QTranslator	loads	a	stripped	file,	most	functions	do	not	work.
The	functions	that	do	work	with	stripped	files	are	explicitly	documented	as	such.

Member	Function	Documentation

QTranslator::QTranslator	(QObject	*	parent,	const	char	*	name
=	0)

Constructs	an	empty	message	file	object	that	is	not	connected	to	any	file.	The
object	is	called	name	with	parent	parent.

QTranslator::~QTranslator	()

Destroys	the	object	and	frees	any	allocated	resources.

void	QTranslator::clear	()

Empties	this	translator	of	all	contents.

This	function	works	with	stripped	translator	files.

bool	QTranslator::contains	(const	char	*	context,
const	char	*	sourceText,	const	char	*	comment	=	0)	const

Returns	TRUE	if	this	message	file	contains	a	message	with	the	key	(context,
sourceText,	comment);	otherwise	returns	FALSE.

This	function	works	with	stripped	translator	files.

(This	is	is	a	one-liner	that	calls	find().)

QString	QTranslator::find	(const	char	*	context,
const	char	*	sourceText,	const	char	*	comment	=	0)	const

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Please	use	findMessage()	instead.

Returns	the	translation	for	the	key	(context,	sourceText,	comment)	or

QString::null	if	there	is	none	in	this	translator.

QTranslatorMessage	QTranslator::findMessage	(
const	char	*	context,	const	char	*	sourceText,
const	char	*	comment)	const	[virtual]

Returns	the	QTranslatorMessage	for	the	key	(context,	sourceText,	comment).

void	QTranslator::insert	(const	QTranslatorMessage	&	message)

Inserts	message	into	this	message	file.

This	function	does	not	work	with	stripped	translator	files.	It	may	appear	to,	but
that	is	not	dependable.

See	also	remove().

void	QTranslator::insert	(const	char	*	context,
const	char	*	sourceText,	const	QString	&	translation)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

bool	QTranslator::load	(const	QString	&	filename,
const	QString	&	directory	=	QString::null,
const	QString	&	search_delimiters	=	QString::null,
const	QString	&	suffix	=	QString::null)

Loads	filename,	which	may	be	an	absolute	file	name	or	relative	to	directory.	The
previous	contents	of	this	translator	object	is	discarded.

If	the	full	file	name	does	not	exist,	other	file	names	are	tried	in	the	following
order:

1.	 File	name	with	suffix	appended	(".qm"	if	the	suffix	is	QString::null).

2.	 File	name	with	text	after	a	character	in	search_delimiters	stripped	("_."	is
the	default	for	search_delimiters	if	it	is	QString::null).

3.	 File	name	stripped	and	suffix	appended.
4.	 File	name	stripped	further,	etc.

For	example,	an	application	running	in	the	fr_CA	locale	(French-speaking
Canada)	might	call	load("foo.fr_ca",	"/opt/foolib").	load()	would	then	try	to	open
the	first	existing	readable	file	from	this	list:

1.	 /opt/foolib/foo.fr_ca
2.	 /opt/foolib/foo.fr_ca.qm
3.	 /opt/foolib/foo.fr
4.	 /opt/foolib/foo.fr.qm
5.	 /opt/foolib/foo
6.	 /opt/foolib/foo.qm

See	also	save().

Example:	i18n/main.cpp.

QValueList<QTranslatorMessage>	QTranslator::messages	()
const

Returns	a	list	of	the	messages	in	the	translator.	This	function	is	rather	slow.
Because	it	is	seldom	called,	it's	optimized	for	simplicity	and	small	size,	rather
than	speed.

If	you	want	to	iterate	over	the	list,	you	should	iterate	over	a	copy,	e.g.

				QValueList<QTranslatorMessage>	list	=	myTranslator.messages();

				QValueList<QTranslatorMessage>::Iterator	it	=	list.begin();

				while(it	!=	list.end())	{

								myProcessing(*it);

								++it;

				}

				

void	QTranslator::remove	(const	QTranslatorMessage	&	message
)

Removes	message	from	this	translator.

This	function	works	with	stripped	translator	files.

See	also	insert().

void	QTranslator::remove	(const	char	*	context,
const	char	*	sourceText)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Removes	the	translation	associated	to	the	key	(context,	sourceText,	"")	from	this
translator.

bool	QTranslator::save	(const	QString	&	filename,
SaveMode	mode	=	Everything)

Saves	this	message	file	to	filename,	overwriting	the	previous	contents	of
filename.	If	mode	is	Everything	(the	default),	all	the	information	is	preserved.	If
mode	is	Stripped,	any	information	that	is	not	necessary	for	findMessage()	is
stripped	away.

See	also	load().

void	QTranslator::squeeze	(SaveMode	mode	=	Everything)

Converts	this	message	file	to	the	compact	format	used	to	store	message	files	on
disk.

You	should	never	need	to	call	this	directly;	save()	and	other	functions	call	it	as
necessary.	mode	is	for	internal	use.

See	also	save()	and	unsqueeze().

void	QTranslator::unsqueeze	()

Converts	this	message	file	into	an	easily	modifiable	data	structure,	less	compact
than	the	format	used	in	the	files.

You	should	never	need	to	call	this	function;	it	is	called	by	insert()	and	friends	as
necessary.

See	also	squeeze().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QDropEvent	Class	Reference
The	QDropEvent	class	provides	an	event	which	is	sent	when	a	drag	and	drop	is
completed.	More...

#include	<qevent.h>

Inherits	QEvent	and	QMimeSource.

Inherited	by	QDragMoveEvent.

List	of	all	member	functions.

Public	Members

QDropEvent	(const	QPoint	&	pos,	Type	typ	=	Drop)
const	QPoint	&	pos	()	const
bool	isAccepted	()	const
void	accept	(bool	y	=	TRUE)
void	ignore	()
bool	isActionAccepted	()	const
void	acceptAction	(bool	y	=	TRUE)
enum	Action	{	Copy,	Link,	Move,	Private,	UserAction	=	100	}
void	setAction	(Action	a)
Action	action	()	const
QWidget	*	source	()	const
virtual	const	char	*	format	(int	n	=	0)	const
virtual	QByteArray	encodedData	(const	char	*	format)	const
virtual	bool	provides	(const	char	*	mimeType)	const
QByteArray	data	(const	char	*	f)	const		(obsolete)
void	setPoint	(const	QPoint	&	np)

Detailed	Description

The	QDropEvent	class	provides	an	event	which	is	sent	when	a	drag	and	drop	is
completed.

When	a	widget	accepts	drop	events,	it	will	receive	this	event	if	it	has	accepted
the	most	recent	QDragEnterEvent	or	QDragMoveEvent	sent	to	it.

The	widget	should	use	data()	to	extract	the	data	in	an	appropriate	format.

See	also	Drag	And	Drop	Classes	and	Event	Classes.

Member	Type	Documentation

QDropEvent::Action

This	enum	describes	the	action	which	a	source	requests	that	a	target	perform
with	dropped	data.

QDropEvent::Copy	-	The	default	action.	The	source	simply	uses	the	data
provided	in	the	operation.
QDropEvent::Link	-	The	source	should	somehow	create	a	link	to	the
location	specified	by	the	data.
QDropEvent::Move	-	The	source	should	somehow	move	the	object	from	the
location	specified	by	the	data	to	a	new	location.
QDropEvent::Private	-	The	target	has	special	knowledge	of	the	MIME
type,	which	the	source	should	respond	to	in	a	similar	way	to	a	Copy.
QDropEvent::UserAction	-	The	source	and	target	can	co-operate	using
special	actions.	This	feature	is	not	currently	supported.

The	Link	and	Move	actions	only	makes	sense	if	the	data	is	a	reference,	for
example,	text/uri-list	file	lists	(see	QUriDrag).

Member	Function	Documentation

QDropEvent::QDropEvent	(const	QPoint	&	pos,	Type	typ	=	Drop
)

Constructs	a	drop	event	that	drops	a	drop	of	type	typ	on	point	pos.

void	QDropEvent::accept	(bool	y	=	TRUE)

Call	this	function	to	indicate	whether	the	event	provided	data	which	your	widget
processed.	Set	y	to	TRUE	(the	default)	if	your	widget	could	process	the	data,
otherwise	set	y	to	FALSE.	To	get	the	data,	use	encodedData(),	or	preferably,	the
decode()	methods	of	existing	QDragObject	subclasses,	such	as
QTextDrag::decode(),	or	your	own	subclasses.

Warning:	To	accept	or	reject	the	drop,	don't	call	this	function,	call
acceptAction()	instead.	This	function	indicates	whether	you	processed	the	event
at	all.

See	also	acceptAction().

Example:	iconview/simple_dd/main.cpp.

void	QDropEvent::acceptAction	(bool	y	=	TRUE)

Call	this	to	indicate	that	the	action	described	by	action()	is	accepted	(i.e.	if	y	is
TRUE,	which	is	the	default),	not	merely	the	default	copy	action.	If	you	call
acceptAction(TRUE),	there	is	no	need	to	also	call	accept(TRUE).

Examples:	dirview/dirview.cpp	and	fileiconview/qfileiconview.cpp.

Action	QDropEvent::action	()	const

Returns	the	Action	which	the	target	is	requesting	to	be	performed	with	the	data.
If	your	application	understands	the	action	and	can	process	the	supplied	data,	call
acceptAction();	if	your	application	can	process	the	supplied	data	but	can	only
perform	the	Copy	action,	call	accept().

Examples:	dirview/dirview.cpp	and	fileiconview/qfileiconview.cpp.

QByteArray	QDropEvent::data	(const	char	*	f)	const

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Use	QDropEvent::encodedData().

QByteArray	QDropEvent::encodedData	(const	char	*	format)
const	[virtual]

Returns	a	byte	array	containing	the	drag's	data,	in	format.

data()	normally	needs	to	get	the	data	from	the	drag	source,	which	is	potentially
very	slow,	so	it's	advisable	to	call	this	function	only	if	you're	sure	that	you	will
need	the	data	in	format.

The	resulting	data	will	have	a	size	of	0	if	the	format	was	not	available.

See	also	format()	and	QByteArray::size().

Reimplemented	from	QMimeSource.

const	char	*	QDropEvent::format	(int	n	=	0)	const	[virtual]

Returns	a	string	describing	one	of	the	available	data	types	for	this	drag.	Common
examples	are	"text/plain"	and	"image/gif".	If	n	is	less	than	zero	or	greater	than
the	number	of	available	data	types,	format()	returns	0.

This	function	is	provided	mainly	for	debugging.	Most	drop	targets	will	use
provides().

See	also	data()	and	provides().

Example:	iconview/main.cpp.

Reimplemented	from	QMimeSource.

void	QDropEvent::ignore	()

The	opposite	of	accept(),	i.e.	you	have	ignored	the	drop	event.

Example:	fileiconview/qfileiconview.cpp.

bool	QDropEvent::isAccepted	()	const

Returns	TRUE	if	the	drop	target	accepts	the	event;	otherwise	returns	FALSE.

bool	QDropEvent::isActionAccepted	()	const

Returns	TRUE	if	the	drop	action	was	accepted	by	the	drop	site;	otherwise
returns	FALSE.

const	QPoint	&	QDropEvent::pos	()	const

Returns	the	position	where	the	drop	was	made.

Example:	dirview/dirview.cpp.

bool	QDropEvent::provides	(const	char	*	mimeType)	const
[virtual]

Returns	TRUE	if	this	event	provides	format	mimeType;	otherwise	returns
FALSE.

See	also	data().

Example:	fileiconview/qfileiconview.cpp.

Reimplemented	from	QMimeSource.

void	QDropEvent::setAction	(Action	a)

Sets	the	action	to	a.	This	is	used	internally,	you	should	not	need	to	call	this	in
your	code:	the	source	decides	the	action,	not	the	target.

void	QDropEvent::setPoint	(const	QPoint	&	np)

Sets	the	drop	to	happen	at	point	np.	You	do	not	normally	need	to	use	this	as	it
will	be	set	internally	before	your	widget	receives	the	drop	event.

QWidget	*	QDropEvent::source	()	const

If	the	source	of	the	drag	operation	is	a	widget	in	this	application,	this	function
returns	that	source,	otherwise	it	returns	0.	The	source	of	the	operation	is	the	first
parameter	to	drag	object	subclasses.

This	is	useful	if	your	widget	needs	special	behavior	when	dragging	to	itself,	etc.

See	QDragObject::QDragObject()	and	subclasses.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QListBoxPixmap	Class	Reference
The	QListBoxPixmap	class	provides	list	box	items	with	a	pixmap	and	optional
text.	More...

#include	<qlistbox.h>

Inherits	QListBoxItem.

List	of	all	member	functions.

Public	Members

QListBoxPixmap	(QListBox	*	listbox,	const	QPixmap	&	pixmap)
QListBoxPixmap	(const	QPixmap	&	pixmap)
QListBoxPixmap	(QListBox	*	listbox,	const	QPixmap	&	pixmap,
QListBoxItem	*	after)
QListBoxPixmap	(QListBox	*	listbox,	const	QPixmap	&	pix,
const	QString	&	text)
QListBoxPixmap	(const	QPixmap	&	pix,	const	QString	&	text)
QListBoxPixmap	(QListBox	*	listbox,	const	QPixmap	&	pix,
const	QString	&	text,	QListBoxItem	*	after)
~QListBoxPixmap	()
virtual	const	QPixmap	*	pixmap	()	const
virtual	int	height	(const	QListBox	*	lb)	const
virtual	int	width	(const	QListBox	*	lb)	const

Protected	Members

virtual	void	paint	(QPainter	*	painter)

Detailed	Description

The	QListBoxPixmap	class	provides	list	box	items	with	a	pixmap	and	optional
text.

Items	of	this	class	are	drawn	with	the	pixmap	on	the	left	with	the	optional	text	to
the	right	of	the	pixmap.

See	also	QListBox,	QListBoxItem	and	Advanced	Widgets.

Member	Function	Documentation

QListBoxPixmap::QListBoxPixmap	(QListBox	*	listbox,
const	QPixmap	&	pixmap)

Constructs	a	new	list	box	item	in	list	box	listbox	showing	the	pixmap	pixmap.

QListBoxPixmap::QListBoxPixmap	(const	QPixmap	&	pixmap)

Constructs	a	new	list	box	item	showing	the	pixmap	pixmap.

QListBoxPixmap::QListBoxPixmap	(QListBox	*	listbox,
const	QPixmap	&	pixmap,	QListBoxItem	*	after)

Constructs	a	new	list	box	item	in	list	box	listbox	showing	the	pixmap	pixmap.
The	item	gets	inserted	after	the	item	after.

QListBoxPixmap::QListBoxPixmap	(QListBox	*	listbox,
const	QPixmap	&	pix,	const	QString	&	text)

Constructs	a	new	list	box	item	in	list	box	listbox	showing	the	pixmap	pix	and	the
text	text.

QListBoxPixmap::QListBoxPixmap	(const	QPixmap	&	pix,
const	QString	&	text)

Constructs	a	new	list	box	item	showing	the	pixmap	pix	and	the	text	to	text.

QListBoxPixmap::QListBoxPixmap	(QListBox	*	listbox,
const	QPixmap	&	pix,	const	QString	&	text,
QListBoxItem	*	after)

Constructs	a	new	list	box	item	in	list	box	listbox	showing	the	pixmap	pix	and	the
string	text.	The	item	gets	inserted	after	the	item	after.

QListBoxPixmap::~QListBoxPixmap	()

Destroys	the	item.

int	QListBoxPixmap::height	(const	QListBox	*	lb)	const
[virtual]

Returns	the	height	of	the	pixmap	in	list	box	lb.

See	also	paint()	and	width().

Reimplemented	from	QListBoxItem.

void	QListBoxPixmap::paint	(QPainter	*	painter)	[virtual
protected]

Draws	the	pixmap	using	painter.

Reimplemented	from	QListBoxItem.

const	QPixmap	*	QListBoxPixmap::pixmap	()	const	[virtual]

Returns	the	pixmap	associated	with	the	item.

Reimplemented	from	QListBoxItem.

int	QListBoxPixmap::width	(const	QListBox	*	lb)	const
[virtual]

Returns	the	width	of	the	pixmap	plus	some	margin	in	list	box	lb.

See	also	paint()	and	height().

Reimplemented	from	QListBoxItem.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

http://www.trolltech.com/

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QTranslatorMessage	Class	Reference
The	API	for	this	class	is	under	development	and	is	subject	to	change.	We	do

not	recommend	the	use	of	this	class	for	production	work	at	this	time.

The	QTranslatorMessage	class	contains	a	translator	message	and	its	properties.
More...

#include	<qtranslator.h>

List	of	all	member	functions.

Public	Members

QTranslatorMessage	()
QTranslatorMessage	(const	char	*	context,	const	char	*	sourceText,
const	char	*	comment,	const	QString	&	translation	=	QString::null)
QTranslatorMessage	(QDataStream	&	stream)
QTranslatorMessage	(const	QTranslatorMessage	&	m)
QTranslatorMessage	&	operator=	(const	QTranslatorMessage	&	m)
uint	hash	()	const
const	char	*	context	()	const
const	char	*	sourceText	()	const
const	char	*	comment	()	const
void	setTranslation	(const	QString	&	translation)
QString	translation	()	const
enum	Prefix	{	NoPrefix,	Hash,	HashContext,	HashContextSourceText,
HashContextSourceTextComment	}
void	write	(QDataStream	&	stream,	bool	strip	=	FALSE,	Prefix	prefix	=
HashContextSourceTextComment)	const
Prefix	commonPrefix	(const	QTranslatorMessage	&	m)	const
bool	operator==	(const	QTranslatorMessage	&	m)	const
bool	operator!=	(const	QTranslatorMessage	&	m)	const
bool	operator<	(const	QTranslatorMessage	&	m)	const
bool	operator<=	(const	QTranslatorMessage	&	m)	const
bool	operator>	(const	QTranslatorMessage	&	m)	const
bool	operator>=	(const	QTranslatorMessage	&	m)	const

Detailed	Description

The	QTranslatorMessage	class	contains	a	translator	message	and	its	properties.

This	class	is	of	no	interest	to	most	applications.	It	is	useful	for	translation	tools
such	as	Qt	Linguist.	It	is	provided	simply	to	make	the	API	complete	and	regular.

For	a	QTranslator	object,	a	lookup	key	is	a	triple	(context,	source	text,	comment)
that	uniquely	identifies	a	message.	An	extended	key	is	a	quadruple	(hash,
context,	source	text,	comment),	where	hash	is	computed	from	the	source	text	and
the	comment.	Unless	you	plan	to	read	and	write	messages	yourself,	you	need	not
worry	about	the	hash	value.

QTranslatorMessage	stores	this	triple	or	quadruple	and	the	relevant	translation	if
there	is	any.

See	also	QTranslator,	Environment	Classes	and	Internationalization	with	Qt.

Member	Type	Documentation

QTranslatorMessage::Prefix

Let	(h,	c,	s,	m)	be	the	extended	key.	The	possible	prefixes	are

QTranslatorMessage::NoPrefix	-	no	prefix
QTranslatorMessage::Hash	-	only	(h)
QTranslatorMessage::HashContext	-	only	(h,	c)
QTranslatorMessage::HashContextSourceText	-	only	(h,	c,	s)
QTranslatorMessage::HashContextSourceTextComment	-	the	whole
extended	key,	(h,	c,	s,	m)

See	also	write()	and	commonPrefix().

Member	Function	Documentation

QTranslatorMessage::QTranslatorMessage	()

Constructs	a	translator	message	with	the	extended	key	(0,	0,	0,	0)	and
QString::null	as	translation.

QTranslatorMessage::QTranslatorMessage	(const	char	*	context,
const	char	*	sourceText,	const	char	*	comment,
const	QString	&	translation	=	QString::null)

Constructs	an	translator	message	with	the	extended	key	(h,	context,	sourceText,
comment),	where	h	is	computed	from	sourceText	and	comment,	and	possibly
with	a	translation.

QTranslatorMessage::QTranslatorMessage	(
QDataStream	&	stream)

Constructs	a	translator	message	read	from	the	stream.	The	resulting	message
may	have	any	combination	of	content.

See	also	QTranslator::save().

QTranslatorMessage::QTranslatorMessage	(
const	QTranslatorMessage	&	m)

Constructs	a	copy	of	translator	message	m.

const	char	*	QTranslatorMessage::comment	()	const

Returns	the	comment	for	this	message	(e.g.	"File|Save").

Prefix	QTranslatorMessage::commonPrefix	(
const	QTranslatorMessage	&	m)	const

Returns	the	widest	lookup	prefix	that	is	common	to	this	translator	message	and

to	message	m.

For	example,	if	the	extended	key	is	for	this	message	is	(71,	"PrintDialog",	"Yes",
"Print?")	and	that	for	m	is	(71,	"PrintDialog",	"No",	"Print?"),	this	function
returns	HashContext.

See	also	write().

const	char	*	QTranslatorMessage::context	()	const

Returns	the	context	for	this	message	(e.g.	"MyDialog").

uint	QTranslatorMessage::hash	()	const

Returns	the	hash	value	used	internally	to	represent	the	lookup	key.	This	value	is
zero	only	if	this	translator	message	was	constructed	from	a	stream	containing
invalid	data.

The	hashing	function	is	unspecified,	but	it	will	remain	unchanged	in	future
versions	of	Qt.

bool	QTranslatorMessage::operator!=	(
const	QTranslatorMessage	&	m)	const

Returns	TRUE	if	the	extended	key	of	this	object	is	different	from	that	of	m;
otherwise	returns	FALSE.

bool	QTranslatorMessage::operator<	(
const	QTranslatorMessage	&	m)	const

Returns	TRUE	if	the	extended	key	of	this	object	is	lexicographically	before	than
that	of	m;	otherwise	returns	FALSE.

bool	QTranslatorMessage::operator<=	(
const	QTranslatorMessage	&	m)	const

Returns	TRUE	if	the	extended	key	of	this	object	is	lexicographically	before	that
of	m	or	if	they	are	equal;	otherwise	returns	FALSE.

QTranslatorMessage	&	QTranslatorMessage::operator=	(
const	QTranslatorMessage	&	m)

Assigns	message	m	to	this	translator	message	and	returns	a	reference	to	this
translator	message.

bool	QTranslatorMessage::operator==	(
const	QTranslatorMessage	&	m)	const

Returns	TRUE	if	the	extended	key	of	this	object	is	equal	to	that	of	m;	otherwise
returns	FALSE.

bool	QTranslatorMessage::operator>	(
const	QTranslatorMessage	&	m)	const

Returns	TRUE	if	the	extended	key	of	this	object	is	lexicographically	after	that	of
m;	otherwise	returns	FALSE.

bool	QTranslatorMessage::operator>=	(
const	QTranslatorMessage	&	m)	const

Returns	TRUE	if	the	extended	key	of	this	object	is	lexicographically	after	that	of
m	or	if	they	are	equal;	otherwise	returns	FALSE.

void	QTranslatorMessage::setTranslation	(
const	QString	&	translation)

Sets	the	translation	of	the	source	text	to	translation.

See	also	translation().

const	char	*	QTranslatorMessage::sourceText	()	const

Returns	the	source	text	of	this	message	(e.g.	"&Save;").

QString	QTranslatorMessage::translation	()	const

Returns	the	translation	of	the	source	text	(e.g.,	"&Sauvegarder;").

See	also	setTranslation().

void	QTranslatorMessage::write	(QDataStream	&	stream,
bool	strip	=	FALSE,	Prefix	prefix	=
HashContextSourceTextComment)	const

Writes	this	translator	message	to	the	stream.	If	strip	is	FALSE	(the	default),	all
the	information	in	the	message	is	written.	If	strip	is	TRUE,	only	the	part	of	the
extended	key	specified	by	prefix	is	written	with	the	translation
(HashContextSourceTextComment	by	default).

See	also	commonPrefix().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QEditorFactory	Class	Reference
The	QEditorFactory	class	is	used	to	create	editor	widgets	for	QVariant	data
types.	More...

#include	<qeditorfactory.h>

Inherits	QObject.

Inherited	by	QSqlEditorFactory.

List	of	all	member	functions.

Public	Members

QEditorFactory	(QObject	*	parent	=	0,	const	char	*	name	=	0)
~QEditorFactory	()
virtual	QWidget	*	createEditor	(QWidget	*	parent,	const	QVariant	&	v)

Static	Public	Members

QEditorFactory	*	defaultFactory	()
void	installDefaultFactory	(QEditorFactory	*	factory)

Detailed	Description

The	QEditorFactory	class	is	used	to	create	editor	widgets	for	QVariant	data
types.

Each	editor	factory	provides	the	createEditor()	function	which	given	a	QVariant
will	create	and	return	a	QWidget	that	can	edit	that	QVariant.	For	example	if	you
have	a	QVariant::String	type,	a	QLineEdit	would	be	the	default	editor	returned,
whereas	a	QVariant::Int's	default	editor	would	be	a	QSpinBox.

If	you	want	to	create	different	editors	for	fields	with	the	same	data	type,	subclass
QEditorFactory	and	reimplement	the	createEditor()	function.

See	also	Advanced	Widgets.

Member	Function	Documentation

QEditorFactory::QEditorFactory	(QObject	*	parent	=	0,
const	char	*	name	=	0)

Constructs	an	editor	factory	with	parent	parent	and	name	name.

QEditorFactory::~QEditorFactory	()

Destroys	the	object	and	frees	any	allocated	resources.

QWidget	*	QEditorFactory::createEditor	(QWidget	*	parent,
const	QVariant	&	v)	[virtual]

Creates	and	returns	the	appropriate	editor	for	the	QVariant	v.	If	the	QVariant	is
invalid,	0	is	returned.	The	parent	is	passed	to	the	appropriate	editor's	constructor.

Reimplemented	in	QSqlEditorFactory.

QEditorFactory	*	QEditorFactory::defaultFactory	()	[static]

Returns	an	instance	of	a	default	editor	factory.

void	QEditorFactory::installDefaultFactory	(
QEditorFactory	*	factory)	[static]

Replaces	the	default	editor	factory	with	factory.	QEditorFactory	takes
ownership	of	factory,	and	destroys	it	when	it	is	no	longer	needed.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QListBoxText	Class	Reference
The	QListBoxText	class	provides	list	box	items	that	display	text.	More...

#include	<qlistbox.h>

Inherits	QListBoxItem.

List	of	all	member	functions.

Public	Members

QListBoxText	(QListBox	*	listbox,	const	QString	&	text	=	QString::null)
QListBoxText	(const	QString	&	text	=	QString::null)
QListBoxText	(QListBox	*	listbox,	const	QString	&	text,
QListBoxItem	*	after)
~QListBoxText	()
virtual	int	height	(const	QListBox	*	lb)	const
virtual	int	width	(const	QListBox	*	lb)	const

Protected	Members

virtual	void	paint	(QPainter	*	painter)

Detailed	Description

The	QListBoxText	class	provides	list	box	items	that	display	text.

The	text	is	drawn	in	the	widget's	current	font.	If	you	need	several	different	fonts,
you	must	implement	your	own	subclass	of	QListBoxItem.

See	also	QListBox,	QListBoxItem	and	Advanced	Widgets.

Member	Function	Documentation

QListBoxText::QListBoxText	(QListBox	*	listbox,
const	QString	&	text	=	QString::null)

Constructs	a	list	box	item	in	list	box	listbox	showing	the	text	text.

QListBoxText::QListBoxText	(const	QString	&	text	=
QString::null)

Constructs	a	list	box	item	showing	the	text	text.

QListBoxText::QListBoxText	(QListBox	*	listbox,
const	QString	&	text,	QListBoxItem	*	after)

Constructs	a	list	box	item	in	list	box	listbox	showing	the	text	text.	The	item	gets
inserted	after	the	item	after.

QListBoxText::~QListBoxText	()

Destroys	the	item.

int	QListBoxText::height	(const	QListBox	*	lb)	const	[virtual]

Returns	the	height	of	a	line	of	text	in	list	box	lb.

See	also	paint()	and	width().

Reimplemented	from	QListBoxItem.

void	QListBoxText::paint	(QPainter	*	painter)	[virtual
protected]

Draws	the	text	using	painter.

Reimplemented	from	QListBoxItem.

int	QListBoxText::width	(const	QListBox	*	lb)	const	[virtual]

Returns	the	width	of	this	line	in	list	box	lb.

See	also	paint()	and	height().

Reimplemented	from	QListBoxItem.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QSGIStyle	Class	Reference
The	QSGIStyle	class	provides	SGI/Irix	look	and	feel.	More...

#include	<qsgistyle.h>

Inherits	QMotifStyle.

List	of	all	member	functions.

Public	Members

QSGIStyle	(bool	useHighlightCols	=	FALSE)
virtual	~QSGIStyle	()

Detailed	Description

The	QSGIStyle	class	provides	SGI/Irix	look	and	feel.

This	class	implements	the	SGI	look	and	feel.	It	resembles	the	SGI/Irix	Motif
GUI	style	as	closely	as	QStyle	allows.

See	also	Widget	Appearance	and	Style.

Member	Function	Documentation

QSGIStyle::QSGIStyle	(bool	useHighlightCols	=	FALSE)

Constructs	a	QSGIStyle.

If	useHighlightCols	is	FALSE	(default	value),	the	style	will	polish	the
application's	color	palette	to	emulate	the	Motif	way	of	highlighting,	which	is	a
simple	inversion	between	the	base	and	the	text	color.

See	also	QMotifStyle::useHighlightColors().

QSGIStyle::~QSGIStyle	()	[virtual]

Destroys	the	style.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QTsciiCodec	Class	Reference
The	QTsciiCodec	class	provides	conversion	to	and	from	the	Tamil	TSCII
encoding.	More...

#include	<qtsciicodec.h>

Inherits	QTextCodec.

List	of	all	member	functions.

Detailed	Description

The	QTsciiCodec	class	provides	conversion	to	and	from	the	Tamil	TSCII
encoding.

TSCII,	formally	the	Tamil	Standard	Code	Information	Interchange	specification,
is	a	commonly	used	charset	for	Tamils.	The	official	page	for	the	standard	is	at
http://www.tamil.net/tscii/

This	codec	uses	the	mapping	table	found	at
http://www.geocities.com/Athens/5180/tsciiset.html.	Tamil	uses	composed
Unicode	which	might	cause	some	problems	if	you	are	using	Unicode	fonts
instead	of	TSCII	fonts.

The	TSCII	codec	was	contributed	to	Qt	by	Hans	Petter	Bieker
<bieker@kde.org>.	The	copyright	notice	for	his	code	follows:

Copyright	2000	Hans	Petter	Bieker	.	All	rights	reserved.

Redistribution	and	use	in	source	and	binary	forms,	with	or	without	modification,
are	permitted	provided	that	the	following	conditions	are	met:

1.	 Redistributions	of	source	code	must	retain	the	above	copyright	notice,	this
list	of	conditions	and	the	following	disclaimer.

2.	 Redistributions	in	binary	form	must	reproduce	the	above	copyright	notice,
this	list	of	conditions	and	the	following	disclaimer	in	the	documentation
and/or	other	materials	provided	with	the	distribution.

THIS	SOFTWARE	IS	PROVIDED	BY	THE	AUTHOR	AND
CONTRIBUTORS	``AS	IS''	AND	ANY	EXPRESS	OR	IMPLIED
WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED
WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A
PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO	EVENT	SHALL	THE
REGENTS	OR	CONTRIBUTORS	BE	LIABLE	FOR	ANY	DIRECT,
INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL
DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,	PROCUREMENT	OF
SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;
OR	BUSINESS	INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY

http://www.tamil.net/tscii/
http://www.geocities.com/Athens/5180/tsciiset.html

THEORY	OF	LIABILITY,	WHETHER	IN	CONTRACT,	STRICT	LIABILITY,
OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN
ANY	WAY	OUT	OF	THE	USE	OF	THIS	SOFTWARE,	EVEN	IF	ADVISED
OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

See	also	Internationalization	with	Qt.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QErrorMessage
QErrorMessage	 ……

#include	<qerrormessage.h>

QDialog

QErrorMessage	(QWidget	*	parent,	const	char	*	name	=	0)
~QErrorMessage	()

void	message	(const	QString	&	m)

QErrorMessage	*	qtHandler	()

QErrorMessage

QLabel“show	this	message	again”

1.	 QErrorMessage

2.	 qtHandler()qInstallMsgHandler()qDebug()
QErrorMessage

QErrorMessageEnterOK

QMessageBoxQStatusBar::message()

QErrorMessage::QErrorMessage	(QWidget	*	parent,
const	char	*	name	=	0)

parentnameQDialog

QErrorMessage::~QErrorMessage	()

“do	not	show	again”

void	QErrorMessage::message	(const	QString	&	m)	[]

m m

m m

QErrorMessage	*	QErrorMessage::qtHandler	()	[]

QtQErrorMessage

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QListView	Class	Reference
The	QListView	class	implements	a	list/tree	view.	More...

#include	<qlistview.h>

Inherits	QScrollView.

List	of	all	member	functions.

Public	Members

QListView	(QWidget	*	parent	=	0,	const	char	*	name	=	0,	WFlags	f	=	0)
~QListView	()
int	treeStepSize	()	const
virtual	void	setTreeStepSize	(int)
virtual	void	insertItem	(QListViewItem	*	i)
virtual	void	takeItem	(QListViewItem	*	i)
virtual	void	removeItem	(QListViewItem	*	item)		(obsolete)
QHeader	*	header	()	const
virtual	int	addColumn	(const	QString	&	label,	int	width	=	-1)
virtual	int	addColumn	(const	QIconSet	&	iconset,	const	QString	&	label,
int	width	=	-1)
virtual	void	removeColumn	(int	index)
virtual	void	setColumnText	(int	column,	const	QString	&	label)
virtual	void	setColumnText	(int	column,	const	QIconSet	&	iconset,
const	QString	&	label)
QString	columnText	(int	c)	const
virtual	void	setColumnWidth	(int	column,	int	w)
int	columnWidth	(int	c)	const
enum	WidthMode	{	Manual,	Maximum	}
virtual	void	setColumnWidthMode	(int	c,	WidthMode	mode)
WidthMode	columnWidthMode	(int	c)	const
int	columns	()	const
virtual	void	setColumnAlignment	(int	column,	int	align)
int	columnAlignment	(int	column)	const
QListViewItem	*	itemAt	(const	QPoint	&	viewPos)	const
QRect	itemRect	(const	QListViewItem	*	i)	const
int	itemPos	(const	QListViewItem	*	item)
void	ensureItemVisible	(const	QListViewItem	*	i)
void	repaintItem	(const	QListViewItem	*	item)	const
virtual	void	setMultiSelection	(bool	enable)
bool	isMultiSelection	()	const
enum	SelectionMode	{	Single,	Multi,	Extended,	NoSelection	}
void	setSelectionMode	(SelectionMode	mode)
SelectionMode	selectionMode	()	const
virtual	void	clearSelection	()

virtual	void	setSelected	(QListViewItem	*	item,	bool	selected)
bool	isSelected	(const	QListViewItem	*	i)	const
QListViewItem	*	selectedItem	()	const
virtual	void	setOpen	(QListViewItem	*	item,	bool	open)
bool	isOpen	(const	QListViewItem	*	item)	const
virtual	void	setCurrentItem	(QListViewItem	*	i)
QListViewItem	*	currentItem	()	const
QListViewItem	*	firstChild	()	const
QListViewItem	*	lastItem	()	const
int	childCount	()	const
virtual	void	setAllColumnsShowFocus	(bool)
bool	allColumnsShowFocus	()	const
virtual	void	setItemMargin	(int)
int	itemMargin	()	const
virtual	void	setRootIsDecorated	(bool)
bool	rootIsDecorated	()	const
virtual	void	setSorting	(int	column,	bool	ascending	=	TRUE)
virtual	void	sort	()
virtual	bool	eventFilter	(QObject	*	o,	QEvent	*	e)
virtual	void	setShowSortIndicator	(bool	show)
bool	showSortIndicator	()	const
virtual	void	setShowToolTips	(bool	b)
bool	showToolTips	()	const
enum	ResizeMode	{	NoColumn,	AllColumns,	LastColumn	}
virtual	void	setResizeMode	(ResizeMode	m)
ResizeMode	resizeMode	()	const
QListViewItem	*	findItem	(const	QString	&	text,	int	column,
ComparisonFlags	compare	=	ExactMatch	|	CaseSensitive)	const
enum	RenameAction	{	Accept,	Reject	}
virtual	void	setDefaultRenameAction	(RenameAction	a)
RenameAction	defaultRenameAction	()	const
bool	isRenaming	()	const

Public	Slots

virtual	void	clear	()
virtual	void	invertSelection	()
virtual	void	selectAll	(bool	select)
void	triggerUpdate	()

Signals

void	selectionChanged	()
void	selectionChanged	(QListViewItem	*)
void	currentChanged	(QListViewItem	*)
void	clicked	(QListViewItem	*	item)
void	clicked	(QListViewItem	*	item,	const	QPoint	&	pnt,	int	c)
void	pressed	(QListViewItem	*	item)
void	pressed	(QListViewItem	*	item,	const	QPoint	&	pnt,	int	c)
void	doubleClicked	(QListViewItem	*	item)
void	returnPressed	(QListViewItem	*)
void	spacePressed	(QListViewItem	*)
void	rightButtonClicked	(QListViewItem	*,	const	QPoint	&,	int)
void	rightButtonPressed	(QListViewItem	*,	const	QPoint	&,	int)
void	mouseButtonPressed	(int	button,	QListViewItem	*	item,
const	QPoint	&	pos,	int	c)
void	mouseButtonClicked	(int	button,	QListViewItem	*	item,
const	QPoint	&	pos,	int	c)
void	contextMenuRequested	(QListViewItem	*	item,
const	QPoint	&	pos,	int	col)
void	onItem	(QListViewItem	*	i)
void	onViewport	()
void	expanded	(QListViewItem	*	item)
void	collapsed	(QListViewItem	*	item)
void	dropped	(QDropEvent	*	e)
void	itemRenamed	(QListViewItem	*	item,	int	col,	const	QString	&	text)
void	itemRenamed	(QListViewItem	*	item,	int	col)

Properties

bool	allColumnsShowFocus	-	whether	items	should	show	keyboard	focus
using	all	columns
int	childCount	-	the	number	of	parentless	(top	level)	QListViewItem
objects	in	this	QListView		(read	only)
int	columns	-	the	number	of	columns	in	this	list	view		(read	only)
RenameAction	defaultRenameAction	-	whether	the	list	view	accepts	the
rename	operation	by	default
int	itemMargin	-	the	advisory	item	margin	that	list	items	may	use
bool	multiSelection	-	whether	the	list	view	is	in	multi-selection	or	single
selection	mode
ResizeMode	resizeMode	-	whether	all,	none	or	the	last	column	should	be
resized
bool	rootIsDecorated	-	whether	the	list	view	show	open/close	signs	on	root
items
SelectionMode	selectionMode	-	the	list	view's	multi-selection	mode
bool	showSortIndicator	-	whether	the	list	view	header	should	display	a
sort	indicator
bool	showToolTips	-	whether	this	list	view	should	show	tooltips	for
truncated	column	texts
int	treeStepSize	-	the	number	of	pixels	a	child	is	offset	from	its	parent

Protected	Members

virtual	void	contentsMousePressEvent	(QMouseEvent	*	e)
virtual	void	contentsMouseReleaseEvent	(QMouseEvent	*	e)
virtual	void	contentsMouseMoveEvent	(QMouseEvent	*	e)
virtual	void	contentsMouseDoubleClickEvent	(QMouseEvent	*	e)
virtual	QDragObject	*	dragObject	()
virtual	void	startDrag	()
virtual	void	resizeEvent	(QResizeEvent	*	e)
virtual	void	drawContentsOffset	(QPainter	*	p,	int	ox,	int	oy,	int	cx,
int	cy,	int	cw,	int	ch)
virtual	void	paintEmptyArea	(QPainter	*	p,	const	QRect	&	rect)

Protected	Slots

void	updateContents	()
void	doAutoScroll	()

Detailed	Description

The	QListView	class	implements	a	list/tree	view.

It	can	display	and	control	a	hierarchy	of	multi-column	items,	and	provides	the
ability	to	add	new	items	at	any	time.	Among	others	the	user	may	select	one	or
many	items	and	sort	the	list	in	increasing	or	decreasing	order	by	any	column.

The	simplest	mode	of	use	is	to	create	a	QListView,	add	some	column	headers
using	addColumn()	and	create	one	or	more	QListViewItem	or	QCheckListItem
objects	with	the	QListView	as	parent:

								QListView	*	table;

								table->addColumn("Qualified	name");

								table->addColumn("Namespace");

												element	=	new	QListViewItem(table,	qName,	namespaceURI);

Further	nodes	can	be	added	to	the	listview	object	(the	root	of	the	tree)	or	as	child
nodes	to	QListViewItems:

												for	(int	i	=	0	;	i	<	attributes.length();	i++)	{

																new	QListViewItem(element,	attributes.qName(i),	attributes.

												}

(From	xml/tagreader-with-features/structureparser.cpp)

The	main	setup	functions	are

addColumn()	-	adds	a	column	with	text	and	perhaps	width.

setColumnWidthMode()	-	sets	the	column	to	be	resized	automatically	or
not.

setAllColumnsShowFocus()	-	sets	whether	items	should	show	keyboard
focus	using	all	columns	or	just	column	0.	The	default	is	to	show	focus	using
just	column	0.

setRootIsDecorated()	-	sets	whether	root	items	can	be	opened	and	closed	by
the	user	and	have	open/close	decoration	to	their	left.	The	default	is	FALSE.

setTreeStepSize()	-	sets	how	many	pixels	an	item's	children	are	indented
relative	to	their	parent.	The	default	is	20.	This	is	mostly	a	matter	of	taste.

setSorting()	-	sets	whether	the	items	should	be	sorted,	whether	it	should	be
in	ascending	or	descending	order,	and	by	what	column	it	should	be	sorted.
By	default	the	list	view	is	sorted	by	the	first	column;	to	switch	this	off	call
setSorting(-1).

To	handle	events	such	as	mouse	presses	on	the	list	view,	derived	classes	can
reimplement	the	QScrollView	functions	contentsMousePressEvent,
contentsMouseReleaseEvent,	contentsMouseDoubleClickEvent,
contentsMouseMoveEvent,	contentsDragEnterEvent,	contentsDragMoveEvent,
contentsDragLeaveEvent,	contentsDropEvent,	and	contentsWheelEvent.

There	are	also	several	functions	for	mapping	between	items	and	coordinates.
itemAt()	returns	the	item	at	a	position	on-screen,	itemRect()	returns	the	rectangle
an	item	occupies	on	the	screen,	and	itemPos()	returns	the	position	of	any	item
(not	on-screen	in	the	list	view).	firstChild()	returns	the	item	at	the	top	of	the	view
(not	necessarily	on-screen)	so	you	can	iterate	over	the	items	using	either
QListViewItem::itemBelow()	or	a	combination	of	QListViewItem::firstChild()
and	QListViewItem::nextSibling().

If	you	need	to	move	a	list	view	item	you	can	use	takeItem()	and	insertItem().
Item's	are	deleted	with	delete;	to	delete	all	items	use	clear().	See	the
QListViewItem	documentation	for	examples	of	traversal.

There	are	a	variety	of	selection	modes	described	in	the
QListView::SelectionMode	documentation.	The	default	is	Single	selection,
which	you	can	change	using	setSelectionMode().

Because	QListView	offers	multiple	selection	it	has	to	display	keyboard	focus
and	selection	state	separately.	Therefore	there	are	functions	both	to	set	the
selection	state	of	an	item	(setSelected())	and	to	select	which	item	displays
keyboard	focus	(setCurrentItem()).

QListView	emits	two	groups	of	signals;	one	group	signals	changes	in
selection/focus	state	and	one	signals	selection.	The	first	group	consists	of
selectionChanged()	(applicable	to	all	list	views),	selectionChanged(
QListViewItem	*)	(applicable	only	to	Single	selection	list	view),	and
currentChanged(QListViewItem	*).	The	second	group	consists	of

doubleClicked(QListViewItem	*),	returnPressed(QListViewItem	*)	and
rightButtonClicked(QListViewItem	*,	const	QPoint&,	int),	etc.

In	Motif	style,	QListView	deviates	fairly	strongly	from	the	look	and	feel	of	the
Motif	hierarchical	tree	view.	This	is	done	mostly	to	provide	a	usable	keyboard
interface	and	to	make	the	list	view	look	better	with	a	white	background.

If	selectionMode()	is	Single	(the	default)	the	user	can	select	one	item	at	a	time,
e.g.	by	clicking	an	item	with	the	mouse,	see	QListView::SelectionMode	for
details.

The	listview	can	be	navigated	either	using	the	mouse	or	the	keyboard.	Clicking
an	-	icon	closes	an	item	(hides	its	children)	and	clicking	an	+	icon	opens	an	item
(shows	its	children).	The	keyboard	controls	are	these:

Home	-	Make	the	first	item	current	and	visible.
End	-	Make	the	last	item	current	and	visible.
Page	Up	-	Make	the	item	above	the	top	visible	item	current	and	visible.
Page	Down	-	Make	the	item	below	the	bottom	visible	item	current	and
visible.
Up	Arrow	-	Make	the	item	above	the	current	item	current	and	visible.
Down	Arrow	-	Make	the	item	below	the	current	item	current	and	visible.
Left	Arrow	-	If	the	current	item	is	closed	(+	icon)	or	has	no	children	make
its	parent	item	current	and	visible.	If	the	current	item	is	open	(-	icon)	close
it,	i.e.	hide	its	children.	Exception:	if	the	current	item	is	the	first	item	and	is
closed	and	the	horizontal	scrollbar	is	offset	to	the	right	the	listview	will	be
scrolled	left.
Right	Arrow	-	If	the	current	item	is	closed	(+	icon)	and	has	children	the
item	is	opened.	If	the	current	item	is	opened	(-	icon)	and	has	children	the
item's	first	child	is	made	current	and	visible.	If	the	current	item	has	no
children	the	listview	is	scrolled	right.

If	the	user	starts	typing	letters	with	the	focus	in	the	listview	an	incremental
search	will	occur.	For	example	if	the	user	types	'd'	the	current	item	will	change
to	the	first	item	that	begins	with	the	letter	'd';	if	they	then	type	'a',	the	current
item	will	change	to	the	first	item	that	begins	with	'da',	and	so	on.	If	no	item
begins	with	the	letters	they	type	the	current	item	doesn't	change.

Warning:	The	list	view	assumes	ownership	of	all	list	view	items	and	will	delete

them	when	it	does	not	need	them	any	more.

	

See	also	QListViewItem,	QCheckListItem	and	Advanced	Widgets.

Member	Type	Documentation

QListView::RenameAction

This	enum	describes	whether	a	rename	operation	is	accepted	if	the	rename	editor
loses	focus	without	the	user	pressing	Enter.

QListView::Accept	-	Rename	if	Enter	is	pressed	or	focus	is	lost.
QListView::Reject	-	Discard	the	rename	operation	if	focus	is	lost	(and
Enter	has	not	been	pressed).

QListView::ResizeMode

This	enum	describes	how	the	header	adjusts	to	resize	events	which	affect	the
width	of	the	listview.

QListView::NoColumn	-	The	columns	do	not	get	resized	in	resize	events.
QListView::AllColumns	-	All	columns	are	resized	equally	to	fit	the	width
of	the	listview.
QListView::LastColumn	-	The	last	columns	is	resized	to	fit	the	with	of	the
listview.

QListView::SelectionMode

This	enumerated	type	is	used	by	QListView	to	indicate	how	it	reacts	to	selection
by	the	user.	It	has	four	values:

QListView::Single	-	When	the	user	selects	an	item,	any	already-selected
item	becomes	unselected,	and	the	user	cannot	unselect	the	selected	item.
This	means	that	the	user	can	never	clear	the	selection,	even	though	the
selection	may	be	cleared	by	the	application	programmer	using
QListView::clearSelection().
QListView::Multi	-	When	the	user	selects	an	item	in	the	most	ordinary
way,	the	selection	status	of	that	item	is	toggled	and	the	other	items	are	left
alone.
QListView::Extended	-	When	the	user	selects	an	item	in	the	most	ordinary
way,	the	selection	is	cleared	and	the	new	item	selected.	However,	if	the	user

presses	the	CTRL	key	when	clicking	on	an	item,	the	clicked	item	gets
toggled	and	all	other	items	are	left	untouched.	And	if	the	user	presses	the
SHIFT	key	while	clicking	on	an	item,	all	items	between	the	current	item
and	the	clicked	item	get	selected	or	unselected,	depending	on	the	state	of
the	clicked	item.	Also,	multiple	items	can	be	selected	by	dragging	the
mouse	while	the	left	mouse	button	stays	pressed.
QListView::NoSelection	-	Items	cannot	be	selected.

In	other	words,	Single	is	a	real	single-selection	list	view,	Multi	a	real	multi-
selection	list	view,	Extended	is	a	list	view	where	users	can	select	multiple	items
but	usually	want	to	select	either	just	one	or	a	range	of	contiguous	items,	and
NoSelection	is	a	list	view	where	the	user	can	look	but	not	touch.

QListView::WidthMode

This	enum	type	describes	how	the	width	of	a	column	in	the	view	changes.	The
currently	defined	modes	are:

QListView::Manual	-	the	column	width	does	not	change	automatically.
QListView::Maximum	-	the	column	is	automatically	sized	according	to	the
widths	of	all	items	in	the	column.	(Note:	The	column	never	shrinks	in	this
case.)	This	means	the	column	is	always	resized	to	the	width	of	the	item
with	the	largest	width	in	the	column.

See	also	setColumnWidth(),	setColumnWidthMode()	and	columnWidth().

Member	Function	Documentation

QListView::QListView	(QWidget	*	parent	=	0,	const	char	*	name
=	0,	WFlags	f	=	0)

Constructs	a	new	empty	list	view,	with	parent	as	a	parent	and	name	as	object
name.

Performance	is	boosted	by	modifying	the	widget	flags	f	so	that	only	part	of	the
QListViewItem	children	is	redrawn.	This	may	be	unsuitable	for	custom
QListViewItem	classes,	in	which	case	WStaticContents	and	WRepaintNoErase
should	be	cleared.

See	also	QWidget::clearWFlags()	and	Qt::WidgetFlags.

QListView::~QListView	()

Destroys	the	list	view,	deleting	all	its	items,	and	frees	up	all	allocated	resources.

int	QListView::addColumn	(const	QString	&	label,	int	width	=	-1
)	[virtual]

Adds	a	width	pixels	wide	column	with	the	column	header	label	to	this
QListView,	and	returns	the	index	of	the	new	column.

All	columns	apart	from	the	first	one	are	inserted	to	the	right	of	the	existing	ones.

If	width	is	negative,	the	new	column's	WidthMode	is	set	to	Maximum	instead	of
Manual.

See	also	setColumnText(),	setColumnWidth()	and	setColumnWidthMode().

Examples:	addressbook/centralwidget.cpp,	checklists/checklists.cpp,
dirview/main.cpp,	fileiconview/mainwindow.cpp,	listviews/listviews.cpp	and
qdir/qdir.cpp.

int	QListView::addColumn	(const	QIconSet	&	iconset,

const	QString	&	label,	int	width	=	-1)	[virtual]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Adds	a	width	pixels	wide	new	column	with	the	header	label	and	iconset	to	this
QListView,	and	returns	the	index	of	the	column.

If	width	is	negative,	the	new	column's	WidthMode	is	set	to	Maximum,	and	to
Manual	otherwise.

See	also	setColumnText(),	setColumnWidth()	and	setColumnWidthMode().

bool	QListView::allColumnsShowFocus	()	const

Returns	TRUE	if	items	should	show	keyboard	focus	using	all	columns;
otherwise	returns	FALSE.	See	the	"allColumnsShowFocus"	property	for	details.

int	QListView::childCount	()	const

Returns	the	number	of	parentless	(top	level)	QListViewItem	objects	in	this
QListView.	See	the	"childCount"	property	for	details.

void	QListView::clear	()	[virtual	slot]

Removes	and	deletes	all	the	items	in	this	list	view	and	triggers	an	update.

See	also	triggerUpdate().

Examples:	addressbook/centralwidget.cpp,	checklists/checklists.cpp,
listviews/listviews.cpp	and	network/ftpclient/ftpmainwindow.cpp.

void	QListView::clearSelection	()	[virtual]

Sets	all	items	to	be	not	selected,	updates	the	list	view	as	necessary	and	emits	the
selectionChanged()	signals.	Note	that	for	Multi	selection	list	views	this	function
needs	to	iterate	over	all	items.

See	also	setSelected()	and	multiSelection.

Example:	addressbook/centralwidget.cpp.

void	QListView::clicked	(QListViewItem	*	item)	[signal]

This	signal	is	emitted	whenever	the	user	clicks	(mouse	pressed	and	mouse
released)	in	the	list	view.	item	is	the	pointer	to	the	clicked	list	view	item,	or	0	if
the	user	didn't	click	on	an	item.

Note	that	you	may	not	delete	any	QListViewItem	objects	in	slots	connected	to
this	signal.

Example:	addressbook/centralwidget.cpp.

void	QListView::clicked	(QListViewItem	*	item,
const	QPoint	&	pnt,	int	c)	[signal]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

This	signal	is	emitted	whenever	the	user	clicks	(mouse	pressed	and	mouse
released)	in	the	list	view.	item	is	the	pointer	to	the	clicked	list	view	item,	or	0	if
the	user	didn't	click	on	an	item.	pnt	is	the	position	where	the	user	has	clicked.	If
item	is	not	0,	c	is	the	list	view	column	into	which	the	user	pressed;	if	item	is	0	c's
value	is	undefined.

Note	that	you	may	not	delete	any	QListViewItem	objects	in	slots	connected	to
this	signal.

void	QListView::collapsed	(QListViewItem	*	item)	[signal]

This	signal	is	emitted	when	the	item	has	been	collapsed,	i.e.	when	the	children	of
item	are	hidden.

See	also	setOpen()	and	expanded().

int	QListView::columnAlignment	(int	column)	const

Returns	the	alignment	of	column	column.	The	default	is	AlignAuto.

See	also	Qt::AlignmentFlags.

QString	QListView::columnText	(int	c)	const

Returns	the	text	of	column	c.

See	also	setColumnText().

int	QListView::columnWidth	(int	c)	const

Returns	the	width	of	column	c.

See	also	setColumnWidth().

WidthMode	QListView::columnWidthMode	(int	c)	const

Returns	the	WidthMode	for	column	c.

See	also	setColumnWidthMode().

int	QListView::columns	()	const

Returns	the	number	of	columns	in	this	list	view.	See	the	"columns"	property	for
details.

void	QListView::contentsMouseDoubleClickEvent	(
QMouseEvent	*	e)	[virtual	protected]

Processes	the	mouse	double-click	event	e	on	behalf	of	the	viewed	widget.

Reimplemented	from	QScrollView.

void	QListView::contentsMouseMoveEvent	(QMouseEvent	*	e)
[virtual	protected]

Processes	the	mouse	move	event	e	on	behalf	of	the	viewed	widget.

Example:	dirview/dirview.cpp.

Reimplemented	from	QScrollView.

void	QListView::contentsMousePressEvent	(QMouseEvent	*	e)
[virtual	protected]

Processes	the	mouse	move	event	e	on	behalf	of	the	viewed	widget.

Example:	dirview/dirview.cpp.

Reimplemented	from	QScrollView.

void	QListView::contentsMouseReleaseEvent	(QMouseEvent	*	e
)	[virtual	protected]

Processes	the	mouse	move	event	e	on	behalf	of	the	viewed	widget.

Example:	dirview/dirview.cpp.

Reimplemented	from	QScrollView.

void	QListView::contextMenuRequested	(QListViewItem	*	item,
const	QPoint	&	pos,	int	col)	[signal]

This	signal	is	emitted	when	the	user	invokes	a	context	menu	with	the	right
mouse	button	or	with	special	system	keys,	with	item	being	the	item	under	the
mouse	cursor	or	the	current	item,	respectively.

pos	is	the	position	for	the	context	menu	in	the	global	coordinate	system.

col	is	the	column	on	which	the	user	pressed,	or	-1	if	the	signal	was	triggered	by	a
key	event.

Example:	listviews/listviews.cpp.

void	QListView::currentChanged	(QListViewItem	*)	[signal]

This	signal	is	emitted	whenever	the	current	item	has	changed	(normally	after	the
screen	update).	The	current	item	is	the	item	responsible	for	indicating	keyboard
focus.

The	argument	is	the	newly	current	item,	or	0	if	the	change	was	to	make	no	item
current.	This	can	happen,	for	example,	if	all	items	in	the	list	view	are	deleted.

Note	that	you	may	not	delete	any	QListViewItem	objects	in	slots	connected	to
this	signal.

See	also	setCurrentItem()	and	currentItem().

Example:	listviews/listviews.cpp.

QListViewItem	*	QListView::currentItem	()	const

Returns	a	pointer	to	the	currently	highlighted	item,	or	0	if	there	isn't	one.

See	also	setCurrentItem().

Examples:	addressbook/centralwidget.cpp	and	listviews/listviews.cpp.

RenameAction	QListView::defaultRenameAction	()	const

Returns	TRUE	if	the	list	view	accepts	the	rename	operation	by	default;
otherwise	returns	FALSE.	See	the	"defaultRenameAction"	property	for	details.

void	QListView::doAutoScroll	()	[protected	slot]

This	slot	handles	auto-scrolling	when	the	mouse	button	is	pressed	and	the	mouse
is	outside	the	widget.

void	QListView::doubleClicked	(QListViewItem	*	item)
[signal]

This	signal	is	emitted	whenever	an	item	is	double-clicked.	It's	emitted	on	the
second	button	press,	not	the	second	button	release.	item	is	the	list	view	item	on
which	the	user	did	the	double-click.

QDragObject	*	QListView::dragObject	()	[virtual	protected]

If	the	user	presses	the	mouse	on	an	item	and	starts	moving	the	mouse,	and	the
items	allow	dragging	(see	QListViewItem::setDragEnabled()),	this	function	is

called	to	get	a	drag	object	and	a	drag	is	started	unless	dragObject()	returns	0.

By	default	this	function	returns	0.	You	should	reimplement	it	and	create	a
QDragObject	depending	on	the	selected	items.

void	QListView::drawContentsOffset	(QPainter	*	p,	int	ox,
int	oy,	int	cx,	int	cy,	int	cw,	int	ch)	[virtual	protected]

Calls	QListViewItem::paintCell()	and/or	QListViewItem::paintBranches()	for	all
list	view	items	that	require	repainting	in	the	cw	pixels	wide	and	ch	pixels	high
bounding	rectangle	starting	at	position	cx,	cy	with	offset	ox,	oy.	Uses	the	painter
p.

Reimplemented	from	QScrollView.

void	QListView::dropped	(QDropEvent	*	e)	[signal]

This	signal	is	emitted,	when	a	drop	event	occurred	onto	the	viewport	(not	onto
an	item).

e	gives	you	all	information	about	the	drop.

void	QListView::ensureItemVisible	(const	QListViewItem	*	i)

Ensures	that	item	i	is	made	visible,	scrolling	the	list	view	vertically	as	required
and	also	opening	(expanding)	any	parent	items	if	this	is	necessary	to	show	the
item.

See	also	itemRect()	and	QScrollView::ensureVisible().

bool	QListView::eventFilter	(QObject	*	o,	QEvent	*	e)
[virtual]

Redirects	the	event	e	relating	to	object	o,	for	the	viewport	to	mousePressEvent(),
keyPressEvent()	and	friends.

Reimplemented	from	QScrollView.

void	QListView::expanded	(QListViewItem	*	item)	[signal]

This	signal	is	emitted	when	item	has	been	expanded,	i.e.	when	the	children	of
item	are	shown.

See	also	setOpen()	and	collapsed().

QListViewItem	*	QListView::findItem	(const	QString	&	text,
int	column,	ComparisonFlags	compare	=	ExactMatch	|
CaseSensitive)	const

Finds	the	first	list	view	item	in	column	column,	that	matches	text	and	returns	the
item,	or	returns	0	of	no	such	item	could	be	found.	Pass	OR-ed	together
Qt::StringComparisonMode	values	in	the	compare	flag,	to	control	how	the
matching	is	performed.	The	default	comparison	mode	is	case-sensitive,	exact
match.

QListViewItem	*	QListView::firstChild	()	const

Returns	the	first	item	in	this	QListView.	You	can	use	its	firstChild()	and
nextSibling()	functions	to	traverse	the	entire	tree	of	items.

Returns	0	if	there	is	no	first	item.

See	also	itemAt(),	QListViewItem::itemBelow()	and
QListViewItem::itemAbove().

Examples:	addressbook/centralwidget.cpp	and	listviews/listviews.cpp.

QHeader	*	QListView::header	()	const

Returns	a	pointer	to	the	QHeader	object	that	manages	this	list	view's	columns.
Please	don't	modify	the	header	behind	the	list	view's	back.

You	may	safely	call	QHeader::setClickEnabled(),	QHeader::setResizeEnabled(),
QHeader::setMovingEnabled()	and	all	the	const	QHeader	functions.

Examples:	listviews/listviews.cpp	and	qdir/qdir.cpp.

void	QListView::insertItem	(QListViewItem	*	i)	[virtual]

Inserts	item	i	into	the	list	view	as	a	top-level	item.	You	do	not	need	to	call	this
unless	you've	called	takeItem(i)	or	QListViewItem::takeItem(i)	and	need	to
reinsert	i	elsewhere.

See	also	QListViewItem::takeItem()	and	takeItem().

void	QListView::invertSelection	()	[virtual	slot]

Inverts	the	selection.	Works	only	in	Multi	and	Extended	selection	mode.

bool	QListView::isMultiSelection	()	const

Returns	TRUE	if	the	list	view	is	in	multi-selection	or	single	selection	mode;
otherwise	returns	FALSE.	See	the	"multiSelection"	property	for	details.

bool	QListView::isOpen	(const	QListViewItem	*	item)	const

Identical	to	item->isOpen().	Provided	for	completeness.

See	also	setOpen().

bool	QListView::isRenaming	()	const

Returns	whether	currently	an	item	of	the	listview	is	being	renamed

bool	QListView::isSelected	(const	QListViewItem	*	i)	const

Returns	TRUE	if	the	list	view	item	i	is	selected;	otherwise	returns	FALSE.

See	also	QListViewItem::isSelected().

QListViewItem	*	QListView::itemAt	(const	QPoint	&	viewPos)
const

Returns	a	pointer	to	the	QListViewItem	at	viewPos.	Note	that	viewPos	is	in	the
coordinate	system	of	viewport(),	not	in	the	list	view's	own,	much	larger,
coordinate	system.

itemAt()	returns	0	if	there	is	no	such	item.

Note	that	you	also	get	the	pointer	to	the	item	if	viewPos	points	to	the	root
decoration	(see	setRootIsDecorated())	of	the	item.	To	check	whether	or	not
viewPos	is	on	the	root	decoration	of	the	item,	you	can	do	something	like	this:

		QListViewItem	*i	=	itemAt(p);

		if	(i)	{

						if	(p.x()	>	header()->cellPos(header()->mapToActual(0))	+

													treeStepSize()	*	(i->depth()	+	(rootIsDecorated()	?	1	:	0))	+	itemMargin()	||

													p.x()	<	header()->cellPos(header()->mapToActual(0)))	{

										;	//	p	is	not	on	root	decoration

						else

										;	//	p	is	on	the	root	decoration

		}

		

This	might	be	interesting	if	you	use	this	function	to	find	out	where	the	user
clicked	and	if	you	want	to	start	a	drag	(which	you	do	not	want	to	do	if	the	user
clicked	onto	the	root	decoration	of	an	item).

See	also	itemPos()	and	itemRect().

int	QListView::itemMargin	()	const

Returns	the	advisory	item	margin	that	list	items	may	use.	See	the	"itemMargin"
property	for	details.

int	QListView::itemPos	(const	QListViewItem	*	item)

Returns	the	y-coordinate	of	item	in	the	list	view's	coordinate	system.	This
function	is	normally	much	slower	than	itemAt()	but	it	works	for	all	items,
whereas	itemAt()	normally	works	only	for	items	on	the	screen.

This	is	a	thin	wrapper	around	QListViewItem::itemPos().

See	also	itemAt()	and	itemRect().

QRect	QListView::itemRect	(const	QListViewItem	*	i)	const

Returns	the	rectangle	on	the	screen	that	item	i	occupies	in	viewport()'s

coordinates,	or	an	invalid	rectangle	if	i	is	a	null	pointer	or	is	not	currently
visible.

The	rectangle	returned	does	not	include	any	children	of	the	rectangle	(i.e.	it	uses
QListViewItem::height(),	rather	than	QListViewItem::totalHeight()).	If	you	want
the	rectangle	to	include	children	you	can	use	something	like	this:

				QRect	r(listView->itemRect(item));

				r.setHeight((QCOORD)(QMIN(item->totalHeight(),

																																listView->viewport->height()	-	r.y())))

		

Note	the	way	it	avoids	too-high	rectangles.	totalHeight()	can	be	much	larger	than
the	window	system's	coordinate	system	allows.

itemRect()	is	comparatively	slow.	It's	best	to	call	it	only	for	items	that	are
probably	on-screen.

void	QListView::itemRenamed	(QListViewItem	*	item,	int	col,
const	QString	&	text)	[signal]

This	signal	is	emitted	when	item	has	been	renamed	to	text,	e.g.	by	in	in-place
renaming,	in	column	col.

void	QListView::itemRenamed	(QListViewItem	*	item,	int	col)
[signal]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

This	signal	is	emitted	when	item	has	been	renamed,	e.g.	by	in-place	renaming,	in
column	col.

QListViewItem	*	QListView::lastItem	()	const

Returns	the	last	item	in	the	list	view	tree.

Returns	0	if	there	are	no	items	in	the	QListView.

This	function	is	slow.

void	QListView::mouseButtonClicked	(int	button,
QListViewItem	*	item,	const	QPoint	&	pos,	int	c)	[signal]

This	signal	is	emitted	whenever	the	user	clicks	(mouse	pressed	and	mouse
released)	in	the	list	view	at	position	pos.	button	is	the	mouse	button	that	the	user
pressed,	item	is	the	pointer	to	the	clicked	list	view	item	or	0	if	the	user	didn't
click	on	an	item.	If	item	is	not	0,	c	is	the	list	view	column	into	which	the	user
pressed;	if	item	is	0	c's	value	is	undefined.

Note	that	you	may	not	delete	any	QListViewItem	objects	in	slots	connected	to
this	signal.

void	QListView::mouseButtonPressed	(int	button,
QListViewItem	*	item,	const	QPoint	&	pos,	int	c)	[signal]

This	signal	is	emitted	whenever	the	user	pressed	the	mouse	button	in	the	list
view	at	position	pos.	button	is	the	mouse	button	which	the	user	pressed,	item	is
the	pointer	to	the	pressed	list	view	item	or	0	if	the	user	didn't	press	on	an	item.	If
item	is	not	0,	c	is	the	list	view	column	into	which	the	user	pressed;	if	item	is	0	c's
value	is	undefined.

Note	that	you	may	not	delete	any	QListViewItem	objects	in	slots	connected	to
this	signal.

void	QListView::onItem	(QListViewItem	*	i)	[signal]

This	signal	is	emitted	when	the	user	moves	the	mouse	cursor	onto	the	item	i,
similar	to	the	QWidget::enterEvent()	function.

void	QListView::onViewport	()	[signal]

This	signal	is	emitted	when	the	user	moves	the	mouse	cursor	from	an	item	to	an
empty	part	of	the	list	view.

void	QListView::paintEmptyArea	(QPainter	*	p,
const	QRect	&	rect)	[virtual	protected]

Paints	rect	so	that	it	looks	like	empty	background	using	painter	p.	rect	is	is

widget	coordinates,	ready	to	be	fed	to	p.

The	default	function	fills	rect	with	the	viewport()->backgroundBrush()

void	QListView::pressed	(QListViewItem	*	item)	[signal]

This	signal	is	emitted	whenever	the	user	presses	the	mouse	button	in	a	list	view.
item	is	the	pointer	to	the	list	view	item	on	which	the	user	pressed	the	mouse
button,	or	0	if	the	user	didn't	press	the	mouse	on	an	item.

Note	that	you	may	not	delete	any	QListViewItem	objects	in	slots	connected	to
this	signal.

void	QListView::pressed	(QListViewItem	*	item,
const	QPoint	&	pnt,	int	c)	[signal]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

This	signal	is	emitted	whenever	the	user	presses	the	mouse	button	in	a	list	view.
item	is	the	pointer	to	the	list	view	item	on	which	the	user	pressed	the	mouse
button,	or	0	if	the	user	didn't	press	the	mouse	on	an	item.	pnt	is	the	position	of
the	mouse	cursor,	and	c	is	the	column	where	the	mouse	cursor	was	when	the	user
pressed	the	mouse	button.

Note	that	you	may	not	delete	any	QListViewItem	objects	in	slots	connected	to
this	signal.

void	QListView::removeColumn	(int	index)	[virtual]

Removes	the	column	at	position	index.

void	QListView::removeItem	(QListViewItem	*	item)	[virtual]

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

This	function	has	been	renamed	takeItem().

void	QListView::repaintItem	(const	QListViewItem	*	item)	const

Repaints	item	on	the	screen	if	item	is	currently	visible.	Takes	care	to	avoid
multiple	repaints.

void	QListView::resizeEvent	(QResizeEvent	*	e)	[virtual
protected]

Ensures	that	the	header	is	correctly	sized	and	positioned	when	the	resize	event	e
occurs.

ResizeMode	QListView::resizeMode	()	const

Returns	TRUE	if	all,	none	or	the	last	column	should	be	resized;	otherwise
returns	FALSE.	See	the	"resizeMode"	property	for	details.

void	QListView::returnPressed	(QListViewItem	*)	[signal]

This	signal	is	emitted	when	Enter	or	Return	is	pressed.	The	argument	is	the
currentItem().

void	QListView::rightButtonClicked	(QListViewItem	*,
const	QPoint	&,	int)	[signal]

This	signal	is	emitted	when	the	right	button	is	clicked	(i.e.	when	it's	released).
The	arguments	are	the	relevant	QListViewItem	(may	be	0),	the	point	in	global
coordinates	and	the	relevant	column	(or	-1	if	the	click	was	outside	the	list).

void	QListView::rightButtonPressed	(QListViewItem	*,
const	QPoint	&,	int)	[signal]

This	signal	is	emitted	when	the	right	button	is	pressed.	Arguments	are	then	the
relevant	QListViewItem	(may	be	0),	the	point	in	global	coordinates	and	the
relevant	column	(or	-1	if	the	click	was	outside	the	list).

bool	QListView::rootIsDecorated	()	const

Returns	TRUE	if	the	list	view	show	open/close	signs	on	root	items;	otherwise
returns	FALSE.	See	the	"rootIsDecorated"	property	for	details.

void	QListView::selectAll	(bool	select)	[virtual	slot]

If	select	is	TRUE,	all	items	get	selected;	otherwise	all	items	get	unselected.	This
works	only	in	the	selection	modes	Multi	and	Extended.	In	Single	and
NoSelection	mode	the	selection	of	the	current	item	is	just	set	to	select.

QListViewItem	*	QListView::selectedItem	()	const

Returns	a	pointer	to	the	selected	item	if	the	list	view	is	in	single-selection	mode
and	an	item	is	selected.

If	no	items	are	selected	or	the	list	view	is	in	multi-selection	mode	this	function
returns	0.

See	also	setSelected()	and	multiSelection.

void	QListView::selectionChanged	()	[signal]

This	signal	is	emitted	whenever	the	set	of	selected	items	has	changed	(normally
before	the	screen	update).	It	is	available	both	in	Single	selection	and	Multi
selection	mode	but	is	most	useful	in	Multi	selection	mode.

Note	that	you	may	not	delete	any	QListViewItem	objects	in	slots	connected	to
this	signal.

See	also	setSelected()	and	QListViewItem::setSelected().

Example:	listviews/listviews.cpp.

void	QListView::selectionChanged	(QListViewItem	*)	[signal]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

This	signal	is	emitted	whenever	the	selected	item	has	changed	in	Single	selection
mode	(normally	after	the	screen	update).	The	argument	is	the	newly	selected

item.

The	no	argument	overload	of	this	signal	is	more	useful	in	Multi	selection	mode.

Note	that	you	may	not	delete	any	QListViewItem	objects	in	slots	connected	to
this	signal.

See	also	setSelected(),	QListViewItem::setSelected()	and	currentChanged().

SelectionMode	QListView::selectionMode	()	const

Returns	the	list	view's	multi-selection	mode.	See	the	"selectionMode"	property
for	details.

void	QListView::setAllColumnsShowFocus	(bool)	[virtual]

Sets	whether	items	should	show	keyboard	focus	using	all	columns.	See	the
"allColumnsShowFocus"	property	for	details.

void	QListView::setColumnAlignment	(int	column,	int	align)
[virtual]

Sets	column	column's	alignment	to	align.	The	alignment	is	ultimately	passed	to
QListViewItem::paintCell()	for	each	item	in	the	view.

See	also	Qt::AlignmentFlags.

Example:	listviews/listviews.cpp.

void	QListView::setColumnText	(int	column,
const	QString	&	label)	[virtual]

Sets	the	heading	of	column	column	to	label.	The	leftmost	column	is	0.

See	also	columnText().

void	QListView::setColumnText	(int	column,
const	QIconSet	&	iconset,	const	QString	&	label)	[virtual]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Sets	the	heading	of	column	column	to	iconset	and	label.	The	leftmost	column	is
0.

See	also	columnText().

void	QListView::setColumnWidth	(int	column,	int	w)	[virtual]

Sets	the	width	of	column	column	to	w	pixels.	Note	that	if	the	column	has	a
WidthMode	other	than	Manual,	this	width	setting	may	be	subsequently
overridden.	The	leftmost	column	is	0.

See	also	columnWidth().

void	QListView::setColumnWidthMode	(int	c,	WidthMode	mode
)	[virtual]

Sets	column	c's	width	mode	to	mode.	The	default	depends	on	whether	the	width
argument	to	addColumn	was	positive	or	negative.

See	also	QListViewItem::width().

void	QListView::setCurrentItem	(QListViewItem	*	i)	[virtual]

Sets	item	i	to	be	the	current	highlighted	item	and	repaints	appropriately.	This
highlighted	item	is	used	for	keyboard	navigation	and	focus	indication;	it	doesn't
mean	anything	else,	e.g.	it	is	different	from	selection.

See	also	currentItem()	and	setSelected().

Example:	listviews/listviews.cpp.

void	QListView::setDefaultRenameAction	(RenameAction	a)
[virtual]

Sets	whether	the	list	view	accepts	the	rename	operation	by	default	to	a.	See	the
"defaultRenameAction"	property	for	details.

void	QListView::setItemMargin	(int)	[virtual]

Sets	the	advisory	item	margin	that	list	items	may	use.	See	the	"itemMargin"
property	for	details.

void	QListView::setMultiSelection	(bool	enable)	[virtual]

Sets	whether	the	list	view	is	in	multi-selection	or	single	selection	mode	to
enable.	See	the	"multiSelection"	property	for	details.

void	QListView::setOpen	(QListViewItem	*	item,	bool	open)
[virtual]

Sets	item	to	be	open	if	open	is	TRUE	and	item	is	expandable,	and	to	be	closed	if
open	is	FALSE.	Repaints	accordingly.

See	also	QListViewItem::setOpen()	and	QListViewItem::setExpandable().

void	QListView::setResizeMode	(ResizeMode	m)	[virtual]

Sets	whether	all,	none	or	the	last	column	should	be	resized	to	m.	See	the
"resizeMode"	property	for	details.

void	QListView::setRootIsDecorated	(bool)	[virtual]

Sets	whether	the	list	view	show	open/close	signs	on	root	items.	See	the
"rootIsDecorated"	property	for	details.

void	QListView::setSelected	(QListViewItem	*	item,	bool	selected
)	[virtual]

If	selected	is	TRUE	the	item	is	selected;	otherwise	it	is	unselected.

If	the	list	view	is	in	Single	selection	mode	and	selected	is	TRUE,	the	currently
selected	item	is	unselected	and	item	is	made	current.	Unlike
QListViewItem::setSelected(),	this	function	updates	the	list	view	as	necessary
and	emits	the	selectionChanged()	signals.

See	also	isSelected(),	multiSelection,	multiSelection	and	setCurrentItem().

Example:	listviews/listviews.cpp.

void	QListView::setSelectionMode	(SelectionMode	mode)

Sets	the	list	view's	multi-selection	mode	to	mode.	See	the	"selectionMode"
property	for	details.

void	QListView::setShowSortIndicator	(bool	show)	[virtual]

Sets	whether	the	list	view	header	should	display	a	sort	indicator	to	show.	See	the
"showSortIndicator"	property	for	details.

void	QListView::setShowToolTips	(bool	b)	[virtual]

Sets	whether	this	list	view	should	show	tooltips	for	truncated	column	texts	to	b.
See	the	"showToolTips"	property	for	details.

void	QListView::setSorting	(int	column,	bool	ascending	=	TRUE
)	[virtual]

Sets	the	list	view	to	be	sorted	by	column	and	in	ascending	order	if	ascending	is
TRUE	or	descending	order	if	it	is	FALSE.

If	column	is	-1,	sorting	is	disabled	and	the	user	cannot	sort	columns	by	clicking
on	the	column	headers.	If	column	is	larger	than	the	number	of	columns	the	user
has	to	click	on	a	column	header	to	sort	the	list	view.

void	QListView::setTreeStepSize	(int)	[virtual]

Sets	the	number	of	pixels	a	child	is	offset	from	its	parent.	See	the	"treeStepSize"
property	for	details.

bool	QListView::showSortIndicator	()	const

Returns	TRUE	if	the	list	view	header	should	display	a	sort	indicator;	otherwise
returns	FALSE.	See	the	"showSortIndicator"	property	for	details.

bool	QListView::showToolTips	()	const

Returns	TRUE	if	this	list	view	should	show	tooltips	for	truncated	column	texts;
otherwise	returns	FALSE.	See	the	"showToolTips"	property	for	details.

void	QListView::sort	()	[virtual]

(Re)sorts	the	list	view	using	the	last	sorting	configuration	(sort	column	and
ascending/descending).

void	QListView::spacePressed	(QListViewItem	*)	[signal]

This	signal	is	emitted	when	Space	is	pressed.	The	argument	is	currentItem().

void	QListView::startDrag	()	[virtual	protected]

Starts	a	drag.

void	QListView::takeItem	(QListViewItem	*	i)	[virtual]

Removes	item	i	from	the	list	view;	i	must	be	a	top-level	item.	The	warnings
regarding	QListViewItem::takeItem()	apply	to	this	function,	too.

See	also	insertItem().

int	QListView::treeStepSize	()	const

Returns	the	number	of	pixels	a	child	is	offset	from	its	parent.	See	the
"treeStepSize"	property	for	details.

void	QListView::triggerUpdate	()	[slot]

Triggers	a	size,	geometry	and	content	update	during	the	next	iteration	of	the
event	loop.	Ensures	that	there'll	be	just	one	update	to	avoid	flicker.

void	QListView::updateContents	()	[protected	slot]

Updates	the	sizes	of	the	viewport,	header,	scroll	bars	and	so	on.	Don't	call	this

directly;	call	triggerUpdate()	instead.

Property	Documentation

bool	allColumnsShowFocus

This	property	holds	whether	items	should	show	keyboard	focus	using	all
columns.

If	this	property	is	TRUE	all	columns	will	show	focus	and	selection	states,
otherwise	only	column	0	will	show	focus.

The	default	is	FALSE.

Setting	this	to	TRUE	if	it's	not	necessary	may	cause	noticeable	flicker.

Set	this	property's	value	with	setAllColumnsShowFocus()	and	get	this	property's
value	with	allColumnsShowFocus().

int	childCount

This	property	holds	the	number	of	parentless	(top	level)	QListViewItem	objects
in	this	QListView.

Represents	the	current	number	of	parentless	(top	level)	QListViewItem	objects
in	this	QListView,	like	QListViewItem::childCount()	returns	the	number	of	child
items	for	a	QListViewItem.

See	also	QListViewItem::childCount().

Get	this	property's	value	with	childCount().

int	columns

This	property	holds	the	number	of	columns	in	this	list	view.

Get	this	property's	value	with	columns().

See	also	addColumn()	and	removeColumn().

RenameAction	defaultRenameAction

This	property	holds	whether	the	list	view	accepts	the	rename	operation	by
default.

If	this	property	is	Accept,	and	the	user	renames	an	item	and	the	editor	looses
focus	(without	the	user	pressing	Enter),	the	item	will	still	be	renamed.	If	the
property's	value	is	Reject,	the	item	will	not	be	renamed	unless	the	user	presses
Enter.	The	default	is	Reject.

Set	this	property's	value	with	setDefaultRenameAction()	and	get	this	property's
value	with	defaultRenameAction().

int	itemMargin

This	property	holds	the	advisory	item	margin	that	list	items	may	use.

The	item	margin	defaults	to	one	pixel	and	is	the	margin	between	the	item's	edges
and	the	area	where	it	draws	its	contents.	QListViewItem::paintFocus()	draws	in
the	margin.

See	also	QListViewItem::paintCell().

Set	this	property's	value	with	setItemMargin()	and	get	this	property's	value	with
itemMargin().

bool	multiSelection

This	property	holds	whether	the	list	view	is	in	multi-selection	or	single	selection
mode.

If	you	enable	multi-selection	mode,	it	is	possible	to	specify	whether	or	not	this
mode	should	be	extended.	Extended	means	that	the	user	can	select	multiple
items	only	when	pressing	the	Shift	or	Ctrl	key	at	the	same	time.

The	default	selection	mode	is	Single.

See	also	selectionMode.

Set	this	property's	value	with	setMultiSelection()	and	get	this	property's	value
with	isMultiSelection().

ResizeMode	resizeMode

This	property	holds	whether	all,	none	or	the	last	column	should	be	resized.

Specifies	whether	all,	none	or	the	last	column	should	be	resized	to	fit	the	full
width	of	the	listview.	The	values	for	this	property	can	be	one	of	the	following:
NoColumn	(the	default),	AllColumns	or	LastColumn.

See	also	QHeader	and	header().

Set	this	property's	value	with	setResizeMode()	and	get	this	property's	value	with
resizeMode().

bool	rootIsDecorated

This	property	holds	whether	the	list	view	show	open/close	signs	on	root	items.

Open/close	signs	are	small	+	or	-	symbols	in	windows	style,	or	arrows	in	Motif
style.	The	default	is	FALSE.

Set	this	property's	value	with	setRootIsDecorated()	and	get	this	property's	value
with	rootIsDecorated().

SelectionMode	selectionMode

This	property	holds	the	list	view's	multi-selection	mode.

The	mode	can	be	Single	(the	default),	Extended,	Multi	or	NoSelection.

See	also	multiSelection.

Set	this	property's	value	with	setSelectionMode()	and	get	this	property's	value
with	selectionMode().

bool	showSortIndicator

This	property	holds	whether	the	list	view	header	should	display	a	sort	indicator.

If	this	property	is	TRUE,	an	arrow	is	drawn	in	the	header	of	the	list	view	to
indicate	the	sort	order	of	the	list	view	contents.	The	arrow	will	be	drawn	in	the
correct	column	and	will	point	up	or	down,	depending	on	the	current	sort
direction.	The	default	is	FALSE	(don't	show	an	indicator).

See	also	QHeader::setSortIndicator().

Set	this	property's	value	with	setShowSortIndicator()	and	get	this	property's
value	with	showSortIndicator().

bool	showToolTips

This	property	holds	whether	this	list	view	should	show	tooltips	for	truncated
column	texts.

The	default	is	TRUE.

Set	this	property's	value	with	setShowToolTips()	and	get	this	property's	value
with	showToolTips().

int	treeStepSize

This	property	holds	the	number	of	pixels	a	child	is	offset	from	its	parent.

The	default	is	20	pixels.

Of	course,	this	property	is	only	meaningful	for	hierarchical	list	views.

Set	this	property's	value	with	setTreeStepSize()	and	get	this	property's	value	with
treeStepSize().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QShowEvent	Class	Reference
The	QShowEvent	class	provides	an	event	which	is	sent	when	a	widget	is	shown.
More...

#include	<qevent.h>

Inherits	QEvent.

List	of	all	member	functions.

Public	Members

QShowEvent	()

Detailed	Description

The	QShowEvent	class	provides	an	event	which	is	sent	when	a	widget	is	shown.

There	are	two	kinds	of	show	events:	show	events	caused	by	the	window	system
(spontaneous)	and	internal	show	events.	Spontaneous	show	events	are	sent	just
after	the	window	system	shows	the	window,	including	after	a	top-level	window
has	been	shown	(un-iconified)	by	the	user.	Internal	show	events	are	delivered
just	before	the	widget	becomes	visible.

See	also	QHideEvent	and	Event	Classes.

Member	Function	Documentation

QShowEvent::QShowEvent	()

Constructs	a	QShowEvent.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QUriDrag	Class	Reference
The	QUriDrag	class	provides	a	drag	object	for	a	list	of	URI	references.	More...

#include	<qdragobject.h>

Inherits	QStoredDrag.

List	of	all	member	functions.

Public	Members

QUriDrag	(QStrList	uris,	QWidget	*	dragSource	=	0,	const	char	*	name	=
0)
QUriDrag	(QWidget	*	dragSource	=	0,	const	char	*	name	=	0)
~QUriDrag	()
void	setFilenames	(const	QStringList	&	fnames)		(obsolete)
void	setFileNames	(const	QStringList	&	fnames)
void	setUnicodeUris	(const	QStringList	&	uuris)
virtual	void	setUris	(QStrList	uris)

Static	Public	Members

QString	uriToLocalFile	(const	char	*	uri)
QCString	localFileToUri	(const	QString	&	filename)
QString	uriToUnicodeUri	(const	char	*	uri)
QCString	unicodeUriToUri	(const	QString	&	uuri)
bool	canDecode	(const	QMimeSource	*	e)
bool	decode	(const	QMimeSource	*	e,	QStrList	&	l)
bool	decodeToUnicodeUris	(const	QMimeSource	*	e,	QStringList	&	l)
bool	decodeLocalFiles	(const	QMimeSource	*	e,	QStringList	&	l)

Detailed	Description

The	QUriDrag	class	provides	a	drag	object	for	a	list	of	URI	references.

URIs	are	a	useful	way	to	refer	to	files	that	may	be	distributed	across	multiple
machines.	A	URI	will	often	refer	to	a	file	on	a	machine	local	to	both	the	drag
source	and	the	drop	target,	so	the	URI	can	be	equivalent	to	passing	a	file	name
but	is	more	extensible.

Use	URIs	in	Unicode	form	so	that	the	user	can	comfortably	edit	and	view	them.
For	use	in	HTTP	or	other	protocols,	use	the	correctly	escaped	ASCII	form.

You	can	convert	a	list	of	file	names	to	file	URIs	using	setFileNames(),	or	into
human-readble	form	with	setUnicodeUris().

Static	functions	are	provided	to	convert	between	filenames	and	URIs,	e.g.
uriToLocalFile()	and	localFileToUri(),	and	to	and	from	human-readable	form,
e.g.	uriToUnicodeUri(),	unicodeUriToUri().	You	can	also	decode	URIs	from	a
mimesource	into	a	list	with	decodeLocalFiles()	and	decodeToUnicodeUris().

See	also	Drag	And	Drop	Classes.

Member	Function	Documentation

QUriDrag::QUriDrag	(QStrList	uris,	QWidget	*	dragSource	=	0,
const	char	*	name	=	0)

Constructs	an	object	to	drag	the	list	of	URIs	in	uris.	The	dragSource	and	name
arguments	are	passed	on	to	QStoredDrag.	Note	that	URIs	are	always	in	escaped
UTF8	encoding,	as	defined	by	the	W3C.

QUriDrag::QUriDrag	(QWidget	*	dragSource	=	0,
const	char	*	name	=	0)

Constructs	an	object	to	drag.	You	must	call	setUris()	before	you	start	the	drag().
Passes	dragSource	and	name	to	the	QStoredDrag	constructor.

QUriDrag::~QUriDrag	()

Destroys	the	object.

bool	QUriDrag::canDecode	(const	QMimeSource	*	e)	[static]

Returns	TRUE	if	decode()	would	be	able	to	decode	e;	otherwise	returns	FALSE.

bool	QUriDrag::decode	(const	QMimeSource	*	e,	QStrList	&	l)
[static]

Decodes	URIs	from	e,	placing	the	result	in	l	(which	is	first	cleared).

Returns	TRUE	if	e	contained	a	valid	list	of	URIs;	otherwise	returns	FALSE.

Examples:	dirview/dirview.cpp	and	fileiconview/qfileiconview.cpp.

bool	QUriDrag::decodeLocalFiles	(const	QMimeSource	*	e,
QStringList	&	l)	[static]

Decodes	URIs	from	the	mime	source	event	e,	converts	them	to	local	files	if	they

refer	to	local	files,	and	places	them	in	l	(which	is	first	cleared).

Returns	TRUE	if	contained	a	valid	list	of	URIs;	otherwise	returns	FALSE.	The
list	will	be	empty	if	no	URIs	were	local	files.

bool	QUriDrag::decodeToUnicodeUris	(const	QMimeSource	*	e,
QStringList	&	l)	[static]

Decodes	URIs	from	the	mime	source	event	e,	converts	them	to	Unicode	URIs
(only	useful	for	displaying	to	humans),	placing	them	in	l	(which	is	first	cleared).

Returns	TRUE	if	contained	a	valid	list	of	URIs;	otherwise	returns	FALSE.

QCString	QUriDrag::localFileToUri	(const	QString	&	filename)
[static]

Returns	the	URI	equivalent	to	the	absolute	local	file	filename.

See	also	uriToLocalFile().

void	QUriDrag::setFileNames	(const	QStringList	&	fnames)

Sets	the	URIs	to	be	the	local-file	URIs	equivalent	to	fnames.

See	also	localFileToUri()	and	setUris().

void	QUriDrag::setFilenames	(const	QStringList	&	fnames)

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Use	setFileNames()	instead	(notice	the	N).

void	QUriDrag::setUnicodeUris	(const	QStringList	&	uuris)

Sets	the	URIs	in	uuris	to	be	the	Unicode	URIs	(only	useful	for	displaying	to
humans).

See	also	localFileToUri()	and	setUris().

Example:	dirview/dirview.cpp.

void	QUriDrag::setUris	(QStrList	uris)	[virtual]

Changes	the	list	of	uris	to	be	dragged.

QCString	QUriDrag::unicodeUriToUri	(const	QString	&	uuri)
[static]

Returns	the	URI	equivalent	of	the	Unicode	URI	given	in	uuri	(only	useful	for
displaying	to	humans).

See	also	uriToLocalFile().

QString	QUriDrag::uriToLocalFile	(const	char	*	uri)	[static]

Returns	the	name	of	a	local	file	equivalent	to	uri	or	a	null	string	if	uri	is	not	a
local	file.

See	also	localFileToUri().

QString	QUriDrag::uriToUnicodeUri	(const	char	*	uri)
[static]

Returns	the	Unicode	URI	(only	useful	for	displaying	to	humans)	equivalent	of
uri.

See	also	localFileToUri().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QCanvasLine	Class	Reference
[canvas	module]

The	QCanvasLine	class	provides	a	line	on	a	QCanvas.	More...

#include	<qcanvas.h>

Inherits	QCanvasPolygonalItem.

List	of	all	member	functions.

Public	Members

QCanvasLine	(QCanvas	*	canvas)
~QCanvasLine	()
void	setPoints	(int	xa,	int	ya,	int	xb,	int	yb)
QPoint	startPoint	()	const
QPoint	endPoint	()	const
virtual	int	rtti	()	const

Detailed	Description

The	QCanvasLine	class	provides	a	line	on	a	QCanvas.

The	line	inherits	functionality	from	QCanvasPolygonalItem,	for	example	the
setPen()	function.	The	start	and	end	points	of	the	line	are	set	with	setPoints().

Like	any	other	canvas	item	lines	can	be	moved	with	QCanvasItem::move()	and
QCanvasItem::moveBy(),	or	by	setting	coordinates	with	QCanvasItem::setX(),
QCanvasItem::setY()	and	QCanvasItem::setZ().

See	also	Graphics	Classes	and	Image	Processing	Classes.

Member	Function	Documentation

QCanvasLine::QCanvasLine	(QCanvas	*	canvas)

Constructs	a	line	from	(0,0)	to	(0,0)	on	canvas.

See	also	setPoints().

QCanvasLine::~QCanvasLine	()

Destroys	the	line.

QPoint	QCanvasLine::endPoint	()	const

Returns	the	end	point	of	the	line.

See	also	setPoints()	and	startPoint().

int	QCanvasLine::rtti	()	const	[virtual]

Returns	7	(QCanvasItem::Rtti_Line).

See	also	QCanvasItem::rtti().

Reimplemented	from	QCanvasPolygonalItem.

void	QCanvasLine::setPoints	(int	xa,	int	ya,	int	xb,	int	yb)

Sets	the	line's	start	point	to	(xa,	ya)	and	its	end	point	to	(xb,	yb).

Example:	canvas/canvas.cpp.

QPoint	QCanvasLine::startPoint	()	const

Returns	the	start	point	of	the	line.

See	also	setPoints()	and	endPoint().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QEucJpCodec	Class	Reference
The	QEucJpCodec	class	provides	conversion	to	and	from	EUC-JP	character	sets.
More...

#include	<qeucjpcodec.h>

Inherits	QTextCodec.

List	of	all	member	functions.

Public	Members

virtual	int	mibEnum	()	const
virtual	const	char	*	mimeName	()	const
QEucJpCodec	()
~QEucJpCodec	()

Detailed	Description

The	QEucJpCodec	class	provides	conversion	to	and	from	EUC-JP	character	sets.

More	precisely,	the	QEucJpCodec	class	subclasses	QTextCodec	to	provide
support	for	EUC-JP,	the	main	legacy	encoding	for	Unix	machines	in	Japan.

The	environment	variable	UNICODEMAP_JP	can	be	used	to	fine-tune	QJisCodec,
QSjisCodec	and	QEucJpCodec.	The	QJisCodec	documentation	describes	how	to
use	this	variable.

Most	of	the	code	here	was	written	by	Serika	Kurusugawa,	a.k.a.	Junji	Takagi,
and	is	included	in	Qt	with	the	author's	permission	and	the	grateful	thanks	of	the
Trolltech	team.	Here	is	the	copyright	statement	for	that	code:

Copyright	(c)	1999	Serika	Kurusugawa.	All	rights	reserved.

Redistribution	and	use	in	source	and	binary	forms,	with	or	without	modification,
are	permitted	provided	that	the	following	conditions	are	met:

1.	 Redistributions	of	source	code	must	retain	the	above	copyright	notice,	this
list	of	conditions	and	the	following	disclaimer.

2.	 Redistributions	in	binary	form	must	reproduce	the	above	copyright	notice,
this	list	of	conditions	and	the	following	disclaimer	in	the	documentation
and/or	other	materials	provided	with	the	distribution.

THIS	SOFTWARE	IS	PROVIDED	BY	THE	AUTHOR	AND
CONTRIBUTORS	"AS	IS".	ANY	EXPRESS	OR	IMPLIED	WARRANTIES,
INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF
MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE	ARE
DISCLAIMED.	IN	NO	EVENT	SHALL	THE	REGENTS	OR
CONTRIBUTORS	BE	LIABLE	FOR	ANY	DIRECT,	INDIRECT,
INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL
DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,	PROCUREMENT	OF
SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;
OR	BUSINESS	INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY
THEORY	OF	LIABILITY,	WHETHER	IN	CONTRACT,	STRICT	LIABILITY,
OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN

ANY	WAY	OUT	OF	THE	USE	OF	THIS	SOFTWARE,	EVEN	IF	ADVISED
OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

See	also	Internationalization	with	Qt.

Member	Function	Documentation

QEucJpCodec::QEucJpCodec	()

Constructs	a	QEucJpCodec.

QEucJpCodec::~QEucJpCodec	()

Destroys	the	codec.

int	QEucJpCodec::mibEnum	()	const	[virtual]

Returns	18.

Reimplemented	from	QTextCodec.

const	char	*	QEucJpCodec::mimeName	()	const	[virtual]

Returns	the	codec's	mime	name.

Reimplemented	from	QTextCodec.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QListViewItem	Class	Reference
The	QListViewItem	class	implements	a	list	view	item.	More...

#include	<qlistview.h>

Inherits	Qt.

Inherited	by	QCheckListItem.

List	of	all	member	functions.

Public	Members

QListViewItem	(QListView	*	parent)
QListViewItem	(QListViewItem	*	parent)
QListViewItem	(QListView	*	parent,	QListViewItem	*	after)
QListViewItem	(QListViewItem	*	parent,	QListViewItem	*	after)
QListViewItem	(QListView	*	parent,	QString	label1,	QString	label2	=
QString::null,	QString	label3	=	QString::null,	QString	label4	=
QString::null,	QString	label5	=	QString::null,	QString	label6	=
QString::null,	QString	label7	=	QString::null,	QString	label8	=
QString::null)
QListViewItem	(QListViewItem	*	parent,	QString	label1,	QString	label2
=	QString::null,	QString	label3	=	QString::null,	QString	label4	=
QString::null,	QString	label5	=	QString::null,	QString	label6	=
QString::null,	QString	label7	=	QString::null,	QString	label8	=
QString::null)
QListViewItem	(QListView	*	parent,	QListViewItem	*	after,
QString	label1,	QString	label2	=	QString::null,	QString	label3	=
QString::null,	QString	label4	=	QString::null,	QString	label5	=
QString::null,	QString	label6	=	QString::null,	QString	label7	=
QString::null,	QString	label8	=	QString::null)
QListViewItem	(QListViewItem	*	parent,	QListViewItem	*	after,
QString	label1,	QString	label2	=	QString::null,	QString	label3	=
QString::null,	QString	label4	=	QString::null,	QString	label5	=
QString::null,	QString	label6	=	QString::null,	QString	label7	=
QString::null,	QString	label8	=	QString::null)
virtual	~QListViewItem	()
virtual	void	insertItem	(QListViewItem	*	newChild)
virtual	void	takeItem	(QListViewItem	*	item)
virtual	void	removeItem	(QListViewItem	*	item)		(obsolete)
int	height	()	const
virtual	void	invalidateHeight	()
int	totalHeight	()	const
virtual	int	width	(const	QFontMetrics	&	fm,	const	QListView	*	lv,	int	c)
const
void	widthChanged	(int	c	=	-1)	const
int	depth	()	const

virtual	void	setText	(int	column,	const	QString	&	text)
virtual	QString	text	(int	column)	const
virtual	void	setPixmap	(int	column,	const	QPixmap	&	pm)
virtual	const	QPixmap	*	pixmap	(int	column)	const
virtual	QString	key	(int	column,	bool	ascending)	const
virtual	int	compare	(QListViewItem	*	i,	int	col,	bool	ascending)	const
virtual	void	sortChildItems	(int	column,	bool	ascending)
int	childCount	()	const
bool	isOpen	()	const
virtual	void	setOpen	(bool	o)
virtual	void	setup	()
virtual	void	setSelected	(bool	s)
bool	isSelected	()	const
virtual	void	paintCell	(QPainter	*	p,	const	QColorGroup	&	cg,	int	column,
int	width,	int	align)
virtual	void	paintBranches	(QPainter	*	p,	const	QColorGroup	&	cg,	int	w,
int	y,	int	h)
virtual	void	paintFocus	(QPainter	*	p,	const	QColorGroup	&	cg,
const	QRect	&	r)
QListViewItem	*	firstChild	()	const
QListViewItem	*	nextSibling	()	const
QListViewItem	*	parent	()	const
QListViewItem	*	itemAbove	()
QListViewItem	*	itemBelow	()
int	itemPos	()	const
QListView	*	listView	()	const
virtual	void	setSelectable	(bool	enable)
bool	isSelectable	()	const
virtual	void	setExpandable	(bool	enable)
bool	isExpandable	()	const
void	repaint	()	const
virtual	void	sort	()
void	moveItem	(QListViewItem	*	after)
virtual	void	setDragEnabled	(bool	allow)
virtual	void	setDropEnabled	(bool	allow)
bool	dragEnabled	()	const
bool	dropEnabled	()	const
virtual	bool	acceptDrop	(const	QMimeSource	*	mime)	const
void	setVisible	(bool	b)

bool	isVisible	()	const
virtual	void	setRenameEnabled	(int	col,	bool	b)
bool	renameEnabled	(int	col)	const
virtual	void	startRename	(int	col)
virtual	void	setEnabled	(bool	b)
bool	isEnabled	()	const
virtual	int	rtti	()	const
virtual	void	setMultiLinesEnabled	(bool	b)
bool	multiLinesEnabled	()	const

Protected	Members

virtual	void	enforceSortOrder	()	const
virtual	void	setHeight	(int	height)
virtual	void	activate	()
bool	activatedPos	(QPoint	&	pos)
virtual	void	dropped	(QDropEvent	*	e)
virtual	void	dragEntered	()
virtual	void	dragLeft	()
virtual	void	okRename	(int	col)
virtual	void	cancelRename	(int	col)

Detailed	Description

The	QListViewItem	class	implements	a	list	view	item.

A	list	view	item	is	a	multi-column	object	capable	of	displaying	itself	in	a
QListView.	Its	design	has	the	following	main	goals:

Work	quickly	and	well	for	large	sets	of	data.
Be	easy	to	use	in	the	simple	case.

The	easiest	way	to	use	QListViewItem	is	to	construct	one	with	a	few	constant
strings.	This	creates	an	item	that	is	a	child	of	parent	with	two	fixed-content
strings,	and	discards	the	pointer	to	it:

				(void)	new	QListViewItem(parent,	"first	column",	"second	column");

		

This	object	will	be	deleted	when	parent	is	deleted,	as	for	QObjects.

The	parent	is	either	another	QListViewItem	or	a	QListView.	If	the	parent	is	a
QListView,	this	item	is	a	top-level	item	within	that	QListView.	If	the	parent	is
another	QListViewItem,	this	item	becomes	a	child	of	that	list	view	item.

If	you	keep	the	pointer,	you	can	set	or	change	the	texts	using	setText(),	add
pixmaps	using	setPixmap(),	change	its	mode	using	setSelectable(),	setSelected(),
setOpen()	and	setExpandable().	You'll	also	be	able	to	change	its	height	using
setHeight(),	and	traverse	the	tree.	There's	no	need	to	retain	the	pointer	however,
since	you	can	get	a	pointer	to	any	QListViewItem	in	a	QListView	using
QListView::selectedItem(),	QListView::currentItem(),	QListView::firstChild(),
QListView::lastItem(),	QListView::findItem().

QCheckListItems	are	list	view	items	that	have	a	checkbox	or	radio	button	and
can	be	used	in	place	of	QListViewItems.

You	can	traverse	the	tree	as	if	it	were	a	doubly-linked	list	using	itemAbove()	and
itemBelow();	they	return	pointers	to	the	items	directly	above	and	below	this	item
on	the	screen	(even	if	none	of	the	three	are	actually	visible	at	the	moment).

You	can	also	traverse	it	as	a	tree	by	using	parent(),	firstChild(),	and

nextSibling().

Example:

				QListViewItem	*	myChild	=	myItem->firstChild();

				while(myChild)	{

								doSomething(myChild);

								myChild	=	myChild->nextSibling();

				}

		

There	is	also	an	interator	class	to	traverse	a	tree	of	list	view	items.	To	iterate	over
all	items	of	a	list	view,	do	the	following:

				QListViewItemIterator	it(listview);

				for	(;	it.current();	++it)

						doSomething(it.current());	//	it.current()	is	a	QListViewItem*

		

Note	that	the	order	of	the	children	will	change	when	the	sorting	order	changes
and	is	undefined	if	the	items	are	not	visible.	You	can,	however,	call
enforceSortOrder()	at	any	time;	QListView	will	always	call	it	before	it	needs	to
show	an	item.

Many	programs	will	need	to	reimplement	QListViewItem.	The	most	commonly
reimplemented	functions	are:

text()	returns	the	text	in	a	column.	Many	subclasses	will	compute	that	on
the	fly.
key()	is	used	for	sorting.	The	default	key()	simply	calls	text(),	but	judicious
use	of	key	can	be	used	to	sort	by	date,	for	example	(as	QFileDialog	does).
setup()	is	called	before	showing	the	item	and	whenever	the	font	changes,
for	example.
activate()	is	called	whenever	the	user	clicks	on	the	item	or	presses	space
when	the	item	is	the	currently	highlighted	item.

Some	subclasses	call	setExpandable(TRUE)	even	when	they	have	no	children,
and	populate	themselves	when	setup()	or	setOpen(TRUE)	is	called.	The
dirview/dirview.cpp	example	program	uses	this	technique	to	start	up	quickly:
The	files	and	subdirectories	in	a	directory	aren't	inserted	into	the	tree	until
they're	actually	needed.

See	also	QCheckListItem,	QListView	and	Advanced	Widgets.

Member	Function	Documentation

QListViewItem::QListViewItem	(QListView	*	parent)

Constructs	a	new	top-level	list	view	item	in	the	QListView	parent.

QListViewItem::QListViewItem	(QListViewItem	*	parent)

Constructs	a	new	list	view	item	that	is	a	child	of	parent	and	first	in	the	parent's
list	of	children.

QListViewItem::QListViewItem	(QListView	*	parent,
QListViewItem	*	after)

Constructs	an	empty	list	view	item	that	is	a	child	of	parent	and	is	after	after	in
the	parent's	list	of	children.	Since	parent	is	a	QListView	the	item	will	be	a	top-
level	item.

QListViewItem::QListViewItem	(QListViewItem	*	parent,
QListViewItem	*	after)

Constructs	an	empty	list	view	item	that	is	a	child	of	parent	and	is	after	after	in
the	parent's	list	of	children.

QListViewItem::QListViewItem	(QListView	*	parent,
QString	label1,	QString	label2	=	QString::null,	QString	label3
=	QString::null,	QString	label4	=	QString::null,
QString	label5	=	QString::null,	QString	label6	=
QString::null,	QString	label7	=	QString::null,	QString	label8
=	QString::null)

Constructs	a	new	list	view	item	in	the	QListView	parent,	parent,	with	up	to	eight
constant	strings	label1,	label2,	label3,	label4,	label5,	label6,	label7	and	label8
defining	its	column	contents.

See	also	setText().

QListViewItem::QListViewItem	(QListViewItem	*	parent,
QString	label1,	QString	label2	=	QString::null,	QString	label3
=	QString::null,	QString	label4	=	QString::null,
QString	label5	=	QString::null,	QString	label6	=
QString::null,	QString	label7	=	QString::null,	QString	label8
=	QString::null)

Constructs	a	new	list	view	item	as	a	child	of	the	QListViewItem	parent	with
optional	constant	strings	label1,	label2,	label3,	label4,	label5,	label6,	label7	and
label8	as	column	contents.

See	also	setText().

QListViewItem::QListViewItem	(QListView	*	parent,
QListViewItem	*	after,	QString	label1,	QString	label2	=
QString::null,	QString	label3	=	QString::null,	QString	label4
=	QString::null,	QString	label5	=	QString::null,
QString	label6	=	QString::null,	QString	label7	=
QString::null,	QString	label8	=	QString::null)

Constructs	a	new	list	view	item	in	the	QListView	parent	that	is	included	after
item	after	and	can	contain	up	to	eight	column	texts	label1,	label2,	label3,	label4,
label5,	label6,	label7	andlabel8.

Note	that	the	order	is	changed	according	to	QListViewItem::key()	unless	the	list
view's	sorting	is	disabled	using	QListView::setSorting(-1).

See	also	setText().

QListViewItem::QListViewItem	(QListViewItem	*	parent,
QListViewItem	*	after,	QString	label1,	QString	label2	=
QString::null,	QString	label3	=	QString::null,	QString	label4
=	QString::null,	QString	label5	=	QString::null,
QString	label6	=	QString::null,	QString	label7	=

QString::null,	QString	label8	=	QString::null)

Constructs	a	new	list	view	item	as	a	child	of	the	QListViewItem	parent.	It	is
inserted	after	item	after	and	may	contain	up	to	eight	strings	label1,	label2,
label3,	label4,	label5,	label6,	label7	and	label8	as	column	entries.

Note	that	the	order	is	changed	according	to	QListViewItem::key()	unless	the	list
view's	sorting	is	disabled	using	QListView::setSorting(-1).

See	also	setText().

QListViewItem::~QListViewItem	()	[virtual]

Destroys	the	item,	deleting	all	its	children	and	freeing	up	all	allocated	resources.

bool	QListViewItem::acceptDrop	(const	QMimeSource	*	mime)
const	[virtual]

Returns	TRUE	if	the	item	can	accept	drops	of	type	QMimeSource	mime;
otherwise	returns	FALSE.

The	default	implementation	does	nothing	and	returns	FALSE.	A	subclass	must
reimplement	this	to	accept	drops.

void	QListViewItem::activate	()	[virtual	protected]

This	virtual	function	is	called	whenever	the	user	clicks	on	this	item	or	presses
Space	on	it.

See	also	activatedPos().

Reimplemented	in	QCheckListItem.

bool	QListViewItem::activatedPos	(QPoint	&	pos)	[protected]

When	called	from	a	reimplementation	of	activate(),	this	function	gives
information	on	how	the	item	was	activated.	Otherwise	the	behavior	is	undefined.

If	activate()	was	caused	by	a	mouse	press,	the	function	sets	pos	to	where	the	user

clicked	and	returns	TRUE;	otherwise	it	returns	FALSE	and	does	not	change	pos.

pos	is	relative	to	the	top-left	corner	of	this	item.

We	recommend	not	using	this	function;	it	is	scheduled	to	become	obsolete.

See	also	activate().

void	QListViewItem::cancelRename	(int	col)	[virtual
protected]

This	function	is	called	if	the	user	cancels	in-place	renaming	of	this	item	in
column	col.

See	also	okRename().

int	QListViewItem::childCount	()	const

Returns	how	many	children	this	item	has.

int	QListViewItem::compare	(QListViewItem	*	i,	int	col,
bool	ascending)	const	[virtual]

Compares	this	listview	item	to	i	using	the	column	col	in	ascending	order.
Returns	-1	if	this	item	is	less	than	i,	0	if	they	are	equal	and	1	if	this	item	is
greater	than	i.

This	function	is	used	for	sorting.

The	default	implementation	compares	the	item	keys	(key())	using
QString::localeAwareCompare().	A	reimplementation	may	use	different	values
and	a	different	comparison	function.	Here	is	a	reimplementation	that	uses	plain
Unicode	comparison:

				int	MyListViewItem::compare(QListViewItem	*i,	int	col,

																																	bool	ascending)	const

				{

								return	key(col,	ascending).compare(i->key(col,	ascending));

				}

		

We	don't	recommend	using	ascending	so	your	code	can	safely	ignore	it.

See	also	key(),	QString::localeAwareCompare()	and	QString::compare().

Example:	network/ftpclient/ftpview.cpp.

int	QListViewItem::depth	()	const

Returns	the	depth	of	this	item.

Example:	dirview/dirview.cpp.

bool	QListViewItem::dragEnabled	()	const

Returns	TRUE	if	this	item	can	be	dragged;	otherwise	returns	FALSE.

See	also	setDragEnabled().

void	QListViewItem::dragEntered	()	[virtual	protected]

This	method	is	called	when	a	drag	entered	the	item's	bounding	rectangle.

The	default	implementation	does	nothing,	subclasses	may	need	to	reimplement
this	method.

void	QListViewItem::dragLeft	()	[virtual	protected]

This	method	is	called	when	a	drag	left	the	item's	bounding	rectangle.

The	default	implementation	does	nothing,	subclasses	may	need	to	reimplement
this	method.

bool	QListViewItem::dropEnabled	()	const

Returns	TRUE	if	this	item	accepts	drops;	otherwise	returns	FALSE.

See	also	setDropEnabled()	and	acceptDrop().

void	QListViewItem::dropped	(QDropEvent	*	e)	[virtual

protected]

This	method	is	called	when	something	was	dropped	on	the	item.	e	contains	all
the	information	about	the	drop.

The	default	implementation	does	nothing,	subclasses	may	need	to	reimplement
this	method.

void	QListViewItem::enforceSortOrder	()	const	[virtual
protected]

Makes	sure	that	this	object's	children	are	sorted	appropriately.

This	works	only	if	every	item	from	the	root	item	down	to	this	item	is	already
sorted.

See	also	sortChildItems().

QListViewItem	*	QListViewItem::firstChild	()	const

Returns	a	pointer	to	the	first	(top)	child	of	this	item,	or	a	null	pointer	if	this	item
has	no	children.

Note	that	the	children	are	not	guaranteed	to	be	sorted	properly.	QListView	and
QListViewItem	try	to	postpone	or	avoid	sorting	to	the	greatest	degree	possible,
in	order	to	keep	the	user	interface	snappy.

See	also	nextSibling().

Example:	checklists/checklists.cpp.

int	QListViewItem::height	()	const

Returns	the	height	of	this	item	in	pixels.	This	does	not	include	the	height	of	any
children;	totalHeight()	returns	that.

void	QListViewItem::insertItem	(QListViewItem	*	newChild)
[virtual]

Inserts	newChild	into	this	list	view	item's	list	of	children.	You	should	not	need	to
call	this	function;	it	is	called	automatically	by	the	constructor	of	newChild.

void	QListViewItem::invalidateHeight	()	[virtual]

Invalidates	the	cached	total	height	of	this	item,	including	all	open	children.

See	also	setHeight(),	height()	and	totalHeight().

bool	QListViewItem::isEnabled	()	const

Returns	TRUE	if	this	item	is	enabled;	otherwise	returns	FALSE.

See	also	setEnabled().

bool	QListViewItem::isExpandable	()	const

Returns	TRUE	if	this	item	is	expandable	even	when	it	has	no	children;	otherwise
returns	FALSE.

bool	QListViewItem::isOpen	()	const

Returns	TRUE	if	this	list	view	item	has	children	and	they	are	potentially	visible.
Returns	FALSE	if	the	item	has	no	children	or	they	are	hidden.

See	also	setOpen().

bool	QListViewItem::isSelectable	()	const

Returns	TRUE	if	the	item	is	selectable	(as	it	is	by	default);	otherwise	returns
FALSE

See	also	setSelectable().

bool	QListViewItem::isSelected	()	const

Returns	TRUE	if	this	item	is	selected;	otherwise	returns	FALSE.

See	also	setSelected(),	QListView::setSelected()	and

QListView::selectionChanged().

Example:	listviews/listviews.cpp.

bool	QListViewItem::isVisible	()	const

Returns	TRUE	if	the	item	is	visible;	otherwise	returns	FALSE.

See	also	setVisible().

QListViewItem	*	QListViewItem::itemAbove	()

Returns	a	pointer	to	the	item	immediately	above	this	item	on	the	screen.	This	is
usually	the	item's	closest	older	sibling,	but	it	may	also	be	its	parent	or	its	next
older	sibling's	youngest	child,	or	something	else	if	anyoftheabove->height()
returns	0.	Returns	a	null	pointer	if	there	is	no	item	immediately	above	this	item.

This	function	assumes	that	all	parents	of	this	item	are	open	(i.e.	that	this	item	is
visible,	or	can	be	made	visible	by	scrolling).

See	also	itemBelow()	and	QListView::itemRect().

QListViewItem	*	QListViewItem::itemBelow	()

Returns	a	pointer	to	the	item	immediately	below	this	item	on	the	screen.	This	is
usually	the	item's	eldest	child,	but	it	may	also	be	its	next	younger	sibling,	its
parent's	next	younger	sibling,	grandparent's,	etc.,	or	something	else	if
anyoftheabove->height()	returns	0.	Returns	a	null	pointer	if	there	is	no	item
immediately	below	this	item.

This	function	assumes	that	all	parents	of	this	item	are	open	(i.e.	that	this	item	is
visible	or	can	be	made	visible	by	scrolling).

See	also	itemAbove()	and	QListView::itemRect().

Example:	dirview/dirview.cpp.

int	QListViewItem::itemPos	()	const

Returns	the	y	coordinate	of	this	item	in	the	list	view's	coordinate	system.	This
function	is	normally	much	slower	than	QListView::itemAt(),	but	it	works	for	all
items	whereas	QListView::itemAt()	normally	only	works	for	items	on	the	screen.

See	also	QListView::itemAt(),	QListView::itemRect()	and
QListView::itemPos().

QString	QListViewItem::key	(int	column,	bool	ascending)	const
[virtual]

Returns	a	key	that	can	be	used	for	sorting	by	column	column.	The	default
implementation	returns	text().	Derived	classes	may	also	incorporate	the	order
indicated	by	ascending	into	this	key,	although	this	is	not	recommended.

If	you	want	to	sort	on	non-alphabetical	data,	e.g.	dates,	numbers,	etc.,
reimplement	compare().

See	also	compare()	and	sortChildItems().

QListView	*	QListViewItem::listView	()	const

Returns	a	pointer	to	the	list	view	containing	this	item.

void	QListViewItem::moveItem	(QListViewItem	*	after)

Moves	this	item	after	the	item	after.	This	means	it	will	get	the	sibling	exactly
after	the	item	after.	To	move	an	item	in	the	hierarchy,	use	takeItem()	and
insertItem().

bool	QListViewItem::multiLinesEnabled	()	const

Returns	TRUE	if	the	item	can	display	multiple	lines	of	text;	otherwise	returns
FALSE.

QListViewItem	*	QListViewItem::nextSibling	()	const

Returns	a	pointer	to	the	sibling	item	below	this	item,	or	a	null	pointer	if	there	is
no	sibling	item	after	this	item.

Note	that	the	siblings	are	not	guaranteed	to	be	sorted	properly.	QListView	and
QListViewItem	try	to	postpone	or	avoid	sorting	to	the	greatest	degree	possible,
in	order	to	keep	the	user	interface	snappy.

See	also	firstChild().

Example:	xml/tagreader-with-features/structureparser.cpp.

void	QListViewItem::okRename	(int	col)	[virtual	protected]

This	function	is	called	if	the	user	presses	Enter	during	in-place	renaming	of	the
item	in	column	col.

See	also	cancelRename().

void	QListViewItem::paintBranches	(QPainter	*	p,
const	QColorGroup	&	cg,	int	w,	int	y,	int	h)	[virtual]

Paints	a	set	of	branches	from	this	item	to	(some	of)	its	children.

Painter	p	is	set	up	with	clipping	and	translation	so	that	you	can	draw	only	in	the
rectangle	you	need	to;	cg	is	the	color	group	to	use;	the	update	rectangle	is	at	(0,
0)	and	has	size	width	w	by	height	h.	The	top	of	the	rectangle	you	own	is	at	y
(which	is	never	greater	than	0	but	can	be	outside	the	window	system's	allowed
coordinate	range).

The	update	rectangle	is	in	an	undefined	state	when	this	function	is	called;	this
function	must	draw	on	all	of	the	pixels.

See	also	paintCell()	and	QListView::drawContentsOffset().

void	QListViewItem::paintCell	(QPainter	*	p,
const	QColorGroup	&	cg,	int	column,	int	width,	int	align)
[virtual]

This	virtual	function	paints	the	contents	of	one	column	of	an	item	and	aligns	it	as
described	by	align.

p	is	a	QPainter	open	on	the	relevant	paint	device.	p	is	translated	so	(0,	0)	is	the

top-left	pixel	in	the	cell	and	width-1,	height()-1	is	the	bottom-right	pixel	in	the
cell.	The	other	properties	of	p	(pen,	brush,	etc)	are	undefined.	cg	is	the	color
group	to	use.	column	is	the	logical	column	number	within	the	item	that	is	to	be
painted;	0	is	the	column	which	may	contain	a	tree.

This	function	may	use	QListView::itemMargin()	for	readability	spacing	on	the
left	and	right	sides	of	data	such	as	text,	and	should	honor	isSelected()	and
QListView::allColumnsShowFocus().

If	you	reimplement	this	function,	you	should	also	reimplement	width().

The	rectangle	to	be	painted	is	in	an	undefined	state	when	this	function	is	called,
so	you	must	draw	on	all	the	pixels.	The	painter	p	has	the	right	font	on	entry.

See	also	paintBranches()	and	QListView::drawContentsOffset().

Example:	listviews/listviews.cpp.

Reimplemented	in	QCheckListItem.

void	QListViewItem::paintFocus	(QPainter	*	p,
const	QColorGroup	&	cg,	const	QRect	&	r)	[virtual]

Paints	a	focus	indication	on	the	rectangle	r	using	painter	p	and	colors	cg.

p	is	already	clipped.

See	also	paintCell(),	paintBranches()	and	QListView::allColumnsShowFocus.

Reimplemented	in	QCheckListItem.

QListViewItem	*	QListViewItem::parent	()	const

Returns	a	pointer	to	the	parent	of	this	item,	or	a	null	pointer	if	this	item	has	no
parent.

See	also	firstChild()	and	nextSibling().

Example:	dirview/dirview.cpp.

const	QPixmap	*	QListViewItem::pixmap	(int	column)	const
[virtual]

Returns	a	pointer	to	the	pixmap	for	column,	or	a	null	pointer	if	there	is	no
pixmap	for	column.

See	also	setText()	and	setPixmap().

Examples:	dirview/dirview.cpp	and	network/ftpclient/ftpview.cpp.

void	QListViewItem::removeItem	(QListViewItem	*	item)
[virtual]

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

This	function	has	been	renamed	takeItem().

bool	QListViewItem::renameEnabled	(int	col)	const

Returns	TRUE	if	this	item	can	be	in-place	renamed	in	column	col;	otherwise
returns	FALSE.

void	QListViewItem::repaint	()	const

Repaints	this	item	on	the	screen	if	it	is	currently	visible.

Example:	addressbook/centralwidget.cpp.

int	QListViewItem::rtti	()	const	[virtual]

Returns	0.

Make	your	derived	classes	return	their	own	values	for	rtti(),	and	you	can
distinguish	between	listview	items.	You	should	use	values	greater	than	1000
preferably	a	large	random	number,	to	allow	for	extensions	to	this	class.

Reimplemented	in	QCheckListItem.

void	QListViewItem::setDragEnabled	(bool	allow)	[virtual]

If	allow	is	TRUE,	the	listview	starts	a	drag	(see	QListView::dragObject())	when
the	user	presses	and	moves	the	mouse	on	this	item.

void	QListViewItem::setDropEnabled	(bool	allow)	[virtual]

If	allow	is	TRUE,	the	listview	accepts	drops	onto	the	item;	otherwise	drops	are
not	allowed..

void	QListViewItem::setEnabled	(bool	b)	[virtual]

If	b	is	TRUE	the	item	is	enabled;	otherwise	it	is	disabled.	Disabled	items	are
drawn	grayed-out	and	are	not	accessable	by	the	user.

void	QListViewItem::setExpandable	(bool	enable)	[virtual]

Sets	this	item	to	be	expandable	even	if	it	has	no	children	if	enable	is	TRUE,	and
to	be	expandable	only	if	it	has	children	if	enable	is	FALSE	(the	default).

The	dirview	example	uses	this	in	the	canonical	fashion.	It	checks	whether	the
directory	is	empty	in	setup()	and	calls	setExpandable(TRUE)	if	not;	in	setOpen()
it	reads	the	contents	of	the	directory	and	inserts	items	accordingly.	This	strategy
means	that	dirview	can	display	the	entire	file	system	without	reading	very	much
at	startup.

Note	that	root	items	are	not	expandable	by	the	user	unless
QListView::setRootIsDecorated()	is	set	to	TRUE.

See	also	setSelectable().

void	QListViewItem::setHeight	(int	height)	[virtual	protected]

Sets	this	item's	height	to	height	pixels.	This	implicitly	changes	totalHeight(),	too.

Note	that	a	font	change	causes	this	height	to	be	overwritten	unless	you
reimplement	setup().

For	best	results	in	Windows	style	we	suggest	using	an	even	number	of	pixels.

See	also	height(),	totalHeight()	and	isOpen().

void	QListViewItem::setMultiLinesEnabled	(bool	b)	[virtual]

If	b	is	TRUE	items	may	contain	multiple	lines	of	text;	otherwise	they	may	only
contain	a	single	line.

void	QListViewItem::setOpen	(bool	o)	[virtual]

Opens	or	closes	an	item,	i.e.	shows	or	hides	an	item's	children.

If	o	is	TRUE	all	child	items	are	shown	initially.	The	user	can	hide	them	by
clicking	the	-	icon	to	the	left	of	the	item.	If	o	is	FALSE,	the	children	of	this	item
are	initially	hidden.	The	user	can	show	them	by	clicking	the	+	icon	to	the	left	of
the	item.

See	also	height(),	totalHeight()	and	isOpen().

Examples:	checklists/checklists.cpp,	dirview/dirview.cpp,	dirview/main.cpp,
fileiconview/mainwindow.cpp	and	xml/tagreader-with-
features/structureparser.cpp.

void	QListViewItem::setPixmap	(int	column,
const	QPixmap	&	pm)	[virtual]

Sets	the	pixmap	in	column	column	to	pm,	if	pm	is	non-null	and	different	from
the	current	pixmap,	and	if	column	is	non-negative.

See	also	pixmap()	and	setText().

Example:	dirview/dirview.cpp.

void	QListViewItem::setRenameEnabled	(int	col,	bool	b)
[virtual]

If	b	is	TRUE,	this	item	can	be	in-place	renamed	in	the	column	col	by	the	user,
otherwise	it	is	not	possible.

void	QListViewItem::setSelectable	(bool	enable)	[virtual]

Sets	this	items	to	be	selectable	if	enable	is	TRUE	(the	default)	or	not	to	be
selectable	if	enable	is	FALSE.

The	user	is	not	able	to	select	a	non-selectable	item	using	either	the	keyboard	or
mouse.	The	application	programmer	still	can,	e.g.	using	setSelected().

See	also	isSelectable().

Example:	network/ftpclient/ftpview.cpp.

void	QListViewItem::setSelected	(bool	s)	[virtual]

If	s	is	TRUE	this	item	is	selected;	otherwise	it	is	deselected.

This	function	does	not	maintain	any	invariants	or	repaint	anything	--
QListView::setSelected()	does	that.

See	also	height()	and	totalHeight().

Example:	addressbook/centralwidget.cpp.

void	QListViewItem::setText	(int	column,	const	QString	&	text)
[virtual]

Sets	the	text	in	column	column	to	text,	if	column	is	a	valid	column	number	and
text	is	different	from	the	existing	text.

If	text()	has	been	reimplemented,	this	function	may	be	a	no-op.

See	also	text()	and	key().

Examples:	addressbook/centralwidget.cpp	and	xml/outliner/outlinetree.cpp.

void	QListViewItem::setVisible	(bool	b)

If	b	is	TRUE,	the	item	is	made	visible;	otherwise	it	is	hidden.

If	the	item	is	not	visible,	itemAbove()	and	itemBelow()	will	never	hit	this	item,
although	you	still	can	reach	it	by	using	e.g.	the	QListViewItemIterator.

void	QListViewItem::setup	()	[virtual]

This	virtual	function	is	called	before	the	first	time	QListView	needs	to	know	the
height	or	any	other	graphical	attribute	of	this	object,	and	whenever	the	font,	GUI
style,	or	colors	of	the	list	view	change.

The	default	calls	widthChanged()	and	sets	the	item's	height	to	the	height	of	a
single	line	of	text	in	the	list	view's	font.	(If	you	use	icons,	multi-line	text,	etc.,
you	will	probably	need	to	call	setHeight()	yourself	or	reimplement	it.)

Example:	dirview/dirview.cpp.

void	QListViewItem::sort	()	[virtual]

(Re)sorts	all	child	items	of	this	item	using	the	last	sorting	configuration	(sort
column	and	direction).

See	also	enforceSortOrder().

void	QListViewItem::sortChildItems	(int	column,	bool	ascending
)	[virtual]

Sorts	the	children	of	this	item	using	column	column.	This	is	done	in	ascending
order	if	ascending	is	TRUE	and	in	descending	order	if	ascending	is	FALSE.

Asks	some	of	the	children	to	sort	their	children.	(QListView	and	QListViewItem
ensure	that	all	on-screen	objects	are	properly	sorted	but	may	avoid	or	defer
sorting	other	objects	in	order	to	be	more	responsive.)

See	also	key()	and	compare().

void	QListViewItem::startRename	(int	col)	[virtual]

If	in-place	renaming	of	this	item	is	enabled	(see	renameEnabled()),	this	function
starts	renaming	the	item	in	cloumn	col,	by	creating	and	initializing	an	edit	box.

void	QListViewItem::takeItem	(QListViewItem	*	item)
[virtual]

Removes	item	from	this	object's	list	of	children	and	causes	an	update	of	the
screen	display.	The	item	is	not	deleted.	You	should	normally	not	need	to	call	this
function	because	QListViewItem::~QListViewItem()	calls	it.

The	normal	way	to	delete	an	item	is	delete.

If	you	need	to	move	an	item	from	one	place	in	the	hierarchy	to	another	you	can
use	takeItem()	to	remove	the	item	from	the	list	view	and	then	insertItem()	to	put
the	item	back	in	its	new	position.

Warning:	This	function	leaves	item	and	its	children	in	a	state	where	most
member	functions	are	unsafe.	Only	a	few	functions	work	correctly	on	an	item	in
this	state,	most	notably	insertItem().	The	functions	that	work	on	detached	items
are	explicitly	documented	as	such.

See	also	QListViewItem::insertItem().

QString	QListViewItem::text	(int	column)	const	[virtual]

Returns	the	text	in	column	column,	or	a	null	string	if	there	is	no	text	in	that
column.

See	also	key()	and	paintCell().

Examples:	addressbook/centralwidget.cpp,	dirview/dirview.cpp	and
network/ftpclient/ftpview.cpp.

int	QListViewItem::totalHeight	()	const

Returns	the	total	height	of	this	object,	including	any	visible	children.	This	height
is	recomputed	lazily	and	cached	for	as	long	as	possible.

Functions	which	can	affect	the	total	height	are,	setHeight()	which	is	used	to	set
an	item's	height,	setOpen()	to	show	or	hide	an	item's	children,	and
invalidateHeight()	to	invalidate	the	cached	height.

See	also	height().

int	QListViewItem::width	(const	QFontMetrics	&	fm,

const	QListView	*	lv,	int	c)	const	[virtual]

Returns	the	number	of	pixels	of	width	required	to	draw	column	c	of	list	view	lv,
using	the	metrics	fm	without	cropping.	The	list	view	containing	this	item	may
use	this	information	depending	on	the	QListView::WidthMode	settings	for	the
column.

The	default	implementation	returns	the	width	of	the	bounding	rectangle	of	the
text	of	column	c.

See	also	listView(),	widthChanged(),	QListView::setColumnWidthMode()	and
QListView::itemMargin.

void	QListViewItem::widthChanged	(int	c	=	-1)	const

Call	this	function	when	the	value	of	width()	may	have	changed	for	column	c.
Normally,	you	should	call	this	if	text(c)	changes.	Passing	-1	for	c	indicates	that
all	columns	may	have	changed.	For	efficiency,	you	should	do	this	if	more	than
one	call	to	widthChanged()	is	required.

See	also	width().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QSignal	Class	Reference
The	QSignal	class	can	be	used	to	send	signals	for	classes	that	don't	inherit
QObject.	More...

#include	<qsignal.h>

Inherits	QObject.

List	of	all	member	functions.

Public	Members

QSignal	(QObject	*	parent	=	0,	const	char	*	name	=	0)
~QSignal	()
bool	connect	(const	QObject	*	receiver,	const	char	*	member)
bool	disconnect	(const	QObject	*	receiver,	const	char	*	member	=	0)
void	activate	()
bool	isBlocked	()	const		(obsolete)
void	block	(bool	b)		(obsolete)
void	setParameter	(int	value)		(obsolete)
int	parameter	()	const		(obsolete)
void	setValue	(const	QVariant	&	value)
QVariant	value	()	const

Detailed	Description

The	QSignal	class	can	be	used	to	send	signals	for	classes	that	don't	inherit
QObject.

If	you	want	to	send	signals	from	a	class	that	does	not	inherit	QObject,	you	can
create	an	internal	QSignal	object	to	emit	the	signal.	You	must	also	provide	a
function	that	connects	the	signal	to	an	outside	object	slot.	This	is	how	we	have
implemented	signals	in	the	QMenuData	class,	which	is	not	a	QObject.

In	general,	we	recommend	inheriting	QObject	instead.	QObject	provides	much
more	functionality.

You	can	set	a	single	QVariant	parameter	for	the	signal	with	setValue().

Note	that	QObject	is	a	private	base	class	of	QSignal,	i.e.	you	cannot	call	any
QObject	member	functions	from	a	QSignal	object.

Example:

								#include	<qsignal.h>

								class	MyClass

								{

								public:

												MyClass();

												~MyClass();

												void	doSomething();

												void	connect(QObject	*receiver,	const	char	*member);

								private:

												QSignal	*sig;

								};

								MyClass::MyClass()

								{

												sig	=	new	QSignal;

								}

								MyClass::~MyClass()

								{

												delete	sig;

								}

								void	MyClass::doSomething()

								{

												//	...	does	something

												sig->activate();	//	emits	the	signal

								}

								void	MyClass::connect(QObject	*receiver,	const	char	*member)

								{

												sig->connect(receiver,	member);

								}

				

See	also	Input/Output	and	Networking	and	Miscellaneous	Classes.

Member	Function	Documentation

QSignal::QSignal	(QObject	*	parent	=	0,	const	char	*	name	=	0)

Constructs	a	signal	object	called	name,	with	the	parent	object	parent.	These
arguments	are	passed	directly	to	QObject.

QSignal::~QSignal	()

Destroys	the	signal.	All	connections	are	removed,	as	is	the	case	with	all
QObjects.

void	QSignal::activate	()

Emits	the	signal.	If	the	platform	supports	QVariant	and	a	parameter	has	been	set
with	setValue(),	this	value	is	passed	in	the	signal.

void	QSignal::block	(bool	b)

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Blocks	the	signal	if	b	is	TRUE,	or	unblocks	the	signal	if	b	is	FALSE.

An	activated	signal	disappears	into	hyperspace	if	it	is	blocked.

See	also	isBlocked(),	activate()	and	QObject::blockSignals().

bool	QSignal::connect	(const	QObject	*	receiver,
const	char	*	member)

Connects	the	signal	to	member	in	object	receiver.

See	also	disconnect()	and	QObject::connect().

bool	QSignal::disconnect	(const	QObject	*	receiver,

const	char	*	member	=	0)

Disonnects	the	signal	from	member	in	object	receiver.

See	also	connect()	and	QObject::disconnect().

bool	QSignal::isBlocked	()	const

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Returns	TRUE	if	the	signal	is	blocked,	or	FALSE	if	it	is	not	blocked.

The	signal	is	not	blocked	by	default.

See	also	block()	and	QObject::signalsBlocked().

int	QSignal::parameter	()	const

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

void	QSignal::setParameter	(int	value)

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

void	QSignal::setValue	(const	QVariant	&	value)

Sets	the	signal's	parameter	to	value

QVariant	QSignal::value	()	const

Returns	the	signal's	parameter

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

http://www.trolltech.com/

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QUrl	Class	Reference
[network	module]

The	QUrl	class	provides	a	URL	parser	and	simplifies	working	with	URLs.
More...

#include	<qurl.h>

Inherited	by	QUrlOperator.

List	of	all	member	functions.

Public	Members

QUrl	()
QUrl	(const	QString	&	url)
QUrl	(const	QUrl	&	url)
QUrl	(const	QUrl	&	url,	const	QString	&	relUrl,	bool	checkSlash	=
FALSE)
virtual	~QUrl	()
QString	protocol	()	const
virtual	void	setProtocol	(const	QString	&	protocol)
QString	user	()	const
virtual	void	setUser	(const	QString	&	user)
bool	hasUser	()	const
QString	password	()	const
virtual	void	setPassword	(const	QString	&	pass)
bool	hasPassword	()	const
QString	host	()	const
virtual	void	setHost	(const	QString	&	host)
bool	hasHost	()	const
int	port	()	const
virtual	void	setPort	(int	port)
bool	hasPort	()	const
QString	path	(bool	correct	=	TRUE)	const
virtual	void	setPath	(const	QString	&	path)
bool	hasPath	()	const
virtual	void	setEncodedPathAndQuery	(const	QString	&	pathAndQuery)
QString	encodedPathAndQuery	()
virtual	void	setQuery	(const	QString	&	txt)
QString	query	()	const
QString	ref	()	const
virtual	void	setRef	(const	QString	&	txt)
bool	hasRef	()	const
bool	isValid	()	const
bool	isLocalFile	()	const
virtual	void	addPath	(const	QString	&	pa)
virtual	void	setFileName	(const	QString	&	name)
QString	fileName	()	const

QString	dirPath	()	const
QUrl	&	operator=	(const	QUrl	&	url)
QUrl	&	operator=	(const	QString	&	url)
bool	operator==	(const	QUrl	&	url)	const
bool	operator==	(const	QString	&	url)	const
operator	QString	()	const
virtual	QString	toString	(bool	encodedPath	=	FALSE,
bool	forcePrependProtocol	=	TRUE)	const
virtual	bool	cdUp	()

Static	Public	Members

void	decode	(QString	&	url)
void	encode	(QString	&	url)
bool	isRelativeUrl	(const	QString	&	url)

Protected	Members

virtual	void	reset	()
virtual	bool	parse	(const	QString	&	url)

Detailed	Description

The	QUrl	class	provides	a	URL	parser	and	simplifies	working	with	URLs.

The	QUrl	class	is	provided	for	simple	work	with	URLs.	It	can	parse,	decode,
encode,	etc.

QUrl	works	with	the	decoded	path	and	encoded	query	in	turn.

Example:

http://www.trolltech.com:80/cgi-bin/test%20me.pl?cmd=Hello%20you

Function Returns
protocol() "http"
host() "www.trolltech.com"
port() 80
path() "cgi-bin"
fileName() "test	me.pl"
query() "cmd=Hello%20you"

Example:

http://doc.trolltech.com/qdockarea.html#lines

Function Returns
protocol() "http"
host() "doc.trolltech.com"
fileName() "qdockarea.html"
ref() "lines"

The	individual	parts	of	a	URL	can	be	set	with	setProtocol(),	setHost(),	setPort(),
setPath(),	setFileName(),	setRef()	and	setQuery().	A	URL	could	contain,	for
example,	an	ftp	address	which	requires	a	user	name	and	password;	these	can	be
set	with	setUser()	and	setPassword().

Because	path	is	always	encoded	internally	you	must	not	use	"%00"	in	the	path,

although	this	is	okay	(but	not	recommended)	for	the	query.

QUrl	is	normally	used	like	this:

				QUrl	url("http://www.trolltech.com");

				//	or

				QUrl	url("file:/home/myself/Mail",	"Inbox");

				

You	can	then	access	and	manipulate	the	various	parts	of	the	URL.

To	make	it	easy	to	work	with	QUrls	and	QStrings,	QUrl	implements	the
necessary	cast	and	assignment	operators	so	you	can	do	following:

				QUrl	url("http://www.trolltech.com");

				QString	s	=	url;

				//	or

				QString	s("http://www.trolltech.com");

				QUrl	url(s);

				

Use	the	static	functions,	encode()	and	decode()	to	encode	or	decode	a	URL	in	a
string.	(They	operate	on	the	string	in-place.)	The	isRelativeUrl()	static	function
returns	TRUE	if	the	given	string	is	a	relative	URL.

If	you	want	to	use	a	URL	to	work	on	a	hierarchical	structure	(e.g.	a	local	or
remote	filesystem),	you	might	want	to	use	the	subclass	QUrlOperator.

See	also	QUrlOperator,	Input/Output	and	Networking	and	Miscellaneous
Classes.

Member	Function	Documentation

QUrl::QUrl	()

Constructs	an	empty	URL	that	is	invalid.

QUrl::QUrl	(const	QString	&	url)

Constructs	a	URL	by	parsing	the	string	url.

If	you	pass	a	string	like	"/home/qt",	the	"file"	protocol	is	assumed.

QUrl::QUrl	(const	QUrl	&	url)

Copy	constructor.	Copies	the	data	of	url.

QUrl::QUrl	(const	QUrl	&	url,	const	QString	&	relUrl,
bool	checkSlash	=	FALSE)

Constructs	an	URL	taking	url	as	the	base	(context)	and	relUrl	as	a	relative	URL
to	url.	If	relUrl	is	not	relative,	relUrl	is	taken	as	the	new	URL.

For	example,	the	path	of

				QUrl	url("ftp://ftp.trolltech.com/qt/source",	"qt-2.1.0.tar.gz");

				

will	be	"/qt/srource/qt-2.1.0.tar.gz".

On	the	other	hand,

				QUrl	url("ftp://ftp.trolltech.com/qt/source",	"/usr/local");

				

will	result	in	a	new	URL,	"ftp://ftp.trolltech.com/usr/local",	because	"/usr/local"
isn't	relative.

Similarly,

				QUrl	url("ftp://ftp.trolltech.com/qt/source",	"file:/usr/local");

				

will	result	in	a	new	URL,	with	"/usr/local"	as	the	path	and	"file"	as	the	protocol.

Normally	it	is	expected	that	the	path	of	url	points	to	a	directory,	even	if	the	path
has	no	slash	at	the	end.	But	if	you	want	the	constructor	to	handle	the	last	part	of
the	path	as	a	file	name	if	there	is	no	slash	at	the	end,	and	to	let	it	be	replaced	by
the	file	name	of	relUrl	(if	it	contains	one),	set	checkSlash	to	TRUE.

QUrl::~QUrl	()	[virtual]

Destructor.

void	QUrl::addPath	(const	QString	&	pa)	[virtual]

Adds	the	path	pa	to	the	path	of	the	URL.

See	also	setPath()	and	hasPath().

bool	QUrl::cdUp	()	[virtual]

Changes	the	directory	to	one	directory	up.

See	also	setPath().

void	QUrl::decode	(QString	&	url)	[static]

Decodes	the	string	url	in-place.

See	also	encode().

QString	QUrl::dirPath	()	const

Returns	the	directory	path	of	the	URL.	This	is	the	part	of	the	path	of	the	URL
without	the	fileName().	See	the	documentation	of	fileName()	for	a	discussion	of
what	is	handled	as	file	name	and	what	is	handled	as	directory	path.

See	also	setPath()	and	hasPath().

Example:	network/networkprotocol/nntp.cpp.

void	QUrl::encode	(QString	&	url)	[static]

Encodes	the	string	url	in-place.

See	also	decode().

QString	QUrl::encodedPathAndQuery	()

Returns	the	encoded	path	and	query.

See	also	decode().

QString	QUrl::fileName	()	const

Returns	the	file	name	of	the	URL.	If	the	path	of	the	URL	doesn't	have	a	slash	at
the	end,	the	part	between	the	last	slash	and	the	end	of	the	path	string	is
considered	to	be	the	file	name.	If	the	path	has	a	slash	at	the	end,	an	empty	string
is	returned	here.

See	also	setFileName().

Example:	network/networkprotocol/nntp.cpp.

bool	QUrl::hasHost	()	const

Returns	TRUE	if	the	URL	contains	a	hostname;	otherwise	returns	FALSE.

See	also	setHost().

bool	QUrl::hasPassword	()	const

Returns	TRUE	if	the	URL	contains	a	password;	otherwise	returns	FALSE.

Warning:	Passwords	passed	in	URLs	are	normally	insecure;	this	is	due	to	the
mechanism,	not	because	of	Qt.

See	also	setPassword()	and	setUser().

bool	QUrl::hasPath	()	const

Returns	TRUE	if	the	URL	contains	a	path;	otherwise	returns	FALSE.

See	also	path()	and	setPath().

bool	QUrl::hasPort	()	const

Returns	TRUE	if	the	URL	contains	a	port;	otherwise	returns	FALSE.

See	also	setPort().

bool	QUrl::hasRef	()	const

Returns	TRUE	if	the	URL	has	a	reference;	otherwise	returns	FALSE.

See	also	setRef().

bool	QUrl::hasUser	()	const

Returns	TRUE	if	the	URL	contains	a	username;	otherwise	returns	FALSE.

See	also	setUser()	and	setPassword().

QString	QUrl::host	()	const

Returns	the	hostname	of	the	URL.

See	also	setHost()	and	hasHost().

bool	QUrl::isLocalFile	()	const

Returns	TRUE	if	the	URL	is	a	local	file;	otherwise	returns	FALSE.

Example:	qdir/qdir.cpp.

bool	QUrl::isRelativeUrl	(const	QString	&	url)	[static]

Returns	TRUE	if	url	is	relative;	otherwise	returns	FALSE.

bool	QUrl::isValid	()	const

Returns	TRUE	if	the	URL	is	valid;	otherwise	returns	FALSE.	A	URL	is	invalid
if	it	cannot	be	parsed,	for	example.

QUrl::operator	QString	()	const

Composes	a	string	version	of	the	URL	and	returns	it.

See	also	QUrl::toString().

QUrl	&	QUrl::operator=	(const	QUrl	&	url)

Assigns	the	data	of	url	to	this	class.

QUrl	&	QUrl::operator=	(const	QString	&	url)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Parses	url	and	assigns	the	resulting	data	to	this	class.

If	you	pass	a	string	like	"/home/qt"	the	"file"	protocol	will	be	assumed.

bool	QUrl::operator==	(const	QUrl	&	url)	const

Compares	this	URL	with	url	and	returns	TRUE	if	they	are	equal;	otherwise
returns	FALSE.

bool	QUrl::operator==	(const	QString	&	url)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Compares	this	URL	with	url.	url	is	parsed	first.	Returns	TRUE	if	url	is	equal	to
this	url;	otherwise	returns	FALSE.

bool	QUrl::parse	(const	QString	&	url)	[virtual	protected]

Parses	the	url.

QString	QUrl::password	()	const

Returns	the	password	of	the	URL.

Warning:	Passwords	passed	in	URLs	are	normally	insecure;	this	is	due	to	the
mechanism,	not	because	of	Qt.

See	also	setPassword()	and	setUser().

QString	QUrl::path	(bool	correct	=	TRUE)	const

Returns	the	path	of	the	URL.	If	correct	is	TRUE,	the	path	is	cleaned	(deals	with
too	many	or	too	few	slashes,	cleans	things	like	"/../..",	etc).	Otherwise	path()
returns	exactly	the	path	that	was	parsed	or	set.

See	also	setPath()	and	hasPath().

Example:	qdir/qdir.cpp.

int	QUrl::port	()	const

Returns	the	port	of	the	URL	or	-1	if	no	port	has	been	set.

See	also	setPort().

QString	QUrl::protocol	()	const

Returns	the	protocol	of	the	URL.	Typically,	"file",	"http",	"ftp",	etc.

See	also	setProtocol().

QString	QUrl::query	()	const

Returns	the	(encoded)	query	of	the	URL.

See	also	setQuery()	and	decode().

QString	QUrl::ref	()	const

Returns	the	(encoded)	reference	of	the	URL.

See	also	setRef(),	hasRef()	and	decode().

void	QUrl::reset	()	[virtual	protected]

Resets	all	parts	of	the	URL	to	their	default	values	and	invalidates	it.

void	QUrl::setEncodedPathAndQuery	(
const	QString	&	pathAndQuery)	[virtual]

Parses	pathAndQuery	for	a	path	and	query	and	sets	those	values.	The	whole
string	must	be	encoded.

See	also	encode().

void	QUrl::setFileName	(const	QString	&	name)	[virtual]

Sets	the	file	name	of	the	URL	to	name.	If	this	URL	contains	a	fileName(),	the
original	file	name	is	replaced	by	name.

See	the	documentation	of	fileName()	for	a	more	detailed	discussion	of	what	is
handled	as	file	name	and	what	is	handled	as	a	directory	path.

See	also	fileName().

void	QUrl::setHost	(const	QString	&	host)	[virtual]

Sets	the	hostname	of	the	URL	to	host.

See	also	host()	and	hasHost().

void	QUrl::setPassword	(const	QString	&	pass)	[virtual]

Sets	the	password	of	the	URL	to	pass.

Warning:	Passwords	passed	in	URLs	are	normally	insecure;	this	is	due	to	the
mechanism,	not	because	of	Qt.

See	also	password()	and	setUser().

void	QUrl::setPath	(const	QString	&	path)	[virtual]

Sets	the	path	of	the	URL	to	path.

See	also	path()	and	hasPath().

void	QUrl::setPort	(int	port)	[virtual]

Sets	the	port	of	the	URL	to	port.

See	also	port().

void	QUrl::setProtocol	(const	QString	&	protocol)	[virtual]

Sets	the	protocol	of	the	URL	to	protocol.	Typically,	"file",	"http",	"ftp",	etc.

See	also	protocol().

void	QUrl::setQuery	(const	QString	&	txt)	[virtual]

Sets	the	query	of	the	URL	to	txt.	txt	must	be	encoded.

See	also	query()	and	encode().

void	QUrl::setRef	(const	QString	&	txt)	[virtual]

Sets	the	reference	of	the	URL	to	txt.	txt	must	be	encoded.

See	also	ref(),	hasRef()	and	encode().

void	QUrl::setUser	(const	QString	&	user)	[virtual]

Sets	the	username	of	the	URL	to	user.

See	also	user()	and	setPassword().

QString	QUrl::toString	(bool	encodedPath	=	FALSE,
bool	forcePrependProtocol	=	TRUE)	const	[virtual]

Composes	a	string	version	of	the	URL	and	returns	it.	If	encodedPath	is	TRUE
the	path	in	the	returned	string	is	encoded.	If	forcePrependProtocol	is	TRUE	and
encodedPath	looks	like	a	local	filename,	the	"file:/"	protocol	is	also	prepended.

See	also	encode()	and	decode().

QString	QUrl::user	()	const

Returns	the	username	of	the	URL.

See	also	setUser()	and	setPassword().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QCanvasPixmap	Class	Reference
[canvas	module]

The	QCanvasPixmap	class	provides	pixmaps	for	QCanvasSprites.	More...

#include	<qcanvas.h>

Inherits	QPixmap.

List	of	all	member	functions.

Public	Members

QCanvasPixmap	(const	QString	&	datafilename)
QCanvasPixmap	(const	QImage	&	image)
QCanvasPixmap	(const	QPixmap	&	pm,	const	QPoint	&	offset)
~QCanvasPixmap	()
int	offsetX	()	const
int	offsetY	()	const
void	setOffset	(int	x,	int	y)

Detailed	Description

The	QCanvasPixmap	class	provides	pixmaps	for	QCanvasSprites.

If	you	want	to	show	a	single	pixmap	on	a	QCanvas	use	a	QCanvasSprite	with
just	one	pixmap.

When	pixmaps	are	inserted	into	a	QCanvasPixmapArray	they	are	held	as
QCanvasPixmaps.	QCanvasSprites	are	used	to	show	pixmaps	on	QCanvases	and
hold	their	pixmaps	in	a	QCanvasPixmapArray.	If	you	retrieve	a	frame	(pixmap)
from	a	QCanvasSprite	it	will	be	returned	as	a	QCanvasPixmap.

The	pixmap	is	a	QPixmap	and	can	only	be	set	in	the	constructor.	There	are	three
different	constructors,	one	taking	a	QPixmap,	one	a	QImage	and	one	a	file	name
that	refers	to	a	file	in	any	supported	file	format	(see	QImageIO).

QCanvasPixmap	can	have	a	hotspot	which	is	defined	in	terms	of	an	(x,	y)	offset.
When	you	create	a	QCanvasPixmap	from	a	PNG	file	or	from	a	QImage	that	has
a	QImage::offset(),	the	offset()	is	initialized	appropriately,	otherwise	the
constructor	leaves	it	at	(0,	0).	You	can	set	it	later	using	setOffset().	When	the
QCanvasPixmap	is	used	in	a	QCanvasSprite,	the	offset	position	is	the	point	at
QCanvasItem::x()	and	QCanvasItem::y(),	not	the	top-left	corner	of	the	pixmap.

Note	that	for	QCanvasPixmap	objects	created	by	a	QCanvasSprite,	the	position
of	each	QCanvasPixmap	object	is	set	so	that	the	hotspot	stays	in	the	same
position.

See	also	QCanvasPixmapArray,	QCanvasItem,	QCanvasSprite,	Graphics
Classes	and	Image	Processing	Classes.

Member	Function	Documentation

QCanvasPixmap::QCanvasPixmap	(
const	QString	&	datafilename)

Constructs	a	QCanvasPixmap	that	uses	the	image	stored	in	datafilename.

QCanvasPixmap::QCanvasPixmap	(const	QImage	&	image)

Constructs	a	QCanvasPixmap	from	the	image	image.

QCanvasPixmap::QCanvasPixmap	(const	QPixmap	&	pm,
const	QPoint	&	offset)

Constructs	a	QCanvasPixmap	from	the	pixmap	pm	using	the	offset	offset.

QCanvasPixmap::~QCanvasPixmap	()

Destroys	the	pixmap.

int	QCanvasPixmap::offsetX	()	const

Returns	the	x-offset	of	the	pixmap's	hotspot.

See	also	setOffset().

int	QCanvasPixmap::offsetY	()	const

Returns	the	y-offset	of	the	pixmap's	hotspot.

See	also	setOffset().

void	QCanvasPixmap::setOffset	(int	x,	int	y)

Sets	the	offset	of	the	pixmap's	hotspot	to	(x,	y).

Warning:	Do	not	call	this	function	if	any	QCanvasSprites	are	currently	showing
this	pixmap.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QEucKrCodec	Class	Reference
The	QEucKrCodec	class	provides	conversion	to	and	from	EUC-KR	character
sets.	More...

#include	<qeuckrcodec.h>

Inherits	QTextCodec.

List	of	all	member	functions.

Public	Members

virtual	const	char	*	mimeName	()	const

Detailed	Description

The	QEucKrCodec	class	provides	conversion	to	and	from	EUC-KR	character
sets.

The	QEucKrCodec	class	subclasses	QTextCodec	to	provide	support	for	EUC-
KR,	the	main	legacy	encoding	for	UNIX	machines	in	Korea.

It	was	largely	written	by	Mizi	Research	Inc.	Here	is	the	copyright	statement	for
the	code	as	it	was	at	the	point	of	contribution	(Trolltech's	subsequent
modifications	are	covered	by	the	usual	copyright	for	Qt.)

Copyright	(c)	1999	Mizi	Research	Inc.	All	rights	reserved.

Redistribution	and	use	in	source	and	binary	forms,	with	or	without	modification,
are	permitted	provided	that	the	following	conditions	are	met:

1.	 Redistributions	of	source	code	must	retain	the	above	copyright	notice,	this
list	of	conditions	and	the	following	disclaimer.

2.	 Redistributions	in	binary	form	must	reproduce	the	above	copyright	notice,
this	list	of	conditions	and	the	following	disclaimer	in	the	documentation
and/or	other	materials	provided	with	the	distribution.

THIS	SOFTWARE	IS	PROVIDED	BY	THE	AUTHOR	AND
CONTRIBUTORS	"AS	IS"	AND	ANY	EXPRESS	OR	IMPLIED
WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED
WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A
PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO	EVENT	SHALL	THE
REGENTS	OR	CONTRIBUTORS	BE	LIABLE	FOR	ANY	DIRECT,
INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL
DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,	PROCUREMENT	OF
SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;
OR	BUSINESS	INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY
THEORY	OF	LIABILITY,	WHETHER	IN	CONTRACT,	STRICT	LIABILITY,
OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN
ANY	WAY	OUT	OF	THE	USE	OF	THIS	SOFTWARE,	EVEN	IF	ADVISED
OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

See	also	Internationalization	with	Qt.

Member	Function	Documentation

const	char	*	QEucKrCodec::mimeName	()	const	[virtual]

Returns	the	codec's	mime	name.

Reimplemented	from	QTextCodec.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QListViewItemIterator	Class
Reference

The	QListViewItemIterator	class	provides	an	iterator	for	collections	of
QListViewItems.	More...

#include	<qlistview.h>

List	of	all	member	functions.

Public	Members

QListViewItemIterator	()
QListViewItemIterator	(QListViewItem	*	item)
QListViewItemIterator	(const	QListViewItemIterator	&	it)
QListViewItemIterator	(QListView	*	lv)
QListViewItemIterator	&	operator=	(const	QListViewItemIterator	&	it)
~QListViewItemIterator	()
QListViewItemIterator	&	operator++	()
const	QListViewItemIterator	operator++	(int)
QListViewItemIterator	&	operator+=	(int	j)
QListViewItemIterator	&	operator--	()
const	QListViewItemIterator	operator--	(int)
QListViewItemIterator	&	operator-=	(int	j)
QListViewItem	*	current	()	const

Detailed	Description

The	QListViewItemIterator	class	provides	an	iterator	for	collections	of
QListViewItems.

Construct	an	instance	of	a	QListViewItemIterator,	with	either	a	QListView*	or	a
QListViewItem*	as	argument,	to	operate	on	the	tree	of	QListViewItems.

A	QListViewItemIterator	iterates	over	all	items	of	a	list	view.	This	means	that	it
always	makes	the	first	child	of	the	current	item	the	new	current	item.	If	there	is
no	child,	the	next	sibling	becomes	the	new	current	item;	and	if	there	is	no	next
sibling,	the	next	sibling	of	the	parent	becomes	current.

The	following	example	function	gets	a	list	of	all	the	items	that	have	been
selected	by	the	user,	storing	pointers	to	the	items	in	a	QPtrList:

				QPtrList<QListViewItem>	lst;

				QListViewItemIterator	it(lv);

				while	(it.current()	!=	0)	{

								if	(it.current()->isSelected())

												lst.append(it.current());

								++it;

				}

		

A	QListViewItemIterator	provides	a	convenient	and	easy	way	to	traverse	a
hierarchical	QListView.

Multiple	QListViewItemIterators	can	operate	on	the	tree	of	QListViewItems.	A
QListView	knows	about	all	iterators	operating	on	its	QListViewItems.	So	when	a
QListViewItem	gets	removed	all	iterators	that	point	to	this	item	are	updated	and
point	to	the	following	item	if	possible,	otherwise	to	a	valid	item	before	the
current	one	or	to	0.

See	also	QListView,	QListViewItem	and	Advanced	Widgets.

Member	Function	Documentation

QListViewItemIterator::QListViewItemIterator	()

Constructs	an	empty	iterator.

QListViewItemIterator::QListViewItemIterator	(
QListViewItem	*	item)

Constructs	an	iterator	for	the	QListView	of	the	item.	The	current	iterator	item	is
set	to	point	to	the	item.

QListViewItemIterator::QListViewItemIterator	(
const	QListViewItemIterator	&	it)

Constructs	an	iterator	for	the	same	QListView	as	it.	The	current	iterator	item	is
set	to	point	on	the	current	item	of	it.

QListViewItemIterator::QListViewItemIterator	(QListView	*	lv
)

Constructs	an	iterator	for	the	QListView	lv.	The	current	iterator	item	is	set	to
point	on	the	first	child	(QListViewItem)	of	lv.

QListViewItemIterator::~QListViewItemIterator	()

Destroys	the	iterator.

QListViewItem	*	QListViewItemIterator::current	()	const

Returns	a	pointer	to	the	current	item	of	the	iterator.

Examples:	addressbook/centralwidget.cpp,	checklists/checklists.cpp,
dirview/dirview.cpp	and	network/ftpclient/ftpview.cpp.

QListViewItemIterator	&	QListViewItemIterator::operator++	()

Prefix	++	makes	the	next	item	in	the	QListViewItem	tree	of	the	QListView	of
the	iterator	the	current	item	and	returns	it.	If	the	current	item	was	the	last	item	in
the	QListView	or	null,	null	is	returned.

const	QListViewItemIterator	QListViewItemIterator::operator++
(int)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Postfix	++	makes	the	next	item	in	the	QListViewItem	tree	of	the	QListView	of
the	iterator	the	current	item	and	returns	the	item	which	was	previously	current.

QListViewItemIterator	&	QListViewItemIterator::operator+=	(
int	j)

Sets	the	current	item	to	the	item	j	positions	after	the	current	item	in	the
QListViewItem	hierarchy.	If	this	item	is	beyond	the	last	item,	the	current	item	is
set	to	null.

The	new	current	item	(or	null,	if	the	new	current	item	is	null)	is	returned.

QListViewItemIterator	&	QListViewItemIterator::operator--	()

Prefix	--	makes	the	previous	item	in	the	QListViewItem	tree	of	the	QListView	of
the	iterator	the	current	item	and	returns	it.	If	the	current	item	was	the	last	first	in
the	QListView	or	null,	null	is	returned.

const	QListViewItemIterator	QListViewItemIterator::operator--	(
int)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Postfix	--	makes	the	previous	item	in	the	QListViewItem	tree	of	the	QListView
of	the	iterator	the	current	item	and	returns	the	item.

QListViewItemIterator	&	QListViewItemIterator::operator-=	(

int	j)

Sets	the	current	item	to	the	item	j	positions	before	the	current	item	in	the
QListViewItem	hierarchy.	If	this	item	is	before	the	first	item,	the	current	item	is
set	to	null.	The	new	current	item	(or	null,	if	the	new	current	item	is	null)	is
returned.

QListViewItemIterator	&	QListViewItemIterator::operator=	(
const	QListViewItemIterator	&	it)

Assignment.	Makes	a	copy	of	it	and	returns	a	reference	to	its	iterator.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QSignalMapper	Class	Reference
The	QSignalMapper	class	bundles	signals	from	identifiable	senders.	More...

#include	<qsignalmapper.h>

Inherits	QObject.

List	of	all	member	functions.

Public	Members

QSignalMapper	(QObject	*	parent,	const	char	*	name	=	0)
~QSignalMapper	()
virtual	void	setMapping	(const	QObject	*	sender,	int	identifier)
virtual	void	setMapping	(const	QObject	*	sender,
const	QString	&	identifier)
void	removeMappings	(const	QObject	*	sender)

Public	Slots

void	map	()

Signals

void	mapped	(int)
void	mapped	(const	QString	&)

Detailed	Description

The	QSignalMapper	class	bundles	signals	from	identifiable	senders.

This	class	collects	a	set	of	parameterless	signals,	and	re-emits	them	with	integer
or	string	parameters	corresponding	to	the	object	that	sent	the	signal.

See	also	Input/Output	and	Networking.

Member	Function	Documentation

QSignalMapper::QSignalMapper	(QObject	*	parent,
const	char	*	name	=	0)

Constructs	a	QSignalMapper	called	name,	with	parent	parent.	Like	all	QObjects,
it	will	be	deleted	when	the	parent	is	deleted.

QSignalMapper::~QSignalMapper	()

Destroys	the	QSignalMapper.

void	QSignalMapper::map	()	[slot]

This	slot	emits	signals	based	on	which	object	sends	signals	to	it.

Examples:	i18n/main.cpp	and	themes/themes.cpp.

void	QSignalMapper::mapped	(int)	[signal]

This	signal	is	emitted	when	map()	is	signaled	from	an	object	that	has	an	integer
mapping	set.

See	also	setMapping().

Examples:	i18n/main.cpp	and	themes/themes.cpp.

void	QSignalMapper::mapped	(const	QString	&)	[signal]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

This	signal	is	emitted	when	map()	is	signaled	from	an	object	that	has	a	string
mapping	set.

See	also	setMapping().

void	QSignalMapper::removeMappings	(const	QObject	*	sender
)

Removes	all	mappings	for	sender.	This	is	done	automatically	when	mapped
objects	are	destroyed.

void	QSignalMapper::setMapping	(const	QObject	*	sender,
int	identifier)	[virtual]

Adds	a	mapping	so	that	when	map()	is	signaled	from	the	given	sender,	the	signal
mapped(identifier)	is	emitted.

There	may	be	at	most	one	integer	identifier	for	each	object.

Examples:	i18n/main.cpp	and	themes/themes.cpp.

void	QSignalMapper::setMapping	(const	QObject	*	sender,
const	QString	&	identifier)	[virtual]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Adds	a	mapping	so	that	when	map()	is	signaled	from	the	given	sender,	the	signal
mapper(identifier)	is	emitted.

There	may	be	at	most	one	string	identifier	for	each	object,	and	it	may	not	be	null.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QUrlInfo	Class	Reference
The	QUrlInfo	class	stores	information	about	URLs.	More...

#include	<qurlinfo.h>

List	of	all	member	functions.

Public	Members

QUrlInfo	()
QUrlInfo	(const	QUrlOperator	&	path,	const	QString	&	file)
QUrlInfo	(const	QUrlInfo	&	ui)
QUrlInfo	(const	QString	&	name,	int	permissions,	const	QString	&	owner,
const	QString	&	group,	uint	size,	const	QDateTime	&	lastModified,
const	QDateTime	&	lastRead,	bool	isDir,	bool	isFile,	bool	isSymLink,
bool	isWritable,	bool	isReadable,	bool	isExecutable)
QUrlInfo	(const	QUrl	&	url,	int	permissions,	const	QString	&	owner,
const	QString	&	group,	uint	size,	const	QDateTime	&	lastModified,
const	QDateTime	&	lastRead,	bool	isDir,	bool	isFile,	bool	isSymLink,
bool	isWritable,	bool	isReadable,	bool	isExecutable)
QUrlInfo	&	operator=	(const	QUrlInfo	&	ui)
virtual	~QUrlInfo	()
virtual	void	setName	(const	QString	&	name)
virtual	void	setDir	(bool	b)
virtual	void	setFile	(bool	b)
virtual	void	setSymLink	(bool	b)
virtual	void	setOwner	(const	QString	&	s)
virtual	void	setGroup	(const	QString	&	s)
virtual	void	setSize	(uint	s)
virtual	void	setWritable	(bool	b)
virtual	void	setReadable	(bool	b)
virtual	void	setPermissions	(int	p)
virtual	void	setLastModified	(const	QDateTime	&	dt)
bool	isValid	()	const
QString	name	()	const
int	permissions	()	const
QString	owner	()	const
QString	group	()	const
uint	size	()	const
QDateTime	lastModified	()	const
QDateTime	lastRead	()	const
bool	isDir	()	const
bool	isFile	()	const
bool	isSymLink	()	const

bool	isWritable	()	const
bool	isReadable	()	const
bool	isExecutable	()	const
bool	operator==	(const	QUrlInfo	&	i)	const

Static	Public	Members

bool	greaterThan	(const	QUrlInfo	&	i1,	const	QUrlInfo	&	i2,	int	sortBy)
bool	lessThan	(const	QUrlInfo	&	i1,	const	QUrlInfo	&	i2,	int	sortBy)
bool	equal	(const	QUrlInfo	&	i1,	const	QUrlInfo	&	i2,	int	sortBy)

Detailed	Description

The	QUrlInfo	class	stores	information	about	URLs.

This	class	is	just	a	container	for	storing	information	about	URLs,	which	is	why
all	information	must	be	passed	in	the	constructor.

Unless	you're	reimplementing	a	network	protocol	you're	unlikely	to	create
QUrlInfo	objects	yourself,	but	you	may	receive	QUrlInfo	objects	from	functions,
e.g.	QUrlOperator::info().

The	information	that	can	be	retrieved	includes	name(),	permissions(),	owner(),
group(),	size(),	lastModified(),	lastRead(),	isDir(),	isFile(),	isSymLink(),
isWritable(),	isReadable()	and	isExecutable().

See	also	Input/Output	and	Networking	and	Miscellaneous	Classes.

Member	Function	Documentation

QUrlInfo::QUrlInfo	()

Constructs	an	invalid	QUrlInfo	object	with	default	values.

See	also	isValid().

QUrlInfo::QUrlInfo	(const	QUrlOperator	&	path,
const	QString	&	file)

Constructs	a	QUrlInfo	object	with	information	about	the	file	file	in	the	path.	It
tries	to	find	the	information	about	the	file	in	the	QUrlOperator	path.

If	the	information	is	not	found,	this	constructor	creates	an	invalid	QUrlInfo,	i.e.
isValid()	returns	FALSE.	You	should	always	check	if	the	URL	info	is	valid
before	relying	on	the	return	values	of	any	getter	functions.

If	file	is	empty,	it	defaults	to	the	QUrlOperator	path,	i.e.	to	the	directory.

See	also	isValid()	and	QUrlOperator::info().

QUrlInfo::QUrlInfo	(const	QUrlInfo	&	ui)

Copy	constructor,	copies	ui	to	this	URL	info	object.

QUrlInfo::QUrlInfo	(const	QString	&	name,	int	permissions,
const	QString	&	owner,	const	QString	&	group,	uint	size,
const	QDateTime	&	lastModified,
const	QDateTime	&	lastRead,	bool	isDir,	bool	isFile,
bool	isSymLink,	bool	isWritable,	bool	isReadable,
bool	isExecutable)

Constructs	a	QUrlInfo	object	by	specifying	all	the	URL's	information.

The	information	that	is	passed	is	the	name,	file	permissions,	owner	and	group

and	the	file's	size.	Also	passed	is	the	lastModified	date/time	and	the	lastRead
date/time.	Flags	are	also	passed,	specifically,	isDir,	isFile,	isSymLink,	isWritable,
isReadable	and	isExecutable.

QUrlInfo::QUrlInfo	(const	QUrl	&	url,	int	permissions,
const	QString	&	owner,	const	QString	&	group,	uint	size,
const	QDateTime	&	lastModified,
const	QDateTime	&	lastRead,	bool	isDir,	bool	isFile,
bool	isSymLink,	bool	isWritable,	bool	isReadable,
bool	isExecutable)

Constructs	a	QUrlInfo	object	by	specifying	all	the	URL's	information.

The	information	that	is	passed	is	the	url,	file	permissions,	owner	and	group	and
the	file's	size.	Also	passed	is	the	lastModified	date/time	and	the	lastRead
date/time.	Flags	are	also	passed,	specifically,	isDir,	isFile,	isSymLink,	isWritable,
isReadable	and	isExecutable.

QUrlInfo::~QUrlInfo	()	[virtual]

Destroys	the	URL	info	object.

The	QUrlOperator	object	to	which	this	URL	referred	(if	any)	is	not	affected.

bool	QUrlInfo::equal	(const	QUrlInfo	&	i1,	const	QUrlInfo	&	i2,
int	sortBy)	[static]

Returns	TRUE	if	i1	equals	to	i2;	otherwise	returns	FALSE.	The	objects	are
compared	by	the	value,	which	is	specified	by	sortBy.	This	must	be	one	of
QDir::Name,	QDir::Time	or	QDir::Size.

bool	QUrlInfo::greaterThan	(const	QUrlInfo	&	i1,
const	QUrlInfo	&	i2,	int	sortBy)	[static]

Returns	TRUE	if	i1	is	greater	than	i2;	otherwise	returns	FALSE.	The	objects	are
compared	by	the	value,	which	is	specified	by	sortBy.	This	must	be	one	of
QDir::Name,	QDir::Time	or	QDir::Size.

QString	QUrlInfo::group	()	const

Returns	the	group	of	the	URL.

See	also	isValid().

bool	QUrlInfo::isDir	()	const

Returns	TRUE	if	the	URL	is	a	directory;	otherwise	returns	FALSE.

See	also	isValid().

Example:	network/networkprotocol/nntp.cpp.

bool	QUrlInfo::isExecutable	()	const

Returns	TRUE	if	the	URL	is	executable;	otherwise	returns	FALSE.

See	also	isValid().

bool	QUrlInfo::isFile	()	const

Returns	TRUE	if	the	URL	is	a	file;	otherwise	returns	FALSE.

See	also	isValid().

bool	QUrlInfo::isReadable	()	const

Returns	TRUE	if	the	URL	is	readable;	otherwise	returns	FALSE.

See	also	isValid().

bool	QUrlInfo::isSymLink	()	const

Returns	TRUE	if	the	URL	is	a	symbolic	link;	otherwise	returns	FALSE.

See	also	isValid().

bool	QUrlInfo::isValid	()	const

Returns	TRUE	if	the	URL	info	is	valid;	otherwise	returns	FALSE.	Valid	means
that	the	QUrlInfo	contains	real	information.	For	example,	a	call	to
QUrlOperator::info()	might	return	a	an	invalid	QUrlInfo,	if	no	information	about
the	requested	entry	is	available.

You	should	always	check	if	the	URL	info	is	valid	before	relying	on	the	values.

bool	QUrlInfo::isWritable	()	const

Returns	TRUE	if	the	URL	is	writable;	otherwise	returns	FALSE.

See	also	isValid().

QDateTime	QUrlInfo::lastModified	()	const

Returns	the	last	modification	date	of	the	URL.

See	also	isValid().

QDateTime	QUrlInfo::lastRead	()	const

Returns	the	date	when	the	URL	was	last	read.

See	also	isValid().

bool	QUrlInfo::lessThan	(const	QUrlInfo	&	i1,
const	QUrlInfo	&	i2,	int	sortBy)	[static]

Returns	TRUE	if	i1	is	less	than	i2;	otherwise	returns	FALSE.	The	objects	are
compared	by	the	value,	which	is	specified	by	sortBy.	This	must	be	one	of
QDir::Name,	QDir::Time	or	QDir::Size.

QString	QUrlInfo::name	()	const

Returns	the	file	name	of	the	URL.

See	also	isValid().

Examples:	network/ftpclient/ftpmainwindow.cpp	and

network/ftpclient/ftpview.cpp.

QUrlInfo	&	QUrlInfo::operator=	(const	QUrlInfo	&	ui)

Assigns	the	values	of	ui	to	this	QUrlInfo	object.

bool	QUrlInfo::operator==	(const	QUrlInfo	&	i)	const

Compares	this	QUrlInfo	with	i	and	returns	TRUE	if	they	are	equal;	otherwise
returns	FALSE.

QString	QUrlInfo::owner	()	const

Returns	the	owner	of	the	URL.

See	also	isValid().

int	QUrlInfo::permissions	()	const

Returns	the	permissions	of	the	URL.

See	also	isValid().

void	QUrlInfo::setDir	(bool	b)	[virtual]

If	b	is	TRUE	then	the	URL	is	set	to	be	a	directory;	if	\b	is	FALSE	then	the	URL
is	set	not	to	be	a	directory	(which	normally	means	it	is	a	file).	(Note	that	a	URL
can	refer	to	both	a	file	and	a	directory	even	though	most	file	systems	do	not
support	this.)

If	you	call	this	function	for	an	invalid	URL	info,	this	function	turns	it	into	a	valid
one.

See	also	isValid().

Example:	network/networkprotocol/nntp.cpp.

void	QUrlInfo::setFile	(bool	b)	[virtual]

If	b	is	TRUE	then	the	URL	is	set	to	be	a	file;	if	\b	is	FALSE	then	the	URL	is	set
not	to	be	a	file	(which	normally	means	it	is	a	directory).	(Note	that	a	URL	can
refer	to	both	a	file	and	a	directory	even	though	most	file	systems	do	not	support
this.)

If	you	call	this	function	for	an	invalid	URL	info,	this	function	turns	it	into	a	valid
one.

See	also	isValid().

Example:	network/networkprotocol/nntp.cpp.

void	QUrlInfo::setGroup	(const	QString	&	s)	[virtual]

Specifies	that	the	owning	group	of	the	URL	is	called	s.

If	you	call	this	function	for	an	invalid	URL	info,	this	function	turns	it	into	a	valid
one.

See	also	isValid().

void	QUrlInfo::setLastModified	(const	QDateTime	&	dt)
[virtual]

Specifies	that	the	object	the	URL	refers	to	was	last	modified	at	dt.

If	you	call	this	function	for	an	invalid	URL	info,	this	function	turns	it	into	a	valid
one.

See	also	isValid().

void	QUrlInfo::setName	(const	QString	&	name)	[virtual]

Sets	the	name	of	the	URL	to	name.	The	name	is	the	full	text,	for	example,
"http://doc.trolltech.com/qurlinfo.html".

If	you	call	this	function	for	an	invalid	URL	info,	this	function	turns	it	into	a	valid
one.

See	also	isValid().

Example:	network/networkprotocol/nntp.cpp.

void	QUrlInfo::setOwner	(const	QString	&	s)	[virtual]

Specifies	that	the	owner	of	the	URL	is	called	s.

If	you	call	this	function	for	an	invalid	URL	info,	this	function	turns	it	into	a	valid
one.

See	also	isValid().

void	QUrlInfo::setPermissions	(int	p)	[virtual]

Specifies	that	the	URL	has	access	permisions,	p.

If	you	call	this	function	for	an	invalid	URL	info,	this	function	turns	it	into	a	valid
one.

See	also	isValid().

void	QUrlInfo::setReadable	(bool	b)	[virtual]

Specifies	that	the	URL	is	readable	if	b	is	TRUE	and	not	readable	if	b	is	FALSE.

If	you	call	this	function	for	an	invalid	URL	info,	this	function	turns	it	into	a	valid
one.

See	also	isValid().

Example:	network/networkprotocol/nntp.cpp.

void	QUrlInfo::setSize	(uint	s)	[virtual]

Specifies	that	the	URL	has	size	s.

If	you	call	this	function	for	an	invalid	URL	info,	this	function	turns	it	into	a	valid
one.

See	also	isValid().

void	QUrlInfo::setSymLink	(bool	b)	[virtual]

Specifies	that	the	URL	refers	to	a	symbolic	link	if	b	is	TRUE	and	that	it	does	not
if	b	is	FALSE.

If	you	call	this	function	for	an	invalid	URL	info,	this	function	turns	it	into	a	valid
one.

See	also	isValid().

Example:	network/networkprotocol/nntp.cpp.

void	QUrlInfo::setWritable	(bool	b)	[virtual]

Specifies	that	the	URL	is	writable	if	b	is	TRUE	and	not	writable	if	b	is	FALSE.

If	you	call	this	function	for	an	invalid	URL	info,	this	function	turns	it	into	a	valid
one.

See	also	isValid().

Example:	network/networkprotocol/nntp.cpp.

uint	QUrlInfo::size	()	const

Returns	the	size	of	the	URL.

See	also	isValid().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QCanvasPixmapArray	Class
Reference

[canvas	module]
The	QCanvasPixmapArray	class	provides	an	array	of	QCanvasPixmaps.	More...

#include	<qcanvas.h>

List	of	all	member	functions.

Public	Members

QCanvasPixmapArray	()
QCanvasPixmapArray	(const	QString	&	datafilenamepattern,	int	fc	=	0)
QCanvasPixmapArray	(QPtrList<QPixmap>	list,
QPtrList<QPoint>	hotspots)		(obsolete)
QCanvasPixmapArray	(QValueList<QPixmap>	list,
QPointArray	hotspots	=	QPointArray	())
~QCanvasPixmapArray	()
bool	readPixmaps	(const	QString	&	filenamepattern,	int	fc	=	0)
bool	readCollisionMasks	(const	QString	&	filename)
bool	operator!	()		(obsolete)
bool	isValid	()	const
QCanvasPixmap	*	image	(int	i)	const
void	setImage	(int	i,	QCanvasPixmap	*	p)
uint	count	()	const

Detailed	Description

The	QCanvasPixmapArray	class	provides	an	array	of	QCanvasPixmaps.

This	class	is	used	by	QCanvasSprite	to	hold	an	array	of	pixmaps.	It	is	used	to
implement	animated	sprites,	i.e.	images	that	change	over	time,	with	each	pixmap
in	the	array	holding	one	frame.

Depending	on	the	constructor	you	use	you	can	load	multiple	pixmaps	into	the
array,	either	from	a	directory	(specifying	a	wildcard	pattern	for	the	files),	or	from
a	list	of	QPixmaps.	You	can	also	read	in	a	set	of	pixmaps	after	construction	using
readPixmaps().

Individual	pixmaps	can	be	set	with	setImage()	and	retrieved	with	image().	The
number	of	pixmaps	in	the	array	is	returned	by	count().

QCanvasSprite	uses	an	image's	mask	for	collision	detection.	You	can	change	this
by	reading	in	a	separate	set	of	image	masks	using	readCollisionMasks().

See	also	Graphics	Classes	and	Image	Processing	Classes.

Member	Function	Documentation

QCanvasPixmapArray::QCanvasPixmapArray	()

Constructs	an	invalid	array	(i.e.	isValid()	will	return	FALSE).	You	must	call
readPixmaps()	before	being	able	to	use	this	QCanvasPixmapArray.

QCanvasPixmapArray::QCanvasPixmapArray	(
const	QString	&	datafilenamepattern,	int	fc	=	0)

Constructs	a	QCanvasPixmapArray	from	files.

The	fc	parameter	sets	the	number	of	frames	to	be	loaded	for	this	image.

If	fc	is	not	0,	datafilenamepattern	should	contain	"%1",	e.g.	"foo%1.png".	The
actual	filenames	are	formed	by	replacing	the	%1	with	four-digit	integers	from	0
to	(fc	-	1),	e.g.	foo0000.png,	foo0001.png,	foo0002.png,	etc.

If	fc	is	0,	datafilenamepattern	is	asssumed	to	be	a	filename,	and	the	image
contained	in	this	file	will	be	loaded	as	the	first	(and	only)	frame.

If	datafilenamepattern	does	not	exist,	is	not	readable,	isn't	an	image,	or	some
other	error	occurs,	the	array	ends	up	empty	and	isValid()	returns	FALSE.

QCanvasPixmapArray::QCanvasPixmapArray	(
QPtrList<QPixmap>	list,	QPtrList<QPoint>	hotspots)

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Use	QCanvasPixmapArray::QCanvasPixmapArray(QValueList,	QPointArray)
instead.

Constructs	a	QCanvasPixmapArray	from	the	list	of	QPixmaps	list.	The	hotspots
list	has	to	be	of	the	same	size	as	list.

QCanvasPixmapArray::QCanvasPixmapArray	(

QValueList<QPixmap>	list,	QPointArray	hotspots	=
QPointArray	())

Constructs	a	QCanvasPixmapArray	from	the	list	of	QPixmaps	in	the	list.	Each
pixmap	will	get	a	hotspot	according	to	the	hotspots	array.	If	no	hotspots	are
specified,	each	one	is	set	to	be	at	position	(0,	0).

If	an	error	occurs,	isValid()	will	return	FALSE.

QCanvasPixmapArray::~QCanvasPixmapArray	()

Destroys	the	pixmap	array	and	all	the	pixmaps	it	contains.

uint	QCanvasPixmapArray::count	()	const

Returns	the	number	of	pixmaps	in	the	array.

QCanvasPixmap	*	QCanvasPixmapArray::image	(int	i)	const

Returns	pixmap	i	in	the	array,	if	i	is	non-negative	and	less	than	than	count(),	and
returns	an	unspecified	value	otherwise.

bool	QCanvasPixmapArray::isValid	()	const

Returns	TRUE	if	the	pixmap	array	is	valid;	otherwise	returns	FALSE.

bool	QCanvasPixmapArray::operator!	()

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Use	isValid()	instead.

This	returns	FALSE	if	the	array	is	valid,	and	TRUE	if	it	is	not.

bool	QCanvasPixmapArray::readCollisionMasks	(
const	QString	&	filename)

Reads	new	collision	masks	for	the	array.

By	default,	QCanvasSprite	uses	the	image	mask	of	a	sprite	to	detect	collisions.
Use	this	function	to	set	your	own	collision	image	masks.

If	count()	is	1	filename	must	specify	a	real	filename	to	read	the	mask	from.	If
count()	is	greater	than	1,	the	filename	must	contain	a	"%1"	that	will	get	replaced
by	the	number	of	the	mask	to	be	loaded,	similar	to
QCanvasPixmapArray::readPixmaps().

All	collision	masks	must	be	1-bit	images	or	this	function	call	will	fail.

If	the	file	isn't	readable,	contains	the	wrong	number	of	images,	or	there	is	some
other	error,	this	function	will	return	FALSE,	and	the	array	will	be	flagged	as
invalid;	otherwise	this	function	returns	TRUE.

See	also	isValid().

bool	QCanvasPixmapArray::readPixmaps	(
const	QString	&	filenamepattern,	int	fc	=	0)

Reads	one	or	more	pixmaps	into	the	pixmap	array.

If	fc	is	not	0,	filenamepattern	should	contain	"%1",	e.g.	"foo%1.png".	The	actual
filenames	are	formed	by	replacing	the	%1	with	four-digit	integers	from	0	to	(fc	-
1),	e.g.	foo0000.png,	foo0001.png,	foo0002.png,	etc.

If	fc	is	0,	filenamepattern	is	asssumed	to	be	a	filename,	and	the	image	contained
in	this	file	will	be	loaded	as	the	first	(and	only)	frame.

If	filenamepattern	does	not	exist,	is	not	readable,	isn't	an	image,	or	some	other
error	occurs,	this	function	will	return	FALSE,	and	isValid()	will	return	FALSE;
otherwise	this	function	will	return	TRUE.

See	also	isValid().

void	QCanvasPixmapArray::setImage	(int	i,	QCanvasPixmap	*	p
)

Replaces	the	pixmap	at	index	i	with	pixmap	p.

The	array	takes	ownership	of	p	and	will	delete	p	when	the	array	itself	is	deleted.

If	i	is	beyond	the	end	of	the	array	the	array	is	extended	to	at	least	i+1	elements,
with	elements	count()	to	i-1	being	initialized	to	0.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QEvent
QEvent	 ……

#include	<qevent.h>

Qt

QTimerEventQMouseEventQWheelEventQTabletEventQKeyEventQFocusEvent
QCustomEvent

enum	Type	{	None	=	0,	Timer	=	1,	MouseButtonPress	=	2,
MouseButtonRelease	=	3,	MouseButtonDblClick	=	4,	MouseMove	=	5,
KeyPress	=	6,	KeyRelease	=	7,	FocusIn	=	8,	FocusOut	=	9,	Enter	=	10,
Leave	=	11,	Paint	=	12,	Move	=	13,	Resize	=	14,	Create	=	15,	Destroy	=	16,
Show	=	17,	Hide	=	18,	Close	=	19,	Quit	=	20,	Reparent	=	21,
ShowMinimized	=	22,	ShowNormal	=	23,	WindowActivate	=	24,
WindowDeactivate	=	25,	ShowToParent	=	26,	HideToParent	=	27,
ShowMaximized	=	28,	ShowFullScreen	=	29,	Accel	=	30,	Wheel	=	31,
AccelAvailable	=	32,	CaptionChange	=	33,	IconChange	=	34,
ParentFontChange	=	35,	ApplicationFontChange	=	36,	ParentPaletteChange
=	37,	ApplicationPaletteChange	=	38,	PaletteChange	=	39,	Clipboard	=	40,
Speech	=	42,	SockAct	=	50,	AccelOverride	=	51,	DeferredDelete	=	52,
DragEnter	=	60,	DragMove	=	61,	DragLeave	=	62,	Drop	=	63,
DragResponse	=	64,	ChildInserted	=	70,	ChildRemoved	=	71,	LayoutHint	=
72,	ShowWindowRequest	=	73,	ActivateControl	=	80,	DeactivateControl	=
81,	ContextMenu	=	82,	IMStart	=	83,	IMCompose	=	84,	IMEnd	=	85,
Accessibility	=	86,	Tablet	=	87,	User	=	1000,	MaxUser	=	65535	}
	(obsolete)
QEvent	(Type	type)
Type	type	()	const
bool	spontaneous	()	const

QEvent

Qt QApplication::exec()QEventQObject

spontaneous() QApplication::sendEvent()QApplication::postEvent
spontaneous()

QObject QObject::event() QWidget::event() QObject::timerEvent
QWidget::mouseMoveEvent() QObject::installEventFilter()

QEventQEvent

QObject::event() QObject::installEventFilter() QWidget::event() QApplication::sendEvent
a
href="qapplication.html#postEvent">QApplication::postEvent() QApplication::processEvents
Classes

QEvent::Type

Qt

QEvent::None	-	
QEvent::Accessibility	-	
QEvent::Timer	-	 QTimerEvent
QEvent::MouseButtonPress	-	 QMouseEvent
QEvent::MouseButtonRelease	-	 QMouseEvent
QEvent::MouseButtonDblClick	-	a
href="qmouseevent.html">QMouseEvent
QEvent::MouseMove	-	 QMouseEvent
QEvent::KeyPress	-	Shift QKeyEvent
QEvent::KeyRelease	-	 QKeyEvent
QEvent::IMStart	-	
QEvent::IMCompose	-	
QEvent::IMEnd	-	
QEvent::FocusIn	-	QFocusEvent
QEvent::FocusOut	-	 QFocusEvent
QEvent::Enter	-	
QEvent::Leave	-	
QEvent::Paint	-	 QPaintEvent
QEvent::Move	-	 QMoveEvent
QEvent::Resize	-	 QResizeEvent
QEvent::Show	-	 QShowEvent
QEvent::Hide	-	 QHideEvent
QEvent::ShowToParent	-	
QEvent::HideToParent	-	
QEvent::Close	-		 QCloseEvent
QEvent::ShowNormal	-	
QEvent::ShowMaximized	-	
QEvent::ShowMinimized	-	
QEvent::ShowFullScreen	-	
QEvent::ShowWindowRequest	-	
QEvent::DeferredDelete	-	

QEvent::Accel	-	 QKeyEvent
QEvent::Wheel	-	 QWheelEvent
QEvent::ContextMenu	-	 QContextMenuEvent
QEvent::AccelAvailable	-	Qt
QEvent::AccelOverride	-	Key	press	in	child,	for	overriding	shortcut	key
handling,	QKeyEvent.
QEvent::WindowActivate	-	
QEvent::WindowDeactivate	-	
QEvent::CaptionChange	-	
QEvent::IconChange	-	
QEvent::ParentFontChange	-	
QEvent::ApplicationFontChange	-	
QEvent::PaletteChange	-	
QEvent::ParentPaletteChange	-	
QEvent::ApplicationPaletteChange	-	
QEvent::Clipboard	-	 QClipboard
QEvent::SockAct	-	 QSocketNotifier
QEvent::DragEnter	-	 QDragEnterEvent
QEvent::DragMove	-	 QDragMoveEvent
QEvent::DragLeave	-	 QDragLeaveEvent
QEvent::Drop	-	 QDropEvent
QEvent::DragResponse	-	Qt
QEvent::ChildInserted	-	 QChildEvent
QEvent::ChildRemoved	-	 QChildEvent
QEvent::LayoutHint	-	
QEvent::ActivateControl	-	Qt
QEvent::DeactivateControl	-	Qt
QEvent::Quit	-	
QEvent::Create	-	
QEvent::Destroy	-	
QEvent::Reparent	-	
QEvent::Speech	-	
QEvent::Tablet	-	Wacom	Tablet
QEvent::User	-	
QEvent::MaxUser	-	id

UserMaxUser

QEvent::QEvent	(Type	type)

type

bool	QEvent::spontaneous	()	const

Type	QEvent::type	()	const

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QLocalFs	Class	Reference
[network	module]

The	QLocalFs	class	is	an	implementation	of	a	QNetworkProtocol	that	works	on
the	local	file	system.	More...

#include	<qlocalfs.h>

Inherits	QNetworkProtocol.

List	of	all	member	functions.

Public	Members

QLocalFs	()

Detailed	Description

The	QLocalFs	class	is	an	implementation	of	a	QNetworkProtocol	that	works	on
the	local	file	system.

This	class	is	derived	from	QNetworkProtocol.	QLocalFs	is	not	normally	used
directly,	but	rather	through	a	QUrlOperator,	for	example:

				QUrlOperator	op("file:///tmp");

				op.listChildren();	//	Asks	the	server	to	provide	a	directory	listing

				

This	code	will	only	work	if	the	QLocalFs	class	is	registered;	to	register	the	class,
you	must	call	qInitNetworkProtocols()	before	using	a	QUrlOperator	with
QLocalFs.

If	you	really	need	to	use	QLocalFs	directly,	don't	forget	to	set	its	QUrlOperator
with	setUrl().

See	also	Qt	Network	Documentation,	QNetworkProtocol,	QUrlOperator	and
Input/Output	and	Networking.

Member	Function	Documentation

QLocalFs::QLocalFs	()

Constructor.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QSimpleRichText	Class	Reference
The	QSimpleRichText	class	provides	a	small	displayable	piece	of	rich	text.
More...

#include	<qsimplerichtext.h>

List	of	all	member	functions.

Public	Members

QSimpleRichText	(const	QString	&	text,	const	QFont	&	fnt,
const	QString	&	context	=	QString::null,	const	QStyleSheet	*	sheet	=	0)
QSimpleRichText	(const	QString	&	text,	const	QFont	&	fnt,
const	QString	&	context,	const	QStyleSheet	*	sheet,
const	QMimeSourceFactory	*	factory,	int	pageBreak	=	-1,
const	QColor	&	linkColor	=	Qt::blue,	bool	linkUnderline	=	TRUE)
~QSimpleRichText	()
void	setWidth	(int	w)
void	setWidth	(QPainter	*	p,	int	w)
void	setDefaultFont	(const	QFont	&	f)
int	width	()	const
int	widthUsed	()	const
int	height	()	const
void	adjustSize	()
void	draw	(QPainter	*	p,	int	x,	int	y,	const	QRect	&	clipRect,
const	QColorGroup	&	cg,	const	QBrush	*	paper	=	0)	const
void	draw	(QPainter	*	p,	int	x,	int	y,	const	QRegion	&	clipRegion,
const	QColorGroup	&	cg,	const	QBrush	*	paper	=	0)	const		(obsolete)
QString	context	()	const
QString	anchorAt	(const	QPoint	&	pos)	const
bool	inText	(const	QPoint	&	pos)	const

Detailed	Description

The	QSimpleRichText	class	provides	a	small	displayable	piece	of	rich	text.

This	class	encapsulates	simple	rich	text	usage	in	which	a	string	is	interpreted	as
rich	text	and	can	be	drawn.	This	is	particularly	useful	if	you	want	to	display
some	rich	text	in	a	custom	widget.	A	QStyleSheet	is	needed	to	interpret	the	tags
and	format	the	rich	text.	Qt	provides	a	default	HTML-like	style	sheet,	but	you
may	define	custom	style	sheets.

Once	created,	the	rich	text	object	can	be	queried	for	its	width(),	height(),	and	the
actual	width	used	(see	widthUsed()).	Most	importantly,	it	can	be	drawn	on	any
given	QPainter	with	draw().	QSimpleRichText	can	also	be	used	to	implement
hypertext	or	active	text	facilities	by	using	anchorAt().	A	hit	test	through	inText()
makes	it	possible	to	use	simple	rich	text	for	text	objects	in	editable	drawing
canvases.

Once	constructed	from	a	string	the	contents	cannot	be	changed,	only	resized.	If
the	contents	change,	just	throw	the	rich	text	object	away	and	make	a	new	one
with	the	new	contents.

For	large	documents	use	QTextEdit	or	QTextBrowser.	For	very	small	items	of
rich	text	you	can	use	a	QLabel.

See	also	Text	Related	Classes.

Member	Function	Documentation

QSimpleRichText::QSimpleRichText	(const	QString	&	text,
const	QFont	&	fnt,	const	QString	&	context	=	QString::null,
const	QStyleSheet	*	sheet	=	0)

Constructs	a	QSimpleRichText	from	the	rich	text	string	text	and	the	font	fnt.

The	font	is	used	as	a	basis	for	the	text	rendering.	When	using	rich	text	rendering
on	a	widget	w,	you	would	normally	specify	the	widget's	font,	for	example:

				QSimpleRichText	myrichtext(contents,	mywidget->font());

				

context	is	the	optional	context	of	the	rich	text	object.	This	becomes	important	if
text	contains	relative	references,	for	example	within	image	tags.
QSimpleRichText	always	uses	the	default	mime	source	factory	(see
QMimeSourceFactory::defaultFactory())	to	resolve	those	references.	The	context
will	then	be	used	to	calculate	the	absolute	path.	See
QMimeSourceFactory::makeAbsolute()	for	details.

The	sheet	is	an	optional	style	sheet.	If	it	is	0,	the	default	style	sheet	will	be	used
(see	QStyleSheet::defaultSheet()).

QSimpleRichText::QSimpleRichText	(const	QString	&	text,
const	QFont	&	fnt,	const	QString	&	context,
const	QStyleSheet	*	sheet,
const	QMimeSourceFactory	*	factory,	int	pageBreak	=	-1,
const	QColor	&	linkColor	=	Qt::blue,	bool	linkUnderline	=
TRUE)

Constructs	a	QSimpleRichText	from	the	rich	text	string	text	and	the	font	fnt.

This	is	a	slightly	more	complex	constructor	for	QSimpleRichText	that	takes	an
additional	mime	source	factory	factory,	a	page	break	parameter	pageBreak	and	a
bool	linkUnderline.	linkColor	is	only	provided	for	compatibility,	but	has	no
effect,	as	QColorGroup's	QColorGroup::link()	color	is	used	now.

context	is	the	optional	context	of	the	rich	text	object.	This	becomes	important	if
text	contains	relative	references,	for	example	within	image	tags.
QSimpleRichText	always	uses	the	default	mime	source	factory	(see
QMimeSourceFactory::defaultFactory())	to	resolve	those	references.	The	context
will	then	be	used	to	calculate	the	absolute	path.	See
QMimeSourceFactory::makeAbsolute()	for	details.

The	sheet	is	an	optional	style	sheet.	If	it	is	0,	the	default	style	sheet	will	be	used
(see	QStyleSheet::defaultSheet()).

This	constructor	is	useful	for	creating	a	QSimpleRichText	object	suitable	for
printing.	Set	pageBreak	to	be	the	height	of	the	contents	area	of	the	pages.

QSimpleRichText::~QSimpleRichText	()

Destroys	the	rich	text	object,	freeing	memory.

void	QSimpleRichText::adjustSize	()

Adjusts	the	richt	text	object	to	a	reasonable	size.

See	also	setWidth().

QString	QSimpleRichText::anchorAt	(const	QPoint	&	pos)	const

Returns	the	anchor	at	the	requested	position,	pos.	An	empty	string	is	returned	if
no	anchor	is	specified	for	this	position.

QString	QSimpleRichText::context	()	const

Returns	the	context	of	the	rich	text	object.	If	no	context	has	been	specified	in	the
constructor,	a	null	string	is	returned.	The	context	is	the	path	to	use	to	look	up
relative	links,	such	as	image	tags	and	anchor	references.

void	QSimpleRichText::draw	(QPainter	*	p,	int	x,	int	y,
const	QRect	&	clipRect,	const	QColorGroup	&	cg,
const	QBrush	*	paper	=	0)	const

Draws	the	formatted	text	with	painter	p,	at	position	(x,	y),	clipped	to	clipRect.
The	clipping	rectangle	is	given	in	the	rich	text	object's	coordinates	translated	by
(x,	y).	Colors	from	the	color	group	cg	are	used	as	needed,	and	if	not	0,	*paper	is
used	as	the	background	brush.

Note	that	the	display	code	is	highly	optimized	to	reduce	flicker,	so	passing	a
brush	for	paper	is	preferable	to	simply	clearing	the	area	to	be	painted	and	then
calling	this	without	a	brush.

Example:	helpviewer/helpwindow.cpp.

void	QSimpleRichText::draw	(QPainter	*	p,	int	x,	int	y,
const	QRegion	&	clipRegion,	const	QColorGroup	&	cg,
const	QBrush	*	paper	=	0)	const

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Use	the	version	with	clipRect	instead.	The	region	version	has	problems	with
larger	documents	on	some	platforms	(on	X11	regions	internally	are	represented
with	16bit	coordinates).

int	QSimpleRichText::height	()	const

Returns	the	height	of	the	rich	text	object	in	pixels.

See	also	setWidth().

Example:	helpviewer/helpwindow.cpp.

bool	QSimpleRichText::inText	(const	QPoint	&	pos)	const

Returns	TRUE	if	pos	is	within	a	text	line	of	the	rich	text	object;	otherwise
returns	FALSE.

void	QSimpleRichText::setDefaultFont	(const	QFont	&	f)

Sets	the	default	font	for	the	rich	text	object	to	f

void	QSimpleRichText::setWidth	(QPainter	*	p,	int	w)

Sets	the	width	of	the	rich	text	object	to	w	pixels,	recalculating	the	layout	as	if	it
were	to	be	drawn	with	painter	p.

Passing	a	painter	is	useful	when	you	intend	drawing	on	devices	other	than	the
screen,	for	example	a	QPrinter.

See	also	height()	and	adjustSize().

Example:	helpviewer/helpwindow.cpp.

void	QSimpleRichText::setWidth	(int	w)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Sets	the	width	of	the	rich	text	object	to	w	pixels.

See	also	height()	and	adjustSize().

int	QSimpleRichText::width	()	const

Returns	the	set	width	of	the	rich	text	object	in	pixels.

See	also	widthUsed().

int	QSimpleRichText::widthUsed	()	const

Returns	the	width	in	pixels	that	is	actually	used	by	the	rich	text	object.	This	can
be	smaller	or	wider	than	the	set	width.

It	may	be	wider,	for	example,	if	the	text	contains	images	or	non-breakable	words
that	are	already	wider	than	the	available	space.	It's	smaller	when	the	object	only
consists	of	lines	that	do	not	fill	the	width	completely.

See	also	width().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QUrlOperator	Class	Reference
[network	module]

The	QUrlOperator	class	provides	common	operations	on	URLs.	More...

#include	<qurloperator.h>

Inherits	QObject	and	QUrl.

List	of	all	member	functions.

Public	Members

QUrlOperator	()
QUrlOperator	(const	QString	&	url)
QUrlOperator	(const	QUrlOperator	&	url)
QUrlOperator	(const	QUrlOperator	&	url,	const	QString	&	relUrl,
bool	checkSlash	=	FALSE)
virtual	~QUrlOperator	()
virtual	const	QNetworkOperation	*	listChildren	()
virtual	const	QNetworkOperation	*	mkdir	(const	QString	&	dirname)
virtual	const	QNetworkOperation	*	remove	(const	QString	&	filename)
virtual	const	QNetworkOperation	*	rename	(const	QString	&	oldname,
const	QString	&	newname)
virtual	const	QNetworkOperation	*	get	(const	QString	&	location	=
QString::null)
virtual	const	QNetworkOperation	*	put	(const	QByteArray	&	data,
const	QString	&	location	=	QString::null)
virtual	QPtrList<QNetworkOperation>	copy	(const	QString	&	from,
const	QString	&	to,	bool	move	=	FALSE,	bool	toPath	=	TRUE)
virtual	void	copy	(const	QStringList	&	files,	const	QString	&	dest,
bool	move	=	FALSE)
virtual	bool	isDir	(bool	*	ok	=	0)
virtual	void	setNameFilter	(const	QString	&	nameFilter)
QString	nameFilter	()	const
virtual	QUrlInfo	info	(const	QString	&	entry)	const
virtual	void	stop	()

Signals

void	newChildren	(const	QValueList<QUrlInfo>	&	i,
QNetworkOperation	*	op)
void	finished	(QNetworkOperation	*	op)
void	start	(QNetworkOperation	*	op)
void	createdDirectory	(const	QUrlInfo	&	i,	QNetworkOperation	*	op)
void	removed	(QNetworkOperation	*	op)
void	itemChanged	(QNetworkOperation	*	op)
void	data	(const	QByteArray	&	data,	QNetworkOperation	*	op)
void	dataTransferProgress	(int	bytesDone,	int	bytesTotal,
QNetworkOperation	*	op)
void	startedNextCopy	(const	QPtrList<QNetworkOperation>	&	lst)
void	connectionStateChanged	(int	state,	const	QString	&	data)

Protected	Members

virtual	void	clearEntries	()
void	getNetworkProtocol	()
void	deleteNetworkProtocol	()

Related	Functions

void	qInitNetworkProtocols	()

Detailed	Description

The	QUrlOperator	class	provides	common	operations	on	URLs.

This	class	operates	on	hierarchical	structures	(such	as	filesystems)	using	URLs.
Its	API	facilitates	all	the	common	operations:

Operation Function
List	files listChildren()
Make	a	directory mkdir()
Remove	a	file remove()
Rename	a	file rename()
Get	a	file get()
Put	a	file put()
Copy	a	file copy()

You	can	obtain	additional	information	about	the	URL	with	isDir()	and	info().	If	a
directory	is	to	be	traversed	using	listChildren(),	a	name	filter	can	be	set	with
setNameFilter().

A	QUrlOperator	can	be	used	like	this,	for	example	to	download	a	file	(and
assuming	that	the	FTP	protocol	is	registered):

				QUrlOperator	*op	=	new	QUrlOperator();

				op->copy(QString("ftp://ftp.trolltech.com/qt/source/qt-2.1.0.tar.gz"),

													"file:/tmp");

				

If	you	want	to	be	notified	about	success/failure,	progress,	etc.,	you	can	connect
to	QUrlOperator's	signals,	e.g.	to	start(),	newChildren(),	createdDirectory(),
removed(),	data(),	dataTransferProgress(),	startedNextCopy(),
connectionStateChanged(),	finished(),	etc.	A	network	operation	can	be	stopped
with	stop().

The	class	uses	the	functionality	of	registered	network	protocols	to	perform	these
operations.	Depending	of	the	protocol	of	the	URL,	it	uses	an	appropriate
network	protocol	class	for	the	operations.	Each	of	the	operation	functions	of

QUrlOperator	creates	a	QNetworkOperation	object	that	describes	the	operation
and	puts	it	into	the	operation	queue	for	the	network	protocol	used.	If	no	suitable
protocol	could	be	found	(because	no	implementation	of	the	necessary	network
protocol	is	registered),	the	URL	operator	emits	errors.	Not	every	protocol
supports	every	operation,	but	error	handling	deals	with	this	problem.

To	register	the	available	network	protocols,	use	the	qInitNetworkProtocols()
function.	The	protocols	currently	supported	are:

FTP,
HTTP,
local	file	system.

For	more	information	about	the	Qt	Network	Architecture	see	the	Qt	Network
Documentation.

See	also	QNetworkProtocol,	QNetworkOperation,	Input/Output	and	Networking
and	Miscellaneous	Classes.

Member	Function	Documentation

QUrlOperator::QUrlOperator	()

Constructs	a	QUrlOperator	with	an	empty	(i.e.	invalid)	URL.

QUrlOperator::QUrlOperator	(const	QString	&	url)

Constructs	a	QUrlOperator	using	url	and	parses	this	string.

If	you	pass	strings	like	"/home/qt"	the	"file"	protocol	is	assumed.

QUrlOperator::QUrlOperator	(const	QUrlOperator	&	url)

Constructs	a	copy	of	url.

QUrlOperator::QUrlOperator	(const	QUrlOperator	&	url,
const	QString	&	relUrl,	bool	checkSlash	=	FALSE)

Constructs	a	QUrlOperator.	The	URL	on	which	this	QUrlOperator	operates	is
constructed	out	of	the	arguments	url,	relUrl	and	checkSlash:	see	the
corresponding	QUrl	constructor	for	an	explanation	of	these	arguments.

QUrlOperator::~QUrlOperator	()	[virtual]

Destructor.

void	QUrlOperator::clearEntries	()	[virtual	protected]

Clears	the	cache	of	children.

void	QUrlOperator::connectionStateChanged	(int	state,
const	QString	&	data)	[signal]

This	signal	is	emitted	whenever	the	URL	operator's	connection	state	changes.
state	describes	the	new	state,	which	is	a	QNetworkProtocol::ConnectionState

value.

data	is	a	string	that	describes	the	change	of	the	connection.	This	can	be	used	to
display	a	message	to	the	user.

QPtrList<QNetworkOperation>	QUrlOperator::copy	(
const	QString	&	from,	const	QString	&	to,	bool	move	=
FALSE,	bool	toPath	=	TRUE)	[virtual]

Copies	the	file	from	to	to.	If	move	is	TRUE,	the	file	is	moved	(copied	and
removed).	from	must	point	to	a	file	and	to	must	point	to	a	directory	(into	which
from	is	copied)	unless	toPath	is	set	to	FALSE.	If	toPath	is	set	to	FALSE	then	the
to	variable	is	assumed	to	be	the	absolute	file	path	(destination	file	path	+	file
name).	The	copying	is	done	using	the	get()	and	put()	operations.	If	you	want	to
be	notified	about	the	progress	of	the	operation,	connect	to	the
dataTransferProgress()	signal.	Bear	in	mind	that	the	get()	and	put()	operations
emit	this	signal	through	the	QUrlOperator.	The	number	of	transferred	bytes	and
the	total	bytes	that	you	receive	as	arguments	in	this	signal	do	not	relate	to	the	the
whole	copy	operation;	they	relate	first	to	the	get()	and	then	to	the	put()
operation.	Always	check	what	type	of	operation	the	signal	comes	from;	this	is
given	in	the	signal's	last	argument.

At	the	end,	finished()	(with	success	or	failure)	is	emitted,	so	check	the	state	of
the	network	operation	object	to	see	whether	or	not	the	operation	was	successful.

Because	a	move	or	copy	operation	consists	of	multiple	operations	(get(),	put()
and	maybe	remove()),	this	function	doesn't	return	a	single	QNetworkOperation,
but	rather	a	list	of	them.	They	are	in	the	order:	get(),	put()	and	(if	applicable)
remove().

See	also	get()	and	put().

void	QUrlOperator::copy	(const	QStringList	&	files,
const	QString	&	dest,	bool	move	=	FALSE)	[virtual]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Copies	the	files	to	the	directory	dest.	If	move	is	TRUE	the	files	are	moved,	not

copied.	dest	must	point	to	a	directory.

This	function	calls	copy()	for	each	entry	in	files	in	turn.	You	don't	get	a	result
from	this	function;	each	time	a	new	copy	begins,	startedNextCopy()	is	emitted,
with	a	list	of	QNetworkOperations	that	describe	the	new	copy	operation.

void	QUrlOperator::createdDirectory	(const	QUrlInfo	&	i,
QNetworkOperation	*	op)	[signal]

This	signal	is	emitted	when	mkdir()	succeeds	and	the	directory	has	been	created.
i	holds	the	information	about	the	new	directory.

op	is	a	pointer	to	the	operation	object,	which	contains	all	the	information	about
the	operation,	including	the	state.	op->arg(0)	holds	the	new	directory's	name.

See	also	QNetworkOperation	and	QNetworkProtocol.

void	QUrlOperator::data	(const	QByteArray	&	data,
QNetworkOperation	*	op)	[signal]

This	signal	is	emitted	when	new	data	has	been	received	after	calling	get()	or
put().	op	is	a	pointer	to	the	operation	object	which	contains	all	the	information
about	the	operation,	including	the	state.	op->arg(0)	holds	the	name	of	the	file
whose	data	is	retrieved	and	op->rawArg(1)	holds	the	(raw)	data.

See	also	QNetworkOperation	and	QNetworkProtocol.

void	QUrlOperator::dataTransferProgress	(int	bytesDone,
int	bytesTotal,	QNetworkOperation	*	op)	[signal]

This	signal	is	emitted	during	data	transfer	(using	put()	or	get()).	bytesDone
specifies	how	many	bytes	of	bytesTotal	have	been	transferred.	More	information
about	the	operation	is	stored	in	op,	a	pointer	to	the	network	operation	that	is
processed.	bytesTotal	may	be	-1,	which	means	that	the	total	number	of	bytes	is
not	known.

See	also	QNetworkOperation	and	QNetworkProtocol.

void	QUrlOperator::deleteNetworkProtocol	()	[protected]

Deletes	the	currently	used	network	protocol.

void	QUrlOperator::finished	(QNetworkOperation	*	op)
[signal]

This	signal	is	emitted	when	an	operation	of	some	sort	finishes,	whether	with
success	or	failure.	op	is	a	pointer	to	the	operation	object,	which	contains	all	the
information,	including	the	state,	of	the	operation	which	has	been	finished.	Check
the	state	and	error	code	of	the	operation	object	to	see	whether	or	not	the
operation	was	successful.

See	also	QNetworkOperation	and	QNetworkProtocol.

const	QNetworkOperation	*	QUrlOperator::get	(
const	QString	&	location	=	QString::null)	[virtual]

Tells	the	network	protocol	to	get	data	from	location	or,	if	this	is	QString::null,	to
get	data	from	the	location	to	which	this	URL	points	(see	QUrl::fileName()	and
QUrl::encodedPathAndQuery()).	What	happens	then	depends	on	the	network
protocol.	The	data()	signal	is	emitted	when	data	comes	in.	Because	it's	unlikely
that	all	data	will	come	in	at	once,	it	is	common	for	multiple	data()	signals	to	be
emitted.	The	dataTransferProgress()	signal	is	emitted	while	processing	the
operation.	At	the	end,	finished()	(with	success	or	failure)	is	emitted,	so	check	the
state	of	the	network	operation	object	to	see	whether	or	not	the	operation	was
successful.

If	location	is	QString::null,	the	path	of	this	QUrlOperator	should	point	to	a	file
when	you	use	this	operation.	If	location	is	not	empty,	it	can	be	a	relative	URL	(a
child	of	the	path	to	which	the	QUrlOperator	points)	or	an	absolute	URL.

For	example,	to	get	a	web	page	you	might	do	something	like	this:

				QUrlOperator	op("http://www.whatever.org/cgi-bin/search.pl?cmd=Hello");

				op.get();

				

For	most	other	operations,	the	path	of	the	QUrlOperator	must	point	to	a

directory.	If	you	want	to	download	a	file	you	could	do	the	following:

				QUrlOperator	op("ftp://ftp.whatever.org/pub");

				//	do	some	other	stuff	like	op.listChildren()	or	op.mkdir("new_dir")

				op.get("a_file.txt");

				

This	will	get	the	data	of	ftp://ftp.whatever.org/pub/a_file.txt.

Never	do	anything	like	this:

				QUrlOperator	op("http://www.whatever.org/cgi-bin");

				op.get("search.pl?cmd=Hello");	//	WRONG!

				

If	location	is	not	empty	and	relative	it	must	not	contain	any	queries	or
references,	just	the	name	of	a	child.	So	if	you	need	to	specify	a	query	or
reference,	do	it	as	shown	in	the	first	example	or	specify	the	full	URL	(such	as
http://www.whatever.org/cgi-bin/search.pl?cmd=Hello)	as	location.

See	also	copy().

void	QUrlOperator::getNetworkProtocol	()	[protected]

Finds	a	network	protocol	for	the	URL	and	deletes	the	old	network	protocol.

QUrlInfo	QUrlOperator::info	(const	QString	&	entry)	const
[virtual]

Returns	the	URL	information	for	the	child	entry,	or	returns	an	empty	QUrlInfo
object	if	there	is	no	information	available	about	entry.

bool	QUrlOperator::isDir	(bool	*	ok	=	0)	[virtual]

Returns	TRUE	if	the	URL	is	a	directory;	otherwise	returns	FALSE.	This	may	not
always	work	correctly,	if	the	protocol	of	the	URL	is	something	other	than	file
(local	filesystem).	If	you	pass	a	bool	pointer	as	the	ok	argument,	*ok	is	set	to
TRUE	if	the	result	of	this	function	is	known	to	be	correct,	and	to	FALSE
otherwise.

void	QUrlOperator::itemChanged	(QNetworkOperation	*	op)
[signal]

This	signal	is	emitted	whenever	a	file	which	is	a	child	of	the	URL	has	been
changed,	for	example	by	successfully	calling	rename().	op	is	a	pointer	to	the
operation	object	which	contains	all	the	information	about	the	operation,
including	the	state.	op->arg(0)	holds	the	original	file	name	and	op->arg(1)
holds	the	new	file	name	(if	it	was	changed).

See	also	QNetworkOperation	and	QNetworkProtocol.

const	QNetworkOperation	*	QUrlOperator::listChildren	()
[virtual]

Starts	listing	the	children	of	this	URL	(e.g.	the	files	in	the	directory).	The	start()
signal	is	emitted	before	the	first	entry	is	listed	and	finished()	is	emitted	after	the
last	one.	The	newChildren()	signal	is	emitted	for	each	list	of	new	entries.	If	an
error	occurs,	the	signal	finished()	is	emitted,	so	be	sure	to	check	the	state	of	the
network	operation	pointer.

Because	the	operation	may	not	be	executed	immediately,	a	pointer	to	the
QNetworkOperation	object	created	by	this	function	is	returned.	This	object
contains	all	the	data	about	the	operation	and	is	used	to	refer	to	this	operation
later	(e.g.	in	the	signals	that	are	emitted	by	the	QUrlOperator).	The	return	value
can	also	be	0	if	the	operation	object	couldn't	be	created.

The	path	of	this	QUrlOperator	must	to	point	to	a	directory	(because	the	children
of	this	directory	will	be	listed),	not	to	a	file.

const	QNetworkOperation	*	QUrlOperator::mkdir	(
const	QString	&	dirname)	[virtual]

Tries	to	create	a	directory	(child)	with	the	name	dirname.	If	it	is	successful,	a
newChildren()	signal	with	the	new	child	is	emitted,	and	the	createdDirectory()
signal	with	the	information	about	the	new	child	is	also	emitted.	The	finished()
signal	(with	success	or	failure)	is	emitted	after	the	operation	has	been	processed,
so	check	the	state	of	the	network	operation	object	to	see	whether	or	not	the
operation	was	successful.

Because	the	operation	will	not	be	executed	immediately,	a	pointer	to	the
QNetworkOperation	object	created	by	this	function	is	returned.	This	object
contains	all	the	data	about	the	operation	and	is	used	to	refer	to	this	operation
later	(e.g.	in	the	signals	that	are	emitted	by	the	QUrlOperator).	The	return	value
can	also	be	0	if	the	operation	object	couldn't	be	created.

The	path	of	this	QUrlOperator	must	to	point	to	a	directory	(not	a	file)	because
the	new	directory	will	be	created	in	this	path.

QString	QUrlOperator::nameFilter	()	const

Returns	the	name	filter	of	the	URL.

See	also	QUrlOperator::setNameFilter()	and	QDir::nameFilter().

void	QUrlOperator::newChildren	(
const	QValueList<QUrlInfo>	&	i,	QNetworkOperation	*	op)
[signal]

This	signal	is	emitted	after	listChildren()	was	called	and	new	children	(i.e.	files)
have	been	read	from	a	list	of	files.	i	holds	the	information	about	the	new	files.	op
is	a	pointer	to	the	operation	object	which	contains	all	the	information	about	the
operation,	including	the	state.

See	also	QNetworkOperation	and	QNetworkProtocol.

const	QNetworkOperation	*	QUrlOperator::put	(
const	QByteArray	&	data,	const	QString	&	location	=
QString::null)	[virtual]

This	function	tells	the	network	protocol	to	put	data	in	location.	If	location	is
empty	(QString::null),	it	puts	the	data	in	the	location	to	which	the	URL	points.
What	happens	depends	on	the	network	protocol.	Depending	on	the	network
protocol,	some	data	might	come	back	after	putting	data,	in	which	case	the	data()
signal	is	emitted.	The	dataTransferProgress()	signal	is	emitted	during	processing
of	the	operation.	At	the	end,	finished()	(with	success	or	failure)	is	emitted,	so
check	the	state	of	the	network	operation	object	to	see	whether	or	not	the
operation	was	successful.

If	location	is	QString::null,	the	path	of	this	QUrlOperator	should	point	to	a	file
when	you	use	this	operation.	If	location	is	not	empty,	it	can	be	a	relative	(a	child
of	the	path	to	which	the	QUrlOperator	points)	or	an	absolute	URL.

For	putting	some	data	to	a	file	you	can	do	the	following:

				QUrlOperator	op("ftp://ftp.whatever.com/home/me/filename.dat");

				op.put(data);

				

For	most	other	operations,	the	path	of	the	QUrlOperator	must	point	to	a
directory.	If	you	want	to	upload	data	to	a	file	you	could	do	the	following:

				QUrlOperator	op("ftp://ftp.whatever.com/home/me");

				//	do	some	other	stuff	like	op.listChildren()	or	op.mkdir("new_dir")

				op.put(data,	"filename.dat");

				

This	will	upload	the	data	to	ftp://ftp.whatever.com/home/me/filename.dat.

See	also	copy().

const	QNetworkOperation	*	QUrlOperator::remove	(
const	QString	&	filename)	[virtual]

Tries	to	remove	the	file	(child)	filename.	If	it	succeeds	the	removed()	signal	is
emitted.	finished()	(with	success	or	failure)	is	also	emitted	after	the	operation	has
been	processed,	so	check	the	state	of	the	network	operation	object	to	see	whether
or	not	the	operation	was	successful.

Because	the	operation	will	not	be	executed	immediately,	a	pointer	to	the
QNetworkOperation	object	created	by	this	function	is	returned.	This	object
contains	all	the	data	about	the	operation	and	is	used	to	refer	to	this	operation
later	(e.g.	in	the	signals	that	are	emitted	by	the	QUrlOperator).	The	return	value
can	also	be	0	if	the	operation	object	couldn't	be	created.

The	path	of	this	QUrlOperator	must	point	to	a	directory;	because	if	filename	is
relative,	it	will	try	to	remove	it	in	this	directory.

void	QUrlOperator::removed	(QNetworkOperation	*	op)
[signal]

This	signal	is	emitted	when	remove()	has	been	succesful	and	the	file	has	been
removed.

op	is	a	pointer	to	the	operation	object	which	contains	all	the	information	about
the	operation,	including	the	state.	op->arg(0)	holds	the	name	of	the	file	that	was
removed.

See	also	QNetworkOperation	and	QNetworkProtocol.

const	QNetworkOperation	*	QUrlOperator::rename	(
const	QString	&	oldname,	const	QString	&	newname)
[virtual]

Tries	to	rename	the	file	(child)	called	oldname	to	newname.	If	it	succeeds,	the
itemChanged()	signal	is	emitted.	finished()	(with	success	or	failure)	is	also
emitted	after	the	operation	has	been	processed,	so	check	the	state	of	the	network
operation	object	to	see	whether	or	not	the	operation	was	successful.

Because	the	operation	may	not	be	executed	immediately,	a	pointer	to	the
QNetworkOperation	object	created	by	this	function	is	returned.	This	object
contains	all	the	data	about	the	operation	and	is	used	to	refer	to	this	operation
later	(e.g.	in	the	signals	that	are	emitted	by	the	QUrlOperator).	The	return	value
can	also	be	0	if	the	operation	object	couldn't	be	created.

This	path	of	this	QUrlOperator	must	to	point	to	a	directory	because	oldname	and
newname	are	handled	relative	to	this	directory.

void	QUrlOperator::setNameFilter	(const	QString	&	nameFilter
)	[virtual]

Sets	the	name	filter	of	the	URL	to	nameFilter.

See	also	QDir::setNameFilter().

void	QUrlOperator::start	(QNetworkOperation	*	op)	[signal]

Some	operations	(such	as	listChildren())	emit	this	signal	when	they	start
processing	the	operation.	op	is	a	pointer	to	the	operation	object	which	contains
all	the	information	about	the	operation,	including	the	state.

See	also	QNetworkOperation	and	QNetworkProtocol.

void	QUrlOperator::startedNextCopy	(
const	QPtrList<QNetworkOperation>	&	lst)	[signal]

This	signal	is	emitted	if	copy()	starts	a	new	copy	operation.	lst	contains	all
QNetworkOperations	related	to	this	copy	operation.

See	also	copy().

void	QUrlOperator::stop	()	[virtual]

Stops	the	current	network	operation	and	removes	all	this	QUrlOperator's	waiting
network	operations.

Related	Functions

void	qInitNetworkProtocols	()

This	function	registers	the	network	protocols	for	FTP	and	HTTP.	You	have	to
call	this	function	before	you	use	QUrlOperator	for	these	protocols.

This	function	is	declared	in	qnetwork.h.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QCanvasPolygon	Class	Reference
[canvas	module]

The	QCanvasPolygon	class	provides	a	polygon	on	a	QCanvas.	More...

#include	<qcanvas.h>

Inherits	QCanvasPolygonalItem.

Inherited	by	QCanvasSpline.

List	of	all	member	functions.

Public	Members

QCanvasPolygon	(QCanvas	*	canvas)
~QCanvasPolygon	()
void	setPoints	(QPointArray	pa)
QPointArray	points	()	const
virtual	QPointArray	areaPoints	()	const
virtual	int	rtti	()	const

Protected	Members

virtual	void	drawShape	(QPainter	&	p)

Detailed	Description

The	QCanvasPolygon	class	provides	a	polygon	on	a	QCanvas.

Paints	a	polygon	with	a	QBrush.	The	polygon's	points	can	be	set	in	the
constructor	or	set	or	changed	later	using	setPoints().	Use	points()	to	retrieve	the
points,	or	areaPoints()	to	retrieve	the	points	relative	to	the	canvas's	origin.

The	polygon	can	be	drawn	on	a	painter	with	drawShape().

Like	any	other	canvas	item	polygons	can	be	moved	with	QCanvasItem::move()
and	QCanvasItem::moveBy(),	or	by	setting	coordinates	with
QCanvasItem::setX(),	QCanvasItem::setY()	and	QCanvasItem::setZ().

See	also	Graphics	Classes	and	Image	Processing	Classes.

Member	Function	Documentation

QCanvasPolygon::QCanvasPolygon	(QCanvas	*	canvas)

Constructs	a	point-less	polygon	on	the	canvas	canvas.	You	should	call
setPoints()	before	using	it	further.

QCanvasPolygon::~QCanvasPolygon	()

Destroys	the	polygon.

QPointArray	QCanvasPolygon::areaPoints	()	const	[virtual]

Returns	the	vertices	of	the	polygon	translated	by	the	polygon's	current	x(),	y()
position,	i.e.	relative	to	the	canvas's	origin.

See	also	setPoints()	and	points().

Reimplemented	from	QCanvasPolygonalItem.

void	QCanvasPolygon::drawShape	(QPainter	&	p)	[virtual
protected]

Draws	the	polygon	using	the	painter	p.

Note	that	QCanvasPolygon	does	not	support	an	outline	(pen	is	always	NoPen).

Reimplemented	from	QCanvasPolygonalItem.

QPointArray	QCanvasPolygon::points	()	const

Returns	the	vertices	of	the	polygon,	not	translated	by	the	position.

See	also	setPoints()	and	areaPoints().

int	QCanvasPolygon::rtti	()	const	[virtual]

Returns	4	(QCanvasItem::Rtti_Polygon).

See	also	QCanvasItem::rtti().

Reimplemented	from	QCanvasPolygonalItem.

Reimplemented	in	QCanvasSpline.

void	QCanvasPolygon::setPoints	(QPointArray	pa)

Sets	the	points	of	the	polygon	to	be	pa.	These	points	will	have	their	x	and	y
coordinates	automatically	translated	by	x(),	y()	as	the	polygon	is	moved.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QLock	Class	Reference
The	QLock	class	is	a	wrapper	for	a	System	V	shared	semaphore.	More...

#include	<qlock_qws.h>

List	of	all	member	functions.

Public	Members

QLock	(const	QString	&	filename,	char	id,	bool	create	=	FALSE)
~QLock	()
enum	Type	{	Read,	Write	}
bool	isValid	()	const
void	lock	(Type	t)
void	unlock	()
bool	locked	()	const

Detailed	Description

The	QLock	class	is	a	wrapper	for	a	System	V	shared	semaphore.

It	is	used	by	Qt/Embedded	for	synchronizing	access	to	the	graphics	card	and
shared	memory	region	between	processes.

See	also	Input/Output	and	Networking	and	Qt/Embedded.

Member	Type	Documentation

QLock::Type

QLock::Read

QLock::Write

Member	Function	Documentation

QLock::QLock	(const	QString	&	filename,	char	id,	bool	create	=
FALSE)

Creates	a	lock.	filename	is	the	file	path	of	the	Unix-domain	socket	the
Qt/Embedded	client	is	using.	id	is	the	name	of	the	particular	lock	to	be	created
on	that	socket.	If	create	is	TRUE	the	lock	is	to	be	created	(as	the	Qt/Embedded
server	does);	if	create	is	FALSE	the	lock	should	exist	already	(as	the
Qt/Embedded	client	expects).

QLock::~QLock	()

Destroys	a	lock

bool	QLock::isValid	()	const

Returns	TRUE	if	the	lock	constructor	was	succesful;	returns	FALSE	if	the	lock
could	not	be	created	or	was	not	available	to	connect	to.

void	QLock::lock	(Type	t)

Locks	the	semaphore	with	a	lock	of	type	t.	Locks	can	either	be	Read	or	Write.	If
a	lock	is	Read,	attempts	by	other	processes	to	obtain	Read	locks	will	succeed,
and	Write	attempts	will	block	until	the	lock	is	unlocked.	If	locked	as	Write,	all
attempts	to	lock	by	other	processes	will	block	until	the	lock	is	unlocked.	Locks
are	stacked:	i.e.	a	given	QLock	can	be	locked	multiple	times	by	the	same	process
without	blocking,	and	will	only	be	unlocked	after	a	corresponding	number	of
unlock()	calls.

bool	QLock::locked	()	const

Returns	TRUE	if	the	lock	is	currently	held	by	the	current	process;	otherwise
returns	FALSE.

void	QLock::unlock	()

Unlocks	the	semaphore.	If	other	processes	were	blocking	waiting	to	lock()	the
semaphore,	one	of	them	will	wake	up	and	succeed	in	lock()ing.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QSize
QSize	 ……

#include	<qsize.h>

QSize	()
QSize	(int	w,	int	h)
bool	isNull	()	const
bool	isEmpty	()	const
bool	isValid	()	const
int	width	()	const
int	height	()	const
void	setWidth	(int	w)
void	setHeight	(int	h)
void	transpose	()
QSize	expandedTo	(const	QSize	&	otherSize)	const
QSize	boundedTo	(const	QSize	&	otherSize)	const
QCOORD	&	rwidth	()
QCOORD	&	rheight	()
QSize	&	operator+=	(const	QSize	&	s)
QSize	&	operator-=	(const	QSize	&	s)
QSize	&	operator*=	(int	c)
QSize	&	operator*=	(double	c)
QSize	&	operator/=	(int	c)
QSize	&	operator/=	(double	c)

bool	operator==	(const	QSize	&	s1,	const	QSize	&	s2)
bool	operator!=	(const	QSize	&	s1,	const	QSize	&	s2)
const	QSize	operator+	(const	QSize	&	s1,	const	QSize	&	s2)
const	QSize	operator-	(const	QSize	&	s1,	const	QSize	&	s2)
const	QSize	operator*	(const	QSize	&	s,	int	c)
const	QSize	operator*	(int	c,	const	QSize	&	s)
const	QSize	operator*	(const	QSize	&	s,	double	c)
const	QSize	operator*	(double	c,	const	QSize	&	s)
const	QSize	operator/	(const	QSize	&	s,	int	c)
const	QSize	operator/	(const	QSize	&	s,	double	c)
QDataStream	&	operator<<	(QDataStream	&	s,	const	QSize	&	sz)
QDataStream	&	operator>>	(QDataStream	&	s,	QSize	&	sz)

QSize

QCOORD intqwindowdefs.hQCOORD
QCOORD_MIN-2147483648QCOORD_MAX2147483647

setWidth()setHeight() operator+=() operator-=
transpose() expandedTo() boundedTo()

QPointQRect

QSize::QSize	()

QSize::QSize	(int	w,	int	h)

wh

QSize	QSize::boundedTo	(const	QSize	&	otherSize)	const

otherSize

QSize	QSize::expandedTo	(const	QSize	&	otherSize)	const

otherSize

customlayout/card.cppcustomlayout/flow.cpp

int	QSize::height	()	const

width()

movies/main.cppqfd/fontdisplayer.cppqfd/qfd.cpp

bool	QSize::isEmpty	()	const

<=0<=0

bool	QSize::isNull	()	const

00

bool	QSize::isValid	()	const

>=0>=0

QSize	&	QSize::operator*=	(int	c)

c

QSize	&	QSize::operator*=	(double	c)

c

QSize	&	QSize::operator+=	(const	QSize	&	s)

s

				QSize	s(3,	7);

				QSize	r(-1,	4);

				s	+=	r;																					//	s(2,11)

QSize	&	QSize::operator-=	(const	QSize	&	s)

s

				QSize	s(3,	7);

				QSize	r(-1,	4);

				s	-=	r;																					//	s(4,3)

		

QSize	&	QSize::operator/=	(int	c)

c

QSize	&	QSize::operator/=	(double	c)

c

QCOORD	&	QSize::rheight	()

				QSize	s(100,	10);

				s.rheight()	+=	5;											//	s(100,15)

		

rwidth()

QCOORD	&	QSize::rwidth	()

				QSize	s(100,	10);

				s.rwidth()	+=	20;											//	s(120,10)

		

rheight()

void	QSize::setHeight	(int	h)

h

height()setWidth()

void	QSize::setWidth	(int	w)

w

width()	and	setHeight()

void	QSize::transpose	()

int	QSize::width	()	const

height()

movies/main.cppqfd/fontdisplayer.cppqfd/qfd.cpp

bool	operator!=	(const	QSize	&	s1,	const	QSize	&	s2)

s1s2

const	QSize	operator*	(const	QSize	&	s,	int	c)

sc

const	QSize	operator*	(int	c,	const	QSize	&	s)

sc

const	QSize	operator*	(const	QSize	&	s,	double	c)

sc

const	QSize	operator*	(double	c,	const	QSize	&	s)

sc

const	QSize	operator+	(const	QSize	&	s1,	const	QSize	&	s2)

s1s2

const	QSize	operator-	(const	QSize	&	s1,	const	QSize	&	s2)

s1s2

const	QSize	operator/	(const	QSize	&	s,	int	c)

sc

const	QSize	operator/	(const	QSize	&	s,	double	c)

sc

QDataStream	&	operator<<	(QDataStream	&	s,	const	QSize	&	sz
)

szs

QDataStream

bool	operator==	(const	QSize	&	s1,	const	QSize	&	s2)

s1s2

QDataStream	&	operator>>	(QDataStream	&	s,	QSize	&	sz)

szs

QDataStream

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QSizeGrip	Class	Reference
The	QSizeGrip	class	provides	a	corner-grip	for	resizing	a	top-level	window.
More...

#include	<qsizegrip.h>

Inherits	QWidget.

List	of	all	member	functions.

Public	Members

QSizeGrip	(QWidget	*	parent,	const	char	*	name	=	0)
~QSizeGrip	()
virtual	QSize	sizeHint	()	const

Protected	Members

virtual	void	paintEvent	(QPaintEvent	*	e)
virtual	void	mousePressEvent	(QMouseEvent	*	e)
virtual	void	mouseMoveEvent	(QMouseEvent	*	e)

Detailed	Description

The	QSizeGrip	class	provides	a	corner-grip	for	resizing	a	top-level	window.

This	widget	works	like	the	standard	Windows	resize	handle.	In	the	X11	version
this	resize	handle	generally	works	differently	from	the	one	provided	by	the
system;	we	hope	to	reduce	this	difference	in	the	future.

Put	this	widget	anywhere	in	a	widget	tree	and	the	user	can	use	it	to	resize	the
top-level	window.	Generally,	this	should	be	in	the	lower	right-hand	corner.	Note
that	QStatusBar	already	uses	this	widget,	so	if	you	have	a	status	bar	(e.g.	you	are
using	QMainWindow),	then	you	don't	need	to	use	this	widget	explicitly.

	

See	also	QStatusBar,	Widget	Appearance	and	Style,	Main	Window	and	Related
Classes	and	Basic	Widgets.

Member	Function	Documentation

QSizeGrip::QSizeGrip	(QWidget	*	parent,	const	char	*	name	=	0
)

Constructs	a	resize	corner	called	name,	as	a	child	widget	of	parent.

QSizeGrip::~QSizeGrip	()

Destroys	the	size	grip.

void	QSizeGrip::mouseMoveEvent	(QMouseEvent	*	e)	[virtual
protected]

Resizes	the	top-level	widget	containing	this	widget.	The	event	is	in	e.

Reimplemented	from	QWidget.

void	QSizeGrip::mousePressEvent	(QMouseEvent	*	e)	[virtual
protected]

Primes	the	resize	operation.	The	event	is	in	e.

Reimplemented	from	QWidget.

void	QSizeGrip::paintEvent	(QPaintEvent	*	e)	[virtual
protected]

Paints	the	resize	grip.	Resize	grips	are	usually	rendered	as	small	diagonal
textured	lines	in	the	lower-right	corner.	The	event	is	in	e.

Reimplemented	from	QWidget.

QSize	QSizeGrip::sizeHint	()	const	[virtual]

Returns	the	size	grip's	size	hint;	this	is	a	small	size.

Reimplemented	from	QWidget.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QFileIconProvider	Class	Reference
The	QFileIconProvider	class	provides	icons	for	QFileDialog	to	use.	More...

#include	<qfiledialog.h>

Inherits	QObject.

List	of	all	member	functions.

Public	Members

QFileIconProvider	(QObject	*	parent	=	0,	const	char	*	name	=	0)
virtual	const	QPixmap	*	pixmap	(const	QFileInfo	&	info)

Detailed	Description

The	QFileIconProvider	class	provides	icons	for	QFileDialog	to	use.

By	default	QFileIconProvider	is	not	used,	but	any	application	or	library	can
subclass	it,	reimplement	pixmap()	to	return	a	suitable	icon,	and	make	all
QFileDialog	objects	use	it	by	calling	the	static	function
QFileDialog::setIconProvider().

It	is	advisable	to	make	all	the	icons	that	QFileIconProvider	returns	be	the	same
size	or	at	least	the	same	width.	This	makes	the	list	view	look	much	better.

See	also	QFileDialog	and	Miscellaneous	Classes.

Member	Function	Documentation

QFileIconProvider::QFileIconProvider	(QObject	*	parent	=	0,
const	char	*	name	=	0)

Constructs	an	empty	file	icon	provider	called	name,	with	the	parent	parent.

const	QPixmap	*	QFileIconProvider::pixmap	(
const	QFileInfo	&	info)	[virtual]

Returns	a	pointer	to	a	pixmap	that	should	be	used	to	signify	the	file	with	the
information	info.

If	pixmap()	returns	0,	QFileDialog	draws	the	default	pixmap.

The	default	implementation	returns	particular	icons	for	files,	directories,	link-
files	and	link-directories.	It	returns	a	blank	"icon"	for	other	types.

If	you	return	a	pixmap	here,	it	should	measure	16x16	pixels.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QMap	Class	Reference
The	QMap	class	is	a	value-based	template	class	that	provides	a	dictionary.
More...

#include	<qmap.h>

List	of	all	member	functions.

Public	Members

typedef	Key	key_type
typedef	T	mapped_type
typedef	QPair<const	key_type,	mapped_type>	value_type
typedef	value_type	*	pointer
typedef	const	value_type	*	const_pointer
typedef	value_type	&	reference
typedef	const	value_type	&	const_reference
typedef	size_t	size_type
typedef	QMapIterator<Key,	T>	iterator
typedef	QMapConstIterator<Key,	T>	const_iterator
typedef	QPair<iterator,	bool>	insert_pair
QMap	()
QMap	(const	QMap<Key,	T>	&	m)
QMap	(const	std::map<Key,	T>	&	m)
~QMap	()
QMap<Key,	T>	&	operator=	(const	QMap<Key,	T>	&	m)
QMap<Key,	T>	&	operator=	(const	std::map<Key,	T>	&	m)
iterator	begin	()
iterator	end	()
const_iterator	begin	()	const
const_iterator	end	()	const
iterator	replace	(const	Key	&	k,	const	T	&	v)
size_type	size	()	const
bool	empty	()	const
QPair<iterator,	bool>	insert	(const	value_type	&	x)
void	erase	(iterator	it)
void	erase	(const	key_type	&	k)
size_type	count	(const	key_type	&	k)	const
T	&	operator[]	(const	Key	&	k)
void	clear	()
typedef	QMapIterator<Key,	T>	Iterator
typedef	QMapConstIterator<Key,	T>	ConstIterator
typedef	T	ValueType
iterator	find	(const	Key	&	k)
const_iterator	find	(const	Key	&	k)	const

const	T	&	operator[]	(const	Key	&	k)	const
bool	contains	(const	Key	&	k)	const
size_type	count	()	const
QValueList<Key>	keys	()	const
QValueList<T>	values	()	const
bool	isEmpty	()	const
iterator	insert	(const	Key	&	key,	const	T	&	value,	bool	overwrite	=	TRUE
)
void	remove	(iterator	it)
void	remove	(const	Key	&	k)

Protected	Members

void	detach	()

Related	Functions

QDataStream	&	operator>>	(QDataStream	&	s,	QMap<Key,	T>	&	m)
QDataStream	&	operator<<	(QDataStream	&	s,
const	QMap<Key,	T>	&	m)

Detailed	Description

The	QMap	class	is	a	value-based	template	class	that	provides	a	dictionary.

QMap	is	a	Qt	implementation	of	an	STL-like	map	container.	It	can	be	used	in
your	application	if	the	standard	map	is	not	available.	QMap	is	part	of	the	Qt
Template	Library.

QMap<Key,	Data>	defines	a	template	instance	to	create	a	dictionary	with	keys
of	type	Key	and	values	of	type	Data.	QMap	does	not	store	pointers	to	the
members	of	the	map;	instead,	it	holds	a	copy	of	every	member.	For	that	reason,
QMap	is	value-based,	whereas	QPtrList	and	QDict	are	pointer-based.

QMap	contains	and	manages	a	collection	of	objects	of	type	Data	with	associated
key	values	of	type	Key	and	provides	iterators	that	allow	the	contained	objects	to
be	addressed.	QMap	owns	the	contained	items.

Some	classes	cannot	be	used	within	a	QMap.	For	example	everything	derived
from	QObject	and	thus	all	classes	that	implement	widgets.	Only	values	can	be
used	in	a	QMap.	To	qualify	as	a	value,	the	class	must	provide

A	copy	constructor
An	assignment	operator
A	default	constructor,	i.e.	a	constructor	that	does	not	take	any	arguments.

Note	that	C++	defaults	to	field-by-field	assignment	operators	and	copy
constructors	if	no	explicit	version	is	supplied.	In	many	cases,	this	is	sufficient.

The	class	used	for	the	key	requires	that	the	operator<	is	implemented	to	define
ordering	of	the	keys.

QMap's	function	naming	is	consistent	with	the	other	Qt	classes	(e.g.,	count(),
isEmpty()).	QMap	also	provides	extra	functions	for	compatibility	with	STL
algorithms,	such	as	size()	and	empty().	Programmers	already	familiar	with	the
STL	map	can	use	these	functions	instead.

Example:

				#include	<qstring.h>

				#include	<qmap.h>

				#include	<qstring.h>

				class	Employee

				{

				public:

								Employee():	sn(0)	{}

								Employee(const	QString&	forename,	const	QString&	surname,	int	salary)

												:	fn(forename),	sn(surname),	sal(salary)

								{	}

								QString	forename()	const	{	return	fn;	}

								QString	surname()	const	{	return	sn;	}

								int	salary()	const	{	return	sal;	}

								void	setSalary(int	salary)	{	sal	=	salary;	}

				private:

								QString	fn;

								QString	sn;

								int	sal;

				};

				int	main(int	argc,	char	**argv)

				{

								QApplication	app(argc,	argv);

								typedef	QMap<QString,	Employee>	EmployeeMap;

								EmployeeMap	map;

								map["JD001"]	=	Employee("John",	"Doe",	50000);

								map["JD002"]	=	Employee("Jane",	"Williams",	80000);

								map["TJ001"]	=	Employee("Tom",	"Jones",	60000);

								Employee	sasha("Sasha",	"Hind",	50000);

								map["SH001"]	=	sasha;

								sasha.setSalary(40000);

								EmployeeMap::Iterator	it;

								for	(it	=	map.begin();	it	!=	map.end();	++it)	{

												printf("%s:	%s,	%s	earns	%d\n",

																				it.key().latin1(),

																				it.data().surname().latin1(),

																				it.data().forename().latin1(),

																				it.data().salary());

								}

								return	0;

				}

Program	output:

				JD001:	Doe,	John	earns	50000

				JW002:	Williams,	Jane	earns	80000

				SH001:	Hind,	Sasha	earns	50000

				TJ001:	Jones,	Tom	earns	60000

The	latest	changes	to	Sasha's	salary	did	not	affect	the	value	in	the	list	because	the
map	created	a	copy	of	Sasha's	entry.	In	addition,	notice	that	the	items	are	sorted
alphabetically	(by	key)	when	iterating	over	the	map.

There	are	several	ways	to	find	items	in	a	map.	The	begin()	and	end()	functions
return	iterators	to	the	beginning	and	end	of	the	map.	The	advantage	of	using	an
iterator	is	that	you	can	move	forward	or	backward	by
incrementing/decrementing	the	iterator.	The	iterator	returned	by	end()	points	to
the	element	which	is	one	past	the	last	element	in	the	container.	The	past-the-end
iterator	is	still	associated	with	the	map	it	belongs	to,	however	it	is	not
dereferenceable;	operator*()	will	not	return	a	well-defined	value.	If	the	map	is
empty,	the	iterator	returned	by	begin()	will	equal	the	iterator	returned	by	end().

Another	way	to	find	an	element	in	the	map	is	by	using	the	find()	function.	This
returns	an	iterator	pointing	to	the	desired	item	or	to	the	end()	iterator	if	no	such
element	exists.

Another	approach	uses	the	operator[].	But	be	warned:	if	the	map	does	not
contain	an	entry	for	the	element	you	are	looking	for,	operator[]	inserts	a	default
value.	If	you	do	not	know	that	the	element	you	are	searching	for	is	really	in	the
list,	you	should	not	use	operator[].	The	following	example	illustrates	this:

								QMap<QString,QString>	map;

								map["Clinton"]	=	"Bill";

								str	<<	map["Clinton"]	<<	map["Bush"]	<<	endl;

		

The	code	fragment	will	print	out	"Clinton",	"".	Since	the	value	associated	with
the	"Bush"	key	did	not	exist,	the	map	inserted	a	default	value	(in	this	case,	an
empty	string).	If	you	are	not	sure	whether	a	certain	element	is	in	the	map,	you
should	use	find()	and	iterators	instead.

If	you	just	want	to	know	whether	a	certain	key	is	contained	in	the	map,	use	the
contains()	function.	In	addition,	count()	tells	you	how	many	keys	there	are
currently	in	the	map.

It	is	safe	to	have	multiple	iterators	at	the	same	time.	If	some	member	of	the	map
is	removed,	only	iterators	pointing	to	the	removed	member	become	invalid;
inserting	in	the	map	does	not	invalidate	any	iterators.

Since	QMap	is	value-based,	there	is	no	need	to	be	concerned	about	deleting
items	in	the	map.	The	map	holds	its	own	copies	and	will	free	them	if	the
corresponding	member	or	the	map	itself	is	deleted.

QMap	is	implicitly	shared.	This	means	you	can	just	make	copies	of	the	map	in
time	O(1).	If	multiple	QMap	instances	share	the	same	data	and	one	is	modifying
the	map's	data,	this	modifying	instance	makes	a	copy	and	modifies	its	private
copy;	it	thus	does	not	affect	other	instances.	From	a	developer's	point	of	view
you	can	think	that	a	QMap	and	a	copy	of	this	map	have	nothing	to	do	with	each
other.	If	a	QMap	is	being	used	in	a	multi-threaded	program,	you	must	protect	all
access	to	the	map.	See	QMutex.

There	are	several	ways	of	inserting	new	items	into	the	map.	One	uses	the	insert()
method;	the	other	one	uses	operator[]	like	this:

				QMap<QString,	QString>	map;

				map["Clinton"]	=	"Bill";

				map.insert(qMakePair("Bush",	"George"));

		

Items	can	also	be	removed	from	the	map	in	several	ways.	The	first	is	to	pass	an
iterator	to	remove().	The	other	is	to	pass	a	key	value	to	remove(),	which	will
delete	the	entry	with	the	requested	key.	In	addition	you	can	clear	the	entire	map
using	the	clear()	method.

See	also	QMapIterator,	Qt	Template	Library	Classes,	Implicitly	and	Explicitly
Shared	Classes	and	Non-GUI	Classes.

Member	Type	Documentation

QMap::ConstIterator

The	map's	const	iterator	type,	Qt	style.

QMap::Iterator

The	map's	iterator	type,	Qt	style.

QMap::ValueType

Corresponds	to	QPair<key_type,	mapped_type>,	Qt	style.

QMap::const_iterator

The	map's	const	iterator	type.

QMap::const_pointer

Const	pointer	to	value_type.

QMap::const_reference

Const	reference	to	value_type.

QMap::iterator

The	map's	iterator	type.

QMap::key_type

The	map's	key	type.

QMap::mapped_type

The	map's	data	type.

QMap::pointer

Pointer	to	value_type.

QMap::reference

Reference	to	value_type.

QMap::size_type

An	unsigned	integral	type,	used	to	represent	various	sizes.

QMap::value_type

Corresponds	to	QPair<key_type,	mapped_type>.

Member	Function	Documentation

QMap::QMap	()

Constructs	an	empty	map.

QMap::QMap	(const	QMap<Key,	T>	&	m)

Constructs	a	copy	of	m.

This	operation	costs	O(1)	time	because	QMap	is	implicitly	shared.	The	first
instance	of	applying	modifications	to	a	shared	map	will	create	a	copy	that	takes
in	turn	O(n)	time.	However,	returning	a	QMap	from	a	function	is	very	fast.

QMap::QMap	(const	std::map<Key,	T>	&	m)

Constructs	a	copy	of	m.

QMap::~QMap	()

Destroys	the	map.	References	to	the	values	in	the	map	and	all	iterators	of	this
map	become	invalidated.	Since	QMap	is	highly	tuned	for	performance	you	won't
see	warnings	if	you	use	invalid	iterators,	because	it	is	not	possible	for	an	iterator
to	check	whether	it	is	valid	or	not.

iterator	QMap::begin	()

Returns	an	iterator	pointing	to	the	first	element	in	the	map.	This	iterator	equals
end()	if	the	map	is	empty.

The	items	in	the	map	are	traversed	in	the	order	defined	by	operator<(Key,	Key).

See	also	end()	and	QMapIterator.

const_iterator	QMap::begin	()	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves

essentially	like	the	above	function.

See	also	end()	and	QMapConstIterator.

void	QMap::clear	()

Removes	all	items	from	the	map.

See	also	remove().

bool	QMap::contains	(const	Key	&	k)	const

Returns	TRUE	if	the	map	contains	an	item	with	key	k;	otherwise	returns	FALSE.

size_type	QMap::count	(const	key_type	&	k)	const

Returns	the	number	of	items	whose	key	is	k.	Since	QMap	does	not	allow
duplicate	keys,	the	return	value	is	always	0	or	1.

This	function	is	provided	for	STL	compatibility.

size_type	QMap::count	()	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	the	number	of	items	in	the	map.

See	also	isEmpty().

void	QMap::detach	()	[protected]

If	the	map	does	not	share	its	data	with	another	QMap	instance,	nothing	happens;
otherwise	the	function	creates	a	new	copy	of	this	map	and	detaches	from	the
shared	one.	This	function	is	called	whenever	the	map	is	modified.	The	implicit
sharing	mechanism	is	implemented	this	way.

bool	QMap::empty	()	const

Returns	TRUE	if	the	map	contains	zero	items;	otherwise	returns	FALSE.

This	function	is	provided	for	STL	compatibility.	It	is	equivalent	to	isEmpty().

See	also	size().

iterator	QMap::end	()

The	iterator	returned	by	end()	points	to	the	element	which	is	one	past	the	last
element	in	the	container.	The	past-the-end	iterator	is	still	associated	with	the	map
it	belongs	to,	however	it	is	not	dereferenceable;	operator*()	will	not	return	a
well-defined	value.

This	iterator	equals	begin()	if	the	map	is	empty.

See	also	begin()	and	QMapIterator.

const_iterator	QMap::end	()	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

The	iterator	returned	by	end()	points	to	the	element	which	is	one	past	the	last
element	in	the	container.	The	past-the-end	iterator	is	still	associated	with	the	map
it	belongs	to,	however	it	is	not	dereferenceable;	operator*()	will	not	return	a
well-defined	value.

This	iterator	equals	begin()	if	the	map	is	empty.

See	also	begin()	and	QMapConstIterator.

void	QMap::erase	(iterator	it)

Removes	the	item	associated	with	the	iterator	it	from	the	map.

This	function	is	provided	for	STL	compatibility.	It	is	equivalent	to	remove().

See	also	clear().

void	QMap::erase	(const	key_type	&	k)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Removes	the	item	with	the	key	k	from	the	map.

iterator	QMap::find	(const	Key	&	k)

Returns	an	iterator	pointing	to	the	element	with	key	k	in	the	map.

Returns	end()	if	no	key	matched.

See	also	QMapIterator.

const_iterator	QMap::find	(const	Key	&	k)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	an	iterator	pointing	to	the	element	with	key	k	in	the	map.

Returns	end()	if	no	key	matched.

See	also	QMapConstIterator.

iterator	QMap::insert	(const	Key	&	key,	const	T	&	value,
bool	overwrite	=	TRUE)

Inserts	the	value	with	key.	If	there	is	already	a	value	associated	with	key,	it	is
replaced,	unless	overwrite	is	FALSE	(it	is	TRUE	by	default).

QPair<iterator,	bool>	QMap::insert	(const	value_type	&	x)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	the	(key,	value)	pair	x	into	the	map.	x	is	a	QPair	whose	first	element	is	a
key	to	be	inserted	and	whose	second	element	is	the	associated	value	to	be

inserted.	Returns	a	pair	whose	first	element	is	an	iterator	pointing	to	the
inserted	item	and	whose	second	element	is	a	bool	indicating	TRUE	if	x	was
inserted	and	FALSE	if	it	was	not	inserted	because	it	was	already	present.

bool	QMap::isEmpty	()	const

Returns	TRUE	if	the	map	contains	zero	items;	otherwise	returns	FALSE.

See	also	count().

QValueList<Key>	QMap::keys	()	const

Returns	a	list	of	all	the	keys	in	the	map.

QMap<Key,	T>	&	QMap::operator=	(const	QMap<Key,	T>	&	m
)

Assigns	m	to	this	map	and	returns	a	reference	to	this	map.

All	iterators	of	the	current	map	become	invalidated	by	this	operation.	The	cost	of
such	an	assignment	is	O(1),	because	QMap	is	implicitly	shared.

QMap<Key,	T>	&	QMap::operator=	(
const	std::map<Key,	T>	&	m)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Assigns	m	to	this	map	and	returns	a	reference	to	this	map.

All	iterators	of	the	current	map	become	invalidated	by	this	operation.

T	&	QMap::operator[]	(const	Key	&	k)

Returns	the	value	associated	with	the	key	k.	If	no	such	key	is	present,	an	empty
item	is	inserted	with	this	key	and	a	reference	to	the	item	is	returned.

You	can	use	this	operator	both	for	reading	and	writing:

				QMap<QString,	QString>	map;

				map["Clinton"]	=	"Bill";

				stream	<<	map["Clinton"];

		

const	T	&	QMap::operator[]	(const	Key	&	k)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Warning:	This	function	differs	from	the	non-const	version	of	the	same	function.
It	will	not	insert	an	empty	value	if	the	key	k	does	not	exist.	This	may	lead	to
logic	errors	in	your	program.	You	should	check	if	the	element	exists	before
calling	this	function.

Returns	the	value	associated	with	the	key	k.	If	no	such	key	is	present,	a	reference
to	an	empty	item	is	returned.

void	QMap::remove	(iterator	it)

Removes	the	item	associated	with	the	iterator	it	from	the	map.

See	also	clear().

void	QMap::remove	(const	Key	&	k)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Removes	the	item	with	the	key	k	from	the	map.

iterator	QMap::replace	(const	Key	&	k,	const	T	&	v)

Replaces	the	value	with	key	k	from	the	map	if	possible,	and	inserts	the	new
value	v	with	key	k	in	the	map.

See	also	insert()	and	remove().

size_type	QMap::size	()	const

Returns	the	number	of	items	in	the	map.

This	function	is	provided	for	STL	compatibility.	It	is	equivalent	to	count().

See	also	empty().

QValueList<T>	QMap::values	()	const

Returns	a	list	of	all	the	values	in	the	map.

Related	Functions

QDataStream	&	operator<<	(QDataStream	&	s,
const	QMap<Key,	T>	&	m)

Writes	the	map	m	to	the	stream	s.	The	types	Key	and	T	must	implement	the
streaming	operator	as	well.

QDataStream	&	operator>>	(QDataStream	&	s,
QMap<Key,	T>	&	m)

Reads	the	map	m	from	the	stream	s.	The	types	Key	and	T	must	implement	the
streaming	operator	as	well.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QSizePolicy	Class	Reference
The	QSizePolicy	class	is	a	layout	attribute	describing	horizontal	and	vertical
resizing	policy.	More...

#include	<qsizepolicy.h>

List	of	all	member	functions.

Public	Members

enum	SizeType	{	Fixed	=	0,	Minimum	=	MayGrow,	Maximum	=
MayShrink,	Preferred	=	MayGrow	|	MayShrink,	MinimumExpanding	=
MayGrow	|	ExpMask,	Expanding	=	MayGrow	|	MayShrink	|	ExpMask,
Ignored	=	ExpMask	}
enum	ExpandData	{	NoDirection	=	0,	Horizontally	=	1,	Vertically	=	2,
BothDirections	=	Horizontally	|	Vertically,	Horizontal	=	Horizontally,
Vertical	=	Vertically	}
QSizePolicy	()
QSizePolicy	(SizeType	hor,	SizeType	ver,	bool	hfw	=	FALSE)
QSizePolicy	(SizeType	hor,	SizeType	ver,	uchar	horStretch,
uchar	verStretch,	bool	hfw	=	FALSE)
SizeType	horData	()	const
SizeType	verData	()	const
bool	mayShrinkHorizontally	()	const
bool	mayShrinkVertically	()	const
bool	mayGrowHorizontally	()	const
bool	mayGrowVertically	()	const
ExpandData	expanding	()	const
void	setHorData	(SizeType	d)
void	setVerData	(SizeType	d)
void	setHeightForWidth	(bool	b)
bool	hasHeightForWidth	()	const
bool	operator==	(const	QSizePolicy	&	s)	const
bool	operator!=	(const	QSizePolicy	&	s)	const
uint	horStretch	()	const
uint	verStretch	()	const
void	setHorStretch	(uchar	sf)
void	setVerStretch	(uchar	sf)

Detailed	Description

The	QSizePolicy	class	is	a	layout	attribute	describing	horizontal	and	vertical
resizing	policy.

The	size	policy	of	a	widget	is	an	expression	of	its	willingness	to	be	resized	in
various	ways.

Widgets	that	reimplement	QWidget::sizePolicy()	return	a	QSizePolicy	that
describes	the	horizontal	and	vertical	resizing	policy	they	prefer	when	being	laid
out.	Only	one	of	the	constructors	is	of	interest	in	most	applications.

QSizePolicy	contains	two	independent	SizeType	objects;	one	describes	the
widgets's	horizontal	size	policy,	and	the	other	describes	its	vertical	size	policy.	It
also	contains	a	flag	to	indicate	whether	the	height	and	width	of	its	preferred	size
are	related.

The	per-dimension	SizeType	objects	are	set	in	the	usual	constructor	and	can	be
queried	using	a	variety	of	functions,	none	of	which	are	really	interesting	to
application	programmers.

The	hasHeightForWidth()	flag	indicates	whether	the	widget's	sizeHint()	is	width-
dependent	(such	as	a	word-wrapping	label).

See	also	QSizePolicy::SizeType,	Widget	Appearance	and	Style	and	Layout
Management.

Member	Type	Documentation

QSizePolicy::ExpandData

This	enum	type	describes	in	which	directions	a	widget	can	make	use	of	extra
space.	There	are	four	possible	values:

QSizePolicy::NoDirection	-	the	widget	cannot	make	use	of	extra	space	in
any	direction.
QSizePolicy::Horizontally	-	the	widget	can	usefully	be	wider	than	the
sizeHint().
QSizePolicy::Vertically	-	the	widget	can	usefully	be	taller	than	the
sizeHint().
QSizePolicy::BothDirections	-	the	widget	can	usefully	be	both	wider
and	taller	than	the	sizeHint().

QSizePolicy::SizeType

The	per-dimension	sizing	types	used	when	constructing	a	QSizePolicy	are:

QSizePolicy::Fixed	-	the	QWidget::sizeHint()	is	the	only	acceptable
alternative,	so	the	widget	can	never	grow	or	shrink	(e.g.	the	vertical
direction	of	a	push	button).
QSizePolicy::Minimum	-	the	sizeHint()	is	minimal,	and	sufficient.	The
widget	can	be	expanded,	but	there	is	no	advantage	to	it	being	larger	(e.g.	the
horizontal	direction	of	a	push	button).
QSizePolicy::Maximum	-	the	sizeHint()	is	a	maximum.	The	widget	can	be
shrunk	any	amount	without	detriment	if	other	widgets	need	the	space	(e.g.	a
separator	line).
QSizePolicy::Preferred	-	the	sizeHint()	is	best,	but	the	widget	can	be
shrunk	and	still	be	useful.	The	widget	can	be	expanded,	but	there	is	no
advantage	to	it	being	larger	than	sizeHint()	(the	default	QWidget	policy).
QSizePolicy::Expanding	-	the	sizeHint()	is	a	sensible	size,	but	the	widget
can	be	shrunk	and	still	be	useful.	The	widget	can	make	use	of	extra	space,
so	it	should	get	as	much	space	as	possible	(e.g.	the	horizontal	direction	of	a
slider).
QSizePolicy::MinimumExpanding	-	the	sizeHint()	is	minimal,	and

sufficient.	The	widget	can	make	use	of	extra	space,	so	it	should	get	as	much
space	as	possible	(e.g.	the	horizontal	direction	of	a	slider).
QSizePolicy::Ignored	-	the	sizeHint()	is	ignored.	The	widget	will	get	as
much	space	as	possible.

In	any	case,	QLayout	never	shrinks	a	widget	below	the
QWidget::minimumSizeHint().

Member	Function	Documentation

QSizePolicy::QSizePolicy	()

Default	constructor;	produces	a	minimally	initialized	QSizePolicy.

QSizePolicy::QSizePolicy	(SizeType	hor,	SizeType	ver,	bool	hfw	=
FALSE)

This	is	the	constructor	normally	used	to	return	a	value	in	the	overridden
QWidget::sizePolicy()	function	of	a	QWidget	subclass.

It	constructs	a	QSizePolicy	with	independent	horizontal	and	vertical	sizing
types,	hor	and	ver	respectively.	These	sizing	types	affect	how	the	widget	is
treated	by	the	layout	engine.

If	hfw	is	TRUE,	the	preferred	height	of	the	widget	is	dependent	on	the	width	of
the	widget	(for	example,	a	QLabel	with	line	wrapping).

See	also	horData(),	verData()	and	hasHeightForWidth().

QSizePolicy::QSizePolicy	(SizeType	hor,	SizeType	ver,
uchar	horStretch,	uchar	verStretch,	bool	hfw	=	FALSE)

Constructs	a	QSizePolicy	with	independent	horizontal	and	vertical	sizing	types
hor	and	ver,	and	stretch	factors	horStretch	and	verStretch.

If	hfw	is	TRUE,	the	preferred	height	of	the	widget	is	dependent	on	the	width	of
the	widget.

See	also	horStretch()	and	verStretch().

ExpandData	QSizePolicy::expanding	()	const

Returns	a	value	indicating	whether	the	widget	can	make	use	of	extra	space	(i.e.	if
it	"wants"	to	grow)	horizontally	and/or	vertically.

See	also	mayShrinkHorizontally(),	mayGrowHorizontally(),
mayShrinkVertically()	and	mayGrowVertically().

bool	QSizePolicy::hasHeightForWidth	()	const

Returns	TRUE	if	the	widget's	preferred	height	depends	on	its	width;	otherwise
returns	FALSE.

See	also	setHeightForWidth().

SizeType	QSizePolicy::horData	()	const

Returns	the	horizontal	component	of	the	size	policy.

See	also	setHorData(),	verData()	and	horStretch().

uint	QSizePolicy::horStretch	()	const

Returns	the	horizontal	stretch	factor	of	the	size	policy.

See	also	setHorStretch()	and	verStretch().

bool	QSizePolicy::mayGrowHorizontally	()	const

Returns	TRUE	if	the	widget	can	sensibly	be	wider	than	its	sizeHint();	otherwise
returns	FALSE.

See	also	mayGrowVertically()	and	mayShrinkHorizontally().

bool	QSizePolicy::mayGrowVertically	()	const

Returns	TRUE	if	the	widget	can	sensibly	be	taller	than	its	sizeHint();	otherwise
returns	FALSE.

See	also	mayGrowHorizontally()	and	mayShrinkVertically().

bool	QSizePolicy::mayShrinkHorizontally	()	const

Returns	TRUE	if	the	widget	can	sensibly	be	narrower	than	its	sizeHint();

otherwise	returns	FALSE.

See	also	mayShrinkVertically()	and	mayGrowHorizontally().

bool	QSizePolicy::mayShrinkVertically	()	const

Returns	TRUE	if	the	widget	can	sensibly	be	shorter	than	its	sizeHint();	otherwise
returns	FALSE.

See	also	mayShrinkHorizontally()	and	mayGrowVertically().

bool	QSizePolicy::operator!=	(const	QSizePolicy	&	s)	const

Returns	TRUE	if	this	policy	is	different	from	s;	otherwise	returns	FALSE.

See	also	operator==().

bool	QSizePolicy::operator==	(const	QSizePolicy	&	s)	const

Returns	TRUE	if	this	policy	is	equal	to	s;	otherwise	returns	FALSE.

See	also	operator!=().

void	QSizePolicy::setHeightForWidth	(bool	b)

Sets	the	hasHeightForWidth()	flag	to	b.

See	also	hasHeightForWidth().

void	QSizePolicy::setHorData	(SizeType	d)

Sets	the	horizontal	component	of	the	size	policy	to	size	type	d.

See	also	horData()	and	setVerData().

void	QSizePolicy::setHorStretch	(uchar	sf)

Sets	the	horizontal	stretch	factor	of	the	size	policy	to	sf.

See	also	horStretch()	and	setVerStretch().

void	QSizePolicy::setVerData	(SizeType	d)

Sets	the	vertical	component	of	the	size	policy	to	size	type	d.

See	also	verData()	and	setHorData().

void	QSizePolicy::setVerStretch	(uchar	sf)

Sets	the	vertical	stretch	factor	of	the	size	policy	to	sf.

See	also	verStretch()	and	setHorStretch().

SizeType	QSizePolicy::verData	()	const

Returns	the	vertical	component	of	the	size	policy.

See	also	setVerData(),	horData()	and	verStretch().

uint	QSizePolicy::verStretch	()	const

Returns	the	vertical	stretch	factor	of	the	size	policy.

See	also	setVerStretch()	and	horStretch().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QValueListConstIterator
QValueListConstIteratorQValueList	 ……

#include	<qvaluelist.h>

typedef	T	value_type
typedef	const	T	*	pointer
typedef	const	T	&	reference
QValueListConstIterator	()
QValueListConstIterator	(const	QValueListConstIterator<T>	&	it)
QValueListConstIterator	(const	QValueListIterator<T>	&	it)
bool	operator==	(const	QValueListConstIterator<T>	&	it)	const
bool	operator!=	(const	QValueListConstIterator<T>	&	it)	const
const	T	&	operator*	()	const
QValueListConstIterator<T>	&	operator++	()
QValueListConstIterator<T>	operator++	(int)
QValueListConstIterator<T>	&	operator--	()
QValueListConstIterator<T>	operator--	(int)

QValueListConstIterator QValueList

QValueListIterator

QValueList const_iterator

QValueListQValueListIterator

QValueListIteratora	href="qvaluelist.html">QValueList QtGUI

QValueListConstIterator::pointer

QValueListConstIterator::reference

QValueListConstIterator::value_type

T

QValueListConstIterator::QValueListConstIterator	()

QValueListConstIterator::QValueListConstIterator	(
const	QValueListConstIterator<T>	&	it)

it

QValueListConstIterator::QValueListConstIterator	(
const	QValueListIterator<T>	&	it)

it

bool	QValueListConstIterator::operator!=	(
const	QValueListConstIterator<T>	&	it)	const

it

const	T	&	QValueListConstIterator::operator*	()	const

QValueListConstIterator<T>	&
QValueListConstIterator::operator++	()

++end()

QValueListConstIterator<T>
QValueListConstIterator::operator++	(int)

++end()

QValueListConstIterator<T>	&
QValueListConstIterator::operator--	()

--begin()

QValueListConstIterator<T>	QValueListConstIterator::operator-
-	(int)

--begin()

bool	QValueListConstIterator::operator==	(
const	QValueListConstIterator<T>	&	it)	const

it

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QCanvasSpline	Class	Reference
[canvas	module]

The	QCanvasSpline	class	provides	multi-bezier	splines	on	a	QCanvas.	More...

#include	<qcanvas.h>

Inherits	QCanvasPolygon.

List	of	all	member	functions.

Public	Members

QCanvasSpline	(QCanvas	*	canvas)
~QCanvasSpline	()
void	setControlPoints	(QPointArray	ctrl,	bool	close	=	TRUE)
QPointArray	controlPoints	()	const
bool	closed	()	const
virtual	int	rtti	()	const

Detailed	Description

The	QCanvasSpline	class	provides	multi-bezier	splines	on	a	QCanvas.

A	QCanvasSpline	is	a	sequence	of	4-point	bezier	curves	joined	together	to	make
a	curved	shape.

You	set	the	control	points	of	the	spline	with	setControlPoints().

If	the	bezier	is	closed(),	then	the	first	control	point	will	be	re-used	as	the	last
control	point.	Therefore,	a	closed	bezier	must	have	a	multiple	of	3	control	points
and	an	open	bezier	must	have	one	extra	point.

The	beziers	are	not	necessarily	joined	"smoothly".	To	ensure	this,	set	control
points	appropriately	(general	reference	texts	about	beziers	will	explain	this	in
detail).

Like	any	other	canvas	item	splines	can	be	moved	with	QCanvasItem::move()
and	QCanvasItem::moveBy(),	or	by	setting	coordinates	with
QCanvasItem::setX(),	QCanvasItem::setY()	and	QCanvasItem::setZ().

See	also	Graphics	Classes	and	Image	Processing	Classes.

Member	Function	Documentation

QCanvasSpline::QCanvasSpline	(QCanvas	*	canvas)

Create	a	spline	with	no	control	points	on	the	canvas	canvas.

See	also	setControlPoints().

QCanvasSpline::~QCanvasSpline	()

Destroy	the	spline.

bool	QCanvasSpline::closed	()	const

Returns	TRUE	if	the	control	points	are	a	closed	set;	otherwise	returns	FALSE.

QPointArray	QCanvasSpline::controlPoints	()	const

Returns	the	current	set	of	control	points.

See	also	setControlPoints()	and	closed().

int	QCanvasSpline::rtti	()	const	[virtual]

Returns	8	(QCanvasItem::Rtti_Spline).

See	also	QCanvasItem::rtti().

Reimplemented	from	QCanvasPolygon.

void	QCanvasSpline::setControlPoints	(QPointArray	ctrl,
bool	close	=	TRUE)

Set	the	spline	control	points	to	ctrl.

If	close	is	TRUE,	then	the	first	point	in	ctrl	will	be	re-used	as	the	last	point,	and
the	number	of	control	points	must	be	a	multiple	of	3.	If	close	is	FALSE,	one

additional	control	point	is	required,	and	the	number	of	control	points	must	be
one	of	(4,	7,	11,	...).

If	the	number	of	control	points	doesn't	meet	the	above	conditions,	the	number	of
points	will	be	truncated	to	the	largest	number	of	points	that	do	meet	the
requirement.

Example:	canvas/canvas.cpp.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QFileInfo	Class	Reference
The	QFileInfo	class	provides	system-independent	file	information.	More...

#include	<qfileinfo.h>

List	of	all	member	functions.

Public	Members

enum	PermissionSpec	{	ReadUser	=	0400,	WriteUser	=	0200,	ExeUser	=
0100,	ReadGroup	=	0040,	WriteGroup	=	0020,	ExeGroup	=	0010,
ReadOther	=	0004,	WriteOther	=	0002,	ExeOther	=	0001	}
QFileInfo	()
QFileInfo	(const	QString	&	file)
QFileInfo	(const	QFile	&	file)
QFileInfo	(const	QDir	&	d,	const	QString	&	fileName)
QFileInfo	(const	QFileInfo	&	fi)
~QFileInfo	()
QFileInfo	&	operator=	(const	QFileInfo	&	fi)
void	setFile	(const	QString	&	file)
void	setFile	(const	QFile	&	file)
void	setFile	(const	QDir	&	d,	const	QString	&	fileName)
bool	exists	()	const
void	refresh	()	const
bool	caching	()	const
void	setCaching	(bool	enable)
QString	filePath	()	const
QString	fileName	()	const
QString	absFilePath	()	const
QString	baseName	(bool	complete	=	FALSE)	const
QString	extension	(bool	complete	=	TRUE)	const
QString	dirPath	(bool	absPath	=	FALSE)	const
QDir	dir	(bool	absPath	=	FALSE)	const
bool	isReadable	()	const
bool	isWritable	()	const
bool	isExecutable	()	const
bool	isRelative	()	const
bool	convertToAbs	()
bool	isFile	()	const
bool	isDir	()	const
bool	isSymLink	()	const
QString	readLink	()	const
QString	owner	()	const
uint	ownerId	()	const

QString	group	()	const
uint	groupId	()	const
bool	permission	(int	permissionSpec)	const
uint	size	()	const
QDateTime	created	()	const
QDateTime	lastModified	()	const
QDateTime	lastRead	()	const

Detailed	Description

The	QFileInfo	class	provides	system-independent	file	information.

QFileInfo	provides	information	about	a	file's	name	and	position	(path)	in	the	file
system,	its	access	rights	and	whether	it	is	a	directory	or	symbolic	link,	etc.	The
file's	size	and	last	modified/read	times	are	also	available.

A	QFileInfo	can	point	to	a	file	with	either	a	relative	or	an	absolute	file	path.
Absolute	file	paths	begin	with	the	directory	separator	"/"	or	a	drive	specification
(except	on	Unix).	Relative	file	names	begin	with	a	directory	name	or	a	file	name
and	specify	a	path	relative	to	the	current	working	directory.	An	example	of	an
absolute	path	is	the	string	"/tmp/quartz".	A	relative	path	might	look	like
"src/fatlib".	You	can	use	the	function	isRelative()	to	check	whether	a	QFileInfo
is	using	a	relative	or	an	absolute	file	path.	You	can	call	the	function
convertToAbs()	to	convert	a	relative	QFileInfo's	path	to	an	absolute	path.

The	file	that	the	QFileInfo	works	on	is	set	in	the	constructor	or	later	with
setFile().	Use	exists()	to	see	if	the	file	exists	and	size()	to	get	its	size.

To	speed	up	performance,	QFileInfo	caches	information	about	the	file.	Because
files	can	be	changed	by	other	users	or	programs,	or	even	by	other	parts	of	the
same	program,	there	is	a	function	that	refreshes	the	file	information:	refresh().	If
you	want	to	switch	off	a	QFileInfo's	caching	and	force	it	to	access	the	file
system	every	time	you	request	information	from	it	call	setCaching(FALSE).

The	file's	type	is	obtained	with	isFile(),	isDir()	and	isSymLink().	The	readLink()
function	provides	the	name	of	the	file	the	symlink	points	to.

Elements	of	the	file's	name	can	be	extracted	with	dirPath()	and	fileName().	The
fileName()'s	parts	can	be	extracted	with	baseName()	and	extension().

The	file's	dates	are	returned	by	created(),	lastModified()	and	lastRead().
Information	about	the	file's	access	permissions	is	obtained	with	isReadable(),
isWritable()	and	isExecutable().	The	file's	ownership	is	available	from	owner(),
ownerId(),	group()	and	groupId().	You	can	examine	a	file's	permissions	and
ownership	in	a	single	statement	using	the	permission()	function.

If	you	need	to	read	and	traverse	directories,	see	the	QDir	class.

See	also	Input/Output	and	Networking.

Member	Type	Documentation

QFileInfo::PermissionSpec

This	enum	is	used	by	the	permission()	function	to	report	the	permissions	and
ownership	of	a	file.	The	values	may	be	OR-ed	together	to	test	multiple
permissions	and	ownership	values.

QFileInfo::ReadUser	-	The	file	is	readable	by	the	user.
QFileInfo::WriteUser	-	The	file	is	writable	by	the	user.
QFileInfo::ExeUser	-	The	file	is	executable	by	the	user.
QFileInfo::ReadGroup	-	The	file	is	readable	by	the	group.
QFileInfo::WriteGroup	-	The	file	is	writable	by	the	group.
QFileInfo::ExeGroup	-	The	file	is	executable	by	the	group.
QFileInfo::ReadOther	-	The	file	is	readable	by	anyone.
QFileInfo::WriteOther	-	The	file	is	writable	by	anyone.
QFileInfo::ExeOther	-	The	file	is	executable	by	anyone.

Member	Function	Documentation

QFileInfo::QFileInfo	()

Constructs	a	new	empty	QFileInfo.

QFileInfo::QFileInfo	(const	QString	&	file)

Constructs	a	new	QFileInfo	that	gives	information	about	the	given	file.	The	file
can	be	an	absolute	or	a	relative	file	path.

See	also	setFile(),	isRelative(),	QDir::setCurrent()	and	QDir::isRelativePath().

QFileInfo::QFileInfo	(const	QFile	&	file)

Constructs	a	new	QFileInfo	that	gives	information	about	file	file.

If	the	file	has	a	relative	path,	the	QFileInfo	will	also	have	a	relative	path.

See	also	isRelative().

QFileInfo::QFileInfo	(const	QDir	&	d,	const	QString	&	fileName
)

Constructs	a	new	QFileInfo	that	gives	information	about	the	file	named	fileName
in	the	directory	d.

If	the	directory	has	a	relative	path,	the	QFileInfo	will	also	have	a	relative	path.

See	also	isRelative().

QFileInfo::QFileInfo	(const	QFileInfo	&	fi)

Constructs	a	new	QFileInfo	that	is	a	copy	of	fi.

QFileInfo::~QFileInfo	()

Destroys	the	QFileInfo	and	frees	its	resources.

QString	QFileInfo::absFilePath	()	const

Returns	the	absolute	path	including	the	file	name.

The	absolute	path	name	consists	of	the	full	path	and	the	file	name.	On	Unix	this
will	always	begin	with	the	root,	'/',	directory.	On	Windows	this	will	always	begin
'D:/'	where	D	is	a	drive	letter,	except	for	network	shares	that	are	not	mapped	to	a
drive	letter,	in	which	case	the	path	will	begin	'//sharename/'.

This	function	returns	the	same	as	filePath(),	unless	isRelative()	is	TRUE.

This	function	can	be	time	consuming	under	Unix	(in	the	order	of	milliseconds).

See	also	isRelative()	and	filePath().

Examples:	biff/biff.cpp	and	fileiconview/qfileiconview.cpp.

QString	QFileInfo::baseName	(bool	complete	=	FALSE)	const

Returns	the	base	name	of	the	file.

If	complete	is	FALSE	(the	default)	the	base	name	consists	of	all	characters	in	the
file	name	up	to	(but	not	including)	the	first	'.'	character.

If	complete	is	TRUE	the	base	name	consists	of	all	characters	in	the	file	up	to	(but
not	including)	the	last	'.'	character.

The	path	is	not	included	in	either	case.

Example:

					QFileInfo	fi("/tmp/archive.tar.gz");

					QString	base	=	fi.baseName();		//	base	=	"archive"

					base	=	fi.baseName(TRUE);				//	base	=	"archive.tar"

		

See	also	fileName()	and	extension().

bool	QFileInfo::caching	()	const

Returns	TRUE	if	caching	is	enabled;	otherwise	returns	FALSE.

See	also	setCaching()	and	refresh().

bool	QFileInfo::convertToAbs	()

Converts	the	file	path	name	to	an	absolute	path.

If	it	is	already	absolute,	nothing	is	done.

See	also	filePath()	and	isRelative().

QDateTime	QFileInfo::created	()	const

Returns	the	date	and	time	when	the	file	was	created.

On	platforms	where	this	information	is	not	available,	returns	the	same	as
lastModified().

See	also	lastModified()	and	lastRead().

QDir	QFileInfo::dir	(bool	absPath	=	FALSE)	const

Returns	the	directory	path	of	the	file.

If	the	QFileInfo	is	relative	and	absPath	is	FALSE,	the	QDir	will	be	relative;
otherwise	it	will	be	absolute.

See	also	dirPath(),	filePath(),	fileName()	and	isRelative().

Example:	fileiconview/qfileiconview.cpp.

QString	QFileInfo::dirPath	(bool	absPath	=	FALSE)	const

Returns	the	directory	path	of	the	file.

If	absPath	is	TRUE	an	absolute	path	is	returned.

See	also	dir(),	filePath(),	fileName()	and	isRelative().

Example:	fileiconview/qfileiconview.cpp.

bool	QFileInfo::exists	()	const

Returns	TRUE	if	the	file	exists;	otherwise	returns	FALSE.

Examples:	biff/biff.cpp	and	i18n/main.cpp.

QString	QFileInfo::extension	(bool	complete	=	TRUE)	const

Returns	the	file's	extension	name.

If	complete	is	TRUE	(the	default),	extension()	returns	the	string	of	all	characters
in	the	file	name	after	(but	not	including)	the	first	'.'	character.

If	complete	is	FALSE,	extension()	returns	the	string	of	all	characters	in	the	file
name	after	(but	not	including)	the	last	'.'	character.

Example:

					QFileInfo	fi("/tmp/archive.tar.gz");

					QString	ext	=	fi.extension();		//	ext	=	"tar.gz"

					ext	=	fi.extension(FALSE);			//	ext	=	"gz"

		

See	also	fileName()	and	baseName().

Example:	qdir/qdir.cpp.

QString	QFileInfo::fileName	()	const

Returns	the	name	of	the	file,	the	file	path	is	not	included.

Example:

					QFileInfo	fi("/tmp/archive.tar.gz");

					QString	name	=	fi.fileName();														//	name	=	"archive.tar.gz"

		

See	also	isRelative(),	filePath(),	baseName()	and	extension().

Examples:	dirview/dirview.cpp	and	fileiconview/qfileiconview.cpp.

QString	QFileInfo::filePath	()	const

Returns	the	file	name,	including	the	path	(which	may	be	absolute	or	relative).

See	also	isRelative()	and	absFilePath().

Examples:	dirview/main.cpp	and	fileiconview/qfileiconview.cpp.

QString	QFileInfo::group	()	const

Returns	the	group	of	the	file.	On	Windows,	on	systems	where	files	do	not	have
groups,	or	if	an	error	occurs,	a	null	string	is	returned.

This	function	can	be	time	consuming	under	Unix	(in	the	order	of	milliseconds).

See	also	groupId(),	owner()	and	ownerId().

uint	QFileInfo::groupId	()	const

Returns	the	id	of	the	group	the	file	belongs	to.

On	Windows	and	on	systems	where	files	do	not	have	groups	this	function	always
returns	(uint)	-2.

See	also	group(),	owner()	and	ownerId().

bool	QFileInfo::isDir	()	const

Returns	TRUE	if	this	object	points	to	a	directory	or	to	a	symbolic	link	to	a
directory;	otherwise	returns	FALSE.

See	also	isFile()	and	isSymLink().

Examples:	dirview/dirview.cpp	and	fileiconview/qfileiconview.cpp.

bool	QFileInfo::isExecutable	()	const

Returns	TRUE	if	the	file	is	executable;	otherwise	returns	FALSE.

See	also	isReadable(),	isWritable()	and	permission().

bool	QFileInfo::isFile	()	const

Returns	TRUE	if	this	object	points	to	a	file.	Returns	FALSE	if	the	object	points
to	something	which	isn't	a	file,	e.g.	a	directory	or	a	symlink.

See	also	isDir()	and	isSymLink().

Examples:	dirview/dirview.cpp,	fileiconview/qfileiconview.cpp	and
qdir/qdir.cpp.

bool	QFileInfo::isReadable	()	const

Returns	TRUE	if	the	file	is	readable;	otherwise	returns	FALSE.

See	also	isWritable(),	isExecutable()	and	permission().

bool	QFileInfo::isRelative	()	const

Returns	TRUE	if	the	file	path	name	is	relative.	Returns	FALSE	if	the	path	is
absolute	(e.g.	under	Unix	a	path	is	absolute	if	it	begins	with	a	"/").

bool	QFileInfo::isSymLink	()	const

Returns	TRUE	if	this	object	points	to	a	symbolic	link	(or	to	a	shortcut	on
Windows);	otherwise	returns	FALSE.

See	also	isFile(),	isDir()	and	readLink().

Examples:	dirview/dirview.cpp	and	fileiconview/qfileiconview.cpp.

bool	QFileInfo::isWritable	()	const

Returns	TRUE	if	the	file	is	writable;	otherwise	returns	FALSE.

See	also	isReadable(),	isExecutable()	and	permission().

QDateTime	QFileInfo::lastModified	()	const

Returns	the	date	and	time	when	the	file	was	last	modified.

See	also	created()	and	lastRead().

Example:	biff/biff.cpp.

QDateTime	QFileInfo::lastRead	()	const

Returns	the	date	and	time	when	the	file	was	last	read	(accessed).

On	platforms	where	this	information	is	not	available,	returns	the	same	as
lastModified().

See	also	created()	and	lastModified().

Example:	biff/biff.cpp.

QFileInfo	&	QFileInfo::operator=	(const	QFileInfo	&	fi)

Makes	a	copy	of	fi	and	assigns	it	to	this	QFileInfo.

QString	QFileInfo::owner	()	const

Returns	the	owner	of	the	file.	On	Windows,	on	systems	where	files	do	not	have
owners,	or	if	an	error	occurs,	a	null	string	is	returned.

This	function	can	be	time	consuming	under	Unix	(in	the	order	of	milliseconds).

See	also	ownerId(),	group()	and	groupId().

uint	QFileInfo::ownerId	()	const

Returns	the	id	of	the	owner	of	the	file.

On	Windows	and	on	systems	where	files	do	not	have	owners	this	function
returns	((uint)	-2).

See	also	owner(),	group()	and	groupId().

bool	QFileInfo::permission	(int	permissionSpec)	const

Tests	for	file	permissions.	The	permissionSpec	argument	can	be	several	flags	of
type	PermissionSpec	OR-ed	together	to	check	for	permission	combinations.

On	systems	where	files	do	not	have	permissions	this	function	always	returns
TRUE.

Example:

				QFileInfo	fi("/tmp/archive.tar.gz");

				if	(fi.permission(QFileInfo::WriteUser	|	QFileInfo::ReadGroup))

								qWarning("I	can	change	the	file;	my	group	can	read	the	file.");

				if	(fi.permission(QFileInfo::WriteGroup	|	QFileInfo::WriteOther

								qWarning("The	group	or	others	can	change	the	file!");

		

See	also	isReadable(),	isWritable()	and	isExecutable().

QString	QFileInfo::readLink	()	const

Returns	the	name	a	symlink	(or	shortcut	on	Windows)	points	to,	or	a	null
QString	if	the	object	isn't	a	symbolic	link.

This	name	may	not	represent	an	existing	file;	it	is	only	a	string.
QFileInfo::exists()	returns	TRUE	if	the	symlink	points	to	an	existing	file.

See	also	exists(),	isSymLink(),	isDir()	and	isFile().

void	QFileInfo::refresh	()	const

Refreshes	the	information	about	the	file,	i.e.	reads	in	information	from	the	file
system	the	next	time	a	cached	property	is	fetched.

See	also	setCaching().

void	QFileInfo::setCaching	(bool	enable)

If	enable	is	TRUE,	enables	caching	of	file	information.	If	enable	is	FALSE
caching	is	disabled.

When	caching	is	enabled,	QFileInfo	reads	the	file	information	from	the	file
system	the	first	time	it's	needed,	but	generally	not	later.

Caching	is	enabled	by	default.

See	also	refresh()	and	caching().

void	QFileInfo::setFile	(const	QString	&	file)

Sets	the	file	that	the	QFileInfo	provides	information	about	to	file.

The	string	given	can	be	an	absolute	or	a	relative	file	path.	Absolute	paths	begin
with	the	directory	separator	(e.g.	"/"	under	Unix)	or	a	drive	specification	(not
applicable	to	Unix).	Relative	file	names	begin	with	a	directory	name	or	a	file
name	and	specify	a	path	relative	to	the	current	directory.

Example:

				QString	absolute	=	"/local/bin";

				QString	relative	=	"local/bin";

				QFileInfo	absFile(absolute);

				QFileInfo	relFile(relative);

				QDir::setCurrent(QDir::rootDirPath());

				//	absFile	and	relFile	now	point	to	the	same	file

				QDir::setCurrent("/tmp");

				//	absFile	now	points	to	"/local/bin",

				//	while	relFile	points	to	"/tmp/local/bin"

		

See	also	isRelative(),	QDir::setCurrent()	and	QDir::isRelativePath().

Example:	biff/biff.cpp.

void	QFileInfo::setFile	(const	QFile	&	file)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Sets	the	file	that	the	QFileInfo	provides	information	about	to	file.

If	the	file	has	a	relative	path,	the	QFileInfo	will	also	have	a	relative	path.

See	also	isRelative().

void	QFileInfo::setFile	(const	QDir	&	d,
const	QString	&	fileName)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Sets	the	file	that	the	QFileInfo	provides	information	about	to	fileName	in
directory	d.

If	the	file	has	a	relative	path,	the	QFileInfo	will	also	have	a	relative	path.

See	also	isRelative().

uint	QFileInfo::size	()	const

Returns	the	file	size	in	bytes,	or	0	if	the	file	does	not	exist	or	if	the	size	is	0	or	if
the	size	cannot	be	fetched.

Example:	qdir/qdir.cpp.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QMapConstIterator	Class	Reference
The	QMapConstIterator	class	provides	an	iterator	for	QMap.	More...

#include	<qmap.h>

List	of	all	member	functions.

Public	Members

typedef	std::bidirectional_iterator_tag	iterator_category
typedef	T	value_type
typedef	const	T	*	pointer
typedef	const	T	&	reference
QMapConstIterator	()
QMapConstIterator	(QMapNode<K,	T>	*	p)
QMapConstIterator	(const	QMapConstIterator<K,	T>	&	it)
QMapConstIterator	(const	QMapIterator<K,	T>	&	it)
bool	operator==	(const	QMapConstIterator<K,	T>	&	it)	const
bool	operator!=	(const	QMapConstIterator<K,	T>	&	it)	const
const	T	&	operator*	()	const
const	K	&	key	()	const
const	T	&	data	()	const
QMapConstIterator<K,	T>	&	operator++	()
QMapConstIterator<K,	T>	operator++	(int)
QMapConstIterator<K,	T>	&	operator--	()
QMapConstIterator<K,	T>	operator--	(int)

Detailed	Description

The	QMapConstIterator	class	provides	an	iterator	for	QMap.

In	contrast	to	QMapIterator,	this	class	is	used	to	iterate	over	a	const	map.	It	does
not	allow	you	to	modify	the	values	of	the	map	because	this	would	break	the
const	semantics.

For	more	information	on	QMap	iterators,	see	QMapIterator.	and	the	QMap
example.

See	also	QMap,	QMapIterator,	Qt	Template	Library	Classes	and	Non-GUI
Classes.

Member	Type	Documentation

QMapConstIterator::iterator_category

The	type	of	iterator	category,	std::bidirectional_iterator_tag.

QMapConstIterator::pointer

Const	pointer	to	value_type.

QMapConstIterator::reference

Const	reference	to	value_type.

QMapConstIterator::value_type

The	type	of	const	value.

Member	Function	Documentation

QMapConstIterator::QMapConstIterator	()

Constructs	an	uninitialized	iterator.

QMapConstIterator::QMapConstIterator	(
QMapNode<K,	T>	*	p)

Constructs	an	iterator	starting	at	node	p.

QMapConstIterator::QMapConstIterator	(
const	QMapConstIterator<K,	T>	&	it)

Constructs	a	copy	of	the	iterator,	it.

QMapConstIterator::QMapConstIterator	(
const	QMapIterator<K,	T>	&	it)

Constructs	a	copy	of	the	iterator,	it.

const	T	&	QMapConstIterator::data	()	const

Returns	a	const	reference	to	the	data	of	the	current	item.

const	K	&	QMapConstIterator::key	()	const

Returns	a	const	reference	to	the	current	key.

bool	QMapConstIterator::operator!=	(
const	QMapConstIterator<K,	T>	&	it)	const

Compares	the	iterator	to	the	it	iterator	and	returns	FALSE	if	they	point	to	the
same	item;	otherwise	returns	TRUE.

const	T	&	QMapConstIterator::operator*	()	const

Dereference	operator.	Returns	a	const	reference	to	the	current	item.	The	same	as
data().

QMapConstIterator<K,	T>	&	QMapConstIterator::operator++	()

Prefix	++	makes	the	succeeding	item	current	and	returns	an	iterator	pointing	to
the	new	current	item.	The	iterator	cannot	check	whether	it	reached	the	end	of	the
map.	Incrementing	the	iterator	returned	by	end()	causes	undefined	results.

QMapConstIterator<K,	T>	QMapConstIterator::operator++	(int
)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Postfix	++	makes	the	succeeding	item	current	and	returns	an	iterator	pointing	to
the	new	current	item.	The	iterator	cannot	check	whether	it	reached	the	end	of	the
map.	Incrementing	the	iterator	returned	by	end()	causes	undefined	results.

QMapConstIterator<K,	T>	&	QMapConstIterator::operator--	()

Prefix	--	makes	the	previous	item	current	and	returns	an	iterator	pointing	to	the
new	current	item.	The	iterator	cannot	check	whether	it	reached	the	beginning	of
the	map.	Decrementing	the	iterator	returned	by	begin()	causes	undefined	results.

QMapConstIterator<K,	T>	QMapConstIterator::operator--	(int)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Postfix	--	makes	the	previous	item	current	and	returns	an	iterator	pointing	to	the
new	current	item.	The	iterator	cannot	check	whether	it	reached	the	beginning	of
the	map.	Decrementing	the	iterator	returned	by	begin()	causes	undefined	results.

bool	QMapConstIterator::operator==	(
const	QMapConstIterator<K,	T>	&	it)	const

Compares	the	iterator	to	the	it	iterator	and	returns	TRUE	if	they	point	to	the
same	item;	otherwise	returns	FALSE.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QSjisCodec	Class	Reference
The	QSjisCodec	class	provides	conversion	to	and	from	Shift-JIS.	More...

#include	<qsjiscodec.h>

Inherits	QTextCodec.

List	of	all	member	functions.

Public	Members

virtual	const	char	*	mimeName	()	const
QSjisCodec	()
~QSjisCodec	()

Detailed	Description

The	QSjisCodec	class	provides	conversion	to	and	from	Shift-JIS.

More	precisely,	the	QSjisCodec	class	subclasses	QTextCodec	to	provide	support
for	Shift-JIS,	an	encoding	of	JIS	X	0201	Latin,	JIS	X	0201	Kana	or	JIS	X	0208.

The	environment	variable	UNICODEMAP_JP	can	be	used	to	fine-tune	QJisCodec,
QSjisCodec	and	QEucJpCodec.	The	QJisCodec	documentation	describes	how	to
use	this	variable.

Most	of	the	code	here	was	written	by	Serika	Kurusugawa,	a.k.a.	Junji	Takagi,
and	is	included	in	Qt	with	the	author's	permission	and	the	grateful	thanks	of	the
Trolltech	team.	Here	is	the	copyright	statement	for	that	code:

Copyright	(c)	1999	Serika	Kurusugawa.	All	rights	reserved.

Redistribution	and	use	in	source	and	binary	forms,	with	or	without	modification,
are	permitted	provided	that	the	following	conditions	are	met:

1.	 Redistributions	of	source	code	must	retain	the	above	copyright	notice,	this
list	of	conditions	and	the	following	disclaimer.

2.	 Redistributions	in	binary	form	must	reproduce	the	above	copyright	notice,
this	list	of	conditions	and	the	following	disclaimer	in	the	documentation
and/or	other	materials	provided	with	the	distribution.

THIS	SOFTWARE	IS	PROVIDED	BY	THE	AUTHOR	AND
CONTRIBUTORS	"AS	IS".	ANY	EXPRESS	OR	IMPLIED	WARRANTIES,
INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED	WARRANTIES	OF
MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE	ARE
DISCLAIMED.	IN	NO	EVENT	SHALL	THE	REGENTS	OR
CONTRIBUTORS	BE	LIABLE	FOR	ANY	DIRECT,	INDIRECT,
INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL
DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,	PROCUREMENT	OF
SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;
OR	BUSINESS	INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY
THEORY	OF	LIABILITY,	WHETHER	IN	CONTRACT,	STRICT	LIABILITY,
OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN

ANY	WAY	OUT	OF	THE	USE	OF	THIS	SOFTWARE,	EVEN	IF	ADVISED
OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

See	also	Internationalization	with	Qt.

Member	Function	Documentation

QSjisCodec::QSjisCodec	()

Creates	a	Shift-JIS	codec.	Note	that	this	is	done	automatically	by	the
QApplication,	you	do	not	need	construct	your	own.

QSjisCodec::~QSjisCodec	()

Destroys	the	Shift-JIS	codec.

const	char	*	QSjisCodec::mimeName	()	const	[virtual]

Returns	the	codec's	mime	name.

Reimplemented	from	QTextCodec.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QValueListIterator
QValueListIteratorQValueList	 ……

#include	<qvaluelist.h>

s

typedef	T	value_type
typedef	T	*	pointer
typedef	T	&	reference
QValueListIterator	()
QValueListIterator	(const	QValueListIterator<T>	&	it)
bool	operator==	(const	QValueListIterator<T>	&	it)	const
bool	operator!=	(const	QValueListIterator<T>	&	it)	const
const	T	&	operator*	()	const
T	&	operator*	()
QValueListIterator<T>	&	operator++	()
QValueListIterator<T>	operator++	(int)
QValueListIterator<T>	&	operator--	()
QValueListIterator<T>	operator--	(int)

QValueListIterator QValueList

——“const	char	*”“int[]”

QValueListIteratorQValueListQValueList iterator

QValueList

QValueList

				EmployeeList::iterator	it;

				for	(it	=	list.begin();	it	!=	list.end();	++it)

								cout	<<	(*it).surname().latin1()	<<	",	"	<<

																(*it).forename().latin1()	<<	"	earns	"	<<

																(*it).salary()	<<	endl;

				//	

				//	Doe,	John	earns	50000

				//	Williams,	Jane	earns	80000

				//	Hawthorne,	Mary	earns	90000

				//	Jones,	Tom	earns	60000

				

QValueListQValueListbugSTL QTL

Qt

IteratorConstIteratorQValueListConstIteratorIterator

QValueListQValueListConstIteratorQtGUI

QValueListIterator::pointer

QValueListIterator::reference

QValueListIterator::value_type

T

QValueListIterator::QValueListIterator	()

QValueListIterator::QValueListIterator	(
const	QValueListIterator<T>	&	it)

it

bool	QValueListIterator::operator!=	(
const	QValueListIterator<T>	&	it)	const

it

T	&	QValueListIterator::operator*	()

const	T	&	QValueListIterator::operator*	()	const

QValueListIterator<T>	&	QValueListIterator::operator++	()

++end()

QValueListIterator<T>	QValueListIterator::operator++	(int)

++end()

QValueListIterator<T>	&	QValueListIterator::operator--	()

--begin()

QValueListIterator<T>	QValueListIterator::operator--	(int)

--begin()

bool	QValueListIterator::operator==	(
const	QValueListIterator<T>	&	it)	const

it

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QCanvasSprite	Class	Reference
[canvas	module]

The	QCanvasSprite	class	provides	an	animated	canvas	item	on	a	QCanvas.
More...

#include	<qcanvas.h>

Inherits	QCanvasItem.

List	of	all	member	functions.

Public	Members

QCanvasSprite	(QCanvasPixmapArray	*	a,	QCanvas	*	canvas)
void	setSequence	(QCanvasPixmapArray	*	a)
virtual	~QCanvasSprite	()
virtual	void	move	(double	nx,	double	ny,	int	nf)
void	setFrame	(int	f)
enum	FrameAnimationType	{	Cycle,	Oscillate	}
virtual	void	setFrameAnimation	(FrameAnimationType	type	=	Cycle,
int	step	=	1,	int	state	=	0)
int	frame	()	const
int	frameCount	()	const
virtual	int	rtti	()	const
virtual	QRect	boundingRect	()	const
int	width	()	const
int	height	()	const
int	leftEdge	()	const
int	topEdge	()	const
int	rightEdge	()	const
int	bottomEdge	()	const
int	leftEdge	(int	nx)	const
int	topEdge	(int	ny)	const
int	rightEdge	(int	nx)	const
int	bottomEdge	(int	ny)	const
QCanvasPixmap	*	image	()	const
virtual	QCanvasPixmap	*	imageAdvanced	()	const
QCanvasPixmap	*	image	(int	f)	const
virtual	void	advance	(int	phase)
virtual	void	draw	(QPainter	&	painter)

Detailed	Description

The	QCanvasSprite	class	provides	an	animated	canvas	item	on	a	QCanvas.

A	canvas	sprite	is	an	object	which	can	contain	any	number	of	images	(referred	to
as	frames),	only	one	of	which	is	current,	i.e.	displayed,	at	any	one	time.	The
images	can	be	passed	in	the	constructor	or	set	or	changed	later	with
setSequence().	If	you	subclass	QCanvasSprite	you	can	change	the	frame	that	is
displayed	periodically,	e.g.	whenever	QCanvasItem::advance(1)	is	called	to
create	the	effect	of	animation.

The	current	frame	can	be	set	with	setFrame()	or	with	move().	The	number	of
frames	available	is	given	by	frameCount().	The	bounding	rectangle	of	the
current	frame	is	returned	by	boundingRect().

The	current	frame's	image	can	be	retrieved	with	image();	use	imageAdvanced()
to	retrieve	the	image	for	the	frame	that	will	be	shown	after	advance(1)	is	called.
Use	the	image()	overload	passing	it	an	integer	index	to	retrieve	a	particular
image	from	the	list	of	frames.

Use	width()	and	height()	to	retrieve	the	dimensions	of	the	current	frame.

Use	leftEdge()	and	rightEdge()	to	retrieve	the	current	frame's	left-hand	and	right-
hand	x-coordinates	respectively.	Use	bottomEdge()	and	topEdge()	to	retrieve	the
current	frame's	bottom	and	top	y-coordinates	respectively.	These	functions	have
an	overload	which	will	accept	an	integer	frame	number	to	retrieve	the
coordinates	of	a	particular	frame.

QCanvasSprite	draws	very	quickly,	at	the	expense	of	memory.

The	current	frame's	image	can	be	drawn	on	a	painter	with	draw().

Like	any	other	canvas	item,	canvas	sprites	can	be	moved	with	move()	which	sets
the	x	and	y	coordinates	and	the	frame	number,	as	well	as	with
QCanvasItem::move()	and	QCanvasItem::moveBy(),	or	by	setting	coordinates
with	QCanvasItem::setX(),	QCanvasItem::setY()	and	QCanvasItem::setZ().

See	also	Graphics	Classes	and	Image	Processing	Classes.

Member	Type	Documentation

QCanvasSprite::FrameAnimationType

This	enum	is	used	to	identify	the	different	types	of	frame	animation	of
QCanvasSprite.

QCanvasSprite::Cycle	-	at	each	advance	the	frame	number	will	be
incremented	by	1	(modulo	the	frame	count).
QCanvasSprite::Oscillate	-	at	each	advance	the	frame	number	will	be
incremented	by	1	up	to	the	frame	count	then	decremented	to	by	1	to	0,
repeating	this	sequence	forever.

Member	Function	Documentation

QCanvasSprite::QCanvasSprite	(QCanvasPixmapArray	*	a,
QCanvas	*	canvas)

Constructs	a	QCanvasSprite	which	uses	images	from	the	QCanvasPixmapArray
a.

The	sprite	in	initially	positioned	at	(0,0)	on	canvas,	using	frame	0.

QCanvasSprite::~QCanvasSprite	()	[virtual]

Destroys	the	sprite	and	removes	it	from	the	canvas.	Does	not	delete	the	images.

void	QCanvasSprite::advance	(int	phase)	[virtual]

Extends	the	default	QCanvasItem	implementation	to	provide	the	functionality	of
setFrameAnimation().

The	phase	is	0	or	1:	see	QCanvas::animate()	for	details.

See	also	QCanvasItem::advance()	and	setVelocity().

Example:	canvas/canvas.cpp.

Reimplemented	from	QCanvasItem.

int	QCanvasSprite::bottomEdge	()	const

Returns	the	y-coordinate	of	the	current	bottom	edge	of	the	sprite.	(This	may
change	as	the	sprite	animates	since	different	frames	may	have	different	bottom
edges.)

See	also	leftEdge(),	rightEdge()	and	topEdge().

int	QCanvasSprite::bottomEdge	(int	ny)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	what	the	y-coordinate	of	the	top	edge	of	the	sprite	would	be	if	the	sprite
(actually	its	hotspot)	were	moved	to	y-position	ny.

See	also	leftEdge(),	rightEdge()	and	topEdge().

QRect	QCanvasSprite::boundingRect	()	const	[virtual]

Returns	the	bounding	rectangle	for	the	image	in	sprite's	current	frame.	This
assumes	that	the	images	are	tightly	cropped	(i.e.	do	not	have	transparent	pixels
all	along	a	side).

Reimplemented	from	QCanvasItem.

void	QCanvasSprite::draw	(QPainter	&	painter)	[virtual]

Draws	the	current	frame's	image	at	the	sprite's	current	position	on	painter
painter.

Reimplemented	from	QCanvasItem.

int	QCanvasSprite::frame	()	const

Returns	the	index	of	the	current	animation	frame	in	the	QCanvasSprite's
QCanvasPixmapArray.

See	also	setFrame()	and	move().

int	QCanvasSprite::frameCount	()	const

Returns	the	number	of	frames	in	the	QCanvasSprite's	QCanvasPixmapArray.

int	QCanvasSprite::height	()	const

The	height	of	the	sprite	for	the	current	frame's	image.

See	also	frame().

QCanvasPixmap	*	QCanvasSprite::image	()	const

Returns	the	current	frame's	image.

See	also	frame()	and	setFrame().

QCanvasPixmap	*	QCanvasSprite::image	(int	f)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	the	image	for	frame	f.	Does	not	do	any	bounds	checking	on	f.

QCanvasPixmap	*	QCanvasSprite::imageAdvanced	()	const
[virtual]

Returns	the	image	the	sprite	will	have	after	advance(1)	is	called.	By	default	this
is	the	same	as	image().

int	QCanvasSprite::leftEdge	()	const

Returns	the	x-coordinate	of	the	current	left	edge	of	the	sprite.	(This	may	change
as	the	sprite	animates	since	different	frames	may	have	different	left	edges.)

See	also	rightEdge(),	bottomEdge()	and	topEdge().

int	QCanvasSprite::leftEdge	(int	nx)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	what	the	x-coordinate	of	the	left	edge	of	the	sprite	would	be	if	the	sprite
(actually	its	hotspot)	were	moved	to	x-position	nx.

See	also	rightEdge(),	bottomEdge()	and	topEdge().

void	QCanvasSprite::move	(double	nx,	double	ny,	int	nf)
[virtual]

Set	the	position	of	the	sprite	to	nx,	ny	and	the	current	frame	to	nf.	nf	will	be
ignored	if	it	is	larger	than	frameCount()	or	smaller	than	0.

int	QCanvasSprite::rightEdge	()	const

Returns	the	x-coordinate	of	the	current	right	edge	of	the	sprite.	(This	may	change
as	the	sprite	animates	since	different	frames	may	have	different	right	edges.)

See	also	leftEdge(),	bottomEdge()	and	topEdge().

int	QCanvasSprite::rightEdge	(int	nx)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	what	the	x-coordinate	of	the	right	edge	of	the	sprite	would	be	if	the
sprite	(actually	its	hotspot)	were	moved	to	x-position	nx.

See	also	leftEdge(),	bottomEdge()	and	topEdge().

int	QCanvasSprite::rtti	()	const	[virtual]

Returns	1	(QCanvasItem::Rtti_Sprite).

See	also	QCanvasItem::rtti().

Example:	canvas/canvas.cpp.

Reimplemented	from	QCanvasItem.

void	QCanvasSprite::setFrame	(int	f)

Sets	the	animation	frame	used	for	displaying	the	sprite	to	f,	an	index	into	the
QCanvasSprite's	QCanvasPixmapArray.	The	call	will	be	ignored	if	f	is	larger
than	frameCount()	or	smaller	than	0.

See	also	frame()	and	move().

void	QCanvasSprite::setFrameAnimation	(

FrameAnimationType	type	=	Cycle,	int	step	=	1,	int	state	=	0)
[virtual]

Sets	the	animation	characteristics	for	the	sprite.

For	type	==	Cycle,	the	frames	will	increase	by	step	at	each	advance,	modulo	the
frameCount().

For	type	==	Oscillate,	the	frames	will	increase	by	step	at	each	advance,	up	to	the
frameCount(),	then	decrease	by	step	back	to	0,	etc.

The	state	parameter	is	for	internal	use.

void	QCanvasSprite::setSequence	(QCanvasPixmapArray	*	a)

Set	the	array	of	images	used	for	displaying	the	sprite	to	the
QCanvasPixmapArray	a.

If	the	current	frame()	is	larger	than	the	number	of	images	in	a,	the	current	frame
will	be	reset	to	0.

int	QCanvasSprite::topEdge	()	const

Returns	the	y-coordinate	of	the	top	edge	of	the	sprite.	(This	may	change	as	the
sprite	animates	since	different	frames	may	have	different	top	edges.)

See	also	leftEdge(),	rightEdge()	and	bottomEdge().

int	QCanvasSprite::topEdge	(int	ny)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	what	the	y-coordinate	of	the	top	edge	of	the	sprite	would	be	if	the	sprite
(actually	its	hotspot)	were	moved	to	y-position	ny.

See	also	leftEdge(),	rightEdge()	and	bottomEdge().

int	QCanvasSprite::width	()	const

The	width	of	the	sprite	for	the	current	frame's	image.

See	also	frame().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QFilePreview	Class	Reference
The	QFilePreview	class	provides	file	previewing	in	QFileDialog.	More...

#include	<qfiledialog.h>

List	of	all	member	functions.

Public	Members

QFilePreview	()
virtual	void	previewUrl	(const	QUrl	&	url)	=	0

Detailed	Description

The	QFilePreview	class	provides	file	previewing	in	QFileDialog.

This	class	is	an	abstract	base	class	which	is	used	to	implement	widgets	that	can
display	a	preview	of	a	file	in	a	QFileDialog.

You	must	derive	the	preview	widget	from	both	QWidget	and	from	this	class.
Then	you	must	reimplement	this	class's	previewUrl()	function,	which	is	called
by	the	file	dialog	if	the	preview	of	a	file	(specified	as	a	URL)	should	be	shown.

See	also	QFileDialog::setPreviewMode(),	QFileDialog::setContentsPreview(),
QFileDialog::setInfoPreview(),	QFileDialog::setInfoPreviewEnabled(),
QFileDialog::setContentsPreviewEnabled().

For	an	example	of	a	preview	widget	see	qt/examples/qdir/qdir.cpp.

See	also	Miscellaneous	Classes.

Member	Function	Documentation

QFilePreview::QFilePreview	()

Constructs	the	QFilePreview.

void	QFilePreview::previewUrl	(const	QUrl	&	url)	[pure
virtual]

This	function	is	called	by	QFileDialog	if	a	preview	for	the	url	should	be	shown.
Reimplement	this	function	to	provide	file	previewing.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QMapIterator	Class	Reference
The	QMapIterator	class	provides	an	iterator	for	QMap.	More...

#include	<qmap.h>

List	of	all	member	functions.

Public	Members

typedef	std::bidirectional_iterator_tag	iterator_category
typedef	T	value_type
typedef	T	*	pointer
typedef	T	&	reference
QMapIterator	()
QMapIterator	(QMapNode<K,	T>	*	p)
QMapIterator	(const	QMapIterator<K,	T>	&	it)
bool	operator==	(const	QMapIterator<K,	T>	&	it)	const
bool	operator!=	(const	QMapIterator<K,	T>	&	it)	const
T	&	operator*	()
const	T	&	operator*	()	const
const	K	&	key	()	const
T	&	data	()
const	T	&	data	()	const
QMapIterator<K,	T>	&	operator++	()
QMapIterator<K,	T>	operator++	(int)
QMapIterator<K,	T>	&	operator--	()
QMapIterator<K,	T>	operator--	(int)

Detailed	Description

The	QMapIterator	class	provides	an	iterator	for	QMap.

You	cannot	create	an	iterator	by	yourself.	Instead,	you	have	to	ask	a	map	to	give
you	one.	An	iterator	is	as	big	as	a	pointer;	on	32-bit	machines	that	means	4
bytes,	on	64-bit	ones	8	bytes.	That	makes	copying	them	very	fast.	They	resemble
the	semantics	of	pointers	as	much	as	possible,	and	they	are	almost	as	fast	as
usual	pointers.	See	the	QMap	example.

The	only	way	to	traverse	a	map	is	to	use	iterators.	QMap	is	highly	optimized	for
performance	and	memory	usage.	On	the	other	hand	this	means	that	you	have	to
be	a	bit	more	careful	with	what	you	are	doing.	QMap	does	not	know	about	all	its
iterators,	and	the	iterators	don't	even	know	to	which	map	they	belong.	That
makes	things	fast	but	a	bit	dangerous	because	it	is	up	to	you	to	make	sure	that
the	iterators	you	are	using	are	still	valid.	QDictIterator	will	be	able	to	give
warnings,	whereas	QMapIterator	may	end	up	in	an	undefined	state.

For	every	Iterator	there	is	also	a	ConstIterator.	You	have	to	use	the	ConstIterator
to	access	a	QMap	in	a	const	environment	or	if	the	reference	or	pointer	to	the	map
is	itself	const.	Its	semantics	are	the	same,	but	it	returns	only	const	references	to
the	item	it	points	to.

See	also	QMap,	QMapConstIterator,	Qt	Template	Library	Classes	and	Non-GUI
Classes.

Member	Type	Documentation

QMapIterator::iterator_category

The	type	of	iterator	category,	std::bidirectional_iterator_tag.

QMapIterator::pointer

Pointer	to	value_type.

QMapIterator::reference

Reference	to	value_type.

QMapIterator::value_type

The	type	of	value.

Member	Function	Documentation

QMapIterator::QMapIterator	()

Creates	an	uninitialized	iterator.

QMapIterator::QMapIterator	(QMapNode<K,	T>	*	p)

Constructs	an	iterator	starting	at	node	p.

QMapIterator::QMapIterator	(const	QMapIterator<K,	T>	&	it)

Constructs	a	copy	of	the	iterator,	it.

T	&	QMapIterator::data	()

Returns	a	reference	to	the	current	item.

const	T	&	QMapIterator::data	()	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	a	const	reference	to	the	data	of	the	current	item.

const	K	&	QMapIterator::key	()	const

Returns	a	const	reference	to	the	data	of	the	current	key.

bool	QMapIterator::operator!=	(const	QMapIterator<K,	T>	&	it
)	const

Compares	the	iterator	to	the	it	iterator	and	returns	FALSE	if	they	point	to	the
same	item;	otherwise	returns	TRUE.

T	&	QMapIterator::operator*	()

Dereference	operator.	Returns	a	reference	to	the	current	item.	The	same	as
data().

const	T	&	QMapIterator::operator*	()	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Dereference	operator.	Returns	a	const	reference	to	the	current	item.	The	same	as
data().

QMapIterator<K,	T>	&	QMapIterator::operator++	()

Prefix	++	makes	the	succeeding	item	current	and	returns	an	iterator	pointing	to
the	new	current	item.	The	iterator	cannot	check	whether	it	reached	the	end	of	the
map.	Incrementing	the	iterator	returned	by	end()	causes	undefined	results.

QMapIterator<K,	T>	QMapIterator::operator++	(int)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Postfix	++	makes	the	succeeding	item	current	and	returns	an	iterator	pointing	to
the	new	current	item.	The	iterator	cannot	check	whether	it	reached	the	end	of	the
map.	Incrementing	the	iterator	returned	by	end()	causes	undefined	results.

QMapIterator<K,	T>	&	QMapIterator::operator--	()

Prefix	--	makes	the	previous	item	current	and	returns	an	iterator	pointing	to	the
new	current	item.	The	iterator	cannot	check	whether	it	reached	the	beginning	of
the	map.	Decrementing	the	iterator	returned	by	begin()	causes	undefined	results.

QMapIterator<K,	T>	QMapIterator::operator--	(int)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Postfix	--	makes	the	previous	item	current	and	returns	an	iterator	pointing	to	the

new	current	item.	The	iterator	cannot	check	whether	it	reached	the	beginning	of
the	map.	Decrementing	the	iterator	returned	by	begin()	causes	undefined	results.

bool	QMapIterator::operator==	(const	QMapIterator<K,	T>	&	it
)	const

Compares	the	iterator	to	the	it	iterator	and	returns	TRUE	if	they	point	to	the
same	item;	otherwise	returns	FALSE.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QValueStack	Class	Reference
The	QValueStack	class	is	a	value-based	template	class	that	provides	a	stack.
More...

#include	<qvaluestack.h>

Inherits	QValueList<T>.

List	of	all	member	functions.

Public	Members

QValueStack	()
~QValueStack	()
void	push	(const	T	&	d)
T	pop	()
T	&	top	()
const	T	&	top	()	const

Detailed	Description

The	QValueStack	class	is	a	value-based	template	class	that	provides	a	stack.

Define	a	template	instance	QValueStack<X>	to	create	a	stack	of	values	that	all
have	the	class	X.	QValueStack	is	part	of	the	Qt	Template	Library.

Note	that	QValueStack	does	not	store	pointers	to	the	members	of	the	stack;	it
holds	a	copy	of	every	member.	That	is	why	these	kinds	of	classes	are	called
"value	based";	QPtrStack,	QPtrList,	and	QDict	are	"reference	based".

A	stack	is	a	last	in,	first	ut	(LIFO)	structure.	Items	are	added	to	the	top	of	the
stack	with	push()	and	retrieved	from	the	top	with	pop().	Furthermore,	top()
provides	access	to	the	topmost	item	without	removing	it.

Example:

				QValueStack<int>	stack;

				stack.push(1);

				stack.push(2);

				stack.push(3);

				while	(!	stack.isEmpty())

								cout	<<	"Item:	"	<<	stack.pop()	<<	endl;

				//	Output:

				//		Item:	3

				//		Item:	2

				//		Item:	1

		

QValueStack	is	a	specialized	QValueList	provided	for	convenience.	All	of
QValueList's	functionality	also	applies	to	QPtrStack,	for	example	the	facility	to
iterate	over	all	elements	using	QValueStack::Iterator.	See	QValueListIterator	for
further	details.

Some	classes	cannot	be	used	within	a	QValueStack,	for	example	everything
derived	from	QObject	and	thus	all	classes	that	implement	widgets.	Only	values
can	be	used	in	a	QValueStack.	To	qualify	as	a	value,	the	class	must	provide

A	copy	constructor
An	assignment	operator

A	default	constructor,	i.e.	a	constructor	that	does	not	take	any	arguments.

Note	that	C++	defaults	to	field-by-field	assignment	operators	and	copy
constructors	if	no	explicit	version	is	supplied.	In	many	cases	this	is	sufficient.

See	also	Qt	Template	Library	Classes,	Implicitly	and	Explicitly	Shared	Classes
and	Non-GUI	Classes.

Member	Function	Documentation

QValueStack::QValueStack	()

Constructs	an	empty	stack.

QValueStack::~QValueStack	()

Destroys	the	stack.	References	to	the	values	in	the	stack	and	all	iterators	of	this
stack	become	invalidated.	Because	QValueStack	is	highly	tuned	for
performance,	you	won't	see	warnings	if	you	use	invalid	iterators	because	it	is
impossible	for	an	iterator	to	check	whether	or	not	it	is	valid.

T	QValueStack::pop	()

Removes	the	top	item	from	the	stack	and	returns	it.

See	also	top()	and	push().

void	QValueStack::push	(const	T	&	d)

Adds	element,	d,	to	the	top	of	the	stack.	Last	in,	first	out.

This	function	is	equivalent	to	append().

See	also	pop()	and	top().

T	&	QValueStack::top	()

Returns	a	reference	to	the	top	item	of	the	stack	or	the	item	referenced	by	end()	if
no	such	item	exists.	Note	that	you	must	not	change	the	value	the	end()	iterator
points	to.

This	function	is	equivalent	to	last().

See	also	pop(),	push()	and	QValueList::fromLast().

const	T	&	QValueStack::top	()	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	a	reference	to	the	top	item	of	the	stack	or	the	item	referenced	by	end()	if
no	such	item	exists.

This	function	is	equivalent	to	last().

See	also	pop(),	push()	and	QValueList::fromLast().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QFocusData	Class	Reference
The	QFocusData	class	maintains	the	list	of	widgets	in	the	focus	chain.	More...

#include	<qfocusdata.h>

List	of	all	member	functions.

Public	Members

QWidget	*	focusWidget	()	const
QWidget	*	home	()
QWidget	*	next	()
QWidget	*	prev	()
int	count	()	const

Detailed	Description

The	QFocusData	class	maintains	the	list	of	widgets	in	the	focus	chain.

This	read-only	list	always	contains	at	least	one	widget	(i.e.	the	top-level	widget).
It	provides	a	simple	cursor	which	can	be	reset	to	the	current	focus	widget	using
home(),	or	moved	to	its	neighboring	widgets	using	next()	and	prev().	You	can
also	retrieve	the	count()	of	the	number	of	widgets	in	the	list.	The	list	is	a	loop,	so
if	you	keep	iterating,	for	example	using	next(),	you	will	never	come	to	the	end.

Some	widgets	in	the	list	may	not	accept	focus.	Widgets	are	added	to	the	list	as
necessary,	but	not	removed	from	it.	This	lets	widgets	change	focus	policy
dynamically	without	disrupting	the	focus	chain	the	user	experiences.	When	a
widget	disables	and	re-enables	tab	focus,	its	position	in	the	focus	chain	does	not
change.

When	reimplementing	QWidget::focusNextPrevChild()	to	provide	special	focus
flow,	you	will	usually	call	QWidget::focusData()	to	retrieve	the	focus	data	stored
at	the	top-level	widget.	A	top-level	widget's	focus	data	contains	the	focus	list	for
its	hierarchy	of	widgets.

The	cursor	may	change	at	any	time.

This	class	is	not	thread-safe.

See	also	QWidget::focusNextPrevChild(),	QWidget::setTabOrder(),
QWidget::focusPolicy	and	Miscellaneous	Classes.

Member	Function	Documentation

int	QFocusData::count	()	const

Returns	the	number	of	widgets	in	the	focus	chain.

QWidget	*	QFocusData::focusWidget	()	const

Returns	the	widgets	in	the	hierarchy	that	are	in	the	focus	chain.

QWidget	*	QFocusData::home	()

Moves	the	cursor	to	the	focusWidget()	and	returns	that	widget.	You	must	call
this	before	next()	or	prev()	to	iterate	meaningfully.

QWidget	*	QFocusData::next	()

Moves	the	cursor	to	the	next	widget	in	the	focus	chain.	There	is	always	a	next
widget	because	the	list	is	a	loop.

QWidget	*	QFocusData::prev	()

Moves	the	cursor	to	the	previous	widget	in	the	focus	chain.	There	is	always	a
previous	widget	because	the	list	is	a	loop.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QMemArray
QMemArray	 ……

#include	<qmemarray.h>

QByteArrayQPointArray

typedef	type	*	Iterator
typedef	const	type	*	ConstIterator
QMemArray	()
QMemArray	(int	size)
QMemArray	(const	QMemArray<type>	&	a)
~QMemArray	()
QMemArray<type>	&	operator=	(const	QMemArray<type>	&	a)
type	*	data	()	const
uint	nrefs	()	const
uint	size	()	const
uint	count	()	const
bool	isEmpty	()	const
bool	isNull	()	const
bool	resize	(uint	size)
bool	truncate	(uint	pos)
bool	fill	(const	type	&	v,	int	size	=	-1)
virtual	void	detach	()
QMemArray<type>	copy	()	const
QMemArray<type>	&	assign	(const	QMemArray<type>	&	a)
QMemArray<type>	&	assign	(const	type	*	data,	uint	size)
QMemArray<type>	&	duplicate	(const	QMemArray<type>	&	a)
QMemArray<type>	&	duplicate	(const	type	*	data,	uint	size)
QMemArray<type>	&	setRawData	(const	type	*	data,	uint	size)
void	resetRawData	(const	type	*	data,	uint	size)
int	find	(const	type	&	v,	uint	index	=	0)	const
int	contains	(const	type	&	v)	const
void	sort	()
int	bsearch	(const	type	&	v)	const
type	&	operator[]	(int	index)	const
type	&	at	(uint	index)	const
operator	const	type	*	()	const
bool	operator==	(const	QMemArray<type>	&	a)	const
bool	operator!=	(const	QMemArray<type>	&	a)	const
Iterator	begin	()
Iterator	end	()

ConstIterator	begin	()	const
ConstIterator	end	()	const

QMemArray	(int,	int)

Q_UINT16	qChecksum	(const	char	*	data,	uint	len)
QDataStream	&	operator<<	(QDataStream	&	s,	const	QByteArray	&	a)
QDataStream	&	operator>>	(QDataStream	&	s,	QByteArray	&	a)

QMemArray

QMemArrayQMemArray<X>X

QMemArrayC++QMemArray

QPtrVector

QMemArray

				#include	<qmemarray.h>

				#include	<stdio.h>

				QMemArray<int>	fib(int	num)	//	

				{

								Q_ASSERT(num	>	2);

								QMemArray<int>	f(num);	//	

								f[0]	=	f[1]	=	1;

								for	(int	i	=	2;	i	<	num;	i++)

												f[i]	=	f[i-1]	+	f[i-2];

								return	f;

				}

				int	main()

				{

								QMemArray<int>	a	=	fib(6);	//	get	6	first	fibonaccis

								for	(int	i	=	0;	i	<	a.size();	i++)

												qDebug("%d:	%d",	i,	a[i]);

								qDebug("1	is	found	%d	times",	a.contains(1));

								qDebug("5	is	found	at	index	%d",	a.find(5));

								return	0;

				}

		

				0:	1

				1:	1

				2:	2

				3:	3

				4:	5

				5:	8

				1	is	found	2	times

				5	is	found	at	index	4

		

QMemArrayQMemArray

				//	MyStruct48

				struct	MyStruct

				{

								short	i;	//	2	bytes

								char	c;		//	1	byte

				};

				QMemArray<MyStruct>	a(1);

				a[0].i	=	5;

				a[0].c	=	't';

				MyStruct	x;

				x.i	=	'5';

				x.c	=	't';

				int	i	=	a.find(x);	//	-1

		

sizeof()

QMemArray begin()end() count() resize()fill()

a	href="#assign">assign() operator=() duplicate()

find()contains() sort() bsearch()

setRawData()resetRawData()

GUI

QMemArray::ConstIterator

QMemArray

begin()end()

QMemArray::Iterator

QMemArray

begin()end()

QMemArray::QMemArray	(int,	int)	[]

(0,	0)

QMemArray::QMemArray	()

isNull()

QMemArray::QMemArray	(int	size)

size size==0

resize()isNull()

QMemArray::QMemArray	(const	QMemArray<type>	&	a)

a

assign()

QMemArray::~QMemArray	()

QMemArray<type>	&	QMemArray::assign	(
const	QMemArray<type>	&	a)

a

operator=()

QMemArray<type>	&	QMemArray::assign	(const	type	*	data,
uint	size)

sizedata

dataQMemArray

type	&	QMemArray::at	(uint	index)	const

index

operator[]()

Iterator	QMemArray::begin	()

QValueListQMap

ConstIterator	QMemArray::begin	()	const

QValueListQMap

int	QMemArray::bsearch	(const	type	&	v)	const

v find()

v v-1

sort()find()

int	QMemArray::contains	(const	type	&	v)	const

v

find()

QMemArray<type>	QMemArray::copy	()	const

detach()duplicate()

uint	QMemArray::count	()	const

size()

size()

scribble/scribble.cpp

type	*	QMemArray::data	()	const

data()==0

isNull()

fileiconview/qfileiconview.cppnetwork/networkprotocol/nntp.cpp

void	QMemArray::detach	()	[]

copy()

QBitArray

QMemArray<type>	&	QMemArray::duplicate	(
const	QMemArray<type>	&	a)

a

copy()

QMemArray<type>	&	QMemArray::duplicate	(
const	type	*	data,	uint	size)

data size

copy()

Iterator	QMemArray::end	()

QValueListQMap

ConstIterator	QMemArray::end	()	const

QValueListQMap

bool	QMemArray::fill	(const	type	&	v,	int	size	=	-1)

v size-1

size!=-1

resize()

int	QMemArray::find	(const	type	&	v,	uint	index	=	0)	const

index v

v v-1

contains()

bool	QMemArray::isEmpty	()	const

QMemArray isEmpty()isNull() QString

bool	QMemArray::isNull	()	const

size()==0data()==0

uint	QMemArray::nrefs	()	const

QMemArray::operator	const	type	*	()	const

data()

bool	QMemArray::operator!=	(const	QMemArray<type>	&	a)
const

a

operator==()

QMemArray<type>	&	QMemArray::operator=	(
const	QMemArray<type>	&	a)

a

	 assign(a)

bool	QMemArray::operator==	(const	QMemArray<type>	&	a)
const

Returns	TRUE	if	this	array	is	equal	to	a;	otherwise	returns	FALSE.	a

operator!=()

type	&	QMemArray::operator[]	(int	index)	const

index

at()

at()

void	QMemArray::resetRawData	(const	type	*	data,	uint	size)

setRawData()

datasizesetRawData()

setRawData()

bool	QMemArray::resize	(uint	size)

size size==0

size()

fileiconview/qfileiconview.cpp

QMemArray<type>	&	QMemArray::setRawData	(

const	type	*	data,	uint	size)

datasize	Call	 resetRawData

QMemArray

				static	char	bindata[]	=	{	231,	1,	44,	...	};

				QByteArray		a;

				a.setRawData(bindata,	sizeof(bindata));			//	abindata

				QDataStream	s(a,	IO_ReadOnly);												//	a

				s	>>	<something>;																											//	bindata

				a.resetRawData(bindata,	sizeof(bindata));	//	

		

				static	char	bindata[]	=	{	231,	1,	44,	...	};

				QByteArray		a,	b;

				a.setRawData(bindata,	sizeof(bindata));			//	abindata

				a.resize(8);																														//	

				b	=	a;																																						//	

				a[2]	=	123;																																	//	

				//	resetRawData

		

resetRawData()QMemArray

resetRawData()

uint	QMemArray::size	()	const

size()==0

isNull()resize()

void	QMemArray::sort	()

memcmp()

bsearch()

bool	QMemArray::truncate	(uint	pos)

pos

resize(pos)

resize()

QDataStream	&	operator<<	(QDataStream	&	s,
const	QByteArray	&	a)

as

QDataStream

QDataStream	&	operator>>	(QDataStream	&	s,	QByteArray	&	a
)

sa

QDataStream

Q_UINT16	qChecksum	(const	char	*	data,	uint	len)

datalenCRC-16

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QSocket
[]

QSocketTCP	 ……

#include	<qsocket.h>

QObjectQIODevice

enum	Error	{	ErrConnectionRefused,	ErrHostNotFound,	ErrSocketRead	}
QSocket	(QObject	*	parent	=	0,	const	char	*	name	=	0)
virtual	~QSocket	()
enum	State	{	Idle,	HostLookup,	Connecting,	Connected,	Closing,
Connection	=	Connected	}
State	state	()	const
int	socket	()	const
virtual	void	setSocket	(int	socket)
QSocketDevice	*	socketDevice	()
virtual	void	setSocketDevice	(QSocketDevice	*	device)
virtual	void	connectToHost	(const	QString	&	host,	Q_UINT16	port)
QString	peerName	()	const
virtual	bool	open	(int	m)
virtual	void	close	()
virtual	void	flush	()
virtual	Offset	size	()	const
virtual	Offset	at	()	const
virtual	bool	at	(Offset	index)
virtual	bool	atEnd	()	const
Q_ULONG	bytesAvailable	()	const
Q_ULONG	waitForMore	(int	msecs)	const
Q_ULONG	bytesToWrite	()	const
virtual	Q_LONG	readBlock	(char	*	data,	Q_ULONG	maxlen)
virtual	Q_LONG	writeBlock	(const	char	*	data,	Q_ULONG	len)
virtual	int	getch	()
virtual	int	putch	(int	ch)
virtual	int	ungetch	(int	ch)
bool	canReadLine	()	const
virtual	QString	readLine	()
Q_UINT16	port	()	const
Q_UINT16	peerPort	()	const
QHostAddress	address	()	const
QHostAddress	peerAddress	()	const

void	hostFound	()
void	connected	()
void	connectionClosed	()
void	delayedCloseFinished	()
void	readyRead	()
void	bytesWritten	(int	nbytes)
void	error	(int)

virtual	void	sn_read	(bool	force	=	FALSE)
virtual	void	sn_write	()

QSocketTCP

QIODeviceQIODevice

connectToHost() bytesAvailable() canReadLine()QIODevice

connectToHost()

canReadLine()bytesAvailable()

error() connected() readyRead()connectionClosed()connectToHost()
DNSTCP hostFound() close() delayedCloseFinished
“”TCP

state()DNS address()port()IP peerAddress
IP peerName() connectToHost() socket()	QSocketDevice

QSocket QIODeviceQIODeviceQIODeviceQIODevice
QIODevice::size()

open() close() flush() size() at() atEnd() readBlock() writeBlock() getch
readLine()

QSocketDeviceQHostAddressQSocketNotifier/

QSocket::Error

QSocket::ErrConnectionRefused	-	
QSocket::ErrHostNotFound	-	
QSocket::ErrSocketRead	-	

QSocket::State

QSocket::Idle	-	
QSocket::HostLookup	-	DNS
QSocket::Connecting	-	TCP
QSocket::Connected	-	
QSocket::Closing	-	

QSocket::QSocket	(QObject	*	parent	=	0,	const	char	*	name	=	0)

QSocket::IdleQSocket

parentnameQObject

QSocket::~QSocket	()	[]

close()

QHostAddress	QSocket::address	()	const

IPlocalhost127.0.0.1

Offset	QSocket::at	()	const	[]

QSocket0

Reimplemented	from	QIODevice.

bool	QSocket::at	(Offset	index)	[]

index

QIODevice

bool	QSocket::atEnd	()	const	[]

QIODevice

Q_ULONG	QSocket::bytesAvailable	()	const

size()

bytesToWrite()

network/networkprotocol/nntp.cpp

Q_ULONG	QSocket::bytesToWrite	()	const

bytesAvailable()

void	QSocket::bytesWritten	(int	nbytes)	[]

nbytes

bytesToWrite()

writeBlock()bytesToWrite()

bool	QSocket::canReadLine	()	const

				while(!socket->canReadLine())	//	

								...

		

readLine()

network/clientserver/client/client.cppnetwork/httpd/httpd.cppnetwork/mail/smtp.cpp
network/networkprotocol/nntp.cpp

void	QSocket::close	()	[]

QSocket::IdleQSocket QSocket::Closing
delayedCloseFinished()	

state()bytesToWrite()

network/clientserver/client/client.cppnetwork/httpd/httpd.cpp
network/networkprotocol/nntp.cpp

QIODevice

void	QSocket::connectToHost	(const	QString	&	host,
Q_UINT16	port)	[]

hostport

QSocket HostLookup	 hostFound
connected()Connected error()

hostIPDNSQSocketDNS port

state()

network/clientserver/client/client.cppnetwork/mail/smtp.cpp
network/networkprotocol/nntp.cpp

void	QSocket::connected	()	[]

connectToHost()

connectToHost()connectionClosed()

network/clientserver/client/client.cppnetwork/mail/smtp.cpp
network/networkprotocol/nntp.cpp

void	QSocket::connectionClosed	()	[]

connectToHost()close()

network/clientserver/client/client.cppnetwork/networkprotocol/nntp.cpp

void	QSocket::delayedCloseFinished	()	[]

close()QSocket QSocket::Closing delayedCloseFinished()

close()

network/clientserver/client/client.cppnetwork/httpd/httpd.cpp

void	QSocket::error	(int)	[]

Error

network/clientserver/client/client.cppnetwork/networkprotocol/nntp.cpp

void	QSocket::flush	()	[]

QIODevice::flush()

QIODevice

int	QSocket::getch	()	[]

//-1

bytesAvailable()putch()

QIODevice

void	QSocket::hostFound	()	[]

connectToHost()

connected()

network/networkprotocol/nntp.cpp

bool	QSocket::open	(int	m)	[]

QIODevicem

close()

QIODevice

QHostAddress	QSocket::peerAddress	()	const

connectToHost()

QString	QSocket::peerName	()	const

connectToHost()

network/mail/smtp.cpp

Q_UINT16	QSocket::peerPort	()	const

connectToHost()0

QtQt6767htons()

Q_UINT16	QSocket::port	()	const

int	QSocket::putch	(int	ch)	[]

ch

ch-1

getch()

QIODevice

Q_LONG	QSocket::readBlock	(char	*	data,	Q_ULONG	maxlen)
[]

maxlendata-1

network/networkprotocol/nntp.cpp

QIODevice

QString	QSocket::readLine	()	[]

\n canReadLine()“”

canReadLine()

network/clientserver/client/client.cppnetwork/httpd/httpd.cppnetwork/mail/smtp.cpp
network/networkprotocol/nntp.cpp

void	QSocket::readyRead	()	[]

readBlock() readLine()bytesAvailable()

network/clientserver/client/client.cppnetwork/httpd/httpd.cppnetwork/mail/smtp.cpp
network/networkpotocol/nntp.cpp

void	QSocket::setSocket	(int	socket)	[]

socketstate()Connected

QSocketUnixUnix

network/httpd/httpd.cpp

void	QSocket::setSocketDevice	(QSocketDevice	*	device)	[]

device0device device

QSocket connectToHost()

QSocketDeviceQSocketUnix

Offset	QSocket::size	()	const	[]

bytesAvailable()

QIODevice

void	QSocket::sn_read	(bool	force	=	FALSE)	[]

force readyRead
waitForMore()

void	QSocket::sn_write	()	[]

int	QSocket::socket	()	const

-1

QSocketDevice	*	QSocket::socketDevice	()

State	QSocket::state	()	const

QSocket::State

network/clientserver/client/client.cppnetwork/networkprotocol/nntp.cpp

int	QSocket::ungetch	(int	ch)	[]

QIODevice::ungetch()ch

QIODevice

Q_ULONG	QSocket::waitForMore	(int	msecs)	const

msecs

msecs-1

bytesAvailable()

Q_LONG	QSocket::writeBlock	(const	char	*	data,
Q_ULONG	len)	[]

datalen-1

network/networkprotocol/nntp.cpp

QIODevice

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QFocusEvent	Class	Reference
The	QFocusEvent	class	contains	event	parameters	for	widget	focus	events.
More...

#include	<qevent.h>

Inherits	QEvent.

List	of	all	member	functions.

Public	Members

QFocusEvent	(Type	type)
bool	gotFocus	()	const
bool	lostFocus	()	const
enum	Reason	{	Mouse,	Tab,	Backtab,	ActiveWindow,	Popup,	Shortcut,
Other	}

Static	Public	Members

Reason	reason	()
void	setReason	(Reason	reason)
void	resetReason	()

Detailed	Description

The	QFocusEvent	class	contains	event	parameters	for	widget	focus	events.

Focus	events	are	sent	to	widgets	when	the	keyboard	input	focus	changes.	Focus
events	occur	due	to	mouse	actions,	keypresses	(e.g.	Tab	or	Backtab),	the	window
system,	popup	menus,	keyboard	shortcuts	or	other	application	specific	reasons.
The	reason	for	a	particular	focus	event	is	returned	by	reason()	in	the	appropriate
event	handler.

The	event	handlers	QWidget::focusInEvent()	and	QWidget::focusOutEvent()
receive	focus	events.

Use	setReason()	to	set	the	reason	for	all	focus	events,	and	resetReason()	to	set
the	reason	for	all	focus	events	to	the	reason	in	force	before	the	last	setReason()
call.

See	also	QWidget::setFocus(),	QWidget::focusPolicy	and	Event	Classes.

Member	Type	Documentation

QFocusEvent::Reason

This	enum	specifies	why	the	focus	changed.

QFocusEvent::Mouse	-	because	of	a	mouse	action.
QFocusEvent::Tab	-	because	of	a	Tab	press.
QFocusEvent::Backtab	-	because	of	a	Backtab	press	(possibly	including
Shift/Control,	e.g.	Shift+Tab).
QFocusEvent::ActiveWindow	-	because	the	window	system	made	this
window	(in)active.
QFocusEvent::Popup	-	because	the	application	opened/closed	a	popup	that
grabbed/released	focus.
QFocusEvent::Shortcut	-	because	of	a	keyboard	shortcut.
QFocusEvent::Other	-	any	other	reason,	usually	application-specific.

See	the	keyboard	focus	overview	for	more	about	focus.

Member	Function	Documentation

QFocusEvent::QFocusEvent	(Type	type)

Constructs	a	focus	event	object.

The	type	parameter	must	be	either	QEvent::FocusIn	or	QEvent::FocusOut.

bool	QFocusEvent::gotFocus	()	const

Returns	TRUE	if	the	widget	received	the	text	input	focus;	otherwise	returns
FALSE.

bool	QFocusEvent::lostFocus	()	const

Returns	TRUE	if	the	widget	lost	the	text	input	focus;	otherwise	returns	FALSE.

Reason	QFocusEvent::reason	()	[static]

Returns	the	reason	for	this	focus	event.

See	also	setReason().

void	QFocusEvent::resetReason	()	[static]

Resets	the	reason	for	all	future	focus	events	to	the	value	before	the	last
setReason()	call.

See	also	reason()	and	setReason().

void	QFocusEvent::setReason	(Reason	reason)	[static]

Sets	the	reason	for	all	future	focus	events	to	reason.

See	also	reason()	and	resetReason().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QMenuBar	Class	Reference
The	QMenuBar	class	provides	a	horizontal	menu	bar.	More...

#include	<qmenubar.h>

Inherits	QFrame	and	QMenuData.

List	of	all	member	functions.

Public	Members

QMenuBar	(QWidget	*	parent	=	0,	const	char	*	name	=	0)
~QMenuBar	()
virtual	void	show	()
virtual	void	hide	()
virtual	int	heightForWidth	(int	max_width)	const
enum	Separator	{	Never	=	0,	InWindowsStyle	=	1	}
Separator	separator	()	const		(obsolete)
virtual	void	setSeparator	(Separator	when)		(obsolete)
void	setDefaultUp	(bool)
bool	isDefaultUp	()	const

Signals

void	activated	(int	id)
void	highlighted	(int	id)

Important	Inherited	Members

int	insertItem	(const	QString	&	text,	const	QObject	*	receiver,
const	char	*	member,	const	QKeySequence	&	accel	=	0,	int	id	=	-1,
int	index	=	-1)
int	insertItem	(const	QIconSet	&	icon,	const	QString	&	text,
const	QObject	*	receiver,	const	char	*	member,
const	QKeySequence	&	accel	=	0,	int	id	=	-1,	int	index	=	-1)
int	insertItem	(const	QPixmap	&	pixmap,	const	QObject	*	receiver,
const	char	*	member,	const	QKeySequence	&	accel	=	0,	int	id	=	-1,
int	index	=	-1)
int	insertItem	(const	QIconSet	&	icon,	const	QPixmap	&	pixmap,
const	QObject	*	receiver,	const	char	*	member,
const	QKeySequence	&	accel	=	0,	int	id	=	-1,	int	index	=	-1)
int	insertItem	(const	QString	&	text,	int	id	=	-1,	int	index	=	-1)
int	insertItem	(const	QIconSet	&	icon,	const	QString	&	text,	int	id	=	-1,
int	index	=	-1)
int	insertItem	(const	QString	&	text,	QPopupMenu	*	popup,	int	id	=	-1,
int	index	=	-1)
int	insertItem	(const	QIconSet	&	icon,	const	QString	&	text,
QPopupMenu	*	popup,	int	id	=	-1,	int	index	=	-1)
int	insertItem	(const	QPixmap	&	pixmap,	int	id	=	-1,	int	index	=	-1)
int	insertItem	(const	QIconSet	&	icon,	const	QPixmap	&	pixmap,	int	id	=
-1,	int	index	=	-1)
int	insertItem	(const	QPixmap	&	pixmap,	QPopupMenu	*	popup,	int	id	=
-1,	int	index	=	-1)
int	insertItem	(const	QIconSet	&	icon,	const	QPixmap	&	pixmap,
QPopupMenu	*	popup,	int	id	=	-1,	int	index	=	-1)
int	insertItem	(QWidget	*	widget,	int	id	=	-1,	int	index	=	-1)
int	insertItem	(const	QIconSet	&	icon,	QCustomMenuItem	*	custom,
int	id	=	-1,	int	index	=	-1)
int	insertItem	(QCustomMenuItem	*	custom,	int	id	=	-1,	int	index	=	-1)
int	insertSeparator	(int	index	=	-1)
void	removeItem	(int	id)
void	clear	()
bool	isItemEnabled	(int	id)	const
void	setItemEnabled	(int	id,	bool	enable)

Properties

bool	defaultUp	-	the	popup	orientation
Separator	separator	-	in	which	cases	a	menubar	sparator	is	drawn		(obsolete)

Protected	Members

virtual	void	drawContents	(QPainter	*	p)
virtual	void	menuContentsChanged	()
virtual	void	menuStateChanged	()

Detailed	Description

The	QMenuBar	class	provides	a	horizontal	menu	bar.

A	menu	bar	consists	of	a	list	of	pull-down	menu	items.	You	add	menu	items	with
insertItem().	For	example,	asuming	that	menubar	is	a	pointer	to	a	QMenuBar	and
filemenu	is	a	pointer	to	a	QPopupMenu,	the	following	statement	inserts	the
menu	into	the	menu	bar:

		menubar->insertItem("&File",	filemenu);

		

The	ampersand	in	the	menu	item's	text	sets	Alt+F	as	a	shortcut	for	this	menu.
(You	can	use	"&&"	to	get	a	real	ampersand	in	the	menu	bar.)

Items	are	either	enabled	or	disabled.	You	toggle	their	state	with
setItemEnabled().

There	is	no	need	to	lay	out	a	menu	bar.	It	automatically	sets	its	own	geometry	to
the	top	of	the	parent	widget	and	changes	it	appropriately	whenever	the	parent	is
resized.

Example	of	creating	a	menu	bar	with	menu	items	(from	menu/menu.cpp):

								QPopupMenu	*file	=	new	QPopupMenu(this);

								file->insertItem(p1,	"&Open",		this,	SLOT(open()),	CTRL+Key_O);

								file->insertItem(p2,	"&New",	this,	SLOT(news()),	CTRL+Key_N);

								menu	=	new	QMenuBar(this);

								menu->insertItem("&File",	file);

In	most	main	window	style	applications	you	would	use	the	menuBar()	provided
in	QMainWindow,	adding	QPopupMenus	to	the	menu	bar	and	adding	QActions
to	the	popup	menus.

Example	(from	action/application.cpp):

								QPopupMenu	*	file	=	new	QPopupMenu(this);

								menuBar()->insertItem("&File",	file);

								fileNewAction->addTo(file);

Menu	items	can	have	text	and	pixmaps	(or	iconsets),	see	the	various	insertItem()
overloads,	as	well	as	separators,	see	insertSeparator().	You	can	also	add	custom
menu	items	that	are	derived	from	QCustomMenuItem.

Menu	items	may	be	removed	with	removeItem()	and	enabled	or	disabled	with
setItemEnabled().

	

QMenuBar	on	Qt/Mac	is	a	wrapper	for	using	the	system-wide	menubar.
However,	if	you	have	multiple	menubars	in	one	dialog	the	outermost	menubar
(normally	inside	a	widget	with	WType_TopLevel)	will	be	used	for	the	global
menubar.

Qt/Mac	also	provides	a	menubar	merging	feature,	with	this	your	QMenubar	will
be	brought	closer	to	conforming	to	accepted	Mac	OS	X	menubar	layout.	The
merging	functionality	is	based	on	string	matching	the	title	of	a	QPopupMenu
entry,	these	strings	are	translated	(using	QObject::tr())	in	the	"QMenuBar"
context.	If	an	entry	is	moved	the	regularly	connected	slots	will	still	fire	as	if	it
was	in	the	original	place.	The	table	below	outlines	the	strings	looked	for	and
where	the	entry	is	placed	if	matched:

String	matches Placement Notes

about.* Application
Menu	|	About

If	this	entry	is	not	found	no	About	item	will
appear	in	the	Application	Menu

config,	options,
setup,	settings,
preferences

Application
Menu	|
Settings

If	this	entry	is	not	found	the	Settings	item
will	be	disabled

quit,	exit Application
Menu	|	Quit

If	this	entry	is	not	found	a	default	Quit	item
will	be	created	to	call	QApplication::quit()

See	also	QPopupMenu,	QAccel,	QAction,	Aqua	Style	Guidelines,	GUI	Design
Handbook:	Menu	Bar	and	Main	Window	and	Related	Classes.

http://developer.apple.com/techpubs/macosx/Carbon/HumanInterfaceToolbox/Aqua/aqua.html

Member	Type	Documentation

QMenuBar::Separator

This	enum	type	is	used	to	decide	whether	QMenuBar	should	draw	a	separator
line	at	its	bottom.	The	possible	values	are:

QMenuBar::Never	-	In	many	applications	there	is	already	a	separator,	and
having	two	looks	wrong.
QMenuBar::InWindowsStyle	-	In	some	other	applications	a	separator	looks
good	in	Windows	style,	but	nowhere	else.

Member	Function	Documentation

QMenuBar::QMenuBar	(QWidget	*	parent	=	0,
const	char	*	name	=	0)

Constructs	a	menu	bar	with	a	parent	and	a	name.

QMenuBar::~QMenuBar	()

Destroys	the	menu	bar.

void	QMenuBar::activated	(int	id)	[signal]

This	signal	is	emitted	when	a	menu	item	is	selected;	id	is	the	id	of	the	selected
item.

Normally	you	will	connect	each	menu	item	to	a	single	slot	using
QMenuData::insertItem(),	but	sometimes	you	will	want	to	connect	several	items
to	a	single	slot	(most	often	if	the	user	selects	from	an	array).	This	signal	is	useful
in	such	cases.

See	also	highlighted()	and	QMenuData::insertItem().

Example:	progress/progress.cpp.

void	QMenuData::clear	()

Removes	all	menu	items.

See	also	removeItem()	and	removeItemAt().

Examples:	mdi/application.cpp	and	qwerty/qwerty.cpp.

void	QMenuBar::drawContents	(QPainter	*	p)	[virtual
protected]

Called	from	QFrame::paintEvent().	Draws	the	menu	bar	contents	using	painter	p.

Reimplemented	from	QFrame.

int	QMenuBar::heightForWidth	(int	max_width)	const
[virtual]

Returns	the	height	that	the	menu	would	resize	itself	to	if	its	parent	(and	hence
itself)	resized	to	the	given	max_width.	This	can	be	useful	for	simple	layout	tasks
in	which	the	height	of	the	menu	bar	is	needed	after	items	have	been	inserted.	See
showimg/showimg.cpp	for	an	example	of	the	usage.

Example:	showimg/showimg.cpp.

Reimplemented	from	QWidget.

void	QMenuBar::hide	()	[virtual]

Reimplements	QWidget::hide()	in	order	to	deselect	any	selected	item,	and	calls
setUpLayout()	for	the	main	window.

Example:	grapher/grapher.cpp.

Reimplemented	from	QWidget.

void	QMenuBar::highlighted	(int	id)	[signal]

This	signal	is	emitted	when	a	menu	item	is	highlighted;	id	is	the	id	of	the
highlighted	item.

Normally,	you	will	connect	each	menu	item	to	a	single	slot	using
QMenuData::insertItem(),	but	sometimes	you	will	want	to	connect	several	items
to	a	single	slot	(most	often	if	the	user	selects	from	an	array).	This	signal	is	useful
in	such	cases.

See	also	activated()	and	QMenuData::insertItem().

int	QMenuData::insertItem	(const	QString	&	text,
const	QObject	*	receiver,	const	char	*	member,
const	QKeySequence	&	accel	=	0,	int	id	=	-1,	int	index	=	-1)

The	family	of	insertItem()	functions	inserts	menu	items	into	a	popup	menu	or	a
menu	bar.

A	menu	item	is	usually	either	a	text	string	or	a	pixmap,	both	with	an	optional
icon	or	keyboard	accelerator.	For	special	cases	it	is	also	possible	to	insert	custom
items	(see	QCustomMenuItem)	or	even	widgets	into	popup	menus.

Some	insertItem()	members	take	a	popup	menu	as	an	additional	argument.	Use
this	to	insert	submenus	to	existing	menus	or	pulldown	menus	to	a	menu	bar.

The	number	of	insert	functions	may	look	confusing,	but	they	are	actually	quite
simple	to	use.

This	default	version	inserts	a	menu	item	with	the	text	text,	the	accelerator	key
accel,	an	id	and	an	optional	index	and	connects	it	to	the	slot	member	in	the
object	receiver.

Example:

				QMenuBar			*mainMenu	=	new	QMenuBar;

				QPopupMenu	*fileMenu	=	new	QPopupMenu;

				fileMenu->insertItem("New",		myView,	SLOT(newFile()),	CTRL+Key_N);

				fileMenu->insertItem("Open",	myView,	SLOT(open()),				CTRL+Key_O);

				mainMenu->insertItem("File",	fileMenu);

		

Not	all	insert	functions	take	an	object/slot	parameter	or	an	accelerator	key.	Use
connectItem()	and	setAccel()	on	these	items.

If	you	need	to	translate	accelerators,	use	tr()	with	a	string	description	that	use
pass	to	the	QKeySequence	constructor:

				fileMenu->insertItem(tr("Open"),	myView,	SLOT(open()),

																									tr("Ctrl+O"));

		

In	the	example	above,	pressing	Ctrl+N	or	selecting	"Open"	from	the	menu
activates	the	myView->open()	function.

Some	insert	functions	take	a	QIconSet	parameter	to	specify	the	little	menu	item
icon.	Note	that	you	can	always	pass	a	QPixmap	object	instead.

The	index	specifies	the	position	in	the	menu.	The	menu	item	is	appended	at	the
end	of	the	list	if	index	is	negative.

Note	that	keyboard	accelerators	in	Qt	are	not	application-global,	instead	they	are
bound	to	a	certain	top-level	window.	For	example,	accelerators	in	QPopupMenu
items	only	work	for	menus	that	are	associated	with	a	certain	window.	This	is	true
for	popup	menus	that	live	in	a	menu	bar	since	their	accelerators	will	then	be
installed	in	the	menu	bar	itself.	This	also	applies	to	stand-alone	popup	menus
that	have	a	top-level	widget	in	their	parentWidget()	chain.	The	menu	will	then
install	its	accelerator	object	on	that	top-level	widget.	For	all	other	cases	use	an
independent	QAccel	object.

Warning:	Be	careful	when	passing	a	literal	0	to	insertItem()	because	some	C++
compilers	choose	the	wrong	overloaded	function.	Cast	the	0	to	what	you	mean,
e.g.	(QObject*)0.

Returns	the	allocated	menu	identifier	number	(id	if	id	>=	0).

See	also	removeItem(),	changeItem(),	setAccel(),	connectItem(),	QAccel	and
qnamespace.h.

Examples:	addressbook/mainwindow.cpp,	canvas/canvas.cpp,
mdi/application.cpp,	menu/menu.cpp,	qwerty/qwerty.cpp,
scrollview/scrollview.cpp	and	showimg/showimg.cpp.

int	QMenuData::insertItem	(const	QIconSet	&	icon,
const	QString	&	text,	const	QObject	*	receiver,
const	char	*	member,	const	QKeySequence	&	accel	=	0,	int	id
=	-1,	int	index	=	-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	a	menu	item	with	icon	icon,	text	text,	accelerator	accel,	optional	id	id,
and	optional	index.	The	menu	item	is	connected	it	to	the	receiver's	member	slot.
The	icon	will	be	displayed	to	the	left	of	the	text	in	the	item.

Returns	the	allocated	menu	identifier	number	(id	if	id	>=	0).

See	also	removeItem(),	changeItem(),	setAccel(),	connectItem(),	QAccel	and
qnamespace.h.

int	QMenuData::insertItem	(const	QPixmap	&	pixmap,
const	QObject	*	receiver,	const	char	*	member,
const	QKeySequence	&	accel	=	0,	int	id	=	-1,	int	index	=	-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	a	menu	item	with	pixmap	pixmap,	accelerator	accel,	optional	id	id,	and
optional	index.	The	menu	item	is	connected	it	to	the	receiver's	member	slot.	The
icon	will	be	displayed	to	the	left	of	the	text	in	the	item.

To	look	best	when	being	highlighted	as	a	menu	item,	the	pixmap	should	provide
a	mask	(see	QPixmap::mask()).

Returns	the	allocated	menu	identifier	number	(id	if	id	>=	0).

See	also	removeItem(),	changeItem(),	setAccel()	and	connectItem().

int	QMenuData::insertItem	(const	QIconSet	&	icon,
const	QPixmap	&	pixmap,	const	QObject	*	receiver,
const	char	*	member,	const	QKeySequence	&	accel	=	0,	int	id
=	-1,	int	index	=	-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	a	menu	item	with	icon	icon,	pixmap	pixmap,	accelerator	accel,	optional
id	id,	and	optional	index.	The	icon	will	be	displayed	to	the	left	of	the	pixmap	in
the	item.	The	item	is	connected	to	the	member	slot	in	the	receiver	object.

To	look	best	when	being	highlighted	as	a	menu	item,	the	pixmap	should	provide
a	mask	(see	QPixmap::mask()).

Returns	the	allocated	menu	identifier	number	(id	if	id	>=	0).

See	also	removeItem(),	changeItem(),	setAccel(),	connectItem(),	QAccel	and

qnamespace.h.

int	QMenuData::insertItem	(const	QString	&	text,	int	id	=	-1,
int	index	=	-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	a	menu	item	with	text	text,	optional	id	id,	and	optional	index.

Returns	the	allocated	menu	identifier	number	(id	if	id	>=	0).

See	also	removeItem(),	changeItem(),	setAccel()	and	connectItem().

int	QMenuData::insertItem	(const	QIconSet	&	icon,
const	QString	&	text,	int	id	=	-1,	int	index	=	-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	a	menu	item	with	icon	icon,	text	text,	optional	id	id,	and	optional	index.
The	icon	will	be	displayed	to	the	left	of	the	text	in	the	item.

Returns	the	allocated	menu	identifier	number	(id	if	id	>=	0).

See	also	removeItem(),	changeItem(),	setAccel()	and	connectItem().

int	QMenuData::insertItem	(const	QString	&	text,
QPopupMenu	*	popup,	int	id	=	-1,	int	index	=	-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	a	menu	item	with	text	text,	submenu	popup,	optional	id	id,	and	optional
index.

The	popup	must	be	deleted	by	the	programmer	or	by	its	parent	widget.	It	is	not
deleted	when	this	menu	item	is	removed	or	when	the	menu	is	deleted.

Returns	the	allocated	menu	identifier	number	(id	if	id	>=	0).

See	also	removeItem(),	changeItem(),	setAccel()	and	connectItem().

int	QMenuData::insertItem	(const	QIconSet	&	icon,
const	QString	&	text,	QPopupMenu	*	popup,	int	id	=	-1,
int	index	=	-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	a	menu	item	with	icon	icon,	text	text,	submenu	popup,	optional	id	id,	and
optional	index.	The	icon	will	be	displayed	to	the	left	of	the	text	in	the	item.

The	popup	must	be	deleted	by	the	programmer	or	by	its	parent	widget.	It	is	not
deleted	when	this	menu	item	is	removed	or	when	the	menu	is	deleted.

Returns	the	allocated	menu	identifier	number	(id	if	id	>=	0).

See	also	removeItem(),	changeItem(),	setAccel()	and	connectItem().

int	QMenuData::insertItem	(const	QPixmap	&	pixmap,	int	id	=
-1,	int	index	=	-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	a	menu	item	with	pixmap	pixmap,	optional	id	id,	and	optional	index.

To	look	best	when	being	highlighted	as	a	menu	item,	the	pixmap	should	provide
a	mask	(see	QPixmap::mask()).

Returns	the	allocated	menu	identifier	number	(id	if	id	>=	0).

See	also	removeItem(),	changeItem(),	setAccel()	and	connectItem().

int	QMenuData::insertItem	(const	QIconSet	&	icon,
const	QPixmap	&	pixmap,	int	id	=	-1,	int	index	=	-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	a	menu	item	with	icon	icon,	pixmap	pixmap,	optional	id	id,	and	optional
index.	The	icon	will	be	displayed	to	the	left	of	the	pixmap	in	the	item.

Returns	the	allocated	menu	identifier	number	(id	if	id	>=	0).

See	also	removeItem(),	changeItem(),	setAccel()	and	connectItem().

int	QMenuData::insertItem	(const	QPixmap	&	pixmap,
QPopupMenu	*	popup,	int	id	=	-1,	int	index	=	-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	a	menu	item	with	pixmap	pixmap,	submenu	popup,	optional	id	id,	and
optional	index.

The	popup	must	be	deleted	by	the	programmer	or	by	its	parent	widget.	It	is	not
deleted	when	this	menu	item	is	removed	or	when	the	menu	is	deleted.

Returns	the	allocated	menu	identifier	number	(id	if	id	>=	0).

See	also	removeItem(),	changeItem(),	setAccel()	and	connectItem().

int	QMenuData::insertItem	(const	QIconSet	&	icon,
const	QPixmap	&	pixmap,	QPopupMenu	*	popup,	int	id	=	-1,
int	index	=	-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	a	menu	item	with	icon	icon,	pixmap	pixmap	submenu	popup,	optional	id
id,	and	optional	index.	The	icon	will	be	displayed	to	the	left	of	the	pixmap	in	the
item.

The	popup	must	be	deleted	by	the	programmer	or	by	its	parent	widget.	It	is	not
deleted	when	this	menu	item	is	removed	or	when	the	menu	is	deleted.

Returns	the	allocated	menu	identifier	number	(id	if	id	>=	0).

See	also	removeItem(),	changeItem(),	setAccel()	and	connectItem().

int	QMenuData::insertItem	(QWidget	*	widget,	int	id	=	-1,
int	index	=	-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	a	menu	item	that	consists	of	the	widget	widget	with	optional	id	id,	and
optional	index.

Ownership	of	widget	is	transferred	to	the	popup	menu	or	to	the	menu	bar.

Theoretically,	any	widget	can	be	inserted	into	a	popup	menu.	In	practice,	this
only	makes	sense	with	certain	widgets.

If	a	widget	is	not	focus-enabled	(see	QWidget::isFocusEnabled()),	the	menu
treats	it	as	a	separator;	this	means	that	the	item	is	not	selectable	and	will	never
get	focus.	In	this	way	you	can,	for	example,	simply	insert	a	QLabel	if	you	need	a
popup	menu	with	a	title.

If	the	widget	is	focus-enabled	it	will	get	focus	when	the	user	traverses	the	popup
menu	with	the	arrow	keys.	If	the	widget	does	not	accept	ArrowUp	and
ArrowDown	in	its	key	event	handler,	the	focus	will	move	back	to	the	menu
when	the	respective	arrow	key	is	hit	one	more	time.	This	works	with	a
QLineEdit,	for	example.	If	the	widget	accepts	the	arrow	key	itself,	it	must	also
provide	the	possibility	to	put	the	focus	back	on	the	menu	again	by	calling
QWidget::focusNextPrevChild().	Futhermore,	if	the	embedded	widget	closes	the
menu	when	the	user	made	a	selection,	this	can	be	done	safely	by	calling

				if	(isVisible()	&&

									parentWidget()	&&

									parentWidget()->inherits("QPopupMenu"))

								parentWidget()->close();

		

Returns	the	allocated	menu	identifier	number	(id	if	id	>=	0).

See	also	removeItem().

int	QMenuData::insertItem	(const	QIconSet	&	icon,
QCustomMenuItem	*	custom,	int	id	=	-1,	int	index	=	-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	a	custom	menu	item	custom	with	an	icon	and	with	optional	id	id,	and
optional	index.

This	only	works	with	popup	menus.	It	is	not	supported	for	menu	bars.
Ownership	of	custom	is	transferred	to	the	popup	menu.

If	you	want	to	connect	a	custom	item	to	a	certain	slot,	use	connectItem().

Returns	the	allocated	menu	identifier	number	(id	if	id	>=	0).

See	also	connectItem(),	removeItem()	and	QCustomMenuItem.

int	QMenuData::insertItem	(QCustomMenuItem	*	custom,	int	id
=	-1,	int	index	=	-1)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	a	custom	menu	item	custom	with	optional	id	id,	and	optional	index.

This	only	works	with	popup	menus.	It	is	not	supported	for	menu	bars.
Ownership	of	custom	is	transferred	to	the	popup	menu.

If	you	want	to	connect	a	custom	item	to	a	certain	slot,	use	connectItem().

Returns	the	allocated	menu	identifier	number	(id	if	id	>=	0).

See	also	connectItem(),	removeItem()	and	QCustomMenuItem.

int	QMenuData::insertSeparator	(int	index	=	-1)

Inserts	a	separator	at	position	index.	The	separator	becomes	the	last	menu	item	if
index	is	negative.

In	a	popup	menu	a	separator	is	rendered	as	a	horizontal	line.	In	a	Motif	menu	bar
a	separator	is	spacing,	so	the	rest	of	the	items	(normally	just	"Help")	are	drawn
right-justified.	In	a	Windows	menu	bar	separators	are	ignored	(to	comply	with
the	Windows	style	guidelines).

Examples:	addressbook/mainwindow.cpp,	mdi/application.cpp,	menu/menu.cpp,
progress/progress.cpp,	scrollview/scrollview.cpp,	showimg/showimg.cpp	and
sound/sound.cpp.

bool	QMenuBar::isDefaultUp	()	const

Returns	the	popup	orientation.	See	the	"defaultUp"	property	for	details.

bool	QMenuData::isItemEnabled	(int	id)	const

Returns	TRUE	if	the	item	with	identifier	id	is	enabled;	otherwise	returns	FALSE

See	also	setItemEnabled().

void	QMenuBar::menuContentsChanged	()	[virtual	protected]

Recomputes	the	menu	bar's	display	data	according	to	the	new	contents.

You	should	never	need	to	call	this;	it	is	called	automatically	by	QMenuData
whenever	it	needs	to	be	called.

Reimplemented	from	QMenuData.

void	QMenuBar::menuStateChanged	()	[virtual	protected]

Recomputes	the	menu	bar's	display	data	according	to	the	new	state.

You	should	never	need	to	call	this;	it	is	called	automatically	by	QMenuData
whenever	it	needs	to	be	called.

Reimplemented	from	QMenuData.

void	QMenuData::removeItem	(int	id)

Removes	the	menu	item	that	has	the	identifier	id.

See	also	removeItemAt()	and	clear().

Example:	chart/chartform.cpp.

Separator	QMenuBar::separator	()	const

Returns	in	which	cases	a	menubar	sparator	is	drawn.	See	the	"separator"
property	for	details.

void	QMenuBar::setDefaultUp	(bool)

Sets	the	popup	orientation.	See	the	"defaultUp"	property	for	details.

void	QMenuData::setItemEnabled	(int	id,	bool	enable)

If	enable	is	TRUE,	enables	the	menu	item	with	identifier	id;	otherwise	disables
the	menu	item	with	identifier	id.

See	also	isItemEnabled().

Examples:	mdi/application.cpp,	menu/menu.cpp,	progress/progress.cpp	and
showimg/showimg.cpp.

void	QMenuBar::setSeparator	(Separator	when)	[virtual]

Sets	in	which	cases	a	menubar	sparator	is	drawn	to	when.	See	the	"separator"
property	for	details.

void	QMenuBar::show	()	[virtual]

Reimplements	QWidget::show()	in	order	to	set	up	the	correct	keyboard
accelerators	and	to	raise	itself	to	the	top	of	the	widget	stack.

Example:	grapher/grapher.cpp.

Reimplemented	from	QWidget.

Property	Documentation

bool	defaultUp

This	property	holds	the	popup	orientation.

The	default	popup	orientation.	By	default,	menus	pop	"down"	the	screen.	By
setting	the	property	to	TRUE,	the	menu	will	pop	"up".	You	might	call	this	for
menus	that	are	below	the	document	to	which	they	refer.

If	the	menu	would	not	fit	on	the	screen,	the	other	direction	is	used	rather	than	the
default.

Set	this	property's	value	with	setDefaultUp()	and	get	this	property's	value	with
isDefaultUp().

Separator	separator

This	property	holds	in	which	cases	a	menubar	sparator	is	drawn.

This	property	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Set	this	property's	value	with	setSeparator()	and	get	this	property's	value	with
separator().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QSocketDevice	Class	Reference
[network	module]

The	QSocketDevice	class	provides	a	platform-independent	low-level	socket
API.	More...

#include	<qsocketdevice.h>

Inherits	QIODevice.

List	of	all	member	functions.

Public	Members

enum	Type	{	Stream,	Datagram	}
QSocketDevice	(Type	type	=	Stream)
QSocketDevice	(int	socket,	Type	type)
virtual	~QSocketDevice	()
bool	isValid	()	const
Type	type	()	const
int	socket	()	const
virtual	void	setSocket	(int	socket,	Type	type)
bool	blocking	()	const
virtual	void	setBlocking	(bool	enable)
bool	addressReusable	()	const
virtual	void	setAddressReusable	(bool	enable)
int	receiveBufferSize	()	const
virtual	void	setReceiveBufferSize	(uint	size)
int	sendBufferSize	()	const
virtual	void	setSendBufferSize	(uint	size)
virtual	bool	connect	(const	QHostAddress	&	addr,	Q_UINT16	port)
virtual	bool	bind	(const	QHostAddress	&	address,	Q_UINT16	port)
virtual	bool	listen	(int	backlog)
virtual	int	accept	()
Q_LONG	bytesAvailable	()	const
Q_LONG	waitForMore	(int	msecs,	bool	*	timeout	=	0)	const
virtual	Q_LONG	readBlock	(char	*	data,	Q_ULONG	maxlen)
virtual	Q_LONG	writeBlock	(const	char	*	data,	Q_ULONG	len)
virtual	Q_LONG	writeBlock	(const	char	*	data,	Q_ULONG	len,
const	QHostAddress	&	host,	Q_UINT16	port)
Q_UINT16	port	()	const
Q_UINT16	peerPort	()	const
QHostAddress	address	()	const
QHostAddress	peerAddress	()	const
enum	Error	{	NoError,	AlreadyBound,	Inaccessible,	NoResources,	Bug,
Impossible,	NoFiles,	ConnectionRefused,	NetworkFailure,	UnknownError
}
Error	error	()	const

Protected	Members

void	setError	(Error	err)

Detailed	Description

The	QSocketDevice	class	provides	a	platform-independent	low-level	socket
API.

This	class	is	not	really	intended	for	use	outside	Qt.	It	can	be	used	to	achieve
some	things	that	QSocket	does	not	provide,	but	it's	not	particularly	easy	to
understand	or	use.

The	essential	purpose	of	the	class	is	to	provide	a	QIODevice	that	works	on
sockets,	wrapped	in	a	platform-independent	API.

See	also	QSocket,	QSocketNotifier,	QHostAddress	and	Input/Output	and
Networking.

Member	Type	Documentation

QSocketDevice::Error

This	enum	type	describes	the	error	states	of	QSocketDevice.	At	present	these
errors	are	defined:

QSocketDevice::NoError	-	all	is	fine.
QSocketDevice::AlreadyBound	-	bind()	said	so.
QSocketDevice::Inaccessible	-	the	operating	system	or	firewall	prohibits
something.
QSocketDevice::NoResources	-	the	operating	system	ran	out	of	something.
QSocketDevice::Bug	-	there	seems	to	be	a	bug	in	QSocketDevice.
QSocketDevice::Impossible	-	the	impossible	happened,	usually	because
you	confused	QSocketDevice	horribly.	Simple	example:

		::close(sd->socket());

		sd->writeBlock(someData,	42);

		

The	libc	::close()	closes	the	socket,	but	QSocketDevice	is	not	aware	of	this.
So	when	you	call	writeBlock(),	the	impossible	happens.
QSocketDevice::NoFiles	-	the	operating	system	will	not	let
QSocketDevice	open	another	file.
QSocketDevice::ConnectionRefused	-	a	connection	attempt	was	rejected
by	the	peer.
QSocketDevice::NetworkFailure	-	there	is	a	network	failure	between	this
host	and...	and	whatever.
QSocketDevice::UnknownError	-	the	operating	system	reacted	in	a	way
that	the	Qt	developers	did	not	foresee.

QSocketDevice::Type

This	enum	type	describes	the	type	of	the	socket:

QSocketDevice::Stream	-	a	stream	socket	(TCP,	usually)
QSocketDevice::Datagram	-	a	datagram	socket	(UDP,	usually)

Member	Function	Documentation

QSocketDevice::QSocketDevice	(Type	type	=	Stream)

Creates	a	QSocketDevice	object	for	a	stream	or	datagram	socket.

The	type	argument	must	be	either	QSocketDevice::Stream	for	a	reliable,
connection-oriented	TCP	socket,	or	QSocketDevice::Datagram	for	an	unreliable
UDP	socket.

See	also	blocking().

QSocketDevice::QSocketDevice	(int	socket,	Type	type)

Creates	a	QSocketDevice	object	for	the	existing	socket	socket.

The	type	argument	must	match	the	actual	socket	type;	use
QSocketDevice::Stream	for	a	reliable,	connection-oriented	TCP	socket,	or
QSocketDevice::Datagram	for	an	unreliable,	connectionless	UDP	socket.

QSocketDevice::~QSocketDevice	()	[virtual]

Destroys	the	socket	device	and	closes	the	socket	if	it	is	open.

int	QSocketDevice::accept	()	[virtual]

Extracts	the	first	connection	from	the	queue	of	pending	connections	for	this
socket	and	returns	a	new	socket	identifier.	Returns	-1	if	the	operation	failed.

See	also	bind()	and	listen().

QHostAddress	QSocketDevice::address	()	const

Returns	the	address	of	this	socket	device.	This	may	be	0.0.0.0	for	a	while,	but	is
set	to	something	sensible	when	there	is	a	sensible	value	it	can	have.

bool	QSocketDevice::addressReusable	()	const

Returns	TRUE	if	the	address	of	this	socket	can	be	used	by	other	sockets	at	the
same	time,	and	FALSE	if	this	socket	claims	exclusive	ownership.

See	also	setAddressReusable().

bool	QSocketDevice::bind	(const	QHostAddress	&	address,
Q_UINT16	port)	[virtual]

Assigns	a	name	to	an	unnamed	socket.	The	name	is	the	host	address	address	and
the	port	number	port.	If	the	operation	succeeds,	bind()	returns	TRUE.	Otherwise,
it	returns	FALSE	without	changing	what	port()	and	address()	return.

bind()	is	used	by	servers	for	setting	up	incoming	connections.	Call	bind()	before
listen().

bool	QSocketDevice::blocking	()	const

Returns	TRUE	if	the	socket	is	in	blocking	mode,	or	FALSE	if	it	is	in
nonblocking	mode	or	if	the	socket	is	invalid.

Note	that	this	function	does	not	set	error().

Warning:	On	Windows,	this	function	always	returns	TRUE	since	the
ioctlsocket()	function	is	broken.

See	also	setBlocking()	and	isValid().

Q_LONG	QSocketDevice::bytesAvailable	()	const

Returns	the	number	of	bytes	available	for	reading,	or	-1	if	an	error	occurred.

Warning:	On	Microsoft	Windows,	we	use	the	ioctlsocket()	function	to
determine	the	number	of	bytes	queued	on	the	socket.	According	to	Microsoft
(KB	Q125486),	ioctlsocket()	sometimes	return	an	incorrect	number.	The	only
safe	way	to	determine	the	amount	of	data	on	the	socket	is	to	read	it	using
readBlock().	QSocket	has	workarounds	to	deal	with	this	problem.

bool	QSocketDevice::connect	(const	QHostAddress	&	addr,
Q_UINT16	port)	[virtual]

Connects	to	the	IP	address	and	port	specified	by	addr	and	port.	Returns	TRUE	if
it	establishes	a	connection,	and	FALSE	if	not.	error()	explains	why.

Note	that	error()	commonly	returns	NoError	for	non-blocking	sockets;	this	just
means	that	you	can	call	connect()	again	in	a	little	while	and	it'll	probably
succeed.

Error	QSocketDevice::error	()	const

Returns	the	first	error	seen.

bool	QSocketDevice::isValid	()	const

Returns	TRUE	if	this	is	a	valid	socket;	otherwise	returns	FALSE.

See	also	socket().

bool	QSocketDevice::listen	(int	backlog)	[virtual]

Specifies	how	many	pending	connections	a	server	socket	can	have.	Returns
TRUE	if	the	operation	was	successful,	otherwise	FALSE.

The	listen()	call	only	applies	to	sockets	where	type()	is	Stream,	not	Datagram
sockets.	listen()	must	not	be	called	before	bind()	or	after	accept().	It	is	common
to	use	a	backlog	value	of	50	on	most	Unix	systems.

See	also	bind()	and	accept().

QHostAddress	QSocketDevice::peerAddress	()	const

Returns	the	address	of	the	port	this	socket	device	is	connected	to.	This	may	be
0.0.0.0	for	a	while,	but	is	set	to	something	sensible	when	there	is	a	sensible	value
it	can	have.

Note	that	for	Datagram	sockets,	this	is	the	source	port	of	the	last	packet	received,
and	that	it	is	in	native	byte	order.

Q_UINT16	QSocketDevice::peerPort	()	const

Returns	the	port	number	of	the	port	this	socket	device	is	connected	to.	This	may
be	0	for	a	while,	but	is	set	to	something	sensible	when	there	is	a	sensible	value	it
can	have.

Note	that	for	Datagram	sockets,	this	is	the	source	port	of	the	last	packet	received.

Q_UINT16	QSocketDevice::port	()	const

Returns	the	port	number	of	this	socket	device.	This	may	be	0	for	a	while,	but	is
set	to	something	sensible	when	there	is	a	sensible	value	it	can	have.

Note	that	Qt	always	uses	native	byte	order,	i.e.	67	is	67	in	Qt,	there	is	no	need	to
call	htons().

Q_LONG	QSocketDevice::readBlock	(char	*	data,
Q_ULONG	maxlen)	[virtual]

Reads	max	maxlen	bytes	from	the	socket	into	data	and	returns	the	number	of
bytes	read.	Returns	-1	if	an	error	occurred.

Reimplemented	from	QIODevice.

int	QSocketDevice::receiveBufferSize	()	const

Returns	the	size	of	the	OS	receive	buffer.

See	also	setReceiveBufferSize().

int	QSocketDevice::sendBufferSize	()	const

Returns	the	size	of	the	OS	send	buffer.

See	also	setSendBufferSize().

void	QSocketDevice::setAddressReusable	(bool	enable)
[virtual]

Sets	the	address	of	this	socket	to	be	usable	by	other	sockets	too	if	enable	is
TRUE,	and	to	be	used	exclusively	by	this	socket	if	enable	is	FALSE.

When	a	socket	is	reusable,	other	sockets	can	use	the	same	port	number	(and	IP
address),	which	is,	in	general,	good.	Of	course	other	sockets	cannot	use	the	same
(address,port,peer-address,peer-port)	4-tuple	as	this	socket,	so	there	is	no	risk	of
confusing	the	two	TCP	connections.

See	also	addressReusable().

void	QSocketDevice::setBlocking	(bool	enable)	[virtual]

Makes	the	socket	blocking	if	enable	is	TRUE	or	nonblocking	if	enable	is
FALSE.

Sockets	are	blocking	by	default,	but	we	recommend	using	nonblocking	socket
operations,	especially	for	GUI	programs	that	need	to	be	responsive.

Warning:	On	Windows,	this	function	should	be	used	with	care	since	whenever
you	use	a	QSocketNotifier	on	Windows,	the	socket	is	immediately	made
nonblocking.

See	also	blocking()	and	isValid().

void	QSocketDevice::setError	(Error	err)	[protected]

Allows	subclasses	to	set	the	error	state	to	err.

void	QSocketDevice::setReceiveBufferSize	(uint	size)	[virtual]

Sets	the	size	of	the	OS	receive	buffer	to	size.

The	OS	receive	buffer	size	effectively	limits	two	things:	how	much	data	can	be
in	transit	at	any	one	moment,	and	how	much	data	can	be	received	in	one	iteration
of	the	main	event	loop.

The	default	is	OS-dependent.	A	socket	that	receives	large	amounts	of	data	is
probably	best	off	with	a	buffer	size	of	49152.

void	QSocketDevice::setSendBufferSize	(uint	size)	[virtual]

Sets	the	size	of	the	OS	send	buffer	to	size.

The	OS	send	buffer	size	effectively	limits	how	much	data	can	be	in	transit	at	any
one	moment.

The	default	is	OS-dependent.	A	socket	that	sends	large	amounts	of	data	is
probably	best	off	with	a	buffer	size	of	49152.

void	QSocketDevice::setSocket	(int	socket,	Type	type)	[virtual]

Sets	the	socket	device	to	operate	on	the	existing	socket	socket.

The	type	argument	must	match	the	actual	socket	type;	use
QSocketDevice::Stream	for	a	reliable,	connection-oriented	TCP	socket,	or
QSocketDevice::Datagram	for	an	unreliable,	connectionless	UDP	socket.

Any	existing	socket	is	closed.

See	also	isValid()	and	close().

int	QSocketDevice::socket	()	const

Returns	the	socket	number,	or	-1	if	it	is	an	invalid	socket.

See	also	isValid()	and	type().

Type	QSocketDevice::type	()	const

Returns	the	socket	type	which	is	either	QSocketDevice::Stream	or
QSocketDevice::Datagram.

See	also	socket().

Q_LONG	QSocketDevice::waitForMore	(int	msecs,
bool	*	timeout	=	0)	const

Wait	up	to	msecs	milliseconds	for	more	data	to	be	available.	If	msecs	is	-1	the
call	will	block	indefinitely.

This	is	a	blocking	call	and	should	be	avoided	in	event	driven	applications.

Returns	the	number	of	bytes	available	for	reading,	or	-1	if	an	error	occurred.

If	timeout	is	non-null	and	no	error	occurred	(i.e.	it	does	not	return	-1),	then	this
function	sets	timeout	out	to	TRUE,	if	the	reason	for	returning	was	that	the
timeout	was	reached,	otherwise	it	sets	timeout	to	FALSE.	This	is	useful	to	find
out	if	the	peer	closed	the	connection.

See	also	bytesAvailable().

Q_LONG	QSocketDevice::writeBlock	(const	char	*	data,
Q_ULONG	len)	[virtual]

Writes	len	bytes	to	the	socket	from	data	and	returns	the	number	of	bytes	written.
Returns	-1	if	an	error	occurred.

This	is	used	for	QSocketDevice::Stream	sockets.

Reimplemented	from	QIODevice.

Q_LONG	QSocketDevice::writeBlock	(const	char	*	data,
Q_ULONG	len,	const	QHostAddress	&	host,	Q_UINT16	port
)	[virtual]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Writes	len	bytes	to	the	socket	from	data	and	returns	the	number	of	bytes	written.
Returns	-1	if	an	error	occurred.

This	is	used	for	QSocketDevice::Datagram	sockets.	You	have	to	specify	the	host
and	port	of	the	destination	of	the	data.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QVariant	Class	Reference
The	QVariant	class	acts	like	a	union	for	the	most	common	Qt	data	types.	More...

#include	<qvariant.h>

List	of	all	member	functions.

Public	Members

enum	Type	{	Invalid,	Map,	List,	String,	StringList,	Font,	Pixmap,	Brush,
Rect,	Size,	Color,	Palette,	ColorGroup,	IconSet,	Point,	Image,	Int,	UInt,
Bool,	Double,	CString,	PointArray,	Region,	Bitmap,	Cursor,	SizePolicy,
Date,	Time,	DateTime,	ByteArray,	BitArray,	KeySequence	}
QVariant	()
~QVariant	()
QVariant	(const	QVariant	&	p)
QVariant	(QDataStream	&	s)
QVariant	(const	QString	&	val)
QVariant	(const	QCString	&	val)
QVariant	(const	char	*	val)
QVariant	(const	QStringList	&	val)
QVariant	(const	QFont	&	val)
QVariant	(const	QPixmap	&	val)
QVariant	(const	QImage	&	val)
QVariant	(const	QBrush	&	val)
QVariant	(const	QPoint	&	val)
QVariant	(const	QRect	&	val)
QVariant	(const	QSize	&	val)
QVariant	(const	QColor	&	val)
QVariant	(const	QPalette	&	val)
QVariant	(const	QColorGroup	&	val)
QVariant	(const	QIconSet	&	val)
QVariant	(const	QPointArray	&	val)
QVariant	(const	QRegion	&	val)
QVariant	(const	QBitmap	&	val)
QVariant	(const	QCursor	&	val)
QVariant	(const	QDate	&	val)
QVariant	(const	QTime	&	val)
QVariant	(const	QDateTime	&	val)
QVariant	(const	QByteArray	&	val)
QVariant	(const	QBitArray	&	val)
QVariant	(const	QKeySequence	&	val)
QVariant	(const	QValueList<QVariant>	&	val)
QVariant	(const	QMap<QString,	QVariant>	&	val)

QVariant	(int	val)
QVariant	(uint	val)
QVariant	(bool	val,	int)
QVariant	(double	val)
QVariant	(QSizePolicy	val)
QVariant	&	operator=	(const	QVariant	&	variant)
bool	operator==	(const	QVariant	&	v)	const
bool	operator!=	(const	QVariant	&	v)	const
Type	type	()	const
const	char	*	typeName	()	const
bool	canCast	(Type	t)	const
bool	cast	(Type	t)
bool	isValid	()	const
void	clear	()
const	QString	toString	()	const
const	QCString	toCString	()	const
const	QStringList	toStringList	()	const
const	QFont	toFont	()	const
const	QPixmap	toPixmap	()	const
const	QImage	toImage	()	const
const	QBrush	toBrush	()	const
const	QPoint	toPoint	()	const
const	QRect	toRect	()	const
const	QSize	toSize	()	const
const	QColor	toColor	()	const
const	QPalette	toPalette	()	const
const	QColorGroup	toColorGroup	()	const
const	QIconSet	toIconSet	()	const
const	QPointArray	toPointArray	()	const
const	QBitmap	toBitmap	()	const
const	QRegion	toRegion	()	const
const	QCursor	toCursor	()	const
const	QDate	toDate	()	const
const	QTime	toTime	()	const
const	QDateTime	toDateTime	()	const
const	QByteArray	toByteArray	()	const
const	QBitArray	toBitArray	()	const
const	QKeySequence	toKeySequence	()	const
int	toInt	(bool	*	ok	=	0)	const

uint	toUInt	(bool	*	ok	=	0)	const
bool	toBool	()	const
double	toDouble	(bool	*	ok	=	0)	const
const	QValueList<QVariant>	toList	()	const
const	QMap<QString,	QVariant>	toMap	()	const
QSizePolicy	toSizePolicy	()	const
QValueListConstIterator<QString>	stringListBegin	()	const
QValueListConstIterator<QString>	stringListEnd	()	const
QValueListConstIterator<QVariant>	listBegin	()	const
QValueListConstIterator<QVariant>	listEnd	()	const
QMapConstIterator<QString,	QVariant>	mapBegin	()	const
QMapConstIterator<QString,	QVariant>	mapEnd	()	const
QMapConstIterator<QString,	QVariant>	mapFind	(const	QString	&	key)
const
QString	&	asString	()
QCString	&	asCString	()
QStringList	&	asStringList	()
QFont	&	asFont	()
QPixmap	&	asPixmap	()
QImage	&	asImage	()
QBrush	&	asBrush	()
QPoint	&	asPoint	()
QRect	&	asRect	()
QSize	&	asSize	()
QColor	&	asColor	()
QPalette	&	asPalette	()
QColorGroup	&	asColorGroup	()
QIconSet	&	asIconSet	()
QPointArray	&	asPointArray	()
QBitmap	&	asBitmap	()
QRegion	&	asRegion	()
QCursor	&	asCursor	()
QDate	&	asDate	()
QTime	&	asTime	()
QDateTime	&	asDateTime	()
QByteArray	&	asByteArray	()
QBitArray	&	asBitArray	()
QKeySequence	&	asKeySequence	()
int	&	asInt	()

uint	&	asUInt	()
bool	&	asBool	()
double	&	asDouble	()
QValueList<QVariant>	&	asList	()
QMap<QString,	QVariant>	&	asMap	()
QSizePolicy	&	asSizePolicy	()

Static	Public	Members

const	char	*	typeToName	(Type	typ)
Type	nameToType	(const	char	*	name)

Detailed	Description

The	QVariant	class	acts	like	a	union	for	the	most	common	Qt	data	types.

Because	C++	forbids	unions	from	including	types	that	have	non-default
constructors	or	destructors,	most	interesting	Qt	classes	cannot	be	used	in	unions.
Without	QVariant,	this	would	be	a	problem	for	QObject::property()	and	for
database	work,	etc.

A	QVariant	object	holds	a	single	value	of	a	single	type()	at	a	time.	(Some	type()s
are	multi-valued,	for	example	a	string	list.)	You	can	find	out	what	type,	T,	the
variant	holds,	convert	it	to	a	different	type	using	one	of	the	asT()	functions,	e.g.
asSize(),	get	its	value	using	one	of	the	toT()	functions,	e.g.	toSize(),	and	check
whether	the	type	can	be	converted	to	a	particular	type	using	canCast().

The	methods	named	toT()	(for	any	supported	T,	see	the	Type	documentation	for
a	list)	are	const.	If	you	ask	for	the	stored	type,	they	return	a	copy	of	the	stored
object.	If	you	ask	for	a	type	that	can	be	generated	from	the	stored	type,	toT()
copies	and	converts	and	leaves	the	object	itself	unchanged.	If	you	ask	for	a	type
that	cannot	be	generated	from	the	stored	type,	the	result	depends	on	the	type	(see
the	function	documentation	for	details).

Note	that	three	data	types	supported	by	QVariant	are	explicitly	shared,	namely
QImage,	QPointArray,	and	QCString,	and	in	these	cases	the	toT()	methods
return	a	shallow	copy.	In	almost	all	cases	you	must	make	a	deep	copy	of	the
returned	values	before	modifying	them.

The	asT()	functions	are	not	const.	They	do	conversion	like	the	toT()	methods,	set
the	variant	to	hold	the	converted	value,	and	return	a	reference	to	the	new
contents	of	the	variant.

Here	is	some	example	code	to	demonstrate	the	use	of	QVariant:

				QDataStream	out(...);

				QVariant	v(123);										//	The	variant	now	contains	an	int

				int	x	=	v.toInt();								//	x	=	123

				out	<<	v;																	//	Writes	a	type	tag	and	an	int	to	out

				v	=	QVariant("hello");				//	The	variant	now	contains	a	QCString

				v	=	QVariant(tr("hello"));//	The	variant	now	contains	a	QString

				int	y	=	v.toInt();								//	y	=	0	since	v	cannot	be	converted	to	an	int

				QString	s	=	v.toString();	//	s	=	tr("hello")		(see	QObject::tr())

				out	<<	v;																	//	Writes	a	type	tag	and	a	QString	to	out

				...

				QDataStream	in(...);						//	(opening	the	previously	written	stream)

				in	>>	v;																		//	Reads	an	Int	variant

				int	z	=	v.toInt();								//	z	=	123

				qDebug("Type	is	%s",						//	prints	"Type	is	int"

												v.typeName());

				v.asInt()	+=	100;									//	The	variant	now	hold	the	value	223.

				v	=	QVariant(QStringList());

				v.asStringList().append("Hello");

				

You	can	even	store	QValueLists	and	QMaps	in	a	variant,	so	you	can	easily
construct	arbitrarily	complex	data	structures	of	arbitrary	types.	This	is	very
powerful	and	versatile,	but	may	prove	less	memory	and	speed	efficient	than
storing	specific	types	in	standard	data	structures.

See	the	Collection	Classes.

See	also	Miscellaneous	Classes	and	Object	Model.

Member	Type	Documentation

QVariant::Type

This	enum	type	defines	the	types	of	variable	that	a	QVariant	can	contain.

QVariant::Invalid	-	no	type
QVariant::BitArray	-	a	QBitArray
QVariant::ByteArray	-	a	QByteArray
QVariant::Bitmap	-	a	QBitmap
QVariant::Bool	-	a	bool
QVariant::Brush	-	a	QBrush
QVariant::Color	-	a	QColor
QVariant::ColorGroup	-	a	QColorGroup
QVariant::Cursor	-	a	QCursor
QVariant::Date	-	a	QDate
QVariant::DateTime	-	a	QDateTime
QVariant::Double	-	a	double
QVariant::Font	-	a	QFont
QVariant::IconSet	-	a	QIconSet
QVariant::Image	-	a	QImage
QVariant::Int	-	an	int
QVariant::KeySequence	-	a	QKeySequence
QVariant::List	-	a	QValueList
QVariant::Map	-	a	QMap
QVariant::Palette	-	a	QPalette
QVariant::Pixmap	-	a	QPixmap
QVariant::Point	-	a	QPoint
QVariant::PointArray	-	a	QPointArray
QVariant::Rect	-	a	QRect
QVariant::Region	-	a	QRegion
QVariant::Size	-	a	QSize
QVariant::SizePolicy	-	a	QSizePolicy
QVariant::String	-	a	QString
QVariant::CString	-	a	QCString
QVariant::StringList	-	a	QStringList
QVariant::Time	-	a	QTime

QVariant::UInt	-	an	unsigned	int

Note	that	Qt's	definition	of	bool	depends	on	the	compiler.	qglobal.h	has	the
system-dependent	definition	of	bool.

Member	Function	Documentation

QVariant::QVariant	()

Constructs	an	invalid	variant.

QVariant::QVariant	(const	QVariant	&	p)

Constructs	a	copy	of	the	variant,	p,	passed	as	the	argument	to	this	constructor.
Usually	this	is	a	deep	copy,	but	a	shallow	copy	is	made	if	the	stored	data	type	is
explicitly	shared,	as	e.g.	QImage	is.

QVariant::QVariant	(QDataStream	&	s)

Reads	the	variant	from	the	data	stream,	s.

QVariant::QVariant	(const	QString	&	val)

Constructs	a	new	variant	with	a	string	value,	val.

QVariant::QVariant	(const	QCString	&	val)

Constructs	a	new	variant	with	a	C-string	value,	val.

If	you	want	to	modify	the	QCString	after	you've	passed	it	to	this	constructor,	we
recommend	passing	a	deep	copy	(see	QCString::copy()).

QVariant::QVariant	(const	char	*	val)

Constructs	a	new	variant	with	a	C-string	value	of	val	if	val	is	non-null.	The
variant	creates	a	deep	copy	of	val.

If	val	is	null,	the	resulting	variant	has	type	Invalid.

QVariant::QVariant	(const	QStringList	&	val)

Constructs	a	new	variant	with	a	string	list	value,	val.

QVariant::QVariant	(const	QFont	&	val)

Constructs	a	new	variant	with	a	font	value,	val.

QVariant::QVariant	(const	QPixmap	&	val)

Constructs	a	new	variant	with	a	pixmap	value,	val.

QVariant::QVariant	(const	QImage	&	val)

Constructs	a	new	variant	with	an	image	value,	val.

Because	QImage	is	explicitly	shared,	you	may	need	to	pass	a	deep	copy	to	the
variant	using	QImage::copy(),	e.g.	if	you	intend	changing	the	image	you've
passed	later	on.

QVariant::QVariant	(const	QBrush	&	val)

Constructs	a	new	variant	with	a	brush	value,	val.

QVariant::QVariant	(const	QPoint	&	val)

Constructs	a	new	variant	with	a	point	value,	val.

QVariant::QVariant	(const	QRect	&	val)

Constructs	a	new	variant	with	a	rect	value,	val.

QVariant::QVariant	(const	QSize	&	val)

Constructs	a	new	variant	with	a	size	value,	val.

QVariant::QVariant	(const	QColor	&	val)

Constructs	a	new	variant	with	a	color	value,	val.

QVariant::QVariant	(const	QPalette	&	val)

Constructs	a	new	variant	with	a	color	palette	value,	val.

QVariant::QVariant	(const	QColorGroup	&	val)

Constructs	a	new	variant	with	a	color	group	value,	val.

QVariant::QVariant	(const	QIconSet	&	val)

Constructs	a	new	variant	with	an	icon	set	value,	val.

QVariant::QVariant	(const	QPointArray	&	val)

Constructs	a	new	variant	with	a	point	array	value,	val.

Because	QPointArray	is	explicitly	shared,	you	may	need	to	pass	a	deep	copy	to
the	variant	using	QPointArray::copy(),	e.g.	if	you	intend	changing	the	point
array	you've	passed	later	on.

QVariant::QVariant	(const	QRegion	&	val)

Constructs	a	new	variant	with	a	region	value,	val.

QVariant::QVariant	(const	QBitmap	&	val)

Constructs	a	new	variant	with	a	bitmap	value,	val.

QVariant::QVariant	(const	QCursor	&	val)

Constructs	a	new	variant	with	a	cursor	value,	val.

QVariant::QVariant	(const	QDate	&	val)

Constructs	a	new	variant	with	a	date	value,	val.

QVariant::QVariant	(const	QTime	&	val)

Constructs	a	new	variant	with	a	time	value,	val.

QVariant::QVariant	(const	QDateTime	&	val)

Constructs	a	new	variant	with	a	date/time	value,	val.

QVariant::QVariant	(const	QByteArray	&	val)

Constructs	a	new	variant	with	a	bytearray	value,	val.

QVariant::QVariant	(const	QBitArray	&	val)

Constructs	a	new	variant	with	a	bitarray	value,	val.

QVariant::QVariant	(const	QKeySequence	&	val)

Constructs	a	new	variant	with	a	key	sequence	value,	val.

QVariant::QVariant	(const	QValueList<QVariant>	&	val)

Constructs	a	new	variant	with	a	list	value,	val.

QVariant::QVariant	(const	QMap<QString,	QVariant>	&	val)

Constructs	a	new	variant	with	a	map	of	QVariants,	val.

QVariant::QVariant	(int	val)

Constructs	a	new	variant	with	an	integer	value,	val.

QVariant::QVariant	(uint	val)

Constructs	a	new	variant	with	an	unsigned	integer	value,	val.

QVariant::QVariant	(bool	val,	int)

Constructs	a	new	variant	with	a	boolean	value,	val.	The	integer	argument	is	a

dummy,	necessary	for	compatibility	with	some	compilers.

QVariant::QVariant	(double	val)

Constructs	a	new	variant	with	a	floating	point	value,	val.

QVariant::QVariant	(QSizePolicy	val)

Constructs	a	new	variant	with	a	size	policy	value,	val.

QVariant::~QVariant	()

Destroys	the	QVariant	and	the	contained	object.

Note	that	subclasses	that	reimplement	clear()	should	reimplement	the	destructor
to	call	clear().	This	destructor	calls	clear(),	but	because	it	is	the	destructor,
QVariant::clear()	is	called	rather	than	a	subclass's	clear().

QBitArray	&	QVariant::asBitArray	()

Tries	to	convert	the	variant	to	hold	a	QBitArray	value.	If	that	is	not	possible	then
the	variant	is	set	to	an	empty	bitarray.

Returns	a	reference	to	the	stored	bitarray.

See	also	toBitArray().

QBitmap	&	QVariant::asBitmap	()

Tries	to	convert	the	variant	to	hold	a	bitmap	value.	If	that	is	not	possible	the
variant	is	set	to	a	null	bitmap.

Returns	a	reference	to	the	stored	bitmap.

See	also	toBitmap().

bool	&	QVariant::asBool	()

Returns	the	variant's	value	as	bool	reference.

QBrush	&	QVariant::asBrush	()

Tries	to	convert	the	variant	to	hold	a	brush	value.	If	that	is	not	possible	the
variant	is	set	to	a	default	black	brush.

Returns	a	reference	to	the	stored	brush.

See	also	toBrush().

QByteArray	&	QVariant::asByteArray	()

Tries	to	convert	the	variant	to	hold	a	QByteArray	value.	If	that	is	not	possible
then	the	variant	is	set	to	an	empty	bytearray.

Returns	a	reference	to	the	stored	bytearray.

See	also	toByteArray().

QCString	&	QVariant::asCString	()

Tries	to	convert	the	variant	to	hold	a	string	value.	If	that	is	not	possible	the
variant	is	set	to	an	empty	string.

Returns	a	reference	to	the	stored	string.

See	also	toCString().

QColor	&	QVariant::asColor	()

Tries	to	convert	the	variant	to	hold	a	QColor	value.	If	that	is	not	possible	the
variant	is	set	to	an	invalid	color.

Returns	a	reference	to	the	stored	color.

See	also	toColor()	and	QColor::isValid().

QColorGroup	&	QVariant::asColorGroup	()

Tries	to	convert	the	variant	to	hold	a	QColorGroup	value.	If	that	is	not	possible
the	variant	is	set	to	a	color	group	of	all	black	colors.

Returns	a	reference	to	the	stored	color	group.

See	also	toColorGroup().

QCursor	&	QVariant::asCursor	()

Tries	to	convert	the	variant	to	hold	a	QCursor	value.	If	that	is	not	possible	the
variant	is	set	to	a	default	arrow	cursor.

Returns	a	reference	to	the	stored	cursor.

See	also	toCursor().

QDate	&	QVariant::asDate	()

Tries	to	convert	the	variant	to	hold	a	QDate	value.	If	that	is	not	possible	then	the
variant	is	set	to	an	invalid	date.

Returns	a	reference	to	the	stored	date.

See	also	toDate().

QDateTime	&	QVariant::asDateTime	()

Tries	to	convert	the	variant	to	hold	a	QDateTime	value.	If	that	is	not	possible
then	the	variant	is	set	to	an	invalid	date/time.

Returns	a	reference	to	the	stored	date/time.

See	also	toDateTime().

double	&	QVariant::asDouble	()

Returns	the	variant's	value	as	double	reference.

QFont	&	QVariant::asFont	()

Tries	to	convert	the	variant	to	hold	a	QFont.	If	that	is	not	possible	the	variant	is
set	to	the	application's	default	font.

Returns	a	reference	to	the	stored	font.

See	also	toFont().

QIconSet	&	QVariant::asIconSet	()

Tries	to	convert	the	variant	to	hold	a	QIconSet	value.	If	that	is	not	possible	the
variant	is	set	to	an	empty	iconset.

Returns	a	reference	to	the	stored	iconset.

See	also	toIconSet().

QImage	&	QVariant::asImage	()

Tries	to	convert	the	variant	to	hold	an	image	value.	If	that	is	not	possible	the
variant	is	set	to	a	null	image.

Returns	a	reference	to	the	stored	image.

See	also	toImage().

int	&	QVariant::asInt	()

Returns	the	variant's	value	as	int	reference.

QKeySequence	&	QVariant::asKeySequence	()

Tries	to	convert	the	variant	to	hold	a	QKeySequence	value.	If	that	is	not	possible
then	the	variant	is	set	to	an	empty	key	sequence.

Returns	a	reference	to	the	stored	key	sequence.

See	also	toKeySequence().

QValueList<QVariant>	&	QVariant::asList	()

Returns	the	variant's	value	as	variant	list	reference.

Note	that	if	you	want	to	iterate	over	the	list,	you	should	iterate	over	a	copy,	e.g.

				QValueList<QVariant>	list	=	myVariant.asList();

				QValueList<QVariant>::Iterator	it	=	list.begin();

				while(it	!=	list.end())	{

								myProcessing(*it);

								++it;

				}

				

QMap<QString,	QVariant>	&	QVariant::asMap	()

Returns	the	variant's	value	as	variant	map	reference.

Note	that	if	you	want	to	iterate	over	the	map,	you	should	iterate	over	a	copy,	e.g.

				QMap<QString,	QVariant>	map	=	myVariant.asMap();

				QMap<QString,	QVariant>::Iterator	it	=	map.begin();

				while(it	!=	map.end())	{

								myProcessing(*it);

								++it;

				}

				

QPalette	&	QVariant::asPalette	()

Tries	to	convert	the	variant	to	hold	a	QPalette	value.	If	that	is	not	possible	the
variant	is	set	to	a	palette	of	black	colors.

Returns	a	reference	to	the	stored	palette.

See	also	toString().

QPixmap	&	QVariant::asPixmap	()

Tries	to	convert	the	variant	to	hold	a	pixmap	value.	If	that	is	not	possible	the
variant	is	set	to	a	null	pixmap.

Returns	a	reference	to	the	stored	pixmap.

See	also	toPixmap().

QPoint	&	QVariant::asPoint	()

Tries	to	convert	the	variant	to	hold	a	point	value.	If	that	is	not	possible	the
variant	is	set	to	a	(0,	0)	point.

Returns	a	reference	to	the	stored	point.

See	also	toPoint().

QPointArray	&	QVariant::asPointArray	()

Tries	to	convert	the	variant	to	hold	a	QPointArray	value.	If	that	is	not	possible
the	variant	is	set	to	an	empty	point	array.

Returns	a	reference	to	the	stored	point	array.

See	also	toPointArray().

QRect	&	QVariant::asRect	()

Tries	to	convert	the	variant	to	hold	a	rectangle	value.	If	that	is	not	possible	the
variant	is	set	to	an	empty	rectangle.

Returns	a	reference	to	the	stored	rectangle.

See	also	toRect().

QRegion	&	QVariant::asRegion	()

Tries	to	convert	the	variant	to	hold	a	QRegion	value.	If	that	is	not	possible	the
variant	is	set	to	a	null	region.

Returns	a	reference	to	the	stored	region.

See	also	toRegion().

QSize	&	QVariant::asSize	()

Tries	to	convert	the	variant	to	hold	a	QSize	value.	If	that	is	not	possible	the
variant	is	set	to	an	invalid	size.

Returns	a	reference	to	the	stored	size.

See	also	toSize()	and	QSize::isValid().

QSizePolicy	&	QVariant::asSizePolicy	()

Tries	to	convert	the	variant	to	hold	a	QSizePolicy	value.	If	that	fails,	the	variant
is	set	to	an	arbitrary	(valid)	size	policy.

QString	&	QVariant::asString	()

Tries	to	convert	the	variant	to	hold	a	string	value.	If	that	is	not	possible	the
variant	is	set	to	an	empty	string.

Returns	a	reference	to	the	stored	string.

See	also	toString().

QStringList	&	QVariant::asStringList	()

Tries	to	convert	the	variant	to	hold	a	QStringList	value.	If	that	is	not	possible	the
variant	is	set	to	an	empty	string	list.

Returns	a	reference	to	the	stored	string	list.

Note	that	if	you	want	to	iterate	over	the	list,	you	should	iterate	over	a	copy,	e.g.

				QStringList	list	=	myVariant.asStringList();

				QStringList::Iterator	it	=	list.begin();

				while(it	!=	list.end())	{

								myProcessing(*it);

								++it;

				}

				

See	also	toStringList().

QTime	&	QVariant::asTime	()

Tries	to	convert	the	variant	to	hold	a	QTime	value.	If	that	is	not	possible	then	the
variant	is	set	to	an	invalid	time.

Returns	a	reference	to	the	stored	time.

See	also	toTime().

uint	&	QVariant::asUInt	()

Returns	the	variant's	value	as	unsigned	int	reference.

bool	QVariant::canCast	(Type	t)	const

Returns	TRUE	if	the	variant's	type	can	be	cast	to	the	requested	type,	t.	Such
casting	is	done	automatically	when	calling	the	toInt(),	toBool(),	...	or	asInt(),
asBool(),	...	methods.

The	following	casts	are	done	automatically:

that	can	be	cast	to	a	string)
Type Automatically	Cast	To

Bool Double,	Int,	UInt
CString String
Date String
DateTime String,	Date,	Time
Double String,	Int,	Bool,	UInt
Int String,	Double,	Bool,	UInt
List StringList	(if	the	list	contains	strings	or	something
String CString,	Int,	Uint,	Double,	Date,	Time,	DateTime
StringList List
Time String
UInt String,	Double,	Bool,	Int

bool	QVariant::cast	(Type	t)

Casts	the	variant	to	the	requested	type.	If	the	cast	cannot	be	done,	the	variant	is
set	to	the	default	value	of	the	requested	type	(e.g.	an	empty	string	if	the

requested	type	t	is	QVariant::String,	an	empty	point	array	if	the	requested	type	t
is	QVariant::PointArray,	etc).	Returns	TRUE	if	the	current	type	of	the	variant
was	successfully	cast;	otherwise	returns	FALSE.

See	also	canCast().

void	QVariant::clear	()

Convert	this	variant	to	type	Invalid	and	free	up	any	resources	used.

bool	QVariant::isValid	()	const

Returns	TRUE	if	the	storage	type	of	this	variant	is	not	QVariant::Invalid;
otherwise	returns	FALSE.

QValueListConstIterator<QVariant>	QVariant::listBegin	()	const

Returns	an	iterator	to	the	first	item	in	the	list	if	the	variant's	type	is	appropriate;
otherwise	returns	a	null	iterator.

QValueListConstIterator<QVariant>	QVariant::listEnd	()	const

Returns	the	end	iterator	for	the	list	if	the	variant's	type	is	appropriate;	otherwise
returns	a	null	iterator.

QMapConstIterator<QString,	QVariant>	QVariant::mapBegin	()
const

Returns	an	iterator	to	the	first	item	in	the	map,	if	the	variant's	type	is	appropriate;
otherwise	returns	a	null	iterator.

QMapConstIterator<QString,	QVariant>	QVariant::mapEnd	()
const

Returns	the	end	iterator	for	the	map,	if	the	variant's	type	is	appropriate;
otherwise	returns	a	null	iterator.

QMapConstIterator<QString,	QVariant>	QVariant::mapFind	(
const	QString	&	key)	const

Returns	an	iterator	to	the	item	in	the	map	with	key	as	key,	if	the	variant's	type	is
appropriate	and	key	is	a	valid	key;	otherwise	returns	a	null	iterator.

Type	QVariant::nameToType	(const	char	*	name)	[static]

Converts	the	string	representation	of	the	storage	type	gven	in	name,	to	its	enum
representation.

If	the	string	representation	cannot	be	converted	to	any	enum	representation,	the
variant	is	set	to	Invalid.

bool	QVariant::operator!=	(const	QVariant	&	v)	const

Compares	this	QVariant	with	v	and	returns	TRUE	if	they	are	not	equal;
otherwise	returns	FALSE.

QVariant	&	QVariant::operator=	(const	QVariant	&	variant)

Assigns	the	value	of	the	variant	variant	to	this	variant.

This	is	a	deep	copy	of	the	variant,	but	note	that	if	the	variant	holds	an	explicitly
shared	type	such	as	QImage,	a	shallow	copy	is	performed.

bool	QVariant::operator==	(const	QVariant	&	v)	const

Compares	this	QVariant	with	v	and	returns	TRUE	if	they	are	equal;	otherwise
returns	FALSE.

QValueListConstIterator<QString>	QVariant::stringListBegin	()
const

Returns	an	iterator	to	the	first	string	in	the	list	if	the	variant's	type	is	StringList;
otherwise	returns	a	null	iterator.

QValueListConstIterator<QString>	QVariant::stringListEnd	()

const

Returns	the	end	iterator	for	the	list	if	the	variant's	type	is	StringList;	otherwise
returns	a	null	iterator.

const	QBitArray	QVariant::toBitArray	()	const

Returns	the	variant	as	a	QBitArray	if	the	variant	has	type()	BitArray;	otherwise
returns	an	empty	bitarray.

See	also	asBitArray().

const	QBitmap	QVariant::toBitmap	()	const

Returns	the	variant	as	a	QBitmap	if	the	variant	has	type()	Bitmap;	otherwise
returns	a	null	QBitmap.

See	also	asBitmap().

bool	QVariant::toBool	()	const

Returns	the	variant	as	a	bool	if	the	variant	has	type()	Bool.

Returns	TRUE	if	the	variant	has	type	Int,	UInt	or	Double	and	its	value	is	non-
zero;	otherwise	returns	FALSE.

See	also	asBool().

const	QBrush	QVariant::toBrush	()	const

Returns	the	variant	as	a	QBrush	if	the	variant	has	type()	Brush;	otherwise	returns
a	default	brush	(with	all	black	colors).

See	also	asBrush().

const	QByteArray	QVariant::toByteArray	()	const

Returns	the	variant	as	a	QByteArray	if	the	variant	has	type()	ByteArray;

otherwise	returns	an	empty	bytearray.

See	also	asByteArray().

const	QCString	QVariant::toCString	()	const

Returns	the	variant	as	a	QCString	if	the	variant	has	type()	CString	or	String;
otherwise	returns	0.

See	also	asCString().

const	QColor	QVariant::toColor	()	const

Returns	the	variant	as	a	QColor	if	the	variant	has	type()	Color;	otherwise	returns
an	invalid	color.

See	also	asColor().

const	QColorGroup	QVariant::toColorGroup	()	const

Returns	the	variant	as	a	QColorGroup	if	the	variant	has	type()	ColorGroup;
otherwise	returns	a	completely	black	color	group.

See	also	asColorGroup().

const	QCursor	QVariant::toCursor	()	const

Returns	the	variant	as	a	QCursor	if	the	variant	has	type()	Cursor;	otherwise
returns	the	default	arrow	cursor.

See	also	asCursor().

const	QDate	QVariant::toDate	()	const

Returns	the	variant	as	a	QDate	if	the	variant	has	type()	Date,	DateTime	or	String;
otherwise	returns	an	invalid	date.

Note	that	if	the	type()	is	String	an	invalid	date	will	be	returned	if	the	string
cannot	be	parsed	as	a	Qt::ISODate	format	date.

See	also	asDate().

const	QDateTime	QVariant::toDateTime	()	const

Returns	the	variant	as	a	QDateTime	if	the	variant	has	type()	DateTime	or	String;
otherwise	returns	an	invalid	date/time.

Note	that	if	the	type()	is	String	an	invalid	date/time	will	be	returned	if	the	string
cannot	be	parsed	as	a	Qt::ISODate	format	date/time.

See	also	asDateTime().

double	QVariant::toDouble	(bool	*	ok	=	0)	const

Returns	the	variant	as	a	double	if	the	variant	has	type()	String,	CString,	Double,
Int,	UInt,	or	Bool;	otherwise	returns	0.0.

If	ok	is	non-null:	*ok	is	set	to	TRUE	if	the	value	could	be	converted	to	a	double;
otherwise	*ok	is	set	to	FALSE.

See	also	asDouble().

const	QFont	QVariant::toFont	()	const

Returns	the	variant	as	a	QFont	if	the	variant	has	type()	Font;	otherwise	returns
the	application's	default	font.

See	also	asFont().

const	QIconSet	QVariant::toIconSet	()	const

Returns	the	variant	as	a	QIconSet	if	the	variant	has	type()	IconSet;	otherwise
returns	an	icon	set	of	null	pixmaps.

See	also	asIconSet().

const	QImage	QVariant::toImage	()	const

Returns	the	variant	as	a	QImage	if	the	variant	has	type()	Image;	otherwise

returns	a	null	image.

See	also	asImage().

int	QVariant::toInt	(bool	*	ok	=	0)	const

Returns	the	variant	as	an	int	if	the	variant	has	type()	String,	CString,	Int,	UInt,
Double,	Bool	or	KeySequence;	otherwise	returns	0.

If	ok	is	non-null:	*ok	is	set	to	TRUE	if	the	value	could	be	converted	to	an	int;
otherwise	*ok	is	set	to	FALSE.

See	also	asInt()	and	canCast().

const	QKeySequence	QVariant::toKeySequence	()	const

Returns	the	variant	as	a	QKeySequence	if	the	variant	has	type()	KeySequence,
Int	or	String;	otherwise	returns	an	empty	key	sequence.

Note	that	not	all	Ints	and	Strings	are	valid	key	sequences	and	in	such	cases	an
empty	key	sequence	will	be	returned.

See	also	asKeySequence().

const	QValueList<QVariant>	QVariant::toList	()	const

Returns	the	variant	as	a	QValueList	if	the	variant	has	type()	List	or	StringList;
otherwise	returns	an	empty	list.

Note	that	if	you	want	to	iterate	over	the	list,	you	should	iterate	over	a	copy,	e.g.

				QValueList<QVariant>	list	=	myVariant.toList();

				QValueList<QVariant>::Iterator	it	=	list.begin();

				while(it	!=	list.end())	{

								myProcessing(*it);

								++it;

				}

				

See	also	asList().

const	QMap<QString,	QVariant>	QVariant::toMap	()	const

Returns	the	variant	as	a	QMap	if	the	variant	has	type()	Map;	otherwise	returns	an
empty	map.

Note	that	if	you	want	to	iterate	over	the	map,	you	should	iterate	over	a	copy,	e.g.

				QMap<QString,	QVariant>	map	=	myVariant.toMap();

				QMap<QString,	QVariant>::Iterator	it	=	map.begin();

				while(it	!=	map.end())	{

								myProcessing(*it);

								++it;

				}

				

See	also	asMap().

const	QPalette	QVariant::toPalette	()	const

Returns	the	variant	as	a	QPalette	if	the	variant	has	type()	Palette;	otherwise
returns	a	completely	black	palette.

See	also	asPalette().

const	QPixmap	QVariant::toPixmap	()	const

Returns	the	variant	as	a	QPixmap	if	the	variant	has	type()	Pixmap;	otherwise
returns	a	null	pixmap.

See	also	asPixmap().

const	QPoint	QVariant::toPoint	()	const

Returns	the	variant	as	a	QPoint	if	the	variant	has	type()	Point;	otherwise	returns
a	point	(0,	0).

See	also	asPoint().

const	QPointArray	QVariant::toPointArray	()	const

Returns	the	variant	as	a	QPointArray	if	the	variant	has	type()	PointArray;
otherwise	returns	an	empty	QPointArray.

See	also	asPointArray().

const	QRect	QVariant::toRect	()	const

Returns	the	variant	as	a	QRect	if	the	variant	has	type()	Rect;	otherwise	returns	an
empty	rectangle.

See	also	asRect().

const	QRegion	QVariant::toRegion	()	const

Returns	the	variant	as	a	QRegion	if	the	variant	has	type()	Region;	otherwise
returns	an	empty	QRegion.

See	also	asRegion().

const	QSize	QVariant::toSize	()	const

Returns	the	variant	as	a	QSize	if	the	variant	has	type()	Size;	otherwise	returns	an
invalid	size.

See	also	asSize().

QSizePolicy	QVariant::toSizePolicy	()	const

Returns	the	variant	as	a	QSizePolicy	if	the	variant	has	type()	SizePolicy;
otherwise	returns	an	undefined	(but	legal)	size	policy.

const	QString	QVariant::toString	()	const

Returns	the	variant	as	a	QString	if	the	variant	has	type()	String,	CString,
ByteArray,	Int,	Uint,	Bool,	Double,	Date,	Time,	or	DateTime;	otherwise	returns
QString::null.

See	also	asString().

const	QStringList	QVariant::toStringList	()	const

Returns	the	variant	as	a	QStringList	if	the	variant	has	type()	StringList	or	List	of
a	type	that	can	be	converted	to	QString;	otherwise	returns	an	empty	list.

Note	that	if	you	want	to	iterate	over	the	list,	you	should	iterate	over	a	copy,	e.g.

				QStringList	list	=	myVariant.toStringList();

				QStringList::Iterator	it	=	list.begin();

				while(it	!=	list.end())	{

								myProcessing(*it);

								++it;

				}

				

See	also	asStringList().

const	QTime	QVariant::toTime	()	const

Returns	the	variant	as	a	QTime	if	the	variant	has	type()	Time,	DateTime	or
String;	otherwise	returns	an	invalid	time.

Note	that	if	the	type()	is	String	an	invalid	time	will	be	returned	if	the	string
cannot	be	parsed	as	a	Qt::ISODate	format	time.

See	also	asTime().

uint	QVariant::toUInt	(bool	*	ok	=	0)	const

Returns	the	variant	as	an	unsigned	int	if	the	variant	has	type()	String,	CString,
UInt,	Int,	Double,	or	Bool;	otherwise	returns	0.

If	ok	is	non-null:	*ok	is	set	to	TRUE	if	the	value	could	be	converted	to	an
unsigned	int;	otherwise	*ok	is	set	to	FALSE.

See	also	asUInt().

Type	QVariant::type	()	const

Returns	the	storage	type	of	the	value	stored	in	the	variant.	Usually	it's	best	to	test
with	canCast()	whether	the	variant	can	deliver	the	data	type	you	are	interested	in.

const	char	*	QVariant::typeName	()	const

Returns	the	name	of	the	type	stored	in	the	variant.	The	returned	strings	describe
the	C++	datatype	used	to	store	the	data:	for	example,	"QFont",	"QString",	or
"QValueList".	An	Invalid	variant	returns	0.

const	char	*	QVariant::typeToName	(Type	typ)	[static]

Converts	the	enum	representation	of	the	storage	type,	typ,	to	its	string
representation.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QCDEStyle	Class	Reference
The	QCDEStyle	class	provides	a	CDE	look	and	feel.	More...

#include	<qcdestyle.h>

Inherits	QMotifStyle.

List	of	all	member	functions.

Public	Members

QCDEStyle	(bool	useHighlightCols	=	FALSE)
virtual	~QCDEStyle	()

Detailed	Description

The	QCDEStyle	class	provides	a	CDE	look	and	feel.

This	style	provides	a	slightly	improved	Motif	look	similar	to	some	versions	of
the	Common	Desktop	Environment	(CDE).	The	main	differences	are	thinner
frames	and	more	modern	radio	buttons	and	check	boxes.	Together	with	a	dark
background	and	a	bright	text/foreground	color,	the	style	looks	quite	attractive	(at
least	for	Motif	fans).

Note	that	the	functions	provided	by	QCDEStyle	are	reimplementations	of	QStyle
functions;	see	QStyle	for	their	documentation.

See	also	Widget	Appearance	and	Style.

Member	Function	Documentation

QCDEStyle::QCDEStyle	(bool	useHighlightCols	=	FALSE)

Constructs	a	QCDEStyle.

If	useHighlightCols	is	FALSE	(the	default),	then	the	style	will	polish	the
application's	color	palette	to	emulate	the	Motif	way	of	highlighting,	which	is	a
simple	inversion	between	the	base	and	the	text	color.

QCDEStyle::~QCDEStyle	()	[virtual]

Destroys	the	style.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QSocketNotifier	Class	Reference
The	QSocketNotifier	class	provides	support	for	socket	callbacks.	More...

#include	<qsocketnotifier.h>

Inherits	QObject.

List	of	all	member	functions.

Public	Members

enum	Type	{	Read,	Write,	Exception	}
QSocketNotifier	(int	socket,	Type	type,	QObject	*	parent	=	0,
const	char	*	name	=	0)
~QSocketNotifier	()
int	socket	()	const
Type	type	()	const
bool	isEnabled	()	const
virtual	void	setEnabled	(bool	enable)

Signals

void	activated	(int	socket)

Detailed	Description

The	QSocketNotifier	class	provides	support	for	socket	callbacks.

This	class	makes	it	possible	to	write	asynchronous	socket-based	code	in	Qt.
Using	synchronous	socket	operations	blocks	the	program,	which	is	clearly	not
acceptable	for	an	event-driven	GUI	program.

Once	you	have	opened	a	non-blocking	socket	(whether	for	TCP,	UDP,	a	UNIX-
domain	socket,	or	any	other	protocol	family	your	operating	system	supports),
you	can	create	a	socket	notifier	to	monitor	the	socket.	Then	you	connect	the
activated()	signal	to	the	slot	you	want	to	be	called	when	a	socket	event	occurs.

There	are	three	types	of	socket	notifiers	(read,	write	and	exception);	you	must
specify	one	of	these	in	the	constructor.

The	type	specifies	when	the	activated()	signal	is	to	be	emitted:

1.	 QSocketNotifier::Read	-	There	is	data	to	be	read	(socket	read	event).
2.	 QSocketNotifier::Write	-	Data	can	be	written	(socket	write	event).
3.	 QSocketNofifier::Exception	-	An	exception	has	occurred	(socket	exception

event).	We	recommend	against	using	this.

For	example,	if	you	need	to	monitor	both	reads	and	writes	for	the	same	socket
you	must	create	two	socket	notifiers.

Example:

								int	sockfd;																																	//	socket	identifier

								struct	sockaddr_in	sa;																						//	should	contain	host	address

								sockfd	=	socket(AF_INET,	SOCK_STREAM,	0);	//	create	TCP	socket

								//	make	the	socket	non-blocking	here,	usually	using	fcntl(O_NONBLOCK)

								::connect(sockfd,	(struct	sockaddr*)&sa,			//	connect	to	host

																			sizeof(sa));																				//	NOT	QObject::connect()!

								QSocketNotifier	*sn;

								sn	=	new	QSocketNotifier(sockfd,	QSocketNotifier::Read,	parent);

								QObject::connect(sn,	SIGNAL(activated(int)),

																										myObject,	SLOT(dataReceived()));

				

The	optional	parent	argument	can	be	set	to	make	the	socket	notifier	a	child	of

any	QObject,	e.g.	a	widget.	This	will	ensure	that	it	is	automatically	destroyed
when	the	widget	is	destroyed.

For	read	notifiers	it	makes	little	sense	to	connect	the	activated()	signal	to	more
than	one	slot	because	the	data	can	be	read	from	the	socket	only	once.

Also	observe	that	if	you	do	not	read	all	the	available	data	when	the	read	notifier
fires,	it	fires	again	and	again.

If	you	disable	the	read	notifier	your	program	may	deadlock.	(The	same	applies	to
exception	notifiers	if	you	must	use	them,	for	instance	if	you	must	use	TCP	urgent
data.)

For	write	notifiers,	immediately	disable	the	notifier	after	the	activated()	signal
has	been	received	and	you	have	sent	the	data	to	be	written	on	the	socket.	When
you	have	more	data	to	be	written,	enable	it	again	to	get	a	new	activated()	signal.
The	exception	is	if	the	socket	data	writing	operation	(send()	or	equivalent)	fails
with	a	"would	block"	error,	which	means	that	some	buffer	is	full	and	you	must
wait	before	sending	more	data.	In	that	case	you	do	not	need	to	disable	and	re-
enable	the	write	notifier;	it	will	fire	again	as	soon	as	the	system	allows	more	data
to	be	sent.

The	behavior	of	a	write	notifier	that	is	left	in	enabled	state	after	having	emitting
the	first	activated()	signal	(and	no	"would	block"	error	has	occurred)	is
undefined.	Depending	on	the	operating	system,	it	may	fire	on	every	pass	of	the
event	loop	or	not	at	all.

If	you	need	a	time-out	for	your	sockets	you	can	use	either	timer	events	or	the
QTimer	class.

Socket	action	is	detected	in	the	main	event	loop	of	Qt.	The	X11	version	of	Qt
has	a	single	UNIX	select()	call	that	incorporates	all	socket	notifiers	and	the	X
socket.

Note	that	on	XFree86	for	OS/2,	select()	works	only	in	the	thread	in	which	main()
is	running;	you	should	therefore	use	that	thread	for	GUI	operations.

See	also	QSocket,	QServerSocket,	QSocketDevice	and	Input/Output	and
Networking.

Member	Type	Documentation

QSocketNotifier::Type

QSocketNotifier::Read

QSocketNotifier::Write

QSocketNotifier::Exception

Member	Function	Documentation

QSocketNotifier::QSocketNotifier	(int	socket,	Type	type,
QObject	*	parent	=	0,	const	char	*	name	=	0)

Constructs	a	socket	notifier	called	name,	with	the	parent,	parent.	It	watches
socket	for	type	events,	and	enables	it.

It	is	generally	advisable	to	explicitly	enable	or	disable	the	socket	notifier,
especially	for	write	notifiers.

See	also	setEnabled()	and	isEnabled().

QSocketNotifier::~QSocketNotifier	()

Destroys	the	socket	notifier.

void	QSocketNotifier::activated	(int	socket)	[signal]

This	signal	is	emitted	under	certain	conditions	specified	by	the	notifier	type():

1.	 QSocketNotifier::Read	-	There	is	data	to	be	read	(socket	read	event).
2.	 QSocketNotifier::Write	-	Data	can	be	written	(socket	write	event).
3.	 QSocketNofifier::Exception	-	An	exception	has	occurred	(socket	exception

event).

The	socket	argument	is	the	socket	identifier.

See	also	type()	and	socket().

bool	QSocketNotifier::isEnabled	()	const

Returns	TRUE	if	the	notifier	is	enabled;	otherwise	returns	FALSE.

See	also	setEnabled().

void	QSocketNotifier::setEnabled	(bool	enable)	[virtual]

Enables	the	notifier	if	enable	is	TRUE	or	disables	it	if	enable	is	FALSE.

The	notifier	is	enabled	by	default.

If	the	notifier	is	enabled,	it	emits	the	activated()	signal	whenever	a	socket	event
corresponding	to	its	type	occurs.	If	it	is	disabled,	it	ignores	socket	events	(the
same	effect	as	not	creating	the	socket	notifier).

Write	notifiers	should	normally	be	disabled	immediately	after	the	activated()
signal	has	been	emitted;	see	discussion	of	write	notifiers	in	the	class	description
above.

See	also	isEnabled()	and	activated().

int	QSocketNotifier::socket	()	const

Returns	the	socket	identifier	specified	to	the	constructor.

See	also	type().

Type	QSocketNotifier::type	()	const

Returns	the	socket	event	type	specified	to	the	constructor:
QSocketNotifier::Read,	QSocketNotifier::Write,	or	QSocketNotifier::Exception.

See	also	socket().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QChar	Class	Reference
The	QChar	class	provides	a	lightweight	Unicode	character.	More...

#include	<qstring.h>

List	of	all	member	functions.

Public	Members

QChar	()
QChar	(char	c)
QChar	(uchar	c)
QChar	(uchar	c,	uchar	r)
QChar	(const	QChar	&	c)
QChar	(ushort	rc)
QChar	(short	rc)
QChar	(uint	rc)
QChar	(int	rc)
enum	Category	{	NoCategory,	Mark_NonSpacing,
Mark_SpacingCombining,	Mark_Enclosing,	Number_DecimalDigit,
Number_Letter,	Number_Other,	Separator_Space,	Separator_Line,
Separator_Paragraph,	Other_Control,	Other_Format,	Other_Surrogate,
Other_PrivateUse,	Other_NotAssigned,	Letter_Uppercase,
Letter_Lowercase,	Letter_Titlecase,	Letter_Modifier,	Letter_Other,
Punctuation_Connector,	Punctuation_Dash,	Punctuation_Dask	=
Punctuation_Dash,	Punctuation_Open,	Punctuation_Close,
Punctuation_InitialQuote,	Punctuation_FinalQuote,	Punctuation_Other,
Symbol_Math,	Symbol_Currency,	Symbol_Modifier,	Symbol_Other	}
enum	Direction	{	DirL,	DirR,	DirEN,	DirES,	DirET,	DirAN,	DirCS,	DirB,
DirS,	DirWS,	DirON,	DirLRE,	DirLRO,	DirAL,	DirRLE,	DirRLO,
DirPDF,	DirNSM,	DirBN	}
enum	Decomposition	{	Single,	Canonical,	Font,	NoBreak,	Initial,	Medial,
Final,	Isolated,	Circle,	Super,	Sub,	Vertical,	Wide,	Narrow,	Small,	Square,
Compat,	Fraction	}
enum	Joining	{	OtherJoining,	Dual,	Right,	Center	}
enum	CombiningClass	{	Combining_BelowLeftAttached	=	200,
Combining_BelowAttached	=	202,	Combining_BelowRightAttached	=
204,	Combining_LeftAttached	=	208,	Combining_RightAttached	=	210,
Combining_AboveLeftAttached	=	212,	Combining_AboveAttached	=	214,
Combining_AboveRightAttached	=	216,	Combining_BelowLeft	=	218,
Combining_Below	=	220,	Combining_BelowRight	=	222,	Combining_Left
=	224,	Combining_Right	=	226,	Combining_AboveLeft	=	228,
Combining_Above	=	230,	Combining_AboveRight	=	232,
Combining_DoubleBelow	=	233,	Combining_DoubleAbove	=	234,

Combining_IotaSubscript	=	240	}
int	digitValue	()	const
QChar	lower	()	const
QChar	upper	()	const
Category	category	()	const
Direction	direction	()	const
Joining	joining	()	const
bool	mirrored	()	const
QChar	mirroredChar	()	const
const	QString	&	decomposition	()	const
Decomposition	decompositionTag	()	const
unsigned	char	combiningClass	()	const
char	latin1	()	const
ushort	unicode	()	const
ushort	&	unicode	()
operator	char	()	const
bool	isNull	()	const
bool	isPrint	()	const
bool	isPunct	()	const
bool	isSpace	()	const
bool	isMark	()	const
bool	isLetter	()	const
bool	isNumber	()	const
bool	isLetterOrNumber	()	const
bool	isDigit	()	const
bool	isSymbol	()	const
uchar	cell	()	const
uchar	row	()	const

Static	Public	Members

bool	networkOrdered	()

Related	Functions

bool	operator==	(QChar	c1,	QChar	c2)
bool	operator==	(char	ch,	QChar	c)
bool	operator==	(QChar	c,	char	ch)
int	operator!=	(QChar	c1,	QChar	c2)
int	operator!=	(char	ch,	QChar	c)
int	operator!=	(QChar	c,	char	ch)
int	operator<=	(QChar	c1,	QChar	c2)
int	operator<=	(QChar	c,	char	ch)
int	operator<=	(char	ch,	QChar	c)
int	operator>=	(QChar	c1,	QChar	c2)
int	operator>=	(QChar	c,	char	ch)
int	operator>=	(char	ch,	QChar	c)
int	operator<	(QChar	c1,	QChar	c2)
int	operator<	(QChar	c,	char	ch)
int	operator<	(char	ch,	QChar	c)
int	operator>	(QChar	c1,	QChar	c2)
int	operator>	(QChar	c,	char	ch)
int	operator>	(char	ch,	QChar	c)

Detailed	Description

The	QChar	class	provides	a	lightweight	Unicode	character.

Unicode	characters	are	(so	far)	16-bit	entities	without	any	markup	or	structure.
This	class	represents	such	an	entity.	It	is	lightweight,	so	it	can	be	used
everywhere.	Most	compilers	treat	it	like	a	"short	int."	(In	a	few	years	it	may	be
necessary	to	make	QChar	32-bit	when	more	than	65536	Unicode	code	points
have	been	defined	and	come	into	use.)

QChar	provides	a	full	complement	of	testing/classification	functions,	converting
to	and	from	other	formats,	converting	from	composed	to	decomposed	Unicode,
and	trying	to	compare	and	case-convert	if	you	ask	it	to.

The	classification	functions	include	functions	like	those	in	ctype.h,	but	operating
on	the	full	range	of	Unicode	characters.	They	all	return	TRUE	if	the	character	is
a	certain	type	of	character;	otherwise	they	return	FALSE.	These	classification
functions	are	isNull()	(returns	TRUE	if	the	character	is	U+0000),	isPrint()
(TRUE	if	the	character	is	any	sort	of	printable	character,	including	whitespace),
isPunct()	(any	sort	of	punctation),	isMark()	(Unicode	Mark),	isLetter	(a	letter),
isNumber()	(any	sort	of	numeric	character),	isLetterOrNumber(),	and	isDigit()
(decimal	digits).	All	of	these	are	wrappers	around	category()	which	return	the
Unicode-defined	category	of	each	character.

QChar	further	provides	direction(),	which	indicates	the	"natural"	writing
direction	of	this	character.	The	joining()	function	indicates	how	the	character
joins	with	its	neighbors	(needed	mostly	for	Arabic)	and	finally	mirrored(),	which
indicates	whether	the	character	needs	to	be	mirrored	when	it	is	printed	in	its
"unnatural"	writing	direction.

Composed	Unicode	characters	(like	å)	can	be	converted	to	decomposed	Unicode
("a"	followed	by	"ring	above")	by	using	decomposition().

In	Unicode,	comparison	is	not	necessarily	possible	and	case	conversion	is	very
difficult	at	best.	Unicode,	covering	the	"entire"	world,	also	includes	most	of	the
world's	case	and	sorting	problems.	Qt	tries,	but	not	very	hard:	operator==	and
friends	will	do	comparison	based	purely	on	the	numeric	Unicode	value	(code
point)	of	the	characters,	and	upper()	and	lower()	will	do	case	changes	when	the

character	has	a	well-defined	upper/lower-case	equivalent.	There	is	no	provision
for	locale-dependent	case	folding	rules	or	comparison;	these	functions	are	meant
to	be	fast	so	they	can	be	used	unambiguously	in	data	structures.	(See
QString::localeAwareCompare()	though.)

The	conversion	functions	include	unicode()	(to	a	scalar),	latin1()	(to	scalar,	but
converts	all	non-Latin1	characters	to	0),	row()	(gives	the	Unicode	row),	cell()
(gives	the	Unicode	cell),	digitValue()	(gives	the	integer	value	of	any	of	the
numerous	digit	characters),	and	a	host	of	constructors.

More	information	can	be	found	in	the	document	About	Unicode.

See	also	QString,	QCharRef	and	Text	Related	Classes.

Member	Type	Documentation

QChar::Category

This	enum	maps	the	Unicode	character	categories.	The	following	characters	are
normative	in	Unicode:

QChar::Mark_NonSpacing	-	Unicode	class	name	Mn
QChar::Mark_SpacingCombining	-	Unicode	class	name	Mc
QChar::Mark_Enclosing	-	Unicode	class	name	Me
QChar::Number_DecimalDigit	-	Unicode	class	name	Nd
QChar::Number_Letter	-	Unicode	class	name	Nl
QChar::Number_Other	-	Unicode	class	name	No
QChar::Separator_Space	-	Unicode	class	name	Zs
QChar::Separator_Line	-	Unicode	class	name	Zl
QChar::Separator_Paragraph	-	Unicode	class	name	Zp
QChar::Other_Control	-	Unicode	class	name	Cc
QChar::Other_Format	-	Unicode	class	name	Cf
QChar::Other_Surrogate	-	Unicode	class	name	Cs
QChar::Other_PrivateUse	-	Unicode	class	name	Co
QChar::Other_NotAssigned	-	Unicode	class	name	Cn

The	following	categories	are	informative	in	Unicode:

QChar::Letter_Uppercase	-	Unicode	class	name	Lu
QChar::Letter_Lowercase	-	Unicode	class	name	Ll
QChar::Letter_Titlecase	-	Unicode	class	name	Lt
QChar::Letter_Modifier	-	Unicode	class	name	Lm
QChar::Letter_Other	-	Unicode	class	name	Lo
QChar::Punctuation_Connector	-	Unicode	class	name	Pc
QChar::Punctuation_Dash	-	Unicode	class	name	Pd
QChar::Punctuation_Open	-	Unicode	class	name	Ps
QChar::Punctuation_Close	-	Unicode	class	name	Pe
QChar::Punctuation_InitialQuote	-	Unicode	class	name	Pi
QChar::Punctuation_FinalQuote	-	Unicode	class	name	Pf
QChar::Punctuation_Other	-	Unicode	class	name	Po
QChar::Symbol_Math	-	Unicode	class	name	Sm

QChar::Symbol_Currency	-	Unicode	class	name	Sc
QChar::Symbol_Modifier	-	Unicode	class	name	Sk
QChar::Symbol_Other	-	Unicode	class	name	So

There	are	two	categories	that	are	specific	to	Qt:

QChar::NoCategory	-	used	when	Qt	is	dazed	and	confused	and	cannot
make	sense	of	anything.
QChar::Punctuation_Dask	-	old	typo	alias	for	Punctuation_Dash

QChar::CombiningClass

This	enum	defines	names	for	some	of	the	combining	classes	defined	in	the
Unicode	standard.	See	the	Unicode	Standard	for	a	more	detailed	description.

QChar::Decomposition

This	enum	type	defines	the	Unicode	decomposition	attributes.	See	the	Unicode
Standard	for	a	description	of	the	values.

QChar::Direction

This	enum	type	defines	the	Unicode	direction	attributes.	See	the	Unicode
Standard	for	a	description	of	the	values.

In	order	to	conform	to	C/C++	naming	conventions	"Dir"	is	prepended	to	the
codes	used	in	the	Unicode	Standard.

QChar::Joining

This	enum	type	defines	the	Unicode	decomposition	attributes.	See	the	Unicode
Standard	for	a	description	of	the	values.

http://www.unicode.org/
http://www.unicode.org/
http://www.unicode.org/
http://www.unicode.org/

Member	Function	Documentation

QChar::QChar	()

Constructs	a	null	QChar	(one	that	isNull()).

QChar::QChar	(char	c)

Constructs	a	QChar	corresponding	to	ASCII/Latin1	character	c.

QChar::QChar	(uchar	c)

Constructs	a	QChar	corresponding	to	ASCII/Latin1	character	c.

QChar::QChar	(uchar	c,	uchar	r)

Constructs	a	QChar	for	Unicode	cell	c	in	row	r.

QChar::QChar	(const	QChar	&	c)

Constructs	a	copy	of	c.	This	is	a	deep	copy,	if	such	a	lightweight	object	can	be
said	to	have	deep	copies.

QChar::QChar	(ushort	rc)

Constructs	a	QChar	for	the	character	with	Unicode	code	point	rc.

QChar::QChar	(short	rc)

Constructs	a	QChar	for	the	character	with	Unicode	code	point	rc.

QChar::QChar	(uint	rc)

Constructs	a	QChar	for	the	character	with	Unicode	code	point	rc.

QChar::QChar	(int	rc)

Constructs	a	QChar	for	the	character	with	Unicode	code	point	rc.

Category	QChar::category	()	const

Returns	the	character	category.

See	also	Category.

uchar	QChar::cell	()	const

Returns	the	cell	(least	significant	byte)	of	the	Unicode	character.

unsigned	char	QChar::combiningClass	()	const

Returns	the	combining	class	for	the	character	as	defined	in	the	Unicode	standard.
This	is	mainly	useful	as	a	positioning	hint	for	marks	attached	to	a	base	character.

The	Qt	text	rendering	engine	uses	this	information	to	correctly	position	non
spacing	marks	around	a	base	character.

const	QString	&	QChar::decomposition	()	const

Decomposes	a	character	into	its	parts.	Returns	QString::null	if	no	decomposition
exists.

Decomposition	QChar::decompositionTag	()	const

Returns	the	tag	defining	the	composition	of	the	character.	Returns	QChar::Single
if	no	decomposition	exists.

int	QChar::digitValue	()	const

Returns	the	numeric	value	of	the	digit,	or	-1	if	the	character	is	not	a	digit.

Direction	QChar::direction	()	const

Returns	the	character's	direction.

See	also	Direction.

bool	QChar::isDigit	()	const

Returns	whether	the	character	is	a	decimal	digit	(Number_DecimalDigit).

bool	QChar::isLetter	()	const

Returns	whether	the	character	is	a	letter	(Letter_*	categories).

bool	QChar::isLetterOrNumber	()	const

Returns	whether	the	character	is	a	letter	or	number	(Letter_*	or	Number_*
categories).

bool	QChar::isMark	()	const

Returns	whether	the	character	is	a	mark	(Mark_*	categories).

bool	QChar::isNull	()	const

Returns	TRUE	if	the	character	is	the	Unicode	character	0x0000,	i.e.,	ASCII
NUL.

bool	QChar::isNumber	()	const

Returns	whether	the	character	is	a	number	(of	any	sort	-	Number_*	categories).

See	also	isDigit().

bool	QChar::isPrint	()	const

Returns	whether	the	character	is	a	printable	character.	This	is	any	character	not
of	category	Cc	or	Cn.	Note	that	this	gives	no	indication	of	whether	the	character
is	available	in	a	particular	font.

bool	QChar::isPunct	()	const

Returns	whether	the	character	is	a	punctuation	mark	(Punctuation_*	categories).

bool	QChar::isSpace	()	const

Returns	whether	the	character	is	a	separator	character	(Separator_*	categories).

bool	QChar::isSymbol	()	const

Returns	whether	the	character	is	a	symbol	(Symbol_*	categories)

Joining	QChar::joining	()	const

This	function	is	not	supported	(it	may	change	to	use	Unicode	character	classes).

Returns	information	about	the	joining	properties	of	the	character	(needed	for
Arabic).

char	QChar::latin1	()	const

Returns	a	latin-1	copy	of	this	character,	if	this	character	is	in	the	latin-1	character
set.	If	not,	this	function	returns	0.

QChar	QChar::lower	()	const

Returns	the	lowercase	equivalent	if	the	character	is	uppercase,	otherwise	returns
the	character	itself.

bool	QChar::mirrored	()	const

Returns	whether	the	character	is	a	mirrored	character	(one	that	should	be
reversed	if	the	text	direction	is	reversed).

QChar	QChar::mirroredChar	()	const

Returns	the	mirrored	char	if	this	character	is	a	mirrored	char,	otherwise	returns
the	char	itself.

bool	QChar::networkOrdered	()	[static]

Returns	TRUE	if	this	character	is	in	network	byte	order	(MSB	first);	otherwise
returns	FALSE.	This	is	platform	dependent.

QChar::operator	char	()	const

Returns	the	Latin1	character	equivalent	to	the	QChar,	or	0.	This	is	mainly	useful
for	non-internationalized	software.

See	also	unicode().

uchar	QChar::row	()	const

Returns	the	row	(most	significant	byte)	of	the	Unicode	character.

ushort	QChar::unicode	()	const

Returns	the	numeric	Unicode	value	equal	to	the	QChar.	Normally,	you	should
use	QChar	objects	as	they	are	equivalent,	but	for	some	low-level	tasks	(e.g.
indexing	into	an	array	of	Unicode	information),	this	function	is	useful.

ushort	&	QChar::unicode	()

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	a	reference	to	the	numeric	Unicode	value	equal	to	the	QChar.

QChar	QChar::upper	()	const

Returns	the	uppercase	equivalent	if	the	character	is	lowercase,	otherwise	returns
the	character	itself.

Related	Functions

int	operator!=	(QChar	c1,	QChar	c2)

Returns	TRUE	if	c1	and	c2	are	not	the	same	Unicode	character.

int	operator!=	(char	ch,	QChar	c)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	TRUE	if	c	is	not	the	ASCII/Latin1	character	ch.

int	operator!=	(QChar	c,	char	ch)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	TRUE	if	c	is	not	the	ASCII/Latin1	character	ch.

int	operator<	(QChar	c1,	QChar	c2)

Returns	TRUE	if	the	numeric	Unicode	value	of	c1	is	less	than	that	of	c2.

int	operator<	(QChar	c,	char	ch)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	TRUE	if	the	numeric	Unicode	value	of	c	is	less	than	that	of	the
ASCII/Latin1	character	ch.

int	operator<	(char	ch,	QChar	c)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	TRUE	if	the	numeric	Unicode	value	of	the	ASCII/Latin1	character	ch	is
less	than	that	of	c.

int	operator<=	(QChar	c1,	QChar	c2)

Returns	TRUE	if	the	numeric	Unicode	value	of	c1	is	less	than	that	of	c2,	or	they
are	the	same	Unicode	character.

int	operator<=	(QChar	c,	char	ch)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	TRUE	if	the	numeric	Unicode	value	of	c	is	less	than	or	equal	to	that	of
the	ASCII/Latin1	character	ch.

int	operator<=	(char	ch,	QChar	c)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	TRUE	if	the	numeric	Unicode	value	of	the	ASCII/Latin1	character	ch	is
less	than	or	equal	to	that	of	c.

bool	operator==	(QChar	c1,	QChar	c2)

Returns	TRUE	if	c1	and	c2	are	the	same	Unicode	character.

bool	operator==	(char	ch,	QChar	c)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	TRUE	if	c	is	the	ASCII/Latin1	character	ch.

bool	operator==	(QChar	c,	char	ch)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves

essentially	like	the	above	function.

Returns	TRUE	if	c	is	the	ASCII/Latin1	character	ch.

int	operator>	(QChar	c1,	QChar	c2)

Returns	TRUE	if	the	numeric	Unicode	value	of	c1	is	greater	than	that	of	c2.

int	operator>	(QChar	c,	char	ch)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	TRUE	if	the	numeric	Unicode	value	of	c	is	greater	than	that	of	the
ASCII/Latin1	character	ch.

int	operator>	(char	ch,	QChar	c)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	TRUE	if	the	numeric	Unicode	value	of	the	ASCII/Latin1	character	ch	is
greater	than	that	of	c.

int	operator>=	(QChar	c1,	QChar	c2)

Returns	TRUE	if	the	numeric	Unicode	value	of	c1	is	greater	than	that	of	c2,	or
they	are	the	same	Unicode	character.

int	operator>=	(QChar	c,	char	ch)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	TRUE	if	the	numeric	Unicode	value	of	c	is	greater	than	or	equal	to	that
of	the	ASCII/Latin1	character	ch.

int	operator>=	(char	ch,	QChar	c)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	TRUE	if	the	numeric	Unicode	value	of	the	ASCII/Latin1	character	ch	is
greater	than	or	equal	to	that	of	c.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QFontDatabase	Class	Reference
The	QFontDatabase	class	provides	information	about	the	fonts	available	in	the
underlying	window	system.	More...

#include	<qfontdatabase.h>

List	of	all	member	functions.

Public	Members

QFontDatabase	()
QStringList	families	()	const
QStringList	styles	(const	QString	&	family)	const
QValueList<int>	pointSizes	(const	QString	&	family,
const	QString	&	style	=	QString::null)
QValueList<int>	smoothSizes	(const	QString	&	family,
const	QString	&	style)
QString	styleString	(const	QFont	&	f)
QFont	font	(const	QString	&	family,	const	QString	&	style,	int	pointSize)
bool	isBitmapScalable	(const	QString	&	family,	const	QString	&	style	=
QString::null)	const
bool	isSmoothlyScalable	(const	QString	&	family,	const	QString	&	style	=
QString::null)	const
bool	isScalable	(const	QString	&	family,	const	QString	&	style	=
QString::null)	const
bool	isFixedPitch	(const	QString	&	family,	const	QString	&	style	=
QString::null)	const
bool	italic	(const	QString	&	family,	const	QString	&	style)	const
bool	bold	(const	QString	&	family,	const	QString	&	style)	const
int	weight	(const	QString	&	family,	const	QString	&	style)	const
QStringList	families	(bool)	const		(obsolete)
QStringList	styles	(const	QString	&	family,	const	QString	&)	const
	(obsolete)
QValueList<int>	pointSizes	(const	QString	&	family,
const	QString	&	style,	const	QString	&)		(obsolete)
QValueList<int>	smoothSizes	(const	QString	&	family,
const	QString	&	style,	const	QString	&)		(obsolete)
QFont	font	(const	QString	&	familyName,	const	QString	&	style,
int	pointSize,	const	QString	&)		(obsolete)
bool	isBitmapScalable	(const	QString	&	family,	const	QString	&	style,
const	QString	&)	const		(obsolete)
bool	isSmoothlyScalable	(const	QString	&	family,	const	QString	&	style,
const	QString	&)	const		(obsolete)
bool	isScalable	(const	QString	&	family,	const	QString	&	style,	const
QString	&)	const		(obsolete)

bool	isFixedPitch	(const	QString	&	family,	const	QString	&	style,	const
QString	&)	const		(obsolete)
bool	italic	(const	QString	&	family,	const	QString	&	style,	const	QString	&
)	const		(obsolete)
bool	bold	(const	QString	&	family,	const	QString	&	style,	const	QString	&
)	const		(obsolete)
int	weight	(const	QString	&	family,	const	QString	&	style,	const	QString	&
)	const		(obsolete)

Static	Public	Members

QValueList<int>	standardSizes	()
QString	scriptName	(QFont::Script	script)
QString	scriptSample	(QFont::Script	script)

Detailed	Description

The	QFontDatabase	class	provides	information	about	the	fonts	available	in	the
underlying	window	system.

The	most	common	uses	of	this	class	are	to	query	the	database	for	the	list	of	font
families()	and	for	the	pointSizes()	and	styles()	that	are	available	for	each	family.
An	alternative	to	pointSizes()	is	smoothSizes()	which	returns	the	sizes	at	which	a
given	family	and	style	will	look	attractive.

If	the	font	family	is	available	from	two	or	more	foundries	the	foundry	name	is
included	in	the	family	name,	e.g.	"Helvetica	[Adobe]"	and	"Helvetica	[Cronyx]".
When	you	specify	a	family	you	can	either	use	the	old	hyphenated	Qt	2.x
"foundry-family"	format,	e.g.	"Cronyx-Helvetica",	or	the	new	bracketed	Qt	3.x
"family	[foundry]"	format	e.g.	"Helvetica	[Cronyx]".	If	the	family	has	a	foundry
it	is	always	returned,	e.g.	by	families(),	using	the	bracketed	format.

The	font()	function	returns	a	QFont	given	a	family,	style	and	point	size.

A	family	and	style	combination	can	be	checked	to	see	if	it	is	italic()	or	bold(),
and	to	retrieve	its	weight().	Similarly	we	can	call	isBitmapScalable(),
isSmoothlyScalable(),	isScalable()	and	isFixedPitch().

A	text	version	of	a	style	is	given	by	styleString().

The	QFontDatabase	class	also	supports	some	static	functions,	for	example,
standardSizes().	You	can	retrieve	the	Unicode	3.0	description	of	a	script	using
scriptName(),	and	a	sample	of	characters	in	a	script	with	scriptSample().

Example:

#include	<qapplication.h>

#include	<qfontdatabase.h>

int	main(int	argc,	char	**argv)

{

				QApplication	app(argc,	argv);

				QFontDatabase	fdb;

				QStringList	families	=	fdb.families();

				for	(QStringList::Iterator	f	=	families.begin();	f	!=	families.

								QString	family	=	*f;

								qDebug(family);

								QStringList	styles	=	fdb.styles(family);

								for	(QStringList::Iterator	s	=	styles.begin();	s	!=	styles.

												QString	style	=	*s;

												QString	dstyle	=	"\t"	+	style	+	"	(";

												QValueList<int>	smoothies	=	fdb.smoothSizes(family,	style);

												for	(QValueList<int>::Iterator	points	=	smoothies.begin

																		points	!=	smoothies.end();	++points)	{

																dstyle	+=	QString::number(*points)	+	"	";

												}

												dstyle	=	dstyle.left(dstyle.length()	-	1)	+	")";

												qDebug(dstyle);

								}

				}

				return	0;

}

This	example	gets	the	list	of	font	families,	then	the	list	of	styles	for	each	family
and	the	point	sizes	that	are	available	for	each	family/style	combination.

See	also	Environment	Classes	and	Graphics	Classes.

Member	Function	Documentation

QFontDatabase::QFontDatabase	()

Creates	a	font	database	object.

bool	QFontDatabase::bold	(const	QString	&	family,
const	QString	&	style)	const

Returns	TRUE	if	the	font	that	has	family	family	and	style	style	is	bold;	otherwise
returns	FALSE.

See	also	italic()	and	weight().

bool	QFontDatabase::bold	(const	QString	&	family,
const	QString	&	style,	const	QString	&)	const

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

QStringList	QFontDatabase::families	()	const

Returns	a	list	of	the	names	of	the	available	font	families.

If	a	family	exists	in	several	foundries,	the	returned	name	for	that	font	is	in	the
form	"family	[foundry]".	Examples:	"Times	[Adobe]",	"Times	[Cronyx]",
"Palatino".

QStringList	QFontDatabase::families	(bool)	const

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

QFont	QFontDatabase::font	(const	QString	&	family,
const	QString	&	style,	int	pointSize)

Returns	a	QFont	object	that	has	family	family,	style	style	and	point	size
pointSize.	If	no	matching	font	could	be	created,	a	QFont	object	that	uses	the
application's	default	font	is	returned.

QFont	QFontDatabase::font	(const	QString	&	familyName,
const	QString	&	style,	int	pointSize,	const	QString	&)

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

bool	QFontDatabase::isBitmapScalable	(const	QString	&	family,
const	QString	&	style	=	QString::null)	const

Returns	TRUE	if	the	font	that	has	family	family	and	style	style	is	a	scalable
bitmap	font;	otherwise	returns	FALSE.	Scaling	a	bitmap	font	usually	produces
an	unattractive	hardly	readable	result,	because	the	pixels	of	the	font	are	scaled.	If
you	need	to	scale	a	bitmap	font	it	is	better	to	scale	it	to	one	of	the	fixed	sizes
returned	by	smoothSizes().

See	also	isScalable()	and	isSmoothlyScalable().

bool	QFontDatabase::isBitmapScalable	(const	QString	&	family,
const	QString	&	style,	const	QString	&)	const

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

bool	QFontDatabase::isFixedPitch	(const	QString	&	family,
const	QString	&	style	=	QString::null)	const

Returns	TRUE	if	the	font	that	has	family	family	and	style	style	is	fixed	pitch;
otherwise	returns	FALSE.

bool	QFontDatabase::isFixedPitch	(const	QString	&	family,
const	QString	&	style,	const	QString	&)	const

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We

strongly	advise	against	using	it	in	new	code.

bool	QFontDatabase::isScalable	(const	QString	&	family,
const	QString	&	style	=	QString::null)	const

Returns	TRUE	if	the	font	that	has	family	family	and	style	style	is	scalable;
otherwise	returns	FALSE.

See	also	isBitmapScalable()	and	isSmoothlyScalable().

bool	QFontDatabase::isScalable	(const	QString	&	family,
const	QString	&	style,	const	QString	&)	const

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

bool	QFontDatabase::isSmoothlyScalable	(
const	QString	&	family,	const	QString	&	style	=	QString::null
)	const

Returns	TRUE	if	the	font	that	has	family	family	and	style	style	is	smoothly
scalable;	otherwise	returns	FALSE.	If	this	function	returns	TRUE,	it's	safe	to
scale	this	font	to	any	size,	and	the	result	will	always	look	attractive.

See	also	isScalable()	and	isBitmapScalable().

bool	QFontDatabase::isSmoothlyScalable	(
const	QString	&	family,	const	QString	&	style,
const	QString	&)	const

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

bool	QFontDatabase::italic	(const	QString	&	family,
const	QString	&	style)	const

Returns	TRUE	if	the	font	that	has	family	family	and	style	style	is	italic;

otherwise	returns	FALSE.

See	also	weight()	and	bold().

bool	QFontDatabase::italic	(const	QString	&	family,
const	QString	&	style,	const	QString	&)	const

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

QValueList<int>	QFontDatabase::pointSizes	(
const	QString	&	family,	const	QString	&	style	=	QString::null
)

Returns	a	list	of	the	point	sizes	available	for	the	font	that	has	family	family	and
style	style.	The	list	may	be	empty.

See	also	smoothSizes()	and	standardSizes().

QValueList<int>	QFontDatabase::pointSizes	(
const	QString	&	family,	const	QString	&	style,
const	QString	&)

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

QString	QFontDatabase::scriptName	(QFont::Script	script)
[static]

Returns	a	string	that	gives	a	default	description	of	the	script	(e.g.	for	displaying
to	the	user	in	a	dialog).	The	name	matches	the	name	of	the	script	as	defined	by
the	Unicode	3.0	standard.

See	also	QFont::Script.

QString	QFontDatabase::scriptSample	(QFont::Script	script)
[static]

Returns	a	string	with	sample	characters	from	script.

See	also	QFont::Script.

QValueList<int>	QFontDatabase::smoothSizes	(
const	QString	&	family,	const	QString	&	style)

Returns	the	point	sizes	of	a	font	that	has	family	family	and	style	style	that	will
look	attractive.	The	list	may	be	empty.	For	non-scalable	fonts	and	smoothly
scalable	fonts,	this	function	is	equivalent	to	pointSizes().

See	also	pointSizes()	and	standardSizes().

QValueList<int>	QFontDatabase::smoothSizes	(
const	QString	&	family,	const	QString	&	style,
const	QString	&)

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

QValueList<int>	QFontDatabase::standardSizes	()	[static]

Returns	a	list	of	standard	font	sizes.

See	also	smoothSizes()	and	pointSizes().

QString	QFontDatabase::styleString	(const	QFont	&	f)

Returns	a	string	that	describes	the	style	of	the	font	f.	For	example,	"Bold	Italic",
"Bold",	"Italic"	or	"Normal".	An	empty	string	may	be	returned.

QStringList	QFontDatabase::styles	(const	QString	&	family)
const

Returns	a	list	of	the	styles	available	for	the	font	family,	family.	Some	example
styles:	"Light",	"Light	Italic",	"Bold",	"Oblique",	"Demi".	The	list	may	be
empty.

QStringList	QFontDatabase::styles	(const	QString	&	family,
const	QString	&)	const

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

int	QFontDatabase::weight	(const	QString	&	family,
const	QString	&	style)	const

Returns	the	weight	of	the	font	that	has	family	family	and	style	style.	If	there	is	no
such	family	and	style	combination,	returns	-1.

See	also	italic()	and	bold().

int	QFontDatabase::weight	(const	QString	&	family,
const	QString	&	style,	const	QString	&)	const

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QSound
QSound	 ……

#include	<qsound.h>

QObject

QSound	(const	QString	&	filename,	QObject	*	parent	=	0,
const	char	*	name	=	0)
~QSound	()
int	loops	()	const
int	loopsRemaining	()	const
void	setLoops	(int	l)
QString	fileName	()	const
bool	isFinished	()	const

void	play	()
void	stop	()

bool	isAvailable	()
void	play	(const	QString	&	filename)
bool	available	()

QSound

QtGUI

								QSound::play("mysounds/bells.wav");

				

APIQSound

								QSound	bells("mysounds/bells.wav");

								bells.play();

				

WindowsWAVE

X11 NASWAVEAU

QT QuickTimeQuickTimeQt/Mac

Qt/Embedded, /dev/dspWAVE

QSound::isAvailable()

ftp://ftp.x.org/contrib/audio/nas/
http://quicktime.apple.com

QSound::QSound	(const	QString	&	filename,	QObject	*	parent	=
0,	const	char	*	name	=	0)

QSound filename

play

parentname0 QObject

QSound::~QSound	()

bool	QSound::available	()	[]

QString	QSound::fileName	()	const

bool	QSound::isAvailable	()	[]

QSound

bool	QSound::isFinished	()	const

int	QSound::loops	()	const

int	QSound::loopsRemaining	()	const

void	QSound::play	(const	QString	&	filename)	[]

filename

sound/sound.cpp

void	QSound::play	()	[]

void	QSound::setLoops	(int	l)

-1

Windows,	1

loops()

void	QSound::stop	()	[]

play()

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :hackerjun Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QCharRef	Class	Reference
The	QCharRef	class	is	a	helper	class	for	QString.	More...

#include	<qstring.h>

List	of	all	member	functions.

Detailed	Description

The	QCharRef	class	is	a	helper	class	for	QString.

When	you	get	an	object	of	type	QCharRef,	you	can	assign	to	it,	which	will
operate	on	the	character	in	the	string	from	which	you	got	the	reference.	That	is
its	whole	purpose	in	life.	The	QCharRef	becomes	invalid	once	modifications	are
made	to	the	string:	if	you	want	to	keep	the	character,	copy	it	into	a	QChar.

Most	of	the	QChar	member	functions	also	exist	in	QCharRef.	However,	they	are
not	explicitly	documented	here.

See	also	QString::operator[](),	QString::at(),	QChar	and	Text	Related	Classes.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QMetaObject	Class	Reference
The	QMetaObject	class	contains	meta	information	about	Qt	objects.	More...

#include	<qmetaobject.h>

List	of	all	member	functions.

Public	Members

const	char	*	className	()	const
const	char	*	superClassName	()	const
QMetaObject	*	superClass	()	const
bool	inherits	(const	char	*	clname)	const
int	numSlots	(bool	super	=	FALSE)	const
int	numSignals	(bool	super	=	FALSE)	const
QStrList	slotNames	(bool	super	=	FALSE)	const
QStrList	signalNames	(bool	super	=	FALSE)	const
int	numClassInfo	(bool	super	=	FALSE)	const
const	QClassInfo	*	classInfo	(int	index,	bool	super	=	FALSE)	const
const	char	*	classInfo	(const	char	*	name,	bool	super	=	FALSE)	const
const	QMetaProperty	*	property	(int	index,	bool	super	=	FALSE)	const
int	findProperty	(const	char	*	name,	bool	super	=	FALSE)	const
QStrList	propertyNames	(bool	super	=	FALSE)	const
int	numProperties	(bool	super	=	FALSE)	const

Detailed	Description

The	QMetaObject	class	contains	meta	information	about	Qt	objects.

The	Meta	Object	System	in	Qt	is	responsible	for	the	signals	and	slots	inter-object
communication	mechanism,	runtime	type	information	and	the	property	system.
All	meta	information	in	Qt	is	kept	in	a	single	instance	of	QMetaObject	per	class.

This	class	is	not	normally	required	for	application	programming.	But	if	you
write	meta	applications,	such	as	scripting	engines	or	GUI	builders,	you	might
find	these	functions	useful:

className()	to	get	the	name	of	a	class.
superClassName()	to	get	the	name	of	the	superclass.
inherits(),	the	function	called	by	QObject::inherits().
superClass()	to	access	the	superclass's	meta	object.
numSlots(),	numSignals(),	slotNames(),	and	signalNames()	to	get
information	about	a	class's	signals	and	slots.
property()	and	propertyNames()	to	obtain	information	about	a	class's
properties.

Classes	may	have	a	list	of	name-value	pairs	of	class	information.	The	number	of
pairs	is	returned	by	numClassInfo(),	and	values	are	returned	by	classInfo().

See	also	moc	(Meta	Object	Compiler)	and	Object	Model.

Member	Function	Documentation

const	QClassInfo	*	QMetaObject::classInfo	(int	index,	bool	super
=	FALSE)	const

Returns	the	class	information	with	index	index	or	0	if	no	such	information	exists.

If	super	is	TRUE,	inherited	class	information	is	included.

const	char	*	QMetaObject::classInfo	(const	char	*	name,
bool	super	=	FALSE)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	the	class	information	with	name	name	or	0	if	no	such	information	exists.

If	super	is	TRUE,	inherited	class	information	is	included.

const	char	*	QMetaObject::className	()	const

Returns	the	class	name.

See	also	QObject::className()	and	superClassName().

int	QMetaObject::findProperty	(const	char	*	name,	bool	super	=
FALSE)	const

Returns	the	index	for	the	property	with	name	name	or	-1	if	no	such	property
exists.

If	super	is	TRUE,	inherited	properties	are	included.

See	also	property()	and	propertyNames().

bool	QMetaObject::inherits	(const	char	*	clname)	const

Returns	TRUE	if	this	class	inherits	clname	within	the	meta	object	inheritance
chain;	otherwise	returns	FALSE.

(A	class	is	considered	to	inherit	itself.)

int	QMetaObject::numClassInfo	(bool	super	=	FALSE)	const

Returns	the	number	of	items	of	class	information	available	for	this	class.

If	super	is	TRUE,	inherited	class	information	is	included.

int	QMetaObject::numProperties	(bool	super	=	FALSE)	const

Returns	the	number	of	properties	for	this	class.

If	super	is	TRUE,	inherited	properties	are	included.

See	also	propertyNames().

int	QMetaObject::numSignals	(bool	super	=	FALSE)	const

Returns	the	number	of	signals	for	this	class.

If	super	is	TRUE,	inherited	signals	are	included.

See	also	signalNames().

int	QMetaObject::numSlots	(bool	super	=	FALSE)	const

Returns	the	number	of	slots	for	this	class.

If	super	is	TRUE,	inherited	slots	are	included.

See	also	slotNames().

const	QMetaProperty	*	QMetaObject::property	(int	index,
bool	super	=	FALSE)	const

Returns	the	property	meta	data	for	the	property	at	index	index	or	0	if	no	such

property	exists.

If	super	is	TRUE,	inherited	properties	are	included.

See	also	propertyNames().

QStrList	QMetaObject::propertyNames	(bool	super	=	FALSE)
const

Returns	a	list	with	the	names	of	all	this	class's	properties.

If	super	is	TRUE,	inherited	properties	are	included.

See	also	property().

QStrList	QMetaObject::signalNames	(bool	super	=	FALSE)
const

Returns	a	list	with	the	names	of	all	this	class's	signals.

If	super	is	TRUE,	inherited	signals	are	included.

QStrList	QMetaObject::slotNames	(bool	super	=	FALSE)	const

Returns	a	list	with	the	names	of	all	this	class's	slots.

If	super	is	TRUE,	inherited	slots	are	included.

See	also	numSlots().

QMetaObject	*	QMetaObject::superClass	()	const

Returns	the	meta	object	of	the	super	class	or	0	if	there	is	no	such	object.

const	char	*	QMetaObject::superClassName	()	const

Returns	the	class	name	of	the	superclass	or	0	if	there	is	no	superclass	in	the
QObject	hierachy.

See	also	className().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QVButtonGroup
QVButtonGroupQButton	 ……

#include	<qvbuttongroup.h>

QButtonGroup

QVButtonGroup	(QWidget	*	parent	=	0,	const	char	*	name	=	0)
QVButtonGroup	(const	QString	&	title,	QWidget	*	parent	=	0,
const	char	*	name	=	0)
~QVButtonGroup	()

QVButtonGroup QButton

QVButtonGroup QButtonGroup QVBox

QHButtonGroup.

QVButtonGroup::QVButtonGroup	(QWidget	*	parent	=	0,
const	char	*	name	=	0)

parentnameQWidget

QVButtonGroup::QVButtonGroup	(const	QString	&	title,
QWidget	*	parent	=	0,	const	char	*	name	=	0)

title

parentnameQWidget

QVButtonGroup::~QVButtonGroup	()

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QCheckBox
QCheckBox	 ……

#include	<qcheckbox.h>

QButton

QCheckBox	(QWidget	*	parent,	const	char	*	name	=	0)
QCheckBox	(const	QString	&	text,	QWidget	*	parent,	const	char	*	name	=
0)
bool	isChecked	()	const
void	setNoChange	()
void	setTristate	(bool	y	=	TRUE)
bool	isTristate	()	const

void	setChecked	(bool	check)

QString	text	()	const
virtual	void	setText	(const	QString	&)
const	QPixmap	*	pixmap	()	const
virtual	void	setPixmap	(const	QPixmap	&)
QKeySequence	accel	()	const
virtual	void	setAccel	(const	QKeySequence	&)
bool	isToggleButton	()	const
virtual	void	setDown	(bool)
bool	isDown	()	const
bool	isOn	()	const
ToggleState	state	()	const
bool	autoRepeat	()	const
virtual	void	setAutoRepeat	(bool)
bool	isExclusiveToggle	()	const
QButtonGroup	*	group	()	const
void	toggle	()
void	pressed	()
void	released	()
void	clicked	()
void	toggled	(bool	on)
void	stateChanged	(int	state)

bool	autoMask	-		
bool	checked	-	
bool	tristate	-	

QCheckBox

QCheckBox QRadioButton“”“”

QButtonGroup

toggled() isChecked()

QCheckBox“”

QPushButton setText() setPixmap()

	

QButtonQRadioButton

QCheckBox::QCheckBox	(QWidget	*	parent,	const	char	*	name
=	0)

parentnameQWidget

QCheckBox::QCheckBox	(const	QString	&	text,
QWidget	*	parent,	const	char	*	name	=	0)

text

parentnameQWidget

QKeySequence	QButton::accel	()	const

“accel”

bool	QButton::autoRepeat	()	const

autoRepeat “autoRepeat”

void	QButton::clicked	()	[]

QButtonGroup::clicked()

pressed() released() toggled() autoRepeatdown

fonts/simple-qfont-
demo/viewer.cpplistbox/listbox.cppnetwork/clientserver/client/client.cppnetwork/ftpclient/ftpmainwindow.cpp
t4/main.cpp

QButtonGroup	*	QButton::group	()	const

QButtonGroup0

QButtonGroup

bool	QCheckBox::isChecked	()	const

“checked”

bool	QButton::isDown	()	const

“down”

bool	QButton::isExclusiveToggle	()	const

“exclusiveToggle”

bool	QButton::isOn	()	const

“on”

bool	QButton::isToggleButton	()	const

“toggleButton”

bool	QCheckBox::isTristate	()	const

“tristate”

const	QPixmap	*	QButton::pixmap	()	const

“pixmap”

void	QButton::pressed	()	[]

released()clicked()

network/httpd/httpd.cpppopup/popup.cpp

void	QButton::released	()	[]

pressed() clicked()toggled()

void	QButton::setAccel	(const	QKeySequence	&)	[]

“accel”

void	QButton::setAutoRepeat	(bool)	[]

autoRepeat “autoRepeat”

void	QCheckBox::setChecked	(bool	check)	[]

check“checked”

void	QButton::setDown	(bool)	[]

“down”

void	QCheckBox::setNoChange	()

“”

tristate

void	QButton::setPixmap	(const	QPixmap	&)	[]

“pixmap”

void	QButton::setText	(const	QString	&)	[]

“text”

void	QCheckBox::setTristate	(bool	y	=	TRUE)

y“tristate”

ToggleState	QButton::state	()	const

“toggleState”

void	QButton::stateChanged	(int	state)	[]

state2 “” 10

toggle() setState()setOn()

clicked()

QString	QButton::text	()	const

“text”

void	QButton::toggle	()	[]

onsetOn() toggled()toggleButton

void	QButton::toggled	(bool	on)	[]

on on

toggle() setOn()

clicked()

listbox/listbox.cpp

QKeySequence	accel

00

setAccel()accel()

bool	autoMask

QWidget::autoMask

bool	autoRepeat

autoRepeat

autoRepeat clicked()autoRepeat

setAutoRepeat()autoRepeat()

bool	checked

setChecked()isChecked()

QPixmap	pixmap

QBitmap1

pixmap()0

setPixmap()pixmap()

QString	text

“&”“&”

setText()text().

bool	tristate

setTristate()isTristate()

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QFontInfo	Class	Reference
The	QFontInfo	class	provides	general	information	about	fonts.	More...

#include	<qfontinfo.h>

List	of	all	member	functions.

Public	Members

QFontInfo	(const	QFont	&	font)
QFontInfo	(const	QFontInfo	&	fi)
~QFontInfo	()
QFontInfo	&	operator=	(const	QFontInfo	&	fi)
QString	family	()	const
int	pixelSize	()	const
int	pointSize	()	const
bool	italic	()	const
int	weight	()	const
bool	bold	()	const
bool	fixedPitch	()	const
QFont::StyleHint	styleHint	()	const
bool	rawMode	()	const
bool	exactMatch	()	const

Detailed	Description

The	QFontInfo	class	provides	general	information	about	fonts.

The	QFontInfo	class	provides	the	same	access	functions	as	QFont,	e.g.	family(),
pointSize(),	italic(),	weight(),	fixedPitch(),	styleHint()	etc.	But	whilst	the	QFont
access	functions	return	the	values	that	were	set,	a	QFontInfo	object	returns	the
values	that	apply	to	the	font	that	will	actually	be	used	to	draw	the	text.

For	example,	when	the	program	asks	for	a	25pt	Courier	font	on	a	machine	that
has	a	non-scalable	24pt	Courier	font,	QFont	will	(normally)	use	the	24pt	Courier
for	rendering.	In	this	case,	QFont::pointSize()	returns	25	and
QFontInfo::pointSize()	returns	24.

There	are	three	ways	to	create	a	QFontInfo	object.

1.	 Calling	the	QFontInfo	constructor	with	a	QFont	creates	a	font	info	object
for	a	screen-compatible	font,	i.e.	the	font	cannot	be	a	printer	font*.	If	the
font	is	changed	later,	the	font	info	object	is	not	updated.

2.	 QWidget::fontInfo()	returns	the	font	info	for	a	widget's	font.	This	is
equivalent	to	calling	QFontInfo(widget->font()).	If	the	widget's	font	is
changed	later,	the	font	info	object	is	not	updated.

3.	 QPainter::fontInfo()	returns	the	font	info	for	a	painter's	current	font.	The
font	info	object	is	automatically	updated	if	you	set	a	new	painter	font.

*	If	you	use	a	printer	font	the	values	returned	will	almost	certainly	be	inaccurate.
Printer	fonts	are	not	always	accessible	so	the	nearest	screen	font	is	used	if	a
printer	font	is	supplied.

See	also	QFont,	QFontMetrics,	QFontDatabase,	Graphics	Classes	and	Implicitly
and	Explicitly	Shared	Classes.

Member	Function	Documentation

QFontInfo::QFontInfo	(const	QFont	&	font)

Constructs	a	font	info	object	for	font.

The	font	must	be	screen-compatible,	i.e.	a	font	you	use	when	drawing	text	in
widgets	or	pixmaps,	not	QPicture	or	QPrinter.

The	font	info	object	holds	the	information	for	the	font	that	is	passed	in	the
constructor	at	the	time	it	is	created,	and	is	not	updated	if	the	font's	attributes	are
changed	later.

Use	the	QPainter::fontInfo()	function	to	get	the	font	info	when	painting.	This	is	a
little	slower	than	using	this	constructor,	but	it	always	gives	correct	results
because	the	font	info	data	is	updated.

QFontInfo::QFontInfo	(const	QFontInfo	&	fi)

Constructs	a	copy	of	fi.

QFontInfo::~QFontInfo	()

Destroys	the	font	info	object.

bool	QFontInfo::bold	()	const

Returns	TRUE	if	weight()	would	return	a	value	greater	than	QFont::Normal;
otherwise	returns	FALSE.

See	also	weight()	and	QFont::bold().

bool	QFontInfo::exactMatch	()	const

Returns	TRUE	if	the	matched	window	system	font	is	exactly	the	same	as	the	one
specified	by	the	font;	otherwise	returns	FALSE.

See	also	QFont::exactMatch().

QString	QFontInfo::family	()	const

Returns	the	family	name	of	the	matched	window	system	font.

See	also	QFont::family().

Example:	fonts/simple-qfont-demo/viewer.cpp.

bool	QFontInfo::fixedPitch	()	const

Returns	the	fixed	pitch	value	of	the	matched	window	system	font.

See	also	QFont::fixedPitch().

bool	QFontInfo::italic	()	const

Returns	the	italic	value	of	the	matched	window	system	font.

See	also	QFont::italic().

QFontInfo	&	QFontInfo::operator=	(const	QFontInfo	&	fi)

Assigns	the	font	info	in	fi.

int	QFontInfo::pixelSize	()	const

Returns	the	pixel	size	of	the	matched	window	system	font.

See	also	QFont::pointSize().

int	QFontInfo::pointSize	()	const

Returns	the	point	size	of	the	matched	window	system	font.

See	also	QFont::pointSize().

Example:	fonts/simple-qfont-demo/viewer.cpp.

bool	QFontInfo::rawMode	()	const

Returns	TRUE	if	the	font	is	a	raw	mode	font;	otherwise	returns	FALSE.

If	it	is	a	raw	mode	font,	all	other	functions	in	QFontInfo	will	return	the	same
values	set	in	the	QFont,	regardless	of	the	font	actually	used.

See	also	QFont::rawMode().

QFont::StyleHint	QFontInfo::styleHint	()	const

Returns	the	style	of	the	matched	window	system	font.

Currently	only	returns	the	style	hint	set	in	QFont.

See	also	QFont::styleHint()	and	QFont::StyleHint.

int	QFontInfo::weight	()	const

Returns	the	weight	of	the	matched	window	system	font.

See	also	QFont::weight()	and	bold().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QMetaProperty	Class	Reference
The	QMetaProperty	class	stores	meta	data	about	a	property.	More...

#include	<qmetaobject.h>

List	of	all	member	functions.

Public	Members

const	char	*	type	()	const
const	char	*	name	()	const
bool	writable	()	const
bool	isSetType	()	const
bool	isEnumType	()	const
QStrList	enumKeys	()	const
int	keyToValue	(const	char	*	key)	const
const	char	*	valueToKey	(int	value)	const
int	keysToValue	(const	QStrList	&	keys)	const
QStrList	valueToKeys	(int	value)	const
bool	designable	(QObject	*	o)	const
bool	scriptable	(QObject	*	o)	const
bool	stored	(QObject	*	o)	const
bool	reset	(QObject	*	o)	const

Detailed	Description

The	QMetaProperty	class	stores	meta	data	about	a	property.

Property	meta	data	includes	type(),	name(),	and	whether	a	property	is	writable(),
designable()	and	stored().

The	functions	isSetType(),	isEnumType()	and	enumKeys()	provide	further
information	about	a	property's	type.	The	conversion	functions	keyToValue(),
valueToKey(),	keysToValue()	and	valueToKeys()	allow	conversion	between	the
integer	representation	of	an	enumeration	or	set	value	and	its	literal
representation.

Actual	property	values	are	set	and	received	through	QObject's	set	and	get
functions.	See	QObject::setProperty()	and	QObject::property()	for	details.

You	receive	meta	property	data	through	an	object's	meta	object.	See
QMetaObject::property()	and	QMetaObject::propertyNames()	for	details.

See	also	Object	Model.

Member	Function	Documentation

bool	QMetaProperty::designable	(QObject	*	o)	const

Returns	TRUE	if	the	property	is	designable	for	object	o;	otherwise	returns
FALSE.

QStrList	QMetaProperty::enumKeys	()	const

Returns	the	possible	enumeration	keys	if	this	property	is	an	enumeration	type	(or
a	set	type).

See	also	isEnumType().

bool	QMetaProperty::isEnumType	()	const

Returns	TRUE	if	the	property's	type	is	an	enumeration	value;	otherwise	returns
FALSE.

See	also	isSetType()	and	enumKeys().

bool	QMetaProperty::isSetType	()	const

Returns	TRUE	if	the	property's	type	is	an	enumeration	value	that	is	used	as	set,
i.e.	if	the	enumeration	values	can	be	OR-ed	together;	otherwise	returns	FALSE.
A	set	type	is	implicitly	also	an	enum	type.

See	also	isEnumType()	and	enumKeys().

int	QMetaProperty::keyToValue	(const	char	*	key)	const

Converts	the	enumeration	key	key	to	its	integer	value.

For	set	types,	use	keysToValue().

See	also	valueToKey(),	isSetType()	and	keysToValue().

int	QMetaProperty::keysToValue	(const	QStrList	&	keys)	const

Converts	the	list	of	keys	keys	to	their	combined	(OR-ed)	integer	value.

See	also	isSetType()	and	valueToKey().

const	char	*	QMetaProperty::name	()	const

Returns	the	name	of	the	property.

bool	QMetaProperty::reset	(QObject	*	o)	const

Tries	to	reset	the	property	for	object	o	with	a	reset	method.	On	success,	returns
TRUE;	otherwise	returns	FALSE.

Reset	methods	are	optional,	usually	only	a	few	properties	support	them.

bool	QMetaProperty::scriptable	(QObject	*	o)	const

Returns	TRUE	if	the	property	is	scriptable	for	object	o;	otherwise	returns
FALSE.

bool	QMetaProperty::stored	(QObject	*	o)	const

Returns	TRUE	if	the	property	shall	be	stored	for	object	o;	otherwise	returns
FALSE.

const	char	*	QMetaProperty::type	()	const

Returns	the	type	of	the	property.

const	char	*	QMetaProperty::valueToKey	(int	value)	const

Converts	the	enumeration	value	value	to	its	literal	key.

For	set	types,	use	valueToKeys().

See	also	isSetType()	and	valueToKeys().

QStrList	QMetaProperty::valueToKeys	(int	value)	const

Converts	the	set	value	value	to	a	list	of	keys.

See	also	isSetType()	and	valueToKey().

bool	QMetaProperty::writable	()	const

Returns	TRUE	if	the	property	is	writable;	otherwise	returns	FALSE.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QVGroupBox
QVGroupBox	 ……

#include	<qvgroupbox.h>

QGroupBox

QVGroupBox	(QWidget	*	parent	=	0,	const	char	*	name	=	0)
QVGroupBox	(const	QString	&	title,	QWidget	*	parent	=	0,
const	char	*	name	=	0)
~QVGroupBox	()

QVGroupBox

QVGroupBox QGroupBox QVBox

QHGroupBox

QVGroupBox::QVGroupBox	(QWidget	*	parent	=	0,
const	char	*	name	=	0)

parentnameQWidget

QVGroupBox::QVGroupBox	(const	QString	&	title,
QWidget	*	parent	=	0,	const	char	*	name	=	0)

title

parentnameQWidget

QVGroupBox::~QVGroupBox	()

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QCheckListItem	Class	Reference
The	QCheckListItem	class	provides	checkable	list	view	items.	More...

#include	<qlistview.h>

Inherits	QListViewItem.

List	of	all	member	functions.

Public	Members

enum	Type	{	RadioButton,	CheckBox,	Controller	}
QCheckListItem	(QCheckListItem	*	parent,	const	QString	&	text,	Type	tt
=	Controller)
QCheckListItem	(QListViewItem	*	parent,	const	QString	&	text,	Type	tt
=	Controller)
QCheckListItem	(QListView	*	parent,	const	QString	&	text,	Type	tt	=
Controller)
QCheckListItem	(QListViewItem	*	parent,	const	QString	&	text,
const	QPixmap	&	p)
QCheckListItem	(QListView	*	parent,	const	QString	&	text,
const	QPixmap	&	p)
~QCheckListItem	()
virtual	void	paintCell	(QPainter	*	p,	const	QColorGroup	&	cg,	int	column,
int	width,	int	align)
virtual	void	paintFocus	(QPainter	*	p,	const	QColorGroup	&	cg,
const	QRect	&	r)
virtual	void	setOn	(bool	b)
bool	isOn	()	const
Type	type	()	const
QString	text	()	const
virtual	int	rtti	()	const

Protected	Members

virtual	void	activate	()
void	turnOffChild	()
virtual	void	stateChange	(bool)

Detailed	Description

The	QCheckListItem	class	provides	checkable	list	view	items.

QCheckListItems	are	used	in	QListViews	to	provide	QListViewItems	that	are
checkboxes,	radio	buttons	or	controllers.

Checkbox	and	controller	check	list	items	may	be	inserted	at	any	level	in	a	list
view.	Radio	button	check	list	items	must	be	children	of	a	controller	check	list
item.

The	item	can	be	checked	or	unchecked	with	setOn().	Its	type	can	be	retrieved
with	type()	and	its	text	retrieved	with	text().

See	also	QListViewItem,	QListView	and	Advanced	Widgets.

Member	Type	Documentation

QCheckListItem::Type

This	enum	type	specifies	a	QCheckListItem's	type:

QCheckListItem::RadioButton

QCheckListItem::CheckBox

QCheckListItem::Controller

Member	Function	Documentation

QCheckListItem::QCheckListItem	(QCheckListItem	*	parent,
const	QString	&	text,	Type	tt	=	Controller)

Constructs	a	checkable	item	with	parent	parent,	text	text	and	type	tt.	Note	that	a
RadioButton	must	be	the	child	of	a	Controller,	otherwise	it	will	not	toggle.

QCheckListItem::QCheckListItem	(QListViewItem	*	parent,
const	QString	&	text,	Type	tt	=	Controller)

Constructs	a	checkable	item	with	parent	parent,	text	text	and	type	tt.	Note	that
this	item	must	not	be	a	RadioButton.	Radio	buttons	must	be	children	of	a
Controller.

QCheckListItem::QCheckListItem	(QListView	*	parent,
const	QString	&	text,	Type	tt	=	Controller)

Constructs	a	checkable	item	with	parent	parent,	text	text	and	type	tt.	Note	that	tt
must	not	be	RadioButton.	Radio	buttons	must	be	children	of	a	Controller.

QCheckListItem::QCheckListItem	(QListViewItem	*	parent,
const	QString	&	text,	const	QPixmap	&	p)

Constructs	a	Controller	item	with	parent	parent,	text	text	and	pixmap	p.

QCheckListItem::QCheckListItem	(QListView	*	parent,
const	QString	&	text,	const	QPixmap	&	p)

Constructs	a	Controller	item	with	parent	parent,	text	text	and	pixmap	p.

QCheckListItem::~QCheckListItem	()

Destroys	the	item,	deleting	all	its	children,	freeing	up	all	allocated	resources.

void	QCheckListItem::activate	()	[virtual	protected]

Toggle	check	box	or	set	radio	button	to	on.

Reimplemented	from	QListViewItem.

bool	QCheckListItem::isOn	()	const

Returns	TRUE	if	the	item	is	toggled	on;	otherwise	returns	FALSE.

void	QCheckListItem::paintCell	(QPainter	*	p,
const	QColorGroup	&	cg,	int	column,	int	width,	int	align)
[virtual]

Paints	the	item	using	the	painter	p	and	the	color	group	cg.	The	item	is	in	column
column,	has	width	width	and	is	aligned	align.	(See	Qt::AlignmentFlags	for	valid
alignments.)

Reimplemented	from	QListViewItem.

void	QCheckListItem::paintFocus	(QPainter	*	p,
const	QColorGroup	&	cg,	const	QRect	&	r)	[virtual]

Draws	the	focus	rectangle	r	using	the	color	group	cg	on	the	painter	p.

Reimplemented	from	QListViewItem.

int	QCheckListItem::rtti	()	const	[virtual]

Returns	1.

Make	your	derived	classes	return	their	own	values	for	rtti(),	and	you	can
distinguish	between	listview	items.	You	should	use	values	greater	than	1000
preferably	a	large	random	number,	to	allow	for	extensions	to	this	class.

Reimplemented	from	QListViewItem.

void	QCheckListItem::setOn	(bool	b)	[virtual]

Sets	the	button	on	if	b	is	TRUE,	otherwise	sets	it	off.	Maintains	radio	button
exclusivity.

void	QCheckListItem::stateChange	(bool)	[virtual	protected]

This	virtual	function	is	called	when	the	item	changes	its	on/off	state.

QString	QCheckListItem::text	()	const

Returns	the	text	of	the	item.

void	QCheckListItem::turnOffChild	()	[protected]

If	this	is	a	Controller	that	has	RadioButton	children,	turn	off	the	child	that	is	on.

Type	QCheckListItem::type	()	const

Returns	the	type	of	this	item.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QFontManager	Class	Reference
The	QFontManager	class	implements	font	management	in	Qt/Embedded.	More...

#include	<qfontmanager_qws.h>

List	of	all	member	functions.

Public	Members

QFontManager	()
~QFontManager	()
QDiskFont	*	get	(const	QFontDef	&	f)

Static	Public	Members

void	initialize	()
void	cleanup	()

Detailed	Description

The	QFontManager	class	implements	font	management	in	Qt/Embedded.

There	is	one	and	only	one	QFontManager	per	Qt/Embedded	application
(qt_fontmanager	is	a	global	variable	that	points	to	it).	It	keeps	a	list	of	font
factories,	a	cache	of	rendered	fonts	and	a	list	of	fonts	available	on	disk.
QFontManager	is	called	when	a	new	font	needs	to	be	rendered	from	a	Freetype-
compatible	or	BDF	font	on	disk;	this	only	happens	if	there	isn't	an	appropriate
QPF	font	already	available.

See	also	Qt/Embedded.

Member	Function	Documentation

QFontManager::QFontManager	()

Creates	a	font	manager.	This	method	reads	in	the	font	definition	file	from
$QTDIR/lib/fonts/fontdir	(or	/usr/local/qt-embedded/lib/fonts/fontdir	if	QTDIR
isn't	defined)	and	creates	a	list	of	QDiskFonts	to	hold	the	information	in	the	file.
It	also	constructs	any	defined	font	factories.

QFontManager::~QFontManager	()

Destroys	the	QFontManager	and	sets	qt_fontmanager	to	0.

void	QFontManager::cleanup	()	[static]

Destroys	the	font	manager

QDiskFont	*	QFontManager::get	(const	QFontDef	&	f)

Returns	the	QDiskFont	that	best	matches	f,	based	on	family,	weight,	italicity	and
font	size.

void	QFontManager::initialize	()	[static]

Creates	a	new	QFontManager	and	points	qt_fontmanager	to	it

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QMimeSource	Class	Reference
The	QMimeSource	class	is	an	abstraction	of	objects	which	provide	formatted
data	of	a	certain	MIME	type.	More...

#include	<qmime.h>

Inherited	by	QDragObject	and	QDropEvent.

List	of	all	member	functions.

Public	Members

QMimeSource	()
virtual	~QMimeSource	()
virtual	const	char	*	format	(int	i	=	0)	const	=	0
virtual	bool	provides	(const	char	*	mimeType)	const
virtual	QByteArray	encodedData	(const	char	*)	const	=	0
int	serialNumber	()	const

Detailed	Description

The	QMimeSource	class	is	an	abstraction	of	objects	which	provide	formatted
data	of	a	certain	MIME	type.

Drag-and-drop	and	clipboard	use	this	abstraction.

See	also	IANA	list	of	MIME	media	types,	Drag	And	Drop	Classes,	Input/Output
and	Networking	and	Miscellaneous	Classes.

http://www.isi.edu/in-notes/iana/assignments/media-types/

Member	Function	Documentation

QMimeSource::QMimeSource	()

Constructs	a	mime	source	and	assigns	a	globally	unique	serial	number	to	it.

See	also	serialNumber().

QMimeSource::~QMimeSource	()	[virtual]

Provided	to	ensure	that	subclasses	destroy	themselves	correctly.

QByteArray	QMimeSource::encodedData	(const	char	*)	const
[pure	virtual]

Returns	the	encoded	data	of	this	object	in	the	specified	MIME	format.

Subclasses	must	reimplement	this	function.

Reimplemented	in	QStoredDrag,	QDropEvent	and	QIconDrag.

const	char	*	QMimeSource::format	(int	i	=	0)	const	[pure
virtual]

Returns	the	i-th	supported	MIME	format,	or	0.

Reimplemented	in	QDropEvent.

bool	QMimeSource::provides	(const	char	*	mimeType)	const
[virtual]

Returns	TRUE	if	the	object	can	provide	the	data	in	format	mimeType;	otherwise
returns	FALSE.

If	you	inherit	from	QMimeSource,	for	consistency	reasons	it	is	better	to
implement	the	more	abstract	canDecode()	functions	such	as
QTextDrag::canDecode()	and	QImageDrag::canDecode().

Example:	iconview/simple_dd/main.cpp.

Reimplemented	in	QDropEvent.

int	QMimeSource::serialNumber	()	const

Returns	the	mime	source's	globally	unique	serial	number.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QSplitter	Class	Reference
The	QSplitter	class	implements	a	splitter	widget.	More...

#include	<qsplitter.h>

Inherits	QFrame.

List	of	all	member	functions.

Public	Members

enum	ResizeMode	{	Stretch,	KeepSize,	FollowSizeHint	}
QSplitter	(QWidget	*	parent	=	0,	const	char	*	name	=	0)
QSplitter	(Orientation	o,	QWidget	*	parent	=	0,	const	char	*	name	=	0)
~QSplitter	()
virtual	void	setOrientation	(Orientation)
Orientation	orientation	()	const
virtual	void	setResizeMode	(QWidget	*	w,	ResizeMode	mode)
virtual	void	setOpaqueResize	(bool	on	=	TRUE)
bool	opaqueResize	()	const
void	moveToFirst	(QWidget	*	w)
void	moveToLast	(QWidget	*	w)
void	refresh	()
QValueList<int>	sizes	()	const
void	setSizes	(QValueList<int>	list)

Properties

Orientation	orientation	-	the	orientation	of	the	splitter

Protected	Members

virtual	void	childEvent	(QChildEvent	*	c)
int	idAfter	(QWidget	*	w)	const
void	moveSplitter	(QCOORD	p,	int	id)
virtual	void	drawSplitter	(QPainter	*	p,	QCOORD	x,	QCOORD	y,
QCOORD	w,	QCOORD	h)		(obsolete)
int	adjustPos	(int	p,	int	id)
virtual	void	setRubberband	(int	p)
void	getRange	(int	id,	int	*	min,	int	*	max)

Detailed	Description

The	QSplitter	class	implements	a	splitter	widget.

A	splitter	lets	the	user	control	the	size	of	child	widgets	by	dragging	the	boundary
between	the	children.	Any	number	of	widgets	may	be	controlled.

To	show	a	QListBox,	a	QListView	and	a	QTextEdit	side	by	side:

				QSplitter	*split	=	new	QSplitter(parent);

				QListBox	*lb	=	new	QListBox(split);

				QListView	*lv	=	new	QListView(split);

				QTextEdit	*ed	=	new	QTextEdit(split);

		

In	QSplitter	the	boundary	can	be	either	horizontal	or	vertical.	The	default	is
horizontal	(the	children	are	side	by	side)	but	you	can	use	setOrientation(
QSplitter::Vertical)	to	set	it	to	vertical.

By	default,	all	widgets	can	be	as	large	or	as	small	as	the	user	wishes,	down	to
minimumSizeHint().	You	can	also	use	setMinimumSize()	and
setMaximumSize()	on	the	children.	Use	setResizeMode()	to	specify	that	a
widget	should	keep	its	size	when	the	splitter	is	resized.

Although	QSplitter	normally	resizes	the	children	only	at	the	end	of	a	resize
operation,	if	you	call	setOpaqueResize(TRUE)	the	widgets	are	resized	as	often
as	possible.

The	initial	distribution	of	size	between	the	widgets	is	determined	by	the	initial
size	of	each	widget.	You	can	also	use	setSizes()	to	set	the	sizes	of	all	the	widgets.
The	function	sizes()	returns	the	sizes	set	by	the	user.

If	you	hide()	a	child	its	space	will	be	distributed	among	the	other	children.	It	will
be	reinstated	when	you	show()	it	again.	It	is	also	possible	to	reorder	the	widgets
within	the	splitter	using	moveToFirst()	and	moveToLast().

	

See	also	QTabBar	and	Organizers.

Member	Type	Documentation

QSplitter::ResizeMode

This	enum	type	describes	how	QSplitter	will	resize	each	of	its	child	widgets.	The
currently	defined	values	are:

QSplitter::Stretch	-	the	widget	will	be	resized	when	the	splitter	itself	is
resized.
QSplitter::KeepSize	-	QSplitter	will	try	to	keep	this	widget's	size
unchanged.
QSplitter::FollowSizeHint	-	QSplitter	will	resize	the	widget	when	the
widget's	size	hint	changes.

Member	Function	Documentation

QSplitter::QSplitter	(QWidget	*	parent	=	0,	const	char	*	name	=
0)

Constructs	a	horizontal	splitter	with	the	parent	and	name	arguments	being
passed	on	to	the	QFrame	constructor.

QSplitter::QSplitter	(Orientation	o,	QWidget	*	parent	=	0,
const	char	*	name	=	0)

Constructs	a	splitter	with	orientation	o	with	the	parent	and	name	arguments
being	passed	on	to	the	QFrame	constructor.

QSplitter::~QSplitter	()

Destroys	the	splitter	and	any	children.

int	QSplitter::adjustPos	(int	p,	int	id)	[protected]

Returns	the	closest	legal	position	to	p	of	the	splitter	with	id	id.

See	also	idAfter().

void	QSplitter::childEvent	(QChildEvent	*	c)	[virtual
protected]

Tells	the	splitter	that	a	child	widget	has	been	inserted	or	removed.	The	event	is
passed	in	c.

Reimplemented	from	QObject.

void	QSplitter::drawSplitter	(QPainter	*	p,	QCOORD	x,
QCOORD	y,	QCOORD	w,	QCOORD	h)	[virtual
protected]

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Draws	the	splitter	handle	in	the	rectangle	described	by	x,	y,	w,	h	using	painter	p.

See	also	QStyle::drawPrimitive().

void	QSplitter::getRange	(int	id,	int	*	min,	int	*	max)
[protected]

Returns	the	valid	range	of	the	splitter	with	id	id	in	*min	and	*max.

See	also	idAfter().

int	QSplitter::idAfter	(QWidget	*	w)	const	[protected]

Returns	the	id	of	the	splitter	to	the	right	of	or	below	the	widget	w,	or	0	if	there	is
no	such	splitter	(i.e.	it	is	either	not	in	this	QSplitter	or	it	is	at	the	end).

void	QSplitter::moveSplitter	(QCOORD	p,	int	id)	[protected]

Moves	the	left/top	edge	of	the	splitter	handle	with	id	id	as	close	as	possible	to
position	p,	which	is	the	distance	from	the	left	(or	top)	edge	of	the	widget.

For	Arabic	and	Hebrew	the	layout	is	reversed,	and	using	this	function	to	set	the
position	of	the	splitter	might	lead	to	unexpected	results,	since	in	Arabic	and
Hebrew	the	position	of	splitter	one	is	to	the	left	of	the	position	of	splitter	zero.

See	also	idAfter().

void	QSplitter::moveToFirst	(QWidget	*	w)

Moves	widget	w	to	the	leftmost/top	position.

Example:	splitter/splitter.cpp.

void	QSplitter::moveToLast	(QWidget	*	w)

Moves	widget	w	to	the	rightmost/bottom	position.

bool	QSplitter::opaqueResize	()	const

Returns	TRUE	if	opaque	resize	is	on;	otherwise	returns	FALSE.

See	also	setOpaqueResize().

Orientation	QSplitter::orientation	()	const

Returns	the	orientation	of	the	splitter.	See	the	"orientation"	property	for	details.

void	QSplitter::refresh	()

Updates	the	splitter's	state.	You	should	not	need	to	call	this	function.

void	QSplitter::setOpaqueResize	(bool	on	=	TRUE)	[virtual]

If	on	is	TRUE	then	opaque	resizing	is	turned	on;	otherwise	opaque	resizing	is
turned	off.	Opaque	resizing	is	initially	turned	off.

See	also	opaqueResize().

Examples:	mainlyQt/editor.cpp	and	splitter/splitter.cpp.

void	QSplitter::setOrientation	(Orientation)	[virtual]

Sets	the	orientation	of	the	splitter.	See	the	"orientation"	property	for	details.

void	QSplitter::setResizeMode	(QWidget	*	w,	ResizeMode	mode
)	[virtual]

Sets	resize	mode	of	w	to	mode.

See	also	ResizeMode.

Examples:	fileiconview/mainwindow.cpp,	listviews/listviews.cpp,
network/ftpclient/ftpmainwindow.cpp	and	splitter/splitter.cpp.

void	QSplitter::setRubberband	(int	p)	[virtual	protected]

Shows	a	rubber	band	at	position	p.	If	p	is	negative,	the	rubber	band	is	removed.

void	QSplitter::setSizes	(QValueList<int>	list)

Sets	the	size	parameters	to	the	values	given	in	list.	If	the	splitter	is	horizontal,	the
values	set	the	sizes	from	left	to	right.	If	it	is	vertical,	the	sizes	are	applied	from
top	to	bottom.	Extra	values	in	list	are	ignored.

If	list	contains	too	few	values,	the	result	is	undefined	but	the	program	will	still
be	well-behaved.

See	also	sizes().

QValueList<int>	QSplitter::sizes	()	const

Returns	a	list	of	the	size	parameters	of	all	the	widgets	in	this	splitter.

Giving	the	values	to	another	splitter's	setSizes()	function	will	produce	a	splitter
with	the	same	layout	as	this	one.

Note	that	if	you	want	to	iterate	over	the	list,	you	should	iterate	over	a	copy,	e.g.

				QValueList<int>	list	=	mySplitter.sizes();

				QValueList<int>::Iterator	it	=	list.begin();

				while(it	!=	list.end())	{

								myProcessing(*it);

								++it;

				}

				

See	also	setSizes().

Property	Documentation

Orientation	orientation

This	property	holds	the	orientation	of	the	splitter.

By	default	the	orientation	is	horizontal	(the	widgets	are	side	by	side).	The
possible	orientations	are	Qt:Vertical	and	Qt::Horizontal	(the	default).

Set	this	property's	value	with	setOrientation()	and	get	this	property's	value	with
orientation().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QWaitCondition
QWaitCondition/	 ……

#include	<qwaitcondition.h>

QWaitCondition	()
virtual	~QWaitCondition	()
bool	wait	(unsigned	long	time	=	ULONG_MAX)
bool	wait	(QMutex	*	mutex,	unsigned	long	time	=	ULONG_MAX)
void	wakeOne	()
void	wakeAll	()

QWaitCondition/

QWaitConditions
wakeAll()run()

		QWaitCondition	key_pressed;

		for	(;;)	{

					key_pressed.wait();	//	QWaitCondition

					//	

					do_something();

		}

		

		QWaitCondition	key_pressed;

		for	(;;)	{

					getchar();

	 	//	key_pressed wait()

					key_pressed.wakeAll();

		}

		

do_something()

		QMutex	mymutex;

		QWaitCondition	key_pressed;

		int	mycount=0;

		//	

		for	(;;)	{

					key_pressed.wait();	//	QWaitCondition

					mymutex.lock();

					mycount++;

					mymutex.unlock();

					do_something();

					mymutex.lock();

					mycount--;

					mymutex.unlock();

		}

		//	

		for	(;;)	{

					getchar();

					mymutex.lock();

					//	

					while(count	>	0)	{

							mymutex.unlock();

							sleep(1);

							mymutex.lock();

					}

					mymutex.unlock();

					key_pressed.wakeAll();

		}

		

QWaitCondition::QWaitCondition	()

QWaitCondition::~QWaitCondition	()	[]

bool	QWaitCondition::wait	(unsigned	long	time	=	ULONG_MAX
)

wakeOne()wakeAll()
time timeULONG_MAX

wakeOne()wakeAll()

bool	QWaitCondition::wait	(QMutex	*	mutex,
unsigned	long	time	=	ULONG_MAX)

mutex mutex mutex mutex mutex

wakeOne()wakeAll()
time timeULONG_MAX

wakeOne()wakeAll()

void	QWaitCondition::wakeAll	()

QWaitCondition

wakeOne()

void	QWaitCondition::wakeOne	()

QWaitCondition

wakeAll()

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QCheckTableItem
[]

QCheckTableItemQTable	 ……

#include	<qtable.h>

QTableItem

QCheckTableItem	(QTable	*	table,	const	QString	&	txt)
virtual	void	setChecked	(bool	b)
bool	isChecked	()	const
virtual	int	rtti	()	const

QCheckTableItemQTable

QCheckTableItemQCheckTableItem QTableQCheckTableItem
QCheckTableItem QCheckTableItem

QCheckTableItemWhenCurrent EditType

setText() setChecked() isChecked()

QTable::setItem()QCheckTableItem

rttiQCheckTableItem QTableItemQComboTableItem

rtti() EditTypeQComboTableItemQTableItem

QCheckTableItem::QCheckTableItem	(QTable	*	table,
const	QString	&	txt)

QCheckTableItem EditTypeWhenCurrent txt

bool	QCheckTableItem::isChecked	()	const

TRUEFALSE

setChecked()

int	QCheckTableItem::rtti	()	const	[virtual]

2

rtti()1000

QTableItem::rtti()

QTableItem

void	QCheckTableItem::setChecked	(bool	b)	[virtual]

bTRUE bFALSE

isChecked()

Copyright	©	2002	Trolltech Trademarks :farfareast Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QMimeSourceFactory	Class
Reference

The	QMimeSourceFactory	class	is	an	extensible	provider	of	mime-typed	data.
More...

#include	<qmime.h>

List	of	all	member	functions.

Public	Members

QMimeSourceFactory	()
virtual	~QMimeSourceFactory	()
virtual	const	QMimeSource	*	data	(const	QString	&	abs_name)	const
virtual	QString	makeAbsolute	(const	QString	&	abs_or_rel_name,
const	QString	&	context)	const
const	QMimeSource	*	data	(const	QString	&	abs_or_rel_name,
const	QString	&	context)	const
virtual	void	setText	(const	QString	&	abs_name,	const	QString	&	text)
virtual	void	setImage	(const	QString	&	abs_name,	const	QImage	&	image
)
virtual	void	setPixmap	(const	QString	&	abs_name,
const	QPixmap	&	pixmap)
virtual	void	setData	(const	QString	&	abs_name,	QMimeSource	*	data)
virtual	void	setFilePath	(const	QStringList	&	path)
virtual	QStringList	filePath	()	const
void	addFilePath	(const	QString	&	p)
virtual	void	setExtensionType	(const	QString	&	ext,
const	char	*	mimetype)

Static	Public	Members

QMimeSourceFactory	*	defaultFactory	()
void	setDefaultFactory	(QMimeSourceFactory	*	factory)
QMimeSourceFactory	*	takeDefaultFactory	()
void	addFactory	(QMimeSourceFactory	*	f)
void	removeFactory	(QMimeSourceFactory	*	f)

Detailed	Description

The	QMimeSourceFactory	class	is	an	extensible	provider	of	mime-typed	data.

A	QMimeSourceFactory	provides	an	abstract	interface	to	a	collection	of
information.	Each	piece	of	information	is	represented	by	a	QMimeSource	object
which	can	be	examined	and	converted	to	concrete	data	types	by	functions	such
as	QImageDrag::canDecode()	and	QImageDrag::decode().

The	base	QMimeSourceFactory	can	be	used	in	two	ways:	as	an	abstraction	of	a
collection	of	files	or	as	specifically	stored	data.	For	it	to	access	files,	call
setFilePath()	before	accessing	data.	For	stored	data,	call	setData()	for	each	item
(there	are	also	convenience	functions,	e.g.	setText(),	setImage()	and	setPixmap(),
that	simply	call	setData()	with	appropriate	parameters).

The	rich	text	widgets,	QTextEdit	and	QTextBrowser,	use	QMimeSourceFactory
to	resolve	references	such	as	images	or	links	within	rich	text	documents.	They
either	access	the	default	factory	(see	defaultFactory())	or	their	own	(see
QTextEdit::setMimeSourceFactory()).	Other	classes	that	are	capable	of
displaying	rich	text	(such	as	QLabel,	QWhatsThis	or	QMessageBox)	always	use
the	default	factory.

A	factory	can	also	be	used	as	a	container	to	store	data	associated	with	a	name.
This	technique	is	useful	whenever	rich	text	contains	images	that	are	stored	in	the
program	itself,	not	loaded	from	the	hard	disk.	Your	program	may,	for	example,
define	some	image	data	as:

				static	const	char*	myimage_data[]={

				"...",

				...

				"..."};

				

To	be	able	to	use	this	image	within	some	rich	text,	for	example	inside	a	QLabel,
you	must	create	a	QImage	from	the	raw	data	and	insert	it	into	the	factory	with	a
unique	name:

				QMimeSourceFactory::defaultFactory()->setImage("myimage",	QImage(myimage_data));

				

Now	you	can	create	a	rich	text	QLabel	with:

				QLabel*	label	=	new	QLabel(

								"Rich	text	with	embedded	image:"

								"Isn't	that	cute?");

				

See	also	Environment	Classes	and	Input/Output	and	Networking.

Member	Function	Documentation

QMimeSourceFactory::QMimeSourceFactory	()

Constructs	a	QMimeSourceFactory	that	has	no	file	path	and	no	stored	content.

QMimeSourceFactory::~QMimeSourceFactory	()	[virtual]

Destroys	the	QMimeSourceFactory,	deleting	all	stored	content.

void	QMimeSourceFactory::addFactory	(
QMimeSourceFactory	*	f)	[static]

Adds	the	QMimeSourceFactory	f	to	the	list	of	available	mimesource	factories.	If
the	defaultFactory()	can't	resolve	a	data()	it	iterates	over	the	list	of	installed
mimesource	factories	until	the	data	can	be	resolved.

See	also	removeFactory().

void	QMimeSourceFactory::addFilePath	(const	QString	&	p)

Adds	another	search	path,	p	to	the	existing	search	paths.

See	also	setFilePath().

const	QMimeSource	*	QMimeSourceFactory::data	(
const	QString	&	abs_name)	const	[virtual]

Returns	a	reference	to	the	data	associated	with	abs_name.	The	return	value
remains	valid	only	until	the	next	data()	or	setData()	call,	so	you	should
immediately	decode	the	result.

If	there	is	no	data	associated	with	abs_name	in	the	factory's	store,	the	factory
tries	to	access	the	local	filesystem.	If	abs_name	isn't	an	absolute	file	name,	the
factory	will	search	for	it	in	all	defined	paths	(see	setFilePath()).

The	factory	understands	all	the	image	formats	supported	by	QImageIO.	Any

other	mime	types	are	determined	by	the	file	name	extension.	The	default	settings
are

				setExtensionType("html",	"text/html;charset=iso8859-1");

				setExtensionType("htm",	"text/html;charset=iso8859-1");

				setExtensionType("txt",	"text/plain");

				setExtensionType("xml",	"text/xml;charset=UTF-8");

				

The	effect	of	these	is	that	file	names	ending	in	"html"	or	"htm"	will	be	treated	as
text	encoded	in	the	iso8859-1	encoding,	those	ending	in	"txt"	will	be	treated	as
text	encoded	in	the	local	encoding;	those	ending	in	"xml"	will	be	treated	as	text
encoded	in	Unicode	UTF-8	encoding.	The	text	subtype	("html",	"plain",	or
"xml")	does	not	affect	the	factory,	but	users	of	the	factory	may	behave
differently.	We	recommend	creating	"xml"	files	where	practical.	These	files	can
be	viewed	regardless	of	the	runtime	encoding	and	can	encode	any	Unicode
characters	without	resorting	to	encoding	definitions	inside	the	file.

Any	file	data	that	is	not	recognized	will	be	retrieved	as	a	QMimeSource
providing	the	"application/octet-stream"	mime	type,	meaning	uninterpreted
binary	data.

You	can	add	further	extensions	or	change	existing	ones	with	subsequent	calls	to
setExtensionType().	If	the	extension	mechanism	is	not	sufficient	for	your
problem	domain,	you	can	inherit	QMimeSourceFactory	and	reimplement	this
function	to	perform	some	more	specialized	mime-type	detection.	The	same
applies	if	you	want	to	use	the	mime	source	factory	to	access	URL	referenced
data	over	a	network.

const	QMimeSource	*	QMimeSourceFactory::data	(
const	QString	&	abs_or_rel_name,	const	QString	&	context)
const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

A	convenience	function.	See	data(const	QString&	abs_name).	The	file	name	is
given	in	abs_or_rel_name	and	the	path	is	in	context.

QMimeSourceFactory	*	QMimeSourceFactory::defaultFactory	()

[static]

Returns	the	application-wide	default	mime	source	factory.	This	factory	is	used
by	rich	text	rendering	classes	such	as	QSimpleRichText,	QWhatsThis	and
QMessageBox	to	resolve	named	references	within	rich	text	documents.	It	serves
also	as	the	initial	factory	for	the	more	complex	render	widgets,	QTextEdit	and
QTextBrowser.

See	also	setDefaultFactory().

Examples:	action/application.cpp	and	application/application.cpp.

QStringList	QMimeSourceFactory::filePath	()	const	[virtual]

Returns	the	currently	set	search	paths.

QString	QMimeSourceFactory::makeAbsolute	(
const	QString	&	abs_or_rel_name,	const	QString	&	context)
const	[virtual]

Converts	the	absolute	or	relative	data	item	name	abs_or_rel_name	to	an	absolute
name,	interpreted	within	the	context	(path)	of	the	data	item	named	context	(this
must	be	an	absolute	name).

void	QMimeSourceFactory::removeFactory	(
QMimeSourceFactory	*	f)	[static]

Removes	the	mimesource	factory	f	from	the	list	of	available	mimesource
factories.

See	also	addFactory().

void	QMimeSourceFactory::setData	(const	QString	&	abs_name,
QMimeSource	*	data)	[virtual]

Sets	data	to	be	the	data	item	associated	with	the	absolute	name	abs_name.

The	ownership	of	data	is	transferred	to	the	factory:	do	not	delete	or	access	the

pointer	after	passing	it	to	this	function.

void	QMimeSourceFactory::setDefaultFactory	(
QMimeSourceFactory	*	factory)	[static]

Sets	the	default	factory,	destroying	any	previously	set	mime	source	provider.
The	ownership	of	the	factory	is	transferred	to	Qt.

See	also	defaultFactory().

void	QMimeSourceFactory::setExtensionType	(
const	QString	&	ext,	const	char	*	mimetype)	[virtual]

Sets	the	mime-type	to	be	associated	with	the	file	name	extension,	ext	to
mimetype.	This	determines	the	mime-type	for	files	found	via	the	paths	set	by
setFilePath().

void	QMimeSourceFactory::setFilePath	(
const	QStringList	&	path)	[virtual]

Sets	the	list	of	directories	that	will	be	searched	when	named	data	is	requested	to
the	those	given	in	the	string	list	path.

See	also	filePath().

void	QMimeSourceFactory::setImage	(
const	QString	&	abs_name,	const	QImage	&	image)
[virtual]

Sets	image	to	be	the	data	item	associated	with	the	absolute	name	abs_name.

Equivalent	to	setData(abs_name,	new	QImageDrag(image)).

void	QMimeSourceFactory::setPixmap	(
const	QString	&	abs_name,	const	QPixmap	&	pixmap)
[virtual]

Sets	pixmap	to	be	the	data	item	associated	with	the	absolute	name	abs_name.

void	QMimeSourceFactory::setText	(const	QString	&	abs_name,
const	QString	&	text)	[virtual]

Sets	text	to	be	the	data	item	associated	with	the	absolute	name	abs_name.

Equivalent	to	setData(abs_name,	new	QTextDrag(text)).

QMimeSourceFactory	*
QMimeSourceFactory::takeDefaultFactory	()	[static]

Sets	the	defaultFactory()	to	0	and	returns	the	previous	one.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QSql
[sql]

QSqlQt	SQL	 ……

#include	<qsql.h>

QSql	()
enum	Op	{	None	=	-1,	Insert	=	0,	Update	=	1,	Delete	=	2	}
enum	Location	{	BeforeFirst	=	-1,	AfterLast	=	-2	}
enum	Confirm	{	Cancel	=	-1,	No	=	0,	Yes	=	1	}

QSqlQt	SQL

Qt	SQLQt	SQL

QSql::Confirm

QSql::Yes

QSql::No

QSql::Cancel

QSql::Location

SQL

QSql::BeforeFirst

QSql::AfterLast

QSql::Op

QSql::None

QSql::Insert

QSql::Update

QSql::Delete

QSql::QSql	()

Qt	SQL

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :tipy Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QWhatsThis
QWhatsThis“”	 ……

#include	<qwhatsthis.h>

Qt

QWhatsThis	(QWidget	*	widget)
virtual	~QWhatsThis	()
virtual	QString	text	(const	QPoint	&)
virtual	bool	clicked	(const	QString	&	href)

void	add	(QWidget	*	widget,	const	QString	&	text)
void	remove	(QWidget	*	widget)
QString	textFor	(QWidget	*	w,	const	QPoint	&	pos	=	QPoint	(),
bool	includeParents	=	FALSE)
QToolButton	*	whatsThisButton	(QWidget	*	parent)
void	enterWhatsThisMode	()
bool	inWhatsThisMode	()
void	leaveWhatsThisMode	(const	QString	&	text	=	QString::null,
const	QPoint	&	pos	=	QCursor::pos	(),	QWidget	*	w	=	0)
void	display	(const	QString	&	text,	const	QPoint	&	pos	=	QCursor::pos	(),
QWidget	*	w	=	0)

QWhatsThis“”

“”

QWhatsThis“”Shift+F1

Shift+F1

“” QWhatsThis::add()
QAccel::setWhatsThis() QAction::setWhatsThis()

								const	char	*	fileOpenText	=	"<p>	"

																									"Click	this	button	to	open	a	new	file.	
"

																									"You	can	also	select	the	Open	command	"

																									"from	the	File	menu.</p>";

								QMimeSourceFactory::defaultFactory()->setPixmap("fileopen",

																														fileOpenAction->iconSet().pixmap());

								fileOpenAction->setWhatsThis(fileOpenText);

QAction

“” QWhatsThis::whatsThisButton()“”
Esc

QMainWindowQMainWindow::whatsThis()

QWhatsThis

“” QWidget::customWhatsThis()

QWhatsThis::remove()

QToolTip

QWhatsThis::QWhatsThis	(QWidget	*	widget)

widget“”

QWhatsThis text() add()

QWhatsThis::~QWhatsThis	()	[]

void	QWhatsThis::add	(QWidget	*	widget,	const	QString	&	text
)	[]

widgettext“” QStyleSheet::defaultSheet()

remove()

application/application.cppmdi/application.cpp

bool	QWhatsThis::clicked	(const	QString	&	href)	[]

“” href QString::null

“”

href

void	QWhatsThis::display	(const	QString	&	text,
const	QPoint	&	pos	=	QCursor::pos	(),	QWidget	*	w	=	0)	[
]

postext

wQWhatsThis clicked()

QWhatsThis::clicked()

void	QWhatsThis::enterWhatsThisMode	()	[]

“”

Qt“”Qt

Esc“”

inWhatsThisMode()leaveWhatsThisMode()

bool	QWhatsThis::inWhatsThisMode	()	[]

“”

enterWhatsThisMode()leaveWhatsThisMode()

void	QWhatsThis::leaveWhatsThisMode	(const	QString	&	text	=
QString::null,	const	QPoint	&	pos	=	QCursor::pos	(),
QWidget	*	w	=	0)	[]

“”

QWidget::customWhatsThis()QPopupMenu“”

text“” pos wQWhatsThis clicked()

inWhatsThisMode() enterWhatsThisMode()QWhatsThis::clicked()

void	QWhatsThis::remove	(QWidget	*	widget)	[]

widget“”

add()

QString	QWhatsThis::text	(const	QPoint	&)	[]

“” p“” QString::null

QString::null

QString	QWhatsThis::textFor	(QWidget	*	w,	const	QPoint	&	pos
=	QPoint	(),	bool	includeParents	=	FALSE)	[]

w“” pos

includeParents

add()

QToolButton	*	QWhatsThis::whatsThisButton	(
QWidget	*	parent)	[]

“” QToolButtonparent

					(void)	QWhatsThis::whatsThisButton(my_help_tool_bar);

		

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QChildEvent	Class	Reference
The	QChildEvent	class	contains	event	parameters	for	child	object	events.	More...

#include	<qevent.h>

Inherits	QEvent.

List	of	all	member	functions.

Public	Members

QChildEvent	(Type	type,	QObject	*	child)
QObject	*	child	()	const
bool	inserted	()	const
bool	removed	()	const

Detailed	Description

The	QChildEvent	class	contains	event	parameters	for	child	object	events.

Child	events	are	sent	to	objects	when	children	are	inserted	or	removed.

A	ChildRemoved	event	is	sent	immediately,	but	a	ChildInserted	event	is	posted
(with	QApplication::postEvent()).

Note	that	if	a	child	is	removed	immediately	after	it	is	inserted,	the	ChildInserted
event	may	be	suppressed,	but	the	ChildRemoved	event	will	always	be	sent.	In
this	case	there	will	be	a	ChildRemoved	event	without	a	corresponding
ChildInserted	event.

The	handler	for	these	events	is	QObject::childEvent().

See	also	Event	Classes.

Member	Function	Documentation

QChildEvent::QChildEvent	(Type	type,	QObject	*	child)

Constructs	a	child	event	object.	The	child	is	the	object	that	is	to	be	removed	or
inserted.

The	type	parameter	must	be	either	QEvent::ChildInserted	or
QEvent::ChildRemoved.

QObject	*	QChildEvent::child	()	const

Returns	the	child	widget	that	was	inserted	or	removed.

bool	QChildEvent::inserted	()	const

Returns	TRUE	if	the	widget	received	a	new	child;	otherwise	returns	FALSE.

bool	QChildEvent::removed	()	const

Returns	TRUE	if	the	object	lost	a	child;	otherwise	returns	FALSE.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QMotifPlusStyle	Class	Reference
The	QMotifPlusStyle	class	provides	a	more	sophisticated	Motif-ish	look	and
feel.	More...

#include	<qmotifplusstyle.h>

Inherits	QMotifStyle.

List	of	all	member	functions.

Public	Members

QMotifPlusStyle	(bool	hoveringHighlight	=	TRUE)

Detailed	Description

The	QMotifPlusStyle	class	provides	a	more	sophisticated	Motif-ish	look	and
feel.

This	class	implements	a	Motif-ish	look	and	feel	with	more	sophisticated
bevelling	as	used	by	the	GIMP	Toolkit	(GTK+)	for	Unix/X11.

See	also	Widget	Appearance	and	Style.

Member	Function	Documentation

QMotifPlusStyle::QMotifPlusStyle	(bool	hoveringHighlight	=
TRUE)

Constructs	a	QMotifPlusStyle

If	hoveringHighlight	is	TRUE	(the	default),	then	the	style	will	not	highlight	push
buttons,	checkboxes,	radiobuttons,	comboboxes,	scrollbars	or	sliders.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QSqlCursor	Class	Reference
[sql	module]

The	QSqlCursor	class	provides	browsing	and	editing	of	SQL	tables	and	views.
More...

#include	<qsqlcursor.h>

Inherits	QSqlRecord	and	QSqlQuery.

List	of	all	member	functions.

Public	Members

QSqlCursor	(const	QString	&	name	=	QString::null,	bool	autopopulate	=
TRUE,	QSqlDatabase	*	db	=	0)
QSqlCursor	(const	QSqlCursor	&	other)
QSqlCursor	&	operator=	(const	QSqlCursor	&	other)
~QSqlCursor	()
enum	Mode	{	ReadOnly	=	0,	Insert	=	1,	Update	=	2,	Delete	=	4,	Writable	=
7	}
virtual	QSqlIndex	primaryIndex	(bool	setFromCursor	=	TRUE)	const
virtual	QSqlIndex	index	(const	QStringList	&	fieldNames)	const
QSqlIndex	index	(const	QString	&	fieldName)	const
QSqlIndex	index	(const	char	*	fieldName)	const
virtual	void	setPrimaryIndex	(const	QSqlIndex	&	idx)
virtual	void	append	(const	QSqlFieldInfo	&	fieldInfo)
virtual	void	insert	(int	pos,	const	QSqlFieldInfo	&	fieldInfo)
virtual	void	remove	(int	pos)
virtual	void	clear	()
virtual	void	setGenerated	(const	QString	&	name,	bool	generated)
virtual	void	setGenerated	(int	i,	bool	generated)
virtual	QSqlRecord	*	editBuffer	(bool	copy	=	FALSE)
virtual	QSqlRecord	*	primeInsert	()
virtual	QSqlRecord	*	primeUpdate	()
virtual	QSqlRecord	*	primeDelete	()
virtual	int	insert	(bool	invalidate	=	TRUE)
virtual	int	update	(bool	invalidate	=	TRUE)
virtual	int	del	(bool	invalidate	=	TRUE)
virtual	void	setMode	(int	mode)
int	mode	()	const
virtual	void	setCalculated	(const	QString	&	name,	bool	calculated)
bool	isCalculated	(const	QString	&	name)	const
virtual	void	setTrimmed	(const	QString	&	name,	bool	trim)
bool	isTrimmed	(const	QString	&	name)	const
bool	isReadOnly	()	const
bool	canInsert	()	const
bool	canUpdate	()	const
bool	canDelete	()	const

bool	select	()
bool	select	(const	QSqlIndex	&	sort)
bool	select	(const	QSqlIndex	&	filter,	const	QSqlIndex	&	sort)
virtual	bool	select	(const	QString	&	filter,	const	QSqlIndex	&	sort	=
QSqlIndex	())
virtual	void	setSort	(const	QSqlIndex	&	sort)
QSqlIndex	sort	()	const
virtual	void	setFilter	(const	QString	&	filter)
QString	filter	()	const
virtual	void	setName	(const	QString	&	name,	bool	autopopulate	=	TRUE)
QString	name	()	const

Protected	Members

virtual	QVariant	calculateField	(const	QString	&	name)
virtual	int	update	(const	QString	&	filter,	bool	invalidate	=	TRUE)
virtual	int	del	(const	QString	&	filter,	bool	invalidate	=	TRUE)
virtual	QString	toString	(const	QString	&	prefix,	QSqlField	*	field,
const	QString	&	fieldSep)	const
virtual	QString	toString	(QSqlRecord	*	rec,	const	QString	&	prefix,
const	QString	&	fieldSep,	const	QString	&	sep)	const
virtual	QString	toString	(const	QSqlIndex	&	i,	QSqlRecord	*	rec,
const	QString	&	prefix,	const	QString	&	fieldSep,	const	QString	&	sep)
const

Detailed	Description

The	QSqlCursor	class	provides	browsing	and	editing	of	SQL	tables	and	views.

A	QSqlCursor	is	a	database	record	(see	QSqlRecord)	that	corresponds	to	a	table
or	view	within	an	SQL	database	(see	QSqlDatabase).	There	are	two	buffers	in	a
cursor,	one	used	for	browsing	and	one	used	for	editing	records.	Each	buffer
contains	a	list	of	fields	which	correspond	to	the	fields	in	the	table	or	view.

When	positioned	on	a	valid	record,	the	browse	buffer	contains	the	values	of	the
current	record's	fields	from	the	database.	The	edit	buffer	is	separate,	and	is	used
for	editing	existing	records	and	inserting	new	records.

For	browsing	data,	a	cursor	must	first	select()	data	from	the	database.	After	a
successful	select()	the	cursor	is	active	(isActive()	returns	TRUE),	but	is	initially
not	positioned	on	a	valid	record	(isValid()	returns	FALSE).	To	position	the
cursor	on	a	valid	record,	use	one	of	the	navigation	functions,	next(),	prev(),
first(),	last(),	or	seek().	Once	positioned	on	a	valid	record,	data	can	be	retrieved
from	the	browse	buffer	using	value().	If	a	navigation	function	is	not	successful,	it
returns	FALSE,	the	cursor	will	no	longer	be	positioned	on	a	valid	record	and	the
values	returned	by	value()	are	undefined.

For	example:

												QSqlCursor	cur("staff");	//	Specify	the	table/view	name

												cur.select();	//	We'll	retrieve	every	record

												while	(cur.next())	{

																qDebug(cur.value("id").toString()	+	":	"	+

																								cur.value("surname").toString()	+	"	"	+

																								cur.value("salary").toString());

												}

In	the	above	example,	a	cursor	is	created	specifying	a	table	or	view	name	in	the
database.	Then,	select()	is	called,	which	can	be	optionally	parameterised	to	filter
and	order	the	records	retrieved.	Each	record	in	the	cursor	is	retrieved	using
next().	When	next()	returns	FALSE,	there	are	no	more	records	to	process,	and
the	loop	terminates.

For	editing	records	(rows	of	data),	a	cursor	contains	a	separate	edit	buffer	which
is	independent	of	the	fields	used	when	browsing.	The	functions	insert(),	update()

and	del()	operate	on	the	edit	buffer.	This	allows	the	cursor	to	be	repositioned	to
other	records	while	simultaneously	maintaining	a	separate	buffer	for	edits.	You
can	get	a	pointer	to	the	edit	buffer	using	editBuffer().	The	primeInsert(),
primeUpdate()	and	primeDelete()	functions	also	return	a	pointer	to	the	edit
buffer	and	prepare	it	for	insert,	update	and	delete	respectively.	Edit	operations
only	affect	a	single	row	at	a	time.	Note	that	update()	and	del()	require	that	the
table	or	view	contain	a	primaryIndex()	to	ensure	that	edit	operations	affect	a
unique	record	within	the	database.

For	example:

												QSqlCursor	cur("prices");

												cur.select("id=202");

												if	(cur.next())	{

																QSqlRecord	*buffer	=	cur.primeUpdate();

																double	price	=	buffer->value("price").toDouble();

																double	newprice	=	price	*	1.05;

																buffer->setValue("price",	newprice);

																cur.update();

												}

To	edit	an	existing	database	record,	first	move	to	the	record	you	wish	to	update.
Call	primeUpdate()	to	get	the	pointer	to	the	cursor's	edit	buffer.	Then	use	this
pointer	to	modify	the	values	in	the	edit	buffer.	Finally,	call	update()	to	save	the
changes	to	the	database.	The	values	in	the	edit	buffer	will	be	used	to	locate	the
appropriate	record	when	updating	the	database	(see	primaryIndex()).

Similarly,	when	deleting	an	existing	database	record,	first	move	to	the	record
you	wish	to	delete.	Then,	call	primeDelete()	to	get	the	pointer	to	the	edit	buffer.
Finally,	call	del()	to	delete	the	record	from	the	database.	Again,	the	values	in	the
edit	buffer	will	be	used	to	locate	and	delete	the	appropriate	record.

To	insert	a	new	record,	call	primeInsert()	to	get	the	pointer	to	the	edit	buffer.	Use
this	pointer	to	populate	the	edit	buffer	with	new	values	and	then	insert()	the
record	into	the	database.

After	calling	insert(),	update()	or	del(),	the	cursor	is	no	longer	positioned	on	a
valid	record	and	can	no	longer	be	navigated	(isValid()	return	FALSE).	The
reason	for	this	is	that	any	changes	made	to	the	database	will	not	be	visible	until
select()	is	called	to	refresh	the	cursor.	You	can	change	this	behavior	by	passing
FALSE	to	insert(),	update()	or	del()	which	will	prevent	the	cursor	from

becoming	invalid.	These	edits	will	then	not	be	visible	when	navigating	the
cursor	until	select()	is	called.

QSqlCursor	contains	virtual	methods	which	allow	editing	behavior	to	be
customized	by	subclasses.	This	allows	custom	cursors	to	be	created	which
encapsulate	the	editing	behavior	of	a	database	table	for	an	entire	application.	For
example,	a	cursor	can	be	customized	to	always	auto-number	primary	index
fields,	or	provide	fields	with	suitable	default	values,	when	inserting	new	records.

Note	that	QSqlCursor	does	not	inherit	from	QObject.	This	means	that	you	are
responsible	for	destroying	instances	of	this	class	yourself.	However	if	you	create
a	QSqlCursor	and	use	it	in	a	QDataTable,	QDataBrowser	or	a	QDataView	these
classes	will	usually	take	ownership	of	the	cursor	and	destroy	it	when	they	don't
need	it	anymore.	The	documentation	for	QDataTable,	QDataBrowser	and
QDataView	explicitly	states	which	calls	take	ownership	of	the	cursor.

See	also	Database	Classes.

Member	Type	Documentation

QSqlCursor::Mode

This	enum	type	describes	how	QSqlCursor	operates	on	records	in	the	database.

The	currently	defined	values	are:

QSqlCursor::ReadOnly	-	the	cursor	can	only	SELECT	records	from	the
database.
QSqlCursor::Insert	-	the	cursor	can	INSERT	records	into	the	database.
QSqlCursor::Update	-	the	cursor	can	UPDATE	records	in	the	database.
QSqlCursor::Delete	-	the	cursor	can	DELETE	records	from	the	database.
QSqlCursor::Writable	-	the	cursor	can	INSERT,	UPDATE	and	DELETE
records	in	the	database.

Member	Function	Documentation

QSqlCursor::QSqlCursor	(const	QString	&	name	=
QString::null,	bool	autopopulate	=	TRUE,	QSqlDatabase	*	db
=	0)

Constructs	a	cursor	on	database	db	using	table	or	view	name.

If	autopopulate	is	TRUE	(the	default),	the	name	of	the	cursor	must	correspond	to
an	existing	table	or	view	name	in	the	database	so	that	field	information	can	be
automatically	created.	If	the	table	or	view	does	not	exist,	the	cursor	will	not	be
functional.

The	cursor	is	created	with	an	initial	mode	of	QSqlCursor::Writable	(meaning
that	records	can	be	inserted,	updated	or	deleted	using	the	cursor).	If	the	cursor
does	not	have	a	unique	primary	index,	update	and	deletes	cannot	be	performed.

Note	that	autopopulate	refers	to	populating	the	cursor	with	meta-data,	e.g.	the
names	of	the	table's	fields,	not	with	retrieving	data.	The	select()	function	is	used
to	populate	the	cursor	with	data.

See	also	setName()	and	setMode().

QSqlCursor::QSqlCursor	(const	QSqlCursor	&	other)

Constructs	a	copy	of	other.

QSqlCursor::~QSqlCursor	()

Destroys	the	object	and	frees	any	allocated	resources.

void	QSqlCursor::append	(const	QSqlFieldInfo	&	fieldInfo)
[virtual]

Append	a	copy	of	field	fieldInfo	to	the	end	of	the	cursor.	Note	that	all	references
to	the	cursor	edit	buffer	become	invalidated.

QVariant	QSqlCursor::calculateField	(const	QString	&	name)
[virtual	protected]

Protected	virtual	function	which	is	called	whenever	a	field	needs	to	be
calculated.	If	calculated	fields	are	being	used,	derived	classes	must	reimplement
this	function	and	return	the	appropriate	value	for	field	name.	The	default
implementation	returns	an	invalid	QVariant.

See	also	setCalculated().

Examples:	sql/overview/subclass3/main.cpp	and
sql/overview/subclass4/main.cpp.

bool	QSqlCursor::canDelete	()	const

Returns	TRUE	if	the	cursor	will	perform	deletes,	FALSE	otherwise.

See	also	setMode().

bool	QSqlCursor::canInsert	()	const

Returns	TRUE	if	the	cursor	will	perform	inserts,	FALSE	otherwise.

See	also	setMode().

bool	QSqlCursor::canUpdate	()	const

Returns	TRUE	if	the	cursor	will	perform	updates,	FALSE	otherwise.

See	also	setMode().

void	QSqlCursor::clear	()	[virtual]

Removes	all	fields	from	the	cursor.	Note	that	all	references	to	the	cursor	edit
buffer	become	invalidated.

Reimplemented	from	QSqlRecord.

int	QSqlCursor::del	(bool	invalidate	=	TRUE)	[virtual]

Deletes	a	record	from	the	database	using	the	cursor's	primary	index	and	the
contents	of	the	cursor	edit	buffer.	Returns	the	number	of	records	which	were
deleted,	or	0	if	there	was	an	error.	For	error	information,	use	lastError().

Only	records	which	meet	the	filter	criteria	specified	by	the	cursor's	primary
index	are	deleted.	If	the	cursor	does	not	contain	a	primary	index,	no	delete	is
performed	and	0	is	returned.	If	invalidate	is	TRUE	(the	default),	the	current
cursor	can	no	longer	be	navigated.	A	new	select()	call	must	be	made	before	you
can	move	to	a	valid	record.	For	example:

												QSqlCursor	cur("prices");

												cur.select("id=999");

												if	(cur.next())	{

																cur.primeDelete();

																cur.del();

												}

In	the	above	example,	a	cursor	is	created	on	the	'prices'	table	and	positioned	to
the	record	to	be	deleted.	First	primeDelete()	is	called	to	populate	the	edit	buffer
with	the	current	cursor	values,	e.g.	with	an	id	of	999,	and	then	del()	is	called	to
actually	delete	the	record	from	the	database.	Remember:	all	edit	operations
(insert(),	update()	and	delete())	operate	on	the	contents	of	the	cursor	edit	buffer
and	not	on	the	contents	of	the	cursor	itself.

See	also	primeDelete(),	setMode()	and	lastError().

Example:	sql/overview/del/main.cpp.

int	QSqlCursor::del	(const	QString	&	filter,	bool	invalidate	=
TRUE)	[virtual	protected]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Deletes	the	current	cursor	record	from	the	database	using	the	filter	filter.	Only
records	which	meet	the	filter	criteria	are	deleted.	Returns	the	number	of	records
which	were	deleted.	If	invalidate	is	TRUE	(the	default),	the	current	cursor	can
no	longer	be	navigated.	A	new	select()	call	must	be	made	before	you	can	move
to	a	valid	record.	For	error	information,	use	lastError().

The	filter	is	an	SQL	WHERE	clause,	e.g.	id=500.

See	also	setMode()	and	lastError().

QSqlRecord	*	QSqlCursor::editBuffer	(bool	copy	=	FALSE)
[virtual]

Returns	a	pointer	to	the	current	internal	edit	buffer.	If	copy	is	TRUE	(the	default
is	FALSE),	the	current	cursor	field	values	are	first	copied	into	the	edit	buffer.
The	edit	buffer	is	valid	as	long	as	the	cursor	remains	valid.	The	cursor	retains
ownership	of	the	returned	pointer,	so	it	must	not	be	deleted	or	modified.

See	also	primeInsert(),	primeUpdate()	and	primeDelete().

QString	QSqlCursor::filter	()	const

Returns	the	current	filter,	or	an	empty	string	if	there	is	no	current	filter.

QSqlIndex	QSqlCursor::index	(const	QStringList	&	fieldNames)
const	[virtual]

Returns	an	index	composed	of	fieldNames,	all	in	ASCending	order.	Note	that	all
field	names	must	exist	in	the	cursor,	otherwise	an	empty	index	is	returned.

See	also	QSqlIndex.

Examples:	sql/overview/extract/main.cpp,	sql/overview/order1/main.cpp,
sql/overview/order2/main.cpp	and	sql/overview/table3/main.cpp.

QSqlIndex	QSqlCursor::index	(const	QString	&	fieldName)
const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	an	index	based	on	fieldName.

QSqlIndex	QSqlCursor::index	(const	char	*	fieldName)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves

essentially	like	the	above	function.

Returns	an	index	based	on	fieldName.

void	QSqlCursor::insert	(int	pos,	const	QSqlFieldInfo	&	fieldInfo
)	[virtual]

Insert	a	copy	of	fieldInfo	at	position	pos.	If	a	field	already	exists	at	pos,	it	is
removed.	Note	that	all	references	to	the	cursor	edit	buffer	become	invalidated.

Examples:	sql/overview/insert/main.cpp	and	sql/overview/insert2/main.cpp.

int	QSqlCursor::insert	(bool	invalidate	=	TRUE)	[virtual]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	the	current	contents	of	the	cursor's	edit	record	buffer	into	the	database,	if
the	cursor	allows	inserts.	Returns	the	number	of	rows	affected	by	the	insert.	For
error	information,	use	lastError().

If	invalidate	is	TRUE	(the	default),	the	cursor	will	no	longer	be	positioned	on	a
valid	record	and	can	no	longer	be	navigated.	A	new	select()	call	must	be	made
before	navigating	to	a	valid	record.

												QSqlCursor	cur("prices");

												QSqlRecord	*buffer	=	cur.primeInsert();

												buffer->setValue("id",				53981);

												buffer->setValue("name",		"Thingy");

												buffer->setValue("price",	105.75);

												cur.insert();

In	the	above	example,	a	cursor	is	created	on	the	'prices'	table	and	a	pointer	to	the
insert	buffer	is	aquired	using	primeInsert().	Each	field's	value	is	set	to	the	desired
value	and	then	insert()	is	called	to	insert	the	data	into	the	database.	Remember:
all	edit	operations	(insert(),	update()	and	delete())	operate	on	the	contents	of	the
cursor	edit	buffer	and	not	on	the	contents	of	the	cursor	itself.

See	also	setMode()	and	lastError().

bool	QSqlCursor::isCalculated	(const	QString	&	name)	const

Returns	TRUE	if	the	field	name	is	calculated,	otherwise	FALSE	is	returned.	If
the	field	name	does	not	exist,	FALSE	is	returned.

See	also	setCalculated().

bool	QSqlCursor::isReadOnly	()	const

Returns	TRUE	if	the	cursor	is	read-only,	FALSE	otherwise.	The	default	is
FALSE.	Read-only	cursors	cannot	be	edited	using	insert(),	update()	or	del().

See	also	setMode().

bool	QSqlCursor::isTrimmed	(const	QString	&	name)	const

Returns	TRUE	if	the	field	name	is	trimmed,	otherwise	FALSE	is	returned.	If	the
field	name	does	not	exist,	FALSE	is	returned.

When	a	trimmed	field	of	type	string	or	cstring	is	read	from	the	database	any
trailing	(right-most)	spaces	are	removed.

See	also	setTrimmed().

int	QSqlCursor::mode	()	const

Returns	the	current	cursor	mode.

See	also	setMode().

QString	QSqlCursor::name	()	const

Returns	the	name	of	the	cursor.

QSqlCursor	&	QSqlCursor::operator=	(
const	QSqlCursor	&	other)

Sets	the	cursor	equal	to	other.

QSqlIndex	QSqlCursor::primaryIndex	(bool	setFromCursor	=
TRUE)	const	[virtual]

Returns	the	primary	index	associated	with	the	cursor	as	defined	in	the	database,
or	an	empty	index	if	there	is	no	primary	index.	If	setFromCursor	is	TRUE	(the
default),	the	index	fields	are	populated	with	the	corresponding	values	in	the
cursor's	current	record.

QSqlRecord	*	QSqlCursor::primeDelete	()	[virtual]

'Primes'	the	field	values	of	the	edit	buffer	for	delete	and	returns	a	pointer	to	the
edit	buffer.	The	default	implementation	copies	the	field	values	from	the	current
cursor	record	into	the	edit	buffer	(therefore,	this	function	is	equivalent	to	calling
editBuffer(TRUE)).	The	cursor	retains	ownership	of	the	returned	pointer,	so	it
must	not	be	deleted	or	modified.

See	also	editBuffer()	and	del().

Example:	sql/overview/del/main.cpp.

QSqlRecord	*	QSqlCursor::primeInsert	()	[virtual]

'Primes'	the	field	values	of	the	edit	buffer	for	insert	and	returns	a	pointer	to	the
edit	buffer.	The	default	implementation	clears	all	field	values	in	the	edit	buffer.
The	cursor	retains	ownership	of	the	returned	pointer,	so	it	must	not	be	deleted	or
modified.

See	also	editBuffer()	and	insert().

Examples:	sql/overview/insert/main.cpp,	sql/overview/insert2/main.cpp,
sql/overview/subclass5/main.cpp	and	sql/sqltable/main.cpp.

QSqlRecord	*	QSqlCursor::primeUpdate	()	[virtual]

'Primes'	the	field	values	of	the	edit	buffer	for	update	and	returns	a	pointer	to	the
edit	buffer.	The	default	implementation	copies	the	field	values	from	the	current
cursor	record	into	the	edit	buffer	(therefore,	this	function	is	equivalent	to	calling
editBuffer(TRUE)).	The	cursor	retains	ownership	of	the	returned	pointer,	so	it

must	not	be	deleted	or	modified.

See	also	editBuffer()	and	update().

Examples:	sql/overview/custom1/main.cpp,	sql/overview/form1/main.cpp	and
sql/overview/update/main.cpp.

void	QSqlCursor::remove	(int	pos)	[virtual]

Removes	the	field	at	pos.	If	pos	does	not	exist,	nothing	happens.	Note	that	all
references	to	the	cursor	edit	buffer	become	invalidated.

Reimplemented	from	QSqlRecord.

bool	QSqlCursor::select	(const	QString	&	filter,
const	QSqlIndex	&	sort	=	QSqlIndex	())	[virtual]

Selects	all	fields	in	the	cursor	from	the	database	matching	the	filter	criteria	filter.
The	data	is	returned	in	the	order	specified	by	the	index	sort.	Returns	TRUE	if	the
data	was	successfully	selected,	otherwise	FALSE	is	returned.

The	filter	is	a	string	containing	an	SQL	WHERE	clause	but	without	the	'WHERE'
keyword.	The	cursor	is	initially	positioned	at	an	invalid	row	after	this	function	is
called.	To	move	to	a	valid	row,	use	seek(),	first(),	last(),	prev()	or	next().

Example:

		QSqlCursor	cur("Employee");	//	Use	the	Employee	table	or	view

		cur.select("deptno=10");	//	select	all	records	in	department	10

		while(cur.next())	{

						...	//	process	data

		}

		...

		//	select	records	in	other	departments,	ordered	by	department	number

		cur.select("deptno>10",	cur.index("deptno"));

		...

		

The	filter	will	apply	to	any	subsequent	select()	calls	that	do	not	explicitly	specify
another	filter.	Similarly	the	sort	will	apply	to	any	subsequent	select()	calls	that
do	not	explicitly	specify	another	sort.

		QSqlCursor	cur("Employee");

		cur.select("deptno=10");	//	select	all	records	in	department	10

		while(cur.next())	{

						...	//	process	data

		}

		...

		cur.select();	//	re-selects	all	records	in	department	10

		...

		

Examples:	sql/overview/del/main.cpp,	sql/overview/extract/main.cpp,
sql/overview/order1/main.cpp,	sql/overview/order2/main.cpp,
sql/overview/retrieve2/main.cpp,	sql/overview/table3/main.cpp	and
sql/overview/update/main.cpp.

bool	QSqlCursor::select	()

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Selects	all	fields	in	the	cursor	from	the	database.	The	rows	are	returned	in	the
order	specified	by	the	last	call	to	setSort()	or	the	last	call	to	select()	that	specified
a	sort,	whichever	is	the	most	recent.	If	there	is	no	current	sort,	the	order	in	which
the	rows	are	returned	is	undefined.	The	records	are	filtered	according	to	the	filter
specified	by	the	last	call	to	setFilter()	or	the	last	call	to	select()	that	specified	a
filter,	whichever	is	the	most	recent.	If	there	is	no	current	filter,	all	records	are
returned.	The	cursor	is	initially	positioned	at	an	invalid	row.	To	move	to	a	valid
row,	use	seek(),	first(),	last(),	prev()	or	next().

See	also	setSort()	and	setFilter().

bool	QSqlCursor::select	(const	QSqlIndex	&	sort)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Selects	all	fields	in	the	cursor	from	the	database.	The	data	is	returned	in	the	order
specified	by	the	index	sort.	The	records	are	filtered	according	to	the	filter
specified	by	the	last	call	to	setFilter()	or	the	last	call	to	select()	that	specified	a
filter,	whichever	is	the	most	recent.	The	cursor	is	initially	positioned	at	an
invalid	row.	To	move	to	a	valid	row,	use	seek(),	first(),	last(),	prev()	or	next().

bool	QSqlCursor::select	(const	QSqlIndex	&	filter,
const	QSqlIndex	&	sort)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Selects	all	fields	in	the	cursor	matching	the	filter	index	filter.	The	data	is
returned	in	the	order	specified	by	the	index	sort.	The	filter	index	works	by
constructing	a	WHERE	clause	using	the	names	of	the	fields	from	the	filter	and
their	values	from	the	current	cursor	record.	The	cursor	is	initially	positioned	at
an	invalid	row.	To	move	to	a	valid	row,	use	seek(),	first(),	last(),	prev()	or	next().
This	function	is	useful,	for	example,	for	retrieving	data	based	upon	a	table's
primary	index:

		QSqlCursor	cur("Employee");

		QSqlIndex	pk	=	cur.primaryIndex();

		cur.setValue("id",	10);

		cur.select(pk,	pk);	//	generates	"SELECT	...	FROM	Employee	WHERE	id=10	ORDER	BY	id"

		...

		

In	this	example	the	QSqlIndex,	pk,	is	used	for	two	different	purposes.	When
used	as	the	filter	(first)	argument,	the	field	names	it	contains	are	used	to
construct	the	WHERE	clause,	each	set	to	the	current	cursor	value,	WHERE	id=10,
in	this	case.	When	used	as	the	sort	(second)	argument	the	field	names	it	contains
are	used	for	the	ORDER	BY	clause,	ORDER	BY	id	in	this	example.

void	QSqlCursor::setCalculated	(const	QString	&	name,
bool	calculated)	[virtual]

Sets	field	name	to	calculated.	If	the	field	name	does	not	exist,	nothing	happens.
The	value	of	a	calculated	field	is	set	by	the	calculateField()	virtual	function
which	you	must	reimplement	otherwise	the	field	value	will	become	an	invalid
QVariant.	Calculated	fields	do	not	appear	in	generated	SQL	statements	sent	to
the	database.

See	also	calculateField()	and	QSqlRecord::setGenerated().

void	QSqlCursor::setFilter	(const	QString	&	filter)	[virtual]

Sets	the	current	filter	to	filter.	Note	that	no	new	records	are	selected.	To	select
new	records,	use	select().	The	filter	will	apply	to	any	subsequent	select()	calls
that	do	not	explicitly	specify	a	filter.

The	filter	is	an	SQL	WHERE	clause	without	the	keyword	'WHERE',	e.g.
name='Dave'.

void	QSqlCursor::setGenerated	(const	QString	&	name,
bool	generated)	[virtual]

Sets	the	generated	flag	for	the	field	name	to	generated.	If	the	field	does	not	exist,
nothing	happens.	Only	fields	that	have	generated	set	to	TRUE	are	included	in
the	SQL	that	is	generated.

See	also	isGenerated().

Reimplemented	from	QSqlRecord.

void	QSqlCursor::setGenerated	(int	i,	bool	generated)	[virtual]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Sets	the	generated	flag	for	the	field	i	to	generated.

See	also	isGenerated().

Reimplemented	from	QSqlRecord.

void	QSqlCursor::setMode	(int	mode)	[virtual]

Sets	the	cursor	mode	to	mode.	This	value	can	be	an	OR'ed	combination	of
QSqlCursor::Mode	values.	The	default	mode	for	a	cursor	is
QSqlCursor::Writable.

		QSqlCursor	cur("Employee");

		cur.setMode(QSqlCursor::Writable);	//	allow	insert/update/delete

		...

		cur.setMode(QSqlCursor::Insert	|	QSqlCursor::Update);	//	allow	inserts	and	updates	only

		...

		cur.setMode(QSqlCursor::ReadOnly);	//	no	inserts/updates/deletes	allowed

		

void	QSqlCursor::setName	(const	QString	&	name,
bool	autopopulate	=	TRUE)	[virtual]

Sets	the	name	of	the	cursor	to	name.	If	autopopulate	is	TRUE	(the	default),	the
name	must	correspond	to	a	valid	table	or	view	name	in	the	database.	Also,	note
that	all	references	to	the	cursor	edit	buffer	become	invalidated	when	fields	are
auto-populated.	See	the	QSqlCursor	constructor	documentation	for	more
information.

void	QSqlCursor::setPrimaryIndex	(const	QSqlIndex	&	idx)
[virtual]

Sets	the	primary	index	associated	with	the	cursor	to	the	index	idx.	Note	that	this
index	must	contain	a	field	or	set	of	fields	which	identify	a	unique	record	within
the	underlying	database	table	or	view	so	that	update()	and	del()	will	execute	as
expected.

See	also	update()	and	del().

void	QSqlCursor::setSort	(const	QSqlIndex	&	sort)	[virtual]

Sets	the	current	sort	to	sort.	Note	that	no	new	records	are	selected.	To	select	new
records,	use	select().	The	sort	will	apply	to	any	subsequent	select()	calls	that	do
not	explicitly	specify	a	sort.

void	QSqlCursor::setTrimmed	(const	QString	&	name,	bool	trim
)	[virtual]

Sets	field	name	to	trim.	If	the	field	name	does	not	exist,	nothing	happens.

When	a	trimmed	field	of	type	string	or	cstring	is	read	from	the	database	any
trailing	(right-most)	spaces	are	removed.

See	QVariant.

See	also	isTrimmed().

QSqlIndex	QSqlCursor::sort	()	const

Returns	the	current	sort,	or	an	empty	index	if	there	is	no	current	sort.

QString	QSqlCursor::toString	(QSqlRecord	*	rec,
const	QString	&	prefix,	const	QString	&	fieldSep,
const	QString	&	sep)	const	[virtual	protected]

Returns	a	formatted	string	composed	of	all	the	fields	in	rec.	Each	field	is
composed	of	the	prefix	(e.g.	table	or	view	name),	".",	the	field	name,	the	fieldSep
and	the	field	value.	If	the	prefix	is	empty	then	the	field	will	begin	with	the	field
name.	The	fields	are	then	joined	together	separated	by	sep.	Fields	where
isGenerated()	returns	FALSE	are	not	included.	This	function	is	useful	for
generating	SQL	statements.

QString	QSqlCursor::toString	(const	QString	&	prefix,
QSqlField	*	field,	const	QString	&	fieldSep)	const	[virtual
protected]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	a	formatted	string	composed	of	the	prefix	(e.g.	table	or	view	name),	".",
the	field	name,	the	fieldSep	and	the	field	value.	If	the	prefix	is	empty	then	the
string	will	begin	with	the	field	name.	This	function	is	useful	for	generating	SQL
statements.

QString	QSqlCursor::toString	(const	QSqlIndex	&	i,
QSqlRecord	*	rec,	const	QString	&	prefix,
const	QString	&	fieldSep,	const	QString	&	sep)	const
[virtual	protected]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	a	formatted	string	composed	of	all	the	fields	in	the	index	i.	Each	field	is

composed	of	the	prefix	(e.g.	table	or	view	name),	".",	the	field	name,	the	fieldSep
and	the	field	value.	If	the	prefix	is	empty	then	the	field	will	begin	with	the	field
name.	The	field	values	are	taken	from	rec.	The	fields	are	then	joined	together
separated	by	sep.	Fields	where	isGenerated()	returns	FALSE	are	ignored.	This
function	is	useful	for	generating	SQL	statements.

int	QSqlCursor::update	(bool	invalidate	=	TRUE)	[virtual]

Updates	the	database	with	the	current	contents	of	the	edit	buffer.	Returns	the
number	of	records	which	were	updated,	or	0	if	there	was	an	error.	For	error
information,	use	lastError().

Only	records	which	meet	the	filter	criteria	specified	by	the	cursor's	primary
index	are	updated.	If	the	cursor	does	not	contain	a	primary	index,	no	update	is
performed	and	0	is	returned.

If	invalidate	is	TRUE	(the	default),	the	current	cursor	can	no	longer	be
navigated.	A	new	select()	call	must	be	made	before	you	can	move	to	a	valid
record.	For	example:

												QSqlCursor	cur("prices");

												cur.select("id=202");

												if	(cur.next())	{

																QSqlRecord	*buffer	=	cur.primeUpdate();

																double	price	=	buffer->value("price").toDouble();

																double	newprice	=	price	*	1.05;

																buffer->setValue("price",	newprice);

																cur.update();

												}

In	the	above	example,	a	cursor	is	created	on	the	'prices'	table	and	is	positioned
on	the	record	to	be	update	updated.	A	pointer	is	then	aquired	to	the	cursor's	edit
buffer	using	primeUpdate().	A	new	value	is	calculated	and	placed	into	the	edit
buffer	with	the	setValue()	call.	Finally,	an	update()	call	is	made	on	the	cursor
which	uses	the	tables's	primary	index	to	update	the	record	in	the	database	with
the	contents	of	the	cursor's	edit	buffer.	Remember:	all	edit	operations	(insert(),
update()	and	delete())	operate	on	the	contents	of	the	cursor	edit	buffer	and	not	on
the	contents	of	the	cursor	itself.

Note	that	if	the	primary	index	does	not	uniquely	distinguish	records	the	database
may	be	changed	into	an	inconsistent	state.

See	also	setMode()	and	lastError().

Example:	sql/overview/update/main.cpp.

int	QSqlCursor::update	(const	QString	&	filter,	bool	invalidate	=
TRUE)	[virtual	protected]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Updates	the	database	with	the	current	contents	of	the	cursor	edit	buffer	using	the
specified	filter.	Returns	the	number	of	records	which	were	updated,	or	0	if	there
was	an	error.	For	error	information,	use	lastError().

Only	records	which	meet	the	filter	criteria	are	updated,	otherwise	all	records	in
the	table	are	updated.

If	invalidate	is	TRUE	(the	default),	the	cursor	can	no	longer	be	navigated.	A	new
select()	call	must	be	made	before	you	can	move	to	a	valid	record.

See	also	primeUpdate(),	setMode()	and	lastError().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QWheelEvent	Class	Reference
The	QWheelEvent	class	contains	parameters	that	describe	a	wheel	event.	More...

#include	<qevent.h>

Inherits	QEvent.

List	of	all	member	functions.

Public	Members

QWheelEvent	(const	QPoint	&	pos,	int	delta,	int	state,	Orientation	orient
=	Vertical)
QWheelEvent	(const	QPoint	&	pos,	const	QPoint	&	globalPos,	int	delta,
int	state,	Orientation	orient	=	Vertical)
int	delta	()	const
const	QPoint	&	pos	()	const
const	QPoint	&	globalPos	()	const
int	x	()	const
int	y	()	const
int	globalX	()	const
int	globalY	()	const
ButtonState	state	()	const
Orientation	orientation	()	const
bool	isAccepted	()	const
void	accept	()
void	ignore	()

Detailed	Description

The	QWheelEvent	class	contains	parameters	that	describe	a	wheel	event.

Wheel	events	occur	when	a	mouse	wheel	is	turned	while	the	widget	has	focus.
The	rotation	distance	is	provided	by	delta().	The	functions	pos()	and	globalPos()
return	the	mouse	pointer	location	at	the	time	of	the	event.

A	wheel	event	contains	a	special	accept	flag	that	indicates	whether	the	receiver
wants	the	event.	You	should	call	QWheelEvent::accept()	if	you	handle	the	wheel
event;	otherwise	it	will	be	sent	to	the	parent	widget.

The	QWidget::setEnable()	function	can	be	used	to	enable	or	disable	mouse	and
keyboard	events	for	a	widget.

The	event	handler	QWidget::wheelEvent()	receives	wheel	events.

See	also	QMouseEvent,	QWidget::grabMouse()	and	Event	Classes.

Member	Function	Documentation

QWheelEvent::QWheelEvent	(const	QPoint	&	pos,	int	delta,
int	state,	Orientation	orient	=	Vertical)

Constructs	a	wheel	event	object.

The	globalPos()	is	initialized	to	QCursor::pos(),	i.e.	pos,	which	is	usually	(but
not	always)	right.	Use	the	other	constructor	if	you	need	to	specify	the	global
position	explicitly.	delta	contains	the	rotation	distance,	state	holds	the	keyboard
modifier	flags	at	the	time	of	the	event	and	orient	holds	the	wheel's	orientation.

See	also	pos(),	delta()	and	state().

QWheelEvent::QWheelEvent	(const	QPoint	&	pos,
const	QPoint	&	globalPos,	int	delta,	int	state,
Orientation	orient	=	Vertical)

Constructs	a	wheel	event	object.	The	position	when	the	event	occurred	is	given
in	pos	and	globalPos.	delta	contains	the	rotation	distance,	state	holds	the
keyboard	modifier	flags	at	the	time	of	the	event	and	orient	holds	the	wheel's
orientation.

See	also	pos(),	globalPos(),	delta()	and	state().

void	QWheelEvent::accept	()

Sets	the	accept	flag	of	the	wheel	event	object.

Setting	the	accept	parameter	indicates	that	the	receiver	of	the	event	wants	the
wheel	event.	Unwanted	wheel	events	are	sent	to	the	parent	widget.

The	accept	flag	is	set	by	default.

See	also	ignore().

int	QWheelEvent::delta	()	const

Returns	the	distance	that	the	wheel	is	rotated	expressed	in	multiples	or	divisions
of	WHEEL_DELTA,	which	is	currently	set	at	120.	A	positive	value	indicates	that	the
wheel	was	rotated	forwards	away	from	the	user;	a	negative	value	indicates	that
the	wheel	was	rotated	backwards	toward	the	user.

The	WHEEL_DELTA	constant	was	set	to	120	by	the	wheel	mouse	vendors	to	allow
building	finer-resolution	wheels	in	the	future,	including	perhaps	a	freely	rotating
wheel	with	no	notches.	The	expectation	is	that	such	a	device	would	send	more
messages	per	rotation	but	with	a	smaller	value	in	each	message.

const	QPoint	&	QWheelEvent::globalPos	()	const

Returns	the	global	position	of	the	mouse	pointer	at	the	time	of	the	event.	This	is
important	on	asynchronous	window	systems	such	as	X11;	whenever	you	move
your	widgets	around	in	response	to	mouse	events,	globalPos()	can	differ	a	lot
from	the	current	pointer	position	QCursor::pos().

See	also	globalX()	and	globalY().

int	QWheelEvent::globalX	()	const

Returns	the	global	x-position	of	the	mouse	pointer	at	the	time	of	the	event.

See	also	globalY()	and	globalPos().

int	QWheelEvent::globalY	()	const

Returns	the	global	y-position	of	the	mouse	pointer	at	the	time	of	the	event.

See	also	globalX()	and	globalPos().

void	QWheelEvent::ignore	()

Clears	the	accept	flag	parameter	of	the	wheel	event	object.

Clearing	the	accept	parameter	indicates	that	the	event	receiver	does	not	want	the
wheel	event.	Unwanted	wheel	events	are	sent	to	the	parent	widget.	The	accept
flag	is	set	by	default.

See	also	accept().

bool	QWheelEvent::isAccepted	()	const

Returns	TRUE	if	the	receiver	of	the	event	handles	the	wheel	event;	otherwise
returns	FALSE.

Orientation	QWheelEvent::orientation	()	const

Returns	the	wheel's	orientation.

const	QPoint	&	QWheelEvent::pos	()	const

Returns	the	position	of	the	mouse	pointer,	relative	to	the	widget	that	received	the
event.

If	you	move	your	widgets	around	in	response	to	mouse	events,	use	globalPos()
instead	of	this	function.

See	also	x(),	y()	and	globalPos().

ButtonState	QWheelEvent::state	()	const

Returns	the	keyboard	modifier	flags	of	the	event.

The	returned	value	is	ShiftButton,	ControlButton,	and	AltButton	OR'ed	together.

int	QWheelEvent::x	()	const

Returns	the	x-position	of	the	mouse	pointer,	relative	to	the	widget	that	received
the	event.

See	also	y()	and	pos().

int	QWheelEvent::y	()	const

Returns	the	y-position	of	the	mouse	pointer,	relative	to	the	widget	that	received
the	event.

See	also	x()	and	pos().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QClipboard
QClipboard	 ……

#include	<qclipboard.h>

QObject

void	clear	()
bool	supportsSelection	()	const
bool	ownsSelection	()	const
bool	ownsClipboard	()	const
void	setSelectionMode	(bool	enable)
bool	selectionModeEnabled	()	const
QMimeSource	*	data	()	const
void	setData	(QMimeSource	*	src)
QString	text	()	const
QString	text	(QCString	&	subtype)	const
void	setText	(const	QString	&	text)
QImage	image	()	const
QPixmap	pixmap	()	const
void	setImage	(const	QImage	&	image)
void	setPixmap	(const	QPixmap	&	pixmap)

void	selectionChanged	()
void	dataChanged	()

QClipboard

QClipboard QDragObject

QClipboard QApplication::clipboard()

				QClipboard	*cb	=	QApplication::clipboard();

				QString	text;

	 //	

				text	=	cb->text();

				if	(text)

								qDebug("The	clipboard	contains:	%s",	text);

	 //	

				cb->setText("This	text	can	be	pasted	by	other	programs");

				

QClipboard setText()Unicode
QImage setData() QMimeSource text() image()pixmap()

clear()

XWindowsX——WindowsXX11Windows
multiclip

/

void	QClipboard::clear	()

QMimeSource	*	QClipboard::data	()	const

QMimeSource

void	QClipboard::dataChanged	()	[]

QImage	QClipboard::image	()	const

setImage() pixmap() data()QImage::isNull()

bool	QClipboard::ownsClipboard	()	const

bool	QClipboard::ownsSelection	()	const

QPixmap	QClipboard::pixmap	()	const

2488alpha

setPixmap() image() data()QPixmap::convertFromImage()

void	QClipboard::selectionChanged	()	[]

X11Windows

bool	QClipboard::selectionModeEnabled	()	const

setSelectionMode()supportsSelection()

void	QClipboard::setData	(QMimeSource	*	src)

src clear()setData()

QDragObject QDragObject::drag()QDragObject0 QDragMoveEvent
QDropEvent

setText()setPixmap()

void	QClipboard::setImage	(const	QImage	&	image)

image

								setData(new	QImageDrag(image))

				

image() setPixmap()setData()

void	QClipboard::setPixmap	(const	QPixmap	&	pixmap)

pixmap setImage() QPixmapQImage

pixmap() setImage()setData()

void	QClipboard::setSelectionMode	(bool	enable)

enable QClipboard::setData()

supportsSelection()selectionModeEnabled()

void	QClipboard::setText	(const	QString	&	text)

text

text()setData()

bool	QClipboard::supportsSelection	()	const

QString	QClipboard::text	(QCString	&	subtype)	const

subtype subtype subtype

subtype“plain”“html”

setText() data()QString::operator!()

QString	QClipboard::text	()	const

setText() data()QString::operator!()

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QFtp
[]

QFtpFTP	 ……

#include	<qftp.h>

QNetworkProtocol

QFtp	()
virtual	~QFtp	()

void	parseDir	(const	QString	&	buffer,	QUrlInfo	&	info)

void	readyRead	()
void	dataConnected	()
void	dataClosed	()
void	dataReadyRead	()
void	dataBytesWritten	(int	nbytes)

QFtpFTP

QNetworkProtocolQFtp QUrlOperator

		QUrlOperator	op("ftp://ftp.trolltech.com");

		op.listChildren();	//	

		

QFtpQFtpQUrlOperator

QFtp setUrl()QUrlOperator

QtQNetworkProtocolQUrlOperator/

QFtp::QFtp	()

QFtp

QFtp::~QFtp	()	[]

void	QFtp::dataBytesWritten	(int	nbytes)	[]

nbytes

void	QFtp::dataClosed	()	[]

void	QFtp::dataConnected	()	[]

void	QFtp::dataReadyRead	()	[]

void	QFtp::parseDir	(const	QString	&	buffer,	QUrlInfo	&	info)
[]

bufferFTP,	url info

void	QFtp::readyRead	()	[]

Qt		©	1995-2002	 Trolltech

http://www.trolltech.com/

Copyright	©	2002	Trolltech Trademarks : Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QMotifStyle	Class	Reference
The	QMotifStyle	class	provides	Motif	look	and	feel.	More...

#include	<qmotifstyle.h>

Inherits	QCommonStyle.

Inherited	by	QCDEStyle,	QMotifPlusStyle	and	QSGIStyle.

List	of	all	member	functions.

Public	Members

QMotifStyle	(bool	useHighlightCols	=	FALSE)
void	setUseHighlightColors	(bool	arg)
bool	useHighlightColors	()	const

Detailed	Description

The	QMotifStyle	class	provides	Motif	look	and	feel.

This	class	implements	the	Motif	look	and	feel.	It	closely	resembles	the	original
Motif	look	as	defined	by	the	Open	Group,	with	the	addition	of	some	minor
improvements.	The	Motif	style	is	Qt's	default	GUI	style	on	UNIX	platforms.

See	also	Widget	Appearance	and	Style.

Member	Function	Documentation

QMotifStyle::QMotifStyle	(bool	useHighlightCols	=	FALSE)

Constructs	a	QMotifStyle.

If	useHighlightCols	is	FALSE	(the	default),	the	style	will	polish	the	application's
color	palette	to	emulate	the	Motif	way	of	highlighting,	which	is	a	simple
inversion	between	the	base	and	the	text	color.

void	QMotifStyle::setUseHighlightColors	(bool	arg)

If	arg	is	FALSE,	the	style	will	polish	the	application's	color	palette	to	emulate
the	Motif	way	of	highlighting,	which	is	a	simple	inversion	between	the	base	and
the	text	color.

The	effect	will	show	up	the	next	time	an	application	palette	is	set	via
QApplication::setPalette().	The	current	color	palette	of	the	application	remains
unchanged.

See	also	QStyle::polish().

bool	QMotifStyle::useHighlightColors	()	const

Returns	TRUE	if	the	style	treats	the	highlight	colors	of	the	palette	in	a	Motif-like
manner,	which	is	a	simple	inversion	between	the	base	and	the	text	color;
otherwise	returns	FALSE.	The	default	is	FALSE.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QSqlDatabase	Class	Reference
[sql	module]

The	QSqlDatabase	class	is	used	to	create	SQL	database	connections	and	provide
transaction	handling.	More...

#include	<qsqldatabase.h>

Inherits	QObject.

List	of	all	member	functions.

Public	Members

~QSqlDatabase	()
bool	open	()
bool	open	(const	QString	&	user,	const	QString	&	password)
void	close	()
bool	isOpen	()	const
bool	isOpenError	()	const
QStringList	tables	()	const
QSqlIndex	primaryIndex	(const	QString	&	tablename)	const
QSqlRecord	record	(const	QString	&	tablename)	const
QSqlRecord	record	(const	QSqlQuery	&	query)	const
QSqlRecordInfo	recordInfo	(const	QString	&	tablename)	const
QSqlRecordInfo	recordInfo	(const	QSqlQuery	&	query)	const
QSqlQuery	exec	(const	QString	&	query	=	QString::null)	const
QSqlError	lastError	()	const
bool	transaction	()
bool	commit	()
bool	rollback	()
virtual	void	setDatabaseName	(const	QString	&	name)
virtual	void	setUserName	(const	QString	&	name)
virtual	void	setPassword	(const	QString	&	password)
virtual	void	setHostName	(const	QString	&	host)
virtual	void	setPort	(int	p)
QString	databaseName	()	const
QString	userName	()	const
QString	password	()	const
QString	hostName	()	const
QString	driverName	()	const
int	port	()	const
QSqlDriver	*	driver	()	const

Static	Public	Members

QSqlDatabase	*	addDatabase	(const	QString	&	type,
const	QString	&	connectionName	=	defaultConnection)
QSqlDatabase	*	database	(const	QString	&	connectionName	=
defaultConnection,	bool	open	=	TRUE)
void	removeDatabase	(const	QString	&	connectionName)
bool	contains	(const	QString	&	connectionName	=	defaultConnection)
QStringList	drivers	()

Properties

QString	databaseName	-	the	name	of	the	database.	Note	that	the	database
name	is	the	TNS	Service	Name	for	the	QOCI8	(Oracle)	driver,	and	the	Data
Source	Name	for	the	QODBC3	driver
QString	hostName	-	the	host	name	where	the	database	resides
QString	password	-	the	password	used	to	connect	to	the	database
int	port	-	the	port	used	to	connect	to	the	database
QString	userName	-	the	user	name	connected	to	the	database

Protected	Members

QSqlDatabase	(const	QString	&	driver,	const	QString	&	name,
QObject	*	parent	=	0,	const	char	*	objname	=	0)

Detailed	Description

The	QSqlDatabase	class	is	used	to	create	SQL	database	connections	and	provide
transaction	handling.

This	class	is	used	to	create	connections	to	SQL	databases.	It	also	provides
transaction	handling	functions	for	those	database	drivers	that	support
transactions.

The	QSqlDatabase	class	itself	provides	an	abstract	interface	for	accessing	many
types	of	database	backend.	Database-specific	drivers	are	used	internally	to
actually	access	and	manipulate	data,	(see	QSqlDriver).	Result	set	objects	provide
the	interface	for	executing	and	manipulating	SQL	queries	(see	QSqlQuery).

See	also	Database	Classes.

Member	Function	Documentation

QSqlDatabase::QSqlDatabase	(const	QString	&	driver,
const	QString	&	name,	QObject	*	parent	=	0,
const	char	*	objname	=	0)	[protected]

Creates	a	QSqlDatabase	connection	named	name	that	uses	the	driver	referred	to
by	driver,	with	the	parent	parent	and	the	object	name	objname.	If	the	driver	is
not	recognized,	the	database	connection	will	have	no	functionality.

The	currently	available	drivers	are:

QODBC3	-	ODBC	(Open	Database	Connectivity)	Driver
QOCI8	-	Oracle	Call	Interface	Driver
QPSQL7	-	PostgreSQL	v6.x	and	v7.x	Driver
QTDS7	-	Sybase	Adaptive	Server	and	Microsoft	SQL	Server	Driver
QMYSQL3	-	MySQL	Driver

Note	that	additional	3rd	party	drivers	can	be	loaded	dynamically.

QSqlDatabase::~QSqlDatabase	()

Destroys	the	object	and	frees	any	allocated	resources.

QSqlDatabase	*	QSqlDatabase::addDatabase	(
const	QString	&	type,	const	QString	&	connectionName	=
defaultConnection)	[static]

Adds	a	database	to	the	list	of	database	connections	using	the	driver	type	and	the
connection	name	connectionName.

The	database	connection	is	referred	to	by	connectionName.	A	pointer	to	the
newly	added	database	connection	is	returned.	This	pointer	is	owned	by
QSqlDatabase	and	will	be	deleted	on	program	exit	or	when	removeDatabase()	is
called.	If	connectionName	is	not	specified,	the	newly	added	database	connection
becomes	the	default	database	connection	for	the	application,	and	subsequent

calls	to	database()	(without	a	database	name	parameter)	will	return	a	pointer	to
it.

See	also	database()	and	removeDatabase().

Examples:	sql/overview/connect1/main.cpp,
sql/overview/create_connections/main.cpp	and	sql/sqltable/main.cpp.

void	QSqlDatabase::close	()

Closes	the	database	connection,	freeing	any	resources	acquired.

bool	QSqlDatabase::commit	()

Commits	a	transaction	to	the	database	if	the	driver	supports	transactions.	Returns
TRUE	if	the	operation	succeeded,	FALSE	otherwise.

See	also	QSqlDriver::hasFeature()	and	rollback().

bool	QSqlDatabase::contains	(const	QString	&	connectionName
=	defaultConnection)	[static]

Returns	TRUE	if	the	list	of	database	connections	contains	connectionName,
otherwise	returns	FALSE.

QSqlDatabase	*	QSqlDatabase::database	(
const	QString	&	connectionName	=	defaultConnection,
bool	open	=	TRUE)	[static]

Returns	a	pointer	to	the	database	connection	named	connectionName.	The
database	connection	must	have	been	previously	added	with	database().	If	open	is
TRUE	(the	default)	and	the	database	connection	is	not	already	open	it	is	opened
now.	If	no	connectionName	is	specified	the	default	connection	is	used.	If
connectionName	does	not	exist	in	the	list	of	databases,	0	is	returned.	The	pointer
returned	is	owned	by	QSqlDatabase	and	should	not	be	deleted.

Examples:	sql/overview/basicbrowsing/main.cpp	and
sql/overview/create_connections/main.cpp.

QString	QSqlDatabase::databaseName	()	const

Returns	the	name	of	the	database.	Note	that	the	database	name	is	the	TNS
Service	Name	for	the	QOCI8	(Oracle)	driver,	and	the	Data	Source	Name	for	the
QODBC3	driver.	See	the	"databaseName"	property	for	details.

QSqlDriver	*	QSqlDatabase::driver	()	const

Returns	a	pointer	to	the	database	driver	used	to	access	the	database	connection.

QString	QSqlDatabase::driverName	()	const

Returns	the	name	of	the	driver	used	by	the	database	connection.

QStringList	QSqlDatabase::drivers	()	[static]

Returns	a	list	of	all	available	database	drivers.

Note	that	if	you	want	to	iterate	over	the	list,	you	should	iterate	over	a	copy,	e.g.

				QStringList	list	=	myDatabase.drivers();

				QStringList::Iterator	it	=	list.begin();

				while(it	!=	list.end())	{

								myProcessing(*it);

								++it;

				}

				

QSqlQuery	QSqlDatabase::exec	(const	QString	&	query	=
QString::null)	const

Executes	an	SQL	statement	(e.g.	an	INSERT,	UPDATE	or	DELETE	statement)
on	the	database,	and	returns	a	QSqlQuery	object.	Use	lastError()	to	retrieve	error
information.	If	query	is	QString::null,	an	empty,	invalid	query	is	returned	and
lastError()	is	not	affected.

See	also	QSqlQuery	and	lastError().

QString	QSqlDatabase::hostName	()	const

Returns	the	host	name	where	the	database	resides.	See	the	"hostName"	property
for	details.

bool	QSqlDatabase::isOpen	()	const

Returns	TRUE	if	the	database	connection	is	currently	open,	otherwise	returns
FALSE.

bool	QSqlDatabase::isOpenError	()	const

Returns	TRUE	if	there	was	an	error	opening	the	database	connection,	otherwise
returns	FALSE.	Error	information	can	be	retrieved	using	the	lastError()	function.

QSqlError	QSqlDatabase::lastError	()	const

Returns	information	about	the	last	error	that	occurred	on	the	database.	See
QSqlError	for	more	information.

Examples:	sql/overview/create_connections/main.cpp	and	sql/sqltable/main.cpp.

bool	QSqlDatabase::open	()

Opens	the	database	connection	using	the	current	connection	values.	Returns
TRUE	on	success,	and	FALSE	if	there	was	an	error.	Error	information	can	be
retrieved	using	the	lastError()	function.

See	also	lastError().

Examples:	sql/overview/connect1/main.cpp,
sql/overview/create_connections/main.cpp	and	sql/sqltable/main.cpp.

bool	QSqlDatabase::open	(const	QString	&	user,
const	QString	&	password)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Opens	the	database	connection	using	user	name	and	password.	Returns	TRUE

on	success,	and	FALSE	if	there	was	an	error.	Error	information	can	be	retrieved
using	the	lastError()	function.

See	also	lastError().

QString	QSqlDatabase::password	()	const

Returns	the	password	used	to	connect	to	the	database.	See	the	"password"
property	for	details.

int	QSqlDatabase::port	()	const

Returns	the	port	used	to	connect	to	the	database.	See	the	"port"	property	for
details.

QSqlIndex	QSqlDatabase::primaryIndex	(
const	QString	&	tablename)	const

Returns	the	primary	index	for	table	tablename.	If	no	primary	index	exists	an
empty	QSqlIndex	will	be	returned.

QSqlRecord	QSqlDatabase::record	(const	QString	&	tablename)
const

Returns	a	QSqlRecord	populated	with	the	names	of	all	the	fields	in	the	table	(or
view)	named	tablename.	The	order	in	which	the	fields	are	returned	is	undefined.
If	no	such	table	(or	view)	exists,	an	empty	record	is	returned.

See	also	recordInfo().

QSqlRecord	QSqlDatabase::record	(const	QSqlQuery	&	query)
const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	a	QSqlRecord	populated	with	the	names	of	all	the	fields	used	in	the	SQL
query.	If	the	query	is	a	"SELECT	*"	the	order	in	which	fields	are	returned	is

undefined.

See	also	recordInfo().

QSqlRecordInfo	QSqlDatabase::recordInfo	(
const	QString	&	tablename)	const

Returns	a	QSqlRecordInfo	populated	with	meta-data	about	the	table	(or	view)
tablename.	If	no	such	table	(or	view)	exists,	an	empty	record	is	returned.

See	also	QSqlRecordInfo,	QSqlFieldInfo	and	record().

QSqlRecordInfo	QSqlDatabase::recordInfo	(
const	QSqlQuery	&	query)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	a	QSqlRecordInfo	object	with	meta	data	for	the	QSqlQuery	query.	Note
that	this	overloaded	function	may	return	not	as	much	information	as	the
recordInfo	function	which	takes	the	name	of	a	table	as	parameter.

See	also	QSqlRecordInfo,	QSqlFieldInfo	and	record().

void	QSqlDatabase::removeDatabase	(
const	QString	&	connectionName)	[static]

Removes	the	database	connection	connectionName	from	the	list	of	database
connections.	Note	that	there	should	be	no	open	queries	on	the	database
connection	when	this	function	is	called,	otherwise	a	resource	leak	will	occur.

bool	QSqlDatabase::rollback	()

Rolls	a	transaction	back	on	the	database	if	the	driver	supports	transactions.
Returns	TRUE	if	the	operation	succeeded,	FALSE	otherwise.

See	also	QSqlDriver::hasFeature(),	commit()	and	transaction().

void	QSqlDatabase::setDatabaseName	(const	QString	&	name)
[virtual]

Sets	the	name	of	the	database.	Note	that	the	database	name	is	the	TNS	Service
Name	for	the	QOCI8	(Oracle)	driver,	and	the	Data	Source	Name	for	the
QODBC3	driver	to	name.	See	the	"databaseName"	property	for	details.

void	QSqlDatabase::setHostName	(const	QString	&	host)
[virtual]

Sets	the	host	name	where	the	database	resides	to	host.	See	the	"hostName"
property	for	details.

void	QSqlDatabase::setPassword	(const	QString	&	password)
[virtual]

Sets	the	password	used	to	connect	to	the	database	to	password.	See	the
"password"	property	for	details.

void	QSqlDatabase::setPort	(int	p)	[virtual]

Sets	the	port	used	to	connect	to	the	database	to	p.	See	the	"port"	property	for
details.

void	QSqlDatabase::setUserName	(const	QString	&	name)
[virtual]

Sets	the	user	name	connected	to	the	database	to	name.	See	the	"userName"
property	for	details.

QStringList	QSqlDatabase::tables	()	const

Returns	a	list	of	tables	in	the	database.

Note	that	if	you	want	to	iterate	over	the	list,	you	should	iterate	over	a	copy,	e.g.

				QStringList	list	=	myDatabase.tables();

				QStringList::Iterator	it	=	list.begin();

				while(it	!=	list.end())	{

								myProcessing(*it);

								++it;

				}

				

bool	QSqlDatabase::transaction	()

Begins	a	transaction	on	the	database	if	the	driver	supports	transactions.	Returns
TRUE	if	the	operation	succeeded,	FALSE	otherwise.

See	also	QSqlDriver::hasFeature(),	commit()	and	rollback().

QString	QSqlDatabase::userName	()	const

Returns	the	user	name	connected	to	the	database.	See	the	"userName"	property
for	details.

Property	Documentation

QString	databaseName

This	property	holds	the	name	of	the	database.	Note	that	the	database	name	is	the
TNS	Service	Name	for	the	QOCI8	(Oracle)	driver,	and	the	Data	Source	Name
for	the	QODBC3	driver.

There	is	no	default	value.

Set	this	property's	value	with	setDatabaseName()	and	get	this	property's	value
with	databaseName().

QString	hostName

This	property	holds	the	host	name	where	the	database	resides.

There	is	no	default	value.

Set	this	property's	value	with	setHostName()	and	get	this	property's	value	with
hostName().

QString	password

This	property	holds	the	password	used	to	connect	to	the	database.

There	is	no	default	value.

Set	this	property's	value	with	setPassword()	and	get	this	property's	value	with
password().

int	port

This	property	holds	the	port	used	to	connect	to	the	database.

There	is	no	default	value.

Set	this	property's	value	with	setPort()	and	get	this	property's	value	with	port().

QString	userName

This	property	holds	the	user	name	connected	to	the	database.

There	is	no	default	value.

Set	this	property's	value	with	setUserName()	and	get	this	property's	value	with
userName().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QCloseEvent	Class	Reference
The	QCloseEvent	class	contains	parameters	that	describe	a	close	event.	More...

#include	<qevent.h>

Inherits	QEvent.

List	of	all	member	functions.

Public	Members

QCloseEvent	()
bool	isAccepted	()	const
void	accept	()
void	ignore	()

Detailed	Description

The	QCloseEvent	class	contains	parameters	that	describe	a	close	event.

Close	events	are	sent	to	widgets	that	the	user	wants	to	close,	usually	by	choosing
"Close"	from	the	window	menu,	or	by	clicking	the	`X'	titlebar	button.	They	are
also	sent	when	you	call	QWidget::close()	to	close	a	widget	programmatically.

Close	events	contain	a	flag	that	indicates	whether	the	receiver	wants	the	widget
to	be	closed	or	not.	When	a	widget	accepts	the	close	event,	it	is	hidden	(and
destroyed	if	it	was	created	with	the	WDestructiveClose	flag).	If	it	refuses	to
accept	the	close	event	nothing	happens.	(Under	X11	it	is	possible	that	the
window	manager	will	forcibly	close	the	window;	but	at	the	time	of	writing	we
are	not	aware	of	any	window	manager	that	does	this.)

The	application's	main	widget	--	QApplication::mainWidget()	--	is	a	special
case.	When	it	accepts	the	close	event,	Qt	leaves	the	main	event	loop	and	the
application	is	immediately	terminated	(i.e.	it	returns	from	the	call	to
QApplication::exec()	in	the	main()	function).

The	event	handler	QWidget::closeEvent()	receives	close	events.	The	default
implementation	of	this	event	handler	accepts	the	close	event.	If	you	do	not	want
your	widget	to	be	hidden,	or	want	some	special	handing,	you	should
reimplement	the	event	handler.

The	closeEvent()	in	the	Application	Walkthrough	shows	a	close	event	handler
that	asks	whether	to	save	a	document	before	closing.

If	you	want	the	widget	to	be	deleted	when	it	is	closed,	create	it	with	the
WDestructiveClose	widget	flag.	This	is	very	useful	for	independent	top-level
windows	in	a	multi-window	application.

QObjects	emits	the	destroyed()	signal	when	they	are	deleted.

If	the	last	top-level	window	is	closed,	the	QApplication::lastWindowClosed()
signal	is	emitted.

The	isAccepted()	function	returns	TRUE	if	the	event's	receiver	has	agreed	to

close	the	widget;	call	accept()	to	agree	to	close	the	widget	and	call	ignore()	if	the
receiver	of	this	event	does	not	want	the	widget	to	be	closed.

See	also	QWidget::close(),	QWidget::hide(),	QObject::destroyed(),
QApplication::setMainWidget(),	QApplication::lastWindowClosed(),
QApplication::exec(),	QApplication::quit()	and	Event	Classes.

Member	Function	Documentation

QCloseEvent::QCloseEvent	()

Constructs	a	close	event	object	with	the	accept	parameter	flag	set	to	FALSE.

See	also	accept().

void	QCloseEvent::accept	()

Sets	the	accept	flag	of	the	close	event	object.

Setting	the	accept	flag	indicates	that	the	receiver	of	this	event	agrees	to	close	the
widget.

The	accept	flag	is	not	set	by	default.

If	you	choose	to	accept	in	QWidget::closeEvent(),	the	widget	will	be	hidden.	If
the	widget's	WDestructiveClose	flag	is	set,	it	will	also	be	destroyed.

See	also	ignore()	and	QWidget::hide().

Examples:	action/application.cpp,	application/application.cpp,	popup/popup.cpp
and	qwerty/qwerty.cpp.

void	QCloseEvent::ignore	()

Clears	the	accept	flag	of	the	close	event	object.

Clearing	the	accept	flag	indicates	that	the	receiver	of	this	event	does	not	want	the
widget	to	be	closed.

The	close	event	is	constructed	with	the	accept	flag	cleared.

See	also	accept().

Examples:	action/application.cpp,	application/application.cpp	and
qwerty/qwerty.cpp.

bool	QCloseEvent::isAccepted	()	const

Returns	TRUE	if	the	receiver	of	the	event	has	agreed	to	close	the	widget;
otherwise	returns	FALSE.

See	also	accept()	and	ignore().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QGb18030Codec	Class	Reference
The	QGb18030Codec	class	provides	conversion	to	and	from	the	Chinese
GB18030/GBK/GB2312	encoding.	More...

#include	<qgb18030codec.h>

Inherits	QTextCodec.

Inherited	by	QGbkCodec.

List	of	all	member	functions.

Detailed	Description

The	QGb18030Codec	class	provides	conversion	to	and	from	the	Chinese
GB18030/GBK/GB2312	encoding.

GBK,	formally	the	Chinese	Internal	Code	Specification,	is	a	commonly	used
extension	of	GB	2312-80.	Microsoft	Windows	uses	it	under	the	name	codepage
936.

GBK	has	been	superceded	by	the	new	Chinese	national	standard	GB	18030-
2000,	which	added	a	4-byte	encoding	while	remaining	compatible	with	GB2312
and	GBK.	The	new	GB18030-2000	may	be	described	as	a	special	encoding	of
Unicode	3.x	and	ISO-10646-1.

Special	thanks	to	charset	gurus	Markus	Scherer	(IBM),	Dirk	Meyer	(Adobe
Systems)	and	Ken	Lunde	(Adobe	Systems)	for	publishing	an	excellent	GB
18030-200	summary	and	specification	on	the	Internet.	Some	must-read
documents	are:

ftp://ftp.oreilly.com/pub/examples/nutshell/cjkv/pdf/GB18030_Summary.pdf
http://oss.software.ibm.com/cvs/icu/~checkout~/charset/source/gb18030/gb18030.html
http://oss.software.ibm.com/cvs/icu/~checkout~/charset/data/xml/gb-
18030-2000.xml

The	GBK	codec	was	contributed	to	Qt	by	Justin	Yu
<justiny@turbolinux.com.cn>	and	Sean	Chen	<seanc@turbolinux.com.cn>.
They	may	also	be	reached	at	Yu	Mingjian	<yumj@sun.ihep.ac.cn>,
<yumingjian@china.com>	Chen	Xiangyang	<chenxy@sun.ihep.ac.cn>

The	GB18030	codec	Qt	functions	were	contributed	to	Qt	by	James	Su
<suzhe@gnuchina.org>,	<suzhe@turbolinux.com.cn>	who	pioneered	much	of
GB18030	development	on	GNU/Linux	systems.

The	GB18030	codec	was	contributed	to	Qt	by	Anthony	Fok
<anthony@thizlinux.com>,	<foka@debian.org>	using	a	Perl	script	to	generate
C++	tables	from	gb-18030-2000.xml	while	merging	contributions	from	James
Su,	Justin	Yu	and	Sean	Chen.	A	copy	of	the	source	Perl	script	is	available	at:

ftp://ftp.oreilly.com/pub/examples/nutshell/cjkv/pdf/GB18030_Summary.pdf
http://oss.software.ibm.com/cvs/icu/~checkout~/charset/source/gb18030/gb18030.html
http://oss.software.ibm.com/cvs/icu/~checkout~/charset/data/xml/gb-18030-2000.xml

http://people.debian.org/~foka/gb18030/gen-qgb18030codec.pl

The	copyright	notice	for	their	code	follows:

Copyright	(C)	2000	TurboLinux,	Inc.	Written	by	Justin	Yu	and	Sean	Chen.
Copyright	(C)	2001	Turbolinux,	Inc.	Written	by	James	Su.	Copyright	(C)	2001
ThizLinux	Laboratory	Ltd.	Written	by	Anthony	Fok.

Redistribution	and	use	in	source	and	binary	forms,	with	or	without	modification,
are	permitted	provided	that	the	following	conditions	are	met:

1.	 Redistributions	of	source	code	must	retain	the	above	copyright	notice,	this
list	of	conditions	and	the	following	disclaimer.

2.	 Redistributions	in	binary	form	must	reproduce	the	above	copyright	notice,
this	list	of	conditions	and	the	following	disclaimer	in	the	documentation
and/or	other	materials	provided	with	the	distribution.

THIS	SOFTWARE	IS	PROVIDED	BY	THE	AUTHOR	AND
CONTRIBUTORS	``AS	IS''	AND	ANY	EXPRESS	OR	IMPLIED
WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE	IMPLIED
WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A
PARTICULAR	PURPOSE	ARE	DISCLAIMED.	IN	NO	EVENT	SHALL	THE
REGENTS	OR	CONTRIBUTORS	BE	LIABLE	FOR	ANY	DIRECT,
INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL
DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,	PROCUREMENT	OF
SUBSTITUTE	GOODS	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;
OR	BUSINESS	INTERRUPTION)	HOWEVER	CAUSED	AND	ON	ANY
THEORY	OF	LIABILITY,	WHETHER	IN	CONTRACT,	STRICT	LIABILITY,
OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN
ANY	WAY	OUT	OF	THE	USE	OF	THIS	SOFTWARE,	EVEN	IF	ADVISED
OF	THE	POSSIBILITY	OF	SUCH	DAMAGE.

See	also	Internationalization	with	Qt.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://people.debian.org/~foka/gb18030/gen-qgb18030codec.pl
http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QSqlDriver	Class	Reference
[sql	module]

The	QSqlDriver	class	is	an	abstract	base	class	for	accessing	SQL	databases.
More...

#include	<qsqldriver.h>

Inherits	QObject.

List	of	all	member	functions.

Public	Members

enum	DriverFeature	{	Transactions,	QuerySize,	BLOB	}
QSqlDriver	(QObject	*	parent	=	0,	const	char	*	name	=	0)
~QSqlDriver	()
bool	isOpen	()	const
bool	isOpenError	()	const
virtual	bool	beginTransaction	()
virtual	bool	commitTransaction	()
virtual	bool	rollbackTransaction	()
virtual	QStringList	tables	(const	QString	&	user)	const
virtual	QSqlIndex	primaryIndex	(const	QString	&	tableName)	const
virtual	QSqlRecord	record	(const	QString	&	tableName)	const
virtual	QSqlRecord	record	(const	QSqlQuery	&	query)	const
virtual	QSqlRecordInfo	recordInfo	(const	QString	&	tablename)	const
virtual	QSqlRecordInfo	recordInfo	(const	QSqlQuery	&	query)	const
virtual	QString	nullText	()	const
virtual	QString	formatValue	(const	QSqlField	*	field,	bool	trimStrings	=
FALSE)	const
QSqlError	lastError	()	const
virtual	bool	hasFeature	(DriverFeature	f)	const	=	0
virtual	bool	open	(const	QString	&	db,	const	QString	&	user	=
QString::null,	const	QString	&	password	=	QString::null,
const	QString	&	host	=	QString::null,	int	port	=	-1)	=	0
virtual	void	close	()	=	0
virtual	QSqlQuery	createQuery	()	const	=	0

Protected	Members

virtual	void	setOpen	(bool	o)
virtual	void	setOpenError	(bool	e)
virtual	void	setLastError	(const	QSqlError	&	e)

Detailed	Description

The	QSqlDriver	class	is	an	abstract	base	class	for	accessing	SQL	databases.

This	class	should	not	be	used	directly.	Use	QSqlDatabase	instead.

See	also	Database	Classes.

Member	Type	Documentation

QSqlDriver::DriverFeature

This	enum	contains	a	list	of	features	a	driver	may	support.	Use	hasFeature()	to
query	whether	a	feature	is	supported	or	not.

The	currently	defined	values	are:

QSqlDriver::Transactions	-	whether	the	driver	supports	SQL	transactions
QSqlDriver::QuerySize	-	whether	the	database	is	capable	of	reporting	the
size	of	a	query.	Note	that	some	databases	do	not	support	returning	the	size
(i.e.	number	of	rows	returned)	of	a	query,	in	which	case	QSqlQuery::size()
will	return	-1
QSqlDriver::BLOB	-	whether	the	driver	supports	Binary	Large	Object	fields

See	also	hasFeature().

Member	Function	Documentation

QSqlDriver::QSqlDriver	(QObject	*	parent	=	0,
const	char	*	name	=	0)

Default	constructor.	Creates	a	new	driver	with	parent	parent	and	name	name.

QSqlDriver::~QSqlDriver	()

Destroys	the	object	and	frees	any	allocated	resources.

bool	QSqlDriver::beginTransaction	()	[virtual]

Protected	function	which	derived	classes	can	reimplement	to	begin	a	transaction.
If	successful,	return	TRUE,	otherwise	return	FALSE.	The	default
implementation	returns	FALSE.

See	also	commitTransaction()	and	rollbackTransaction().

void	QSqlDriver::close	()	[pure	virtual]

Derived	classes	must	reimplement	this	abstract	virtual	function	in	order	to	close
the	database	connection.	Return	TRUE	on	success,	FALSE	on	failure.

See	also	setOpen().

bool	QSqlDriver::commitTransaction	()	[virtual]

Protected	function	which	derived	classes	can	reimplement	to	commit	a
transaction.	If	successful,	return	TRUE,	otherwise	return	FALSE.	The	default
implementation	returns	FALSE.

See	also	beginTransaction()	and	rollbackTransaction().

QSqlQuery	QSqlDriver::createQuery	()	const	[pure	virtual]

Creates	an	empty	SQL	result	on	the	database.	Derived	classes	must	reimplement

this	function	and	return	a	QSqlQuery	object	appropriate	for	their	database	to	the
caller.

QString	QSqlDriver::formatValue	(const	QSqlField	*	field,
bool	trimStrings	=	FALSE)	const	[virtual]

Returns	a	string	representation	of	the	field	value	for	the	database.	This	is	used,
for	example,	when	constructing	INSERT	and	UPDATE	statements.

The	default	implementation	returns	the	value	formatted	as	a	string	according	to
the	following	rules:

If	field	is	null,	nullText()	is	returned.
If	field	is	character	data,	the	value	is	returned	enclosed	in	single	quotation
marks,	which	is	appropriate	for	many	SQL	databases.	Any	embedded
single-quote	characters	are	escaped	(replaced	with	two	single-quote
characters).	If	trimStrings	is	TRUE	(the	default	is	FALSE),	all	trailing
whitespace	is	trimmed	from	the	field.
If	field	is	date/time	data,	the	value	is	formatted	in	ISO	format	and	enclosed
in	single	quotation	marks.	If	the	date/time	data	is	invalid,	nullText()	is
returned.
If	field	is	bytearray	data,	and	the	driver	can	edit	binary	fields,	the	value	is
formatted	as	a	hexadecimal	string.
For	any	other	field	type	toString()	will	be	called	on	its	value	and	the	result
returned.

See	also	QVariant::toString().

bool	QSqlDriver::hasFeature	(DriverFeature	f)	const	[pure
virtual]

Returns	TRUE	if	the	driver	supports	feature	f;	otherwise	returns	FALSE.

Note	that	some	databases	need	to	be	open()	before	this	can	be	determined.

See	also	DriverFeature.

bool	QSqlDriver::isOpen	()	const

Returns	TRUE	if	the	database	connection	is	open,	FALSE	otherwise.

bool	QSqlDriver::isOpenError	()	const

Returns	TRUE	if	the	there	was	an	error	opening	the	database	connection,	FALSE
otherwise.

QSqlError	QSqlDriver::lastError	()	const

Returns	a	QSqlError	object	which	contains	information	about	the	last	error	that
occurred	on	the	database.

QString	QSqlDriver::nullText	()	const	[virtual]

Returns	a	string	representation	of	the	'NULL'	value	for	the	database.	This	is
used,	for	example,	when	constructing	INSERT	and	UPDATE	statements.	The
default	implementation	returns	the	string	'NULL'.

bool	QSqlDriver::open	(const	QString	&	db,
const	QString	&	user	=	QString::null,
const	QString	&	password	=	QString::null,
const	QString	&	host	=	QString::null,	int	port	=	-1)	[pure
virtual]

Derived	classes	must	reimplement	this	abstract	virtual	function	in	order	to	open
a	database	connection	on	database	db,	using	user	name	user,	password
password,	host	host	and	port	port.

The	function	must	return	TRUE	on	success	and	FALSE	on	failure.

See	also	setOpen().

QSqlIndex	QSqlDriver::primaryIndex	(
const	QString	&	tableName)	const	[virtual]

Returns	the	primary	index	for	table	tableName.	Returns	an	empty	QSqlIndex	if
the	table	doesn't	have	a	primary	index.	The	default	implementation	returns	an
empty	index.

QSqlRecord	QSqlDriver::record	(const	QString	&	tableName)
const	[virtual]

Returns	a	QSqlRecord	populated	with	the	names	of	the	fields	in	table
tableName.	If	no	such	table	exists,	an	empty	list	is	returned.	The	default
implementation	returns	an	empty	record.

QSqlRecord	QSqlDriver::record	(const	QSqlQuery	&	query)
const	[virtual]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	a	QSqlRecord	populated	with	the	names	of	the	fields	in	the	SQL	query.
The	default	implementation	returns	an	empty	record.

QSqlRecordInfo	QSqlDriver::recordInfo	(
const	QString	&	tablename)	const	[virtual]

Returns	a	QSqlRecordInfo	object	with	meta	data	on	the	table	tablename.

QSqlRecordInfo	QSqlDriver::recordInfo	(
const	QSqlQuery	&	query)	const	[virtual]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	a	QSqlRecordInfo	object	with	meta	data	for	the	QSqlQuery	query.	Note
that	this	overloaded	function	may	return	not	as	much	information	as	the
recordInfo	function	which	takes	the	name	of	a	table	as	parameter.

bool	QSqlDriver::rollbackTransaction	()	[virtual]

Protected	function	which	derived	classes	can	reimplement	to	rollback	a
transaction.	If	successful,	return	TRUE,	otherwise	return	FALSE.	The	default
implementation	returns	FALSE.

See	also	beginTransaction()	and	commitTransaction().

void	QSqlDriver::setLastError	(const	QSqlError	&	e)	[virtual
protected]

Protected	function	which	allows	derived	classes	to	set	the	value	of	the	last	error,
e,	that	occurred	on	the	database.

See	also	lastError().

void	QSqlDriver::setOpen	(bool	o)	[virtual	protected]

Protected	function	which	sets	the	open	state	of	the	database	to	o.	Derived	classes
can	use	this	function	to	report	the	status	of	open().

See	also	open()	and	setOpenError().

void	QSqlDriver::setOpenError	(bool	e)	[virtual	protected]

Protected	function	which	sets	the	open	error	state	of	the	database	to	e.	Derived
classes	can	use	this	function	to	report	the	status	of	open().	Note	that	if	e	is	TRUE
the	open	state	of	the	database	is	set	to	closed	(i.e.,	isOpen()	returns	FALSE).

See	also	open().

QStringList	QSqlDriver::tables	(const	QString	&	user)	const
[virtual]

Returns	a	list	of	tables	in	the	database.	The	default	implementation	returns	an
empty	list.

Currently	the	user	argument	is	unused.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QWidgetFactory	Class	Reference
The	QWidgetFactory	class	provides	for	the	dynamic	creation	of	widgets	from	Qt
Designer	.ui	files.	More...

#include	<qwidgetfactory.h>

List	of	all	member	functions.

Public	Members

QWidgetFactory	()
virtual	~QWidgetFactory	()
virtual	QWidget	*	createWidget	(const	QString	&	className,
QWidget	*	parent,	const	char	*	name)	const

Static	Public	Members

QWidget	*	create	(const	QString	&	uiFile,	QObject	*	connector	=	0,
QWidget	*	parent	=	0,	const	char	*	name	=	0)
QWidget	*	create	(QIODevice	*	dev,	QObject	*	connector	=	0,
QWidget	*	parent	=	0,	const	char	*	name	=	0)
void	addWidgetFactory	(QWidgetFactory	*	factory)
void	loadImages	(const	QString	&	dir)

Detailed	Description

The	QWidgetFactory	class	provides	for	the	dynamic	creation	of	widgets	from	Qt
Designer	.ui	files.

This	class	basically	offers	two	things:

Dynamically	creating	widgets	from	Qt	DesignerQt	Designer	user	interface
description	files.	You	can	do	this	using	the	static	function
QWidgetFactory::create().	This	function	also	performs	signal	and	slot
connections,	tab	ordering,	etc.,	as	defined	in	the	.ui	file,	and	returns	the	top-
level	widget	in	the	.ui	file.	After	creating	the	widget	you	can	use
QObject::child()	and	QObject::queryList()	to	access	child	widgets	of	this
returned	widget.

Adding	additional	widget	factories	to	be	able	to	create	custom	widgets.	See
createWidget()	for	details.

This	class	is	not	included	in	the	Qt	library	itself.	To	use	it	you	must	link	against
libqui.so	(Unix)	or	qui.lib	(Windows),	which	is	built	into	$(QTDIR)/lib	if
you	built	Qt	Designer.

See	the	"Creating	Dynamic	Dialogs	from	.ui	Files"	section	of	the	Qt	Designer
manual	for	an	example.	See	also	the	QWidgetPlugin	class	and	the	Plugins
documentation.

Member	Function	Documentation

QWidgetFactory::QWidgetFactory	()

Constructs	a	QWidgetFactory.

QWidgetFactory::~QWidgetFactory	()	[virtual]

Destructor.

void	QWidgetFactory::addWidgetFactory	(
QWidgetFactory	*	factory)	[static]

Installs	a	widget	factory	factory,	which	normally	contains	additional	widgets	that
can	then	be	created	using	a	QWidgetFactory.	See	createWidget()	for	further
details.

QWidget	*	QWidgetFactory::create	(const	QString	&	uiFile,
QObject	*	connector	=	0,	QWidget	*	parent	=	0,
const	char	*	name	=	0)	[static]

Loads	the	Qt	Designer	user	interface	description	file	uiFile	and	returns	the	top-
level	widget	in	that	description.	parent	and	name	are	passed	to	the	constructor	of
the	top-level	widget.

This	function	also	performs	signal	and	slot	connections,	tab	ordering,	etc.,	as
described	in	the	.ui	file.	In	Qt	Designer	it	is	possible	to	add	custom	slots	to	a
form	and	connect	to	them.	If	you	want	these	connections	to	be	made,	you	must
create	a	class	derived	from	QObject,	which	implements	all	these	slots.	Then	pass
an	instance	of	the	object	as	connector	to	this	function.	If	you	do	this,	the
connections	to	the	custom	slots	will	be	done	using	the	connector	as	slot.

If	something	fails,	0	is	returned.

The	ownership	of	the	returned	widget	is	passed	to	the	caller.

QWidget	*	QWidgetFactory::create	(QIODevice	*	dev,
QObject	*	connector	=	0,	QWidget	*	parent	=	0,
const	char	*	name	=	0)	[static]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Loads	the	user	interface	description	from	device	dev.

QWidget	*	QWidgetFactory::createWidget	(
const	QString	&	className,	QWidget	*	parent,
const	char	*	name)	const	[virtual]

Creates	a	widget	of	the	type	className	passing	parent	and	name	to	its
constructor.

If	className	is	a	widget	in	the	Qt	library,	it	is	directly	created	by	this	function.
If	the	widget	isn't	in	the	Qt	library,	each	of	the	installed	widget	plugins	is	asked,
in	turn,	to	create	the	widget.	As	soon	as	a	plugin	says	it	can	create	the	widget	it
is	asked	to	do	so.	It	may	occur	that	none	of	the	plugins	can	create	the	widget,	in
which	case	each	installed	widget	factory	is	asked	to	create	the	widget	(see
addWidgetFactory()).	If	the	widget	cannot	be	created	by	any	of	these	means,	0	is
returned.

If	you	have	a	custom	widget,	and	want	it	to	be	created	using	the	widget	factory,
there	are	two	approaches	you	can	use:

1.	 Write	a	widget	plugin.	This	allows	you	to	use	the	widget	in	Qt	Designer
and	in	this	QWidgetFactory.	See	the	widget	plugin	documentation	for
further	details.	(See	the	"Creating	Custom	Widgets	with	Plugins"	section	of
the	Qt	Designer	manual	for	an	example.

2.	 Subclass	QWidgetFactory.	Then	reimplement	this	function	to	create	and
return	an	instance	of	your	custom	widget	if	className	equals	the	name	of
your	widget,	otherwise	return	0.	Then	at	the	beginning	of	your	program
where	you	want	to	use	the	widget	factory	to	create	widgets	do	a:

				QWidgetFactory::addWidgetFactory(new	MyWidgetFactory);

				

where	MyWidgetFactory	is	your	QWidgetFactory	subclass.

void	QWidgetFactory::loadImages	(const	QString	&	dir)
[static]

If	you	use	a	pixmap	collection	(which	is	the	default	for	new	projects)	rather	than
saving	the	pixmaps	within	the	.ui	XML	file,	you	must	load	the	pixmap
collection.	QWidgetFactory	looks	in	the	default	QMimeSourceFactory	for	the
pixmaps.	Either	add	it	there	manually,	or	call	this	function	and	specify	the
directory	where	the	images	can	be	found,	as	dir.	This	is	normally	the	directory
called	images	in	the	project's	directory.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QGbkCodec	Class	Reference
The	QGbkCodec	class	provides	conversion	to	and	from	the	Chinese	GBK
encoding.	More...

#include	<qgb18030codec.h>

Inherits	QGb18030Codec.

List	of	all	member	functions.

Public	Members

QGbkCodec	()
virtual	const	char	*	mimeName	()	const

Detailed	Description

The	QGbkCodec	class	provides	conversion	to	and	from	the	Chinese	GBK
encoding.

GBK,	formally	the	Chinese	Internal	Code	Specification,	is	a	commonly	used
extension	of	GB	2312-80.	Microsoft	Windows	uses	it	under	the	name	code	page
936.

The	GBK	encoding	has	been	superceded	by	the	GB18030	encoding	and
GB18030	is	compatible	to	GBK.	For	this	reason	the	QGbkCodec	class	is
implemented	in	terms	of	the	GB18030	codec	and	uses	it	for	conversion	from	and
to	Unicode.

The	QGbkCodec	is	kept	mainly	for	compatibility	reasons	with	older	software.

See	also	Internationalization	with	Qt.

Member	Function	Documentation

QGbkCodec::QGbkCodec	()

reimp

const	char	*	QGbkCodec::mimeName	()	const	[virtual]

Returns	the	codec's	mime	name.

Reimplemented	from	QTextCodec.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QMoveEvent	Class	Reference
The	QMoveEvent	class	contains	event	parameters	for	move	events.	More...

#include	<qevent.h>

Inherits	QEvent.

List	of	all	member	functions.

Public	Members

QMoveEvent	(const	QPoint	&	pos,	const	QPoint	&	oldPos)
const	QPoint	&	pos	()	const
const	QPoint	&	oldPos	()	const

Detailed	Description

The	QMoveEvent	class	contains	event	parameters	for	move	events.

Move	events	are	sent	to	widgets	that	have	been	moved	to	a	new	position	relative
to	their	parent.

The	event	handler	QWidget::moveEvent()	receives	move	events.

See	also	QWidget::pos,	QWidget::geometry	and	Event	Classes.

Member	Function	Documentation

QMoveEvent::QMoveEvent	(const	QPoint	&	pos,
const	QPoint	&	oldPos)

Constructs	a	move	event	with	the	new	and	old	widget	positions,	pos	and	oldPos
respectively.

const	QPoint	&	QMoveEvent::oldPos	()	const

Returns	the	old	position	of	the	widget.

const	QPoint	&	QMoveEvent::pos	()	const

Returns	the	new	position	of	the	widget.	This	excludes	the	window	frame	for	top
level	widgets.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QSqlDriverPlugin	Class	Reference
The	QSqlDriverPlugin	class	provides	an	abstract	base	for	custom	QSqlDriver
plugins.	More...

#include	<qsqldriverplugin.h>

List	of	all	member	functions.

Public	Members

QSqlDriverPlugin	()
~QSqlDriverPlugin	()
virtual	QStringList	keys	()	const	=	0
virtual	QSqlDriver	*	create	(const	QString	&	key)	=	0

Detailed	Description

The	QSqlDriverPlugin	class	provides	an	abstract	base	for	custom	QSqlDriver
plugins.

The	SQL	driver	plugin	is	a	simple	plugin	interface	that	makes	it	easy	to	create
your	own	SQL	driver	plugins	that	can	be	loaded	dynamically	by	Qt.

Writing	a	SQL	plugin	is	achieved	by	subclassing	this	base	class,	reimplementing
the	pure	virtual	functions	keys()	and	create(),	and	exporting	the	class	with	the
Q_EXPORT_PLUGIN	macro.	See	the	SQL	plugins	that	come	with	Qt	for
example	implementations	(in	the	plugins/src/sqldrivers	subdirectory	of	the
source	distribution).	Read	the	plugins	documentation	for	more	information	on
plugins.

See	also	Plugins.

Member	Function	Documentation

QSqlDriverPlugin::QSqlDriverPlugin	()

Constructs	a	SQL	driver	plugin.	This	is	invoked	automatically	by	the
Q_EXPORT_PLUGIN	macro.

QSqlDriverPlugin::~QSqlDriverPlugin	()

Destroys	the	SQL	driver	plugin.

You	never	have	to	call	this	explicitly.	Qt	destroys	a	plugin	automatically	when	it
is	no	longer	used.

QSqlDriver	*	QSqlDriverPlugin::create	(const	QString	&	key)
[pure	virtual]

Creates	and	returns	a	QSqlDriver	object	for	the	driver	key	key.	The	driver	key	is
usually	the	class	name	of	the	required	driver.

See	also	keys().

QStringList	QSqlDriverPlugin::keys	()	const	[pure	virtual]

Returns	the	list	of	driver	keys	this	plugin	supports.

These	keys	are	usually	the	class	names	of	the	custom	drivers	that	are
implemented	in	the	plugin.

See	also	create().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QWidgetItem	Class	Reference
The	QWidgetItem	class	is	a	layout	item	that	represents	a	widget.	More...

#include	<qlayout.h>

Inherits	QLayoutItem.

List	of	all	member	functions.

Public	Members

QWidgetItem	(QWidget	*	w)
virtual	QSize	sizeHint	()	const
virtual	QSize	minimumSize	()	const
virtual	QSize	maximumSize	()	const
virtual	QSizePolicy::ExpandData	expanding	()	const
virtual	bool	isEmpty	()	const
virtual	void	setGeometry	(const	QRect	&	r)
virtual	QWidget	*	widget	()

Detailed	Description

The	QWidgetItem	class	is	a	layout	item	that	represents	a	widget.

This	is	used	by	custom	layouts.

See	also	QLayout,	QLayout::widget(),	Widget	Appearance	and	Style	and	Layout
Management.

Member	Function	Documentation

QWidgetItem::QWidgetItem	(QWidget	*	w)

Creates	an	item	containing	widget	w.

QSizePolicy::ExpandData	QWidgetItem::expanding	()	const
[virtual]

Returns	TRUE	if	this	item's	widget	is	expanding;	otherwise	returns	FALSE.

Reimplemented	from	QLayoutItem.

bool	QWidgetItem::isEmpty	()	const	[virtual]

Returns	TRUE	if	the	widget	has	been	hidden;	otherwise	returns	FALSE.

Reimplemented	from	QLayoutItem.

QSize	QWidgetItem::maximumSize	()	const	[virtual]

Returns	the	maximum	size	of	this	item.

Reimplemented	from	QLayoutItem.

QSize	QWidgetItem::minimumSize	()	const	[virtual]

Returns	the	minimum	size	of	this	item.

Reimplemented	from	QLayoutItem.

void	QWidgetItem::setGeometry	(const	QRect	&	r)	[virtual]

Sets	the	geometry	of	this	item's	widget	to	be	contained	within	rect	r,	taking
alignment	and	maximum	size	into	account.

Reimplemented	from	QLayoutItem.

QSize	QWidgetItem::sizeHint	()	const	[virtual]

Returns	the	preferred	size	of	this	item.

Reimplemented	from	QLayoutItem.

QWidget	*	QWidgetItem::widget	()	[virtual]

Returns	the	widget	managed	by	this	item.

Reimplemented	from	QLayoutItem.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QGL	Class	Reference
[OpenGL	module]

The	QGL	class	is	a	namespace	for	miscellaneous	identifiers	in	the	Qt	OpenGL
module.	More...

#include	<qgl.h>

Inherited	by	QGLFormat,	QGLContext	and	QGLWidget.

List	of	all	member	functions.

Public	Members

enum	FormatOption	{	DoubleBuffer	=	0x0001,	DepthBuffer	=	0x0002,
Rgba	=	0x0004,	AlphaChannel	=	0x0008,	AccumBuffer	=	0x0010,
StencilBuffer	=	0x0020,	StereoBuffers	=	0x0040,	DirectRendering	=
0x0080,	HasOverlay	=	0x0100,	SingleBuffer	=	DoubleBuffer<<16,
NoDepthBuffer	=	DepthBuffer<<16,	ColorIndex	=	Rgba<<16,
NoAlphaChannel	=	AlphaChannel<<16,	NoAccumBuffer	=
AccumBuffer<<16,	NoStencilBuffer	=	StencilBuffer<<16,
NoStereoBuffers	=	StereoBuffers<<16,	IndirectRendering	=
DirectRendering<<16,	NoOverlay	=	HasOverlay<<16	}

Detailed	Description

The	QGL	class	is	a	namespace	for	miscellaneous	identifiers	in	the	Qt	OpenGL
module.

Normally	you	can	ignore	this	class.	QGLWidget	and	the	other	OpenGL*	module
classes	inherit	it,	so	when	you	make	your	own	QGLWidget	subclass	you	can	use
the	identifiers	in	the	QGL	namespace	without	qualification.

However,	you	may	occasionally	find	yourself	in	situations	where	you	need	to
refer	to	these	identifiers	from	outside	the	QGL	namespace's	scope,	e.g.	in	static
functions.	In	such	cases,	simply	write	e.g.	QGL::DoubleBuffer	instead	of	just
DoubleBuffer.

*	OpenGL	is	a	trademark	of	Silicon	Graphics,	Inc.	in	the	United	States	and	other
countries.

See	also	Graphics	Classes	and	Image	Processing	Classes.

Member	Type	Documentation

QGL::FormatOption

This	enum	specifies	the	format	options.

QGL::DoubleBuffer

QGL::DepthBuffer

QGL::Rgba

QGL::AlphaChannel

QGL::AccumBuffer

QGL::StencilBuffer

QGL::StereoBuffers

QGL::DirectRendering

QGL::HasOverlay

QGL::SingleBuffer

QGL::NoDepthBuffer

QGL::ColorIndex

QGL::NoAlphaChannel

QGL::NoAccumBuffer

QGL::NoStencilBuffer

QGL::NoStereoBuffers

QGL::IndirectRendering

QGL::NoOverlay

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QMovie	Class	Reference
The	QMovie	class	provides	incremental	loading	of	animations	or	images,
signalling	as	it	progresses.	More...

#include	<qmovie.h>

List	of	all	member	functions.

Public	Members

QMovie	()
QMovie	(int	bufsize)
QMovie	(QDataSource	*	src,	int	bufsize	=	1024)
QMovie	(const	QString	&	fileName,	int	bufsize	=	1024)
QMovie	(QByteArray	data,	int	bufsize	=	1024)
QMovie	(const	QMovie	&	movie)
~QMovie	()
QMovie	&	operator=	(const	QMovie	&	movie)
int	pushSpace	()	const
void	pushData	(const	uchar	*	data,	int	length)
const	QColor	&	backgroundColor	()	const
void	setBackgroundColor	(const	QColor	&	c)
const	QRect	&	getValidRect	()	const
const	QPixmap	&	framePixmap	()	const
const	QImage	&	frameImage	()	const
bool	isNull	()	const
int	frameNumber	()	const
int	steps	()	const
bool	paused	()	const
bool	finished	()	const
bool	running	()	const
void	unpause	()
void	pause	()
void	step	()
void	step	(int	steps)
void	restart	()
int	speed	()	const
void	setSpeed	(int	percent)
void	connectResize	(QObject	*	receiver,	const	char	*	member)
void	disconnectResize	(QObject	*	receiver,	const	char	*	member	=	0)
void	connectUpdate	(QObject	*	receiver,	const	char	*	member)
void	disconnectUpdate	(QObject	*	receiver,	const	char	*	member	=	0)
enum	Status	{	SourceEmpty	=	-2,	UnrecognizedFormat	=	-1,	Paused	=	1,
EndOfFrame	=	2,	EndOfLoop	=	3,	EndOfMovie	=	4,	SpeedChanged	=	5	}
void	connectStatus	(QObject	*	receiver,	const	char	*	member)

void	disconnectStatus	(QObject	*	receiver,	const	char	*	member	=	0)

Detailed	Description

The	QMovie	class	provides	incremental	loading	of	animations	or	images,
signalling	as	it	progresses.

The	simplest	way	to	display	a	QMovie	is	to	use	a	QLabel	and
QLabel::setMovie().

A	QMovie	provides	a	QPixmap	as	the	framePixmap();	connections	can	be	made
via	connectResize()	and	connectUpdate()	to	receive	notification	of	size	and
pixmap	changes.	All	decoding	is	driven	by	the	normal	event-processing
mechanisms.

The	movie	begins	playing	as	soon	as	the	QMovie	is	created	(actually,	once
control	returns	to	the	event	loop).	When	the	last	frame	in	the	movie	has	been
played,	it	may	loop	back	to	the	start	if	such	looping	is	defined	in	the	input
source.

QMovie	objects	are	explicitly	shared.	This	means	that	a	QMovie	copied	from
another	QMovie	will	be	displaying	the	same	frame	at	all	times.	If	one	shared
movie	pauses,	all	pause.	To	make	independent	movies,	they	must	be	constructed
separately.

The	set	of	data	formats	supported	by	QMovie	is	determined	by	the	decoder
factories	that	have	been	installed;	the	format	of	the	input	is	determined	as	the
input	is	decoded.

The	supported	formats	are	MNG	(if	Qt	is	configured	with	MNG	support
enabled)	and	GIF	(if	Qt	is	configured	with	GIF	support	enabled,	see	qgif.h).

If	Qt	is	configured	to	support	GIF	reading,	we	are	required	to	state	that	"The
Graphics	Interchange	Format(c)	is	the	Copyright	property	of	CompuServe
Incorporated.	GIF(sm)	is	a	Service	Mark	property	of	CompuServe	Incorporated.

Warning:	If	you	are	in	a	country	that	recognizes	software	patents	and	in	which
Unisys	holds	a	patent	on	LZW	compression	and/or	decompression	and	you	want
to	use	GIF,	Unisys	may	require	you	to	license	that	technology.	Such	countries
include	Canada,	Japan,	the	USA,	France,	Germany,	Italy	and	the	UK.

GIF	support	may	be	removed	completely	in	a	future	version	of	Qt.	We
recommend	using	the	MNG	or	PNG	format.

See	also	QLabel::setMovie(),	Graphics	Classes,	Image	Processing	Classes	and
Multimedia	Classes.

Member	Type	Documentation

QMovie::Status

QMovie::SourceEmpty

QMovie::UnrecognizedFormat

QMovie::Paused

QMovie::EndOfFrame

QMovie::EndOfLoop

QMovie::EndOfMovie

QMovie::SpeedChanged

Member	Function	Documentation

QMovie::QMovie	()

Constructs	a	null	QMovie.	The	only	interesting	thing	to	do	with	such	a	movie	is
to	assign	another	movie	to	it.

See	also	isNull().

QMovie::QMovie	(int	bufsize)

Constructs	a	QMovie	with	an	external	data	source.	You	should	later	call
pushData()	to	send	incoming	animation	data	to	the	movie.

The	bufsize	argument	sets	the	maximum	amount	of	data	the	movie	will	transfer
from	the	data	source	per	event	loop.	The	lower	this	value,	the	better	interleaved
the	movie	playback	will	be	with	other	event	processing,	but	the	slower	the
overall	processing	will	be.

See	also	pushData().

QMovie::QMovie	(QDataSource	*	src,	int	bufsize	=	1024)

Constructs	a	QMovie	that	reads	an	image	sequence	from	the	given	data	source,
src.	The	source	must	be	allocated	dynamically,	because	QMovie	will	take
ownership	of	it	and	will	destroy	it	when	the	movie	is	destroyed.	The	movie	starts
playing	as	soon	as	event	processing	continues.

The	bufsize	argument	sets	the	maximum	amount	of	data	the	movie	will	transfer
from	the	data	source	per	event	loop.	The	lower	this	value,	the	better	interleaved
the	movie	playback	will	be	with	other	event	processing,	but	the	slower	the
overall	processing	will	be.

QMovie::QMovie	(const	QString	&	fileName,	int	bufsize	=	1024)

Constructs	a	QMovie	that	reads	an	image	sequence	from	the	file,	fileName.

The	bufsize	argument	sets	the	maximum	amount	of	data	the	movie	will	transfer
from	the	data	source	per	event	loop.	The	lower	this	value,	the	better	interleaved
the	movie	playback	will	be	with	other	event	processing,	but	the	slower	the
overall	processing	will	be.

QMovie::QMovie	(QByteArray	data,	int	bufsize	=	1024)

Constructs	a	QMovie	that	reads	an	image	sequence	from	the	byte	array,	data.

The	bufsize	argument	sets	the	maximum	amount	of	data	the	movie	will	transfer
from	the	data	source	per	event	loop.	The	lower	this	value,	the	better	interleaved
the	movie	playback	will	be	with	other	event	processing,	but	the	slower	the
overall	processing	will	be.

QMovie::QMovie	(const	QMovie	&	movie)

Constructs	a	movie	that	uses	the	same	data	as	movie	movie.	QMovies	use
explicit	sharing,	so	operations	on	the	copy	will	affect	both.

QMovie::~QMovie	()

Destroys	the	QMovie.	If	this	is	the	last	reference	to	the	data	of	the	movie,	the
data	is	deallocated.

const	QColor	&	QMovie::backgroundColor	()	const

Returns	the	background	color	of	the	movie	set	by	setBackgroundColor().

void	QMovie::connectResize	(QObject	*	receiver,
const	char	*	member)

Connects	the	receiver's	member	of	type	void	member(const	QSize&)	so	that	it
is	signalled	when	the	movie	changes	size.

Note	that	due	to	the	explicit	sharing	of	QMovie	objects,	these	connections
persist	until	they	are	explicitly	disconnected	with	disconnectResize()	or	until
every	shared	copy	of	the	movie	is	deleted.

Example:	movies/main.cpp.

void	QMovie::connectStatus	(QObject	*	receiver,
const	char	*	member)

Connects	the	receiver's	member,	of	type	void	member(int)	so	that	it	is	signalled
when	the	movie	changes	status.	The	status	codes	are	negative	for	errors	and
positive	for	information.

Status	Code Meaning
QMovie::SourceEmpty signalled	if	the	input	cannot	be	read.
QMovie::UnrecognizedFormat signalled	if	the	input	data	is	unrecognized.

QMovie::Paused signalled	when	the	movie	is	paused	by	a	call	to
paused()	or	by	after	stepping	pauses.

QMovie::EndOfFrame signalled	at	end-of-frame	after	any	update	and
Paused	signals.

QMovie::EndOfLoop signalled	at	end-of-loop,	after	any	update
signals,	EndOfFrame	-	but	before	EndOfMovie.

QMovie::EndOfMovie signalled	when	the	movie	completes	and	is	not
about	to	loop.

More	status	messages	may	be	added	in	the	future,	so	a	general	test	for	errors
would	test	for	negative.

Note	that	due	to	the	explicit	sharing	of	QMovie	objects,	these	connections
persist	until	they	are	explicitly	disconnected	with	disconnectStatus()	or	until
every	shared	copy	of	the	movie	is	deleted.

Example:	movies/main.cpp.

void	QMovie::connectUpdate	(QObject	*	receiver,
const	char	*	member)

Connects	the	receiver's	member	of	type	void	member(const	QRect&)	so	that	it
is	signalled	when	an	area	of	the	framePixmap()	has	changed	since	the	previous
frame.

Note	that	due	to	the	explicit	sharing	of	QMovie	objects,	these	connections
persist	until	they	are	explicitly	disconnected	with	disconnectUpdate()	or	until
every	shared	copy	of	the	movie	is	deleted.

Example:	movies/main.cpp.

void	QMovie::disconnectResize	(QObject	*	receiver,
const	char	*	member	=	0)

Disconnects	the	receiver's	member	(or	all	members	if	member	is	zero)	that	were
previously	connected	by	connectResize().

void	QMovie::disconnectStatus	(QObject	*	receiver,
const	char	*	member	=	0)

Disconnects	the	receiver's	member	(or	all	members	if	member	is	zero)	that	were
previously	connected	by	connectStatus().

void	QMovie::disconnectUpdate	(QObject	*	receiver,
const	char	*	member	=	0)

Disconnects	the	receiver's	member	(or	all	members	if	\q	member	is	zero)	that
were	previously	connected	by	connectUpdate().

bool	QMovie::finished	()	const

Returns	TRUE	if	the	image	is	no	longer	playing:	this	happens	when	all	loops	of
all	frames	are	complete;	otherwise	returns	FALSE.

Example:	movies/main.cpp.

const	QImage	&	QMovie::frameImage	()	const

Returns	the	current	frame	of	the	movie,	as	a	QImage.	It	is	not	generally	useful	to
keep	a	copy	of	this	image.	Also	note	that	you	must	not	call	this	function	if	the
movie	is	finished(),	since	by	then	the	image	will	not	be	available.

See	also	framePixmap().

int	QMovie::frameNumber	()	const

Returns	the	number	of	times	EndOfFrame	has	been	emitted	since	the	start	of	the
current	loop	of	the	movie.	Thus,	before	any	EndOfFrame	has	been	emitted	the
value	will	be	0;	within	slots	processing	the	first	signal,	frameNumber()	will	be	1,
and	so	on.

const	QPixmap	&	QMovie::framePixmap	()	const

Returns	the	current	frame	of	the	movie,	as	a	QPixmap.	It	is	not	generally	useful
to	keep	a	copy	of	this	pixmap.	It	is	better	to	keep	a	copy	of	the	QMovie	and	get
the	framePixmap()	only	when	needed	for	drawing.

See	also	frameImage().

Example:	movies/main.cpp.

const	QRect	&	QMovie::getValidRect	()	const

Returns	the	area	of	the	pixmap	for	which	pixels	have	been	generated.

bool	QMovie::isNull	()	const

Returns	TRUE	if	the	movie	is	null;	otherwise	returns	FALSE.

QMovie	&	QMovie::operator=	(const	QMovie	&	movie)

Makes	this	movie	use	the	same	data	as	movie	movie.	QMovies	use	explicit
sharing.

void	QMovie::pause	()

Pauses	the	progress	of	the	animation.

See	also	unpause().

Example:	movies/main.cpp.

bool	QMovie::paused	()	const

Returns	TRUE	if	the	image	is	paused;	otherwise	returns	FALSE.

Example:	movies/main.cpp.

void	QMovie::pushData	(const	uchar	*	data,	int	length)

Pushes	length	bytes	from	data	into	the	movie.	length	must	be	no	more	than	the
amount	returned	by	pushSpace()	since	the	previous	call	to	pushData().

int	QMovie::pushSpace	()	const

Returns	the	maximum	amount	of	data	that	can	currently	be	pushed	into	the
movie	by	a	call	to	pushData().	This	is	affected	by	the	initial	buffer	size,	but
varies	as	the	movie	plays	and	data	is	consumed.

void	QMovie::restart	()

Rewinds	the	movie	to	the	beginning.	If	the	movie	has	not	been	paused,	it	begins
playing	again.

Example:	movies/main.cpp.

bool	QMovie::running	()	const

Returns	TRUE	if	the	image	is	not	single-stepping,	not	paused,	and	not	finished;
otherwise	returns	FALSE.

void	QMovie::setBackgroundColor	(const	QColor	&	c)

Sets	the	background	color	of	the	pixmap	to	c.	If	the	background	color	isValid(),
the	pixmap	will	never	have	a	mask	because	the	background	color	will	be	used	in
transparent	regions	of	the	image.

See	also	backgroundColor().

void	QMovie::setSpeed	(int	percent)

Sets	the	movie's	play	speed	as	a	percentage,	to	percent.	This	is	a	percentage	of
the	speed	dictated	by	the	input	data	format.	The	default	is	100	percent.

int	QMovie::speed	()	const

Returns	the	movie's	play	speed	as	a	percentage.	The	default	is	100	percent.

See	also	setSpeed().

void	QMovie::step	()

Steps	forward	1	frame	and	then	pauses.

Example:	movies/main.cpp.

void	QMovie::step	(int	steps)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Steps	forward,	showing	steps	frames,	and	then	pauses.

int	QMovie::steps	()	const

Returns	the	number	of	steps	remaining	after	a	call	to	step().	If	the	movie	is
paused,	steps()	returns	0.	If	it's	running	normally	or	is	finished,	steps()	returns	a
negative	number.

Example:	movies/main.cpp.

void	QMovie::unpause	()

Unpauses	the	progress	of	the	animation.

See	also	pause().

Example:	movies/main.cpp.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QSqlEditorFactory	Class	Reference
[sql	module]

The	QSqlEditorFactory	class	is	used	to	create	the	editors	used	by	QDataTable
and	QSqlForm.	More...

#include	<qsqleditorfactory.h>

Inherits	QEditorFactory.

List	of	all	member	functions.

Public	Members

QSqlEditorFactory	(QObject	*	parent	=	0,	const	char	*	name	=	0)
~QSqlEditorFactory	()
virtual	QWidget	*	createEditor	(QWidget	*	parent,
const	QVariant	&	variant)
virtual	QWidget	*	createEditor	(QWidget	*	parent,
const	QSqlField	*	field)

Static	Public	Members

QSqlEditorFactory	*	defaultFactory	()
void	installDefaultFactory	(QSqlEditorFactory	*	factory)

Detailed	Description

The	QSqlEditorFactory	class	is	used	to	create	the	editors	used	by	QDataTable
and	QSqlForm.

QSqlEditorFactory	is	used	by	QDataTable	and	QSqlForm	to	automatically	create
appropriate	editors	for	a	given	QSqlField.	For	example	if	the	field	is	a
QVariant::String	a	QLineEdit	would	be	the	default	editor,	whereas	a
QVariant::Int's	default	editor	would	be	a	QSpinBox.

If	you	want	to	create	different	editors	for	fields	with	the	same	data	type,	subclass
QSqlEditorFactory	and	reimplement	the	createEditor()	function.

See	also	QDataTable,	QSqlForm	and	Database	Classes.

Member	Function	Documentation

QSqlEditorFactory::QSqlEditorFactory	(QObject	*	parent	=	0,
const	char	*	name	=	0)

Constructs	a	SQL	editor	factory	with	parent	parent	and	name	name.

QSqlEditorFactory::~QSqlEditorFactory	()

Destroys	the	object	and	frees	any	allocated	resources.

QWidget	*	QSqlEditorFactory::createEditor	(QWidget	*	parent,
const	QVariant	&	variant)	[virtual]

Creates	and	returns	the	appropriate	editor	widget	for	the	QVariant	variant.

The	widget	that	is	returned	has	the	parent	parent	(which	may	be	zero).	If	variant
is	invalid,	0	is	returned.

Reimplemented	from	QEditorFactory.

QWidget	*	QSqlEditorFactory::createEditor	(QWidget	*	parent,
const	QSqlField	*	field)	[virtual]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Creates	and	returns	the	appropriate	editor	for	the	QSqlField	field.

QSqlEditorFactory	*	QSqlEditorFactory::defaultFactory	()
[static]

Returns	an	instance	of	a	default	editor	factory.

void	QSqlEditorFactory::installDefaultFactory	(
QSqlEditorFactory	*	factory)	[static]

Replaces	the	default	editor	factory	with	factory.	All	QDataTable	and	QSqlForm
instantiations	will	use	this	new	factory	for	creating	field	editors.
QSqlEditorFactory	takes	ownership	of	factory,	and	destroys	it	when	it	is	no
longer	needed.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QWidgetPlugin	Class	Reference
The	QWidgetPlugin	class	provides	an	abstract	base	for	custom	QWidget	plugins.
More...

#include	<qwidgetplugin.h>

List	of	all	member	functions.

Public	Members

QWidgetPlugin	()
~QWidgetPlugin	()
virtual	QStringList	keys	()	const	=	0
virtual	QWidget	*	create	(const	QString	&	key,	QWidget	*	parent	=	0,
const	char	*	name	=	0)	=	0
virtual	QString	group	(const	QString	&	key)	const
virtual	QIconSet	iconSet	(const	QString	&	key)	const
virtual	QString	includeFile	(const	QString	&	key)	const
virtual	QString	toolTip	(const	QString	&	key)	const
virtual	QString	whatsThis	(const	QString	&	key)	const
virtual	bool	isContainer	(const	QString	&	key)	const

Detailed	Description

The	QWidgetPlugin	class	provides	an	abstract	base	for	custom	QWidget	plugins.

The	widget	plugin	is	a	simple	plugin	interface	that	makes	it	easy	to	create
custom	widgets	that	can	be	included	in	forms	using	Qt	Designer	and	used	by
applications.

Writing	a	widget	plugin	is	achieved	by	subclassing	this	base	class,
reimplementing	the	pure	virtual	functions	keys(),	create(),	group(),	iconSet(),
includeFile(),	toolTip(),	whatsThis()	and	isContainer(),	and	exporting	the	class
with	the	Q_EXPORT_PLUGIN	macro.

See	the	Qt	Designer	manual's,	'Creating	Custom	Widgets'	section	in	the	'Creating
Custom	Widgets'	chapter,	for	a	complete	example	of	a	QWidgetPlugin.

See	also	the	Plugins	documentation	and	the	QWidgetFactory	class	that	is
supplied	with	Qt	Designer.

See	also	Plugins.

Member	Function	Documentation

QWidgetPlugin::QWidgetPlugin	()

Constructs	a	widget	plugin.	This	is	invoked	automatically	by	the
Q_EXPORT_PLUGIN	macro.

QWidgetPlugin::~QWidgetPlugin	()

Destroys	the	widget	plugin.

You	never	have	to	call	this	explicitly.	Qt	destroys	a	plugin	automatically	when	it
is	no	longer	used.

QWidget	*	QWidgetPlugin::create	(const	QString	&	key,
QWidget	*	parent	=	0,	const	char	*	name	=	0)	[pure
virtual]

Creates	and	returns	a	QWidget	object	for	the	widget	key	key.	The	widget	key	is
the	class	name	of	the	required	widget.	The	name	and	parent	arguments	are
passed	to	the	custom	widget's	constructor.

See	also	keys().

QString	QWidgetPlugin::group	(const	QString	&	key)	const
[virtual]

Returns	the	group	(toolbar	name)	that	the	custom	widget	of	class	key	should	be
part	of	when	Qt	Designer	loads	it.

The	default	implementation	returns	a	null	string.

QIconSet	QWidgetPlugin::iconSet	(const	QString	&	key)	const
[virtual]

Returns	the	iconset	that	Qt	Designer	should	use	to	represent	the	custom	widget
of	class	key	in	the	toolbar.

The	default	implementation	returns	an	null	iconset.

QString	QWidgetPlugin::includeFile	(const	QString	&	key)
const	[virtual]

Returns	the	name	of	the	include	file	that	Qt	Designer	and	uic	should	use	to
include	the	custom	widget	of	class	key	in	generated	code.

The	default	implementation	returns	a	null	string.

bool	QWidgetPlugin::isContainer	(const	QString	&	key)	const
[virtual]

Returns	TRUE	if	the	custom	widget	of	class	key	can	contain	other	widgets,	e.g.
like	QFrame;	otherwise	returns	FALSE.

The	default	implementation	returns	FALSE.

QStringList	QWidgetPlugin::keys	()	const	[pure	virtual]

Returns	the	list	of	widget	keys	this	plugin	supports.

These	keys	must	be	the	class	names	of	the	custom	widgets	that	are	implemented
in	the	plugin.

See	also	create().

QString	QWidgetPlugin::toolTip	(const	QString	&	key)	const
[virtual]

Returns	the	text	of	the	tooltip	that	Qt	Designer	should	use	for	the	custom	widget
of	class	key's	toolbar	button.

The	default	implementation	returns	a	null	string.

QString	QWidgetPlugin::whatsThis	(const	QString	&	key)	const
[virtual]

Returns	the	text	of	the	whatsThis	text	that	Qt	Designer	should	use	when	the	user

requests	whatsThis	help	for	the	custom	widget	of	class	key.

The	default	implementation	returns	a	null	string.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QColorDrag	Class	Reference
The	QColorDrag	class	provides	a	drag	and	drop	object	for	transferring	colors.
More...

#include	<qdragobject.h>

Inherits	QStoredDrag.

List	of	all	member	functions.

Public	Members

QColorDrag	(const	QColor	&	col,	QWidget	*	dragsource	=	0,
const	char	*	name	=	0)
QColorDrag	(QWidget	*	dragsource	=	0,	const	char	*	name	=	0)
void	setColor	(const	QColor	&	col)

Static	Public	Members

bool	canDecode	(QMimeSource	*	e)
bool	decode	(QMimeSource	*	e,	QColor	&	col)

Detailed	Description

The	QColorDrag	class	provides	a	drag	and	drop	object	for	transferring	colors.

This	class	provides	a	drag	object	which	can	be	used	to	transfer	data	about	colors
for	drag	and	drop	and	in	the	clipboard.	For	example,	it	is	used	in	QColorDialog.

The	color	is	set	in	the	constructor	but	can	be	changed	with	setColor().

For	more	information	about	drag	and	drop,	see	the	QDragObject	class	and	the
drag	and	drop	documentation.

See	also	Drag	And	Drop	Classes.

Member	Function	Documentation

QColorDrag::QColorDrag	(const	QColor	&	col,
QWidget	*	dragsource	=	0,	const	char	*	name	=	0)

Constructs	a	color	drag	object	with	the	color	col.	Passes	dragsource	and	name	to
the	QStoredDrag	constructor.

QColorDrag::QColorDrag	(QWidget	*	dragsource	=	0,
const	char	*	name	=	0)

Constructs	a	color	drag	object	with	a	white	color.	Passes	dragsource	and	name	to
the	QStoredDrag	constructor.

bool	QColorDrag::canDecode	(QMimeSource	*	e)	[static]

Returns	TRUE	if	the	color	drag	object	can	decode	the	mime	source	e;	otherwise
returns	FALSE.

bool	QColorDrag::decode	(QMimeSource	*	e,	QColor	&	col)
[static]

Decodes	the	mime	source	e	and	sets	the	decoded	values	to	col.

void	QColorDrag::setColor	(const	QColor	&	col)

Sets	the	color	of	the	color	drag	to	col.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QGLayoutIterator	Class	Reference
The	QGLayoutIterator	class	is	an	abstract	base	class	of	internal	layout	iterators.
More...

#include	<qlayout.h>

List	of	all	member	functions.

Public	Members

virtual	~QGLayoutIterator	()
virtual	QLayoutItem	*	next	()	=	0
virtual	QLayoutItem	*	current	()	=	0
virtual	QLayoutItem	*	takeCurrent	()	=	0

Detailed	Description

The	QGLayoutIterator	class	is	an	abstract	base	class	of	internal	layout	iterators.

(This	class	is	not	OpenGL	related,	it	just	happens	to	start	with	the	letters	QGL...)

Subclass	this	class	to	create	a	custom	layout.	The	functions	that	must	be
implemented	are	next(),	current(),	and	takeCurrent().

The	QGLayoutIterator	implements	the	functionality	of	QLayoutIterator.	Each
subclass	of	QLayout	needs	a	QGLayoutIterator	subclass.

See	also	Widget	Appearance	and	Style	and	Layout	Management.

Member	Function	Documentation

QGLayoutIterator::~QGLayoutIterator	()	[virtual]

Destroys	the	iterator

QLayoutItem	*	QGLayoutIterator::current	()	[pure	virtual]

Implemented	in	subclasses	to	return	the	current	item,	or	0	if	there	is	no	current
item.

Examples:	customlayout/border.cpp,	customlayout/card.cpp	and
customlayout/flow.cpp.

QLayoutItem	*	QGLayoutIterator::next	()	[pure	virtual]

Implemented	in	subclasses	to	move	the	iterator	to	the	next	item	and	return	that
item,	or	0	if	there	is	no	next	item.

Examples:	customlayout/border.cpp,	customlayout/card.cpp	and
customlayout/flow.cpp.

QLayoutItem	*	QGLayoutIterator::takeCurrent	()	[pure
virtual]

Implemented	in	subclasses.	The	function	must	remove	the	current	item	from	the
layout	without	deleting	it,	move	the	iterator	to	the	next	item	and	return	the
removed	item,	or	0	if	no	item	was	removed.

Examples:	customlayout/border.cpp,	customlayout/card.cpp	and
customlayout/flow.cpp.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QMutex
QMutex	 ……

#include	<qmutex.h>

QMutex	(bool	recursive	=	FALSE)
virtual	~QMutex	()
void	lock	()
void	unlock	()
bool	locked	()
bool	tryLock	()

QMutex

QMutexJava“synchronized”

		void	someMethod()

		{

					qDebug("Hello");

					qDebug("World");

		}

		

		Hello

		Hello

		World

		World

		

		QMutex	mutex;

		void	someMethod()

		{

					mutex.lock();

					qDebug("Hello");

					qDebug("World");

					mutex.unlock();

		}

		

Java

		void	someMethod()

		{

					synchronized	{

							qDebug("Hello");

							qDebug("World");

					}

		}

		

someMethod

lock()lock() unlock()lock() tryLock()

QMutex::QMutex	(bool	recursive	=	FALSE)

recursive recursive

QMutex::~QMutex	()	[]

void	QMutex::lock	()

unlock()locked()

bool	QMutex::locked	()

lock()unlock()

bool	QMutex::tryLock	()

unlock()

lock() unlock()locked()

void	QMutex::unlock	()

lock()locked()

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QSqlError	Class	Reference
[sql	module]

The	QSqlError	class	provides	SQL	database	error	information.	More...

#include	<qsqlerror.h>

List	of	all	member	functions.

Public	Members

enum	Type	{	None,	Connection,	Statement,	Transaction,	Unknown	}
QSqlError	(const	QString	&	driverText	=	QString::null,
const	QString	&	databaseText	=	QString::null,	int	type	=	QSqlError::None,
int	number	=	-1)
QSqlError	(const	QSqlError	&	other)
QSqlError	&	operator=	(const	QSqlError	&	other)
virtual	~QSqlError	()
QString	driverText	()	const
virtual	void	setDriverText	(const	QString	&	driverText)
QString	databaseText	()	const
virtual	void	setDatabaseText	(const	QString	&	databaseText)
int	type	()	const
virtual	void	setType	(int	type)
int	number	()	const
virtual	void	setNumber	(int	number)

Detailed	Description

The	QSqlError	class	provides	SQL	database	error	information.

This	class	is	used	to	report	database-specific	errors.	An	error	description	and	(if
appropriate)	a	database-specific	error	number	can	be	recovered	using	this	class.

See	also	Database	Classes.

Member	Type	Documentation

QSqlError::Type

This	enum	type	describes	the	type	of	SQL	error	that	occurred.

The	currently	defined	values	are:

QSqlError::None	-	no	error	occurred
QSqlError::Connection	-	connection	error
QSqlError::Statement	-	statement	syntax	error
QSqlError::Transaction	-	transaction	failed	error
QSqlError::Unknown	-	unknown	error

Member	Function	Documentation

QSqlError::QSqlError	(const	QString	&	driverText	=
QString::null,	const	QString	&	databaseText	=	QString::null,
int	type	=	QSqlError::None,	int	number	=	-1)

Constructs	an	error	containing	the	driver	error	text	driverText,	the	database-
specific	error	text	databaseText,	the	type	type	and	the	optional	error	number
number.

QSqlError::QSqlError	(const	QSqlError	&	other)

Creates	a	copy	of	other.

QSqlError::~QSqlError	()	[virtual]

Destroys	the	object	and	frees	any	allocated	resources.

QString	QSqlError::databaseText	()	const

Returns	the	text	of	the	error	as	reported	by	the	database.	This	may	contain
database-specific	descriptions.

QString	QSqlError::driverText	()	const

Returns	the	text	of	the	error	as	reported	by	the	driver.	This	may	contain
database-specific	descriptions.

int	QSqlError::number	()	const

Returns	the	database-specific	error	number,	or	-1	if	it	cannot	be	determined.

QSqlError	&	QSqlError::operator=	(const	QSqlError	&	other)

Sets	the	error	equal	to	other.

void	QSqlError::setDatabaseText	(const	QString	&	databaseText
)	[virtual]

Sets	the	database	error	text	to	the	value	of	databaseText.

void	QSqlError::setDriverText	(const	QString	&	driverText)
[virtual]

Sets	the	driver	error	text	to	the	value	of	driverText.

void	QSqlError::setNumber	(int	number)	[virtual]

Sets	the	database-specific	error	number	to	the	value	of	number.

void	QSqlError::setType	(int	type)	[virtual]

Sets	the	error	type	to	the	value	of	type.

int	QSqlError::type	()	const

Returns	the	error	type,	or	-1	if	the	type	cannot	be	determined.

See	also	QSqlError::Type.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QWidgetStack
QWidgetStack	 ……

#include	<qwidgetstack.h>

QFrame

QWidgetStack	(QWidget	*	parent	=	0,	const	char	*	name	=	0)
~QWidgetStack	()
int	addWidget	(QWidget	*	w,	int	id	=	-1)
void	removeWidget	(QWidget	*	w)
QWidget	*	widget	(int	id)	const
int	id	(QWidget	*	widget)	const
QWidget	*	visibleWidget	()	const

void	raiseWidget	(int	id)
void	raiseWidget	(QWidget	*	w)

void	aboutToShow	(int)
void	aboutToShow	(QWidget	*)

virtual	void	setChildGeometries	()

n

QWidgetStack

raiseWidget() addWidget()removeWidget()

visibleWidget()raiseWidget()

QWidgetStack id()

QFrame setFrameStyle()

QWidgetStack aboutToShow()

QTabDialogQTabBarQFrame

QWidgetStack::QWidgetStack	(QWidget	*	parent	=	0,
const	char	*	name	=	0)

parentname

QWidgetStack::~QWidgetStack	()

void	QWidgetStack::aboutToShow	(int)	[]

-1

void	QWidgetStack::aboutToShow	(QWidget	*)	[]

int	QWidgetStack::addWidget	(QWidget	*	w,	int	id	=	-1)

w id

id	>=	0-1-1-1

wQWidgetStackQWidgetStack reparent()

xform/xform.cpp

int	QWidgetStack::id	(QWidget	*	widget)	const

widget widget0-1

widget()addWidget()

void	QWidgetStack::raiseWidget	(int	id)	[]

id

visibleWidget()

xform/xform.cpp

void	QWidgetStack::raiseWidget	(QWidget	*	w)	[]

w

void	QWidgetStack::removeWidget	(QWidget	*	w)

www

visibleWidget()raiseWidget()

void	QWidgetStack::setChildGeometries	()	[]

QWidget	*	QWidgetStack::visibleWidget	()	const

0

aboutToShow() id()raiseWidget()

QWidget	*	QWidgetStack::widget	(int	id)	const

id id0

id()addWidget()

Qt		©	1995-2002	 Trolltech

http://www.trolltech.com/

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QColorGroup	Class	Reference
The	QColorGroup	class	contains	a	group	of	widget	colors.	More...

#include	<qpalette.h>

List	of	all	member	functions.

Public	Members

QColorGroup	()
QColorGroup	(const	QColor	&	foreground,	const	QColor	&	background,
const	QColor	&	light,	const	QColor	&	dark,	const	QColor	&	mid,
const	QColor	&	text,	const	QColor	&	base)		(obsolete)
QColorGroup	(const	QBrush	&	foreground,	const	QBrush	&	button,
const	QBrush	&	light,	const	QBrush	&	dark,	const	QBrush	&	mid,
const	QBrush	&	text,	const	QBrush	&	bright_text,	const	QBrush	&	base,
const	QBrush	&	background)
QColorGroup	(const	QColorGroup	&	other)
~QColorGroup	()
QColorGroup	&	operator=	(const	QColorGroup	&	other)
enum	ColorRole	{	Foreground,	Button,	Light,	Midlight,	Dark,	Mid,	Text,
BrightText,	ButtonText,	Base,	Background,	Shadow,	Highlight,
HighlightedText,	Link,	LinkVisited,	NColorRoles	}
const	QColor	&	color	(ColorRole	r)	const
const	QBrush	&	brush	(ColorRole	r)	const
void	setColor	(ColorRole	r,	const	QColor	&	c)
void	setBrush	(ColorRole	r,	const	QBrush	&	b)
const	QColor	&	foreground	()	const
const	QColor	&	button	()	const
const	QColor	&	light	()	const
const	QColor	&	dark	()	const
const	QColor	&	mid	()	const
const	QColor	&	text	()	const
const	QColor	&	base	()	const
const	QColor	&	background	()	const
const	QColor	&	midlight	()	const
const	QColor	&	brightText	()	const
const	QColor	&	buttonText	()	const
const	QColor	&	shadow	()	const
const	QColor	&	highlight	()	const
const	QColor	&	highlightedText	()	const
const	QColor	&	link	()	const
const	QColor	&	linkVisited	()	const
bool	operator==	(const	QColorGroup	&	g)	const

bool	operator!=	(const	QColorGroup	&	g)	const

Related	Functions

QDataStream	&	operator<<	(QDataStream	&	s,	const	QColorGroup	&	g)

Detailed	Description

The	QColorGroup	class	contains	a	group	of	widget	colors.

A	color	group	contains	a	group	of	colors	used	by	widgets	for	drawing
themselves.	We	recommend	that	widgets	use	color	group	roles	such	as
"foreground"	and	"base"	rather	than	literal	colors	like	"red"	or	"turqoise".	The
color	roles	are	enumerated	and	defined	in	the	ColorRole	documentation.

The	most	common	use	of	QColorGroup	is	like	this:

								QPainter	p;

								...

								p.setPen(colorGroup().foreground());

								p.drawLine(...)

				

It	is	also	possible	to	modify	color	groups	or	create	new	color	groups	from
scratch.

The	color	group	class	can	be	created	using	three	different	constructors	or	by
modifying	one	supplied	by	Qt.	The	default	constructor	creates	an	all-black	color
group,	which	can	then	be	modified	using	set	functions;	there's	also	a	constructor
for	specifying	all	the	color	group	colors.	And	there	is	also	a	copy	constructor.

We	strongly	recommend	using	a	system-supplied	color	group	and	modifying	that
as	necessary.

You	modify	a	color	group	by	calling	the	access	functions	setColor()	and
setBrush(),	depending	on	whether	you	want	a	pure	color	or	a	pixmap	pattern.

There	are	also	corresponding	color()	and	brush()	getters,	and	a	commonly	used
convenience	function	to	get	each	ColorRole:	background(),	foreground(),	base(),
etc.

See	also	QColor,	QPalette,	QWidget::colorGroup,	Widget	Appearance	and	Style,
Graphics	Classes	and	Image	Processing	Classes.

Member	Type	Documentation

QColorGroup::ColorRole

The	ColorRole	enum	defines	the	different	symbolic	color	roles	used	in	current
GUIs.

The	central	roles	are:

QColorGroup::Background	-	general	background	color.
QColorGroup::Foreground	-	general	foreground	color.
QColorGroup::Base	-	used	as	background	color	for	text	entry	widgets,	for
example;	usually	white	or	another	light	color.
QColorGroup::Text	-	the	foreground	color	used	with	Base.	Usually	this	is
the	same	as	the	Foreground,	in	which	case	it	must	provide	good	contrast
with	Background	and	Base.
QColorGroup::Button	-	general	button	background	color	in	which	buttons
need	a	background	different	from	Background,	as	in	the	Macintosh	style.
QColorGroup::ButtonText	-	a	foreground	color	used	with	the	Button	color.

There	are	some	color	roles	used	mostly	for	3D	bevel	and	shadow	effects:

QColorGroup::Light	-	lighter	than	Button	color.
QColorGroup::Midlight	-	between	Button	and	Light.
QColorGroup::Dark	-	darker	than	Button.
QColorGroup::Mid	-	between	Button	and	Dark.
QColorGroup::Shadow	-	a	very	dark	color.	By	default,	the	shadow	color	is
Qt::black.

All	of	these	are	normally	derived	from	Background	and	used	in	ways	that
depend	on	that	relationship.	For	example,	buttons	depend	on	it	to	make	the
bevels	look	attractive,	and	Motif	scroll	bars	depend	on	Mid	to	be	slightly
different	from	Background.

Selected	(marked)	items	have	two	roles:

QColorGroup::Highlight	-	a	color	to	indicate	a	selected	or	highlighted
item.	By	default,	the	highlight	color	is	Qt::darkBlue.

QColorGroup::HighlightedText	-	a	text	color	that	contrasts	with
Highlight.	By	default,	the	highlighted	text	color	is	Qt::white.

Finally,	there	is	a	special	role	for	text	that	needs	to	be	drawn	where	Text	or
Foreground	would	give	poor	contrast,	such	as	on	pressed	push	buttons:

QColorGroup::BrightText	-	a	text	color	that	is	very	different	from
Foreground	and	contrasts	well	with	e.g.	Dark.
QColorGroup::Link	-	a	text	color	used	for	unvisited	hyperlinks.	By	default,
the	link	color	is	Qt::blue.
QColorGroup::LinkVisited	-	a	text	color	used	for	already	visited
hyperlinks.	By	default,	the	linkvisited	color	is	Qt::magenta.
QColorGroup::NColorRoles	-	Internal.

Note	that	text	colors	can	be	used	for	things	other	than	just	words;	text	colors	are
usually	used	for	text,	but	it's	quite	common	to	use	the	text	color	roles	for	lines,
icons,	etc.

This	image	shows	most	of	the	color	roles	in	use:

Member	Function	Documentation

QColorGroup::QColorGroup	()

Constructs	a	color	group	with	all	colors	set	to	black.

QColorGroup::QColorGroup	(const	QColor	&	foreground,
const	QColor	&	background,	const	QColor	&	light,
const	QColor	&	dark,	const	QColor	&	mid,
const	QColor	&	text,	const	QColor	&	base)

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Constructs	a	color	group	with	the	specified	colors.	The	button	color	will	be	set	to
the	background	color.

QColorGroup::QColorGroup	(const	QBrush	&	foreground,
const	QBrush	&	button,	const	QBrush	&	light,
const	QBrush	&	dark,	const	QBrush	&	mid,
const	QBrush	&	text,	const	QBrush	&	bright_text,
const	QBrush	&	base,	const	QBrush	&	background)

Constructs	a	color	group.	You	can	pass	either	brushes,	pixmaps	or	plain	colors
for	foreground,	button,	light,	dark,	mid,	text,	bright_text,	base	and	background.

See	also	QBrush.

QColorGroup::QColorGroup	(const	QColorGroup	&	other)

Constructs	a	color	group	that	is	an	independent	copy	of	other.

QColorGroup::~QColorGroup	()

Destroys	the	color	group.

const	QColor	&	QColorGroup::background	()	const

Returns	the	background	color	of	the	color	group.

See	also	ColorRole.

const	QColor	&	QColorGroup::base	()	const

Returns	the	base	color	of	the	color	group.

See	also	ColorRole.

const	QColor	&	QColorGroup::brightText	()	const

Returns	the	bright	text	foreground	color	of	the	color	group.

See	also	ColorRole.

Examples:	themes/metal.cpp	and	themes/wood.cpp.

const	QBrush	&	QColorGroup::brush	(ColorRole	r)	const

Returns	the	brush	that	has	been	set	for	color	role	r.

See	also	color(),	setBrush()	and	ColorRole.

Examples:	themes/metal.cpp	and	themes/wood.cpp.

const	QColor	&	QColorGroup::button	()	const

Returns	the	button	color	of	the	color	group.

See	also	ColorRole.

Examples:	themes/metal.cpp	and	themes/wood.cpp.

const	QColor	&	QColorGroup::buttonText	()	const

Returns	the	button	text	foreground	color	of	the	color	group.

See	also	ColorRole.

Examples:	themes/metal.cpp	and	themes/wood.cpp.

const	QColor	&	QColorGroup::color	(ColorRole	r)	const

Returns	the	color	that	has	been	set	for	color	role	r.

See	also	brush()	and	ColorRole.

const	QColor	&	QColorGroup::dark	()	const

Returns	the	dark	color	of	the	color	group.

See	also	ColorRole.

Example:	themes/wood.cpp.

const	QColor	&	QColorGroup::foreground	()	const

Returns	the	foreground	color	of	the	color	group.

See	also	ColorRole.

Examples:	themes/metal.cpp	and	themes/wood.cpp.

const	QColor	&	QColorGroup::highlight	()	const

Returns	the	highlight	color	of	the	color	group.

See	also	ColorRole.

const	QColor	&	QColorGroup::highlightedText	()	const

Returns	the	highlighted	text	color	of	the	color	group.

See	also	ColorRole.

const	QColor	&	QColorGroup::light	()	const

Returns	the	light	color	of	the	color	group.

See	also	ColorRole.

Example:	themes/wood.cpp.

const	QColor	&	QColorGroup::link	()	const

Returns	the	unvisited	link	text	color	of	the	color	group.

See	also	ColorRole.

const	QColor	&	QColorGroup::linkVisited	()	const

Returns	the	visited	link	text	color	of	the	color	group.

See	also	ColorRole.

const	QColor	&	QColorGroup::mid	()	const

Returns	the	mid	color	of	the	color	group.

See	also	ColorRole.

Examples:	themes/metal.cpp	and	themes/wood.cpp.

const	QColor	&	QColorGroup::midlight	()	const

Returns	the	midlight	color	of	the	color	group.

See	also	ColorRole.

bool	QColorGroup::operator!=	(const	QColorGroup	&	g)	const

Returns	TRUE	if	this	color	group	is	different	from	g;	otherwise	returns	FALSE.

See	also

QColorGroup	&	QColorGroup::operator=	(

const	QColorGroup	&	other)

Copies	the	colors	of	other	to	this	color	group.

bool	QColorGroup::operator==	(const	QColorGroup	&	g)	const

Returns	TRUE	if	this	color	group	is	equal	to	g;	otherwise	returns	FALSE.

See	also

void	QColorGroup::setBrush	(ColorRole	r,	const	QBrush	&	b)

Sets	the	brush	used	for	color	role	r	to	b.

See	also	brush(),	setColor()	and	ColorRole.

Example:	themes/wood.cpp.

void	QColorGroup::setColor	(ColorRole	r,	const	QColor	&	c)

Sets	the	brush	used	for	color	role	r	to	a	solid	color	c.

See	also	brush()	and	ColorRole.

Examples:	listviews/listviews.cpp,	table/statistics/statistics.cpp	and
themes/metal.cpp.

const	QColor	&	QColorGroup::shadow	()	const

Returns	the	shadow	color	of	the	color	group.

See	also	ColorRole.

const	QColor	&	QColorGroup::text	()	const

Returns	the	text	foreground	color	of	the	color	group.

See	also	ColorRole.

Example:	listviews/listviews.cpp.

Related	Functions

QDataStream	&	operator<<	(QDataStream	&	s,
const	QColorGroup	&	g)

Writes	color	group,	g	to	the	stream	s.

See	also	Format	of	the	QDataStream	operators.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QGLColormap	Class	Reference
The	QGLColormap	class	is	used	for	installing	custom	colormaps	into
QGLWidgets.	More...

#include	<qglcolormap.h>

List	of	all	member	functions.

Public	Members

QGLColormap	()
QGLColormap	(const	QGLColormap	&	map)
~QGLColormap	()
QGLColormap	&	operator=	(const	QGLColormap	&	map)
bool	isEmpty	()	const
int	size	()	const
void	detach	()
void	setEntries	(int	count,	const	QRgb	*	colors,	int	base	=	0)
void	setEntry	(int	idx,	QRgb	color)
void	setEntry	(int	idx,	const	QColor	&	color)
QRgb	entryRgb	(int	idx)	const
QColor	entryColor	(int	idx)	const
int	find	(QRgb	color)	const
int	findNearest	(QRgb	color)	const

Detailed	Description

The	QGLColormap	class	is	used	for	installing	custom	colormaps	into
QGLWidgets.

QGLColormap	provides	a	platform	independent	way	of	specifying	and	installing
indexed	colormaps	into	QGLWidgets.	QGLColormap	is	especially	useful	when
using	the	OpenGL	color-index	mode.

Under	X11	you	will	have	to	use	an	X	server	that	supports	either	a	PseudoColor
or	DirectColor	visual	class.	If	your	X	server	currently	only	provides	a
GrayScale,	TrueColor,	StaticColor	or	StaticGray	visual,	you	will	not	be	able	to
allocate	colorcells	for	writing.	If	this	is	the	case,	try	setting	your	X	server	in	8	bit
mode.	It	should	then	provide	you	with	at	least	a	PseudoColor	visual.	Note	that
you	may	experience	colormap	flashing	if	your	X	server	is	running	in	8	bit	mode.

Under	Windows	the	size	of	the	colormap	is	always	set	to	256	colors.	Note	that
under	Windows	you	are	allowed	to	install	colormaps	into	child	widgets.

This	class	uses	explicit	sharing	(see	Shared	Classes).

Example	of	use:

		#include	<qapplication.h>

		#include	<qglcolormap.h>

		int	main()

		{

						QApplication	a(argc,	argv);

						MySuperGLWidget	widget(0);	//	A	QGLWidget	in	color-index	mode

						QGLColormap	colormap;

						//	This	will	fill	the	colormap	with	colors	ranging	from

						//	black	to	white.

						for	(int	i	=	0;	i	<	colormap.size();	i++)

										colormap.setEntry(i,	qRgb(i,	i,	i));

						widget.setColormap(colormap);

						widget.show();

						return	a.exec();

		}

		

See	also	QGLWidget::setColormap(),	QGLWidget::colormap(),	Graphics	Classes
and	Image	Processing	Classes.

Member	Function	Documentation

QGLColormap::QGLColormap	()

Construct	a	QGLColormap.

QGLColormap::QGLColormap	(const	QGLColormap	&	map)

Construct	a	shallow	copy	of	map.

QGLColormap::~QGLColormap	()

Dereferences	the	QGLColormap	and	deletes	it	if	this	was	the	last	reference	to	it.

void	QGLColormap::detach	()

Detaches	this	QGLColormap	from	the	shared	block.

QColor	QGLColormap::entryColor	(int	idx)	const

Returns	the	QRgb	value	in	the	colorcell	with	index	idx.

QRgb	QGLColormap::entryRgb	(int	idx)	const

Returns	the	QRgb	value	in	the	colorcell	with	index	idx.

int	QGLColormap::find	(QRgb	color)	const

Returns	the	index	of	the	color	color.	If	color	is	not	in	the	map,	-1	is	returned.

int	QGLColormap::findNearest	(QRgb	color)	const

Returns	the	index	of	the	color	that	is	the	closest	match	to	color	color.

bool	QGLColormap::isEmpty	()	const

Returns	TRUE	if	the	colormap	is	empty;	otherwise	returns	FALSE.	A	colormap
with	no	color	values	set	is	considered	to	be	empty.

QGLColormap	&	QGLColormap::operator=	(
const	QGLColormap	&	map)

Assign	a	shallow	copy	of	map	to	this	QGLColormap.

void	QGLColormap::setEntries	(int	count,	const	QRgb	*	colors,
int	base	=	0)

Set	an	array	of	cells	in	this	colormap.	count	is	the	number	of	colors	that	should
be	set,	colors	is	the	array	of	colors,	and	base	is	the	starting	index.

void	QGLColormap::setEntry	(int	idx,	QRgb	color)

Set	cell	idx	in	the	colormap	to	color	color.

void	QGLColormap::setEntry	(int	idx,	const	QColor	&	color)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Set	cell	with	index	idx	in	the	colormap	to	color	color.

int	QGLColormap::size	()	const

Returns	the	number	of	colorcells	in	the	colormap.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QNetworkOperation	Class	Reference
The	QNetworkOperation	class	provides	common	operations	for	network
protocols.	More...

#include	<qnetworkprotocol.h>

Inherits	QObject.

List	of	all	member	functions.

Public	Members

QNetworkOperation	(QNetworkProtocol::Operation	operation,
const	QString	&	arg0,	const	QString	&	arg1,	const	QString	&	arg2)
QNetworkOperation	(QNetworkProtocol::Operation	operation,
const	QByteArray	&	arg0,	const	QByteArray	&	arg1,
const	QByteArray	&	arg2)
~QNetworkOperation	()
void	setState	(QNetworkProtocol::State	state)
void	setProtocolDetail	(const	QString	&	detail)
void	setErrorCode	(int	ec)
void	setArg	(int	num,	const	QString	&	arg)
void	setRawArg	(int	num,	const	QByteArray	&	arg)
QNetworkProtocol::Operation	operation	()	const
QNetworkProtocol::State	state	()	const
QString	arg	(int	num)	const
QByteArray	rawArg	(int	num)	const
QString	protocolDetail	()	const
int	errorCode	()	const
void	free	()

Detailed	Description

The	QNetworkOperation	class	provides	common	operations	for	network
protocols.

An	object	is	created	to	describe	the	operation	and	the	current	state	for	each
operation	that	a	network	protocol	should	process.

For	a	detailed	description	of	the	Qt	Network	Architecture	and	how	to	implement
and	use	network	protocols	in	Qt,	see	the	Qt	Network	Documentation.

See	also	QNetworkProtocol	and	Input/Output	and	Networking.

Member	Function	Documentation

QNetworkOperation::QNetworkOperation	(
QNetworkProtocol::Operation	operation,
const	QString	&	arg0,	const	QString	&	arg1,
const	QString	&	arg2)

Constructs	a	network	operation	object.	operation	is	the	type	of	the	operation,	and
arg0,	arg1	and	arg2	are	the	first	three	arguments	of	the	operation.	The	state	is
initialized	to	QNetworkProtocol::StWaiting.

See	also	QNetworkProtocol::Operation	and	QNetworkProtocol::State.

QNetworkOperation::QNetworkOperation	(
QNetworkProtocol::Operation	operation,
const	QByteArray	&	arg0,	const	QByteArray	&	arg1,
const	QByteArray	&	arg2)

Constructs	a	network	operation	object.	operation	is	the	type	of	the	operation,	and
arg0,	arg1	and	arg2	are	the	first	three	raw	data	arguments	of	the	operation.	The
state	is	initialized	to	QNetworkProtocol::StWaiting.

See	also	QNetworkProtocol::Operation	and	QNetworkProtocol::State.

QNetworkOperation::~QNetworkOperation	()

Destructor.

QString	QNetworkOperation::arg	(int	num)	const

Returns	the	operation's	num-th	argument.	If	this	argument	was	not	already	set,	an
empty	string	is	returned.

Examples:	network/ftpclient/ftpmainwindow.cpp	and
network/networkprotocol/nntp.cpp.

int	QNetworkOperation::errorCode	()	const

Returns	the	error	code	for	the	last	error	that	occurred.

Example:	network/ftpclient/ftpmainwindow.cpp.

void	QNetworkOperation::free	()

Sets	this	object	to	delete	itself	when	it	hasn't	been	used	for	one	second.

Because	QNetworkOperation	pointers	are	passed	around	a	lot	the
QNetworkProtocol	generally	does	not	have	enough	knowledge	to	delete	these	at
the	correct	time.	If	a	QNetworkProtocol	doesn't	need	an	operation	any	more	it
will	call	this	function	instead.

Note:	you	should	never	need	to	call	the	method	yourself.

QNetworkProtocol::Operation	QNetworkOperation::operation	()
const

Returns	the	type	of	the	operation.

Example:	network/ftpclient/ftpmainwindow.cpp.

QString	QNetworkOperation::protocolDetail	()	const

Returns	a	detailed	error	message	for	the	last	error.	This	must	have	been	set	using
setProtocolDetail().

Example:	network/ftpclient/ftpmainwindow.cpp.

QByteArray	QNetworkOperation::rawArg	(int	num)	const

Returns	the	operation's	num-th	raw	data	argument.	If	this	argument	was	not
already	set,	an	empty	bytearray	is	returned.

void	QNetworkOperation::setArg	(int	num,	const	QString	&	arg
)

Sets	the	network	operation's	num-th	argument	to	arg.

void	QNetworkOperation::setErrorCode	(int	ec)

Sets	the	error	code	to	ec.

If	the	operation	failed,	the	protocol	should	set	an	error	code	to	describe	the	error
in	more	detail.	If	possible,	one	of	the	error	codes	defined	in	QNetworkProtocol
should	be	used.

See	also	setProtocolDetail()	and	QNetworkProtocol::Error.

void	QNetworkOperation::setProtocolDetail	(
const	QString	&	detail)

If	the	operation	failed,	the	error	message	can	be	specified	as	detail.

void	QNetworkOperation::setRawArg	(int	num,
const	QByteArray	&	arg)

Sets	the	network	operation's	num-th	raw	data	argument	to	arg.

void	QNetworkOperation::setState	(
QNetworkProtocol::State	state)

Sets	the	state	of	the	operation	object.	This	should	be	done	by	the	network
protocol	during	processing;	at	the	end	it	should	be	set	to
QNetworkProtocol::StDone	or	QNetworkProtocol::StFailed,	depending	on
success	or	failure.

See	also	QNetworkProtocol::State.

QNetworkProtocol::State	QNetworkOperation::state	()	const

Returns	the	state	of	the	operation.	You	can	determine	whether	an	operation	is
still	waiting	to	be	processed,	is	being	processed,	has	been	processed	successfully,
or	failed.

Example:	network/ftpclient/ftpmainwindow.cpp.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QSqlField	Class	Reference
[sql	module]

The	QSqlField	class	manipulates	the	fields	in	SQL	database	tables	and	views.
More...

#include	<qsqlfield.h>

List	of	all	member	functions.

Public	Members

QSqlField	(const	QString	&	fieldName	=	QString::null,
QVariant::Type	type	=	QVariant::Invalid)
QSqlField	(const	QSqlField	&	other)
QSqlField	&	operator=	(const	QSqlField	&	other)
bool	operator==	(const	QSqlField	&	other)	const
virtual	~QSqlField	()
virtual	void	setValue	(const	QVariant	&	value)
virtual	QVariant	value	()	const
virtual	void	setName	(const	QString	&	name)
QString	name	()	const
virtual	void	setNull	()
bool	isNull	()	const
virtual	void	setReadOnly	(bool	readOnly)
bool	isReadOnly	()	const
void	clear	(bool	nullify	=	TRUE)
QVariant::Type	type	()	const

Detailed	Description

The	QSqlField	class	manipulates	the	fields	in	SQL	database	tables	and	views.

QSqlField	represents	the	characteristics	of	a	single	column	in	a	database	table	or
view,	such	as	the	data	type	and	column	name.	A	field	also	contains	the	value	of
the	database	column,	which	can	be	viewed	or	changed.

Field	data	values	are	stored	as	QVariants.	Using	an	incompatible	type	is	not
permitted.	For	example:

				QSqlField	f("myfield",	QVariant::Int);

				f.setValue(QPixmap());		//	will	not	work

				

However,	the	field	will	attempt	to	cast	certain	data	types	to	the	field	data	type
where	possible:

				QSqlField	f("myfield",	QVariant::Int);

				f.setValue(QString("123"));	//	casts	QString	to	int

				

QSqlField	objects	are	rarely	created	explicitly	in	application	code.	They	are
usually	accessed	indirectly	through	QSqlRecord	or	QSqlCursor	which	already
contain	a	list	of	fields.	For	example:

				QSqlCursor	cur("Employee");								//	create	cursor	using	the	'Employee'	table

				QSqlField*	f	=	cur.field("name");		//	use	the	'name'	field

				f->setValue("Dave");															//	set	field	value

				...

				

In	practice	we	rarely	need	to	extract	a	pointer	to	a	field	at	all.	The	previous
example	would	normally	be	written:

				QSqlCursor	cur("Employee");

				cur.setValue("name",	"Dave");

				...

				

See	also	Database	Classes.

Member	Function	Documentation

QSqlField::QSqlField	(const	QString	&	fieldName	=
QString::null,	QVariant::Type	type	=	QVariant::Invalid)

Constructs	an	empty	field	called	fieldName	of	type	type.

QSqlField::QSqlField	(const	QSqlField	&	other)

Constructs	a	copy	of	other.

QSqlField::~QSqlField	()	[virtual]

Destroys	the	object	and	frees	any	allocated	resources.

void	QSqlField::clear	(bool	nullify	=	TRUE)

Clears	the	value	of	the	field.	If	the	field	is	read-only,	nothing	happens.	If	nullify
is	TRUE	(the	default),	the	field	is	set	to	NULL.

bool	QSqlField::isNull	()	const

Returns	TRUE	if	the	field	is	currently	null,	otherwise	returns	FALSE.

bool	QSqlField::isReadOnly	()	const

Returns	TRUE	if	the	field's	value	is	read	only,	otherwise	FALSE.

QString	QSqlField::name	()	const

Returns	the	name	of	the	field.

Example:	sql/overview/table4/main.cpp.

QSqlField	&	QSqlField::operator=	(const	QSqlField	&	other)

Sets	the	field	equal	to	other.

bool	QSqlField::operator==	(const	QSqlField	&	other)	const

Returns	TRUE	if	the	field	is	equal	to	other,	otherwise	returns	FALSE.	Fields	are
considered	equal	when	the	following	field	properties	are	the	same:

name()
isNull()
value()
isReadOnly()

void	QSqlField::setName	(const	QString	&	name)	[virtual]

Sets	the	name	of	the	field	to	name.

void	QSqlField::setNull	()	[virtual]

Sets	the	field	to	NULL	and	clears	the	value	using	clear().	If	the	field	is	read-only,
nothing	happens.

See	also	isReadOnly()	and	clear().

void	QSqlField::setReadOnly	(bool	readOnly)	[virtual]

Sets	the	read	only	flag	of	the	field's	value	to	readOnly.

See	also	setValue().

void	QSqlField::setValue	(const	QVariant	&	value)	[virtual]

Sets	the	value	of	the	field	to	value.	If	the	field	is	read-only	(isReadOnly()	returns
TRUE),	nothing	happens.	If	the	data	type	of	value	differs	from	the	field's	current
data	type,	an	attempt	is	made	to	cast	it	to	the	proper	type.	This	preserves	the	data
type	of	the	field	in	the	case	of	assignment,	e.g.	a	QString	to	an	integer	data	type.
For	example:

		QSqlCursor	cur("Employee");																	//	'Employee'	table

		QSqlField*	f	=	cur.field("student_count");		//	an	integer	field

		...

		f->setValue(myLineEdit->text());												//	cast	the	line	edit	text	to	an	integer

		

See	also	isReadOnly().

QVariant::Type	QSqlField::type	()	const

Returns	the	field's	type.

QVariant	QSqlField::value	()	const	[virtual]

Returns	the	internal	value	of	the	field	as	a	QVariant.

Example:	sql/overview/table4/main.cpp.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QWindowsMime	Class	Reference
The	QWindowsMime	class	maps	open-standard	MIME	to	Window	Clipboard
formats.	More...

#include	<qmime.h>

List	of	all	member	functions.

Public	Members

QWindowsMime	()
virtual	~QWindowsMime	()
virtual	const	char	*	convertorName	()	=	0
virtual	int	countCf	()	=	0
virtual	int	cf	(int	index)	=	0
virtual	bool	canConvert	(const	char	*	mime,	int	cf)	=	0
virtual	const	char	*	mimeFor	(int	cf)	=	0
virtual	int	cfFor	(const	char	*	mime)	=	0
virtual	QByteArray	convertToMime	(QByteArray	data,
const	char	*	mime,	int	cf)	=	0
virtual	QByteArray	convertFromMime	(QByteArray	data,
const	char	*	mime,	int	cf)	=	0

Static	Public	Members

void	initialize	()
QPtrList<QWindowsMime>	all	()
QWindowsMime	*	convertor	(const	char	*	mime,	int	cf)
const	char	*	cfToMime	(int	cf)

Detailed	Description

The	QWindowsMime	class	maps	open-standard	MIME	to	Window	Clipboard
formats.

Qt's	drag-and-drop	and	clipboard	facilities	use	the	MIME	standard.	On	X11,	this
maps	trivially	to	the	Xdnd	protocol,	but	on	Windows	although	some	applications
use	MIME	types	to	describe	clipboard	formats,	others	use	arbitrary	non-
standardized	naming	conventions,	or	unnamed	built-in	formats	of	Windows.

By	instantiating	subclasses	of	QWindowsMime	that	provide	conversions
between	Windows	Clipboard	and	MIME	formats,	you	can	convert	proprietary
clipboard	formats	to	MIME	formats.

Qt	has	predefined	support	for	the	following	Windows	Clipboard	formats:

CF_UNICODETEXT	-	converted	to	"text/plain;charset=ISO-10646-UCS-
2"	and	supported	by	QTextDrag.
CF_TEXT	-	converted	to	"text/plain;charset=system"	or	"text/plain"	and
supported	by	QTextDrag.
CF_DIB	-	converted	to	"image/*",	where	*	is	a	Qt	image	format,	and
supported	by	QImageDrag.
CF_HDROP	-	converted	to	"text/uri-list",	and	supported	by	QUriDrag.

An	example	use	of	this	class	would	be	to	map	the	Windows	Metafile	clipboard
format	(CF_METAFILEPICT)	to	and	from	the	MIME	type	"image/x-wmf".	This
conversion	might	simply	be	adding	or	removing	a	header,	or	even	just	passing	on
the	data.	See	the	Drag-and-Drop	documentation	for	more	information	on
choosing	and	definition	MIME	types.

You	can	check	if	a	MIME	type	is	convertible	using	canConvert()	and	can
perform	conversions	with	convertToMime()	and	convertFromMime().

See	also	Drag	And	Drop	Classes,	Input/Output	and	Networking	and
Miscellaneous	Classes.

Member	Function	Documentation

QWindowsMime::QWindowsMime	()

Constructs	a	new	conversion	object,	adding	it	to	the	globally	accessed	list	of
available	convertors.

QWindowsMime::~QWindowsMime	()	[virtual]

Destroys	a	conversion	object,	removing	it	from	the	global	list	of	available
convertors.

QPtrList<QWindowsMime>	QWindowsMime::all	()	[static]

Returns	a	list	of	all	currently	defined	QWindowsMime	objects.

bool	QWindowsMime::canConvert	(const	char	*	mime,	int	cf)
[pure	virtual]

Returns	TRUE	if	the	convertor	can	convert	(both	ways)	between	mime	and	cf;
otherwise	returns	FALSE.

All	subclasses	must	reimplement	this	pure	virtual	function.

int	QWindowsMime::cf	(int	index)	[pure	virtual]

Returns	the	Windows	Clipboard	format	supported	by	this	convertor	that	is
ordinarily	at	position	index.	This	means	that	cf(0)	returns	the	first	Windows
Clipboard	format	supported,	and	cf(countCf()-1)	returns	the	last.	If	index	is	out
of	range	the	return	value	is	undefined.

All	subclasses	must	reimplement	this	pure	virtual	function.

int	QWindowsMime::cfFor	(const	char	*	mime)	[pure	virtual]

Returns	the	Windows	Clipboard	type	used	for	MIME	type	mime,	or	0	if	this
convertor	does	not	support	mime.

All	subclasses	must	reimplement	this	pure	virtual	function.

const	char	*	QWindowsMime::cfToMime	(int	cf)	[static]

Returns	a	MIME	type	for	cf,	or	0	if	none	exists.

QByteArray	QWindowsMime::convertFromMime	(
QByteArray	data,	const	char	*	mime,	int	cf)	[pure	virtual]

Returns	data	converted	from	MIME	type	mime	to	Windows	Clipboard	format	cf.

Note	that	Windows	Clipboard	formats	must	all	be	self-terminating.	The	return
value	may	contain	trailing	data.

All	subclasses	must	reimplement	this	pure	virtual	function.

QByteArray	QWindowsMime::convertToMime	(
QByteArray	data,	const	char	*	mime,	int	cf)	[pure	virtual]

Returns	data	converted	from	Windows	Clipboard	format	cf	to	MIME	type	mime.

Note	that	Windows	Clipboard	formats	must	all	be	self-terminating.	The	input
data	may	contain	trailing	data.

All	subclasses	must	reimplement	this	pure	virtual	function.

QWindowsMime	*	QWindowsMime::convertor	(
const	char	*	mime,	int	cf)	[static]

Returns	the	most-recently	created	QWindowsMime	that	can	convert	between	the
mime	and	cf	formats.	Returns	0	if	no	such	convertor	exists.

const	char	*	QWindowsMime::convertorName	()	[pure	virtual]

Returns	a	name	for	the	convertor.

All	subclasses	must	reimplement	this	pure	virtual	function.

int	QWindowsMime::countCf	()	[pure	virtual]

Returns	the	number	of	Windows	Clipboard	formats	supported	by	this	convertor.

All	subclasses	must	reimplement	this	pure	virtual	function.

void	QWindowsMime::initialize	()	[static]

This	is	an	internal	function.

const	char	*	QWindowsMime::mimeFor	(int	cf)	[pure	virtual]

Returns	the	MIME	type	used	for	Windows	Clipboard	format	cf,	or	0	if	this
convertor	does	not	support	cf.

All	subclasses	must	reimplement	this	pure	virtual	function.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QGLContext	Class	Reference
[OpenGL	module]

The	QGLContext	class	encapsulates	an	OpenGL	rendering	context.	More...

#include	<qgl.h>

Inherits	QGL.

List	of	all	member	functions.

Public	Members

QGLContext	(const	QGLFormat	&	format,	QPaintDevice	*	device)
virtual	~QGLContext	()
virtual	bool	create	(const	QGLContext	*	shareContext	=	0)
bool	isValid	()	const
bool	isSharing	()	const
virtual	void	reset	()
QGLFormat	format	()	const
QGLFormat	requestedFormat	()	const
virtual	void	setFormat	(const	QGLFormat	&	format)
virtual	void	makeCurrent	()
virtual	void	swapBuffers	()	const
QPaintDevice	*	device	()	const
QColor	overlayTransparentColor	()	const

Static	Public	Members

const	QGLContext	*	currentContext	()

Protected	Members

virtual	bool	chooseContext	(const	QGLContext	*	shareContext	=	0)
virtual	void	doneCurrent	()
virtual	int	choosePixelFormat	(void	*	dummyPfd,	HDC	pdc)
virtual	void	*	chooseMacVisual	(GDHandle)
bool	deviceIsPixmap	()	const
bool	windowCreated	()	const
void	setWindowCreated	(bool	on)
bool	initialized	()	const
void	setInitialized	(bool	on)

Detailed	Description

The	QGLContext	class	encapsulates	an	OpenGL	rendering	context.

An	OpenGL*	rendering	context	is	a	complete	set	of	OpenGL	state	variables.

The	context's	format	is	set	in	the	constructor	or	later	with	setFormat().	The
format	options	that	are	actually	set	are	returned	by	format();	the	options	you
asked	for	are	returned	by	requestedFormat().	Note	that	after	a	QGLContext
object	have	been	constructed,	the	actual	OpenGL	context	have	to	be	created	by
explicitly	calling	the	create()	function.	The	makeCurrent()	function	makes	this
context	the	current	rendering	context.	You	can	make	no	context	current	using
doneCurrent().	The	reset()	function	will	reset	the	context	and	make	it	invalid.

You	can	examine	properties	of	the	context	with,	e.g.	isValid(),	isSharing(),
initialized(),	windowCreated()	and	overlayTransparentColor().

If	you're	using	double	buffering	you	can	swap	the	screen	contents	with	the	off-
screen	buffer	using	swapBuffers().

Please	note	that	QGLContext	is	not	thread	safe.

*	OpenGL	is	a	trademark	of	Silicon	Graphics,	Inc.	in	the	United	States	and	other
countries.

See	also	Graphics	Classes	and	Image	Processing	Classes.

Member	Function	Documentation

QGLContext::QGLContext	(const	QGLFormat	&	format,
QPaintDevice	*	device)

Constructs	an	OpenGL	context	for	the	paint	device	device,	which	can	be	a
widget	or	a	pixmap.	The	format	specifies	several	display	options	for	the	context.

If	the	underlying	OpenGL/Window	system	cannot	satisfy	all	the	features
requested	in	format,	the	nearest	subset	of	features	will	be	used.	After	creation,
the	format()	method	will	return	the	actual	format	obtained.

Note	that	after	a	QGLContext	object	have	been	constructed,	create()	have	to	be
called	explicitly	to	create	the	actual	OpenGL	context.	The	context	will	be	invalid
if	it	was	not	possible	to	obtain	a	GL	context	at	all.

See	also	format()	and	isValid().

QGLContext::~QGLContext	()	[virtual]

Destroys	the	OpenGL	context	and	frees	its	resources.

bool	QGLContext::chooseContext	(
const	QGLContext	*	shareContext	=	0)	[virtual	protected]

This	semi-internal	function	is	called	by	create().	It	creates	a	system-dependent
OpenGL	handle	that	matches	the	format()	of	shareContext	as	closely	as	possible.

On	Windows,	it	calls	the	virtual	function	choosePixelFormat(),	which	finds	a
matching	pixel	format	identifier.	On	X11,	it	calls	the	virtual	function
chooseVisual()	which	finds	an	appropriate	X	visual.	On	other	platforms	it	may
work	differently.

int	QGLContext::choosePixelFormat	(void	*	dummyPfd,
HDC	pdc)	[virtual	protected]

Win32	only	This	virtual	function	chooses	a	pixel	format	that	matches	the

OpenGL	format.	Reimplement	this	function	in	a	subclass	if	you	need	a	custom
context.

Warning:	The	dummyPfd	pointer	and	pdc	are	used	as	a
PIXELFORMATDESCRIPTOR*.	We	use	void	to	avoid	using	Windows-specific	types
in	our	header	files.

See	also	chooseContext().

bool	QGLContext::create	(const	QGLContext	*	shareContext	=	0
)	[virtual]

Creates	the	GL	context.	Returns	TRUE	if	it	was	successful	in	creating	a	GL
rendering	context	on	the	paint	device	specified	in	the	constructor;	otherwise
returns	FALSE	(i.e.	the	context	is	invalid).

After	successful	creation,	format()	returns	the	set	of	features	of	the	created	GL
rendering	context.

If	shareContext	points	to	a	valid	QGLContext,	this	method	will	try	to	establish
OpenGL	display	list	sharing	between	this	context	and	the	shareContext.	Note
that	this	may	fail	if	the	two	contexts	have	different	formats.	Use	isSharing()	to
see	if	sharing	succeeded.

Implementation	note:	initialization	of	C++	class	members	usually	takes	place
in	the	class	constructor.	QGLContext	is	an	exception	because	it	must	be	simple
to	customize.	The	virtual	functions	chooseContext()	(and	chooseVisual()	for
X11)	can	be	reimplemented	in	a	subclass	to	select	a	particular	context.	The
problem	is	that	virtual	functions	are	not	properly	called	during	construction
(even	though	this	is	correct	C++)	because	C++	constructs	class	hierarchies	from
the	bottom	up.	For	this	reason	we	need	a	create()	function.

See	also	chooseContext(),	format()	and	isValid().

const	QGLContext	*	QGLContext::currentContext	()	[static]

Returns	the	current	context,	i.e.	the	context	to	which	any	OpenGL	commands
will	currently	be	directed.	Returns	0	if	no	context	is	current.

See	also	makeCurrent().

QPaintDevice	*	QGLContext::device	()	const

Returns	the	paint	device	set	for	this	context.

See	also	QGLContext::QGLContext().

bool	QGLContext::deviceIsPixmap	()	const	[protected]

Returns	TRUE	if	the	paint	device	of	this	context	is	a	pixmap;	otherwise	returns
FALSE.

void	QGLContext::doneCurrent	()	[virtual	protected]

Makes	no	GL	context	the	current	context.	Normally,	you	do	not	need	to	call	this
function;	QGLContext	calls	it	as	necessary.

QGLFormat	QGLContext::format	()	const

Returns	the	frame	buffer	format	that	was	obtained	(this	may	be	a	subset	of	what
was	requested).

See	also	requestedFormat().

bool	QGLContext::initialized	()	const	[protected]

Returns	TRUE	if	this	context	has	been	initialized,	i.e.	if
QGLWidget::initializeGL()	has	been	performed	on	it;	otherwise	returns	FALSE.

See	also	setInitialized().

bool	QGLContext::isSharing	()	const

Returns	TRUE	if	display	list	sharing	with	another	context	was	requested	in	the
create()	call	and	the	GL	system	was	able	to	fulfill	this	request;	otherwise	returns
FALSE.	Note	that	display	list	sharing	might	not	be	supported	between	contexts
with	different	formats.

bool	QGLContext::isValid	()	const

Returns	TRUE	if	a	GL	rendering	context	has	been	successfully	created;
otherwise	returns	FALSE.

void	QGLContext::makeCurrent	()	[virtual]

Makes	this	context	the	current	OpenGL	rendering	context.	All	GL	functions	you
call	operate	on	this	context	until	another	context	is	made	current.

Note	that	under	special	circumstances	the	underlying	call	may	fail,	in	which	case
this	will	not	be	reported	back	to	the	caller.	However,	a	message	is	printed	to
stderr	stating	this.

QColor	QGLContext::overlayTransparentColor	()	const

If	this	context	is	a	valid	context	in	an	overlay	plane,	returns	the	plane's
transparent	color.	Otherwise	returns	an	invalid	color.

The	returned	color's	pixel	value	is	the	index	of	the	transparent	color	in	the
colormap	of	the	overlay	plane.	(Naturally,	the	color's	RGB	values	are
meaningless.)

The	returned	QColor	object	will	generally	work	as	expected	only	when	passed	as
the	argument	to	QGLWidget::qglColor()	or	QGLWidget::qglClearColor().	Under
certain	circumstances	it	can	also	be	used	to	draw	transparent	graphics	with	a
QPainter.	See	the	examples/opengl/overlay_x11	example	for	details.

QGLFormat	QGLContext::requestedFormat	()	const

Returns	the	frame	buffer	format	that	was	originally	requested	in	the	constructor
or	setFormat().

See	also	format().

void	QGLContext::reset	()	[virtual]

Resets	the	context	and	makes	it	invalid.

See	also	create()	and	isValid().

void	QGLContext::setFormat	(const	QGLFormat	&	format)
[virtual]

Sets	a	format	for	this	context.	The	context	is	reset.

Call	create()	to	create	a	new	GL	context	that	tries	to	match	the	new	format.

				QGLContext	*cx;

				//		...

				QGLFormat	f;

				f.setStereo(TRUE);

				cx->setFormat(f);

				if	(!cx->create())

								exit();	//	no	OpenGL	support,	or	cannot	render	on	the	specified	paintdevice

				if	(!cx->format().stereo())

								exit();	//	could	not	create	stereo	context

		

See	also	format(),	reset()	and	create().

void	QGLContext::setInitialized	(bool	on)	[protected]

If	on	is	TRUE	the	context	has	been	initialized,	i.e.	QGLContext::setInitialized()
has	been	called	on	it.	If	on	is	FALSE	the	context	has	not	been	initialized.

See	also	initialized().

void	QGLContext::setWindowCreated	(bool	on)	[protected]

If	on	is	TRUE	the	context	has	had	a	window	created	for	it.	If	on	is	FALSE	no
window	has	been	created	for	the	context.

See	also	windowCreated().

void	QGLContext::swapBuffers	()	const	[virtual]

Swaps	the	screen	contents	with	an	off-screen	buffer.	Works	only	if	the	context	is
in	double	buffer	mode.

See	also	QGLFormat::setDoubleBuffer().

bool	QGLContext::windowCreated	()	const	[protected]

Returns	TRUE	if	a	window	has	been	created	for	this	context;	otherwise	returns
FALSE.

See	also	setWindowCreated().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QNetworkProtocol	Class	Reference
The	QNetworkProtocol	class	provides	a	common	API	for	network	protocols.
More...

#include	<qnetworkprotocol.h>

Inherits	QObject.

Inherited	by	QFtp,	QHttp	and	QLocalFs.

List	of	all	member	functions.

Public	Members

enum	State	{	StWaiting	=	0,	StInProgress,	StDone,	StFailed,	StStopped	}
enum	Operation	{	OpListChildren	=	1,	OpMkDir	=	2,	OpMkdir	=
OpMkDir,	OpRemove	=	4,	OpRename	=	8,	OpGet	=	32,	OpPut	=	64	}
enum	ConnectionState	{	ConHostFound,	ConConnected,	ConClosed	}
enum	Error	{	NoError	=	0,	ErrValid,	ErrUnknownProtocol,
ErrUnsupported,	ErrParse,	ErrLoginIncorrect,	ErrHostNotFound,
ErrListChildren,	ErrListChlidren	=	ErrListChildren,	ErrMkDir,	ErrMkdir	=
ErrMkDir,	ErrRemove,	ErrRename,	ErrGet,	ErrPut,	ErrFileNotExisting,
ErrPermissionDenied	}
QNetworkProtocol	()
virtual	~QNetworkProtocol	()
virtual	void	setUrl	(QUrlOperator	*	u)
virtual	void	setAutoDelete	(bool	b,	int	i	=	10000)
bool	autoDelete	()	const
virtual	int	supportedOperations	()	const
virtual	void	addOperation	(QNetworkOperation	*	op)
QUrlOperator	*	url	()	const
QNetworkOperation	*	operationInProgress	()	const
virtual	void	clearOperationQueue	()
virtual	void	stop	()

Signals

void	data	(const	QByteArray	&	data,	QNetworkOperation	*	op)
void	connectionStateChanged	(int	state,	const	QString	&	data)
void	finished	(QNetworkOperation	*	op)
void	start	(QNetworkOperation	*	op)
void	newChildren	(const	QValueList<QUrlInfo>	&	i,
QNetworkOperation	*	op)
void	newChild	(const	QUrlInfo	&	i,	QNetworkOperation	*	op)
void	createdDirectory	(const	QUrlInfo	&	i,	QNetworkOperation	*	op)
void	removed	(QNetworkOperation	*	op)
void	itemChanged	(QNetworkOperation	*	op)
void	dataTransferProgress	(int	bytesDone,	int	bytesTotal,
QNetworkOperation	*	op)

Static	Public	Members

void	registerNetworkProtocol	(const	QString	&	protocol,
QNetworkProtocolFactoryBase	*	protocolFactory)
QNetworkProtocol	*	getNetworkProtocol	(const	QString	&	protocol)
bool	hasOnlyLocalFileSystem	()

Protected	Members

virtual	void	operationListChildren	(QNetworkOperation	*	op)
virtual	void	operationMkDir	(QNetworkOperation	*	op)
virtual	void	operationRemove	(QNetworkOperation	*	op)
virtual	void	operationRename	(QNetworkOperation	*	op)
virtual	void	operationGet	(QNetworkOperation	*	op)
virtual	void	operationPut	(QNetworkOperation	*	op)
virtual	bool	checkConnection	(QNetworkOperation	*	op)

Detailed	Description

The	QNetworkProtocol	class	provides	a	common	API	for	network	protocols.

This	is	a	base	class	which	should	be	used	for	network	protocols	implementations
that	can	then	be	used	in	Qt	(e.g.	in	the	file	dialog)	together	with	the
QUrlOperator.

The	easiest	way	to	implement	a	new	network	protocol	is	to	reimplement	the
operation*()	methods,	e.g.	operationGet(),	etc.	Only	the	supported	operations
should	be	reimplemented.	To	specify	which	operations	are	supported,	also
reimplement	supportedOperations()	and	return	an	int	that	is	OR'd	together	using
the	supported	operations	from	the	QNetworkProtocol::Operation	enum.

When	you	implement	a	network	protocol	this	way,	it	is	important	to	emit	the
correct	signals.	Also,	always	emit	the	finished()	signal	when	an	operation	is	done
(on	success	and	on	failure).	Qt	relies	on	correctly	emitted	finished()	signals.

For	a	detailed	description	of	the	Qt	Network	Architecture	and	how	to	implement
and	use	network	protocols	in	Qt,	see	the	Qt	Network	Documentation.

See	also	Input/Output	and	Networking.

Member	Type	Documentation

QNetworkProtocol::ConnectionState

When	the	connection	state	of	a	network	protocol	changes	it	emits	the	signal
connectionStateChanged().	The	first	argument	is	one	of	the	following	values:

QNetworkProtocol::ConHostFound	-	Host	has	been	found.
QNetworkProtocol::ConConnected	-	Connection	to	the	host	has	been
established.
QNetworkProtocol::ConClosed	-	Connection	has	been	closed.

QNetworkProtocol::Error

When	an	operation	fails	(finishes	unsuccessfully),	the	QNetworkOperation	of	the
operation	returns	an	error	code	which	has	one	of	the	following	values:

QNetworkProtocol::NoError	-	No	error	occurred.
QNetworkProtocol::ErrValid	-	The	URL	you	are	operating	on	is	not
valid.
QNetworkProtocol::ErrUnknownProtocol	-	There	is	no	protocol
implementation	available	for	the	protocol	of	the	URL	you	are	operating	on
(e.g.	if	the	protocol	is	http	and	no	http	implementation	has	been	registered).
QNetworkProtocol::ErrUnsupported	-	The	operation	is	not	supported	by
the	protocol.
QNetworkProtocol::ErrParse	-	The	URL	could	not	be	parsed	correctly.
QNetworkProtocol::ErrLoginIncorrect	-	You	needed	to	login	but	the
username	or	password	is	wrong.
QNetworkProtocol::ErrHostNotFound	-	The	specified	host	(in	the	URL)
couldn't	be	found.
QNetworkProtocol::ErrListChildren	-	An	error	occurred	while	listing
the	children	(files).
QNetworkProtocol::ErrMkDir	-	An	error	occurred	when	creating	a
directory.
QNetworkProtocol::ErrRemove	-	An	error	occurred	when	removing	a	child
(file).
QNetworkProtocol::ErrRename	-	An	error	occurred	when	renaming	a	child

(file).
QNetworkProtocol::ErrGet	-	An	error	occurred	while	getting	(retrieving)
data.
QNetworkProtocol::ErrPut	-	An	error	occurred	while	putting	(uploading)
data.
QNetworkProtocol::ErrFileNotExisting	-	A	file	which	is	needed	by	the
operation	doesn't	exist.
QNetworkProtocol::ErrPermissionDenied	-	Permission	for	doing	the
operation	has	been	denied.

You	should	also	use	these	error	codes	when	implementing	custom	network
protocols.	If	this	is	not	possible,	you	can	define	your	own	error	codes	by	using
integer	values	that	don't	conflict	with	any	of	these	values.

QNetworkProtocol::Operation

This	enum	lists	the	possible	operations	that	a	network	protocol	can	support.
supportedOperations()	returns	an	int	of	these	that	is	OR'd	together.	Also,	the
type()	of	a	QNetworkOperation	is	always	one	of	these	values.

QNetworkProtocol::OpListChildren	-	List	the	children	of	a	URL,	e.g.	of	a
directory.
QNetworkProtocol::OpMkDir	-	Create	a	directory.
QNetworkProtocol::OpRemove	-	Remove	a	child	(e.g.	a	file).
QNetworkProtocol::OpRename	-	Rename	a	child	(e.g.	a	file).
QNetworkProtocol::OpGet	-	Get	data	from	a	location.
QNetworkProtocol::OpPut	-	Put	data	to	a	location.

QNetworkProtocol::State

This	enum	contains	the	state	that	a	QNetworkOperation	can	have.

QNetworkProtocol::StWaiting	-	The	operation	is	in	the
QNetworkProtocol's	queue	waiting	to	be	prcessed.
QNetworkProtocol::StInProgress	-	The	operation	is	being	processed.
QNetworkProtocol::StDone	-	The	operation	has	been	processed
succesfully.
QNetworkProtocol::StFailed	-	The	operation	has	been	processed	but	an
error	occurred.

QNetworkProtocol::StStopped	-	The	operation	has	been	processed	but	has
been	stopped	before	it	finished,	and	is	waiting	to	be	processed.

Member	Function	Documentation

QNetworkProtocol::QNetworkProtocol	()

Constructor	of	the	network	protocol	base	class.	Does	some	initialization	and
connecting	of	signals	and	slots.

QNetworkProtocol::~QNetworkProtocol	()	[virtual]

Destructor.

void	QNetworkProtocol::addOperation	(
QNetworkOperation	*	op)	[virtual]

Adds	the	operation	op	to	the	operation	queue.	The	operation	will	be	processed	as
soon	as	possible.	This	method	returns	immediately.

bool	QNetworkProtocol::autoDelete	()	const

Returns	TRUE	if	auto-deleting	is	enabled;	otherwise	returns	FALSE.

See	also	QNetworkProtocol::setAutoDelete().

bool	QNetworkProtocol::checkConnection	(
QNetworkOperation	*	op)	[virtual	protected]

For	processing	operations	the	network	protocol	base	class	calls	this	method	quite
often.	This	should	be	reimplemented	by	new	network	protocols.	It	should	return
TRUE	if	the	connection	is	OK	(open);	otherwise	it	should	return	FALSE.	If	the
connection	is	not	open	the	protocol	should	open	it.

If	the	connection	can't	be	opened	(e.g.	because	you	already	tried	but	the	host
couldn't	be	found),	set	the	state	of	op	to	QNetworkProtocol::StFailed	and	emit
the	finished()	signal	with	this	QNetworkOperation	as	argument.

op	is	the	operation	that	needs	an	open	connection.

Example:	network/networkprotocol/nntp.cpp.

void	QNetworkProtocol::clearOperationQueue	()	[virtual]

Clears	the	operation	queue.

void	QNetworkProtocol::connectionStateChanged	(int	state,
const	QString	&	data)	[signal]

This	signal	is	emitted	whenever	the	state	of	the	connection	of	the	network
protocol	is	changed.	state	describes	the	new	state,	which	is	one	of,
ConHostFound,	ConConnected	or	ConClosed.	data	is	a	message	text.

void	QNetworkProtocol::createdDirectory	(const	QUrlInfo	&	i,
QNetworkOperation	*	op)	[signal]

This	signal	is	emitted	when	mkdir()	has	been	succesful	and	the	directory	has
been	created.	i	holds	the	information	about	the	new	directory.	op	is	the	pointer	to
the	operation	object	which	contains	all	the	information	about	the	operation,
including	the	state,	etc.	Using	op->arg(0),	you	can	get	the	file	name	of	the	new
directory.

When	a	protocol	emits	this	signal,	QNetworkProtocol	is	smart	enough	to	let	the
QUrlOperator,	which	is	used	by	the	network	protocol,	emit	its	corresponding
signal.

void	QNetworkProtocol::data	(const	QByteArray	&	data,
QNetworkOperation	*	op)	[signal]

This	signal	is	emitted	when	new	data	has	been	received	after	calling	get()	or
put().	op	holds	the	name	of	the	file	from	which	data	is	retrieved	or	uploaded	in
its	first	argument,	and	the	(raw)	data	in	its	second	argument.	You	can	get	them
with	op->arg(0)	and	op->rawArg(1).	op	is	the	pointer	to	the	operation	object,
which	contains	all	the	information	about	the	operation,	including	the	state,	etc.

When	a	protocol	emits	this	signal,	QNetworkProtocol	is	smart	enough	to	let	the
QUrlOperator	(which	is	used	by	the	network	protocol)	emit	its	corresponding
signal.

void	QNetworkProtocol::dataTransferProgress	(int	bytesDone,
int	bytesTotal,	QNetworkOperation	*	op)	[signal]

This	signal	is	emitted	during	the	transfer	of	data	(using	put()	or	get()).	bytesDone
is	how	many	bytes	of	bytesTotal	have	been	transferred.	bytesTotal	may	be	-1,
which	means	that	the	total	number	of	bytes	is	not	known.	op	is	the	pointer	to	the
operation	object	which	contains	all	the	information	about	the	operation,
including	the	state,	etc.

When	a	protocol	emits	this	signal,	QNetworkProtocol	is	smart	enough	to	let	the
QUrlOperator,	which	is	used	by	the	network	protocol,	emit	its	corresponding
signal.

void	QNetworkProtocol::finished	(QNetworkOperation	*	op)
[signal]

This	signal	is	emitted	when	an	operation	finishes.	This	signal	is	always	emitted,
for	both	success	and	failure.	op	is	the	pointer	to	the	operation	object	which
contains	all	the	information	about	the	operation,	including	the	state,	etc.	Check
the	state	and	error	code	of	the	operation	object	to	determine	whether	or	not	the
operation	was	successful.

When	a	protocol	emits	this	signal,	QNetworkProtocol	is	smart	enough	to	let	the
QUrlOperator,	which	is	used	by	the	network	protocol,	emit	its	corresponding
signal.

QNetworkProtocol	*	QNetworkProtocol::getNetworkProtocol	(
const	QString	&	protocol)	[static]

Static	method	to	get	a	new	instance	of	the	network	protocol	protocol.	For
example,	if	you	need	to	do	some	FTP	operations,	do	the	following:

				QFtp	*ftp	=	QNetworkProtocol::getNetworkProtocol("ftp");

				

This	returns	a	pointer	to	a	new	instance	of	an	ftp	implementation	or	null	if	no
protocol	for	ftp	was	registered.	The	ownership	of	the	pointer	is	transferred	to
you,	so	you	must	delete	it	if	you	don't	need	it	anymore.

Normally	you	should	not	work	directly	with	network	protocols,	so	you	will	not
need	to	call	this	method	yourself.	Instead,	use	QUrlOperator,	which	makes
working	with	network	protocols	much	more	convenient.

See	also	QUrlOperator.

bool	QNetworkProtocol::hasOnlyLocalFileSystem	()	[static]

Returns	TRUE	if	the	only	protocol	registered	is	for	working	on	the	local
filesystem;	returns	FALSE	if	other	network	protocols	are	also	registered.

void	QNetworkProtocol::itemChanged	(
QNetworkOperation	*	op)	[signal]

This	signal	is	emitted	whenever	a	file	which	is	a	child	of	this	URL	has	been
changed,	e.g.	by	successfully	calling	rename().	op	holds	the	original	and	the	new
file	names	in	the	first	and	second	arguments,	accessible	with	op->arg(0)	and
op->arg(1)	respectively.	op	is	the	pointer	to	the	operation	object	which	contains
all	the	information	about	the	operation,	including	the	state,	etc.

When	a	protocol	emits	this	signal,	QNetworkProtocol	is	smart	enough	to	let	the
QUrlOperator,	which	is	used	by	the	network	protocol,	emit	its	corresponding
signal.

void	QNetworkProtocol::newChild	(const	QUrlInfo	&	i,
QNetworkOperation	*	op)	[signal]

This	signal	is	emitted	if	a	new	child	(file)	has	been	read.	QNetworkProtocol
automatically	connects	it	to	a	slot	which	creates	a	list	of	QUrlInfo	objects	(with
just	one	QUrlInfo	i)	and	emits	the	newChildren()	signal	with	this	list.	op	is	the
pointer	to	the	operation	object	which	contains	all	the	information	about	the
operation	that	has	finished,	including	the	state,	etc.

This	is	just	a	convenience	signal	useful	for	implementing	your	own	network
protocol.	In	all	other	cases	connect	to	the	newChildren()	signal	with	its	list	of
QUrlInfo	objects.

void	QNetworkProtocol::newChildren	(

const	QValueList<QUrlInfo>	&	i,	QNetworkOperation	*	op)
[signal]

This	signal	is	emitted	after	listChildren()	was	called	and	new	children	(files)
have	been	read	from	the	list	of	files.	i	holds	the	information	about	the	new
children.	op	is	the	pointer	to	the	operation	object	which	contains	all	the
information	about	the	operation,	including	the	state,	etc.

When	a	protocol	emits	this	signal,	QNetworkProtocol	is	smart	enough	to	let	the
QUrlOperator,	which	is	used	by	the	network	protocol,	emit	its	corresponding
signal.

When	implementing	your	own	network	protocol	and	reading	children,	you
usually	don't	read	one	child	at	once,	but	rather	a	list	of	them.	That's	why	this
signal	takes	a	list	of	QUrlInfo	objects.	If	you	prefer	to	read	just	one	child	at	a
time	you	can	use	the	convenience	signal	newChild(),	which	takes	a	single
QUrlInfo	object.

void	QNetworkProtocol::operationGet	(
QNetworkOperation	*	op)	[virtual	protected]

When	implementing	a	new	network	protocol,	this	method	should	be
reimplemented	if	the	protocol	supports	getting	data;	this	method	should	then
process	the	QNetworkOperation.

When	you	reimplement	this	method	it's	very	important	that	you	emit	the	correct
signals	at	the	correct	time	(especially	the	finished()	signal	after	processing	an
operation).	Take	a	look	at	the	Qt	Network	Documentation	which	describes	in
detail	how	to	reimplement	this	method.	You	may	also	want	to	look	at	the
example	implementation	in	examples/network/networkprotocol/nntp.cpp.

op	is	the	pointer	to	the	operation	object	which	contains	all	the	information	on	the
operation	that	has	finished,	including	the	state,	etc.

Example:	network/networkprotocol/nntp.cpp.

QNetworkOperation	*	QNetworkProtocol::operationInProgress
()	const

Returns	the	operation,	which	is	being	processed,	or	0	of	no	operation	is	being
processed	at	the	moment.

void	QNetworkProtocol::operationListChildren	(
QNetworkOperation	*	op)	[virtual	protected]

When	implementing	a	new	network	protocol,	this	method	should	be
reimplemented	if	the	protocol	supports	listing	children	(files);	this	method
should	then	process	this	QNetworkOperation.

When	you	reimplement	this	method	it's	very	important	that	you	emit	the	correct
signals	at	the	correct	time	(especially	the	finished()	signal	after	processing	an
operation).	Take	a	look	at	the	Qt	Network	Documentation	which	describes	in
detail	how	to	reimplement	this	method.	You	may	also	want	to	look	at	the
example	implementation	in	examples/network/networkprotocol/nntp.cpp.

op	is	the	pointer	to	the	operation	object	which	contains	all	the	information	on	the
operation	that	has	finished,	including	the	state,	etc.

Example:	network/networkprotocol/nntp.cpp.

void	QNetworkProtocol::operationMkDir	(
QNetworkOperation	*	op)	[virtual	protected]

When	implementing	a	new	network	protocol,	this	method	should	be
reimplemented	if	the	protocol	supports	making	directories;	this	method	should
then	process	this	QNetworkOperation.

When	you	reimplement	this	method	it's	very	important	that	you	emit	the	correct
signals	at	the	correct	time	(especially	the	finished()	signal	after	processing	an
operation).	Take	a	look	at	the	Qt	Network	Documentation	which	describes	in
detail	how	to	reimplement	this	method.	You	may	also	want	to	look	at	the
example	implementation	in	examples/network/networkprotocol/nntp.cpp.

op	is	the	pointer	to	the	operation	object	which	contains	all	the	information	on	the
operation	that	has	finished,	including	the	state,	etc.

void	QNetworkProtocol::operationPut	(QNetworkOperation	*	op

)	[virtual	protected]

When	implementing	a	new	network	protocol,	this	method	should	be
reimplemented	if	the	protocol	supports	putting	(uploading)	data;	this	method
should	then	process	the	QNetworkOperation.

When	you	reimplement	this	method	it's	very	important	that	you	emit	the	correct
signals	at	the	correct	time	(especially	the	finished()	signal	after	processing	an
operation).	Take	a	look	at	the	Qt	Network	Documentation	which	describes	in
detail	how	to	reimplement	this	method.	You	may	also	want	to	look	at	the
example	implementation	in	examples/network/networkprotocol/nntp.cpp.

op	is	the	pointer	to	the	operation	object	which	contains	all	the	information	on	the
operation	that	has	finished,	including	the	state,	etc.

void	QNetworkProtocol::operationRemove	(
QNetworkOperation	*	op)	[virtual	protected]

When	implementing	a	new	network	protocol,	this	method	should	be
reimplemented	if	the	protocol	supports	removing	children	(files);	this	method
should	then	process	this	QNetworkOperation.

When	you	reimplement	this	method	it's	very	important	that	you	emit	the	correct
signals	at	the	correct	time	(especially	the	finished()	signal	after	processing	an
operation).	Take	a	look	at	the	Qt	Network	Documentation	which	is	describes	in
detail	how	to	reimplement	this	method.	You	may	also	want	to	look	at	the
example	implementation	in	examples/network/networkprotocol/nntp.cpp.

op	is	the	pointer	to	the	operation	object	which	contains	all	the	information	on	the
operation	that	has	finished,	including	the	state,	etc.

void	QNetworkProtocol::operationRename	(
QNetworkOperation	*	op)	[virtual	protected]

When	implementing	a	new	newtork	protocol,	this	method	should	be
reimplemented	if	the	protocol	supports	renaming	children	(files);	this	method
should	then	process	this	QNetworkOperation.

When	you	reimplement	this	method	it's	very	important	that	you	emit	the	correct

signals	at	the	correct	time	(especially	the	finished()	signal	after	processing	an
operation).	Take	a	look	at	the	Qt	Network	Documentation	which	describes	in
detail	how	to	reimplement	this	method.	You	may	also	want	to	look	at	the
example	implementation	in	examples/network/networkprotocol/nntp.cpp.

op	is	the	pointer	to	the	operation	object	which	contains	all	the	information	on	the
operation	that	has	finished,	including	the	state,	etc.

void	QNetworkProtocol::registerNetworkProtocol	(
const	QString	&	protocol,
QNetworkProtocolFactoryBase	*	protocolFactory)	[static]

Static	method	to	register	a	network	protocol	for	Qt.	For	example,	if	you	have	an
implementation	of	NNTP	(called	Nntp)	which	is	derived	from
QNetworkProtocol,	call:

				QNetworkProtocol::registerNetworkProtocol("nntp",	new	QNetworkProtocolFactory<Nntp>);

				

after	which	your	implementation	is	registered	for	future	nntp	operations.

The	name	of	the	protocol	is	given	in	protocol	and	a	pointer	to	the	protocol
factory	is	given	in	protocolFactory.

void	QNetworkProtocol::removed	(QNetworkOperation	*	op)
[signal]

This	signal	is	emitted	when	remove()	has	been	succesful	and	the	file	has	been
removed.	op	holds	the	file	name	of	the	removed	file	in	the	first	argument,
accessible	with	op->arg(0).	op	is	the	pointer	to	the	operation	object	which
contains	all	the	information	about	the	operation,	including	the	state,	etc.

When	a	protocol	emits	this	signal,	QNetworkProtocol	is	smart	enough	to	let	the
QUrlOperator,	which	is	used	by	the	network	protocol,	emit	its	corresponding
signal.

void	QNetworkProtocol::setAutoDelete	(bool	b,	int	i	=	10000)
[virtual]

Because	it's	sometimes	hard	to	take	care	of	removing	network	protocol

instances,	QNetworkProtocol	provides	an	auto-delete	mechanism.	If	you	set	b	to
TRUE,	the	network	protocol	instance	is	removed	after	it	has	been	inactive	for	i
milliseconds	(i.e.	i	milliseconds	after	the	last	operation	has	been	processed).	If
you	set	b	to	FALSE	the	auto-delete	mechanism	is	switched	off.

If	you	switch	on	auto-delete,	the	QNetworkProtocol	also	deletes	its
QUrlOperator.

void	QNetworkProtocol::setUrl	(QUrlOperator	*	u)	[virtual]

Sets	the	QUrlOperator,	on	which	the	protocol	works,	to	u.

See	also	QUrlOperator.

void	QNetworkProtocol::start	(QNetworkOperation	*	op)
[signal]

Some	operations	(such	as	listChildren())	emit	this	signal	when	they	start
processing	the	operation.	op	is	the	pointer	to	the	operation	object	which	contains
all	the	information	about	the	operation,	including	the	state,	etc.

When	a	protocol	emits	this	signal,	QNetworkProtocol	is	smart	enough	to	let	the
QUrlOperator,	which	is	used	by	the	network	protocol,	emit	its	corresponding
signal.

void	QNetworkProtocol::stop	()	[virtual]

Stops	the	current	operation	that	is	being	processed	and	clears	all	waiting
operations.

int	QNetworkProtocol::supportedOperations	()	const	[virtual]

Returns	an	int	that	is	OR'd	together	using	the	enum	values	of
QNetworkProtocol::Operation,	which	describes	which	operations	are	supported
by	the	network	protocol.	Should	be	reimplemented	by	new	network	protocols.

Example:	network/networkprotocol/nntp.cpp.

QUrlOperator	*	QNetworkProtocol::url	()	const

Returns	the	QUrlOperator	on	which	the	protocol	works.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QSqlFieldInfo	Class	Reference
[sql	module]

The	QSqlFieldInfo	class	stores	meta	data	associated	with	a	SQL	field.	More...

#include	<qsqlfield.h>

List	of	all	member	functions.

Public	Members

QSqlFieldInfo	(const	QString	&	name	=	QString::null,	QVariant::Type	typ
=	QVariant::Invalid,	int	required	=	-1,	int	len	=	-1,	int	prec	=	-1,
const	QVariant	&	defValue	=	QVariant	(),	int	typeID	=	0,	bool	generated	=
TRUE,	bool	trim	=	FALSE,	bool	calculated	=	FALSE)
QSqlFieldInfo	(const	QSqlFieldInfo	&	other)
QSqlFieldInfo	(const	QSqlField	&	other,	bool	generated	=	TRUE)
virtual	~QSqlFieldInfo	()
QSqlFieldInfo	&	operator=	(const	QSqlFieldInfo	&	other)
bool	operator==	(const	QSqlFieldInfo	&	f)	const
QSqlField	toField	()	const
int	isRequired	()	const
QVariant::Type	type	()	const
int	length	()	const
int	precision	()	const
QVariant	defaultValue	()	const
QString	name	()	const
int	typeID	()	const
bool	isGenerated	()	const
bool	isTrim	()	const
bool	isCalculated	()	const
virtual	void	setTrim	(bool	trim)
virtual	void	setGenerated	(bool	gen)
virtual	void	setCalculated	(bool	calc)

Detailed	Description

The	QSqlFieldInfo	class	stores	meta	data	associated	with	a	SQL	field.

QSqlFieldInfo	objects	only	store	meta	data;	field	values	are	stored	in	QSqlField
objects.

All	values	must	be	set	in	the	constructor,	and	may	be	retrieved	using
isRequired(),	type(),	length(),	precision(),	defaultValue(),	name(),	isGenerated()
and	typeID().

See	also	Database	Classes.

Member	Function	Documentation

QSqlFieldInfo::QSqlFieldInfo	(const	QString	&	name	=
QString::null,	QVariant::Type	typ	=	QVariant::Invalid,
int	required	=	-1,	int	len	=	-1,	int	prec	=	-1,
const	QVariant	&	defValue	=	QVariant	(),	int	typeID	=	0,
bool	generated	=	TRUE,	bool	trim	=	FALSE,	bool	calculated	=
FALSE)

Constructs	a	QSqlFieldInfo	with	the	following	parameters:

name	the	name	of	the	field.
typ	the	field's	type	in	a	QVariant.
required	greater	than	0	if	the	field	is	required,	0	if	its	value	can	be	NULL
and	less	than	0	if	it	cannot	be	determined	whether	the	field	is	required	or
not.
len	the	length	of	the	field.	Note	that	for	non-character	types	some	databases
return	either	the	length	in	bytes	or	the	number	of	digits.	-1	signifies	that	the
length	cannot	be	determined.
prec	the	precision	of	the	field,	or	-1	if	the	field	has	no	precision	or	it	cannot
be	determined.
defValue	the	default	value	that	is	inserted	into	the	table	if	none	is	specified
by	the	user.	QVariant()	if	there	is	no	default	value	or	it	cannot	be
determined.
typeID	the	internal	typeID	of	the	database	system	(only	useful	for	low-level
programming).	0	if	unknown.
generated	TRUE	indicates	that	this	field	should	be	included	in	auto-
generated	SQL	statments,	e.g.	in	QSqlCursor.
trim	TRUE	indicates	that	widgets	should	remove	trailing	whitespace	from
character	fields.	This	does	not	affect	the	field	value	but	only	its
representation	inside	widgets.
calculated	TRUE	indicates	that	the	value	of	this	field	is	calculated.	The
value	of	calculated	fields	can	by	modified	by	subclassing	QSqlCursor	and
overriding	QSqlCursor::calculateField().

QSqlFieldInfo::QSqlFieldInfo	(const	QSqlFieldInfo	&	other)

Constructs	a	copy	of	other.

QSqlFieldInfo::QSqlFieldInfo	(const	QSqlField	&	other,
bool	generated	=	TRUE)

Creates	a	QSqlFieldInfo	object	with	the	type	and	the	name	of	the	QSqlField
other.	If	generated	is	TRUE	this	field	will	be	included	in	auto-generated	SQL
statments,	e.g.	in	QSqlCursor.

QSqlFieldInfo::~QSqlFieldInfo	()	[virtual]

Destroys	the	object	and	frees	any	allocated	resources.

QVariant	QSqlFieldInfo::defaultValue	()	const

Returns	the	default	value	of	this	field	or	an	empty	QVariant	if	the	field	has	no
default	value	or	the	value	couldn't	be	determined.	The	default	value	is	the	value
inserted	in	the	database	when	it	was	not	explicitly	specified	by	the	user.

bool	QSqlFieldInfo::isCalculated	()	const

Returns	TRUE	if	the	field	is	calculated.

See	also	setCalculated().

bool	QSqlFieldInfo::isGenerated	()	const

Returns	TRUE	if	this	field	should	be	included	in	auto-generated	SQL	statments,
e.g.	in	QSqlCursor;	otherwise	returns	FALSE.

See	also	setGenerated().

int	QSqlFieldInfo::isRequired	()	const

Returns	a	value	greater	than	0	if	the	field	is	required	(NULL	values	are	not
allowed),	0	if	it	isn't	required	(NULL	values	are	allowed)	or	less	than	0	if	it
cannot	be	determined	whether	the	field	is	required	or	not.

bool	QSqlFieldInfo::isTrim	()	const

Returns	TRUE	if	trailing	whitespace	should	be	removed	from	character	fields.

See	also	setTrim().

int	QSqlFieldInfo::length	()	const

Returns	the	length	of	this	field.	For	fields	storing	text	the	return	value	is	the
maximum	number	of	characters	the	field	can	hold.	For	non-character	fields	some
database	systems	return	the	number	of	bytes	needed	or	the	number	of	digits
allowed.	If	the	length	cannot	be	determined	-1	is	returned.

QString	QSqlFieldInfo::name	()	const

Returns	the	name	of	the	field	in	the	SQL	table.

Examples:	sql/overview/subclass3/main.cpp	and
sql/overview/subclass4/main.cpp.

QSqlFieldInfo	&	QSqlFieldInfo::operator=	(
const	QSqlFieldInfo	&	other)

Assigns	other	to	this	field	info	and	returns	a	reference	to	it.

bool	QSqlFieldInfo::operator==	(const	QSqlFieldInfo	&	f)	const

Returns	TRUE	if	this	fieldinfo	is	equal	to	f;	otherwise	returns	FALSE.

Two	field	infos	are	considered	equal	when	all	their	attributes	match.

int	QSqlFieldInfo::precision	()	const

Returns	the	precision	of	this	field	or	-1	if	the	field	has	no	precision	or	it	cannot
be	determined.

void	QSqlFieldInfo::setCalculated	(bool	calc)	[virtual]

calc	set	to	TRUE	indicates	that	this	field	is	a	calculated	field.	The	value	of
calculated	fields	can	by	modified	by	subclassing	QSqlCursor	and	overriding
QSqlCursor::calculateField().

See	also	isCalculated().

void	QSqlFieldInfo::setGenerated	(bool	gen)	[virtual]

gen	set	to	FALSE	indicates	that	this	field	should	not	appear	in	auto-generated
SQL	statements	(for	example	in	QSqlCursor).

See	also	isGenerated().

void	QSqlFieldInfo::setTrim	(bool	trim)	[virtual]

If	trim	is	TRUE	widgets	should	remove	trailing	whitespace	from	character
fields.	This	does	not	affect	the	field	value	but	only	its	representation	inside
widgets.

See	also	isTrim().

QSqlField	QSqlFieldInfo::toField	()	const

Returns	an	empty	QSqlField	based	on	the	information	in	this	QSqlFieldInfo.

QVariant::Type	QSqlFieldInfo::type	()	const

Returns	the	type	of	this	field	or	QVariant::Invalid	if	the	type	is	unknown.

int	QSqlFieldInfo::typeID	()	const

Returns	the	internal	type	identifier	as	returned	from	the	database	system.	The
return	value	is	0	if	the	type	is	unknown.

Warning:	This	information	is	only	useful	for	low-level	database	programming
and	is	not	database	independent.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights

http://www.trolltech.com/

Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QWindowsStyle	Class	Reference
The	QWindowsStyle	class	provides	a	Microsoft	Windows-like	look	and	feel.
More...

#include	<qwindowsstyle.h>

Inherits	QCommonStyle.

Inherited	by	QPlatinumStyle.

List	of	all	member	functions.

Public	Members

QWindowsStyle	()

Detailed	Description

The	QWindowsStyle	class	provides	a	Microsoft	Windows-like	look	and	feel.

This	style	is	Qt's	default	GUI	style	on	Windows.

See	also	Widget	Appearance	and	Style.

Member	Function	Documentation

QWindowsStyle::QWindowsStyle	()

Constructs	a	QWindowsStyle

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QGLFormat	Class	Reference
[OpenGL	module]

The	QGLFormat	class	specifies	the	display	format	of	an	OpenGL	rendering
context.	More...

#include	<qgl.h>

Inherits	QGL.

List	of	all	member	functions.

Public	Members

QGLFormat	()
QGLFormat	(int	options,	int	plane	=	0)
bool	doubleBuffer	()	const
void	setDoubleBuffer	(bool	enable)
bool	depth	()	const
void	setDepth	(bool	enable)
bool	rgba	()	const
void	setRgba	(bool	enable)
bool	alpha	()	const
void	setAlpha	(bool	enable)
bool	accum	()	const
void	setAccum	(bool	enable)
bool	stencil	()	const
void	setStencil	(bool	enable)
bool	stereo	()	const
void	setStereo	(bool	enable)
bool	directRendering	()	const
void	setDirectRendering	(bool	enable)
bool	hasOverlay	()	const
void	setOverlay	(bool	enable)
int	plane	()	const
void	setPlane	(int	plane)
void	setOption	(FormatOption	opt)
bool	testOption	(FormatOption	opt)	const

Static	Public	Members

QGLFormat	defaultFormat	()
void	setDefaultFormat	(const	QGLFormat	&	f)
QGLFormat	defaultOverlayFormat	()
void	setDefaultOverlayFormat	(const	QGLFormat	&	f)
bool	hasOpenGL	()
bool	hasOpenGLOverlays	()

Detailed	Description

The	QGLFormat	class	specifies	the	display	format	of	an	OpenGL	rendering
context.

A	display	format	has	several	characteristics:

Double	or	single	buffering.
Depth	buffer.
RGBA	or	color	index	mode.
Alpha	channel.
Accumulation	buffer.
Stencil	buffer.
Stereo	buffers.
Direct	rendering.
Presence	of	an	overlay.
The	plane	of	an	overlay	format.

You	create	and	tell	a	QGLFormat	object	what	rendering	options	you	want	from
an	OpenGL*	rendering	context.

OpenGL	drivers	or	accelerated	hardware	may	or	may	not	support	advanced
features	such	as	alpha	channel	or	stereographic	viewing.	If	you	request	some
features	that	the	driver/hardware	does	not	provide	when	you	create	a
QGLWidget,	you	will	get	a	rendering	context	with	the	nearest	subset	of	features.

There	are	different	ways	to	define	the	display	characteristics	of	a	rendering
context.	One	is	to	create	a	QGLFormat	and	make	it	default	for	the	entire
application:

				QGLFormat	f;

				f.setAlpha(TRUE);

				f.setStereo(TRUE);

				QGLFormat::setDefaultFormat(f);

		

Or	you	can	specify	the	desired	format	when	creating	an	object	of	your
QGLWidget	subclass:

				QGLFormat	f;

				f.setDoubleBuffer(FALSE);																	//	single	buffer

				f.setDirectRendering(FALSE);														//	software	rendering

				MyGLWidget*	myWidget	=	new	MyGLWidget(f,	...);

		

After	the	widget	has	been	created,	you	can	find	out	which	of	the	requested
features	the	system	was	able	to	provide:

				QGLFormat	f;

				f.setOverlay(TRUE);

				f.setStereo(TRUE);

				MyGLWidget*	myWidget	=	new	MyGLWidget(f,	...);

				if	(!w->format().stereo())	{

								//	ok,	goggles	off

								if	(!w->format().hasOverlay())	{

												qFatal("Cool	hardware	required");

								}

				}

		

*	OpenGL	is	a	trademark	of	Silicon	Graphics,	Inc.	in	the	United	States	and	other
countries.

See	also	QGLContext,	QGLWidget,	Graphics	Classes	and	Image	Processing
Classes.

Member	Function	Documentation

QGLFormat::QGLFormat	()

Constructs	a	QGLFormat	object	with	the	factory	default	settings:

Double	buffer:	Enabled.
Depth	buffer:	Enabled.
RGBA:	Enabled	(i.e.,	color	index	disabled).
Alpha	channel:	Disabled.
Accumulator	buffer:	Disabled.
Stencil	buffer:	Disabled.
Stereo:	Disabled.
Direct	rendering:	Enabled.
Overlay:	Disabled.
Plane:	0	(i.e.,	normal	plane).

QGLFormat::QGLFormat	(int	options,	int	plane	=	0)

Creates	a	QGLFormat	object	that	is	a	copy	of	the	current	application	default
format.

If	options	is	not	0,	this	copy	is	modified	by	these	format	options.	The	options
parameter	should	be	FormatOption	values	OR'ed	together.

This	constructor	makes	it	easy	to	specify	a	certain	desired	format	in	classes
derived	from	QGLWidget,	for	example:

				//	The	rendering	in	MyGLWidget	depends	on	using

				//	stencil	buffer	and	alpha	channel

				MyGLWidget::MyGLWidget(QWidget*	parent,	const	char*	name)

								:	QGLWidget(QGLFormat(StencilBuffer	|	AlphaChannel),	parent,	name)

				{

						if	(!format().stencil())

								qWarning("Could	not	get	stencil	buffer;	results	will	be	suboptimal");

						if	(!format().alphaChannel())

								qWarning("Could	not	get	alpha	channel;	results	will	be	suboptimal");

						...

			}

		

Note	that	there	are	FormatOption	values	to	turn	format	settings	both	on	and	off,
e.g.	DepthBuffer	and	NoDepthBuffer,	DirectRendering	and	IndirectRendering,
etc.

The	plane	parameter	defaults	to	0	and	is	the	plane	which	this	format	should	be
associated	with.	Not	all	OpenGL	implmentations	supports	overlay/underlay
rendering	planes.

See	also	defaultFormat()	and	setOption().

bool	QGLFormat::accum	()	const

Returns	TRUE	if	the	accumulation	buffer	is	enabled;	otherwise	returns	FALSE.
The	accumulation	buffer	is	disabled	by	default.

See	also	setAccum().

bool	QGLFormat::alpha	()	const

Returns	TRUE	if	the	alpha	channel	of	the	framebuffer	is	enabled;	otherwise
returns	FALSE.	The	alpha	channel	is	disabled	by	default.

See	also	setAlpha().

QGLFormat	QGLFormat::defaultFormat	()	[static]

Returns	the	default	QGLFormat	for	the	application.	All	QGLWidgets	that	are
created	use	this	format	unless	another	format	is	specified,	e.g.	when	they	are
constructed.

If	no	special	default	format	has	been	set	using	setDefaultFormat(),	the	default
format	is	the	same	as	that	created	with	QGLFormat().

See	also	setDefaultFormat().

QGLFormat	QGLFormat::defaultOverlayFormat	()	[static]

Returns	the	default	QGLFormat	for	overlay	contexts.

The	factory	default	overlay	format	is:

Double	buffer:	Disabled.
Depth	buffer:	Disabled.
RGBA:	Disabled	(i.e.,	color	index	enabled).
Alpha	channel:	Disabled.
Accumulator	buffer:	Disabled.
Stencil	buffer:	Disabled.
Stereo:	Disabled.
Direct	rendering:	Enabled.
Overlay:	Disabled.
Plane:	1	(i.e.,	first	overlay	plane).

See	also	setDefaultFormat().

bool	QGLFormat::depth	()	const

Returns	TRUE	if	the	depth	buffer	is	enabled;	otherwise	returns	FALSE.	The
depth	buffer	is	enabled	by	default.

See	also	setDepth().

bool	QGLFormat::directRendering	()	const

Returns	TRUE	if	direct	rendering	is	enabled;	otherwise	returns	FALSE.

Direct	rendering	is	enabled	by	default.

See	also	setDirectRendering().

bool	QGLFormat::doubleBuffer	()	const

Returns	TRUE	if	double	buffering	is	enabled;	otherwise	returns	FALSE.	Double
buffering	is	enabled	by	default.

See	also	setDoubleBuffer().

bool	QGLFormat::hasOpenGL	()	[static]

Returns	TRUE	if	the	window	system	has	any	OpenGL	support;	otherwise	returns
FALSE.

Note:	this	function	must	not	be	called	until	the	QApplication	object	has	been
created.

bool	QGLFormat::hasOpenGLOverlays	()	[static]

Returns	TRUE	if	the	window	system	supports	OpenGL	overlays;	otherwise
returns	FALSE.

Note:	this	function	must	not	be	called	until	the	QApplication	object	has	been
created.

bool	QGLFormat::hasOverlay	()	const

Returns	TRUE	if	overlay	plane	is	enabled;	otherwise	returns	FALSE.

Overlay	is	disabled	by	default.

See	also	setOverlay().

int	QGLFormat::plane	()	const

Returns	the	plane	of	this	format.	The	default	for	normal	formats	is	0,	which
means	the	normal	plane.	The	default	for	overlay	formats	is	1,	which	is	the	first
overlay	plane.

See	also	setPlane().

bool	QGLFormat::rgba	()	const

Returns	TRUE	if	RGBA	color	mode	is	set.	Returns	FALSE	if	color	index	mode
is	set.	The	default	color	mode	is	RGBA.

See	also	setRgba().

void	QGLFormat::setAccum	(bool	enable)

If	enable	is	TRUE	enables	the	accumulation	buffer;	otherwise	disables	the
accumulation	buffer.

The	accumulation	buffer	is	disabled	by	default.

The	accumulation	buffer	is	used	for	create	blur	effects	and	multiple	exposures.

See	also	accum().

void	QGLFormat::setAlpha	(bool	enable)

If	enable	is	TRUE	enables	the	alpha	channel;	otherwise	disables	the	alpha
channel.

The	alpha	buffer	is	disabled	by	default.

The	alpha	channel	is	typically	used	for	implementing	transparency	or
translucency.	The	A	in	RGBA	specifies	the	transparency	of	a	pixel.

See	also	alpha().

void	QGLFormat::setDefaultFormat	(const	QGLFormat	&	f)
[static]

Sets	a	new	default	QGLFormat	for	the	application	to	f.	For	example,	to	set	single
buffering	as	the	default	instead	of	double	buffering,	your	main()	can	contain
code	like	this:

				QApplication	a(argc,	argv);

				QGLFormat	f;

				f.setDoubleBuffer(FALSE);

				QGLFormat::setDefaultFormat(f);

		

See	also	defaultFormat().

void	QGLFormat::setDefaultOverlayFormat	(
const	QGLFormat	&	f)	[static]

Sets	a	new	default	QGLFormat	for	overlay	contexts	to	f.	This	format	is	used

whenever	a	QGLWidget	is	created	with	a	format	that	hasOverlay()	enabled.

For	example,	to	get	a	double	buffered	overlay	context	(if	available),	use	code
like	this:

				QGLFormat	f	=	QGLFormat::defaultOverlayFormat();

				f.setDoubleBuffer(TRUE);

				QGLFormat::setDefaultOverlayFormat(f);

		

As	usual,	you	can	find	out	after	widget	creation	whether	the	underlying	OpenGL
system	was	able	to	provide	the	requested	specification:

				//	...continued	from	above

				MyGLWidget*	myWidget	=	new	MyGLWidget(QGLFormat(QGL::HasOverlay

				if	(myWidget->format().hasOverlay())	{

						//	Yes,	we	got	an	overlay,	let's	check	_its_	format:

						QGLContext*	olContext	=	myWidget->overlayContext();

						if	(olContext->format().doubleBuffer())

									;	//	yes,	we	got	a	double	buffered	overlay

						else

									;	//	no,	only	single	buffered	overlays	are	available

				}

		

See	also	defaultOverlayFormat().

void	QGLFormat::setDepth	(bool	enable)

If	enable	is	true	enables	the	depth	buffer;	otherwise	disables	the	depth	buffer.

The	depth	buffer	is	enabled	by	default.

The	purpose	of	a	depth	buffer	(or	z-buffering)	is	to	remove	hidden	surfaces.
Pixels	are	assigned	z	values	based	on	the	distance	to	the	viewer.	A	pixel	with	a
high	z	value	is	closer	to	the	viewer	than	a	pixel	with	a	low	z	value.	This
information	is	used	to	decide	whether	to	draw	a	pixel	or	not.

See	also	depth().

void	QGLFormat::setDirectRendering	(bool	enable)

If	enable	is	TRUE	enables	direct	rendering;	otherwise	disables	direct	rendering.

Direct	rendering	is	enabled	by	default.

Enabling	this	option	will	make	OpenGL	bypass	the	underlying	window	system
and	render	directly	from	hardware	to	the	screen,	if	this	is	supported	by	the
system.

See	also	directRendering().

void	QGLFormat::setDoubleBuffer	(bool	enable)

If	enable	is	true	sets	double	buffering;	otherwise	sets	single	buffering.

Double	buffering	is	enabled	by	default.

Double	buffering	is	a	technique	where	graphics	are	rendered	on	an	off-screen
buffer	and	not	directly	to	the	screen.	When	the	drawing	has	been	completed,	the
program	calls	a	swapBuffers	function	to	exchange	the	screen	contents	with	the
buffer.	The	result	is	flicker-free	drawing	and	often	better	performance.

See	also	doubleBuffer(),	QGLContext::swapBuffers()	and
QGLWidget::swapBuffers().

void	QGLFormat::setOption	(FormatOption	opt)

Sets	the	format	option	to	opt.

See	also	testOption().

void	QGLFormat::setOverlay	(bool	enable)

If	enable	is	TRUE	enables	an	overlay	plane;	otherwise	disables	the	overlay
plane.

Enabling	the	overlay	plane	will	cause	QGLWidget	to	create	an	additional	context
in	an	overlay	plane.	See	the	QGLWidget	documentation	for	further	information.

See	also	hasOverlay().

void	QGLFormat::setPlane	(int	plane)

Sets	the	requested	plane	to	plane.	0	is	the	normal	plane,	1	is	the	first	overlay
plane,	2	is	the	second	overlay	plane,	etc.;	-1,	-2,	etc.	are	underlay	planes.

Note	that	in	contrast	to	other	format	specifications,	the	plane	specifications	will
be	matched	exactly.	This	means	that	if	you	specify	a	plane	that	the	underlying
OpenGL	system	cannot	provide,	an	invalidQGLWidget	will	be	created.

See	also	plane().

void	QGLFormat::setRgba	(bool	enable)

If	enable	is	TRUE	sets	RGBA	mode.	If	enable	is	FALSE	sets	color	index	mode.

The	default	color	mode	is	RGBA.

RGBA	is	the	preferred	mode	for	most	OpenGL	applications.	In	RGBA	color
mode	you	specify	colors	as	red	+	green	+	blue	+	alpha	quadruplets.

In	color	index	mode	you	specify	an	index	into	a	color	lookup	table.

See	also	rgba().

void	QGLFormat::setStencil	(bool	enable)

If	enable	is	TRUE	enables	the	stencil	buffer;	otherwise	disables	the	stencil
buffer.

The	stencil	buffer	is	disabled	by	default.

The	stencil	buffer	masks	certain	parts	of	the	drawing	area	so	that	masked	parts
are	not	drawn	on.

See	also	stencil().

void	QGLFormat::setStereo	(bool	enable)

If	enable	is	TRUE	enables	stereo	buffering;	otherwise	disables	stereo	buffering.

Stereo	buffering	is	disabled	by	default.

Stereo	buffering	provides	extra	color	buffers	to	generate	left-eye	and	right-eye
images.

See	also	stereo().

bool	QGLFormat::stencil	()	const

Returns	TRUE	if	the	stencil	buffer	is	enabled;	otherwise	returns	FALSE.	The
stencil	buffer	is	disabled	by	default.

See	also	setStencil().

bool	QGLFormat::stereo	()	const

Returns	TRUE	if	stereo	buffering	is	enabled;	otherwise	returns	FALSE.	Stereo
buffering	is	disabled	by	default.

See	also	setStereo().

bool	QGLFormat::testOption	(FormatOption	opt)	const

Returns	TRUE	if	format	option	opt	is	set;	otherwise	returns	FALSE.

See	also	setOption().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QNPInstance	Class	Reference
The	QNPInstance	class	provides	a	QObject	that	is	a	Web-browser	plugin.

This	class	is	part	of	the	Qt	NSPlugin	Extension.	More...

#include	<qnp.h>

Inherits	QObject.

List	of	all	member	functions.

Public	Members

~QNPInstance	()
int	argc	()	const
const	char	*	argn	(int	i)	const
const	char	*	argv	(int	i)	const
enum	Reason	{	ReasonDone	=	0,	ReasonBreak	=	1,	ReasonError	=	2,
ReasonUnknown	=	-1	}
const	char	*	arg	(const	char	*	name)	const
enum	InstanceMode	{	Embed	=	1,	Full	=	2,	Background	=	3	}
InstanceMode	mode	()	const
const	char	*	userAgent	()	const
virtual	QNPWidget	*	newWindow	()
QNPWidget	*	widget	()
enum	StreamMode	{	Normal	=	1,	Seek	=	2,	AsFile	=	3,	AsFileOnly	=	4	}
virtual	bool	newStreamCreated	(QNPStream	*,	StreamMode	&	smode)
virtual	int	writeReady	(QNPStream	*)
virtual	int	write	(QNPStream	*,	int	offset,	int	len,	void	*	buffer)
virtual	void	streamDestroyed	(QNPStream	*)
void	status	(const	char	*	msg)
void	getURLNotify	(const	char	*	url,	const	char	*	window	=	0,	void	*	data
=	0)
void	getURL	(const	char	*	url,	const	char	*	window	=	0)
void	postURL	(const	char	*	url,	const	char	*	window,	uint	len,
const	char	*	buf,	bool	file)
QNPStream	*	newStream	(const	char	*	mimetype,	const	char	*	window,
bool	as_file	=	FALSE)
virtual	void	streamAsFile	(QNPStream	*,	const	char	*	fname)
void	*	getJavaPeer	()	const
virtual	void	notifyURL	(const	char	*	url,	Reason	r,	void	*	notifyData)
virtual	bool	printFullPage	()
virtual	void	print	(QPainter	*)

Protected	Members

QNPInstance	()

Detailed	Description

This	class	is	defined	in	the	Qt	NSPlugin	Extension,	which	can	be	found	in	the
qt/extensions	directory.	It	is	not	included	in	the	main	Qt	API.

The	QNPInstance	class	provides	a	QObject	that	is	a	Web-browser	plugin.

Deriving	from	QNPInstance	creates	an	object	that	represents	a	single	<EMBED>
tag	in	an	HTML	document.

The	QNPInstance	is	responsible	for	creating	an	appropriate	window	if	required
(not	all	plugins	have	windows),	and	for	interacting	with	the	input/output
facilities	intrinsic	to	plugins.

Note	that	there	is	absolutely	no	guarantee	regarding	the	order	in	which	functions
are	called.	Sometimes	the	browser	will	call	newWindow()	first,	at	other	times,
newStreamCreated()	will	be	called	first	(assuming	the	<EMBED>	tag	has	a	SRC
parameter).

None	of	Qt's	GUI	functionality	may	be	used	until	after	the	first	call	to
newWindow().	This	includes	any	use	of	QPaintDevice	(ie.	QPixmap,	QWidget,
and	all	subclasses),	QApplication,	anything	related	to	QPainter	(QBrush,	etc.),
fonts,	QMovie,	QToolTip,	etc.	Useful	classes	which	specifically	can	be	used	are
QImage,	QFile,	and	QBuffer.

This	restriction	can	easily	be	accommodated	by	structuring	your	plugin	so	that
the	task	of	the	QNPInstance	is	to	gather	data,	while	the	task	of	the	QNPWidget	is
to	provide	a	graphical	interface	to	that	data,

Member	Type	Documentation

QNPInstance::InstanceMode

This	enum	type	provides	Qt-style	names	for	three	#defines	in	npapi.h:

QNPInstance::Embed	-	corresponds	to	NP_EMBED
QNPInstance::Full	-	corresponds	to	NP_FULL
QNPInstance::Background	-	corresponds	to	NP_BACKGROUND

QNPInstance::Reason

QNPInstance::ReasonDone

QNPInstance::ReasonBreak

QNPInstance::ReasonError

QNPInstance::ReasonUnknown

QNPInstance::StreamMode

QNPInstance::Normal

QNPInstance::Seek

QNPInstance::AsFile

QNPInstance::AsFileOnly

Member	Function	Documentation

QNPInstance::QNPInstance	()	[protected]

Creates	a	QNPInstance.

Can	only	be	called	from	within	a	derived	class	created	within
QNPlugin::newInstance().

QNPInstance::~QNPInstance	()

Called	when	the	plugin	instance	is	about	to	disappear.

const	char	*	QNPInstance::arg	(const	char	*	name)	const

Returns	the	value	of	the	named	arguments,	or	0	if	no	argument	called	name
appears	in	the	<EMBED>	tag	of	this	instance.	If	the	argument	appears,	but	has	no
value	assigned,	the	empty	string	is	returned.	In	summary:

Tag Result
<EMBED	...> arg("FOO")	==	0
<EMBED	FOO	...> arg("FOO")	==	""
<EMBED	FOO=BAR	...> arg("FOO")	==	"BAR"

int	QNPInstance::argc	()	const

Returns	the	number	of	arguments	to	the	instance.	Note	that	you	should	not
normally	rely	on	the	ordering	of	arguments,	and	also	note	that	the	SGML
specification	does	not	permit	multiple	arguments	with	the	same	name.

See	also	arg().

const	char	*	QNPInstance::argn	(int	i)	const

Returns	the	name	of	the	i-th	argument.	See	argc().

const	char	*	QNPInstance::argv	(int	i)	const

Returns	the	value	of	the	i-th	argument.	See	argc().

void	*	QNPInstance::getJavaPeer	()	const

Returns	the	Java	object	associated	with	the	plug-in	instance,	an	object	of	the
plug-in's	Java	class,	or	0	if	the	plug-in	does	not	have	a	Java	class,	Java	is
disabled,	or	an	error	occurred.

The	return	value	is	actually	a	jref	we	use	void*	so	as	to	avoid	burdening
plugins	which	do	not	require	Java.

See	also	QNPlugin::getJavaClass()	and	QNPlugin::getJavaEnv().

void	QNPInstance::getURL	(const	char	*	url,
const	char	*	window	=	0)

Requests	that	the	url	be	retrieved	and	sent	to	the	named	window.	See	Netscape's
JavaScript	documentation	for	an	explanation	of	window	names.

void	QNPInstance::getURLNotify	(const	char	*	url,
const	char	*	window	=	0,	void	*	data	=	0)

Print	the	instance	full-page.	By	default,	this	returns	FALSE,	causing	the	browser
to	call	the	(embedded)	print()	function	instead.	Requests	that	the	given	url	be
retrieved	and	sent	to	the	named	window.	See	Netscape's	JavaScript
documentation	for	an	explanation	of	window	names.	Passes	the	arguments
including	data	to	NPN_GetURLNotify.

Netscape:	NPN_GetURLNotify	method

InstanceMode	QNPInstance::mode	()	const

Returns	the	mode	of	the	plugin.

QNPStream	*	QNPInstance::newStream	(const	char	*	mimetype,
const	char	*	window,	bool	as_file	=	FALSE)

http://developer.netscape.com/docs/manuals/communicator/plugin/refpgur.htm#npngeturlnotify

This	function	is	under	development	and	is	subject	to	change.

This	function	is	not	tested.

Requests	the	creation	of	a	new	data	stream	from	the	plug-in.	The	mime	type	and
window	are	passed	in	mimetype	and	window.	as_file	holds	the	AsFileOnly	flag.
It	is	an	interface	to	the	NPN_NewStream	function	of	the	Netscape	Plugin	API.

bool	QNPInstance::newStreamCreated	(QNPStream	*,
StreamMode	&	smode)	[virtual]

This	function	is	called	when	a	new	stream	has	been	created.	The	instance	should
return	TRUE	if	it	accepts	the	processing	of	the	stream.	If	the	instance	requires
the	stream	as	a	file,	it	should	set	smode	to	AsFileOnly,	in	which	case	the	data
will	be	delivered	some	time	later	to	the	streamAsFile()	function.	Otherwise,	the
data	will	be	delivered	in	chunks	to	the	write()	function	which	must	consume	at
least	as	much	data	as	was	returned	by	the	most	recent	call	to	writeReady().

Note	that	the	AsFileOnly	method	is	not	supported	by	Netscape	2.0	and	MSIE
3.0.

QNPWidget	*	QNPInstance::newWindow	()	[virtual]

Called	at	most	once,	at	some	time	after	the	QNPInstance	is	created.	If	the	plugin
requires	a	window,	this	function	should	return	a	derived	class	of	QNPWidget
that	provides	the	required	interface.

Example:	grapher/grapher.cpp.

void	QNPInstance::notifyURL	(const	char	*	url,	Reason	r,
void	*	notifyData)	[virtual]

This	function	is	under	development	and	is	subject	to	change.

This	function	is	not	tested.

Called	whenever	a	url	is	notified	after	a	call	to	NPN_GetURLNotify	with
notifyData.	The	reason	is	given	in	r.

It	is	an	encapsulation	of	the	NPP_URLNotify	function	of	the	Netscape	Plugin
API.

See	also:	Netscape:	NPP_URLNotify	method

void	QNPInstance::postURL	(const	char	*	url,
const	char	*	window,	uint	len,	const	char	*	buf,	bool	file)

This	function	is	under	development	and	is	subject	to	change.

This	function	is	not	tested.

It	is	an	interface	to	the	NPN_PostURL	function	of	the	Netscape	Plugin	API.

Passes	url,	window,	buf,	len,	and	file	to	NPN_PostURL.

void	QNPInstance::print	(QPainter	*)	[virtual]

This	function	is	under	development	and	is	subject	to	change.

This	function	is	not	tested.

Print	the	instance	embedded	in	a	page.

It	is	an	encapsulation	of	the	NPP_Print	function	of	the	Netscape	Plugin	API.

bool	QNPInstance::printFullPage	()	[virtual]

This	function	is	under	development	and	is	subject	to	change.

This	function	is	not	tested.

It	is	an	encapsulation	of	the	NPP_Print	function	of	the	Netscape	Plugin	API.

void	QNPInstance::status	(const	char	*	msg)

Sets	the	status	message	in	the	browser	containing	this	instance	to	msg.

void	QNPInstance::streamAsFile	(QNPStream	*,

http://developer.netscape.com/docs/manuals/communicator/plugin/refpgur.htm#nppurlnotify

const	char	*	fname)	[virtual]

Called	when	a	stream	is	delivered	as	a	single	file	called	fname	rather	than	as
chunks.	This	may	be	simpler	for	a	plugin	to	deal	with,	but	precludes	any
incremental	behavior.

Note	that	the	AsFileOnly	method	is	not	supported	by	Netscape	2.0	and	MSIE
3.0.

See	also	newStreamCreated()	and	newStream().

void	QNPInstance::streamDestroyed	(QNPStream	*)	[virtual]

Called	when	a	stream	is	destroyed.	At	this	point,	the	stream	may	be	complete()
and	okay().	If	it	is	not	okay(),	then	an	error	has	occurred.	If	it	is	okay(),	but	not
complete(),	then	the	user	has	cancelled	the	transmission:	do	not	give	an	error
message	in	this	case.

const	char	*	QNPInstance::userAgent	()	const

Returns	the	user	agent	(browser	name)	containing	this	instance.

QNPWidget	*	QNPInstance::widget	()

Returns	the	plugin	window	created	by	newWindow(),	if	any.

int	QNPInstance::write	(QNPStream	*,	int	offset,	int	len,
void	*	buffer)	[virtual]

Called	when	incoming	data	is	available	for	processing	by	the	instance.	The
instance	must	consume	at	least	the	amount	that	it	returned	in	the	most	recent	call
to	writeReady(),	but	it	may	consume	up	to	the	amount	given	by	len.	buffer	is	the
data	available	for	consumption.	The	offset	argument	is	merely	an	informational
value	indicating	the	total	amount	of	data	that	has	been	consumed	in	prior	calls.

This	function	should	return	the	amount	of	data	actually	consumed.

Example:	grapher/grapher.cpp.

int	QNPInstance::writeReady	(QNPStream	*)	[virtual]

Returns	the	minimum	amount	of	data	the	instance	is	willing	to	receive	from	the
given	stream.

The	default	returns	a	very	large	value.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QSqlForm	Class	Reference
[sql	module]

The	QSqlForm	class	creates	and	manages	data	entry	forms	tied	to	SQL
databases.	More...

#include	<qsqlform.h>

Inherits	QObject.

List	of	all	member	functions.

Public	Members

QSqlForm	(QObject	*	parent	=	0,	const	char	*	name	=	0)
~QSqlForm	()
virtual	void	insert	(QWidget	*	widget,	const	QString	&	field)
virtual	void	remove	(const	QString	&	field)
uint	count	()	const
QWidget	*	widget	(uint	i)	const
QSqlField	*	widgetToField	(QWidget	*	widget)	const
QWidget	*	fieldToWidget	(QSqlField	*	field)	const
void	installPropertyMap	(QSqlPropertyMap	*	pmap)
virtual	void	setRecord	(QSqlRecord	*	buf)

Public	Slots

virtual	void	readField	(QWidget	*	widget)
virtual	void	writeField	(QWidget	*	widget)
virtual	void	readFields	()
virtual	void	writeFields	()
virtual	void	clear	()
virtual	void	clearValues	(bool	nullify	=	FALSE)

Protected	Members

virtual	void	insert	(QWidget	*	widget,	QSqlField	*	field)
virtual	void	remove	(QWidget	*	widget)

Detailed	Description

The	QSqlForm	class	creates	and	manages	data	entry	forms	tied	to	SQL
databases.

Typical	use	of	a	QSqlForm	consists	of	the	following	steps:

1.	 Create	the	widgets	you	want	to	appear	in	the	form.
2.	 Create	a	cursor	and	navigate	to	the	record	to	be	edited.
3.	 Create	the	QSqlForm.
4.	 Set	the	form's	record	buffer	to	the	cursor's	update	buffer.
5.	 Insert	each	widget	and	the	field	it	is	to	edit	into	the	form.
6.	 Use	readFields()	to	update	the	editor	widgets	with	values	from	the

database's	fields.
7.	 Display	the	form	and	let	the	user	edit	values	etc.
8.	 Use	writeFields()	to	update	the	database's	field	values	with	the	values	in	the

editor	widgets.

Note	that	a	QSqlForm	does	not	access	the	database	directly,	but	most	often	via
QSqlFields	which	are	part	of	a	QSqlCursor.	A	QSqlCursor::insert(),
QSqlCursor::update()	or	QSqlCursor::del()	call	is	needed	to	actually	write	values
to	the	database.

Some	sample	code	to	initialize	a	form	successfully:

		QLineEdit		myEditor(this);

		QSqlForm			myForm(this);

		QSqlCursor	myCursor("mytable");

		//	Execute	a	query	to	make	the	cursor	valid

		myCursor.select();

		//	Move	the	cursor	to	a	valid	record	(the	first	record)

		myCursor.next();

		//	Set	the	form's	record	pointer	to	the	cursor's	edit	buffer	(which

		//	contains	the	current	record's	values)

		myForm.setRecord(myCursor.primeUpdate());

		//	Insert	a	field	into	the	form	that	uses	myEditor	to	edit	the

		//	field	'somefield'	in	'mytable'

		myForm.insert(&myEditor,	"somefield");

		//	Update	myEditor	with	the	value	from	the	mapped	database	field

		myForm.readFields();

		...

		//	Let	the	user	edit	the	form

		...

		//	Update	the	database

		myForm.writeFields();	//	Update	the	cursor's	edit	buffer	from	the	form

		myCursor.update();				//	Update	the	database	from	the	cursor's	buffer

		

If	you	want	to	use	custom	editors	for	displaying/editing	data	fields,	you	need	to
install	a	custom	QSqlPropertyMap.	The	form	uses	this	object	to	get	or	set	the
value	of	a	widget.

Note	that	Qt	Designer	provides	a	visual	means	of	creating	data-aware	forms.

See	also	installPropertyMap(),	QSqlPropertyMap	and	Database	Classes.

Member	Function	Documentation

QSqlForm::QSqlForm	(QObject	*	parent	=	0,	const	char	*	name
=	0)

Constructs	a	QSqlForm	with	parent	parent	and	name	name.

QSqlForm::~QSqlForm	()

Destroys	the	object	and	frees	any	allocated	resources.

void	QSqlForm::clear	()	[virtual	slot]

Removes	every	widget,	and	the	fields	they're	mapped	to,	from	the	form.

void	QSqlForm::clearValues	(bool	nullify	=	FALSE)	[virtual
slot]

Clears	the	values	in	all	the	widgets,	and	the	fields	they	are	mapped	to,	in	the
form.	If	nullify	is	TRUE	(the	default	is	FALSE),	each	field	is	also	set	to	null.

uint	QSqlForm::count	()	const

Returns	the	number	of	widgets	in	the	form.

QWidget	*	QSqlForm::fieldToWidget	(QSqlField	*	field)	const

Returns	the	widget	that	field	field	is	mapped	to.

void	QSqlForm::insert	(QWidget	*	widget,	const	QString	&	field
)	[virtual]

Inserts	a	widget,	and	the	name	of	the	field	it	is	to	be	mapped	to,	into	the	form.	To
actually	associate	inserted	widgets	with	an	edit	buffer,	use	setRecord().

See	also	setRecord().

Examples:	sql/overview/form1/main.cpp	and	sql/overview/form2/main.cpp.

void	QSqlForm::insert	(QWidget	*	widget,	QSqlField	*	field)
[virtual	protected]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	a	widget,	and	the	field	it	is	to	be	mapped	to,	into	the	form.

void	QSqlForm::installPropertyMap	(QSqlPropertyMap	*	pmap
)

Installs	a	custom	QSqlPropertyMap.	This	is	useful	if	you	plan	to	create	your	own
custom	editor	widgets.

QSqlForm	takes	ownership	of	pmap,	and	pmap	is	therefore	deleted	when
QSqlForm	goes	out	of	scope.

See	also	QDataTable::installEditorFactory().

Example:	sql/overview/custom1/main.cpp.

void	QSqlForm::readField	(QWidget	*	widget)	[virtual	slot]

Updates	the	widget	widget	with	the	value	from	the	SQL	field	it	is	mapped	to.
Nothing	happens	if	no	SQL	field	is	mapped	to	the	widget.

void	QSqlForm::readFields	()	[virtual	slot]

Updates	the	widgets	in	the	form	with	current	values	from	the	SQL	fields	they	are
mapped	to.

Examples:	sql/overview/form1/main.cpp	and	sql/overview/form2/main.cpp.

void	QSqlForm::remove	(QWidget	*	widget)	[virtual
protected]

Removes	a	widget,	and	hence	the	field	it's	mapped	to,	from	the	form.

void	QSqlForm::remove	(const	QString	&	field)	[virtual]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Removes	field	from	the	form.

void	QSqlForm::setRecord	(QSqlRecord	*	buf)	[virtual]

Sets	buf	as	the	record	buffer	for	the	form.	To	force	the	display	of	the	data	from
buf,	use	readFields().

See	also	readFields()	and	writeFields().

Examples:	sql/overview/custom1/main.cpp,	sql/overview/form1/main.cpp	and
sql/overview/form2/main.cpp.

QWidget	*	QSqlForm::widget	(uint	i)	const

Returns	the	i-th	widget	in	the	form.	Useful	for	traversing	the	widgets	in	the	form.

QSqlField	*	QSqlForm::widgetToField	(QWidget	*	widget)	const

Returns	the	SQL	field	that	widget	widget	is	mapped	to.

void	QSqlForm::writeField	(QWidget	*	widget)	[virtual	slot]

Updates	the	SQL	field	with	the	value	from	the	widget	it	is	mapped	to.	Nothing
happens	if	no	SQL	field	is	mapped	to	the	widget.

void	QSqlForm::writeFields	()	[virtual	slot]

Updates	the	SQL	fields	with	values	from	the	widgets	they	are	mapped	to.	To
actually	update	the	database	with	the	contents	of	the	record	buffer,	use
QSqlCursor::insert(),	QSqlCursor::update()	or	QSqlCursor::del()	as	appropriate.

Example:	sql/overview/form2/main.cpp.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QWizard
QWizard	 ……

#include	<qwizard.h>

QDialog

QWizard	(QWidget	*	parent	=	0,	const	char	*	name	=	0,	bool	modal	=
FALSE,	WFlags	f	=	0)
~QWizard	()
virtual	void	addPage	(QWidget	*	page,	const	QString	&	title)
virtual	void	insertPage	(QWidget	*	page,	const	QString	&	title,	int	index)
virtual	void	removePage	(QWidget	*	page)
QString	title	(QWidget	*	page)	const
void	setTitle	(QWidget	*	page,	const	QString	&	title)
QFont	titleFont	()	const
void	setTitleFont	(const	QFont	&)
virtual	void	showPage	(QWidget	*	page)
QWidget	*	currentPage	()	const
QWidget	*	page	(int	index)	const
int	pageCount	()	const
int	indexOf	(QWidget	*	page)	const
virtual	bool	appropriate	(QWidget	*	page)	const
virtual	void	setAppropriate	(QWidget	*	page,	bool	appropriate)
QPushButton	*	backButton	()	const
QPushButton	*	nextButton	()	const
QPushButton	*	finishButton	()	const
QPushButton	*	cancelButton	()	const
QPushButton	*	helpButton	()	const

virtual	void	setBackEnabled	(QWidget	*	page,	bool	enable)
virtual	void	setNextEnabled	(QWidget	*	page,	bool	enable)
virtual	void	setFinishEnabled	(QWidget	*	page,	bool	enable)
virtual	void	setHelpEnabled	(QWidget	*	page,	bool	enable)
virtual	void	setFinish	(QWidget	*,	bool)		

void	helpClicked	()
void	selected	(const	QString	&)

QFont	titleFont	-	

virtual	void	layOutButtonRow	(QHBoxLayout	*	layout)
virtual	void	layOutTitleRow	(QHBoxLayout	*	layout,
const	QString	&	title)

virtual	void	back	()
virtual	void	next	()
virtual	void	help	()

QWizard

QWizardNextBackFinishCancelHelp

QWidgetaddPage() insertPage() removePage()

currentPage() page()

pageCount() indexOf()

QWizard setAppropriate()

wizard/wizard.cppwizard/wizard.h

QWizard

QWizard::QWizard	(QWidget	*	parent	=	0,	const	char	*	name	=
0,	bool	modal	=	FALSE,	WFlags	f	=	0)

parentnamemodalfQDialog

QWizard::~QWizard	()

void	QWizard::addPage	(QWidget	*	page,	const	QString	&	title)
[]

page title

bool	QWizard::appropriate	(QWidget	*	page)	const	[]

Next pageQWizard setAppropriate()

	

void	QWizard::back	()	[]

Back

appropriate()

QPushButton	*	QWizard::backButton	()	const

Back

back()QWizard

QPushButton	*	QWizard::cancelButton	()	const

Cancel

QDialog::reject()QWizard

QWidget	*	QWizard::currentPage	()	const

0

QPushButton	*	QWizard::finishButton	()	const

Finish

QDialog::accept()QWizard

void	QWizard::help	()	[]

Help helpClicked()

QPushButton	*	QWizard::helpButton	()	const

Help

help()QWizard

void	QWizard::helpClicked	()	[]

Help

int	QWizard::indexOf	(QWidget	*	page)	const

page-1

void	QWizard::insertPage	(QWidget	*	page,
const	QString	&	title,	int	index)	[]

pageindex titleindex-1

void	QWizard::layOutButtonRow	(QHBoxLayout	*	layout)	[
]

layout

void	QWizard::layOutTitleRow	(QHBoxLayout	*	layout,
const	QString	&	title)	[]

layout title

void	QWizard::next	()	[]

Next

appropriate()

QPushButton	*	QWizard::nextButton	()	const

Next

next()QWizard

QWidget	*	QWizard::page	(int	index)	const

index index00

int	QWizard::pageCount	()	const

void	QWizard::removePage	(QWidget	*	page)	[]

page pageQWizard

void	QWizard::selected	(const	QString	&)	[]

void	QWizard::setAppropriate	(QWidget	*	page,

bool	appropriate)	[]

appropriate page page

appropriate()

void	QWizard::setBackEnabled	(QWidget	*	page,	bool	enable)
[]

enable pageBack pageBack

void	QWizard::setFinish	(QWidget	*,	bool)	[]

setFinishEnabled

void	QWizard::setFinishEnabled	(QWidget	*	page,	bool	enable)
[]

enable pageFinish pageFinish

void	QWizard::setHelpEnabled	(QWidget	*	page,	bool	enable)
[]

enable pageHelp pageHelp

void	QWizard::setNextEnabled	(QWidget	*	page,	bool	enable)
[]

enable pageNext NextHelp

void	QWizard::setTitle	(QWidget	*	page,	const	QString	&	title)

pagetitle

void	QWizard::setTitleFont	(const	QFont	&)

“titleFont”

void	QWizard::showPage	(QWidget	*	page)	[]

pageselected()

wizard/wizard.cpp

QString	QWizard::title	(QWidget	*	page)	const

page

QFont	QWizard::titleFont	()	const

“titleFont”

QFont	titleFont

QApplication::font()

setTitleFont()titleFont()

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QCommonStyle	Class	Reference
The	QCommonStyle	class	encapsulates	the	common	Look	and	Feel	of	a	GUI.
More...

#include	<qcommonstyle.h>

Inherits	QStyle.

Inherited	by	QMotifStyle	and	QWindowsStyle.

List	of	all	member	functions.

Public	Members

QCommonStyle	()

Detailed	Description

The	QCommonStyle	class	encapsulates	the	common	Look	and	Feel	of	a	GUI.

This	abstract	class	implements	some	of	the	widget's	look	and	feel	that	is
common	to	all	GUI	styles	provided	and	shipped	as	part	of	Qt.

All	the	functions	are	documented	in	QStyle.

See	also	Widget	Appearance	and	Style.

Member	Function	Documentation

QCommonStyle::QCommonStyle	()

Constructs	a	QCommonStyle.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QGLWidget	Class	Reference
[OpenGL	module]

The	QGLWidget	class	is	a	widget	for	rendering	OpenGL	graphics.	More...

#include	<qgl.h>

Inherits	QWidget	and	QGL.

List	of	all	member	functions.

Public	Members

QGLWidget	(QWidget	*	parent	=	0,	const	char	*	name	=	0,
const	QGLWidget	*	shareWidget	=	0,	WFlags	f	=	0)
QGLWidget	(const	QGLFormat	&	format,	QWidget	*	parent	=	0,
const	char	*	name	=	0,	const	QGLWidget	*	shareWidget	=	0,	WFlags	f	=	0)
~QGLWidget	()
void	qglColor	(const	QColor	&	c)	const
void	qglClearColor	(const	QColor	&	c)	const
bool	isValid	()	const
bool	isSharing	()	const
virtual	void	makeCurrent	()
bool	doubleBuffer	()	const
virtual	void	swapBuffers	()
QGLFormat	format	()	const
const	QGLContext	*	context	()	const
virtual	QPixmap	renderPixmap	(int	w	=	0,	int	h	=	0,	bool	useContext	=
FALSE)
virtual	QImage	grabFrameBuffer	(bool	withAlpha	=	FALSE)
virtual	void	makeOverlayCurrent	()
const	QGLContext	*	overlayContext	()	const
const	QGLColormap	&	colormap	()	const
void	setColormap	(const	QGLColormap	&	cmap)

Public	Slots

virtual	void	updateGL	()
virtual	void	updateOverlayGL	()

Static	Public	Members

QImage	convertToGLFormat	(const	QImage	&	img)

Protected	Members

virtual	void	initializeGL	()
virtual	void	resizeGL	(int	width,	int	height)
virtual	void	paintGL	()
virtual	void	initializeOverlayGL	()
virtual	void	resizeOverlayGL	(int	width,	int	height)
virtual	void	paintOverlayGL	()
void	setAutoBufferSwap	(bool	on)
bool	autoBufferSwap	()	const
virtual	void	paintEvent	(QPaintEvent	*)
virtual	void	resizeEvent	(QResizeEvent	*)
virtual	void	glInit	()
virtual	void	glDraw	()

Detailed	Description

The	QGLWidget	class	is	a	widget	for	rendering	OpenGL	graphics.

QGLWidget	provides	functionality	for	displaying	OpenGL*	graphics	integrated
into	a	Qt	application.	It	is	very	simple	to	use.	You	inherit	from	it	and	use	the
subclass	like	any	other	QWidget,	except	that	instead	of	drawing	the	widget's
contents	using	QPainter	etc.	you	use	the	standard	OpenGL	rendering	commands.

QGLWidget	provides	three	convenient	virtual	functions	that	you	can
reimplement	in	your	subclass	to	perform	the	typical	OpenGL	tasks:

paintGL()	-	Renders	the	OpenGL	scene.	Gets	called	whenever	the	widget
needs	to	be	updated.
resizeGL()	-	Sets	up	the	OpenGL	viewport,	projection,	etc.	Gets	called
whenever	the	the	widget	has	been	resized	(and	also	when	it	shown	for	the
first	time	because	all	newly	created	widgets	get	a	resize	event
automatically).
initializeGL()	-	Sets	up	the	OpenGL	rendering	context,	defines	display	lists,
etc.	Gets	called	once	before	the	first	time	resizeGL()	or	paintGL()	is	called.

Here	is	a	rough	outline	of	how	your	QGLWidget	subclass	may	look:

				class	MyGLDrawer	:	public	QGLWidget

				{

								Q_OBJECT								//	must	include	this	if	you	use	Qt	signals/slots

				public:

								MyGLDrawer(QWidget	*parent,	const	char	*name)

												:	QGLWidget(parent,name)	{}

				protected:

								void	initializeGL()

								{

										//	Set	up	the	rendering	context,	define	display	lists	etc.:

										...

										glClearColor(0.0,	0.0,	0.0,	0.0);

										glEnable(GL_DEPTH_TEST);

										...

								}

								void	resizeGL(int	w,	int	h)

								{

										//	setup	viewport,	projection	etc.:

										glViewport(0,	0,	(GLint)w,	(GLint)h);

										...

										glFrustum(...);

										...

								}

								void	paintGL()

								{

										//	draw	the	scene:

										...

										glRotatef(...);

										glMaterialfv(...);

										glBegin(GL_QUADS);

										glVertex3f(...);

										glVertex3f(...);

										...

										glEnd();

										...

								}

				};

		

If	you	need	to	trigger	a	repaint	from	places	other	than	paintGL()	(a	typical
example	is	when	using	timers	to	animate	scenes),	you	should	call	the	widget's
updateGL()	function.

Your	widget's	OpenGL	rendering	context	is	made	current	when	paintGL(),
resizeGL(),	or	initializeGL()	is	called.	If	you	need	to	call	the	standard	OpenGL
API	functions	from	other	places	(e.g.	in	your	widget's	constructor	or	in	your	own
paint	functions),	you	must	call	makeCurrent()	first.

QGLWidget	provides	advanced	functions	for	requesting	a	new	display	format
and	you	can	even	set	a	new	rendering	context.

You	can	achieve	sharing	of	OpenGL	display	lists	between	QGLWidgets	(see	the
documentation	of	the	QGLWidget	constructors	for	details).

Overlays

The	QGLWidget	creates	a	GL	overlay	context	in	addition	to	the	normal	context

if	overlays	are	supported	by	the	underlying	system.

If	you	want	to	use	overlays,	you	specify	it	in	the	format.	(Note:	Overlay	must	be
requested	in	the	format	passed	to	the	QGLWidget	constructor.)	Your	GL	widget
should	also	implement	some	or	all	of	these	virtual	methods:

paintOverlayGL()
resizeOverlayGL()
initializeOverlayGL()

These	methods	work	in	the	same	way	as	the	normal	paintGL()	etc.	functions,
except	that	they	will	be	called	when	the	overlay	context	is	made	current.	You	can
explicitly	make	the	overlay	context	current	by	using	makeOverlayCurrent(),	and
you	can	access	the	overlay	context	directly	(e.g.	to	ask	for	its	transparent	color)
by	calling	overlayContext().

On	X	servers	in	which	the	default	visual	is	in	an	overlay	plane,	non-GL	Qt
windows	can	also	be	used	for	overlays.	See	the	examples/opengl/overlay_x11
example	program	for	details.

*	OpenGL	is	a	trademark	of	Silicon	Graphics,	Inc.	in	the	United	States	and	other
countries.

See	also	Graphics	Classes	and	Image	Processing	Classes.

Member	Function	Documentation

QGLWidget::QGLWidget	(QWidget	*	parent	=	0,
const	char	*	name	=	0,	const	QGLWidget	*	shareWidget	=	0,
WFlags	f	=	0)

Constructs	an	OpenGL	widget	with	a	parent	widget	and	a	name.

The	default	format	is	used.	The	widget	will	be	invalid	if	the	system	has	no
OpenGL	support.

The	parent,	name	and	widget	flag,	f,	arguments	are	passed	to	the	QWidget
constructor.

If	the	shareWidget	parameter	points	to	a	valid	QGLWidget,	this	widget	will	share
OpenGL	display	lists	with	shareWidget.	If	this	widget	and	shareWidget	have
different	formats,	display	list	sharing	may	fail.	You	can	check	whether	display
list	sharing	succeeded	by	calling	isSharing().

The	initialization	of	OpenGL	rendering	state,	etc.	should	be	done	by	overriding
the	initializeGL()	function,	rather	than	in	the	constructor	of	your	QGLWidget
subclass.

See	also	QGLFormat::defaultFormat().

QGLWidget::QGLWidget	(const	QGLFormat	&	format,
QWidget	*	parent	=	0,	const	char	*	name	=	0,
const	QGLWidget	*	shareWidget	=	0,	WFlags	f	=	0)

Constructs	an	OpenGL	widget	with	parent	parent,	called	name.

The	format	argument	specifies	the	desired	rendering	options.	If	the	underlying
OpenGL/Window	system	cannot	satisfy	all	the	features	requested	in	format,	the
nearest	subset	of	features	will	be	used.	After	creation,	the	format()	method	will
return	the	actual	format	obtained.

The	widget	will	be	invalid	if	the	system	has	no	OpenGL	support.

The	parent,	name	and	widget	flag,	f,	arguments	are	passed	to	the	QWidget
constructor.

If	the	shareWidget	parameter	points	to	a	valid	QGLWidget,	this	widget	will	share
OpenGL	display	lists	with	shareWidget.	If	this	widget	and	shareWidget	have
different	formats,	display	list	sharing	may	fail.	You	can	check	whether	display
list	sharing	succeeded	by	calling	isSharing().

The	initialization	of	OpenGL	rendering	state,	etc.	should	be	done	by	overriding
the	initializeGL()	function,	rather	than	in	the	constructor	of	your	QGLWidget
subclass.

See	also	QGLFormat::defaultFormat()	and	isValid().

QGLWidget::~QGLWidget	()

Destroys	the	widget.

bool	QGLWidget::autoBufferSwap	()	const	[protected]

Returns	TRUE	if	the	widget	is	doing	automatic	GL	buffer	swapping;	otherwise
returns	FALSE.

See	also	setAutoBufferSwap().

const	QGLColormap	&	QGLWidget::colormap	()	const

Returns	the	colormap	for	this	widget.

Usually	it	is	only	top-level	widgets	that	can	have	different	colormaps	installed.
Asking	for	the	colormap	of	a	child	widget	will	return	the	colormap	for	the	child's
top-level	widget.

If	no	colormap	has	been	set	for	this	widget,	the	QColormap	returned	will	be
empty.

See	also	setColormap().

const	QGLContext	*	QGLWidget::context	()	const

Returns	the	context	of	this	widget.

It	is	possible	that	the	context	is	not	valid	(see	isValid()),	for	example,	if	the
underlying	hardware	does	not	support	the	format	attributes	that	were	requested.

QImage	QGLWidget::convertToGLFormat	(const	QImage	&	img
)	[static]

Converts	the	image	img	into	the	unnamed	format	expected	by	OpenGL	functions
such	as	glTexImage2D().	The	returned	image	is	not	usable	as	a	QImage,	but
QImage::width(),	QImage::height()	and	QImage::bits()	may	be	used	with
OpenGL.	The	following	few	lines	are	from	the	texture	example.	Most	of	the
code	is	irrelevant,	so	we	just	quote	the	few	lines	we	want:

								QImage	tex1,	tex2,	buf;

								if	(!buf.load("gllogo.bmp"))	{		//	Load	first	image	from	file

We	create	tex1	(and	another	variable)	for	OpenGL,	and	load	a	real	image	into
buf.

								tex1	=	QGLWidget::convertToGLFormat(buf);		//	flipped	32bit	RGBA

A	few	lines	later,	we	convert	buf	into	OpenGL	format	and	store	it	in	tex1.

								glTexImage2D(GL_TEXTURE_2D,	0,	3,	tex1.width(),	tex1.height

																						GL_RGBA,	GL_UNSIGNED_BYTE,	tex1.bits());

Another	function	in	the	same	example	uses	tex1	with	OpenGL.

Example:	opengl/texture/gltexobj.cpp.

bool	QGLWidget::doubleBuffer	()	const

Returns	TRUE	if	the	contained	GL	rendering	context	has	double	buffering;
otherwise	returns	FALSE.

See	also	QGLFormat::doubleBuffer().

QGLFormat	QGLWidget::format	()	const

Returns	the	format	of	the	contained	GL	rendering	context.

void	QGLWidget::glDraw	()	[virtual	protected]

Executes	the	virtual	function	paintGL().

The	widget's	rendering	context	will	become	the	current	context	and
initializeGL()	will	be	called	if	it	hasn't	already	been	called.

void	QGLWidget::glInit	()	[virtual	protected]

Initializes	OpenGL	for	this	widget's	context.	Calls	the	virtual	function
initializeGL().

QImage	QGLWidget::grabFrameBuffer	(bool	withAlpha	=
FALSE)	[virtual]

Returns	an	image	of	the	frame	buffer.	If	withAlpha	is	TRUE	the	alpha	channel	is
included.

void	QGLWidget::initializeGL	()	[virtual	protected]

This	virtual	function	is	called	once	before	the	first	call	to	paintGL()	or
resizeGL(),	and	then	once	whenever	the	widget	has	been	assigned	a	new
QGLContext.	Reimplement	it	in	a	subclass.

This	function	should	set	up	any	required	OpenGL	context	rendering	flags,
defining	display	lists,	etc.

There	is	no	need	to	call	makeCurrent()	because	this	has	already	been	done	when
this	function	is	called.

void	QGLWidget::initializeOverlayGL	()	[virtual	protected]

This	virtual	function	is	used	in	the	same	manner	as	initializeGL()	except	that	it
operates	on	the	widget's	overlay	context	instead	of	the	widget's	main	context.
This	means	that	initializeOverlayGL()	is	called	once	before	the	first	call	to
paintOverlayGL()	or	resizeOverlayGL().	Reimplement	it	in	a	subclass.

This	function	should	set	up	any	required	OpenGL	context	rendering	flags,
defining	display	lists,	etc.	for	the	overlay	context.

There	is	no	need	to	call	makeOverlayCurrent()	because	this	has	already	been
done	when	this	function	is	called.

bool	QGLWidget::isSharing	()	const

Returns	TRUE	if	display	list	sharing	with	another	QGLWidget	was	requested	in
the	constructor,	and	the	GL	system	was	able	to	provide	it;	otherwise	returns
FALSE.	The	GL	system	may	fail	to	provide	display	list	sharing	if	the	two
QGLWidgets	use	different	formats.

See	also	format().

bool	QGLWidget::isValid	()	const

Returns	TRUE	if	the	widget	has	a	valid	GL	rendering	context;	otherwise	returns
FALSE.	A	widget	will	be	invalid	if	the	system	has	no	OpenGL	support.

void	QGLWidget::makeCurrent	()	[virtual]

Makes	this	widget	the	current	widget	for	OpenGL	operations,	i.e.	makes	the
widget's	rendering	context	the	current	OpenGL	rendering	context.

void	QGLWidget::makeOverlayCurrent	()	[virtual]

Makes	the	overlay	context	of	this	widget	current.	Use	this	if	you	need	to	issue
OpenGL	commands	to	the	overlay	context	outside	of	initializeOverlayGL(),
resizeOverlayGL(),	and	paintOverlayGL().

Does	nothing	if	this	widget	has	no	overlay.

See	also	makeCurrent().

const	QGLContext	*	QGLWidget::overlayContext	()	const

Returns	the	overlay	context	of	this	widget,	or	0	if	this	widget	has	no	overlay.

See	also	context().

void	QGLWidget::paintEvent	(QPaintEvent	*)	[virtual
protected]

Handles	paint	events.	Will	cause	the	virtual	paintGL()	function	to	be	called.

The	widget's	rendering	context	will	become	the	current	context	and
initializeGL()	will	be	called	if	it	hasn't	already	been	called.

Reimplemented	from	QWidget.

void	QGLWidget::paintGL	()	[virtual	protected]

This	virtual	function	is	called	whenever	the	widget	needs	to	be	painted.
Reimplement	it	in	a	subclass.

There	is	no	need	to	call	makeCurrent()	because	this	has	already	been	done	when
this	function	is	called.

void	QGLWidget::paintOverlayGL	()	[virtual	protected]

This	virtual	function	is	used	in	the	same	manner	as	paintGL()	except	that	it
operates	on	the	widget's	overlay	context	instead	of	the	widget's	main	context.
This	means	that	paintOverlayGL()	is	called	whenever	the	widget's	overlay	needs
to	be	painted.	Reimplement	it	in	a	subclass.

There	is	no	need	to	call	makeOverlayCurrent()	because	this	has	already	been
done	when	this	function	is	called.

void	QGLWidget::qglClearColor	(const	QColor	&	c)	const

Convenience	function	for	specifying	the	clearing	color	to	OpenGL.	Calls
glClearColor	(in	RGBA	mode)	or	glClearIndex	(in	color-index	mode)	with	the
color	c.	Applies	to	the	current	GL	context.

See	also	qglColor(),	QGLContext::currentContext()	and	QColor.

void	QGLWidget::qglColor	(const	QColor	&	c)	const

Convenience	function	for	specifying	a	drawing	color	to	OpenGL.	Calls	glColor3
(in	RGBA	mode)	or	glIndex	(in	color-index	mode)	with	the	color	c.	Applies	to
the	current	GL	context.

See	also	qglClearColor(),	QGLContext::currentContext()	and	QColor.

QPixmap	QGLWidget::renderPixmap	(int	w	=	0,	int	h	=	0,
bool	useContext	=	FALSE)	[virtual]

Renders	the	current	scene	on	a	pixmap	and	returns	the	pixmap.

You	may	use	this	method	on	both	visible	and	invisible	QGLWidgets.

This	method	will	create	a	pixmap	and	a	temporary	QGLContext	to	render	on	the
pixmap.	It	will	then	call	initializeGL(),	resizeGL(),	and	paintGL()	on	this
context.	Finally,	the	widget's	original	GL	context	is	restored.

The	size	of	the	pixmap	will	be	w	pixels	wide	and	h	pixels	high	unless	one	of
these	parameters	is	0	(the	default),	in	which	case	the	pixmap	will	have	the	same
size	as	the	widget.

If	useContext	is	TRUE,	this	method	will	try	to	be	more	efficient	by	using	the
existing	GL	context	to	render	the	pixmap.	The	default	is	FALSE.	Only	use
TRUE	if	you	understand	the	risks.

Overlays	are	not	rendered	onto	the	pixmap.

If	the	GL	rendering	context	and	the	desktop	have	different	bit	depths,	the	result
will	most	likely	look	surprising.

Note	that	the	creation	of	display	lists,	modifications	of	the	view	frustum	etc.
should	be	done	from	within	initializeGL().	If	this	is	not	done,	the	temporary
QGLContext	will	not	be	initialized	properly,	and	the	rendered	pixmap	may	be
incomplete/corrupted.

void	QGLWidget::resizeEvent	(QResizeEvent	*)	[virtual
protected]

Handles	resize	events.	Calls	the	virtual	function	resizeGL().

Reimplemented	from	QWidget.

void	QGLWidget::resizeGL	(int	width,	int	height)	[virtual
protected]

This	virtual	function	is	called	whenever	the	widget	has	been	resized.	The	new
size	is	passed	in	width	and	height.	Reimplement	it	in	a	subclass.

There	is	no	need	to	call	makeCurrent()	because	this	has	already	been	done	when
this	function	is	called.

void	QGLWidget::resizeOverlayGL	(int	width,	int	height)
[virtual	protected]

This	virtual	function	is	used	in	the	same	manner	as	paintGL()	except	that	it
operates	on	the	widget's	overlay	context	instead	of	the	widget's	main	context.
This	means	that	resizeOverlayGL()	is	called	whenever	the	widget	has	been
resized.	The	new	size	is	passed	in	width	and	height.	Reimplement	it	in	a
subclass.

There	is	no	need	to	call	makeOverlayCurrent()	because	this	has	already	been
done	when	this	function	is	called.

void	QGLWidget::setAutoBufferSwap	(bool	on)	[protected]

If	on	is	TRUE	automatic	GL	buffer	swapping	is	switched	on;	otherwise	it	is
switched	off.

If	on	is	TRUE	and	the	widget	is	using	a	double-buffered	format,	the	background
and	foreground	GL	buffers	will	automatically	be	swapped	after	each	time	the
paintGL()	function	has	been	called.

The	buffer	auto-swapping	is	on	by	default.

See	also	autoBufferSwap(),	doubleBuffer()	and	swapBuffers().

void	QGLWidget::setColormap	(const	QGLColormap	&	cmap)

Set	the	colormap	for	this	widget	to	cmap.	Usually	it	is	only	top-level	widgets

that	can	have	colormaps	installed.

See	also	colormap().

void	QGLWidget::swapBuffers	()	[virtual]

Swaps	the	screen	contents	with	an	off-screen	buffer.	This	only	works	if	the
widget's	format	specifies	double	buffer	mode.

Normally,	there	is	no	need	to	explicitly	call	this	function	because	it	is	done
automatically	after	each	widget	repaint,	i.e.	each	time	after	paintGL()	has	been
executed.

See	also	doubleBuffer(),	setAutoBufferSwap()	and
QGLFormat::setDoubleBuffer().

void	QGLWidget::updateGL	()	[virtual	slot]

Updates	the	widget	by	calling	glDraw().

void	QGLWidget::updateOverlayGL	()	[virtual	slot]

Updates	the	widget's	overlay	(if	any).	Will	cause	the	virtual	function
paintOverlayGL()	to	be	executed.

The	widget's	rendering	context	will	become	the	current	context	and
initializeGL()	will	be	called	if	it	hasn't	already	been	called.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QNPlugin	Class	Reference
The	QNPlugin	class	provides	the	plugin	central	factory.

This	class	is	part	of	the	Qt	NSPlugin	Extension.	More...

#include	<qnp.h>

List	of	all	member	functions.

Public	Members

virtual	~QNPlugin	()
void	getVersionInfo	(int	&	plugin_major,	int	&	plugin_minor,
int	&	browser_major,	int	&	browser_minor)
virtual	QNPInstance	*	newInstance	()	=	0
virtual	const	char	*	getMIMEDescription	()	const	=	0
virtual	const	char	*	getPluginNameString	()	const	=	0
virtual	const	char	*	getPluginDescriptionString	()	const	=	0
virtual	void	*	getJavaClass	()
virtual	void	unuseJavaClass	()
void	*	getJavaEnv	()	const

Static	Public	Members

QNPlugin	*	create	()
QNPlugin	*	actual	()

Protected	Members

QNPlugin	()

Detailed	Description

This	class	is	defined	in	the	Qt	NSPlugin	Extension,	which	can	be	found	in	the
qt/extensions	directory.	It	is	not	included	in	the	main	Qt	API.

The	QNPlugin	class	provides	the	plugin	central	factory.

This	class	is	the	heart	of	the	plugin.	One	instance	of	this	object	is	created	when
the	plugin	is	first	needed,	by	calling	QNPlugin::create(),	which	must	be
implemented	in	your	plugin	code	to	return	some	derived	class	of	QNPlugin.	The
one	QNPlugin	object	creates	all	instances	for	a	single	running	Web-browser
process.

Additionally,	if	Qt	is	linked	to	the	plugin	as	a	dynamic	library,	only	one	instance
of	QApplication	will	exist	across	all	plugins	that	have	been	made	with	Qt.	So,
your	plugin	should	tread	lightly	on	global	settings	-	do	not,	for	example,	use
QApplication::setFont()	-	that	will	change	the	font	in	every	widget	of	every	Qt-
based	plugin	currently	loaded!

Member	Function	Documentation

QNPlugin::QNPlugin	()	[protected]

Creates	a	QNPlugin.	This	may	only	be	used	by	the	constructor	derived	class
returned	by	the	plugin's	implementation	of	the	QNPlugin::create()	function.

QNPlugin::~QNPlugin	()	[virtual]

Destroys	the	QNPlugin.	This	is	called	by	the	plugin	binding	code	just	before	the
plugin	is	about	to	be	unloaded	from	memory.	If	newWindow()	has	been	called,	a
QApplication	will	still	exist	at	this	time,	but	will	be	deleted	shortly	after	before
the	plugin	is	deleted.

QNPlugin	*	QNPlugin::actual	()	[static]

Returns	the	plugin	most	recently	returned	by	QNPlugin::create().

QNPlugin	*	QNPlugin::create	()	[static]

This	must	be	implemented	by	your	plugin	code.	It	should	return	a	derived	class
of	QNPlugin.

void	*	QNPlugin::getJavaClass	()	[virtual]

Override	to	return	a	reference	to	the	Java	class	that	represents	the	plugin.	The
default	returns	0,	indicating	no	class.

If	you	override	this	class,	you	must	also	override	QNPlugin::unuseJavaClass().

The	return	value	is	actually	a	jref;	we	use	void*	so	as	to	avoid	burdening
plugins	which	do	not	require	Java.

See	also	getJavaEnv()	and	QNPInstance::getJavaPeer().

void	*	QNPlugin::getJavaEnv	()	const

Returns	a	pointer	to	the	Java	execution	environment,	or	0	if	Java	is	disabled	or
an	error	occurred.

The	return	value	is	actually	a	JRIEnv*;	we	use	void*	so	as	to	avoid	burdening
plugins	which	do	not	require	Java.

See	also	getJavaClass()	and	QNPInstance::getJavaPeer().

const	char	*	QNPlugin::getMIMEDescription	()	const	[pure
virtual]

Override	this	to	return	the	MIME	description	of	the	data	formats	supported	by
your	plugin.	The	format	of	this	string	is	shown	by	the	following	example:

				const	char*	getMIMEDescription()	const

				{

								return	"image/x-png:png:PNG	Image;"

															"image/png:png:PNG	Image;"

															"image/x-portable-bitmap:pbm:PBM	Image;"

															"image/x-portable-graymap:pgm:PGM	Image;"

															"image/x-portable-pixmap:ppm:PPM	Image;"

															"image/bmp:bmp:BMP	Image;"

															"image/x-ms-bmp:bmp:BMP	Image;"

															"image/x-xpixmap:xpm:XPM	Image;"

															"image/xpm:xpm:XPM	Image";

				}

const	char	*	QNPlugin::getPluginDescriptionString	()	const	[pure
virtual]

Returns	the	plain-text	description	of	the	plugin.

const	char	*	QNPlugin::getPluginNameString	()	const	[pure
virtual]

Returns	the	plain-text	name	of	the	plugin.

void	QNPlugin::getVersionInfo	(int	&	plugin_major,
int	&	plugin_minor,	int	&	browser_major,
int	&	browser_minor)

Populates	*plugin_major	and	*plugin_minor	with	the	version	of	the	plugin	API
and	populates	*browser_major	and	*browser_minor	with	the	version	of	the
browser.

QNPInstance	*	QNPlugin::newInstance	()	[pure	virtual]

Override	this	to	return	an	appropriate	derived	class	of	QNPInstance.

void	QNPlugin::unuseJavaClass	()	[virtual]

This	function	is	called	when	the	plugin	is	shutting	down,	with	jc	set	to	the	value
returned	earlier	by	getJavaClass().	The	function	should	unuse	the	Java	class.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QSqlIndex	Class	Reference
[sql	module]

The	QSqlIndex	class	provides	functions	to	manipulate	and	describe	QSqlCursor
and	QSqlDatabase	indexes.	More...

#include	<qsqlindex.h>

Inherits	QSqlRecord.

List	of	all	member	functions.

Public	Members

QSqlIndex	(const	QString	&	cursorname	=	QString::null,
const	QString	&	name	=	QString::null)
QSqlIndex	(const	QSqlIndex	&	other)
~QSqlIndex	()
QSqlIndex	&	operator=	(const	QSqlIndex	&	other)
virtual	void	setCursorName	(const	QString	&	cursorName)
QString	cursorName	()	const
virtual	void	setName	(const	QString	&	name)
QString	name	()	const
virtual	void	append	(const	QSqlField	&	field)
virtual	void	append	(const	QSqlField	&	field,	bool	desc)
bool	isDescending	(int	i)	const
virtual	void	setDescending	(int	i,	bool	desc)

Static	Public	Members

QSqlIndex	fromStringList	(const	QStringList	&	l,
const	QSqlCursor	*	cursor)

Detailed	Description

The	QSqlIndex	class	provides	functions	to	manipulate	and	describe	QSqlCursor
and	QSqlDatabase	indexes.

This	class	is	used	to	describe	and	manipulate	QSqlCursor	and	QSqlDatabase
indexes.	An	index	refers	to	a	single	table	or	view	in	a	database.	Information
about	the	fields	that	comprise	the	index	can	be	used	to	generate	SQL	statements,
or	to	affect	the	behavior	of	a	QSqlCursor	object.

Normally,	QSqlIndex	objects	are	created	by	QSqlDatabase	or	QSqlCursor.

See	also	Database	Classes.

Member	Function	Documentation

QSqlIndex::QSqlIndex	(const	QString	&	cursorname	=
QString::null,	const	QString	&	name	=	QString::null)

Constructs	an	empty	index	using	the	cursor	name	cursorname	and	index	name
name.

QSqlIndex::QSqlIndex	(const	QSqlIndex	&	other)

Constructs	a	copy	of	other.

QSqlIndex::~QSqlIndex	()

Destroys	the	object	and	frees	any	allocated	resources.

void	QSqlIndex::append	(const	QSqlField	&	field)	[virtual]

Appends	the	field	field	to	the	list	of	indexed	fields.	The	field	is	appended	with	an
ascending	sort	order.

Reimplemented	from	QSqlRecord.

void	QSqlIndex::append	(const	QSqlField	&	field,	bool	desc)
[virtual]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Appends	the	field	field	to	the	list	of	indexed	fields.	The	field	is	appended	with	an
ascending	sort	order,	unless	desc	is	TRUE.

QString	QSqlIndex::cursorName	()	const

Returns	the	name	of	the	cursor	which	the	index	is	associated	with.

QSqlIndex	QSqlIndex::fromStringList	(const	QStringList	&	l,
const	QSqlCursor	*	cursor)	[static]

Returns	an	index	based	on	the	field	descriptions	in	l	and	the	cursor	cursor.	The
field	descriptions	should	be	in	the	same	format	that	toStringList()	produces,	for
example,	a	surname	field	in	the	people	table	might	be	in	one	of	these	forms:
"surname",	"surname	DESC"	or	"people.surname	ASC".

See	also	toStringList().

bool	QSqlIndex::isDescending	(int	i)	const

Returns	true	if	field	i	in	the	index	is	sorted	in	descending	order,	otherwise	returns
FALSE.

QString	QSqlIndex::name	()	const

Returns	the	name	of	the	index.

QSqlIndex	&	QSqlIndex::operator=	(const	QSqlIndex	&	other)

Sets	the	index	equal	to	other.

void	QSqlIndex::setCursorName	(const	QString	&	cursorName)
[virtual]

Sets	the	name	of	the	cursor	that	the	index	is	associated	with	to	cursorName.

void	QSqlIndex::setDescending	(int	i,	bool	desc)	[virtual]

If	desc	is	TRUE,	field	i	is	sorted	in	descending	order.	Otherwise,	field	i	is	sorted
in	ascending	order	(the	default).	If	the	field	does	not	exist,	nothing	happens.

void	QSqlIndex::setName	(const	QString	&	name)	[virtual]

Sets	the	name	of	the	index	to	name.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QConstString	Class	Reference
The	QConstString	class	provides	string	objects	using	constant	Unicode	data.
More...

#include	<qstring.h>

List	of	all	member	functions.

Public	Members

QConstString	(const	QChar	*	unicode,	uint	length)
~QConstString	()
const	QString	&	string	()	const

Detailed	Description

The	QConstString	class	provides	string	objects	using	constant	Unicode	data.

In	order	to	minimize	copying,	highly	optimized	applications	can	use
QConstString	to	provide	a	QString-compatible	object	from	existing	Unicode
data.	It	is	then	the	programmer's	responsibility	to	ensure	that	the	Unicode	data
exists	for	the	entire	lifetime	of	the	QConstString	object.

A	QConstString	is	created	with	the	QConstString	constructor.	The	string	held	by
the	object	can	be	obtained	by	calling	string().

See	also	Text	Related	Classes.

Member	Function	Documentation

QConstString::QConstString	(const	QChar	*	unicode,
uint	length)

Constructs	a	QConstString	that	uses	the	first	length	Unicode	characters	in	the
array	unicode.	Any	attempt	to	modify	copies	of	the	string	will	cause	it	to	create	a
copy	of	the	data,	thus	it	remains	forever	unmodified.

The	data	in	unicode	is	not	copied.	The	caller	must	be	able	to	guarantee	that
unicode	will	not	be	deleted	or	modified.

QConstString::~QConstString	()

Destroys	the	QConstString,	creating	a	copy	of	the	data	if	other	strings	are	still
using	it.

const	QString	&	QConstString::string	()	const

Returns	a	constant	string	referencing	the	data	passed	during	construction.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QNPStream	Class	Reference
The	QNPStream	class	provides	a	stream	of	data	provided	to	a	QNPInstance	by
the	browser.

This	class	is	part	of	the	Qt	NSPlugin	Extension.	More...

#include	<qnp.h>

List	of	all	member	functions.

Public	Members

~QNPStream	()
const	char	*	url	()	const
uint	end	()	const
uint	lastModified	()	const
const	char	*	type	()	const
bool	seekable	()	const
bool	okay	()	const
bool	complete	()	const
void	requestRead	(int	offset,	uint	length)
int	write	(int	len,	void	*	buffer)
QNPInstance	*	instance	()
QNPStream	(QNPInstance	*	in,	const	char	*	mt,	_NPStream	*	st,	bool	se)

Detailed	Description

This	class	is	defined	in	the	Qt	NSPlugin	Extension,	which	can	be	found	in	the
qt/extensions	directory.	It	is	not	included	in	the	main	Qt	API.

The	QNPStream	class	provides	a	stream	of	data	provided	to	a	QNPInstance	by
the	browser.

Note	that	this	is	neither	a	QTextStream	nor	a	QDataStream.

See	also	QNPInstance::write()	and	QNPInstance::newStreamCreated().

Member	Function	Documentation

QNPStream::QNPStream	(QNPInstance	*	in,	const	char	*	mt,
_NPStream	*	st,	bool	se)

Creates	a	stream.	Plugins	should	not	call	this,	but	rather
QNPInstance::newStream()	if	a	stream	is	required.

Takes	a	QNPInstance	in,	mime	type	mt,	a	pointer	to	an	_NPStream	st	and	a
seekable	flag	se.

QNPStream::~QNPStream	()

Destroys	the	stream.

bool	QNPStream::complete	()	const

Returns	TRUE	if	the	stream	has	received	all	the	data	from	the	source;	otherwise
returns	FALSE.

uint	QNPStream::end	()	const

Returns	the	length	of	the	stream	in	bytes.	Can	be	0	for	streams	of	unknown
length.

QNPInstance	*	QNPStream::instance	()

Returns	the	QNPInstance	for	which	this	stream	was	created.

uint	QNPStream::lastModified	()	const

Returns	the	time	when	the	source	of	the	stream	was	last	modified.

bool	QNPStream::okay	()	const

Returns	TRUE	if	no	errors	have	occurred	on	the	stream;	otherwise	returns

FALSE.

void	QNPStream::requestRead	(int	offset,	uint	length)

Requests	the	section	of	the	stream,	of	length	bytes	from	offset,	be	sent	to	the
QNPInstance::write()	function	of	the	instance()	of	this	stream.

bool	QNPStream::seekable	()	const

Returns	TRUE	if	the	stream	is	seekable;	otherwise	returns	FALSE.

const	char	*	QNPStream::type	()	const

Returns	the	MIME	type	of	the	stream.

const	char	*	QNPStream::url	()	const

Returns	the	URL	from	which	the	stream	was	created.

int	QNPStream::write	(int	len,	void	*	buffer)

Writes	len	bytes	from	buffer	to	the	stream.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QSqlPropertyMap	Class	Reference
[sql	module]

The	QSqlPropertyMap	class	is	used	to	map	widgets	to	SQL	fields.	More...

#include	<qsqlpropertymap.h>

List	of	all	member	functions.

Public	Members

QSqlPropertyMap	()
virtual	~QSqlPropertyMap	()
QVariant	property	(QWidget	*	widget)
virtual	void	setProperty	(QWidget	*	widget,	const	QVariant	&	value)
void	insert	(const	QString	&	classname,	const	QString	&	property)
void	remove	(const	QString	&	classname)

Static	Public	Members

QSqlPropertyMap	*	defaultMap	()
void	installDefaultMap	(QSqlPropertyMap	*	map)

Detailed	Description

The	QSqlPropertyMap	class	is	used	to	map	widgets	to	SQL	fields.

The	SQL	module	uses	Qt	object	properties	to	insert	and	extract	values	from
editor	widgets.

This	class	is	used	to	map	editors	to	SQL	fields.	This	works	by	associating	SQL
editor	class	names	to	the	properties	used	to	insert	and	extract	values	to/from	the
editor.

For	example,	a	QLineEdit	can	be	used	to	edit	text	strings	and	other	data	types	in
QDataTables	or	QSqlForms.	Several	properties	are	defined	in	QLineEdit,	but
only	the	text	property	is	used	to	insert	and	extract	text	from	a	QLineEdit.	Both
QDataTable	and	QSqlForm	use	the	global	QSqlPropertyMap	for	inserting	and
extracting	values	to	and	from	an	editor	widget.	The	global	property	map	defines
several	common	widgets	and	properties	that	are	suitable	for	many	applications.
You	can	add	and	remove	widget	properties	to	suit	your	specific	needs.

If	you	want	to	use	custom	editors	with	your	QDataTable	or	QSqlForm,	you	have
to	install	your	own	QSqlPropertyMap	for	that	table	or	form.	Example:

		QSqlPropertyMap	*myMap		=	new	QSqlPropertyMap();

		QSqlForm								*myForm	=	new	QSqlForm(this);

		MyEditor									myEditor(this);

		//	Set	the	QSqlForm's	record	buffer	to	the	update	buffer	of

		//	a	pre-existing	QSqlCursor	called	'cur'.

		myForm->setRecord(cur->primeUpdate());

		//	Install	the	customized	map

		myMap->insert("MyEditor",	"content");

		myForm->installPropertyMap(myMap);	//	myForm	now	owns	myMap

		...

		//	Insert	a	field	into	the	form	that	uses	a	myEditor	to	edit	the

		//	field	'somefield'

		myForm->insert(&myEditor,	"somefield");

		//	Update	myEditor	with	the	value	from	the	mapped	database	field

		myForm->readFields();

		...

		//	Let	the	user	edit	the	form

		...

		//	Update	the	database	fields	with	the	values	in	the	form

		myForm->writeFields();

		...

		

You	can	also	replace	the	global	QSqlPropertyMap	that	is	used	by	default.	(Bear
in	mind	that	QSqlPropertyMap	takes	ownership	of	the	new	default	map.)

		QSqlPropertyMap	*myMap	=	new	QSqlPropertyMap;

		myMap->insert("MyEditor",	"content");

		QSqlPropertyMap::installDefaultMap(myMap);

		...

		

See	also	QDataTable,	QSqlForm,	QSqlEditorFactory	and	Database	Classes.

Member	Function	Documentation

QSqlPropertyMap::QSqlPropertyMap	()

Constructs	a	QSqlPropertyMap.

The	default	property	mappings	used	by	Qt	widgets	are:

QButton	--	text
QCheckBox	--	checked
QComboBox	--	currentItem
QDateEdit	--	date
QDateTimeEdit	--	dateTime
QDial	--	value
QLabel	--	text
QLCDNumber	--	value
QLineEdit	--	text
QListBox	--	currentItem
QMultiLineEdit	--	text
QPushButton	--	text
QRadioButton	--	text
QScrollBar	--	value
QSlider	--	value
QSpinBox	--	value
QTextBrowser	--	source
QTextEdit	--	text
QTextView	--	text
QTimeEdit	--	time

QSqlPropertyMap::~QSqlPropertyMap	()	[virtual]

Destroys	the	QSqlPropertyMap.

Note	that	if	the	QSqlPropertyMap	is	installed	with	installPropertyMap()	the
object	it	was	installed	into,	e.g.	the	QSqlForm,	takes	ownership	and	will	delete
the	QSqlPropertyMap	when	necessary.

QSqlPropertyMap	*	QSqlPropertyMap::defaultMap	()	[static]

Returns	the	application	global	QSqlPropertyMap.

void	QSqlPropertyMap::insert	(const	QString	&	classname,
const	QString	&	property)

Insert	a	new	classname/property	pair,	which	is	used	for	custom	SQL	field
editors.	There	must	be	a	Q_PROPERTY	clause	in	the	classname	class
declaration	for	the	property.

Example:	sql/overview/custom1/main.cpp.

void	QSqlPropertyMap::installDefaultMap	(
QSqlPropertyMap	*	map)	[static]

Replaces	the	global	default	property	map	with	map.	All	QDataTable	and
QSqlForm	instantiations	will	use	this	new	map	for	inserting	and	extracting
values	to	and	from	editors.	QSqlPropertyMap	takes	ownership	of	map,	and
destroys	it	when	it	is	no	longer	needed.

QVariant	QSqlPropertyMap::property	(QWidget	*	widget)

Returns	the	mapped	property	of	widget	as	a	QVariant.

void	QSqlPropertyMap::remove	(const	QString	&	classname)

Removes	classname	from	the	map.

void	QSqlPropertyMap::setProperty	(QWidget	*	widget,
const	QVariant	&	value)	[virtual]

Sets	the	property	of	widget	to	value.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

http://www.trolltech.com/

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QWorkspace
QWorkspace	 ……

#include	<qworkspace.h>

QWidget

QWorkspace	(QWidget	*	parent	=	0,	const	char	*	name	=	0)
~QWorkspace	()
QWidget	*	activeWindow	()	const
QWidgetList	windowList	()	const
bool	scrollBarsEnabled	()	const
void	setScrollBarsEnabled	(bool	enable)

void	cascade	()
void	tile	()

void	windowActivated	(QWidget	*	w)

bool	scrollBarsEnabled	-	

QWorkspace

MDI

Qt

Qt

parentWidget()

setFocus() windowActivated() activeWindow

windowList()“ Windows”

QWorkspace cascade()tile()

scrollBarsEnabled

QWorkspace

QWorkspace::QWorkspace	(QWidget	*	parent	=	0,
const	char	*	name	=	0)

parentname

QWorkspace::~QWorkspace	()

QWidget	*	QWorkspace::activeWindow	()	const

0

mdi/application.cpp

void	QWorkspace::cascade	()	[]

tile()

mdi/application.cpp

bool	QWorkspace::scrollBarsEnabled	()	const

“scrollBarsEnabled”

void	QWorkspace::setScrollBarsEnabled	(bool	enable)

enable“scrollBarsEnabled”

void	QWorkspace::tile	()	[]

cascade()

mdi/application.cpp

void	QWorkspace::windowActivated	(QWidget	*	w)	[]

w w

activeWindow()windowList()

QWidgetList	QWorkspace::windowList	()	const

mdi/application.cpp

bool	scrollBarsEnabled

This	property	holds	whether	the	workspace	provides	scrollbars.	

setScrollBarsEnabled()scrollBarsEnabled()

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QNPWidget	Class	Reference
The	QNPWidget	class	provides	a	QWidget	that	is	a	Web-browser	plugin
window.

This	class	is	part	of	the	Qt	NSPlugin	Extension.	More...

#include	<qnp.h>

Inherits	QWidget.

List	of	all	member	functions.

Public	Members

QNPWidget	()
~QNPWidget	()
virtual	void	enterInstance	()
virtual	void	leaveInstance	()
QNPInstance	*	instance	()

Detailed	Description

This	class	is	defined	in	the	Qt	NSPlugin	Extension,	which	can	be	found	in	the
qt/extensions	directory.	It	is	not	included	in	the	main	Qt	API.

The	QNPWidget	class	provides	a	QWidget	that	is	a	Web-browser	plugin
window.

Derive	from	QNPWidget	to	create	a	widget	that	can	be	used	as	a	Browser	plugin
window,	or	create	one	and	add	child	widgets.	Instances	of	QNPWidget	may	only
be	created	when	QNPInstance::newWindow()	is	called	by	the	browser.

A	common	way	to	develop	a	plugin	widget	is	to	develop	it	as	a	stand-alone
application	window,	then	make	it	a	child	of	a	plugin	widget	to	use	it	as	a	browser
plugin.	The	technique	is:

class	MyPluginWindow	:	public	QNPWidget

{

				QWidget*	child;

public:

				MyPluginWindow()

				{

								//	Some	widget	that	is	normally	used	as	a	top-level	widget

								child	=	new	MyIndependentlyDevelopedWidget();

								//	Use	the	background	color	of	the	web	page

								child->setBackgroundColor(backgroundColor());

								//	Fill	the	plugin	widget

								child->setGeometry(0,	0,	width(),	height());

				}

				void	resizeEvent(QResizeEvent*)

				{

								//	Fill	the	plugin	widget

								child->resize(size());

				}

};

The	default	implementation	is	an	empty	window.

Member	Function	Documentation

QNPWidget::QNPWidget	()

Creates	a	QNPWidget.

QNPWidget::~QNPWidget	()

Destroys	the	window.	This	will	be	called	by	the	plugin	binding	code	when	the
window	is	no	longer	required.	The	Web-browser	will	delete	windows	when	they
leave	the	page.	The	bindings	will	change	the	QWidget::winId()	of	the	window
when	the	window	is	resized,	but	this	should	not	affect	normal	widget	behavior.

void	QNPWidget::enterInstance	()	[virtual]

Called	when	the	mouse	enters	the	plugin	window.	Does	nothing	by	default.

Example:	grapher/grapher.cpp.

QNPInstance	*	QNPWidget::instance	()

Returns	the	instance	for	which	this	widget	is	the	window.

void	QNPWidget::leaveInstance	()	[virtual]

Called	when	the	mouse	leaves	the	plugin	window.	Does	nothing	by	default.

Example:	grapher/grapher.cpp.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QSqlQuery
[sql]

QSqlQuerySQL	 ……

#include	<qsqlquery.h>

QSqlCursor

QSqlQuery	(QSqlResult	*	r)
QSqlQuery	(const	QString	&	query	=	QString::null,	QSqlDatabase	*	db	=
0)
QSqlQuery	(const	QSqlQuery	&	other)
QSqlQuery	&	operator=	(const	QSqlQuery	&	other)
virtual	~QSqlQuery	()
bool	isValid	()	const
bool	isActive	()	const
bool	isNull	(int	field)	const
int	at	()	const
QString	lastQuery	()	const
int	numRowsAffected	()	const
QSqlError	lastError	()	const
bool	isSelect	()	const
int	size	()	const
const	QSqlDriver	*	driver	()	const
const	QSqlResult	*	result	()	const
virtual	bool	exec	(const	QString	&	query)
virtual	QVariant	value	(int	i)	const
virtual	bool	seek	(int	i,	bool	relative	=	FALSE)
virtual	bool	next	()
virtual	bool	prev	()
virtual	bool	first	()
virtual	bool	last	()

virtual	void	beforeSeek	()
virtual	void	afterSeek	()

QSqlQuerySQL

QSqlQuery QSqlDatabaseSQL	DML	
UPDATE		 DELETE,	DDL CREATE	TABLE	SQL(
DATESTYLE=ISO		PostgreSQL).

SQLquery	 isActive()	TRUE	SQL		

:

next()
prev()
first()
last()
seek(int)

	

				QSqlQuery	query("select	name	from	customer");

				while	(query.next())	{

								QString	name	=	query.value(0).toString();

								doSomething(name);

				}

				

value()SELECT0

QSqlDatabaseQSqlCursorQVariant

QSqlQuery::QSqlQuery	(QSqlResult	*	r)

QSqlQuery QSqlResult	r	

QSqlQuery::QSqlQuery	(const	QString	&	query	=	QString::null,
QSqlDatabase	*	db	=	0)

	SQL	 query	dbQSqlQuery db0

QSqlDatabase

QSqlQuery::QSqlQuery	(const	QSqlQuery	&	other)

other

QSqlQuery::~QSqlQuery	()	[virtual]

void	QSqlQuery::afterSeek	()	[virtual	protected]

int	QSqlQuery::at	()	const

0QSql::Location

S	 isValid()

	 sql/overview/navigating/main.cpp

void	QSqlQuery::beforeSeek	()	[virtual	protected]

const	QSqlDriver	*	QSqlQuery::driver	()	const

bool	QSqlQuery::exec	(const	QString	&	query)	[virtual]

	SQL	 queryTRUEfalse	 query	SQL

exec()

	 isActive() isValid() next() prev() first() last()		 seek()

sql/overview/basicbrowsing/main.cppsql/overview/basicbrowsing2/main.cpp	
sql/overview/basicdatamanip/main.cpp

bool	QSqlQuery::first	()	[virtual]

	
FALSE

	 sql/overview/navigating/main.cpp

bool	QSqlQuery::isActive	()	const

	TRUE	FALSE

sql/overview/basicbrowsing/main.cppsql/overview/basicbrowsing2/main.cppsql/overview/basicdatamanip/main.cpp
	 sql/overview/retrieve1/main.cpp

bool	QSqlQuery::isNull	(int	field)	const

field		NULL		FALSE		FALSE	 isNull()	

	 isActive() isValid()		 value()

bool	QSqlQuery::isSelect	()	const

	SELECT	TRUE	FALSE

bool	QSqlQuery::isValid	()	const

TRUEFALSE

bool	QSqlQuery::last	()	[virtual]

R	
FALSE

sql/overview/navigating/main.cpp

QSqlError	QSqlQuery::lastError	()	const

	 QSqlError

QString	QSqlQuery::lastQuery	()	const

	 QString::null

bool	QSqlQuery::next	()	[virtual]

	

FALSE

	FALSE		TRUE	

	 at()isValid()

sql/overview/basicbrowsing/main.cppsql/overview/basicbrowsing2/main.cppsql/overview/retrieve1/main.cpp
sql/sqltable/main.cpp

int	QSqlQuery::numRowsAffected	()	const

	SQL		-1		SELECT	

	 size()		 QSqlDriver::hasFeature()

	 sql/overview/basicbrowsing2/main.cpp	
sql/overview/basicdatamanip/main.cpp

QSqlQuery	&	QSqlQuery::operator=	(const	QSqlQuery	&	other
)

other	

bool	QSqlQuery::prev	()	[virtual]

	

	FALSE

	FALSE		TRUE	

	 at()

const	QSqlResult	*	QSqlQuery::result	()	const

bool	QSqlQuery::seek	(int	i,	bool	relative	=	FALSE)	[virtual]

	 i	0	 isSelect()	TRUE

	 relative	FALSE,	

i		FALSE
	 i		 i	FALSETRUE

	 relativeTRUE

	 i	FALSE	
	 i		FALSE
	 i	0	FALSE
	 i	 ii		 i i	>=0 i	FALSE
TRUE

	 sql/overview/navigating/main.cpp

int	QSqlQuery::size	()	const

-1	SELECT	
isActive()FALSE-1

	SELECT		 numRowsAffected()

	 isActive() numRowsAffected()		 QSqlDriver::hasFeature()

	 sql/overview/navigating/main.cpp

QVariant	QSqlQuery::value	(int	i)	const	[virtual]

	 i	0

SELECT	"select	forename,	surname	from	people"0forename	1
surname	 SELECT	*	*	

	 i	 QVariant

	 prev() next() first() last() seek() isActive()isValid()

sql/overview/basicbrowsing/main.cppsql/overview/basicbrowsing2/main.cppsql/overview/retrieve1/main.cpp
sql/sqltable/main.cpp

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :tipy Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QWSDecoration	Class	Reference
The	QWSDecoration	class	allows	the	appearance	of	the	Qt/Embedded	Window
Manager	to	be	customized.	More...

#include	<qwsdecoration_qws.h>

List	of	all	member	functions.

Public	Members

QWSDecoration	()
virtual	~QWSDecoration	()
enum	Region	{	None	=	0,	All	=	1,	Title	=	2,	Top	=	3,	Bottom	=	4,	Left	=	5,
Right	=	6,	TopLeft	=	7,	TopRight	=	8,	BottomLeft	=	9,	BottomRight	=	10,
Close	=	11,	Minimize	=	12,	Maximize	=	13,	Normalize	=	14,	Menu	=	15,
LastRegion	=	Menu	}
virtual	QRegion	region	(const	QWidget	*	widget,	const	QRect	&	rect,
Region	type	=	All)	=	0
virtual	void	close	(QWidget	*	widget)
virtual	void	minimize	(QWidget	*	widget)
virtual	void	maximize	(QWidget	*	widget)
virtual	QPopupMenu	*	menu	(const	QWidget	*,	const	QPoint	&)
virtual	void	paint	(QPainter	*	painter,	const	QWidget	*	widget)	=	0
virtual	void	paintButton	(QPainter	*	painter,	const	QWidget	*	widget,
Region	type,	int	state)	=	0

Detailed	Description

The	QWSDecoration	class	allows	the	appearance	of	the	Qt/Embedded	Window
Manager	to	be	customized.

Qt/Embedded	provides	window	management	to	top	level	windows.	The
appearance	of	the	borders	and	buttons	(the	decoration)	around	the	managed
windows	can	be	customized	by	creating	your	own	class	derived	from
QWSDecoration	and	overriding	a	few	methods.

This	class	is	non-portable.	It	is	available	only	in	Qt/Embedded.

See	also	QApplication::qwsSetDecoration()	and	Qt/Embedded.

Member	Type	Documentation

QWSDecoration::Region

This	enum	describes	the	regions	in	the	window	decorations.

QWSDecoration::None	-	used	internally.
QWSDecoration::All	-	the	entire	region	used	by	the	window	decoration.
QWSDecoration::Title	-	Displays	the	window	title	and	allows	the	window
to	be	moved	by	dragging.
QWSDecoration::Top	-	allows	the	top	of	the	window	to	be	resized.
QWSDecoration::Bottom	-	allows	the	bottom	of	the	window	to	be	resized.
QWSDecoration::Left	-	allows	the	left	edge	of	the	window	to	be	resized.
QWSDecoration::Right	-	allows	the	right	edge	of	the	window	to	be	resized.
QWSDecoration::TopLeft	-	allows	the	top-left	of	the	window	to	be	resized.
QWSDecoration::TopRight	-	allows	the	top-right	of	the	window	to	be
resized.
QWSDecoration::BottomLeft	-	allows	the	bottom-left	of	the	window	to	be
resized.
QWSDecoration::BottomRight	-	allows	the	bottom-right	of	the	window	to
be	resized.
QWSDecoration::Close	-	clicking	in	this	region	closes	the	window.
QWSDecoration::Minimize	-	clicking	in	this	region	minimizes	the	window.
QWSDecoration::Maximize	-	clicking	in	this	region	maximizes	the	window.
QWSDecoration::Normalize	-	returns	a	maximized	window	to	previous
size.
QWSDecoration::Menu	-	clicking	in	this	region	opens	the	window
operations	menu.

Member	Function	Documentation

QWSDecoration::QWSDecoration	()

Constructs	a	decorator.

QWSDecoration::~QWSDecoration	()	[virtual]

Destroys	a	decorator.

void	QWSDecoration::close	(QWidget	*	widget)	[virtual]

Called	when	the	user	clicks	in	the	Close	region.

widget	is	the	QWidget	to	be	closed.

The	default	behaviour	is	to	close	the	widget.

void	QWSDecoration::maximize	(QWidget	*	widget)	[virtual]

Called	when	the	user	clicks	in	the	Maximize	region.

widget	is	the	QWidget	to	be	maximized.

The	default	behaviour	is	to	resize	the	widget	to	be	full-screen.	This	method	can
be	overridden	to,	e.g.	avoid	launch	panels.

QPopupMenu	*	QWSDecoration::menu	(const	QWidget	*,
const	QPoint	&)	[virtual]

Called	to	create	a	QPopupMenu	containing	the	valid	menu	operations.

The	default	implementation	adds	all	possible	window	operations.

void	QWSDecoration::minimize	(QWidget	*	widget)	[virtual]

Called	when	the	user	clicks	in	the	Minimize	region.

widget	is	the	QWidget	to	be	minimized.

The	default	behaviour	is	to	ignore	this	action.

void	QWSDecoration::paint	(QPainter	*	painter,
const	QWidget	*	widget)	[pure	virtual]

Override	to	paint	the	border	and	title	decoration	around	widget	using	painter.

void	QWSDecoration::paintButton	(QPainter	*	painter,
const	QWidget	*	widget,	Region	type,	int	state)	[pure
virtual]

Override	to	paint	a	button	type	using	painter.

widget	is	the	widget	whose	button	is	to	be	drawn.	state	is	the	state	of	the	button.
It	can	be	a	combination	of	the	following	ORed	together:

QWSButton::MouseOver

QWSButton::Clicked

QWSButton::On

QRegion	QWSDecoration::region	(const	QWidget	*	widget,
const	QRect	&	rect,	Region	type	=	All)	[pure	virtual]

Returns	the	requested	region	type	which	will	contain	widget	with	geometry	rect.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QCopChannel	Class	Reference
The	QCopChannel	class	provides	communication	capabilities	between	several
clients.	More...

#include	<qcopchannel_qws.h>

Inherits	QObject.

List	of	all	member	functions.

Public	Members

QCopChannel	(const	QCString	&	channel,	QObject	*	parent	=	0,
const	char	*	name	=	0)
virtual	~QCopChannel	()
QCString	channel	()	const
virtual	void	receive	(const	QCString	&	msg,	const	QByteArray	&	data)

Signals

void	received	(const	QCString	&	msg,	const	QByteArray	&	data)

Static	Public	Members

bool	isRegistered	(const	QCString	&	channel)
bool	send	(const	QCString	&	channel,	const	QCString	&	msg)
bool	send	(const	QCString	&	channel,	const	QCString	&	msg,
const	QByteArray	&	data)

Detailed	Description

The	QCopChannel	class	provides	communication	capabilities	between	several
clients.

The	Qt	Cop	(QCOP)	is	a	COmmunication	Protocol,	allowing	clients	to
communicate	both	within	the	same	address	space	and	between	different
processes.

Currently,	this	facility	is	only	available	on	Qt/Embedded.	On	X11	and	Windows
we	are	exploring	the	use	of	existing	standards	such	as	DCOP	and	COM.

QCopChannel	provides	send()	and	isRegistered()	which	are	static	functions
usable	without	an	object.

The	channel()	function	returns	the	name	of	the	channel.

In	order	to	listen	to	the	traffic	on	a	channel,	you	should	either	subclass
QCopChannel	and	reimplement	receive(),	or	connect()	to	the	received()	signal.

Member	Function	Documentation

QCopChannel::QCopChannel	(const	QCString	&	channel,
QObject	*	parent	=	0,	const	char	*	name	=	0)

Constructs	a	QCop	channel	and	registers	it	with	the	server	using	the	name
channel.	The	standard	parent	and	name	arguments	are	passed	on	to	the	QObject
constructor.

QCopChannel::~QCopChannel	()	[virtual]

Destroys	the	client's	end	of	the	channel	and	notifies	the	server	that	the	client	has
closed	its	connection.	The	server	will	keep	the	channel	open	until	the	last
registered	client	detaches.

QCString	QCopChannel::channel	()	const

Returns	the	name	of	the	channel.

bool	QCopChannel::isRegistered	(const	QCString	&	channel)
[static]

Queries	the	server	for	the	existence	of	channel.

Returns	TRUE	if	channel	is	registered;	otherwise	returns	FALSE.

void	QCopChannel::receive	(const	QCString	&	msg,
const	QByteArray	&	data)	[virtual]

This	virtual	function	allows	subclasses	of	QCopChannel	to	process	data	received
from	their	channel.

The	default	implementation	emits	the	received()	signal.

Note	that	the	format	of	data	has	to	be	well	defined	in	order	to	extract	the
information	it	contains.

Example:

				void	MyClass::receive(const	QCString	&msg,	const	QByteArray	&data)

				{

								QDataStream	stream(data,	IO_ReadOnly);

								if	(msg	==	"execute(QString,QString)")	{

												QString	cmd,	arg;

												stream	>>	cmd	>>	arg;

												...

								}	else	if	(msg	==	"delete(QString)")	{

												QString	filenname;

												stream	>>	filename;

												...

								}	else	...

				}

				

This	example	assumes	that	the	msg	is	a	DCOP-style	function	signature	and	the
data	contains	the	function's	arguments.	(See	send().)

Using	the	DCOP	convention	is	a	recommendation,	but	not	a	requirement.
Whatever	convention	you	use	the	sender	and	receiver	must	agree	on	the
argument	types.

See	also	send().

void	QCopChannel::received	(const	QCString	&	msg,
const	QByteArray	&	data)	[signal]

This	signal	is	emitted	with	the	msg	and	data	whenever	the	receive()	function
gets	incoming	data.

bool	QCopChannel::send	(const	QCString	&	channel,
const	QCString	&	msg,	const	QByteArray	&	data)	[static]

Send	the	message	msg	on	channel	channel	with	data	data.	The	message	will	be
distributed	to	all	clients	subscribed	to	the	channel.

Note	that	QDataStream	provides	a	convenient	way	to	fill	the	byte	array	with
auxiliary	data.

Example:

				QByteArray	ba;

				QDataStream	stream(ba,	IO_WriteOnly);

				stream	<<	QString("cat")	<<	QString("file.txt");

				QCopChannel::send("System/Shell",	"execute(QString,QString)",	ba);

				

Here	the	channel	is	"System/Shell".	The	msg	is	an	arbitrary	string,	but	in	the
example	we've	used	the	DCOP	convention	of	passing	a	function	signature.	Such
a	signature	is	formatted	as	functionname(types)	where	types	is	a	list	of	zero	or
more	comma-separated	type	names,	with	no	whitespace,	no	consts	and	no
pointer	or	reference	marks,	i.e.	no	"*"	or	"&".

Using	the	DCOP	convention	is	a	recommendation,	but	not	a	requirement.
Whatever	convention	you	use	the	sender	and	receiver	must	agree	on	the
argument	types.

See	also	receive().

bool	QCopChannel::send	(const	QCString	&	channel,
const	QCString	&	msg)	[static]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Send	the	message	msg	on	channel	channel.	The	message	will	be	distributed	to	all
clients	subscribed	to	the	channel.

See	also	receive().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QGridView	Class	Reference
The	QGridView	class	provides	an	abstract	base	for	fixed-size	grids.	More...

#include	<qgridview.h>

Inherits	QScrollView.

List	of	all	member	functions.

Public	Members

QGridView	(QWidget	*	parent	=	0,	const	char	*	name	=	0,	WFlags	f	=	0)
~QGridView	()
int	numRows	()	const
virtual	void	setNumRows	(int)
int	numCols	()	const
virtual	void	setNumCols	(int)
int	cellWidth	()	const
virtual	void	setCellWidth	(int)
int	cellHeight	()	const
virtual	void	setCellHeight	(int)
QRect	cellRect	()	const
QRect	cellGeometry	(int	row,	int	column)
QSize	gridSize	()	const
int	rowAt	(int	y)	const
int	columnAt	(int	x)	const
void	repaintCell	(int	row,	int	column,	bool	erase	=	TRUE)
void	updateCell	(int	row,	int	column)
void	ensureCellVisible	(int	row,	int	column)

Properties

int	cellHeight	-	the	height	of	a	grid	row
int	cellWidth	-	the	width	of	a	grid	column
int	numCols	-	the	number	of	columns	in	the	grid
int	numRows	-	the	number	of	rows	in	the	grid

Protected	Members

virtual	void	paintCell	(QPainter	*	p,	int	row,	int	col)	=	0
virtual	void	paintEmptyArea	(QPainter	*	p,	int	cx,	int	cy,	int	cw,	int	ch)
virtual	void	dimensionChange	(int	oldNumRows,	int	oldNumCols)

Detailed	Description

The	QGridView	class	provides	an	abstract	base	for	fixed-size	grids.

A	grid	view	consists	of	a	number	of	abstract	cells	organized	in	rows	and
columns.	The	cells	have	a	fixed	size	and	are	identified	with	a	row	index	and	a
column	index.	The	top-left	cell	is	in	row	0,	column	0.	The	bottom-right	cell	is	in
row	numRows()-1,	column	numCols()-1.

You	can	define	numRows,	numCols,	cellWidth	and	cellHeight.	Reimplement	the
pure	virtual	function	paintCell()	to	draw	the	content	of	a	cell.

With	ensureCellVisible(),	you	can	ensure	a	certain	cell	is	visible.	With	rowAt()
and	columnAt()	you	can	find	a	cell	based	on	the	given	x-	and	y-coordinates.

If	you	need	to	monitor	changes	to	the	grid's	dimensions	(i.e.	when	numRows	or
numCols	is	changed),	reimplement	the	dimensionChange()	change	handler.

Note:	the	row,	column	indices	are	always	given	in	the	order,	row	(vertical	offset)
then	column	(horizontal	offset).	This	order	is	the	opposite	of	all	pixel	operations,
which	are	given	in	the	order	x	(horizontal	offset),	y	(vertical	offset).

QGridView	is	a	very	simple	abstract	class	based	on	QScrollView.	It	is	designed
to	simplify	the	task	of	drawing	many	cells	of	the	same	size	in	a	potentially
scrollable	canvas.	If	you	need	rows	and	columns	in	different	sizes,	use	a	QTable
instead.	If	you	need	a	simple	list	of	items,	use	a	QListBox.	If	you	need	to	present
hierachical	data	use	a	QListView,	and	if	you	need	random	objects	at	random
positions,	consider	using	either	a	QIconView	or	a	QCanvas.

See	also	Abstract	Widget	Classes.

Member	Function	Documentation

QGridView::QGridView	(QWidget	*	parent	=	0,
const	char	*	name	=	0,	WFlags	f	=	0)

Constructs	a	grid	view.

The	parent,	name	and	widget	flag,	f,	arguments	are	passed	to	the	QScrollView
constructor.

QGridView::~QGridView	()

Destroys	the	grid	view.

QRect	QGridView::cellGeometry	(int	row,	int	column)

Returns	the	geometry	of	cell	(row,	column)	in	the	content	coordinate	system.

See	also	cellRect().

int	QGridView::cellHeight	()	const

Returns	the	height	of	a	grid	row.	See	the	"cellHeight"	property	for	details.

QRect	QGridView::cellRect	()	const

Returns	the	geometry	of	a	cell	in	a	cell's	coordinate	system.	This	is	a
convenience	function	useful	in	paintCell().	It	is	equivalent	to	QRect(0,	0,
cellWidth(),	cellHeight()).

See	also	cellGeometry().

int	QGridView::cellWidth	()	const

Returns	the	width	of	a	grid	column.	See	the	"cellWidth"	property	for	details.

int	QGridView::columnAt	(int	x)	const

Returns	the	number	of	the	column	at	position	x.	x	must	be	given	in	content
coordinates.

See	also	rowAt().

void	QGridView::dimensionChange	(int	oldNumRows,
int	oldNumCols)	[virtual	protected]

This	change	handler	is	called	whenever	any	of	the	grid's	dimensions	changes.
oldNumRows	and	oldNumCols	contain	the	old	dimensions,	numRows()	and
numCols()	contain	the	new	dimensions.

void	QGridView::ensureCellVisible	(int	row,	int	column)

Ensure	cell	(row,	column)	is	visible,	scrolling	the	grid	view	if	necessary.

QSize	QGridView::gridSize	()	const

Returns	the	size	of	the	grid	in	pixels.

int	QGridView::numCols	()	const

Returns	the	number	of	columns	in	the	grid.	See	the	"numCols"	property	for
details.

int	QGridView::numRows	()	const

Returns	the	number	of	rows	in	the	grid.	See	the	"numRows"	property	for	details.

void	QGridView::paintCell	(QPainter	*	p,	int	row,	int	col)	[pure
virtual	protected]

This	pure	virtual	function	is	called	to	paint	the	single	cell	at	(row,	col)	using
painter	p.	The	painter	must	be	open	when	paintCell()	is	called	and	must	remain
open.

The	coordinate	system	is	translated	so	that	the	origin	is	at	the	top-left	corner	of
the	cell	to	be	painted,	i.e.	cell	coordinates.	Do	not	scale	or	shear	the	coordinate
system	(or	if	you	do,	restore	the	transformation	matrix	before	you	return).

The	painter	is	not	clipped	by	default	in	order	to	get	maximum	efficiency.	If	you
want	clipping,	use

				p->setClipRect(cellRect(),	QPainter::CoordPainter);

				//...	your	drawing	code

				p->setClipping(FALSE);

	

void	QGridView::paintEmptyArea	(QPainter	*	p,	int	cx,	int	cy,
int	cw,	int	ch)	[virtual	protected]

This	function	fills	the	cw	pixels	wide	and	ch	pixels	high	rectangle	starting	at
position	(cx,	cy)	with	the	background	color	using	the	painter	p.

paintEmptyArea()	is	invoked	by	drawContents()	to	erase	or	fill	unused	areas.

void	QGridView::repaintCell	(int	row,	int	column,	bool	erase	=
TRUE)

Repaints	cell	(row,	column).

If	erase	is	TRUE,	Qt	erases	the	area	of	the	cell	before	the	paintCell()	call;
otherwise	no	erasing	takes	place.

See	also	QWidget::repaint().

int	QGridView::rowAt	(int	y)	const

Returns	the	number	of	the	row	at	position	y.	y	must	be	given	in	content
coordinates.

See	also	columnAt().

void	QGridView::setCellHeight	(int)	[virtual]

Sets	the	height	of	a	grid	row.	See	the	"cellHeight"	property	for	details.

void	QGridView::setCellWidth	(int)	[virtual]

Sets	the	width	of	a	grid	column.	See	the	"cellWidth"	property	for	details.

void	QGridView::setNumCols	(int)	[virtual]

Sets	the	number	of	columns	in	the	grid.	See	the	"numCols"	property	for	details.

void	QGridView::setNumRows	(int)	[virtual]

Sets	the	number	of	rows	in	the	grid.	See	the	"numRows"	property	for	details.

void	QGridView::updateCell	(int	row,	int	column)

Updates	cell	(row,	column).

See	also	QWidget::update().

Property	Documentation

int	cellHeight

This	property	holds	the	height	of	a	grid	row.

All	rows	in	a	grid	view	have	the	same	height.

See	also	cellWidth.

Set	this	property's	value	with	setCellHeight()	and	get	this	property's	value	with
cellHeight().

int	cellWidth

This	property	holds	the	width	of	a	grid	column.

All	columns	in	a	grid	view	have	the	same	width.

See	also	cellHeight.

Set	this	property's	value	with	setCellWidth()	and	get	this	property's	value	with
cellWidth().

int	numCols

This	property	holds	the	number	of	columns	in	the	grid.

Set	this	property's	value	with	setNumCols()	and	get	this	property's	value	with
numCols().

See	also	numRows.

int	numRows

This	property	holds	the	number	of	rows	in	the	grid.

Set	this	property's	value	with	setNumRows()	and	get	this	property's	value	with

numRows().

See	also	numCols.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QSqlRecord	Class	Reference
[sql	module]

The	QSqlRecord	class	encapsulates	a	database	record,	i.e.	a	set	of	database
fields.	More...

#include	<qsqlrecord.h>

Inherited	by	QSqlCursor	and	QSqlIndex.

List	of	all	member	functions.

Public	Members

QSqlRecord	()
QSqlRecord	(const	QSqlRecord	&	other)
QSqlRecord	&	operator=	(const	QSqlRecord	&	other)
virtual	~QSqlRecord	()
virtual	QVariant	value	(int	i)	const
virtual	QVariant	value	(const	QString	&	name)	const
virtual	void	setValue	(int	i,	const	QVariant	&	val)
virtual	void	setValue	(const	QString	&	name,	const	QVariant	&	val)
bool	isGenerated	(int	i)	const
bool	isGenerated	(const	QString	&	name)	const
virtual	void	setGenerated	(const	QString	&	name,	bool	generated)
virtual	void	setGenerated	(int	i,	bool	generated)
virtual	void	setNull	(int	i)
virtual	void	setNull	(const	QString	&	name)
bool	isNull	(int	i)
bool	isNull	(const	QString	&	name)
int	position	(const	QString	&	name)	const
QString	fieldName	(int	i)	const
QSqlField	*	field	(int	i)
QSqlField	*	field	(const	QString	&	name)
const	QSqlField	*	field	(int	i)	const
const	QSqlField	*	field	(const	QString	&	name)	const
virtual	void	append	(const	QSqlField	&	field)
virtual	void	insert	(int	pos,	const	QSqlField	&	field)
virtual	void	remove	(int	pos)
bool	isEmpty	()	const
bool	contains	(const	QString	&	name)	const
virtual	void	clear	()
virtual	void	clearValues	(bool	nullify	=	FALSE)
uint	count	()	const
virtual	QString	toString	(const	QString	&	prefix	=	QString::null,
const	QString	&	sep	=	",")	const
virtual	QStringList	toStringList	(const	QString	&	prefix	=	QString::null)
const

Detailed	Description

The	QSqlRecord	class	encapsulates	a	database	record,	i.e.	a	set	of	database
fields.

The	QSqlRecord	class	encapsulates	the	functionality	and	characteristics	of	a
database	record	(usually	a	table	or	view	within	the	database).	QSqlRecords
support	adding	and	removing	fields	as	well	as	setting	and	retrieving	field	values.

QSqlRecord	is	implicitly	shared.	This	means	you	can	make	copies	of	the	record
in	time	O(1).	If	multiple	QSqlRecord	instances	share	the	same	data	and	one	is
modifying	the	record's	data	then	this	modifying	instance	makes	a	copy	and
modifies	its	private	copy	-	thus	it	does	not	affect	other	instances.

See	also	Database	Classes.

Member	Function	Documentation

QSqlRecord::QSqlRecord	()

Constructs	an	empty	record.

QSqlRecord::QSqlRecord	(const	QSqlRecord	&	other)

Constructs	a	copy	of	other.

QSqlRecord::~QSqlRecord	()	[virtual]

Destroys	the	object	and	frees	any	allocated	resources.

void	QSqlRecord::append	(const	QSqlField	&	field)	[virtual]

Append	a	copy	of	field	field	to	the	end	of	the	record.

Reimplemented	in	QSqlIndex.

void	QSqlRecord::clear	()	[virtual]

Removes	all	fields	from	the	record.

See	also	clearValues().

Reimplemented	in	QSqlCursor.

void	QSqlRecord::clearValues	(bool	nullify	=	FALSE)	[virtual]

Clears	the	value	of	all	fields	in	the	record.	If	nullify	is	TRUE,	(it's	default	is
FALSE),	each	field	is	set	to	null.

bool	QSqlRecord::contains	(const	QString	&	name)	const

Returns	TRUE	if	there	is	a	field	in	the	record	called	name,	otherwise	returns
FALSE.

uint	QSqlRecord::count	()	const

Returns	the	number	of	fields	in	the	record.

QSqlField	*	QSqlRecord::field	(int	i)

Returns	a	pointer	to	the	field	at	position	i	within	the	record,	or	0	if	it	cannot	be
found.

QSqlField	*	QSqlRecord::field	(const	QString	&	name)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	a	pointer	to	the	field	with	name	name	within	the	record,	or	0	if	it	cannot
be	found.	Field	names	are	not	case-sensitive.

const	QSqlField	*	QSqlRecord::field	(int	i)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

const	QSqlField	*	QSqlRecord::field	(const	QString	&	name)
const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	a	pointer	to	the	field	with	name	name	within	the	record,	or	0	if	it	cannot
be	found.	Field	names	are	not	case-sensitive.

QString	QSqlRecord::fieldName	(int	i)	const

Returns	the	name	of	the	field	at	position	i.	If	the	field	does	not	exist,
QString::null	is	returned.

void	QSqlRecord::insert	(int	pos,	const	QSqlField	&	field)
[virtual]

Insert	a	copy	of	field	at	position	pos.	If	a	field	already	exists	at	pos,	it	is
removed.

bool	QSqlRecord::isEmpty	()	const

Returns	TRUE	if	there	are	no	fields	in	the	record,	otherwise	returns	FALSE.

bool	QSqlRecord::isGenerated	(const	QString	&	name)	const

Returns	TRUE	if	the	field	name	is	to	be	generated	(the	default),	otherwise
returns	FALSE.	If	the	field	does	not	exist,	FALSE	is	returned.

See	also	setGenerated().

bool	QSqlRecord::isGenerated	(int	i)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	TRUE	if	the	field	with	the	index	i	is	to	be	generated	(the	default),
otherwise	returns	FALSE.	If	the	field	does	not	exist,	FALSE	is	returned.

See	also	setGenerated().

bool	QSqlRecord::isNull	(const	QString	&	name)

Returns	TRUE	if	the	field	name	is	currently	null,	otherwise	returns	FALSE.	If
the	field	name	doesn't	exist	the	return	value	is	TRUE.

See	also	position().

bool	QSqlRecord::isNull	(int	i)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	TRUE	if	the	field	i	is	currently	null,	otherwise	returns	FALSE.	If	the
index	i	doesn't	exist	the	return	value	is	TRUE.

See	also	fieldName().

QSqlRecord	&	QSqlRecord::operator=	(
const	QSqlRecord	&	other)

Sets	the	record	equal	to	other.

int	QSqlRecord::position	(const	QString	&	name)	const

Returns	the	position	of	the	field	named	name	within	the	record,	or	-1	if	it	cannot
be	found.	Field	names	are	not	case-sensitive.	If	more	than	one	field	matches,	the
first	one	is	returned.

void	QSqlRecord::remove	(int	pos)	[virtual]

Removes	the	field	at	pos.	If	pos	does	not	exist,	nothing	happens.

Reimplemented	in	QSqlCursor.

void	QSqlRecord::setGenerated	(const	QString	&	name,
bool	generated)	[virtual]

Sets	the	generated	flag	for	the	field	name	to	generated.	If	the	field	does	not	exist,
nothing	happens.	Only	fields	that	have	generated	set	to	TRUE	are	included	in
the	SQL	that	is	generated,	e.g.	by	QSqlCursor.

See	also	isGenerated().

Reimplemented	in	QSqlCursor.

void	QSqlRecord::setGenerated	(int	i,	bool	generated)
[virtual]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Sets	the	generated	flag	for	the	field	i	to	generated.

See	also	isGenerated().

Reimplemented	in	QSqlCursor.

void	QSqlRecord::setNull	(int	i)	[virtual]

Sets	the	value	of	field	i	to	NULL.	If	the	field	does	not	exist,	nothing	happens.

void	QSqlRecord::setNull	(const	QString	&	name)	[virtual]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Sets	the	value	of	field	name	to	NULL.	If	the	field	does	not	exist,	nothing
happens.

void	QSqlRecord::setValue	(int	i,	const	QVariant	&	val)
[virtual]

Sets	the	value	of	the	field	at	position	i	to	val.	If	the	field	does	not	exist,	nothing
happens.

Examples:	sql/overview/extract/main.cpp,	sql/overview/insert/main.cpp,
sql/overview/insert2/main.cpp,	sql/overview/order2/main.cpp,
sql/overview/subclass5/main.cpp,	sql/overview/update/main.cpp	and
sql/sqltable/main.cpp.

void	QSqlRecord::setValue	(const	QString	&	name,
const	QVariant	&	val)	[virtual]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Sets	the	value	of	field	name	to	val.	If	the	field	does	not	exist,	nothing	happens.

QString	QSqlRecord::toString	(const	QString	&	prefix	=
QString::null,	const	QString	&	sep	=	",")	const	[virtual]

Returns	a	list	of	all	the	record's	field	names	as	a	string	separated	by	sep.

Note	that	fields	which	are	not	generated	are	not	included	(see	isGenerated()).
The	returned	string	is	suitable,	for	example,	for	generating	SQL	SELECT
statements.	If	a	prefix	is	specified,	e.g.	a	table	name,	all	fields	are	prefixed	in	the
form:

"prefix.	<fieldname>"

QStringList	QSqlRecord::toStringList	(const	QString	&	prefix	=
QString::null)	const	[virtual]

Returns	a	list	of	all	the	record's	field	names,	each	having	the	prefix	prefix.

Note	that	fields	which	have	generated	set	to	FALSE	are	not	included.	(See
isGenerated()).	If	prefix	is	supplied,	e.g.	a	table	name,	all	fields	are	prefixed	in
the	form:

"prefix.	<fieldname>"

QVariant	QSqlRecord::value	(int	i)	const	[virtual]

Returns	the	value	of	the	field	located	at	position	i	in	the	record.	If	field	i	does	not
exist	the	resultant	behaviour	is	undefined.

This	function	should	be	used	with	QSqlQuerys.	When	working	with	a
QSqlCursor	the	value(const	QString&)	overload	which	uses	field	names	is	more
appropriate.

Example:	sql/overview/update/main.cpp.

QVariant	QSqlRecord::value	(const	QString	&	name)	const
[virtual]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	the	value	of	the	field	named	name	in	the	record.	If	field	name	does	not
exist	the	resultant	behaviour	is	undefined.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QWSKeyboardHandler	Class
Reference

The	QWSKeyboardHandler	class	implements	the	keyboard	driver/handler	for
Qt/Embedded.	More...

#include	<qkeyboard_qws.h>

Inherits	QObject.

List	of	all	member	functions.

Public	Members

QWSKeyboardHandler	()
virtual	~QWSKeyboardHandler	()

Protected	Members

virtual	void	processKeyEvent	(int	unicode,	int	keycode,	int	modifiers,
bool	isPress,	bool	autoRepeat)

Detailed	Description

The	QWSKeyboardHandler	class	implements	the	keyboard	driver/handler	for
Qt/Embedded.

The	keyboard	handler	(driver)	handles	events	from	system	devices	and	generates
key	events.

A	QWSKeyboardHandler	will	usually	open	some	system	device	in	its
constructor,	create	a	QSocketNotifier	on	that	opened	device	and	when	it	receives
data,	it	will	call	processKeyEvent()	to	send	the	event	to	Qt/Embedded	for
relaying	to	clients.

See	also	Qt/Embedded.

Member	Function	Documentation

QWSKeyboardHandler::QWSKeyboardHandler	()

Constructs	a	keyboard	handler.	The	handler	may	be	passed	to	the	system	for	later
destruction	with	QWSServer::setKeyboardHandler(),	although	even	without
doing	this,	the	handler	can	function,	calling	processKeyEvent()	to	emit	events.

QWSKeyboardHandler::~QWSKeyboardHandler	()	[virtual]

Destroys	a	keyboard	handler.	Note	that	if	you	have	called
QWSServer::setKeyboardHandler(),	you	may	not	delete	the	handler.

void	QWSKeyboardHandler::processKeyEvent	(int	unicode,
int	keycode,	int	modifiers,	bool	isPress,	bool	autoRepeat)
[virtual	protected]

Subclasses	call	this	function	to	send	a	key	event.	The	server	may	additionally
filter	the	event	before	sending	it	on	to	applications.

unicode	is	the	Unicode	value	for	the	key,	or	0xFFFF	is	none	is	appropriate.
keycode	is	the	Qt	keycode	for	the	key	(see	Qt::Key).	for	the	list	of	codes).
modifiers	is	the	set	of	modifier	keys	(see	Qt::Modifier).
isPress	says	whether	this	is	a	press	or	a	release.
autoRepeat	says	whether	this	event	was	generated	by	an	auto-repeat
mechanism,	or	an	actual	key	press.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QCString
QCStringCchar	*	 ……

#include	<qcstring.h>

QByteArray

QCString	()
QCString	(int	size)
QCString	(const	QCString	&	s)
QCString	(const	char	*	str)
QCString	(const	char	*	str,	uint	maxsize)
QCString	&	operator=	(const	QCString	&	s)
QCString	&	operator=	(const	char	*	str)
bool	isNull	()	const
bool	isEmpty	()	const
uint	length	()	const
bool	resize	(uint	len)
bool	truncate	(uint	pos)
bool	fill	(char	c,	int	len	=	-1)
QCString	copy	()	const
QCString	&	sprintf	(const	char	*	format,	...)
int	find	(char	c,	int	index	=	0,	bool	cs	=	TRUE)	const
int	find	(const	char	*	str,	int	index	=	0,	bool	cs	=	TRUE)	const
int	find	(const	QRegExp	&	rx,	int	index	=	0)	const
int	findRev	(char	c,	int	index	=	-1,	bool	cs	=	TRUE)	const
int	findRev	(const	char	*	str,	int	index	=	-1,	bool	cs	=	TRUE)	const
int	findRev	(const	QRegExp	&	rx,	int	index	=	-1)	const
int	contains	(char	c,	bool	cs	=	TRUE)	const
int	contains	(const	char	*	str,	bool	cs	=	TRUE)	const
int	contains	(const	QRegExp	&	rx)	const
QCString	left	(uint	len)	const
QCString	right	(uint	len)	const
QCString	mid	(uint	index,	uint	len	=	0xffffffff)	const
QCString	leftJustify	(uint	width,	char	fill	=	'	',	bool	truncate	=	FALSE)
const
QCString	rightJustify	(uint	width,	char	fill	=	'	',	bool	truncate	=	FALSE)
const
QCString	lower	()	const
QCString	upper	()	const
QCString	stripWhiteSpace	()	const
QCString	simplifyWhiteSpace	()	const

QCString	&	insert	(uint	index,	const	char	*	s)
QCString	&	insert	(uint	index,	char	c)
QCString	&	append	(const	char	*	str)
QCString	&	prepend	(const	char	*	s)
QCString	&	remove	(uint	index,	uint	len)
QCString	&	replace	(uint	index,	uint	len,	const	char	*	str)
QCString	&	replace	(const	QRegExp	&	rx,	const	char	*	str)
short	toShort	(bool	*	ok	=	0)	const
ushort	toUShort	(bool	*	ok	=	0)	const
int	toInt	(bool	*	ok	=	0)	const
uint	toUInt	(bool	*	ok	=	0)	const
long	toLong	(bool	*	ok	=	0)	const
ulong	toULong	(bool	*	ok	=	0)	const
float	toFloat	(bool	*	ok	=	0)	const
double	toDouble	(bool	*	ok	=	0)	const
QCString	&	setStr	(const	char	*	str)
QCString	&	setNum	(short	n)
QCString	&	setNum	(ushort	n)
QCString	&	setNum	(int	n)
QCString	&	setNum	(uint	n)
QCString	&	setNum	(long	n)
QCString	&	setNum	(ulong	n)
QCString	&	setNum	(float	n,	char	f	=	'g',	int	prec	=	6)
QCString	&	setNum	(double	n,	char	f	=	'g',	int	prec	=	6)
bool	setExpand	(uint	index,	char	c)
operator	const	char	*	()	const
QCString	&	operator+=	(const	char	*	str)
QCString	&	operator+=	(char	c)

void	*	qmemmove	(void	*	dst,	const	void	*	src,	uint	len)
char	*	qstrdup	(const	char	*	src)
char	*	qstrcpy	(char	*	dst,	const	char	*	src)
char	*	qstrncpy	(char	*	dst,	const	char	*	src,	uint	len)
int	qstrcmp	(const	char	*	str1,	const	char	*	str2)
int	qstrncmp	(const	char	*	str1,	const	char	*	str2,	uint	len)
int	qstricmp	(const	char	*	str1,	const	char	*	str2)
int	qstrnicmp	(const	char	*	str1,	const	char	*	str2,	uint	len)
QDataStream	&	operator<<	(QDataStream	&	s,	const	QCString	&	str)
QDataStream	&	operator>>	(QDataStream	&	s,	QCString	&	str)
bool	operator==	(const	QCString	&	s1,	const	QCString	&	s2)
bool	operator==	(const	QCString	&	s1,	const	char	*	s2)
bool	operator==	(const	char	*	s1,	const	QCString	&	s2)
bool	operator!=	(const	QCString	&	s1,	const	QCString	&	s2)
bool	operator!=	(const	QCString	&	s1,	const	char	*	s2)
bool	operator!=	(const	char	*	s1,	const	QCString	&	s2)
bool	operator<	(const	QCString	&	s1,	const	char	*	s2)
bool	operator<	(const	char	*	s1,	const	QCString	&	s2)
bool	operator<=	(const	QCString	&	s1,	const	char	*	s2)
bool	operator<=	(const	char	*	s1,	const	QCString	&	s2)
bool	operator>	(const	QCString	&	s1,	const	char	*	s2)
bool	operator>	(const	char	*	s1,	const	QCString	&	s2)
bool	operator>=	(const	QCString	&	s1,	const	char	*	s2)
bool	operator>=	(const	char	*	s1,	const	QCString	&	s2)
const	QCString	operator+	(const	QCString	&	s1,	const	QCString	&	s2)
const	QCString	operator+	(const	QCString	&	s1,	const	char	*	s2)
const	QCString	operator+	(const	char	*	s1,	const	QCString	&	s2)
const	QCString	operator+	(const	QCString	&	s,	char	c)
const	QCString	operator+	(char	c,	const	QCString	&	s)

QCStringCchar	*

QCString QByteArrayQMemArray<char>

QCStringQMemArray

QCString QString

QCStringQtconst	char	*QCString
QCString

const	char	*QCStringQCString const	char	*0

QCString 0“”'\0'QCString QCString const	char	*

QCStringQCString

length() resize()truncate() fill() leftJustify()rightJustify() find()
findRev() contains()

insert()append() prepend() remove()replace()

left() right()mid() stripWhiteSpace()simplifyWhiteSpace
lower()

toShort() toInt() toLong() toULong() toFloat()toDouble

QCStringQCString sprintf

QCStringACSII
contains() find() findRev() operator<() operator<=() operator>
() operator>=() lower()upper()

QRegExpQCStringQCStringQStringQCString QCStringQRegExp
QCStringQStringQString

QCString::QCString	()

isNull()

QCString::QCString	(int	size)

size'\0' size	==	0

size	>	0'\0'.

resize()isNull()

QCString::QCString	(const	QCString	&	s)

s

assign()

QCString::QCString	(const	char	*	str)

str

str0

isNull()

QCString::QCString	(const	char	*	str,	uint	maxsize)

str'\0' maxsize

				QCString	str("helloworld",	6);	//	“hello”str

		

strmaxsize0QCString0 str0

isNull()

QCString	&	QCString::append	(const	char	*	str)

str operator+=()

int	QCString::contains	(char	c,	bool	cs	=	TRUE)	const

c

cs cs

Note	on	character	comparisons

int	QCString::contains	(const	char	*	str,	bool	cs	=	TRUE)	const

str

cs cs

“banana”“ana”

findRev()Note	on	character	comparisons

int	QCString::contains	(const	QRegExp	&	rx)	const

rx

				QString	s	=	"banana	and	panama";

				QRegExp	r	=	QRegExp("a[nm]a",	TRUE,	FALSE);

				s.contains(r);	//	4

		

find()findRev()

QCString	QCString::copy	()	const

detach()

bool	QCString::fill	(char	c,	int	len	=	-1)

lenc'\0'

len

len

int	QCString::find	(char	c,	int	index	=	0,	bool	cs	=	TRUE)	const

index c

cs cs

c c-1

Note	on	character	comparisons

network/networkprotocol/nntp.cpp

int	QCString::find	(const	char	*	str,	int	index	=	0,	bool	cs	=
TRUE)	const

index str

cs cs

str str-1

Note	on	character	comparisons

int	QCString::find	(const	QRegExp	&	rx,	int	index	=	0)	const

index rx

rx-1

int	QCString::findRev	(char	c,	int	index	=	-1,	bool	cs	=	TRUE)
const

index c

cs cs

c c-1

Note	on	character	comparisons

int	QCString::findRev	(const	char	*	str,	int	index	=	-1,	bool	cs	=
TRUE)	const

index str

cs cs

str str-1

Note	on	character	comparisons

int	QCString::findRev	(const	QRegExp	&	rx,	int	index	=	-1)
const

index rx

rx-1

QCString	&	QCString::insert	(uint	index,	char	c)

indexc

indexASCII	32 index c

				QCString	s	=	"Yes";

				s.insert(3,	'!');																										//	s	==	"Yes!"

		

remove()replace()

QCString	&	QCString::insert	(uint	index,	const	char	*	s)

indexs

indexASCII	32 index s

				QCString	s	=	"I	like	fish";

				s.insert(2,	"don't	");	//	s	==	"I	don't	like	fish"

				s	=	"x";																//	index	01234

				s.insert(3,	"yz");				//	s	==	"x		yz"

		

bool	QCString::isEmpty	()	const

length()	==	0

isNull()

isNull() length()size()

bool	QCString::isNull	()	const

data()	==	0

				QCString	a;									//	a.data()	==	0,		a.size()	==	0,	a.length()	==	0

				QCString	b	==	"";			//	b.data()	==	"",	b.size()	==	1,	b.length()	==	0

				a.isNull();									//	TRUEa. data()	==	0

				a.isEmpty();								//	TRUEa. length()	==	0

				b.isNull();									//	FALSE	b. data()	==	""

				b.isEmpty();								//	TRUEb. length()	==	0

		

isEmpty() length()size()

QCString	QCString::left	(uint	len)	const

len

len

				QCString	s	=	"Pineapple";

				QCString	t	=	s.left(4);																			//	t	==	"Pine"

		

right()mid()

network/networkprotocol/nntp.cpp

QCString	QCString::leftJustify	(uint	width,	char	fill	=	'	',
bool	truncate	=	FALSE)	const

width'\0' fill

truncatewidth

truncatewidthleft(width)

				QCString	s("apple");

				QCString	t	=	s.leftJustify(8,	'.');									//	t	==	"apple..."

		

rightJustify()

uint	QCString::length	()	const

'\0' strlen(data())

size() isNull()isEmpty()

network/networkprotocol/nntp.cpp

QCString	QCString::lower	()	const

				QCString	s("Credit");

				QCString	t	=	s.lower();																					//	t	==	"credit"

		

upper()Note	on	character	comparisons

QCString	QCString::mid	(uint	index,	uint	len	=	0xffffffff)	const

indexlen

index index+len index

				QCString	s	=	"Two	pineapples";

				QCString	t	=	s.mid(4,	3);																	//	t	==	"pin"

		

left()right()

network/networkprotocol/nntp.cpp

QCString::operator	const	char	*	()	const

QCString	&	QCString::operator+=	(const	char	*	str)

str

QCString	&	QCString::operator+=	(char	c)

c

QCString	&	QCString::operator=	(const	QCString	&	s)

s

QCString	&	QCString::operator=	(const	char	*	str)

str

str0

isNull()

QCString	&	QCString::prepend	(const	char	*	s)

s

insert()

QCString	&	QCString::remove	(uint	index,	uint	len)

indexlen

index index indexlen index

				QCString	s	=	"Montreal";

				s.remove(1,	4);

				//	s	==	"Meal"

		

insert()replace()

network/networkprotocol/nntp.cpp

QCString	&	QCString::replace	(uint	index,	uint	len,
const	char	*	str)

indexstrlen

index s	 indexindexlen index str

				QCString	s	=	"Say	yes!";

				s.replace(4,	3,	"NO");																				//	s	==	"Say	NO!"

		

insert()remove()

QCString	&	QCString::replace	(const	QRegExp	&	rx,
const	char	*	str)

strrx

				QString	s	=	"banana";

				s.replace(QRegExp("a.*a"),	"");											//	“b”

				s	=	"banana";

				s.replace(QRegExp("^[bn]a"),	"	");								//	“	nana”

				s	=	"banana";

				s.replace(QRegExp("^[bn]a"),	"");									//	“”

		

“ba”“na”“na”

bool	QCString::resize	(uint	len)

len'\0'

'\0' len	-	1 len	==	0

				QCString	s	=	"resize	this	string";

				s.resize(7);																														//	s	==	"resize"

		

truncate()

network/networkprotocol/nntp.cpp

QCString	QCString::right	(uint	len)	const

len

len

				QCString	s	=	"Pineapple";

				QCString	t	=	s.right(5);																		//	t	==	"apple"

		

left()mid()

network/networkprotocol/nntp.cpp

QCString	QCString::rightJustify	(uint	width,	char	fill	=	'	',
bool	truncate	=	FALSE)	const

width'\0' fill

truncatewidth

truncatewidthright(width).

				QCString	s("pie");

				QCString	t	=	s.rightJustify(8,	'.');																//	t	==	".....pie"

		

leftJustify()

bool	QCString::setExpand	(uint	index,	char	c)

indexc

index

QCString	&	QCString::setNum	(double	n,	char	f	=	'g',	int	prec	=
6)

n

f prec

f'e''E''f''g''G' sprintf() QString::arg()

QCString	&	QCString::setNum	(short	n)

n

QCString	&	QCString::setNum	(ushort	n)

n

QCString	&	QCString::setNum	(int	n)

n

QCString	&	QCString::setNum	(uint	n)

n

QCString	&	QCString::setNum	(long	n)

n

QCString	&	QCString::setNum	(ulong	n)

n

QCString	&	QCString::setNum	(float	n,	char	f	=	'g',	int	prec	=	6
)

QCString	&	QCString::setStr	(const	char	*	str)

str

QCString	QCString::simplifyWhiteSpace	()	const

ASCII	32

ASCII91011121332

				QCString	s	=	"		lots\t	of\nwhite				space	";

				QCString	t	=	s.simplifyWhiteSpace();	//	t	==	"lots	of	white	space"

		

stripWhiteSpace()

QCString	&	QCString::sprintf	(const	char	*	format,	...)

vsprintf()C

256 sprintf()resize(256)sprintf()

				QCString	s;

				s.sprintf("%d	-	%s",	1,	"first");									//	result	<	256	

				QCString	big(25000);																						//	

				big.sprintf("%d	-	%s",	2,	longString);				//	result	<	25000	

		

	limit.	formatvsprintf()*this

sprintf() 3000

QCString	QCString::stripWhiteSpace	()	const

ASCII91011121332

				QCString	s	=	"	space	";

				QCString	t	=	s.stripWhiteSpace();											//	t	==	"space"

		

simplifyWhiteSpace()

double	QCString::toDouble	(bool	*	ok	=	0)	const

double

*ok ok00 *ok

float	QCString::toFloat	(bool	*	ok	=	0)	const

float

*ok ok00 *ok

int	QCString::toInt	(bool	*	ok	=	0)	const

int

*ok ok00 *ok

long	QCString::toLong	(bool	*	ok	=	0)	const

long

*ok ok00 *ok

short	QCString::toShort	(bool	*	ok	=	0)	const

short

*ok ok00 *ok

uint	QCString::toUInt	(bool	*	ok	=	0)	const

unsigned	int

*ok ok00 *ok

ulong	QCString::toULong	(bool	*	ok	=	0)	const

unsigned	long

*ok ok00 *ok

ushort	QCString::toUShort	(bool	*	ok	=	0)	const

unsigned	short

*ok ok00 *ok

bool	QCString::truncate	(uint	pos)

pos

resize(pos+1)

				QCString	s	=	"truncate	this	string";

				s.truncate(5);																												//	s	==	"trunc"

		

resize()

QCString	QCString::upper	()	const

				QCString	s("Debit");

				QCString	t	=	s.upper();																					//	t	==	"DEBIT"

		

lower()Note	on	character	comparisons

bool	operator!=	(const	QCString	&	s1,	const	QCString	&	s2)

s1s2

qstrcmp(s1,	s2)	!=	0

bool	operator!=	(const	QCString	&	s1,	const	char	*	s2)

s1s2

qstrcmp(s1,	s2)	!=	0

bool	operator!=	(const	char	*	s1,	const	QCString	&	s2)

s1s2

qstrcmp(s1,	s2)	!=	0

const	QCString	operator+	(const	QCString	&	s1,
const	QCString	&	s2)

s1s2

const	QCString	operator+	(const	QCString	&	s1,	const	char	*	s2)

s1s2

const	QCString	operator+	(const	char	*	s1,	const	QCString	&	s2)

s1s2

const	QCString	operator+	(const	QCString	&	s,	char	c)

sc

const	QCString	operator+	(char	c,	const	QCString	&	s)

cs

bool	operator<	(const	QCString	&	s1,	const	char	*	s2)

s1s2

qstrcmp(s1,	s2)	<	0

bool	operator<	(const	char	*	s1,	const	QCString	&	s2)

s1s2

qstrcmp(s1,	s2)	<	0

QDataStream	&	operator<<	(QDataStream	&	s,
const	QCString	&	str)

strs

QDataStream

bool	operator<=	(const	QCString	&	s1,	const	char	*	s2)

s1s2

qstrcmp(s1,	s2)	<=	0

bool	operator<=	(const	char	*	s1,	const	QCString	&	s2)

s1s2

qstrcmp(s1,	s2)	<=	0

bool	operator==	(const	QCString	&	s1,	const	QCString	&	s2)

s1s2

qstrcmp(s1,	s2)	==	0

bool	operator==	(const	QCString	&	s1,	const	char	*	s2)

s1s2

qstrcmp(s1,	s2)	==	0

bool	operator==	(const	char	*	s1,	const	QCString	&	s2)

s1s2

qstrcmp(s1,	s2)	==	0

bool	operator>	(const	QCString	&	s1,	const	char	*	s2)

s1s2

qstrcmp(s1,	s2)	>	0

bool	operator>	(const	char	*	s1,	const	QCString	&	s2)

s1s2

qstrcmp(s1,	s2)	>	0

bool	operator>=	(const	QCString	&	s1,	const	char	*	s2)

s1s2

qstrcmp(s1,	s2)	>=	0

bool	operator>=	(const	char	*	s1,	const	QCString	&	s2)

s1s2

qstrcmp(s1,	s2)	>=	0

QDataStream	&	operator>>	(QDataStream	&	s,	QCString	&	str

)

sstr

QDataStream

void	*	qmemmove	(void	*	dst,	const	void	*	src,	uint	len)

CQtmemmove()

memmove() srclendstsrcdst

int	qstrcmp	(const	char	*	str1,	const	char	*	str2)

strcmp()

str1str2str1str2 str1str20str1str2

str1str20

str1str2

qstrncmp() qstricmp() qstrnicmp()

char	*	qstrcpy	(char	*	dst,	const	char	*	src)

strcpy()

src'\0' dstdst

char	*	qstrdup	(const	char	*	src)

src src0

delete[]

int	qstricmp	(const	char	*	str1,	const	char	*	str2)

stricmp()

str1str2

str1str2 str1str20str1str2

str1str20

str1str2

qstrcmp() qstrncmp() qstrnicmp()

int	qstrncmp	(const	char	*	str1,	const	char	*	str2,	uint	len)

strncmp()

str1str2len

str1str2 str1str20str1str2

str1str20

str1str2

qstrcmp() qstricmp() qstrnicmp()

char	*	qstrncpy	(char	*	dst,	const	char	*	src,	uint	len)

strncpy()

srclen src dstdst dst'\0' srcdst0

qstrcpy()

int	qstrnicmp	(const	char	*	str1,	const	char	*	str2,	uint	len)

strnicmp()

str1str2len

str1str2 str1str20str1str2

str1str20

str1str2

qstrcmp() qstrncmp() qstricmp()

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QObjectCleanupHandler	Class
Reference

The	QObjectCleanupHandler	class	watches	the	lifetime	of	multiple	QObjects.
More...

#include	<qobjectcleanuphandler.h>

Inherits	QObject.

List	of	all	member	functions.

Public	Members

QObjectCleanupHandler	()
~QObjectCleanupHandler	()
QObject	*	add	(QObject	*	object)
void	remove	(QObject	*	object)
bool	isEmpty	()	const
void	clear	()

Detailed	Description

The	QObjectCleanupHandler	class	watches	the	lifetime	of	multiple	QObjects.

A	QObjectCleanupHandler	is	useful	whenever	you	need	to	know	when	a	number
of	QObjects	that	are	owned	by	someone	else	have	been	deleted.	This	is
important,	for	example,	when	referencing	memory	in	an	application	that	has
been	allocated	in	a	shared	library.

Example:

				class	FactoryComponent	:	public	FactoryInterface,	public	QLibraryInterface

				{

				public:

								...

								QObject	*createObject();

								bool	init();

								void	cleanup();

								bool	canUnload()	const;

				private:

								QObjectCleanupHandler	objects;

				};

				//	allocate	a	new	object,	and	add	it	to	the	cleanup	handler

				QObject	*FactoryComponent::createObject()

				{

								return	objects.add(new	QObject());

				}

				//	QLibraryInterface	implementation

				bool	FactoryComponent::init()

				{

								return	TRUE;

				}

				void	FactoryComponent::cleanup()

				{

				}

				//	it	is	only	safe	to	unload	the	library	when	all	QObject's	have	been	destroyed

				bool	FactoryComponent::canUnload()	const

				{

								return	objects.isEmpty();

				}

				

See	also	Object	Model.

Member	Function	Documentation

QObjectCleanupHandler::QObjectCleanupHandler	()

Constructs	an	empty	QObjectCleanupHandler.

QObjectCleanupHandler::~QObjectCleanupHandler	()

Destroys	the	cleanup	handler.	All	objects	in	this	cleanup	handler	will	be	deleted.

QObject	*	QObjectCleanupHandler::add	(QObject	*	object)

Adds	object	to	this	cleanup	handler	and	returns	the	pointer	to	the	object.

void	QObjectCleanupHandler::clear	()

Deletes	all	objects	in	this	cleanup	handler.	The	cleanup	handler	becomes	empty.

bool	QObjectCleanupHandler::isEmpty	()	const

Returns	TRUE	if	this	cleanup	handler	is	empty	or	if	all	objects	in	this	cleanup
handler	have	been	destroyed;	otherwise	return	FALSE.

void	QObjectCleanupHandler::remove	(QObject	*	object)

Removes	the	object	from	this	cleanup	handler.	The	object	will	not	be	destroyed.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QSqlRecordInfo	Class	Reference
[sql	module]

The	QSqlRecordInfo	class	encapsulates	a	set	of	database	field	meta	data.	More...

#include	<qsqlrecord.h>

List	of	all	member	functions.

Public	Members

QSqlRecordInfo	()
QSqlRecordInfo	(const	QSqlFieldInfoList	&	other)
QSqlRecordInfo	(const	QSqlRecord	&	other)
size_type	contains	(const	QString	&	fieldName)	const
QSqlFieldInfo	find	(const	QString	&	fieldName)	const
QSqlRecord	toRecord	()	const

Detailed	Description

The	QSqlRecordInfo	class	encapsulates	a	set	of	database	field	meta	data.

This	class	is	a	QValueList	that	holds	a	set	of	database	field	meta	data.	Use
contains()	to	see	if	a	given	field	name	exists	in	the	record,	and	use	find()	to	get	a
QSqlFieldInfo	record	for	a	named	field.

See	also	QValueList,	QSqlFieldInfo	and	Database	Classes.

Member	Function	Documentation

QSqlRecordInfo::QSqlRecordInfo	()

Constructs	an	empty	recordinfo	object

QSqlRecordInfo::QSqlRecordInfo	(
const	QSqlFieldInfoList	&	other)

Constructs	a	copy	of	other.

QSqlRecordInfo::QSqlRecordInfo	(const	QSqlRecord	&	other)

Constructs	a	QSqlRecordInfo	object	based	on	the	fields	in	the	QSqlRecord
other.

size_type	QSqlRecordInfo::contains	(const	QString	&	fieldName
)	const

Returns	the	number	of	times	a	field	named	fieldName	occurs	in	the	record.
Returns	0	if	no	field	by	that	name	could	be	found.

QSqlFieldInfo	QSqlRecordInfo::find	(const	QString	&	fieldName
)	const

Returns	a	QSqlFieldInfo	object	for	the	first	field	in	the	record	which	has	the	field
name	fieldName.	If	no	matching	field	is	found	then	an	empty	QSqlFieldInfo
object	is	returned.

QSqlRecord	QSqlRecordInfo::toRecord	()	const

Returns	an	empty	QSqlRecord	based	on	the	field	information	in	this
QSqlRecordInfo.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights

http://www.trolltech.com/

Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QWSMouseHandler	Class	Reference
The	QWSMouseHandler	class	is	a	mouse	driver/handler	for	Qt/Embedded.
More...

#include	<qwsmouse_qws.h>

Inherits	QObject.

List	of	all	member	functions.

Public	Members

QWSMouseHandler	()
virtual	~QWSMouseHandler	()
virtual	void	clearCalibration	()
virtual	void	calibrate	(QWSPointerCalibrationData	*)
virtual	void	getCalibration	(QWSPointerCalibrationData	*)

Protected	Members

void	mouseChanged	(const	QPoint	&	pos,	int	bstate)

Detailed	Description

The	QWSMouseHandler	class	is	a	mouse	driver/handler	for	Qt/Embedded.

The	mouse	driver/handler	handles	events	from	system	devices	and	generates
mouse	events.

A	QWSMouseHandler	will	usually	open	some	system	device	in	its	constructor,
create	a	QSocketNotifier	on	that	opened	device	and	when	it	receives	data,	it	will
call	mouseChanged()	to	send	the	event	to	Qt/Embedded	for	relaying	to	clients.

See	also	Qt/Embedded.

Member	Function	Documentation

QWSMouseHandler::QWSMouseHandler	()

Constructs	a	mouse	handler.	This	becomes	the	primary	mouse	handler.

Note	that	once	created,	mouse	handlers	are	controlled	by	the	system	and	should
not	be	deleted.

QWSMouseHandler::~QWSMouseHandler	()	[virtual]

Destroys	the	mouse	handler.	You	should	not	call	this	directly.

void	QWSMouseHandler::calibrate	(
QWSPointerCalibrationData	*)	[virtual]

This	method	is	reimplemented	in	the	calibrated	mouse	handler	to	set	calibration
information	(from,	for	instance,	the	QPE	calibration	screen).	This	version	does
nothing.

void	QWSMouseHandler::clearCalibration	()	[virtual]

This	method	is	reimplemented	in	the	calibrated	mouse	handler	to	clear
calibration	information.	This	version	does	nothing.

void	QWSMouseHandler::mouseChanged	(const	QPoint	&	pos,
int	bstate)	[protected]

When	a	mouse	event	occurs	this	function	is	called	with	the	mouse's	position	in
pos,	and	the	state	of	its	buttons	in	bstate.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QGuardedPtr
QGuardedPtrQObject	 ……

#include	<qguardedptr.h>

QGuardedPtr	()
QGuardedPtr	(T	*	p)
QGuardedPtr	(const	QGuardedPtr<T>	&	p)
~QGuardedPtr	()
QGuardedPtr<T>	&	operator=	(const	QGuardedPtr<T>	&	p)
QGuardedPtr<T>	&	operator=	(T	*	p)
bool	operator==	(const	QGuardedPtr<T>	&	p)	const
bool	operator!=	(const	QGuardedPtr<T>	&	p)	const
bool	isNull	()	const
T	*	operator->	()	const
T	&	operator*	()	const
operator	T	*	()	const

QGuardedPtrQObject

QGuardedPtr<X>C++ X*0C++“” XQObject

QObject

								QGuardedPtr<QFrame>	label	=	new	QLabel(0,"label");

								label->setText("I	like	guarded	pointers");

								delete	(QLabel*)	label;	//	

								if	(label)

												label->show();

								else

												qDebug("The	label	has	been	destroyed");

				

								The	label	has	been	destroyed

				

label->show()

QGuardedPtr++---+

X*

X*QGuardedPtr
QGuardedPtr

XQObject

QGuardedPtr::QGuardedPtr	()

0

isNull()

QGuardedPtr::QGuardedPtr	(T	*	p)

p

QGuardedPtr::QGuardedPtr	(const	QGuardedPtr<T>	&	p)

p0

QGuardedPtr::~QGuardedPtr	()

bool	QGuardedPtr::isNull	()	const

QGuardedPtr::operator	T	*	()	const

QGuardedPtr<X>X*

bool	QGuardedPtr::operator!=	(const	QGuardedPtr<T>	&	p)
const

operator==() p

T	&	QGuardedPtr::operator*	()	const

C++

T	*	QGuardedPtr::operator->	()	const

C++

QGuardedPtr<T>	&	QGuardedPtr::operator=	(
const	QGuardedPtr<T>	&	p)

p

QGuardedPtr<T>	&	QGuardedPtr::operator=	(T	*	p)

p

bool	QGuardedPtr::operator==	(const	QGuardedPtr<T>	&	p)
const

p0 p

operator!=().

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QObjectList
QObjectListQObjectQPtrList	 ……

#include	<qobjectlist.h>

QPtrList<QObject>

QObjectList	()
QObjectList	(const	QObjectList	&	list)
~QObjectList	()
QObjectList	&	operator=	(const	QObjectList	&	list)

QObjectListQObject QPtrList

QObjectList QPtrList<QObject> getFirst() next() QObjectListIt

QObject::queryList()

QObjectGUI

QObjectList::QObjectList	()

QObject

QObjectList::QObjectList	(const	QObjectList	&	list)

list

list

QObjectList::~QObjectList	()

setAutoDelete()

QObjectList	&	QObjectList::operator=	(const	QObjectList	&	list
)

list

list newItem()

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QSqlResult	Class	Reference
[sql	module]

The	QSqlResult	class	provides	an	abstract	interface	for	accessing	data	from	SQL
databases.	More...

#include	<qsqlresult.h>

List	of	all	member	functions.

Public	Members

virtual	~QSqlResult	()

Protected	Members

QSqlResult	(const	QSqlDriver	*	db)
int	at	()	const
QString	lastQuery	()	const
QSqlError	lastError	()	const
bool	isValid	()	const
bool	isActive	()	const
bool	isSelect	()	const
bool	isForwardOnly	()	const
const	QSqlDriver	*	driver	()	const
virtual	void	setAt	(int	at)
virtual	void	setActive	(bool	a)
virtual	void	setLastError	(const	QSqlError	&	e)
virtual	void	setQuery	(const	QString	&	query)
virtual	void	setSelect	(bool	s)
virtual	void	setForwardOnly	(bool	forward)
virtual	QVariant	data	(int	i)	=	0
virtual	bool	isNull	(int	i)	=	0
virtual	bool	reset	(const	QString	&	query)	=	0
virtual	bool	fetch	(int	i)	=	0
virtual	bool	fetchNext	()
virtual	bool	fetchPrev	()
virtual	bool	fetchFirst	()	=	0
virtual	bool	fetchLast	()	=	0
virtual	int	size	()	=	0
virtual	int	numRowsAffected	()	=	0

Detailed	Description

The	QSqlResult	class	provides	an	abstract	interface	for	accessing	data	from	SQL
databases.

Normally	you	would	use	QSqlQuery	instead	of	QSqlResult	since	QSqlQuery
provides	a	generic	wrapper	for	database-specific	implementations	of
QSqlResult.

See	also	QSql	and	Database	Classes.

Member	Function	Documentation

QSqlResult::QSqlResult	(const	QSqlDriver	*	db)	[protected]

Protected	constructor	which	creates	a	QSqlResult	using	database	db.	The	object
is	initialized	to	an	inactive	state.

QSqlResult::~QSqlResult	()	[virtual]

Destroys	the	object	and	frees	any	allocated	resources.

int	QSqlResult::at	()	const	[protected]

Returns	the	current	(zero-based)	position	of	the	result.

QVariant	QSqlResult::data	(int	i)	[pure	virtual	protected]

Returns	the	data	for	field	i	(zero-based)	as	a	QVariant.	This	function	is	only
called	if	the	result	is	in	an	active	state	and	is	positioned	on	a	valid	record	and	i	is
non-negative.	Derived	classes	must	reimplement	this	function	and	return	the
value	of	field	i,	or	QVariant()	if	it	cannot	be	determined.

const	QSqlDriver	*	QSqlResult::driver	()	const	[protected]

Returns	the	driver	associated	with	the	result.

bool	QSqlResult::fetch	(int	i)	[pure	virtual	protected]

Positions	the	result	to	an	arbitrary	(zero-based)	index	i.	This	function	is	only
called	if	the	result	is	in	an	active	state.	Derived	classes	must	reimplement	this
function	and	position	the	result	to	the	index	i,	and	call	setAt()	with	an
appropriate	value.	Return	TRUE	to	indicate	success,	FALSE	for	failure.

bool	QSqlResult::fetchFirst	()	[pure	virtual	protected]

Positions	the	result	to	the	first	record	in	the	result.	This	function	is	only	called	if

the	result	is	in	an	active	state.	Derived	classes	must	reimplement	this	function
and	position	the	result	to	the	first	record,	and	call	setAt()	with	an	appropriate
value.	Return	TRUE	to	indicate	success,	FALSE	for	failure.

bool	QSqlResult::fetchLast	()	[pure	virtual	protected]

Positions	the	result	to	the	last	record	in	the	result.	This	function	is	only	called	if
the	result	is	in	an	active	state.	Derived	classes	must	reimplement	this	function
and	position	the	result	to	the	last	record,	and	call	setAt()	with	an	appropriate
value.	Return	TRUE	to	indicate	success,	FALSE	for	failure.

bool	QSqlResult::fetchNext	()	[virtual	protected]

Positions	the	result	to	the	next	available	record	in	the	result.	This	function	is
only	called	if	the	result	is	in	an	active	state.	The	default	implementation	calls
fetch()	with	the	next	index.	Derived	classes	can	reimplement	this	function	and
position	the	result	to	the	next	record	in	some	other	way,	and	call	setAt()	with	an
appropriate	value.	Return	TRUE	to	indicate	success,	FALSE	for	failure.

bool	QSqlResult::fetchPrev	()	[virtual	protected]

Positions	the	result	to	the	previous	available	record	in	the	result.	This	function	is
only	called	if	the	result	is	in	an	active	state.	The	default	implementation	calls
fetch()	with	the	previous	index.	Derived	classes	can	reimplement	this	function
and	position	the	result	to	the	next	record	in	some	other	way,	and	call	setAt()	with
an	appropriate	value.	Return	TRUE	to	indicate	success,	FALSE	for	failure.

bool	QSqlResult::isActive	()	const	[protected]

Returns	TRUE	if	the	result	has	records	to	be	retrieved,	otherwise	returns	FALSE.

bool	QSqlResult::isForwardOnly	()	const	[protected]

Returns	TRUE	when	you	can	only	scroll	forward	through	a	result	set	otherwise
FALSE

bool	QSqlResult::isNull	(int	i)	[pure	virtual	protected]

Returns	TRUE	if	the	field	at	position	i	is	NULL,	otherwise	returns	FALSE.

bool	QSqlResult::isSelect	()	const	[protected]

Returns	TRUE	if	the	current	result	is	from	a	SELECT	statement,	otherwise
returns	FALSE.

bool	QSqlResult::isValid	()	const	[protected]

Returns	TRUE	if	the	result	is	positioned	on	a	valid	record	(that	is,	the	result	is
not	positioned	before	the	first	or	after	the	last	record);	otherwise	returns	FALSE.

QSqlError	QSqlResult::lastError	()	const	[protected]

Returns	the	last	error	associated	with	the	result.

QString	QSqlResult::lastQuery	()	const	[protected]

Returns	the	current	SQL	query	text,	or	QString::null	if	there	is	none.

int	QSqlResult::numRowsAffected	()	[pure	virtual	protected]

Returns	the	number	of	rows	affected	by	the	last	query	executed.

bool	QSqlResult::reset	(const	QString	&	query)	[pure	virtual
protected]

Sets	the	result	to	use	the	SQL	statement	query	for	subsequent	data	retrieval.
Derived	classes	must	reimplement	this	function	and	apply	the	query	to	the
database.	This	function	is	called	only	after	the	result	is	set	to	an	inactive	state
and	is	positioned	before	the	first	record	of	the	new	result.	Derived	classes	should
return	TRUE	if	the	query	was	successful	and	ready	to	be	used,	FALSE
otherwise.

void	QSqlResult::setActive	(bool	a)	[virtual	protected]

Protected	function	provided	for	derived	classes	to	set	the	internal	active	state	to
the	value	of	a.

See	also	isActive().

void	QSqlResult::setAt	(int	at)	[virtual	protected]

Protected	function	provided	for	derived	classes	to	set	the	internal	(zero-based)
result	index	to	at.

See	also	at().

void	QSqlResult::setForwardOnly	(bool	forward)	[virtual
protected]

Sets	forward	only	mode	to	forward.	If	forward	is	TRUE	only	fetchNext()	is
allowed	for	navigating	the	results.	Forward	only	mode	needs	far	less	memory
since	results	do	not	have	to	be	cached.	forward	only	mode	is	off	by	default.

See	also	fetchNext().

void	QSqlResult::setLastError	(const	QSqlError	&	e)	[virtual
protected]

Protected	function	provided	for	derived	classes	to	set	the	last	error	to	the	value
of	e.

See	also	lastError().

void	QSqlResult::setQuery	(const	QString	&	query)	[virtual
protected]

Sets	the	current	query	for	the	result	to	query.	The	result	must	be	reset()	in	order
to	execute	the	query	on	the	database.

void	QSqlResult::setSelect	(bool	s)	[virtual	protected]

Protected	function	provided	for	derived	classes	to	indicate	whether	or	not	the
current	statement	is	an	SQL	SELECT	statement.	The	s	parameter	should	indicate
TRUE	if	the	statement	is	a	SELECT	statement,	otherwise	FALSE.

int	QSqlResult::size	()	[pure	virtual	protected]

Returns	the	size	of	the	result	or	-1	if	it	cannot	be	determined.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QWSServer	Class	Reference
The	QWSServer	class	provides	server-specific	functionality	in	Qt/Embedded.
More...

#include	<qwindowsystem_qws.h>

List	of	all	member	functions.

Public	Members

QWSServer	(int	flags	=	0,	QObject	*	parent	=	0,	const	char	*	name	=	0)
~QWSServer	()
enum	ServerFlags	{	DisableKeyboard	=	0x01,	DisableMouse	=	0x02	}
enum	GUIMode	{	NoGui	=	FALSE,	NormalGUI	=	TRUE,	Server	}
class	KeyMap	{	}
class	KeyboardFilter	{	}
QWSWindow	*	windowAt	(const	QPoint	&	pos)
const	QPtrList<QWSWindow>	&	clientWindows	()
void	openMouse	()
void	closeMouse	()
void	openKeyboard	()
void	closeKeyboard	()
void	refresh	()
void	refresh	(QRegion	&	r)
void	enablePainting	(bool	e)
QWSPropertyManager	*	manager	()
enum	WindowEvent	{	Create	=	0x01,	Destroy	=	0x02,	Hide	=	0x04,	Show
=	0x08,	Raise	=	0x10,	Lower	=	0x20,	Geometry	=	0x40	}

Signals

void	windowEvent	(QWSWindow	*	w,	QWSServer::WindowEvent	e)
void	newChannel	(const	QString	&)

Static	Public	Members

void	sendKeyEvent	(int	unicode,	int	keycode,	int	modifiers,	bool	isPress,
bool	autoRepeat)
const	KeyMap	*	keyMap	()
void	setKeyboardFilter	(KeyboardFilter	*	f)
void	setDefaultMouse	(const	char	*	m)
void	setDefaultKeyboard	(const	char	*	k)
void	setMaxWindowRect	(const	QRect	&	r)
void	setDesktopBackground	(const	QImage	&	img)
void	setDesktopBackground	(const	QColor	&	c)
QWSMouseHandler	*	mouseHandler	()
QWSKeyboardHandler	*	keyboardHandler	()
void	setKeyboardHandler	(QWSKeyboardHandler	*	kh)
void	setScreenSaver	(QWSScreenSaver	*	ss)
void	setScreenSaverIntervals	(int	*	ms)
void	setScreenSaverInterval	(int	ms)
bool	screenSaverActive	()
void	screenSaverActivate	(bool	activate)

Detailed	Description

The	QWSServer	class	provides	server-specific	functionality	in	Qt/Embedded.

When	you	run	a	Qt/Embedded	application,	it	either	runs	as	a	server	or	connects
to	an	existing	server.	If	it	runs	as	a	server,	some	additional	operations	are
provided	via	the	QWSServer	class.

This	class	is	instantiated	by	QApplication	for	Qt/Embedded	server	processes.
You	should	never	construct	this	class	yourself.

A	pointer	to	the	QWSServer	instance	can	be	obtained	via	the	global	qwsServer
variable.

The	mouse	and	keyboard	devices	can	be	opened	with	openMouse()	and
openKeyboard().	(Close	them	with	closeMouse()	and	closeKeyboard().)

The	display	is	refreshed	with	refresh(),	and	painting	can	be	enabled	or	disabled
with	enablePainting().

Obtain	the	list	of	client	windows	with	clientWindows()	and	find	out	which
window	is	at	a	particular	point	with	windowAt().

Many	static	functions	are	provided,	for	example,	setKeyboardFilter(),
setKeyboardHandler(),	setDefaultKeyboard()	and	setDefaultMouse().

The	size	of	the	window	rectangle	can	be	set	with	setMaxWindowRect(),	and	the
desktop's	background	can	be	set	with	setDesktopBackground().

The	screen	saver	is	controlled	with	setScreenSaverInterval()	and
screenSaverActivate().

See	also	Qt/Embedded.

Member	Type	Documentation

QWSServer::GUIMode

This	determines	what	sort	of	QWS	server	to	create:

QWSServer::NoGui	-	This	is	used	for	non-graphical	Qt	applications.
QWSServer::NormalGUI	-	A	normal	Qt/Embedded	application	(not	the
server).
QWSServer::Server	-	A	Qt/Embedded	server	(e.g.	if	-qws	has	been
specified	on	the	command	line.

QWSServer::ServerFlags

This	enum	is	used	to	pass	various	options	to	the	window	system	server.
Currently	defined	are:

QWSServer::DisableKeyboard	-	Ignore	all	keyboard	input.
QWSServer::DisableMouse	-	Ignore	all	mouse	input.

QWSServer::WindowEvent

This	specifies	what	sort	of	event	has	occurred	to	a	top	level	window:

QWSServer::Create	-	A	new	window	has	been	created	(QWidget
constructor).
QWSServer::Destroy	-	The	window	has	been	closed	and	deleted	(QWidget
destructor).
QWSServer::Hide	-	The	window	has	been	hidden	with	QWidget::hide().
QWSServer::Show	-	The	window	has	been	shown	with	QWidget::show()	or
similar.
QWSServer::Raise	-	The	window	has	been	raised	to	the	top	of	the	desktop.
QWSServer::Lower	-	The	window	has	been	lowered.
QWSServer::Geometry	-	The	window	has	changed	size	or	position.

Member	Function	Documentation

QWSServer::QWSServer	(int	flags	=	0,	QObject	*	parent	=	0,
const	char	*	name	=	0)

Construct	a	QWSServer	class	with	parent	parent,	called	name	and	flags	flags.

Warning:	This	class	is	instantiated	by	QApplication	for	Qt/Embedded	server
processes.	You	should	never	construct	this	class	yourself.

QWSServer::~QWSServer	()

Destruct	QWSServer

const	QPtrList<QWSWindow>	&	QWSServer::clientWindows	()

Returns	the	list	of	top-level	windows.	This	list	will	change	as	applications	add
and	remove	wigdets	so	it	should	not	be	stored	for	future	use.	The	windows	are
sorted	in	stacking	order	from	top-most	to	bottom-most.

void	QWSServer::closeKeyboard	()

Closes	keyboard	device(s).

void	QWSServer::closeMouse	()

Closes	the	pointer	device(s).

void	QWSServer::enablePainting	(bool	e)

If	e	is	TRUE,	painting	on	the	display	is	enabled;	if	e	is	FALSE,	painting	is
disabled.

const	KeyMap	*	QWSServer::keyMap	()	[static]

Returns	the	keyboard	mapping	table	used	to	convert	keyboard	scancodes	to	Qt

qwsserver::keymap.html

keycodes	and	unicode	values.	It's	used	by	the	keyboard	driver	in
qkeyboard_qws.cpp.

QWSKeyboardHandler	*	QWSServer::keyboardHandler	()
[static]

Returns	the	primary	keyboard	handler.

QWSPropertyManager	*	QWSServer::manager	()

Returns	the	QWSPropertyManager,	which	is	used	for	implementing	X11-style
window	properties.

QWSMouseHandler	*	QWSServer::mouseHandler	()	[static]

Returns	the	primary	mouse	handler.

void	QWSServer::openKeyboard	()

Opens	the	keyboard	device(s).

void	QWSServer::openMouse	()

Opens	the	mouse	device(s).

void	QWSServer::refresh	()

Refreshes	the	entire	display.

void	QWSServer::refresh	(QRegion	&	r)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Refreshes	the	region	r.

void	QWSServer::screenSaverActivate	(bool	activate)	[static]

If	activate	is	TRUE	the	screensaver	is	activated	immediately;	if	activate	is
FALSE	the	screensaver	is	deactivated.

bool	QWSServer::screenSaverActive	()	[static]

Returns	TRUE	if	the	screensaver	is	active	(i.e.	the	screen	is	blanked);	otherwise
returns	FALSE.

void	QWSServer::sendKeyEvent	(int	unicode,	int	keycode,
int	modifiers,	bool	isPress,	bool	autoRepeat)	[static]

Send	a	key	event.	You	can	use	this	to	send	key	events	generated	by	"virtual
keyboards".	unicode	is	the	unicode	value	of	the	key	to	send,	keycode	the	Qt
keycode	(e.g.	Key_Left),	modifiers	indicates	whether,	Shift/Alt/Ctrl	keys	are
pressed,	isPress	is	TRUE	if	this	is	a	key	down	event	and	FALSE	if	it's	a	key	up
event,	and	autoRepeat	is	TRUE	if	this	is	an	autorepeat	event	(i.e.	the	user	has
held	the	key	down	and	this	is	the	second	or	subsequent	key	event	being	sent).

void	QWSServer::setDefaultKeyboard	(const	char	*	k)	[static]

Set	the	keyboard	driver	to	k,	e.g.	if	$QWS_KEYBOARD	is	not	defined.	The
default	is	platform-dependant.

void	QWSServer::setDefaultMouse	(const	char	*	m)	[static]

Set	the	mouse	driver	m	to	use	if	$QWS_MOUSE_PROTO	is	not	defined.	The
default	is	platform-dependent.

void	QWSServer::setDesktopBackground	(const	QImage	&	img)
[static]

Sets	the	image	img	to	be	used	as	the	background	in	the	absence	of	obscuring
windows.

void	QWSServer::setDesktopBackground	(const	QColor	&	c)
[static]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves

essentially	like	the	above	function.

Sets	the	color	c	to	be	used	as	the	background	in	the	absence	of	obscuring
windows.

void	QWSServer::setKeyboardFilter	(KeyboardFilter	*	f)
[static]

Sets	a	filter	f	to	be	invoked	for	all	key	events	from	physical	keyboard	drivers
(events	sent	via	processKeyEvent()).	The	filter	is	not	invoked	for	keys	generated
by	virtual	keyboard	drivers	(events	sent	via	sendKeyEvent()).

void	QWSServer::setKeyboardHandler	(
QWSKeyboardHandler	*	kh)	[static]

Sets	the	primary	keyboard	handler	to	kh.

void	QWSServer::setMaxWindowRect	(const	QRect	&	r)
[static]

Sets	the	area	of	the	screen	which	Qt/Embedded	applications	will	consider	to	be
the	maximum	area	to	use	for	windows	to	r.

See	also	QWidget::showMaximized().

void	QWSServer::setScreenSaver	(QWSScreenSaver	*	ss)
[static]

Replaces	the	existing	screensave	with	the	screensaver	specified	in	ss.

void	QWSServer::setScreenSaverInterval	(int	ms)	[static]

Sets	the	timeout	for	the	screensaver	to	ms	milliseconds.	A	setting	of	zero	turns
off	the	screensaver.

void	QWSServer::setScreenSaverIntervals	(int	*	ms)	[static]

Sets	an	array	of	timeouts	for	the	screensaver	to	a	list	of	ms	milliseconds.	A

qwsserver::keyboardfilter.html

setting	of	zero	turns	off	the	screensaver.	The	array	must	be	0-terminated.

QWSWindow	*	QWSServer::windowAt	(const	QPoint	&	pos)

Returns	the	window	containing	the	point	pos	or	0	if	there	is	no	window	under
the	point.

void	QWSServer::windowEvent	(QWSWindow	*	w,
QWSServer::WindowEvent	e)	[signal]

This	signal	is	emitted	whenever	something	happens	to	a	top	level	window	(e.g.
it's	created	or	destroyed).	w	is	the	window	to	which	the	event	of	type	e	has
occurred.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QCustomEvent	Class	Reference
The	QCustomEvent	class	provides	support	for	custom	events.	More...

#include	<qevent.h>

Inherits	QEvent.

List	of	all	member	functions.

Public	Members

QCustomEvent	(int	type)
QCustomEvent	(Type	type,	void	*	data)
void	*	data	()	const
void	setData	(void	*	data)

Detailed	Description

The	QCustomEvent	class	provides	support	for	custom	events.

QCustomEvent	is	a	generic	event	class	for	user-defined	events.	User	defined
events	can	be	sent	to	widgets	or	other	QObject	instances	using
QApplication::postEvent()	or	QApplication::sendEvent().	Subclasses	of
QWidget	can	easily	receive	custom	events	by	implementing	the
QWidget::customEvent()	event	handler	function.

QCustomEvent	objects	should	be	created	with	a	type	ID	that	uniquely	identifies
the	event	type.	To	avoid	clashes	with	the	Qt-defined	events	types,	the	value
should	be	at	least	as	large	as	the	value	of	the	"User"	entry	in	the	QEvent::Type
enum.

QCustomEvent	contains	a	generic	void*	data	member	that	may	be	used	for
transferring	event-specific	data	to	the	receiver.	Note	that	since	events	are
normally	delivered	asynchronously,	the	data	pointer,	if	used,	must	remain	valid
until	the	event	has	been	received	and	processed.

QCustomEvent	can	be	used	as-is	for	simple	user-defined	event	types,	but
normally	you	will	want	to	make	a	subclass	of	it	for	your	event	types.	In	a
subclass,	you	can	add	data	members	that	are	suitable	for	your	event	type.

Example:

				class	ColorChangeEvent	:	public	QCustomEvent

				{

				public:

								ColorChangeEvent(QColor	color)

												:	QCustomEvent(346798),	c(color)	{};

								QColor	color()	const	{	return	c;	};

				private:

								QColor	c;

				};

				//	To	send	an	event	of	this	custom	event	type:

				ColorChangeEvent*	ce	=	new	ColorChangeEvent(blue);

				QApplication::postEvent(receiver,	ce);		//	Qt	will	delete	it	when	done

				//	To	receive	an	event	of	this	custom	event	type:

				void	MyWidget::customEvent(QCustomEvent	*	e)

				{

								if	(e->type()	==	346798)	{		//	It	must	be	a	ColorChangeEvent

												ColorChangeEvent*	ce	=	(ColorChangeEvent*)e;

												newColor	=	ce->color();

								}

				}

				

See	also	QWidget::customEvent(),	QApplication::notify()	and	Event	Classes.

Member	Function	Documentation

QCustomEvent::QCustomEvent	(int	type)

Constructs	a	custom	event	object	with	event	type	type.	The	value	of	type	must	be
at	least	as	large	as	QEvent::User.	The	data	pointer	is	set	to	0.

QCustomEvent::QCustomEvent	(Type	type,	void	*	data)

Constructs	a	custom	event	object	with	the	event	type	type	and	a	pointer	to	data.
(Note	that	any	int	value	may	safely	be	cast	to	QEvent::Type).

void	*	QCustomEvent::data	()	const

Returns	a	pointer	to	the	generic	event	data.

See	also	setData().

void	QCustomEvent::setData	(void	*	data)

Sets	the	generic	data	pointer	to	data.

See	also	data().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QHBox	Class	Reference
The	QHBox	widget	provides	horizontal	geometry	management	for	its	child
widgets.	More...

#include	<qhbox.h>

Inherits	QFrame.

Inherited	by	QVBox.

List	of	all	member	functions.

Public	Members

QHBox	(QWidget	*	parent	=	0,	const	char	*	name	=	0,	WFlags	f	=	0)
void	setSpacing	(int	space)
bool	setStretchFactor	(QWidget	*	w,	int	stretch)

Protected	Members

QHBox	(bool	horizontal,	QWidget	*	parent	=	0,	const	char	*	name	=	0,
WFlags	f	=	0)

Detailed	Description

The	QHBox	widget	provides	horizontal	geometry	management	for	its	child
widgets.

All	the	horizontal	box's	child	widgets	will	be	placed	alongside	each	other	and
sized	according	to	their	sizeHint()s.

Use	setMargin()	to	add	space	around	the	edge,	and	use	setSpacing()	to	add	space
between	the	widgets.	Use	setStretchFactor()	if	you	want	the	widgets	to	be
different	sizes	in	proportion	to	one	another.

See	also	QHBoxLayout,	QVBox,	QGrid,	Widget	Appearance	and	Style,	Layout
Management	and	Organizers.

Member	Function	Documentation

QHBox::QHBox	(QWidget	*	parent	=	0,	const	char	*	name	=	0,
WFlags	f	=	0)

Constructs	an	hbox	widget	with	parent	parent	and	name	name.	The	parent,	name
and	widget	flags,	f,	are	passed	to	the	QFrame	constructor.

QHBox::QHBox	(bool	horizontal,	QWidget	*	parent	=	0,
const	char	*	name	=	0,	WFlags	f	=	0)	[protected]

Constructs	a	horizontal	hbox	if	horizontal	is	TRUE,	otherwise	constructs	a
vertical	hbox	(also	known	as	a	vbox).

This	constructor	is	provided	for	the	QVBox	class.	You	should	never	need	to	use
it	directly.

The	parent,	name	and	widget	flags,	f,	are	passed	to	the	QFrame	constructor.

void	QHBox::setSpacing	(int	space)

Sets	the	spacing	between	the	child	widgets	to	space.

Examples:	i18n/mywidget.cpp,	listboxcombo/listboxcombo.cpp,
network/ftpclient/ftpmainwindow.cpp,	qdir/qdir.cpp,	tabdialog/tabdialog.cpp,
wizard/wizard.cpp	and	xform/xform.cpp.

bool	QHBox::setStretchFactor	(QWidget	*	w,	int	stretch)

Sets	the	stretch	factor	of	widget	w	to	stretch.

See	also	QBoxLayout::setStretchFactor().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

http://www.trolltech.com/

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QObjectListIt
QObjectListItQObjectLists	 ……

#include	<qobjectlist.h>

QPtrListIterator<QObject>

QObjectListIt	(const	QObjectList	&	list)
QObjectListIt	&	operator=	(const	QObjectListIt	&	it)

QObjectListItQObjectLists

QObjectListIt QPtrListIterator<QObject>

QObject::queryList()

QObjectListGUI

QObjectListIt::QObjectListIt	(const	QObjectList	&	list)

list list

QObjectListIt	&	QObjectListIt::operator=	(
const	QObjectListIt	&	it)

it

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QStatusBar
QStatusBar	 ……

#include	<qstatusbar.h>

Inherits	QWidget

QStatusBar	(QWidget	*	parent	=	0,	const	char	*	name	=	0)
virtual	~QStatusBar	()
virtual	void	addWidget	(QWidget	*	widget,	int	stretch	=	0,
bool	permanent	=	FALSE)
virtual	void	removeWidget	(QWidget	*	widget)
void	setSizeGripEnabled	(bool)
bool	isSizeGripEnabled	()	const

void	message	(const	QString	&	message)
void	message	(const	QString	&	message,	int	ms)
void	clear	()

bool	sizeGripEnabled	-	QSizeGrip

virtual	void	paintEvent	(QPaintEvent	*)
void	reformat	()
void	hideOrShow	()

QStatusBar

	-	
	-	
	-	

QStatusBar

message() clear()clear()mesage()

					connect(loader,	SIGNAL(progressMessage(const	QString&)),

														statusBar(),	SLOT(message(const	QString&)));

					statusBar()->message("Loading...");		//	

					loader.loadStuff();																		//	

					statusBar()->message("Done.",	2000);	//	2

		

addWidget() QLabelQProgressBarQToolButton removeWidget()

					statusBar()->addWidget(new	MyReadWriteIndication(statusBar()));

		

QStatusBar QSizeGripsetSizeGripEnabled(FALSE)

	

QToolBarQMainWindowQLabel

QStatusBar::QStatusBar	(QWidget	*	parent	=	0,
const	char	*	name	=	0)

parentname

sizeGripEnabled

QStatusBar::~QStatusBar	()	[]

void	QStatusBar::addWidget	(QWidget	*	widget,	int	stretch	=	0,
bool	permanent	=	FALSE)	[]

widget

permanent widgetpermanent

permanent widget permanent widget

stretchwidget0

removeWidget()

void	QStatusBar::clear	()	[]

message()

void	QStatusBar::hideOrShow	()	[]

message()clear()

bool	QStatusBar::isSizeGripEnabled	()	const

QSizeGrip “sizeGripEnabled”

void	QStatusBar::message	(const	QString	&	message)	[]

messageclear()message()

clear()

void	QStatusBar::message	(const	QString	&	message,	int	ms)
[]

messagems clear()message()

void	QStatusBar::paintEvent	(QPaintEvent	*)	[]

QWidget

void	QStatusBar::reformat	()	[]

void	QStatusBar::removeWidget	(QWidget	*	widget)	[]

widget

widget

addWidget()

void	QStatusBar::setSizeGripEnabled	(bool)

QSizeGrip “sizeGripEnabled”

bool	sizeGripEnabled

QSizeGrip

QSizeGrip

setSizeGripEnabled()isSizeGripEnabled()

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QWSWindow	Class	Reference
The	QWSWindow	class	provides	server-specific	functionality	in	Qt/Embedded.
More...

#include	<qwindowsystem_qws.h>

List	of	all	member	functions.

Public	Members

QWSWindow	(int	i,	QWSClient	*	client)
~QWSWindow	()
int	winId	()	const
const	QString	&	name	()	const
const	QString	&	caption	()	const
QWSClient	*	client	()	const
QRegion	requested	()	const
QRegion	allocation	()	const
bool	isVisible	()	const
bool	isPartiallyObscured	()	const
bool	isFullyObscured	()	const
void	raise	()
void	lower	()
void	show	()
void	hide	()
void	setActiveWindow	()

Detailed	Description

The	QWSWindow	class	provides	server-specific	functionality	in	Qt/Embedded.

When	you	run	a	Qt/Embedded	application,	it	either	runs	as	a	server	or	connects
to	an	existing	server.	If	it	runs	as	a	server,	some	additional	functionality	is
provided	by	the	QWSServer	class.

This	class	maintains	information	about	each	window	and	allows	operations	to	be
performed	on	the	windows.

You	can	get	the	window's	name(),	caption()	and	winId(),	along	with	the	client()
that	owns	the	window.

The	region	the	window	wants	to	draw	on	is	returned	by	requested();	the	region
that	the	window	is	allowed	to	draw	on	is	returned	by	allocation().

The	visibility	of	the	window	can	be	determined	using	isVisible(),
isPartiallyObscured()	and	isFullyObscured().	Visibility	can	be	changed	using
raise(),	lower(),	show(),	hide()	and	setActiveWindow().

See	also	Qt/Embedded.

Member	Function	Documentation

QWSWindow::QWSWindow	(int	i,	QWSClient	*	client)

Constructs	a	new	top-level	window,	associated	with	the	client	client	and	giving	it
the	id	i.

QWSWindow::~QWSWindow	()

Destructor.

QRegion	QWSWindow::allocation	()	const

Returns	the	region	that	the	window	is	allowed	to	draw	onto	including	any
window	decorations	but	excluding	regions	covered	by	other	windows.

See	also	requested().

const	QString	&	QWSWindow::caption	()	const

Returns	this	window's	caption.

QWSClient	*	QWSWindow::client	()	const

Returns	the	QWSClient	that	owns	this	window.

void	QWSWindow::hide	()

Hides	the	window.

bool	QWSWindow::isFullyObscured	()	const

Returns	TRUE	is	the	window	is	completely	obsured	by	another	window	or	by
the	bounds	of	the	screen;	otherwise	returns	FALSE.

bool	QWSWindow::isPartiallyObscured	()	const

Returns	TRUE	is	the	window	is	partially	obsured	by	another	window	or	by	the
bounds	of	the	screen;	otherwise	returns	FALSE.

bool	QWSWindow::isVisible	()	const

Returns	TRUE	if	the	window	is	visible;	otherwise	returns	FALSE.

void	QWSWindow::lower	()

Lowers	the	window	below	other	windows.

const	QString	&	QWSWindow::name	()	const

Returns	the	name	of	this	window.

void	QWSWindow::raise	()

Raises	the	window	above	all	other	windows	except	"Stay	on	top"	windows.

QRegion	QWSWindow::requested	()	const

Returns	the	region	that	the	window	has	requested	to	draw	onto	including	any
window	decorations.

See	also	allocation().

void	QWSWindow::setActiveWindow	()

Make	this	the	active	window	(i.e.	sets	the	keyboard	focus	to	this	window).

void	QWSWindow::show	()

Shows	the	window.

int	QWSWindow::winId	()	const

Returns	the	Id	of	this	window.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QCustomMenuItem	Class	Reference
The	QCustomMenuItem	class	is	an	abstract	base	class	for	custom	menu	items	in
popup	menus.	More...

#include	<qmenudata.h>

Inherits	Qt.

List	of	all	member	functions.

Public	Members

QCustomMenuItem	()
virtual	~QCustomMenuItem	()
virtual	bool	fullSpan	()	const
virtual	bool	isSeparator	()	const
virtual	void	setFont	(const	QFont	&	font)
virtual	void	paint	(QPainter	*	p,	const	QColorGroup	&	cg,	bool	act,
bool	enabled,	int	x,	int	y,	int	w,	int	h)	=	0
virtual	QSize	sizeHint	()	=	0

Detailed	Description

The	QCustomMenuItem	class	is	an	abstract	base	class	for	custom	menu	items	in
popup	menus.

A	custom	menu	item	is	a	menu	item	that	is	defined	by	two	purely	virtual
functions,	paint()	and	sizeHint().	The	size	hint	tells	the	menu	how	much	space	it
needs	to	reserve	for	this	item,	and	paint	is	called	whenever	the	item	needs
painting.

This	simple	mechanism	allows	you	to	create	all	kinds	of	application	specific
menu	items.	Examples	are	items	showing	different	fonts	in	a	word	processor	or
menus	that	allow	the	selection	of	drawing	utilities	in	a	vector	drawing	program.

A	custom	item	is	inserted	into	a	popup	menu	with	QPopupMenu::insertItem().

By	default,	a	custom	item	can	also	have	an	icon	set	and	a	keyboard	accelerator.
You	can	reimplement	fullSpan()	to	return	TRUE	if	you	want	the	item	to	span	the
entire	popup	menu	width.	This	is	particularly	useful	for	labels.

If	you	want	the	custom	item	to	be	treated	just	as	a	separator,	reimplement
isSeparator()	to	return	TRUE.

Note	that	you	can	insert	pixmaps	or	bitmaps	as	items	into	a	popup	menu	without
needing	to	create	a	QCustomMenuItem.	However,	custom	menu	items	offer
more	flexibility,	and	--	especially	important	with	windows	style	--	provide	the
possibility	of	drawing	the	item	with	a	different	color	when	it	is	highlighted.

menu/menu.cpp	shows	a	simply	example	how	custom	menu	items	can	be	used.

Please	note:	the	current	implementation	of	QCustomMenuItem	will	not
recognize	shortcut	keys	that	are	from	text	with	ampersands.	Normal	accelerators
work	though.

See	also	QMenuData,	QPopupMenu	and	Miscellaneous	Classes.

Member	Function	Documentation

QCustomMenuItem::QCustomMenuItem	()

Constructs	a	QCustomMenuItem

QCustomMenuItem::~QCustomMenuItem	()	[virtual]

Destroys	a	QCustomMenuItem

bool	QCustomMenuItem::fullSpan	()	const	[virtual]

Returns	TRUE	if	this	item	wants	to	span	the	entire	popup	menu	width.	The
default	is	FALSE,	meaning	that	the	menu	may	show	an	icon	and	an	accelerator
key	for	this	item	as	well.

bool	QCustomMenuItem::isSeparator	()	const	[virtual]

Returns	TRUE	if	this	item	is	just	a	separator;	otherwise	returns	FALSE.

void	QCustomMenuItem::paint	(QPainter	*	p,
const	QColorGroup	&	cg,	bool	act,	bool	enabled,	int	x,	int	y,
int	w,	int	h)	[pure	virtual]

Paints	this	item.	When	this	function	is	invoked,	the	painter	p	is	set	to	the	right
font	and	the	right	foreground	color	suitable	for	a	menu	item	text	using	color
group	cg.	The	item	is	active	if	act	is	TRUE	and	enabled	if	enabled	is	TRUE.	The
geometry	values	x,	y,	w	and	h	specify	where	to	draw	the	item.

Do	not	draw	any	background,	this	has	already	been	done	by	the	popup	menu
according	to	the	current	GUI	style.

void	QCustomMenuItem::setFont	(const	QFont	&	font)
[virtual]

Sets	the	font	of	the	custom	menu	item	to	font.

This	function	is	called	whenever	the	font	in	the	popup	menu	changes.	For	menu
items	that	show	their	own	individual	font	entry,	you	want	to	ignore	this.

QSize	QCustomMenuItem::sizeHint	()	[pure	virtual]

Returns	the	size	hint	of	this	item.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QPaintDevice
QPaintDevice	 ……

#include	<qpaintdevice.h>

QPixmapQWidgetQPictureQPrinter

virtual	~QPaintDevice	()
bool	isExtDev	()	const
bool	paintingActive	()	const
virtual	HDC	handle	()	const
virtual	Qt::HANDLE	handle	()	const
Display	*	x11Display	()	const
int	x11Screen	()	const
int	x11Depth	()	const
int	x11Cells	()	const
Qt::HANDLE	x11Colormap	()	const
bool	x11DefaultColormap	()	const
void	*	x11Visual	()	const
bool	x11DefaultVisual	()	const

Display	*	x11AppDisplay	()
int	x11AppScreen	()
int	x11AppDepth	()
int	x11AppCells	()
int	x11AppDpiX	()
int	x11AppDpiY	()
Qt::HANDLE	x11AppColormap	()
bool	x11AppDefaultColormap	()
void	*	x11AppVisual	()
bool	x11AppDefaultVisual	()
void	x11SetAppDpiX	(int	dpi)
void	x11SetAppDpiY	(int	dpi)

QPaintDevice	(uint	devflags)
virtual	bool	cmd	(int,	QPainter	*,	QPDevCmdParam	*)

void	bitBlt	(QPaintDevice	*	dst,	int	dx,	int	dy,	const	QPaintDevice	*	src,
int	sx,	int	sy,	int	sw,	int	sh,	Qt::RasterOp	rop,	bool	ignoreMask)
void	bitBlt	(QPaintDevice	*	dst,	const	QPoint	&	dp,
const	QPaintDevice	*	src,	const	QRect	&	sr,	RasterOp	rop)

QPaintDevice

QPainter QWidgetQPixmapQPictureQPrinter

XY

				void	MyWidget::paintEvent(QPaintEvent	*)

				{

								QPainter	p;																							//	

								p.begin(this);																		//	

								p.setPen(red);																		//	

								p.setBrush(yellow);													//	

								p.drawEllipse(10,	20,	100,100);	//	(10,	20)100x100	

								p.end();																										//	

				}

				

10

				bitBlt(myWidget,	10,	0,	myWidget);

				

	Qt QApplication

	and	

QPaintDevice::QPaintDevice	(uint	devflags)	[]

devflagsQPaintDevice

QPaintDevice::~QPaintDevice	()	[]

bool	QPaintDevice::cmd	(int,	QPainter	*,	QPDevCmdParam	*)
[]

QPicture

Qt::HANDLE	QPaintDevice::handle	()	const	[]

HANDLE qpaintdevice.hqwindowdefs.h

x11Display()

bool	QPaintDevice::isExtDev	()	const

bitBlt() QPictureQPrinter

bool	QPaintDevice::paintingActive	()	const

QPainter::begin()QPainter::end()

QPainter::isActive()

int	QPaintDevice::x11AppCells	()	[]

XX11

x11Colormap()

Qt::HANDLE	QPaintDevice::x11AppColormap	()	[]

XX11

x11Cells()

bool	QPaintDevice::x11AppDefaultColormap	()	[]

XX11

x11Cells()

bool	QPaintDevice::x11AppDefaultVisual	()	[]

XVisualX11

int	QPaintDevice::x11AppDepth	()	[]

XX11

QPixmap::defaultDepth()

Display	*	QPaintDevice::x11AppDisplay	()	[]

XX11

handle()

int	QPaintDevice::x11AppDpiX	()	[]

XDPIX11

x11AppDpiY() x11SetAppDpiX()QPaintDeviceMetrics::logicalDpiX()

int	QPaintDevice::x11AppDpiY	()	[]

XDPIX11

x11AppDpiX() x11SetAppDpiY()QPaintDeviceMetrics::logicalDpiY()

int	QPaintDevice::x11AppScreen	()	[]

XX11

void	*	QPaintDevice::x11AppVisual	()	[]

XVisualX11

int	QPaintDevice::x11Cells	()	const

XX11

x11Colormap().

Qt::HANDLE	QPaintDevice::x11Colormap	()	const

XX11

x11Cells()

bool	QPaintDevice::x11DefaultColormap	()	const

XX11

x11Cells()

bool	QPaintDevice::x11DefaultVisual	()	const

XVisualX11

int	QPaintDevice::x11Depth	()	const

XX11

QPixmap::defaultDepth()

Display	*	QPaintDevice::x11Display	()	const

XX11

handle()

int	QPaintDevice::x11Screen	()	const

XX11

void	QPaintDevice::x11SetAppDpiX	(int	dpi)	[]

x11AppDpiX()dpi

x11SetAppDpiY()

void	QPaintDevice::x11SetAppDpiY	(int	dpi)	[]

x11AppDpiY()dpi

x11SetAppDpiX()

void	*	QPaintDevice::x11Visual	()	const

XVisualX11

void	bitBlt	(QPaintDevice	*	dst,	int	dx,	int	dy,
const	QPaintDevice	*	src,	int	sx,	int	sy,	int	sw,	int	sh,
Qt::RasterOp	rop,	bool	ignoreMask)

srcdstrop sxsysrc(0,	0) dxdydstswsh src

ropCopyROPXorROP Qt::RasterOp

ignoreMask srcQPixmapsrc->mask()

srcdstswsh0 bitBlt() swshbitBlt() sx sysrc

srcQWidgetQPixmap QPrinterbitBlt()

srcdstbitBlt()824drawPixmap()

void	bitBlt	(QPaintDevice	*	dst,	const	QPoint	&	dp,
const	QPaintDevice	*	src,	const	QRect	&	sr,	RasterOp	rop)

dpsrbitBlt()

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QStoredDrag	Class	Reference
The	QStoredDrag	class	provides	a	simple	stored-value	drag	object	for	arbitrary
MIME	data.	More...

#include	<qdragobject.h>

Inherits	QDragObject.

Inherited	by	QUriDrag	and	QColorDrag.

List	of	all	member	functions.

Public	Members

QStoredDrag	(const	char	*	mimeType,	QWidget	*	dragSource	=	0,
const	char	*	name	=	0)
~QStoredDrag	()
virtual	void	setEncodedData	(const	QByteArray	&	encodedData)
virtual	QByteArray	encodedData	(const	char	*	m)	const

Detailed	Description

The	QStoredDrag	class	provides	a	simple	stored-value	drag	object	for	arbitrary
MIME	data.

When	a	block	of	data	has	only	one	representation,	you	can	use	a	QStoredDrag	to
hold	it.

For	more	information	about	drag	and	drop,	see	the	QDragObject	class	and	the
drag	and	drop	documentation.

See	also	Drag	And	Drop	Classes.

Member	Function	Documentation

QStoredDrag::QStoredDrag	(const	char	*	mimeType,
QWidget	*	dragSource	=	0,	const	char	*	name	=	0)

Constructs	a	QStoredDrag.	The	dragSource	and	name	are	passed	to	the
QDragObject	constructor,	and	the	format	is	set	to	mimeType.

The	data	will	be	unset.	Use	setEncodedData()	to	set	it.

QStoredDrag::~QStoredDrag	()

Destroys	the	drag	object	and	frees	up	all	allocated	resources.

QByteArray	QStoredDrag::encodedData	(const	char	*	m)	const
[virtual]

Returns	the	stored	data.	m	contains	the	data's	format.

See	also	setEncodedData().

Reimplemented	from	QMimeSource.

void	QStoredDrag::setEncodedData	(
const	QByteArray	&	encodedData)	[virtual]

Sets	the	encoded	data	of	this	drag	object	to	encodedData.	The	encoded	data	is
what's	delivered	to	the	drop	sites.	It	must	be	in	a	strictly	defined	and	portable
format.

The	drag	object	can't	be	dropped	(by	the	user)	until	this	function	has	been	called.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

http://www.trolltech.com/

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QXmlAttributes	Class	Reference
[XML	module]

The	QXmlAttributes	class	provides	XML	attributes.	More...

#include	<qxml.h>

List	of	all	member	functions.

Public	Members

QXmlAttributes	()
virtual	~QXmlAttributes	()
int	index	(const	QString	&	qName)	const
int	index	(const	QString	&	uri,	const	QString	&	localPart)	const
int	length	()	const
int	count	()	const
QString	localName	(int	index)	const
QString	qName	(int	index)	const
QString	uri	(int	index)	const
QString	type	(int	index)	const
QString	type	(const	QString	&	qName)	const
QString	type	(const	QString	&	uri,	const	QString	&	localName)	const
QString	value	(int	index)	const
QString	value	(const	QString	&	qName)	const
QString	value	(const	QString	&	uri,	const	QString	&	localName)	const
void	clear	()
void	append	(const	QString	&	qName,	const	QString	&	uri,
const	QString	&	localPart,	const	QString	&	value)

Detailed	Description

The	QXmlAttributes	class	provides	XML	attributes.

If	attributes	are	reported	by	QXmlContentHandler::startElement()	this	class	is
used	to	pass	the	attribute	values.

Use	index()	to	locate	the	position	of	an	attribute	in	the	list,	count()	to	retrieve	the
number	of	attributes,	and	clear()	to	remove	the	attributes.	New	attributes	can	be
added	with	append().	Use	type()	to	get	an	attribute's	type	and	value()	to	get	its
value.	The	attribute's	name	is	available	from	localName()	or	qName(),	and	its
namespace	URI	from	uri().

See	also	XML.

Member	Function	Documentation

QXmlAttributes::QXmlAttributes	()

Constructs	an	empty	attribute	list.

QXmlAttributes::~QXmlAttributes	()	[virtual]

Destroys	the	attributes	object.

void	QXmlAttributes::append	(const	QString	&	qName,
const	QString	&	uri,	const	QString	&	localPart,
const	QString	&	value)

Appends	a	new	attribute	entry	to	the	list	of	attributes.	The	qualified	name	of	the
attribute	is	qName,	the	namespae	URI	is	uri	and	the	local	name	is	localPart.	The
value	of	the	attribute	is	value.

See	also	qName(),	uri(),	localName()	and	value().

void	QXmlAttributes::clear	()

Clears	the	list	of	attributes.

See	also	append().

int	QXmlAttributes::count	()	const

Returns	the	number	of	attributes	in	the	list.	This	function	is	equivalent	to
length().

int	QXmlAttributes::index	(const	QString	&	qName)	const

Looks	up	the	index	of	an	attribute	by	the	qualified	name	qName.

Returns	the	index	of	the	attribute	or	-1	if	it	wasn't	found.

See	also	the	namespace	description.

int	QXmlAttributes::index	(const	QString	&	uri,
const	QString	&	localPart)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Looks	up	the	index	of	an	attribute	by	a	namespace	name.

uri	specifies	the	namespace	URI,	or	an	empty	string	if	the	name	has	no
namespace	URI.	localPart	specifies	the	attribute's	local	name.

Returns	the	index	of	the	attribute	-1	if	it	wasn't	found.

See	also	the	namespace	description.

int	QXmlAttributes::length	()	const

Returns	the	number	of	attributes	in	the	list.

Example:	xml/tagreader-with-features/structureparser.cpp.

QString	QXmlAttributes::localName	(int	index)	const

Looks	up	an	attribute's	local	name	for	the	attribute	at	position	index.	If	no
namespace	processing	is	done,	the	local	name	is	a	null	string.

See	also	the	namespace	description.

QString	QXmlAttributes::qName	(int	index)	const

Looks	up	an	attribute's	XML	1.0	qualified	name	for	the	attribute	at	position
index.

See	also	the	namespace	description.

Example:	xml/tagreader-with-features/structureparser.cpp.

QString	QXmlAttributes::type	(int	index)	const

Looks	up	an	attribute's	type	for	the	attribute	at	position	index.

Currently	only	"CDATA"	is	returned.

QString	QXmlAttributes::type	(const	QString	&	qName)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Looks	up	an	attribute's	type	for	the	qualified	name	qName.

Currently	only	"CDATA"	is	returned.

QString	QXmlAttributes::type	(const	QString	&	uri,
const	QString	&	localName)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Looks	up	an	attribute's	type	by	namespace	name.

uri	specifies	the	namespace	URI	and	localName	specifies	the	local	name.	If	the
name	has	no	namespace	URI,	use	an	empty	string	for	uri.

Currently	only	"CDATA"	is	returned.

QString	QXmlAttributes::uri	(int	index)	const

Looks	up	an	attribute's	namespace	URI	for	the	attribute	at	position	index.	If	no
namespace	processing	is	done	or	if	the	attribute	has	no	namespace,	the
namespace	URI	is	a	null	string.

See	also	the	namespace	description.

Example:	xml/tagreader-with-features/structureparser.cpp.

QString	QXmlAttributes::value	(int	index)	const

Looks	up	an	attribute's	value	for	the	attribute	at	position	index.

QString	QXmlAttributes::value	(const	QString	&	qName)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Looks	up	an	attribute's	value	for	the	qualified	name	qName.

See	also	the	namespace	description.

QString	QXmlAttributes::value	(const	QString	&	uri,
const	QString	&	localName)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Looks	up	an	attribute's	value	by	namespace	name.

uri	specifies	the	namespace	URI,	or	an	empty	string	if	the	name	has	no
namespace	URI.	localName	specifies	the	attribute's	local	name.

See	also	the	namespace	description.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QDataBrowser	Class	Reference
[sql	module]

The	QDataBrowser	class	provides	data	manipulation	and	navigation	for	data
entry	forms.	More...

#include	<qdatabrowser.h>

Inherits	QWidget.

List	of	all	member	functions.

Public	Members

QDataBrowser	(QWidget	*	parent	=	0,	const	char	*	name	=	0,	WFlags	fl
=	0)
~QDataBrowser	()
enum	Boundary	{	Unknown,	None,	BeforeBeginning,	Beginning,	End,
AfterEnd	}
Boundary	boundary	()
void	setBoundaryChecking	(bool	active)
bool	boundaryChecking	()	const
void	setSort	(const	QSqlIndex	&	sort)
void	setSort	(const	QStringList	&	sort)
QStringList	sort	()	const
void	setFilter	(const	QString	&	filter)
QString	filter	()	const
virtual	void	setSqlCursor	(QSqlCursor	*	cursor,	bool	autoDelete	=	FALSE
)
QSqlCursor	*	sqlCursor	()	const
virtual	void	setForm	(QSqlForm	*	form)
QSqlForm	*	form	()
virtual	void	setConfirmEdits	(bool	confirm)
virtual	void	setConfirmInsert	(bool	confirm)
virtual	void	setConfirmUpdate	(bool	confirm)
virtual	void	setConfirmDelete	(bool	confirm)
virtual	void	setConfirmCancels	(bool	confirm)
bool	confirmEdits	()	const
bool	confirmInsert	()	const
bool	confirmUpdate	()	const
bool	confirmDelete	()	const
bool	confirmCancels	()	const
virtual	void	setReadOnly	(bool	active)
bool	isReadOnly	()	const
virtual	void	setAutoEdit	(bool	autoEdit)
bool	autoEdit	()	const
virtual	bool	seek	(int	i,	bool	relative	=	FALSE)

Public	Slots

virtual	void	refresh	()
virtual	void	insert	()
virtual	void	update	()
virtual	void	del	()
virtual	void	first	()
virtual	void	last	()
virtual	void	next	()
virtual	void	prev	()
virtual	void	readFields	()
virtual	void	writeFields	()
virtual	void	clearValues	()
void	updateBoundary	()

Signals

void	firstRecordAvailable	(bool	available)
void	lastRecordAvailable	(bool	available)
void	nextRecordAvailable	(bool	available)
void	prevRecordAvailable	(bool	available)
void	currentChanged	(const	QSqlRecord	*	record)
void	primeInsert	(QSqlRecord	*	buf)
void	primeUpdate	(QSqlRecord	*	buf)
void	primeDelete	(QSqlRecord	*	buf)
void	beforeInsert	(QSqlRecord	*	buf)
void	beforeUpdate	(QSqlRecord	*	buf)
void	beforeDelete	(QSqlRecord	*	buf)
void	cursorChanged	(QSqlCursor::Mode	mode)

Properties

bool	autoEdit	-	whether	the	browser	automatically	applies	edits
bool	boundaryChecking	-	whether	boundary	checking	is	active
bool	confirmCancels	-	whether	the	browser	confirms	cancel	operations
bool	confirmDelete	-	whether	the	browser	confirms	deletions
bool	confirmEdits	-	whether	the	browser	confirms	edit	operations
bool	confirmInsert	-	whether	the	data	browser	confirms	insertions
bool	confirmUpdate	-	whether	the	browser	confirms	updates
QString	filter	-	the	data	browser's	filter
bool	readOnly	-	whether	the	browser	is	read-only
QStringList	sort	-	the	data	browser's	sort

Protected	Members

virtual	bool	insertCurrent	()
virtual	bool	updateCurrent	()
virtual	bool	deleteCurrent	()
virtual	bool	currentEdited	()
virtual	QSql::Confirm	confirmEdit	(QSql::Op	m)
virtual	QSql::Confirm	confirmCancel	(QSql::Op	m)
virtual	void	handleError	(const	QSqlError	&	error)

Detailed	Description

The	QDataBrowser	class	provides	data	manipulation	and	navigation	for	data
entry	forms.

A	high-level	API	is	provided	to	navigate	through	data	records	in	a	cursor,	insert,
update	and	delete	records,	and	refresh	data	in	the	display.

If	you	want	a	read-only	form	to	present	database	data	use	QDataView;	if	you
want	a	table-based	presentation	of	your	data	use	QDataTable.

A	QDataBrowser	is	used	to	associate	a	dataset	with	a	form	in	much	the	same
way	as	a	QDataTable	associates	a	dataset	with	a	table.	Once	the	data	browser	has
been	constructed	it	can	be	associated	with	a	dataset	with	setSqlCursor(),	and
with	a	form	with	setForm().	Boundary	checking,	sorting	and	filtering	can	be	set
with	setBoundaryChecking(),	setSort()	and	setFilter(),	respectively.

The	insertCurrent()	function	reads	the	fields	from	the	default	form	into	the
default	cursor	and	performs	the	insert.	The	updateCurrent()	and	deleteCurrent()
functions	perform	similarly	to	update	and	delete	the	current	record	respectively.

The	user	can	be	asked	to	confirm	all	edits	with	setConfirmEdits().	For	more
precise	control	use	setConfirmInsert(),	setConfirmUpdate(),	setConfirmDelete()
and	setConfirmCancels().	Use	setAutoEdit()	to	control	the	behaviour	of	the	form
when	the	user	edits	a	record	and	then	navigates.

The	record	set	is	navigated	using	first(),	next(),	prev(),	last()	and	seek().	The
form's	display	is	updated	with	refresh().	When	navigation	takes	place	the
firstRecordAvailable(),	lastRecordAvailable(),	nextRecordAvailable()	and
prevRecordAvailable()	signals	are	emitted.	When	the	cursor	record	is	changed
due	to	navigation	the	cursorChanged()	signal	is	emitted.

If	you	want	finer	control	of	the	insert,	update	and	delete	processes	then	you	can
use	the	low	level	functions	to	perform	these	operations	as	described	below.

The	form	is	populated	with	data	from	the	database	with	readFields().	If	the	user
is	allowed	to	edit,	(see	setReadOnly()),	write	the	form's	data	back	to	the	cursor's
edit	buffer	with	writeFields().	You	can	clear	the	values	in	the	form	with

clearValues().	Editing	is	performed	as	follows:

insert	When	the	data	browser	enters	insertion	mode	it	emits	the
primeInsert()	signal	which	you	can	connect	to,	for	example	to	pre-populate
fields.	Call	writeFields()	to	write	the	user's	edits	to	the	cursor's	edit	buffer
then	call	insert()	to	insert	the	record	into	the	database.	The	beforeInsert()
signal	is	emitted	just	before	the	cursor's	edit	buffer	is	inserted	into	the
database;	connect	to	this	for	example,	to	populate	fields	such	as	an	auto-
generated	primary	key.
update	For	updates	the	primeUpdate()	signal	is	emitted	when	the	data
browser	enters	update	mode.	After	calling	writeFields()	call	update()	to
update	the	record	and	connect	to	the	beforeUpdate()	signal	to	manipulate
the	user's	data	before	the	update	takes	place.
delete	For	deletion	the	primeDelete()	signal	is	emitted	when	the	data
browser	enters	deletion	mode.	After	calling	writeFields()	call	del()	to	delete
the	record	and	connect	to	the	beforeDelete()	signal,	for	example	to	record
an	audit	of	the	deleted	record.

See	also	Database	Classes.

Member	Type	Documentation

QDataBrowser::Boundary

This	enum	describes	where	the	data	browser	is	positioned.

The	currently	defined	values	are:

QDataBrowser::Unknown	-	the	boundary	cannot	be	determined	(usually
because	there	is	no	default	cursor,	or	the	default	cursor	is	not	active).
QDataBrowser::None	-	the	browser	is	not	positioned	on	a	boundary,	but	it	is
positioned	on	a	record	somewhere	in	the	middle.
QDataBrowser::BeforeBeginning	-	the	browser	is	positioned	before	the
first	available	record.
QDataBrowser::Beginning	-	the	browser	is	positioned	at	the	first	record.
QDataBrowser::End	-	the	browser	is	positioned	at	the	last	record.
QDataBrowser::AfterEnd	-	the	browser	is	positioned	after	the	last	available
record.

Member	Function	Documentation

QDataBrowser::QDataBrowser	(QWidget	*	parent	=	0,
const	char	*	name	=	0,	WFlags	fl	=	0)

Constructs	a	data	browser	which	is	a	child	of	parent,	with	the	name	name	and
widget	flags	set	to	fl.

QDataBrowser::~QDataBrowser	()

Destroys	the	object	and	frees	any	allocated	resources.

bool	QDataBrowser::autoEdit	()	const

Returns	TRUE	if	the	browser	automatically	applies	edits;	otherwise	returns
FALSE.	See	the	"autoEdit"	property	for	details.

void	QDataBrowser::beforeDelete	(QSqlRecord	*	buf)	[signal]

This	signal	is	emitted	just	before	the	cursor's	edit	buffer	is	deleted	from	the
database.	The	buf	parameter	points	to	the	edit	buffer	being	deleted.	You	might
connect	to	this	signal	to	capture	some	auditing	information	about	the	deletion.

void	QDataBrowser::beforeInsert	(QSqlRecord	*	buf)	[signal]

This	signal	is	emitted	just	before	the	cursor's	edit	buffer	is	inserted	into	the
database.	The	buf	parameter	points	to	the	edit	buffer	being	inserted.	You	might
connect	to	this	signal	to	populate	a	generated	primary	key	for	example.

void	QDataBrowser::beforeUpdate	(QSqlRecord	*	buf)
[signal]

This	signal	is	emitted	just	before	the	cursor's	edit	buffer	is	updated	in	the
database.	The	buf	parameter	points	to	the	edit	buffer	being	updated.	You	might
connect	to	this	signal	to	capture	some	auditing	information	about	the	update.

Boundary	QDataBrowser::boundary	()

Returns	an	enum	indicating	the	boundary	status	of	the	browser.

This	is	achieved	by	moving	the	default	cursor	and	checking	the	position,
however	the	current	default	form	values	will	not	be	altered.	After	checking	for
the	boundary,	the	cursor	is	moved	back	to	its	former	position.	See
QDataBrowser::Boundary.

See	also	Boundary.

bool	QDataBrowser::boundaryChecking	()	const

Returns	TRUE	if	boundary	checking	is	active;	otherwise	returns	FALSE.	See	the
"boundaryChecking"	property	for	details.

void	QDataBrowser::clearValues	()	[virtual	slot]

Clears	all	the	values	in	the	form.

All	the	edit	buffer	field	values	are	set	to	their	'zero	state',	e.g.	0	for	numeric
fields	and	""	for	string	fields.	Then	the	widgets	are	updated	using	the	property
map.	For	example,	a	combobox	that	is	property-mapped	to	integers	would	scroll
to	the	first	item.	See	the	QSqlPropertyMap	constructor	for	the	default	mappings
of	widgets	to	properties.

QSql::Confirm	QDataBrowser::confirmCancel	(QSql::Op	m)
[virtual	protected]

Protected	virtual	function	which	returns	a	confirmation	for	cancelling	an	edit
mode	m.	Derived	classes	can	reimplement	this	function	and	provide	their	own
confirmation	dialog.	The	default	implementation	uses	a	message	box	which
prompts	the	user	to	confirm	the	edit	action.

bool	QDataBrowser::confirmCancels	()	const

Returns	TRUE	if	the	browser	confirms	cancel	operations;	otherwise	returns
FALSE.	See	the	"confirmCancels"	property	for	details.

bool	QDataBrowser::confirmDelete	()	const

Returns	TRUE	if	the	browser	confirms	deletions;	otherwise	returns	FALSE.	See
the	"confirmDelete"	property	for	details.

QSql::Confirm	QDataBrowser::confirmEdit	(QSql::Op	m)
[virtual	protected]

Protected	virtual	function	which	returns	a	confirmation	for	an	edit	of	mode	m.
Derived	classes	can	reimplement	this	function	and	provide	their	own
confirmation	dialog.	The	default	implementation	uses	a	message	box	which
prompts	the	user	to	confirm	the	edit	action.

bool	QDataBrowser::confirmEdits	()	const

Returns	TRUE	if	the	browser	confirms	edit	operations;	otherwise	returns
FALSE.	See	the	"confirmEdits"	property	for	details.

bool	QDataBrowser::confirmInsert	()	const

Returns	TRUE	if	the	data	browser	confirms	insertions;	otherwise	returns
FALSE.	See	the	"confirmInsert"	property	for	details.

bool	QDataBrowser::confirmUpdate	()	const

Returns	TRUE	if	the	browser	confirms	updates;	otherwise	returns	FALSE.	See
the	"confirmUpdate"	property	for	details.

void	QDataBrowser::currentChanged	(
const	QSqlRecord	*	record)	[signal]

This	signal	is	emitted	whenever	the	current	cursor	position	changes.	The	record
parameter	points	to	the	contents	of	the	current	cursor's	record.

bool	QDataBrowser::currentEdited	()	[virtual	protected]

Returns	TRUE	if	the	form's	edit	buffer	differs	from	the	current	cursor	buffer,
otherwise	FALSE	is	returned.

void	QDataBrowser::cursorChanged	(QSqlCursor::Mode	mode)
[signal]

This	signal	is	emitted	whenever	the	cursor	record	was	changed	due	to
navigation.	The	mode	parameter	is	the	edit	that	just	took	place,	e.g.	Insert,
Update	or	Delete.	See	QSqlCursor::Mode.

void	QDataBrowser::del	()	[virtual	slot]

Performs	a	delete	operation	on	the	data	browser's	cursor.	If	there	is	no	default
cursor	or	no	default	form,	nothing	happens.

Otherwise,	the	following	happens:

The	current	form's	record	is	deleted	from	the	database,	providing	that	the	data
browser	is	not	in	insert	mode.	If	the	data	browser	is	actively	inserting	a	record
(see	insert()),	the	insert	action	is	cancelled,	and	the	browser	navigates	to	the	last
valid	record	that	was	current.	If	there	is	an	error,	handleError()	is	called.

bool	QDataBrowser::deleteCurrent	()	[virtual	protected]

Performs	a	delete	on	the	default	cursor	using	the	values	from	the	default	form
and	updates	the	default	form.	If	there	is	no	default	form	or	no	default	cursor,
nothing	happens.	If	the	deletion	was	successful,	the	cursor	is	repositioned	to	the
nearest	record	and	TRUE	is	returned.	The	nearest	record	is	the	next	record	if
there	is	one	otherwise	the	previous	record	if	there	is	one.	If	an	error	occurred
during	the	deletion	from	the	database,	handleError()	is	called	and	FALSE	is
returned.

See	also	cursor,	form()	and	handleError().

QString	QDataBrowser::filter	()	const

Returns	the	data	browser's	filter.	See	the	"filter"	property	for	details.

void	QDataBrowser::first	()	[virtual	slot]

Moves	the	default	cursor	to	the	first	record	and	refreshes	the	default	form	to

display	this	record.	If	there	is	no	default	form	or	no	default	cursor,	nothing
happens.	If	the	data	browser	successfully	navigated	to	the	first	record,	the	default
cursor	is	primed	for	update	and	the	primeUpdate()	signal	is	emitted.

If	the	browser	is	already	positioned	on	the	first	record	nothing	happens.

void	QDataBrowser::firstRecordAvailable	(bool	available)
[signal]

This	signal	is	emitted	whenever	the	position	of	the	cursor	changes.	The	available
parameter	indicates	whether	or	not	the	first	record	in	the	default	cursor	is
available.

QSqlForm	*	QDataBrowser::form	()

Returns	a	pointer	to	the	data	browser's	default	form	or	0	if	no	form	has	been	set.

void	QDataBrowser::handleError	(const	QSqlError	&	error)
[virtual	protected]

Virtual	function	which	handles	the	error	error.	The	default	implementation
warns	the	user	with	a	message	box.

void	QDataBrowser::insert	()	[virtual	slot]

Performs	an	insert	operation	on	the	data	browser's	cursor.	If	there	is	no	default
cursor	or	no	default	form,	nothing	happens.

If	auto-editing	is	on	(see	setAutoEdit()),	the	following	happens:

If	the	browser	is	already	actively	inserting	a	record,	the	current	form's	data
is	inserted	into	the	database.
If	the	browser	is	not	inserting	a	record,	but	the	current	record	was	changed
by	the	user,	the	record	is	updated	in	the	database	with	the	current	form's
data	(i.e.	with	the	changes).

If	there	is	an	error	handling	any	of	the	above	auto-edit	actions,	handleError()	is
called	and	no	insert	or	update	is	performed.

If	no	error	occurred,	or	auto-editing	is	not	enabled,	the	data	browser	begins
actively	inserting	a	record	into	the	database	by	performing	the	following	actions:

The	default	cursor	is	primed	for	insert	using	QSqlCursor::primeInsert().
The	primeInsert()	signal	is	emitted.
The	form	is	updated	with	the	values	in	the	default	cursor's.	edit	buffer	so
that	the	user	can	fill	in	the	values	to	be	inserted.

bool	QDataBrowser::insertCurrent	()	[virtual	protected]

Reads	the	fields	from	the	default	form	into	the	default	cursor	and	performs	an
insert	on	the	default	cursor.	If	there	is	no	default	form	or	no	default	cursor,
nothing	happens.	If	an	error	occurred	during	the	insert	into	the	database,
handleError()	is	called	and	FALSE	is	returned.	If	the	insert	was	successfull,	the
cursor	is	refreshed	and	relocated	to	the	newly	inserted	record,	the
cursorChanged()	signal	is	emitted,	and	TRUE	is	returned.

See	also	cursorChanged(),	sqlCursor(),	form()	and	handleError().

bool	QDataBrowser::isReadOnly	()	const

Returns	TRUE	if	the	browser	is	read-only;	otherwise	returns	FALSE.	See	the
"readOnly"	property	for	details.

void	QDataBrowser::last	()	[virtual	slot]

Moves	the	default	cursor	to	the	last	record	and	refreshes	the	default	form	to
display	this	record.	If	there	is	no	default	form	or	no	default	cursor,	nothing
happens.	If	the	data	browser	successfully	navigated	to	the	last	record,	the	default
cursor	is	primed	for	update	and	the	primeUpdate()	signal	is	emitted.

If	the	browser	is	already	positioned	on	the	last	record	nothing	happens.

void	QDataBrowser::lastRecordAvailable	(bool	available)
[signal]

This	signal	is	emitted	whenever	the	position	of	the	cursor	changes.	The	available
parameter	indicates	whether	or	not	the	last	record	in	the	default	cursor	is
available.

void	QDataBrowser::next	()	[virtual	slot]

Moves	the	default	cursor	to	the	next	record	and	refreshes	the	default	form	to
display	this	record.	If	there	is	no	default	form	or	no	default	cursor,	nothing
happens.	If	the	data	browser	successfully	navigated	to	the	next	record,	the
default	cursor	is	primed	for	update	and	the	primeUpdate()	signal	is	emitted.

If	the	browser	is	positioned	on	the	last	record	nothing	happens.

void	QDataBrowser::nextRecordAvailable	(bool	available)
[signal]

This	signal	is	emitted	whenever	the	position	of	the	cursor	changes.	The	available
parameter	indicates	whether	or	not	the	next	record	in	the	default	cursor	is
available.

void	QDataBrowser::prev	()	[virtual	slot]

Moves	the	default	cursor	to	the	previous	record	and	refreshes	the	default	form	to
display	this	record.	If	there	is	no	default	form	or	no	default	cursor,	nothing
happens.	If	the	data	browser	successfully	navigated	to	the	previous	record,	the
default	cursor	is	primed	for	update	and	the	primeUpdate()	signal	is	emitted.

If	the	browser	is	positioned	on	the	first	record	nothing	happens.

void	QDataBrowser::prevRecordAvailable	(bool	available)
[signal]

This	signal	is	emitted	whenever	the	position	of	the	cursor	changes.	The	available
parameter	indicates	whether	or	not	the	previous	record	in	the	default	cursor	is
available.

void	QDataBrowser::primeDelete	(QSqlRecord	*	buf)	[signal]

This	signal	is	emitted	when	the	data	browser	enters	deletion	mode.	The	buf
parameter	points	to	the	record	buffer	being	deleted.	(Note	that
QSqlCursor::primeDelete()	is	not	called	on	the	default	cursor,	as	this	would
corrupt	values	in	the	form.)	Connect	to	this	signal	in	order	to,	for	example,	save

a	copy	of	the	deleted	record	for	auditing	purposes.

See	also	del().

void	QDataBrowser::primeInsert	(QSqlRecord	*	buf)	[signal]

This	signal	is	emitted	when	the	data	browser	enters	insertion	mode.	The	buf
parameter	points	to	the	record	buffer	that	is	to	be	inserted.	Connect	to	this	signal
to,	for	example,	prime	the	record	buffer	with	default	data	values,	auto-numbered
fields	etc.	(Note	that	QSqlCursor::primeInsert()	is	not	called	on	the	default
cursor,	as	this	would	corrupt	values	in	the	form.)

See	also	insert().

void	QDataBrowser::primeUpdate	(QSqlRecord	*	buf)	[signal]

This	signal	is	emitted	when	the	data	browser	enters	update	mode.	Note	that
during	naviagtion	(first(),	last(),	next(),	prev()),	each	record	that	is	shown	in	the
default	form	is	primed	for	update.	The	buf	parameter	points	to	the	record	buffer
being	updated.	(Note	that	QSqlCursor::primeUpdate()	is	not	called	on	the	default
cursor,	as	this	would	corrupt	values	in	the	form.)	Connect	to	this	signal	in	order
to,	for	example,	keep	track	of	which	records	have	been	updated,	perhaps	for
auditing	purposes.

See	also	update().

void	QDataBrowser::readFields	()	[virtual	slot]

Reads	the	fields	from	the	default	cursor's	edit	buffer	and	displays	them	in	the
form.	If	there	is	no	default	cursor	or	no	default	form,	nothing	happens.

void	QDataBrowser::refresh	()	[virtual	slot]

Refreshes	the	data	browser's	data	using	the	default	cursor.	The	browser's	current
filter	and	sort	are	applied	if	they	have	been	set.

See	also	filter	and	sort.

bool	QDataBrowser::seek	(int	i,	bool	relative	=	FALSE)
[virtual]

Moves	the	default	cursor	to	the	record	specified	by	the	index	i	and	refreshes	the
default	form	to	display	this	record.	If	there	is	no	default	form	or	no	default
cursor,	nothing	happens.	If	relative	is	TRUE	(the	default	is	FALSE),	the	cursor	is
moved	relative	to	its	current	position.	If	the	data	browser	successfully	navigated
to	the	desired	record,	the	default	cursor	is	primed	for	update	and	the
primeUpdate()	signal	is	emitted.

If	the	browser	is	already	positioned	on	the	desired	record	nothing	happens.

void	QDataBrowser::setAutoEdit	(bool	autoEdit)	[virtual]

Sets	whether	the	browser	automatically	applies	edits	to	autoEdit.	See	the
"autoEdit"	property	for	details.

void	QDataBrowser::setBoundaryChecking	(bool	active)

Sets	whether	boundary	checking	is	active	to	active.	See	the	"boundaryChecking"
property	for	details.

void	QDataBrowser::setConfirmCancels	(bool	confirm)
[virtual]

Sets	whether	the	browser	confirms	cancel	operations	to	confirm.	See	the
"confirmCancels"	property	for	details.

void	QDataBrowser::setConfirmDelete	(bool	confirm)	[virtual]

Sets	whether	the	browser	confirms	deletions	to	confirm.	See	the	"confirmDelete"
property	for	details.

void	QDataBrowser::setConfirmEdits	(bool	confirm)	[virtual]

Sets	whether	the	browser	confirms	edit	operations	to	confirm.	See	the
"confirmEdits"	property	for	details.

void	QDataBrowser::setConfirmInsert	(bool	confirm)	[virtual]

Sets	whether	the	data	browser	confirms	insertions	to	confirm.	See	the
"confirmInsert"	property	for	details.

void	QDataBrowser::setConfirmUpdate	(bool	confirm)
[virtual]

Sets	whether	the	browser	confirms	updates	to	confirm.	See	the	"confirmUpdate"
property	for	details.

void	QDataBrowser::setFilter	(const	QString	&	filter)

Sets	the	data	browser's	filter	to	filter.	See	the	"filter"	property	for	details.

void	QDataBrowser::setForm	(QSqlForm	*	form)	[virtual]

Sets	the	browser's	default	form	to	form.	The	cursor	and	all	navigation	and	data
manipulation	functions	that	the	browser	provides	become	available	to	the	form.

void	QDataBrowser::setReadOnly	(bool	active)	[virtual]

Sets	whether	the	browser	is	read-only	to	active.	See	the	"readOnly"	property	for
details.

void	QDataBrowser::setSort	(const	QStringList	&	sort)

Sets	the	data	browser's	sort	to	sort.	See	the	"sort"	property	for	details.

void	QDataBrowser::setSort	(const	QSqlIndex	&	sort)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Sets	the	data	browser's	sort	to	the	QSqlIndex	sort.	To	apply	the	new	sort,	use
refresh().

void	QDataBrowser::setSqlCursor	(QSqlCursor	*	cursor,

bool	autoDelete	=	FALSE)	[virtual]

Sets	the	default	cursor	used	by	the	data	browser	to	cursor.	If	autoDelete	is
TRUE	(the	default	is	FALSE),	the	data	browser	takes	ownership	of	the	cursor
pointer,	which	will	be	deleted	when	the	browser	is	destroyed,	or	when
setSqlCursor()	is	called	again.	To	activate	the	cursor	use	refresh().	The	cursor's
edit	buffer	is	used	in	the	default	form	to	browse	and	edit	records.

See	also	sqlCursor(),	form()	and	setForm().

QStringList	QDataBrowser::sort	()	const

Returns	the	data	browser's	sort.	See	the	"sort"	property	for	details.

QSqlCursor	*	QDataBrowser::sqlCursor	()	const

Returns	a	pointer	to	the	default	cursor	used	for	navigation,	or	0	if	there	is	no
default	cursor.

See	also	setSqlCursor().

void	QDataBrowser::update	()	[virtual	slot]

Performs	an	update	operation	on	the	data	browser's	cursor.

If	there	is	no	default	cursor	or	no	default	form,	nothing	happens.	Otherwise,	the
following	happens:

If	the	data	browser	is	actively	inserting	a	record	(see	insert()),	that	record	is
inserted	into	the	database	using	insertCurrent().	Otherwise,	the	database	is
updated	with	the	current	form's	data	using	updateCurrent().	If	there	is	an	error
handling	either	action,	handleError()	is	called.

void	QDataBrowser::updateBoundary	()	[slot]

If	boundaryChecking()	is	TRUE,	checks	the	boundary	of	the	current	default
cursor	and	emits	signals	which	indicate	the	position	of	the	cursor.

bool	QDataBrowser::updateCurrent	()	[virtual	protected]

Reads	the	fields	from	the	default	form	into	the	default	cursor	and	performs	an
update	on	the	default	cursor.	If	there	is	no	default	form	or	no	default	cursor,
nothing	happens.	If	an	error	occurred	during	the	update	on	the	database,
handleError()	is	called	and	FALSE	is	returned.	If	the	update	was	successfull,	the
cursor	is	refreshed	and	relocated	to	the	updated	record,	the	cursorChanged()
signal	is	emitted,	and	TRUE	is	returned.

See	also	cursor,	form()	and	handleError().

void	QDataBrowser::writeFields	()	[virtual	slot]

Writes	the	form's	data	to	the	default	cursor's	edit	buffer.	If	there	is	no	default
cursor	or	no	default	form,	nothing	happens.

Property	Documentation

bool	autoEdit

This	property	holds	whether	the	browser	automatically	applies	edits.

The	default	value	for	this	property	is	TRUE.	When	the	user	begins	an	insertion
or	an	update	on	a	form	there	are	two	possible	outcomes	when	they	navigate	to
another	record:

the	insert	or	update	is	is	performed	--	this	occurs	if	autoEdit	is	TRUE
the	insert	or	update	is	discarded	--	this	occurs	if	autoEdit	is	FALSE

Set	this	property's	value	with	setAutoEdit()	and	get	this	property's	value	with
autoEdit().

bool	boundaryChecking

This	property	holds	whether	boundary	checking	is	active.

When	boundary	checking	is	active	(the	default),	signals	are	emitted	indicating
the	current	position	of	the	default	cursor.

See	also	boundary().

Set	this	property's	value	with	setBoundaryChecking()	and	get	this	property's
value	with	boundaryChecking().

bool	confirmCancels

This	property	holds	whether	the	browser	confirms	cancel	operations.

If	this	property	is	TRUE,	all	cancels	must	be	confirmed	by	the	user	through	a
message	box	(this	behavior	can	be	changed	by	overriding	the	confirmCancel()
function),	otherwise	all	cancels	occur	immediately.	The	default	is	FALSE.

See	also	confirmEdits	and	confirmCancel().

Set	this	property's	value	with	setConfirmCancels()	and	get	this	property's	value
with	confirmCancels().

bool	confirmDelete

This	property	holds	whether	the	browser	confirms	deletions.

If	this	property	is	TRUE,	the	browser	confirms	deletions,	otherwise	deletions
happen	immediately.

See	also	confirmCancels,	confirmEdits,	confirmUpdate,	confirmInsert	and
confirmEdit().

Set	this	property's	value	with	setConfirmDelete()	and	get	this	property's	value
with	confirmDelete().

bool	confirmEdits

This	property	holds	whether	the	browser	confirms	edit	operations.

If	this	property	is	TRUE,	the	browser	confirms	all	edit	operations	(insertions,
updates	and	deletions),	otherwise	all	edit	operations	happen	immediately.
Confirmation	is	achieved	by	presenting	the	user	with	a	message	box	--	this
behavior	can	be	changed	by	reimplementing	the	confirmEdit()	function,

See	also	confirmEdit(),	confirmCancels,	confirmInsert,	confirmUpdate	and
confirmDelete.

Set	this	property's	value	with	setConfirmEdits()	and	get	this	property's	value
with	confirmEdits().

bool	confirmInsert

This	property	holds	whether	the	data	browser	confirms	insertions.

If	this	property	is	TRUE,	the	browser	confirms	insertions,	otherwise	insertions
happen	immediately.

See	also	confirmCancels,	confirmEdits,	confirmUpdate,	confirmDelete	and

confirmEdit().

Set	this	property's	value	with	setConfirmInsert()	and	get	this	property's	value
with	confirmInsert().

bool	confirmUpdate

This	property	holds	whether	the	browser	confirms	updates.

If	this	property	is	TRUE,	the	browser	confirms	updates,	otherwise	updates
happen	immediately.

See	also	confirmCancels,	confirmEdits,	confirmInsert,	confirmDelete	and
confirmEdit().

Set	this	property's	value	with	setConfirmUpdate()	and	get	this	property's	value
with	confirmUpdate().

QString	filter

This	property	holds	the	data	browser's	filter.

The	filter	applies	to	the	data	shown	in	the	browser.	Call	refresh()	to	apply	the
new	filter.	A	filter	is	a	string	containing	a	SQL	WHERE	clause	without	the
WHERE	keyword,	e.g.	"id>1000",	"name	LIKE	'A%'".

There	is	no	default	filter.

See	also	sort.

Set	this	property's	value	with	setFilter()	and	get	this	property's	value	with	filter().

bool	readOnly

This	property	holds	whether	the	browser	is	read-only.

The	default	is	FALSE,	i.e.	data	can	be	edited.	If	the	data	browser	is	read-only,	no
database	edits	will	be	allowed.

Set	this	property's	value	with	setReadOnly()	and	get	this	property's	value	with

isReadOnly().

QStringList	sort

This	property	holds	the	data	browser's	sort.

The	data	browser's	sort	affects	the	order	in	which	records	are	viewed	in	the
browser.	Call	refresh()	to	apply	the	new	sort.

When	retrieving	the	sort	property,	a	string	list	is	returned	in	the	form	'fieldname
order',	e.g.	'id	ASC',	'surname	DESC'.

There	is	no	default	sort.

Note	that	if	you	want	to	iterate	over	the	list,	you	should	iterate	over	a	copy,	e.g.

				QStringList	list	=	myDataBrowser.sort();

				QStringList::Iterator	it	=	list.begin();

				while(it	!=	list.end())	{

								myProcessing(*it);

								++it;

				}

				

Set	this	property's	value	with	setSort()	and	get	this	property's	value	with	sort().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QHButtonGroup
QHButtonGroupQButton	 ……

#include	<qhbuttongroup.h>

QButtonGroup

QHButtonGroup	(QWidget	*	parent	=	0,	const	char	*	name	=	0)
QHButtonGroup	(const	QString	&	title,	QWidget	*	parent	=	0,
const	char	*	name	=	0)
~QHButtonGroup	()

QHButtonGroup QButton

QHButtonGroup QButtonGroup QHBox

QVButtonGroup.

QHButtonGroup::QHButtonGroup	(QWidget	*	parent	=	0,
const	char	*	name	=	0)

parentnameQWidget

QHButtonGroup::QHButtonGroup	(const	QString	&	title,
QWidget	*	parent	=	0,	const	char	*	name	=	0)

title

parentnameQWidget

QHButtonGroup::~QHButtonGroup	()

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QPaintDeviceMetrics	Class	Reference
The	QPaintDeviceMetrics	class	provides	information	about	a	paint	device.
More...

#include	<qpaintdevicemetrics.h>

List	of	all	member	functions.

Public	Members

QPaintDeviceMetrics	(const	QPaintDevice	*	pd)
int	width	()	const
int	height	()	const
int	widthMM	()	const
int	heightMM	()	const
int	logicalDpiX	()	const
int	logicalDpiY	()	const
int	numColors	()	const
int	depth	()	const

Detailed	Description

The	QPaintDeviceMetrics	class	provides	information	about	a	paint	device.

Sometimes	when	drawing	graphics	it	is	necessary	to	obtain	information	about
the	physical	characteristics	of	a	paint	device.	This	class	provides	the
information.	For	example,	to	compute	the	aspect	ratio	of	a	paint	device:

								QPaintDeviceMetrics	pdm(myWidget);

								double	aspect	=	(double)pdm.widthMM()	/	(double)pdm.heightMM

				

QPaintDeviceMetrics	contains	methods	to	provide	the	width	and	height	of	a
device	in	both	pixels	(width()	and	height())	and	millimeters	(widthMM()	and
heightMM()),	the	number	of	colors	the	device	supports	(numColors()),	the
number	of	bit	planes	(depth()),	and	the	resolution	of	the	device	(logicalDpiX()
and	logicalDpiY()).

It	is	not	always	possible	for	QPaintDeviceMetrics	to	compute	the	values	you	ask
for,	particularly	for	external	devices.	The	ultimate	example	is	asking	for	the
resolution	of	of	a	QPrinter	that	is	set	to	"print	to	file":	who	knows	what	printer
that	file	will	end	up	on?

See	also	Graphics	Classes	and	Image	Processing	Classes.

Member	Function	Documentation

QPaintDeviceMetrics::QPaintDeviceMetrics	(
const	QPaintDevice	*	pd)

Constructs	a	metric	for	the	paint	device	pd.

int	QPaintDeviceMetrics::depth	()	const

Returns	the	bit	depth	(number	of	bit	planes)	of	the	paint	device.

int	QPaintDeviceMetrics::height	()	const

Returns	the	height	of	the	paint	device	in	default	coordinate	system	units	(e.g.
pixels	for	QPixmap	and	QWidget).

Examples:	action/application.cpp,	application/application.cpp,
helpviewer/helpwindow.cpp,	mdi/application.cpp	and	qwerty/qwerty.cpp.

int	QPaintDeviceMetrics::heightMM	()	const

Returns	the	height	of	the	paint	device,	measured	in	millimeters.

int	QPaintDeviceMetrics::logicalDpiX	()	const

Returns	the	horizontal	resolution	of	the	device	in	dots	per	inch,	which	is	used
when	computing	font	sizes.	For	X,	this	is	usually	the	same	as	could	be	computed
from	widthMM(),	but	it	varies	on	Windows.

Examples:	helpviewer/helpwindow.cpp	and	qwerty/qwerty.cpp.

int	QPaintDeviceMetrics::logicalDpiY	()	const

Returns	the	vertical	resolution	of	the	device	in	dots	per	inch,	which	is	used	when
computing	font	sizes.	For	X,	this	is	usually	the	same	as	could	be	computed	from
heightMM(),	but	it	varies	on	Windows.

Example:	helpviewer/helpwindow.cpp.

int	QPaintDeviceMetrics::numColors	()	const

Returns	the	number	of	different	colors	available	for	the	paint	device.

int	QPaintDeviceMetrics::width	()	const

Returns	the	width	of	the	paint	device	in	default	coordinate	system	units	(e.g.
pixels	for	QPixmap	and	QWidget).

Examples:	action/application.cpp,	application/application.cpp,
helpviewer/helpwindow.cpp,	mdi/application.cpp	and	qwerty/qwerty.cpp.

int	QPaintDeviceMetrics::widthMM	()	const

Returns	the	width	of	the	paint	device,	measured	in	millimeters.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QStrIList	Class	Reference
The	QStrIList	class	provides	a	doubly-linked	list	of	char*	with	case-insensitive
comparison.	More...

#include	<qstrlist.h>

Inherits	QStrList.

List	of	all	member	functions.

Public	Members

QStrIList	(bool	deepCopies	=	TRUE)
~QStrIList	()

Detailed	Description

The	QStrIList	class	provides	a	doubly-linked	list	of	char*	with	case-insensitive
comparison.

This	class	is	a	QPtrList<char>	instance	(a	list	of	char*).

QStrIList	is	identical	to	QStrList	except	that	the	virtual	compareItems()	function
is	reimplemented	to	compare	strings	case-insensitively.	The	inSort()	function
inserts	strings	in	a	sorted	order.	In	general	it	is	fastest	to	insert	the	strings	as	they
come	and	sort()	at	the	end;	inSort()	is	useful	when	you	just	have	to	add	a	few
extra	strings	to	an	already	sorted	list.

The	QStrListIterator	class	works	for	QStrIList.

See	also	Collection	Classes	and	Non-GUI	Classes.

Member	Function	Documentation

QStrIList::QStrIList	(bool	deepCopies	=	TRUE)

Constructs	a	list	of	strings.	Will	make	deep	copies	of	all	inserted	strings	if
deepCopies	is	TRUE,	or	use	shallow	copies	if	deepCopies	is	FALSE.

QStrIList::~QStrIList	()

Destroys	the	list.	All	strings	are	removed.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QXmlContentHandler	Class
Reference

[XML	module]
The	QXmlContentHandler	class	provides	an	interface	to	report	the	logical
content	of	XML	data.	More...

#include	<qxml.h>

Inherited	by	QXmlDefaultHandler.

List	of	all	member	functions.

Public	Members

virtual	void	setDocumentLocator	(QXmlLocator	*	locator)	=	0
virtual	bool	startDocument	()	=	0
virtual	bool	endDocument	()	=	0
virtual	bool	startPrefixMapping	(const	QString	&	prefix,
const	QString	&	uri)	=	0
virtual	bool	endPrefixMapping	(const	QString	&	prefix)	=	0
virtual	bool	startElement	(const	QString	&	namespaceURI,
const	QString	&	localName,	const	QString	&	qName,
const	QXmlAttributes	&	atts)	=	0
virtual	bool	endElement	(const	QString	&	namespaceURI,
const	QString	&	localName,	const	QString	&	qName)	=	0
virtual	bool	characters	(const	QString	&	ch)	=	0
virtual	bool	ignorableWhitespace	(const	QString	&	ch)	=	0
virtual	bool	processingInstruction	(const	QString	&	target,
const	QString	&	data)	=	0
virtual	bool	skippedEntity	(const	QString	&	name)	=	0
virtual	QString	errorString	()	=	0

Detailed	Description

The	QXmlContentHandler	class	provides	an	interface	to	report	the	logical
content	of	XML	data.

If	the	application	needs	to	be	informed	of	basic	parsing	events,	it	implements
this	interface	and	sets	it	with	QXmlReader::setContentHandler().	The	reader
reports	basic	document-related	events	like	the	start	and	end	of	elements	and
character	data	through	this	interface.

The	order	of	events	in	this	interface	is	very	important,	and	mirrors	the	order	of
information	in	the	document	itself.	For	example,	all	of	an	element's	content
(character	data,	processing	instructions,	and/or	sub-elements)	appears,	in	order,
between	the	startElement()	event	and	the	corresponding	endElement()	event.

The	class	QXmlDefaultHandler	provides	a	default	implementation	for	this
interface;	subclassing	from	the	QXmlDefaultHandler	class	is	very	convenient	if
you	only	want	to	be	informed	of	some	parsing	events.

The	startDocument()	function	is	called	at	the	start	of	the	document,	and
endDocument()	is	called	at	the	end.	Before	parsing	begins
setDocumentLocator()	is	called.	For	each	element	startElement()	is	called,	with
endElement()	being	called	at	the	end	of	each	element.	The	characters()	function
is	called	with	chunks	of	character	data;	ignorableWhitespace()	is	called	with
chunks	of	whitespace	and	processingInstruction()	is	called	with	processing
instructions.	If	an	entity	is	skipped	skippedEntity()	is	called.	At	the	beginning	of
prefix-URI	scopes	startPrefixMapping()	is	called.

See	also	the	Introduction	to	SAX2.

See	also	QXmlDTDHandler,	QXmlDeclHandler,	QXmlEntityResolver,
QXmlErrorHandler,	QXmlLexicalHandler	and	XML.

Member	Function	Documentation

bool	QXmlContentHandler::characters	(const	QString	&	ch)
[pure	virtual]

The	reader	calls	this	function	when	it	has	parsed	a	chunk	of	character	data	(either
normal	character	data	or	character	data	inside	a	CDATA	section;	if	you	have	to
distinguish	between	those	two	types	you	must	use
QXmlLexicalHandler::startCDATA()	and	QXmlLexicalHandler::endCDATA()).
The	character	data	is	reported	in	ch.

Some	readers	report	whitespace	in	element	content	using	the
ignorableWhitespace()	function	rather	than	using	this	one.

A	reader	may	report	the	character	data	of	an	element	in	more	than	one	chunk;
e.g.	a	reader	might	want	to	report	"a<b"	in	three	characters()	events	("a	",	"<"
and	"	b").

If	this	function	returns	FALSE	the	reader	stops	parsing	and	reports	an	error.	The
reader	uses	the	function	errorString()	to	get	the	error	message.

bool	QXmlContentHandler::endDocument	()	[pure	virtual]

The	reader	calls	this	function	after	it	has	finished	parsing.	It	is	called	just	once,
and	is	the	last	handler	function	called.	It	is	called	after	the	reader	has	read	all
input	or	has	abandoned	parsing	because	of	a	fatal	error.

If	this	function	returns	FALSE	the	reader	stops	parsing	and	reports	an	error.	The
reader	uses	the	function	errorString()	to	get	the	error	message.

See	also	startDocument().

bool	QXmlContentHandler::endElement	(
const	QString	&	namespaceURI,	const	QString	&	localName,
const	QString	&	qName)	[pure	virtual]

The	reader	calls	this	function	when	it	has	parsed	an	end	element	tag	with	the

qualified	name	qName,	the	local	name	localName	and	the	namespace	URI
namespaceURI.

If	this	function	returns	FALSE	the	reader	stops	parsing	and	reports	an	error.	The
reader	uses	the	function	errorString()	to	get	the	error	message.

See	also	the	namespace	description.

See	also	startElement().

Example:	xml/tagreader/structureparser.cpp.

bool	QXmlContentHandler::endPrefixMapping	(
const	QString	&	prefix)	[pure	virtual]

The	reader	calls	this	function	to	signal	the	end	of	a	prefix	mapping	for	the	prefix
prefix.

If	this	function	returns	FALSE	the	reader	stops	parsing	and	reports	an	error.	The
reader	uses	the	function	errorString()	to	get	the	error	message.

See	also	the	namespace	description.

See	also	startPrefixMapping().

QString	QXmlContentHandler::errorString	()	[pure	virtual]

The	reader	calls	this	function	to	get	an	error	string,	e.g.	if	any	of	the	handler
functions	returns	FALSE.

bool	QXmlContentHandler::ignorableWhitespace	(
const	QString	&	ch)	[pure	virtual]

Some	readers	may	use	this	function	to	report	each	chunk	of	whitespace	in
element	content.	The	whitespace	reported	in	ch.

If	this	function	returns	FALSE	the	reader	stops	parsing	and	reports	an	error.	The
reader	uses	the	function	errorString()	to	get	the	error	message.

bool	QXmlContentHandler::processingInstruction	(
const	QString	&	target,	const	QString	&	data)	[pure
virtual]

The	reader	calls	this	function	when	it	has	parsed	a	processing	instruction.

target	is	the	target	name	of	the	processing	instruction	and	data	is	the	data	in	the
processing	instruction.

If	this	function	returns	FALSE	the	reader	stops	parsing	and	reports	an	error.	The
reader	uses	the	function	errorString()	to	get	the	error	message.

void	QXmlContentHandler::setDocumentLocator	(
QXmlLocator	*	locator)	[pure	virtual]

The	reader	calls	this	function	before	it	starts	parsing	the	document.	The
argument	locator	is	a	pointer	to	a	QXmlLocator	which	allows	the	application	to
get	the	parsing	position	within	the	document.

Do	not	destroy	the	locator;	it	is	destroyed	when	the	reader	is	destroyed	(do	not
use	the	locator	after	the	reader	is	destroyed).

bool	QXmlContentHandler::skippedEntity	(
const	QString	&	name)	[pure	virtual]

Some	readers	may	skip	entities	if	they	have	not	seen	the	declarations	(e.g.
because	they	are	in	an	external	DTD).	If	they	do	so	they	report	that	they	skipped
the	entity	called	name	by	calling	this	function.

If	this	function	returns	FALSE	the	reader	stops	parsing	and	reports	an	error.	The
reader	uses	the	function	errorString()	to	get	the	error	message.

bool	QXmlContentHandler::startDocument	()	[pure	virtual]

The	reader	calls	this	function	when	it	starts	parsing	the	document.	The	reader
calls	this	function	just	once,	after	the	call	to	setDocumentLocator(),	and	before
any	other	functions	in	this	class	or	in	the	QXmlDTDHandler	class	are	called.

If	this	function	returns	FALSE	the	reader	stops	parsing	and	reports	an	error.	The
reader	uses	the	function	errorString()	to	get	the	error	message.

See	also	endDocument().

Example:	xml/tagreader/structureparser.cpp.

bool	QXmlContentHandler::startElement	(
const	QString	&	namespaceURI,	const	QString	&	localName,
const	QString	&	qName,	const	QXmlAttributes	&	atts)	[pure
virtual]

The	reader	calls	this	function	when	it	has	parsed	a	start	element	tag.

There	is	a	corresponding	endElement()	call	when	the	corresponding	end	element
tag	is	read.	The	startElement()	and	endElement()	calls	are	always	nested
correctly.	Empty	element	tags	(e.g.	<x/>)	cause	a	startElement()	call
immediately	followed	by	an	endElement()	call.

The	attribute	list	provided	contains	only	attributes	with	explicit	values.	The
attribute	list	contains	attributes	used	for	namespace	declaration	(i.e.	attributes
starting	with	xmlns)	only	if	the	namespace-prefix	property	of	the	reader	is
TRUE.

The	argument	namespaceURI	is	the	namespace	URI,	or	a	null	string	if	the
element	has	no	namespace	URI	or	if	no	namespace	processing	is	done.
localName	is	the	local	name	(without	prefix),	or	a	null	string	if	no	namespace
processing	is	done,	qName	is	the	qualified	name	(with	prefix)	and	atts	are	the
attributes	attached	to	the	element.	If	there	are	no	attributes,	atts	is	an	empty
attributes	object.

If	this	function	returns	FALSE	the	reader	stops	parsing	and	reports	an	error.	The
reader	uses	the	function	errorString()	to	get	the	error	message.

See	also	the	namespace	description.

See	also	endElement().

Example:	xml/tagreader/structureparser.cpp.

bool	QXmlContentHandler::startPrefixMapping	(
const	QString	&	prefix,	const	QString	&	uri)	[pure	virtual]

The	reader	calls	this	function	to	signal	the	begin	of	a	prefix-URI	namespace
mapping	scope.	This	information	is	not	necessary	for	normal	namespace
processing	since	the	reader	automatically	replaces	prefixes	for	element	and
attribute	names.

Note	that	startPrefixMapping()	and	endPrefixMapping()	calls	are	not	guaranteed
to	be	properly	nested	relative	to	each	other:	all	startPrefixMapping()	events
occur	before	the	corresponding	startElement()	event,	and	all	endPrefixMapping()
events	occur	after	the	corresponding	endElement()	event,	but	their	order	is	not
otherwise	guaranteed.

The	argument	prefix	is	the	namespace	prefix	being	declared	and	the	argument	uri
is	the	namespace	URI	the	prefix	is	mapped	to.

If	this	function	returns	FALSE	the	reader	stops	parsing	and	reports	an	error.	The
reader	uses	the	function	errorString()	to	get	the	error	message.

See	also	the	namespace	description.

See	also	endPrefixMapping().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QDataStream
QDataStreamQIODevice	 ……

#include	<qdatastream.h>

QDataStream	()
QDataStream	(QIODevice	*	d)
QDataStream	(QByteArray	a,	int	mode)
virtual	~QDataStream	()
QIODevice	*	device	()	const
void	setDevice	(QIODevice	*	d)
void	unsetDevice	()
bool	atEnd	()	const
bool	eof	()	const		(obsolete)
enum	ByteOrder	{	BigEndian,	LittleEndian	}
int	byteOrder	()	const
void	setByteOrder	(int	bo)
bool	isPrintableData	()	const
void	setPrintableData	(bool	enable)
int	version	()	const
void	setVersion	(int	v)
QDataStream	&	operator>>	(Q_INT8	&	i)
QDataStream	&	operator>>	(Q_UINT8	&	i)
QDataStream	&	operator>>	(Q_INT16	&	i)
QDataStream	&	operator>>	(Q_UINT16	&	i)
QDataStream	&	operator>>	(Q_INT32	&	i)
QDataStream	&	operator>>	(Q_UINT32	&	i)
QDataStream	&	operator>>	(Q_LONG	&	i)
QDataStream	&	operator>>	(Q_ULONG	&	i)
QDataStream	&	operator>>	(float	&	f)
QDataStream	&	operator>>	(double	&	f)
QDataStream	&	operator>>	(char	*&	s)
QDataStream	&	operator<<	(Q_INT8	i)
QDataStream	&	operator<<	(Q_UINT8	i)
QDataStream	&	operator<<	(Q_INT16	i)
QDataStream	&	operator<<	(Q_UINT16	i)
QDataStream	&	operator<<	(Q_INT32	i)
QDataStream	&	operator<<	(Q_UINT32	i)
QDataStream	&	operator<<	(Q_LONG	i)
QDataStream	&	operator<<	(Q_ULONG	i)

QDataStream	&	operator<<	(float	f)
QDataStream	&	operator<<	(double	f)
QDataStream	&	operator<<	(const	char	*	s)
QDataStream	&	readBytes	(char	*&	s,	uint	&	l)
QDataStream	&	readRawBytes	(char	*	s,	uint	len)
QDataStream	&	writeBytes	(const	char	*	s,	uint	len)
QDataStream	&	writeRawBytes	(const	char	*	s,	uint	len)

QDataStream QIODevice

CPU100PCWindowsSun	SPARCSolaris

QTextStream.	/ “” QTextStream

QDataStream charshortintchar*

QIODeviceQIODevice/

				QFile	f("file.dta");

				f.open(IO_WriteOnly);

				QDataStream	s(&f);				//	f

				s	<<	"the	answer	is";			//	

				s	<<	(Q_INT32)42;							//	

		

				QFile	f("file.dta");

				f.open(IO_ReadOnly);

				QDataStream	s(&f);				//	f

				QString	str;

				Q_INT32	a;

				s	>>	str	>>	a;										//	“the	answer	is”42

		

Qt
QDataStream

char*NUL32NUL char*432NUL char*

IODevice setDevice()IODevice

Qt setVersion()

setPrintableData()

QDataStream

				QFile	f("file.xxx");

				f.open(IO_WriteOnly);

				QDataStream	s(&f);

				//	“”

				s	<<	(Q_UINT32)0xa0b0c0d0;

				s	<<	(Q_INT32)123;

				//	

				s	<<	[lots	of	interesting	data]

		

				QFile	f("file.xxx");

				f.open(IO_ReadOnly);

				QDataStream	s(&f);

				//	

				Q_UINT32	magic;

				s	>>	magic;

				if	(magic	!=	0xa0b0c0d0)

								return	XXX_BAD_FILE_FORMAT;

				//	

				Q_INT32	version;

				s	>>	version;

				if	(version	<	100)

								return	XXX_BAD_FILE_TOO_OLD;

				if	(version	>	123)

								return	XXX_BAD_FILE_TOO_NEW;

				if	(version	<=	110)

								s.setVersion(1);

				//	

				s	>>	[];

				if	(version	>	120)

								s	>>	[1.2XXX];

				s	>>	[];

		

readBytes()writeBytes() readBytes()Q_UINT32char*writeBytes()
Q_UNIT32/Q_UINT32

QTextStreamQVariant/

QDataStream::ByteOrder

/

QDataStream::BigEndian	-	
QDataStream::LittleEndian	-	

QDataStream::QDataStream	()

IO

setDevice()

QDataStream::QDataStream	(QIODevice	*	d)

IO d

QSocketQSocketDeviceIOdQDataStream

setDevice()	and	device().

QDataStream::QDataStream	(QByteArray	a,	int	mode)

QBuffera modeQIODevice::mode() IO_ReadOnlyIO_WriteOnly

				static	char	bindata[]	=	{	231,	1,	44,	...	};

				QByteArray	a;

				a.setRawData(bindata,	sizeof(bindata));			//	abindata

				QDataStream	s(a,	IO_ReadOnly);												//	a

				s	>>	[something];																											//	bindata

				a.resetRawData(bindata,	sizeof(bindata));	//	

		

QByteArray::setRawData()

QDataStream::~QDataStream	()	[]

IO QByteArrayIOIO

bool	QDataStream::atEnd	()	const

IOIOIO

QIODevice::atEnd()

int	QDataStream::byteOrder	()	const

—— BigEndianLittleEndian

setByteOrder()

QIODevice	*	QDataStream::device	()	const

IO

setDevice()unsetDevice()

bool	QDataStream::eof	()	const

IOIO

IO

QIODevice::atEnd()

bool	QDataStream::isPrintableData	()	const

setPrintableData()

QDataStream	&	QDataStream::operator<<	(Q_INT8	i)

i

QDataStream	&	QDataStream::operator<<	(Q_UINT8	i)

i

QDataStream	&	QDataStream::operator<<	(Q_INT16	i)

16 i

QDataStream	&	QDataStream::operator<<	(Q_UINT16	i)

16 i

QDataStream	&	QDataStream::operator<<	(Q_INT32	i)

32 i

QDataStream	&	QDataStream::operator<<	(Q_UINT32	i)

32 i

QDataStream	&	QDataStream::operator<<	(Q_LONG	i)

i

QDataStream	&	QDataStream::operator<<	(Q_ULONG	i)

i

QDataStream	&	QDataStream::operator<<	(float	f)

IEEE75432 f

QDataStream	&	QDataStream::operator<<	(double	f)

IEEE75464 f

QDataStream	&	QDataStream::operator<<	(const	char	*	s)

“\0” s

writeBytes()

QDataStream	&	QDataStream::operator>>	(Q_INT8	&	i)

i

QDataStream	&	QDataStream::operator>>	(Q_UINT8	&	i)

i

QDataStream	&	QDataStream::operator>>	(Q_INT16	&	i)

16 i

QDataStream	&	QDataStream::operator>>	(Q_UINT16	&	i)

16 i

QDataStream	&	QDataStream::operator>>	(Q_INT32	&	i)

32 i

QDataStream	&	QDataStream::operator>>	(Q_UINT32	&	i)

32 i

QDataStream	&	QDataStream::operator>>	(Q_LONG	&	i)

i

QDataStream	&	QDataStream::operator>>	(Q_ULONG	&	i)

i

QDataStream	&	QDataStream::operator>>	(float	&	f)

IEEE75432 f

QDataStream	&	QDataStream::operator>>	(double	&	f)

IEEE75464 f

QDataStream	&	QDataStream::operator>>	(char	*&	s)

“\0” s

new——delete[]

QDataStream	&	QDataStream::readBytes	(char	*&	s,	uint	&	l)

s

snew delete[]0 s s0

l

Q_UINT32 l

readRawBytes()writeBytes()

QDataStream	&	QDataStream::readRawBytes	(char	*	s,	uint	len
)

lens

s

readBytes() QIODevice::readBlock()writeRawBytes()

void	QDataStream::setByteOrder	(int	bo)

bo

boQDataStream::BigEndianQDataStream::LittleEndian

byteOrder()

void	QDataStream::setDevice	(QIODevice	*	d)

IO d

device()unsetDevice()

void	QDataStream::setPrintableData	(bool	enable)

enable

7ASCII

void	QDataStream::setVersion	(int	v)

Qt

QtQtQtQtQDataStream

Qt	3.0 v	==	4
Qt	2.1.xQt	2.2.x v	==	3
Qt	2.0.x v	==	2
Qt	1.x v	==	1

version().

void	QDataStream::unsetDevice	()

IO setDevice(0)

device()setDevice()

int	QDataStream::version	()	const

	Qt	3.04

setVersion()

QDataStream	&	QDataStream::writeBytes	(const	char	*	s,
uint	len)

lens

lenQ_UINT32 slen

writeRawBytes()readBytes()

QDataStream	&	QDataStream::writeRawBytes	(const	char	*	s,
uint	len)

slen

writeBytes() QIODevice::writeBlock()readRawBytes()

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QXmlDeclHandler	Class	Reference
[XML	module]

The	QXmlDeclHandler	class	provides	an	interface	to	report	declaration	content
of	XML	data.	More...

#include	<qxml.h>

Inherited	by	QXmlDefaultHandler.

List	of	all	member	functions.

Public	Members

virtual	bool	attributeDecl	(const	QString	&	eName,
const	QString	&	aName,	const	QString	&	type,
const	QString	&	valueDefault,	const	QString	&	value)	=	0
virtual	bool	internalEntityDecl	(const	QString	&	name,
const	QString	&	value)	=	0
virtual	bool	externalEntityDecl	(const	QString	&	name,
const	QString	&	publicId,	const	QString	&	systemId)	=	0
virtual	QString	errorString	()	=	0

Detailed	Description

The	QXmlDeclHandler	class	provides	an	interface	to	report	declaration	content
of	XML	data.

You	can	set	the	declaration	handler	with	QXmlReader::setDeclHandler().

This	interface	based	upon	the	SAX2	extension	DeclHandler.

The	interface	provides	attributeDecl(),	internalEntityDecl()	and
externalEntityDecl()	functions.

See	also	the	Introduction	to	SAX2.

See	also	QXmlDTDHandler,	QXmlContentHandler,	QXmlEntityResolver,
QXmlErrorHandler,	QXmlLexicalHandler	and	XML.

Member	Function	Documentation

bool	QXmlDeclHandler::attributeDecl	(const	QString	&	eName,
const	QString	&	aName,	const	QString	&	type,
const	QString	&	valueDefault,	const	QString	&	value)	[pure
virtual]

The	reader	calls	this	function	to	report	an	attribute	type	declaration.	Only	the
effective	(first)	declaration	for	an	attribute	is	reported.

The	reader	passes	the	name	of	the	associated	element	in	eName	and	the	name	of
the	attribute	in	aName.	It	passes	a	string	that	represents	the	attribute	type	in	type
and	a	string	that	represents	the	attribute	default	in	valueDefault.	This	string	is
one	of	"#IMPLIED",	"#REQUIRED",	"#FIXED"	or	null	(if	none	of	the	others
applies).	The	reader	passes	the	attribute's	default	value	in	value.	If	no	default
value	is	specified	in	the	XML	file,	value	is	QString::null.

If	this	function	returns	FALSE	the	reader	stops	parsing	and	reports	an	error.	The
reader	uses	the	function	errorString()	to	get	the	error	message.

QString	QXmlDeclHandler::errorString	()	[pure	virtual]

The	reader	calls	this	function	to	get	an	error	string	if	any	of	the	handler	functions
returns	FALSE.

bool	QXmlDeclHandler::externalEntityDecl	(
const	QString	&	name,	const	QString	&	publicId,
const	QString	&	systemId)	[pure	virtual]

The	reader	calls	this	function	to	report	a	parsed	external	entity	declaration.	Only
the	effective	(first)	declaration	for	each	entity	is	reported.

The	reader	passes	the	name	of	the	entity	in	name,	the	public	identifier	in
publicId	and	the	system	identifier	in	systemId.	If	there	is	no	public	identifier
specified,	it	passes	QString::null	in	publicId.

If	this	function	returns	FALSE	the	reader	stops	parsing	and	reports	an	error.	The

reader	uses	the	function	errorString()	to	get	the	error	message.

bool	QXmlDeclHandler::internalEntityDecl	(
const	QString	&	name,	const	QString	&	value)	[pure
virtual]

The	reader	calls	this	function	to	report	an	internal	entity	declaration.	Only	the
effective	(first)	declaration	is	reported.

The	reader	passes	the	name	of	the	entity	in	name	and	the	value	of	the	entity	in
value.

If	this	function	returns	FALSE	the	reader	stops	parsing	and	reports	an	error.	The
reader	uses	the	function	errorString()	to	get	the	error	message.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QDataTable	Class	Reference
[sql	module]

The	QDataTable	class	provides	a	flexible	SQL	table	widget	that	supports
browsing	and	editing.	More...

#include	<qdatatable.h>

Inherits	QTable.

List	of	all	member	functions.

Public	Members

QDataTable	(QWidget	*	parent	=	0,	const	char	*	name	=	0)
QDataTable	(QSqlCursor	*	cursor,	bool	autoPopulate	=	FALSE,
QWidget	*	parent	=	0,	const	char	*	name	=	0)
~QDataTable	()
virtual	void	addColumn	(const	QString	&	fieldName,
const	QString	&	label	=	QString::null,	int	width	=	-1,
const	QIconSet	&	iconset	=	QIconSet	())
virtual	void	removeColumn	(uint	col)
virtual	void	setColumn	(uint	col,	const	QString	&	fieldName,
const	QString	&	label	=	QString::null,	int	width	=	-1,
const	QIconSet	&	iconset	=	QIconSet	())
QString	nullText	()	const
QString	trueText	()	const
QString	falseText	()	const
DateFormat	dateFormat	()	const
bool	confirmEdits	()	const
bool	confirmInsert	()	const
bool	confirmUpdate	()	const
bool	confirmDelete	()	const
bool	confirmCancels	()	const
bool	autoDelete	()	const
bool	autoEdit	()	const
QString	filter	()	const
QStringList	sort	()	const
virtual	void	setSqlCursor	(QSqlCursor	*	cursor	=	0,	bool	autoPopulate	=
FALSE,	bool	autoDelete	=	FALSE)
QSqlCursor	*	sqlCursor	()	const
virtual	void	setNullText	(const	QString	&	nullText)
virtual	void	setTrueText	(const	QString	&	trueText)
virtual	void	setFalseText	(const	QString	&	falseText)
virtual	void	setDateFormat	(const	DateFormat	f)
virtual	void	setConfirmEdits	(bool	confirm)
virtual	void	setConfirmInsert	(bool	confirm)
virtual	void	setConfirmUpdate	(bool	confirm)
virtual	void	setConfirmDelete	(bool	confirm)

virtual	void	setConfirmCancels	(bool	confirm)
virtual	void	setAutoDelete	(bool	enable)
virtual	void	setAutoEdit	(bool	autoEdit)
virtual	void	setFilter	(const	QString	&	filter)
virtual	void	setSort	(const	QStringList	&	sort)
virtual	void	setSort	(const	QSqlIndex	&	sort)
enum	Refresh	{	RefreshData	=	1,	RefreshColumns	=	2,	RefreshAll	=	3	}
void	refresh	(Refresh	mode)
virtual	void	sortColumn	(int	col,	bool	ascending	=	TRUE,
bool	wholeRows	=	FALSE)
virtual	QString	text	(int	row,	int	col)	const
QVariant	value	(int	row,	int	col)	const
QSqlRecord	*	currentRecord	()	const
void	installEditorFactory	(QSqlEditorFactory	*	f)
void	installPropertyMap	(QSqlPropertyMap	*	m)
virtual	int	numCols	()	const
virtual	int	numRows	()	const

Public	Slots

virtual	void	find	(const	QString	&	str,	bool	caseSensitive,	bool	backwards)
virtual	void	sortAscending	(int	col)
virtual	void	sortDescending	(int	col)
virtual	void	refresh	()
virtual	void	setColumnWidth	(int	col,	int	w)
virtual	void	adjustColumn	(int	col)

Signals

void	currentChanged	(QSqlRecord	*	record)
void	primeInsert	(QSqlRecord	*	buf)
void	primeUpdate	(QSqlRecord	*	buf)
void	primeDelete	(QSqlRecord	*	buf)
void	beforeInsert	(QSqlRecord	*	buf)
void	beforeUpdate	(QSqlRecord	*	buf)
void	beforeDelete	(QSqlRecord	*	buf)
void	cursorChanged	(QSql::Op	mode)

Properties

bool	autoEdit	-	whether	the	data	table	automatically	applies	edits
bool	confirmCancels	-	whether	the	data	table	confirms	cancel	operations
bool	confirmDelete	-	whether	the	data	table	confirms	delete	operations
bool	confirmEdits	-	whether	the	data	table	confirms	edit	operations
bool	confirmInsert	-	whether	the	data	table	confirms	insert	operations
bool	confirmUpdate	-	whether	the	data	table	confirms	update	operations
DateFormat	dateFormat	-	the	format	how	date/time	values	are	displayed
QString	falseText	-	the	text	used	to	represent	false	values
QString	filter	-	the	data	filter	for	the	data	table
QString	nullText	-	the	text	used	to	represent	NULL	values
int	numCols	-	the	number	of	columns	in	the	table		(read	only)
int	numRows	-	the	number	of	rows	in	the	table		(read	only)
QStringList	sort	-	the	data	table's	sort
QString	trueText	-	the	text	used	to	represent	true	values

Protected	Members

virtual	bool	insertCurrent	()
virtual	bool	updateCurrent	()
virtual	bool	deleteCurrent	()
virtual	QSql::Confirm	confirmEdit	(QSql::Op	m)
virtual	QSql::Confirm	confirmCancel	(QSql::Op	m)
virtual	void	handleError	(const	QSqlError	&	e)
virtual	bool	beginInsert	()
virtual	QWidget	*	beginUpdate	(int	row,	int	col,	bool	replace)
int	indexOf	(uint	i)	const
void	reset	()
void	setSize	(QSqlCursor	*	sql)
virtual	void	paintField	(QPainter	*	p,	const	QSqlField	*	field,
const	QRect	&	cr,	bool	selected)
virtual	int	fieldAlignment	(const	QSqlField	*	field)

Detailed	Description

The	QDataTable	class	provides	a	flexible	SQL	table	widget	that	supports
browsing	and	editing.

QDataTable	supports	various	functions	for	presenting	and	editing	SQL	data	from
a	QSqlCursor	in	a	table.

If	you	want	a	to	present	your	data	in	a	form	use	QDataBrowser,	or	for	read-only
forms,	QDataView.

When	displaying	data,	QDataTable	only	retrieves	data	for	visible	rows.	If	the
driver	supports	the	'query	size'	property	the	QDataTable	will	have	the	correct
number	of	rows	and	the	vertical	scrollbar	will	accurately	reflect	the	number	of
rows	displayed	in	proportion	to	the	number	of	rows	in	the	dataset.	If	the	driver
does	not	support	the	'query	size'	property	rows	are	dynamically	fetched	from	the
database	on	an	as-needed	basis	with	the	scrollbar	becoming	more	accurate	as	the
user	scrolls	down	through	the	records.	This	allows	extremely	large	queries	to	be
displayed	as	quickly	as	possible,	with	minimum	memory	usage.

QDataTable	inherits	QTable's	API	and	extends	it	with	functions	to	sort	and	filter
the	data	and	sort	columns.	See	setSqlCursor(),	setFilter(),	setSort(),	setSorting(),
sortColumn()	and	refresh().

When	displaying	editable	cursors,	cell	editing	will	be	enabled.	(For	more
information	on	editable	cursors,	see	QSqlCursor).	QDataTable	can	be	used	to
modify	existing	data	and	to	add	new	records.	When	a	user	makes	changes	to	a
field	in	the	table,	the	cursor's	edit	buffer	is	used.	The	table	will	not	send	changes
in	the	edit	buffer	to	the	database	until	the	user	moves	to	a	different	record	in	the
grid	or	presses	Return.	Cell	editing	is	initiated	by	pressing	F2	(or	right	clicking
and	then	clicking	the	appropriate	popup	menu	item)	and	cancelled	by	pressing
Esc.	If	there	is	a	problem	updating	or	adding	data,	errors	are	handled
automatically	(see	handleError()	to	change	this	behavior).	Note	that	if	autoEdit()
is	FALSE	navigating	to	another	record	will	cancel	the	insert	or	update.

The	user	can	be	asked	to	confirm	all	edits	with	setConfirmEdits().	For	more
precise	control	use	setConfirmInsert(),	setConfirmUpdate(),	setConfirmDelete()
and	setConfirmCancels().	Use	setAutoEdit()	to	control	the	behaviour	of	the	table

when	the	user	edits	a	record	and	then	navigates.	(Note	that	setAutoDelete()	is
unrelated;	it	is	used	to	set	whether	the	QSqlCursor	is	deleted	when	the	table	is
deleted.)

Since	the	data	table	can	perform	edits,	it	must	be	able	to	uniquely	identify	every
record	so	that	edits	are	correctly	applied.	Because	of	this	the	underlying	cursor
must	have	a	valid	primary	index	to	ensure	that	a	unique	record	is	inserted,
updated	or	deleted	within	the	database	otherwise	the	database	may	be	changed	to
an	inconsistent	state.

QDataTable	creates	editors	using	the	default	QSqlEditorFactory.	Different	editor
factories	can	be	used	by	calling	installEditorFactory().	A	property	map	is	used	to
map	between	the	cell's	value	and	the	editor.	You	can	use	your	own	property	map
with	installPropertyMap().

The	contents	of	a	cell	is	available	as	a	QString	with	text()	or	as	a	QVariant	with
value().	The	current	record	is	returned	by	currentRecord().	Use	the	find()
function	to	search	for	a	string	in	the	table.

Editing	actions	can	be	applied	programatically.	For	example,	the	insertCurrent()
function	reads	the	fields	from	the	current	record	into	the	cursor	and	performs	the
insert.	The	updateCurrent()	and	deleteCurrent()	functions	perform	similarly	to
update	and	delete	the	current	record	respectively.

Columns	in	the	table	can	be	created	automatically	based	on	the	cursor	(see
setSqlCursor()).	Columns	can	be	manipulated	manually	using	addColumn(),
removeColumn()	and	setColumn().

The	table	automatically	copies	many	of	the	properties	of	the	cursor	to	format	the
display	of	data	within	cells	(alignment,	visibility,	etc.).	The	cursor	can	be
changed	with	setSqlCursor().	The	filter	(see	setFilter())	and	sort	defined	within
the	table	are	used	instead	of	the	filter	and	sort	set	on	the	cursor.	For	sorting
options	see	setSort(),	sortColumn(),	sortAscending()	and	sortDescending().

The	text	used	to	represent	NULL,	TRUE	and	FALSE	values	can	be	changed
with	setNullText(),	setTrueText()	and	setFalseText()	respectively.	You	can
change	the	appearance	of	cells	by	reimplementing	paintField().

Whenever	a	new	row	is	selected	in	the	table	the	currentChanged()	signal	is
emitted.	The	primeInsert()	signal	is	emitted	when	an	insert	is	initiated.	The

primeUpdate()	and	primeDelete()	signals	are	emitted	when	update	and	deletion
are	initiated	respectively.	Just	before	the	database	is	updated	a	signal	is	emitted;
beforeInsert(),	beforeUpdate()	or	beforeDelete()	as	appropriate.

See	also	Database	Classes.

Member	Type	Documentation

QDataTable::Refresh

This	enum	describes	the	refresh	options.

The	currently	defined	values	are:

QDataTable::RefreshData	-	refresh	the	data,	i.e.	read	it	from	the	database
QDataTable::RefreshColumns	-	refresh	the	list	of	fields,	e.g.	the	column
headings
QDataTable::RefreshAll	-	refresh	both	the	data	and	the	list	of	fields

Member	Function	Documentation

QDataTable::QDataTable	(QWidget	*	parent	=	0,
const	char	*	name	=	0)

Constructs	a	data	table	which	is	a	child	of	parent,	with	the	name	name.

QDataTable::QDataTable	(QSqlCursor	*	cursor,
bool	autoPopulate	=	FALSE,	QWidget	*	parent	=	0,
const	char	*	name	=	0)

Constructs	a	data	table	which	is	a	child	of	parent,	with	the	name	name	using	the
cursor	cursor.

If	autoPopulate	is	TRUE	(the	default	is	FALSE),	columns	are	automatically
created	based	upon	the	fields	in	the	cursor	record.	Note	that	autoPopulate	only
governs	the	creation	of	columns;	to	load	the	cursor's	data	into	the	table	use
refresh().

If	the	cursor	is	read-only,	the	table	also	becomes	read-only.	In	addition,	the	table
adopts	the	cursor's	driver's	definition	for	representing	NULL	values	as	strings.

QDataTable::~QDataTable	()

Destroys	the	object	and	frees	any	allocated	resources.

void	QDataTable::addColumn	(const	QString	&	fieldName,
const	QString	&	label	=	QString::null,	int	width	=	-1,
const	QIconSet	&	iconset	=	QIconSet	())	[virtual]

Adds	the	next	column	to	be	displayed	using	the	field	fieldName,	column	label
label,	width	width	and	iconset	iconset.

If	label	is	specified,	it	is	used	as	the	column's	header	label,	otherwise	the	field's
display	label	is	used	when	setSqlCursor()	is	called.	The	iconset	is	used	to	set	the
icon	used	by	the	column	header;	by	default	there	is	no	icon.

See	also	setSqlCursor()	and	refresh().

Examples:	sql/overview/subclass1/main.cpp,	sql/overview/subclass3/main.cpp,
sql/overview/table2/main.cpp	and	sql/sqltable/main.cpp.

void	QDataTable::adjustColumn	(int	col)	[virtual	slot]

Resizes	column	col	so	that	the	column	width	is	wide	enough	to	display	the
widest	item	the	column	contains.	Note	that	opposed	to	QTable	the	QDataTable	is
not	immediately	redrawn,	you	have	to	call	refresh()	first.	If	the	table's
QSqlCursor	is	currently	not	active,	the	cursor	will	be	refreshed	before	the
column	width	is	calculated.	Be	aware	that	this	function	may	be	slow	on	tables
that	contain	large	result	sets.

See	also	refresh().

Reimplemented	from	QTable.

bool	QDataTable::autoDelete	()	const

Returns	TRUE	if	the	table	will	automatically	delete	the	cursor	specified	by
setSqlCursor(),	otherwise	returns	FALSE.

bool	QDataTable::autoEdit	()	const

Returns	TRUE	if	the	data	table	automatically	applies	edits;	otherwise	returns
FALSE.	See	the	"autoEdit"	property	for	details.

void	QDataTable::beforeDelete	(QSqlRecord	*	buf)	[signal]

This	signal	is	emitted	just	before	the	currently	selected	record	is	deleted	from	the
database.	The	buf	parameter	points	to	the	edit	buffer	being	deleted.	Connect	to
this	signal	to,	for	example,	copy	some	of	the	fields	for	later	use.

void	QDataTable::beforeInsert	(QSqlRecord	*	buf)	[signal]

This	signal	is	emitted	just	before	the	cursor's	edit	buffer	is	inserted	into	the
database.	The	buf	parameter	points	to	the	edit	buffer	being	inserted.	Connect	to

this	signal	to,	for	example,	populate	a	key	field	with	a	unique	sequence	number.

void	QDataTable::beforeUpdate	(QSqlRecord	*	buf)	[signal]

This	signal	is	emitted	just	before	the	cursor's	edit	buffer	is	updated	in	the
database.	The	buf	parameter	points	to	the	edit	buffer	being	updated.	Connect	to
this	signal	when	you	want	to	transform	the	user's	data	behind-the-scenes.

bool	QDataTable::beginInsert	()	[virtual	protected]

Protected	virtual	function	called	when	editing	is	about	to	begin	on	a	new	record.
If	the	table	is	read-only,	or	if	there's	no	cursor	or	the	cursor	does	not	allow
inserts,	nothing	happens.

Editing	takes	place	using	the	cursor's	edit	buffer(see	QSqlCursor::editBuffer()).

When	editing	begins,	a	new	row	is	created	in	the	table	marked	with	an	asterisk
'*'	in	the	row's	vertical	header	column,	i.e.	at	the	left	of	the	row.

QWidget	*	QDataTable::beginUpdate	(int	row,	int	col,
bool	replace)	[virtual	protected]

Protected	virtual	function	called	when	editing	is	about	to	begin	on	an	existing
row.	If	the	table	is	read-only,	or	if	there's	no	cursor,	nothing	happens.

Editing	takes	place	using	the	cursor's	edit	buffer	(see	QSqlCursor::editBuffer()).

row	and	col	refer	to	the	row	and	column	in	the	QDataTable.

(replace	is	provided	for	reimplementors	and	reflects	the	API	of
QTable::beginEdit().)

QSql::Confirm	QDataTable::confirmCancel	(QSql::Op	m)
[virtual	protected]

Protected	virtual	function	which	returns	a	confirmation	for	cancelling	an	edit
mode	of	m.	Derived	classes	can	reimplement	this	function	to	provide	their	own
cancel	dialog.	The	default	implementation	uses	a	message	box	which	prompts
the	user	to	confirm	the	cancel.

bool	QDataTable::confirmCancels	()	const

Returns	TRUE	if	the	data	table	confirms	cancel	operations;	otherwise	returns
FALSE.	See	the	"confirmCancels"	property	for	details.

bool	QDataTable::confirmDelete	()	const

Returns	TRUE	if	the	data	table	confirms	delete	operations;	otherwise	returns
FALSE.	See	the	"confirmDelete"	property	for	details.

QSql::Confirm	QDataTable::confirmEdit	(QSql::Op	m)
[virtual	protected]

Protected	virtual	function	which	returns	a	confirmation	for	an	edit	of	mode	m.
Derived	classes	can	reimplement	this	function	to	provide	their	own	confirmation
dialog.	The	default	implementation	uses	a	message	box	which	prompts	the	user
to	confirm	the	edit	action.

bool	QDataTable::confirmEdits	()	const

Returns	TRUE	if	the	data	table	confirms	edit	operations;	otherwise	returns
FALSE.	See	the	"confirmEdits"	property	for	details.

bool	QDataTable::confirmInsert	()	const

Returns	TRUE	if	the	data	table	confirms	insert	operations;	otherwise	returns
FALSE.	See	the	"confirmInsert"	property	for	details.

bool	QDataTable::confirmUpdate	()	const

Returns	TRUE	if	the	data	table	confirms	update	operations;	otherwise	returns
FALSE.	See	the	"confirmUpdate"	property	for	details.

void	QDataTable::currentChanged	(QSqlRecord	*	record)
[signal]

This	signal	is	emitted	whenever	a	new	row	is	selected	in	the	table.	The	record
parameter	points	to	the	contents	of	the	newly	selected	record.

QSqlRecord	*	QDataTable::currentRecord	()	const

Returns	a	pointer	to	the	currently	selected	record,	or	0	if	there	is	no	current
selection.	The	table	owns	the	pointer,	so	do	not	delete	it	or	otherwise	modify	it
or	the	cursor	it	points	to.

void	QDataTable::cursorChanged	(QSql::Op	mode)	[signal]

This	signal	is	emitted	whenever	the	cursor	record	was	changed	due	to	an	edit.
The	mode	parameter	is	the	type	of	edit	that	just	took	place.

DateFormat	QDataTable::dateFormat	()	const

Returns	the	format	how	date/time	values	are	displayed.	See	the	"dateFormat"
property	for	details.

bool	QDataTable::deleteCurrent	()	[virtual	protected]

For	an	editable	table,	issues	a	delete	on	the	current	cursor's	primary	index	using
the	values	of	the	currently	selected	row.	If	there	is	no	current	cursor	or	there	is
no	current	selection,	nothing	happens.	If	confirmEdits()	or	confirmDelete()	is
TRUE,	confirmEdit()	is	called	to	confirm	the	delete.	Returns	TRUE	if	the	delete
succeeded,	otherwise	FALSE.

The	underlying	cursor	must	have	a	valid	primary	index	to	ensure	that	a	unique
record	is	deleted	within	the	database	otherwise	the	database	may	be	changed	to
an	inconsistent	state.

QString	QDataTable::falseText	()	const

Returns	the	text	used	to	represent	false	values.	See	the	"falseText"	property	for
details.

int	QDataTable::fieldAlignment	(const	QSqlField	*	field)
[virtual	protected]

Returns	the	alignment	for	field.

QString	QDataTable::filter	()	const

Returns	the	data	filter	for	the	data	table.	See	the	"filter"	property	for	details.

void	QDataTable::find	(const	QString	&	str,	bool	caseSensitive,
bool	backwards)	[virtual	slot]

Searches	the	current	cursor	for	a	cell	containing	the	string	str	starting	at	the
current	cell	and	working	forwards	(or	backwards	if	backwards	is	TRUE).	If	the
string	is	found,	the	cell	containing	the	string	is	set	as	the	current	cell.	If
caseSensitive	is	FALSE	the	case	of	str	will	be	ignored.

The	search	will	wrap,	i.e.	if	the	first	(or	if	backwards	is	TRUE,	last)	cell	is
reached	without	finding	str	the	search	will	continue	until	it	reaches	the	starting
cell.	If	str	is	not	found	the	search	will	fail	and	the	current	cell	will	remain
unchanged.

void	QDataTable::handleError	(const	QSqlError	&	e)	[virtual
protected]

Protected	virtual	function	which	is	called	when	an	error	e	has	occurred	on	the
current	cursor().	The	default	implementation	displays	a	warning	message	to	the
user	with	information	about	the	error.

int	QDataTable::indexOf	(uint	i)	const	[protected]

Returns	the	index	of	the	field	within	the	current	SQL	query	that	is	displayed	in
column	i.

bool	QDataTable::insertCurrent	()	[virtual	protected]

For	an	editable	table,	issues	an	insert	on	the	current	cursor	using	the	values	in	the
cursor's	edit	buffer.	If	there	is	no	current	cursor	or	there	is	no	current	"insert"
row,	nothing	happens.	If	confirmEdits()	or	confirmInsert()	is	TRUE,
confirmEdit()	is	called	to	confirm	the	insert.	Returns	TRUE	if	the	insert
succeeded,	otherwise	returns	FALSE.

The	underlying	cursor	must	have	a	valid	primary	index	to	ensure	that	a	unique

record	is	inserted	within	the	database	otherwise	the	database	may	be	changed	to
an	inconsistent	state.

void	QDataTable::installEditorFactory	(QSqlEditorFactory	*	f)

Installs	a	new	SQL	editor	factory	f.	This	enables	the	user	to	create	and	instantiate
their	own	editors	for	use	in	cell	editing.	Note	that	QDataTable	takes	ownership
of	this	pointer,	and	will	delete	it	when	it	is	no	longer	needed	or	when
installEditorFactory()	is	called	again.

See	also	QSqlEditorFactory.

void	QDataTable::installPropertyMap	(QSqlPropertyMap	*	m)

Installs	a	new	property	map	m.	This	enables	the	user	to	create	and	instantiate
their	own	property	maps	for	use	in	cell	editing.	Note	that	QDataTable	takes
ownership	of	this	pointer,	and	will	delete	it	when	it	is	no	longer	needed	or	when
installPropertMap()	is	called	again.

See	also	QSqlPropertyMap.

QString	QDataTable::nullText	()	const

Returns	the	text	used	to	represent	NULL	values.	See	the	"nullText"	property	for
details.

int	QDataTable::numCols	()	const	[virtual]

Returns	the	number	of	columns	in	the	table.	See	the	"numCols"	property	for
details.

Reimplemented	from	QTable.

int	QDataTable::numRows	()	const	[virtual]

Returns	the	number	of	rows	in	the	table.	See	the	"numRows"	property	for
details.

Reimplemented	from	QTable.

void	QDataTable::paintField	(QPainter	*	p,
const	QSqlField	*	field,	const	QRect	&	cr,	bool	selected)
[virtual	protected]

Paints	the	field	on	the	painter	p.	The	painter	has	already	been	translated	to	the
appropriate	cell's	origin	where	the	field	is	to	be	rendered.	cr	describes	the	cell
coordinates	in	the	content	coordinate	system.	The	selected	parameter	is	ignored.

If	you	want	to	draw	custom	field	content	you	have	to	reimplement	paintField()
to	do	the	custom	drawing.	The	default	implementation	renders	the	field	value	as
text.	If	the	field	is	NULL,	nullText()	is	displayed	in	the	cell.	If	the	field	is
Boolean,	trueText()	or	falseText()	is	displayed	as	appropriate.

Example:	sql/overview/table4/main.cpp.

void	QDataTable::primeDelete	(QSqlRecord	*	buf)	[signal]

This	signal	is	emitted	after	the	cursor	is	primed	for	delete	by	the	table,	when	a
delete	action	is	beginning	on	the	table.	The	buf	parameter	points	to	the	edit
buffer	being	deleted.	Connect	to	this	signal	in	order	to,	for	example,	record
auditing	information	on	deletions.

void	QDataTable::primeInsert	(QSqlRecord	*	buf)	[signal]

This	signal	is	emitted	after	the	cursor	is	primed	for	insert	by	the	table,	when	an
insert	action	is	beginning	on	the	table.	The	buf	parameter	points	to	the	edit	buffer
being	inserted.	Connect	to	this	signal	in	order	to,	for	example,	prime	the	record
buffer	with	default	data	values.

void	QDataTable::primeUpdate	(QSqlRecord	*	buf)	[signal]

This	signal	is	emitted	after	the	cursor	is	primed	for	update	by	the	table,	when	an
update	action	is	beginning	on	the	table.	The	buf	parameter	points	to	the	edit
buffer	being	updated.	Connect	to	this	signal	in	order	to,	for	example,	provide
some	visual	feedback	that	the	user	is	in	'insert	mode'.

void	QDataTable::refresh	()	[virtual	slot]

Refreshes	the	table.	The	cursor	is	refreshed	using	the	current	filter,	the	current
sort,	and	the	currently	defined	columns.	Equivalent	to	calling	refresh(
QDataTable::RefreshData).

Examples:	sql/overview/subclass1/main.cpp,	sql/overview/table1/main.cpp,
sql/overview/table2/main.cpp	and	sql/sqltable/main.cpp.

void	QDataTable::refresh	(Refresh	mode)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Refreshes	the	table.	If	there	is	no	currently	defined	cursor	(see	setSqlCursor()),
nothing	happens.	The	mode	parameter	determines	which	type	of	refresh	will	take
place.

See	also	Refresh,	setSqlCursor()	and	addColumn().

void	QDataTable::removeColumn	(uint	col)	[virtual]

Removes	column	col	from	the	list	of	columns	to	be	displayed.	If	col	does	not
exist,	nothing	happens.

See	also	QSqlField.

void	QDataTable::reset	()	[protected]

Resets	the	table	so	that	it	displays	no	data.

See	also	setSqlCursor().

void	QDataTable::setAutoDelete	(bool	enable)	[virtual]

Sets	the	cursor	auto-delete	flag	to	enable.	If	enable	is	TRUE,	the	table	will
automatically	delete	the	cursor	specified	by	setSqlCursor().	Otherwise,	(the
default),	the	cursor	will	not	be	deleted.

void	QDataTable::setAutoEdit	(bool	autoEdit)	[virtual]

Sets	whether	the	data	table	automatically	applies	edits	to	autoEdit.	See	the
"autoEdit"	property	for	details.

void	QDataTable::setColumn	(uint	col,
const	QString	&	fieldName,	const	QString	&	label	=
QString::null,	int	width	=	-1,	const	QIconSet	&	iconset	=
QIconSet	())	[virtual]

Sets	the	col	column	to	display	using	the	field	fieldName,	column	label	label,
width	width	and	iconset	iconset.

If	label	is	specified,	it	is	used	as	the	column's	header	label,	otherwise	the	field's
display	label	is	used	when	setSqlCursor()	is	called.	The	iconset	is	used	to	set	the
icon	used	by	the	column	header;	by	default	there	is	no	icon.

See	also	setSqlCursor()	and	refresh().

void	QDataTable::setColumnWidth	(int	col,	int	w)	[virtual
slot]

Sets	the	column	col	to	the	width	w.	Note	that	opposed	to	QTable	the	QDataTable
is	not	immediately	redrawn,	you	have	to	call	refresh()	first.

See	also	refresh().

Reimplemented	from	QTable.

void	QDataTable::setConfirmCancels	(bool	confirm)	[virtual]

Sets	whether	the	data	table	confirms	cancel	operations	to	confirm.	See	the
"confirmCancels"	property	for	details.

void	QDataTable::setConfirmDelete	(bool	confirm)	[virtual]

Sets	whether	the	data	table	confirms	delete	operations	to	confirm.	See	the
"confirmDelete"	property	for	details.

void	QDataTable::setConfirmEdits	(bool	confirm)	[virtual]

Sets	whether	the	data	table	confirms	edit	operations	to	confirm.	See	the
"confirmEdits"	property	for	details.

void	QDataTable::setConfirmInsert	(bool	confirm)	[virtual]

Sets	whether	the	data	table	confirms	insert	operations	to	confirm.	See	the
"confirmInsert"	property	for	details.

void	QDataTable::setConfirmUpdate	(bool	confirm)	[virtual]

Sets	whether	the	data	table	confirms	update	operations	to	confirm.	See	the
"confirmUpdate"	property	for	details.

void	QDataTable::setDateFormat	(const	DateFormat	f)
[virtual]

Sets	the	format	how	date/time	values	are	displayed	to	f.	See	the	"dateFormat"
property	for	details.

void	QDataTable::setFalseText	(const	QString	&	falseText)
[virtual]

Sets	the	text	used	to	represent	false	values	to	falseText.	See	the	"falseText"
property	for	details.

void	QDataTable::setFilter	(const	QString	&	filter)	[virtual]

Sets	the	data	filter	for	the	data	table	to	filter.	See	the	"filter"	property	for	details.

void	QDataTable::setNullText	(const	QString	&	nullText)
[virtual]

Sets	the	text	used	to	represent	NULL	values	to	nullText.	See	the	"nullText"
property	for	details.

void	QDataTable::setSize	(QSqlCursor	*	sql)	[protected]

If	the	cursor's	sql	driver	supports	query	sizes,	the	number	of	rows	in	the	table	is

set	to	the	size	of	the	query.	Otherwise,	the	table	dynamically	resizes	itself	as	it	is
scrolled.	If	sql	is	not	active,	it	is	made	active	by	issuing	a	select()	on	the	cursor
using	the	sql	cursor's	current	filter	and	current	sort.

void	QDataTable::setSort	(const	QStringList	&	sort)	[virtual]

Sets	the	data	table's	sort	to	sort.	See	the	"sort"	property	for	details.

void	QDataTable::setSort	(const	QSqlIndex	&	sort)	[virtual]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Sets	the	sort	to	be	applied	to	the	displayed	data	to	sort.	If	there	is	no	current
cursor,	nothing	happens.	A	QSqlIndex	contains	field	names	and	their	ordering
(ASC	or	DESC);	these	are	used	to	compose	the	ORDER	BY	clause.

See	also	sort.

void	QDataTable::setSqlCursor	(QSqlCursor	*	cursor	=	0,
bool	autoPopulate	=	FALSE,	bool	autoDelete	=	FALSE)
[virtual]

Sets	cursor	as	the	data	source	for	the	table.	To	force	the	display	of	the	data	from
cursor,	use	refresh().	If	autoPopulate	is	TRUE,	columns	are	automatically
created	based	upon	the	fields	in	the	cursor	record.	If	autoDelete	is	TRUE	(the
default	is	FALSE),	the	table	will	take	ownership	of	the	cursor	and	delete	it	when
appropriate.	If	the	cursor	is	read-only,	the	table	becomes	read-only.	The	table
adopts	the	cursor's	driver's	definition	for	representing	NULL	values	as	strings.

See	also	refresh(),	readOnly,	setAutoDelete()	and	QSqlDriver::nullText().

void	QDataTable::setTrueText	(const	QString	&	trueText)
[virtual]

Sets	the	text	used	to	represent	true	values	to	trueText.	See	the	"trueText"	property
for	details.

QStringList	QDataTable::sort	()	const

Returns	the	data	table's	sort.	See	the	"sort"	property	for	details.

void	QDataTable::sortAscending	(int	col)	[virtual	slot]

Sorts	column	col	in	ascending	order.

See	also	sorting.

void	QDataTable::sortColumn	(int	col,	bool	ascending	=	TRUE,
bool	wholeRows	=	FALSE)	[virtual]

Sorts	column	col	in	ascending	order	if	ascending	is	TRUE	(the	default),
otherwise	sorts	in	descending	order.	The	wholeRows	parameter	is	ignored	for
SQL	tables.

Reimplemented	from	QTable.

void	QDataTable::sortDescending	(int	col)	[virtual	slot]

Sorts	column	col	in	descending	order.

See	also	sorting.

QSqlCursor	*	QDataTable::sqlCursor	()	const

Returns	a	pointer	to	the	cursor	used	by	the	data	table.

QString	QDataTable::text	(int	row,	int	col)	const	[virtual]

Returns	the	text	in	cell	row,	col,	or	an	empty	string	if	the	cell	is	empty.	If	the
cell's	value	is	NULL	then	nullText()	will	be	returned.	If	the	cell	does	not	exist
then	a	null	QString	is	returned.

Reimplemented	from	QTable.

QString	QDataTable::trueText	()	const

Returns	the	text	used	to	represent	true	values.	See	the	"trueText"	property	for
details.

bool	QDataTable::updateCurrent	()	[virtual	protected]

For	an	editable	table,	issues	an	update	using	the	cursor's	edit	buffer.	If	there	is	no
current	cursor	or	there	is	no	current	selection,	nothing	happens.	If	confirmEdits()
or	confirmUpdate()	is	TRUE,	confirmEdit()	is	called	to	confirm	the	update.
Returns	TRUE	if	the	update	succeeded,	otherwise	returns	FALSE.

The	underlying	cursor	must	have	a	valid	primary	index	to	ensure	that	a	unique
record	is	updated	within	the	database	otherwise	the	database	may	be	changed	to
an	inconsistent	state.

QVariant	QDataTable::value	(int	row,	int	col)	const

Returns	the	value	in	cell	row,	col,	or	an	invalid	value	if	the	cell	does	not	exist	or
has	no	value.

Property	Documentation

bool	autoEdit

This	property	holds	whether	the	data	table	automatically	applies	edits.

The	default	value	for	this	property	is	TRUE.	When	the	user	begins	an	insert	or
update	in	the	table	there	are	two	possible	outcomes	when	they	navigate	to
another	record:

1.	 the	insert	or	update	is	is	performed	--	this	occurs	if	autoEdit	is	TRUE
2.	 the	insert	or	update	is	abandoned	--	this	occurs	if	autoEdit	is	FALSE

Set	this	property's	value	with	setAutoEdit()	and	get	this	property's	value	with
autoEdit().

bool	confirmCancels

This	property	holds	whether	the	data	table	confirms	cancel	operations.

If	the	confirmCancel	property	is	active,	all	cancels	must	be	confirmed	by	the
user	through	a	message	box	(this	behavior	can	be	changed	by	overriding	the
confirmCancel()	function),	otherwise	all	cancels	occur	immediately.	The	default
is	FALSE.

See	also	confirmEdits	and	confirmCancel().

Set	this	property's	value	with	setConfirmCancels()	and	get	this	property's	value
with	confirmCancels().

bool	confirmDelete

This	property	holds	whether	the	data	table	confirms	delete	operations.

If	the	confirmDelete	property	is	active,	all	deletions	must	be	confirmed	by	the
user	through	a	message	box	(this	behaviour	can	be	changed	by	overriding	the
confirmEdit()	function),	otherwise	all	delete	operations	occur	immediately.

See	also	confirmCancels,	confirmEdits,	confirmUpdate	and	confirmInsert.

Set	this	property's	value	with	setConfirmDelete()	and	get	this	property's	value
with	confirmDelete().

bool	confirmEdits

This	property	holds	whether	the	data	table	confirms	edit	operations.

If	the	confirmEdits	property	is	active,	the	data	table	confirms	all	edit	operations
(inserts,	updates	and	deletes),	otherwise	all	edit	operations	occur	immediately.

See	also	confirmCancels,	confirmInsert,	confirmUpdate	and	confirmDelete.

Set	this	property's	value	with	setConfirmEdits()	and	get	this	property's	value
with	confirmEdits().

bool	confirmInsert

This	property	holds	whether	the	data	table	confirms	insert	operations.

If	the	confirmInsert	property	is	active,	all	insertions	must	be	confirmed	by	the
user	through	a	message	box	(this	behaviour	can	be	changed	by	overriding	the
confirmEdit()	function),	otherwise	all	insert	operations	occur	immediately.

See	also	confirmCancels,	confirmEdits,	confirmUpdate	and	confirmDelete.

Set	this	property's	value	with	setConfirmInsert()	and	get	this	property's	value
with	confirmInsert().

bool	confirmUpdate

This	property	holds	whether	the	data	table	confirms	update	operations.

If	the	confirmUpdate	property	is	active,	all	updates	must	be	confirmed	by	the
user	through	a	message	box	(this	behaviour	can	be	changed	by	overriding	the
confirmEdit()	function),	otherwise	all	update	operations	occur	immediately.

See	also	confirmCancels,	confirmEdits,	confirmInsert	and	confirmDelete.

Set	this	property's	value	with	setConfirmUpdate()	and	get	this	property's	value
with	confirmUpdate().

DateFormat	dateFormat

This	property	holds	the	format	how	date/time	values	are	displayed.

The	dateFormat	property	will	be	used	to	display	date/time	values	in	the	table.
The	default	value	is	'Qt::LocalDate'.

Set	this	property's	value	with	setDateFormat()	and	get	this	property's	value	with
dateFormat().

QString	falseText

This	property	holds	the	text	used	to	represent	false	values.

The	falseText	property	will	be	used	to	represent	NULL	values	in	the	table.	The
default	value	is	'False'.

Set	this	property's	value	with	setFalseText()	and	get	this	property's	value	with
falseText().

QString	filter

This	property	holds	the	data	filter	for	the	data	table.

The	filter	applies	to	the	data	shown	in	the	table.	To	view	data	with	a	new	filter,
use	refresh().	A	filter	string	is	an	SQL	WHERE	clause	without	the	WHERE
keyword.

There	is	no	default	filter.

See	also	sort.

Set	this	property's	value	with	setFilter()	and	get	this	property's	value	with	filter().

QString	nullText

This	property	holds	the	text	used	to	represent	NULL	values.

The	nullText	property	will	be	used	to	represent	NULL	values	in	the	table.	The
default	value	is	provided	by	the	cursor's	driver.

Set	this	property's	value	with	setNullText()	and	get	this	property's	value	with
nullText().

int	numCols

This	property	holds	the	number	of	columns	in	the	table.

Get	this	property's	value	with	numCols().

int	numRows

This	property	holds	the	number	of	rows	in	the	table.

Get	this	property's	value	with	numRows().

QStringList	sort

This	property	holds	the	data	table's	sort.

The	table's	sort	affects	the	order	in	which	data	records	are	displayed	in	the	table.
To	apply	a	sort,	use	refresh().

When	examining	the	sort	property,	a	string	list	is	returned	with	each	item	having
the	form	'fieldname	order'	(e.g.,	'id	ASC',	'surname	DESC').

There	is	no	default	sort.

Note	that	if	you	want	to	iterate	over	the	sort	list,	you	should	iterate	over	a	copy,
e.g.

				QStringList	list	=	myDataTable.sort();

				QStringList::Iterator	it	=	list.begin();

				while(it	!=	list.end())	{

								myProcessing(*it);

								++it;

				}

				

See	also	filter	and	refresh().

Set	this	property's	value	with	setSort()	and	get	this	property's	value	with	sort().

QString	trueText

This	property	holds	the	text	used	to	represent	true	values.

The	trueText	property	will	be	used	to	represent	NULL	values	in	the	table.	The
default	value	is	'True'.

Set	this	property's	value	with	setTrueText()	and	get	this	property's	value	with
trueText().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QHebrewCodec	Class	Reference
The	QHebrewCodec	class	provides	conversion	to	and	from	visually	ordered
Hebrew.	More...

#include	<qrtlcodec.h>

Inherits	QTextCodec.

List	of	all	member	functions.

Public	Members

virtual	const	char	*	mimeName	()	const
virtual	QCString	fromUnicode	(const	QString	&	uc,	int	&	len_in_out)
const

Detailed	Description

The	QHebrewCodec	class	provides	conversion	to	and	from	visually	ordered
Hebrew.

Hebrew	as	a	semitic	language	is	written	from	right	to	left.	Because	older
computer	systems	couldn't	handle	reordering	a	string	so	that	the	first	letter
appears	on	the	right,	many	older	documents	were	encoded	in	visual	order,	so	that
the	first	letter	of	a	line	is	the	rightmost	one	in	the	string.

In	contrast	to	this,	Unicode	defines	characters	to	be	in	logical	order	(the	order
you	would	read	the	string).	This	codec	tries	to	convert	visually	ordered	Hebrew
(8859-8)	to	Unicode.	This	might	not	always	work	perfectly,	because	reversing
the	bidi	(bi-directional)	algorithm	that	transforms	from	logical	to	visual	order	is
non-trivial.

Transformation	from	Unicode	to	visual	Hebrew	(8859-8)	is	done	using	the	bidi
algorithm	in	Qt,	and	will	produce	correct	results,	so	long	as	the	codec	is	given
the	text	one	whole	paragraph	at	a	time.	Places	where	newlines	are	supposed	to
start	can	be	indicated	by	a	newline	character	('\n').	Please	be	aware,	that	these
newline	characters	change	the	reordering	behaviour	of	the	algorithm,	as	the	BiDi
reordering	only	takes	place	within	one	line	of	text,	whereas	linebreaks	are
determined	in	visual	order.

Visually	ordered	Hebrew	is	still	used	quite	often	in	some	places,	mainly	in	email
communication	(as	most	email	programs	still	don't	understand	logically	ordered
Hebrew)	and	on	web	pages.	The	use	on	web	pages	is	strongly	decreasing
however,	as	there	are	now	a	few	browsers	that	correctly	support	logically
ordered	Hebrew.

This	codec	has	the	name	"iso8859-8".	If	you	don't	want	any	bidi	reordering	to
happen	during	conversion,	use	the	"iso8859-8-i"	codec,	which	assumes	logical
order	for	the	8-bit	string.

See	also	Internationalization	with	Qt.

Member	Function	Documentation

QCString	QHebrewCodec::fromUnicode	(const	QString	&	uc,
int	&	len_in_out)	const	[virtual]

Transforms	the	logically	ordered	QString,	uc,	into	a	visually	ordered	string	in	the
8859-8	encoding.	Qt's	bidi	algorithm	is	used	to	perform	this	task.	Note	that
newline	characters	affect	the	reordering,	as	reordering	is	done	on	a	line	by	line
basis.

The	algorithm	is	designed	to	work	on	whole	paragraphs	of	text,	so	processing	a
line	at	a	time	may	produce	incorrect	results.	This	approach	is	taken	because	the
reordering	of	the	contents	of	a	particular	line	in	a	paragraph	may	depend	on	the
previous	line	in	the	same	paragraph.

Some	encodings	(for	example	Japanese	or	utf8)	are	multibye	(so	one	input
character	is	mapped	to	two	output	characters).	The	len_in_out	argument
specifies	the	number	of	QChars	that	should	be	converted	and	is	set	to	the	number
of	characters	returned.

Reimplemented	from	QTextCodec.

const	char	*	QHebrewCodec::mimeName	()	const	[virtual]

Returns	the	codec's	mime	name.

Reimplemented	from	QTextCodec.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QXmlDefaultHandler	Class
Reference

[XML	module]
The	QXmlDefaultHandler	class	provides	a	default	implementation	of	all	XML
handler	classes.	More...

#include	<qxml.h>

Inherits	QXmlContentHandler,	QXmlErrorHandler,	QXmlDTDHandler,
QXmlEntityResolver,	QXmlLexicalHandler	and	QXmlDeclHandler.

List	of	all	member	functions.

Public	Members

QXmlDefaultHandler	()
virtual	~QXmlDefaultHandler	()

Detailed	Description

The	QXmlDefaultHandler	class	provides	a	default	implementation	of	all	XML
handler	classes.

Very	often	you	are	only	interested	in	parts	of	the	things	that	that	the	reader
reports	to	you.	This	class	implements	a	default	behaviour	for	the	handler	classes
(i.e.	most	of	the	time	do	nothing).	Usually	this	is	the	class	you	subclass	for
implementing	your	customized	handler.

See	also	the	Introduction	to	SAX2.

See	also	QXmlDTDHandler,	QXmlDeclHandler,	QXmlContentHandler,
QXmlEntityResolver,	QXmlErrorHandler,	QXmlLexicalHandler	and	XML.

Member	Function	Documentation

QXmlDefaultHandler::QXmlDefaultHandler	()

Constructor.

QXmlDefaultHandler::~QXmlDefaultHandler	()	[virtual]

Destructor.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QDataView	Class	Reference
[sql	module]

The	QDataView	class	provides	read-only	SQL	forms.	More...

#include	<qdataview.h>

Inherits	QWidget.

List	of	all	member	functions.

Public	Members

QDataView	(QWidget	*	parent	=	0,	const	char	*	name	=	0,	WFlags	fl	=	0)
~QDataView	()
virtual	void	setForm	(QSqlForm	*	form)
QSqlForm	*	form	()
virtual	void	setRecord	(QSqlRecord	*	record)
QSqlRecord	*	record	()

Public	Slots

virtual	void	refresh	(QSqlRecord	*	buf)
virtual	void	readFields	()
virtual	void	writeFields	()
virtual	void	clearValues	()

Detailed	Description

The	QDataView	class	provides	read-only	SQL	forms.

This	class	provides	a	form	which	displays	SQL	field	data	from	a	record	buffer.
Because	QDataView	does	not	support	editing	it	uses	less	resources	than	a
QDataBrowser.	This	class	is	well	suited	for	displaying	read-only	data	from	a
SQL	database.

If	you	want	a	to	present	your	data	in	an	editable	form	use	QDataBrowser;	if	you
want	a	table-based	presentation	of	your	data	use	QDataTable.

The	form	is	associated	with	the	data	view	with	setForm()	and	the	record	is
associated	with	setRecord().	You	can	also	pass	a	QSqlRecord	to	the	refresh()
function	which	will	set	the	record	to	the	given	record	and	read	the	record's	fields
into	the	form.

See	also	Database	Classes.

Member	Function	Documentation

QDataView::QDataView	(QWidget	*	parent	=	0,
const	char	*	name	=	0,	WFlags	fl	=	0)

Constructs	a	data	view	which	is	a	child	of	parent,	with	the	name	name	and
widget	flags	set	to	fl.

QDataView::~QDataView	()

Destroys	the	object	and	frees	any	allocated	resources.

void	QDataView::clearValues	()	[virtual	slot]

Clears	the	default	form's	values.	If	there	is	no	default	form,	nothing	happens.	All
the	values	are	set	to	their	'zero	state',	e.g.	0	for	numeric	fields,	""	for	string	fields.

QSqlForm	*	QDataView::form	()

Returns	the	default	form	used	by	the	data	view,	or	0	if	there	is	none.

See	also	setForm().

void	QDataView::readFields	()	[virtual	slot]

Causes	the	default	form	to	read	its	fields	from	the	record	buffer.	If	there	is	no
default	form,	or	no	record,	nothing	happens.

See	also	setForm().

QSqlRecord	*	QDataView::record	()

Returns	the	default	record	used	by	the	data	view,	or	0	if	there	is	none.

See	also	setRecord().

void	QDataView::refresh	(QSqlRecord	*	buf)	[virtual	slot]

Causes	the	default	form	to	display	the	contents	of	buf.	If	there	is	no	default	form,
nothing	happens.The	buf	also	becomes	the	default	record	for	all	subsequent	calls
to	readFields()	and	writefields().	This	slot	is	equivalant	to	calling:

		myView.setRecord(record);

		myView.readFields();

		

See	also	setRecord()	and	readFields().

void	QDataView::setForm	(QSqlForm	*	form)	[virtual]

Sets	the	form	used	by	the	data	view	to	form.	If	a	record	has	already	been
assigned	to	the	data	view,	the	form	will	display	that	record's	data.

See	also	form().

void	QDataView::setRecord	(QSqlRecord	*	record)	[virtual]

Sets	the	record	used	by	the	data	view	to	record.	If	a	form	has	already	been
assigned	to	the	data	view,	the	form	will	display	the	data	from	record	in	that	form.

See	also	record().

void	QDataView::writeFields	()	[virtual	slot]

Causes	the	default	form	to	write	its	fields	to	the	record	buffer.	If	there	is	no
default	form,	or	no	record,	nothing	happens.

See	also	setForm().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QHGroupBox
QHGroupBox	 ……

#include	<qhgroupbox.h>

QGroupBox

QHGroupBox	(QWidget	*	parent	=	0,	const	char	*	name	=	0)
QHGroupBox	(const	QString	&	title,	QWidget	*	parent	=	0,
const	char	*	name	=	0)
~QHGroupBox	()

QHGroupBox

QHGroupBox QGroupBox QHBox

QVGroupBox

QHGroupBox::QHGroupBox	(QWidget	*	parent	=	0,
const	char	*	name	=	0)

parentnameQWidget

QHGroupBox::QHGroupBox	(const	QString	&	title,
QWidget	*	parent	=	0,	const	char	*	name	=	0)

title

parentnameQWidget

QHGroupBox::~QHGroupBox	()

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QPair	Class	Reference
The	QPair	class	is	a	value-based	template	class	that	provides	a	pair	of	elements.
More...

#include	<qpair.h>

List	of	all	member	functions.

Public	Members

typedef	T1	first_type
typedef	T2	second_type
QPair	()
QPair	(const	T1	&	t1,	const	T2	&	t2)

Related	Functions

QPair	qMakePair	(T1	t1,	T2	t2)

Detailed	Description

The	QPair	class	is	a	value-based	template	class	that	provides	a	pair	of	elements.

QPair	is	a	Qt	implementation	of	an	STL-like	pair.	It	can	be	used	in	your
application	if	the	standard	pair<>	is	not	available.

QPair<T1,	T2>	defines	a	template	instance	to	create	a	pair	of	values	that
contains	two	values	of	type	T1	and	T2.	Please	note	that	QPair	does	not	store
pointers	to	the	two	elements;	it	holds	a	copy	of	every	member.	This	is	why	these
kinds	of	classes	are	called	value	based.	If	you're	interested	in	pointer	based
classes	see,	for	example,	QPtrList	and	QDict.

QPair	holds	one	copy	of	type	T1	and	one	copy	of	type	T2,	but	does	not	provide
iterators	to	access	these	elements.	Rather,	the	two	elements	(first	and	second)
are	public	member	variables	of	the	pair.	QPair	owns	the	contained	elements.	For
more	relaxed	ownership	semantics,	see	QPtrCollection	and	friends	which	are
pointer-based	containers.

Some	classes	cannot	be	used	within	a	QPair:	for	example,	all	classes	derived
from	QObject	and	thus	all	classes	that	implement	widgets.	Only	"values"	can	be
used	in	a	QPair.	To	qualify	as	a	value	the	class	must	provide:

A	copy	constructor
An	assignment	operator
A	constructor	that	takes	no	argument

Note	that	C++	defaults	to	field-by-field	assignment	operators	and	copy
constructors	if	no	explicit	version	is	supplied.	In	many	cases	this	is	sufficient.

QPair	uses	an	STL-like	syntax	to	manipulate	and	address	the	objects	it	contains.
See	the	QTL	documentation	for	more	information.

Functions	that	need	to	return	two	values	can	use	a	QPair.	The	qMakePair()
convenience	function	makes	it	easy	to	create	QPair	objects.

See	also	Qt	Template	Library	Classes,	Implicitly	and	Explicitly	Shared	Classes
and	Non-GUI	Classes.

Member	Type	Documentation

QPair::first_type

The	type	of	the	first	element	in	the	pair.

QPair::second_type

The	type	of	the	second	element	in	the	pair.

Member	Function	Documentation

QPair::QPair	()

Constructs	an	empty	pair.	The	first	and	second	elements	are	default
constructed.

QPair::QPair	(const	T1	&	t1,	const	T2	&	t2)

Constructs	a	pair	and	initializes	the	first	element	with	t1	and	the	second
element	with	t2.

Related	Functions

QPair	qMakePair	(T1	t1,	T2	t2)

This	is	a	template	convenience	function.	It	is	used	to	create	a	QPair<>	object
that	contains	t1	and	t2.	For	example:

				QMap<QString,QString>	m;

				m.insert(qMakePair("Clinton",	"Bill"));

The	above	code	is	equivalent	to:

				QMap<QString,QString>	m;

				QPair<QString,QString>	p("Clinton",	"Bill");

				m.insert(p);

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QStrList	Class	Reference
The	QStrList	class	provides	a	doubly-linked	list	of	char*.	More...

#include	<qstrlist.h>

Inherits	QPtrList<char>.

Inherited	by	QStrIList.

List	of	all	member	functions.

Public	Members

QStrList	(bool	deepCopies	=	TRUE)
QStrList	(const	QStrList	&	list)
~QStrList	()
QStrList	&	operator=	(const	QStrList	&	list)

Detailed	Description

The	QStrList	class	provides	a	doubly-linked	list	of	char*.

If	you	want	a	string	list	of	QStrings	use	QStringList.

This	class	is	a	QPtrList<char>	instance	(a	list	of	char*).

QStrList	can	make	deep	or	shallow	copies	of	the	strings	that	are	inserted.

A	deep	copy	means	that	memory	is	allocated	for	the	string	and	then	the	string
data	is	copied	into	this	memory.	A	shallow	copy	is	just	a	copy	of	the	pointer
value	and	not	of	the	string	data	itself.

The	disadvantage	of	shallow	copies	is	that	because	a	pointer	can	be	deleted	only
once,	the	program	must	put	all	strings	in	a	central	place	and	know	when	it	is	safe
to	delete	them	(i.e.	when	the	strings	are	no	longer	referenced	by	other	parts	of
the	program).	This	can	make	the	program	more	complex.	The	advantage	of
shallow	copies	is	that	shallow	copies	consume	far	less	memory	than	deep	copies.
It	is	also	much	faster	to	copy	a	pointer	(typically	4	or	8	bytes)	than	to	copy	string
data.

A	QStrList	that	operates	on	deep	copies	will,	by	default,	turn	on	auto-deletion
(see	setAutoDelete()).	Thus,	by	default	QStrList	will	deallocate	any	string	copies
it	allocates.

The	virtual	compareItems()	function	is	reimplemented	and	does	a	case-sensitive
string	comparison.	The	inSort()	function	will	insert	strings	in	a	sorted	order.	In
general	it	is	fastest	to	insert	the	strings	as	they	come	and	sort()	at	the	end;
inSort()	is	useful	when	you	just	have	to	add	a	few	extra	strings	to	an	already
sorted	list.

The	QStrListIterator	class	is	an	iterator	for	QStrList.

See	also	Collection	Classes,	Text	Related	Classes	and	Non-GUI	Classes.

Member	Function	Documentation

QStrList::QStrList	(bool	deepCopies	=	TRUE)

Constructs	an	empty	list	of	strings.	Will	make	deep	copies	of	all	inserted	strings
if	deepCopies	is	TRUE,	or	use	shallow	copies	if	deepCopies	is	FALSE.

QStrList::QStrList	(const	QStrList	&	list)

Constructs	a	copy	of	list.

If	list	has	deep	copies,	this	list	will	also	get	deep	copies.	Only	the	pointers	are
copied	(shallow	copy)	if	the	other	list	does	not	use	deep	copies.

QStrList::~QStrList	()

Destroys	the	list.	All	strings	are	removed.

QStrList	&	QStrList::operator=	(const	QStrList	&	list)

Assigns	list	to	this	list	and	returns	a	reference	to	this	list.

If	list	has	deep	copies,	this	list	will	also	get	deep	copies.	Only	the	pointers	are
copied	(shallow	copy)	if	the	other	list	does	not	use	deep	copies.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QXmlDTDHandler	Class	Reference
[XML	module]

The	QXmlDTDHandler	class	provides	an	interface	to	report	DTD	content	of
XML	data.	More...

#include	<qxml.h>

Inherited	by	QXmlDefaultHandler.

List	of	all	member	functions.

Public	Members

virtual	bool	notationDecl	(const	QString	&	name,
const	QString	&	publicId,	const	QString	&	systemId)	=	0
virtual	bool	unparsedEntityDecl	(const	QString	&	name,
const	QString	&	publicId,	const	QString	&	systemId,
const	QString	&	notationName)	=	0
virtual	QString	errorString	()	=	0

Detailed	Description

The	QXmlDTDHandler	class	provides	an	interface	to	report	DTD	content	of
XML	data.

If	an	application	needs	information	about	notations	and	unparsed	entities,	it	can
implement	this	interface	and	register	an	instance	with
QXmlReader::setDTDHandler().

Note	that	this	interface	includes	only	those	DTD	events	that	the	XML
recommendation	requires	processors	to	report,	i.e.	notation	and	unparsed	entity
declarations	using	notationDecl()	and	unparsedEntityDecl()	respectively.

See	also	the	Introduction	to	SAX2.

See	also	QXmlDeclHandler,	QXmlContentHandler,	QXmlEntityResolver,
QXmlErrorHandler,	QXmlLexicalHandler	and	XML.

Member	Function	Documentation

QString	QXmlDTDHandler::errorString	()	[pure	virtual]

The	reader	calls	this	function	to	get	an	error	string	if	any	of	the	handler	functions
returns	FALSE.

bool	QXmlDTDHandler::notationDecl	(const	QString	&	name,
const	QString	&	publicId,	const	QString	&	systemId)	[pure
virtual]

The	reader	calls	this	function	when	it	has	parsed	a	notation	declaration.

The	argument	name	is	the	notation	name,	publicId	is	the	notations's	public
identifier	and	systemId	is	the	notations's	system	identifier.

If	this	function	returns	FALSE	the	reader	stops	parsing	and	reports	an	error.	The
reader	uses	the	function	errorString()	to	get	the	error	message.

bool	QXmlDTDHandler::unparsedEntityDecl	(
const	QString	&	name,	const	QString	&	publicId,
const	QString	&	systemId,	const	QString	&	notationName)
[pure	virtual]

The	reader	calls	this	function	when	it	finds	an	unparsed	entity	declaration.

The	argument	name	is	the	unparsed	entity's	name,	publicId	is	the	entity's	public
identifier,	systemId	is	the	entity's	system	identifier	and	notationName	is	the	name
of	the	associated	notation.

If	this	function	returns	FALSE	the	reader	stops	parsing	and	reports	an	error.	The
reader	uses	the	function	errorString()	to	get	the	error	message.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

http://www.trolltech.com/

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QDate
QDate	 ……

#include	<qdatetime.h>

QDate	()
QDate	(int	y,	int	m,	int	d)
bool	isNull	()	const
bool	isValid	()	const
int	year	()	const
int	month	()	const
int	day	()	const
int	dayOfWeek	()	const
int	dayOfYear	()	const
int	daysInMonth	()	const
int	daysInYear	()	const
QString	toString	(Qt::DateFormat	f	=	Qt::TextDate)	const
QString	toString	(const	QString	&	format)	const
bool	setYMD	(int	y,	int	m,	int	d)
QDate	addDays	(int	ndays)	const
QDate	addMonths	(int	nmonths)	const
QDate	addYears	(int	nyears)	const
int	daysTo	(const	QDate	&	d)	const
bool	operator==	(const	QDate	&	d)	const
bool	operator!=	(const	QDate	&	d)	const
bool	operator<	(const	QDate	&	d)	const
bool	operator<=	(const	QDate	&	d)	const
bool	operator>	(const	QDate	&	d)	const
bool	operator>=	(const	QDate	&	d)	const

QString	monthName	(int	month)		(obsolete)
QString	dayName	(int	weekday)		(obsolete)
QString	shortMonthName	(int	month)
QString	shortDayName	(int	weekday)
QString	longMonthName	(int	month)
QString	longDayName	(int	weekday)
QDate	currentDate	()
QDate	fromString	(const	QString	&	s,	Qt::DateFormat	f	=	Qt::TextDate)
bool	isValid	(int	y,	int	m,	int	d)
bool	leapYear	(int	y)

QDataStream	&	operator<<	(QDataStream	&	s,	const	QDate	&	d)
QDataStream	&	operator>>	(QDataStream	&	s,	QDate	&	d)

QDate

QDate

QDate currentDate()QDate

year() month()day() dayOfWeek()dayOfYear()
toString() shortDayName() longDayName() shortMonthName()

longMonthName()

QDateQDate

addDays() addMonths()addYears() daysTo()

daysInMonth()daysInYear() leapYear()

QDate1752914QDate1923

QDate8000Qt

QTimeQDateTimeQDateEditQDateTimeEdit

QDate::QDate	()

isNull()isValid()

QDate::QDate	(int	y,	int	m,	int	d)

ymd

y17528000 m112 d131 y09919001999

isValid()

QDate	QDate::addDays	(int	ndays)	const

ndaysQDate ndays

daysTo()

QDate	QDate::addMonths	(int	nmonths)	const

nmonthsQDate nmonths

QDate	QDate::addYears	(int	nyears)	const

nyearsQDate nyears

QDate	QDate::currentDate	()	[]

QTime::currentTime()QDateTime::currentDateTime()

dclock/dclock.cpp

int	QDate::day	()	const

131

year() month()dayOfWeek()

dclock/dclock.cpp

QString	QDate::dayName	(int	weekday)	[]

shortDayName()

int	QDate::dayOfWeek	()	const

17

day()dayOfYear()

int	QDate::dayOfYear	()	const

1365

day()dayOfWeek()

int	QDate::daysInMonth	()	const

2831

day()daysInYear()

int	QDate::daysInYear	()	const

365366

day()daysInMonth()

int	QDate::daysTo	(const	QDate	&	d)	const

d d

				QDate	d1(1995,	5,	17);		//	1995517

				QDate	d2(1995,	5,	20);		//	1995520

				d1.daysTo(d2);										//	3

				d2.daysTo(d1);										//	-3

		

addDays()

QDate	QDate::fromString	(const	QString	&	s,	Qt::DateFormat	f
=	Qt::TextDate)	[]

sfQDate

Qt::LocalDate

Qt::TextDateJan

bool	QDate::isNull	()	const

isValid()

bool	QDate::isValid	()	const

isNull()

bool	QDate::isValid	(int	y,	int	m,	int	d)	[]

ymd

				QDate::isValid(2002,	5,	17);		//	2002517

				QDate::isValid(2002,	2,	30);		//	230

				QDate::isValid(2004,	2,	29);		//	2004

				QDate::isValid(1202,	6,	6);			//	1202

		

y09919001999

isNull()setYMD()

bool	QDate::leapYear	(int	y)	[]

y

QString	QDate::longDayName	(int	weekday)	[]

weekday

1	=	“Monday”2	=	“Tuesday”……7	=	“Sunday”

toString() shortDayName() shortMonthName()longMonthName()

QString	QDate::longMonthName	(int	month)	[]

month

1	=	“January”2	=	“February”……12	=	“December”

toString() shortMonthName() shortDayName()longDayName()

int	QDate::month	()	const

112

year()day()

dclock/dclock.cpp

QString	QDate::monthName	(int	month)	[]

shortMonthName()

bool	QDate::operator!=	(const	QDate	&	d)	const

d

bool	QDate::operator<	(const	QDate	&	d)	const

d

bool	QDate::operator<=	(const	QDate	&	d)	const

d

bool	QDate::operator==	(const	QDate	&	d)	const

d

bool	QDate::operator>	(const	QDate	&	d)	const

d

bool	QDate::operator>=	(const	QDate	&	d)	const

d

bool	QDate::setYMD	(int	y,	int	m,	int	d)

ymd

y17528000 m112 d131 y09919001999

QString	QDate::shortDayName	(int	weekday)	[]

weekday

1	=	“Mon”2	=	“Tue”……7	=	“Sun”

toString() shortMonthName() longMonthName()longDayName()

QString	QDate::shortMonthName	(int	month)	[]

month

1	=	“Jan”2	=	“Feb”……12	=	“Dec”

toString() longMonthName() shortDayName()longDayName()

QString	QDate::toString	(const	QString	&	format)	const

format

d	-	0131
dd	-	00131
ddd	-	MonSun QDate::shortDayName()
dddd	-	MondaySunday QDate::longDayName()
M	-	0112
MM	-	00112
MMM	-	JanDec QDate::shortMonthName()
MMMM	-	JanuaryDecember QDate::longMonthName()
yy	-	0099
yyyy	-	0000-9999

QDate2001521

“dd.MM.yyyy”“21.05.2001”
“ddd	MMMM	d	yy”“Tue	May	21	01”

QDate::toString()	and	QTime::toString().

QString	QDate::toString	(Qt::DateFormat	f	=	Qt::TextDate)
const

f

fQt::TextDate“Sat	May	20	1995” shortDayName()shortMonthName()

fQt::ISODateISO	8601YYYY-MM-DDYYYYMM0112DD
0131

fQt::LocalDate

shortDayName()	and	shortMonthName().

int	QDate::year	()	const

17528000

month()day()

QDataStream	&	operator<<	(QDataStream	&	s,	const	QDate	&	d
)

ds

QDataStream

QDataStream	&	operator>>	(QDataStream	&	s,	QDate	&	d)

sd

QDataStream

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QHideEvent	Class	Reference
The	QHideEvent	class	provides	an	event	which	is	sent	after	a	widget	is	hidden.
More...

#include	<qevent.h>

Inherits	QEvent.

List	of	all	member	functions.

Public	Members

QHideEvent	()

Detailed	Description

The	QHideEvent	class	provides	an	event	which	is	sent	after	a	widget	is	hidden.

This	event	is	sent	just	before	QWidget::hide()	returns,	and	also	when	a	top-level
window	has	been	hidden	(iconified)	by	the	user.

If	spontaneous()	is	TRUE	the	event	originated	outside	the	application,	i.e.	the
user	hid	the	window	using	the	window	manager	controls,	either	by	iconifying
the	window	or	by	switching	to	another	virtual	desktop	where	the	window	isn't
visible.	The	window	will	become	hidden	but	not	withdrawn.	If	the	window	was
iconified,	QWidget::isMinimized()	returns	TRUE.

See	also	QShowEvent	and	Event	Classes.

Member	Function	Documentation

QHideEvent::QHideEvent	()

Constructs	a	QHideEvent.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QPalette	Class	Reference
The	QPalette	class	contains	color	groups	for	each	widget	state.	More...

#include	<qpalette.h>

List	of	all	member	functions.

Public	Members

QPalette	()
QPalette	(const	QColor	&	button)		(obsolete)
QPalette	(const	QColor	&	button,	const	QColor	&	background)
QPalette	(const	QColorGroup	&	active,	const	QColorGroup	&	disabled,
const	QColorGroup	&	inactive)
QPalette	(const	QPalette	&	p)
~QPalette	()
QPalette	&	operator=	(const	QPalette	&	p)
enum	ColorGroup	{	Disabled,	Active,	Inactive,	NColorGroups,	Normal	=
Active	}
const	QColor	&	color	(ColorGroup	gr,	QColorGroup::ColorRole	r)	const
const	QBrush	&	brush	(ColorGroup	gr,	QColorGroup::ColorRole	r)	const
void	setColor	(ColorGroup	gr,	QColorGroup::ColorRole	r,
const	QColor	&	c)
void	setBrush	(ColorGroup	gr,	QColorGroup::ColorRole	r,
const	QBrush	&	b)
void	setColor	(QColorGroup::ColorRole	r,	const	QColor	&	c)
void	setBrush	(QColorGroup::ColorRole	r,	const	QBrush	&	b)
QPalette	copy	()	const
const	QColorGroup	&	active	()	const
const	QColorGroup	&	disabled	()	const
const	QColorGroup	&	inactive	()	const
const	QColorGroup	&	normal	()	const		(obsolete)
void	setActive	(const	QColorGroup	&	g)
void	setDisabled	(const	QColorGroup	&	g)
void	setInactive	(const	QColorGroup	&	g)
void	setNormal	(const	QColorGroup	&	cg)		(obsolete)
bool	operator==	(const	QPalette	&	p)	const
bool	operator!=	(const	QPalette	&	p)	const
bool	isCopyOf	(const	QPalette	&	p)
int	serialNumber	()	const

Related	Functions

QDataStream	&	operator<<	(QDataStream	&	s,	const	QPalette	&	p)
QDataStream	&	operator>>	(QDataStream	&	s,	QPalette	&	p)

Detailed	Description

The	QPalette	class	contains	color	groups	for	each	widget	state.

A	palette	consists	of	three	color	groups:	active,	disabled,	and	inactive.	All
widgets	contain	a	palette,	and	all	widgets	in	Qt	use	their	palette	to	draw
themselves.	This	makes	the	user	interface	easily	configurable	and	easier	to	keep
consistent.

If	you	create	a	new	widget	we	strongly	recommend	that	you	use	the	colors	in	the
palette	rather	than	hard-coding	specific	colors.

The	color	groups:

The	active()	group	is	used	for	the	window	that	has	keyboard	focus.
The	inactive()	group	is	used	for	other	windows.
The	disabled()	group	is	used	for	widgets	(not	windows)	that	are	disabled	for
some	reason.

Both	active	and	inactive	windows	can	contain	disabled	widgets.	(Disabled
widgets	are	often	called	inaccessible	or	grayed	out.)

In	Motif	style,	active()	and	inactive()	look	the	same.	In	Windows	2000	style	and
Macintosh	Platinum	style,	the	two	styles	look	slightly	different.

There	are	setActive(),	setInactive(),	and	setDisabled()	functions	to	modify	the
palette.	(Qt	also	supports	a	normal()	group;	this	is	an	obsolete	alias	for	active(),
supported	for	backwards	compatibility.)

Colors	and	brushes	can	be	set	for	particular	roles	in	any	of	a	palette's	color
groups	with	setColor()	and	setBrush().

You	can	copy	a	palette	using	the	copy	constructor	and	test	to	see	if	two	palettes
are	identical	using	isCopyOf().

See	also	QApplication::setPalette(),	QWidget::palette,	QColorGroup,	QColor,
Widget	Appearance	and	Style,	Graphics	Classes,	Image	Processing	Classes	and
Implicitly	and	Explicitly	Shared	Classes.

Member	Type	Documentation

QPalette::ColorGroup

QPalette::Disabled

QPalette::Active

QPalette::Inactive

QPalette::NColorGroups

QPalette::Normal	-	synonym	for	Active

Member	Function	Documentation

QPalette::QPalette	()

Constructs	a	palette	that	consists	of	color	groups	with	only	black	colors.

QPalette::QPalette	(const	QColor	&	button)

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Constructs	a	palette	from	the	button	color.	The	other	colors	are	automatically
calculated,	based	on	this	color.	Background	will	be	the	button	color	as	well.

QPalette::QPalette	(const	QColor	&	button,
const	QColor	&	background)

Constructs	a	palette	from	a	button	color	and	a	background.	The	other	colors	are
automatically	calculated,	based	on	these	colors.

QPalette::QPalette	(const	QColorGroup	&	active,
const	QColorGroup	&	disabled,
const	QColorGroup	&	inactive)

Constructs	a	palette	that	consists	of	the	three	color	groups	active,	disabled	and
inactive.	See	the	Detailed	Description	for	definitions	of	the	color	groups	and
QColorGroup::ColorRole	for	definitions	of	each	color	role	in	the	three	groups.

See	also	QColorGroup	and	QColorGroup::ColorRole.

QPalette::QPalette	(const	QPalette	&	p)

Constructs	a	copy	of	p.

This	constructor	is	fast	(it	uses	copy-on-write).

QPalette::~QPalette	()

Destroys	the	palette.

const	QColorGroup	&	QPalette::active	()	const

Returns	the	active	color	group	of	this	palette.

See	also	QColorGroup,	setActive(),	inactive()	and	disabled().

Examples:	themes/metal.cpp	and	themes/wood.cpp.

const	QBrush	&	QPalette::brush	(ColorGroup	gr,
QColorGroup::ColorRole	r)	const

Returns	the	brush	in	color	group	gr,	used	for	color	role	r.

See	also	color(),	setBrush()	and	QColorGroup::ColorRole.

const	QColor	&	QPalette::color	(ColorGroup	gr,
QColorGroup::ColorRole	r)	const

Returns	the	color	in	color	group	gr,	used	for	color	role	r.

See	also	brush(),	setColor()	and	QColorGroup::ColorRole.

QPalette	QPalette::copy	()	const

Returns	a	deep	copy	of	this	palette.

Warning:	This	is	slower	than	the	copy	constructor	and	assignment	operator	and
offers	no	benefits.

const	QColorGroup	&	QPalette::disabled	()	const

Returns	the	disabled	color	group	of	this	palette.

See	also	QColorGroup,	setDisabled(),	active()	and	inactive().

Examples:	themes/metal.cpp	and	themes/wood.cpp.

const	QColorGroup	&	QPalette::inactive	()	const

Returns	the	inactive	color	group	of	this	palette.

See	also	QColorGroup,	setInactive(),	active()	and	disabled().

bool	QPalette::isCopyOf	(const	QPalette	&	p)

Returns	TRUE	if	this	palette	and	p	are	copies	of	each	other,	i.e.	one	of	them	was
created	as	a	copy	of	the	other	and	neither	was	subsequently	modified;	otherwise
returns	FALSE.	This	is	much	stricter	than	equality.

See	also	operator=()	and	operator==().

const	QColorGroup	&	QPalette::normal	()	const

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Returns	the	active	color	group.	Use	active()	instead.

See	also	setActive()	and	active().

bool	QPalette::operator!=	(const	QPalette	&	p)	const

Returns	TRUE	(slowly)	if	this	palette	is	different	from	p;	otherwise	returns
FALSE	(usually	quickly).

QPalette	&	QPalette::operator=	(const	QPalette	&	p)

Assigns	p	to	this	palette	and	returns	a	reference	to	this	palette.

This	is	fast	(it	uses	copy-on-write).

See	also	copy().

bool	QPalette::operator==	(const	QPalette	&	p)	const

Returns	TRUE	(usually	quickly)	if	this	palette	is	equal	to	p;	otherwise	returns
FALSE	(slowly).

int	QPalette::serialNumber	()	const

Returns	a	number	that	uniquely	identifies	this	QPalette	object.	The	serial	number
is	intended	for	caching.	Its	value	may	not	be	used	for	anything	other	than
equality	testing.

Note	that	QPalette	uses	copy-on-write,	and	the	serial	number	changes	during	the
lazy	copy	operation	(detach()),	not	during	a	shallow	copy	(copy	constructor	or
assignment).

See	also	QPixmap,	QPixmapCache	and	QCache.

void	QPalette::setActive	(const	QColorGroup	&	g)

Sets	the	Active	color	group	to	g.

See	also	active(),	setDisabled(),	setInactive()	and	QColorGroup.

void	QPalette::setBrush	(ColorGroup	gr,
QColorGroup::ColorRole	r,	const	QBrush	&	b)

Sets	the	brush	in	color	group	gr,	used	for	color	role	r,	to	b.

See	also	brush(),	setColor()	and	QColorGroup::ColorRole.

void	QPalette::setBrush	(QColorGroup::ColorRole	r,
const	QBrush	&	b)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Sets	the	brush	in	for	color	role	r	in	all	three	color	groups	to	b.

See	also	brush(),	setColor(),	QColorGroup::ColorRole,	active(),	inactive()	and
disabled().

void	QPalette::setColor	(ColorGroup	gr,
QColorGroup::ColorRole	r,	const	QColor	&	c)

Sets	the	brush	in	color	group	gr,	used	for	color	role	r,	to	the	solid	color	c.

See	also	setBrush(),	color()	and	QColorGroup::ColorRole.

Example:	themes/themes.cpp.

void	QPalette::setColor	(QColorGroup::ColorRole	r,
const	QColor	&	c)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Sets	the	brush	color	used	for	color	role	r	to	color	c	in	all	three	color	groups.

See	also	color(),	setBrush()	and	QColorGroup::ColorRole.

void	QPalette::setDisabled	(const	QColorGroup	&	g)

Sets	the	Disabled	color	group	to	g.

See	also	disabled(),	setActive()	and	setInactive().

void	QPalette::setInactive	(const	QColorGroup	&	g)

Sets	the	Inactive	color	group	to	g.

See	also	active(),	setDisabled(),	setActive()	and	QColorGroup.

void	QPalette::setNormal	(const	QColorGroup	&	cg)

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Sets	the	active	color	group	to	cg.	Use	setActive()	instead.

See	also	setActive()	and	active().

Related	Functions

QDataStream	&	operator<<	(QDataStream	&	s,
const	QPalette	&	p)

Writes	the	palette,	p	to	the	stream	s	and	returns	a	reference	to	the	stream.

See	also	Format	of	the	QDataStream	operators.

QDataStream	&	operator>>	(QDataStream	&	s,	QPalette	&	p)

Reads	a	palette	from	the	stream,	s	into	the	palette	p,	and	returns	a	reference	to
the	stream.

See	also	Format	of	the	QDataStream	operators.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QStrListIterator	Class	Reference
The	QStrListIterator	class	is	an	iterator	for	the	QStrList	and	QStrIList	classes.
More...

#include	<qstrlist.h>

Inherits	QPtrListIterator<char>.

List	of	all	member	functions.

Detailed	Description

The	QStrListIterator	class	is	an	iterator	for	the	QStrList	and	QStrIList	classes.

This	class	is	a	QPtrListIterator<char>	instance.	It	can	traverse	the	strings	in	the
QStrList	and	QStrIList	classes.

See	also	Non-GUI	Classes.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QXmlEntityResolver	Class	Reference
[XML	module]

The	QXmlEntityResolver	class	provides	an	interface	to	resolve	external	entities
contained	in	XML	data.	More...

#include	<qxml.h>

Inherited	by	QXmlDefaultHandler.

List	of	all	member	functions.

Public	Members

virtual	bool	resolveEntity	(const	QString	&	publicId,
const	QString	&	systemId,	QXmlInputSource	*&	ret)	=	0
virtual	QString	errorString	()	=	0

Detailed	Description

The	QXmlEntityResolver	class	provides	an	interface	to	resolve	external	entities
contained	in	XML	data.

If	an	application	needs	to	implement	customized	handling	for	external	entities,	it
must	implement	this	interface,	i.e.	resolveEntity(),	and	register	it	with
QXmlReader::setEntityResolver().

See	also	the	Introduction	to	SAX2.

See	also	QXmlDTDHandler,	QXmlDeclHandler,	QXmlContentHandler,
QXmlErrorHandler,	QXmlLexicalHandler	and	XML.

Member	Function	Documentation

QString	QXmlEntityResolver::errorString	()	[pure	virtual]

The	reader	calls	this	function	to	get	an	error	string	if	any	of	the	handler	functions
returns	FALSE.

bool	QXmlEntityResolver::resolveEntity	(
const	QString	&	publicId,	const	QString	&	systemId,
QXmlInputSource	*&	ret)	[pure	virtual]

The	reader	calls	this	function	before	it	opens	any	external	entity,	except	the	top-
level	document	entity.	The	application	may	request	the	reader	to	resolve	the
entity	itself	(ret	is	0)	or	to	use	an	entirely	different	input	source	(ret	points	to	the
input	source).

The	reader	deletes	the	input	source	ret	when	it	no	longer	needs	it,	so	you	should
allocate	it	on	the	heap	with	new.

The	argument	publicId	is	the	public	identifier	of	the	external	entity,	systemId	is
the	system	identifier	of	the	external	entity	and	ret	is	the	return	value	of	this
function.	If	ret	is	0	the	reader	should	resolve	the	entity	itself,	if	it	is	non-zero	it
must	point	to	an	input	source	which	the	reader	uses	instead.

If	this	function	returns	FALSE	the	reader	stops	parsing	and	reports	an	error.	The
reader	uses	the	function	errorString()	to	get	the	error	message.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QDateEdit	Class	Reference
The	QDateEdit	class	provides	a	date	editor.	More...

#include	<qdatetimeedit.h>

List	of	all	member	functions.

Public	Members

QDateEdit	(QWidget	*	parent	=	0,	const	char	*	name	=	0)
QDateEdit	(const	QDate	&	date,	QWidget	*	parent	=	0,	const	char	*	name
=	0)
~QDateEdit	()
enum	Order	{	DMY,	MDY,	YMD,	YDM	}
virtual	void	setDate	(const	QDate	&	date)
QDate	date	()	const
virtual	void	setOrder	(Order	order)
Order	order	()	const
virtual	void	setAutoAdvance	(bool	advance)
bool	autoAdvance	()	const
virtual	void	setMinValue	(const	QDate	&	d)
QDate	minValue	()	const
virtual	void	setMaxValue	(const	QDate	&	d)
QDate	maxValue	()	const
virtual	void	setRange	(const	QDate	&	min,	const	QDate	&	max)
QString	separator	()	const
virtual	void	setSeparator	(const	QString	&	s)

Signals

void	valueChanged	(const	QDate	&	date)

Properties

bool	autoAdvance	-	whether	the	editor	automatically	advances	to	the	next
section
QDate	date	-	the	date	value	of	the	editor
QDate	maxValue	-	the	maximum	editor	value
QDate	minValue	-	the	minimum	editor	value
Order	order	-	the	order	in	which	the	year,	month	and	day	appear

Protected	Members

virtual	QString	sectionFormattedText	(int	sec)
virtual	void	setYear	(int	year)
virtual	void	setMonth	(int	month)
virtual	void	setDay	(int	day)
virtual	void	fix	()

Protected	Slots

void	updateButtons	()

Detailed	Description

The	QDateEdit	class	provides	a	date	editor.

QDateEdit	allows	the	user	to	edit	dates	by	using	the	keyboard	or	the	arrow	keys
to	increase/decrease	date	values.	The	arrow	keys	can	be	used	to	move	from
section	to	section	within	the	QDateEdit	box.	Dates	appear	according	the	local
date/time	settings	or	in	year,	month,	day	order	if	the	system	doesn't	provide	this
information.	It	is	recommended	that	the	QDateEdit	be	initialised	with	a	date,	e.g.

				QDateEdit	*dateEdit	=	new	QDateEdit(QDate::currentDate(),	this);

				dateEdit->setRange(QDate::currentDate().addDays(-365),

																								QDate::currentDate().addDays(365));

				dateEdit->setOrder(QDateEdit::MDY);

				dateEdit->setAutoAdvance(TRUE);

				

Here	we've	created	a	new	QDateEdit	object	initialised	with	today's	date	and
restricted	the	valid	date	range	to	today	plus	or	minus	365	days.	We've	set	the
order	to	month,	day,	year.	If	the	auto	advance	property	is	TRUE	(as	we've	set	it
here)	when	the	user	completes	a	section	of	the	date,	e.g.	enters	two	digits	for	the
month,	they	are	automatically	taken	to	the	next	section.

The	maximum	and	minimum	values	for	a	date	value	in	the	date	editor	default	to
the	maximum	and	minimum	values	for	a	QDate.	You	can	change	this	by	calling
setMinValue(),	setMaxValue()	or	setRange().

Terminology:	A	QDateEdit	widget	comprises	three	'sections',	one	each	for	the
year,	month	and	day.	You	can	change	the	separator	character	using
QDateTimeEditor::setSeparator(),	by	default	the	separator	will	be	taken	from	the
systems	settings.	If	that	is	impossible,	it	defaults	to	"-".

See	also	QDate,	QTimeEdit,	QDateTimeEdit,	Advanced	Widgets	and	Time	and

Date.

Member	Type	Documentation

QDateEdit::Order

This	enum	defines	the	order	in	which	the	sections	that	comprise	a	date	appear.

QDateEdit::MDY	-	month-day-year
QDateEdit::DMY	-	day-month-year
QDateEdit::YMD	-	year-month-day	(the	default)
QDateEdit::YDM	-	year-day-month	(a	very	bad	idea)

Member	Function	Documentation

QDateEdit::QDateEdit	(QWidget	*	parent	=	0,	const	char	*	name
=	0)

Constructs	an	empty	date	editor	which	is	a	child	of	parent	and	the	name	name.

QDateEdit::QDateEdit	(const	QDate	&	date,	QWidget	*	parent	=
0,	const	char	*	name	=	0)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Constructs	a	date	editor	with	the	initial	value	date,	parent	parent	and	name
name.

The	date	editor	is	initialized	with	date.

QDateEdit::~QDateEdit	()

Destroys	the	object	and	frees	any	allocated	resources.

bool	QDateEdit::autoAdvance	()	const

Returns	TRUE	if	the	editor	automatically	advances	to	the	next	section;	otherwise
returns	FALSE.	See	the	"autoAdvance"	property	for	details.

QDate	QDateEdit::date	()	const

Returns	the	date	value	of	the	editor.	See	the	"date"	property	for	details.

void	QDateEdit::fix	()	[virtual	protected]

Attempts	to	fix	any	invalid	date	entries.

The	rules	applied	are	as	follows:

If	the	year	has	four	digits	it	is	left	unchanged.
If	the	year	has	two	digits	in	the	range	70..99,	the	previous	century,	i.e.	1900,
will	be	added	giving	a	year	in	the	range	1970..1999.
If	the	year	has	two	digits	in	the	range	0..69,	the	current	century,	i.e.	2000,
will	be	added	giving	a	year	in	the	range	2000..2069.
If	the	year	is	in	the	range	100..999,	the	current	century,	i.e.	2000,	will	be
added	giving	a	year	in	the	range	2100..2999.

QDate	QDateEdit::maxValue	()	const

Returns	the	maximum	editor	value.	See	the	"maxValue"	property	for	details.

QDate	QDateEdit::minValue	()	const

Returns	the	minimum	editor	value.	See	the	"minValue"	property	for	details.

Order	QDateEdit::order	()	const

Returns	the	order	in	which	the	year,	month	and	day	appear.	See	the	"order"
property	for	details.

QString	QDateEdit::sectionFormattedText	(int	sec)	[virtual
protected]

Returns	the	formatted	number	for	section	sec.	This	will	correspond	to	either	the
year,	month	or	day	section,	depending	on	the	current	display	order.

See	also	order.

QString	QDateEdit::separator	()	const

Returns	the	separator	for	the	editor.

void	QDateEdit::setAutoAdvance	(bool	advance)	[virtual]

Sets	whether	the	editor	automatically	advances	to	the	next	section	to	advance.
See	the	"autoAdvance"	property	for	details.

void	QDateEdit::setDate	(const	QDate	&	date)	[virtual]

Sets	the	date	value	of	the	editor	to	date.	See	the	"date"	property	for	details.

void	QDateEdit::setDay	(int	day)	[virtual	protected]

Sets	the	day	to	day,	which	must	be	a	valid	day.	The	function	will	ensure	that	the
day	set	is	valid	for	the	month	and	year.

void	QDateEdit::setMaxValue	(const	QDate	&	d)	[virtual]

Sets	the	maximum	editor	value	to	d.	See	the	"maxValue"	property	for	details.

void	QDateEdit::setMinValue	(const	QDate	&	d)	[virtual]

Sets	the	minimum	editor	value	to	d.	See	the	"minValue"	property	for	details.

void	QDateEdit::setMonth	(int	month)	[virtual	protected]

Sets	the	month	to	month,	which	must	be	a	valid	month,	i.e.	between	1	and	12.

void	QDateEdit::setOrder	(Order	order)	[virtual]

Sets	the	order	in	which	the	year,	month	and	day	appear	to	order.	See	the	"order"
property	for	details.

void	QDateEdit::setRange	(const	QDate	&	min,
const	QDate	&	max)	[virtual]

Sets	the	valid	input	range	for	the	editor	to	be	from	min	to	max	inclusive.	If	min	is
invalid	no	minimum	date	will	be	set.	Similarly,	if	max	is	invalid	no	maximum
date	will	be	set.

void	QDateEdit::setSeparator	(const	QString	&	s)	[virtual]

Sets	the	separator	to	s.	Note	that	currently	only	the	first	character	of	s	is	used.

void	QDateEdit::setYear	(int	year)	[virtual	protected]

Sets	the	year	to	year,	which	must	be	a	valid	year.	The	range	currently	supported
is	from	1752	to	8000.

See	also	QDate.

void	QDateEdit::updateButtons	()	[protected	slot]

Enables/disables	the	push	buttons	according	to	the	min/max	date	for	this	widget.

void	QDateEdit::valueChanged	(const	QDate	&	date)	[signal]

This	signal	is	emitted	whenever	the	editor's	value	changes.	The	date	parameter	is
the	new	value.

Property	Documentation

bool	autoAdvance

This	property	holds	whether	the	editor	automatically	advances	to	the	next
section.

If	autoAdvance	is	TRUE,	the	editor	will	automatically	advance	focus	to	the	next
date	section	if	a	user	has	completed	a	section.	The	default	is	FALSE.

Set	this	property's	value	with	setAutoAdvance()	and	get	this	property's	value
with	autoAdvance().

QDate	date

This	property	holds	the	date	value	of	the	editor.

If	the	date	property	is	not	valid,	the	editor	displays	all	zeroes	and
QDateEdit::date()	will	return	an	invalid	date.	It	is	strongly	recommended	that	the
editor	be	given	a	default	date	value.	That	way,	attempts	to	set	the	date	property
to	an	invalid	date	will	fail.

When	changing	the	date	property,	if	the	date	is	less	than	minValue(),	or	is	greater
than	maxValue(),	nothing	happens.

Set	this	property's	value	with	setDate()	and	get	this	property's	value	with	date().

QDate	maxValue

This	property	holds	the	maximum	editor	value.

Setting	the	maximum	date	value	for	the	editor	is	equivalent	to	calling
QDateEdit::setRange(minValue(),	d),	where	d	is	the	maximum	date.	The
default	maximum	date	is	8000-12-31.

Set	this	property's	value	with	setMaxValue()	and	get	this	property's	value	with
maxValue().

QDate	minValue

This	property	holds	the	minimum	editor	value.

Setting	the	minimum	date	value	is	equivalent	to	calling	QDateEdit::setRange(d,
maxValue()),	where	d	is	the	minimum	date.	The	default	minimum	date	is	1752-
09-14.

Set	this	property's	value	with	setMinValue()	and	get	this	property's	value	with
minValue().

Order	order

This	property	holds	the	order	in	which	the	year,	month	and	day	appear.

The	default	order	is	locale	dependent.

See	also	Order.

Set	this	property's	value	with	setOrder()	and	get	this	property's	value	with
order().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QHostAddress	Class	Reference
[network	module]

The	QHostAddress	class	provides	an	IP	address.	More...

#include	<qhostaddress.h>

List	of	all	member	functions.

Public	Members

QHostAddress	()
QHostAddress	(Q_UINT32	ip4Addr)
QHostAddress	(Q_UINT8	*	ip6Addr)
QHostAddress	(const	QHostAddress	&	address)
virtual	~QHostAddress	()
QHostAddress	&	operator=	(const	QHostAddress	&	address)
void	setAddress	(Q_UINT32	ip4Addr)
void	setAddress	(Q_UINT8	*	ip6Addr)
bool	setAddress	(const	QString	&	address)
bool	isIp4Addr	()	const
Q_UINT32	ip4Addr	()	const
QString	toString	()	const
bool	operator==	(const	QHostAddress	&	other)	const

Detailed	Description

The	QHostAddress	class	provides	an	IP	address.

This	class	contains	an	IP	address	in	a	platform	and	protocol	independent	manner.
It	stores	both	IPv4	and	IPv6	addresses	in	a	way	that	you	can	easily	access	on	any
platform.	(Qt	does	not	currently	provide	IPv6	support.)

QHostAddress	is	normally	used	with	the	classes	QSocket,	QServerSocket	and
QSocketDevice	to	set	up	a	server	or	to	connect	to	a	host.

Host	addresses	may	be	set	with	setAddress()	and	retrieved	with	ip4Addr()	or
toString().

See	also	QSocket,	QServerSocket,	QSocketDevice	and	Input/Output	and
Networking.

Member	Function	Documentation

QHostAddress::QHostAddress	()

Creates	a	host	address	object	with	the	IP	address	0.0.0.0.

QHostAddress::QHostAddress	(Q_UINT32	ip4Addr)

Creates	a	host	address	object	for	the	IPv4	address	ip4Addr.

QHostAddress::QHostAddress	(Q_UINT8	*	ip6Addr)

Creates	a	host	address	object	with	the	specified	IPv6	address.

ip6Addr	must	be	a	16	byte	array	in	network	byte	order	(high-order	byte	first)

QHostAddress::QHostAddress	(const	QHostAddress	&	address)

Creates	a	copy	of	address.

QHostAddress::~QHostAddress	()	[virtual]

Destroys	the	host	address	object.

Q_UINT32	QHostAddress::ip4Addr	()	const

Returns	the	IPv4	address	as	a	number.

For	example,	if	the	address	is	127.0.0.1,	the	returned	value	is	2130706433	(hex:
7f000001).

This	value	is	only	valid	when	isIp4Addr()	returns	TRUE.

See	also	toString().

bool	QHostAddress::isIp4Addr	()	const

Returns	TRUE	if	the	host	address	represents	a	IPv4	address;	otherwise	returns
FALSE.

QHostAddress	&	QHostAddress::operator=	(
const	QHostAddress	&	address)

Assigns	another	host	address	object	address	to	this	object	and	returns	a	reference
to	this	object.

bool	QHostAddress::operator==	(const	QHostAddress	&	other)
const

Returns	TRUE	if	this	host	address	is	the	same	as	other;	otherwise	returns
FALSE.

void	QHostAddress::setAddress	(Q_UINT32	ip4Addr)

Set	the	IPv4	address	specified	by	ip4Addr.

void	QHostAddress::setAddress	(Q_UINT8	*	ip6Addr)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Set	the	IPv6	address	specified	by	ip6Addr.

ip6Addr	must	be	a	16	byte	array	in	network	byte	order	(high-order	byte	first)

bool	QHostAddress::setAddress	(const	QString	&	address)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Sets	the	IPv4	or	IPv6	address	specified	by	the	string	representation	address	(e.g.
"127.0.0.1").	Returns	TRUE	and	sets	the	address	if	the	address	was	successfully
parsed;	otherwise	returns	FALSE	and	leaves	the	address	unchanged.

QString	QHostAddress::toString	()	const

Returns	the	address	as	a	string.

For	example,	if	the	address	is	the	IPv4	address	127.0.0.1,	the	returned	string	is
"127.0.0.1".

See	also	ip4Addr().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QStyle	Class	Reference
The	QStyle	class	specifies	the	look	and	feel	of	a	GUI.	More...

#include	<qstyle.h>

Inherits	QObject.

Inherited	by	QCommonStyle.

List	of	all	member	functions.

Public	Members

QStyle	()
virtual	~QStyle	()
virtual	void	polish	(QWidget	*)
virtual	void	unPolish	(QWidget	*)
virtual	void	polish	(QApplication	*)
virtual	void	unPolish	(QApplication	*)
virtual	void	polish	(QPalette	&)
virtual	void	polishPopupMenu	(QPopupMenu	*)	=	0
virtual	QRect	itemRect	(QPainter	*	p,	const	QRect	&	r,	int	flags,
bool	enabled,	const	QPixmap	*	pixmap,	const	QString	&	text,	int	len	=	-1)
const
virtual	void	drawItem	(QPainter	*	p,	const	QRect	&	r,	int	flags,
const	QColorGroup	&	g,	bool	enabled,	const	QPixmap	*	pixmap,
const	QString	&	text,	int	len	=	-1,	const	QColor	*	penColor	=	0)	const
enum	PrimitiveElement	{	PE_ButtonCommand,	PE_ButtonDefault,
PE_ButtonBevel,	PE_ButtonTool,	PE_ButtonDropDown,	PE_FocusRect,
PE_ArrowUp,	PE_ArrowDown,	PE_ArrowRight,	PE_ArrowLeft,
PE_SpinWidgetUp,	PE_SpinWidgetDown,	PE_SpinWidgetPlus,
PE_SpinWidgetMinus,	PE_Indicator,	PE_IndicatorMask,
PE_ExclusiveIndicator,	PE_ExclusiveIndicatorMask,
PE_DockWindowHandle,	PE_DockWindowSeparator,
PE_DockWindowResizeHandle,	PE_Splitter,	PE_Panel,	PE_PanelPopup,
PE_PanelMenuBar,	PE_PanelDockWindow,	PE_TabBarBase,
PE_HeaderSection,	PE_HeaderArrow,	PE_StatusBarSection,
PE_GroupBoxFrame,	PE_Separator,	PE_SizeGrip,	PE_CheckMark,
PE_ScrollBarAddLine,	PE_ScrollBarSubLine,	PE_ScrollBarAddPage,
PE_ScrollBarSubPage,	PE_ScrollBarSlider,	PE_ScrollBarFirst,
PE_ScrollBarLast,	PE_ProgressBarChunk,	PE_PanelLineEdit,
PE_PanelTabWidget,	PE_WindowFrame,	PE_CustomBase	=	0xf000000	}
enum	StyleFlags	{	Style_Default	=	0x00000000,	Style_Enabled	=
0x00000001,	Style_Raised	=	0x00000002,	Style_Sunken	=	0x00000004,
Style_Off	=	0x00000008,	Style_NoChange	=	0x00000010,	Style_On	=
0x00000020,	Style_Down	=	0x00000040,	Style_Horizontal	=	0x00000080,
Style_HasFocus	=	0x00000100,	Style_Top	=	0x00000200,	Style_Bottom	=
0x00000400,	Style_FocusAtBorder	=	0x00000800,	Style_AutoRaise	=

0x00001000,	Style_MouseOver	=	0x00002000,	Style_Up	=	0x00004000,
Style_Selected	=	0x00008000,	Style_Active	=	0x00010000,
Style_ButtonDefault	=	0x00020000	}
virtual	void	drawPrimitive	(PrimitiveElement	pe,	QPainter	*	p,
const	QRect	&	r,	const	QColorGroup	&	cg,	SFlags	flags	=	Style_Default,
const	QStyleOption	&	opt	=	QStyleOption::Default)	const	=	0
enum	ControlElement	{	CE_PushButton,	CE_PushButtonLabel,
CE_CheckBox,	CE_CheckBoxLabel,	CE_RadioButton,
CE_RadioButtonLabel,	CE_TabBarTab,	CE_TabBarLabel,
CE_ProgressBarGroove,	CE_ProgressBarContents,	CE_ProgressBarLabel,
CE_PopupMenuItem,	CE_MenuBarItem,	CE_ToolButtonLabel,
CE_PopupMenuScroller,	CE_CustomBase	=	0xf0000000	}
virtual	void	drawControl	(ControlElement	element,	QPainter	*	p,
const	QWidget	*	widget,	const	QRect	&	r,	const	QColorGroup	&	cg,
SFlags	how	=	Style_Default,	const	QStyleOption	&	opt	=
QStyleOption::Default)	const	=	0
virtual	void	drawControlMask	(ControlElement	element,	QPainter	*	p,
const	QWidget	*	widget,	const	QRect	&	r,	const	QStyleOption	&	opt	=
QStyleOption::Default)	const	=	0
enum	SubRect	{	SR_PushButtonContents,	SR_PushButtonFocusRect,
SR_CheckBoxIndicator,	SR_CheckBoxContents,	SR_CheckBoxFocusRect,
SR_RadioButtonIndicator,	SR_RadioButtonContents,
SR_RadioButtonFocusRect,	SR_ComboBoxFocusRect,
SR_SliderFocusRect,	SR_DockWindowHandleRect,
SR_ProgressBarGroove,	SR_ProgressBarContents,	SR_ProgressBarLabel,
SR_ToolButtonContents,	SR_CustomBase	=	0xf0000000	}
virtual	QRect	subRect	(SubRect	subrect,	const	QWidget	*	widget)	const	=
0
enum	ComplexControl	{	CC_SpinWidget,	CC_ComboBox,	CC_ScrollBar,
CC_Slider,	CC_ToolButton,	CC_TitleBar,	CC_ListView,	CC_CustomBase
=	0xf0000000	}
enum	SubControl	{	SC_None	=	0x00000000,	SC_ScrollBarAddLine	=
0x00000001,	SC_ScrollBarSubLine	=	0x00000002,	SC_ScrollBarAddPage
=	0x00000004,	SC_ScrollBarSubPage	=	0x00000008,	SC_ScrollBarFirst	=
0x00000010,	SC_ScrollBarLast	=	0x00000020,	SC_ScrollBarSlider	=
0x00000040,	SC_ScrollBarGroove	=	0x00000080,	SC_SpinWidgetUp	=
0x00000001,	SC_SpinWidgetDown	=	0x00000002,	SC_SpinWidgetFrame
=	0x00000004,	SC_SpinWidgetEditField	=	0x00000008,
SC_SpinWidgetButtonField	=	0x00000010,	SC_ComboBoxFrame	=

0x00000001,	SC_ComboBoxEditField	=	0x00000002,
SC_ComboBoxArrow	=	0x00000004,	SC_SliderGroove	=	0x00000001,
SC_SliderHandle	=	0x00000002,	SC_SliderTickmarks	=	0x00000004,
SC_ToolButton	=	0x00000001,	SC_ToolButtonMenu	=	0x00000002,
SC_TitleBarLabel	=	0x00000001,	SC_TitleBarSysMenu	=	0x00000002,
SC_TitleBarMinButton	=	0x00000004,	SC_TitleBarMaxButton	=
0x00000008,	SC_TitleBarCloseButton	=	0x00000010,
SC_TitleBarNormalButton	=	0x00000020,	SC_TitleBarShadeButton	=
0x00000040,	SC_TitleBarUnshadeButton	=	0x00000080,	SC_ListView	=
0x00000001,	SC_ListViewBranch	=	0x00000002,	SC_ListViewExpand	=
0x00000004,	SC_All	=	0xffffffff	}
virtual	void	drawComplexControl	(ComplexControl	control,
QPainter	*	p,	const	QWidget	*	widget,	const	QRect	&	r,
const	QColorGroup	&	cg,	SFlags	how	=	Style_Default,	SCFlags	sub	=
SC_All,	SCFlags	subActive	=	SC_None,	const	QStyleOption	&	opt	=
QStyleOption::Default)	const	=	0
virtual	void	drawComplexControlMask	(ComplexControl	control,
QPainter	*	p,	const	QWidget	*	widget,	const	QRect	&	r,
const	QStyleOption	&	opt	=	QStyleOption::Default)	const	=	0
virtual	QRect	querySubControlMetrics	(ComplexControl	control,
const	QWidget	*	widget,	SubControl	subcontrol,	const	QStyleOption	&	opt
=	QStyleOption::Default)	const	=	0
virtual	SubControl	querySubControl	(ComplexControl	control,
const	QWidget	*	widget,	const	QPoint	&	pos,	const	QStyleOption	&	opt	=
QStyleOption::Default)	const	=	0
enum	PixelMetric	{	PM_ButtonMargin,	PM_ButtonDefaultIndicator,
PM_MenuButtonIndicator,	PM_ButtonShiftHorizontal,
PM_ButtonShiftVertical,	PM_DefaultFrameWidth,
PM_SpinBoxFrameWidth,	PM_MaximumDragDistance,
PM_ScrollBarExtent,	PM_ScrollBarSliderMin,	PM_SliderThickness,
PM_SliderControlThickness,	PM_SliderLength,
PM_SliderTickmarkOffset,	PM_SliderSpaceAvailable,
PM_DockWindowSeparatorExtent,	PM_DockWindowHandleExtent,
PM_DockWindowFrameWidth,	PM_MenuBarFrameWidth,
PM_TabBarTabOverlap,	PM_TabBarTabHSpace,	PM_TabBarTabVSpace,
PM_TabBarBaseHeight,	PM_TabBarBaseOverlap,
PM_ProgressBarChunkWidth,	PM_SplitterWidth,	PM_TitleBarHeight,
PM_IndicatorWidth,	PM_IndicatorHeight,	PM_ExclusiveIndicatorWidth,
PM_ExclusiveIndicatorHeight,	PM_PopupMenuScrollerHeight,

PM_CustomBase	=	0xf0000000	}
virtual	int	pixelMetric	(PixelMetric	metric,	const	QWidget	*	widget	=	0)
const	=	0
enum	ContentsType	{	CT_PushButton,	CT_CheckBox,	CT_RadioButton,
CT_ToolButton,	CT_ComboBox,	CT_Splitter,	CT_DockWindow,
CT_ProgressBar,	CT_PopupMenuItem,	CT_CustomBase	=	0xf0000000	}
virtual	QSize	sizeFromContents	(ContentsType	contents,
const	QWidget	*	widget,	const	QSize	&	contentsSize,
const	QStyleOption	&	opt	=	QStyleOption::Default)	const	=	0
enum	StyleHint	{	SH_EtchDisabledText,	SH_GUIStyle,
SH_ScrollBar_BackgroundMode,
SH_ScrollBar_MiddleClickAbsolutePosition,
SH_ScrollBar_ScrollWhenPointerLeavesControl,
SH_TabBar_SelectMouseType,	SH_TabBar_Alignment,
SH_Header_ArrowAlignment,	SH_Slider_SnapToValue,
SH_Slider_SloppyKeyEvents,	SH_ProgressDialog_CenterCancelButton,
SH_ProgressDialog_TextLabelAlignment,
SH_PrintDialog_RightAlignButtons,
SH_MainWindow_SpaceBelowMenuBar,
SH_FontDialog_SelectAssociatedText,
SH_PopupMenu_AllowActiveAndDisabled,
SH_PopupMenu_SpaceActivatesItem,
SH_PopupMenu_SubMenuPopupDelay,
SH_ScrollView_FrameOnlyAroundContents,
SH_MenuBar_AltKeyNavigation,	SH_ComboBox_ListMouseTracking,
SH_PopupMenu_MouseTracking,	SH_MenuBar_MouseTracking,
SH_ItemView_ChangeHighlightOnFocus,	SH_Widget_ShareActivation,
SH_Workspace_FillSpaceOnMaximize,	SH_ComboBox_Popup,
SH_TitleBar_NoBorder,	SH_ScrollBar_StopMouseOverSlider,
SH_BlinkCursorWhenTextSelected,	SH_RichText_FullWidthSelection,
SH_PopupMenu_Scrollable,	SH_CustomBase	=	0xf0000000	}
virtual	int	styleHint	(StyleHint	stylehint,	const	QWidget	*	widget	=	0,
const	QStyleOption	&	opt	=	QStyleOption::Default,
QStyleHintReturn	*	returnData	=	0)	const	=	0
enum	StylePixmap	{	SP_TitleBarMinButton,	SP_TitleBarMaxButton,
SP_TitleBarCloseButton,	SP_TitleBarNormalButton,
SP_TitleBarShadeButton,	SP_TitleBarUnshadeButton,
SP_DockWindowCloseButton,	SP_MessageBoxInformation,
SP_MessageBoxWarning,	SP_MessageBoxCritical,	SP_CustomBase	=

0xf0000000	}
virtual	QPixmap	stylePixmap	(StylePixmap	stylepixmap,
const	QWidget	*	widget	=	0,	const	QStyleOption	&	opt	=
QStyleOption::Default)	const	=	0
int	defaultFrameWidth	()	const		(obsolete)
void	tabbarMetrics	(const	QWidget	*	t,	int	&	hf,	int	&	vf,	int	&	ov)	const
	(obsolete)
QSize	scrollBarExtent	()	const		(obsolete)

Static	Public	Members

QRect	visualRect	(const	QRect	&	logical,	const	QWidget	*	w)
QRect	visualRect	(const	QRect	&	logical,	const	QRect	&	bounding)

Detailed	Description

The	QStyle	class	specifies	the	look	and	feel	of	a	GUI.

A	large	number	of	GUI	elements	are	common	to	many	widgets.	The	QStyle	class
allows	the	look	of	these	elements	to	be	modified	across	all	widgets	that	use	the
QStyle	functions.	It	also	provides	two	feel	options:	Motif	and	Windows.

Although	it	is	not	possible	to	fully	enumerate	the	look	of	graphical	elements	and
the	feel	of	widgets	in	a	GUI,	QStyle	provides	a	considerable	amount	of	control
and	customisability.

In	Qt	1.x	the	look	and	feel	option	for	widgets	was	specified	by	a	single	value:
the	GUIStyle.	Starting	with	Qt	2.0,	this	notion	was	expanded	to	allow	the	look	to
be	specified	by	virtual	drawing	functions.

Derived	classes	may	reimplement	some	or	all	of	the	drawing	functions	to	modify
the	look	of	all	widgets	that	use	those	functions.

Languages	written	from	right	to	left	(such	as	Arabic	and	Hebrew)	usually	also
mirror	the	whole	layout	of	widgets.	If	you	design	a	style,	you	should	take	special
care	when	drawing	asymmetric	elements	to	make	sure	that	they	also	look	correct
in	a	mirrored	layout.	You	can	start	your	application	with	-reverse	to	check	the
mirrored	layout.	Also	notice,	that	for	a	reversed	layout,	the	light	usually	comes
from	top	right	instead	of	top	left.

The	actual	reverse	layout	is	performed	automatically	when	possible.	However,
for	the	sake	of	flexibility,	the	translation	cannot	be	performed	everywhere.	The
documentation	for	each	function	in	the	QStyle	API	states	whether	the	function
expects/returns	logical	or	screen	coordinates.	Using	logical	coordinates	(in
ComplexControls,	for	example)	provides	great	flexibility	in	controlling	the	look
of	a	widget.	Use	visualRect()	when	necessary	to	translate	logical	coordinates
into	screen	coordinates	for	drawing.

In	Qt	versions	prior	to	3.0,	if	you	wanted	a	low	level	route	into	changing	the
appearance	of	a	widget,	you	would	reimplement	polish().	With	the	new	3.0	style
engine	the	recommended	approach	is	to	reimplement	the	draw	functions,	for
example	drawItem(),	drawPrimitive(),	drawControl(),	drawControlMask(),

drawComplexControl()	and	drawComplexControlMask().	Each	of	these
functions	is	called	with	a	range	of	parameters	that	provide	information	that	you
can	use	to	determine	how	to	draw	them,	e.g.	style	flags,	rectangle,	color	group,
etc.

For	information	on	changing	elements	of	an	existing	style	or	creating	your	own
style	see	the	Style	overview.

Styles	can	also	be	created	as	plugins.

See	also	Widget	Appearance	and	Style.

Member	Type	Documentation

QStyle::ComplexControl

This	enum	represents	a	ComplexControl.	ComplexControls	have	different
behaviour	depending	upon	where	the	user	clicks	on	them	or	which	keys	are
pressed.

QStyle::CC_SpinWidget

QStyle::CC_ComboBox

QStyle::CC_ScrollBar

QStyle::CC_Slider

QStyle::CC_ToolButton

QStyle::CC_TitleBar

QStyle::CC_ListView

QStyle::CC_CustomBase	-	base	value	for	custom	ControlElements.	All
values	above	this	are	reserved	for	custom	use.	Therefore,	custom	values
must	be	greater	than	this	value.

See	also	SubControl	and	drawComplexControl().

QStyle::ContentsType

This	enum	represents	a	ContentsType.	It	is	used	to	calculate	sizes	for	the
contents	of	various	widgets.

QStyle::CT_PushButton

QStyle::CT_CheckBox

QStyle::CT_RadioButton

QStyle::CT_ToolButton

QStyle::CT_ComboBox

QStyle::CT_Splitter

QStyle::CT_DockWindow

QStyle::CT_ProgressBar

QStyle::CT_PopupMenuItem

QStyle::CT_CustomBase	-	base	value	for	custom	ControlElements.	All

values	above	this	are	reserved	for	custom	use.	Therefore,	custom	values
must	be	greater	than	this	value.

See	also	sizeFromContents().

QStyle::ControlElement

This	enum	represents	a	ControlElement.	A	ControlElement	is	part	of	a	widget
that	performs	some	action	or	displays	information	to	the	user.

QStyle::CE_PushButton	-	the	bevel	and	default	indicator	of	a
QPushButton.
QStyle::CE_PushButtonLabel	-	the	label	(iconset	with	text	or	pixmap)	of	a
QPushButton.

QStyle::CE_CheckBox	-	the	indicator	of	a	QCheckBox.
QStyle::CE_CheckBoxLabel	-	the	label	(text	or	pixmap)	of	a	QCheckBox.

QStyle::CE_RadioButton	-	the	indicator	of	a	QRadioButton.
QStyle::CE_RadioButtonLabel	-	the	label	(text	or	pixmap)	of	a
QRadioButton.

QStyle::CE_TabBarTab	-	the	tab	within	a	QTabBar	(a	QTab).
QStyle::CE_TabBarLabel	-	the	label	within	a	QTab.

QStyle::CE_ProgressBarGroove	-	the	groove	where	the	progress	indicator
is	drawn	in	a	QProgressBar.
QStyle::CE_ProgressBarContents	-	the	progress	indicator	of	a
QProgressBar.
QStyle::CE_ProgressBarLabel	-	the	text	label	of	a	QProgressBar.

QStyle::CE_PopupMenuItem	-	a	menu	item	in	a	QPopupMenu.
QStyle::CE_PopupMenuScroller	-	scrolling	areas	in	a	popumenu	when	the
style	supports	scrolling.
QStyle::CE_MenuBarItem	-	a	menu	item	in	a	QMenuBar.
QStyle::CE_ToolButtonLabel	-	a	tool	button's	label.

QStyle::CE_CustomBase	-	base	value	for	custom	ControlElements.	All
values	above	this	are	reserved	for	custom	use.	Therefore,	custom	values
must	be	greater	than	this	value.

See	also	drawControl().

QStyle::PixelMetric

This	enum	represents	a	PixelMetric.	A	PixelMetric	is	a	style	dependent	size
represented	as	a	single	pixel	value.

QStyle::PM_ButtonMargin	-	amount	of	whitespace	between	pushbutton
labels	and	the	frame.
QStyle::PM_ButtonDefaultIndicator	-	width	of	the	default-button
indicator	frame.
QStyle::PM_MenuButtonIndicator	-	width	of	the	menu	button	indicator
proportional	to	the	widget	height.
QStyle::PM_ButtonShiftHorizontal	-	horizontal	contents	shift	of	a	button
when	the	button	is	down.
QStyle::PM_ButtonShiftVertical	-	vertical	contents	shift	of	a	button
when	the	button	is	down.

QStyle::PM_DefaultFrameWidth	-	default	frame	width,	usually	2.
QStyle::PM_SpinBoxFrameWidth	-	frame	width	of	a	spin	box.

QStyle::PM_MaximumDragDistance	-	Some	feels	require	the	scrollbar	or
other	sliders	to	jump	back	to	the	original	position	when	the	mouse	pointer	is
too	far	away	while	dragging.	A	value	of	-1	disables	this	behavior.

QStyle::PM_ScrollBarExtent	-	width	of	a	vertical	scrollbar	and	the	height
of	a	horizontal	scrollbar.
QStyle::PM_ScrollBarSliderMin	-	the	minimum	height	of	a	vertical
scrollbar's	slider	and	the	minimum	width	of	a	horiztonal	scrollbar	slider.

QStyle::PM_SliderThickness	-	total	slider	thickness.
QStyle::PM_SliderControlThickness	-	thickness	of	the	slider	handle.
QStyle::PM_SliderLength	-	length	of	the	slider.
QStyle::PM_SliderTickmarkOffset	-	the	offset	between	the	tickmarks	and
the	slider.
QStyle::PM_SliderSpaceAvailable	-	the	available	space	for	the	slider	to
move.

QStyle::PM_DockWindowSeparatorExtent	-	width	of	a	separator	in	a

horiztonal	dock	window	and	the	height	of	a	separator	in	a	vertical	dock
window.
QStyle::PM_DockWindowHandleExtent	-	width	of	the	handle	in	a	horizontal
dock	window	and	the	height	of	the	handle	in	a	vertical	dock	window.
QStyle::PM_DockWindowFrameWidth	-	frame	width	of	a	dock	window.

QStyle::PM_MenuBarFrameWidth	-	frame	width	of	a	menubar.

QStyle::PM_TabBarTabOverlap	-	number	of	pixels	the	tabs	should	overlap.
QStyle::PM_TabBarTabHSpace	-	extra	space	added	to	the	tab	width.
QStyle::PM_TabBarTabVSpace	-	extra	space	added	to	the	tab	height.
QStyle::PM_TabBarBaseHeight	-	height	of	the	area	between	the	tab	bar	and
the	tab	pages.
QStyle::PM_TabBarBaseOverlap	-	number	of	pixels	the	tab	bar	overlaps
the	tab	bar	base.

QStyle::PM_ProgressBarChunkWidth	-	width	of	a	chunk	in	a	progress	bar
indicator.

QStyle::PM_SplitterWidth	-	width	of	a	splitter.
QStyle::PM_TitleBarHeight	-	height	of	the	title	bar.
QStyle::PM_IndicatorWidth	-	width	of	a	check	box	indicator.
QStyle::PM_IndicatorHeight	-	height	of	a	checkbox	indicator.
QStyle::PM_ExclusiveIndicatorWidth	-	width	of	a	radio	button	indicator.
QStyle::PM_ExclusiveIndicatorHeight	-	height	of	a	radio	button
indicator.
QStyle::PM_PopupMenuScrollerHeight	-	height	of	the	scroller	area	in	a
popupmenu.
QStyle::PM_CustomBase	-	base	value	for	custom	ControlElements.	All
values	above	this	are	reserved	for	custom	use.	Therefore,	custom	values
must	be	greater	than	this	value.

See	also	pixelMetric().

QStyle::PrimitiveElement

This	enum	represents	the	PrimitiveElements	of	a	style.	A	PrimitiveElement	is	a
common	GUI	element,	such	as	a	checkbox	indicator	or	pushbutton	bevel.

QStyle::PE_ButtonCommand	-	button	used	to	initiate	an	action,	for	example,
a	QPushButton.
QStyle::PE_ButtonDefault	-	this	button	is	the	default	button,	e.g.	in	a
dialog.
QStyle::PE_ButtonBevel	-	generic	button	bevel.
QStyle::PE_ButtonTool	-	tool	button,	for	example,	a	QToolButton.
QStyle::PE_ButtonDropDown	-	drop	down	button,	for	example,	a	tool
button	that	displays	a	popup	menu,	for	example,	QPopupMenu.

QStyle::PE_FocusRect	-	generic	focus	indicator.

QStyle::PE_ArrowUp	-	up	arrow.
QStyle::PE_ArrowDown	-	down	arrow.
QStyle::PE_ArrowRight	-	right	arrow.
QStyle::PE_ArrowLeft	-	left	arrow.

QStyle::PE_SpinWidgetUp	-	up	symbol	for	a	spin	widget,	for	example	a
QSpinBox.
QStyle::PE_SpinWidgetDown	-	down	symbol	for	a	spin	widget.
QStyle::PE_SpinWidgetPlus	-	increase	symbol	for	a	spin	widget.
QStyle::PE_SpinWidgetMinus	-	decrease	symbol	for	a	spin	widget.

QStyle::PE_Indicator	-	on/off	indicator,	for	example,	a	QCheckBox.
QStyle::PE_IndicatorMask	-	bitmap	mask	for	an	indicator.
QStyle::PE_ExclusiveIndicator	-	exclusive	on/off	indicator,	for
example,	a	QRadioButton.
QStyle::PE_ExclusiveIndicatorMask	-	bitmap	mask	for	an	exclusive
indicator.

QStyle::PE_DockWindowHandle	-	tear	off	handle	for	dock	windows	and
toolbars,	for	example	QDockWindows	and	QToolBars.
QStyle::PE_DockWindowSeparator	-	item	separator	for	dock	window	and
toolbar	contents.
QStyle::PE_DockWindowResizeHandle	-	resize	handle	for	dock	windows.
QStyle::PE_Splitter	-	splitter	handle;	see	also	QSplitter.

QStyle::PE_Panel	-	generic	panel	frame;	see	also	QFrame.
QStyle::PE_PanelPopup	-	panel	frame	for	popup	windows/menus;	see	also
QPopupMenu.

QStyle::PE_PanelMenuBar	-	panel	frame	for	menu	bars.
QStyle::PE_PanelDockWindow	-	panel	frame	for	dock	windows	and
toolbars.
QStyle::PE_PanelTabWidget	-	panel	frame	for	tab	widgets.
QStyle::PE_PanelLineEdit	-	panel	frame	for	line	edits.
QStyle::PE_TabBarBase	-	area	below	tabs	in	a	tab	widget,	for	example,
QTab.

QStyle::PE_HeaderSection	-	section	of	a	list	or	table	header;	see	also
QHeader.
QStyle::PE_HeaderArrow	-	arrow	used	to	indicate	sorting	on	a	list	or	table
header
QStyle::PE_StatusBarSection	-	section	of	a	status	bar;	see	also
QStatusBar.

QStyle::PE_GroupBoxFrame	-	frame	around	a	group	box;	see	also
QGroupBox.
QStyle::PE_WindowFrame	-	frame	around	a	MDI	or	docking	window

QStyle::PE_Separator	-	generic	separator.

QStyle::PE_SizeGrip	-	window	resize	handle;	see	also	QSizeGrip.

QStyle::PE_CheckMark	-	generic	check	mark;	see	also	QCheckBox.

QStyle::PE_ScrollBarAddLine	-	scrollbar	line	increase	indicator	(i.e.
scroll	down);	see	also	QScrollBar.
QStyle::PE_ScrollBarSubLine	-	scrollbar	line	decrease	indicator	(i.e.
scroll	up).
QStyle::PE_ScrollBarAddPage	-	scolllbar	page	increase	indicator	(i.e.
page	down).
QStyle::PE_ScrollBarSubPage	-	scrollbar	page	decrease	indicator	(i.e.
page	up).
QStyle::PE_ScrollBarSlider	-	scrollbar	slider
QStyle::PE_ScrollBarFirst	-	scrollbar	first	line	indicator	(i.e.	home).
QStyle::PE_ScrollBarLast	-	scrollbar	last	line	indicator	(i.e.	end).

QStyle::PE_ProgressBarChunk	-	section	of	a	progress	bar	indicator;	see
also	QProgressBar.
QStyle::PE_CustomBase	-	base	value	for	custom	ControlElements.	All

values	above	this	are	reserved	for	custom	use.	Therefore,	custom	values
must	be	greater	than	this	value.

See	also	drawPrimitive().

QStyle::StyleFlags

This	enum	represents	flags	for	drawing	PrimitiveElements.	Not	all	primitives
use	all	of	these	flags.	Note	that	these	flags	may	mean	different	things	to	different
primitives.	For	an	explanation	of	the	relationship	between	primitives	and	their
flags,	as	well	as	the	different	meanings	of	the	flags,	see	the	Style	overview.

QStyle::Style_Default

QStyle::Style_Enabled

QStyle::Style_Raised

QStyle::Style_Sunken

QStyle::Style_Off

QStyle::Style_NoChange

QStyle::Style_On

QStyle::Style_Down

QStyle::Style_Horizontal

QStyle::Style_HasFocus

QStyle::Style_Top

QStyle::Style_Bottom

QStyle::Style_FocusAtBorder

QStyle::Style_AutoRaise

QStyle::Style_MouseOver

QStyle::Style_Up

QStyle::Style_Selected

QStyle::Style_HasFocus

QStyle::Style_Active

QStyle::Style_ButtonDefault

See	also	drawPrimitive().

QStyle::StyleHint

This	enum	represents	a	StyleHint.	A	StyleHint	is	a	general	look	and/or	feel	hint.

QStyle::SH_EtchDisabledText	-	disabled	text	is	"etched"	like	Windows.
QStyle::SH_GUIStyle	-	the	GUI	style	to	use.
QStyle::SH_ScrollBar_BackgroundMode	-	the	background	mode	for	a
QScrollBar.	Possible	values	are	any	of	those	in	the	BackgroundMode	enum.
QStyle::SH_ScrollBar_MiddleClickAbsolutePosition	-	a	boolean	value.
If	TRUE,	middle	clicking	on	a	scrollbar	causes	the	slider	to	jump	to	that
position.	If	FALSE,	the	middle	clicking	is	ignored.
QStyle::SH_ScrollBar_ScrollWhenPointerLeavesControl	-	a	boolean
value.	If	TRUE,	when	clicking	a	scrollbar	SubControl,	holding	the	mouse
button	down	and	moving	the	pointer	outside	the	SubControl,	the	scrollbar
continues	to	scroll.	If	FALSE,	the	scollbar	stops	scrolling	when	the	pointer
leaves	the	SubControl.

QStyle::SH_TabBar_Alignment	-	the	alignment	for	tabs	in	a	QTabWidget.
Possible	values	are	Qt::AlignLeft,	Qt::AlignCenter	and	Qt::AlignRight.
QStyle::SH_Header_ArrowAlignment	-	the	placement	of	the	sorting
indicator	may	appear	in	list	or	table	headers.	Possible	values	are	Qt::Left	or
Qt::Right.
QStyle::SH_Slider_SnapToValue	-	sliders	snap	to	values	while	moving,
like	Windows
QStyle::SH_Slider_SloppyKeyEvents	-	key	presses	handled	in	a	sloppy
manner,	i.e.	left	on	a	vertical	slider	subtracts	a	line.
QStyle::SH_ProgressDialog_CenterCancelButton	-	center	button	on
progress	dialogs,	like	Motif,	otherwise	right	aligned.
QStyle::SH_ProgressDialog_TextLabelAlignment	-	Qt::AlignmentFlags
--	text	label	alignment	in	progress	dialogs;	Center	on	windows,
Auto|VCenter	otherwise.
QStyle::SH_PrintDialog_RightAlignButtons	-	right	align	buttons	in	the
print	dialog,	like	Windows.
QStyle::SH_MainWindow_SpaceBelowMenuBar	-	1	or	2	pixel	space	between
the	menubar	and	the	dockarea,	like	Windows.
QStyle::SH_FontDialog_SelectAssociatedText	-	select	the	text	in	the
line	edit,	or	when	selecting	an	item	from	the	listbox,	or	when	the	line	edit
receives	focus,	like	Windows.
QStyle::SH_PopupMenu_AllowActiveAndDisabled	-	allows	disabled	menu
items	to	be	active.
QStyle::SH_PopupMenu_SpaceActivatesItem	-	pressing	Space	activates
the	item,	like	Motif.
QStyle::SH_PopupMenu_SubMenuPopupDelay	-	the	number	of	milliseconds

to	wait	before	opening	a	submenu;	256	on	windows,	96	on	Motif.
QStyle::SH_ScrollView_FrameOnlyAroundContents	-	whether	scrollviews
draw	their	frame	only	around	contents	(like	Motif),	or	around	contents,
scrollbars	and	corner	widgets	(like	Windows).
QStyle::SH_MenuBar_AltKeyNavigation	-	menubars	items	are	navigable
by	pressing	Alt,	followed	by	using	the	arrow	keys	to	select	the	desired	item.
QStyle::SH_ComboBox_ListMouseTracking	-	mouse	tracking	in	combobox
dropdown	lists.
QStyle::SH_PopupMenu_MouseTracking	-	mouse	tracking	in	popup	menus.
QStyle::SH_MenuBar_MouseTracking	-	mouse	tracking	in	menubars.
QStyle::SH_ItemView_ChangeHighlightOnFocus	-	gray	out	selected	items
when	losing	focus.
QStyle::SH_Widget_ShareActivation	-	turn	on	sharing	activation	with
floating	modeless	dialogs.
QStyle::SH_TabBar_SelectMouseType	-	which	type	of	mouse	event	should
cause	a	tab	to	be	selected.
QStyle::SH_ComboBox_Popup	-	allows	popups	as	a	combobox	dropdown
menu.
QStyle::SH_Workspace_FillSpaceOnMaximize	-	the	workspace	should
maximize	the	client	area.
QStyle::SH_TitleBar_NoBorder	-	the	titlebar	has	no	border
QStyle::SH_ScrollBar_StopMouseOverSlider	-	stops	autorepeat	when
slider	reaches	mouse
QStyle::SH_BlinkCursorWhenTextSelected	-	whether	cursor	should	blink
when	text	is	selected
QStyle::SH_RichText_FullWidthSelection	-	whether	richtext	selections
should	extend	the	full	width	of	the	document.
QStyle::SH_PopupMenu_Scrollable	-	whether	popupmenu's	must	support
scrolling.
QStyle::SH_CustomBase	-	base	value	for	custom	ControlElements.	All
values	above	this	are	reserved	for	custom	use.	Therefore,	custom	values
must	be	greater	than	this	value.

See	also	styleHint().

QStyle::StylePixmap

This	enum	represents	a	StylePixmap.	A	StylePixmap	is	a	pixmap	that	can	follow
some	existing	GUI	style	or	guideline.

QStyle::SP_TitleBarMinButton	-	minimize	button	on	titlebars.	For
example,	in	a	QWorkspace.
QStyle::SP_TitleBarMaxButton	-	maximize	button	on	titlebars.
QStyle::SP_TitleBarCloseButton	-	close	button	on	titlebars.
QStyle::SP_TitleBarNormalButton	-	normal	(restore)	button	on	titlebars.
QStyle::SP_TitleBarShadeButton	-	shade	button	on	titlebars.
QStyle::SP_TitleBarUnshadeButton	-	unshade	button	on	titlebars.
QStyle::SP_MessageBoxInformation	-	the	'information'	icon.
QStyle::SP_MessageBoxWarning	-	the	'warning'	icon.
QStyle::SP_MessageBoxCritical	-	the	'critical'	icon.

QStyle::SP_DockWindowCloseButton	-	close	button	on	dock	windows;	see
also	QDockWindow.

QStyle::SP_CustomBase	-	base	value	for	custom	ControlElements.	All
values	above	this	are	reserved	for	custom	use.	Therefore,	custom	values
must	be	greater	than	this	value.

See	also	stylePixmap().

QStyle::SubControl

This	enum	represents	a	SubControl	within	a	ComplexControl.

QStyle::SC_None	-	special	value	that	matches	no	other	SubControl.

QStyle::SC_ScrollBarAddLine	-	scrollbar	add	line	(i.e.	down/right	arrow);
see	also	QScrollbar.
QStyle::SC_ScrollBarSubLine	-	scrollbar	sub	line	(i.e.	up/left	arrow).
QStyle::SC_ScrollBarAddPage	-	scrollbar	add	page	(i.e.	page	down).
QStyle::SC_ScrollBarSubPage	-	scrollbar	sub	page	(i.e.	page	up).
QStyle::SC_ScrollBarFirst	-	scrollbar	first	line	(i.e.	home).
QStyle::SC_ScrollBarLast	-	scrollbar	last	line	(i.e.	end).
QStyle::SC_ScrollBarSlider	-	scrollbar	slider	handle.
QStyle::SC_ScrollBarGroove	-	special	subcontrol	which	contains	the	area
in	which	the	slider	handle	may	move.

QStyle::SC_SpinWidgetUp	-	spinwidget	up/increase;	see	also	QSpinBox.
QStyle::SC_SpinWidgetDown	-	spinwidget	down/decrease.

QStyle::SC_SpinWidgetFrame	-	spinwidget	frame.
QStyle::SC_SpinWidgetEditField	-	spinwidget	edit	field.
QStyle::SC_SpinWidgetButtonField	-	spinwidget	button	field.

QStyle::SC_ComboBoxEditField	-	combobox	edit	field;	see	also
QComboBox.
QStyle::SC_ComboBoxArrow	-	combobox	arrow
QStyle::SC_ComboBoxFrame	-	combobox	frame

QStyle::SC_SliderGroove	-	special	subcontrol	which	contains	the	area	in
which	the	slider	handle	may	move.
QStyle::SC_SliderHandle	-	slider	handle.
QStyle::SC_SliderTickmarks	-	slider	tickmarks.

QStyle::SC_ToolButton	-	tool	button;	see	also	QToolbutton.
QStyle::SC_ToolButtonMenu	-	subcontrol	for	opening	a	popup	menu	in	a
tool	button;	see	also	QPopupMenu.

QStyle::SC_TitleBarSysMenu	-	system	menu	button	(i.e.	restore,	close,
etc.).
QStyle::SC_TitleBarMinButton	-	minimize	button.
QStyle::SC_TitleBarMaxButton	-	maximize	button.
QStyle::SC_TitleBarCloseButton	-	close	button.
QStyle::SC_TitleBarLabel	-	window	title	label.
QStyle::SC_TitleBarNormalButton	-	normal	(restore)	button.
QStyle::SC_TitleBarShadeButton	-	shade	button.
QStyle::SC_TitleBarUnshadeButton	-	unshade	button.

QStyle::SC_ListView	-	the	list	view	area.
QStyle::SC_ListViewBranch	-	(internal)
QStyle::SC_ListViewExpand	-	expand	item	(i.e.	show/hide	child	items).

QStyle::SC_All	-	special	value	that	matches	all	SubControls.

See	also	ComplexControl.

QStyle::SubRect

This	enum	represents	a	sub-area	of	a	widget.	Style	implementations	would	use

these	areas	to	draw	the	different	parts	of	a	widget.

QStyle::SR_PushButtonContents	-	area	containing	the	label	(iconset	with
text	or	pixmap).
QStyle::SR_PushButtonFocusRect	-	area	for	the	focus	rect	(usually	larger
than	the	contents	rect).
QStyle::SR_CheckBoxIndicator	-	area	for	the	state	indicator	(e.g.	check
mark).
QStyle::SR_CheckBoxContents	-	area	for	the	label	(text	or	pixmap).
QStyle::SR_CheckBoxFocusRect	-	area	for	the	focus	indicator.

QStyle::SR_RadioButtonIndicator	-	area	for	the	state	indicator.
QStyle::SR_RadioButtonContents	-	area	for	the	label.
QStyle::SR_RadioButtonFocusRect	-	area	for	the	focus	indicator.

QStyle::SR_ComboBoxFocusRect	-	area	for	the	focus	indicator.

QStyle::SR_SliderFocusRect	-	area	for	the	focus	indicator.

QStyle::SR_DockWindowHandleRect	-	area	for	the	tear-off	handle.

QStyle::SR_ProgressBarGroove	-	area	for	the	groove.
QStyle::SR_ProgressBarContents	-	area	for	the	progress	indicator.
QStyle::SR_ProgressBarLabel	-	area	for	the	text	label.

QStyle::SR_ToolButtonContents	-	area	for	the	tool	button's	label.

QStyle::SR_CustomBase	-	base	value	for	custom	ControlElements.	All
values	above	this	are	reserved	for	custom	use.	Therefore,	custom	values
must	be	greater	than	this	value.

See	also	subRect().

Member	Function	Documentation

QStyle::QStyle	()

Constructs	a	QStyle.

QStyle::~QStyle	()	[virtual]

Destroys	the	style	and	frees	all	allocated	resources.

int	QStyle::defaultFrameWidth	()	const

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

void	QStyle::drawComplexControl	(ComplexControl	control,
QPainter	*	p,	const	QWidget	*	widget,	const	QRect	&	r,
const	QColorGroup	&	cg,	SFlags	how	=	Style_Default,
SCFlags	sub	=	SC_All,	SCFlags	subActive	=	SC_None,
const	QStyleOption	&	opt	=	QStyleOption::Default)	const
[pure	virtual]

Draws	the	ComplexControl	control	using	the	painter	p	in	the	area	r.	Colors	are
used	from	the	color	group	cg.	The	sub	argument	specifies	which	SubControls	to
draw.	Multiple	SubControls	can	be	OR'ed	together.	The	subActive	argument
specifies	which	SubControl	is	active.

The	rect	r	should	be	in	logical	coordinates.	Reimplementations	of	this	function
should	use	visualRect()	to	change	the	logical	coordinates	into	screen	coordinates
when	using	drawPrimitive()	and	drawControl().

The	how	argument	is	used	to	control	how	the	ComplexControl	is	drawn.
Multiple	flags	can	OR'ed	together.	See	the	table	below	for	an	explanation	of
which	flags	are	used	with	the	various	ComplexControls.

The	widget	argument	is	a	pointer	to	a	QWidget	or	one	of	its	subclasses.	The

widget	can	be	cast	to	the	appropriate	type	based	on	the	value	of	control.	The	opt
argument	can	be	used	to	pass	extra	information	required	when	drawing	the
ComplexControl.	Note	that	opt	may	be	the	default	value	even	for
ComplexControls	that	can	make	use	of	the	extra	options.	See	the	table	below	for
the	appropriate	widget	and	opt	usage:

ComplexControl	&
Widget	Cast Style	Flags Notes Options Notes

CC_SpinWidget(const
QSpinWidget	*)

Style_Enabled
Set	if	the
spinwidget
is	enabled.

Unused. 	

Style_HasFocus

Set	if	the
spinwidget
has	input
focus.

CC_ComboBox(const
QComboBox	*)

Style_Enabled
Set	if	the
combobox
is	enabled.

Unused. 	

Style_HasFocus

Set	if	the
combobox
has	input
focus.

CC_ScrollBar(const
QScrollBar	*)

Style_Enabled
Set	if	the
scrollbar
is	enabled.

Unused. 	

Style_HasFocus

Set	if	the
scrollbar
has	input
focus.

CC_Slider(const
QSlider	*)

Style_Enabled
Set	if	the
slider	is
enabled.

Unused. 	

Style_HasFocus

Set	if	the
slider	has
input
focus.
Set	if	the

CC_ToolButton(const
QToolButton	*)

Style_Enabled toolbutton
is	enabled.

QStyleOption	(
ArrowType	t)

opt.arrowType()

When
the	tool
button
only
contains
an
arrow,	
is	the
arrow's
type.

Style_HasFocus

Set	if	the
toolbutton
has	input
focus.

Style_Down

Set	if	the
toolbutton
is	down
(ie.	mouse
button	or
space
pressed).

Style_On

Set	if	the
toolbutton
is	a	toggle
button	and
is	toggled
on.

Style_AutoRaise

Set	if	the
toolbutton
has	auto-
raise
enabled.

Style_Raised

Set	if	the
button	is
not	down,
not	on	and
doesn't
contain
the	mouse
when
auto-raise
is	enabled.

CC_TitleBar(const
QWidget	*) Style_Enabled

Set	if	the
titlebar	is
enabled.

Unused. 	

CC_ListView(const
QListView	*) Style_Enabled

Set	if	the
titlebar	is
enabled.

QStyleOption	(
QListViewItem	*item)

opt.listViewItem()

item	is
the	item
that
needs
branches
drawn

See	also	ComplexControl	and	SubControl.

void	QStyle::drawComplexControlMask	(
ComplexControl	control,	QPainter	*	p,
const	QWidget	*	widget,	const	QRect	&	r,
const	QStyleOption	&	opt	=	QStyleOption::Default)	const
[pure	virtual]

Draw	a	bitmask	for	the	ComplexControl	control	using	the	painter	p	in	the	area	r.
See	drawComplexControl()	for	an	explanation	of	the	use	of	the	widget	and	opt
arguments.

The	rect	r	should	be	in	logical	coordinates.	Reimplementations	of	this	function
should	use	visualRect()	to	change	the	logical	corrdinates	into	screen	coordinates
when	using	drawPrimitive()	and	drawControl().

See	also	drawComplexControl()	and	ComplexControl.

void	QStyle::drawControl	(ControlElement	element,
QPainter	*	p,	const	QWidget	*	widget,	const	QRect	&	r,
const	QColorGroup	&	cg,	SFlags	how	=	Style_Default,
const	QStyleOption	&	opt	=	QStyleOption::Default)	const
[pure	virtual]

Draws	the	ControlElement	element	using	the	painter	p	in	the	area	r.	Colors	are
used	from	the	color	group	cg.

The	rect	r	should	be	in	screen	coordinates.

The	how	argument	is	used	to	control	how	the	ControlElement	is	drawn.	Multiple
flags	can	be	OR'ed	together.	See	the	table	below	for	an	explanation	of	which

flags	are	used	with	the	various	ControlElements.

The	widget	argument	is	a	pointer	to	a	QWidget	or	one	of	its	subclasses.	The
widget	can	be	cast	to	the	appropriate	type	based	on	the	value	of	element.	The	opt
argument	can	be	used	to	pass	extra	information	required	when	drawing	the
ControlElement.	Note	that	opt	may	be	the	default	value	even	for
ControlElements	that	can	make	use	of	the	extra	options.	See	the	table	below	for
the	appropriate	widget	and	opt	usage:

ControlElement	&	Widget
Cast Style	Flags Notes Options

CE_PushButton(const
QPushButton	*)

and

CE_PushButtonLabel(const
QPushButton	*)

Style_Enabled
Set	if	the
button	is
enabled.

Unused.

Style_HasFocus
Set	if	the
button	has
input	focus.

Style_Raised

Set	if	the
button	is	not
down,	not
on	and	not
flat.

Style_On

Set	if	the
button	is	a
toggle
button	and
toggled	on.

Style_Down

Set	if	the
button	is
down	(i.e.,
the	mouse
button	or
space	bar	is
pressed	on
the	button).

Style_ButtonDefault

Set	if	the
button	is	a
default

button.

CE_CheckBox(const
QCheckBox	*)

and

CE_CheckBoxLabel(const
QCheckBox	*)

Style_Enabled
Set	if	the
checkbox	is
enabled.

Unused.

Style_HasFocus

Set	if	the
checkbox
has	input
focus.

Style_On
Set	if	the
checkbox	is
checked.

Style_Off
Set	if	the
checkbox	is
not	checked.

Style_NoChange

Set	if	the
checkbox	is
in	the
NoChange
state.

Style_Down

Set	if	the
checkbox	is
down	(i.e.,
the	mouse
button	or
space	bar	is
pressed	on
the	button).

CE_RadioButton(const
QRadioButton	*)

Style_Enabled
Set	if	the
radiobutton
is	enabled.

Style_HasFocus

Set	if	the
radiobutton
has	input
focus.

Style_On
Set	if	the
radiobutton
is	checked.

and

CE_RadioButtonLabel(const
QRadioButton	*)

Style_Off
Set	if	the
radiobutton
is	not
checked.

Unused.

Style_Down

Set	if	the
radiobutton
is	down	(i.e.,
the	mouse
button	or
space	bar	is
pressed	on
the
radiobutton).

CE_TabBarTab(const	QTabBar
*)

and

CE_TabBarLabel(const
QTabBar	*)

Style_Enabled

Set	if	the
tabbar	and
tab	is
enabled.

QStyleOption
)

opt.tab()
Style_Selected

Set	if	the	tab
is	the
current	tab.

CE_ProgressBarGroove(const
QProgressBar	*)

and

CE_ProgressBarContents(const
QProgressBar	*)

and

CE_ProgressBarLabel(const
QProgressBar	*)

Style_Enabled
Set	if	the
progressbar
is	enabled.

Unused.

Style_HasFocus

Set	if	the
progressbar
has	input
focus.

Style_Enabled
Set	if	the
menuitem	is
enabled.

CE_PopupMenuItem(const
QPopupMenu	*)

QStyleOption
QMenuItem	*mi,	int
tabwidth,	int
maxpmwidth)

opt.menuItem
opt.tabWidth
opt.maxIconWidth

Style_Active

Set	if	the
menuitem	is
the	current
item.

Style_Down

Set	if	the
menuitem	is
down	(i.e.,
the	mouse
button	or
space	bar	is
pressed).

CE_MenuBarItem(const
QMenuBar	*)

Style_Enabled
Set	if	the
menuitem	is
enabled

QStyleOption
QMenuItem	*mi)

opt.menuItem

Style_Active

Set	if	the
menuitem	is
the	current
item.

Style_Down

Set	if	the
menuitem	is
down	(i.e.,	a
mouse
button	or	the
space	bar	is
pressed).

Style_HasFocus
Set	if	the
menubar	has
input	focus.

CE_ToolButtonLabel(const
QToolButton	*)

Style_Enabled Set	if	the
toolbutton	is
enabled.

QStyleOption
ArrowType	t)

opt.arrowType

Style_HasFocus

Set	if	the
toolbutton
has	input
focus.

Style_Down

Set	if	the
toolbutton	is
down	(i.e.,	a
mouse
button	or	the
space	is
pressed).

Style_On

Set	if	the
toolbutton	is
a	toggle
button	and	is
toggled	on.

Style_AutoRaise

Set	if	the
toolbutton
has	auto-
raise
enabled.

Style_MouseOver

Set	if	the
mouse
pointer	is
over	the
toolbutton.

Style_Raised

Set	if	the
button	is	not
down,	not
on	and
doesn't
contain	the
mouse	when
auto-raise	is
enabled.

See	also	ControlElement	and	StyleFlags.

void	QStyle::drawControlMask	(ControlElement	element,
QPainter	*	p,	const	QWidget	*	widget,	const	QRect	&	r,
const	QStyleOption	&	opt	=	QStyleOption::Default)	const
[pure	virtual]

Draw	a	bitmask	for	the	ControlElement	element	using	the	painter	p	in	the	area	r.
See	drawControl()	for	an	explanation	of	the	use	of	the	widget	and	opt	arguments.

The	rect	r	should	be	in	screen	coordinates.

See	also	drawControl()	and	ControlElement.

void	QStyle::drawItem	(QPainter	*	p,	const	QRect	&	r,	int	flags,
const	QColorGroup	&	g,	bool	enabled,
const	QPixmap	*	pixmap,	const	QString	&	text,	int	len	=	-1,
const	QColor	*	penColor	=	0)	const	[virtual]

Draws	the	text	or	pixmap	in	rectangle	r	using	painter	p	and	color	group	g.	The
pen	color	is	specified	with	penColor.	The	enabled	bool	indicates	whether	or	not
the	item	is	enabled;	when	reimplementing	this	bool	should	influence	how	the
item	is	drawn.	If	len	is	-1	(the	default)	all	the	text	is	drawn;	otherwise	only	the
first	len	characters	of	text	are	drawn.	The	text	is	aligned	and	wrapped	according
to	the	alignment	flags	(see	Qt::AlignmentFlags).

By	default,	if	both	the	text	and	the	pixmap	are	not	null,	the	pixmap	is	drawn	and
the	text	is	ignored.

void	QStyle::drawPrimitive	(PrimitiveElement	pe,	QPainter	*	p,
const	QRect	&	r,	const	QColorGroup	&	cg,	SFlags	flags	=
Style_Default,	const	QStyleOption	&	opt	=
QStyleOption::Default)	const	[pure	virtual]

Draws	the	style	PrimitiveElement	pe	using	the	painter	p	in	the	area	r.	Colors	are
used	from	the	color	group	cg.

The	rect	r	should	be	in	screen	coordinates.

The	flags	argument	is	used	to	control	how	the	PrimitiveElement	is	drawn.
Multiple	flags	can	be	OR'ed	together.

For	example,	a	pressed	button	would	be	drawn	with	the	flags	Style_Enabled	and
Style_Down.

The	opt	argument	can	be	used	to	control	how	various	PrimitiveElements	are
drawn.	Note	that	opt	may	be	the	default	value	even	for	PrimitiveElements	that
make	use	of	extra	options.	When	opt	is	non-default,	it	is	used	as	follows:

PrimitiveElement Options Notes

PE_FocusRect

QStyleOption	(const
QColor	&	bg)

opt.color()

bg	is	the	background	color
on	which	the	focus	rect	is
being	drawn.

PE_Panel

QStyleOption	(int
linewidth,	int	midlinewidth
)

opt.lineWidth()
opt.midLineWidth()

linewidth	is	the	line	width
for	drawing	the	panel.

midlinewidth	is	the	mid-
line	width	for	drawing	the
panel.

PE_PanelPopup

QStyleOption	(int
linewidth,	int	midlinewidth
)

opt.lineWidth()
opt.midLineWidth()

linewidth	is	the	line	width
for	drawing	the	panel.

midlinewidth	is	the	mid-
line	width	for	drawing	the
panel.

PE_PanelMenuBar

QStyleOption	(int
linewidth,	int	midlinewidth
)

opt.lineWidth()
opt.midLineWidth()

linewidth	is	the	line	width
for	drawing	the	panel.

midlinewidth	is	the	mid-
line	width	for	drawing	the
panel.

PE_PanelDockWindow

QStyleOption	(int
linewidth,	int	midlinewidth
)

opt.lineWidth()
opt.midLineWidth()

linewidth	is	the	line	width
for	drawing	the	panel.

midlinewidth	is	the	mid-
line	width	for	drawing	the
panel.

PE_GroupBoxFrame

QStyleOption	(int
linewidth,	int	midlinewidth,
int	shape,	int	shadow)

opt.lineWidth()
opt.midLineWidth()
opt.frameShape()
opt.frameShadow()

linewidth	is	the	line	width
for	the	group	box.
midlinewidth	is	the	mid-
line	width	for	the	group
box.
shape	is	the	frame	shape
for	the	group	box.
shadow	is	the	frame
shadow	for	the	group	box.

For	all	other	PrimitiveElements,	opt	is	unused.

See	also	StyleFlags.

Example:	themes/wood.cpp.

QRect	QStyle::itemRect	(QPainter	*	p,	const	QRect	&	r,	int	flags,
bool	enabled,	const	QPixmap	*	pixmap,	const	QString	&	text,
int	len	=	-1)	const	[virtual]

Returns	the	appropriate	area	(see	below)	within	rectangle	r	in	which	to	draw	the
text	or	pixmap	using	painter	p.	If	len	is	-1	(the	default)	all	the	text	is	drawn;
otherwise	only	the	first	len	characters	of	text	are	drawn.	The	text	is	aligned	in
accordance	with	the	alignment	flags	(see	Qt::AlignmentFlags).	The	enabled	bool
indicates	whether	or	not	the	item	is	enabled.

If	r	is	larger	than	the	area	needed	to	render	the	text	the	rectangle	that	is	returned
will	be	offset	within	r	in	accordance	with	the	alignment	flags.	For	example	if
flags	is	AlignCenter	the	returned	rectangle	will	be	centered	within	r.	If	r	is
smaller	than	the	area	needed	the	rectangle	that	is	returned	will	be	larger	than	r
(the	smallest	rectangle	large	enough	to	render	the	text	or	pixmap).

By	default,	if	both	the	text	and	the	pixmap	are	not	null,	the	pixmap	is	drawn	and
the	text	is	ignored.

int	QStyle::pixelMetric	(PixelMetric	metric,
const	QWidget	*	widget	=	0)	const	[pure	virtual]

Returns	the	pixel	metric	for	metric.	The	widget	argument	is	a	pointer	to	a
QWidget	or	one	of	its	subclasses.	The	widget	can	be	cast	to	the	appropriate	type
based	on	the	value	of	metric.	Note	that	widget	may	be	zero	even	for	PixelMetrics
that	can	make	use	of	widget.	See	the	table	below	for	the	appropriate	widget
casts:

PixelMetric Widget	Cast
PM_SliderControlThickness (const	QSlider	*)
PM_SliderLength (const	QSlider	*)
PM_SliderTickmarkOffset (const	QSlider	*)
PM_SliderSpaceAvailable (const	QSlider	*)
PM_TabBarTabOverlap (const	QTabBar	*)
PM_TabBarTabHSpace (const	QTabBar	*)
PM_TabBarTabVSpace (const	QTabBar	*)
PM_TabBarBaseHeight (const	QTabBar	*)
PM_TabBarBaseOverlap (const	QTabBar	*)

void	QStyle::polish	(QWidget	*)	[virtual]

Initializes	the	appearance	of	a	widget.

This	function	is	called	for	every	widget	at	some	point	after	it	has	been	fully
created	but	just	before	it	is	shown	the	very	first	time.

Reasonable	actions	in	this	function	might	be	to	call
QWidget::setBackgroundMode()	for	the	widget.	An	example	of	highly
unreasonable	use	would	be	setting	the	geometry!	Reimplementing	this	function
gives	you	a	back-door	through	which	you	can	change	the	appearance	of	a
widget.	With	Qt	3.0's	style	engine	you	will	rarely	need	to	write	your	own
polish();	instead	reimplement	drawItem(),	drawPrimitive(),	etc.

The	QWidget::inherits()	function	may	provide	enough	information	to	allow
class-specific	customizations.	But	be	careful	not	to	hard-code	things	too	much
because	new	QStyle	subclasses	are	expected	to	work	reasonably	with	all	current
and	future	widgets.

See	also	unPolish().

Examples:	themes/metal.cpp	and	themes/wood.cpp.

void	QStyle::polish	(QApplication	*)	[virtual]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Late	initialization	of	the	QApplication	object.

See	also	unPolish().

void	QStyle::polish	(QPalette	&)	[virtual]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

The	style	may	have	certain	requirements	for	color	palettes.	In	this	function	it	has
the	chance	to	change	the	palette	according	to	these	requirements.

See	also	QPalette	and	QApplication::setPalette().

void	QStyle::polishPopupMenu	(QPopupMenu	*)	[pure
virtual]

Polishes	the	popup	menu	according	to	the	GUI	style.	This	usually	means	setting
the	mouse	tracking	(QPopupMenu::setMouseTracking())	and	whether	the	menu
is	checkable	by	default	(QPopupMenu::setCheckable()).

SubControl	QStyle::querySubControl	(ComplexControl	control,
const	QWidget	*	widget,	const	QPoint	&	pos,
const	QStyleOption	&	opt	=	QStyleOption::Default)	const
[pure	virtual]

Returns	the	SubControl	for	widget	at	the	point	pos.	The	widget	argument	is	a
pointer	to	a	QWidget	or	one	of	its	subclasses.	The	widget	can	be	cast	to	the
appropriate	type	based	on	the	value	of	control.	The	opt	argument	can	be	used	to
pass	extra	information	required	when	drawing	the	ComplexControl.	Note	that
opt	may	be	the	default	value	even	for	ComplexControls	that	can	make	use	of	the
extra	options.	See	drawComplexControl()	for	an	explanation	of	the	widget	and
opt	arguments.

Note	that	pos	is	passed	in	screen	coordinates.	When	using
querySubControlMetrics()	to	check	for	hits	and	misses,	use	visualRect()	to
change	the	logical	coordinates	into	screen	coordinates.

See	also	drawComplexControl(),	ComplexControl,	SubControl	and
querySubControlMetrics().

QRect	QStyle::querySubControlMetrics	(
ComplexControl	control,	const	QWidget	*	widget,
SubControl	subcontrol,	const	QStyleOption	&	opt	=
QStyleOption::Default)	const	[pure	virtual]

Returns	the	rect	for	the	SubControl	subcontrol	for	widget	in	logical	coordinates.

The	widget	argument	is	a	pointer	to	a	QWidget	or	one	of	its	subclasses.	The
widget	can	be	cast	to	the	appropriate	type	based	on	the	value	of	control.	The	opt
argument	can	be	used	to	pass	extra	information	required	when	drawing	the
ComplexControl.	Note	that	opt	may	be	the	default	value	even	for
ComplexControls	that	can	make	use	of	the	extra	options.	See
drawComplexControl()	for	an	explanation	of	the	widget	and	opt	arguments.

See	also	drawComplexControl(),	ComplexControl	and	SubControl.

QSize	QStyle::scrollBarExtent	()	const

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

QSize	QStyle::sizeFromContents	(ContentsType	contents,
const	QWidget	*	widget,	const	QSize	&	contentsSize,

const	QStyleOption	&	opt	=	QStyleOption::Default)	const
[pure	virtual]

Returns	the	size	of	widget	based	on	the	contents	size	contentsSize.

The	widget	argument	is	a	pointer	to	a	QWidget	or	one	of	its	subclasses.	The
widget	can	be	cast	to	the	appropriate	type	based	on	the	value	of	contents.	The
opt	argument	can	be	used	to	pass	extra	information	required	when	calculating
the	size.	Note	that	opt	may	be	the	default	value	even	for	ContentsTypes	that	can
make	use	of	the	extra	options.	See	the	table	below	for	the	appropriate	widget	and
opt	usage:

ContentsType Widget	Cast Options Notes

CT_PushButton
(const
QPushButton
*)

Unused. 	

CT_CheckBox (const
QCheckBox	*) Unused. 	

CT_RadioButton
(const
QRadioButton
*)

Unused. 	

CT_ToolButton
(const
QToolButton
*)

Unused. 	

CT_ComboBox
(const
QComboBox
*)

Unused. 	

CT_Splitter (const
QSplitter	*) Unused. 	

CT_DockWindow
(const
QDockWindow
*)

Unused. 	

CT_ProgressBar
(const
QProgressBar
*)

Unused. 	

QStyleOption	(
mi	is	the	menu	item
to	use	when

CT_PopupMenuItem (const
QPopupMenu
*)

QMenuItem	*mi)

opt.menuItem()

calculating	the	size.
QMenuItem	is
currently	an	internal
class.

int	QStyle::styleHint	(StyleHint	stylehint,
const	QWidget	*	widget	=	0,	const	QStyleOption	&	opt	=
QStyleOption::Default,	QStyleHintReturn	*	returnData	=	0)
const	[pure	virtual]

Returns	the	style	hint	stylehint	for	widget.	Currently,	widget,	opt,	and	returnData
are	unused;	they're	included	to	allow	for	future	enhancements.

For	an	explanation	of	the	return	value	see	StyleHint.

QPixmap	QStyle::stylePixmap	(StylePixmap	stylepixmap,
const	QWidget	*	widget	=	0,	const	QStyleOption	&	opt	=
QStyleOption::Default)	const	[pure	virtual]

Returns	a	pixmap	for	stylepixmap.

The	opt	argument	can	be	used	to	pass	extra	information	required	when	drawing
the	ControlElement.	Note	that	opt	may	be	the	default	value	even	for
StylePixmaps	that	can	make	use	of	the	extra	options.	Currently,	the	opt	argument
is	unused.

The	widget	argument	is	a	pointer	to	a	QWidget	or	one	of	its	subclasses.	The
widget	can	be	cast	to	the	appropriate	type	based	on	the	value	of	stylepixmap.	See
the	table	below	for	the	appropriate	widget	casts:

StylePixmap Widget	Cast
SP_TitleBarMinButton (const	QWidget	*)
SP_TitleBarMaxButton (const	QWidget	*)
SP_TitleBarCloseButton (const	QWidget	*)
SP_TitleBarNormalButton (const	QWidget	*)
SP_TitleBarShadeButton (const	QWidget	*)

SP_TitleBarUnshadeButton (const	QWidget	*)
SP_DockWindowCloseButton (const	QDockWindow	*)

See	also	StylePixmap.

QRect	QStyle::subRect	(SubRect	subrect,
const	QWidget	*	widget)	const	[pure	virtual]

Returns	the	sub-area	subrect	for	the	widget	in	logical	coordinates.

The	widget	argument	is	a	pointer	to	a	QWidget	or	one	of	its	subclasses.	The
widget	can	be	cast	to	the	appropriate	type	based	on	the	value	of	subrect.	See	the
table	below	for	the	appropriate	widget	casts:

SubRect Widget	Cast
SR_PushButtonContents (const	QPushButton	*)
SR_PushButtonFocusRect (const	QPushButton	*)
SR_CheckBoxIndicator (const	QCheckBox	*)
SR_CheckBoxContents (const	QCheckBox	*)
SR_CheckBoxFocusRect (const	QCheckBox	*)
SR_RadioButtonIndicator (const	QRadioButton	*)
SR_RadioButtonContents (const	QRadioButton	*)
SR_RadioButtonFocusRect (const	QRadioButton	*)
SR_ComboBoxFocusRect (const	QComboBox	*)
SR_DockWindowHandleRect (const	QWidget	*)
SR_ProgressBarGroove (const	QProgressBar	*)
SR_ProgressBarContents (const	QProgressBar	*)
SR_ProgressBarLabel (const	QProgressBar	*)

The	tear-off	handle	(SR_DockWindowHandleRect)	for	QDockWindow	is	a
private	class.	Use	QWidget::parentWidget()	to	access	the	QDockWindow:

								if	(!widget->parentWidget())

												return;

								const	QDockWindow	*dw	=	(const	QDockWindow	*)	widget->parentWidget();

				

See	also	SubRect.

void	QStyle::tabbarMetrics	(const	QWidget	*	t,	int	&	hf,
int	&	vf,	int	&	ov)	const

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

void	QStyle::unPolish	(QWidget	*)	[virtual]

Undoes	the	initialization	of	a	widget's	appearance.

This	function	is	the	counterpart	to	polish.	It	is	called	for	every	polished	widget
when	the	style	is	dynamically	changed.	The	former	style	has	to	unpolish	its
settings	before	the	new	style	can	polish	them	again.

See	also	polish().

Examples:	themes/metal.cpp	and	themes/wood.cpp.

void	QStyle::unPolish	(QApplication	*)	[virtual]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Undoes	the	application	polish.

See	also	polish().

QRect	QStyle::visualRect	(const	QRect	&	logical,
const	QWidget	*	w)	[static]

Returns	the	rect	logical	in	screen	coordinates.	The	bounding	rect	for	widget	w	is
used	to	perform	the	translation.	This	function	is	provided	to	aid	style
implementors	in	supporting	right-to-left	mode.

See	also	QApplication::reverseLayout().

QRect	QStyle::visualRect	(const	QRect	&	logical,
const	QRect	&	bounding)	[static]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	the	rect	logical	in	screen	coordinates.	The	rect	bounding	is	used	to
perform	the	translation.	This	function	is	provided	to	aid	style	implementors	in
supporting	right-to-left	mode.

See	also	QApplication::reverseLayout().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QXmlErrorHandler	Class	Reference
[XML	module]

The	QXmlErrorHandler	class	provides	an	interface	to	report	errors	in	XML	data.
More...

#include	<qxml.h>

Inherited	by	QXmlDefaultHandler.

List	of	all	member	functions.

Public	Members

virtual	bool	warning	(const	QXmlParseException	&	exception)	=	0
virtual	bool	error	(const	QXmlParseException	&	exception)	=	0
virtual	bool	fatalError	(const	QXmlParseException	&	exception)	=	0
virtual	QString	errorString	()	=	0

Detailed	Description

The	QXmlErrorHandler	class	provides	an	interface	to	report	errors	in	XML	data.

If	the	application	is	interested	in	reporting	errors	to	the	user	or	any	other
customized	error	handling,	you	should	subclass	this	class.

You	can	set	the	error	handler	with	QXmlReader::setErrorHandler().

Errors	can	be	reported	using	warning(),	error()	and	fataError(),	with	the	error
text	being	reported	with	errorString().

See	also	the	Introduction	to	SAX2.

See	also	QXmlDTDHandler,	QXmlDeclHandler,	QXmlContentHandler,
QXmlEntityResolver,	QXmlLexicalHandler	and	XML.

Member	Function	Documentation

bool	QXmlErrorHandler::error	(
const	QXmlParseException	&	exception)	[pure	virtual]

A	reader	might	use	this	function	to	report	a	recoverable	error.	A	recoverable
error	corresponds	to	the	definiton	of	"error"	in	section	1.2	of	the	XML	1.0
specification.	Details	of	the	error	are	stored	in	exception.

The	reader	must	continue	to	provide	normal	parsing	events	after	invoking	this
function.

If	this	function	returns	FALSE	the	reader	stops	parsing	and	reports	an	error.	The
reader	uses	the	function	errorString()	to	get	the	error	message.

QString	QXmlErrorHandler::errorString	()	[pure	virtual]

The	reader	calls	this	function	to	get	an	error	string	if	any	of	the	handler	functions
returns	FALSE.

bool	QXmlErrorHandler::fatalError	(
const	QXmlParseException	&	exception)	[pure	virtual]

A	reader	must	use	this	function	to	report	a	non-recoverable	error.	Details	of	the
error	are	stored	in	exception.

If	this	function	returns	TRUE	the	reader	might	try	to	go	on	parsing	and	reporting
further	errors;	but	no	regular	parsing	events	are	reported.

bool	QXmlErrorHandler::warning	(
const	QXmlParseException	&	exception)	[pure	virtual]

A	reader	might	use	this	function	to	report	a	warning.	Warnings	are	conditions
that	are	not	errors	or	fatal	errors	as	defined	by	the	XML	1.0	specification.	Details
of	the	warning	are	stored	in	exception.

If	this	function	returns	FALSE	the	reader	stops	parsing	and	reports	an	error.	The

reader	uses	the	function	errorString()	to	get	the	error	message.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QDateTime
QDateTime	 ……

#include	<qdatetime.h>

QDateTime	()
QDateTime	(const	QDate	&	date)
QDateTime	(const	QDate	&	date,	const	QTime	&	time)
bool	isNull	()	const
bool	isValid	()	const
QDate	date	()	const
QTime	time	()	const
void	setDate	(const	QDate	&	date)
void	setTime	(const	QTime	&	time)
void	setTime_t	(uint	secsSince1Jan1970UTC)
QString	toString	(Qt::DateFormat	f	=	Qt::TextDate)	const
QString	toString	(const	QString	&	format)	const
QDateTime	addDays	(int	ndays)	const
QDateTime	addMonths	(int	nmonths)	const
QDateTime	addYears	(int	nyears)	const
QDateTime	addSecs	(int	nsecs)	const
int	daysTo	(const	QDateTime	&	dt)	const
int	secsTo	(const	QDateTime	&	dt)	const
bool	operator==	(const	QDateTime	&	dt)	const
bool	operator!=	(const	QDateTime	&	dt)	const
bool	operator<	(const	QDateTime	&	dt)	const
bool	operator<=	(const	QDateTime	&	dt)	const
bool	operator>	(const	QDateTime	&	dt)	const
bool	operator>=	(const	QDateTime	&	dt)	const

QDateTime	currentDateTime	()
QDateTime	fromString	(const	QString	&	s,	Qt::DateFormat	f	=
Qt::TextDate)

QDataStream	&	operator<<	(QDataStream	&	s,	const	QDateTime	&	dt)
QDataStream	&	operator>>	(QDataStream	&	s,	QDateTime	&	dt)

QDateTime

QDateTime“” QDateQTime

QDateTime currentDateTime
setTime_t()POSIX19701100:00:00 fromString()QDateTime

date()time() toString()

QDateTimeQDateTime

addSecs()addDays() addMonths()addYears() daysTo()sectTo()

QDateQTime

QDateQTimeQDateTimeEdit

QDateTime::QDateTime	()

isValid()

QDateTime::QDateTime	(const	QDate	&	date)

date00:00:00.000

QDateTime::QDateTime	(const	QDate	&	date,
const	QTime	&	time)

datetime

QDateTime	QDateTime::addDays	(int	ndays)	const

ndays ndays

daysTo() addMonths() addYears()addSecs()

QDateTime	QDateTime::addMonths	(int	nmonths)	const

nmonths nmonths

daysTo() addDays() addYears()addSecs()

QDateTime	QDateTime::addSecs	(int	nsecs)	const

nsecs nsecs

secsTo() addDays() addMonths()addYears()

listviews/listviews.cpp

QDateTime	QDateTime::addYears	(int	nyears)	const

nyears nyears

daysTo() addDays() addMonths()addSecs()

QDateTime	QDateTime::currentDateTime	()	[]

QDate::currentDate()QTime::currentTime()

listviews/listviews.cpp

QDate	QDateTime::date	()	const

setDate()time()

int	QDateTime::daysTo	(const	QDateTime	&	dt)	const

dt dt

addDays()secsTo()

QDateTime	QDateTime::fromString	(const	QString	&	s,
Qt::DateFormat	f	=	Qt::TextDate)	[]

sfQDateTime

Qt::LocalDate

Qt::TextDateJan

bool	QDateTime::isNull	()	const

QDate::isNull()QTime::isNull()

bool	QDateTime::isValid	()	const

QDate::isValid()QTime::isValid()

bool	QDateTime::operator!=	(const	QDateTime	&	dt)	const

dt

operator==()

bool	QDateTime::operator<	(const	QDateTime	&	dt)	const

dt

bool	QDateTime::operator<=	(const	QDateTime	&	dt)	const

dt

bool	QDateTime::operator==	(const	QDateTime	&	dt)	const

dt

operator!=()

bool	QDateTime::operator>	(const	QDateTime	&	dt)	const

dt

bool	QDateTime::operator>=	(const	QDateTime	&	dt)	const

dt

int	QDateTime::secsTo	(const	QDateTime	&	dt)	const

dt dt

				QDateTime	dt	=	QDateTime::currentDateTime();

				QDateTime	xmas(QDate(dt.year(),12,24),	QTime(17,00));

				qDebug("There	are	%d	seconds	to	Christmas",	dt.secsTo(xmas));	//	

		

addSecs() daysTo()QTime::secsTo()

void	QDateTime::setDate	(const	QDate	&	date)

date

date()setTime()

void	QDateTime::setTime	(const	QTime	&	time)

time

time()setDate()

void	QDateTime::setTime_t	(uint	secsSince1Jan1970UTC)

19701100:00:00

Microsoft	Windows secsSince1Jan1970UTC

QTime	QDateTime::time	()	const

setTime()date()

QString	QDateTime::toString	(const	QString	&	format)	const

format

d	-	0131
dd	-	00131
ddd	-	MonSun QDate::shortDayName()
dddd	-	MondaySunday QDate::longDayName()
M	-	0112
MM	-	00112
MMM	-	JanDec QDate::shortMonthName()
MMMM	-	JanuaryDecember QDate::longMonthName()
yy	-	0099
yyyy	-	0000-9999

h	-	0023AM/PM112
hh	-	00023AM/PM0112
m	-	0059
mm	-	00059
s	-	0059
ss	-	00059
z	-	00999
zzz	-	0000999
AP	-	AM/PM AP“AM”“PM”
ap	-	am/pm ap“am”“pm”

QDateTime200152114:13:09

“dd.MM.yyyy”“21.05.2001”
“ddd	MMMM	d	yy”“Tue	May	21	01”
“hh:mm:ss.zzz”“14:13:09.042”
“h:m:s	ap”“2:13:9	pm”

QDate::toString()QTime::toString()

QString	QDateTime::toString	(Qt::DateFormat	f	=	Qt::TextDate
)	const

f

fQt::TextDate“Wed	May	20	03:40:13	1998”
shortDayName() shortMonthName()QTime::toString()

fQt::ISODateISO	8601YYYY-MM-DDTHH:MM:SS

fQt::LocalDate

f toString()

QDate::toString()QTime::toString()

QDataStream	&	operator<<	(QDataStream	&	s,
const	QDateTime	&	dt)

dts

QDataStream

QDataStream	&	operator>>	(QDataStream	&	s,
QDateTime	&	dt)

sdt

QDataStream

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QHttp	Class	Reference
[network	module]

The	QHttp	class	provides	an	implementation	of	the	HTTP	protocol.	More...

#include	<qhttp.h>

Inherits	QNetworkProtocol.

List	of	all	member	functions.

Public	Members

QHttp	()
virtual	~QHttp	()

Detailed	Description

The	QHttp	class	provides	an	implementation	of	the	HTTP	protocol.

This	class	is	derived	from	QNetworkProtocol	and	can	be	used	with
QUrlOperator.	In	practice	this	class	is	used	through	a	QUrlOperator	rather	than
directly,	for	example:

		QUrlOperator	op("http://www.trolltech.com");

		op.get("index.html");

		

Note:	this	code	will	only	work	if	the	QHttp	class	is	registered;	to	register	the
class,	you	must	call	qInitNetworkProtocols()	before	using	a	QUrlOperator	with
HTTP.

QHttp	only	supports	the	operations	operationGet()	and	operationPut(),	i.e.
QUrlOperator::get()	and	QUrlOperator::put(),	if	you	use	it	with	a	QUrlOperator.

If	you	really	need	to	use	QHttp	directly,	don't	forget	to	set	the	QUrlOperator	on
which	it	operates	using	setUrl().

See	also	Qt	Network	Documentation,	QNetworkProtocol,	QUrlOperator	and
Input/Output	and	Networking.

Member	Function	Documentation

QHttp::QHttp	()

Constructs	a	QHttp	object.	Usually	there	is	no	need	to	use	QHttp	directly,	since
it	is	more	convenient	to	use	it	through	a	QUrlOperator.	If	you	want	to	use	it
directly,	you	must	set	the	QUrlOperator	on	which	it	operates	using	setUrl().

QHttp::~QHttp	()	[virtual]

Destroys	the	QHttp	object.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QPicture	Class	Reference
The	QPicture	class	is	a	paint	device	that	records	and	replays	QPainter
commands.	More...

#include	<qpicture.h>

Inherits	QPaintDevice.

List	of	all	member	functions.

Public	Members

QPicture	(int	formatVersion	=	-1)
QPicture	(const	QPicture	&	pic)
~QPicture	()
bool	isNull	()	const
uint	size	()	const
const	char	*	data	()	const
virtual	void	setData	(const	char	*	data,	uint	size)
bool	play	(QPainter	*	painter)
bool	load	(QIODevice	*	dev,	const	char	*	format	=	0)
bool	load	(const	QString	&	fileName,	const	char	*	format	=	0)
bool	save	(QIODevice	*	dev,	const	char	*	format	=	0)
bool	save	(const	QString	&	fileName,	const	char	*	format	=	0)
QRect	boundingRect	()	const
QPicture	&	operator=	(const	QPicture	&	p)

Protected	Members

virtual	int	metric	(int	m)	const
void	detach	()
QPicture	copy	()	const

Related	Functions

QDataStream	&	operator<<	(QDataStream	&	s,	const	QPicture	&	r)
QDataStream	&	operator>>	(QDataStream	&	s,	QPicture	&	r)

Detailed	Description

The	QPicture	class	is	a	paint	device	that	records	and	replays	QPainter
commands.

A	picture	serializes	painter	commands	to	an	IO	device	in	a	platform-independent
format.	For	example,	a	picture	created	under	Windows	can	be	read	on	a	Sun
SPARC.

Pictures	are	called	meta-files	on	some	platforms.

Qt	pictures	use	a	proprietary	binary	format.	Unlike	native	picture	(meta-file)
formats	on	many	window	systems,	Qt	pictures	have	no	limitations	regarding
their	contents.	Everything	that	can	be	painted	can	also	be	stored	in	a	picture,	e.g.
fonts,	pixmaps,	regions,	transformed	graphics,	etc.

QPicture	is	an	implicitly	shared	class.

Example	of	how	to	record	a	picture:

				QPicture		pic;

				QPainter		p;

				p.begin(&pic);															//	paint	in	picture

				p.drawEllipse(10,20,	80,70);	//	draw	an	ellipse

				p.end();																							//	painting	done

				pic.save("drawing.pic");					//	save	picture

				

Example	of	how	to	replay	a	picture:

				QPicture		pic;

				pic.load("drawing.pic");					//	load	picture

				QPainter		p;

				p.begin(&myWidget);										//	paint	in	myWidget

				p.drawPicture(pic);										//	draw	the	picture

				p.end();																							//	painting	done

				

Pictures	can	also	be	drawn	using	play().	Some	basic	data	about	a	picture	is
available,	for	example,	size(),	isNull()	and	boundingRect().

See	also	Graphics	Classes,	Image	Processing	Classes	and	Implicitly	and
Explicitly	Shared	Classes.

Member	Function	Documentation

QPicture::QPicture	(int	formatVersion	=	-1)

Constructs	an	empty	picture.

The	formatVersion	parameter	may	be	used	to	create	a	QPicture	that	can	be	read
by	applications	that	are	compiled	with	earlier	versions	of	Qt.

formatVersion	==	1	is	binary	compatible	with	Qt	1.x	and	later.
formatVersion	==	2	is	binary	compatible	with	Qt	2.0.x	and	later.
formatVersion	==	3	is	binary	compatible	with	Qt	2.1.x	and	later.
formatVersion	==	4	is	binary	compatible	with	Qt	3.x.

Note	that	the	default	formatVersion	is	-1	which	signifies	the	current	release,	i.e.
for	Qt	3.0	a	formatVersion	of	4	is	the	same	as	the	default	formatVersion	of	-1.

Reading	pictures	generated	by	earlier	versions	of	Qt	is	supported	and	needs	no
special	coding;	the	format	is	automatically	detected.

QPicture::QPicture	(const	QPicture	&	pic)

Constructs	a	shallow	copy	of	pic.

QPicture::~QPicture	()

Destroys	the	picture.

QRect	QPicture::boundingRect	()	const

Returns	the	picture's	bounding	rectangle	or	an	invalid	rectangle	if	the	picture
contains	no	data.

QPicture	QPicture::copy	()	const	[protected]

Returns	a	deep	copy	of	the	picture.

const	char	*	QPicture::data	()	const

Returns	a	pointer	to	the	picture	data.	The	pointer	is	only	valid	until	the	next	non-
const	function	is	called	on	this	picture.	The	returned	pointer	is	0	if	the	picture
contains	no	data.

See	also	size()	and	isNull().

void	QPicture::detach	()	[protected]

Detaches	from	shared	picture	data	and	makes	sure	that	this	picture	is	the	only
one	referring	to	the	data.

If	multiple	pictures	share	common	data,	this	picture	makes	a	copy	of	the	data
and	detaches	itself	from	the	sharing	mechanism.	Nothing	is	done	if	there	is	just	a
single	reference.

bool	QPicture::isNull	()	const

Returns	TRUE	if	the	picture	contains	no	data;	otherwise	returns	FALSE.

bool	QPicture::load	(const	QString	&	fileName,
const	char	*	format	=	0)

Loads	a	picture	from	the	file	specified	by	fileName	and	returns	TRUE	if
successful;	otherwise	returns	FALSE.

By	default,	the	file	will	be	interpreted	as	being	in	the	native	QPicture	format.
Specifying	the	format	string	is	optional	and	is	only	needed	for	importing	picture
data	stored	in	a	different	format.

Currently,	the	only	external	format	supported	is	the	W3C	SVG	format	which
requires	the	Qt	XML	module.	The	corresponding	format	string	is	"svg".

See	also	save().

Examples:	picture/picture.cpp	and	xform/xform.cpp.

bool	QPicture::load	(QIODevice	*	dev,	const	char	*	format	=	0)

http://www.w3.org/Graphics/SVG/

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

dev	is	the	device	to	use	for	loading.

int	QPicture::metric	(int	m)	const	[virtual	protected]

Internal	implementation	of	the	virtual	QPaintDevice::metric()	function.

Use	the	QPaintDeviceMetrics	class	instead.

A	picture	has	the	following	hard-coded	values:	dpi=72,	numcolors=16777216
and	depth=24.

m	is	the	metric	to	get.

QPicture	&	QPicture::operator=	(const	QPicture	&	p)

Assigns	a	shallow	copy	of	p	to	this	picture	and	returns	a	reference	to	this	picture.

bool	QPicture::play	(QPainter	*	painter)

Replays	the	picture	using	painter,	and	returns	TRUE	if	successful;	otherwise
returns	FALSE.

This	function	does	exactly	the	same	as	QPainter::drawPicture()	with	(x,	y)	=	(0,
0).

bool	QPicture::save	(const	QString	&	fileName,
const	char	*	format	=	0)

Saves	a	picture	to	the	file	specified	by	fileName	and	returns	TRUE	if	successful;
otherwise	returns	FALSE.

Specifying	the	file	format	string	is	optional.	It's	not	recommended	unless	you
intend	to	export	the	picture	data	for	use	by	a	third	party	reader.	By	default	the
data	will	be	saved	in	the	native	QPicture	file	format.

Currently,	the	only	external	format	supported	is	the	W3C	SVG	format	which

http://www.w3.org/Graphics/SVG/

requires	the	Qt	XML	module.	The	corresponding	format	string	is	"svg".

See	also	load().

Example:	picture/picture.cpp.

bool	QPicture::save	(QIODevice	*	dev,	const	char	*	format	=	0)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

dev	is	the	device	to	use	for	saving.

void	QPicture::setData	(const	char	*	data,	uint	size)	[virtual]

Sets	the	picture	data	directly	from	data	and	size.	This	function	copies	the	input
data.

See	also	data()	and	size().

uint	QPicture::size	()	const

Returns	the	size	of	the	picture	data.

See	also	data().

Related	Functions

QDataStream	&	operator<<	(QDataStream	&	s,
const	QPicture	&	r)

Writes	picture,	r	to	the	stream	s	and	returns	a	reference	to	the	stream.

QDataStream	&	operator>>	(QDataStream	&	s,	QPicture	&	r)

Reads	a	picture	from	the	stream	s	into	picture	r	and	returns	a	reference	to	the
stream.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QStyleFactory	Class	Reference
The	QStyleFactory	class	creates	QStyle	objects.	More...

#include	<qstylefactory.h>

List	of	all	member	functions.

Static	Public	Members

QStringList	keys	()
QStyle	*	create	(const	QString	&	key)

Detailed	Description

The	QStyleFactory	class	creates	QStyle	objects.

The	style	factory	creates	a	QStyle	object	for	a	given	key	with
QStyleFactory::create(key).

The	styles	are	either	built-in	or	dynamically	loaded	from	a	style	plugin	(see
QStylePlugin).

QStyleFactory::keys()	returns	a	list	of	valid	keys,	typically	including	"windows",
"motif",	"cde",	"motifplus",	"platinum",	"sgi"	and	"compact".	Depending	on	the
platform,	"windowsxp",	"aqua"	or	"macintosh"	may	be	available.

Member	Function	Documentation

QStyle	*	QStyleFactory::create	(const	QString	&	key)	[static]

Creates	a	QStyle	object	that	matches	key.	This	is	either	a	built-in	style,	or	a	style
from	a	style	plugin.

See	also	keys().

Example:	themes/wood.cpp.

QStringList	QStyleFactory::keys	()	[static]

Returns	the	list	of	keys	this	factory	can	create	styles	for.

See	also	create().

Example:	themes/themes.cpp.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QXmlInputSource	Class	Reference
[XML	module]

The	QXmlInputSource	class	provides	the	input	data	for	the	QXmlReader
subclasses.	More...

#include	<qxml.h>

List	of	all	member	functions.

Public	Members

QXmlInputSource	()
QXmlInputSource	(QIODevice	*	dev)
QXmlInputSource	(QFile	&	file)		(obsolete)
QXmlInputSource	(QTextStream	&	stream)		(obsolete)
virtual	~QXmlInputSource	()
virtual	void	setData	(const	QString	&	dat)
virtual	void	setData	(const	QByteArray	&	dat)
virtual	void	fetchData	()
virtual	QString	data	()
virtual	QChar	next	()
virtual	void	reset	()

Protected	Members

virtual	QString	fromRawData	(const	QByteArray	&	data,	bool	beginning
=	FALSE)

Detailed	Description

The	QXmlInputSource	class	provides	the	input	data	for	the	QXmlReader
subclasses.

All	subclasses	of	QXmlReader	read	the	input	XML	document	from	this	class.

This	class	recognizes	the	encoding	of	the	data	by	reading	the	encoding
declaration	in	the	XML	file	and	if	it	finds	one,	reading	the	data	using	the
corresponding	encoding.	If	it	does	not	find	an	encoding	declaration,	then	it
assumes	that	the	data	is	either	in	UTF-8	or	UTF-16,	depending	on	whether	it	can
find	a	byte-order	mark.

There	are	two	ways	to	populate	the	input	source	with	data:	you	can	construct	it
with	a	QIODevice*	so	that	the	input	source	reads	the	data	from	that	device.	Or
you	can	set	the	data	explicitly	with	one	of	the	setData()	functions.

Usually	you	either	construct	a	QXmlInputSource	that	works	on	a	QIODevice*	or
you	construct	an	empty	QXmlInputSource	and	set	the	data	with	setData().	There
are	only	rare	occasions	where	you	want	to	mix	both	methods.

The	subclasses	of	QXmlReader	use	the	next()	function	to	read	the	input
character	by	character.	If	you	want	to	start	from	the	beginning	again,	you	have	to
call	reset()	to	change	the	position	in	the	input	source	to	the	beginning.

The	functions	data()	and	fetchData()	are	useful	if	you	want	to	do	something	with
the	data	other	than	parsing,	e.g.	displaying	the	raw	XML	file.	The	benefit	of
using	the	QXmlInputClass	in	such	cases	is	that	it	tries	to	use	the	correct
encoding.

See	also	QXmlReader,	QXmlSimpleReader	and	XML.

Member	Function	Documentation

QXmlInputSource::QXmlInputSource	()

Constructs	an	input	source	which	contains	no	data.

See	also	setData().

QXmlInputSource::QXmlInputSource	(QIODevice	*	dev)

Constructs	an	input	source	and	gets	the	data	from	device	dev.	If	dev	is	not	open,
it	is	opened	in	read-only	mode.	If	dev	is	a	null	pointer	or	it	is	not	possible	to	read
from	the	device,	the	input	source	will	contain	no	data.

See	also	setData(),	fetchData()	and	QIODevice.

QXmlInputSource::QXmlInputSource	(QFile	&	file)

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Constructs	an	input	source	and	gets	the	data	from	the	file	file.	If	the	file	cannot
be	read	the	input	source	is	empty.

QXmlInputSource::QXmlInputSource	(QTextStream	&	stream)

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Constructs	an	input	source	and	gets	the	data	from	the	text	stream	stream.

QXmlInputSource::~QXmlInputSource	()	[virtual]

Destructor.

QString	QXmlInputSource::data	()	[virtual]

Returns	the	data	the	input	source	contains	or	QString::null	if	the	input	source
does	not	contain	any	data.

See	also	setData(),	QXmlInputSource()	and	fetchData().

void	QXmlInputSource::fetchData	()	[virtual]

This	function	reads	more	data	from	the	device	that	was	set	during	construction.
If	the	input	source	already	contained	data,	this	function	deletes	that	data	first.

This	object	contains	no	data	after	a	call	to	this	function	if	the	object	was
constructed	without	a	device	to	read	data	from	or	if	this	function	was	not	able	to
get	more	data	from	the	device.

There	are	two	occasions	where	a	fetch	is	done	implicitly	by	another	function
call:	during	construction	(so	the	object	starts	out	with	some	initial	data	where
available),	and	during	a	call	to	next()	(if	the	data	had	run	out).

You	normally	don't	need	to	use	this	function	if	you	use	next().

See	also	data(),	next()	and	QXmlInputSource().

QString	QXmlInputSource::fromRawData	(
const	QByteArray	&	data,	bool	beginning	=	FALSE)
[virtual	protected]

This	function	reads	the	XML	file	from	data	and	tries	to	recoginize	the	encoding.
It	converts	the	raw	data	data	into	a	QString	and	returns	it.	It	tries	its	best	to	get
the	correct	encoding	for	the	XML	file.

If	beginning	is	TRUE,	this	function	assumes	that	the	data	starts	at	the	beginning
of	a	new	XML	document	and	looks	for	an	encoding	declaration.	If	beginning	is
FALSE,	it	converts	the	raw	data	using	the	encoding	determined	from	prior	calls.

QChar	QXmlInputSource::next	()	[virtual]

Returns	the	next	character	of	the	input	source.	If	this	funciton	reaches	the	end	of
available	data,	it	returns	QXmlInputSource::EndOfData.	If	you	call	next()	after
that,	it	tries	to	fetch	more	data	by	calling	fetchData().	If	the	fetchData()	call

results	in	new	data,	this	function	returns	the	first	character	of	that	data;	otherwise
it	returns	QXmlInputSource::EndOfDocument.

See	also	reset(),	fetchData(),	QXmlSimpleReader::parse()	and
QXmlSimpleReader::parseContinue().

void	QXmlInputSource::reset	()	[virtual]

This	function	sets	the	position	used	by	next()	to	the	beginning	of	the	data
returned	by	data().	This	is	useful	if	you	want	to	use	the	input	source	for	more
than	one	parse.

See	also	next().

Example:	xml/tagreader-with-features/tagreader.cpp.

void	QXmlInputSource::setData	(const	QString	&	dat)
[virtual]

Sets	the	data	of	the	input	source	to	dat.

If	the	input	source	already	contains	data,	this	function	deletes	that	data	first.

See	also	data().

void	QXmlInputSource::setData	(const	QByteArray	&	dat)
[virtual]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

The	data	dat	is	passed	through	the	correct	text-codec,	before	it	is	set.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QDateTimeEdit	Class	Reference
The	QDateTimeEdit	class	combines	a	QDateEdit	and	QTimeEdit	widget	into	a
single	widget	for	editing	datetimes.	More...

#include	<qdatetimeedit.h>

Inherits	QWidget.

List	of	all	member	functions.

Public	Members

QDateTimeEdit	(QWidget	*	parent	=	0,	const	char	*	name	=	0)
QDateTimeEdit	(const	QDateTime	&	datetime,	QWidget	*	parent	=	0,
const	char	*	name	=	0)
~QDateTimeEdit	()
virtual	void	setDateTime	(const	QDateTime	&	dt)
QDateTime	dateTime	()	const
QDateEdit	*	dateEdit	()
QTimeEdit	*	timeEdit	()
virtual	void	setAutoAdvance	(bool	advance)
bool	autoAdvance	()	const

Signals

void	valueChanged	(const	QDateTime	&	datetime)

Properties

QDateTime	dateTime	-	the	datetime	value	of	the	editor

Detailed	Description

The	QDateTimeEdit	class	combines	a	QDateEdit	and	QTimeEdit	widget	into	a
single	widget	for	editing	datetimes.

QDateTimeEdit	consists	of	a	QDateEdit	and	QTimeEdit	widget	placed	side	by
side	and	offers	the	functionality	of	both.	The	user	can	edit	the	date	and	time	by
using	the	keyboard	or	the	arrow	keys	to	increase/decrease	date	or	time	values.
The	Tab	key	can	be	used	to	move	from	section	to	section	within	the
QDateTimeEdit	widget,	and	the	user	can	be	moved	automatically	when	they
complete	a	section	using	setAutoAdvance().	The	datetime	can	be	set	with
setDateTime().

The	dateformat	is	read	from	the	system's	locale	settings.	It	is	set	to	year,	month,
day	order	if	that	is	not	possible.	see	QDateEdit::setOrder()	to	change	this.	Times
appear	in	the	order	hours,	minutes,	seconds	using	the	24	hour	clock.

It	is	recommended	that	the	QDateTimeEdit	is	initialised	with	a	datetime,	e.g.

				QDateTimeEdit	*dateTimeEdit	=	new	QDateTimeEdit(QDateTime::currentDateTime

				dateTimeEdit->dateEdit()->setRange(QDateTime::currentDate(),

																																								QDateTime::currentDate().addDays(7));

				

Here	we've	created	a	new	QDateTimeEdit	set	to	the	current	date	and	time,	and
set	the	date	to	have	a	minimum	date	of	now	and	a	maximum	date	of	a	week	from
now.

Terminology:	A	QDateEdit	widget	consists	of	three	'sections',	one	each	for	the
year,	month	and	day.	Similarly	a	QTimeEdit	consists	of	three	sections,	one	each
for	the	hour,	minute	and	second.	The	character	that	separates	each	date	section	is
specified	with	setDateSeparator();	similarly	setTimeSeparator()	is	used	for	the
time	sections.

See	also	QDateEdit,	QTimeEdit,	Advanced	Widgets	and	Time	and	Date.

Member	Function	Documentation

QDateTimeEdit::QDateTimeEdit	(QWidget	*	parent	=	0,
const	char	*	name	=	0)

Constructs	an	empty	datetime	edit	with	parent	parent	and	name	name.

QDateTimeEdit::QDateTimeEdit	(const	QDateTime	&	datetime,
QWidget	*	parent	=	0,	const	char	*	name	=	0)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Constructs	a	datetime	edit	with	the	initial	value	datetime,	parent	parent	and
name	name.

QDateTimeEdit::~QDateTimeEdit	()

Destroys	the	object	and	frees	any	allocated	resources.

bool	QDateTimeEdit::autoAdvance	()	const

Returns	TRUE	if	auto-advance	is	enabled,	otherwise	returns	FALSE.

See	also	setAutoAdvance().

QDateEdit	*	QDateTimeEdit::dateEdit	()

Returns	the	internal	widget	used	for	editing	the	date	part	of	the	datetime.

QDateTime	QDateTimeEdit::dateTime	()	const

Returns	the	datetime	value	of	the	editor.	See	the	"dateTime"	property	for	details.

void	QDateTimeEdit::setAutoAdvance	(bool	advance)	[virtual]

Sets	the	auto	advance	property	of	the	editor	to	advance.	If	set	to	TRUE,	the
editor	will	automatically	advance	focus	to	the	next	date	or	time	section	if	the
user	has	completed	a	section.

void	QDateTimeEdit::setDateTime	(const	QDateTime	&	dt)
[virtual]

Sets	the	datetime	value	of	the	editor	to	dt.	See	the	"dateTime"	property	for
details.

QTimeEdit	*	QDateTimeEdit::timeEdit	()

Returns	the	internal	widget	used	for	editing	the	time	part	of	the	datetime.

void	QDateTimeEdit::valueChanged	(
const	QDateTime	&	datetime)	[signal]

This	signal	is	emitted	every	time	the	date	or	time	changes.	The	datetime
argument	is	the	new	datetime.

Property	Documentation

QDateTime	dateTime

This	property	holds	the	datetime	value	of	the	editor.

The	datetime	edit's	datetime	which	may	be	an	invalid	datetime.

Set	this	property's	value	with	setDateTime()	and	get	this	property's	value	with
dateTime().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QIconDrag	Class	Reference
[iconview	module]

The	QIconDrag	class	supports	drag	and	drop	operations	within	a	QIconView.
More...

#include	<qiconview.h>

Inherits	QDragObject.

List	of	all	member	functions.

Public	Members

QIconDrag	(QWidget	*	dragSource,	const	char	*	name	=	0)
virtual	~QIconDrag	()
void	append	(const	QIconDragItem	&	i,	const	QRect	&	pr,
const	QRect	&	tr)
virtual	QByteArray	encodedData	(const	char	*	mime)	const

Static	Public	Members

bool	canDecode	(QMimeSource	*	e)

Detailed	Description

The	QIconDrag	class	supports	drag	and	drop	operations	within	a	QIconView.

A	QIconDrag	object	is	used	to	maintain	information	about	the	positions	of
dragged	items	and	the	data	associated	with	the	dragged	items.	QIconViews	are
able	to	use	this	information	to	paint	the	dragged	items	in	the	correct	positions.
Internally	QIconDrag	stores	the	data	associated	with	drag	items	in
QIconDragItem	objects.

If	you	want	to	use	the	extended	drag-and-drop	functionality	of	QIconView,
create	a	QIconDrag	object	in	a	reimplementation	of	QIconView::dragObject().
Then	create	a	QIconDragItem	for	each	item	which	should	be	dragged,	set	the
data	it	represents	with	QIconDragItem::setData(),	and	add	each	QIconDragItem
to	the	drag	object	using	append().

The	data	in	QIconDragItems	is	stored	in	a	QByteArray	and	is	mime-typed	(see
QMimeSource	and	the	Drag	and	Drop	overview).	If	you	want	to	use	your	own
mime-types	derive	a	class	from	QIconDrag	and	reimplement	format(),
encodedData()	and	canDecode().

The	fileiconview	example	program	demonstrates	the	use	of	the	QIconDrag	class
including	subclassing	and	reimplementing	dragObject(),	format(),	encodedData()
and	canDecode().	See	the	files	qt/examples/fileiconview/qfileiconview.h
and	qt/examples/fileiconview/qfileiconview.cpp.

See	also	QMimeSource::format()	and	Drag	And	Drop	Classes.

http://doc.trolltech.com/dnd.html

Member	Function	Documentation

QIconDrag::QIconDrag	(QWidget	*	dragSource,
const	char	*	name	=	0)

Constructs	a	drag	object	called	name,	which	is	a	child	of	dragSource.

Note	that	the	drag	object	will	be	deleted	when	dragSource	is	deleted.

QIconDrag::~QIconDrag	()	[virtual]

Destructor.

void	QIconDrag::append	(const	QIconDragItem	&	i,
const	QRect	&	pr,	const	QRect	&	tr)

Append	the	QIconDragItem,	i,	to	the	QIconDrag	object's	list	of	items.	You	must
also	supply	the	geometry	of	the	pixmap,	pr,	and	the	textual	caption,	tr.

See	also	QIconDragItem.

Example:	fileiconview/qfileiconview.cpp.

bool	QIconDrag::canDecode	(QMimeSource	*	e)	[static]

Returns	TRUE	if	e	can	be	decoded	by	the	QIconDrag,	otherwise	return	FALSE.

Example:	fileiconview/qfileiconview.cpp.

QByteArray	QIconDrag::encodedData	(const	char	*	mime)
const	[virtual]

Returns	the	encoded	data	of	the	drag	object	if	mime	is	application/x-qiconlist.

Example:	fileiconview/qfileiconview.cpp.

Reimplemented	from	QMimeSource.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QStyleOption	Class	Reference
The	QStyleOption	class	specifies	optional	parameters	for	QStyle	functions.
More...

#include	<qstyle.h>

List	of	all	member	functions.

Public	Members

enum	StyleOptionDefault	{	Default	}
QStyleOption	(StyleOptionDefault	=	Default)
QStyleOption	(int	in1,	int	in2)
QStyleOption	(int	in1,	int	in2,	int	in3,	int	in4)
QStyleOption	(QMenuItem	*	m)
QStyleOption	(QMenuItem	*	m,	int	in1)
QStyleOption	(QMenuItem	*	m,	int	in1,	int	in2)
QStyleOption	(const	QColor	&	c)
QStyleOption	(QTab	*	t)
QStyleOption	(QListViewItem	*	i)
QStyleOption	(Qt::ArrowType	a)
bool	isDefault	()	const
int	lineWidth	()	const
int	midLineWidth	()	const
int	frameShape	()	const
int	frameShadow	()	const
QMenuItem	*	menuItem	()	const
int	maxIconWidth	()	const
int	tabWidth	()	const
const	QColor	&	color	()	const
QTab	*	tab	()	const
QListViewItem	*	listViewItem	()	const
Qt::ArrowType	arrowType	()	const

Detailed	Description

The	QStyleOption	class	specifies	optional	parameters	for	QStyle	functions.

Some	QStyle	functions	take	an	optional	argument	specifying	extra	information
that	is	required	for	a	paritical	primitive	or	control.	So	that	the	QStyle	class	can
be	extended,	QStyleOption	is	used	to	provide	a	variable-argument	for	these
options.

The	QStyleOption	class	has	constructors	for	each	type	of	optional	argument,	and
this	set	of	constructors	may	be	extended	in	future	Qt	releases.	There	are	also
corresponding	access	functions	that	return	the	optional	arguments:	these	too	may
be	extended.

For	each	constructor,	you	should	refer	to	the	documentation	of	the	QStyle
functions	to	see	the	meaning	of	the	arguments.

When	calling	QStyle	functions	from	your	own	widgets,	you	must	only	pass
either	the	default	QStyleOption	or	the	argument	that	QStyle	is	documented	to
accept.	For	example,	if	the	function	expects	QStyleOption(QMenuItem	*,	int),
passing	QStyleOption(QMenuItem	*)	leaves	the	optional	integer	argument
uninitialized.

When	subclassing	QStyle,	you	must	similarly	only	expect	the	default	or
documented	arguments.	The	other	arguments	will	have	uninitialized	values.

If	you	make	your	own	QStyle	subclasses	and	your	own	widgets,	you	can	make	a
subclass	of	QStyleOption	to	pass	additional	arguments	to	your	QStyle	subclass.
You	will	need	to	cast	the	"const	QStyleOption&"	argument	to	your	subclass,	so
be	sure	your	style	has	been	called	from	your	widget.

See	also	Widget	Appearance	and	Style.

Member	Type	Documentation

QStyleOption::StyleOptionDefault

This	enum	value	can	be	passed	as	the	optional	argument	to	any	QStyle	function.

QStyleOption::Default

Member	Function	Documentation

QStyleOption::QStyleOption	(StyleOptionDefault	=	Default)

The	default	option.	This	can	always	be	passed	as	the	optional	argument	to
QStyle	functions.

QStyleOption::QStyleOption	(int	in1,	int	in2)

Pass	two	integers,	in1	and	in2.	For	example,	linewidth	and	midlinewidth.

QStyleOption::QStyleOption	(int	in1,	int	in2,	int	in3,	int	in4)

Pass	four	integers,	in1,	in2,	in3	and	in4.

QStyleOption::QStyleOption	(QMenuItem	*	m)

Pass	a	menu	item,	m.

QStyleOption::QStyleOption	(QMenuItem	*	m,	int	in1)

Pass	a	menu	item	and	an	integer,	m	and	in1.

QStyleOption::QStyleOption	(QMenuItem	*	m,	int	in1,	int	in2)

Pass	a	menu	item	and	two	integers,	m,	in1	and	in2.

QStyleOption::QStyleOption	(const	QColor	&	c)

Pass	a	color,	c.

QStyleOption::QStyleOption	(QTab	*	t)

Pass	a	QTab,	t.

QStyleOption::QStyleOption	(QListViewItem	*	i)

Pass	a	QListViewItem,	i.

QStyleOption::QStyleOption	(Qt::ArrowType	a)

Pass	an	Qt::ArrowType,	a.

Qt::ArrowType	QStyleOption::arrowType	()	const

Returns	an	arrow	type	if	the	appropriate	constructor	was	called;	otherwise	the
return	value	is	undefined.

const	QColor	&	QStyleOption::color	()	const

Returns	a	color	if	the	appropriate	constructor	was	called;	otherwise	the	return
value	is	undefined.

int	QStyleOption::frameShadow	()	const

Returns	a	QFrame::Shadow	value	if	the	appropriate	constructor	was	called;
otherwise	the	return	value	is	undefined.

int	QStyleOption::frameShape	()	const

Returns	a	QFrame::Shape	value	if	the	appropriate	constructor	was	called;
otherwise	the	return	value	is	undefined.

bool	QStyleOption::isDefault	()	const

Returns	TRUE	if	the	option	was	constructed	with	the	default	constructor;
otherwise	returns	FALSE.

int	QStyleOption::lineWidth	()	const

Returns	the	line	width	if	the	appropriate	constructor	was	called;	otherwise	the
return	value	is	undefined.

QListViewItem	*	QStyleOption::listViewItem	()	const

Returns	a	QListView	item	if	the	appropriate	constructor	was	called;	otherwise
the	return	value	is	undefined.

int	QStyleOption::maxIconWidth	()	const

Returns	the	maximum	width	of	the	menu	item	check	area	if	the	appropriate
constructor	was	called;	otherwise	the	return	value	is	undefined.

QMenuItem	*	QStyleOption::menuItem	()	const

Returns	a	menu	item	if	the	appropriate	constructor	was	called;	otherwise	the
return	value	is	undefined.

int	QStyleOption::midLineWidth	()	const

Returns	the	mid-line	width	if	the	appropriate	constructor	was	called;	otherwise
the	return	value	is	undefined.

QTab	*	QStyleOption::tab	()	const

Returns	a	QTabBar	tab	if	the	appropriate	constructor	was	called;	otherwise	the
return	value	is	undefined.

int	QStyleOption::tabWidth	()	const

Returns	the	tab	indent	width	if	the	appropriate	constructor	was	called;	otherwise
the	return	value	is	undefined.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QXmlLexicalHandler	Class
Reference

[XML	module]
The	QXmlLexicalHandler	class	provides	an	interface	to	report	the	lexical
content	of	XML	data.	More...

#include	<qxml.h>

Inherited	by	QXmlDefaultHandler.

List	of	all	member	functions.

Public	Members

virtual	bool	startDTD	(const	QString	&	name,	const	QString	&	publicId,
const	QString	&	systemId)	=	0
virtual	bool	endDTD	()	=	0
virtual	bool	startEntity	(const	QString	&	name)	=	0
virtual	bool	endEntity	(const	QString	&	name)	=	0
virtual	bool	startCDATA	()	=	0
virtual	bool	endCDATA	()	=	0
virtual	bool	comment	(const	QString	&	ch)	=	0
virtual	QString	errorString	()	=	0

Detailed	Description

The	QXmlLexicalHandler	class	provides	an	interface	to	report	the	lexical
content	of	XML	data.

The	events	in	the	lexical	handler	apply	to	the	entire	document,	not	just	to	the
document	element,	and	all	lexical	handler	events	appear	between	the	content
handler's	startDocument	and	endDocument	events.

You	can	set	the	lexical	handler	with	QXmlReader::setLexicalHandler().

This	interface's	design	is	based	on	the	the	SAX2	extension	LexicalHandler.

The	interface	provides	startDTD(),	endDTD(),	startEntity(),	endEntity(),
startCDATA(),	endCDATA()	and	comment()	functions.

See	also	the	Introduction	to	SAX2.

See	also	QXmlDTDHandler,	QXmlDeclHandler,	QXmlContentHandler,
QXmlEntityResolver,	QXmlErrorHandler	and	XML.

Member	Function	Documentation

bool	QXmlLexicalHandler::comment	(const	QString	&	ch)
[pure	virtual]

The	reader	calls	this	function	to	report	an	XML	comment	anywhere	in	the
document.	It	reports	the	text	of	the	comment	in	ch.

If	this	function	returns	FALSE	the	reader	stops	parsing	and	reports	an	error.	The
reader	uses	the	function	errorString()	to	get	the	error	message.

bool	QXmlLexicalHandler::endCDATA	()	[pure	virtual]

The	reader	calls	this	function	to	report	the	end	of	a	CDATA	section.

If	this	function	returns	FALSE	the	reader	stops	parsing	and	reports	an	error.	The
reader	uses	the	function	errorString()	to	get	the	error	message.

See	also	startCDATA().

bool	QXmlLexicalHandler::endDTD	()	[pure	virtual]

The	reader	calls	this	function	to	report	the	end	of	a	DTD	declaration,	if	any.

If	this	function	returns	FALSE	the	reader	stops	parsing	and	reports	an	error.	The
reader	uses	the	function	errorString()	to	get	the	error	message.

See	also	startDTD().

bool	QXmlLexicalHandler::endEntity	(const	QString	&	name)
[pure	virtual]

The	reader	calls	this	function	to	report	the	end	of	an	entity	with	the	name	name.

For	every	call	of	startEntity(),	there	is	a	corresponding	call	of	endEntity().	The
calls	of	startEntity()	and	endEntity()	are	properly	nested.

If	this	function	returns	FALSE	the	reader	stops	parsing	and	reports	an	error.	The

reader	uses	the	function	errorString()	to	get	the	error	message.

See	also	startEntity()	and	QXmlSimpleReader::setFeature().

QString	QXmlLexicalHandler::errorString	()	[pure	virtual]

The	reader	calls	this	function	to	get	an	error	string	if	any	of	the	handler	functions
returns	FALSE.

bool	QXmlLexicalHandler::startCDATA	()	[pure	virtual]

The	reader	calls	this	function	to	report	the	start	of	a	CDATA	section.	The	content
of	the	CDATA	section	is	reported	through	the
QXmlContentHandler::characters()	function.	This	function	is	intended	only	to
report	the	boundary.

If	this	function	returns	FALSE	the	reader	stops	parsing	and	reports	an	error.	The
reader	uses	the	function	errorString()	to	get	the	error	message.

See	also	endCDATA().

bool	QXmlLexicalHandler::startDTD	(const	QString	&	name,
const	QString	&	publicId,	const	QString	&	systemId)	[pure
virtual]

The	reader	calls	this	function	to	report	the	start	of	a	DTD	declaration,	if	any.	It
reports	the	name	of	the	document	type	in	name,	the	public	identifier	in	publicId
and	the	system	identifier	in	systemId.

If	the	public	identifier	and	the	system	identifier	is	missing,	the	reader	sets	the
publicId	and	systemId	to	QString::null.

All	declarations	reported	through	QXmlDTDHandler	or	QXmlDeclHandler
appear	between	the	startDTD()	and	endDTD()	calls.

If	this	function	returns	FALSE	the	reader	stops	parsing	and	reports	an	error.	The
reader	uses	the	function	errorString()	to	get	the	error	message.

See	also	endDTD().

bool	QXmlLexicalHandler::startEntity	(const	QString	&	name)
[pure	virtual]

The	reader	calls	this	function	to	report	the	start	of	an	entity	with	the	name	name.

Note	that	if	the	entity	is	unknown,	the	reader	reports	it	through
QXmlContentHandler::skippedEntity()	and	not	throught	this	function.

If	this	function	returns	FALSE	the	reader	stops	parsing	and	reports	an	error.	The
reader	uses	the	function	errorString()	to	get	the	error	message.

See	also	endEntity()	and	QXmlSimpleReader::setFeature().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QDesktopWidget	Class	Reference
The	QDesktopWidget	class	provides	access	to	screen	information	on	multi-head
systems.	More...

#include	<qdesktopwidget.h>

Inherits	QWidget.

List	of	all	member	functions.

Public	Members

QDesktopWidget	()
~QDesktopWidget	()
bool	isVirtualDesktop	()	const
int	numScreens	()	const
int	primaryScreen	()	const
int	screenNumber	(QWidget	*	widget	=	0)	const
int	screenNumber	(const	QPoint	&	point)	const
QWidget	*	screen	(int	screen	=	-1)
const	QRect	&	screenGeometry	(int	screen	=	-1)	const

Detailed	Description

The	QDesktopWidget	class	provides	access	to	screen	information	on	multi-head
systems.

Systems	with	more	than	one	graphics	card	and	monitor	can	manage	the	physical
screen	space	available	either	as	multiple	desktops,	or	as	a	large	virtual	desktop,
which	usually	has	the	size	of	the	bounding	rectangle	of	all	the	screens	(see
isVirtualDesktop()).	For	an	application,	one	of	the	available	screens	is	the
primary	screen,	i.e.	the	screen	where	the	main	widget	resides	(see
primaryScreen()).	All	windows	opened	in	the	context	of	the	application	must	be
constrained	to	the	boundaries	of	the	primary	screen;	for	example,	it	would	be
inconvenient	if	a	dialog	box	popped	up	on	a	different	screen,	or	split	over	two
screens.

The	QDesktopWidget	provides	information	about	the	geometry	of	the	available
screens	with	screenGeometry().	The	number	of	screens	available	is	returned	by
numScreens().	The	screen	number	that	a	particular	point	or	widget	is	located	in
is	returned	by	screenNumber().

Widgets	provided	by	Qt	use	this	class,	for	example,	to	place	tooltips,	menus	and
dialog	boxes	according	to	the	parent	or	application	widget.

Applications	can	use	this	class	to	save	window	positions,	or	to	place	child
widgets	on	one	screen.

In	the	illustration	above,	Application	One's	primary	screen	is	screen	0,	and	App
Two's	primary	screen	is	screen	1.

See	also	Advanced	Widgets	and	Environment	Classes.

Member	Function	Documentation

QDesktopWidget::QDesktopWidget	()

Creates	the	desktop	widget.

If	the	system	supports	a	virtual	desktop,	this	widget	will	have	the	size	of	the
virtual	desktop;	otherwise	this	widget	will	have	the	size	of	the	primary	screen.

Instead	of	using	QDesktopWidget	directly,	use	QAppliation::desktop().

QDesktopWidget::~QDesktopWidget	()

Destroy	the	object	and	free	allocated	resources.

bool	QDesktopWidget::isVirtualDesktop	()	const

Returns	TRUE	if	the	system	manages	the	available	screens	in	a	virtual	desktop;
otherwise	returns	FALSE.

For	virtual	desktops,	screen()	will	always	return	the	same	widget.	The	size	of	the
virtual	desktop	is	the	size	of	this	desktop	widget.

int	QDesktopWidget::numScreens	()	const

Returns	the	number	of	available	screens.

See	also	primaryScreen().

int	QDesktopWidget::primaryScreen	()	const

Returns	the	index	of	the	primary	screen.

See	also	numScreens().

QWidget	*	QDesktopWidget::screen	(int	screen	=	-1)

Returns	a	widget	that	represents	the	screen	with	index	screen.	This	widget	can	be
used	to	draw	directly	on	the	desktop,	using	an	unclipped	painter	like	this:

				QPainter	paint(QApplication::desktop()->screen(0),	TRUE);

				paint.draw...

				...

				paint.end();

				

If	the	system	uses	a	virtual	desktop,	the	returned	widget	will	have	the	geometry
of	the	entire	virtual	desktop	i.e.	bounding	every	screen.

See	also	primaryScreen(),	numScreens()	and	isVirtualDesktop().

const	QRect	&	QDesktopWidget::screenGeometry	(int	screen	=
-1)	const

Returns	the	geometry	of	the	screen	with	index	screen.

See	also	screenNumber().

int	QDesktopWidget::screenNumber	(QWidget	*	widget	=	0)
const

Returns	the	index	of	the	screen	that	contains	the	largest	part	of	widget,	or	-1	if
the	widget	is	not	on	a	screen.

See	also	primaryScreen().

int	QDesktopWidget::screenNumber	(const	QPoint	&	point)
const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	the	index	of	the	screen	that	contains	point,	or	-1	if	no	screen	contains	the
point.

See	also	primaryScreen().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QIconDragItem	Class	Reference
[iconview	module]

The	QIconDragItem	class	encapsulates	a	drag	item.	More...

#include	<qiconview.h>

List	of	all	member	functions.

Public	Members

QIconDragItem	()
virtual	~QIconDragItem	()
virtual	QByteArray	data	()	const
virtual	void	setData	(const	QByteArray	&	d)

Detailed	Description

The	QIconDragItem	class	encapsulates	a	drag	item.

The	QIconDrag	class	uses	a	list	of	QIconDragItems	to	support	drag	and	drop
operations.

In	practice	a	QIconDragItem	object	(or	an	object	of	a	class	derived	from
QIconDragItem)	is	created	for	each	icon	view	item	which	is	dragged.	Each	of
these	QIconDragItems	is	stored	in	a	QIconDrag	object.

See	QIconView::dragObject()	for	more	information.

See	the	fileiconview/qfileiconview.cpp	and	iconview/simple_dd/main.cpp
examples.

See	also	Drag	And	Drop	Classes.

Member	Function	Documentation

QIconDragItem::QIconDragItem	()

Constructs	a	QIconDragItem	with	no	data.

QIconDragItem::~QIconDragItem	()	[virtual]

Destructor.

QByteArray	QIconDragItem::data	()	const	[virtual]

Returns	the	data	contained	in	the	QIconDragItem.

void	QIconDragItem::setData	(const	QByteArray	&	d)
[virtual]

Sets	the	data	for	the	QIconDragItem	to	the	data	stored	in	the	QByteArray	d.

Example:	fileiconview/qfileiconview.cpp.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QPixmapCache	Class	Reference
The	QPixmapCache	class	provides	an	application-global	cache	for	pixmaps.
More...

#include	<qpixmapcache.h>

List	of	all	member	functions.

Static	Public	Members

int	cacheLimit	()
void	setCacheLimit	(int	n)
QPixmap	*	find	(const	QString	&	key)
bool	find	(const	QString	&	key,	QPixmap	&	pm)
bool	insert	(const	QString	&	key,	QPixmap	*	pm)		(obsolete)
bool	insert	(const	QString	&	key,	const	QPixmap	&	pm)
void	clear	()

Detailed	Description

The	QPixmapCache	class	provides	an	application-global	cache	for	pixmaps.

This	class	is	a	tool	for	optimized	drawing	with	QPixmap.	You	can	use	it	to	store
temporary	pixmaps	that	are	expensive	to	generate	without	using	more	storage
space	than	cacheLimit().	Use	insert()	to	insert	pixmaps,	find()	to	find	them	and
clear()	to	empty	the	cache.

For	example,	QRadioButton	has	a	non-trivial	visual	representation	so	we	don't
want	to	regenerate	a	pixmap	whenever	a	radio	button	is	displayed	or	changes
state.	In	the	function	QRadioButton::drawButton(),	we	do	not	draw	the	radio
button	directly.	Instead,	we	first	check	the	global	pixmap	cache	for	a	pixmap
with	the	key	"$qt_radio_nnn_",	where	nnn	is	a	numerical	value	that	specifies	the
the	radio	button	state.	If	a	pixmap	is	found,	we	bitBlt()	it	onto	the	widget	and
return.	Otherwise,	we	create	a	new	pixmap,	draw	the	radio	button	in	the	pixmap,
and	finally	insert	the	pixmap	in	the	global	pixmap	cache,	using	the	key	above.
The	bitBlt()	is	ten	times	faster	than	drawing	the	radio	button.	All	radio	buttons	in
the	program	share	the	cached	pixmap	since	QPixmapCache	is	application-global.

QPixmapCache	contains	no	member	data,	only	static	functions	to	access	the
global	pixmap	cache.	It	creates	an	internal	QCache	for	caching	the	pixmaps.

The	cache	associates	a	pixmap	with	a	string	(key).	If	two	pixmaps	are	inserted
into	the	cache	using	equal	keys,	then	the	last	pixmap	will	hide	the	first	pixmap.
The	QDict	and	QCache	classes	do	exactly	the	same.

The	cache	becomes	full	when	the	total	size	of	all	pixmaps	in	the	cache	exceeds
cacheLimit().	The	initial	cache	limit	is	1024	KByte	(1	MByte);	it	is	changed
with	setCacheLimit().	A	pixmap	takes	roughly	width*height*depth/8	bytes	of
memory.

See	the	QCache	documentation	for	more	details	about	the	cache	mechanism.

See	also	Environment	Classes,	Graphics	Classes	and	Image	Processing	Classes.

Member	Function	Documentation

int	QPixmapCache::cacheLimit	()	[static]

Returns	the	cache	limit	(in	kilobytes).

The	default	setting	is	1024	kilobytes.

See	also	setCacheLimit().

void	QPixmapCache::clear	()	[static]

Removes	all	pixmaps	from	the	cache.

QPixmap	*	QPixmapCache::find	(const	QString	&	key)
[static]

Returns	the	pixmap	associated	with	the	key	in	the	cache,	or	null	if	there	is	no
such	pixmap.

Warning:	If	valid,	you	should	copy	the	pixmap	immediately	(this	is	fast).
Subsequent	insertions	into	the	cache	could	cause	the	pointer	to	become	invalid.
For	this	reason,	we	recommend	you	use	find(const	QString&,	QPixmap&)
instead.

Example:

								QPixmap*	pp;

								QPixmap	p;

								if	((pp=QPixmapCache::find("my_big_image",	pm)))	{

												p	=	*pp;

								}	else	{

												p.load("bigimage.png");

												QPixmapCache::insert("my_big_image",	new	QPixmap(p));

								}

								painter->drawPixmap(0,	0,	p);

				

bool	QPixmapCache::find	(const	QString	&	key,	QPixmap	&	pm

)	[static]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Looks	for	a	cached	pixmap	associated	with	the	key	in	the	cache.	If	a	pixmap	is
found,	the	function	sets	pm	to	that	pixmap	and	returns	TRUE;	otherwise	leaves
pm	alone	and	returns	FALSE.

Example:

								QPixmap	p;

								if	(!QPixmapCache::find("my_big_image",	pm))	{

												pm.load("bigimage.png");

												QPixmapCache::insert("my_big_image",	pm);

								}

								painter->drawPixmap(0,	0,	p);

				

bool	QPixmapCache::insert	(const	QString	&	key,
const	QPixmap	&	pm)	[static]

Inserts	a	copy	of	the	pixmap	pm	associated	with	the	key	into	the	cache.

All	pixmaps	inserted	by	the	Qt	library	have	a	key	starting	with	"$qt",	so	your
own	pixmap	keys	should	never	begin	"$qt".

When	a	pixmap	is	inserted	and	the	cache	is	about	to	exceed	its	limit,	it	removes
pixmaps	until	there	is	enough	room	for	the	pixmap	to	be	inserted.

The	oldest	pixmaps	(least	recently	accessed	in	the	cache)	are	deleted	when	more
space	is	needed.

See	also	setCacheLimit().

bool	QPixmapCache::insert	(const	QString	&	key,
QPixmap	*	pm)	[static]

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Inserts	the	pixmap	pm	associated	with	key	into	the	cache.	Returns	TRUE	if
successful,	or	FALSE	if	the	pixmap	is	too	big	for	the	cache.

Note:	pm	must	be	allocated	on	the	heap	(using	new).

If	this	function	returns	FALSE,	you	must	delete	pm	yourself.

If	this	function	returns	TRUE,	do	not	use	pm	afterwards	or	keep	references	to	it
because	any	other	insertions	into	the	cache,	whether	from	anywhere	in	the
application	or	within	Qt	itself,	could	cause	the	pixmap	to	be	discarded	from	the
cache	and	the	pointer	to	become	invalid.

Due	to	these	dangers,	we	strongly	recommend	that	you	use	insert(const
QString&,	const	QPixmap&)	instead.

void	QPixmapCache::setCacheLimit	(int	n)	[static]

Sets	the	cache	limit	to	n	kilobytes.

The	default	setting	is	1024	kilobytes.

See	also	cacheLimit().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QStylePlugin	Class	Reference
The	QStylePlugin	class	provides	an	abstract	base	for	custom	QStyle	plugins.
More...

#include	<qstyleplugin.h>

List	of	all	member	functions.

Public	Members

QStylePlugin	()
~QStylePlugin	()
virtual	QStringList	keys	()	const	=	0
virtual	QStyle	*	create	(const	QString	&	key)	=	0

Detailed	Description

The	QStylePlugin	class	provides	an	abstract	base	for	custom	QStyle	plugins.

The	style	plugin	is	a	simple	plugin	interface	that	makes	it	easy	to	create	custom
styles	that	can	be	loaded	dynamically	into	applications	with	a	QStyleFactory.

Writing	a	style	plugin	is	achieved	by	subclassing	this	base	class,	reimplementing
the	pure	virtual	functions	keys()	and	create(),	and	exporting	the	class	with	the
Q_EXPORT_PLUGIN	macro.	See	the	plugins	documentation	for	an	example.

See	also	Plugins.

Member	Function	Documentation

QStylePlugin::QStylePlugin	()

Constructs	a	style	plugin.	This	is	invoked	automatically	by	the
Q_EXPORT_PLUGIN	macro.

QStylePlugin::~QStylePlugin	()

Destroys	the	style	plugin.

You	never	have	to	call	this	explicitly.	Qt	destroys	a	plugin	automatically	when	it
is	no	longer	used.

QStyle	*	QStylePlugin::create	(const	QString	&	key)	[pure
virtual]

Creates	and	returns	a	QStyle	object	for	the	style	key	key.	The	style	key	is	usually
the	class	name	of	the	required	style.

See	also	keys().

QStringList	QStylePlugin::keys	()	const	[pure	virtual]

Returns	the	list	of	style	keys	this	plugin	supports.

These	keys	are	usually	the	class	names	of	the	custom	styles	that	are	implemented
in	the	plugin.

See	also	create().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QXmlLocator	Class	Reference
[XML	module]

The	QXmlLocator	class	provides	the	XML	handler	classes	with	information
about	the	parsing	position	within	a	file.	More...

#include	<qxml.h>

List	of	all	member	functions.

Public	Members

QXmlLocator	()
virtual	~QXmlLocator	()
virtual	int	columnNumber	()	=	0
virtual	int	lineNumber	()	=	0

Detailed	Description

The	QXmlLocator	class	provides	the	XML	handler	classes	with	information
about	the	parsing	position	within	a	file.

The	reader	reports	a	QXmlLocator	to	the	content	handler	before	it	starts	to	parse
the	document.	This	is	done	with	the
QXmlContentHandler::setDocumentLocator()	function.	The	handler	classes	can
now	use	this	locator	to	get	the	position	(lineNumber()	and	columnNumber())	that
the	reader	has	reached.

See	also	XML.

Member	Function	Documentation

QXmlLocator::QXmlLocator	()

Constructor.

QXmlLocator::~QXmlLocator	()	[virtual]

Destructor.

int	QXmlLocator::columnNumber	()	[pure	virtual]

Returns	the	column	number	(starting	at	1)	or	-1	if	there	is	no	column	number
available.

int	QXmlLocator::lineNumber	()	[pure	virtual]

Returns	the	line	number	(starting	at	1)	or	-1	if	there	is	no	line	number	available.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QDial	Class	Reference
The	QDial	class	provides	a	rounded	range	control	(like	a	speedometer	or
potentiometer).	More...

#include	<qdial.h>

Inherits	QWidget	and	QRangeControl.

List	of	all	member	functions.

Public	Members

QDial	(QWidget	*	parent	=	0,	const	char	*	name	=	0,	WFlags	f	=	0)
QDial	(int	minValue,	int	maxValue,	int	pageStep,	int	value,
QWidget	*	parent	=	0,	const	char	*	name	=	0)
~QDial	()
bool	tracking	()	const
bool	wrapping	()	const
int	notchSize	()	const
virtual	void	setNotchTarget	(double)
double	notchTarget	()	const
bool	notchesVisible	()	const
int	minValue	()	const
int	maxValue	()	const
void	setMinValue	(int)
void	setMaxValue	(int)
int	lineStep	()	const
int	pageStep	()	const
void	setLineStep	(int)
void	setPageStep	(int)
int	value	()	const

Public	Slots

virtual	void	setValue	(int)
void	addLine	()
void	subtractLine	()
void	addPage	()
void	subtractPage	()
virtual	void	setNotchesVisible	(bool	b)
virtual	void	setWrapping	(bool	on)
virtual	void	setTracking	(bool	enable)

Signals

void	valueChanged	(int	value)
void	dialPressed	()
void	dialMoved	(int	value)
void	dialReleased	()

Properties

int	lineStep	-	the	current	line	step
int	maxValue	-	the	current	maximum	value
int	minValue	-	the	current	minimum	value
int	notchSize	-	the	current	notch	size		(read	only)
double	notchTarget	-	the	target	number	of	pixels	between	notches
bool	notchesVisible	-	whether	the	notches	are	shown
int	pageStep	-	the	current	page	step
bool	tracking	-	whether	tracking	is	enabled
int	value	-	the	current	dial	value
bool	wrapping	-	whether	wrapping	is	enabled

Protected	Members

virtual	void	valueChange	()
virtual	void	rangeChange	()
virtual	void	repaintScreen	(const	QRect	*	cr	=	0)

Detailed	Description

The	QDial	class	provides	a	rounded	range	control	(like	a	speedometer	or
potentiometer).

QDial	is	used	when	the	user	needs	to	control	a	value	within	a	program-definable
range,	and	the	range	either	wraps	around	(typically,	0..359	degrees)	or	the	dialog
layout	needs	a	square	widget.

Both	API-	and	UI-wise,	the	dial	is	very	similar	to	a	slider.	Indeed,	when
wrapping()	is	FALSE	(the	default)	there	is	no	real	difference	between	a	slider
and	a	dial.	They	have	the	same	signals,	slots	and	member	functions,	all	of	which
do	the	same	things.	Which	one	you	use	depends	only	on	your	taste	and	on	the
application.

The	dial	initially	emits	valueChanged()	signals	continuously	while	the	slider	is
being	moved;	you	can	make	it	emit	the	signal	less	often	by	calling
setTracking(FALSE).	dialMoved()	is	emitted	continuously	even	when	tracking()
is	FALSE.

The	slider	also	emits	dialPressed()	and	dialReleased()	signals	when	the	mouse
button	is	pressed	and	released.	But	note	that	the	dial's	value	can	change	without
these	signals	being	emitted;	the	keyboard	and	wheel	can	be	used	to	change	the
value.

Unlike	the	slider,	QDial	attempts	to	draw	a	"nice"	number	of	notches	rather	than
one	per	lineStep().	If	possible,	the	number	of	notches	drawn	is	one	per
lineStep(),	but	if	there	aren't	enough	pixels	to	draw	every	one,	QDial	will	draw
every	second,	third	etc.,	notch.	notchSize()	returns	the	number	of	units	per	notch,
hopefully	a	multiple	of	lineStep();	setNotchTarget()	sets	the	target	distance
between	neighbouring	notches	in	pixels.	The	default	is	3.75	pixels.

Like	the	slider,	the	dial	makes	the	QRangeControl	functions	setValue(),
addLine(),	subtractLine(),	addPage()	and	subtractPage()	available	as	slots.

The	dial's	keyboard	interface	is	fairly	simple:	The	left/up	and	right/down	arrow
keys	move	by	lineStep(),	page	up	and	page	down	by	pageStep()	and	Home	and
End	to	minValue()	and	maxValue().

	

See	also	QScrollBar,	QSpinBox,	GUI	Design	Handbook:	Slider	and	Basic
Widgets.

Member	Function	Documentation

QDial::QDial	(QWidget	*	parent	=	0,	const	char	*	name	=	0,
WFlags	f	=	0)

Constructs	a	dial	called	name	with	parent	parent.	f	is	propagated	to	the	QWidget
constructor.	It	has	the	default	range	of	a	QRangeControl.

QDial::QDial	(int	minValue,	int	maxValue,	int	pageStep,
int	value,	QWidget	*	parent	=	0,	const	char	*	name	=	0)

Constructs	a	dial	called	name	with	parent	parent.	The	dial's	value	can	never	be
smaller	than	minValue	or	greater	than	maxValue.	Its	page	step	size	is	pageStep,
and	its	initial	value	is	value.

value	is	forced	to	be	within	the	legal	range.

QDial::~QDial	()

Destroys	the	dial.

void	QDial::addLine	()	[slot]

Increments	the	dial's	value()	by	one	lineStep().

void	QDial::addPage	()	[slot]

Increments	the	dial's	value()	by	one	pageStep()	of	steps.

void	QDial::dialMoved	(int	value)	[signal]

This	signal	is	emitted	whenever	the	dial	value	changes.	The	frequency	of	this
signal	is	not	influenced	by	setTracking().

See	also	valueChanged().

void	QDial::dialPressed	()	[signal]

This	signal	is	emitted	when	the	use	begins	mouse	interaction	with	the	dial.

See	also	dialReleased().

void	QDial::dialReleased	()	[signal]

This	signal	is	emitted	when	the	use	ends	mouse	interaction	with	the	dial.

See	also	dialPressed().

int	QDial::lineStep	()	const

Returns	the	current	line	step.	See	the	"lineStep"	property	for	details.

int	QDial::maxValue	()	const

Returns	the	current	maximum	value.	See	the	"maxValue"	property	for	details.

int	QDial::minValue	()	const

Returns	the	current	minimum	value.	See	the	"minValue"	property	for	details.

int	QDial::notchSize	()	const

Returns	the	current	notch	size.	See	the	"notchSize"	property	for	details.

double	QDial::notchTarget	()	const

Returns	the	target	number	of	pixels	between	notches.	See	the	"notchTarget"
property	for	details.

bool	QDial::notchesVisible	()	const

Returns	TRUE	if	the	notches	are	shown;	otherwise	returns	FALSE.	See	the
"notchesVisible"	property	for	details.

int	QDial::pageStep	()	const

Returns	the	current	page	step.	See	the	"pageStep"	property	for	details.

void	QDial::rangeChange	()	[virtual	protected]

Reimplemented	to	ensure	tick-marks	are	consistent	with	the	new	range.

Reimplemented	from	QRangeControl.

void	QDial::repaintScreen	(const	QRect	*	cr	=	0)	[virtual
protected]

Paints	the	dial	using	clip	region	cr.

void	QDial::setLineStep	(int)

Sets	the	current	line	step.	See	the	"lineStep"	property	for	details.

void	QDial::setMaxValue	(int)

Sets	the	current	maximum	value.	See	the	"maxValue"	property	for	details.

void	QDial::setMinValue	(int)

Sets	the	current	minimum	value.	See	the	"minValue"	property	for	details.

void	QDial::setNotchTarget	(double)	[virtual]

Sets	the	target	number	of	pixels	between	notches.	See	the	"notchTarget"	property
for	details.

void	QDial::setNotchesVisible	(bool	b)	[virtual	slot]

Sets	whether	the	notches	are	shown	to	b.	See	the	"notchesVisible"	property	for
details.

void	QDial::setPageStep	(int)

Sets	the	current	page	step.	See	the	"pageStep"	property	for	details.

void	QDial::setTracking	(bool	enable)	[virtual	slot]

Sets	whether	tracking	is	enabled	to	enable.	See	the	"tracking"	property	for
details.

void	QDial::setValue	(int)	[virtual	slot]

Sets	the	current	dial	value.	See	the	"value"	property	for	details.

void	QDial::setWrapping	(bool	on)	[virtual	slot]

Sets	whether	wrapping	is	enabled	to	on.	See	the	"wrapping"	property	for	details.

void	QDial::subtractLine	()	[slot]

Decrements	the	dial's	value()	by	one	lineStep().

void	QDial::subtractPage	()	[slot]

Decrements	the	dial's	value()	by	one	pageStep()	of	steps.

bool	QDial::tracking	()	const

Returns	TRUE	if	tracking	is	enabled;	otherwise	returns	FALSE.	See	the
"tracking"	property	for	details.

int	QDial::value	()	const

Returns	the	current	dial	value.	See	the	"value"	property	for	details.

void	QDial::valueChange	()	[virtual	protected]

Reimplemented	to	ensure	the	display	is	correct	and	to	emit	the
valueChanged(int)	signal	when	appropriate.

Reimplemented	from	QRangeControl.

void	QDial::valueChanged	(int	value)	[signal]

This	signal	is	emitted	whenever	the	dial's	value	changes.	The	frequency	of	this
signal	is	influenced	by	setTracking().

bool	QDial::wrapping	()	const

Returns	TRUE	if	wrapping	is	enabled;	otherwise	returns	FALSE.	See	the
"wrapping"	property	for	details.

Property	Documentation

int	lineStep

This	property	holds	the	current	line	step.

setLineStep()	calls	the	virtual	stepChange()	function	if	the	new	line	step	is
different	from	the	previous	setting.

See	also	QRangeControl::setSteps(),	pageStep	and	setRange().

Set	this	property's	value	with	setLineStep()	and	get	this	property's	value	with
lineStep().

int	maxValue

This	property	holds	the	current	maximum	value.

When	setting	this	property,	the	QDial::minValue	is	adjusted	so	that	the	range
remains	valid	if	necessary.

See	also	setRange().

Set	this	property's	value	with	setMaxValue()	and	get	this	property's	value	with
maxValue().

int	minValue

This	property	holds	the	current	minimum	value.

When	setting	this	property,	the	QDial::maxValue	is	adjusted	so	that	the	range
remains	valid	if	necessary.

See	also	setRange().

Set	this	property's	value	with	setMinValue()	and	get	this	property's	value	with
minValue().

int	notchSize

This	property	holds	the	current	notch	size.

The	notch	size	is	in	range	control	units,	not	pixels,	and	if	possible	it	is	a	multiple
of	lineStep()	that	results	in	an	on-screen	notch	size	near	notchTarget().

See	also	notchTarget	and	lineStep.

Get	this	property's	value	with	notchSize().

double	notchTarget

This	property	holds	the	target	number	of	pixels	between	notches.

The	notch	target	is	the	number	of	pixels	QDial	attempts	to	put	between	each
notch.

The	actual	size	may	differ	from	the	target	size.

Set	this	property's	value	with	setNotchTarget()	and	get	this	property's	value	with
notchTarget().

bool	notchesVisible

This	property	holds	whether	the	notches	are	shown.

If	TRUE,	the	notches	are	shown.	If	FALSE	(the	default)	notches	are	not	shown.

Set	this	property's	value	with	setNotchesVisible()	and	get	this	property's	value
with	notchesVisible().

int	pageStep

This	property	holds	the	current	page	step.

setPageStep()	calls	the	virtual	stepChange()	function	if	the	new	page	step	is
different	from	the	previous	setting.

See	also	stepChange().

Set	this	property's	value	with	setPageStep()	and	get	this	property's	value	with
pageStep().

bool	tracking

This	property	holds	whether	tracking	is	enabled.

If	TRUE	(the	default),	tracking	is	enabled.	This	means	that	the	arrow	can	be
moved	using	the	mouse;	otherwise	the	arrow	cannot	be	moved	with	the	mouse.

Set	this	property's	value	with	setTracking()	and	get	this	property's	value	with
tracking().

int	value

This	property	holds	the	current	dial	value.

This	is	guaranteed	to	be	within	the	range	QDial::minValue..QDial::maxValue.

See	also	minValue	and	maxValue.

Set	this	property's	value	with	setValue()	and	get	this	property's	value	with
value().

bool	wrapping

This	property	holds	whether	wrapping	is	enabled.

If	TRUE,	wrapping	is	enabled.	This	means	that	the	arrow	can	be	turned	around
360°.	Otherwise	there	is	some	space	at	the	bottom	of	the	dial	which	is	skipped
by	the	arrow.

This	property's	default	is	FALSE.

Set	this	property's	value	with	setWrapping()	and	get	this	property's	value	with
wrapping().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QIconSet	Class	Reference
The	QIconSet	class	provides	a	set	of	icons	with	different	styles	and	sizes.	More...

#include	<qiconset.h>

List	of	all	member	functions.

Public	Members

enum	Size	{	Automatic,	Small,	Large	}
enum	Mode	{	Normal,	Disabled,	Active	}
enum	State	{	On,	Off	}
QIconSet	()
QIconSet	(const	QPixmap	&	pixmap,	Size	size	=	Automatic)
QIconSet	(const	QPixmap	&	smallPix,	const	QPixmap	&	largePix)
QIconSet	(const	QIconSet	&	other)
virtual	~QIconSet	()
void	reset	(const	QPixmap	&	pm,	Size	size)
virtual	void	setPixmap	(const	QPixmap	&	pm,	Size	size,	Mode	mode	=
Normal,	State	state	=	Off)
virtual	void	setPixmap	(const	QString	&	fileName,	Size	size,	Mode	mode
=	Normal,	State	state	=	Off)
QPixmap	pixmap	(Size	size,	Mode	mode,	State	state	=	Off)	const
QPixmap	pixmap	(Size	size,	bool	enabled,	State	state	=	Off)	const
QPixmap	pixmap	()	const
bool	isGenerated	(Size	size,	Mode	mode,	State	state	=	Off)	const
void	clearGenerated	()
bool	isNull	()	const
void	detach	()
QIconSet	&	operator=	(const	QIconSet	&	other)

Static	Public	Members

void	setIconSize	(Size	s,	const	QSize	&	size)
const	QSize	&	iconSize	(Size	s)

Detailed	Description

The	QIconSet	class	provides	a	set	of	icons	with	different	styles	and	sizes.

A	QIconSet	can	generate	smaller,	larger,	active,	and	disabled	pixmaps	from	the
set	of	icons	it	is	given.	Such	pixmaps	are	used	by	QToolButton,	QHeader,
QPopupMenu,	etc.	to	show	an	icon	representing	a	particular	action.

The	simplest	use	of	QIconSet	is	to	create	one	from	a	QPixmap	and	then	use	it,
allowing	Qt	to	work	out	all	the	required	icon	styles	and	sizes.	For	example:

		QToolButton	*tb	=	new	QToolButton(QIconSet(QPixmap("open.xpm")),	...);

		

Using	whichever	pixmap(s)	you	specify	as	a	base,	QIconSet	provides	a	set	of	six
icons,	each	with	a	Size	and	a	Mode:

Small	Normal	-	can	only	be	calculated	from	Large	Normal.
Small	Disabled	-	calculated	from	Large	Disabled	or	Small	Normal.
Small	Active	-	same	as	Small	Normal	unless	you	set	it.
Large	Normal	-	can	only	be	calculated	from	Small	Normal.
Large	Disabled	-	calculated	from	Small	Disabled	or	Large	Normal.
Large	Active	-	same	as	Large	Normal	unless	you	set	it.

An	additional	set	of	six	icons	can	be	provided	for	widgets	that	have	an	"On"	or
"Off"	state,	like	checkable	menu	items	or	toggleable	toolbuttons.	If	you	provide
pixmaps	for	the	"On"	state,	but	not	for	the	"Off"	state,	the	QIconSet	will	provide
the	"Off"	pixmaps.	You	may	specify	icons	for	both	states	in	you	wish.	For	best
results	for	calculated	pixmaps,	you	should	supply	a	22	x	22	pixel	pixmap.

You	can	set	any	of	the	icons	using	setPixmap().

When	you	retrieve	a	pixmap	using	pixmap(Size,Mode,State),	QIconSet	will
return	the	icon	that	has	been	set	or	previously	generated	for	that	size,	mode	and
state	combination.	If	no	pixmap	has	been	set	or	previously	generated	for	the
combination	QIconSet	will	generate	a	pixmap	based	on	the	pixmap(s)	it	has	been
given,	cache	the	generated	pixmap	for	later	use,	and	return	it.	The	isGenerated()
function	returns	TRUE	if	an	icon	was	generated	by	QIconSet.

The	Disabled	appearance	is	computed	using	a	"shadow"	algorithm	that	produces
results	very	similar	to	those	used	in	Microsoft	Windows	95.

The	Active	appearance	is	identical	to	the	Normal	appearance	unless	you	use
setPixmap()	to	set	it	to	something	special.

When	scaling	icons,	QIconSet	uses	smooth	scaling,	which	can	partially	blend	the
color	component	of	pixmaps.	If	the	results	look	poor,	the	best	solution	is	to
supply	pixmaps	in	both	large	and	small	sizes.

You	can	use	the	static	function	setIconSize()	to	set	the	preferred	size	of	the
generated	large/small	icons.	The	default	small	size	is	22x22	(compatible	with	Qt
2.x),	while	the	default	large	size	is	32x32.	Please	note	that	these	sizes	only	affect
generated	icons.

QIconSet	provides	a	function,	isGenerated(),	that	indicates	whether	an	icon	was
set	by	the	application	programmer	or	computed	by	QIconSet	itself.

Making	Classes	that	use	QIconSet

If	you	write	your	own	widgets	that	have	an	option	to	set	a	small	pixmap,
consider	allowing	a	QIconSet	to	be	set	for	that	pixmap.	The	Qt	class
QToolButton	is	an	example	of	such	a	widget.

Provide	a	method	to	set	a	QIconSet,	and	when	you	draw	the	icon,	choose
whichever	icon	is	appropriate	for	the	current	state	of	your	widget.	For	example:

		void	MyWidget::drawIcon(QPainter*	p,	QPoint	pos)

		{

						p->drawPixmap(pos,	icons->pixmap(QIconSet::Small,	isEnabled()));

		}

		

You	might	also	make	use	of	the	Active	mode,	perhaps	making	your	widget
Active	when	the	mouse	is	over	the	widget	(see	QWidget::enterEvent()),	while
the	mouse	is	pressed	pending	the	release	that	will	activate	the	function,	or	when
it	is	the	currently	selected	item.	If	the	widget	can	be	toggled,	the	"On"	mode
might	be	used	to	draw	a	different	icon.

See	also	QPixmap,	QLabel,	QToolButton,	QPopupMenu,
QMainWindow::usesBigPixmaps,	GUI	Design	Handbook:	Iconic	Label,
Microsoft	Icon	Gallery,	Graphics	Classes,	Image	Processing	Classes	and
Implicitly	and	Explicitly	Shared	Classes.

http://cgl.microsoft.com/clipgallerylive/cgl30/eula.asp?nInterface=0

Member	Type	Documentation

QIconSet::Mode

This	enum	type	describes	the	mode	for	which	a	pixmap	is	intended	to	be	used.
The	currently	defined	modes	are:

QIconSet::Normal	-	Display	the	pixmap	when	the	user	is	not	interacting
with	the	icon,	but	the	functionality	represented	by	the	icon	is	available.
QIconSet::Disabled	-	Display	the	pixmap	when	the	functionality
represented	by	the	icon	is	not	available.
QIconSet::Active	-	Display	the	pixmap	when	the	functionality	represented
by	the	icon	is	available	and	the	user	is	interacting	with	the	icon,	for
example,	moving	the	mouse	over	it	or	clicking	it.

QIconSet::Size

This	enum	type	describes	the	size	at	which	a	pixmap	is	intended	to	be	used.	The
currently	defined	sizes	are:

QIconSet::Automatic	-	The	size	of	the	pixmap	is	determined	from	its	pixel
size.	This	is	a	useful	default.
QIconSet::Small	-	The	pixmap	is	the	smaller	of	two.
QIconSet::Large	-	The	pixmap	is	the	larger	of	two.

If	a	Small	pixmap	is	not	set	by	QIconSet::setPixmap(),	the	Large	pixmap	will	be
automatically	scaled	down	to	the	size	of	a	small	pixmap	to	generate	the	Small
pixmap	when	required.	Similarly,	a	Small	pixmap	will	be	automatically	scaled
up	to	generate	a	Large	pixmap.	The	preferred	sizes	for	large/small	generated
icons	can	be	set	using	setIconSize().

See	also	setIconSize(),	iconSize(),	setPixmap(),	pixmap()	and
QMainWindow::usesBigPixmaps.

QIconSet::State

This	enum	describes	the	state	for	which	a	pixmap	is	intended	to	be	used.	The

state	can	be:

QIconSet::Off	-	Display	the	pixmap	when	the	widget	is	in	an	"off"	state
QIconSet::On	-	Display	the	pixmap	when	the	widget	is	in	an	"on"	state

See	also	setPixmap()	and	pixmap().

Member	Function	Documentation

QIconSet::QIconSet	()

Constructs	a	null	icon	set.	Use	setPixmap(),	reset(),	or	operator=()	to	set	some
pixmaps.

See	also	reset().

QIconSet::QIconSet	(const	QPixmap	&	pixmap,	Size	size	=
Automatic)

Constructs	an	icon	set	for	which	the	Normal	pixmap	is	pixmap,	which	is
assumed	to	be	of	size	size.

The	default	for	size	is	Automatic,	which	means	that	QIconSet	will	determine
whether	the	pixmap	is	Small	or	Large	from	its	pixel	size.	Pixmaps	less	than	the
width	of	a	small	generated	icon	are	considered	to	be	Small.	You	can	use
setIconSize()	to	set	the	preferred	size	of	a	generated	icon.

See	also	setIconSize()	and	reset().

QIconSet::QIconSet	(const	QPixmap	&	smallPix,
const	QPixmap	&	largePix)

Creates	an	iconset	which	uses	the	pixmap	smallPix	for	for	displaying	a	small
icon,	and	the	pixmap	largePix	for	displaying	a	large	icon.

QIconSet::QIconSet	(const	QIconSet	&	other)

Constructs	a	copy	of	other.	This	is	very	fast.

QIconSet::~QIconSet	()	[virtual]

Destroys	the	icon	set	and	frees	any	allocated	resources.

void	QIconSet::clearGenerated	()

Clears	all	generated	pixmaps.

void	QIconSet::detach	()

Detaches	this	icon	set	from	others	with	which	it	may	share	data.

You	will	never	need	to	call	this	function;	other	QIconSet	functions	call	it	as
necessary.

const	QSize	&	QIconSet::iconSize	(Size	s)	[static]

If	s	is	Small,	returns	the	preferred	size	of	a	small	generated	icon;	if	s	is	Large,
returns	the	preferred	size	of	a	large	generated	icon.

See	also	setIconSize().

bool	QIconSet::isGenerated	(Size	size,	Mode	mode,	State	state	=
Off)	const

Returns	TRUE	if	the	pixmap	with	size	size,	mode	mode	and	state	state	has	been
generated;	otherwise	returns	FALSE.

bool	QIconSet::isNull	()	const

Returns	TRUE	if	the	icon	set	is	empty;	otherwise	returns	FALSE.

QIconSet	&	QIconSet::operator=	(const	QIconSet	&	other)

Assigns	other	to	this	icon	set	and	returns	a	reference	to	this	icon	set.

This	is	very	fast.

See	also	detach().

QPixmap	QIconSet::pixmap	(Size	size,	Mode	mode,	State	state	=
Off)	const

Returns	a	pixmap	with	size	size,	mode	mode	and	state	state,	generating	one	if
necessary.	Generated	pixmaps	are	cached.

QPixmap	QIconSet::pixmap	(Size	size,	bool	enabled,	State	state	=
Off)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	a	pixmap	with	size	size,	state	state	and	a	Mode	which	is	Normal	if
enabled	is	TRUE,	or	Disabled	if	enabled	is	FALSE.

QPixmap	QIconSet::pixmap	()	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	the	pixmap	originally	provided	to	the	constructor	or	to	reset().	This	is
the	Normal	pixmap	of	unspecified	Size.

See	also	reset().

void	QIconSet::reset	(const	QPixmap	&	pm,	Size	size)

Sets	this	icon	set	to	use	pixmap	pm	for	the	Normal	pixmap,	assuming	it	to	be	of
size	size.

This	is	equivalent	to	assigning	QIconSet(pm,	size)	to	this	icon	set.

This	function	does	nothing	if	pm	is	a	null	pixmap.

void	QIconSet::setIconSize	(Size	s,	const	QSize	&	size)	[static]

Set	the	preferred	size	for	all	small	or	large	icons	that	are	generated	after	this	call.
If	s	is	Small,	sets	the	preferred	size	of	small	generated	icons	to	size.	Similarly,	if
s	is	Large,	sets	the	preferred	size	of	large	generated	icons	to	size.

Note	that	cached	icons	will	not	be	regenerated,	so	it	is	recommended	that	you	set
the	preferred	icon	sizes	before	generating	any	icon	sets.	Also	note	that	the

preferred	icon	sizes	will	be	ignored	for	icon	sets	that	have	been	created	using
both	small	and	large	pixmaps.

See	also	iconSize().

void	QIconSet::setPixmap	(const	QPixmap	&	pm,	Size	size,
Mode	mode	=	Normal,	State	state	=	Off)	[virtual]

Sets	this	icon	set	to	provide	pixmap	pm	for	size	size,	mode	mode	and	state	state.
The	icon	set	may	also	use	pm	for	generating	other	pixmaps	if	they	are	not
explicitly	set.

The	size	can	be	one	of	Automatic,	Large	or	Small.	If	Automatic	is	used,
QIconSet	will	determine	if	the	pixmap	is	Small	or	Large	from	its	pixel	size.

Pixmaps	less	than	the	width	of	a	small	generated	icon	are	considered	to	be
Small.	You	can	use	setIconSize()	to	set	the	preferred	size	of	a	generated	icon.

This	function	does	nothing	if	pm	is	a	null	pixmap.

See	also	reset().

void	QIconSet::setPixmap	(const	QString	&	fileName,	Size	size,
Mode	mode	=	Normal,	State	state	=	Off)	[virtual]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Sets	this	icon	set	to	load	the	file	called	fileName	as	a	pixmap	and	use	it	for	size
size,	mode	mode	and	state	state.	The	icon	set	may	also	use	this	pixmap	for
generating	other	pixmaps	if	they	are	not	explicitly	set.

The	size	can	be	one	of	Automatic,	Large	or	Small.	If	Automatic	is	used,
QIconSet	will	determine	if	the	pixmap	is	Small	or	Large	from	its	pixel	size.
Pixmaps	less	than	the	width	of	a	small	generated	icon	are	considered	to	be
Small.	You	can	use	setIconSize()	to	set	the	preferred	size	of	a	generated	icon.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights

http://www.trolltech.com/

Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QPlatinumStyle	Class	Reference
The	QPlatinumStyle	class	provides	Mac/Platinum	look	and	feel.	More...

#include	<qplatinumstyle.h>

Inherits	QWindowsStyle.

List	of	all	member	functions.

Public	Members

QPlatinumStyle	()

Protected	Members

QColor	mixedColor	(const	QColor	&	c1,	const	QColor	&	c2)	const
void	drawRiffles	(QPainter	*	p,	int	x,	int	y,	int	w,	int	h,
const	QColorGroup	&	g,	bool	horizontal)	const

Detailed	Description

The	QPlatinumStyle	class	provides	Mac/Platinum	look	and	feel.

This	class	implements	the	Platinum	look	and	feel.	It's	an	experimental	class	that
tries	to	resemble	a	Macinosh-like	GUI	style	with	the	QStyle	system.	The
emulation	is,	however,	far	from	being	perfect	yet.

See	also	Widget	Appearance	and	Style.

Member	Function	Documentation

QPlatinumStyle::QPlatinumStyle	()

Constructs	a	QPlatinumStyle

void	QPlatinumStyle::drawRiffles	(QPainter	*	p,	int	x,	int	y,
int	w,	int	h,	const	QColorGroup	&	g,	bool	horizontal)	const
[protected]

Draws	the	nifty	Macintosh	decoration	used	on	sliders	using	painter	p	and
colorgroup	g.	x,	y,	w,	h	and	horizontal	specify	the	geometry	and	orientation	of
the	riffles.

QColor	QPlatinumStyle::mixedColor	(const	QColor	&	c1,
const	QColor	&	c2)	const	[protected]

Mixes	two	colors	c1	and	c2	to	a	new	color.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QStyleSheet	Class	Reference
The	QStyleSheet	class	is	a	collection	of	styles	for	rich	text	rendering	and	a
generator	of	tags.	More...

#include	<qstylesheet.h>

Inherits	QObject.

List	of	all	member	functions.

Public	Members

QStyleSheet	(QObject	*	parent	=	0,	const	char	*	name	=	0)
virtual	~QStyleSheet	()
QStyleSheetItem	*	item	(const	QString	&	name)
const	QStyleSheetItem	*	item	(const	QString	&	name)	const
virtual	QTextCustomItem	*	tag	(const	QString	&	name,
const	QMap<QString,	QString>	&	attr,	const	QString	&	context,
const	QMimeSourceFactory	&	factory,	bool	emptyTag,
QTextDocument	*	doc)	const
virtual	void	scaleFont	(QFont	&	font,	int	logicalSize)	const
virtual	void	error	(const	QString	&	msg)	const

Static	Public	Members

QStyleSheet	*	defaultSheet	()
void	setDefaultSheet	(QStyleSheet	*	sheet)
QString	escape	(const	QString	&	plain)
QString	convertFromPlainText	(const	QString	&	plain,
QStyleSheetItem::WhiteSpaceMode	mode	=
QStyleSheetItem::WhiteSpacePre)
bool	mightBeRichText	(const	QString	&	text)

Detailed	Description

The	QStyleSheet	class	is	a	collection	of	styles	for	rich	text	rendering	and	a
generator	of	tags.

By	creating	QStyleSheetItem	objects	for	a	style	sheet	you	build	a	definition	of	a
set	of	tags.	This	definition	will	be	used	by	the	internal	rich	text	rendering	system
to	parse	and	display	text	documents	to	which	the	style	sheet	applies.	Rich	text	is
normally	visualized	in	a	QTextView	or	a	QTextBrowser.	However,	QLabel,
QWhatsThis	and	QMessageBox	also	support	it,	and	other	classes	are	likely	to
follow.	With	QSimpleRichText	it	is	possible	to	use	the	rich	text	renderer	for
custom	widgets	as	well.

The	default	QStyleSheet	object	has	the	following	style	bindings,	sorted	by
structuring	bindings,	anchors,	character	style	bindings	(i.e.	inline	styles),	special
elements	such	as	horizontal	lines	or	images,	and	other	tags.	In	addition,	rich	text
supports	simple	HTML	tables.

The	structuring	tags	are

Structuring	tags Notes

<qt>...</qt>

A	Qt	rich	text	document.	It	understands	the	following
attributes:

title	--	The	caption	of	the	document.	This
attribute	is	easily	accessible	with
QTextView::documentTitle().
type	--	The	type	of	the	document.	The	default
type	is	page.	It	indicates	that	the	document	is
displayed	in	a	page	of	its	own.	Another	style	is
detail,	which	can	be	used	to	explain	certain
expressions	in	more	detail	in	a	few	sentences.	For
detail,	QTextBrowser	will	then	keep	the	current
page	and	display	the	new	document	in	a	small
popup	similar	to	QWhatsThis.	Note	that	links	will
not	work	in	documents	with	<qt
type="detail">...</qt>.

bgcolor	--	The	background	color,	for	example
bgcolor="yellow"	or	bgcolor="#0000FF".
background	--	The	background	pixmap,	for
example	background="granite.xpm".	The
pixmap	name	will	be	resolved	by	a
QMimeSourceFactory().
text	--	The	default	text	color,	for	example
text="red".
link	--	The	link	color,	for	example	link="green".

<h1>...</h1> A	top-level	heading.
<h2>...</h2> A	sublevel	heading.
<h3>...</h3> A	sub-sublevel	heading.

<p>...</p>

A	left-aligned	paragraph.	Adjust	the	alignment	with	the
align	attribute.	Possible	values	are	left,	right	and
center.

<center>...</center>A	centered	paragraph.
<blockquote>...

</blockquote>
An	indented	paragraph	that	is	useful	for	quotes.

...

An	unordered	list.	You	can	also	pass	a	type	argument	to
define	the	bullet	style.	The	default	is	type=disc;	other
types	are	circle	and	square.

...

An	ordered	list.	You	can	also	pass	a	type	argument	to
define	the	enumeration	label	style.	The	default	is
type="1";	other	types	are	"a"	and	"A".

...
A	list	item.	This	tag	can	be	used	only	within	the	context
of		or	.

<pre>...</pre>

For	larger	chunks	of	code.	Whitespaces	in	the	contents
are	preserved.	For	small	bits	of	code	use	the	inline-style
code.

Anchors	and	links	are	done	with	a	single	tag:

Anchor
tags Notes

An	anchor	or	link.

<a>...

A	link	is	created	by	using	an	href	attribute,	for	example	
Link	Text.	Links	to	targets	within	a
document	are	achieved	in	the	same	way	as	for	HTML,	e.g.	
Link	Text.
A	target	is	created	by	using	a	name	attribute,	for	example	
<h2>Sub	Title</h2>.

The	default	character	style	bindings	are

Style	tags Notes
...

Emphasized.	By	default	this	is	the	same	as	<i>...</i>	(italic).

...

Strong.	By	default	this	is	the	same	as	...	(bold).

<i>...</i> Italic	font	style.
... Bold	font	style.
<u>...</u> Underlined	font	style.
<s>...</s> Strike	out	font	style.
<big>...

</big>
A	larger	font	size.

<small>...

</small>
A	smaller	font	size.

<code>...

</code>

Indicates	code.	By	default	this	is	the	same	as	<tt>...</tt>
(typewriter).	For	larger	junks	of	code	use	the	block-tag	<pre>.

<tt>...

</tt>
Typewriter	font	style.

...

Customizes	the	font	size,	family	and	text	color.	The	tag
understands	the	following	attributes:

color	--	The	text	color,	for	example	color="red"	or
color="#FF0000".
size	--	The	logical	size	of	the	font.	Logical	sizes	1	to	7	are
supported.	The	value	may	either	be	absolute	(for	example,
size=3)	or	relative	(size=-2).	In	the	latter	case	the	sizes	are
simply	added.
face	--	The	family	of	the	font,	for	example	face=times.

Special	elements	are:

Special
tags Notes

An	image.	The	image	name	for	the	mime	source	factory	is	given	in
the	source	attribute,	for	example		The	image
tag	also	understands	the	attributes	width	and	height	that	determine
the	size	of	the	image.	If	the	pixmap	does	not	fit	the	specified	size	it
will	be	scaled	automatically	(by	using	QImage::smoothScale()).	
The	align	attribute	determines	where	the	image	is	placed.	By
default,	an	image	is	placed	inline	just	like	a	normal	character.
Specify	left	or	right	to	place	the	image	at	the	respective	side.

<hr> A	horizonal	line.

 A	line	break.
<nobr>...

</nobr>
No	break.	Prevents	word	wrap.

In	addition,	rich	text	supports	simple	HTML	tables.	A	table	consists	of	one	or
more	rows	each	of	which	contains	one	or	more	cells.	Cells	are	either	data	cells	or
header	cells,	depending	on	their	content.	Cells	which	span	rows	and	columns	are
supported.

Table	tags Notes

<table>...

</table>

A	table.	Tables	support	the	following	attributes:

bgcolor	--	The	background	color.
width	--	The	table	width.	This	is	either	an	absolute	pixel	width
or	a	relative	percentage	of	the	table's	width,	for	example
width=80%.
border	--	The	width	of	the	table	border.	The	default	is	0	(=	no
border).
cellspacing	--	Additional	space	around	the	table	cells.	The
default	is	2.
cellpadding	--	Additional	space	around	the	contents	of	table
cells.	The	default	is	1.

<tr>...

A	table	row.	This	is	only	valid	within	a	table.	Rows	support	the
following	attribute:

</tr> bgcolor	--	The	background	color.

<th>...

</th>

A	table	header	cell.	Similar	to	td,	but	defaults	to	center	alignment
and	a	bold	font.

<td>...

</td>

A	table	data	cell.	This	is	only	valid	within	a	tr.	Cells	support	the
following	attributes:

bgcolor	--	The	background	color.
width	--	The	cell	width.	This	is	either	an	absolute	pixel	width
or	a	relative	percentage	of	table's	width,	for	example
width=50%.
colspan	--	Specifies	how	many	columns	this	cell	spans.	The
default	is	1.
rowspan	--	Specifies	how	many	rows	this	cell	spans.	The
default	is	1.
align	--	Alignment;	possible	values	are	left,	right,	and
center.	The	default	is	left.

See	also	Graphics	Classes,	Help	System	and	Text	Related	Classes.

Member	Function	Documentation

QStyleSheet::QStyleSheet	(QObject	*	parent	=	0,
const	char	*	name	=	0)

Creates	a	style	sheet	called	name,	with	parent	parent.	Like	any	QObject	it	will	be
deleted	when	its	parent	is	destroyed	(if	the	child	still	exists).

By	default	the	style	sheet	has	the	tag	definitions	defined	above.

QStyleSheet::~QStyleSheet	()	[virtual]

Destroys	the	style	sheet.	All	styles	inserted	into	the	style	sheet	will	be	deleted.

QString	QStyleSheet::convertFromPlainText	(
const	QString	&	plain,
QStyleSheetItem::WhiteSpaceMode	mode	=
QStyleSheetItem::WhiteSpacePre)	[static]

Auxiliary	function.	Converts	the	plain	text	string	plain	to	a	rich	text	formatted
paragraph	while	preserving	most	of	its	look.

mode	defines	the	whitespace	mode.	Possible	values	are
QStyleSheetItem::WhiteSpacePre	(no	wrapping,	all	whitespaces	preserved)	and
QStyleSheetItem::WhiteSpaceNormal	(wrapping,	simplified	whitespaces).

See	also	escape().

QStyleSheet	*	QStyleSheet::defaultSheet	()	[static]

Returns	the	application-wide	default	style	sheet.	This	style	sheet	is	used	by	rich
text	rendering	classes	such	as	QSimpleRichText,	QWhatsThis	and
QMessageBox	to	define	the	rendering	style	and	available	tags	within	rich	text
documents.	It	also	serves	as	the	initial	style	sheet	for	the	more	complex	render
widgets,	QTextEdit	and	QTextBrowser.

See	also	setDefaultSheet().

void	QStyleSheet::error	(const	QString	&	msg)	const	[virtual]

This	virtual	function	is	called	when	an	error	occurs	when	processing	rich	text.
Reimplement	it	if	you	need	to	catch	error	messages.

Errors	might	occur	if	some	rich	text	strings	contain	tags	that	are	not	understood
by	the	stylesheet,	if	some	tags	are	nested	incorrectly,	or	if	tags	are	not	closed
properly.

msg	is	the	error	message.

QString	QStyleSheet::escape	(const	QString	&	plain)	[static]

Auxiliary	function.	Converts	the	plain	text	string	plain	to	a	rich	text	formatted
string	with	any	HTML	meta-characters	escaped.

See	also	convertFromPlainText().

QStyleSheetItem	*	QStyleSheet::item	(const	QString	&	name)

Returns	the	style	called	name	or	0	if	there	is	no	such	style.

const	QStyleSheetItem	*	QStyleSheet::item	(
const	QString	&	name)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	the	style	called	name	or	0	if	there	is	no	such	style	(const	version)

bool	QStyleSheet::mightBeRichText	(const	QString	&	text)
[static]

Returns	TRUE	if	the	string	text	is	likely	to	be	rich	text;	otherwise	returns
FALSE.

This	function	uses	a	fast	and	therefore	simple	heuristic.	It	mainly	checks	whether

there	is	something	that	looks	like	a	tag	before	the	first	line	break.	Although	the
result	may	be	correct	for	common	cases,	there	is	no	guarantee.

void	QStyleSheet::scaleFont	(QFont	&	font,	int	logicalSize)	const
[virtual]

Scales	the	font	font	to	the	appropriate	physical	point	size	corresponding	to	the
logical	font	size	logicalSize.

When	calling	this	function,	font	has	a	point	size	corresponding	to	the	logical	font
size	3.

Logical	font	sizes	range	from	1	to	7,	with	1	being	the	smallest.

See	also	QStyleSheetItem::logicalFontSize(),
QStyleSheetItem::logicalFontSizeStep()	and	QFont::setPointSize().

void	QStyleSheet::setDefaultSheet	(QStyleSheet	*	sheet)
[static]

Sets	the	application-wide	default	style	sheet	to	sheet,	deleting	any	style	sheet
previously	set.	The	ownership	is	transferred	to	QStyleSheet.

See	also	defaultSheet().

QTextCustomItem	*	QStyleSheet::tag	(const	QString	&	name,
const	QMap<QString,	QString>	&	attr,
const	QString	&	context,
const	QMimeSourceFactory	&	factory,	bool	emptyTag,
QTextDocument	*	doc)	const	[virtual]

This	function	is	under	development	and	is	subject	to	change.

Generates	an	internal	object	for	the	tag	called	name,	given	the	attributes	attr,	and
using	additional	information	provided	by	the	mime	source	factory	factory.

context	is	the	optional	context	of	the	document,	i.e.	the	path	to	look	for	relative
links.	This	becomes	important	if	the	text	contains	relative	references,	for
example	within	image	tags.	QSimpleRichText	always	uses	the	default	mime

source	factory	(see	QMimeSourceFactory::defaultFactory())	to	resolve	these
references.	The	context	will	then	be	used	to	calculate	the	absolute	path.	See
QMimeSourceFactory::makeAbsolute()	for	details.

emptyTag	and	doc	are	for	internal	use	only.

This	function	should	not	be	used	in	application	code.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QXmlNamespaceSupport	Class
Reference

[XML	module]
The	QXmlNamespaceSupport	class	is	a	helper	class	for	XML	readers	which
want	to	include	namespace	support.	More...

#include	<qxml.h>

List	of	all	member	functions.

Public	Members

QXmlNamespaceSupport	()
~QXmlNamespaceSupport	()
void	setPrefix	(const	QString	&	pre,	const	QString	&	uri)
QString	prefix	(const	QString	&	uri)	const
QString	uri	(const	QString	&	prefix)	const
void	splitName	(const	QString	&	qname,	QString	&	prefix,
QString	&	localname)	const
void	processName	(const	QString	&	qname,	bool	isAttribute,
QString	&	nsuri,	QString	&	localname)	const
QStringList	prefixes	()	const
QStringList	prefixes	(const	QString	&	uri)	const
void	pushContext	()
void	popContext	()
void	reset	()

Detailed	Description

The	QXmlNamespaceSupport	class	is	a	helper	class	for	XML	readers	which
want	to	include	namespace	support.

You	can	set	the	prefix	for	the	current	namespace	with	setPrefix(),	and	get	the	list
of	current	prefixes	(or	those	for	a	given	URI)	with	prefixes().	The	namespace
URI	is	available	from	uri().	Use	pushContext()	to	start	a	new	namespace	context,
and	popContext()	to	return	to	the	previous	namespace	context.	Use	splitName()
or	processName()	to	split	a	name	into	its	prefix	and	local	name.

See	also	the	namespace	description.

See	also	XML.

Member	Function	Documentation

QXmlNamespaceSupport::QXmlNamespaceSupport	()

Constructs	a	QXmlNamespaceSupport.

QXmlNamespaceSupport::~QXmlNamespaceSupport	()

Destroys	a	QXmlNamespaceSupport.

void	QXmlNamespaceSupport::popContext	()

Reverts	to	the	previous	namespace	context.

Normally,	you	should	pop	the	context	at	the	end	of	each	XML	element.	After
popping	the	context,	all	namespace	prefix	mappings	that	were	previously	in
force	are	restored.

See	also	pushContext().

QString	QXmlNamespaceSupport::prefix	(const	QString	&	uri)
const

Returns	one	of	the	prefixes	mapped	to	the	namespace	URI	uri.

If	more	than	one	prefix	is	currently	mapped	to	the	same	URI,	this	function
makes	an	arbitrary	selection;	if	you	want	all	of	the	prefixes,	use	prefixes()
instead.

Note:	to	check	for	a	default	prefix,	use	the	uri()	function	with	an	argument	of	"".

QStringList	QXmlNamespaceSupport::prefixes	()	const

Returns	a	list	of	all	prefixes	currently	declared.

If	there	is	a	default	prefix,	this	function	does	not	return	it	in	the	list;	check	for	the
default	prefix	using	uri()	with	an	argument	of	"".

Note	that	if	you	want	to	iterate	over	the	list,	you	should	iterate	over	a	copy,	e.g.

				QStringList	list	=	myXmlNamespaceSupport.prefixes();

				QStringList::Iterator	it	=	list.begin();

				while(it	!=	list.end())	{

								myProcessing(*it);

								++it;

				}

				

QStringList	QXmlNamespaceSupport::prefixes	(
const	QString	&	uri)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	a	list	of	all	prefixes	currently	declared	for	the	namespace	URI	uri.

The	"xml:"	prefix	is	included.	If	you	only	want	one	prefix	that	is	mapped	to	the
namespace	URI,	and	you	don't	care	which	one	you	get,	use	the	prefix()	function
instead.

Note:	the	empty	(default)	prefix	is	never	included	in	this	list;	to	check	for	the
presence	of	a	default	namespace,	use	uri()	with	an	argument	of	"".

Note	that	if	you	want	to	iterate	over	the	list,	you	should	iterate	over	a	copy,	e.g.

				QStringList	list	=	myXmlNamespaceSupport.prefixes("");

				QStringList::Iterator	it	=	list.begin();

				while(it	!=	list.end())	{

								myProcessing(*it);

								++it;

				}

				

void	QXmlNamespaceSupport::processName	(
const	QString	&	qname,	bool	isAttribute,	QString	&	nsuri,
QString	&	localname)	const

Processes	a	raw	XML	1.0	name	in	the	current	context	by	removing	the	prefix
and	looking	it	up	among	the	prefixes	currently	declared.

qname	is	the	raw	XML	1.0	name	to	be	processed.	isAttribute	is	TRUE	if	the
name	is	an	attribute	name.

This	function	stores	the	namespace	URI	in	nsuri	(which	will	get	a	null	string	if
the	raw	name	has	an	undeclared	prefix),	and	stores	the	local	name	(without
prefix)	in	localname	(which	will	get	a	null	string	if	no	namespace	is	in	use).

Note	that	attribute	names	are	processed	differently	than	element	names:	an
unprefixed	element	name	gets	the	default	namespace	(if	any),	while	an
unprefixed	element	name	does	not.

void	QXmlNamespaceSupport::pushContext	()

Starts	a	new	namespace	context.

Normally,	you	should	push	a	new	context	at	the	beginning	of	each	XML
element:	the	new	context	automatically	inherits	the	declarations	of	its	parent
context,	and	it	also	keeps	track	of	which	declarations	were	made	within	this
context.

See	also	popContext().

void	QXmlNamespaceSupport::reset	()

Resets	this	namespace	support	object	for	reuse.

void	QXmlNamespaceSupport::setPrefix	(const	QString	&	pre,
const	QString	&	uri)

This	function	declares	a	prefix	pre	in	the	current	namespace	context	to	be	the
namespace	URI	uri.	The	prefix	remains	in	force	until	this	context	is	popped,
unless	it	is	shadowed	in	a	descendant	context.

Note	that	there	is	an	asymmetry	in	this	library.	prefix()	does	not	return	the
default	""	prefix,	even	if	you	have	declared	one;	to	check	for	a	default	prefix,
you	must	look	it	up	explicitly	using	uri().	This	asymmetry	exists	to	make	it
easier	to	look	up	prefixes	for	attribute	names,	where	the	default	prefix	is	not
allowed.

void	QXmlNamespaceSupport::splitName	(
const	QString	&	qname,	QString	&	prefix,
QString	&	localname)	const

Splits	the	name	qname	at	the	':'	and	returns	the	prefix	in	prefix	and	the	local
name	in	localname.

See	also	processName().

QString	QXmlNamespaceSupport::uri	(const	QString	&	prefix)
const

Looks	up	the	prefix	prefix	in	the	current	context	and	returns	the	currently-
mapped	namespace	URI.	Use	the	empty	string	("")	for	the	default	namespace.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QIconView	Class	Reference
[iconview	module]

The	QIconView	class	provides	an	area	with	movable	labelled	icons.	More...

#include	<qiconview.h>

Inherits	QScrollView.

List	of	all	member	functions.

Public	Members

enum	SelectionMode	{	Single	=	0,	Multi,	Extended,	NoSelection	}
enum	Arrangement	{	LeftToRight	=	0,	TopToBottom	}
enum	ResizeMode	{	Fixed	=	0,	Adjust	}
enum	ItemTextPos	{	Bottom	=	0,	Right	}
QIconView	(QWidget	*	parent	=	0,	const	char	*	name	=	0,	WFlags	f	=	0)
virtual	~QIconView	()
virtual	void	insertItem	(QIconViewItem	*	item,	QIconViewItem	*	after	=
0L)
virtual	void	takeItem	(QIconViewItem	*	item)
int	index	(const	QIconViewItem	*	item)	const
QIconViewItem	*	firstItem	()	const
QIconViewItem	*	lastItem	()	const
QIconViewItem	*	currentItem	()	const
virtual	void	setCurrentItem	(QIconViewItem	*	item)
virtual	void	setSelected	(QIconViewItem	*	item,	bool	s,	bool	cb	=	FALSE
)
uint	count	()	const
virtual	void	setSelectionMode	(SelectionMode	m)
SelectionMode	selectionMode	()	const
QIconViewItem	*	findItem	(const	QPoint	&	pos)	const
QIconViewItem	*	findItem	(const	QString	&	text,
ComparisonFlags	compare	=	BeginsWith)	const
virtual	void	selectAll	(bool	select)
virtual	void	clearSelection	()
virtual	void	invertSelection	()
virtual	void	repaintItem	(QIconViewItem	*	item)
void	ensureItemVisible	(QIconViewItem	*	item)
QIconViewItem	*	findFirstVisibleItem	(const	QRect	&	r)	const
QIconViewItem	*	findLastVisibleItem	(const	QRect	&	r)	const
virtual	void	clear	()
virtual	void	setGridX	(int	rx)
virtual	void	setGridY	(int	ry)
int	gridX	()	const
int	gridY	()	const
virtual	void	setSpacing	(int	sp)

int	spacing	()	const
virtual	void	setItemTextPos	(ItemTextPos	pos)
ItemTextPos	itemTextPos	()	const
virtual	void	setItemTextBackground	(const	QBrush	&	b)
QBrush	itemTextBackground	()	const
virtual	void	setArrangement	(Arrangement	am)
Arrangement	arrangement	()	const
virtual	void	setResizeMode	(ResizeMode	am)
ResizeMode	resizeMode	()	const
virtual	void	setMaxItemWidth	(int	w)
int	maxItemWidth	()	const
virtual	void	setMaxItemTextLength	(int	w)
int	maxItemTextLength	()	const
virtual	void	setAutoArrange	(bool	b)
bool	autoArrange	()	const
virtual	void	setShowToolTips	(bool	b)
bool	showToolTips	()	const
void	setSorting	(bool	sort,	bool	ascending	=	TRUE)
bool	sorting	()	const
bool	sortDirection	()	const
virtual	void	setItemsMovable	(bool	b)
bool	itemsMovable	()	const
virtual	void	setWordWrapIconText	(bool	b)
bool	wordWrapIconText	()	const
virtual	void	sort	(bool	ascending	=	TRUE)
bool	isRenaming	()	const

Public	Slots

virtual	void	arrangeItemsInGrid	(const	QSize	&	grid,	bool	update	=
TRUE)
virtual	void	arrangeItemsInGrid	(bool	update	=	TRUE)

Signals

void	selectionChanged	()
void	selectionChanged	(QIconViewItem	*	item)
void	currentChanged	(QIconViewItem	*	item)
void	clicked	(QIconViewItem	*	item)
void	clicked	(QIconViewItem	*	item,	const	QPoint	&	pos)
void	pressed	(QIconViewItem	*	item)
void	pressed	(QIconViewItem	*	item,	const	QPoint	&	pos)
void	doubleClicked	(QIconViewItem	*	item)
void	returnPressed	(QIconViewItem	*	item)
void	rightButtonClicked	(QIconViewItem	*	item,	const	QPoint	&	pos)
void	rightButtonPressed	(QIconViewItem	*	item,	const	QPoint	&	pos)
void	mouseButtonPressed	(int	button,	QIconViewItem	*	item,
const	QPoint	&	pos)
void	mouseButtonClicked	(int	button,	QIconViewItem	*	item,
const	QPoint	&	pos)
void	contextMenuRequested	(QIconViewItem	*	item,	const	QPoint	&	pos
)
void	dropped	(QDropEvent	*	e,	const	QValueList<QIconDragItem>	&	lst
)
void	moved	()
void	onItem	(QIconViewItem	*	item)
void	onViewport	()
void	itemRenamed	(QIconViewItem	*	item,	const	QString	&	name)
void	itemRenamed	(QIconViewItem	*	item)

Properties

Arrangement	arrangement	-	the	arrangement	mode	of	the	icon	view
bool	autoArrange	-	whether	the	icon	view	rearranges	its	items	when	a	new
item	is	inserted
uint	count	-	the	number	of	items	in	the	icon	view		(read	only)
int	gridX	-	the	horizontal	grid	of	the	icon	view
int	gridY	-	the	vertical	grid	of	the	icon	view
QBrush	itemTextBackground	-	the	brush	to	use	when	drawing	the
background	of	an	item's	text
ItemTextPos	itemTextPos	-	the	position	where	the	text	of	each	item	is
drawn
bool	itemsMovable	-	whether	the	user	is	allowed	to	move	items	around	in
the	icon	view
int	maxItemTextLength	-	the	maximum	length	(in	characters)	that	an
item's	text	may	have
int	maxItemWidth	-	the	maximum	width	that	an	item	may	have
ResizeMode	resizeMode	-	the	resize	mode	of	the	icon	view
SelectionMode	selectionMode	-	the	selection	mode	of	the	icon	view
bool	showToolTips	-	whether	the	icon	view	will	display	a	tool	tip	with	the
complete	text	for	any	truncated	item	text
bool	sortDirection	-	whether	the	sort	direction	for	inserting	new	items	is
ascending;		(read	only)
bool	sorting	-	whether	the	icon	view	sorts	on	insertion		(read	only)
int	spacing	-	the	space	in	pixels	between	icon	view	items
bool	wordWrapIconText	-	whether	the	item	text	will	be	word-wrapped	if
it	is	too	long

Protected	Members

virtual	void	drawRubber	(QPainter	*	p)
virtual	QDragObject	*	dragObject	()
virtual	void	startDrag	()
virtual	void	insertInGrid	(QIconViewItem	*	item)
virtual	void	drawBackground	(QPainter	*	p,	const	QRect	&	r)
void	emitSelectionChanged	(QIconViewItem	*	i	=	0)
QIconViewItem	*	makeRowLayout	(QIconViewItem	*	begin,	int	&	y,
bool	&	changed)

Protected	Slots

virtual	void	doAutoScroll	()
virtual	void	adjustItems	()
virtual	void	slotUpdate	()

Detailed	Description

The	QIconView	class	provides	an	area	with	movable	labelled	icons.

A	QIconView	can	display	and	manage	a	grid	or	other	2D	layout	of	labelled
icons.	Each	labelled	icon	is	a	QIconViewItem.	Items	(QIconViewItems)	can	be
added	or	deleted	at	any	time;	items	can	be	moved	within	the	QIconView.	Single
or	multiple	items	can	be	selected.	Items	can	be	renamed	in-place.	QIconView
also	supports	drag	and	drop.

Each	item	contains	a	label	string,	a	pixmap	or	picture	(the	icon	itself)	and
optionally	a	sort	key.	The	sort	key	is	used	for	sorting	the	items	and	defaults	to
the	label	string.	The	label	string	can	be	displayed	below	or	to	the	right	of	the
icon	(see	ItemTextPos).

The	simplest	way	to	create	a	QIconView	is	to	create	a	QIconView	object	and
create	some	QIconViewItems	with	the	QIconView	as	their	parent,	set	the	icon
view's	geometry	and	show	it.	For	example:

				QIconView	*iv	=	new	QIconView(this);

				QDir	dir(path,	"*.xpm");

				for	(uint	i	=	0;	i	<	dir.count();	i++)	{

								(void)	new	QIconViewItem(iv,	dir[i],	QPixmap(path	+	dir[i]));

				}

				iv->resize(600,	400);

				iv->show();

				

The	QIconViewItem	call	passes	a	pointer	to	the	QIconView	we	wish	to	populate,
along	with	the	label	text	and	a	QPixmap.

When	an	item	is	inserted	the	QIconView	allocates	a	position	for	it.	Existing
items	are	rearranged	if	autoArrange()	is	TRUE.	The	default	arrangement	is
LeftToRight	--	the	QIconView	fills	up	the	left-most	column	from	top	to	bottom,
then	moves	one	column	right	and	fills	that	from	top	to	bottom	and	so	on.	The
arrangement	can	be	modified	with	any	of	the	following	approaches:

Call	setArrangement(),	e.g.	with	TopToBottom	which	will	fill	the	top-most
row	from	left	to	right,	then	moves	one	row	down	and	fills	that	row	from	left
to	right	and	so	on.

Construct	each	QIconViewItem	using	a	constructor	which	allows	you	to
specify	which	item	the	new	one	is	to	follow.
Call	setSorting()	or	sort()	to	sort	the	items.

The	spacing	between	items	is	set	with	setSpacing().	Items	can	be	laid	out	using	a
fixed	grid	using	setGridX()	and	setGridY();	by	default	the	QIconView	calculates
a	grid	dynamically.	The	position	of	items'	label	text	is	set	with	setItemTextPos().
The	text's	background	can	be	set	with	setItemTextBackground().	The	maximum
width	of	an	item	and	of	its	text	are	set	with	setMaxItemWidth()	and
setMaxItemTextLength().	The	label	text	will	be	word-wrapped	if	it	is	too	long;
this	is	controlled	by	setWordWrapIconText().	If	the	label	text	is	truncated,	the
user	can	still	see	the	entire	text	in	a	tool	tip	if	they	hover	the	mouse	over	the
item.	This	is	controlled	with	setShowToolTips().

Items	which	are	selectable	may	be	selected	depending	on	the	SelectionMode;	the
default	is	Single.	Because	QIconView	offers	multiple	selection	it	must	display
keyboard	focus	and	selection	state	separately.	Therefore	there	are	functions	to	set
the	selection	state	of	an	item	(setSelected())	and	to	select	which	item	displays
keyboard	focus	(setCurrentItem()).	When	multiple	items	may	be	selected	the
icon	view	provides	a	rubberband,	too.

When	in-place	renaming	is	enabled	(it	is	disabled	by	default),	the	user	may
change	the	item's	label.	They	do	this	by	selecting	the	item	(single	clicking	it	or
navigating	to	it	with	the	arrow	keys),	then	single	clicking	it	(or	pressing	F2),	and
entering	their	text.	If	no	key	has	been	set	with	QIconViewItem::setKey()	the	new
text	will	also	serve	as	the	key.	(See	QIconViewItem::setRenameEnabled().)

You	can	control	whether	users	can	move	items	themselves	with
setItemsMovable().

Because	the	internal	structure	used	to	store	the	icon	view	items	is	linear,	no
iterator	class	is	needed	to	iterate	over	all	the	items.	Instead	we	iterate	by	getting
the	first	item	from	the	icon	view	and	then	each	subsequent
(QIconViewItem::nextItem())	from	each	item	in	turn:

								for	(QIconViewItem	*item	=	iv->firstItem();	item;	item	=	item->

												do_something(item);

				

QIconView	also	provides	currentItem().	You	can	search	for	an	item	using

findItem()	(searching	by	position	or	for	label	text)	and	with
findFirstVisibleItem()	and	findLastVisibleItem().	The	number	of	items	is
returned	by	count().	An	item	can	be	removed	from	an	icon	view	using
takeItem();	to	delete	an	item	use	delete.	All	the	items	can	be	deleted	with
clear().

The	QIconView	emits	a	wide	range	of	useful	signals,	including
selectionChanged(),	currentChanged(),	clicked(),	moved()	and	itemRenamed().

Drag	and	Drop

QIconView	supports	the	drag	and	drop	of	items	within	the	QIconView	itself.	It
also	supports	the	drag	and	drop	of	items	out	of	or	into	the	QIconView	and	drag
and	drop	onto	items	themselves.	The	drag	and	drop	of	items	outside	the
QIconView	can	be	achieved	in	a	simple	way	with	basic	functionality,	or	in	a
more	sophisticated	way	which	provides	more	power	and	control.

The	simple	approach	to	dragging	items	out	of	the	icon	view	is	to	subclass
QIconView	and	reimplement	QIconView::dragObject().

				QDragObject	*MyIconView::dragObject()

				{

								return	new	QTextDrag(currentItem()->text(),	this);

				}

				

In	this	example	we	create	a	QTextDrag	object,	(derived	from	QDragObject),
containing	the	item's	label	and	return	it	as	the	drag	object.	We	could	just	as
easily	have	created	a	QImageDrag	from	the	item's	pixmap	and	returned	that
instead.

QIconViews	and	their	QIconViewItems	can	also	be	the	targets	of	drag	and	drops.
To	make	the	QIconView	itself	able	to	accept	drops	connect	to	the	dropped()
signal.	When	a	drop	occurs	this	signal	will	be	emitted	with	a	QDragEvent	and	a
QValueList	of	QIconDragItems.	To	make	a	QIconViewItem	into	a	drop	target
subclass	QIconViewItem	and	reimplement	QIconViewItem::acceptDrop()	and
QIconViewItem::dropped().

				bool	MyIconViewItem::acceptDrop(const	QMimeSource	*mime)	const

				{

								if	(mime->provides("text/plain"))

												return	TRUE;

								return	FALSE;

				}

				void	MyIconViewItem::dropped(QDropEvent	*evt,	const	QValueList<QIconDragItem>&)

				{

								QString	label;

								if	(QTextDrag::decode(evt,	label))

												setText(label);

				}

				

See	iconview/simple_dd/main.h	and	iconview/simple_dd/main.cpp	for	a	simple
drag	and	drop	example	which	demonstrates	drag	and	drop	between	a	QIconView
and	a	QListBox.

If	you	want	to	use	extended	drag-and-drop	or	have	drag	shapes	drawn	you	must
take	a	more	sophisticated	approach.

The	first	part	is	starting	drags	--	you	should	use	a	QIconDrag	(or	a	class	derived
from	it)	for	the	drag	object.	In	dragObject()	create	the	drag	object,	populate	it
with	QIconDragItems	and	return	it.	Normally	such	a	drag	should	offer	each
selected	item's	data.	So	in	dragObject()	you	should	iterate	over	all	the	items,	and
create	a	QIconDragItem	for	each	selected	item,	and	append	these	items	with
QIconDrag::append()	to	the	QIconDrag	object.	You	can	use
QIconDragItem::setData()	to	set	the	data	of	each	item	that	should	be	dragged.	If
you	want	to	offer	the	data	in	additional	mime-types,	it's	best	to	use	a	class
derived	from	QIconDrag,	which	implements	additional	encoding	and	decoding
functions.

When	a	drag	enters	the	icon	view,	there	is	little	to	do.	Simply	connect	to	the
dropped()	signal	and	reimplement	QIconViewItem::acceptDrop()	and
QIconViewItem::dropped().	If	you've	used	a	QIconDrag	(or	a	subclass	of	it)	the
second	argument	to	the	dropped	signal	contains	a	QValueList	of
QIconDragItems	--	you	can	access	their	data	by	calling	QIconDragItem::data()
on	each	one.

For	an	example	implementation	of	complex	drag-and-drop	look	at	the
qfileiconview	example	(qt/examples/qfileiconview).

See	also	QIconViewItem::setDragEnabled(),	QIconViewItem::setDropEnabled(),
QIconViewItem::acceptDrop(),	QIconViewItem::dropped()	and	Advanced

Widgets.

	

Member	Type	Documentation

QIconView::Arrangement

This	enum	type	determines	in	which	direction	the	items	flow	when	the	view	runs
out	of	space.

QIconView::LeftToRight	-	Items	which	don't	fit	into	the	view	go	further
down	(you	get	a	vertical	scrollbar)
QIconView::TopToBottom	-	Items	which	don't	fit	into	the	view	go	further
right	(you	get	a	horizontal	scrollbar)

QIconView::ItemTextPos

This	enum	type	specifies	the	position	of	the	item	text	in	relation	to	the	icon.

QIconView::Bottom	-	The	text	is	drawn	below	the	icon.
QIconView::Right	-	The	text	is	drawn	to	the	right	of	the	icon.

QIconView::ResizeMode

This	enum	type	is	used	to	tell	QIconView	how	it	should	treat	the	positions	of	its
icons	when	the	widget	is	resized.	The	modes	are:

QIconView::Fixed	-	The	icons'	positions	are	not	changed.
QIconView::Adjust	-	The	icons'	positions	are	adjusted	to	be	within	the	new
geometry,	if	possible.

QIconView::SelectionMode

This	enumerated	type	is	used	by	QIconView	to	indicate	how	it	reacts	to	selection
by	the	user.	It	has	four	values:

QIconView::Single	-	When	the	user	selects	an	item,	any	already-selected
item	becomes	unselected	and	the	user	cannot	unselect	the	selected	item.
This	means	that	the	user	can	never	clear	the	selection.	(The	application
programmer	can,	using	QIconView::clearSelection().)

QIconView::Multi	-	When	the	user	selects	an	item,	e.g.	by	navigating	to	it
with	the	keyboard	arrow	keys	or	by	clicking	it,	the	selection	status	of	that
item	is	toggled	and	the	other	items	are	left	alone.
QIconView::Extended	-	When	the	user	selects	an	item	the	selection	is
cleared	and	the	new	item	selected.	However,	if	the	user	presses	the	Ctrl	key
when	clicking	on	an	item,	the	clicked	item	gets	toggled	and	all	other	items
are	left	untouched.	If	the	user	presses	the	Shift	key	while	clicking	on	an
item,	all	items	between	the	current	item	and	the	clicked	item	get	selected	or
unselected,	depending	on	the	state	of	the	clicked	item.	Also,	multiple	items
can	be	selected	by	dragging	the	mouse	while	the	left	mouse	button	stays
pressed.
QIconView::NoSelection	-	Items	cannot	be	selected.

To	summarise:	Single	is	a	real	single-selection	icon	view;	Multi	a	real	multi-
selection	icon	view;	Extended	is	an	icon	view	in	which	users	can	select	multiple
items	but	usually	want	to	select	either	just	one	or	a	range	of	contiguous	items;
and	NoSelection	mode	is	for	an	icon	view	where	the	user	can	look	but	not	touch.

Member	Function	Documentation

QIconView::QIconView	(QWidget	*	parent	=	0,
const	char	*	name	=	0,	WFlags	f	=	0)

Constructs	an	empty	icon	view	called	name,	with	parent	parent	and	using	the
widget	flags	f.

QIconView::~QIconView	()	[virtual]

Destroys	the	icon	view	and	deletes	all	items.

void	QIconView::adjustItems	()	[virtual	protected	slot]

Adjusts	the	positions	of	the	items	to	the	geometry	of	the	icon	view.

void	QIconView::arrangeItemsInGrid	(const	QSize	&	grid,
bool	update	=	TRUE)	[virtual	slot]

This	variant	uses	grid	instead	of	(gridX(),	gridY()).	If	grid	is	invalid	(see
QSize::isValid()),	arrangeItemsInGrid()	calculates	a	valid	grid	itself	and	uses
that.

If	update	is	TRUE	(the	default)	the	viewport	is	repainted.

Example:	fileiconview/qfileiconview.h.

void	QIconView::arrangeItemsInGrid	(bool	update	=	TRUE)
[virtual	slot]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Arranges	all	the	items	in	the	grid	given	by	gridX()	and	gridY().

Even	if	sorting()	is	enabled,	the	items	are	not	sorted	by	this	function.	If	you	want
to	sort	or	rearrange	the	items,	use	iconview->sort(iconview->sortDirection()).

If	update	is	TRUE	(the	default),	the	viewport	is	repainted	as	well.

See	also	QIconView::gridX,	QIconView::gridY	and	QIconView::sort().

Arrangement	QIconView::arrangement	()	const

Returns	the	arrangement	mode	of	the	icon	view.	See	the	"arrangement"	property
for	details.

bool	QIconView::autoArrange	()	const

Returns	TRUE	if	the	icon	view	rearranges	its	items	when	a	new	item	is	inserted;
otherwise	returns	FALSE.	See	the	"autoArrange"	property	for	details.

void	QIconView::clear	()	[virtual]

Clears	the	icon	view.	All	items	are	deleted.

void	QIconView::clearSelection	()	[virtual]

Unselects	all	the	items.

void	QIconView::clicked	(QIconViewItem	*	item)	[signal]

This	signal	is	emitted	when	the	user	clicks	any	mouse	button.	If	item	is	non-null,
the	cursor	is	on	item.	If	item	is	null,	the	mouse	cursor	isn't	on	any	item.

See	also	mouseButtonClicked(),	rightButtonClicked()	and	pressed().

void	QIconView::clicked	(QIconViewItem	*	item,
const	QPoint	&	pos)	[signal]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

This	signal	is	emitted	when	the	user	clicks	any	mouse	button	on	an	icon	view
item.	item	is	a	pointer	to	the	item	that	has	been	clicked.

pos	is	the	position	of	the	mouse	cursor	in	the	global	coordinate	system
(QMouseEvent::globalPos()).	(If	the	click's	press	and	release	differ	by	a	pixel	or
two,	pos	is	the	position	at	release	time.)

See	also	mouseButtonClicked(),	rightButtonClicked()	and	pressed().

void	QIconView::contextMenuRequested	(
QIconViewItem	*	item,	const	QPoint	&	pos)	[signal]

This	signal	is	emitted	when	the	user	invokes	a	context	menu	with	the	right
mouse	button	or	with	special	system	keys,	with	item	being	the	item	under	the
mouse	cursor	or	the	current	item,	respectively.

pos	is	the	position	for	the	context	menu	in	the	global	coordinate	system.

uint	QIconView::count	()	const

Returns	the	number	of	items	in	the	icon	view.	See	the	"count"	property	for
details.

void	QIconView::currentChanged	(QIconViewItem	*	item)
[signal]

This	signal	is	emitted	when	a	new	item	becomes	current.	item	is	the	new	current
item	(or	0	if	no	item	is	now	current).

See	also	currentItem().

QIconViewItem	*	QIconView::currentItem	()	const

Returns	a	pointer	to	the	current	item	of	the	icon	view,	or	0	if	no	item	is	current.

See	also	setCurrentItem(),	firstItem()	and	lastItem().

void	QIconView::doAutoScroll	()	[virtual	protected	slot]

Performs	autoscrolling	when	selecting	multiple	icons	with	the	rubber	band.

void	QIconView::doubleClicked	(QIconViewItem	*	item)
[signal]

This	signal	is	emitted	when	the	user	double-clicks	on	item.

QDragObject	*	QIconView::dragObject	()	[virtual	protected]

Returns	the	QDragObject	that	should	be	used	for	drag-and-drop.	This	function	is
called	by	the	icon	view	when	starting	a	drag	to	get	the	dragobject	that	should	be
used	for	the	drag.	Subclasses	may	reimplement	this.

See	also	QIconDrag.

Examples:	fileiconview/qfileiconview.cpp	and	iconview/simple_dd/main.cpp.

void	QIconView::drawBackground	(QPainter	*	p,
const	QRect	&	r)	[virtual	protected]

This	function	is	called	to	draw	the	rectangle	r	of	the	background	using	the
painter	p.

The	default	implementation	fills	r	with	the	viewport's	backgroundBrush().
Subclasses	may	reimplement	this	to	draw	custom	backgrounds.

See	also	contentsX,	contentsY	and	drawContents().

void	QIconView::drawRubber	(QPainter	*	p)	[virtual
protected]

Draws	the	rubber	band	using	the	painter	p.

void	QIconView::dropped	(QDropEvent	*	e,
const	QValueList<QIconDragItem>	&	lst)	[signal]

This	signal	is	emitted	when	a	drop	event	occurs	in	the	viewport	(but	not	on	any
icon)	which	the	icon	view	itself	can't	handle.

e	provides	all	the	information	about	the	drop.	If	the	drag	object	of	the	drop	was	a

QIconDrag,	lst	contains	the	list	of	the	dropped	items.	You	can	get	the	data	using
QIconDragItem::data()	on	each	item.	If	the	lst	is	empty,	i.e.	the	drag	was	not	a
QIconDrag,	you	have	to	decode	the	data	in	e	and	work	with	that.

Note	QIconViewItems	may	be	drop	targets;	if	a	drop	event	occurs	on	an	item	the
item	handles	the	drop.

Examples:	iconview/main.cpp	and	iconview/simple_dd/main.cpp.

void	QIconView::emitSelectionChanged	(QIconViewItem	*	i	=	0)
[protected]

Emits	a	signal	to	indicate	selection	changes.	i	is	the	QIconViewItem	that	was
selected	or	de-selected.

You	should	never	need	to	call	this	function.

void	QIconView::ensureItemVisible	(QIconViewItem	*	item)

Makes	sure	that	item	is	entirely	visible.	If	necessary,	ensureItemVisible()	scrolls
the	icon	view.

See	also	ensureVisible().

QIconViewItem	*	QIconView::findFirstVisibleItem	(
const	QRect	&	r)	const

Finds	the	first	item	whose	bounding	rectangle	overlaps	r	and	returns	a	pointer	to
that	item.	r	is	given	in	content	coordinates.	Returns	0	if	no	item	overlaps	r.

If	you	want	to	find	all	items	that	touch	r,	you	will	need	to	use	this	function	and
nextItem()	in	a	loop	ending	at	findLastVisibleItem()	and	test	QItem::rect()	for
each	of	these	items.

See	also	findLastVisibleItem()	and	QIconViewItem::rect().

QIconViewItem	*	QIconView::findItem	(const	QPoint	&	pos)
const

Returns	a	pointer	to	the	item	that	contains	point	pos,	which	is	given	in	contents
coordinates,	or	0	if	no	item	contains	point	pos.

QIconViewItem	*	QIconView::findItem	(const	QString	&	text,
ComparisonFlags	compare	=	BeginsWith)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	a	pointer	to	the	first	item	whose	text	begins	with	text,	or	0	if	no	such
item	could	be	found.	Use	the	compare	flag	to	control	the	comparison	behaviour.
(See	Qt::StringComparisonMode.)

QIconViewItem	*	QIconView::findLastVisibleItem	(
const	QRect	&	r)	const

Finds	the	last	item	whose	bounding	rectangle	overlaps	r	and	returns	a	pointer	to
that	item.	r	is	given	in	content	coordinates.	Returns	0	if	no	item	overlaps	r.

See	also	findFirstVisibleItem().

QIconViewItem	*	QIconView::firstItem	()	const

Returns	a	pointer	to	the	first	item	of	the	icon	view,	or	0	if	there	are	no	items	in
the	icon	view.

See	also	lastItem()	and	currentItem().

int	QIconView::gridX	()	const

Returns	the	horizontal	grid	of	the	icon	view.	See	the	"gridX"	property	for	details.

int	QIconView::gridY	()	const

Returns	the	vertical	grid	of	the	icon	view.	See	the	"gridY"	property	for	details.

int	QIconView::index	(const	QIconViewItem	*	item)	const

Returns	the	index	of	item,	or	-1	if	item	doesn't	exist	in	this	icon	view.

void	QIconView::insertInGrid	(QIconViewItem	*	item)
[virtual	protected]

Inserts	the	QIconViewItem	item	in	the	icon	view's	grid.	You	should	never	need	to
call	this	function.	Instead,	insert	QIconViewItems	by	creating	them	with	a
pointer	to	the	QIconView	that	they	are	to	be	inserted	into.

void	QIconView::insertItem	(QIconViewItem	*	item,
QIconViewItem	*	after	=	0L)	[virtual]

Inserts	the	icon	view	item	item	after	after.	If	after	is	0,	item	is	appended	after	the
last	item.

You	should	never	need	to	call	this	function.	Instead	create	QIconViewItem's	and
associate	them	with	your	icon	view	like	this:

								(void)	new	QIconViewItem(myIconview,	"The	text	of	the	item",	aPixmap);

				

void	QIconView::invertSelection	()	[virtual]

Inverts	the	selection.	Works	only	in	Multi	and	Extended	selection	mode.

bool	QIconView::isRenaming	()	const

Returns	TRUE	if	an	iconview	item	is	being	renamed;	otherwise	returns	FALSE.

void	QIconView::itemRenamed	(QIconViewItem	*	item,
const	QString	&	name)	[signal]

This	signal	is	emitted	when	item	has	been	renamed	to	name,	usually	by	in-place
renaming.

See	also	QIconViewItem::setRenameEnabled()	and	QIconViewItem::rename().

void	QIconView::itemRenamed	(QIconViewItem	*	item)

[signal]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

This	signal	is	emitted	when	item	has	been	renamed,	usually	by	in-place
renaming.

See	also	QIconViewItem::setRenameEnabled()	and	QIconViewItem::rename().

QBrush	QIconView::itemTextBackground	()	const

Returns	the	brush	to	use	when	drawing	the	background	of	an	item's	text.	See	the
"itemTextBackground"	property	for	details.

ItemTextPos	QIconView::itemTextPos	()	const

Returns	the	position	where	the	text	of	each	item	is	drawn.	See	the	"itemTextPos"
property	for	details.

bool	QIconView::itemsMovable	()	const

Returns	TRUE	if	the	user	is	allowed	to	move	items	around	in	the	icon	view;
otherwise	returns	FALSE.	See	the	"itemsMovable"	property	for	details.

QIconViewItem	*	QIconView::lastItem	()	const

Returns	a	pointer	to	the	last	item	of	the	icon	view,	or	0	if	there	are	no	items	in
the	icon	view.

See	also	firstItem()	and	currentItem().

QIconViewItem	*	QIconView::makeRowLayout	(
QIconViewItem	*	begin,	int	&	y,	bool	&	changed)
[protected]

Lays	out	a	row	of	icons	(if	Arrangement	==	TopToBottom	this	is	a	column).
Starts	laying	out	with	the	item	begin.	y	is	the	starting	coordinate.	Returns	the	last

item	of	the	row	(column)	and	sets	the	new	starting	coordinate	to	y.	The	changed
parameter	is	used	internally.

Warning:	This	function	may	be	made	private	in	a	future	version	of	Qt.	We	do
not	recommend	calling	it.

int	QIconView::maxItemTextLength	()	const

Returns	the	maximum	length	(in	characters)	that	an	item's	text	may	have.	See	the
"maxItemTextLength"	property	for	details.

int	QIconView::maxItemWidth	()	const

Returns	the	maximum	width	that	an	item	may	have.	See	the	"maxItemWidth"
property	for	details.

void	QIconView::mouseButtonClicked	(int	button,
QIconViewItem	*	item,	const	QPoint	&	pos)	[signal]

This	signal	is	emitted	when	the	user	clicks	mouse	button	button.	If	item	is	non-
null,	the	cursor	is	on	item.	If	item	is	null,	the	mouse	cursor	isn't	on	any	item.

pos	is	the	position	of	the	mouse	cursor	in	the	global	coordinate	system
(QMouseEvent::globalPos()).	(If	the	click's	press	and	release	differ	by	a	pixel	or
two,	pos	is	the	position	at	release	time.)

See	also	mouseButtonPressed(),	rightButtonClicked()	and	clicked().

void	QIconView::mouseButtonPressed	(int	button,
QIconViewItem	*	item,	const	QPoint	&	pos)	[signal]

This	signal	is	emitted	when	the	user	presses	mouse	button	button.	If	item	is	non-
null,	the	cursor	is	on	item.	If	item	is	null,	the	mouse	cursor	isn't	on	any	item.

pos	is	the	position	of	the	mouse	cursor	in	the	global	coordinate	system
(QMouseEvent::globalPos()).

See	also	rightButtonClicked()	and	pressed().

void	QIconView::moved	()	[signal]

This	signal	is	emitted	after	successfully	dropping	one	(or	more)	items	of	the	icon
view.	If	the	items	should	be	removed,	it's	best	to	do	so	in	a	slot	connected	to	this
signal.

Example:	iconview/main.cpp.

void	QIconView::onItem	(QIconViewItem	*	item)	[signal]

This	signal	is	emitted	when	the	user	moves	the	mouse	cursor	onto	an	item,
similar	to	the	QWidget::enterEvent()	function.

void	QIconView::onViewport	()	[signal]

This	signal	is	emitted	when	the	user	moves	the	mouse	cursor	from	an	item	to	an
empty	part	of	the	icon	view.

See	also	onItem().

void	QIconView::pressed	(QIconViewItem	*	item)	[signal]

This	signal	is	emitted	when	the	user	presses	any	mouse	button.	If	item	is	non-
null,	the	cursor	is	on	item.	If	item	is	null,	the	mouse	cursor	isn't	on	any	item.

See	also	mouseButtonPressed(),	rightButtonPressed()	and	clicked().

void	QIconView::pressed	(QIconViewItem	*	item,
const	QPoint	&	pos)	[signal]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

This	signal	is	emitted	when	the	user	presses	any	mouse	button.	If	item	is	non-
null,	the	cursor	is	on	item.	If	item	is	null,	the	mouse	cursor	isn't	on	any	item.

pos	is	the	position	of	the	mouse	cursor	in	the	global	coordinate	system
(QMouseEvent::globalPos()).	(If	the	click's	press	and	release	differ	by	a	pixel	or

two,	pos	is	the	position	at	release	time.)

See	also	mouseButtonPressed(),	rightButtonPressed()	and	clicked().

void	QIconView::repaintItem	(QIconViewItem	*	item)
[virtual]

Repaints	the	item.

ResizeMode	QIconView::resizeMode	()	const

Returns	the	resize	mode	of	the	icon	view.	See	the	"resizeMode"	property	for
details.

void	QIconView::returnPressed	(QIconViewItem	*	item)
[signal]

This	signal	is	emitted	if	the	user	presses	the	Return	or	Enter	key.	item	is	the
currentItem()	at	the	time	of	the	keypress.

void	QIconView::rightButtonClicked	(QIconViewItem	*	item,
const	QPoint	&	pos)	[signal]

This	signal	is	emitted	when	the	user	clicks	the	right	mouse	button.	If	item	is	non-
null,	the	cursor	is	on	item.	If	item	is	null,	the	mouse	cursor	isn't	on	any	item.

pos	is	the	position	of	the	mouse	cursor	in	the	global	coordinate	system
(QMouseEvent::globalPos()).	(If	the	click's	press	and	release	differ	by	a	pixel	or
two,	pos	is	the	position	at	release	time.)

See	also	rightButtonPressed(),	mouseButtonClicked()	and	clicked().

void	QIconView::rightButtonPressed	(QIconViewItem	*	item,
const	QPoint	&	pos)	[signal]

This	signal	is	emitted	when	the	user	presses	the	right	mouse	button.	If	item	is
non-null,	the	cursor	is	on	item.	If	item	is	null,	the	mouse	cursor	isn't	on	any	item.

pos	is	the	position	of	the	mouse	cursor	in	the	global	coordinate	system
(QMouseEvent::globalPos()).

void	QIconView::selectAll	(bool	select)	[virtual]

In	Multi	and	Extended	modes,	this	function	sets	all	items	to	be	selected	if	select
is	TRUE,	and	to	be	unselected	if	select	is	FALSE.

In	Single	and	NoSelection	modes,	this	function	only	changes	the	selection	status
of	currentItem().

void	QIconView::selectionChanged	()	[signal]

This	signal	is	emitted	when	the	selection	has	been	changed.	It's	emitted	in	each
selection	mode.

void	QIconView::selectionChanged	(QIconViewItem	*	item)
[signal]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

This	signal	is	emitted	when	the	selection	changes.	item	is	the	newly	selected
item.	This	signal	is	emitted	only	in	single	selection	mode.

SelectionMode	QIconView::selectionMode	()	const

Returns	the	selection	mode	of	the	icon	view.	See	the	"selectionMode"	property
for	details.

void	QIconView::setArrangement	(Arrangement	am)	[virtual]

Sets	the	arrangement	mode	of	the	icon	view	to	am.	See	the	"arrangement"
property	for	details.

void	QIconView::setAutoArrange	(bool	b)	[virtual]

Sets	whether	the	icon	view	rearranges	its	items	when	a	new	item	is	inserted	to	b.

See	the	"autoArrange"	property	for	details.

void	QIconView::setCurrentItem	(QIconViewItem	*	item)
[virtual]

Makes	item	the	new	current	item	of	the	icon	view.

void	QIconView::setGridX	(int	rx)	[virtual]

Sets	the	horizontal	grid	of	the	icon	view	to	rx.	See	the	"gridX"	property	for
details.

void	QIconView::setGridY	(int	ry)	[virtual]

Sets	the	vertical	grid	of	the	icon	view	to	ry.	See	the	"gridY"	property	for	details.

void	QIconView::setItemTextBackground	(const	QBrush	&	b)
[virtual]

Sets	the	brush	to	use	when	drawing	the	background	of	an	item's	text	to	b.	See	the
"itemTextBackground"	property	for	details.

void	QIconView::setItemTextPos	(ItemTextPos	pos)	[virtual]

Sets	the	position	where	the	text	of	each	item	is	drawn	to	pos.	See	the
"itemTextPos"	property	for	details.

void	QIconView::setItemsMovable	(bool	b)	[virtual]

Sets	whether	the	user	is	allowed	to	move	items	around	in	the	icon	view	to	b.	See
the	"itemsMovable"	property	for	details.

void	QIconView::setMaxItemTextLength	(int	w)	[virtual]

Sets	the	maximum	length	(in	characters)	that	an	item's	text	may	have	to	w.	See
the	"maxItemTextLength"	property	for	details.

void	QIconView::setMaxItemWidth	(int	w)	[virtual]

Sets	the	maximum	width	that	an	item	may	have	to	w.	See	the	"maxItemWidth"
property	for	details.

void	QIconView::setResizeMode	(ResizeMode	am)	[virtual]

Sets	the	resize	mode	of	the	icon	view	to	am.	See	the	"resizeMode"	property	for
details.

void	QIconView::setSelected	(QIconViewItem	*	item,	bool	s,
bool	cb	=	FALSE)	[virtual]

Selects	or	unselects	item	depending	on	s,	and	may	also	unselect	other	items,
depending	on	QIconView::selectionMode()	and	cb.

If	s	is	FALSE,	item	is	unselected.

If	s	is	TRUE	and	QIconView::selectionMode()	is	Single,	item	is	selected,	and	the
item	which	was	selected	is	unselected.

If	s	is	TRUE	and	QIconView::selectionMode()	is	Extended,	item	is	selected.	If
cb	is	TRUE,	the	selection	state	of	the	icon	view's	other	items	is	left	unchanged.
If	cb	is	FALSE	(the	default)	all	other	items	are	unselected.

If	s	is	TRUE	and	QIconView::selectionMode()	is	Multi	item	is	selected.

Note	that	cb	is	used	only	if	QIconView::selectionMode()	is	Extended.	cb
defaults	to	FALSE.

All	items	whose	selection	status	is	changed	repaint	themselves.

void	QIconView::setSelectionMode	(SelectionMode	m)
[virtual]

Sets	the	selection	mode	of	the	icon	view	to	m.	See	the	"selectionMode"	property
for	details.

void	QIconView::setShowToolTips	(bool	b)	[virtual]

Sets	whether	the	icon	view	will	display	a	tool	tip	with	the	complete	text	for	any

truncated	item	text	to	b.	See	the	"showToolTips"	property	for	details.

void	QIconView::setSorting	(bool	sort,	bool	ascending	=	TRUE)

If	sort	is	TRUE,	this	function	sets	the	icon	view	to	sort	items	when	a	new	item	is
inserted.	If	sort	is	FALSE,	the	icon	view	will	not	be	sorted.

Note	that	autoArrange()	must	be	TRUE	for	sorting	to	take	place.

If	ascending	is	TRUE	(the	default),	items	are	sorted	in	ascending	order.	If
ascending	is	FALSE,	items	are	sorted	in	descending	order.

QIconViewItem::compare()	is	used	to	compare	pairs	of	items.	The	sorting	is
based	on	the	items'	keys;	these	default	to	the	items'	text	unless	specifically	set	to
something	else.

See	also	QIconView::autoArrange,	QIconView::autoArrange,	sortDirection,
sort()	and	QIconViewItem::setKey().

void	QIconView::setSpacing	(int	sp)	[virtual]

Sets	the	space	in	pixels	between	icon	view	items	to	sp.	See	the	"spacing"
property	for	details.

void	QIconView::setWordWrapIconText	(bool	b)	[virtual]

Sets	whether	the	item	text	will	be	word-wrapped	if	it	is	too	long	to	b.	See	the
"wordWrapIconText"	property	for	details.

bool	QIconView::showToolTips	()	const

Returns	TRUE	if	the	icon	view	will	display	a	tool	tip	with	the	complete	text	for
any	truncated	item	text;	otherwise	returns	FALSE.	See	the	"showToolTips"
property	for	details.

void	QIconView::slotUpdate	()	[virtual	protected	slot]

This	slot	is	used	for	a	slightly-delayed	update.

The	icon	view	is	not	redrawn	immediately	after	inserting	a	new	item	but	after	a
very	small	delay	using	a	QTimer.	This	means	that	when	many	items	are	inserted
in	a	loop	the	icon	view	is	probably	redrawn	only	once	at	the	end	of	the	loop.
This	makes	the	insertions	both	flicker-free	and	faster.

void	QIconView::sort	(bool	ascending	=	TRUE)	[virtual]

Sorts	and	rearranges	all	the	items	in	the	icon	view.	If	ascending	is	TRUE,	the
items	are	sorted	in	increasing	order,	otherwise	they	are	sorted	in	decreasing
order.

QIconViewItem::compare()	is	used	to	compare	pairs	of	items.	The	sorting	is
based	on	the	items'	keys;	these	default	to	the	items'	text	unless	specifically	set	to
something	else.

Note	that	this	function	sets	the	sort	order	to	ascending.

See	also	QIconViewItem::key(),	QIconViewItem::setKey(),
QIconViewItem::compare(),	QIconView::setSorting()	and
QIconView::sortDirection.

bool	QIconView::sortDirection	()	const

Returns	TRUE	if	the	sort	direction	for	inserting	new	items	is	ascending;;
otherwise	returns	FALSE.	See	the	"sortDirection"	property	for	details.

bool	QIconView::sorting	()	const

Returns	TRUE	if	the	icon	view	sorts	on	insertion;	otherwise	returns	FALSE.	See
the	"sorting"	property	for	details.

int	QIconView::spacing	()	const

Returns	the	space	in	pixels	between	icon	view	items.	See	the	"spacing"	property
for	details.

void	QIconView::startDrag	()	[virtual	protected]

Starts	a	drag.

void	QIconView::takeItem	(QIconViewItem	*	item)	[virtual]

Takes	the	icon	view	item	item	out	of	the	icon	view	and	causes	an	update	of	the
screen	display.	The	item	is	not	deleted.	You	should	normally	not	need	to	call	this
function	because	QIconViewItem::~QIconViewItem()	calls	it.	The	normal	way
to	delete	an	item	is	to	delete	it.

bool	QIconView::wordWrapIconText	()	const

Returns	TRUE	if	the	item	text	will	be	word-wrapped	if	it	is	too	long;	otherwise
returns	FALSE.	See	the	"wordWrapIconText"	property	for	details.

Property	Documentation

Arrangement	arrangement

This	property	holds	the	arrangement	mode	of	the	icon	view.

This	can	be	LeftToRight	or	TopToBottom.	The	default	is	LeftToRight.

Set	this	property's	value	with	setArrangement()	and	get	this	property's	value	with
arrangement().

bool	autoArrange

This	property	holds	whether	the	icon	view	rearranges	its	items	when	a	new	item
is	inserted.

The	default	is	TRUE.

Note	that	if	the	icon	view	is	not	visible	at	the	time	of	insertion,	QIconView
defers	all	position-related	work	until	it	is	shown	and	then	calls
arrangeItemsInGrid().

Set	this	property's	value	with	setAutoArrange()	and	get	this	property's	value	with
autoArrange().

uint	count

This	property	holds	the	number	of	items	in	the	icon	view.

Get	this	property's	value	with	count().

int	gridX

This	property	holds	the	horizontal	grid	of	the	icon	view.

If	the	value	is	-1,	(the	default),	QIconView	computes	suitable	column	widths
based	on	the	icon	view's	contents.

Note	that	setting	a	grid	width	overrides	setMaxItemWidth().

Set	this	property's	value	with	setGridX()	and	get	this	property's	value	with
gridX().

int	gridY

This	property	holds	the	vertical	grid	of	the	icon	view.

If	the	value	is	-1,	(the	default),	QIconView	computes	suitable	column	heights
based	on	the	icon	view's	contents.

Set	this	property's	value	with	setGridY()	and	get	this	property's	value	with
gridY().

QBrush	itemTextBackground

This	property	holds	the	brush	to	use	when	drawing	the	background	of	an	item's
text.

By	default	this	brush	is	set	to	NoBrush,	meaning	that	only	the	normal	icon	view
background	is	used.

Set	this	property's	value	with	setItemTextBackground()	and	get	this	property's
value	with	itemTextBackground().

ItemTextPos	itemTextPos

This	property	holds	the	position	where	the	text	of	each	item	is	drawn.

Valid	values	are	Bottom	or	Right.	The	default	is	Bottom.

Set	this	property's	value	with	setItemTextPos()	and	get	this	property's	value	with
itemTextPos().

bool	itemsMovable

This	property	holds	whether	the	user	is	allowed	to	move	items	around	in	the	icon
view.

The	default	is	TRUE.

Set	this	property's	value	with	setItemsMovable()	and	get	this	property's	value
with	itemsMovable().

int	maxItemTextLength

This	property	holds	the	maximum	length	(in	characters)	that	an	item's	text	may
have.

The	default	is	255	characters.

Set	this	property's	value	with	setMaxItemTextLength()	and	get	this	property's
value	with	maxItemTextLength().

int	maxItemWidth

This	property	holds	the	maximum	width	that	an	item	may	have.

The	default	is	100	pixels.

Note	that	if	the	gridX()	value	is	set	QIconView	will	ignore	this	property.

Set	this	property's	value	with	setMaxItemWidth()	and	get	this	property's	value
with	maxItemWidth().

ResizeMode	resizeMode

This	property	holds	the	resize	mode	of	the	icon	view.

This	can	be	Fixed	or	Adjust.	The	default	is	Fixed.	See	ResizeMode.

Set	this	property's	value	with	setResizeMode()	and	get	this	property's	value	with
resizeMode().

SelectionMode	selectionMode

This	property	holds	the	selection	mode	of	the	icon	view.

This	can	be	Single	(the	default),	Extended,	Multi	or	NoSelection.

Set	this	property's	value	with	setSelectionMode()	and	get	this	property's	value
with	selectionMode().

bool	showToolTips

This	property	holds	whether	the	icon	view	will	display	a	tool	tip	with	the
complete	text	for	any	truncated	item	text.

The	default	is	TRUE.	Note	that	this	has	no	effect	if	setWordWrapIconText()	is
TRUE,	as	it	is	by	default.

Set	this	property's	value	with	setShowToolTips()	and	get	this	property's	value
with	showToolTips().

bool	sortDirection

This	property	holds	whether	the	sort	direction	for	inserting	new	items	is
ascending;.

The	default	is	TRUE	(i.e.	ascending).	This	sort	direction	is	only	meaningful	if
both	sorting()	and	autoArrange()	are	TRUE.

To	set	the	sort	direction,	use	setSorting()

Get	this	property's	value	with	sortDirection().

bool	sorting

This	property	holds	whether	the	icon	view	sorts	on	insertion.

The	default	is	FALSE,	i.e.	no	sorting	on	insertion.

To	set	the	soring,	use	setSorting().

Get	this	property's	value	with	sorting().

int	spacing

This	property	holds	the	space	in	pixels	between	icon	view	items.

The	default	is	5	pixels.

Negative	values	for	spacing	are	illegal.

Set	this	property's	value	with	setSpacing()	and	get	this	property's	value	with
spacing().

bool	wordWrapIconText

This	property	holds	whether	the	item	text	will	be	word-wrapped	if	it	is	too	long.

The	default	is	TRUE.

If	this	property	is	FALSE,	icon	text	that	is	too	long	is	truncated,	and	an	ellipsis
(...)	appended	to	indicate	that	truncation	has	occurred.	The	full	text	can	still	be
seen	by	the	user	if	they	hover	the	mouse	because	the	full	text	is	shown	in	a
tooltip;	see	setShowToolTips().

Set	this	property's	value	with	setWordWrapIconText()	and	get	this	property's
value	with	wordWrapIconText().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QPNGImagePacker	Class	Reference
The	QPNGImagePacker	class	creates	well-compressed	PNG	animations.	More...

#include	<qpngio.h>

List	of	all	member	functions.

Public	Members

QPNGImagePacker	(QIODevice	*	iod,	int	storage_depth,
int	conversionflags)
void	setPixelAlignment	(int	x)
bool	packImage	(const	QImage	&	img)

Detailed	Description

The	QPNGImagePacker	class	creates	well-compressed	PNG	animations.

By	using	transparency,	QPNGImagePacker	allows	you	to	build	a	PNG	image
from	a	sequence	of	QImages.

Images	are	added	using	packImage().

See	also	Graphics	Classes	and	Image	Processing	Classes.

Member	Function	Documentation

QPNGImagePacker::QPNGImagePacker	(QIODevice	*	iod,
int	storage_depth,	int	conversionflags)

Creates	an	image	packer	that	writes	PNG	data	to	IO	device	iod	using	a
storage_depth	bit	encoding	(use	8	or	32,	depending	on	the	desired	quality	and
compression	requirements).

If	the	image	needs	to	be	modified	to	fit	in	a	lower-resolution	result	(e.g.
converting	from	32-bit	to	8-bit),	use	the	conversionflags	to	specify	how	you'd
prefer	this	to	happen.

See	also	Qt::ImageConversionFlags.

bool	QPNGImagePacker::packImage	(const	QImage	&	img)

Adds	the	image	img	to	the	PNG	animation,	analyzing	the	differences	between
this	and	the	previous	image	to	improve	compression.

void	QPNGImagePacker::setPixelAlignment	(int	x)

Aligns	pixel	differences	to	x	pixels.	For	example,	using	8	can	improve	playback
on	certain	hardware.	Normally	the	default	of	1-pixel	alignment	(i.e.	no
alignment)	gives	better	compression	and	performance.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QStyleSheetItem	Class	Reference
The	QStyleSheetItem	class	provides	an	encapsulation	of	a	set	of	text	styles.
More...

#include	<qstylesheet.h>

Inherits	Qt.

List	of	all	member	functions.

Public	Members

QStyleSheetItem	(QStyleSheet	*	parent,	const	QString	&	name)
QStyleSheetItem	(const	QStyleSheetItem	&	other)
~QStyleSheetItem	()
QString	name	()	const
QStyleSheet	*	styleSheet	()
const	QStyleSheet	*	styleSheet	()	const
enum	DisplayMode	{	DisplayBlock,	DisplayInline,	DisplayListItem,
DisplayNone	}
DisplayMode	displayMode	()	const
void	setDisplayMode	(DisplayMode	m)
int	alignment	()	const
void	setAlignment	(int	f)
enum	VerticalAlignment	{	VAlignBaseline,	VAlignSub,	VAlignSuper	}
VerticalAlignment	verticalAlignment	()	const
void	setVerticalAlignment	(VerticalAlignment	valign)
int	fontWeight	()	const
void	setFontWeight	(int	w)
int	logicalFontSize	()	const
void	setLogicalFontSize	(int	s)
int	logicalFontSizeStep	()	const
void	setLogicalFontSizeStep	(int	s)
int	fontSize	()	const
void	setFontSize	(int	s)
QString	fontFamily	()	const
void	setFontFamily	(const	QString	&	fam)
int	numberOfColumns	()	const		(obsolete)
void	setNumberOfColumns	(int	ncols)		(obsolete)
QColor	color	()	const
void	setColor	(const	QColor	&	c)
bool	fontItalic	()	const
void	setFontItalic	(bool	italic)
bool	definesFontItalic	()	const
bool	fontUnderline	()	const
void	setFontUnderline	(bool	underline)
bool	definesFontUnderline	()	const

bool	fontStrikeOut	()	const
void	setFontStrikeOut	(bool	strikeOut)
bool	definesFontStrikeOut	()	const
bool	isAnchor	()	const
void	setAnchor	(bool	anc)
enum	WhiteSpaceMode	{	WhiteSpaceNormal,	WhiteSpacePre,
WhiteSpaceNoWrap	}
WhiteSpaceMode	whiteSpaceMode	()	const
void	setWhiteSpaceMode	(WhiteSpaceMode	m)
enum	Margin	{	MarginLeft,	MarginRight,	MarginTop,	MarginBottom,
MarginFirstLine,	MarginAll,	MarginVertical,	MarginHorizontal	}
int	margin	(Margin	m)	const
void	setMargin	(Margin	m,	int	v)
enum	ListStyle	{	ListDisc,	ListCircle,	ListSquare,	ListDecimal,
ListLowerAlpha,	ListUpperAlpha	}
ListStyle	listStyle	()	const
void	setListStyle	(ListStyle	s)
QString	contexts	()	const
void	setContexts	(const	QString	&	c)
bool	allowedInContext	(const	QStyleSheetItem	*	s)	const
bool	selfNesting	()	const
void	setSelfNesting	(bool	nesting)
void	setLineSpacing	(int	ls)
int	lineSpacing	()	const		(obsolete)

Detailed	Description

The	QStyleSheetItem	class	provides	an	encapsulation	of	a	set	of	text	styles.

A	style	sheet	item	consists	of	a	name	and	a	set	of	attributes	that	specifiy	its	font,
color,	etc.	When	used	in	a	style	sheet	(see	styleSheet()),	items	define	the	name()
of	a	rich	text	tag	and	the	display	property	changes	associated	with	it.

The	display	mode	attribute	indicates	whether	the	item	is	a	block,	an	inline
element	or	a	list	element;	see	setDisplayMode().	The	treatment	of	whitespace	is
controlled	by	the	white	space	mode;	see	setWhiteSpaceMode().	An	item's
margins	are	set	with	setMargin(),	In	the	case	of	list	items,	the	list	style	is	set	with
setListStyle().	An	item	may	be	a	hypertext	link	anchor;	see	setAnchor().	Other
attributes	are	set	with	setAlignment(),	setVerticalAlignment(),	setFontFamily(),
setFontSize(),	setFontWeight(),	setFontItalic(),	setFontUnderline(),
setFontStrikeOut	and	setColor().

See	also	Text	Related	Classes.

Member	Type	Documentation

QStyleSheetItem::DisplayMode

This	enum	type	defines	the	way	adjacent	elements	are	displayed.

QStyleSheetItem::DisplayBlock	-	elements	are	displayed	as	a	rectangular
block	(e.g.	<p>...</p>).
QStyleSheetItem::DisplayInline	-	elements	are	displayed	in	a
horizontally	flowing	sequence	(e.g.	...).
QStyleSheetItem::DisplayListItem	-	elements	are	displayed	in	a	vertical
sequence	(e.g.	...).
QStyleSheetItem::DisplayNone	-	elements	are	not	displayed	at	all.

QStyleSheetItem::ListStyle

This	enum	type	defines	how	the	items	in	a	list	are	prefixed	when	displayed.

QStyleSheetItem::ListDisc	-	a	filled	circle	(i.e.	a	bullet)
QStyleSheetItem::ListCircle	-	an	unfilled	circle
QStyleSheetItem::ListSquare	-	a	filled	square
QStyleSheetItem::ListDecimal	-	an	integer	in	base	10:	1,	2,	3,	...
QStyleSheetItem::ListLowerAlpha	-	a	lowercase	letter:	a,	b,	c,	...
QStyleSheetItem::ListUpperAlpha	-	an	uppercase	letter:	A,	B,	C,	...

QStyleSheetItem::Margin

QStyleSheetItem::MarginLeft	-	left	margin
QStyleSheetItem::MarginRight	-	right	margin
QStyleSheetItem::MarginTop	-	top	margin
QStyleSheetItem::MarginBottom	-	bottom	margin
QStyleSheetItem::MarginAll	-	all	margins	(left,	right,	top	and	bottom)
QStyleSheetItem::MarginVertical	-	top	and	bottom	margins
QStyleSheetItem::MarginHorizontal	-	left	and	right	margins
QStyleSheetItem::MarginFirstLine	-	margin	(indentation)	of	the	first
line	of	a	paragarph	(in	addition	to	the	MarginLeft	of	the	paragraph)

QStyleSheetItem::VerticalAlignment

This	enum	type	defines	the	way	elements	are	aligned	vertically.	This	is	only
supported	for	text	elements.

QStyleSheetItem::VAlignBaseline	-	align	the	baseline	of	the	element	(or
the	bottom,	if	the	element	doesn't	have	a	baseline)	with	the	baseline	of	the
parent
QStyleSheetItem::VAlignSub	-	subscript	the	element
QStyleSheetItem::VAlignSuper	-	superscript	the	element

QStyleSheetItem::WhiteSpaceMode

This	enum	defines	the	ways	in	which	QStyleSheet	can	treat	whitespace.

QStyleSheetItem::WhiteSpaceNormal	-	any	sequence	of	whitespace
(including	line-breaks)	is	equivalent	to	a	single	space.
QStyleSheetItem::WhiteSpacePre	-	whitespace	must	be	output	exactly	as
given	in	the	input.
QStyleSheetItem::WhiteSpaceNoWrap	-	multiple	spaces	are	collapsed	as
with	WhiteSpaceNormal,	but	no	automatic	line-breaks	occur.	To	break	lines
manually,	use	the	
	tag.

Member	Function	Documentation

QStyleSheetItem::QStyleSheetItem	(QStyleSheet	*	parent,
const	QString	&	name)

Constructs	a	new	style	called	name	for	the	stylesheet	parent.

All	properties	in	QStyleSheetItem	are	initially	in	the	"do	not	change"	state,
except	display	mode,	which	defaults	to	DisplayInline.

QStyleSheetItem::QStyleSheetItem	(
const	QStyleSheetItem	&	other)

Copy	constructor.	Constructs	a	copy	of	other	that	is	not	bound	to	any	style	sheet.

QStyleSheetItem::~QStyleSheetItem	()

Destroys	the	style.	Note	that	QStyleSheetItem	objects	become	owned	by
QStyleSheet	when	they	are	created.

int	QStyleSheetItem::alignment	()	const

Returns	the	alignment	of	this	style.	Possible	values	are	AlignAuto,	AlignLeft,
AlignRight,	AlignCenter	or	AlignJustify.

See	also	setAlignment()	and	Qt::AlignmentFlags.

bool	QStyleSheetItem::allowedInContext	(
const	QStyleSheetItem	*	s)	const

Returns	TRUE	if	this	style	can	be	nested	into	an	element	of	style	s;	otherwise
returns	FALSE.

See	also	contexts()	and	setContexts().

QColor	QStyleSheetItem::color	()	const

Returns	the	text	color	of	this	style	or	an	invalid	color	if	no	color	has	been	set.

See	also	setColor()	and	QColor::isValid().

QString	QStyleSheetItem::contexts	()	const

Returns	a	space-separated	list	of	names	of	styles	that	may	contain	elements	of
this	style.	If	nothing	has	been	set,	contexts()	returns	an	empty	string,	which
indicates	that	this	style	can	be	nested	everywhere.

See	also	setContexts().

bool	QStyleSheetItem::definesFontItalic	()	const

Returns	TRUE	if	the	style	defines	a	font	shape;	otherwise	returns	FALSE.	A
style	does	not	define	any	shape	until	setFontItalic()	is	called.

See	also	setFontItalic()	and	fontItalic().

bool	QStyleSheetItem::definesFontStrikeOut	()	const

Returns	TRUE	if	the	style	defines	a	setting	for	the	strikeOut	property	of	the	font;
otherwise	returns	FALSE.	A	style	does	not	define	this	until	setFontStrikeOut()	is
called.

See	also	setFontStrikeOut()	and	fontStrikeOut().

bool	QStyleSheetItem::definesFontUnderline	()	const

Returns	TRUE	if	the	style	defines	a	setting	for	the	underline	property	of	the	font;
otherwise	returns	FALSE.	A	style	does	not	define	this	until	setFontUnderline()	is
called.

See	also	setFontUnderline()	and	fontUnderline().

DisplayMode	QStyleSheetItem::displayMode	()	const

Returns	the	display	mode	of	the	style.

See	also	setDisplayMode().

QString	QStyleSheetItem::fontFamily	()	const

Returns	the	font	family	setting	of	the	style.	This	is	either	a	valid	font	family	or
QString::null	if	no	family	has	been	set.

See	also	setFontFamily(),	QFont::family()	and	QFont::setFamily().

bool	QStyleSheetItem::fontItalic	()	const

Returns	TRUE	if	the	style	sets	an	italic	font;	otherwise	returns	FALSE.

See	also	setFontItalic()	and	definesFontItalic().

int	QStyleSheetItem::fontSize	()	const

Returns	the	font	size	setting	of	the	style.	This	is	either	a	valid	point	size	or
QStyleSheetItem::Undefined.

See	also	setFontSize(),	QFont::pointSize()	and	QFont::setPointSize().

bool	QStyleSheetItem::fontStrikeOut	()	const

Returns	TRUE	if	the	style	sets	a	strike	out	font;	otherwise	returns	FALSE.

See	also	setFontStrikeOut()	and	definesFontStrikeOut().

bool	QStyleSheetItem::fontUnderline	()	const

Returns	TRUE	if	the	style	sets	an	underlined	font;	otherwise	returns	FALSE.

See	also	setFontUnderline()	and	definesFontUnderline().

int	QStyleSheetItem::fontWeight	()	const

Returns	the	font	weight	setting	of	the	style.	This	is	either	a	valid	QFont::Weight
or	the	value	QStyleSheetItem::Undefined.

See	also	setFontWeight()	and	QFont.

bool	QStyleSheetItem::isAnchor	()	const

Returns	whether	this	style	is	an	anchor.

See	also	setAnchor().

int	QStyleSheetItem::lineSpacing	()	const

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Returns	the	linespacing

ListStyle	QStyleSheetItem::listStyle	()	const

Returns	the	list	style	of	the	style.

See	also	setListStyle()	and	ListStyle.

int	QStyleSheetItem::logicalFontSize	()	const

Returns	the	logical	font	size	setting	of	the	style.	This	is	either	a	valid	size
between	1	and	7	or	QStyleSheetItem::Undefined.

See	also	setLogicalFontSize(),	setLogicalFontSizeStep(),	QFont::pointSize()	and
QFont::setPointSize().

int	QStyleSheetItem::logicalFontSizeStep	()	const

Returns	the	logical	font	size	step	of	this	style.

The	default	is	0.	Tags	such	as	big	define	+1;	small	defines	-1.

See	also	setLogicalFontSizeStep().

int	QStyleSheetItem::margin	(Margin	m)	const

Returns	the	width	of	margin	m	in	pixels.

The	margin,	m,	can	be	MarginLeft,	MarginRight,	MarginTop,	MarginBottom,
MarginAll,	MarginVertical	or	MarginHorizontal.

See	also	setMargin()	and	Margin.

QString	QStyleSheetItem::name	()	const

Returns	the	name	of	the	style	item.

int	QStyleSheetItem::numberOfColumns	()	const

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Returns	the	number	of	columns	for	this	style.

See	also	setNumberOfColumns(),	displayMode()	and	setDisplayMode().

bool	QStyleSheetItem::selfNesting	()	const

Returns	TRUE	if	this	style	has	self-nesting	enabled;	otherwise	returns	FALSE.

See	also	setSelfNesting().

void	QStyleSheetItem::setAlignment	(int	f)

Sets	the	alignment	to	f.	This	only	makes	sense	for	styles	with	a	display	mode	of
DisplayBlock.	Possible	values	are	AlignAuto,	AlignLeft,	AlignRight,
AlignCenter	or	AlignJustify.

See	also	alignment(),	displayMode()	and	Qt::AlignmentFlags.

void	QStyleSheetItem::setAnchor	(bool	anc)

If	anc	is	TRUE,	sets	this	style	to	be	an	anchor	(hypertext	link);	otherwise	sets	it
to	not	be	an	anchor.	Elements	in	this	style	link	to	other	documents	or	anchors.

See	also	isAnchor().

void	QStyleSheetItem::setColor	(const	QColor	&	c)

Sets	the	text	color	of	this	style	to	c.

See	also	color().

void	QStyleSheetItem::setContexts	(const	QString	&	c)

Sets	a	space-separated	list	of	names	of	styles	that	may	contain	elements	of	this
style.	If	c	is	empty,	the	style	can	be	nested	everywhere.

See	also	contexts().

void	QStyleSheetItem::setDisplayMode	(DisplayMode	m)

Sets	the	display	mode	of	the	style	to	m.

See	also	displayMode().

void	QStyleSheetItem::setFontFamily	(const	QString	&	fam)

Sets	the	font	family	setting	of	the	style	to	fam.

See	also	fontFamily(),	QFont::family()	and	QFont::setFamily().

void	QStyleSheetItem::setFontItalic	(bool	italic)

If	italic	is	TRUE	sets	italic	for	the	style;	otherwise	sets	upright.

See	also	fontItalic()	and	definesFontItalic().

void	QStyleSheetItem::setFontSize	(int	s)

Sets	the	font	size	setting	of	the	style	to	s	points.

See	also	fontSize(),	QFont::pointSize()	and	QFont::setPointSize().

void	QStyleSheetItem::setFontStrikeOut	(bool	strikeOut)

If	strikeOut	is	TRUE,	sets	strike	out	for	the	style;	otherwise	sets	no	strike	out.

See	also	fontStrikeOut()	and	definesFontStrikeOut().

void	QStyleSheetItem::setFontUnderline	(bool	underline)

If	underline	is	TRUE,	sets	underline	for	the	style;	otherwise	sets	no	underline.

See	also	fontUnderline()	and	definesFontUnderline().

void	QStyleSheetItem::setFontWeight	(int	w)

Sets	the	font	weight	setting	of	the	style	to	w.	Valid	values	are	those	defined	by
QFont::Weight.

See	also	QFont	and	fontWeight().

void	QStyleSheetItem::setListStyle	(ListStyle	s)

Sets	the	list	style	of	the	style	to	s.

This	is	used	by	nested	elements	that	have	a	display	mode	of	DisplayListItem.

See	also	listStyle(),	DisplayMode	and	ListStyle.

void	QStyleSheetItem::setLogicalFontSize	(int	s)

Sets	the	logical	font	size	setting	of	the	style	to	s.	Valid	logical	sizes	are	1	to	7.

See	also	logicalFontSize(),	QFont::pointSize()	and	QFont::setPointSize().

void	QStyleSheetItem::setLogicalFontSizeStep	(int	s)

Sets	the	logical	font	size	step	of	this	style	to	s.

See	also	logicalFontSizeStep().

void	QStyleSheetItem::setMargin	(Margin	m,	int	v)

Sets	the	width	of	margin	m	to	v	pixels.

The	margin,	m,	can	be	MarginLeft,	MarginRight,	MarginTop,	MarginBottom,
MarginAll,	MarginVertical	or	MarginHorizontal.	The	value	v	must	be	>=	0.

See	also	margin().

void	QStyleSheetItem::setNumberOfColumns	(int	ncols)

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Sets	the	number	of	columns	for	this	style.	Elements	in	the	style	are	divided	into
columns.

This	makes	sense	only	if	the	style	uses	a	block	display	mode	(see
QStyleSheetItem::DisplayMode).

See	also	numberOfColumns().

void	QStyleSheetItem::setSelfNesting	(bool	nesting)

Sets	the	self-nesting	property	for	this	style	to	nesting.

In	order	to	support	"dirty"	HTML,	paragraphs	<p>	and	list	items		are	not
self-nesting.	This	means	that	starting	a	new	paragraph	or	list	item	automatically
closes	the	previous	one.

See	also	selfNesting().

void	QStyleSheetItem::setVerticalAlignment	(
VerticalAlignment	valign)

Sets	the	vertical	alignment	to	valign.	Possible	values	are	VAlignBaseline,
VAlignSub	or	VAlignSuper.

The	vertical	alignment	property	is	not	inherited.

See	also	verticalAlignment().

void	QStyleSheetItem::setWhiteSpaceMode	(WhiteSpaceMode	m
)

Sets	the	whitespace	mode	to	m.

See	also	WhiteSpaceMode.

QStyleSheet	*	QStyleSheetItem::styleSheet	()

Returns	the	style	sheet	this	item	is	in.

const	QStyleSheet	*	QStyleSheetItem::styleSheet	()	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	the	style	sheet	this	item	is	in.

VerticalAlignment	QStyleSheetItem::verticalAlignment	()	const

Returns	the	vertical	alignment	of	the	style.	Possible	values	are	VAlignBaseline,
VAlignSub	or	VAlignSuper.

See	also	setVerticalAlignment().

WhiteSpaceMode	QStyleSheetItem::whiteSpaceMode	()	const

Returns	the	whitespace	mode.

See	also	setWhiteSpaceMode()	and	WhiteSpaceMode.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QXmlParseException	Class
Reference

[XML	module]
The	QXmlParseException	class	is	used	to	report	errors	with	the
QXmlErrorHandler	interface.	More...

#include	<qxml.h>

List	of	all	member	functions.

Public	Members

QXmlParseException	(const	QString	&	name	=	"",	int	c	=	-1,	int	l	=	-1,
const	QString	&	p	=	"",	const	QString	&	s	=	"")
int	columnNumber	()	const
int	lineNumber	()	const
QString	publicId	()	const
QString	systemId	()	const
QString	message	()	const

Detailed	Description

The	QXmlParseException	class	is	used	to	report	errors	with	the
QXmlErrorHandler	interface.

The	XML	subsystem	constructs	an	instance	of	this	class	when	it	detects	an	error.
You	can	retrieve	the	place	where	the	error	occurred	using	systemId(),	publicId(),
lineNumber()	and	columnNumber(),	along	with	the	error	message().

See	also	QXmlErrorHandler,	QXmlReader	and	XML.

Member	Function	Documentation

QXmlParseException::QXmlParseException	(
const	QString	&	name	=	"",	int	c	=	-1,	int	l	=	-1,
const	QString	&	p	=	"",	const	QString	&	s	=	"")

Constructs	a	parse	exception	with	the	error	string	name	in	the	column	c	and	line
l	for	the	public	identifier	p	and	the	system	identifier	s.

int	QXmlParseException::columnNumber	()	const

Returns	the	column	number	where	the	error	occurred.

int	QXmlParseException::lineNumber	()	const

Returns	the	line	number	where	the	error	occurred.

QString	QXmlParseException::message	()	const

Returns	the	error	message.

QString	QXmlParseException::publicId	()	const

Returns	the	public	identifier	where	the	error	occurred.

QString	QXmlParseException::systemId	()	const

Returns	the	system	identifier	where	the	error	occurred.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QDict	Class	Reference
The	QDict	class	is	a	template	class	that	provides	a	dictionary	based	on	QString
keys.	More...

#include	<qdict.h>

Inherits	QPtrCollection.

List	of	all	member	functions.

Public	Members

QDict	(int	size	=	17,	bool	caseSensitive	=	TRUE)
QDict	(const	QDict<type>	&	dict)
~QDict	()
QDict<type>	&	operator=	(const	QDict<type>	&	dict)
virtual	uint	count	()	const
uint	size	()	const
bool	isEmpty	()	const
void	insert	(const	QString	&	key,	const	type	*	item)
void	replace	(const	QString	&	key,	const	type	*	item)
bool	remove	(const	QString	&	key)
type	*	take	(const	QString	&	key)
type	*	find	(const	QString	&	key)	const
type	*	operator[]	(const	QString	&	key)	const
virtual	void	clear	()
void	resize	(uint	newsize)
void	statistics	()	const

Important	Inherited	Members

bool	autoDelete	()	const
void	setAutoDelete	(bool	enable)

Protected	Members

virtual	QDataStream	&	read	(QDataStream	&	s,
QPtrCollection::Item	&	item)
virtual	QDataStream	&	write	(QDataStream	&	s,	QPtrCollection::Item)
const

Detailed	Description

The	QDict	class	is	a	template	class	that	provides	a	dictionary	based	on	QString
keys.

QMap	is	an	STL-compatible	alternative	to	this	class.

QDict	is	implemented	as	a	template	class.	Define	a	template	instance	QDict<X>
to	create	a	dictionary	that	operates	on	pointers	to	X	(X*).

A	dictionary	is	a	collection	of	key-value	pairs.	The	key	is	a	QString	used	for
insertion,	removal	and	lookup.	The	value	is	a	pointer.	Dictionaries	provide	very
fast	insertion	and	lookup.

If	you	want	to	use	non-Unicode,	plain	8-bit	char*	keys,	use	the	QAsciiDict
template.	A	QDict	has	the	same	performance	as	a	QAsciiDict.	If	you	want	to
have	a	dictionary	that	maps	QStrings	to	QStrings	use	QMap.

The	size()	of	the	dictionary	is	very	important.	In	order	to	get	good	performance,
you	should	use	a	suitably	large	prime	number.	Suitable	means	equal	to	or	larger
than	the	maximum	expected	number	of	dictionary	items.	Size	is	set	in	the
constructor	but	may	be	changed	with	resize().

Items	are	inserted	with	insert(),	and	removed	with	remove().	All	the	items	in	a
dictionary	can	be	removed	with	clear().	The	number	of	items	in	the	dictionary	is
returned	by	count().	If	the	dictionary	contains	no	items	isEmpty()	returns	TRUE.
You	can	change	an	item's	value	with	replace().	Items	are	looked	up	with
operator[](),	or	with	find()	which	return	a	pointer	to	the	value	or	0	if	the	given
key	does	not	exist.	You	can	take	an	item	out	of	the	dictionary	with	take().

Calling	setAutoDelete(TRUE)	for	a	dictionary	tells	it	to	delete	items	that	are
removed.	The	default	behaviour	is	not	to	delete	items	when	they	are	removed.

QDict	is	implemented	by	QGDict	as	a	hash	array	with	a	fixed	number	of	entries.
Each	array	entry	points	to	a	singly	linked	list	of	buckets,	in	which	the	dictionary
items	are	stored.	When	an	item	is	inserted	with	a	key,	the	key	is	converted
(hashed)	to	an	integer	index	into	the	hash	array.	The	item	is	inserted	before	the
first	bucket	in	the	list	of	buckets.

Looking	up	an	item	is	normally	very	fast.	The	key	is	again	hashed	to	an	array
index.	Then	QDict	scans	the	list	of	buckets	and	returns	the	item	found	or	null	if
the	item	was	not	found.	You	cannot	insert	null	pointers	into	a	dictionary.

Items	with	equal	keys	are	allowed.	When	inserting	two	items	with	the	same	key,
only	the	last	inserted	item	will	be	visible	(last	in,	first	out)	until	it	is	removed.

The	QDictIterator	class	can	traverse	the	dictionary,	but	only	in	an	arbitrary	order.
Multiple	iterators	may	independently	traverse	the	same	dictionary.

When	inserting	an	item	into	a	dictionary,	only	the	pointer	is	copied,	not	the	item
itself,	i.e.	a	shallow	copy	is	made.	It	is	possible	to	make	the	dictionary	copy	all
of	the	item's	data	(a	deep	copy)	when	an	item	is	inserted.	insert()	calls	the	virtual
function	QPtrCollection::newItem()	for	the	item	to	be	inserted.	Inherit	a
dictionary	and	reimplement	it	if	you	want	deep	copies.

When	removing	a	dictionary	item,	the	virtual	function
QPtrCollection::deleteItem()	is	called.	QDict's	default	implementation	is	to
delete	the	item	if	auto-deletion	is	enabled.

Example	#1:

				QDict<QLineEdit>	fields;

				fields.insert("forename",	new	QLineEdit(this));

				fields.insert("surname",	new	QLineEdit(this));

				fields["forename"]->setText("Homer");

				fields["surname"]->setText("Simpson");

				QDictIterator<char>	it(extra);	//	See	QDictIterator

				for(;	it.current();	++it)

								cout	<<	it.currentKey()	<<	":	"	<<	it.current()->text()	<<	endl;

				cout	<<	endl;

				if	(fields["forename"]	&&	fields["surname"])

								cout	<<	fields["forename"]->text()	<<	"	"	

												<<	fields["surname"]->text()	<<	endl;		//	Prints	"Homer	Simpson"

				fields.remove("forename");	//	Does	not	delete	the	line	edit

				if	(!	fields["forename"])

								cout	<<	"forename	is	not	in	the	dictionary"	<<	endl;

				

In	this	example	we	use	a	dictionary	to	keep	track	of	the	line	edits	we're	using.

We	insert	each	line	edit	into	the	dictionary	with	a	unique	name	and	then	access
the	line	edits	via	the	dictionary.

Example	#2:

				QStringList	styleList	=	QStyleFactory::styles();

				styleList.sort();

				QDict<int>	letterDict(17,	FALSE);

				for	(QStringList::Iterator	it	=	styleList.begin();	it	!=	styleList.

								QString	styleName	=	*it;

								QString	styleAccel	=	styleName;

								if	(letterDict[styleAccel.left(1)])	{

												for	(uint	i	=	0;	i	<	styleAccel.length();	i++)	{

																if	(!	letterDict[styleAccel.mid(i,	1)])	{

																				styleAccel	=	styleAccel.insert(i,	'&');

																				letterDict.insert(styleAccel.mid(i,	1),	(const	int	*)1);

																				break;

																}

												}

								}	else	{

												styleAccel	=	"&"	+	styleAccel;

												letterDict.insert(styleAccel.left(1),	(const	int	*)1);

								}

								(void)	new	QAction(styleName,	QIconSet(),	styleAccel,	parent);

				}

				

In	the	example	we	are	using	the	dictionary	to	provide	fast	random	access	to	the
keys,	and	we	don't	care	what	the	values	are.	The	example	is	used	to	generate	a
menu	of	QStyles,	each	with	a	unique	accelerator	key	(or	no	accelerator	if	there
are	no	unused	letters	left).

We	first	obtain	the	list	of	available	styles,	then	sort	them	so	that	the	menu	items
will	be	ordered	alphabetically.	Next	we	create	a	dictionary	of	int	pointers.	The
keys	in	the	dictionary	are	each	one	character	long,	representing	letters	that	have
been	used	for	accelerators.	We	iterate	through	our	list	of	style	names.	If	the	first
letter	of	the	style	name	is	in	the	dictionary,	i.e.	has	been	used,	we	iterate	over	all
the	characters	in	the	style	name	to	see	if	we	can	find	a	letter	that	hasn't	been
used.	If	we	find	an	unused	letter	we	put	the	accelerator	ampersand	(&)	in	front	of
it	and	add	that	letter	to	the	dictionary.	If	we	can't	find	an	unused	letter	the	style
will	simply	have	no	accelerator.	If	the	first	letter	of	the	style	name	is	not	in	the
dictionary	we	use	it	for	the	accelerator	and	add	it	to	the	dictionary.	Finally	we
create	a	QAction	for	each	style.

See	also	QDictIterator,	QAsciiDict,	QIntDict,	QPtrDict,	Collection	Classes	and
Non-GUI	Classes.

Member	Function	Documentation

QDict::QDict	(int	size	=	17,	bool	caseSensitive	=	TRUE)

Constructs	a	dictionary	optimized	for	less	than	size	entries.

We	recommend	setting	size	to	a	suitably	large	prime	number	(e.g.	a	prime	that's
slightly	larger	than	the	expected	number	of	entries).	This	makes	the	hash
distribution	better	which	will	lead	to	faster	lookup.

If	caseSensitive	is	TRUE	(the	default),	keys	which	differ	only	in	case	are
considered	different.

QDict::QDict	(const	QDict<type>	&	dict)

Constructs	a	copy	of	dict.

Each	item	in	dict	is	inserted	into	this	dictionary.	Only	the	pointers	are	copied
(shallow	copy).

QDict::~QDict	()

Removes	all	items	from	the	dictionary	and	destroys	it.	If	setAutoDelete()	is
TRUE	each	value	is	deleted.	All	iterators	that	access	this	dictionary	will	be	reset.

See	also	setAutoDelete().

bool	QPtrCollection::autoDelete	()	const

Returns	the	setting	of	the	auto-delete	option.	The	default	is	FALSE.

See	also	setAutoDelete().

void	QDict::clear	()	[virtual]

Removes	all	items	from	the	dictionary.

The	removed	items	are	deleted	if	auto-deletion	is	enabled.

All	dictionary	iterators	that	operate	on	the	dictionary	are	reset.

See	also	remove(),	take()	and	setAutoDelete().

Reimplemented	from	QPtrCollection.

uint	QDict::count	()	const	[virtual]

Returns	the	number	of	items	in	the	dictionary.

See	also	isEmpty().

Reimplemented	from	QPtrCollection.

type	*	QDict::find	(const	QString	&	key)	const

Returns	the	item	with	key	key,	or	null	if	the	key	does	not	exist	in	the	dictionary.

If	there	are	two	or	more	items	with	equal	keys,	then	the	last	item	that	was
inserted	will	be	found.

Equivalent	to	the	[]	operator.

Warning:	Your	application	will	crash	if	you	call	find()	on	an	empty	dictionary;
you	can	check	with	isEmpty()	or	count().	We	don't	perform	this	check	for
efficiency	reasons.

See	also	operator[]().

void	QDict::insert	(const	QString	&	key,	const	type	*	item)

Inserts	the	key	key	with	value	item	into	the	dictionary.

The	key	does	not	have	to	be	unique.	If	multiple	items	are	inserted	with	the	same
key,	only	the	last	item	will	be	visible.

Null	items	are	not	allowed.

See	also	replace().

Example:	themes/themes.cpp.

bool	QDict::isEmpty	()	const

Returns	TRUE	if	the	dictionary	is	empty,	i.e.	count()	==	0;	otherwise	returns
FALSE.

See	also	count().

QDict<type>	&	QDict::operator=	(const	QDict<type>	&	dict)

Assigns	dict	to	this	dictionary	and	returns	a	reference	to	this	dictionary.

This	dictionary	is	first	cleared,	then	each	item	in	dict	is	inserted	into	this
dictionary.	Only	the	pointers	are	copied	(shallow	copy),	unless	newItem()	has
been	reimplemented().

type	*	QDict::operator[]	(const	QString	&	key)	const

Returns	the	item	with	key	key,	or	null	if	the	key	does	not	exist	in	the	dictionary.

If	there	are	two	or	more	items	with	equal	keys,	then	the	last	item	that	was
inserted	will	be	found.

Equivalent	to	the	find()	function.

Warning:	Your	application	will	crash	if	you	call	find()	on	an	empty	dictionary;
you	can	check	with	isEmpty()	or	count().	We	don't	perform	this	check	for
efficiency	reasons.

See	also	find().

QDataStream	&	QDict::read	(QDataStream	&	s,
QPtrCollection::Item	&	item)	[virtual	protected]

Reads	a	dictionary	item	from	the	stream	s	and	returns	a	reference	to	the	stream.

The	default	implementation	sets	item	to	0.

See	also	write().

bool	QDict::remove	(const	QString	&	key)

Removes	the	item	with	key	from	the	dictionary.	Returns	TRUE	if	successful,	or
FALSE	if	the	key	does	not	exist	in	the	dictionary.

If	there	are	two	or	more	items	with	equal	keys,	then	the	last	item	that	was
inserted	will	be	removed.

The	removed	item	is	deleted	if	auto-deletion	is	enabled.

All	dictionary	iterators	that	refer	to	the	removed	item	will	be	set	to	point	to	the
next	item	in	the	dictionary	traversing	order.

See	also	take(),	clear()	and	setAutoDelete().

void	QDict::replace	(const	QString	&	key,	const	type	*	item)

Replaces	the	value	of	the	key,	key	with	item.

If	the	item	does	not	already	exist,	it	will	be	inserted.

Null	items	are	not	allowed.

Equivalent	to:

				QDict<char>	dict;

								...

				if	(dict.find(key))

								dict.remove(key);

				dict.insert(key,	item);

		

If	there	are	two	or	more	items	with	equal	keys,	then	the	last	item	that	was
inserted	will	be	replaced.

See	also	insert().

void	QDict::resize	(uint	newsize)

Changes	the	size	of	the	hashtable	the	newsize.	The	contents	of	the	dictionary	are
preserved,	but	all	iterators	on	the	dictionary	become	invalid.

void	QPtrCollection::setAutoDelete	(bool	enable)

Sets	the	collection	to	auto-delete	its	contents	if	enable	is	TRUE	and	to	never
delete	them	if	enable	is	FALSE.

If	auto-deleting	is	turned	on,	all	the	items	in	a	collection	are	deleted	when	the
collection	itself	is	deleted.	This	is	convenient	if	the	collection	has	the	only
pointer	to	the	items.

The	default	setting	is	FALSE,	for	safety.	If	you	turn	it	on,	be	careful	about
copying	the	collection	-	you	might	find	yourself	with	two	collections	deleting	the
same	items.

Note	that	the	auto-delete	setting	may	also	affect	other	functions	in	subclasses.
For	example,	a	subclass	that	has	a	remove()	function	will	remove	the	item	from
its	data	structure,	and	if	auto-delete	is	enabled,	will	also	delete	the	item.

See	also	autoDelete().

Examples:	grapher/grapher.cpp,	scribble/scribble.cpp	and
table/bigtable/main.cpp.

uint	QDict::size	()	const

Returns	the	size	of	the	internal	hash	array	(as	specified	in	the	constructor).

See	also	count().

void	QDict::statistics	()	const

Debugging-only	function	that	prints	out	the	dictionary	distribution	using
qDebug().

type	*	QDict::take	(const	QString	&	key)

Takes	the	item	with	key	out	of	the	dictionary	without	deleting	it	(even	if	auto-
deletion	is	enabled).

If	there	are	two	or	more	items	with	equal	keys,	then	the	last	item	that	was
inserted	will	be	taken.

Returns	a	pointer	to	the	item	taken	out,	or	null	if	the	key	does	not	exist	in	the
dictionary.

All	dictionary	iterators	that	refer	to	the	taken	item	will	be	set	to	point	to	the	next
item	in	the	dictionary	traversal	order.

See	also	remove(),	clear()	and	setAutoDelete().

QDataStream	&	QDict::write	(QDataStream	&	s,
QPtrCollection::Item)	const	[virtual	protected]

Writes	a	dictionary	item	to	the	stream	s	and	returns	a	reference	to	the	stream.

See	also	read().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QIconViewItem	Class	Reference
[iconview	module]

The	QIconViewItem	class	provides	a	single	item	in	a	QIconView.	More...

#include	<qiconview.h>

Inherits	Qt.

List	of	all	member	functions.

Public	Members

QIconViewItem	(QIconView	*	parent)
QIconViewItem	(QIconView	*	parent,	QIconViewItem	*	after)
QIconViewItem	(QIconView	*	parent,	const	QString	&	text)
QIconViewItem	(QIconView	*	parent,	QIconViewItem	*	after,
const	QString	&	text)
QIconViewItem	(QIconView	*	parent,	const	QString	&	text,
const	QPixmap	&	icon)
QIconViewItem	(QIconView	*	parent,	QIconViewItem	*	after,
const	QString	&	text,	const	QPixmap	&	icon)
QIconViewItem	(QIconView	*	parent,	const	QString	&	text,
const	QPicture	&	picture)
QIconViewItem	(QIconView	*	parent,	QIconViewItem	*	after,
const	QString	&	text,	const	QPicture	&	picture)
virtual	~QIconViewItem	()
virtual	void	setRenameEnabled	(bool	allow)
virtual	void	setDragEnabled	(bool	allow)
virtual	void	setDropEnabled	(bool	allow)
virtual	QString	text	()	const
virtual	QPixmap	*	pixmap	()	const
virtual	QPicture	*	picture	()	const
virtual	QString	key	()	const
bool	renameEnabled	()	const
bool	dragEnabled	()	const
bool	dropEnabled	()	const
QIconView	*	iconView	()	const
QIconViewItem	*	prevItem	()	const
QIconViewItem	*	nextItem	()	const
int	index	()	const
virtual	void	setSelected	(bool	s,	bool	cb)
virtual	void	setSelected	(bool	s)
virtual	void	setSelectable	(bool	enable)
bool	isSelected	()	const
bool	isSelectable	()	const
virtual	void	repaint	()
virtual	bool	move	(int	x,	int	y)

virtual	void	moveBy	(int	dx,	int	dy)
virtual	bool	move	(const	QPoint	&	pnt)
virtual	void	moveBy	(const	QPoint	&	pnt)
QRect	rect	()	const
int	x	()	const
int	y	()	const
int	width	()	const
int	height	()	const
QSize	size	()	const
QPoint	pos	()	const
QRect	textRect	(bool	relative	=	TRUE)	const
QRect	pixmapRect	(bool	relative	=	TRUE)	const
bool	contains	(const	QPoint	&	pnt)	const
bool	intersects	(const	QRect	&	r)	const
virtual	bool	acceptDrop	(const	QMimeSource	*	mime)	const
void	rename	()
virtual	int	compare	(QIconViewItem	*	i)	const
virtual	void	setText	(const	QString	&	text)
virtual	void	setPixmap	(const	QPixmap	&	icon)
virtual	void	setPicture	(const	QPicture	&	icon)
virtual	void	setText	(const	QString	&	text,	bool	recalc,	bool	redraw	=
TRUE)
virtual	void	setPixmap	(const	QPixmap	&	icon,	bool	recalc,	bool	redraw	=
TRUE)
virtual	void	setKey	(const	QString	&	k)
virtual	int	rtti	()	const

Protected	Members

virtual	void	removeRenameBox	()
virtual	void	calcRect	(const	QString	&	text_	=	QString::null)
virtual	void	paintItem	(QPainter	*	p,	const	QColorGroup	&	cg)
virtual	void	paintFocus	(QPainter	*	p,	const	QColorGroup	&	cg)
virtual	void	dropped	(QDropEvent	*	e,
const	QValueList<QIconDragItem>	&	lst)
virtual	void	dragEntered	()
virtual	void	dragLeft	()
void	setItemRect	(const	QRect	&	r)
void	setTextRect	(const	QRect	&	r)
void	setPixmapRect	(const	QRect	&	r)

Detailed	Description

The	QIconViewItem	class	provides	a	single	item	in	a	QIconView.

A	QIconViewItem	contains	an	icon,	a	string	and	optionally	a	sort	key,	and	can
display	itself	in	a	QIconView.

The	simplest	way	to	create	a	QIconViewItem	and	insert	it	into	a	QIconView	is	to
construct	the	item	passing	the	constructor	a	pointer	to	the	icon	view,	a	string	and
an	icon:

				(void)	new	QIconViewItem(

																				iconView,			//	A	pointer	to	a	QIconView

																				"This	is	the	text	of	the	item",

																				aPixmap);

				

By	default	the	text	of	an	icon	view	item	may	not	be	edited	by	the	user	but	calling
setRenameEnabled(TRUE)	will	allow	the	user	to	perform	in-place	editing	of	the
item's	text.

When	the	icon	view	is	deleted	all	items	in	it	are	deleted	automatically.

The	QIconView::firstItem()	and	QIconViewItem::nextItem()	functions	provide	a
means	of	iterating	over	all	the	items	in	a	QIconView:

				QIconViewItem	*item;

				for	(item	=	iconView->firstItem();	item;	item	=	item->nextItem())

								do_something_with(item);

				

The	item's	icon	view	is	available	from	iconView(),	and	its	position	in	the	icon
view	from	index().

The	item's	selection	status	is	available	from	isSelected()	and	is	set	and	controlled
by	setSelected()	and	isSelectable().

The	text	and	icon	can	be	set	with	setText()	and	setPixmap()	and	retrieved	with
text()	and	pixmap().	The	item's	sort	key	defaults	to	text()	but	may	be	set	with
setKey()	and	retrieved	with	key().	The	comparison	function,	compare()	uses

key().

Items	may	be	repositioned	with	move()	and	moveBy().	An	item's	geometry	is
available	from	rect(),	x(),	y(),	width(),	height(),	size(),	pos(),	textRect()	and
pixmapRect().	You	can	also	test	against	the	position	of	a	point	with	contains()
and	intersects().

To	remove	an	item	from	an	icon	view,	just	delete	the	item.	The	QIconViewItem
destructor	removes	it	cleanly	from	its	icon	view.

Because	the	icon	view	is	designed	to	use	drag-and-drop,	the	icon	view	item	also
has	functions	for	drag-and-drop	which	may	be	reimplemented.

The	class	is	designed	to	be	very	similar	to	QListView	and	QListBox	in	use,	both
via	instantiation	and	subclassing.

See	also	Advanced	Widgets.

Member	Function	Documentation

QIconViewItem::QIconViewItem	(QIconView	*	parent)

Constructs	a	QIconViewItem	and	inserts	it	into	icon	view	parent	with	no	text
and	a	default	icon.

QIconViewItem::QIconViewItem	(QIconView	*	parent,
QIconViewItem	*	after)

Constructs	a	QIconViewItem	and	inserts	it	into	the	icon	view	parent	with	no	text
and	a	default	icon,	after	the	icon	view	item	after.

QIconViewItem::QIconViewItem	(QIconView	*	parent,
const	QString	&	text)

Constructs	an	icon	view	item	and	inserts	it	into	the	icon	view	parent	using	text	as
the	text	and	a	default	icon.

QIconViewItem::QIconViewItem	(QIconView	*	parent,
QIconViewItem	*	after,	const	QString	&	text)

Constructs	an	icon	view	item	and	inserts	it	into	the	icon	view	parent	using	text	as
the	text	and	a	default	icon,	after	the	icon	view	item	after.

QIconViewItem::QIconViewItem	(QIconView	*	parent,
const	QString	&	text,	const	QPixmap	&	icon)

Constructs	an	icon	view	item	and	inserts	it	into	the	icon	view	parent	using	text	as
the	text	and	icon	as	the	icon.

QIconViewItem::QIconViewItem	(QIconView	*	parent,
QIconViewItem	*	after,	const	QString	&	text,
const	QPixmap	&	icon)

Constructs	an	icon	view	item	and	inserts	it	into	the	icon	view	parent	using	text	as
the	text	and	icon	as	the	icon,	after	the	icon	view	item	after.

QIconViewItem::QIconViewItem	(QIconView	*	parent,
const	QString	&	text,	const	QPicture	&	picture)

Constructs	an	icon	view	item	and	inserts	it	into	the	icon	view	parent	using	text	as
the	text	and	picture	as	the	icon.

QIconViewItem::QIconViewItem	(QIconView	*	parent,
QIconViewItem	*	after,	const	QString	&	text,
const	QPicture	&	picture)

Constructs	an	icon	view	item	and	inserts	it	into	the	icon	view	parent	using	text	as
the	text	and	picture	as	the	icon,	after	the	icon	view	item	after.

QIconViewItem::~QIconViewItem	()	[virtual]

Destroys	the	icon	view	item	and	tells	the	parent	icon	view	that	the	item	has	been
destroyed.

bool	QIconViewItem::acceptDrop	(const	QMimeSource	*	mime)
const	[virtual]

Returns	TRUE	if	you	can	drop	things	with	a	QMimeSource	of	mime	onto	this
item;	otherwise	returns	FALSE.

The	default	implementation	always	returns	FALSE.	You	must	subclass
QIconViewItem	and	reimplement	acceptDrop()	to	accept	drops.

Examples:	fileiconview/qfileiconview.cpp	and	iconview/simple_dd/main.cpp.

void	QIconViewItem::calcRect	(const	QString	&	text_	=
QString::null)	[virtual	protected]

This	virtual	function	is	responsible	for	calculating	the	rectangles	returned	by
rect(),	textRect()	and	pixmapRect().	setRect(),	setTextRect()	and

setPixmapRect()	are	provided	mainly	for	reimplementations	of	this	function.

text_	is	an	internal	parameter	which	defaults	to	QString::null.

int	QIconViewItem::compare	(QIconViewItem	*	i)	const
[virtual]

Compares	this	icon	view	item	to	i.	Returns	-1	if	this	item	is	less	than	i,	0	if	they
are	equal,	and	1	if	this	icon	view	item	is	greater	than	i.

The	default	implementation	compares	the	item	keys	(key())	using
QString::localeAwareCompare().	A	reimplementation	may	use	different	values
and	a	different	comparison	function.	Here	is	a	reimplementation	that	uses	plain
Unicode	comparison:

								int	MyIconViewItem::compare(QIconViewItem	*i)	const

								{

												return	key().compare(i->key());

								}

				

See	also	key(),	QString::localeAwareCompare()	and	QString::compare().

bool	QIconViewItem::contains	(const	QPoint	&	pnt)	const

Returns	TRUE	if	the	item	contains	the	point	pnt	(in	contents	coordinates);
otherwise	returns	FALSE.

bool	QIconViewItem::dragEnabled	()	const

Returns	TRUE	if	the	user	is	allowed	to	drag	the	icon	view	item;	otherwise
returns	FALSE.

See	also	setDragEnabled().

void	QIconViewItem::dragEntered	()	[virtual	protected]

This	function	is	called	when	a	drag	enters	the	item's	bounding	rectangle.

The	default	implementation	does	nothing;	subclasses	may	reimplement	this

function.

Example:	fileiconview/qfileiconview.cpp.

void	QIconViewItem::dragLeft	()	[virtual	protected]

This	function	is	called	when	a	drag	leaves	the	item's	bounding	rectangle.

The	default	implementation	does	nothing;	subclasses	may	reimplement	this
function.

Example:	fileiconview/qfileiconview.cpp.

bool	QIconViewItem::dropEnabled	()	const

Returns	TRUE	if	the	user	is	allowed	to	drop	something	onto	the	item;	otherwise
returns	FALSE.

See	also	setDropEnabled().

void	QIconViewItem::dropped	(QDropEvent	*	e,
const	QValueList<QIconDragItem>	&	lst)	[virtual
protected]

This	function	is	called	when	something	is	dropped	on	the	item.	e	provides	all	the
information	about	the	drop.	If	the	drag	object	of	the	drop	was	a	QIconDrag,	lst
contains	the	list	of	the	dropped	items.	You	can	get	the	data	by	calling
QIconDragItem::data()	on	each	item.	If	the	lst	is	empty,	i.e.	the	drag	was	not	a
QIconDrag,	you	must	decode	the	data	in	e	and	work	with	that.

The	default	implementation	does	nothing;	subclasses	may	reimplement	this
function.

Examples:	fileiconview/qfileiconview.cpp	and	iconview/simple_dd/main.cpp.

int	QIconViewItem::height	()	const

Returns	the	height	of	the	item.

QIconView	*	QIconViewItem::iconView	()	const

Returns	a	pointer	to	this	item's	icon	view	parent.

int	QIconViewItem::index	()	const

Returns	the	index	of	this	item	in	the	icon	view,	or	-1	if	an	error	occurred.

bool	QIconViewItem::intersects	(const	QRect	&	r)	const

Returns	TRUE	if	the	item	intersects	the	rectangle	r	(in	contents	coordinates);
otherwise	returns	FALSE.

bool	QIconViewItem::isSelectable	()	const

Returns	TRUE	if	the	item	is	selectable;	otherwise	returns	FALSE.

See	also	setSelectable().

bool	QIconViewItem::isSelected	()	const

Returns	TRUE	if	the	item	is	selected;	otherwise	returns	FALSE.

See	also	setSelected().

Example:	fileiconview/qfileiconview.cpp.

QString	QIconViewItem::key	()	const	[virtual]

Returns	the	key	of	the	icon	view	item	or	text()	if	no	key	has	been	explicitly	set.

See	also	setKey()	and	compare().

bool	QIconViewItem::move	(int	x,	int	y)	[virtual]

Moves	the	item	to	position	(x,	y)	in	the	icon	view	(these	are	contents
coordinates).

bool	QIconViewItem::move	(const	QPoint	&	pnt)	[virtual]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Moves	the	item	to	the	point	pnt.

void	QIconViewItem::moveBy	(int	dx,	int	dy)	[virtual]

Moves	the	item	dx	pixels	in	the	x-direction	and	dy	pixels	in	the	y-direction.

void	QIconViewItem::moveBy	(const	QPoint	&	pnt)	[virtual]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Moves	the	item	by	the	x,	y	values	in	point	pnt.

QIconViewItem	*	QIconViewItem::nextItem	()	const

Returns	a	pointer	to	the	next	item,	or	0	if	this	is	the	last	item	in	the	icon	view.

To	find	the	first	item	use	QIconView::firstItem().

Example:

				QIconViewItem	*item;

				for	(item	=	iconView->firstItem();	item;	item	=	item->nextItem())

								do_something_with(item);

				

See	also	prevItem().

Example:	fileiconview/qfileiconview.cpp.

void	QIconViewItem::paintFocus	(QPainter	*	p,
const	QColorGroup	&	cg)	[virtual	protected]

Paints	the	focus	rectangle	of	the	item	using	the	painter	p	and	the	color	group	cg.

void	QIconViewItem::paintItem	(QPainter	*	p,
const	QColorGroup	&	cg)	[virtual	protected]

Paints	the	item	using	the	painter	p	and	the	color	group	cg.	If	you	want	the	item	to
be	drawn	with	a	different	font	or	color,	reimplement	this	function,	change	the
values	of	the	color	group	or	the	painter's	font,	and	then	call	the
QIconViewItem::paintItem()	with	the	changed	values.

Example:	fileiconview/qfileiconview.cpp.

QPicture	*	QIconViewItem::picture	()	const	[virtual]

Returns	the	icon	of	the	icon	view	item	if	it	is	a	picture,	or	0	if	it	is	a	pixmap.	In
the	latter	case	use	pixmap()	instead.	Normally	you	set	the	picture	of	the	item
with	setPicture(),	but	sometimes	it's	inconvenient	to	call	setPicture()	for	every
item.	So	you	can	subclass	QIconViewItem,	reimplement	this	function	and	return
a	pointer	to	the	item's	picture.	If	you	do	this,	you	must	call	calcRect()	manually
each	time	the	size	of	this	picture	changes.

See	also	setPicture().

QPixmap	*	QIconViewItem::pixmap	()	const	[virtual]

Returns	the	icon	of	the	icon	view	item	if	it	is	a	pixmap,	or	0	if	it	is	a	picture.	In
the	latter	case	use	picture()	instead.	Normally	you	set	the	pixmap	of	the	item
with	setPixmap(),	but	sometimes	it's	inconvenient	to	call	setPixmap()	for	every
item.	So	you	can	subclass	QIconViewItem,	reimplement	this	function	and	return
a	pointer	to	the	item's	pixmap.	If	you	do	this,	you	must	call	calcRect()	manually
each	time	the	size	of	this	pixmap	changes.

See	also	setPixmap().

Example:	fileiconview/qfileiconview.cpp.

QRect	QIconViewItem::pixmapRect	(bool	relative	=	TRUE)
const

Returns	the	bounding	rectangle	of	the	item's	icon.

If	relative	is	TRUE,	(the	default),	the	rectangle	is	relative	to	the	origin	of	the
item's	rectangle.	If	relative	is	FALSE,	the	returned	rectangle	is	relative	to	the
origin	of	the	icon	view's	contents	coordinate	system.

Example:	fileiconview/qfileiconview.cpp.

QPoint	QIconViewItem::pos	()	const

Returns	the	position	of	the	item	(in	contents	coordinates).

QIconViewItem	*	QIconViewItem::prevItem	()	const

Returns	a	pointer	to	the	previous	item,	or	0	if	this	is	the	first	item	in	the	icon
view.

See	also	nextItem()	and	QIconView::firstItem().

QRect	QIconViewItem::rect	()	const

Returns	the	bounding	rectangle	of	the	item	(in	contents	coordinates).

void	QIconViewItem::removeRenameBox	()	[virtual	protected]

Removes	the	editbox	that	is	used	for	in-place	renaming.

void	QIconViewItem::rename	()

Starts	in-place	renaming	of	an	icon,	if	allowed.

This	function	sets	up	the	icon	view	so	that	the	user	can	edit	the	item	text,	and
then	returns.	When	the	user	is	done,	setText()	will	be	called	and
QIconView::itemRenamed()	will	be	emitted	(unless	the	user	cancelled,	e.g.	by
pressing	the	Escape	key).

See	also	setRenameEnabled().

Example:	fileiconview/qfileiconview.cpp.

bool	QIconViewItem::renameEnabled	()	const

Returns	TRUE	if	the	item	can	be	renamed	by	the	user	with	in-place	renaming;
otherwise	returns	FALSE.

See	also	setRenameEnabled().

Example:	fileiconview/qfileiconview.cpp.

void	QIconViewItem::repaint	()	[virtual]

Repaints	the	item.

int	QIconViewItem::rtti	()	const	[virtual]

Returns	0.

Make	your	derived	classes	return	their	own	values	for	rtti(),	so	that	you	can
distinguish	between	icon	view	item	types.	You	should	use	values	greater	than
1000,	preferably	a	large	random	number,	to	allow	for	extensions	to	this	class.

void	QIconViewItem::setDragEnabled	(bool	allow)	[virtual]

If	allow	is	TRUE,	the	icon	view	permits	the	user	to	drag	the	icon	view	item
either	to	another	position	within	the	icon	view	or	to	somewhere	outside	of	it.	If
allow	is	FALSE,	the	item	cannot	be	dragged.

void	QIconViewItem::setDropEnabled	(bool	allow)	[virtual]

If	allow	is	TRUE,	the	icon	view	lets	the	user	drop	something	on	this	icon	view
item.

void	QIconViewItem::setItemRect	(const	QRect	&	r)
[protected]

Sets	the	bounding	rectangle	of	the	whole	item	to	r.	This	function	is	provided	for
subclasses	which	reimplement	calcRect(),	so	that	they	can	set	the	calculated
rectangle.	Any	other	use	is	discouraged.

See	also	calcRect(),	textRect(),	setTextRect(),	pixmapRect()	and
setPixmapRect().

void	QIconViewItem::setKey	(const	QString	&	k)	[virtual]

Sets	k	as	the	sort	key	of	the	icon	view	item.	By	default	text()	is	used	for	sorting.

See	also	compare().

Example:	fileiconview/qfileiconview.cpp.

void	QIconViewItem::setPicture	(const	QPicture	&	icon)
[virtual]

Sets	icon	as	the	item's	icon	in	the	icon	view.	This	function	might	be	a	no-op	if
you	reimplement	picture().

See	also	picture().

void	QIconViewItem::setPixmap	(const	QPixmap	&	icon)
[virtual]

Sets	icon	as	the	item's	icon	in	the	icon	view.	This	function	might	be	a	no-op	if
you	reimplement	pixmap().

See	also	pixmap().

void	QIconViewItem::setPixmap	(const	QPixmap	&	icon,
bool	recalc,	bool	redraw	=	TRUE)	[virtual]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Sets	icon	as	the	item's	icon	in	the	icon	view.	If	recalc	is	TRUE,	the	icon	view's
layout	is	recalculated.	If	redraw	is	TRUE	(the	default),	the	icon	view	is
repainted.

See	also	pixmap().

void	QIconViewItem::setPixmapRect	(const	QRect	&	r)
[protected]

Sets	the	bounding	rectangle	of	the	item's	icon	to	r.	This	function	is	provided	for
subclasses	which	reimplement	calcRect(),	so	that	they	can	set	the	calculated
rectangle.	Any	other	use	is	discouraged.

See	also	calcRect(),	pixmapRect(),	setItemRect()	and	setTextRect().

void	QIconViewItem::setRenameEnabled	(bool	allow)	[virtual]

If	allow	is	TRUE,	the	user	can	rename	the	icon	view	item	by	clicking	on	the	text
(or	pressing	F2)	while	the	item	is	selected	(in-place	renaming).	If	allow	is
FALSE,	in-place	renaming	is	not	possible.

Examples:	fileiconview/qfileiconview.cpp,	iconview/main.cpp	and
iconview/simple_dd/main.cpp.

void	QIconViewItem::setSelectable	(bool	enable)	[virtual]

Sets	this	item	to	be	selectable	if	enable	is	TRUE	(the	default)	or	unselectable	if
enable	is	FALSE.

The	user	is	unable	to	select	a	non-selectable	item	using	either	the	keyboard	or
the	mouse.	(The	application	programmer	can	select	an	item	in	code	regardless	of
this	setting.)

See	also	isSelectable().

void	QIconViewItem::setSelected	(bool	s,	bool	cb)	[virtual]

Selects	or	unselects	the	item,	depending	on	s;	it	may	also	unselect	other	items,
depending	on	QIconView::selectionMode()	and	cb.

If	s	is	FALSE,	the	item	is	unselected.

If	s	is	TRUE	and	QIconView::selectionMode()	is	Single,	the	item	is	selected
and	the	item	previously	selected	is	unselected.

If	s	is	TRUE	and	QIconView::selectionMode()	is	Extended,	the	item	is	selected.
If	cb	is	TRUE,	the	selection	state	of	the	other	items	is	left	unchanged.	If	cb	is
FALSE	(the	default)	all	other	items	are	unselected.

If	s	is	TRUE	and	QIconView::selectionMode()	is	Multi,	the	item	is	selected.

Note	that	cb	is	used	only	if	QIconView::selectionMode()	is	Extended;	cb
defaults	to	FALSE.

All	items	whose	selection	status	changes	repaint	themselves.

Example:	fileiconview/qfileiconview.cpp.

void	QIconViewItem::setSelected	(bool	s)	[virtual]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

This	variant	is	equivalent	to	calling	the	other	variant	with	cb	set	to	FALSE.

void	QIconViewItem::setText	(const	QString	&	text)	[virtual]

Sets	text	as	the	text	of	the	icon	view	item.	This	function	might	be	a	no-op	if	you
reimplement	text().

See	also	text().

Example:	fileiconview/qfileiconview.cpp.

void	QIconViewItem::setText	(const	QString	&	text,	bool	recalc,
bool	redraw	=	TRUE)	[virtual]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Sets	text	as	the	text	of	the	icon	view	item.	If	recalc	is	TRUE,	the	icon	view's
layout	is	recalculated.	If	redraw	is	TRUE	(the	default),	the	icon	view	is
repainted.

See	also	text().

void	QIconViewItem::setTextRect	(const	QRect	&	r)
[protected]

Sets	the	bounding	rectangle	of	the	item's	text	to	r.	This	function	is	provided	for
subclasses	which	reimplement	calcRect(),	so	that	they	can	set	the	calculated
rectangle.	Any	other	use	is	discouraged.

See	also	calcRect(),	textRect(),	setItemRect()	and	setPixmapRect().

QSize	QIconViewItem::size	()	const

Returns	the	size	of	the	item.

QString	QIconViewItem::text	()	const	[virtual]

Returns	the	text	of	the	icon	view	item.	Normally	you	set	the	text	of	the	item	with
setText(),	but	sometimes	it's	inconvenient	to	call	setText()	for	every	item;	so	you
can	subclass	QIconViewItem,	reimplement	this	function,	and	return	the	text	of
the	item.	If	you	do	this,	you	must	call	calcRect()	manually	each	time	the	text
(and	therefore	its	size)	changes.

See	also	setText().

Example:	fileiconview/qfileiconview.cpp.

QRect	QIconViewItem::textRect	(bool	relative	=	TRUE)	const

Returns	the	bounding	rectangle	of	the	item's	text.

If	relative	is	TRUE,	(the	default),	the	returned	rectangle	is	relative	to	the	origin
of	the	item's	rectangle.	If	relative	is	FALSE,	the	returned	rectangle	is	relative	to
the	origin	of	the	icon	view's	contents	coordinate	system.

Example:	fileiconview/qfileiconview.cpp.

int	QIconViewItem::width	()	const

Returns	the	width	of	the	item.

int	QIconViewItem::x	()	const

Returns	the	x-coordinate	of	the	item	(in	contents	coordinates).

int	QIconViewItem::y	()	const

Returns	the	y-coordinate	of	the	item	(in	contents	coordinates).

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QXmlReader	Class	Reference
[XML	module]

The	QXmlReader	class	provides	an	interface	for	XML	readers	(i.e.	parsers).
More...

#include	<qxml.h>

Inherited	by	QXmlSimpleReader.

List	of	all	member	functions.

Public	Members

virtual	bool	feature	(const	QString	&	name,	bool	*	ok	=	0)	const	=	0
virtual	void	setFeature	(const	QString	&	name,	bool	value)	=	0
virtual	bool	hasFeature	(const	QString	&	name)	const	=	0
virtual	void	*	property	(const	QString	&	name,	bool	*	ok	=	0)	const	=	0
virtual	void	setProperty	(const	QString	&	name,	void	*	value)	=	0
virtual	bool	hasProperty	(const	QString	&	name)	const	=	0
virtual	void	setEntityResolver	(QXmlEntityResolver	*	handler)	=	0
virtual	QXmlEntityResolver	*	entityResolver	()	const	=	0
virtual	void	setDTDHandler	(QXmlDTDHandler	*	handler)	=	0
virtual	QXmlDTDHandler	*	DTDHandler	()	const	=	0
virtual	void	setContentHandler	(QXmlContentHandler	*	handler)	=	0
virtual	QXmlContentHandler	*	contentHandler	()	const	=	0
virtual	void	setErrorHandler	(QXmlErrorHandler	*	handler)	=	0
virtual	QXmlErrorHandler	*	errorHandler	()	const	=	0
virtual	void	setLexicalHandler	(QXmlLexicalHandler	*	handler)	=	0
virtual	QXmlLexicalHandler	*	lexicalHandler	()	const	=	0
virtual	void	setDeclHandler	(QXmlDeclHandler	*	handler)	=	0
virtual	QXmlDeclHandler	*	declHandler	()	const	=	0
virtual	bool	parse	(const	QXmlInputSource	&	input)	=	0		(obsolete)
virtual	bool	parse	(const	QXmlInputSource	*	input)	=	0

Detailed	Description

The	QXmlReader	class	provides	an	interface	for	XML	readers	(i.e.	parsers).

This	abstract	class	provides	an	interface	for	all	XML	readers	in	Qt.	At	the
moment	there	is	only	one	implementation	of	a	reader	included	in	the	XML
module	of	Qt	(QXmlSimpleReader).	In	future	releases	there	might	be	more
readers	with	different	properties	available	(e.g.	a	validating	parser).

The	design	of	the	XML	classes	follows	the	SAX2	java	interface.	It	was	adapted
to	fit	the	Qt	naming	conventions;	so	it	should	be	very	easy	for	anybody	who	has
worked	with	SAX2	to	get	started	with	the	Qt	XML	classes.

All	readers	use	the	class	QXmlInputSource	to	read	the	input	document.	Since
you	are	normally	interested	in	particular	content	in	the	XML	document,	the
reader	reports	the	content	through	special	handler	classes	(QXmlDTDHandler,
QXmlDeclHandler,	QXmlContentHandler,	QXmlEntityResolver,
QXmlErrorHandler	and	QXmlLexicalHandler),	which	you	must	subclass,	if	you
want	to	process	the	contents..

Since	the	handler	classes	describe	only	interfaces	you	must	implement	all
functions;	there	is	a	class	(QXmlDefaultHandler)	to	make	this	easier;	it
implements	a	default	behaviour	(do	nothing)	for	all	functions.

Features	and	properties	of	the	reader	can	be	set	with	setFeature()	and	setProperty
respectively.	You	can	set	the	reader	to	use	your	own	subclasses	with
setEntityResolver(),	setDTDHandler(),	setContentHandler(),	setErrorHandler(),
setLexicalHandler()	and	setDeclHandler().	The	parse	itself	is	started	with	a	call
to	parse().

For	getting	started	see	also	the	tiny	SAX2	parser	walkthrough.

See	also	QXmlSimpleReader	and	XML.

http://www.megginson.com/SAX/

Member	Function	Documentation

QXmlDTDHandler	*	QXmlReader::DTDHandler	()	const	[pure
virtual]

Returns	the	DTD	handler	or	0	if	none	was	set.

See	also	setDTDHandler().

QXmlContentHandler	*	QXmlReader::contentHandler	()	const
[pure	virtual]

Returns	the	content	handler	or	0	if	none	was	set.

See	also	setContentHandler().

QXmlDeclHandler	*	QXmlReader::declHandler	()	const	[pure
virtual]

Returns	the	declaration	handler	or	0	if	none	was	set.

See	also	setDeclHandler().

QXmlEntityResolver	*	QXmlReader::entityResolver	()	const
[pure	virtual]

Returns	the	entity	resolver	or	0	if	none	was	set.

See	also	setEntityResolver().

QXmlErrorHandler	*	QXmlReader::errorHandler	()	const	[pure
virtual]

Returns	the	error	handler	or	0	if	none	was	set.

See	also	setErrorHandler().

bool	QXmlReader::feature	(const	QString	&	name,	bool	*	ok	=	0
)	const	[pure	virtual]

If	the	reader	has	the	feature	called	name,	the	feature's	value	is	returned.	If	no
such	feature	exists	the	return	value	is	undefined.

If	ok	is	not	0,	then	*ok	is	set	to	TRUE	if	the	reader	has	the	feature	called	name;
otherwise	*ok	is	set	to	FALSE.

See	also	setFeature()	and	hasFeature().

bool	QXmlReader::hasFeature	(const	QString	&	name)	const
[pure	virtual]

Returns	TRUE	if	the	reader	has	the	feature	name;	otherwise	returns	FALSE.

See	also	feature()	and	setFeature().

bool	QXmlReader::hasProperty	(const	QString	&	name)	const
[pure	virtual]

Returns	TRUE	if	the	reader	has	the	property	name;	otherwise	returns	FALSE.

See	also	property()	and	setProperty().

QXmlLexicalHandler	*	QXmlReader::lexicalHandler	()	const
[pure	virtual]

Returns	the	lexical	handler	or	0	if	none	was	set.

See	also	setLexicalHandler().

bool	QXmlReader::parse	(const	QXmlInputSource	*	input)
[pure	virtual]

Reads	an	XML	document	from	input	and	parses	it.	Returns	TRUE	if	the	parsing
was	successful;	otherwise	returns	FALSE.

Example:	xml/tagreader/tagreader.cpp.

bool	QXmlReader::parse	(const	QXmlInputSource	&	input)
[pure	virtual]

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

void	*	QXmlReader::property	(const	QString	&	name,	bool	*	ok
=	0)	const	[pure	virtual]

If	the	reader	has	the	property	name,	this	function	returns	the	value	of	the
property	and	sets	*ok	to	TRUE;	otherwise	*ok	is	set	to	FALSE.

See	also	setProperty()	and	hasProperty().

void	QXmlReader::setContentHandler	(
QXmlContentHandler	*	handler)	[pure	virtual]

Sets	the	content	handler	to	handler.

See	also	contentHandler().

Example:	xml/tagreader/tagreader.cpp.

void	QXmlReader::setDTDHandler	(
QXmlDTDHandler	*	handler)	[pure	virtual]

Sets	the	DTD	handler	to	handler.

See	also	DTDHandler().

void	QXmlReader::setDeclHandler	(QXmlDeclHandler	*	handler
)	[pure	virtual]

Sets	the	declaration	handler	to	handler.

See	also	declHandler().

void	QXmlReader::setEntityResolver	(

QXmlEntityResolver	*	handler)	[pure	virtual]

Sets	the	entity	resolver	to	handler.

See	also	entityResolver().

void	QXmlReader::setErrorHandler	(
QXmlErrorHandler	*	handler)	[pure	virtual]

Sets	the	error	handler	to	handler.	Clears	the	error	handler	if	handler	is	0.

See	also	errorHandler().

void	QXmlReader::setFeature	(const	QString	&	name,	bool	value
)	[pure	virtual]

Sets	the	feature	called	name	to	the	given	value.	If	the	reader	doesn't	have	the
feature	nothing	happens.

See	also	feature()	and	hasFeature().

void	QXmlReader::setLexicalHandler	(
QXmlLexicalHandler	*	handler)	[pure	virtual]

Sets	the	lexical	handler	to	handler.

See	also	lexicalHandler().

void	QXmlReader::setProperty	(const	QString	&	name,
void	*	value)	[pure	virtual]

Sets	the	property	name	to	value.	If	the	reader	doesn't	have	the	property	nothing
happens.

See	also	property()	and	hasProperty().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights

http://www.trolltech.com/

Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QDictIterator	Class	Reference
The	QDictIterator	class	provides	an	iterator	for	QDict	collections.	More...

#include	<qdict.h>

List	of	all	member	functions.

Public	Members

QDictIterator	(const	QDict<type>	&	dict)
~QDictIterator	()
uint	count	()	const
bool	isEmpty	()	const
type	*	toFirst	()
operator	type	*	()	const
type	*	current	()	const
QString	currentKey	()	const
type	*	operator()	()
type	*	operator++	()

Detailed	Description

The	QDictIterator	class	provides	an	iterator	for	QDict	collections.

QDictIterator	is	implemented	as	a	template	class.	Define	a	template	instance
QDictIterator<X>	to	create	a	dictionary	iterator	that	operates	on	QDict<X>
(dictionary	of	X*).

The	traversal	order	is	arbitrary;	when	we	speak	of	the	"first",	"last"	and	"next"
item	we	are	talking	in	terms	of	this	arbitrary	order.

Multiple	iterators	may	independently	traverse	the	same	dictionary.	A	QDict
knows	about	all	iterators	that	are	operating	on	the	dictionary.	When	an	item	is
removed	from	the	dictionary,	QDict	update	all	iterators	that	are	referring	to	the
removed	item	to	point	to	the	next	item	in	the	traversal	order.

Example:

				QDict<QLineEdit>	fields;

				fields.insert("forename",	new	QLineEdit(this));

				fields.insert("surname",	new	QLineEdit(this));

				fields.insert("age",	new	QLineEdit(this));

				fields["forename"]->setText("Homer");

				fields["surname"]->setText("Simpson");

				fields["age"]->setText("45");

				QDictIterator<QLineEdit>	it(fields);

				for(;	it.current();	++it)

								cout	<<	it.currentKey()	<<	":	"	<<	it.current()->text()	<<	endl;

				cout	<<	endl;

				//	Output	(random	order):

				//		age:	45

				//		surname:	Simpson

				//		forename:	Homer

		

In	the	example	we	insert	some	pointers	to	line	edits	into	a	dictionary,	then	iterate
over	the	dictionary	printing	the	strings	associated	with	the	line	edits.

See	also	QDict,	Collection	Classes	and	Non-GUI	Classes.

Member	Function	Documentation

QDictIterator::QDictIterator	(const	QDict<type>	&	dict)

Constructs	an	iterator	for	dict.	The	current	iterator	item	is	set	to	point	to	the	first
item	in	the	dictionary,	dict.	First	in	this	context	means	first	in	the	arbitrary
traversal	order.

QDictIterator::~QDictIterator	()

Destroys	the	iterator.

uint	QDictIterator::count	()	const

Returns	the	number	of	items	in	the	dictionary	over	which	the	iterator	is
operating.

See	also	isEmpty().

type	*	QDictIterator::current	()	const

Returns	a	pointer	to	the	current	iterator	item's	value.

QString	QDictIterator::currentKey	()	const

Returns	the	current	iterator	item's	key.

bool	QDictIterator::isEmpty	()	const

Returns	TRUE	if	the	dictionary	is	empty,	i.e.	count()	==	0;	otherwise	returns
FALSE.

See	also	count().

QDictIterator::operator	type	*	()	const

Cast	operator.	Returns	a	pointer	to	the	current	iterator	item.	Same	as	current().

type	*	QDictIterator::operator()	()

Makes	the	next	item	current	and	returns	the	original	current	item.

If	the	current	iterator	item	was	the	last	item	in	the	dictionary	or	if	it	was	0,	0	is
returned.

type	*	QDictIterator::operator++	()

Prefix	++	makes	the	next	item	current	and	returns	the	new	current	item.

If	the	current	iterator	item	was	the	last	item	in	the	dictionary	or	if	it	was	0,	0	is
returned.

type	*	QDictIterator::toFirst	()

Resets	the	iterator,	making	the	first	item	the	first	current	item.	First	in	this
context	means	first	in	the	arbitrary	traversal	order.	Returns	a	pointer	to	this	item.

If	the	dictionary	is	empty	it	sets	the	current	item	to	0	and	returns	0.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QImage	Class	Reference
The	QImage	class	provides	a	hardware-independent	pixmap	representation	with
direct	access	to	the	pixel	data.	More...

#include	<qimage.h>

List	of	all	member	functions.

Public	Members

enum	Endian	{	IgnoreEndian,	BigEndian,	LittleEndian	}
QImage	()
QImage	(int	w,	int	h,	int	depth,	int	numColors	=	0,	Endian	bitOrder	=
IgnoreEndian)
QImage	(const	QSize	&	size,	int	depth,	int	numColors	=	0,
Endian	bitOrder	=	IgnoreEndian)
QImage	(const	QString	&	fileName,	const	char	*	format	=	0)
QImage	(const	char	*	const	xpm[])
QImage	(const	QByteArray	&	array)
QImage	(uchar	*	yourdata,	int	w,	int	h,	int	depth,	QRgb	*	colortable,
int	numColors,	Endian	bitOrder)
QImage	(uchar	*	yourdata,	int	w,	int	h,	int	depth,	int	bpl,
QRgb	*	colortable,	int	numColors,	Endian	bitOrder)
QImage	(const	QImage	&	image)
~QImage	()
QImage	&	operator=	(const	QImage	&	image)
QImage	&	operator=	(const	QPixmap	&	pixmap)
bool	operator==	(const	QImage	&	i)	const
bool	operator!=	(const	QImage	&	i)	const
void	detach	()
QImage	copy	()	const
QImage	copy	(int	x,	int	y,	int	w,	int	h,	int	conversion_flags	=	0)	const
QImage	copy	(const	QRect	&	r)	const
bool	isNull	()	const
int	width	()	const
int	height	()	const
QSize	size	()	const
QRect	rect	()	const
int	depth	()	const
int	numColors	()	const
Endian	bitOrder	()	const
QRgb	color	(int	i)	const
void	setColor	(int	i,	QRgb	c)
void	setNumColors	(int	numColors)
bool	hasAlphaBuffer	()	const

void	setAlphaBuffer	(bool	enable)
bool	allGray	()	const
bool	isGrayscale	()	const
uchar	*	bits	()	const
uchar	*	scanLine	(int	i)	const
uchar	**	jumpTable	()	const
QRgb	*	colorTable	()	const
int	numBytes	()	const
int	bytesPerLine	()	const
bool	create	(int	width,	int	height,	int	depth,	int	numColors	=	0,
Endian	bitOrder	=	IgnoreEndian)
bool	create	(const	QSize	&,	int	depth,	int	numColors	=	0,	Endian	bitOrder
=	IgnoreEndian)
void	reset	()
void	fill	(uint	pixel)
void	invertPixels	(bool	invertAlpha	=	TRUE)
QImage	convertDepth	(int	depth)	const
QImage	convertDepthWithPalette	(int	d,	QRgb	*	palette,
int	palette_count,	int	conversion_flags	=	0)	const
QImage	convertDepth	(int	depth,	int	conversion_flags)	const
QImage	convertBitOrder	(Endian	bitOrder)	const
enum	ScaleMode	{	ScaleFree,	ScaleMin,	ScaleMax	}
QImage	smoothScale	(int	w,	int	h,	ScaleMode	mode	=	ScaleFree)	const
QImage	smoothScale	(const	QSize	&	s,	ScaleMode	mode	=	ScaleFree)
const
QImage	scale	(int	w,	int	h,	ScaleMode	mode	=	ScaleFree)	const
QImage	scale	(const	QSize	&	s,	ScaleMode	mode	=	ScaleFree)	const
QImage	scaleWidth	(int	w)	const
QImage	scaleHeight	(int	h)	const
QImage	xForm	(const	QWMatrix	&	matrix)	const
QImage	createAlphaMask	(int	conversion_flags	=	0)	const
QImage	createHeuristicMask	(bool	clipTight	=	TRUE)	const
QImage	mirror	()	const
QImage	mirror	(bool	horizontal,	bool	vertical)	const
QImage	swapRGB	()	const
bool	load	(const	QString	&	fileName,	const	char	*	format	=	0)
bool	loadFromData	(const	uchar	*	buf,	uint	len,	const	char	*	format	=	0)
bool	loadFromData	(QByteArray	buf,	const	char	*	format	=	0)
bool	save	(const	QString	&	fileName,	const	char	*	format,	int	quality	=	-1

)	const
bool	valid	(int	x,	int	y)	const
int	pixelIndex	(int	x,	int	y)	const
QRgb	pixel	(int	x,	int	y)	const
void	setPixel	(int	x,	int	y,	uint	index_or_rgb)
int	dotsPerMeterX	()	const
int	dotsPerMeterY	()	const
void	setDotsPerMeterX	(int	x)
void	setDotsPerMeterY	(int	y)
QPoint	offset	()	const
void	setOffset	(const	QPoint	&	p)
QValueList<QImageTextKeyLang>	textList	()	const
QStringList	textLanguages	()	const
QStringList	textKeys	()	const
QString	text	(const	char	*	key,	const	char	*	lang	=	0)	const
QString	text	(const	QImageTextKeyLang	&	kl)	const
void	setText	(const	char	*	key,	const	char	*	lang,	const	QString	&	s)

Static	Public	Members

Endian	systemBitOrder	()
Endian	systemByteOrder	()
const	char	*	imageFormat	(const	QString	&	fileName)
QStrList	inputFormats	()
QStrList	outputFormats	()
QStringList	inputFormatList	()
QStringList	outputFormatList	()

Related	Functions

QDataStream	&	operator<<	(QDataStream	&	s,	const	QImage	&	image)
QDataStream	&	operator>>	(QDataStream	&	s,	QImage	&	image)

Detailed	Description

The	QImage	class	provides	a	hardware-independent	pixmap	representation	with
direct	access	to	the	pixel	data.

It	is	one	of	the	two	classes	Qt	provides	for	dealing	with	images,	the	other	being
QPixmap.	QImage	is	designed	and	optimized	for	I/O	and	for	direct	pixel
access/manipulation.	QPixmap	is	designed	and	optimized	for	drawing.	There	are
(slow)	functions	to	convert	between	QImage	and	QPixmap:
QPixmap::convertToImage()	and	QPixmap::convertFromImage().

An	image	has	the	parameters	width,	height	and	depth	(bits	per	pixel,	bpp),	a
color	table	and	the	actual	pixels.	QImage	supports	1-bpp,	8-bpp	and	32-bpp
image	data.	1-bpp	and	8-bpp	images	use	a	color	lookup	table;	the	pixel	value	is	a
color	table	index.

32-bpp	images	encode	an	RGB	value	in	24	bits	and	ignore	the	color	table.	The
most	significant	byte	is	used	for	the	alpha	buffer.

An	entry	in	the	color	table	is	an	RGB	triplet	encoded	as	a	uint.	Use	the	qRed(),
qGreen()	and	qBlue()	functions	(qcolor.h)	to	access	the	components,	and	qRgb
to	make	an	RGB	triplet	(see	the	QColor	class	documentation).

1-bpp	(monochrome)	images	have	a	color	table	with	a	most	two	colors.	There
are	two	different	formats:	big	endian	(MSB	first)	or	little	endian	(LSB	first)	bit
order.	To	access	a	single	bit	you	will	must	do	some	bit	shifts:

				QImage	image;

				//	sets	bit	at	(x,y)	to	1

				if	(image.bitOrder()	==	QImage::LittleEndian)

								*(image.scanLine(y)	+	(x	>>	3))	|=	1	<<	(x	&	7);

				else

								*(image.scanLine(y)	+	(x	>>	3))	|=	1	<<	(7	-(x	&	7));

				

If	this	looks	complicated,	it	might	be	a	good	idea	to	convert	the	1-bpp	image	to
an	8-bpp	image	using	convertDepth().

8-bpp	images	are	much	easier	to	work	with	than	1-bpp	images	because	they	have
a	single	byte	per	pixel:

				QImage	image;

				//	set	entry	19	in	the	color	table	to	yellow

				image.setColor(19,	qRgb(255,255,0));

				//	set	8	bit	pixel	at	(x,y)	to	value	yellow	(in	color	table)

				*(image.scanLine(y)	+	x)	=	19;

				

32-bpp	images	ignore	the	color	table;	instead,	each	pixel	contains	the	RGB
triplet.	24	bits	contain	the	RGB	value;	the	most	significant	byte	is	reserved	for
the	alpha	buffer.

				QImage	image;

				//	sets	32	bit	pixel	at	(x,y)	to	yellow.

				uint	*p	=	(uint	*)image.scanLine(y)	+	x;

				*p	=	qRgb(255,255,0);

				

On	Qt/Embedded,	scanlines	are	aligned	to	the	pixel	depth	and	may	be	padded	to
any	degree,	while	on	all	other	platforms,	the	scanlines	are	32-bit	aligned	for	all
depths.	The	constructor	taking	a	uchar*	argument	always	expects	32-bit	aligned
data.	On	Qt/Embedded,	an	additional	constructor	allows	the	number	of	bytes-
per-line	to	be	specified.

QImage	supports	a	variety	of	methods	for	getting	information	about	the	image,
for	example,	colorTable(),	allGray(),	isGrayscale(),	bitOrder(),	bytesPerLine(),
depth(),	dotsPerMeterX()	and	dotsPerMeterY(),	hasAlphaBuffer(),	numBytes(),
numColors(),	and	width()	and	height().

Pixel	colors	are	retrieved	with	pixel()	and	set	with	setPixel().

QImage	also	supports	a	number	of	functions	for	creating	a	new	image	that	is	a
transformed	version	of	the	original.	For	example,	copy(),	convertBitOrder(),
convertDepth(),	createAlphaMask(),	createHeuristicMask(),	mirror(),	scale(),
smoothScale(),	swapRGB()	and	xForm().	There	are	also	functions	for	changing
attributes	of	an	image	in-place,	for	example,	setAlphaBuffer(),	setColor(),
setDotsPerMeterX()	and	setDotsPerMeterY()	and	setNumColors().

Images	can	be	loaded	and	saved	in	the	supported	formats.	Images	are	saved	to	a
file	with	save().	Images	are	loaded	from	a	file	with	load()	(or	in	the	constructor)
or	from	an	array	of	data	with	loadFromData().	The	lists	of	supported	formats	are
available	from	inputFormatList()	and	outputFormatList().

Strings	of	text	may	be	added	to	images	using	setText().

The	QImage	class	uses	explicit	sharing,	similar	to	that	used	by	QMemArray.

New	image	formats	can	be	added	as	plugins.

See	also	QImageIO,	QPixmap,	Shared	Classes,	Graphics	Classes,	Image
Processing	Classes	and	Implicitly	and	Explicitly	Shared	Classes.

Member	Type	Documentation

QImage::Endian

This	enum	type	is	used	to	describe	the	endianness	of	the	CPU	and	graphics
hardware.

QImage::IgnoreEndian	-	Endianness	does	not	matter.	Useful	for	some
operations	that	are	independent	of	endianness.
QImage::BigEndian	-	Network	byte	order,	as	on	SPARC	and	Motorola
CPUs.
QImage::LittleEndian	-	PC/Alpha	byte	order.

QImage::ScaleMode

The	functions	scale()	and	smoothScale()	use	different	modes	for	scaling	the
image.	The	purpose	of	these	modes	is	to	retain	the	ratio	of	the	image	if	this	is
required.

QImage::ScaleFree	-	The	image	is	scaled	freely:	the	resulting	image	fits
exactly	into	the	specified	size;	the	ratio	will	not	necessarily	be	preserved.
QImage::ScaleMin	-	The	ratio	of	the	image	is	preserved	and	the	resulting
image	is	guaranteed	to	fit	into	the	specified	size	(it	is	as	large	as	possible
within	these	constraints)	-	the	image	might	be	smaller	than	the	requested
size.
QImage::ScaleMax	-	The	ratio	of	the	image	is	preserved	and	the	resulting
image	fills	the	whole	specified	rectangle	(it	is	as	small	as	possible	within
these	constraints)	-	the	image	might	be	larger	than	the	requested	size.

Member	Function	Documentation

QImage::QImage	()

Constructs	a	null	image.

See	also	isNull().

QImage::QImage	(int	w,	int	h,	int	depth,	int	numColors	=	0,
Endian	bitOrder	=	IgnoreEndian)

Constructs	an	image	with	w	width,	h	height,	depth	bits	per	pixel,	numColors
colors	and	bit	order	bitOrder.

Using	this	constructor	is	the	same	as	first	constructing	a	null	image	and	then
calling	the	create()	function.

See	also	create().

QImage::QImage	(const	QSize	&	size,	int	depth,	int	numColors	=
0,	Endian	bitOrder	=	IgnoreEndian)

Constructs	an	image	with	size	size	pixels,	depth	depth	bits,	numColors	and
bitOrder	endianness.

Using	this	constructor	is	the	same	as	first	constructing	a	null	image	and	then
calling	the	create()	function.

See	also	create().

QImage::QImage	(const	QString	&	fileName,
const	char	*	format	=	0)

Constructs	an	image	and	tries	to	load	the	image	from	the	file	fileName.

If	format	is	specified,	the	loader	attempts	to	read	the	image	using	the	specified
format.	If	format	is	not	specified	(which	is	the	default),	the	loader	reads	a	few

bytes	from	the	header	to	guess	the	file	format.

If	the	loading	of	the	image	failed,	this	object	is	a	null	image.

The	QImageIO	documentation	lists	the	supported	image	formats	and	explains
how	to	add	extra	formats.

See	also	load(),	isNull()	and	QImageIO.

QImage::QImage	(const	char	*	const	xpm[])

Constructs	an	image	from	xpm,	which	must	be	a	valid	XPM	image.

Errors	are	silently	ignored.

Note	that	it's	possible	to	squeeze	the	XPM	variable	a	little	bit	by	using	an
unusual	declaration:

								static	const	char	*	const	start_xpm[]={

												"16	15	8	1",

												"a	c	#cec6bd",

							

				

The	extra	const	makes	the	entire	definition	read-only,	which	is	slightly	more
efficient	(e.g.	when	the	code	is	in	a	shared	library)	and	ROMable	when	the
application	is	to	be	stored	in	ROM.

QImage::QImage	(const	QByteArray	&	array)

Constructs	an	image	from	the	binary	data	array.	It	tries	to	guess	the	file	format.

If	the	loading	of	the	image	failed,	this	object	is	a	null	image.

See	also	loadFromData(),	isNull()	and	imageFormat().

QImage::QImage	(uchar	*	yourdata,	int	w,	int	h,	int	depth,
QRgb	*	colortable,	int	numColors,	Endian	bitOrder)

Constructs	an	image	w	pixels	wide,	h	pixels	high	with	a	color	depth	of	depth,

that	uses	an	existing	memory	buffer,	yourdata.	The	buffer	must	remain	valid
throughout	the	life	of	the	QImage.	The	image	does	not	delete	the	buffer	at
destruction.

If	colortable	is	0,	a	color	table	sufficient	for	numColors	will	be	allocated	(and
destructed	later).

Note	that	yourdata	must	be	32-bit	aligned.

The	endianness	is	given	in	bitOrder.

QImage::QImage	(uchar	*	yourdata,	int	w,	int	h,	int	depth,
int	bpl,	QRgb	*	colortable,	int	numColors,	Endian	bitOrder)

Constructs	an	image	that	uses	an	existing	memory	buffer.	The	buffer	must
remain	valid	for	the	life	of	the	QImage.	The	image	does	not	delete	the	buffer	at
destruction.	The	buffer	is	passed	as	yourdata.	The	image's	width	is	w	and	its
height	is	h.	The	color	depth	is	depth.	bpl	specifies	the	number	of	bytes	per	line.

If	colortable	is	0,	a	color	table	sufficient	for	numColors	will	be	allocated	(and
destructed	later).

The	endian-ness	is	specified	by	bitOrder.

QImage::QImage	(const	QImage	&	image)

Constructs	a	shallow	copy	of	image.

QImage::~QImage	()

Destroys	the	image	and	cleans	up.

bool	QImage::allGray	()	const

Returns	TRUE	if	all	the	colors	in	the	image	are	shades	of	gray	(i.e.	their	red,
green	and	blue	components	are	equal);	otherwise	returns	FALSE.

This	function	is	slow	for	large	16-bit	and	32-bit	images.

See	also	isGrayscale().

Endian	QImage::bitOrder	()	const

Returns	the	bit	order	for	the	image.

If	it	is	a	1-bpp	image,	this	function	returns	either	QImage::BigEndian	or
QImage::LittleEndian.

If	it	is	not	a	1-bpp	image,	this	function	returns	QImage::IgnoreEndian.

See	also	depth().

uchar	*	QImage::bits	()	const

Returns	a	pointer	to	the	first	pixel	data.	This	is	equivalent	to	scanLine(0).

See	also	numBytes(),	scanLine()	and	jumpTable().

Example:	opengl/texture/gltexobj.cpp.

int	QImage::bytesPerLine	()	const

Returns	the	number	of	bytes	per	image	scanline.	This	is	equivalent	to
numBytes()/height().

See	also	numBytes()	and	scanLine().

QRgb	QImage::color	(int	i)	const

Returns	the	color	in	the	color	table	at	index	i.	The	first	color	is	at	index	0.

A	color	value	is	an	RGB	triplet.	Use	the	qRed(),	qGreen()	and	qBlue()	functions
(defined	in	qcolor.h)	to	get	the	color	value	components.

See	also	setColor(),	numColors()	and	QColor.

Example:	themes/wood.cpp.

QRgb	*	QImage::colorTable	()	const

Returns	a	pointer	to	the	color	table.

See	also	numColors().

QImage	QImage::convertBitOrder	(Endian	bitOrder)	const

Converts	the	bit	order	of	the	image	to	bitOrder	and	returns	the	converted	image.
The	original	image	is	not	changed.

Returns	*this	if	the	bitOrder	is	equal	to	the	image	bit	order,	or	a	null	image	if
this	image	cannot	be	converted.

See	also	bitOrder(),	systemBitOrder()	and	isNull().

QImage	QImage::convertDepth	(int	depth,	int	conversion_flags)
const

Converts	the	depth	(bpp)	of	the	image	to	depth	and	returns	the	converted	image.
The	original	image	is	not	changed.

The	depth	argument	must	be	1,	8,	16	or	32.

Returns	*this	if	depth	is	equal	to	the	image	depth,	or	a	null	image	if	this	image
cannot	be	converted.

If	the	image	needs	to	be	modified	to	fit	in	a	lower-resolution	result	(e.g.
converting	from	32-bit	to	8-bit),	use	the	conversion_flags	to	specify	how	you'd
prefer	this	to	happen.

See	also	Qt::ImageConversionFlags,	depth()	and	isNull().

QImage	QImage::convertDepth	(int	depth)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

QImage	QImage::convertDepthWithPalette	(int	d,

QRgb	*	palette,	int	palette_count,	int	conversion_flags	=	0)
const

Returns	an	image	with	depth	d,	using	the	palette_count	colors	pointed	to	by
palette.	If	d	is	1	or	8,	the	returned	image	will	have	its	color	table	ordered	the
same	as	palette.

If	the	image	needs	to	be	modified	to	fit	in	a	lower-resolution	result	(e.g.
converting	from	32-bit	to	8-bit),	use	the	conversion_flags	to	specify	how	you'd
prefer	this	to	happen.

Note:	currently	no	closest-color	search	is	made.	If	colors	are	found	that	are	not
in	the	palette,	the	palette	may	not	be	used	at	all.	This	result	should	not	be
considered	valid	because	it	may	change	in	future	implementations.

Currently	inefficient	for	non-32-bit	images.

See	also	Qt::ImageConversionFlags.

QImage	QImage::copy	()	const

Returns	a	deep	copy	of	the	image.

See	also	detach().

QImage	QImage::copy	(int	x,	int	y,	int	w,	int	h,
int	conversion_flags	=	0)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	a	deep	copy	of	a	sub-area	of	the	image.

The	returned	image	is	always	w	by	h	pixels	in	size,	and	is	copied	from	position
x,	y	in	this	image.	In	areas	beyond	this	image	pixels	are	filled	with	pixel	0.

If	the	image	needs	to	be	modified	to	fit	in	a	lower-resolution	result	(e.g.
converting	from	32-bit	to	8-bit),	use	the	conversion_flags	to	specify	how	you'd
prefer	this	to	happen.

See	also	bitBlt()	and	Qt::ImageConversionFlags.

QImage	QImage::copy	(const	QRect	&	r)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	a	deep	copy	of	a	sub-area	of	the	image.

The	returned	image	always	has	the	size	of	the	rectangle	r.	In	areas	beyond	this
image	pixels	are	filled	with	pixel	0.

bool	QImage::create	(int	width,	int	height,	int	depth,
int	numColors	=	0,	Endian	bitOrder	=	IgnoreEndian)

Sets	the	image	width,	height,	depth,	its	number	of	colors	(in	numColors),	and	bit
order.	Returns	TRUE	if	successful,	or	FALSE	if	the	parameters	are	incorrect	or	if
memory	cannot	be	allocated.

The	width	and	height	is	limited	to	32767.	depth	must	be	1,	8,	16	or	32.	If	depth	is
1,	bitOrder	must	be	set	to	either	QImage::LittleEndian	or	QImage::BigEndian.
For	other	depths	bitOrder	must	be	QImage::IgnoreEndian.

This	function	allocates	a	color	table	and	a	buffer	for	the	image	data.	The	image
data	is	not	initialized.

The	image	buffer	is	allocated	as	a	single	block	that	consists	of	a	table	of	scanline
pointers	(jumpTable())	and	the	image	data	(bits()).

See	also	fill(),	width(),	height(),	depth(),	numColors(),	bitOrder(),	jumpTable(),
scanLine(),	bits(),	bytesPerLine()	and	numBytes().

bool	QImage::create	(const	QSize	&,	int	depth,	int	numColors	=
0,	Endian	bitOrder	=	IgnoreEndian)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

QImage	QImage::createAlphaMask	(int	conversion_flags	=	0)

const

Builds	and	returns	a	1-bpp	mask	from	the	alpha	buffer	in	this	image.	Returns	a
null	image	if	alpha	buffer	mode	is	disabled.

See	QPixmap::convertFromImage()	for	a	description	of	the	conversion_flags
argument.

The	returned	image	has	little-endian	bit	order,	which	you	can	convert	to	big-
endianness	using	convertBitOrder().

See	also	createHeuristicMask(),	hasAlphaBuffer()	and	setAlphaBuffer().

QImage	QImage::createHeuristicMask	(bool	clipTight	=	TRUE)
const

Creates	and	returns	a	1-bpp	heuristic	mask	for	this	image.	It	works	by	selecting	a
color	from	one	of	the	corners,	then	chipping	away	pixels	of	that	color	starting	at
all	the	edges.

The	four	corners	vote	for	which	color	is	to	be	masked	away.	In	case	of	a	draw
(this	generally	means	that	this	function	is	not	applicable	to	the	image),	the	result
is	arbitrary.

The	returned	image	has	little-endian	bit	order,	which	you	can	convert	to	big-
endianness	using	convertBitOrder().

If	clipTight	is	TRUE	the	mask	is	just	large	enough	to	cover	the	pixels;	otherwise,
the	mask	is	larger	than	the	data	pixels.

This	function	disregards	the	alpha	buffer.

See	also	createAlphaMask().

int	QImage::depth	()	const

Returns	the	depth	of	the	image.

The	image	depth	is	the	number	of	bits	used	to	encode	a	single	pixel,	also	called

bits	per	pixel	(bpp)	or	bit	planes	of	an	image.

The	supported	depths	are	1,	8,	16	and	32.

See	also	convertDepth().

void	QImage::detach	()

Detaches	from	shared	image	data	and	makes	sure	that	this	image	is	the	only	one
referring	to	the	data.

If	multiple	images	share	common	data,	this	image	makes	a	copy	of	the	data	and
detaches	itself	from	the	sharing	mechanism.	Nothing	is	done	if	there	is	just	a
single	reference.

See	also	copy().

Example:	themes/wood.cpp.

int	QImage::dotsPerMeterX	()	const

Returns	the	number	of	pixels	that	fit	horizontally	in	a	physical	meter.	This	and
dotsPerMeterY()	define	the	intended	scale	and	aspect	ratio	of	the	image.

See	also	setDotsPerMeterX().

int	QImage::dotsPerMeterY	()	const

Returns	the	number	of	pixels	that	fit	vertically	in	a	physical	meter.	This	and
dotsPerMeterX()	define	the	intended	scale	and	aspect	ratio	of	the	image.

See	also	setDotsPerMeterY().

void	QImage::fill	(uint	pixel)

Fills	the	entire	image	with	the	pixel	value	pixel.

If	the	depth	of	this	image	is	1,	only	the	lowest	bit	is	used.	If	you	say	fill(0),
fill(2),	etc.,	the	image	is	filled	with	0s.	If	you	say	fill(1),	fill(3),	etc.,	the	image	is

filled	with	1s.	If	the	depth	is	8,	the	lowest	8	bits	are	used.

If	the	depth	is	32	and	the	image	has	no	alpha	buffer,	the	pixel	value	is	written	to
each	pixel	in	the	image.	If	the	image	has	an	alpha	buffer,	only	the	24	RGB	bits
are	set	and	the	upper	8	bits	(alpha	value)	are	left	unchanged.

See	also	invertPixels(),	depth(),	hasAlphaBuffer()	and	create().

bool	QImage::hasAlphaBuffer	()	const

Returns	TRUE	if	alpha	buffer	mode	is	enabled;	otherwise	returns	FALSE.

See	also	setAlphaBuffer().

int	QImage::height	()	const

Returns	the	height	of	the	image.

See	also	width(),	size()	and	rect().

Examples:	canvas/canvas.cpp	and	opengl/texture/gltexobj.cpp.

const	char	*	QImage::imageFormat	(const	QString	&	fileName)
[static]

Returns	a	string	that	specifies	the	image	format	of	the	file	fileName,	or	0	if	the
file	cannot	be	read	or	if	the	format	is	not	recognized.

The	QImageIO	documentation	lists	the	guaranteed	supported	image	formats,	or
use	QImage::inputFormats()	and	QImage::outputFormats()	to	get	lists	that
include	the	installed	formats.

See	also	load()	and	save().

QStringList	QImage::inputFormatList	()	[static]

Returns	a	list	of	image	formats	that	are	supported	for	image	input.

Note	that	if	you	want	to	iterate	over	the	list,	you	should	iterate	over	a	copy,	e.g.

				QStringList	list	=	myImage.inputFormatList();

				QStringList::Iterator	it	=	list.begin();

				while(it	!=	list.end())	{

								myProcessing(*it);

								++it;

				}

				

See	also	outputFormatList(),	inputFormats()	and	QImageIO.

Example:	showimg/showimg.cpp.

QStrList	QImage::inputFormats	()	[static]

Returns	a	list	of	image	formats	that	are	supported	for	image	input.

See	also	outputFormats(),	inputFormatList()	and	QImageIO.

void	QImage::invertPixels	(bool	invertAlpha	=	TRUE)

Inverts	all	pixel	values	in	the	image.

If	the	depth	is	32:	if	invertAlpha	is	TRUE,	the	alpha	bits	are	also	inverted,
otherwise	they	are	left	unchanged.

If	the	depth	is	not	32,	the	argument	invertAlpha	has	no	meaning.

Note	that	inverting	an	8-bit	image	means	to	replace	all	pixels	using	color	index	i
with	a	pixel	using	color	index	255	minus	i.	Similarly	for	a	1-bit	image.	The	color
table	is	not	changed.

See	also	fill(),	depth()	and	hasAlphaBuffer().

bool	QImage::isGrayscale	()	const

For	16-bit	and	32-bit	images,	this	function	is	equivalent	to	allGray().

For	8-bpp	images,	this	function	returns	TRUE	if	color(i)	is	QRgb(i,i,i)	for	all
indices	of	the	color	table;	otherwise	returns	FALSE.

See	also	allGray()	and	depth().

bool	QImage::isNull	()	const

Returns	TRUE	if	it	is	a	null	image;	otherwise	returns	FALSE.

A	null	image	has	all	parameters	set	to	zero	and	no	allocated	data.

Examples:	qtimage/qtimage.cpp	and	showimg/showimg.cpp.

uchar	**	QImage::jumpTable	()	const

Returns	a	pointer	to	the	scanline	pointer	table.

This	is	the	beginning	of	the	data	block	for	the	image.

See	also	bits()	and	scanLine().

bool	QImage::load	(const	QString	&	fileName,
const	char	*	format	=	0)

Loads	an	image	from	the	file	fileName.	Returns	TRUE	if	the	image	was
successfully	loaded;	otherwise	returns	FALSE.

If	format	is	specified,	the	loader	attempts	to	read	the	image	using	the	specified
format.	If	format	is	not	specified	(which	is	the	default),	the	loader	reads	a	few
bytes	from	the	header	to	guess	the	file	format.

The	QImageIO	documentation	lists	the	supported	image	formats	and	explains
how	to	add	extra	formats.

See	also	loadFromData(),	save(),	imageFormat(),	QPixmap::load()	and
QImageIO.

bool	QImage::loadFromData	(const	uchar	*	buf,	uint	len,
const	char	*	format	=	0)

Loads	an	image	from	the	first	len	bytes	of	binary	data	in	buf.	Returns	TRUE	if
the	image	was	successfully	loaded;	otherwise	returns	FALSE.

If	format	is	specified,	the	loader	attempts	to	read	the	image	using	the	specified

format.	If	format	is	not	specified	(which	is	the	default),	the	loader	reads	a	few
bytes	from	the	header	to	guess	the	file	format.

The	QImageIO	documentation	lists	the	supported	image	formats	and	explains
how	to	add	extra	formats.

See	also	load(),	save(),	imageFormat(),	QPixmap::loadFromData()	and
QImageIO.

bool	QImage::loadFromData	(QByteArray	buf,
const	char	*	format	=	0)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Loads	an	image	from	the	QByteArray	buf.

QImage	QImage::mirror	()	const

Returns	a	QImage	which	is	a	vertically	mirrored	copy	of	this	image.	The	original
QImage	is	not	changed.

QImage	QImage::mirror	(bool	horizontal,	bool	vertical)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	a	mirror	of	the	image,	mirrored	in	the	horizontal	and/or	the	vertical
direction	depending	on	whether	horizontal	and	vertical	are	set	to	TRUE	or
FALSE.	The	original	image	is	not	changed.

See	also	smoothScale().

int	QImage::numBytes	()	const

Returns	the	number	of	bytes	occupied	by	the	image	data.

See	also	bytesPerLine()	and	bits().

int	QImage::numColors	()	const

Returns	the	size	of	the	color	table	for	the	image.

Notice	that	numColors()	returns	0	for	16-bpp	and	32-bpp	images	because	these
images	do	not	use	color	tables,	but	instead	encode	pixel	values	as	RGB	triplets.

See	also	setNumColors()	and	colorTable().

Example:	themes/wood.cpp.

QPoint	QImage::offset	()	const

Returns	the	number	of	pixels	by	which	the	image	is	intended	to	be	offset	by
when	positioning	relative	to	other	images.

bool	QImage::operator!=	(const	QImage	&	i)	const

Returns	TRUE	if	this	image	and	image	i	have	different	contents;	otherwise
returns	FALSE.	The	comparison	can	be	slow,	unless	there	is	some	obvious
difference,	such	as	different	widths,	in	which	case	the	function	will	return
quickly.

See	also	operator=().

QImage	&	QImage::operator=	(const	QImage	&	image)

Assigns	a	shallow	copy	of	image	to	this	image	and	returns	a	reference	to	this
image.

See	also	copy().

QImage	&	QImage::operator=	(const	QPixmap	&	pixmap)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Sets	the	image	bits	to	the	pixmap	contents	and	returns	a	reference	to	the	image.

If	the	image	shares	data	with	other	images,	it	will	first	dereference	the	shared
data.

Makes	a	call	to	QPixmap::convertToImage().

bool	QImage::operator==	(const	QImage	&	i)	const

Returns	TRUE	if	this	image	and	image	i	have	the	same	contents;	otherwise
returns	FALSE.	The	comparison	can	be	slow,	unless	there	is	some	obvious
difference,	such	as	different	widths,	in	which	case	the	function	will	return
quickly.

See	also	operator=().

QStringList	QImage::outputFormatList	()	[static]

Returns	a	list	of	image	formats	that	are	supported	for	image	output.

Note	that	if	you	want	to	iterate	over	the	list,	you	should	iterate	over	a	copy,	e.g.

				QStringList	list	=	myImage.outputFormatList();

				QStringList::Iterator	it	=	list.begin();

				while(it	!=	list.end())	{

								myProcessing(*it);

								++it;

				}

				

See	also	inputFormatList(),	outputFormats()	and	QImageIO.

QStrList	QImage::outputFormats	()	[static]

Returns	a	list	of	image	formats	that	are	supported	for	image	output.

See	also	inputFormats(),	outputFormatList()	and	QImageIO.

Example:	showimg/showimg.cpp.

QRgb	QImage::pixel	(int	x,	int	y)	const

Returns	the	color	of	the	pixel	at	the	coordinates	(x,	y).

If	(x,	y)	is	not	on	the	image,	the	results	are	undefined.

See	also	setPixel(),	qRed(),	qGreen(),	qBlue()	and	valid().

Examples:	canvas/canvas.cpp	and	qmag/qmag.cpp.

int	QImage::pixelIndex	(int	x,	int	y)	const

Returns	the	pixel	index	at	the	given	coordinates.

If	(x,	y)	is	not	valid,	or	if	the	image	is	not	a	paletted	image	(depth()	>	8),	the
results	are	undefined.

See	also	valid()	and	depth().

QRect	QImage::rect	()	const

Returns	the	enclosing	rectangle	(0,	0,	width(),	height())	of	the	image.

See	also	width(),	height()	and	size().

void	QImage::reset	()

Resets	all	image	parameters	and	deallocates	the	image	data.

Example:	qtimage/qtimage.cpp.

bool	QImage::save	(const	QString	&	fileName,
const	char	*	format,	int	quality	=	-1)	const

Saves	the	image	to	the	file	fileName,	using	the	image	file	format	format	and	a
quality	factor	of	quality.	quality	must	be	in	the	range	0..100	or	-1.	Specify	0	to
obtain	small	compressed	files,	100	for	large	uncompressed	files,	and	-1	(the
default)	to	use	the	default	settings.

Returns	TRUE	if	the	image	was	successfully	saved;	otherwise	returns	FALSE.

See	also	load(),	loadFromData(),	imageFormat(),	QPixmap::save()	and
QImageIO.

QImage	QImage::scale	(int	w,	int	h,	ScaleMode	mode	=	ScaleFree
)	const

Returns	a	scaled	copy	of	the	image.	The	returned	image	has	a	size	of	width	w	by
height	h	pixels	if	mode	is	ScaleFree.	The	modes	ScaleMin	and	ScaleMax	may	be
used	to	preserve	the	ratio	of	the	image:	if	mode	is	ScaleMin,	the	returned	image
is	guaranteed	to	fit	into	the	rectangle	specified	by	w	and	h	(it	is	as	large	as
possible	within	the	constraints);	if	mode	is	ScaleMax,	the	returned	image	fits	at
least	into	the	specified	rectangle	(it	is	a	small	as	possible	within	the	constraints).

If	either	the	width	w	or	the	height	h	is	0	or	negative,	this	function	returns	a	null
image.

This	function	uses	a	rather	simple	algorithm;	if	you	need	better	quality,	use
smoothScale()	instead.

See	also	scaleWidth(),	scaleHeight(),	smoothScale()	and	xForm().

QImage	QImage::scale	(const	QSize	&	s,	ScaleMode	mode	=
ScaleFree)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

The	requested	size	of	the	image	is	s.

QImage	QImage::scaleHeight	(int	h)	const

Returns	a	scaled	copy	of	the	image.	The	returned	image	has	a	height	of	h	pixels.
This	function	automatically	calculates	the	width	of	the	image	so	that	the	ratio	of
the	image	is	preserved.

If	h	is	0	or	negative	a	null	image	is	returned.

See	also	scale(),	scaleWidth(),	smoothScale()	and	xForm().

Example:	table/small-table-demo/main.cpp.

QImage	QImage::scaleWidth	(int	w)	const

Returns	a	scaled	copy	of	the	image.	The	returned	image	has	a	width	of	w	pixels.
This	function	automatically	calculates	the	height	of	the	image	so	that	the	ratio	of
the	image	is	preserved.

If	w	is	0	or	negative	a	null	image	is	returned.

See	also	scale(),	scaleHeight(),	smoothScale()	and	xForm().

uchar	*	QImage::scanLine	(int	i)	const

Returns	a	pointer	to	the	pixel	data	at	the	scanline	with	index	i.	The	first	scanline
is	at	index	0.

The	scanline	data	is	aligned	on	a	32-bit	boundary.

Warning:	If	you	are	accessing	32-bpp	image	data,	cast	the	returned	pointer	to
QRgb*	(QRgb	has	a	32-bit	size)	and	use	it	to	read/write	the	pixel	value.	You
cannot	use	the	uchar*	pointer	directly,	because	the	pixel	format	depends	on	the
byte	order	on	the	underlying	platform.	Hint:	use	qRed(),	qGreen()	and	qBlue(),
etc.	(qcolor.h)	to	access	the	pixels.

Warning:	If	you	are	accessing	16-bpp	image	data,	you	must	handle	endianness
yourself.

See	also	bytesPerLine(),	bits()	and	jumpTable().

Example:	desktop/desktop.cpp.

void	QImage::setAlphaBuffer	(bool	enable)

Enables	alpha	buffer	mode	if	enable	is	TRUE,	otherwise	disables	it.	The	default
setting	is	disabled.

An	8-bpp	image	has	8-bit	pixels.	A	pixel	is	an	index	into	the	color	table,	which
contains	32-bit	color	values.	In	a	32-bpp	image,	the	32-bit	pixels	are	the	color
values.

This	32-bit	value	is	encoded	as	follows:	The	lower	24	bits	are	used	for	the	red,
green,	and	blue	components.	The	upper	8	bits	contain	the	alpha	component.

The	alpha	component	specifies	the	transparency	of	a	pixel.	0	means	completely
transparent	and	255	means	opaque.	The	alpha	component	is	ignored	if	you	do
not	enable	alpha	buffer	mode.

The	alpha	buffer	is	used	to	set	a	mask	when	a	QImage	is	translated	to	a
QPixmap.

See	also	hasAlphaBuffer()	and	createAlphaMask().

void	QImage::setColor	(int	i,	QRgb	c)

Sets	a	color	in	the	color	table	at	index	i	to	c.

A	color	value	is	an	RGB	triplet.	Use	the	qRgb()	function	(defined	in	qcolor.h)	to
make	RGB	triplets.

See	also	color(),	setNumColors()	and	numColors().

Examples:	desktop/desktop.cpp	and	themes/wood.cpp.

void	QImage::setDotsPerMeterX	(int	x)

Sets	the	value	returned	by	dotsPerMeterX()	to	x.

void	QImage::setDotsPerMeterY	(int	y)

Sets	the	value	returned	by	dotsPerMeterY()	to	y.

void	QImage::setNumColors	(int	numColors)

Resizes	the	color	table	to	numColors	colors.

If	the	color	table	is	expanded	all	the	extra	colors	will	be	set	to	black	(RGB
0,0,0).

See	also	numColors(),	color(),	setColor()	and	colorTable().

void	QImage::setOffset	(const	QPoint	&	p)

Sets	the	value	returned	by	offset()	to	p.

void	QImage::setPixel	(int	x,	int	y,	uint	index_or_rgb)

Sets	the	pixel	index	or	color	at	the	coordinates	(x,	y)	to	index_or_rgb.

If	(x,	y)	is	not	valid,	the	result	is	undefined.

If	the	image	is	a	paletted	image	(depth()	<=	8)	and	index_or_rgb	>=
numColors(),	the	result	is	undefined.

See	also	pixelIndex(),	pixel(),	qRgb(),	qRgba()	and	valid().

void	QImage::setText	(const	char	*	key,	const	char	*	lang,
const	QString	&	s)

Records	string	s	for	the	keyword	key.	The	key	should	be	a	portable	keyword
recognizable	by	other	software	-	some	suggested	values	can	be	found	in	the	PNG
specification.	s	can	be	any	text.	lang	should	specify	the	language	code	(see	RFC
1766)	or	0.

QSize	QImage::size	()	const

Returns	the	size	of	the	image,	i.e.	its	width	and	height.

See	also	width(),	height()	and	rect().

QImage	QImage::smoothScale	(int	w,	int	h,	ScaleMode	mode	=
ScaleFree)	const

Returns	a	smoothly	scaled	copy	of	the	image.	The	returned	image	has	a	size	of
width	w	by	height	h	pixels	if	mode	is	ScaleFree.	The	modes	ScaleMin	and
ScaleMax	may	be	used	to	preserve	the	ratio	of	the	image:	if	mode	is	ScaleMin,
the	returned	image	is	guaranteed	to	fit	into	the	rectangle	specified	by	w	and	h	(it
is	as	large	as	possible	within	the	constraints);	if	mode	is	ScaleMax,	the	returned
image	fits	at	least	into	the	specified	rectangle	(it	is	a	small	as	possible	within	the
constraints).

http://www.libpng.org/pub/png/spec/PNG-Chunks.html#C.Anc-text
ftp://ftp.isi.edu/in-notes/1766

For	32-bpp	images	and	1-bpp/8-bpp	color	images	the	result	will	be	32-bpp,
whereas	all-gray	images	(including	black-and-white	1-bpp)	will	produce	8-bit
grayscale	images	with	the	palette	spanning	256	grays	from	black	to	white.

This	function	uses	code	based	on	pnmscale.c	by	Jef	Poskanzer.

pnmscale.c	-	read	a	portable	anymap	and	scale	it

Copyright	(C)	1989,	1991	by	Jef	Poskanzer.

Permission	to	use,	copy,	modify,	and	distribute	this	software	and	its
documentation	for	any	purpose	and	without	fee	is	hereby	granted,	provided	that
the	above	copyright	notice	appear	in	all	copies	and	that	both	that	copyright
notice	and	this	permission	notice	appear	in	supporting	documentation.	This
software	is	provided	"as	is"	without	express	or	implied	warranty.

See	also	scale()	and	mirror().

QImage	QImage::smoothScale	(const	QSize	&	s,
ScaleMode	mode	=	ScaleFree)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

The	requested	size	of	the	image	is	s.

QImage	QImage::swapRGB	()	const

Returns	a	QImage	in	which	the	values	of	the	red	and	blue	components	of	all
pixels	have	been	swapped,	effectively	converting	an	RGB	image	to	a	BGR
image.	The	original	QImage	is	not	changed.

Endian	QImage::systemBitOrder	()	[static]

Determines	the	bit	order	of	the	display	hardware.	Returns	QImage::LittleEndian
(LSB	first)	or	QImage::BigEndian	(MSB	first).

See	also	systemByteOrder().

Endian	QImage::systemByteOrder	()	[static]

Determines	the	host	computer	byte	order.	Returns	QImage::LittleEndian	(LSB
first)	or	QImage::BigEndian	(MSB	first).

See	also	systemBitOrder().

QString	QImage::text	(const	char	*	key,	const	char	*	lang	=	0)
const

Returns	the	string	recorded	for	the	keyword	key	in	language	lang,	or	in	a	default
language	if	lang	is	0.

QString	QImage::text	(const	QImageTextKeyLang	&	kl)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	the	string	recorded	for	the	keyword	and	language	kl.

QStringList	QImage::textKeys	()	const

Returns	the	keywords	for	which	some	texts	are	recorded.

Note	that	if	you	want	to	iterate	over	the	list,	you	should	iterate	over	a	copy,	e.g.

				QStringList	list	=	myImage.textKeys();

				QStringList::Iterator	it	=	list.begin();

				while(it	!=	list.end())	{

								myProcessing(*it);

								++it;

				}

				

See	also	textList(),	text(),	setText()	and	textLanguages().

QStringList	QImage::textLanguages	()	const

Returns	the	language	identifiers	for	which	some	texts	are	recorded.

Note	that	if	you	want	to	iterate	over	the	list,	you	should	iterate	over	a	copy,	e.g.

				QStringList	list	=	myImage.textLanguages();

				QStringList::Iterator	it	=	list.begin();

				while(it	!=	list.end())	{

								myProcessing(*it);

								++it;

				}

				

See	also	textList(),	text(),	setText()	and	textKeys().

QValueList<QImageTextKeyLang>	QImage::textList	()	const

Returns	a	list	of	QImageTextKeyLang	objects	that	enumerate	all	the	texts
key/language	pairs	set	by	setText()	for	this	image.

Note	that	if	you	want	to	iterate	over	the	list,	you	should	iterate	over	a	copy,	e.g.

				QValueList<QImageTextKeyLang>	list	=	myImage.textList();

				QValueList<QImageTextKeyLang>::Iterator	it	=	list.begin();

				while(it	!=	list.end())	{

								myProcessing(*it);

								++it;

				}

				

bool	QImage::valid	(int	x,	int	y)	const

Returns	TRUE	if	(x,	y)	is	a	valid	coordinate	in	the	image;	otherwise	returns
FALSE.

See	also	width(),	height()	and	pixelIndex().

Examples:	canvas/canvas.cpp	and	qmag/qmag.cpp.

int	QImage::width	()	const

Returns	the	width	of	the	image.

See	also	height(),	size()	and	rect().

Examples:	canvas/canvas.cpp	and	opengl/texture/gltexobj.cpp.

QImage	QImage::xForm	(const	QWMatrix	&	matrix)	const

Returns	a	copy	of	the	image	that	is	transformed	using	the	transformation	matrix,
matrix.

The	transformation	matrix	is	internally	adjusted	to	compensate	for	unwanted
translation,	i.e.	xForm()	returns	the	smallest	image	that	contains	all	the
transformed	points	of	the	original	image.

See	also	scale(),	QPixmap::xForm(),	QPixmap::trueMatrix()	and	QWMatrix.

Related	Functions

QDataStream	&	operator<<	(QDataStream	&	s,
const	QImage	&	image)

Writes	the	image	image	to	the	stream	s	as	a	PNG	image.

See	also	QImage::save()	and	Format	of	the	QDataStream	operators.

QDataStream	&	operator>>	(QDataStream	&	s,
QImage	&	image)

Reads	an	image	from	the	stream	s	and	stores	it	in	image.

See	also	QImage::load()	and	Format	of	the	QDataStream	operators.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QPointArray	Class	Reference
The	QPointArray	class	provides	an	array	of	points.	More...

#include	<qpointarray.h>

Inherits	QMemArray<QPoint>.

List	of	all	member	functions.

Public	Members

QPointArray	()
~QPointArray	()
QPointArray	(int	size)
QPointArray	(const	QPointArray	&	a)
QPointArray	(const	QRect	&	r,	bool	closed	=	FALSE)
QPointArray	&	operator=	(const	QPointArray	&	a)
QPointArray	copy	()	const
void	translate	(int	dx,	int	dy)
QRect	boundingRect	()	const
void	point	(uint	index,	int	*	x,	int	*	y)	const
QPoint	point	(uint	index)	const
void	setPoint	(uint	index,	int	x,	int	y)
void	setPoint	(uint	i,	const	QPoint	&	p)
bool	putPoints	(int	index,	int	nPoints,	int	firstx,	int	firsty,	...)
bool	putPoints	(int	index,	int	nPoints,	const	QPointArray	&	from,
int	fromIndex	=	0)
void	makeArc	(int	x,	int	y,	int	w,	int	h,	int	a1,	int	a2)
void	makeEllipse	(int	x,	int	y,	int	w,	int	h)
void	makeArc	(int	x,	int	y,	int	w,	int	h,	int	a1,	int	a2,	const	QWMatrix	&	xf
)
QPointArray	cubicBezier	()	const

Related	Functions

QDataStream	&	operator<<	(QDataStream	&	s,	const	QPointArray	&	a)
QDataStream	&	operator>>	(QDataStream	&	s,	QPointArray	&	a)

Detailed	Description

The	QPointArray	class	provides	an	array	of	points.

A	QPointArray	is	an	array	of	QPoint	objects.	In	addition	to	the	functions
provided	by	QMemArray,	QPointArray	provides	some	point-specific	functions.

For	convenient	reading	and	writing	of	the	point	data	use	setPoints(),	putPoints(),
point(),	and	setPoint().

For	geometry	operations:	boundingRect()	and	translate().	There	is	also	a
QWMatrix::map()	function	for	more	general	transformation	of	QPointArrays.
You	can	also	create	arcs	and	ellipses	with	makeArc()	and	makeEllipse().

Among	others,	QPointArray	is	used	by	QPainter::drawLineSegments(),
QPainter::drawPolyline(),	QPainter::drawPolygon()	and
QPainter::drawCubicBezier().

Note	that	because	this	class	is	a	QMemArray,	copying	an	array	and	modifying
the	copy	modifies	the	original	as	well,	i.e.	a	shallow	copy.	If	you	need	a	deep
copy	use	copy()	or	detach(),	for	example:

								void	drawGiraffe(const	QPointArray	&	r,	QPainter	*	p)

								{

												QPointArray	tmp	=	r;

												tmp.detach();

												//	some	code	that	modifies	tmp

												p->drawPoints(tmp);

								}

				

If	you	forget	the	tmp.detach(),	the	const	array	will	be	modified.

See	also	QPainter,	QWMatrix,	QMemArray,	Graphics	Classes,	Image
Processing	Classes	and	Implicitly	and	Explicitly	Shared	Classes.

Member	Function	Documentation

QPointArray::QPointArray	()

Constructs	a	null	point	array.

See	also	isNull().

QPointArray::QPointArray	(int	size)

Constructs	a	point	array	with	room	for	size	points.	Makes	a	null	array	if	size	==
0.

See	also	resize()	and	isNull().

QPointArray::QPointArray	(const	QPointArray	&	a)

Constructs	a	shallow	copy	of	the	point	array	a.

See	also	copy().

QPointArray::QPointArray	(const	QRect	&	r,	bool	closed	=
FALSE)

Constructs	a	point	array	from	the	rectangle	r.

If	closed	is	FALSE,	then	the	point	array	just	contains	the	following	four	points	in
the	listed	order:	r.topLeft(),	r.topRight(),	r.bottomRight()	and	r.bottomLeft().

If	closed	is	TRUE,	then	a	fifth	point	is	set	to	r.topLeft().

QPointArray::~QPointArray	()

Destroys	the	point	array.

QRect	QPointArray::boundingRect	()	const

Returns	the	bounding	rectangle	of	the	points	in	the	array,	or	QRect(0,0,0,0)	if	the
array	is	empty.

QPointArray	QPointArray::copy	()	const

Creates	a	deep	copy	of	the	array.

QPointArray	QPointArray::cubicBezier	()	const

Returns	the	Bezier	points	for	the	four	control	points	in	this	array.

void	QPointArray::makeArc	(int	x,	int	y,	int	w,	int	h,	int	a1,
int	a2)

Sets	the	points	of	the	array	to	those	describing	an	arc	of	an	ellipse	with	size,
width	w	by	height	h,	and	position	(x,	y),	starting	from	angle	a1	and	spanning	by
angle	a2.	The	resulting	array	has	sufficient	resolution	for	pixel	accuracy	(see	the
overloaded	function	which	takes	an	additional	QWMatrix	parameter).

Angles	are	specified	in	16ths	of	a	degree,	i.e.	a	full	circle	equals	5760	(16*360).
Positive	values	mean	counter-clockwise,	whereas	negative	values	mean	the
clockwise	direction.	Zero	degrees	is	at	the	3	o'clock	position.

See	the	angle	diagram.

void	QPointArray::makeArc	(int	x,	int	y,	int	w,	int	h,	int	a1,
int	a2,	const	QWMatrix	&	xf)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Sets	the	points	of	the	array	to	those	describing	an	arc	of	an	ellipse	with	width	w
and	height	h	and	position	(x,	y),	starting	from	angle	a1,	and	spanning	angle	by
a2,	and	transformed	by	the	matrix	xf.	The	resulting	array	has	sufficient
resolution	for	pixel	accuracy.

Angles	are	specified	in	16ths	of	a	degree,	i.e.	a	full	circle	equals	5760	(16*360).
Positive	values	mean	counter-clockwise,	whereas	negative	values	mean	the

clockwise	direction.	Zero	degrees	is	at	the	3	o'clock	position.

See	the	angle	diagram.

void	QPointArray::makeEllipse	(int	x,	int	y,	int	w,	int	h)

Sets	the	points	of	the	array	to	those	describing	an	ellipse	with	size,	width	w	by
height	h,	and	position	(x,	y).

The	returned	array	has	sufficient	resolution	for	use	as	pixels.

QPointArray	&	QPointArray::operator=	(
const	QPointArray	&	a)

Assigns	a	shallow	copy	of	a	to	this	point	array	and	returns	a	reference	to	this
point	array.

Equivalent	to	assign(a).

See	also	copy().

void	QPointArray::point	(uint	index,	int	*	x,	int	*	y)	const

Reads	the	coordinates	of	the	point	at	position	index	within	the	array	and	writes
them	into	*x	and	*y.

QPoint	QPointArray::point	(uint	index)	const

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	the	point	at	position	index	within	the	array.

bool	QPointArray::putPoints	(int	index,	int	nPoints,	int	firstx,
int	firsty,	...)

Copies	nPoints	points	from	the	variable	argument	list	into	this	point	array	from
position	index,	and	resizes	the	point	array	if	index+nPoints	exceeds	the	size	of

the	array.

Returns	TRUE	if	successful,	or	FALSE	if	the	array	could	not	be	resized
(typically	due	to	lack	of	memory).

The	example	code	creates	an	array	with	three	points	(4,5),	(6,7)	and	(8,9),	by
expanding	the	array	from	1	to	3	points:

								QPointArray	a(1);

								a[0]	=	QPoint(4,	5);

								a.putPoints(1,	2,	6,7,	8,9);	//	index	==	1,	points	==	2

				

This	has	the	same	result,	but	here	putPoints	overwrites	rather	than	extends:

								QPointArray	a(3);

								a.putPoints(0,	3,	4,5,	0,0,	8,9);

								a.putPoints(1,	1,	6,7);

				

The	points	are	given	as	a	sequence	of	integers,	starting	with	firstx	then	firsty,	and
so	on.

See	also	resize().

bool	QPointArray::putPoints	(int	index,	int	nPoints,
const	QPointArray	&	from,	int	fromIndex	=	0)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

This	version	of	the	function	copies	nPoints	from	from	into	this	array,	starting	at
index	in	this	array	and	fromIndex	in	from.	fromIndex	is	0	by	default.

								QPointArray	a;

								a.putPoints(0,	3,	1,2,	0,0,	5,6);

								//	a	is	now	the	three-point	array	(1,2,	0,0,	5,6);

								QPointArray	b;

								b.putPoints(0,	3,	4,4,	5,5,	6,6);

								//	b	is	now	(4,4,	5,5,	6,6);

								a.putPoints(2,	3,	b);

								//	a	is	now	(1,2,	0,0,	4,4,	5,5,	6,6);

				

void	QPointArray::setPoint	(uint	index,	int	x,	int	y)

Sets	the	point	at	position	index	in	the	array	to	(x,	y).

Example:	themes/wood.cpp.

void	QPointArray::setPoint	(uint	i,	const	QPoint	&	p)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Sets	the	point	at	array	index	i	to	p.

void	QPointArray::translate	(int	dx,	int	dy)

Translates	all	points	in	the	array	by	(dx,	dy).

Related	Functions

QDataStream	&	operator<<	(QDataStream	&	s,
const	QPointArray	&	a)

Writes	the	point	array,	a	to	the	stream	s	and	returns	a	reference	to	the	stream.

See	also	Format	of	the	QDataStream	operators.

QDataStream	&	operator>>	(QDataStream	&	s,
QPointArray	&	a)

Reads	a	point	array,	a	from	the	stream	s	and	returns	a	reference	to	the	stream.

See	also	Format	of	the	QDataStream	operators.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QTab	Class	Reference
The	QTab	class	provides	the	structures	in	a	QTabBar.	More...

#include	<qtabbar.h>

Inherits	Qt.

List	of	all	member	functions.

Public	Members

QTab	()
virtual	~QTab	()
QTab	(const	QString	&	text)
QTab	(const	QIconSet	&	icon,	const	QString	&	text	=	QString::null)
void	setText	(const	QString	&	text)
QString	text	()	const
void	setIconSet	(const	QIconSet	&	icon)
QIconSet	*	iconSet	()	const
void	setRect	(const	QRect	&	rect)
QRect	rect	()	const
void	setEnabled	(bool	enable)
bool	isEnabled	()	const
void	setIdentifier	(int	i)
int	identifier	()	const

Detailed	Description

The	QTab	class	provides	the	structures	in	a	QTabBar.

This	class	is	used	for	custom	QTabBar	tab	headings.

See	also	QTabBar	and	Advanced	Widgets.

Member	Function	Documentation

QTab::QTab	()

Constructs	an	empty	tab.	All	fields	are	set	to	empty.

QTab::QTab	(const	QString	&	text)

Constructs	a	tab	with	the	text,	text.

QTab::QTab	(const	QIconSet	&	icon,	const	QString	&	text	=
QString::null)

Constructs	a	tab	with	an	icon	and	the	text,	text.

QTab::~QTab	()	[virtual]

Destroys	the	tab	and	frees	up	all	allocated	resources

QIconSet	*	QTab::iconSet	()	const

Return	the	QIconSet	of	the	QTab.

int	QTab::identifier	()	const

Return	the	identifier	for	the	QTab.

bool	QTab::isEnabled	()	const

Returns	TRUE	if	the	QTab	is	enabled,	otherwise	return	FALSE.

QRect	QTab::rect	()	const

Return	the	QRect	for	the	QTab.

void	QTab::setEnabled	(bool	enable)

If	enable	is	TRUE	enable	the	QTab,	otherwise	disable	it.

void	QTab::setIconSet	(const	QIconSet	&	icon)

Sets	the	tab	iconset	to	icon

void	QTab::setIdentifier	(int	i)

Set	the	identifier	for	the	QTab	to	i.	Each	identifier	for	a	QTabBar	must	be	unique

void	QTab::setRect	(const	QRect	&	rect)

Set	the	QTab	QRect	to	rect.

void	QTab::setText	(const	QString	&	text)

Sets	the	text	of	the	tab	to	text.

QString	QTab::text	()	const

Return	the	text	of	the	QTab	label.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QXmlSimpleReader	Class	Reference
[XML	module]

The	QXmlSimpleReader	class	provides	an	implementation	of	a	simple	XML
reader	(parser).	More...

#include	<qxml.h>

Inherits	QXmlReader.

List	of	all	member	functions.

Public	Members

QXmlSimpleReader	()
virtual	~QXmlSimpleReader	()
virtual	bool	parse	(const	QXmlInputSource	*	input,	bool	incremental)
virtual	bool	parseContinue	()

Detailed	Description

The	QXmlSimpleReader	class	provides	an	implementation	of	a	simple	XML
reader	(parser).

This	XML	reader	is	sufficient	for	simple	parsing	tasks.	The	reader:

provides	a	well-formed	parser;
does	not	parse	any	external	entities;
can	do	namespace	processing.

Documents	are	parsed	with	a	call	to	parse().

See	the	tiny	SAX2	parser	walkthrough.

See	also	XML.

Member	Function	Documentation

QXmlSimpleReader::QXmlSimpleReader	()

Constructs	a	simple	XML	reader	with	the	following	feature	settings:

http://xml.org/sax/features/namespaces	TRUE
http://xml.org/sax/features/namespace-prefixes	FALSE
http://trolltech.com/xml/features/report-whitespace-only-CharData	TRUE
http://trolltech.com/xml/features/report-start-end-entity	FALSE

More	information	about	features	can	be	found	in	the	Qt	SAX2	overview.

See	also	setFeature().

QXmlSimpleReader::~QXmlSimpleReader	()	[virtual]

Destroys	the	simple	XML	reader.

bool	QXmlSimpleReader::parse	(
const	QXmlInputSource	*	input,	bool	incremental)	[virtual]

Reads	an	XML	document	from	input	and	parses	it.	Returns	FALSE	if	the	parsing
detects	an	error;	otherwise	returns	TRUE.

If	incremental	is	TRUE,	the	parser	does	not	return	FALSE	when	it	reaches	the
end	of	the	input	without	reaching	the	end	of	the	XML	file.	Instead	it	stores	the
state	of	the	parser	so	that	parsing	can	be	continued	at	a	later	stage	when	more
data	is	available.	You	can	use	the	function	parseContinue()	to	continue	with
parsing.	This	class	stores	a	pointer	to	the	input	source	input	and	the
parseContinue()	tries	to	read	from	that	input	souce.	This	means	you	should	not
delete	the	input	source	input	until	you've	finished	your	calls	to	parseContinue().
If	you	call	this	function	with	incremental	TRUE	whilst	an	incremental	parse	is	in
progress	a	new	parsing	session	will	be	started	and	the	previous	session	lost.

If	incremental	is	FALSE,	this	function	behaves	like	the	normal	parse	function,
i.e.	it	returns	FALSE	when	the	end	of	input	is	reached	without	reaching	the	end

of	the	XML	file	and	the	parsing	can't	be	continued.

See	also	parseContinue()	and	QSocket.

Examples:	xml/tagreader-with-features/tagreader.cpp	and
xml/tagreader/tagreader.cpp.

bool	QXmlSimpleReader::parseContinue	()	[virtual]

Continues	incremental	parsing;	this	function	reads	the	input	from	the
QXmlInputSource	that	was	specified	with	the	last	parse()	command.	To	use	this
function,	you	must	have	called	parse()	with	the	incremental	argument	set	to
TRUE.

Returns	FALSE	if	a	parsing	error	occurs;	otherwise	returns	TRUE.

If	the	input	source	returns	an	empty	string	for	the	function
QXmlInputSource::data(),	then	this	means	that	the	end	of	the	XML	file	is
reached;	this	is	quite	important,	especially	if	you	want	to	use	the	reader	to	parse
more	than	one	XML	file.

The	case	that	the	end	of	the	XML	file	is	reached	without	having	finished	the
parsing	is	not	considered	as	an	error	--	you	can	continue	parsing	at	a	later	stage
by	calling	this	function	again	when	there	is	more	data	available	to	parse.

This	function	assumes	that	the	end	of	the	XML	document	is	reached	if	the
QXmlInputSource::next()	function	returns	QXmlInputSource::EndOfDocument.
If	the	parser	has	not	finished	parsing	when	it	encounters	this	symbol,	it	is	an
error	and	FALSE	is	returned.

See	also	parse()	and	QXmlInputSource::next().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QDir
QDir	 ……

#include	<qdir.h>

enum	FilterSpec	{	Dirs	=	0x001,	Files	=	0x002,	Drives	=	0x004,
NoSymLinks	=	0x008,	All	=	0x007,	TypeMask	=	0x00F,	Readable	=
0x010,	Writable	=	0x020,	Executable	=	0x040,	RWEMask	=	0x070,
Modified	=	0x080,	Hidden	=	0x100,	System	=	0x200,	AccessMask	=
0x3F0,	DefaultFilter	=	-1	}
enum	SortSpec	{	Name	=	0x00,	Time	=	0x01,	Size	=	0x02,	Unsorted	=
0x03,	SortByMask	=	0x03,	DirsFirst	=	0x04,	Reversed	=	0x08,	IgnoreCase
=	0x10,	DefaultSort	=	-1	}
QDir	()
QDir	(const	QString	&	path,	const	QString	&	nameFilter	=	QString::null,
int	sortSpec	=	Name	|	IgnoreCase,	int	filterSpec	=	All)
QDir	(const	QDir	&	d)
virtual	~QDir	()
QDir	&	operator=	(const	QDir	&	d)
QDir	&	operator=	(const	QString	&	path)
virtual	void	setPath	(const	QString	&	path)
virtual	QString	path	()	const
virtual	QString	absPath	()	const
virtual	QString	canonicalPath	()	const
virtual	QString	dirName	()	const
virtual	QString	filePath	(const	QString	&	fileName,	bool	acceptAbsPath	=
TRUE)	const
virtual	QString	absFilePath	(const	QString	&	fileName,
bool	acceptAbsPath	=	TRUE)	const
virtual	bool	cd	(const	QString	&	dirName,	bool	acceptAbsPath	=	TRUE)
virtual	bool	cdUp	()
QString	nameFilter	()	const
virtual	void	setNameFilter	(const	QString	&	nameFilter)
FilterSpec	filter	()	const
virtual	void	setFilter	(int	filterSpec)
SortSpec	sorting	()	const
virtual	void	setSorting	(int	sortSpec)
bool	matchAllDirs	()	const
virtual	void	setMatchAllDirs	(bool	enable)
uint	count	()	const

QString	operator[]	(int	index)	const
virtual	QStrList	encodedEntryList	(int	filterSpec	=	DefaultFilter,
int	sortSpec	=	DefaultSort)	const		(obsolete)
virtual	QStrList	encodedEntryList	(const	QString	&	nameFilter,
int	filterSpec	=	DefaultFilter,	int	sortSpec	=	DefaultSort)	const		(obsolete)
virtual	QStringList	entryList	(int	filterSpec	=	DefaultFilter,	int	sortSpec	=
DefaultSort)	const
virtual	QStringList	entryList	(const	QString	&	nameFilter,	int	filterSpec	=
DefaultFilter,	int	sortSpec	=	DefaultSort)	const
virtual	const	QFileInfoList	*	entryInfoList	(int	filterSpec	=	DefaultFilter,
int	sortSpec	=	DefaultSort)	const
virtual	const	QFileInfoList	*	entryInfoList	(const	QString	&	nameFilter,
int	filterSpec	=	DefaultFilter,	int	sortSpec	=	DefaultSort)	const
virtual	bool	mkdir	(const	QString	&	dirName,	bool	acceptAbsPath	=
TRUE)	const
virtual	bool	rmdir	(const	QString	&	dirName,	bool	acceptAbsPath	=
TRUE)	const
virtual	bool	isReadable	()	const
virtual	bool	exists	()	const
virtual	bool	isRoot	()	const
virtual	bool	isRelative	()	const
virtual	void	convertToAbs	()
virtual	bool	operator==	(const	QDir	&	d)	const
virtual	bool	operator!=	(const	QDir	&	d)	const
virtual	bool	remove	(const	QString	&	fileName,	bool	acceptAbsPath	=
TRUE)
virtual	bool	rename	(const	QString	&	oldName,
const	QString	&	newName,	bool	acceptAbsPaths	=	TRUE)
virtual	bool	exists	(const	QString	&	name,	bool	acceptAbsPath	=	TRUE)

s

QString	convertSeparators	(const	QString	&	pathName)
const	QFileInfoList	*	drives	()
char	separator	()
bool	setCurrent	(const	QString	&	path)
QDir	current	()
QDir	home	()
QDir	root	()
QString	currentDirPath	()
QString	homeDirPath	()
QString	rootDirPath	()
bool	match	(const	QStringList	&	filters,	const	QString	&	fileName)
bool	match	(const	QString	&	filter,	const	QString	&	fileName)
QString	cleanDirPath	(const	QString	&	filePath)
bool	isRelativePath	(const	QString	&	path)

QDir

QDir

QDir“/”Unix“/”Qt

“”QDir setPath()path()

“/tmp/quartz”“src/fatlib”
cleanDirPath()“..” canonicalPath()setPath() cd()cdUp()

QDir setCurrent()currentDirPath() current() home
currentDirPath() homeDirPath()rootDirPath()

count() entryList() QFileInfoentryInfoList()
setNameFilter() setFilter()setSorting()entryList()entryInfoList()

mkdir() rename()rmdir() remove() exists() isReadable()isRoot()

filePath() dirName()

drives()Unix“/”Windows“C:/”“D:/”

convertSeparators()

				QDir	d("example");																								//	“./example”

				if	(!d.exists())

								qWarning("Cannot	find	the	example	directory");

		

Traversing	directories	and	reading	a	file.

				QDir	d	=	QDir::root();																						//	“/”

				if	(!d.cd("tmp"))	{																							//	“/tmp”

								qWarning("Cannot	find	the	\"/tmp\"	directory");

				}	else	{

								QFile	f(d.filePath("ex1.txt"));							//	“/tmp/ex1.txt”

								if	(!f.open(IO_ReadWrite))

												qWarning("Cannot	create	the	file	%s",	f.name());

				}

		

				#include	<stdio.h>

				#include	<qdir.h>

				int	main(int	argc,	char	**argv)

				{

								QDir	d;

								d.setFilter(QDir::Files	|	QDir::Hidden	|	QDir::NoSymLinks);

								d.setSorting(QDir::Size	|	QDir::Reversed);

								const	QFileInfoList	*list	=	d.entryInfoList();

								QFileInfoListIterator	it(*list);

								QFileInfo	*fi;

								printf("					Bytes	Filename\n");

								while	((fi	=	it.current())	!=	0)	{

												printf("%10li	%s\n",	fi->size(),	fi->fileName()latin1());

												++it;

								}

								return	0;

				}

		

/

QDir::FilterSpec

QDir

QDir::Dirs	-	
QDir::Files	-	
QDir::Drives	-	Unix
QDir::NoSymLinks	-	
QDir::All	-	
QDir::TypeMask	-	DirsFilesDrivesNoSymLink
QDir::Readable	-	
QDir::Writable	-	
QDir::Executable	-	DirsFiles
QDir::RWEMask	-	ReadableWritableExecutable
QDir::Modified	-	Unix
QDir::Hidden	-	Unix.
QDir::System	-	UnixFIFO
QDir::AccessMask	-	ReadableWritableExecutableModifiedHidden
System
QDir::DefaultFilter	-	

ReadableWritableExecutableQDir

Readable|Writable Dirs|Drives/

QDir::SortSpec

QDir entryList()entryInfoList()

QDir::Name	-	
QDir::Time	-	
QDir::Size	-	
QDir::Unsorted	-	
QDir::SortByMask	-	NameTimeSize
QDir::DirsFirst	-	

QDir::Reversed	-	
QDir::IgnoreCase	-	
QDir::DefaultSort	-	

DirsFirstReversed

QDir::QDir	()

QDir

currentDirPath()

QDir::QDir	(const	QString	&	path,	const	QString	&	nameFilter
=	QString::null,	int	sortSpec	=	Name	|	IgnoreCase,
int	filterSpec	=	All)

pathnameFilterfilterSpecQDir sortSpec

nameFilter filterSpecAll sortSpecName|IgnoreCase

“/tmp”

				QDir	d("/tmp");

				for	(int	i	=	0;	i	<	d.count();	i++)

								printf("%s\n",	d[i]);

		

path“”QDir“.” nameFilter“”QDir“*”

path

exists() setPath() setNameFilter() setFilter()setSorting()

QDir::QDir	(const	QDir	&	d)

dQDir

operator=()

QDir::~QDir	()	[]

QDir

QString	QDir::absFilePath	(const	QString	&	fileName,
bool	acceptAbsPath	=	TRUE)	const	[]

fileName“.”“..” cleanDirPath()

acceptAbsPath“/” fileName acceptAbsPath fileName

filePath()

QString	QDir::absPath	()	const	[]

“/”“.”“..”

setPath() canonicalPath() exists() cleanDirPath() dirName()absFilePath()

fileiconview/qfileiconview.cpp

QString	QDir::canonicalPath	()	const	[]

“.”“..”

absPath()

path() absPath() exists() cleanDirPath() dirName() absFilePath()
QString::isNull()

bool	QDir::cd	(const	QString	&	dirName,	bool	acceptAbsPath	=
TRUE)	[]

QDir dirName

acceptAbsPath“/” acceptAbsPath dirNamedirName

cd()

cd("..") cdUp()

cdUp() isReadable() exists()path()

fileiconview/mainwindow.cpp

bool	QDir::cdUp	()	[]

QDir

cdUp()

cd() isReadable() exists()path()

QString	QDir::cleanDirPath	(const	QString	&	filePath)	[]

filePath“/”“.”“..”

“./local”“local”“local/../bin”“bin”“/local/usr/../bin”
“/local/bin”

absPath()canonicalPath()

QString	QDir::convertSeparators	(const	QString	&	pathName)
[]

pathName“/”

Windows convertSeparators("c:/winnt/system32")“c:\winnt\system32”

Unix

void	QDir::convertToAbs	()	[]

isRelative()

uint	QDir::count	()	const

Equivalent	to	entryList() count()

operator[]()entryList()

QDir	QDir::current	()	[]

path()QDir

currentDirPath()QDir::QDir()

QString	QDir::currentDirPath	()	[]

current()

helpviewer/helpwindow.cppqdir/qdir.cpp

QString	QDir::dirName	()	const	[]

“mail”“/var/spool/mail”

path() absPath() absFilePath() exists()QString::isNull()

const	QFileInfoList	*	QDir::drives	()	[]

Windows“”“” QFileInfo“/”

Qt

dirview/main.cpp

QStrList	QDir::encodedEntryList	(int	filterSpec	=	DefaultFilter,
int	sortSpec	=	DefaultSort)	const	[]

Qt	1.xQt	3.0 entryList()QFile::encodedName()8

entryList()

QStrList	QDir::encodedEntryList	(const	QString	&	nameFilter,
int	filterSpec	=	DefaultFilter,	int	sortSpec	=	DefaultSort)
const	[]

Qt	1.xQt	3.0 entryList()QFile::encodedName()8

entryList()

const	QFileInfoList	*	QDir::entryInfoList	(
const	QString	&	nameFilter,	int	filterSpec	=	DefaultFilter,
int	sortSpec	=	DefaultSort)	const	[]

QFileInfo setSorting()setFilter()setNameFilter()

nameFilterfilterSpecsortSpec

0

QFileInfoListQDirQDir

entryList() setNameFilter() setSorting()setFilter()

dirview/dirview.cppfileiconview/qfileiconview.cpp

const	QFileInfoList	*	QDir::entryInfoList	(int	filterSpec	=
DefaultFilter,	int	sortSpec	=	DefaultSort)	const	[]

QFileInfo setSorting()setFilter()setNameFilter()

filterSpecsortSpec

0

QFileInfoListQDirQDir

entryList() setNameFilter() setSorting()setFilter()

QStringList	QDir::entryList	(const	QString	&	nameFilter,
int	filterSpec	=	DefaultFilter,	int	sortSpec	=	DefaultSort)
const	[]

setSorting()setFilter()setNameFilter()

nameFilterfilterSpecsortSpec

entryInfoList() setNameFilter() setSorting()setFilter()

table/statistics/statistics.cpp

QStringList	QDir::entryList	(int	filterSpec	=	DefaultFilter,
int	sortSpec	=	DefaultSort)	const	[]

setSorting()setFilter()setNameFilter()

filterSpecsortSpec

entryInfoList() setNameFilter() setSorting()setFilter()

bool	QDir::exists	(const	QString	&	name,	bool	acceptAbsPath	=
TRUE)	[]

name

acceptAbsPath“/” acceptAbsPath name

QFileInfo::exists()QFile::exists()

bool	QDir::exists	()	const	[]

directory

QFileInfo::exists()QFile::exists()

QString	QDir::filePath	(const	QString	&	fileName,
bool	acceptAbsPath	=	TRUE)	const	[]

QDir fileName“.”“..” cleanDirPath

acceptAbsPath“/” fileName acceptAbsPath fileName

absFilePath() isRelative()canonicalPath()

FilterSpec	QDir::filter	()	const

setFilter()

QDir	QDir::home	()	[]

Windows	NT/2000 HOMEDRIVEHOMEPATH

Windows	9xWindows HOME

rootDirPath()

homeDirPath()

QString	QDir::homeDirPath	()	[]

home()

bool	QDir::isReadable	()	const	[]

	 	

QFileInfo::isReadable()

dirview/dirview.cppfileiconview/qfileiconview.cpp

bool	QDir::isRelative	()	const	[]

Unix“/”

convertToAbs()

bool	QDir::isRelativePath	(const	QString	&	path)	[]

path

isRelative()

bool	QDir::isRoot	()	const	[]

				QDir	d("/tmp/root_link");

				d	=	d.canonicalPath();

				if	(d.isRoot())

								qWarning("It	IS	a	root	link!");

		

root()rootDirPath()

bool	QDir::match	(const	QString	&	filter,
const	QString	&	fileName)	[]

fileNamefilter filter

QRegExp

QRegExp::match()

bool	QDir::match	(const	QStringList	&	filters,
const	QString	&	fileName)	[]

fileNamefilters

QRegExp

QRegExp::match()

bool	QDir::matchAllDirs	()	const

setMatchAllDirs()

setMatchAllDirs()

bool	QDir::mkdir	(const	QString	&	dirName,
bool	acceptAbsPath	=	TRUE)	const	[]

acceptAbsPath“/” dirName acceptAbsPath dirName

rmdir()

QString	QDir::nameFilter	()	const

setNameFilter()

bool	QDir::operator!=	(const	QDir	&	d)	const	[]

d

				//	“/usr/local”

				QDir	d1("/usr/local/bin");

				QDir	d2("bin");

				if	(d1	!=	d2)	qDebug("They	differ\n");	//	

				

QDir	&	QDir::operator=	(const	QDir	&	d)

QDir	 dQDir

QDir	&	QDir::operator=	(const	QString	&	path)

path

bool	QDir::operator==	(const	QDir	&	d)	const	[]

d

				//	“/usr/local”

				QDir	d1("/usr/local/bin");

				QDir	d2("bin");

				d2.convertToAbs();

				if	(d1	==	d2)	qDebug("They're	the	same\n");	//	

				

QString	QDir::operator[]	(int	index)	const

index entryList().at(index)

indexentryList()

count()entryList()

QString	QDir::path	()	const	[]

“.”“..”

setPath()

setPath() absPath() exists() cleanDirPath() dirName() absFilePath()
convertSeparators()

bool	QDir::remove	(const	QString	&	fileName,
bool	acceptAbsPath	=	TRUE)	[]

acceptAbsPath“/” acceptAbsPath fileName

bool	QDir::rename	(const	QString	&	oldName,
const	QString	&	newName,	bool	acceptAbsPaths	=	TRUE)
[]

acceptAbsPath“/” acceptAbsPath fileName

oldNamenewNameoldName rename()Windows
rename()rename()newNamerename()

fileiconview/qfileiconview.cpp

bool	QDir::rmdir	(const	QString	&	dirName,
bool	acceptAbsPath	=	TRUE)	const	[]

acceptAbsPath“/” acceptAbsPath dirName

rmdir()

mkdir()

QDir	QDir::root	()	[]

rootDirPath()drives()

QString	QDir::rootDirPath	()	[]

Unix“/”Windows“C:/”

root()drives()

char	QDir::separator	()	[]

Unix“/”MS-DOSWindows	NTOS/2“\”Mac	OS“:”

“/”Qt

bool	QDir::setCurrent	(const	QString	&	path)	[]

path

void	QDir::setFilter	(int	filterSpec)	[]

entryList()entryInfoList()filterSpecentryList()entryInfoList()
QDir::FilterSpec

filter()setNameFilter()

void	QDir::setMatchAllDirs	(bool	enable)	[]

enable entryList() nameFilter() enablenameFilter()

matchAllDirs()

void	QDir::setNameFilter	(const	QString	&	nameFilter)	[]

entryList()entryInfoList()nameFilter

nameFilter“*”“?” QRegExp“	”“;”

entryList()entryInfoList()“.cpp”“.h”dir.
dir.setNameFilter("*.cpp;*.h")

nameFilter()setFilter()

void	QDir::setPath	(const	QString	&	path)	[]

path“.”“..”

“/”Unix“/tmp/quartz”“src/fatlib”

path() absPath() exists() cleanDirPath() dirName() absFilePath() isRelative
convertToAbs()

void	QDir::setSorting	(int	sortSpec)	[]

entryList()entryInfoList()

sortSpecQDir::SortSpec

sorting()SortSpec

SortSpec	QDir::sorting	()	const

setSorting()

setSorting()SortSpec

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QImageConsumer	Class	Reference
The	QImageConsumer	class	is	an	abstraction	used	by	QImageDecoder.	More...

#include	<qasyncimageio.h>

List	of	all	member	functions.

Public	Members

virtual	void	end	()	=	0
virtual	void	changed	(const	QRect	&)	=	0
virtual	void	frameDone	()	=	0
virtual	void	frameDone	(const	QPoint	&	offset,	const	QRect	&	rect)	=	0
virtual	void	setLooping	(int	n)	=	0
virtual	void	setFramePeriod	(int	milliseconds)	=	0
virtual	void	setSize	(int,	int)	=	0

Detailed	Description

The	QImageConsumer	class	is	an	abstraction	used	by	QImageDecoder.

The	QMovie	class,	or	QLabel::setMovie(),	are	easy	to	use	and	for	most
situations	do	what	you	want	with	regards	animated	images.

A	QImageConsumer	consumes	information	about	changes	to	the	QImage
maintained	by	a	QImageDecoder.	Think	of	the	QImage	as	the	model	or	source	of
the	image	data,	with	the	QImageConsumer	as	a	view	of	that	data	and	the
QImageDecoder	being	the	controller	that	orchestrates	the	relationship	between
the	model	and	the	view.

You'd	use	the	QImageConsumer	class,	for	example,	if	you	were	implementing	a
web	browser	with	your	own	image	loaders.

See	also	QImageDecoder,	Graphics	Classes,	Image	Processing	Classes	and
Multimedia	Classes.

Member	Function	Documentation

void	QImageConsumer::changed	(const	QRect	&)	[pure
virtual]

Called	when	the	given	area	of	the	image	has	changed.

void	QImageConsumer::end	()	[pure	virtual]

Called	when	all	the	data	from	all	the	frames	has	been	decoded	and	revealed	as
changed().

void	QImageConsumer::frameDone	()	[pure	virtual]

One	of	the	two	frameDone()	functions	will	be	called	when	a	frame	of	an
animated	image	has	ended	and	been	revealed	as	changed().

When	this	function	is	called,	the	current	image	should	be	displayed.

The	decoder	will	not	make	any	further	changes	to	the	image	until	the	next	call	to
QImageFormat::decode().

void	QImageConsumer::frameDone	(const	QPoint	&	offset,
const	QRect	&	rect)	[pure	virtual]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

One	of	the	two	frameDone()	functions	will	be	called	when	a	frame	of	an
animated	image	has	ended	and	been	revealed	as	changed().

When	this	function	is	called,	the	area	rect	in	the	current	image	should	be	moved
by	offset	and	displayed.

The	decoder	will	not	make	any	further	changes	to	the	image	until	the	next	call	to
QImageFormat::decode().

void	QImageConsumer::setFramePeriod	(int	milliseconds)
[pure	virtual]

Notes	that	the	frame	about	to	be	decoded	should	not	be	displayed	until	the	given
number	of	milliseconds	after	the	time	that	this	function	is	called.	Of	course,	the
image	may	not	have	been	decoded	by	then,	in	which	case	the	frame	should	not
be	displayed	until	it	is	complete.	A	value	of	-1	(the	assumed	default)	indicates
that	the	image	should	be	displayed	even	while	it	is	only	partially	loaded.

void	QImageConsumer::setLooping	(int	n)	[pure	virtual]

Called	to	indicate	that	the	sequence	of	frames	in	the	image	should	be	repeated	n
times,	including	the	sequence	during	decoding.

0	=	Forever
1	=	Only	display	frames	the	first	time	through
2	=	Repeat	once	after	first	pass	through	images
etc.

To	make	the	QImageDecoder	do	this,	just	delete	it	and	pass	the	information	to	it
again	for	decoding	(setLooping()	will	be	called	again,	of	course,	but	that	can	be
ignored),	or	keep	copies	of	the	changed	areas	at	the	ends	of	frames.

void	QImageConsumer::setSize	(int,	int)	[pure	virtual]

This	function	is	called	as	soon	as	the	size	of	the	image	has	been	determined.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QTabBar	Class	Reference
The	QTabBar	class	provides	a	tab	bar,	e.g.	for	use	in	tabbed	dialogs.	More...

#include	<qtabbar.h>

Inherits	QWidget.

List	of	all	member	functions.

Public	Members

QTabBar	(QWidget	*	parent	=	0,	const	char	*	name	=	0)
~QTabBar	()
enum	Shape	{	RoundedAbove,	RoundedBelow,	TriangularAbove,
TriangularBelow	}
Shape	shape	()	const
virtual	void	setShape	(Shape)
virtual	int	addTab	(QTab	*	newTab)
virtual	int	insertTab	(QTab	*	newTab,	int	index	=	-1)
virtual	void	removeTab	(QTab	*	t)
virtual	void	setTabEnabled	(int	id,	bool	enabled)
bool	isTabEnabled	(int	id)	const
int	currentTab	()	const
int	keyboardFocusTab	()	const
QTab	*	tab	(int	id)	const
QTab	*	tabAt	(int	index)	const
int	indexOf	(int	id)	const
int	count	()	const
virtual	void	layoutTabs	()
virtual	QTab	*	selectTab	(const	QPoint	&	p)	const
void	removeToolTip	(int	index)
void	setToolTip	(int	index,	const	QString	&	tip)
QString	toolTip	(int	index)	const

Public	Slots

virtual	void	setCurrentTab	(int)
virtual	void	setCurrentTab	(QTab	*	tab)

Signals

void	selected	(int	id)

Properties

int	count	-	the	number	of	tabs	in	the	tab	bar		(read	only)
int	currentTab	-	the	id	of	the	currently	visible	tab	in	the	tab	bar
int	keyboardFocusTab	-	the	id	of	the	tab	that	currently	has	the	keyboard
focus		(read	only)
Shape	shape	-	the	shape	of	the	tabs	in	the	tab	bar

Protected	Members

virtual	void	paint	(QPainter	*	p,	QTab	*	t,	bool	selected)	const
virtual	void	paintLabel	(QPainter	*	p,	const	QRect	&	br,	QTab	*	t,
bool	has_focus)	const
virtual	void	paintEvent	(QPaintEvent	*	e)
QPtrList<QTab>	*	tabList	()

Detailed	Description

The	QTabBar	class	provides	a	tab	bar,	e.g.	for	use	in	tabbed	dialogs.

QTabBar	is	straightforward	to	use;	it	draws	the	tabs	using	one	of	the	predefined
shapes,	and	emits	a	signal	when	a	tab	is	selected.	It	can	be	subclassed	to	tailor
the	look	and	feel.

The	choice	of	tab	shape	is	a	matter	of	taste,	although	tab	dialogs	(preferences
and	the	like)	invariably	use	RoundedAbove,	and	nobody	uses	TriangularAbove.
Tab	controls	in	windows	other	than	dialogs	almost	always	use	either
RoundedBelow	or	TriangularBelow.	Many	spreadsheets	and	other	tab	controls	in
which	all	the	pages	are	essentially	similar	use	TriangularBelow,	whereas
RoundedBelow	is	used	mostly	when	the	pages	are	different	(e.g.	a	multi-page
tool	palette).

The	most	important	part	of	QTabBar's	API	is	the	signal	selected().	This	is
emitted	whenever	the	selected	page	changes	(even	at	startup,	when	the	selected
page	changes	from	'none').	There	is	also	a	slot,	setCurrentTab(),	which	can	be
used	to	select	a	page	programmatically.

QTabBar	creates	automatic	accelerator	keys	in	the	manner	of	QButton;	e.g.	if	a
tab's	label	is	"&Graphics",	Alt+G	becomes	an	accelerator	key	for	switching	to
that	tab.

The	following	virtual	functions	may	need	to	be	reimplemented:

paint()	paints	a	single	tab.	paintEvent()	calls	paint()	for	each	tab	so	that	any
overlap	will	look	right.
addTab()	creates	a	new	tab	and	adds	it	to	the	bar.
selectTab()	decides	which	tab,	if	any,	the	user	selects	with	the	mouse.

The	index	of	the	current	tab	is	returned	by	currentTab().	The	tab	with	a	particular
index	is	returned	by	tabAt(),	the	tab	with	a	particular	id	is	returned	by	tab().	The
index	of	a	tab	is	returned	by	indexOf().	The	current	tab	can	be	set	by	index	or	tab
pointer	using	one	of	the	setCurrentTab()	functions.

	

See	also	Advanced	Widgets.

Member	Type	Documentation

QTabBar::Shape

This	enum	type	lists	the	built-in	shapes	supported	by	QTabBar:

QTabBar::RoundedAbove	-	the	normal	rounded	look	above	the	pages
QTabBar::RoundedBelow	-	the	normal	rounded	look	below	the	pages
QTabBar::TriangularAbove	-	triangular	tabs	above	the	pages	(very
unusual;	included	for	completeness)
QTabBar::TriangularBelow	-	triangular	tabs	similar	to	those	used	in	the
spreadsheet	Excel,	for	example

Member	Function	Documentation

QTabBar::QTabBar	(QWidget	*	parent	=	0,	const	char	*	name	=
0)

Constructs	a	new,	empty	tab	bar;	the	parent	and	name	arguments	are	passed	on
to	the	QWidget	constructor.

QTabBar::~QTabBar	()

Destroys	the	tab	control,	freeing	memory	used.

int	QTabBar::addTab	(QTab	*	newTab)	[virtual]

Adds	the	tab,	newTab,	to	the	tab	control.

Sets	newTab's	id	to	a	new	id	and	places	the	tab	just	to	the	right	of	the	existing
tabs.	If	the	tab's	label	contains	an	ampersand,	the	letter	following	the	ampersand
is	used	as	an	accelerator	for	the	tab,	e.g.	if	the	label	is	"Bro&wse;"	then	Alt+W
becomes	an	accelerator	which	will	move	the	focus	to	this	tab.	Returns	the	id.

See	also	insertTab().

int	QTabBar::count	()	const

Returns	the	number	of	tabs	in	the	tab	bar.	See	the	"count"	property	for	details.

int	QTabBar::currentTab	()	const

Returns	the	id	of	the	currently	visible	tab	in	the	tab	bar.	See	the	"currentTab"
property	for	details.

int	QTabBar::indexOf	(int	id)	const

Returns	the	position	index	of	the	tab	with	id	id.

See	also	tabAt().

int	QTabBar::insertTab	(QTab	*	newTab,	int	index	=	-1)
[virtual]

Inserts	the	tab,	newTab,	into	the	tab	control.

If	index	is	not	specified,	the	tab	is	simply	added.	Otherwise	it's	inserted	at	the
specified	position.

Sets	newTab's	id	to	a	new	id.	If	the	tab's	label	contains	an	ampersand,	the	letter
following	the	ampersand	is	used	as	an	accelerator	for	the	tab,	e.g.	if	the	label	is
"Bro&wse;"	then	Alt+W	becomes	an	accelerator	which	will	move	the	focus	to
this	tab.	Returns	the	id.

See	also	addTab().

bool	QTabBar::isTabEnabled	(int	id)	const

Returns	TRUE	if	the	tab	with	id	id	is	enabled,	or	FALSE	if	it	is	disabled	or	there
is	no	such	tab.

See	also	setTabEnabled().

int	QTabBar::keyboardFocusTab	()	const

Returns	the	id	of	the	tab	that	currently	has	the	keyboard	focus.	See	the
"keyboardFocusTab"	property	for	details.

void	QTabBar::layoutTabs	()	[virtual]

Lays	out	all	existing	tabs	according	to	their	label	and	their	iconset.

void	QTabBar::paint	(QPainter	*	p,	QTab	*	t,	bool	selected)
const	[virtual	protected]

Paints	the	tab	t	using	painter	p.	If	and	only	if	selected	is	TRUE,	t	is	drawn
currently	selected.

This	virtual	function	may	be	reimplemented	to	change	the	look	of	QTabBar.	If
you	decide	to	reimplement	it,	you	may	also	need	to	reimplement	sizeHint().

void	QTabBar::paintEvent	(QPaintEvent	*	e)	[virtual
protected]

Repaints	the	tab	row.	All	the	painting	is	done	by	paint();	paintEvent()	only
decides	which	tabs	need	painting	and	in	what	order.	The	event	is	passed	in	e.

See	also	paint().

Reimplemented	from	QWidget.

void	QTabBar::paintLabel	(QPainter	*	p,	const	QRect	&	br,
QTab	*	t,	bool	has_focus)	const	[virtual	protected]

Paints	the	label	of	tab	t	centered	in	rectangle	br	using	painter	p.	A	focus
indication	is	drawn	if	has_focus	is	TRUE.

void	QTabBar::removeTab	(QTab	*	t)	[virtual]

Removes	tab	t	from	the	tab	control,	and	deletes	the	tab.

void	QTabBar::removeToolTip	(int	index)

Removes	the	tool	tip	for	the	tab	at	index	index.

QTab	*	QTabBar::selectTab	(const	QPoint	&	p)	const	[virtual]

This	virtual	function	is	called	by	the	mouse	event	handlers	to	determine	which
tab	is	pressed.	The	default	implementation	returns	a	pointer	to	the	tab	whose
bounding	rectangle	contains	p,	if	exactly	one	tab's	bounding	rectangle	contains
p.	Otherwise	it	returns	0.

See	also	mousePressEvent()	and	mouseReleaseEvent().

void	QTabBar::selected	(int	id)	[signal]

QTabBar	emits	this	signal	whenever	any	tab	is	selected,	whether	by	the	program
or	by	the	user.	The	argument	id	is	the	id	of	the	tab	as	returned	by	addTab().

show()	is	guaranteed	to	emit	this	signal;	you	can	display	your	page	in	a	slot
connected	to	this	signal.

void	QTabBar::setCurrentTab	(int)	[virtual	slot]

Sets	the	id	of	the	currently	visible	tab	in	the	tab	bar.	See	the	"currentTab"
property	for	details.

void	QTabBar::setCurrentTab	(QTab	*	tab)	[virtual	slot]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Raises	tab	and	emits	the	selected()	signal	unless	the	tab	was	already	current.

See	also	currentTab	and	selected().

void	QTabBar::setShape	(Shape)	[virtual]

Sets	the	shape	of	the	tabs	in	the	tab	bar.	See	the	"shape"	property	for	details.

void	QTabBar::setTabEnabled	(int	id,	bool	enabled)	[virtual]

Enables	tab	id	if	enabled	is	TRUE	or	disables	it	if	enabled	is	FALSE.	If	id	is
currently	selected,	setTabEnabled(FALSE)	makes	another	tab	selected.

setTabEnabled()	updates	the	display	if	this	causes	a	change	in	id's	status.

See	also	update()	and	isTabEnabled().

void	QTabBar::setToolTip	(int	index,	const	QString	&	tip)

Sets	the	tool	tip	for	the	tab	at	index	index	to	tip.

Shape	QTabBar::shape	()	const

Returns	the	shape	of	the	tabs	in	the	tab	bar.	See	the	"shape"	property	for	details.

QTab	*	QTabBar::tab	(int	id)	const

Returns	a	pointer	to	the	tab	with	id	id	or	0	if	there	is	no	such	tab.

See	also	count.

QTab	*	QTabBar::tabAt	(int	index)	const

Returns	a	pointer	to	the	tab	at	the	position	index.

See	also	indexOf().

QPtrList<QTab>	*	QTabBar::tabList	()	[protected]

The	list	of	QTab	objects	in	the	tab	bar.

QString	QTabBar::toolTip	(int	index)	const

Returns	the	tool	tip	for	the	tab	at	index	index.

Property	Documentation

int	count

This	property	holds	the	number	of	tabs	in	the	tab	bar.

Get	this	property's	value	with	count().

See	also	tab().

int	currentTab

This	property	holds	the	id	of	the	currently	visible	tab	in	the	tab	bar.

If	no	tab	page	is	currently	visible,	-1	will	be	the	current	value	for	this	property.
Even	if	the	property	value	is	not	-1,	you	cannot	assume	that	the	user	can	see	the
relevant	page,	or	that	the	tab	is	enabled.	When	you	need	to	display	something	the
value	of	this	property	represents	the	best	page	to	display.

When	this	property	is	set	to	id,	it	will	raise	the	tab	with	the	id	id	and	emit	the
selected()	signal.

See	also	selected()	and	isTabEnabled().

Set	this	property's	value	with	setCurrentTab()	and	get	this	property's	value	with
currentTab().

int	keyboardFocusTab

This	property	holds	the	id	of	the	tab	that	currently	has	the	keyboard	focus.

This	property	contains	the	id	of	the	tab	that	currently	has	the	keyboard	focus.	If
the	tab	bar	does	not	have	keyboard	focus,	the	value	of	this	property	will	be	-1.

Get	this	property's	value	with	keyboardFocusTab().

Shape	shape

This	property	holds	the	shape	of	the	tabs	in	the	tab	bar.

The	value	of	this	property	can	be	one	of	the	following:	RoundedAbove	(default),
RoundedBelow,	TriangularAbove	or	TriangularBelow.

See	also	Shape.

Set	this	property's	value	with	setShape()	and	get	this	property's	value	with
shape().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QXtApplication	Class	Reference
The	QXtApplication	class	facilitates	the	mixing	of	Xt/Motif	and	Qt	widgets.

This	class	is	part	of	the	Qt	Xt/Motif	Extension.	More...

#include	<qxt.h>

Inherits	QApplication.

List	of	all	member	functions.

Public	Members

QXtApplication	(int	&	argc,	char	**	argv,	const	char	*	appclass	=	0,
XrmOptionDescRec	*	options	=	0,	int	num_options	=	0,
const	char	**	resources	=	0)
QXtApplication	(Display	*	display,	HANDLE	visual	=	0,
HANDLE	colormap	=	0)
QXtApplication	(Display	*	display,	int	argc,	char	**	argv,
HANDLE	visual	=	0,	HANDLE	colormap	=	0)
~QXtApplication	()

Detailed	Description

This	class	is	defined	in	the	Qt	Xt/Motif	Extension,	which	can	be	found	in	the
qt/extensions	directory.	It	is	not	included	in	the	main	Qt	API.

The	QXtApplication	class	facilitates	the	mixing	of	Xt/Motif	and	Qt	widgets.

The	QXtApplication	and	QXtWidget	classes	allow	old	Xt	or	Motif	widgets	to	be
used	in	new	Qt	applications.	They	also	allow	Qt	widgets	to	be	used	in	primarily
Xt/Motif	applications.	The	facility	is	intended	to	aid	migration	from	Xt/Motif	to
the	more	comfortable	Qt	system.

Member	Function	Documentation

QXtApplication::QXtApplication	(int	&	argc,	char	**	argv,
const	char	*	appclass	=	0,	XrmOptionDescRec	*	options	=	0,
int	num_options	=	0,	const	char	**	resources	=	0)

Constructs	a	QApplication	and	initializes	the	Xt	toolkit.	The	appclass,	options,
num_options,	and	resources	arguments	are	passed	on	to
XtAppSetFallbackResources	and	XtDisplayInitialize.

Use	this	constructor	when	writing	a	new	Qt	application	which	needs	to	use	some
existing	Xt/Motif	widgets.

The	argc	and	argv	arguments	are	passed	to	the	QApplication	constructor.

QXtApplication::QXtApplication	(Display	*	display,
HANDLE	visual	=	0,	HANDLE	colormap	=	0)

Constructs	a	QApplication	from	the	display	of	an	already-initialized	Xt
application.	If	visual	and	colormap	are	non-zero,	the	application	will	use	those
as	the	default	Visual	and	Colormap	contexts.

Use	this	constructor	when	introducing	Qt	widgets	into	an	existing	Xt/Motif
application.

QXtApplication::QXtApplication	(Display	*	display,	int	argc,
char	**	argv,	HANDLE	visual	=	0,	HANDLE	colormap	=	0)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Constructs	a	QApplication	from	the	display	of	an	already-initialized	Xt
application.	If	visual	and	colormap	are	non-zero,	the	application	will	use	those
as	the	default	Visual	and	Colormap	contexts.

Use	this	constructor	when	introducing	Qt	widgets	into	an	existing	Xt/Motif
application.

The	argc	and	argv	arguments	are	passed	to	the	QApplication	constructor.

QXtApplication::~QXtApplication	()

Destructs	the	application.	Does	not	close	the	Xt	toolkit.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QDirectPainter	Class	Reference
The	QDirectPainter	class	provides	direct	access	to	the	video	hardware.	More...

#include	<qdirectpainter_qws.h>

Inherits	QPainter.

List	of	all	member	functions.

Public	Members

QDirectPainter	(const	QWidget	*	w)
~QDirectPainter	()
uchar	*	frameBuffer	()
int	lineStep	()
int	transformOrientation	()
int	numRects	()	const
const	QRect	&	rect	(int	i)	const
QRegion	region	()
int	depth	()	const
int	width	()	const
int	height	()	const
int	xOffset	()	const
int	yOffset	()	const
QPoint	offset	()	const
QSize	size	()	const
void	setAreaChanged	(const	QRect	&	r)

Detailed	Description

The	QDirectPainter	class	provides	direct	access	to	the	video	hardware.

Only	available	in	Qt/Embedded.

When	the	hardware	is	known	and	well	defined,	as	is	often	the	case	with	software
for	embedded	devices,	it	may	be	useful	to	manipulate	the	underlying	video
hardware	directly.	In	order	to	do	this	in	a	way	that	is	co-operative	with	other
applications,	you	must	lock	the	video	hardware	for	exclusive	use	for	a	small	time
while	you	write	to	it,	and	you	must	know	the	clipping	region	which	is	allocated
to	a	widget.

QDirectPainter	provides	this	functionality.

In	the	simplest	case,	you	make	a	QDirectPainter	on	a	widget	and	then,	observing
the	clip	region,	perform	some	platform-specific	operation.	For	example:

								void	MyWidget::updatePlatformGraphics()

								{

												QDirectPainter	dp(this);

												for	(int	i	=	0;	i	<	dp.numRects;	i++)	{

																const	QRect&	clip	=	dp.rect(i);

																...	//	platform	specific	operation

												}

								}

				

The	platform-specific	code	has	access	to	the	display,	but	should	only	modify
graphics	in	the	rectangles	specified	by	numRects()	and	rect().	Note	that	these
rectangles	are	relative	to	the	entire	display.

The	offset()	function	returns	the	position	of	the	widget	relative	to	the	entire
display,	allowing	you	to	offset	platform-specific	operations	appropriately.	The
xOffset()	and	yOffset()	functions	merely	return	the	component	values	of	offset().

For	simple	frame-buffer	hardware,	the	frameBuffer(),	lineStep(),	and	depth()
functions	provide	basic	access,	though	some	hardware	configurations	are
insufficiently	specified	by	such	simple	parameters.

Note	that	while	a	QDirectPainter	exists,	the	entire	Qt/Embedded	window	system
is	locked	from	use	by	other	applications.	Always	construct	the	QDirectPainter	as
an	auto	(stack)	variable,	and	be	very	careful	to	write	robust	and	stable	code
within	its	scope.

See	also	Graphics	Classes.

Member	Function	Documentation

QDirectPainter::QDirectPainter	(const	QWidget	*	w)

Construct	a	direct	painter	on	w.	The	display	is	locked	and	the	mouse	cursor	is
hidden	if	it	is	above	w.

QDirectPainter::~QDirectPainter	()

Destroys	the	direct	painter.	The	mouse	cursor	is	revealed	if	necessary	and	the
display	is	unlocked.

int	QDirectPainter::depth	()	const

Returns	the	bit-depth	of	the	display.

uchar	*	QDirectPainter::frameBuffer	()

Returns	a	pointer	to	the	framebuffer	memory	if	available.

int	QDirectPainter::height	()	const

Returns	the	height	of	the	widget	drawn	upon.

int	QDirectPainter::lineStep	()

Returns	the	spacing	in	bytes	from	one	framebuffer	line	to	the	next.

int	QDirectPainter::numRects	()	const

Returns	the	number	of	rectangles	in	the	clip	region.

See	also	rect()	and	clipRegion().

QPoint	QDirectPainter::offset	()	const

Returns	the	position	of	the	widget	relative	to	the	entire	display.

const	QRect	&	QDirectPainter::rect	(int	i)	const

Returns	a	reference	to	rectangle	i	of	the	clip	region.	Valid	values	for	i	are
0..numRects()-1.

See	also	clipRegion().

void	QDirectPainter::setAreaChanged	(const	QRect	&	r)

Sets	the	area	changed	by	the	transaction	to	r.	By	default,	the	entire	widget	is
assumed	to	have	changed.	The	area	changed	is	only	used	by	some	graphics
drivers,	so	often	calling	this	function	for	a	smaller	area	will	make	no	difference.

QSize	QDirectPainter::size	()	const

Returns	the	size	of	the	widget	drawn	upon.

See	also	width()	and	height().

int	QDirectPainter::transformOrientation	()

Returns	a	number	that	signifies	the	orientation	of	the	framebuffer.
0 no	rotation
1 90	degrees	rotation
2 180	degrees	rotation
3 270	degrees	rotation

int	QDirectPainter::width	()	const

Returns	the	width	of	the	widget	drawn	upon.

int	QDirectPainter::xOffset	()	const

Returns	the	X-position	of	the	widget	relative	to	the	entire	display.

int	QDirectPainter::yOffset	()	const

Returns	the	Y-position	of	the	widget	relative	to	the	entire	display.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QImageDecoder	Class	Reference
The	QImageDecoder	class	is	an	incremental	image	decoder	for	all	supported
image	formats.	More...

#include	<qasyncimageio.h>

List	of	all	member	functions.

Public	Members

QImageDecoder	(QImageConsumer	*	c)
~QImageDecoder	()
const	QImage	&	image	()
int	decode	(const	uchar	*	buffer,	int	length)

Static	Public	Members

const	char	*	formatName	(const	uchar	*	buffer,	int	length)
QImageFormatType	*	format	(const	char	*	name)
QStrList	inputFormats	()
void	registerDecoderFactory	(QImageFormatType	*	f)
void	unregisterDecoderFactory	(QImageFormatType	*	f)

Detailed	Description

The	QImageDecoder	class	is	an	incremental	image	decoder	for	all	supported
image	formats.

New	formats	are	installed	by	creating	objects	of	class	QImageFormatType;	the
QMovie	class	can	be	used	for	all	installed	incremental	image	formats.
QImageDecoder	is	only	useful	for	creating	new	ways	of	feeding	data	to	an
QImageConsumer.

A	QImageDecoder	is	a	machine	that	decodes	images.	It	takes	encoded	image
data	via	its	decode()	method	and	expresses	its	decoding	by	supplying
information	to	a	QImageConsumer.	It	implements	its	decoding	by	using	a
QImageFormat	created	by	one	of	the	currently-existing	QImageFormatType
factory	objects.

QImageFormatType	and	QImageFormat	are	the	classes	that	you	might	need	to
implement	support	for	additional	image	formats.

Qt	supports	GIF	reading	if	it	is	configured	that	way	during	installation	(see
qgif.h).	If	it	is,	we	are	required	to	state	that	"The	Graphics	Interchange	Format(c)
is	the	Copyright	property	of	CompuServe	Incorporated.	GIF(sm)	is	a	Service
Mark	property	of	CompuServe	Incorporated."

Warning:	If	you	are	in	a	country	that	recognizes	software	patents	and	in	which
Unisys	holds	a	patent	on	LZW	compression	and/or	decompression	and	you	want
to	use	GIF,	Unisys	may	require	you	to	license	that	technology.	Such	countries
include	Canada,	Japan,	the	USA,	France,	Germany,	Italy	and	the	UK.

GIF	support	may	be	removed	completely	in	a	future	version	of	Qt.	We
recommend	using	the	MNG	or	PNG	format.

See	also	Graphics	Classes,	Image	Processing	Classes	and	Multimedia	Classes.

Member	Function	Documentation

QImageDecoder::QImageDecoder	(QImageConsumer	*	c)

Constructs	a	QImageDecoder	that	will	send	change	information	to	the
QImageConsumer	c.

QImageDecoder::~QImageDecoder	()

Destroys	a	QImageDecoder.	The	image	it	built	is	destroyed.	The	decoder	built
by	the	factory	for	the	file	format	is	destroyed.	The	consumer	for	which	it
decoded	the	image	is	not	destroyed.

int	QImageDecoder::decode	(const	uchar	*	buffer,	int	length)

Call	this	function	to	decode	some	data	into	image	changes.	The	data	in	buffer
will	be	decoded,	sending	change	information	to	the	QImageConsumer	of	this
QImageDecoder	until	one	of	the	change	functions	of	the	consumer	returns
FALSE.	The	length	of	the	data	is	given	in	length.

Returns	the	number	of	bytes	consumed:	0	if	consumption	is	complete,	and	-1	if
decoding	fails	due	to	invalid	data.

QImageFormatType	*	QImageDecoder::format	(
const	char	*	name)	[static]

Returns	a	QImageFormatType	by	name.	This	might	be	used	when	the	user	needs
to	force	data	to	be	interpreted	as	being	in	a	certain	format.	name	is	one	of	the
formats	listed	by	QImageDecoder::inputFormats().	Note	that	you	will	still	need
to	supply	decodable	data	to	result->decoderFor()	before	you	can	begin	decoding
the	data.

const	char	*	QImageDecoder::formatName	(const	uchar	*	buffer,
int	length)	[static]

Call	this	function	to	find	the	name	of	the	format	of	the	given	header.	The

returned	string	is	statically	allocated.	The	function	will	look	at	the	first	length
characters	in	the	buffer.

Returns	0	if	the	format	is	not	recognized.

const	QImage	&	QImageDecoder::image	()

Returns	the	image	currently	being	decoded.

QStrList	QImageDecoder::inputFormats	()	[static]

Returns	a	sorted	list	of	formats	for	which	asynchronous	loading	is	supported.

void	QImageDecoder::registerDecoderFactory	(
QImageFormatType	*	f)	[static]

Registers	the	new	QImageFormatType	f.	This	is	not	needed	in	application	code
because	factories	call	this	themselves.

void	QImageDecoder::unregisterDecoderFactory	(
QImageFormatType	*	f)	[static]

Unregisters	the	QImageFormatType	f.	This	is	not	needed	in	application	code
because	factories	call	this	themselves.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QTabDialog
QTabDialog	 ……

#include	<qtabdialog.h>

QDialog

QTabDialog	(QWidget	*	parent	=	0,	const	char	*	name	=	0,	bool	modal	=
FALSE,	WFlags	f	=	0)
~QTabDialog	()
virtual	void	setFont	(const	QFont	&	font)
void	addTab	(QWidget	*	child,	const	QString	&	label)
void	addTab	(QWidget	*	child,	const	QIconSet	&	iconset,
const	QString	&	label)
void	addTab	(QWidget	*	child,	QTab	*	tab)
void	insertTab	(QWidget	*	child,	const	QString	&	label,	int	index	=	-1)
void	insertTab	(QWidget	*	child,	const	QIconSet	&	iconset,
const	QString	&	label,	int	index	=	-1)
void	insertTab	(QWidget	*	child,	QTab	*	tab,	int	index	=	-1)
void	changeTab	(QWidget	*	w,	const	QString	&	label)
void	changeTab	(QWidget	*	w,	const	QIconSet	&	iconset,
const	QString	&	label)
bool	isTabEnabled	(QWidget	*	w)	const
void	setTabEnabled	(QWidget	*	w,	bool	enable)
bool	isTabEnabled	(const	char	*	name)	const		
void	setTabEnabled	(const	char	*	name,	bool	enable)		
void	showPage	(QWidget	*	w)
void	removePage	(QWidget	*	w)
QString	tabLabel	(QWidget	*	w)
QWidget	*	currentPage	()	const
void	setDefaultButton	(const	QString	&	text)
void	setDefaultButton	()
bool	hasDefaultButton	()	const
void	setHelpButton	(const	QString	&	text)
void	setHelpButton	()
bool	hasHelpButton	()	const
void	setCancelButton	(const	QString	&	text)
void	setCancelButton	()
bool	hasCancelButton	()	const
void	setApplyButton	(const	QString	&	text)
void	setApplyButton	()
bool	hasApplyButton	()	const

void	setOkButton	(const	QString	&	text)
void	setOkButton	()
bool	hasOkButton	()	const

void	aboutToShow	()
void	applyButtonPressed	()
void	cancelButtonPressed	()
void	defaultButtonPressed	()
void	helpButtonPressed	()
void	currentChanged	(QWidget	*)
void	selected	(const	QString	&)		

void	setTabBar	(QTabBar	*	tb)
QTabBar	*	tabBar	()	const

QTabDialog

“”Alt+

QTabDialogQTabDialogOKApplyCancelDefaultsHelp

QTabDialog

1.	 QTabDialog
2.	 QWidget addTab() insertTab()
3.	 setOkButton() setApplyButton()setDefaultsButton() setCancelButton

setHelpButton()
4.	

addTab()QWidgetaddTab()addTab()

applyButtonPressed()OKApplyapplyButtonPressed()

cancelButtonPressed()	is	emitted	when	the	user	clicks	Cancel.	Cancel
cancelButtonPressed()

Defaults defaultButtonPressed()
Help helpButtonPressed()
show() aboutToShow()show()

currentChanged()

setTabEnabled()

changeTab() removePage()showPage() currentPage()

QTabDialogQTabDialogQTabWidget

QTabDialog QTabWidget

	

QDialog

QTabDialog::QTabDialog	(QWidget	*	parent	=	0,
const	char	*	name	=	0,	bool	modal	=	FALSE,	WFlags	f	=	0)

OKQTabDialog parentnamemodalfQDialog

QTabDialog::~QTabDialog	()

void	QTabDialog::aboutToShow	()	[]

show() QTabDialog::QTabDialog

QTabDialog

applyButtonPressed() show()cancelButtonPressed()

void	QTabDialog::addTab	(QWidget	*	child,
const	QString	&	label)

childlabel setTabEnabled()

label“&”“&”“Bro&wse;”Alt+W

show()addTab()

insertTab()

void	QTabDialog::addTab	(QWidget	*	child,
const	QIconSet	&	iconset,	const	QString	&	label)

childiconsetlabel

void	QTabDialog::addTab	(QWidget	*	child,	QTab	*	tab)

addTab() setTabBar()QTabBarQTabQTabBar::paint

child tab——

void	QTabDialog::applyButtonPressed	()	[]

ApplyOK

cancelButtonPressed() defaultButtonPressed()setApplyButton()

void	QTabDialog::cancelButtonPressed	()	[]

Cancel QDialog::reject

Cancel

applyButtonPressed() defaultButtonPressed()setCancelButton()

void	QTabDialog::changeTab	(QWidget	*	w,
const	QIconSet	&	iconset,	const	QString	&	label)

wiconsetlabel

void	QTabDialog::changeTab	(QWidget	*	w,
const	QString	&	label)

wlabel

void	QTabDialog::currentChanged	(QWidget	*)	[]

currentPage() showPage()tabLabel()

QWidget	*	QTabDialog::currentPage	()	const

0

void	QTabDialog::defaultButtonPressed	()	[]

Defaults“”

ApplyOK

applyButtonPressed() cancelButtonPressed()setDefaultButton()

bool	QTabDialog::hasApplyButton	()	const

Apply

setApplyButton() applyButtonPressed() hasCancelButton()
hasDefaultButton()

bool	QTabDialog::hasCancelButton	()	const

Cancel

setCancelButton() cancelButtonPressed() hasApplyButton()
hasDefaultButton()

bool	QTabDialog::hasDefaultButton	()	const

Defaults

setDefaultButton() defaultButtonPressed() hasApplyButton()
hasCancelButton()

bool	QTabDialog::hasHelpButton	()	const

Help

setHelpButton() helpButtonPressed() hasApplyButton()hasCancelButton()

bool	QTabDialog::hasOkButton	()	const

OK

setOkButton() hasApplyButton() hasCancelButton()hasDefaultButton()

void	QTabDialog::helpButtonPressed	()	[]

Help

applyButtonPressed() cancelButtonPressed()setHelpButton()

void	QTabDialog::insertTab	(QWidget	*	child,
const	QString	&	label,	int	index	=	-1)

childlabel setTabEnabled()

label“&”“&”“Bro&wse;”Alt+W

index

show()insertTab()

addTab()

void	QTabDialog::insertTab	(QWidget	*	child,
const	QIconSet	&	iconset,	const	QString	&	label,	int	index	=
-1)

childiconsetlabel

void	QTabDialog::insertTab	(QWidget	*	child,	QTab	*	tab,
int	index	=	-1)

insertTab() setTabBar()QTabBarQTabQTabBar::paint

child tab—— index

bool	QTabDialog::isTabEnabled	(QWidget	*	w)	const

w

setTabEnabled()QWidget::enabled

bool	QTabDialog::isTabEnabled	(const	char	*	name)	const

name

name0 isTabEnabled()

setTabEnabled()QWidget::enabled

void	QTabDialog::removePage	(QWidget	*	w)

ww

showPage() QTabWidget::removePage()QWidgetStack::removeWidget()

void	QTabDialog::selected	(const	QString	&)	[]

show()

raise()

void	QTabDialog::setApplyButton	(const	QString	&	text)

Apply text

Apply

Apply applyButtonPressed()

text

setCancelButton() setDefaultButton()applyButtonPressed()

void	QTabDialog::setApplyButton	()

Apply“Apply”

void	QTabDialog::setCancelButton	(const	QString	&	text)

Cancel text

CancelApplyApply

Cancel cancelButtonPressed()

text

setApplyButton() setDefaultButton()cancelButtonPressed()

void	QTabDialog::setCancelButton	()

Cancel“Cancel”

void	QTabDialog::setDefaultButton	(const	QString	&	text)

Defaults text

Defaults

Defaults defaultButtonPressed()

text

setApplyButton() setCancelButton()defaultButtonPressed()

void	QTabDialog::setDefaultButton	()

Defaults“Defaults”

void	QTabDialog::setFont	(const	QFont	&	font)	[]

font

QWidget

void	QTabDialog::setHelpButton	(const	QString	&	text)

Help text

Help helpButtonPressed()

text

setApplyButton() setCancelButton()helpButtonPressed()

void	QTabDialog::setHelpButton	()

Help“Help”

void	QTabDialog::setOkButton	(const	QString	&	text)

OK text	OK applyButtonPressed()

text

setCancelButton() setDefaultButton()applyButtonPressed()

void	QTabDialog::setOkButton	()

OK“OK”

void	QTabDialog::setTabBar	(QTabBar	*	tb)	[]

QTabBartb

tabBar()

void	QTabDialog::setTabEnabled	(QWidget	*	w,	bool	enable)

enable w w

QTabWidgetQWidget::setEnabled()

QTabWidgetQTabWidget

isTabEnabled()QWidget::enabled

void	QTabDialog::setTabEnabled	(const	char	*	name,	bool	enable
)

name enable/

QTabWidgetQWidget::setEnabled()

QTabWidgetQTabWidget

isTabEnabled()QWidget::enabled

void	QTabDialog::showPage	(QWidget	*	w)

w

	

QTabBar::currentTab

QTabBar	*	QTabDialog::tabBar	()	const	[]

QTabBar

setTabBar()

QString	QTabDialog::tabLabel	(QWidget	*	w)

w

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QXtWidget	Class	Reference
The	QXtWidget	class	allows	mixing	of	Xt/Motif	and	Qt	widgets.

This	class	is	part	of	the	Qt	Xt/Motif	Extension.	More...

#include	<qxt.h>

Inherits	QWidget.

List	of	all	member	functions.

Public	Members

QXtWidget	(const	char	*	name,	Widget	parent,	bool	managed	=	FALSE)
QXtWidget	(const	char	*	name,	WidgetClass	widget_class,
QWidget	*	parent	=	0,	ArgList	args	=	0,	Cardinal	num_args	=	0,
bool	managed	=	FALSE)
~QXtWidget	()
Widget	xtWidget	()	const
bool	isActiveWindow	()	const
virtual	void	setActiveWindow	()

Protected	Members

virtual	bool	x11Event	(XEvent	*	e)

Detailed	Description

This	class	is	defined	in	the	Qt	Xt/Motif	Extension,	which	can	be	found	in	the
qt/extensions	directory.	It	is	not	included	in	the	main	Qt	API.

The	QXtWidget	class	allows	mixing	of	Xt/Motif	and	Qt	widgets.

QXtWidget	acts	as	a	bridge	between	Xt	and	Qt.	For	utilizing	old	Xt	widgets,	it
can	be	a	QWidget	based	on	a	Xt	widget	class.	For	including	Qt	widgets	in	an
existing	Xt/Motif	application,	it	can	be	a	special	Xt	widget	class	that	is	a
QWidget.	See	the	constructors	for	the	different	behaviors.

Member	Function	Documentation

QXtWidget::QXtWidget	(const	char	*	name,	Widget	parent,
bool	managed	=	FALSE)

Constructs	a	QXtWidget	of	the	special	Xt	widget	class	known	as	"QWidget"	to
the	resource	manager.

Use	this	constructor	to	utilize	Qt	widgets	in	an	Xt/Motif	application.	The
QXtWidget	is	a	QWidget,	so	you	can	create	subwidgets,	layouts,	etc.	using	Qt
functionality.

The	name	is	the	object	name	passed	to	the	QWidget	constructor.	The	widget's
parent	is	parent.

If	the	managed	parameter	is	TRUE	and	parent	in	not	null,	XtManageChild	it
used	to	manage	the	child.

QXtWidget::QXtWidget	(const	char	*	name,
WidgetClass	widget_class,	QWidget	*	parent	=	0,	ArgList	args
=	0,	Cardinal	num_args	=	0,	bool	managed	=	FALSE)

Constructs	a	QXtWidget	of	the	given	widget_class	called	name.

Use	this	constructor	to	utilize	Xt	or	Motif	widgets	in	a	Qt	application.	The
QXtWidget	looks	and	behaves	like	the	Xt	class,	but	can	be	used	like	any
QWidget.

Note	that	Xt	requires	that	the	most	top	level	Xt	widget	is	a	shell.	This	means,	if
parent	is	a	QXtWidget,	the	widget_class	can	be	of	any	kind.	If	there	isn't	a
parent	or	the	parent	is	just	a	normal	QWidget,	widget_class	should	be	something
like	topLevelShellWidgetClass.

The	arguments,	args,	num_args	are	passed	on	to	XtCreateWidget.

If	the	managed	parameter	is	TRUE	and	parent	in	not	null,	XtManageChild	it
used	to	manage	the	child.

QXtWidget::~QXtWidget	()

Destructs	the	QXtWidget.

bool	QXtWidget::isActiveWindow	()	const

Different	from	QWidget::isActiveWindow()

void	QXtWidget::setActiveWindow	()	[virtual]

Implement	a	degree	of	focus	handling	for	Xt	widgets.

Reimplemented	from	QWidget.

bool	QXtWidget::x11Event	(XEvent	*	e)	[virtual	protected]

Reimplemented	to	produce	the	Xt	effect	of	getting	focus	when	the	mouse	enters
the	widget.	The	event	is	passed	in	e.

This	function	is	under	development	and	is	subject	to	change.

Reimplemented	from	QWidget.

Widget	QXtWidget::xtWidget	()	const

Returns	the	Xt	widget	equivalent	for	the	Qt	widget.

Examples:	mainlyMotif/editor.cpp	and	mainlyXt/editor.cpp.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QDns	Class	Reference
[network	module]

The	QDns	class	provides	asynchronous	DNS	lookups.	More...

#include	<qdns.h>

Inherits	QObject.

List	of	all	member	functions.

Public	Members

enum	RecordType	{	None,	A,	Aaaa,	Mx,	Srv,	Cname,	Ptr,	Txt	}
QDns	()
QDns	(const	QString	&	label,	RecordType	rr	=	A)
QDns	(const	QHostAddress	&	address,	RecordType	rr	=	Ptr)
virtual	~QDns	()
virtual	void	setLabel	(const	QString	&	label)
virtual	void	setLabel	(const	QHostAddress	&	address)
QString	label	()	const
virtual	void	setRecordType	(RecordType	rr	=	A)
RecordType	recordType	()	const
bool	isWorking	()	const
QValueList<QHostAddress>	addresses	()	const
QValueList<MailServer>	mailServers	()	const
QValueList<Server>	servers	()	const
QStringList	hostNames	()	const
QStringList	texts	()	const
QString	canonicalName	()	const
QStringList	qualifiedNames	()	const

Signals

void	resultsReady	()

Detailed	Description

The	QDns	class	provides	asynchronous	DNS	lookups.

Both	Windows	and	Unix	provide	synchronous	DNS	lookups;	Windows	provides
some	asynchronous	support	too.	At	the	time	of	writing	neither	operating	system
provides	asynchronous	support	for	anything	other	than	hostname-to-address
mapping.

QDns	rectifies	this	shortcoming,	by	providing	asynchronous	caching	lookups	for
the	record	types	that	we	expect	modern	GUI	applications	to	need	in	the	near
future.

The	class	is	not	straightforward	to	use	(although	it	is	much	simpler	than	the
native	APIs);	QSocket	provides	much	easier	to	use	TCP	connection	facilities.
The	aim	of	QDns	is	to	provide	a	correct	and	small	API	to	the	DNS	and	nothing
more.	(We	use	"correctness"	to	mean	that	the	DNS	information	is	correctly
cached,	and	correctly	timed	out.)

The	API	comprises	a	constructor,	functions	to	set	the	DNS	node	(the	domain	in
DNS	terminology)	and	record	type	(setLabel()	and	setRecordType()),	the
corresponding	get	functions,	an	isWorking()	function	to	determine	whether
QDns	is	working	or	reading,	a	resultsReady()	signal	and	query	functions	for	the
result.

There	is	one	query	function	for	each	RecordType,	namely	addresses(),
mailServers(),	servers(),	hostNames()	and	texts().	There	are	also	two	generic
query	functions:	canonicalName()	returns	the	name	you'll	presumably	end	up
using	(the	exact	meaning	of	this	depends	on	the	record	type)	and
qualifiedNames()	returns	a	list	of	the	fully	qualified	names	label()	maps	to.

See	also	QSocket	and	Input/Output	and	Networking.

Member	Type	Documentation

QDns::RecordType

This	enum	type	defines	the	record	types	QDns	can	handle.	The	DNS	provides
many	more;	these	are	the	ones	we've	judged	to	be	in	current	use,	useful	for	GUI
programs	and	important	enough	to	support	right	away:

QDns::None	-	No	information.	This	exists	only	so	that	QDns	can	have	a
default.
QDns::A	-	IPv4	addresses.	By	far	the	most	common	type.
QDns::Aaaa	-	IPv6	addresses.	So	far	mostly	unused.
QDns::Mx	-	Mail	eXchanger	names.	Used	for	mail	delivery.
QDns::Srv	-	SeRVer	names.	Generic	record	type	for	finding	servers.	So	far
mostly	unused.
QDns::Cname	-	Canonical	names.	Maps	from	nicknames	to	the	true	name
(the	canonical	name)	for	a	host.
QDns::Ptr	-	name	PoinTeRs.	Maps	from	IPv4	or	IPv6	addresses	to
hostnames.
QDns::Txt	-	arbitrary	TeXT	for	domains.

We	expect	that	some	support	for	the	RFC-2535	extensions	will	be	added	in
future	versions.

http://www.dns.net/dnsrd/rfc/rfc2535.html

Member	Function	Documentation

QDns::QDns	()

Constructs	a	DNS	query	object	with	invalid	settings	for	both	the	label	and	the
search	type.

QDns::QDns	(const	QString	&	label,	RecordType	rr	=	A)

Constructs	a	DNS	query	object	that	will	return	record	type	rr	information	about
label.

The	DNS	lookup	is	started	the	next	time	the	application	enters	the	event	loop.
When	the	result	is	found	the	signal	resultsReady()	is	emitted.

rr	defaults	to	A,	IPv4	addresses.

QDns::QDns	(const	QHostAddress	&	address,	RecordType	rr	=
Ptr)

Constructs	a	DNS	query	object	that	will	return	record	type	rr	information	about
host	address	address.	The	label	is	set	to	the	IN-ADDR.ARPA	domain	name.	This
is	useful	in	combination	with	the	Ptr	record	type	(e.g.	if	you	want	to	look	up	a
hostname	for	a	given	address).

The	DNS	lookup	is	started	the	next	time	the	application	enters	the	event	loop.
When	the	result	is	found	the	signal	resultsReady()	is	emitted.

rr	defaults	to	Ptr,	that	maps	addresses	to	hostnames.

QDns::~QDns	()	[virtual]

Destroys	the	DNS	query	object	and	frees	its	allocated	resources.

QValueList<QHostAddress>	QDns::addresses	()	const

Returns	a	list	of	the	addresses	for	this	name	if	this	QDns	object	has	a

recordType()	of	QDns::A	or	QDns::Aaaa	and	the	answer	is	available;	otherwise
returns	an	empty	list.

As	a	special	case,	if	label()	is	a	valid	numeric	IP	address,	this	function	returns
that	address.

Note	that	if	you	want	to	iterate	over	the	list,	you	should	iterate	over	a	copy,	e.g.

				QValueList<QHostAddress>	list	=	myDns.addresses();

				QValueList<QHostAddress>::Iterator	it	=	list.begin();

				while(it	!=	list.end())	{

								myProcessing(*it);

								++it;

				}

				

QString	QDns::canonicalName	()	const

Returns	the	canonical	name	for	this	DNS	node.	(This	works	regardless	of	what
recordType()	is	set	to.)

If	the	canonical	name	isn't	known,	this	function	returns	a	null	string.

The	canonical	name	of	a	DNS	node	is	its	full	name,	or	the	full	name	of	the	target
of	its	CNAME.	For	example,	if	l.trolltech.com	is	a	CNAME	to	lupinella.troll.no,
and	the	search	path	for	QDns	is	"trolltech.com",	then	the	canonical	name	for	all
of	"lupinella",	"l",	"lupinella.troll.no."	and	"l.trolltech.com"	is
"lupinella.troll.no.".

QStringList	QDns::hostNames	()	const

Returns	a	list	of	host	names	if	the	record	type	is	Ptr.

Note	that	if	you	want	to	iterate	over	the	list,	you	should	iterate	over	a	copy,	e.g.

				QStringList	list	=	myDns.hostNames();

				QStringList::Iterator	it	=	list.begin();

				while(it	!=	list.end())	{

								myProcessing(*it);

								++it;

				}

				

bool	QDns::isWorking	()	const

Returns	TRUE	if	QDns	is	doing	a	lookup	for	this	object,	and	FALSE	if	this
object	already	has	the	information	it	wants.

QDns	emits	the	resultsReady()	signal	when	the	status	changes	to	FALSE.

Example:	network/mail/smtp.cpp.

QString	QDns::label	()	const

Returns	the	domain	name	for	which	this	object	returns	information.

See	also	setLabel().

QValueList<MailServer>	QDns::mailServers	()	const

Returns	a	list	of	mail	servers	if	the	record	type	is	Mx.	The	class
QDns::MailServer	contains	the	following	public	variables:

QString	QDns::MailServer::name
Q_UINT16	QDns::MailServer::priority

Note	that	if	you	want	to	iterate	over	the	list,	you	should	iterate	over	a	copy,	e.g.

				QValueList<QDns::MailServer>	list	=	myDns.mailServers();

				QValueList<QDns::MailServer>::Iterator	it	=	list.begin();

				while(it	!=	list.end())	{

								myProcessing(*it);

								++it;

				}

				

Example:	network/mail/smtp.cpp.

QStringList	QDns::qualifiedNames	()	const

Returns	a	list	of	the	fully	qualified	names	label()	maps	to.

Note	that	if	you	want	to	iterate	over	the	list,	you	should	iterate	over	a	copy,	e.g.

				QStringList	list	=	myDns.qualifiedNames();

				QStringList::Iterator	it	=	list.begin();

				while(it	!=	list.end())	{

								myProcessing(*it);

								++it;

				}

				

RecordType	QDns::recordType	()	const

Returns	the	record	type	of	this	DNS	query	object.

See	also	setRecordType()	and	RecordType.

void	QDns::resultsReady	()	[signal]

This	signal	is	emitted	when	results	are	available	for	one	of	the	qualifiedNames().

Example:	network/mail/smtp.cpp.

QValueList<Server>	QDns::servers	()	const

Returns	a	list	of	servers	if	the	record	type	is	Srv.	The	class	QDns::Server
contains	the	following	public	variables:

QString	QDns::Server::name
Q_UINT16	QDns::Server::priority
Q_UINT16	QDns::Server::weight
Q_UINT16	QDns::Server::port

Note	that	if	you	want	to	iterate	over	the	list,	you	should	iterate	over	a	copy,	e.g.

				QValueList<QDns::Server>	list	=	myDns.servers();

				QValueList<QDns::Server>::Iterator	it	=	list.begin();

				while(it	!=	list.end())	{

								myProcessing(*it);

								++it;

				}

				

void	QDns::setLabel	(const	QString	&	label)	[virtual]

Sets	this	DNS	query	object	to	query	for	information	about	label.

This	does	not	change	the	recordType(),	but	its	isWorking()	status	will	probably
change	as	a	result.

The	DNS	lookup	is	started	the	next	time	the	application	enters	the	event	loop.
When	the	result	is	found	the	signal	resultsReady()	is	emitted.

void	QDns::setLabel	(const	QHostAddress	&	address)	[virtual]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Sets	this	DNS	query	object	to	query	for	information	about	the	host	address
address.	The	label	is	set	to	the	IN-ADDR.ARPA	domain	name.	This	is	useful	in
combination	with	the	Ptr	record	type	(e.g.	if	you	want	to	look	up	a	hostname	for
a	given	address).

void	QDns::setRecordType	(RecordType	rr	=	A)	[virtual]

Sets	this	object	to	query	for	record	type	rr	records.

The	DNS	lookup	is	started	the	next	time	the	application	enters	the	event	loop.
When	the	result	is	found	the	signal	resultsReady()	is	emitted.

See	also	RecordType.

QStringList	QDns::texts	()	const

Returns	a	list	of	texts	if	the	record	type	is	Txt.

Note	that	if	you	want	to	iterate	over	the	list,	you	should	iterate	over	a	copy,	e.g.

				QStringList	list	=	myDns.texts();

				QStringList::Iterator	it	=	list.begin();

				while(it	!=	list.end())	{

								myProcessing(*it);

								++it;

				}

				

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QImageDrag	Class	Reference
The	QImageDrag	class	provides	a	drag	and	drop	object	for	transferring	images.
More...

#include	<qdragobject.h>

Inherits	QDragObject.

List	of	all	member	functions.

Public	Members

QImageDrag	(QImage	image,	QWidget	*	dragSource	=	0,
const	char	*	name	=	0)
QImageDrag	(QWidget	*	dragSource	=	0,	const	char	*	name	=	0)
~QImageDrag	()
virtual	void	setImage	(QImage	image)

Static	Public	Members

bool	canDecode	(const	QMimeSource	*	e)
bool	decode	(const	QMimeSource	*	e,	QImage	&	img)
bool	decode	(const	QMimeSource	*	e,	QPixmap	&	pm)

Detailed	Description

The	QImageDrag	class	provides	a	drag	and	drop	object	for	transferring	images.

Images	are	offered	to	the	receiving	application	in	multiple	formats,	determined
by	Qt's	output	formats.

For	more	information	about	drag	and	drop,	see	the	QDragObject	class	and	the
drag	and	drop	documentation.

See	also	Drag	And	Drop	Classes.

Member	Function	Documentation

QImageDrag::QImageDrag	(QImage	image,
QWidget	*	dragSource	=	0,	const	char	*	name	=	0)

Constructs	an	image	drag	object	and	sets	its	data	to	image.	dragSource	must	be
the	drag	source;	name	is	the	object	name.

QImageDrag::QImageDrag	(QWidget	*	dragSource	=	0,
const	char	*	name	=	0)

Constructs	a	default	image	drag	object.	dragSource	must	be	the	drag	source;
name	is	the	object	name.

QImageDrag::~QImageDrag	()

Destroys	the	image	drag	object	and	frees	up	all	allocated	resources.

bool	QImageDrag::canDecode	(const	QMimeSource	*	e)
[static]

Returns	TRUE	if	the	information	in	mime	source	e	can	be	decoded	into	an
image;	otherwise	returns	FALSE.

See	also	decode().

Example:	desktop/desktop.cpp.

bool	QImageDrag::decode	(const	QMimeSource	*	e,
QImage	&	img)	[static]

Attempts	to	decode	the	dropped	information	in	mime	source	e	into	img.	Returns
TRUE	if	successful;	otherwise	returns	FALSE.

See	also	canDecode().

Example:	desktop/desktop.cpp.

bool	QImageDrag::decode	(const	QMimeSource	*	e,
QPixmap	&	pm)	[static]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Attempts	to	decode	the	dropped	information	in	mime	source	e	into	pixmap	pm.
Returns	TRUE	if	successful;	otherwise	returns	FALSE.

This	is	a	convenience	function	that	converts	to	a	QPixmap	via	a	QImage.

See	also	canDecode().

void	QImageDrag::setImage	(QImage	image)	[virtual]

Sets	the	image	to	be	dragged	to	image.	You	will	need	to	call	this	if	you	did	not
pass	the	image	during	construction.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QProcess	Class	Reference
The	QProcess	class	is	used	to	start	external	programs	and	to	communicate	with
them.	More...

#include	<qprocess.h>

Inherits	QObject.

List	of	all	member	functions.

Public	Members

QProcess	(QObject	*	parent	=	0,	const	char	*	name	=	0)
QProcess	(const	QString	&	arg0,	QObject	*	parent	=	0,	const	char	*	name
=	0)
QProcess	(const	QStringList	&	args,	QObject	*	parent	=	0,
const	char	*	name	=	0)
~QProcess	()
QStringList	arguments	()	const
void	clearArguments	()
virtual	void	setArguments	(const	QStringList	&	args)
virtual	void	addArgument	(const	QString	&	arg)
QDir	workingDirectory	()	const
virtual	void	setWorkingDirectory	(const	QDir	&	dir)
enum	Communication	{	Stdin	=	0x01,	Stdout	=	0x02,	Stderr	=	0x04,
DupStderr	=	0x08	}
void	setCommunication	(int	commFlags)
int	communication	()	const
virtual	bool	start	(QStringList	*	env	=	0)
virtual	bool	launch	(const	QString	&	buf,	QStringList	*	env	=	0)
virtual	bool	launch	(const	QByteArray	&	buf,	QStringList	*	env	=	0)
bool	isRunning	()	const
bool	normalExit	()	const
int	exitStatus	()	const
virtual	QByteArray	readStdout	()
virtual	QByteArray	readStderr	()
bool	canReadLineStdout	()	const
bool	canReadLineStderr	()	const
virtual	QString	readLineStdout	()
virtual	QString	readLineStderr	()
PID	processIdentifier	()

Public	Slots

void	tryTerminate	()	const
void	kill	()	const
virtual	void	writeToStdin	(const	QByteArray	&	buf)
virtual	void	writeToStdin	(const	QString	&	buf)
virtual	void	closeStdin	()

Signals

void	readyReadStdout	()
void	readyReadStderr	()
void	processExited	()
void	wroteToStdin	()
void	launchFinished	()

Detailed	Description

The	QProcess	class	is	used	to	start	external	programs	and	to	communicate	with
them.

You	can	write	to	the	started	program's	standard	input,	and	can	read	the	program's
standard	output	and	standard	error.	You	can	pass	command	line	arguments	to	the
program	either	in	the	constructor	or	with	setArguments()	or	addArgument().	The
program's	working	directory	can	be	set	with	setWorkingDirectory().	If	you	need
to	set	up	environment	variables	pass	them	to	the	start()	or	launch()	functions	(see
below).	The	processExited()	signal	is	emitted	if	the	program	exits.	The
program's	exit	status	is	available	from	exitStatus(),	although	you	could	simply
call	normalExit()	to	see	if	the	program	terminated	normally.

There	are	two	different	ways	to	start	a	process.	If	you	just	want	to	run	a	program,
optionally	passing	data	to	its	standard	input	at	the	beginning,	use	one	of	the
launch()	functions.	If	you	want	full	control	of	the	program's	standard	input
(especially	if	you	don't	know	all	the	data	you	want	to	send	to	standard	input	at
the	beginning),	use	the	start()	function.

If	you	use	start()	you	can	write	to	the	program's	standard	input	using
writeToStdin()	and	you	can	close	the	standard	input	with	closeStdin().	The
wroteToStdin()	signal	is	emitted	if	the	data	sent	to	standard	input	has	been
written.	You	can	read	from	the	program's	standard	output	using	readStdout()	or
readLineStdout().	These	functions	return	an	empty	QByteArray	if	there	is	no
data	to	read.	The	readyReadStdout()	signal	is	emitted	when	there	is	data
available	to	be	read	from	standard	output.	Standard	error	has	a	set	of	functions
that	correspond	to	the	standard	output	functions,	i.e.	readStderr(),
readLineStderr()	and	readyReadStderr().

If	you	use	one	of	the	launch()	functions	the	data	you	pass	will	be	sent	to	the
program's	standard	input	which	will	be	closed	once	all	the	data	has	been	written.
You	should	not	use	writeToStdin()	or	closeStdin()	if	you	use	launch().	If	you
need	to	send	data	to	the	program's	standard	input	after	it	has	started	running	use
start()	instead	of	launch().

Both	start()	and	launch()	can	accept	a	string	list	of	strings	each	of	which	has	the
format,	key=value,	where	the	keys	are	the	names	of	environment	variables.

You	can	test	to	see	if	a	program	is	running	with	isRunning().	The	program's
process	identifier	is	available	from	processIdentifier().	If	you	want	to	terminate	a
running	program	use	tryTerminate(),	but	note	that	the	program	may	ignore	this.
If	you	really	want	to	terminate	the	program,	without	it	having	any	chance	to
clean	up,	you	can	use	kill().

As	an	example,	suppose	we	want	to	start	the	uic	command	(a	Qt	command	line
tool	used	with	Qt	Designer)	and	perform	some	operations	on	the	output	(the	uic
outputs	the	code	it	generates	to	standard	output	by	default).	Suppose	further	that
we	want	to	run	the	program	on	the	file	"small_dialog.ui"	with	the	command	line
options	"-tr	i18n".	On	the	command	line	we	would	write:

				uic	-tr	i18n	small_dialog.ui

				

A	code	snippet	for	this	with	the	QProcess	class	might	look	like	this:

				UicManager::UicManager()

				{

								proc	=	new	QProcess(this);

								proc->addArgument("uic");

								proc->addArgument("-tr");

								proc->addArgument("i18n");

								proc->addArgument("small_dialog.ui");

								connect(proc,	SIGNAL(readyReadStdout()),

																this,	SLOT(readFromStdout()));

								if	(!proc->start())	{

												//	error	handling

								}

				}

				void	UicManager::readFromStdout()

				{

								//	Read	and	process	the	data.

								//	Bear	in	mind	that	the	data	might	be	output	in	chunks.

				}

Although	you	may	need	quotes	for	a	file	named	on	the	command	line	(e.g.	if	it
contains	spaces)	you	shouldn't	use	extra	quotes	for	arguments	passed	to
addArgument()	or	setArguments().

The	readyReadStdout()	signal	is	emitted	when	there	is	new	data	on	standard
output.	This	happens	asynchronously:	you	don't	know	if	more	data	will	arrive
later.	In	the	above	example	you	could	connect	the	processExited()	signal	to	the
slot	UicManager::readFromStdout()	instead.	If	you	do	so,	you	will	be	certain
that	all	the	data	is	available	when	the	slot	is	called.	On	the	other	hand,	you	must
wait	until	the	process	has	finished	before	doing	any	processing.

See	also	QSocket,	Input/Output	and	Networking	and	Miscellaneous	Classes.

Member	Type	Documentation

QProcess::Communication

This	enum	type	defines	the	communication	channels	connected	to	the	process.

QProcess::Stdin	-	Data	can	be	written	to	the	process's	standard	input.
QProcess::Stdout	-	Data	can	be	read	from	the	process's	standard	output.
QProcess::Stderr	-	Data	can	be	read	from	the	process's	standard	error.
QProcess::DupStderr	-	Both	the	process's	standard	error	output	and	its
standard	output	are	written	to	its	standard	output.	(Like	Unix's	dup2().)	This
means	that	nothing	is	sent	to	the	standard	error	output.	This	is	especially
useful	if	your	application	requires	that	the	output	on	standard	output	and	on
standard	error	must	be	read	in	the	same	order	that	they	are	produced.	This	is
a	flag,	so	to	activate	it	you	must	pass	Stdout|Stderr|DupStderr,	or
Stdin|Stdout|Stderr|DupStderr	if	you	want	to	provide	input,	to	the
setCommunication()	call.

See	also	setCommunication()	and	communication().

Member	Function	Documentation

QProcess::QProcess	(QObject	*	parent	=	0,	const	char	*	name	=
0)

Constructs	a	QProcess	object.	The	parent	and	name	parameters	are	passed	to	the
QObject	constructor.

See	also	setArguments(),	addArgument()	and	start().

QProcess::QProcess	(const	QString	&	arg0,	QObject	*	parent	=
0,	const	char	*	name	=	0)

Constructs	a	QProcess	with	arg0	as	the	command	to	be	executed.	The	parent	and
name	parameters	are	passed	to	the	QObject	constructor.

The	process	is	not	started.	You	must	call	start()	or	launch()	to	start	the	process.

See	also	setArguments(),	addArgument()	and	start().

QProcess::QProcess	(const	QStringList	&	args,	QObject	*	parent
=	0,	const	char	*	name	=	0)

Constructs	a	QProcess	with	args	as	the	arguments	of	the	process.	The	first
element	in	the	list	is	the	command	to	be	executed.	The	other	elements	in	the	list
are	the	arguments	to	this	command.	The	parent	and	name	parameters	are	passed
to	the	QObject	constructor.

The	process	is	not	started.	You	must	call	start()	or	launch()	to	start	the	process.

See	also	setArguments(),	addArgument()	and	start().

QProcess::~QProcess	()

Destroys	the	instance.

If	the	process	is	running,	it	is	not	terminated!	The	standard	input,	standard

output	and	standard	error	of	the	process	are	closed.

You	can	connect	the	destroyed()	signal	to	the	kill()	slot,	if	you	want	the	process
to	be	terminated	automatically	when	the	instance	is	destroyed.

See	also	tryTerminate()	and	kill().

void	QProcess::addArgument	(const	QString	&	arg)	[virtual]

Adds	arg	to	the	end	of	the	list	of	arguments.

The	first	element	in	the	list	of	arguments	is	the	command	to	be	executed;	the
following	elements	are	the	command's	arguments.

See	also	arguments()	and	setArguments().

Example:	process/process.cpp.

QStringList	QProcess::arguments	()	const

Returns	the	list	of	arguments	that	are	set	for	the	process.	Arguments	can	be
specified	with	the	constructor	or	with	the	functions	setArguments()	and
addArgument().

Note	that	if	you	want	to	iterate	over	the	list,	you	should	iterate	over	a	copy,	e.g.

				QStringList	list	=	myProcess.arguments();

				QStringList::Iterator	it	=	list.begin();

				while(it	!=	list.end())	{

								myProcessing(*it);

								++it;

				}

				

See	also	setArguments()	and	addArgument().

bool	QProcess::canReadLineStderr	()	const

Returns	TRUE	if	it's	possible	to	read	an	entire	line	of	text	from	standard	error	at
this	time;	otherwise	returns	FALSE.

See	also	readLineStderr()	and	canReadLineStdout().

bool	QProcess::canReadLineStdout	()	const

Returns	TRUE	if	it's	possible	to	read	an	entire	line	of	text	from	standard	output
at	this	time;	otherwise	returns	FALSE.

See	also	readLineStdout()	and	canReadLineStderr().

void	QProcess::clearArguments	()

Clears	the	list	of	arguments	that	are	set	for	the	process.

See	also	setArguments()	and	addArgument().

void	QProcess::closeStdin	()	[virtual	slot]

Closes	the	process's	standard	input.

This	function	also	deletes	any	pending	data	that	has	not	been	written	to	standard
input.

See	also	wroteToStdin().

int	QProcess::communication	()	const

Returns	the	communication	required	with	the	process,	i.e.	some	combination	of
the	Communication	flags.

See	also	setCommunication().

int	QProcess::exitStatus	()	const

Returns	the	exit	status	of	the	process	or	0	if	the	process	is	still	running.	This
function	returns	immediately	and	does	not	wait	until	the	process	is	finished.

If	normalExit()	is	FALSE	(e.g.	if	the	program	was	killed	or	crashed),	this
function	returns	0,	so	you	should	check	the	return	value	of	normalExit()	before
relying	on	this	value.

See	also	normalExit()	and	processExited().

bool	QProcess::isRunning	()	const

Returns	TRUE	if	the	process	is	running;	otherwise	returns	FALSE.

See	also	normalExit(),	exitStatus()	and	processExited().

void	QProcess::kill	()	const	[slot]

Terminates	the	process.	This	is	not	a	safe	way	to	end	a	process	since	the	process
will	not	be	able	to	do	any	cleanup.	tryTerminate()	is	safer,	but	processes	can
ignore	a	tryTerminate().

The	nice	way	to	end	a	process	and	to	be	sure	that	it	is	finished,	is	to	do
something	like	this:

								process->tryTerminate();

								QTimer::singleShot(5000,	process,	SLOT(kill()));

				

This	tries	to	terminate	the	process	the	nice	way.	If	the	process	is	still	running
after	5	seconds,	it	terminates	the	process	the	hard	way.	The	timeout	should	be
chosen	depending	on	the	time	the	process	needs	to	do	all	its	cleanup:	use	a
higher	value	if	the	process	is	likely	to	do	a	lot	of	computation	or	I/O	on	cleanup.

The	slot	returns	immediately:	it	does	not	wait	until	the	process	has	finished.
When	the	process	terminates,	the	processExited()	signal	is	emitted.

See	also	tryTerminate()	and	processExited().

bool	QProcess::launch	(const	QByteArray	&	buf,
QStringList	*	env	=	0)	[virtual]

Runs	the	process	and	writes	the	data	buf	to	the	process's	standard	input.	If	all	the
data	is	written	to	standard	input,	standard	input	is	closed.	The	command	is
searched	for	in	the	path	for	executable	programs;	you	can	also	use	an	absolute
path	in	the	command	itself.

If	env	is	null,	then	the	process	is	started	with	the	same	environment	as	the

starting	process.	If	env	is	non-null,	then	the	values	in	the	string	list	are
interpreted	as	environment	setttings	of	the	form	key=value	and	the	process	is
started	with	these	environment	settings.	For	convenience,	there	is	a	small
exception	to	this	rule	under	Unix:	if	env	does	not	contain	any	settings	for	the
environment	variable	LD_LIBRARY_PATH,	then	this	variable	is	inherited	from	the
starting	process.

Returns	TRUE	if	the	process	could	be	started;	otherwise	returns	FALSE.

Note	that	you	should	not	use	the	slots	writeToStdin()	and	closeStdin()	on
processes	started	with	launch(),	since	the	result	is	not	well-defined.	If	you	need
these	slots,	use	start()	instead.

The	process	may	or	may	not	read	the	buf	data	sent	to	its	standard	input.

You	can	call	this	function	even	when	a	process	that	was	started	with	this	instance
is	still	running.	Be	aware	that	if	you	do	this	the	standard	input	of	the	process	that
was	launched	first	will	be	closed,	with	any	pending	data	being	deleted,	and	the
process	will	be	left	to	run	out	of	your	control.	Similarly,	if	the	process	could	not
be	started	the	standard	input	will	be	closed	and	the	pending	data	deleted.	(On
operating	systems	that	have	zombie	processes,	Qt	will	also	wait()	on	the	old
process.)

The	object	emits	the	signal	launchFinished()	when	this	function	call	is	finished.
If	the	start	was	successful,	this	signal	is	emitted	after	all	the	data	has	been
written	to	standard	input.	If	the	start	failed,	then	this	signal	is	emitted
immediately.

See	also	start()	and	launchFinished().

bool	QProcess::launch	(const	QString	&	buf,	QStringList	*	env	=
0)	[virtual]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

The	data	buf	is	written	to	standard	input	with	writeToStdin()	using	the
QString::local8Bit()	representation	of	the	strings.

void	QProcess::launchFinished	()	[signal]

This	signal	is	emitted	when	the	process	was	started	with	launch().	If	the	start	was
successful,	this	signal	is	emitted	after	all	the	data	has	been	written	to	standard
input.	If	the	start	failed,	then	this	signal	is	emitted	immediately.

This	signal	is	especially	useful	if	you	want	to	know	when	you	can	safely	delete
the	QProcess	object	when	you	are	not	intrested	in	reading	from	standard	output
or	standard	error.

See	also	launch()	and	QObject::deleteLater().

bool	QProcess::normalExit	()	const

Returns	TRUE	if	the	process	has	exited	normally;	otherwise	returns	FALSE.
This	implies	that	this	function	returns	FALSE	if	the	process	is	still	running.

See	also	isRunning(),	exitStatus()	and	processExited().

void	QProcess::processExited	()	[signal]

This	signal	is	emitted	when	the	process	has	exited.

See	also	isRunning(),	normalExit(),	exitStatus(),	start()	and	launch().

Example:	process/process.cpp.

PID	QProcess::processIdentifier	()

Returns	platform	dependent	information	about	the	process.	This	can	be	used
together	with	platform	specific	system	calls.

Under	Unix	the	return	value	is	the	PID	of	the	process,	or	-1	if	no	process	is
belongs	to	this	object.

Under	Windows	it	is	a	pointer	to	the	PROCESS_INFORMATION	struct,	or	0	if	no
process	is	belongs	to	this	object.

Use	of	this	function's	return	value	is	likely	to	be	non-portable.

QString	QProcess::readLineStderr	()	[virtual]

Reads	a	line	of	text	from	standard	error,	excluding	any	trailing	newline	or
carriage	return	characters	and	returns	it.	Returns	QString::null	if
canReadLineStderr()	returns	FALSE.

See	also	canReadLineStderr(),	readyReadStderr(),	readStderr()	and
readLineStdout().

QString	QProcess::readLineStdout	()	[virtual]

Reads	a	line	of	text	from	standard	output,	excluding	any	trailing	newline	or
carriage	return	characters,	and	returns	it.	Returns	QString::null	if
canReadLineStdout()	returns	FALSE.

See	also	canReadLineStdout(),	readyReadStdout(),	readStdout()	and
readLineStderr().

QByteArray	QProcess::readStderr	()	[virtual]

Reads	the	data	that	the	process	has	written	to	standard	error.	When	new	data	is
written	to	standard	error,	the	class	emits	the	signal	readyReadStderr().

If	there	is	no	data	to	read,	this	function	returns	a	QByteArray	of	size	0:	it	does
not	wait	until	there	is	something	to	read.

See	also	readyReadStderr(),	readLineStderr(),	readStdout()	and	writeToStdin().

QByteArray	QProcess::readStdout	()	[virtual]

Reads	the	data	that	the	process	has	written	to	standard	output.	When	new	data	is
written	to	standard	output,	the	class	emits	the	signal	readyReadStdout().

If	there	is	no	data	to	read,	this	function	returns	a	QByteArray	of	size	0:	it	does
not	wait	until	there	is	something	to	read.

See	also	readyReadStdout(),	readLineStdout(),	readStderr()	and	writeToStdin().

Example:	process/process.cpp.

void	QProcess::readyReadStderr	()	[signal]

This	signal	is	emitted	when	the	process	has	written	data	to	standard	error.	You
can	read	the	data	with	readStderr().

Note	that	this	signal	is	only	emitted	when	there	is	new	data	and	not	when	there	is
old,	but	unread	data.	In	the	slot	connected	to	this	signal,	you	should	always	read
everything	that	is	available	at	that	moment	to	make	sure	that	you	don't	lose	any
data.

See	also	readStderr(),	readLineStderr()	and	readyReadStdout().

void	QProcess::readyReadStdout	()	[signal]

This	signal	is	emitted	when	the	process	has	written	data	to	standard	output.	You
can	read	the	data	with	readStdout().

Note	that	this	signal	is	only	emitted	when	there	is	new	data	and	not	when	there	is
old,	but	unread	data.	In	the	slot	connected	to	this	signal,	you	should	always	read
everything	that	is	available	at	that	moment	to	make	sure	that	you	don't	lose	any
data.

See	also	readStdout(),	readLineStdout()	and	readyReadStderr().

Example:	process/process.cpp.

void	QProcess::setArguments	(const	QStringList	&	args)
[virtual]

Sets	args	as	the	arguments	for	the	process.	The	first	element	in	the	list	is	the
command	to	be	executed.	The	other	elements	in	the	list	are	the	arguments	to	the
command.	Any	previous	arguments	are	deleted.

QProcess	does	perform	argument	substitutions;	for	example,	if	you	specify	"*"
or	"$DISPLAY",	these	values	are	passed	to	the	process	literally.	If	you	want	to
have	the	same	behavior	as	the	shell	provides,	you	must	do	the	substitutions
yourself;	i.e.	instead	of	specifying	a	"*"	you	must	specify	the	list	of	all	the
filenames	in	the	current	directory,	and	instead	of	"$DISPLAY"	you	must	specify
the	value	of	the	environment	variable	DISPLAY.

Note	for	Windows	users.	The	standard	Windows	shells,	e.g.	command.com	and
cmd.exe,	do	not	perform	file	globbing,	i.e.	they	do	not	convert	a	"*"	on	the
command	line	into	a	list	of	files	in	the	current	directory.	For	this	reason	most
Windows	applications	implement	their	own	file	globbing,	and	as	a	result	of	this,
specifying	an	argument	of	"*"	for	a	Windows	application	is	likely	to	result	in	the
application	performing	a	file	glob	and	ending	up	with	a	list	of	filenames.

See	also	arguments()	and	addArgument().

void	QProcess::setCommunication	(int	commFlags)

Sets	commFlags	as	the	communication	required	with	the	process.

commFlags	is	a	bitwise	OR	of	the	flags	defined	by	the	Communication	enum.

The	default	is	Stdin|Stdout|Stderr.

See	also	communication().

void	QProcess::setWorkingDirectory	(const	QDir	&	dir)
[virtual]

Sets	dir	as	the	working	directory	for	processes.	This	does	not	affect	running
processes;	only	processes	that	are	started	afterwards	are	affected.

Setting	the	working	directory	is	especially	useful	for	processes	that	try	to	access
files	with	relative	paths.

See	also	workingDirectory()	and	start().

bool	QProcess::start	(QStringList	*	env	=	0)	[virtual]

Tries	to	run	a	process	for	the	command	and	arguments	that	were	specified	with
setArguments(),	addArgument()	or	that	were	specified	in	the	constructor.	The
command	is	searched	for	in	the	path	for	executable	programs;	you	can	also	use
an	absolute	path	in	the	command	itself.

If	env	is	null,	then	the	process	is	started	with	the	same	environment	as	the
starting	process.	If	env	is	non-null,	then	the	values	in	the	stringlist	are	interpreted

as	environment	setttings	of	the	form	key=value	and	the	process	is	started	in
these	environment	settings.	For	convenience,	there	is	a	small	exception	to	this
rule:	under	Unix,	if	env	does	not	contain	any	settings	for	the	environment
variable	LD_LIBRARY_PATH,	then	this	variable	is	inherited	from	the	starting
process;	under	Windows	the	same	applies	for	the	environment	variable	PATH.

Returns	TRUE	if	the	process	could	be	started;	otherwise	returns	FALSE.

You	can	write	data	to	the	process's	standard	input	with	writeToStdin().	You	can
close	standard	input	with	closeStdin()	and	you	can	terminate	the	process	with
tryTerminate(),	or	with	kill().

You	can	call	this	function	even	if	you've	used	this	instance	to	create	a	another
process	which	is	still	running.	In	such	cases,	QProcess	closes	the	old	process's
standard	input	and	deletes	pending	data,	i.e.,	you	lose	all	control	over	the	old
process,	but	the	old	process	is	not	terminated.	This	applies	also	if	the	process
could	not	be	started.	(On	operating	systems	that	have	zombie	processes,	Qt	will
also	wait()	on	the	old	process.)

See	also	launch()	and	closeStdin().

Example:	process/process.cpp.

void	QProcess::tryTerminate	()	const	[slot]

Asks	the	process	to	terminate.	Processes	can	ignore	this	if	they	wish.	If	you	want
to	be	certain	that	the	process	really	terminates,	you	can	use	kill()	instead.

The	slot	returns	immediately:	it	does	not	wait	until	the	process	has	finished.
When	the	process	terminates,	the	processExited()	signal	is	emitted.

See	also	kill()	and	processExited().

QDir	QProcess::workingDirectory	()	const

Returns	the	working	directory	that	was	set	with	setWorkingDirectory(),	or	the
current	directory	if	none	has	been	explicitly	set.

See	also	setWorkingDirectory()	and	QDir::current().

void	QProcess::writeToStdin	(const	QByteArray	&	buf)
[virtual	slot]

Writes	the	data	buf	to	the	process's	standard	input.	The	process	may	or	may	not
read	this	data.

This	function	returns	immediately;	the	QProcess	class	might	write	the	data	at	a
later	point	(you	must	enter	the	event	loop	for	this	to	occur).	When	all	the	data	is
written	to	the	process,	the	signal	wroteToStdin()	is	emitted.	This	does	not	mean
that	the	process	actually	read	the	data,	since	this	class	only	detects	when	it	was
able	to	write	the	data	to	the	operating	system.

See	also	wroteToStdin(),	closeStdin(),	readStdout()	and	readStderr().

void	QProcess::writeToStdin	(const	QString	&	buf)	[virtual
slot]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

The	string	buf	is	handled	as	text	using	the	QString::local8Bit()	representation.

void	QProcess::wroteToStdin	()	[signal]

This	signal	is	emitted	if	the	data	sent	to	standard	input	(via	writeToStdin())	was
actually	written	to	the	process.	This	does	not	imply	that	the	process	really	read
the	data,	since	this	class	only	detects	when	it	was	able	to	write	the	data	to	the
operating	system.	But	it	is	now	safe	to	close	standard	input	without	losing
pending	data.

See	also	writeToStdin()	and	closeStdin().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QDockArea
QDockAreaQDockWindow	 ……

#include	<qdockarea.h>

QWidget

enum	HandlePosition	{	Normal,	Reverse	}
QDockArea	(Orientation	o,	HandlePosition	h	=	Normal,	QWidget	*	parent
=	0,	const	char	*	name	=	0)
~QDockArea	()
void	moveDockWindow	(QDockWindow	*	w,	const	QPoint	&	p,
const	QRect	&	r,	bool	swap)
void	removeDockWindow	(QDockWindow	*	w,	bool	makeFloating,
bool	swap,	bool	fixNewLines	=	TRUE)
void	moveDockWindow	(QDockWindow	*	w,	int	index	=	-1)
bool	hasDockWindow	(QDockWindow	*	w,	int	*	index	=	0)
Orientation	orientation	()	const
HandlePosition	handlePosition	()	const
bool	isEmpty	()	const
int	count	()	const
QPtrList<QDockWindow>	dockWindowList	()	const
bool	isDockWindowAccepted	(QDockWindow	*	dw)
void	setAcceptDockWindow	(QDockWindow	*	dw,	bool	accept)

void	lineUp	(bool	keepNewLines)

int	count	-		
bool	empty	-		
HandlePosition	handlePosition	-		
Orientation	orientation	-		

QTextStream	&	operator<<	(QTextStream	&	ts,
const	QDockArea	&	dockArea)
QTextStream	&	operator>>	(QTextStream	&	ts,	QDockArea	&	dockArea
)

QDockAreaQDockWindow

QDockAreaQDockWindowQDockWindowQDockWindow
QDockAreaQDockWindowQDockAreaQToolBar
QDockWindow

QMainWindowQToolBarQDockWindowQDockAreaQDockArea
QMainWindowQDockArea

QDockAre lineUp()

QDockArea0
moveDockWindow()

QDockWindow::dock()QDockWindow::undock() setAcceptDockWindow
hasDockWindow() count()

QTextStream

QTextStream

				ts	<<	*myDockArea;

		

QTextStream

				ts	>>	*myDockArea;

		

QDockArea::HandlePosition

QDockArea::Normal	-	
QDockArea::Reverse	-	

QDockArea::QDockArea	(Orientation	o,	HandlePosition	h	=
Normal,	QWidget	*	parent	=	0,	const	char	*	name	=	0)

ohparentnameQDockArea

QDockArea::~QDockArea	()

int	QDockArea::count	()	const

“count”

QPtrList<QDockWindow>	QDockArea::dockWindowList	()
const

HandlePosition	QDockArea::handlePosition	()	const

“handlePosition”

bool	QDockArea::hasDockWindow	(QDockWindow	*	w,
int	*	index	=	0)

w index indexw index-1

bool	QDockArea::isDockWindowAccepted	(QDockWindow	*	dw
)

dw

setAcceptDockWindow()

bool	QDockArea::isEmpty	()	const

“empty”

void	QDockArea::lineUp	(bool	keepNewLines)	[]

keepNewLines keepNewLines

void	QDockArea::moveDockWindow	(QDockWindow	*	w,
int	index	=	-1)

QDockWindow	w w w index-1 w index

void	QDockArea::moveDockWindow	(QDockWindow	*	w,
const	QPoint	&	p,	const	QRect	&	r,	bool	swap)

wp rswap

QDockWindow

Orientation	QDockArea::orientation	()	const

“orientation”

void	QDockArea::removeDockWindow	(QDockWindow	*	w,
bool	makeFloating,	bool	swap,	bool	fixNewLines	=	TRUE)

wmakeFloating w swap w fixNewLines

QDockWindow::dock()QDockWindow::undock

void	QDockArea::setAcceptDockWindow	(QDockWindow	*	dw,
bool	accept)

accept dw accept dw

isDockWindowAccepted()

int	count

count()

bool	empty

isEmpty()

HandlePosition	handlePosition

Normal

handlePosition()

Orientation	orientation

orientation()

QTextStream	&	operator<<	(QTextStream	&	ts,
const	QDockArea	&	dockArea)

dockAreats

operator>>()

QTextStream	&	operator>>	(QTextStream	&	ts,
QDockArea	&	dockArea)

tsdockArea operator<<()

operator<<()

Qt		©	1995-2002	 Trolltech

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QImageFormat	Class	Reference
The	QImageFormat	class	is	an	incremental	image	decoder	for	a	specific	image
format.	More...

#include	<qasyncimageio.h>

List	of	all	member	functions.

Public	Members

virtual	int	decode	(QImage	&	img,	QImageConsumer	*	consumer,
const	uchar	*	buffer,	int	length)	=	0

Detailed	Description

The	QImageFormat	class	is	an	incremental	image	decoder	for	a	specific	image
format.

By	making	a	derived	class	of	QImageFormatType,	which	in	turn	creates	objects
that	are	a	subclass	of	QImageFormat,	you	can	add	support	for	more	incremental
image	formats,	allowing	such	formats	to	be	sources	for	a	QMovie	or	for	the	first
frame	of	the	image	stream	to	be	loaded	as	a	QImage	or	QPixmap.

Your	new	subclass	must	reimplement	the	decode()	function	in	order	to	process
your	new	format.

New	QImageFormat	objects	are	generated	by	new	QImageFormatType	factories.

See	also	Graphics	Classes,	Image	Processing	Classes	and	Multimedia	Classes.

Member	Function	Documentation

int	QImageFormat::decode	(QImage	&	img,
QImageConsumer	*	consumer,	const	uchar	*	buffer,	int	length
)	[pure	virtual]

New	subclasses	must	reimplement	this	method.

It	should	decode	some	or	all	of	the	bytes	from	buffer	into	img,	calling	the
methods	of	consumer	as	the	decoding	proceeds	to	inform	that	consumer	of
changes	to	the	image.	The	length	of	the	data	is	given	in	length.	The	consumer
may	be	0,	in	which	case	the	function	should	just	process	the	data	into	img
without	telling	any	consumer	about	the	changes.	Note	that	the	decoder	must
store	enough	state	to	be	able	to	continue	in	subsequent	calls	to	this	method	-	this
is	the	essence	of	the	incremental	image	loading.

The	function	should	return	without	processing	all	the	data	if	it	reaches	the	end	of
a	frame	in	the	input.

The	function	must	return	the	number	of	bytes	it	has	processed.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QProgressBar	Class	Reference
The	QProgressBar	widget	provides	a	horizontal	progress	bar.	More...

#include	<qprogressbar.h>

Inherits	QFrame.

List	of	all	member	functions.

Public	Members

QProgressBar	(QWidget	*	parent	=	0,	const	char	*	name	=	0,	WFlags	f	=
0)
QProgressBar	(int	totalSteps,	QWidget	*	parent	=	0,	const	char	*	name	=
0,	WFlags	f	=	0)
int	totalSteps	()	const
int	progress	()	const
const	QString	&	progressString	()	const
void	setCenterIndicator	(bool	on)
bool	centerIndicator	()	const
void	setIndicatorFollowsStyle	(bool)
bool	indicatorFollowsStyle	()	const
bool	percentageVisible	()	const
void	setPercentageVisible	(bool)

Public	Slots

void	reset	()
virtual	void	setTotalSteps	(int	totalSteps)
virtual	void	setProgress	(int	progress)

Properties

bool	centerIndicator	-	whether	the	indicator	string	should	be	centered
bool	indicatorFollowsStyle	-	whether	the	display	of	the	indicator	string
should	follow	the	GUI	style
bool	percentageVisible	-	whether	the	current	progress	value	is	displayed
int	progress	-	the	current	amount	of	progress
QString	progressString	-	the	current	amount	of	progress	as	a	string		(read
only)
int	totalSteps	-	the	total	number	of	steps

Protected	Members

virtual	bool	setIndicator	(QString	&	indicator,	int	progress,	int	totalSteps)

Detailed	Description

The	QProgressBar	widget	provides	a	horizontal	progress	bar.

A	progress	bar	is	used	to	give	the	user	an	indication	of	the	progress	of	an
operation	and	to	reassure	them	that	the	application	is	still	running.

The	progress	bar	uses	the	concept	of	steps;	you	give	it	the	total	number	of	steps
and	the	number	of	steps	completed	so	far	and	it	will	display	the	percentage	of
steps	that	have	been	completed.	You	can	specify	the	total	number	of	steps	in	the
constructor	or	later	with	setTotalSteps().	The	current	number	of	steps	is	set	with
setProgress().	The	progress	bar	can	be	rewound	to	the	beginning	with	reset().

See	also	QProgressDialog,	GUI	Design	Handbook:	Progress	Indicator	and
Advanced	Widgets.

	

See	also	QProgressDialog,	GUI	Design	Handbook:	Progress	Indicator	and
Advanced	Widgets.

Member	Function	Documentation

QProgressBar::QProgressBar	(QWidget	*	parent	=	0,
const	char	*	name	=	0,	WFlags	f	=	0)

Constructs	a	progress	bar.

The	total	number	of	steps	is	set	to	100	by	default.

The	parent,	name	and	widget	flags,	f,	are	passed	on	to	the	QFrame::QFrame()
constructor.

See	also	totalSteps.

QProgressBar::QProgressBar	(int	totalSteps,	QWidget	*	parent	=
0,	const	char	*	name	=	0,	WFlags	f	=	0)

Constructs	a	progress	bar.

The	totalSteps	is	the	total	number	of	steps	that	need	to	be	completed	for	the
operation	which	this	progress	bar	represents.	For	example,	if	the	operation	is	to
examine	50	files,	this	value	would	be	50.	Before	examining	the	first	file,	call
setProgress(0);	call	setProgress(50)	after	examining	the	last	file	.

The	parent,	name	and	widget	flags,	f,	are	passed	to	the	QFrame::QFrame()
constructor.

See	also	totalSteps	and	progress.

bool	QProgressBar::centerIndicator	()	const

Returns	TRUE	if	the	indicator	string	should	be	centered;	otherwise	returns
FALSE.	See	the	"centerIndicator"	property	for	details.

bool	QProgressBar::indicatorFollowsStyle	()	const

Returns	TRUE	if	the	display	of	the	indicator	string	should	follow	the	GUI	style;

otherwise	returns	FALSE.	See	the	"indicatorFollowsStyle"	property	for	details.

bool	QProgressBar::percentageVisible	()	const

Returns	TRUE	if	the	current	progress	value	is	displayed;	otherwise	returns
FALSE.	See	the	"percentageVisible"	property	for	details.

int	QProgressBar::progress	()	const

Returns	the	current	amount	of	progress.	See	the	"progress"	property	for	details.

const	QString	&	QProgressBar::progressString	()	const

Returns	the	current	amount	of	progress	as	a	string.	See	the	"progressString"
property	for	details.

void	QProgressBar::reset	()	[slot]

Reset	the	progress	bar.	The	progress	bar	"rewinds"	and	shows	no	progress.

Examples:	fileiconview/mainwindow.cpp,	network/ftpclient/ftpmainwindow.cpp
and	progressbar/progressbar.cpp.

void	QProgressBar::setCenterIndicator	(bool	on)

Sets	whether	the	indicator	string	should	be	centered	to	on.	See	the
"centerIndicator"	property	for	details.

bool	QProgressBar::setIndicator	(QString	&	indicator,
int	progress,	int	totalSteps)	[virtual	protected]

This	method	is	called	to	generate	the	text	displayed	in	the	center	(or	in	some
styles,	to	the	left)	of	the	progress	bar.

The	progress	may	be	negative,	indicating	that	the	progress	bar	is	in	the	"reset"
state	before	any	progress	is	set.

The	default	implementation	is	the	percentage	of	completion	or	blank	in	the	reset

state.	The	percentage	is	calculated	based	on	the	progress	and	totalSteps.	You	can
set	the	indicator	text	if	you	wish.

To	allow	efficient	repainting	of	the	progress	bar,	this	method	should	return
FALSE	if	the	string	is	unchanged	from	the	last	call	to	this	function.

void	QProgressBar::setIndicatorFollowsStyle	(bool)

Sets	whether	the	display	of	the	indicator	string	should	follow	the	GUI	style.	See
the	"indicatorFollowsStyle"	property	for	details.

void	QProgressBar::setPercentageVisible	(bool)

Sets	whether	the	current	progress	value	is	displayed.	See	the	"percentageVisible"
property	for	details.

void	QProgressBar::setProgress	(int	progress)	[virtual	slot]

Sets	the	current	amount	of	progress	to	progress.	See	the	"progress"	property	for
details.

void	QProgressBar::setTotalSteps	(int	totalSteps)	[virtual
slot]

Sets	the	total	number	of	steps	to	totalSteps.	See	the	"totalSteps"	property	for
details.

int	QProgressBar::totalSteps	()	const

Returns	the	total	number	of	steps.	See	the	"totalSteps"	property	for	details.

Property	Documentation

bool	centerIndicator

This	property	holds	whether	the	indicator	string	should	be	centered.

Changing	this	property	sets	QProgressBar::indicatorFollowsStyle	to	FALSE.
The	default	is	TRUE.

Set	this	property's	value	with	setCenterIndicator()	and	get	this	property's	value
with	centerIndicator().

bool	indicatorFollowsStyle

This	property	holds	whether	the	display	of	the	indicator	string	should	follow	the
GUI	style.

The	default	is	TRUE.

See	also	centerIndicator.

Set	this	property's	value	with	setIndicatorFollowsStyle()	and	get	this	property's
value	with	indicatorFollowsStyle().

bool	percentageVisible

This	property	holds	whether	the	current	progress	value	is	displayed.

The	default	is	TRUE.

See	also	centerIndicator	and	indicatorFollowsStyle.

Set	this	property's	value	with	setPercentageVisible()	and	get	this	property's	value
with	percentageVisible().

int	progress

This	property	holds	the	current	amount	of	progress.

This	property	is	-1	if	the	progress	counting	has	not	started.

Set	this	property's	value	with	setProgress()	and	get	this	property's	value	with
progress().

QString	progressString

This	property	holds	the	current	amount	of	progress	as	a	string.

This	property	is	QString::null	if	the	progress	counting	has	not	started.

Get	this	property's	value	with	progressString().

int	totalSteps

This	property	holds	the	total	number	of	steps.

If	totalSteps	is	null,	the	progress	bar	will	display	a	busy	indicator.

See	also

Set	this	property's	value	with	setTotalSteps()	and	get	this	property's	value	with
totalSteps().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QButton
QCanvas QCanvasItem
QDialog
QFrame
QGridView
QScrollView
QWidget
QWizard

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Advanced	Widgets
These	classes	provide	more	complex	user	interface	controls	(widgets).

QCheckListItem Checkable	list	view	items
QCheckTableItem Checkboxes	in	QTables
QComboTableItem Means	of	using	comboboxes	in	QTables
QDateEdit Date	editor

QDateTimeEdit Combines	a	QDateEdit	and	QTimeEdit	widget	into	a
single	widget	for	editing	datetimes

QDesktopWidget Access	to	screen	information	on	multi-head	systems
QEditorFactory Used	to	create	editor	widgets	for	QVariant	data	types
QHeader Header	row	or	column,	e.g.	for	tables	and	listviews
QIconView Area	with	movable	labelled	icons
QIconViewItem Single	item	in	a	QIconView
QListBox List	of	selectable,	read-only	items
QListBoxItem The	base	class	of	all	list	box	items
QListBoxPixmap List	box	items	with	a	pixmap	and	optional	text
QListBoxText List	box	items	that	display	text
QListView Implements	a	list/tree	view
QListViewItem Implements	a	list	view	item
QListViewItemIterator Iterator	for	collections	of	QListViewItems
QMultiLineEdit Simple	editor	for	inputting	text
QProgressBar Horizontal	progress	bar
QTab The	structures	in	a	QTabBar
QTabBar Tab	bar,	e.g.	for	use	in	tabbed	dialogs
QTable Flexible	editable	table	widget
QTableItem The	cell	content	for	QTable	cells
QTableSelection Access	to	a	selected	area	in	a	QTable
QTabWidget Stack	of	tabbed	widgets
QTextBrowser Rich	text	browser	with	hypertext	navigation
QTimeEdit Time	editor

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Basic	Widgets
These	basic	controls	(widgets)	are	designed	for	direct	use.	There	are	also	some
abstract	widget	classes,	designed	for	subclassing,	and	some	more	complex
widgets.

QAction Abstract	user	interface	action	that	can	appear	both	in	menus
and	tool	bars

QActionGroup Groups	actions	together
QCheckBox Checkbox	with	a	text	label
QComboBox Combined	button	and	popup	list
QDial Rounded	range	control	(like	a	speedometer	or	potentiometer)
QLabel Text	or	image	display
QLCDNumberDisplays	a	number	with	LCD-like	digits
QLineEdit One-line	text	editor
QPopupMenu Popup	menu	widget
QPushButton Command	button
QRadioButton Radio	button	with	a	text	or	pixmap	label
QScrollBar Vertical	or	horizontal	scroll	bar
QSizeGrip Corner-grip	for	resizing	a	top-level	window
QSlider Vertical	or	horizontal	slider
QSpinBox Spin	box	widget	(spin	button)
QTextEdit Powerful	single-page	rich	text	editor

QToolButton Quick-access	button	to	commands	or	options,	usually	used
inside	a	QToolBar

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Database	Classes
These	classes	provide	access	to	SQL	databases.

QDataBrowser Data	manipulation	and	navigation	for	data	entry	forms

QDataTable Flexible	SQL	table	widget	that	supports	browsing	and
editing

QDataView Read-only	SQL	forms

QSql Namespace	for	Qt	SQL	identifiers	that	need	to	be	global-
like

QSqlCursor Browsing	and	editing	of	SQL	tables	and	views

QSqlDatabase Used	to	create	SQL	database	connections	and	provide
transaction	handling

QSqlDriver Abstract	base	class	for	accessing	SQL	databases

QSqlEditorFactory Used	to	create	the	editors	used	by	QDataTable	andQSqlForm
QSqlError SQL	database	error	information
QSqlField Manipulates	the	fields	in	SQL	database	tables	and	views
QSqlFieldInfo Stores	meta	data	associated	with	a	SQL	field

QSqlForm Creates	and	manages	data	entry	forms	tied	to	SQL
databases

QSqlIndex Functions	to	manipulate	and	describe	QSqlCursor	and
QSqlDatabase	indexes

QSqlPropertyMap Used	to	map	widgets	to	SQL	fields
QSqlQuery Means	of	executing	and	manipulating	SQL	statements
QSqlRecord Encapsulates	a	database	record,	i.e.	a	set	of	database	fields
QSqlRecordInfo Encapsulates	a	set	of	database	field	meta	data
QSqlResult Abstract	interface	for	accessing	data	from	SQL	databases

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Qt2000.

QDate
QDateEdit
QDateTime
QDateTimeEdit QDataEditQTimeEdit
QTime
QTimeEdit
QTimer

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Drag	And	Drop	Classes
These	classes	deal	with	drag	and	drop	and	the	necessary	mime	type	encoding
and	decoding.	See	also	Drag	and	Drop	with	Qt.

QColorDrag Drag	and	drop	object	for	transferring	colors

QDragEnterEvent Event	which	is	sent	to	the	widget	when	a	drag	and	dropfirst	drags	onto	the	widget

QDragLeaveEvent Event	which	is	sent	to	the	widget	when	a	drag	and	dropleaves	the	widget
QDragMoveEvent Event	which	is	sent	while	a	drag	and	drop	is	in	progress
QDragObject Encapsulates	MIME-based	data	transfer
QDropEvent Event	which	is	sent	when	a	drag	and	drop	is	completed
QIconDrag Supports	drag	and	drop	operations	within	a	QIconView
QIconDragItem Encapsulates	a	drag	item
QImageDrag Drag	and	drop	object	for	transferring	images

QMimeSource Abstraction	of	objects	which	provide	formatted	data	of	a
certain	MIME	type

QStoredDrag Simple	stored-value	drag	object	for	arbitrary	MIME	data

QTextDrag Drag	and	drop	object	for	transferring	plain	and	Unicode
text

QUriDrag Drag	object	for	a	list	of	URI	references
QWindowsMime Maps	open-standard	MIME	to	Window	Clipboard	formats

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Environment	Classes
These	classes	providing	various	global	services	to	your	application	such	as	event
handling,	access	to	system	settings,	internationalization,	etc.

QClipboard Access	to	the	window	system	clipboard
QDesktopWidget Access	to	screen	information	on	multi-head	systems

QEvent The	base	class	of	all	event	classes.	Event	objects
contain	event	parameters

QFontDatabase Information	about	the	fonts	available	in	the	underlying
window	system

QMimeSourceFactory Extensible	provider	of	mime-typed	data
QMutex Access	serialization	between	threads
QPixmapCache Application-global	cache	for	pixmaps
QSemaphore Robust	integer	semaphore
QSessionManager Access	to	the	session	manager
QThread Platform-independent	threads
QTranslator Internationalization	support	for	text	output
QTranslatorMessage Translator	message	and	its	properties
QWaitCondition Allows	waiting/waking	for	conditions	between	threads

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Event	Classes
These	classes	are	used	to	create	and	handle	events.

For	more	information	see	the	Object	model	and	Signals	and	Slots.

QChildEvent Event	parameters	for	child	object	events
QCloseEvent Parameters	that	describe	a	close	event
QContextMenuEvent Parameters	that	describe	a	context	menu	event
QCustomEvent Support	for	custom	events

QDragEnterEvent Event	which	is	sent	to	the	widget	when	a	drag	and	drop
first	drags	onto	the	widget

QDragLeaveEvent Event	which	is	sent	to	the	widget	when	a	drag	and	drop
leaves	the	widget

QDragMoveEvent Event	which	is	sent	while	a	drag	and	drop	is	in	progress
QDropEvent Event	which	is	sent	when	a	drag	and	drop	is	completed

QEvent The	base	class	of	all	event	classes.	Event	objects	contain
event	parameters

QFocusEvent Event	parameters	for	widget	focus	events
QHideEvent Event	which	is	sent	after	a	widget	is	hidden
QIMEvent Parameters	for	input	method	events
QKeyEvent Describes	a	key	event
QMouseEvent Parameters	that	describe	a	mouse	event
QMoveEvent Event	parameters	for	move	events
QPaintEvent Event	parameters	for	paint	events
QResizeEvent Event	parameters	for	resize	events
QShowEvent Event	which	is	sent	when	a	widget	is	shown
QTabletEvent Parameters	that	describe	a	Tablet	event
QTimer Timer	signals	and	single-shot	timers
QTimerEvent Parameters	that	describe	a	timer	event
QWheelEvent Parameters	that	describe	a	wheel	event

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Non-GUI	Classes
The	non-GUI	classes	are	general-purpose	collection	and	string	classes	that	may
be	used	independently	of	the	GUI	classes.

In	particular,	these	classes	do	not	depend	on	QApplication	at	all,	and	so	can	be
used	in	non-GUI	programs.

See	also	the	introduction	to	the	Qt	collection	classes.

QAsciiCache Template	class	that	provides	a	cache	based	on	char*
keys

QAsciiCacheIterator Iterator	for	QAsciiCache	collections

QAsciiDict Template	class	that	provides	a	dictionary	based	on
char*	keys

QAsciiDictIterator Iterator	for	QAsciiDict	collections
QBitArray Array	of	bits
QByteArray Array	of	bytes

QCache Template	class	that	provides	a	cache	based	on
QString	keys

QCacheIterator Iterator	for	QCache	collections

QCString Abstraction	of	the	classic	C	zero-terminated	char
array	(char	*)

QDict Template	class	that	provides	a	dictionary	based	on
QString	keys

QDictIterator Iterator	for	QDict	collections

QIntCache Template	class	that	provides	a	cache	based	on	long
keys

QIntCacheIterator Iterator	for	QIntCache	collections

QIntDict Template	class	that	provides	a	dictionary	based	on
long	keys

QIntDictIterator Iterator	for	QIntDict	collections
QMap Value-based	template	class	that	provides	a	dictionary
QMapConstIterator Iterator	for	QMap

QMapIterator Iterator	for	QMap
QMemArray Template	class	that	provides	arrays	of	simple	types
QObjectList QPtrList	of	QObjects
QObjectListIt Iterator	for	QObjectLists

QPair Value-based	template	class	that	provides	a	pair	of
elements

QPtrCollection The	base	class	of	most	pointer-based	Qt	collections

QPtrDict Template	class	that	provides	a	dictionary	based	on
void*	keys

QPtrDictIterator Iterator	for	QPtrDict	collections
QPtrList Template	class	that	provides	doubly-linked	lists
QPtrListIterator Iterator	for	QPtrList	collections
QPtrQueue Template	class	that	provides	a	queue
QPtrStack Template	class	that	provides	a	stack

QPtrVector Template	collection	class	that	provides	a	vector
(array)

QRegExp Pattern	matching	using	regular	expressions

QStrIList Doubly-linked	list	of	char*	with	case-insensitive
comparison

QString Abstraction	of	Unicode	text	and	the	classic	C	null-
terminated	char	array

QStringList List	of	strings
QStrList Doubly-linked	list	of	char*
QStrListIterator Iterator	for	the	QStrList	and	QStrIList	classes

QValueList Value-based	template	class	that	provides	doubly
linked	lists

QValueListConstIterator Const	iterator	for	QValueList
QValueListIterator Iterator	for	QValueList
QValueStack Value-based	template	class	that	provides	a	stack

QValueVector Value-based	template	class	that	provides	a	dynamic
array

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Graphics	Classes
These	classes	provide	powerful	graphics	drawing	primitives	for	both	2D	and
(with	OpenGL)	3D.

See	also	this	introduction	to	the	Qt	coordinate	system.

QBitmap Monochrome	(1-bit	depth)	pixmaps
QBrush Defines	the	fill	pattern	of	shapes	drawn	by	a	QPainter
QCanvas 2D	area	that	can	contain	QCanvasItem	objects
QCanvasEllipse Ellipse	or	ellipse	segment	on	a	QCanvas
QCanvasItem Abstract	graphic	object	on	a	QCanvas
QCanvasItemList List	of	QCanvasItems
QCanvasLine Line	on	a	QCanvas
QCanvasPixmap Pixmaps	for	QCanvasSprites
QCanvasPixmapArray Array	of	QCanvasPixmaps
QCanvasPolygon Polygon	on	a	QCanvas
QCanvasPolygonalItem Polygonal	canvas	item	on	a	QCanvas
QCanvasRectangle Rectangle	on	a	QCanvas
QCanvasSpline Multi-bezier	splines	on	a	QCanvas
QCanvasSprite Animated	canvas	item	on	a	QCanvas
QCanvasText Text	object	on	a	QCanvas
QCanvasView On-screen	view	of	a	QCanvas
QColor Colors	based	on	RGB	or	HSV	values
QColorDialog Dialog	widget	for	specifying	colors
QColorGroup Group	of	widget	colors
QDirectPainter Direct	access	to	the	video	hardware
QFont Font	used	for	drawing	text

QFontDatabase Information	about	the	fonts	available	in	the
underlying	window	system

QFontInfo General	information	about	fonts
QFontMetrics Font	metrics	information

QGL Namespace	for	miscellaneous	identifiers	in	the	Qt
OpenGL	module

QGLColormap Used	for	installing	custom	colormaps	into
QGLWidgets

QGLContext Encapsulates	an	OpenGL	rendering	context
QGLFormat The	display	format	of	an	OpenGL	rendering	context
QGLWidget Widget	for	rendering	OpenGL	graphics
QIconSet Set	of	icons	with	different	styles	and	sizes

QImage Hardware-independent	pixmap	representation	with
direct	access	to	the	pixel	data

QImageConsumer Abstraction	used	by	QImageDecoder

QImageDecoder Incremental	image	decoder	for	all	supported	image
formats

QImageFormat Incremental	image	decoder	for	a	specific	image
format

QImageFormatType Factory	that	makes	QImageFormat	objects
QImageIO Parameters	for	loading	and	saving	images

QMovie Incremental	loading	of	animations	or	images,
signalling	as	it	progresses

QPaintDevice The	base	class	of	objects	that	can	be	painted
QPaintDeviceMetrics Information	about	a	paint	device
QPainter Does	low-level	painting	e.g.	on	widgets
QPalette Color	groups	for	each	widget	state

QPen Defines	how	a	QPainter	should	draw	lines	and
outlines	of	shapes

QPicture Paint	device	that	records	and	replays	QPainter
commands

QPixmap Off-screen,	pixel-based	paint	device
QPixmapCache Application-global	cache	for	pixmaps
QPNGImagePacker Creates	well-compressed	PNG	animations
QPoint Defines	a	point	in	the	plane
QPointArray Array	of	points
QPrinter Paint	device	that	paints	on	a	printer
QRect Defines	a	rectangle	in	the	plane

QRegion Clip	region	for	a	painter
QSize Defines	the	size	of	a	two-dimensional	object

QStyleSheet Collection	of	styles	for	rich	text	rendering	and	a
generator	of	tags

QWMatrix 2D	transformations	of	a	coordinate	system

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Image	Processing	Classes
These	classes	are	used	for	manipulating	images.

QBitmap Monochrome	(1-bit	depth)	pixmaps
QBrush Defines	the	fill	pattern	of	shapes	drawn	by	a	QPainter
QCanvas 2D	area	that	can	contain	QCanvasItem	objects
QCanvasEllipse Ellipse	or	ellipse	segment	on	a	QCanvas
QCanvasItem Abstract	graphic	object	on	a	QCanvas
QCanvasItemList List	of	QCanvasItems
QCanvasLine Line	on	a	QCanvas
QCanvasPixmap Pixmaps	for	QCanvasSprites
QCanvasPixmapArray Array	of	QCanvasPixmaps
QCanvasPolygon Polygon	on	a	QCanvas
QCanvasPolygonalItem Polygonal	canvas	item	on	a	QCanvas
QCanvasRectangle Rectangle	on	a	QCanvas
QCanvasSpline Multi-bezier	splines	on	a	QCanvas
QCanvasSprite Animated	canvas	item	on	a	QCanvas
QCanvasText Text	object	on	a	QCanvas
QCanvasView On-screen	view	of	a	QCanvas
QColor Colors	based	on	RGB	or	HSV	values
QColorGroup Group	of	widget	colors

QGL Namespace	for	miscellaneous	identifiers	in	the	Qt
OpenGL	module

QGLColormap Used	for	installing	custom	colormaps	into
QGLWidgets

QGLContext Encapsulates	an	OpenGL	rendering	context
QGLFormat The	display	format	of	an	OpenGL	rendering	context
QGLWidget Widget	for	rendering	OpenGL	graphics
QIconSet Set	of	icons	with	different	styles	and	sizes

QImage
Hardware-independent	pixmap	representation	with
direct	access	to	the	pixel	data

QImageConsumer Abstraction	used	by	QImageDecoder

QImageDecoder Incremental	image	decoder	for	all	supported	image
formats

QImageFormat Incremental	image	decoder	for	a	specific	image
format

QImageFormatType Factory	that	makes	QImageFormat	objects
QImageIO Parameters	for	loading	and	saving	images

QMovie Incremental	loading	of	animations	or	images,
signalling	as	it	progresses

QPaintDevice The	base	class	of	objects	that	can	be	painted
QPaintDeviceMetrics Information	about	a	paint	device
QPainter Does	low-level	painting	e.g.	on	widgets
QPalette Color	groups	for	each	widget	state

QPen Defines	how	a	QPainter	should	draw	lines	and
outlines	of	shapes

QPicture Paint	device	that	records	and	replays	QPainter
commands

QPixmap Off-screen,	pixel-based	paint	device
QPixmapCache Application-global	cache	for	pixmaps
QPNGImagePacker Creates	well-compressed	PNG	animations
QPoint Defines	a	point	in	the	plane
QPointArray Array	of	points
QPrinter Paint	device	that	paints	on	a	printer
QRect Defines	a	rectangle	in	the	plane
QRegion Clip	region	for	a	painter
QSize Defines	the	size	of	a	two-dimensional	object
QWMatrix 2D	transformations	of	a	coordinate	system

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Multimedia	Classes
These	classes	provide	support	for	graphics,	sound,	animation	etc.

QImageConsumer Abstraction	used	by	QImageDecoder

QImageDecoder Incremental	image	decoder	for	all	supported	image
formats

QImageFormat Incremental	image	decoder	for	a	specific	image	format
QImageFormatType Factory	that	makes	QImageFormat	objects

QMovie Incremental	loading	of	animations	or	images,	signalling
as	it	progresses

QSound Access	to	the	platform	audio	facilities

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Help	System
These	classes	provide	for	all	forms	of	online-help	in	your	application,	with	three
levels	of	detail:

1.	 Tool	Tips	and	Status	Bar	message	-	flyweight	help,	extremely	brief,	entirely
integrated	in	the	user	interface,	requiring	little	or	no	user	interaction	to
invoke.

2.	 What's	This?	-	lightweight,	but	can	be	a	three-paragraph	explanation.
3.	 Online	Help	-	can	encompass	any	amount	of	information,	but	is	typically

slower	to	call	up,	somewhat	separated	from	the	user's	work,	and	often	users
feel	that	using	online	help	is	a	digression	from	their	real	task.

QStatusBar Horizontal	bar	suitable	for	presenting	status	information

QStyleSheet Collection	of	styles	for	rich	text	rendering	and	a	generator	of
tags

QTextBrowser Rich	text	browser	with	hypertext	navigation

QToolTip Tool	tips	(balloon	help)	for	any	widget	or	rectangular	part	of	a
widget

QToolTipGroup Collects	tool	tips	into	related	groups

QWhatsThis Simple	description	of	any	widget,	i.e.	answering	the	question
"What's	this?"

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Layout	Management
These	classes	provide	automatic	geometry	(layout)	management	of	widgets.

QBoxLayout Lines	up	child	widgets	horizontally	or	vertically
QButtonGroup Organizes	QButton	widgets	in	a	group
QGLayoutIteratorAbstract	base	class	of	internal	layout	iterators
QGrid Simple	geometry	management	of	its	children
QGridLayout Lays	out	widgets	in	a	grid
QGroupBox Group	box	frame	with	a	title
QHBox Horizontal	geometry	management	for	its	child	widgets
QHBoxLayout Lines	up	widgets	horizontally

QHButtonGroup Organizes	QButton	widgets	in	a	group	with	one	horizontal
row

QHGroupBox Organizes	widgets	in	a	group	with	one	horizontal	row
QLayout The	base	class	of	geometry	managers
QLayoutItem Abstract	item	that	a	QLayout	manipulates
QLayoutIterator Iterators	over	QLayoutItem

QSizePolicy Layout	attribute	describing	horizontal	and	vertical	resizing
policy

QSpacerItem Blank	space	in	a	layout
QVBox Vertical	geometry	management	of	its	child	widgets
QVBoxLayout Lines	up	widgets	vertically
QVButtonGroup Organizes	QButton	widgets	in	a	vertical	column
QVGroupBox Organizes	a	group	of	widgets	in	a	vertical	column
QWidgetItem Layout	item	that	represents	a	widget

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Implicitly	and	Explicitly	Shared
Classes

These	classes	are	normally-heavy	classes	which	in	Qt	have	been	optimized	by
the	use	of	reference	counter	and	common	data	so	they	can	be	passed	around.

The	only	important	effect	is	that	the	classes	listed	here	can	be	passed	around	as
arguments	efficiently,	even	though	they	may	seem	heavyweight.

QBitArray Array	of	bits
QBitmap Monochrome	(1-bit	depth)	pixmaps
QBrush Defines	the	fill	pattern	of	shapes	drawn	by	a	QPainter
QCString Abstraction	of	the	classic	C	zero-terminated	char	array	(char	*)
QCursor Mouse	cursor	with	an	arbitrary	shape
QFont Font	used	for	drawing	text
QFontInfo General	information	about	fonts
QFontMetrics Font	metrics	information
QIconSet Set	of	icons	with	different	styles	and	sizes

QImage Hardware-independent	pixmap	representation	with	direct	access
to	the	pixel	data

QMap Value-based	template	class	that	provides	a	dictionary
QPair Value-based	template	class	that	provides	a	pair	of	elements
QPalette Color	groups	for	each	widget	state

QPen Defines	how	a	QPainter	should	draw	lines	and	outlines	of
shapes

QPicture Paint	device	that	records	and	replays	QPainter	commands
QPixmap Off-screen,	pixel-based	paint	device
QPointArray Array	of	points
QRegExp Pattern	matching	using	regular	expressions

QString Abstraction	of	Unicode	text	and	the	classic	C	null-terminated
char	array

QStringList List	of	strings

QValueList Value-based	template	class	that	provides	doubly	linked	lists
QValueStack Value-based	template	class	that	provides	a	stack
QValueVector Value-based	template	class	that	provides	a	dynamic	array

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Shared	Classes
Many	C++	classes	in	Qt	use	explicit	and	implicit	data	sharing	to	maximize
resource	usage	and	minimize	copying	of	data.

Overview
A	QByteArray	Example
Explicit	vs.	Implicit	Sharing
Explicitly	Shared	Classes
Implicitly	Shared	Classes
QCString:	implicit	or	explicit?

Overview

A	shared	class	consists	of	a	pointer	to	a	shared	data	block	that	contains	a
reference	count	and	the	data.

When	a	shared	object	is	created,	it	sets	the	reference	count	to	1.	The	reference
count	is	incremented	whenever	a	new	object	references	the	shared	data,	and
decremented	when	the	object	dereferences	the	shared	data.	The	shared	data	is
deleted	when	the	reference	count	becomes	zero.

When	dealing	with	shared	objects,	there	are	two	ways	of	copying	an	object.	We
usually	speak	about	deep	and	shallow	copies.	A	deep	copy	implies	duplicating
an	object.	A	shallow	copy	is	a	reference	copy,	we	only	copy	a	pointer	to	a	shared
data	block.	Making	a	deep	copy	can	be	expensive	in	terms	of	memory	and	CPU.
Making	a	shallow	copy	is	very	fast,	because	it	only	involves	setting	a	pointer
and	incrementing	the	reference	count.

Object	assignment	(with	operator=)	for	implicitly	and	explicitly	shared	objects	is
implemented	as	shallow	copies.	A	deep	copy	can	be	made	by	calling	a	copy()
function.

The	benefit	of	sharing	is	that	a	program	does	not	need	to	duplicate	data	when	it
is	not	required,	which	results	in	less	memory	usage	and	less	copying	of	data.
Objects	can	easily	be	assigned,	sent	as	function	arguments	and	returned	from
functions.

Now	comes	the	distinction	between	explicit	and	implicit	sharing.	Explicit
sharing	means	that	the	programmer	must	be	aware	of	the	fact	that	objects	share
common	data.	Implicit	sharing	means	that	the	sharing	mechanism	takes	place
behind	the	scenes	and	the	programmer	does	not	need	to	worry	about	it.

A	QByteArray	Example

QByteArray	is	an	example	of	a	shared	class	that	uses	explicit	sharing.	Example:

																										//								a=									b=									c=

				QByteArray	a(3),b(2)		//	1)					{?,?,?}				{?,?}

				b[0]	=	12;	b[1]	=	34;	//	2)					{?,?,?}				{12,34}

				a	=	b;																//	3)					{12,34}				{12,34}

				a[1]	=	56;												//	4)					{12,56}				{12,56}

				QByteArray	c	=	a;					//	5)					{12,56}				{12,56}				{12,56}

				a.detach();											//	6)					{12,56}				{12,56}				{12,56}

				a[1]	=	78;												//	7)					{12,78}				{12,56}				{12,56}

				b	=	a.copy();									//	8)					{12,78}				{12,78}				{12,56}

				a[1]	=	90;												//	9)					{12,90}				{12,78}				{12,56}

The	assignment	a	=	b	on	line	3	throws	away	a's	original	shared	block	(the
reference	count	becomes	zero),	sets	a's	shared	block	to	point	to	b's	shared	block
and	increments	the	reference	count.

On	line	4,	the	contents	of	a	is	modified.	b	is	also	modified,	because	a	and	b	refer
the	same	data	block.	This	is	the	difference	between	explicit	and	implicit	sharing
(explained	below).

The	a	object	detaches	from	the	common	data	on	line	6.	Detaching	means	to	copy
the	shared	data	to	make	sure	that	an	object	has	its	own	private	data.	Therefore,
modifying	a	on	line	7	will	not	affect	b	or	c.

Finally,	on	line	8	we	make	a	deep	copy	of	a	and	assign	it	to	b,	so	that	when	a	is
modified	on	line	9,	b	remains	unchanged.

Explicit	vs.	Implicit	Sharing

Implicit	sharing	automatically	detaches	the	object	from	a	shared	block	if	the
object	is	about	to	change	and	the	reference	count	is	greater	than	one.	Explicit
sharing	leaves	this	job	to	the	programmer.	If	an	explicitly	shared	object	is	not
detached,	changing	the	object	will	change	all	other	objects	that	refer	to	the	same
data.

Implicit	sharing	optimizes	memory	usage	and	copying	of	data	without	this	side
effect.	So	why	didn't	we	implement	implicit	sharing	for	all	shared	classes?	The
answer	is	that	a	class	that	allows	direct	access	to	its	internal	data	(for	efficiency
reasons),	like	QByteArray,	cannot	be	implicitly	shared,	because	it	can	be
changed	without	letting	QByteArray	know.

An	implicitly	shared	class	has	total	control	of	its	internal	data.	In	any	member
functions	that	modify	its	data,	it	automatically	detaches	before	modifying	the
data.

The	QPen	class,	which	uses	implicit	sharing,	detaches	from	the	shared	data	in	all
member	functions	that	change	the	internal	data.

Code	fragment:

				void	QPen::setStyle(PenStyle	s)

				{

								detach();								//	detach	from	common	data

								data->style	=	s;	//	set	the	style	member

				}

				void	QPen::detach()

				{

								if	(data->count	!=	1)	//	only	if	>1	reference

												*this	=	copy();

				}

This	is	clearly	not	possible	for	QByteArray,	because	the	programmer	can	do	the
following:

				QByteArray	array(10);

				array.fill('a');

				array[0]	=	'f';								//	will	modify	array

				array.data()[1]	=	'i';	//	will	modify	array

If	we	monitor	changes	in	a	QByteArray,	the	QByteArray	class	would	become
unacceptably	slow.

Explicitly	Shared	Classes

All	classes	that	are	instances	of	the	QMemArray	template	class	are	explicitly
shared:

QBitArray
QPointArray
QByteArray
Any	other	instantiation	of	QMemArray<type>

These	classes	have	a	detach()	function	that	can	be	called	if	you	want	your	object
to	get	a	private	copy	of	the	shared	data.	They	also	have	a	copy()	function	that
returns	a	deep	copy	with	a	reference	count	of	1.

The	same	is	true	for	QImage,	which	does	not	inherit	QMemArray.	QMovie	is
also	explicitly	shared,	but	it	does	not	support	detach()	and	copy().

Implicitly	Shared	Classes

The	Qt	classes	that	are	implicitly	shared	are:

QBitmap
QBrush
QCursor
QFont
QFontInfo
QFontMetrics
QIconSet
QMap
QPalette
QPen
QPicture
QPixmap
QRegion
QRegExp
QString
QStringList
QValueList
QValueStack

These	classes	automatically	detach	from	common	data	if	an	object	is	about	to	be
changed.	The	programmer	will	not	even	notice	that	the	objects	are	shared.	Thus
you	should	treat	separate	instances	of	them	as	separate	objects.	They	will	always
behave	as	separate	objects	but	with	the	added	bonus	of	sharing	data	whenever
possible.	For	this	reason,	you	can	pass	instances	of	these	classes	as	arguments	to
functions	by	value	without	concern	for	the	copying	overhead.

Example:

				QPixmap	p1,	p2;

				p1.load("image.bmp");

				p2	=	p1;																				//	p1	and	p2	share	data

				QPainter	paint;

				paint.begin(&p2);									//	cuts	p2	loose	from	p1

				paint.drawText(0,50,	"Hi");

				paint.end();

In	this	example,	p1	and	p2	share	data	until	QPainter::begin()	is	called	for	p2,
because	painting	a	pixmap	will	modify	it.	The	same	happens	also	if	anything	is
bitBlt()'ed	into	p2.

QCString:	implicit	or	explicit?

QCString	uses	a	mixture	of	implicit	and	explicit	sharing.	Functions	inherited
from	QByteArray,	such	as	data(),	employ	explicit	sharing,	while	those	only	in
QCString	detach	automatically.	Thus,	QCString	is	rather	an	"experts	only"	class,
provided	mainly	to	ease	porting	from	Qt	1.x	to	Qt	2.0.	We	recommend	that	you
use	QString,	a	purely	implicitly	shared	class.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Input/Output	and	Networking
These	classes	are	used	to	handle	input	and	output	to	and	from	external	devices,
processes,	files	etc.	as	well	as	manipulating	files	and	directories.

QBuffer I/O	device	that	operates	on	a	QByteArray
QClipboard Access	to	the	window	system	clipboard
QDataStream Serialization	of	binary	data	to	a	QIODevice

QDir Access	to	directory	structures	and	their	contents	in	a
platform-independent	way

QDns Asynchronous	DNS	lookups
QFile I/O	device	that	operates	on	files
QFileInfo System-independent	file	information
QFtp Implementation	of	the	FTP	protocol
QHostAddress IP	address
QHttp Implementation	of	the	HTTP	protocol
QImageIO Parameters	for	loading	and	saving	images
QIODevice The	base	class	of	I/O	devices

QLocalFs Implementation	of	a	QNetworkProtocol	that	works	on
the	local	file	system

QLock Wrapper	for	a	System	V	shared	semaphore

QMimeSource Abstraction	of	objects	which	provide	formatted	data	of
a	certain	MIME	type

QMimeSourceFactory Extensible	provider	of	mime-typed	data
QNetworkOperation Common	operations	for	network	protocols
QNetworkProtocol Common	API	for	network	protocols

QProcess Used	to	start	external	programs	and	to	communicate
with	them

QServerSocket TCP-based	server
QSettings Persistent	platform-independent	application	settings

QSignal Can	be	used	to	send	signals	for	classes	that	don't	inherit
QObject

QSignalMapper Bundles	signals	from	identifiable	senders
QSocket Buffered	TCP	connection
QSocketDevice Platform-independent	low-level	socket	API
QSocketNotifier Support	for	socket	callbacks
QTextIStream Convenience	class	for	input	streams
QTextOStream Convenience	class	for	output	streams

QTextStream Basic	functions	for	reading	and	writing	text	using	a
QIODevice

QUrl URL	parser	and	simplifies	working	with	URLs
QUrlInfo Stores	information	about	URLs
QUrlOperator Common	operations	on	URLs

QWindowsMime Maps	open-standard	MIME	to	Window	Clipboard
formats

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Main	Window	and	Related	Classes
These	classes	provide	everything	you	need	for	a	typical	modern	main	application
window,	like	the	main	window	itself,	menu	and	tool	bars,	a	statusbar,	etc.

QAction Abstract	user	interface	action	that	can	appear	both	in	menus
and	tool	bars

QActionGroup Groups	actions	together

QApplication Manages	the	GUI	application's	control	flow	and	main
settings

QDockArea Manages	and	lays	out	QDockWindows

QDockWindow Widget	which	can	be	docked	inside	a	QDockArea	or	floated
as	a	top	level	window	on	the	desktop

QMainWindow Main	application	window,	with	a	menu	bar,	dock	windows
(e.g.	for	toolbars),	and	a	status	bar

QMenuBar Horizontal	menu	bar
QPopupMenu Popup	menu	widget
QSessionManager Access	to	the	session	manager
QSizeGrip Corner-grip	for	resizing	a	top-level	window
QStatusBar Horizontal	bar	suitable	for	presenting	status	information
QToolBar Movable	panel	containing	widgets	such	as	tool	buttons

QWorkspace Workspace	window	that	can	contain	decorated	windows,
e.g.	for	MDI

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Miscellaneous	Classes
These	classes	are	useful	classes	not	fitting	into	any	other	category.

QAccel Handles	keyboard	accelerator	and	shortcut	keys
QAccessible Enums	and	static	functions	relating	to	accessibility

QAccessibleInterfaceDefines	an	interface	that	exposes	information	aboutaccessible	objects

QAccessibleObject Implements	parts	of	the	QAccessibleInterface	for
QObjects

QCustomMenuItem Abstract	base	class	for	custom	menu	items	in	popup
menus

QDoubleValidator Range	checking	of	floating-point	numbers
QErrorMessage Error	message	display	dialog
QFileIconProvider Icons	for	QFileDialog	to	use
QFilePreview File	previewing	in	QFileDialog
QFocusData Maintains	the	list	of	widgets	in	the	focus	chain

QIntValidator Validator	which	ensures	that	a	string	contains	a	valid
integer	within	a	specified	range

QKeySequence Encapsulates	a	key	sequence	as	used	by	accelerators
QMenuData Base	class	for	QMenuBar	and	QPopupMenu

QMimeSource Abstraction	of	objects	which	provide	formatted	data	of	a
certain	MIME	type

QProcess Used	to	start	external	programs	and	to	communicate	with
them

QRangeControl Integer	value	within	a	range
QRegExp Pattern	matching	using	regular	expressions
QRegExpValidator Used	to	check	a	string	against	a	regular	expression
QSettings Persistent	platform-independent	application	settings

QSignal Can	be	used	to	send	signals	for	classes	that	don't	inherit
QObject

Qt Namespace	for	miscellaneous	identifiers	that	need	to	be
global-like

QUrl URL	parser	and	simplifies	working	with	URLs
QUrlInfo Stores	information	about	URLs
QUrlOperator Common	operations	on	URLs
QValidator Validation	of	input	text
QVariant Acts	like	a	union	for	the	most	common	Qt	data	types

QWindowsMime Maps	open-standard	MIME	to	Window	Clipboard
formats

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Object	Model
These	classes	form	the	basis	of	the	Qt	Object	Model.

QGuardedPtr Template	class	that	provides	guarded	pointers	to
QObjects

QMetaObject Meta	information	about	Qt	objects
QMetaProperty Stores	meta	data	about	a	property
QObject The	base	class	of	all	Qt	objects
QObjectCleanupHandlerWatches	the	lifetime	of	multiple	QObjects

QVariant Acts	like	a	union	for	the	most	common	Qt	data
types

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Organizers
These	classes	are	used	to	organize	and	group	GUI	primitives	into	more	complex
applications	or	dialogs.

QButtonGroup Organizes	QButton	widgets	in	a	group
QGroupBox Group	box	frame	with	a	title
QHBox Horizontal	geometry	management	for	its	child	widgets

QHButtonGroup Organizes	QButton	widgets	in	a	group	with	one	horizontalrow
QHGroupBox Organizes	widgets	in	a	group	with	one	horizontal	row
QSplitter Implements	a	splitter	widget
QTabWidget Stack	of	tabbed	widgets
QVBox Vertical	geometry	management	of	its	child	widgets
QVButtonGroup Organizes	QButton	widgets	in	a	vertical	column
QVGroupBox Organizes	a	group	of	widgets	in	a	vertical	column
QWidgetStack Stack	of	widgets	of	which	only	the	top	widget	is	user-visible
QWizard Framework	for	wizard	dialogs

QWorkspace Workspace	window	that	can	contain	decorated	windows,	e.g.
for	MDI

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Plugins
These	classes	are	used	with	Qt	plugins.	See	the	plugins	documentation.

QImageFormatPlugin Abstract	base	for	custom	image	format	plugins
QSqlDriverPlugin Abstract	base	for	custom	QSqlDriver	plugins
QStylePlugin Abstract	base	for	custom	QStyle	plugins
QTextCodecPlugin Abstract	base	for	custom	QTextCodec	plugins
QWidgetPlugin Abstract	base	for	custom	QWidget	plugins

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Dialog	Classes
These	classes	are	complex	widgets,	composed	of	simpler	widgets;	dialog	boxes,
generally.

QColorDialog Dialog	widget	for	specifying	colors
QDialog The	base	class	of	dialog	windows
QErrorMessage Error	message	display	dialog
QFileDialog Dialogs	that	allow	users	to	select	files	or	directories
QFontDialog Dialog	widget	for	selecting	a	font
QInputDialog Simple	convenience	dialog	to	get	a	single	value	from	the	user

QMessageBox Modal	dialog	with	a	short	message,	an	icon,	and	some
buttons

QProgressDialog Feedback	on	the	progress	of	a	slow	operation
QTabDialog Stack	of	tabbed	widgets
QWizard Framework	for	wizard	dialogs

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Qt
QtQTL Qt

QMap
QMapConstIterator QMap
QMapIterator QMap
QPair
QValueList
QValueListConstIterator QValueList
QValueListIterator QValueList
QValueStack
QValueVector

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Text	Related	Classes
These	classes	are	relevant	to	text	processing.	See	also	the	XML	classes.

QChar Lightweight	Unicode	character
QCharRef Helper	class	for	QString
QConstString String	objects	using	constant	Unicode	data

QCString Abstraction	of	the	classic	C	zero-terminated	char	array	(char
*)

QLabel Text	or	image	display
QSimpleRichText Small	displayable	piece	of	rich	text

QString Abstraction	of	Unicode	text	and	the	classic	C	null-
terminated	char	array

QStringList List	of	strings
QStrList Doubly-linked	list	of	char*

QStyleSheet Collection	of	styles	for	rich	text	rendering	and	a	generator	of
tags

QStyleSheetItem Encapsulation	of	a	set	of	text	styles
QTextBrowser Rich	text	browser	with	hypertext	navigation
QTextEdit Powerful	single-page	rich	text	editor
QTextIStream Convenience	class	for	input	streams
QTextOStream Convenience	class	for	output	streams

QTextStream Basic	functions	for	reading	and	writing	text	using	a
QIODevice

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

XML
These	classes	are	relevant	to	XML	users.

QDomAttr Represents	one	attribute	of	a	QDomElement
QDomCDATASection Represents	an	XML	CDATA	section
QDomCharacterData Represents	a	generic	string	in	the	DOM
QDomComment Represents	an	XML	comment
QDomDocument Represents	an	XML	document

QDomDocumentFragment Tree	of	QDomNodes	which	is	not	usually	a
complete	QDomDocument

QDomDocumentType The	representation	of	the	DTD	in	the	document
tree

QDomElement Represents	one	element	in	the	DOM	tree
QDomEntity Represents	an	XML	entity
QDomEntityReference Represents	an	XML	entity	reference

QDomImplementation Information	about	the	features	of	the	DOM
implementation

QDomNamedNodeMap Collection	of	nodes	that	can	be	accessed	by	name
QDomNode The	base	class	for	all	the	nodes	in	a	DOM	tree
QDomNodeList List	of	QDomNode	objects
QDomNotation Represents	an	XML	notation
QDomProcessingInstruction Represents	an	XML	processing	instruction

QDomText Represents	text	data	in	the	parsed	XML
document

QXmlAttributes XML	attributes

QXmlContentHandler Interface	to	report	the	logical	content	of	XML
data

QXmlDeclHandler Interface	to	report	declaration	content	of	XML
data

QXmlDefaultHandler Default	implementation	of	all	XML	handler
classes

QXmlDTDHandler Interface	to	report	DTD	content	of	XML	data

QXmlEntityResolver Interface	to	resolve	external	entities	contained	in
XML	data

QXmlErrorHandler Interface	to	report	errors	in	XML	data
QXmlInputSource The	input	data	for	the	QXmlReader	subclasses

QXmlLexicalHandler Interface	to	report	the	lexical	content	of	XML
data

QXmlLocator The	XML	handler	classes	with	information	about
the	parsing	position	within	a	file

QXmlNamespaceSupport Helper	class	for	XML	readers	which	want	to
include	namespace	support

QXmlParseException Used	to	report	errors	with	the
QXmlErrorHandler	interface

QXmlReader Interface	for	XML	readers	(i.e.	parsers)
QXmlSimpleReader Implementation	of	a	simple	XML	reader	(parser)

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QMutex
QSemaphore
QThread
QWaitCondition /

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Widget	Appearance	and	Style
These	classes	are	used	to	customize	an	application's	appearance	and	style.

QBoxLayout Lines	up	child	widgets	horizontally	or	vertically
QButtonGroup Organizes	QButton	widgets	in	a	group
QCDEStyle CDE	look	and	feel
QColor Colors	based	on	RGB	or	HSV	values
QColorGroup Group	of	widget	colors
QCommonStyle Encapsulates	the	common	Look	and	Feel	of	a	GUI
QCursor Mouse	cursor	with	an	arbitrary	shape
QFont Font	used	for	drawing	text
QGLayoutIteratorAbstract	base	class	of	internal	layout	iterators
QGrid Simple	geometry	management	of	its	children
QGridLayout Lays	out	widgets	in	a	grid
QGroupBox Group	box	frame	with	a	title
QHBox Horizontal	geometry	management	for	its	child	widgets
QHBoxLayout Lines	up	widgets	horizontally

QHButtonGroup Organizes	QButton	widgets	in	a	group	with	one	horizontal
row

QHGroupBox Organizes	widgets	in	a	group	with	one	horizontal	row
QLayout The	base	class	of	geometry	managers
QLayoutItem Abstract	item	that	a	QLayout	manipulates
QLayoutIterator Iterators	over	QLayoutItem
QMotifPlusStyle More	sophisticated	Motif-ish	look	and	feel
QMotifStyle Motif	look	and	feel
QPalette Color	groups	for	each	widget	state
QPlatinumStyle Mac/Platinum	look	and	feel
QSGIStyle SGI/Irix	look	and	feel
QSizeGrip Corner-grip	for	resizing	a	top-level	window

QSizePolicy Layout	attribute	describing	horizontal	and	vertical	resizing
policy

QSpacerItem Blank	space	in	a	layout
QStyle The	look	and	feel	of	a	GUI
QStyleOption Optional	parameters	for	QStyle	functions
QVBox Vertical	geometry	management	of	its	child	widgets
QVBoxLayout Lines	up	widgets	vertically
QVButtonGroup Organizes	QButton	widgets	in	a	vertical	column
QVGroupBox Organizes	a	group	of	widgets	in	a	vertical	column
QWidgetItem Layout	item	that	represents	a	widget
QWindowsStyle Microsoft	Windows-like	look	and	feel

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QAsyncIO	Class	Reference
[obsolete]

The	QAsyncIO	class	encapsulates	I/O	asynchronicity.	More...

#include	<qasyncio.h>

Inherited	by	QDataSink	and	QDataSource.

List	of	all	member	functions.

Public	Members

virtual	~QAsyncIO	()
void	connect	(QObject	*	obj,	const	char	*	member)

Protected	Members

void	ready	()

Detailed	Description

This	class	is	obsolete.	It	is	provided	to	keep	old	source	working.	We	strongly
advise	against	using	it	in	new	code.

The	QAsyncIO	class	encapsulates	I/O	asynchronicity.

The	Qt	classes	for	asynchronous	input/output	provide	a	simple	mechanism	to
allow	large	files	or	slow	data	sources	to	be	processed	without	using	large
amounts	of	memory	or	blocking	the	user	interface.

This	facility	is	used	in	Qt	to	drive	animated	images.	See	QImageConsumer.

Member	Function	Documentation

QAsyncIO::~QAsyncIO	()	[virtual]

Destroys	the	async	IO	object.

void	QAsyncIO::connect	(QObject	*	obj,	const	char	*	member)

Ensures	that	only	one	object,	obj	and	function,	member,	can	respond	to	changes
in	readiness.

void	QAsyncIO::ready	()	[protected]

Derived	classes	should	call	this	when	they	change	from	being	unready	to	ready.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QDataSink	Class	Reference
[obsolete]

The	QDataSink	class	is	an	asynchronous	consumer	of	data.	More...

#include	<qasyncio.h>

Inherits	QAsyncIO.

List	of	all	member	functions.

Public	Members

virtual	int	readyToReceive	()	=	0
virtual	void	receive	(const	uchar	*,	int	count)	=	0
virtual	void	eof	()	=	0
void	maybeReady	()

Detailed	Description

This	class	is	obsolete.	It	is	provided	to	keep	old	source	working.	We	strongly
advise	against	using	it	in	new	code.

The	QDataSink	class	is	an	asynchronous	consumer	of	data.

A	data	sink	is	an	object	which	receives	data	from	some	source	in	an
asynchronous	manner.	This	means	that	at	some	time	not	determined	by	the	data
sink,	blocks	of	data	are	given	to	it	from	processing.	The	data	sink	is	able	to	limit
the	maximum	size	of	such	blocks	which	it	is	currently	able	to	process.

See	also	QAsyncIO,	QDataSource	and	QDataPump.

Member	Function	Documentation

void	QDataSink::eof	()	[pure	virtual]

This	function	will	be	called	when	no	more	data	is	available	for	processing.

void	QDataSink::maybeReady	()

This	should	be	called	whenever	readyToReceive()	might	have	become	non-zero.
It	is	merely	calls	QAsyncIO::ready()	if	readyToReceive()	is	non-zero.

int	QDataSink::readyToReceive	()	[pure	virtual]

The	data	sink	should	return	a	value	indicating	how	much	data	it	is	ready	to
consume.	This	may	be	0.

void	QDataSink::receive	(const	uchar	*,	int	count)	[pure
virtual]

This	function	is	called	to	provide	data	for	the	data	sink.	The	count	will	be	no
more	than	the	amount	indicated	by	the	most	recent	call	to	readyToReceive().	The
sink	must	use	all	the	provided	data.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QDataSource	Class	Reference
[obsolete]

The	QDataSource	class	is	an	asynchronous	producer	of	data.	More...

#include	<qasyncio.h>

Inherits	QAsyncIO.

Inherited	by	QIODeviceSource.

List	of	all	member	functions.

Public	Members

virtual	int	readyToSend	()	=	0
virtual	void	sendTo	(QDataSink	*,	int	count)	=	0
void	maybeReady	()
virtual	bool	rewindable	()	const
virtual	void	enableRewind	(bool	on)
virtual	void	rewind	()

Detailed	Description

This	class	is	obsolete.	It	is	provided	to	keep	old	source	working.	We	strongly
advise	against	using	it	in	new	code.

The	QDataSource	class	is	an	asynchronous	producer	of	data.

A	data	source	is	an	object	which	provides	data	from	some	source	in	an
asynchronous	manner.	This	means	that	at	some	time	not	determined	by	the	data
source,	blocks	of	data	will	be	taken	from	it	for	processing.	The	data	source	is
able	to	limit	the	maximum	size	of	such	blocks	which	it	is	currently	able	to
provide.

See	also	QAsyncIO,	QDataSink	and	QDataPump.

Member	Function	Documentation

void	QDataSource::enableRewind	(bool	on)	[virtual]

If	this	function	is	called	with	on	set	to	TRUE,	and	rewindable()	is	TRUE,	then
the	data	source	must	take	measures	to	allow	the	rewind()	function	to
subsequently	operate	as	described.	If	rewindable()	is	FALSE,	the	function	should
call	QDataSource::enableRewind(),	which	aborts	with	a	qFatal()	error.

For	example,	a	network	connection	may	choose	to	use	a	disk	cache	of	input	only
if	rewinding	is	enabled	before	the	first	buffer-full	of	data	is	discarded,	returning
FALSE	in	rewindable()	if	that	first	buffer	is	discarded.

Reimplemented	in	QIODeviceSource.

void	QDataSource::maybeReady	()

This	should	be	called	whenever	readyToSend()	might	have	become	non-zero.	It
is	merely	calls	QAsyncIO::ready()	if	readyToSend()	is	non-zero.

int	QDataSource::readyToSend	()	[pure	virtual]

The	data	source	should	return	a	value	indicating	how	much	data	it	is	ready	to
provide.	This	may	be	0.	If	the	data	source	knows	it	will	never	be	able	to	provide
any	more	data	(until	after	a	rewind()),	it	may	return	-1.

Reimplemented	in	QIODeviceSource.

void	QDataSource::rewind	()	[virtual]

This	function	rewinds	the	data	source.	This	may	only	be	called	if
enableRewind(TRUE)	has	been	previously	called.

Reimplemented	in	QIODeviceSource.

bool	QDataSource::rewindable	()	const	[virtual]

This	function	should	return	TRUE	if	the	data	source	can	be	rewound.

The	default	returns	FALSE.

Reimplemented	in	QIODeviceSource.

void	QDataSource::sendTo	(QDataSink	*,	int	count)	[pure
virtual]

This	function	is	called	to	extract	data	from	the	source,	by	sending	it	to	the	given
data	sink.	The	count	will	be	no	more	than	the	amount	indicated	by	the	most
recent	call	to	readyToSend().	The	source	must	use	all	the	provided	data,	and	the
sink	will	be	prepared	to	accept	at	least	this	much	data.

Reimplemented	in	QIODeviceSource.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QIODeviceSource	Class	Reference
[obsolete]

The	QIODeviceSource	class	is	a	QDataSource	that	draws	data	from	a
QIODevice.	More...

#include	<qasyncio.h>

Inherits	QDataSource.

List	of	all	member	functions.

Public	Members

QIODeviceSource	(QIODevice	*	device,	int	buffer_size	=	4096)
~QIODeviceSource	()
virtual	int	readyToSend	()
virtual	void	sendTo	(QDataSink	*	sink,	int	n)
virtual	bool	rewindable	()	const
virtual	void	enableRewind	(bool	on)
virtual	void	rewind	()

Detailed	Description

This	class	is	obsolete.	It	is	provided	to	keep	old	source	working.	We	strongly
advise	against	using	it	in	new	code.

The	QIODeviceSource	class	is	a	QDataSource	that	draws	data	from	a
QIODevice.

This	class	encapsulates	retrieving	data	from	a	QIODevice	(such	as	a	QFile).

Member	Function	Documentation

QIODeviceSource::QIODeviceSource	(QIODevice	*	device,
int	buffer_size	=	4096)

Constructs	a	QIODeviceSource	from	the	QIODevice	device.	The	QIODevice
must	be	dynamically	allocated,	becomes	owned	by	the	QIODeviceSource,	and
will	be	deleted	when	the	QIODeviceSource	is	destroyed.	buffer_size	determines
the	size	of	buffering	to	use	between	asynchronous	operations.	The	higher	the
buffer_size,	the	more	efficient,	but	the	less	interleaved	the	operation	will	be	with
other	processing.

QIODeviceSource::~QIODeviceSource	()

Destroys	the	QIODeviceSource,	deleting	the	QIODevice	from	which	it	was
constructed.

void	QIODeviceSource::enableRewind	(bool	on)	[virtual]

If	on	is	set	to	TRUE	then	rewinding	is	enabled.	No	special	action	is	taken.	If	on
is	set	to	FALSE	then	rewinding	is	disabled.

Reimplemented	from	QDataSource.

int	QIODeviceSource::readyToSend	()	[virtual]

Ready	until	end-of-file.

Reimplemented	from	QDataSource.

void	QIODeviceSource::rewind	()	[virtual]

Calls	reset()	on	the	QIODevice.

Reimplemented	from	QDataSource.

bool	QIODeviceSource::rewindable	()	const	[virtual]

All	QIODeviceSource's	are	rewindable.

Reimplemented	from	QDataSource.

void	QIODeviceSource::sendTo	(QDataSink	*	sink,	int	n)
[virtual]

Reads	a	block	of	data	and	sends	up	to	n	bytes	to	the	sink.

Reimplemented	from	QDataSource.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QDropSite	Class	Reference
[obsolete]

The	QDropSite	class	provides	nothing	and	does	nothing.	More...

#include	<qdropsite.h>

List	of	all	member	functions.

Public	Members

QDropSite	(QWidget	*	self)
virtual	~QDropSite	()

Detailed	Description

The	QDropSite	class	provides	nothing	and	does	nothing.

This	class	is	obsolete.	It	is	provided	to	keep	old	source	working.	We	strongly
advise	against	using	it	in	new	code.

If	your	code	uses	it,	you	can	safely	delete	it.

It	was	used	in	Qt	1.x	to	do	some	drag	and	drop;	that	has	since	been	folded	into
QWidget.

For	detailed	information	about	drag-and-drop,	see	the	QDragObject	class.

See	also	QDragObject,	QTextDrag	and	QImageDrag.

Member	Function	Documentation

QDropSite::QDropSite	(QWidget	*	self)

Constructs	a	QDropSite	to	handle	events	for	the	widget	self.

Pass	this	as	the	self	parameter.	This	enables	dropping	by	calling
QWidget::setAcceptDrops(TRUE).

QDropSite::~QDropSite	()	[virtual]

Destroys	the	drop	site.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QSortedList	Class	Reference
[obsolete]

The	QSortedList	class	provides	a	list	sorted	by	operator<	and	operator==.
More...

#include	<qsortedlist.h>

Inherits	QPtrList<type>.

List	of	all	member	functions.

Public	Members

QSortedList	()
QSortedList	(const	QSortedList<type>	&	list)
~QSortedList	()
QSortedList<type>	&	operator=	(const	QSortedList<type>	&	list)

Detailed	Description

The	QSortedList	class	provides	a	list	sorted	by	operator<	and	operator==.

This	class	is	obsolete.	It	is	provided	to	keep	old	source	working.	We	strongly
advise	against	using	it	in	new	code.

If	you	want	to	sort	a	QPtrList	you	have	to	reimplement	the
QGList::compareItems()	method.	If	the	elements	of	your	list	support	operator<()
and	operator==(),	you	can	use	QSortedList	instead.	Its	compareItems()	calls
operator<()	and	operator==()	and	returns	an	appropriate	result.

Otherwise,	this	is	as	QPtrList.

See	also	QPtrList.

Member	Function	Documentation

QSortedList::QSortedList	()

Constructs	an	empty	list.

QSortedList::QSortedList	(const	QSortedList<type>	&	list)

Constructs	a	copy	of	list.

Each	item	in	list	is	copied	to	this	new	list.

QSortedList::~QSortedList	()

Removes	all	items	from	the	list	and	destroys	the	list.

All	list	iterators	that	access	this	list	will	be	reset.

QSortedList<type>	&	QSortedList::operator=	(
const	QSortedList<type>	&	list)

Assigns	list	to	this	list	and	returns	a	reference	to	this	list.

This	list	is	first	cleared;	each	item	in	list	is	then	appended	to	this	list.	Only	the
pointers	are	copied	(shallow	copy)	unless	newItem()	has	been	reimplemented().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QDataPump	Class	Reference
[obsolete]

The	QDataPump	class	moves	data	from	a	QDataSource	to	a	QDataSink	during
event	processing.	More...

#include	<qasyncio.h>

Inherits	QObject.

List	of	all	member	functions.

Public	Members

QDataPump	(QDataSource	*	data_source,	QDataSink	*	data_sink)

Detailed	Description

This	class	is	obsolete.	It	is	provided	to	keep	old	source	working.	We	strongly
advise	against	using	it	in	new	code.

The	QDataPump	class	moves	data	from	a	QDataSource	to	a	QDataSink	during
event	processing.

For	a	QDataSource	to	provide	data	to	a	QDataSink,	a	controller	must	exist	to
examine	the	QDataSource::readyToSend()	and	QDataSink::readyToReceive()
methods	and	respond	to	the	QASyncIO::activate()	signal	of	the	source	and	sink.
One	very	useful	way	to	do	this	is	interleaved	with	other	event	processing.
QDataPump	provides	this	-	create	a	pipe	between	a	source	and	a	sink,	and	data
will	be	moved	during	subsequent	event	processing.

Note	that	each	source	can	only	provide	data	to	one	sink	and	each	sink	can	only
receive	data	from	one	source	(although	it	is	quite	possible	to	write	a
multiplexing	sink	that	is	multiple	sources).

Member	Function	Documentation

QDataPump::QDataPump	(QDataSource	*	data_source,
QDataSink	*	data_sink)

Constructs	a	QDataPump	to	move	data	from	a	given	data_source	to	a	given
data_sink.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QMultiLineEdit	Class	Reference
[obsolete]

The	QMultiLineEdit	widget	is	a	simple	editor	for	inputting	text.	More...

#include	<qmultilineedit.h>

Inherits	QTextEdit.

List	of	all	member	functions.

Public	Members

QMultiLineEdit	(QWidget	*	parent	=	0,	const	char	*	name	=	0)
QString	textLine	(int	line)	const
int	numLines	()	const
virtual	void	insertLine	(const	QString	&	txt,	int	line	=	-1)
virtual	void	insertAt	(const	QString	&	s,	int	line,	int	col,	bool	mark	=
FALSE)
virtual	void	removeLine	(int	paragraph)
virtual	void	setCursorPosition	(int	line,	int	col,	bool	mark	=	FALSE)
bool	atBeginning	()	const
bool	atEnd	()	const
virtual	void	setAlignment	(int	flags)
int	alignment	()	const
void	setEdited	(bool)
bool	edited	()	const
bool	hasMarkedText	()	const
QString	markedText	()	const
void	cursorWordForward	(bool	mark)
void	cursorWordBackward	(bool	mark)
bool	autoUpdate	()	const		(obsolete)
virtual	void	setAutoUpdate	(bool)		(obsolete)
int	totalWidth	()	const		(obsolete)
int	totalHeight	()	const		(obsolete)
int	maxLines	()	const		(obsolete)
void	setMaxLines	(int)		(obsolete)

Public	Slots

void	deselect	()		(obsolete)

Properties

Alignment	alignment	-	the	editor's	paragraph	alignment
bool	atBeginning	-	whether	the	cursor	is	placed	at	the	beginning	of	the	text
	(read	only)
bool	atEnd	-	whether	the	cursor	is	placed	at	the	end	of	the	text		(read	only)
bool	edited	-	whether	the	document	has	been	edited	by	the	user
int	numLines	-	the	number	of	paragraphs	in	the	editor		(read	only)

Protected	Members

QPoint	cursorPoint	()	const
virtual	void	insertAndMark	(const	QString	&	str,	bool	mark)
virtual	void	newLine	()
virtual	void	killLine	()
virtual	void	pageUp	(bool	mark	=	FALSE)
virtual	void	pageDown	(bool	mark	=	FALSE)
virtual	void	cursorLeft	(bool	mark	=	FALSE,	bool	wrap	=	TRUE)
virtual	void	cursorRight	(bool	mark	=	FALSE,	bool	wrap	=	TRUE)
virtual	void	cursorUp	(bool	mark	=	FALSE)
virtual	void	cursorDown	(bool	mark	=	FALSE)
virtual	void	backspace	()
virtual	void	home	(bool	mark	=	FALSE)
virtual	void	end	(bool	mark	=	FALSE)
bool	getMarkedRegion	(int	*	line1,	int	*	col1,	int	*	line2,	int	*	col2)
const
int	lineLength	(int	row)	const

Detailed	Description

This	class	is	obsolete.	It	is	provided	to	keep	old	source	working.	We	strongly
advise	against	using	it	in	new	code.

The	QMultiLineEdit	widget	is	a	simple	editor	for	inputting	text.

The	QMultiLineEdit	was	a	simple	editor	widget	in	former	Qt	versions.	Qt	3.0
includes	a	new	richtext	engine	which	obsoletes	QMultiLineEdit.	It	is	still
included	for	compatibility	reasons.	It	is	now	a	subclass	of	QTextEdit,	and
provides	enough	of	the	old	QMultiLineEdit	API	to	keep	old	applications
working.

If	you	implement	something	new	with	QMultiLineEdit,	we	suggest	using
QTextEdit	instead	and	call	QTextEdit::setTextFormat(Qt::PlainText).

Although	most	of	the	old	QMultiLineEdit	API	is	still	available,	there	is	a	few
difference.	The	old	QMultiLineEdit	operated	on	lines,	not	on	paragraphs.	As
lines	change	all	the	time	during	wordwrap,	the	new	richtext	engine	uses
paragraphs	as	basic	elements	in	the	data	structure.	All	functions	(numLines(),
textLine(),	etc.)	that	operated	on	lines,	now	operate	on	paragraphs.	Further,
getString()	has	been	removed	completely.	It	revealed	too	much	of	the	internal
data	structure.

Applications	which	made	normal	and	reasonable	use	of	QMultiLineEdit	should
still	work	without	problems.	Some	odd	usage	will	require	some	porting.	In	these
cases,	it	may	be	better	to	use	QTextEdit	now.

	

See	also	QTextEdit	and	Advanced	Widgets.

Member	Function	Documentation

QMultiLineEdit::QMultiLineEdit	(QWidget	*	parent	=	0,
const	char	*	name	=	0)

Constructs	a	new,	empty,	QMultiLineEdit	with	parent	parent	called	name.

int	QMultiLineEdit::alignment	()	const

Returns	the	editor's	paragraph	alignment.	See	the	"alignment"	property	for
details.

bool	QMultiLineEdit::atBeginning	()	const

Returns	TRUE	if	the	cursor	is	placed	at	the	beginning	of	the	text;	otherwise
returns	FALSE.	See	the	"atBeginning"	property	for	details.

bool	QMultiLineEdit::atEnd	()	const

Returns	TRUE	if	the	cursor	is	placed	at	the	end	of	the	text;	otherwise	returns
FALSE.	See	the	"atEnd"	property	for	details.

bool	QMultiLineEdit::autoUpdate	()	const

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

void	QMultiLineEdit::backspace	()	[virtual	protected]

Deletes	the	character	on	the	left	side	of	the	text	cursor	and	moves	the	cursor	one
position	to	the	left.	If	a	text	has	been	selected	by	the	user	(e.g.	by	clicking	and
dragging)	the	cursor	is	put	at	the	beginning	of	the	selected	text	and	the	selected
text	is	removed.	del()

void	QMultiLineEdit::cursorDown	(bool	mark	=	FALSE)
[virtual	protected]

Moves	the	cursor	one	line	down.	If	mark	is	TRUE,	the	text	is	selected.

See	also	cursorUp(),	cursorLeft()	and	cursorRight().

void	QMultiLineEdit::cursorLeft	(bool	mark	=	FALSE,
bool	wrap	=	TRUE)	[virtual	protected]

Moves	the	cursor	one	character	to	the	left.	If	mark	is	TRUE,	the	text	is	selected.
The	wrap	parameter	is	currently	ignored.

See	also	cursorRight(),	cursorUp()	and	cursorDown().

QPoint	QMultiLineEdit::cursorPoint	()	const	[protected]

Returns	the	top	center	point	where	the	cursor	is	drawn.

void	QMultiLineEdit::cursorRight	(bool	mark	=	FALSE,
bool	wrap	=	TRUE)	[virtual	protected]

Moves	the	cursor	one	character	to	the	right.	If	mark	is	TRUE,	the	text	is
selected.	The	wrap	parameter	is	currently	ignored.

See	also	cursorLeft(),	cursorUp()	and	cursorDown().

void	QMultiLineEdit::cursorUp	(bool	mark	=	FALSE)	[virtual
protected]

Moves	the	cursor	up	one	line.	If	mark	is	TRUE,	the	text	is	selected.

See	also	cursorDown(),	cursorLeft()	and	cursorRight().

void	QMultiLineEdit::cursorWordBackward	(bool	mark)

Moves	the	cursor	one	word	to	the	left.	If	mark	is	TRUE,	the	text	is	selected.

See	also	cursorWordForward().

void	QMultiLineEdit::cursorWordForward	(bool	mark)

Moves	the	cursor	one	word	to	the	right.	If	mark	is	TRUE,	the	text	is	selected.

See	also	cursorWordBackward().

void	QMultiLineEdit::deselect	()	[slot]

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

bool	QMultiLineEdit::edited	()	const

Returns	TRUE	if	the	document	has	been	edited	by	the	user;	otherwise	returns
FALSE.	See	the	"edited"	property	for	details.

void	QMultiLineEdit::end	(bool	mark	=	FALSE)	[virtual
protected]

Moves	the	text	cursor	to	the	right	end	of	the	line.	If	mark	is	TRUE,	text	is
selected	toward	the	last	position.	If	it	is	FALSE	and	the	cursor	is	moved,	all
selected	text	is	unselected.

See	also	home().

bool	QMultiLineEdit::getMarkedRegion	(int	*	line1,	int	*	col1,
int	*	line2,	int	*	col2)	const	[protected]

If	there	is	selected	text,	sets	line1,	col1,	line2	and	col2	to	the	start	and	end	of	the
selected	region	and	returns	TRUE.	Returns	FALSE	if	there	is	no	selected	text.

bool	QMultiLineEdit::hasMarkedText	()	const

Returns	TRUE	if	there	is	selected	text.

void	QMultiLineEdit::home	(bool	mark	=	FALSE)	[virtual
protected]

Moves	the	text	cursor	to	the	left	end	of	the	line.	If	mark	is	TRUE,	text	is	selected
toward	the	first	position.	If	it	is	FALSE	and	the	cursor	is	moved,	all	selected	text

is	unselected.

See	also	end().

void	QMultiLineEdit::insertAndMark	(const	QString	&	str,
bool	mark)	[virtual	protected]

Inserts	str	at	the	current	cursor	position	and	selects	the	text	if	mark	is	TRUE.

void	QMultiLineEdit::insertAt	(const	QString	&	s,	int	line,
int	col,	bool	mark	=	FALSE)	[virtual]

Inserts	string	s	at	paragraph	number	line,	after	character	number	col	in	the
paragraph.	If	s	contains	newline	characters,	new	lines	are	inserted.	If	mark	is
TRUE	the	inserted	string	will	be	selected.

The	cursor	position	is	adjusted.

void	QMultiLineEdit::insertLine	(const	QString	&	txt,	int	line	=
-1)	[virtual]

Inserts	txt	at	paragraph	number	line.	If	line	is	less	than	zero,	or	larger	than	the
number	of	paragraphs,	the	new	text	is	put	at	the	end.	If	txt	contains	newline
characters,	several	paragraphs	are	inserted.

The	cursor	position	is	not	changed.

void	QMultiLineEdit::killLine	()	[virtual	protected]

Deletes	text	from	the	current	cursor	position	to	the	end	of	the	line.	(Note	that	this
function	still	operates	on	lines,	not	paragraphs.)

int	QMultiLineEdit::lineLength	(int	row)	const	[protected]

Returns	the	number	of	characters	at	paragraph	number	row.	If	row	is	out	of
range,	-1	is	returned.

QString	QMultiLineEdit::markedText	()	const

Returns	a	copy	of	the	selected	text.

int	QMultiLineEdit::maxLines	()	const

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

void	QMultiLineEdit::newLine	()	[virtual	protected]

Splits	the	paragraph	at	the	current	cursor	position.

int	QMultiLineEdit::numLines	()	const

Returns	the	number	of	paragraphs	in	the	editor.	See	the	"numLines"	property	for
details.

void	QMultiLineEdit::pageDown	(bool	mark	=	FALSE)
[virtual	protected]

Moves	the	cursor	one	page	down.	If	mark	is	TRUE,	the	text	is	selected.

void	QMultiLineEdit::pageUp	(bool	mark	=	FALSE)	[virtual
protected]

Moves	the	cursor	one	page	up.	If	mark	is	TRUE,	the	text	is	selected.

void	QMultiLineEdit::removeLine	(int	paragraph)	[virtual]

Deletes	the	paragraph	at	paragraph	number	paragraph.	If	paragraph	is	less	than
zero	or	larger	than	the	number	of	paragraphs,	nothing	is	deleted.

void	QMultiLineEdit::setAlignment	(int	flags)	[virtual]

Sets	the	editor's	paragraph	alignment	to	flags.	See	the	"alignment"	property	for
details.

Reimplemented	from	QTextEdit.

void	QMultiLineEdit::setAutoUpdate	(bool)	[virtual]

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Example:	qwerty/qwerty.cpp.

void	QMultiLineEdit::setCursorPosition	(int	line,	int	col,
bool	mark	=	FALSE)	[virtual]

Sets	the	cursor	position	to	character	number	col	in	paragraph	number	line.	The
parameters	are	adjusted	to	lie	within	the	legal	range.

If	mark	is	FALSE,	the	selection	is	cleared.	otherwise	it	is	extended.

void	QMultiLineEdit::setEdited	(bool)

Sets	whether	the	document	has	been	edited	by	the	user.	See	the	"edited"	property
for	details.

void	QMultiLineEdit::setMaxLines	(int)

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

QString	QMultiLineEdit::textLine	(int	line)	const

Returns	the	text	at	line	number	line	(possibly	the	empty	string),	or	a	null	string	if
line	is	invalid.

Examples:	mdi/application.cpp	and	qwerty/qwerty.cpp.

int	QMultiLineEdit::totalHeight	()	const

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

int	QMultiLineEdit::totalWidth	()	const

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Property	Documentation

Alignment	alignment

This	property	holds	the	editor's	paragraph	alignment.

Sets	the	alignment	to	flag,	which	must	be	AlignLeft,	AlignHCenter	or
AlignRight.

If	flag	is	an	illegal	flag	nothing	happens.

See	also	Qt::AlignmentFlags.

Set	this	property's	value	with	setAlignment()	and	get	this	property's	value	with
alignment().

bool	atBeginning

This	property	holds	whether	the	cursor	is	placed	at	the	beginning	of	the	text.

Get	this	property's	value	with	atBeginning().

See	also	atEnd.

bool	atEnd

This	property	holds	whether	the	cursor	is	placed	at	the	end	of	the	text.

Get	this	property's	value	with	atEnd().

See	also	atBeginning.

bool	edited

This	property	holds	whether	the	document	has	been	edited	by	the	user.

This	is	the	same	as	QTextEdit's	"modifed"	property.

See	also	QTextEdit::modified.

Set	this	property's	value	with	setEdited()	and	get	this	property's	value	with
edited().

int	numLines

This	property	holds	the	number	of	paragraphs	in	the	editor.

The	count	includes	any	empty	paragraph	at	top	and	bottom,	so	for	an	empty
editor	this	method	returns	1.

Get	this	property's	value	with	numLines().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QTextView	Class	Reference
[obsolete]

The	QTextView	class	provides	a	rich-text	viewer.	More...

#include	<qtextview.h>

Inherits	QTextEdit.

List	of	all	member	functions.

Properties

bool	overwriteMode	-	whether	new	text	overwrites	or	pushes	aside
existing	text		(read	only)
int	undoDepth	-	the	number	of	undoable	steps		(read	only)

Detailed	Description

The	QTextView	class	provides	a	rich-text	viewer.

This	class	is	obsolete.	It	is	provided	to	keep	old	source	working.	We	strongly
advise	against	using	it	in	new	code.

This	class	wraps	a	read-only	QTextEdit.	Use	a	QTextEdit	instead,	and	call
setReadOnly(TRUE)	to	disable	editing.

Property	Documentation

bool	overwriteMode

This	property	holds	whether	new	text	overwrites	or	pushes	aside	existing	text.

int	undoDepth

This	property	holds	the	number	of	undoable	steps.

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QtTableView	Class	Reference
[obsolete]

The	QtTableView	class	provides	an	abstract	base	for	tables.	More...

#include	<qttableview.h>

Inherits	QFrame.

Inherited	by	QtMultiLineEdit.

List	of	all	member	functions.

Public	Members

void	repaint	(bool	erase	=	TRUE)
void	repaint	(int	x,	int	y,	int	w,	int	h,	bool	erase	=	TRUE)
void	repaint	(const	QRect	&	r,	bool	erase	=	TRUE)

Protected	Members

QtTableView	(QWidget	*	parent	=	0,	const	char	*	name	=	0,	WFlags	f	=	0
)
~QtTableView	()
int	numRows	()	const
virtual	void	setNumRows	(int	rows)
int	numCols	()	const
virtual	void	setNumCols	(int	cols)
int	topCell	()	const
virtual	void	setTopCell	(int	row)
int	leftCell	()	const
virtual	void	setLeftCell	(int	col)
virtual	void	setTopLeftCell	(int	row,	int	col)
int	xOffset	()	const
virtual	void	setXOffset	(int	x)
int	yOffset	()	const
virtual	void	setYOffset	(int	y)
virtual	void	setOffset	(int	x,	int	y,	bool	updateScrBars	=	TRUE)
virtual	int	cellWidth	(int	col)
virtual	int	cellHeight	(int	row)
int	cellWidth	()	const
int	cellHeight	()	const
virtual	void	setCellWidth	(int	cellWidth)
virtual	void	setCellHeight	(int	cellHeight)
virtual	int	totalWidth	()
virtual	int	totalHeight	()
uint	tableFlags	()	const
bool	testTableFlags	(uint	f)	const
virtual	void	setTableFlags	(uint	f)
void	clearTableFlags	(uint	f	=	~0)
bool	autoUpdate	()	const
virtual	void	setAutoUpdate	(bool	enable)
void	updateCell	(int	row,	int	col,	bool	erase	=	TRUE)
QRect	cellUpdateRect	()	const
QRect	viewRect	()	const
int	lastRowVisible	()	const

int	lastColVisible	()	const
bool	rowIsVisible	(int	row)	const
bool	colIsVisible	(int	col)	const
QScrollBar	*	verticalScrollBar	()	const
QScrollBar	*	horizontalScrollBar	()	const
virtual	void	paintCell	(QPainter	*	p,	int	row,	int	col)	=	0
virtual	void	setupPainter	(QPainter	*)
virtual	void	paintEvent	(QPaintEvent	*	e)
int	findRow	(int	yPos)	const
int	findCol	(int	xPos)	const
bool	rowYPos	(int	row,	int	*	yPos)	const
bool	colXPos	(int	col,	int	*	xPos)	const
int	maxXOffset	()
int	maxYOffset	()
int	maxColOffset	()
int	maxRowOffset	()
int	minViewX	()	const
int	minViewY	()	const
int	maxViewX	()	const
int	maxViewY	()	const
int	viewWidth	()	const
int	viewHeight	()	const
void	scroll	(int	xPixels,	int	yPixels)
void	updateScrollBars	()
void	updateTableSize	()

Detailed	Description

The	QtTableView	class	provides	an	abstract	base	for	tables.

This	class	is	obsolete.	It	is	provided	to	keep	old	source	working.	We	strongly
advise	against	using	it	in	new	code.

A	table	view	consists	of	a	number	of	abstract	cells	organized	in	rows	and
columns,	and	a	visible	part	called	a	view.	The	cells	are	identified	with	a	row
index	and	a	column	index.	The	top-left	cell	is	in	row	0,	column	0.

The	behavior	of	the	widget	can	be	finely	tuned	using	setTableFlags();	a	typical
subclass	will	consist	of	little	more	than	a	call	to	setTableFlags(),	some	table
content	manipulation	and	an	implementation	of	paintCell().	Subclasses	that	need
cells	with	variable	width	or	height	must	reimplement	cellHeight()	and/or
cellWidth().	Use	updateTableSize()	to	tell	QtTableView	when	the	width	or	height
has	changed.

When	you	read	this	documentation,	it	is	important	to	understand	the	distinctions
among	the	four	pixel	coordinate	systems	involved.

1.	 The	cell	coordinates.	(0,0)	is	the	top-left	corner	of	a	cell.	Cell	coordinates
are	used	by	functions	such	as	paintCell().

2.	 The	table	coordinates.	(0,0)	is	the	top-left	corner	of	the	cell	at	row	0	and
column	0.	These	coordinates	are	absolute;	that	is,	they	are	independent	of
what	part	of	the	table	is	visible	at	the	moment.	They	are	used	by	functions
such	as	setXOffset()	or	maxYOffset().

3.	 The	widget	coordinates.	(0,0)	is	the	top-left	corner	of	the	widget,	including
the	frame.	They	are	used	by	functions	such	as	repaint().

4.	 The	view	coordinates.	(0,0)	is	the	top-left	corner	of	the	view,	excluding	the
frame.	This	is	the	least-used	coordinate	system;	it	is	used	by	functions	such
as	viewWidth().

It	is	rather	unfortunate	that	we	have	to	use	four	different	coordinate	systems,	but
there	was	no	alternative	to	provide	a	flexible	and	powerful	base	class.

Note:	The	row,column	indices	are	always	given	in	that	order,	i.e.,	first	the
vertical	(row),	then	the	horizontal	(column).	This	is	the	opposite	order	of	all
pixel	operations,	which	take	first	the	horizontal	(x)	and	then	the	vertical	(y).

	

Warning:	the	functions	setNumRows(),	setNumCols(),	setCellHeight(),
setCellWidth(),	setTableFlags()	and	clearTableFlags()	may	cause	virtual
functions	such	as	cellWidth()	and	cellHeight()	to	be	called,	even	if	autoUpdate()
is	FALSE.	This	may	cause	errors	if	relevant	state	variables	are	not	initialized.

Warning:	Experience	has	shown	that	use	of	this	widget	tends	to	cause	more
bugs	than	expected	and	our	analysis	indicates	that	the	widget's	very	flexibility	is
the	problem.	If	QScrollView	or	QListBox	can	easily	be	made	to	do	the	job	you
need,	we	recommend	subclassing	those	widgets	rather	than	QtTableView.	In
addition,	QScrollView	makes	it	easy	to	have	child	widgets	inside	tables,	which
QtTableView	doesn't	support	at	all.

See	also	QScrollView	and	GUI	Design	Handbook:	Table.

Member	Function	Documentation

QtTableView::QtTableView	(QWidget	*	parent	=	0,
const	char	*	name	=	0,	WFlags	f	=	0)	[protected]

Constructs	a	table	view.	The	parent,	name	and	\f	arguments	are	passed	to	the
QFrame	constructor.

The	table	flags	are	all	cleared	(set	to	0).	Set	Tbl_autoVScrollBar	or
Tbl_autoHScrollBar	to	get	automatic	scroll	bars	and	Tbl_clipCellPainting	to
get	safe	clipping.

The	cell	height	and	cell	width	are	set	to	0.

Frame	line	shapes	(QFrame::HLink	and	QFrame::VLine)	are	disallowed;	see
QFrame::setFrameStyle().

Note	that	the	f	argument	is	not	table	flags	but	rather	widget	flags.

QtTableView::~QtTableView	()	[protected]

Destroys	the	table	view.

bool	QtTableView::autoUpdate	()	const	[protected]

Returns	TRUE	if	the	view	updates	itself	automatically	whenever	it	is	changed	in
some	way.

See	also	setAutoUpdate().

int	QtTableView::cellHeight	(int	row)	[virtual	protected]

Returns	the	height	of	row	row	in	pixels.

This	function	is	virtual	and	must	be	reimplemented	by	subclasses	that	have
variable	cell	heights.	Note	that	if	the	total	table	height	changes,
updateTableSize()	must	be	called.

See	also	setCellHeight(),	cellWidth()	and	totalHeight().

int	QtTableView::cellHeight	()	const	[protected]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	the	row	height,	in	pixels.	Returns	0	if	the	rows	have	variable	heights.

See	also	setCellHeight()	and	cellWidth().

QRect	QtTableView::cellUpdateRect	()	const	[protected]

This	function	should	be	called	only	from	the	paintCell()	function	in	subclasses.
It	returns	the	portion	of	a	cell	that	actually	needs	to	be	updated	in	cell
coordinates.	This	is	useful	only	for	non-trivial	paintCell().

int	QtTableView::cellWidth	(int	col)	[virtual	protected]

Returns	the	width	of	column	col	in	pixels.

This	function	is	virtual	and	must	be	reimplemented	by	subclasses	that	have
variable	cell	widths.	Note	that	if	the	total	table	width	changes,	updateTableSize()
must	be	called.

See	also	setCellWidth(),	cellHeight(),	totalWidth()	and	updateTableSize().

int	QtTableView::cellWidth	()	const	[protected]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	the	column	width	in	pixels.	Returns	0	if	the	columns	have	variable
widths.

See	also	setCellWidth()	and	cellHeight().

void	QtTableView::clearTableFlags	(uint	f	=	~0)	[protected]

Clears	the	table	flags	that	are	set	in	f.

Example	(clears	a	single	flag):

				clearTableFlags(Tbl_snapToGrid);

		

The	default	argument	clears	all	flags.

See	also	setTableFlags(),	testTableFlags()	and	tableFlags().

bool	QtTableView::colIsVisible	(int	col)	const	[protected]

Returns	TRUE	if	col	is	at	least	partially	visible.

See	also	rowIsVisible().

bool	QtTableView::colXPos	(int	col,	int	*	xPos)	const
[protected]

Computes	the	position	in	the	widget	of	column	col.

Returns	TRUE	and	stores	the	result	in	*xPos	(in	widget	coordinates)	if	the
column	is	visible.	Returns	FALSE	and	does	not	modify	*xPos	if	col	is	invisible
or	invalid.

See	also	rowYPos()	and	findCol().

int	QtTableView::findCol	(int	xPos)	const	[protected]

Returns	the	index	of	the	column	at	position	xPos,	where	xPos	is	in	widget
coordinates.	Returns	-1	if	xPos	is	outside	the	valid	range.

See	also	findRow()	and	colXPos().

int	QtTableView::findRow	(int	yPos)	const	[protected]

Returns	the	index	of	the	row	at	position	yPos,	where	yPos	is	in	widget
coordinates.	Returns	-1	if	yPos	is	outside	the	valid	range.

See	also	findCol()	and	rowYPos().

QScrollBar	*	QtTableView::horizontalScrollBar	()	const
[protected]

Returns	a	pointer	to	the	horizontal	scroll	bar	mainly	so	you	can	connect()	to	its
signals.	Note	that	the	scroll	bar	works	in	pixel	values;	use	findCol()	to	translate
to	cell	numbers.

int	QtTableView::lastColVisible	()	const	[protected]

Returns	the	index	of	the	last	(right)	column	in	the	view.	The	index	of	the	first
column	is	0.

If	no	columns	are	visible	it	returns	-1.	This	can	happen	if	the	view	is	too	narrow
for	the	first	column	and	Tbl_cutCellsH	is	set.

See	also	lastRowVisible().

int	QtTableView::lastRowVisible	()	const	[protected]

Returns	the	index	of	the	last	(bottom)	row	in	the	view.	The	index	of	the	first	row
is	0.

If	no	rows	are	visible	it	returns	-1.	This	can	happen	if	the	view	is	too	small	for
the	first	row	and	Tbl_cutCellsV	is	set.

See	also	lastColVisible().

int	QtTableView::leftCell	()	const	[protected]

Returns	the	index	of	the	first	column	in	the	table	that	is	visible	in	the	view.	The
index	of	the	very	leftmost	column	is	0.

See	also	topCell()	and	setLeftCell().

int	QtTableView::maxColOffset	()	[protected]

Returns	the	index	of	the	last	column,	which	may	be	at	the	left	edge	of	the	view.

Depending	on	the	Tbl_scrollLastHCell	flag,	this	may	or	may	not	be	the	last
column.

See	also	maxXOffset()	and	maxRowOffset().

int	QtTableView::maxRowOffset	()	[protected]

Returns	the	index	of	the	last	row,	which	may	be	at	the	top	edge	of	the	view.

Depending	on	the	Tbl_scrollLastVCell	flag,	this	may	or	may	not	be	the	last	row.

See	also	maxYOffset()	and	maxColOffset().

int	QtTableView::maxViewX	()	const	[protected]

Returns	the	rightmost	pixel	of	the	table	view	in	view	coordinates.	This	excludes
the	frame	and	any	scroll	bar,	but	includes	blank	pixels	to	the	right	of	the	visible
table	data.

See	also	maxViewY(),	viewWidth()	and	contentsRect.

int	QtTableView::maxViewY	()	const	[protected]

Returns	the	bottom	pixel	of	the	table	view	in	view	coordinates.	This	excludes	the
frame	and	any	scroll	bar,	but	includes	blank	pixels	below	the	visible	table	data.

See	also	maxViewX(),	viewHeight()	and	contentsRect.

int	QtTableView::maxXOffset	()	[protected]

Returns	the	maximum	horizontal	offset	within	the	table	of	the	view's	left	edge	in
table	coordinates.

This	is	used	mainly	to	set	the	horizontal	scroll	bar's	range.

See	also	maxColOffset(),	maxYOffset()	and	totalWidth().

int	QtTableView::maxYOffset	()	[protected]

Returns	the	maximum	vertical	offset	within	the	table	of	the	view's	top	edge	in
table	coordinates.

This	is	used	mainly	to	set	the	vertical	scroll	bar's	range.

See	also	maxRowOffset(),	maxXOffset()	and	totalHeight().

int	QtTableView::minViewX	()	const	[protected]

Returns	the	leftmost	pixel	of	the	table	view	in	view	coordinates.	This	excludes
the	frame	and	any	header.

See	also	maxViewY(),	viewWidth()	and	contentsRect.

int	QtTableView::minViewY	()	const	[protected]

Returns	the	top	pixel	of	the	table	view	in	view	coordinates.	This	excludes	the
frame	and	any	header.

See	also	maxViewX(),	viewHeight()	and	contentsRect.

int	QtTableView::numCols	()	const	[protected]

Returns	the	number	of	columns	in	the	table.

See	also	numRows()	and	setNumCols().

int	QtTableView::numRows	()	const	[protected]

Returns	the	number	of	rows	in	the	table.

See	also	numCols()	and	setNumRows().

void	QtTableView::paintCell	(QPainter	*	p,	int	row,	int	col)
[pure	virtual	protected]

This	pure	virtual	function	is	called	to	paint	the	single	cell	at	(row,col)	using	p,
which	is	open	when	paintCell()	is	called	and	must	remain	open.

The	coordinate	system	is	translated	so	that	the	origin	is	at	the	top-left	corner	of
the	cell	to	be	painted,	i.e.	cell	coordinates.	Do	not	scale	or	shear	the	coordinate
system	(or	if	you	do,	restore	the	transformation	matrix	before	you	return).

The	painter	is	not	clipped	by	default	and	for	maximum	efficiency.	For	safety,	call
setTableFlags(Tbl_clipCellPainting)	to	enable	clipping.

See	also	paintEvent()	and	setTableFlags().

Reimplemented	in	QtMultiLineEdit.

void	QtTableView::paintEvent	(QPaintEvent	*	e)	[virtual
protected]

Handles	paint	events,	e,	for	the	table	view.

Calls	paintCell()	for	the	cells	that	needs	to	be	repainted.

Reimplemented	from	QFrame.

void	QtTableView::repaint	(int	x,	int	y,	int	w,	int	h,	bool	erase	=
TRUE)

Repaints	the	table	view	directly	by	calling	paintEvent()	directly	unless	updates
are	disabled.

Erases	the	view	area	(x,y,w,h)	if	erase	is	TRUE.	Parameters	(x,y)	are	in	widget
coordinates.

If	w	is	negative,	it	is	replaced	with	width()	-	x.	If	h	is	negative,	it	is	replaced
with	height()	-	y.

Doing	a	repaint()	usually	is	faster	than	doing	an	update(),	but	calling	update()
many	times	in	a	row	will	generate	a	single	paint	event.

At	present,	QtTableView	is	the	only	widget	that	reimplements	repaint().	It	does
this	because	by	clearing	and	then	repainting	one	cell	at	at	time,	it	can	make	the
screen	flicker	less	than	it	would	otherwise.

void	QtTableView::repaint	(bool	erase	=	TRUE)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Repaints	the	entire	view.

void	QtTableView::repaint	(const	QRect	&	r,	bool	erase	=	TRUE
)

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Replaints	rectangle	r.	If	erase	is	TRUE	draws	the	background	using	the	palette's
background.

bool	QtTableView::rowIsVisible	(int	row)	const	[protected]

Returns	TRUE	if	row	is	at	least	partially	visible.

See	also	colIsVisible().

bool	QtTableView::rowYPos	(int	row,	int	*	yPos)	const
[protected]

Computes	the	position	in	the	widget	of	row	row.

Returns	TRUE	and	stores	the	result	in	*yPos	(in	widget	coordinates)	if	the	row	is
visible.	Returns	FALSE	and	does	not	modify	*yPos	if	row	is	invisible	or	invalid.

See	also	colXPos()	and	findRow().

void	QtTableView::scroll	(int	xPixels,	int	yPixels)	[protected]

Moves	the	visible	area	of	the	table	right	by	xPixels	and	down	by	yPixels	pixels.
Both	may	be	negative.

Warning:	You	might	find	that	QScrollView	offers	a	higher-level	of	functionality
than	using	QtTableView	and	this	function.

This	function	is	not	the	same	as	QWidget::scroll();	in	particular,	the	signs	of
xPixels	and	yPixels	have	the	reverse	semantics.

See	also	setXOffset(),	setYOffset(),	setOffset(),	setTopCell()	and	setLeftCell().

void	QtTableView::setAutoUpdate	(bool	enable)	[virtual
protected]

Sets	the	auto-update	option	of	the	table	view	to	enable.

If	enable	is	TRUE	(this	is	the	default),	the	view	updates	itself	automatically
whenever	it	has	changed	in	some	way	(for	example,	when	a	flag	is	changed).

If	enable	is	FALSE,	the	view	does	NOT	repaint	itself	or	update	its	internal	state
variables	when	it	is	changed.	This	can	be	useful	to	avoid	flicker	during	large
changes	and	is	singularly	useless	otherwise.	Disable	auto-update,	do	the
changes,	re-enable	auto-update	and	call	repaint().

Warning:	Do	not	leave	the	view	in	this	state	for	a	long	time	(i.e.,	between
events).	If,	for	example,	the	user	interacts	with	the	view	when	auto-update	is	off,
strange	things	can	happen.

Setting	auto-update	to	TRUE	does	not	repaint	the	view;	you	must	call	repaint()
to	do	this.

See	also	autoUpdate()	and	repaint().

Reimplemented	in	QtMultiLineEdit.

void	QtTableView::setCellHeight	(int	cellHeight)	[virtual
protected]

Sets	the	height	in	pixels	of	the	table	cells	to	cellHeight.

Setting	it	to	0	means	that	the	row	height	is	variable.	When	set	to	0	(this	is	the
default),	QtTableView	calls	the	virtual	function	cellHeight()	to	get	the	height.

See	also	cellHeight(),	setCellWidth(),	totalHeight()	and	numRows().

void	QtTableView::setCellWidth	(int	cellWidth)	[virtual

protected]

Sets	the	width	in	pixels	of	the	table	cells	to	cellWidth.

Setting	it	to	0	means	that	the	column	width	is	variable.	When	set	to	0	(this	is	the
default)	QtTableView	calls	the	virtual	function	cellWidth()	to	get	the	width.

See	also	cellWidth(),	setCellHeight(),	totalWidth()	and	numCols().

void	QtTableView::setLeftCell	(int	col)	[virtual	protected]

Scrolls	the	table	so	that	col	becomes	the	leftmost	column.	The	index	of	the
leftmost	column	is	0.

See	also	setXOffset(),	setTopLeftCell()	and	setTopCell().

void	QtTableView::setNumCols	(int	cols)	[virtual	protected]

Sets	the	number	of	columns	of	the	table	to	cols	(must	be	non-negative).	Does	not
change	leftCell().

The	table	repaints	itself	automatically	if	autoUpdate()	is	set.

See	also	numCols(),	numRows()	and	setNumRows().

void	QtTableView::setNumRows	(int	rows)	[virtual	protected]

Sets	the	number	of	rows	of	the	table	to	rows	(must	be	non-negative).	Does	not
change	topCell().

The	table	repaints	itself	automatically	if	autoUpdate()	is	set.

See	also	numCols(),	setNumCols()	and	numRows().

void	QtTableView::setOffset	(int	x,	int	y,	bool	updateScrBars	=
TRUE)	[virtual	protected]

Scrolls	the	table	so	that	(x,y)	becomes	the	top-left	pixel	in	the	view.	Parameters
(x,y)	are	in	table	coordinates.

The	interaction	with	Tbl_snapTo*Grid	is	tricky.	If	updateScrBars	is	TRUE,	the
scroll	bars	are	updated.

See	also	xOffset(),	yOffset(),	setXOffset(),	setYOffset()	and	setTopLeftCell().

void	QtTableView::setTableFlags	(uint	f)	[virtual	protected]

Sets	the	table	flags	to	f.

If	a	flag	setting	changes	the	appearance	of	the	table,	the	table	is	repainted	if	-	and
only	if	-	autoUpdate()	is	TRUE.

The	table	flags	are	mostly	single	bits,	though	there	are	some	multibit	flags	for
convenience.	Here	is	a	complete	list:

Tbl_vScrollBar
-	The	table	has	a	vertical	scroll	bar.

Tbl_hScrollBar
-	The	table	has	a	horizontal	scroll	bar.

Tbl_autoVScrollBar
-	The	table	has	a	vertical	scroll	bar	if	-	and	only	if	-	the	table	is	taller	than
the	view.

Tbl_autoHScrollBar
The	table	has	a	horizontal	scroll	bar	if	-	and	only	if	-	the	table	is	wider	than
the	view.

Tbl_autoScrollBars
-	The	union	of	the	previous	two	flags.

Tbl_clipCellPainting
-	The	table	uses	QPainter::setClipRect()	to	make	sure	that	paintCell()	will
not	draw	outside	the	cell	boundaries.

Tbl_cutCellsV
-	The	table	will	never	show	part	of	a	cell	at	the	bottom	of	the	table;	if	there
is	not	space	for	all	of	a	cell,	the	space	is	left	blank.

Tbl_cutCellsH
-	The	table	will	never	show	part	of	a	cell	at	the	right	side	of	the	table;	if
there	is	not	space	for	all	of	a	cell,	the	space	is	left	blank.

Tbl_cutCells
-	The	union	of	the	previous	two	flags.

Tbl_scrollLastHCell

-	When	the	user	scrolls	horizontally,	let	him/her	scroll	the	last	cell	left	until
it	is	at	the	left	edge	of	the	view.	If	this	flag	is	not	set,	the	user	can	only
scroll	to	the	point	where	the	last	cell	is	completely	visible.

Tbl_scrollLastVCell
-	When	the	user	scrolls	vertically,	let	him/her	scroll	the	last	cell	up	until	it	is
at	the	top	edge	of	the	view.	If	this	flag	is	not	set,	the	user	can	only	scroll	to
the	point	where	the	last	cell	is	completely	visible.

Tbl_scrollLastCell
-	The	union	of	the	previous	two	flags.

Tbl_smoothHScrolling
-	The	table	scrolls	as	smoothly	as	possible	when	the	user	scrolls
horizontally.	When	this	flag	is	not	set,	scrolling	is	done	one	cell	at	a	time.

Tbl_smoothVScrolling
-	The	table	scrolls	as	smoothly	as	possible	when	scrolling	vertically.	When
this	flag	is	not	set,	scrolling	is	done	one	cell	at	a	time.

Tbl_smoothScrolling
-	The	union	of	the	previous	two	flags.

Tbl_snapToHGrid
-	Except	when	the	user	is	actually	scrolling,	the	leftmost	column	shown
snaps	to	the	leftmost	edge	of	the	view.

Tbl_snapToVGrid
-	Except	when	the	user	is	actually	scrolling,	the	top	row	snaps	to	the	top
edge	of	the	view.

Tbl_snapToGrid
-	The	union	of	the	previous	two	flags.

You	can	specify	more	than	one	flag	at	a	time	using	bitwise	OR.

Example:

				setTableFlags(Tbl_smoothScrolling	|	Tbl_autoScrollBars);

		

Warning:	The	cutCells	options	(Tbl_cutCells,	Tbl_cutCellsH	and
Tbl_cutCellsV)	may	cause	painting	problems	when	scrollbars	are	enabled.	Do
not	combine	cutCells	and	scrollbars.

See	also	clearTableFlags(),	testTableFlags()	and	tableFlags().

void	QtTableView::setTopCell	(int	row)	[virtual	protected]

Scrolls	the	table	so	that	row	becomes	the	top	row.	The	index	of	the	very	first	row
is	0.

See	also	setYOffset(),	setTopLeftCell()	and	setLeftCell().

void	QtTableView::setTopLeftCell	(int	row,	int	col)	[virtual
protected]

Scrolls	the	table	so	that	the	cell	at	row	row	and	colum	col	becomes	the	top-left
cell	in	the	view.	The	cell	at	the	extreme	top	left	of	the	table	is	at	position	(0,0).

See	also	setLeftCell(),	setTopCell()	and	setOffset().

void	QtTableView::setXOffset	(int	x)	[virtual	protected]

Scrolls	the	table	so	that	x	becomes	the	leftmost	pixel	in	the	view.	The	x
parameter	is	in	table	coordinates.

The	interaction	with	Tbl_snapToHGrid	is	tricky.

See	also	xOffset(),	setYOffset(),	setOffset()	and	setLeftCell().

void	QtTableView::setYOffset	(int	y)	[virtual	protected]

Scrolls	the	table	so	that	y	becomes	the	top	pixel	in	the	view.	The	y	parameter	is
in	table	coordinates.

The	interaction	with	Tbl_snapToVGrid	is	tricky.

See	also	yOffset(),	setXOffset(),	setOffset()	and	setTopCell().

void	QtTableView::setupPainter	(QPainter	*)	[virtual
protected]

This	virtual	function	is	called	before	painting	of	table	cells	is	started.	It	can	be
reimplemented	by	subclasses	that	want	to	to	set	up	the	painter	in	a	special	way
and	that	do	not	want	to	do	so	for	each	cell.

uint	QtTableView::tableFlags	()	const	[protected]

Returns	the	union	of	the	table	flags	that	are	currently	set.

See	also	setTableFlags(),	clearTableFlags()	and	testTableFlags().

bool	QtTableView::testTableFlags	(uint	f)	const	[protected]

Returns	TRUE	if	any	of	the	table	flags	in	f	are	currently	set,	otherwise	FALSE.

See	also	setTableFlags(),	clearTableFlags()	and	tableFlags().

int	QtTableView::topCell	()	const	[protected]

Returns	the	index	of	the	first	row	in	the	table	that	is	visible	in	the	view.	The
index	of	the	first	row	is	0.

See	also	leftCell()	and	setTopCell().

int	QtTableView::totalHeight	()	[virtual	protected]

Returns	the	total	height	of	the	table	in	pixels.

This	function	is	virtual	and	should	be	reimplemented	by	subclasses	that	have
variable	cell	heights	and	a	non-trivial	cellHeight()	function,	or	a	large	number	of
rows	in	the	table.

The	default	implementation	may	be	slow	for	very	tall	tables.

See	also	cellHeight()	and	totalWidth().

int	QtTableView::totalWidth	()	[virtual	protected]

Returns	the	total	width	of	the	table	in	pixels.

This	function	is	virtual	and	should	be	reimplemented	by	subclasses	that	have
variable	cell	widths	and	a	non-trivial	cellWidth()	function,	or	a	large	number	of
columns	in	the	table.

The	default	implementation	may	be	slow	for	very	wide	tables.

See	also	cellWidth()	and	totalHeight().

void	QtTableView::updateCell	(int	row,	int	col,	bool	erase	=
TRUE)	[protected]

Repaints	the	cell	at	row	row,	column	col	if	it	is	inside	the	view.

If	erase	is	TRUE,	the	relevant	part	of	the	view	is	cleared	to	the	background
color/pixmap	before	the	contents	are	repainted.

See	also	visible.

void	QtTableView::updateScrollBars	()	[protected]

Updates	the	scroll	bars'	contents	and	presence	to	match	the	table's	state.
Generally,	you	should	not	need	to	call	this.

See	also	setTableFlags().

void	QtTableView::updateTableSize	()	[protected]

Updates	the	scroll	bars	and	internal	state.

Call	this	function	when	the	table	view's	total	size	is	changed;	typically	because
the	result	of	cellHeight()	or	cellWidth()	have	changed.

This	function	does	not	repaint	the	widget.

QScrollBar	*	QtTableView::verticalScrollBar	()	const
[protected]

Returns	a	pointer	to	the	vertical	scroll	bar	mainly	so	you	can	connect()	to	its
signals.	Note	that	the	scroll	bar	works	in	pixel	values;	use	findRow()	to	translate
to	cell	numbers.

int	QtTableView::viewHeight	()	const	[protected]

Returns	the	height	of	the	table	view,	as	such,	in	view	coordinates.	This	does	not
include	any	header,	scroll	bar	or	frame,	but	it	does	include	background	pixels

below	the	table	data.

See	also	minViewY(),	maxViewY(),	viewWidth(),	contentsRect	and	viewRect().

QRect	QtTableView::viewRect	()	const	[protected]

Returns	the	rectangle	that	is	the	actual	table,	excluding	any	frame,	in	widget
coordinates.

int	QtTableView::viewWidth	()	const	[protected]

Returns	the	width	of	the	table	view,	as	such,	in	view	coordinates.	This	does	not
include	any	header,	scroll	bar	or	frame,	but	it	does	include	background	pixels	to
the	right	of	the	table	data.

See	also	minViewX(),	maxViewX(),	viewHeight(),	contentsRect	and	viewRect().

int	QtTableView::xOffset	()	const	[protected]

Returns	the	x	coordinate	in	table	coordinates	of	the	pixel	that	is	currently	on	the
left	edge	of	the	view.

See	also	setXOffset(),	yOffset()	and	leftCell().

int	QtTableView::yOffset	()	const	[protected]

Returns	the	y	coordinate	in	table	coordinates	of	the	pixel	that	is	currently	on	the
top	edge	of	the	view.

See	also	setYOffset(),	xOffset()	and	topCell().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QtMultiLineEdit	Class	Reference
[obsolete]

The	QtMultiLineEdit	widget	is	a	simple	editor	for	inputting	text.	More...

#include	<qtmultilineedit.h>

Inherits	QtTableView.

List	of	all	member	functions.

Public	Members

QtMultiLineEdit	(QWidget	*	parent	=	0,	const	char	*	name	=	0)
~QtMultiLineEdit	()
QString	textLine	(int	line)	const
int	numLines	()	const
virtual	QSize	minimumSizeHint	()	const
virtual	void	insertLine	(const	QString	&	txt,	int	line	=	-1)
virtual	void	insertAt	(const	QString	&	s,	int	line,	int	col,	bool	mark	=
FALSE)
virtual	void	removeLine	(int	line)
void	cursorPosition	(int	*	line,	int	*	col)	const		(obsolete)
virtual	void	setCursorPosition	(int	line,	int	col,	bool	mark	=	FALSE)
void	getCursorPosition	(int	*	line,	int	*	col)	const
bool	atBeginning	()	const
bool	atEnd	()	const
virtual	void	setFixedVisibleLines	(int	lines)
int	maxLineWidth	()	const
void	setAlignment	(int	flags)
int	alignment	()	const
virtual	void	setValidator	(const	QValidator	*	v)
const	QValidator	*	validator	()	const
void	setEdited	(bool)
bool	edited	()	const
void	cursorWordForward	(bool	mark)
void	cursorWordBackward	(bool	mark)
enum	EchoMode	{	Normal,	NoEcho,	Password	}
virtual	void	setEchoMode	(EchoMode)
EchoMode	echoMode	()	const
void	setMaxLength	(int)
int	maxLength	()	const
virtual	void	setMaxLineLength	(int	m)
int	maxLineLength	()	const
virtual	void	setMaxLines	(int)
int	maxLines	()	const
virtual	void	setHMargin	(int)
int	hMargin	()	const

virtual	void	setSelection	(int	row_from,	int	col_from,	int	row_to,	int	col_to
)
enum	WordWrap	{	NoWrap,	WidgetWidth,	FixedPixelWidth,
FixedColumnWidth	}
void	setWordWrap	(WordWrap	mode)
WordWrap	wordWrap	()	const
void	setWrapColumnOrWidth	(int)
int	wrapColumnOrWidth	()	const
enum	WrapPolicy	{	AtWhiteSpace,	Anywhere	}
void	setWrapPolicy	(WrapPolicy	policy)
WrapPolicy	wrapPolicy	()	const
bool	autoUpdate	()	const
virtual	void	setAutoUpdate	(bool)
void	setUndoEnabled	(bool)
bool	isUndoEnabled	()	const
void	setUndoDepth	(int)
int	undoDepth	()	const
bool	isReadOnly	()	const
bool	isOverwriteMode	()	const
QString	text	()	const
int	length	()	const

Public	Slots

virtual	void	setText	(const	QString	&)
virtual	void	setReadOnly	(bool)
virtual	void	setOverwriteMode	(bool)
void	clear	()
void	append	(const	QString	&	s)
void	deselect	()
void	selectAll	()
void	paste	()
void	pasteSubType	(const	QCString	&	subtype)
void	copyText	()	const		(obsolete)
void	copy	()	const
void	cut	()
void	insert	(const	QString	&	s)
void	undo	()
void	redo	()

Signals

void	textChanged	()
void	returnPressed	()
void	undoAvailable	(bool	yes)
void	redoAvailable	(bool	yes)
void	copyAvailable	(bool	yes)

Static	Public	Members

void	setDefaultTabStop	(int	ex)
int	defaultTabStop	()

Properties

Alignment	alignment	-	the	alignment
bool	atBeginning	-	whether	the	cursor	is	at	the	beginning		(read	only)
bool	atEnd	-	whether	the	cursor	is	at	the	end		(read	only)
bool	autoUpdate	-	whether	auto	update	is	enabled
EchoMode	echoMode	-	the	echo	mode
bool	edited	-	whether	the	text	had	been	edited
int	hMargin	-	the	horizontal	margin	The	horizontal	margin	current	set.	The
default	is	3
int	length	-	the	length	of	the	text		(read	only)
int	maxLength	-	the	maximum	length	of	the	text
int	maxLineWidth	-	the	maximum	line	width	in	pixels	Returns	the	width	in
pixels	of	the	longest	text	line	in	this	editor		(read	only)
int	maxLines	-	the	maximum	number	of	lines	The	currently	set	line	limit,
or	-1	if	there	is	no	limit	(the	default)
int	numLines	-	the	number	of	lines	in	the	multi-line	edit		(read	only)
bool	overWriteMode	-	the	overwrite	mode
bool	readOnly	-	whether	the	multi-line	edit	is	read-only
QString	text	-	the	multi-line	edit's	text
int	undoDepth	-	the	undo	depth
bool	undoEnabled	-	whether	undo	is	enabled
WordWrap	wordWrap	-	the	word	wrap	mode
int	wrapColumnOrWidth	-	the	wrap	width	in	columns	or	pixels	The	wrap
column	or	wrap	width,	depending	on	the	word	wrap	mode
WrapPolicy	wrapPolicy	-	the	wrap	policy	mode	The	default	is	\c
AtWhiteSpace

Protected	Members

virtual	void	paintCell	(QPainter	*	painter,	int	row,	int	col)
virtual	void	keyPressEvent	(QKeyEvent	*	e)
virtual	void	focusInEvent	(QFocusEvent	*)
bool	hasMarkedText	()	const
QString	markedText	()	const
int	textWidth	(int	line)
int	textWidth	(const	QString	&	s)
QPoint	cursorPoint	()	const
virtual	void	insert	(const	QString	&	str,	bool	mark)
virtual	void	newLine	()
virtual	void	killLine	()
virtual	void	pageUp	(bool	mark	=	FALSE)
virtual	void	pageDown	(bool	mark	=	FALSE)
virtual	void	cursorLeft	(bool	mark	=	FALSE,	bool	wrap	=	TRUE)
virtual	void	cursorRight	(bool	mark	=	FALSE,	bool	wrap	=	TRUE)
virtual	void	cursorUp	(bool	mark	=	FALSE)
virtual	void	cursorDown	(bool	mark	=	FALSE)
virtual	void	backspace	()
virtual	void	del	()
virtual	void	home	(bool	mark	=	FALSE)
virtual	void	end	(bool	mark	=	FALSE)
bool	getMarkedRegion	(int	*	line1,	int	*	col1,	int	*	line2,	int	*	col2)
const
int	lineLength	(int	line)	const
QString	*	getString	(int	line)	const
bool	isEndOfParagraph	(int	row)	const
QString	stringShown	(int	row)	const
void	insertChar	(QChar	c)

Detailed	Description

The	QtMultiLineEdit	widget	is	a	simple	editor	for	inputting	text.

This	class	is	obsolete.	It	is	provided	to	keep	old	source	working.	We	strongly
advise	against	using	it	in	new	code.

The	QtMultiLineEdit	widget	provides	multiple	line	text	input	and	display.	It	is
intended	for	moderate	amounts	of	text.	There	are	no	arbitrary	limitations,	but	if
you	try	to	handle	megabytes	of	data,	performance	will	suffer.

Per	default,	the	edit	widget	does	not	perform	any	word	wrapping.	This	can	be
adjusted	by	calling	setWordWrap().	Both	dynamic	wrapping	according	to	the
visible	width	or	a	fixed	number	of	character	or	pixels	is	supported.

The	widget	can	be	used	to	display	text	by	calling	setReadOnly(TRUE).

The	default	key	bindings	are	described	in	keyPressEvent();	they	cannot	be
customized	except	by	inheriting	the	class.

	

Member	Type	Documentation

QtMultiLineEdit::EchoMode

This	enum	type	describes	the	ways	in	which	QLineEdit	can	display	its	contents.
The	currently	defined	values	are:

Normal	-	display	characters	as	they	are	entered.	This	is	the	default.

NoEcho	-	do	not	display	anything.

Password	-	display	asterisks	instead	of	the	characters	actually	entered.

See	also	echoMode,	echoMode	and	QLineEdit::EchoMode.

QtMultiLineEdit::WordWrap

This	enum	describes	the	multiline	edit's	word	wrap	mode.

The	following	values	are	valid:

NoWrap	-	no	word	wrap	at	all.
WidgetWidth	-	word	wrap	depending	on	the	current	width	of	the	editor
widget
FixedPixelWidth	-	wrap	according	to	a	fix	amount	of	pixels	(see
wrapColumnOrWidth())
FixedColumnWidth	-	wrap	according	to	a	fix	character	column.	This	is
useful	whenever	you	need	formatted	text	that	can	also	be	displayed
gracefully	on	devices	with	monospaced	fonts,	for	example	a	standard
VT100	terminal.	In	that	case	wrapColumnOrWidth()	should	typically	be	set
to	80.

See	also	wordWrap.

QtMultiLineEdit::WrapPolicy

Defines	where	text	can	be	wrapped	in	word	wrap	mode.

The	following	values	are	valid:

AtWhiteSpace	-	break	only	after	whitespace
Anywhere	-	break	anywhere

See	also	wrapPolicy.

Member	Function	Documentation

QtMultiLineEdit::QtMultiLineEdit	(QWidget	*	parent	=	0,
const	char	*	name	=	0)

Constructs	a	new,	empty,	QtMultiLineEdit	with	parent	parent	and	called	name.

QtMultiLineEdit::~QtMultiLineEdit	()

Destroys	the	QtMultiLineEdit

int	QtMultiLineEdit::alignment	()	const

Returns	the	alignment.	See	the	"alignment"	property	for	details.

void	QtMultiLineEdit::append	(const	QString	&	s)	[slot]

Appends	s	to	the	text.

bool	QtMultiLineEdit::atBeginning	()	const

Returns	TRUE	if	the	cursor	is	at	the	beginning;	otherwise	returns	FALSE.	See
the	"atBeginning"	property	for	details.

bool	QtMultiLineEdit::atEnd	()	const

Returns	TRUE	if	the	cursor	is	at	the	end;	otherwise	returns	FALSE.	See	the
"atEnd"	property	for	details.

bool	QtMultiLineEdit::autoUpdate	()	const

Returns	TRUE	if	auto	update	is	enabled;	otherwise	returns	FALSE.	See	the
"autoUpdate"	property	for	details.

void	QtMultiLineEdit::backspace	()	[virtual	protected]

Deletes	the	character	on	the	left	side	of	the	text	cursor	and	moves	the	cursor	one
position	to	the	left.	If	a	text	has	been	marked	by	the	user	(e.g.	by	clicking	and
dragging)	the	cursor	is	put	at	the	beginning	of	the	marked	text	and	the	marked
text	is	removed.

See	also	del().

void	QtMultiLineEdit::clear	()	[slot]

Removes	all	text.

void	QtMultiLineEdit::copy	()	const	[slot]

Copies	the	marked	text	to	the	clipboard.	Will	copy	only	if	echoMode()	is
Normal.

void	QtMultiLineEdit::copyAvailable	(bool	yes)	[signal]

This	signal	is	emitted	when	the	availability	of	cut/copy	changes.	If	yes	is	TRUE,
then	cut()	and	copy()	will	work	until	copyAvailable(FALSE)	is	next	emitted.

void	QtMultiLineEdit::copyText	()	const	[slot]

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Backward	compatibility.

void	QtMultiLineEdit::cursorDown	(bool	mark	=	FALSE)
[virtual	protected]

Moves	the	cursor	one	line	down.	If	mark	is	TRUE,	the	text	is	marked.

See	also	cursorUp(),	cursorLeft()	and	cursorRight().

void	QtMultiLineEdit::cursorLeft	(bool	mark	=	FALSE,
bool	wrap	=	TRUE)	[virtual	protected]

Moves	the	cursor	one	character	to	the	left.	If	mark	is	TRUE,	the	text	is	marked.
If	wrap	is	TRUE,	the	cursor	moves	to	the	end	of	the	previous	line	if	it	is	placed
at	the	beginning	of	the	current	line.

See	also	cursorRight(),	cursorUp()	and	cursorDown().

QPoint	QtMultiLineEdit::cursorPoint	()	const	[protected]

Returns	the	top	center	point	where	the	cursor	is	drawn

void	QtMultiLineEdit::cursorPosition	(int	*	line,	int	*	col)	const

This	function	is	obsolete.	It	is	provided	to	keep	old	source	working.	We
strongly	advise	against	using	it	in	new	code.

Use	getCursorPosition()	instead.

void	QtMultiLineEdit::cursorRight	(bool	mark	=	FALSE,
bool	wrap	=	TRUE)	[virtual	protected]

Moves	the	cursor	one	character	to	the	right.	If	mark	is	TRUE,	the	text	is	marked.
If	wrap	is	TRUE,	the	cursor	moves	to	the	beginning	of	the	next	line	if	it	is
placed	at	the	end	of	the	current	line.

See	also	cursorLeft(),	cursorUp()	and	cursorDown().

void	QtMultiLineEdit::cursorUp	(bool	mark	=	FALSE)
[virtual	protected]

Moves	the	cursor	up	one	line.	If	mark	is	TRUE,	the	text	is	marked.

See	also	cursorDown(),	cursorLeft()	and	cursorRight().

void	QtMultiLineEdit::cursorWordBackward	(bool	mark)

Moves	the	cursor	one	word	to	the	left.	If	mark	is	TRUE,	the	text	is	marked.

See	also	cursorWordForward().

void	QtMultiLineEdit::cursorWordForward	(bool	mark)

Moves	the	cursor	one	word	to	the	right.	If	mark	is	TRUE,	the	text	is	marked.

See	also	cursorWordBackward().

void	QtMultiLineEdit::cut	()	[slot]

Copies	the	selected	text	to	the	clipboard	and	deletes	the	selected	text.

int	QtMultiLineEdit::defaultTabStop	()	[static]

Returns	the	distance	between	tab	stops.

See	also	setDefaultTabStop().

void	QtMultiLineEdit::del	()	[virtual	protected]

Deletes	the	character	on	the	right	side	of	the	text	cursor.	If	a	text	has	been
marked	by	the	user	(e.g.	by	clicking	and	dragging)	the	cursor	is	put	at	the
beginning	of	the	marked	text	and	the	marked	text	is	removed.

See	also	backspace().

void	QtMultiLineEdit::deselect	()	[slot]

Deselects	all	text	(i.e.	removes	marking)	and	leaves	the	cursor	at	the	current
position.

EchoMode	QtMultiLineEdit::echoMode	()	const

Returns	the	echo	mode.	See	the	"echoMode"	property	for	details.

bool	QtMultiLineEdit::edited	()	const

Returns	TRUE	if	the	text	had	been	edited;	otherwise	returns	FALSE.	See	the
"edited"	property	for	details.

void	QtMultiLineEdit::end	(bool	mark	=	FALSE)	[virtual
protected]

Moves	the	text	cursor	to	the	right	end	of	the	line.	If	mark	is	TRUE	text	is	marked
towards	the	last	position.	If	it	is	FALSE	and	the	cursor	is	moved,	all	marked	text
is	unmarked.

See	also	home().

void	QtMultiLineEdit::focusInEvent	(QFocusEvent	*)	[virtual
protected]

Starts	the	cursor	blinking.

Reimplemented	from	QWidget.

void	QtMultiLineEdit::getCursorPosition	(int	*	line,	int	*	col)
const

Returns	the	current	line	and	character	position	within	that	line,	in	the	variables
pointed	to	by	line	and	col	respectively.

See	also	setCursorPosition().

bool	QtMultiLineEdit::getMarkedRegion	(int	*	line1,	int	*	col1,
int	*	line2,	int	*	col2)	const	[protected]

If	there	is	marked	text,	sets	line1,	col1,	line2	and	col2	to	the	start	and	end	of	the
marked	region	and	returns	TRUE.	Returns	FALSE	if	there	is	no	marked	text.

QString	*	QtMultiLineEdit::getString	(int	line)	const
[protected]

Returns	a	pointer	to	the	text	at	line	line.

int	QtMultiLineEdit::hMargin	()	const

Returns	the	horizontal	margin	The	horizontal	margin	current	set.	The	default	is

3.	See	the	"hMargin"	property	for	details.

bool	QtMultiLineEdit::hasMarkedText	()	const	[protected]

Returns	TRUE	if	there	is	marked	text.

void	QtMultiLineEdit::home	(bool	mark	=	FALSE)	[virtual
protected]

Moves	the	text	cursor	to	the	left	end	of	the	line.	If	mark	is	TRUE,	text	is	marked
towards	the	first	position.	If	it	is	FALSE	and	the	cursor	is	moved,	all	marked	text
is	unmarked.

See	also	end().

void	QtMultiLineEdit::insert	(const	QString	&	s)	[slot]

Inserts	s	at	the	current	cursor	position.

void	QtMultiLineEdit::insert	(const	QString	&	str,	bool	mark)
[virtual	protected]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Inserts	string	str	at	the	current	cursor	position.	If	mark	is	TRUE	the	string	is
marked.

void	QtMultiLineEdit::insertAt	(const	QString	&	s,	int	line,
int	col,	bool	mark	=	FALSE)	[virtual]

Inserts	s	at	line	number	line,	after	character	number	col	in	the	line.	If	s	contains
newline	characters,	new	lines	are	inserted.	If	mark	is	TRUE	the	inserted	text	is
selected.

The	cursor	position	is	adjusted.	If	the	insertion	position	is	equal	to	the	cursor
position,	the	cursor	is	placed	after	the	end	of	the	new	text.

void	QtMultiLineEdit::insertChar	(QChar	c)	[protected]

Inserts	c	at	the	current	cursor	position.	(this	function	is	provided	for	backward
compatibility	-	it	simply	calls	insert()).

void	QtMultiLineEdit::insertLine	(const	QString	&	txt,	int	line	=
-1)	[virtual]

Inserts	txt	at	line	number	line.	If	line	is	less	than	zero,	or	larger	than	the	number
of	rows,	the	new	text	is	put	at	the	end.	If	txt	contains	newline	characters,	several
lines	are	inserted.

The	cursor	position	is	not	changed.

bool	QtMultiLineEdit::isEndOfParagraph	(int	row)	const
[protected]

Returns	wether	row	is	the	last	row	in	a	paragraph.

This	function	is	only	interesting	in	word	wrap	mode,	otherwise	its	return	value	is
always	TRUE.

See	also	wordWrap.

bool	QtMultiLineEdit::isOverwriteMode	()	const

Returns	the	overwrite	mode.	See	the	"overWriteMode"	property	for	details.

bool	QtMultiLineEdit::isReadOnly	()	const

Returns	TRUE	if	the	multi-line	edit	is	read-only;	otherwise	returns	FALSE.	See
the	"readOnly"	property	for	details.

bool	QtMultiLineEdit::isUndoEnabled	()	const

Returns	TRUE	if	undo	is	enabled;	otherwise	returns	FALSE.	See	the
"undoEnabled"	property	for	details.

void	QtMultiLineEdit::keyPressEvent	(QKeyEvent	*	e)
[virtual	protected]

The	key	press	event	handler	converts	a	key	press	in	event	e	to	some	line	editor
action.

Here	are	the	default	key	bindings	when	isReadOnly()	is	FALSE:

Left	Arrow	Move	the	cursor	one	character	leftwards
Right	Arrow	Move	the	cursor	one	character	rightwards
Up	Arrow	Move	the	cursor	one	line	upwards
Down	Arrow	Move	the	cursor	one	line	downwards
Page	Up	Move	the	cursor	one	page	upwards
Page	Down	Move	the	cursor	one	page	downwards
Backspace	Delete	the	character	to	the	left	of	the	cursor
Home	Move	the	cursor	to	the	beginning	of	the	line
End	Move	the	cursor	to	the	end	of	the	line
Delete	Delete	the	character	to	the	right	of	the	cursor
Shift	-	Left	Arrow	Mark	text	one	character	leftwards
Shift	-	Right	Arrow	Mark	text	one	character	rightwards
Control-A	Move	the	cursor	to	the	beginning	of	the	line
Control-B	Move	the	cursor	one	character	leftwards
Control-C	Copy	the	marked	text	to	the	clipboard
Control-D	Delete	the	character	to	the	right	of	the	cursor
Control-E	Move	the	cursor	to	the	end	of	the	line
Control-F	Move	the	cursor	one	character	rightwards
Control-H	Delete	the	character	to	the	left	of	the	cursor
Control-K	Delete	to	end	of	line
Control-N	Move	the	cursor	one	line	downwards
Control-P	Move	the	cursor	one	line	upwards
Control-V	Paste	the	clipboard	text	into	line	edit
Control-X	Cut	the	marked	text,	copy	to	clipboard
Control-Z	Undo	the	last	operation
Control-Y	Redo	the	last	operation
Control	-	Left	Arrow	Move	the	cursor	one	word	leftwards
Control	-	Right	Arrow	Move	the	cursor	one	word	rightwards
Control	-	Up	Arrow	Move	the	cursor	one	word	upwards
Control	-	Down	Arrow	Move	the	cursor	one	word	downwards
Control	-	Home	Arrow	Move	the	cursor	to	the	beginning	of	the	text

Control	-	End	Arrow	Move	the	cursor	to	the	end	of	the	text

In	addition,	the	following	key	bindings	are	used	on	Windows:

Shift	-	Delete	Cut	the	marked	text,	copy	to	clipboard
Shift	-	Insert	Paste	the	clipboard	text	into	line	edit
Control	-	Insert	Copy	the	marked	text	to	the	clipboard

All	other	keys	with	valid	ASCII	codes	insert	themselves	into	the	line.

Here	are	the	default	key	bindings	when	isReadOnly()	is	TRUE:

Left	Arrow	Scrolls	the	table	rightwards
Right	Arrow	Scrolls	the	table	rightwards
Up	Arrow	Scrolls	the	table	one	line	downwards
Down	Arrow	Scrolls	the	table	one	line	upwards
Page	Up	Scrolls	the	table	one	page	downwards
Page	Down	Scrolls	the	table	one	page	upwards
Control-C	Copy	the	marked	text	to	the	clipboard

Reimplemented	from	QWidget.

void	QtMultiLineEdit::killLine	()	[virtual	protected]

Deletes	text	from	the	current	cursor	position	to	the	end	of	the	line.

int	QtMultiLineEdit::length	()	const

Returns	the	length	of	the	text.	See	the	"length"	property	for	details.

int	QtMultiLineEdit::lineLength	(int	line)	const	[protected]

Returns	the	number	of	characters	at	line	number	line.

QString	QtMultiLineEdit::markedText	()	const	[protected]

Returns	a	copy	of	the	marked	text.

int	QtMultiLineEdit::maxLength	()	const

Returns	the	maximum	length	of	the	text.	See	the	"maxLength"	property	for
details.

int	QtMultiLineEdit::maxLineLength	()	const

Returns	the	currently	set	line	length	limit,	or	-1	if	there	is	no	limit	(this	is	the
default).

See	also	setMaxLineLength().

int	QtMultiLineEdit::maxLineWidth	()	const

Returns	the	maximum	line	width	in	pixels	Returns	the	width	in	pixels	of	the
longest	text	line	in	this	editor.	See	the	"maxLineWidth"	property	for	details.

int	QtMultiLineEdit::maxLines	()	const

Returns	the	maximum	number	of	lines	The	currently	set	line	limit,	or	-1	if	there
is	no	limit	(the	default).	See	the	"maxLines"	property	for	details.

QSize	QtMultiLineEdit::minimumSizeHint	()	const	[virtual]

Returns	a	size	sufficient	for	one	character,	and	scroll	bars.

Reimplemented	from	QWidget.

void	QtMultiLineEdit::newLine	()	[virtual	protected]

Makes	a	line	break	at	the	current	cursor	position.

int	QtMultiLineEdit::numLines	()	const

Returns	the	number	of	lines	in	the	multi-line	edit.	See	the	"numLines"	property
for	details.

void	QtMultiLineEdit::pageDown	(bool	mark	=	FALSE)
[virtual	protected]

Moves	the	cursor	one	page	down.	If	mark	is	TRUE,	the	text	is	marked.

void	QtMultiLineEdit::pageUp	(bool	mark	=	FALSE)	[virtual
protected]

Moves	the	cursor	one	page	up.	If	mark	is	TRUE,	the	text	is	marked.

void	QtMultiLineEdit::paintCell	(QPainter	*	painter,	int	row,
int	col)	[virtual	protected]

Implements	the	basic	drawing	logic.	Paints	the	line	at	row	row	using	painter
painter.	The	col	parameter	is	ignored.

Reimplemented	from	QtTableView.

void	QtMultiLineEdit::paste	()	[slot]

Copies	plain	text	from	the	clipboard	onto	the	current	cursor	position.	Any
marked	text	is	first	deleted.

void	QtMultiLineEdit::pasteSubType	(const	QCString	&	subtype
)	[slot]

Copies	text	in	MIME	subtype	subtype	from	the	clipboard	onto	the	current	cursor
position.	Any	marked	text	is	first	deleted.

void	QtMultiLineEdit::redo	()	[slot]

Redoes	the	last	text	operation.

void	QtMultiLineEdit::redoAvailable	(bool	yes)	[signal]

This	signal	is	emitted	when	the	availability	of	redo	changes.	If	yes	is	TRUE,	then
redo()	will	work	until	redoAvailable(FALSE)	is	next	emitted.

void	QtMultiLineEdit::removeLine	(int	line)	[virtual]

Deletes	the	line	at	line	number	line.	If	line	is	less	than	zero,	or	larger	than	the

number	of	lines,	no	line	is	deleted.

void	QtMultiLineEdit::returnPressed	()	[signal]

This	signal	is	emitted	when	the	user	presses	the	return	or	enter	key.	It	is	not
emitted	if	isReadOnly()	is	TRUE.

See	also	textChanged().

void	QtMultiLineEdit::selectAll	()	[slot]

Selects	all	text	without	moving	the	cursor.

void	QtMultiLineEdit::setAlignment	(int	flags)

Sets	the	alignment	to	flags.	See	the	"alignment"	property	for	details.

void	QtMultiLineEdit::setAutoUpdate	(bool)	[virtual]

Sets	whether	auto	update	is	enabled.	See	the	"autoUpdate"	property	for	details.

Reimplemented	from	QtTableView.

void	QtMultiLineEdit::setCursorPosition	(int	line,	int	col,
bool	mark	=	FALSE)	[virtual]

Sets	the	cursor	position	to	character	number	col	in	line	number	line.	The
parameters	are	adjusted	to	lie	within	the	legal	range.

If	mark	is	FALSE,	the	selection	is	cleared.	otherwise	it	is	extended

See	also	cursorPosition().

void	QtMultiLineEdit::setDefaultTabStop	(int	ex)	[static]

Sets	the	distance	between	tab	stops	for	all	QtMultiLineEdit	instances	to	ex,
which	is	measured	in	multiples	of	the	width	of	a	lower	case	'x'	in	the	widget's
font.	The	initial	value	is	8.

Warning:	This	function	does	not	cause	a	redraw.	It	is	best	to	call	it	before	any
QtMultiLineEdit	widgets	are	shown.

See	also	defaultTabStop().

void	QtMultiLineEdit::setEchoMode	(EchoMode)	[virtual]

Sets	the	echo	mode.	See	the	"echoMode"	property	for	details.

void	QtMultiLineEdit::setEdited	(bool)

Sets	whether	the	text	had	been	edited.	See	the	"edited"	property	for	details.

void	QtMultiLineEdit::setFixedVisibleLines	(int	lines)
[virtual]

Sets	the	fixed	height	of	the	QtMultiLineEdit	so	that	lines	text	lines	are	visible
given	the	current	font.

See	also	maxLines	and	setFixedHeight().

void	QtMultiLineEdit::setHMargin	(int)	[virtual]

Sets	the	horizontal	margin	The	horizontal	margin	current	set.	The	default	is	3.
See	the	"hMargin"	property	for	details.

void	QtMultiLineEdit::setMaxLength	(int)

Sets	the	maximum	length	of	the	text.	See	the	"maxLength"	property	for	details.

void	QtMultiLineEdit::setMaxLineLength	(int	m)	[virtual]

Sets	the	maximum	length	of	lines	to	m.	Use	-1	for	unlimited	(the	default).
Existing	long	lines	will	be	truncated.

See	also	maxLineLength().

void	QtMultiLineEdit::setMaxLines	(int)	[virtual]

Sets	the	maximum	number	of	lines	The	currently	set	line	limit,	or	-1	if	there	is
no	limit	(the	default).	See	the	"maxLines"	property	for	details.

void	QtMultiLineEdit::setOverwriteMode	(bool)	[virtual
slot]

Sets	the	overwrite	mode.	See	the	"overWriteMode"	property	for	details.

void	QtMultiLineEdit::setReadOnly	(bool)	[virtual	slot]

Sets	whether	the	multi-line	edit	is	read-only.	See	the	"readOnly"	property	for
details.

void	QtMultiLineEdit::setSelection	(int	row_from,	int	col_from,
int	row_to,	int	col_to)	[virtual]

Marks	the	text	starting	at	row_from,	col_from	and	ending	at	row_to,	col_to.

void	QtMultiLineEdit::setText	(const	QString	&)	[virtual
slot]

Sets	the	multi-line	edit's	text.	See	the	"text"	property	for	details.

void	QtMultiLineEdit::setUndoDepth	(int)

Sets	the	undo	depth.	See	the	"undoDepth"	property	for	details.

void	QtMultiLineEdit::setUndoEnabled	(bool)

Sets	whether	undo	is	enabled.	See	the	"undoEnabled"	property	for	details.

void	QtMultiLineEdit::setValidator	(const	QValidator	*	v)
[virtual]

Not	supported	at	this	time.	v	is	the	validator	to	set.

void	QtMultiLineEdit::setWordWrap	(WordWrap	mode)

Sets	the	word	wrap	mode	to	mode.	See	the	"wordWrap"	property	for	details.

void	QtMultiLineEdit::setWrapColumnOrWidth	(int)

Sets	the	wrap	width	in	columns	or	pixels	The	wrap	column	or	wrap	width,
depending	on	the	word	wrap	mode.	See	the	"wrapColumnOrWidth"	property	for
details.

void	QtMultiLineEdit::setWrapPolicy	(WrapPolicy	policy)

Sets	the	wrap	policy	mode	The	default	is	AtWhiteSpace	to	policy.	See	the
"wrapPolicy"	property	for	details.

QString	QtMultiLineEdit::stringShown	(int	row)	const
[protected]

Returns	the	string	shown	at	line	row,	including	processing	of	the	echoMode().

QString	QtMultiLineEdit::text	()	const

Returns	the	multi-line	edit's	text.	See	the	"text"	property	for	details.

void	QtMultiLineEdit::textChanged	()	[signal]

This	signal	is	emitted	when	the	text	is	changed	by	an	event	or	by	a	slot.	Note	that
the	signal	is	not	emitted	when	you	call	a	non-slot	function	such	as	insertLine().

See	also	returnPressed().

QString	QtMultiLineEdit::textLine	(int	line)	const

Returns	the	text	at	line	number	line	(possibly	the	empty	string),	or	a	null	string	if
line	is	invalid.

int	QtMultiLineEdit::textWidth	(int	line)	[protected]

Returns	the	width	in	pixels	of	the	text	at	line	line.

int	QtMultiLineEdit::textWidth	(const	QString	&	s)
[protected]

This	is	an	overloaded	member	function,	provided	for	convenience.	It	behaves
essentially	like	the	above	function.

Returns	the	width	in	pixels	of	the	string	s.	NOTE:	only	appropriate	for	whole
lines.

void	QtMultiLineEdit::undo	()	[slot]

Undoes	the	last	text	operation.

void	QtMultiLineEdit::undoAvailable	(bool	yes)	[signal]

This	signal	is	emitted	when	the	availability	of	undo	changes.	If	yes	is	TRUE,
then	undo()	will	work	until	undoAvailable(FALSE)	is	next	emitted.

int	QtMultiLineEdit::undoDepth	()	const

Returns	the	undo	depth.	See	the	"undoDepth"	property	for	details.

const	QValidator	*	QtMultiLineEdit::validator	()	const

Not	supported	at	this	time.

WordWrap	QtMultiLineEdit::wordWrap	()	const

Returns	the	word	wrap	mode.	See	the	"wordWrap"	property	for	details.

int	QtMultiLineEdit::wrapColumnOrWidth	()	const

Returns	the	wrap	width	in	columns	or	pixels	The	wrap	column	or	wrap	width,
depending	on	the	word	wrap	mode.	See	the	"wrapColumnOrWidth"	property	for
details.

WrapPolicy	QtMultiLineEdit::wrapPolicy	()	const

Returns	the	wrap	policy	mode	The	default	is	AtWhiteSpace.	See	the
"wrapPolicy"	property	for	details.

Property	Documentation

Alignment	alignment

This	property	holds	the	alignment.

Possible	values	are	AlignLeft,	Align(H)Center	and	AlignRight.

See	also	Qt::AlignmentFlags.

Set	this	property's	value	with	setAlignment()	and	get	this	property's	value	with
alignment().

bool	atBeginning

This	property	holds	whether	the	cursor	is	at	the	beginning.

atBeginning()	returns	TRUE	if	the	cursor	is	placed	at	the	beginning	of	the	text.

Get	this	property's	value	with	atBeginning().

bool	atEnd

This	property	holds	whether	the	cursor	is	at	the	end.

atEnd()	returns	TRUE	if	the	cursor	is	placed	at	the	end	of	the	text.

Get	this	property's	value	with	atEnd().

bool	autoUpdate

This	property	holds	whether	auto	update	is	enabled.

autoUpdate()	returns	TRUE	if	the	view	updates	itself	automatically	whenever	it
is	changed	in	some	way.

If	autoUpdate()	is	TRUE	(this	is	the	default)	then	the	editor	updates	itself
automatically	whenever	it	has	changed	in	some	way	(generally,	when	text	has

been	inserted	or	deleted).

If	autoUpdate()	is	FALSE,	the	view	does	NOT	repaint	itself,	or	update	its
internal	state	variables	itself	when	it	is	changed.	This	can	be	useful	to	avoid
flicker	during	large	changes,	and	is	singularly	useless	otherwise:	Disable	auto-
update,	do	the	changes,	re-enable	auto-update,	and	call	repaint().

Warning:	Do	not	leave	the	view	in	this	state	for	a	long	time	(i.e.	between	events
).	If,	for	example,	the	user	interacts	with	the	view	when	auto-update	is	off,
strange	things	can	happen.

Setting	auto-update	to	TRUE	does	not	repaint	the	view,	you	must	call	repaint()
to	do	this	(preferable	repaint(FALSE)	to	avoid	flicker).

See	also	repaint().

Set	this	property's	value	with	setAutoUpdate()	and	get	this	property's	value	with
autoUpdate().

EchoMode	echoMode

This	property	holds	the	echo	mode.

Set	this	property's	value	with	setEchoMode()	and	get	this	property's	value	with
echoMode().

bool	edited

This	property	holds	whether	the	text	had	been	edited.

edited()	returns	the	edited	flag	of	the	line	edit.	If	this	returns	FALSE,	the
contents	has	not	been	changed	since	the	construction	of	the	QtMultiLineEdit	(or
the	last	call	to	setEdited(FALSE),	if	any).	If	it	returns	TRUE,	the	contents	have
been	edited,	or	setEdited(TRUE)	has	been	called.

setEdited()	sets	the	edited	flag	of	this	line	edit	to	e.	The	edited	flag	is	never	read
by	QtMultiLineEdit,	but	is	changed	to	TRUE	whenever	the	user	changes	its
contents.

This	is	useful	e.g.	for	things	that	need	to	provide	a	default	value,	but	cannot	find

the	default	at	once.	Just	open	the	widget	without	the	best	default	and	when	the
default	is	known,	check	the	edited()	return	value	and	set	the	line	edit's	contents	if
the	user	has	not	started	editing	the	line	edit.	Another	example	is	to	detect
whether	the	contents	need	saving.

Set	this	property's	value	with	setEdited()	and	get	this	property's	value	with
edited().

int	hMargin

This	property	holds	the	horizontal	margin	The	horizontal	margin	current	set.	The
default	is	3.

Set	this	property's	value	with	setHMargin()	and	get	this	property's	value	with
hMargin().

int	length

This	property	holds	the	length	of	the	text.

Get	this	property's	value	with	length().

int	maxLength

This	property	holds	the	maximum	length	of	the	text.

The	currently	set	text	length	limit,	or	-1	if	there	is	no	limit	(this	is	the	default).

Set	this	property's	value	with	setMaxLength()	and	get	this	property's	value	with
maxLength().

int	maxLineWidth

This	property	holds	the	maximum	line	width	in	pixels	Returns	the	width	in
pixels	of	the	longest	text	line	in	this	editor.

Get	this	property's	value	with	maxLineWidth().

int	maxLines

This	property	holds	the	maximum	number	of	lines	The	currently	set	line	limit,	or
-1	if	there	is	no	limit	(the	default).

Note	that	excess	lines	are	deleted	from	the	bottom	of	the	lines.	If	you	want
teletype	behaviour	with	lines	disappearing	from	the	top	as	the	limit	is	exceed,
you	probably	just	want	to	use	removeLine(0)	prior	to	adding	an	excess	line.

Set	this	property's	value	with	setMaxLines()	and	get	this	property's	value	with
maxLines().

int	numLines

This	property	holds	the	number	of	lines	in	the	multi-line	edit.

numLines()	returns	the	number	of	lines	in	the	editor.	The	count	includes	any
empty	lines	at	top	and	bottom,	so	for	an	empty	editor	this	method	will	return	1.

Get	this	property's	value	with	numLines().

bool	overWriteMode

This	property	holds	the	overwrite	mode.

Set	this	property's	value	with	setOverwriteMode()	and	get	this	property's	value
with	isOverwriteMode().

bool	readOnly

This	property	holds	whether	the	multi-line	edit	is	read-only.

Set	this	property's	value	with	setReadOnly()	and	get	this	property's	value	with
isReadOnly().

QString	text

This	property	holds	the	multi-line	edit's	text.

Set	this	property's	value	with	setText()	and	get	this	property's	value	with	text().

int	undoDepth

This	property	holds	the	undo	depth.

The	maximum	number	of	operations	that	can	be	stored	on	the	undo	stack.

See	also	undoDepth.

Set	this	property's	value	with	setUndoDepth()	and	get	this	property's	value	with
undoDepth().

bool	undoEnabled

This	property	holds	whether	undo	is	enabled.

Set	this	property's	value	with	setUndoEnabled()	and	get	this	property's	value
with	isUndoEnabled().

WordWrap	wordWrap

This	property	holds	the	word	wrap	mode.

By	default,	wrapping	keeps	words	intact.	To	allow	breaking	within	words,	set	the
wrap	policy	to	Anywhere	(see	setWrapPolicy()).

The	default	wrap	mode	is	NoWrap.

See	also	wrapColumnOrWidth	and	wrapPolicy.

Set	this	property's	value	with	setWordWrap()	and	get	this	property's	value	with
wordWrap().

int	wrapColumnOrWidth

This	property	holds	the	wrap	width	in	columns	or	pixels	The	wrap	column	or
wrap	width,	depending	on	the	word	wrap	mode.

Set	this	property's	value	with	setWrapColumnOrWidth()	and	get	this	property's
value	with	wrapColumnOrWidth().

See	also	wordWrap	and	wrapColumnOrWidth.

WrapPolicy	wrapPolicy

This	property	holds	the	wrap	policy	mode	The	default	is	AtWhiteSpace.

Set	this	property's	value	with	setWrapPolicy()	and	get	this	property's	value	with
wrapPolicy().

This	file	is	part	of	the	Qt	toolkit.	Copyright	©	1995-2002	Trolltech.	All	Rights
Reserved.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qaccessible.h
This	is	the	verbatim	text	of	the	qaccessible.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	Id

**

**	Definition	of	QAccessible	and	QAccessibleObject	classes

**

**	Copyright	(C)	2000-2001	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QACCESSIBLE_H

#define	QACCESSIBLE_H

#ifndef	QT_H

#include	"qobject.h"

#include	<private/qcom_p.h>

#include	"qrect.h"

#include	"qguardedptr.h"

#include	"qmemarray.h"

#endif	//	QT_H

#if	defined(QT_ACCESSIBILITY_SUPPORT)

struct	QAccessibleInterface;

class	Q_EXPORT	QAccessible

{

public:

				enum	Event	{

	 SoundPlayed	 				=	0x0001,

	 Alert	 	 				=	0x0002,

	 ForegroundChanged			=	0x0003,

	 MenuStart	 				=	0x0004,

	 MenuEnd		 				=	0x0005,

	 PopupMenuStart	 				=	0x0006,

	 PopupMenuEnd	 				=	0x0007,

	 ContextHelpStart				=	0x000C,

	 ContextHelpEnd	 				=	0x000D,

	 DragDropStart	 				=	0x000E,

	 DragDropEnd	 				=	0x000F,

	 DialogStart	 				=	0x0010,

	 DialogEnd	 				=	0x0011,

	 ScrollingStart	 				=	0x0012,

	 ScrollingEnd	 				=	0x0013,

	 MenuCommand	 				=	0x0018,

	 ObjectCreated	 				=	0x8000,

	 ObjectDestroyed					=	0x8001,

	 ObjectShow	 				=	0x8002,

	 ObjectHide	 				=	0x8003,

	 ObjectReorder	 				=	0x8004,

	 Focus	 	 				=	0x8005,

	 Selection	 				=	0x8006,

	 SelectionAdd	 				=	0x8007,

	 SelectionRemove					=	0x8008,

	 SelectionWithin					=	0x8009,

	 StateChanged	 				=	0x800A,

	 LocationChanged					=	0x800B,

	 NameChanged	 				=	0x800C,

	 DescriptionChanged		=	0x800D,

	 ValueChanged	 				=	0x800E,

	 ParentChanged	 				=	0x800F,

	 HelpChanged	 				=	0x80A0,

	 DefaultActionChanged=	0x80B0,

	 AcceleratorChanged		=	0x80C0

				};

				enum	State	{

	 Normal	 	 =	0x00000000,

	 Unavailable	 =	0x00000001,

	 Selected	 =	0x00000002,

	 Focused		 =	0x00000004,

	 Pressed		 =	0x00000008,

	 Checked		 =	0x00000010,

	 Mixed	 	 =	0x00000020,

	 ReadOnly	 =	0x00000040,

	 HotTracked	 =	0x00000080,

	 Default		 =	0x00000100,

	 Expanded	 =	0x00000200,

	 Collapsed	 =	0x00000400,

	 Busy	 	 =	0x00000800,

	 Floating	 =	0x00001000,

	 Marqueed	 =	0x00002000,

	 Animated	 =	0x00004000,

	 Invisible	 =	0x00008000,

	 Offscreen	 =	0x00010000,

	 Sizeable	 =	0x00020000,

	 Moveable	 =	0x00040000,

	 SelfVoicing	 =	0x00080000,

	 Focusable	 =	0x00100000,

	 Selectable	 =	0x00200000,

	 Linked	 	 =	0x00400000,

	 Traversed	 =	0x00800000,

	 MultiSelectable	=	0x01000000,

	 ExtSelectable	 =	0x02000000,

	 AlertLow	 =	0x04000000,

	 AlertMedium	 =	0x08000000,

	 AlertHigh	 =	0x10000000,

	 Protected	 =	0x20000000,

	 Valid	 	 =	0x3fffffff

				};

				enum	Role	{

	 NoRole	 	 =	0x00000000,

	 TitleBar	 =	0x00000001,

	 MenuBar		 =	0x00000002,

	 ScrollBar	 =	0x00000003,

	 Grip	 	 =	0x00000004,

	 Sound	 	 =	0x00000005,

	 Cursor	 	 =	0x00000006,

	 Caret	 	 =	0x00000007,

	 AlertMessage	 =	0x00000008,

	 Window	 	 =	0x00000009,

	 Client	 	 =	0x0000000A,

	 PopupMenu	 =	0x0000000B,

	 MenuItem	 =	0x0000000C,

	 ToolTip		 =	0x0000000D,

	 Application	 =	0x0000000E,

	 Document	 =	0x0000000F,

	 Pane	 	 =	0x00000010,

	 Chart	 	 =	0x00000011,

	 Dialog	 	 =	0x00000012,

	 Border	 	 =	0x00000013,

	 Grouping	 =	0x00000014,

	 Separator	 =	0x00000015,

	 ToolBar		 =	0x00000016,

	 StatusBar	 =	0x00000017,

	 Table	 	 =	0x00000018,

	 ColumnHeader	 =	0x00000019,

	 RowHeader	 =	0x0000001A,

	 Column	 	 =	0x0000001B,

	 Row	 	 =	0x0000001C,

	 Cell	 	 =	0x0000001D,

	 Link	 	 =	0x0000001E,

	 HelpBalloon	 =	0x0000001F,

	 Character	 =	0x00000020,

	 List	 	 =	0x00000021,

	 ListItem	 =	0x00000022,

	 Outline		 =	0x00000023,

	 OutlineItem	 =	0x00000024,

	 PageTab		 =	0x00000025,

	 PropertyPage	 =	0x00000026,

	 Indicator	 =	0x00000027,

	 Graphic		 =	0x00000028,

	 StaticText	 =	0x00000029,

	 EditableText	 =	0x0000002A,		//	Editable,	selectable,	etc.

	 PushButton	 =	0x0000002B,

	 CheckBox	 =	0x0000002C,

	 RadioButton	 =	0x0000002D,

	 ComboBox	 =	0x0000002E,

	 DropLest	 =	0x0000002F,

	 ProgressBar	 =	0x00000030,

	 Dial	 	 =	0x00000031,

	 HotkeyField	 =	0x00000032,

	 Slider	 	 =	0x00000033,

	 SpinBox		 =	0x00000034,

	 Diagram		 =	0x00000035,

	 Animation	 =	0x00000036,

	 Equation	 =	0x00000037,

	 ButtonDropDown	 =	0x00000038,

	 ButtonMenu	 =	0x00000039,

	 ButtonDropGrid	 =	0x0000003A,

	 Whitespace	 =	0x0000003B,

	 PageTabList	 =	0x0000003C,

	 Clock	 	 =	0x0000003D

				};

				enum	NavDirection	{

	 NavUp	 	 =	0x00000001,

	 NavDown		 =	0x00000002,

	 NavLeft		 =	0x00000003,

	 NavRight	 =	0x00000004,

	 NavNext		 =	0x00000005,

	 NavPrevious	 =	0x00000006,

	 NavFirstChild	 =	0x00000007,

	 NavLastChild	 =	0x00000008,

	 NavFocusChild	 =	0x00000009

				};

				enum	Text	{

	 Name	 	 =	0,

	 Description,

	 Value,

	 Help,

	 Accelerator,

	 DefaultAction

				};

				static	QRESULT	queryAccessibleInterface(QObject	*,	QAccessibleInterface	**);

				static	void	updateAccessibility(QObject	*,	int	who,	Event	reason);

};

//	{EC86CB9C-5DA0-4c43-A739-13EBDF1C6B14}

#define	IID_QAccessible	QUuid(0xec86cb9c,	0x5da0,	0x4c43,	0xa7,	0x39,	0x13,	0xeb,	0xdf,	0x1c,	0x6b,	0x14)

struct	Q_EXPORT	QAccessibleInterface	:	public	QAccessible,	public	QUnknownInterface

{

				//	check	for	valid	pointers

				virtual	bool	 isValid()	const	=	0;

				//	hierarchy

				virtual	int		 childCount()	const	=	0;

				virtual	QRESULT	 queryChild(int	control,	QAccessibleInterface**)	const	=	0;

				virtual	QRESULT	 queryParent(QAccessibleInterface**)	const	=	0;

				//	navigation

				virtual	int		 controlAt(int	x,	int	y)	const	=	0;

				virtual	QRect	 rect(int	control)	const	=	0;

				virtual	int		 navigate(NavDirection	direction,	int	startControl)	const	=	0;

				//	properties	and	state

				virtual	QString	 text(Text	t,	int	control)	const	=	0;

				virtual	void	 setText(Text	t,	int	control,	const	QString	&text)	=	0;

				virtual	Role	 role(int	control)	const	=	0;

				virtual	State	 state(int	control)	const	=	0;

				virtual	QMemArray<int>	selection()	const	=	0;

				//	methods

				virtual	bool	 doDefaultAction(int	control)	=	0;

				virtual	bool	 setFocus(int	control)	=	0;

				virtual	bool	 setSelected(int	control,	bool	on,	bool	extend)	=	0;

				virtual	void	 clearSelection()	=	0;				

};

//	{49F4C6A7-412F-41DE-9E24-648843421FD3}	

#ifndef	IID_QAccessibleFactory

#define	IID_QAccessibleFactory	QUuid(0x49f4c6a7,	0x412f,	0x41de,	0x9e,	0x24,	0x64,	0x88,	0x43,	0x42,	0x1f,	0xd3)

#endif

struct	Q_EXPORT	QAccessibleFactoryInterface	:	public	QAccessible,	public	QFeatureListInterface

{

				virtual	QRESULT	createAccessibleInterface(const	QString	&,	QObject	*,	QAccessibleInterface**)	=	0;

};

#if	defined(Q_TEMPLATEDLL)

//	MOC_SKIP_BEGIN

Q_TEMPLATE_EXTERN	template	class	Q_EXPORT	QGuardedPtr<QObject>;

//	MOC_SKIP_END

#endif

class	Q_EXPORT	QAccessibleObject	:	public	QObject,	public	QAccessibleInterface

{

public:

				QAccessibleObject(QObject	*object);

				virtual	~QAccessibleObject();

				QRESULT	 queryInterface(const	QUuid	&,	QUnknownInterface**);

				Q_REFCOUNT

				bool	 isValid()	const;

protected:

				QObject	*object()	const;

private:

				QGuardedPtr<QObject>	object_;

};

#endif	//QT_ACCESSIBILITY_SUPPORT

#endif	//QACCESSIBLE_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qaction.h
qaction.hTrolltech

/**

**	$Id:		qt/qaction.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QAction	class

**

**	Created	:	000000

**

**	Copyright	(C)	2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QACTION_H

#define	QACTION_H

#ifndef	QT_H

#include	"qobject.h"

#include	"qiconset.h"

#include	"qstring.h"

#include	"qkeysequence.h"

#endif	//	QT_H

#ifndef	QT_NO_ACTION

class	QActionPrivate;

class	QActionGroupPrivate;

class	QStatusBar;

class	QPopupMenu;

class	Q_EXPORT	QAction	:	public	QObject

{

				Q_OBJECT

				Q_PROPERTY(bool	toggleAction	READ	isToggleAction	WRITE	setToggleAction)

				Q_PROPERTY(bool	on	READ	isOn	WRITE	setOn)

				Q_PROPERTY(bool	enabled	READ	isEnabled	WRITE	setEnabled)

				Q_PROPERTY(QIconSet	iconSet	READ	iconSet	WRITE	setIconSet)

				Q_PROPERTY(QString	text	READ	text	WRITE	setText)

				Q_PROPERTY(QString	menuText	READ	menuText	WRITE	setMenuText)

				Q_PROPERTY(QString	toolTip	READ	toolTip	WRITE	setToolTip)

				Q_PROPERTY(QString	statusTip	READ	statusTip	WRITE	setStatusTip)

				Q_PROPERTY(QString	whatsThis	READ	whatsThis	WRITE	setWhatsThis)

				Q_PROPERTY(QKeySequence	accel	READ	accel	WRITE	setAccel)

public:

				QAction(QObject*	parent,	const	char*	name	=	0,	bool	toggle	=	FALSE);

				QAction(const	QString&	text,	const	QIconSet&	icon,	const	QString&	menuText,	QKeySequence	accel,

	 					QObject*	parent,	const	char*	name	=	0,	bool	toggle	=	FALSE);

				QAction(const	QString&	text,	const	QString&	menuText,	QKeySequence	accel,	QObject*	parent,

	 					const	char*	name	=	0,	bool	toggle	=	FALSE);

				~QAction();

				virtual	void	setIconSet(const	QIconSet&);

				QIconSet	iconSet()	const;

				virtual	void	setText(const	QString&);

				QString	text()	const;

				virtual	void	setMenuText(const	QString&);

				QString	menuText()	const;

				virtual	void	setToolTip(const	QString&);

				QString	toolTip()	const;

				virtual	void	setStatusTip(const	QString&);

				QString	statusTip()	const;

				virtual	void	setWhatsThis(const	QString&);

				QString	whatsThis()	const;

				virtual	void	setAccel(const	QKeySequence&	key);

				QKeySequence	accel()	const;

				virtual	void	setToggleAction(bool);

				bool	isToggleAction()	const;

				bool	isOn()	const;

				bool	isEnabled()	const;

				virtual	bool	addTo(QWidget*);

				virtual	bool	removeFrom(QWidget*);

protected:

				virtual	void	addedTo(QWidget	*actionWidget,	QWidget	*container);

				virtual	void	addedTo(int	index,	QPopupMenu	*menu);

public	slots:

				void	toggle();

				virtual	void	setOn(bool);

				virtual	void	setEnabled(bool);

signals:

				void	activated();

				void	toggled(bool);

private	slots:

				void	internalActivation();

				void	toolButtonToggled(bool);

				void	objectDestroyed();

				void	menuStatusText(int	id);

				void	showStatusText(const	QString&);

				void	clearStatusText();

private:

				void	init();

				QActionPrivate*	d;

};

class	Q_EXPORT	QActionGroup	:	public	QAction

{

				Q_OBJECT

				Q_PROPERTY(bool	exclusive	READ	isExclusive	WRITE	setExclusive)

				Q_PROPERTY(bool	usesDropDown	READ	usesDropDown	WRITE	setUsesDropDown)

public:

				QActionGroup(QObject*	parent,	const	char*	name	=	0,	bool	exclusive	=	TRUE);

				~QActionGroup();

				void	setExclusive(bool);

				bool	isExclusive()	const;

				void	add(QAction*	a);

				void	addSeparator();

				bool	addTo(QWidget*);

				bool	removeFrom(QWidget*);

				void	setEnabled(bool);

				void	setUsesDropDown(bool	enable);

				bool	usesDropDown()	const;

				void	setIconSet(const	QIconSet&);

				void	setText(const	QString&);

				void	setMenuText(const	QString&);

				void	setToolTip(const	QString&);

				void	setWhatsThis(const	QString&);

protected:

				void	childEvent(QChildEvent*);

				virtual	void	addedTo(QWidget	*actionWidget,	QWidget	*container,	QAction	*a);

				virtual	void	addedTo(int	index,	QPopupMenu	*menu,	QAction	*a);

				virtual	void	addedTo(QWidget	*actionWidget,	QWidget	*container);

				virtual	void	addedTo(int	index,	QPopupMenu	*menu);

signals:

				void	selected(QAction*);

private	slots:

				void	childToggled(bool);

				void	childDestroyed();

				void	internalComboBoxActivated(int);

				void	internalToggle(QAction*);

				void	objectDestroyed();

private:

				QActionGroupPrivate*	d;

#ifndef	QT_NO_COMPAT

public:

				void	insert(QAction*	a)	{	add(a);	}

#endif

};

#endif

#endif

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qasciicache.h
This	is	the	verbatim	text	of	the	qasciicache.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	Id

**

**	Definition	of	QAsciiCache	template/macro	class

**

**	Created	:	950209

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	tools	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QASCIICACHE_H

#define	QASCIICACHE_H

#ifndef	QT_H

#include	"qgcache.h"

#endif	//	QT_H

template<class	type>	

class	QAsciiCache

:	public	QGCache

{

public:

				QAsciiCache(const	QAsciiCache<type>	&c)	:	QGCache(c)	{}

				QAsciiCache(int	maxCost=100,	int	size=17,	bool	caseSensitive=TRUE,

	 	 	bool	copyKeys=TRUE)

	 :	QGCache(maxCost,	size,	AsciiKey,	caseSensitive,	copyKeys)	{}

			~QAsciiCache()	 	 	 {	clear();	}

				QAsciiCache<type>	&operator=(const	QAsciiCache<type>	&c)

	 	 	 {	return	(QAsciiCache<type>&)QGCache::operator=(c);	}

				int			maxCost()			const	 	 {	return	QGCache::maxCost();	}

				int			totalCost()	const	 	 {	return	QGCache::totalCost();	}

				void		setMaxCost(int	m)	 	 {	QGCache::setMaxCost(m);	}

				uint		count()					const	 	 {	return	QGCache::count();	}

				uint		size()						const	 	 {	return	QGCache::size();	}

				bool		isEmpty()			const	 	 {	return	QGCache::count()	==	0;	}

				void		clear()	 	 	 {	QGCache::clear();	}

				bool		insert(const	char	*k,	const	type	*d,	int	c=1,	int	p=0)

	 	 	 {	return	QGCache::insert_other(k,(Item)d,c,p);}

				bool		remove(const	char	*k)

	 	 	 {	return	QGCache::remove_other(k);	}

				type	*take(const	char	*k)

	 	 	 {	return	(type	*)QGCache::take_other(k);	}

				type	*find(const	char	*k,	bool	ref=TRUE)	const

	 	 	 {	return	(type	*)QGCache::find_other(k,ref);}

				type	*operator[](const	char	*k)	const

	 	 	 {	return	(type	*)QGCache::find_other(k);}

				void		statistics()	const	 						{	QGCache::statistics();	}

private:

				void		deleteItem(Item	d);

};

#if	!defined(Q_BROKEN_TEMPLATE_SPECIALIZATION)

template<>	inline	void	QAsciiCache<void>::deleteItem(QPtrCollection::Item)

{

}

#endif

template<class	type>	inline	void	QAsciiCache<type>::deleteItem(QPtrCollection::Item	d)

{

				if	(del_item)	delete	(type	*)d;

}

template<class	type>	

class	QAsciiCacheIterator

:	public	QGCacheIterator

{

public:

				QAsciiCacheIterator(const	QAsciiCache<type>	&c):QGCacheIterator((QGCache	&)c)	{}

				QAsciiCacheIterator(const	QAsciiCacheIterator<type>	&ci)

	 	 	 	 :	QGCacheIterator((QGCacheIterator	&)ci)	{}

				QAsciiCacheIterator<type>	&operator=(const	QAsciiCacheIterator<type>&ci)

	 {	return	(QAsciiCacheIterator<type>&)QGCacheIterator::operator=(ci);	}

				uint		count()			const					{	return	QGCacheIterator::count();	}

				bool		isEmpty()	const					{	return	QGCacheIterator::count()	==	0;	}

				bool		atFirst()	const					{	return	QGCacheIterator::atFirst();	}

				bool		atLast()		const					{	return	QGCacheIterator::atLast();	}

				type	*toFirst()	 						{	return	(type	*)QGCacheIterator::toFirst();	}

				type	*toLast()	 						{	return	(type	*)QGCacheIterator::toLast();	}

				operator	type	*()	const			{	return	(type	*)QGCacheIterator::get();	}

				type	*current()			const			{	return	(type	*)QGCacheIterator::get();	}

				const	char	*currentKey()	const	{	return	QGCacheIterator::getKeyAscii();	}

				type	*operator()()	 						{	return	(type	*)QGCacheIterator::operator()();}

				type	*operator++()	 						{	return	(type	*)QGCacheIterator::operator++();	}

				type	*operator+=(uint	j)		{	return	(type	*)QGCacheIterator::operator+=(j);}

				type	*operator--()	 						{	return	(type	*)QGCacheIterator::operator--();	}

				type	*operator-=(uint	j)		{	return	(type	*)QGCacheIterator::operator-=(j);}

};

#endif	//	QASCIICACHE_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qasciidict.h
This	is	the	verbatim	text	of	the	qasciidict.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	Id

**

**	Definition	of	QAsciiDict	template	class

**

**	Created	:	920821

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	tools	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QASCIIDICT_H

#define	QASCIIDICT_H

#ifndef	QT_H

#include	"qgdict.h"

#endif	//	QT_H

template<class	type>

class	QAsciiDict

#ifdef	Q_QDOC

	 :	public	QPtrCollection

#else

	 :	public	QGDict

#endif

{

public:

				QAsciiDict(int	size=17,	bool	caseSensitive=TRUE,	bool	copyKeys=TRUE)

	 :	QGDict(size,AsciiKey,caseSensitive,copyKeys)	{}

				QAsciiDict(const	QAsciiDict<type>	&d)	:	QGDict(d)	{}

			~QAsciiDict()	 	 	 {	clear();	}

				QAsciiDict<type>	&operator=(const	QAsciiDict<type>	&d)

	 	 	 {	return	(QAsciiDict<type>&)QGDict::operator=(d);	}

				uint		count()			const	 	 {	return	QGDict::count();	}

				uint		size()				const	 	 {	return	QGDict::size();	}

				bool		isEmpty()	const	 	 {	return	QGDict::count()	==	0;	}

				void		insert(const	char	*k,	const	type	*d)

	 	 	 	 	 {	QGDict::look_ascii(k,(Item)d,1);	}

				void		replace(const	char	*k,	const	type	*d)

	 	 	 	 	 {	QGDict::look_ascii(k,(Item)d,2);	}

				bool		remove(const	char	*k)	 {	return	QGDict::remove_ascii(k);	}

				type	*take(const	char	*k)		 {	return	(type	*)QGDict::take_ascii(k);	}

				type	*find(const	char	*k)	const

	 	 {	return	(type	*)((QGDict*)this)->QGDict::look_ascii(k,0,0);	}

				type	*operator[](const	char	*k)	const

	 	 {	return	(type	*)((QGDict*)this)->QGDict::look_ascii(k,0,0);	}

				void		clear()	 	 	 {	QGDict::clear();	}

				void		resize(uint	n)	 	 {	QGDict::resize(n);	}

				void		statistics()	const	 	 {	QGDict::statistics();	}

#ifdef	Q_QDOC

protected:

				virtual	QDataStream&	read(QDataStream	&,	QPtrCollection::Item	&);

				virtual	QDataStream&	write(QDataStream	&,	QPtrCollection::Item)	const;

#endif

private:

				void		deleteItem(Item	d);

};

#if	!defined(Q_BROKEN_TEMPLATE_SPECIALIZATION)

template<>	inline	void	QAsciiDict<void>::deleteItem(QPtrCollection::Item)

{

}

#endif

template<class	type>	inline	void	QAsciiDict<type>::deleteItem(QPtrCollection::Item	d)

{

				if	(del_item)	delete	(type	*)d;

}

template<class	type>

class	QAsciiDictIterator

:	public	QGDictIterator

{

public:

				QAsciiDictIterator(const	QAsciiDict<type>	&d)

	 :	QGDictIterator((QGDict	&)d)	{}

			~QAsciiDictIterator()						{}

				uint		count()			const					{	return	dict->count();	}

				bool		isEmpty()	const					{	return	dict->count()	==	0;	}

				type	*toFirst()	 						{	return	(type	*)QGDictIterator::toFirst();	}

				operator	type	*()	const			{	return	(type	*)QGDictIterator::get();	}

				type			*current()	const			{	return	(type	*)QGDictIterator::get();	}

				const	char	*currentKey()	const	{	return	QGDictIterator::getKeyAscii();	}

				type	*operator()()	 						{	return	(type	*)QGDictIterator::operator()();	}

				type	*operator++()	 						{	return	(type	*)QGDictIterator::operator++();	}

				type	*operator+=(uint	j)		{	return	(type	*)QGDictIterator::operator+=(j);}

};

#endif	//	QASCIIDICT_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qasyncimageio.h
This	is	the	verbatim	text	of	the	qasyncimageio.h	include	file.	It	is	provided	only
for	illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qasyncimageio.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	asynchronous	image/movie	loading	classes

**

**	Created	:	970617

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QASYNCIMAGEIO_H

#define	QASYNCIMAGEIO_H

#ifndef	QT_H

#include	"qimage.h"

#endif	//	QT_H

#ifndef	QT_NO_ASYNC_IMAGE_IO

class	Q_EXPORT	QImageConsumer	{

public:

				virtual	void	end()=0;

				//	Change	transfer	type	1.

				virtual	void	changed(const	QRect&)	=	0;

				virtual	void	frameDone()	=	0;

				//	Change	transfer	type	2.

				virtual	void	frameDone(const	QPoint&,	const	QRect&)	=	0;

				virtual	void	setLooping(int)	=	0;

				virtual	void	setFramePeriod(int)	=	0;

				virtual	void	setSize(int,	int)	=	0;

};

class	Q_EXPORT	QImageFormat	{

public:

				virtual	~QImageFormat();

				virtual	int	decode(QImage&	img,	QImageConsumer*	consumer,

	 	 	 const	uchar*	buffer,	int	length)	=	0;

};

class	Q_EXPORT	QImageFormatType	{

public:

				virtual	~QImageFormatType();

				virtual	QImageFormat*	decoderFor(const	uchar*	buffer,	int	length)	=	0;

				virtual	const	char*	formatName()	const	=	0;

protected:

				QImageFormatType();

};

class	QImageDecoderPrivate;

class	Q_EXPORT	QImageDecoder	{

public:

				QImageDecoder(QImageConsumer*	c);

				~QImageDecoder();

				const	QImage&	image()	{	return	img;	}

				int	decode(const	uchar*	buffer,	int	length);

				static	const	char*	formatName(const	uchar*	buffer,	int	length);

				static	QImageFormatType*	format(const	char*	name);	//	direct	use	-	no	decode()

				static	QStrList	inputFormats();

				static	void	registerDecoderFactory(QImageFormatType*);

				static	void	unregisterDecoderFactory(QImageFormatType*);

private:

				QImageFormat*	actual_decoder;

				QImageConsumer*	consumer;

				QImage	img;

				QImageDecoderPrivate	*d;

};

#endif	//	QT_NO_ASYNC_IMAGE_IO

#endif	//	QASYNCIMAGEIO_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qasyncio.h
This	is	the	verbatim	text	of	the	qasyncio.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qasyncio.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	asynchronous	I/O	classes

**

**	Created	:	970617

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QASYNCIO_H

#define	QASYNCIO_H

#ifndef	QT_H

#include	"qobject.h"

#include	"qsignal.h"

#include	"qtimer.h"

#endif	//	QT_H

#ifndef	QT_NO_ASYNC_IO

class	QIODevice;

class	Q_EXPORT	QAsyncIO	{

public:

				virtual	~QAsyncIO();

				void	connect(QObject*,	const	char	*member);

protected:

				void	ready();

private:

				QSignal	signal;

};

class	Q_EXPORT	QDataSink	:	public	QAsyncIO	{

public:

				//	Call	this	to	know	how	much	I	can	take.

				virtual	int	readyToReceive()=0;

				virtual	void	receive(const	uchar*,	int	count)=0;

				virtual	void	eof()=0;

				void	maybeReady();

};

class	Q_EXPORT	QDataSource	:	public	QAsyncIO	{

public:

				virtual	int	readyToSend()=0;	//	returns	-1	when	never	any	more	ready

				virtual	void	sendTo(QDataSink*,	int	count)=0;

				void	maybeReady();

				virtual	bool	rewindable()	const;

				virtual	void	enableRewind(bool);

				virtual	void	rewind();

};

class	Q_EXPORT	QIODeviceSource	:	public	QDataSource	{

				const	int	buf_size;

				uchar	*buffer;

				QIODevice*	iod;

				bool	rew;

public:

				QIODeviceSource(QIODevice*,	int	bufsize=4096);

			~QIODeviceSource();

				int	readyToSend();

				void	sendTo(QDataSink*	sink,	int	n);

				bool	rewindable()	const;

				void	enableRewind(bool	on);

				void	rewind();

};

class	Q_EXPORT	QDataPump	:	public	QObject	{

				Q_OBJECT

				int	interval;

				QTimer	timer;

				QDataSource*	source;

				QDataSink*	sink;

public:

				QDataPump(QDataSource*,	QDataSink*);

private	slots:

				void	kickStart();

				void	tryToPump();

};

#endif	 //	QT_NO_ASYNC_IO

#endif

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qbitarray.h
qbitarray.hTrolltech

/**

**	$Id:		qt/qbitarray.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QBitArray	class

**

**	Created	:	940118

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	tools	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QBITARRAY_H

#define	QBITARRAY_H

#ifndef	QT_H

#include	"qstring.h"

#endif	//	QT_H

/***

		QBitVal	class;	a	context	class	for	QBitArray::operator[]

	***/

class	QBitArray;

class	Q_EXPORT	QBitVal

{

private:

				QBitArray	*array;

				uint				index;

public:

				QBitVal(QBitArray	*a,	uint	i)	:	array(a),	index(i)	{}

				operator	int();

				QBitVal	&operator=(const	QBitVal	&v);

				QBitVal	&operator=(bool	v);

};

/***

		QBitArray	class

	***/

class	Q_EXPORT	QBitArray	:	public	QByteArray

{

public:

				QBitArray();

				QBitArray(uint	size);

				QBitArray(const	QBitArray	&a)	:	QByteArray(a)	{}

				QBitArray	&operator=(const	QBitArray	&);

				uint				size()	const;

				bool				resize(uint	size);

				bool				fill(bool	v,	int	size	=	-1);

				void				detach();

				QBitArray	copy()	const;

				bool				testBit(uint	index)	const;

				void				setBit(uint	index);

				void				setBit(uint	index,	bool	value);

				void				clearBit(uint	index);

				bool				toggleBit(uint	index);

				bool				at(uint	index)	const;

				QBitVal	operator[](int	index);

				bool	operator[](int	index)	const;

				QBitArray	&operator&=(const	QBitArray	&);

				QBitArray	&operator|=(const	QBitArray	&);

				QBitArray	&operator^=(const	QBitArray	&);

				QBitArray		operator~()	const;

protected:

				struct	bitarr_data	:	public	QGArray::array_data	{

	 uint			nbits;

				};

				array_data	*newData()	 	 				{	return	new	bitarr_data;	}

				void	 deleteData(array_data	*d)	{	delete	(bitarr_data*)d;	}

private:

				void				pad0();

};

inline	QBitArray	&QBitArray::operator=(const	QBitArray	&a)

{	return	(QBitArray&)assign(a);	}

inline	uint	QBitArray::size()	const

{	return	((bitarr_data*)sharedBlock())->nbits;	}

inline	void	QBitArray::setBit(uint	index,	bool	value)

{	if	(value)	setBit(index);	else	clearBit(index);	}

inline	bool	QBitArray::at(uint	index)	const

{	return	testBit(index);	}

inline	QBitVal	QBitArray::operator[](int	index)

{	return	QBitVal((QBitArray*)this,	index);	}

inline	bool	QBitArray::operator[](int	index)	const

{	return	testBit(index);	}

/***

		Misc.	QBitArray	operator	functions

	***/

Q_EXPORT	QBitArray	operator&(const	QBitArray	&,	const	QBitArray	&);

Q_EXPORT	QBitArray	operator|(const	QBitArray	&,	const	QBitArray	&);

Q_EXPORT	QBitArray	operator^(const	QBitArray	&,	const	QBitArray	&);

inline	QBitVal::operator	int()

{

				return	array->testBit(index);

}

inline	QBitVal	&QBitVal::operator=(const	QBitVal	&v)

{

				array->setBit(index,	v.array->testBit(v.index));

				return	*this;

}

inline	QBitVal	&QBitVal::operator=(bool	v)

{

				array->setBit(index,	v);

				return	*this;

}

/***

		QBitArray	stream	functions

	***/

#ifndef	QT_NO_DATASTREAM

Q_EXPORT	QDataStream	&operator<<(QDataStream	&,	const	QBitArray	&);

Q_EXPORT	QDataStream	&operator>>(QDataStream	&,	QBitArray	&);

#endif

#endif	//	QBITARRAY_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qbitmap.h
This	is	the	verbatim	text	of	the	qbitmap.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qbitmap.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QBitmap	class

**

**	Created	:	941020

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QBITMAP_H

#define	QBITMAP_H

#ifndef	QT_H

#include	"qpixmap.h"

#endif	//	QT_H

class	Q_EXPORT	QBitmap	:	public	QPixmap

{

public:

				QBitmap();

				QBitmap(int	w,	int	h,		bool	clear	=	FALSE,

	 					QPixmap::Optimization	=	QPixmap::DefaultOptim);

				QBitmap(const	QSize	&,	bool	clear	=	FALSE,

	 					QPixmap::Optimization	=	QPixmap::DefaultOptim);

				QBitmap(int	w,	int	h,		const	uchar	*bits,	bool	isXbitmap=FALSE);

				QBitmap(const	QSize	&,	const	uchar	*bits,	bool	isXbitmap=FALSE);

				QBitmap(const	QBitmap	&);

#ifndef	QT_NO_IMAGEIO

				QBitmap(const	QString	&fileName,	const	char	*format=0);

#endif

				QBitmap	&operator=(const	QBitmap	&);

				QBitmap	&operator=(const	QPixmap	&);

				QBitmap	&operator=(const	QImage		&);

#ifndef	QT_NO_PIXMAP_TRANSFORMATION

				QBitmap		xForm(const	QWMatrix	&)	const;

#endif

};

#endif	//	QBITMAP_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qbrush.h
This	is	the	verbatim	text	of	the	qbrush.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qbrush.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QBrush	class

**

**	Created	:	940112

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QBRUSH_H

#define	QBRUSH_H

#ifndef	QT_H

#include	"qcolor.h"

#include	"qshared.h"

#endif	//	QT_H

class	Q_EXPORT	QBrush:	public	Qt

{

friend	class	QPainter;

public:

				QBrush();

				QBrush(BrushStyle);

				QBrush(const	QColor	&,	BrushStyle=SolidPattern);

				QBrush(const	QColor	&,	const	QPixmap	&);

				QBrush(const	QBrush	&);

			~QBrush();

				QBrush	&operator=(const	QBrush	&);

				BrushStyle	 style()		const	 	 {	return	data->style;	}

				void	 setStyle(BrushStyle);

				const	QColor	&color()const	 	 {	return	data->color;	}

				void	 setColor(const	QColor	&);

				QPixmap				*pixmap()	const	 	 {	return	data->pixmap;	}

				void	 setPixmap(const	QPixmap	&);

				bool	 operator==(const	QBrush	&p)	const;

				bool	 operator!=(const	QBrush	&b)	const

	 	 	 	 	 {	return	!(operator==(b));	}

private:

				QBrush	 copy()	 const;

				void	 detach();

				void	 init(const	QColor	&,	BrushStyle);

				struct	QBrushData	:	public	QShared	{	 //	brush	data

	 BrushStyle	style;

	 QColor	 		color;

	 QPixmap		*pixmap;

				}	*data;

};

/***

		QBrush	stream	functions

	***/

#ifndef	QT_NO_DATASTREAM

Q_EXPORT	QDataStream	&operator<<(QDataStream	&,	const	QBrush	&);

Q_EXPORT	QDataStream	&operator>>(QDataStream	&,	QBrush	&);

#endif

#endif	//	QBRUSH_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qbuffer.h
qbuffer.hTrolltech

/**

**	$Id:		qt/qbuffer.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QBuffer	class

**

**	Created	:	930812

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	tools	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QBUFFER_H

#define	QBUFFER_H

#ifndef	QT_H

#include	"qiodevice.h"

#include	"qstring.h"

#endif	//	QT_H

class	Q_EXPORT	QBuffer	:	public	QIODevice

{

public:

				QBuffer();

				QBuffer(QByteArray);

			~QBuffer();

				QByteArray	buffer()	const;

				bool		setBuffer(QByteArray);

				bool		open(int);

				void		close();

				void		flush();

				Offset	size()	const;

				Offset	at()	const;

				bool		at(Offset);

				Q_LONG	 		readBlock(char	*p,	Q_ULONG);

				Q_LONG	 		writeBlock(const	char	*p,	Q_ULONG);

				Q_LONG	 		writeBlock(const	QByteArray&	data)

	 						{	return	QIODevice::writeBlock(data);	}

				Q_LONG	 		readLine(char	*p,	Q_ULONG);

				int			getch();

				int			putch(int);

				int			ungetch(int);

protected:

				QByteArray	a;

private:

				uint		a_len;

				uint		a_inc;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QBuffer(const	QBuffer	&);

				QBuffer	&operator=(const	QBuffer	&);

#endif

};

inline	QByteArray	QBuffer::buffer()	const

{	return	a;	}

inline	QIODevice::Offset	QBuffer::size()	const

{	return	(Offset)a.size();	}

inline	QIODevice::Offset	QBuffer::at()	const

{	return	ioIndex;	}

#endif	//	QBUFFER_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qbutton.h
qbutton.hTrolltech

/**

**	$Id:		qt/qbutton.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QButton	widget	class

**

**	Created	:	940206

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QBUTTON_H

#define	QBUTTON_H

#ifndef	QT_H

#include	"qwidget.h"

#include	"qkeysequence.h"

#endif	//	QT_H

#ifndef	QT_NO_BUTTON

class	QButtonGroup;

class	QToolBar;

class	QButtonData;

class	Q_EXPORT	QButton	:	public	QWidget

{

				Q_OBJECT

				Q_ENUMS(ToggleType	ToggleState)

				Q_PROPERTY(QString	text	READ	text	WRITE	setText)

				Q_PROPERTY(QPixmap	pixmap	READ	pixmap	WRITE	setPixmap)

				Q_PROPERTY(QKeySequence	accel	READ	accel	WRITE	setAccel)

				Q_PROPERTY(bool	toggleButton	READ	isToggleButton)

				Q_PROPERTY(ToggleType	toggleType	READ	toggleType)

				Q_PROPERTY(bool	down	READ	isDown	WRITE	setDown	DESIGNABLE	false)

				Q_PROPERTY(bool	on	READ	isOn)

				Q_PROPERTY(ToggleState	toggleState	READ	state)

				Q_PROPERTY(bool	autoResize	READ	autoResize	WRITE	setAutoResize	DESIGNABLE	false)

				Q_PROPERTY(bool	autoRepeat	READ	autoRepeat	WRITE	setAutoRepeat)

				Q_PROPERTY(bool	exclusiveToggle	READ	isExclusiveToggle)

public:

				QButton(QWidget*	parent=0,	const	char*	name=0,	WFlags	f=0);

				~QButton();

				QString	text()	const;

				virtual	void	setText(const	QString	&);

				const	QPixmap	*pixmap()	const;

				virtual	void	setPixmap(const	QPixmap	&);

#ifndef	QT_NO_ACCEL

				QKeySequence	 	 accel()	const;

				virtual	void	 setAccel(const	QKeySequence&);

#endif

				bool	 isToggleButton()	const;

				enum	ToggleType	{	SingleShot,	Toggle,	Tristate	};

				ToggleType	 toggleType()	const;

				virtual	void	setDown(bool);

				bool	 isDown()	const;

				bool	 isOn()	const;

				enum	ToggleState	{	Off,	NoChange,	On	};

				ToggleState	state()	const;

#ifndef	QT_NO_COMPAT

				bool	 autoResize()	const;

				void	 setAutoResize(bool);

#endif

				bool	 autoRepeat()	const;

				virtual	void	setAutoRepeat(bool);

				bool	 isExclusiveToggle()	const;

				QButtonGroup	*group()	const;

public	slots:

				void	 animateClick();

				void	 toggle();

signals:

				void	 pressed();

				void	 released();

				void	 clicked();

				void	 toggled(bool);

				void	 stateChanged(int);

protected:

				void	 setToggleButton(bool);

				virtual	void	 setToggleType(ToggleType);

				void	 setOn(bool);

				virtual	void	 setState(ToggleState);

				virtual	bool	hitButton(const	QPoint	&pos)	const;

				virtual	void	drawButton(QPainter	*);

				virtual	void	drawButtonLabel(QPainter	*);

				void	 keyPressEvent(QKeyEvent	*);

				void	 keyReleaseEvent(QKeyEvent	*);

				void	 mousePressEvent(QMouseEvent	*);

				void	 mouseReleaseEvent(QMouseEvent	*);

				void	 mouseMoveEvent(QMouseEvent	*);

				void	 paintEvent(QPaintEvent	*);

				void	 focusInEvent(QFocusEvent	*);

				void	 focusOutEvent(QFocusEvent	*);

				void	 enabledChange(bool);

private	slots:

				void	 animateTimeout();

				void	 autoRepeatTimeout();

private:

				QString	 btext;

				QPixmap				*bpixmap;

				uint	 toggleTyp	 :	2;

				uint	 buttonDown	 :	1;

				uint	 stat	 	 :	2;

				uint	 mlbDown		 :	1;

				uint	 autoresize	 :	1;

				uint	 animation	 :	1;

				uint	 repeat	 	 :	1;

				QButtonData	*d;

				friend	class	QButtonGroup;

				friend	class	QToolBar;

				void										ensureData();

				virtual	void	setGroup(QButtonGroup*);

				QTimer	 	*timer();

				void	 nextState();

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QButton(const	QButton	&);

				QButton	&operator=(const	QButton	&);

#endif

};

inline	QString	QButton::text()	const

{

				return	btext;

}

inline	const	QPixmap	*QButton::pixmap()	const

{

				return	bpixmap;

}

inline	bool	QButton::isToggleButton()	const

{

				return	toggleTyp	!=	SingleShot;

}

inline		bool	QButton::isDown()	const

{

				return	buttonDown;

}

inline	bool	QButton::isOn()	const

{

				return	stat	!=	Off;

}

#ifndef	QT_NO_COMPAT

inline	bool	QButton::autoResize()	const

{

				return	autoresize;

}

inline	bool	QButton::autoRepeat()	const

{

				return	repeat;

}

#endif

inline	QButton::ToggleState	QButton::state()	const

{

				return	ToggleState(stat);

}

inline	void	QButton::setToggleButton(bool	b)

{

				setToggleType(b	?	Toggle	:	SingleShot);

}

inline	void	QButton::setOn(bool	y)

{

				setState(y	?	On	:	Off);

}

inline	QButton::ToggleType	QButton::toggleType()	const

{

				return	ToggleType(toggleTyp);

}

#endif	//	QT_NO_BUTTON

#endif	//	QBUTTON_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qbuttongroup.h
qbuttongroup.hTrolltech

/**

**	$Id:		qt/qbuttongroup.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QButtonGroup	class

**

**	Created	:	950130

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QBUTTONGROUP_H

#define	QBUTTONGROUP_H

#ifndef	QT_H

#include	"qgroupbox.h"

#endif	//	QT_H

#ifndef	QT_NO_BUTTONGROUP

class	QButton;

class	QButtonList;

class	Q_EXPORT	QButtonGroup	:	public	QGroupBox

{

				Q_OBJECT

				Q_PROPERTY(bool	exclusive	READ	isExclusive	WRITE	setExclusive)

				Q_PROPERTY(bool	radioButtonExclusive	READ	isRadioButtonExclusive	WRITE	setRadioButtonExclusive)

	

public:

				QButtonGroup(QWidget*	parent=0,	const	char*	name=0);

				QButtonGroup(const	QString	&title,

	 	 		QWidget*	parent=0,	const	char*	name=0);

				QButtonGroup(int	columns,	Orientation	o,

	 	 		QWidget*	parent=0,	const	char*	name=0);

				QButtonGroup(int	columns,	Orientation	o,	const	QString	&title,

	 	 		QWidget*	parent=0,	const	char*	name=0);

				~QButtonGroup();

				bool	 isExclusive()	const;

				bool	 isRadioButtonExclusive()	const	{	return	radio_excl;	}

				virtual	void	setExclusive(bool);

				virtual	void	setRadioButtonExclusive(bool);

public:

				int		 insert(QButton	*,	int	id=-1);

				void	 remove(QButton	*);

				QButton				*find(int	id)	const;

				int		 id(QButton	*)	const;

				int		 count()	const;

				virtual	void	setButton(int	id);

				virtual	void	moveFocus(int);

				QButton				*selected()	const;

signals:

				void	 pressed(int	id);

				void	 released(int	id);

				void	 clicked(int	id);

protected	slots:

				void	 buttonPressed();

				void	 buttonReleased();

				void	 buttonClicked();

				void	 buttonToggled(bool	on);

private:

				void	 init();

				bool	 excl_grp;

				bool	 radio_excl;

				QButtonList	*buttons;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QButtonGroup(const	QButtonGroup	&);

				QButtonGroup	&operator=(const	QButtonGroup	&);

#endif

};

#endif	//	QT_NO_BUTTONGROUP

#endif	//	QBUTTONGROUP_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qcache.h
This	is	the	verbatim	text	of	the	qcache.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	Id

**

**	Definition	of	QCache	template	class

**

**	Created	:	950209

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	tools	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QCACHE_H

#define	QCACHE_H

#ifndef	QT_H

#include	"qgcache.h"

#endif	//	QT_H

template<class	type>

class	QCache

#ifdef	Q_QDOC

	 :	public	QPtrCollection

#else

	 :	public	QGCache

#endif

{

public:

				QCache(const	QCache<type>	&c)	:	QGCache(c)	{}

				QCache(int	maxCost=100,	int	size=17,	bool	caseSensitive=TRUE)

	 :	QGCache(maxCost,	size,	StringKey,	caseSensitive,	FALSE)	{}

			~QCache()	 	 	 	 {	clear();	}

				QCache<type>	&operator=(const	QCache<type>	&c)

	 	 	 {	return	(QCache<type>&)QGCache::operator=(c);	}

				int			maxCost()			const	 	 {	return	QGCache::maxCost();	}

				int			totalCost()	const	 	 {	return	QGCache::totalCost();	}

				void		setMaxCost(int	m)	 	 {	QGCache::setMaxCost(m);	}

				uint		count()					const	 	 {	return	QGCache::count();	}

				uint		size()						const	 	 {	return	QGCache::size();	}

				bool		isEmpty()			const	 	 {	return	QGCache::count()	==	0;	}

				void		clear()	 	 	 {	QGCache::clear();	}

				bool		insert(const	QString	&k,	const	type	*d,	int	c=1,	int	p=0)

	 	 	 {	return	QGCache::insert_string(k,(Item)d,c,p);}

				bool		remove(const	QString	&k)

	 	 	 {	return	QGCache::remove_string(k);	}

				type	*take(const	QString	&k)

	 	 	 {	return	(type	*)QGCache::take_string(k);	}

				type	*find(const	QString	&k,	bool	ref=TRUE)	const

	 	 	 {	return	(type	*)QGCache::find_string(k,ref);}

				type	*operator[](const	QString	&k)	const

	 	 	 {	return	(type	*)QGCache::find_string(k);}

				void		statistics()	const	 						{	QGCache::statistics();	}

private:

				void		deleteItem(Item	d);

};

#if	!defined(Q_BROKEN_TEMPLATE_SPECIALIZATION)

template<>	inline	void	QCache<void>::deleteItem(QPtrCollection::Item)

{

}

#endif

template<class	type>	inline	void	QCache<type>::deleteItem(QPtrCollection::Item	d)

{

				if	(del_item)	delete	(type	*)d;

}

template<class	type>

class	QCacheIterator

:	public	QGCacheIterator

{

public:

				QCacheIterator(const	QCache<type>	&c):QGCacheIterator((QGCache	&)c)	{}

				QCacheIterator(const	QCacheIterator<type>	&ci)

	 	 	 	 :	QGCacheIterator((QGCacheIterator	&)ci)	{}

				QCacheIterator<type>	&operator=(const	QCacheIterator<type>&ci)

	 {	return	(QCacheIterator<type>&)QGCacheIterator::operator=(ci);	}

				uint		count()			const					{	return	QGCacheIterator::count();	}

				bool		isEmpty()	const					{	return	QGCacheIterator::count()	==	0;	}

				bool		atFirst()	const					{	return	QGCacheIterator::atFirst();	}

				bool		atLast()		const					{	return	QGCacheIterator::atLast();	}

				type	*toFirst()	 						{	return	(type	*)QGCacheIterator::toFirst();	}

				type	*toLast()	 						{	return	(type	*)QGCacheIterator::toLast();	}

				operator	type	*()	const			{	return	(type	*)QGCacheIterator::get();	}

				type	*current()			const			{	return	(type	*)QGCacheIterator::get();	}

				QString	currentKey()	const{	return	QGCacheIterator::getKeyString();	}

				type	*operator()()	 						{	return	(type	*)QGCacheIterator::operator()();}

				type	*operator++()	 						{	return	(type	*)QGCacheIterator::operator++();	}

				type	*operator+=(uint	j)		{	return	(type	*)QGCacheIterator::operator+=(j);}

				type	*operator--()	 						{	return	(type	*)QGCacheIterator::operator--();	}

				type	*operator-=(uint	j)		{	return	(type	*)QGCacheIterator::operator-=(j);}

};

#endif	//	QCACHE_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qcanvas.h
This	is	the	verbatim	text	of	the	qcanvas.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qcanvas.h			3.0.5			edited	Jan	30	17:06	$

**

**	Definition	of	QCanvas	classes

**

**	Created	:	991211

**

**	Copyright	(C)	1999-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	canvas	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	licenses	may	use	this

**	file	in	accordance	with	the	Qt	Commercial	License	Agreement	provided

**	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QCANVAS_H

#define	QCANVAS_H

#ifndef	QT_H

#include	"qscrollview.h"

#include	"qpixmap.h"

#include	"qptrlist.h"

#include	"qptrdict.h"

#include	"qbrush.h"

#include	"qpen.h"

#include	"qvaluelist.h"

#include	"qpointarray.h"

#endif	//	QT_H

#if	!defined(QT_MODULE_CANVAS)	||	defined(QT_LICENSE_PROFESSIONAL)	||	defined(QT_INTERNAL_CANVAS)

#define	QM_EXPORT_CANVAS

#else

#define	QM_EXPORT_CANVAS	Q_EXPORT

#endif

#ifndef	QT_NO_CANVAS

class	QCanvasSprite;

class	QCanvasPolygonalItem;

class	QCanvasRectangle;

class	QCanvasPolygon;

class	QCanvasEllipse;

class	QCanvasText;

class	QCanvasLine;

class	QCanvasChunk;

class	QCanvas;

class	QCanvasItem;

class	QCanvasView;

class	QCanvasPixmap;

#if	defined(Q_TEMPLATEDLL)

//	MOC_SKIP_BEGIN

template	class	QM_EXPORT_CANVAS	QPtrList<	QCanvasItem	>;

template	class	QM_EXPORT_CANVAS	QPtrList<	QCanvasView	>;

template	class	QM_EXPORT_CANVAS	QValueList<	QCanvasItem*	>;

//	MOC_SKIP_END

#endif

class	QM_EXPORT_CANVAS	QCanvasItemList	:	public	QValueList<QCanvasItem*>	{

public:

				void	sort();

				void	drawUnique(QPainter&	painter);

};

class	QCanvasItemExtra;

class	QM_EXPORT_CANVAS	QCanvasItem	:	public	Qt

{

public:

				QCanvasItem(QCanvas*	canvas);

				virtual	~QCanvasItem();

				double	x()	const

	 {	return	myx;	}

				double	y()	const

	 {	return	myy;	}

				double	z()	const

	 {	return	myz;	}	//	(depth)

				virtual	void	moveBy(double	dx,	double	dy);

				void	move(double	x,	double	y);

				void	setX(double	a)	{	move(a,y());	}

				void	setY(double	a)	{	move(x(),a);	}

				void	setZ(double	a)	{	myz=a;	changeChunks();	}

				bool	animated()	const;

				virtual	void	setAnimated(bool	y);

				virtual	void	setVelocity(double	vx,	double	vy);

				void	setXVelocity(double	vx)	{	setVelocity(vx,yVelocity());	}

				void	setYVelocity(double	vy)	{	setVelocity(xVelocity(),vy);	}

				double	xVelocity()	const;

				double	yVelocity()	const;

				virtual	void	advance(int	stage);

				virtual	bool	collidesWith(const	QCanvasItem*)	const=0;

				QCanvasItemList	collisions(bool	exact	/*	NO	DEFAULT	*/)	const;

				virtual	void	setCanvas(QCanvas*);

				virtual	void	draw(QPainter&)=0;

				void	show();

				void	hide();

				virtual	void	setVisible(bool	yes);

				bool	isVisible()	const

	 {	return	(bool)vis;	}

				virtual	void	setSelected(bool	yes);

				bool	isSelected()	const

	 {	return	(bool)sel;	}

				virtual	void	setEnabled(bool	yes);

				bool	isEnabled()	const

	 {	return	(bool)ena;	}

				virtual	void	setActive(bool	yes);

				bool	isActive()	const

	 {	return	(bool)act;	}

#ifndef	QT_NO_COMPAT

				bool	visible()	const

	 {	return	(bool)vis;	}

				bool	selected()	const

	 {	return	(bool)sel;	}

				bool	enabled()	const

	 {	return	(bool)ena;	}

				bool	active()	const

	 {	return	(bool)act;	}

#endif

				enum	RttiValues	{

	 Rtti_Item	=	0,

	 Rtti_Sprite	=	1,

	 Rtti_PolygonalItem	=	2,

	 Rtti_Text	=	3,

	 Rtti_Polygon	=	4,

	 Rtti_Rectangle	=	5,

	 Rtti_Ellipse	=	6,

	 Rtti_Line	=	7,

	 Rtti_Spline	=	8

				};

				virtual	int	rtti()	const;

				static	int	RTTI;

				virtual	QRect	boundingRect()	const=0;

				virtual	QRect	boundingRectAdvanced()	const;

				QCanvas*	canvas()	const

	 {	return	cnv;	}

protected:

				void	update()	{	changeChunks();	}

private:

				//	For	friendly	subclasses...

				friend	class	QCanvasPolygonalItem;

				friend	class	QCanvasSprite;

				friend	class	QCanvasRectangle;

				friend	class	QCanvasPolygon;

				friend	class	QCanvasEllipse;

				friend	class	QCanvasText;

				friend	class	QCanvasLine;

				virtual	QPointArray	chunks()	const;

				virtual	void	addToChunks();

				virtual	void	removeFromChunks();

				virtual	void	changeChunks();

				virtual	bool	collidesWith(const	QCanvasSprite*,

	 	 	 							const	QCanvasPolygonalItem*,

	 	 	 							const	QCanvasRectangle*,

	 	 	 							const	QCanvasEllipse*,

	 	 	 							const	QCanvasText*)	const	=	0;

				//	End	of	friend	stuff

				QCanvas*	cnv;

				static	QCanvas*	current_canvas;

				double	myx,myy,myz;

				QCanvasItemExtra	*ext;

				QCanvasItemExtra&	extra();

				uint	ani:1;

				uint	vis:1;

				uint	sel:1;

				uint	ena:1;

				uint	act:1;

};

class	QCanvasData;

class	QM_EXPORT_CANVAS	QCanvas	:	public	QObject

{

				Q_OBJECT

public:

				QCanvas(QObject*	parent	=	0,	const	char*	name	=	0);

				QCanvas(int	w,	int	h);

				QCanvas(QPixmap	p,	int	h,	int	v,	int	tilewidth,	int	tileheight);

				virtual	~QCanvas();

				virtual	void	setTiles(QPixmap	tiles,	int	h,	int	v,

	 	 	 			int	tilewidth,	int	tileheight);

				virtual	void	setBackgroundPixmap(const	QPixmap&	p);

				QPixmap	backgroundPixmap()	const;

				virtual	void	setBackgroundColor(const	QColor&	c);

				QColor	backgroundColor()	const;

				virtual	void	setTile(int	x,	int	y,	int	tilenum);

				int	tile(int	x,	int	y)	const

	 {	return	grid[x+y*htiles];	}

				int	tilesHorizontally()	const

	 {	return	htiles;	}

				int	tilesVertically()	const

	 {	return	vtiles;	}

				int	tileWidth()	const

	 {	return	tilew;	}

				int	tileHeight()	const

	 {	return	tileh;	}

				virtual	void	resize(int	width,	int	height);

				int	width()	const

	 {	return	awidth;	}

				int	height()	const

	 {	return	aheight;	}

				QSize	size()	const

	 {	return	QSize(awidth,aheight);	}

				QRect	rect()	const

	 {	return	QRect(0,	0,	awidth,	aheight);	}

				bool	onCanvas(int	x,	int	y)	const

	 {	return	x>=0	&&	y>=0	&&	x<awidth	&&	y<aheight;	}

				bool	onCanvas(const	QPoint&	p)	const

	 {	return	onCanvas(p.x(),p.y());	}

				bool	validChunk(int	x,	int	y)	const

	 {	return	x>=0	&&	y>=0	&&	x<chwidth	&&	y<chheight;	}

				bool	validChunk(const	QPoint&	p)	const

	 {	return	validChunk(p.x(),p.y());	}

				int	chunkSize()	const

	 {	return	chunksize;	}

				virtual	void	retune(int	chunksize,	int	maxclusters=100);

				bool	sameChunk(int	x1,	int	y1,	int	x2,	int	y2)	const

	 {	return	x1/chunksize==x2/chunksize	&&	y1/chunksize==y2/chunksize;	}

				virtual	void	setChangedChunk(int	i,	int	j);

				virtual	void	setChangedChunkContaining(int	x,	int	y);

				virtual	void	setAllChanged();

				virtual	void	setChanged(const	QRect&	area);

				virtual	void	setUnchanged(const	QRect&	area);

				//	These	call	setChangedChunk.

				void	addItemToChunk(QCanvasItem*,	int	i,	int	j);

				void	removeItemFromChunk(QCanvasItem*,	int	i,	int	j);

				void	addItemToChunkContaining(QCanvasItem*,	int	x,	int	y);

				void	removeItemFromChunkContaining(QCanvasItem*,	int	x,	int	y);

				QCanvasItemList	allItems();

				QCanvasItemList	collisions(const	QPoint&)	const;

				QCanvasItemList	collisions(const	QRect&)	const;

				QCanvasItemList	collisions(const	QPointArray&	pa,	const	QCanvasItem*	item,

	 	 	 	 bool	exact)	const;

				void	drawArea(const	QRect&,	QPainter*	p,	bool	double_buffer=FALSE);

				//	These	are	for	QCanvasView	to	call

				virtual	void	addView(QCanvasView*);

				virtual	void	removeView(QCanvasView*);

				void	drawCanvasArea(const	QRect&,	QPainter*	p=0,	bool	double_buffer=TRUE);

#ifndef	QT_NO_TRANSFORMATIONS

				void	drawViewArea(QCanvasView*	view,	QPainter*	p,	const	QRect&	r,	bool	dbuf);

#endif

				//	These	are	for	QCanvasItem	to	call

				virtual	void	addItem(QCanvasItem*);

				virtual	void	addAnimation(QCanvasItem*);

				virtual	void	removeItem(QCanvasItem*);

				virtual	void	removeAnimation(QCanvasItem*);

				virtual	void	setAdvancePeriod(int	ms);

				virtual	void	setUpdatePeriod(int	ms);

				virtual	void	setDoubleBuffering(bool	y);

signals:

				void	resized();

public	slots:

				virtual	void	advance();

				virtual	void	update();

protected:

				virtual	void	drawBackground(QPainter&,	const	QRect&	area);

				virtual	void	drawForeground(QPainter&,	const	QRect&	area);

private:

				void	init(int	w,	int	h,	int	chunksze=16,	int	maxclust=100);

				QCanvasChunk&	chunk(int	i,	int	j)	const;

				QCanvasChunk&	chunkContaining(int	x,	int	y)	const;

				QRect	changeBounds(const	QRect&	inarea);

				void	drawChanges(const	QRect&	inarea);

				void	ensureOffScrSize(int	osw,	int	osh);

				QPixmap	offscr;

				int	awidth,aheight;

				int	chunksize;

				int	maxclusters;

				int	chwidth,chheight;

				QCanvasChunk*	chunks;

				QCanvasData*	d;

				void	initTiles(QPixmap	p,	int	h,	int	v,	int	tilewidth,	int	tileheight);

				ushort	*grid;

				ushort	htiles;

				ushort	vtiles;

				ushort	tilew;

				ushort	tileh;

				bool	oneone;

				QPixmap	pm;

				QTimer*	update_timer;

				QColor	bgcolor;

				bool	debug_redraw_areas;

				bool	dblbuf;

				friend	void	qt_unview(QCanvas*	c);

};

class	QCanvasViewData;

class	QM_EXPORT_CANVAS	QCanvasView	:	public	QScrollView

{

				Q_OBJECT

public:

				QCanvasView(QWidget*	parent=0,	const	char*	name=0,	WFlags	f=0);

				QCanvasView(QCanvas*	viewing,	QWidget*	parent=0,	const	char*	name=0,	WFlags	f=0);

				~QCanvasView();

				QCanvas*	canvas()	const

	 {	return	viewing;	}

				void	setCanvas(QCanvas*	v);

				const	QWMatrix	&worldMatrix()	const;

				const	QWMatrix	&inverseWorldMatrix()	const;

				bool	setWorldMatrix(const	QWMatrix	&);

protected:

				void	drawContents(QPainter*,	int	cx,	int	cy,	int	cw,	int	ch);

				QSize	sizeHint()	const;

private:

				void	drawContents(QPainter*);

				QCanvas*	viewing;

				QCanvasViewData*	d;

				friend	void	qt_unview(QCanvas*	c);

private	slots:

				void	cMoving(int,int);

				void	updateContentsSize();

};

class	QM_EXPORT_CANVAS	QCanvasPixmap	:	public	QPixmap

{

public:

#ifndef	QT_NO_IMAGEIO

				QCanvasPixmap(const	QString&	datafilename);

#endif

				QCanvasPixmap(const	QImage&	image);

				QCanvasPixmap(const	QPixmap&,	const	QPoint&	hotspot);

				~QCanvasPixmap();

				int	offsetX()	const

	 {	return	hotx;	}

				int	offsetY()	const

	 {	return	hoty;	}

				void	setOffset(int	x,	int	y)	{	hotx	=	x;	hoty	=	y;	}

private:

				void	init(const	QImage&);

				void	init(const	QPixmap&	pixmap,	int	hx,	int	hy);

				friend	class	QCanvasSprite;

				friend	class	QCanvasPixmapArray;

				friend	bool	qt_testCollision(const	QCanvasSprite*	s1,	const	QCanvasSprite*	s2);

				int	hotx,hoty;

				QImage*	collision_mask;

};

class	QM_EXPORT_CANVAS	QCanvasPixmapArray

{

public:

				QCanvasPixmapArray();

#ifndef	QT_NO_IMAGEIO

				QCanvasPixmapArray(const	QString&	datafilenamepattern,	int	framecount=0);

#endif

				//	this	form	is	deprecated

				QCanvasPixmapArray(QPtrList<QPixmap>,	QPtrList<QPoint>	hotspots);

				QCanvasPixmapArray(QValueList<QPixmap>,	QPointArray	hotspots	=	QPointArray());

				~QCanvasPixmapArray();

#ifndef	QT_NO_IMAGEIO

				bool	readPixmaps(const	QString&	datafilenamepattern,	int	framecount=0);

				bool	readCollisionMasks(const	QString&	filenamepattern);

#endif

				//	deprecated

				bool	operator!();	//	Failure	check.

				bool	isValid()	const;

				QCanvasPixmap*	image(int	i)	const

	 {	return	img	?	img[i]	:	0;	}

				void	setImage(int	i,	QCanvasPixmap*	p);

				uint	count()	const

	 {	return	(uint)framecount;	}

private:

#ifndef	QT_NO_IMAGEIO

				bool	readPixmaps(const	QString&	datafilenamepattern,	int	framecount,	bool	maskonly);

#endif

				void	reset();

				int	framecount;

				QCanvasPixmap**	img;

};

class	QM_EXPORT_CANVAS	QCanvasSprite	:	public	QCanvasItem

{

public:

				QCanvasSprite(QCanvasPixmapArray*	array,	QCanvas*	canvas);

				void	setSequence(QCanvasPixmapArray*	seq);

				virtual	~QCanvasSprite();

				void	move(double	x,	double	y);

				virtual	void	move(double	x,	double	y,	int	frame);

				void	setFrame(int);

				enum	FrameAnimationType	{	Cycle,	Oscillate	};

				virtual	void	setFrameAnimation(FrameAnimationType=Cycle,	int	step=1,	int	state=0);

				int	frame()	const

	 {	return	frm;	}

				int	frameCount()	const

	 {	return	images->count();	}

				int	rtti()	const;

				static	int	RTTI;

				bool	collidesWith(const	QCanvasItem*)	const;

				QRect	boundingRect()	const;

				//	is	there	a	reason	for	these	to	be	protected?	Lars

//protected:

				int	width()	const;

				int	height()	const;

				int	leftEdge()	const;

				int	topEdge()	const;

				int	rightEdge()	const;

				int	bottomEdge()	const;

				int	leftEdge(int	nx)	const;

				int	topEdge(int	ny)	const;

				int	rightEdge(int	nx)	const;

				int	bottomEdge(int	ny)	const;

				QCanvasPixmap*	image()	const

	 {	return	images->image(frm);	}

				virtual	QCanvasPixmap*	imageAdvanced()	const;

				QCanvasPixmap*	image(int	f)	const

	 {	return	images->image(f);	}

				virtual	void	advance(int	stage);

public:

				void	draw(QPainter&	painter);

private:

				void	addToChunks();

				void	removeFromChunks();

				void	changeChunks();

				int	frm;

				ushort	anim_val;

				uint	anim_state:2;

				uint	anim_type:14;

				bool	collidesWith(const	QCanvasSprite*,

	 	 							const	QCanvasPolygonalItem*,

	 	 							const	QCanvasRectangle*,

	 	 							const	QCanvasEllipse*,

	 	 							const	QCanvasText*)	const;

				friend	bool	qt_testCollision(const	QCanvasSprite*	s1,

	 	 	 	 		const	QCanvasSprite*	s2);

				QCanvasPixmapArray*	images;

};

class	QPolygonalProcessor;

class	QM_EXPORT_CANVAS	QCanvasPolygonalItem	:	public	QCanvasItem

{

public:

				QCanvasPolygonalItem(QCanvas*	canvas);

				virtual	~QCanvasPolygonalItem();

				bool	collidesWith(const	QCanvasItem*)	const;

				virtual	void	setPen(QPen	p);

				virtual	void	setBrush(QBrush	b);

				QPen	pen()	const

	 {	return	pn;	}

				QBrush	brush()	const

	 {	return	br;	}

				virtual	QPointArray	areaPoints()	const=0;

				virtual	QPointArray	areaPointsAdvanced()	const;

				QRect	boundingRect()	const;

				int	rtti()	const;

				static	int	RTTI;

protected:

				void	draw(QPainter	&);

				virtual	void	drawShape(QPainter	&)	=	0;

				bool	winding()	const;

				void	setWinding(bool);

private:

				void	scanPolygon(const	QPointArray&	pa,	int	winding,

	 	 						QPolygonalProcessor&	process)	const;

				QPointArray	chunks()	const;

				bool	collidesWith(const	QCanvasSprite*,

	 	 							const	QCanvasPolygonalItem*,

	 	 							const	QCanvasRectangle*,

	 	 							const	QCanvasEllipse*,

	 	 							const	QCanvasText*)	const;

				QBrush	br;

				QPen	pn;

				uint	wind:1;

};

class	QM_EXPORT_CANVAS	QCanvasRectangle	:	public	QCanvasPolygonalItem

{

public:

				QCanvasRectangle(QCanvas*	canvas);

				QCanvasRectangle(const	QRect&,	QCanvas*	canvas);

				QCanvasRectangle(int	x,	int	y,	int	width,	int	height,	QCanvas*	canvas);

				~QCanvasRectangle();

				int	width()	const;

				int	height()	const;

				void	setSize(int	w,	int	h);

				QSize	size()	const

	 {	return	QSize(w,h);	}

				QPointArray	areaPoints()	const;

				QRect	rect()	const

	 {	return	QRect(int(x()),int(y()),w,h);	}

				bool	collidesWith(const	QCanvasItem*)	const;

				int	rtti()	const;

				static	int	RTTI;

protected:

				void	drawShape(QPainter	&);

				QPointArray	chunks()	const;

private:

				bool	collidesWith(const	QCanvasSprite*,

	 	 	 	const	QCanvasPolygonalItem*,

	 	 	 	const	QCanvasRectangle*,

	 	 	 	const	QCanvasEllipse*,

	 	 	 	const	QCanvasText*)	const;

				int	w,	h;

};

class	QM_EXPORT_CANVAS	QCanvasPolygon	:	public	QCanvasPolygonalItem

{

public:

				QCanvasPolygon(QCanvas*	canvas);

				~QCanvasPolygon();

				void	setPoints(QPointArray);

				QPointArray	points()	const;

				void	moveBy(double	dx,	double	dy);

				QPointArray	areaPoints()	const;

				int	rtti()	const;

				static	int	RTTI;

protected:

				void	drawShape(QPainter	&);

				QPointArray	poly;

};

class	QM_EXPORT_CANVAS	QCanvasSpline	:	public	QCanvasPolygon

{

public:

				QCanvasSpline(QCanvas*	canvas);

				~QCanvasSpline();

				void	setControlPoints(QPointArray,	bool	closed=TRUE);

				QPointArray	controlPoints()	const;

				bool	closed()	const;

				int	rtti()	const;

				static	int	RTTI;

private:

				void	recalcPoly();

				QPointArray	bez;

				bool	cl;

};

class	QM_EXPORT_CANVAS	QCanvasLine	:	public	QCanvasPolygonalItem

{

public:

				QCanvasLine(QCanvas*	canvas);

				~QCanvasLine();

				void	setPoints(int	x1,	int	y1,	int	x2,	int	y2);

				QPoint	startPoint()	const

	 {	return	QPoint(x1,y1);	}

				QPoint	endPoint()	const

	 {	return	QPoint(x2,y2);	}

				int	rtti()	const;

				static	int	RTTI;

				void	setPen(QPen	p);

protected:

				void	drawShape(QPainter	&);

				QPointArray	areaPoints()	const;

private:

				int	x1,y1,x2,y2;

};

class	QM_EXPORT_CANVAS	QCanvasEllipse	:	public	QCanvasPolygonalItem

{

public:

				QCanvasEllipse(QCanvas*	canvas);

				QCanvasEllipse(int	width,	int	height,	QCanvas*	canvas);

				QCanvasEllipse(int	width,	int	height,	int	startangle,	int	angle,

	 	 				QCanvas*	canvas);

				~QCanvasEllipse();

				int	width()	const;

				int	height()	const;

				void	setSize(int	w,	int	h);

				void	setAngles(int	start,	int	length);

				int	angleStart()	const

	 {	return	a1;	}

				int	angleLength()	const

	 {	return	a2;	}

				QPointArray	areaPoints()	const;

				bool	collidesWith(const	QCanvasItem*)	const;

				int	rtti()	const;

				static	int	RTTI;

protected:

				void	drawShape(QPainter	&);

private:

				bool	collidesWith(const	QCanvasSprite*,

	 	 							const	QCanvasPolygonalItem*,

	 	 							const	QCanvasRectangle*,

	 	 							const	QCanvasEllipse*,

	 	 							const	QCanvasText*)	const;

				int	w,	h;

				int	a1,	a2;

};

class	QCanvasTextExtra;

class	QM_EXPORT_CANVAS	QCanvasText	:	public	QCanvasItem

{

public:

				QCanvasText(QCanvas*	canvas);

				QCanvasText(const	QString&,	QCanvas*	canvas);

				QCanvasText(const	QString&,	QFont,	QCanvas*	canvas);

				virtual	~QCanvasText();

				void	setText(const	QString&);

				void	setFont(const	QFont&);

				void	setColor(const	QColor&);

				QString	text()	const;

				QFont	font()	const;

				QColor	color()	const;

				void	moveBy(double	dx,	double	dy);

				int	textFlags()	const

	 {	return	flags;	}

				void	setTextFlags(int);

				QRect	boundingRect()	const;

				bool	collidesWith(const	QCanvasItem*)	const;

				int	rtti()	const;

				static	int	RTTI;

protected:

				virtual	void	draw(QPainter&);

private:

				void	addToChunks();

				void	removeFromChunks();

				void	changeChunks();

				void	setRect();

				QRect	brect;

				QString	txt;

				int	flags;

				QFont	fnt;

				QColor	col;

				QCanvasTextExtra*	extra;

				bool	collidesWith(const	QCanvasSprite*,

	 	 	 	const	QCanvasPolygonalItem*,

	 	 	 	const	QCanvasRectangle*,

	 	 	 	const	QCanvasEllipse*,

	 	 	 	const	QCanvasText*)	const;

};

#endif	//	QT_NO_CANVAS

#endif	//	QCANVAS_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qcdestyle.h
This	is	the	verbatim	text	of	the	qcdestyle.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qcdestyle.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	the	CDE-like	style	class

**

**	Created	:	990513

**

**	Copyright	(C)	1999	by	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QCDESTYLE_H

#define	QCDESTYLE_H

#ifndef	QT_H

#include	"qmotifstyle.h"

#endif	//	QT_H

#ifndef	QT_NO_STYLE_CDE

#if	defined(QT_PLUGIN)

#define	Q_EXPORT_STYLE_CDE

#else

#define	Q_EXPORT_STYLE_CDE	Q_EXPORT

#endif

class	Q_EXPORT_STYLE_CDE	QCDEStyle	:	public	QMotifStyle

{

				Q_OBJECT

public:

				QCDEStyle(bool	useHighlightCols	=	FALSE);

				virtual	~QCDEStyle();

				int	pixelMetric(PixelMetric	metric,	const	QWidget	*widget	=	0)	const;

				void	drawControl(ControlElement	element,

	 	 						QPainter	*p,

	 	 						const	QWidget	*widget,

	 	 						const	QRect	&r,

	 	 						const	QColorGroup	&cg,

	 	 						SFlags	how	=	Style_Default,

	 	 						const	QStyleOption&	=	QStyleOption::Default)	const;

				void	drawPrimitive(PrimitiveElement	pe,

	 	 	 QPainter	*p,

	 	 	 const	QRect	&r,

	 	 	 const	QColorGroup	&cg,

	 	 	 SFlags	flags	=	Style_Default,

	 	 	 const	QStyleOption&	=	QStyleOption::Default)	const;

};

#endif	//	QT_NO_STYLE_CDE

#endif	//	QCDESTYLE_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qcheckbox.h
qcheckbox.hTrolltech

/**

**	$Id:		qt/qcheckbox.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QCheckBox	class

**

**	Created	:	940222

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QCHECKBOX_H

#define	QCHECKBOX_H

#ifndef	QT_H

#include	"qbutton.h"

#endif	//	QT_H

#ifndef	QT_NO_CHECKBOX

class	Q_EXPORT	QCheckBox	:	public	QButton

{

				Q_OBJECT

				Q_PROPERTY(bool	checked	READ	isChecked	WRITE	setChecked)

				Q_PROPERTY(bool	tristate	READ	isTristate	WRITE	setTristate)

				Q_OVERRIDE(bool	autoMask	DESIGNABLE	true	SCRIPTABLE	true)

public:

				QCheckBox(QWidget	*parent,	const	char*	name=0);

				QCheckBox(const	QString	&text,	QWidget	*parent,	const	char*	name=0);

				bool				isChecked()	const;

				void				setNoChange();

				void				setTristate(bool	y=TRUE);

				bool				isTristate()	const;

				QSize			sizeHint()	const;

public	slots:

				void				setChecked(bool	check);

protected:

				void				resizeEvent(QResizeEvent*);

				void				drawButton(QPainter	*);

				void				drawButtonLabel(QPainter	*);

				void				updateMask();

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QCheckBox(const	QCheckBox	&);

				QCheckBox	&operator=(const	QCheckBox	&);

#endif

};

inline	bool	QCheckBox::isChecked()	const

{	return	isOn();	}

inline	void	QCheckBox::setChecked(bool	check)

{	setOn(check);	}

#endif	//	QT_NO_CHECKBOX

#endif	//	QCHECKBOX_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qclipboard.h
qclipboard.hTrolltech

/**

**	Id

**

**	Definition	of	QClipboard	class

**

**	Created	:	960430

**

**	Copyright	(C)	1992-2002	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QCLIPBOARD_H

#define	QCLIPBOARD_H

#ifndef	QT_H

#include	"qwindowdefs.h"

#include	"qobject.h"

#endif	//	QT_H

#ifndef	QT_NO_CLIPBOARD

class	QMimeSource;

class	Q_EXPORT	QClipboard	:	public	QObject

{

				Q_OBJECT

private:

				QClipboard(QObject	*parent=0,	const	char	*name=0);

				~QClipboard();

public:

				void	 clear();

				bool	supportsSelection()	const;

				bool	ownsSelection()	const;

				bool	ownsClipboard()	const;

				void	setSelectionMode(bool	enable);

				bool	selectionModeEnabled()	const;

#ifndef	QT_NO_MIMECLIPBOARD

				QMimeSource	*data()	const;

				void	setData(QMimeSource*);

#endif

				

				QString					text()	 	const;

				QString					text(QCString&	subtype)	const;

				void	 setText(const	QString	&);

				

#ifndef	QT_NO_MIMECLIPBOARD

				QImage	 image()	const;

				QPixmap	 pixmap()	const;

				void	 setImage(const	QImage	&);

				void	 setPixmap(const	QPixmap	&);

#endif

signals:

				void								selectionChanged();

				void	 dataChanged();

				

private	slots:

				void	 ownerDestroyed();

protected:

				void	 connectNotify(const	char	*);

				bool	 event(QEvent	*);

				friend	class	QApplication;

				friend	class	QBaseApplication;

				friend	class	QDragManager;

				friend	class	QMimeSource;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_WS_X11)

				void	clobber();

#elif	defined(Q_WS_MAC)

				void	loadScrap(bool	convert);

				void	saveScrap();

#endif

#if	defined(Q_DISABLE_COPY)

				QClipboard(const	QClipboard	&);

				QClipboard	&operator=(const	QClipboard	&);

#endif

};

#endif	//	QT_NO_CLIPBOARD

#endif	//	QCLIPBOARD_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qcolordialog.h
qcolordialog.hTrolltech

/**

**	$Id:		qt/qcolordialog.h			3.0.5			edited	Apr	29	14:16	$

**

**	Definition	of	QColorDialog	class

**

**	Created	:	990222

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	dialogs	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QCOLORDIALOG_H

#define	QCOLORDIALOG_H

#ifndef	QT_H

#include	<qdialog.h>

#endif	//	QT_H

#ifndef	QT_NO_COLORDIALOG

class	QColorDialogPrivate;

class	Q_EXPORT	QColorDialog	:	public	QDialog

{

				Q_OBJECT

public:

				static	QColor	getColor(const	QColor&	init	=	white,	QWidget*	parent=0,	const	char*	name=0);

				static	QRgb	getRgba(QRgb,	bool*	ok	=	0,

	 	 	 	QWidget*	parent=0,	const	char*	name=0);

				static	int	customCount();

				static	QRgb	customColor(int);

				static	void	setCustomColor(int,	QRgb);

private:

				~QColorDialog();

				QColorDialog(QWidget*	parent=0,	const	char*	name=0,	bool	modal=FALSE);

				void	setColor(const	QColor&);

				QColor	color()	const;

				bool	selectColor(const	QColor&);

private:

				void	setSelectedAlpha(int);

				int	selectedAlpha()	const;

				void	showCustom(bool=TRUE);

private:

				QColorDialogPrivate	*d;

				friend	class	QColorDialogPrivate;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QColorDialog(const	QColorDialog	&);

				QColorDialog&	operator=(const	QColorDialog	&);

#endif

};

#endif

#endif	//QCOLORDIALOG_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qcombobox.h
This	is	the	verbatim	text	of	the	qcombobox.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qcombobox.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QComboBox	class

**

**	Created	:	950426

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QCOMBOBOX_H

#define	QCOMBOBOX_H

#ifndef	QT_H

#include	"qwidget.h"

#endif	//	QT_H

#ifndef	QT_NO_COMBOBOX

class	QStrList;

class	QStringList;

class	QLineEdit;

class	QValidator;

class	QListBox;

class	QComboBoxData;

class	Q_EXPORT	QComboBox	:	public	QWidget

{

				Q_OBJECT

				Q_ENUMS(Policy)

				Q_PROPERTY(bool	editable	READ	editable	WRITE	setEditable)

				Q_PROPERTY(int	count	READ	count)

				Q_PROPERTY(QString	currentText	READ	currentText	WRITE	setCurrentText	DESIGNABLE	false)

				Q_PROPERTY(int	currentItem	READ	currentItem	WRITE	setCurrentItem)

				Q_PROPERTY(bool	autoResize	READ	autoResize	WRITE	setAutoResize	DESIGNABLE	false)

				Q_PROPERTY(int	sizeLimit	READ	sizeLimit	WRITE	setSizeLimit)

				Q_PROPERTY(int	maxCount	READ	maxCount	WRITE	setMaxCount)

				Q_PROPERTY(Policy	insertionPolicy	READ	insertionPolicy	WRITE	setInsertionPolicy)

				Q_PROPERTY(bool	autoCompletion	READ	autoCompletion	WRITE	setAutoCompletion)

				Q_PROPERTY(bool	duplicatesEnabled	READ	duplicatesEnabled	WRITE	setDuplicatesEnabled)

				Q_OVERRIDE(bool	autoMask	DESIGNABLE	true	SCRIPTABLE	true)

public:

				QComboBox(QWidget*	parent=0,	const	char*	name=0);

				QComboBox(bool	rw,	QWidget*	parent=0,	const	char*	name=0);

				~QComboBox();

				int		 count()	const;

				void	 insertStringList(const	QStringList	&,	int	index=-1);

				void	 insertStrList(const	QStrList	&,	int	index=-1);

				void	 insertStrList(const	QStrList	*,	int	index=-1);

				void	 insertStrList(const	char	**,	int	numStrings=-1,	int	index=-1);

				void	 insertItem(const	QString	&text,	int	index=-1);

				void	 insertItem(const	QPixmap	&pixmap,	int	index=-1);

				void	 insertItem(const	QPixmap	&pixmap,	const	QString	&text,	int	index=-1);

				void	 removeItem(int	index);

				int		 currentItem()	const;

				virtual	void	setCurrentItem(int	index);

				QString		 currentText()	const;

				virtual	void	setCurrentText(const	QString&);

				QString		 text(int	index)	const;

				const	QPixmap	*pixmap(int	index)	const;

				void	 changeItem(const	QString	&text,	int	index);

				void	 changeItem(const	QPixmap	&pixmap,	int	index);

				void	 changeItem(const	QPixmap	&pixmap,	const	QString	&text,	int	index);

				bool	 autoResize()	 const;

				virtual	void	setAutoResize(bool);

				QSize	 sizeHint()	const;

				void	 setPalette(const	QPalette	&);

				void	 setFont(const	QFont	&);

				void	 setEnabled(bool);

				virtual	void	setSizeLimit(int);

				int		 sizeLimit()	const;

				virtual	void	setMaxCount(int);

				int		 maxCount()	const;

				enum	Policy	{	NoInsertion,	AtTop,	AtCurrent,	AtBottom,

	 	 		AfterCurrent,	BeforeCurrent	};

				virtual	void	setInsertionPolicy(Policy	policy);

				Policy	 insertionPolicy()	const;

				virtual	void	setValidator(const	QValidator	*);

				const	QValidator	*	validator()	const;

				virtual	void	setListBox(QListBox	*);

				QListBox	*	 listBox()	const;

				virtual	void	setLineEdit(QLineEdit	*edit);

				QLineEdit*	 lineEdit()	const;

				virtual	void	setAutoCompletion(bool);

				bool	 autoCompletion()	const;

				bool	 eventFilter(QObject	*object,	QEvent	*event);

				void	 setDuplicatesEnabled(bool	enable);

				bool	 duplicatesEnabled()	const;

				bool	 editable()	const;

				void	 setEditable(bool);

				virtual	void	popup();

public	slots:

				void	 clear();

				void	 clearValidator();

				void	 clearEdit();

				virtual	void	setEditText(const	QString	&);

signals:

				void	 activated(int	index);

				void	 highlighted(int	index);

				void	 activated(const	QString	&);

				void	 highlighted(const	QString	&);

				void	 textChanged(const	QString	&);

private	slots:

				void	 internalActivate(int);

				void	 internalHighlight(int);

				void	 internalClickTimeout();

				void	 returnPressed();

protected:

				void	 paintEvent(QPaintEvent	*);

				void	 resizeEvent(QResizeEvent	*);

				void	 mousePressEvent(QMouseEvent	*);

				void	 mouseMoveEvent(QMouseEvent	*);

				void	 mouseReleaseEvent(QMouseEvent	*);

				void	 mouseDoubleClickEvent(QMouseEvent	*);

				void	 keyPressEvent(QKeyEvent	*e);

				void	 focusInEvent(QFocusEvent	*e);

				void	 styleChange(QStyle&);

				void	 updateMask();

private:

				void	 setUpListBox();

				void	 setUpLineEdit();

				void	 popDownListBox();

				void	 reIndex();

				void	 currentChanged();

				int		 completionIndex(const	QString	&,	int)	const;

				QComboBoxData	 *d;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QComboBox(const	QComboBox	&);

				QComboBox	&operator=(const	QComboBox	&);

#endif

};

#endif	//	QT_NO_COMBOBOX

#endif	//	QCOMBOBOX_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qcommonstyle.h
This	is	the	verbatim	text	of	the	qcommonstyle.h	include	file.	It	is	provided	only
for	illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qcommonstyle.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QCommonStyle	class

**

**	Created	:	980616

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QCOMMONSTYLE_H

#define	QCOMMONSTYLE_H

#ifndef	QT_H

#include	"qstyle.h"

#endif	//	QT_H

#ifndef	QT_NO_STYLE

class	Q_EXPORT	QCommonStyle:	public	QStyle

{

				Q_OBJECT

public:

				QCommonStyle();

				~QCommonStyle();

				void	drawPrimitive(PrimitiveElement	pe,

	 	 	 QPainter	*p,

	 	 	 const	QRect	&r,

	 	 	 const	QColorGroup	&cg,

	 	 	 SFlags	flags	=	Style_Default,

	 	 	 const	QStyleOption&	=	QStyleOption::Default)	const;

				void	drawControl(ControlElement	element,

	 	 						QPainter	*p,

	 	 						const	QWidget	*widget,

	 	 						const	QRect	&r,

	 	 						const	QColorGroup	&cg,

	 	 						SFlags	how	=	Style_Default,

	 	 						const	QStyleOption&	=	QStyleOption::Default)	const;

				void	drawControlMask(ControlElement	element,

	 	 	 		QPainter	*p,

	 	 	 		const	QWidget	*widget,

	 	 	 		const	QRect	&r,

	 	 	 		const	QStyleOption&	=	QStyleOption::Default)	const;

				QRect	subRect(SubRect	r,	const	QWidget	*widget)	const;

				void	drawComplexControl(ComplexControl	control,

	 	 	 					QPainter	*p,

	 	 	 					const	QWidget	*widget,

	 	 	 					const	QRect	&r,

	 	 	 					const	QColorGroup	&cg,

	 	 	 					SFlags	how	=	Style_Default,

	 	 	 					SCFlags	sub	=	SC_All,

	 	 	 					SCFlags	subActive	=	SC_None,

	 	 	 					const	QStyleOption&	=	QStyleOption::Default)	const;

				void	drawComplexControlMask(ComplexControl	control,

	 	 	 	 	QPainter	*p,

	 	 	 	 	const	QWidget	*widget,

	 	 	 	 	const	QRect	&r,

	 	 	 	 	const	QStyleOption&	=	QStyleOption::Default)	const;

				QRect	querySubControlMetrics(ComplexControl	control,

	 	 	 	 		const	QWidget	*widget,

	 	 	 	 		SubControl	sc,

	 	 	 	 		const	QStyleOption&	=	QStyleOption::Default)	const;

				SubControl	querySubControl(ComplexControl	control,

	 	 	 	 const	QWidget	*widget,

	 	 	 	 const	QPoint	&pos,

	 	 	 	 const	QStyleOption&	=	QStyleOption::Default)	const;

				int	pixelMetric(PixelMetric	m,	const	QWidget	*widget	=	0)	const;

				QSize	sizeFromContents(ContentsType	s,

	 	 	 				const	QWidget	*widget,

	 	 	 				const	QSize	&contentsSize,

	 	 	 				const	QStyleOption&	=	QStyleOption::Default)	const;

				int	styleHint(StyleHint	sh,	const	QWidget	*,	const	QStyleOption	&,	QStyleHintReturn	*)	const;

				QPixmap	stylePixmap(StylePixmap	sp,

	 	 	 	const	QWidget	*widget	=	0,

	 	 	 	const	QStyleOption&	=	QStyleOption::Default)	const;

private:

				//	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QCommonStyle(const	QCommonStyle	&);

				QCommonStyle	&operator=(const	QCommonStyle	&);

#endif

};

#endif	//	QT_NO_STYLE

#endif	//	QCOMMONSTYLE_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qcopchannel_qws.h
This	is	the	verbatim	text	of	the	qcopchannel_qws.h	include	file.	It	is	provided
only	for	illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qcopchannel_qws.h			3.0.5			edited	Oct	31	2001	$

**

**	QCOP	protocol	classes

**

**	Created	:	20000616

**

**	Copyright	(C)	2000-2001	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	for	Qt/Embedded	may	use	this	file	in	accordance	with	the

**	Qt	Embedded	Commercial	License	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QCOP_H

#define	QCOP_H

#ifndef	QT_H

#include	"qobject.h"

#endif	//	QT_H

#ifndef	QT_NO_COP

class	QWSClient;

class	QCopChannelPrivate;

class	QCopChannel	:	public	QObject

{

				Q_OBJECT

public:

				QCopChannel(const	QCString&	channel,	QObject*	parent=0,	const	char*	name=0);

				virtual	~QCopChannel();

				QCString	channel()	const;

				static	bool	isRegistered(const	QCString&	channel);

				static	bool	send(const	QCString	&channel,	const	QCString	&msg);

				static	bool	send(const	QCString	&channel,	const	QCString	&msg,

	 	 						const	QByteArray	&data);

				static	void	sendLocally(const	QCString	&ch,	const	QCString	&msg,

	 	 	 							const	QByteArray	&data);

				virtual	void	receive(const	QCString	&msg,	const	QByteArray	&data);

signals:

				void	received(const	QCString	&msg,	const	QByteArray	&data);

private:

				//	server	side

				static	void	registerChannel(const	QString	&ch,	const	QWSClient	*cl);

				static	void	detach(const	QWSClient	*cl);

				static	void	answer(QWSClient	*cl,	const	QCString	&ch,

	 	 	 const	QCString	&msg,	const	QByteArray	&data);

				//	client	side

				QCopChannelPrivate*	d;

				friend	class	QWSServer;

				friend	class	QApplication;

};

#endif

#endif

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qcstring.h
qcstring.hTrolltech

/**

**	$Id:		qt/qcstring.h			3.0.5			edited	Jun	5	21:14	$

**

**	Definition	of	the	extended	char	array	operations,

**	and	QByteArray	and	QCString	classes

**

**	Created	:	920609

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	tools	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QCSTRING_H

#define	QCSTRING_H

#ifndef	QT_H

#include	"qmemarray.h"

#endif	//	QT_H

#include	<string.h>

/***

		Safe	and	portable	C	string	functions;	extensions	to	standard	string.h

	***/

Q_EXPORT	void	*qmemmove(void	*dst,	const	void	*src,	uint	len);

Q_EXPORT	char	*qstrdup(const	char	*);

Q_EXPORT	inline	uint	qstrlen(const	char	*str)

{	return	str	?	(uint)strlen(str)	:	0;	}

Q_EXPORT	inline	char	*qstrcpy(char	*dst,	const	char	*src)

{	return	src	?	strcpy(dst,	src)	:	0;	}

Q_EXPORT	char	*qstrncpy(char	*dst,	const	char	*src,	uint	len);

Q_EXPORT	inline	int	qstrcmp(const	char	*str1,	const	char	*str2)

{

				return	(str1	&&	str2)	?	strcmp(str1,	str2)

	 	 	 				:	(str1	?	1	:	(str2	?	-1	:	0));

}

Q_EXPORT	inline	int	qstrncmp(const	char	*str1,	const	char	*str2,	uint	len)

{

				return	(str1	&&	str2)	?	strncmp(str1,	str2,	len)

	 	 	 				:	(str1	?	1	:	(str2	?	-1	:	0));

}

Q_EXPORT	int	qstricmp(const	char	*,	const	char	*);

Q_EXPORT	int	qstrnicmp(const	char	*,	const	char	*,	uint	len);

#ifndef	QT_CLEAN_NAMESPACE

Q_EXPORT	inline	uint	cstrlen(const	char	*str)

{	return	(uint)strlen(str);	}

Q_EXPORT	inline	char	*cstrcpy(char	*dst,	const	char	*src)

{	return	strcpy(dst,src);	}

Q_EXPORT	inline	int	cstrcmp(const	char	*str1,	const	char	*str2)

{	return	strcmp(str1,str2);	}

Q_EXPORT	inline	int	cstrncmp(const	char	*str1,	const	char	*str2,	uint	len)

{	return	strncmp(str1,str2,len);	}

#endif

//	qChecksum:	Internet	checksum

Q_EXPORT	Q_UINT16	qChecksum(const	char	*s,	uint	len);

/***

		QByteArray	class

	***/

#if	defined(Q_TEMPLATEDLL)

Q_TEMPLATE_EXTERN	template	class	Q_EXPORT	QMemArray<char>;

#endif

#if	defined(Q_QDOC)

/*

		We	want	qdoc	to	document	QByteArray	as	a	real	class	that	inherits

		QMemArray<char>	and	that	is	inherited	by	QBitArray.

*/

class	QByteArray	:	public	QMemArray<char>

{

public:

				QByteArray();

				QByteArray(int	size);

};

#else

typedef	QMemArray<char>	QByteArray;

#endif

/***

		QByteArray	stream	functions

	***/

#ifndef	QT_NO_DATASTREAM

Q_EXPORT	QDataStream	&operator<<(QDataStream	&,	const	QByteArray	&);

Q_EXPORT	QDataStream	&operator>>(QDataStream	&,	QByteArray	&);

#endif

/***

		QCString	class

	***/

class	QRegExp;

class	Q_EXPORT	QCString	:	public	QByteArray	 //	C	string	class

{

public:

				QCString()	{}	 	 	 	 //	make	null	string

				QCString(int	size);	 	 	 //	allocate	size	incl.	\0

				QCString(const	QCString	&s)	:	QByteArray(s)	{}

				QCString(const	char	*str);	 	 //	deep	copy

				QCString(const	char	*str,	uint	maxlen);	 //	deep	copy,	max	length

				~QCString();

				QCString				&operator=(const	QCString	&s);//	shallow	copy

				QCString				&operator=(const	char	*str);	 //	deep	copy

				bool	 isNull()	 const;

				bool	 isEmpty()	 const;

				uint	 length()	 const;

				bool	 resize(uint	newlen);

				bool	 truncate(uint	pos);

				bool	 fill(char	c,	int	len	=	-1);

				QCString	 copy()	 const;

				QCString				&sprintf(const	char	*format,	...);

				int		 find(char	c,	int	index=0,	bool	cs=TRUE)	const;

				int		 find(const	char	*str,	int	index=0,	bool	cs=TRUE)	const;

#ifndef	QT_NO_REGEXP

				int		 find(const	QRegExp	&,	int	index=0)	const;

#endif

				int		 findRev(char	c,	int	index=-1,	bool	cs=TRUE)	const;

				int		 findRev(const	char	*str,	int	index=-1,	bool	cs=TRUE)	const;

#ifndef	QT_NO_REGEXP

				int		 findRev(const	QRegExp	&,	int	index=-1)	const;

#endif

				int		 contains(char	c,	bool	cs=TRUE)	const;

				int		 contains(const	char	*str,	bool	cs=TRUE)	const;

#ifndef	QT_NO_REGEXP

				int		 contains(const	QRegExp	&)	const;

#endif

				QCString	 left(uint	len)		const;

				QCString	 right(uint	len)	const;

				QCString	 mid(uint	index,	uint	len=0xffffffff)	const;

				QCString	 leftJustify(uint	width,	char	fill='	',	bool	trunc=FALSE)const;

				QCString	 rightJustify(uint	width,	char	fill='	',bool	trunc=FALSE)const;

				QCString	 lower()	const;

				QCString	 upper()	const;

				QCString	 stripWhiteSpace()	 const;

				QCString	 simplifyWhiteSpace()	 const;

				QCString				&insert(uint	index,	const	char	*);

				QCString				&insert(uint	index,	char);

				QCString				&append(const	char	*);

				QCString				&prepend(const	char	*);

				QCString				&remove(uint	index,	uint	len);

				QCString				&replace(uint	index,	uint	len,	const	char	*);

#ifndef	QT_NO_REGEXP

				QCString				&replace(const	QRegExp	&,	const	char	*);

#endif

				short	 toShort(bool	*ok=0)	 const;

				ushort	 toUShort(bool	*ok=0)	 const;

				int		 toInt(bool	*ok=0)	 const;

				uint	 toUInt(bool	*ok=0)	 const;

				long	 toLong(bool	*ok=0)	 const;

				ulong	 toULong(bool	*ok=0)	 const;

				float	 toFloat(bool	*ok=0)	 const;

				double	 toDouble(bool	*ok=0)	 const;

				QCString				&setStr(const	char	*s);

				QCString				&setNum(short);

				QCString				&setNum(ushort);

				QCString				&setNum(int);

				QCString				&setNum(uint);

				QCString				&setNum(long);

				QCString				&setNum(ulong);

				QCString				&setNum(float,	char	f='g',	int	prec=6);

				QCString				&setNum(double,	char	f='g',	int	prec=6);

				bool	 setExpand(uint	index,	char	c);

	 	 operator	const	char	*()	const;

				QCString				&operator+=(const	char	*str);

				QCString				&operator+=(char	c);

};

/***

		QCString	stream	functions

	***/

#ifndef	QT_NO_DATASTREAM

Q_EXPORT	QDataStream	&operator<<(QDataStream	&,	const	QCString	&);

Q_EXPORT	QDataStream	&operator>>(QDataStream	&,	QCString	&);

#endif

/***

		QCString	inline	functions

	***/

inline	QCString	&QCString::operator=(const	QCString	&s)

{	return	(QCString&)assign(s);	}

inline	QCString	&QCString::operator=(const	char	*str)

{	return	(QCString&)duplicate(str,	qstrlen(str)+1);	}

inline	bool	QCString::isNull()	const

{	return	data()	==	0;	}

inline	bool	QCString::isEmpty()	const

{	return	data()	==	0	||	*data()	==	'\0';	}

inline	uint	QCString::length()	const

{	return	qstrlen(data());	}

inline	bool	QCString::truncate(uint	pos)

{	return	resize(pos+1);	}

inline	QCString	QCString::copy()	const

{	return	QCString(data());	}

inline	QCString	&QCString::prepend(const	char	*s)

{	return	insert(0,s);	}

inline	QCString	&QCString::append(const	char	*s)

{	return	operator+=(s);	}

inline	QCString	&QCString::setNum(short	n)

{	return	setNum((long)n);	}

inline	QCString	&QCString::setNum(ushort	n)

{	return	setNum((ulong)n);	}

inline	QCString	&QCString::setNum(int	n)

{	return	setNum((long)n);	}

inline	QCString	&QCString::setNum(uint	n)

{	return	setNum((ulong)n);	}

inline	QCString	&QCString::setNum(float	n,	char	f,	int	prec)

{	return	setNum((double)n,f,prec);	}

inline	QCString::operator	const	char	*()	const

{	return	(const	char	*)data();	}

/***

		QCString	non-member	operators

	***/

Q_EXPORT	inline	bool	operator==(const	QCString	&s1,	const	QCString	&s2)

{	return	qstrcmp(s1.data(),s2.data())	==	0;	}

Q_EXPORT	inline	bool	operator==(const	QCString	&s1,	const	char	*s2)

{	return	qstrcmp(s1.data(),s2)	==	0;	}

Q_EXPORT	inline	bool	operator==(const	char	*s1,	const	QCString	&s2)

{	return	qstrcmp(s1,s2.data())	==	0;	}

Q_EXPORT	inline	bool	operator!=(const	QCString	&s1,	const	QCString	&s2)

{	return	qstrcmp(s1.data(),s2.data())	!=	0;	}

Q_EXPORT	inline	bool	operator!=(const	QCString	&s1,	const	char	*s2)

{	return	qstrcmp(s1.data(),s2)	!=	0;	}

Q_EXPORT	inline	bool	operator!=(const	char	*s1,	const	QCString	&s2)

{	return	qstrcmp(s1,s2.data())	!=	0;	}

Q_EXPORT	inline	bool	operator<(const	QCString	&s1,	const	QCString&	s2)

{	return	qstrcmp(s1.data(),s2.data())	<	0;	}

Q_EXPORT	inline	bool	operator<(const	QCString	&s1,	const	char	*s2)

{	return	qstrcmp(s1.data(),s2)	<	0;	}

Q_EXPORT	inline	bool	operator<(const	char	*s1,	const	QCString	&s2)

{	return	qstrcmp(s1,s2.data())	<	0;	}

Q_EXPORT	inline	bool	operator<=(const	QCString	&s1,	const	char	*s2)

{	return	qstrcmp(s1.data(),s2)	<=	0;	}

Q_EXPORT	inline	bool	operator<=(const	char	*s1,	const	QCString	&s2)

{	return	qstrcmp(s1,s2.data())	<=	0;	}

Q_EXPORT	inline	bool	operator>(const	QCString	&s1,	const	char	*s2)

{	return	qstrcmp(s1.data(),s2)	>	0;	}

Q_EXPORT	inline	bool	operator>(const	char	*s1,	const	QCString	&s2)

{	return	qstrcmp(s1,s2.data())	>	0;	}

Q_EXPORT	inline	bool	operator>=(const	QCString	&s1,	const	char	*s2)

{	return	qstrcmp(s1.data(),s2)	>=	0;	}

Q_EXPORT	inline	bool	operator>=(const	char	*s1,	const	QCString	&s2)

{	return	qstrcmp(s1,s2.data())	>=	0;	}

Q_EXPORT	inline	const	QCString	operator+(const	QCString	&s1,	const	QCString	&s2)

{

				QCString	tmp(s1.data());

				tmp	+=	s2;

				return	tmp;

}

Q_EXPORT	inline	const	QCString	operator+(const	QCString	&s1,	const	char	*s2)

{

				QCString	tmp(s1.data());

				tmp	+=	s2;

				return	tmp;

}

Q_EXPORT	inline	const	QCString	operator+(const	char	*s1,	const	QCString	&s2)

{

				QCString	tmp(s1);

				tmp	+=	s2;

				return	tmp;

}

Q_EXPORT	inline	const	QCString	operator+(const	QCString	&s1,	char	c2)

{

				QCString	tmp(s1.data());

				tmp	+=	c2;

				return	tmp;

}

Q_EXPORT	inline	const	QCString	operator+(char	c1,	const	QCString	&s2)

{

				QCString	tmp;

				tmp	+=	c1;

				tmp	+=	s2;

				return	tmp;

}

#endif	//	QCSTRING_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qcursor.h
This	is	the	verbatim	text	of	the	qcursor.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qcursor.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QCursor	class

**

**	Created	:	940219

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QCURSOR_H

#define	QCURSOR_H

#ifndef	QT_H

#include	"qpoint.h"

#include	"qshared.h"

#endif	//	QT_H

/*

		###	The	fake	cursor	has	to	go	first	with	old	qdoc.

*/

#ifdef	QT_NO_CURSOR

class	Q_EXPORT	QCursor	:	public	Qt

{

public:

				static	QPoint	pos();

				static	void			setPos(int	x,	int	y);

				static	void			setPos(const	QPoint	&);

private:

				QCursor();

};

#endif	//	QT_NO_CURSOR

#ifndef	QT_NO_CURSOR

struct	QCursorData;

class	Q_EXPORT	QCursor	:	public	Qt

{

public:

				QCursor();	 	 	 	 //	create	default	arrow	cursor

				QCursor(int	shape);

				QCursor(const	QBitmap	&bitmap,	const	QBitmap	&mask,

	 					int	hotX=-1,	int	hotY=-1);

				QCursor(const	QPixmap	&pixmap,

	 					int	hotX=-1,	int	hotY=-1);

				QCursor(const	QCursor	&);

			~QCursor();

				QCursor	&operator=(const	QCursor	&);

				int		 		shape()			const;

				void	 		setShape(int);

				const	QBitmap	*bitmap()	const;

				const	QBitmap	*mask()			const;

				QPoint	 		hotSpot()	const;

#if	defined(Q_WS_WIN)

				HCURSOR	 		handle()		const;

				QCursor(HCURSOR);

#elif	defined(Q_WS_X11)

				HANDLE	 		handle()		const;

#elif	defined(Q_WS_MAC)

				HANDLE	handle()	const;

#elif	defined(Q_WS_QWS)

				HANDLE	 		handle()		const;

#endif

				static	QPoint	pos();

				static	void			setPos(int	x,	int	y);

				static	void			setPos(const	QPoint	&);

				static	void			initialize();

				static	void			cleanup();

#if	defined(Q_WS_X11)

				static	int				x11Screen();

#endif

private:

				void	 		setBitmap(const	QBitmap	&bitmap,	const	QBitmap	&mask,

	 	 	 	 	int	hotX,	int	hotY);

				void	 		update()	const;

				QCursorData		*data;

				QCursor	 	*find_cur(int);

#if	defined(Q_WS_MAC)

				friend	void	qt_mac_set_cursor(const	QCursor	*c,	const	Point	*p);

#endif

};

#if	!defined(QT_CLEAN_NAMESPACE)

//	CursorShape	is	defined	in	X11/X.h

#ifdef	CursorShape

#define	X_CursorShape	CursorShape

#undef	CursorShape

#endif

typedef	Qt::CursorShape	QCursorShape;

#ifdef	X_CursorShape

#define	CursorShape	X_CursorShape

#endif

#endif

/***

		QCursor	stream	functions

	***/

#ifndef	QT_NO_DATASTREAM

Q_EXPORT	QDataStream	&operator<<(QDataStream	&,	const	QCursor	&);

Q_EXPORT	QDataStream	&operator>>(QDataStream	&,	QCursor	&);

#endif

#endif	//	QT_NO_CURSOR

inline	void	QCursor::setPos(const	QPoint	&p)

{

				setPos(p.x(),	p.y());

}

#endif	//	QCURSOR_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qdatabrowser.h
This	is	the	verbatim	text	of	the	qdatabrowser.h	include	file.	It	is	provided	only
for	illustration;	the	copyright	remains	with	Trolltech.

/**

**

**	Definition	of	QDataBrowser	class

**

**	Created	:	2000-11-03

**

**	Copyright	(C)	2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	sql	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	licenses	may	use	this

**	file	in	accordance	with	the	Qt	Commercial	License	Agreement	provided

**	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QDATABROWSER_H

#define	QDATABROWSER_H

#ifndef	QT_H

#include	"qwidget.h"

#include	"qstring.h"

#include	"qstringlist.h"

#include	"qsql.h"

#include	"qsqlindex.h"

#include	"qsqlcursor.h"

#include	"qsqlerror.h"

#endif	//	QT_H

#ifndef	QT_NO_SQL

class	QSqlForm;

class	QDataBrowserPrivate;

class	Q_EXPORT	QDataBrowser	:	public	QWidget

{

				Q_OBJECT

				Q_PROPERTY(bool	boundaryChecking	READ	boundaryChecking	WRITE	setBoundaryChecking)

				Q_PROPERTY(QString	filter	READ	filter	WRITE	setFilter)

				Q_PROPERTY(QStringList	sort	READ	sort	WRITE	setSort)

				Q_PROPERTY(bool	confirmEdits	READ	confirmEdits	WRITE	setConfirmEdits)

				Q_PROPERTY(bool	confirmInsert	READ	confirmInsert	WRITE	setConfirmInsert)

				Q_PROPERTY(bool	confirmUpdate	READ	confirmUpdate	WRITE	setConfirmUpdate)

				Q_PROPERTY(bool	confirmDelete	READ	confirmDelete	WRITE	setConfirmDelete)

				Q_PROPERTY(bool	confirmCancels	READ	confirmCancels	WRITE	setConfirmCancels)

				Q_PROPERTY(bool	readOnly	READ	isReadOnly	WRITE	setReadOnly)

				Q_PROPERTY(bool	autoEdit	READ	autoEdit	WRITE	setAutoEdit)

public:

				QDataBrowser(QWidget*	parent=0,	const	char*	name=0,	WFlags	fl	=	0);

				~QDataBrowser();

				enum	Boundary	{

	 Unknown,

	 None,

	 BeforeBeginning,

	 Beginning,

	 End,

	 AfterEnd

				};

				Boundary	boundary();

				void	setBoundaryChecking(bool	active);

				bool	boundaryChecking()	const;

				void	setSort(const	QSqlIndex&	sort);

				void	setSort(const	QStringList&	sort);

				QStringList		sort()	const;

				void	setFilter(const	QString&	filter);

				QString	filter()	const;

				virtual	void	setSqlCursor(QSqlCursor*	cursor,	bool	autoDelete	=	FALSE);

				QSqlCursor*	sqlCursor()	const;

				virtual	void	setForm(QSqlForm*	form);

				QSqlForm*	form();

				virtual	void	setConfirmEdits(bool	confirm);

				virtual	void	setConfirmInsert(bool	confirm);

				virtual	void	setConfirmUpdate(bool	confirm);

				virtual	void	setConfirmDelete(bool	confirm);

				virtual	void	setConfirmCancels(bool	confirm);

				bool	confirmEdits()	const;

				bool	confirmInsert()	const;

				bool	confirmUpdate()	const;

				bool	confirmDelete()	const;

				bool	confirmCancels()	const;

				virtual	void	setReadOnly(bool	active);

				bool	isReadOnly()	const;

				virtual	void	setAutoEdit(bool	autoEdit);

				bool	autoEdit()	const;

				virtual	bool	seek(int	i,	bool	relative	=	FALSE);

signals:

				void	firstRecordAvailable(bool	available);

				void	lastRecordAvailable(bool	available);

				void	nextRecordAvailable(bool	available);

				void	prevRecordAvailable(bool	available);

				void	currentChanged(const	QSqlRecord*	record);

				void	primeInsert(QSqlRecord*	buf);

				void	primeUpdate(QSqlRecord*	buf);

				void	primeDelete(QSqlRecord*	buf);

				void	beforeInsert(QSqlRecord*	buf);

				void	beforeUpdate(QSqlRecord*	buf);

				void	beforeDelete(QSqlRecord*	buf);

				void	cursorChanged(QSqlCursor::Mode	mode);

public	slots:

				virtual	void	refresh();

				virtual	void	insert();

				virtual	void	update();

				virtual	void	del();

				virtual	void	first();

				virtual	void	last();

				virtual	void	next();

				virtual	void	prev();

				virtual	void	readFields();

				virtual	void	writeFields();

				virtual	void	clearValues();

				void	updateBoundary();

protected:

				virtual	bool	insertCurrent();

				virtual	bool	updateCurrent();

				virtual	bool	deleteCurrent();

				virtual	bool	currentEdited();

				virtual	QSql::Confirm	confirmEdit(QSql::Op	m);

				virtual	QSql::Confirm	confirmCancel(QSql::Op	m);

				virtual	void	handleError(const	QSqlError&	error);

private:

				typedef	bool	(QSqlCursor::*Nav)();

				bool	preNav();

				void	postNav(bool	primeUpd);

				void	nav(Nav	nav);

				QDataBrowserPrivate*	d;

};

#endif

#endif

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qdatastream.h
qdatastream.hTrolltech

/**

**	$Id:		qt/qdatastream.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QDataStream	class

**

**	Created	:	930831

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	tools	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QDATASTREAM_H

#define	QDATASTREAM_H

#ifndef	QT_H

#include	"qiodevice.h"

#include	"qstring.h"

#endif	//	QT_H

#ifndef	QT_NO_DATASTREAM

class	Q_EXPORT	QDataStream	 	 	 	 //	data	stream	class

{

public:

				QDataStream();

				QDataStream(QIODevice	*);

				QDataStream(QByteArray,	int	mode);

				virtual	~QDataStream();

				QIODevice	 *device()	const;

				void	 	setDevice(QIODevice	*);

				void	 	unsetDevice();

				bool	 	atEnd()	const;

				bool	 	eof()	const;

				enum	ByteOrder	{	BigEndian,	LittleEndian	};

				int		 	byteOrder()	 const;

				void	 	setByteOrder(int);

				bool	 	isPrintableData()	const;

				void	 	setPrintableData(bool);

				int		 	version()	const;

				void	 	setVersion(int);

				QDataStream	&operator>>(Q_INT8	&i);

				QDataStream	&operator>>(Q_UINT8	&i);

				QDataStream	&operator>>(Q_INT16	&i);

				QDataStream	&operator>>(Q_UINT16	&i);

				QDataStream	&operator>>(Q_INT32	&i);

				QDataStream	&operator>>(Q_UINT32	&i);

				QDataStream	&operator>>(Q_LONG	&i);

				QDataStream	&operator>>(Q_ULONG	&i);

				QDataStream	&operator>>(float	&f);

				QDataStream	&operator>>(double	&f);

				QDataStream	&operator>>(char	*&str);

				QDataStream	&operator<<(Q_INT8	i);

				QDataStream	&operator<<(Q_UINT8	i);

				QDataStream	&operator<<(Q_INT16	i);

				QDataStream	&operator<<(Q_UINT16	i);

				QDataStream	&operator<<(Q_INT32	i);

				QDataStream	&operator<<(Q_UINT32	i);

				QDataStream	&operator<<(Q_LONG	i);

				QDataStream	&operator<<(Q_ULONG	i);

				QDataStream	&operator<<(float	f);

				QDataStream	&operator<<(double	f);

				QDataStream	&operator<<(const	char	*str);

				QDataStream	&readBytes(char	*&,	uint	&len);

				QDataStream	&readRawBytes(char	*,	uint	len);

				QDataStream	&writeBytes(const	char	*,	uint	len);

				QDataStream	&writeRawBytes(const	char	*,	uint	len);

private:

				QIODevice	 *dev;

				bool	 	owndev;

				int		 	byteorder;

				bool	 	printable;

				bool	 	noswap;

				int		 	ver;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QDataStream(const	QDataStream	&);

				QDataStream	&operator=(const	QDataStream	&);

#endif

};

/***

		QDataStream	inline	functions

	***/

inline	QIODevice	*QDataStream::device()	const

{	return	dev;	}

inline	bool	QDataStream::atEnd()	const

{	return	dev	?	dev->atEnd()	:	TRUE;	}

inline	bool	QDataStream::eof()	const

{	return	atEnd();	}

inline	int	QDataStream::byteOrder()	const

{	return	byteorder;	}

inline	bool	QDataStream::isPrintableData()	const

{	return	printable;	}

inline	void	QDataStream::setPrintableData(bool	p)

{	printable	=	p;	}

inline	int	QDataStream::version()	const

{	return	ver;	}

inline	void	QDataStream::setVersion(int	v)

{	ver	=	v;	}

inline	QDataStream	&QDataStream::operator>>(Q_UINT8	&i)

{	return	*this	>>	(Q_INT8&)i;	}

inline	QDataStream	&QDataStream::operator>>(Q_UINT16	&i)

{	return	*this	>>	(Q_INT16&)i;	}

inline	QDataStream	&QDataStream::operator>>(Q_UINT32	&i)

{	return	*this	>>	(Q_INT32&)i;	}

inline	QDataStream	&QDataStream::operator>>(Q_ULONG	&i)

{	return	*this	>>	(Q_LONG&)i;	}

inline	QDataStream	&QDataStream::operator<<(Q_UINT8	i)

{	return	*this	<<	(Q_INT8)i;	}

inline	QDataStream	&QDataStream::operator<<(Q_UINT16	i)

{	return	*this	<<	(Q_INT16)i;	}

inline	QDataStream	&QDataStream::operator<<(Q_UINT32	i)

{	return	*this	<<	(Q_INT32)i;	}

inline	QDataStream	&QDataStream::operator<<(Q_ULONG	i)

{	return	*this	<<	(Q_LONG)i;	}

#endif	//	QT_NO_DATASTREAM

#endif	//	QDATASTREAM_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qdatatable.h
This	is	the	verbatim	text	of	the	qdatatable.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**

**	Definition	of	QDataTable	class

**

**	Created	:	2000-11-03

**

**	Copyright	(C)	2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	sql	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	licenses	may	use	this

**	file	in	accordance	with	the	Qt	Commercial	License	Agreement	provided

**	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QDATATABLE_H

#define	QDATATABLE_H

#ifndef	QT_H

#include	"qstring.h"

#include	"qvariant.h"

#include	"qtable.h"

#include	"qsql.h"

#include	"qsqlcursor.h"

#include	"qsqlindex.h"

#include	"qsqleditorfactory.h"

#include	"qiconset.h"

#endif	//	QT_H

#if	!defined(QT_MODULE_SQL)	||	defined(QT_LICENSE_PROFESSIONAL)

#define	QM_EXPORT_SQL

#else

#define	QM_EXPORT_SQL	Q_EXPORT

#endif

#ifndef	QT_NO_SQL

class	QPainter;

class	QSqlField;

class	QSqlPropertyMap;

class	QDataTablePrivate;

class	QM_EXPORT_SQL	QDataTable	:	public	QTable

{

				Q_OBJECT

				Q_PROPERTY(QString	nullText	READ	nullText	WRITE	setNullText)

				Q_PROPERTY(QString	trueText	READ	trueText	WRITE	setTrueText)

				Q_PROPERTY(QString	falseText	READ	falseText	WRITE	setFalseText)

				Q_PROPERTY(DateFormat	dateFormat	READ	dateFormat	WRITE	setDateFormat)

				Q_PROPERTY(bool	confirmEdits	READ	confirmEdits	WRITE	setConfirmEdits)

				Q_PROPERTY(bool	confirmInsert	READ	confirmInsert	WRITE	setConfirmInsert)

				Q_PROPERTY(bool	confirmUpdate	READ	confirmUpdate	WRITE	setConfirmUpdate)

				Q_PROPERTY(bool	confirmDelete	READ	confirmDelete	WRITE	setConfirmDelete)

				Q_PROPERTY(bool	confirmCancels	READ	confirmCancels	WRITE	setConfirmCancels)

				Q_PROPERTY(bool	autoEdit	READ	autoEdit	WRITE	setAutoEdit)

				Q_PROPERTY(QString	filter	READ	filter	WRITE	setFilter)

				Q_PROPERTY(QStringList	sort	READ	sort	WRITE	setSort)

				Q_PROPERTY(int	numCols	READ	numCols)

				Q_PROPERTY(int	numRows	READ	numRows)

public:

				QDataTable	(QWidget*	parent=0,	const	char*	name=0);

				QDataTable	(QSqlCursor*	cursor,	bool	autoPopulate	=	FALSE,	QWidget*	parent=0,	const	char*	name=0);

				~QDataTable();

				virtual	void	addColumn(const	QString&	fieldName,

	 	 	 				const	QString&	label	=	QString::null,

	 	 	 				int	width	=	-1,

	 	 	 				const	QIconSet&	iconset	=	QIconSet());

				virtual	void	removeColumn(uint	col);

				virtual	void	setColumn(uint	col,	const	QString&	fieldName,

	 	 	 				const	QString&	label	=	QString::null,

	 	 	 				int	width	=	-1,

	 	 	 				const	QIconSet&	iconset	=	QIconSet());

				QString						nullText()	const;

				QString						trueText()	const;

				QString						falseText()	const;

				DateFormat			dateFormat()	const;

				bool									confirmEdits()	const;

				bool									confirmInsert()	const;

				bool									confirmUpdate()	const;

				bool									confirmDelete()	const;

				bool									confirmCancels()	const;

				bool									autoDelete()	const;

				bool									autoEdit()	const;

				QString						filter()	const;

				QStringList		sort()	const;

				virtual	void	setSqlCursor(QSqlCursor*	cursor	=	0,

	 	 	 				bool	autoPopulate	=	FALSE,	bool	autoDelete	=	FALSE);

				QSqlCursor*	sqlCursor()	const;

				virtual	void	setNullText(const	QString&	nullText);

				virtual	void	setTrueText(const	QString&	trueText);

				virtual	void	setFalseText(const	QString&	falseText);

				virtual	void	setDateFormat(const	DateFormat	f);

				virtual	void	setConfirmEdits(bool	confirm);

				virtual	void	setConfirmInsert(bool	confirm);

				virtual	void	setConfirmUpdate(bool	confirm);

				virtual	void	setConfirmDelete(bool	confirm);

				virtual	void	setConfirmCancels(bool	confirm);

				virtual	void	setAutoDelete(bool	enable);

				virtual	void	setAutoEdit(bool	autoEdit);

				virtual	void	setFilter(const	QString&	filter);

				virtual	void	setSort(const	QStringList&	sort);

				virtual	void	setSort(const	QSqlIndex&	sort);

				enum	Refresh	{

	 RefreshData	=	1,

	 RefreshColumns	=	2,

	 RefreshAll	=	3

				};

				void									refresh(Refresh	mode);

				void									sortColumn	(int	col,	bool	ascending	=	TRUE,

	 	 	 						bool	wholeRows	=	FALSE);

				QString						text	(int	row,	int	col)	const;

				QVariant					value	(int	row,	int	col)	const;

				QSqlRecord*		currentRecord()	const;

				void									installEditorFactory(QSqlEditorFactory	*	f);

				void									installPropertyMap(QSqlPropertyMap*	m);

				int										numCols()	const;

				int										numRows()	const;

				void									setNumCols(int	c);

				void									setNumRows	(int	r);

				bool									findBuffer(const	QSqlIndex&	idx,	int	atHint	=	0);

signals:

				void									currentChanged(QSqlRecord*	record);

				void									primeInsert(QSqlRecord*	buf);

				void									primeUpdate(QSqlRecord*	buf);

				void									primeDelete(QSqlRecord*	buf);

				void									beforeInsert(QSqlRecord*	buf);

				void									beforeUpdate(QSqlRecord*	buf);

				void									beforeDelete(QSqlRecord*	buf);

				void									cursorChanged(QSql::Op	mode);

public	slots:

				virtual	void	find(const	QString	&	str,	bool	caseSensitive,

	 	 	 					bool	backwards);

				virtual	void	sortAscending(int	col);

				virtual	void	sortDescending(int	col);

				virtual	void	refresh();

				void	setColumnWidth(int	col,	int	w);

				void	adjustColumn(int	col);

				void	setColumnStretchable(int	col,	bool	stretch);

protected:

				virtual	bool	insertCurrent();

				virtual	bool	updateCurrent();

				virtual	bool	deleteCurrent();

				virtual	QSql::Confirm	confirmEdit(QSql::Op	m);

				virtual	QSql::Confirm	confirmCancel(QSql::Op	m);

				virtual	void	handleError(const	QSqlError&	e);

				virtual	bool	beginInsert();

				virtual	QWidget*	beginUpdate	(int	row,	int	col,	bool	replace);

				bool									eventFilter(QObject	*o,	QEvent	*e);

				void									resizeEvent	(QResizeEvent	*);

				void									contentsMousePressEvent(QMouseEvent*	e);

				void									contentsContextMenuEvent(QContextMenuEvent*	e);

				void									endEdit(int	row,	int	col,	bool	accept,	bool	replace);

				QWidget	*				createEditor(int	row,	int	col,	bool	initFromCell)	const;

				void									activateNextCell();

				int										indexOf(uint	i)	const;

				void									reset();

				void									setSize(QSqlCursor*	sql);

				void									repaintCell(int	row,	int	col);

				void									paintCell	(QPainter	*	p,	int	row,	int	col,	const	QRect	&	cr,

	 	 	 					bool	selected,	const	QColorGroup	&cg);

				virtual	void	paintField(QPainter	*	p,	const	QSqlField*	field,	const	QRect	&	cr,

	 	 	 					bool	selected);

				virtual	int		fieldAlignment(const	QSqlField*	field);

				void									columnClicked	(int	col);

				void									resizeData	(int	len);

				QTableItem	*	item	(int	row,	int	col)	const;

				void									setItem	(int	row,	int	col,	QTableItem	*	item);

				void									clearCell	(int	row,	int	col)	;

				void									setPixmap	(int	row,	int	col,	const	QPixmap	&	pix);

				void									takeItem	(QTableItem	*	i);

private	slots:

				void									loadNextPage();

				void									setCurrentSelection(int	row,	int	col);

				void		 	sliderPressed();

				void		 	sliderReleased();

				

private:

				void									init();

				QWidget*					beginEdit	(int	row,	int	col,	bool	replace);

				void									updateRow(int	row);

				void									endInsert();

				void									endUpdate();

				QDataTablePrivate*	d;

};

#endif

#endif

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qdataview.h
This	is	the	verbatim	text	of	the	qdataview.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**

**	Definition	of	QDataView	class

**

**	Created	:	2000-11-03

**

**	Copyright	(C)	2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	sql	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	licenses	may	use	this

**	file	in	accordance	with	the	Qt	Commercial	License	Agreement	provided

**	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QDATAVIEW_H

#define	QDATAVIEW_H

#ifndef	QT_H

#include	"qwidget.h"

#endif	//	QT_H

#if	!defined(QT_MODULE_SQL)	||	defined(QT_LICENSE_PROFESSIONAL)

#define	QM_EXPORT_SQL

#else

#define	QM_EXPORT_SQL	Q_EXPORT

#endif

#ifndef	QT_NO_SQL

class	QSqlForm;

class	QSqlRecord;

class	QDataViewPrivate;

class	QM_EXPORT_SQL	QDataView	:	public	QWidget

{

				Q_OBJECT

public:

				QDataView(QWidget*	parent=0,	const	char*	name=0,	WFlags	fl	=	0);

				~QDataView();

				virtual	void	setForm(QSqlForm*	form);

				QSqlForm*	form();

				virtual	void	setRecord(QSqlRecord*	record);

				QSqlRecord*	record();

public	slots:

				virtual	void	refresh(QSqlRecord*	buf);

				virtual	void	readFields();

				virtual	void	writeFields();

				virtual	void	clearValues();

private:

				QDataViewPrivate*	d;

};

#endif

#endif

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qdatetime.h
qdatetime.hTrolltech

/***

**	$Id:		qt/qdatetime.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	date	and	time	classes

**

**	Created	:	940124

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	tools	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QDATETIME_H

#define	QDATETIME_H

#ifndef	QT_H

#include	"qstring.h"

#include	"qnamespace.h"

#endif	//	QT_H

/***

		QDate	class

	***/

class	Q_EXPORT	QDate

{

public:

				QDate()		{	jd=0;	}	 	 	 	 //	set	null	date

				QDate(int	y,	int	m,	int	d);	 	 //	set	date

				bool			isNull()	 	const	{	return	jd	==	0;	}

				bool			isValid()	 	const;		 	 //	valid	date

				int				year()	 	const;		 	 //	1752..

				int				month()	 	const;		 	 //	1..12

				int				day()	 	const;		 	 //	1..31

				int				dayOfWeek()	 	const;		 	 //	1..7	(monday==1)

				int				dayOfYear()	 	const;		 	 //	1..365

				int				daysInMonth()	const;		 	 //	28..31

				int				daysInYear()		const;		 	 //	365	or	366

#ifndef	QT_NO_TEXTDATE

#ifndef	QT_NO_COMPAT

				static	QString	monthName(int	month)	{	return	shortMonthName(month);	}

				static	QString	dayName(int	weekday)	{	return	shortDayName(weekday);	}

#endif

				static	QString	shortMonthName(int	month);

				static	QString	shortDayName(int	weekday);

				static	QString	longMonthName(int	month);

				static	QString	longDayName(int	weekday);

#endif	//QT_NO_TEXTDATE

#if	!defined(QT_NO_SPRINTF)	

				QString	toString(Qt::DateFormat	f	=	Qt::TextDate)		const;

#endif

				QString	toString(const	QString&	format)	const;

				bool			setYMD(int	y,	int	m,	int	d);

				QDate		addDays(int	days)	 	 const;

				QDate		addMonths(int	months)						const;

				QDate		addYears(int	years)								const;

				int				daysTo(const	QDate	&)	 const;

				bool			operator==(const	QDate	&d)	const	{	return	jd	==	d.jd;	}

				bool			operator!=(const	QDate	&d)	const	{	return	jd	!=	d.jd;	}

				bool			operator<(const	QDate	&d)	 const	{	return	jd	<	d.jd;	}

				bool			operator<=(const	QDate	&d)	const	{	return	jd	<=	d.jd;	}

				bool			operator>(const	QDate	&d)	 const	{	return	jd	>	d.jd;	}

				bool			operator>=(const	QDate	&d)	const	{	return	jd	>=	d.jd;	}

				static	QDate	currentDate();

				static	QDate	fromString(const	QString&	s,	Qt::DateFormat	f	=	Qt::TextDate);

				static	bool		isValid(int	y,	int	m,	int	d);

				static	bool		leapYear(int	year);

				static	uint		gregorianToJulian(int	y,	int	m,	int	d);

				static	void		julianToGregorian(uint	jd,	int	&y,	int	&m,	int	&d);

private:

				uint	 	jd;

				friend	class	QDateTime;

#ifndef	QT_NO_DATASTREAM

				friend	Q_EXPORT	QDataStream	&operator<<(QDataStream	&,	const	QDate	&);

				friend	Q_EXPORT	QDataStream	&operator>>(QDataStream	&,	QDate	&);

#endif

};

/***

		QTime	class

	***/

class	Q_EXPORT	QTime

{

public:

				QTime()	{	ds=0;	}	 	 	 	 //	set	null	time

				QTime(int	h,	int	m,	int	s=0,	int	ms=0);	 //	set	time

				bool			isNull()	 	const	{	return	ds	==	0;	}

				bool			isValid()	 	const;		 	 //	valid	time

				int				hour()	 	const;		 	 //	0..23

				int				minute()	 	const;		 	 //	0..59

				int				second()	 	const;		 	 //	0..59

				int				msec()	 	const;		 	 //	0..999

#ifndef	QT_NO_SPRINTF

				QString	toString(Qt::DateFormat	f	=	Qt::TextDate)		const;

#endif

				QString	toString(const	QString&	format)	const;

				bool			setHMS(int	h,	int	m,	int	s,	int	ms=0);

				QTime		addSecs(int	secs)	 	 const;

				int				secsTo(const	QTime	&)	 const;

				QTime		addMSecs(int	ms)	 	 const;

				int				msecsTo(const	QTime	&)	 const;

				bool			operator==(const	QTime	&d)	const	{	return	ds	==	d.ds;	}

				bool			operator!=(const	QTime	&d)	const	{	return	ds	!=	d.ds;	}

				bool			operator<(const	QTime	&d)	 const	{	return	ds	<	d.ds;	}

				bool			operator<=(const	QTime	&d)	const	{	return	ds	<=	d.ds;	}

				bool			operator>(const	QTime	&d)	 const	{	return	ds	>	d.ds;	}

				bool			operator>=(const	QTime	&d)	const	{	return	ds	>=	d.ds;	}

				static	QTime	currentTime();

				static	QTime	fromString(const	QString&	s,	Qt::DateFormat	f	=	Qt::TextDate);

				static	bool		isValid(int	h,	int	m,	int	s,	int	ms=0);

				void			start();

				int				restart();

				int				elapsed()	const;

private:

				static	bool	currentTime(QTime	*);

				uint			ds;

				friend	class	QDateTime;

#ifndef	QT_NO_DATASTREAM

				friend	Q_EXPORT	QDataStream	&operator<<(QDataStream	&,	const	QTime	&);

				friend	Q_EXPORT	QDataStream	&operator>>(QDataStream	&,	QTime	&);

#endif

};

/***

		QDateTime	class

	***/

class	Q_EXPORT	QDateTime

{

public:

				QDateTime()	{}	 	 	 	 //	set	null	date	and	null	time

				QDateTime(const	QDate	&);

				QDateTime(const	QDate	&,	const	QTime	&);

				bool			isNull()	 const	 	 {	return	d.isNull()	&&	t.isNull();	}

				bool			isValid()	 const	 	 {	return	d.isValid()	&&	t.isValid();	}

				QDate		date()	 const	 	 {	return	d;	}

				QTime		time()	 const	 	 {	return	t;	}

				void			setDate(const	QDate	&date)	{	d=date;	}

				void			setTime(const	QTime	&time)	{	t=time;	}

				void			setTime_t(uint	secsSince1Jan1970UTC);

#ifndef	QT_NO_SPRINTF

				QString	toString(Qt::DateFormat	f	=	Qt::TextDate)	const;

#endif

				QString	toString(const	QString&	format)	const;

				QDateTime	addDays(int	days)	 const;

				QDateTime	addMonths(int	months)			const;

				QDateTime	addYears(int	years)					const;

				QDateTime	addSecs(int	secs)	 const;

				int				daysTo(const	QDateTime	&)	 const;

				int				secsTo(const	QDateTime	&)	 const;

				bool			operator==(const	QDateTime	&dt)	const;

				bool			operator!=(const	QDateTime	&dt)	const;

				bool			operator<(const	QDateTime	&dt)		const;

				bool			operator<=(const	QDateTime	&dt)	const;

				bool			operator>(const	QDateTime	&dt)		const;

				bool			operator>=(const	QDateTime	&dt)	const;

				static	QDateTime	currentDateTime();

				static	QDateTime	fromString(const	QString&	s,	Qt::DateFormat	f	=	Qt::TextDate);

private:

				QDate		d;

				QTime		t;

#ifndef	QT_NO_DATASTREAM

				friend	Q_EXPORT	QDataStream	&operator<<(QDataStream	&,	const	QDateTime	&);

				friend	Q_EXPORT	QDataStream	&operator>>(QDataStream	&,	QDateTime	&);

#endif

};

/***

		Date	and	time	stream	functions

	***/

#ifndef	QT_NO_DATASTREAM

Q_EXPORT	QDataStream	&operator<<(QDataStream	&,	const	QDate	&);

Q_EXPORT	QDataStream	&operator>>(QDataStream	&,	QDate	&);

Q_EXPORT	QDataStream	&operator<<(QDataStream	&,	const	QTime	&);

Q_EXPORT	QDataStream	&operator>>(QDataStream	&,	QTime	&);

Q_EXPORT	QDataStream	&operator<<(QDataStream	&,	const	QDateTime	&);

Q_EXPORT	QDataStream	&operator>>(QDataStream	&,	QDateTime	&);

#endif	//	QT_NO_DATASTREAM

#endif	//	QDATETIME_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qdatetimeedit.h
This	is	the	verbatim	text	of	the	qdatetimeedit.h	include	file.	It	is	provided	only
for	illustration;	the	copyright	remains	with	Trolltech.

/**

**

**	Definition	of	date	and	time	edit	classes

**

**	Created	:	2000-11-03

**

**	Copyright	(C)	2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	licenses	may	use	this

**	file	in	accordance	with	the	Qt	Commercial	License	Agreement	provided

**	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QDATETIMEEDIT_H

#define	QDATETIMEEDIT_H

#ifndef	QT_H

#include	"qwidget.h"

#include	"qstring.h"

#include	"qdatetime.h"

#endif	//	QT_H

#ifndef	QT_NO_DATETIMEEDIT

class	Q_EXPORT	QDateTimeEditBase	:	public	QWidget

{

				Q_OBJECT

public:

				QDateTimeEditBase(QWidget*	parent=0,	const	char*	name=0)

	 :	QWidget(parent,	name)	{}

				

				virtual	bool	setFocusSection(int	sec)	=	0;

				virtual	QString	sectionFormattedText(int	sec)	=	0;

				virtual	void	addNumber(int	sec,	int	num)	=	0;

				virtual	void	removeLastNumber(int	sec)	=	0;

public	slots:

				virtual	void	stepUp()	=	0;

				virtual	void	stepDown()	=	0;

};

class	QDateEditPrivate;

class	Q_EXPORT	QDateEdit	:	public	QDateTimeEditBase

{

				Q_OBJECT

				Q_ENUMS(Order)

				Q_PROPERTY(Order	order	READ	order	WRITE	setOrder)

				Q_PROPERTY(QDate	date	READ	date	WRITE	setDate)

				Q_PROPERTY(bool	autoAdvance	READ	autoAdvance	WRITE	setAutoAdvance)

				Q_PROPERTY(QDate	maxValue	READ	maxValue	WRITE	setMaxValue)

				Q_PROPERTY(QDate	minValue	READ	minValue	WRITE	setMinValue)

public:

				QDateEdit(QWidget*	parent=0,		const	char*	name=0);

				QDateEdit(const	QDate&	date,	QWidget*	parent=0,		const	char*	name=0);

				~QDateEdit();

				enum	Order	{

	 DMY,

	 MDY,

	 YMD,

	 YDM

				};

				QSize	sizeHint()	const;

				QSize	minimumSizeHint()	const;

				virtual	void	setDate(const	QDate&	date);

				QDate	date()	const;

				virtual	void	setOrder(Order	order);

				Order	order()	const;

				virtual	void	setAutoAdvance(bool	advance);

				bool	autoAdvance()	const;

				virtual	void	setMinValue(const	QDate&	d)	{	setRange(d,	maxValue());	}

				QDate	minValue()	const;

				virtual	void	setMaxValue(const	QDate&	d)	{	setRange(minValue(),	d);	}

				QDate	maxValue()	const;

				virtual	void	setRange(const	QDate&	min,	const	QDate&	max);

				QString	separator()	const;

				virtual	void	setSeparator(const	QString&	s);

signals:

				void	valueChanged(const	QDate&	date);

protected:

				bool	event(QEvent	*e);

				void	timerEvent	(QTimerEvent	*);

				void	resizeEvent	(QResizeEvent	*);

				void	stepUp();

				void	stepDown();

				QString	sectionFormattedText(int	sec);

				void	addNumber(int	sec,	int	num);

				void	removeLastNumber(int	sec);

				bool	setFocusSection(int	s);

				

				virtual	void	setYear(int	year);

				virtual	void	setMonth(int	month);

				virtual	void	setDay(int	day);

				virtual	void	fix();

				virtual	bool	outOfRange(int	y,	int	m,	int	d)	const;

protected	slots:

				void	updateButtons();				

private:

				void	init();

				int	sectionOffsetEnd(int	sec)	const;

				int	sectionLength(int	sec)	const;

				QString	sectionText(int	sec)	const;

				QDateEditPrivate*	d;

};

class	QTimeEditPrivate;

class	Q_EXPORT	QTimeEdit	:	public	QDateTimeEditBase

{

				Q_OBJECT

				Q_PROPERTY(QTime	time	READ	time	WRITE	setTime)

				Q_PROPERTY(bool	autoAdvance	READ	autoAdvance	WRITE	setAutoAdvance)

				Q_PROPERTY(QTime	maxValue	READ	maxValue	WRITE	setMaxValue)

				Q_PROPERTY(QTime	minValue	READ	minValue	WRITE	setMinValue)

public:

				QTimeEdit(QWidget*	parent=0,		const	char*	name=0);

				QTimeEdit(const	QTime&	time,	QWidget*	parent=0,		const	char*	name=0);

				~QTimeEdit();

				QSize	sizeHint()	const;

				QSize	minimumSizeHint()	const;

				virtual	void	setTime(const	QTime&	time);

				QTime	time()	const;

				virtual	void	setAutoAdvance(bool	advance);

				bool	autoAdvance()	const;

				virtual	void	setMinValue(const	QTime&	d)	{	setRange(d,	maxValue());	}

				QTime	minValue()	const;

				virtual	void	setMaxValue(const	QTime&	d)	{	setRange(minValue(),	d);	}

				QTime	maxValue()	const;

				virtual	void	setRange(const	QTime&	min,	const	QTime&	max);

				QString	separator()	const;

				virtual	void	setSeparator(const	QString&	s);

signals:

				void	valueChanged(const	QTime&	time);

protected:

				bool	event(QEvent	*e);

				void	timerEvent	(QTimerEvent	*e);

				void	resizeEvent	(QResizeEvent	*);

				void	stepUp();

				void	stepDown();

				QString	sectionFormattedText(int	sec);

				void	addNumber(int	sec,	int	num);

				void	removeLastNumber(int	sec);

				bool	setFocusSection(int	s);

				

				virtual	bool	outOfRange(int	h,	int	m,	int	s)	const;

				virtual	void	setHour(int	h);

				virtual	void	setMinute(int	m);

				virtual	void	setSecond(int	s);

				

protected	slots:

				void	updateButtons();

private:

				void	init();

				QString	sectionText(int	sec);

				QTimeEditPrivate*	d;

};

class	QDateTimeEditPrivate;

class	Q_EXPORT	QDateTimeEdit	:	public	QWidget

{

				Q_OBJECT

				Q_PROPERTY(QDateTime	dateTime	READ	dateTime	WRITE	setDateTime)

public:

				QDateTimeEdit(QWidget*	parent=0,	const	char*	name=0);

				QDateTimeEdit(const	QDateTime&	datetime,	QWidget*	parent=0,

	 	 			const	char*	name=0);

				~QDateTimeEdit();

				QSize	sizeHint()	const;

				QSize	minimumSizeHint()	const;

				virtual	void		setDateTime(const	QDateTime	&	dt);

				QDateTime	dateTime()	const;

				QDateEdit*	dateEdit()	{	return	de;	}

				QTimeEdit*	timeEdit()	{	return	te;	}

				virtual	void	setAutoAdvance(bool	advance);

				bool	autoAdvance()	const;

signals:

				void	valueChanged(const	QDateTime&	datetime);

protected:

				void	init();

				void	resizeEvent(QResizeEvent	*);

				void	layoutEditors();

protected	slots:

				void	newValue(const	QDate&	d);

				void	newValue(const	QTime&	t);

private:

				QDateEdit*	de;

				QTimeEdit*	te;

				QDateTimeEditPrivate*	d;

};

#endif

#endif

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qdesktopwidget.h
This	is	the	verbatim	text	of	the	qdesktopwidget.h	include	file.	It	is	provided	only
for	illustration;	the	copyright	remains	with	Trolltech.

/**

**	Id

**

**	Definition	of	QDesktopWidget	class.

**

**	Created	:

**

**	Copyright	(C)	1992-2001	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	for	Unix/X11	may	use	this	file	in	accordance	with	the	Qt	Commercial

**	License	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QDESKTOPWIDGET_H

#define	QDESKTOPWIDGET_H

#ifndef	QT_H

#include	"qwidget.h"

#endif	//	QT_H

class	QDesktopWidgetPrivate;	/*	Don't	touch!	*/

class	Q_EXPORT	QDesktopWidget	:	public	QWidget

{

				Q_OBJECT

public:

				QDesktopWidget();

				~QDesktopWidget();

				bool	isVirtualDesktop()	const;

				int	numScreens()	const;

				int	primaryScreen()	const;

				int	screenNumber(QWidget	*widget	=	0)	const;

				int	screenNumber(const	QPoint	&)	const;

				QWidget	*screen(int	screen	=	-1);

				const	QRect&	screenGeometry(int	screen	=	-1)	const;

				//	###	use	Qt::HANDLE	?

				//	###	if	related,	reimplement	QPaintDevice::handle()	to	avoid	warnings

#ifdef	Q_WS_MAC

				GDHandle	handle(int	screen)	const;

#else

				//	void	*handle(int)	const	{	return	0;	}

#endif

private:

				QDesktopWidgetPrivate	*d;

};

#endif	//QDESKTOPWIDGET_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qdial.h
This	is	the	verbatim	text	of	the	qdial.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qdial.h			3.0.5			edited	Nov	9	2001	$

**

**	Definition	of	the	dial	widget

**

**	Created	:	1999.01.04

**

**	Copyright	(C)	1999-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QDIAL_H

#define	QDIAL_H

#ifndef	QT_H

#include	"qwidget.h"

#include	"qrangecontrol.h"

#endif	//	QT_H

#ifndef	QT_NO_DIAL

class	QDialPrivate;

class	Q_EXPORT	QDial:	public	QWidget,	public	QRangeControl

{

				Q_OBJECT

				Q_PROPERTY(bool	tracking	READ	tracking	WRITE	setTracking)

				Q_PROPERTY(bool	wrapping	READ	wrapping	WRITE	setWrapping)

				Q_PROPERTY(int	notchSize	READ	notchSize)

				Q_PROPERTY(double	notchTarget	READ	notchTarget	WRITE	setNotchTarget)

				Q_PROPERTY(bool	notchesVisible	READ	notchesVisible	WRITE	setNotchesVisible)

				Q_PROPERTY(int	minValue	READ	minValue	WRITE	setMinValue)

				Q_PROPERTY(int	maxValue	READ	maxValue	WRITE	setMaxValue)

				Q_PROPERTY(int	lineStep	READ	lineStep	WRITE	setLineStep)

				Q_PROPERTY(int	pageStep	READ	pageStep	WRITE	setPageStep)

				Q_PROPERTY(int	value	READ	value	WRITE	setValue)

	

public:

				QDial(QWidget*	parent=0,	const	char*	name=0,	WFlags	f	=	0);

				QDial(int	minValue,	int	maxValue,	int	pageStep,	int	value,

	 			QWidget*	parent=0,	const	char*	name=0);

				~QDial();

				bool	tracking()	const;

				bool	wrapping()	const;

				int	notchSize()	const;

				virtual	void	setNotchTarget(double);

				double	notchTarget()	const;

				bool	notchesVisible()	const;

				QSize	sizeHint()	const;

				QSize	minimumSizeHint()	const;

				int		minValue()	const;

				int		maxValue()	const;

				void	setMinValue(int);

				void	setMaxValue(int);

				int		lineStep()	const;

				int		pageStep()	const;

				void	setLineStep(int);

				void	setPageStep(int);

				int		value()	const;

public	slots:

				virtual	void	setValue(int);

				void	addLine();

				void	subtractLine();

				void	addPage();

				void	subtractPage();

				virtual	void	setNotchesVisible(bool	b);

				virtual	void	setWrapping(bool	on);

				virtual	void	setTracking(bool	enable);

signals:

				void	valueChanged(int	value);

				void	dialPressed();

				void	dialMoved(int	value);

				void	dialReleased();

protected:

				void	resizeEvent(QResizeEvent	*);

				void	paintEvent(QPaintEvent	*);

				void	keyPressEvent(QKeyEvent	*);

				void	mousePressEvent(QMouseEvent	*);

				void	mouseReleaseEvent(QMouseEvent	*);

				void	mouseMoveEvent(QMouseEvent	*);

#ifndef	QT_NO_WHEELEVENT

				void	wheelEvent(QWheelEvent	*);

#endif

				void	focusInEvent(QFocusEvent	*);

				void	focusOutEvent(QFocusEvent	*);

				void	valueChange();

				void	rangeChange();

				virtual	void	repaintScreen(const	QRect	*cr	=	0);

private:

				QDialPrivate	*	d;

				int	valueFromPoint(const	QPoint	&)	const;

				double	angle(const	QPoint	&,	const	QPoint	&)	const;

				QPointArray	calcArrow(double	&a)	const;

				QRect	calcDial()	const;

				int	calcBigLineSize()	const;

				void	calcLines();

private:	//	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QDial(const	QDial	&);

				QDial	&operator=(const	QDial	&);

#endif

};

#endif		//	QT_NO_DIAL

#endif

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qdialog.h
qdialog.hTrolltech

/**

**	Id

**

**	Definition	of	QDialog	class

**

**	Created	:	950502

**

**	Copyright	(C)	1992-2002	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	dialogs	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QDIALOG_H

#define	QDIALOG_H

#ifndef	QT_H

#include	"qwidget.h"

#endif	//	QT_H

#ifndef	QT_NO_DIALOG

#if	0

Q_OBJECT

#endif

class	QPushButton;

class	QDialogPrivate;

class	Q_EXPORT	QDialog	:	public	QWidget		 	 //	dialog	widget

{

friend	class	QPushButton;

				Q_OBJECT

				Q_PROPERTY(bool	sizeGripEnabled	READ	isSizeGripEnabled	WRITE	setSizeGripEnabled)

public:

				QDialog(QWidget*	parent=0,	const	char*	name=0,	bool	modal=FALSE,

	 					WFlags	f=0);

				~QDialog();

				enum	DialogCode	{	Rejected,	Accepted	};

				int		 result()		const	{	return	rescode;	}

				void	 show();

				void	 hide();

				void	 move(int	x,	int	y);

				void	 move(const	QPoint	&p);

				void	 resize(int	w,	int	h);

				void	 resize(const	QSize	&);

				void	 setGeometry(int	x,	int	y,	int	w,	int	h);

				void	 setGeometry(const	QRect	&);

				void	 setOrientation(Orientation	orientation);

				Orientation	orientation()	const;

				void	 setExtension(QWidget*	extension);

				QWidget*	extension()	const;

				QSize	 sizeHint()	const;

				QSize	 minimumSizeHint()	const;

				void	setSizeGripEnabled(bool);

				bool	isSizeGripEnabled()	const;

public	slots:

				int	exec();

protected	slots:

				virtual	void	done(int);

				virtual	void	accept();

				virtual	void	reject();

				void	 showExtension(bool);

protected:

				void	 setResult(int	r)	 {	rescode	=	r;	}

				void	 keyPressEvent(QKeyEvent	*);

				void	 closeEvent(QCloseEvent	*);

				void	 resizeEvent(QResizeEvent	*);

				void		 contextMenuEvent(QContextMenuEvent	*);

				bool		 eventFilter(QObject	*,	QEvent	*);

				void					adjustPosition(QWidget*);

private:

				void	 setDefault(QPushButton	*);

				void	 	 hideDefault();

				int		 rescode;

				uint	 did_move			:	1;

				uint		 has_relpos	:	1;

				uint	 did_resize	:	1;

				uint	 in_loop:	1;

				void	adjustPositionInternal(QWidget*,	bool	useRelPos	=	FALSE);

				QDialogPrivate*	d;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QDialog(const	QDialog	&);

				QDialog	&operator=(const	QDialog	&);

#endif

};

#endif	//	QT_NO_DIALOG

#endif	//	QDIALOG_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qdict.h
This	is	the	verbatim	text	of	the	qdict.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	Id

**

**	Definition	of	QDict	template	class

**

**	Created	:	920821

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	tools	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QDICT_H

#define	QDICT_H

#ifndef	QT_H

#include	"qgdict.h"

#endif	//	QT_H

template<class	type>

class	QDict

#ifdef	Q_QDOC

	 :	public	QPtrCollection

#else

	 :	public	QGDict

#endif

{

public:

				QDict(int	size	=	17,	bool	caseSensitive	=	TRUE)

	 :	QGDict(size,	StringKey,	caseSensitive,	FALSE)	{	}

				QDict(const	QDict<type>	&d)	:	QGDict(d)	{	}

				~QDict()	 	 	 	 {	clear();	}

				QDict<type>	&operator=(const	QDict<type>	&d)

	 	 	 {	return	(QDict<type>&)QGDict::operator=(d);	}

				uint		count()			const	 	 {	return	QGDict::count();	}

				uint		size()				const	 	 {	return	QGDict::size();	}

				bool		isEmpty()	const	 	 {	return	QGDict::count()	==	0;	}

				void		insert(const	QString	&k,	const	type	*d)

	 	 	 	 	 {	QGDict::look_string(k,(Item)d,1);	}

				void		replace(const	QString	&k,	const	type	*d)

	 	 	 	 	 {	QGDict::look_string(k,(Item)d,2);	}

				bool		remove(const	QString	&k)	 {	return	QGDict::remove_string(k);	}

				type	*take(const	QString	&k)	 {	return	(type	*)QGDict::take_string(k);	}

				type	*find(const	QString	&k)	const

	 	 {	return	(type	*)((QGDict*)this)->QGDict::look_string(k,0,0);	}

				type	*operator[](const	QString	&k)	const

	 	 {	return	(type	*)((QGDict*)this)->QGDict::look_string(k,0,0);	}

				void		clear()	 	 	 {	QGDict::clear();	}

				void		resize(uint	n)	 	 {	QGDict::resize(n);	}

				void		statistics()	const	 	 {	QGDict::statistics();	}

#ifdef	Q_QDOC

protected:

				virtual	QDataStream&	read(QDataStream	&,	QPtrCollection::Item	&);

				virtual	QDataStream&	write(QDataStream	&,	QPtrCollection::Item)	const;

#endif

private:

	 void		deleteItem(Item	d);

};

#if	!defined(Q_BROKEN_TEMPLATE_SPECIALIZATION)

template<>	inline	void	QDict<void>::deleteItem(Item)

{

}

#endif

template<class	type>	inline	void	QDict<type>::deleteItem(QPtrCollection::Item	d)

{

				if	(del_item)	delete	(type	*)d;

}

template<class	type>

class	QDictIterator

	:	public	QGDictIterator

{

public:

				QDictIterator(const	QDict<type>	&d)	:	QGDictIterator((QGDict	&)d)	{	}

				~QDictIterator()	 						{}

				uint		count()			const					{	return	dict->count();	}

				bool		isEmpty()	const					{	return	dict->count()	==	0;	}

				type	*toFirst()	 						{	return	(type	*)QGDictIterator::toFirst();	}

				operator	type	*()	const			{	return	(type	*)QGDictIterator::get();	}

				type	*operator*()									{	return	(type	*)QGDictIterator::get();	}

				type			*current()	const			{	return	(type	*)QGDictIterator::get();	}

				QString	currentKey()	const{	return	QGDictIterator::getKeyString();	}

				type	*operator()()	 						{	return	(type	*)QGDictIterator::operator()();	}

				type	*operator++()	 						{	return	(type	*)QGDictIterator::operator++();	}

				type	*operator+=(uint	j)		{	return	(type	*)QGDictIterator::operator+=(j);	}

};

#endif	//	QDICT_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qdir.h
qdir.hTrolltech

/**

**	$Id:		qt/qdir.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QDir	class

**

**	Created	:	950427

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	tools	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QDIR_H

#define	QDIR_H

#ifndef	QT_H

#include	"qstrlist.h"

#include	"qfileinfo.h"

#include	"qglobal.h"

#include	"qwindowdefs.h"

#endif	//	QT_H

#ifndef	QT_NO_DIR

typedef	QPtrList<QFileInfo>	QFileInfoList;

typedef	QPtrListIterator<QFileInfo>	QFileInfoListIterator;

class	QStringList;

class	Q_EXPORT	QDir

{

public:

				enum	FilterSpec	{	Dirs	 				=	0x001,

	 	 						Files	 				=	0x002,

	 	 						Drives	 				=	0x004,

	 	 						NoSymLinks				=	0x008,

	 	 						All	 				=	0x007,

	 	 							TypeMask					=	0x00F,

	 	 						Readable	 				=	0x010,

	 	 						Writable	 				=	0x020,

	 	 						Executable				=	0x040,

	 	 							RWEMask	 				=	0x070,

	 	 						Modified	 				=	0x080,

	 	 						Hidden	 				=	0x100,

	 	 						System	 				=	0x200,

	 	 							AccessMask				=	0x3F0,

	 	 						DefaultFilter	=	-1	};

				enum	SortSpec			{	Name	 				=	0x00,

	 	 						Time	 				=	0x01,

	 	 						Size	 				=	0x02,

	 	 						Unsorted	 				=	0x03,

	 	 							SortByMask				=	0x03,

	 	 						DirsFirst					=	0x04,

	 	 						Reversed	 				=	0x08,

	 	 						IgnoreCase				=	0x10,

	 	 						DefaultSort			=	-1	};

				QDir();

				QDir(const	QString	&path,	const	QString	&nameFilter	=	QString::null,

	 		int	sortSpec	=	Name	|	IgnoreCase,	int	filterSpec	=	All);

				QDir(const	QDir	&);

				virtual	~QDir();

				QDir							&operator=(const	QDir	&);

				QDir							&operator=(const	QString	&path);

				virtual	void	setPath(const	QString	&path);

				virtual	QString	path()	 	 const;

				virtual	QString	absPath()	 const;

				virtual	QString	canonicalPath()	 const;

				virtual	QString	dirName()	const;

				virtual	QString	filePath(const	QString	&fileName,

	 	 	 						bool	acceptAbsPath	=	TRUE)	const;

				virtual	QString	absFilePath(const	QString	&fileName,

	 	 	 	 	bool	acceptAbsPath	=	TRUE)	const;

				static	QString	convertSeparators(const	QString	&pathName);

				virtual	bool	cd(const	QString	&dirName,	bool	acceptAbsPath	=	TRUE);

				virtual	bool	cdUp();

				QString	 nameFilter()	const;

				virtual	void	setNameFilter(const	QString	&nameFilter);

				FilterSpec	filter()	const;

				virtual	void	setFilter(int	filterSpec);

				SortSpec	sorting()	const;

				virtual	void	setSorting(int	sortSpec);

				bool	 matchAllDirs()	const;

				virtual	void	setMatchAllDirs(bool);

				uint	count()	const;

				QString	 operator[](int)	const;

				virtual	QStrList	encodedEntryList(int	filterSpec	=	DefaultFilter,

	 	 	 	 							int	sortSpec			=	DefaultSort)	const;

				virtual	QStrList	encodedEntryList(const	QString	&nameFilter,

	 	 	 	 							int	filterSpec	=	DefaultFilter,

	 	 	 	 							int	sortSpec			=	DefaultSort)	const;

				virtual	QStringList	entryList(int	filterSpec	=	DefaultFilter,

	 	 	 	 			int	sortSpec			=	DefaultSort)	const;

				virtual	QStringList	entryList(const	QString	&nameFilter,

	 	 	 	 			int	filterSpec	=	DefaultFilter,

	 	 	 	 			int	sortSpec			=	DefaultSort)	const;

				virtual	const	QFileInfoList	*entryInfoList(int	filterSpec	=	DefaultFilter,

	 	 	 	 	 	 int	sortSpec	=	DefaultSort)	const;

				virtual	const	QFileInfoList	*entryInfoList(const	QString	&nameFilter,

	 	 	 	 	 	 int	filterSpec	=	DefaultFilter,

	 	 	 	 	 	 int	sortSpec	=	DefaultSort)	const;

				static	const	QFileInfoList	*drives();

				virtual	bool	mkdir(const	QString	&dirName,

	 	 	 bool	acceptAbsPath	=	TRUE)	const;

				virtual	bool	rmdir(const	QString	&dirName,

	 	 	 bool	acceptAbsPath	=	TRUE)	const;

				virtual	bool	isReadable()	const;

				virtual	bool	exists()			const;

				virtual	bool	isRoot()			const;

				virtual	bool	isRelative()	const;

				virtual	void	convertToAbs();

				virtual	bool	operator==(const	QDir	&)	const;

				virtual	bool	operator!=(const	QDir	&)	const;

				virtual	bool	remove(const	QString	&fileName,

	 	 	 	bool	acceptAbsPath	=	TRUE);

				virtual	bool	rename(const	QString	&name,	const	QString	&newName,

	 	 	 	bool	acceptAbsPaths	=	TRUE);

				virtual	bool	exists(const	QString	&name,

	 	 	 	bool	acceptAbsPath	=	TRUE);

				static	char	separator();

				static	bool	setCurrent(const	QString	&path);

				static	QDir	current();

				static	QDir	home();

				static	QDir	root();

				static	QString	currentDirPath();

				static	QString	homeDirPath();

				static	QString	rootDirPath();

				static	bool	match(const	QStringList	&filters,	const	QString	&fileName);

				static	bool	match(const	QString	&filter,	const	QString	&fileName);

				static	QString	cleanDirPath(const	QString	&dirPath);

				static	bool	isRelativePath(const	QString	&path);

private:

#ifdef	Q_OS_MAC

				static	FSSpec	*make_spec(const	QString	&);

#endif

				void	init();

				virtual	bool	readDirEntries(const	QString	&nameFilter,

	 	 	 	 	int	FilterSpec,	int	SortSpec);

				static	void	slashify	(QString	&);

				QString	 dPath;

				QStringList			*fList;

				QFileInfoList	*fiList;

				QString	 nameFilt;

				FilterSpec	 filtS;

				SortSpec	 sortS;

				uint	 dirty	 :	1;

				uint	 allDirs	:	1;

};

inline	QString	QDir::path()	const

{

				return	dPath;

}

inline	QString	QDir::nameFilter()	const

{

				return	nameFilt;

}

inline	QDir::FilterSpec	QDir::filter()	const

{

				return	filtS;

}

inline	QDir::SortSpec	QDir::sorting()	const

{

				return	sortS;

}

inline	bool	QDir::matchAllDirs()	const

{

				return	allDirs;

}

inline	bool	QDir::operator!=(const	QDir	&d)	const

{

				return	!(*this	==	d);

}

struct	QDirSortItem	{

				QString	filename_cache;

				QFileInfo*	item;

};

#endif	//	QT_NO_DIR

#endif	//	QDIR_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qdirectpainter_qws.h
This	is	the	verbatim	text	of	the	qdirectpainter_qws.h	include	file.	It	is	provided
only	for	illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qdirectpainter_qws.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QDirectPainter	class

**

**	Created	:	010101

**

**	Copyright	(C)	2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	for	Qt/Embedded	may	use	this	file	in	accordance	with	the

**	Qt	Embedded	Commercial	License	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QDIRECTPAINTER_H

#define	QDIRECTPAINTER_H

#ifndef	QT_H

#include	<qpainter.h>

#endif	//	QT_H

#ifdef	Q_WS_QWS

class	QDirectPainter	:	public	QPainter	{

public:

				QDirectPainter(const	QWidget*);

				~QDirectPainter();

				uchar*	frameBuffer();

				int	lineStep();

				int	transformOrientation();

				int	numRects()	const;

				const	QRect&	rect(int	i)	const;

				QRegion	region();

				int	depth()	const;

				int	width()	const;

				int	height()	const;

				int	xOffset()	const;

				int	yOffset()	const;

				QPoint	offset()	const;

				QSize	size()	const;

				void	setAreaChanged(const	QRect&);

private:

				class	Private;

				Private*	d;

};

#endif

#endif	//	QDIRECTPAINTER_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qdns.h
This	is	the	verbatim	text	of	the	qdns.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	Id

**

**	Definition	of	QDns	class.

**

**	Created	:	991122

**

**	Copyright	(C)	1999-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	network	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	licenses	may	use	this

**	file	in	accordance	with	the	Qt	Commercial	License	Agreement	provided

**	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QDNS_H

#define	QDNS_H

#ifndef	QT_H

#include	"qobject.h"

#include	"qhostaddress.h"

#include	"qsocketnotifier.h"

#include	"qstringlist.h"

#endif	//	QT_H

#if	!defined(QT_MODULE_NETWORK)	||	defined(QT_LICENSE_PROFESSIONAL)	||	defined(QT_INTERNAL_NETWORK)

#define	QM_EXPORT_DNS

#else

#define	QM_EXPORT_DNS	Q_EXPORT

#endif

#ifndef	QT_NO_DNS

//#define	Q_DNS_SYNCHRONOUS

class	QDnsPrivate;

class	QM_EXPORT_DNS	QDns:	public	QObject	{

				Q_OBJECT

public:

				enum	RecordType	{

	 None,

	 A,	Aaaa,

	 Mx,	Srv,

	 Cname,

	 Ptr,

	 Txt

				};

				QDns();

				QDns(const	QString	&	label,	RecordType	rr	=	A);

				QDns(const	QHostAddress	&	address,	RecordType	rr	=	Ptr);

				virtual	~QDns();

				//	to	set/change	the	query

				virtual	void	setLabel(const	QString	&	label);

				virtual	void	setLabel(const	QHostAddress	&	address);

				QString	label()	const	{	return	l;	}

				virtual	void	setRecordType(RecordType	rr	=	A);

				RecordType	recordType()	const	{	return	t;	}

				//	whether	something	is	happening	behind	the	scenes

				bool	isWorking()	const;

				//	to	query	for	replies

				QValueList<QHostAddress>	addresses()	const;

				class	QM_EXPORT_DNS	MailServer	{

				public:

	 MailServer(const	QString	&	n=QString::null,	Q_UINT16	p=0)

	 				:name(n),	priority(p)	{}

	 QString	name;

	 Q_UINT16	priority;

#if	defined(Q_FULL_TEMPLATE_INSTANTIATION)

	 bool	operator==(const	MailServer&)	const	{	return	FALSE;	}

#endif

				};

				QValueList<MailServer>	mailServers()	const;

				class	QM_EXPORT_DNS	Server	{

				public:

	 Server(const	QString	&	n=QString::null,	Q_UINT16	p=0,	Q_UINT16	w=0,	Q_UINT16	po=0)

	 				:	name(n),	priority(p),	weight(w),	port(po)	{}

	 QString	name;

	 Q_UINT16	priority;

	 Q_UINT16	weight;

	 Q_UINT16	port;

#if	defined(Q_FULL_TEMPLATE_INSTANTIATION)

	 bool	operator==(const	Server&)	const	{	return	FALSE;	}

#endif

				};

				QValueList<Server>	servers()	const;

				QStringList	hostNames()	const;

				QStringList	texts()	const;

				QString	canonicalName()	const;	//	###	real-world	but	uncommon:	QStringList

				QStringList	qualifiedNames()	const	{	return	n;	}

#if	defined(Q_DNS_SYNCHRONOUS)

protected:

				void	connectNotify(const	char	*signal);

#endif

signals:

				void	resultsReady();

private	slots:

				void	startQuery();

private:

				void	setStartQueryTimer();

				QString	toInAddrArpaDomain(const	QHostAddress	&address);

#if	defined(Q_DNS_SYNCHRONOUS)

				void	doSynchronousLookup();

#endif

				QString	l;

				QStringList	n;

				RecordType	t;

				QDnsPrivate	*	d;

};

//	QDnsSocket	are	sockets	that	are	used	for	DNS	lookup

class	QDnsSocket:	public	QObject	{

				Q_OBJECT

				//	note:	Private	not	public.		This	class	contains	NO	public	API.

protected:

				QDnsSocket(QObject	*,	const	char	*);

				virtual	~QDnsSocket();

private	slots:

				virtual	void	cleanCache();

				virtual	void	retransmit();

				virtual	void	answer();

};

#endif	//	QT_NO_DNS

#endif	//	QDNS_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qdockarea.h
qdockarea.hTrolltech

/**

**	$Id:		qt/qdockarea.h			3.0.5			edited	Jun	5	21:14	$

**

**	Definition	of	the	QDockArea	class

**

**	Created	:	001010

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	workspace	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	licenses	may	use	this

**	file	in	accordance	with	the	Qt	Commercial	License	Agreement	provided

**	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QDOCKAREA_H

#define	QDOCKAREA_H

#ifndef	QT_H

#include	"qwidget.h"

#include	"qptrlist.h"

#include	"qdockwindow.h"

#include	"qlayout.h"

#include	"qvaluelist.h"

#include	"qguardedptr.h"

#include	"qtextstream.h"

#endif	//	QT_H

#ifndef	QT_NO_MAINWINDOW

class	QSplitter;

class	QBoxLayout;

class	QDockAreaLayout;

class	QMouseEvent;

class	QDockWindowResizeHandle;

class	QDockAreaPrivate;

#if	defined(Q_TEMPLATEDLL)

//	MOC_SKIP_BEGIN

Q_TEMPLATE_EXTERN	template	class	Q_EXPORT	QValueList<QRect>;

Q_TEMPLATE_EXTERN	template	class	Q_EXPORT	QPtrList<QDockWindow>;

//	MOC_SKIP_END

#endif

class	Q_EXPORT	QDockAreaLayout	:	public	QLayout

{

				Q_OBJECT

				friend	class	QDockArea;

public:

				QDockAreaLayout(QWidget*	parent,	Qt::Orientation	o,	QPtrList<QDockWindow>	*wl,	int	space	=	-1,	int	margin	=	-1,	const	char	*name	=	0)

	 :	QLayout(parent,	space,	margin,	name),	orient(o),	dockWindows(wl),	parentWidget(parent)	{	init();	}

				~QDockAreaLayout()	{}

				void	addItem(QLayoutItem	*)	{}

				bool	hasHeightForWidth()	const;

				int	heightForWidth(int)	const;

				int	widthForHeight(int)	const;

				QSize	sizeHint()	const;

				QSize	minimumSize()	const;

				QLayoutIterator	iterator();

				QSizePolicy::ExpandData	expanding()	const	{	return	QSizePolicy::NoDirection;	}

				void	invalidate();

				Qt::Orientation	orientation()	const	{	return	orient;	}

				QValueList<QRect>	lineList()	const	{	return	lines;	}

				QPtrList<QDockWindow>	lineStarts()	const	{	return	ls;	}

protected:

				void	setGeometry(const	QRect&);

private:

				void	init();

				int	layoutItems(const	QRect&,	bool	testonly	=	FALSE);

				Qt::Orientation	orient;

				bool	dirty;

				int	cached_width,	cached_height;

				int	cached_hfw,	cached_wfh;

				QPtrList<QDockWindow>	*dockWindows;

				QWidget	*parentWidget;

				QValueList<QRect>	lines;

				QPtrList<QDockWindow>	ls;

};

class	Q_EXPORT	QDockArea	:	public	QWidget

{

				Q_OBJECT

				Q_ENUMS(HandlePosition)

				Q_PROPERTY(Orientation	orientation	READ	orientation)

				Q_PROPERTY(int	count	READ	count)

				Q_PROPERTY(bool	empty	READ	isEmpty)

				Q_PROPERTY(HandlePosition	handlePosition	READ	handlePosition)

				friend	class	QDockWindow;

				friend	class	QDockWindowResizeHandle;

				friend	class	QDockAreaLayout;

public:

				enum	HandlePosition	{	Normal,	Reverse	};

				QDockArea(Orientation	o,	HandlePosition	h	=	Normal,	QWidget*	parent=0,	const	char*	name=0);

				~QDockArea();

				void	moveDockWindow(QDockWindow	*w,	const	QPoint	&globalPos,	const	QRect	&rect,	bool	swap);

				void	removeDockWindow(QDockWindow	*w,	bool	makeFloating,	bool	swap,	bool	fixNewLines	=	TRUE);

				void	moveDockWindow(QDockWindow	*w,	int	index	=	-1);

				bool	hasDockWindow(QDockWindow	*w,	int	*index	=	0);

				void	invalidNextOffset(QDockWindow	*dw);

				Orientation	orientation()	const	{	return	orient;	}

				HandlePosition	handlePosition()	const	{	return	hPos;	}

				bool	eventFilter(QObject	*,	QEvent	*);

				bool	isEmpty()	const;

				int	count()	const;

				QPtrList<QDockWindow>	dockWindowList()	const;

				bool	isDockWindowAccepted(QDockWindow	*dw);

				void	setAcceptDockWindow(QDockWindow	*dw,	bool	accept);

public	slots:

				void	lineUp(bool	keepNewLines);

private:

				struct	DockWindowData

				{

	 int	index;

	 int	offset;

	 int	line;

	 QSize	fixedExtent;

	 QGuardedPtr<QDockArea>	area;

				};

				int	findDockWindow(QDockWindow	*w);

				int	lineOf(int	index);

				DockWindowData	*dockWindowData(QDockWindow	*w);

				void	dockWindow(QDockWindow	*dockWindow,	DockWindowData	*data);

				void	updateLayout();

				void	invalidateFixedSizes();

				int	maxSpace(int	hint,	QDockWindow	*dw);

				void	setFixedExtent(int	d,	QDockWindow	*dw);

				bool	isLastDockWindow(QDockWindow	*dw);

private:

				Orientation	orient;

				QPtrList<QDockWindow>	*dockWindows;

				QDockAreaLayout	*layout;

				HandlePosition	hPos;

				QPtrList<QDockWindow>	forbiddenWidgets;

				QDockAreaPrivate	*d;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QDockArea(const	QDockArea	&);

				QDockArea&	operator=(const	QDockArea	&);

#endif

};

#ifndef	QT_NO_TEXTSTREAM

Q_EXPORT	QTextStream	&operator<<(QTextStream	&,	const	QDockArea	&);

Q_EXPORT	QTextStream	&operator>>(QTextStream	&,	QDockArea	&);

#endif

#endif

#endif	//QT_NO_MAINWINDOW

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qdockwindow.h
qdockwindow.hTrolltech

/**

**	$Id:		qt/qdockwindow.h			3.0.5			edited	Nov	15	2001	$

**

**	Definition	of	the	QDockWindow	class

**

**	Created	:	001010

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	workspace	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	licenses	may	use	this

**	file	in	accordance	with	the	Qt	Commercial	License	Agreement	provided

**	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QDOCKWIDGET_H

#define	QDOCKWIDGET_H

#ifndef	QT_H

#include	"qframe.h"

#endif	//	QT_H

#ifndef	QT_NO_MAINWINDOW

class	QDockWindowHandle;

class	QDockWindowTitleBar;

class	QPainter;

class	QDockWindowResizeHandle;

class	QBoxLayout;

class	QHBoxLayout;

class	QVBoxLayout;

class	QDockArea;

class	QWidgetResizeHandler;

class	QMainWindow;

class	QDockAreaLayout;

class	QDockWindowPrivate;

class	Q_EXPORT	QDockWindow	:	public	QFrame

{

				Q_OBJECT

				Q_ENUMS(CloseMode	Place)

				Q_PROPERTY(int	closeMode	READ	closeMode		WRITE	setCloseMode)	//###	this	shouldn't	be	of	type	int?!

				Q_PROPERTY(bool	resizeEnabled	READ	isResizeEnabled		WRITE	setResizeEnabled)

				Q_PROPERTY(bool	movingEnabled	READ	isMovingEnabled		WRITE	setMovingEnabled)

				Q_PROPERTY(bool	horizontallyStretchable	READ	isHorizontallyStretchable		WRITE	setHorizontallyStretchable)

				Q_PROPERTY(bool	verticallyStretchable	READ	isVerticallyStretchable		WRITE	setVerticallyStretchable)

				Q_PROPERTY(bool	stretchable	READ	isStretchable)

				Q_PROPERTY(bool	newLine	READ	newLine		WRITE	setNewLine)

				Q_PROPERTY(bool	opaqueMoving	READ	opaqueMoving		WRITE	setOpaqueMoving)

				Q_PROPERTY(int	offset	READ	offset		WRITE	setOffset)

				Q_PROPERTY(Place	place	READ	place)

				friend	class	QDockWindowHandle;

				friend	class	QDockWindowTitleBar;

				friend	class	QDockArea;

				friend	class	QDockAreaLayout;

				friend	class	QMainWindow;

public:

				enum	Place	{	InDock,	OutsideDock	};

				enum	CloseMode	{	Never	=	0,	Docked	=	1,	Undocked	=	2,	Always	=	Docked	|	Undocked	};

				QDockWindow(Place	p	=	InDock,	QWidget*	parent=0,	const	char*	name=0,	WFlags	f	=	0);

				~QDockWindow();

				virtual	void	setWidget(QWidget	*w);

				QWidget	*widget()	const;

				Place	place()	const	{	return	curPlace;	}

				QDockArea	*area()	const;

				virtual	void	setCloseMode(int	m);

				bool	isCloseEnabled()	const;

				int	closeMode()	const;

				virtual	void	setResizeEnabled(bool	b);

				virtual	void	setMovingEnabled(bool	b);

				bool	isResizeEnabled()	const;

				bool	isMovingEnabled()	const;

				virtual	void	setHorizontallyStretchable(bool	b);

				virtual	void	setVerticallyStretchable(bool	b);

				bool	isHorizontallyStretchable()	const;

				bool	isVerticallyStretchable()	const;

				void	setHorizontalStretchable(bool	b)	{	setHorizontallyStretchable(b);	}

				void	setVerticalStretchable(bool	b)	{	setVerticallyStretchable(b);	}

				bool	isHorizontalStretchable()	const	{	return	isHorizontallyStretchable();	}

				bool	isVerticalStretchable()	const	{	return	isVerticallyStretchable();	}

				bool	isStretchable()	const;

				virtual	void	setOffset(int	o);

				int	offset()	const;

				virtual	void	setFixedExtentWidth(int	w);

				virtual	void	setFixedExtentHeight(int	h);

				QSize	fixedExtent()	const;

				virtual	void	setNewLine(bool	b);

				bool	newLine()	const;

				Qt::Orientation	orientation()	const;

				QSize	sizeHint()	const;

				QSize	minimumSize()	const;

				QSize	minimumSizeHint()	const;

				QBoxLayout	*boxLayout();

				virtual	void	setOpaqueMoving(bool	b);

				bool	opaqueMoving()	const;

				bool	eventFilter(QObject	*o,	QEvent	*e);

#ifdef	QT_NO_WIDGET_TOPEXTRA

				QString	caption()	const;

#endif

signals:

				void	orientationChanged(Orientation	o);

				void	placeChanged(QDockWindow::Place	p);

				void	visibilityChanged(bool);

public	slots:

				virtual	void	undock(QWidget	*w);

				virtual	void	undock()	{	undock(0);	}

				virtual	void	dock();

				virtual	void	setOrientation(Orientation	o);

				void	setCaption(const	QString	&s);

protected:

				void	resizeEvent(QResizeEvent	*e);

				void	showEvent(QShowEvent	*e);

				void	hideEvent(QHideEvent	*e);

				void	contextMenuEvent(QContextMenuEvent	*e);

				void	drawFrame(QPainter	*);

				bool	event(QEvent	*e);

private	slots:

				void	toggleVisible()	{	if	(!isVisible())	show();	else	hide();	}

private:

				void	handleMove(const	QPoint	&pos,	const	QPoint	&gp,	bool	drawRect);

				void	updateGui();

				void	updateSplitterVisibility(bool	visible);

				void	startRectDraw(const	QPoint	&so,	bool	drawRect);

				void	endRectDraw(bool	drawRect);

				void	updatePosition(const	QPoint	&globalPos);

				QWidget	*areaAt(const	QPoint	&gp);

				void	removeFromDock(bool	fixNewLines	=	TRUE);

				void	swapRect(QRect	&r,	Qt::Orientation	o,	const	QPoint	&offset,	QDockArea	*area);

private:

				QDockWindowHandle	*horHandle,	*verHandle;

				QDockWindowTitleBar	*titleBar;

				QWidget	*wid;

				QPainter	*unclippedPainter;

				QDockArea	*dockArea,	*tmpDockArea;

				QRect	currRect;

				Place	curPlace;

				Place	state;

				bool	resizeEnabled	:	1;

				bool	moveEnabled	:	1;

				bool	nl	:	1;

				bool	opaque	:	1;

				bool	stretchable[3];

				Orientation	startOrientation;

				int	cMode;

				QPoint	startOffset;

				int	offs;

				QSize	fExtent;

				QDockWindowResizeHandle	*hHandleTop,	*hHandleBottom,	*vHandleLeft,	*vHandleRight;

				QVBoxLayout	*hbox;

				QHBoxLayout	*vbox;

				QBoxLayout	*layout;

				void	*dockWindowData;

				QPoint	lastPos;

				QSize	lastSize;

				QWidgetResizeHandler	*widgetResizeHandler;

				QDockWindowPrivate	*d;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QDockWindow(const	QDockWindow	&);

				QDockWindow&	operator=(const	QDockWindow	&);

#endif

};

inline	QDockArea	*QDockWindow::area()	const

{

				return	dockArea;

}

#endif

#endif	//QT_NO_MAINWINDOW

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qdom.h
This	is	the	verbatim	text	of	the	qdom.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	Id

**

**	Definition	of	QDomDocument	and	related	classes.

**

**	Created	:	000518

**

**	Copyright	(C)	1992-2002	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	xml	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	licenses	may	use	this

**	file	in	accordance	with	the	Qt	Commercial	License	Agreement	provided

**	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QDOM_H

#define	QDOM_H

#ifndef	QT_H

#include	"qstring.h"

#endif	//	QT_H

#if	!defined(QT_MODULE_XML)	||	defined(QT_LICENSE_PROFESSIONAL)	||	defined(QT_INTERNAL_XML)

#define	QM_EXPORT_DOM

#else

#define	QM_EXPORT_DOM	Q_EXPORT

#endif

#ifndef	QT_NO_DOM

class	QIODevice;

class	QTextStream;

class	QDomDocumentPrivate;

class	QDomDocumentTypePrivate;

class	QDomDocumentFragmentPrivate;

class	QDomNodePrivate;

class	QDomNodeListPrivate;

class	QDomImplementationPrivate;

class	QDomElementPrivate;

class	QDomNotationPrivate;

class	QDomEntityPrivate;

class	QDomEntityReferencePrivate;

class	QDomProcessingInstructionPrivate;

class	QDomAttrPrivate;

class	QDomCharacterDataPrivate;

class	QDomTextPrivate;

class	QDomCommentPrivate;

class	QDomCDATASectionPrivate;

class	QDomNamedNodeMapPrivate;

class	QDomImplementationPrivate;

class	QDomNodeList;

class	QDomElement;

class	QDomText;

class	QDomComment;

class	QDomCDATASection;

class	QDomProcessingInstruction;

class	QDomAttr;

class	QDomEntityReference;

class	QDomDocument;

class	QDomNamedNodeMap;

class	QDomDocument;

class	QDomDocumentFragment;

class	QDomDocumentType;

class	QDomImplementation;

class	QDomNode;

class	QDomEntity;

class	QDomNotation;

class	QDomCharacterData;

class	QM_EXPORT_DOM	QDomImplementation

{

public:

				QDomImplementation();

				QDomImplementation(const	QDomImplementation&);

				virtual	~QDomImplementation();

				QDomImplementation&	operator=	(const	QDomImplementation&);

				bool	operator==	(const	QDomImplementation&)	const;

				bool	operator!=	(const	QDomImplementation&)	const;

				//	functions

				virtual	bool	hasFeature(const	QString&	feature,	const	QString&	version);

				virtual	QDomDocumentType	createDocumentType(const	QString&	qName,	const	QString&	publicId,	const	QString&	systemId);

				virtual	QDomDocument	createDocument(const	QString&	nsURI,	const	QString&	qName,	const	QDomDocumentType&	doctype);

				//	Qt	extension

				bool	isNull();

private:

				QDomImplementationPrivate*	impl;

				QDomImplementation(QDomImplementationPrivate*);

				friend	class	QDomDocument;

};

class	QM_EXPORT_DOM	QDomNode

{

public:

				enum	NodeType	{

	 ElementNode															=	1,

	 AttributeNode													=	2,

	 TextNode																		=	3,

	 CDATASectionNode										=	4,

	 EntityReferenceNode							=	5,

	 EntityNode																=	6,

	 ProcessingInstructionNode	=	7,

	 CommentNode															=	8,

	 DocumentNode														=	9,

	 DocumentTypeNode										=	10,

	 DocumentFragmentNode						=	11,

	 NotationNode														=	12,

	 BaseNode																		=	21,//	this	is	not	in	the	standard

	 CharacterDataNode									=	22	//	this	is	not	in	the	standard

				};

				QDomNode();

				QDomNode(const	QDomNode&);

				QDomNode&	operator=	(const	QDomNode&);

				bool	operator==	(const	QDomNode&)	const;

				bool	operator!=	(const	QDomNode&)	const;

				virtual	~QDomNode();

				//	DOM	functions

				virtual	QDomNode	insertBefore(const	QDomNode&	newChild,	const	QDomNode&	refChild);

				virtual	QDomNode	insertAfter(const	QDomNode&	newChild,	const	QDomNode&	refChild);

				virtual	QDomNode	replaceChild(const	QDomNode&	newChild,	const	QDomNode&	oldChild);

				virtual	QDomNode	removeChild(const	QDomNode&	oldChild);

				virtual	QDomNode	appendChild(const	QDomNode&	newChild);

				virtual	bool	hasChildNodes()	const;

				virtual	QDomNode	cloneNode(bool	deep	=	TRUE)	const;

				virtual	void	normalize();

				virtual	bool	isSupported(const	QString&	feature,	const	QString&	version)	const;

				//	DOM	read	only	attributes

				virtual	QString	nodeName()	const;

				virtual	QDomNode::NodeType	nodeType()	const;

				virtual	QDomNode									parentNode()	const;

				virtual	QDomNodeList					childNodes()	const;

				virtual	QDomNode									firstChild()	const;

				virtual	QDomNode									lastChild()	const;

				virtual	QDomNode									previousSibling()	const;

				virtual	QDomNode									nextSibling()	const;

				virtual	QDomNamedNodeMap	attributes()	const;

				virtual	QDomDocument					ownerDocument()	const;

				virtual	QString	namespaceURI()	const;

				virtual	QString	localName()	const;

				virtual	bool	hasAttributes()	const;

				//	DOM	attributes

				virtual	QString	nodeValue()	const;

				virtual	void	setNodeValue(const	QString&);

				virtual	QString	prefix()	const;

				virtual	void	setPrefix(const	QString&	pre);

				//	Qt	extensions

				virtual	bool	isAttr()	const;

				virtual	bool	isCDATASection()	const;

				virtual	bool	isDocumentFragment()	const;

				virtual	bool	isDocument()	const;

				virtual	bool	isDocumentType()	const;

				virtual	bool	isElement()	const;

				virtual	bool	isEntityReference()	const;

				virtual	bool	isText()	const;

				virtual	bool	isEntity()	const;

				virtual	bool	isNotation()	const;

				virtual	bool	isProcessingInstruction()	const;

				virtual	bool	isCharacterData()	const;

				virtual	bool	isComment()	const;

				/**

					*	Shortcut	to	avoid	dealing	with	QDomNodeList

					*	all	the	time.

					*/

				QDomNode	namedItem(const	QString&	name)	const;

				bool	isNull()	const;

				void	clear();

				QDomAttr	toAttr();

				QDomCDATASection	toCDATASection();

				QDomDocumentFragment	toDocumentFragment();

				QDomDocument	toDocument();

				QDomDocumentType	toDocumentType();

				QDomElement	toElement();

				QDomEntityReference	toEntityReference();

				QDomText	toText();

				QDomEntity	toEntity();

				QDomNotation	toNotation();

				QDomProcessingInstruction	toProcessingInstruction();

				QDomCharacterData	toCharacterData();

				QDomComment	toComment();

				void	save(QTextStream&,	int)	const;

protected:

				QDomNodePrivate*	impl;

				QDomNode(QDomNodePrivate*);

private:

				friend	class	QDomDocument;

				friend	class	QDomDocumentType;

				friend	class	QDomNodeList;

				friend	class	QDomNamedNodeMap;

};

class	QM_EXPORT_DOM	QDomNodeList

{

public:

				QDomNodeList();

				QDomNodeList(const	QDomNodeList&);

				QDomNodeList&	operator=	(const	QDomNodeList&);

				bool	operator==	(const	QDomNodeList&)	const;

				bool	operator!=	(const	QDomNodeList&)	const;

				virtual	~QDomNodeList();

				//	DOM	functions

				virtual	QDomNode	item(int	index)	const;

				//	DOM	read	only	attributes

				virtual	uint	length()	const;

				uint	count()	const	{	return	length();	}	//	Qt	API	consitancy

private:

				QDomNodeListPrivate*	impl;

				QDomNodeList(QDomNodeListPrivate*);

				friend	class	QDomNode;

				friend	class	QDomElement;

				friend	class	QDomDocument;

};

class	QM_EXPORT_DOM	QDomDocumentType	:	public	QDomNode

{

public:

				QDomDocumentType();

				QDomDocumentType(const	QDomDocumentType&	x);

				QDomDocumentType&	operator=	(const	QDomDocumentType&);

				~QDomDocumentType();

				//	DOM	read	only	attributes

				virtual	QString	name()	const;

				virtual	QDomNamedNodeMap	entities()	const;

				virtual	QDomNamedNodeMap	notations()	const;

				virtual	QString	publicId()	const;

				virtual	QString	systemId()	const;

				virtual	QString	internalSubset()	const;

				//	Reimplemented	from	QDomNode

				QDomNode::NodeType	nodeType()	const;

				bool	isDocumentType()	const;

private:

				QDomDocumentType(QDomDocumentTypePrivate*);

				friend	class	QDomImplementation;

				friend	class	QDomDocument;

				friend	class	QDomNode;

};

class	QM_EXPORT_DOM	QDomDocument	:	public	QDomNode

{

public:

				QDomDocument();

				QDomDocument(const	QString&	name);

				QDomDocument(const	QDomDocumentType&	doctype);

				QDomDocument(const	QDomDocument&	x);

				QDomDocument&	operator=	(const	QDomDocument&);

				~QDomDocument();

				//	DOM	functions

				QDomElement	createElement(const	QString&	tagName);

				QDomDocumentFragment	createDocumentFragment();

				QDomText	createTextNode(const	QString&	data);

				QDomComment	createComment(const	QString&	data);

				QDomCDATASection	createCDATASection(const	QString&	data);

				QDomProcessingInstruction	createProcessingInstruction(const	QString&	target,	const	QString&	data);

				QDomAttr	createAttribute(const	QString&	name);

				QDomEntityReference	createEntityReference(const	QString&	name);

				QDomNodeList	elementsByTagName(const	QString&	tagname)	const;

				QDomNode	importNode(const	QDomNode&	importedNode,	bool	deep);

				QDomElement	createElementNS(const	QString&	nsURI,	const	QString&	qName);

				QDomAttr	createAttributeNS(const	QString&	nsURI,	const	QString&	qName);

				QDomNodeList	elementsByTagNameNS(const	QString&	nsURI,	const	QString&	localName);

				QDomElement	elementById(const	QString&	elementId);

				//	DOM	read	only	attributes

				QDomDocumentType	doctype()	const;

				QDomImplementation	implementation()	const;

				QDomElement	documentElement()	const;

				//	Qt	extensions

				bool	setContent(const	QCString&	text,	bool	namespaceProcessing,	QString	*errorMsg=0,	int	*errorLine=0,	int	*errorColumn=0);

				bool	setContent(const	QByteArray&	text,	bool	namespaceProcessing,	QString	*errorMsg=0,	int	*errorLine=0,	int	*errorColumn=0);

				bool	setContent(const	QString&	text,	bool	namespaceProcessing,	QString	*errorMsg=0,	int	*errorLine=0,	int	*errorColumn=0);

				bool	setContent(QIODevice*	dev,	bool	namespaceProcessing,	QString	*errorMsg=0,	int	*errorLine=0,	int	*errorColumn=0);

				bool	setContent(const	QCString&	text,	QString	*errorMsg=0,	int	*errorLine=0,	int	*errorColumn=0);

				bool	setContent(const	QByteArray&	text,	QString	*errorMsg=0,	int	*errorLine=0,	int	*errorColumn=0);

				bool	setContent(const	QString&	text,	QString	*errorMsg=0,	int	*errorLine=0,	int	*errorColumn=0);

				bool	setContent(QIODevice*	dev,	QString	*errorMsg=0,	int	*errorLine=0,	int	*errorColumn=0);

				//	Reimplemented	from	QDomNode

				QDomNode::NodeType	nodeType()	const;

				bool	isDocument()	const;

				//	Qt	extensions

				QString	toString()	const;

				QCString	toCString()	const;

private:

				QDomDocument(QDomDocumentPrivate*);

				friend	class	QDomNode;

};

class	QM_EXPORT_DOM	QDomNamedNodeMap

{

public:

				QDomNamedNodeMap();

				QDomNamedNodeMap(const	QDomNamedNodeMap&);

				QDomNamedNodeMap&	operator=	(const	QDomNamedNodeMap&);

				bool	operator==	(const	QDomNamedNodeMap&)	const;

				bool	operator!=	(const	QDomNamedNodeMap&)	const;

				~QDomNamedNodeMap();

				//	DOM	functions

				QDomNode	namedItem(const	QString&	name)	const;

				QDomNode	setNamedItem(const	QDomNode&	newNode);

				QDomNode	removeNamedItem(const	QString&	name);

				QDomNode	item(int	index)	const;

				QDomNode	namedItemNS(const	QString&	nsURI,	const	QString&	localName)	const;

				QDomNode	setNamedItemNS(const	QDomNode&	newNode);

				QDomNode	removeNamedItemNS(const	QString&	nsURI,	const	QString&	localName);

				//	DOM	read	only	attributes

				uint	length()	const;

				uint	count()	const	{	return	length();	}	//	Qt	API	consitancy

				//	Qt	extension

				bool	contains(const	QString&	name)	const;

private:

				QDomNamedNodeMapPrivate*	impl;

				QDomNamedNodeMap(QDomNamedNodeMapPrivate*);

				friend	class	QDomNode;

				friend	class	QDomDocumentType;

				friend	class	QDomElement;

};

class	QM_EXPORT_DOM	QDomDocumentFragment	:	public	QDomNode

{

public:

				QDomDocumentFragment();

				QDomDocumentFragment(const	QDomDocumentFragment&	x);

				QDomDocumentFragment&	operator=	(const	QDomDocumentFragment&);

				~QDomDocumentFragment();

				//	Reimplemented	from	QDomNode

				QDomNode::NodeType	nodeType()	const;

				bool	isDocumentFragment()	const;

private:

				QDomDocumentFragment(QDomDocumentFragmentPrivate*);

				friend	class	QDomDocument;

				friend	class	QDomNode;

};

class	QM_EXPORT_DOM	QDomCharacterData	:	public	QDomNode

{

public:

				QDomCharacterData();

				QDomCharacterData(const	QDomCharacterData&	x);

				QDomCharacterData&	operator=	(const	QDomCharacterData&);

				~QDomCharacterData();

				//	DOM	functions

				virtual	QString	substringData(unsigned	long	offset,	unsigned	long	count);

				virtual	void	appendData(const	QString&	arg);

				virtual	void	insertData(unsigned	long	offset,	const	QString&	arg);

				virtual	void	deleteData(unsigned	long	offset,	unsigned	long	count);

				virtual	void	replaceData(unsigned	long	offset,	unsigned	long	count,	const	QString&	arg);

				//	DOM	read	only	attributes

				virtual	uint	length()	const;

				//	DOM	attributes

				virtual	QString	data()	const;

				virtual	void	setData(const	QString&);

				//	Reimplemented	from	QDomNode

				QDomNode::NodeType	nodeType()	const;

				bool	isCharacterData()	const;

private:

				QDomCharacterData(QDomCharacterDataPrivate*);

				friend	class	QDomDocument;

				friend	class	QDomText;

				friend	class	QDomComment;

				friend	class	QDomNode;

};

class	QM_EXPORT_DOM	QDomAttr	:	public	QDomNode

{

public:

				QDomAttr();

				QDomAttr(const	QDomAttr&	x);

				QDomAttr&	operator=	(const	QDomAttr&);

				~QDomAttr();

				//	DOM	read	only	attributes

				virtual	QString	name()	const;

				virtual	bool	specified()	const;

				virtual	QDomElement	ownerElement()	const;

				//	DOM	attributes

				virtual	QString	value()	const;

				virtual	void	setValue(const	QString&);

				//	Reimplemented	from	QDomNode

				QDomNode::NodeType	nodeType()	const;

				bool	isAttr()	const;

private:

				QDomAttr(QDomAttrPrivate*);

				friend	class	QDomDocument;

				friend	class	QDomElement;

				friend	class	QDomNode;

};

class	QM_EXPORT_DOM	QDomElement	:	public	QDomNode

{

public:

				QDomElement();

				QDomElement(const	QDomElement&	x);

				QDomElement&	operator=	(const	QDomElement&);

				~QDomElement();

				//	DOM	functions

				QString	attribute(const	QString&	name,	const	QString&	defValue	=	QString::null)	const;

				void	setAttribute(const	QString&	name,	const	QString&	value);

				void	setAttribute(const	QString&	name,	int	value);

				void	setAttribute(const	QString&	name,	uint	value);

				void	setAttribute(const	QString&	name,	double	value);

				void	removeAttribute(const	QString&	name);

				QDomAttr	attributeNode(const	QString&	name);

				QDomAttr	setAttributeNode(const	QDomAttr&	newAttr);

				QDomAttr	removeAttributeNode(const	QDomAttr&	oldAttr);

				virtual	QDomNodeList	elementsByTagName(const	QString&	tagname)	const;

				bool	hasAttribute(const	QString&	name)	const;

				QString	attributeNS(const	QString	nsURI,	const	QString&	localName,	const	QString&	defValue)	const;

				void	setAttributeNS(const	QString	nsURI,	const	QString&	qName,	const	QString&	value);

				void	setAttributeNS(const	QString	nsURI,	const	QString&	qName,	int	value);

				void	setAttributeNS(const	QString	nsURI,	const	QString&	qName,	uint	value);

				void	setAttributeNS(const	QString	nsURI,	const	QString&	qName,	double	value);

				void	removeAttributeNS(const	QString&	nsURI,	const	QString&	localName);

				QDomAttr	attributeNodeNS(const	QString&	nsURI,	const	QString&	localName);

				QDomAttr	setAttributeNodeNS(const	QDomAttr&	newAttr);

				virtual	QDomNodeList	elementsByTagNameNS(const	QString&	nsURI,	const	QString&	localName)	const;

				bool	hasAttributeNS(const	QString&	nsURI,	const	QString&	localName)	const;

				//	DOM	read	only	attributes

				QString	tagName()	const;

				void	setTagName(const	QString&	name);	//	Qt	extension

				//	Reimplemented	from	QDomNode

				QDomNamedNodeMap	attributes()	const;

				QDomNode::NodeType	nodeType()	const;

				bool	isElement()	const;

				QString	text()	const;

private:

				QDomElement(QDomElementPrivate*);

				friend	class	QDomDocument;

				friend	class	QDomNode;

				friend	class	QDomAttr;

};

class	QM_EXPORT_DOM	QDomText	:	public	QDomCharacterData

{

public:

				QDomText();

				QDomText(const	QDomText&	x);

				QDomText&	operator=	(const	QDomText&);

				~QDomText();

				//	DOM	functions

				QDomText	splitText(int	offset);

				//	Reimplemented	from	QDomNode

				QDomNode::NodeType	nodeType()	const;

				bool	isText()	const;

private:

				QDomText(QDomTextPrivate*);

				friend	class	QDomCDATASection;

				friend	class	QDomDocument;

				friend	class	QDomNode;

};

class	QM_EXPORT_DOM	QDomComment	:	public	QDomCharacterData

{

public:

				QDomComment();

				QDomComment(const	QDomComment&	x);

				QDomComment&	operator=	(const	QDomComment&);

				~QDomComment();

				//	Reimplemented	from	QDomNode

				QDomNode::NodeType	nodeType()	const;

				bool	isComment()	const;

private:

				QDomComment(QDomCommentPrivate*);

				friend	class	QDomDocument;

				friend	class	QDomNode;

};

class	QM_EXPORT_DOM	QDomCDATASection	:	public	QDomText

{

public:

				QDomCDATASection();

				QDomCDATASection(const	QDomCDATASection&	x);

				QDomCDATASection&	operator=	(const	QDomCDATASection&);

				~QDomCDATASection();

				//	Reimplemented	from	QDomNode

				QDomNode::NodeType	nodeType()	const;

				bool	isCDATASection()	const;

private:

				QDomCDATASection(QDomCDATASectionPrivate*);

				friend	class	QDomDocument;

				friend	class	QDomNode;

};

class	QM_EXPORT_DOM	QDomNotation	:	public	QDomNode

{

public:

				QDomNotation();

				QDomNotation(const	QDomNotation&	x);

				QDomNotation&	operator=	(const	QDomNotation&);

				~QDomNotation();

				//	DOM	read	only	attributes

				QString	publicId()	const;

				QString	systemId()	const;

				//	Reimplemented	from	QDomNode

				QDomNode::NodeType	nodeType()	const;

				bool	isNotation()	const;

private:

				QDomNotation(QDomNotationPrivate*);

				friend	class	QDomDocument;

				friend	class	QDomNode;

};

class	QM_EXPORT_DOM	QDomEntity	:	public	QDomNode

{

public:

				QDomEntity();

				QDomEntity(const	QDomEntity&	x);

				QDomEntity&	operator=	(const	QDomEntity&);

				~QDomEntity();

				//	DOM	read	only	attributes

				virtual	QString	publicId()	const;

				virtual	QString	systemId()	const;

				virtual	QString	notationName()	const;

				//	Reimplemented	from	QDomNode

				QDomNode::NodeType	nodeType()	const;

				bool	isEntity()	const;

private:

				QDomEntity(QDomEntityPrivate*);

				friend	class	QDomNode;

};

class	QM_EXPORT_DOM	QDomEntityReference	:	public	QDomNode

{

public:

				QDomEntityReference();

				QDomEntityReference(const	QDomEntityReference&	x);

				QDomEntityReference&	operator=	(const	QDomEntityReference&);

				~QDomEntityReference();

				//	Reimplemented	from	QDomNode

				QDomNode::NodeType	nodeType()	const;

				bool	isEntityReference()	const;

private:

				QDomEntityReference(QDomEntityReferencePrivate*);

				friend	class	QDomDocument;

				friend	class	QDomNode;

};

class	QM_EXPORT_DOM	QDomProcessingInstruction	:	public	QDomNode

{

public:

				QDomProcessingInstruction();

				QDomProcessingInstruction(const	QDomProcessingInstruction&	x);

				QDomProcessingInstruction&	operator=	(const	QDomProcessingInstruction&);

				~QDomProcessingInstruction();

				//	DOM	read	only	attributes

				virtual	QString	target()	const;

				//	DOM	attributes

				virtual	QString	data()	const;

				virtual	void	setData(const	QString&	d);

				//	Reimplemented	from	QDomNode

				QDomNode::NodeType	nodeType()	const;

				bool	isProcessingInstruction()	const;

private:

				QDomProcessingInstruction(QDomProcessingInstructionPrivate*);

				friend	class	QDomDocument;

				friend	class	QDomNode;

};

QM_EXPORT_DOM	QTextStream&	operator<<(QTextStream&,	const	QDomNode&);

#endif	//QT_NO_DOM

#endif	//	QDOM_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qdragobject.h
This	is	the	verbatim	text	of	the	qdragobject.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qdragobject.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QDragObject

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QDRAGOBJECT_H

#define	QDRAGOBJECT_H

class	QWidget;

class	QTextDragPrivate;

class	QDragObjectData;

class	QStoredDragData;

class	QImageDragData;

#ifndef	QT_H

#include	"qobject.h"

#include	"qimage.h"

#include	"qstrlist.h"

#include	"qcolor.h"

#endif	//	QT_H

#ifndef	QT_NO_MIME

class	Q_EXPORT	QDragObject:	public	QObject,	public	QMimeSource	{

				Q_OBJECT

public:

				QDragObject(QWidget	*	dragSource	=	0,	const	char	*	name	=	0);

				virtual	~QDragObject();

#ifndef	QT_NO_DRAGANDDROP

				bool	drag();

				bool	dragMove();

				void	dragCopy();

				void	dragLink();

				virtual	void	setPixmap(QPixmap);

				virtual	void	setPixmap(QPixmap,	const	QPoint&	hotspot);

				QPixmap	pixmap()	const;

				QPoint	pixmapHotSpot()	const;

#endif

				QWidget	*	source();

				static	QWidget	*	target();

				static	void	setTarget(QWidget*);

#ifndef	QT_NO_DRAGANDDROP

				enum	DragMode	{	DragDefault,	DragCopy,	DragMove,	DragLink,	DragCopyOrMove	};

protected:

				virtual	bool	drag(DragMode);

#endif

private:

				QDragObjectData	*	d;

};

class	Q_EXPORT	QStoredDrag:	public	QDragObject	{

				Q_OBJECT

				QStoredDragData	*	d;

public:

				QStoredDrag(const	char	*	mimeType,

	 	 	QWidget	*	dragSource	=	0,	const	char	*	name	=	0);

				~QStoredDrag();

				virtual	void	setEncodedData(const	QByteArray	&);

				const	char	*	format(int	i)	const;

				virtual	QByteArray	encodedData(const	char*)	const;

};

class	Q_EXPORT	QTextDrag:	public	QDragObject	{

				Q_OBJECT

				QTextDragPrivate*	d;

public:

				QTextDrag(const	QString	&,

	 							QWidget	*	dragSource	=	0,	const	char	*	name	=	0);

				QTextDrag(QWidget	*	dragSource	=	0,	const	char	*	name	=	0);

				~QTextDrag();

				virtual	void	setText(const	QString	&);

				virtual	void	setSubtype(const	QCString	&);

				const	char	*	format(int	i)	const;

				virtual	QByteArray	encodedData(const	char*)	const;

				static	bool	canDecode(const	QMimeSource*	e);

				static	bool	decode(const	QMimeSource*	e,	QString&	s);

				static	bool	decode(const	QMimeSource*	e,	QString&	s,	QCString&	subtype);

};

class	Q_EXPORT	QImageDrag:	public	QDragObject	{

				Q_OBJECT

				QImage	img;

				QStrList	ofmts;

				QImageDragData*	d;

public:

				QImageDrag(QImage	image,	QWidget	*	dragSource	=	0,	const	char	*	name	=	0);

				QImageDrag(QWidget	*	dragSource	=	0,	const	char	*	name	=	0);

				~QImageDrag();

				virtual	void	setImage(QImage	image);

				const	char	*	format(int	i)	const;

				virtual	QByteArray	encodedData(const	char*)	const;

				static	bool	canDecode(const	QMimeSource*	e);

				static	bool	decode(const	QMimeSource*	e,	QImage&	i);

				static	bool	decode(const	QMimeSource*	e,	QPixmap&	i);

};

class	Q_EXPORT	QUriDrag:	public	QStoredDrag	{

				Q_OBJECT

public:

				QUriDrag(QStrList	uris,	QWidget	*	dragSource	=	0,	const	char	*	name	=	0);

				QUriDrag(QWidget	*	dragSource	=	0,	const	char	*	name	=	0);

				~QUriDrag();

				void	setFilenames(const	QStringList	&	fnames)	{	setFileNames(fnames);	}

				void	setFileNames(const	QStringList	&	fnames);

				void	setUnicodeUris(const	QStringList	&	uuris);

				virtual	void	setUris(QStrList	uris);

				static	QString	uriToLocalFile(const	char*);

				static	QCString	localFileToUri(const	QString&);

				static	QString	uriToUnicodeUri(const	char*);

				static	QCString	unicodeUriToUri(const	QString&);

				static	bool	canDecode(const	QMimeSource*	e);

				static	bool	decode(const	QMimeSource*	e,	QStrList&	i);

				static	bool	decodeToUnicodeUris(const	QMimeSource*	e,	QStringList&	i);

				static	bool	decodeLocalFiles(const	QMimeSource*	e,	QStringList&	i);

};

class	Q_EXPORT	QColorDrag	:	public	QStoredDrag

{

				Q_OBJECT

				QColor	color;

public:

				QColorDrag(const	QColor	&col,	QWidget	*dragsource	=	0,	const	char	*name	=	0);

				QColorDrag(QWidget	*	dragSource	=	0,	const	char	*	name	=	0);

				void	setColor(const	QColor	&col);

				static	bool	canDecode(QMimeSource	*);

				static	bool	decode(QMimeSource	*,	QColor	&col);

};

#ifndef	QT_NO_COMPAT

typedef	QUriDrag	QUrlDrag;

#endif

#ifndef	QT_NO_DRAGANDDROP

//	QDragManager	is	not	part	of	the	public	API.		It	is	defined	in	a

//	header	file	simply	so	different	.cpp	files	can	implement	different

//	member	functions.

//

class	Q_EXPORT	QDragManager:	public	QObject	{

				Q_OBJECT

private:

				QDragManager();

				~QDragManager();

				//	only	friend	classes	can	use	QDragManager.

				friend	class	QDragObject;

				friend	class	QDragMoveEvent;

				friend	class	QDropEvent;

				bool	eventFilter(QObject	*,	QEvent	*);

				void	timerEvent(QTimerEvent*);

				bool	drag(QDragObject	*,	QDragObject::DragMode);

				void	cancel(bool	deleteSource	=	TRUE);

				void	move(const	QPoint	&);

				void	drop();

				void	updatePixmap();

private:

				QDragObject	*	object;

				void	updateMode(ButtonState	newstate);

				void	updateCursor();

				QWidget	*	dragSource;

				QWidget	*	dropWidget;

				bool	beingCancelled;

				bool	restoreCursor;

				bool	willDrop;

				QPixmap	*pm_cursor;

				int	n_cursor;

};

#endif

#endif	//	QT_NO_MIME

#endif	//	QDRAGOBJECT_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qdrawutil.h
This	is	the	verbatim	text	of	the	qdrawutil.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qdrawutil.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	draw	utilities

**

**	Created	:	950920

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QDRAWUTIL_H

#define	QDRAWUTIL_H

#ifndef	QT_H

#include	"qnamespace.h"

#include	"qstring.h"	//	char*->QString	conversion

#endif	//	QT_H

class	QPainter;

class	QColorGroup;

class	QPoint;

class	QBrush;

class	QRect;

class	QPixmap;

#ifndef	QT_NO_DRAWUTIL

//

//	Standard	shade	drawing

//

Q_EXPORT

void	qDrawShadeLine(QPainter	*p,	int	x1,	int	y1,	int	x2,	int	y2,

	 	 					const	QColorGroup	&g,	bool	sunken	=	TRUE,

	 	 					int	lineWidth	=	1,	int	midLineWidth	=	0);

Q_EXPORT

void	qDrawShadeLine(QPainter	*p,	const	QPoint	&p1,	const	QPoint	&p2,

	 	 					const	QColorGroup	&g,	bool	sunken	=	TRUE,

	 	 					int	lineWidth	=	1,	int	midLineWidth	=	0);

Q_EXPORT

void	qDrawShadeRect(QPainter	*p,	int	x,	int	y,	int	w,	int	h,

	 	 					const	QColorGroup	&,	bool	sunken=FALSE,

	 	 					int	lineWidth	=	1,	int	midLineWidth	=	0,

	 	 					const	QBrush	*fill	=	0);

Q_EXPORT

void	qDrawShadeRect(QPainter	*p,	const	QRect	&r,

	 	 					const	QColorGroup	&,	bool	sunken=FALSE,

	 	 					int	lineWidth	=	1,	int	midLineWidth	=	0,

	 	 					const	QBrush	*fill	=	0);

Q_EXPORT

void	qDrawShadePanel(QPainter	*p,	int	x,	int	y,	int	w,	int	h,

	 	 						const	QColorGroup	&,	bool	sunken=FALSE,

	 	 						int	lineWidth	=	1,	const	QBrush	*fill	=	0);

Q_EXPORT

void	qDrawShadePanel(QPainter	*p,	const	QRect	&r,

	 	 						const	QColorGroup	&,	bool	sunken=FALSE,

	 	 						int	lineWidth	=	1,	const	QBrush	*fill	=	0);

Q_EXPORT

void	qDrawWinButton(QPainter	*p,	int	x,	int	y,	int	w,	int	h,

	 	 					const	QColorGroup	&g,	bool	sunken	=	FALSE,

	 	 					const	QBrush	*fill	=	0);

Q_EXPORT

void	qDrawWinButton(QPainter	*p,	const	QRect	&r,

	 	 					const	QColorGroup	&g,	bool	sunken	=	FALSE,

	 	 					const	QBrush	*fill	=	0);

Q_EXPORT

void	qDrawWinPanel(QPainter	*p,	int	x,	int	y,	int	w,	int	h,

	 	 				const	QColorGroup	&,	bool	sunken=FALSE,

	 	 				const	QBrush	*fill	=	0);

Q_EXPORT

void	qDrawWinPanel(QPainter	*p,	const	QRect	&r,

	 	 				const	QColorGroup	&,	bool	sunken=FALSE,

	 	 				const	QBrush	*fill	=	0);

Q_EXPORT

void	qDrawPlainRect(QPainter	*p,	int	x,	int	y,	int	w,	int	h,	const	QColor	&,

	 	 					int	lineWidth	=	1,	const	QBrush	*fill	=	0);

Q_EXPORT

void	qDrawPlainRect(QPainter	*p,	const	QRect	&r,	const	QColor	&,

	 	 					int	lineWidth	=	1,	const	QBrush	*fill	=	0);

//

//	Other	obsolete	drawing	functions.

//	Use	QStyle::itemRect(),	QStyle::drawItem()	and	QStyle::drawArrow()	instead.

//

Q_EXPORT

QRect	qItemRect(QPainter	*p,	Qt::GUIStyle	gs,	int	x,	int	y,	int	w,	int	h,

	 	 int	flags,	bool	enabled,

	 	 const	QPixmap	*pixmap,	const	QString&	text,	int	len=-1);

Q_EXPORT

void	qDrawItem(QPainter	*p,	Qt::GUIStyle	gs,	int	x,	int	y,	int	w,	int	h,

	 	 int	flags,	const	QColorGroup	&g,	bool	enabled,

	 	 const	QPixmap	*pixmap,	const	QString&	text,

	 	 int	len=-1,	const	QColor*	penColor	=	0);

Q_EXPORT

void	qDrawArrow(QPainter	*p,	Qt::ArrowType	type,	Qt::GUIStyle	style,	bool	down,

	 	 	int	x,	int	y,	int	w,	int	h,

	 	 	const	QColorGroup	&g,	bool	enabled);

#endif	//	QT_NO_DRAWUTIL

#endif	//	QDRAWUTIL_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qdropsite.h
This	is	the	verbatim	text	of	the	qdropsite.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qdropsite.h			3.0.5			edited	Oct	12	2001	$

**

**	Definitation	of	Drag	and	Drop	support

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QDROPSITE_H

#define	QDROPSITE_H

#ifndef	QT_H

#ifndef	QT_H

#include	"qglobal.h"

#endif	//	QT_H

#endif

class	QWidget;

class	Q_EXPORT	QDropSite	{

public:

				QDropSite(QWidget*	parent);

				virtual	~QDropSite();

};

#endif		//	QDROPSITE_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qeditorfactory.h
This	is	the	verbatim	text	of	the	qeditorfactory.h	include	file.	It	is	provided	only
for	illustration;	the	copyright	remains	with	Trolltech.

/**

**

**	Definition	of	QEditorFactory	class

**

**	Created	:	2000-11-03

**

**	Copyright	(C)	2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	sql	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**		

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	licenses	may	use	this

**	file	in	accordance	with	the	Qt	Commercial	License	Agreement	provided

**	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QEDITORFACTORY_H

#define	QEDITORFACTORY_H

#ifndef	QT_H

#include	"qobject.h"

#include	"qvariant.h"

#endif	//	QT_H

#if	!defined(QT_MODULE_SQL)	||	defined(QT_LICENSE_PROFESSIONAL)

#define	QM_EXPORT_SQL

#else

#define	QM_EXPORT_SQL	Q_EXPORT

#endif

#ifndef	QT_NO_SQL

class	QM_EXPORT_SQL	QEditorFactory	:	public	QObject

{

public:

				QEditorFactory	(QObject	*	parent	=	0,	const	char	*	name	=	0);

				~QEditorFactory();

				

				virtual	QWidget	*	createEditor(QWidget	*	parent,	const	QVariant	&	v);

				

				static	QEditorFactory	*	defaultFactory();

				static	void	installDefaultFactory(QEditorFactory	*	factory);

};	

#endif	//	QT_NO_SQL

#endif	//	QEDITORFACTORY_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qerrormessage.h
qerrormessage.hTrolltech

/**

**	$Id:		qt/qerrormessage.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	a	nice	qInstallErrorMessage()	handler

**

**	Created	:	2000-05-27,	after	Kalle	Dalheimer's	birthday

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	dialogs	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QERRORHANDLER_H

#define	QERRORHANDLER_H

#ifndef	QT_H

#include	"qdialog.h"

#endif	//	QT_H

#ifndef	QT_NO_ERRORMESSAGE

class	QPushButton;

class	QCheckBox;

class	QLabel;

class	QTextView;

class	QStringList;

template<class	type>	class	QDict;

class	Q_EXPORT	QErrorMessage:	public	QDialog	{

				Q_OBJECT

public:

				QErrorMessage(QWidget*	parent,	const	char*	name=0);

				~QErrorMessage();

				static	QErrorMessage	*	qtHandler();

public	slots:

				void	message(const	QString	&);

protected:

				void	done(int);

private:

				QPushButton	*	ok;

				QCheckBox	*	again;

				QTextView	*	errors;

				QLabel	*	icon;

				QStringList	*	pending;

				QDict<int>	*	doNotShow;

				bool	nextPending();

};

#endif	//QT_NO_ERRORMESSAGE

#endif

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qeucjpcodec.h
This	is	the	verbatim	text	of	the	qeucjpcodec.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qeucjpcodec.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QEucJpCodec	class

**

**	Created	:	990225

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	tools	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

//	Most	of	the	code	here	was	originally	written	by	Serika	Kurusugawa

//	a.k.a.	Junji	Takagi,	and	is	include	in	Qt	with	the	author's	permission,

//	and	the	grateful	thanks	of	the	Trolltech	team.

/*

	*	Copyright	(c)	1999	Serika	Kurusugawa,	All	rights	reserved.

	*

	*	Redistribution	and	use	in	source	and	binary	forms,	with	or	without

	*	modification,	are	permitted	provided	that	the	following	conditions

	*	are	met:

	*	1.	Redistributions	of	source	code	must	retain	the	above	copyright

	*				notice,	this	list	of	conditions	and	the	following	disclaimer.

	*	2.	Redistributions	in	binary	form	must	reproduce	the	above	copyright

	*				notice,	this	list	of	conditions	and	the	following	disclaimer	in	the

	*				documentation	and/or	other	materials	provided	with	the	distribution.

	*

	*	THIS	SOFTWARE	IS	PROVIDED	BY	THE	AUTHOR	AND	CONTRIBUTORS	``AS	IS''	AND

	*	ANY	EXPRESS	OR	IMPLIED	WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE

	*	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE

	*	ARE	DISCLAIMED.		IN	NO	EVENT	SHALL	THE	REGENTS	OR	CONTRIBUTORS	BE	LIABLE

	*	FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL

	*	DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS

	*	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;	OR	BUSINESS	INTERRUPTION)

	*	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN	CONTRACT,	STRICT

	*	LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY

	*	OUT	OF	THE	USE	OF	THIS	SOFTWARE,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF

	*	SUCH	DAMAGE.

	*/

#ifndef	QEUCJPCODEC_H

#define	QEUCJPCODEC_H

#ifndef	QT_H

#include	"qtextcodec.h"

#include	"qjpunicode.h"

#endif	//	QT_H

#ifndef	QT_NO_BIG_CODECS

#if	defined(QT_PLUGIN)

#define	Q_EXPORT_CODECS_JP

#else

#define	Q_EXPORT_CODECS_JP	Q_EXPORT

#endif

class	Q_EXPORT_CODECS_JP	QEucJpCodec	:	public	QTextCodec	{

public:

				virtual	int	mibEnum()	const;

				const	char*	name()	const;

				const	char*	mimeName()	const;

				QTextDecoder*	makeDecoder()	const;

				QCString	fromUnicode(const	QString&	uc,	int&	len_in_out)	const;

				QString	toUnicode(const	char*	chars,	int	len)	const;

				int	heuristicContentMatch(const	char*	chars,	int	len)	const;

				int	heuristicNameMatch(const	char*	hint)	const;

				QEucJpCodec();

				~QEucJpCodec();

protected:

				const	QJpUnicodeConv	*conv;

};

#endif

#endif

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qeuckrcodec.h
This	is	the	verbatim	text	of	the	qeuckrcodec.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qeuckrcodec.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QEucKrCodec	class

**

**	Created	:	990303

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	tools	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

/*

	*	Copyright	(c)	1999-2000	Mizi	Research	Inc.,	All	rights	reserved.

	*

	*	Redistribution	and	use	in	source	and	binary	forms,	with	or	without

	*	modification,	are	permitted	provided	that	the	following	conditions

	*	are	met:

	*	1.	Redistributions	of	source	code	must	retain	the	above	copyright

	*				notice,	this	list	of	conditions	and	the	following	disclaimer.

	*	2.	Redistributions	in	binary	form	must	reproduce	the	above	copyright

	*				notice,	this	list	of	conditions	and	the	following	disclaimer	in	the

	*				documentation	and/or	other	materials	provided	with	the	distribution.

	*

	*	THIS	SOFTWARE	IS	PROVIDED	BY	THE	AUTHOR	AND	CONTRIBUTORS	``AS	IS''	AND

	*	ANY	EXPRESS	OR	IMPLIED	WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE

	*	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE

	*	ARE	DISCLAIMED.		IN	NO	EVENT	SHALL	THE	REGENTS	OR	CONTRIBUTORS	BE	LIABLE

	*	FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL

	*	DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS

	*	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;	OR	BUSINESS	INTERRUPTION)

	*	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN	CONTRACT,	STRICT

	*	LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY

	*	OUT	OF	THE	USE	OF	THIS	SOFTWARE,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF

	*	SUCH	DAMAGE.

	*/

#ifndef	QEUCKRCODEC_H

#define	QEUCKRCODEC_H

#ifndef	QT_H

#include	"qtextcodec.h"

#endif	//	QT_H

#ifndef	QT_NO_BIG_CODECS

#if	defined(QT_PLUGIN)

#define	Q_EXPORT_CODECS_KR

#else

#define	Q_EXPORT_CODECS_KR	Q_EXPORT

#endif

class	Q_EXPORT_CODECS_KR	QEucKrCodec	:	public	QTextCodec	{

public:

				virtual	int	mibEnum()	const;

				const	char*	name()	const;

				const	char*	mimeName()	const;

				QTextDecoder*	makeDecoder()	const;

				QCString	fromUnicode(const	QString&	uc,	int&	len_in_out)	const;

				QString	toUnicode(const	char*	chars,	int	len)	const;

				int	heuristicContentMatch(const	char*	chars,	int	len)	const;

				int	heuristicNameMatch(const	char*	hint)	const;

};

#endif

#endif

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qevent.h
qevent.hTrolltech

/**

**	$Id:		qt/qevent.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	event	classes

**

**	Created	:	931029

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QEVENT_H

#define	QEVENT_H

#ifndef	QT_H

#include	"qwindowdefs.h"

#include	"qregion.h"

#include	"qnamespace.h"

#include	"qmime.h"

#include	"qpair.h"

#endif	//	QT_H

class	Q_EXPORT	QEvent:	public	Qt	 	 //	event	base	class

{

public:

				enum	Type	{

	 //	NOTE:	if	you	get	a	strange	compiler	error	on	the	line	with	"None",

	 //							it's	probably	because	you're	trying	to	include	X11,	which

	 //	 	has	a	mess	of	#defines	in	it.		Put	the	messy	X11	includes

	 //	 	*AFTER*	the	nice	clean	Qt	includes.

	 None	=	0,	 	 	 	 //	invalid	event

	 Timer	=	1,	 	 	 	 //	timer	event

	 MouseButtonPress	=	2,	 	 	 //	mouse	button	pressed

	 MouseButtonRelease	=	3,		 	 //	mouse	button	released

	 MouseButtonDblClick=	4,		 	 //	mouse	button	double	click

	 MouseMove	=	5,	 	 	 	 //	mouse	move

	 KeyPress	=	6,	 	 	 	 //	key	pressed

	 KeyRelease	=	7,		 	 	 //	key	released

	 FocusIn	=	8,	 	 	 	 //	keyboard	focus	received

	 FocusOut	=	9,	 	 	 	 //	keyboard	focus	lost

	 Enter	=	10,	 	 	 	 //	mouse	enters	widget

	 Leave	=	11,	 	 	 	 //	mouse	leaves	widget

	 Paint	=	12,	 	 	 	 //	paint	widget

	 Move	=	13,	 	 	 	 //	move	widget

	 Resize	=	14,	 	 	 	 //	resize	widget

	 Create	=	15,	 	 	 	 //	after	object	creation

	 Destroy	=	16,	 	 	 	 //	during	object	destruction

	 Show	=	17,	 	 	 	 //	widget	is	shown

	 Hide	=	18,	 	 	 	 //	widget	is	hidden

	 Close	=	19,	 	 	 	 //	request	to	close	widget

	 Quit	=	20,	 	 	 	 //	request	to	quit	application

	 Reparent	=	21,	 	 	 	 //	widget	has	been	reparented

	 ShowMinimized	=	22,	 	 								//	widget	is	shown	minimized

	 ShowNormal	=	23,	 									 //	widget	is	shown	normal

	 WindowActivate	=	24,	 									 //	window	was	activated

	 WindowDeactivate	=	25,	 									 //	window	was	deactivated

	 ShowToParent	=	26,	 									 //	widget	is	shown	to	parent

	 HideToParent	=	27,	 									 //	widget	is	hidden	to	parent

	 ShowMaximized	=	28,	 	 								//	widget	is	shown	maximized

	 ShowFullScreen	=	29,	 	 	 //	widget	is	shown	full-screen

	 Accel	=	30,	 	 	 	 //	accelerator	event

	 Wheel	=	31,	 	 	 	 //	wheel	event

	 AccelAvailable	=	32,	 	 	 //	accelerator	available	event

	 CaptionChange	=	33,	 	 	 //	caption	changed

	 IconChange	=	34,	 	 	 //	icon	changed

	 ParentFontChange	=	35,	 	 	 //	parent	font	changed

	 ApplicationFontChange	=	36,	 	 //	application	font	changed

	 ParentPaletteChange	=	37,	 	 //	parent	palette	changed

	 ApplicationPaletteChange	=	38,	 	 //	application	palette	changed

	 PaletteChange	=	39,	 	 	 //	widget	palette	changed

	 Clipboard	=	40,		 	 	 //	internal	clipboard	event

	 Speech	=	42,	 	 	 	 //	reserved	for	speech	input

	 SockAct	=	50,	 	 	 	 //	socket	activation

	 AccelOverride	=	51,	 	 	 //	accelerator	override	event

	 DeferredDelete	=	52,	 	 	 //	deferred	delete	event

	 DragEnter	=	60,		 	 	 //	drag	moves	into	widget

	 DragMove	=	61,	 	 	 	 //	drag	moves	in	widget

	 DragLeave	=	62,		 	 	 //	drag	leaves	or	is	cancelled

	 Drop	=	63,	 	 	 	 //	actual	drop

	 DragResponse	=	64,	 	 	 //	drag	accepted/rejected

	 ChildInserted	=	70,	 	 	 //	new	child	widget

	 ChildRemoved	=	71,	 	 	 //	deleted	child	widget

	 LayoutHint	=	72,	 	 	 //	child	min/max	size	changed

	 ShowWindowRequest	=	73,		 	 //	widget's	window	should	be	mapped

	 ActivateControl	=	80,	 	 	 //	ActiveX	activation

	 DeactivateControl	=	81,		 	 //	ActiveX	deactivation

	 ContextMenu	=	82,																							//	context	popup	menu

	 IMStart	=	83,	 	 	 	 //	input	method	composition	start

	 IMCompose	=	84,		 	 	 //	input	method	composition

	 IMEnd	=	85,	 	 	 	 //	input	method	composition	end

	 Accessibility	=	86,	 	 	 //	accessibility	information	is	requested

	 Tablet	=	87,	 	 	 	 //	Wacom	Tablet	Event

	 User	=	1000,	 	 	 	 //	first	user	event	id

	 MaxUser		=	65535																								//	last	user	event	id

				};

				QEvent(Type	type)	:	t(type),	posted(FALSE),	spont(FALSE)	{}

				virtual	~QEvent();

				Type		type()	const	 {	return	t;	}

				bool	spontaneous()	const		 {	return	spont;	}

protected:

				Type		t;

private:

				uint	posted	:	1;

				uint	spont	:	1;

				friend	class	QApplication;

				friend	class	QBaseApplication;

				friend	class	QETWidget;

};

class	Q_EXPORT	QTimerEvent	:	public	QEvent

{

public:

				QTimerEvent(int	timerId)

	 :	QEvent(Timer),	id(timerId)	{}

				int			timerId()	 const	 {	return	id;	}

protected:

				int			id;

};

class	Q_EXPORT	QMouseEvent	:	public	QEvent

{

public:

				QMouseEvent(Type	type,	const	QPoint	&pos,	int	button,	int	state);

				QMouseEvent(Type	type,	const	QPoint	&pos,	const	QPoint&globalPos,

	 	 	int	button,	int	state)

	 :	QEvent(type),	p(pos),	g(globalPos),	b((ushort)button),s((ushort)state),accpt(TRUE)	{};

				const	QPoint	&pos()	const	 {	return	p;	}

				const	QPoint	&globalPos()	const	{	return	g;	}

				int				x()	 	 const	 {	return	p.x();	}

				int				y()	 	 const	 {	return	p.y();	}

				int				globalX()	 const	 {	return	g.x();	}

				int				globalY()	 const	 {	return	g.y();	}

				ButtonState	button()	const	 {	return	(ButtonState)	b;	}

				ButtonState	state()	const	 {	return	(ButtonState)	s;	}

				ButtonState	stateAfter()	const;

				bool			isAccepted()	const	 {	return	accpt;	}

				void			accept()	 	 {	accpt	=	TRUE;	}

				void			ignore()	 	 {	accpt	=	FALSE;	}

protected:

				QPoint	p;

				QPoint	g;

				ushort	b;

				ushort	s;

				uint			accpt:1;

};

#ifndef	QT_NO_WHEELEVENT

class	Q_EXPORT	QWheelEvent	:	public	QEvent

{

public:

				QWheelEvent(const	QPoint	&pos,	int	delta,	int	state,	Orientation	orient	=	Vertical);

				QWheelEvent(const	QPoint	&pos,	const	QPoint&	globalPos,	int	delta,	int	state,	Orientation	orient	=	Vertical)

	 :	QEvent(Wheel),	p(pos),	g(globalPos),	d(delta),	s((ushort)state),

	 		accpt(TRUE),	o(orient)	{}

				int				delta()	 const	 {	return	d;	}

				const	QPoint	&pos()	const	 {	return	p;	}

				const	QPoint	&globalPos()	const	 {	return	g;	}

				int				x()	 	 const	 {	return	p.x();	}

				int				y()	 	 const	 {	return	p.y();	}

				int				globalX()	 const	 {	return	g.x();	}

				int				globalY()	 const	 {	return	g.y();	}

				ButtonState	state()	const	 {	return	ButtonState(s);	}

				Orientation	orientation()		 const		 {	return	o;	}

				bool			isAccepted()	const	 {	return	accpt;	}

				void			accept()	 	 {	accpt	=	TRUE;	}

				void			ignore()	 	 {	accpt	=	FALSE;	}

protected:

				QPoint	p;

				QPoint	g;

				int	d;

				ushort	s;

				bool			accpt;

				Orientation	o;

};

#endif

class	Q_EXPORT	QTabletEvent	:	public	QEvent

{

public:

				enum	TabletDevice	{	NoDevice	=	-1,	Puck,	Stylus,	Eraser	};

				QTabletEvent(const	QPoint	&pos,	int	device,	int	pressure,	int	xTilt,	

																		int	yTilt,	const	QPair<int,int>	&uId)

	 :	QEvent(Tablet),	mPos(pos),	mDev(device),	mPress(pressure),

	 		mXT(xTilt),	mYT(yTilt),	mType(uId.first),	mPhy(uId.second)

				{}

				QTabletEvent(const	QPoint	&pos,	const	QPoint	&globalPos,	int	device,

	 	 		int	pressure,	int	xTilt,	int	yTilt,	const	QPair<int,int>	&uId)

	 :	QEvent(Tablet),	mPos(pos),	mGPos(globalPos),	mDev(device),

	 		mPress(pressure),	mXT(xTilt),	mYT(yTilt),	mType(uId.first),

	 		mPhy(uId.second)

				{}

				int	pressure()	 const	{	return	mPress;	}

				int	xTilt()		 const	{	return	mXT;	}

				int	yTilt()		 const	{	return	mYT;	}

				const	QPoint	&pos()	const	{	return	mPos;	}

				const	QPoint	&globalPos()	const	{	return	mGPos;	}

				int	x()	 	 const	{	return	mPos.x();	}

				int	y()	 	 const	{	return	mPos.y();	}

				int	globalX()	 const	{	return	mGPos.x();	}

				int	globalY()	 const	{	return	mGPos.y();	}

				TabletDevice	device()		 const	{	return	TabletDevice(mDev);	}

				int	isAccepted()	const	{	return	mbAcc;	}

				void	accept()	{	mbAcc	=	TRUE;	}

				void	ignore()	{	mbAcc	=	FALSE;	}

				QPair<int,int>	uniqueId()	{	return	QPair<int,int>(mType,	mPhy);	}

protected:

				QPoint	mPos;

				QPoint	mGPos;

				int	mDev,

								mPress,

								mXT,

								mYT,

								mType,

	 mPhy;

				bool	mbAcc;

				

};

class	Q_EXPORT	QKeyEvent	:	public	QEvent

{

public:

				QKeyEvent(Type	type,	int	key,	int	ascii,	int	state,

	 	 const	QString&	text=QString::null,	bool	autorep=FALSE,	ushort	count=1)

	 :	QEvent(type),	txt(text),	k((ushort)key),	s((ushort)state),

	 				a((uchar)ascii),	accpt(TRUE),	autor(autorep),	c(count)	{}

				int				key()	 const	 {	return	k;	}

				int				ascii()	 const	 {	return	a;	}

				ButtonState	state()	const	 {	return	ButtonState(s);	}

				ButtonState	stateAfter()	const;

				bool			isAccepted()	const	 {	return	accpt;	}

				QString	text()						const			{	return	txt;	}

				bool			isAutoRepeat()	const	{	return	autor;	}

				int			count()	const	{	return	int(c);	}

				void			accept()	 	 {	accpt	=	TRUE;	}

				void			ignore()	 	 {	accpt	=	FALSE;	}

protected:

				QString	txt;

				ushort	k,	s;

				uchar		a;

				uint			accpt:1;

				uint			autor:1;

				ushort	c;

};

class	Q_EXPORT	QFocusEvent	:	public	QEvent

{

public:

				QFocusEvent(Type	type)

	 :	QEvent(type)	{}

				bool			gotFocus()	 const	{	return	type()	==	FocusIn;	}

				bool			lostFocus()	 const	{	return	type()	==	FocusOut;	}

				enum	Reason	{	Mouse,	Tab,	Backtab,	ActiveWindow,	Popup,	Shortcut,	Other	};

				static	Reason	reason();

				static	void	setReason(Reason	reason);

				static	void	resetReason();

private:

				static	Reason	m_reason;

				static	Reason	prev_reason;

};

class	Q_EXPORT	QPaintEvent	:	public	QEvent

{

public:

				QPaintEvent(const	QRegion&	paintRegion,	bool	erased	=	TRUE)

	 :	QEvent(Paint),

	 		rec(paintRegion.boundingRect()),

	 		reg(paintRegion),

	 		erase(erased){}

				QPaintEvent(const	QRect	&paintRect,	bool	erased	=	TRUE)

	 :	QEvent(Paint),

	 		rec(paintRect),

	 		reg(paintRect),

	 		erase(erased){}

				const	QRect	&rect()	const	 		{	return	rec;	}

				const	QRegion	®ion()	const	{	return	reg;	}

				bool	erased()	const	{	return	erase;	}

protected:

				friend	class	QApplication;

				friend	class	QBaseApplication;

				QRect	rec;

				QRegion	reg;

				bool	erase;

};

class	Q_EXPORT	QMoveEvent	:	public	QEvent

{

public:

				QMoveEvent(const	QPoint	&pos,	const	QPoint	&oldPos)

	 :	QEvent(Move),	p(pos),	oldp(oldPos)	{}

				const	QPoint	&pos()			const	{	return	p;	}

				const	QPoint	&oldPos()const	{	return	oldp;}

protected:

				QPoint	p,	oldp;

				friend	class	QApplication;

				friend	class	QBaseApplication;

};

class	Q_EXPORT	QResizeEvent	:	public	QEvent

{

public:

				QResizeEvent(const	QSize	&size,	const	QSize	&oldSize)

	 :	QEvent(Resize),	s(size),	olds(oldSize)	{}

				const	QSize	&size()			const	{	return	s;	}

				const	QSize	&oldSize()const	{	return	olds;}

protected:

				QSize	s,	olds;

				friend	class	QApplication;

				friend	class	QBaseApplication;

};

class	Q_EXPORT	QCloseEvent	:	public	QEvent

{

public:

				QCloseEvent()

	 :	QEvent(Close),	accpt(FALSE)	{}

				bool			isAccepted()	const	 {	return	accpt;	}

				void			accept()	 	 {	accpt	=	TRUE;	}

				void			ignore()	 	 {	accpt	=	FALSE;	}

protected:

				bool			accpt;

};

class	Q_EXPORT	QShowEvent	:	public	QEvent

{

public:

				QShowEvent()

	 :	QEvent(Show)	{}

};

class	Q_EXPORT	QHideEvent	:	public	QEvent

{

public:

				QHideEvent()

	 :	QEvent(Hide)	{}

};

class	Q_EXPORT	QContextMenuEvent	:	public	QEvent

{

public:

				enum	Reason	{	Mouse,	Keyboard,	Other	};

				QContextMenuEvent(Reason	reason,	const	QPoint	&pos,	const	QPoint	&globalPos,	int	state)

	 :	QEvent(ContextMenu),	p(pos),	gp(globalPos),	accpt(FALSE),	consum(FALSE),

	 reas(reason),	s((ushort)state)	{}

				QContextMenuEvent(Reason	reason,	const	QPoint	&pos,	int	state);

				int					x()	const	{	return	p.x();	}

				int					y()	const	{	return	p.y();	}

				int					globalX()	const	{	return	gp.x();	}

				int					globalY()	const	{	return	gp.y();	}

				const	QPoint&			pos()	const	{	return	p;	}

				const	QPoint&			globalPos()	const	{	return	gp;	}

				ButtonState	state()	const	 {	return	(ButtonState)	s;	}

				bool				isAccepted()	const	 {	return	accpt;	}

				bool				isConsumed()	const		{	return	consum;	}

				void				consume()											{	consum	=	TRUE;	}

				void				accept()	 	 {	accpt	=	TRUE;	consum	=	TRUE;	}

				void				ignore()	 	 {	accpt	=	FALSE;	consum	=	FALSE;	}

				Reason		reason()	const	{	return	Reason(reas);	}

protected:

				QPoint		p;

				QPoint		gp;

				bool				accpt;

				bool				consum;

				uint				reas:8;

				ushort	s;

};

class	Q_EXPORT	QIMEvent	:	public	QEvent

{

public:

				QIMEvent(Type	type,	const	QString	&text,	int	cursorPosition)

	 :	QEvent(type),	txt(text),	cpos(cursorPosition),	a(FALSE)	{}

				const	QString	&text()	const	{	return	txt;	}

				int	cursorPos()	const	{	return	cpos;	}

				bool	isAccepted()	const	{	return	a;	}

				void	accept()	{	a	=	TRUE;	}

				void	ignore()	{	a	=	FALSE;	}

private:

				QString	txt;

				int	cpos;

				bool	a;

};

#ifndef	QT_NO_DRAGANDDROP

//	This	class	is	rather	closed	at	the	moment.		If	you	need	to	create	your

//	own	DND	event	objects,	write	to	qt-bugs@trolltech.com	and	we'll	try	to

//	find	a	way	to	extend	it	so	it	covers	your	needs.

class	Q_EXPORT	QDropEvent	:	public	QEvent,	public	QMimeSource

{

public:

				QDropEvent(const	QPoint&	pos,	Type	typ=Drop)

	 :	QEvent(typ),	p(pos),

	 		act(0),	accpt(0),	accptact(0),	resv(0),

	 		d(0)

	 {}

				const	QPoint	&pos()	const	 {	return	p;	}

				bool	isAccepted()	const	 {	return	accpt	||	accptact;	}

				void	accept(bool	y=TRUE)	 {	accpt	=	y;	}

				void	ignore()	 	 {	accpt	=	FALSE;	}

				bool	isActionAccepted()	const	{	return	accptact;	}

				void	acceptAction(bool	y=TRUE)	{	accptact	=	y;	}

				enum	Action	{	Copy,	Link,	Move,	Private,	UserAction=100	};

				void	setAction(Action	a)	{	act	=	(uint)a;	}

				Action	action()	const	{	return	Action(act);	}

				QWidget*	source()	const;

				const	char*	format(int	n	=	0)	const;

				QByteArray	encodedData(const	char*)	const;

				bool	provides(const	char*)	const;

				QByteArray	data(const	char*	f)	const	{	return	encodedData(f);	}

				void	setPoint(const	QPoint&	np)	{	p	=	np;	}

protected:

				QPoint	p;

				uint	act:8;

				uint	accpt:1;

				uint	accptact:1;

				uint	resv:5;

				void	*	d;

};

class	Q_EXPORT	QDragMoveEvent	:	public	QDropEvent

{

public:

				QDragMoveEvent(const	QPoint&	pos,	Type	typ=DragMove)

	 :	QDropEvent(pos,typ),

	 		rect(pos,	QSize(1,	1))	{}

				QRect	answerRect()	const	{	return	rect;	}

				void	accept(bool	y=TRUE)	{	QDropEvent::accept(y);	}

				void	accept(const	QRect	&	r)	{	accpt	=	TRUE;	rect	=	r;	}

				void	ignore(const	QRect	&	r)	{	accpt	=FALSE;	rect	=	r;	}

				void	ignore()	 	 {	QDropEvent::ignore();	}

protected:

				QRect	rect;

};

class	Q_EXPORT	QDragEnterEvent	:	public	QDragMoveEvent

{

public:

				QDragEnterEvent(const	QPoint&	pos)	:

	 QDragMoveEvent(pos,	DragEnter)	{	}

};

/*	An	internal	class	*/

class	Q_EXPORT	QDragResponseEvent	:	public	QEvent

{

public:

				QDragResponseEvent(bool	accepted)

	 :	QEvent(DragResponse),	a(accepted)	{}

				bool			dragAccepted()	const	{	return	a;	}

protected:

				bool	a;

};

class	Q_EXPORT	QDragLeaveEvent	:	public	QEvent

{

public:

				QDragLeaveEvent()

	 :	QEvent(DragLeave)	{}

};

#endif	//	QT_NO_DRAGANDDROP

class	Q_EXPORT	QChildEvent	:	public	QEvent

{

public:

				QChildEvent(Type	type,	QObject	*child)

	 :	QEvent(type),	c(child)	{}

				QObject	*child()	const	 {	return	c;	}

				bool	inserted()	const	{	return	t	==	ChildInserted;	}

				bool	removed()	const	{	return	t	==	ChildRemoved;	}

protected:

				QObject	*c;

};

class	Q_EXPORT	QCustomEvent	:	public	QEvent

{

public:

				QCustomEvent(int	type);

				QCustomEvent(Type	type,	void	*data)

	 :	QEvent(type),	d(data)	{};

				void							*data()	 const	 {	return	d;	}

				void	 setData(void*	data)	 {	d	=	data;	}

private:

				void							*d;

};

#endif	//	QEVENT_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qfile.h
qfile.hTrolltech

/**

**	$Id:		qt/qfile.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QFile	class

**

**	Created	:	930831

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	tools	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QFILE_H

#define	QFILE_H

#ifndef	QT_H

#include	"qiodevice.h"

#include	"qstring.h"

#include	<stdio.h>

#endif	//	QT_H

class	QDir;

class	Q_EXPORT	QFile	:	public	QIODevice		 	 //	file	I/O	device	class

{

public:

				QFile();

				QFile(const	QString	&name);

			~QFile();

				QString	 name()	 const;

				void	 setName(const	QString	&name);

				typedef	QCString	(*EncoderFn)(const	QString	&fileName);

				typedef	QString	(*DecoderFn)(const	QCString	&localfileName);

				static	QCString	encodeName(const	QString	&fileName);

				static	QString	decodeName(const	QCString	&localFileName);

				static	void	setEncodingFunction(EncoderFn);

				static	void	setDecodingFunction(DecoderFn);

				bool	 exists()			const;

				static	bool	exists(const	QString	&fileName);

				bool	 remove();

				static	bool	remove(const	QString	&fileName);

				bool	 open(int);

				bool	 open(int,	FILE	*);

				bool	 open(int,	int);

				void	 close();

				void	 flush();

				Offset	 size()	const;

				Offset	 at()	const;

				bool	 at(Offset);

				bool	 atEnd()	const;

				Q_LONG	 readBlock(char	*data,	Q_ULONG	len);

				Q_LONG	 writeBlock(const	char	*data,	Q_ULONG	len);

				Q_LONG	 writeBlock(const	QByteArray&	data)

	 	 						{	return	QIODevice::writeBlock(data);	}

				Q_LONG	 readLine(char	*data,	Q_ULONG	maxlen);

				Q_LONG	 readLine(QString	&,	Q_ULONG	maxlen);

				int		 getch();

				int		 putch(int);

				int		 ungetch(int);

				int		 handle()	const;

protected:

				QString	 fn;

				FILE							*fh;

				int		 fd;

				Offset	 length;

				bool	 ext_f;

				void	*		 d;

private:

				void	 init();

				QCString	 ungetchBuffer;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QFile(const	QFile	&);

				QFile	&operator=(const	QFile	&);

#endif

};

inline	QString	QFile::name()	const

{	return	fn;	}

inline	QIODevice::Offset	QFile::at()	const

{	return	ioIndex;	}

#endif	//	QFILE_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qfiledialog.h
qfiledialog.hTrolltech

/**

**	$Id:		qt/qfiledialog.h			3.0.5			edited	Oct	19	2001	$

**

**	Definition	of	QFileDialog	class

**

**	Created	:	950428

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	dialogs	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QFILEDIALOG_H

#define	QFILEDIALOG_H

class	QPushButton;

class	QButton;

class	QLabel;

class	QWidget;

class	QFileDialog;

class	QTimer;

class	QNetworkOperation;

class	QLineEdit;

class	QListViewItem;

class	QListBoxItem;

class	QFileDialogPrivate;

class	QFileDialogQFileListView;

#ifndef	QT_H

#include	"qdir.h"

#include	"qdialog.h"

#include	"qurloperator.h"

#include	"qurlinfo.h"

#endif	//	QT_H

#ifndef	QT_NO_FILEDIALOG

class	Q_EXPORT	QFileIconProvider	:	public	QObject

{

				Q_OBJECT

public:

				QFileIconProvider(QObject	*	parent	=	0,	const	char*	name	=	0);

				virtual	const	QPixmap	*	pixmap(const	QFileInfo	&);

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QFileIconProvider(const	QFileIconProvider	&);

				QFileIconProvider&	operator=(const	QFileIconProvider	&);

#endif

};

class	Q_EXPORT	QFilePreview

{

public:

				QFilePreview();

				virtual	void	previewUrl(const	QUrl	&url)	=	0;

};

class	Q_EXPORT	QFileDialog	:	public	QDialog

{

				Q_OBJECT

				Q_ENUMS(Mode	ViewMode	PreviewMode)

				//	#####	Why	are	this	read-only	properties	?

				Q_PROPERTY(QString	selectedFile	READ	selectedFile)

				Q_PROPERTY(QString	selectedFilter	READ	selectedFilter)

				Q_PROPERTY(QStringList	selectedFiles	READ	selectedFiles)

				//	####	Should	not	we	be	able	to	set	the	path	?

				Q_PROPERTY(QString	dirPath	READ	dirPath)

				Q_PROPERTY(bool	showHiddenFiles	READ	showHiddenFiles	WRITE	setShowHiddenFiles)

				Q_PROPERTY(Mode	mode	READ	mode	WRITE	setMode)

				Q_PROPERTY(ViewMode	viewMode	READ	viewMode	WRITE	setViewMode)

				Q_PROPERTY(PreviewMode	previewMode	READ	previewMode	WRITE	setPreviewMode)

				Q_PROPERTY(bool	infoPreview	READ	isInfoPreviewEnabled	WRITE	setInfoPreviewEnabled)

				Q_PROPERTY(bool	contentsPreview	READ	isContentsPreviewEnabled	WRITE	setContentsPreviewEnabled)

public:

				QFileDialog(const	QString&	dirName,	const	QString&	filter	=	QString::null,

	 	 	QWidget*	parent=0,	const	char*	name=0,	bool	modal	=	FALSE);

				QFileDialog(QWidget*	parent=0,	const	char*	name=0,	bool	modal	=	FALSE);

				~QFileDialog();

				//	recommended	static	functions

				static	QString	getOpenFileName(const	QString	&initially	=	QString::null,

	 	 	 	 				const	QString	&filter	=	QString::null,

	 	 	 	 				QWidget	*parent	=	0,	const	char*	name	=	0,

	 	 	 	 				const	QString	&caption	=	QString::null,

	 	 	 	 				QString	*selectedFilter	=	0,

	 	 	 	 				bool	resolveSymlinks	=	TRUE);

				static	QString	getSaveFileName(const	QString	&initially	=	QString::null,

	 	 	 	 				const	QString	&filter	=	QString::null,

	 	 	 	 				QWidget	*parent	=	0,	const	char*	name	=	0,

	 	 	 	 				const	QString	&caption	=	QString::null,

	 	 	 	 				QString	*selectedFilter	=	0,

	 	 	 	 				bool	resolveSymlinks	=	TRUE);

				static	QString	getExistingDirectory(const	QString	&dir	=	QString::null,

	 	 	 	 	 	QWidget	*parent	=	0,

	 	 	 	 	 	const	char*	name	=	0,

	 	 	 	 	 	const	QString	&caption	=	QString::null,

	 	 	 	 	 	bool	dirOnly	=	TRUE,

	 	 	 	 	 	bool	resolveSymlinks	=	TRUE);

				static	QStringList	getOpenFileNames(const	QString	&filter=	QString::null,

	 	 	 	 	 	const	QString	&dir	=	QString::null,

	 	 	 	 	 	QWidget	*parent	=	0,

	 	 	 	 	 	const	char*	name	=	0,

	 	 	 	 	 	const	QString	&caption	=	QString::null,

	 	 	 	 	 	QString	*selectedFilter	=	0,

	 	 	 	 	 	bool	resolveSymlinks	=	TRUE);

				//	other	static	functions

				static	void	setIconProvider(QFileIconProvider	*);

				static	QFileIconProvider	*	iconProvider();

				//	non-static	function	for	special	needs

				QString	selectedFile()	const;

				QString	selectedFilter()	const;

				virtual	void	setSelectedFilter(const	QString&);

				virtual	void	setSelectedFilter(int);

				void	setSelection(const	QString	&);

				void	selectAll(bool	b);

				QStringList	selectedFiles()	const;

				QString	dirPath()	const;

				void	setDir(const	QDir	&);

				const	QDir	*dir()	const;

				void	setShowHiddenFiles(bool	s);

				bool	showHiddenFiles()	const;

				void	rereadDir();

				void	resortDir();

				enum	Mode	{	AnyFile,	ExistingFile,	Directory,	ExistingFiles,	DirectoryOnly	};

				void	setMode(Mode);

				Mode	mode()	const;

				enum	ViewMode	{	Detail,	List	};

				enum	PreviewMode	{	NoPreview,	Contents,	Info	};

				void	setViewMode(ViewMode	m);

				ViewMode	viewMode()	const;

				void	setPreviewMode(PreviewMode	m);

				PreviewMode	previewMode()	const;

				bool	eventFilter(QObject	*,	QEvent	*);

				bool	isInfoPreviewEnabled()	const;

				bool	isContentsPreviewEnabled()	const;

				void	setInfoPreviewEnabled(bool);

				void	setContentsPreviewEnabled(bool);

				void	setInfoPreview(QWidget	*w,	QFilePreview	*preview);

				void	setContentsPreview(QWidget	*w,	QFilePreview	*preview);

				QUrl	url()	const;

				void	addFilter(const	QString	&filter);

public	slots:

				void	done(int);

				void	setDir(const	QString&);

				void	setUrl(const	QUrlOperator	&url);

				void	setFilter(const	QString&);

				void	setFilters(const	QString&);

				void	setFilters(const	char	**);

				void	setFilters(const	QStringList&);

protected:

				void	resizeEvent(QResizeEvent	*);

				void	keyPressEvent(QKeyEvent	*);

				void	addWidgets(QLabel	*,	QWidget	*,	QPushButton	*);

				void	addToolButton(QButton	*b,	bool	separator	=	FALSE);

				void	addLeftWidget(QWidget	*w);

				void	addRightWidget(QWidget	*w);

signals:

				void	fileHighlighted(const	QString&);

				void	fileSelected(const	QString&);

				void	filesSelected(const	QStringList&);

				void	dirEntered(const	QString&);

				void	filterSelected(const	QString&);

private	slots:

				void	detailViewSelectionChanged();

				void	listBoxSelectionChanged();

				void	changeMode(int);

				void	fileNameEditReturnPressed();

				void	stopCopy();

				void	removeProgressDia();

				void	fileSelected(int);

				void	fileHighlighted(int);

				void	dirSelected(int);

				void	pathSelected(int);

				void	updateFileNameEdit(QListViewItem	*);

				void	selectDirectoryOrFile(QListViewItem	*);

				void	popupContextMenu(QListViewItem	*,	const	QPoint	&,	int);

				void	popupContextMenu(QListBoxItem	*,	const	QPoint	&);

				void	updateFileNameEdit(QListBoxItem	*);

				void	selectDirectoryOrFile(QListBoxItem	*);

				void	fileNameEditDone();

				void	okClicked();

				void	filterClicked();	//	not	used

				void	cancelClicked();

				void	cdUpClicked();

				void	newFolderClicked();

				void	fixupNameEdit();

				void	doMimeTypeLookup();

				void	updateGeometries();

				void	modeButtonsDestroyed();

				void	urlStart(QNetworkOperation	*op);

				void	urlFinished(QNetworkOperation	*op);

				void	dataTransferProgress(int	bytesDone,	int	bytesTotal,	QNetworkOperation	*);

				void	insertEntry(const	QValueList<QUrlInfo>	&fi,	QNetworkOperation	*op);

				void	removeEntry(QNetworkOperation	*);

				void	createdDirectory(const	QUrlInfo	&info,	QNetworkOperation	*);

				void	itemChanged(QNetworkOperation	*);

				void	goBack();

private:

				enum	PopupAction	{

	 PA_Open	=	0,

	 PA_Delete,

	 PA_Rename,

	 PA_SortName,

	 PA_SortSize,

	 PA_SortType,

	 PA_SortDate,

	 PA_SortUnsorted,

	 PA_Cancel,

	 PA_Reload,

	 PA_Hidden

				};

				void	init();

				bool	trySetSelection(bool	isDir,	const	QUrlOperator	&,	bool);

				void	deleteFile(const	QString	&filename);

				void	popupContextMenu(const	QString	&filename,	bool	withSort,

	 	 	 			PopupAction	&action,	const	QPoint	&p);

				QDir	reserved;	//	was	cwd

				QString	fileName;

				friend	class	QFileDialogQFileListView;

				friend	class	QFileListBox;

				QFileDialogPrivate	*d;

				QFileDialogQFileListView		*files;

				QLineEdit		*nameEdit;	//	also	filter

				QPushButton	*okB;

				QPushButton	*cancelB;

#if	defined(Q_WS_WIN)

				static	QString	winGetOpenFileName(const	QString	&initialSelection,

	 	 	 	 							const	QString	&filter,

	 	 	 	 							QString*	workingDirectory,

	 	 	 	 							QWidget	*parent	=	0,

	 	 	 	 							const	char*	name	=	0,

	 	 	 	 							const	QString&	caption	=	QString::null,

	 	 	 	 							QString*	selectedFilter	=	0);

				static	QString	winGetSaveFileName(const	QString	&initialSelection,

	 	 	 	 							const	QString	&filter,

	 	 	 	 							QString*	workingDirectory,

	 	 	 	 							QWidget	*parent	=	0,

	 	 	 	 							const	char*	name	=	0,

	 	 	 	 							const	QString&	caption	=	QString::null,

					 	 	 	 							QString*	selectedFilter	=	0);

				static	QStringList	winGetOpenFileNames(const	QString	&filter,

	 	 	 	 	 				QString*	workingDirectory,

	 	 	 	 	 				QWidget	*parent	=	0,

	 	 	 	 	 				const	char*	name	=	0,

	 	 	 	 	 				const	QString&	caption	=	QString::null,

	 	 	 	 	 				QString*	selectedFilter	=	0);

				static	QString	winGetExistingDirectory(const	QString	&initialDirectory,

	 	 	 	 	 				QWidget*	parent	=	0,

	 	 	 	 	 				const	char*	name	=	0,

	 	 	 	 	 				const	QString&	caption	=	QString::null);

				static	QString	resolveLinkFile(const	QString&	linkfile);

#endif

#if	defined(Q_WS_MACX)	||	defined(Q_WS_MAC9)

				static	QString	macGetSaveFileName(const	QString	&,	const	QString	&,	

	 	 	 	 							QString	*,	QWidget	*,	const	char*,

	 	 	 	 							const	QString&);

				static	QStringList	macGetOpenFileNames(const	QString	&,	QString*,

	 	 	 	 	 				QWidget	*,	const	char	*,

	 	 	 	 	 				const	QString&,	bool	=	TRUE,

	 	 	 	 	 				bool	=	FALSE);

#endif

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QFileDialog(const	QFileDialog	&);

				QFileDialog	&operator=(const	QFileDialog	&);

#endif

};

#endif

#endif	//	QFILEDIALOG_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qfileinfo.h
This	is	the	verbatim	text	of	the	qfileinfo.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	Id

**

**	Definition	of	QFileInfo	class

**

**	Created	:	950628

**

**	Copyright	(C)	1992-2002	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	tools	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QFILEINFO_H

#define	QFILEINFO_H

#ifndef	QT_H

#include	"qfile.h"

#include	"qdatetime.h"

#endif	//	QT_H

class	QDir;

struct	QFileInfoCache;

class	Q_EXPORT	QFileInfo	 	 	 	 			//	file	information	class

{

public:

				enum	PermissionSpec	{

	 ReadUser		=	0400,	WriteUser		=	0200,	ExeUser		=	0100,

	 ReadGroup	=	0040,	WriteGroup	=	0020,	ExeGroup	=	0010,

	 ReadOther	=	0004,	WriteOther	=	0002,	ExeOther	=	0001	};

				QFileInfo();

				QFileInfo(const	QString	&file);

				QFileInfo(const	QFile	&);

#ifndef	QT_NO_DIR

				QFileInfo(const	QDir	&,	const	QString	&fileName);

#endif

				QFileInfo(const	QFileInfo	&);

			~QFileInfo();

				QFileInfo		&operator=(const	QFileInfo	&);

				void	 setFile(const	QString	&file);

				void	 setFile(const	QFile	&);

#ifndef	QT_NO_DIR

				void	 setFile(const	QDir	&,	const	QString	&fileName);

#endif

				bool	 exists()	 const;

				void	 refresh()	 const;

				bool	 caching()	 const;

				void	 setCaching(bool);

				QString	 filePath()	 const;

				QString	 fileName()	 const;

#ifndef	QT_NO_DIR	//###

				QString	 absFilePath()	 const;

#endif

				QString	 baseName(bool	complete	=	FALSE)	const;

				QString	 extension(bool	complete	=	TRUE)	const;

#ifndef	QT_NO_DIR	//###

				QString	 dirPath(bool	absPath	=	FALSE)	const;

#endif

#ifndef	QT_NO_DIR

				QDir	 dir(bool	absPath	=	FALSE)	 const;

#endif

				bool	 isReadable()	 const;

				bool	 isWritable()	 const;

				bool	 isExecutable()	 const;

#ifndef	QT_NO_DIR	//###

				bool	 isRelative()	 const;

				bool	 convertToAbs();

#endif

				bool	 isFile()	 const;

				bool	 isDir()		 const;

				bool	 isSymLink()	 const;

				QString	 readLink()	 const;

				QString	 owner()		 const;

				uint	 ownerId()	 const;

				QString	 group()		 const;

				uint	 groupId()	 const;

				bool	 permission(int	permissionSpec)	const;

				uint	 size()	 	 const;

				QDateTime	 created()	 const;

				QDateTime	 lastModified()	 const;

				QDateTime	 lastRead()	 const;

private:

				void	 doStat()	const;

				static	void	slashify(QString	&);

				static	void	makeAbs(QString	&);

				

				QString	 fn;

				QFileInfoCache	*fic;

				bool	 cache;

#if	defined(Q_OS_UNIX)

				bool								symLink;

#endif

};

inline	bool	QFileInfo::caching()	const

{

				return	cache;

}

#endif	//	QFILEINFO_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qfocusdata.h
This	is	the	verbatim	text	of	the	qfocusdata.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qfocusdata.h			3.0.5			edited	Nov	1	2001	$

**

**	Definition	of	internal	QFocusData	class

**

**	Created	:	980405

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QFOCUSDATA_H

#define	QFOCUSDATA_H

#ifndef	QT_H

#include	"qwidgetlist.h"

#endif	//	QT_H

class	Q_EXPORT	QFocusData	{

public:

				QWidget*	focusWidget()	const	{	return	it.current();	}

				QWidget*	home();

				QWidget*	next();

				QWidget*	prev();

				int	count()	const	{	return	focusWidgets.count();	}

private:

				friend	class	QWidget;

				QFocusData()

	 :	it(focusWidgets)	{}

				QWidgetList			focusWidgets;

				QWidgetListIt	it;

};

#endif	//	QFOCUSDATA_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qfontdatabase.h
This	is	the	verbatim	text	of	the	qfontdatabase.h	include	file.	It	is	provided	only
for	illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qfontdatabase.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	the	QFontDatabase	class

**

**	Created	:	981126

**

**	Copyright	(C)	1999-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QFONTDATABASE_H

#define	QFONTDATABASE_H

#ifndef	QT_H

#include	"qwindowdefs.h"

#include	"qstring.h"

#include	"qstringlist.h"

#include	"qfont.h"

#include	"qvaluelist.h"

#endif	//	QT_H

#ifndef	QT_NO_FONTDATABASE

class	QFontStylePrivate;	/*	Don't	touch!	*/

class	QtFontStyle;

class	QtFontFamily;

class	QtFontFoundry;

#ifdef	Q_WS_QWS

class	QDiskFont;

#endif

class	QFontDatabasePrivate;

class	Q_EXPORT	QFontDatabase

{

public:

				static	QValueList<int>	standardSizes();

				QFontDatabase();

				QStringList	families()	const;

				QStringList	styles(const	QString	&)	const;

				QValueList<int>	pointSizes(const	QString	&,	const	QString	&	=	QString::null);

				QValueList<int>	smoothSizes(const	QString	&,	const	QString	&);

				QString	styleString(const	QFont	&);

				QFont	font(const	QString	&,	const	QString	&,	int);

				bool	isBitmapScalable(const	QString	&,	const	QString	&	=	QString::null)	const;

				bool	isSmoothlyScalable(const	QString	&,	const	QString	&	=	QString::null)	const;

				bool	isScalable(const	QString	&,	const	QString	&	=	QString::null)	const;

				bool	isFixedPitch(const	QString	&,	const	QString	&	=	QString::null)	const;

				bool	italic(const	QString	&,	const	QString	&)	const;

				bool	bold(const	QString	&,	const	QString	&)	const;

				int	weight(const	QString	&,	const	QString	&)	const;

				static	QString	scriptName(QFont::Script);

				static	QString	scriptSample(QFont::Script);

#ifdef	Q_WS_QWS

				static	void	qwsAddDiskFont(QDiskFont	*qdf);

#endif

				//	For	source	compatibility	with	<	3.0

#ifndef	QT_NO_COMPAT

				QStringList	families(bool)	const;

				QStringList	styles(const	QString	&,	const	QString	&)	const;

				QValueList<int>	pointSizes(const	QString	&,	const	QString	&,	const	QString	&);

				QValueList<int>	smoothSizes(const	QString	&,	const	QString	&,	const	QString	&);

				QFont	font(const	QString	&,	const	QString	&,	int,	const	QString	&);

				bool	isBitmapScalable(const	QString	&,	const	QString	&,	const	QString	&)	const;

				bool	isSmoothlyScalable(const	QString	&,	const	QString	&,	const	QString	&)	const;

				bool	isScalable(const	QString	&,	const	QString	&,	const	QString	&)	const;

				bool	isFixedPitch(const	QString	&,	const	QString	&,	const	QString	&)	const;

				bool	italic(const	QString	&,	const	QString	&,	const	QString	&)	const;

				bool	bold(const	QString	&,	const	QString	&,	const	QString	&)	const;

				int	weight(const	QString	&,	const	QString	&,	const	QString	&)	const;

#endif	//	QT_NO_COMPAT

private:

				static	void	createDatabase();

				static	void	parseFontName(const	QString	&,	QString	&,	QString	&);

				friend	class	QtFontStyle;

				friend	class	QtFontFamily;

				friend	class	QtFontFoundry;

				friend	class	QFontDatabasePrivate;

				

				//	for	parseFontName

				friend	class	QFontPrivate;

				friend	class	QFontDialog;

				friend	QString	qt_makePSFontName(const	QFont	&f,	int	*listpos	=	0,	int	*ftype	=	0);

				QFontDatabasePrivate	*d;

};

#ifndef	QT_NO_COMPAT

inline	QStringList	QFontDatabase::families(bool)	const

{

				return	families();

}

inline	QStringList	QFontDatabase::styles(const	QString	&family,

	 	 	 	 	 		const	QString	&)	const

{

				return	styles(family);

}

inline	QValueList<int>	QFontDatabase::pointSizes(const	QString	&family,

	 	 	 	 	 	 		const	QString	&style	,

	 	 	 	 	 	 		const	QString	&)

{

				return	pointSizes(family,	style);

}

inline	QValueList<int>	QFontDatabase::smoothSizes(const	QString	&family,

	 	 	 	 	 	 			const	QString	&style,

	 	 	 	 	 	 			const	QString	&)

{

				return	smoothSizes(family,	style);

}

inline	QFont	QFontDatabase::font(const	QString	&familyName,

	 	 	 	 		const	QString	&style,

	 	 	 	 		int	pointSize,

	 	 	 	 		const	QString	&)

{

				return	font(familyName,	style,	pointSize);

}

inline	bool	QFontDatabase::isBitmapScalable(const	QString	&family,

	 	 	 	 	 					const	QString	&style,

	 	 	 	 	 					const	QString	&)	const

{

				return	isBitmapScalable(family,	style);

}

inline	bool	QFontDatabase::isSmoothlyScalable(const	QString	&family,

	 	 	 	 	 							const	QString	&style,

	 	 	 	 	 							const	QString	&)	const

{

				return	isSmoothlyScalable(family,	style);

}

inline	bool	QFontDatabase::isScalable(const	QString	&family,

	 	 	 	 							const	QString	&style,

	 	 	 	 							const	QString	&)	const

{

				return	isScalable(family,	style);

}

inline	bool	QFontDatabase::isFixedPitch(const	QString	&family,

	 	 	 	 	 	const	QString	&style,

	 	 	 	 	 	const	QString	&)	const

{

				return	isFixedPitch(family,	style);

}

inline	bool	QFontDatabase::italic(const	QString	&family,

	 	 	 	 			const	QString	&style,

	 	 	 	 			const	QString	&)	const

{

				return	italic(family,	style);

}

inline	bool	QFontDatabase::bold(const	QString	&family,

	 	 	 	 	const	QString	&style,

	 	 	 	 	const	QString	&)	const

{

				return	bold(family,	style);

}

inline	int	QFontDatabase::weight(const	QString	&family,

	 	 	 	 		const	QString	&style,

	 	 	 	 		const	QString	&)	const

{

				return	weight(family,	style);

}

#endif	//	QT_NO_COMPAT

#endif	//	QT_NO_FONTDATABASE

#endif	//	QFONTDATABASE_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qfontdialog.h
qfontdialog.hTrolltech

/**

**	$Id:		qt/qfontdialog.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QFontDialog

**

**	Created	:	970605

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	dialogs	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QFONTDIALOG_H

#define	QFONTDIALOG_H

#include	"qwindowdefs.h"

#ifndef	QT_NO_FONTDIALOG

//

//		W	A	R	N	I	N	G

//		-------------

//

//		This	class	is	under	development	and	has	private	constructors.

//

//		You	may	use	the	public	static	getFont()	functions	which	are	guaranteed

//		to	be	available	in	the	future.

//

#ifndef	QT_H

#include	"qdialog.h"

#include	"qfont.h"

#endif	//	QT_H

class		QListBox;

class		QComboBox;

class	QFontDialogPrivate;

class	Q_EXPORT	QFontDialog:	public	QDialog

{

				Q_OBJECT

public:

				static	QFont	getFont(bool	*ok,	const	QFont	&def,

	 	 	 		QWidget*	parent=0,	const	char*	name=0);

				static	QFont	getFont(bool	*ok,	QWidget*	parent=0,	const	char*	name=0);

private:

				QFontDialog(QWidget*	parent=0,	const	char*	name=0,	bool	modal=FALSE,

	 	 	WFlags	f=0);

				~QFontDialog();

				QFont	font()	const;

				void	setFont(const	QFont	&font);

signals:

				void	fontSelected(const	QFont	&font);

				void	fontHighlighted(const	QFont	&font);

protected:

				bool	eventFilter(QObject	*,	QEvent	*);

				QListBox	*	familyListBox()	const;

				virtual	void	updateFamilies();

				QListBox	*	styleListBox()	const;

				virtual	void	updateStyles();

				QListBox	*	sizeListBox()	const;

				virtual	void	updateSizes();

				QComboBox	*	scriptCombo()	const;

				virtual	void	updateScripts();

#if	0

				QString	family()	const;

				QString	script()	const;

				QString	style()	const;

				QString	size()	const;

#endif

protected	slots:

				void	sizeChanged(const	QString	&);

private	slots:

				void	familyHighlighted(const	QString	&);

				void	familyHighlighted(int);

				void	scriptHighlighted(const	QString	&);

				void	scriptHighlighted(int);

				void	styleHighlighted(const	QString	&);

				void	sizeHighlighted(const	QString	&);

				void	updateSample();

				void	emitSelectedFont();

private:

				static	QFont	getFont(bool	*ok,	const	QFont	*def,

	 	 	 		QWidget*	parent=0,	const	char*	name=0);

				QFontDialogPrivate	*	d;

				friend	class	QFontDialogPrivate;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QFontDialog(const	QFontDialog	&);

				QFontDialog&	operator=(const	QFontDialog	&);

#endif

};

#endif

#endif	//	QFONTDIALOG_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qfontinfo.h
This	is	the	verbatim	text	of	the	qfontinfo.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qfontinfo.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QFontInfo	class

**

**	Created	:	950131

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QFONTINFO_H

#define	QFONTINFO_H

#ifndef	QT_H

#include	"qfont.h"

#endif	//	QT_H

class	Q_EXPORT	QFontInfo

{

public:

				QFontInfo(const	QFont	&);

				QFontInfo(const	QFontInfo	&);

				~QFontInfo();

				QFontInfo	 							&operator=(const	QFontInfo	&);

				QString				 								family()	 const;

				int		 	 pixelSize()	 const;

				int		 	 pointSize()	 const;

				bool	 	 italic()	 const;

				int		 	 weight()	 const;

				bool	 	 bold()	 	 const;

				bool	 	 underline()	 const;

				bool	 	 strikeOut()	 const;

				bool	 	 fixedPitch()	 const;

				QFont::StyleHint	 styleHint()	 const;

				bool	 	 rawMode()	 const;

				bool	 	 exactMatch()	 const;

private:

				QFontInfo(const	QPainter	*);

				static	void	reset(const	QPainter	*);

				QFontPrivate	*d;

				QPainter	*painter;

				int	flags;

				bool				underlineFlag()		const	{	return	(flags	&	0x1)	!=	0;	}

				bool				strikeOutFlag()		const	{	return	(flags	&	0x2)	!=	0;	}

				bool				exactMatchFlag()	const	{	return	(flags	&	0x4)	!=	0;	}

				void				setUnderlineFlag()	 			{	flags	|=	0x1;	}

				void				setStrikeOutFlag()	 			{	flags	|=	0x2;	}

				void				setExactMatchFlag()				{	flags	|=	0x4;	}

				friend	class	QWidget;

				friend	class	QPainter;

};

inline	bool	QFontInfo::bold()	const

{	return	weight()	>	QFont::Normal;	}

#endif	//	QFONTINFO_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qfontmanager_qws.h
This	is	the	verbatim	text	of	the	qfontmanager_qws.h	include	file.	It	is	provided
only	for	illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qfontmanager_qws.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	font	rendering	infrastructure	for	Embedded	Qt

**

**	Created	:	940721

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	for	Qt/Embedded	may	use	this	file	in	accordance	with	the

**	Qt	Embedded	Commercial	License	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QFONTMANAGER_QWS_H

#define	QFONTMANAGER_QWS_H

#ifndef	QT_H

#include	"qfont.h"

#include	"qptrlist.h"

#endif	//	QT_H

//	These	are	stored	in	the	shared	memory	segment	in	front	of	their

//	data,	and	indexed	at	the	start	of	the	segment

//	This	needs	to	be	a	multiple	of	64	bits

class	QFontDef;

class	Q_PACKED	QGlyphMetrics	{

public:

				Q_UINT8	linestep;

				Q_UINT8	width;

				Q_UINT8	height;

				Q_UINT8	padding;

				Q_INT8	bearingx;						//	Difference	from	pen	position	to	glyph's	left	bbox

				Q_UINT8	advance;							//	Difference	between	pen	positions

				Q_INT8	bearingy;						//	Used	for	putting	characters	on	baseline

				Q_INT8	reserved;						//	Do	not	use

};

class	QGlyph	{

public:

				QGlyph()	{	}

				QGlyph(QGlyphMetrics*	m,	uchar*	d)	:

	 metrics(m),	data(d)	{	}

				QGlyphMetrics*	metrics;

				uchar*	data;

};

class	QFontFactory;

class	QDiskFont;

//	This	is	a	particular	font	instance	at	a	particular	resolution

//	e.g.	Truetype	Times,	10	point.	There's	only	one	of	these	though;

//	we	want	to	share	generated	glyphs

class	QRenderedFont	{

public:

				//	Normal	font-type	is	monochrome;	glyph	data	is	a

				//			bitmap,	which	doesn't	use	much	memory

				//	Initialise	for	name	A,	renderer	B,	font	type	C,	D	glyphs

				QRenderedFont(QDiskFont	*,const	QFontDef&);

				virtual	~QRenderedFont();

				int	refcount;

				int	ptsize;

				bool	italic;

				unsigned	int	weight;

				void	ref()	{	refcount++;	}

				bool	deref()	{	refcount--;	return	(refcount<1);	}

				QDiskFont*	diskfont;

				int	fascent,fdescent;

				int	fleftbearing,frightbearing;

				int	fmaxwidth;

				int	fleading;

				int	funderlinepos;

				int	funderlinewidth;

				bool	smooth;

				int	maxchar;

				int	ascent()	{	return	fascent;	}

				int	descent()	{	return	fdescent;	}

				int	width(int);

				int	width(const	QString&,	int	=-1);

				int	leftBearing(int);

				int	rightBearing(int);

				//	Calling	any	of	these	can	trigger	a	full-font	metrics	check

				//	which	can	be	expensive

				int	minLeftBearing();

				int	minRightBearing();

				int	maxWidth();

				virtual	bool	inFont(QChar	ch)	const=0;

				virtual	QGlyph	render(QChar)=0;

private:

};

//	Keeps	track	of	available	renderers	and	which	font	is	which

class	QDiskFontPrivate	{};

class	QDiskFont	{

public:

				QDiskFont(QFontFactory	*f,	const	QString&	n,	bool	i,	int	w,	int	s,

	 						const	QString	&fl,	const	QString&	fi)	:

	 factory(f),	name(n),	italic(i),	weight(w),	size(s),	flags(fl),	file(fi)

				{

	 loaded=false;

	 p=0;

				}

				QRenderedFont*	load(const	QFontDef	&);

				QFontDef	fontDef()	const;

				QFontFactory	*factory;

				QString	name;

				bool	italic;

				int	weight;

				int	size;

				QString	flags;

				QString	file;

				bool	loaded;

				QDiskFontPrivate	*	p;

};

class	QFontManager	{

public:

				QPtrList<QFontFactory>	factories;

				QPtrList<QRenderedFont>	cachedfonts;

				QPtrList<QDiskFont>	diskfonts;

				QFontManager();

				~QFontManager();

				//	Font	definition,	type	and	color

				QDiskFont	*	get(const	QFontDef	&);

				static	int	cmpFontDef(const	QFontDef	&	goal,	const	QFontDef	&	choice);

				static	void	initialize();

				static	void	cleanup();

};

class	QFontFactory	{

public:

				QFontFactory()	{}

				virtual	~QFontFactory()	{}

				virtual	QRenderedFont	*	get(const	QFontDef	&,QDiskFont	*)=0;

				virtual	void	load(QDiskFont	*)	const=0;

				virtual	QString	name()=0;

};

void	qt_init_fonts();

extern	QFontManager	*	qt_fontmanager;

#endif

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qfontmetrics.h
This	is	the	verbatim	text	of	the	qfontmetrics.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qfontmetrics.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QFontMetrics	class

**

**	Created	:	940514

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QFONTMETRICS_H

#define	QFONTMETRICS_H

#ifndef	QT_H

#include	"qfont.h"

#include	"qrect.h"

#endif	//	QT_H

class	QFontStruct;

class	QTextCodec;

class	QTextParag;

class	Q_EXPORT	QFontMetrics

{

public:

				QFontMetrics(const	QFont	&);

				QFontMetrics(const	QFontMetrics	&);

				~QFontMetrics();

				QFontMetrics	&operator=(const	QFontMetrics	&);

				int		 ascent()	 const;

				int		 descent()	 const;

				int		 height()	 const;

				int		 leading()	 const;

				int		 lineSpacing()	 const;

				int		 minLeftBearing()	const;

				int		 minRightBearing()	const;

				int		 maxWidth()	 const;

				bool	 inFont(QChar)	 const;

				int		 leftBearing(QChar)	const;

				int		 rightBearing(QChar)	const;

				int		 width(const	QString	&,	int	len	=	-1)	const;

				

				int		 width(QChar)	const;

#ifndef	QT_NO_COMPAT

				int		 width(char	c)	const	{	return	width((QChar)	c);	}

#endif

				

				int		 	 charWidth(const	QString	&str,	int	pos)	const;

				QRect	 boundingRect(const	QString	&,	int	len	=	-1)	const;

				QRect	 boundingRect(QChar)	const;

				QRect	 boundingRect(int	x,	int	y,	int	w,	int	h,	int	flags,

	 	 	 						const	QString&	str,	int	len=-1,	int	tabstops=0,

	 	 	 						int	*tabarray=0,	QTextParag	**intern=0)	const;

				QSize	 size(int	flags,

	 	 						const	QString&	str,	int	len=-1,	int	tabstops=0,

	 	 						int	*tabarray=0,	QTextParag	**intern=0)	const;

				int		 underlinePos()	 const;

				int		 strikeOutPos()	 const;

				int		 lineWidth()	 const;

private:

				QFontMetrics(const	QPainter	*);

				static	void	reset(const	QPainter	*);

#if	defined(Q_WS_WIN)

				void			*textMetric()	const;

				HDC					hdc()	const;

#elif	defined(Q_WS_QWS)

				QFontStruct	*internal();

#endif

				friend	class	QWidget;

				friend	class	QPainter;

#if	defined(Q_WS_MAC)

				friend	class	QFontPrivate;

#endif

				QFontPrivate		*d;

				QPainter						*painter;

				int		 			flags;

				bool				underlineFlag()		const	{	return	(flags	&	0x1)	!=	0;	}

				bool				strikeOutFlag()		const	{	return	(flags	&	0x2)	!=	0;	}

				void				setUnderlineFlag()	 			{	flags	|=	0x1;	}

				void				setStrikeOutFlag()	 			{	flags	|=	0x2;	}

};

#endif	//	QFONTMETRICS_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qframe.h
qframe.hTrolltech

/**

**	$Id:		qt/qframe.h			3.0.5			edited	Nov	15	2001	$

**

**	Definition	of	QFrame	widget	class

**

**	Created	:	950201

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QFRAME_H

#define	QFRAME_H

#ifndef	QT_H

#include	"qwidget.h"

#endif	//	QT_H

#ifndef	QT_NO_FRAME

class	Q_EXPORT	QFrame	:	public	QWidget

{

				Q_OBJECT

				Q_ENUMS(Shape	Shadow)

				Q_PROPERTY(int	frameWidth	READ	frameWidth)

				Q_PROPERTY(QRect	contentsRect	READ	contentsRect)

				Q_PROPERTY(Shape	frameShape	READ	frameShape	WRITE	setFrameShape)

				Q_PROPERTY(Shadow	frameShadow	READ	frameShadow	WRITE	setFrameShadow)

				Q_PROPERTY(int	lineWidth	READ	lineWidth	WRITE	setLineWidth)

				Q_PROPERTY(int	margin	READ	margin	WRITE	setMargin)

				Q_PROPERTY(int	midLineWidth	READ	midLineWidth	WRITE	setMidLineWidth)

				Q_PROPERTY(QRect	frameRect	READ	frameRect	WRITE	setFrameRect	DESIGNABLE	false)

public:

				QFrame(QWidget*	parent=0,	const	char*	name=0,	WFlags	f=0);

				int									frameStyle()				const;

				virtual	void	setFrameStyle(int);

				int									frameWidth()				const;

				QRect							contentsRect()		const;

#ifndef	Q_QDOC

				bool								lineShapesOk()		const	{	return	TRUE;	}

#endif

				QSize							sizeHint()	const;

				enum	Shape	{	NoFrame		=	0,																		//	no	frame

																	Box						=	0x0001,													//	rectangular	box

																	Panel				=	0x0002,													//	rectangular	panel

																	WinPanel	=	0x0003,													//	rectangular	panel	(Windows)

																	HLine				=	0x0004,													//	horizontal	line

																	VLine				=	0x0005,													//	vertical	line

																	StyledPanel	=	0x0006,										//	rectangular	panel	depending	on	the	GUI	style

																	PopupPanel	=	0x0007,											//	rectangular	panel	depending	on	the	GUI	style

																	MenuBarPanel	=	0x0008,

																	ToolBarPanel	=	0x0009,

	 	 	LineEditPanel	=	0x000a,

	 	 	TabWidgetPanel	=	0x000b,

																	MShape			=	0x000f														//	mask	for	the	shape

				};

				enum	Shadow	{	Plain				=	0x0010,												//	plain	line

																		Raised			=	0x0020,												//	raised	shadow	effect

																		Sunken			=	0x0030,												//	sunken	shadow	effect

																		MShadow		=	0x00f0	};										//	mask	for	the	shadow

				Shape							frameShape()				const;

				void								setFrameShape(Shape);

				Shadow						frameShadow()			const;

				void								setFrameShadow(Shadow);

				int									lineWidth()					const;

				virtual	void	setLineWidth(int);

				int									margin()								const;

				virtual	void	setMargin(int);

				int									midLineWidth()		const;

				virtual	void	setMidLineWidth(int);

				QRect							frameRect()					const;

				virtual	void	setFrameRect(const	QRect	&);

protected:

				void								paintEvent(QPaintEvent	*);

				void								resizeEvent(QResizeEvent	*);

				virtual	void	drawFrame(QPainter	*);

				virtual	void	drawContents(QPainter	*);

				virtual	void	frameChanged();

private:

				void								updateFrameWidth();

				QRect							frect;

				int									fstyle;

				short							lwidth;

				short							mwidth;

				short							mlwidth;

				short							fwidth;

				void	*	d;

private:								//	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QFrame(const	QFrame	&);

				QFrame	&operator=(const	QFrame	&);

#endif

};

inline	int	QFrame::frameStyle()	const

{	return	fstyle;	}

inline	QFrame::Shape	QFrame::frameShape()	const

{	return	(Shape)	(fstyle	&	MShape);	}

inline	QFrame::Shadow	QFrame::frameShadow()	const

{	return	(Shadow)	(fstyle	&	MShadow);	}

inline	void	QFrame::setFrameShape(QFrame::Shape	s)

{	setFrameStyle((fstyle	&	MShadow)	|	s);	}

inline	void	QFrame::setFrameShadow(QFrame::Shadow	s)

{	setFrameStyle((fstyle	&	MShape)	|	s);	}

inline	int	QFrame::lineWidth()	const

{	return	lwidth;	}

inline	int	QFrame::midLineWidth()	const

{	return	mlwidth;	}

inline	int	QFrame::margin()	const

{	return	mwidth;	}

inline	int	QFrame::frameWidth()	const

{	return	fwidth;	}

#endif	//	QT_NO_FRAME

#endif	//	QFRAME_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qftp.h
qftp.hTrolltech

/**

**	$Id:		qt/qftp.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QFtp	class.

**

**	Created	:	970521

**

**	Copyright	(C)	1997-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	network	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	licenses	may	use	this

**	file	in	accordance	with	the	Qt	Commercial	License	Agreement	provided

**	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QFTP_H

#define	QFTP_H

#ifndef	QT_H

#include	"qstring.h"	//	char*->QString	conversion

#include	"qurlinfo.h"

#include	"qnetworkprotocol.h"

#endif	//	QT_H

#if	!defined(QT_MODULE_NETWORK)	||	defined(QT_LICENSE_PROFESSIONAL)	||	defined(QT_INTERNAL_NETWORK)

#define	QM_EXPORT_FTP

#else

#define	QM_EXPORT_FTP	Q_EXPORT

#endif

#ifndef	QT_NO_NETWORKPROTOCOL_FTP

class	QSocket;

class	QM_EXPORT_FTP	QFtp	:	public	QNetworkProtocol

{

				Q_OBJECT

public:

				QFtp();

				virtual	~QFtp();

				int	supportedOperations()	const;

protected:

				void	parseDir(const	QString	&buffer,	QUrlInfo	&info);

				void	operationListChildren(QNetworkOperation	*op);

				void	operationMkDir(QNetworkOperation	*op);

				void	operationRemove(QNetworkOperation	*op);

				void	operationRename(QNetworkOperation	*op);

				void	operationGet(QNetworkOperation	*op);

				void	operationPut(QNetworkOperation	*op);

				QSocket	*commandSocket,	*dataSocket;

				bool	connectionReady,	passiveMode;

				int	getTotalSize,	getDoneSize;

				bool	startGetOnFail;

				int	putToWrite,	putWritten;

				bool	errorInListChildren;

private:

				bool	checkConnection(QNetworkOperation	*op);

				void	close();

				void	reinitCommandSocket();

				void	okButTryLater(int	code,	const	QCString	&data);

				void	okGoOn(int	code,	const	QCString	&data);

				void	okButNeedMoreInfo(int	code,	const	QCString	&data);

				void	errorForNow(int	code,	const	QCString	&data);

				void	errorForgetIt(int	code,	const	QCString	&data);

protected	slots:

				void	hostFound();

				void	connected();

				void	closed();

				void	readyRead();

				void	dataHostFound();

				void	dataConnected();

				void	dataClosed();

				void	dataReadyRead();

				void	dataBytesWritten(int	nbytes);

				void	error(int);

};

#endif	//	QT_NO_NETWORKPROTOCOL_FTP

#endif	//	QFTP_H

Copyright	©	2002	Trolltech Trademarks : Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qgb18030codec.h
This	is	the	verbatim	text	of	the	qgb18030codec.h	include	file.	It	is	provided	only
for	illustration;	the	copyright	remains	with	Trolltech.

/**

**	Id

**

**	Definition	of	QGb18030Codec	class

**

**	Copyright	(C)	1992-2002	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	tools	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

//	Contributed	by	James	Su	<suzhe@gnuchina.org>

#ifndef	QGB18030CODEC_H

#define	QGB18030CODEC_H

#ifndef	QT_H

#include	"qglobal.h"

#include	"qtextcodec.h"

#endif	//	QT_H

#ifndef	QT_NO_BIG_CODECS

#if	defined(QT_PLUGIN)

#define	Q_EXPORT_CODECS_CN

#else

#define	Q_EXPORT_CODECS_CN	Q_EXPORT

#endif

class	Q_EXPORT_CODECS_CN	QGb18030Codec	:	public	QTextCodec	{

public:

				QGb18030Codec();

				int	mibEnum()	const;

				const	char*	name()	const;

				QTextDecoder*	makeDecoder()	const;

				QCString	fromUnicode(const	QString&	uc,	int&	len_in_out)	const;

				QString	toUnicode(const	char*	chars,	int	len)	const;

				int	heuristicContentMatch(const	char*	chars,	int	len)	const;

				int	heuristicNameMatch(const	char*	hint)	const;

};

class	Q_EXPORT_CODECS_CN	QGbkCodec	:	public	QGb18030Codec	{

public:

				QGbkCodec();

				int	mibEnum()	const;

				const	char*	name()	const;

				const	char*	mimeName()	const;

				QTextDecoder*	makeDecoder()	const;

				QCString	fromUnicode(const	QString&	uc,	int&	len_in_out)	const;

				QString	toUnicode(const	char*	chars,	int	len)	const;

				int	heuristicContentMatch(const	char*	chars,	int	len)	const;

				int	heuristicNameMatch(const	char*	hint)	const;

};

#endif

#endif

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qgfx_qws.h
This	is	the	verbatim	text	of	the	qgfx_qws.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qgfx_qws.h			3.0.5			edited	Feb	21	1999	$

**

**	Definition	of	QGfx	(graphics	context)	class

**

**	Created	:	940721

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	for	Qt/Embedded	may	use	this	file	in	accordance	with	the

**	Qt	Embedded	Commercial	License	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QGFX_H

#define	QGFX_H

#ifndef	QT_H

#include	"qwidget.h"

#include	"qnamespace.h"

#include	"qimage.h"

#include	"qfontmanager_qws.h"

#include	"qpoint.h"

#endif	//	QT_H

class	QScreenCursor;

#if	!defined(QT_NO_IMAGE_16_BIT)	||	!defined(QT_NO_QWS_DEPTH_16)

#	ifndef	QT_QWS_DEPTH16_RGB

#		define	QT_QWS_DEPTH16_RGB	565

#	endif

static	const	int	qt_rbits	=	(QT_QWS_DEPTH16_RGB/100);

static	const	int	qt_gbits	=	(QT_QWS_DEPTH16_RGB/10%10);

static	const	int	qt_bbits	=	(QT_QWS_DEPTH16_RGB%10);

static	const	int	qt_red_shift	=	qt_bbits+qt_gbits-(8-qt_rbits);

static	const	int	qt_green_shift	=	qt_bbits-(8-qt_gbits);

static	const	int	qt_neg_blue_shift	=	8-qt_bbits;

static	const	int	qt_blue_mask	=	(1<<qt_bbits)-1;

static	const	int	qt_green_mask	=	(1<<(qt_gbits+qt_bbits))-((1<<qt_bbits)-1);

static	const	int	qt_red_mask	=	(1<<(qt_rbits+qt_gbits+qt_bbits))-(1<<(qt_gbits+qt_bbits));

inline	ushort	qt_convRgbTo16(const	int	r,	const	int	g,	const	int	b)

{

				const	int	tr	=	r	<<	qt_red_shift;

				const	int	tg	=	g	<<	qt_green_shift;

				const	int	tb	=	b	>>	qt_neg_blue_shift;

				return	(tb	&	qt_blue_mask)	|	(tg	&	qt_green_mask)	|	(tr	&	qt_red_mask);

}

inline	ushort	qt_convRgbTo16(QRgb	c)

{

				const	int	tr	=	qRed(c)	<<	qt_red_shift;

				const	int	tg	=	qGreen(c)	<<	qt_green_shift;

				const	int	tb	=	qBlue(c)	>>	qt_neg_blue_shift;

				return	(tb	&	qt_blue_mask)	|	(tg	&	qt_green_mask)	|	(tr	&	qt_red_mask);

}

inline	QRgb	qt_conv16ToRgb(ushort	c)

{

				const	int	r=(c	&	qt_red_mask);

				const	int	g=(c	&	qt_green_mask);

				const	int	b=(c	&	qt_blue_mask);

				const	int	tr	=	r	>>	qt_red_shift;

				const	int	tg	=	g	>>	qt_green_shift;

				const	int	tb	=	b	<<	qt_neg_blue_shift;

				return	qRgb(tr,tg,tb);

}

inline	void	qt_conv16ToRgb(ushort	c,	int&	r,	int&	g,	int&	b)

{

				const	int	tr=(c	&	qt_red_mask);

				const	int	tg=(c	&	qt_green_mask);

				const	int	tb=(c	&	qt_blue_mask);

				r	=	tr	>>	qt_red_shift;

				g	=	tg	>>	qt_green_shift;

				b	=	tb	<<	qt_neg_blue_shift;

}

#endif

const	int	SourceSolid=0;

const	int	SourcePixmap=1;

#ifndef	QT_NO_QWS_CURSOR

extern	bool	qt_sw_cursor;

class	QGfxRasterBase;

#define	SW_CURSOR_DATA_SIZE	 4096		//	64x64	8-bit	cursor

class	SWCursorData;

class	QScreenCursor

{

public:

				QScreenCursor();

				virtual	~QScreenCursor();

				virtual	void	init(SWCursorData	*da,	bool	init	=	FALSE);

				virtual	void	set(const	QImage	&image,	int	hotx,	int	hoty);

				virtual	void	move(int	x,	int	y);

				virtual	void	show();

				virtual	void	hide();

				virtual	bool	restoreUnder(const	QRect	&r,	QGfxRasterBase	*g	=	0);

				virtual	void	saveUnder();

				virtual	void	drawCursor();

				//void	draw();

				virtual	bool	supportsAlphaCursor();

				static	bool	enabled()	{	return	qt_sw_cursor;	}

protected:

				QGfxRasterBase	*gfx;

				QGfxRasterBase	*gfxunder;

				QImage	*imgunder;

				QImage	*cursor;

				uchar	*fb_start;

				uchar	*fb_end;

				bool	save_under;

				SWCursorData	*data;

				int	clipWidth;

				int	clipHeight;

				int	myoffset;

};

extern	QScreenCursor	*	qt_screencursor;

#endif	//	QT_NO_QWS_CURSOR

struct	fb_cmap;

//	A	(used)	chunk	of	offscreen	memory

class	QPoolEntry	{

public:

				unsigned	int	start;

				unsigned	int	end;

};

class	QScreen	{

public:

				QScreen(int	display_id);

				virtual	~QScreen();

				virtual	bool	initDevice()	=	0;

				virtual	bool	connect(const	QString	&displaySpec)	=	0;

				virtual	void	disconnect()	=	0;

				virtual	int	initCursor(void	*,	bool=FALSE);

				virtual	void	shutdownDevice();

				virtual	void	setMode(int,int,int)	=	0;

				virtual	bool	supportsDepth(int)	const;

				virtual	QGfx	*	createGfx(unsigned	char	*,int,int,int,int);

				virtual	QGfx	*	screenGfx();

				virtual	void	save();

				virtual	void	restore();

				virtual	void	blank(bool	on);

				virtual	int	pixmapOffsetAlignment()	{	return	64;	}

				virtual	int	pixmapLinestepAlignment()	{	return	64;	}

				virtual	bool	onCard(unsigned	char	*)	const;

				virtual	bool	onCard(unsigned	char	*,	ulong&	out_offset)	const;

				//	sets	a	single	color	in	the	colormap

				virtual	void	set(unsigned	int,unsigned	int,unsigned	int,unsigned	int);

				//	allocates	a	color

				virtual	int	alloc(unsigned	int,unsigned	int,unsigned	int);

				int	width()	const	{	return	w;	}

				int	height()	const	{	return	h;	}

				int	depth()	const	{	return	d;	}

				virtual	int	pixmapDepth()	const;

				int	pixelType()	const	{	return	pixeltype;	}

				int	linestep()	const	{	return	lstep;	}

				int	deviceWidth()	const	{	return	dw;	}

				int	deviceHeight()	const	{	return	dh;	}

				uchar	*	base()	const	{	return	data;	}

				//	Ask	for	memory	from	card	cache	with	alignment

				virtual	uchar	*	cache(int,int)	{	return	0;	}

				virtual	void	uncache(uchar	*)	{}

				int	screenSize()	const	{	return	size;	}

				int	totalSize()	const	{	return	mapsize;	}

				QRgb	*	clut()	{	return	screenclut;	}

				int	numCols()	{	return	screencols;	}

				virtual	QSize	mapToDevice(const	QSize	&)	const;

				virtual	QSize	mapFromDevice(const	QSize	&)	const;

				virtual	QPoint	mapToDevice(const	QPoint	&,	const	QSize	&)	const;

				virtual	QPoint	mapFromDevice(const	QPoint	&,	const	QSize	&)	const;

				virtual	QRect	mapToDevice(const	QRect	&,	const	QSize	&)	const;

				virtual	QRect	mapFromDevice(const	QRect	&,	const	QSize	&)	const;

				virtual	QImage	mapToDevice(const	QImage	&)	const;

				virtual	QImage	mapFromDevice(const	QImage	&)	const;

				virtual	QRegion	mapToDevice(const	QRegion	&,	const	QSize	&)	const;

				virtual	QRegion	mapFromDevice(const	QRegion	&,	const	QSize	&)	const;

				virtual	int	transformOrientation()	const;

				virtual	bool	isTransformed()	const;

				virtual	bool	isInterlaced()	const;

				virtual	void	setDirty(const	QRect&);

#ifndef	QT_NO_QWS_REPEATER

				int	*	opType()	{	return	screen_optype;	}

				int	*	lastOp()	{	return	screen_lastop;	}

#endif

protected:

				//	Only	used	without	QT_NO_QWS_REPEATER,	but	included	so	that

				//	it's	binary	compatible	regardless.

				int	*	screen_optype;

				int	*	screen_lastop;

				QRgb	screenclut[256];

				int	screencols;

				bool	initted;

				uchar	*	data;

				//	Table	of	allocated	lumps,	kept	in	sorted	highest-to-lowest	order

				//	The	table	itself	is	allocated	at	the	bottom	of	offscreen	memory

				//	i.e.	it's	similar	to	having	a	stack	(the	table)	and	a	heap

				//	(the	allocated	blocks).	Freed	space	is	implicitly	described

				//	by	the	gaps	between	the	allocated	lumps	(this	saves	entries	and

				//	means	we	don't	need	to	worry	about	coalescing	freed	lumps)

				QPoolEntry	*	entries;

				int	*	entryp;

				unsigned	int	*	lowest;

				int	w;

				int	lstep;

				int	h;

				int	d;

				int	pixeltype;

				

				int	dw;

				int	dh;

				int	hotx;

				int	hoty;

				QImage	cursor;

				int	size;	 							//	Screen	size

				int	mapsize;							//	Total	mapped	memory

				int	displayId;

};

extern	QScreen	*	qt_screen;

class	Q_EXPORT	QGfx	:	public	Qt	{

public:

				//	With	loadable	drivers,	do	probe	here

				static	QGfx	*createGfx(int	depth,	unsigned	char	*buffer,

	 	 	 				int	w,	int	h,	int	linestep);

				virtual	~QGfx()	{}

				virtual	void	setPen(const	QPen	&)=0;

				virtual	void	setFont(const	QFont	&)=0;

				virtual	void	setBrush(const	QBrush	&)=0;

				virtual	void	setBrushPixmap(const	QPixmap	*)=0;

				virtual	void	setBrushOffset(int,	int)	=	0;

				virtual	void	setClipRect(int,int,int,int)=0;

				virtual	void	setClipRegion(const	QRegion	&)=0;

				virtual	void	setClipDeviceRegion(const	QRegion	&)=0;

				virtual	void	setClipping	(bool)=0;

				//	These	will	be	called	from	qwidget_qws	or	qwidget_mac

				//	to	update	the	drawing	area	when	a	widget	is	moved

				virtual	void	setOffset(int,int)=0;

				virtual	void	setWidgetRect(int,int,int,int)=0;

				virtual	void	setWidgetRegion(const	QRegion	&)=0;

				virtual	void	setWidgetDeviceRegion(const	QRegion	&)=0;

				virtual	void	setSourceWidgetOffset(int	x,	int	y)	=	0;

				virtual	void	setGlobalRegionIndex(int	idx)	=	0;

				virtual	void	setDashedLines(bool	d)	=	0;

				virtual	void	setDashes(char	*,	int)	=	0;

				virtual	void	setOpaqueBackground(bool	b)=0;

				virtual	void	setBackgroundColor(QColor	c)=0;

				//	Drawing	operations

				virtual	void	drawPoint(int,int)=0;

				virtual	void	drawPoints(const	QPointArray	&,int,int)=0;

				virtual	void	moveTo(int,int)=0;

				virtual	void	lineTo(int,int)=0;

				virtual	void	drawLine(int,int,int,int)=0;

				virtual	void	drawPolyline(const	QPointArray	&,int,int)=0;

				//	current	position

				virtual	QPoint	pos()	const	=	0;

				

				//	Fill	operations	-	these	use	the	current	source	(pixmap,

				//	color,	etc),	and	draws	outline

				virtual	void	fillRect(int,int,int,int)=0;

				virtual	void	drawPolygon(const	QPointArray	&,bool,int,int)=0;

				virtual	void	setLineStep(int)=0;

				//	Special	case	of	rect-with-pixmap-fill	for	speed/hardware	acceleration

				virtual	void	blt(int,int,int,int,int,int)=0;

				virtual	void	scroll(int,int,int,int,int,int)=0;

#if	!defined(QT_NO_MOVIE)	||	!defined(QT_NO_TRANSFORMATIONS)	||	!defined(QT_NO_PIXMAP_TRANSFORMATION)

				virtual	void	stretchBlt(int,int,int,int,int,int)=0;

#endif

				virtual	void	tiledBlt(int,int,int,int)=0;

				enum	SourceType	{	SourcePen,	SourceImage,	SourceAccel	};

				enum	PixelType	{	NormalPixel,	BGRPixel	};

				

				//	Setting	up	source	data	-	can	be	solid	color	or	pixmap	data

				virtual	void	setSource(const	QPaintDevice	*)=0;

				virtual	void	setSource(const	QImage	*)=0;

				virtual	void	setSource(unsigned	char	*,int,int,int,int,QRgb	*,int);

				//	This	one	is	pen

				virtual	void	setSourcePen()=0;

				virtual	void	drawAlpha(int,int,int,int,int,int,int,int)	{}

				virtual	void	hsync(int)	{}

				//	These	apply	only	to	blt's.	For	alpha	values	for	general

				//	drawing	operations	we	should	probably	have	a	separate	QGfx

				//	class.	It's	not	a	high	priority	though.

				//	Enum	values:	Ignore	alpha	information,	alpha	information	encoded	in

				//	32-bit	rgba	along	with	colors,	alpha	information	in	8bpp

				//	format	in	alphabits

				enum	AlphaType	{	IgnoreAlpha,	InlineAlpha,	SeparateAlpha,

																					LittleEndianMask,	BigEndianMask,	SolidAlpha	};

				//	Can	be	no	alpha,	inline	(32bit	data),	separate	(for	images),

				//	LittleEndianMask/BigEndianMask	1bpp	masks,	constant	alpha

				//	value

				virtual	void	setAlphaType(AlphaType)=0;

				//	Pointer	to	data,	linestep

				virtual	void	setAlphaSource(unsigned	char	*,int)=0;

				virtual	void	setAlphaSource(int,int=-1,int=-1,int=-1)=0;

				virtual	void	drawText(int,int,const	QString	&)=0;

				virtual	void	setClut(QRgb	*,int)=0;

				//	Save	and	restore	pen	and	brush	state	-	necessary	when	setting

				//	up	a	bitBlt	for	example

				virtual	void	save()=0;

				virtual	void	restore()=0;

				virtual	void	setRop(RasterOp)=0;

				virtual	void	setScreen(QScreen	*,QScreenCursor	*,bool,int	*,int	*);

				bool	isScreenGfx()	{	return	is_screen_gfx;	}	//for	cursor..

protected:

				bool	is_screen_gfx;

};

//	This	lives	in	loadable	modules

#ifndef	QT_LOADABLE_MODULES

extern	"C"	QScreen	*	qt_get_screen(int	display_id,	const	char*	spec);

#endif

//	This	is	in	main	lib,	loads	the	right	module,	calls	qt_get_screen

//	In	non-loadable	cases	just	aliases	to	qt_get_screen

const	unsigned	char	*	qt_probe_bus();

#endif

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qgl.h
This	is	the	verbatim	text	of	the	qgl.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qgl.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	OpenGL	classes	for	Qt

**

**	Created	:	970112

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	opengl	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	licenses	may	use	this

**	file	in	accordance	with	the	Qt	Commercial	License	Agreement	provided

**	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QGL_H

#define	QGL_H

#ifndef	QT_H

#include	<qwidget.h>

#include	"qglcolormap.h"

#endif	//	QT_H

#if	!defined(QT_MODULE_OPENGL)	||	defined(QT_LICENSE_PROFESSIONAL)

#define	QM_EXPORT_OPENGL

#else

#define	QM_EXPORT_OPENGL	Q_EXPORT

#endif

#ifndef	QT_NO_COMPAT

#define	QGL_VERSION	 450

#define	QGL_VERSION_STR	"4.5"

QM_EXPORT_OPENGL	inline	const	char	*qGLVersion()	{

				qObsolete(0,	"qGLVersion",	"qVersion");

				return	QGL_VERSION_STR;

}

#endif

#if	defined(Q_WS_WIN)

#	include	<qt_windows.h>

#endif

#if	defined(Q_WS_MAC)

#ifndef	QMAC_OPENGL_DOUBLEBUFFER

#define	QMAC_OPENGL_DOUBLEBUFFER

#endif

#	include	<OpenGL/gl.h>

#	include	<OpenGL/glu.h>

#else

#	include	<GL/gl.h>

#	include	<GL/glu.h>

#endif

#if	defined(Q_WS_WIN)	||	defined(Q_WS_MAC)

class	QGLCmap;

#endif

class	QPixmap;

#if	defined(Q_WS_X11)

class	QGLOverlayWidget;

#endif

//	Namespace	class:

class	QM_EXPORT_OPENGL	QGL

{

public:

				enum	FormatOption	{

	 DoubleBuffer	 	 =	0x0001,

	 DepthBuffer	 	 =	0x0002,

	 Rgba	 	 	 =	0x0004,

	 AlphaChannel	 	 =	0x0008,

	 AccumBuffer	 	 =	0x0010,

	 StencilBuffer	 	 =	0x0020,

	 StereoBuffers	 	 =	0x0040,

	 DirectRendering		 =	0x0080,

	 HasOverlay	 	 =	0x0100,

	 SingleBuffer												=	DoubleBuffer		<<	16,

	 NoDepthBuffer											=	DepthBuffer			<<	16,

	 ColorIndex														=	Rgba										<<	16,

	 NoAlphaChannel										=	AlphaChannel		<<	16,

	 NoAccumBuffer											=	AccumBuffer			<<	16,

	 NoStencilBuffer									=	StencilBuffer	<<	16,

	 NoStereoBuffers									=	StereoBuffers	<<	16,

	 IndirectRendering							=	DirectRendering	<<	16,

	 NoOverlay								 =	HasOverlay	<<	16

				};

};

class	QM_EXPORT_OPENGL	QGLFormat	:	public	QGL

{

public:

				QGLFormat();

				QGLFormat(int	options,	int	plane	=	0);

				bool					 	 doubleBuffer()	const;

				void					 	 setDoubleBuffer(bool	enable);

				bool					 	 depth()	const;

				void					 	 setDepth(bool	enable);

				bool					 	 rgba()	const;

				void					 	 setRgba(bool	enable);

				bool					 	 alpha()	const;

				void					 	 setAlpha(bool	enable);

				bool					 	 accum()	const;

				void					 	 setAccum(bool	enable);

				bool					 	 stencil()	const;

				void					 	 setStencil(bool	enable);

				bool					 	 stereo()	const;

				void					 	 setStereo(bool	enable);

				bool					 	 directRendering()	const;

				void					 	 setDirectRendering(bool	enable);

				bool					 	 hasOverlay()	const;

				void					 	 setOverlay(bool	enable);

				int		 	 plane()	const;

				void	 	 setPlane(int	plane);

				void	 	 setOption(FormatOption	opt);

				bool	 	 testOption(FormatOption	opt)	const;

				static	QGLFormat	 defaultFormat();

				static	void		 setDefaultFormat(const	QGLFormat&	f);

				static	QGLFormat	 defaultOverlayFormat();

				static	void		 setDefaultOverlayFormat(const	QGLFormat&	f);

				static	bool		 hasOpenGL();

				static	bool		 hasOpenGLOverlays();

				friend	QM_EXPORT_OPENGL	bool	operator==(const	QGLFormat&,	const	QGLFormat&);

				friend	QM_EXPORT_OPENGL	bool	operator!=(const	QGLFormat&,	const	QGLFormat&);

private:

				uint	opts;

				int	pln;

};

QM_EXPORT_OPENGL	bool	operator==(const	QGLFormat&,	const	QGLFormat&);

QM_EXPORT_OPENGL	bool	operator!=(const	QGLFormat&,	const	QGLFormat&);

class	QM_EXPORT_OPENGL	QGLContext	:	public	QGL

{

public:

				QGLContext(const	QGLFormat&	format,	QPaintDevice*	device);

				virtual	~QGLContext();

				virtual	bool	 create(const	QGLContext*	shareContext	=	0);

				bool	 	 isValid()	const;

				bool	 	 isSharing()	const;

				virtual	void	 reset();

				QGLFormat	 	 format()	const;

				QGLFormat	 	 requestedFormat()	const;

				virtual	void	 setFormat(const	QGLFormat&	format);

				

				virtual	void	 makeCurrent();

				virtual	void	 swapBuffers()	const;

				QPaintDevice*	 device()	const;

				QColor	 	 overlayTransparentColor()	const;

				static	const	QGLContext*	 currentContext();

								

protected:

				virtual	bool	 chooseContext(const	QGLContext*	shareContext	=	0);

				virtual	void	 doneCurrent();

#if	defined(Q_WS_WIN)

				virtual	int		 choosePixelFormat(void*	pfd,	HDC	pdc);

#elif	defined(Q_WS_X11)

				virtual	void*	 tryVisual(const	QGLFormat&	f,	int	bufDepth	=	1);

				virtual	void*	 chooseVisual();

#elif	defined(Q_WS_MAC)

				virtual	void*	 chooseMacVisual(GDHandle);

#endif

				bool	 	 deviceIsPixmap()	const;

				bool	 	 windowCreated()	const;

				void	 	 setWindowCreated(bool	on);

				bool	 	 initialized()	const;

				void	 	 setInitialized(bool	on);

				uint	 	 colorIndex(const	QColor&	c)	const;

protected:

#if		defined(Q_WS_WIN)

				HGLRC	 	 rc;

				HDC		 	 dc;

				WId	win;

				int		 	 pixelFormatId;

				QGLCmap*	 	 cmap;

#elif	defined(Q_WS_X11)

				void*	 	 vi;

				void*	 	 cx;

				Q_UINT32	 	 gpm;

#elif	defined(Q_WS_MAC)

				void*															vi;

				void*	 	 cx;

#endif

				QGLFormat	 	 glFormat;

				QGLFormat	 	 reqFormat;

private:

				class	Private	{

				public:

	 bool	 	 valid;

	 bool	 	 sharing;

	 bool	 	 initDone;

	 bool	 	 crWin;

	 QPaintDevice*	 paintDevice;

	 QColor	 	 transpColor;

				};

				Private*	d;

				static	QGLContext*	 currentCtx;

				friend	class	QGLWidget;

#ifdef	Q_WS_MAC

				void	fixBufferRect();

#endif

private:	 //	Disabled	copy	constructor	and	operator=

				QGLContext()	{}

				QGLContext(const	QGLContext&)	{}

				QGLContext&		 operator=(const	QGLContext&)	{	return	*this;	}

};

class	QM_EXPORT_OPENGL	QGLWidget	:	public	QWidget,	public	QGL

{

				Q_OBJECT

public:

				QGLWidget(QWidget*	parent=0,	const	char*	name=0,

	 							const	QGLWidget*	shareWidget	=	0,	WFlags	f=0);

				QGLWidget(const	QGLFormat&	format,	QWidget*	parent=0,	const	char*	name=0,

	 							const	QGLWidget*	shareWidget	=	0,	WFlags	f=0);

				~QGLWidget();

				void	 	 qglColor(const	QColor&	c)	const;

				void	 	 qglClearColor(const	QColor&	c)	const;

				

				bool	 	 isValid()	const;

				bool	 	 isSharing()	const;

				virtual	void	 makeCurrent();

				bool	 	 doubleBuffer()	const;

				virtual	void	 swapBuffers();

				QGLFormat	 	 format()	const;

#ifndef	Q_QDOC

				virtual	void	 setFormat(const	QGLFormat&	format);

#endif

				const	QGLContext*	 context()	const;

#ifndef	Q_QDOC

				virtual	void	 setContext(QGLContext*	context,

	 	 	 	 				const	QGLContext*	shareContext	=	0,

	 	 	 	 				bool	deleteOldContext	=	TRUE);

#endif

				virtual	QPixmap	 renderPixmap(int	w	=	0,	int	h	=	0,

	 	 	 	 						bool	useContext	=	FALSE);

				virtual	QImage	 grabFrameBuffer(bool	withAlpha	=	FALSE);

				virtual	void	 makeOverlayCurrent();

				const	QGLContext*	 overlayContext()	const;

				static	QImage	 convertToGLFormat(const	QImage&	img);

				void	 	 setMouseTracking(bool	enable);

				virtual	void		 reparent(QWidget*	parent,	WFlags	f,	const	QPoint&	p,

	 	 	 	 		bool	showIt	=	FALSE);

				

				const	QGLColormap	&	colormap()	const;

				void																setColormap(const	QGLColormap	&	map);

				

public	slots:

				virtual	void	 updateGL();

				virtual	void	 updateOverlayGL();

protected:

				virtual	void	 initializeGL();

				virtual	void	 resizeGL(int	w,	int	h);

				virtual	void	 paintGL();

				virtual	void	 initializeOverlayGL();

				virtual	void	 resizeOverlayGL(int	w,	int	h);

				virtual	void	 paintOverlayGL();

				void	 	 setAutoBufferSwap(bool	on);

				bool	 	 autoBufferSwap()	const;

				void	 	 paintEvent(QPaintEvent*);

				void	 	 resizeEvent(QResizeEvent*);

				virtual	void	 glInit();

				virtual	void	 glDraw();

				

private:

				void																cleanupColormaps();

				void	 	 init(const	QGLFormat&	fmt,

	 	 	 						const	QGLWidget*	shareWidget);

				bool	 	 renderCxPm(QPixmap*	pm);

				QGLContext*		 glcx;

				bool	 	 autoSwap;

				

				QGLColormap									cmap;

				

#if		defined(Q_WS_WIN)

				QGLContext*		 olcx;

#elif	defined(Q_WS_X11)

				QGLOverlayWidget*	 olw;

				friend	class	QGLOverlayWidget;

#elif	defined(Q_WS_MAC)

				QGLContext*		 olcx;

#endif

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QGLWidget(const	QGLWidget&);

				QGLWidget&	 	 operator=(const	QGLWidget&);

#endif

#ifdef	Q_WS_MAC

private:

#ifdef	QMAC_OPENGL_DOUBLEBUFFER

				QPaintDevice	*gl_pix;

				QGLFormat	req_format;

#endif

				friend	class	QWidget;

				void	fixReparented();

				void	fixBufferRect();

#endif

};

//

//	QGLFormat	inline	functions

//

inline	bool	QGLFormat::doubleBuffer()	const

{

				return	testOption(DoubleBuffer);

}

inline	bool	QGLFormat::depth()	const

{

				return	testOption(DepthBuffer);

}

inline	bool	QGLFormat::rgba()	const

{

				return	testOption(Rgba);

}

inline	bool	QGLFormat::alpha()	const

{

				return	testOption(AlphaChannel);

}

inline	bool	QGLFormat::accum()	const

{

				return	testOption(AccumBuffer);

}

inline	bool	QGLFormat::stencil()	const

{

				return	testOption(StencilBuffer);

}

inline	bool	QGLFormat::stereo()	const

{

				return	testOption(StereoBuffers);

}

inline	bool	QGLFormat::directRendering()	const

{

				return	testOption(DirectRendering);

}

inline	bool	QGLFormat::hasOverlay()	const

{

				return	testOption(HasOverlay);

}

//

//	QGLContext	inline	functions

//

inline	bool	QGLContext::isValid()	const

{

				return	d->valid;

}

inline	bool	QGLContext::isSharing()	const

{

				return	d->sharing;

}

inline	QGLFormat	QGLContext::format()	const

{

				return	glFormat;

}

inline	QGLFormat	QGLContext::requestedFormat()	const

{

				return	reqFormat;

}

inline	QPaintDevice*	QGLContext::device()	const

{

				return	d->paintDevice;

}

inline	bool	QGLContext::deviceIsPixmap()	const

{

				return	d->paintDevice->devType()	==	QInternal::Pixmap;

}

inline	bool	QGLContext::windowCreated()	const

{

				return	d->crWin;

}

inline	void	QGLContext::setWindowCreated(bool	on)

{

				d->crWin	=	on;

}

inline	bool	QGLContext::initialized()	const

{

				return	d->initDone;

}

inline	void	QGLContext::setInitialized(bool	on)

{

				d->initDone	=	on;

}

inline	const	QGLContext*	QGLContext::currentContext()

{

				return	currentCtx;

}

//

//	QGLWidget	inline	functions

//

inline	QGLFormat	QGLWidget::format()	const

{

				return	glcx->format();

}

inline	const	QGLContext	*QGLWidget::context()	const

{

				return	glcx;

}

inline	bool	QGLWidget::doubleBuffer()	const

{

				return	glcx->format().doubleBuffer();

}

inline	void	QGLWidget::setAutoBufferSwap(bool	on)

{

				autoSwap	=	on;

}

inline	bool	QGLWidget::autoBufferSwap()	const

{

				return	autoSwap;

}

#ifdef	Q_WS_MAC

inline	void	QGLWidget::fixBufferRect()

{

				glcx->fixBufferRect();

}

#endif

#endif

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qglcolormap.h
This	is	the	verbatim	text	of	the	qglcolormap.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	Id

**

**	Definition	of	QGLColormap	class

**

**	Created	:	20010326

**

**	Copyright	(C)	1992-2002	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	opengl	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	licenses	may	use	this

**	file	in	accordance	with	the	Qt	Commercial	License	Agreement	provided

**	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QGLCOLORMAP_H

#define	QGLCOLORMAP_H

#ifndef	QT_H

#include	"qcolor.h"

#include	"qmemarray.h"

#include	"qshared.h"

#endif	//	QT_H

#if	!defined(QT_MODULE_OPENGL)	||	defined(QT_LICENSE_PROFESSIONAL)

#define	QM_EXPORT_OPENGL

#else

#define	QM_EXPORT_OPENGL	Q_EXPORT

#endif

class	QWidget;

class	QM_EXPORT_OPENGL	QGLColormap

{

public:

				QGLColormap();

				QGLColormap(const	QGLColormap	&);

				~QGLColormap();

				

				QGLColormap	&operator=(const	QGLColormap	&);

				

				bool			isEmpty()	const;

				int				size()	const;

				void			detach();

				void			setEntries(int	count,	const	QRgb	*	colors,	int	base	=	0);

				void			setEntry(int	idx,	QRgb	color);

				void			setEntry(int	idx,	const	QColor	&	color);

				QRgb			entryRgb(int	idx)	const;

				QColor	entryColor(int	idx)	const;

				int				find(QRgb	color)	const;

				int				findNearest(QRgb	color)	const;

				

private:

				class	Private	:	public	QShared

				{

				public:

	 Private()	{

	 				cells.resize(256);	//	###	hardcoded	to	256	entries	for	now

	 				cmapHandle	=	0;

	 }

	 ~Private()	{

	 }

	 QMemArray<QRgb>	cells;

	 Qt::HANDLE						cmapHandle;

				};

				

				Private	*	d;

				friend	class	QGLWidget;

};

#endif

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qglobal.h
This	is	the	verbatim	text	of	the	qglobal.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	Id

**

**	Global	type	declarations	and	definitions

**

**	Created	:	920529

**

**	Copyright	(C)	1992-2002	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	tools	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QGLOBAL_H

#define	QGLOBAL_H

#define	QT_VERSION_STR			"3.0.5"

/*

			QT_VERSION	is	(MAJOR<<16+MINOR<<8+_PATCH)

	*/

#define	QT_VERSION	0x030005

/*

			The	operating	system,	must	be	one	of:	(Q_OS_x)

					MACX	 		-	Mac	OS	X

					MAC9	 		-	Mac	OS	9

					MSDOS		-	MS-DOS	and	Windows

					OS2	 		-	OS/2

					OS2EMX	-	XFree86	on	OS/2	(not	PM)

					WIN32		-	Win32	(Windows	95/98/ME	and	Windows	NT/2000/XP)

					SUN	 		-	SunOS

					SOLARIS	 	-	Sun	Solaris

					HPUX	 		-	HP-UX

					ULTRIX	-	DEC	Ultrix

					LINUX		-	Linux

					FREEBSD	 	-	FreeBSD

					NETBSD	-	NetBSD

					OPENBSD				-	OpenBSD

					BSDI	 		-	BSD/OS

					IRIX	 		-	SGI	Irix

					OSF	 		-	Compaq	Tru64

					UNIXWARE	 	-	SCO	UnixWare	2

					SCO	 		-	SCO	OpenServer,	UnixWare	7,	Open	UNIX

					AIX	 		-	AIX

					HURD	 		-	GNU	Hurd

					DGUX	 		-	DG/UX

					DYNIX		-	DYNIX/ptx

					RELIANT	 	-	Reliant	UNIX

					QNX6			-	QNX	RTP	6.1	

					QNX4			-	QNX	4.24

					LYNX	 		-	LynxOS

					BSD4	 		-	Any	BSD	4.4	system

					UNIX	 		-	Any	UNIX	BSD/SYSV	system

*/

#if	defined(__APPLE__)	&&	defined(__GNUC__)

#		define	Q_OS_MACX

#elif	defined(__MACOSX__)

#		define	Q_OS_MACX

#elif	defined(macintosh)

#		define	Q_OS_MAC9

#elif	defined(MSDOS)	||	defined(_MSDOS)	||	defined(__MSDOS__)

#		define	Q_OS_MSDOS

#elif	defined(OS2)	||	defined(_OS2)	||	defined(__OS2__)

#		if	defined(__EMX__)

#				define	Q_OS_OS2EMX

#		else

#				define	Q_OS_OS2

#		endif

#elif	!defined(SAG_COM)	&&	(defined(WIN64)	||	defined(_WIN64)	||	defined(__WIN64__))

#		define	Q_OS_WIN32

#		define	Q_OS_WIN64

#elif	!defined(SAG_COM)	&&	(defined(WIN32)	||	defined(_WIN32)	||	defined(__WIN32__)	||	defined(__NT__))

#		define	Q_OS_WIN32

#elif	defined(__MWERKS__)	&&	defined(__INTEL__)

#		define	Q_OS_WIN32

#elif	defined(sun)	||	defined(__sun)	||	defined(__sun__)

#		if	defined(__SVR4)

#				define	Q_OS_SOLARIS

#		else

#				define	Q_OS_SUN

#				define	Q_OS_BSD4

#		endif

#elif	defined(hpux)	||	defined(__hpux)	||	defined(__hpux__)

#		define	Q_OS_HPUX

#elif	defined(ultrix)	||	defined(__ultrix)	||	defined(__ultrix__)

#		define	Q_OS_ULTRIX

#elif	defined(sinix)

#		define	Q_OS_RELIANT

#elif	defined(linux)	||	defined(__linux)	||	defined(__linux__)

#		define	Q_OS_LINUX

#elif	defined(__FreeBSD__)

#		define	Q_OS_FREEBSD

#		define	Q_OS_BSD4

#elif	defined(__NetBSD__)

#		define	Q_OS_NETBSD

#		define	Q_OS_BSD4

#elif	defined(__OpenBSD__)

#		define	Q_OS_OPENBSD

#		define	Q_OS_BSD4

#elif	defined(bsdi)	||	defined(__bsdi__)

#		define	Q_OS_BSDI

#		define	Q_OS_BSD4

#elif	defined(sgi)	||	defined(__sgi)

#		define	Q_OS_IRIX

#elif	defined(__osf__)

#		define	Q_OS_OSF

#elif	defined(_AIX)

#		define	Q_OS_AIX

#elif	defined(__Lynx__)

#		define	Q_OS_LYNX

#elif	defined(_UNIXWARE)

#		define	Q_OS_UNIXWARE

#elif	defined(__GNU__)

#		define	Q_OS_HURD

#elif	defined(DGUX)

#		define	Q_OS_DGUX

#elif	defined(__QNXNTO__)

#		define	Q_OS_QNX6

#elif	defined(__QNX__)

#		define	Q_OS_QNX4

#elif	defined(_SCO_DS)	||	defined(M_UNIX)	||	defined(M_XENIX)

#		define	Q_OS_SCO

#elif	defined(sco)	||	defined(_UNIXWARE7)

#		define	Q_OS_UNIXWARE7

#elif	!defined(_SCO_DS)	&&	defined(__USLC__)	&&	defined(__SCO_VERSION__)

#		define	Q_OS_UNIXWARE7

#elif	defined(_SEQUENT_)

#		define	Q_OS_DYNIX

#elif	defined(__svr4__)

/*			generic	fallback	for	the	rest	of	svr4	systems,	e.g.	g++	on	UnixWare7.*/

#		define	Q_OS_SVR4

#else

#		error	"Qt	has	not	been	ported	to	this	OS	-	talk	to	qt-bugs@trolltech.com"

#endif

#if	defined(Q_OS_MAC9)	||	defined(Q_OS_MACX)

#		define	Q_OS_MAC

#endif

#if	defined(Q_OS_MAC9)	||	defined(Q_OS_MSDOS)	||	defined(Q_OS_OS2)	||	defined(Q_OS_WIN32)	||	defined(Q_OS_WIN64)

#		undef	Q_OS_UNIX

#elif	!defined(Q_OS_UNIX)

#		define	Q_OS_UNIX

#endif

/*

			The	compiler,	must	be	one	of:	(Q_CC_x)

					SYM	-	Symantec	C++	for	both	PC	and	Macintosh

					MPW	-	MPW	C++

					MWERKS	-	Metrowerks	CodeWarrior

					MSVC	-	Microsoft	Visual	C/C++

					BOR	-	Borland/Turbo	C++

					WAT	-	Watcom	C++

					GNU	-	GNU	C++

					COMEAU	-	Comeau	C++

					EDG	-	Edison	Design	Group	C++

					OC	-	CenterLine	C++

					SUN	-	Sun	C++

					MIPS	-	MIPSpro	C++

					DEC	-	DEC	C++

					HP	-	HPUX	C++

					HPACC	-	HPUX	ANSI	C++

					USLC	-	SCO	UnixWare	C++

					CDS	-	Reliant	C++

					KAI	-	KAI	C++

					INTEL	-	Intel	C++

					HIGHC	-	MetaWare	High	C/C++

					PGI	-	Portland	Group	C++

			Should	be	sorted	most	to	least	authoritative.

*/

/*	Symantec	C++	is	now	Digital	Mars?	*/

#if	defined(__SC__)

#		define	Q_CC_SYM

#elif	defined(applec)

#		define	Q_CC_MPW

#		define	Q_NO_BOOL_TYPE

#elif	defined(__MWERKS__)

#		define	Q_CC_MWERKS

#		define	QMAC_PASCAL	pascal

#elif	defined(_MSC_VER)

#		define	Q_CC_MSVC

/*	proper	support	of	bool	for	_MSC_VER	>=	1100	*/

#		define	Q_CANNOT_DELETE_CONSTANT

#		define	Q_INLINE_TEMPLATES	inline

#elif	defined(__BORLANDC__)	||	defined(__TURBOC__)

#		define	Q_CC_BOR

#		if	__BORLANDC__	<	0x500

#				define	Q_NO_BOOL_TYPE

#		endif

#elif	defined(__WATCOMC__)

#		define	Q_CC_WAT

#ifdef	Q_OS_QNX4

//compiler	flags

#define	Q_TYPENAME

#define	Q_NO_BOOL_TYPE

#define	Q_CANNOT_DELETE_CONSTANT

#define	mutable

//	XXX

#define	Q_BROKEN_TEMPLATE_SPECIALIZATION

//	No	Template	classes	in	QVariant

#define	QT_NO_TEMPLATE_VARIANT

//	Wcc	does	not	fill	in	functions	needed	by	valuelists

//	maps,	and	valuestacks	implicitly

#define	Q_FULL_TEMPLATE_INSTANTIATION

//	can	we	just	compare	the	structures?

#define	Q_FULL_TEMPLATE_INSTANTIATION_MEMCMP

//these	are	not	useful	to	our	customers

#define	QT_QWS_NO_SHM

#define	QT_NO_QWS_MULTIPROCESS

#define	QT_NO_SQL

#define	QT_NO_QWS_CURSOR

#endif

/*	Never	tested!	*/

#elif	defined(__HIGHC__)

#		define	Q_CC_HIGHC

#elif	defined(__GNUC__)

#		define	Q_CC_GNU

#		define	Q_C_CALLBACKS

#		if	__GNUC__	==	2	&&	__GNUC_MINOR__	<=	7

#				define	Q_FULL_TEMPLATE_INSTANTIATION

#		endif

#		if	(defined(__arm__)	||	defined(__ARMEL__))	&&	!defined(QT_MOC_CPP)

#				define	Q_PACKED	__attribute__	((packed))

#		endif

/*	IBM	compiler	versions	are	a	bit	messy.	There	are	actually	two	products:

			the	C	product,	and	the	C++	product.	The	C++	compiler	is	always	packaged

			with	the	latest	version	of	the	C	compiler.	Version	numbers	do	not	always

			match.	This	little	table	(I'm	not	sure	it's	accurate)	should	be	helpful:

	 			C++	product															C	product

	 				C	Set	3.1														C	Compiler	3.0

	 	

	 C++	Compiler	3.6.6									C	Compiler	4.3

	 	

	 Visual	Age	C++	4.0														...

	 	

	 Visual	Age	C++	5.0									C	Compiler	5.0

			Now:

			__xlC__				is	the	version	of	the	C	compiler	in	hexadecimal	notation

														-	it's	only	an	approximation	of	the	C++	compiler	version

			__IBMCPP__	is	the	version	of	the	C++	compiler	in	decimal	notation

														-	but	it's	not	defined	on	older	compilers	like	C	Set	3.1	*/

#elif	defined(__xlC__)

#		define	Q_CC_XLC

#		define	Q_FULL_TEMPLATE_INSTANTIATION

#		if	__xlC__	<	0x400

#				define	Q_NO_BOOL_TYPE

#				define	Q_BROKEN_TEMPLATE_SPECIALIZATION

#				define	Q_CANNOT_DELETE_CONSTANT

#		endif

/*	Compilers	with	EDG	front	end	are	similar.	To	detect	them	we	test:

			__EDG	documented	by	SGI,	observed	on	MIPSpro	7.3.1.1	and	KAI	C++	4.0b

			__EDG__	documented	in	EDG	online	docs,	observed	on	Compaq	C++	V6.3-002	*/

#elif	defined(__EDG)	||	defined(__EDG__)	||	defined(Q_CC_EDG)

#		if	!defined(Q_CC_EDG)

#				define	Q_CC_EDG

#		endif

/*	Compaq	have	disabled	EDG's	_BOOL	macro	-	observed	on	Compaq	C++	V6.3-002.	*/

#		if	defined(__DECCXX)

#				define	Q_CC_DEC

/*	Compaq	use	_BOOL_EXISTS	instead	of	_BOOL.	*/

#				if	defined(_BOOL_EXISTS)

/*	Well,	at	least	macro	_BOOL_EXISTS	is	documented	for	Compaq	C++	V6.3.

			In	any	case	versions	prior	to	Compaq	C++	V6.0-005	do	not	have	bool.	*/

#				elif	__DECCXX_VER	<	60060005

#						define	Q_NO_BOOL_TYPE

#				endif

/*	Apart	from	Compaq,	from	the	EDG	documentation:

			_BOOL

				Defined	in	C++	mode	when	bool	is	a	keyword.	The	name	of	this	predefined

				macro	is	specified	by	a	configuration	flag.	_BOOL	is	the	default.

			__BOOL_DEFINED

				Defined	in	Microsoft	C++	mode	when	bool	is	a	keyword.	*/

#		else

#				if	!defined(_BOOL)	&&	!defined(__BOOL_DEFINED)

#						define	Q_NO_BOOL_TYPE

#				endif

#				if	defined(__COMO__)

#						define	Q_CC_COMEAU

#						define	Q_C_CALLBACKS

#				elif	defined(__KCC)

#						define	Q_CC_KAI

#				elif	defined(__INTEL_COMPILER)

#						define	Q_CC_INTEL

/*	The	Portland	Group	compiler	is	based	on	EDG	and	does	define	__EDG__	*/

#				elif	defined(__PGI)

#						define	Q_CC_PGI

/*	The	new	UnixWare	7	compiler	is	based	on	EDG	and	does	define	__EDG__	*/

#				elif	defined(__USLC__)

#						define	Q_CC_EDG

#						define	Q_CC_USLC

/*	Never	tested!	*/

#				elif	defined(CENTERLINE_CLPP)	||	defined(OBJECTCENTER)

#						define	Q_CC_OC

/*	The	MIPSpro	compiler	in	o32	mode	is	based	on	EDG	but	disables	features

			such	as	template	specialization	nevertheless	*/

#				elif	defined(sgi)	||	defined(__sgi)

#						define	Q_CC_MIPS

#						if	defined(_MIPS_SIM)	&&	(_MIPS_SIM	==	_ABIO32)	/*	o32	ABI	*/

#								define	Q_BROKEN_TEMPLATE_SPECIALIZATION

#						elif	defined(_COMPILER_VERSION)	&&	(_COMPILER_VERSION	<	730)	/*	7.2	*/

#								define	Q_BROKEN_TEMPLATE_SPECIALIZATION

#						endif

#				endif

#		endif

/*	the	older	UnixWare	compiler	is	not	based	on	EDG	*/

#elif	defined(__USLC__)

#		define	Q_CC_USLC

#		define	Q_NO_BOOL_TYPE

#elif	defined(__SUNPRO_CC)

#		define	Q_CC_SUN

/*	5.0	compiler	or	better

				'bool'	is	enabled	by	default	but	can	be	disabled	using	-features=nobool

				in	which	case	_BOOL	is	not	defined

								this	is	the	default	in	4.2	compatibility	mode	triggered	by	-compat=4	*/

#		if	__SUNPRO_CC	>=	0x500

#				if	!defined(_BOOL)

#						define	Q_NO_BOOL_TYPE

#				endif

#				define	Q_C_CALLBACKS

/*	4.2	compiler	or	older	*/

#		else

#				define	Q_NO_BOOL_TYPE

#		endif

/*	CDS++	does	not	seem	to	define	__EDG__	or	__EDG	according	to	Reliant

			documentation	but	nevertheless	uses	EDG	conventions	like	_BOOL	*/

#elif	defined(sinix)

#		define	Q_CC_EDG

#		define	Q_CC_CDS

#		if	!defined(_BOOL)

#				define	Q_NO_BOOL_TYPE

#		endif

#elif	defined(Q_OS_HPUX)

/*	__HP_aCC	was	not	defined	in	first	aCC	releases	*/

#		if	defined(__HP_aCC)	||	__cplusplus	>=	199707L

#				define	Q_CC_HPACC

#		else

#				define	Q_CC_HP

#				define	Q_NO_BOOL_TYPE

#				define	Q_FULL_TEMPLATE_INSTANTIATION

#				define	Q_BROKEN_TEMPLATE_SPECIALIZATION

#		endif

#else

#		error	"Qt	has	not	been	tested	with	this	compiler	-	talk	to	qt-bugs@trolltech.com"

#endif

#ifndef	Q_PACKED

#		define	Q_PACKED

#endif

/*

			The	window	system,	must	be	one	of:	(Q_WS_x)

					MACX	 		-	Mac	OS	X

					MAC9	 		-	Mac	OS	9

					QWS	 		-	Qt/Embedded

					WIN32		-	Windows

					X11	 		-	X	Window	System

					PM			-	unsupported

					WIN16		-	unsupported

*/

#if	defined(Q_OS_MACX)

#		define	Q_WS_MACX

#elif	defined(Q_OS_MAC9)

#		define	Q_WS_MAC9

#elif	defined(Q_OS_MSDOS)

#		define	Q_WS_WIN16

#		error	"Qt	requires	Win32	and	does	not	work	with	Windows	3.x"

#elif	defined(_WIN32_X11_)

#		define	Q_WS_X11

#elif	defined(Q_OS_WIN32)

#		define	Q_WS_WIN32

#		if	defined(Q_OS_WIN64)

#				define	Q_WS_WIN64

#		endif

#elif	defined(Q_OS_OS2)

#		define	Q_WS_PM

#		error	"Qt	does	not	work	with	OS/2	Presentation	Manager	or	Workplace	Shell"

#elif	defined(Q_OS_UNIX)

#		ifdef	QWS

#				define	Q_WS_QWS

#		else

#				define	Q_WS_X11

#		endif

#endif

#if	defined(Q_OS_MAC)	&&	!defined(QMAC_PASCAL)

#		define	QMAC_PASCAL

#endif

#if	defined(Q_WS_WIN16)	||	defined(Q_WS_WIN32)

#		define	Q_WS_WIN

#endif

#if	defined(Q_WS_MAC9)	||	defined(Q_WS_MACX)

#		define	Q_WS_MAC

#endif

/*

			Some	classes	do	not	permit	copies	to	be	made	of	an	object.

			These	classes	contains	a	private	copy	constructor	and	operator=

			to	disable	copying	(the	compiler	gives	an	error	message).

			Undefine	Q_DISABLE_COPY	to	turn	off	this	checking.

*/

#define	Q_DISABLE_COPY

#if	defined(__cplusplus)

//

//	Useful	type	definitions	for	Qt

//

#if	defined(Q_NO_BOOL_TYPE)

#if	defined(Q_CC_HP)

//	bool	is	an	unsupported	reserved	keyword	in	later	versions

#define	bool	int

#else

typedef	int	bool;

#endif

#endif

typedef	unsigned	char			uchar;

typedef	unsigned	short		ushort;

typedef	unsigned	 uint;

typedef	unsigned	long			ulong;

typedef	char	 	 			*pchar;

typedef	uchar	 	 			*puchar;

typedef	const	char					*pcchar;

//

//	Constant	bool	values

//

#ifndef	TRUE

const	bool	FALSE	=	0;

const	bool	TRUE	=	!0;

#endif

#if	defined(__WATCOMC__)

#ifdef	Q_OS_QNX4

const	bool	false	=	FALSE;

const	bool	true	=	TRUE;

#endif

#endif

//

//	Workaround	for	static	const	members	on	MSVC++.

//

#if	defined(Q_CC_MSVC)

#		define	QT_STATIC_CONST	static

#		define	QT_STATIC_CONST_IMPL

#else

#		define	QT_STATIC_CONST	static	const

#		define	QT_STATIC_CONST_IMPL	const

#endif

//

//	Utility	macros	and	inline	functions

//

#define	QMAX(a,	b)	 ((b)	<	(a)	?	(a)	:	(b))

#define	QMIN(a,	b)	 ((a)	<	(b)	?	(a)	:	(b))

#define	QABS(a)	((a)	>=	0		?	(a)	:	-(a))

inline	int	qRound(double	d)

{

				return	int(d	>=	0.0	?	d	+	0.5	:	d	-	0.5);

}

//

//	Size-dependent	types	(architechture-dependent	byte	order)

//

#if	!defined(QT_CLEAN_NAMESPACE)

//	source	compatibility	with	Qt	1.x

typedef	signed	char	 				INT8;	 	 	//	8	bit	signed

typedef	unsigned	char	 			UINT8;	 	 //	8	bit	unsigned

typedef	short	 	 				INT16;	 	//	16	bit	signed

typedef	unsigned	short	 			UINT16;	 //	16	bit	unsigned

typedef	int	 	 INT32;	 		//	32	bit	signed

typedef	unsigned	int	 			UINT32;	 //	32	bit	unsigned

#endif

typedef	signed	char	 				Q_INT8;	 	//	8	bit	signed

typedef	unsigned	char	 			Q_UINT8;	 //	8	bit	unsigned

typedef	short	 	 				Q_INT16;	 	//	16	bit	signed

typedef	unsigned	short	 			Q_UINT16;	 //	16	bit	unsigned

typedef	int	 	 Q_INT32;	 		//	32	bit	signed

typedef	unsigned	int	 			Q_UINT32;	 //	32	bit	unsigned

#if	defined(Q_OS_WIN64)

//	LLP64	64-bit	model	on	Windows

typedef	__int64					Q_LONG;	 	//	word	up	to	64	bit	signed

typedef	unsigned	__int64	 			Q_ULONG;	 //	word	up	to	64	bit	unsigned

#else

//	LP64	64-bit	model	on	Linux

typedef	long	 	 				Q_LONG;

typedef	unsigned	long	 			Q_ULONG;

#endif

#if	!defined(QT_CLEAN_NAMESPACE)

//	mininum	size	of	64	bits	is	not	guaranteed

#define	Q_INT64					Q_LONG

#define	Q_UINT64	 				Q_ULONG

#endif

//

//	Data	stream	functions	is	provided	by	many	classes	(defined	in	qdatastream.h)

//

class	QDataStream;

//

//	Some	platform	specific	stuff

//

#ifdef	Q_WS_WIN

extern	bool	qt_winunicode;

#endif

//

//	feature	seubsetting

//

//	Note	that	disabling	some	features	will	produce	a	libqt	that	is	not

//	compatible	with	other	libqt	builds.	Such	modifications	are	only

//	supported	on	Qt/Embedded	where	reducing	the	library	size	is	important

//	and	where	the	application-suite	is	often	a	fixed	set.

//

#if	!defined(QT_MOC)

#if	defined(QCONFIG_LOCAL)

#include	<qconfig-local.h>

#elif	defined(QCONFIG_MINIMAL)

#include	<qconfig-minimal.h>

#elif	defined(QCONFIG_SMALL)

#include	<qconfig-small.h>

#elif	defined(QCONFIG_MEDIUM)

#include	<qconfig-medium.h>

#elif	defined(QCONFIG_LARGE)

#include	<qconfig-large.h>

#else	//	everything...

#include	<qconfig.h>

#endif

#endif

#ifndef	QT_BUILD_KEY

#define	QT_BUILD_KEY	"unspecified"

#endif

//	prune	to	local	config

#include	"qmodules.h"

#ifndef	QT_MODULE_ICONVIEW

#	define	QT_NO_ICONVIEW

#endif

#ifndef	QT_MODULE_WORKSPACE

#	define	QT_NO_WORKSPACE

#endif

#ifndef	QT_MODULE_NETWORK

#define	QT_NO_NETWORK

#endif

#ifndef	QT_MODULE_CANVAS

#	define	QT_NO_CANVAS

#endif

#ifndef	QT_MODULE_TABLE

#define	QT_NO_TABLE

#endif

#ifndef	QT_MODULE_XML

#	define	QT_NO_XML

#endif

#ifndef	QT_MODULE_OPENGL

#	define	QT_NO_OPENGL

#endif

#if	!defined(QT_MODULE_SQL)

#	define	QT_NO_SQL

#endif

#ifdef	Q_WS_MAC9

//No	need	for	menu	merging

#		ifndef	QMAC_QMENUBAR_NO_MERGE

#				define	QMAC_QMENUBAR_NO_MERGE

#		endif

//Mac9	does	not	use	quartz

#		ifndef	QMAC_NO_QUARTZ

#				define	QMAC_NO_QUARTZ

#		endif

#		ifndef	QMAC_QMENUBAR_NO_EVENT

#				define	QMAC_QMENUBAR_NO_EVENT

#		endif

#endif

#ifdef	Q_WS_MACX	//for	no	nobody	uses	quartz,	just	putting	in	first	level	hooks

#		ifndef	QMAC_NO_QUARTZ

#				define	QMAC_NO_QUARTZ

#		endif

#		ifndef	QMAC_QMENUBAR_NO_EVENT

#				define	QMAC_QMENUBAR_NO_EVENT

#		endif

#endif

#ifndef	QT_H

#include	<qfeatures.h>

#endif	//	QT_H

//

//	Create	Qt	DLL	if	QT_DLL	is	defined	(Windows	only)

//

#if	defined(Q_OS_WIN32)	||	defined(Q_OS_WIN64)

#		if	defined(QT_NODLL)

#				undef	QT_MAKEDLL

#				undef	QT_DLL

#		elif	defined(QT_MAKEDLL)	/*	create	a	Qt	DLL	library	*/

#				if	defined(QT_DLL)

#						undef	QT_DLL

#				endif

#				define	Q_EXPORT		__declspec(dllexport)

#				define	Q_TEMPLATEDLL

#				define	Q_TEMPLATE_EXTERN

#				undef		Q_DISABLE_COPY		/*	avoid	unresolved	externals	*/

#		elif	defined(QT_DLL)				/*	use	a	Qt	DLL	library	*/

#				define	Q_EXPORT		__declspec(dllimport)

#				define	Q_TEMPLATEDLL

#				if	defined(Q_CC_MSVC)

#						define	Q_TEMPLATE_EXTERN	/*extern*/	//###	too	many	warnings,	even	though	disabled

#				else

#						define	Q_TEMPLATE_EXTERN

#				endif

#				undef		Q_DISABLE_COPY		/*	avoid	unresolved	externals	*/

#		endif

#else

#		undef	QT_MAKEDLL	 				/*	ignore	these	for	other	platforms	*/

#		undef	QT_DLL

#endif

#ifndef	Q_EXPORT

#		define	Q_EXPORT

#endif

//

//	System	information

//

Q_EXPORT	const	char	*qVersion();

Q_EXPORT	bool	qSysInfo(int	*wordSize,	bool	*bigEndian);

#if	defined(Q_WS_WIN)

Q_EXPORT	int	qWinVersion();

#endif

//

//	Avoid	some	particularly	useless	warnings	from	some	stupid	compilers.

//	To	get	ALL	C++	compiler	warnings,	define	QT_CC_WARNINGS	or	comment	out

//	the	line	"#define	QT_NO_WARNINGS"

//

#if	!defined(QT_CC_WARNINGS)

#		define	QT_NO_WARNINGS

#endif

#if	defined(QT_NO_WARNINGS)

#		if	defined(Q_CC_MSVC)

#				pragma	warning(disable:	4244)	//	'conversion'	conversion	from	'type1'	to	'type2',	possible	loss	of	data

#				pragma	warning(disable:	4275)	//	non	-	DLL-interface	classkey	'identifier'	used	as	base	for	DLL-interface	classkey	'identifier'

#				pragma	warning(disable:	4514)	//	unreferenced	inline/local	function	has	been	removed

#				pragma	warning(disable:	4800)	//	'type'	:	forcing	value	to	bool	'true'	or	'false'	(performance	warning)

#				pragma	warning(disable:	4097)	//	typedef-name	'identifier1'	used	as	synonym	for	class-name	'identifier2'

#				pragma	warning(disable:	4706)	//	assignment	within	conditional	expression

#				pragma	warning(disable:	4786)	//	truncating	debug	info	after	255	characters

#				pragma	warning(disable:	4660)	//	template-class	specialization	'identifier'	is	already	instantiated

#				pragma	warning(disable:	4355)	//	'this'	:	used	in	base	member	initializer	list

#				pragma	warning(disable:	4231)	//	nonstandard	extension	used	:	'extern'	before	template	explicit	instantiation

#		elif	defined(Q_CC_BOR)

#				pragma	option	-w-inl

#				pragma	option	-w-aus

#				pragma	warn	-inl

#				pragma	warn	-pia

#				pragma	warn	-ccc

#				pragma	warn	-rch

#				pragma	warn	-sig

#		elif	defined(Q_CC_MWERKS)

#				pragma	warn_possunwant	off

#		endif

#endif

#ifndef	Q_INLINE_TEMPLATES

#		define	Q_INLINE_TEMPLATES	

#endif

#ifndef	Q_TYPENAME

#		define	Q_TYPENAME	typename

#endif

//

//	Use	to	avoid	"unused	parameter"	warnings

//

#define	Q_UNUSED(x)	(void)x;

//

//	Debugging	and	error	handling

//

#if	!defined(QT_NO_CHECK)

#		define	QT_CHECK_STATE	 	 	 	//	check	state	of	objects	etc.

#		define	QT_CHECK_RANGE	 	 	 	//	check	range	of	indexes	etc.

#		define	QT_CHECK_NULL		 	 	//	check	null	pointers

#		define	QT_CHECK_MATH		 	 	//	check	math	functions

#endif

#if	!defined(QT_NO_DEBUG)	&&	!defined(QT_DEBUG)

#		define	QT_DEBUG	 	 	 		//	display	debug	messages

#		if	!defined(QT_NO_COMPAT)

//	source	compatibility	with	Qt	2.x

#				if	!defined(NO_DEBUG)	&&	!defined(DEBUG)

#						if	!defined(Q_OS_MACX)	 	 	 //	clash	with	MacOS	X	headers

#								define	DEBUG

#						endif

#				endif

#		endif

#endif

Q_EXPORT	void	qDebug(const	char	*,	...)			//	print	debug	message

#if	defined(Q_CC_GNU)	&&	!defined(__INSURE__)

				__attribute__	((format	(printf,	1,	2)))

#endif

;

Q_EXPORT	void	qWarning(const	char	*,	...)	//	print	warning	message

#if	defined(Q_CC_GNU)	&&	!defined(__INSURE__)

				__attribute__	((format	(printf,	1,	2)))

#endif

;

Q_EXPORT	void	qFatal(const	char	*,	...)			//	print	fatal	message	and	exit

#if	defined(Q_CC_GNU)

				__attribute__	((format	(printf,	1,	2)))

#endif

;

Q_EXPORT	void	qSystemWarning(const	char	*,	int	code	=	-1);

#if	!defined(QT_CLEAN_NAMESPACE)

//	source	compatibility	with	Qt	1.x

Q_EXPORT	void	debug(const	char	*,	...)				//	print	debug	message

#if	defined(Q_CC_GNU)	&&	!defined(__INSURE__)

				__attribute__	((format	(printf,	1,	2)))

#endif

;

Q_EXPORT	void	warning(const	char	*,	...)		//	print	warning	message

#if	defined(Q_CC_GNU)	&&	!defined(__INSURE__)

				__attribute__	((format	(printf,	1,	2)))

#endif

;

Q_EXPORT	void	fatal(const	char	*,	...)				//	print	fatal	message	and	exit

#if	defined(Q_CC_GNU)	&&	!defined(__INSURE__)

				__attribute__	((format	(printf,	1,	2)))

#endif

;

#endif	//	QT_CLEAN_NAMESPACE

#if	!defined(Q_ASSERT)

#if	defined(QT_CHECK_STATE)

#if	defined(QT_FATAL_ASSERT)

#define	Q_ASSERT(x)		((x)	?	(void)0	:	qFatal("ASSERT:	\"%s\"	in	%s	(%d)",#x,__FILE__,__LINE__))

#else

#define	Q_ASSERT(x)		((x)	?	(void)0	:	qWarning("ASSERT:	\"%s\"	in	%s	(%d)",#x,__FILE__,__LINE__))

#endif

#else

#define	Q_ASSERT(x)

#endif

#endif

#if	!defined(QT_NO_COMPAT)

//	source	compatibility	with	Qt	2.x

#ifndef	Q_OS_TEMP

#		if	!defined(ASSERT)

#				define	ASSERT(x)	Q_ASSERT(x)

#		endif

#endif	//	Q_OS_TEMP

#endif	//	QT_NO_COMPAT

Q_EXPORT	bool	qt_check_pointer(bool	c,	const	char	*,	int);

#if	defined(QT_CHECK_NULL)

#		define	Q_CHECK_PTR(p)	(qt_check_pointer((p)==0,__FILE__,__LINE__))

#else

#		define	Q_CHECK_PTR(p)

#endif

#if	!defined(QT_NO_COMPAT)

//	source	compatibility	with	Qt	2.x

#		if	!defined(CHECK_PTR)

#				define	CHECK_PTR(x)	Q_CHECK_PTR(x)

#		endif

#endif	//	QT_NO_COMPAT

enum	QtMsgType	{	QtDebugMsg,	QtWarningMsg,	QtFatalMsg	};

typedef	void	(*QtMsgHandler)(QtMsgType,	const	char	*);

Q_EXPORT	QtMsgHandler	qInstallMsgHandler(QtMsgHandler);

#if	!defined(QT_NO_COMPAT)

//	source	compatibility	with	Qt	2.x

typedef	QtMsgHandler	msg_handler;

#endif

Q_EXPORT	void	qSuppressObsoleteWarnings(bool	=	TRUE);

Q_EXPORT	void	qObsolete(const	char	*obj,	const	char	*oldfunc,

	 	 			const	char	*newfunc);

Q_EXPORT	void	qObsolete(const	char	*obj,	const	char	*oldfunc);

Q_EXPORT	void	qObsolete(const	char	*message);

#endif	//	__cplusplus

#endif	//	QGLOBAL_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qgridview.h
This	is	the	verbatim	text	of	the	qgridview.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	Id

**

**	Definition	of	QGridView	class

**

**	Created:	2001.05.23

**

**	Copyright	(C)	1992-2001	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QGRIDVIEW_H

#define	QGRIDVIEW_H

#ifndef	QT_H

#include	"qscrollview.h"

#endif	//	QT_H

#ifndef	QT_NO_GRIDVIEW

class	QGridViewPrivate;

class	Q_EXPORT	QGridView	:	public	QScrollView

{

				Q_OBJECT

				Q_PROPERTY(int	numRows	READ	numRows	WRITE	setNumRows)

				Q_PROPERTY(int	numCols	READ	numCols	WRITE	setNumCols)

				Q_PROPERTY(int	cellWidth	READ	cellWidth	WRITE	setCellWidth)

				Q_PROPERTY(int	cellHeight	READ	cellHeight	WRITE	setCellHeight)

public:

				QGridView(QWidget	*parent=0,	const	char	*name=0,	WFlags	f=0);

			~QGridView();

				int	numRows()	const;

				virtual	void	setNumRows(int);

				int	numCols()	const;

				virtual	void	setNumCols(int);

				int	cellWidth()	const;

				virtual	void	setCellWidth(int);

				int	cellHeight()	const;

				virtual	void	setCellHeight(int);

				

				QRect	cellRect()	const;

				QRect	cellGeometry(int	row,	int	column);

				QSize	gridSize()	const;

				int	rowAt(int	y)	const;

				int	columnAt(int	x)	const;

				void	repaintCell(int	row,	int	column,	bool	erase=TRUE);

				void	updateCell(int	row,	int	column);

				void	ensureCellVisible(int	row,	int	column);

protected:

				virtual	void	paintCell(QPainter	*,	int	row,	int	col)	=	0;

				virtual	void	paintEmptyArea(QPainter	*p,	int	cx,	int	cy,	int	cw,	int	ch);

				void	drawContents(QPainter	*p,	int	cx,	int	cy,	int	cw,	int	ch);

				virtual	void	dimensionChange(int,	int);

private:

				void	drawContents(QPainter*);

				void	updateGrid();

				int	nrows;

				int	ncols;

				int	cellw;

				int	cellh;

				QGridViewPrivate*	d;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QGridView(const	QGridView	&);

				QGridView	&operator=(const	QGridView	&);

#endif

};

inline	int	QGridView::cellWidth()	const	

{	return	cellw;	}

inline	int	QGridView::cellHeight()	const	

{	return	cellh;	}

inline	int	QGridView::rowAt(int	y)	const	

{	return	y	/	cellh;	}

inline	int	QGridView::columnAt(int	x)	const	

{	return	x	/	cellw;	}

inline	int	QGridView::numRows()	const	

{	return	nrows;	}

inline	int	QGridView::numCols()	const	

{return	ncols;	}

inline	QRect	QGridView::cellRect()	const

{	return	QRect(0,	0,	cellw,	cellh);	}

inline	QSize	QGridView::gridSize()	const	

{	return	QSize(ncols	*	cellw,	nrows	*	cellh);	}

#endif	//	QT_NO_GRIDVIEW

#endif	//	QTABLEVIEW_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qgroupbox.h
qgroupbox.hTrolltech

/**

**	$Id:		qt/qgroupbox.h			3.0.5			edited	Mar	18	12:51	$

**

**	Definition	of	QGroupBox	widget	class

**

**	Created	:	950203

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QGROUPBOX_H

#define	QGROUPBOX_H

#ifndef	QT_H

#include	"qframe.h"

#endif	//	QT_H

#ifndef	QT_NO_GROUPBOX

class	QAccel;

class	QGroupBoxPrivate;

class	QVBoxLayout;

class	QGridLayout;

class	QSpacerItem;

class	Q_EXPORT	QGroupBox	:	public	QFrame

{

				Q_OBJECT

				Q_PROPERTY(QString	title	READ	title	WRITE	setTitle)

				Q_PROPERTY(Alignment	alignment	READ	alignment	WRITE	setAlignment)

				Q_PROPERTY(Orientation	orientation	READ	orientation	WRITE	setOrientation	DESIGNABLE	false)

				Q_PROPERTY(int	columns	READ	columns	WRITE	setColumns	DESIGNABLE	false)

	

public:

				QGroupBox(QWidget*	parent=0,	const	char*	name=0);

				QGroupBox(const	QString	&title,

	 							QWidget*	parent=0,	const	char*	name=0);

				QGroupBox(int	strips,	Orientation	o,

	 							QWidget*	parent=0,	const	char*	name=0);

				QGroupBox(int	strips,	Orientation	o,	const	QString	&title,

	 							QWidget*	parent=0,	const	char*	name=0);

				virtual	void	setColumnLayout(int	strips,	Orientation	o);

				QString	title()	const	{	return	str;	}

				virtual	void	setTitle(const	QString	&);

				int	alignment()	const	{	return	align;	}

				virtual	void	setAlignment(int);

				int	columns()	const;

				void	setColumns(int);

				Orientation	orientation()	const	{	return	dir;	}

				void	setOrientation(Orientation);

				int	insideMargin()	const;

				int	insideSpacing()	const;

				void	setInsideMargin(int	m);

				void	setInsideSpacing(int	s);

				void	addSpace(int);

				QSize	sizeHint()	const;

protected:

				bool	event(QEvent	*);

				void	childEvent(QChildEvent	*);

				void	resizeEvent(QResizeEvent	*);

				void	paintEvent(QPaintEvent	*);

				void	focusInEvent(QFocusEvent	*);

				void	fontChange(const	QFont	&);

private	slots:

				void	fixFocus();

private:

				void	skip();

				void	init();

				void	calculateFrame();

				void	insertWid(QWidget*);

				void	setTextSpacer();

				QString	str;

				int	align;

				int	lenvisible;

#ifndef	QT_NO_ACCEL

				QAccel	*	accel;

#endif

				QGroupBoxPrivate	*	d;

				QVBoxLayout	*vbox;

				QGridLayout	*grid;

				int	row;

				int	col;

				int	nRows,	nCols;

				Orientation	dir;

				int	spac,	marg;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QGroupBox(const	QGroupBox	&);

				QGroupBox	&operator=(const	QGroupBox	&);

#endif

};

#endif	//	QT_NO_GROUPBOX

#endif	//	QGROUPBOX_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qguardedptr.h
qguardedptr.hTrolltech

/**

**	Id

**

**	Definition	of	QGuardedPtr	class

**

**	Created	:	990929

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QGUARDEDPTR_H

#define	QGUARDEDPTR_H

#ifndef	QT_H

#include	"qobject.h"

#endif	//	QT_H

class	Q_EXPORT	QGuardedPtrPrivate	:	public	QObject,	public	QShared

{

				Q_OBJECT

public:

				QGuardedPtrPrivate(QObject*);

				~QGuardedPtrPrivate();

				QObject*	object()	const;

				void	reconnect(QObject*);

private	slots:

				void	objectDestroyed();

private:

				QObject*	obj;

};

template	<class	T>

class	QGuardedPtr

{

public:

				QGuardedPtr()	:	priv(new	QGuardedPtrPrivate(0))	{}

				QGuardedPtr(T*	o)	{

	 priv	=	new	QGuardedPtrPrivate((QObject*)o);

				}

				QGuardedPtr(const	QGuardedPtr<T>	&p)	{

	 priv	=	p.priv;

	 ref();

				}

				~QGuardedPtr()	{	deref();	}

				QGuardedPtr<T>	&operator=(const	QGuardedPtr<T>	&p)	{

	 if	(priv	!=	p.priv)	{

	 				deref();

	 				priv	=	p.priv;

	 				ref();

	 }

	 return	*this;

				}

				QGuardedPtr<T>	&operator=(T*	o)	{

	 if	(priv->count	==	1)	{

	 				priv->reconnect((QObject*)o);

	 }	else	{

	 				deref();

	 				priv	=	new	QGuardedPtrPrivate((QObject*)o);

	 }

	 return	*this;

				}

				bool	operator==(const	QGuardedPtr<T>	&p)	const	{

	 return	priv->object()	==	p.priv->object();

				}

				bool	operator!=	(const	QGuardedPtr<T>&	p)	const	{

	 return	!(*this	==	p);

				}

				bool	isNull()	const	{	return	!priv->object();	}

				T*	operator->()	const	{	return	(T*)	priv->object();	}

				T&	operator*()	const	{	return	*((T*)priv->object());	}

				operator	T*()	const	{	return	(T*)	priv->object();	}

private:

				void	ref()	{	priv->ref();	}

				void	deref()	{

	 if	(priv->deref())

	 				delete	priv;

				}

				QGuardedPtrPrivate*	priv;

};

inline	QObject*	QGuardedPtrPrivate::object()	const

{

				return	obj;

}

#endif

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qhbox.h
This	is	the	verbatim	text	of	the	qhbox.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qhbox.h			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QHBOX_H

#define	QHBOX_H

#ifndef	QT_H

#include	"qwidget.h"

#endif	//	QT_H

#ifndef	QT_NO_HBOX

#include	"qframe.h"

class	QBoxLayout;

class	Q_EXPORT	QHBox	:	public	QFrame

{

				Q_OBJECT

public:

				QHBox(QWidget*	parent=0,	const	char*	name=0,	WFlags	f=0);

				void	setSpacing(int);

				bool	setStretchFactor(QWidget*,	int	stretch);

				QSize	sizeHint()	const;

protected:

				QHBox(bool	horizontal,	QWidget*	parent=0,	const	char*	name=0,	WFlags	f=0);

				void	frameChanged();

private:

				QBoxLayout	*lay;

};

#endif	//	QT_NO_HBOX

#endif	//	QHBOX_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qhbuttongroup.h
qhbuttongroup.hTrolltech

/**

**	$Id:		qt/qhbuttongroup.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QHButtonGroup	class

**

**	Created	:	990602

**

**	Copyright	(C)	1999-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QHBUTTONGROUP_H

#define	QHBUTTONGROUP_H

#ifndef	QT_H

#include	"qbuttongroup.h"

#endif	//	QT_H

#ifndef	QT_NO_HBUTTONGROUP

class	Q_EXPORT	QHButtonGroup	:	public	QButtonGroup

{

				Q_OBJECT

public:

				QHButtonGroup(QWidget*	parent=0,	const	char*	name=0);

				QHButtonGroup(const	QString	&title,	QWidget*	parent=0,	const	char*	name=0);

				~QHButtonGroup();

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QHButtonGroup(const	QHButtonGroup	&);

				QHButtonGroup	&operator=(const	QHButtonGroup	&);

#endif

};

#endif	//	QT_NO_HBUTTONGROUP

#endif	//	QHBUTTONGROUP_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qheader.h
qheader.hTrolltech

/**

**	$Id:		qt/qheader.h			3.0.5			edited	May	3	19:39	$

**

**	Definition	of	QHeader	widget	class	(table	header)

**

**	Created	:	961105

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QHEADER_H

#define	QHEADER_H

#ifndef	QT_H

#include	"qwidget.h"

#include	"qstring.h"

#include	"qiconset.h"	//	conversion	QPixmap->QIconset

#endif	//	QT_H

#ifndef	QT_NO_HEADER

class	QShowEvent;

class	QHeaderData;

class	QTable;

class	Q_EXPORT	QHeader	:	public	QWidget

{

				friend	class	QTable;

				friend	class	QTableHeader;

				Q_OBJECT

				Q_PROPERTY(Orientation	orientation	READ	orientation	WRITE	setOrientation)

				Q_PROPERTY(bool	tracking	READ	tracking	WRITE	setTracking)

				Q_PROPERTY(int	count	READ	count)

				Q_PROPERTY(int	offset	READ	offset	WRITE	setOffset)

				Q_PROPERTY(bool	moving	READ	isMovingEnabled	WRITE	setMovingEnabled)

				Q_PROPERTY(bool	stretching	READ	isStretchEnabled	WRITE	setStretchEnabled)

public:

				QHeader(QWidget*	parent=0,	const	char*	name=0);

				QHeader(int,	QWidget*	parent=0,	const	char*	name=0);

				~QHeader();

				int		 addLabel(const	QString	&,	int	size	=	-1);

				int		 addLabel(const	QIconSet&,	const	QString	&,	int	size	=	-1);

				void		 removeLabel(int	section);

				virtual	void	setLabel(int,	const	QString	&,	int	size	=	-1);

				virtual	void	setLabel(int,	const	QIconSet&,	const	QString	&,	int	size	=	-1);

				QString		 label(int	section)	const;

				QIconSet*		 iconSet(int	section)	const;

				virtual	void	setOrientation(Orientation);

				Orientation	orientation()	const;

				virtual	void	setTracking(bool	enable);

				bool	 tracking()	const;

				virtual	void	setClickEnabled(bool,	int	section	=	-1);

				virtual	void	setResizeEnabled(bool,	int	section	=	-1);

				virtual	void	setMovingEnabled(bool);

				virtual	void	setStretchEnabled(bool	b,	int	section);

				void	setStretchEnabled(bool	b)	{	setStretchEnabled(b,	-1);	}

				bool	isClickEnabled(int	section	=	-1)	const;

				bool	isResizeEnabled(int	section	=	-1)	const;

				bool	isMovingEnabled()	const;

				bool	isStretchEnabled()	const;

				bool	isStretchEnabled(int	section)	const;

				void		 resizeSection(int	section,	int	s);

				int		 sectionSize(int	section)	const;

				int		 sectionPos(int	section)	const;

				int		 sectionAt(int	pos)	const;

				int		 count()	const;

				int	headerWidth()	const;

				QRect	 sectionRect(int	section)	const;

				virtual	void	setCellSize(int	,	int);	//	obsolete,	do	not	use

				int		 cellSize(int	i)	const	{	return	sectionSize(mapToSection(i));	}	//	obsolete,	do	not	use

				int		 cellPos(int)	const;	//	obsolete,	do	not	use

				int		 cellAt(int	pos)	const	{	return	mapToIndex(sectionAt(pos	+	offset()));	}	//	obsolete,	do	not	use

				int		 offset()	const;

				QSize	 sizeHint()	const;

				int		 mapToSection(int	index)	const;

				int		 mapToIndex(int	section)	const;

				int		 mapToLogical(int)	const;	//	obsolete,	do	not	use

				int		 mapToActual(int)	const;	//	obsolete,	do	not	use

				void		 moveSection(int	section,	int	toIndex);

				virtual	void	moveCell(int,	int);	//	obsolete,	do	not	use

				void		 setSortIndicator(int	section,	bool	increasing	=	TRUE);

				void	adjustHeaderSize()	{	adjustHeaderSize(-1);	}

public	slots:

				void	setUpdatesEnabled(bool	enable);

				virtual	void	setOffset(int	pos);

signals:

				void	 clicked(int	section);

				void	 pressed(int	section);

				void	 released(int	section);

				void	 sizeChange(int	section,	int	oldSize,	int	newSize);

				void	 indexChange(int	section,	int	fromIndex,	int	toIndex);

				void	 sectionClicked(int);	//	obsolete,	do	not	use

				void	 moved(int,	int);	//	obsolete,	do	not	use

protected:

				void	 paintEvent(QPaintEvent	*);

				void	 showEvent(QShowEvent	*e);

				void		 resizeEvent(QResizeEvent	*e);

				QRect	 sRect(int	index);

				virtual	void	 paintSection(QPainter	*p,	int	index,	const	QRect&	fr);

				virtual	void	 paintSectionLabel(QPainter*	p,	int	index,	const	QRect&	fr);

				void	 mousePressEvent(QMouseEvent	*);

				void	 mouseReleaseEvent(QMouseEvent	*);

				void	 mouseMoveEvent(QMouseEvent	*);

private:

				void	adjustHeaderSize(int	diff);

				void	 init(int);

				void	 paintRect(int	p,	int	s);

				void	 markLine(int	idx);

				void	 unMarkLine(int	idx);

				int		 pPos(int	i)	const;

				int		 pSize(int	i)	const;

				int		 findLine(int);

				bool	reverse()	const;

				void	calculatePositions(bool	onlyVisible	=	FALSE,	int	start	=	0);

				void	 handleColumnResize(int,	int,	bool,	bool	=	TRUE);

				QSize	 sectionSizeHint(int	section,	const	QFontMetrics&	fm)	const;

				void	 setSectionSizeAndHeight(int	section,	int	size);

				void	resizeArrays(int	size);

				void	setIsATableHeader(bool	b);

				int		 offs;

				int		 handleIdx;

				int		 oldHIdxSize;

				int		 moveToIdx;

				enum	State	{	Idle,	Sliding,	Pressed,	Moving,	Blocked	};

				State	 state;

				QCOORD	 clickPos;

				bool	 trackingIsOn;

				int							cachedIdx;	//	not	used

				int	cachedPos;	//	not	used

				Orientation	orient;

				QHeaderData	*d;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QHeader(const	QHeader	&);

				QHeader	&operator=(const	QHeader	&);

#endif

};

inline	QHeader::Orientation	QHeader::orientation()	const

{

				return	orient;

}

inline	void	QHeader::setTracking(bool	enable)	{	trackingIsOn	=	enable;	}

inline	bool	QHeader::tracking()	const	{	return	trackingIsOn;	}

#endif	//	QT_NO_HEADER

#endif	//	QHEADER_H

Copyright	©	2002	Trolltech Trademarks :farfareast Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qhgroupbox.h
qhgroupbox.hTrolltech

/**

**	$Id:		qt/qhgroupbox.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QHGroupBox	widget	class

**

**	Created	:	990602

**

**	Copyright	(C)	1999-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QHGROUPBOX_H

#define	QHGROUPBOX_H

#ifndef	QT_H

#include	"qgroupbox.h"

#endif	//	QT_H

#ifndef	QT_NO_HGROUPBOX

class	Q_EXPORT	QHGroupBox	:	public	QGroupBox

{

				Q_OBJECT

public:

				QHGroupBox(QWidget*	parent=0,	const	char*	name=0);

				QHGroupBox(const	QString	&title,	QWidget*	parent=0,	const	char*	name=0);

				~QHGroupBox();

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QHGroupBox(const	QHGroupBox	&);

				QHGroupBox	&operator=(const	QHGroupBox	&);

#endif

};

#endif	//	QT_NO_HGROUPBOX

#endif	//	QHGROUPBOX_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qhostaddress.h
This	is	the	verbatim	text	of	the	qhostaddress.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qhostaddress.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QHostAddress	class.

**

**	Created	:	979899

**

**	Copyright	(C)	1997-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	network	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	licenses	may	use	this

**	file	in	accordance	with	the	Qt	Commercial	License	Agreement	provided

**	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QHOSTADDRESS_H

#define	QHOSTADDRESS_H

#ifndef	QT_H

#include	"qstring.h"

#endif	//	QT_H

#if	!defined(QT_MODULE_NETWORK)	||	defined(QT_LICENSE_PROFESSIONAL)	||	defined(QT_INTERNAL_NETWORK)

#define	QM_EXPORT_NETWORK

#else

#define	QM_EXPORT_NETWORK	Q_EXPORT

#endif

#ifndef	QT_NO_NETWORK

class	QHostAddressPrivate;

class	QM_EXPORT_NETWORK	QHostAddress

{

public:

				QHostAddress();

				QHostAddress(Q_UINT32	ip4Addr);

				QHostAddress(Q_UINT8	*ip6Addr);

				QHostAddress(const	QHostAddress	&);

				virtual	~QHostAddress();

				QHostAddress	&	operator=(const	QHostAddress	&);

				void	setAddress(Q_UINT32	ip4Addr);

				void	setAddress(Q_UINT8	*ip6Addr);

#ifndef	QT_NO_STRINGLIST

				bool	setAddress(const	QString&	address);

#endif

				bool	 	isIp4Addr()	 	const;

				Q_UINT32	 	ip4Addr()	 	const;

#ifndef	QT_NO_SPRINTF

				QString	 	toString()	const;

#endif

				bool	 	operator==(const	QHostAddress	&)	const;

private:

				QHostAddressPrivate*	d;

};

#endif	//QT_NO_NETWORK

#endif

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qhttp.h
This	is	the	verbatim	text	of	the	qhttp.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qhttp.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QHtpp	and	related	classes.

**

**	Created	:	970521

**

**	Copyright	(C)	1997-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	network	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	licenses	may	use	this

**	file	in	accordance	with	the	Qt	Commercial	License	Agreement	provided

**	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QHTTP_H

#define	QHTTP_H

#ifndef	QT_H

#include	"qobject.h"

#include	"qnetworkprotocol.h"

#endif	//	QT_H

#if	!defined(QT_MODULE_NETWORK)	||	defined(QT_LICENSE_PROFESSIONAL)	||	defined(QT_INTERNAL_NETWORK)

#define	QM_EXPORT_HTTP

#else

#define	QM_EXPORT_HTTP	Q_EXPORT

#endif

#ifndef	QT_NO_NETWORKPROTOCOL_HTTP

class	QSocket;

class	QTimerEvent;

class	QTextStream;

class	QIODevice;

class	QHttpReplyHeader;

class	QHttpClient;

class	QHttpPrivate;

class	QM_EXPORT_HTTP	QHttp	:	public	QNetworkProtocol

{

				Q_OBJECT

public:

				QHttp();

				virtual	~QHttp();

				int	supportedOperations()	const;

protected:

				void	operationGet(QNetworkOperation	*op);

				void	operationPut(QNetworkOperation	*op);

private	slots:

				void	reply(const	QHttpReplyHeader	&	rep,	const	QByteArray	&	dataA);

				void	requestFinished();

				void	requestFailed(int);

				void	connected();

				void	closed();

				void	hostFound();

private:

				QHttpPrivate	*d;

				QHttpClient	*client;

				int	bytesRead;

};

#endif

#endif

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qiconset.h
This	is	the	verbatim	text	of	the	qiconset.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	Id

**

**	Definition	of	QIconSet	class

**

**	Created	:	980318

**

**	Copyright	(C)	1992-2001	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QICONSET_H

#define	QICONSET_H

#ifndef	QT_H

#include	"qpixmap.h"

#endif	//	QT_H

#ifndef	QT_NO_ICONSET

class	QIconSetPrivate;

class	Q_EXPORT	QIconSet

{

public:

				enum	Size	{	Automatic,	Small,	Large	};

				enum	Mode	{	Normal,	Disabled,	Active	};

				enum	State	{	On,	Off	};

				QIconSet();

				QIconSet(const	QPixmap	&,	Size	=	Automatic);

				QIconSet(const	QPixmap	&smallPix,	const	QPixmap	&largePix);

				QIconSet(const	QIconSet	&);

				virtual	~QIconSet();

				void	reset(const	QPixmap	&,	Size);

				virtual	void	setPixmap(const	QPixmap	&,	Size,	Mode	=	Normal,	State	=	Off);

				virtual	void	setPixmap(const	QString	&,	Size,	Mode	=	Normal,	State	=	Off);

				QPixmap	pixmap(Size,	Mode,	State	=	Off)	const;

				QPixmap	pixmap(Size	s,	bool	enabled,	State	=	Off)	const;

				QPixmap	pixmap()	const;

				bool	isGenerated(Size,	Mode,	State	=	Off)	const;

				void	clearGenerated();

				bool	isNull()	const;

				void	detach();

				QIconSet	&operator=(const	QIconSet	&);

				//	static	functions

				static	void	setIconSize(Size,	const	QSize	&);

				static	const	QSize	&	iconSize(Size);

#if	defined(Q_FULL_TEMPLATE_INSTANTIATION)

				bool	operator==(const	QIconSet&)	const	{	return	FALSE;	}

#endif

private:

				QIconSetPrivate	*	d;

};

#endif	//	QT_NO_ICONSET

#endif

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qiconview.h
This	is	the	verbatim	text	of	the	qiconview.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qiconview.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QIconView	widget	class

**

**	Created	:	990707

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	iconview	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QICONVIEW_H

#define	QICONVIEW_H

#ifndef	QT_H

#include	<qscrollview.h>

#include	<qstring.h>

#include	<qrect.h>

#include	<qpoint.h>

#include	<qsize.h>

#include	<qfont.h>	//	QString->QFont	conversion

#include	<qdragobject.h>

#include	<qbitmap.h>

#include	<qpicture.h>

#endif	//	QT_H

#ifndef	QT_NO_ICONVIEW

#if	!defined(QT_MODULE_ICONVIEW)	||	defined(QT_INTERNAL_ICONVIEW)

#define	QM_EXPORT_ICONVIEW

#else

#define	QM_EXPORT_ICONVIEW	Q_EXPORT

#endif

class	QIconView;

class	QPainter;

class	QMimeSource;

class	QMouseEvent;

class	QDragEnterEvent;

class	QDragMoveEvent;

class	QDragLeaveEvent;

class	QKeyEvent;

class	QFocusEvent;

class	QShowEvent;

class	QIconViewItem;

class	QIconViewItemLineEdit;

class	QStringList;

class	QIconDragPrivate;

#ifndef	QT_NO_DRAGANDDROP

class	QM_EXPORT_ICONVIEW	QIconDragItem

{

public:

				QIconDragItem();

				virtual	~QIconDragItem();

				virtual	QByteArray	data()	const;

				virtual	void	setData(const	QByteArray	&d);

				bool	operator==	(const	QIconDragItem&)	const;

private:

				QByteArray	ba;

};

class	QM_EXPORT_ICONVIEW	QIconDrag	:	public	QDragObject

{

				Q_OBJECT

public:

				QIconDrag(QWidget	*	dragSource,	const	char*	name	=	0);

				virtual	~QIconDrag();

				void	append(const	QIconDragItem	&item,	const	QRect	&pr,	const	QRect	&tr);

				virtual	const	char*	format(int	i)	const;

				static	bool	canDecode(QMimeSource*	e);

				virtual	QByteArray	encodedData(const	char*	mime)	const;

private:

				QIconDragPrivate	*d;

				QChar	endMark;

				friend	class	QIconView;

				friend	class	QIconViewPrivate;

};

#endif

class	QIconViewToolTip;

class	QIconViewItemPrivate;

class	QM_EXPORT_ICONVIEW	QIconViewItem	:	public	Qt

{

				friend	class	QIconView;

				friend	class	QIconViewToolTip;

				friend	class	QIconViewItemLineEdit;

public:

				QIconViewItem(QIconView	*parent);

				QIconViewItem(QIconView	*parent,	QIconViewItem	*after);

				QIconViewItem(QIconView	*parent,	const	QString	&text);

				QIconViewItem(QIconView	*parent,	QIconViewItem	*after,	const	QString	&text);

				QIconViewItem(QIconView	*parent,	const	QString	&text,	const	QPixmap	&icon);

				QIconViewItem(QIconView	*parent,	QIconViewItem	*after,	const	QString	&text,	const	QPixmap	&icon);

#ifndef	QT_NO_PICTURE

				QIconViewItem(QIconView	*parent,	const	QString	&text,	const	QPicture	&picture);

				QIconViewItem(QIconView	*parent,	QIconViewItem	*after,	const	QString	&text,	const	QPicture	&picture);

#endif

				virtual	~QIconViewItem();

				virtual	void	setRenameEnabled(bool	allow);

				virtual	void	setDragEnabled(bool	allow);

				virtual	void	setDropEnabled(bool	allow);

				virtual	QString	text()	const;

				virtual	QPixmap	*pixmap()	const;

#ifndef	QT_NO_PICTURE

				virtual	QPicture	*picture()	const;

#endif

				virtual	QString	key()	const;

				bool	renameEnabled()	const;

				bool	dragEnabled()	const;

				bool	dropEnabled()	const;

				QIconView	*iconView()	const;

				QIconViewItem	*prevItem()	const;

				QIconViewItem	*nextItem()	const;

				int	index()	const;

				virtual	void	setSelected(bool	s,	bool	cb);

				virtual	void	setSelected(bool	s);

				virtual	void	setSelectable(bool	s);

				bool	isSelected()	const;

				bool	isSelectable()	const;

				virtual	void	repaint();

				virtual	bool	move(int	x,	int	y);

				virtual	void	moveBy(int	dx,	int	dy);

				virtual	bool	move(const	QPoint	&pnt);

				virtual	void	moveBy(const	QPoint	&pnt);

				QRect	rect()	const;

				int	x()	const;

				int	y()	const;

				int	width()	const;

				int	height()	const;

				QSize	size()	const;

				QPoint	pos()	const;

				QRect	textRect(bool	relative	=	TRUE)	const;

				QRect	pixmapRect(bool	relative	=	TRUE)	const;

				bool	contains(const	QPoint&	pnt)	const;

				bool	intersects(const	QRect&	r)	const;

				virtual	bool	acceptDrop(const	QMimeSource	*mime)	const;

#ifndef	QT_NO_TEXTEDIT

				void	rename();

#endif

				virtual	int	compare(QIconViewItem	*i)	const;

				virtual	void	setText(const	QString	&text);

				virtual	void	setPixmap(const	QPixmap	&icon);

#ifndef	QT_NO_PICTURE

				virtual	void	setPicture(const	QPicture	&icon);

#endif

				virtual	void	setText(const	QString	&text,	bool	recalc,	bool	redraw	=	TRUE);

				virtual	void	setPixmap(const	QPixmap	&icon,	bool	recalc,	bool	redraw	=	TRUE);

				virtual	void	setKey(const	QString	&k);

				virtual	int	rtti()	const;

				static	int	RTTI;

protected:

#ifndef	QT_NO_TEXTEDIT

				virtual	void	removeRenameBox();

#endif

				virtual	void	calcRect(const	QString	&text_	=	QString::null);

				virtual	void	paintItem(QPainter	*p,	const	QColorGroup	&cg);

				virtual	void	paintFocus(QPainter	*p,	const	QColorGroup	&cg);

#ifndef	QT_NO_DRAGANDDROP

				virtual	void	dropped(QDropEvent	*e,	const	QValueList<QIconDragItem>	&lst);

#endif

				virtual	void	dragEntered();

				virtual	void	dragLeft();

				void	setItemRect(const	QRect	&r);

				void	setTextRect(const	QRect	&r);

				void	setPixmapRect(const	QRect	&r);

				void	calcTmpText();

private:

				void	init(QIconViewItem	*after	=	0

#ifndef	QT_NO_PICTURE

	 							,	QPicture	*pic	=	0

#endif

);

#ifndef	QT_NO_TEXTEDIT

				void	renameItem();

				void	cancelRenameItem();

#endif

				void	checkRect();

				QIconView	*view;

				QString	itemText,	itemKey;

				QString	tmpText;

				QPixmap	*itemIcon;

#ifndef	QT_NO_PICTURE

				QPicture	*itemPic;

#endif

				QIconViewItem	*prev,	*next;

				uint	allow_rename	:	1;

				uint	allow_drag	:	1;

				uint	allow_drop	:	1;

				uint	selected	:	1;

				uint	selectable	:	1;

				uint	dirty	:	1;

				uint	wordWrapDirty	:	1;

				QRect	itemRect,	itemTextRect,	itemIconRect;

#ifndef	QT_NO_TEXTEDIT

				QIconViewItemLineEdit	*renameBox;

#endif

				QRect	oldRect;

				QIconViewItemPrivate	*d;

};

class	QIconViewPrivate;										/*	don't	touch	*/

class	QM_EXPORT_ICONVIEW	QIconView	:	public	QScrollView

{

				friend	class	QIconViewItem;

				friend	class	QIconViewPrivate;

				friend	class	QIconViewToolTip;

				Q_OBJECT

				//	####	sorting	and	sort	direction	do	not	work

				Q_ENUMS(SelectionMode	ItemTextPos	Arrangement	ResizeMode)

				Q_PROPERTY(bool	sorting	READ	sorting)

				Q_PROPERTY(bool	sortDirection	READ	sortDirection)

				Q_PROPERTY(SelectionMode	selectionMode	READ	selectionMode	WRITE	setSelectionMode)

				Q_PROPERTY(int	gridX	READ	gridX	WRITE	setGridX)

				Q_PROPERTY(int	gridY	READ	gridY	WRITE	setGridY)

				Q_PROPERTY(int	spacing	READ	spacing	WRITE	setSpacing)

				Q_PROPERTY(ItemTextPos	itemTextPos	READ	itemTextPos	WRITE	setItemTextPos)

				Q_PROPERTY(QBrush	itemTextBackground	READ	itemTextBackground	WRITE	setItemTextBackground)

				Q_PROPERTY(Arrangement	arrangement	READ	arrangement	WRITE	setArrangement)

				Q_PROPERTY(ResizeMode	resizeMode	READ	resizeMode	WRITE	setResizeMode)

				Q_PROPERTY(int	maxItemWidth	READ	maxItemWidth	WRITE	setMaxItemWidth)

				Q_PROPERTY(int	maxItemTextLength	READ	maxItemTextLength	WRITE	setMaxItemTextLength)

				Q_PROPERTY(bool	autoArrange	READ	autoArrange	WRITE	setAutoArrange)

				Q_PROPERTY(bool	itemsMovable	READ	itemsMovable	WRITE	setItemsMovable)

				Q_PROPERTY(bool	wordWrapIconText	READ	wordWrapIconText	WRITE	setWordWrapIconText)

				Q_PROPERTY(bool	showToolTips	READ	showToolTips	WRITE	setShowToolTips)

				Q_PROPERTY(uint	count	READ	count)

public:

				enum	SelectionMode	{

	 Single	=	0,

	 Multi,

	 Extended,

	 NoSelection

				};

				enum	Arrangement	{

	 LeftToRight	=	0,

	 TopToBottom

				};

				enum	ResizeMode	{

	 Fixed	=	0,

	 Adjust

				};

				enum	ItemTextPos	{

	 Bottom	=	0,

	 Right

				};

				QIconView(QWidget*	parent=0,	const	char*	name=0,	WFlags	f	=	0);

				virtual	~QIconView();

				virtual	void	insertItem(QIconViewItem	*item,	QIconViewItem	*after	=	0L);

				virtual	void	takeItem(QIconViewItem	*item);

				int	index(const	QIconViewItem	*item)	const;

				QIconViewItem	*firstItem()	const;

				QIconViewItem	*lastItem()	const;

				QIconViewItem	*currentItem()	const;

				virtual	void	setCurrentItem(QIconViewItem	*item);

				virtual	void	setSelected(QIconViewItem	*item,	bool	s,	bool	cb	=	FALSE);

				uint	count()	const;

public:

				virtual	void	showEvent(QShowEvent	*);

				virtual	void	setSelectionMode(SelectionMode	m);

				SelectionMode	selectionMode()	const;

				QIconViewItem	*findItem(const	QPoint	&pos)	const;

				QIconViewItem	*findItem(const	QString	&text,	ComparisonFlags	compare	=	BeginsWith)	const;

				virtual	void	selectAll(bool	select);

				virtual	void	clearSelection();

				virtual	void	invertSelection();

				virtual	void	repaintItem(QIconViewItem	*item);

				void	ensureItemVisible(QIconViewItem	*item);

				QIconViewItem*	findFirstVisibleItem(const	QRect	&r)	const;

				QIconViewItem*	findLastVisibleItem(const	QRect	&r)	const;

				virtual	void	clear();

				virtual	void	setGridX(int	rx);

				virtual	void	setGridY(int	ry);

				int	gridX()	const;

				int	gridY()	const;

				virtual	void	setSpacing(int	sp);

				int	spacing()	const;

				virtual	void	setItemTextPos(ItemTextPos	pos);

				ItemTextPos	itemTextPos()	const;

				virtual	void	setItemTextBackground(const	QBrush	&b);

				QBrush	itemTextBackground()	const;

				virtual	void	setArrangement(Arrangement	am);

				Arrangement	arrangement()	const;

				virtual	void	setResizeMode(ResizeMode	am);

				ResizeMode	resizeMode()	const;

				virtual	void	setMaxItemWidth(int	w);

				int	maxItemWidth()	const;

				virtual	void	setMaxItemTextLength(int	w);

				int	maxItemTextLength()	const;

				virtual	void	setAutoArrange(bool	b);

				bool	autoArrange()	const;

				virtual	void	setShowToolTips(bool	b);

				bool	showToolTips()	const;

				void	setSorting(bool	sort,	bool	ascending	=	TRUE);

				bool	sorting()	const;

				bool	sortDirection()	const;

				virtual	void	setItemsMovable(bool	b);

				bool	itemsMovable()	const;

				virtual	void	setWordWrapIconText(bool	b);

				bool	wordWrapIconText()	const;

				bool	eventFilter(QObject	*	o,	QEvent	*);

				QSize	minimumSizeHint()	const;

				QSize	sizeHint()	const;

				virtual	void	sort(bool	ascending	=	TRUE);

				virtual	void	setFont(const	QFont	&);

				virtual	void	setPalette(const	QPalette	&);

				bool	isRenaming()	const;

public	slots:

				virtual	void	arrangeItemsInGrid(const	QSize	&grid,	bool	update	=	TRUE);

				virtual	void	arrangeItemsInGrid(bool	update	=	TRUE);

				virtual	void	setContentsPos(int	x,	int	y);

				virtual	void	updateContents();

signals:

				void	selectionChanged();

				void	selectionChanged(QIconViewItem	*item);

				void	currentChanged(QIconViewItem	*item);

				void	clicked(QIconViewItem	*);

				void	clicked(QIconViewItem	*,	const	QPoint	&);

				void	pressed(QIconViewItem	*);

				void	pressed(QIconViewItem	*,	const	QPoint	&);

				void	doubleClicked(QIconViewItem	*item);

				void	returnPressed(QIconViewItem	*item);

				void	rightButtonClicked(QIconViewItem*	item,	const	QPoint&	pos);

				void	rightButtonPressed(QIconViewItem*	item,	const	QPoint&	pos);

				void	mouseButtonPressed(int	button,	QIconViewItem*	item,	const	QPoint&	pos);

				void	mouseButtonClicked(int	button,	QIconViewItem*	item,	const	QPoint&	pos);

				void	contextMenuRequested(QIconViewItem*	item,	const	QPoint	&pos);

#ifndef	QT_NO_DRAGANDDROP

				void	dropped(QDropEvent	*e,	const	QValueList<QIconDragItem>	&lst);

#endif

				void	moved();

				void	onItem(QIconViewItem	*item);

				void	onViewport();

				void	itemRenamed(QIconViewItem	*item,	const	QString	&);

				void	itemRenamed(QIconViewItem	*item);

protected	slots:

				virtual	void	doAutoScroll();

				virtual	void	adjustItems();

				virtual	void	slotUpdate();

private	slots:

				void	clearInputString();

				void	movedContents(int	dx,	int	dy);

protected:

				void	drawContents(QPainter	*p,	int	cx,	int	cy,	int	cw,	int	ch);

				void	contentsMousePressEvent(QMouseEvent	*e);

				void	contentsMouseReleaseEvent(QMouseEvent	*e);

				void	contentsMouseMoveEvent(QMouseEvent	*e);

				void	contentsMouseDoubleClickEvent(QMouseEvent	*e);

				void	contentsContextMenuEvent(QContextMenuEvent	*e);

#ifndef	QT_NO_DRAGANDDROP

				void	contentsDragEnterEvent(QDragEnterEvent	*e);

				void	contentsDragMoveEvent(QDragMoveEvent	*e);

				void	contentsDragLeaveEvent(QDragLeaveEvent	*e);

				void	contentsDropEvent(QDropEvent	*e);

#endif

				void	resizeEvent(QResizeEvent*	e);

				void	keyPressEvent(QKeyEvent	*e);

				void	focusInEvent(QFocusEvent	*e);

				void	focusOutEvent(QFocusEvent	*e);

				void	enterEvent(QEvent	*e);

				virtual	void	drawRubber(QPainter	*p);

#ifndef	QT_NO_DRAGANDDROP

				virtual	QDragObject	*dragObject();

				virtual	void	startDrag();

#endif

				virtual	void	insertInGrid(QIconViewItem	*item);

				virtual	void	drawBackground(QPainter	*p,	const	QRect	&r);

				void	emitSelectionChanged(QIconViewItem	*	i	=	0);

				void	emitRenamed(QIconViewItem	*item);

				QIconViewItem	*makeRowLayout(QIconViewItem	*begin,	int	&y,	bool	&changed);

				void	styleChange(QStyle&);

				void	windowActivationChange(bool);

private:

				void	contentsMousePressEventEx(QMouseEvent	*e);

				virtual	void	drawDragShapes(const	QPoint	&pnt);

#ifndef	QT_NO_DRAGANDDROP

				virtual	void	initDragEnter(QDropEvent	*e);

#endif

				void	drawContents(QPainter*);

				void	findItemByName(const	QString	&text);

				void	handleItemChange(QIconViewItem	*old,	bool	shift,	bool	control);

				int	calcGridNum(int	w,	int	x)	const;

				QIconViewItem	*rowBegin(QIconViewItem	*item)	const;

				void	updateItemContainer(QIconViewItem	*item);

				void	appendItemContainer();

				void	rebuildContainers();

				QBitmap	mask(QPixmap	*pix)	const;

				QIconViewPrivate	*d;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QIconView(const	QIconView	&);

				QIconView&	operator=(const	QIconView	&);

#endif

};

#endif	//	QT_NO_ICONVIEW

#endif	//	QICONVIEW_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qimage.h
This	is	the	verbatim	text	of	the	qimage.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qimage.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QImage	and	QImageIO	classes

**

**	Created	:	950207

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QIMAGE_H

#define	QIMAGE_H

#ifndef	QT_H

#include	"qpixmap.h"

#include	"qstrlist.h"

#include	"qstringlist.h"

#endif	//	QT_H

class	QImageDataMisc;	//	internal

#ifndef	QT_NO_IMAGE_TEXT

class	Q_EXPORT	QImageTextKeyLang	{

public:

				QImageTextKeyLang(const	char*	k,	const	char*	l)	:	key(k),	lang(l)	{	}

				QImageTextKeyLang()	{	}

				QCString	key;

				QCString	lang;

				bool	operator<	(const	QImageTextKeyLang&	other)	const

	 {	return	key	<	other.key	||	key==other.key	&&	lang	<	other.lang;	}

				bool	operator==	(const	QImageTextKeyLang&	other)	const

	 {	return	key==other.key	&&	lang==other.lang;	}

};

#endif	//QT_NO_IMAGE_TEXT

class	Q_EXPORT	QImage

{

public:

				enum	Endian	{	IgnoreEndian,	BigEndian,	LittleEndian	};

				QImage();

				QImage(int	width,	int	height,	int	depth,	int	numColors=0,

	 				Endian	bitOrder=IgnoreEndian);

				QImage(const	QSize&,	int	depth,	int	numColors=0,

	 				Endian	bitOrder=IgnoreEndian);

#ifndef	QT_NO_IMAGEIO

				QImage(const	QString	&fileName,	const	char*	format=0);

				QImage(const	char	*	const	xpm[]);

				QImage(const	QByteArray	&data);

#endif

				QImage(uchar*	data,	int	w,	int	h,	int	depth,

	 	 QRgb*	colortable,	int	numColors,

	 	 Endian	bitOrder);

#ifdef	Q_WS_QWS

				QImage(uchar*	data,	int	w,	int	h,	int	depth,	int	pbl,

	 	 QRgb*	colortable,	int	numColors,

	 	 Endian	bitOrder);

#endif

				QImage(const	QImage	&);

			~QImage();

				QImage					&operator=(const	QImage	&);

				QImage					&operator=(const	QPixmap	&);

				bool	 operator==(const	QImage	&)	const;

				bool	 operator!=(const	QImage	&)	const;

				void	 detach();

				QImage	 copy()	 	 const;

				QImage	 copy(int	x,	int	y,	int	w,	int	h,	int	conversion_flags=0)	const;

				QImage	 copy(const	QRect&)	 const;

				bool	 isNull()	 const	 {	return	data->bits	==	0;	}

				int		 width()		 const	 {	return	data->w;	}

				int		 height()	 const	 {	return	data->h;	}

				QSize	 size()	 	 const	 {	return	QSize(data->w,data->h);	}

				QRect	 rect()	 	 const	 {	return	QRect(0,0,data->w,data->h);	}

				int		 depth()		 const	 {	return	data->d;	}

				int		 numColors()	 const	 {	return	data->ncols;	}

				Endian	 bitOrder()	 const	 {	return	(Endian)	data->bitordr;	}

				QRgb	 color(int	i)	 const;

				void	 setColor(int	i,	QRgb	c);

				void	 setNumColors(int);

				bool	 hasAlphaBuffer()	const;

				void	 setAlphaBuffer(bool);

				bool	 allGray()	const;

				bool								isGrayscale()	const;

				uchar						*bits()	 	 const;

				uchar						*scanLine(int)	const;

				uchar					**jumpTable()	 const;

				QRgb							*colorTable()	 const;

				int		 numBytes()	 const;

				int		 bytesPerLine()	 const;

#ifdef	Q_WS_QWS

				QGfx	*	graphicsContext();

#endif

				bool	 create(int	width,	int	height,	int	depth,	int	numColors=0,

	 	 	 Endian	bitOrder=IgnoreEndian);

				bool	 create(const	QSize&,	int	depth,	int	numColors=0,

	 	 	 Endian	bitOrder=IgnoreEndian);

				void	 reset();

				void	 fill(uint	pixel);

				void	 invertPixels(bool	invertAlpha	=	TRUE);

				QImage	 convertDepth(int)	const;

#ifndef	QT_NO_IMAGE_TRUECOLOR

				QImage	 convertDepthWithPalette(int,	QRgb*	p,	int	pc,	int	cf=0)	const;

#endif

				QImage	 convertDepth(int,	int	conversion_flags)	const;

				QImage	 convertBitOrder(Endian)	const;

				enum	ScaleMode	{

	 ScaleFree,

	 ScaleMin,

	 ScaleMax

				};

#ifndef	QT_NO_IMAGE_SMOOTHSCALE

				QImage	smoothScale(int	w,	int	h,	ScaleMode	mode=ScaleFree)	const;

				QImage	smoothScale(const	QSize&	s,	ScaleMode	mode=ScaleFree)	const;

#endif

#ifndef	QT_NO_IMAGE_TRANSFORMATION

				QImage	scale(int	w,	int	h,	ScaleMode	mode=ScaleFree)	const;

				QImage	scale(const	QSize&	s,	ScaleMode	mode=ScaleFree)	const;

				QImage	scaleWidth(int	w)	const;

				QImage	scaleHeight(int	h)	const;

				QImage	xForm(const	QWMatrix	&matrix)	const;

#endif

#ifndef	QT_NO_IMAGE_DITHER_TO_1

				QImage	 createAlphaMask(int	conversion_flags=0)	const;

#endif

#ifndef	QT_NO_IMAGE_HEURISTIC_MASK

				QImage	 createHeuristicMask(bool	clipTight=TRUE)	const;

#endif

#ifndef	QT_NO_IMAGE_MIRROR

				QImage	 mirror()	const;

				QImage	 mirror(bool	horizontally,	bool	vertically)	const;

#endif

				QImage	 swapRGB()	const;

				static	Endian	systemBitOrder();

				static	Endian	systemByteOrder();

#ifndef	QT_NO_IMAGEIO

				static	const	char*	imageFormat(const	QString	&fileName);

				static	QStrList	inputFormats();

				static	QStrList	outputFormats();

#ifndef	QT_NO_STRINGLIST

				static	QStringList	inputFormatList();

				static	QStringList	outputFormatList();

#endif

				bool	 load(const	QString	&fileName,	const	char*	format=0);

				bool	 loadFromData(const	uchar	*buf,	uint	len,

	 	 	 						const	char	*format=0);

				bool	 loadFromData(QByteArray	data,	const	char*	format=0);

				bool	 save(const	QString	&fileName,	const	char*	format,

	 	 						int	quality=-1)	const;

#endif	//QT_NO_IMAGEIO

				bool	 valid(int	x,	int	y)	const;

				int		 pixelIndex(int	x,	int	y)	const;

				QRgb	 pixel(int	x,	int	y)	const;

				void	 setPixel(int	x,	int	y,	uint	index_or_rgb);

				//	Auxiliary	data

				int	dotsPerMeterX()	const;

				int	dotsPerMeterY()	const;

				void	setDotsPerMeterX(int);

				void	setDotsPerMeterY(int);

				QPoint	offset()	const;

				void	setOffset(const	QPoint&);

#ifndef	QT_NO_IMAGE_TEXT

				QValueList<QImageTextKeyLang>	textList()	const;

				QStringList	textLanguages()	const;

				QStringList	textKeys()	const;

				QString	text(const	char*	key,	const	char*	lang=0)	const;

				QString	text(const	QImageTextKeyLang&)	const;

				void	setText(const	char*	key,	const	char*	lang,	const	QString&);

#endif

private:

				void	 init();

				void	 reinit();

				void	 freeBits();

				static	void	warningIndexRange(const	char	*,	int);

				QSize	 scaleSize(const	QSize	&s,	ScaleMode	mode)	const;

				struct	QImageData	:	public	QShared	{	 //	internal	image	data

	 int	 w;	 	 	 	 //	image	width

	 int	 h;	 	 	 	 //	image	height

	 int	 d;	 	 	 	 //	image	depth

	 int	 ncols;	 	 	 	 //	number	of	colors

	 int	 nbytes;		 	 	 //	number	of	bytes	data

	 int	 bitordr;	 	 	 //	bit	order	(1	bit	depth)

	 QRgb			*ctbl;	 	 	 	 //	color	table

	 uchar	**bits;	 	 	 	 //	image	data

	 bool	 alpha;	 	 	 	 //	alpha	buffer

	 int	 dpmx;	 	 	 	 //	dots	per	meter	X	(or	0)

	 int	 dpmy;	 	 	 	 //	dots	per	meter	Y	(or	0)

	 QPoint	 offset;		 	 	 //	offset	in	pixels

#ifndef	QT_NO_IMAGE_TEXT

	 QImageDataMisc*	misc;	 	 	 //	less	common	stuff

#endif

	 bool				ctbl_mine;	 	 	 //	this	allocated	ctbl

				}	*data;

#ifndef	QT_NO_IMAGE_TEXT

				QImageDataMisc&	misc()	const;

#endif

				friend	Q_EXPORT	void	bitBlt(QImage*	dst,	int	dx,	int	dy,

	 	 	 	 	const	QImage*	src,	int	sx,	int	sy,

	 	 	 	 	int	sw,	int	sh,	int	conversion_flags);

};

//	QImage	stream	functions

#if	!defined(QT_NO_DATASTREAM)	&&	!defined(QT_NO_IMAGEIO)

Q_EXPORT	QDataStream	&operator<<(QDataStream	&,	const	QImage	&);

Q_EXPORT	QDataStream	&operator>>(QDataStream	&,	QImage	&);

#endif

#ifndef	QT_NO_IMAGEIO

class	QIODevice;

typedef	void	(*image_io_handler)(QImageIO	*);	//	image	IO	handler

struct	QImageIOData;

class	Q_EXPORT	QImageIO

{

public:

				QImageIO();

				QImageIO(QIODevice		*ioDevice,	const	char	*format);

				QImageIO(const	QString	&fileName,	const	char*	format);

			~QImageIO();

				const	QImage	&image()	 const	 {	return	im;	}

				int		 status()	 const	 {	return	iostat;	}

				const	char	*format()	 const	 {	return	frmt;	}

				QIODevice		*ioDevice()	 const	 {	return	iodev;	}

				QString	 fileName()	 const	 {	return	fname;	}

				int		 quality()	 const;

				QString	 description()	 const	 {	return	descr;	}

				const	char	*parameters()	 const;

				float	gamma()	const;

				void	 setImage(const	QImage	&);

				void	 setStatus(int);

				void	 setFormat(const	char	*);

				void	 setIODevice(QIODevice	*);

				void	 setFileName(const	QString	&);

				void	 setQuality(int);

				void	 setDescription(const	QString	&);

				void	 setParameters(const	char	*);

				void	 setGamma(float);

	

				bool	 read();

				bool	 write();

				static	const	char*	imageFormat(const	QString	&fileName);

				static	const	char	*imageFormat(QIODevice	*);

				static	QStrList	inputFormats();

				static	QStrList	outputFormats();

				static	void	defineIOHandler(const	char	*format,

	 	 	 	 	const	char	*header,

	 	 	 	 	const	char	*flags,

	 	 	 	 	image_io_handler	read_image,

	 	 	 	 	image_io_handler	write_image);

private:

				void	 init();

				QImage	 im;	 	 	 	 //	image

				int		 iostat;		 	 	 //	IO	status

				QCString	 frmt;	 	 	 	 //	image	format

				QIODevice		*iodev;	 	 	 	 //	IO	device

				QString	 fname;	 	 	 	 //	file	name

				char							*params;		 	 	 //	image	parameters	//###	change	to	QImageIOData	*d	in	3.0

				QString					descr;	 	 	 	 //	image	description

				QImageIOData	*d;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QImageIO(const	QImageIO	&);

				QImageIO	&operator=(const	QImageIO	&);

#endif

};

#endif	//QT_NO_IMAGEIO

Q_EXPORT	void	bitBlt(QImage*	dst,	int	dx,	int	dy,	const	QImage*	src,

	 	 						int	sx=0,	int	sy=0,	int	sw=-1,	int	sh=-1,

	 	 						int	conversion_flags=0);

/***

		QImage	member	functions

	***/

inline	bool	QImage::hasAlphaBuffer()	const

{

				return	data->alpha;

}

inline	uchar	*QImage::bits()	const

{

				return	data->bits	?	data->bits[0]	:	0;

}

inline	uchar	**QImage::jumpTable()	const

{

				return	data->bits;

}

inline	QRgb	*QImage::colorTable()	const

{

				return	data->ctbl;

}

inline	int	QImage::numBytes()	const

{

				return	data->nbytes;

}

inline	int	QImage::bytesPerLine()	const

{

				return	data->h	?	data->nbytes/data->h	:	0;

}

inline	QImage	QImage::copy(const	QRect&	r)	const

{

				return	copy(r.x(),	r.y(),	r.width(),	r.height());

}

inline	QRgb	QImage::color(int	i)	const

{

#if	defined(QT_CHECK_RANGE)

				if	(i	>=	data->ncols)

	 warningIndexRange("color",	i);

#endif

				return	data->ctbl	?	data->ctbl[i]	:	(QRgb)-1;

}

inline	void	QImage::setColor(int	i,	QRgb	c)

{

#if	defined(QT_CHECK_RANGE)

				if	(i	>=	data->ncols)

	 warningIndexRange("setColor",	i);

#endif

				if	(data->ctbl)

	 data->ctbl[i]	=	c;

}

inline	uchar	*QImage::scanLine(int	i)	const

{

#if	defined(QT_CHECK_RANGE)

				if	(i	>=	data->h)

	 warningIndexRange("scanLine",	i);

#endif

				return	data->bits	?	data->bits[i]	:	0;

}

inline	int	QImage::dotsPerMeterX()	const

{

				return	data->dpmx;

}

inline	int	QImage::dotsPerMeterY()	const

{

				return	data->dpmy;

}

inline	QPoint	QImage::offset()	const

{

				return	data->offset;

}

#endif	//	QIMAGE_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qimageformatplugin.h
This	is	the	verbatim	text	of	the	qimageformatplugin.h	include	file.	It	is	provided
only	for	illustration;	the	copyright	remains	with	Trolltech.

#ifndef	QIMAGEFORMATPLUGIN_H

#define	QIMAGEFORMATPLUGIN_H

#ifndef	QT_H

#include	"qgplugin.h"

#include	"qstringlist.h"

#endif	//	QT_H

#ifndef	QT_NO_IMAGEFORMATPLUGIN

class	QImageFormat;

class	QImageFormatPluginPrivate;

class	Q_EXPORT	QImageFormatPlugin	:	public	QGPlugin

{

				Q_OBJECT

public:

				QImageFormatPlugin();

				~QImageFormatPlugin();

				virtual	QStringList	keys()	const	=	0;

				virtual	bool	loadImage(const	QString	&format,	const	QString	&filename,	QImage	*image);

				virtual	bool	saveImage(const	QString	&format,	const	QString	&filename,	const	QImage	&image);

				virtual	bool	installIOHandler(const	QString	&format)	=	0;

private:

				QImageFormatPluginPrivate	*d;

};

#endif	//	QT_NO_IMAGEFORMATPLUGIN

#endif	//	QIMAGEFORMATPLUGIN_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qinputdialog.h
qinputdialog.hTrolltech

/**

**	$Id:		qt/qinputdialog.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QInputDialog	class

**

**	Created	:	991212

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	dialogs	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QINPUTDIALOG_H

#define	QINPUTDIALOG_H

#ifndef	QT_H

#include	<qdialog.h>

#include	<qstring.h>

#include	<qlineedit.h>

#endif	//	QT_H

#ifndef	QT_NO_INPUTDIALOG

class	QSpinBox;

class	QComboBox;

class	QInputDialogPrivate;

class	Q_EXPORT	QInputDialog	:	public	QDialog

{

#if	defined(Q_CC_MSVC)

				friend	class	QInputDialog;

#endif

				Q_OBJECT

private:

				enum	Type	{	LineEdit,	SpinBox,	ComboBox,	EditableComboBox	};

				QInputDialog(const	QString	&label,	QWidget*	parent=0,	const	char*	name=0,

	 	 	bool	modal	=	TRUE,	Type	type	=	LineEdit);

				~QInputDialog();

				QLineEdit	*lineEdit()	const;

				QSpinBox	*spinBox()	const;

				QComboBox	*comboBox()	const;

				QComboBox	*editableComboBox()	const;

				void	setType(Type	t);

				Type	type()	const;

public:

				static	QString	getText(const	QString	&caption,	const	QString	&label,	QLineEdit::EchoMode	echo	=	QLineEdit::Normal,

	 	 	 				const	QString	&text	=	QString::null,	bool	*ok	=	0,	QWidget	*parent	=	0,	const	char	*name	=	0);

				static	int	getInteger(const	QString	&caption,	const	QString	&label,	int	num	=	0,	int	from	=	-2147483647,

	 	 	 			int	to	=	2147483647,

	 	 	 			int	step	=	1,	bool	*ok	=	0,	QWidget	*parent	=	0,	const	char	*name	=	0);

				static	double	getDouble(const	QString	&caption,	const	QString	&label,	double	num	=	0,

	 	 	 					double	from	=	-2147483647,	double	to	=	2147483647,

	 	 	 					int	decimals	=	1,	bool	*ok	=	0,	QWidget	*parent	=	0,	const	char	*name	=	0);

				static	QString	getItem(const	QString	&caption,	const	QString	&label,	const	QStringList	&list,

	 	 	 				int	current	=	0,	bool	editable	=	TRUE,

	 	 	 				bool	*ok	=	0,	QWidget	*parent	=	0,	const	char	*name	=	0);

private	slots:

				void	textChanged(const	QString	&s);

				void	tryAccept();

private:

				QInputDialogPrivate	*d;

				friend	class	QInputDialogPrivate;	/*	to	avoid	'has	no	friends'	warnings...	*/

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QInputDialog(const	QInputDialog	&);

				QInputDialog	&operator=(const	QInputDialog	&);

#endif

};

#endif	//	QT_NO_INPUTDIALOG

#endif	//	QINPUTDIALOG_H

	

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qintcache.h
This	is	the	verbatim	text	of	the	qintcache.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	Id

**

**	Definition	of	QIntCache	template	class

**

**	Created	:	950209

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	tools	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QINTCACHE_H

#define	QINTCACHE_H

#ifndef	QT_H

#include	"qgcache.h"

#endif	//	QT_H

template<class	type>	

class	QIntCache

:	public	QGCache

{

public:

				QIntCache(const	QIntCache<type>	&c)	:	QGCache(c)	{}

				QIntCache(int	maxCost=100,	int	size=17)

	 :	QGCache(maxCost,	size,	IntKey,	FALSE,	FALSE)	{}

			~QIntCache()		 {	clear();	}

				QIntCache<type>	&operator=(const	QIntCache<type>	&c)

	 	 	 {	return	(QIntCache<type>&)QGCache::operator=(c);	}

				int			maxCost()			const	 {	return	QGCache::maxCost();	}

				int			totalCost()	const	 {	return	QGCache::totalCost();	}

				void		setMaxCost(int	m)	 {	QGCache::setMaxCost(m);	}

				uint		count()					const	 {	return	QGCache::count();	}

				uint		size()						const	 {	return	QGCache::size();	}

				bool		isEmpty()			const	 {	return	QGCache::count()	==	0;	}

				bool		insert(long	k,	const	type	*d,	int	c=1,	int	p=0)

	 	 {	return	QGCache::insert_other((const	char*)k,(Item)d,c,p);	}

				bool		remove(long	k)

	 	 {	return	QGCache::remove_other((const	char*)k);	}

				type	*take(long	k)

	 	 {	return	(type	*)QGCache::take_other((const	char*)k);}

				void		clear()	 	 {	QGCache::clear();	}

				type	*find(long	k,	bool	ref=TRUE)	const

	 	 {	return	(type	*)QGCache::find_other((const	char*)k,ref);}

				type	*operator[](long	k)	const

	 	 {	return	(type	*)QGCache::find_other((const	char*)k);	}

				void		statistics()	const	{	QGCache::statistics();	}

private:

	 void		deleteItem(Item	d);

};

#if	!defined(Q_BROKEN_TEMPLATE_SPECIALIZATION)

template<>	inline	void	QIntCache<void>::deleteItem(QPtrCollection::Item)

{

}

#endif

template<class	type>	inline	void	QIntCache<type>::deleteItem(QPtrCollection::Item	d)

{

				if	(del_item)	delete	(type	*)d;

}

template<class	type>	

class	QIntCacheIterator

:	public	QGCacheIterator

{

public:

				QIntCacheIterator(const	QIntCache<type>	&c)

	 :	QGCacheIterator((QGCache	&)c)	{}

				QIntCacheIterator(const	QIntCacheIterator<type>	&ci)

	 	 	 						:	QGCacheIterator((QGCacheIterator	&)ci)	{}

				QIntCacheIterator<type>	&operator=(const	QIntCacheIterator<type>&ci)

	 {	return	(QIntCacheIterator<type>&)QGCacheIterator::operator=(ci);}

				uint		count()			const					{	return	QGCacheIterator::count();	}

				bool		isEmpty()	const					{	return	QGCacheIterator::count()	==	0;	}

				bool		atFirst()	const					{	return	QGCacheIterator::atFirst();	}

				bool		atLast()		const					{	return	QGCacheIterator::atLast();	}

				type	*toFirst()	 						{	return	(type	*)QGCacheIterator::toFirst();	}

				type	*toLast()	 						{	return	(type	*)QGCacheIterator::toLast();	}

				operator	type	*()		const		{	return	(type	*)QGCacheIterator::get();	}

				type	*current()				const		{	return	(type	*)QGCacheIterator::get();	}

				long		currentKey()	const		{	return	(long)QGCacheIterator::getKeyInt();}

				type	*operator()()	 						{	return	(type	*)QGCacheIterator::operator()();}

				type	*operator++()	 						{	return	(type	*)QGCacheIterator::operator++();	}

				type	*operator+=(uint	j)		{	return	(type	*)QGCacheIterator::operator+=(j);}

				type	*operator--()	 						{	return	(type	*)QGCacheIterator::operator--();	}

				type	*operator-=(uint	j)		{	return	(type	*)QGCacheIterator::operator-=(j);}

};

#endif	//	QINTCACHE_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qintdict.h
This	is	the	verbatim	text	of	the	qintdict.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	Id

**

**	Definition	of	QIntDict	template	class

**

**	Created	:	940624

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	tools	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QINTDICT_H

#define	QINTDICT_H

#ifndef	QT_H

#include	"qgdict.h"

#endif	//	QT_H

template<class	type>

class	QIntDict

#ifdef	Q_QDOC

	 :	public	QPtrCollection

#else

	 :	public	QGDict

#endif

{

public:

				QIntDict(int	size=17)	:	QGDict(size,IntKey,0,0)	{}

				QIntDict(const	QIntDict<type>	&d)	:	QGDict(d)	{}

			~QIntDict()	 	 	 	 {	clear();	}

				QIntDict<type>	&operator=(const	QIntDict<type>	&d)

	 	 	 {	return	(QIntDict<type>&)QGDict::operator=(d);	}

				uint		count()			const	 	 {	return	QGDict::count();	}

				uint		size()				const	 	 {	return	QGDict::size();	}

				bool		isEmpty()	const	 	 {	return	QGDict::count()	==	0;	}

				void		insert(long	k,	const	type	*d)

	 	 	 	 	 {	QGDict::look_int(k,(Item)d,1);	}

				void		replace(long	k,	const	type	*d)

	 	 	 	 	 {	QGDict::look_int(k,(Item)d,2);	}

				bool		remove(long	k)	 	 {	return	QGDict::remove_int(k);	}

				type	*take(long	k)	 	 {	return	(type*)QGDict::take_int(k);	}

				type	*find(long	k)	const

	 	 {	return	(type	*)((QGDict*)this)->QGDict::look_int(k,0,0);	}

				type	*operator[](long	k)	const

	 	 {	return	(type	*)((QGDict*)this)->QGDict::look_int(k,0,0);	}

				void		clear()	 	 	 {	QGDict::clear();	}

				void		resize(uint	n)	 	 {	QGDict::resize(n);	}

				void		statistics()	const	 	 {	QGDict::statistics();	}

#ifdef	Q_QDOC

protected:

				virtual	QDataStream&	read(QDataStream	&,	QPtrCollection::Item	&);

				virtual	QDataStream&	write(QDataStream	&,	QPtrCollection::Item)	const;

#endif

private:

				void		deleteItem(Item	d);

};

#if	!defined(Q_BROKEN_TEMPLATE_SPECIALIZATION)

template<>	inline	void	QIntDict<void>::deleteItem(QPtrCollection::Item)

{

}

#endif

template<class	type>	inline	void	QIntDict<type>::deleteItem(QPtrCollection::Item	d)

{

				if	(del_item)	delete	(type*)d;

}

template<class	type>	

class	QIntDictIterator	

:	public	QGDictIterator

{

public:

				QIntDictIterator(const	QIntDict<type>	&d)	:QGDictIterator((QGDict	&)d)	{}

			~QIntDictIterator()	 						{}

				uint		count()			const					{	return	dict->count();	}

				bool		isEmpty()	const					{	return	dict->count()	==	0;	}

				type	*toFirst()	 						{	return	(type	*)QGDictIterator::toFirst();	}

				operator	type	*()		const		{	return	(type	*)QGDictIterator::get();	}

				type	*current()				const		{	return	(type	*)QGDictIterator::get();	}

				long		currentKey()	const		{	return	QGDictIterator::getKeyInt();	}

				type	*operator()()	 						{	return	(type	*)QGDictIterator::operator()();	}

				type	*operator++()	 						{	return	(type	*)QGDictIterator::operator++();	}

				type	*operator+=(uint	j)		{	return	(type	*)QGDictIterator::operator+=(j);}

};

#endif	//	QINTDICT_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qiodevice.h
qiodevice.hTrolltech

/**

**	$Id:		qt/qiodevice.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QIODevice	class

**

**	Created	:	940913

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	tools	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QIODEVICE_H

#define	QIODEVICE_H

#ifndef	QT_H

#ifdef	QT_LARGE_FILE_SUPPORT

//	###	Should	be	included	first.	This	is	a	problem	in	the	current

//	###	"qplatformdefs.h"	strategy	which	is	OK	for	source	files	but

//	###	not	for	header	files.	Do	we	need	defines	back	in	qmake.conf?

#define	_FILE_OFFSET_BITS	64

#include	"qplatformdefs.h"

#endif

#include	"qglobal.h"

#include	"qcstring.h"

#endif	//	QT_H

//	IO	device	access	types

#define	IO_Direct	 	 0x0100	 	 //	direct	access	device

#define	IO_Sequential	 	 0x0200	 	 //	sequential	access	device

#define	IO_Combined	 	 0x0300	 	 //	combined	direct/sequential

#define	IO_TypeMask	 	 0x0f00

//	IO	handling	modes

#define	IO_Raw	 	 	 0x0040	 	 //	raw	access	(not	buffered)

#define	IO_Async	 	 0x0080	 	 //	asynchronous	mode

//	IO	device	open	modes

#define	IO_ReadOnly	 	 0x0001	 	 //	readable	device

#define	IO_WriteOnly	 	 0x0002	 	 //	writable	device

#define	IO_ReadWrite	 	 0x0003	 	 //	read+write	device

#define	IO_Append	 	 0x0004	 	 //	append

#define	IO_Truncate	 	 0x0008	 	 //	truncate	device

#define	IO_Translate	 	 0x0010	 	 //	translate	CR+LF

#define	IO_ModeMask	 	 0x00ff

//	IO	device	state

#define	IO_Open		 	 0x1000	 	 //	device	is	open

#define	IO_StateMask	 	 0xf000

//	IO	device	status

#define	IO_Ok	 	 	 0

#define	IO_ReadError	 	 1	 	 //	read	error

#define	IO_WriteError	 	 2	 	 //	write	error

#define	IO_FatalError	 	 3	 	 //	fatal	unrecoverable	error

#define	IO_ResourceError	 4	 	 //	resource	limitation

#define	IO_OpenError	 	 5	 	 //	cannot	open	device

#define	IO_ConnectError		 5	 	 //	cannot	connect	to	device

#define	IO_AbortError	 	 6	 	 //	abort	error

#define	IO_TimeOutError		 7	 	 //	time	out

#define	IO_UnspecifiedError	 8	 	 //	unspecified	error

class	Q_EXPORT	QIODevice	 	 	 //	IO	device	class

{

public:

#ifdef	QT_LARGE_FILE_SUPPORT

				typedef	off_t	Offset;

#else

				typedef	Q_ULONG	Offset;

#endif

				QIODevice();

				virtual	~QIODevice();

				int		 	flags()		const	{	return	ioMode;	}

				int		 	mode()			const	{	return	ioMode	&	IO_ModeMask;	}

				int		 	state()		const	{	return	ioMode	&	IO_StateMask;	}

				bool	 	isDirectAccess()					const	{	return	((ioMode	&	IO_Direct)					==	IO_Direct);	}

				bool	 	isSequentialAccess()	const	{	return	((ioMode	&	IO_Sequential)	==	IO_Sequential);	}

				bool	 	isCombinedAccess()			const	{	return	((ioMode	&	IO_Combined)			==	IO_Combined);	}

				bool	 	isBuffered()	 						const	{	return	((ioMode	&	IO_Raw)								!=	IO_Raw);	}

				bool	 	isRaw()	 						const	{	return	((ioMode	&	IO_Raw)								==	IO_Raw);	}

				bool	 	isSynchronous()						const	{	return	((ioMode	&	IO_Async)						!=	IO_Async);	}

				bool	 	isAsynchronous()					const	{	return	((ioMode	&	IO_Async)						==	IO_Async);	}

				bool	 	isTranslated()							const	{	return	((ioMode	&	IO_Translate)		==	IO_Translate);	}

				bool	 	isReadable()	 						const	{	return	((ioMode	&	IO_ReadOnly)			==	IO_ReadOnly);	}

				bool	 	isWritable()	 						const	{	return	((ioMode	&	IO_WriteOnly)		==	IO_WriteOnly);	}

				bool	 	isReadWrite()	 						const	{	return	((ioMode	&	IO_ReadWrite)		==	IO_ReadWrite);	}

				bool	 	isInactive()	 						const	{	return	state()	==	0;	}

				bool	 	isOpen()	 						const	{	return	state()	==	IO_Open;	}

				int		 	status()	const	{	return	ioSt;	}

				void	 	resetStatus()	 {	ioSt	=	IO_Ok;	}

				virtual	bool	open(int	mode)	=	0;

				virtual	void	close()	=	0;

				virtual	void	flush()	=	0;

				virtual	Offset	size()		const	=	0;

				virtual	Offset	at()		const;

				virtual	bool	at(Offset);

				virtual	bool	atEnd()		const;

				bool	 	reset()	{	return	at(0);	}

				virtual	Q_LONG	readBlock(char	*data,	Q_ULONG	maxlen)	=	0;

				virtual	Q_LONG	writeBlock(const	char	*data,	Q_ULONG	len)	=	0;

				virtual	Q_LONG	readLine(char	*data,	Q_ULONG	maxlen);

				Q_LONG	writeBlock(const	QByteArray&	data);

				virtual	QByteArray	readAll();

				virtual	int		getch()	=	0;

				virtual	int		putch(int)	=	0;

				virtual	int		ungetch(int)	=	0;

protected:

				void	 	setFlags(int	f)	{	ioMode	=	f;	}

				void	 	setType(int);

				void	 	setMode(int);

				void	 	setState(int);

				void	 	setStatus(int);

				Offset	 	ioIndex;

private:

				int		 	ioMode;

				int		 	ioSt;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QIODevice(const	QIODevice	&);

				QIODevice	&operator=(const	QIODevice	&);

#endif

};

#endif	//	QIODEVICE_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qjiscodec.h
This	is	the	verbatim	text	of	the	qjiscodec.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qjiscodec.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QJisCodec	class

**

**	Created	:	990225

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	tools	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

//	Most	of	the	code	here	was	originally	written	by	Serika	Kurusugawa

//	a.k.a.	Junji	Takagi,	and	is	include	in	Qt	with	the	author's	permission,

//	and	the	grateful	thanks	of	the	Trolltech	team.

/*

	*	Copyright	(c)	1999	Serika	Kurusugawa,	All	rights	reserved.

	*

	*	Redistribution	and	use	in	source	and	binary	forms,	with	or	without

	*	modification,	are	permitted	provided	that	the	following	conditions

	*	are	met:

	*	1.	Redistributions	of	source	code	must	retain	the	above	copyright

	*				notice,	this	list	of	conditions	and	the	following	disclaimer.

	*	2.	Redistributions	in	binary	form	must	reproduce	the	above	copyright

	*				notice,	this	list	of	conditions	and	the	following	disclaimer	in	the

	*				documentation	and/or	other	materials	provided	with	the	distribution.

	*

	*	THIS	SOFTWARE	IS	PROVIDED	BY	THE	AUTHOR	AND	CONTRIBUTORS	``AS	IS''	AND

	*	ANY	EXPRESS	OR	IMPLIED	WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE

	*	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE

	*	ARE	DISCLAIMED.		IN	NO	EVENT	SHALL	THE	REGENTS	OR	CONTRIBUTORS	BE	LIABLE

	*	FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL

	*	DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS

	*	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;	OR	BUSINESS	INTERRUPTION)

	*	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN	CONTRACT,	STRICT

	*	LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY

	*	OUT	OF	THE	USE	OF	THIS	SOFTWARE,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF

	*	SUCH	DAMAGE.

	*/

#ifndef	QJISCODEC_H

#define	QJISCODEC_H

#ifndef	QT_H

#include	"qtextcodec.h"

#include	"qjpunicode.h"

#endif	//	QT_H

#ifndef	QT_NO_BIG_CODECS

#if	defined(QT_PLUGIN)

#define	Q_EXPORT_CODECS_JP

#else

#define	Q_EXPORT_CODECS_JP	Q_EXPORT

#endif

class	Q_EXPORT_CODECS_JP	QJisCodec	:	public	QTextCodec	{

public:

				virtual	int	mibEnum()	const;

				const	char*	name()	const;

				const	char*	mimeName()	const;

				QTextDecoder*	makeDecoder()	const;

				QCString	fromUnicode(const	QString&	uc,	int&	len_in_out)	const;

				QString	toUnicode(const	char*	chars,	int	len)	const;

				int	heuristicContentMatch(const	char*	chars,	int	len)	const;

				int	heuristicNameMatch(const	char*	hint)	const;

				QJisCodec();

				~QJisCodec();

protected:

				const	QJpUnicodeConv	*conv;

};

#endif

#endif

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qkeyboard_qws.h
This	is	the	verbatim	text	of	the	qkeyboard_qws.h	include	file.	It	is	provided	only
for	illustration;	the	copyright	remains	with	Trolltech.

/**

**	Id

**

**	Definition	of	Qt/Embedded	keyboards

**

**	Created	:	991025

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	for	Qt/Embedded	may	use	this	file	in	accordance	with	the

**	Qt	Embedded	Commercial	License	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QKEYBOARD_QWS_H

#define	QKEYBOARD_QWS_H

#ifndef	QT_H

#include	"qobject.h"

#endif	//	QT_H

#ifndef	QT_NO_QWS_KEYBOARD

class	QWSKeyboardHandler	:	public	QObject	{

				Q_OBJECT

public:

				QWSKeyboardHandler();

				virtual	~QWSKeyboardHandler();

protected:

				virtual	void	processKeyEvent(int	unicode,	int	keycode,	int	modifiers,

	 	 	 				bool	isPress,	bool	autoRepeat);

};

#endif

#endif

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qkeysequence.h
This	is	the	verbatim	text	of	the	qkeysequence.h	include	file.	It	is	provided	only
for	illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qkeysequence.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QKeySequence	class

**

**	Created	:	0108007

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QKEYSEQUENCE_H

#define	QKEYSEQUENCE_H

#ifndef	QT_H

#ifndef	QT_H

#include	"qnamespace.h"

#include	"qstring.h"

#endif	//	QT_H

#endif

#ifndef	QT_NO_ACCEL

class	QKeySequencePrivate;

class	Q_EXPORT	QKeySequence	:	public	Qt

{

public:

				QKeySequence();

				QKeySequence(const	QString&	key);

				QKeySequence(int	key);

				operator	QString()	const;

				operator	int	()	const;

				

				QKeySequence(const	QKeySequence&);

				QKeySequence	&operator=(const	QKeySequence	&);

				~QKeySequence();

				bool	operator==(const	QKeySequence&)	const;

				bool	operator!=	(const	QKeySequence&)	const;

				

private:

				QKeySequencePrivate*	d;

				

};

/***

		QKeySequence	stream	functions

	***/

#ifndef	QT_NO_DATASTREAM

Q_EXPORT	QDataStream	&operator<<(QDataStream	&,	const	QKeySequence	&);

Q_EXPORT	QDataStream	&operator>>(QDataStream	&,	QKeySequence	&);

#endif

#else

class	Q_EXPORT	QKeySequence	:	public	Qt

{

public:

				QKeySequence()	{}

				QKeySequence(int)	{}

};

#endif	//QT_NO_ACCEL

#endif

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qlabel.h
This	is	the	verbatim	text	of	the	qlabel.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qlabel.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QLabel	widget	class

**

**	Created	:	941215

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QLABEL_H

#define	QLABEL_H

#ifndef	QT_H

#include	"qframe.h"

#endif	//	QT_H

#ifndef	QT_NO_LABEL

class	QSimpleRichText;

class	QLabelPrivate;

class	Q_EXPORT	QLabel	:	public	QFrame

{

				Q_OBJECT

				Q_PROPERTY(QString	text	READ	text	WRITE	setText)

				Q_PROPERTY(TextFormat	textFormat	READ	textFormat	WRITE	setTextFormat)

				Q_PROPERTY(QPixmap	pixmap	READ	pixmap	WRITE	setPixmap)

				Q_PROPERTY(bool	scaledContents	READ	hasScaledContents	WRITE	setScaledContents)

				Q_PROPERTY(Alignment	alignment	READ	alignment	WRITE	setAlignment)

				Q_PROPERTY(int	indent	READ	indent	WRITE	setIndent)

public:

				QLabel(QWidget	*parent,	const	char*	name=0,	WFlags	f=0);

				QLabel(const	QString	&text,	QWidget	*parent,	const	char*	name=0,

	 				WFlags	f=0);

				QLabel(QWidget	*buddy,	const	QString	&,

	 				QWidget	*parent,	const	char*	name=0,	WFlags	f=0);

				~QLabel();

				QString	 	text()		 const	 {	return	ltext;	}

				QPixmap					*pixmap()	 const	 {	return	lpixmap;	}

#ifndef	QT_NO_PICTURE

				QPicture				*picture()	 const	 {	return	lpicture;	}

#endif

#ifndef	QT_NO_MOVIE

				QMovie						*movie()	 	 const;

#endif

				TextFormat	textFormat()	const;

				void		 	setTextFormat(TextFormat);

				int		 	alignment()	const	 {	return	align;	}

				virtual	void	setAlignment(int);

				int		 	indent()	const		 {	return	extraMargin;	}

				void		 	setIndent(int);

				bool		 	autoResize()	const	 {	return	autoresize;	}

				virtual	void	setAutoResize(bool);

#ifndef	QT_NO_IMAGE_SMOOTHSCALE

				bool		 hasScaledContents()	const;

				void		 setScaledContents(bool);

#endif

				QSize	 	sizeHint()	const;

				QSize	 	minimumSizeHint()	const;

#ifndef	QT_NO_ACCEL

				virtual	void	setBuddy(QWidget	*);

				QWidget					*buddy()	const;

#endif

				int		 	heightForWidth(int)	const;

				void	setFont(const	QFont	&f);

public	slots:

				virtual	void	setText(const	QString	&);

				virtual	void	setPixmap(const	QPixmap	&);

#ifndef	QT_NO_PICTURE

				virtual	void	setPicture(const	QPicture	&);

#endif

#ifndef	QT_NO_MOVIE

				virtual	void	setMovie(const	QMovie	&);

#endif

				virtual	void	setNum(int);

				virtual	void	setNum(double);

				void	 	clear();

protected:

				void	 	drawContents(QPainter	*);

				void	 	fontChange(const	QFont	&);

				void	 	resizeEvent(QResizeEvent*);

private	slots:

#ifndef	QT_NO_ACCEL

				void	 	acceleratorSlot();

				void	 	buddyDied();

#endif

#ifndef	QT_NO_MOVIE

				void	 	movieUpdated(const	QRect&);

				void	 	movieResized(const	QSize&);

#endif

private:

				void	 init();

				void	 clearContents();

				void	 updateLabel(QSize	oldSizeHint);

				QSize	 sizeForWidth(int	w)	const;

				QString	 ltext;

				QPixmap				*lpixmap;

#ifndef	QT_NO_PICTURE

				QPicture			*lpicture;

#endif

#ifndef	QT_NO_MOVIE

				QMovie	*	 lmovie;

#endif

#ifndef	QT_NO_ACCEL

				QWidget	*	 lbuddy;

#endif

				ushort	 align;

				short	 extraMargin;

				uint	 autoresize:1;

				uint	 scaledcontents	:1;

				TextFormat	textformat;

#ifndef	QT_NO_RICHTEXT

				QSimpleRichText*	doc;

#endif

#ifndef	QT_NO_ACCEL

				QAccel	*	 accel;

#endif

				QLabelPrivate*	d;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QLabel(const	QLabel	&);

				QLabel	&operator=(const	QLabel	&);

#endif

};

#endif	//	QT_NO_LABEL

#endif	//	QLABEL_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qlibrary.h
This	is	the	verbatim	text	of	the	qlibrary.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	Id

**

**	Definition	of	QLibrary	class

**

**	Created	:	2000-01-01

**

**	Copyright	(C)	2000-2002	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	tools	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QLIBRARY_H

#define	QLIBRARY_H

#ifndef	QT_H

#include	<qstring.h>

#endif	//	QT_H

class	QLibraryPrivate;

class	Q_EXPORT	QLibrary

{

public:

				QLibrary(const	QString&	filename);

				virtual	~QLibrary();

				void	*resolve(const	char*);

				static	void	*resolve(const	QString	&filename,	const	char	*);

				bool	load();

				virtual	bool	unload();

				bool	isLoaded()	const;

				bool	autoUnload()	const;

				void	setAutoUnload(bool	enable);

				QString	library()	const;

private:

				QLibraryPrivate	*d;

				QString	libfile;

				uint	aunload	:	1;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QLibrary(const	QLibrary	&);

				QLibrary	&operator=(const	QLibrary	&);

#endif

};

#endif	//QLIBRARY_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qlineedit.h
This	is	the	verbatim	text	of	the	qlineedit.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qlineedit.h			3.0.5			edited	May	28	10:45	$

**

**	Definition	of	QLineEdit	widget	class

**

**	Created	:	941011

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QLINEEDIT_H

#define	QLINEEDIT_H

struct	QLineEditPrivate;

class	QValidator;

class	QPopupMenu;

#ifndef	QT_H

#include	"qframe.h"

#include	"qstring.h"

#endif	//	QT_H

#ifndef	QT_NO_LINEEDIT

class	Q_EXPORT	QLineEdit	:	public	QFrame

{

				Q_OBJECT

				Q_ENUMS(EchoMode)

				Q_PROPERTY(QString	text	READ	text	WRITE	setText)

				Q_PROPERTY(int	maxLength	READ	maxLength	WRITE	setMaxLength)

				Q_PROPERTY(bool	frame	READ	frame	WRITE	setFrame)

				Q_PROPERTY(EchoMode	echoMode	READ	echoMode	WRITE	setEchoMode)

				Q_PROPERTY(QString	displayText	READ	displayText)

				Q_PROPERTY(int	cursorPosition	READ	cursorPosition	WRITE	setCursorPosition)

				Q_PROPERTY(Alignment	alignment	READ	alignment	WRITE	setAlignment)

				Q_PROPERTY(bool	edited	READ	edited	WRITE	setEdited)

				Q_PROPERTY(bool	hasMarkedText	READ	hasMarkedText	DESIGNABLE	false)

				Q_PROPERTY(bool	hasSelectedText	READ	hasSelectedText)

				Q_PROPERTY(QString	markedText	READ	markedText	DESIGNABLE	false)

				Q_PROPERTY(QString	selectedText	READ	selectedText)

				Q_PROPERTY(bool	dragEnabled	READ	dragEnabled	WRITE	setDragEnabled)

				Q_PROPERTY(bool	readOnly	READ	isReadOnly	WRITE	setReadOnly)

				Q_PROPERTY(bool	undoAvailable	READ	isUndoAvailable)

				Q_PROPERTY(bool	redoAvailable	READ	isRedoAvailable)

public:

				QLineEdit(QWidget*	parent,	const	char*	name=0);

				QLineEdit(const	QString	&,	QWidget*	parent,	const	char*	name=0);

				~QLineEdit();

				QString	text()	const;

				QString	displayText()	const;

				int	maxLength()	const;

				bool	frame()	const;

				enum	EchoMode	{	Normal,	NoEcho,	Password	};

				EchoMode	echoMode()	const;

				bool	isReadOnly()	const;

				const	QValidator	*	validator()	const;

				QSize	sizeHint()	const;

				QSize	minimumSizeHint()	const;

				int	cursorPosition()	const;

				bool	validateAndSet(const	QString	&,	int,	int,	int);

				int	alignment()	const;

#ifndef	QT_NO_COMPAT

				void	cursorLeft(bool	mark,	int	steps	=	1)	{	cursorForward(mark,	-steps);	}

				void	cursorRight(bool	mark,	int	steps	=	1)	{	cursorForward(mark,	steps);	}

#endif

				void	cursorForward(bool	mark,	int	steps	=	1);

				void	cursorBackward(bool	mark,	int	steps	=	1);

				void	cursorWordForward(bool	mark);

				void	cursorWordBackward(bool	mark);

				void	backspace();

				void	del();

				void	home(bool	mark);

				void	end(bool	mark);

				void	setEdited(bool);

				bool	edited()	const;

				bool	hasSelectedText()	const;

				QString	selectedText()	const;

				bool	getSelection(int	*start,	int	*end);

				bool	isUndoAvailable()	const;

				bool	isRedoAvailable()	const;

#ifndef	QT_NO_COMPAT

				bool	hasMarkedText()	const	{	return	hasSelectedText();	}

				QString	markedText()	const	{	return	selectedText();	}

#endif

#if	defined(Q_INCOMPATIBLE_3_0_ADDONS)

				void		 setPasswordChar(QChar	c);

				QChar		 passwordChar()	const;

#endif

				bool	dragEnabled()	const;

				int	characterAt(int	xpos,	QChar	*chr)	const;

public	slots:

				virtual	void	setText(const	QString	&);

				virtual	void	selectAll();

				virtual	void	deselect();

				virtual	void	clearValidator();

				virtual	void	insert(const	QString	&);

				virtual	void	clear();

				virtual	void	undo();

				virtual	void	redo();

				virtual	void	setMaxLength(int);

				virtual	void	setFrame(bool);

				virtual	void	setEchoMode(EchoMode);

				virtual	void	setReadOnly(bool);

				virtual	void	setValidator(const	QValidator	*);

				virtual	void	setFont(const	QFont	&);

				virtual	void	setPalette(const	QPalette	&);

				virtual	void	setSelection(int,	int);

				virtual	void	setCursorPosition(int);

				virtual	void	setAlignment(int	flag);

#ifndef	QT_NO_CLIPBOARD

				virtual	void	cut();

				virtual	void	copy()	const;

				virtual	void	paste();

#endif

				virtual	void	setDragEnabled(bool	b);

signals:

				void	textChanged(const	QString	&);

				void	returnPressed();

				void	selectionChanged();

protected:

				bool	event(QEvent	*);

				void	mousePressEvent(QMouseEvent	*);

				void	mouseMoveEvent(QMouseEvent	*);

				void	mouseReleaseEvent(QMouseEvent	*);

				void	mouseDoubleClickEvent(QMouseEvent	*);

				void	keyPressEvent(QKeyEvent	*);

				void	imStartEvent(QIMEvent	*);

				void	imComposeEvent(QIMEvent	*);

				void	imEndEvent(QIMEvent	*);

				void	focusInEvent(QFocusEvent	*);

				void	focusOutEvent(QFocusEvent	*);

				void	drawContents(QPainter	*painter);

				void	resizeEvent(QResizeEvent	*);

#ifndef	QT_NO_DRAGANDDROP

				void	dragEnterEvent(QDragEnterEvent	*);

				void	dragMoveEvent(QDragMoveEvent	*e);

				void	dragLeaveEvent(QDragLeaveEvent	*e);

				void	dropEvent(QDropEvent	*);

#endif

				void	contextMenuEvent(QContextMenuEvent	*);

#ifndef	QT_NO_COMPAT

				void	repaintArea(int,	int)	{	update();	}

#endif

				virtual	QPopupMenu	*createPopupMenu();

				void	windowActivationChange(bool);

private	slots:

				void	clipboardChanged();

				void	blinkSlot();

#ifndef	QT_NO_DRAGANDDROP

				void	doDrag();

#endif

				void	dragSlot();

				void	popupActivated(int	r);

private:

				void	init();

				void	blinkOn();

				void	updateOffset();

				void	updateSelection();

				void	removeSelectedText();

				void	delOrBackspace(bool	backspace);

				QLineEditPrivate	*	d;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QLineEdit(const	QLineEdit	&);

				QLineEdit	&operator=(const	QLineEdit	&);

#endif

};

#endif	//	QT_NO_LINEEDIT

#endif	//	QLINEEDIT_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qlistbox.h
This	is	the	verbatim	text	of	the	qlistbox.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qlistbox.h			3.0.5			edited	Mar	1	17:39	$

**

**	Definition	of	QListBox	widget	class

**

**	Created	:	941121

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QLISTBOX_H

#define	QLISTBOX_H

#ifndef	QT_H

#include	"qscrollview.h"

#include	"qpixmap.h"

#endif	//	QT_H

#ifndef	QT_NO_LISTBOX

class	QListBoxPrivate;

class	QListBoxItem;

class	QString;

class	QStrList;

class	QStringList;

class	Q_EXPORT	QListBox	:	public	QScrollView

{

				friend	class	QListBoxItem;

				friend	class	QListBoxPrivate;

				Q_OBJECT

				Q_ENUMS(SelectionMode	LayoutMode)

				Q_PROPERTY(uint	count	READ	count)

				Q_PROPERTY(int	numItemsVisible	READ	numItemsVisible)

				Q_PROPERTY(int	currentItem	READ	currentItem	WRITE	setCurrentItem)

				Q_PROPERTY(QString	currentText	READ	currentText)

				Q_PROPERTY(int	topItem	READ	topItem	WRITE	setTopItem	DESIGNABLE	false)

				Q_PROPERTY(SelectionMode	selectionMode	READ	selectionMode	WRITE	setSelectionMode)

				Q_PROPERTY(bool	multiSelection	READ	isMultiSelection	WRITE	setMultiSelection	DESIGNABLE	false)

				Q_PROPERTY(LayoutMode	columnMode	READ	columnMode	WRITE	setColumnMode)

				Q_PROPERTY(LayoutMode	rowMode	READ	rowMode	WRITE	setRowMode)

				Q_PROPERTY(int	numColumns	READ	numColumns)

				Q_PROPERTY(int	numRows	READ	numRows)

				Q_PROPERTY(bool	variableWidth	READ	variableWidth	WRITE	setVariableWidth)

				Q_PROPERTY(bool	variableHeight	READ	variableHeight	WRITE	setVariableHeight)

public:

				QListBox(QWidget*	parent=0,	const	char*	name=0,	WFlags	f=0);

				~QListBox();

				virtual	void	setFont(const	QFont	&);

				uint	count()	const;

				void	insertStringList(const	QStringList&,	int	index=-1);

				void	insertStrList(const	QStrList	*,	int	index=-1);

				void	insertStrList(const	QStrList	&,	int	index=-1);

				void	insertStrList(const	char	**,

	 	 	 int	numStrings=-1,	int	index=-1);

				void	insertItem(const	QListBoxItem	*,	int	index=-1);

				void	insertItem(const	QListBoxItem	*,	const	QListBoxItem	*after);

				void	insertItem(const	QString	&text,	int	index=-1);

				void	insertItem(const	QPixmap	&pixmap,	int	index=-1);

				void	insertItem(const	QPixmap	&pixmap,	const	QString	&text,	int	index=-1);

				void	removeItem(int	index);

				QString	text(int	index)	 const;

				const	QPixmap	*pixmap(int	index)	 const;

				void	changeItem(const	QListBoxItem	*,	int	index);

				void	changeItem(const	QString	&text,	int	index);

				void	changeItem(const	QPixmap	&pixmap,	int	index);

				void	changeItem(const	QPixmap	&pixmap,	const	QString	&text,	int	index);

				void	takeItem(const	QListBoxItem	*);

				int	numItemsVisible()	const;

				int	currentItem()	const;

				QString	currentText()	const	{	return	text(currentItem());	}

				virtual	void	setCurrentItem(int	index);

				virtual	void	setCurrentItem(QListBoxItem	*);

				void	centerCurrentItem()	{	ensureCurrentVisible();	}

				int	topItem()	const;

				virtual	void	setTopItem(int	index);

				virtual	void	setBottomItem(int	index);

				long	maxItemWidth()	const;

				enum	SelectionMode	{	Single,	Multi,	Extended,	NoSelection	};

				virtual	void	setSelectionMode(SelectionMode);

				SelectionMode	selectionMode()	const;

				void	setMultiSelection(bool	multi);

				bool	isMultiSelection()	const;

				virtual	void	setSelected(QListBoxItem	*,	bool);

				void	setSelected(int,	bool);

				bool	isSelected(int)	const;

				bool	isSelected(const	QListBoxItem	*)	const;

				QSize	sizeHint()	const;

				QSize	 minimumSizeHint()	const;

				QListBoxItem	*item(int	index)	const;

				int	index(const	QListBoxItem	*)	const;

				QListBoxItem	*findItem(const	QString	&text,	ComparisonFlags	compare	=	BeginsWith)	const;

				void	triggerUpdate(bool	doLayout);

				bool	itemVisible(int	index);

				bool	itemVisible(const	QListBoxItem	*);

				enum	LayoutMode	{	FixedNumber,

	 	 						FitToWidth,	FitToHeight	=	FitToWidth,

	 	 						Variable	};

				virtual	void	setColumnMode(LayoutMode);

				virtual	void	setColumnMode(int);

				virtual	void	setRowMode(LayoutMode);

				virtual	void	setRowMode(int);

				LayoutMode	columnMode()	const;

				LayoutMode	rowMode()	const;

				int	numColumns()	const;

				int	numRows()	const;

				bool	variableWidth()	const;

				virtual	void	setVariableWidth(bool);

				bool	variableHeight()	const;

				virtual	void	setVariableHeight(bool);

				void	viewportPaintEvent(QPaintEvent	*);

#ifndef	QT_NO_COMPAT

				bool	dragSelect()	const	{	return	TRUE;	}

				void	setDragSelect(bool)	{}

				bool	autoScroll()	const	{	return	TRUE;	}

				void	setAutoScroll(bool)	{}

				bool	autoScrollBar()	const	{	return	vScrollBarMode()	==	Auto;	}

				void	setAutoScrollBar(bool	enable)	{	setVScrollBarMode(enable	?	Auto	:	AlwaysOff);	}

				bool	scrollBar()	const	{	return	vScrollBarMode()	!=	AlwaysOff;	}

				void	setScrollBar(bool	enable)	{	setVScrollBarMode(enable	?	AlwaysOn	:	AlwaysOff);	}

				bool	autoBottomScrollBar()	const	{	return	hScrollBarMode()	==	Auto;	}

				void	setAutoBottomScrollBar(bool	enable)	{	setHScrollBarMode(enable	?	Auto	:	AlwaysOff);	}

				bool	bottomScrollBar()	const	{	return	hScrollBarMode()	!=	AlwaysOff;	}

				void	setBottomScrollBar(bool	enable)	{	setHScrollBarMode(enable	?	AlwaysOn	:	AlwaysOff);	}

				bool	smoothScrolling()	const	{	return	FALSE;	}

				void	setSmoothScrolling(bool)	{}

				bool	autoUpdate()	const	{	return	TRUE;	}

				void	setAutoUpdate(bool)	{}

				void	setFixedVisibleLines(int	lines)	{	setRowMode(lines);	}

				int	inSort(const	QListBoxItem	*);

				int	inSort(const	QString&	text);

				int	cellHeight(int	i)	const	{	return	itemHeight(i);	}

				int	cellHeight()	const	{	return	itemHeight();	}

				int	cellWidth()	const	{	return	maxItemWidth();	}

				int	cellWidth(int	i)	const	{	Q_ASSERT(i==0);	Q_UNUSED(i)	return	maxItemWidth();	}

				int	numCols()	const	{	return	numColumns();	}

#endif

				int	itemHeight(int	index	=	0)	const;

				QListBoxItem	*	itemAt(const	QPoint	&)	const;

				QRect	itemRect(QListBoxItem	*item)	const;

				QListBoxItem	*firstItem()	const;

				void	sort(bool	ascending	=	TRUE);

public	slots:

				void	clear();

				virtual	void	ensureCurrentVisible();

				virtual	void	clearSelection();

				virtual	void	selectAll(bool	select);

				virtual	void	invertSelection();

signals:

				void	highlighted(int	index);

				void	selected(int	index);

				void	highlighted(const	QString	&);

				void	selected(const	QString	&);

				void	highlighted(QListBoxItem	*);

				void	selected(QListBoxItem	*);

				void	selectionChanged();

				void	selectionChanged(QListBoxItem	*);

				void	currentChanged(QListBoxItem	*);

				void	clicked(QListBoxItem	*);

				void	clicked(QListBoxItem	*,	const	QPoint	&);

				void	pressed(QListBoxItem	*);

				void	pressed(QListBoxItem	*,	const	QPoint	&);

				void	doubleClicked(QListBoxItem	*);

				void	returnPressed(QListBoxItem	*);

				void	rightButtonClicked(QListBoxItem	*,	const	QPoint	&);

				void	rightButtonPressed(QListBoxItem	*,	const	QPoint	&);

				void	mouseButtonPressed(int,	QListBoxItem*,	const	QPoint&);

				void	mouseButtonClicked(int,	QListBoxItem*,	const	QPoint&);

				void	contextMenuRequested(QListBoxItem	*,	const	QPoint	&);

				void	onItem(QListBoxItem	*item);

				void	onViewport();

protected:

				void	mousePressEvent(QMouseEvent	*);

				void	mouseReleaseEvent(QMouseEvent	*);

				void	mouseDoubleClickEvent(QMouseEvent	*);

				void	mouseMoveEvent(QMouseEvent	*);

				void	contentsContextMenuEvent(QContextMenuEvent	*);

				void	keyPressEvent(QKeyEvent	*e);

				void	focusInEvent(QFocusEvent	*e);

				void	focusOutEvent(QFocusEvent	*e);

				void	resizeEvent(QResizeEvent	*);

				void	showEvent(QShowEvent	*);

				bool	eventFilter(QObject	*o,	QEvent	*e);

				void	updateItem(int	index);

				void	updateItem(QListBoxItem	*);

#ifndef	QT_NO_COMPAT

				void	updateCellWidth()	{	}

				int	totalWidth()	const	{	return	contentsWidth();	}

				int	totalHeight()	const	{	return	contentsHeight();	}

#endif

				virtual	void	paintCell(QPainter	*,	int	row,	int	col);

				void	toggleCurrentItem();

				bool	isRubberSelecting()	const;

				void	doLayout()	const;

				void	windowActivationChange(bool);

#ifndef	QT_NO_COMPAT

				bool	itemYPos(int	index,	int	*yPos)	const;

				int	findItem(int	yPos)	const	{	return	index(itemAt(QPoint(0,yPos)));	}

#endif

protected	slots:

				void	clearInputString();

private	slots:

				void	refreshSlot();

				void	doAutoScroll();

				void	adjustItems();

private:

				void	mousePressEventEx(QMouseEvent	*);

				void	tryGeometry(int,	int)	const;

				int	currentRow()	const;

				int	currentColumn()	const;

				void	updateSelection();

				void	drawRubber();

				void	doRubberSelection(const	QRect	&old,	const	QRect	&rubber);

				void	handleItemChange(QListBoxItem	*old,	bool	shift,	bool	control);

				void	selectRange(QListBoxItem	*from,	QListBoxItem	*to,	bool	invert,	bool	includeFirst,	bool	clearSel	=	FALSE);

				void	emitChangedSignal(bool);

				int	columnAt(int)	const;

				int	rowAt(int)	const;

				QListBoxPrivate	*	d;

				static	QListBox	*	changedListBox;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QListBox(const	QListBox	&);

				QListBox	&operator=(const	QListBox	&);

#endif

};

class	Q_EXPORT	QListBoxItem

{

public:

				QListBoxItem(QListBox*	listbox	=	0);

				QListBoxItem(QListBox*	listbox,	QListBoxItem	*after);

				virtual	~QListBoxItem();

				virtual	QString	text()	const;

				virtual	const	QPixmap	*pixmap()	const;

				virtual	int		height(const	QListBox	*)	const;

				virtual	int		width(const	QListBox	*)		const;

				bool	isSelected()	const	{	return	s;	}

				bool	isCurrent()	const;

#ifndef	QT_NO_COMPAT

				bool	selected()	const	{	return	isSelected();	}

				bool	current()	const	{	return	isCurrent();	}

#endif

				QListBox	*listBox()	const;

				void	setSelectable(bool	b);

				bool	isSelectable()	const;

				QListBoxItem	*next()	const;

				QListBoxItem	*prev()	const;

				virtual	int	rtti()	const;

				static	int	RTTI;

protected:

				virtual	void	paint(QPainter	*)	=	0;

				virtual	void	setText(const	QString	&text)	{	txt	=	text;	}

				void	setCustomHighlighting(bool);

private:

				QString	txt;

				uint	s:1;

				uint	dirty:1;

				uint	custom_highlight	:	1;

				int	x,	y;

				QListBoxItem	*	p,	*	n;

				QListBox*	lbox;

				friend	class	QListBox;

				friend	class	QListBoxPrivate;

				friend	class	QComboBox;

				friend	class	QComboBoxPopupItem;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QListBoxItem(const	QListBoxItem	&);

				QListBoxItem	&operator=(const	QListBoxItem	&);

#endif

};

class	Q_EXPORT	QListBoxText	:	public	QListBoxItem

{

public:

				QListBoxText(QListBox*	listbox,	const	QString	&	text=QString::null);

				QListBoxText(const	QString	&	text=QString::null);

				QListBoxText(QListBox*	listbox,	const	QString	&	text,	QListBoxItem	*after);

			~QListBoxText();

				int		height(const	QListBox	*)	const;

				int		width(const	QListBox	*)		const;

				int	rtti()	const;

				static	int	RTTI;

protected:

				void		paint(QPainter	*);

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QListBoxText(const	QListBoxText	&);

				QListBoxText	&operator=(const	QListBoxText	&);

#endif

};

class	Q_EXPORT	QListBoxPixmap	:	public	QListBoxItem

{

public:

				QListBoxPixmap(QListBox*	listbox,	const	QPixmap	&);

				QListBoxPixmap(const	QPixmap	&);

				QListBoxPixmap(QListBox*	listbox,	const	QPixmap	&	pix,	QListBoxItem	*after);

				QListBoxPixmap(QListBox*	listbox,	const	QPixmap	&,	const	QString&);

				QListBoxPixmap(const	QPixmap	&,	const	QString&);

				QListBoxPixmap(QListBox*	listbox,	const	QPixmap	&	pix,	const	QString&,	QListBoxItem	*after);

			~QListBoxPixmap();

				const	QPixmap	*pixmap()	const	{	return	±	}

				int		height(const	QListBox	*)	const;

				int		width(const	QListBox	*)		const;

				int	rtti()	const;

				static	int	RTTI;

protected:

				void	paint(QPainter	*);

private:

				QPixmap	pm;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QListBoxPixmap(const	QListBoxPixmap	&);

				QListBoxPixmap	&operator=(const	QListBoxPixmap	&);

#endif

};

#endif	//	QT_NO_LISTBOX

#endif	//	QLISTBOX_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qlistview.h
This	is	the	verbatim	text	of	the	qlistview.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qlistview.h			3.0.5			edited	Mar	21	18:07	$

**

**	Definition	of	QListView	widget	class

**

**	Created	:	970809

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QLISTVIEW_H

#define	QLISTVIEW_H

#ifndef	QT_H

#include	"qscrollview.h"

#endif	//	QT_H

#ifndef	QT_NO_LISTVIEW

class	QPixmap;

class	QFont;

class	QHeader;

class	QIconSet;

class	QListView;

struct	QListViewPrivate;

struct	QCheckListItemPrivate;

class	QListViewItemIterator;

class	QDragObject;

class	QMimeSource;

class	QLineEdit;

class	QListViewToolTip;

class	Q_EXPORT	QListViewItem	:	public	Qt

{

				friend	class	QListViewItemIterator;

				friend	class	QListViewToolTip;

#if	defined(Q_CC_MSVC)

				friend	class	QListViewItem;

#endif

public:

				QListViewItem(QListView	*	parent);

				QListViewItem(QListViewItem	*	parent);

				QListViewItem(QListView	*	parent,	QListViewItem	*	after);

				QListViewItem(QListViewItem	*	parent,	QListViewItem	*	after);

				QListViewItem(QListView	*	parent,

	 	 			QString,					QString	=	QString::null,

	 	 			QString	=	QString::null,	QString	=	QString::null,

	 	 			QString	=	QString::null,	QString	=	QString::null,

	 	 			QString	=	QString::null,	QString	=	QString::null);

				QListViewItem(QListViewItem	*	parent,

	 	 			QString,					QString	=	QString::null,

	 	 			QString	=	QString::null,	QString	=	QString::null,

	 	 			QString	=	QString::null,	QString	=	QString::null,

	 	 			QString	=	QString::null,	QString	=	QString::null);

				QListViewItem(QListView	*	parent,	QListViewItem	*	after,

	 	 			QString,					QString	=	QString::null,

	 	 			QString	=	QString::null,	QString	=	QString::null,

	 	 			QString	=	QString::null,	QString	=	QString::null,

	 	 			QString	=	QString::null,	QString	=	QString::null);

				QListViewItem(QListViewItem	*	parent,	QListViewItem	*	after,

	 	 			QString,					QString	=	QString::null,

	 	 			QString	=	QString::null,	QString	=	QString::null,

	 	 			QString	=	QString::null,	QString	=	QString::null,

	 	 			QString	=	QString::null,	QString	=	QString::null);

				virtual	~QListViewItem();

				virtual	void	insertItem(QListViewItem	*);

				virtual	void	takeItem(QListViewItem	*);

				virtual	void	removeItem(QListViewItem	*item)	{	takeItem(item);	}	//obsolete,	use	takeItem	instead

				int	height()	const;

				virtual	void	invalidateHeight();

				int	totalHeight()	const;

				virtual	int	width(const	QFontMetrics&,

	 	 							const	QListView*,	int	column)	const;

				void	widthChanged(int	column=-1)	const;

				int	depth()	const;

				virtual	void	setText(int,	const	QString	&);

				virtual	QString	text(int)	const;

				virtual	void	setPixmap(int,	const	QPixmap	&);

				virtual	const	QPixmap	*	pixmap(int)	const;

				virtual	QString	key(int,	bool)	const;

				virtual	int	compare(QListViewItem	*i,	int	col,	bool)	const;

				virtual	void	sortChildItems(int,	bool);

				int	childCount()	const	{	return	nChildren;	}

				bool	isOpen()	const	{	return	open;	}

				virtual	void	setOpen(bool);

				virtual	void	setup();

				virtual	void	setSelected(bool);

				bool	isSelected()	const	{	return	selected;	}

				virtual	void	paintCell(QPainter	*,	const	QColorGroup	&	cg,

	 	 	 				int	column,	int	width,	int	alignment);

				virtual	void	paintBranches(QPainter	*	p,	const	QColorGroup	&	cg,

	 	 	 	 int	w,	int	y,	int	h);

				virtual	void	paintFocus(QPainter	*,	const	QColorGroup	&	cg,

	 	 	 					const	QRect	&	r);

				QListViewItem	*	firstChild()	const;

				QListViewItem	*	nextSibling()	const	{	return	siblingItem;	}

				QListViewItem	*	parent()	const;

				QListViewItem	*	itemAbove();

				QListViewItem	*	itemBelow();

				int	itemPos()	const;

				QListView	*listView()	const;

				virtual	void	setSelectable(bool	enable);

				bool	isSelectable()	const	{	return	selectable	&&	enabled;	}

				virtual	void	setExpandable(bool);

				bool	isExpandable()	const	{	return	expandable;	}

				void	repaint()	const;

				virtual	void	sort();

				void	moveItem(QListViewItem	*after);

				virtual	void	setDragEnabled(bool	allow);

				virtual	void	setDropEnabled(bool	allow);

				bool	dragEnabled()	const;

				bool	dropEnabled()	const;

				virtual	bool	acceptDrop(const	QMimeSource	*mime)	const;

				void	setVisible(bool	b);

				bool	isVisible()	const;

				virtual	void	setRenameEnabled(int	col,	bool	b);

				bool	renameEnabled(int	col)	const;

				virtual	void	startRename(int	col);

				virtual	void	setEnabled(bool	b);

				bool	isEnabled()	const;

				virtual	int	rtti()	const;

				static	int	RTTI;

				virtual	void	setMultiLinesEnabled(bool	b);

				bool	multiLinesEnabled()	const;

protected:

				virtual	void	enforceSortOrder()	const;

				virtual	void	setHeight(int);

				virtual	void	activate();

				bool	activatedPos(QPoint	&);

#ifndef	QT_NO_DRAGANDDROP

				virtual	void	dropped(QDropEvent	*e);

#endif

				virtual	void	dragEntered();

				virtual	void	dragLeft();

				virtual	void	okRename(int	col);

				virtual	void	cancelRename(int	col);

				void	ignoreDoubleClick();

private:

				void	init();

				void	moveToJustAfter(QListViewItem	*);

				void	enforceSortOrderBackToRoot();

				int	ownHeight;

				int	maybeTotalHeight;

				int	nChildren;

				uint	lsc:	14;

				uint	lso:	1;

				uint	open	:	1;

				uint	selected	:	1;

				uint	selectable:	1;

				uint	configured:	1;

				uint	expandable:	1;

				uint	is_root:	1;

				uint	allow_drag	:	1;

				uint	allow_drop	:	1;

				uint	visible	:	1;

				uint	enabled	:	1;

				uint	mlenabled	:	1;

				QListViewItem	*	parentItem;

				QListViewItem	*	siblingItem;

				QListViewItem	*	childItem;

				QLineEdit	*renameBox;

				int	renameCol;

				void	*	columns;

				friend	class	QListView;

};

class	QCheckListItem;

class	Q_EXPORT	QListView:	public	QScrollView

{

				friend	class	QListViewItemIterator;

				friend	class	QListViewItem;

				friend	class	QCheckListItem;

				friend	class	QListViewToolTip;

				Q_OBJECT

				Q_ENUMS(SelectionMode	ResizeMode	RenameAction)

				Q_PROPERTY(int	columns	READ	columns)

				Q_PROPERTY(bool	multiSelection	READ	isMultiSelection	WRITE	setMultiSelection	DESIGNABLE	false)

				Q_PROPERTY(SelectionMode	selectionMode	READ	selectionMode	WRITE	setSelectionMode)

				Q_PROPERTY(int	childCount	READ	childCount)

				Q_PROPERTY(bool	allColumnsShowFocus	READ	allColumnsShowFocus	WRITE	setAllColumnsShowFocus)

				Q_PROPERTY(bool	showSortIndicator	READ	showSortIndicator	WRITE	setShowSortIndicator)

				Q_PROPERTY(int	itemMargin	READ	itemMargin	WRITE	setItemMargin)

				Q_PROPERTY(bool	rootIsDecorated	READ	rootIsDecorated	WRITE	setRootIsDecorated)

				Q_PROPERTY(bool	showToolTips	READ	showToolTips	WRITE	setShowToolTips)

				Q_PROPERTY(ResizeMode	resizeMode	READ	resizeMode	WRITE	setResizeMode)

				Q_PROPERTY(int	treeStepSize	READ	treeStepSize	WRITE	setTreeStepSize)

				Q_PROPERTY(RenameAction	defaultRenameAction	READ	defaultRenameAction	WRITE	setDefaultRenameAction)

public:

				QListView(QWidget*	parent=0,	const	char*	name=0,	WFlags	f	=	0);

				~QListView();

				int	treeStepSize()	const;

				virtual	void	setTreeStepSize(int);

				virtual	void	insertItem(QListViewItem	*);

				virtual	void	takeItem(QListViewItem	*);

				virtual	void	removeItem(QListViewItem	*item)	{	takeItem(item);	}	//	obsolete,	use	takeItem	instead

				QHeader	*	header()	const;

				virtual	int	addColumn(const	QString	&label,	int	size	=	-1);

				virtual	int	addColumn(const	QIconSet&	iconset,	const	QString	&label,	int	size	=	-1);

				virtual	void	removeColumn(int	index);

				virtual	void	setColumnText(int	column,	const	QString	&label);

				virtual	void	setColumnText(int	column,	const	QIconSet&	iconset,	const	QString	&label);

				QString	columnText(int	column)	const;

				virtual	void	setColumnWidth(int	column,	int	width);

				int	columnWidth(int	column)	const;

				enum	WidthMode	{	Manual,	Maximum	};

				virtual	void	setColumnWidthMode(int	column,	WidthMode);

				WidthMode	columnWidthMode(int	column)	const;

				int	columns()	const;

				virtual	void	setColumnAlignment(int,	int);

				int	columnAlignment(int)	const;

				void	show();

				QListViewItem	*	itemAt(const	QPoint	&	screenPos)	const;

				QRect	itemRect(const	QListViewItem	*)	const;

				int	itemPos(const	QListViewItem	*);

				void	ensureItemVisible(const	QListViewItem	*);

				void	repaintItem(const	QListViewItem	*)	const;

				virtual	void	setMultiSelection(bool	enable);

				bool	isMultiSelection()	const;

				enum	SelectionMode	{	Single,	Multi,	Extended,	NoSelection		};

				void	setSelectionMode(SelectionMode	mode);

				SelectionMode	selectionMode()	const;

				virtual	void	clearSelection();

				virtual	void	setSelected(QListViewItem	*,	bool);

				bool	isSelected(const	QListViewItem	*)	const;

				QListViewItem	*	selectedItem()	const;

				virtual	void	setOpen(QListViewItem	*,	bool);

				bool	isOpen(const	QListViewItem	*)	const;

				virtual	void	setCurrentItem(QListViewItem	*);

				QListViewItem	*	currentItem()	const;

				QListViewItem	*	firstChild()	const;

				QListViewItem	*	lastItem()	const;

				int	childCount()	const;

				virtual	void	setAllColumnsShowFocus(bool);

				bool	allColumnsShowFocus()	const;

				virtual	void	setItemMargin(int);

				int	itemMargin()	const;

				virtual	void	setRootIsDecorated(bool);

				bool	rootIsDecorated()	const;

				virtual	void	setSorting(int	column,	bool	ascending	=	TRUE);

				virtual	void	sort();

				virtual	void	setFont(const	QFont	&);

				virtual	void	setPalette(const	QPalette	&);

				bool	eventFilter(QObject	*	o,	QEvent	*);

				QSize	sizeHint()	const;

				QSize	minimumSizeHint()	const;

				virtual	void	setShowSortIndicator(bool	show);

				bool	showSortIndicator()	const;

				virtual	void	setShowToolTips(bool	b);

				bool	showToolTips()	const;

				enum	ResizeMode	{	NoColumn,	AllColumns,	LastColumn	};

				virtual	void	setResizeMode(ResizeMode	m);

				ResizeMode	resizeMode()	const;

				QListViewItem	*	findItem(const	QString&	text,	int	column,	ComparisonFlags	compare	=	ExactMatch	|	CaseSensitive)	const;

				enum	RenameAction	{	Accept,	Reject	};

				virtual	void	setDefaultRenameAction(RenameAction	a);

				RenameAction	defaultRenameAction()	const;

				bool	isRenaming()	const;

public	slots:

				virtual	void	clear();

				virtual	void	invertSelection();

				virtual	void	selectAll(bool	select);

				void	triggerUpdate();

				void	setContentsPos(int	x,	int	y);

signals:

				void	selectionChanged();

				void	selectionChanged(QListViewItem	*);

				void	currentChanged(QListViewItem	*);

				void	clicked(QListViewItem	*);

				void	clicked(QListViewItem	*,	const	QPoint	&,	int);

				void	pressed(QListViewItem	*);

				void	pressed(QListViewItem	*,	const	QPoint	&,	int);

				void	doubleClicked(QListViewItem	*);

				void	returnPressed(QListViewItem	*);

				void	spacePressed(QListViewItem	*);

				void	rightButtonClicked(QListViewItem	*,	const	QPoint&,	int);

				void	rightButtonPressed(QListViewItem	*,	const	QPoint&,	int);

				void	mouseButtonPressed(int,	QListViewItem	*,	const	QPoint&	,	int);

				void	mouseButtonClicked(int,	QListViewItem	*,		const	QPoint&,	int);

				void	contextMenuRequested(QListViewItem	*,	const	QPoint	&,	int);

				void	onItem(QListViewItem	*item);

				void	onViewport();

				void	expanded(QListViewItem	*item);

				void	collapsed(QListViewItem	*item);

#ifndef	QT_NO_DRAGANDDROP

				void	dropped(QDropEvent	*e);

#endif

				void	itemRenamed(QListViewItem	*item,	int	col,	const	QString	&);

				void	itemRenamed(QListViewItem	*item,	int	col);

protected:

				void	contentsMousePressEvent(QMouseEvent	*	e);

				void	contentsMouseReleaseEvent(QMouseEvent	*	e);

				void	contentsMouseMoveEvent(QMouseEvent	*	e);

				void	contentsMouseDoubleClickEvent(QMouseEvent	*	e);

				void	contentsContextMenuEvent(QContextMenuEvent	*	e);

#ifndef	QT_NO_DRAGANDDROP

				void	contentsDragEnterEvent(QDragEnterEvent	*e);

				void	contentsDragMoveEvent(QDragMoveEvent	*e);

				void	contentsDragLeaveEvent(QDragLeaveEvent	*e);

				void	contentsDropEvent(QDropEvent	*e);

				virtual	QDragObject	*dragObject();

				virtual	void	startDrag();

#endif

				void	focusInEvent(QFocusEvent	*	e);

				void	focusOutEvent(QFocusEvent	*	e);

				void	keyPressEvent(QKeyEvent	*e);

				void	resizeEvent(QResizeEvent	*e);

				void	viewportResizeEvent(QResizeEvent	*e);

				void	showEvent(QShowEvent	*);

				void	drawContentsOffset(QPainter	*,	int	ox,	int	oy,

	 	 	 					int	cx,	int	cy,	int	cw,	int	ch);

				virtual	void	paintEmptyArea(QPainter	*,	const	QRect	&);

				void	styleChange(QStyle&);

				void	windowActivationChange(bool);

protected	slots:

				void	updateContents();

				void	doAutoScroll();

private	slots:

				void	changeSortColumn(int);

				void	updateDirtyItems();

				void	makeVisible();

				void	handleSizeChange(int,	int,	int);

				void	startRename();

private:

				void	contentsMousePressEventEx(QMouseEvent	*	e);

				void	init();

				void	updateGeometries();

				void	buildDrawableList()	const;

				void	reconfigureItems();

				void	widthChanged(const	QListViewItem*,	int	c);

				void	handleItemChange(QListViewItem	*old,	bool	shift,	bool	control);

				void	selectRange(QListViewItem	*from,	QListViewItem	*to,	bool	invert,	bool	includeFirst,	bool	clearSel	=	FALSE);

				QListViewPrivate	*	d;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QListView(const	QWidget	&);

				QListView	&operator=(const	QWidget	&);

#endif

};

class	Q_EXPORT	QCheckListItem	:	public	QListViewItem

{

public:

				enum	Type	{	RadioButton,	CheckBox,	Controller	};

				QCheckListItem(QCheckListItem	*parent,	const	QString	&text,

	 	 				Type	=	Controller);

				QCheckListItem(QListViewItem	*parent,	const	QString	&text,

	 	 				Type	=	Controller);

				QCheckListItem(QListView	*parent,	const	QString	&text,

	 	 				Type	=	Controller);

				QCheckListItem(QListViewItem	*parent,	const	QString	&text,

	 	 				const	QPixmap	&);

				QCheckListItem(QListView	*parent,	const	QString	&text,

	 	 				const	QPixmap	&);

				~QCheckListItem();

				void	paintCell(QPainter	*,		const	QColorGroup	&	cg,

	 	 				int	column,	int	width,	int	alignment);

				virtual	void	paintFocus(QPainter	*,	const	QColorGroup	&	cg,

	 	 	 					const	QRect	&	r);

				int	width(const	QFontMetrics&,	const	QListView*,	int	column)	const;

				void	setup();

				virtual	void	setOn(bool);

				bool	isOn()	const	{	return	on;	}

				Type	type()	const	{	return	myType;	}

				QString	text()	const	{	return	QListViewItem::text(0);	}

				QString	text(int	n)	const	{	return	QListViewItem::text(n);	}

				int	rtti()	const;

				static	int	RTTI;

protected:

				void	activate();

				void	turnOffChild();

				virtual	void	stateChange(bool);

private:

				void	init();

				Type	myType;

				bool	on;

				QCheckListItem	*exclusive;

};

class	Q_EXPORT	QListViewItemIterator

{

				friend	struct	QListViewPrivate;

				friend	class	QListView;

				friend	class	QListViewItem;

public:

				QListViewItemIterator();

				QListViewItemIterator(QListViewItem	*item);

				QListViewItemIterator(const	QListViewItemIterator	&it);

				QListViewItemIterator(QListView	*lv);

				QListViewItemIterator	&operator=(const	QListViewItemIterator	&it);

				~QListViewItemIterator();

				QListViewItemIterator	&operator++();

				const	QListViewItemIterator	operator++(int);

				QListViewItemIterator	&operator+=(int	j);

				QListViewItemIterator	&operator--();

				const	QListViewItemIterator	operator--(int);

				QListViewItemIterator	&operator-=(int	j);

				QListViewItem	*current()	const;

protected:

				QListViewItem	*curr;

				QListView	*listView;

private:

				void	addToListView();

				void	currentRemoved();

};

#endif	//	QT_NO_LISTVIEW

#endif	//	QLISTVIEW_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qlocalfs.h
This	is	the	verbatim	text	of	the	qlocalfs.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qlocalfs.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QLocalFs	class

**

**	Created	:	950429

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QLOCALFS_H

#define	QLOCALFS_H

#ifndef	QT_H

#include	"qnetworkprotocol.h"

#include	"qdir.h"

#endif	//	QT_H

#ifndef	QT_NO_NETWORKPROTOCOL

class	Q_EXPORT	QLocalFs	:	public	QNetworkProtocol

{

				Q_OBJECT

public:

				QLocalFs();

				virtual	int	supportedOperations()	const;

protected:

				virtual	void	operationListChildren(QNetworkOperation	*op);

				virtual	void	operationMkDir(QNetworkOperation	*op);

				virtual	void	operationRemove(QNetworkOperation	*op);

				virtual	void	operationRename(QNetworkOperation	*op);

				virtual	void	operationGet(QNetworkOperation	*op);

				virtual	void	operationPut(QNetworkOperation	*op);

private:

				int	calcBlockSize(int	totalSize)	const;

				QDir	dir;

};

#endif	//	QT_NO_NETWORKPROTOCOL

#endif	//	QLOCALFS_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qlock_qws.h
This	is	the	verbatim	text	of	the	qlock_qws.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qlock_qws.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QLock	class.	This	manages	interprocess	locking

**

**	Created	:	20000406

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	for	Qt/Embedded	may	use	this	file	in	accordance	with	the

**	Qt	Embedded	Commercial	License	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QLOCK_QWS_H

#define	QLOCK_QWS_H

#ifndef	QT_H

#include	<qstring.h>

#endif	//	QT_H

class	QLockData;

class	QLock

{

public:

				QLock(const	QString	&filename,	char	id,	bool	create	=	FALSE);

				~QLock();

				enum	Type	{	Read,	Write	};

				bool	isValid()	const;

				void	lock(Type	type);

				void	unlock();

				bool	locked()	const;

private:

				Type	type;

				QLockData	*data;

};

//	Nice	class	for	ensuring	the	lock	is	released.

//	Just	create	one	on	the	stack	and	the	lock	is	automatically	released

//	when	QLockHolder	is	destructed.

class	QLockHolder

{

public:

				QLockHolder(QLock	*l,	QLock::Type	type)	:	qlock(l)	{

	 qlock->lock(type);

				}

				~QLockHolder()	{	if	(locked())	qlock->unlock();	}

				void	lock(QLock::Type	type)	{	qlock->lock(type);	}

				void	unlock()	{	qlock->unlock();	}

				bool	locked()	const	{	return	qlock->locked();	}

private:

				QLock	*qlock;

};

#endif

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qmainwindow.h
qmainwindow.hTrolltech

/**

**	$Id:		qt/qmainwindow.h			3.0.5			edited	Nov	30	2001	$

**

**	Definition	of	QMainWindow	class

**

**	Created	:	980316

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QMAINWINDOW_H

#define	QMAINWINDOW_H

#ifndef	QT_H

#include	"qwidget.h"

#include	"qtoolbar.h"

#include	"qptrlist.h"

#include	"qtextstream.h"

#endif	//	QT_H

#ifndef	QT_NO_MAINWINDOW

class	QMenuBar;

class	QStatusBar;

class	QToolTipGroup;

class	QMainWindowPrivate;

class	QMainWindowLayout;

class	QPopupMenu;

class	Q_EXPORT	QMainWindow:	public	QWidget

{

				Q_OBJECT

				Q_PROPERTY(bool	rightJustification	READ	rightJustification	WRITE	setRightJustification)

				Q_PROPERTY(bool	usesBigPixmaps	READ	usesBigPixmaps	WRITE	setUsesBigPixmaps)

				Q_PROPERTY(bool	usesTextLabel	READ	usesTextLabel	WRITE	setUsesTextLabel)

				Q_PROPERTY(bool	dockWindowsMovable	READ	dockWindowsMovable	WRITE	setDockWindowsMovable)

				Q_PROPERTY(bool	opaqueMoving	READ	opaqueMoving	WRITE	setOpaqueMoving)

public:

				QMainWindow(QWidget*	parent=0,	const	char*	name=0,	WFlags	f	=	WType_TopLevel);

				~QMainWindow();

#ifndef	QT_NO_MENUBAR

				QMenuBar	*	menuBar()	const;

#endif

				QStatusBar	*	statusBar()	const;

#ifndef	QT_NO_TOOLTIP

				QToolTipGroup	*	toolTipGroup()	const;

#endif

				virtual	void	setCentralWidget(QWidget	*);

				QWidget	*	centralWidget()	const;

				virtual	void	setDockEnabled(Dock	dock,	bool	enable);

				bool	isDockEnabled(Dock	dock)	const;

				bool	isDockEnabled(QDockArea	*area)	const;

				virtual	void	setDockEnabled(QDockWindow	*tb,	Dock	dock,	bool	enable);

				bool	isDockEnabled(QDockWindow	*tb,	Dock	dock)	const;

				bool	isDockEnabled(QDockWindow	*tb,	QDockArea	*area)	const;

				virtual	void	addDockWindow(QDockWindow	*,	Dock	=	DockTop,	bool	newLine	=	FALSE);

				virtual	void	addDockWindow(QDockWindow	*,	const	QString	&label,

	 	 	 	 Dock	=	DockTop,	bool	newLine	=	FALSE);

				virtual	void	moveDockWindow(QDockWindow	*,	Dock	=	DockTop);

				virtual	void	moveDockWindow(QDockWindow	*,	Dock,	bool	nl,	int	index,	int	extraOffset	=	-1);

				virtual	void	removeDockWindow(QDockWindow	*);

				void	show();

				QSize	sizeHint()	const;

				QSize	minimumSizeHint()	const;

				bool	rightJustification()	const;

				bool	usesBigPixmaps()	const;

				bool	usesTextLabel()	const;

				bool	dockWindowsMovable()	const;

				bool	opaqueMoving()	const;

				bool	eventFilter(QObject*,	QEvent*);

				bool	getLocation(QDockWindow	*tb,	Dock	&dock,	int	&index,	bool	&nl,	int	&extraOffset)	const;

				QPtrList<QDockWindow>	dockWindows(Dock	dock)	const;

				QPtrList<QDockWindow>	dockWindows()	const;

				void	lineUpDockWindows(bool	keepNewLines	=	FALSE);

				bool	isDockMenuEnabled()	const;

				//	compatibility	stuff

				bool	hasDockWindow(QDockWindow	*dw);

#ifndef	QT_NO_TOOLBAR

				void	addToolBar(QDockWindow	*,	Dock	=	DockTop,	bool	newLine	=	FALSE);

				void	addToolBar(QDockWindow	*,	const	QString	&label,

	 	 					Dock	=	DockTop,	bool	newLine	=	FALSE);

				void	moveToolBar(QDockWindow	*,	Dock	=	DockTop);

				void	moveToolBar(QDockWindow	*,	Dock,	bool	nl,	int	index,	int	extraOffset	=	-1);

				void	removeToolBar(QDockWindow	*);

				bool	toolBarsMovable()	const;

				QPtrList<QToolBar>	toolBars(Dock	dock)	const;

				void	lineUpToolBars(bool	keepNewLines	=	FALSE);

#endif

				virtual	QDockArea	*dockingArea(const	QPoint	&p);

				QDockArea	*leftDock()	const;

				QDockArea	*rightDock()	const;

				QDockArea	*topDock()	const;

				QDockArea	*bottomDock()	const;

				virtual	bool	isCustomizable()	const;

				bool	appropriate(QDockWindow	*dw)	const;

				enum	DockWindows	{	OnlyToolBars,	NoToolBars,	AllDockWindows	};

				QPopupMenu	*createDockWindowMenu(DockWindows	dockWindows	=	AllDockWindows)	const;

public	slots:

				virtual	void	setRightJustification(bool);

				virtual	void	setUsesBigPixmaps(bool);

				virtual	void	setUsesTextLabel(bool);

				virtual	void	setDockWindowsMovable(bool);

				virtual	void	setOpaqueMoving(bool);

				virtual	void	setDockMenuEnabled(bool);

				virtual	void	whatsThis();

				virtual	void	setAppropriate(QDockWindow	*dw,	bool	a);

				virtual	void	customize();

				//	compatibility	stuff

				void	setToolBarsMovable(bool);

signals:

				void	pixmapSizeChanged(bool);

				void	usesTextLabelChanged(bool);

				void	dockWindowPositionChanged(QDockWindow	*);

#ifndef	QT_NO_TOOLBAR

				//	compatibility	stuff

				void	toolBarPositionChanged(QToolBar	*);

#endif

protected	slots:

				virtual	void	setUpLayout();

				virtual	bool	showDockMenu(const	QPoint	&globalPos);

				void	menuAboutToShow();

protected:

				void	paintEvent(QPaintEvent	*);

				void	childEvent(QChildEvent	*);

				bool	event(QEvent	*);

				void	styleChange(QStyle&);

private	slots:

				void	slotPlaceChanged();

				void	doLineUp()	{	lineUpDockWindows(TRUE);	}

private:

				QMainWindowPrivate	*	d;

				void	triggerLayout(bool	deleteLayout	=	TRUE);

				bool	dockMainWindow(QObject	*dock);

#ifndef	QT_NO_MENUBAR

				virtual	void	setMenuBar(QMenuBar	*);

#endif

				virtual	void	setStatusBar(QStatusBar	*);

#ifndef	QT_NO_TOOLTIP

				virtual	void	setToolTipGroup(QToolTipGroup	*);

#endif

				friend	class	QDockWindow;

				friend	class	QMenuBar;

				friend	class	QHideDock;

				friend	class	QToolBar;

				friend	class	QMainWindowLayout;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QMainWindow(const	QMainWindow	&);

				QMainWindow&	operator=(const	QMainWindow	&);

#endif

};

#ifndef	QT_NO_TOOLBAR

inline	void	QMainWindow::addToolBar(QDockWindow	*w,	ToolBarDock	dock,	bool	newLine)

{

				addDockWindow(w,	dock,	newLine);

}

inline	void	QMainWindow::addToolBar(QDockWindow	*w,	const	QString	&label,

	 	 	 						ToolBarDock	dock,	bool	newLine)

{

				addDockWindow(w,	label,	dock,	newLine);

}

inline	void	QMainWindow::moveToolBar(QDockWindow	*w,	ToolBarDock	dock)

{

				moveDockWindow(w,	dock);

}

inline	void	QMainWindow::moveToolBar(QDockWindow	*w,	ToolBarDock	dock,	bool	nl,	int	index,	int	extraOffset)

{

				moveDockWindow(w,	dock,	nl,	index,	extraOffset);

}

inline	void	QMainWindow::removeToolBar(QDockWindow	*w)

{

				removeDockWindow(w);

}

inline	bool	QMainWindow::toolBarsMovable()	const

{

				return	dockWindowsMovable();

}

inline	void	QMainWindow::lineUpToolBars(bool	keepNewLines)

{

				lineUpDockWindows(keepNewLines);

}

inline	void	QMainWindow::setToolBarsMovable(bool	b)

{

				setDockWindowsMovable(b);

}

#endif

#ifndef	QT_NO_TEXTSTREAM

Q_EXPORT	QTextStream	&operator<<(QTextStream	&,	const	QMainWindow	&);

Q_EXPORT	QTextStream	&operator>>(QTextStream	&,	QMainWindow	&);

#endif

#endif	//	QT_NO_MAINWINDOW

#endif	//	QMAINWINDOW_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qmap.h
This	is	the	verbatim	text	of	the	qmap.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qmap.h			3.0.5			edited	Jun	7	04:20	$

**

**	Definition	of	QMap	class

**

**	Created	:	990406

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	tools	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QMAP_H

#define	QMAP_H

#ifndef	QT_H

#include	"qglobal.h"

#include	"qshared.h"

#include	"qdatastream.h"

#include	"qpair.h"

#include	"qtl.h"

#include	"qvaluelist.h"

#endif	//	QT_H

#ifndef	QT_NO_STL

#include	<iterator>

#include	<map>

#endif

//#define	QT_CHECK_MAP_RANGE

struct	Q_EXPORT	QMapNodeBase

{

				enum	Color	{	Red,	Black	};

				QMapNodeBase*	left;

				QMapNodeBase*	right;

				QMapNodeBase*	parent;

				Color	color;

				QMapNodeBase*	minimum()	{

	 QMapNodeBase*	x	=	this;

	 while	(x->left)

	 				x	=	x->left;

	 return	x;

				}

				QMapNodeBase*	maximum()	{

	 QMapNodeBase*	x	=	this;

	 while	(x->right)

	 				x	=	x->right;

	 return	x;

				}

};

template	<class	K,	class	T>

struct	QMapNode	:	public	QMapNodeBase

{

				QMapNode(const	K&	_key,	const	T&	_data)	{	data	=	_data;	key	=	_key;	}

				QMapNode(const	K&	_key)	 			{	key	=	_key;	}

				QMapNode(const	QMapNode<K,T>&	_n)	{	key	=	_n.key;	data	=	_n.data;	}

				QMapNode()	{	}

				T	data;

				K	key;

};

template<class	K,	class	T>

class	QMapIterator

{

	public:

				/**

					*	Typedefs

					*/

				typedef	QMapNode<	K,	T	>*	NodePtr;

#ifndef	QT_NO_STL

				typedef	std::bidirectional_iterator_tag		iterator_category;

#endif

				typedef	T										value_type;

#ifndef	QT_NO_STL

				typedef	ptrdiff_t		difference_type;

#else

				typedef	int	difference_type;

#endif

				typedef	T*									pointer;

				typedef	T&									reference;

				/**

					*	Variables

					*/

				QMapNode<K,T>*	node;

				/**

					*	Functions

					*/

				QMapIterator()	:	node(0)	{}

				QMapIterator(QMapNode<K,T>*	p)	:	node(p)	{}

				QMapIterator(const	QMapIterator<K,T>&	it)	:	node(it.node)	{}

				bool	operator==(const	QMapIterator<K,T>&	it)	const	{	return	node	==	it.node;	}

				bool	operator!=(const	QMapIterator<K,T>&	it)	const	{	return	node	!=	it.node;	}

				T&	operator*()	{	return	node->data;	}

				const	T&	operator*()	const	{	return	node->data;	}

				//	UDT	for	T	=	x*

				//	T*	operator->()	const	{	return	&node->data;	}

				const	K&	key()	const	{	return	node->key;	}

				T&	data()	{	return	node->data;	}

				const	T&	data()	const	{	return	node->data;	}

private:

				int	inc();

				int	dec();

public:

				QMapIterator<K,T>&	operator++()	{

	 inc();

	 return	*this;

				}

				QMapIterator<K,T>	operator++(int)	{

	 QMapIterator<K,T>	tmp	=	*this;

	 inc();

	 return	tmp;

				}

				QMapIterator<K,T>&	operator--()	{

	 dec();

	 return	*this;

				}

				QMapIterator<K,T>	operator--(int)	{

	 QMapIterator<K,T>	tmp	=	*this;

	 dec();

	 return	tmp;

				}

};

template	<class	K,	class	T>

Q_INLINE_TEMPLATES	int	QMapIterator<K,T>::inc()

{

				QMapNodeBase*	tmp	=	node;

				if	(tmp->right)	{

	 tmp	=	tmp->right;

	 while	(tmp->left)

	 				tmp	=	tmp->left;

				}	else	{

	 QMapNodeBase*	y	=	tmp->parent;

	 while	(tmp	==	y->right)	{

	 				tmp	=	y;

	 				y	=	y->parent;

	 }

	 if	(tmp->right	!=	y)

	 				tmp	=	y;

				}

				node	=	(NodePtr)tmp;

				return	0;

}

template	<class	K,	class	T>

Q_INLINE_TEMPLATES	int	QMapIterator<K,T>::dec()

{

				QMapNodeBase*	tmp	=	node;

				if	(tmp->color	==	QMapNodeBase::Red	&&

	 tmp->parent->parent	==	tmp)	{

	 tmp	=	tmp->right;

				}	else	if	(tmp->left	!=	0)	{

	 QMapNodeBase*	y	=	tmp->left;

	 while	(y->right)

	 				y	=	y->right;

	 tmp	=	y;

				}	else	{

	 QMapNodeBase*	y	=	tmp->parent;

	 while	(tmp	==	y->left)	{

	 				tmp	=	y;

	 				y	=	y->parent;

	 }

	 tmp	=	y;

				}

				node	=	(NodePtr)tmp;

				return	0;

}

template<class	K,	class	T>

class	QMapConstIterator

{

	public:

				/**

					*	Typedefs

					*/

				typedef	QMapNode<	K,	T	>*	NodePtr;

#ifndef	QT_NO_STL

				typedef	std::bidirectional_iterator_tag		iterator_category;

#endif

				typedef	T										value_type;

#ifndef	QT_NO_STL

				typedef	ptrdiff_t		difference_type;

#else

				typedef	int	difference_type;

#endif

				typedef	const	T*			pointer;

				typedef	const	T&			reference;

				/**

					*	Variables

					*/

				QMapNode<K,T>*	node;

				/**

					*	Functions

					*/

				QMapConstIterator()	:	node(0)	{}

				QMapConstIterator(QMapNode<K,T>*	p)	:	node(p)	{}

				QMapConstIterator(const	QMapConstIterator<K,T>&	it)	:	node(it.node)	{}

				QMapConstIterator(const	QMapIterator<K,T>&	it)	:	node(it.node)	{}

				bool	operator==(const	QMapConstIterator<K,T>&	it)	const	{	return	node	==	it.node;	}

				bool	operator!=(const	QMapConstIterator<K,T>&	it)	const	{	return	node	!=	it.node;	}

				const	T&	operator*()		const	{	return	node->data;	}

				//	UDT	for	T	=	x*

				//	const	T*	operator->()	const	{	return	&node->data;	}

				const	K&	key()	const	{	return	node->key;	}

				const	T&	data()	const	{	return	node->data;	}

private:

				int	inc();

				int	dec();

public:

				QMapConstIterator<K,T>&	operator++()	{

	 inc();

	 return	*this;

				}

				QMapConstIterator<K,T>	operator++(int)	{

	 QMapConstIterator<K,T>	tmp	=	*this;

	 inc();

	 return	tmp;

				}

				QMapConstIterator<K,T>&	operator--()	{

	 dec();

	 return	*this;

				}

				QMapConstIterator<K,T>	operator--(int)	{

	 QMapConstIterator<K,T>	tmp	=	*this;

	 dec();

	 return	tmp;

				}

};

template	<class	K,	class	T>

Q_INLINE_TEMPLATES	int	QMapConstIterator<K,T>::inc()

{

				QMapNodeBase*	tmp	=	node;

				if	(tmp->right)	{

	 tmp	=	tmp->right;

	 while	(tmp->left)

	 				tmp	=	tmp->left;

				}	else	{

	 QMapNodeBase*	y	=	tmp->parent;

	 while	(tmp	==	y->right)	{

	 				tmp	=	y;

	 				y	=	y->parent;

	 }

	 if	(tmp->right	!=	y)

	 				tmp	=	y;

				}

				node	=	(NodePtr)tmp;

				return	0;

}

template	<class	K,	class	T>

Q_INLINE_TEMPLATES	int	QMapConstIterator<K,T>::dec()

{

				QMapNodeBase*	tmp	=	node;

				if	(tmp->color	==	QMapNodeBase::Red	&&

	 tmp->parent->parent	==	tmp)	{

	 tmp	=	tmp->right;

				}	else	if	(tmp->left	!=	0)	{

	 QMapNodeBase*	y	=	tmp->left;

	 while	(y->right)

	 				y	=	y->right;

	 tmp	=	y;

				}	else	{

	 QMapNodeBase*	y	=	tmp->parent;

	 while	(tmp	==	y->left)	{

	 				tmp	=	y;

	 				y	=	y->parent;

	 }

	 tmp	=	y;

				}

				node	=	(NodePtr)tmp;

				return	0;

}

class	Q_EXPORT	QMapPrivateBase	:	public	QShared

{

public:

				QMapPrivateBase()	{

	 node_count	=	0;

				}

				QMapPrivateBase(const	QMapPrivateBase*	_map)	{

	 node_count	=	_map->node_count;

				}

				/**

					*	Implementations	of	basic	tree	algorithms

					*/

				void	rotateLeft(QMapNodeBase*	x,	QMapNodeBase*&	root);

				void	rotateRight(QMapNodeBase*	x,	QMapNodeBase*&	root);

				void	rebalance(QMapNodeBase*	x,	QMapNodeBase*&	root);

				QMapNodeBase*	removeAndRebalance(QMapNodeBase*	z,	QMapNodeBase*&	root,

	 	 	 	 						QMapNodeBase*&	leftmost,

	 	 	 	 						QMapNodeBase*&	rightmost);

				/**

					*	Variables

					*/

				int	node_count;

};

template	<class	Key,	class	T>

class	QMapPrivate	:	public	QMapPrivateBase

{

public:

				/**

					*	Typedefs

					*/

				typedef	QMapIterator<	Key,	T	>	Iterator;

				typedef	QMapConstIterator<	Key,	T	>	ConstIterator;

				typedef	QMapNode<	Key,	T	>	Node;

				typedef	QMapNode<	Key,	T	>*	NodePtr;

				/**

					*	Functions

					*/

				QMapPrivate();

				QMapPrivate(const	QMapPrivate<	Key,	T	>*	_map);

				~QMapPrivate()	{	clear();	delete	header;	}

				NodePtr	copy(NodePtr	p);

				void	clear();

				void	clear(NodePtr	p);

				Iterator	begin()	 {	return	Iterator((NodePtr)(header->left));	}

				Iterator	end()	 {	return	Iterator(header);	}

				ConstIterator	begin()	const	{	return	ConstIterator((NodePtr)(header->left));	}

				ConstIterator	end()	const	{	return	ConstIterator(header);	}

				ConstIterator	find(const	Key&	k)	const;

				void	remove(Iterator	it)	{

	 NodePtr	del	=	(NodePtr)	removeAndRebalance(it.node,	header->parent,	header->left,	header->right);

	 delete	del;

	 --node_count;

				}

#ifdef	QT_QMAP_DEBUG

				void	inorder(QMapNodeBase*	x	=	0,	int	level	=	0){

	 if	(!x)

	 				x	=	header->parent;

	 if	(x->left)

	 				inorder(x->left,	level	+	1);

				//cout	<<	level	<<	"	Key="	<<	key(x)	<<	"	Value="	<<	((NodePtr)x)->data	<<	endl;

	 if	(x->right)

	 				inorder(x->right,	level	+	1);

				}

#endif

#if	0

				Iterator	insertMulti(const	Key&	v){

	 QMapNodeBase*	y	=	header;

	 QMapNodeBase*	x	=	header->parent;

	 while	(x	!=	0){

	 				y	=	x;

	 				x	=	(v	<	key(x))	?	x->left	:	x->right;

	 }

	 return	insert(x,	y,	v);

				}

#endif

				Iterator	insertSingle(const	Key&	k);

				Iterator	insert(QMapNodeBase*	x,	QMapNodeBase*	y,	const	Key&	k);

protected:

				/**

					*	Helpers

					*/

				const	Key&	key(QMapNodeBase*	b)	const	{	return	((NodePtr)b)->key;	}

				/**

					*	Variables

					*/

				NodePtr	header;

};

template	<class	Key,	class	T>

Q_INLINE_TEMPLATES	QMapPrivate<Key,T>::QMapPrivate()	{

				header	=	new	Node;

				header->color	=	QMapNodeBase::Red;	//	Mark	the	header

				header->parent	=	0;

				header->left	=	header->right	=	header;

}

template	<class	Key,	class	T>

Q_INLINE_TEMPLATES	QMapPrivate<Key,T>::QMapPrivate(const	QMapPrivate<	Key,	T	>*	_map)	:	QMapPrivateBase(_map)	{

				header	=	new	Node;

				header->color	=	QMapNodeBase::Red;	//	Mark	the	header

				if	(_map->header->parent	==	0)	{

	 header->parent	=	0;

	 header->left	=	header->right	=	header;

				}	else	{

	 header->parent	=	copy((NodePtr)(_map->header->parent));

	 header->parent->parent	=	header;

	 header->left	=	header->parent->minimum();

	 header->right	=	header->parent->maximum();

				}

}

template	<class	Key,	class	T>

Q_INLINE_TEMPLATES	Q_TYPENAME	QMapPrivate<Key,T>::NodePtr	QMapPrivate<Key,T>::copy(Q_TYPENAME	QMapPrivate<Key,T>::NodePtr	p)

{

				if	(!p)

	 return	0;

				NodePtr	n	=	new	Node(*p);

				n->color	=	p->color;

				if	(p->left)	{

	 n->left	=	copy((NodePtr)(p->left));

	 n->left->parent	=	n;

				}	else	{

	 n->left	=	0;

				}

				if	(p->right)	{

	 n->right	=	copy((NodePtr)(p->right));

	 n->right->parent	=	n;

				}	else	{

	 n->right	=	0;

				}

				return	n;

}

template	<class	Key,	class	T>

Q_INLINE_TEMPLATES	void	QMapPrivate<Key,T>::clear()

{

				clear((NodePtr)(header->parent));

				header->color	=	QMapNodeBase::Red;

				header->parent	=	0;

				header->left	=	header->right	=	header;

				node_count	=	0;

}

template	<class	Key,	class	T>

Q_INLINE_TEMPLATES	void	QMapPrivate<Key,T>::clear(Q_TYPENAME	QMapPrivate<Key,T>::NodePtr	p)

{

				while	(p	!=	0)	{

	 clear((NodePtr)p->right);

	 NodePtr	y	=	(NodePtr)p->left;

	 delete	p;

	 p	=	y;

				}

}

template	<class	Key,	class	T>

Q_INLINE_TEMPLATES	Q_TYPENAME	QMapPrivate<Key,T>::ConstIterator	QMapPrivate<Key,T>::find(const	Key&	k)	const

{

				QMapNodeBase*	y	=	header;								//	Last	node

				QMapNodeBase*	x	=	header->parent;	//	Root	node.

				while	(x	!=	0)	{

	 //	If	as	k	<=	key(x)	go	left

	 if	(!(key(x)	<	k))	{

	 				y	=	x;

	 				x	=	x->left;

	 }	else	{

	 				x	=	x->right;

	 }

				}

				//	Was	k	bigger/smaller	then	the	biggest/smallest

				//	element	of	the	tree	?	Return	end()

				if	(y	==	header	||	k	<	key(y))

	 return	ConstIterator(header);

				return	ConstIterator((NodePtr)y);

}

template	<class	Key,	class	T>

Q_INLINE_TEMPLATES	Q_TYPENAME	QMapPrivate<Key,T>::Iterator	QMapPrivate<Key,T>::insertSingle(const	Key&	k)

{

				//	Search	correct	position	in	the	tree

				QMapNodeBase*	y	=	header;

				QMapNodeBase*	x	=	header->parent;

				bool	result	=	TRUE;

				while	(x	!=	0)	{

	 result	=	(k	<	key(x));

	 y	=	x;

	 x	=	result	?	x->left	:	x->right;

				}

				//	Get	iterator	on	the	last	not	empty	one

				Iterator	j((NodePtr)y);

				if	(result)	{

	 //	Smaller	then	the	leftmost	one	?

	 if	(j	==	begin())	{

	 				return	insert(x,	y,	k);

	 }	else	{

	 				//	Perhaps	daddy	is	the	right	one	?

	 				--j;

	 }

				}

				//	Really	bigger	?

				if	((j.node->key)	<	k)

	 return	insert(x,	y,	k);

				//	We	are	going	to	replace	a	node

				return	j;

}

template	<class	Key,	class	T>

Q_INLINE_TEMPLATES	Q_TYPENAME	QMapPrivate<Key,T>::Iterator	QMapPrivate<Key,T>::insert(QMapNodeBase*	x,	QMapNodeBase*	y,	const	Key&	k)

{

				NodePtr	z	=	new	Node(k);

				if	(y	==	header	||	x	!=	0	||	k	<	key(y))	{

	 y->left	=	z;																//	also	makes	leftmost	=	z	when	y	==	header

	 if	(y	==	header)	{

	 				header->parent	=	z;

	 				header->right	=	z;

	 }	else	if	(y	==	header->left)

	 				header->left	=	z;											//	maintain	leftmost	pointing	to	min	node

				}	else	{

	 y->right	=	z;

	 if	(y	==	header->right)

	 				header->right	=	z;										//	maintain	rightmost	pointing	to	max	node

				}

				z->parent	=	y;

				z->left	=	0;

				z->right	=	0;

				rebalance(z,	header->parent);

				++node_count;

				return	Iterator(z);

}

#ifdef	QT_CHECK_RANGE

#	if	!defined(QT_NO_DEBUG)	&&	defined(QT_CHECK_MAP_RANGE)

#		define	QT_CHECK_INVALID_MAP_ELEMENT	if	(empty())	qWarning("QMap:	Warning	invalid	element")

#		define	QT_CHECK_INVALID_MAP_ELEMENT_FATAL	Q_ASSERT(!empty());

#	else

#		define	QT_CHECK_INVALID_MAP_ELEMENT

#		define	QT_CHECK_INVALID_MAP_ELEMENT_FATAL

#	endif

#else

#	define	QT_CHECK_INVALID_MAP_ELEMENT

#	define	QT_CHECK_INVALID_MAP_ELEMENT_FATAL

#endif

template<class	Key,	class	T>

class	QMap

{

public:

				/**

					*	Typedefs

					*/

				typedef	Key	key_type;

				typedef	T	mapped_type;

				typedef	QPair<const	key_type,	mapped_type>	value_type;

				typedef	value_type*	pointer;

				typedef	const	value_type*	const_pointer;

				typedef	value_type&	reference;

				typedef	const	value_type&	const_reference;

#ifndef	QT_NO_STL

				typedef	ptrdiff_t		difference_type;

#else

				typedef	int	difference_type;

#endif

				typedef	size_t						size_type;

				typedef	QMapIterator<Key,T>	iterator;

				typedef	QMapConstIterator<Key,T>	const_iterator;

				typedef	QPair<iterator,bool>	insert_pair;

				/**

					*	API

					*/

				QMap()

				{

	 sh	=	new	QMapPrivate<	Key,	T	>;

				}

				QMap(const	QMap<Key,T>&	m)

				{

	 sh	=	m.sh;	sh->ref();

				}

#ifndef	QT_NO_STL

				QMap(const	Q_TYPENAME	std::map<Key,T>&	m)

				{

	 sh	=	new	QMapPrivate<Key,T>;

#if	defined(Q_OS_WIN32)

	 std::map<Key,T>::const_iterator	it	=	m.begin();

#else

	 QMapConstIterator<Key,T>	it	=	m.begin();

#endif

	 for	(;	it	!=	m.end();	++it)	{

	 				value_type	p((*it).first,	(*it).second);

	 				insert(p);

	 }

				}

#endif

				~QMap()

				{

	 if	(sh->deref())

	 				delete	sh;

				}

				QMap<Key,T>&	operator=	(const	QMap<Key,T>&	m);

#ifndef	QT_NO_STL

				QMap<Key,T>&	operator=	(const	Q_TYPENAME	std::map<Key,T>&	m)

				{

	 clear();

#if	defined(Q_OS_WIN32)

	 std::map<Key,T>::const_iterator	it	=	m.begin();

#else

	 QMapConstIterator<Key,T>	it	=	m.begin();

#endif

	 for	(;	it	!=	m.end();	++it)	{

	 				value_type	p((*it).first,	(*it).second);

	 				insert(p);

	 }

	 return	*this;

				}

#endif

				iterator	begin()	{	detach();	return	sh->begin();	}

				iterator	end()	{	detach();	return	sh->end();	}

				const_iterator	begin()	const	{	return	((const	Priv*)sh)->begin();	}

				const_iterator	end()	const	{	return	((const	Priv*)sh)->end();	}

				iterator	replace(const	Key&	k,	const	T&	v)

				{

	 remove(k);

	 return	insert(k,	v);

				}

				size_type	size()	const

				{

	 return	sh->node_count;

				}

				bool	empty()	const

				{

	 return	sh->node_count	==	0;

				}

				QPair<iterator,bool>	insert(const	value_type&	x);

				void	erase(iterator	it)

				{

	 detach();

	 sh->remove(it);

				}

				void	erase(const	key_type&	k);

				size_type	count(const	key_type&	k)	const;

				T&	operator[]	(const	Key&	k);

				void	clear();

				typedef	QMapIterator<	Key,	T	>	Iterator;

				typedef	QMapConstIterator<	Key,	T	>	ConstIterator;

				typedef	T	ValueType;

				typedef	QMapPrivate<	Key,	T	>	Priv;

				iterator	find	(const	Key&	k)

				{

	 detach();

	 return	iterator(sh->find(k).node);

				}

				const_iterator	find	(const	Key&	k)	const	{	 return	sh->find(k);	}

				const	T&	operator[]	(const	Key&	k)	const

	 {	QT_CHECK_INVALID_MAP_ELEMENT;	return	sh->find(k).data();	}

				bool	contains	(const	Key&	k)	const

	 {	return	find(k)	!=	end();	}

	 //{	return	sh->find(k)	!=	((const	Priv*)sh)->end();	}

				size_type	count()	const	{	return	sh->node_count;	}

				QValueList<Key>	keys()	const	{

	 QValueList<Key>	r;

	 for	(const_iterator	i=begin();	i!=end();	++i)

	 				r.append(i.key());

	 return	r;

				}

				QValueList<T>	values()	const	{

	 QValueList<T>	r;

	 for	(const_iterator	i=begin();	i!=end();	++i)

	 				r.append(*i);

	 return	r;

				}

				bool	isEmpty()	const	{	return	sh->node_count	==	0;	}

				iterator	insert(const	Key&	key,	const	T&	value,	bool	overwrite	=	TRUE);

				void	remove(iterator	it)	{	detach();	sh->remove(it);	}

				void	remove(const	Key&	k);

#if	defined(Q_FULL_TEMPLATE_INSTANTIATION)

				bool	operator==(const	QMap<Key,T>&)	const	{	return	FALSE;	}

#ifndef	QT_NO_STL

				bool	operator==(const	Q_TYPENAME	std::map<Key,T>&)	const	{	return	FALSE;	}

#endif

#endif

protected:

				/**

					*	Helpers

					*/

				void	detach()	{		if	(sh->count	>	1)	detachInternal();	}

				Priv*	sh;

private:

				void	detachInternal();

};

template<class	Key,	class	T>

Q_INLINE_TEMPLATES	QMap<Key,T>&	QMap<Key,T>::operator=	(const	QMap<Key,T>&	m)

{

				m.sh->ref();

				if	(sh->deref())

	 delete	sh;

				sh	=	m.sh;

				return	*this;

}

template<class	Key,	class	T>

Q_INLINE_TEMPLATES	Q_TYPENAME	QMap<Key,T>::insert_pair	QMap<Key,T>::insert(const	Q_TYPENAME	QMap<Key,T>::value_type&	x)

{

				detach();

				size_type	n	=	size();

				iterator	it	=	sh->insertSingle(x.first);

				bool	inserted	=	FALSE;

				if	(n	<	size())	{

	 inserted	=	TRUE;

	 it.data()	=	x.second;

				}

				return	QPair<iterator,bool>(it,	inserted);

}

template<class	Key,	class	T>

Q_INLINE_TEMPLATES	void	QMap<Key,T>::erase(const	Key&	k)

{

				detach();

				iterator	it(sh->find(k).node);

				if	(it	!=	end())

	 sh->remove(it);

}

template<class	Key,	class	T>

Q_INLINE_TEMPLATES	Q_TYPENAME	QMap<Key,T>::size_type	QMap<Key,T>::count(const	Key&	k)	const

{

				const_iterator	it(sh->find(k).node);

				if	(it	!=	end())	{

	 size_type	c	=	0;

	 while	(it	!=	end())	{

	 				++it;

	 				++c;

	 }

	 return	c;

				}

				return	0;

}

template<class	Key,	class	T>

Q_INLINE_TEMPLATES	T&	QMap<Key,T>::operator[]	(const	Key&	k)

{

				detach();

				QMapNode<Key,T>*	p	=	sh->find(k).node;

				if	(p	!=	sh->end().node)

	 return	p->data;

				return	insert(k,	T()).data();

}

template<class	Key,	class	T>

Q_INLINE_TEMPLATES	void	QMap<Key,T>::clear()

{

				if	(sh->count	==	1)

	 sh->clear();

				else	{

	 sh->deref();

	 sh	=	new	QMapPrivate<Key,T>;

				}

}

template<class	Key,	class	T>

Q_INLINE_TEMPLATES	Q_TYPENAME	QMap<Key,T>::iterator	QMap<Key,T>::insert(const	Key&	key,	const	T&	value,	bool	overwrite)

{

				detach();

				size_type	n	=	size();

				iterator	it	=	sh->insertSingle(key);

				if	(overwrite	||	n	<	size())

	 it.data()	=	value;

				return	it;

}

template<class	Key,	class	T>

Q_INLINE_TEMPLATES	void	QMap<Key,T>::remove(const	Key&	k)

{

				detach();

				iterator	it(sh->find(k).node);

				if	(it	!=	end())

	 sh->remove(it);

}

template<class	Key,	class	T>

Q_INLINE_TEMPLATES	void	QMap<Key,T>::detachInternal()

{

				sh->deref();	sh	=	new	QMapPrivate<Key,T>(sh);

}

#ifndef	QT_NO_DATASTREAM

template<class	Key,	class	T>

Q_INLINE_TEMPLATES	QDataStream&	operator>>(QDataStream&	s,	QMap<Key,T>&	m)	{

				m.clear();

				Q_UINT32	c;

				s	>>	c;

				for(Q_UINT32	i	=	0;	i	<	c;	++i)	{

	 Key	k;	T	t;

	 s	>>	k	>>	t;

	 m.insert(k,	t);

	 if	(s.atEnd())

	 				break;

				}

				return	s;

}

template<class	Key,	class	T>

Q_INLINE_TEMPLATES	QDataStream&	operator<<(QDataStream&	s,	const	QMap<Key,T>&	m)	{

				s	<<	(Q_UINT32)m.size();

				QMapConstIterator<Key,T>	it	=	m.begin();

				for(;	it	!=	m.end();	++it)

	 s	<<	it.key()	<<	it.data();

				return	s;

}

#endif

#endif	//	QMAP_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qmemarray.h
qmemarray.hTrolltech

/**

**	Id

**

**	Definition	of	QMemArray	template/macro	class

**

**	Created	:	930906

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	tools	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QMEMARRAY_H

#define	QMEMARRAY_H

#ifndef	QT_H

#include	"qgarray.h"

#endif	//	QT_H

template<class	type>	

class	QMemArray	

:	public	QGArray

{

public:

				typedef	type*	Iterator;

				typedef	const	type*	ConstIterator;

				typedef	type	ValueType;

protected:

				QMemArray(int,	int)	:	QGArray(0,	0)	{}

public:

				QMemArray()	{}

				QMemArray(int	size)	:	QGArray(size*sizeof(type))	{}

				QMemArray(const	QMemArray<type>	&a)	:	QGArray(a)	{}

			~QMemArray()	{}

				QMemArray<type>	&operator=(const	QMemArray<type>	&a)

	 	 	 	 {	return	(QMemArray<type>&)QGArray::assign(a);	}

				type	*data()				const	 {	return	(type	*)QGArray::data();	}

				uint		nrefs()			const	 {	return	QGArray::nrefs();	}

				uint		size()				const	 {	return	QGArray::size()/sizeof(type);	}

				uint		count()			const	 {	return	size();	}

				bool		isEmpty()	const	 {	return	QGArray::size()	==	0;	}

				bool		isNull()		const	 {	return	QGArray::data()	==	0;	}

				bool		resize(uint	size)	 {	return	QGArray::resize(size*sizeof(type));	}

				bool		truncate(uint	pos)	 {	return	QGArray::resize(pos*sizeof(type));	}

				bool		fill(const	type	&d,	int	size	=	-1)

	 {	return	QGArray::fill((char*)&d,size,sizeof(type));	}

				void		detach()	 	 {	QGArray::detach();	}

				QMemArray<type>			copy()	const

	 {	QMemArray<type>	tmp;	return	tmp.duplicate(*this);	}

				QMemArray<type>&	assign(const	QMemArray<type>&	a)

	 {	return	(QMemArray<type>&)QGArray::assign(a);	}

				QMemArray<type>&	assign(const	type	*a,	uint	n)

	 {	return	(QMemArray<type>&)QGArray::assign((char*)a,n*sizeof(type));	}

				QMemArray<type>&	duplicate(const	QMemArray<type>&	a)

	 {	return	(QMemArray<type>&)QGArray::duplicate(a);	}

				QMemArray<type>&	duplicate(const	type	*a,	uint	n)

	 {	return	(QMemArray<type>&)QGArray::duplicate((char*)a,n*sizeof(type));	}

				QMemArray<type>&	setRawData(const	type	*a,	uint	n)

	 {	return	(QMemArray<type>&)QGArray::setRawData((char*)a,

	 	 	 	 	 	 					n*sizeof(type));	}

				void	resetRawData(const	type	*a,	uint	n)

	 {	QGArray::resetRawData((char*)a,n*sizeof(type));	}

				int		find(const	type	&d,	uint	i=0)	const

	 {	return	QGArray::find((char*)&d,i,sizeof(type));	}

				int		contains(const	type	&d)	const

	 {	return	QGArray::contains((char*)&d,sizeof(type));	}

				void	sort()	{	QGArray::sort(sizeof(type));	}

				int		bsearch(const	type	&d)	const

	 {	return	QGArray::bsearch((const	char*)&d,sizeof(type));	}

				type&	operator[](int	i)	const

	 {	return	(type	&)(*(type	*)QGArray::at(i*sizeof(type)));	}

				type&	at(uint	i)	const

	 {	return	(type	&)(*(type	*)QGArray::at(i*sizeof(type)));	}

	 	operator	const	type*()	const	{	return	(const	type	*)QGArray::data();	}

				bool	operator==(const	QMemArray<type>	&a)	const	{	return	isEqual(a);	}

				bool	operator!=(const	QMemArray<type>	&a)	const	{	return	!isEqual(a);	}

				Iterator	begin()	{	return	data();	}

				Iterator	end()	{	return	data()	+	size();	}

				ConstIterator	begin()	const	{	return	data();	}

				ConstIterator	end()	const	{	return	data()	+	size();	}

};

#if	defined(Q_TEMPLATEDLL)

//	MOC_SKIP_BEGIN

Q_TEMPLATE_EXTERN	template	class	Q_EXPORT	QMemArray<int>;

Q_TEMPLATE_EXTERN	template	class	Q_EXPORT	QMemArray<bool>;

//	MOC_SKIP_END

#endif

#ifndef	QT_NO_COMPAT

#define	QArray	QMemArray

#endif

#endif	//	QARRAY_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qmenubar.h
This	is	the	verbatim	text	of	the	qmenubar.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qmenubar.h			3.0.5			edited	Apr	30	08:40	$

**

**	Definition	of	QMenuBar	class

**

**	Created	:	941209

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QMENUBAR_H

#define	QMENUBAR_H

#ifndef	QT_H

#include	"qpopupmenu.h"	//	###	remove	or	keep	for	users'	convenience?

#include	"qframe.h"

#include	"qmenudata.h"

#endif	//	QT_H

#ifndef	QT_NO_MENUBAR

class	QPopupMenu;

class	Q_EXPORT	QMenuBar	:	public	QFrame,	public	QMenuData

{

				Q_OBJECT

				Q_ENUMS(Separator)

				Q_PROPERTY(Separator	separator	READ	separator	WRITE	setSeparator	DESIGNABLE	false)

				Q_PROPERTY(bool	defaultUp	READ	isDefaultUp	WRITE	setDefaultUp)

	

public:

				QMenuBar(QWidget*	parent=0,	const	char*	name=0);

				~QMenuBar();

				void	 updateItem(int	id);

				void	 show();		 	 	 //	reimplemented	show

				void	 hide();		 	 	 //	reimplemented	hide

				bool	 eventFilter(QObject	*,	QEvent	*);

				int		 heightForWidth(int)	const;

				enum	 Separator	{	Never=0,	InWindowsStyle=1	};

				Separator		 separator()	const;

				virtual	void	 setSeparator(Separator	when);

				void	 setDefaultUp(bool);

				bool	 isDefaultUp()	const;

				bool	customWhatsThis()	const;

				QSize	sizeHint()	const;

				QSize	minimumSize()	const;

				QSize	minimumSizeHint()	const;

				void	activateItemAt(int	index);	//	###	virtual	in	QMenuData	3.0

#if	defined(Q_WS_MAC)	&&	!defined(QMAC_QMENUBAR_NO_NATIVE)

				static	void	initialize();

				static	void	cleanup();

#endif

signals:

				void	 activated(int	itemId);

				void	 highlighted(int	itemId);

protected:

				void	 drawContents(QPainter	*);

				void	 fontChange(const	QFont	&);

				void	 mousePressEvent(QMouseEvent	*);

				void	 mouseReleaseEvent(QMouseEvent	*);

				void	 mouseMoveEvent(QMouseEvent	*);

				void	 keyPressEvent(QKeyEvent	*);

				void	 focusInEvent(QFocusEvent	*);

				void	 focusOutEvent(QFocusEvent	*);

				void	 resizeEvent(QResizeEvent	*);

				void	 leaveEvent(QEvent	*);

				void	 menuContentsChanged();

				void	 menuStateChanged();

				void		 styleChange(QStyle&);

				int	itemAtPos(const	QPoint	&);

				void	 hidePopups();

				QRect	 itemRect(int	item);

private	slots:

				void	 subActivated(int	itemId);

				void	 subHighlighted(int	itemId);

#ifndef	QT_NO_ACCEL

				void	 accelActivated(int	itemId);

				void	 accelDestroyed();

#endif

				void	 popupDestroyed(QObject*);

				void		 performDelayedChanges();

private:

				void		 performDelayedContentsChanged();

				void		 performDelayedStateChanged();

				void	 menuInsPopup(QPopupMenu	*);

				void	 menuDelPopup(QPopupMenu	*);

				void	 frameChanged();

				bool	 tryMouseEvent(QPopupMenu	*,	QMouseEvent	*);

				void	 tryKeyEvent(QPopupMenu	*,	QKeyEvent	*);

				void	 goodbye(bool	cancelled	=	FALSE);

				void	 openActPopup();

				void	setActiveItem(int	index,	bool	show	=	TRUE,	bool	activate_first_item	=	TRUE);

				void	setAltMode(bool);

				int		 calculateRects(int	max_width	=	-1);

#ifndef	QT_NO_ACCEL

				void	 setupAccelerators();

				QAccel					*autoaccel;

#endif

				QRect						*irects;

				int		 rightSide;

				uint	 mseparator	:	1;

				uint	 waitforalt	:	1;

				uint	 popupvisible		:	1;

				uint	 hasmouse	:	1;

				uint		 defaultup	:	1;

				uint		 toggleclose	:	1;

				uint								pendingDelayedContentsChanges	:	1;

				uint								pendingDelayedStateChanges	:	1;

				friend	class	QPopupMenu;

#if	defined(Q_WS_MAC)	&&	!defined(QMAC_QMENUBAR_NO_NATIVE)

				friend	class	QWidget;

				friend	class	QApplication;

				void	macCreateNativeMenubar();

				void	macRemoveNativeMenubar();

				void	macDirtyNativeMenubar();

#if	!defined(QMAC_QMENUBAR_NO_EVENT)

				static	void	qt_mac_install_menubar_event(MenuRef);

				static	OSStatus	qt_mac_menubar_event(EventHandlerCallRef,	EventRef,	void	*);

#endif

				bool	syncPopups(MenuRef	ret,	QPopupMenu	*d);

				MenuRef	createMacPopup(QPopupMenu	*d,	bool,	bool	=FALSE);

				bool	updateMenuBar();

#if	!defined(QMAC_QMENUBAR_NO_MERGE)

				uint	isCommand(QMenuItem	*);

#endif

				uint	mac_eaten_menubar	:	1;

				class	MacPrivate;

				MacPrivate	*mac_d;

				static	bool	activate(MenuRef,	short,	bool	highlight=FALSE,	bool	by_accel=FALSE);

				static	bool	activateCommand(uint	cmd);

				static	void	macUpdateMenuBar();

				static	void	macUpdatePopup(MenuRef);

#endif

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QMenuBar(const	QMenuBar	&);

				QMenuBar	&operator=(const	QMenuBar	&);

#endif

};

#endif	//	QT_NO_MENUBAR

#endif	//	QMENUBAR_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qmenudata.h
This	is	the	verbatim	text	of	the	qmenudata.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qmenudata.h			3.0.5			edited	Apr	4	18:25	$

**

**	Definition	of	QMenuData	class

**

**	Created	:	941128

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QMENUDATA_H

#define	QMENUDATA_H

#ifndef	QT_H

#include	"qglobal.h"

#include	"qiconset.h"	//	conversion	QPixmap->QIconset

#include	"qkeysequence.h"

#include	"qstring.h"

#include	"qsignal.h"

#include	"qfont.h"

#endif	//	QT_H

#ifndef	QT_NO_MENUDATA

class	QPopupMenu;

class	QMenuDataData;

class	QObject;

class	QCustomMenuItem;

class	QMenuItemData;

class	Q_EXPORT	QMenuItem	 	 	 //	internal	menu	item	class

{

friend	class	QMenuData;

public:

				QMenuItem();

			~QMenuItem();

				int		 id()	 	 const	 {	return	ident;	}

				QIconSet			*iconSet()	 const	 {	return	iconset_data;	}

				QString	 text()	 	 const	 {	return	text_data;	}

				QString	 whatsThis()	 const	 {	return	whatsthis_data;	}

				QPixmap				*pixmap()	 const	 {	return	pixmap_data;	}

				QPopupMenu	*popup()		 const	 {	return	popup_menu;	}

				QWidget	*widget()	 	 const	 {	return	widget_item;	}

				QCustomMenuItem	*custom()	 const;

#ifndef	QT_NO_ACCEL

				QKeySequence	key()	 	 const	 {	return	accel_key;	}

#endif

				QSignal				*signal()	 const	 {	return	signal_data;	}

				bool	 isSeparator()	 const	 {	return	is_separator;	}

				bool	 isEnabled()	 const	 {	return	is_enabled;	}

				bool	 isChecked()	 const	 {	return	is_checked;	}

				bool	 isDirty()	 const	 {	return	is_dirty;	}

				void	 setText(const	QString	&text)	{	text_data	=	text;	}

				void	 setDirty(bool	dirty)	 							{	is_dirty	=	dirty;	}

				void	 setWhatsThis(const	QString	&text)	{	whatsthis_data	=	text;	}

private:

				int		 ident;	 	 	 	 //	item	identifier

				QIconSet			*iconset_data;	 	 	 //	icons

				QString	 text_data;	 	 	 //	item	text

				QString	 whatsthis_data;		 	 //	item	Whats	This	help	text

				QPixmap				*pixmap_data;	 	 	 //	item	pixmap

				QPopupMenu	*popup_menu;	 	 	 //	item	popup	menu

				QWidget				*widget_item;	 	 	 //	widget	menu	item

#ifndef	QT_NO_ACCEL

				QKeySequence	 accel_key;	 	 //	accelerator	key	(state|ascii)

#endif

				QSignal				*signal_data;	 	 	 //	connection

				uint	 is_separator	:	1;	 	 //	separator	flag

				uint	 is_enabled			:	1;	 	 //	disabled	flag

				uint	 is_checked			:	1;	 	 //	checked	flag

				uint	 is_dirty					:	1;	 	 //	dirty	(update)	flag

				QMenuItemData*	d;

				QMenuItemData*	extra();

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QMenuItem(const	QMenuItem	&);

				QMenuItem	&operator=(const	QMenuItem	&);

#endif

};

#include	"qptrlist.h"

typedef	QPtrList<QMenuItem>	 	QMenuItemList;

typedef	QPtrListIterator<QMenuItem>	QMenuItemListIt;

class	Q_EXPORT	QCustomMenuItem	:	public	Qt

{

public:

				QCustomMenuItem();

				virtual	~QCustomMenuItem();

				virtual	bool	fullSpan()	const;

				virtual	bool	isSeparator()	const;

				virtual	void	setFont(const	QFont&	font);

				virtual	void	paint(QPainter*	p,	const	QColorGroup&	cg,	bool	act,

	 	 	 bool	enabled,	int	x,	int	y,	int	w,	int	h)	=	0;

				virtual	QSize	sizeHint()	=	0;

};

class	Q_EXPORT	QMenuData	 	 	 //	menu	data	class

{

friend	class	QMenuBar;

friend	class	QPopupMenu;

public:

				QMenuData();

				virtual	~QMenuData();

				uint	 count()	const;

				int		 insertItem(const	QString	&text,

	 	 	 				const	QObject	*receiver,	const	char*	member,

	 	 	 				const	QKeySequence&	accel	=	0,	int	id	=	-1,	int	index	=	-1);

				int		 insertItem(const	QIconSet&	icon,

	 	 	 				const	QString	&text,

	 	 	 				const	QObject	*receiver,	const	char*	member,

	 	 	 				const	QKeySequence&	accel	=	0,	int	id	=	-1,	int	index	=	-1);

				int		 insertItem(const	QPixmap	&pixmap,

	 	 	 				const	QObject	*receiver,	const	char*	member,

	 	 	 				const	QKeySequence&	accel	=	0,	int	id	=	-1,	int	index	=	-1);

				int		 insertItem(const	QIconSet&	icon,

	 	 	 				const	QPixmap	&pixmap,

	 	 	 				const	QObject	*receiver,	const	char*	member,

	 	 	 				const	QKeySequence&	accel	=	0,	int	id	=	-1,	int	index	=	-1);

				int		 insertItem(const	QString	&text,	int	id=-1,	int	index=-1);

				int		 insertItem(const	QIconSet&	icon,

	 	 	 				const	QString	&text,	int	id=-1,	int	index=-1);

				int		 insertItem(const	QString	&text,	QPopupMenu	*popup,

	 	 	 				int	id=-1,	int	index=-1);

				int		 insertItem(const	QIconSet&	icon,

	 	 	 				const	QString	&text,	QPopupMenu	*popup,

	 	 	 				int	id=-1,	int	index=-1);

				int		 insertItem(const	QPixmap	&pixmap,	int	id=-1,	int	index=-1);

				int		 insertItem(const	QIconSet&	icon,

	 	 	 				const	QPixmap	&pixmap,	int	id=-1,	int	index=-1);

				int		 insertItem(const	QPixmap	&pixmap,	QPopupMenu	*popup,

	 	 	 				int	id=-1,	int	index=-1);

				int		 insertItem(const	QIconSet&	icon,

	 	 	 				const	QPixmap	&pixmap,	QPopupMenu	*popup,

	 	 	 				int	id=-1,	int	index=-1);

				int		 insertItem(QWidget*	widget,	int	id=-1,	int	index=-1);

				int		 insertItem(const	QIconSet&	icon,	QCustomMenuItem*	custom,	int	id=-1,	int	index=-1);

				int		 insertItem(QCustomMenuItem*	custom,	int	id=-1,	int	index=-1);

				int		 insertSeparator(int	index=-1);

				void	 removeItem(int	id)	 	 {	removeItemAt(indexOf(id));	}

				void	 removeItemAt(int	index);

				void	 clear();

#ifndef	QT_NO_ACCEL

				QKeySequence	accel(int	id)	 const;

				void	 setAccel(const	QKeySequence&	key,	int	id);

#endif

				QIconSet				*iconSet(int	id)	 const;

				QString	text(int	id)	 	 const;

				QPixmap				*pixmap(int	id)	 const;

				void	setWhatsThis(int	id,	const	QString&);

				QString	whatsThis(int	id)	const;

				void	 changeItem(int	id,	const	QString	&text);

				void	 changeItem(int	id,	const	QPixmap	&pixmap);

				void	 changeItem(int	id,	const	QIconSet	&icon,	const	QString	&text);

				void	 changeItem(int	id,	const	QIconSet	&icon,	const	QPixmap	&pixmap);

				void	 changeItem(const	QString	&text,	int	id)	{	changeItem(id,	text);	}	//	obsolete

				void	 changeItem(const	QPixmap	&pixmap,	int	id)	{	changeItem(id,	pixmap);	}	//	obsolete

				void	 changeItem(const	QIconSet	&icon,	const	QString	&text,	int	id)	{	 //	obsolete

	 changeItem(id,	icon,	text);

				}

				bool	 isItemActive(int	id)	const;

				bool	 isItemEnabled(int	id)	const;

				void	 setItemEnabled(int	id,	bool	enable);

				bool	 isItemChecked(int	id)	const;

				void	 setItemChecked(int	id,	bool	check);

				virtual	void	updateItem(int	id);

				int		 indexOf(int	id)	 const;

				int		 idAt(int	index)	 const;

				virtual	void	 setId(int	index,	int	id);

				bool	 connectItem(int	id,

	 	 	 					const	QObject	*receiver,	const	char*	member);

				bool	 disconnectItem(int	id,

	 	 	 	 const	QObject	*receiver,	const	char*	member);

				bool	 setItemParameter(int	id,	int	param);

				int	itemParameter(int	id)	const;

				QMenuItem		*findItem(int	id)	 const;

				QMenuItem		*findItem(int	id,	QMenuData	**	parent)	const;

				QMenuItem	*	findPopup(QPopupMenu	*,	int	*index	=	0);

				virtual	void	activateItemAt(int	index);

protected:

				int		 			actItem;

				QMenuItemList	*mitems;

				QMenuData	 		*parentMenu;

				uint	 			isPopupMenu	 :	1;

				uint	 			isMenuBar	 :	1;

				uint	 			badSize	 :	1;

				uint	 			mouseBtDn	 :	1;

				uint	 avoid_circularity	:	1;

				uint	 actItemDown	:	1;

				virtual	void			menuContentsChanged();

				virtual	void			menuStateChanged();

				virtual	void			menuInsPopup(QPopupMenu	*);

				virtual	void			menuDelPopup(QPopupMenu	*);

private:

				int		 insertAny(const	QString	*,	const	QPixmap	*,	QPopupMenu	*,

	 	 	 			const	QIconSet*,	int,	int,	QWidget*	=	0,	QCustomMenuItem*	=	0);

				void	 removePopup(QPopupMenu	*);

				void	 changeItemIconSet(int	id,	const	QIconSet	&icon);

				QMenuDataData	*d;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QMenuData(const	QMenuData	&);

				QMenuData	&operator=(const	QMenuData	&);

#endif

};

#endif	//	QT_NO_MENUDATA

#endif	//	QMENUDATA_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qmessagebox.h
qmessagebox.hTrolltech

/**

**	$Id:		qt/qmessagebox.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QMessageBox	class

**

**	Created	:	950503

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	dialogs	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QMESSAGEBOX_H

#define	QMESSAGEBOX_H

#ifndef	QT_H

#include	"qdialog.h"

#endif	//	QT_H

#ifndef	QT_NO_MESSAGEBOX

class		QLabel;

class		QPushButton;

struct	QMessageBoxData;

class	Q_EXPORT	QMessageBox	:	public	QDialog

{

				Q_OBJECT

				Q_ENUMS(Icon)

				Q_PROPERTY(QString	text	READ	text	WRITE	setText)

				Q_PROPERTY(Icon	icon	READ	icon	WRITE	setIcon)

				Q_PROPERTY(QPixmap	iconPixmap	READ	iconPixmap	WRITE	setIconPixmap)

				Q_PROPERTY(TextFormat	textFormat	READ	textFormat	WRITE	setTextFormat)

public:

				enum	Icon	{	NoIcon	=	0,	Information	=	1,	Warning	=	2,	Critical	=	3	};

				QMessageBox(QWidget*	parent=0,	const	char*	name=0);

				QMessageBox(const	QString&	caption,	const	QString	&text,	Icon	icon,

	 	 	int	button0,	int	button1,	int	button2,

	 	 	QWidget*	parent=0,	const	char*	name=0,	bool	modal=TRUE,

	 	 	WFlags	f=WStyle_DialogBorder);

				~QMessageBox();

				enum	{	NoButton	=	0,	Ok	=	1,	Cancel	=	2,	Yes	=	3,	No	=	4,	Abort	=	5,

	 			Retry	=	6,	Ignore	=	7,	ButtonMask	=	0x07,

	 			Default	=	0x100,	Escape	=	0x200,	FlagMask	=	0x300	};

				static	int	information(QWidget	*parent,	const	QString	&caption,

	 	 	 				const	QString&	text,

	 	 	 				int	button0,	int	button1=0,	int	button2=0);

				static	int	information(QWidget	*parent,	const	QString	&caption,

	 	 	 				const	QString&	text,

	 	 	 				const	QString&	button0Text	=	QString::null,

	 	 	 				const	QString&	button1Text	=	QString::null,

	 	 	 				const	QString&	button2Text	=	QString::null,

	 	 	 				int	defaultButtonNumber	=	0,

	 	 	 				int	escapeButtonNumber	=	-1);

				static	int	warning(QWidget	*parent,	const	QString	&caption,

	 	 	 const	QString&	text,

	 	 	 int	button0,	int	button1,	int	button2=0);

				static	int	warning(QWidget	*parent,	const	QString	&caption,

	 	 	 const	QString&	text,

	 	 	 const	QString&	button0Text	=	QString::null,

	 	 	 const	QString&	button1Text	=	QString::null,

	 	 	 const	QString&	button2Text	=	QString::null,

	 	 	 int	defaultButtonNumber	=	0,

	 	 	 int	escapeButtonNumber	=	-1);

				static	int	critical(QWidget	*parent,	const	QString	&caption,

	 	 	 	const	QString&	text,

	 	 	 	int	button0,	int	button1,	int	button2=0);

				static	int	critical(QWidget	*parent,	const	QString	&caption,

	 	 	 	const	QString&	text,

	 	 	 	const	QString&	button0Text	=	QString::null,

	 	 	 	const	QString&	button1Text	=	QString::null,

	 	 	 	const	QString&	button2Text	=	QString::null,

	 	 	 	int	defaultButtonNumber	=	0,

	 	 	 	int	escapeButtonNumber	=	-1);

				static	void	about(QWidget	*parent,	const	QString	&caption,

	 	 							const	QString&	text);

				static	void	aboutQt(QWidget	*parent,

	 	 	 	const	QString&	caption=QString::null);

/*	OBSOLETE	*/

				static	int	message(const	QString	&caption,

	 	 	 const	QString&	text,

	 	 	 const	QString&	buttonText=QString::null,

	 	 	 QWidget	*parent=0,	const	char	*	=0)	{

	 return	QMessageBox::information(parent,	caption,	text,

	 	 	 	 					buttonText.isEmpty()

	 	 	 	 					?	tr("OK")	:	buttonText)	==	0;

				}

/*	OBSOLETE	*/

				static	bool	query(const	QString	&caption,

	 	 							const	QString&	text,

	 	 							const	QString&	yesButtonText=QString::null,

	 	 							const	QString&	noButtonText=QString::null,

	 	 							QWidget	*parent=0,	const	char	*	=	0)	{

	 return	QMessageBox::information(parent,	caption,	text,

	 	 	 	 					yesButtonText.isEmpty()

	 	 	 	 					?	tr("OK")	:	yesButtonText,

	 	 	 	 					noButtonText)	==	0;

				}

				QString	 text()	const;

				void	 setText(const	QString	&);

				Icon	 icon()	const;

				//	###	the	next	four	functions	will	probably	be	renamed	in	3.0.

				void	 setIcon(Icon);

				void	 setIcon(const	QPixmap	&);

				const	QPixmap	*iconPixmap()	const;

				void	 setIconPixmap(const	QPixmap	&);

				QString	 buttonText(int	button)	const;

				void	 setButtonText(int	button,	const	QString	&);

				void	 adjustSize();

/*	OBSOLETE	*/

				static	QPixmap	standardIcon(Icon	icon,	GUIStyle);

				static	QPixmap	standardIcon(Icon	icon);

				TextFormat	textFormat()	const;

				void	 	setTextFormat(TextFormat);

protected:

				void	 resizeEvent(QResizeEvent	*);

				void	 showEvent(QShowEvent	*);

				void	 keyPressEvent(QKeyEvent	*);

				void	 styleChanged(QStyle&);

private	slots:

				void	 buttonClicked();

private:

				void	 init(int,	int,	int);

				int		 indexOf(int)	const;

				void	 resizeButtons();

				QLabel					*label;

				QMessageBoxData	*mbd;

				void							*reserved1;

				void							*reserved2;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QMessageBox(const	QMessageBox	&);

				QMessageBox	&operator=(const	QMessageBox	&);

#endif

};

#endif	//	QT_NO_MESSAGEBOX

#endif	//	QMESSAGEBOX_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qmetaobject.h
This	is	the	verbatim	text	of	the	qmetaobject.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qmetaobject.h			3.0.5			edited	Dec	4	2001	$

**

**	Definition	of	QMetaObject	class

**

**	Created	:	930419

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QMETAOBJECT_H

#define	QMETAOBJECT_H

#ifndef	QT_H

#include	"qconnection.h"

#include	"qstrlist.h"

#endif	//	QT_H

#ifndef	Q_MOC_OUTPUT_REVISION

#define	Q_MOC_OUTPUT_REVISION	19

#endif

class	QObject;

struct	QUMethod;

class	QMetaObjectPrivate;

struct	QMetaData	 	 	 	 //	-	member	function	meta	data

{	 	 	 	 	 	 //			for	signal	and	slots

				const	char	*name;	 	 	 	 //	-	member	name

				const	QUMethod*	method;	 	 	 //	-	detailed	method	description

				enum	Access	{	Private,	Protected,	Public	};

				Access	access;	 	 	 	 //	-	access	permission

};

#ifndef	QT_NO_PROPERTIES

struct	QMetaEnum	 	 	 	 //	enumerator	meta	data

{	 	 	 	 	 	 //		for	properties

				const	char	*name;	 	 	 	 //	-	enumerator	name

				uint	count;		 	 	 	 //	-	number	of	values

				struct	Item		 	 	 	 //	-	a	name/value	pair

				{

	 const	char	*key;

	 int	value;

				};

				const	Item	*items;	 	 	 	 //	-	the	name/value	pairs

				bool	set;	 	 	 	 	 //	whether	enum	has	to	be	treated	as	a	set

};

#endif

#ifndef	QT_NO_PROPERTIES

class	Q_EXPORT	QMetaProperty	 	 	 //	property	meta	data

{

public:

				const	char*	type()	const	{	return	t;	}	 //	type	of	the	property

				const	char*	name()	const	{	return	n;	}	 //	name	of	the	property

				bool	writable()	const;

				bool	isValid()	const;

				bool	isSetType()	const;

				bool	isEnumType()	const;

				QStrList	enumKeys()	const;	 	 	 //	enumeration	names

				int	keyToValue(const	char*	key)	const;	 //	enum	and	set	conversion	functions

				const	char*	valueToKey(int	value)	const;

				int	keysToValue(const	QStrList&	keys)	const;

				QStrList	valueToKeys(int	value)	const;

				bool	designable(QObject*)	const;

				bool	scriptable(QObject*)	const;

				bool	stored(QObject*)	const;

				bool	reset(QObject*)	const;

				const	char*	t;	 	 	 //	internal

				const	char*	n;	 	 	 //	internal

				enum	Flags		{

	 Invalid		 =	0x00000000,

	 Readable	 =	0x00000001,

	 Writable	 =	0x00000002,

	 EnumOrSet	 =	0x00000004,

	 StdSet	 	 =	0x00000100,

	 Override	 =	0x00000200

				};

				uint	flags;	//	internal

				bool	testFlags(uint	f)	const;	 //	internal

				bool	stdSet()	const;		 	 //	internal

				int	id()	const;		 	 	 //	internal

				QMetaObject**	meta;		 	 //	internal

				const	QMetaEnum*	enumData;	 	 //	internal

				int	_id;		 	 	 	 //	internal

				void	clear();		 	 	 //	internal

};

inline	bool	QMetaProperty::testFlags(uint	f)	const

{	return	(flags	&	(uint)f)	!=	(uint)0;	}

#endif	//	QT_NO_PROPERTIES

struct	QClassInfo	 	 	 	 //	class	info	meta	data

{

				const	char*	name;	 	 	 	 //	-	name	of	the	info

				const	char*	value;	 	 	 	 //	-	value	of	the	info

};

class	Q_EXPORT	QMetaObject	 	 	 //	meta	object	class

{

public:

				QMetaObject(const	char	*	const	class_name,	QMetaObject	*superclass,

	 	 	const	QMetaData	*	const	slot_data,	int	n_slots,

	 	 	const	QMetaData	*	const	signal_data,	int	n_signals,

#ifndef	QT_NO_PROPERTIES

	 	 	const	QMetaProperty	*const	prop_data,	int	n_props,

	 	 	const	QMetaEnum	*const	enum_data,	int	n_enums,

#endif

	 	 	const	QClassInfo	*const	class_info,	int	n_info);

				virtual	~QMetaObject();

				const	char	 *className()	 	 const	{	return	classname;	}

				const	char	 *superClassName()	 const	{	return	superclassname;	}

				QMetaObject	*superClass()	 	 const	{	return	superclass;	}

				bool	 inherits(const	char*	clname)	const;

				int	numSlots(bool	super	=	FALSE)	const;

				int		 numSignals(bool	super	=	FALSE)	const;

				int		 findSlot(const	char	*,	bool	super	=	FALSE)	const;

				int		 findSignal(const	char	*,	bool	super	=	FALSE)	const;

				const	QMetaData		 *slot(int	index,	bool	super	=	FALSE)	const;

				const	QMetaData		 *signal(int	index,	bool	super	=	FALSE)	const;

				QStrList	 slotNames(bool	super	=	FALSE)	const;

				QStrList	 signalNames(bool	super	=	FALSE)	const;

				int		 slotOffset()	const;

				int		 signalOffset()	const;

				int		 propertyOffset()	const;

				int		 numClassInfo(bool	super	=	FALSE)	const;

				const	QClassInfo	 *classInfo(int	index,	bool	super	=	FALSE)	const;

				const	char	 *classInfo(const	char*	name,	bool	super	=	FALSE)	const;

#ifndef	QT_NO_PROPERTIES

				const	QMetaProperty	*property(int	index,	bool	super	=	FALSE)	const;

				int	findProperty(const	char	*name,	bool	super	=	FALSE)	const;

				int	indexOfProperty(const	QMetaProperty*,	bool	super	=	FALSE)	const;

				const	QMetaProperty*	resolveProperty(const	QMetaProperty*)	const;

				int	resolveProperty(int)	const;

				QStrList	 	 propertyNames(bool	super	=	FALSE)	const;

				int		 numProperties(bool	super	=	FALSE)	const;

#endif

				//	static	wrappers	around	constructors,	necessary	to	work	around	a

				//	Windows-DLL	limitation:	objects	can	only	be	deleted	within	a

				//	DLL	if	they	were	actually	created	within	that	DLL.

				static	QMetaObject	 *new_metaobject(const	char	*,	QMetaObject	*,

	 	 	 	 	 const	QMetaData	*const,	int,

	 	 	 	 	 const	QMetaData	*const,	int,

#ifndef	QT_NO_PROPERTIES

	 	 	 	 	 const	QMetaProperty	*const	prop_data,	int	n_props,

	 	 	 	 	 const	QMetaEnum	*const	enum_data,	int	n_enums,

#endif

	 	 	 	 	 const	QClassInfo	*const		class_info,	int	n_info);

#ifndef	QT_NO_PROPERTIES

				const	QMetaEnum	 	 *enumerator(const	char*	name,	bool	super	=	FALSE)	const;

#endif

				static	QMetaObject	*metaObject(const	char	*class_name);

private:

				QMemberDict		 *init(const	QMetaData	*,	int);

				const	char	 	 *classname;	 	 //	class	name

				const	char	 	 *superclassname;	 //	super	class	name

				QMetaObject	*superclass;	 	 	 //	super	class	meta	object

				QMetaObjectPrivate	 *d;	 	 	 //	private	data	for...

				void	 *reserved;	 	 	 //	...binary	compatibility

				const	QMetaData	 	 *slotData;	 //	slot	meta	data

				QMemberDict	*slotDict;	 	 	 //	slot	dictionary

				const	QMetaData	 	 *signalData;	 //	signal	meta	data

				QMemberDict	*signalDict;	 	 	 //	signal	dictionary

				int	signaloffset;

				int	slotoffset;

#ifndef	QT_NO_PROPERTIES

				int	propertyoffset;

#endif

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QMetaObject(const	QMetaObject	&);

				QMetaObject	&operator=(const	QMetaObject	&);

#endif

};

inline	int	QMetaObject::slotOffset()	const

{	return	slotoffset;	}

inline	int	QMetaObject::signalOffset()	const

{	return	signaloffset;	}

#ifndef	QT_NO_PROPERTIES

inline	int	QMetaObject::propertyOffset()	const

{	return	propertyoffset;	}

#endif

class	Q_EXPORT	QMetaObjectCleanUp

{

public:

				QMetaObjectCleanUp();

				~QMetaObjectCleanUp();

				void	setMetaObject(QMetaObject	*&mo);

private:

				QMetaObject	**metaObject;

};

#endif	//	QMETAOBJECT_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qmime.h
This	is	the	verbatim	text	of	the	qmime.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qmime.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	mime	classes

**

**	Created	:	981204

**

**	Copyright	(C)	1998-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QMIME_H

#define	QMIME_H

#ifndef	QT_H

#include	"qwindowdefs.h"

#include	"qmap.h"

#endif	//	QT_H

#ifndef	QT_NO_MIME

class	QImageDrag;

class	QTextDrag;

class	Q_EXPORT	QMimeSource

{

				friend	class	QClipboardData;

public:

				QMimeSource();

				virtual	~QMimeSource();

				virtual	const	char*	format(int	n	=	0)	const	=	0;

				virtual	bool	provides(const	char*)	const;

				virtual	QByteArray	encodedData(const	char*)	const	=	0;

				int	serialNumber()	const;

private:

				int	ser_no;

				enum	{	NoCache,	Text,	Graphics	}	cacheType;

				union

				{

	 struct

	 {

	 				QString	*str;

	 				QCString	*subtype;

	 }	txt;

	 struct

	 {

	 				QImage	*img;

	 				QPixmap	*pix;

	 }	gfx;

				}	cache;

				void	clearCache();

				//	friends	for	caching

				friend	class	QImageDrag;

				friend	class	QTextDrag;

};

inline	int	QMimeSource::serialNumber()	const

{	return	ser_no;	}

class	QStringList;

class	QMimeSourceFactoryData;

class	Q_EXPORT	QMimeSourceFactory	{

public:

				QMimeSourceFactory();

				virtual	~QMimeSourceFactory();

				static	QMimeSourceFactory*	defaultFactory();

				static	void	setDefaultFactory(QMimeSourceFactory*);

				static	QMimeSourceFactory*	takeDefaultFactory();

				static	void	addFactory(QMimeSourceFactory	*f);

				static	void	removeFactory(QMimeSourceFactory	*f);

				virtual	const	QMimeSource*	data(const	QString&	abs_name)	const;

				virtual	QString	makeAbsolute(const	QString&	abs_or_rel_name,	const	QString&	context)	const;

				const	QMimeSource*	data(const	QString&	abs_or_rel_name,	const	QString&	context)	const;

				virtual	void	setText(const	QString&	abs_name,	const	QString&	text);

				virtual	void	setImage(const	QString&	abs_name,	const	QImage&	im);

				virtual	void	setPixmap(const	QString&	abs_name,	const	QPixmap&	pm);

				virtual	void	setData(const	QString&	abs_name,	QMimeSource*	data);

				virtual	void	setFilePath(const	QStringList&);

				virtual	QStringList	filePath()	const;

				void	addFilePath(const	QString&);

				virtual	void	setExtensionType(const	QString&	ext,	const	char*	mimetype);

private:

				QMimeSource	*dataInternal(const	QString&	abs_name,	const	QMap<QString,	QString>	&extensions)	const;

				QMimeSourceFactoryData*	d;

};

#ifdef	Q_WS_WIN

#ifndef	QT_H

#include	"qptrlist.h"	//	down	here	for	GCC	2.7.*	compatibility

#endif	//	QT_H

/*

		Encapsulation	of	conversion	between	MIME	and	Windows	CLIPFORMAT.

		Not	need	on	X11,	as	the	underlying	protocol	uses	the	MIME	standard

		directly.

*/

class	Q_EXPORT	QWindowsMime	{

public:

				QWindowsMime();

				virtual	~QWindowsMime();

				static	void	initialize();

				static	QPtrList<QWindowsMime>	all();

				static	QWindowsMime*	convertor(const	char*	mime,	int	cf);

				static	const	char*	cfToMime(int	cf);

				static	int	registerMimeType(const	char	*mime);

				virtual	const	char*	convertorName()=0;

				virtual	int	countCf()=0;

				virtual	int	cf(int	index)=0;

				virtual	bool	canConvert(const	char*	mime,	int	cf)=0;

				virtual	const	char*	mimeFor(int	cf)=0;

				virtual	int	cfFor(const	char*)=0;

				virtual	QByteArray	convertToMime(QByteArray	data,	const	char*	mime,	int	cf)=0;

				virtual	QByteArray	convertFromMime(QByteArray	data,	const	char*	mime,	int	cf)=0;

};

#endif	//	Q_WS_WIN

#endif	//	QT_NO_MIME

#endif	//	QMIME_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qmotifplusstyle.h
This	is	the	verbatim	text	of	the	qmotifplusstyle.h	include	file.	It	is	provided	only
for	illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qmotifplusstyle.h			3.0.5			edited	May	27	22:19	$

**

**	Definition	of	QMotifPlusStyle	class

**

**	Created	:	2000.07.27

**

**	Copyright	(C)	2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QMOTIFPLUSSTYLE_H

#define	QMOTIFPLUSSTYLE_H

#ifndef	QT_H

#include	"qmotifstyle.h"

#endif	//	QT_H

#ifndef	QT_NO_STYLE_MOTIFPLUS

#if	defined(QT_PLUGIN)

#define	Q_EXPORT_STYLE_MOTIFPLUS

#else

#define	Q_EXPORT_STYLE_MOTIFPLUS	Q_EXPORT

#endif

class	Q_EXPORT_STYLE_MOTIFPLUS	QMotifPlusStyle	:	public	QMotifStyle

{

				Q_OBJECT

public:

				QMotifPlusStyle(bool	hoveringHighlight	=	TRUE);

				virtual	~QMotifPlusStyle();

				void	polish(QPalette	&pal);

				void	polish(QWidget	*widget);

				void	unPolish(QWidget*widget);

				void	polish(QApplication	*app);

				void	unPolish(QApplication	*app);

				void	drawPrimitive(PrimitiveElement	pe,

	 	 	 QPainter	*p,

	 	 	 const	QRect	&r,

	 	 	 const	QColorGroup	&cg,

	 	 	 SFlags	flags	=	Style_Default,

	 	 	 const	QStyleOption&	=	QStyleOption::Default)	const;

				void	drawControl(ControlElement	element,

	 	 						QPainter	*p,

	 	 						const	QWidget	*widget,

	 	 						const	QRect	&r,

	 	 						const	QColorGroup	&cg,

	 	 						SFlags	how	=	Style_Default,

	 	 						const	QStyleOption&	=	QStyleOption::Default)	const;

				QRect	subRect(SubRect	r,	const	QWidget	*widget)	const;

				void	drawComplexControl(ComplexControl	control,

	 	 	 				QPainter	*p,

	 	 	 				const	QWidget	*widget,

	 	 	 				const	QRect	&r,

	 	 	 				const	QColorGroup	&cg,

	 	 	 				SFlags	how	=	Style_Default,

	 	 	 				SCFlags	controls	=	SC_All,

	 	 	 				SCFlags	active	=	SC_None,

	 	 	 				const	QStyleOption&	=	QStyleOption::Default)	const;

				QRect	querySubControlMetrics(ComplexControl	control,

	 	 	 	 	const	QWidget	*widget,

	 	 	 	 	SubControl	subcontrol,

	 	 	 	 	const	QStyleOption&	=	QStyleOption::Default)	const;

				int	pixelMetric(PixelMetric	metric,	const	QWidget	*widget	=	0)	const;

				int	styleHint(StyleHint	sh,	const	QWidget	*,	const	QStyleOption	&	=	QStyleOption::Default,

	 	 		QStyleHintReturn*	=	0)	const;

protected:

				bool	eventFilter(QObject	*,	QEvent	*);

private:

				bool	useHoveringHighlight;

};

#endif	//	QT_NO_STYLE_MOTIFPLUS

#endif	//	QMOTIFPLUSSTYLE_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qmotifstyle.h
This	is	the	verbatim	text	of	the	qmotifstyle.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qmotifstyle.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	Motif-like	style	class

**

**	Created	:	981231

**

**	Copyright	(C)	1998-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QMOTIFSTYLE_H

#define	QMOTIFSTYLE_H

#ifndef	QT_H

#include	"qcommonstyle.h"

#endif	//	QT_H

#ifndef	QT_NO_STYLE_MOTIF

class	QPalette;

#if	defined(QT_PLUGIN)

#define	Q_EXPORT_STYLE_MOTIF

#else

#define	Q_EXPORT_STYLE_MOTIF	Q_EXPORT

#endif

class	Q_EXPORT_STYLE_MOTIF	QMotifStyle	:	public	QCommonStyle

{

				Q_OBJECT

public:

				QMotifStyle(bool	useHighlightCols=FALSE);

				virtual	~QMotifStyle();

				void	setUseHighlightColors(bool);

				bool	useHighlightColors()	const;

				void	polish(QPalette&);

				void	polish(QWidget*);

				void	polish(QApplication*);

				void	polishPopupMenu(QPopupMenu*);

				//	new	style	API

				void	drawPrimitive(PrimitiveElement	pe,

	 	 	 QPainter	*p,

	 	 	 const	QRect	&r,

	 	 	 const	QColorGroup	&cg,

	 	 	 SFlags	flags	=	Style_Default,

	 	 	 const	QStyleOption&	=	QStyleOption::Default)	const;

				void	drawControl(ControlElement	element,

	 	 						QPainter	*p,

	 	 						const	QWidget	*widget,

	 	 						const	QRect	&r,

	 	 						const	QColorGroup	&cg,

	 	 						SFlags	how	=	Style_Default,

	 	 						const	QStyleOption&	=	QStyleOption::Default)	const;

				void	drawComplexControl(ComplexControl	control,

	 	 	 					QPainter	*p,

	 	 	 					const	QWidget*	widget,

	 	 	 					const	QRect&	r,

	 	 	 					const	QColorGroup&	cg,

	 	 	 					SFlags	how	=	Style_Default,

	 	 	 					SCFlags	sub	=	SC_All,

	 	 	 					SCFlags	subActive	=	SC_None,

	 	 	 					const	QStyleOption&	=	QStyleOption::Default)	const;

				QRect	querySubControlMetrics(ComplexControl	control,

	 	 	 	 		const	QWidget	*widget,

	 	 	 	 		SubControl	sc,

	 	 	 	 		const	QStyleOption&	=	QStyleOption::Default)	const;

				int	pixelMetric(PixelMetric	metric,	const	QWidget	*widget	=	0)	const;

				QSize	sizeFromContents(ContentsType	contents,

	 	 	 				const	QWidget	*widget,

	 	 	 				const	QSize	&contentsSize,

	 	 	 				const	QStyleOption&	=	QStyleOption::Default)	const;

				QRect	subRect(SubRect	r,	const	QWidget	*widget)	const;

				QPixmap	stylePixmap(StylePixmap,	const	QWidget	*	=	0,	const	QStyleOption&	=	QStyleOption::Default)	const;

				int	styleHint(StyleHint	sh,	const	QWidget	*,	const	QStyleOption	&	=	QStyleOption::Default,

	 	 		QStyleHintReturn*	=	0)	const;

private:

				bool	highlightCols;

				//	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QMotifStyle(const	QMotifStyle	&);

				QMotifStyle&	operator=(const	QMotifStyle	&);

#endif

};

#endif	//	QT_NO_STYLE_MOTIF

#endif	//	QMOTIFSTYLE_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qmovie.h
This	is	the	verbatim	text	of	the	qmovie.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qmovie.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	movie	classes

**

**	Created	:	970617

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QMOVIE_H

#define	QMOVIE_H

#ifndef	QT_H

#include	"qpixmap.h"	//	###	remove	or	keep	for	users'	convenience?

#endif	//	QT_H

#ifndef	QT_NO_MOVIE

class	QDataSource;

class	QObject;

class	QMoviePrivate;

class	Q_EXPORT	QMovie	{

public:

				QMovie();

				QMovie(int	bufsize);

				QMovie(QDataSource*,	int	bufsize=1024);

				QMovie(const	QString	&fileName,	int	bufsize=1024);

				QMovie(QByteArray	data,	int	bufsize=1024);

				QMovie(const	QMovie&);

				~QMovie();

				QMovie&	operator=(const	QMovie&);

				int	pushSpace()	const;

				void	pushData(const	uchar*	data,	int	length);

				const	QColor&	backgroundColor()	const;

				void	setBackgroundColor(const	QColor&);

				const	QRect&	getValidRect()	const;

				const	QPixmap&	framePixmap()	const;

				const	QImage&	frameImage()	const;

				bool	isNull()	const;

				int		frameNumber()	const;

				int		steps()	const;

				bool	paused()	const;

				bool	finished()	const;

				bool	running()	const;

				void	unpause();

				void	pause();

				void	step();

				void	step(int);

				void	restart();

				int		speed()	const;

				void	setSpeed(int);

				void	connectResize(QObject*	receiver,	const	char	*member);

				void	disconnectResize(QObject*	receiver,	const	char	*member=0);

				void	connectUpdate(QObject*	receiver,	const	char	*member);

				void	disconnectUpdate(QObject*	receiver,	const	char	*member=0);

#ifdef	Q_WS_QWS

				//	Temporary	hack

				void	setDisplayWidget(QWidget	*	w);

#endif

				enum	Status	{	SourceEmpty=-2,

	 	 		UnrecognizedFormat=-1,

	 	 		Paused=1,

	 	 		EndOfFrame=2,

	 	 		EndOfLoop=3,

	 	 		EndOfMovie=4,

	 	 		SpeedChanged=5	};

				void	connectStatus(QObject*	receiver,	const	char	*member);

				void	disconnectStatus(QObject*	receiver,	const	char	*member=0);

private:

				QMoviePrivate	*d;

};

#endif	 //	QT_NO_MOVIE

#endif

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qmultilineedit.h
This	is	the	verbatim	text	of	the	qmultilineedit.h	include	file.	It	is	provided	only
for	illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qmultilineedit.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QMultiLineEdit	widget	class

**

**	Created	:	961005

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QMULTILINEEDIT_H

#define	QMULTILINEEDIT_H

#ifndef	QT_H

#include	"qtextedit.h"

#endif	//	QT_H

#ifndef	QT_NO_MULTILINEEDIT

class	QMultiLineEditCommand;

class	QValidator;

class	QMultiLineEditData;

class	Q_EXPORT	QMultiLineEdit	:	public	QTextEdit

{

				Q_OBJECT

				Q_PROPERTY(int	numLines	READ	numLines)

				Q_PROPERTY(bool	atBeginning	READ	atBeginning)

				Q_PROPERTY(bool	atEnd	READ	atEnd)

				Q_PROPERTY(Alignment	alignment	READ	alignment	WRITE	setAlignment)

				Q_PROPERTY(bool	edited	READ	edited	WRITE	setEdited	DESIGNABLE	false)

public:

				QMultiLineEdit(QWidget*	parent=0,	const	char*	name=0);

				~QMultiLineEdit();

				QString	textLine(int	line)	const;

				int	numLines()	const;

				virtual	void	insertLine(const	QString	&s,	int	line	=	-1);

				virtual	void	insertAt(const	QString	&s,	int	line,	int	col,	bool	mark	=	FALSE);

				virtual	void	removeLine(int	line);

				virtual	void	setCursorPosition(int	line,	int	col,	bool	mark	=	FALSE);

				bool	atBeginning()	const;

				bool	atEnd()	const;

				void	setAlignment(int	flags);

				int	alignment()	const;

				void	setEdited(bool);

				bool	edited()	const;

				bool	hasMarkedText()	const;

				QString	markedText()	const;

				void	cursorWordForward(bool	mark);

				void	cursorWordBackward(bool	mark);

				//	noops

				bool	autoUpdate()	const	{	return	TRUE;	}

				virtual	void	setAutoUpdate(bool)	{}

				int	totalWidth()	const	{	return	contentsWidth();	}

				int	totalHeight()	const	{	return	contentsHeight();	}

				int	maxLines()	const	{	return	QWIDGETSIZE_MAX;	}

				void	setMaxLines(int)	{}

public	slots:

				void	deselect()	{	selectAll(FALSE);	}

protected:

				QPoint	 cursorPoint()	const;

protected:

				virtual	void	insertAndMark(const	QString&,	bool	mark);

				virtual	void	newLine();

				virtual	void	killLine();

				virtual	void	pageUp(bool	mark=FALSE);

				virtual	void	pageDown(bool	mark=FALSE);

				virtual	void	cursorLeft(bool	mark=FALSE,	bool	wrap	=	TRUE);

				virtual	void	cursorRight(bool	mark=FALSE,	bool	wrap	=	TRUE);

				virtual	void	cursorUp(bool	mark=FALSE);

				virtual	void	cursorDown(bool	mark=FALSE);

				virtual	void	backspace();

				virtual	void	home(bool	mark=FALSE);

				virtual	void	end(bool	mark=FALSE);

				bool	getMarkedRegion(int	*line1,	int	*col1,

	 	 	 		int	*line2,	int	*col2)	const;

				int	lineLength(int	row)	const;

private:

				QMultiLineEditData	*d;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QMultiLineEdit(const	QMultiLineEdit	&);

				QMultiLineEdit	&operator=(const	QMultiLineEdit	&);

#endif

};

#endif	//	QT_NO_MULTILINEEDIT

#endif	//	QMULTILINED_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qmutex.h
qmutex.hTrolltech

/**

**	Id

**

**	Definition	of	QMutex	class

**

**	Created	:	931107

**

**	Copyright	(C)	1992-2002	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	tools	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QMUTEX_H

#define	QMUTEX_H

#ifndef	QT_H

#include	"qglobal.h"

#endif	//	QT_H

#if	defined(QT_THREAD_SUPPORT)

class	QMutexPrivate;

const	int	Q_MUTEX_NORMAL	=	0;

const	int	Q_MUTEX_RECURSIVE	=	1;

class	Q_EXPORT	QMutex

{

				friend	class	QWaitCondition;

				friend	class	QWaitConditionPrivate;

public:

				QMutex(bool	recursive	=	FALSE);

				virtual	~QMutex();

				void	lock();

				void	unlock();

				bool	locked();

				bool	tryLock();

private:

				QMutexPrivate	*	d;

#if	defined(Q_DISABLE_COPY)

				QMutex(const	QMutex	&);

				QMutex	&operator=(const	QMutex	&);

#endif

};

#endif

#endif

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qnetworkprotocol.h
This	is	the	verbatim	text	of	the	qnetworkprotocol.h	include	file.	It	is	provided
only	for	illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qnetworkprotocol.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QNetworkProtocol	class

**

**	Created	:	950429

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QNETWORKPROTOCOL_H

#define	QNETWORKPROTOCOL_H

#ifndef	QT_H

#include	"qurlinfo.h"

#include	"qstring.h"

#include	"qdict.h"

#include	"qobject.h"

#endif	//	QT_H

#ifndef	QT_NO_NETWORKPROTOCOL

class	QNetworkProtocol;

class	QNetworkOperation;

class	QTimer;

class	QUrlOperator;

class	QNetworkProtocolPrivate;

template	<class	T>	class	QValueList;

class	Q_EXPORT	QNetworkProtocolFactoryBase

{

public:

			virtual	QNetworkProtocol	*createObject()	=	0;

};

template<	class	Protocol	>

class	QNetworkProtocolFactory	:	public	QNetworkProtocolFactoryBase

{

public:

				QNetworkProtocol	*createObject()	{

	 return	new	Protocol;

				}

};

typedef	QDict<	QNetworkProtocolFactoryBase	>	QNetworkProtocolDict;

class	Q_EXPORT	QNetworkProtocol	:	public	QObject

{

				Q_OBJECT

public:

				enum	State	{

	 StWaiting	=	0,

	 StInProgress,

	 StDone,

	 StFailed,

	 StStopped

				};

				enum	Operation	{

	 OpListChildren	=	1,

	 OpMkDir	=	2,

	 OpMkdir	=	OpMkDir,	//	###	remove	in	4.0

	 OpRemove	=	4,

	 OpRename	=	8,

	 OpGet	=	32,

	 OpPut	=	64

				};

				enum	ConnectionState	{

	 ConHostFound,

	 ConConnected,

	 ConClosed

				};

				enum	Error	{

	 //	no	error

	 NoError	=	0,

	 //	general	errors

	 ErrValid,

	 ErrUnknownProtocol,

	 ErrUnsupported,

	 ErrParse,

	 //	errors	on	connect

	 ErrLoginIncorrect,

	 ErrHostNotFound,

	 //	protocol	errors

	 ErrListChildren,

	 ErrListChlidren	=	ErrListChildren,	//	###	remove	in	4.0

	 ErrMkDir,

	 ErrMkdir	=	ErrMkDir,	//	###	remove	in	4.0

	 ErrRemove,

	 ErrRename,

	 ErrGet,

	 ErrPut,

	 ErrFileNotExisting,

	 ErrPermissionDenied

				};

				QNetworkProtocol();

				virtual	~QNetworkProtocol();

				virtual	void	setUrl(QUrlOperator	*u);

				virtual	void	setAutoDelete(bool	b,	int	i	=	10000);

				bool	autoDelete()	const;

				static	void	registerNetworkProtocol(const	QString	&protocol,

	 	 	 	 	 	QNetworkProtocolFactoryBase	*protocolFactory);

				static	QNetworkProtocol	*getNetworkProtocol(const	QString	&protocol);

				static	bool	hasOnlyLocalFileSystem();

				virtual	int	supportedOperations()	const;

				virtual	void	addOperation(QNetworkOperation	*op);

				QUrlOperator	*url()	const;

				QNetworkOperation	*operationInProgress()	const;

				virtual	void	clearOperationQueue();

				virtual	void	stop();

signals:

				void	data(const	QByteArray	&,	QNetworkOperation	*res);

				void	connectionStateChanged(int	state,	const	QString	&data);

				void	finished(QNetworkOperation	*res);

				void	start(QNetworkOperation	*res);

				void	newChildren(const	QValueList<QUrlInfo>	&,	QNetworkOperation	*res);

				void	newChild(const	QUrlInfo	&,	QNetworkOperation	*res);

				void	createdDirectory(const	QUrlInfo	&,	QNetworkOperation	*res);

				void	removed(QNetworkOperation	*res);

				void	itemChanged(QNetworkOperation	*res);

				void	dataTransferProgress(int	bytesDone,	int	bytesTotal,	QNetworkOperation	*res);

protected:

				virtual	void	processOperation(QNetworkOperation	*op);

				virtual	void	operationListChildren(QNetworkOperation	*op);

				virtual	void	operationMkDir(QNetworkOperation	*op);

				virtual	void	operationRemove(QNetworkOperation	*op);

				virtual	void	operationRename(QNetworkOperation	*op);

				virtual	void	operationGet(QNetworkOperation	*op);

				virtual	void	operationPut(QNetworkOperation	*op);

				virtual	void	operationPutChunk(QNetworkOperation	*op);

				virtual	bool	checkConnection(QNetworkOperation	*op);

private:

				QNetworkProtocolPrivate	*d;

private	slots:

				void	processNextOperation(QNetworkOperation	*old);

				void	startOps();

				void	emitNewChildren(const	QUrlInfo	&i,	QNetworkOperation	*op);

				void	removeMe();

};

class	QNetworkOperationPrivate;

class	Q_EXPORT	QNetworkOperation	:	public	QObject

{

				Q_OBJECT

				friend	class	QUrlOperator;

public:

				QNetworkOperation(QNetworkProtocol::Operation	operation,

	 	 				const	QString	&arg0,	const	QString	&arg1,

	 	 				const	QString	&arg2);

				QNetworkOperation(QNetworkProtocol::Operation	operation,

	 	 				const	QByteArray	&arg0,	const	QByteArray	&arg1,

	 	 				const	QByteArray	&arg2);

				~QNetworkOperation();

				void	setState(QNetworkProtocol::State	state);

				void	setProtocolDetail(const	QString	&detail);

				void	setErrorCode(int	ec);

				void	setArg(int	num,	const	QString	&arg);

				void	setRawArg(int	num,	const	QByteArray	&arg);

				QNetworkProtocol::Operation	operation()	const;

				QNetworkProtocol::State	state()	const;

				QString	arg(int	num)	const;

				QByteArray	rawArg(int	num)	const;

				QString	protocolDetail()	const;

				int	errorCode()	const;

				void	free();

private	slots:

				void	deleteMe();

private:

				QByteArray	&raw(int	num)	const;

				QNetworkOperationPrivate	*d;

};

#endif	//	QT_NO_NETWORKPROTOCOL

#endif	//	QNETWORKPROTOCOL_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qnp.h
This	is	the	verbatim	text	of	the	qnp.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qnp.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	Qt	extension	classes	for	Netscape	Plugin	support.

**

**	Created	:	970601

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QNP_H

#define	QNP_H

#ifndef	QT_H

#include	"qwidget.h"

#endif	//	QT_H

struct	_NPInstance;

struct	_NPStream;

class	QNPInstance;

class	QNPStream	{

public:

				~QNPStream();

				const	char*	url()	const;

				uint	end()	const;

				uint	lastModified()	const;

				const	char*	type()	const;

				bool	seekable()	const;

				bool	okay()	const;

				bool	complete()	const;

				void	requestRead(int	offset,	uint	length);

				int	write(int	len,	void*	buffer);

				QNPInstance*	instance()	{	return	inst;	}

				QNPStream(QNPInstance*,const	char*,_NPStream*,bool);

				void	setOkay(bool);

				void	setComplete(bool);

private:

				QNPInstance*	inst;

				_NPStream*	stream;

				QString	mtype;

				int	seek:1;

				int	isokay:1;

				int	iscomplete:1;

};

class	QNPWidget	:	public	QWidget	{

				Q_OBJECT

public:

				QNPWidget();

				~QNPWidget();

				void	setWindow(bool);

				void	unsetWindow();

				virtual	void	enterInstance();

				virtual	void	leaveInstance();

				QNPInstance*	instance();

private:

				WId	saveWId;

				_NPInstance*	pi;

};

class	QNPInstance	:	public	QObject	{

				Q_OBJECT

public:

				~QNPInstance();

				//	Arguments	passed	to	EMBED

				int	argc()	const;

				const	char*	argn(int)	const;

				const	char*	argv(int)	const;

				enum	Reason	{

								ReasonDone	=	0,

								ReasonBreak	=	1,

								ReasonError	=	2,

								ReasonUnknown	=	-1

				};

				const	char*	arg(const	char*	name)	const;

				enum	InstanceMode	{	Embed=1,	Full=2,	Background=3	};

				InstanceMode	mode()	const;

				//	The	browser's	name

				const	char*	userAgent()	const;

				//	Your	window.

				virtual	QNPWidget*	newWindow();

				QNPWidget*	widget();

				//	Incoming	streams	(SRC=...	tag).

				//	Defaults	ignore	data.

				enum	StreamMode	{	Normal=1,	Seek=2,	AsFile=3,	AsFileOnly=4	};

				virtual	bool	newStreamCreated(QNPStream*,	StreamMode&	smode);

				virtual	int	writeReady(QNPStream*);

				virtual	int	write(QNPStream*,	int	offset,	int	len,	void*	buffer);

				virtual	void	streamDestroyed(QNPStream*);

				void	status(const	char*	msg);

				void	getURLNotify(const	char*	url,	const	char*	window=0,	void*data=0);

				void	getURL(const	char*	url,	const	char*	window=0);

				void	postURL(const	char*	url,	const	char*	window,

	 					uint	len,	const	char*	buf,	bool	file);

				QNPStream*	newStream(const	char*	mimetype,	const	char*	window,

	 bool	as_file=FALSE);

				virtual	void	streamAsFile(QNPStream*,	const	char*	fname);

				void*	getJavaPeer()	const;

				virtual	void	notifyURL(const	char*	url,	Reason	r,	void*	notifyData);

				virtual	bool	printFullPage();

				virtual	void	print(QPainter*);

protected:

				QNPInstance();

private:

				friend	class	QNPStream;

				_NPInstance*	pi;

};

class	QNPlugin	{

public:

				//	Write	this	to	return	your	QNPlugin	derived	class.

				static	QNPlugin*	create();

				static	QNPlugin*	actual();

				virtual	~QNPlugin();

				void	getVersionInfo(int&	plugin_major,	int&	plugin_minor,

	 					int&	browser_major,	int&	browser_minor);

				virtual	QNPInstance*	newInstance()=0;

				virtual	const	char*	getMIMEDescription()	const=0;

				virtual	const	char*	getPluginNameString()	const=0;

				virtual	const	char*	getPluginDescriptionString()	const=0;

				virtual	void*	getJavaClass();

				virtual	void	unuseJavaClass();

				void*	getJavaEnv()	const;

protected:

				QNPlugin();

};

#endif		//	QNP_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qobject.h
qobject.hTrolltech

/**

**	$Id:		qt/qobject.h			3.0.5			edited	Feb	4	07:26	$

**

**	Definition	of	QObject	class

**

**	Created	:	930418

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QOBJECT_H

#define	QOBJECT_H

#ifndef	QT_H

#include	"qobjectdefs.h"

#include	"qwindowdefs.h"

#include	"qstring.h"

#include	"qevent.h"

#include	"qnamespace.h"

#endif	//	QT_H

#define	QT_TR_NOOP(x)	(x)

#define	QT_TRANSLATE_NOOP(scope,x)	(x)

class	QMetaObject;

class	QVariant;

class	QMetaProperty;

class	QPostEventList;

class	QObjectPrivate;

struct	QUObject;

class	Q_EXPORT	QObject:	public	Qt

{

				Q_OBJECT

				Q_PROPERTY(QCString	name	READ	name	WRITE	setName)

public:

				QObject(QObject	*parent=0,	const	char	*name=0);

				virtual	~QObject();

#ifdef	Q_QDOC

				const	char	*className()	const;

				QString	tr(const	char	*,	const	char	*)	const;

				QString	trUtf8(const	char	*,	const	char	*)	const;

				QMetaObject	*metaObject()	const;

#endif

				virtual	bool	event(QEvent	*);

				virtual	bool	eventFilter(QObject	*,	QEvent	*);

				bool	 	isA(const	char	*)	 	const;

				bool	 	inherits(const	char	*)	const;

				const	char		*name()	const;

				const	char		*name(const	char	*	defaultName)	const;

				virtual	void	setName(const	char	*name);

				bool	 	isWidgetType()			const	{	return	isWidget;	}

				bool	 	highPriority()			const	{	return	FALSE;	}

				bool	 	signalsBlocked()		const	{	return	blockSig;	}

				void	 	blockSignals(bool	b);

				int		 	startTimer(int	interval);

				void	 	killTimer(int	id);

				void	 	killTimers();

				QObject											*child(const	char	*objName,	const	char	*inheritsClass	=	0,	bool	recursiveSearch	=	TRUE);	//###	const	in	4.0

				const	QObjectList	*children()	const	{	return	childObjects;	}

				static	const	QObjectList	*objectTrees();

				QObjectList							*queryList(const	char	*inheritsClass	=	0,

	 	 	 	 		const	char	*objName	=	0,

	 	 	 	 		bool	regexpMatch	=	TRUE,

	 	 	 	 		bool	recursiveSearch	=	TRUE)	const;

				virtual	void	insertChild(QObject	*);

				virtual	void	removeChild(QObject	*);

				void	 	installEventFilter(const	QObject	*);

				void	 	removeEventFilter(const	QObject	*);

				static	bool		connect(const	QObject	*sender,	const	char	*signal,

	 	 	 		const	QObject	*receiver,	const	char	*member);

				bool	 	connect(const	QObject	*sender,	const	char	*signal,

	 	 	 		const	char	*member)	const;

				static	bool		disconnect(const	QObject	*sender,	const	char	*signal,

	 	 	 					const	QObject	*receiver,	const	char	*member);

				bool	 	disconnect(const	char	*signal=0,

	 	 	 					const	QObject	*receiver=0,	const	char	*member=0);

				bool	 	disconnect(const	QObject	*receiver,	const	char	*member=0);

				static	void		 	connectInternal(const	QObject	*sender,	int	signal_index,	const	QObject	*receiver,

	 	 	 	 		int	membcode,	int	member_index);

				void	 	dumpObjectTree();

				void	 	dumpObjectInfo();

#ifndef	QT_NO_PROPERTIES

				virtual	bool	setProperty(const	char	*name,	const	QVariant&	value);

				virtual	QVariant	property(const	char	*name)	const;

#endif	//	QT_NO_PROPERTIES

#ifdef	QT_NO_TRANSLATION

				static	QString	tr(const	char	*sourceText,	const	char	*	=	0);

#ifndef	QT_NO_TEXTCODEC

				static	QString	trUtf8(const	char	*sourceText,	const	char	*	=	0);

#endif

#endif	//QT_NO_TRANSLATION

signals:

				void	 	destroyed();

				void	 	destroyed(QObject*	obj);

public:

				QObject	 *parent()	const	{	return	parentObj;	}

public	slots:

				void	 deleteLater();

private	slots:

				void	 	cleanupEventFilter(QObject*);

protected:

				bool	 activate_filters(QEvent	*);

				QConnectionList	*receivers(const	char*	signal)	const;

				QConnectionList	*receivers(int	signal)	const;

				void	 activate_signal(int	signal);

				void	 activate_signal(int	signal,	int);

				void	 activate_signal(int	signal,	double);

				void	 activate_signal(int	signal,	QString);

				void	 activate_signal_bool(int	signal,	bool);

				void		 activate_signal(QConnectionList	*clist,	QUObject	*o);

				const	QObject	*sender();

				virtual	void	timerEvent(QTimerEvent	*);

				virtual	void	childEvent(QChildEvent	*);

				virtual	void	customEvent(QCustomEvent	*);

				virtual	void	connectNotify(const	char	*signal);

				virtual	void	disconnectNotify(const	char	*signal);

				virtual	bool	checkConnectArgs(const	char	*signal,	const	QObject	*receiver,

	 	 	 	 			const	char	*member);

				static	QCString	normalizeSignalSlot(const	char	*signalSlot);

private:

				uint	 isSignal			:	1;

				uint	 isWidget			:	1;

				uint	 pendTimer		:	1;

				uint	 blockSig			:	1;

				uint	 wasDeleted	:	1;

				uint	 isTree	:	1;

				const	char	 *objname;

				QObject	 *parentObj;

				QObjectList	*childObjects;

				QSignalVec	*connections;

				QObjectList	*senderObjects;

				QObjectList	*eventFilters;

				QPostEventList	*postedEvents;

				QObjectPrivate*	d;

				static	QMetaObject*	staticQtMetaObject();

				friend	class	QApplication;

				friend	class	QBaseApplication;

				friend	class	QWidget;

				friend	class	QSignal;

				friend	class	QSenderObject;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QObject(const	QObject	&);

				QObject	&operator=(const	QObject	&);

#endif

};

inline	bool	QObject::connect(const	QObject	*sender,	const	char	*signal,

	 	 	 						const	char	*member)	const

{

				return	connect(sender,	signal,	this,	member);

}

inline	bool	QObject::disconnect(const	char	*signal,

	 	 	 	 	const	QObject	*receiver,	const	char	*member)

{

				return	disconnect(this,	signal,	receiver,	member);

}

inline	bool	QObject::disconnect(const	QObject	*receiver,	const	char	*member)

{

				return	disconnect(this,	0,	receiver,	member);

}

class	Q_EXPORT	QSenderObject	:	public	QObject	 	 //	object	for	sending	signals

{

public:

				void	setSender(QObject	*s);

};

#ifdef	QT_NO_TRANSLATION

inline	QString	QObject::tr(const	char	*sourceText,	const	char	*)	{

				return	QString::fromLatin1(sourceText);

}

#ifndef	QT_NO_TEXTCODEC

inline	QString	QObject::trUtf8(const	char	*sourceText,	const	char	*)	{

				return	QString::fromUtf8(sourceText);

}

#endif

#endif	//QT_NO_TRANSLATION

#endif	//	QOBJECT_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qobjectcleanuphandler.h
This	is	the	verbatim	text	of	the	qobjectcleanuphandler.h	include	file.	It	is
provided	only	for	illustration;	the	copyright	remains	with	Trolltech.

#ifndef	QOBJECTCLEANUPHANDLER_H

#define	QOBJECTCLEANUPHANDLER_H

#ifndef	QT_H

#include	<qobject.h>

#endif	//	QT_H

class	QObjectList;

class	Q_EXPORT	QObjectCleanupHandler	:	public	QObject

{

				Q_OBJECT

public:

				QObjectCleanupHandler();

				~QObjectCleanupHandler();

				QObject*	add(QObject*	object);

				void	remove(QObject	*object);

				bool	isEmpty()	const;

				void	clear();

private:

				QObjectList	*cleanupObjects;

private	slots:

				void	objectDestroyed(QObject	*);

};

#endif	//	QOBJECTCLEANUPHANDLER_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qobjectlist.h
qobjectlist.hTrolltech

/**

**	$Id:		qt/qobjectlist.h			3.0.5			edited	Jun	5	21:12	$

**

**	Definition	of	QObjectList

**

**	Created	:	940807

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QOBJECTLIST_H

#define	QOBJECTLIST_H

#ifndef	QT_H

#include	"qobject.h"

#include	"qptrlist.h"

#endif	//	QT_H

#if	defined(Q_TEMPLATEDLL)

Q_TEMPLATE_EXTERN	template	class	Q_EXPORT	QPtrList<QObject>;

Q_TEMPLATE_EXTERN	template	class	Q_EXPORT	QPtrListIterator<QObject>;

#endif

class	Q_EXPORT	QObjectList	:	public	QPtrList<QObject>

{

public:

				QObjectList()	:	QPtrList<QObject>()	{}

				QObjectList(const	QObjectList	&list)	:	QPtrList<QObject>(list)	{}

			~QObjectList()	{	clear();	}

				QObjectList	&operator=(const	QObjectList	&list)

	 {	return	(QObjectList&)QPtrList<QObject>::operator=(list);	}

};

class	Q_EXPORT	QObjectListIt	:	public	QPtrListIterator<QObject>

{

public:

				QObjectListIt(const	QObjectList	&l)	:	QPtrListIterator<QObject>(l)	{}

				QObjectListIt	&operator=(const	QObjectListIt	&i)

	 {	return	(QObjectListIt&)QPtrListIterator<QObject>::operator=(i);	}

};

#endif	//	QOBJECTLIST_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qpaintdevice.h
qpaintdevice.hTrolltech

/**

**	$Id:		qt/qpaintdevice.h			3.0.5			edited	Apr	23	23:32	$

**

**	Definition	of	QPaintDevice	class

**

**	Created	:	940721

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QPAINTDEVICE_H

#define	QPAINTDEVICE_H

#ifndef	QT_H

#include	"qwindowdefs.h"

#include	"qrect.h"

#endif	//	QT_H

#if	defined(Q_WS_QWS)

class	QWSDisplay;

class	QGfx;

#endif

class	QIODevice;

class	QString;

#if	defined(Q_WS_X11)

struct	QPaintDeviceX11Data;

#endif

union	QPDevCmdParam	{

				int		 	 	ival;

				int		 	 *ivec;

				QString	 								*str;

				const	QPoint	 *point;

				const	QRect		 *rect;

				const	QPointArray	 *ptarr;

				const	QPixmap	 *pixmap;

				const	QImage	 *image;

				const	QColor	 *color;

				const	QFont		 *font;

				const	QPen	 	 *pen;

				const	QBrush	 *brush;

				const	QRegion	 *rgn;

				const	QWMatrix	 *matrix;

				QIODevice	 	 *device;

};

class	Q_EXPORT	QPaintDevice	 	 	 	 //	device	for	QPainter

{

public:

				virtual	~QPaintDevice();

				int		 devType()	const;

				bool	 isExtDev()	const;

				bool	 paintingActive()	const;

				virtual	void	setResolution(int);

				virtual	int	resolution()	const;

				//	Windows:			get	device	context

				//	X-Windows:	get	drawable

#if	defined(Q_WS_WIN)

				virtual	HDC		 handle()	const;

#elif	defined(Q_WS_X11)

				virtual	Qt::HANDLE	 handle()	const;

				virtual	Qt::HANDLE		x11RenderHandle()	const;

#elif	defined(Q_WS_MAC)

				virtual	Qt::HANDLE						handle()	const;

#elif	defined(Q_WS_QWS)

				virtual	Qt::HANDLE	 handle()	const;

#endif

#if	defined(Q_WS_X11)

				Display		 			*x11Display()	const;

				int		 				x11Screen()	const;

				int		 				x11Depth()	const;

				int		 				x11Cells()	const;

				Qt::HANDLE	 				x11Colormap()	const;

				bool	 				x11DefaultColormap()	const;

				void	 			*x11Visual()	const;

				bool	 				x11DefaultVisual()	const;

				static	Display	*x11AppDisplay();

				static	int	 				x11AppScreen();

				static	int	 				x11AppDepth();

				static	int	 				x11AppCells();

				static	int	 				x11AppDpiX();

				static	int	 				x11AppDpiY();

				static	Qt::HANDLE			x11AppColormap();

				static	bool					x11AppDefaultColormap();

				static	void				*x11AppVisual();

				static	bool					x11AppDefaultVisual();

				static	void					x11SetAppDpiX(int);

				static	void					x11SetAppDpiY(int);

#endif

#if	defined(Q_WS_QWS)

				static	QWSDisplay	*qwsDisplay();

				virtual	unsigned	char	*	scanLine(int)	const;

				virtual	int	bytesPerLine()	const;

				virtual	QGfx	*	graphicsContext(bool	clip_children=TRUE)	const;

#endif

				enum	PDevCmd	{

	 PdcNOP	=	0,	//		<void>

	 PdcDrawPoint	=	1,	//	point

	 PdcDrawFirst	=	PdcDrawPoint,

	 PdcMoveTo	=	2,	//	point

	 PdcLineTo	=	3,	//	point

	 PdcDrawLine	=	4,	//	point,point

	 PdcDrawRect	=	5,	//	rect

	 PdcDrawRoundRect	=	6,	//	rect,ival,ival

	 PdcDrawEllipse	=	7,	//	rect

	 PdcDrawArc	=	8,	//	rect,ival,ival

	 PdcDrawPie	=	9,	//	rect,ival,ival

	 PdcDrawChord	=	10,	//	rect,ival,ival

	 PdcDrawLineSegments	=	11,	//	ptarr

	 PdcDrawPolyline	=	12,	//	ptarr

	 PdcDrawPolygon	=	13,	//	ptarr,ival

	 PdcDrawCubicBezier	=	14,	//	ptarr

	 PdcDrawText	=	15,	//	point,str

	 PdcDrawTextFormatted	=	16,	//	rect,ival,str

	 PdcDrawPixmap	=	17,	//	rect,pixmap

	 PdcDrawImage	=	18,	//	rect,image

	 PdcDrawText2	=	19,	//	point,str

	 PdcDrawText2Formatted	=	20,	//	rect,ival,str

	 PdcDrawLast	=	PdcDrawText2Formatted,

	 //	no	painting	commands	below	PdcDrawLast.

	 PdcBegin	=	30,	//		<void>

	 PdcEnd	=	31,	//		<void>

	 PdcSave	=	32,	//		<void>

	 PdcRestore	=	33,	//		<void>

	 PdcSetdev	=	34,	//	device	-	PRIVATE

	 PdcSetBkColor	=	40,	//	color

	 PdcSetBkMode	=	41,	//	ival

	 PdcSetROP	=	42,	//	ival

	 PdcSetBrushOrigin	=	43,	//	point

	 PdcSetFont	=	45,	//	font

	 PdcSetPen	=	46,	//	pen

	 PdcSetBrush	=	47,	//	brush

	 PdcSetTabStops	=	48,	//	ival

	 PdcSetTabArray	=	49,	//	ival,ivec

	 PdcSetUnit	=	50,	//	ival

	 PdcSetVXform	=	51,	//	ival

	 PdcSetWindow	=	52,	//	rect

	 PdcSetViewport	=	53,	//	rect

	 PdcSetWXform	=	54,	//	ival

	 PdcSetWMatrix	=	55,	//	matrix,ival

	 PdcSaveWMatrix	=	56,

	 PdcRestoreWMatrix	=	57,

	 PdcSetClip	=	60,	//	ival

	 PdcSetClipRegion	=	61,	//	rgn

	 PdcReservedStart	=	0,	//	codes	0-199	are	reserved

	 PdcReservedStop	=	199	//			for	Qt

				};

protected:

				QPaintDevice(uint	devflags);

#if	defined(Q_WS_WIN)

				HDC		 hdc;	 	 	 	 //	device	context

#elif	defined(Q_WS_X11)

				Qt::HANDLE	 hd;	 	 	 	 //	handle	to	drawable

				Qt::HANDLE		rendhd;																									//	handle	to	RENDER	pict

				void	 	 	copyX11Data(const	QPaintDevice	*);

				void	 	 	cloneX11Data(const	QPaintDevice	*);

				virtual	void	 	setX11Data(const	QPaintDeviceX11Data*);

				QPaintDeviceX11Data*	getX11Data(bool	def=FALSE)	const;

#elif	defined(Q_WS_MAC)

#if	!defined(QMAC_NO_QUARTZ)

				CGContextRef	ctx;

#endif

				void	*	hd;

#elif	defined(Q_WS_QWS)

				Qt::HANDLE	hd;

#endif

				virtual	bool	cmd(int,	QPainter	*,	QPDevCmdParam	*);

				virtual	int		metric(int)	const;

				virtual	int		fontMet(QFont	*,	int,	const	char	*	=	0,	int	=	0)	const;

				virtual	int		fontInf(QFont	*,	int)	const;

				ushort	 devFlags;	 	 	 //	device	flags

				ushort	 painters;	 	 	 //	refcount

				friend	class	QPainter;

				friend	class	QPaintDeviceMetrics;

#if	defined(Q_WS_MAC)

#ifndef	QMAC_NO_QUARTZ

				virtual	CGContextRef	macCGContext(bool	clipped=TRUE)	const;

#endif

				friend	Q_EXPORT	void	unclippedScaledBitBlt(QPaintDevice	*,	int,	int,	int,	int,

	 	 	 	 	 	 const	QPaintDevice	*,	int,	int,	int,	int,	Qt::RasterOp,	bool,	bool);

#else

				friend	Q_EXPORT	void	bitBlt(QPaintDevice	*,	int,	int,

	 	 	 	 	const	QPaintDevice	*,

	 	 	 	 	int,	int,	int,	int,	Qt::RasterOp,	bool);

#endif

#if	defined(Q_WS_X11)

				friend	void	qt_init_internal(int	*,	char	**,	Display	*,	Qt::HANDLE,	Qt::HANDLE);

#endif

private:

#if	defined(Q_WS_X11)

				static	Display	*x_appdisplay;

				static	int	 				x_appscreen;

				static	int	 				x_appdepth;

				static	int	 				x_appcells;

				static	Qt::HANDLE			x_appcolormap;

				static	bool					x_appdefcolormap;

				static	void				*x_appvisual;

				static	bool					x_appdefvisual;

				QPaintDeviceX11Data*	x11Data;

#endif

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QPaintDevice(const	QPaintDevice	&);

				QPaintDevice	&operator=(const	QPaintDevice	&);

#endif

};

Q_EXPORT

void	bitBlt(QPaintDevice	*dst,	int	dx,	int	dy,

	 					const	QPaintDevice	*src,	int	sx=0,	int	sy=0,	int	sw=-1,	int	sh=-1,

	 					Qt::RasterOp	=	Qt::CopyROP,	bool	ignoreMask=FALSE);

Q_EXPORT

void	bitBlt(QPaintDevice	*dst,	int	dx,	int	dy,

	 					const	QImage	*src,	int	sx=0,	int	sy=0,	int	sw=-1,	int	sh=-1,

	 					int	conversion_flags=0);

#if	defined(Q_WS_X11)

struct	Q_EXPORT	QPaintDeviceX11Data	:	public	QShared	{

				Display*	 x_display;

				int		 x_screen;

				int		 x_depth;

				int		 x_cells;

				Qt::HANDLE	 x_colormap;

				bool	 x_defcolormap;

				void*	 x_visual;

				bool	 x_defvisual;

};

#endif

/***

		Inline	functions

	***/

inline	int	QPaintDevice::devType()	const

{	return	devFlags	&	QInternal::DeviceTypeMask;	}

inline	bool	QPaintDevice::isExtDev()	const

{	return	(devFlags	&	QInternal::ExternalDevice)	!=	0;	}

inline	bool	QPaintDevice::paintingActive()	const

{	return	painters	!=	0;	}

#if	defined(Q_WS_X11)

inline	Display	*QPaintDevice::x11Display()	const

{	return	x11Data	?	x11Data->x_display	:	x_appdisplay;	}

inline	int	QPaintDevice::x11Screen()	const

{	return	x11Data	?	x11Data->x_screen	:	x_appscreen;	}

inline	int	QPaintDevice::x11Depth()	const

{	return	x11Data	?	x11Data->x_depth	:	x_appdepth;	}

inline	int	QPaintDevice::x11Cells()	const

{	return	x11Data	?	x11Data->x_cells	:	x_appcells;	}

inline	Qt::HANDLE	QPaintDevice::x11Colormap()	const

{	return	x11Data	?	x11Data->x_colormap	:	x_appcolormap;	}

inline	bool	QPaintDevice::x11DefaultColormap()	const

{	return	x11Data	?	x11Data->x_defcolormap	:	x_appdefcolormap;	}

inline	void	*QPaintDevice::x11Visual()	const

{	return	x11Data	?	x11Data->x_visual	:	x_appvisual;	}

inline	bool	QPaintDevice::x11DefaultVisual()	const

{	return	x11Data	?	x11Data->x_defvisual	:	x_appdefvisual;	}

inline	Display	*QPaintDevice::x11AppDisplay()

{	return	x_appdisplay;	}

inline	int	QPaintDevice::x11AppScreen()

{	return	x_appscreen;	}

inline	int	QPaintDevice::x11AppDepth()

{	return	x_appdepth;	}

inline	int	QPaintDevice::x11AppCells()

{	return	x_appcells;	}

inline	Qt::HANDLE	QPaintDevice::x11AppColormap()

{	return	x_appcolormap;	}

inline	bool	QPaintDevice::x11AppDefaultColormap()

{	return	x_appdefcolormap;	}

inline	void	*QPaintDevice::x11AppVisual()

{	return	x_appvisual;	}

inline	bool	QPaintDevice::x11AppDefaultVisual()

{	return	x_appdefvisual;	}

#endif	//	Q_WS_X11

Q_EXPORT

inline	void	bitBlt(QPaintDevice	*dst,	const	QPoint	&dp,

	 	 				const	QPaintDevice	*src,	const	QRect	&sr	=QRect(0,0,-1,-1),

	 	 				Qt::RasterOp	rop=Qt::CopyROP,	bool	ignoreMask=FALSE)

{

				bitBlt(dst,	dp.x(),	dp.y(),	src,	sr.x(),	sr.y(),	sr.width(),	sr.height(),

	 				rop,	ignoreMask);

}

#endif	//	QPAINTDEVICE_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qpaintdevicemetrics.h
This	is	the	verbatim	text	of	the	qpaintdevicemetrics.h	include	file.	It	is	provided
only	for	illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qpaintdevicemetrics.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QPaintDeviceMetrics	class

**

**	Created	:	941109

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QPAINTDEVICEMETRICS_H

#define	QPAINTDEVICEMETRICS_H

#ifndef	QT_H

#include	"qpaintdevice.h"

#endif	//	QT_H

class	Q_EXPORT	QPaintDeviceMetrics	 	 	 //	paint	device	metrics

{

public:

				QPaintDeviceMetrics(const	QPaintDevice	*);

				enum	{

	 PdmWidth	=	1,

	 PdmHeight,

	 PdmWidthMM,

	 PdmHeightMM,

	 PdmNumColors,

	 PdmDepth,

	 PdmDpiX,

	 PdmDpiY,

	 PdmPhysicalDpiX,

	 PdmPhysicalDpiY

				};

				int			width()	 const	 {	return	(int)pdev->metric(PdmWidth);	}

				int			height()	 const	 {	return	(int)pdev->metric(PdmHeight);	}

				int			widthMM()	 const	 {	return	(int)pdev->metric(PdmWidthMM);	}

				int			heightMM()	 const	 {	return	(int)pdev->metric(PdmHeightMM);	}

				int			logicalDpiX()	const	 {	return	(int)pdev->metric(PdmDpiX);	}

				int			logicalDpiY()	const	 {	return	(int)pdev->metric(PdmDpiY);	}

				int			physicalDpiX()const	 {	return	(int)pdev->metric(PdmPhysicalDpiX);	}

				int			physicalDpiY()const	 {	return	(int)pdev->metric(PdmPhysicalDpiY);	}

				int			numColors()	 const	 {	return	(int)pdev->metric(PdmNumColors);	}

				int			depth()	 const	 {	return	(int)pdev->metric(PdmDepth);	}

private:

				QPaintDevice	*pdev;

};

#endif	//	QPAINTDEVICEMETRICS_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qpainter.h
qpainter.hTrolltech

/**

**	$Id:		qt/qpainter.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QPainter	class

**

**	Created	:	940112

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QPAINTER_H

#define	QPAINTER_H

#ifndef	QT_H

#include	"qcolor.h"

#include	"qfontmetrics.h"

#include	"qfontinfo.h"

#include	"qregion.h"

#include	"qpen.h"

#include	"qbrush.h"

#include	"qpointarray.h"

#include	"qwmatrix.h"

#endif	//	QT_H

class	QGfx;

class	QTextCodec;

class	QTextParag;

class	QPaintDevice;

#if	defined(Q_WS_MAC)

class	QMacSavedPortInfo;

#endif

class	QPainterPrivate;

class	Q_EXPORT	QPainter	:	public	Qt

{

public:

				enum	CoordinateMode	{	CoordDevice,	CoordPainter	};

				QPainter();

				QPainter(const	QPaintDevice	*,	bool	unclipped	=	FALSE);

				QPainter(const	QPaintDevice	*,	const	QWidget	*,	bool	unclipped	=	FALSE);

			~QPainter();

				bool	 begin(const	QPaintDevice	*,	bool	unclipped	=	FALSE);

				bool	 begin(const	QPaintDevice	*,	const	QWidget	*,	bool	unclipped	=	FALSE);

				bool	 end();

				QPaintDevice	*device()	const;

#ifdef	Q_WS_QWS

				QGfx	*	internalGfx();

#endif

				static	void	redirect(QPaintDevice	*pdev,	QPaintDevice	*replacement);

				bool	 isActive()	const;

				void	 flush(const	QRegion	®ion,	CoordinateMode	cm	=	CoordDevice);

				void	 flush();

				void	 save();

				void	 restore();

		//	Drawing	tools

				QFontMetrics	fontMetrics()	 const;

				QFontInfo	 	fontInfo()	 const;

				const	QFont	&font()		 const;

				void	 setFont(const	QFont	&);

				const	QPen	&pen()	 	 const;

				void	 setPen(const	QPen	&);

				void	 setPen(PenStyle);

				void	 setPen(const	QColor	&);

				const	QBrush	&brush()	 const;

				void	 setBrush(const	QBrush	&);

				void	 setBrush(BrushStyle);

				void	 setBrush(const	QColor	&);

				QPoint	 pos()	const;

		//	Drawing	attributes/modes

				const	QColor	&backgroundColor()	const;

				void	 setBackgroundColor(const	QColor	&);

				BGMode	 backgroundMode()	const;

				void	 setBackgroundMode(BGMode);

				RasterOp	 rasterOp()	 const;

				void	 setRasterOp(RasterOp);

				const	QPoint	&brushOrigin()	const;

				void	 setBrushOrigin(int	x,	int	y);

				void	 setBrushOrigin(const	QPoint	&);

		//	Scaling	and	transformations

//				PaintUnit	unit()	 							const;	 	 //	get	set	painter	unit

//				void	 setUnit(PaintUnit);	 	 //	NOT	IMPLEMENTED!!!

				bool	 hasViewXForm()	const;

				bool	 hasWorldXForm()	const;

#ifndef	QT_NO_TRANSFORMATIONS

				void	 setViewXForm(bool);	 	 //	set	xform	on/off

				QRect	 window()							const;	 	 //	get	window

				void	 setWindow(const	QRect	&);	 //	set	window

				void	 setWindow(int	x,	int	y,	int	w,	int	h);

				QRect	 viewport()			const;	 	 //	get	viewport

				void	 setViewport(const	QRect	&);	 //	set	viewport

				void	 setViewport(int	x,	int	y,	int	w,	int	h);

				void	 setWorldXForm(bool);	 	 //	set	world	xform	on/off

				const	QWMatrix	&worldMatrix()	const;	 //	get/set	world	xform	matrix

				void	 setWorldMatrix(const	QWMatrix	&,	bool	combine=FALSE);

				void	 saveWorldMatrix();

				void	 restoreWorldMatrix();

				void	 scale(double	sx,	double	sy);

				void	 shear(double	sh,	double	sv);

				void	 rotate(double	a);

#endif

				void	 translate(double	dx,	double	dy);

				void	 resetXForm();

				double	 translationX()	const;

				double	 translationY()	const;

				QPoint	 xForm(const	QPoint	&)	const;	 //	map	virtual	->	device

				QRect	 xForm(const	QRect	&)	 const;

				QPointArray	xForm(const	QPointArray	&)	const;

				QPointArray	xForm(const	QPointArray	&,	int	index,	int	npoints)	const;

				QPoint	 xFormDev(const	QPoint	&)	const;	//	map	device	->	virtual

				QRect	 xFormDev(const	QRect	&)		const;

				QPointArray	xFormDev(const	QPointArray	&)	const;

				QPointArray	xFormDev(const	QPointArray	&,	int	index,	int	npoints)	const;

		//	Clipping

				void	 setClipping(bool);	 	 //	set	clipping	on/off

				bool	 hasClipping()	const;

				QRegion	clipRegion(CoordinateMode	=	CoordDevice)	const;

				void	 setClipRect(const	QRect	&,	CoordinateMode	=	CoordDevice);	 //	set	clip	rectangle

				void	 setClipRect(int	x,	int	y,	int	w,	int	h,	CoordinateMode	=	CoordDevice);

				void	 setClipRegion(const	QRegion	&,	CoordinateMode	=	CoordDevice);//	set	clip	region

		//	Graphics	drawing	functions

				void	 drawPoint(int	x,	int	y);

				void	 drawPoint(const	QPoint	&);

				void	 drawPoints(const	QPointArray&	a,

	 	 	 				int	index=0,	int	npoints=-1);

				void	 moveTo(int	x,	int	y);

				void	 moveTo(const	QPoint	&);

				void	 lineTo(int	x,	int	y);

				void	 lineTo(const	QPoint	&);

				void	 drawLine(int	x1,	int	y1,	int	x2,	int	y2);

				void	 drawLine(const	QPoint	&,	const	QPoint	&);

				void	 drawRect(int	x,	int	y,	int	w,	int	h);

				void	 drawRect(const	QRect	&);

				void	 drawWinFocusRect(int	x,	int	y,	int	w,	int	h);

				void	 drawWinFocusRect(int	x,	int	y,	int	w,	int	h,

	 	 	 	 		const	QColor	&bgColor);

				void	 drawWinFocusRect(const	QRect	&);

				void	 drawWinFocusRect(const	QRect	&,

	 	 	 	 		const	QColor	&bgColor);

				void	 drawRoundRect(int	x,	int	y,	int	w,	int	h,	int	=	25,	int	=	25);

				void	 drawRoundRect(const	QRect	&,	int	=	25,	int	=	25);

				void	 drawEllipse(int	x,	int	y,	int	w,	int	h);

				void	 drawEllipse(const	QRect	&);

				void	 drawArc(int	x,	int	y,	int	w,	int	h,	int	a,	int	alen);

				void	 drawArc(const	QRect	&,	int	a,	int	alen);

				void	 drawPie(int	x,	int	y,	int	w,	int	h,	int	a,	int	alen);

				void	 drawPie(const	QRect	&,	int	a,	int	alen);

				void	 drawChord(int	x,	int	y,	int	w,	int	h,	int	a,	int	alen);

				void	 drawChord(const	QRect	&,	int	a,	int	alen);

				void	 drawLineSegments(const	QPointArray	&,

	 	 	 	 		int	index=0,	int	nlines=-1);

				void	 drawPolyline(const	QPointArray	&,

	 	 	 						int	index=0,	int	npoints=-1);

				void	 drawPolygon(const	QPointArray	&,	bool	winding=FALSE,

	 	 	 					int	index=0,	int	npoints=-1);

				void	 drawConvexPolygon(const	QPointArray	&,

	 	 	 					int	index=0,	int	npoints=-1);

#ifndef	QT_NO_BEZIER

				void	 drawCubicBezier(const	QPointArray	&,	int	index=0);

#endif

				void	 drawPixmap(int	x,	int	y,	const	QPixmap	&,

	 	 	 				int	sx=0,	int	sy=0,	int	sw=-1,	int	sh=-1);

				void	 drawPixmap(const	QPoint	&,	const	QPixmap	&,

	 	 	 				const	QRect	&sr);

				void	 drawPixmap(const	QPoint	&,	const	QPixmap	&);

				void	 drawPixmap(const	QRect	&,	const	QPixmap	&);

				void	 drawImage(int	x,	int	y,	const	QImage	&,

	 	 	 			int	sx	=	0,	int	sy	=	0,	int	sw	=	-1,	int	sh	=	-1,

	 	 	 			int	conversionFlags	=	0);

				void	 drawImage(const	QPoint	&,	const	QImage	&,

	 	 	 			const	QRect	&sr,	int	conversionFlags	=	0);

				void	 drawImage(const	QPoint	&,	const	QImage	&,

	 	 	 			int	conversion_flags	=	0);

				void	 drawImage(const	QRect	&,	const	QImage	&);

				void	 drawTiledPixmap(int	x,	int	y,	int	w,	int	h,	const	QPixmap	&,

	 	 	 	 	int	sx=0,	int	sy=0);

				void	 drawTiledPixmap(const	QRect	&,	const	QPixmap	&,

	 	 	 	 	const	QPoint	&);

				void	 drawTiledPixmap(const	QRect	&,	const	QPixmap	&);

#ifndef	QT_NO_PICTURE

				void	 drawPicture(const	QPicture	&);

				void	 drawPicture(int	x,	int	y,	const	QPicture	&);

				void	 drawPicture(const	QPoint	&,	const	QPicture	&);

#endif

				void	 fillRect(int	x,	int	y,	int	w,	int	h,	const	QBrush	&);

				void	 fillRect(const	QRect	&,	const	QBrush	&);

				void	 eraseRect(int	x,	int	y,	int	w,	int	h);

				void	 eraseRect(const	QRect	&);

		//	Text	drawing	functions

				enum	TextDirection	{

	 Auto,

	 RTL,

	 LTR

				};

				void	 drawText(int	x,	int	y,	const	QString	&,	int	len	=	-1,	TextDirection	dir	=	Auto);

				void	 drawText(const	QPoint	&,	const	QString	&,	int	len	=	-1,	TextDirection	dir	=	Auto);

				void					drawText(int	x,	int	y,	const	QString	&,	int	pos,	int	len,	TextDirection	dir	=	Auto);

				void					drawText(const	QPoint	&p,	const	QString	&,	int	pos,	int	len,	TextDirection	dir	=	Auto);

				void	 drawText(int	x,	int	y,	int	w,	int	h,	int	flags,

	 	 	 		const	QString&,	int	len	=	-1,	QRect	*br=0,

	 	 	 		QTextParag	**intern=0);

				void	 drawText(const	QRect	&,	int	flags,

	 	 	 		const	QString&,	int	len	=	-1,	QRect	*br=0,

	 	 	 		QTextParag	**intern=0);

				//#####				void	 drawText(const	QPoint	&,	const	QString	&,	int	flags,	int	rotation	=	0);

		//	Text	drawing	functions

				QRect	 boundingRect(int	x,	int	y,	int	w,	int	h,	int	flags,

	 	 	 						const	QString&,	int	len	=	-1,	QTextParag	**intern=0);

				QRect	 boundingRect(const	QRect	&,	int	flags,

	 	 	 						const	QString&,	int	len	=	-1,	QTextParag	**intern=0);

				int		 tabStops()	const;

				void	 setTabStops(int);

				int								*tabArray()	const;

				void	 setTabArray(int	*);

				//	Other	functions

#if	defined(Q_WS_WIN)

				HDC		 handle()	const;

#elif	defined(Q_WS_X11)

				HANDLE	 handle()	const;

#endif

				static	void	initialize();

				static	void	cleanup();

private:

				void	 init();

				void								destroy();

				void	 updateFont();

				void	 updatePen();

				void	 updateBrush();

#ifndef	QT_NO_TRANSFORMATIONS

				void	 updateXForm();

				void	 updateInvXForm();

#endif

				void	 map(int,	int,	int	*rx,	int	*ry)	const;

				void	 map(int,	int,	int,	int,	int	*,	int	*,	int	*,	int	*)	const;

				void	 mapInv(int,	int,	int	*,	int	*)	const;

				void	 mapInv(int,	int,	int,	int,	int	*,	int	*,	int	*,	int	*)	const;

				void	 drawPolyInternal(const	QPointArray	&,	bool	close=TRUE);

				void	 drawWinFocusRect(int	x,	int	y,	int	w,	int	h,	bool	xorPaint,

	 	 	 	 		const	QColor	&penColor);

				enum	{	IsActive=0x01,	ExtDev=0x02,	IsStartingUp=0x04,	NoCache=0x08,

	 			VxF=0x10,	WxF=0x20,	ClipOn=0x40,	SafePolygon=0x80,	MonoDev=0x100,

	 			DirtyFont=0x200,	DirtyPen=0x400,	DirtyBrush=0x800,

	 			RGBColor=0x1000,	FontMet=0x2000,	FontInf=0x4000,	CtorBegin=0x8000,

											UsePrivateCx	=	0x10000,	VolatileDC	=	0x20000,	Qt2Compat	=	0x40000	};

				uint	 flags;

				bool	 testf(uint	b)	const	{	return	(flags&b)!=0;	}

				void	 setf(uint	b)	 {	flags	|=	b;	}

				void	 setf(uint	b,	bool	v);

				void	 clearf(uint	b)	 {	flags	&=	(uint)(~b);	}

				void	 fix_neg_rect(int	*x,	int	*y,	int	*w,	int	*h);

				QPainterPrivate	*d;

				QPaintDevice	*pdev;

				QColor	 bg_col;

				uchar	 bg_mode;

				uchar	 rop;

				uchar	 pu;

				QPoint	 bro;

				QFont	 cfont;

				QFont	*pfont;		 //	font	used	for	metrics	(might	be	different	for	printers)

				QPen	 cpen;

				QBrush	 cbrush;

				QRegion	 crgn;

				int		 tabstops;

				int								*tabarray;

				int		 tabarraylen;

				bool	 block_ext;	 //	for	temporary	blocking	of	external	devices

				//	Transformations

#ifndef	QT_NO_TRANSFORMATIONS

				QCOORD	 wx,	wy,	ww,	wh;

				QCOORD	 vx,	vy,	vw,	vh;

				QWMatrix	 wxmat;

				//	Cached	composition	(and	inverse)	of	transformations

				QWMatrix	 xmat;

				QWMatrix	 ixmat;

				double	 m11()	const	{	return	xmat.m11();	}

				double						m12()	const	{	return	xmat.m12();	}

				double						m21()	const	{	return	xmat.m21();	}

				double						m22()	const	{	return	xmat.m22();	}

				double						dx()	const	{	return	xmat.dx();	}

				double						dy()	const	{	return	xmat.dy();	}

				double	 im11()	const	{	return	ixmat.m11();	}

				double						im12()	const	{	return	ixmat.m12();	}

				double						im21()	const	{	return	ixmat.m21();	}

				double						im22()	const	{	return	ixmat.m22();	}

				double						idx()	const	{	return	ixmat.dx();	}

				double						idy()	const	{	return	ixmat.dy();	}

				int		 txop;

				bool	 txinv;

#else

				//	even	without	transformations	we	still	have	translations

				int		 xlatex;

				int		 xlatey;

#endif

				void							*penRef;		 	 	 //	pen	cache	ref

				void							*brushRef;	 	 	 //	brush	cache	ref

				void							*ps_stack;

				void							*wm_stack;

				void	 killPStack();

protected:

#ifdef	Q_OS_TEMP

	 QPoint	 internalCurrentPos;

#endif

#if	defined(Q_WS_WIN)

				QT_WIN_PAINTER_MEMBERS

#elif	defined(Q_WS_X11)

				Display				*dpy;	 	 	 	 //	current	display

				int		 scrn;	 	 	 	 //	current	screen

				Qt::HANDLE	 hd;	 	 	 	 //	handle	to	drawable

				Qt::HANDLE		rendhd;		 	 	 //	handle	to	Render	Picture

				GC	 	 gc;	 	 	 	 //	graphics	context	(standard)

				GC	 	 gc_brush;	 	 	 //	graphics	contect	for	brush

				QPoint	 curPt;	 	 	 	 //	current	point

				uint	 clip_serial;	 	 	 //	clipping	serial	number

#elif	defined(Q_WS_MAC)

				void	initPaintDevice(bool	force=FALSE);

#elif	defined(Q_WS_QWS)

				QGfx	*	gfx;

#endif

				friend	class	QFontMetrics;

				friend	class	QFontInfo;

				friend	void	qt_format_text(const	QFont	&,	const	QRect	&r,

	 	 					int	tf,	const	QString&	str,	int	len,	QRect	*brect,

	 	 					int	tabstops,	int*	tabarray,	int	tabarraylen,

	 	 					QTextParag	**internal,	QPainter*	painter);

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QPainter(const	QPainter	&);

				QPainter	&operator=(const	QPainter	&);

#endif

};

/***

		QPainter	member	functions

	***/

inline	QPaintDevice	*QPainter::device()	const

{

				return	pdev;

}

inline	bool	QPainter::isActive()	const

{

				return	testf(IsActive);

}

inline	const	QFont	&QPainter::font()	const

{

				return	cfont;

}

inline	const	QPen	&QPainter::pen()	const

{

				return	cpen;

}

inline	const	QBrush	&QPainter::brush()	const

{

				return	cbrush;

}

/*

inline	PaintUnit	QPainter::unit()	const

{

				return	(PaintUnit)pu;

}

*/

inline	const	QColor	&QPainter::backgroundColor()	const

{

				return	bg_col;

}

inline	Qt::BGMode	QPainter::backgroundMode()	const

{

				return	(BGMode)bg_mode;

}

inline	Qt::RasterOp	QPainter::rasterOp()	const

{

				return	(RasterOp)rop;

}

inline	const	QPoint	&QPainter::brushOrigin()	const

{

				return	bro;

}

inline	bool	QPainter::hasViewXForm()	const

{

#ifndef	QT_NO_TRANSFORMATIONS

				return	testf(VxF);

#else

				return	xlatex	||	xlatey;

#endif

}

inline	bool	QPainter::hasWorldXForm()	const

{

#ifndef	QT_NO_TRANSFORMATIONS

				return	testf(WxF);

#else

				return	xlatex	||	xlatey;

#endif

}

inline	double	QPainter::translationX()	const

{

#ifndef	QT_NO_TRANSFORMATIONS

				return	worldMatrix().dx();

#else

				return	xlatex;

#endif

}

inline	double	QPainter::translationY()	const

{

#ifndef	QT_NO_TRANSFORMATIONS

				return	worldMatrix().dy();

#else

				return	xlatey;

#endif

}

inline	bool	QPainter::hasClipping()	const

{

				return	testf(ClipOn);

}

inline	int	QPainter::tabStops()	const

{

				return	tabstops;

}

inline	int	*QPainter::tabArray()	const

{

				return	tabarray;

}

#if	defined(Q_WS_WIN)

inline	HDC	QPainter::handle()	const

{

				return	hdc;

}

#elif	defined(Q_WS_X11)

inline	Qt::HANDLE	QPainter::handle()	const

{

				return	hd;

}

#endif

inline	void	QPainter::setBrushOrigin(const	QPoint	&p)

{

				setBrushOrigin(p.x(),	p.y());

}

#ifndef	QT_NO_TRANSFORMATIONS

inline	void	QPainter::setWindow(const	QRect	&r)

{

				setWindow(r.x(),	r.y(),	r.width(),	r.height());

}

inline	void	QPainter::setViewport(const	QRect	&r)

{

				setViewport(r.x(),	r.y(),	r.width(),	r.height());

}

#endif

inline	void	QPainter::setClipRect(int	x,	int	y,	int	w,	int	h,	CoordinateMode	m)

{

				setClipRect(QRect(x,y,w,h),	m);

}

inline	void	QPainter::drawPoint(const	QPoint	&p)

{

				drawPoint(p.x(),	p.y());

}

inline	void	QPainter::moveTo(const	QPoint	&p)

{

				moveTo(p.x(),	p.y());

}

inline	void	QPainter::lineTo(const	QPoint	&p)

{

				lineTo(p.x(),	p.y());

}

inline	void	QPainter::drawLine(const	QPoint	&p1,	const	QPoint	&p2)

{

				drawLine(p1.x(),	p1.y(),	p2.x(),	p2.y());

}

inline	void	QPainter::drawRect(const	QRect	&r)

{

				drawRect(r.x(),	r.y(),	r.width(),	r.height());

}

inline	void	QPainter::drawWinFocusRect(const	QRect	&r)

{

				drawWinFocusRect(r.x(),	r.y(),	r.width(),	r.height());

}

inline	void	QPainter::drawWinFocusRect(const	QRect	&r,const	QColor	&penColor)

{

				drawWinFocusRect(r.x(),	r.y(),	r.width(),	r.height(),	penColor);

}

inline	void	QPainter::drawRoundRect(const	QRect	&r,	int	xRnd,	int	yRnd)

{

				drawRoundRect(r.x(),	r.y(),	r.width(),	r.height(),	xRnd,	yRnd);

}

inline	void	QPainter::drawEllipse(const	QRect	&r)

{

				drawEllipse(r.x(),	r.y(),	r.width(),	r.height());

}

inline	void	QPainter::drawArc(const	QRect	&r,	int	a,	int	alen)

{

				drawArc(r.x(),	r.y(),	r.width(),	r.height(),	a,	alen);

}

inline	void	QPainter::drawPie(const	QRect	&r,	int	a,	int	alen)

{

				drawPie(r.x(),	r.y(),	r.width(),	r.height(),	a,	alen);

}

inline	void	QPainter::drawChord(const	QRect	&r,	int	a,	int	alen)

{

				drawChord(r.x(),	r.y(),	r.width(),	r.height(),	a,	alen);

}

inline	void	QPainter::drawPixmap(const	QPoint	&p,	const	QPixmap	&pm,

	 	 	 	 		const	QRect	&sr)

{

				drawPixmap(p.x(),	p.y(),	pm,	sr.x(),	sr.y(),	sr.width(),	sr.height());

}

inline	void	QPainter::drawImage(const	QPoint	&p,	const	QImage	&pm,

																																	const	QRect	&sr,	int	conversionFlags)

{

				drawImage(p.x(),	p.y(),	pm,

	 							sr.x(),	sr.y(),	sr.width(),	sr.height(),	conversionFlags);

}

inline	void	QPainter::drawTiledPixmap(const	QRect	&r,	const	QPixmap	&pm,

	 	 	 	 							const	QPoint	&sp)

{

				drawTiledPixmap(r.x(),	r.y(),	r.width(),	r.height(),	pm,	sp.x(),	sp.y());

}

inline	void	QPainter::drawTiledPixmap(const	QRect	&r,	const	QPixmap	&pm)

{

				drawTiledPixmap(r.x(),	r.y(),	r.width(),	r.height(),	pm,	0,	0);

}

inline	void	QPainter::fillRect(const	QRect	&r,	const	QBrush	&brush)

{

				fillRect(r.x(),	r.y(),	r.width(),	r.height(),	brush);

}

inline	void	QPainter::eraseRect(int	x,	int	y,	int	w,	int	h)

{

				fillRect(x,	y,	w,	h,	backgroundColor());

}

inline	void	QPainter::eraseRect(const	QRect	&r)

{

				fillRect(r.x(),	r.y(),	r.width(),	r.height(),	backgroundColor());

}

inline	void	QPainter::drawText(const	QPoint	&p,	const	QString	&s,	int	len,	TextDirection	dir)

{

				drawText(p.x(),	p.y(),	s,	0,	len,	dir);

}

inline	void	QPainter::drawText(const	QPoint	&p,	const	QString	&s,	int	pos,	int	len,	TextDirection	dir)

{

				drawText(p.x(),	p.y(),	s,	pos,	len,	dir);

}

inline	void	QPainter::drawText(int	x,	int	y,	int	w,	int	h,	int	tf,

	 	 	 	 const	QString&	str,	int	len,	QRect	*br,	QTextParag	**i)

{

				QRect	r(x,	y,	w,	h);

				drawText(r,	tf,	str,	len,	br,	i);

}

inline	QRect	QPainter::boundingRect(int	x,	int	y,	int	w,	int	h,	int	tf,

	 	 	 	 					const	QString&	str,	int	len,	QTextParag	**i)

{

				QRect	r(x,	y,	w,	h);

				return	boundingRect(r,	tf,	str,	len,	i);

}

#if	defined(Q_WS_QWS)

inline	QGfx	*	QPainter::internalGfx()

{

				return	gfx;

}

#endif

#endif	//	QPAINTER_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qpair.h
This	is	the	verbatim	text	of	the	qpair.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**

**	Definition	of	QPair	class

**

**

**	Copyright	(C)	1992-2001	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	tools	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QPAIR_H

#define	QPAIR_H

#ifndef	QT_H

#include	"qglobal.h"

#endif	//	QT_H

template	<class	T1,	class	T2>

struct	QPair

{

				typedef	T1	first_type;

				typedef	T2	second_type;

				QPair()

	 :	first(T1()),	second(T2())

				{}

				QPair(const	T1&	t1,	const	T2&	t2)

	 :	first(t1),	second(t2)

				{}

				T1	first;

				T2	second;

};

template	<class	T1,	class	T2>

Q_INLINE_TEMPLATES	bool	operator==(const	QPair<T1,	T2>&	x,	const	QPair<T1,	T2>&	y)

{

				return	x.first	==	y.first	&&	x.second	==	y.second;

}

template	<class	T1,	class	T2>

Q_INLINE_TEMPLATES	bool	operator<(const	QPair<T1,	T2>&	x,	const	QPair<T1,	T2>&	y)

{

				//	x	<	y	is	TRUE	if:

				//	x.first	is	less	than	y.first,

				//	or	if	x.second	is	less	that	y.second	and	x.first	is	the	same	as	y.first

				return	x.first	<	y.first	||	(!(y.first	<	x.first)	&&	x.second	<	y.second);

}

template	<class	T1,	class	T2>

Q_INLINE_TEMPLATES	QPair<T1,	T2>	qMakePair(const	T1&	x,	const	T2&	y)

{

				return	QPair<T1,	T2>(x,	y);

}

#endif

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qpalette.h
This	is	the	verbatim	text	of	the	qpalette.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qpalette.h			3.0.5			edited	Mar	4	11:28	$

**

**	Definition	of	QColorGroup	and	QPalette	classes

**

**	Created	:	950323

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QPALETTE_H

#define	QPALETTE_H

#ifndef	QT_H

#include	"qwindowdefs.h"

#include	"qcolor.h"

#include	"qshared.h"

#include	"qbrush.h"	//	QColor->QBrush	conversion

#endif	//	QT_H

#ifndef	QT_NO_PALETTE

class	QColorGroupPrivate;

class	Q_EXPORT	QColorGroup

{

public:

				QColorGroup();

				QColorGroup(const	QColor	&foreground,	const	QColor	&button,

	 	 	const	QColor	&light,	const	QColor	&dark,	const	QColor	&mid,

	 	 	const	QColor	&text,	const	QColor	&base);

				QColorGroup(const	QBrush	&foreground,	const	QBrush	&button,

	 	 	const	QBrush	&light,	const	QBrush	&dark,	const	QBrush	&mid,

	 	 	const	QBrush	&text,	const	QBrush	&bright_text,

	 	 	const	QBrush	&base,	const	QBrush	&background);

				QColorGroup(const	QColorGroup	&);

			~QColorGroup();

				QColorGroup&	operator	=(const	QColorGroup&);

				//	Do	not	change	the	order,	the	serialization	format	depends	on	it

				enum	ColorRole	{	Foreground,	Button,	Light,	Midlight,	Dark,	Mid,

	 	 					Text,	BrightText,	ButtonText,	Base,	Background,	Shadow,

	 	 					Highlight,	HighlightedText,	Link,	LinkVisited,

	 	 					NColorRoles	};

				const	QColor	&color(ColorRole)	const;

				const	QBrush	&brush(ColorRole)	const;

				void	setColor(ColorRole,	const	QColor	&);

				void	setBrush(ColorRole,	const	QBrush	&);

				const	QColor	&foreground()	 const	 {	return	br[Foreground].color();	}

				const	QColor	&button()	 const	 {	return	br[Button].color();	}

				const	QColor	&light()	 const	 {	return	br[Light].color();	}

				const	QColor	&dark()	 const	 {	return	br[Dark].color();	}

				const	QColor	&mid()		 const	 {	return	br[Mid].color();	}

				const	QColor	&text()	 const	 {	return	br[Text].color();	}

				const	QColor	&base()	 const	 {	return	br[Base].color();	}

				const	QColor	&background()	 const	 {	return	br[Background].color();	}

				const	QColor	&midlight()	 const	 {	return	br[Midlight].color();	}

				const	QColor	&brightText()	 const	 {	return	br[BrightText].color();	}

				const	QColor	&buttonText()	 const	 {	return	br[ButtonText].color();	}

				const	QColor	&shadow()	 const	 {	return	br[Shadow].color();	}

				const	QColor	&highlight()	 const	 {	return	br[Highlight].color();	}

				const	QColor	&highlightedText()	const{return	br[HighlightedText].color();	}

				const	QColor	&link()								const			{	return	br[Link].color();	}

				const	QColor	&linkVisited()	const			{	return	br[LinkVisited].color();	}

				bool	 operator==(const	QColorGroup	&g)	const;

				bool	 operator!=(const	QColorGroup	&g)	const

	 {	return	!(operator==(g));	}

private:

				QBrush	*br;

				QColorGroupPrivate	*	d;

				friend	class	QPalette;

};

class	Q_EXPORT	QPalette

{

public:

				QPalette();

				QPalette(const	QColor	&button);

				QPalette(const	QColor	&button,	const	QColor	&background);

				QPalette(const	QColorGroup	&active,	const	QColorGroup	&disabled,

	 						const	QColorGroup	&inactive);

				QPalette(const	QPalette	&);

				~QPalette();

				QPalette	&operator=(const	QPalette	&);

				enum	ColorGroup	{	Disabled,	Active,	Inactive,	NColorGroups,	Normal=Active	};

				const	QColor	&color(ColorGroup,	QColorGroup::ColorRole)	const;

				const	QBrush	&brush(ColorGroup,	QColorGroup::ColorRole)	const;

				void	setColor(ColorGroup,	QColorGroup::ColorRole,	const	QColor	&);

				void	setBrush(ColorGroup,	QColorGroup::ColorRole,	const	QBrush	&);

				void	setColor(QColorGroup::ColorRole,	const	QColor	&);

				void	setBrush(QColorGroup::ColorRole,	const	QBrush	&);

				QPalette	 copy()	const;

				const	QColorGroup	&active()	const	{	return	data->active;	}

				const	QColorGroup	&disabled()	const	{	return	data->disabled;	}

				const	QColorGroup	&inactive()	const	{	return	data->inactive;	}

#ifndef	QT_NO_COMPAT

				const	QColorGroup	&normal()	const	{	return	active();	}

#endif

				void	 setActive(const	QColorGroup	&);

				void	 setDisabled(const	QColorGroup	&);

				void	 setInactive(const	QColorGroup	&);

#ifndef	QT_NO_COMPAT

				void	 setNormal(const	QColorGroup	&	cg)	{	setActive(cg);	}

#endif

				bool	 operator==(const	QPalette	&p)	const;

				bool	 operator!=(const	QPalette	&p)	const

														{	return	!(operator==(p));	}

				bool	 isCopyOf(const	QPalette	&);

				int		 serialNumber()	const	 {	return	data->ser_no;	}

				

				

				static	QColorGroup::ColorRole	foregroundRoleFromMode(Qt::BackgroundMode	mode);

				static	QColorGroup::ColorRole	backgroundRoleFromMode(Qt::BackgroundMode	mode);

private:

				void	 detach();

				const	QBrush	&directBrush(ColorGroup,	QColorGroup::ColorRole)	const;

				void	directSetBrush(ColorGroup,	QColorGroup::ColorRole,	const	QBrush&);

				struct	QPalData	:	public	QShared	{

	 QColorGroup	disabled;

	 QColorGroup	active;

	 int	 				ser_no;

	 QColorGroup	inactive;

				}	*data;

};

/***

		QColorGroup/QPalette	stream	functions

	***/

#ifndef	QT_NO_DATASTREAM

Q_EXPORT	QDataStream	&operator<<(QDataStream	&,	const	QColorGroup	&);

Q_EXPORT	QDataStream	&operator>>(QDataStream	&,	QColorGroup	&);

Q_EXPORT	QDataStream	&operator<<(QDataStream	&,	const	QPalette	&);

Q_EXPORT	QDataStream	&operator>>(QDataStream	&,	QPalette	&);

#endif	//	QT_NO_DATASTREAM

#endif	//	QT_NO_PALETTE

#endif	//	QPALETTE_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qpen.h
This	is	the	verbatim	text	of	the	qpen.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qpen.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QPen	class

**

**	Created	:	940112

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QPEN_H

#define	QPEN_H

#ifndef	QT_H

#include	"qcolor.h"

#include	"qshared.h"

#endif	//	QT_H

class	Q_EXPORT	QPen:	public	Qt

{

friend	class	QPainter;

public:

				QPen();

				QPen(PenStyle);

				QPen(const	QColor	&color,	uint	width=0,	PenStyle	style=SolidLine);

				QPen(const	QColor	&cl,	uint	w,	PenStyle	s,	PenCapStyle	c,	PenJoinStyle	j);

				QPen(const	QPen	&);

			~QPen();

				QPen	&operator=(const	QPen	&);

				PenStyle	 style()	const	 	 {	return	data->style;	}

				void	 setStyle(PenStyle);

				uint	 width()	const	 	 {	return	data->width;	}

				void	 setWidth(uint);

				const	QColor	&color()	const		 {	return	data->color;	}

				void	 setColor(const	QColor	&);

				PenCapStyle	capStyle()	const;

				void	 setCapStyle(PenCapStyle);

				PenJoinStyle	joinStyle()	const;

				void	 setJoinStyle(PenJoinStyle);

				bool	 operator==(const	QPen	&p)	const;

				bool	 operator!=(const	QPen	&p)	const

	 	 	 	 	 {	return	!(operator==(p));	}

private:

				QPen	 copy()	 const;

				void	 detach();

				void	 init(const	QColor	&,	uint,	uint);

				struct	QPenData	:	public	QShared	{	 	 //	pen	data

	 PenStyle		style;

	 uint	 		width;

	 QColor	 		color;

	 Q_UINT16		linest;

				}	*data;

};

/***

		QPen	stream	functions

	***/

#ifndef	QT_NO_DATASTREAM

Q_EXPORT	QDataStream	&operator<<(QDataStream	&,	const	QPen	&);

Q_EXPORT	QDataStream	&operator>>(QDataStream	&,	QPen	&);

#endif

#endif	//	QPEN_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qpicture.h
This	is	the	verbatim	text	of	the	qpicture.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qpicture.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QPicture	class

**

**	Created	:	940729

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QPICTURE_H

#define	QPICTURE_H

#ifndef	QT_H

#include	"qpaintdevice.h"

#include	"qbuffer.h"

#endif	//	QT_H

#ifndef	QT_NO_PICTURE

class	Q_EXPORT	QPicture	:	public	QPaintDevice	 	 //	picture	class

{

public:

				QPicture(int	formatVersion	=	-1);

				QPicture(const	QPicture	&);

			~QPicture();

				bool	 isNull()	const;

				uint	 size()	const;

				const	char*	data()	const;

				virtual	void	setData(const	char*	data,	uint	size);

				bool	 play(QPainter	*);

				bool	 load(QIODevice	*dev,	const	char	*format	=	0);

				bool	 load(const	QString	&fileName,	const	char	*format	=	0);

				bool	 save(QIODevice	*dev,	const	char	*format	=	0);

				bool	 save(const	QString	&fileName,	const	char	*format	=	0);

				QRect	boundingRect()	const;

				QPicture&	operator=	(const	QPicture&);

				friend	Q_EXPORT	QDataStream	&operator<<(QDataStream	&,	const	QPicture	&);

				friend	Q_EXPORT	QDataStream	&operator>>(QDataStream	&,	QPicture	&);

protected:

				bool	 cmd(int,	QPainter	*,	QPDevCmdParam	*);

				int		 metric(int)	const;

				void	 detach();

				QPicture	 copy()	const;

private:

				bool	 exec(QPainter	*,	QDataStream	&,	int);

				struct	QPicturePrivate	:	public	QShared	{

	 bool	 cmd(int,	QPainter	*,	QPDevCmdParam	*);

	 bool	 checkFormat();

	 void	 resetFormat();

	 QBuffer	pictb;

	 int	 trecs;

	 bool	 formatOk;

	 int	 formatMajor;

	 int	 formatMinor;

	 QRect	 brect;

				}	*d;

};

inline	bool	QPicture::isNull()	const

{

				return	d->pictb.buffer().isNull();

}

inline	uint	QPicture::size()	const

{

				return	d->pictb.buffer().size();

}

inline	const	char*	QPicture::data()	const

{

				return	d->pictb.buffer().data();

}

/***

		QPicture	stream	functions

	***/

Q_EXPORT	QDataStream	&operator<<(QDataStream	&,	const	QPicture	&);

Q_EXPORT	QDataStream	&operator>>(QDataStream	&,	QPicture	&);

#endif	//	QT_NO_PICTURE

#endif	//	QPICTURE_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qpixmapcache.h
This	is	the	verbatim	text	of	the	qpixmapcache.h	include	file.	It	is	provided	only
for	illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qpixmapcache.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QPixmapCache	class

**

**	Created	:	950501

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QPIXMAPCACHE_H

#define	QPIXMAPCACHE_H

#ifndef	QT_H

#include	"qpixmap.h"

#endif	//	QT_H

class	Q_EXPORT	QPixmapCache	 	 	 	 //	global	pixmap	cache

{

public:

				static		int		 cacheLimit();

				static		void	 setCacheLimit(int);

				static		QPixmap				*find(const	QString	&key);

				static		bool	 find(const	QString	&key,	QPixmap&);

				static		bool	 insert(const	QString	&key,	QPixmap	*);

				static		bool	 insert(const	QString	&key,	const	QPixmap&);

				static		void	 clear();

};

#endif	//	QPIXMAPCACHE_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qplatinumstyle.h
This	is	the	verbatim	text	of	the	qplatinumstyle.h	include	file.	It	is	provided	only
for	illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qplatinumstyle.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	Platinum-like	style	class

**

**	Created	:	981231

**

**	Copyright	(C)	1998-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QPLATINUMSTYLE_H

#define	QPLATINUMSTYLE_H

#ifndef	QT_H

#include	"qwindowsstyle.h"

#endif	//	QT_H

#ifndef	QT_NO_STYLE_PLATINUM

class	QPalette;

#if	defined(QT_PLUGIN)

#define	Q_EXPORT_STYLE_PLATINUM

#else

#define	Q_EXPORT_STYLE_PLATINUM	Q_EXPORT

#endif

class	Q_EXPORT_STYLE_PLATINUM	QPlatinumStyle	:	public	QWindowsStyle

{

				Q_OBJECT

public:

				QPlatinumStyle();

				virtual	~QPlatinumStyle();

				//	new	Style	Stuff

				void	drawPrimitive(PrimitiveElement	pe,

	 	 	 QPainter	*p,

	 	 	 const	QRect	&r,

	 	 	 const	QColorGroup	&cg,

	 	 	 SFlags	flags	=	Style_Default,

	 	 	 const	QStyleOption&	=	QStyleOption::Default)	const;

				void	drawControl(ControlElement	element,

	 	 						QPainter	*p,

	 	 						const	QWidget	*widget,

	 	 						const	QRect	&r,

	 	 						const	QColorGroup	&cg,

	 	 						SFlags	how	=	Style_Default,

	 	 						const	QStyleOption&	=	QStyleOption::Default)	const;

				void	drawComplexControl(ComplexControl	control,

	 	 	 					QPainter	*p,

	 	 	 					const	QWidget	*widget,

	 	 	 					const	QRect	&r,

	 	 	 					const	QColorGroup	&cg,

	 	 	 					SFlags	how	=	Style_Default,

	 	 	 					SCFlags	sub	=	SC_All,

	 	 	 					SCFlags	subActive	=	SC_None,

	 	 	 					const	QStyleOption&	=	QStyleOption::Default)	const;

				QRect	querySubControlMetrics(ComplexControl	control,

	 	 	 	 		const	QWidget	*widget,

	 	 	 	 		SubControl	sc,

	 	 	 	 		const	QStyleOption&	=	QStyleOption::Default)	const;

				int	pixelMetric(PixelMetric	metric,	const	QWidget	*widget	=	0)	const;

				QRect	subRect(SubRect	r,	const	QWidget	*widget)	const;

protected:

					QColor	mixedColor(const	QColor	&,	const	QColor	&)	const;

				void	drawRiffles(QPainter*	p,		int	x,	int	y,	int	w,	int	h,

	 	 						const	QColorGroup	&g,	bool	horizontal)	const;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QPlatinumStyle(const	QPlatinumStyle	&);

				QPlatinumStyle&	operator=(const	QPlatinumStyle	&);

#endif

};

#endif	//	QT_NO_STYLE_PLATINUM

#endif	//	QPLATINUMSTYLE_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qpngio.h
This	is	the	verbatim	text	of	the	qpngio.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qpngio.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	PNG	QImage	IOHandler

**

**	Created	:	970521

**

**	Copyright	(C)	1992-1998	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QPNGIO_H

#define	QPNGIO_H

#ifndef	QT_H

#include	"qimage.h"

#endif	//	QT_H

#ifndef	QT_NO_IMAGEIO_PNG

void	qInitPngIO();

class	QIODevice;

#ifndef	Q_PNGEXPORT

#if	!defined(QT_PLUGIN)

#define	Q_PNGEXPORT	Q_EXPORT

#else

#define	Q_PNGEXPORT

#endif

#endif

class	Q_PNGEXPORT	QPNGImageWriter	{

public:

				QPNGImageWriter(QIODevice*);

				~QPNGImageWriter();

				enum	DisposalMethod	{	Unspecified,	NoDisposal,	RestoreBackground,	RestoreImage	};

				void	setDisposalMethod(DisposalMethod);

				void	setLooping(int	loops=0);	//	0	==	infinity

				void	setFrameDelay(int	msecs);

				void	setGamma(float);

				bool	writeImage(const	QImage&	img,	int	x,	int	y);

				bool	writeImage(const	QImage&	img,	int	quality,	int	x,	int	y);

				bool	writeImage(const	QImage&	img)

	 {	return	writeImage(img,	0,	0);	}

				bool	writeImage(const	QImage&	img,	int	quality)

	 {	return	writeImage(img,	quality,	0,	0);	}

				QIODevice*	device()	{	return	dev;	}

private:

				QIODevice*	dev;

				int	frames_written;

				DisposalMethod	disposal;

				int	looping;

				int	ms_delay;

				float	gamma;

};

class	Q_PNGEXPORT	QPNGImagePacker	:	public	QPNGImageWriter	{

public:

				QPNGImagePacker(QIODevice*,	int	depth,	int	convflags);

				void	setPixelAlignment(int	x);

				bool	packImage(const	QImage&	img);

private:

				QImage	previous;

				int	depth;

				int	convflags;

				int	alignx;

};

#endif	//	QT_NO_IMAGEIO_PNG

#endif	//	QPNGIO_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qpoint.h
qpoint.hTrolltech

/**

**	$Id:		qt/qpoint.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QPoint	class

**

**	Created	:	931028

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QPOINT_H

#define	QPOINT_H

#ifndef	QT_H

#include	"qwindowdefs.h"

#endif	//	QT_H

class	Q_EXPORT	QPoint

{

public:

				QPoint();

				QPoint(int	xpos,	int	ypos);

				bool			isNull()	 const;

				int				x()	 	 const;

				int				y()	 	 const;

				void			setX(int	x);

				void			setY(int	y);

				int	manhattanLength()	const;

				QCOORD	&rx();

				QCOORD	&ry();

				QPoint	&operator+=(const	QPoint	&p);

				QPoint	&operator-=(const	QPoint	&p);

				QPoint	&operator*=(int	c);

				QPoint	&operator*=(double	c);

				QPoint	&operator/=(int	c);

				QPoint	&operator/=(double	c);

				friend	inline	bool	 	operator==(const	QPoint	&,	const	QPoint	&);

				friend	inline	bool	 	operator!=(const	QPoint	&,	const	QPoint	&);

				friend	inline	const	QPoint	operator+(const	QPoint	&,	const	QPoint	&);

				friend	inline	const	QPoint	operator-(const	QPoint	&,	const	QPoint	&);

				friend	inline	const	QPoint	operator*(const	QPoint	&,	int);

				friend	inline	const	QPoint	operator*(int,	const	QPoint	&);

				friend	inline	const	QPoint	operator*(const	QPoint	&,	double);

				friend	inline	const	QPoint	operator*(double,	const	QPoint	&);

				friend	inline	const	QPoint	operator-(const	QPoint	&);

				friend	inline	const	QPoint	operator/(const	QPoint	&,	int);

				friend	inline	const	QPoint	operator/(const	QPoint	&,	double);

private:

				static	void	warningDivByZero();

#if	defined(Q_OS_MAC)

				QCOORD	yp;

				QCOORD	xp;

#else

				QCOORD	xp;

				QCOORD	yp;

#endif

};

/***

		QPoint	stream	functions

	***/

#ifndef	QT_NO_DATASTREAM

Q_EXPORT	QDataStream	&operator<<(QDataStream	&,	const	QPoint	&);

Q_EXPORT	QDataStream	&operator>>(QDataStream	&,	QPoint	&);

#endif

/***

		QPoint	inline	functions

	***/

inline	QPoint::QPoint()

{	xp=0;	yp=0;	}

inline	QPoint::QPoint(int	xpos,	int	ypos)

{	xp=(QCOORD)xpos;	yp=(QCOORD)ypos;	}

inline	bool	QPoint::isNull()	const

{	return	xp	==	0	&&	yp	==	0;	}

inline	int	QPoint::x()	const

{	return	xp;	}

inline	int	QPoint::y()	const

{	return	yp;	}

inline	void	QPoint::setX(int	x)

{	xp	=	(QCOORD)x;	}

inline	void	QPoint::setY(int	y)

{	yp	=	(QCOORD)y;	}

inline	QCOORD	&QPoint::rx()

{	return	xp;	}

inline	QCOORD	&QPoint::ry()

{	return	yp;	}

inline	QPoint	&QPoint::operator+=(const	QPoint	&p)

{	xp+=p.xp;	yp+=p.yp;	return	*this;	}

inline	QPoint	&QPoint::operator-=(const	QPoint	&p)

{	xp-=p.xp;	yp-=p.yp;	return	*this;	}

inline	QPoint	&QPoint::operator*=(int	c)

{	xp*=(QCOORD)c;	yp*=(QCOORD)c;	return	*this;	}

inline	QPoint	&QPoint::operator*=(double	c)

{	xp=(QCOORD)(xp*c);	yp=(QCOORD)(yp*c);	return	*this;	}

inline	bool	operator==(const	QPoint	&p1,	const	QPoint	&p2)

{	return	p1.xp	==	p2.xp	&&	p1.yp	==	p2.yp;	}

inline	bool	operator!=(const	QPoint	&p1,	const	QPoint	&p2)

{	return	p1.xp	!=	p2.xp	||	p1.yp	!=	p2.yp;	}

inline	const	QPoint	operator+(const	QPoint	&p1,	const	QPoint	&p2)

{	return	QPoint(p1.xp+p2.xp,	p1.yp+p2.yp);	}

inline	const	QPoint	operator-(const	QPoint	&p1,	const	QPoint	&p2)

{	return	QPoint(p1.xp-p2.xp,	p1.yp-p2.yp);	}

inline	const	QPoint	operator*(const	QPoint	&p,	int	c)

{	return	QPoint(p.xp*c,	p.yp*c);	}

inline	const	QPoint	operator*(int	c,	const	QPoint	&p)

{	return	QPoint(p.xp*c,	p.yp*c);	}

inline	const	QPoint	operator*(const	QPoint	&p,	double	c)

{	return	QPoint((QCOORD)(p.xp*c),	(QCOORD)(p.yp*c));	}

inline	const	QPoint	operator*(double	c,	const	QPoint	&p)

{	return	QPoint((QCOORD)(p.xp*c),	(QCOORD)(p.yp*c));	}

inline	const	QPoint	operator-(const	QPoint	&p)

{	return	QPoint(-p.xp,	-p.yp);	}

inline	QPoint	&QPoint::operator/=(int	c)

{

#if	defined(QT_CHECK_MATH)

				if	(c	==	0)

	 warningDivByZero();

#endif

				xp/=(QCOORD)c;

				yp/=(QCOORD)c;

				return	*this;

}

inline	QPoint	&QPoint::operator/=(double	c)

{

#if	defined(QT_CHECK_MATH)

				if	(c	==	0.0)

	 warningDivByZero();

#endif

				xp=(QCOORD)(xp/c);

				yp=(QCOORD)(yp/c);

				return	*this;

}

inline	const	QPoint	operator/(const	QPoint	&p,	int	c)

{

#if	defined(QT_CHECK_MATH)

				if	(c	==	0)

	 QPoint::warningDivByZero();

#endif

				return	QPoint(p.xp/c,	p.yp/c);

}

inline	const	QPoint	operator/(const	QPoint	&p,	double	c)

{

#if	defined(QT_CHECK_MATH)

				if	(c	==	0.0)

	 QPoint::warningDivByZero();

#endif

				return	QPoint((QCOORD)(p.xp/c),	(QCOORD)(p.yp/c));

}

#endif	//	QPOINT_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qpointarray.h
This	is	the	verbatim	text	of	the	qpointarray.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qpointarray.h			3.0.5			edited	Jun	5	21:12	$

**

**	Definition	of	QPointArray	class

**

**	Created	:	940213

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QPOINTARRAY_H

#define	QPOINTARRAY_H

#ifndef	QT_H

#include	"qmemarray.h"

#include	"qpoint.h"

#endif	//	QT_H

#if	defined(Q_TEMPLATEDLL)

Q_TEMPLATE_EXTERN	template	class	Q_EXPORT	QMemArray<QPoint>;

#endif

class	Q_EXPORT	QPointArray	:	public	QMemArray<QPoint>

{

public:

				QPointArray()	{}

				~QPointArray()	{}

				QPointArray(int	size)	:	QMemArray<QPoint>(size)	{}

				QPointArray(const	QPointArray	&a)	:	QMemArray<QPoint>(a)	{}

				QPointArray(const	QRect	&r,	bool	closed=FALSE);

				QPointArray(int	nPoints,	const	QCOORD	*points);

				QPointArray		&operator=(const	QPointArray	&a)

	 {	return	(QPointArray&)assign(a);	}

				QPointArray	copy()	const

	 {	QPointArray	tmp;	return	*((QPointArray*)&tmp.duplicate(*this));	}

				void				translate(int	dx,	int	dy);

				QRect			boundingRect()	const;

				void				point(uint	i,	int	*x,	int	*y)	const;

				QPoint		point(uint	i)	const;

				void				setPoint(uint	i,	int	x,	int	y);

				void				setPoint(uint	i,	const	QPoint	&p);

				bool				setPoints(int	nPoints,	const	QCOORD	*points);

				bool				setPoints(int	nPoints,	int	firstx,	int	firsty,	...);

				bool				putPoints(int	index,	int	nPoints,	const	QCOORD	*points);

				bool				putPoints(int	index,	int	nPoints,	int	firstx,	int	firsty,	...);

				bool				putPoints(int	index,	int	nPoints,

	 	 							const	QPointArray	&	from,	int	fromIndex=0);

				void				makeArc(int	x,	int	y,	int	w,	int	h,	int	a1,	int	a2);

				void				makeEllipse(int	x,	int	y,	int	w,	int	h);

				void				makeArc(int	x,	int	y,	int	w,	int	h,	int	a1,	int	a2,

	 	 					const	QWMatrix&);

				QPointArray	cubicBezier()	const;

				void*		shortPoints(int	index	=	0,	int	nPoints	=	-1)	const;

				static	void	cleanBuffers();

protected:

				static	uint	splen;

				static	void*	sp;

};

/***

		QPointArray	stream	functions

	***/

#ifndef	QT_NO_DATASTREAM

Q_EXPORT	QDataStream	&operator<<(QDataStream	&,	const	QPointArray	&);

Q_EXPORT	QDataStream	&operator>>(QDataStream	&,	QPointArray	&);

#endif

/***

		Misc.	QPointArray	functions

	***/

inline	void	QPointArray::setPoint(uint	i,	const	QPoint	&p)

{

				setPoint(i,	p.x(),	p.y());

}

#endif	//	QPOINTARRAY_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qpopupmenu.h
This	is	the	verbatim	text	of	the	qpopupmenu.h	include	file.	It	is	provided	only
for	illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qpopupmenu.h			3.0.5			edited	May	27	04:06	$

**

**	Definition	of	QPopupMenu	class

**

**	Created	:	941128

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QPOPUPMENU_H

#define	QPOPUPMENU_H

#ifndef	QT_H

#include	"qframe.h"

#include	"qmenudata.h"

#endif	//	QT_H

#ifndef	QT_NO_POPUPMENU

class	QPopupMenuPrivate;

class	Q_EXPORT	QPopupMenu	:	public	QFrame,	public	QMenuData

{

				Q_OBJECT

				Q_PROPERTY(bool	checkable	READ	isCheckable	WRITE	setCheckable)

public:

				QPopupMenu(QWidget*	parent=0,	const	char*	name=0);

				~QPopupMenu();

				void	 popup(const	QPoint	&	pos,	int	indexAtPoint	=	-1);	//	open

				void	 updateItem(int	id);

				virtual	void	 setCheckable(bool);

				bool	 isCheckable()	const;

				void	 setFont(const	QFont	&);

				void	 show();

				void	 hide();

				int		 exec();

				int		 exec(const	QPoint	&	pos,	int	indexAtPoint	=	0);	//	modal

				virtual	void	 setActiveItem(int);

				QSize	 sizeHint()	const;

				int		 idAt(int	index)	const	{	return	QMenuData::idAt(index);	}

				int		 idAt(const	QPoint&	pos)	const;

				bool		 customWhatsThis()	const;

				int		 insertTearOffHandle(int	id=-1,	int	index=-1);

				void	 activateItemAt(int	index);

				QRect	 itemGeometry(int	index);

signals:

				void	 activated(int	itemId);

				void	 highlighted(int	itemId);

				void	 activatedRedirect(int	itemId);	//	to	parent	menu

				void	 highlightedRedirect(int	itemId);

				void	 aboutToShow();

				void	 aboutToHide();

protected:

				int		 itemHeight(int)	const;

				int		 itemHeight(QMenuItem*	mi)	const;

				void		 drawItem(QPainter*	p,	int	tab,	QMenuItem*	mi,

	 	 			bool	act,	int	x,	int	y,	int	w,	int	h);

				void		 drawContents(QPainter	*);

				void		 closeEvent(QCloseEvent	*e);

				void	 paintEvent(QPaintEvent	*);

				void	 mousePressEvent(QMouseEvent	*);

				void	 mouseReleaseEvent(QMouseEvent	*);

				void	 mouseMoveEvent(QMouseEvent	*);

				void	 keyPressEvent(QKeyEvent	*);

				void	 focusInEvent(QFocusEvent	*);

				void	 focusOutEvent(QFocusEvent	*);

				void	 timerEvent(QTimerEvent	*);

				void	 leaveEvent(QEvent	*);

				void		 styleChange(QStyle&);

				int		 columns()	const;

				bool	 focusNextPrevChild(bool	next);

				int		 itemAtPos(const	QPoint	&,	bool	ignoreSeparator	=	TRUE)	const;

private	slots:

				void	 subActivated(int	itemId);

				void	 subHighlighted(int	itemId);

#ifndef	QT_NO_ACCEL

				void	 accelActivated(int	itemId);

				void	 accelDestroyed();

#endif

				void	 popupDestroyed(QObject*);

				void	 modalActivation(int);

				void	 subMenuTimer();

				void	 subScrollTimer();

				void	 allowAnimation();

				void					toggleTearOff();

				void								performDelayedChanges();

private:

				void								updateScrollerState();

				void	 menuContentsChanged();

				void	 menuStateChanged();

				void								performDelayedContentsChanged();

				void								performDelayedStateChanged();

				void	 menuInsPopup(QPopupMenu	*);

				void	 menuDelPopup(QPopupMenu	*);

				void	 frameChanged();

				void	 actSig(int,	bool	=	FALSE);

				void	 hilitSig(int);

				virtual	void	setFirstItemActive();

				void	 hideAllPopups();

				void	 hidePopups();

				bool	 tryMenuBar(QMouseEvent	*);

				void	 byeMenuBar();

				void	 updateSize();

				void	 updateRow(int	row);

#ifndef	QT_NO_ACCEL

				void	 updateAccel(QWidget	*);

				void	 enableAccel(bool);

#endif

				QPopupMenuPrivate		*d;

#ifndef	QT_NO_ACCEL

				QAccel					*autoaccel;

#endif

#if	defined(Q_WS_MAC)	&&	!defined(QMAC_QMENUBAR_NO_NATIVE)

				uint	mac_dirty_popup	:	1;

#endif

				int	popupActive;

				int	tab;

				uint	accelDisabled	:	1;

				uint	checkable	:	1;

				uint	connectModalRecursionSafety	:	1;

				uint	tornOff	:	1;

				uint	pendingDelayedContentsChanges	:	1;

				uint	pendingDelayedStateChanges	:	1;

				int	maxPMWidth;

				int	ncols;

				bool	 snapToMouse;

				bool	 tryMouseEvent(QPopupMenu	*,	QMouseEvent	*);

				friend	class	QMenuData;

				friend	class	QMenuBar;

				void	connectModal(QPopupMenu*	receiver,	bool	doConnect);

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QPopupMenu(const	QPopupMenu	&);

				QPopupMenu	&operator=(const	QPopupMenu	&);

#endif

};

#endif	//	QT_NO_POPUPMENU

#endif	//	QPOPUPMENU_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qprinter.h
This	is	the	verbatim	text	of	the	qprinter.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qprinter.h			3.0.5			edited	May	3	17:07	$

**

**	Definition	of	QPrinter	class

**

**	Created	:	940927

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QPRINTER_H

#define	QPRINTER_H

#ifndef	QT_H

#include	"qpaintdevice.h"

#include	"qstring.h"

#endif	//	QT_H

#ifndef	QT_NO_PRINTER

#ifdef	Q_WS_WIN

#include	"qt_windows.h"

#endif

#if	defined(B0)

#undef	B0	//	Terminal	hang-up.		We	assume	that	you	do	not	want	that.

#endif

class	QPrinterPrivate;

class	Q_EXPORT	QPrinter	:	public	QPaintDevice

{

public:

				enum	PrinterMode	{	ScreenResolution,	PrinterResolution,	HighResolution,	Compatible	};

				QPrinter(PrinterMode	mode	=	ScreenResolution);

			~QPrinter();

				enum	Orientation	{	Portrait,	Landscape	};

				enum	PageSize				{	A4,	B5,	Letter,	Legal,	Executive,

	 	 							A0,	A1,	A2,	A3,	A5,	A6,	A7,	A8,	A9,	B0,	B1,

	 	 							B10,	B2,	B3,	B4,	B6,	B7,	B8,	B9,	C5E,	Comm10E,

	 	 							DLE,	Folio,	Ledger,	Tabloid,	Custom,	NPageSize	=	Custom	};

				enum	PageOrder			{	FirstPageFirst,	LastPageFirst	};

				enum	ColorMode			{	GrayScale,	Color	};

				enum	PaperSource	{	OnlyOne,	Lower,	Middle,	Manual,	Envelope,

																							EnvelopeManual,	Auto,	Tractor,	SmallFormat,

																							LargeFormat,	LargeCapacity,	Cassette,	FormSource	};

				QString	printerName()	const;

				virtual	void	setPrinterName(const	QString	&);

				bool	outputToFile()	const;

				virtual	void	setOutputToFile(bool);

				QString	outputFileName()const;

				virtual	void	setOutputFileName(const	QString	&);

				QString	printProgram()	const;

				virtual	void	setPrintProgram(const	QString	&);

				QString	printerSelectionOption()	const;

				virtual	void	setPrinterSelectionOption(const	QString	&);

				QString	docName()	const;

				virtual	void	setDocName(const	QString	&);

				QString	creator()	const;

				virtual	void	setCreator(const	QString	&);

				Orientation	orientation()			const;

				virtual	void	setOrientation(Orientation);

				PageSize				pageSize()						const;

				virtual	void	setPageSize(PageSize);

#ifdef	Q_WS_WIN

				short	winPageSize()	const;

#endif

				virtual	void	setPageOrder(PageOrder);

				PageOrder			pageOrder()	const;

				void	setResolution(int);

				int	resolution()	const;

				virtual	void	setColorMode(ColorMode);

				ColorMode			colorMode()	const;

				virtual	void								setFullPage(bool);

				bool																fullPage()	const;

				QSize							margins()							const;

				int									fromPage()						const;

				int									toPage()								const;

				virtual	void	setFromTo(int	fromPage,	int	toPage);

				int									minPage()							const;

				int									maxPage()							const;

				virtual	void	setMinMax(int	minPage,	int	maxPage);

				int									numCopies()					const;

				virtual	void	setNumCopies(int);

				bool	 collateCopiesEnabled()	const;				

				void	 setCollateCopiesEnabled(bool);

				bool	 collateCopies()	const;

				void	 setCollateCopies(bool);

				bool								newPage();

				bool								abort();

				bool								aborted()							const;

				bool								setup(QWidget	*parent	=	0);

				PaperSource	paperSource()			const;

				virtual	void	setPaperSource(PaperSource);

protected:

				bool								cmd(int,	QPainter	*,	QPDevCmdParam	*);

				int									metric(int)	const;

#if	defined(Q_WS_WIN)

				virtual	void								setActive();

				virtual	void								setIdle();

#endif

private:

#if	defined(Q_WS_X11)	||	defined(Q_WS_QWS)

				QPaintDevice	*pdrv;

				int									pid;

#endif

#if	defined(Q_WS_MAC)

				PMPageFormat	pformat;

				PMPrintSettings	psettings;

				PMPrintSession	psession;

				bool	prepare(PMPrintSettings	*);

				bool	prepare(PMPageFormat	*);

#endif

#if	defined(Q_WS_WIN)

				void								readPdlg(void*);

				void								readPdlgA(void*);

				void	 writeDevmode(HANDLE);

				void	 writeDevmodeA(HANDLE);

				void	 reinit();

				bool								viewOffsetDone;

				QPainter*			painter;

				HANDLE	hdevmode;

				HANDLE	hdevnames;

#endif

				int									state;

				QString					printer_name;

				QString					option_string;

				QString					output_filename;

				bool								output_file;

				QString					print_prog;

				QString					doc_name;

				QString					creator_name;

				PageSize				page_size;

				PaperSource	paper_source;

				PageOrder			page_order;

				ColorMode			color_mode;

				Orientation	orient;

				uint	 to_edge	:	1;

				uint	 appcolcopies	:	1;

				uint	 usercolcopies	:	1;

				uint	 res_set	:	1;

				short							from_pg,	to_pg;

				short							min_pg,		max_pg;

				short							ncopies;

				int									res;

				QPrinterPrivate	*d;

private:								//	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QPrinter(const	QPrinter	&);

				QPrinter	&operator=(const	QPrinter	&);

#endif

};

inline	QString	QPrinter::printerName()	const

{	return	printer_name;	}

inline	bool	QPrinter::outputToFile()	const

{	return	output_file;	}

inline	QString	QPrinter::outputFileName()	const

{	return	output_filename;	}

inline	QString	QPrinter::printProgram()	const

{	return	print_prog;	}

inline	QString	QPrinter::docName()	const

{	return	doc_name;	}

inline	QString	QPrinter::creator()	const

{	return	creator_name;	}

inline	QPrinter::PageSize	QPrinter::pageSize()	const

{	return	page_size;	}

inline	QPrinter::Orientation	QPrinter::orientation()	const

{	return	orient;	}

inline	int	QPrinter::fromPage()	const

{	return	from_pg;	}

inline	int	QPrinter::toPage()	const

{	return	to_pg;	}

inline	int	QPrinter::minPage()	const

{	return	min_pg;	}

inline	int	QPrinter::maxPage()	const

{	return	max_pg;	}

inline	int	QPrinter::numCopies()	const

{	return	ncopies;	}

inline	bool	QPrinter::collateCopiesEnabled()	const

{	return	appcolcopies;	}

inline	void	QPrinter::setCollateCopiesEnabled(bool	v)

{	appcolcopies	=	v;	}

inline	bool	QPrinter::collateCopies()	const

{	return	usercolcopies;	}

#endif	//	QT_NO_PRINTER

#endif	//	QPRINTER_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qprocess.h
This	is	the	verbatim	text	of	the	qprocess.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qprocess.h			3.0.5			edited	Oct	12	2001	$

**

**	Implementation	of	QProcess	class

**

**	Created	:	20000905

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QPROCESS_H

#define	QPROCESS_H

#ifndef	QT_H

#include	"qobject.h"

#include	"qstringlist.h"

#include	"qdir.h"

#endif	//	QT_H

#ifndef	QT_NO_PROCESS

class	QProcessPrivate;

class	Q_EXPORT	QProcess	:	public	QObject

{

				Q_OBJECT

public:

				QProcess(QObject	*parent=0,	const	char	*name=0);

				QProcess(const	QString&	arg0,	QObject	*parent=0,	const	char	*name=0);

				QProcess(const	QStringList&	args,	QObject	*parent=0,	const	char	*name=0);

				~QProcess();

				//	set	and	get	the	arguments	and	working	directory

				QStringList	arguments()	const;

				void	clearArguments();

				virtual	void	setArguments(const	QStringList&	args);

				virtual	void	addArgument(const	QString&	arg);

#ifndef	QT_NO_DIR

				QDir	workingDirectory()	const;

				virtual	void	setWorkingDirectory(const	QDir&	dir);

#endif

				//	set	and	get	the	comms	wanted

				enum	Communication	{	Stdin=0x01,	Stdout=0x02,	Stderr=0x04,	DupStderr=0x08	};

				void	setCommunication(int	c);

				int	communication()	const;

				//	start	the	execution

				virtual	bool	start(QStringList	*env=0);

				virtual	bool	launch(const	QString&	buf,	QStringList	*env=0);

				virtual	bool	launch(const	QByteArray&	buf,	QStringList	*env=0);

				//	inquire	the	status

				bool	isRunning()	const;

				bool	normalExit()	const;

				int	exitStatus()	const;

				//	reading

				virtual	QByteArray	readStdout();

				virtual	QByteArray	readStderr();

				bool	canReadLineStdout()	const;

				bool	canReadLineStderr()	const;

				virtual	QString	readLineStdout();

				virtual	QString	readLineStderr();

				//	get	platform	dependent	process	information

#if	defined(Q_OS_WIN32)

				typedef	void*	PID;

#else

				typedef	Q_LONG	PID;

#endif

				PID	processIdentifier();

				void	flushStdin();

signals:

				void	readyReadStdout();

				void	readyReadStderr();

				void	processExited();

				void	wroteToStdin();

				void	launchFinished();

public	slots:

				//	end	the	execution

				void	tryTerminate()	const;

				void	kill()	const;

				//	input

				virtual	void	writeToStdin(const	QByteArray&	buf);

				virtual	void	writeToStdin(const	QString&	buf);

				virtual	void	closeStdin();

protected:	//	###	or	private?

				void	connectNotify(const	char	*	signal);

				void	disconnectNotify(const	char	*	signal);

private:

				void	setIoRedirection(bool	value);

				void	setNotifyOnExit(bool	value);

				void	setWroteStdinConnected(bool	value);

				void	init();

				void	reset();

#if	defined(Q_OS_WIN32)

				uint	readStddev(HANDLE	dev,	char	*buf,	uint	bytes);

#endif

				bool	scanNewline(bool	stdOut,	QByteArray	*store);

				QByteArray*	bufStdout();

				QByteArray*	bufStderr();

				void	consumeBufStdout(int	consume);

				void	consumeBufStderr(int	consume);

private	slots:

				void	socketRead(int	fd);

				void	socketWrite(int	fd);

				void	timeout();

				void	closeStdinLaunch();

private:

				QProcessPrivate	*d;

#ifndef	QT_NO_DIR

				QDir								workingDir;

#endif

				QStringList	_arguments;

				int		exitStat;	//	exit	status

				bool	exitNormal;	//	normal	exit?

				bool	ioRedirection;	//	automatically	set	be	(dis)connectNotify

				bool	notifyOnExit;	//	automatically	set	be	(dis)connectNotify

				bool	wroteToStdinConnected;	//	automatically	set	be	(dis)connectNotify

				bool	readStdoutCalled;

				bool	readStderrCalled;

				int	comms;

				friend	class	QProcessPrivate;

#if	defined(Q_OS_UNIX)

				friend	class	QProcessManager;

				friend	class	QProc;

#endif

};

#endif	//	QT_NO_PROCESS

#endif	//	QPROCESS_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qprogressbar.h
This	is	the	verbatim	text	of	the	qprogressbar.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qprogressbar.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QProgressBar	class

**

**	Created	:	970520

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QPROGRESSBAR_H

#define	QPROGRESSBAR_H

#ifndef	QT_H

#include	"qframe.h"

#endif	//	QT_H

#ifndef	QT_NO_PROGRESSBAR

class	QProgressBarPrivate;

class	Q_EXPORT	QProgressBar	:	public	QFrame

{

				Q_OBJECT

				Q_PROPERTY(int	totalSteps	READ	totalSteps	WRITE	setTotalSteps)

				Q_PROPERTY(int	progress	READ	progress	WRITE	setProgress)

				Q_PROPERTY(QString	progressString	READ	progressString)

				Q_PROPERTY(bool	centerIndicator	READ	centerIndicator	WRITE	setCenterIndicator)

				Q_PROPERTY(bool	indicatorFollowsStyle	READ	indicatorFollowsStyle	WRITE	setIndicatorFollowsStyle)

				Q_PROPERTY(bool	percentageVisible	READ	percentageVisible	WRITE	setPercentageVisible)

public:

				QProgressBar(QWidget*	parent=0,	const	char*	name=0,	WFlags	f=0);

				QProgressBar(int	totalSteps,	QWidget*	parent=0,	const	char*	name=0,	WFlags	f=0);

				int		 totalSteps()	const;

				int		 progress()			const;

				const	QString	&progressString()	const;

				QSize	 sizeHint()	const;

				QSize	 minimumSizeHint()	const;

				void	 setCenterIndicator(bool	on);

				bool	 centerIndicator()	const;

				void								setIndicatorFollowsStyle(bool);

				bool	 indicatorFollowsStyle()	const;

				bool	 percentageVisible()	const;

				void	 setPercentageVisible(bool);

				void	 show();

public	slots:

				void	 reset();

				virtual	void	setTotalSteps(int	totalSteps);

				virtual	void	setProgress(int	progress);

protected:

				void	 drawContents(QPainter	*);

				virtual	bool	setIndicator(QString	&	progress_str,	int	progress,

	 	 	 							int	totalSteps);

				void	styleChange(QStyle&);

private:

				int		 total_steps;

				int		 progress_val;

				int		 percentage;

				QString	 progress_str;

				bool								center_indicator				:	1;

				bool								auto_indicator	 				:	1;

				bool	 percentage_visible		:	1;

				QProgressBarPrivate	*	d;

				void									initFrame();

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QProgressBar(const	QProgressBar	&);

				QProgressBar	&operator=(const	QProgressBar	&);

#endif

};

inline	int	QProgressBar::totalSteps()	const

{

				return	total_steps;

}

inline	int	QProgressBar::progress()	const

{

				return	progress_val;

}

inline	const	QString	&QProgressBar::progressString()	const

{

				return	progress_str;

}

inline	bool	QProgressBar::centerIndicator()	const

{

				return	center_indicator;

}

inline	bool	QProgressBar::indicatorFollowsStyle()	const

{

				return	auto_indicator;

}

inline	bool	QProgressBar::percentageVisible()	const

{

				return	percentage_visible;

}

#endif	//	QT_NO_PROGRESSBAR

#endif	//	QPROGRESSBAR_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qprogressdialog.h
qprogressdialog.hTrolltech

/**

**	$Id:		qt/qprogressdialog.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QProgressDialog	class

**

**	Created	:	970520

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	dialogs	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QPROGRESSDIALOG_H

#define	QPROGRESSDIALOG_H

#ifndef	QT_H

#include	"qsemimodal.h"

#include	"qlabel.h"							//	###	remove	or	keep	for	users'	convenience?

#include	"qprogressbar.h"	//	###	remove	or	keep	for	users'	convenience?

#endif	//	QT_H

#ifndef	QT_NO_PROGRESSDIALOG

class	QPushButton;

class	QTimer;

class	QProgressDialogData;

class	Q_EXPORT	QProgressDialog	:	public	QDialog

{

				Q_OBJECT

				Q_PROPERTY(bool	wasCancelled	READ	wasCancelled)

				Q_PROPERTY(int	totalSteps	READ	totalSteps	WRITE	setTotalSteps)

				Q_PROPERTY(int	progress	READ	progress	WRITE	setProgress)

				Q_PROPERTY(bool	autoReset	READ	autoReset	WRITE	setAutoReset)

				Q_PROPERTY(bool	autoClose	READ	autoClose	WRITE	setAutoClose)

				Q_PROPERTY(int	minimumDuration	READ	minimumDuration	WRITE	setMinimumDuration)

				Q_PROPERTY(QString	labelText	READ	labelText	WRITE	setLabelText)

public:

				QProgressDialog(QWidget*	parent=0,	const	char*	name=0,	bool	modal=FALSE,

	 	 					WFlags	f=0);

				QProgressDialog(const	QString&	labelText,	const	QString	&cancelButtonText,

	 	 					int	totalSteps,	QWidget*	parent=0,	const	char*	name=0,

	 	 					bool	modal=FALSE,	WFlags	f=0);

				~QProgressDialog();

				void	 setLabel(QLabel	*);

				void	 setCancelButton(QPushButton	*);

				void	 setBar(QProgressBar	*);

				bool	 wasCancelled()	const;

				int		 totalSteps()	const;

				int		 progress()			const;

				QSize	 sizeHint()	const;

				QString					labelText()	const;

				void	setAutoReset(bool	b);

				bool	autoReset()	const;

				void	setAutoClose(bool	b);

				bool	autoClose()	const;

public	slots:

				void	 cancel();

				void	 reset();

				void	 setTotalSteps(int	totalSteps);

				void	 setProgress(int	progress);

				void	 setLabelText(const	QString	&);

				void	 setCancelButtonText(const	QString	&);

				void	 setMinimumDuration(int	ms);

public:

				int		 minimumDuration()	const;

signals:

				void	 cancelled();

protected:

				void	 resizeEvent(QResizeEvent	*);

				void	 closeEvent(QCloseEvent	*);

				void	 styleChange(QStyle&);

				void	 showEvent(QShowEvent	*e);

protected	slots:

				void	 forceShow();

private:

				void	 			init(QWidget	*creator,	const	QString&	lbl,	const	QString	&canc,

	 	 	 	int	totstps);

				void	 			layout();

				QLabel	 		*label()		const;

				QProgressBar		*bar()				const;

				QProgressDialogData	*d;

				QTimer	 		*forceTimer;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QProgressDialog(const	QProgressDialog	&);

				QProgressDialog	&operator=(const	QProgressDialog	&);

#endif

};

#endif	//	QT_NO_PROGRESSDIALOG

#endif	//	QPROGRESSDIALOG_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qptrcollection.h
qptrcollection.hTrolltech

/**

**

**	Definition	of	base	class	for	all	pointer	based	collection	classes

**

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	tools	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QPTRCOLLECTION_H

#define	QPTRCOLLECTION_H

#ifndef	QT_H

#include	"qglobal.h"

#endif	//	QT_H

class	QGVector;

class	QGList;

class	QGDict;

class	Q_EXPORT	QPtrCollection	 	 	 //	inherited	by	all	collections

{

public:

				bool	autoDelete()	 const	 							{	return	del_item;	}

				void	setAutoDelete(bool	enable)		{	del_item	=	enable;	}

				virtual	uint		count()	const	=	0;

				virtual	void		clear()	=	0;	 	 	 //	delete	all	objects

				typedef	void	*Item;		 	 	 //	generic	collection	item

protected:

				QPtrCollection()	{	del_item	=	FALSE;	}	 	 //	no	deletion	of	objects

				QPtrCollection(const	QPtrCollection	&)	{	del_item	=	FALSE;	}

				virtual	~QPtrCollection()	{}

				bool	del_item;	 	 	 	 //	default	FALSE

				virtual	Item					newItem(Item);	 	 //	create	object

				virtual	void					deleteItem(Item)	=	0;	 //	delete	object

};

#ifndef	QT_NO_COMPAT

#define	QCollection	QPtrCollection

#endif

#endif	//	QPTRCOLLECTION_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qptrdict.h
This	is	the	verbatim	text	of	the	qptrdict.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	Id

**

**	Definition	of	QPtrDict	template	class

**

**	Created	:	970415

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	tools	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QPTRDICT_H

#define	QPTRDICT_H

#ifndef	QT_H

#include	"qgdict.h"

#endif	//	QT_H

template<class	type>

class	QPtrDict

#ifdef	Q_QDOC

	 :	public	QPtrCollection

#else

	 :	public	QGDict

#endif

{

public:

				QPtrDict(int	size=17)	:	QGDict(size,PtrKey,0,0)	{}

				QPtrDict(const	QPtrDict<type>	&d)	:	QGDict(d)	{}

			~QPtrDict()	 	 	 	 {	clear();	}

				QPtrDict<type>	&operator=(const	QPtrDict<type>	&d)

	 	 	 {	return	(QPtrDict<type>&)QGDict::operator=(d);	}

				uint		count()			const	 	 {	return	QGDict::count();	}

				uint		size()				const	 	 {	return	QGDict::size();	}

				bool		isEmpty()	const	 	 {	return	QGDict::count()	==	0;	}

				void		insert(void	*k,	const	type	*d)

	 	 	 	 	 {	QGDict::look_ptr(k,(Item)d,1);	}

				void		replace(void	*k,	const	type	*d)

	 	 	 	 	 {	QGDict::look_ptr(k,(Item)d,2);	}

				bool		remove(void	*k)	 	 {	return	QGDict::remove_ptr(k);	}

				type	*take(void	*k)	 	 {	return	(type*)QGDict::take_ptr(k);	}

				type	*find(void	*k)	const

	 	 {	return	(type	*)((QGDict*)this)->QGDict::look_ptr(k,0,0);	}

				type	*operator[](void	*k)	const

	 	 {	return	(type	*)((QGDict*)this)->QGDict::look_ptr(k,0,0);	}

				void		clear()	 	 	 {	QGDict::clear();	}

				void		resize(uint	n)	 	 {	QGDict::resize(n);	}

				void		statistics()	const	 	 {	QGDict::statistics();	}

#ifdef	Q_QDOC

protected:

				virtual	QDataStream&	read(QDataStream	&,	QPtrCollection::Item	&);

				virtual	QDataStream&	write(QDataStream	&,	QPtrCollection::Item)	const;

#endif

private:

				void		deleteItem(Item	d);

};

#if	!defined(Q_BROKEN_TEMPLATE_SPECIALIZATION)

template<>	inline	void	QPtrDict<void>::deleteItem(QPtrCollection::Item)

{

}

#endif

template<class	type>

inline	void	QPtrDict<type>::deleteItem(QPtrCollection::Item	d)

{

				if	(del_item)	delete	(type	*)d;

}

template<class	type>

class	QPtrDictIterator

:	public	QGDictIterator

{

public:

				QPtrDictIterator(const	QPtrDict<type>	&d)	:QGDictIterator((QGDict	&)d)	{}

			~QPtrDictIterator()	 						{}

				uint		count()			const					{	return	dict->count();	}

				bool		isEmpty()	const					{	return	dict->count()	==	0;	}

				type	*toFirst()	 						{	return	(type	*)QGDictIterator::toFirst();	}

				operator	type	*()		const		{	return	(type	*)QGDictIterator::get();	}

				type	*current()				const		{	return	(type	*)QGDictIterator::get();	}

				void	*currentKey()	const		{	return	QGDictIterator::getKeyPtr();	}

				type	*operator()()	 						{	return	(type	*)QGDictIterator::operator()();	}

				type	*operator++()	 						{	return	(type	*)QGDictIterator::operator++();	}

				type	*operator+=(uint	j)		{	return	(type	*)QGDictIterator::operator+=(j);}

};

#endif	//	QPTRDICT_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qptrlist.h
qptrlist.hTrolltech

/**

**	Id

**

**	Definition	of	QPtrList	template/macro	class

**

**	Created	:

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	tools	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QPTRLIST_H

#define	QPTRLIST_H

#ifndef	QT_H

#include	"qglist.h"

#endif	//	QT_H

template<class	type>	

class	QPtrList

#ifdef	Q_QDOC

	 :	public	QPtrCollection

#else

	 :	public	QGList

#endif

{

public:

				QPtrList()	 	 	 	 {}

				QPtrList(const	QPtrList<type>	&l)	:	QGList(l)	{}

				~QPtrList()		 	 	 {	clear();	}

				QPtrList<type>	&operator=(const	QPtrList<type>	&l)

	 	 	 {	return	(QPtrList<type>&)QGList::operator=(l);	}

				bool	operator==(const	QPtrList<type>	&list)	const

				{	return	QGList::operator==(list);	}

				uint		count()			const	 	 {	return	QGList::count();	}

				bool		isEmpty()	const	 	 {	return	QGList::count()	==	0;	}

				bool		insert(uint	i,	const	type	*d){	return	QGList::insertAt(i,(QPtrCollection::Item)d);	}

				void		inSort(const	type	*d)	 {	QGList::inSort((QPtrCollection::Item)d);	}

				void		prepend(const	type	*d)	 {	QGList::insertAt(0,(QPtrCollection::Item)d);	}

				void		append(const	type	*d)	 {	QGList::append((QPtrCollection::Item)d);	}

				bool		remove(uint	i)	 	 {	return	QGList::removeAt(i);	}

				bool		remove()	 	 	 {	return	QGList::remove((QPtrCollection::Item)0);	}

				bool		remove(const	type	*d)	 {	return	QGList::remove((QPtrCollection::Item)d);	}

				bool		removeRef(const	type	*d)	 {	return	QGList::removeRef((QPtrCollection::Item)d);	}

				void		removeNode(QLNode	*n)	 {	QGList::removeNode(n);	}

				bool		removeFirst()		 	 {	return	QGList::removeFirst();	}

				bool		removeLast()	 	 	 {	return	QGList::removeLast();	}

				type	*take(uint	i)	 	 {	return	(type	*)QGList::takeAt(i);	}

				type	*take()	 	 	 {	return	(type	*)QGList::take();	}

				type	*takeNode(QLNode	*n)		 {	return	(type	*)QGList::takeNode(n);	}

				void		clear()	 	 	 {	QGList::clear();	}

				void		sort()	 	 	 {	QGList::sort();	}

				int			find(const	type	*d)		 {	return	QGList::find((QPtrCollection::Item)d);	}

				int			findNext(const	type	*d)	 {	return	QGList::find((QPtrCollection::Item)d,FALSE);	}

				int			findRef(const	type	*d)	 {	return	QGList::findRef((QPtrCollection::Item)d);	}

				int			findNextRef(const	type	*d){	return	QGList::findRef((QPtrCollection::Item)d,FALSE);}

				uint		contains(const	type	*d)	const	{	return	QGList::contains((QPtrCollection::Item)d);	}

				uint		containsRef(const	type	*d)	const

	 	 	 	 	 {	return	QGList::containsRef((QPtrCollection::Item)d);	}

				type	*at(uint	i)	 	 	 {	return	(type	*)QGList::at(i);	}

				int			at()	const	 	 	 {	return	QGList::at();	}

				type	*current()		const	 	 {	return	(type	*)QGList::get();	}

				QLNode	*currentNode()		const	 {	return	QGList::currentNode();	}

				type	*getFirst()	const	 	 {	return	(type	*)QGList::cfirst();	}

				type	*getLast()		const	 	 {	return	(type	*)QGList::clast();	}

				type	*first()	 	 	 {	return	(type	*)QGList::first();	}

				type	*last()	 	 	 {	return	(type	*)QGList::last();	}

				type	*next()	 	 	 {	return	(type	*)QGList::next();	}

				type	*prev()	 	 	 {	return	(type	*)QGList::prev();	}

				void		toVector(QGVector	*vec)const{	QGList::toVector(vec);	}

#ifdef	Q_QDOC

protected:

				virtual	int	compareItems(QPtrCollection::Item,	QPtrCollection::Item);

				virtual	QDataStream&	read(QDataStream&,	QPtrCollection::Item&);

				virtual	QDataStream&	write(QDataStream&,	QPtrCollection::Item)	const;

#endif

private:

				void		deleteItem(Item	d);

};

#if	!defined(Q_BROKEN_TEMPLATE_SPECIALIZATION)

template<>	inline	void	QPtrList<void>::deleteItem(QPtrCollection::Item)

{

}

#endif

template<class	type>	inline	void	QPtrList<type>::deleteItem(QPtrCollection::Item	d)

{

				if	(del_item)	delete	(type	*)d;

}

template<class	type>	

class	QPtrListIterator

:	public	QGListIterator

{

public:

				QPtrListIterator(const	QPtrList<type>	&l)	:QGListIterator((QGList	&)l)	{}

			~QPtrListIterator()	 						{}

				uint		count()			const					{	return	list->count();	}

				bool		isEmpty()	const					{	return	list->count()	==	0;	}

				bool		atFirst()	const					{	return	QGListIterator::atFirst();	}

				bool		atLast()		const					{	return	QGListIterator::atLast();	}

				type	*toFirst()	 						{	return	(type	*)QGListIterator::toFirst();	}

				type	*toLast()	 						{	return	(type	*)QGListIterator::toLast();	}

				operator	type	*()	const			{	return	(type	*)QGListIterator::get();	}

				type	*operator*()									{	return	(type	*)QGListIterator::get();	}

				//	No	good,	since	QPtrList<char>	(ie.	QStrList	fails...

				//

				//	MSVC++	gives	warning

				//	Sunpro	C++	4.1	gives	error

				//				type	*operator->()								{	return	(type	*)QGListIterator::get();	}

				type	*current()			const			{	return	(type	*)QGListIterator::get();	}

				type	*operator()()	 						{	return	(type	*)QGListIterator::operator()();}

				type	*operator++()	 						{	return	(type	*)QGListIterator::operator++();	}

				type	*operator+=(uint	j)		{	return	(type	*)QGListIterator::operator+=(j);}

				type	*operator--()	 						{	return	(type	*)QGListIterator::operator--();	}

				type	*operator-=(uint	j)		{	return	(type	*)QGListIterator::operator-=(j);}

				QPtrListIterator<type>&	operator=(const	QPtrListIterator<type>&it)

	 	 	 						{	QGListIterator::operator=(it);	return	*this;	}

};

#ifndef	QT_NO_COMPAT

#define	QList	QPtrList

#define	QListIterator	QPtrListIterator

#endif

#endif	//	QPTRLIST_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qptrqueue.h
qptrqueue.hTrolltech

/**

**	Id

**

**	Definition	of	QPtrQueue	template/macro	class

**

**	Created	:	920917

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	tools	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QPTRQUEUE_H

#define	QPTRQUEUE_H

#ifndef	QT_H

#include	"qglist.h"

#endif	//	QT_H

template<class	type>

class	QPtrQueue	:	protected	QGList

{

public:

				QPtrQueue()		 	 	 {}

				QPtrQueue(const	QPtrQueue<type>	&q)	:	QGList(q)	{}

				~QPtrQueue()	 	 	 {	clear();	}

				QPtrQueue<type>&	operator=(const	QPtrQueue<type>	&q)

	 	 	 {	return	(QPtrQueue<type>&)QGList::operator=(q);	}

				bool		autoDelete()	const	 	 {	return	QPtrCollection::autoDelete();	}

				void		setAutoDelete(bool	del)	 {	QPtrCollection::setAutoDelete(del);	}

				uint		count()			const	 	 {	return	QGList::count();	}

				bool		isEmpty()	const	 	 {	return	QGList::count()	==	0;	}

				void		enqueue(const	type	*d)	 {	QGList::append(Item(d));	}

				type	*dequeue()	 	 	 {	return	(type	*)QGList::takeFirst();}

				bool		remove()	 	 	 {	return	QGList::removeFirst();	}

				void		clear()	 	 	 {	QGList::clear();	}

				type	*head()				const	 	 {	return	(type	*)QGList::cfirst();	}

	 		operator	type	*()	const	 {	return	(type	*)QGList::cfirst();	}

				type	*current()	const	 	 {	return	(type	*)QGList::cfirst();	}

#ifdef	Q_QDOC

protected:

				virtual	QDataStream&	read(QDataStream&,	QPtrCollection::Item&);

				virtual	QDataStream&	write(QDataStream&,	QPtrCollection::Item)	const;

#endif

private:

				void		deleteItem(Item	d);

};

#if	!defined(Q_BROKEN_TEMPLATE_SPECIALIZATION)

template<>	inline	void	QPtrQueue<void>::deleteItem(QPtrCollection::Item)

{

}

#endif

template<class	type>	inline	void	QPtrQueue<type>::deleteItem(QPtrCollection::Item	d)

{

				if	(del_item)	delete	(type	*)d;

}

#ifndef	QT_NO_COMPAT

#define	QQueue	QPtrQueue

#endif

#endif	//	QPTRQUEUE_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qptrstack.h
qptrstack.hTrolltech

/**

**	Id

**

**	Definition	of	QPtrStack	pointer	based	template	class

**

**	Created	:	920917

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	tools	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QPTRSTACK_H

#define	QPTRSTACK_H

#ifndef	QT_H

#include	"qglist.h"

#endif	//	QT_H

template<class	type>

class	QPtrStack	:	protected	QGList

{

public:

				QPtrStack()		 	 	 {	}

				QPtrStack(const	QPtrStack<type>	&s)	:	QGList(s)	{	}

				~QPtrStack()	 	 	 {	clear();	}

				QPtrStack<type>	&operator=(const	QPtrStack<type>	&s)

	 	 	 {	return	(QPtrStack<type>&)QGList::operator=(s);	}

				bool		autoDelete()	const	 	 {	return	QPtrCollection::autoDelete();	}

				void		setAutoDelete(bool	del)	 {	QPtrCollection::setAutoDelete(del);	}

				uint		count()			const	 	 {	return	QGList::count();	}

				bool		isEmpty()	const	 	 {	return	QGList::count()	==	0;	}

				void		push(const	type	*d)		 {	QGList::insertAt(0,Item(d));	}

				type	*pop()		 	 	 {	return	(type	*)QGList::takeFirst();	}

				bool		remove()	 	 	 {	return	QGList::removeFirst();	}

				void		clear()	 	 	 {	QGList::clear();	}

				type	*top()					const	 	 {	return	(type	*)QGList::cfirst();	}

	 		operator	type	*()	const	 {	return	(type	*)QGList::cfirst();	}

				type	*current()	const	 	 {	return	(type	*)QGList::cfirst();	}

#ifdef	Q_QDOC

protected:

				virtual	QDataStream&	read(QDataStream&,	QPtrCollection::Item&);

				virtual	QDataStream&	write(QDataStream&,	QPtrCollection::Item)	const;

#endif

private:

				void		deleteItem(Item	d);

};

#if	!defined(Q_BROKEN_TEMPLATE_SPECIALIZATION)

template<>	inline	void	QPtrStack<void>::deleteItem(QPtrCollection::Item)

{

}

#endif

template<class	type>	inline	void	QPtrStack<type>::deleteItem(QPtrCollection::Item	d)

{

				if	(del_item)	delete	(type	*)d;

}

#ifndef	QT_NO_COMPAT

#define	QStack	QPtrStack

#endif

#endif	//	QPTRSTACK_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qptrvector.h
qptrvector.hTrolltech

/**

**	Id

**

**	Definition	of	QPtrVector	pointer	based	template	class

**

**	Created	:	930907

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	tools	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QPTRVECTOR_H

#define	QPTRVECTOR_H

#ifndef	QT_H

#include	"qgvector.h"

#endif	//	QT_H

template<class	type>

class	QPtrVector

#ifdef	Q_QDOC

	 :	public	QPtrCollection

#else

	 :	public	QGVector

#endif

{

public:

				QPtrVector()	 	 	 	 {	}

				QPtrVector(uint	size)	:	QGVector(size)	{	}

				QPtrVector(const	QPtrVector<type>	&v)	:	QGVector(v)	{	}

				~QPtrVector()	 	 	 	 {	clear();	}

				QPtrVector<type>	&operator=(const	QPtrVector<type>	&v)

	 	 	 {	return	(QPtrVector<type>&)QGVector::operator=(v);	}

				bool	operator==(const	QPtrVector<type>	&v)	const	{	return	QGVector::operator==(v);	}

				type	**data()			const	 	 {	return	(type	**)QGVector::data();	}

				uint		size()				const	 	 {	return	QGVector::size();	}

				uint		count()			const	 	 {	return	QGVector::count();	}

				bool		isEmpty()	const	 	 {	return	QGVector::count()	==	0;	}

				bool		isNull()		const	 	 {	return	QGVector::size()	==	0;	}

				bool		resize(uint	size)	 	 {	return	QGVector::resize(size);	}

				bool		insert(uint	i,	const	type	*d){	return	QGVector::insert(i,(Item)d);	}

				bool		remove(uint	i)	 	 {	return	QGVector::remove(i);	}

				type	*take(uint	i)	 	 {	return	(type	*)QGVector::take(i);	}

				void		clear()	 	 	 {	QGVector::clear();	}

				bool		fill(const	type	*d,	int	size=-1)

	 	 	 	 	 {	return	QGVector::fill((Item)d,size);}

				void		sort()	 	 	 {	QGVector::sort();	}

				int			bsearch(const	type	*d)	const{	return	QGVector::bsearch((Item)d);	}

				int			findRef(const	type	*d,	uint	i=0)	const

	 	 	 	 	 {	return	QGVector::findRef((Item)d,i);}

				int			find(const	type	*d,	uint	i=	0)	const

	 	 	 	 	 {	return	QGVector::find((Item)d,i);	}

				uint		containsRef(const	type	*d)	const

	 	 	 	 {	return	QGVector::containsRef((Item)d);	}

				uint		contains(const	type	*d)	const

	 	 	 	 	 {	return	QGVector::contains((Item)d);	}

				type	*operator[](int	i)	const	 {	return	(type	*)QGVector::at(i);	}

				type	*at(uint	i)	const	 	 {	return	(type	*)QGVector::at(i);	}

				void		toList(QGList	*list)	const	 {	QGVector::toList(list);	}

#ifdef	Q_QDOC

protected:

				virtual	int	compareItems(QPtrCollection::Item	d1,	QPtrCollection::Item	d2);

				virtual	QDataStream&	read(QDataStream	&s,	QPtrCollection::Item	&d);

				virtual	QDataStream&	write(QDataStream	&s,	QPtrCollection::Item	d)	const;

#endif

private:

				void		deleteItem(Item	d);

};

#if	!defined(Q_BROKEN_TEMPLATE_SPECIALIZATION)

template<>	inline	void	QPtrVector<void>::deleteItem(QPtrCollection::Item)

{

}

#endif

template<class	type>	inline	void	QPtrVector<type>::deleteItem(QPtrCollection::Item	d)

{

				if	(del_item)	delete	(type	*)d;

}

#ifndef	QT_NO_COMPAT

#define	QVector	QPtrVector

#endif

#endif	//	QVECTOR_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qradiobutton.h
This	is	the	verbatim	text	of	the	qradiobutton.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qradiobutton.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QRadioButton	class

**

**	Created	:	940222

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QRADIOBUTTON_H

#define	QRADIOBUTTON_H

#ifndef	QT_H

#include	"qbutton.h"

#endif	//	QT_H

#ifndef	QT_NO_RADIOBUTTON

class	Q_EXPORT	QRadioButton	:	public	QButton

{

				Q_OBJECT

				Q_PROPERTY(bool	checked	READ	isChecked	WRITE	setChecked)

				Q_OVERRIDE(bool	autoMask	DESIGNABLE	true	SCRIPTABLE	true)

public:

				QRadioButton(QWidget	*parent,	const	char*	name=0);

				QRadioButton(const	QString	&text,	QWidget	*parent,	const	char*	name=0);

				bool				isChecked()	const;

				QSize				sizeHint()	const;

public	slots:

				virtual	void				setChecked(bool	check);

protected:

				bool				hitButton(const	QPoint	&)	const;

				void				drawButton(QPainter	*);

				void				drawButtonLabel(QPainter	*);

				void				updateMask();

				void				resizeEvent(QResizeEvent*);

private:

				void				init();

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QRadioButton(const	QRadioButton	&);

				QRadioButton	&operator=(const	QRadioButton	&);

#endif

};

inline	bool	QRadioButton::isChecked()	const

{	return	isOn();	}

#endif	//	QT_NO_RADIOBUTTON

#endif	//	QRADIOBUTTON_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qrangecontrol.h
qrangecontrol.hTrolltech

/**

**	$Id:		qt/qrangecontrol.h			3.0.5			edited	Apr	9	15:48	$

**

**	Definition	of	QRangeControl	class

**

**	Created	:	940427

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QRANGECONTROL_H

#define	QRANGECONTROL_H

#ifndef	QT_H

#include	"qglobal.h"

#include	"qframe.h"

#endif	//	QT_H

#ifndef	QT_NO_RANGECONTROL

class	QRangeControlPrivate;

class	Q_EXPORT	QRangeControl

{

public:

				QRangeControl();

				QRangeControl(int	minValue,	int	maxValue,

	 	 			int	lineStep,	int	pageStep,	int	value);

				virtual	~QRangeControl();

				int		 value()		 const;

				void	 setValue(int);

				void	 addPage();

				void	 subtractPage();

				void	 addLine();

				void	 subtractLine();

				int		 minValue()	 const;

				int		 maxValue()	 const;

				void	 setRange(int	minValue,	int	maxValue);

				void	 setMinValue(int	minVal);

				void	 setMaxValue(int	minVal);

				int		 lineStep()	 const;

				int		 pageStep()	 const;

				void	 setSteps(int	line,	int	page);

				int		 bound(int)	const;

protected:

				int		 positionFromValue(int	val,	int	space)	const;

				int		 valueFromPosition(int	pos,	int	space)	const;

				void	 directSetValue(int	val);

				int		 prevValue()	 const;

				virtual	void	valueChange();

				virtual	void	rangeChange();

				virtual	void	stepChange();

private:

				int		 minVal,	maxVal;

				int		 line,	page;

				int		 val,	prevVal;

				QRangeControlPrivate	*	d;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QRangeControl(const	QRangeControl	&);

				QRangeControl	&operator=(const	QRangeControl	&);

#endif

};

inline	int	QRangeControl::value()	const

{	return	val;	}

inline	int	QRangeControl::prevValue()	const

{	return	prevVal;	}

inline	int	QRangeControl::minValue()	const

{	return	minVal;	}

inline	int	QRangeControl::maxValue()	const

{	return	maxVal;	}

inline	int	QRangeControl::lineStep()	const

{	return	line;	}

inline	int	QRangeControl::pageStep()	const

{	return	page;	}

#endif	//	QT_NO_RANGECONTROL

#ifndef	QT_NO_SPINWIDGET

class	QSpinWidgetPrivate;

class	Q_EXPORT	QSpinWidget	:	public	QWidget

{

				Q_OBJECT

public:

				QSpinWidget(QWidget*	parent=0,	const	char*	name=0);

				~QSpinWidget();

				void		 setEditWidget(QWidget	*	widget);

				QWidget	*		 editWidget();

				QRect	upRect()	const;

				QRect	downRect()	const;

				void	setUpEnabled(bool	on);

				void	setDownEnabled(bool	on);

				bool	isUpEnabled()	const;

				bool	isDownEnabled()	const;

				enum	ButtonSymbols	{	UpDownArrows,	PlusMinus	};

				virtual	void	 setButtonSymbols(ButtonSymbols	bs);

				ButtonSymbols	 buttonSymbols()	const;

				void	arrange();

signals:

				void	stepUpPressed();

				void	stepDownPressed();

public	slots:

				void	stepUp();

				void	stepDown();

				

protected:

				void	mousePressEvent(QMouseEvent	*e);

				void	resizeEvent(QResizeEvent*	ev);

				void	mouseReleaseEvent(QMouseEvent	*e);

				void	mouseMoveEvent(QMouseEvent	*e);

#ifndef	QT_NO_WHEELEVENT

				void	wheelEvent(QWheelEvent	*);

#endif

				void	styleChange(QStyle&);

				void	paintEvent(QPaintEvent	*);

				void	enableChanged(bool	old);

				void	windowActivationChange(bool);

private	slots:

				void	timerDone();

				void	timerDoneEx();

private:

				QSpinWidgetPrivate	*	d;

				void	updateDisplay();

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QSpinWidget(const	QSpinWidget&);

				QSpinWidget&	operator=(const	QSpinWidget&);

#endif

};

#endif	//	QT_NO_SPINWIDGET

#endif	//	QRANGECONTROL_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qrect.h
qrect.hTrolltech

/**

**	$Id:		qt/qrect.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QRect	class

**

**	Created	:	931028

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QRECT_H

#define	QRECT_H

#ifndef	QT_H

#include	"qsize.h"

#endif	//	QT_H

#if	defined(topLeft)

#error	"Macro	definition	of	topLeft	conflicts	with	QRect"

//	don't	just	silently	undo	people's	defines:	#undef	topLeft

#endif

class	Q_EXPORT	QRect	 	 	 	 	 //	rectangle	class

{

public:

				QRect()	 {	x1	=	y1	=	0;	x2	=	y2	=	-1;	}

				QRect(const	QPoint	&topleft,	const	QPoint	&bottomright);

				QRect(const	QPoint	&topleft,	const	QSize	&size);

				QRect(int	left,	int	top,	int	width,	int	height);

				bool			isNull()	 const;

				bool			isEmpty()	 const;

				bool			isValid()	 const;

				QRect		normalize()	 const;

				int				left()	 const;

				int				top()	 const;

				int				right()	 const;

				int				bottom()	 const;

				QCOORD	&rLeft();

				QCOORD	&rTop();

				QCOORD	&rRight();

				QCOORD	&rBottom();

	

				int				x()	 	 const;

				int				y()	 	 const;

				void			setLeft(int	pos);

				void			setTop(int	pos);

				void			setRight(int	pos);

				void			setBottom(int	pos);

				void			setX(int	x);

				void			setY(int	y);

				QPoint	topLeft()	 	const;

				QPoint	bottomRight()	const;

				QPoint	topRight()	 	const;

				QPoint	bottomLeft()		const;

				QPoint	center()	 	const;

				void			rect(int	*x,	int	*y,	int	*w,	int	*h)	const;

				void			coords(int	*x1,	int	*y1,	int	*x2,	int	*y2)	const;

				void			moveTopLeft(const	QPoint	&p);

				void			moveBottomRight(const	QPoint	&p);

				void			moveTopRight(const	QPoint	&p);

				void			moveBottomLeft(const	QPoint	&p);

				void			moveCenter(const	QPoint	&p);

				void			moveBy(int	dx,	int	dy);

				void			setRect(int	x,	int	y,	int	w,	int	h);

				void			setCoords(int	x1,	int	y1,	int	x2,	int	y2);

				void			addCoords(int	x1,	int	y1,	int	x2,	int	y2);

				

				QSize		size()	 const;

				int				width()	 const;

				int				height()	 const;

				void			setWidth(int	w);

				void			setHeight(int	h);

				void			setSize(const	QSize	&s);

				QRect		operator|(const	QRect	&r)	const;

				QRect		operator&(const	QRect	&r)	const;

				QRect&		operator|=(const	QRect	&r);

				QRect&		operator&=(const	QRect	&r);

				bool			contains(const	QPoint	&p,	bool	proper=FALSE)	const;

				bool			contains(int	x,	int	y,	bool	proper=FALSE)	const;

				bool			contains(const	QRect	&r,	bool	proper=FALSE)	const;

				QRect		unite(const	QRect	&r)	const;

				QRect		intersect(const	QRect	&r)	const;

				bool			intersects(const	QRect	&r)	const;

				friend	Q_EXPORT	bool	operator==(const	QRect	&,	const	QRect	&);

				friend	Q_EXPORT	bool	operator!=(const	QRect	&,	const	QRect	&);

private:

#if	defined(Q_OS_MAC)

				QCOORD	y1;

				QCOORD	x1;

				QCOORD	y2;

				QCOORD	x2;

#else

				QCOORD	x1;

				QCOORD	y1;

				QCOORD	x2;

				QCOORD	y2;

#endif

};

Q_EXPORT	bool	operator==(const	QRect	&,	const	QRect	&);

Q_EXPORT	bool	operator!=(const	QRect	&,	const	QRect	&);

/***

		QRect	stream	functions

	***/

#ifndef	QT_NO_DATASTREAM

Q_EXPORT	QDataStream	&operator<<(QDataStream	&,	const	QRect	&);

Q_EXPORT	QDataStream	&operator>>(QDataStream	&,	QRect	&);

#endif

/***

		QRect	inline	member	functions

	***/

inline	QRect::QRect(int	left,	int	top,	int	width,	int	height)

{

				x1	=	(QCOORD)left;

				y1	=	(QCOORD)top;

				x2	=	(QCOORD)(left+width-1);

				y2	=	(QCOORD)(top+height-1);

}

inline	bool	QRect::isNull()	const

{	return	x2	==	x1-1	&&	y2	==	y1-1;	}

inline	bool	QRect::isEmpty()	const

{	return	x1	>	x2	||	y1	>	y2;	}

inline	bool	QRect::isValid()	const

{	return	x1	<=	x2	&&	y1	<=	y2;	}

inline	int	QRect::left()	const

{	return	x1;	}

inline	int	QRect::top()	const

{	return	y1;	}

inline	int	QRect::right()	const

{	return	x2;	}

inline	int	QRect::bottom()	const

{	return	y2;	}

inline	QCOORD	&QRect::rLeft()

{	return	x1;	}

inline	QCOORD	&	QRect::rTop()

{	return	y1;	}

inline	QCOORD	&	QRect::rRight()

{	return	x2;	}

inline	QCOORD	&	QRect::rBottom()

{	return	y2;	}

inline	int	QRect::x()	const

{	return	x1;	}

inline	int	QRect::y()	const

{	return	y1;	}

inline	void	QRect::setLeft(int	pos)

{	x1	=	(QCOORD)pos;	}

inline	void	QRect::setTop(int	pos)

{	y1	=	(QCOORD)pos;	}

inline	void	QRect::setRight(int	pos)

{	x2	=	(QCOORD)pos;	}

inline	void	QRect::setBottom(int	pos)

{	y2	=	(QCOORD)pos;	}

inline	void	QRect::setX(int	x)

{	x1	=	(QCOORD)x;	}

inline	void	QRect::setY(int	y)

{	y1	=	(QCOORD)y;	}

inline	QPoint	QRect::topLeft()	const

{	return	QPoint(x1,	y1);	}

inline	QPoint	QRect::bottomRight()	const

{	return	QPoint(x2,	y2);	}

inline	QPoint	QRect::topRight()	const

{	return	QPoint(x2,	y1);	}

inline	QPoint	QRect::bottomLeft()	const

{	return	QPoint(x1,	y2);	}

inline	QPoint	QRect::center()	const

{	return	QPoint((x1+x2)/2,	(y1+y2)/2);	}

inline	int	QRect::width()	const

{	return		x2	-	x1	+	1;	}

inline	int	QRect::height()	const

{	return		y2	-	y1	+	1;	}

inline	QSize	QRect::size()	const

{	return	QSize(x2-x1+1,	y2-y1+1);	}

inline	bool	QRect::contains(int	x,	int	y,	bool	proper)	const

{

				if	(proper)

								return	x	>	x1	&&	x	<	x2	&&

															y	>	y1	&&	y	<	y2;

				else

								return	x	>=	x1	&&	x	<=	x2	&&

															y	>=	y1	&&	y	<=	y2;

}

#endif	//	QRECT_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qregexp.h
This	is	the	verbatim	text	of	the	qregexp.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qregexp.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QRegExp	class

**

**	Created	:	950126

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	tools	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QREGEXP_H

#define	QREGEXP_H

#ifndef	QT_H

#include	"qstringlist.h"

#endif	//	QT_H

#ifndef	QT_NO_REGEXP

class	QRegExpEngine;

struct	QRegExpPrivate;

class	Q_EXPORT	QRegExp

{

public:

				QRegExp();

				QRegExp(const	QString&	pattern,	bool	caseSensitive	=	TRUE,

	 					bool	wildcard	=	FALSE);

				QRegExp(const	QRegExp&	rx);

				~QRegExp();

				QRegExp&	operator=(const	QRegExp&	rx);

				bool	operator==(const	QRegExp&	rx)	const;

				bool	operator!=(const	QRegExp&	rx)	const	{	return	!operator==(rx);	}

				bool	isEmpty()	const;

				bool	isValid()	const;

				QString	pattern()	const;

				void	setPattern(const	QString&	pattern);

				bool	caseSensitive()	const;

				void	setCaseSensitive(bool	sensitive);

#ifndef	QT_NO_REGEXP_WILDCARD

				bool	wildcard()	const;

				void	setWildcard(bool	wildcard);

#endif

				bool	minimal()	const;

				void	setMinimal(bool	minimal);

				bool	exactMatch(const	QString&	str)	const;

#ifndef	QT_NO_COMPAT

				int	match(const	QString&	str,	int	index	=	0,	int	*len	=	0,

	 							bool	indexIsStart	=	TRUE)	const;

#endif

				int	search(const	QString&	str,	int	start	=	0)	const;

				int	searchRev(const	QString&	str,	int	start	=	-1)	const;

				int	matchedLength()	const;

#ifndef	QT_NO_REGEXP_CAPTURE

				QStringList	capturedTexts();

				QString	cap(int	nth	=	0);

				int	pos(int	nth	=	0);

#endif

private:

				void	compile(bool	caseSensitive);

				QRegExpEngine	*eng;

				QRegExpPrivate	*priv;

};

#endif	//	QT_NO_REGEXP

#endif	//	QREGEXP_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qregion.h
This	is	the	verbatim	text	of	the	qregion.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qregion.h			3.0.5			edited	Jun	4	03:04	$

**

**	Definition	of	QRegion	class

**

**	Created	:	940514

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QREGION_H

#define	QREGION_H

#ifndef	QT_H

#include	"qshared.h"

#include	"qrect.h"

#endif	//	QT_H

class	Q_EXPORT	QRegion

{

public:

				enum	RegionType	{	Rectangle,	Ellipse	};

				QRegion();

				QRegion(int	x,	int	y,	int	w,	int	h,	RegionType	=	Rectangle);

				QRegion(const	QRect	&,	RegionType	=	Rectangle);

				QRegion(const	QPointArray	&,	bool	winding=FALSE);

				QRegion(const	QRegion	&);

				QRegion(const	QBitmap	&);

			~QRegion();

				QRegion	&operator=(const	QRegion	&);

				bool				isNull()			const;

				bool				isEmpty()		const;

				bool				contains(const	QPoint	&p)	const;

				bool				contains(const	QRect	&r)	 const;

				void				translate(int	dx,	int	dy);

				QRegion	unite(const	QRegion	&)	 const;

				QRegion	intersect(const	QRegion	&)	const;

				QRegion	subtract(const	QRegion	&)	const;

				QRegion	eor(const	QRegion	&)	 const;

				QRect			boundingRect()	const;

				QMemArray<QRect>	rects()	const;

				void	setRects(const	QRect	*,	int);

				const	QRegion	operator|(const	QRegion	&)	const;

				const	QRegion	operator+(const	QRegion	&)	const;

				const	QRegion	operator&(const	QRegion	&)	const;

				const	QRegion	operator-(const	QRegion	&)	const;

				const	QRegion	operator^(const	QRegion	&)	const;

				QRegion&	operator|=(const	QRegion	&);

				QRegion&	operator+=(const	QRegion	&);

				QRegion&	operator&=(const	QRegion	&);

				QRegion&	operator-=(const	QRegion	&);

				QRegion&	operator^=(const	QRegion	&);

				bool				operator==(const	QRegion	&)		const;

				bool				operator!=(const	QRegion	&r)	const

	 	 	 {	return	!(operator==(r));	}

#if	defined(Q_WS_WIN)

				HRGN				handle()	const	{	return	data->rgn;	}

#elif	defined(Q_WS_X11)

				Region		handle()	const	{	return	data->rgn;	}

#elif	defined(Q_WS_MAC)

				RgnHandle	handle(bool	require_rgn=FALSE)	const;

#elif	defined(Q_WS_QWS)

				//	QGfx_QWS	needs	this	for	region	drawing

				void	*	handle()	const	{	return	data->rgn;	}

#endif

#ifndef	QT_NO_DATASTREAM

				friend	Q_EXPORT	QDataStream	&operator<<(QDataStream	&,	const	QRegion	&);

				friend	Q_EXPORT	QDataStream	&operator>>(QDataStream	&,	QRegion	&);

#endif

private:

				QRegion(bool);

				QRegion	copy()	const;

				void				detach();

#if	defined(Q_WS_WIN)

				QRegion	winCombine(const	QRegion	&,	int)	const;

#endif

				void				exec(const	QByteArray	&,	int	ver	=	0);

				struct	QRegionData	:	public	QShared	{

#if	defined(Q_WS_WIN)

	 HRGN			rgn;

#elif	defined(Q_WS_X11)

	 QRect	rect;

	 Region	rgn;

#elif	defined(Q_WS_MAC)

	 uint	is_rect:1;

	 QRect	rect;

	 RgnHandle	rgn;

#elif	defined(Q_WS_QWS)

	 void	*	rgn;

#endif

	 bool			is_null;

				}	*data;

#if	defined(Q_WS_MAC)

				friend	struct	qt_mac_rgn_data_cache;

				friend	QRegionData	*qt_mac_get_rgn_data();

				friend	void	qt_mac_free_rgn_data(QRegionData	*);

				void	rectifyRegion();

#endif

};

#define	QRGN_SETRECT	 	 1	 	 //	region	stream	commands

#define	QRGN_SETELLIPSE		 2	 	 //		(these	are	internal)

#define	QRGN_SETPTARRAY_ALT	 3

#define	QRGN_SETPTARRAY_WIND	 4

#define	QRGN_TRANSLATE	 	 5

#define	QRGN_OR		 	 6

#define	QRGN_AND	 	 7

#define	QRGN_SUB	 	 8

#define	QRGN_XOR	 	 9

#define	QRGN_RECTS	 							10

/***

		QRegion	stream	functions

	***/

#ifndef	QT_NO_DATASTREAM

Q_EXPORT	QDataStream	&operator<<(QDataStream	&,	const	QRegion	&);

Q_EXPORT	QDataStream	&operator>>(QDataStream	&,	QRegion	&);

#endif

#endif	//	QREGION_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qrtlcodec.h
This	is	the	verbatim	text	of	the	qrtlcodec.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qrtlcodec.h			3.0.5			edited	Oct	12	2001	$

**

**	Implementation	of	QTextCodec	class

**

**	Created	:	981015

**

**	Copyright	(C)1998-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	tools	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QRTLCODEC_H

#define	QRTLCODEC_H

#ifndef	QT_H

#include	"qtextcodec.h"

#endif	//	QT_H

#ifndef	QT_NO_CODEC_HEBREW

class	Q_EXPORT	QHebrewCodec	:	public	QTextCodec	{

public:

				virtual	int	mibEnum()	const;

				const	char*	name()	const;

				const	char*	mimeName()	const;

				QCString	fromUnicode(const	QString&	uc,	int&	len_in_out)	const;

				QString	toUnicode(const	char*	chars,	int	len)	const;

				int	heuristicContentMatch(const	char*	chars,	int	len)	const;

};

#endif

#endif

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qscrollbar.h
qscrollbar.hTrolltech

/**

**	$Id:		qt/qscrollbar.h			3.0.5			edited	Apr	2	21:19	$

**

**	Definition	of	QScrollBar	class

**

**	Created	:	940427

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QSCROLLBAR_H

#define	QSCROLLBAR_H

class	QTimer;

#ifndef	QT_H

#include	"qwidget.h"

#include	"qrangecontrol.h"

#endif	//	QT_H

#ifndef	QT_NO_SCROLLBAR

class	Q_EXPORT	QScrollBar	:	public	QWidget,	public	QRangeControl

{

				Q_OBJECT

				Q_PROPERTY(int	minValue	READ	minValue	WRITE	setMinValue)

				Q_PROPERTY(int	maxValue	READ	maxValue	WRITE	setMaxValue)

				Q_PROPERTY(int	lineStep	READ	lineStep	WRITE	setLineStep)

				Q_PROPERTY(int	pageStep	READ	pageStep	WRITE	setPageStep)

				Q_PROPERTY(int	value	READ	value	WRITE	setValue)

				Q_PROPERTY(bool	tracking	READ	tracking	WRITE	setTracking)

				Q_PROPERTY(bool	draggingSlider	READ	draggingSlider)

				Q_PROPERTY(Orientation	orientation	READ	orientation	WRITE	setOrientation)

public:

				QScrollBar(QWidget	*parent,	const	char*	name=0);

				QScrollBar(Orientation,	QWidget	*parent,	const	char*	name=0);

				QScrollBar(int	minValue,	int	maxValue,	int	LineStep,	int	PageStep,

	 	 int	value,	Orientation,

	 	 QWidget	*parent,	const	char*	name=0);

				virtual	void	setOrientation(Orientation);

				Orientation	orientation()	const;

				virtual	void	setTracking(bool	enable);

				bool	 tracking()	const;

				bool	 draggingSlider()	const;

				virtual	void	setPalette(const	QPalette	&);

				QSize	 sizeHint()	const;

				int		minValue()	const;

				int		maxValue()	const;

				void	setMinValue(int);

				void	setMaxValue(int);

				int		lineStep()	const;

				int		pageStep()	const;

				void	setLineStep(int);

				void	setPageStep(int);

				int		value()	const;

				int		 sliderStart()	const;

				QRect	 sliderRect()	const;

public	slots:

				void	setValue(int);

signals:

				void	 valueChanged(int	value);

				void	 sliderPressed();

				void	 sliderMoved(int	value);

				void	 sliderReleased();

				void	 nextLine();

				void	 prevLine();

				void	 nextPage();

				void	 prevPage();

protected:

#ifndef	QT_NO_WHEELEVENT

				void		 wheelEvent(QWheelEvent	*);

#endif

				void	 keyPressEvent(QKeyEvent	*);

				void	 resizeEvent(QResizeEvent	*);

				void	 paintEvent(QPaintEvent	*);

				void	 mousePressEvent(QMouseEvent	*);

				void	 mouseReleaseEvent(QMouseEvent	*);

				void	 mouseMoveEvent(QMouseEvent	*);

				void	 contextMenuEvent(QContextMenuEvent	*);

				void	 hideEvent(QHideEvent*);

				void	 valueChange();

				void	 stepChange();

				void	 rangeChange();

				void	 styleChange(QStyle&);

private	slots:

				void	doAutoRepeat();

private:

				void	init();

				void	positionSliderFromValue();

				int	calculateValueFromSlider()	const;

				void	startAutoRepeat();

				void	stopAutoRepeat();

				int	rangeValueToSliderPos(int	val)	const;

				int	sliderPosToRangeValue(int		val)	const;

				void	action(int	control);

				void	drawControls(uint	controls,	uint	activeControl)	const;

				void	drawControls(uint	controls,	uint	activeControl,

	 	 	 	 QPainter	*p)	const;

				uint	pressedControl;

				bool	track;

				bool	clickedAt;

				Orientation	orient;

				int	slidePrevVal;

				QCOORD	sliderPos;

				QCOORD	clickOffset;

				QTimer	*	repeater;

				void	*	d;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QScrollBar(const	QScrollBar	&);

				QScrollBar	&operator=(const	QScrollBar	&);

#endif

};

inline	void	QScrollBar::setTracking(bool	t)

{

				track	=	t;

}

inline	bool	QScrollBar::tracking()	const

{

				return	track;

}

inline	QScrollBar::Orientation	QScrollBar::orientation()	const

{

				return	orient;

}

inline	int	QScrollBar::sliderStart()	const

{

				return	sliderPos;

}

#endif	//	QT_NO_SCROLLBAR

#endif	//	QSCROLLBAR_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qscrollview.h
qscrollview.hTrolltech

/**

**	$Id:		qt/qscrollview.h			3.0.5			edited	Nov	9	2001	$

**

**	Definition	of	QScrollView	class

**

**	Created	:	970523

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QSCROLLVIEW_H

#define	QSCROLLVIEW_H

#ifndef	QT_H

#include	"qframe.h"

#include	"qscrollbar.h"

#endif	//	QT_H

#ifndef	QT_NO_SCROLLVIEW

class	QScrollViewData;

class	Q_EXPORT	QScrollView	:	public	QFrame

{

				Q_OBJECT

				Q_ENUMS(ResizePolicy	ScrollBarMode)

				Q_PROPERTY(ResizePolicy	resizePolicy	READ	resizePolicy	WRITE	setResizePolicy)

				Q_PROPERTY(ScrollBarMode	vScrollBarMode	READ	vScrollBarMode	WRITE	setVScrollBarMode)

				Q_PROPERTY(ScrollBarMode	hScrollBarMode	READ	hScrollBarMode	WRITE	setHScrollBarMode)

				Q_PROPERTY(int	visibleWidth	READ	visibleWidth)

				Q_PROPERTY(int	visibleHeight	READ	visibleHeight)

				Q_PROPERTY(int	contentsWidth	READ	contentsWidth)

				Q_PROPERTY(int	contentsHeight	READ	contentsHeight)

				Q_PROPERTY(int	contentsX	READ	contentsX)

				Q_PROPERTY(int	contentsY	READ	contentsY)

#ifndef	QT_NO_DRAGANDDROP

				Q_PROPERTY(bool	dragAutoScroll	READ	dragAutoScroll	WRITE	setDragAutoScroll)

#endif

public:

				QScrollView(QWidget*	parent=0,	const	char*	name=0,	WFlags	f=0);

				~QScrollView();

				enum	ResizePolicy	{	Default,	Manual,	AutoOne,	AutoOneFit	};

				virtual	void	setResizePolicy(ResizePolicy);

				ResizePolicy	resizePolicy()	const;

				void	styleChange(QStyle&);

				void	removeChild(QWidget*	child);

				virtual	void	addChild(QWidget*	child,	int	x=0,	int	y=0);

				virtual	void	moveChild(QWidget*	child,	int	x,	int	y);

				int	childX(QWidget*	child);

				int	childY(QWidget*	child);

				bool	childIsVisible(QWidget*	child)	{	return	child->isVisible();	}	//	obsolete	functions

				void	showChild(QWidget*	child,	bool	yes=TRUE)	{

	 if	(yes)

	 				child->show();

	 else

	 				child->hide();

				}

				enum	ScrollBarMode	{	Auto,	AlwaysOff,	AlwaysOn	};

				ScrollBarMode	vScrollBarMode()	const;

				virtual	void		setVScrollBarMode(ScrollBarMode);

				ScrollBarMode	hScrollBarMode()	const;

				virtual	void		setHScrollBarMode(ScrollBarMode);

				QWidget*					cornerWidget()	const;

				virtual	void	setCornerWidget(QWidget*);

				QScrollBar*		horizontalScrollBar()	const;

				QScrollBar*		verticalScrollBar()	const;

				QWidget*	 	viewport()	const;

				QWidget*	 	clipper()	const;

				int		 visibleWidth()	const;

				int		 visibleHeight()	const;

				int		 contentsWidth()	const;

				int		 contentsHeight()	const;

				int		 contentsX()	const;

				int		 contentsY()	const;

				void	 resize(int	w,	int	h);

				void	 resize(const	QSize&);

				void	 show();

				void	 updateContents(int	x,	int	y,	int	w,	int	h);

				void	 updateContents(const	QRect&	r);

				void		 updateContents();

				void	 repaintContents(int	x,	int	y,	int	w,	int	h,	bool	erase=TRUE);

				void	 repaintContents(const	QRect&	r,	bool	erase=TRUE);

				void		 repaintContents(bool	erase=TRUE);

				void	 contentsToViewport(int	x,	int	y,	int&	vx,	int&	vy)	const;

				void	 viewportToContents(int	vx,	int	vy,	int&	x,	int&	y)	const;

				QPoint	 contentsToViewport(const	QPoint&)	const;

				QPoint	 viewportToContents(const	QPoint&)	const;

				void	 enableClipper(bool	y);

				void	 setStaticBackground(bool	y);

				bool	 hasStaticBackground()	const;

				QSize	 viewportSize(int,	int)	const;

				QSize	 sizeHint()	const;

				QSize	 minimumSizeHint()	const;

				void	 removeChild(QObject*	child);

#ifndef	QT_NO_DRAGANDDROP

				virtual	void	setDragAutoScroll(bool	b);

				bool	 	dragAutoScroll()	const;

#endif

signals:

				void	 contentsMoving(int	x,	int	y);

public	slots:

				virtual	void	resizeContents(int	w,	int	h);

				void	 scrollBy(int	dx,	int	dy);

				virtual	void	setContentsPos(int	x,	int	y);

				void	 ensureVisible(int	x,	int	y);

				void	 ensureVisible(int	x,	int	y,	int	xmargin,	int	ymargin);

				void	 center(int	x,	int	y);

				void	 center(int	x,	int	y,	float	xmargin,	float	ymargin);

				void	 updateScrollBars();

				void	 setEnabled(bool	enable);

protected:

				virtual	void	drawContents(QPainter*,	int	cx,	int	cy,	int	cw,	int	ch);

				virtual	void	drawContentsOffset(QPainter*,	int	ox,	int	oy,

	 	 				int	cx,	int	cy,	int	cw,	int	ch);

				virtual	void	contentsMousePressEvent(QMouseEvent*);

				virtual	void	contentsMouseReleaseEvent(QMouseEvent*);

				virtual	void	contentsMouseDoubleClickEvent(QMouseEvent*);

				virtual	void	contentsMouseMoveEvent(QMouseEvent*);

#ifndef	QT_NO_DRAGANDDROP

				virtual	void	contentsDragEnterEvent(QDragEnterEvent	*);

				virtual	void	contentsDragMoveEvent(QDragMoveEvent	*);

				virtual	void	contentsDragLeaveEvent(QDragLeaveEvent	*);

				virtual	void	contentsDropEvent(QDropEvent	*);

#endif

#ifndef	QT_NO_WHEELEVENT

				virtual	void	contentsWheelEvent(QWheelEvent	*);

#endif

				virtual	void	contentsContextMenuEvent(QContextMenuEvent	*);

				virtual	void	viewportPaintEvent(QPaintEvent*);

				virtual	void	viewportResizeEvent(QResizeEvent*);

				virtual	void	viewportMousePressEvent(QMouseEvent*);

				virtual	void	viewportMouseReleaseEvent(QMouseEvent*);

				virtual	void	viewportMouseDoubleClickEvent(QMouseEvent*);

				virtual	void	viewportMouseMoveEvent(QMouseEvent*);

#ifndef	QT_NO_DRAGANDDROP

				virtual	void	viewportDragEnterEvent(QDragEnterEvent	*);

				virtual	void	viewportDragMoveEvent(QDragMoveEvent	*);

				virtual	void	viewportDragLeaveEvent(QDragLeaveEvent	*);

				virtual	void	viewportDropEvent(QDropEvent	*);

#endif

#ifndef	QT_NO_WHEELEVENT

				virtual	void	viewportWheelEvent(QWheelEvent	*);

#endif

				virtual	void	viewportContextMenuEvent(QContextMenuEvent	*);

				void	 frameChanged();

				virtual	void	setMargins(int	left,	int	top,	int	right,	int	bottom);

				int	leftMargin()	const;

				int	topMargin()	const;

				int	rightMargin()	const;

				int	bottomMargin()	const;

				bool	focusNextPrevChild(bool	next);

				virtual	void	setHBarGeometry(QScrollBar&	hbar,	int	x,	int	y,	int	w,	int	h);

				virtual	void	setVBarGeometry(QScrollBar&	vbar,	int	x,	int	y,	int	w,	int	h);

				void	 resizeEvent(QResizeEvent*);

				void		 mousePressEvent(QMouseEvent	*);

				void		 mouseReleaseEvent(QMouseEvent	*);

				void		 mouseDoubleClickEvent(QMouseEvent	*);

				void		 mouseMoveEvent(QMouseEvent	*);

#ifndef	QT_NO_WHEELEVENT

				void		 wheelEvent(QWheelEvent	*);

#endif

				void	 contextMenuEvent(QContextMenuEvent	*);

				bool	 eventFilter(QObject	*,	QEvent	*e);

private:

				void	drawContents(QPainter*);

				void	moveContents(int	x,	int	y);

				QScrollViewData*	d;

private	slots:

				void	hslide(int);

				void	vslide(int);

#ifndef	QT_NO_DRAGANDDROP

				void	doDragAutoScroll();

				void	startDragAutoScroll();

				void	stopDragAutoScroll();

#endif

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QScrollView(const	QScrollView	&);

				QScrollView	&operator=(const	QScrollView	&);

#endif

				void	changeFrameRect(const	QRect&);

};

#endif	//	QT_NO_SCROLLVIEW

#endif	//	QSCROLLVIEW_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qsemaphore.h
qsemaphore.hTrolltech

/**

**	Id

**

**	Definition	of	QSemaphore	class

**

**	Created	:	931107

**

**	Copyright	(C)	1992-2002	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	tools	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QSEMAPHORE_H

#define	QSEMAPHORE_H

#ifndef	QT_H

#include	"qglobal.h"

#endif	//	QT_H

#if	defined(QT_THREAD_SUPPORT)

class	QSemaphorePrivate;

class	Q_EXPORT	QSemaphore

{

public:

				QSemaphore(int);

				virtual	~QSemaphore();

				int	available()	const;

				int	total()	const;

				//	postfix	operators

				int	operator++(int);

				int	operator--(int);

				int	operator+=(int);

				int	operator-=(int);

				bool	tryAccess(int);

private:

				QSemaphorePrivate	*d;

#if	defined(Q_DISABLE_COPY)

				QSemaphore(const	QSemaphore	&);

				QSemaphore	&operator=(const	QSemaphore	&);

#endif

};

#endif

#endif

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qserversocket.h
This	is	the	verbatim	text	of	the	qserversocket.h	include	file.	It	is	provided	only
for	illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qserversocket.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QServerSocketClass.

**

**	Created	:	970521

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	network	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	licenses	may	use	this

**	file	in	accordance	with	the	Qt	Commercial	License	Agreement	provided

**	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QSERVERSOCKET_H

#define	QSERVERSOCKET_H

#ifndef	QT_H

#include	"qobject.h"

#include	"qhostaddress.h"

#include	"qsocketdevice.h"	//	###	remove	or	keep	for	users'	convenience?

#endif	//	QT_H

#ifndef	QT_NO_NETWORK

#if	!defined(QT_MODULE_NETWORK)	||	defined(QT_LICENSE_PROFESSIONAL)	||	defined(QT_INTERNAL_NETWORK)

#define	QM_EXPORT_NETWORK

#else

#define	QM_EXPORT_NETWORK	Q_EXPORT

#endif

class	QServerSocketPrivate;

class	QM_EXPORT_NETWORK	QServerSocket	:	public	QObject

{

				Q_OBJECT

public:

				QServerSocket(Q_UINT16	port,	int	backlog	=	1,

	 	 			QObject	*parent=0,	const	char	*name=0);

				QServerSocket(const	QHostAddress	&	address,	Q_UINT16	port,	int	backlog	=	1,

	 	 			QObject	*parent=0,	const	char	*name=0);

				QServerSocket(QObject	*parent=0,	const	char	*name=0);

				virtual	~QServerSocket();

				bool	ok()	const;

				Q_UINT16	port()	const	;

				int	socket()	const	;

				virtual	void	setSocket(int	socket);

				QHostAddress	address()	const	;

				virtual	void	newConnection(int	socket)	=	0;

protected:

				QSocketDevice	*socketDevice();

private	slots:

				void	incomingConnection(int	socket);

private:

				QServerSocketPrivate	*d;

				void	init(const	QHostAddress	&	address,	Q_UINT16	port,	int	backlog);

};

#endif	//	QT_NO_NETWORK

#endif	//	QSERVERSOCKET_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qsessionmanager.h
This	is	the	verbatim	text	of	the	qsessionmanager.h	include	file.	It	is	provided
only	for	illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qsessionmanager.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QSessionManager	class

**

**	Created	:	990510

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QSESSIONMANAGER_H

#define	QSESSIONMANAGER_H

#ifndef	QT_H

#include	"qobject.h"

#include	"qwindowdefs.h"

#include	"qstring.h"

#include	"qstringlist.h"

#endif	//	QT_H

#ifndef	QT_NO_SESSIONMANAGER

class	QSessionManagerData;

class	Q_EXPORT		QSessionManager	:	public	QObject

{

				Q_OBJECT

				QSessionManager(QApplication	*app,	QString	&session);

				~QSessionManager();

public:

				QString	sessionId()	const;

#if	defined(Q_WS_X11)	||	defined(Q_WS_MAC)

				void*	handle()	const;

#endif

				bool	allowsInteraction();

				bool	allowsErrorInteraction();

				void	release();

				void	cancel();

				enum	RestartHint	{

	 RestartIfRunning,

	 RestartAnyway,

	 RestartImmediately,

	 RestartNever

				};

				void	setRestartHint(RestartHint);

				RestartHint	restartHint()	const;

				void	setRestartCommand(const	QStringList&);

				QStringList	restartCommand()	const;

				void	setDiscardCommand(const	QStringList&);

				QStringList	discardCommand()	const;

				void	setManagerProperty(const	QString&	name,	const	QString&	value);

				void	setManagerProperty(const	QString&	name,	const	QStringList&	value);

				bool	isPhase2()	const;

				void	requestPhase2();

private:

				friend	class	QApplication;

				friend	class	QBaseApplication;

				QSessionManagerData*	d;

};

#endif	//	QT_NO_SESSIONMANAGER

#endif	//	QSESSIONMANAGER_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qsettings.h
This	is	the	verbatim	text	of	the	qsettings.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	Id

**

**	Definition	of	QSettings	class

**

**	Created:	2000.06.26

**

**	Copyright	(C)	2000-2001	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	tools	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QSETTINGS_H

#define	QSETTINGS_H

#ifndef	QT_H

#include	<qdatetime.h>

#include	<qstringlist.h>

#endif	//	QT_H

#ifndef	QT_NO_SETTINGS

class	QSettingsPrivate;

class	Q_EXPORT	QSettings

{

public:

				QSettings();

				~QSettings();

				enum	System	{

	 Unix	=	0,

	 Windows,

	 Mac

				};

#if	!defined(Q_NO_BOOL_TYPE)

				bool	 writeEntry(const	QString	&,	bool);

#endif

				bool	 writeEntry(const	QString	&,	double);

				bool	 writeEntry(const	QString	&,	int);

				bool	 writeEntry(const	QString	&,	const	char	*);

				bool	 writeEntry(const	QString	&,	const	QString	&);

				bool	 writeEntry(const	QString	&,	const	QStringList	&);

				bool	 writeEntry(const	QString	&,	const	QStringList	&,	const	QChar&	sep);

				QStringList	entryList(const	QString	&)	const;

				QStringList	subkeyList(const	QString	&)	const;

				QStringList	readListEntry(const	QString	&,	bool	*	=	0);	//###	const	in	4.0

				QStringList	readListEntry(const	QString	&,	const	QChar&	sep,	bool	*	=	0);	//###	const	in	4.0

				QString	 readEntry(const	QString	&,	const	QString	&def	=	QString::null,	

	 	 	 			bool	*	=	0);//###	const	in	4.0

				int		 readNumEntry(const	QString	&,	int	def	=	0,	bool	*	=	0);	//###	const	in	4.0

				double	 readDoubleEntry(const	QString	&,	double	def	=	0,	bool	*	=	0);	//###	const	in	4.0

				bool	 readBoolEntry(const	QString	&,	bool	def	=	0,	bool	*	=	0);	//###	const	in	4.0

				bool	 removeEntry(const	QString	&);

				void	insertSearchPath(System,	const	QString	&);

				void	removeSearchPath(System,	const	QString	&);

private:

				QSettingsPrivate	*d;

#if	defined(Q_DISABLE_COPY)

				QSettings(const	QSettings	&);

				QSettings	&operator=(const	QSettings	&);

#endif

				QDateTime	lastModficationTime(const	QString	&);

				bool	sync();

				friend	class	QApplication;

};

#endif	//	QT_NO_SETTINGS

#endif	//	QSETTINGS_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qsgistyle.h
This	is	the	verbatim	text	of	the	qsgistyle.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qsgistyle.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	SGI-like	style	class

**

**	Created	:	981231

**

**	Copyright	(C)	1998-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QSGISTYLE_H

#define	QSGISTYLE_H

#ifndef	QT_H

#include	"qmotifstyle.h"

#include	"qguardedptr.h"

#include	"qwidget.h"

#endif	//	QT_H

#ifndef	QT_NO_STYLE_SGI

#if	defined(QT_PLUGIN)

#define	Q_EXPORT_STYLE_SGI

#else

#define	Q_EXPORT_STYLE_SGI	Q_EXPORT

#endif

class	QSGIStylePrivate;

class	Q_EXPORT_STYLE_SGI	QSGIStyle:	public	QMotifStyle

{

				Q_OBJECT

public:

				QSGIStyle(bool	useHighlightCols	=	FALSE);

				virtual	~QSGIStyle();

				void	polish(QWidget*);

				void	unPolish(QWidget*);

				void	polish(QApplication*);

				void	unPolish(QApplication*);

				void	drawPrimitive(PrimitiveElement	pe,

	 	 	 QPainter	*p,

	 	 	 const	QRect	&r,

	 	 	 const	QColorGroup	&cg,

	 	 	 SFlags	flags	=	Style_Default,

	 	 	 const	QStyleOption&	=	QStyleOption::Default)	const;

				void	drawControl(ControlElement	element,

	 	 						QPainter	*p,

	 	 						const	QWidget	*widget,

	 	 						const	QRect	&r,

	 	 						const	QColorGroup	&cg,

	 	 						SFlags	how	=	Style_Default,

	 	 						const	QStyleOption&	=	QStyleOption::Default)	const;

				void	drawComplexControl(ComplexControl	control,

	 	 	 					QPainter	*p,

	 	 	 					const	QWidget*	widget,

	 	 	 					const	QRect&	r,

	 	 	 					const	QColorGroup&	cg,

	 	 	 					SFlags	how	=	Style_Default,

	 	 	 					SCFlags	sub	=	SC_All,

	 	 	 					SCFlags	subActive	=	SC_None,

	 	 	 					const	QStyleOption&	=	QStyleOption::Default)	const;

				int	pixelMetric(PixelMetric	metric,	const	QWidget	*widget	=	0)	const;

				QSize	sizeFromContents(ContentsType	contents,

	 	 	 				const	QWidget	*widget,

	 	 	 				const	QSize	&contentsSize,

	 	 	 				const	QStyleOption&	=	QStyleOption::Default)	const;

				QRect	subRect(SubRect	r,	const	QWidget	*widget)	const;

				QRect	querySubControlMetrics(ComplexControl	control,

	 	 	 	 		const	QWidget	*widget,

	 	 	 	 		SubControl	sc,

	 	 	 	 		const	QStyleOption&	=	QStyleOption::Default)	const;

protected:

				bool	eventFilter(QObject*,	QEvent*);

private:

				QSGIStylePrivate	*d;

				uint	isApplicationStyle	:1;

#if	defined(Q_DISABLE_COPY)

				QSGIStyle(const	QSGIStyle	&);

				QSGIStyle&	operator=(const	QSGIStyle	&);

#endif

};

#endif	//	QT_NO_STYLE_SGI

#endif	//	QSGISTYLE_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qsignal.h
This	is	the	verbatim	text	of	the	qsignal.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qsignal.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QSignal	class

**

**	Created	:	941201

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QSIGNAL_H

#define	QSIGNAL_H

#ifndef	QT_H

#include	"qvariant.h"

#include	"qobject.h"

#endif	//	QT_H

class	Q_EXPORT	QSignal	:	public	QObject

{

				Q_OBJECT

public:

				QSignal(QObject	*parent=0,	const	char	*name=0);

				~QSignal();

				bool	 connect(const	QObject	*receiver,	const	char	*member);

				bool	 disconnect(const	QObject	*receiver,	const	char	*member=0);

				void	 activate();

#ifndef	QT_NO_COMPAT

				bool	 isBlocked()	 	const	 	 {	return	QObject::signalsBlocked();	}

				void	 block(bool	b)		 {	QObject::blockSignals(b);	}

#ifndef	QT_NO_VARIANT

				void	 setParameter(int	value);

				int		 parameter()	const;

#endif

#endif

#ifndef	QT_NO_VARIANT

				void	 setValue(const	QVariant	&value);

				QVariant	 value()	const;

#endif

signals:

#ifndef	QT_NO_VARIANT

				void	signal(const	QVariant&);

#endif

				void	intSignal(int);

private:

#ifndef	QT_NO_VARIANT

				QVariant	val;

#endif

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QSignal(const	QSignal	&);

				QSignal	&operator=(const	QSignal	&);

#endif

};

#endif	//	QSIGNAL_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qsignalmapper.h
This	is	the	verbatim	text	of	the	qsignalmapper.h	include	file.	It	is	provided	only
for	illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qsignalmapper.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QSignalMapper	class

**

**	Created	:	980503

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QSIGNALMAPPER_H

#define	QSIGNALMAPPER_H

#ifndef	QT_H

#include	"qobject.h"

#endif	//	QT_H

#ifndef	QT_NO_SIGNALMAPPER

class		QSignalMapperData;

struct	QSignalMapperRec;

class	Q_EXPORT	QSignalMapper	:	public	QObject	{

				Q_OBJECT

public:

				QSignalMapper(QObject*	parent,	const	char*	name=0);

				~QSignalMapper();

				virtual	void	setMapping(const	QObject*	sender,	int	identifier);

				virtual	void	setMapping(const	QObject*	sender,	const	QString	&identifier);

				void	removeMappings(const	QObject*	sender);

signals:

				void	mapped(int);

				void	mapped(const	QString	&);

public	slots:

				void	map();

private:

				QSignalMapperData*	d;

				QSignalMapperRec*	getRec(const	QObject*);

private	slots:

				void	removeMapping();

};

#endif	//	QT_NO_SIGNALMAPPER

#endif	//	QSIGNALMAPPER_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qsimplerichtext.h
This	is	the	verbatim	text	of	the	qsimplerichtext.h	include	file.	It	is	provided	only
for	illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qsimplerichtext.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	the	QSimpleRichText	class

**

**	Created	:	990101

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QSIMPLERICHTEXT_H

#define	QSIMPLERICHTEXT_H

#ifndef	QT_H

#include	"qnamespace.h"

#include	"qstring.h"

#include	"qregion.h"

#endif	//	QT_H

#ifndef	QT_NO_RICHTEXT

class	QPainter;

class	QWidget;

class	QStyleSheet;

class	QBrush;

class	QMimeSourceFactory;

class	QSimpleRichTextData;

class	Q_EXPORT	QSimpleRichText

{

public:

				QSimpleRichText(const	QString&	text,	const	QFont&	fnt,

	 	 					const	QString&	context	=	QString::null,	const	QStyleSheet*	sheet	=	0);

				QSimpleRichText(const	QString&	text,	const	QFont&	fnt,

	 	 					const	QString&	context,		const	QStyleSheet*	sheet,

	 	 					const	QMimeSourceFactory*	factory,	int	pageBreak	=	-1,

	 	 					const	QColor&	linkColor	=	Qt::blue,	bool	linkUnderline	=	TRUE);

				~QSimpleRichText();

				void	setWidth(int);

				void	setWidth(QPainter*,	int);

				void	setDefaultFont(const	QFont	&f);

				int	width()	const;

				int	widthUsed()	const;

				int	height()	const;

				void	adjustSize();

				void	draw(QPainter*	p,		int	x,	int	y,	const	QRect&	clipRect,

	 							const	QColorGroup&	cg,	const	QBrush*	paper	=	0)	const;

				//	obsolete

				void	draw(QPainter*	p,		int	x,	int	y,	const	QRegion&	clipRegion,

	 							const	QColorGroup&	cg,	const	QBrush*	paper	=	0)	const	{

	 draw(p,	x,	y,	clipRegion.boundingRect(),	cg,	paper);

				}

				QString	context()	const;

				QString	anchorAt(const	QPoint&	pos)	const;

				bool	inText(const	QPoint&	pos)	const;

private:

				QSimpleRichTextData*	d;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QSimpleRichText(const	QSimpleRichText	&);

				QSimpleRichText	&operator=(const	QSimpleRichText	&);

#endif

};

#endif	//	QT_NO_RICHTEXT

#endif	//	QSIMPLERICHTEXT_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qsize.h
qsize.hTrolltech

/**

**	$Id:		qt/qsize.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QSize	class

**

**	Created	:	931028

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QSIZE_H

#define	QSIZE_H

#ifndef	QT_H

#include	"qpoint.h"	//	###	change	to	windowdefs.h?

#endif	//	QT_H

class	Q_EXPORT	QSize

{

public:

				QSize();

				QSize(int	w,	int	h);

				bool			isNull()	 const;

				bool			isEmpty()	 const;

				bool			isValid()	 const;

				int				width()	 const;

				int				height()	 const;

				void			setWidth(int	w);

				void			setHeight(int	h);

				void			transpose();

				QSize	expandedTo(const	QSize	&)	const;

				QSize	boundedTo(const	QSize	&)	const;

				QCOORD	&rwidth();

				QCOORD	&rheight();

				QSize	&operator+=(const	QSize	&);

				QSize	&operator-=(const	QSize	&);

				QSize	&operator*=(int	c);

				QSize	&operator*=(double	c);

				QSize	&operator/=(int	c);

				QSize	&operator/=(double	c);

				friend	inline	bool	 operator==(const	QSize	&,	const	QSize	&);

				friend	inline	bool	 operator!=(const	QSize	&,	const	QSize	&);

				friend	inline	const	QSize	operator+(const	QSize	&,	const	QSize	&);

				friend	inline	const	QSize	operator-(const	QSize	&,	const	QSize	&);

				friend	inline	const	QSize	operator*(const	QSize	&,	int);

				friend	inline	const	QSize	operator*(int,	const	QSize	&);

				friend	inline	const	QSize	operator*(const	QSize	&,	double);

				friend	inline	const	QSize	operator*(double,	const	QSize	&);

				friend	inline	const	QSize	operator/(const	QSize	&,	int);

				friend	inline	const	QSize	operator/(const	QSize	&,	double);

private:

				static	void	warningDivByZero();

				QCOORD	wd;

				QCOORD	ht;

};

/***

		QSize	stream	functions

	***/

Q_EXPORT	QDataStream	&operator<<(QDataStream	&,	const	QSize	&);

Q_EXPORT	QDataStream	&operator>>(QDataStream	&,	QSize	&);

/***

		QSize	inline	functions

	***/

inline	QSize::QSize()

{	wd	=	ht	=	-1;	}

inline	QSize::QSize(int	w,	int	h)

{	wd=(QCOORD)w;	ht=(QCOORD)h;	}

inline	bool	QSize::isNull()	const

{	return	wd==0	&&	ht==0;	}

inline	bool	QSize::isEmpty()	const

{	return	wd<1	||	ht<1;	}

inline	bool	QSize::isValid()	const

{	return	wd>=0	&&	ht>=0;	}

inline	int	QSize::width()	const

{	return	wd;	}

inline	int	QSize::height()	const

{	return	ht;	}

inline	void	QSize::setWidth(int	w)

{	wd=(QCOORD)w;	}

inline	void	QSize::setHeight(int	h)

{	ht=(QCOORD)h;	}

inline	QCOORD	&QSize::rwidth()

{	return	wd;	}

inline	QCOORD	&QSize::rheight()

{	return	ht;	}

inline	QSize	&QSize::operator+=(const	QSize	&s)

{	wd+=s.wd;	ht+=s.ht;	return	*this;	}

inline	QSize	&QSize::operator-=(const	QSize	&s)

{	wd-=s.wd;	ht-=s.ht;	return	*this;	}

inline	QSize	&QSize::operator*=(int	c)

{	wd*=(QCOORD)c;	ht*=(QCOORD)c;	return	*this;	}

inline	QSize	&QSize::operator*=(double	c)

{	wd=(QCOORD)(wd*c);	ht=(QCOORD)(ht*c);	return	*this;	}

inline	bool	operator==(const	QSize	&s1,	const	QSize	&s2)

{	return	s1.wd	==	s2.wd	&&	s1.ht	==	s2.ht;	}

inline	bool	operator!=(const	QSize	&s1,	const	QSize	&s2)

{	return	s1.wd	!=	s2.wd	||	s1.ht	!=	s2.ht;	}

inline	const	QSize	operator+(const	QSize	&	s1,	const	QSize	&	s2)

{	return	QSize(s1.wd+s2.wd,	s1.ht+s2.ht);	}

inline	const	QSize	operator-(const	QSize	&s1,	const	QSize	&s2)

{	return	QSize(s1.wd-s2.wd,	s1.ht-s2.ht);	}

inline	const	QSize	operator*(const	QSize	&s,	int	c)

{	return	QSize(s.wd*c,	s.ht*c);	}

inline	const	QSize	operator*(int	c,	const	QSize	&s)

{		return	QSize(s.wd*c,	s.ht*c);	}

inline	const	QSize	operator*(const	QSize	&s,	double	c)

{	return	QSize((QCOORD)(s.wd*c),	(QCOORD)(s.ht*c));	}

inline	const	QSize	operator*(double	c,	const	QSize	&s)

{	return	QSize((QCOORD)(s.wd*c),	(QCOORD)(s.ht*c));	}

inline	QSize	&QSize::operator/=(int	c)

{

#if	defined(QT_CHECK_MATH)

				if	(c	==	0)

	 warningDivByZero();

#endif

				wd/=(QCOORD)c;	ht/=(QCOORD)c;

				return	*this;

}

inline	QSize	&QSize::operator/=(double	c)

{

#if	defined(QT_CHECK_MATH)

				if	(c	==	0.0)

	 warningDivByZero();

#endif

				wd=(QCOORD)(wd/c);	ht=(QCOORD)(ht/c);

				return	*this;

}

inline	const	QSize	operator/(const	QSize	&s,	int	c)

{

#if	defined(QT_CHECK_MATH)

				if	(c	==	0)

	 QSize::warningDivByZero();

#endif

				return	QSize(s.wd/c,	s.ht/c);

}

inline	const	QSize	operator/(const	QSize	&s,	double	c)

{

#if	defined(QT_CHECK_MATH)

				if	(c	==	0.0)

	 QSize::warningDivByZero();

#endif

				return	QSize((QCOORD)(s.wd/c),	(QCOORD)(s.ht/c));

}

inline	QSize	QSize::expandedTo(const	QSize	&	otherSize)	const

{

				return	QSize(QMAX(wd,otherSize.wd),	QMAX(ht,otherSize.ht));

}

inline	QSize	QSize::boundedTo(const	QSize	&	otherSize)	const

{

				return	QSize(QMIN(wd,otherSize.wd),	QMIN(ht,otherSize.ht));

}

#endif	//	QSIZE_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qsizegrip.h
This	is	the	verbatim	text	of	the	qsizegrip.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qsizegrip.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QSizeGrip	class

**

**	Created	:	980316

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QSIZEGRIP_H

#define	QSIZEGRIP_H

#ifndef	QT_H

#include	"qwidget.h"

#endif	//	QT_H

#ifndef	QT_NO_SIZEGRIP

class	Q_EXPORT	QSizeGrip:	public	QWidget

{

				Q_OBJECT

public:

				QSizeGrip(QWidget*	parent,	const	char*	name=0);

				~QSizeGrip();

				QSize	sizeHint()	const;

protected:

				void	paintEvent(QPaintEvent	*);

				void	mousePressEvent(QMouseEvent	*);

				void	mouseMoveEvent(QMouseEvent	*);

				bool	eventFilter(QObject	*,	QEvent	*);

private:

				QPoint	p;

				QSize	s;

				int	d;

				QWidget	*tlw;

};

#endif	//QT_NO_SIZEGRIP

#endif

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qsizepolicy.h
This	is	the	verbatim	text	of	the	qsizepolicy.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qsizepolicy.h			3.0.5			edited	Jan	25	16:16	$

**

**	Definition	of	the	QSizePolicy	class

**

**	Created	:	980929

**

**	Copyright	(C)	1998-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QSIZEPOLICY_H

#define	QSIZEPOLICY_H

#ifndef	QT_H

#include	"qglobal.h"

#endif	//	QT_H

class	Q_EXPORT	QSizePolicy

{

private:

				enum	{	HSize	=	6,	HMask	=	0x3f,	VMask	=	HMask	<<	HSize,

	 			MayGrow	=	1,	ExpMask	=	2,	MayShrink	=	4	};

public:

				enum	SizeType	{	Fixed	=	0,

	 	 				Minimum	=	MayGrow,

	 	 				Maximum	=	MayShrink,

	 	 				Preferred	=	MayGrow|MayShrink	,

	 	 				MinimumExpanding	=	MayGrow|ExpMask,

	 	 				Expanding	=	MayGrow|MayShrink|ExpMask,

	 	 				Ignored	=	ExpMask	//magic	value

				};

				enum	ExpandData	{	NoDirection	=	0,

	 	 						Horizontally	=	1,

	 	 						Vertically	=	2,

	 	 						BothDirections	=	Horizontally	|	Vertically

#ifndef	QT_NO_COMPAT

	 	 						,Horizontal	=	Horizontally,

	 	 						Vertical	=	Vertically

#endif

				};

				QSizePolicy()	:	data(0)	{}

				QSizePolicy(SizeType	hor,	SizeType	ver,	bool	hfw	=	FALSE)

	 :	data(hor	|	(ver<<HSize)	|	(hfw	?	(Q_UINT16)(1<<2*HSize)	:	0))	{}

				QSizePolicy(SizeType	hor,	SizeType	ver,	uchar	hors,	uchar	vers,	bool	hfw	=	FALSE);

				SizeType	horData()	const	{	return	(SizeType)(data	&	HMask);	}

				SizeType	verData()	const	{	return	(SizeType)((data	&	VMask)	>>	HSize);	}

				bool	mayShrinkHorizontally()	const	{	return	horData()	&	MayShrink	||	horData()	==	Ignored;	}

				bool	mayShrinkVertically()	const	{	return	verData()	&	MayShrink	||	verData()	==	Ignored;	}

				bool	mayGrowHorizontally()	const	{	return	horData()	&	MayGrow	||	horData()	==	Ignored;	}

				bool	mayGrowVertically()	const	{	return	verData()	&	MayGrow	||	verData()	==	Ignored;	}

				ExpandData	expanding()	const

				{

	 return	(ExpandData)((int)(verData()&ExpMask	?	Vertically	:	0)+

	 	 	 					(int)(horData()&ExpMask	?	Horizontally	:	0));

				}

				void	setHorData(SizeType	d)	{	data	=	(Q_UINT16)(data	&	~HMask)	|	d;	}

				void	setVerData(SizeType	d)	{	data	=	(Q_UINT16)(data	&	~(HMask<<HSize))	|

	 	 	 	 	 			(d<<HSize);	}

	 	

				void	setHeightForWidth(bool	b)	{	data	=	b	?	(Q_UINT16)(data	|	(1	<<	2*HSize))

	 	 	 	 	 						:	(Q_UINT16)(data	&	~(1	<<	2*HSize));		}

				bool	hasHeightForWidth()	const	{	return	data	&	(1	<<	2*HSize);	}

				bool	operator==(const	QSizePolicy&	s)	const	{	return	data	==	s.data;	}

				bool	operator!=(const	QSizePolicy&	s)	const	{	return	data	!=	s.data;	}

				uint	horStretch()	const	{	return	data	>>	24;	}

				uint	verStretch()	const	{	return	(data	>>	16)	&	0xff;	}

				void	setHorStretch(uchar	sf)	{	data	=	(data&0x00ffffff)	|	(uint(sf)<<24);	}

				void	setVerStretch(uchar	sf)	{	data	=	(data&0xff00ffff)	|	(uint(sf)<<16);	}

private:

				QSizePolicy(int	i):	data((Q_UINT32)i)	{}

				Q_UINT32	data;

};

inline	QSizePolicy::QSizePolicy(SizeType	hor,	SizeType	ver,	uchar	hors,	uchar	vers,	bool	hfw)

				:	data(hor	|	(ver<<HSize)	|	(hfw	?	(Q_UINT16)(1<<2*HSize)	:	0))	{

	 setHorStretch(hors);

	 setVerStretch(vers);

}

#endif	//	QSIZEPOLICY_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qsjiscodec.h
This	is	the	verbatim	text	of	the	qsjiscodec.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qsjiscodec.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QSjisCodec	class

**

**	Created	:	990225

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	tools	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

//	Most	of	the	code	here	was	originally	written	by	Serika	Kurusugawa

//	a.k.a.	Junji	Takagi,	and	is	include	in	Qt	with	the	author's	permission,

//	and	the	grateful	thanks	of	the	Trolltech	team.

/*

	*	Copyright	(c)	1999	Serika	Kurusugawa,	All	rights	reserved.

	*

	*	Redistribution	and	use	in	source	and	binary	forms,	with	or	without

	*	modification,	are	permitted	provided	that	the	following	conditions

	*	are	met:

	*	1.	Redistributions	of	source	code	must	retain	the	above	copyright

	*				notice,	this	list	of	conditions	and	the	following	disclaimer.

	*	2.	Redistributions	in	binary	form	must	reproduce	the	above	copyright

	*				notice,	this	list	of	conditions	and	the	following	disclaimer	in	the

	*				documentation	and/or	other	materials	provided	with	the	distribution.

	*

	*	THIS	SOFTWARE	IS	PROVIDED	BY	THE	AUTHOR	AND	CONTRIBUTORS	``AS	IS''	AND

	*	ANY	EXPRESS	OR	IMPLIED	WARRANTIES,	INCLUDING,	BUT	NOT	LIMITED	TO,	THE

	*	IMPLIED	WARRANTIES	OF	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE

	*	ARE	DISCLAIMED.		IN	NO	EVENT	SHALL	THE	REGENTS	OR	CONTRIBUTORS	BE	LIABLE

	*	FOR	ANY	DIRECT,	INDIRECT,	INCIDENTAL,	SPECIAL,	EXEMPLARY,	OR	CONSEQUENTIAL

	*	DAMAGES	(INCLUDING,	BUT	NOT	LIMITED	TO,	PROCUREMENT	OF	SUBSTITUTE	GOODS

	*	OR	SERVICES;	LOSS	OF	USE,	DATA,	OR	PROFITS;	OR	BUSINESS	INTERRUPTION)

	*	HOWEVER	CAUSED	AND	ON	ANY	THEORY	OF	LIABILITY,	WHETHER	IN	CONTRACT,	STRICT

	*	LIABILITY,	OR	TORT	(INCLUDING	NEGLIGENCE	OR	OTHERWISE)	ARISING	IN	ANY	WAY

	*	OUT	OF	THE	USE	OF	THIS	SOFTWARE,	EVEN	IF	ADVISED	OF	THE	POSSIBILITY	OF

	*	SUCH	DAMAGE.

	*/

#ifndef	QSJISCODEC_H

#define	QSJISCODEC_H

#ifndef	QT_H

#include	"qtextcodec.h"

#include	"qjpunicode.h"

#endif	//	QT_H

#ifndef	QT_NO_BIG_CODECS

#if	defined(QT_PLUGIN)

#define	Q_EXPORT_CODECS_JP

#else

#define	Q_EXPORT_CODECS_JP	Q_EXPORT

#endif

class	Q_EXPORT_CODECS_JP	QSjisCodec	:	public	QTextCodec	{

public:

				virtual	int	mibEnum()	const;

				const	char*	name()	const;

				const	char*	mimeName()	const;

				QTextDecoder*	makeDecoder()	const;

				QCString	fromUnicode(const	QString&	uc,	int&	len_in_out)	const;

				QString	toUnicode(const	char*	chars,	int	len)	const;

				int	heuristicContentMatch(const	char*	chars,	int	len)	const;

				int	heuristicNameMatch(const	char*	hint)	const;

				QSjisCodec();

				~QSjisCodec();

protected:

				const	QJpUnicodeConv	*conv;

};

#endif

#endif

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qsocket.h
qsocket.hTrolltech

/**

**	Id

**

**	Definition	of	QSocket	class.

**

**	Created	:	970521

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	network	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	licenses	may	use	this

**	file	in	accordance	with	the	Qt	Commercial	License	Agreement	provided

**	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QSOCKET_H

#define	QSOCKET_H

#ifndef	QT_H

#include	"qobject.h"

#include	"qiodevice.h"

#include	"qhostaddress.h"	//	int->QHostAddress	conversion

#endif	//	QT_H

#if	!defined(QT_MODULE_NETWORK)	||	defined(QT_LICENSE_PROFESSIONAL)	||	defined(QT_INTERNAL_NETWORK)

#define	QM_EXPORT_NETWORK

#else

#define	QM_EXPORT_NETWORK	Q_EXPORT

#endif

#ifndef	QT_NO_NETWORK

class	QSocketPrivate;

class	QSocketDevice;

class	QM_EXPORT_NETWORK	QSocket	:	public	QObject,	public	QIODevice

{

				Q_OBJECT

public:

				enum	Error	{

	 ErrConnectionRefused,

	 ErrHostNotFound,

	 ErrSocketRead

				};

				QSocket(QObject	*parent=0,	const	char	*name=0);

				virtual	~QSocket();

				enum	State	{	Idle,	HostLookup,	Connecting,

	 	 	Connected,	Closing,

	 	 	Connection=Connected	};

				State	 	state()	const;

				int		 	socket()	const;

				virtual	void	setSocket(int);

				QSocketDevice	*socketDevice();

				virtual	void	setSocketDevice(QSocketDevice	*);

#ifndef	QT_NO_DNS

				virtual	void	connectToHost(const	QString	&host,	Q_UINT16	port);

#endif

				QString	 	peerName()	const;

				//	Implementation	of	QIODevice	abstract	virtual	functions

				bool	 	open(int	mode);

				void	 	close();

				void	 	flush();

				Offset	 	size()	const;

				Offset	 	at()	const;

				bool	 	at(Offset);

				bool	 	atEnd()	const;

				Q_ULONG	 	bytesAvailable()	const;

				Q_ULONG	 	waitForMore(int	msecs)	const;

				Q_ULONG	 	bytesToWrite()	const;

				Q_LONG	 	readBlock(char	*data,	Q_ULONG	maxlen);

				Q_LONG	 	writeBlock(const	char	*data,	Q_ULONG	len);

				Q_LONG	 	readLine(char	*data,	Q_ULONG	maxlen);

				int		 	getch();

				int		 	putch(int);

				int		 	ungetch(int);

				bool	 	canReadLine()	const;

				virtual	 	QString	readLine();

				Q_UINT16	 	port()	const;

				Q_UINT16	 	peerPort()	const;

				QHostAddress	address()	const;

				QHostAddress	peerAddress()	const;

signals:

				void	 	hostFound();

				void	 	connected();

				void	 	connectionClosed();

				void	 	delayedCloseFinished();

				void	 	readyRead();

				void	 	bytesWritten(int	nbytes);

				void	 	error(int);

protected	slots:

				virtual	void	sn_read(bool	force=FALSE);

				virtual	void	sn_write();

private	slots:

				void	 tryConnecting();

				void	 emitErrorConnectionRefused();

private:

				QSocketPrivate	*d;

				bool	 	consumeReadBuf(Q_ULONG	nbytes,	char	*);

				bool	 	consumeWriteBuf(Q_ULONG	nbytes);

				bool	 	scanNewline(QByteArray	*	=	0);

				void	 	tryConnection();

				void									setSocketIntern(int	socket);

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QSocket(const	QSocket	&);

				QSocket	&operator=(const	QSocket	&);

#endif

};

#endif	//QT_NO_NETWORK

#endif	//	QSOCKET_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qsocketdevice.h
This	is	the	verbatim	text	of	the	qsocketdevice.h	include	file.	It	is	provided	only
for	illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qsocketdevice.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QSocketDevice	class.

**

**	Created	:	970521

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	network	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	licenses	may	use	this

**	file	in	accordance	with	the	Qt	Commercial	License	Agreement	provided

**	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QSOCKETDEVICE_H

#define	QSOCKETDEVICE_H

#ifndef	QT_H

#include	"qiodevice.h"

#include	"qhostaddress.h"	//	int->QHostAddress	conversion

#endif	//	QT_H

#if	!defined(QT_MODULE_NETWORK)	||	defined(QT_LICENSE_PROFESSIONAL)	||	defined(QT_INTERNAL_NETWORK)

#define	QM_EXPORT_NETWORK

#else

#define	QM_EXPORT_NETWORK	Q_EXPORT

#endif

#ifndef	QT_NO_NETWORK

class	QSocketDevicePrivate;

class		QM_EXPORT_NETWORK	QSocketDevice:	public	QIODevice

{

public:

				enum	Type	{	Stream,	Datagram	};

				QSocketDevice(Type	type	=	Stream);

				QSocketDevice(int	socket,	Type	type);

				virtual	~QSocketDevice();

				bool	 	isValid()	const;

				Type	 	type()	const;

				int		 	socket()	const;

				virtual	void	setSocket(int	socket,	Type	type);

				bool	 	open(int	mode);

				void	 	close();

				void	 	flush();

				//	Implementation	of	QIODevice	abstract	virtual	functions

				Offset	 	size()	const;

				Offset	 	at()	const;

				bool	 	at(Offset);

				bool	 	atEnd()	const;

				bool	 	blocking()	const;

				virtual	void	setBlocking(bool);

				bool	 	addressReusable()	const;

				virtual	void	setAddressReusable(bool);

				int		 	receiveBufferSize()	const;

				virtual	void	setReceiveBufferSize(uint);

				int		 	sendBufferSize()	const;

				virtual	void	setSendBufferSize(uint);

				virtual	bool	connect(const	QHostAddress	&,	Q_UINT16);

				virtual	bool	bind(const	QHostAddress	&,	Q_UINT16);

				virtual	bool	listen(int	backlog);

				virtual	int		accept();

				Q_LONG	 	bytesAvailable()	const;

				Q_LONG	 	waitForMore(int	msecs,	bool	*timeout=0)	const;

				Q_LONG	 	readBlock(char	*data,	Q_ULONG	maxlen);

				Q_LONG	 	writeBlock(const	char	*data,	Q_ULONG	len);

				virtual	Q_LONG		writeBlock(const	char	*data,	Q_ULONG	len,

	 	 	 				const	QHostAddress	&	host,	Q_UINT16	port);

				int		 	getch();

				int		 	putch(int);

				int		 	ungetch(int);

				Q_UINT16	 	port()	const;

				Q_UINT16	 	peerPort()	const;

				QHostAddress	address()	const;

				QHostAddress	peerAddress()	const;

				enum	Error	{	NoError,	AlreadyBound,	Inaccessible,	NoResources,

	 	 	Bug,	Impossible,	NoFiles,	ConnectionRefused,

	 	 	NetworkFailure,	UnknownError	};

				Error		 	error()	const;

protected:

				void	setError(Error	err);

private:

				int	fd;

				Type	t;

				Q_UINT16	p;

				QHostAddress	a;

				Q_UINT16	pp;

				QHostAddress	pa;

				QSocketDevice::Error	e;

				QSocketDevicePrivate	*	d;

				enum	Option	{	Broadcast,	ReceiveBuffer,	ReuseAddress,	SendBuffer	};

				int		 	option(Option)	const;

				virtual	void	setOption(Option,	int);

				void	 	fetchConnectionParameters();

#if	defined(Q_OS_WIN32)

				void	 	fetchPeerConnectionParameters();

#endif

				static	void		init();

				int		 	createNewSocket();

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QSocketDevice(const	QSocketDevice	&);

				QSocketDevice	&operator=(const	QSocketDevice	&);

#endif

};

#endif	//	QT_NO_NETWORK

#endif	//	QSOCKETDEVICE_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qsocketnotifier.h
This	is	the	verbatim	text	of	the	qsocketnotifier.h	include	file.	It	is	provided	only
for	illustration;	the	copyright	remains	with	Trolltech.

/**

**	Id

**

**	Definition	of	QSocketNotifier	class

**

**	Created	:	951114

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QSOCKETNOTIFIER_H

#define	QSOCKETNOTIFIER_H

#ifndef	QT_H

#include	"qobject.h"

#endif	//	QT_H

class	Q_EXPORT	QSocketNotifier	:	public	QObject

{

				Q_OBJECT

public:

				enum	Type	{	Read,	Write,	Exception	};

				QSocketNotifier(int	socket,	Type,	QObject	*parent=0,	const	char	*name=0);

			~QSocketNotifier();

				int		 	socket()	 const;

				Type	 	type()		 const;

				bool	 	isEnabled()	 const;

				virtual	void	setEnabled(bool);

signals:

				void	 	activated(int	socket);

protected:

				bool	 	event(QEvent	*);

private:

				int		 	sockfd;

				Type	 	sntype;

				bool	 	snenabled;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QSocketNotifier(const	QSocketNotifier	&);

				QSocketNotifier	&operator=(const	QSocketNotifier	&);

#endif

};

inline	int	QSocketNotifier::socket()	const

{	return	sockfd;	}

inline	QSocketNotifier::Type	QSocketNotifier::type()	const

{	return	sntype;	}

inline	bool	QSocketNotifier::isEnabled()	const

{	return	snenabled;	}

#endif	//	QSOCKETNOTIFIER_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qsortedlist.h
This	is	the	verbatim	text	of	the	qsortedlist.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qsortedlist.h			3.0.5			edited	May	29	15:07	$

**

**	Definition	of	QSortedList	template/macro	class

**

**	Created	:	920701

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	tools	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QSORTEDLIST_H

#define	QSORTEDLIST_H

#ifndef	QT_H

#include	"qptrlist.h"

#endif	//	QT_H

template<class	type>	

class	QSortedList	

				:	public	QPtrList<type>

{

public:

				QSortedList()	{}

				QSortedList(const	QSortedList<type>	&l)	:	QPtrList<type>(l)	{}

				~QSortedList()	{	clear();	}

				QSortedList<type>	&operator=(const	QSortedList<type>	&l)

						{	return	(QSortedList<type>&)QPtrList<type>::operator=(l);	}

				virtual	int	compareItems(QPtrCollection::Item	s1,	QPtrCollection::Item	s2)

						{	if	(*((type*)s1)	==	*((type*)s2))	return	0;	return	(*((type*)s1)	<	*((type*)s2)	?	-1	:	1);	}

};

#endif

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qsound.h
qsound.hTrolltech

/**

**	$Id:		qt/qsound.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QSound	class	and	QAuServer	internal	class

**

**	Created	:	000117

**

**	Copyright	(C)	1999-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QSOUND_H

#define	QSOUND_H

#ifndef	QT_H

#include	"qobject.h"

#endif	//	QT_H

#ifndef	QT_NO_SOUND

class	QSoundData;

class	Q_EXPORT	QSound	:	public	QObject	{

				Q_OBJECT

public:

				static	bool	isAvailable();

				static	void	play(const	QString&	filename);

				QSound(const	QString&	filename,	QObject*	parent=0,	const	char*	name=0);

				~QSound();

				/*	Coming	soon...

	 ?

				QSound(int	hertz,	Type	type=Mono);

				int	play(const	ushort*	data,	int	samples);

				bool	full();

				signal	void	notFull();

	 ?

				*/

#ifndef	QT_NO_COMPAT

				static	bool	available()	{	return	isAvailable();	}

#endif

				int	loops()	const;

				int	loopsRemaining()	const;

				void	setLoops(int);

				QString	fileName()	const;

				bool	isFinished()	const;

public	slots:

				void	play();

				void	stop();

private:

				QSoundData*	d;

				friend	class	QAuServer;

};

/*

		QAuServer	is	an	INTERNAL	class.		If	you	wish	to	provide	support	for

		additional	audio	servers,	you	can	make	a	subclass	of	QAuServer	to	do

		so,	HOWEVER,	your	class	may	need	to	be	re-engineered	to	some	degree

		with	each	new	Qt	release,	including	minor	releases.

		QAuBucket	is	whatever	you	want.

*/

class	QAuBucket	{

public:

				virtual	~QAuBucket();

};

class	QAuServer	:	public	QObject	{

				Q_OBJECT

public:

				QAuServer(QObject*	parent,	const	char*	name);

				~QAuServer();

				virtual	void	init(QSound*);

				virtual	void	play(const	QString&	filename);

				virtual	void	play(QSound*)=0;

				virtual	void	stop(QSound*)=0;

				virtual	bool	okay()=0;

protected:

				void	setBucket(QSound*,	QAuBucket*);

				QAuBucket*	bucket(QSound*);

				int	decLoop(QSound*);

};

#endif	//	QT_NO_SOUND

#endif

Copyright	©	2002	Trolltech Trademarks :hackerjun Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qspinbox.h
This	is	the	verbatim	text	of	the	qspinbox.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qspinbox.h			3.0.5			edited	Nov	30	2001	$

**

**	Definition	of	QSpinBox	widget	class

**

**	Created	:	1997

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QSPINBOX_H

#define	QSPINBOX_H

#ifndef	QT_H

#include	"qwidget.h"

#include	"qrangecontrol.h"

#endif	//	QT_H

#ifndef	QT_NO_SPINBOX

class	QLineEdit;

class	QValidator;

class	QSpinBoxPrivate;

class	Q_EXPORT	QSpinBox:	public	QWidget,	public	QRangeControl

{

				Q_OBJECT

				Q_ENUMS(ButtonSymbols)

				Q_PROPERTY(QString	text	READ	text)

				Q_PROPERTY(QString	prefix	READ	prefix	WRITE	setPrefix)

				Q_PROPERTY(QString	suffix	READ	suffix	WRITE	setSuffix)

				Q_PROPERTY(QString	cleanText	READ	cleanText)

				Q_PROPERTY(QString	specialValueText	READ	specialValueText	WRITE	setSpecialValueText)

				Q_PROPERTY(bool	wrapping	READ	wrapping	WRITE	setWrapping)

				Q_PROPERTY(ButtonSymbols	buttonSymbols	READ	buttonSymbols	WRITE	setButtonSymbols)

				Q_PROPERTY(int	maxValue	READ	maxValue	WRITE	setMaxValue)

				Q_PROPERTY(int	minValue	READ	minValue	WRITE	setMinValue)

				Q_PROPERTY(int	lineStep	READ	lineStep	WRITE	setLineStep)

				Q_PROPERTY(int	value	READ	value	WRITE	setValue)

public:

				QSpinBox(QWidget*	parent=0,	const	char*	name=0);

				QSpinBox(int	minValue,	int	maxValue,	int	step	=	1,

	 						QWidget*	parent=0,	const	char*	name=0);

				~QSpinBox();

				QString	 	 text()	const;

				virtual	QString	 prefix()	const;

				virtual	QString	 suffix()	const;

				virtual	QString	 cleanText()	const;

				virtual	void	 setSpecialValueText(const	QString	&text);

				QString	 	 specialValueText()	const;

				virtual	void	 setWrapping(bool	on);

				bool	 	 wrapping()	const;

				enum	ButtonSymbols	{	UpDownArrows,	PlusMinus	};

				virtual	void	 setButtonSymbols(ButtonSymbols);

				ButtonSymbols	 buttonSymbols()	const;

				virtual	void	 setValidator(const	QValidator*	v);

				const	QValidator	*	validator()	const;

				QSize	 	 sizeHint()	const;

				QSize	 	 minimumSizeHint()	const;

				int		minValue()	const;

				int		maxValue()	const;

				void	setMinValue(int);

				void	setMaxValue(int);

				int		lineStep()	const;

				void	setLineStep(int);

				int		value()	const;

				QRect	 	 upRect()	const;

				QRect	 	 downRect()	const;

public	slots:

				virtual	void	 setValue(int	value);

				virtual	void	 setPrefix(const	QString	&text);

				virtual	void	 setSuffix(const	QString	&text);

				virtual	void	 stepUp();

				virtual	void	 stepDown();

				virtual	void		 setEnabled(bool	enabled);

				virtual	void		 selectAll();

signals:

				void	 	 valueChanged(int	value);

				void	 	 valueChanged(const	QString	&valueText);

protected:

				virtual	QString	 mapValueToText(int	value);

				virtual	int		 mapTextToValue(bool*	ok);

				QString	 	 currentValueText();

				virtual	void	 updateDisplay();

				virtual	void	 interpretText();

				QLineEdit*	 	 editor()	const;

				virtual	void	 valueChange();

				virtual	void	 rangeChange();

				bool	 	 eventFilter(QObject*	obj,	QEvent*	ev);

				void	 	 resizeEvent(QResizeEvent*	ev);

#ifndef	QT_NO_WHEELEVENT

				void	 	 wheelEvent(QWheelEvent	*);

#endif

				void	 	 leaveEvent(QEvent*);

				void	 	 styleChange(QStyle&);

protected	slots:

				void	 	 textChanged();

private:

				void	initSpinBox();

				QSpinBoxPrivate*	d;

				QLineEdit*	vi;

				QValidator*	validate;

				QString	pfix;

				QString	sfix;

				QString	specText;

				uint	wrap	 	 :	1;

				uint	edited		 :	1;

				void	arrangeWidgets();

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QSpinBox(const	QSpinBox&);

				QSpinBox&	operator=(const	QSpinBox&);

#endif

};

#endif	//	QT_NO_SPINBOX

#endif	//	QSPINBOX_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qsplitter.h
This	is	the	verbatim	text	of	the	qsplitter.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qsplitter.h			3.0.5			edited	Oct	12	2001	$

**

**	Defintion	of		QSplitter	class

**

**		Created:		980105

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QSPLITTER_H

#define	QSPLITTER_H

#ifndef	QT_H

#include	"qframe.h"

#include	"qvaluelist.h"

#endif	//	QT_H

#ifndef	QT_NO_SPLITTER

class	QSplitterHandle;

class	QSplitterData;

class	QSplitterLayoutStruct;

class	Q_EXPORT	QSplitter	:	public	QFrame

{

				Q_OBJECT

				Q_PROPERTY(Orientation	orientation	READ	orientation	WRITE	setOrientation)

public:

				enum	ResizeMode	{	Stretch,	KeepSize,	FollowSizeHint	};

				QSplitter(QWidget*	parent=0,	const	char*	name=0);

				QSplitter(Orientation,	QWidget*	parent=0,	const	char*	name=0);

				~QSplitter();

				virtual	void	setOrientation(Orientation);

				Orientation	orientation()	const	{	return	orient;	}

				virtual	void	setResizeMode(QWidget	*w,	ResizeMode);

				virtual	void	setOpaqueResize(bool	=	TRUE);

				bool	opaqueResize()	const;

				void	moveToFirst(QWidget	*);

				void	moveToLast(QWidget	*);

				void	refresh()	{	recalc(TRUE);	}

				QSize	sizeHint()	const;

				QSize	minimumSizeHint()	const;

				QValueList<int>	sizes()	const;

				void	setSizes(QValueList<int>);

protected:

				void	childEvent(QChildEvent	*);

				bool	event(QEvent	*);

				void	resizeEvent(QResizeEvent	*);

				int	idAfter(QWidget*)	const;

				void	moveSplitter(QCOORD	pos,	int	id);

				virtual	void	drawSplitter(QPainter*,	QCOORD	x,	QCOORD	y,

	 	 	 							QCOORD	w,	QCOORD	h);

				void	styleChange(QStyle&);

				int	adjustPos(int	,	int);

				virtual	void	setRubberband(int);

				void	getRange(int	id,	int*,	int*);

private:

				void	init();

				void	recalc(bool	update	=	FALSE);

				void	doResize();

				void	storeSizes();

				void	processChildEvents();

				QSplitterLayoutStruct	*addWidget(QWidget*,	bool	first	=	FALSE);

				void	recalcId();

				void	moveBefore(int	pos,	int	id,	bool	upLeft);

				void	moveAfter(int	pos,	int	id,	bool	upLeft);

				void	setG(QWidget	*w,	int	p,	int	s,	bool	isSplitter	=	FALSE);

				QCOORD	pick(const	QPoint	&p)	const

				{	return	orient	==	Horizontal	?	p.x()	:	p.y();	}

				QCOORD	pick(const	QSize	&s)	const

				{	return	orient	==	Horizontal	?	s.width()	:	s.height();	}

				QCOORD	trans(const	QPoint	&p)	const

				{	return	orient	==	Vertical	?	p.x()	:	p.y();	}

				QCOORD	trans(const	QSize	&s)	const

				{	return	orient	==	Vertical	?	s.width()	:	s.height();	}

				QSplitterData	*data;

				Orientation	orient;

				friend	class	QSplitterHandle;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QSplitter(const	QSplitter	&);

				QSplitter&	operator=(const	QSplitter	&);

#endif

};

#endif	//	QT_NO_SPLITTER

#endif	//	QSPLITTER_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qsql.h
qsql.hTrolltech

/**

**

**	Definition	of	QSql	class

**

**	Created	:	2000-11-03

**

**	Copyright	(C)	2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	sql	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	licenses	may	use	this

**	file	in	accordance	with	the	Qt	Commercial	License	Agreement	provided

**	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QSQL_H

#define	QSQL_H

#ifndef	QT_H

#include	"qglobal.h"

#endif	//	QT_H

#if	!defined(QT_MODULE_SQL)	||	defined(QT_LICENSE_PROFESSIONAL)

#define	QM_EXPORT_SQL

#else

#define	QM_EXPORT_SQL	Q_EXPORT

#endif

#ifndef	QT_NO_SQL

class	QM_EXPORT_SQL	QSql

{

public:

				QSql()	{}

				enum	Op	{

	 None	=	-1,

	 Insert	=	0,

	 Update	=	1,

	 Delete	=	2

				};

				enum	Location	{

	 BeforeFirst	=	-1,

	 AfterLast	=	-2

				};

				enum	Confirm	{

	 Cancel	=	-1,

	 No	=	0,

	 Yes	=	1

				};

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QSql(const	QSql	&);

				QSql	&operator=(const	QSql	&);

#endif

};

#endif

#endif

Copyright	©	2002	Trolltech Trademarks :tipy Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qsqlcursor.h
This	is	the	verbatim	text	of	the	qsqlcursor.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**

**	Definition	of	QSqlCursor	class

**

**	Created	:	2000-11-03

**

**	Copyright	(C)	2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	sql	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	licenses	may	use	this

**	file	in	accordance	with	the	Qt	Commercial	License	Agreement	provided

**	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QSQLCURSOR_H

#define	QSQLCURSOR_H

#ifndef	QT_H

#include	"qsqlrecord.h"

#include	"qstringlist.h"

#include	"qsqlquery.h"

#include	"qsqlindex.h"

#endif	//	QT_H

#if	!defined(QT_MODULE_SQL)	||	defined(QT_LICENSE_PROFESSIONAL)

#define	QM_EXPORT_SQL

#else

#define	QM_EXPORT_SQL	Q_EXPORT

#endif

#ifndef	QT_NO_SQL

class	QSqlDatabase;

class	QSqlCursorPrivate;

class	QM_EXPORT_SQL	QSqlCursor	:	public	QSqlRecord,	public	QSqlQuery

{

public:

				QSqlCursor(const	QString	&	name	=	QString::null,	bool	autopopulate	=	TRUE,	QSqlDatabase*	db	=	0);

				QSqlCursor(const	QSqlCursor	&	other);

				QSqlCursor&	operator=(const	QSqlCursor&	other);

				~QSqlCursor();

				enum	Mode	{

	 ReadOnly	=	0,

	 Insert	=	1,

	 Update	=	2,

	 Delete	=	4,

	 Writable	=	7

				};

				QVariant	 	 value(int	i)	const;

				QVariant	 	 value(const	QString&	name)	const;

				virtual	QSqlIndex	 primaryIndex(bool	prime	=	TRUE)	const;

				virtual	QSqlIndex	 index(const	QStringList&	fieldNames)	const;

				QSqlIndex	 	 index(const	QString&	fieldName)	const;

				QSqlIndex	 	 index(const	char*	fieldName)	const;

				virtual	void	 setPrimaryIndex(const	QSqlIndex&	idx);

				virtual	void	 append(const	QSqlFieldInfo&	fieldInfo);

				virtual	void	 insert(int	pos,	const	QSqlFieldInfo&	fieldInfo);

				void	 	 remove(int	pos);

				void	 	 clear();

				void	 	 setGenerated(const	QString&	name,	bool	generated);

				void	 	 setGenerated(int	i,	bool	generated);

				virtual	QSqlRecord*	editBuffer(bool	copy	=	FALSE);

				virtual	QSqlRecord*	primeInsert();

				virtual	QSqlRecord*	primeUpdate();

				virtual	QSqlRecord*	primeDelete();

				virtual	int		 insert(bool	invalidate	=	TRUE);

				virtual	int		 update(bool	invalidate	=	TRUE);

				virtual	int		 del(bool	invalidate	=	TRUE);

				virtual	void	 setMode(int	flags);

				int		 	 mode()	const;

				virtual	void	 setCalculated(const	QString&	name,	bool	calculated);

				bool	 	 isCalculated(const	QString&	name)	const;

				virtual	void	 setTrimmed(const	QString&	name,	bool	trim);

				bool	 	 isTrimmed(const	QString&	name)	const;

				bool	 	 isReadOnly()	const;

				bool	 	 canInsert()	const;

				bool	 	 canUpdate()	const;

				bool	 	 canDelete()	const;

				bool	 	 select();

				bool	 	 select(const	QSqlIndex&	sort);

				bool	 	 select(const	QSqlIndex	&	filter,	const	QSqlIndex	&	sort);

				virtual	bool	 select(const	QString	&	filter,	const	QSqlIndex	&	sort	=	QSqlIndex());

				virtual	void	 setSort(const	QSqlIndex&	sort);

				QSqlIndex	 	 sort()	const;

				virtual	void	 setFilter(const	QString&	filter);

				QString	 	 filter()	const;

				virtual	void	 setName(const	QString&	name,	bool	autopopulate	=	TRUE);

				QString	 	 name()	const;

				QString	 	 toString(const	QString&	prefix	=	QString::null,

	 	 	 	 const	QString&	sep	=	",")	const;

protected:

				void	 	 afterSeek();

				bool	 	 exec(const	QString	&	sql);

				virtual	QVariant	 calculateField(const	QString&	name);

				virtual	int		 update(const	QString	&	filter,	bool	invalidate	=	TRUE);

				virtual	int		 del(const	QString	&	filter,	bool	invalidate	=	TRUE);

				virtual	QString	 toString(const	QString&	prefix,	QSqlField*	field,	const	QString&	fieldSep)	const;

				virtual	QString	 toString(QSqlRecord*	rec,	const	QString&	prefix,	const	QString&	fieldSep,

	 	 	 	 const	QString&	sep)	const;

				virtual	QString	 toString(const	QSqlIndex&	i,	QSqlRecord*	rec,	const	QString&	prefix,

	 	 	 	 const	QString&	fieldSep,	const	QString&	sep)	const;

private:

				void	 	 sync();

				int		 	 apply(const	QString&	q,	bool	invalidate);

				QSqlRecord&		 operator=(const	QSqlRecord	&	list);

				void		 	 append(const	QSqlField&	field);

				void		 	 insert(int	pos,	const	QSqlField&	field);

				QSqlCursorPrivate*	 d;

};

#endif	 //	QT_NO_SQL

#endif

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qsqldatabase.h
This	is	the	verbatim	text	of	the	qsqldatabase.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**

**	Definition	of	QSqlDatabase	class

**

**	Created	:	2000-11-03

**

**	Copyright	(C)	2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	sql	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	licenses	may	use	this

**	file	in	accordance	with	the	Qt	Commercial	License	Agreement	provided

**	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QSQLDATABASE_H

#define	QSQLDATABASE_H

#ifndef	QT_H

#include	"qobject.h"

#include	"qstring.h"

#include	"qsqlquery.h"

#include	"qstringlist.h"

#endif	//	QT_H

#if	!defined(QT_MODULE_SQL)	||	defined(QT_LICENSE_PROFESSIONAL)

#define	QM_EXPORT_SQL

#else

#define	QM_EXPORT_SQL	Q_EXPORT

#endif

#ifndef	QT_NO_SQL

class	QSqlError;

class	QSqlDriver;

class	QSqlIndex;

class	QSqlRecord;

class	QSqlRecordInfo;

class	QSqlDatabasePrivate;

class	QM_EXPORT_SQL	QSqlDriverCreatorBase

{

public:

				virtual	QSqlDriver*	createObject()	=	0;

};

template	<class	type>

class	QM_EXPORT_SQL	QSqlDriverCreator:	public	QSqlDriverCreatorBase

{

public:

				QSqlDriver*	createObject()	{	return	new	type;	}

};

class	QM_EXPORT_SQL	QSqlDatabase	:	public	QObject

{

				Q_OBJECT

				Q_PROPERTY(QString	databaseName		READ	databaseName	WRITE	setDatabaseName)

				Q_PROPERTY(QString	userName		READ	userName	WRITE	setUserName)

				Q_PROPERTY(QString	password		READ	password	WRITE	setPassword)

				Q_PROPERTY(QString	hostName		READ	hostName	WRITE	setHostName)

				Q_PROPERTY(int	port	READ	port	WRITE	setPort)

public:

				~QSqlDatabase();

				bool	 	 open();

				bool	 	 open(const	QString&	user,	const	QString&	password);

				void	 	 close();

				bool	 	 isOpen()	const;

				bool	 	 isOpenError()	const;

				QStringList		 tables()	const;

				QSqlIndex	 	 primaryIndex(const	QString&	tablename)	const;

				QSqlRecord	 	 record(const	QString&	tablename)	const;

				QSqlRecord	 	 record(const	QSqlQuery&	query)	const;

				QSqlRecordInfo	 recordInfo(const	QString&	tablename)	const;

				QSqlRecordInfo	 recordInfo(const	QSqlQuery&	query)	const;

				QSqlQuery	 	 exec(const	QString&	query	=	QString::null)	const;

				QSqlError	 	 lastError()	const;

				bool	 	 transaction();

				bool	 	 commit();

				bool	 	 rollback();

				virtual	void	 setDatabaseName(const	QString&	name);

				virtual	void	 setUserName(const	QString&	name);

				virtual	void	 setPassword(const	QString&	password);

				virtual	void	 setHostName(const	QString&	host);

				virtual	void	 setPort(int	p);

				QString	 	 databaseName()	const;

				QString	 	 userName()	const;

				QString	 	 password()	const;

				QString	 	 hostName()	const;

				QString	 	 driverName()	const;

				int										 port()	const;

				QSqlDriver*		 driver()	const;

				//	MOC_SKIP_BEGIN

				QT_STATIC_CONST	char	*	const	defaultConnection;

				//	MOC_SKIP_END

				static	QSqlDatabase*	addDatabase(const	QString&	type,	const	QString&	connectionName	=	defaultConnection);

				static	QSqlDatabase*	database(const	QString&	connectionName	=	defaultConnection,	bool	open	=	TRUE);

				static	void										removeDatabase(const	QString&	connectionName);

				static	bool										contains(const	QString&	connectionName	=	defaultConnection);

				static	QStringList			drivers();

				static	void										registerSqlDriver(const	QString&	name,	const	QSqlDriverCreatorBase*	dcb);

protected:

				QSqlDatabase(const	QString&	type,	const	QString&	name,	QObject	*	parent=0,	const	char	*	objname=0);

private:

				void	 init(const	QString&	type,	const	QString&	name);

				QSqlDatabasePrivate*	d;

};

#endif	//	QT_NO_SQL

#endif

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qsqldriver.h
This	is	the	verbatim	text	of	the	qsqldriver.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**

**	Definition	of	QSqlDriver	class

**

**	Created	:	2000-11-03

**

**	Copyright	(C)	2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	sql	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	licenses	may	use	this

**	file	in	accordance	with	the	Qt	Commercial	License	Agreement	provided

**	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QSQLDRIVER_H

#define	QSQLDRIVER_H

#ifndef	QT_H

#include	"qobject.h"

#include	"qstring.h"

#include	"qsqlerror.h"

#include	"qsqlquery.h"

#include	"qsqlfield.h"

#include	"qsqlindex.h"

#include	"qstringlist.h"

#endif	//	QT_H

#if	!defined(QT_MODULE_SQL)	||	defined(QT_LICENSE_PROFESSIONAL)

#define	QM_EXPORT_SQL

#else

#define	QM_EXPORT_SQL	Q_EXPORT

#endif

#ifndef	QT_NO_SQL

class	QSqlDatabase;

class	QM_EXPORT_SQL	QSqlDriver	:	public	QObject

{

				friend	class	QSqlDatabase;

				Q_OBJECT

public:

				enum	DriverFeature	{	Transactions,	QuerySize,	BLOB	};

				QSqlDriver(QObject	*	parent=0,	const	char	*	name=0);

				~QSqlDriver();

				bool	 	 	 isOpen()	const;

				bool	 	 	 isOpenError()	const;

				virtual	bool	 	 beginTransaction();

				virtual	bool	 	 commitTransaction();

				virtual	bool	 	 rollbackTransaction();

				virtual	QStringList		 tables(const	QString&	user)	const;

				virtual	QSqlIndex	 	 primaryIndex(const	QString&	tableName)	const;

				virtual	QSqlRecord	 	 record(const	QString&	tableName)	const;

				virtual	QSqlRecord	 	 record(const	QSqlQuery&	query)	const;

				virtual	QSqlRecordInfo	 recordInfo(const	QString&	tablename)	const;

				virtual	QSqlRecordInfo	 recordInfo(const	QSqlQuery&	query)	const;

				virtual	QString	 	 nullText()	const;

				virtual	QString	 	 formatValue(const	QSqlField*	field,	bool	trimStrings	=	FALSE)	const;

				QSqlError	 	 	 lastError()	const;

				virtual	bool	 	 hasFeature(DriverFeature	f)	const	=	0;

				virtual	bool	 	 open(const	QString	&	db,

	 	 	 	 	 const	QString	&	user	=	QString::null,

	 	 	 	 	 const	QString	&	password	=	QString::null,

	 	 	 	 	 const	QString	&	host	=	QString::null,

	 	 	 	 int	port	=	-1)	=	0;

				virtual	void	 	 close()	=	0;

				virtual	QSqlQuery	 	 createQuery()	const	=	0;

protected:

				virtual	void	 	 setOpen(bool	o);

				virtual	void	 	 setOpenError(bool	e);

				virtual	void	 	 setLastError(const	QSqlError&	e);

private:

				int		 										dbState;

				QSqlError	 										error;

#if	defined(Q_DISABLE_COPY)

				QSqlDriver(const	QSqlDriver	&);

				QSqlDriver	&operator=(const	QSqlDriver	&);

#endif

};

#endif	 //	QT_NO_SQL

#endif

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qsqldriverplugin.h
This	is	the	verbatim	text	of	the	qsqldriverplugin.h	include	file.	It	is	provided
only	for	illustration;	the	copyright	remains	with	Trolltech.

/**

**	Id

**

**	Definition	of	QSqlDriverPlugin	class

**

**	Created	:	010920

**

**	Copyright	(C)	2001-2002	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	sql	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QSQLDRIVERPLUGIN_H

#define	QSQLDRIVERPLUGIN_H

#ifndef	QT_H

#include	"qgplugin.h"

#include	"qstringlist.h"

#endif	//	QT_H

#ifndef	QT_NO_SQL

#ifndef	QT_NO_COMPONENT

class	QSqlDriver;

class	QSqlDriverPluginPrivate;

class	Q_EXPORT	QSqlDriverPlugin	:	public	QGPlugin

{

				Q_OBJECT

public:

				QSqlDriverPlugin();

				~QSqlDriverPlugin();

				virtual	QStringList	keys()	const	=	0;

				virtual	QSqlDriver	*create(const	QString	&key)	=	0;

private:

				QSqlDriverPluginPrivate	*d;

};

#endif	//	QT_NO_COMPONENT

#endif	//	QT_NO_SQL

#endif	//	QSQLDRIVERPLUGIN_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qsqleditorfactory.h
This	is	the	verbatim	text	of	the	qsqleditorfactory.h	include	file.	It	is	provided
only	for	illustration;	the	copyright	remains	with	Trolltech.

/**

**

**	Definition	of	QSqlEditorFactory	class

**

**	Created	:	2000-11-03

**

**	Copyright	(C)	2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	sql	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	licenses	may	use	this

**	file	in	accordance	with	the	Qt	Commercial	License	Agreement	provided

**	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QSQLEDITORFACTORY_H

#define	QSQLEDITORFACTORY_H

#ifndef	QT_H

#include	"qeditorfactory.h"

#endif	//	QT_H

#if	!defined(QT_MODULE_SQL)	||	defined(QT_LICENSE_PROFESSIONAL)

#define	QM_EXPORT_SQL

#else

#define	QM_EXPORT_SQL	Q_EXPORT

#endif

#ifndef	QT_NO_SQL

class	QSqlField;

class	QM_EXPORT_SQL	QSqlEditorFactory	:	public	QEditorFactory

{

public:

				QSqlEditorFactory	(QObject	*	parent	=	0,	const	char	*	name	=	0);

				~QSqlEditorFactory();

				virtual	QWidget	*	createEditor(QWidget	*	parent,	const	QVariant	&	variant);

				virtual	QWidget	*	createEditor(QWidget	*	parent,	const	QSqlField	*	field);

				static	QSqlEditorFactory	*	defaultFactory();

				static	void	installDefaultFactory(QSqlEditorFactory	*	factory);

};

#endif	//	QT_NO_SQL

#endif	//	QSQLEDITORFACTORY_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qsqlerror.h
This	is	the	verbatim	text	of	the	qsqlerror.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**

**	Definition	of	QSqlError	class

**

**	Created	:	2000-11-03

**

**	Copyright	(C)	2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	sql	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	licenses	may	use	this

**	file	in	accordance	with	the	Qt	Commercial	License	Agreement	provided

**	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QSQLERROR_H

#define	QSQLERROR_H

#ifndef	QT_H

#include	"qstring.h"

#endif	//	QT_H

#if	!defined(QT_MODULE_SQL)	||	defined(QT_LICENSE_PROFESSIONAL)

#define	QM_EXPORT_SQL

#else

#define	QM_EXPORT_SQL	Q_EXPORT

#endif

#ifndef	QT_NO_SQL

class	QM_EXPORT_SQL	QSqlError

{

public:

				enum	Type	{

	 None,

	 Connection,

	 Statement,

	 Transaction,

	 Unknown

				};

				QSqlError(const	QString&	driverText	=	QString::null,

	 	 const	QString&	databaseText	=	QString::null,

	 	 int	type	=	QSqlError::None,

	 	 int	number	=	-1);

				QSqlError(const	QSqlError&	other);

				QSqlError&	operator=(const	QSqlError&	other);

				virtual	~QSqlError();

				QString	 driverText()	const;

				virtual	void	setDriverText(const	QString&	driverText);

				QString	 databaseText()	const;

				virtual	void	setDatabaseText(const	QString&	databaseText);

				int		 type()	const;

				virtual	void	setType(int	type);

				int		 number()	const;

				virtual	void	setNumber(int	number);

private:

				QString	 driverError;

				QString	 databaseError;

				int		 errorType;

				int	errorNumber;

};

#endif	//	QT_NO_SQL

#endif

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qsqlfield.h
This	is	the	verbatim	text	of	the	qsqlfield.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**

**	Definition	of	QSqlField	class

**

**	Created	:	2000-11-03

**

**	Copyright	(C)	2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	sql	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	licenses	may	use	this

**	file	in	accordance	with	the	Qt	Commercial	License	Agreement	provided

**	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QSQLFIELD_H

#define	QSQLFIELD_H

#ifndef	QT_H

#include	"qstring.h"

#include	"qvariant.h"

#endif	//	QT_H

#if	!defined(QT_MODULE_SQL)	||	defined(QT_LICENSE_PROFESSIONAL)

#define	QM_EXPORT_SQL

#else

#define	QM_EXPORT_SQL	Q_EXPORT

#endif

#ifndef	QT_NO_SQL

class	QSqlFieldPrivate;

class	QM_EXPORT_SQL	QSqlField

{

public:

				QSqlField(const	QString&	fieldName	=	QString::null,	QVariant::Type	type	=	QVariant::Invalid);

				QSqlField(const	QSqlField&	other);

				QSqlField&	operator=(const	QSqlField&	other);

				bool	operator==(const	QSqlField&	other)	const;

				virtual	~QSqlField();

				virtual	void	 setValue(const	QVariant&	value);

				virtual	QVariant	 value()	const;

				virtual	void	 setName(const	QString&	name);

				QString	 	 name()	const;

				virtual	void	 setNull();

				bool	 	 isNull()	const;

				virtual	void	 setReadOnly(bool	readOnly);

				bool	 	 isReadOnly()	const;

				void	 	 clear(bool	nullify	=	TRUE);

				QVariant::Type	 type()	const;

private:

				QString							nm;

				QVariant						val;

				uint										ro:	1;

				uint										nul:	1;

				QSqlFieldPrivate*	d;

};

inline	QVariant	QSqlField::value()	const

{	return	val;	}

inline	QString	QSqlField::name()	const

{	return	nm;	}

inline	bool	QSqlField::isNull()	const

{	return	nul;	}

inline	bool	QSqlField::isReadOnly()	const

{	return	ro;	}

inline	QVariant::Type	QSqlField::type()	const

{	return	val.type();	}

/**/

/*******					QSqlFieldInfo	Class					******/

/**/

struct	QSqlFieldInfoPrivate;

class	QM_EXPORT_SQL	QSqlFieldInfo

{

public:

				QSqlFieldInfo(const	QString&	name	=	QString::null,

	 	 			QVariant::Type	typ	=	QVariant::Invalid,

	 	 			int	required	=	-1,

	 	 			int	len	=	-1,

	 	 			int	prec	=	-1,

	 	 			const	QVariant&	defValue	=	QVariant(),

	 	 			int	sqlType	=	0,

	 	 			bool	generated	=	TRUE,

	 	 			bool	trim	=	FALSE,

	 	 			bool	calculated	=	FALSE);

				QSqlFieldInfo(const	QSqlFieldInfo	&	other);

				QSqlFieldInfo(const	QSqlField	&	other,	bool	generated	=	TRUE);

				virtual	~QSqlFieldInfo();

				QSqlFieldInfo&	operator=(const	QSqlFieldInfo&	other);

				bool	operator==(const	QSqlFieldInfo&	f)	const;

				QSqlField	 	 toField()	const;

				int		 	 isRequired()	const;

				QVariant::Type	 type()	const;

				int		 	 length()	const;

				int		 	 precision()	const;

				QVariant	 	 defaultValue()	const;

				QString	 	 name()	const;

				int		 	 typeID()	const;

				bool	 	 isGenerated()	const;

				bool	 	 isTrim()	const;

				bool	 	 isCalculated()	const;

				virtual	void	 setTrim(bool	trim);

				virtual	void	 setGenerated(bool	gen);

				virtual	void	 setCalculated(bool	calc);

private:

				QSqlFieldInfoPrivate*	d;

};

#endif	 //	QT_NO_SQL

#endif

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qsqlform.h
This	is	the	verbatim	text	of	the	qsqlform.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**

**	Definition	of	QSqlForm	class

**

**	Created	:	2000-11-03

**

**	Copyright	(C)	2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	sql	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	licenses	may	use	this

**	file	in	accordance	with	the	Qt	Commercial	License	Agreement	provided

**	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QSQLFORM_H

#define	QSQLFORM_H

#ifndef	QT_H

#include	"qobject.h"

#include	"qmap.h"

#endif	//	QT_H

#if	!defined(QT_MODULE_SQL)	||	defined(QT_LICENSE_PROFESSIONAL)

#define	QM_EXPORT_SQL

#else

#define	QM_EXPORT_SQL	Q_EXPORT

#endif

#ifndef	QT_NO_SQL

class	QSqlField;

class	QSqlRecord;

class	QSqlEditorFactory;

class	QSqlPropertyMap;

class	QWidget;

class	QSqlFormPrivate;

class	QM_EXPORT_SQL	QSqlForm	:	public	QObject

{

				Q_OBJECT

public:

				QSqlForm(QObject	*	parent	=	0,	const	char	*	name	=	0);

				~QSqlForm();

				virtual	void	insert(QWidget	*	widget,	const	QString&	field);

				virtual	void	remove(const	QString&	field);

				uint									count()	const;

				QWidget	*			widget(uint	i)	const;

				QSqlField	*	widgetToField(QWidget	*	widget)	const;

				QWidget	*			fieldToWidget(QSqlField	*	field)	const;

				void								installPropertyMap(QSqlPropertyMap	*	map);

				virtual	void	setRecord(QSqlRecord*	buf);

public	slots:

				virtual	void	readField(QWidget	*	widget);

				virtual	void	writeField(QWidget	*	widget);

				virtual	void	readFields();

				virtual	void	writeFields();

				virtual	void	clear();

				virtual	void	clearValues(bool	nullify	=	FALSE);

protected:

				virtual	void	insert(QWidget	*	widget,	QSqlField	*	field);

				virtual	void	remove(QWidget	*	widget);

				void	clearMap();

private:

				virtual	void	sync();

				QSqlFormPrivate*	d;

};

#endif	//	QT_NO_SQL

#endif	//	QSQLFORM_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qsqlindex.h
This	is	the	verbatim	text	of	the	qsqlindex.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**

**	Definition	of	QSqlIndex	class

**

**	Created	:	2000-11-03

**

**	Copyright	(C)	2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	sql	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	licenses	may	use	this

**	file	in	accordance	with	the	Qt	Commercial	License	Agreement	provided

**	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QSQLINDEX_H

#define	QSQLINDEX_H

#ifndef	QT_H

#include	"qstring.h"

#include	"qstringlist.h"

#include	"qsqlfield.h"

#include	"qsqlrecord.h"

#endif	//	QT_H

#if	!defined(QT_MODULE_SQL)	||	defined(QT_LICENSE_PROFESSIONAL)

#define	QM_EXPORT_SQL

#else

#define	QM_EXPORT_SQL	Q_EXPORT

#endif

#ifndef	QT_NO_SQL

#if	defined(Q_TEMPLATEDLL)

//	MOC_SKIP_BEGIN

Q_TEMPLATE_EXTERN	template	class	Q_EXPORT	QValueList<bool>;

//	MOC_SKIP_END

#endif

class	QSqlCursor;

class	QM_EXPORT_SQL	QSqlIndex	:	public	QSqlRecord

{

public:

				QSqlIndex(const	QString&	cursorName	=	QString::null,	const	QString&	name	=	QString::null);

				QSqlIndex(const	QSqlIndex&	other);

				~QSqlIndex();

				QSqlIndex&							operator=(const	QSqlIndex&	other);

				virtual	void					setCursorName(const	QString&	cursorName);

				QString										cursorName()	const	{	return	cursor;	}

				virtual	void					setName(const	QString&	name);

				QString										name()	const	{	return	nm;	}

				void													append(const	QSqlField&	field);

				virtual	void					append(const	QSqlField&	field,	bool	desc);

				bool													isDescending(int	i)	const;

				virtual	void					setDescending(int	i,	bool	desc);

				QString										toString(const	QString&	prefix	=	QString::null,

	 	 	 							const	QString&	sep	=	",",

	 	 	 							bool	verbose	=	TRUE)	const;

				QStringList						toStringList(const	QString&	prefix	=	QString::null,

	 	 	 	 			bool	verbose	=	TRUE)	const;

				static	QSqlIndex	fromStringList(const	QStringList&	l,	const	QSqlCursor*	cursor);

private:

				QString										createField(int	i,	const	QString&	prefix,	bool	verbose)	const;

				QString										cursor;

				QString										nm;

				QValueList<bool>	sorts;

};

#endif	 //	QT_NO_SQL

#endif

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qsqlpropertymap.h
This	is	the	verbatim	text	of	the	qsqlpropertymap.h	include	file.	It	is	provided
only	for	illustration;	the	copyright	remains	with	Trolltech.

/**

**

**	Definition	of	QSqlPropertyMap	class

**

**	Created	:	2000-11-20

**

**	Copyright	(C)	2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	sql	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	licenses	may	use	this

**	file	in	accordance	with	the	Qt	Commercial	License	Agreement	provided

**	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QSQLPROPERTYMAP_H

#define	QSQLPROPERTYMAP_H

#ifndef	QT_H

#include	"qvariant.h"

#include	"qstring.h"

#endif	//	QT_H

#ifndef	QT_NO_SQL

class	QWidget;

class	QSqlPropertyMapPrivate;

class	Q_EXPORT	QSqlPropertyMap	{

public:

				QSqlPropertyMap();

				virtual	~QSqlPropertyMap();

				QVariant						property(QWidget	*	widget);

				virtual	void		setProperty(QWidget	*	widget,	const	QVariant	&	value);

				void	insert(const	QString	&	classname,	const	QString	&	property);

				void	remove(const	QString	&	classname);

				static	QSqlPropertyMap	*	defaultMap();

				static	void	installDefaultMap(QSqlPropertyMap	*	map);

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QSqlPropertyMap(const	QSqlPropertyMap	&);

				QSqlPropertyMap	&operator=(const	QSqlPropertyMap	&);

#endif

				QSqlPropertyMapPrivate*	d;

};

#endif	//	QT_NO_SQL

#endif	//	QSQLPROPERTYMAP_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qsqlquery.h
qsqlquery.h	Trolltech

/**

**

**	Definition	of	QSqlQuery	class

**

**	Created	:	2000-11-03

**

**	Copyright	(C)	2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	sql	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	licenses	may	use	this

**	file	in	accordance	with	the	Qt	Commercial	License	Agreement	provided

**	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QSQLQUERY_H

#define	QSQLQUERY_H

#ifndef	QT_H

#include	"qobject.h"

#include	"qstring.h"

#include	"qvariant.h"

#include	"qvaluelist.h"

#include	"qsqlerror.h"

#include	"qsqlfield.h"

#endif	//	QT_H

#ifndef	QT_NO_SQL

class	QSqlDriver;

class	QSqlResult;

class	QSqlResultInfo;

class	QSqlDatabase;

class	Q_EXPORT	QSqlResultShared	:	public	QObject,	public	QShared

{

				Q_OBJECT

public:

				QSqlResultShared(QSqlResult*	result);

				virtual	~QSqlResultShared();

				QSqlResult*	sqlResult;

private	slots:

				void	slotResultDestroyed();

};

class	Q_EXPORT	QSqlQuery

{

public:

				QSqlQuery(QSqlResult	*	r);

				QSqlQuery(const	QString&	query	=	QString::null,	QSqlDatabase*	db	=	0);

				QSqlQuery(const	QSqlQuery&	other);

				QSqlQuery&										operator=(const	QSqlQuery&	other);

				virtual	~QSqlQuery();

				bool																isValid()	const;

				bool																isActive()	const;

				bool	 								isNull(int	field)	const;

				int																	at()	const;

				QString													lastQuery()	const;

				int																	numRowsAffected()	const;

				QSqlError	 								lastError()	const;

				bool																isSelect()	const;

				int																	size()	const;

				const	QSqlDriver*			driver()	const;

				const	QSqlResult*			result()	const;

				virtual	bool	 exec	(const	QString&	query);

				virtual	QVariant				value(int	i)	const;

				virtual	bool	 seek(int	i,	bool	relative	=	FALSE);

				virtual	bool								next();

				virtual	bool								prev();

				virtual	bool								first();

				virtual	bool								last();

protected:

				virtual	void								beforeSeek();

				virtual	void								afterSeek();

private:

				void																deref();

				bool																checkDetach();

				QSqlResultShared*			d;

};

#endif	//	QT_NO_SQL

#endif

Copyright	©	2002	Trolltech Trademarks :tipy Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qsqlrecord.h
This	is	the	verbatim	text	of	the	qsqlrecord.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**

**	Definition	of	QSqlRecord	class

**

**	Created	:	2000-11-03

**

**	Copyright	(C)	2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	sql	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	licenses	may	use	this

**	file	in	accordance	with	the	Qt	Commercial	License	Agreement	provided

**	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QSQLRECORD_H

#define	QSQLRECORD_H

#ifndef	QT_H

#include	"qstring.h"

#include	"qstringlist.h"

#include	"qvariant.h"

#include	"qsqlfield.h"

#endif	//	QT_H

#ifndef	QT_NO_SQL

class	QSqlRecordPrivate;

class	QSqlRecordShared	:	public	QShared

{

public:

				QSqlRecordShared(QSqlRecordPrivate*	sqlRecordPrivate)

				:	d(sqlRecordPrivate)

				{}

				virtual	~QSqlRecordShared();

				QSqlRecordPrivate*	d;

};

class	Q_EXPORT	QSqlRecord

{

public:

				QSqlRecord();

				QSqlRecord(const	QSqlRecord&	other);

				QSqlRecord&	operator=(const	QSqlRecord&	other);

				virtual	~QSqlRecord();

				virtual	QVariant					value(int	i)	const;

				virtual	QVariant					value(const	QString&	name)	const;

				virtual	void									setValue(int	i,	const	QVariant&	val);

				virtual	void									setValue(const	QString&	name,	const	QVariant&	val);

				bool																	isGenerated(int	i)	const;

				bool																	isGenerated(const	QString&	name)	const;

				virtual	void									setGenerated(const	QString&	name,	bool	generated);

				virtual	void									setGenerated(int	i,	bool	generated);

				virtual	void									setNull(int	i);

				virtual	void									setNull(const	QString&	name);

				bool																	isNull(int	i);

				bool																	isNull(const	QString&	name);

				int																		position(const	QString&	name)	const;

				QString														fieldName(int	i)	const;

				QSqlField*											field(int	i);

				QSqlField*											field(const	QString&	name);

				const	QSqlField*					field(int	i)	const;

				const	QSqlField*					field(const	QString&	name)	const;

				virtual	void									append(const	QSqlField&	field);

				virtual	void									insert(int	pos,	const	QSqlField&	field);

				virtual	void									remove(int	pos);

				bool																	isEmpty()	const;

				bool																	contains(const	QString&	name)	const;

				virtual	void									clear();

				virtual	void									clearValues(bool	nullify	=	FALSE);

				uint																	count()	const;

				virtual	QString						toString(const	QString&	prefix	=	QString::null,

	 	 	 	 			const	QString&	sep	=	",")	const;

				virtual	QStringList		toStringList(const	QString&	prefix	=	QString::null)	const;

private:

				QString														createField(int	i,	const	QString&	prefix)	const;

				void																	deref();

				bool																	checkDetach();

				QSqlRecordShared*				sh;

};

/**/

/*******					QSqlRecordInfo	Class				******/

/**/

typedef	QValueList<QSqlFieldInfo>	QSqlFieldInfoList;

class	Q_EXPORT	QSqlRecordInfo:	public	QSqlFieldInfoList

{

public:

				QSqlRecordInfo():	QSqlFieldInfoList()	{}

				QSqlRecordInfo(const	QSqlFieldInfoList&	other):	QSqlFieldInfoList(other)	{}

				QSqlRecordInfo(const	QSqlRecord&	other);

				size_type	contains(const	QString&	fieldName)	const;

				QSqlFieldInfo	find(const	QString&	fieldName)	const;

				QSqlRecord	toRecord()	const;

};

#endif	 //	QT_NO_SQL

#endif

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qsqlresult.h
This	is	the	verbatim	text	of	the	qsqlresult.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**

**	Definition	of	QSqlResult	class

**

**	Created	:	2000-11-03

**

**	Copyright	(C)	2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	sql	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	licenses	may	use	this

**	file	in	accordance	with	the	Qt	Commercial	License	Agreement	provided

**	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QSQLRESULT_H

#define	QSQLRESULT_H

#ifndef	QT_H

#include	"qstring.h"

#include	"qvariant.h"

#include	"qsqlerror.h"

#include	"qsqlfield.h"

#include	"qsql.h"

#endif	//	QT_H

#if	!defined(QT_MODULE_SQL)	||	defined(QT_LICENSE_PROFESSIONAL)

#define	QM_EXPORT_SQL

#else

#define	QM_EXPORT_SQL	Q_EXPORT

#endif

#ifndef	QT_NO_SQL

class	QSqlDriver;

class	QSql;

class	QSqlResultInfo;

class	QSqlResultPrivate;

class	QM_EXPORT_SQL	QSqlResult

{

friend	class	QSqlQuery;

friend	class	QSqlResultShared;

public:

				virtual	~QSqlResult();

protected:

				QSqlResult(const	QSqlDriver	*	db);

				int		 				at()	const;

				QString									lastQuery()	const;

				QSqlError							lastError()	const;

				bool												isValid()	const;

				bool												isActive()	const;

				bool												isSelect()	const;

				bool												isForwardOnly()	const;

				const	QSqlDriver*	driver()	const;

				virtual	void				setAt(int	at);

				virtual	void				setActive(bool	a);

				virtual	void				setLastError(const	QSqlError&	e);

				virtual	void				setQuery(const	QString&	query);

				virtual	void				setSelect(bool	s);

				virtual	void				setForwardOnly(bool	forward);

				virtual	QVariant	data(int	i)	=	0;

				virtual	bool				isNull(int	i)	=	0;

				virtual	bool				reset	(const	QString&	sqlquery)	=	0;

				virtual	bool				fetch(int	i)	=	0;

				virtual	bool				fetchNext();

				virtual	bool				fetchPrev();

				virtual	bool				fetchFirst()	=	0;

				virtual	bool				fetchLast()	=	0;

				virtual	int					size()	=	0;

				virtual	int					numRowsAffected()	=	0;

private:

				QSqlResultPrivate*	d;

				bool	forwardOnly;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QSqlResult(const	QSqlResult	&);

				QSqlResult	&operator=(const	QSqlResult	&);

#endif

};

#endif	 //	QT_NO_SQL

#endif

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qstatusbar.h
qstatusbar.hTrolltech

/**

**	$Id:		qt/qstatusbar.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QStatusBar	class

**

**	Created	:	980316

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QSTATUSBAR_H

#define	QSTATUSBAR_H

#ifndef	QT_H

#include	"qwidget.h"

#endif	//	QT_H

#ifndef	QT_NO_STATUSBAR

class	QStatusBarPrivate;

class	Q_EXPORT	QStatusBar:	public	QWidget

{

				Q_OBJECT

				Q_PROPERTY(bool	sizeGripEnabled	READ	isSizeGripEnabled	WRITE	setSizeGripEnabled)

public:

				QStatusBar(QWidget*	parent=0,	const	char*	name=0);

				virtual	~QStatusBar();

				virtual	void	addWidget(QWidget	*,	int	stretch	=	0,	bool	=	FALSE);

				virtual	void	removeWidget(QWidget	*);

				void	setSizeGripEnabled(bool);

				bool	isSizeGripEnabled()	const;

public	slots:

				void	message(const	QString	&);

				void	message(const	QString	&,	int);

				void	clear();

protected:

				void	paintEvent(QPaintEvent	*);

				void	resizeEvent(QResizeEvent	*);

				void	reformat();

				void	hideOrShow();

				bool	event(QEvent	*);

private:

				QStatusBarPrivate	*	d;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QStatusBar(const	QStatusBar	&);

				QStatusBar&	operator=(const	QStatusBar	&);

#endif

};

#endif	//	QT_NO_STATUSBAR

#endif	//	QSTATUSBAR_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qstrlist.h
This	is	the	verbatim	text	of	the	qstrlist.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	Id

**

**	Definition	of	QStrList,	QStrIList	and	QStrListIterator	classes

**

**	Created	:	920730

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	tools	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QSTRLIST_H

#define	QSTRLIST_H

#ifndef	QT_H

#include	"qstring.h"

#include	"qptrlist.h"

#include	"qdatastream.h"

#endif	//	QT_H

#if	defined(Q_TEMPLATEDLL)

Q_TEMPLATE_EXTERN	template	class	Q_EXPORT	QPtrList<char>;

Q_TEMPLATE_EXTERN	template	class	Q_EXPORT	QPtrListIterator<char>;

#endif

#if	defined(Q_QDOC)

class	QStrListIterator	:	public	QPtrListIterator<char>

{

};

#else

typedef	QPtrListIterator<char>	QStrListIterator;

#endif

class	Q_EXPORT	QStrList	:	public	QPtrList<char>

{

public:

				QStrList(bool	deepCopies=TRUE)	{	dc	=	deepCopies;	del_item	=	deepCopies;	}

				QStrList(const	QStrList	&);

				~QStrList()		 	 {	clear();	}

				QStrList&	operator=(const	QStrList	&);

private:

				QPtrCollection::Item	newItem(QPtrCollection::Item	d)	{	return	dc	?	qstrdup((const	char*)d)	:	d;	}

				void	deleteItem(QPtrCollection::Item	d)	{	if	(del_item)	delete[]	(char*)d;	}

				int	compareItems(QPtrCollection::Item	s1,	QPtrCollection::Item	s2)	{	return	qstrcmp((const	char*)s1,

	 	 	 	 	 	 	 	(const	char*)s2);	}

#ifndef	QT_NO_DATASTREAM

				QDataStream	&read(QDataStream	&s,	QPtrCollection::Item	&d)

	 	 	 	 {	s	>>	(char	*&)d;	return	s;	}

				QDataStream	&write(QDataStream	&s,	QPtrCollection::Item	d)	const

	 	 	 	 {	return	s	<<	(const	char	*)d;	}

#endif

				bool		dc;

};

class	Q_EXPORT	QStrIList	:	public	QStrList	 //	case	insensitive	string	list

{

public:

				QStrIList(bool	deepCopies=TRUE)	:	QStrList(deepCopies)	{}

				~QStrIList()	 	 	 {	clear();	}

private:

				int			compareItems(QPtrCollection::Item	s1,	QPtrCollection::Item	s2)

	 	 	 	 {	return	qstricmp((const	char*)s1,

	 	 	 	 	 	 				(const	char*)s2);	}

};

inline	QStrList	&	QStrList::operator=(const	QStrList	&strList)

{

				clear();

				dc	=	strList.dc;

				del_item	=	dc;

				QPtrList<char>::operator=(strList);

				return	*this;

}

inline	QStrList::QStrList(const	QStrList	&strList)

				:	QPtrList<char>(strList)

{

				dc	=	FALSE;

				operator=(strList);

}

#endif	//	QSTRLIST_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qstyle.h
This	is	the	verbatim	text	of	the	qstyle.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qstyle.h			3.0.5			edited	May	7	22:37	$

**

**	Definition	of	QStyle	class

**

**	Created	:	980616

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QSTYLE_H

#define	QSTYLE_H

#ifndef	QT_H

#include	"qobject.h"

#endif	//	QT_H

#ifndef	QT_NO_STYLE

class	QPopupMenu;

class	QStylePrivate;

class	QMenuItem;

class	QTab;

class	QListViewItem;

class	QStyleOption	{

public:

				enum	StyleOptionDefault	{	Default	};

				QStyleOption(StyleOptionDefault=Default)	:	def(TRUE)	{}

				//	Note:	we	don't	use	default	arguments	since	that	is	unnecessary

				//	initialization.

				QStyleOption(int	in1,	int	in2)	:

	 def(FALSE),	i1(in1),	i2(in2)	{}

				QStyleOption(int	in1,	int	in2,	int	in3,	int	in4)	:

	 def(FALSE),	i1(in1),	i2(in2),	i3(in3),	i4(in4)	{}

				QStyleOption(QMenuItem*	m)	:	def(FALSE),	mi(m)	{}

				QStyleOption(QMenuItem*	m,	int	in1)	:	def(FALSE),	mi(m),	i1(in1)	{}

				QStyleOption(QMenuItem*	m,	int	in1,	int	in2)	:	def(FALSE),	mi(m),	i1(in1),	i2(in2)	{}

				QStyleOption(const	QColor&	c)	:	def(FALSE),	cl(&c)	{}

				QStyleOption(QTab*	t)	:	def(FALSE),	tb(t)	{}

				QStyleOption(QListViewItem*	i)	:	def(FALSE),	li(i)	{}

				QStyleOption(Qt::ArrowType	a)	:	def(FALSE),	i1((int)a)	{}

				bool	isDefault()	const	{	return	def;	}

				int	lineWidth()	const	{	return	i1;	}

				int	midLineWidth()	const	{	return	i2;	}

				int	frameShape()	const	{	return	i3;	}

				int	frameShadow()	const	{	return	i4;	}

				QMenuItem*	menuItem()	const	{	return	mi;	}

				int	maxIconWidth()	const	{	return	i1;	}

				int	tabWidth()	const	{	return	i2;	}

				const	QColor&	color()	const	{	return	*cl;	}

				QTab*	tab()	const	{	return	tb;	}

				QListViewItem*	listViewItem()	const	{	return	li;	}

				Qt::ArrowType	arrowType()	const	{	return	(Qt::ArrowType)i1;	}

private:

				//	NOTE:	none	of	these	components	have	constructors.

				bool	def;

				bool	b1,b2,b3;	//	reserved

				QMenuItem*	mi;

				QTab*	tb;

				QListViewItem*	li;

				const	QColor*	cl;

				int	i1,	i2,	i3,	i4;

				int	i5,	i6;	//	reserved

				void	*p1,	*p2,	*p3,	*p4,	*p5;	//	reserved

				//	(padded	to	64	bytes	on	some	architectures)

};

class	QStyleHintReturn;	//	not	defined	yet

class	Q_EXPORT	QStyle:	public	QObject

{

				Q_OBJECT

public:

				QStyle();

				virtual	~QStyle();

				//	New	QStyle	API	-	most	of	these	should	probably	be	pure	virtual

				virtual	void	polish(QWidget	*);

				virtual	void	unPolish(QWidget	*);

				virtual	void	polish(QApplication	*);

				virtual	void	unPolish(QApplication	*);

				virtual	void	polish(QPalette	&);

				virtual	void	polishPopupMenu(QPopupMenu*)	=	0;

				virtual	QRect	itemRect(QPainter	*p,	const	QRect	&r,

	 	 	 				int	flags,	bool	enabled,

	 	 	 				const	QPixmap	*pixmap,

	 	 	 				const	QString	&text,	int	len	=	-1)	const;

				virtual	void	drawItem(QPainter	*p,	const	QRect	&r,

	 	 	 			int	flags,	const	QColorGroup	&g,	bool	enabled,

	 	 	 			const	QPixmap	*pixmap,	const	QString	&text,

	 	 	 			int	len	=	-1,	const	QColor	*penColor	=	0)	const;

				enum	PrimitiveElement	{

	 PE_ButtonCommand,

	 PE_ButtonDefault,

	 PE_ButtonBevel,

	 PE_ButtonTool,

	 PE_ButtonDropDown,

	 PE_FocusRect,

	 PE_ArrowUp,

	 PE_ArrowDown,

	 PE_ArrowRight,

	 PE_ArrowLeft,

	 PE_SpinWidgetUp,

	 PE_SpinWidgetDown,

	 PE_SpinWidgetPlus,

	 PE_SpinWidgetMinus,

	 PE_Indicator,

	 PE_IndicatorMask,

	 PE_ExclusiveIndicator,

	 PE_ExclusiveIndicatorMask,

	 PE_DockWindowHandle,

	 PE_DockWindowSeparator,

	 PE_DockWindowResizeHandle,

	 PE_Splitter,

	 PE_Panel,

	 PE_PanelPopup,

	 PE_PanelMenuBar,

	 PE_PanelDockWindow,

	 PE_TabBarBase,

	 PE_HeaderSection,

	 PE_HeaderArrow,

	 PE_StatusBarSection,

	 PE_GroupBoxFrame,

	 PE_Separator,

	 PE_SizeGrip,

	 PE_CheckMark,

	 PE_ScrollBarAddLine,

	 PE_ScrollBarSubLine,

	 PE_ScrollBarAddPage,

	 PE_ScrollBarSubPage,

	 PE_ScrollBarSlider,

	 PE_ScrollBarFirst,

	 PE_ScrollBarLast,

	 PE_ProgressBarChunk,

	 PE_PanelLineEdit,

	 PE_PanelTabWidget,

	 PE_WindowFrame,

	 //	do	not	add	any	values	below/greater	this

	 PE_CustomBase	=		 	 0xf000000

				};

				enum	StyleFlags	{

	 Style_Default	=		 	 0x00000000,

	 Style_Enabled	=		 	 0x00000001,

	 Style_Raised	=	 	 	 0x00000002,

	 Style_Sunken	=	 		 	 0x00000004,

	 Style_Off	=	 	 	 0x00000008,

	 Style_NoChange	=	 	 0x00000010,

	 Style_On	=	 	 	 0x00000020,

	 Style_Down	=	 	 	 0x00000040,

	 Style_Horizontal	=	 	 0x00000080,

	 Style_HasFocus	=	 	 0x00000100,

	 Style_Top	=	 	 	 0x00000200,

	 Style_Bottom	=	 	 	 0x00000400,

	 Style_FocusAtBorder	=	 	 0x00000800,

	 Style_AutoRaise	=	 	 0x00001000,

	 Style_MouseOver	=	 	 0x00002000,

	 Style_Up	=	 	 	 0x00004000,

	 Style_Selected	=	 		 0x00008000,

	 Style_Active	=	 	 	 0x00010000,

	 Style_ButtonDefault	=	 	 0x00020000

				};

				typedef	uint	SFlags;

				virtual	void	drawPrimitive(PrimitiveElement	pe,

	 	 	 	 QPainter	*p,

	 	 	 	 const	QRect	&r,

	 	 	 	 const	QColorGroup	&cg,

	 	 	 	 SFlags	flags	=	Style_Default,

	 	 	 	 const	QStyleOption&	=	QStyleOption::Default)	const	=	0;

				enum	ControlElement	{

	 CE_PushButton,

	 CE_PushButtonLabel,

	 CE_CheckBox,

	 CE_CheckBoxLabel,

	 CE_RadioButton,

	 CE_RadioButtonLabel,

	 CE_TabBarTab,

	 CE_TabBarLabel,

	 CE_ProgressBarGroove,

	 CE_ProgressBarContents,

	 CE_ProgressBarLabel,

	 CE_PopupMenuItem,

	 CE_MenuBarItem,

	 CE_ToolButtonLabel,

	 CE_PopupMenuScroller,

	 //	do	not	add	any	values	below/greater	than	this

	 CE_CustomBase	=		 0xf0000000

				};

				virtual	void	drawControl(ControlElement	element,

	 	 	 						QPainter	*p,

	 	 	 						const	QWidget	*widget,

	 	 	 						const	QRect	&r,

	 	 	 						const	QColorGroup	&cg,

	 	 	 						SFlags	how	=	Style_Default,

	 	 	 						const	QStyleOption&	=	QStyleOption::Default)	const	=	0;

				virtual	void	drawControlMask(ControlElement	element,

	 	 	 	 		QPainter	*p,

	 	 	 	 		const	QWidget	*widget,

	 	 	 	 		const	QRect	&r,

	 	 	 	 		const	QStyleOption&	=	QStyleOption::Default)	const	=	0;

				enum	SubRect	{

	 SR_PushButtonContents,

	 SR_PushButtonFocusRect,

	 SR_CheckBoxIndicator,

	 SR_CheckBoxContents,

	 SR_CheckBoxFocusRect,

	 SR_RadioButtonIndicator,

	 SR_RadioButtonContents,

	 SR_RadioButtonFocusRect,

	 SR_ComboBoxFocusRect,

	 SR_SliderFocusRect,

	 SR_DockWindowHandleRect,

	 SR_ProgressBarGroove,

	 SR_ProgressBarContents,

	 SR_ProgressBarLabel,

	 SR_ToolButtonContents,

	 //	do	not	add	any	values	below/greater	than	this

	 SR_CustomBase	=		 0xf0000000

				};

				virtual	QRect	subRect(SubRect	r,	const	QWidget	*widget)	const	=	0;

				enum	ComplexControl{

	 CC_SpinWidget,

	 CC_ComboBox,

	 CC_ScrollBar,

	 CC_Slider,

	 CC_ToolButton,

	 CC_TitleBar,

	 CC_ListView,

	 //	do	not	add	any	values	below/greater	than	this

	 CC_CustomBase	=		 0xf0000000

				};

				enum	SubControl	{

	 SC_None	=	 	 	 0x00000000,

	 SC_ScrollBarAddLine	=	 	 0x00000001,

	 SC_ScrollBarSubLine	=	 	 0x00000002,

	 SC_ScrollBarAddPage	=	 	 0x00000004,

	 SC_ScrollBarSubPage	=	 	 0x00000008,

	 SC_ScrollBarFirst	=	 	 0x00000010,

	 SC_ScrollBarLast	=	 	 0x00000020,

	 SC_ScrollBarSlider	=	 	 0x00000040,

	 SC_ScrollBarGroove	=	 	 0x00000080,

	 SC_SpinWidgetUp	=	 	 0x00000001,

	 SC_SpinWidgetDown	=	 	 0x00000002,

	 SC_SpinWidgetFrame	=	 	 0x00000004,

	 SC_SpinWidgetEditField	=	 0x00000008,

	 SC_SpinWidgetButtonField	=	 0x00000010,

	 SC_ComboBoxFrame	=	 	 0x00000001,

	 SC_ComboBoxEditField	=	 	 0x00000002,

	 SC_ComboBoxArrow	=	 	 0x00000004,

	 SC_SliderGroove	=	 	 0x00000001,

	 SC_SliderHandle	=		 	 0x00000002,

	 SC_SliderTickmarks	=		 	 0x00000004,

	 SC_ToolButton	=		 	 0x00000001,

	 SC_ToolButtonMenu	=	 	 0x00000002,

	 SC_TitleBarLabel	=	 	 0x00000001,

	 SC_TitleBarSysMenu	=	 	 0x00000002,

	 SC_TitleBarMinButton	=	 	 0x00000004,

	 SC_TitleBarMaxButton	=	 	 0x00000008,

	 SC_TitleBarCloseButton	=	 0x00000010,

	 SC_TitleBarNormalButton	=	 0x00000020,

	 SC_TitleBarShadeButton	=	 0x00000040,

	 SC_TitleBarUnshadeButton	=	 0x00000080,

	 SC_ListView	=	 	 	 0x00000001,

	 SC_ListViewBranch	=	 	 0x00000002,

	 SC_ListViewExpand	=	 	 0x00000004,

	 SC_All	=	 	 	 0xffffffff

				};

				typedef	uint	SCFlags;

				virtual	void	drawComplexControl(ComplexControl	control,

	 	 	 	 					QPainter	*p,

	 	 	 	 					const	QWidget	*widget,

	 	 	 	 					const	QRect	&r,

	 	 	 	 					const	QColorGroup	&cg,

	 	 	 	 					SFlags	how	=	Style_Default,

	 	 	 	 					SCFlags	sub	=	SC_All,

	 	 	 	 					SCFlags	subActive	=	SC_None,

	 	 	 	 					const	QStyleOption&	=	QStyleOption::Default)	const	=	0;

				virtual	void	drawComplexControlMask(ComplexControl	control,

	 	 	 	 	 	QPainter	*p,

	 	 	 	 	 	const	QWidget	*widget,

	 	 	 	 	 	const	QRect	&r,

	 	 	 	 	 	const	QStyleOption&	=	QStyleOption::Default)	const	=	0;

				virtual	QRect	querySubControlMetrics(ComplexControl	control,

	 	 	 	 	 		const	QWidget	*widget,

	 	 	 	 	 		SubControl	sc,

	 	 	 	 	 		const	QStyleOption&	=	QStyleOption::Default)	const	=	0;

				virtual	SubControl	querySubControl(ComplexControl	control,

	 	 	 	 	 const	QWidget	*widget,

	 	 	 	 	 const	QPoint	&pos,

	 	 	 	 	 const	QStyleOption&	=	QStyleOption::Default)	const	=	0;

				enum	PixelMetric	{

	 PM_ButtonMargin,

	 PM_ButtonDefaultIndicator,

	 PM_MenuButtonIndicator,

	 PM_ButtonShiftHorizontal,

	 PM_ButtonShiftVertical,

	 PM_DefaultFrameWidth,

	 PM_SpinBoxFrameWidth,

	 PM_MaximumDragDistance,

	 PM_ScrollBarExtent,

	 PM_ScrollBarSliderMin,

	 PM_SliderThickness,	 								//	total	slider	thickness

	 PM_SliderControlThickness,					 //	thickness	of	the	business	part

	 PM_SliderLength,	 	 //	total	length	of	slider

	 PM_SliderTickmarkOffset,	 //

	 PM_SliderSpaceAvailable,	 //	available	space	for	slider	to	move

	 PM_DockWindowSeparatorExtent,

	 PM_DockWindowHandleExtent,

	 PM_DockWindowFrameWidth,

	 PM_MenuBarFrameWidth,

	 PM_TabBarTabOverlap,

	 PM_TabBarTabHSpace,

	 PM_TabBarTabVSpace,

	 PM_TabBarBaseHeight,

	 PM_TabBarBaseOverlap,

	 PM_ProgressBarChunkWidth,

	 PM_SplitterWidth,

	 PM_TitleBarHeight,

	 PM_IndicatorWidth,

	 PM_IndicatorHeight,

	 PM_ExclusiveIndicatorWidth,

	 PM_ExclusiveIndicatorHeight,

	 PM_PopupMenuScrollerHeight,

	 //	do	not	add	any	values	below/greater	than	this

	 PM_CustomBase	=		 0xf0000000

				};

				virtual	int	pixelMetric(PixelMetric	metric,

	 	 	 					const	QWidget	*widget	=	0)	const	=	0;

				enum	ContentsType	{

	 CT_PushButton,

	 CT_CheckBox,

	 CT_RadioButton,

	 CT_ToolButton,

	 CT_ComboBox,

	 CT_Splitter,

	 CT_DockWindow,

	 CT_ProgressBar,

	 CT_PopupMenuItem,

	 //	do	not	add	any	values	below/greater	than	this

	 CT_CustomBase	=		 0xf0000000

				};

				virtual	QSize	sizeFromContents(ContentsType	contents,

	 	 	 	 				const	QWidget	*widget,

	 	 	 	 				const	QSize	&contentsSize,

	 	 	 	 				const	QStyleOption&	=	QStyleOption::Default)	const	=	0;

				enum	StyleHint		{

	 //	...

	 //	the	general	hints

	 //	...

								//	disabled	text	should	be	etched,	ala	Windows

	 SH_EtchDisabledText,

	 //	the	GUI	style	enum,	argh!

	 SH_GUIStyle,

	 //	...

	 //	widget	specific	hints

	 //	...

	 SH_ScrollBar_BackgroundMode,

	 SH_ScrollBar_MiddleClickAbsolutePosition,

	 SH_ScrollBar_ScrollWhenPointerLeavesControl,

	 //	QEvent::Type	-	which	mouse	event	to	select	a	tab

	 SH_TabBar_SelectMouseType,

	 SH_TabBar_Alignment,

	 SH_Header_ArrowAlignment,

	 //	bool	-	sliders	snap	to	values	while	moving,	ala	Windows

	 SH_Slider_SnapToValue,

	 //	bool	-	key	presses	handled	in	a	sloppy	manner	-	ie.	left	on	a	vertical

	 //	slider	subtracts	a	line

	 SH_Slider_SloppyKeyEvents,

	 //	bool	-	center	button	on	progress	dialogs,	ala	Motif,	else	right	aligned

	 //	perhaps	this	should	be	a	Qt::Alignment	value

	 SH_ProgressDialog_CenterCancelButton,

	 //	Qt::AlignmentFlags	-	text	label	alignment	in	progress	dialogs

	 //	Center	on	windows,	Auto|VCenter	otherwize

	 SH_ProgressDialog_TextLabelAlignment,

	 //	bool	-	right	align	buttons	on	print	dialog,	ala	Windows

	 SH_PrintDialog_RightAlignButtons,

	 //	bool	-	1	or	2	pixel	space	between	the	menubar	and	the	dockarea,	ala	Windows

	 //	this	*REALLY*	needs	a	better	name

	 SH_MainWindow_SpaceBelowMenuBar,

	 //	bool	-	select	the	text	in	the	line	edit	about	the	listbox	when	selecting

	 //	an	item	from	the	listbox,	or	when	the	line	edit	receives	focus,	ala	Windows

	 SH_FontDialog_SelectAssociatedText,

	 //	bool	-	allows	disabled	menu	items	to	be	active

	 SH_PopupMenu_AllowActiveAndDisabled,

	 //	bool	-	pressing	space	activates	item,	ala	Motif

	 SH_PopupMenu_SpaceActivatesItem,

	 //	int	-	number	of	milliseconds	to	wait	before	opening	a	submenu

	 //	256	on	windows,	96	on	motif

	 SH_PopupMenu_SubMenuPopupDelay,

	 //	bool	-	should	scrollviews	draw	their	frame	only	around	contents	(ala	Motif),

	 //	or	around	contents,	scrollbars	and	corner	widgets	(ala	Windows)	?

	 SH_ScrollView_FrameOnlyAroundContents,

	 //	bool	-	menubars	items	are	navigatable	by	pressing	alt,	followed	by	using

	 //	the	arrow	keys	to	select	the	desired	item

	 SH_MenuBar_AltKeyNavigation,

	 //	bool	-	mouse	tracking	in	combobox	dropdown	lists

	 SH_ComboBox_ListMouseTracking,

	 //	bool	-	mouse	tracking	in	popupmenus

	 SH_PopupMenu_MouseTracking,

	 //	bool	-	mouse	tracking	in	menubars

	 SH_MenuBar_MouseTracking,

	 //	bool	-	gray	out	selected	items	when	loosing	focus

	 SH_ItemView_ChangeHighlightOnFocus,

	 //	bool	-	supports	shared	activation	among	modeless	widgets

	 SH_Widget_ShareActivation,

	 //	bool	-	workspace	should	just	maximize	the	client	area

	 SH_Workspace_FillSpaceOnMaximize,

	 //	bool	-	supports	popup	menu	comboboxes

	 SH_ComboBox_Popup,	

	 //	bool	-	titlebar	has	no	border

	 SH_TitleBar_NoBorder,

	 //	bool	-	stop	scrollbar	at	mouse

	 SH_ScrollBar_StopMouseOverSlider,

	 //bool	-	blink	cursort	with	selected	text

	 SH_BlinkCursorWhenTextSelected,

	 //bool	-	richtext	selections	extend	the	full	width	of	the	docuemnt

	 SH_RichText_FullWidthSelection,

	 //bool	-	popupmenu	supports	scrolling	instead	of	multicolumn	mode

	 SH_PopupMenu_Scrollable,

	 //	do	not	add	any	values	below/greater	than	this

	 SH_CustomBase	=		 0xf0000000

				};

				virtual	int	styleHint(StyleHint	stylehint,

	 	 	 			const	QWidget	*widget	=	0,

	 	 	 			const	QStyleOption&	=	QStyleOption::Default,

	 	 	 			QStyleHintReturn*	returnData	=	0

)	const	=	0;

				enum	StylePixmap	{

	 SP_TitleBarMinButton,

	 SP_TitleBarMaxButton,

	 SP_TitleBarCloseButton,

	 SP_TitleBarNormalButton,

	 SP_TitleBarShadeButton,

	 SP_TitleBarUnshadeButton,

	 SP_DockWindowCloseButton,

	 SP_MessageBoxInformation,

	 SP_MessageBoxWarning,

	 SP_MessageBoxCritical,

	 //	do	not	add	any	values	below/greater	than	this

	 SP_CustomBase	=		 0xf0000000

				};

				virtual	QPixmap	stylePixmap(StylePixmap	stylepixmap,

	 	 	 	 	const	QWidget	*widget	=	0,

	 	 	 	 	const	QStyleOption&	=	QStyleOption::Default)	const	=	0;

				static	QRect	visualRect(const	QRect	&logical,	const	QWidget	*w);

				static	QRect	visualRect(const	QRect	&logical,	const	QRect	&bounding);

				//	Old	2.x	QStyle	API

#ifndef	QT_NO_COMPAT

				int	defaultFrameWidth()	const

				{

	 return	pixelMetric(PM_DefaultFrameWidth);

				}

				void	tabbarMetrics(const	QWidget*	t,

	 	 	 int&	hf,	int&	vf,	int&	ov)	const

				{

	 hf	=	pixelMetric(PM_TabBarTabHSpace,	t);

	 vf	=	pixelMetric(PM_TabBarTabVSpace,	t);

	 ov	=	pixelMetric(PM_TabBarBaseOverlap,	t);

				}

				QSize	scrollBarExtent()	const

				{

	 return	QSize(pixelMetric(PM_ScrollBarExtent),

	 	 					pixelMetric(PM_ScrollBarExtent));

				}

#endif

private:

				QStylePrivate	*	d;

#if	defined(Q_DISABLE_COPY)

				QStyle(const	QStyle	&);

				QStyle&	operator=(const	QStyle	&);

#endif

};

#endif	//	QT_NO_STYLE

#endif	//	QSTYLE_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qstylefactory.h
This	is	the	verbatim	text	of	the	qstylefactory.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	Id

**

**	...

**

**	Copyright	(C)	2000-2002	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QSTYLEFACTORY_H

#define	QSTYLEFACTORY_H

#ifndef	QT_H

#include	"qstringlist.h"

#endif	//	QT_H

#ifndef	QT_NO_STYLE

class	QString;

class	QStyle;

class	Q_EXPORT	QStyleFactory

{

public:

#ifndef	QT_NO_STRINGLIST

				static	QStringList	keys();

#endif

				static	QStyle	*create(const	QString&);

};

#endif	//QT_NO_STYLE

#endif	//QSTYLEFACTORY_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qstyleplugin.h
This	is	the	verbatim	text	of	the	qstyleplugin.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qstyleplugin.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QStylePlugin	class

**

**	Created	:	010920

**

**	Copyright	(C)	2001	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QSTYLEPLUGIN_H

#define	QSTYLEPLUGIN_H

#ifndef	QT_H

#include	"qgplugin.h"

#include	"qstringlist.h"

#endif	//	QT_H

#ifndef	QT_NO_STYLE

#ifndef	QT_NO_COMPONENT

class	QStyle;

class	QStylePluginPrivate;

class	Q_EXPORT	QStylePlugin	:	public	QGPlugin

{

				Q_OBJECT

public:

				QStylePlugin();

				~QStylePlugin();

				virtual	QStringList	keys()	const	=	0;

				virtual	QStyle	*create(const	QString	&key)	=	0;

private:

				QStylePluginPrivate	*d;

};

#endif	//	QT_NO_COMPONENT

#endif	//	QT_NO_STYLE

#endif	//	QSTYLEPLUGIN_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qstylesheet.h
This	is	the	verbatim	text	of	the	qstylesheet.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qstylesheet.h			3.0.5			edited	Jun	13	10:38	$

**

**	Definition	of	the	QStyleSheet	class

**

**	Created	:	990101

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QSTYLESHEET_H

#define	QSTYLESHEET_H

#ifndef	QT_H

#include	"qstring.h"

#include	"qvaluelist.h"

#include	"qptrvector.h"

#include	"qdict.h"

#include	"qobject.h"

#endif	//	QT_H

#ifndef	QT_NO_RICHTEXT

class	QStyleSheet;

class	QTextDocument;

template<class	Key,	class	T>	class	QMap;

class	QStyleSheetItemData;

class	Q_EXPORT	QStyleSheetItem	:	public	Qt

{

public:

				QStyleSheetItem(QStyleSheet*	parent,	const	QString&	name);

				QStyleSheetItem(const	QStyleSheetItem	&);

				~QStyleSheetItem();

				QString	name()	const;

				QStyleSheet*	styleSheet();

				const	QStyleSheet*	styleSheet()	const;

				enum	AdditionalStyleValues	{	Undefined		=	-	1};

				enum	DisplayMode	{

	 DisplayBlock,

	 DisplayInline,

	 DisplayListItem,

	 DisplayNone

				};

				DisplayMode	displayMode()	const;

				void	setDisplayMode(DisplayMode	m);

				int	alignment()	const;

				void	setAlignment(int	f);

				enum	VerticalAlignment	{

	 VAlignBaseline,

	 VAlignSub,

	 VAlignSuper

				};

				VerticalAlignment	verticalAlignment()	const;

				void	setVerticalAlignment(VerticalAlignment	valign);

				int	fontWeight()	const;

				void	setFontWeight(int	w);

				int	logicalFontSize()	const;

				void	setLogicalFontSize(int	s);

				int	logicalFontSizeStep()	const;

				void	setLogicalFontSizeStep(int	s);

				int	fontSize()	const;

				void	setFontSize(int	s);

				QString	fontFamily()	const;

				void	setFontFamily(const	QString&);

				int	numberOfColumns()	const;

				void	setNumberOfColumns(int	ncols);

				QColor	color()	const;

				void	setColor(const	QColor	&);

				bool	fontItalic()	const;

				void	setFontItalic(bool);

				bool	definesFontItalic()	const;

				bool	fontUnderline()	const;

				void	setFontUnderline(bool);

				bool	definesFontUnderline()	const;

				bool	fontStrikeOut()	const;

				void	setFontStrikeOut(bool);

				bool	definesFontStrikeOut()	const;

				bool	isAnchor()	const;

				void	setAnchor(bool	anc);

				enum	WhiteSpaceMode	{	WhiteSpaceNormal,	WhiteSpacePre,	WhiteSpaceNoWrap	};

				WhiteSpaceMode	whiteSpaceMode()	const;

				void	setWhiteSpaceMode(WhiteSpaceMode	m);

				enum	Margin	{

	 MarginLeft,

	 MarginRight,

	 MarginTop,

	 MarginBottom,

	 MarginFirstLine,

	 MarginAll,

	 MarginVertical,

	 MarginHorizontal

				};

				int	margin(Margin	m)	const;

				void	setMargin(Margin,	int);

				enum	ListStyle	{

	 ListDisc,

	 ListCircle,

	 ListSquare,

	 ListDecimal,

	 ListLowerAlpha,

	 ListUpperAlpha

				};

				ListStyle	listStyle()	const;

				void	setListStyle(ListStyle);

				QString	contexts()	const;

				void	setContexts(const	QString&);

				bool	allowedInContext(const	QStyleSheetItem*)	const;

				bool	selfNesting()	const;

				void	setSelfNesting(bool);

				void	setLineSpacing(int	ls);

				int	lineSpacing()	const;

private:

				void	init();

				QStyleSheetItemData*	d;

};

#if	defined(Q_TEMPLATEDLL)

//	MOC_SKIP_BEGIN

Q_TEMPLATE_EXTERN	template	class	Q_EXPORT	QDict<QStyleSheetItem>;

Q_TEMPLATE_EXTERN	template	class	Q_EXPORT	QValueList<	QPtrVector<QStyleSheetItem>	>;

Q_TEMPLATE_EXTERN	template	class	Q_EXPORT	QPtrVector<QStyleSheetItem>;

Q_TEMPLATE_EXTERN	template	class	Q_EXPORT	QValueList<QStyleSheetItem::ListStyle>;

//	MOC_SKIP_END

#endif

class	QTextCustomItem;

class	Q_EXPORT	QStyleSheet	:	public	QObject

{

				Q_OBJECT

public:

				QStyleSheet(QObject	*parent=0,	const	char	*name=0);

				virtual	~QStyleSheet();

				static	QStyleSheet*	defaultSheet();

				static	void	setDefaultSheet(QStyleSheet*);

				QStyleSheetItem*	item(const	QString&	name);

				const	QStyleSheetItem*	item(const	QString&	name)	const;

				void	insert(QStyleSheetItem*	item);

				virtual	QTextCustomItem*	tag(const	QString&	name,

	 	 	 				const	QMap<QString,	QString>	&attr,

	 	 	 				const	QString&	context,

	 	 	 				const	QMimeSourceFactory&	factory,

	 	 	 				bool	emptyTag,	QTextDocument	*doc)	const;

				static	QString	escape(const	QString&);

				static	QString	convertFromPlainText(const	QString&,	QStyleSheetItem::WhiteSpaceMode	mode	=	QStyleSheetItem::WhiteSpacePre);

				static	bool	mightBeRichText(const	QString&);

				virtual	void	scaleFont(QFont&	font,	int	logicalSize)	const;

				virtual	void	error(const	QString&)	const;

private:

				void	init();

				QDict<QStyleSheetItem>	styles;

				QStyleSheetItem*	nullstyle;

};

#endif	//	QT_NO_RICHTEXT

#endif	//	QSTYLESHEET_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qtabbar.h
This	is	the	verbatim	text	of	the	qtabbar.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qtabbar.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QTab	and	QTabBar	classes

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QTABBAR_H

#define	QTABBAR_H

#ifndef	QT_H

#include	"qwidget.h"

#include	"qptrlist.h"

#endif	//	QT_H

#ifndef	QT_NO_TABBAR

class	QTabBar;

class	QIconSet;

class	Q_EXPORT	QTab	:	public	Qt

{

				friend	class	QTabBar;

				friend	class	QTabWidget;

public:

				QTab();

				virtual	~QTab();

				QTab(const	QString&	text);

				QTab(const	QIconSet&	icon,	const	QString&	text	=	QString::null);

				void	setText(const	QString&	text);

				QString	text()	const	{	return	label;	}

				void	setIconSet(const	QIconSet&	icon);

				QIconSet*	iconSet()	const	{	return	iconset;	}

				void	setRect(const	QRect&	rect)	{	r	=	rect;	}

				QRect	rect()	const	{	return	r;	}

				void	setEnabled(bool	enable)	{	enabled	=	enable;	}

				bool	isEnabled()	const	{	return	enabled;	}

				void	setIdentifier(int	i)	{	id	=	i;	}

				int	identifier()	const	{	return	id;	}

private:

				void	setTabBar(QTabBar	*tb);

				QString	label;

				QRect	r;	//	the	bounding	rectangle	of	this	(may	overlap	with	others)

				bool	enabled;

				int	id;

				QIconSet*	iconset;	//	optional	iconset

				QTabBar	*tb;

};

struct	QTabPrivate;

//class	*QAccel;

class	Q_EXPORT	QTabBar:	public	QWidget

{

				Q_OBJECT

				Q_ENUMS(Shape)

				Q_PROPERTY(Shape	shape	READ	shape	WRITE	setShape)

				Q_PROPERTY(int	currentTab	READ	currentTab	WRITE	setCurrentTab)

				Q_PROPERTY(int	count	READ	count)

				Q_PROPERTY(int	keyboardFocusTab	READ	keyboardFocusTab)

public:

				QTabBar(QWidget*	parent=0,	const	char*	name=0);

				~QTabBar();

				enum	Shape	{	RoundedAbove,	RoundedBelow,

	 	 	TriangularAbove,	TriangularBelow	};

				Shape	shape()	const;

				virtual	void	setShape(Shape);

				void	show();

				virtual	int	addTab(QTab	*);

				virtual	int	insertTab(QTab	*,	int	index	=	-1);

				virtual	void	removeTab(QTab	*);

				virtual	void	setTabEnabled(int,	bool);

				bool	isTabEnabled(int)	const;

				QSize	sizeHint()	const;

				QSize	minimumSizeHint()	const;

				int	currentTab()	const;

				int	keyboardFocusTab()	const;

				QTab	*	tab(int)	const;

				QTab	*	tabAt(int)	const;

				int	indexOf(int)	const;

				int	count()	const;

				virtual	void	layoutTabs();

				virtual	QTab	*	selectTab(const	QPoint	&	p)	const;

				void		 removeToolTip(int	index);

				void						 setToolTip(int	index,	const	QString	&	tip);

				QString		 toolTip(int	index)	const;

public	slots:

				virtual	void	setCurrentTab(int);

				virtual	void	setCurrentTab(QTab	*);

signals:

				void		selected(int);

protected:

				virtual	void	paint(QPainter	*,	QTab	*,	bool)	const;	//	###	not	const

				virtual	void	paintLabel(QPainter*,	const	QRect&,	QTab*,	bool)	const;

				void	focusInEvent(QFocusEvent	*e);

				void	focusOutEvent(QFocusEvent	*e);

				void	resizeEvent(QResizeEvent	*);

				void	paintEvent(QPaintEvent	*);

				void	mousePressEvent	(QMouseEvent	*);

				void	mouseMoveEvent	(QMouseEvent	*);

				void	mouseReleaseEvent	(QMouseEvent	*);

				void	keyPressEvent(QKeyEvent	*);

				void	styleChange(QStyle&);

				void	fontChange	(const	QFont	&);

				

				QPtrList<QTab>	*	tabList();

private	slots:

				void	scrollTabs();

private:

				QPtrList<QTab>	*	l;

				QPtrList<QTab>	*	lstatic;

				void	makeVisible(QTab*	t);

				void	updateArrowButtons();

				QTabPrivate	*	d;

				friend	class	QTabBarToolTip;

				friend	class	QTab;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QTabBar(const	QTabBar	&);

				QTabBar&	operator=(const	QTabBar	&);

#endif

};

#endif	//	QT_NO_TABBAR

#endif	//	QTABBAR_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qtabdialog.h
qtabdialog.hTrolltech

/**

**	$Id:		qt/qtabdialog.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QTabDialog	class

**

**	Created	:	960825

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	dialogs	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QTABDIALOG_H

#define	QTABDIALOG_H

#ifndef	QT_H

#include	"qdialog.h"

#include	"qiconset.h"

#endif	//	QT_H

#ifndef	QT_NO_TABDIALOG

class		QTabBar;

class		QTab;

class		QTabDialogPrivate;

class	Q_EXPORT	QTabDialog	:	public	QDialog

{

				Q_OBJECT

public:

				QTabDialog(QWidget*	parent=0,	const	char*	name=0,	bool	modal=FALSE,

	 	 WFlags	f=0);

				~QTabDialog();

				void	show();

				void	setFont(const	QFont	&	font);

				void	addTab(QWidget	*,	const	QString	&);

				void	addTab(QWidget	*child,	const	QIconSet&	iconset,	const	QString	&label);

				void	addTab(QWidget	*,	QTab*);

				void	insertTab(QWidget	*,	const	QString	&,	int	index	=	-1);

				void	insertTab(QWidget	*child,	const	QIconSet&	iconset,	const	QString	&label,	int	index	=	-1);

				void	insertTab(QWidget	*,	QTab*,	int	index	=	-1);

				void	changeTab(QWidget	*,	const	QString	&);

				void	changeTab(QWidget	*child,	const	QIconSet&	iconset,	const	QString	&label);

				bool	isTabEnabled(QWidget	*)	const;

				void	setTabEnabled(QWidget	*,	bool);

				bool	isTabEnabled(const	char*)	const;	//	compatibility

				void	setTabEnabled(const	char*,	bool);	//	compatibility

				void	showPage(QWidget	*);

				void	removePage(QWidget	*);

				QString	tabLabel(QWidget	*);

				QWidget	*	currentPage()	const;

				void	setDefaultButton(const	QString	&text);

				void	setDefaultButton();

				bool	hasDefaultButton()	const;

				void	setHelpButton(const	QString	&text);

				void	setHelpButton();

				bool	hasHelpButton()	const;

				void	setCancelButton(const	QString	&text);

				void	setCancelButton();

				bool	hasCancelButton()	const;

				void	setApplyButton(const	QString	&text);

				void	setApplyButton();

				bool	hasApplyButton()	const;

#ifndef	Q_QDOC

				void	setOKButton(const	QString	&text	=	QString::null);

#endif

				void	setOkButton(const	QString	&text);

				void	setOkButton();

				bool	hasOkButton()	const;

protected:

				void	paintEvent(QPaintEvent	*);

				void	resizeEvent(QResizeEvent	*);

				void	styleChange(QStyle&);

				void	setTabBar(QTabBar*);

				QTabBar*	tabBar()	const;

signals:

				void	aboutToShow();

				void	applyButtonPressed();

				void	cancelButtonPressed();

				void	defaultButtonPressed();

				void	helpButtonPressed();

				void	currentChanged(QWidget	*);

				void	selected(const	QString&);	//	obsolete

private	slots:

				void	showTab(int	i);

private:

				void	setSizes();

				void	setUpLayout();

				QTabDialogPrivate	*d;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QTabDialog(const	QTabDialog	&);

				QTabDialog&	operator=(const	QTabDialog	&);

#endif

};

#endif	//	QT_NO_TABDIALOG

#endif	//	QTABDIALOG_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qtable.h
qtable.hTrolltech

/**

**

**	Definition	of	QTable	widget	class

**

**	Created	:	000607

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	table	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	licenses	may	use	this

**	file	in	accordance	with	the	Qt	Commercial	License	Agreement	provided

**	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QTABLE_H

#define	QTABLE_H

#ifndef	QT_H

#include	<qscrollview.h>

#include	<qpixmap.h>

#include	<qptrvector.h>

#include	<qheader.h>

#include	<qmemarray.h>

#include	<qptrlist.h>

#include	<qguardedptr.h>

#include	<qshared.h>

#include	<qintdict.h>

#include	<qstringlist.h>

#endif	//	QT_H

#ifndef	QT_NO_TABLE

class	QTableHeader;

class	QValidator;

class	QTable;

class	QPaintEvent;

class	QTimer;

class	QResizeEvent;

class	QComboBox;

class	QCheckBox;

class	QDragObject;

struct	QTablePrivate;

struct	QTableHeaderPrivate;

class	Q_EXPORT	QTableSelection

{

public:

				QTableSelection();

				void	init(int	row,	int	col);

				void	expandTo(int	row,	int	col);

				bool	operator==(const	QTableSelection	&s)	const;

				bool	operator!=(const	QTableSelection	&s)	const	{	return	!(operator==(s));	}

				int	topRow()	const	{	return	tRow;	}

				int	bottomRow()	const	{	return	bRow;	}

				int	leftCol()	const	{	return	lCol;	}

				int	rightCol()	const	{	return	rCol;	}

				int	anchorRow()	const	{	return	aRow;	}

				int	anchorCol()	const	{	return	aCol;	}

				bool	isActive()	const	{	return	active;	}

private:

				uint	active	:	1;

				uint	inited	:	1;

				int	tRow,	lCol,	bRow,	rCol;

				int	aRow,	aCol;

};

class	Q_EXPORT	QTableItem	:	public	Qt

{

				friend	class	QTable;

public:

				enum	EditType	{	Never,	OnTyping,	WhenCurrent,	Always	};

				QTableItem(QTable	*table,	EditType	et,	const	QString	&text);

				QTableItem(QTable	*table,	EditType	et,	const	QString	&text,

																const	QPixmap	&p);

				virtual	~QTableItem();

				virtual	QPixmap	pixmap()	const;

				virtual	QString	text()	const;

				virtual	void	setPixmap(const	QPixmap	&p);

				virtual	void	setText(const	QString	&t);

				QTable	*table()	const	{	return	t;	}

				virtual	int	alignment()	const;

				virtual	void	setWordWrap(bool	b);

				bool	wordWrap()	const;

				EditType	editType()	const;

				virtual	QWidget	*createEditor()	const;

				virtual	void	setContentFromEditor(QWidget	*w);

				virtual	void	setReplaceable(bool);

				bool	isReplaceable()	const;

				virtual	QString	key()	const;

				virtual	QSize	sizeHint()	const;

				virtual	void	setSpan(int	rs,	int	cs);

				int	rowSpan()	const;

				int	colSpan()	const;

				virtual	void	setRow(int	r);

				virtual	void	setCol(int	c);

				int	row()	const;

				int	col()	const;

				virtual	void	paint(QPainter	*p,	const	QColorGroup	&cg,

																								const	QRect	&cr,	bool	selected);

				void	updateEditor(int	oldRow,	int	oldCol);

				virtual	void	setEnabled(bool	b);

				bool	isEnabled()	const;

				virtual	int	rtti()	const;

				static	int	RTTI;

private:

				QString	txt;

				QPixmap	pix;

				QTable	*t;

				EditType	edType;

				uint	wordwrap	:	1;

				uint	tcha	:	1;

				uint	enabled	:	1;

				int	rw,	cl;

				int	rowspan,	colspan;

};

class	Q_EXPORT	QComboTableItem	:	public	QTableItem

{

public:

				QComboTableItem(QTable	*table,	const	QStringList	&list,	bool	editable	=	FALSE);

				virtual	QWidget	*createEditor()	const;

				virtual	void	setContentFromEditor(QWidget	*w);

				virtual	void	paint(QPainter	*p,	const	QColorGroup	&cg,

																								const	QRect	&cr,	bool	selected);

				virtual	void	setCurrentItem(int	i);

				virtual	void	setCurrentItem(const	QString	&i);

				int	currentItem()	const;

				QString	currentText()	const;

				int	count()	const;

				QString	text(int	i)	const;

				virtual	void	setEditable(bool	b);

				bool	isEditable()	const;

				virtual	void	setStringList(const	QStringList	&l);

				int	rtti()	const;

				static	int	RTTI;

private:

				QComboBox	*cb;

				QStringList	entries;

				int	current;

				bool	edit;

				static	QComboBox	*fakeCombo;

};

class	Q_EXPORT	QCheckTableItem	:	public	QTableItem

{

public:

				QCheckTableItem(QTable	*table,	const	QString	&txt);

				virtual	QWidget	*createEditor()	const;

				virtual	void	setContentFromEditor(QWidget	*w);

				virtual	void	paint(QPainter	*p,	const	QColorGroup	&cg,

																								const	QRect	&cr,	bool	selected);

				virtual	void	setChecked(bool	b);

				bool	isChecked()	const;

				int	rtti()	const;

				static	int	RTTI;

private:

				QCheckBox	*cb;

				bool	checked;

};

#if	defined(Q_TEMPLATEDLL)

//	MOC_SKIP_BEGIN

Q_TEMPLATE_EXTERN	template	class	Q_EXPORT	QPtrVector<QTableItem>;

Q_TEMPLATE_EXTERN	template	class	Q_EXPORT	QPtrVector<QWidget>;

Q_TEMPLATE_EXTERN	template	class	Q_EXPORT	QPtrList<QTableSelection>;

Q_TEMPLATE_EXTERN	template	class	Q_EXPORT	QIntDict<int>;

//	MOC_SKIP_END

#endif

class	Q_EXPORT	QTable	:	public	QScrollView

{

				Q_OBJECT

				Q_ENUMS(SelectionMode	FocusStyle)

				Q_PROPERTY(int	numRows	READ	numRows	WRITE	setNumRows)

				Q_PROPERTY(int	numCols	READ	numCols	WRITE	setNumCols)

				Q_PROPERTY(bool	showGrid	READ	showGrid	WRITE	setShowGrid)

				Q_PROPERTY(bool	rowMovingEnabled	READ	rowMovingEnabled	WRITE	setRowMovingEnabled)

				Q_PROPERTY(bool	columnMovingEnabled	READ	columnMovingEnabled	WRITE	setColumnMovingEnabled)

				Q_PROPERTY(bool	readOnly	READ	isReadOnly	WRITE	setReadOnly)

				Q_PROPERTY(bool	sorting	READ	sorting	WRITE	setSorting)

				Q_PROPERTY(SelectionMode	selectionMode	READ	selectionMode	WRITE	setSelectionMode)

				Q_PROPERTY(FocusStyle	focusStyle	READ	focusStyle	WRITE	setFocusStyle)

				friend	class	QTableHeader;

				friend	class	QComboTableItem;

				friend	class	QCheckTableItem;

				friend	class	QTableItem;

public:

				QTable(QWidget*	parent=0,	const	char*	name=0);

				QTable(int	numRows,	int	numCols,

												QWidget*	parent=0,	const	char*	name=0);

				~QTable();

				QHeader	*horizontalHeader()	const;

				QHeader	*verticalHeader()	const;

				enum	SelectionMode	{	Single,	Multi,	SingleRow,	MultiRow,	NoSelection	};

				virtual	void	setSelectionMode(SelectionMode	mode);

				SelectionMode	selectionMode()	const;

				virtual	void	setItem(int	row,	int	col,	QTableItem	*item);

				virtual	void	setText(int	row,	int	col,	const	QString	&text);

				virtual	void	setPixmap(int	row,	int	col,	const	QPixmap	&pix);

				virtual	QTableItem	*item(int	row,	int	col)	const;

				virtual	QString	text(int	row,	int	col)	const;

				virtual	QPixmap	pixmap(int	row,	int	col)	const;

				virtual	void	clearCell(int	row,	int	col);

				virtual	QRect	cellGeometry(int	row,	int	col)	const;

				virtual	int	columnWidth(int	col)	const;

				virtual	int	rowHeight(int	row)	const;

				virtual	int	columnPos(int	col)	const;

				virtual	int	rowPos(int	row)	const;

				virtual	int	columnAt(int	x)	const;

				virtual	int	rowAt(int	y)	const;

				virtual	int	numRows()	const;

				virtual	int	numCols()	const;

				void	updateCell(int	row,	int	col);

				bool	eventFilter(QObject	*	o,	QEvent	*);

				int	currentRow()	const	{	return	curRow;	}

				int	currentColumn()	const	{	return	curCol;	}

				void	ensureCellVisible(int	row,	int	col);

				bool	isSelected(int	row,	int	col)	const;

				bool	isRowSelected(int	row,	bool	full	=	FALSE)	const;

				bool	isColumnSelected(int	col,	bool	full	=	FALSE)	const;

				int	numSelections()	const;

				QTableSelection	selection(int	num)	const;

				virtual	int	addSelection(const	QTableSelection	&s);

				virtual	void	removeSelection(const	QTableSelection	&s);

				virtual	void	removeSelection(int	num);

				virtual	int	currentSelection()	const;

				bool	showGrid()	const;

				bool	columnMovingEnabled()	const;

				bool	rowMovingEnabled()	const;

				virtual	void	sortColumn(int	col,	bool	ascending	=	TRUE,

																													bool	wholeRows	=	FALSE);

				bool	sorting()	const;

				virtual	void	takeItem(QTableItem	*i);

				virtual	void	setCellWidget(int	row,	int	col,	QWidget	*e);

				virtual	QWidget	*cellWidget(int	row,	int	col)	const;

				virtual	void	clearCellWidget(int	row,	int	col);

				virtual	QRect	cellRect(int	row,	int	col)	const;

				virtual	void	paintCell(QPainter	*p,	int	row,	int	col,

																												const	QRect	&cr,	bool	selected);

				virtual	void	paintCell(QPainter	*p,	int	row,	int	col,

																												const	QRect	&cr,	bool	selected,	const	QColorGroup	&cg);

				virtual	void	paintFocus(QPainter	*p,	const	QRect	&r);

				QSize	sizeHint()	const;

				bool	isReadOnly()	const;

				bool	isRowReadOnly(int	row)	const;

				bool	isColumnReadOnly(int	col)	const;

				void	setEnabled(bool	b);

				void	repaintSelections();

				enum	FocusStyle	{	FollowStyle,	SpreadSheet	};

				virtual	void	setFocusStyle(FocusStyle	fs);

				FocusStyle	focusStyle()	const;

public	slots:

				virtual	void	setNumRows(int	r);

				virtual	void	setNumCols(int	r);

				virtual	void	setShowGrid(bool	b);

				virtual	void	hideRow(int	row);

				virtual	void	hideColumn(int	col);

				virtual	void	showRow(int	row);

				virtual	void	showColumn(int	col);

				virtual	void	setColumnWidth(int	col,	int	w);

				virtual	void	setRowHeight(int	row,	int	h);

				virtual	void	adjustColumn(int	col);

				virtual	void	adjustRow(int	row);

				virtual	void	setColumnStretchable(int	col,	bool	stretch);

				virtual	void	setRowStretchable(int	row,	bool	stretch);

				bool	isColumnStretchable(int	col)	const;

				bool	isRowStretchable(int	row)	const;

				virtual	void	setSorting(bool	b);

				virtual	void	swapRows(int	row1,	int	row2,	bool	swapHeader	=	FALSE);

				virtual	void	swapColumns(int	col1,	int	col2,	bool	swapHeader	=	FALSE);

				virtual	void	swapCells(int	row1,	int	col1,	int	row2,	int	col2);

				virtual	void	setLeftMargin(int	m);

				virtual	void	setTopMargin(int	m);

				virtual	void	setCurrentCell(int	row,	int	col);

				void	clearSelection(bool	repaint	=	TRUE);

				virtual	void	setColumnMovingEnabled(bool	b);

				virtual	void	setRowMovingEnabled(bool	b);

				virtual	void	setReadOnly(bool	b);

				virtual	void	setRowReadOnly(int	row,	bool	ro);

				virtual	void	setColumnReadOnly(int	col,	bool	ro);

				virtual	void	setDragEnabled(bool	b);

				bool	dragEnabled()	const;

				virtual	void	insertRows(int	row,	int	count	=	1);

				virtual	void	insertColumns(int	col,	int	count	=	1);

				virtual	void	removeRow(int	row);

				virtual	void	removeRows(const	QMemArray<int>	&rows);

				virtual	void	removeColumn(int	col);

				virtual	void	removeColumns(const	QMemArray<int>	&cols);

				virtual	void	editCell(int	row,	int	col,	bool	replace	=	FALSE);

protected:

				enum	EditMode	{	NotEditing,	Editing,	Replacing	};

				void	drawContents(QPainter	*p,	int	cx,	int	cy,	int	cw,	int	ch);

				void	contentsMousePressEvent(QMouseEvent*);

				void	contentsMouseMoveEvent(QMouseEvent*);

				void	contentsMouseDoubleClickEvent(QMouseEvent*);

				void	contentsMouseReleaseEvent(QMouseEvent*);

				void	contentsContextMenuEvent(QContextMenuEvent	*	e);

				void	keyPressEvent(QKeyEvent*);

				void	focusInEvent(QFocusEvent*);

				void	focusOutEvent(QFocusEvent*);

				void	viewportResizeEvent(QResizeEvent	*);

				void	showEvent(QShowEvent	*e);

				void	setEditMode(EditMode	mode,	int	row,	int	col);

#ifndef	QT_NO_DRAGANDDROP

				virtual	void	contentsDragEnterEvent(QDragEnterEvent	*e);

				virtual	void	contentsDragMoveEvent(QDragMoveEvent	*e);

				virtual	void	contentsDragLeaveEvent(QDragLeaveEvent	*e);

				virtual	void	contentsDropEvent(QDropEvent	*e);

				virtual	QDragObject	*dragObject();

				virtual	void	startDrag();

#endif

				virtual	void	paintEmptyArea(QPainter	*p,	int	cx,	int	cy,	int	cw,	int	ch);

				virtual	void	activateNextCell();

				virtual	QWidget	*createEditor(int	row,	int	col,	bool	initFromCell)	const;

				virtual	void	setCellContentFromEditor(int	row,	int	col);

				virtual	QWidget	*beginEdit(int	row,	int	col,	bool	replace);

				virtual	void	endEdit(int	row,	int	col,	bool	accept,	bool	replace);

				virtual	void	resizeData(int	len);

				virtual	void	insertWidget(int	row,	int	col,	QWidget	*w);

				int	indexOf(int	row,	int	col)	const;

				void	windowActivationChange(bool);

				bool	isEditing()	const;

				EditMode	editMode()	const;

				int	currEditRow()	const;

				int	currEditCol()	const;

protected	slots:

				virtual	void	columnWidthChanged(int	col);

				virtual	void	rowHeightChanged(int	row);

				virtual	void	columnIndexChanged(int	section,	int	fromIndex,	int	toIndex);

				virtual	void	rowIndexChanged(int	section,	int	fromIndex,	int	toIndex);

				virtual	void	columnClicked(int	col);

signals:

				void	currentChanged(int	row,	int	col);

				void	clicked(int	row,	int	col,	int	button,	const	QPoint	&mousePos);

				void	doubleClicked(int	row,	int	col,	int	button,	const	QPoint	&mousePos);

				void	pressed(int	row,	int	col,	int	button,	const	QPoint	&mousePos);

				void	selectionChanged();

				void	valueChanged(int	row,	int	col);

				void	contextMenuRequested(int	row,	int	col,	const	QPoint	&pos);

#ifndef	QT_NO_DRAGANDDROP

				void	dropped(QDropEvent	*e);

#endif

private	slots:

				void	doAutoScroll();

				void	doValueChanged();

				void	updateGeometriesSlot();

private:

				void	contentsMousePressEventEx(QMouseEvent*);

				void	drawContents(QPainter*);

				void	updateGeometries();

				void	repaintSelections(QTableSelection	*oldSelection,

																												QTableSelection	*newSelection,

																												bool	updateVertical	=	TRUE,

																												bool	updateHorizontal	=	TRUE);

				QRect	rangeGeometry(int	topRow,	int	leftCol,

																									int	bottomRow,	int	rightCol,	bool	&optimize);

				void	fixRow(int	&row,	int	y);

				void	fixCol(int	&col,	int	x);

				void	init(int	numRows,	int	numCols);

				QSize	tableSize()	const;

				void	repaintCell(int	row,	int	col);

				void	contentsToViewport2(int	x,	int	y,	int&	vx,	int&	vy);

				QPoint	contentsToViewport2(const	QPoint	&p);

				void	viewportToContents2(int	vx,	int	vy,	int&	x,	int&	y);

				QPoint	viewportToContents2(const	QPoint	&p);

				void	updateRowWidgets(int	row);

				void	updateColWidgets(int	col);

				bool	isSelected(int	row,	int	col,	bool	includeCurrent)	const;

				void	setCurrentCell(int	row,	int	col,	bool	updateSelections);

				void	fixCell(int	&row,	int	&col,	int	key);

				void	delayedUpdateGeometries();

				struct	TableWidget

				{

	 TableWidget(QWidget	*w,	int	r,	int	c)	:	wid(w),	row(r),	col	(c)	{}

	 QWidget	*wid;

	 int	row,	col;

				};

				void	saveContents(QPtrVector<QTableItem>	&tmp,

	 	 							QPtrVector<TableWidget>	&tmp2);

				void	updateHeaderAndResizeContents(QTableHeader	*header,

	 	 	 	 	 int	num,	int	colRow,

	 	 	 	 	 int	width,	bool	&updateBefore);

				void	restoreContents(QPtrVector<QTableItem>	&tmp,

	 	 	 		QPtrVector<TableWidget>	&tmp2);

				void	finishContentsResze(bool	updateBefore);

private:

				QPtrVector<QTableItem>	contents;

				QPtrVector<QWidget>	widgets;

				int	curRow;

				int	curCol;

				QTableHeader	*leftHeader,	*topHeader;

				EditMode	edMode;

				int	editCol,	editRow;

				QPtrList<QTableSelection>	selections;

				QTableSelection	*currentSel;

				QTimer	*autoScrollTimer;

				int	lastSortCol;

				bool	sGrid	:	1;

				bool	mRows	:	1;

				bool	mCols	:	1;

				bool	asc	:	1;

				bool	doSort	:	1;

				bool	mousePressed	:	1;

				bool	readOnly	:	1;

				bool	shouldClearSelection	:	1;

				bool	dEnabled	:	1;

				bool	context_menu	:	1;

				bool	drawActiveSelection	:	1;

				bool	was_visible	:	1;

				SelectionMode	selMode;

				int	pressedRow,	pressedCol;

				QTablePrivate	*d;

				QIntDict<int>	roRows;

				QIntDict<int>	roCols;

				int	startDragRow;

				int	startDragCol;

				QPoint	dragStartPos;

				int	oldCurrentRow,	oldCurrentCol;

				QWidget	*topLeftCorner;

				FocusStyle	focusStl;

				QSize	cachedSizeHint;

};

#endif	//	QT_NO_TABLE

#endif	//	TABLE_H

Copyright	©	2002	Trolltech Trademarks :farfareast Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qtabwidget.h
This	is	the	verbatim	text	of	the	qtabwidget.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qtabwidget.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QTabWidget	class

**

**	Created	:	990318

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QTABWIDGET_H

#define	QTABWIDGET_H

#ifndef	QT_H

#include	"qwidget.h"

#include	"qiconset.h"

#endif	//	QT_H

#ifndef	QT_NO_TABWIDGET

class	QTabBar;

class	QTabWidgetData;

class	QTab;

class	QWidgetStack;

class	Q_EXPORT	QTabWidget	:	public	QWidget

{

				Q_OBJECT

				Q_ENUMS(TabPosition)

				Q_ENUMS(TabShape)

				Q_PROPERTY(TabPosition	tabPosition	READ	tabPosition	WRITE	setTabPosition)

				Q_PROPERTY(TabShape	tabShape	READ	tabShape	WRITE	setTabShape)

				Q_PROPERTY(int	margin	READ	margin	WRITE	setMargin)

				Q_PROPERTY(int	currentPage	READ	currentPageIndex	WRITE	setCurrentPage)

				Q_PROPERTY(int	count	READ	count)

				Q_OVERRIDE(bool	autoMask	DESIGNABLE	true	SCRIPTABLE	true)

public:

				QTabWidget(QWidget	*parent	=	0,	const	char	*name	=	0,	WFlags	f	=	0);

				~QTabWidget();

				virtual	void	addTab(QWidget	*,	const	QString	&);

				virtual	void	addTab(QWidget	*child,	const	QIconSet&	iconset,

	 	 	 	const	QString	&label);

				virtual	void	addTab(QWidget	*,	QTab*);

				virtual	void	insertTab(QWidget	*,	const	QString	&,	int	index	=	-1);

				virtual	void	insertTab(QWidget	*child,	const	QIconSet&	iconset,

	 	 	 				const	QString	&label,	int	index	=	-1);

				virtual	void	insertTab(QWidget	*,	QTab*,	int	index	=	-1);

				void	changeTab(QWidget	*,	const	QString	&);

				void	changeTab(QWidget	*child,	const	QIconSet&	iconset,

	 	 				const	QString	&label);

				bool	isTabEnabled(QWidget	*)	const;

				void	setTabEnabled(QWidget	*,	bool);

				QString	tabLabel(QWidget	*)	const;

				void	setTabLabel(QWidget	*p,	const	QString	&l);

				QIconSet	tabIconSet(QWidget	*	w)	const;

				void	setTabIconSet(QWidget	*	w,	const	QIconSet	&	iconset);

				void	removeTabToolTip(QWidget	*	w);

				void	setTabToolTip(QWidget	*	w,	const	QString	&	tip);

				QString	tabToolTip(QWidget	*	w)	const;

				QWidget	*	currentPage()	const;

				QWidget	*page(int)	const;

				QString	label(int)	const;

				int	currentPageIndex()	const;

				int	indexOf(QWidget	*)	const;

				QSize	sizeHint()	const;

				QSize	minimumSizeHint()	const;

				enum	TabPosition	{	Top,	Bottom	};

				TabPosition	tabPosition()	const;

				void	setTabPosition(TabPosition);

				enum	TabShape	{	Rounded,	Triangular	};

				TabShape	tabShape()	const;

				void	setTabShape(TabShape	s);

				int	margin()	const;

				void	setMargin(int);

				int	count()	const;

public	slots:

				void	setCurrentPage(int);

				virtual	void	showPage(QWidget	*);

				virtual	void	removePage(QWidget	*);

protected:

				void	showEvent(QShowEvent	*);

				void	resizeEvent(QResizeEvent	*);

				void	setTabBar(QTabBar	*);

				QTabBar*	tabBar()	const;

				void	styleChange(QStyle&);

				void	updateMask();

				bool	eventFilter(QObject	*,	QEvent	*);

signals:

				void	currentChanged(QWidget	*);

#ifndef	Q_QDOC

				void	selected(const	QString&);

#endif

private	slots:

				void	showTab(int	i);

private:

				QTabWidgetData	*d;

				void	setUpLayout(bool	=	FALSE);

				friend	class	QTabDialog;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QTabWidget(const	QTabWidget	&);

				QTabWidget&	operator=(const	QTabWidget	&);

#endif

};

#endif	//	QT_NO_TABWIDGET

#endif	//	QTABWIDGET_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qtextbrowser.h
This	is	the	verbatim	text	of	the	qtextbrowser.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qtextbrowser.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	the	QTextBrowser	class

**

**	Created	:	990101

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QTEXTBROWSER_H

#define	QTEXTBROWSER_H

#ifndef	QT_H

#include	"qptrlist.h"

#include	"qpixmap.h"

#include	"qscrollview.h"

#include	"qcolor.h"

#include	"qtextedit.h"

#endif	//	QT_H

#ifndef	QT_NO_TEXTBROWSER

class	QTextBrowserData;

class	Q_EXPORT	QTextBrowser	:	public	QTextEdit

{

				Q_OBJECT

				Q_PROPERTY(QString	source	READ	source	WRITE	setSource)

public:

				QTextBrowser(QWidget*	parent=0,	const	char*	name=0);

				~QTextBrowser();

				QString	source()	const;

public	slots:

				virtual	void	setSource(const	QString&	name);

				virtual	void	backward();

				virtual	void	forward();

				virtual	void	home();

				virtual	void	reload();

				void	setText(const	QString	&txt)	{	setText(txt,	QString::null);	}

				virtual	void	setText(const	QString	&txt,	const	QString	&context);

signals:

				void	backwardAvailable(bool);

				void	forwardAvailable(bool);

				void	highlighted(const	QString&);

				void	linkClicked(const	QString&);

protected:

				void	keyPressEvent(QKeyEvent	*	e);

private:

				void	popupDetail(const	QString&	contents,	const	QPoint&	pos);

				bool	linksEnabled()	const	{	return	TRUE;	}

				void	emitHighlighted(const	QString	&s)	{	emit	highlighted(s);	}

				void	emitLinkClicked(const	QString	&s)	{	emit	linkClicked(s);	}

				QTextBrowserData	*d;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QTextBrowser(const	QTextBrowser	&);

				QTextBrowser&	operator=(const	QTextBrowser	&);

#endif

};

#endif	//	QT_NO_TEXTBROWSER

#endif	//	QTEXTBROWSER_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qtextcodec.h
This	is	the	verbatim	text	of	the	qtextcodec.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qtextcodec.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QTextCodec	class

**

**	Created	:	981015

**

**	Copyright	(C)	1998-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	tools	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QTEXTCODEC_H

#define	QTEXTCODEC_H

#ifndef	QT_H

#include	"qstring.h"

#endif	//	QT_H

#ifndef	QT_NO_TEXTCODEC

class	QTextCodec;

class	QIODevice;

class	QFont;

class	Q_EXPORT	QTextEncoder	{

public:

				virtual	~QTextEncoder();

				virtual	QCString	fromUnicode(const	QString&	uc,	int&	lenInOut)	=	0;

};

class	Q_EXPORT	QTextDecoder	{

public:

				virtual	~QTextDecoder();

				virtual	QString	toUnicode(const	char*	chars,	int	len)	=	0;

};

class	Q_EXPORT	QTextCodec	{

public:

				virtual	~QTextCodec();

#ifndef	QT_NO_CODECS

				static	QTextCodec*	loadCharmap(QIODevice*);

				static	QTextCodec*	loadCharmapFile(QString	filename);

#endif	//QT_NO_CODECS

				static	QTextCodec*	codecForMib(int	mib);

				static	QTextCodec*	codecForName(const	char*	hint,	int	accuracy=0);

				static	QTextCodec*	codecForContent(const	char*	chars,	int	len);

				static	QTextCodec*	codecForIndex(int	i);

				static	QTextCodec*	codecForLocale();

				static	void	setCodecForLocale(QTextCodec	*c);

				static	void	deleteAllCodecs();

				static	const	char*	locale();

				virtual	const	char*	name()	const	=	0;

				virtual	const	char*	mimeName()	const;

				virtual	int	mibEnum()	const	=	0;

				virtual	QTextDecoder*	makeDecoder()	const;

				virtual	QTextEncoder*	makeEncoder()	const;

				virtual	QString	toUnicode(const	char*	chars,	int	len)	const;

				virtual	QCString	fromUnicode(const	QString&	uc,	int&	lenInOut)	const;

				

				QCString	fromUnicode(const	QString&	uc)	const;

				QString	toUnicode(const	QByteArray&,	int	len)	const;

				QString	toUnicode(const	QByteArray&)	const;

				QString	toUnicode(const	QCString&,	int	len)	const;

				QString	toUnicode(const	QCString&)	const;

				QString	toUnicode(const	char*	chars)	const;

				virtual	bool	canEncode(QChar)	const;

				virtual	bool	canEncode(const	QString&)	const;

				virtual	int	heuristicContentMatch(const	char*	chars,	int	len)	const	=	0;

				virtual	int	heuristicNameMatch(const	char*	hint)	const;

				virtual	QByteArray	fromUnicode(const	QString&	uc,	int	from,	int	len)	const;

				virtual	unsigned	short	characterFromUnicode(const	QString	&str,	int	pos)	const;

protected:

				QTextCodec();

				static	int	simpleHeuristicNameMatch(const	char*	name,	const	char*	hint);

				friend	class	QFont;

};

#endif	//	QT_NO_TEXTCODEC

#endif	//	QTEXTCODEC_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qtextcodecplugin.h
This	is	the	verbatim	text	of	the	qtextcodecplugin.h	include	file.	It	is	provided
only	for	illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qtextcodecplugin.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QTextCodecPlugin	class

**

**	Created	:	010920

**

**	Copyright	(C)	2001	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QTEXTCODECPLUGIN_H

#define	QTEXTCODECPLUGIN_H

#ifndef	QT_H

#include	"qgplugin.h"

#include	"qstringlist.h"

#endif	//	QT_H

#ifndef	QT_NO_TEXTCODECPLUGIN

class	QTextCodec;

class	QTextCodecPluginPrivate;

class	Q_EXPORT	QTextCodecPlugin	:	public	QGPlugin

{

				Q_OBJECT

public:

				QTextCodecPlugin();

				~QTextCodecPlugin();

				virtual	QStringList	names()	const	=	0;

				virtual	QTextCodec	*createForName(const	QString	&name)	=	0;

				

				virtual	QValueList<int>	mibEnums()	const	=	0;

				virtual	QTextCodec	*createForMib(int	mib)	=	0;

private:

				QTextCodecPluginPrivate	*d;

};

#endif	//	QT_NO_TEXTCODECPLUGIN

#endif	//	QTEXTCODECPLUGIN_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qtextedit.h
qtextedit.hTrolltech

/**

**	$Id:		qt/qtextedit.h			3.0.5			edited	Jun	11	11:18	$

**

**	Definition	of	the	QTextEdit	class

**

**	Created	:	990101

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QTEXTEDIT_H

#define	QTEXTEDIT_H

#ifndef	QT_H

#include	"qscrollview.h"

#include	"qstylesheet.h"

#include	"qptrvector.h"

#include	"qvaluelist.h"

#endif	//	QT_H

#ifndef	QT_NO_TEXTEDIT

class	QPainter;

class	QTextDocument;

class	QTextCursor;

class	QKeyEvent;

class	QResizeEvent;

class	QMouseEvent;

class	QTimer;

class	QTextString;

class	QTextCommand;

class	QTextParagraph;

class	QTextFormat;

class	QFont;

class	QColor;

class	QTextEdit;

class	QTextBrowser;

class	QTextString;

struct	QUndoRedoInfoPrivate;

class	QPopupMenu;

class	QTextEditPrivate;

class	Q_EXPORT	QTextEdit	:	public	QScrollView

{

				friend	class	QTextBrowser;

				Q_OBJECT

				Q_ENUMS(WordWrap	WrapPolicy)

				Q_PROPERTY(TextFormat	textFormat	READ	textFormat	WRITE	setTextFormat)

				Q_PROPERTY(QString	text	READ	text	WRITE	setText)

				Q_PROPERTY(QBrush	paper	READ	paper	WRITE	setPaper)

				Q_PROPERTY(bool	linkUnderline	READ	linkUnderline	WRITE	setLinkUnderline)

				Q_PROPERTY(QString	documentTitle	READ	documentTitle)

				Q_PROPERTY(int	length	READ	length)

				Q_PROPERTY(WordWrap	wordWrap	READ	wordWrap	WRITE	setWordWrap)

				Q_PROPERTY(int	wrapColumnOrWidth	READ	wrapColumnOrWidth	WRITE	setWrapColumnOrWidth)

				Q_PROPERTY(WrapPolicy	wrapPolicy	READ	wrapPolicy	WRITE	setWrapPolicy)

				Q_PROPERTY(bool	hasSelectedText	READ	hasSelectedText)

				Q_PROPERTY(QString	selectedText	READ	selectedText)

				Q_PROPERTY(int	undoDepth	READ	undoDepth	WRITE	setUndoDepth)

				Q_PROPERTY(bool	overwriteMode	READ	isOverwriteMode	WRITE	setOverwriteMode)

				Q_PROPERTY(bool	modified	READ	isModified	WRITE	setModified	DESIGNABLE	false)

				Q_PROPERTY(bool	readOnly	READ	isReadOnly	WRITE	setReadOnly)

				Q_PROPERTY(bool	undoRedoEnabled	READ	isUndoRedoEnabled	WRITE	setUndoRedoEnabled)

				Q_PROPERTY(int	tabStopWidth	READ	tabStopWidth	WRITE	setTabStopWidth)

public:

				enum	WordWrap	{

	 NoWrap,

	 WidgetWidth,

	 FixedPixelWidth,

	 FixedColumnWidth

				};

				enum	WrapPolicy	{

	 AtWordBoundary,

	 Anywhere,

	 AtWhiteSpace	=	AtWordBoundary	//	deprecated,	don't	use

				};

				enum	KeyboardAction	{

	 ActionBackspace,

	 ActionDelete,

	 ActionReturn,

	 ActionKill

				};

				enum	CursorAction	{

	 MoveBackward,

	 MoveForward,

	 MoveWordBackward,

	 MoveWordForward,

	 MoveUp,

	 MoveDown,

	 MoveLineStart,

	 MoveLineEnd,

	 MoveHome,

	 MoveEnd,

	 MovePgUp,

	 MovePgDown

				};

				enum	VerticalAlignment	{

	 AlignNormal,

	 AlignSuperScript,

	 AlignSubScript

				};

				QTextEdit(const	QString&	text,	const	QString&	context	=	QString::null,

	 							QWidget*	parent=0,	const	char*	name=0);

				QTextEdit(QWidget*	parent=0,	const	char*	name=0);

				virtual	~QTextEdit();

				void	setPalette(const	QPalette	&);

				QString	text()	const;

				QString	text(int	para)	const;

				TextFormat	textFormat()	const;

				QString	context()	const;

				QString	documentTitle()	const;

				void	getSelection(int	*paraFrom,	int	*indexFrom,

	 	 				int	*paraTo,	int	*indexTo,	int	selNum	=	0)	const;

				virtual	bool	find(const	QString	&expr,	bool	cs,	bool	wo,	bool	forward	=	TRUE,

	 	 							int	*para	=	0,	int	*index	=	0);

				int	paragraphs()	const;

				int	lines()	const;

				int	linesOfParagraph(int	para)	const;

				int	lineOfChar(int	para,	int	chr);

				int	length()	const;

				QRect	paragraphRect(int	para)	const;

				int	paragraphAt(const	QPoint	&pos)	const;

				int	charAt(const	QPoint	&pos,	int	*para)	const;

				int	paragraphLength(int	para)	const;

				QStyleSheet*	styleSheet()	const;

				QMimeSourceFactory*	mimeSourceFactory()	const;

				QBrush	paper()	const;

				bool	linkUnderline()	const;

				int	heightForWidth(int	w)	const;

				bool	hasSelectedText()	const;

				QString	selectedText()	const;

				bool	isUndoAvailable()	const;

				bool	isRedoAvailable()	const;

				WordWrap	wordWrap()	const;

				int	wrapColumnOrWidth()	const;

				WrapPolicy	wrapPolicy()	const;

				int	tabStopWidth()	const;

				QString	anchorAt(const	QPoint&	pos);

				QSize	sizeHint()	const;

				bool	isReadOnly()	const	{	return	readonly;	}

				void	getCursorPosition(int	*parag,	int	*index)	const;

				bool	isModified()	const;

				bool	italic()	const;

				bool	bold()	const;

				bool	underline()	const;

				QString	family()	const;

				int	pointSize()	const;

				QColor	color()	const;

				QFont	font()	const;

				int	alignment()	const;

				int	undoDepth()	const;

				//	do	not	use,	will	go	away

				virtual	bool	getFormat(int	para,	int	index,	QFont	*font,	QColor	*color,	VerticalAlignment	*verticalAlignment);

				//	do	not	use,	will	go	away

				virtual	bool	getParagraphFormat(int	para,	QFont	*font,	QColor	*color,

	 	 	 	 					VerticalAlignment	*verticalAlignment,	int	*alignment,

	 	 	 	 					QStyleSheetItem::DisplayMode	*displayMode,

	 	 	 	 					QStyleSheetItem::ListStyle	*listStyle,

	 	 	 	 					int	*listDepth);

				bool	isOverwriteMode()	const	{	return	overWrite;	}

				QColor	paragraphBackgroundColor(int	para)	const;

				bool	isUndoRedoEnabled()	const;

				bool	eventFilter(QObject	*o,	QEvent	*e);

public	slots:

				void	setEnabled(bool);

				virtual	void	setMimeSourceFactory(QMimeSourceFactory*	factory);

				virtual	void	setStyleSheet(QStyleSheet*	styleSheet);

				virtual	void	scrollToAnchor(const	QString&	name);

				virtual	void	setPaper(const	QBrush&	pap);

				virtual	void	setLinkUnderline(bool);

				virtual	void	setWordWrap(WordWrap	mode);

				virtual	void	setWrapColumnOrWidth(int);

				virtual	void	setWrapPolicy(WrapPolicy	policy);

				virtual	void	copy();

				virtual	void	append(const	QString&	text);

				void	setText(const	QString	&txt)	{	setText(txt,	QString::null);	}

				virtual	void	setText(const	QString	&txt,	const	QString	&context);

				virtual	void	setTextFormat(TextFormat	f);

				virtual	void	selectAll(bool	select	=	TRUE);

				virtual	void	setTabStopWidth(int	ts);

				virtual	void	zoomIn(int	range);

				virtual	void	zoomIn()	{	zoomIn(1);	}

				virtual	void	zoomOut(int	range);

				virtual	void	zoomOut()	{	zoomOut(1);	}

				virtual	void	zoomTo(int	size);

				virtual	void	sync();

				virtual	void	setReadOnly(bool	b);

				virtual	void	undo();

				virtual	void	redo();

				virtual	void	cut();

				virtual	void	paste();

#ifndef	QT_NO_CLIPBOARD

				virtual	void	pasteSubType(const	QCString	&subtype);

#endif

				virtual	void	clear();

				virtual	void	del();

				virtual	void	indent();

				virtual	void	setItalic(bool	b);

				virtual	void	setBold(bool	b);

				virtual	void	setUnderline(bool	b);

				virtual	void	setFamily(const	QString	&f);

				virtual	void	setPointSize(int	s);

				virtual	void	setColor(const	QColor	&c);

				virtual	void	setFont(const	QFont	&f);

				virtual	void	setVerticalAlignment(VerticalAlignment	a);

				virtual	void	setAlignment(int	a);

				//	do	not	use,	will	go	away

				virtual	void	setParagType(QStyleSheetItem::DisplayMode	dm,	QStyleSheetItem::ListStyle	listStyle);

				virtual	void	setCursorPosition(int	parag,	int	index);

				virtual	void	setSelection(int	parag_from,	int	index_from,	int	parag_to,	int	index_to,	int	selNum	=	0);

				virtual	void	setSelectionAttributes(int	selNum,	const	QColor	&back,	bool	invertText);

				virtual	void	setModified(bool	m);

				virtual	void	resetFormat();

				virtual	void	setUndoDepth(int	d);

				virtual	void	setFormat(QTextFormat	*f,	int	flags);

				virtual	void	ensureCursorVisible();

				virtual	void	placeCursor(const	QPoint	&pos,	QTextCursor	*c	=	0);

				virtual	void	moveCursor(CursorAction	action,	bool	select);

				virtual	void	doKeyboardAction(KeyboardAction	action);

				virtual	void	removeSelectedText(int	selNum	=	0);

				virtual	void	removeSelection(int	selNum	=	0);

				virtual	void	setCurrentFont(const	QFont	&f);

				virtual	void	setOverwriteMode(bool	b)	{	overWrite	=	b;	}

				virtual	void	scrollToBottom();

				virtual	void	insert(const	QString	&text,	bool	indent	=	FALSE,	bool	checkNewLine	=	TRUE,	bool	removeSelected	=	TRUE);

				virtual	void	insertAt(const	QString	&text,	int	para,	int	index);

				virtual	void	removeParagraph(int	para);

				virtual	void	insertParagraph(const	QString	&text,	int	para);

				virtual	void	setParagraphBackgroundColor(int	para,	const	QColor	&bg);

				virtual	void	clearParagraphBackground(int	para);

				virtual	void	setUndoRedoEnabled(bool	b);

signals:

				void	textChanged();

				void	selectionChanged();

				void	copyAvailable(bool);

				void	undoAvailable(bool	yes);

				void	redoAvailable(bool	yes);

				void	currentFontChanged(const	QFont	&f);

				void	currentColorChanged(const	QColor	&c);

				void	currentAlignmentChanged(int	a);

				void	currentVerticalAlignmentChanged(VerticalAlignment	a);

				void	cursorPositionChanged(QTextCursor	*c);

				void	cursorPositionChanged(int	para,	int	pos);

				void	returnPressed();

				void	modificationChanged(bool	m);

protected:

				void	repaintChanged();

				void	updateStyles();

				void	drawContents(QPainter	*p,	int	cx,	int	cy,	int	cw,	int	ch);

				bool	event(QEvent	*e);

				void	keyPressEvent(QKeyEvent	*e);

				void	resizeEvent(QResizeEvent	*e);

				void	viewportResizeEvent(QResizeEvent*);

				void	contentsMousePressEvent(QMouseEvent	*e);

				void	contentsMouseMoveEvent(QMouseEvent	*e);

				void	contentsMouseReleaseEvent(QMouseEvent	*e);

				void	contentsMouseDoubleClickEvent(QMouseEvent	*e);

#ifndef	QT_NO_WHEELEVENT

				void	contentsWheelEvent(QWheelEvent	*e);

#endif

				void	imStartEvent(QIMEvent	*);

				void	imComposeEvent(QIMEvent	*);

				void	imEndEvent(QIMEvent	*);

#ifndef	QT_NO_DRAGANDDROP

				void	contentsDragEnterEvent(QDragEnterEvent	*e);

				void	contentsDragMoveEvent(QDragMoveEvent	*e);

				void	contentsDragLeaveEvent(QDragLeaveEvent	*e);

				void	contentsDropEvent(QDropEvent	*e);

#endif

				void	contentsContextMenuEvent(QContextMenuEvent	*e);

				bool	focusNextPrevChild(bool	next);

				QTextDocument	*document()	const;

				QTextCursor	*textCursor()	const;

				void	setDocument(QTextDocument	*doc);

				virtual	QPopupMenu	*createPopupMenu(const	QPoint&	pos);

				virtual	QPopupMenu	*createPopupMenu();

				void	drawCursor(bool	visible);

				void	windowActivationChange(bool);

protected	slots:

				virtual	void	doChangeInterval();

private	slots:

				void	formatMore();

				void	doResize();

				void	autoScrollTimerDone();

				void	blinkCursor();

				void	setModified();

				void	startDrag();

				void	documentWidthChanged(int	w);

				void	clipboardChanged();

private:

				struct	Q_EXPORT	UndoRedoInfo	{

	 enum	Type	{	Invalid,	Insert,	Delete,	Backspace,	Return,	RemoveSelected,	Format,	Style	};

	 UndoRedoInfo(QTextDocument	*dc);

	 ~UndoRedoInfo();

	 void	clear();

	 bool	valid()	const;

	 QUndoRedoInfoPrivate	*d;

	 int	id;

	 int	index;

	 int	eid;

	 int	eindex;

	 QTextFormat	*format;

	 int	flags;

	 Type	type;

	 QTextDocument	*doc;

	 QByteArray	styleInformation;

				};

private:

				void	updateCursor(const	QPoint	&	pos);

				void	handleMouseMove(const	QPoint&	pos);

				void	drawContents(QPainter	*);

				virtual	bool	linksEnabled()	const	{	return	FALSE;	}

				void	init();

				void	checkUndoRedoInfo(UndoRedoInfo::Type	t);

				void	updateCurrentFormat();

				bool	handleReadOnlyKeyEvent(QKeyEvent	*e);

				void	makeParagVisible(QTextParagraph	*p);

#ifndef	QT_NO_MIME

				QCString	pickSpecial(QMimeSource*	ms,	bool	always_ask,	const	QPoint&);

#endif

#ifndef	QT_NO_MIMECLIPBOARD

				void	pasteSpecial(const	QPoint&);

#endif

				void	setFontInternal(const	QFont	&f);

				virtual	void	emitHighlighted(const	QString	&)	{}

				virtual	void	emitLinkClicked(const	QString	&)	{}

				void	readFormats(QTextCursor	&c1,	QTextCursor	&c2,	QTextString	&text,	bool	fillStyles	=	FALSE);

				void	clearUndoRedo();

				void	paintDocument(bool	drawAll,	QPainter	*p,	int	cx	=	-1,	int	cy	=	-1,	int	cw	=	-1,	int	ch	=	-1);

				void	moveCursor(CursorAction	action);

				void	ensureFormatted(QTextParagraph	*p);

				void	placeCursor(const	QPoint	&pos,	QTextCursor	*c,	bool	link);

				void	updateMicroFocusHint();

private:

				QTextDocument	*doc;

				QTextCursor	*cursor;

				QTimer	*formatTimer,	*scrollTimer,	*changeIntervalTimer,	*blinkTimer,	*dragStartTimer;

				QTextParagraph	*lastFormatted;

				int	interval;

				UndoRedoInfo	undoRedoInfo;

				QTextFormat	*currentFormat;

				int	currentAlignment;

				QPoint	oldMousePos,	mousePos;

				QPoint	dragStartPos;

				QString	onLink;

				WordWrap	wrapMode;

				WrapPolicy	wPolicy;

				int	wrapWidth;

				QString	pressedLink;

				QTextEditPrivate	*d;

				bool	inDoubleClick	:	1;

				bool	mousePressed	:	1;

				bool	cursorVisible	:	1;

				bool	blinkCursorVisible	:	1;

				bool	readOnly	:	1;

				bool	modified	:	1;

				bool	mightStartDrag	:	1;

				bool	inDnD	:	1;

				bool	readonly	:	1;

				bool	undoEnabled	:	1;

				bool	overWrite	:	1;

};

inline	QTextDocument	*QTextEdit::document()	const

{

				return	doc;

}

inline	QTextCursor	*QTextEdit::textCursor()	const

{

				return	cursor;

}

inline	void	QTextEdit::setCurrentFont(const	QFont	&f)

{

				QTextEdit::setFontInternal(f);

}

#endif	//QT_NO_TEXTEDIT

#endif	//QTEXTVIEW_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qtextview.h
This	is	the	verbatim	text	of	the	qtextview.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qtextview.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	the	QTextView	class

**

**	Created	:	990101

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QTEXTVIEW_H

#define	QTEXTVIEW_H

#ifndef	QT_H

#include	"qtextedit.h"

#endif	//	QT_H

#ifndef	QT_NO_TEXTVIEW

class	Q_EXPORT	QTextView	:	public	QTextEdit

{

				Q_OBJECT

				Q_OVERRIDE(int	undoDepth	DESIGNABLE	false	SCRIPTABLE	false)

				Q_OVERRIDE(bool	overwriteMode	DESIGNABLE	false	SCRIPTABLE	false)

public:

				QTextView(const	QString&	text,	const	QString&	context	=	QString::null,

	 							QWidget*	parent=0,	const	char*	name=0);

				QTextView(QWidget*	parent=0,	const	char*	name=0);

				virtual	~QTextView();

};

#endif	//QT_NO_TEXTVIEW

#endif	//QTEXTVIEW_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qthread.h
qthread.hTrolltech

/**

**	$Id:		qt/qthread.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QThread	class

**

**	Created	:	931107

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QTHREAD_H

#define	QTHREAD_H

#if	defined(QT_THREAD_SUPPORT)

#ifndef	QT_H

#include	"qwindowdefs.h"

#ifndef	QT_NO_COMPAT

#include	"qmutex.h"

#include	"qsemaphore.h"

#include	"qwaitcondition.h"

#endif

#endif	//	QT_H

class	QThreadPrivate;

class	Q_EXPORT	QThread	:	public	Qt

{

				friend	class	QThreadPrivate;

public:

				static	Qt::HANDLE	currentThread();

				static	void	postEvent(QObject	*,QEvent	*);

				static	void	initialize();

				static	void	cleanup();

				static	void	exit();

				QThread();

				virtual	~QThread();

				//	default	argument	causes	thread	to	block	indefinately

				bool	wait(unsigned	long	time	=	ULONG_MAX);

				void	start();

				bool	finished()	const;

				bool	running()	const;

protected:

				virtual	void	run()	=	0;

				static	void	sleep(unsigned	long);

				static	void	msleep(unsigned	long);

				static	void	usleep(unsigned	long);

private:

				QThreadPrivate	*	d;

#if	defined(Q_DISABLE_COPY)

				QThread(const	QThread	&);

				QThread	&operator=(const	QThread	&);

#endif

};

#endif

#endif

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qtimer.h
qtimer.hTrolltech

/**

**	$Id:		qt/qtimer.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QTimer	class

**

**	Created	:	931111

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QTIMER_H

#define	QTIMER_H

#ifndef	QT_H

#include	"qobject.h"

#endif	//	QT_H

class	Q_EXPORT	QTimer	:	public	QObject

{

				Q_OBJECT

public:

				QTimer(QObject	*parent=0,	const	char	*name=0);

			~QTimer();

				bool	 isActive()	const;

				int		 start(int	msec,	bool	sshot	=	FALSE);

				void	 changeInterval(int	msec);

				void	 stop();

				static	void	singleShot(int	msec,	QObject	*receiver,	const	char	*member);

signals:

				void	 timeout();

protected:

				bool	 event(QEvent	*);

private:

				int	id;

				uint	single	:	1;

				uint	nulltimer	:	1;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QTimer(const	QTimer	&);

				QTimer	&operator=(const	QTimer	&);

#endif

};

inline	bool	QTimer::isActive()	const

{

				return	id	>=	0;

}

#endif	//	QTIMER_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qtmultilineedit.h
This	is	the	verbatim	text	of	the	qtmultilineedit.h	include	file.	It	is	provided	only
for	illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qtmultilineedit.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QtMultiLineEdit	widget	class

**

**	Created	:	961005

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	contains	a	class	moved	out	of	the	Qt	GUI	Toolkit	API.	It

**	may	be	used,	distributed	and	modified	without	limitation.

**

**/

#ifndef	QTMULTILINEEDIT_H

#define	QTMULTILINEEDIT_H

#ifndef	QT_H

#include	"qttableview.h"

#include	"qstring.h"

#include	"qptrlist.h"

#endif	//	QT_H

#ifndef	QT_NO_QTMULTILINEEDIT

struct	QtMultiLineData;

class	QtMultiLineEditCommand;

class	QValidator;

class	QtMultiLineEdit	:	public	QtTableView

{

				Q_OBJECT

				Q_ENUMS(EchoMode	WordWrap	WrapPolicy)

				Q_PROPERTY(int	numLines	READ	numLines)

				Q_PROPERTY(bool	atBeginning	READ	atBeginning)

				Q_PROPERTY(bool	atEnd	READ	atEnd)

				Q_PROPERTY(int	maxLineWidth	READ	maxLineWidth)

				Q_PROPERTY(Alignment	alignment	READ	alignment	WRITE	setAlignment)

				Q_PROPERTY(bool	edited	READ	edited	WRITE	setEdited	DESIGNABLE	false)

				Q_PROPERTY(EchoMode	echoMode	READ	echoMode	WRITE	setEchoMode)

				Q_PROPERTY(int	maxLength	READ	maxLength	WRITE	setMaxLength)

				Q_PROPERTY(int	maxLines	READ	maxLines	WRITE	setMaxLines)

				Q_PROPERTY(int	hMargin	READ	hMargin	WRITE	setHMargin)

				Q_PROPERTY(WordWrap	wordWrap	READ	wordWrap	WRITE	setWordWrap)

				Q_PROPERTY(int	wrapColumnOrWidth	READ	wrapColumnOrWidth	WRITE	setWrapColumnOrWidth)

				Q_PROPERTY(WrapPolicy	wrapPolicy	READ	wrapPolicy	WRITE	setWrapPolicy)

				Q_PROPERTY(bool	autoUpdate	READ	autoUpdate	WRITE	setAutoUpdate	DESIGNABLE	false)

				Q_PROPERTY(bool	undoEnabled	READ	isUndoEnabled	WRITE	setUndoEnabled)

				Q_PROPERTY(int	undoDepth	READ	undoDepth	WRITE	setUndoDepth)

				Q_PROPERTY(bool	readOnly	READ	isReadOnly	WRITE	setReadOnly)

				Q_PROPERTY(bool	overWriteMode	READ	isOverwriteMode	WRITE	setOverwriteMode)

				Q_PROPERTY(QString	text	READ	text	WRITE	setText)

				Q_PROPERTY(int	length	READ	length)

public:

				QtMultiLineEdit(QWidget	*parent=0,	const	char	*name=0);

			~QtMultiLineEdit();

				QString	textLine(int	line)	const;

				int	numLines()	const;

				QSize	sizeHint()	const;

				QSize	minimumSizeHint()	const;

				QSizePolicy	sizePolicy()	const;

				virtual	void	setFont(const	QFont	&font);

				virtual	void	insertLine(const	QString	&s,	int	line	=	-1);

				virtual	void	insertAt(const	QString	&s,	int	line,	int	col,	bool	mark	=	FALSE);

				virtual	void	removeLine(int	line);

				void	cursorPosition(int	*line,	int	*col)	const;

				virtual	void	setCursorPosition(int	line,	int	col,	bool	mark	=	FALSE);

				void	getCursorPosition(int	*line,	int	*col)	const;

				bool	atBeginning()	const;

				bool	atEnd()	const;

				virtual	void	setFixedVisibleLines(int	lines);

				int	maxLineWidth()	const;

				void	setAlignment(int	flags);

				int	alignment()	const;

				virtual	void	setValidator(const	QValidator	*);

				const	QValidator	*	validator()	const;

				void	setEdited(bool);

				bool	edited()	const;

				void	cursorWordForward(bool	mark);

				void	cursorWordBackward(bool	mark);

				enum	EchoMode	{	Normal,	NoEcho,	Password	};

				virtual	void	setEchoMode(EchoMode);

				EchoMode	echoMode()	const;

				void	setMaxLength(int);

				int	maxLength()	const;

				virtual	void	setMaxLineLength(int);

				int	maxLineLength()	const;

				virtual	void	setMaxLines(int);

				int	maxLines()	const;

				virtual	void	setHMargin(int);

				int	hMargin()	const;

				virtual	void	setSelection(int	row_from,	int	col_from,	int	row_to,	int	col_t);

				enum	WordWrap	{

	 NoWrap,

	 WidgetWidth,

	 FixedPixelWidth,

	 FixedColumnWidth

				};

				void	setWordWrap(WordWrap	mode);

				WordWrap	wordWrap()	const;

				void	setWrapColumnOrWidth(int);

				int	wrapColumnOrWidth()	const;

				enum	WrapPolicy	{

	 AtWhiteSpace,

	 Anywhere

				};

				void	setWrapPolicy(WrapPolicy	policy);

				WrapPolicy	wrapPolicy()	const;

				bool	autoUpdate()	 const;

				virtual	void	setAutoUpdate(bool);

				void	setUndoEnabled(bool);

				bool	isUndoEnabled()	const;

				void	setUndoDepth(int);

				int	undoDepth()	const;

				bool	isReadOnly()	const;

				bool	isOverwriteMode()	const;

				QString	text()	const;

				int	length()	const;

				static	void	setDefaultTabStop(int	ex);

				static	int	defaultTabStop();

public	slots:

				virtual	void							setText(const	QString	&);

				virtual	void							setReadOnly(bool);

				virtual	void							setOverwriteMode(bool);

				void							clear();

				void							append(const	QString	&);

				void							deselect();

				void							selectAll();

#ifndef	QT_NO_CLIPBOARD

				void							paste();

				void							pasteSubType(const	QCString&	subtype);

				void							copyText()	const;

				void							copy()	const;

				void							cut();

#endif

				void							insert(const	QString&);

				void							undo();

				void							redo();

signals:

				void	 textChanged();

				void	 returnPressed();

				void	 undoAvailable(bool);

				void	 redoAvailable(bool);

				void	 copyAvailable(bool);

protected:

				void	 paintCell(QPainter	*,	int	row,	int	col);

				bool	 event(QEvent	*);

				void	 mousePressEvent(QMouseEvent	*);

				void	 mouseMoveEvent(QMouseEvent	*);

				void	 mouseReleaseEvent(QMouseEvent	*);

				void	 mouseDoubleClickEvent(QMouseEvent	*);

				void		 wheelEvent(QWheelEvent	*);

				void	 keyPressEvent(QKeyEvent	*);

				void	 focusInEvent(QFocusEvent	*);

				void	 focusOutEvent(QFocusEvent	*);

				void	 timerEvent(QTimerEvent	*);

				void	 leaveEvent(QEvent	*);

				void	 resizeEvent(QResizeEvent	*);

				bool	 focusNextPrevChild(bool);

#ifndef	QT_NO_DRAGANDDROP

				void	 dragMoveEvent(QDragMoveEvent*);

				void	 dragEnterEvent(QDragEnterEvent	*);

				void	 dropEvent(QDropEvent*);

				void	 dragLeaveEvent(QDragLeaveEvent*);

#endif

				bool	 hasMarkedText()	const;

				QString	 markedText()	const;

				int		 textWidth(int);

				int		 textWidth(const	QString	&);

				QPoint	 cursorPoint()	const;

protected:

				virtual	void	insert(const	QString&,	bool	mark);

				virtual	void	newLine();

				virtual	void	killLine();

				virtual	void	pageUp(bool	mark=FALSE);

				virtual	void	pageDown(bool	mark=FALSE);

				virtual	void	cursorLeft(bool	mark=FALSE,	bool	wrap	=	TRUE);

				virtual	void	cursorRight(bool	mark=FALSE,	bool	wrap	=	TRUE);

				virtual	void	cursorUp(bool	mark=FALSE);

				virtual	void	cursorDown(bool	mark=FALSE);

				virtual	void	backspace();

				virtual	void	del();

				virtual	void	home(bool	mark=FALSE);

				virtual	void	end(bool	mark=FALSE);

				bool	getMarkedRegion(int	*line1,	int	*col1,

	 	 	 		int	*line2,	int	*col2)	const;

				int	lineLength(int	row)	const;

				QString	*getString(int	row)	const;

				bool	isEndOfParagraph(int	row)	const;

				QString	stringShown(int	row)	const;

protected:

				bool	 cursorOn;

				void	 insertChar(QChar);

private	slots:

				void	 clipboardChanged();

				void	 blinkTimerTimeout();

				void	 scrollTimerTimeout();

				void	 dndTimeout();

private:

#ifndef	QT_NO_MIME

				QCString	pickSpecial(QMimeSource*	ms,	bool	always_ask,	const	QPoint&);

#endif

#ifndef	QT_NO_MIMECLIPBOARD

				void							pasteSpecial(const	QPoint&);

#endif

				struct	QtMultiLineEditRow	{

	 QtMultiLineEditRow(QString	string,	int	width,	bool	nl	=	TRUE)

	 				:s(string),	w(width),	newline(nl)

	 {

	 };

	 QString	s;

	 int	w;

	 bool	newline;

				};

				QPtrList<QtMultiLineEditRow>	*contents;

				QtMultiLineData	*d;

				bool	 readOnly;

				bool	 dummy;

				bool	 markIsOn;

				bool	 dragScrolling	;

				bool	 dragMarking;

				bool	 textDirty;

				bool	 wordMark;

				bool	 overWrite;

				int		 cursorX;

				int		 cursorY;

				int		 markAnchorX;

				int		 markAnchorY;

				int		 markDragX;

				int		 markDragY;

				int		 curXPos;	 //	cell	coord	of	cursor

				int		 blinkTimer;	//	####	not	used	anymore	-	remove	in	3.0

				int		 scrollTimer;	//	####	not	used	anymore	-	remove	in	3.0

				int		 mapFromView(int	xPos,	int	row);

				int		 mapToView(int	xIndex,	int	row);

				void	 pixelPosToCursorPos(QPoint	p,	int*	x,	int*	y)	const;

				void	 setCursorPixelPosition(QPoint	p,	bool	clear_mark=TRUE);

				void	 setWidth(int);

				void	 updateCellWidth();

				bool		 partiallyInvisible(int	row);

				void	 makeVisible();

				void	 setBottomCell(int	row);

				void		 newMark(int	posx,	int	posy,	bool	copy=TRUE);

				void		 markWord(int	posx,	int	posy);

				void	 extendSelectionWord(int	&newX,	int&newY);

				int		 charClass(QChar);

				void	 turnMark(bool	on);

				bool	 inMark(int	posx,	int	posy)	const;

				bool	 beforeMark(int	posx,	int	posy)	const;

				bool	 afterMark(int	posx,	int	posy)	const;

				int		 setNumRowsAndTruncate();

#ifndef	QT_NO_DRAGANDDROP

				void	 doDrag();

#endif

				void	 startAutoScroll();

				void	 stopAutoScroll();

				void	 cursorLeft(bool	mark,	bool	clear_mark,	bool	wrap);

				void	 cursorRight(bool	mark,	bool	clear_mark,	bool	wrap);

				void	 cursorUp(bool	mark,	bool	clear_mark);

				void	 cursorDown(bool	mark,	bool	clear_mark);

				void	 wrapLine(int	line,	int	removed	=	0);

				void	 rebreakParagraph(int	line,	int	removed	=	0);

				void	 rebreakAll();

				void	 insertAtAux(const	QString	&s,	int	line,	int	col,	bool	mark	=	FALSE);

				void	 killLineAux();

				void	 delAux();

				int	positionToOffsetInternal(int	row,	int	col)	const;

				void	 offsetToPositionInternal(int	position,	int	*row,	int	*col)	const;

				void	 deleteNextChar(int	offset,	int	row,	int	col);

				void	addUndoCmd(QtMultiLineEditCommand*);

				void	addRedoCmd(QtMultiLineEditCommand*);

				void	processCmd(QtMultiLineEditCommand*,	bool);

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QtMultiLineEdit(const	QtMultiLineEdit	&);

				QtMultiLineEdit	&operator=(const	QtMultiLineEdit	&);

#endif

};

inline	bool	QtMultiLineEdit::isReadOnly()	const	{	return	readOnly;	}

inline	bool	QtMultiLineEdit::isOverwriteMode()	const	{	return	overWrite;	}

inline	void	QtMultiLineEdit::setOverwriteMode(bool	on)

{

				overWrite	=	on;

	}

inline	int	QtMultiLineEdit::lineLength(int	row)	const

{

				return	contents->at(row)->s.length();

}

inline	bool	QtMultiLineEdit::atEnd()	const

{

				return	cursorY	==	(int)contents->count()	-	1

	 &&	cursorX	==	lineLength(cursorY)	;

}

inline	bool	QtMultiLineEdit::atBeginning()	const

{

				return	cursorY	==	0	&&	cursorX	==	0;

}

inline	QString	*QtMultiLineEdit::getString(int	row)	const

{

				return	&(contents->at(row)->s);

}

inline	int	QtMultiLineEdit::numLines()	const

{

				return	contents->count();

}

#endif	//	QT_NO_QTMULTILINEEDIT

#endif	//	QTMULTILINEDIT_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qtoolbar.h
qtoolbar.hTrolltech

/**

**	$Id:		qt/qtoolbar.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QToolBar	class

**

**	Created	:	980306

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QTOOLBAR_H

#define	QTOOLBAR_H

#ifndef	QT_H

#include	"qdockwindow.h"

#endif	//	QT_H

#ifndef	QT_NO_TOOLBAR

class	QMainWindow;

class	QButton;

class	QBoxLayout;

class	QToolBarPrivate;

class	Q_EXPORT	QToolBar:	public	QDockWindow

{

				Q_OBJECT

				Q_PROPERTY(QString	label	READ	label	WRITE	setLabel)

public:

				QToolBar(const	QString	&label,

	 						QMainWindow	*,	ToolBarDock	=	DockTop,

	 						bool	newLine	=	FALSE,	const	char*	name=0);

				QToolBar(const	QString	&label,	QMainWindow	*,	QWidget	*,

	 						bool	newLine	=	FALSE,	const	char*	name=0,	WFlags	f	=	0);

				QToolBar(QMainWindow*	parent=0,	const	char*	name=0);

				~QToolBar();

				void	addSeparator();

				void	show();

				void	hide();

				QMainWindow	*	mainWindow()	const;

				virtual	void	setStretchableWidget(QWidget	*);

				bool	event(QEvent	*	e);

				virtual	void	setLabel(const	QString	&);

				QString	label()	const;

				virtual	void	clear();

				QSize	minimumSize()	const;

				QSize	minimumSizeHint()	const;

				void	setOrientation(Orientation	o);

				void	setMinimumSize(int	minw,	int	minh);

protected:

				void	resizeEvent(QResizeEvent	*e);

				void	styleChange(QStyle	&);

private	slots:

				void	popupSelected(int	id);

				void	emulateButtonClicked();

				void	setupArrowMenu();

private:

				void	init();

				QToolBarPrivate	*	d;

				QMainWindow	*	mw;

				QWidget	*	sw;

				QString	l;

				friend	class	QMainWindow;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QToolBar(const	QToolBar	&);

				QToolBar&	operator=(const	QToolBar	&);

#endif

};

#endif	//	QT_NO_TOOLBAR

#endif	//	QTOOLBAR_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qtoolbutton.h
qtoolbutton.hTrolltech

/**

**	$Id:		qt/qtoolbutton.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QToolButton	class

**

**	Created	:	979899

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QTOOLBUTTON_H

#define	QTOOLBUTTON_H

#ifndef	QT_H

#include	"qbutton.h"

#include	"qstring.h"

#include	"qpixmap.h"

#include	"qiconset.h"

#endif	//	QT_H

#ifndef	QT_NO_TOOLBUTTON

class	QToolButtonPrivate;

class	QToolBar;

class	QPopupMenu;

class	Q_EXPORT	QToolButton	:	public	QButton

{

				Q_OBJECT

				Q_PROPERTY(QIconSet	iconSet	READ	iconSet	WRITE	setIconSet)

				Q_PROPERTY(QIconSet	onIconSet	READ	onIconSet	WRITE	setOnIconSet	DESIGNABLE	false	STORED	false)

				Q_PROPERTY(QIconSet	offIconSet	READ	offIconSet	WRITE	setOffIconSet	DESIGNABLE	false	STORED	false)

				Q_PROPERTY(bool	usesBigPixmap	READ	usesBigPixmap	WRITE	setUsesBigPixmap)

				Q_PROPERTY(bool	usesTextLabel	READ	usesTextLabel	WRITE	setUsesTextLabel)

				Q_PROPERTY(QString	textLabel	READ	textLabel	WRITE	setTextLabel)

				Q_PROPERTY(int	popupDelay	READ	popupDelay	WRITE	setPopupDelay)

				Q_PROPERTY(bool	autoRaise	READ	autoRaise	WRITE	setAutoRaise)

				Q_OVERRIDE(bool	toggleButton	WRITE	setToggleButton)

				Q_OVERRIDE(bool	on	WRITE	setOn)

public:

				QToolButton(QWidget	*	parent,	const	char*	name=0);

#ifndef	QT_NO_TOOLBAR

				QToolButton(const	QIconSet&	s,	const	QString	&textLabel,

	 	 	const	QString&	grouptext,

	 	 	QObject	*	receiver,	const	char*	slot,

	 	 	QToolBar	*	parent,	const	char*	name=0);

#endif

				QToolButton(ArrowType	type,	QWidget	*parent,	const	char*	name=0);

				~QToolButton();

				QSize	sizeHint()	const;

				QSize	minimumSizeHint()	const;

#ifndef	QT_NO_COMPAT

				void	setOnIconSet(const	QIconSet&);

				void	setOffIconSet(const	QIconSet&);

				void	setIconSet(const	QIconSet	&,	bool	on);

				QIconSet	onIconSet()	const;

				QIconSet	offIconSet()	const;

				QIconSet	iconSet(bool	on)	const;

#endif

				virtual	void	setIconSet(const	QIconSet	&);

				QIconSet	iconSet()	const;

				bool	usesBigPixmap()	const	{	return	ubp;	}

				bool	usesTextLabel()	const	{	return	utl;	}

				QString	textLabel()	const	{	return	tl;	}

#ifndef	QT_NO_POPUPMENU

				void	setPopup(QPopupMenu*	popup);

				QPopupMenu*	popup()	const;

				void	setPopupDelay(int	delay);

				int	popupDelay()	const;

				void	openPopup();

#endif

				void	setAutoRaise(bool	enable);

				bool	autoRaise()	const;

public	slots:

				virtual	void	setUsesBigPixmap(bool	enable);

				virtual	void	setUsesTextLabel(bool	enable);

				virtual	void	setTextLabel(const	QString	&,	bool);

				virtual	void	setToggleButton(bool	enable);

				virtual	void	setOn(bool	enable);

				void	toggle();

				void	setTextLabel(const	QString	&);

protected:

				void	mousePressEvent(QMouseEvent	*);

				void	drawButton(QPainter	*);

				void	drawButtonLabel(QPainter	*);

				void	enterEvent(QEvent	*);

				void	leaveEvent(QEvent	*);

				void	moveEvent(QMoveEvent	*);

				bool	uses3D()	const;

				bool	eventFilter(QObject	*o,	QEvent	*e);

#ifndef	QT_NO_PALETTE

				void	paletteChange(const	QPalette	&);

#endif

private	slots:

				void	popupTimerDone();

				void	popupPressed();

private:

				void	init();

				bool	isOnAndNoOnPixmap();

				QPixmap	bp;

				int	bpID;

				QPixmap	sp;

				int	spID;

				QString	tl;

				QToolButtonPrivate	*d;

				QIconSet	*s;

				uint	utl	:	1;

				uint	ubp	:	1;

				uint	hasArrow	:	1;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QToolButton(const	QToolButton	&);

				QToolButton&	operator=(const	QToolButton	&);

#endif

};

#endif	//	QT_NO_TOOLBUTTON

#endif	//	QTOOLBUTTON_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qtooltip.h
This	is	the	verbatim	text	of	the	qtooltip.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qtooltip.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	Tool	Tips	(or	Balloon	Help)	for	any	widget	or	rectangle

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QTOOLTIP_H

#define	QTOOLTIP_H

#ifndef	QT_H

#include	"qwidget.h"

#endif	//	QT_H

#ifndef	QT_NO_TOOLTIP

class	QTipManager;

class	QIconViewToolTip;

class	QListViewToolTip;

class	Q_EXPORT	QToolTipGroup:	public	QObject

{

				Q_OBJECT

				Q_PROPERTY(bool	delay	READ	delay	WRITE	setDelay)

				Q_PROPERTY(bool	enabled	READ	enabled	WRITE	setEnabled)

public:

				QToolTipGroup(QObject	*parent,	const	char	*name	=	0);

			~QToolTipGroup();

				bool	delay()	const;

				bool	enabled()	const;

public	slots:

				void	setDelay(bool);

				void	setEnabled(bool);

signals:

				void	showTip(const	QString	&);

				void	removeTip();

private:

				uint	del:1;

				uint	ena:1;

				friend	class	QTipManager;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QToolTipGroup(const	QToolTipGroup	&);

				QToolTipGroup&	operator=(const	QToolTipGroup	&);

#endif

};

class	Q_EXPORT	QToolTip:	public	Qt

{

public:

				QToolTip(QWidget	*,	QToolTipGroup	*	=	0);

				static	void	add(QWidget	*,	const	QString	&);

				static	void	add(QWidget	*,	const	QString	&,

	 	 					QToolTipGroup	*,	const	QString&);

				static	void	remove(QWidget	*);

				static	void	add(QWidget	*,	const	QRect	&,	const	QString	&);

				static	void	add(QWidget	*,	const	QRect	&,	const	QString	&,

	 	 					QToolTipGroup	*,	const	QString&);

				static	void	remove(QWidget	*,	const	QRect	&);

				static	QString	textFor(QWidget	*,	const	QPoint	&	pos	=	QPoint());

				static	void	hide();

				static	QFont				font();

				static	void					setFont(const	QFont	&);

				static	QPalette	palette();

				static	void					setPalette(const	QPalette	&);

#ifndef	QT_NO_COMPAT

				static	void					setEnabled(bool	enable)	{	setGloballyEnabled(enable);	}

				static	bool					enabled()	{	return	isGloballyEnabled();	}

#endif

				static	void					setGloballyEnabled(bool);

				static	bool					isGloballyEnabled();

protected:

				virtual	void	maybeTip(const	QPoint	&)	=	0;

				void				tip(const	QRect	&,	const	QString	&);

				void				tip(const	QRect	&,	const	QString&	,	const	QString	&);

				void				clear();

public:

				QWidget	 		*parentWidget()	const	{	return	p;	}

				QToolTipGroup	*group()	 		const	{	return	g;	}

private:

				void				tip(const	QRect	&,	const	QRect	&,	const	QString	&);

				QWidget	 				*p;

				QToolTipGroup			*g;

				static	QFont				*ttFont;

				static	QPalette	*ttPalette;

				friend	class	QTipManager;

				friend	class	QIconViewToolTip;

				friend	class	QListViewToolTip;

};

#endif	//	QT_NO_TOOLTIP

#endif	//	QTOOLTIP_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qtranslator.h
This	is	the	verbatim	text	of	the	qtranslator.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qtranslator.h			3.0.5			edited	Jan	25	14:51	$

**

**	Definition	of	the	translator	class

**

**	Created	:	980906

**

**	Copyright	(C)	1998-99	by	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QTRANSLATOR_H

#define	QTRANSLATOR_H

#ifndef	QT_H

#include	"qobject.h"

#include	"qvaluelist.h"

#endif	//	QT_H

#ifndef	QT_NO_TRANSLATION

class	QTranslatorPrivate;

class	Q_EXPORT	QTranslatorMessage

{

public:

				QTranslatorMessage();

				QTranslatorMessage(const	char	*	context,

	 	 	 const	char	*	sourceText,

	 	 	 const	char	*	comment,

	 	 	 const	QString&	translation	=	QString::null);

				QTranslatorMessage(QDataStream	&);

				QTranslatorMessage(const	QTranslatorMessage	&	m);

				QTranslatorMessage	&	operator=(const	QTranslatorMessage	&	m);

				uint	hash()	const	{	return	h;	}

				const	char	*context()	const	{	return	cx;	}

				const	char	*sourceText()	const	{	return	st;	}

				const	char	*comment()	const	{	return	cm;	}

				void	setTranslation(const	QString	&	translation)	{	tn	=	translation;	}

				QString	translation()	const	{	return	tn;	}

				enum	Prefix	{	NoPrefix,	Hash,	HashContext,	HashContextSourceText,

	 	 		HashContextSourceTextComment	};

				void	write(QDataStream	&	s,	bool	strip	=	FALSE,

	 	 Prefix	prefix	=	HashContextSourceTextComment)	const;

				Prefix	commonPrefix(const	QTranslatorMessage&)	const;

				bool	operator==(const	QTranslatorMessage&	m)	const;

				bool	operator!=(const	QTranslatorMessage&	m)	const

				{	return	!operator==(m);	}

				bool	operator<(const	QTranslatorMessage&	m)	const;

				bool	operator<=(const	QTranslatorMessage&	m)	const

				{	return	!m.operator<(*this);	}

				bool	operator>(const	QTranslatorMessage&	m)	const

				{	return	m.operator<(*this);	}

				bool	operator>=(const	QTranslatorMessage&	m)	const

				{	return	!operator<(m);	}

private:

				uint	h;

				QCString	cx;

				QCString	st;

				QCString	cm;

				QString	tn;

				enum	Tag	{	Tag_End	=	1,	Tag_SourceText16,	Tag_Translation,	Tag_Context16,

	 							Tag_Hash,	Tag_SourceText,	Tag_Context,	Tag_Comment,

	 							Tag_Obsolete1	};

};

class	Q_EXPORT	QTranslator:	public	QObject

{

				Q_OBJECT

public:

				QTranslator(QObject	*	parent,	const	char	*	name	=	0);

				~QTranslator();

#ifndef	QT_NO_COMPAT

				QString	find(const	char	*context,	const	char	*sourceText,	const	char	*	comment	=	0)	const	{

	 return	findMessage(context,	sourceText,	comment).translation();

				}

#endif

				virtual	QTranslatorMessage	findMessage(const	char	*,	const	char	*,

	 	 	 	 				const	char	*)	const;

				bool	load(const	QString	&	filename,

	 							const	QString	&	directory	=	QString::null,

	 							const	QString	&	search_delimiters	=	QString::null,

	 							const	QString	&	suffix	=	QString::null);

				void	clear();

#ifndef	QT_NO_TRANSLATION_BUILDER

				enum	SaveMode	{	Everything,	Stripped	};

				bool	save(const	QString	&	filename,	SaveMode	mode	=	Everything);

				void	insert(const	QTranslatorMessage&);

				void	insert(const	char	*context,	const	char	*sourceText,	const	QString	&translation)	{

	 insert(QTranslatorMessage(context,	sourceText,	"",	translation));

				}

				void	remove(const	QTranslatorMessage&);

				void	remove(const	char	*context,	const	char	*sourceText)	{

	 remove(QTranslatorMessage(context,	sourceText,	""));

				}

				bool	contains(const	char	*,	const	char	*,	const	char	*	comment	=	0)	const;

				void	squeeze(SaveMode	=	Everything);

				void	unsqueeze();

				QValueList<QTranslatorMessage>	messages()	const;

#endif

private:

				QTranslatorPrivate	*	d;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QTranslator(const	QTranslator	&);

				QTranslator	&operator=(const	QTranslator	&);

#endif

};

#endif	//	QT_NO_TRANSLATION

#endif

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qtsciicodec.h
This	is	the	verbatim	text	of	the	qtsciicodec.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qtsciicodec.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QTSCIICodec	class

**

***/

//	Contributed	by	Hans	Petter	Bieker	<bieker@kde.org>

//	See	the	documentation	for	their	license	statement	for	the	code	as

//	it	was	at	the	time	of	contribution.

#ifndef	QTSCIICODEC_H

#define	QTSCIICODEC_H

#ifndef	QT_H

#include	"qtextcodec.h"

#endif	//	QT_H

#ifndef	QT_NO_CODECS

class	Q_EXPORT	QTsciiCodec	:	public	QTextCodec	{

public:

				virtual	int	mibEnum()	const;

				const	char*	name()	const;

				QCString	fromUnicode(const	QString&	uc,	int&	len_in_out)	const;

				QString	toUnicode(const	char*	chars,	int	len)	const;

				int	heuristicContentMatch(const	char*	chars,	int	len)	const;

				int	heuristicNameMatch(const	char*	hint)	const;

};

#endif

#endif

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qttableview.h
This	is	the	verbatim	text	of	the	qttableview.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qttableview.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QtTableView	class

**

**	Created	:	941115

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	contains	a	class	moved	out	of	the	Qt	GUI	Toolkit	API.	It

**	may	be	used,	distributed	and	modified	without	limitation.

**

**/

#ifndef	QTTABLEVIEW_H

#define	QTTABLEVIEW_H

#ifndef	QT_H

#include	"qframe.h"

#endif	//	QT_H

#ifndef	QT_NO_QTTABLEVIEW

class	QScrollBar;

class	QCornerSquare;

class	QtTableView	:	public	QFrame

{

				Q_OBJECT

public:

				virtual	void	setBackgroundColor(const	QColor	&);

				virtual	void	setPalette(const	QPalette	&);

				void	 show();

				void	 repaint(bool	erase=TRUE);

				void	 repaint(int	x,	int	y,	int	w,	int	h,	bool	erase=TRUE);

				void	 repaint(const	QRect	&,	bool	erase=TRUE);

protected:

				QtTableView(QWidget	*parent=0,	const	char	*name=0,	WFlags	f=0);

			~QtTableView();

				int		 numRows()	 const;

				virtual	void	setNumRows(int);

				int		 numCols()	 const;

				virtual	void	setNumCols(int);

				int		 topCell()	 const;

				virtual	void	setTopCell(int	row);

				int		 leftCell()	 const;

				virtual	void	setLeftCell(int	col);

				virtual	void	setTopLeftCell(int	row,	int	col);

				int		 xOffset()	 const;

				virtual	void	setXOffset(int);

				int		 yOffset()	 const;

				virtual	void	setYOffset(int);

				virtual	void	setOffset(int	x,	int	y,	bool	updateScrBars	=	TRUE);

				virtual	int	cellWidth(int	col);

				virtual	int	cellHeight(int	row);

				int		 cellWidth()	 const;

				int		 cellHeight()	 const;

				virtual	void	setCellWidth(int);

				virtual	void	setCellHeight(int);

				virtual	int	totalWidth();

				virtual	int	totalHeight();

				uint	 tableFlags()	 const;

				bool	 testTableFlags(uint	f)	const;

				virtual	void	setTableFlags(uint	f);

				void	 clearTableFlags(uint	f	=	~0);

				bool	 autoUpdate()	 	const;

				virtual	void	setAutoUpdate(bool);

				void	 updateCell(int	row,	int	column,	bool	erase=TRUE);

				QRect	 cellUpdateRect()	const;

				QRect	 viewRect()	 	const;

				int		 lastRowVisible()	const;

				int		 lastColVisible()	const;

				bool	 rowIsVisible(int	row)	const;

				bool	 colIsVisible(int	col)	const;

				QScrollBar	*verticalScrollBar()	const;

				QScrollBar	*horizontalScrollBar()	const;

private	slots:

				void	 horSbValue(int);

				void	 horSbSliding(int);

				void	 horSbSlidingDone();

				void	 verSbValue(int);

				void	 verSbSliding(int);

				void	 verSbSlidingDone();

protected:

				virtual	void	paintCell(QPainter	*,	int	row,	int	col)	=	0;

				virtual	void	setupPainter(QPainter	*);

				void	 paintEvent(QPaintEvent	*);

				void	 resizeEvent(QResizeEvent	*);

				int		 findRow(int	yPos)	const;

				int		 findCol(int	xPos)	const;

				bool	 rowYPos(int	row,	int	*yPos)	const;

				bool	 colXPos(int	col,	int	*xPos)	const;

				int		 maxXOffset();

				int		 maxYOffset();

				int		 maxColOffset();

				int		 maxRowOffset();

				int		 minViewX()	 const;

				int		 minViewY()	 const;

				int		 maxViewX()	 const;

				int		 maxViewY()	 const;

				int		 viewWidth()	 const;

				int		 viewHeight()	 const;

				void	 scroll(int	xPixels,	int	yPixels);

				void	 updateScrollBars();

				void	 updateTableSize();

private:

				void	 coverCornerSquare(bool);

				void	 snapToGrid(bool	horizontal,	bool	vertical);

				virtual	void	 setHorScrollBar(bool	on,	bool	update	=	TRUE);

				virtual	void	 setVerScrollBar(bool	on,	bool	update	=	TRUE);

				void	 updateView();

				int		 findRawRow(int	yPos,	int	*cellMaxY,	int	*cellMinY	=	0,

	 	 	 				bool	goOutsideView	=	FALSE)	const;

				int		 findRawCol(int	xPos,	int	*cellMaxX,	int	*cellMinX	=	0,

	 	 	 				bool	goOutsideView	=	FALSE)	const;

				int		 maxColsVisible()	const;

				void	 updateScrollBars(uint);

				void	 updateFrameSize();

				void	 doAutoScrollBars();

				void	 showOrHideScrollBars();

				int		 nRows;

				int		 nCols;

				int		 xOffs,	yOffs;

				int		 xCellOffs,	yCellOffs;

				short	 xCellDelta,	yCellDelta;

				short	 cellH,	cellW;

				uint	 eraseInPaint	 	 :	1;

				uint	 verSliding	 	 :	1;

				uint	 verSnappingOff	 	 :	1;

				uint	 horSliding	 	 :	1;

				uint	 horSnappingOff	 	 :	1;

				uint	 coveringCornerSquare	 :	1;

				uint	 sbDirty		 	 :	8;

				uint	 inSbUpdate	 	 :	1;

				uint	 tFlags;

				QRect	 cellUpdateR;

				QScrollBar	*vScrollBar;

				QScrollBar	*hScrollBar;

				QCornerSquare	*cornerSquare;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QtTableView(const	QtTableView	&);

				QtTableView	&operator=(const	QtTableView	&);

#endif

};

const	uint	Tbl_vScrollBar	 =	0x00000001;

const	uint	Tbl_hScrollBar	 =	0x00000002;

const	uint	Tbl_autoVScrollBar	 =	0x00000004;

const	uint	Tbl_autoHScrollBar	 =	0x00000008;

const	uint	Tbl_autoScrollBars	 =	0x0000000C;

const	uint	Tbl_clipCellPainting	=	0x00000100;

const	uint	Tbl_cutCellsV	 =	0x00000200;

const	uint	Tbl_cutCellsH	 =	0x00000400;

const	uint	Tbl_cutCells		 =	0x00000600;

const	uint	Tbl_scrollLastHCell	 =	0x00000800;

const	uint	Tbl_scrollLastVCell	 =	0x00001000;

const	uint	Tbl_scrollLastCell	 =	0x00001800;

const	uint	Tbl_smoothHScrolling	=	0x00002000;

const	uint	Tbl_smoothVScrolling	=	0x00004000;

const	uint	Tbl_smoothScrolling	 =	0x00006000;

const	uint	Tbl_snapToHGrid	 =	0x00008000;

const	uint	Tbl_snapToVGrid	 =	0x00010000;

const	uint	Tbl_snapToGrid	 =	0x00018000;

inline	int	QtTableView::numRows()	const

{	return	nRows;	}

inline	int	QtTableView::numCols()	const

{	return	nCols;	}

inline	int	QtTableView::topCell()	const

{	return	yCellOffs;	}

inline	int	QtTableView::leftCell()	const

{	return	xCellOffs;	}

inline	int	QtTableView::xOffset()	const

{	return	xOffs;	}

inline	int	QtTableView::yOffset()	const

{	return	yOffs;	}

inline	int	QtTableView::cellHeight()	const

{	return	cellH;	}

inline	int	QtTableView::cellWidth()	const

{	return	cellW;	}

inline	uint	QtTableView::tableFlags()	const

{	return	tFlags;	}

inline	bool	QtTableView::testTableFlags(uint	f)	const

{	return	(tFlags	&	f)	!=	0;	}

inline	QRect	QtTableView::cellUpdateRect()	const

{	return	cellUpdateR;	}

inline	bool	QtTableView::autoUpdate()	const

{	return	isUpdatesEnabled();	}

inline	void	QtTableView::repaint(bool	erase)

{	repaint(0,	0,	width(),	height(),	erase);	}

inline	void	QtTableView::repaint(const	QRect	&r,	bool	erase)

{	repaint(r.x(),	r.y(),	r.width(),	r.height(),	erase);	}

inline	void	QtTableView::updateScrollBars()

{	updateScrollBars(0);	}

#endif	//	QT_NO_QTTABLEVIEW

#endif	//	QTTABLEVIEW_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qurl.h
This	is	the	verbatim	text	of	the	qurl.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qurl.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QUrl	class

**

**	Created	:	950429

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QURL_H

#define	QURL_H

#ifndef	QT_H

#include	"qstring.h"

#endif	//	QT_H

#ifndef	QT_NO_NETWORKPROTOCOL

class	QUrlPrivate;

class	Q_EXPORT	QUrl

{

public:

				QUrl();

				QUrl(const	QString&	url);

				QUrl(const	QUrl&	url);

				QUrl(const	QUrl&	url,	const	QString&	relUrl,	bool	checkSlash	=	FALSE);

				virtual	~QUrl();

				QString	protocol()	const;

				virtual	void	setProtocol(const	QString&	protocol);

				QString	user()	const;

				virtual	void	setUser(const	QString&	user);

				bool	hasUser()	const;

				QString	password()	const;

				virtual	void	setPassword(const	QString&	pass);

				bool	hasPassword()	const;

				QString	host()	const;

				virtual	void	setHost(const	QString&	user);

				bool	hasHost()	const;

				int	port()	const;

				virtual	void	setPort(int	port);

				bool	hasPort()	const;

				QString	path(bool	correct	=	TRUE)	const;

				virtual	void	setPath(const	QString&	path);

				bool	hasPath()	const;

				virtual	void	setEncodedPathAndQuery(const	QString&	enc);

				QString	encodedPathAndQuery();

				virtual	void	setQuery(const	QString&	txt);

				QString	query()	const;

				QString	ref()	const;

				virtual	void	setRef(const	QString&	txt);

				bool	hasRef()	const;

				bool	isValid()	const;

				bool	isLocalFile()	const;

				virtual	void	addPath(const	QString&	path);

				virtual	void	setFileName(const	QString&	txt);

				QString	fileName()	const;

				QString	dirPath()	const;

				QUrl&	operator=(const	QUrl&	url);

				QUrl&	operator=(const	QString&	url);

				bool	operator==(const	QUrl&	url)	const;

				bool	operator==(const	QString&	url)	const;

				static	void	decode(QString&	url);

				static	void	encode(QString&	url);

				operator	QString()	const;

				virtual	QString	toString(bool	encodedPath	=	FALSE,	bool	forcePrependProtocol	=	TRUE)	const;

				virtual	bool	cdUp();

				static	bool	isRelativeUrl(const	QString	&url);

protected:

				virtual	void	reset();

				virtual	bool	parse(const	QString&	url);

private:

				QUrlPrivate	*d;

};

#endif

#endif

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qurlinfo.h
This	is	the	verbatim	text	of	the	qurlinfo.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qurlinfo.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QUrlInfo	class

**

**	Created	:	950429

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QURLINFO_H

#define	QURLINFO_H

#ifndef	QT_H

#include	"qdatetime.h"

#include	"qstring.h"

#endif	//	QT_H

class	QUrlOperator;

class	QUrl;

class	QUrlInfoPrivate;

class	Q_EXPORT	QUrlInfo

{

public:

				QUrlInfo();

				QUrlInfo(const	QUrlOperator	&path,	const	QString	&file);

				QUrlInfo(const	QUrlInfo	&ui);

				QUrlInfo(const	QString	&name,	int	permissions,	const	QString	&owner,

	 						const	QString	&group,	uint	size,	const	QDateTime	&lastModified,

	 						const	QDateTime	&lastRead,	bool	isDir,	bool	isFile,	bool	isSymLink,

	 						bool	isWritable,	bool	isReadable,	bool	isExecutable);

				QUrlInfo(const	QUrl	&url,	int	permissions,	const	QString	&owner,

	 						const	QString	&group,	uint	size,	const	QDateTime	&lastModified,

	 						const	QDateTime	&lastRead,	bool	isDir,	bool	isFile,	bool	isSymLink,

	 						bool	isWritable,	bool	isReadable,	bool	isExecutable);

				QUrlInfo	&operator=(const	QUrlInfo	&ui);

				virtual	~QUrlInfo();

				virtual	void	setName(const	QString	&name);

				virtual	void	setDir(bool	b);

				virtual	void	setFile(bool	b);

				virtual	void	setSymLink(bool	b);

				virtual	void	setOwner(const	QString	&s);

				virtual	void	setGroup(const	QString	&s);

				virtual	void	setSize(uint	s);

				virtual	void	setWritable(bool	b);

				virtual	void	setReadable(bool	b);

				virtual	void	setPermissions(int	p);

				virtual	void	setLastModified(const	QDateTime	&dt);

				bool	isValid()	const;

				QString	name()	const;

				int	permissions()	const;

				QString	owner()	const;

				QString	group()	const;

				uint	size()	const;

				QDateTime	lastModified()	const;

				QDateTime	lastRead()	const;

				bool	isDir()	const;

				bool	isFile()	const;

				bool	isSymLink()	const;

				bool	isWritable()	const;

				bool	isReadable()	const;

				bool	isExecutable()	const;

				static	bool	greaterThan(const	QUrlInfo	&i1,	const	QUrlInfo	&i2,

	 	 	 					int	sortBy);

				static	bool	lessThan(const	QUrlInfo	&i1,	const	QUrlInfo	&i2,

	 	 	 		int	sortBy);

				static	bool	equal(const	QUrlInfo	&i1,	const	QUrlInfo	&i2,

	 	 							int	sortBy);

				bool	operator==(const	QUrlInfo	&i)	const;

private:

				QUrlInfoPrivate	*d;

};

#endif

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qurloperator.h
This	is	the	verbatim	text	of	the	qurloperator.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qurloperator.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QUrlOperator	class

**

**	Created	:	950429

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QURLOPERATOR_H

#define	QURLOPERATOR_H

#ifndef	QT_H

#include	"qobject.h"

#include	"qurl.h"

#include	"qptrlist.h"

#include	"qnetworkprotocol.h"

#include	"qstringlist.h"	//	QString->QStringList	conversion

#endif	//	QT_H

#ifndef	QT_NO_NETWORKPROTOCOL

class	QUrlInfo;

class	QUrlOperatorPrivate;

class	Q_EXPORT	QUrlOperator	:	public	QObject,	public	QUrl

{

				friend	class	QNetworkProtocol;

				Q_OBJECT

public:

				QUrlOperator();

				QUrlOperator(const	QString	&urL);

				QUrlOperator(const	QUrlOperator&	url);

				QUrlOperator(const	QUrlOperator&	url,	const	QString&	relUrl,	bool	checkSlash	=	FALSE);

				virtual	~QUrlOperator();

				virtual	void	setPath(const	QString&	path);

				virtual	bool	cdUp();

				virtual	const	QNetworkOperation	*listChildren();

				virtual	const	QNetworkOperation	*mkdir(const	QString	&dirname);

				virtual	const	QNetworkOperation	*remove(const	QString	&filename);

				virtual	const	QNetworkOperation	*rename(const	QString	&oldname,	const	QString	&newname);

				virtual	const	QNetworkOperation	*get(const	QString	&location	=	QString::null);

				virtual	const	QNetworkOperation	*put(const	QByteArray	&data,	const	QString	&location	=	QString::null);

				virtual	QPtrList<QNetworkOperation>	copy(const	QString	&from,	const	QString	&to,	bool	move	=	FALSE,	bool	toPath	=	TRUE);

				virtual	void	copy(const	QStringList	&files,	const	QString	&dest,	bool	move	=	FALSE);

				virtual	bool	isDir(bool	*ok	=	0);

				virtual	void	setNameFilter(const	QString	&nameFilter);

				QString	nameFilter()	const;

				virtual	QUrlInfo	info(const	QString	&entry)	const;

				QUrlOperator&	operator=(const	QUrlOperator	&url);

				QUrlOperator&	operator=(const	QString	&url);

				virtual	void	stop();

signals:

				void	newChildren(const	QValueList<QUrlInfo>	&,	QNetworkOperation	*res);

				void	finished(QNetworkOperation	*res);

				void	start(QNetworkOperation	*res);

				void	createdDirectory(const	QUrlInfo	&,	QNetworkOperation	*res);

				void	removed(QNetworkOperation	*res);

				void	itemChanged(QNetworkOperation	*res);

				void	data(const	QByteArray	&,	QNetworkOperation	*res);

				void	dataTransferProgress(int	bytesDone,	int	bytesTotal,	QNetworkOperation	*res);

				void	startedNextCopy(const	QPtrList<QNetworkOperation>	&lst);

				void	connectionStateChanged(int	state,	const	QString	&data);

protected:

				void	reset();

				bool	parse(const	QString&	url);

				virtual	bool	checkValid();

				virtual	void	clearEntries();

				void	getNetworkProtocol();

				void	deleteNetworkProtocol();

private	slots:

				const	QNetworkOperation	*startOperation(QNetworkOperation	*op);

				void	copyGotData(const	QByteArray	&data,	QNetworkOperation	*op);

				void	continueCopy(QNetworkOperation	*op);

				void	finishedCopy();

				void	addEntry(const	QValueList<QUrlInfo>	&i);

				void	slotItemChanged(QNetworkOperation	*op);

private:

				void	deleteOperation(QNetworkOperation	*op);

				QUrlOperatorPrivate	*d;

};

#endif	//	QT_NO_NETWORKPROTOCOL

#endif	//	QURLOPERATOR_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qvalidator.h
qvalidator.hTrolltech

/**

**	Id

**

**	Definition	of	validator	classes

**

**	Created	:	970610

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QVALIDATOR_H

#define	QVALIDATOR_H

#ifndef	QT_H

#include	"qobject.h"

#include	"qstring.h"	//	char*->QString	conversion

#include	"qregexp.h"	//	QString->QRegExp	conversion

#endif	//	QT_H

#ifndef	QT_NO_VALIDATOR

class	Q_EXPORT	QValidator	:	public	QObject

{

				Q_OBJECT

public:

				QValidator(QObject	*	parent,	const	char	*name	=	0);

				~QValidator();

				enum	State	{	Invalid,	Intermediate,	Valid=Intermediate,	Acceptable	};

				virtual	State	validate(QString	&,	int	&)	const	=	0;

				virtual	void	fixup(QString	&)	const;

private:

#if	defined(Q_DISABLE_COPY)

				QValidator(const	QValidator	&);

				QValidator&	operator=(const	QValidator	&);

#endif

};

class	Q_EXPORT	QIntValidator	:	public	QValidator

{

				Q_OBJECT

				Q_PROPERTY(int	bottom	READ	bottom	WRITE	setBottom)

				Q_PROPERTY(int	top	READ	top	WRITE	setTop)

public:

				QIntValidator(QObject	*	parent,	const	char	*name	=	0);

				QIntValidator(int	bottom,	int	top,

	 	 			QObject	*	parent,	const	char	*name	=	0);

				~QIntValidator();

				QValidator::State	validate(QString	&,	int	&)	const;

				void	setBottom(int);

				void	setTop(int);

				virtual	void	setRange(int	bottom,	int	top);

				int	bottom()	const	{	return	b;	}

				int	top()	const	{	return	t;	}

private:

#if	defined(Q_DISABLE_COPY)

				QIntValidator(const	QIntValidator	&);

				QIntValidator&	operator=(const	QIntValidator	&);

#endif

				int	b,	t;

};

class	Q_EXPORT	QDoubleValidator	:	public	QValidator

{

				Q_OBJECT

				Q_PROPERTY(double	bottom	READ	bottom	WRITE	setBottom)

				Q_PROPERTY(double	top	READ	top	WRITE	setTop)

				Q_PROPERTY(int	decimals	READ	decimals	WRITE	setDecimals)

public:

				QDoubleValidator(QObject	*	parent,	const	char	*name	=	0);

				QDoubleValidator(double	bottom,	double	top,	int	decimals,

	 	 						QObject	*	parent,	const	char	*name	=	0);

				~QDoubleValidator();

				QValidator::State	validate(QString	&,	int	&)	const;

				virtual	void	setRange(double	bottom,	double	top,	int	decimals	=	0);

				void	setBottom(double);

				void	setTop(double);

				void	setDecimals(int);

				double	bottom()	const	{	return	b;	}

				double	top()	const	{	return	t;	}

				int	decimals()	const	{	return	d;	}

private:

#if	defined(Q_DISABLE_COPY)

				QDoubleValidator(const	QDoubleValidator	&);

				QDoubleValidator&	operator=(const	QDoubleValidator	&);

#endif

				double	b,	t;

				int	d;

};

class	Q_EXPORT	QRegExpValidator	:	public	QValidator

{

				Q_OBJECT

				//	Q_PROPERTY(QRegExp	regExp	READ	regExp	WRITE	setRegExp)

public:

				QRegExpValidator(QObject	*parent,	const	char	*name	=	0);

				QRegExpValidator(const	QRegExp&	rx,	QObject	*parent,

	 	 						const	char	*name	=	0);

				~QRegExpValidator();

				virtual	QValidator::State	validate(QString&	input,	int&	pos)	const;

				void	setRegExp(const	QRegExp&	rx);

				const	QRegExp&	regExp()	const	{	return	r;	}

private:

#if	defined(Q_DISABLE_COPY)

				QRegExpValidator(const	QRegExpValidator&);

				QRegExpValidator&	operator=(const	QRegExpValidator&);

#endif

				QRegExp	r;

};

#endif	//	QT_NO_VALIDATOR

#endif	//	QVALIDATOR_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qvaluelist.h
qvaluelist.hTrolltech

/**

**	$Id:		qt/qvaluelist.h			3.0.5			edited	Jun	7	04:17	$

**

**	Definition	of	QValueList	class

**

**	Created	:	990406

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	tools	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QVALUELIST_H

#define	QVALUELIST_H

#ifndef	QT_H

#include	"qtl.h"

#include	"qshared.h"

#include	"qdatastream.h"

#endif	//	QT_H

#ifndef	QT_NO_STL

#include	<iterator>

#include	<list>

#endif

//#define	QT_CHECK_VALUELIST_RANGE

#if	defined(Q_CC_MSVC)

#pragma	warning(disable:4284)	//	"return	type	for	operator	->	is	not	a	UDT"

#endif

template	<class	T>

class	QValueListNode

{

public:

				QValueListNode(const	T&	t)	:	data(t)	{	}

				QValueListNode()	{	}

#if	defined(Q_TEMPLATEDLL)

				//	Workaround	MS	bug	in	memory	de/allocation	in	DLL	vs.	EXE

				virtual	~QValueListNode()	{	}

#endif

				QValueListNode<T>*	next;

				QValueListNode<T>*	prev;

				T	data;

};

template<class	T>

class	QValueListIterator

{

	public:

				/**

					*	Typedefs

					*/

				typedef	QValueListNode<T>*	NodePtr;

#ifndef	QT_NO_STL

				typedef	std::bidirectional_iterator_tag		iterator_category;

#endif

				typedef	T								value_type;

				typedef	size_t	size_type;

#ifndef	QT_NO_STL

				typedef	ptrdiff_t		difference_type;

#else

				typedef	int	difference_type;

#endif

				typedef	T*			pointer;

				typedef	T&	reference;

				/**

					*	Variables

					*/

				NodePtr	node;

				/**

					*	Functions

					*/

				QValueListIterator()	:	node(0)	{}

				QValueListIterator(NodePtr	p)	:	node(p)	{}

				QValueListIterator(const	QValueListIterator<T>&	it)	:	node(it.node)	{}

				bool	operator==(const	QValueListIterator<T>&	it)	const	{	return	node	==	it.node;	}

				bool	operator!=(const	QValueListIterator<T>&	it)	const	{	return	node	!=	it.node;	}

				const	T&	operator*()	const	{	return	node->data;	}

				T&	operator*()	{	return	node->data;	}

				//	UDT	for	T	=	x*

				//	T*	operator->()	const	{	return	&node->data;	}

				QValueListIterator<T>&	operator++()	{

	 node	=	node->next;

	 return	*this;

				}

				QValueListIterator<T>	operator++(int)	{

	 QValueListIterator<T>	tmp	=	*this;

	 node	=	node->next;

	 return	tmp;

				}

				QValueListIterator<T>&	operator--()	{

	 node	=	node->prev;

	 return	*this;

				}

				QValueListIterator<T>	operator--(int)	{

	 QValueListIterator<T>	tmp	=	*this;

	 node	=	node->prev;

	 return	tmp;

				}

};

template<class	T>

class	QValueListConstIterator

{

	public:

				/**

					*	Typedefs

					*/

				typedef	QValueListNode<T>*	NodePtr;

#ifndef	QT_NO_STL

				typedef	std::bidirectional_iterator_tag		iterator_category;

#endif

				typedef	T								value_type;

				typedef	size_t	size_type;

#ifndef	QT_NO_STL

				typedef	ptrdiff_t		difference_type;

#else

				typedef	int	difference_type;

#endif

				typedef	const	T*			pointer;

				typedef	const	T&	reference;

				/**

					*	Variables

					*/

				NodePtr	node;

				/**

					*	Functions

					*/

				QValueListConstIterator()	:	node(0)	{}

				QValueListConstIterator(NodePtr	p)	:	node(p)	{}

				QValueListConstIterator(const	QValueListConstIterator<T>&	it)	:	node(it.node)	{}

				QValueListConstIterator(const	QValueListIterator<T>&	it)	:	node(it.node)	{}

				bool	operator==(const	QValueListConstIterator<T>&	it)	const	{	return	node	==	it.node;	}

				bool	operator!=(const	QValueListConstIterator<T>&	it)	const	{	return	node	!=	it.node;	}

				const	T&	operator*()	const	{	return	node->data;	}

				//	UDT	for	T	=	x*

				//	const	T*	operator->()	const	{	return	&node->data;	}

				QValueListConstIterator<T>&	operator++()	{

	 node	=	node->next;

	 return	*this;

				}

				QValueListConstIterator<T>	operator++(int)	{

	 QValueListConstIterator<T>	tmp	=	*this;

	 node	=	node->next;

	 return	tmp;

				}

				QValueListConstIterator<T>&	operator--()	{

	 node	=	node->prev;

	 return	*this;

				}

				QValueListConstIterator<T>	operator--(int)	{

	 QValueListConstIterator<T>	tmp	=	*this;

	 node	=	node->prev;

	 return	tmp;

				}

};

template	<class	T>

class	QValueListPrivate	

				:	public	QShared

{

public:

				/**

					*	Typedefs

					*/

				typedef	QValueListIterator<T>	Iterator;

				typedef	QValueListConstIterator<T>	ConstIterator;

				typedef	QValueListNode<T>	Node;

				typedef	QValueListNode<T>*	NodePtr;

				typedef	size_t	size_type;

				/**

					*	Functions

					*/

				QValueListPrivate();

				QValueListPrivate(const	QValueListPrivate<T>&	_p);

				void	derefAndDelete()	//	###	hack	to	get	around	hp-cc	brain	damage

				{

	 if	(deref())

	 				delete	this;

				}

#if	defined(Q_TEMPLATEDLL)

				//	Workaround	MS	bug	in	memory	de/allocation	in	DLL	vs.	EXE

				virtual

#endif

				~QValueListPrivate();

				Iterator	insert(Iterator	it,	const	T&	x);

				Iterator	remove(Iterator	it);

				NodePtr	find(NodePtr	start,	const	T&	x)	const;

				int	findIndex(NodePtr	start,	const	T&	x)	const;

				uint	contains(const	T&	x)	const;

				uint	remove(const	T&	x);

				NodePtr	at(size_type	i)	const;

				void	clear();

				NodePtr	node;

				size_type	nodes;

};

template	<class	T>

Q_INLINE_TEMPLATES	QValueListPrivate<T>::QValueListPrivate()

{

				node	=	new	Node;	node->next	=	node->prev	=	node;	nodes	=	0;

}

template	<class	T>

Q_INLINE_TEMPLATES	QValueListPrivate<T>::QValueListPrivate(const	QValueListPrivate<T>&	_p)

				:	QShared()

{

				node	=	new	Node;	node->next	=	node->prev	=	node;	nodes	=	0;

				Iterator	b(_p.node->next);

				Iterator	e(_p.node);

				Iterator	i(node);

				while(b	!=	e)

	 insert(i,	*b++);

}

template	<class	T>

Q_INLINE_TEMPLATES	QValueListPrivate<T>::~QValueListPrivate()	{

				NodePtr	p	=	node->next;

				while(p	!=	node)	{

	 NodePtr	x	=	p->next;

	 delete	p;

	 p	=	x;

				}

				delete	node;

}

template	<class	T>

Q_INLINE_TEMPLATES	Q_TYPENAME	QValueListPrivate<T>::Iterator	QValueListPrivate<T>::insert(Q_TYPENAME	QValueListPrivate<T>::Iterator	it,	const	T&	x)

{

				NodePtr	p	=	new	Node(x);

				p->next	=	it.node;

				p->prev	=	it.node->prev;

				it.node->prev->next	=	p;

				it.node->prev	=	p;

				nodes++;

				return	p;

}

template	<class	T>

Q_INLINE_TEMPLATES	Q_TYPENAME	QValueListPrivate<T>::Iterator	QValueListPrivate<T>::remove(Q_TYPENAME	QValueListPrivate<T>::Iterator	it)

{

				Q_ASSERT	(it.node	!=	node);

				NodePtr	next	=	it.node->next;

				NodePtr	prev	=	it.node->prev;

				prev->next	=	next;

				next->prev	=	prev;

				delete	it.node;

				nodes--;

				return	Iterator(next);

}

template	<class	T>

Q_INLINE_TEMPLATES	Q_TYPENAME	QValueListPrivate<T>::NodePtr	QValueListPrivate<T>::find(Q_TYPENAME	QValueListPrivate<T>::NodePtr	start,	const	T&	x)	const

{

				ConstIterator	first(start);

				ConstIterator	last(node);

				while(first	!=	last)	{

	 if	(*first	==	x)

	 				return	first.node;

	 ++first;

				}

				return	last.node;

}

template	<class	T>

Q_INLINE_TEMPLATES	int	QValueListPrivate<T>::findIndex(Q_TYPENAME	QValueListPrivate<T>::NodePtr	start,	const	T&	x)	const

{

				ConstIterator	first(start);

				ConstIterator	last(node);

				int	pos	=	0;

				while(first	!=	last)	{

	 if	(*first	==	x)

	 				return	pos;

	 ++first;

	 ++pos;

				}

				return	-1;

}

template	<class	T>

Q_INLINE_TEMPLATES	uint	QValueListPrivate<T>::contains(const	T&	x)	const

{

				uint	result	=	0;

				Iterator	first	=	Iterator(node->next);

				Iterator	last	=	Iterator(node);

				while(first	!=	last)	{

	 if	(*first	==	x)

	 				++result;

	 ++first;

				}

				return	result;

}

template	<class	T>

Q_INLINE_TEMPLATES	uint	QValueListPrivate<T>::remove(const	T&	x)

{

				uint	result	=	0;

				Iterator	first	=	Iterator(node->next);

				Iterator	last	=	Iterator(node);

				while(first	!=	last)	{

	 if	(*first	==	x)	{

	 				first	=	remove(first);

	 				++result;

	 }	else

	 				++first;

				}

				return	result;

}

template	<class	T>

Q_INLINE_TEMPLATES	Q_TYPENAME	QValueListPrivate<T>::NodePtr	QValueListPrivate<T>::at(size_type	i)	const

{

				Q_ASSERT(i	<=	nodes);

				NodePtr	p	=	node->next;

				for(size_type	x	=	0;	x	<	i;	++x)

	 p	=	p->next;

				return	p;

}

template	<class	T>

Q_INLINE_TEMPLATES	void	QValueListPrivate<T>::clear()

{

				nodes	=	0;

				NodePtr	p	=	node->next;

				while(p	!=	node)	{

	 NodePtr	next	=	p->next;

	 delete	p;

	 p	=	next;

				}

				node->next	=	node->prev	=	node;

}

#ifdef	QT_CHECK_RANGE

#	if	!defined(QT_NO_DEBUG)	&&	defined(QT_CHECK_VALUELIST_RANGE)

#		define	QT_CHECK_INVALID_LIST_ELEMENT	if	(empty())	qWarning("QValueList:	Warning	invalid	element")

#		define	QT_CHECK_INVALID_LIST_ELEMENT_FATAL	Q_ASSERT(!empty());

#	else

#		define	QT_CHECK_INVALID_LIST_ELEMENT

#		define	QT_CHECK_INVALID_LIST_ELEMENT_FATAL

#	endif

#else

#	define	QT_CHECK_INVALID_LIST_ELEMENT

#	define	QT_CHECK_INVALID_LIST_ELEMENT_FATAL

#endif

template	<class	T>

class	QValueList

{

public:

				/**

					*	Typedefs

					*/

				typedef	QValueListIterator<T>	iterator;

				typedef	QValueListConstIterator<T>	const_iterator;

				typedef	T	value_type;

				typedef	value_type*	pointer;

				typedef	const	value_type*	const_pointer;

				typedef	value_type&	reference;

				typedef	const	value_type&	const_reference;

				typedef	size_t	size_type;

#ifndef	QT_NO_STL

				typedef	ptrdiff_t		difference_type;

#else

				typedef	int	difference_type;

#endif

				/**

					*	API

					*/

				QValueList()	{	sh	=	new	QValueListPrivate<T>;	}

				QValueList(const	QValueList<T>&	l)	{	sh	=	l.sh;	sh->ref();	}

#ifndef	QT_NO_STL

				QValueList(const	Q_TYPENAME	std::list<T>&	l)

				{

	 sh	=	new	QValueListPrivate<T>;

	 qCopy(l.begin(),	l.end(),	std::back_inserter(*this));

				}

#endif

				~QValueList()	{	sh->derefAndDelete();	}

				QValueList<T>&	operator=	(const	QValueList<T>&	l)

				{

	 l.sh->ref();

	 sh->derefAndDelete();

	 sh	=	l.sh;

	 return	*this;

				}

#ifndef	QT_NO_STL

				QValueList<T>&	operator=	(const	Q_TYPENAME	std::list<T>&	l)

				{

	 detach();

	 qCopy(l.begin(),	l.end(),	std::back_inserter(*this));

	 return	*this;

				}

				bool	operator==	(const	Q_TYPENAME	std::list<T>&	l)	const

				{

	 if	(size()	!=	l.size())

	 				return	FALSE;

	 const_iterator	it2	=	begin();

#if	!defined(Q_CC_MIPS)

	 typename

#endif

	 std::list<T>::const_iterator	it	=	l.begin();

	 for	(;	it2	!=	end();	++it2,	++it)

	 if	(!((*it2)	==	(*it)))

	 				return	FALSE;

	 return	TRUE;

				}

#endif

				bool	operator==	(const	QValueList<T>&	l)	const;

				bool	operator!=	(const	QValueList<T>&	l)	const	{	return	!(*this	==	l);	}

				iterator	begin()	{	detach();	return	iterator(sh->node->next);	}

				const_iterator	begin()	const	{	return	const_iterator(sh->node->next);	}

				iterator	end()	{	detach();	return	iterator(sh->node);	}

				const_iterator	end()	const	{	return	const_iterator(sh->node);	}

				iterator	insert(iterator	it,	const	T&	x)	{	detach();	return	sh->insert(it,	x);	}

				uint	remove(const	T&	x)	{	detach();	return	sh->remove(x);	}

				void	clear();

				QValueList<T>&	operator<<	(const	T&	x)

				{

	 append(x);

	 return	*this;

				}

				size_type	size()	const	{	return	sh->nodes;	}

				bool	empty()	const	{	return	sh->nodes	==	0;	}

				void	push_front(const	T&	x)	{	detach();	sh->insert(begin(),	x);	}

				void	push_back(const	T&	x)	{	detach();	sh->insert(end(),	x);	}

				iterator	erase(iterator	pos)	{	detach();	return	sh->remove(pos);	}

				iterator	erase(iterator	first,	iterator	last);

				reference	front()	{	QT_CHECK_INVALID_LIST_ELEMENT_FATAL;	return	*begin();	}

				const_reference	front()	const	{	QT_CHECK_INVALID_LIST_ELEMENT_FATAL;	return	*begin();	}

				reference	back()	{	QT_CHECK_INVALID_LIST_ELEMENT_FATAL;	return	*(--end());	}

				const_reference	back()	const	{	QT_CHECK_INVALID_LIST_ELEMENT_FATAL;	return	*(--end());	}

				void	pop_front()	{	QT_CHECK_INVALID_LIST_ELEMENT;	erase(begin());	}

				void	pop_back()	{

	 QT_CHECK_INVALID_LIST_ELEMENT;

	 iterator	tmp	=	end();

	 erase(--tmp);

				}

				void	insert(iterator	pos,	size_type	n,	const	T&	x);

				//	Some	compilers	(incl.	vc++)	would	instantiate	this	function	even	if

				//	it	is	not	used;	this	would	constrain	QValueList	to	classes	that	provide

				//	an	operator<

				/*

				void	sort()

				{

	 qHeapSort(*this);

				}

				*/

				QValueList<T>	operator+	(const	QValueList<T>&	l)	const;

				QValueList<T>&	operator+=	(const	QValueList<T>&	l);

				iterator	fromLast()	{	detach();	return	iterator(sh->node->prev);	}

				const_iterator	fromLast()	const	{	return	const_iterator(sh->node->prev);	}

				bool	isEmpty()	const	{	return	(sh->nodes	==	0);	}

				iterator	append(const	T&	x)	{	detach();	return	sh->insert(end(),	x);	}

				iterator	prepend(const	T&	x)	{	detach();	return	sh->insert(begin(),	x);	}

				iterator	remove(iterator	it)	{	detach();	return	sh->remove(it);	}

				T&	first()	{	QT_CHECK_INVALID_LIST_ELEMENT;	detach();	return	sh->node->next->data;	}

				const	T&	first()	const	{	QT_CHECK_INVALID_LIST_ELEMENT;	return	sh->node->next->data;	}

				T&	last()	{	QT_CHECK_INVALID_LIST_ELEMENT;	detach();	return	sh->node->prev->data;	}

				const	T&	last()	const	{	QT_CHECK_INVALID_LIST_ELEMENT;	return	sh->node->prev->data;	}

				T&	operator[]	(size_type	i)	{	QT_CHECK_INVALID_LIST_ELEMENT;	detach();	return	sh->at(i)->data;	}

				const	T&	operator[]	(size_type	i)	const	{	QT_CHECK_INVALID_LIST_ELEMENT;	return	sh->at(i)->data;	}

				iterator	at(size_type	i)	{	QT_CHECK_INVALID_LIST_ELEMENT;	detach();	return	iterator(sh->at(i));	}

				const_iterator	at(size_type	i)	const	{	QT_CHECK_INVALID_LIST_ELEMENT;	return	const_iterator(sh->at(i));	}

				iterator	find	(const	T&	x)	{	detach();	return	iterator(sh->find(sh->node->next,	x));	}

				const_iterator	find	(const	T&	x)	const	{	return	const_iterator(sh->find(sh->node->next,	x));	}

				iterator	find	(iterator	it,	const	T&	x)	{	detach();	return	iterator(sh->find(it.node,	x));	}

				const_iterator	find	(const_iterator	it,	const	T&	x)	const	{	return	const_iterator(sh->find(it.node,	x));	}

				int	findIndex(const	T&	x)	const	{	return	sh->findIndex(sh->node->next,	x)	;	}

				size_type	contains(const	T&	x)	const	{	return	sh->contains(x);	}

				size_type	count()	const	{	return	sh->nodes;	}

				QValueList<T>&	operator+=	(const	T&	x)

				{

	 append(x);

	 return	*this;

				}

				typedef	QValueListIterator<T>	Iterator;

				typedef	QValueListConstIterator<T>	ConstIterator;

				typedef	T	ValueType;

protected:

				/**

					*	Helpers

					*/

				void	detach()	{	if	(sh->count	>	1)	detachInternal();	}

				/**

					*	Variables

					*/

				QValueListPrivate<T>*	sh;

				

private:

				void	detachInternal();

};

template	<class	T>

Q_INLINE_TEMPLATES	bool	QValueList<T>::operator==	(const	QValueList<T>&	l)	const

{

				if	(size()	!=	l.size())

	 return	FALSE;

				const_iterator	it2	=	begin();

				const_iterator	it	=	l.begin();

				for(;	it	!=	l.end();	++it,	++it2)

	 if	(!(*it	==	*it2))

	 				return	FALSE;

				return	TRUE;

}

template	<class	T>

Q_INLINE_TEMPLATES	void	QValueList<T>::clear()

{

				if	(sh->count	==	1)	sh->clear();	else	{	sh->deref();	sh	=	new	QValueListPrivate<T>;	}

}

template	<class	T>

Q_INLINE_TEMPLATES	Q_TYPENAME	QValueList<T>::iterator	QValueList<T>::erase(Q_TYPENAME	QValueList<T>::iterator	first,	Q_TYPENAME	QValueList<T>::iterator	last)

{

				while	(first	!=	last)

	 erase(first++);

				return	last;

}

template	<class	T>

Q_INLINE_TEMPLATES	void	QValueList<T>::insert(Q_TYPENAME	QValueList<T>::iterator	pos,	size_type	n,	const	T&	x)

{

				for	(;	n	>	0;	--n)

	 insert(pos,	x);

}

template	<class	T>

Q_INLINE_TEMPLATES	QValueList<T>	QValueList<T>::operator+	(const	QValueList<T>&	l)	const

{

				QValueList<T>	l2(*this);

				for(const_iterator	it	=	l.begin();	it	!=	l.end();	++it)

	 l2.append(*it);

				return	l2;

}

template	<class	T>

Q_INLINE_TEMPLATES	QValueList<T>&	QValueList<T>::operator+=	(const	QValueList<T>&	l)

{

				for(const_iterator	it	=	l.begin();	it	!=	l.end();	++it)

	 append(*it);

				return	*this;

}

template	<class	T>

Q_INLINE_TEMPLATES	void	QValueList<T>::detachInternal()

{

				sh->deref();	sh	=	new	QValueListPrivate<T>(*sh);

}

#ifndef	QT_NO_DATASTREAM

template	<class	T>

Q_INLINE_TEMPLATES	QDataStream&	operator>>(QDataStream&	s,	QValueList<T>&	l)

{

				l.clear();

				Q_UINT32	c;

				s	>>	c;

				for(Q_UINT32	i	=	0;	i	<	c;	++i)

				{

	 T	t;

	 s	>>	t;

	 l.append(t);

	 if	(s.atEnd())

	 				break;

				}

				return	s;

}

template	<class	T>

Q_INLINE_TEMPLATES	QDataStream&	operator<<(QDataStream&	s,	const	QValueList<T>&	l)

{

				s	<<	(Q_UINT32)l.size();

				QValueListConstIterator<T>	it	=	l.begin();

				for(;	it	!=	l.end();	++it)

	 s	<<	*it;

				return	s;

}

#endif	//	QT_NO_DATASTREAM

#endif	//	QVALUELIST_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qvaluestack.h
This	is	the	verbatim	text	of	the	qvaluestack.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qvaluestack.h			3.0.5			edited	May	29	15:00	$

**

**	Definition	of	QValueStack	class

**

**	Created	:	990925

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	tools	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QVALUESTACK_H

#define	QVALUESTACK_H

#ifndef	QT_H

#include	"qvaluelist.h"

#endif	//	QT_H

template<class	T>

class	QValueStack	

				:	public	QValueList<T>

{

public:

				QValueStack()	{}

			~QValueStack()	{}

				void		push(const	T&	d)	{	append(d);	}

				T	pop()

				{

	 T	elem(this->last());

	 if	(!this->isEmpty())

	 				remove(this->fromLast());

	 return	elem;

				}

				T&	top()	{	return	this->last();	}

				const	T&	top()	const	{	return	this->last();	}

};

#endif

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qvariant.h
This	is	the	verbatim	text	of	the	qvariant.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qvariant.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QVariant	class

**

**	Created	:	990414

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QVARIANT_H

#define	QVARIANT_H

#ifndef	QT_H

#include	"qstring.h"

#endif	//	QT_H

#ifndef	QT_NO_VARIANT

class	QString;

class	QCString;

class	QFont;

class	QPixmap;

class	QBrush;

class	QRect;

class	QPoint;

class	QImage;

class	QSize;

class	QColor;

class	QPalette;

class	QColorGroup;

class	QIconSet;

class	QDataStream;

class	QPointArray;

class	QRegion;

class	QBitmap;

class	QCursor;

class	QStringList;

class	QSizePolicy;

class	QDate;

class	QTime;

class	QDateTime;

class	QBitArray;

class	QKeySequence;

//	Some	headers	rejected	after	QVariant	declaration	for	GCC	2.7.*	compatibility

class	QVariant;

#ifndef	QT_NO_TEMPLATE_VARIANT

template	<class	T>	class	QValueList;

template	<class	T>	class	QValueListConstIterator;

template	<class	T>	class	QValueListNode;

template	<class	Key,	class	T>	class	QMap;

template	<class	Key,	class	T>	class	QMapConstIterator;

#endif

class	Q_EXPORT	QVariant

{

public:

				enum	Type	{

	 Invalid,

	 Map,

	 List,

	 String,

	 StringList,

	 Font,

	 Pixmap,

	 Brush,

	 Rect,

	 Size,

	 Color,

	 Palette,

	 ColorGroup,

	 IconSet,

	 Point,

	 Image,

	 Int,

	 UInt,

	 Bool,

	 Double,

	 CString,

	 PointArray,

	 Region,

	 Bitmap,

	 Cursor,

	 SizePolicy,

	 Date,

	 Time,

	 DateTime,

	 ByteArray,

	 BitArray,

	 KeySequence

				};

				QVariant();

				~QVariant();

				QVariant(const	QVariant&);

#ifndef	QT_NO_DATASTREAM

				QVariant(QDataStream&	s);

#endif

				QVariant(const	QString&);

				QVariant(const	QCString&);

				QVariant(const	char*);

#ifndef	QT_NO_STRINGLIST

				QVariant(const	QStringList&);

#endif

				QVariant(const	QFont&);

				QVariant(const	QPixmap&);

				QVariant(const	QImage&);

				QVariant(const	QBrush&);

				QVariant(const	QPoint&);

				QVariant(const	QRect&);

				QVariant(const	QSize&);

				QVariant(const	QColor&);

				QVariant(const	QPalette&);

				QVariant(const	QColorGroup&);

				QVariant(const	QIconSet&);

				QVariant(const	QPointArray&);

				QVariant(const	QRegion&);

				QVariant(const	QBitmap&);

				QVariant(const	QCursor&);

				QVariant(const	QDate&);

				QVariant(const	QTime&);

				QVariant(const	QDateTime&);

				QVariant(const	QByteArray&);

				QVariant(const	QBitArray&);

				QVariant(const	QKeySequence&);

#ifndef	QT_NO_TEMPLATE_VARIANT

				QVariant(const	QValueList<QVariant>&);

				QVariant(const	QMap<QString,QVariant>&);

#endif

				QVariant(int);

				QVariant(uint);

				//	###	Problems	on	some	compilers	?

				QVariant(bool,	int);

				QVariant(double);

				QVariant(QSizePolicy);

				QVariant&	operator=	(const	QVariant&);

				bool	operator==(const	QVariant&)	const;

				bool	operator!=(const	QVariant&)	const;

				Type	type()	const;

				const	char*	typeName()	const;

				bool	canCast(Type)	const;

				bool	cast(Type);

				bool	isValid()	const;

				void	clear();

				const	QString	toString()	const;

				const	QCString	toCString()	const;

#ifndef	QT_NO_STRINGLIST

				const	QStringList	toStringList()	const;

#endif

				const	QFont	toFont()	const;

				const	QPixmap	toPixmap()	const;

				const	QImage	toImage()	const;

				const	QBrush	toBrush()	const;

				const	QPoint	toPoint()	const;

				const	QRect	toRect()	const;

				const	QSize	toSize()	const;

				const	QColor	toColor()	const;

				const	QPalette	toPalette()	const;

				const	QColorGroup	toColorGroup()	const;

				const	QIconSet	toIconSet()	const;

				const	QPointArray	toPointArray()	const;

				const	QBitmap	toBitmap()	const;

				const	QRegion	toRegion()	const;

				const	QCursor	toCursor()	const;

				const	QDate	toDate()	const;

				const	QTime	toTime()	const;

				const	QDateTime	toDateTime()	const;

				const	QByteArray	toByteArray()	const;

				const	QBitArray	toBitArray()	const;

				const	QKeySequence	toKeySequence()	const;

				int	toInt(bool	*	ok=0)	const;

				uint	toUInt(bool	*	ok=0)	const;

				bool	toBool()	const;

				double	toDouble(bool	*	ok=0)	const;

#ifndef	QT_NO_TEMPLATE_VARIANT

				const	QValueList<QVariant>	toList()	const;

				const	QMap<QString,QVariant>	toMap()	const;

#endif

				QSizePolicy	toSizePolicy()	const;

#ifndef	QT_NO_TEMPLATE_VARIANT

				QValueListConstIterator<QString>	stringListBegin()	const;

				QValueListConstIterator<QString>	stringListEnd()	const;

				QValueListConstIterator<QVariant>	listBegin()	const;

				QValueListConstIterator<QVariant>	listEnd()	const;

				QMapConstIterator<QString,QVariant>	mapBegin()	const;

				QMapConstIterator<QString,QVariant>	mapEnd()	const;

				QMapConstIterator<QString,QVariant>	mapFind(const	QString&)	const;

#endif

				QString&	asString();

				QCString&	asCString();

#ifndef	QT_NO_STRINGLIST

				QStringList&	asStringList();

#endif

				QFont&	asFont();

				QPixmap&	asPixmap();

				QImage&	asImage();

				QBrush&	asBrush();

				QPoint&	asPoint();

				QRect&	asRect();

				QSize&	asSize();

				QColor&	asColor();

				QPalette&	asPalette();

				QColorGroup&	asColorGroup();

				QIconSet&	asIconSet();

				QPointArray&	asPointArray();

				QBitmap&	asBitmap();

				QRegion&	asRegion();

				QCursor&	asCursor();

				QDate&	asDate();

				QTime&	asTime();

				QDateTime&	asDateTime();

				QByteArray&	asByteArray();

				QBitArray&	asBitArray();

#ifndef	QT_NO_ACCEL

				QKeySequence&	asKeySequence();

#endif

				int&	asInt();

				uint&	asUInt();

				bool&	asBool();

				double&	asDouble();

#ifndef	QT_NO_TEMPLATE_VARIANT

				QValueList<QVariant>&	asList();

				QMap<QString,QVariant>&	asMap();

#endif

				QSizePolicy&	asSizePolicy();

#ifndef	QT_NO_DATASTREAM

				void	load(QDataStream&);

				void	save(QDataStream&)	const;

#endif

				static	const	char*	typeToName(Type	typ);

				static	Type	nameToType(const	char*	name);

private:

				void	detach();

				class	Private	:	public	QShared

				{

				public:

								Private();

								Private(Private*);

								~Private();

								void	clear();

								Type	typ;

								union

								{

	 				uint	u;

	 				int	i;

	 				bool	b;

	 				double	d;

	 				void	*ptr;

								}	value;

				};

				Private*	d;

};

//	down	here	for	GCC	2.7.*	compatibility

#ifndef	QT_H

#include	"qvaluelist.h"

#include	"qstringlist.h"

#include	"qmap.h"

#endif	//	QT_H

inline	QVariant::Type	QVariant::type()	const

{

				return	d->typ;

}

inline	bool	QVariant::isValid()	const

{

				return	(d->typ	!=	Invalid);

}

#ifndef	QT_NO_TEMPLATE_VARIANT

inline	QValueListConstIterator<QString>	QVariant::stringListBegin()	const

{

				if	(d->typ	!=	StringList)

	 return	QValueListConstIterator<QString>();

				return	((const	QStringList*)d->value.ptr)->begin();

}

inline	QValueListConstIterator<QString>	QVariant::stringListEnd()	const

{

				if	(d->typ	!=	StringList)

	 return	QValueListConstIterator<QString>();

				return	((const	QStringList*)d->value.ptr)->end();

}

inline	QValueListConstIterator<QVariant>	QVariant::listBegin()	const

{

				if	(d->typ	!=	List)

	 return	QValueListConstIterator<QVariant>();

				return	((const	QValueList<QVariant>*)d->value.ptr)->begin();

}

inline	QValueListConstIterator<QVariant>	QVariant::listEnd()	const

{

				if	(d->typ	!=	List)

	 return	QValueListConstIterator<QVariant>();

				return	((const	QValueList<QVariant>*)d->value.ptr)->end();

}

inline	QMapConstIterator<QString,QVariant>	QVariant::mapBegin()	const

{

				if	(d->typ	!=	Map)

	 return	QMapConstIterator<QString,QVariant>();

				return	((const	QMap<QString,QVariant>*)d->value.ptr)->begin();

}

inline	QMapConstIterator<QString,QVariant>	QVariant::mapEnd()	const

{

				if	(d->typ	!=	Map)

	 return	QMapConstIterator<QString,QVariant>();

				return	((const	QMap<QString,QVariant>*)d->value.ptr)->end();

}

inline	QMapConstIterator<QString,QVariant>	QVariant::mapFind(const	QString&	key)	const

{

				if	(d->typ	!=	Map)

	 return	QMapConstIterator<QString,QVariant>();

				return	((const	QMap<QString,QVariant>*)d->value.ptr)->find(key);

}

#endif

#ifndef	QT_NO_DATASTREAM

Q_EXPORT	QDataStream&	operator>>	(QDataStream&	s,	QVariant&	p);

Q_EXPORT	QDataStream&	operator<<	(QDataStream&	s,	const	QVariant&	p);

Q_EXPORT	QDataStream&	operator>>	(QDataStream&	s,	QVariant::Type&	p);

Q_EXPORT	QDataStream&	operator<<	(QDataStream&	s,	const	QVariant::Type	p);

#endif

#endif	//QT_NO_VARIANT

#endif	//	QVARIANT_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qvbuttongroup.h
qvbuttongroup.hTrolltech

/**

**	$Id:		qt/qvbuttongroup.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QVButtonGroup	class

**

**	Created	:	990602

**

**	Copyright	(C)	1999-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QVBUTTONGROUP_H

#define	QVBUTTONGROUP_H

#ifndef	QT_H

#include	"qbuttongroup.h"

#endif	//	QT_H

#ifndef	QT_NO_VBUTTONGROUP

class	Q_EXPORT	QVButtonGroup	:	public	QButtonGroup

{

				Q_OBJECT

public:

				QVButtonGroup(QWidget*	parent=0,	const	char*	name=0);

				QVButtonGroup(const	QString	&title,	QWidget*	parent=0,	const	char*	name=0);

				~QVButtonGroup();

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QVButtonGroup(const	QVButtonGroup	&);

				QVButtonGroup	&operator=(const	QVButtonGroup	&);

#endif

};

#endif	//	QT_NO_VBUTTONGROUP

#endif	//	QVBUTTONGROUP_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qvgroupbox.h
qvgroupbox.hTrolltech

/**

**	$Id:		qt/qvgroupbox.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QVGroupBox	widget	class

**

**	Created	:	990602

**

**	Copyright	(C)	1999-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QVGROUPBOX_H

#define	QVGROUPBOX_H

#ifndef	QT_H

#include	"qgroupbox.h"

#endif	//	QT_H

#ifndef	QT_NO_VGROUPBOX

class	Q_EXPORT	QVGroupBox	:	public	QGroupBox

{

				Q_OBJECT

public:

				QVGroupBox(QWidget*	parent=0,	const	char*	name=0);

				QVGroupBox(const	QString	&title,	QWidget*	parent=0,	const	char*	name=0);

				~QVGroupBox();

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QVGroupBox(const	QVGroupBox	&);

				QVGroupBox	&operator=(const	QVGroupBox	&);

#endif

};

#endif	//	QT_NO_VGROUPBOX

#endif	//	QVGROUPBOX_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qwaitcondition.h
qwaitcondition.hTrolltech

/**

**	Id

**

**	Definition	of	QWaitCondition	class

**

**	Created	:	931107

**

**	Copyright	(C)	1992-2002	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	tools	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QWAITCONDITION_H

#define	QWAITCONDITION_H

#ifndef	QT_H

#include	"qglobal.h"

#endif	//	QT_H

#if	defined(QT_THREAD_SUPPORT)

#include	<limits.h>

class	QWaitConditionPrivate;

class	QMutex;

class	Q_EXPORT	QWaitCondition

{

public:

				QWaitCondition();

				virtual	~QWaitCondition();

				//	default	argument	causes	thread	to	block	indefinately

				bool	wait(unsigned	long	time	=	ULONG_MAX);

				bool	wait(QMutex	*mutex,	unsigned	long	time	=	ULONG_MAX);

				void	wakeOne();

				void	wakeAll();

private:

				QWaitConditionPrivate	*	d;

#if	defined(Q_DISABLE_COPY)

				QWaitCondition(const	QWaitCondition	&);

				QWaitCondition	&operator=(const	QWaitCondition	&);

#endif

};

#endif

#endif

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qwhatsthis.h
qwhatsthis.hTrolltech

/**

**	$Id:		qt/qwhatsthis.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QWhatsThis	class

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QWHATSTHIS_H

#define	QWHATSTHIS_H

#ifndef	QT_H

#include	"qobject.h"

#endif	//	QT_H

#ifndef	QT_NO_WHATSTHIS

#include	"qcursor.h"

class	QToolButton;

class	QPopupMenu;

class	QStyleSheet;

class	Q_EXPORT	QWhatsThis:	public	Qt

{

public:

				QWhatsThis(QWidget	*);

				virtual	~QWhatsThis();

				virtual	QString	text(const	QPoint	&);

				virtual	bool	clicked(const	QString&	href);

				//	the	common	static	functions

				static	void	add(QWidget	*,	const	QString	&);

				static	void	remove(QWidget	*);

				static	QString	textFor(QWidget	*,	const	QPoint	&	pos	=	QPoint(),	bool	includeParents	=	FALSE);

				static	QToolButton	*	whatsThisButton(QWidget	*	parent);

				static	void	enterWhatsThisMode();

				static	bool	inWhatsThisMode();

				static	void	leaveWhatsThisMode(const	QString&	=	QString::null,	const	QPoint&	pos	=	QCursor::pos(),	QWidget*	w	=	0);

				static	void	display(const	QString&	text,	const	QPoint&	pos	=	QCursor::pos(),	QWidget*	w	=	0);

};

#endif	//	QT_NO_WHATSTHIS

#endif	//	QWHATSTHIS_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qwidgetfactory.h
This	is	the	verbatim	text	of	the	qwidgetfactory.h	include	file.	It	is	provided	only
for	illustration;	the	copyright	remains	with	Trolltech.

	/**

**	Copyright	(C)	2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	Qt	Designer.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QWIDGETFACTORY_H

#define	QWIDGETFACTORY_H

#ifndef	QT_H

#include	<qstring.h>

#include	<qptrlist.h>

#include	<qimage.h>

#include	<qpixmap.h>

#include	<qvaluelist.h>

#include	<qmap.h>

#include	<qaction.h>

#endif	//	QT_H

class	QWidget;

class	QLayout;

class	QDomElement;

class	QListViewItem;

class	QTable;

class	QWidgetFactory

{

public:

				QWidgetFactory();

				virtual	~QWidgetFactory();

				static	QWidget	*create(const	QString	&uiFile,	QObject	*connector	=	0,	QWidget	*parent	=	0,	const	char	*name	=	0);

				static	QWidget	*create(QIODevice	*dev,	QObject	*connector	=	0,	QWidget	*parent	=	0,	const	char	*name	=	0);

				static	void	addWidgetFactory(QWidgetFactory	*factory);

				static	void	loadImages(const	QString	&dir);

				virtual	QWidget	*createWidget(const	QString	&className,	QWidget	*parent,	const	char	*name)	const;

private:

				enum	LayoutType	{	HBox,	VBox,	Grid,	NoLayout	};

				void	loadImageCollection(const	QDomElement	&e);

				void	loadConnections(const	QDomElement	&e,	QObject	*connector);

				void	loadTabOrder(const	QDomElement	&e);

				QWidget	*createWidgetInternal(const	QDomElement	&e,	QWidget	*parent,	QLayout*	layout,	const	QString	&classNameArg);

				QLayout	*createLayout(QWidget	*widget,	QLayout*		layout,	LayoutType	type);

				LayoutType	layoutType(QLayout	*l)	const;

				void	setProperty(QObject*	widget,	const	QString	&prop,	const	QDomElement	&e);

				void	createSpacer(const	QDomElement	&e,	QLayout	*layout);

				QImage	loadFromCollection(const	QString	&name);

				QPixmap	loadPixmap(const	QDomElement	&e);

				QColorGroup	loadColorGroup(const	QDomElement	&e);

				void	createColumn(const	QDomElement	&e,	QWidget	*widget);

				void	loadItem(const	QDomElement	&e,	QPixmap	&pix,	QString	&txt,	bool	&hasPixmap);

				void	createItem(const	QDomElement	&e,	QWidget	*widget,	QListViewItem	*i	=	0);

				void	loadChildAction(QObject	*parent,	const	QDomElement	&e);

				void	loadActions(const	QDomElement	&e);

				void	loadToolBars(const	QDomElement	&e);

				void	loadMenuBar(const	QDomElement	&e);

				void	loadFunctions(const	QDomElement	&e);

				QAction	*findAction(const	QString	&name);

				void	loadExtraSource();

				QString	translate(const	QString&	sourceText,	const	QString&	comment	=	"");

private:

				struct	Image	{

	 QImage	img;

	 QString	name;

	 bool	operator==(const	Image	&i)	const	{

	 				return	(i.name	==	name	&&

	 	 					i.img	==	img);

	 }

				};

				struct	Field

				{

	 Field()	{}

	 Field(const	QString	&s1,	const	QPixmap	&p,	const	QString	&s2)	:	name(s1),	pix(p),	field(s2)	{}

	 QString	name;

	 QPixmap	pix;

	 QString	field;

#if	defined(Q_FULL_TEMPLATE_INSTANTIATION)

	 bool	operator==(const	Field&)	const	{	return	FALSE;	}

#endif

				};

				struct	EventFunction

				{

	 EventFunction()	{}

	 EventFunction(const	QString	&e,	const	QStringList	&f)

	 				:	events(e)	{	functions.append(f);	}

	 QStringList	events;

	 QValueList<QStringList>	functions;

				};

				struct	SqlWidgetConnection

				{

	 SqlWidgetConnection()	{}

	 SqlWidgetConnection(const	QString	&c,	const	QString	&t)

	 				:	conn(c),	table(t),	dbControls(new	QMap<QString,	QString>())	{}

	 QString	conn;

	 QString	table;

	 QMap<QString,	QString>	*dbControls;

				};

				struct	Functions

				{

	 QString	functions;

				};

				QValueList<Image>	images;

				QWidget	*toplevel;

				QListViewItem	*lastItem;

				QMap<QString,	QString>	*dbControls;

				QMap<QString,	QStringList>	dbTables;

				QMap<QWidget*,	SqlWidgetConnection>	sqlWidgetConnections;

				QMap<QString,	QString>	buddies;

				QMap<QTable*,	QValueList<Field>	>	fieldMaps;

				QPtrList<QAction>	actionList;

				QMap<QObject	*,	EventFunction>	eventMap;

				QMap<QString,	QString>	languageSlots;

				QMap<QString,	Functions*>	languageFunctions;

				QStringList	variables;

				QStringList	noDatabaseWidgets;

				bool	usePixmapCollection;

				int	defMargin,	defSpacing;

};

#endif

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qwidgetplugin.h
This	is	the	verbatim	text	of	the	qwidgetplugin.h	include	file.	It	is	provided	only
for	illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qwidgetplugin.h			3.0.5			edited	Mar	12	15:48	$

**

**	Definition	of	QWidgetPlugin	class

**

**	Created	:	010920

**

**	Copyright	(C)	2001	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QWIDGETPLUGIN_H

#define	QWIDGETPLUGIN_H

#ifndef	QT_H

#include	"qgplugin.h"

#include	"qstringlist.h"

#include	"qiconset.h"

#endif	//	QT_H

#ifndef	QT_NO_WIDGETPLUGIN

#ifdef	Q_WS_WIN

#ifdef	QT_PLUGIN

#define	QT_WIDGET_PLUGIN_EXPORT	__declspec(dllexport)

#else

#define	QT_WIDGET_PLUGIN_EXPORT	__declspec(dllimport)

#endif

#else

#define	QT_WIDGET_PLUGIN_EXPORT

#endif

class	QWidgetPluginPrivate;

class	QWidget;

class	Q_EXPORT	QWidgetPlugin	:	public	QGPlugin

{

				Q_OBJECT

public:

				QWidgetPlugin();

				~QWidgetPlugin();

				virtual	QStringList	keys()	const	=	0;

				virtual	QWidget	*create(const	QString	&key,	QWidget	*parent	=	0,	const	char	*name	=	0)	=	0;

				

				virtual	QString	group(const	QString	&key)	const;

				virtual	QIconSet	iconSet(const	QString	&key)	const;

				virtual	QString	includeFile(const	QString	&key)	const;

				virtual	QString	toolTip(const	QString	&key)	const;

				virtual	QString	whatsThis(const	QString	&key)	const;

				virtual	bool	isContainer(const	QString	&key)	const;

private:

				QWidgetPluginPrivate	*d;

};

#endif	//	QT_NO_WIDGETPLUGIN

#endif	//	QWIDGETPLUGIN_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qwidgetstack.h
qwidgetstack.hTrolltech

/**

**	$Id:		qt/qwidgetstack.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QWidgetStack	class

**

**	Created	:	980306

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QWIDGETSTACK_H

#define	QWIDGETSTACK_H

#ifndef	QT_H

#include	"qframe.h"

#include	"qintdict.h"

#include	"qptrdict.h"

#endif	//	QT_H

#ifndef	QT_NO_WIDGETSTACK

class	QWidgetStackPrivate;

class	Q_EXPORT	QWidgetStack:	public	QFrame

{

				Q_OBJECT

public:

				QWidgetStack(QWidget*	parent=0,	const	char*	name=0);

				~QWidgetStack();

				int	addWidget(QWidget	*,	int	=	-1);

				void	removeWidget(QWidget	*);

				QSize	sizeHint()	const;

				QSize	minimumSizeHint()	const;

				void	show();

				QWidget	*	widget(int)	const;

				int	id(QWidget	*)	const;

				QWidget	*	visibleWidget()	const;

				void	setFrameRect(const	QRect	&);

signals:

				void	aboutToShow(int);

				void	aboutToShow(QWidget	*);

public	slots:

				void	raiseWidget(int);

				void	raiseWidget(QWidget	*);

protected:

				void	frameChanged();

				void	resizeEvent(QResizeEvent	*);

				virtual	void	setChildGeometries();

				void	childEvent(QChildEvent	*);

private:

				bool	isMyChild(QWidget	*);

				QWidgetStackPrivate	*	d;

				QIntDict<QWidget>	*	dict;

				QPtrDict<QWidget>	*	focusWidgets;

				QWidget	*	topWidget;

				QWidget	*	invisible;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QWidgetStack(const	QWidgetStack	&);

				QWidgetStack&	operator=(const	QWidgetStack	&);

#endif

};

#endif	//	QT_NO_WIDGETSTACK

#endif	//	QWIDGETSTACK_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qwindowdefs.h
This	is	the	verbatim	text	of	the	qwindowdefs.h	include	file.	It	is	provided	only
for	illustration;	the	copyright	remains	with	Trolltech.

/**

**	Id

**

**	Definition	of	general	window	system	dependent	functions,	types	and

**	constants

**

**	Created	:	931029

**

**	Copyright	(C)	1992-2002	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QWINDOWDEFS_H

#define	QWINDOWDEFS_H

#ifndef	QT_H

#include	"qobjectdefs.h"

#include	"qstring.h"

#include	"qnamespace.h"

#endif	//	QT_H

#include	<limits.h>

//	Class	forward	definitions

class	QPaintDevice;

class	QPaintDeviceMetrics;

class	QWidget;

class	QWidgetMapper;

class	QDialog;

class	QColor;

class	QColorGroup;

class	QPalette;

class	QCursor;

class	QPoint;

class	QSize;

class	QRect;

class	QPointArray;

class	QPainter;

class	QRegion;

class	QFont;

class	QFontMetrics;

class	QFontInfo;

class	QPen;

class	QBrush;

class	QWMatrix;

class	QPixmap;

class	QBitmap;

class	QMovie;

class	QImage;

class	QImageIO;

class	QPicture;

class	QPrinter;

class	QAccel;

class	QTimer;

class	QTime;

class	QClipboard;

//	Widget	list	(defined	in	qwidgetlist.h)

class	QWidgetList;

class	QWidgetListIt;

//	Window	system	dependent	definitions

#if	defined(Q_WS_MAC)

#ifndef	QMAC_NO_QUARTZ

typedef	struct	CGContext	*CGContextRef;

#endif

typedef	struct	OpaqueControlRef	*ControlRef;

typedef	struct	OpaqueWindowGroupRef	*WindowGroupRef;

typedef	struct	OpaqueGrafPtr	*CGrafPtr;

typedef	struct	OpaqueMenuHandle	*MenuRef;

typedef	struct	OpaquePMPrintSession	*PMPrintSession;

typedef	struct	OpaquePMPrintSettings	*PMPrintSettings;

typedef	struct	OpaquePMPageFormat	*PMPageFormat;

typedef	struct	Point	Point;

typedef	struct	FSSpec	FSSpec;

typedef	struct	OpaqueEventHandlerRef*			EventHandlerRef;

typedef	struct	OpaqueEventHandlerCallRef*		EventHandlerCallRef;

#ifdef	MACOSX_102

typedef	struct	__EventLoopTimer*								EventLoopTimerRef;

#else

typedef	struct	OpaqueEventLoopTimerRef*	EventLoopTimerRef;

#endif

typedef	struct	OpaqueEventRef*										EventRef;

typedef	long	int	OSStatus;

typedef	struct	OpaqueScrapRef	*ScrapRef;

typedef	struct	OpaqueRgnHandle	*RgnHandle;

typedef	struct	OpaqueWindowPtr	*WindowPtr;

typedef	WindowPtr	WindowRef;

typedef	struct	OpaqueGrafPtr	*GWorldPtr;

typedef	GWorldPtr	GrafPtr;

typedef	struct	GDevice	**GDHandle;

typedef	struct	ColorTable	ColorTable;

typedef	struct	BitMap	BitMap;

typedef	struct	EventRecord	EventRecord;

typedef	void	*	MSG;

typedef	int	WId;

#endif

#if	defined(Q_WS_WIN)

#include	"qwindowdefs_win.h"

#endif	//	Q_WS_WIN

#if	defined(Q_WS_X11)

typedef	struct	_XDisplay	Display;

typedef	union		_XEvent	XEvent;

typedef	struct	_XGC	*GC;

typedef	struct	_XRegion	*Region;

typedef	unsigned	long		WId;

Q_EXPORT	Display	*qt_xdisplay();

Q_EXPORT	int	 	qt_xscreen();

Q_EXPORT	WId	 	qt_xrootwin();

Q_EXPORT	GC	 	qt_xget_readonly_gc(int	scrn,	bool	monochrome);

Q_EXPORT	GC	 	qt_xget_temp_gc(int	scrn,	bool	monochrome);

#endif	//	Q_WS_X11

#if	defined(Q_WS_QWS)

typedef	unsigned	long		WId;

struct	QWSEvent;

class	QGfx;

#endif	//	Q_WS_QWS

class	QApplication;

#if	defined(NEEDS_QMAIN)

#define	main	qMain

#endif

//	Global	platform-independent	types	and	functions

typedef	Q_INT32	QCOORD;		 	 	 //	coordinate	type

const	QCOORD	QCOORD_MAX	=		2147483647;

const	QCOORD	QCOORD_MIN	=	-QCOORD_MAX	-	1;

typedef	unsigned	int	QRgb;	 	 	 //	RGB	triplet

Q_EXPORT	const	char	*qAppName();	 	 //	get	application	name

//	Misc	functions

typedef	void	(*QtCleanUpFunction)();

Q_EXPORT	void	qAddPostRoutine(QtCleanUpFunction);

Q_EXPORT	void	qRemovePostRoutine(QtCleanUpFunction);

#if	!defined(QT_CLEAN_NAMESPACE)

//	source	compatibility	with	Qt	2.x

typedef	QtCleanUpFunction	Q_CleanUpFunction;

#endif

//	###	remove	3.0

Q_EXPORT	void	*qt_find_obj_child(QObject	*,	const	char	*,	const	char	*);

#define	Q_CHILD(parent,type,name)	\

	 ((type*)qt_find_obj_child(parent,#type,name))

#endif	//	QWINDOWDEFS_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qwindowsstyle.h
This	is	the	verbatim	text	of	the	qwindowsstyle.h	include	file.	It	is	provided	only
for	illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qwindowsstyle.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	Windows-like	style	class

**

**	Created	:	981231

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	widgets	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QWINDOWSSTYLE_H

#define	QWINDOWSSTYLE_H

#ifndef	QT_H

#include	"qcommonstyle.h"

#endif	//	QT_H

#ifndef	QT_NO_STYLE_WINDOWS

#if	defined(QT_PLUGIN)

#define	Q_EXPORT_STYLE_WINDOWS

#else

#define	Q_EXPORT_STYLE_WINDOWS	Q_EXPORT

#endif

class	Q_EXPORT_STYLE_WINDOWS	QWindowsStyle	:	public	QCommonStyle

{

				Q_OBJECT

public:

				QWindowsStyle();

				~QWindowsStyle();

				virtual	void	polishPopupMenu(QPopupMenu*);

				//	new	stuff

				void	drawPrimitive(PrimitiveElement	pe,

	 	 	 QPainter	*p,

	 	 	 const	QRect	&r,

	 	 	 const	QColorGroup	&cg,

	 	 	 SFlags	flags	=	Style_Default,

	 	 	 const	QStyleOption&	=	QStyleOption::Default)	const;

				void	drawControl(ControlElement	element,

	 	 						QPainter	*p,

	 	 						const	QWidget	*widget,

	 	 						const	QRect	&r,

	 	 						const	QColorGroup	&cg,

	 	 						SFlags	flags	=	Style_Default,

	 	 						const	QStyleOption&	=	QStyleOption::Default)	const;

				void	drawComplexControl(ComplexControl	control,

	 	 	 					QPainter*	p,

	 	 	 					const	QWidget*	widget,

	 	 	 					const	QRect&	r,

	 	 	 					const	QColorGroup&	cg,

	 	 	 					SFlags	flags	=	Style_Default,

	 	 	 					SCFlags	sub	=	SC_All,

	 	 	 					SCFlags	subActive	=	SC_None,

	 	 	 					const	QStyleOption&	=	QStyleOption::Default)	const;

				int	pixelMetric(PixelMetric	metric,

	 	 					const	QWidget	*widget	=	0)	const;

				QSize	sizeFromContents(ContentsType	contents,

	 	 	 				const	QWidget	*widget,

	 	 	 				const	QSize	&contentsSize,

	 	 	 				const	QStyleOption&	=	QStyleOption::Default)	const;

				int	styleHint(StyleHint	sh,	const	QWidget	*,	const	QStyleOption	&	=	QStyleOption::Default,

	 	 		QStyleHintReturn*	=	0)	const;

				QPixmap	stylePixmap(StylePixmap	stylepixmap,

	 	 	 	const	QWidget	*widget	=	0,

	 	 	 	const	QStyleOption&	=	QStyleOption::Default)	const;

private:

				//	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QWindowsStyle(const	QWindowsStyle	&);

				QWindowsStyle&	operator=(const	QWindowsStyle	&);

#endif

};

#endif	//	QT_NO_STYLE_WINDOWS

#endif	//	QWINDOWSSTYLE_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qwindowsystem_qws.h
This	is	the	verbatim	text	of	the	qwindowsystem_qws.h	include	file.	It	is	provided
only	for	illustration;	the	copyright	remains	with	Trolltech.

/**

**	Id

**

**	Definition	of	Qt/FB	central	server	classes

**

**	Created	:	991025

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	for	Qt/Embedded	may	use	this	file	in	accordance	with	the

**	Qt	Embedded	Commercial	License	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QTFB_H

#define	QTFB_H

#ifndef	QT_H

#include	<qwssocket_qws.h>

#include	<qmap.h>

#include	<qdatetime.h>

#include	<qptrlist.h>

#include	<qimage.h>

#include	"qwsproperty_qws.h"

#include	"qwscommand_qws.h"

#include	"qwsevent_qws.h"

#include	"qkeyboard_qws.h"

#endif	//	QT_H

struct	SWCursorData;

class	QWSCursor;

class	QWSClient;

class	QWSRegionManager;

class	QGfx;

class	QWSServerData;

class	QWSInternalWindowInfo

{

public:

				int	winid;

				unsigned	int	clientid;

				QString	name;			//	Corresponds	to	QObject	name	of	top-level	widget

};

struct	QWSWindowData;

class	QWSScreenSaver

{

public:

				virtual	~QWSScreenSaver();

				virtual	void	restore()=0;

				virtual	bool	save(int	level)=0;

};

class	QWSWindow

{

				friend	class	QWSServer;

public:

				QWSWindow(int	i,	QWSClient*	client);

				~QWSWindow();

				int	winId()	const	{	return	id;	}

				const	QString	&name()	const	{	return	rgnName;	}

				const	QString	&caption()	const	{	return	rgnCaption;	}

				QWSClient*	client()	const	{	return	c;	}

				QRegion	requested()	const	{	return	requested_region;	}

				QRegion	allocation()	const	{	return	allocated_region;	}

				bool	isVisible()	const	{	return	!requested_region.isEmpty();	}

				bool	isPartiallyObscured()	const	{	return	requested_region!=allocated_region;	}

				bool	isFullyObscured()	const	{	return	allocated_region.isEmpty();	}

				void	raise();

				void	lower();

				void	show();

				void	hide();

				void	setActiveWindow();

private:

				bool	hidden()	const	{	return	requested_region.isEmpty();	}

				bool	forClient(const	QWSClient*	cl)	const	{	return	cl==c;	}

				void	setName(const	QString	&n);

				void	setCaption(const	QString	&c);

				void	addAllocation(QWSRegionManager	*,	QRegion);

				void	removeAllocation(QWSRegionManager	*,	QRegion);

				int		allocationIndex()	const	{	return	alloc_region_idx;	}

				void	setAllocationIndex(int	i)	{	alloc_region_idx	=	i;	modified	=	TRUE;	}

				void	updateAllocation();

				void	setNeedAck(bool	n)	{	needAck	=	n;	}

				void	focus(bool	get);

				int	focusPriority()	const	{	return	last_focus_time;	}

				void	operation(QWSWindowOperationEvent::Operation	o);

				void	shuttingDown()	{	last_focus_time=0;	}

private:

				int	id;

				QString	rgnName;

				QString	rgnCaption;

				int	alloc_region_idx;

				bool	modified;

				bool	needAck;

				bool	onTop;

				QWSClient*	c;

				QRegion	requested_region;

				QRegion	allocated_region;

				QRegion	exposed;

				int	last_focus_time;

				QWSWindowData	*d;

};

#ifndef	QT_NO_SOUND

class	QWSSoundServer;

#ifdef	QT_USE_OLD_QWS_SOUND

class	QWSSoundServerData;

class	QWSSoundServer	:	public	QObject	{

				Q_OBJECT

public:

				QWSSoundServer(QObject*	parent);

				~QWSSoundServer();

				void	playFile(const	QString&	filename);

private	slots:

				void	feedDevice(int	fd);

private:

				QWSSoundServerData*	d;

};

#endif

#endif

/***

	*

	*	Class:	QWSServer

	*

	***/

class	QWSMouseHandler;

struct	QWSCommandStruct;

#ifndef	QT_NO_QWS_MULTIPROCESS

class	QWSServer	:	public	QWSServerSocket

#else

class	QWSServer	:	public	QObject

#endif

{

				friend	class	QCopChannel;

				friend	class	QWSMouseHandler;

				friend	class	QWSWindow;

				friend	class	QWSDisplay;

				Q_OBJECT

public:

				QWSServer(int	flags	=	0,	QObject	*parent=0,	const	char	*name=0);

				~QWSServer();

				enum	ServerFlags	{	DisableKeyboard	=	0x01,

	 	 							DisableMouse	=	0x02	};

				enum	GUIMode	{	NoGui	=	FALSE,	NormalGUI	=	TRUE,	Server	};

				static	void	sendKeyEvent(int	unicode,	int	keycode,	int	modifiers,	bool	isPress,

	 	 	 					bool	autoRepeat);

				static	void	processKeyEvent(int	unicode,	int	keycode,	int	modifiers,	bool	isPress,

	 	 	 	 bool	autoRepeat);

#ifndef	QT_NO_QWS_KEYBOARD				

				typedef	struct	KeyMap	{

	 ushort	key_code;

	 ushort	unicode;

	 ushort	shift_unicode;

	 ushort	ctrl_unicode;

				};

				static	const	KeyMap	*keyMap();

				class	KeyboardFilter

				{

				public:

	 virtual	bool	filter(int	unicode,	int	keycode,	int	modifiers,	bool	isPress,

	 	 						bool	autoRepeat)=0;

				};

				static	void	setKeyboardFilter(KeyboardFilter	*f);

#endif

				static	void	setDefaultMouse(const	char	*);

				static	void	setDefaultKeyboard(const	char	*);

				static	void	setMaxWindowRect(const	QRect&);

				static	void	sendMouseEvent(const	QPoint&	pos,	int	state);

				static	void	setDesktopBackground(const	QImage	&img);

				static	void	setDesktopBackground(const	QColor	&);

				static	QWSMouseHandler	*mouseHandler();

				static	void	setMouseHandler(QWSMouseHandler*);

#ifndef	QT_NO_QWS_KEYBOARD

				static	QWSKeyboardHandler*	keyboardHandler();

				static	void	setKeyboardHandler(QWSKeyboardHandler*	kh);

#endif

				QWSWindow	*windowAt(const	QPoint&	pos);

				//	For	debugging	only	at	this	time

				const	QPtrList<QWSWindow>	&clientWindows()	{	return	windows;	}

				void	openMouse();

				void	closeMouse();

#ifndef	QT_NO_QWS_KEYBOARD

				void	openKeyboard();

				void	closeKeyboard();

#endif

				static	void	setScreenSaver(QWSScreenSaver*);

				static	void	setScreenSaverIntervals(int*	ms);

				static	void	setScreenSaverInterval(int);

				static	bool	screenSaverActive();

				static	void	screenSaverActivate(bool);

				//	the	following	are	internal.

				void	refresh();

#ifndef	QT_NO_QWS_REPEATER

				void	refresh(QRegion	&);

#endif

				void	enablePainting(bool);

				static	void	processEventQueue();

				static	QPtrList<QWSInternalWindowInfo>	*	windowList();

				void	sendPropertyNotifyEvent(int	property,	int	state);

#ifndef	QT_NO_QWS_PROPERTIES

				QWSPropertyManager	*manager()	{

	 return	&propertyManager;

				}

#endif

				

				static	QPoint	mousePosition;

				static	void	startup(int	flags);

				static	void	closedown();

				enum	WindowEvent	{	Create=0x01,	Destroy=0x02,	Hide=0x04,	Show=0x08,

	 	 							Raise=0x10,	Lower=0x20,	Geometry=0x40	};

signals:

				void	windowEvent(QWSWindow	*w,	QWSServer::WindowEvent	e);

#ifndef	QT_NO_COP

				void	newChannel(const	QString&);

#endif

private:

#ifndef	QT_NO_COP

				static	void	sendQCopEvent(QWSClient	*c,	const	QCString	&ch,

	 	 	 							const	QCString	&msg,	const	QByteArray	&data,

	 	 	 							bool	response	=	FALSE);

#endif

				void	move_region(const	QWSRegionMoveCommand	*);

				void	set_altitude(const	QWSChangeAltitudeCommand	*);

				void	request_focus(const	QWSRequestFocusCommand	*);

				void	request_region(int,	QRegion);

				void	destroy_region(const	QWSRegionDestroyCommand	*);

				void	name_region(const	QWSRegionNameCommand	*);

				static	void	emergency_cleanup();

				static	QColor	*bgColor;

				static	QImage	*bgImage;

				void	sendMaxWindowRectEvents();

#ifndef	QT_NO_QWS_MULTIPROCESS

				void	newConnection(int	socket);

#endif

				void	invokeIdentify(QWSIdentifyCommand	*cmd,	QWSClient	*client);

				void	invokeCreate(QWSCreateCommand	*cmd,	QWSClient	*client);

				void	invokeRegionName(const	QWSRegionNameCommand	*cmd,	QWSClient	*client);

				void	invokeRegion(QWSRegionCommand	*cmd,	QWSClient	*client);

				void	invokeRegionMove(const	QWSRegionMoveCommand	*cmd,	QWSClient	*client);

				void	invokeRegionDestroy(const	QWSRegionDestroyCommand	*cmd,	QWSClient	*client);

				void	invokeSetAltitude(const	QWSChangeAltitudeCommand	*cmd,	QWSClient	*client);

#ifndef	QT_NO_QWS_PROPERTIES

				void	invokeAddProperty(QWSAddPropertyCommand	*cmd);

				void	invokeSetProperty(QWSSetPropertyCommand	*cmd);

				void	invokeRemoveProperty(QWSRemovePropertyCommand	*cmd);

				void	invokeGetProperty(QWSGetPropertyCommand	*cmd,	QWSClient	*client);

#endif	//QT_NO_QWS_PROPERTIES

				void	invokeSetSelectionOwner(QWSSetSelectionOwnerCommand	*cmd);

				void	invokeConvertSelection(QWSConvertSelectionCommand	*cmd);

				void	invokeSetFocus(const	QWSRequestFocusCommand	*cmd,	QWSClient	*client);

				void	initIO();

				void	setFocus(QWSWindow*,	bool	gain);

#ifndef	QT_NO_QWS_CURSOR

				void	invokeDefineCursor(QWSDefineCursorCommand	*cmd,	QWSClient	*client);

				void	invokeSelectCursor(QWSSelectCursorCommand	*cmd,	QWSClient	*client);

#endif

				void	invokeGrabMouse(QWSGrabMouseCommand	*cmd,	QWSClient	*client);

				void	invokeGrabKeyboard(QWSGrabKeyboardCommand	*cmd,	QWSClient	*client);

#ifndef	QT_NO_SOUND

				void	invokePlaySound(QWSPlaySoundCommand	*cmd,	QWSClient	*client);

#endif

#ifndef	QT_NO_COP

				void	invokeRegisterChannel(QWSQCopRegisterChannelCommand	*cmd,

	 	 	 	 QWSClient	*client);

				void	invokeQCopSend(QWSQCopSendCommand	*cmd,	QWSClient	*client);

#endif

#ifndef	QT_NO_QWS_REPEATER

				void	invokeRepaintRegion(QWSRepaintRegionCommand	*cmd,	

	 	 	 						QWSClient	*client);

#endif

				QWSMouseHandler*	newMouseHandler(const	QString&	spec);

#ifndef	QT_NO_QWS_KEYBOARD

				QWSKeyboardHandler*	newKeyboardHandler(const	QString&	spec);

#endif

				void	openDisplay();

				void	closeDisplay();

				void	showCursor();

				void	hideCursor();

				void	initializeCursor();

				void	paintServerRegion();

				void	paintBackground(QRegion);

				void	clearRegion(const	QRegion	&r,	const	QColor	&c);

				void	refreshBackground();

private	slots:

#ifndef	QT_NO_QWS_MULTIPROCESS

				void	clientClosed();

				void	doClient();

#endif

				void	screenSaverWake();

				void	screenSaverSleep();

				void	screenSaverTimeout();

private:

				void	screenSave(int	level);

				void	doClient(QWSClient	*);

				typedef	QMapIterator<int,QWSClient*>	ClientIterator;

				typedef	QMap<int,QWSClient*>	ClientMap;

				void	releaseMouse(QWSWindow*	w);

				void	releaseKeyboard(QWSWindow*	w);

				uchar*	sharedram;

				int	ramlen;

				QGfx	*gfx;

				ClientMap	client;

#ifndef	QT_NO_QWS_PROPERTIES

				QWSPropertyManager	propertyManager;

#endif

				struct	SelectionOwner	{

	 int	windowid;

	 struct	Time	{

	 				void	set(int	h,	int	m,	int	s,	int	s2)	{

	 	 hour	=	h;	minute	=	m;	sec	=	s;	ms	=	s2;

	 				}

	 				int	hour,	minute,	sec,	ms;

	 }	time;

				}	selectionOwner;

				QTime	timer;

				QWSServerData*	d;

				int*	screensaverinterval;

				QWSWindow	*focusw;

				QWSWindow	*mouseGrabber;

				bool	mouseGrabbing;

				int	swidth,	sheight,	sdepth;

#ifndef	QT_NO_QWS_CURSOR

				bool	cursorNeedsUpdate;

				QWSCursor	*cursor;	 				//	cursor	currently	shown

				QWSCursor	*nextCursor;		//	cursor	to	show	once	grabbing	is	off

#endif

				QRegion	screenRegion;			//	the	entire	display	region

				QRegion	serverRegion;

				QRegion	dirtyBackground;

				bool	disablePainting;

				QPtrList<QWSMouseHandler>	mousehandlers;

#ifndef	QT_NO_QWS_KEYBOARD

				QPtrList<QWSKeyboardHandler>	keyboardhandlers;

#endif

				QPtrList<QWSCommandStruct>	commandQueue;

				QWSRegionManager	*rgnMan;

				//	Window	management

				QPtrList<QWSWindow>	windows;	//	first=topmost

				QWSWindow*	newWindow(int	id,	QWSClient*	client);

				QWSWindow*	findWindow(int	windowid,	QWSClient*	client);

				void	moveWindowRegion(QWSWindow*,	int	dx,	int	dy);

				QRegion	setWindowRegion(QWSWindow*,	QRegion	r);

				void	raiseWindow(QWSWindow	*,	int	=	0);

				void	lowerWindow(QWSWindow	*,	int	=	-1);

				void	exposeRegion(QRegion	,	int	index	=	0);

				void	notifyModified(QWSWindow	*active	=	0);

				void	syncRegions(QWSWindow	*active	=	0);

				void	setCursor(QWSCursor	*curs);

				//	multimedia

#ifndef	QT_NO_SOUND

				QWSSoundServer	*soundserver;

#endif

#ifndef	QT_NO_COP

				QMap<QString,	QPtrList<QWSClient>	>	channels;

#endif

};

extern	QWSServer	*qwsServer;	//there	can	be	only	one

/***

	*

	*	Class:	QWSClient

	*

	***/

struct	QWSMouseEvent;

typedef	QMap<int,	QWSCursor*>	QWSCursorMap;

class	QWSClient	:	public	QObject

{

				Q_OBJECT

public:

				QWSClient(QObject*	parent,	int	socket);

				~QWSClient();

				int	socket()	const;

				void	setIdentity(const	QString&);

				QString	identity()	const	{	return	id;	}

				void	sendEvent(QWSEvent*	event);

				void	sendConnectedEvent(const	char	*display_spec);

				void	sendMaxWindowRectEvent();

				void	sendRegionModifyEvent(int	winid,	QRegion	exposed,	bool	ack);

				void	sendFocusEvent(int	winid,	bool	get);

				void	sendPropertyNotifyEvent(int	property,	int	state);

				void	sendPropertyReplyEvent(int	property,	int	len,	char	*data);

				void	sendSelectionClearEvent(int	windowid);

				void	sendSelectionRequestEvent(QWSConvertSelectionCommand	*cmd,	int	windowid);

				QWSCommand*	readMoreCommand();

				QWSCursorMap	cursors;	 //	cursors	defined	by	this	client

signals:

				void	connectionClosed();

				void	readyRead();

private	slots:

				void	closeHandler();

				void	errorHandler(int);

private:

				int	s;	//	XXX	csocket->d->socket->socket()	is	this	value

#ifndef	QT_NO_QWS_MULTIPROCESS

				QWSSocket	*csocket;

#endif

				QWSCommand*	command;

				uint	isClosed	:	1;

				QString	id;

};

#endif

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qwizard.h
qwizard.hTrolltech

/**

**	$Id:		qt/qwizard.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	the	QWizard	class.

**

**	Created	:	990101

**

**	Copyright	(C)	1999	by	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	dialogs	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QWIZARDDIALOG_H

#define	QWIZARDDIALOG_H

#ifndef	QT_H

#include	"qdialog.h"

#endif	//	QT_H

#ifndef	QT_NO_WIZARD

class	QHBoxLayout;

class	QWizardPrivate;

class	Q_EXPORT	QWizard	:	public	QDialog

{

				Q_OBJECT

				Q_PROPERTY(QFont	titleFont	READ	titleFont	WRITE	setTitleFont)

public:

				QWizard(QWidget*	parent=0,	const	char*	name=0,	bool	modal=FALSE,

	 					WFlags	f=0);

				~QWizard();

				void	show();

				void	setFont(const	QFont	&	font);

				virtual	void	addPage(QWidget	*,	const	QString	&);

				virtual	void	insertPage(QWidget*,	const	QString&,	int);

				virtual	void	removePage(QWidget	*);

				QString	title(QWidget	*)	const;

				void	setTitle(QWidget	*,	const	QString	&);

				QFont	titleFont()	const;

				void	setTitleFont(const	QFont	&);

				virtual	void	showPage(QWidget	*);

				QWidget	*	currentPage()	const;

				QWidget*	page(int)	const;

				int	pageCount()	const;

				int	indexOf(QWidget*)	const;

				virtual	bool	appropriate(QWidget	*)	const;

				virtual	void	setAppropriate(QWidget	*,	bool);

				QPushButton	*	backButton()	const;

				QPushButton	*	nextButton()	const;

				QPushButton	*	finishButton()	const;

				QPushButton	*	cancelButton()	const;

				QPushButton	*	helpButton()	const;

				bool	eventFilter(QObject	*,	QEvent	*);

public	slots:

				virtual	void	setBackEnabled(QWidget	*,	bool);

				virtual	void	setNextEnabled(QWidget	*,	bool);

				virtual	void	setFinishEnabled(QWidget	*,	bool);

				virtual	void	setHelpEnabled(QWidget	*,	bool);

				//	obsolete

				virtual	void	setFinish(QWidget	*,	bool)	{}

protected	slots:

				virtual	void	back();

				virtual	void	next();

				virtual	void	help();

signals:

				void	helpClicked();

				void	selected(const	QString&);

protected:

				virtual	void	layOutButtonRow(QHBoxLayout	*);

				virtual	void	layOutTitleRow(QHBoxLayout	*,	const	QString	&);

private:

				void	setBackEnabled(bool);

				void	setNextEnabled(bool);

				void	setHelpEnabled(bool);

				void	setNextPage(QWidget	*);

				void	updateButtons();

				void	layOut();

				QWizardPrivate	*d;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QWizard(const	QWizard	&);

				QWizard&	operator=(const	QWizard	&);

#endif

};

#endif	//	QT_NO_WIZARD

#endif	//	QWIZARD_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qwmatrix.h
This	is	the	verbatim	text	of	the	qwmatrix.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qwmatrix.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QWMatrix	class

**

**	Created	:	941020

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QWMATRIX_H

#define	QWMATRIX_H

#ifndef	QT_H

#include	"qwindowdefs.h"

#include	"qpointarray.h"

#include	"qrect.h"

#endif	//	QT_H

#ifndef	QT_NO_WMATRIX

class	Q_EXPORT	QWMatrix		 	 	 	 //	2D	transform	matrix

{

public:

				QWMatrix();

				QWMatrix(double	m11,	double	m12,	double	m21,	double	m22,

	 						double	dx,	double	dy);

				void	 setMatrix(double	m11,	double	m12,	double	m21,	double	m22,

	 	 	 			double	dx,		double	dy);

				double	 m11()	const	{	return	_m11;	}

				double	 m12()	const	{	return	_m12;	}

				double	 m21()	const	{	return	_m21;	}

				double	 m22()	const	{	return	_m22;	}

				double	 dx()		const	{	return	_dx;	}

				double	 dy()		const	{	return	_dy;	}

				void	 map(int	x,	int	y,	int	*tx,	int	*ty)	 						const;

				void	 map(double	x,	double	y,	double	*tx,	double	*ty)	const;

				QRect	 mapRect(const	QRect	&)	 const;

				QPoint	 map(const	QPoint	&p)	 const	{	return	operator	*(p);	}

				QRect	 map(const	QRect	&r)	 const	{	return	mapRect	(r);	}

				QPointArray	map(const	QPointArray	&a)	const	{	return	operator	*	(a);	}

				void	 reset();

				bool	 isIdentity()	const;

				QWMatrix			&translate(double	dx,	double	dy);

				QWMatrix			&scale(double	sx,	double	sy);

				QWMatrix			&shear(double	sh,	double	sv);

				QWMatrix			&rotate(double	a);

				bool	isInvertible()	const	{	return	(_m11*_m22	-	_m12*_m21)	!=	0;	}

				QWMatrix	 invert(bool	*	=	0)	const;

				bool	 operator==(const	QWMatrix	&)	const;

				bool	 operator!=(const	QWMatrix	&)	const;

				QWMatrix			&operator*=(const	QWMatrix	&);

				/*	we	use	matrix	multiplication	semantics	here	*/

				QPoint	operator	*	(const	QPoint	&)	const;

				QRegion	operator	*	(const	QRect	&)	const;

				QRegion	operator	*	(const	QRegion	&)	const;

				QPointArray	operator	*		(const	QPointArray	&a)	const;

				

private:

				QWMatrix			&bmul(const	QWMatrix	&);

				double	 _m11,	_m12;

				double	 _m21,	_m22;

				double	 _dx,		_dy;

};

Q_EXPORT	QWMatrix	operator*(const	QWMatrix	&,	const	QWMatrix	&);

/***

		QWMatrix	stream	functions

	***/

Q_EXPORT	QDataStream	&operator<<(QDataStream	&,	const	QWMatrix	&);

Q_EXPORT	QDataStream	&operator>>(QDataStream	&,	QWMatrix	&);

#endif	//	QT_NO_WMATRIX

#endif	//	QWMATRIX_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

qworkspace.h
qworkspace.hTrolltech

/**

**	$Id:		qt/qworkspace.h			3.0.5			edited	Nov	9	2001	$

**

**	Definition	of	the	QWorkspace	class

**

**	Created	:	990210

**

**	Copyright	(C)	1999-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	workspace	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	licenses	may	use	this

**	file	in	accordance	with	the	Qt	Commercial	License	Agreement	provided

**	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QWORKSPACE_H

#define	QWORKSPACE_H

#ifndef	QT_H

#include	<qwidget.h>

#include	<qwidgetlist.h>

#endif	//	QT_H

#ifndef	QT_NO_WORKSPACE

#if	!defined(QT_MODULE_WORKSPACE)	||	defined(QT_INTERNAL_WORKSPACE)

#define	QM_EXPORT_WORKSPACE

#else

#define	QM_EXPORT_WORKSPACE	Q_EXPORT

#endif

class	QWorkspaceChild;

class	QShowEvent;

class	QWorkspacePrivate;

class	QPopupMenu;

class	QM_EXPORT_WORKSPACE	QWorkspace	:	public	QWidget

{

				Q_OBJECT

				Q_PROPERTY(bool	scrollBarsEnabled	READ	scrollBarsEnabled	WRITE	setScrollBarsEnabled)

public:

				QWorkspace(QWidget*	parent=0,	const	char*	name=0);

				~QWorkspace();

				QWidget*	activeWindow()	const;

				QWidgetList	windowList()	const;

				QSize	sizeHint()	const;

				bool	scrollBarsEnabled()	const;

				void	setScrollBarsEnabled(bool	enable);

				void	setPaletteBackgroundColor(const	QColor	&);

				void	setPaletteBackgroundPixmap(const	QPixmap	&);

signals:

				void	windowActivated(QWidget*	w);

public	slots:

				void	cascade();

				void	tile();

protected:

#ifndef	QT_NO_STYLE

				void	styleChange(QStyle&);

#endif

				void	childEvent(QChildEvent	*);

				void	resizeEvent(QResizeEvent	*);

				bool	eventFilter(QObject	*,	QEvent	*);

				void	showEvent(QShowEvent	*e);

				void	hideEvent(QHideEvent	*e);

#ifndef	QT_NO_WHEELEVENT

				void	wheelEvent(QWheelEvent	*e);

#endif

private	slots:

				void	closeActiveWindow();

				void	closeAllWindows();

				void	normalizeActiveWindow();

				void	minimizeActiveWindow();

				void	showOperationMenu();

				void	popupOperationMenu(const	QPoint&);

				void	operationMenuActivated(int);

				void	operationMenuAboutToShow();

				void	toolMenuAboutToShow();

				void	activateNextWindow();

				void	activatePreviousWindow();

				void	scrollBarChanged();

private:

				void	insertIcon(QWidget*	w);

				void	removeIcon(QWidget*	w);

				void	place(QWidget*);

				QWorkspaceChild*	findChild(QWidget*	w);

				void	showMaximizeControls();

				void	hideMaximizeControls();

				void	activateWindow(QWidget*	w,	bool	change_focus	=	TRUE);

				void	showWindow(QWidget*	w);

				void	maximizeWindow(QWidget*	w);

				void	minimizeWindow(QWidget*	w);

				void	normalizeWindow(QWidget*	w);

				QRect	updateWorkspace();

				QPopupMenu*	popup;

				QWorkspacePrivate*	d;

				friend	class	QWorkspaceChild;

private:	 //	Disabled	copy	constructor	and	operator=

#if	defined(Q_DISABLE_COPY)

				QWorkspace(const	QWorkspace	&);

				QWorkspace&	operator=(const	QWorkspace	&);

#endif

};

#endif	//	QT_NO_WORKSPACE

#endif	//	QWORKSPACE_H

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qwsdecoration_qws.h
This	is	the	verbatim	text	of	the	qwsdecoration_qws.h	include	file.	It	is	provided
only	for	illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qwsdecoration_qws.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	QWSDecoration	class.

**

**	Created	:	20000308

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	for	Qt/Embedded	may	use	this	file	in	accordance	with	the

**	Qt	Embedded	Commercial	License	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QWSDECORATION_H

#define	QWSDECORATION_H

#ifndef	QT_H

#include	"qregion.h"

#endif	//	QT_H

class	QPopupMenu;

/*

	Implements	decoration	styles

*/

class	QWSDecoration

{

public:

				QWSDecoration()	{}

				virtual	~QWSDecoration()	{}

				enum	Region	{	None=0,	All=1,	Title=2,	Top=3,	Bottom=4,	Left=5,	Right=6,

	 	 TopLeft=7,	TopRight=8,	BottomLeft=9,	BottomRight=10,

	 	 Close=11,	Minimize=12,	Maximize=13,	Normalize=14,

	 	 Menu=15,	LastRegion=Menu	};

				virtual	QRegion	region(const	QWidget	*,	const	QRect	&rect,	Region	r=All)	=	0;

				virtual	void	close(QWidget	*);

				virtual	void	minimize(QWidget	*);

				virtual	void	maximize(QWidget	*);

#ifndef	QT_NO_POPUPMENU

				virtual	QPopupMenu	*menu(const	QWidget	*,	const	QPoint	&);

#endif

				virtual	void	paint(QPainter	*,	const	QWidget	*)	=	0;

				virtual	void	paintButton(QPainter	*,	const	QWidget	*,	Region,	int	state)	=	0;

};

#endif

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qwsmouse_qws.h
This	is	the	verbatim	text	of	the	qwsmouse_qws.h	include	file.	It	is	provided	only
for	illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qwsmouse_qws.h			3.0.5			edited	Oct	31	2001	$

**

**	Definition	of	Qt/FB	central	server	classes

**

**	Created	:	991025

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	kernel	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	for	Qt/Embedded	may	use	this	file	in	accordance	with	the

**	Qt	Embedded	Commercial	License	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QWSMOUSE_H

#define	QWSMOUSE_H

#ifndef	QT_H

#include	<qobject.h>

#include	<qpointarray.h>

#include	<qptrlist.h>

#include	"qsocketnotifier.h"

#endif	//	QT_H

class	QWSPointerCalibrationData

{

public:

				enum	Location	{	TopLeft	=	0,	BottomLeft	=	1,	BottomRight	=	2,	TopRight	=	3,

	 	 				Center	=	4,	LastLocation	=	Center	};

				QPoint	devPoints[5];

				QPoint	screenPoints[5];

};

class	QWSMouseHandler	:	public	QObject	{

				Q_OBJECT

public:

				QWSMouseHandler();

				virtual	~QWSMouseHandler();

				virtual	void	clearCalibration()	{}

				virtual	void	calibrate(QWSPointerCalibrationData	*)	{}

				virtual	void	getCalibration(QWSPointerCalibrationData	*)	{}

protected:

				enum	{mouseBufSize	=	128};

				void	mouseChanged(const	QPoint&	pos,	int	bstate);

};

#if	!defined(QT_QWS_IPAQ)	&&	!defined(QT_QWS_CASSIOPEIA)

#	define	QT_NO_QWS_MOUSE_CALIBRATED

#endif

#ifndef	QT_NO_QWS_MOUSE_CALIBRATED

class	QCalibratedMouseHandler	:	public	QWSMouseHandler

{

				Q_OBJECT

public:

				QCalibratedMouseHandler();

				virtual	void	clearCalibration();

				virtual	void	calibrate(QWSPointerCalibrationData	*);

				virtual	void	getCalibration(QWSPointerCalibrationData	*);

protected:

				void	readCalibration();

				void	writeCalibration();

				QPoint	transform(const	QPoint	&);

				bool	sendFiltered(const	QPoint	&,	int	button);

				void	setFilterSize(int);

private:

				int	a,	b,	c;

				int	d,	e,	f;

				int	s;

				QPointArray	samples;

				unsigned	int	currSample;

				unsigned	int	numSamples;

};

#endif

/*********************	PRIVATE	CLASSES	FOLLOW	*******************************/

enum	MouseProtocol	{	Unknown	=	-1,	Auto	=	0,

	 	 					MouseMan,	IntelliMouse,	Microsoft,

	 	 					QVFBMouse,	TPanel,	BusMouse,

	 	 					FirstAuto	=	MouseMan,

	 	 					LastAuto	=	Microsoft	};

#ifndef	QT_NO_QWS_MOUSE_AUTO

class	QAutoMouseSubHandler;

class	QAutoMouseHandlerPrivate	:	public	QWSMouseHandler	{

				Q_OBJECT

public:

				QAutoMouseHandlerPrivate();

				~QAutoMouseHandlerPrivate();

private:

				enum	{	max_dev=32	};

				QAutoMouseSubHandler	*sub[max_dev];

				QPtrList<QSocketNotifier>	notifiers;

				int	nsub;

				int	retries;

private	slots:

				void	readMouseData(int);

private:

				void	openDevices();

				void	closeDevices();

				void	notify(int	fd);

				bool	sendEvent(QAutoMouseSubHandler&	h);

				

};

#endif

#ifndef	QT_NO_QWS_MOUSE_MANUAL

class	QWSMouseHandlerPrivate	:	public	QWSMouseHandler	{

				Q_OBJECT

public:

				QWSMouseHandlerPrivate(MouseProtocol	protocol,	QString	mouseDev);

				~QWSMouseHandlerPrivate();

private:

				int	mouseFD;

				int	mouseIdx;

				uchar	mouseBuf[mouseBufSize];

				MouseProtocol	mouseProtocol;

				void	handleMouseData();

private	slots:

				void	readMouseData();

private:

				int	obstate;

				QTimer	*rtimer;

};

#endif

#ifdef	QT_QWS_CASSIOPEIA

/*

	*	Handler	for	/dev/tpanel	Linux	kernel	driver

	*/

class	QVrTPanelHandlerPrivate	:	public	QCalibratedMouseHandler	{

				Q_OBJECT

public:

				QVrTPanelHandlerPrivate(MouseProtocol,	QString	dev);

				~QVrTPanelHandlerPrivate();

private:

				int	mouseFD;

				MouseProtocol	mouseProtocol;

private	slots:

				void	sendRelease();

				void	readMouseData();

private:

				QTimer	*rtimer;

				int	mouseIdx;

				uchar	mouseBuf[mouseBufSize];

};

#endif

#if	defined(QT_QWS_IPAQ)	||	defined(QT_QWS_EBX)

class	QTPanelHandlerPrivate	:	public	QCalibratedMouseHandler

{

					Q_OBJECT

public:

				QTPanelHandlerPrivate(MouseProtocol,	QString	dev);

				~QTPanelHandlerPrivate();

private:

				static	const	int	mouseBufSize	=	2048;

				int	mouseFD;

				QPoint	oldmouse;

				bool	waspressed;

				QPointArray	samples;

				unsigned	int	currSample;

				unsigned	int	numSamples;

				int	mouseIdx;

				uchar	mouseBuf[mouseBufSize];

				

private	slots:

				void	readMouseData();			

};

#endif

#ifdef	QT_QWS_YOPY

//	YOPY	touch	panel	support	based	on	changes	contributed	by	Ron	Victorelli

//	(victorrj	at	icubed.com)	to	Custom	TP	driver.

//

class	QYopyTPanelHandlerPrivate	:	public	QWSMouseHandler	{

				Q_OBJECT

public:

				QYopyTPanelHandlerPrivate(MouseProtocol,	QString	dev);

				~QYopyTPanelHandlerPrivate();

private:

				int	mouseFD;

				int	prevstate;

private	slots:

				void	readMouseData();

};

#endif

#ifdef	QT_QWS_CUSTOMTOUCHPANEL

class	QCustomTPanelHandlerPrivate	:	public	QWSMouseHandler	{

				Q_OBJECT

public:

				QCustomTPanelHandlerPrivate(MouseProtocol,	QString	dev);

				~QCustomTPanelHandlerPrivate();

private:

				int	mouseFD;

private	slots:

				void	readMouseData();

};

#endif

#ifndef	QT_NO_QWS_VFB

class	QVFbMouseHandlerPrivate	:	public	QWSMouseHandler	{

				Q_OBJECT

public:

				QVFbMouseHandlerPrivate(MouseProtocol,	QString	dev);

				~QVFbMouseHandlerPrivate();

				bool	isOpen()	const	{	return	mouseFD	>	0;	}

private:

				int	mouseFD;

				int	mouseIdx;

				uchar	mouseBuf[mouseBufSize];

private	slots:

				void	readMouseData();

};

#endif

#endif

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qxml.h
This	is	the	verbatim	text	of	the	qxml.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	Id

**

**	Definition	of	QXmlSimpleReader	and	related	classes.

**

**	Created	:	000518

**

**	Copyright	(C)	1992-2002	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	xml	module	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	licenses	may	use	this

**	file	in	accordance	with	the	Qt	Commercial	License	Agreement	provided

**	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QXML_H

#define	QXML_H

#ifndef	QT_H

#include	"qtextstream.h"

#include	"qfile.h"

#include	"qstring.h"

#include	"qstringlist.h"

#endif	//	QT_H

#if	!defined(QT_MODULE_XML)	||	defined(QT_LICENSE_PROFESSIONAL)	||	defined(QT_INTERNAL_XML)

#define	QM_EXPORT_XML

#else

#define	QM_EXPORT_XML	Q_EXPORT

#endif

#ifndef	QT_NO_XML

class	QXmlNamespaceSupport;

class	QXmlAttributes;

class	QXmlContentHandler;

class	QXmlDefaultHandler;

class	QXmlDTDHandler;

class	QXmlEntityResolver;

class	QXmlErrorHandler;

class	QXmlLexicalHandler;

class	QXmlDeclHandler;

class	QXmlInputSource;

class	QXmlLocator;

class	QXmlNamespaceSupport;

class	QXmlParseException;

class	QXmlReader;

class	QXmlSimpleReader;

class	QXmlSimpleReaderPrivate;

class	QXmlNamespaceSupportPrivate;

class	QXmlAttributesPrivate;

class	QXmlInputSourcePrivate;

class	QXmlParseExceptionPrivate;

class	QXmlLocatorPrivate;

class	QXmlDefaultHandlerPrivate;

//

//	SAX	Namespace	Support

//

class	QM_EXPORT_XML	QXmlNamespaceSupport

{

public:

				QXmlNamespaceSupport();

				~QXmlNamespaceSupport();

				void	setPrefix(const	QString&,	const	QString&);

				QString	prefix(const	QString&)	const;

				QString	uri(const	QString&)	const;

				void	splitName(const	QString&,	QString&,	QString&)	const;

				void	processName(const	QString&,	bool,	QString&,	QString&)	const;

				QStringList	prefixes()	const;

				QStringList	prefixes(const	QString&)	const;

				void	pushContext();

				void	popContext();

				void	reset();

private:

				QXmlNamespaceSupportPrivate	*d;

};

//

//	SAX	Attributes

//

class	QM_EXPORT_XML	QXmlAttributes

{

public:

				QXmlAttributes()	{}

				virtual	~QXmlAttributes()	{}

				int	index(const	QString&	qName)	const;

				int	index(const	QString&	uri,	const	QString&	localPart)	const;

				int	length()	const;

				int	count()	const;

				QString	localName(int	index)	const;

				QString	qName(int	index)	const;

				QString	uri(int	index)	const;

				QString	type(int	index)	const;

				QString	type(const	QString&	qName)	const;

				QString	type(const	QString&	uri,	const	QString&	localName)	const;

				QString	value(int	index)	const;

				QString	value(const	QString&	qName)	const;

				QString	value(const	QString&	uri,	const	QString&	localName)	const;

				void	clear();

				void	append(const	QString	&qName,	const	QString	&uri,	const	QString	&localPart,	const	QString	&value);

private:

				QStringList	qnameList;

				QStringList	uriList;

				QStringList	localnameList;

				QStringList	valueList;

				QXmlAttributesPrivate	*d;

};

//

//	SAX	Input	Source

//

class	QM_EXPORT_XML	QXmlInputSource

{

public:

				QXmlInputSource();

				QXmlInputSource(QIODevice	*dev);

				QXmlInputSource(QFile&	file);	//	obsolete

				QXmlInputSource(QTextStream&	stream);	//	obsolete

				virtual	~QXmlInputSource();

				virtual	void	setData(const	QString&	dat);

				virtual	void	setData(const	QByteArray&	dat);

				virtual	void	fetchData();

				virtual	QString	data();

				virtual	QChar	next();

				virtual	void	reset();

				static	const	QChar	EndOfData;

				static	const	QChar	EndOfDocument;

protected:

				virtual	QString	fromRawData(const	QByteArray	&data,	bool	beginning	=	FALSE);

private:

				void	init();

				QIODevice	*inputDevice;

				QTextStream	*inputStream;

				QString	str;

				const	QChar	*unicode;

				int	pos;

				int	length;

				bool	nextReturnedEndOfData;

				QTextDecoder	*encMapper;

				QXmlInputSourcePrivate	*d;

};

//

//	SAX	Exception	Classes

//

class	QM_EXPORT_XML	QXmlParseException

{

public:

				QXmlParseException(const	QString&	name="",	int	c=-1,	int	l=-1,	const	QString&	p="",	const	QString&	s="")

	 :	msg(name),	column(c),	line(l),	pub(p),	sys(s)

				{	}

				int	columnNumber()	const;

				int	lineNumber()	const;

				QString	publicId()	const;

				QString	systemId()	const;

				QString	message()	const;

private:

				QString	msg;

				int	column;

				int	line;

				QString	pub;

				QString	sys;

				QXmlParseExceptionPrivate	*d;

};

//

//	XML	Reader

//

class	QM_EXPORT_XML	QXmlReader

{

public:

				virtual	bool	feature(const	QString&	name,	bool	*ok	=	0)	const	=	0;

				virtual	void	setFeature(const	QString&	name,	bool	value)	=	0;

				virtual	bool	hasFeature(const	QString&	name)	const	=	0;

				virtual	void*	property(const	QString&	name,	bool	*ok	=	0)	const	=	0;

				virtual	void	setProperty(const	QString&	name,	void*	value)	=	0;

				virtual	bool	hasProperty(const	QString&	name)	const	=	0;

				virtual	void	setEntityResolver(QXmlEntityResolver*	handler)	=	0;

				virtual	QXmlEntityResolver*	entityResolver()	const	=	0;

				virtual	void	setDTDHandler(QXmlDTDHandler*	handler)	=	0;

				virtual	QXmlDTDHandler*	DTDHandler()	const	=	0;

				virtual	void	setContentHandler(QXmlContentHandler*	handler)	=	0;

				virtual	QXmlContentHandler*	contentHandler()	const	=	0;

				virtual	void	setErrorHandler(QXmlErrorHandler*	handler)	=	0;

				virtual	QXmlErrorHandler*	errorHandler()	const	=	0;

				virtual	void	setLexicalHandler(QXmlLexicalHandler*	handler)	=	0;

				virtual	QXmlLexicalHandler*	lexicalHandler()	const	=	0;

				virtual	void	setDeclHandler(QXmlDeclHandler*	handler)	=	0;

				virtual	QXmlDeclHandler*	declHandler()	const	=	0;

				virtual	bool	parse(const	QXmlInputSource&	input)	=	0;

				virtual	bool	parse(const	QXmlInputSource*	input)	=	0;

};

class	QM_EXPORT_XML	QXmlSimpleReader	:	public	QXmlReader

{

public:

				QXmlSimpleReader();

				virtual	~QXmlSimpleReader();

				bool	feature(const	QString&	name,	bool	*ok	=	0)	const;

				void	setFeature(const	QString&	name,	bool	value);

				bool	hasFeature(const	QString&	name)	const;

				void*	property(const	QString&	name,	bool	*ok	=	0)	const;

				void	setProperty(const	QString&	name,	void*	value);

				bool	hasProperty(const	QString&	name)	const;

				void	setEntityResolver(QXmlEntityResolver*	handler);

				QXmlEntityResolver*	entityResolver()	const;

				void	setDTDHandler(QXmlDTDHandler*	handler);

				QXmlDTDHandler*	DTDHandler()	const;

				void	setContentHandler(QXmlContentHandler*	handler);

				QXmlContentHandler*	contentHandler()	const;

				void	setErrorHandler(QXmlErrorHandler*	handler);

				QXmlErrorHandler*	errorHandler()	const;

				void	setLexicalHandler(QXmlLexicalHandler*	handler);

				QXmlLexicalHandler*	lexicalHandler()	const;

				void	setDeclHandler(QXmlDeclHandler*	handler);

				QXmlDeclHandler*	declHandler()	const;

				bool	parse(const	QXmlInputSource&	input);

				bool	parse(const	QXmlInputSource*	input);

				virtual	bool	parse(const	QXmlInputSource*	input,	bool	incremental);

				virtual	bool	parseContinue();

private:

				//	variables

				QXmlContentHandler	*contentHnd;

				QXmlErrorHandler			*errorHnd;

				QXmlDTDHandler					*dtdHnd;

				QXmlEntityResolver	*entityRes;

				QXmlLexicalHandler	*lexicalHnd;

				QXmlDeclHandler				*declHnd;

				QXmlInputSource	*inputSource;

				QChar	c;	//	the	character	at	reading	position

				int			lineNr;	//	number	of	line

				int			columnNr;	//	position	in	line

				int					namePos;

				QChar			nameArray[256];	//	only	used	for	names

				QString	nameValue;	//	only	used	for	names

				int					refPos;

				QChar			refArray[256];	//	only	used	for	references

				QString	refValue;	//	only	used	for	references

				int					stringPos;

				QChar			stringArray[256];	//	used	for	any	other	strings	that	are	parsed

				QString	stringValue;	//	used	for	any	other	strings	that	are	parsed

				QXmlSimpleReaderPrivate*	d;

				//	inlines

				bool	is_S(const	QChar&);

				bool	is_NameBeginning(const	QChar&);

				bool	is_NameChar(const	QChar&);

				QString&	string();

				void	stringClear();

				void	stringAddC();

				void	stringAddC(const	QChar&);

				QString&	name();

				void	nameClear();

				void	nameAddC();

				void	nameAddC(const	QChar&);

				QString&	ref();

				void	refClear();

				void	refAddC();

				void	refAddC(const	QChar&);

				//	used	by	parseReference()	and	parsePEReference()

				enum	EntityRecognitionContext	{	InContent,	InAttributeValue,	InEntityValue,	InDTD	};

				//	private	functions

				bool	eat_ws();

				bool	next_eat_ws();

				void	next();

				bool	atEnd();

				void	init(const	QXmlInputSource*	i);

				void	initData();

				bool	entityExist(const	QString&)	const;

				bool	parseBeginOrContinue(int	state,	bool	incremental);

				bool	parseProlog();

				bool	parseElement();

				bool	processElementEmptyTag();

				bool	processElementETagBegin2();

				bool	processElementAttribute();

				bool	parseMisc();

				bool	parseContent();

				bool	parsePI();

				bool	parseDoctype();

				bool	parseComment();

				bool	parseName();

				bool	parseNmtoken();

				bool	parseAttribute();

				bool	parseReference();

				bool	processReference();

				bool	parseExternalID();

				bool	parsePEReference();

				bool	parseMarkupdecl();

				bool	parseAttlistDecl();

				bool	parseAttType();

				bool	parseAttValue();

				bool	parseElementDecl();

				bool	parseNotationDecl();

				bool	parseChoiceSeq();

				bool	parseEntityDecl();

				bool	parseEntityValue();

				bool	parseString();

				bool	insertXmlRef(const	QString&,	const	QString&,	bool);

				bool	reportEndEntities();

				void	reportParseError(const	QString&	error);

				typedef	bool	(QXmlSimpleReader::*ParseFunction)	();

				void	unexpectedEof(ParseFunction	where,	int	state);

				void	parseFailed(ParseFunction	where,	int	state);

				void	pushParseState(ParseFunction	function,	int	state);

				friend	class	QXmlSimpleReaderPrivate;

				friend	class	QXmlSimpleReaderLocator;

};

//

//	SAX	Locator

//

class	QM_EXPORT_XML	QXmlLocator

{

public:

				QXmlLocator();

				virtual	~QXmlLocator();

				virtual	int	columnNumber()	=	0;

				virtual	int	lineNumber()	=	0;

//				QString	getPublicId()

//				QString	getSystemId()

};

//

//	SAX	handler	classes

//

class	QM_EXPORT_XML	QXmlContentHandler

{

public:

				virtual	void	setDocumentLocator(QXmlLocator*	locator)	=	0;

				virtual	bool	startDocument()	=	0;

				virtual	bool	endDocument()	=	0;

				virtual	bool	startPrefixMapping(const	QString&	prefix,	const	QString&	uri)	=	0;

				virtual	bool	endPrefixMapping(const	QString&	prefix)	=	0;

				virtual	bool	startElement(const	QString&	namespaceURI,	const	QString&	localName,	const	QString&	qName,	const	QXmlAttributes&	atts)	=	0;

				virtual	bool	endElement(const	QString&	namespaceURI,	const	QString&	localName,	const	QString&	qName)	=	0;

				virtual	bool	characters(const	QString&	ch)	=	0;

				virtual	bool	ignorableWhitespace(const	QString&	ch)	=	0;

				virtual	bool	processingInstruction(const	QString&	target,	const	QString&	data)	=	0;

				virtual	bool	skippedEntity(const	QString&	name)	=	0;

				virtual	QString	errorString()	=	0;

};

class	QM_EXPORT_XML	QXmlErrorHandler

{

public:

				virtual	bool	warning(const	QXmlParseException&	exception)	=	0;

				virtual	bool	error(const	QXmlParseException&	exception)	=	0;

				virtual	bool	fatalError(const	QXmlParseException&	exception)	=	0;

				virtual	QString	errorString()	=	0;

};

class	QM_EXPORT_XML	QXmlDTDHandler

{

public:

				virtual	bool	notationDecl(const	QString&	name,	const	QString&	publicId,	const	QString&	systemId)	=	0;

				virtual	bool	unparsedEntityDecl(const	QString&	name,	const	QString&	publicId,	const	QString&	systemId,	const	QString&	notationName)	=	0;

				virtual	QString	errorString()	=	0;

};

class	QM_EXPORT_XML	QXmlEntityResolver

{

public:

				virtual	bool	resolveEntity(const	QString&	publicId,	const	QString&	systemId,	QXmlInputSource*&	ret)	=	0;

				virtual	QString	errorString()	=	0;

};

class	QM_EXPORT_XML	QXmlLexicalHandler

{

public:

				virtual	bool	startDTD(const	QString&	name,	const	QString&	publicId,	const	QString&	systemId)	=	0;

				virtual	bool	endDTD()	=	0;

				virtual	bool	startEntity(const	QString&	name)	=	0;

				virtual	bool	endEntity(const	QString&	name)	=	0;

				virtual	bool	startCDATA()	=	0;

				virtual	bool	endCDATA()	=	0;

				virtual	bool	comment(const	QString&	ch)	=	0;

				virtual	QString	errorString()	=	0;

};

class	QM_EXPORT_XML	QXmlDeclHandler

{

public:

				virtual	bool	attributeDecl(const	QString&	eName,	const	QString&	aName,	const	QString&	type,	const	QString&	valueDefault,	const	QString&	value)	=	0;

				virtual	bool	internalEntityDecl(const	QString&	name,	const	QString&	value)	=	0;

				virtual	bool	externalEntityDecl(const	QString&	name,	const	QString&	publicId,	const	QString&	systemId)	=	0;

				virtual	QString	errorString()	=	0;

};

class	QM_EXPORT_XML	QXmlDefaultHandler	:	public	QXmlContentHandler,	public	QXmlErrorHandler,	public	QXmlDTDHandler,	public	QXmlEntityResolver,	public	QXmlLexicalHandler,	public	QXmlDeclHandler

{

public:

				QXmlDefaultHandler()	{	}

				virtual	~QXmlDefaultHandler()	{	}

				void	setDocumentLocator(QXmlLocator*	locator);

				bool	startDocument();

				bool	endDocument();

				bool	startPrefixMapping(const	QString&	prefix,	const	QString&	uri);

				bool	endPrefixMapping(const	QString&	prefix);

				bool	startElement(const	QString&	namespaceURI,	const	QString&	localName,	const	QString&	qName,	const	QXmlAttributes&	atts);

				bool	endElement(const	QString&	namespaceURI,	const	QString&	localName,	const	QString&	qName);

				bool	characters(const	QString&	ch);

				bool	ignorableWhitespace(const	QString&	ch);

				bool	processingInstruction(const	QString&	target,	const	QString&	data);

				bool	skippedEntity(const	QString&	name);

				bool	warning(const	QXmlParseException&	exception);

				bool	error(const	QXmlParseException&	exception);

				bool	fatalError(const	QXmlParseException&	exception);

				bool	notationDecl(const	QString&	name,	const	QString&	publicId,	const	QString&	systemId);

				bool	unparsedEntityDecl(const	QString&	name,	const	QString&	publicId,	const	QString&	systemId,	const	QString&	notationName);

				bool	resolveEntity(const	QString&	publicId,	const	QString&	systemId,	QXmlInputSource*&	ret);

				bool	startDTD(const	QString&	name,	const	QString&	publicId,	const	QString&	systemId);

				bool	endDTD();

				bool	startEntity(const	QString&	name);

				bool	endEntity(const	QString&	name);

				bool	startCDATA();

				bool	endCDATA();

				bool	comment(const	QString&	ch);

				bool	attributeDecl(const	QString&	eName,	const	QString&	aName,	const	QString&	type,	const	QString&	valueDefault,	const	QString&	value);

				bool	internalEntityDecl(const	QString&	name,	const	QString&	value);

				bool	externalEntityDecl(const	QString&	name,	const	QString&	publicId,	const	QString&	systemId);

				QString	errorString();

private:

				QXmlDefaultHandlerPrivate	*d;

};

//

//	inlines

//

inline	bool	QXmlSimpleReader::is_S(const	QChar&	ch)

{

				return	ch=='	'	||	ch=='\t'	||	ch=='\n'	||	ch=='\r';

}

inline	bool	QXmlSimpleReader::is_NameBeginning(const	QChar&	ch)

{

				return	ch=='_'	||	ch==':'	||

	 ch.isLetter()	||	//	###	Category	Lm	is	not	allowed

	 ch.category()==QChar::Number_Letter;

}

inline	bool	QXmlSimpleReader::is_NameChar(const	QChar&	ch)

{

				return	ch=='.'	||	ch=='-'	||	ch=='_'	||	ch==':'	||

				ch.isLetterOrNumber()	||	//	###	Category	No	is	not	allowed

				ch.isMark();

}

inline	bool	QXmlSimpleReader::atEnd()

{	return	(c.unicode()|0x0001)	==	0xffff;	}

inline	void	QXmlSimpleReader::stringClear()

{	stringValue	=	"";	stringPos	=	0;	}

inline	void	QXmlSimpleReader::nameClear()

{	nameValue	=	"";	namePos	=	0;	}

inline	void	QXmlSimpleReader::refClear()

{	refValue	=	"";	refPos	=	0;	}

inline	int	QXmlAttributes::count()	const

{	return	length();	}

#endif	//QT_NO_XML

#endif

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qxt.h
This	is	the	verbatim	text	of	the	qxt.h	include	file.	It	is	provided	only	for
illustration;	the	copyright	remains	with	Trolltech.

/**

**	$Id:		qt/qxt.h			3.0.5			edited	Oct	12	2001	$

**

**	Definition	of	Qt	extension	classes	for	Xt/Motif	support.

**

**	Created	:	980107

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	the	Qt	GUI	Toolkit.

**

**	This	file	may	be	distributed	under	the	terms	of	the	Q	Public	License

**	as	defined	by	Trolltech	AS	of	Norway	and	appearing	in	the	file

**	LICENSE.QPL	included	in	the	packaging	of	this	file.

**

**	This	file	may	be	distributed	and/or	modified	under	the	terms	of	the

**	GNU	General	Public	License	version	2	as	published	by	the	Free	Software

**	Foundation	and	appearing	in	the	file	LICENSE.GPL	included	in	the

**	packaging	of	this	file.

**

**	Licensees	holding	valid	Qt	Enterprise	Edition	or	Qt	Professional	Edition

**	licenses	may	use	this	file	in	accordance	with	the	Qt	Commercial	License

**	Agreement	provided	with	the	Software.

**

**	This	file	is	provided	AS	IS	with	NO	WARRANTY	OF	ANY	KIND,	INCLUDING	THE

**	WARRANTY	OF	DESIGN,	MERCHANTABILITY	AND	FITNESS	FOR	A	PARTICULAR	PURPOSE.

**

**	See	http://www.trolltech.com/pricing.html	or	email	sales@trolltech.com	for

**			information	about	Qt	Commercial	License	Agreements.

**	See	http://www.trolltech.com/qpl/	for	QPL	licensing	information.

**	See	http://www.trolltech.com/gpl/	for	GPL	licensing	information.

**

**	Contact	info@trolltech.com	if	any	conditions	of	this	licensing	are

**	not	clear	to	you.

**

**/

#ifndef	QXT_H

#define	QXT_H

#include	<qapplication.h>

#include	<qwidget.h>

#include	<X11/Intrinsic.h>

#ifdef	Bool

#undef	Bool

#endif	//	Bool

class	QXtApplication	:	public	QApplication	{

				Q_OBJECT

				void	init();

public:

				QXtApplication(int&	argc,	char**	argv,

	 const	char*	appclass=0,

	 XrmOptionDescRec	*options=0,	int	num_options=0,

	 const	char**	resources=0);

				QXtApplication(Display	*,	HANDLE	=	0,	HANDLE	=	0);

				QXtApplication(Display	*,	int,	char	**,	HANDLE	=	0,	HANDLE	=	0);

				~QXtApplication();

};

class	QXtWidget	:	public	QWidget	{

				Q_OBJECT

				Widget	xtw;

				Widget	xtparent;

				bool			need_reroot;

				void	init(const	char*	name,	WidgetClass	widget_class,

	 	 				Widget	parent,	QWidget*	qparent,

	 	 				ArgList	args,	Cardinal	num_args,

	 	 				bool	managed);

				friend	void	qwidget_realize(Widget	widget,	XtValueMask*	mask,

	 	 	 	 	XSetWindowAttributes*	attributes);

public:

				QXtWidget(const	char*	name,	Widget	parent,	bool	managed=FALSE);

				QXtWidget(const	char*	name,	WidgetClass	widget_class,

	 						QWidget	*parent=0,	ArgList	args=0,	Cardinal	num_args=0,

	 						bool	managed=FALSE);

				~QXtWidget();

				Widget	xtWidget()	const	{	return	xtw;	}

				bool	isActiveWindow()	const;

				void	setActiveWindow();

protected:

				void	moveEvent(QMoveEvent*);

				void	resizeEvent(QResizeEvent*);

				bool	x11Event(XEvent	*);

};

#endif

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

How	to	use	X11	overlays	with	the	Qt
OpenGL	extension

X11	overlays	are	a	powerful	mechanism	for	drawing	annotations	etc.,	on	top	of
an	image	without	destroying	it,	thus	saving	a	great	deal	of	image	rendering	time.
For	more	information,	consult	the	highly	recommended	book	OpenGL
Programming	for	the	X	Window	System	(Mark	Kilgard,	Addison	Wesley
Developers	Press	1996).

Warning:	From	version	5.0	onwards,	the	Qt	OpenGL	Extension	includes	direct
support	for	the	use	of	OpenGL	overlays.	For	many	uses	of	overlays,	this	makes
the	technique	described	below	redundant.	See	the	overlay	example	program.	The
following	is	a	discussion	on	how	to	use	non-QGL	widgets	in	overlay	planes.

In	the	typical	case,	X11	overlays	can	easily	be	used	together	with	the	current
version	of	Qt	and	the	Qt	OpenGL	Extension.	The	following	requirements	apply:

1.	 Your	X	server	and	graphics	card/hardware	must	support	overlays.	For	many
X	servers,	overlay	support	can	be	turned	on	with	a	configuration	option;
consult	your	X	server	installation	documentation.

2.	 Your	X	server	must	(be	configured	to)	use	an	overlay	visual	as	the	default
visual.	Most	modern	X	servers	do	this,	since	this	has	the	added	advantage
that	pop-up	menus,	overlapping	windows	etc.,	will	not	destroy	underlying
images	in	the	main	plane,	thereby	avoiding	expensive	redraws.

3.	 The	best	(deepest)	visual	for	OpenGL	rendering	is	in	the	main	plane.	This	is
the	normal	case.	Typically,	X	servers	that	support	overlays	provide	a	24	bit
deep	TrueColor	visual	in	the	main	plane,	and	an	8	bit	PseudoColor	(default)
visual	in	the	overlay	plane.

The	provided	example	program	X11	overlay	will	check	for	these	and	report	if
anything	is	wrong.	See	About	X11	Visuals,	below	for	more	information.

How	it	works

Given	the	above,	a	QGLWidget	will	by	default	use	the	main	plane	visual,	while
all	other	widgets	will	use	the	overlay	visual.	Thus,	we	can	place	a	normal	widget
on	top	of	the	QGLWidget,	and	do	drawing	on	it,	without	destroying	the	image	in
the	OpenGL	window.	In	other	words,	we	can	use	all	the	drawing	capabilities	of
QPainter	to	draw	the	annotations,	rubberbands,	etc.	For	the	typical	use	of
overlays,	this	is	much	easier	than	using	OpenGL	for	rendering	the	annotations.

An	overlay	plane	has	a	specific	color	called	the	transparent	color.	Pixels	drawn
in	this	color	will	not	be	visible;	instead	the	underlying	OpenGL	image	will	show
through.	In	the	example	program	X11	overlay,	the	file	main.cpp	contains	a
routine	that	returns	a	QColor	containing	the	transparent	color.	For	the	overlay
widget,	you	will	typically	want	to	set	the	background	color	to	the	transparent
color,	so	that	the	OpenGL	image	shows	through	except	where	explicitly
overpainted.

Note:	to	use	this	technique,	you	must	not	use	the	"ManyColor"	or	"TrueColor"
ColorSpec	for	QApplication,	because	this	will	force	the	normal	Qt	widgets	to
use	a	TrueColor	visual,	which	will	typically	be	in	the	main	plane,	not	in	the
overlay	plane	as	desired.

About	X11	visuals

The	utilities	directory	contains	two	small	programs	that	can	help	you	determine
the	capabilities	of	your	X	server.	These	programs	are	from	the	OpenGL	book
mentioned	above,	see	utilities/NOTICE	for	copyright	information.	The	full	set	of
example	programs	from	this	book	is	available	at
ftp://ftp.sgi.com/pub/opengl/opengl_for_x/.

glxvisuals	will	list	all	the	GL-capable	visuals	the	X	server	provides,	together
with	the	depth	and	other	GL-specific	information	for	each.	Note	especially	the
column	"lvl";	a	number	in	this	column	means	the	visual	is	in	an	overlay	plane.

sovinfo	will	list	all	available	visuals,	and	provides	special	transparency
information	for	overlay	visuals.

The	X11	overlay	example	program	will	output	what	visual	is	used	for	the	normal
Qt	widgets,	and	what	visual	is	used	by	the	QGLWidget.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

ftp://ftp.sgi.com/pub/opengl/opengl_for_x/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

SQL	Module	-	Drivers
Introduction
Building	the	drivers	using	configure
Building	the	plugins	manually

QMYSQL3	-	MySQL	3.x
General	information
How	to	build	the	plugin	on	Unix/Linux
How	to	build	the	plugin	on	Windows

QOCI8	-	Oracle	Call	Interface	(OCI)
General	information
Unicode	support
BLOB/LOB	support
How	to	build	the	plugin	on	Unix/Linux
How	to	build	the	plugin	on	Windows

QODBC3	-	Open	Database	Connectivity	(ODBC)
General	information
How	to	build	the	plugin	on	Unix/Linux
How	to	build	the	plugin	on	Windows

QPSQL7	-	PostgreSQL	version	6	and	7
General	information
Unicode	support
BLOB	support
How	to	build	the	plugin	on	Unix/Linux

QTDS7	-	Sybase	Adaptive	Server	and	Microsoft	SQL	Server
How	to	build	the	plugin	on	Unix/Linux
How	to	build	the	plugin	on	Windows

Troubleshooting
How	to	write	your	own	database	driver

Introduction

The	SQL	Module	uses	driver	plugins	in	order	to	communicate	with	different
database	APIs.	Since	the	SQL	Module	API	is	database-independent,	all
database-specific	code	is	contained	within	these	drivers.	Several	drivers	are
supplied	with	Qt	and	other	drivers	can	be	added.	The	driver	source	code	is
supplied	and	can	be	used	as	a	model	for	writing	your	own	drivers.

To	build	a	driver	plugin	you	need	the	client	API	that	is	shipped	with	every
Database	Management	System	(DBMS).	Most	installation	programs	also	allow
you	to	install	"development	libraries",	and	these	are	what	you	need.	These
libraries	are	responsible	for	the	low-level	communication	with	the	DBMS.

The	currently	available	drivers	shipped	with	Qt	are:

QMYSQL3	-	MySQL	Driver
QOCI8	-	Oracle	Call	Interface	Driver,	version	8	and	9
QODBC3	-	Open	Database	Connectivity	Driver
QPSQL7	-	PostgreSQL	v6.x	and	v7.x	Driver
QTDS7	-	Sybase	Adaptive	Server	and	Microsoft	SQL	Server	Driver

Note	that	not	all	of	the	plugins	are	shipped	with	the	Qt	Free	Edition	due	to
license	incompatibilities	with	the	GPL.

Building	the	drivers	using	configure

The	Qt	configure	script	automatically	detects	the	available	client	libraries	on
your	machine.	Run	"configure	-help"	to	see	what	drivers	may	be	built.	You
should	get	an	output	similar	to	this:

Possible	values	for	<driver>:	[mysql	oci	odbc	psql	tds]

Auto-Detected	on	this	system:	[mysql	psql]

Note	that	on	Windows,	the	configure	script	doesn't	currently	do	any	auto-
detection.

Note	that	configure	cannot	detect	the	neccessary	libraries	and	include	files	if
they	are	not	in	the	standard	paths,	so	it	may	be	necessary	to	specify	these	paths
using	the	"-I"	and	"-L"	switches.	If	your	MySQL	include	files	are	installed	in
/usr/local/mysql	(or	in	C:\mysql\include	on	Windows),	then	pass	the	following
parameter	to	configure:	"-I/usr/local/mysql"	(or	"-I	C:\mysql\include"	for
Windows).

Note	that	on	Windows	the	parameter	-I	doesn't	allow	spaces	in	filenames,	so	use
the	8.3	name	instead,	i.e.	use	"C:\progra~1\mysql"	instead	of	"C:\program
files\mysql".

Use	the	-qt-sql-<driver>	parameter	to	build	the	database	driver	statically	into
your	Qt	library	or	-plugin-sql-<driver>	to	build	the	driver	as	a	plugin.	Look
at	the	chapters	below	for	additional	information	about	required	libraries.

Building	the	plugins	manually

QMYSQL3	-	MySQL	3.x

General	information

MySQL	3.x	doesn't	support	SQL	transactions	by	default.	There	are	some
backends	which	offer	this	functionality.	Recent	versions	of	the	MySQL	client
libraries	(>3.23.34)	allow	you	to	use	transactions	on	those	modified	servers.

If	you	have	a	recent	client	library	and	connect	to	a	transaction-enabled	MySQL
server,	a	call	to	the	QSqlDriver::hasFeature(QSqlDriver::Transactions)	function
returns	TRUE	and	SQL	transactions	can	be	used.

You	can	find	information	about	MySQL	on	http://www.mysql.com

How	to	build	the	plugin	on	Unix/Linux

You	need	the	MySQL	header	files	and	as	well	as	the	shared	library
"libmysqlclient.so".	Depending	on	your	Linux	distribution	you	need	to	install	a
package	which	is	usually	called	"mysql-devel".

Tell	qmake	where	to	find	the	MySQL	header	files	and	shared	libraries	(here	it	is
assumed	that	MySQL	is	installed	in	/usr/local)	and	run	make:

cd	$QTDIR/plugins/src/sqldrivers/mysql

qmake	-o	Makefile	"INCLUDEPATH+=/usr/local/include"	"LIBS+=-L/usr/local/lib	-lmysqlclient"	mysql.pro

make

How	to	build	the	plugin	on	Windows

You	need	to	get	the	MySQL	installation	files.	Run	SETUP.EXE	and	choose
"Custom	Install".	Install	the	"Libs	&	Include	Files"	Module.	Build	the	plugin	as
follows	(here	it	is	assumed	that	MySQL	is	installed	in	C:\MYSQL):

cd	%QTDIR%\plugins\src\sqldrivers\mysql

qmake	-o	Makefile	"INCLUDEPATH+=C:\MYSQL\INCLUDE"	"LIBS+=C:\MYSQL\LIB\OPT\LIBMYSQL.LIB"	mysql.pro

nmake

http://www.mysql.com

If	you	are	not	using	a	Microsoft	compiler,	replace	"nmake"	with	"make"	in	the
statement	above.

QOCI8	-	Oracle	Call	Interface	(OCI)

General	information

The	Qt	OCI	plugin	supports	both	Oracle	8	and	Oracle	9.	After	connecting	to	the
Oracle	server,	the	plugin	will	auto-detect	the	database	version	and	enable
features	accordingly.

Unicode	support

If	the	Oracle	server	supports	Unicode,	the	OCI	plugin	will	use	UTF-8	encoding
to	communicate	with	the	server.	When	accessing	an	Oracle	8	database,	only
retrieval	of	Unicode	strings	are	supported.	For	Oracle	9	both	retrieval	and
insertion	of	Unicode	strings	are	supported.

BLOB/LOB	support

Binary	Large	Objects	(BLOBs)	can	be	retrieved,	but	be	aware	that	this	process
may	require	a	lot	of	memory.	We	recommend	using	separate	queries	and
retrieving	only	one	BLOB	at	a	time.

Inserting	BLOB	fields	is	limited	to	Oracle's	maximum	SQL	string	size.

How	to	build	the	plugin	on	Unix/Linux

All	files	required	to	build	driver	should	ship	with	the	standard	Oracle	Client
install.

Oracle	library	files	required	to	build	driver:

libclntsh.so
libclntsh.so.8.0	(Oracle	8)	or	libclntsh.so.9.0	(Oracle	9)
libwtc8.so	or	libwtc9.so

Tell	qmake	where	to	find	the	Oracle	header	files	and	shared	libraries	(it	is

assumed	that	the	variable	$ORACLE_HOME	points	to	the	directory	where
Oracle	is	installed)	and	run	make:

If	you	are	using	Oracle	8:

cd	$QTDIR/plugins/src/sqldrivers/oci

qmake	-o	Makefile	"INCLUDEPATH+=$ORACLE_HOME/rdbms/public	$ORACLE_HOME/rdbms/demo"	"LIBS+=-L$ORACLE_HOME/lib	-lclntsh	-lwtc8"	oci.pro

make

For	Oracle	version	9:

cd	$QTDIR/plugins/src/sqldrivers/oci

qmake	-o	Makefile	"INCLUDEPATH+=$ORACLE_HOME/rdbms/public	$ORACLE_HOME/rdbms/demo"	"LIBS+=-L$ORACLE_HOME/lib	-lclntsh	-lwtc9"	oci.pro

make

How	to	build	the	plugin	on	Windows

Choosing	the	option	"Programmer"	in	the	Oracle	Client	Installer	from	the	Oracle
Client	Installation	CD	is	sufficient	to	build	the	plugin.

Build	the	plugin	as	follows	(here	it	is	assumed	that	Oracle	Client	is	installed	in
C:\oracle):

set	INCLUDE=%INCLUDE%;c:\oracle\oci\include

set	LIB=%LIB%;c:\oracle\oci\lib\msvc

cd	%QTDIR%\plugins\src\sqldrivers\oci

qmake	-o	Makefile	oci.pro

nmake

When	you	run	your	application	you	will	also	need	to	add	the	oci.dll	path	to	your
PATH	environment	variable:

set	PATH=%PATH%;c:\oracle\bin

If	you	are	not	using	a	Microsoft	compiler,	replace	"nmake"	with	"make"	in	the
statement	above.

QODBC3	-	Open	Database	Connectivity	(ODBC)

General	information

ODBC	is	a	general	interface	that	allows	you	to	connect	to	multiple	DBMS	using

a	common	interface.	The	QODBC3	driver	allows	you	to	connect	to	an	ODBC
driver	manager	and	access	the	available	data	sources.	Note	that	you	also	need	to
install	and	configure	ODBC	drivers	for	the	ODBC	driver	manager	that	is
installed	on	your	system.	The	QODBC3	plugin	then	allows	you	to	use	these	data
sources	in	your	Qt	project.

On	Windows	systems	after	95	an	ODBC	driver	manager	should	be	installed	by
default,	for	Unix	systems	there	are	some	implementations	which	have	to	be
installed	first.	Note	that	every	client	that	uses	your	application	is	required	to
have	an	ODBC	driver	manager	installed,	otherwise	the	QODBC3	plugin	will	not
work.

Be	aware	that	when	connecting	to	an	ODBC	datasource	you	must	pass	in	the
name	of	the	ODBC	datasource	to	the	QSqlDatabase::setDatabaseName()
function	-	not	the	actual	database	name.

The	QODBC3	Plugin	needs	an	ODBC	compliant	driver	manager	version	2.0	or
greater	to	work.	Some	ODBC	drivers	claim	to	be	version	2.0	compliant,	but	do
not	offer	all	needed	functionality.	The	QODBC3	plugin	therefore	checks	whether
the	data	source	can	be	used	after	a	connection	has	been	established	and	refuses
to	work	if	the	check	fails.	If	you	don't	like	this	behaviour,	you	can	remove	the
#define	ODBC_CHECK_DRIVER	line	from	the	file	qsql_odbc.cpp.	Do	this	at	your
own	risk!

Note	that	some	DBMSs,	like	Microsoft	Access,	does	not	return	the	primary
index	for	a	table	through	ODBC.	You	can	still	use	the	QODBC3	driver,	but	you
will	have	to	manage	table	indices	yourself	(through
QSqlCursor::setPrimaryIndex()),	otherwise	INSERT,	UPDATE	and	DELETE
operations	will	fail	in	data-aware	Qt	widgets.	You	will	have	to	comment	out	the
#define	ODBC_CHECK_DRIVER	line	and	recompile	the	driver,	otherwise	you	will
not	be	able	to	connect	to	a	Microsoft	Access	database.

How	to	build	the	plugin	on	Unix/Linux

It	is	recommended	that	you	use	unixODBC.	You	can	find	the	newest	version	and
ODBC	drivers	at	http://www.unixodbc.org.	You	need	the	unixODBC	header	files
and	shared	libraries.

Tell	qmake	where	to	find	the	unixODBC	header	files	and	shared	libraries	(here	it

http://www.unixodbc.org

is	assumed	that	unixODBC	is	installed	in	/usr/local/unixODBC)	and	run	make:

cd	$QTDIR/plugins/src/sqldrivers/odbc

qmake	"INCLUDEPATH+=/usr/local/unixODBC/include"	"LIBS+=-L/usr/local/unixODBC/lib	-lodbc"

make

How	to	build	the	plugin	on	Windows

The	ODBC	header	and	include	files	should	already	be	installed	in	the	right
directories.	You	just	have	to	build	the	plugin	as	follows:

cd	%QTDIR%\plugins\src\sqldrivers\odbc

qmake	-o	Makefile	odbc.pro

nmake

If	you	are	not	using	a	Microsoft	compiler,	replace	"nmake"	with	"make"	in	the
statement	above.

QPSQL7	-	PostgreSQL	version	6	and	7

General	information

The	QPSQL7	driver	supports	both	version	6	and	7	of	PostgreSQL.	We
recommend	compiling	the	plugin	with	a	recent	version	of	the	PostgreSQL	Client
API	(libpq)	because	it	is	more	stable	and	still	downward	compatible.

If	you	want	to	link	the	plugin	against	the	libpq	shipped	with	version	6	we
recomment	a	recent	version	like	PostgreSQL	6.5.3,	otherwise	a	connection	to	a
version	7	server	may	not	work.

The	driver	auto-detects	the	server	version	of	PostgreSQL	after	a	connection	was
successful.	If	the	server	is	too	old	or	the	version	information	cannot	be
determined	a	warning	is	issued.

For	more	information	about	PostgreSQL	visit	http://www.postgresql.org.

Unicode	support

The	QPSQL7	driver	automatically	detects	whether	the	PostgreSQL	database	you
are	connecting	to	supports	Unicode	or	not.	Unicode	is	automatically	used	if	the

http://www.postgresql.org

server	supports	it.	Note	that	the	driver	only	supports	the	UTF-8	encoding.	If	your
database	uses	any	other	encoding,	the	server	has	to	be	compiled	with	Unicode
conversion	support.

Unicode	support	was	introduced	in	PostgreSQL	version	7.1	and	it	will	only	work
if	both	the	server	and	the	client	library	have	been	compiled	with	multibyte
support.	More	information	about	how	to	set	up	a	multibyte	enabled	PostgreSQL
server	can	be	found	in	the	PostgreSQL	Administrator	Guide,	Chapter	5.

BLOB	support

Binary	Large	Objects	can	be	fetched	but	not	inserted.	Please	use	the	PostgreSQL
command	lo_import	to	insert	binary	data	into	the	database.

How	to	build	the	plugin	on	Unix/Linux

Just	installing	"libpq.so"	and	the	corresponding	header	files	is	unfortunately	not
sufficient.	You	have	to	get	the	whole	source	distribution	and	run	the	configure
script	once	(there	is	no	need	to	build	it	if	you	have	already	installed	a	binary
distribution).

Tell	qmake	where	to	find	the	PostgreSQL	header	files	and	shared	libraries	(here
it	is	assumed	that	you	extracted	the	PostgreSQL	source	code	in	/usr/src/psql	and
the	shared	library	is	installed	in	/usr/lib)	and	run	make:

cd	$QTDIR/plugins/src/sqldrivers/psql

qmake	-o	Makefile	"INCLUDEPATH+=/usr/src/psql/src/include	/usr/src/psql/src/interfaces/libpq"	"LIBS+=-L/usr/lib	-lpq"	psql.pro

make

QTDS7	-	Sybase	Adaptive	Server	and	Microsoft	SQL	Server

How	to	build	the	plugin	on	Unix/Linux

Under	Unix,	two	libraries	are	available	which	support	the	TDS	protocol:

-	FreeTDS,	a	free	implementation	of	the	TDS	protocol	(http://www.freetds.org).
Note	that	FreeTDS	is	not	yet	stable,	so	some	functionality	may	not	work	as
expected.

http://www.freetds.org

-	Sybase	Open	Client,	available	from	http://www.sybase.com	Note	for	Linux
users:	Get	the	Open	Client	RPM	from	http://linux.sybase.com

Regardless	of	which	library	you	use,	the	shared	object	file	"libsybdb.so"	is
needed.	Set	the	SYBASE	environment	variable	to	point	to	the	directory	where
you	installed	the	client	library	and	execute	qmake:

cd	$QTDIR/plugins/src/sqldrivers/tds

qmake	-o	Makefile	"INCLUDEPATH=$SYBASE/include"	"LIBS=-L$SYBASE/lib	-lsybdb"

make

How	to	build	the	plugin	on	Windows

You	can	either	use	the	DB-Library	supplied	by	Microsoft	or	the	Sybase	Open
Client	(http://www.sybase.com).	You	have	to	include	NTWDBLIB.LIB	to	build
the	plugin:

cd	%QTDIR%\plugins\src\sqldrivers\tds

qmake	-o	Makefile	"LIBS+=NTWDBLIB.LIB"	tds.pro

nmake

By	default	the	Microsoft	library	is	used	on	Windows,	if	you	want	to	force	the	use
of	the	Sybase	Open	Client,	you	have	to	define	Q_USE_SYBASE	in
%QTDIR%\src\sql\drivers\tds\qsql_tds.cpp.

http://www.sybase.com
http://linux.sybase.com
http://www.sybase.com

Troubleshooting

You	should	always	use	client	libraries	that	have	been	compiled	with	the	same
compiler	as	you	are	using	for	your	project.	If	you	cannot	get	a	source	distibution
to	compile	the	client	libraries	yourself,	you	have	to	make	sure	that	the	pre-
compiled	library	is	compatible	with	your	compiler,	otherwise	you	will	get	a	lot
of	"undefined	symbols"	errors.	Some	compilers	have	tools	to	convert	libraries,
e.g.	Borland	ships	the	tool	COFF2OMF.EXE	to	convert	libraries	that	have	been
generated	with	Microsoft	Visual	C++.

If	the	compilation	of	a	plugin	succeeds	but	it	cannot	be	loaded,	make	sure	that
the	following	requirements	are	met:

Make	sure	you	are	using	a	shared	Qt	library,	you	cannot	use	the	plugins
with	a	static	build.
Make	sure	that	the	environment	variable	QTDIR	points	to	the	right
directory.	Go	to	the	$QTDIR/plugins/sqldrivers	directory	and	make	sure
that	the	plugin	exists	in	that	directory.
Make	sure	that	the	client	libraries	of	the	DBMS	are	available	on	the	system.
On	Unix,	run	the	command	ldd	and	pass	the	name	of	the	plugin	as
parameter,	for	example	ldd	libqsqlmysql.so.	You	will	get	a	warning	if
any	of	the	client	libraries	couldn't	be	found.	On	Windows,	you	can	use	the
dependency	walker	of	Visual	Studio.

How	to	write	your	own	database	driver

QSqlDatabase	is	responsible	for	loading	and	managing	database	driver	plugins.
When	a	database	is	added	(see	QSqlDatabase::addDatabase()),	the	appropriate
driver	plugin	is	loaded	(using	QSqlDriverPlugin).	QSqlDatabase	relies	on	the
driver	plugin	to	provide	interfaces	for	QSqlDriver	and	QSqlResult.

QSqlDriver	is	an	abstract	base	class	which	defines	the	functionality	of	a	SQL
database	driver.	This	includes	functions	such	as	QSqlDriver::open()	and
QSqlDriver::close().	QSqlDriver	is	responsible	for	connecting	to	a	database,
establish	the	proper	environment,	etc.	In	addition,	QSqlDriver	can	create
QSqlQuery	objects	appropriate	for	the	particular	database	API.	QSqlDatabase
forwards	many	of	its	function	calls	directly	to	QSqlDriver	which	provides	the
concrete	implementation.

QSqlResult	is	an	abstract	base	class	which	defines	the	functionality	of	a	SQL
database	query.	This	includes	statements	such	as	SELECT,	UPDATE,	or	ALTER
TABLE.	QSqlResult	contains	functions	such	as	QSqlResult::next()	and
QSqlResult::value().	QSqlResult	is	responsible	for	sending	queries	to	the
database,	returning	result	data,	etc.	QSqlQuery	forwards	many	of	its	function
calls	directly	to	QSqlResult	which	provides	the	concrete	implementation.

QSqlDriver	and	QSqlResult	are	closely	connected.	When	implementing	a	Qt
SQL	driver,	both	of	these	classes	must	to	be	subclassed	and	the	abstract	virtual
methods	in	each	class	must	be	implemented.

To	implement	a	Qt	SQL	driver	as	a	plugin	(so	that	it	is	recognized	and	loaded	by
the	Qt	library	at	runtime),	the	driver	must	use	the	Q_EXPORT_PLUGIN	macro.
Please	read	the	Qt	Plugin	documentation	for	more	information	on	this.	You	can
also	check	out	how	this	is	done	in	the	SQL	plugins	that	is	provided	with	Qt	in
QTDIR/plugins/src/sqldrivers	and	QTDIR/src/sql/drivers.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

sql/overview/connect1/main.cpp
Example	File

/**

**	Id

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	<qsqldatabase.h>

#include	"../login.h"

int	main(int	argc,	char	*argv[])

{

				QApplication	app(argc,	argv);

				QSqlDatabase	*defaultDB	=	QSqlDatabase::addDatabase(DB_SALES_DRIVER);

				if	(defaultDB)	{

								defaultDB->setDatabaseName(DB_SALES_DBNAME);

								defaultDB->setUserName(DB_SALES_USER);

								defaultDB->setPassword(DB_SALES_PASSWD);

								defaultDB->setHostName(DB_SALES_HOST);

								if	(defaultDB->open())	{

												//	Database	successfully	opened;	we	can	now	issue	SQL	commands.

								}

				}

				return	0;

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

sql/overview/create_connections/main.cpp
Example	File

/**

**	Id

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	<qsqldatabase.h>

#include	"../login.h"

bool	createConnections();

int	main(int	argc,	char	*argv[])

{

				QApplication	app(argc,	argv);

				if	(createConnections())	{

								//	Databases	successfully	opened;	get	pointers	to	them:

								QSqlDatabase	*oracledb	=	QSqlDatabase::database("ORACLE");

								//	Now	we	can	now	issue	SQL	commands	to	the	oracle	connection

								//	or	to	the	default	connection

				}

				return	0;

}

bool	createConnections()

{

				//	create	the	default	database	connection

				QSqlDatabase	*defaultDB	=	QSqlDatabase::addDatabase(DB_SALES_DRIVER);

				if	(!	defaultDB)	{

								qWarning("Failed	to	connect	to	driver");

								return	FALSE;

				}

				defaultDB->setDatabaseName(DB_SALES_DBNAME);

				defaultDB->setUserName(DB_SALES_USER);

				defaultDB->setPassword(DB_SALES_PASSWD);

				defaultDB->setHostName(DB_SALES_HOST);

				if	(!	defaultDB->open())	{

								qWarning("Failed	to	open	sales	database:	"	+

																		defaultDB->lastError().driverText());

								qWarning(defaultDB->lastError().databaseText());

								return	FALSE;

				}

				//	create	a	named	connection	to	oracle

				QSqlDatabase	*oracle	=	QSqlDatabase::addDatabase(DB_ORDERS_DRIVER,	"ORACLE");

				if	(!	oracle)	{

								qWarning("Failed	to	connect	to	oracle	driver");

								return	FALSE;

				}

				oracle->setDatabaseName(DB_ORDERS_DBNAME);

				oracle->setUserName(DB_ORDERS_USER);

				oracle->setPassword(DB_ORDERS_PASSWD);

				oracle->setHostName(DB_ORDERS_HOST);

				if	(!	oracle->open())	{

								qWarning("Failed	to	open	orders	database:	"	+

																		oracle->lastError().driverText());

								qWarning(oracle->lastError().databaseText());

								return	FALSE;

				}

				return	TRUE;

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

sql/overview/basicbrowsing/main.cpp
Example	File

/**

**	Id

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	<qsqldatabase.h>

#include	<qsqlquery.h>

#include	"../login.h"

bool	createConnections();

int	main(int	argc,	char	*argv[])

{

				QApplication	app(argc,	argv);

				if	(createConnections())	{

								QSqlDatabase	*oracledb	=	QSqlDatabase::database("ORACLE");

								//	Copy	data	from	the	oracle	database	to	the	ODBC	(default)

								//	database

								QSqlQuery	target;

								QSqlQuery	query("SELECT	id,	name	FROM	people;",	oracledb);

								if	(query.isActive())	{

												while	(query.next())	{

																target.exec("INSERT	INTO	people	(id,	name)	VALUES	("	+

																														query.value(0).toString()	+

																														",	'"	+	query.value(1).toString()	+		"');");

												}

								}

				}

				return	0;

}

bool	createConnections()

{

				//	create	the	default	database	connection

				QSqlDatabase	*defaultDB	=	QSqlDatabase::addDatabase(DB_SALES_DRIVER);

				if	(!	defaultDB)	{

								qWarning("Failed	to	connect	to	driver");

								return	FALSE;

				}

				defaultDB->setDatabaseName(DB_SALES_DBNAME);

				defaultDB->setUserName(DB_SALES_USER);

				defaultDB->setPassword(DB_SALES_PASSWD);

				defaultDB->setHostName(DB_SALES_HOST);

				if	(!	defaultDB->open())	{

								qWarning("Failed	to	open	sales	database:	"	+

																		defaultDB->lastError().driverText());

								qWarning(defaultDB->lastError().databaseText());

								return	FALSE;

				}

				//	create	a	named	connection	to	oracle

				QSqlDatabase	*oracle	=	QSqlDatabase::addDatabase(DB_ORDERS_DRIVER,	"ORACLE");

				if	(!	oracle)	{

								qWarning("Failed	to	connect	to	oracle	driver");

								return	FALSE;

				}

				oracle->setDatabaseName(DB_ORDERS_DBNAME);

				oracle->setUserName(DB_ORDERS_USER);

				oracle->setPassword(DB_ORDERS_PASSWD);

				oracle->setHostName(DB_ORDERS_HOST);

				if	(!	oracle->open())	{

								qWarning("Failed	to	open	orders	database:	"	+

																		oracle->lastError().driverText());

								qWarning(oracle->lastError().databaseText());

								return	FALSE;

				}

				return	TRUE;

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

sql/overview/basicbrowsing2/main.cpp
Example	File

/**

**	Id

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	<qsqldatabase.h>

#include	<qsqlquery.h>

#include	"../login.h"

bool	createConnections();

int	main(int	argc,	char	*argv[])

{

				QApplication	app(argc,	argv);

				if	(createConnections())	{

								QSqlDatabase	*oracledb	=	QSqlDatabase::database("ORACLE");

								//	Copy	data	from	the	oracle	database	to	the	ODBC	(default)

								//	database

								QSqlQuery	target;

								QSqlQuery	query("SELECT	id,	name	FROM	people;",	oracledb);

								int	count	=	0;

								if	(query.isActive())	{

												while	(query.next())	{

																target.exec("INSERT	INTO	people	(id,	name)	VALUES	("	+

																														query.value(0).toString()	+

																														",	'"	+	query.value(1).toString()	+		"');");

																if	(target.isActive())

																				count	+=	target.numRowsAffected();

												}

								}

				}

				return	0;

}

bool	createConnections()

{

				QSqlDatabase	*defaultDB	=	QSqlDatabase::addDatabase(DB_SALES_DRIVER);

				if	(!	defaultDB)	{

								qWarning("Failed	to	connect	to	driver");

								return	FALSE;

				}

				defaultDB->setDatabaseName(DB_SALES_DBNAME);

				defaultDB->setUserName(DB_SALES_USER);

				defaultDB->setPassword(DB_SALES_PASSWD);

				defaultDB->setHostName(DB_SALES_HOST);

				if	(!	defaultDB->open())	{

								qWarning("Failed	to	open	sales	database:	"	+

																		defaultDB->lastError().driverText());

								qWarning(defaultDB->lastError().databaseText());

								return	FALSE;

				}

				QSqlDatabase	*oracle	=	QSqlDatabase::addDatabase(DB_ORDERS_DRIVER,	"ORACLE");

				if	(!	oracle)	{

								qWarning("Failed	to	connect	to	oracle	driver");

								return	FALSE;

				}

				oracle->setDatabaseName(DB_ORDERS_DBNAME);

				oracle->setUserName(DB_ORDERS_USER);

				oracle->setPassword(DB_ORDERS_PASSWD);

				oracle->setHostName(DB_ORDERS_HOST);

				if	(!	oracle->open())	{

								qWarning("Failed	to	open	orders	database:	"	+

																		oracle->lastError().driverText());

								qWarning(oracle->lastError().databaseText());

								return	FALSE;

				}

				return	TRUE;

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

sql/overview/basicdatamanip/main.cpp
Example	File

/**

**	Id

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	<qsqldatabase.h>

#include	<qsqlquery.h>

#include	"../login.h"

bool	createConnections();

int	main(int	argc,	char	*argv[])

{

				QApplication	app(argc,	argv);

				int	rows	=	0;

				if	(createConnections())	{

								QSqlQuery	query("INSERT	INTO	staff	(id,	forename,	surname,	salary)	"

																					"VALUES	(1155,	'Ginger',	'Davis',	50000);");

								if	(query.isActive())	rows	+=	query.numRowsAffected()	;

								query.exec("UPDATE	staff	SET	salary=60000	WHERE	id=1155;");

								if	(query.isActive())	rows	+=	query.numRowsAffected()	;

								query.exec("DELETE	FROM	staff	WHERE	id=1155;");

								if	(query.isActive())	rows	+=	query.numRowsAffected()	;

				}

				return	(rows	==	3)	?	0	:	1;

}

bool	createConnections()

{

				QSqlDatabase	*defaultDB	=	QSqlDatabase::addDatabase(DB_SALES_DRIVER);

				if	(!	defaultDB)	{

								qWarning("Failed	to	connect	to	driver");

								return	FALSE;

				}

				defaultDB->setDatabaseName(DB_SALES_DBNAME);

				defaultDB->setUserName(DB_SALES_USER);

				defaultDB->setPassword(DB_SALES_PASSWD);

				defaultDB->setHostName(DB_SALES_HOST);

				if	(!	defaultDB->open())	{

								qWarning("Failed	to	open	sales	database:	"	+

																		defaultDB->lastError().driverText());

								qWarning(defaultDB->lastError().databaseText());

								return	FALSE;

				}

				QSqlDatabase	*oracle	=	QSqlDatabase::addDatabase(DB_ORDERS_DRIVER,	"ORACLE");

				if	(!	oracle)	{

								qWarning("Failed	to	connect	to	oracle	driver");

								return	FALSE;

				}

				oracle->setDatabaseName(DB_ORDERS_DBNAME);

				oracle->setUserName(DB_ORDERS_USER);

				oracle->setPassword(DB_ORDERS_PASSWD);

				oracle->setHostName(DB_ORDERS_HOST);

				if	(!	oracle->open())	{

								qWarning("Failed	to	open	orders	database:	"	+

																		oracle->lastError().driverText());

								qWarning(oracle->lastError().databaseText());

								return	FALSE;

				}

				return	TRUE;

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

sql/overview/navigating/main.cpp
Example	File

/**

**	Id

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	<qsqldatabase.h>

#include	<qsqlquery.h>

#include	"../login.h"

bool	createConnections();

int	main(int	argc,	char	*argv[])

{

				QApplication	app(argc,	argv);

				if	(createConnections())	{

								QSqlQuery	query("SELECT	id,	name	FROM	people	ORDER	BY	name;");

								if	(!	query.isActive())	return	1;	//	Query	failed

								int	i;

								i	=	query.size();															//	In	this	example	we	have	9	records;	i	==	9.

								query.first();																		//	Moves	to	the	first	record.

								i	=	query.at();																	//	i	==	0

								query.last();																			//	Moves	to	the	last	record.

								i	=	query.at();																	//	i	==	8

								query.seek(query.size()	/	2);	//	Moves	to	the	middle	record.

								i	=	query.at();																	//	i	==	4

				}

				return	0;

}

bool	createConnections()

{

				QSqlDatabase	*defaultDB	=	QSqlDatabase::addDatabase(DB_SALES_DRIVER);

				if	(!	defaultDB)	{

								qWarning("Failed	to	connect	to	driver");

								return	FALSE;

				}

				defaultDB->setDatabaseName(DB_SALES_DBNAME);

				defaultDB->setUserName(DB_SALES_USER);

				defaultDB->setPassword(DB_SALES_PASSWD);

				defaultDB->setHostName(DB_SALES_HOST);

				if	(!	defaultDB->open())	{

								qWarning("Failed	to	open	sales	database:	"	+

																		defaultDB->lastError().driverText());

								qWarning(defaultDB->lastError().databaseText());

								return	FALSE;

				}

				QSqlDatabase	*oracle	=	QSqlDatabase::addDatabase(DB_ORDERS_DRIVER,	"ORACLE");

				if	(!	oracle)	{

								qWarning("Failed	to	connect	to	oracle	driver");

								return	FALSE;

				}

				oracle->setDatabaseName(DB_ORDERS_DBNAME);

				oracle->setUserName(DB_ORDERS_USER);

				oracle->setPassword(DB_ORDERS_PASSWD);

				oracle->setHostName(DB_ORDERS_HOST);

				if	(!	oracle->open())	{

								qWarning("Failed	to	open	orders	database:	"	+

																		oracle->lastError().driverText());

								qWarning(oracle->lastError().databaseText());

								return	FALSE;

				}

				return	TRUE;

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

sql/overview/retrieve1/main.cpp
Example	File

/**

**	Id

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	<qsqldatabase.h>

#include	<qsqlquery.h>

#include	"../login.h"

bool	createConnections();

int	main(int	argc,	char	*argv[])

{

				QApplication	app(argc,	argv);

				if	(createConnections())	{

								QSqlQuery	query("SELECT	id,	surname	FROM	staff;");

								if	(query.isActive())	{

												while	(query.next())	{

																qDebug(query.value(0).toString()	+	":	"	+

																								query.value(1).toString());

												}

								}

				}

				return	0;

}

bool	createConnections()

{

				//	create	the	default	database	connection

				QSqlDatabase	*defaultDB	=	QSqlDatabase::addDatabase(DB_SALES_DRIVER);

				if	(!	defaultDB)	{

								qWarning("Failed	to	connect	to	driver");

								return	FALSE;

				}

				defaultDB->setDatabaseName(DB_SALES_DBNAME);

				defaultDB->setUserName(DB_SALES_USER);

				defaultDB->setPassword(DB_SALES_PASSWD);

				defaultDB->setHostName(DB_SALES_HOST);

				if	(!	defaultDB->open())	{

								qWarning("Failed	to	open	sales	database:	"	+

																		defaultDB->lastError().driverText());

								qWarning(defaultDB->lastError().databaseText());

								return	FALSE;

				}

				//	create	a	named	connection	to	oracle

				QSqlDatabase	*oracle	=	QSqlDatabase::addDatabase(DB_ORDERS_DRIVER,	"ORACLE");

				if	(!	oracle)	{

								qWarning("Failed	to	connect	to	oracle	driver");

								return	FALSE;

				}

				oracle->setDatabaseName(DB_ORDERS_DBNAME);

				oracle->setUserName(DB_ORDERS_USER);

				oracle->setPassword(DB_ORDERS_PASSWD);

				oracle->setHostName(DB_ORDERS_HOST);

				if	(!	oracle->open())	{

								qWarning("Failed	to	open	orders	database:	"	+

																		oracle->lastError().driverText());

								qWarning(oracle->lastError().databaseText());

								return	FALSE;

				}

				return	TRUE;

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

sql/overview/retrieve2/main.cpp
Example	File

/**

**	Id

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	<qsqldatabase.h>

#include	<qsqlcursor.h>

#include	"../login.h"

bool	createConnections();

int	main(int	argc,	char	*argv[])

{

				QApplication	app(argc,	argv);

				if	(createConnections())	{

								QSqlCursor	cur("staff");	//	Specify	the	table/view	name

								cur.select();	//	We'll	retrieve	every	record

								while	(cur.next())	{

												qDebug(cur.value("id").toString()	+	":	"	+

																				cur.value("surname").toString()	+	"	"	+

																				cur.value("salary").toString());

								}

				}

				return	0;

}

bool	createConnections()

{

				QSqlDatabase	*defaultDB	=	QSqlDatabase::addDatabase(DB_SALES_DRIVER);

				if	(!	defaultDB)	{

								qWarning("Failed	to	connect	to	driver");

								return	FALSE;

				}

				defaultDB->setDatabaseName(DB_SALES_DBNAME);

				defaultDB->setUserName(DB_SALES_USER);

				defaultDB->setPassword(DB_SALES_PASSWD);

				defaultDB->setHostName(DB_SALES_HOST);

				if	(!	defaultDB->open())	{

								qWarning("Failed	to	open	sales	database:	"	+

																		defaultDB->lastError().driverText());

								qWarning(defaultDB->lastError().databaseText());

								return	FALSE;

				}

				QSqlDatabase	*oracle	=	QSqlDatabase::addDatabase(DB_ORDERS_DRIVER,	"ORACLE");

				if	(!	oracle)	{

								qWarning("Failed	to	connect	to	oracle	driver");

								return	FALSE;

				}

				oracle->setDatabaseName(DB_ORDERS_DBNAME);

				oracle->setUserName(DB_ORDERS_USER);

				oracle->setPassword(DB_ORDERS_PASSWD);

				oracle->setHostName(DB_ORDERS_HOST);

				if	(!	oracle->open())	{

								qWarning("Failed	to	open	orders	database:	"	+

																		oracle->lastError().driverText());

								qWarning(oracle->lastError().databaseText());

								return	FALSE;

				}

				return	TRUE;

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

sql/overview/order1/main.cpp
Example	File

/**

**	Id

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	<qsqldatabase.h>

#include	<qsqlcursor.h>

#include	"../login.h"

bool	createConnections();

int	main(int	argc,	char	*argv[])

{

				QApplication	app(argc,	argv);

				if	(createConnections())	{

								QSqlCursor	cur("staff");

								QStringList	fields	=	QStringList()	<<	"surname"	<<	"forename";

								QSqlIndex	order	=	cur.index(fields);

								cur.select(order);

								while	(cur.next())	{

												qDebug(cur.value("id").toString()	+	":	"	+

																				cur.value("surname").toString()	+	"	"	+

																				cur.value("forename").toString());

								}

				}

				return	0;

}

bool	createConnections()

{

				QSqlDatabase	*defaultDB	=	QSqlDatabase::addDatabase(DB_SALES_DRIVER);

				if	(!	defaultDB)	{

								qWarning("Failed	to	connect	to	driver");

								return	FALSE;

				}

				defaultDB->setDatabaseName(DB_SALES_DBNAME);

				defaultDB->setUserName(DB_SALES_USER);

				defaultDB->setPassword(DB_SALES_PASSWD);

				defaultDB->setHostName(DB_SALES_HOST);

				if	(!	defaultDB->open())	{

								qWarning("Failed	to	open	sales	database:	"	+

																		defaultDB->lastError().driverText());

								qWarning(defaultDB->lastError().databaseText());

								return	FALSE;

				}

				QSqlDatabase	*oracle	=	QSqlDatabase::addDatabase(DB_ORDERS_DRIVER,	"ORACLE");

				if	(!	oracle)	{

								qWarning("Failed	to	connect	to	oracle	driver");

								return	FALSE;

				}

				oracle->setDatabaseName(DB_ORDERS_DBNAME);

				oracle->setUserName(DB_ORDERS_USER);

				oracle->setPassword(DB_ORDERS_PASSWD);

				oracle->setHostName(DB_ORDERS_HOST);

				if	(!	oracle->open())	{

								qWarning("Failed	to	open	orders	database:	"	+

																		oracle->lastError().driverText());

								qWarning(oracle->lastError().databaseText());

								return	FALSE;

				}

				return	TRUE;

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

sql/overview/order2/main.cpp
Example	File

/**

**	Id

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	<qsqldatabase.h>

#include	<qsqlcursor.h>

#include	"../login.h"

bool	createConnections();

int	main(int	argc,	char	*argv[])

{

				QApplication	app(argc,	argv);

				if	(createConnections())	{

								QSqlCursor	cur("staff");

								QStringList	fields	=	QStringList()	<<	"id"	<<	"forename";

								QSqlIndex	order	=	cur.index(fields);

								QSqlIndex	filter	=	cur.index("surname");

								cur.setValue("surname",	"Bloggs");

								cur.select(filter,	order);

								while	(cur.next())	{

												qDebug(cur.value("id").toString()	+	":	"	+

																				cur.value("surname").toString()	+	"	"	+

																				cur.value("forename").toString());

								}

				}

				return	0;

}

bool	createConnections()

{

				QSqlDatabase	*defaultDB	=	QSqlDatabase::addDatabase(DB_SALES_DRIVER);

				if	(!	defaultDB)	{

								qWarning("Failed	to	connect	to	driver");

								return	FALSE;

				}

				defaultDB->setDatabaseName(DB_SALES_DBNAME);

				defaultDB->setUserName(DB_SALES_USER);

				defaultDB->setPassword(DB_SALES_PASSWD);

				defaultDB->setHostName(DB_SALES_HOST);

				if	(!	defaultDB->open())	{

								qWarning("Failed	to	open	sales	database:	"	+

																		defaultDB->lastError().driverText());

								qWarning(defaultDB->lastError().databaseText());

								return	FALSE;

				}

				QSqlDatabase	*oracle	=	QSqlDatabase::addDatabase(DB_ORDERS_DRIVER,	"ORACLE");

				if	(!	oracle)	{

								qWarning("Failed	to	connect	to	oracle	driver");

								return	FALSE;

				}

				oracle->setDatabaseName(DB_ORDERS_DBNAME);

				oracle->setUserName(DB_ORDERS_USER);

				oracle->setPassword(DB_ORDERS_PASSWD);

				oracle->setHostName(DB_ORDERS_HOST);

				if	(!	oracle->open())	{

								qWarning("Failed	to	open	orders	database:	"	+

																		oracle->lastError().driverText());

								qWarning(oracle->lastError().databaseText());

								return	FALSE;

				}

				return	TRUE;

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

sql/overview/extract/main.cpp
Example	File

/**

**	Id

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	<qsqldatabase.h>

#include	<qsqlcursor.h>

#include	"../login.h"

bool	createConnections();

int	main(int	argc,	char	*argv[])

{

				QApplication	app(argc,	argv);

				if	(createConnections())	{

								QSqlCursor	cur("creditors");

								QStringList	orderFields	=	QStringList()	<<	"surname"	<<	"forename";

								QSqlIndex	order	=	cur.index(orderFields);

								QStringList	filterFields	=	QStringList()	<<	"surname"	<<	"city";

								QSqlIndex	filter	=	cur.index(filterFields);

								cur.setValue("surname",	"Chirac");

								cur.setValue("city",	"Paris");

								cur.select(filter,	order);

								while	(cur.next())	{

												int	id	=	cur.value("id").toInt();

												QString	name	=	cur.value("forename").toString()	+	"	"	+

																											cur.value("surname").toString();

												qDebug(QString::number(id)	+	":	"	+	name);

								}

				}

				return	0;

}

bool	createConnections()

{

				QSqlDatabase	*defaultDB	=	QSqlDatabase::addDatabase(DB_SALES_DRIVER);

				if	(!	defaultDB)	{

								qWarning("Failed	to	connect	to	driver");

								return	FALSE;

				}

				defaultDB->setDatabaseName(DB_SALES_DBNAME);

				defaultDB->setUserName(DB_SALES_USER);

				defaultDB->setPassword(DB_SALES_PASSWD);

				defaultDB->setHostName(DB_SALES_HOST);

				if	(!	defaultDB->open())	{

								qWarning("Failed	to	open	sales	database:	"	+

																		defaultDB->lastError().driverText());

								qWarning(defaultDB->lastError().databaseText());

								return	FALSE;

				}

				QSqlDatabase	*oracle	=	QSqlDatabase::addDatabase(DB_ORDERS_DRIVER,	"ORACLE");

				if	(!	oracle)	{

								qWarning("Failed	to	connect	to	oracle	driver");

								return	FALSE;

				}

				oracle->setDatabaseName(DB_ORDERS_DBNAME);

				oracle->setUserName(DB_ORDERS_USER);

				oracle->setPassword(DB_ORDERS_PASSWD);

				oracle->setHostName(DB_ORDERS_HOST);

				if	(!	oracle->open())	{

								qWarning("Failed	to	open	orders	database:	"	+

																		oracle->lastError().driverText());

								qWarning(oracle->lastError().databaseText());

								return	FALSE;

				}

				return	TRUE;

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

sql/overview/insert/main.cpp
Example	File

/**

**	Id

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	<qsqldatabase.h>

#include	<qsqlcursor.h>

#include	"../login.h"

bool	createConnections();

int	main(int	argc,	char	*argv[])

{

				QApplication	app(argc,	argv);

				if	(createConnections())	{

								int	count	=	0;

								QSqlCursor	cur("prices");

								QStringList	names	=	QStringList()	<<

												"Screwdriver"	<<	"Hammer"	<<	"Wrench"	<<	"Saw";

								int	id	=	20;

								for	(QStringList::Iterator	name	=	names.begin();

														name	!=	names.end();	++name)	{

												QSqlRecord	*buffer	=	cur.primeInsert();

												buffer->setValue("id",	id);

												buffer->setValue("name",	*name);

												buffer->setValue("price",	100.0	+	(double)id);

												count	+=	cur.insert();

												id++;

								}

				}

				return	0;

}

bool	createConnections()

{

				QSqlDatabase	*defaultDB	=	QSqlDatabase::addDatabase(DB_SALES_DRIVER);

				if	(!	defaultDB)	{

								qWarning("Failed	to	connect	to	driver");

								return	FALSE;

				}

				defaultDB->setDatabaseName(DB_SALES_DBNAME);

				defaultDB->setUserName(DB_SALES_USER);

				defaultDB->setPassword(DB_SALES_PASSWD);

				defaultDB->setHostName(DB_SALES_HOST);

				if	(!	defaultDB->open())	{

								qWarning("Failed	to	open	sales	database:	"	+

																		defaultDB->lastError().driverText());

								qWarning(defaultDB->lastError().databaseText());

								return	FALSE;

				}

				QSqlDatabase	*oracle	=	QSqlDatabase::addDatabase(DB_ORDERS_DRIVER,	"ORACLE");

				if	(!	oracle)	{

								qWarning("Failed	to	connect	to	oracle	driver");

								return	FALSE;

				}

				oracle->setDatabaseName(DB_ORDERS_DBNAME);

				oracle->setUserName(DB_ORDERS_USER);

				oracle->setPassword(DB_ORDERS_PASSWD);

				oracle->setHostName(DB_ORDERS_HOST);

				if	(!	oracle->open())	{

								qWarning("Failed	to	open	orders	database:	"	+

																		oracle->lastError().driverText());

								qWarning(oracle->lastError().databaseText());

								return	FALSE;

				}

				return	TRUE;

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

sql/overview/update/main.cpp
Example	File

/**

**	Id

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	<qsqldatabase.h>

#include	<qsqlcursor.h>

#include	"../login.h"

bool	createConnections();

int	main(int	argc,	char	*argv[])

{

				QApplication	app(argc,	argv);

				if	(createConnections())	{

								QSqlCursor	cur("prices");

								cur.select("id=202");

								if	(cur.next())	{

												QSqlRecord	*buffer	=	cur.primeUpdate();

												double	price	=	buffer->value("price").toDouble();

												double	newprice	=	price	*	1.05;

												buffer->setValue("price",	newprice);

												cur.update();

								}

				}

				return	0;

}

bool	createConnections()

{

				QSqlDatabase	*defaultDB	=	QSqlDatabase::addDatabase(DB_SALES_DRIVER);

				if	(!	defaultDB)	{

								qWarning("Failed	to	connect	to	driver");

								return	FALSE;

				}

				defaultDB->setDatabaseName(DB_SALES_DBNAME);

				defaultDB->setUserName(DB_SALES_USER);

				defaultDB->setPassword(DB_SALES_PASSWD);

				defaultDB->setHostName(DB_SALES_HOST);

				if	(!	defaultDB->open())	{

								qWarning("Failed	to	open	sales	database:	"	+

																		defaultDB->lastError().driverText());

								qWarning(defaultDB->lastError().databaseText());

								return	FALSE;

				}

				QSqlDatabase	*oracle	=	QSqlDatabase::addDatabase(DB_ORDERS_DRIVER,	"ORACLE");

				if	(!	oracle)	{

								qWarning("Failed	to	connect	to	oracle	driver");

								return	FALSE;

				}

				oracle->setDatabaseName(DB_ORDERS_DBNAME);

				oracle->setUserName(DB_ORDERS_USER);

				oracle->setPassword(DB_ORDERS_PASSWD);

				oracle->setHostName(DB_ORDERS_HOST);

				if	(!	oracle->open())	{

								qWarning("Failed	to	open	orders	database:	"	+

																		oracle->lastError().driverText());

								qWarning(oracle->lastError().databaseText());

								return	FALSE;

				}

				return	TRUE;

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

sql/overview/del/main.cpp	Example
File

/**

**	Id

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	<qsqldatabase.h>

#include	<qsqlcursor.h>

#include	"../login.h"

bool	createConnections();

int	main(int	argc,	char	*argv[])

{

				QApplication	app(argc,	argv);

				if	(createConnections())	{

								QSqlCursor	cur("prices");

								cur.select("id=999");

								if	(cur.next())	{

												cur.primeDelete();

												cur.del();

								}

				}

				return	0;

}

bool	createConnections()

{

				QSqlDatabase	*defaultDB	=	QSqlDatabase::addDatabase(DB_SALES_DRIVER);

				if	(!	defaultDB)	{

								qWarning("Failed	to	connect	to	driver");

								return	FALSE;

				}

				defaultDB->setDatabaseName(DB_SALES_DBNAME);

				defaultDB->setUserName(DB_SALES_USER);

				defaultDB->setPassword(DB_SALES_PASSWD);

				defaultDB->setHostName(DB_SALES_HOST);

				if	(!	defaultDB->open())	{

								qWarning("Failed	to	open	sales	database:	"	+

																		defaultDB->lastError().driverText());

								qWarning(defaultDB->lastError().databaseText());

								return	FALSE;

				}

				QSqlDatabase	*oracle	=	QSqlDatabase::addDatabase(DB_ORDERS_DRIVER,	"ORACLE");

				if	(!	oracle)	{

								qWarning("Failed	to	connect	to	oracle	driver");

								return	FALSE;

				}

				oracle->setDatabaseName(DB_ORDERS_DBNAME);

				oracle->setUserName(DB_ORDERS_USER);

				oracle->setPassword(DB_ORDERS_PASSWD);

				oracle->setHostName(DB_ORDERS_HOST);

				if	(!	oracle->open())	{

								qWarning("Failed	to	open	orders	database:	"	+

																		oracle->lastError().driverText());

								qWarning(oracle->lastError().databaseText());

								return	FALSE;

				}

				return	TRUE;

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

sql/overview/table1/main.cpp
Example	File

/**

**	Id

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	<qsqldatabase.h>

#include	<qsqlcursor.h>

#include	<qdatatable.h>

#include	"../login.h"

bool	createConnections();

int	main(int	argc,	char	*argv[])

{

				QApplication	app(argc,	argv);

				if	(createConnections())	{

								QSqlCursor	staffCursor("staff");

								QDataTable	*staffTable	=	new	QDataTable(&staffCursor,	TRUE);

								app.setMainWidget(staffTable);

								staffTable->refresh();

								staffTable->show();

								return	app.exec();

				}

				return	0;

}

bool	createConnections()

{

				//	create	the	default	database	connection

				QSqlDatabase	*defaultDB	=	QSqlDatabase::addDatabase(DB_SALES_DRIVER);

				if	(!	defaultDB)	{

								qWarning("Failed	to	connect	to	driver");

								return	FALSE;

				}

				defaultDB->setDatabaseName(DB_SALES_DBNAME);

				defaultDB->setUserName(DB_SALES_USER);

				defaultDB->setPassword(DB_SALES_PASSWD);

				defaultDB->setHostName(DB_SALES_HOST);

				if	(!	defaultDB->open())	{

								qWarning("Failed	to	open	sales	database:	"	+

																		defaultDB->lastError().driverText());

								qWarning(defaultDB->lastError().databaseText());

								return	FALSE;

				}

				//	create	a	named	connection	to	oracle

				QSqlDatabase	*oracle	=	QSqlDatabase::addDatabase(DB_ORDERS_DRIVER,	"ORACLE");

				if	(!	oracle)	{

								qWarning("Failed	to	connect	to	oracle	driver");

								return	FALSE;

				}

				oracle->setDatabaseName(DB_ORDERS_DBNAME);

				oracle->setUserName(DB_ORDERS_USER);

				oracle->setPassword(DB_ORDERS_PASSWD);

				oracle->setHostName(DB_ORDERS_HOST);

				if	(!	oracle->open())	{

								qWarning("Failed	to	open	orders	database:	"	+

																		oracle->lastError().driverText());

								qWarning(oracle->lastError().databaseText());

								return	FALSE;

				}

				return	TRUE;

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

sql/overview/table2/main.cpp
Example	File

/**

**	Id

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	<qsqldatabase.h>

#include	<qsqlcursor.h>

#include	<qdatatable.h>

#include	"../login.h"

bool	createConnections();

int	main(int	argc,	char	*argv[])

{

				QApplication	app(argc,	argv);

				if	(createConnections())	{

								QSqlCursor	staffCursor("staff");

								QDataTable	*staffTable	=	new	QDataTable(&staffCursor);

								app.setMainWidget(staffTable);

								staffTable->addColumn("forename",	"Forename");

								staffTable->addColumn("surname",		"Surname");

								staffTable->addColumn("salary",			"Annual	Salary");

								QStringList	order	=	QStringList()	<<	"surname"	<<	"forename";

								staffTable->setSort(order);

								staffTable->refresh();

								staffTable->show();

								return	app.exec();

				}

				return	1;

}

bool	createConnections()

{

				//	create	the	default	database	connection

				QSqlDatabase	*defaultDB	=	QSqlDatabase::addDatabase(DB_SALES_DRIVER);

				if	(!	defaultDB)	{

								qWarning("Failed	to	connect	to	driver");

								return	FALSE;

				}

				defaultDB->setDatabaseName(DB_SALES_DBNAME);

				defaultDB->setUserName(DB_SALES_USER);

				defaultDB->setPassword(DB_SALES_PASSWD);

				defaultDB->setHostName(DB_SALES_HOST);

				if	(!	defaultDB->open())	{

								qWarning("Failed	to	open	sales	database:	"	+

																		defaultDB->lastError().driverText());

								qWarning(defaultDB->lastError().databaseText());

								return	FALSE;

				}

				//	create	a	named	connection	to	oracle

				QSqlDatabase	*oracle	=	QSqlDatabase::addDatabase(DB_ORDERS_DRIVER,	"ORACLE");

				if	(!	oracle)	{

								qWarning("Failed	to	connect	to	oracle	driver");

								return	FALSE;

				}

				oracle->setDatabaseName(DB_ORDERS_DBNAME);

				oracle->setUserName(DB_ORDERS_USER);

				oracle->setPassword(DB_ORDERS_PASSWD);

				oracle->setHostName(DB_ORDERS_HOST);

				if	(!	oracle->open())	{

								qWarning("Failed	to	open	orders	database:	"	+

																		oracle->lastError().driverText());

								qWarning(oracle->lastError().databaseText());

								return	FALSE;

				}

				return	TRUE;

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

sql/overview/form1/main.cpp
Example	File

/**

**	Id

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	<qdialog.h>

#include	<qlabel.h>

#include	<qlayout.h>

#include	<qlineedit.h>

#include	<qsqldatabase.h>

#include	<qsqlcursor.h>

#include	<qsqlform.h>

#include	"../login.h"

bool	createConnections();

class	FormDialog	:	public	QDialog

{

				public:

								FormDialog();

};

FormDialog::FormDialog()

{

				QLabel	*forenameLabel			=	new	QLabel("Forename:",	this);

				QLabel	*forenameDisplay	=	new	QLabel(this);

				QLabel	*surnameLabel				=	new	QLabel("Surname:",	this);

				QLabel	*surnameDisplay		=	new	QLabel(this);

				QLabel	*salaryLabel					=	new	QLabel("Salary:",	this);

				QLineEdit	*salaryEdit			=	new	QLineEdit(this);

				QGridLayout	*grid	=	new	QGridLayout(this);

				grid->addWidget(forenameLabel,					0,	0);

				grid->addWidget(forenameDisplay,			0,	1);

				grid->addWidget(surnameLabel,						1,	0);

				grid->addWidget(surnameDisplay,				1,	1);

				grid->addWidget(salaryLabel,							2,	0);

				grid->addWidget(salaryEdit,								2,	1);

				grid->activate();

				QSqlCursor	staffCursor("staff");

				staffCursor.select();

				staffCursor.next();

				QSqlForm	sqlForm(this);

				sqlForm.setRecord(staffCursor.primeUpdate());

				sqlForm.insert(forenameDisplay,	"forename");

				sqlForm.insert(surnameDisplay,	"surname");

				sqlForm.insert(salaryEdit,	"salary");

				sqlForm.readFields();

}

int	main(int	argc,	char	*argv[])

{

				QApplication	app(argc,	argv);

				if	(!	createConnections())	return	1;

				FormDialog	*formDialog	=	new	FormDialog();

				formDialog->show();

				app.setMainWidget(formDialog);

				return	app.exec();

}

bool	createConnections()

{

				//	create	the	default	database	connection

				QSqlDatabase	*defaultDB	=	QSqlDatabase::addDatabase(DB_SALES_DRIVER);

				if	(!	defaultDB)	{

								qWarning("Failed	to	connect	to	driver");

								return	FALSE;

				}

				defaultDB->setDatabaseName(DB_SALES_DBNAME);

				defaultDB->setUserName(DB_SALES_USER);

				defaultDB->setPassword(DB_SALES_PASSWD);

				defaultDB->setHostName(DB_SALES_HOST);

				if	(!	defaultDB->open())	{

								qWarning("Failed	to	open	sales	database:	"	+

																		defaultDB->lastError().driverText());

								qWarning(defaultDB->lastError().databaseText());

								return	FALSE;

				}

				//	create	a	named	connection	to	oracle

				QSqlDatabase	*oracle	=	QSqlDatabase::addDatabase(DB_ORDERS_DRIVER,	"ORACLE");

				if	(!	oracle)	{

								qWarning("Failed	to	connect	to	oracle	driver");

								return	FALSE;

				}

				oracle->setDatabaseName(DB_ORDERS_DBNAME);

				oracle->setUserName(DB_ORDERS_USER);

				oracle->setPassword(DB_ORDERS_PASSWD);

				oracle->setHostName(DB_ORDERS_HOST);

				if	(!	oracle->open())	{

								qWarning("Failed	to	open	orders	database:	"	+

																		oracle->lastError().driverText());

								qWarning(oracle->lastError().databaseText());

								return	FALSE;

				}

				return	TRUE;

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

sql/overview/form2/main.h	Example
File

/**

**	Id

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	<qdialog.h>

#include	<qlabel.h>

#include	<qlayout.h>

#include	<qlineedit.h>

#include	<qpushbutton.h>

#include	<qsqldatabase.h>

#include	<qsqlcursor.h>

#include	<qsqlform.h>

#include	"../login.h"

bool	createConnections();

class	FormDialog	:	public	QDialog

{

				Q_OBJECT

				public:

								FormDialog();

								~FormDialog();

				public	slots:

								void	save();

				private:

								QSqlCursor	staffCursor;

								QSqlForm	*sqlForm;

								QSqlIndex	idIndex;

};

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

sql/overview/custom1/main.h
Example	File

/**

**	Id

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	<qdialog.h>

#include	<qlabel.h>

#include	<qlayout.h>

#include	<qlineedit.h>

#include	<qpushbutton.h>

#include	<qsqldatabase.h>

#include	<qsqlcursor.h>

#include	<qsqlform.h>

#include	<qsqlpropertymap.h>

#include	"../login.h"

bool	createConnections();

class	CustomEdit	:	public	QLineEdit

{

				Q_OBJECT

				Q_PROPERTY(QString	upperLine	READ	upperLine	WRITE	setUpperLine)

				public:

								CustomEdit(QWidget	*parent=0,	const	char	*name=0);

								QString	upperLine()	const;

								void	setUpperLine(const	QString	&line);

				public	slots:

								void	changed(const	QString	&line);

				private:

								QString	upperLineText;

};

class	FormDialog	:	public	QDialog

{

				Q_OBJECT

				public:

								FormDialog();

								~FormDialog();

				public	slots:

								void	save();

				private:

								QSqlCursor	*staffCursor;

								QSqlForm	*sqlForm;

								QSqlPropertyMap	*propMap;

								QSqlIndex	idIndex;

};

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

sql/overview/custom1/main.cpp
Example	File

/**

**	Id

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"main.h"

CustomEdit::CustomEdit(QWidget	*parent,	const	char	*name)	:

				QLineEdit(parent,	name)

{

				connect(this,	SIGNAL(textChanged(const	QString	&)),

													this,	SLOT(changed(const	QString	&)));

}

void	CustomEdit::changed(const	QString	&line)

{

				setUpperLine(line);

}

void	CustomEdit::setUpperLine(const	QString	&line)

{

				upperLineText	=	line.upper();

				setText(upperLineText);

}

QString	CustomEdit::upperLine()	const

{

				return	upperLineText;

}

FormDialog::FormDialog()

{

				QLabel						*forenameLabel		=	new	QLabel("Forename:",	this);

				CustomEdit		*forenameEdit			=	new	CustomEdit(this);

				QLabel						*surnameLabel			=	new	QLabel("Surname:",	this);

				CustomEdit		*surnameEdit				=	new	CustomEdit(this);

				QLabel						*salaryLabel				=	new	QLabel("Salary:",	this);

				QLineEdit			*salaryEdit					=	new	QLineEdit(this);

				salaryEdit->setAlignment(Qt::AlignRight);

				QPushButton	*saveButton					=	new	QPushButton("&Save",	this);

				connect(saveButton,	SIGNAL(clicked()),	this,	SLOT(save()));

				QGridLayout	*grid	=	new	QGridLayout(this);

				grid->addWidget(forenameLabel,	0,	0);

				grid->addWidget(forenameEdit,		0,	1);

				grid->addWidget(surnameLabel,		1,	0);

				grid->addWidget(surnameEdit,			1,	1);

				grid->addWidget(salaryLabel,			2,	0);

				grid->addWidget(salaryEdit,				2,	1);

				grid->addWidget(saveButton,				3,	0);

				grid->activate();

				staffCursor	=	new	QSqlCursor("staff");

				staffCursor->setTrimmed("forename",	TRUE);

				staffCursor->setTrimmed("surname",		TRUE);

				idIndex	=	staffCursor->index("id");

				staffCursor->select(idIndex);

				staffCursor->first();

				propMap	=	new	QSqlPropertyMap;

				propMap->insert(forenameEdit->className(),	"upperLine");

				sqlForm	=	new	QSqlForm(this);

				sqlForm->setRecord(staffCursor->primeUpdate());

				sqlForm->installPropertyMap(propMap);

				sqlForm->insert(forenameEdit,	"forename");

				sqlForm->insert(surnameEdit,	"surname");

				sqlForm->insert(salaryEdit,	"salary");

				sqlForm->readFields();

}

FormDialog::~FormDialog()

{

				delete	staffCursor;

}

void	FormDialog::save()

{

				sqlForm->writeFields();

				staffCursor->update();

				staffCursor->select(idIndex);

				staffCursor->first();

}

int	main(int	argc,	char	*argv[])

{

				QApplication	app(argc,	argv);

				if	(!	createConnections())

								return	1;

				FormDialog	*formDialog	=	new	FormDialog();

				formDialog->show();

				app.setMainWidget(formDialog);

				return	app.exec();

}

bool	createConnections()

{

				//	create	the	default	database	connection

				QSqlDatabase	*defaultDB	=	QSqlDatabase::addDatabase(DB_SALES_DRIVER);

				if	(!	defaultDB)	{

								qWarning("Failed	to	connect	to	driver");

								return	FALSE;

				}

				defaultDB->setDatabaseName(DB_SALES_DBNAME);

				defaultDB->setUserName(DB_SALES_USER);

				defaultDB->setPassword(DB_SALES_PASSWD);

				defaultDB->setHostName(DB_SALES_HOST);

				if	(!	defaultDB->open())	{

								qWarning("Failed	to	open	sales	database:	"	+

																		defaultDB->lastError().driverText());

								qWarning(defaultDB->lastError().databaseText());

								return	FALSE;

				}

				//	create	a	named	connection	to	oracle

				QSqlDatabase	*oracle	=	QSqlDatabase::addDatabase(DB_ORDERS_DRIVER,	"ORACLE");

				if	(!	oracle)	{

								qWarning("Failed	to	connect	to	oracle	driver");

								return	FALSE;

				}

				oracle->setDatabaseName(DB_ORDERS_DBNAME);

				oracle->setUserName(DB_ORDERS_USER);

				oracle->setPassword(DB_ORDERS_PASSWD);

				oracle->setHostName(DB_ORDERS_HOST);

				if	(!	oracle->open())	{

								qWarning("Failed	to	open	orders	database:	"	+

																		oracle->lastError().driverText());

								qWarning(oracle->lastError().databaseText());

								return	FALSE;

				}

				return	TRUE;

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

sql/overview/table3/main.h	Example
File

/**

**	Id

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	<qcombobox.h>

#include	<qmap.h>

#include	<qsqldatabase.h>

#include	<qsqlcursor.h>

#include	<qsqleditorfactory.h>

#include	<qsqlpropertymap.h>

#include	"../login.h"

bool	createConnections();

class	StatusPicker	:	public	QComboBox

{

				Q_OBJECT

				Q_PROPERTY(int	statusid	READ	statusId	WRITE	setStatusId)

				public:

								StatusPicker(QWidget	*parent=0,	const	char	*name=0);

								int	statusId()	const;

								void	setStatusId(int	id);

				private:

								QMap<	int,	int	>	index2id;

};

class	CustomSqlEditorFactory	:	public	QSqlEditorFactory

{

				Q_OBJECT

				public:

								QWidget	*createEditor(QWidget	*parent,	const	QSqlField	*field);

};

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

sql/overview/table3/main.cpp
Example	File

/**

**	Id

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"main.h"

#include	<qdatatable.h>

StatusPicker::StatusPicker(QWidget	*parent,	const	char	*name)

				:	QComboBox(parent,	name)

{

				QSqlCursor	cur("status");

				cur.select(cur.index("name"));

				int	i	=	0;

				while	(cur.next())	{

								insertItem(cur.value("name").toString(),	i);

								index2id[i]	=	cur.value("id").toInt();

								i++;

				}

}

int	StatusPicker::statusId()	const

{

				return	index2id[currentItem()];

}

void	StatusPicker::setStatusId(int	statusid)

{

				QMap<int,int>::Iterator	it;

				for	(it	=	index2id.begin();	it	!=	index2id.end();	++it)	{

								if	(it.data()	==	statusid)	{

												setCurrentItem(it.key());

												break;

								}

				}

}

QWidget	*CustomSqlEditorFactory::createEditor(

				QWidget	*parent,	const	QSqlField	*field)

{

				if	(field->name()	==	"statusid")	{

								QWidget	*editor	=	new	StatusPicker(parent);

								return	editor;

				}

				return	QSqlEditorFactory::createEditor(parent,	field);

}

int	main(int	argc,	char	*argv[])

{

				QApplication	app(argc,	argv);

				if	(createConnections())	{

								QSqlCursor	staffCursor("staff");

								QDataTable														*staffTable					=	new	QDataTable(&staffCursor);

								QSqlPropertyMap									*propMap								=	new	QSqlPropertyMap

								CustomSqlEditorFactory		*editorFactory		=	new	CustomSqlEditorFactory();

								propMap->insert("StatusPicker",	"statusid");

								staffTable->installPropertyMap(propMap);

								staffTable->installEditorFactory(editorFactory);

								app.setMainWidget(staffTable);

								staffTable->addColumn("forename",	"Forename");

								staffTable->addColumn("surname",		"Surname");

								staffTable->addColumn("salary",			"Annual	Salary");

								staffTable->addColumn("statusid",	"Status");

								QStringList	order	=	QStringList()	<<	"surname"	<<	"forename";

								staffTable->setSort(order);

								staffTable->refresh();

								staffTable->show();

								return	app.exec();

				}

				return	1;

}

bool	createConnections()

{

				//	create	the	default	database	connection

				QSqlDatabase	*defaultDB	=	QSqlDatabase::addDatabase(DB_SALES_DRIVER);

				if	(!	defaultDB)	{

								qWarning("Failed	to	connect	to	driver");

								return	FALSE;

				}

				defaultDB->setDatabaseName(DB_SALES_DBNAME);

				defaultDB->setUserName(DB_SALES_USER);

				defaultDB->setPassword(DB_SALES_PASSWD);

				defaultDB->setHostName(DB_SALES_HOST);

				if	(!	defaultDB->open())	{

								qWarning("Failed	to	open	sales	database:	"	+

																		defaultDB->lastError().driverText());

								qWarning(defaultDB->lastError().databaseText());

								return	FALSE;

				}

				//	create	a	named	connection	to	oracle

				QSqlDatabase	*oracle	=	QSqlDatabase::addDatabase(DB_ORDERS_DRIVER,	"ORACLE");

				if	(!	oracle)	{

								qWarning("Failed	to	connect	to	oracle	driver");

								return	FALSE;

				}

				oracle->setDatabaseName(DB_ORDERS_DBNAME);

				oracle->setUserName(DB_ORDERS_USER);

				oracle->setPassword(DB_ORDERS_PASSWD);

				oracle->setHostName(DB_ORDERS_HOST);

				if	(!	oracle->open())	{

								qWarning("Failed	to	open	orders	database:	"	+

																		oracle->lastError().driverText());

								qWarning(oracle->lastError().databaseText());

								return	FALSE;

				}

				return	TRUE;

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

sql/overview/table4/main.h	Example
File

/**

**	Id

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	<qcombobox.h>

#include	<qmap.h>

#include	<qpainter.h>

#include	<qsqldatabase.h>

#include	<qsqlcursor.h>

#include	<qsqleditorfactory.h>

#include	<qsqlpropertymap.h>

#include	<qdatatable.h>

#include	"../login.h"

bool	createConnections();

class	StatusPicker	:	public	QComboBox

{

				Q_OBJECT

				Q_PROPERTY(int	statusid	READ	statusId	WRITE	setStatusId)

public:

				StatusPicker(QWidget	*parent=0,	const	char	*name=0);

				int	statusId()	const;

				void	setStatusId(int	id);

private:

				QMap<	int,	int	>	index2id;

};

class	CustomTable	:	public	QDataTable

{

				Q_OBJECT

public:

				CustomTable(

												QSqlCursor	*cursor,	bool	autoPopulate	=	FALSE,

												QWidget	*	parent	=	0,	const	char	*	name	=	0)	:

								QDataTable(cursor,	autoPopulate,	parent,	name)	{}

				void	paintField(

												QPainter	*	p,	const	QSqlField*	field,	const	QRect	&	cr,	bool);

};

class	CustomSqlEditorFactory	:	public	QSqlEditorFactory

{

				Q_OBJECT

public:

				QWidget	*createEditor(QWidget	*parent,	const	QSqlField	*field);

};

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

sql/overview/table4/main.cpp
Example	File

/**

**	Id

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"main.h"

StatusPicker::StatusPicker(QWidget	*parent,	const	char	*name)

				:	QComboBox(parent,	name)

{

				QSqlCursor	cur("status");

				cur.select(cur.index("name"));

				int	i	=	0;

				while	(cur.next())	{

								insertItem(cur.value("name").toString(),	i);

								index2id[i]	=	cur.value("id").toInt();

								i++;

				}

}

int	StatusPicker::statusId()	const

{

				return	index2id[currentItem()];

}

void	StatusPicker::setStatusId(int	statusid)

{

				QMap<int,int>::Iterator	it;

				for	(it	=	index2id.begin();	it	!=	index2id.end();	++it)	{

								if	(it.data()	==	statusid)	{

												setCurrentItem(it.key());

												break;

								}

				}

}

void	CustomTable::paintField(QPainter	*	p,	const	QSqlField*	field,

																														const	QRect	&	cr,	bool	b)

{

				if	(!field)

								return;

				if	(field->name()	==	"statusid")	{

								QSqlQuery	query("SELECT	name	FROM	status	WHERE	id="	+

																					field->value().toString());

								QString	text;

								if	(query.next())	{

												text	=	query.value(0).toString();

								}

								p->drawText(2,2,	cr.width()-4,	cr.height()-4,	fieldAlignment(field),	text);

				}

				else	{

								QDataTable::paintField(p,	field,	cr,	b)	;

				}

}

QWidget	*CustomSqlEditorFactory::createEditor(

				QWidget	*parent,	const	QSqlField	*field)

{

				if	(field->name()	==	"statusid")	{

								QWidget	*editor	=	new	StatusPicker(parent);

								return	editor;

				}

				return	QSqlEditorFactory::createEditor(parent,	field);

}

int	main(int	argc,	char	*argv[])

{

				QApplication	app(argc,	argv);

				if	(createConnections())	{

								QSqlCursor	staffCursor("staff");

								CustomTable													*staffTable					=	new	CustomTable(&staffCursor);

								QSqlPropertyMap									*propMap								=	new	QSqlPropertyMap

								CustomSqlEditorFactory		*editorFactory		=	new	CustomSqlEditorFactory();

								propMap->insert("StatusPicker",	"statusid");

								staffTable->installPropertyMap(propMap);

								staffTable->installEditorFactory(editorFactory);

								app.setMainWidget(staffTable);

								staffTable->addColumn("forename",	"Forename");

								staffTable->addColumn("surname",		"Surname");

								staffTable->addColumn("salary",			"Annual	Salary");

								staffTable->addColumn("statusid",	"Status");

								QStringList	order	=	QStringList()	<<	"surname"	<<	"forename";

								staffTable->setSort(order);

								staffTable->refresh();

								staffTable->show();

								return	app.exec();

				}

				return	1;

}

bool	createConnections()

{

				//	create	the	default	database	connection

				QSqlDatabase	*defaultDB	=	QSqlDatabase::addDatabase(DB_SALES_DRIVER);

				if	(!	defaultDB)	{

								qWarning("Failed	to	connect	to	driver");

								return	FALSE;

				}

				defaultDB->setDatabaseName(DB_SALES_DBNAME);

				defaultDB->setUserName(DB_SALES_USER);

				defaultDB->setPassword(DB_SALES_PASSWD);

				defaultDB->setHostName(DB_SALES_HOST);

				if	(!	defaultDB->open())	{

								qWarning("Failed	to	open	sales	database:	"	+

																		defaultDB->lastError().driverText());

								qWarning(defaultDB->lastError().databaseText());

								return	FALSE;

				}

				//	create	a	named	connection	to	oracle

				QSqlDatabase	*oracle	=	QSqlDatabase::addDatabase(DB_ORDERS_DRIVER,	"ORACLE");

				if	(!	oracle)	{

								qWarning("Failed	to	connect	to	oracle	driver");

								return	FALSE;

				}

				oracle->setDatabaseName(DB_ORDERS_DBNAME);

				oracle->setUserName(DB_ORDERS_USER);

				oracle->setPassword(DB_ORDERS_PASSWD);

				oracle->setHostName(DB_ORDERS_HOST);

				if	(!	oracle->open())	{

								qWarning("Failed	to	open	orders	database:	"	+

																		oracle->lastError().driverText());

								qWarning(oracle->lastError().databaseText());

								return	FALSE;

				}

				return	TRUE;

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

sql/overview/subclass1/main.cpp
Example	File

/**

**	Id

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	<qsqldatabase.h>

#include	<qsqlcursor.h>

#include	<qdatatable.h>

#include	"../login.h"

bool	createConnections();

int	main(int	argc,	char	*argv[])

{

				QApplication	app(argc,	argv);

				if	(createConnections())	{

								QSqlCursor	invoiceItemCursor("invoiceitem");

								QDataTable	*invoiceItemTable	=	new	QDataTable(&invoiceItemCursor);

								app.setMainWidget(invoiceItemTable);

								invoiceItemTable->addColumn("pricesid",	"PriceID");

								invoiceItemTable->addColumn("quantity",	"Quantity");

								invoiceItemTable->addColumn("paiddate",	"Paid");

								invoiceItemTable->refresh();

								invoiceItemTable->show();

								return	app.exec();

				}

				return	1;

}

bool	createConnections()

{

				//	create	the	default	database	connection

				QSqlDatabase	*defaultDB	=	QSqlDatabase::addDatabase(DB_SALES_DRIVER);

				if	(!	defaultDB)	{

								qWarning("Failed	to	connect	to	driver");

								return	FALSE;

				}

				defaultDB->setDatabaseName(DB_SALES_DBNAME);

				defaultDB->setUserName(DB_SALES_USER);

				defaultDB->setPassword(DB_SALES_PASSWD);

				defaultDB->setHostName(DB_SALES_HOST);

				if	(!	defaultDB->open())	{

								qWarning("Failed	to	open	sales	database:	"	+

																		defaultDB->lastError().driverText());

								qWarning(defaultDB->lastError().databaseText());

								return	FALSE;

				}

				//	create	a	named	connection	to	oracle

				QSqlDatabase	*oracle	=	QSqlDatabase::addDatabase(DB_ORDERS_DRIVER,	"ORACLE");

				if	(!	oracle)	{

								qWarning("Failed	to	connect	to	oracle	driver");

								return	FALSE;

				}

				oracle->setDatabaseName(DB_ORDERS_DBNAME);

				oracle->setUserName(DB_ORDERS_USER);

				oracle->setPassword(DB_ORDERS_PASSWD);

				oracle->setHostName(DB_ORDERS_HOST);

				if	(!	oracle->open())	{

								qWarning("Failed	to	open	orders	database:	"	+

																		oracle->lastError().driverText());

								qWarning(oracle->lastError().databaseText());

								return	FALSE;

				}

				return	TRUE;

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

sql/overview/subclass2/main.h
Example	File

/**

**	Id

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	<qsqldatabase.h>

#include	<qsqlcursor.h>

#include	"../login.h"

class	QSqlRecord;

bool	createConnections();

class	InvoiceItemCursor	:	public	QSqlCursor

{

				public:

								InvoiceItemCursor();

};

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

sql/overview/subclass2/main.cpp
Example	File

/**

**	Id

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"main.h"

#include	<qdatatable.h>

InvoiceItemCursor::InvoiceItemCursor()	:

				QSqlCursor("invoiceitem")

{

				//	NOOP

}

int	main(int	argc,	char	*argv[])

{

				QApplication	app(argc,	argv);

				if	(createConnections())	{

								InvoiceItemCursor	invoiceItemCursor;

								QDataTable	*invoiceItemTable	=	new	QDataTable(&invoiceItemCursor);

								app.setMainWidget(invoiceItemTable);

								invoiceItemTable->addColumn("pricesid",	"PriceID");

								invoiceItemTable->addColumn("quantity",	"Quantity");

								invoiceItemTable->addColumn("paiddate",	"Paid");

								invoiceItemTable->refresh();

								invoiceItemTable->show();

								return	app.exec();

				}

				return	1;

}

bool	createConnections()

{

				//	create	the	default	database	connection

				QSqlDatabase	*defaultDB	=	QSqlDatabase::addDatabase(DB_SALES_DRIVER);

				if	(!	defaultDB)	{

								qWarning("Failed	to	connect	to	driver");

								return	FALSE;

				}

				defaultDB->setDatabaseName(DB_SALES_DBNAME);

				defaultDB->setUserName(DB_SALES_USER);

				defaultDB->setPassword(DB_SALES_PASSWD);

				defaultDB->setHostName(DB_SALES_HOST);

				if	(!	defaultDB->open())	{

								qWarning("Failed	to	open	sales	database:	"	+

																		defaultDB->lastError().driverText());

								qWarning(defaultDB->lastError().databaseText());

								return	FALSE;

				}

				//	create	a	named	connection	to	oracle

				QSqlDatabase	*oracle	=	QSqlDatabase::addDatabase(DB_ORDERS_DRIVER,	"ORACLE");

				if	(!	oracle)	{

								qWarning("Failed	to	connect	to	oracle	driver");

								return	FALSE;

				}

				oracle->setDatabaseName(DB_ORDERS_DBNAME);

				oracle->setUserName(DB_ORDERS_USER);

				oracle->setPassword(DB_ORDERS_PASSWD);

				oracle->setHostName(DB_ORDERS_HOST);

				if	(!	oracle->open())	{

								qWarning("Failed	to	open	orders	database:	"	+

																		oracle->lastError().driverText());

								qWarning(oracle->lastError().databaseText());

								return	FALSE;

				}

				return	TRUE;

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

sql/overview/subclass3/main.h
Example	File

/**

**	Id

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	<qsqldatabase.h>

#include	<qsqlcursor.h>

#include	"../login.h"

class	QSqlRecord;

bool	createConnections();

class	InvoiceItemCursor	:	public	QSqlCursor

{

				public:

								InvoiceItemCursor();

				protected:

								QVariant	calculateField(const	QString	&	name);

};

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

sql/overview/subclass3/main.cpp
Example	File

/**

**	Id

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"main.h"

#include	<qdatatable.h>

InvoiceItemCursor::InvoiceItemCursor()	:

				QSqlCursor("invoiceitem")

{

				QSqlFieldInfo	productName("productname",	QVariant::String);

				append(productName);

				setCalculated(productName.name(),	TRUE);

}

QVariant	InvoiceItemCursor::calculateField(const	QString	&	name)

{

				if	(name	==	"productname")	{

								QSqlQuery	query("SELECT	name	FROM	prices	WHERE	id="	+

																					field("pricesid")->value().toString()	+	";");

								if	(query.next())

												return	query.value(0);

				}

				return	QVariant(QString::null);

}

int	main(int	argc,	char	*argv[])

{

				QApplication	app(argc,	argv);

				if	(createConnections())	{

								InvoiceItemCursor	invoiceItemCursor;

								QDataTable	*invoiceItemTable	=	new	QDataTable(&invoiceItemCursor);

								app.setMainWidget(invoiceItemTable);

								invoiceItemTable->addColumn("productname",	"Product");

								invoiceItemTable->addColumn("quantity",				"Quantity");

								invoiceItemTable->addColumn("paiddate",				"Paid");

								invoiceItemTable->refresh();

								invoiceItemTable->show();

								return	app.exec();

				}

				return	1;

}

bool	createConnections()

{

				//	create	the	default	database	connection

				QSqlDatabase	*defaultDB	=	QSqlDatabase::addDatabase(DB_SALES_DRIVER);

				if	(!	defaultDB)	{

								qWarning("Failed	to	connect	to	driver");

								return	FALSE;

				}

				defaultDB->setDatabaseName(DB_SALES_DBNAME);

				defaultDB->setUserName(DB_SALES_USER);

				defaultDB->setPassword(DB_SALES_PASSWD);

				defaultDB->setHostName(DB_SALES_HOST);

				if	(!	defaultDB->open())	{

								qWarning("Failed	to	open	sales	database:	"	+

																		defaultDB->lastError().driverText());

								qWarning(defaultDB->lastError().databaseText());

								return	FALSE;

				}

				//	create	a	named	connection	to	oracle

				QSqlDatabase	*oracle	=	QSqlDatabase::addDatabase(DB_ORDERS_DRIVER,	"ORACLE");

				if	(!	oracle)	{

								qWarning("Failed	to	connect	to	oracle	driver");

								return	FALSE;

				}

				oracle->setDatabaseName(DB_ORDERS_DBNAME);

				oracle->setUserName(DB_ORDERS_USER);

				oracle->setPassword(DB_ORDERS_PASSWD);

				oracle->setHostName(DB_ORDERS_HOST);

				if	(!	oracle->open())	{

								qWarning("Failed	to	open	orders	database:	"	+

																		oracle->lastError().driverText());

								qWarning(oracle->lastError().databaseText());

								return	FALSE;

				}

				return	TRUE;

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

sql/overview/subclass4/main.h
Example	File

/**

**	Id

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	<qsqldatabase.h>

#include	<qsqlcursor.h>

#include	"../login.h"

class	QSqlRecord;

bool	createConnections();

class	InvoiceItemCursor	:	public	QSqlCursor

{

				public:

								InvoiceItemCursor();

				protected:

								QVariant	calculateField(const	QString	&	name);

};

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

sql/overview/subclass4/main.cpp
Example	File

/**

**	Id

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"main.h"

#include	<qdatatable.h>

InvoiceItemCursor::InvoiceItemCursor()	:

				QSqlCursor("invoiceitem")

{

				QSqlFieldInfo	productName("productname",	QVariant::String);

				append(productName);

				setCalculated(productName.name(),	TRUE);

				QSqlFieldInfo	productPrice("price",	QVariant::Double);

				append(productPrice);

				setCalculated(productPrice.name(),	TRUE);

				QSqlFieldInfo	productCost("cost",	QVariant::Double);

				append(productCost);

				setCalculated(productCost.name(),	TRUE);

}

QVariant	InvoiceItemCursor::calculateField(const	QString	&	name)

{

				if	(name	==	"productname")	{

								QSqlQuery	query("SELECT	name	FROM	prices	WHERE	id="	+

																					field("pricesid")->value().toString()	+	";");

								if	(query.next())

												return	query.value(0);

				}

				else	if	(name	==	"price")	{

								QSqlQuery	query("SELECT	price	FROM	prices	WHERE	id="	+

																					field("pricesid")->value().toString()	+	";");

								if	(query.next())

												return	query.value(0);

				}

				else	if	(name	==	"cost")	{

								QSqlQuery	query("SELECT	price	FROM	prices	WHERE	id="	+

																					field("pricesid")->value().toString()	+	";");

								if	(query.next())

												return	QVariant(query.value(0).toDouble()	*

																													value("quantity").toDouble());

				}

				return	QVariant(QString::null);

}

int	main(int	argc,	char	*argv[])

{

				QApplication	app(argc,	argv);

				if	(createConnections())	{

								InvoiceItemCursor	invoiceItemCursor;

								QDataTable	*invoiceItemTable	=	new	QDataTable(&invoiceItemCursor);

								app.setMainWidget(invoiceItemTable);

								invoiceItemTable->addColumn("productname",	"Product");

								invoiceItemTable->addColumn("price",							"Price");

								invoiceItemTable->addColumn("quantity",				"Quantity");

								invoiceItemTable->addColumn("cost",								"Cost");

								invoiceItemTable->addColumn("paiddate",				"Paid");

								invoiceItemTable->refresh();

								invoiceItemTable->show();

								return	app.exec();

				}

				return	1;

}

bool	createConnections()

{

				//	create	the	default	database	connection

				QSqlDatabase	*defaultDB	=	QSqlDatabase::addDatabase(DB_SALES_DRIVER);

				if	(!	defaultDB)	{

								qWarning("Failed	to	connect	to	driver");

								return	FALSE;

				}

				defaultDB->setDatabaseName(DB_SALES_DBNAME);

				defaultDB->setUserName(DB_SALES_USER);

				defaultDB->setPassword(DB_SALES_PASSWD);

				defaultDB->setHostName(DB_SALES_HOST);

				if	(!	defaultDB->open())	{

								qWarning("Failed	to	open	sales	database:	"	+

																		defaultDB->lastError().driverText());

								qWarning(defaultDB->lastError().databaseText());

								return	FALSE;

				}

				//	create	a	named	connection	to	oracle

				QSqlDatabase	*oracle	=	QSqlDatabase::addDatabase(DB_ORDERS_DRIVER,	"ORACLE");

				if	(!	oracle)	{

								qWarning("Failed	to	connect	to	oracle	driver");

								return	FALSE;

				}

				oracle->setDatabaseName(DB_ORDERS_DBNAME);

				oracle->setUserName(DB_ORDERS_USER);

				oracle->setPassword(DB_ORDERS_PASSWD);

				oracle->setHostName(DB_ORDERS_HOST);

				if	(!	oracle->open())	{

								qWarning("Failed	to	open	orders	database:	"	+

																		oracle->lastError().driverText());

								qWarning(oracle->lastError().databaseText());

								return	FALSE;

				}

				return	TRUE;

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

sql/overview/subclass5/main.h
Example	File

/**

**	Id

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	<qdatetime.h>

#include	<qsqldatabase.h>

#include	<qsqlcursor.h>

#include	"../login.h"

class	QSqlRecord;

bool	createConnections();

class	InvoiceItemCursor	:	public	QSqlCursor

{

				public:

								InvoiceItemCursor();

								QSqlRecord	*primeInsert();

				protected:

								QVariant	calculateField(const	QString	&	name);

};

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

sql/overview/subclass5/main.cpp
Example	File

/**

**	Id

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"main.h"

#include	<qdatatable.h>

InvoiceItemCursor::InvoiceItemCursor()	:

				QSqlCursor("invoiceitem")

{

				QSqlFieldInfo	productName("productname",	QVariant::String);

				append(productName);

				setCalculated(productName.name(),	TRUE);

				QSqlFieldInfo	productPrice("price",	QVariant::Double);

				append(productPrice);

				setCalculated(productPrice.name(),	TRUE);

				QSqlFieldInfo	productCost("cost",	QVariant::Double);

				append(productCost);

				setCalculated(productCost.name(),	TRUE);

}

QVariant	InvoiceItemCursor::calculateField(const	QString	&	name)

{

				if	(name	==	"productname")	{

								QSqlQuery	query("SELECT	name	FROM	prices	WHERE	id="	+

																					field("pricesid")->value().toString()	+	";");

								if	(query.next())

												return	query.value(0);

				}

				else	if	(name	==	"price")	{

								QSqlQuery	query("SELECT	price	FROM	prices	WHERE	id="	+

																					field("pricesid")->value().toString()	+	";");

								if	(query.next())

												return	query.value(0);

				}

				else	if	(name	==	"cost")	{

								QSqlQuery	query("SELECT	price	FROM	prices	WHERE	id="	+

																					field("pricesid")->value().toString()	+	";");

								if	(query.next())

												return	QVariant(query.value(0).toDouble()	*

																													value("quantity").toDouble());

				}

				return	QVariant(QString::null);

}

QSqlRecord	*InvoiceItemCursor::primeInsert()

{

				QSqlRecord	*buffer	=	editBuffer();

				QSqlQuery	query("SELECT	NEXTVAL('invoiceitem_seq');");

				if	(query.next())

								buffer->setValue("id",	query.value(0));

				buffer->setValue("paiddate",	QDate::currentDate());

				buffer->setValue("quantity",	1);

				return	buffer;

}

int	main(int	argc,	char	*argv[])

{

				QApplication	app(argc,	argv);

				if	(createConnections())	{

								InvoiceItemCursor	invoiceItemCursor;

								QDataTable	*invoiceItemTable	=	new	QDataTable(&invoiceItemCursor);

								app.setMainWidget(invoiceItemTable);

								invoiceItemTable->addColumn("productname",	"Product");

								invoiceItemTable->addColumn("price",							"Price");

								invoiceItemTable->addColumn("quantity",				"Quantity");

								invoiceItemTable->addColumn("cost",								"Cost");

								invoiceItemTable->addColumn("paiddate",				"Paid");

								invoiceItemTable->refresh();

								invoiceItemTable->show();

								return	app.exec();

				}

				return	1;

}

bool	createConnections()

{

				//	create	the	default	database	connection

				QSqlDatabase	*defaultDB	=	QSqlDatabase::addDatabase(DB_SALES_DRIVER);

				if	(!	defaultDB)	{

								qWarning("Failed	to	connect	to	driver");

								return	FALSE;

				}

				defaultDB->setDatabaseName(DB_SALES_DBNAME);

				defaultDB->setUserName(DB_SALES_USER);

				defaultDB->setPassword(DB_SALES_PASSWD);

				defaultDB->setHostName(DB_SALES_HOST);

				if	(!	defaultDB->open())	{

								qWarning("Failed	to	open	sales	database:	"	+

																		defaultDB->lastError().driverText());

								qWarning(defaultDB->lastError().databaseText());

								return	FALSE;

				}

				//	create	a	named	connection	to	oracle

				QSqlDatabase	*oracle	=	QSqlDatabase::addDatabase(DB_ORDERS_DRIVER,	"ORACLE");

				if	(!	oracle)	{

								qWarning("Failed	to	connect	to	oracle	driver");

								return	FALSE;

				}

				oracle->setDatabaseName(DB_ORDERS_DBNAME);

				oracle->setUserName(DB_ORDERS_USER);

				oracle->setPassword(DB_ORDERS_PASSWD);

				oracle->setHostName(DB_ORDERS_HOST);

				if	(!	oracle->open())	{

								qWarning("Failed	to	open	orders	database:	"	+

																		oracle->lastError().driverText());

								qWarning(oracle->lastError().databaseText());

								return	FALSE;

				}

				return	TRUE;

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Demonstration	of	SAX2	features
This	example	presents	a	small	SAX2	reader	that	outputs	the	qualified	names	and
the	respective	namespace	URIs	of	all	elements	and	attributes	in	an	XML	file.
Additionally	the	tree	structure	of	the	document	is	displayed.

In	three	listviews	the	program	shows	the	different	output	of	the	reader	depending
on	how	the	SAX2	features	http://xml.org/sax/features/namespaces	and
http://xml.org/sax/features/namespace-prefixes	are	set.

This	example	is	thoroughly	explained	in	a	walkthrough.

Header	file:

/*

Id

*/

#ifndef	STRUCTUREPARSER_H

#define	STRUCTUREPARSER_H

#include	<qxml.h>

#include	<qptrstack.h>

class	QListView;

class	QListViewItem;

class	QString;

class	StructureParser:	public	QXmlDefaultHandler

{

public:

				StructureParser(QListView	*);

				bool	startElement(const	QString&,	const	QString&,	const	QString

																							const	QXmlAttributes&);

				bool	endElement(const	QString&,	const	QString&,	const	QString&);

				void	setListView(QListView	*);

private:

				QPtrStack<QListViewItem>	stack;

				QListView	*	table;

};

#endif

Implementation:

/*

Id

*/

#include	"structureparser.h"

#include	<qstring.h>

#include	<qlistview.h>

StructureParser::StructureParser(QListView	*	t)

																:	QXmlDefaultHandler()

{

				setListView(t);

}

void	StructureParser::setListView(QListView	*	t)

{

				table	=	t;

				table->setSorting(-1);

				table->addColumn("Qualified	name");

				table->addColumn("Namespace");

}

bool	StructureParser::startElement(const	QString&	namespaceURI,

																																				const	QString&	,

																																				const	QString&	qName,

																																				const	QXmlAttributes&	attributes)

{

				QListViewItem	*	element;

				if	(!	stack.isEmpty()){

								QListViewItem	*lastChild	=	stack.top()->firstChild();

								if	(lastChild)	{

												while	(lastChild->nextSibling())

																lastChild	=	lastChild->nextSibling();

								}

								element	=	new	QListViewItem(stack.top(),	lastChild,	qName,	namespaceURI);

				}	else	{

								element	=	new	QListViewItem(table,	qName,	namespaceURI);

				}

				stack.push(element);

				element->setOpen(TRUE);

				if	(attributes.length()	>	0)	{

								for	(int	i	=	0	;	i	<	attributes.length();	i++)	{

												new	QListViewItem(element,	attributes.qName(i),	attributes.

								}

				}

				return	TRUE;

}

bool	StructureParser::endElement(const	QString&,	const	QString&,

																																		const	QString&)

{

				stack.pop();

				return	TRUE;

}

Main:

/**

**	$Id:		qt/tagreader.cpp			3.0.5			edited	May	24	18:49	$

**

**	Copyright	(C)	2001	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"structureparser.h"

#include	<qapplication.h>

#include	<qfile.h>

#include	<qxml.h>

#include	<qlistview.h>

#include	<qgrid.h>

#include	<qmainwindow.h>

#include	<qlabel.h>

int	main(int	argc,	char	**argv)

{

				QApplication	app(argc,	argv);

				QFile	xmlFile(argc	==	2	?	argv[1]	:	"fnord.xml");

				QXmlInputSource	source(&xmlFile);

				QXmlSimpleReader	reader;

				QGrid	*	container	=	new	QGrid(3);

				QListView	*	nameSpace	=	new	QListView(container,	"table_namespace");

				StructureParser	*	handler	=	new	StructureParser(nameSpace);

				reader.setContentHandler(handler);

				reader.parse(source);

				QListView	*	namespacePrefix	=	new	QListView(container,

																																																	"table_namespace_prefix");

				handler->setListView(namespacePrefix);

				reader.setFeature("http://xml.org/sax/features/namespace-prefixes",

																							TRUE);

				source.reset();

				reader.parse(source);

				QListView	*	prefix	=	new	QListView(container,	"table_prefix");

				handler->setListView(prefix);

				reader.setFeature("http://xml.org/sax/features/namespaces",	FALSE);

				source.reset();

				reader.parse(source);

				//	namespace	label

				(void)	new	QLabel(

													"Default:\n"

													"http://xml.org/sax/features/namespaces:	TRUE\n"

													"http://xml.org/sax/features/namespace-prefixes:	FALSE\n",

													container);

				//	namespace	prefix	label

				(void)	new	QLabel(

													"\n"

													"http://xml.org/sax/features/namespaces:	TRUE\n"

													"http://xml.org/sax/features/namespace-prefixes:	TRUE\n",

													container);

				//	prefix	label

				(void)	new	QLabel(

													"\n"

													"http://xml.org/sax/features/namespaces:	FALSE\n"

													"http://xml.org/sax/features/namespace-prefixes:	TRUE\n",

													container);

				app.setMainWidget(container);

				container->show();

				return	app.exec();

}

See	also	Qt	XML	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QObject	 QObject children()		 QAccel()

QObject::objectTrees()

QWidget-				

	

QObject::dumpObjectTree()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QtQt

Q_PROPERTY QObject Q_OVERRIDE

QWidget::isDesktop()

“”
QWidget::minimumSize()

“” Qt QButton::isDown

QObject

				//	QButton	*bQObject	*o

				b->setDown(TRUE);

				o->setProperty("down",	TRUE);

QObject::setProperty() QObject::property()
QMetaObject::propertyNames() QMetaObject::property()

QMetaProperty

				class	MyClass	:	public	QObject

				{

								Q_OBJECT

				public:

								MyClass(QObject	*	parent=0,	const	char	*	name=0);

								~MyClass();

								enum	Priority	{	High,	Low,	VeryHigh,	VeryLow	};

								void	setPriority(Priority);

								Priority	priority()	const;

				};

“priority” Q_PROPERTY

Q_PROPERTY(type	name	READ	getFunction	[WRITE	setFunction]

												[RESET	resetFunction]	[DESIGNABLE	bool]	

												[SCRIPTABLE	bool]	[STORED	bool])

void

QVariant MyClassPriority

				obj->setProperty("priority",	"VeryHigh");

Q_ENUMS

				class	MyClass	:	public	QObject

				{

								Q_OBJECT

								Q_PROPERTY(Priority	priority	READ	priority	WRITE	setPriority)

								Q_ENUMS(Priority)

				public:

								MyClass(QObject	*	parent=0,	const	char	*	name=0);

								~MyClass();

								enum	Priority	{	High,	Low,	VeryHigh,	VeryLow	};

								void	setPriority(Priority);

								Priority	priority()	const;

				};

Q_SETSQ_ENUMS“set”“”“”“|”
Q_ENUMS

Q_PROPERTYRESETDESIGNABLESCRIPTABLESTORED

RESETvoid

DESIGNABLE TRUE FALSE TRUEFALSE

SCRIPTABLE TRUE TRUEFALSE

STOREDSTORED TRUE QRectgeometryQPointpos FALSE

“Q_CLASSINFO”/

				Q_CLASSINFO("Version",	"3.0.0")

QMetaObject::classInfo

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Qt
QtC++QtQtLinux/g++

C++

1.	

QtQt——C++

2.	

Qt mocC++C++ C++“Q_OBJECT”C++
C++ #included

rpcidlmachine	boundariesC++UNIX

3.	

C++C++ANSI-C

C++Objective	C

QtXML

4.	

QtQtQtQtiterator

QtQtQtnewdelete/

5.	

tr()————Qt

C++CJavaC++Qt

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Qt

QtC++

QHBoxQVBoxQGrid

QHBox

QVBox

QGrid	

				QGrid	*mainGrid	=	new	QGrid(2);	//	2*n

				new	QLabel("One",	mainGrid);

				new	QLabel("Two",	mainGrid);

				new	QLabel("Three",	mainGrid);

				new	QLabel("Four",	mainGrid);

				new	QLabel("Five",	mainGrid);

QWidget::setMinimumSize()QWidget::setFixedSize()

QLayout

1.	 QWidget::sizePolicy()
2.	
3.	
4.	
5.	

QHBox

QLayout

QLayoutQt QGridLayoutQBoxLayoutQHBoxLayout
QBoxLayout

addWidget()

				QWidget	*main	=	new	QWidget;

				//	1*1

				QGridLayout	*grid	=	new	QGridLayout(main,	1,	1);

				//	(,)

				grid->addWidget(new	QLabel("One",	main),	0,	0);

				grid->addWidget(new	QLabel("Two",	main),	0,	1);

				grid->addWidget(new	QLabel("Three",	main),	1,	0);

				grid->addWidget(new	QLabel("Four",	main),	1,	1);

				//	201

				grid->addMultiCellWidget(new	QLabel("Five",	main),	2,	2,	0,	1,

																														Qt::AlignCenter);

				//	012:3

				grid->setColStretch(0,	2);

				grid->setColStretch(1,	3);

				QWidget	*main	=	new	QWidget;

				QLineEdit	*field	=	new	QLineEdit(main);

				QPushButton	*ok	=	new	QPushButton("OK",	main);

				QPushButton	*cancel	=	new	QPushButton("Cancel",	main);

				QLabel	*label	=	new	QLabel("Write	once,	compile	everywhere.",	main);

				//	

				QVBoxLayout	*vbox	=	new	QVBoxLayout(main);

				vbox->addWidget(label);

				vbox->addWidget(field);

				//	

				QHBoxLayout	*buttons	=	new	QHBoxLayout(vbox);

				buttons->addWidget(ok);

				buttons->addWidget(cancel);

addLayout()

QLayout QGLayoutIterator

Custom	Layout

QLayout

QWidget::sizeHint()
QWidget::minimumSizeHint()
QWidget::sizePolicy()QSizePolicy

QWidget::updateGeometry

sizePolicy

heightForWidth()sizeHint()sizeHint()heightForWidth()
QGridLayoutQBoxLayout

Qt

QWidget::resizeEvent

LayoutHint LayoutHintQWidget::event

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

CardLayoutJava

QLayoutItemQPtrList
addItem()
setGeometry()
sizeHint()
iterator()

minimumSize()

card.h
#ifndef	CARD_H

#define	CARD_H

#include	<qlayout.h>

#include	<qptrlist.h>

class	CardLayout	:	public	QLayout

{

public:

				CardLayout(QWidget	*parent,	int	dist)

								:	QLayout(parent,	0,	dist)	{	}

				CardLayout(QLayout*	parent,	int	dist)

								:	QLayout(parent,	dist)	{	}

				CardLayout(int	dist)

								:	QLayout(dist)	{	}

				~CardLayout();

				void	addItem(QLayoutItem	*item);

				QSize	sizeHint()	const;

				QSize	minimumSize()	const;

				QLayoutIterator	iterator();

				void	setGeometry(const	QRect	&rect);

private:

				QPtrList<QLayoutItem>	list;

};

#endif

card.cpp

#include	"card.h"

QLayoutIterator QLayoutIteratorQGLayoutIterator

class	CardLayoutIterator	:	public	QGLayoutIterator

{

public:

				CardLayoutIterator(QPtrList<QLayoutItem>	*l)

								:	idx(0),	list(l)	{	}

				QLayoutItem	*current()

				{	return	idx	<	int(list->count())	?	list->at(idx)	:	0;		}

				QLayoutItem	*next()

				{	idx++;	return	current();	}

				QLayoutItem	*takeCurrent()

				{	return	list->take(idx);	}

private:

				int	idx;

				QPtrList<QLayoutItem>	*list;

};

QLayout:iterator() QLayoutIterator

QLayoutIterator	CardLayout::iterator()

{							

				return	QLayoutIterator(new	CardLayoutIterator(&list));

}

addItem() QLayout::add() QLayout
QGridLayout::addMultiCell()

void	CardLayout::addItem(QLayoutItem	*item)

{

				list.append(item);

}

QLayoutItemQObject QLayout::deleteAllItems()

CardLayout::~CardLayout()

{

				deleteAllItems();

}

setGeometry()margin()spacing()

void	CardLayout::setGeometry(const	QRect	&rect)

{

				QLayout::setGeometry(rect);

				QPtrListIterator<QLayoutItem>	it(list);

				if	(it.count()	==	0)

								return;

				QLayoutItem	*o;

				int	i	=	0;

				int	w	=	rect.width()	-	(list.count()	-	1)	*	spacing();

				int	h	=	rect.height()	-	(list.count()	-	1)	*	spacing();

				while	((o	=	it.current())	!=	0)	{

								++it;

								QRect	geom(rect.x()	+	i	*	spacing(),	rect.y()	+	i	*	spacing(),

																				w,	h);

								o->setGeometry(geom);

								++i;

				}

}

sizeHint()minimumSize()spacing()margin()

QSize	CardLayout::sizeHint()	const

{

				QSize	s(0,	0);

				int	n	=	list.count();

				if	(n	>	0)

								s	=	QSize(100,	70);	//	start	with	a	nice	default	size

				QPtrListIterator<QLayoutItem>	it(list);

				QLayoutItem	*o;

				while	((o	=	it.current())	!=	0)	{

								++it;

								s	=	s.expandedTo(o->minimumSize());

				}

				return	s	+	n	*	QSize(spacing(),	spacing());

}

QSize	CardLayout::minimumSize()	const

{

				QSize	s(0,	0);

				int	n	=	list.count();

				QPtrListIterator<QLayoutItem>	it(list);

				QLayoutItem	*o;

				while	((o	=	it.current())	!=	0)	{

								++it;

								s	=	s.expandedTo(o->minimumSize());

				}

				return	s	+	n	*	QSize(spacing(),	spacing());

}

heightForWidth()

QLayoutItem::isEmpty()

QLayoutItem::invalidate

QLayoutItem::sizeHint()

QLayoutItem::setGeometry()resizeEvent()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Qt
Qt	3

	

	

fffi

QtQt

Qt

QPainter::drawText(int	x,	int	y,	const	QString	&str;)xy QRect
drawText()

QFontMetrics::charWidth()
QTextView

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.unicode.org/unicode/reports/tr9/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Unicode
Unicode16TrolltechQt	2.0Unicode

Unicode

Unicode

Unicode

http://www.unicode.org
http://www.unicode.org/unicode/standard/principles.html
http://www.unicode.org/unicode/standard/standard.html

3.0.1

Unicode3.0
Unicode2.0 	www.unicode.org	2.12.1.92.1.9

http://www.amazon.com/exec/obidos/ASIN/0201616335/trolltech/t
http://www.unicode.org/unicode/standard/versions/Unicode3.0.1.html
http://www.amazon.com/exec/obidos/ASIN/0201473459/trolltech/t
http://www.unicode.org/unicode/reports/tr8.html
http://www.unicode.org/unicode/standard/versions/enumeratedversions.html#Unicode

QtUnicode

QtQtUnicodeQt

—— QTextCodecQTextStream
8

QStringUnicodeUS-ASCIIC
Unicode
UnicodeWindows	95/98/NT/2000QtUnicodeWindowsUnicode

Unicode QStringQTextStream QKeyEvent::text()text()

Qt QLabel::setText() const	QString	&

								myLabel->setText("Hello,	Dolly!");

QObject::tr()

								myLabel->setText(tr("Hello,	Dolly!"));

tr() const	char	*Unicode QTranslator

Qt QTextCodec

const	char	*/VISCII

US-ASCIIISO-8859-1

								QFile	f(QString::fromLatin1("appicon.png"));

Qt UnicodeQt

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://my.ispchannel.com/~markdavis/unicode/Unicode_transcription_images/U_Combined.gif
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

“”

qt/examples/iconview/simple_dd

qt/examples/fileiconviewQMultiLineEdit

QDragObject QTextDragQImageDragdrag()

		void	MyWidget::startDrag()

		{

				QDragObject	*d	=	new	QTextDrag(myHighlightedText(),	this);

				d->dragCopy();

				//	d

		}

		

QDragObjectQDragObject——Qt

setAcceptDrops(TRUE)
dragMoveEvent()dragLeaveEvent()

		MyWidget::MyWidget(...)	:

				QWidget(...)

		{

				...

				setAcceptDrops(TRUE);

		}

		void	MyWidget::dragEnterEvent(QDragEnterEvent*	event)

		{

				event->accept(

								QTextDrag::canDecode(event)	||

								QImageDrag::canDecode(event)

);

		}

		void	MyWidget::dropEvent(QDropEvent*	event)

		{

				QImage	image;

				QString	text;

				if	(QImageDrag::decode(event,	image))	{

						insertImageAt(image,	event->pos());

				}	else	if	(QTextDrag::decode(event,	text))	{

						insertTextAt(text,	event->pos());

				}

		}

		

QDragObjectQDragEnterEventQDragMoveEventQDropEvent
QMimeSourceQDragObject—— QClipboard

						setData(QMimeSource*)

						QMimeSource*	data()const

		

		void	MyWidget::copy()

		{

				QApplication::clipboard()->setData(

								new	QTextDrag(myHighlightedText())

);

		}

		void	MyWidget::paste()

		{

				QString	text;

				if	(QTextDrag::decode(QApplication::clipboard()->data(),	text))

								insertText(text);

		}

		

QDragObjectQDragObjectCADDXF

		void	MyWidget::save()

		{

				QFile	out(current_file_name);

				out.open(IO_WriteOnly);

				MyCadDrag	tmp(current_design);

				out.writeBlock(tmp->encodedData("image/x-dxf"));

		}

		void	MyWidget::load()

		{

				QFile	in(current_file_name);

				in.open(IO_ReadOnly);

				if	(!MyCadDrag::decode(in.readAll(),	current_design))	{

								QMessageBox::warning(this,	"Format	error",

												tr("The	file	\"%1\"	is	not	in	any	supported	format")

													.arg(current_file_name)

);

				}

		}

		

QDragObject“MyCadDrag”“MyDxfDrag”——DXFDWGSVF
WMF QPicture

“Link”“Move”——

text/uri-list

DXF
“ text/plain”MIMEUnicode“ text/utf16”“ text/utf8”

QImageDrag“ image/*” *QImageIO QUriDrag“ text/uri-

list”URL

QDragObject—— IANAInternet	Assigned	Numbers	Authority
ISIInformation	Sciences	Institute MIMEMIME

QDragObject QStoredDragQDragObjectQStoredDrag

QDragObject const	char*	format(int	i)	constQByteArray	encodedData(const
char*	mimetype)	constcanDecode()decode() QImageDragbool
canDecode(QMimeSource*)	constQByteArray	decode(QMimeSource*)	const

QStoredDragcanDecode()decode()

		void	MyEditor::startDrag()

		{

				QDragObject	*d	=	new	QTextDrag(myHighlightedText(),	this);

				if	(d->drag()	&&	d->target()	!=	this)

						cutMyHighlightedText();

		}

		void	MyEditor::dropEvent(QDropEvent*	event)

		{

				QString	text;

				if	(QTextDrag::decode(event,	text))	{

						if	(event->source()	==	this	&&	event->action()	==	QDropEvent::Move)	{

								//	

								event->acceptAction();

								moveMyHighlightedTextTo(event->pos());

						}	else	{

								pasteTextAt(text,	event->pos());

						}

				}

		}

		

“”“”CAD

		void	MyWidget::dragMoveEvent(QDragMoveEvent*	event)

		{

				if	(QTextDrag::canDecode(event))	{

						MyCadItem*	item	=	findMyItemAt(event->pos());

http://www.iana.org
http://www.isi.edu
http://www.isi.edu/in-notes/iana/assignments/media-types/

						if	(item)

								event->accept();

				}

		}

		

		void	MyWidget::dragMoveEvent(QDragMoveEvent*	event)

		{

				if	(QTextDrag::canDecode(event))	{

						MyCadItem*	item	=	findMyItemAt(event->pos());

						if	(item)	{

								QRect	r	=	item->areaRelativeToMeClippedByAnythingInTheWay();

								if	(item->type()	==	MyTextType)

										event->accept(r);

								else

										event->ignore(r);

						}

				}

		}

		

dragMoveEvent()dragMoveEvent()

X11 XDNDQtWindowsOLEQtMacCarbonX11XDND
MIMEQtWindowsMIMEMIMEWindowsMIMEQt
MIMEQt

X11QtMotifDaniel	DardaillerQtMatt	Koss	<koss@napri.sk>
Trolltech

Copyright	1996	Daniel	Dardailler

Daniel	DardaillerDaniel	Dardailler“”

Copyright	1999	Matt	Koss

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.rfc-editor.org/rfc/rfc1341.txt
http://www.newplanetsoftware.com/xdnd/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Qt

1.	 TabShift+TabEnter

2.	

3.	

4.	

5.	

TabShift+Tab.

TabEnterTab

TabTabShift+TabTabTab

Qt QFocusData QFocusData QWidget::setFocusPolicy()
QWidget::FocusPolicy QWidget::setTabOrder()TabTab
QtTab

TabTab

Tab

1.	 OKEnterTab

2.	

TabTabQtControl+TabTabControl+Shift+TabShift+Tab
QWidget::event()QWidget::event()TabControl+TabControl+Tab

Tab

Tab

“B”“B”

Qt QWidget::setFocusPolicy()

TabAlt+P

Microsoft	WindowsMac	OS	XX11

QtWindowsMac	OS	XX11

Qt

QWidget::show

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Qt-based	LiveConnect	Plugins
The	Qt-based	Netscape	Plugin	software	makes	it	easy	to	write	plugins	that	can
be	used	on	both	Unix/Linux	and	Windows/95/NT,	in	Netscape	and	Internet
Explorer,	and	any	other	web	browser	supporting	the	same	protocol.

How-to

1.	 Download	the	Plugin	SDK	from	Netscape,	and	copy	the	following	files
from	there	to	$QTDIR/extensions/nsplugin/src

common/npwin.cpp

common/npunix.c

include/npapi.h

include/npupp.h

include/jri.h

include/jri_md.h

include/jritypes.h

2.	 Build	the	Netscape	Plugin	extension	library,	found	in	the
extensions/nsplugin/src	directory	of	your	Qt	distribution.	This	produces
a	static	library	to	be	linked	with	your	plugin	code.

3.	 Read	the	plugin	class	documentation,	and	examine	the	example	plugins.
4.	 Do	most	of	your	development	as	a	stand-alone	Qt	application	-	debugging

Netscape	Plugins	is	cumbersome.	You	may	want	to	use	signal(2)	in	your
plugin	to	enable	core-dumps	if	your	browser	disables	them.

5.	 Note	the	platform-specific	build	steps	below.
6.	 Read	about	the	raw	plugin	interface	in	Netscape's	handbook.
7.	 If	files	viewed	by	a	plugin	are	provided	by	an	HTTP	server	(using	a	http://...

URL)	then	the	server	must	be	configured	to	send	the	correct	MIME	type	for
the	file,	e.g.	by	editing	Apache's	mime.types	file.	If	the	files	are	viewed	via
a	//...	URL,	then	the	browser	will	use	the	filename	extension	to	decide	the
file	type	(and	hence	the	plugin	to	load)	-	the	user	may	need	to	set	the
filename	extension	in	the	Helpers	or	Applications	section	of	their	browser
preferences.

Building	under	X11

The	Makefiles	in	the	examples	are	appropriate	for	UNIX/X11.
The	user	must	install	the	resulting	Shared	Object	in	the	Plugins	directory	of
the	browser.

Building	under	Windows

Qt	needs	to	be	built	as	a	static	library	when	building	Netscape	plugins.

http://home.netscape.com/comprod/development_partners/plugin_api/index.html
http://developer.netscape.com/docs/manuals/communicator/plugin/index.htm
http://...

Plugins	must	be	named	npname.dll,	or	the	browser	will	ignore	them.
The	link	step	must	include:

/def:name.def
/dll

a	compiled	resource	file	defining	the	file/MIME	types	accepted	by	the
plugin.

The	user	must	install	the	resulting	DLL	in	the	Plugins	directory	of	the
browser.

Known	Bugs

The	Qt-based	LiveConnect	Plugin	binding	code	has	a	number	of	minor	bugs,	but
is	sufficiently	stable	for	many	production	applications.

MSIE	4.0	support	is	poor.
Crashes	on	X11	if	window	is	closed	via	window	manager.
Keyboard	problems	on	Windows.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Setting	the	Application	Icon
The	application	icon,	typically	displayed	in	the	upper	left	corner	of	the
application	top-level	windows,	is	set	by	calling	the	QWidget::setIcon()	method
on	top-level	widgets.

In	order	to	change	the	icon	of	the	executable	application	file	itself,	as	it	is
presented	on	the	desktop	(i.e.	prior	to	application	execution),	it	is	necessary	to
employ	another,	platform-dependent	technique.

Setting	the	Application	Icon	on	Windows
Setting	the	Application	Icon	on	Mac	OS	X

Setting	the	Application	Icon	on	Windows

First,	create	an	ICO	format	bitmap	file	that	contains	the	icon	image.	This	can	be
done	with	e.g.	Microsoft	Visual	C++:	Select	"File|New...",	then	select	the	"File"
tab	in	the	dialog	that	appears,	and	choose	"Icon".	(Note	that	you	do	not	need	to
load	your	application	into	Visual	C++;	here	we	are	only	using	its	icon	editor).

Store	the	ICO	file	in	the	source	code	directory	of	your	application,	for	example,
with	the	name,	"myappico.ico".	Then,	create	a	text	file	called	e.g.	"myapp.rc"	in
which	you	put	a	single	line	of	text:

IDI_ICON1															ICON				DISCARDABLE					"myappico.ico"

Lastly,	assuming	you	are	using	qmake	to	generate	your	makefiles,	add	this	line
to	your	"myapp.pro"	file:

RC_FILE	=	myapp.rc

Regenerate	your	makefile	and	your	application.	The	.exe	file	will	now	be
represented	with	your	icon	in	e.g.	Explorer.

If	you	do	not	use	qmake,	the	necessary	steps	are:	first,	run	the	"rc"	program	on
the	.rc	file,	then	link	your	application	with	the	resulting	.res	file.

Setting	the	Application	Icon	on	Mac	OS	X

The	application	icon,	typically	displayed	in	the	application	dock	area,	is	set	by
calling	QWidget::setIcon()	on	a	top-level	widget.	It	is	possible	that	the	program
could	appear	in	the	application	dock	area	before	the	function	call,	in	which	case
a	default	icon	will	appear	during	the	bouncing	animation.

To	ensure	that	the	correct	icon	appears,	both	when	the	application	is	being
launched,	and	in	the	finder,	it	is	necessary	to	employ	a	platform-dependent
technique.

Although	many	programs	can	create	icon	files	(.icns),	the	recommended
approach	is	to	use	the	Icon	Composer	program	supplied	by	Apple	(in	the
Developer/Application	folder).	Icon	Composer	allows	you	to	import	several
different	sized	icons	(for	use	in	different	contexts)	as	well	as	the	masks	that	go
with	them.	Save	the	set	of	icons	to	a	file	in	your	project	directory.

If	you	are	using	qmake	to	generate	your	make	files,	you	only	need	to	add	a
single	line	to	your	.pro	project	file.	For	example,	if	the	name	of	your	icon	file	is
myapp.icns,	and	your	project	file	is	myapp.pro,	add	this	line	to	myapp.pro:

RC_FILE	=	myapp.icns

This	will	ensure	that	qmake	puts	your	icons	in	the	proper	place	and	creates	a
Info.plist	entry	for	the	icon.

If	you	do	not	use	qmake,	you	must	do	the	following	manually:

1.	 Create	an	Info.plist	file	for	your	application	(using	the	PropertyListEditor,
found	in	Developer/Applications).

2.	 Associate	your	.icns	record	with	the	CFBundleIconFile	record	in	the
Info.plist	file	(again,	using	the	PropertyListEditor).

3.	 Copy	both	the	icns	and	your	Info.plist	into	your	application	bundle
Resource	directory.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Session	Management

Definitions

A	session	is	a	group	of	applications	running,	each	of	which	has	a	particular	state.
The	session	is	controlled	by	a	service	called	the	session	manager.	The
applications	participating	in	the	session	are	called	session	clients.

The	session	manager	issues	commands	to	its	clients	on	behalf	of	the	user.	These
commands	may	cause	clients	to	commit	unsaved	changes	(for	example	by	saving
open	files),	to	preserve	their	state	for	future	sessions	or	to	terminate	gracefully.
The	set	of	these	operations	is	called	session	management.

In	the	common	case,	a	session	consists	of	all	applications	that	a	user	runs	on
their	desktop	at	a	time.	Under	Unix/X11,	however,	a	session	may	include
applications	running	on	different	computers	and	may	span	multiple	displays.

Shutting	a	session	down

A	session	is	shut	down	by	the	session	manager,	usually	on	behalf	of	the	user
when	they	want	to	log	out.	A	system	might	also	perform	an	automatic	shutdown
in	an	emergency	situation,	for	example,	if	power	is	about	to	be	lost.	Clearly	there
is	a	significant	big	difference	between	both	shutdowns.	During	the	first,	the	user
may	want	to	interact	with	the	application,	specifying	exactly	which	files	should
be	saved	and	which	should	be	discarded.	In	the	latter	case,	there's	no	time	for
interaction.	There	may	not	even	be	a	user	sitting	in	front	of	the	machine!

Protocols	and	support	on	different	platforms

On	Mac	OS	X	and	MS-Windows,	there	is	nothing	like	complete	session
management	for	applications	yet,	i.e.	no	restoring	of	previous	sessions.	They	do
support	graceful	logouts	where	applications	have	the	chance	to	cancel	the
process	after	getting	confirmation	from	the	user.	This	is	the	functionality	that
corresponds	to	the	QApplication::commitData()	method.

X11	has	supported	complete	session	management	since	X11R6.

Getting	session	management	to	work	with	Qt

Start	by	reimplementing	QApplication::commitData()	to	enable	your	application
to	take	part	in	the	graceful	logout	process.	If	you	target	the	MS-Windows
platform	only,	this	is	all	you	can	and	have	to	provide.	Ideally,	your	application
should	provide	a	shutdown	dialog	similar	to	the	following	one:

Example	code	to	this	dialog	can	be	found	in	the	documentation	of
QSessionManager::allowsInteraction().

For	complete	session	management	(only	supported	on	X11R6	at	present),	you
also	have	to	take	care	of	saving	the	state	of	the	application	and	potentially
restore	the	state	in	the	next	life	cycle	of	the	session.	This	saving	is	done	by
reimplementing	QApplication::saveState().	All	state	data	you	are	saving	in	this
function,	should	be	marked	with	the	session	identifier	QApplication::sessionId().
This	application	specific	identifier	is	globally	unique,	so	no	clashes	will	occur.
(See	QSessionManager	for	information	on	saving/restoring	the	state	of	a
particular	Qt	application.)

Restoration	is	usually	done	in	the	application's	main()	function.	Check	if
QApplication::isSessionRestored()	is	TRUE.	If	that's	the	case,	use	the	session
identifier	QApplication::sessionId()	again	to	access	your	state	date	and	restore
the	state	of	the	application.

Important:	In	order	to	allow	the	window	manager	to	restore	window	attributes
such	as	stacking	order	or	geometry	information,	you	must	identify	your	top	level
widgets	with	unique	application-wide	object	names	(see	QObject::setName()).
When	restoring	the	application,	you	must	ensure	that	all	restored	top	level
widgets	are	given	the	same	unique	names	they	had	before.

Testing	and	debugging	session	management

Session	management	support	on	Mac	OS	X	and	Windows	is	fairly	limited	due	to
the	lack	of	this	functionality	in	the	operating	system	itself.	Simply	shut	the
session	down	and	verify	that	your	application	behaves	as	wanted.	It	may	be	a
good	idea	to	launch	another	application,	usually	the	integrated	development
environment,	before	starting	your	application.	This	other	application	will	get	the
shutdown	message	afterwards,	thus	permitting	you	to	cancel	the	shutdown.
Otherwise	you	would	have	to	log	in	again	after	each	test	run,	which	is	not	a
problem	per	se	but	time	consuming.

On	Unix	you	can	either	use	a	desktop	environment	that	supports	standard	X11R6
session	management	or,	the	recommended	method,	use	the	session	manager
reference	implementation	provided	by	the	X	Consortium.	This	sample	manager
is	called	xsm	and	is	part	of	a	standard	X11R6	installation.	As	always	with	X11,	a
useful	and	informative	manual	page	is	provided.	Using	xsm	is	straightforward
(apart	from	the	clumsy	Athena-based	user	interface).	Here's	a	simple	approach:

Run	X11R6.
Create	a	dot	file	.xsmstartup	in	your	home	directory	which	contains	the
single	line

xterm

This	tells	xsm	that	the	default/failsafe	session	is	just	an	xterm	and	nothing
else.	Otherwise	xsm	would	try	to	invoke	lots	of	clients	including	the
windowmanager	twm,	which	isn't	very	helpful.

Now	launch	xsm	from	another	terminal	window.	Both	a	session	manager
window	and	the	xterm	will	appear.	The	xterm	has	a	nice	property	that	sets	it
apart	from	all	the	other	shells	you	are	currently	running:	within	its	shell,	the
SESSION_MANAGER	environment	variable	points	to	the	session	manager	you
just	started.
Launch	your	application	from	the	new	xterm	window.	It	will	connect	itself
automatically	to	the	session	manager.	You	can	check	with	the	ClientList
push	button	whether	the	connect	was	successful.
Note:	Never	keep	the	ClientList	open	when	you	start	or	end	session
managed	clients!	Otherwise	xsm	is	likely	to	crash.

Use	the	session	manager's	Checkpoint	and	Shutdown	buttons	with	different
settings	and	see	how	your	application	behaves.	The	save	type	local	means
that	the	clients	should	save	their	state.	It	corresponds	to	the
QApplication::saveState()	function.	The	global	save	type	asks	application
to	save	their	unsaved	changes	in	the	permanent,	globally	accessible	storage.
It	invokes	QApplication::commitData().
Whenever	something	crashes,	blame	xsm	and	not	Qt.	xsm	is	far	from	being	a
usable	session	manager	on	a	user's	desktop.	It	is,	however,	stable	and	useful
enough	to	serve	as	testing	environment.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Style	overview
A	style	in	Qt	implements	the	look	and	feel	found	in	GUIs	on	different	platforms.
For	instance	the	Windows	style	used	in	Windows	and	the	Motif	style	that	are
common	on	many	Unix	platforms.

This	is	a	short	guide	that	describes	the	steps	that	are	necessary	to	get	started
creating	and	using	custom	styles	with	the	style	API	in	Qt	3.x.	First,	we	go
through	the	steps	necessary	to	create	a	style:	1)	picking	a	base	style	to	inherit
from	and	2)	re-implementing	the	necessary	functions	in	the	derived	class.	Then
we	show	how	to	use	the	new	style	from	within	your	own	applications,	or	as	a
plugin	together	with	existing	Qt	applications.

Creating	a	custom	style

1.	Pick	a	base	style	to	inherit	from.

The	first	step	is	to	pick	one	of	the	base	styles	provided	with	Qt	to	build	your
custom	style	on.	Which	of	the	available	styles	to	start	from	does	of	course
depend	on	what	look	&	feel	you	want.	Basically	you	should	choose	from	the
QWindowsStyle	derived	classes	or	the	QMotifStyle	derived	classes.	These	are
the	two	base	look	&	feel	classes	in	the	Qt	style	engine.	Inheriting	directly	from
QCommonStyle	is	also	an	option	if	you	want	to	start	almost	from	scratch	when
implementing	your	style.	In	this	simple	example	we	will	inherit	from
QWindowsStyle.

2.	Re-implement	the	necessary	functions	in	your	derived	class.

Depending	on	which	parts	of	the	base	style	you	want	to	change,	you	have	to	re-
implement	the	functions	that	are	used	to	draw	those	parts	of	the	interface.	If	you
take	a	look	at	the	QStyle	documentation,	you	will	find	a	list	of	the	different
primitives,	controls	and	complex	controls.	You	will	also	find	an	illustration	that
shows	where	the	different	primitives,	controls	and	complex	controls	are	used.	In
this	example	we	will	first	change	the	look	of	the	standard	arrows	that	are	used	in
the	QWindowsStyle.	The	arrows	are	PrimitiveElements	that	are	drawn	in	the
drawPrimitive()	function,	therefore	we	need	to	re-implement	that	function.	We
get	the	following	class	declaration:

#include	<qwindowsstyle.h>

class	CustomStyle	:	public	QWindowsStyle	{

				Q_OBJECT

public:

				CustomStyle();

				~CustomStyle();

				void	drawPrimitive(PrimitiveElement	pe,

																								QPainter	*p,

																								const	QRect	&	r,

																								const	QColorGroup	&	cg,

																								SFlags	flags	=	Style_Default,

																								const	QStyleOption	&	=	QStyleOption::Default)	const;

private:

				//	Disabled	copy	constructor	and	operator=

				CustomStyle(const	CustomStyle	&);

				CustomStyle&	operator=(const	CustomStyle	&);

};

Note	that	we	disable	the	copy	constructor	and	the	'='	operator	for	our	style.
QObject	is	the	base	class	for	all	style	classes	in	Qt,	and	a	QObject	inherently
cannot	be	copied;	there	are	some	aspects	of	it	that	are	not	copyable.

From	the	QStyle	docs	we	see	that	PE_ArrowUp,	PE_ArrowDown,
PE_ArrowLeft	and	PE_ArrowRight	are	the	primitives	we	need	to	do	something
with.	We	get	the	following	in	our	drawPrimitive()	function:

CustomStyle::CustomStyle()

{

}

CustomStyle::~CustomStyle()

{

}

void	CustomStyle::drawPrimitive(PrimitiveElement	pe,

																																	QPainter	*	p,

																																	const	QRect	&	r,

																																	const	QColorGroup	&	cg,

																																	SFlags	flags,

																																	const	QStyleOption	&	opt)	const

{

				//	we	are	only	interested	in	the	arrows

				if	(pe	>=	PE_ArrowUp	&&	pe	<=	PE_ArrowLeft)	{

								QPointArray	pa(3);

								//	make	the	arrow	cover	half	the	area	it	is	supposed	to	be	

								//	painted	on

								int	x	=	r.x();

								int	y	=	r.y();

								int	w	=	r.width()	/	2;

								int	h	=	r.height()	/	2;

								x	+=	(r.width()	-	w)	/	2;

								y	+=	(r.height()	-	h)	/2;

								switch(pe)	{

								case	PE_ArrowDown:

												pa.setPoint(0,	x,	y);

												pa.setPoint(1,	x	+	w,	y);

												pa.setPoint(2,	x	+	w	/	2,	y	+	h);

												break;

								case	PE_ArrowUp:

												pa.setPoint(0,	x,	y	+	h);

												pa.setPoint(1,	x	+	w,	y	+	h);

												pa.setPoint(2,	x	+	w	/	2,	y);

												break;

								case	PE_ArrowLeft:

												pa.setPoint(0,	x	+	w,	y);

												pa.setPoint(1,	x	+	w,	y	+	h);

												pa.setPoint(2,	x,	y	+	h	/	2);

												break;

								case	PE_ArrowRight:

												pa.setPoint(0,	x,	y);

												pa.setPoint(1,	x,	y	+	h);

												pa.setPoint(2,	x	+	w,	y	+	h	/	2);

												break;

								default:	break;

												

								}

								//	use	different	colors	to	indicate	that	the	arrow	is	

								//	enabled/disabled

								if	(flags	&	Style_Enabled)	{

												p->setPen(cg.mid());

												p->setBrush(cg.brush(QColorGroup::ButtonText));

								}	else	{

												p->setPen(cg.buttonText());

												p->setBrush(cg.brush(QColorGroup::Mid));

								}

								p->drawPolygon(pa);

				}	else	{

								//	let	the	base	style	handle	the	other	primitives

								QWindowsStyle::drawPrimitive(pe,	p,	r,	cg,	flags,	data);

				}

}

Using	a	custom	style

There	are	several	ways	of	using	a	custom	style	in	a	Qt	application.	The	easiest
and	most	simple	way	is	to	include	the	following	lines	of	code	in	the	application's
main()	function:

#include	"customstyle.h"

int	main(int	argc,	char	**	argv)

{

				QApplication::setStyle(new	CustomStyle());

				//	do	the	usual	routine	on	creating	your	QApplication	object	etc.

}

Note	that	you	also	have	to	include	the	customstyle.h	and	customstyle.cpp
files	in	your	project.

2.	Creating	and	using	a	pluggable	style

You	may	want	to	use	your	custom	style	in	a	Qt	application	that	you	don't	want
to,	or	have	the	opportunity	to	recompile.	The	Qt	Plugin	system	makes	it	possible
to	create	styles	as	plugins.	Styles	created	as	plugins	are	loaded	as	shared	objects
at	runtime	by	Qt	itself.	Please	refer	to	the	Qt	Plugin	documentation	for	more
information	on	how	to	go	about	creating	a	style	plugin.

Compile	your	plugin	and	put	it	into	$QTDIR/plugins/styles.	We	now	have	a
pluggable	style	that	Qt	can	load	automatically.	To	use	your	new	style	with
existing	applications,	simply	start	the	application	with	the	following	argument:

./application	-style	custom

The	application	should	appear	with	the	look	&	feel	from	the	custom	style	you
implemented.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Qt
QtQTLSTLQTL

QTLQtcount()isEmpty()STLsize()empty()STL

STLQTLSTL

QPtrCollection QObject QObject
QPtrListQPtrListQPtrCollection

STLQt

operator<()

QRectQPointQSizeQStringC++intbooldouble

Qt QPtrCollection

Qt

				typedef	QValueList<int>	List;

				List	l;

				for(List::Iterator	it	=	l.begin();	it	!=	l.end();	++it)

								printf("Number	is	%i\n",	*it);

begin()end() end()begin()++it--itit++it--

				typedef	QMap<QString,QString>	Map;

				Map	map;

				for(Map::iterator	it	=	map.begin();	it	!=	map.end();	++it)

								printf("Key=%s	Data=%s\n",	it.key().ascii(),	it.data().ascii());

				typedef	QValueVector<int>	Vector;

				Vector	vec;

				for(Vector::iterator	it	=	vec.begin();	it	!=	vec.end();	++it)

								printf("Data=%d\n",	*it);

Qt

qHeapSort()qBubbleSort()

				typedef	QValueList<int>	List;

				List	l;

				l	<<	42	<<	100	<<	1234	<<	12	<<	8;

				qHeapSort(l);

				List	l2;

				l2	<<	42	<<	100	<<	1234	<<	12	<<	8;

				List::Iterator	b	=	l2.find(100);

				List::Iterator	e	=	l2.find(8);

				qHeapSort(b,	e);

				double	arr[]	=	{	3.2,	5.6,	8.9	};

				qHeapSort(arr,	arr	+	3);

100123412

operator<()

qSwap()

				QString	second("Einstein");

				QString	name("Albert");

				qSwap(second,	name);

qCount()

				QValueList<int>	l;

				l.push_back(1);										

				l.push_back(1);										

				l.push_back(1);										

				l.push_back(2);										

				int	c	=	0;

				qCount(l.begin(),	l.end(),	1,	c);	//	c	==	3

qFind()

				QValueList<int>	l;

				l.push_back(1);										

				l.push_back(1);										

				l.push_back(1);										

				l.push_back(2);										

				QValueListIterator<int>	it	=	qFind(l.begin(),	l.end(),	2);

qFill()

				QValueVector<int>	v(3);

				qFill(v.begin(),	v.end(),	99);	//	v99,	99,	99

qEqual()

				QValueVector<int>	v1(3);

				v1[0]	=	1;

				v1[2]	=	2;

				v1[3]	=	3;

				QValueVector<int>	v2(5);

				v1[0]	=	1;

				v1[2]	=	2;

				v1[3]	=	3;

				v1[4]	=	4;

				v1[5]	=	5;

				bool	b	=	qEqual(v1.begin(),	v2.end(),	v2.begin());

				//	b	==	TRUE

qCopy()OutputIteratorQTexOStreamIterator

				QValueList<int>	l;

				l.push_back(100);

				l.push_back(200);

				l.push_back(300);

				QTextOStream	str(stdout);

				qCopy(l.begin(),	l.end(),	QTextOStreamIterator(str));

qCopyBackward()OutputIterator

				QValueVector<int>	vec(3);

				vec.push_back(100);

				vec.push_back(200);

				vec.push_back(300);

				QValueVector<int>	another;

				qCopyBackward(vec.begin(),	vec.end(),	another.begin());

				//	“another”100200300

				//	

				//	300200100

QtOutputIterator

				QStringList	l1,	l2;

				l1	<<	"Weis"	<<	"Ettrich"	<<	"Arnt"	<<	"Sue";

				l2	<<	"Torben"	<<	"Matthias";

				qCopy(l2.begin(),	l2.end(),	l1.begin());

				QValueVector<QString>	v(l1.size(),	"Dave");

				qCopy(l2.begin(),	l2.end(),	v.begin());

l1“Torben”“Matthias”“Arnt”“Sue”v
“Torben”“Matthias”“Dave”“Dave”

qCopy()C++

				int	arr[]	=	{	100,	200,	300	};

				QTextOStream	str(stdout);

				qCopy(arr,	arr	+	3,	QTextOStreamIterator(str));	

				QDataStream	str(...);

				QValueList<QRect>	l;

				//	……

				str	<<	l;

				QValueList<QRect>	l;

				str	>>	l;

QStringListQValueStackQMap

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Qt QObjectQt QObject::startTimer() “”
QObject::killTimer()

QApplication::exec()

Windows	95/985518.2UNIX	X11Windows	NT
OS/21

QTimer QObject

				QTimer	*	counter	=	new	QTimer(this);

				connect(counter,	SIGNAL(timeout()),

													this,	SLOT(updateCaption()));

				counter->start(1000);

countertimeout

QTimer QButton“”0.1

				QTimer::singleShot(100,	this,	SLOT(animateTimeout()));

0.1animateTimeout()

QTimer

	 //	MandelbrotQTimerCPU

	 //	QObjectstart()

	 //	done()

	 //	

				class	Mandelbrot	:	public	QObject

				{

								Q_OBJECT	//	/

				public:

								Mandelbrot(QObject	*parent=0,	const	char	*name);

								...

				public	slots:

								void	start();

				signals:

								void	done();

				private	slots:

								void	calculate();

								private:

								QTimer	timer;

								...

				};

				//

				//	Mandelbrot

				//

				Mandelbrot::Mandelbrot(QObject	*parent=0,	const	char	*name)

				:	QObject(parent,	name)

				{

								connect(&timer,	SIGNAL(timeout()),	SLOT(calculate()));

								...

				}

				//

				//	calculate()10

				//

				void	Mandelbrot::start()

				{

								if	(!timer.isActive())	//	

												timer.start(10);			//	10

				}

				//

				//	

				//	done()

				//

				void	Mandelbrot::calculate()

				{

								...																//	

								if	(finished)	{		//	

												timer.stop();

												emit	done();

								}

				}

		

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

Qt/
Qt/X11

The	virtual	framebuffer	is	located	in	$QTDIR/tools/qvfb.

1.	 $QTDIR/src/tools/qconfig.hQT_NO_QWS_VFBQt/Embedded
2.	 qvfbQt/X11 Qt/
3.	 Qt/QApplication::GuiServer QApplication

				widgets	-qws	-display	QVFb:0

				

4.	 QWS_DISPLAYQVFb:0

qvfb

-width	width

240

-height	height

320

-depth	depth

18328

-nocursor

X11

-qwsdisplay	:id

Qt/id0

qvfb

View|Refresh	Rate qvfb qvfb

Qt/

QT_NO_QWS_VFB

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

The	Qt/Embedded-specific	classes
Qt/Embedded	classes	fall	into	two	classes	-	the	majority	are	used	by	every
Qt/Embedded	program,	some	are	used	only	by	the	Qt/Embedded	server.	The
Qt/Embedded	server	program	can	be	a	client	as	well,	as	in	the	case	of	a	single-
process	installation.	All	Qt/Embedded	specific	source	files	live	in	src/kernel
and	are	suffixed	_qws.	-->	indicates	inheritance.

QFontManager
QDiskFont
QRenderedFont
QFontFactory	(and	descendants	QFontFactoryBDF,	QFontFactoryTtf)
QGlyph
QMemoryManagerPixmap/QMemoryManager
QScreen-->QLinuxFbScreen-->accelerated	screens,	QTransformedScreen--
>QVfbScreen
QScreenCursor-->accelerated	cursor-->QVfbCursor
QGfx-->RasterBase-->Raster-->accelerated	driver-->	QGfxVfb--
>QGfxTransformedRaster
QLock,	QLockHolder
QDirectPainter
QWSSoundServer,	Client
QWSWindow
QWSKeyboardHandler-->subtypes
QWSMouseHandler-->QCalibratedMouseHandler-->mouse	types
QWSDisplay
QWSServer
QWSClient
QWSDisplayData
QWSCommands
QCopChannel
QWSManager
QWSDecoration
QWSPropertyManager
QWSRegionManager
QWSSocket,	QWSServerSocket

QFontManager

There	is	one	of	these	per	application.	At	application	startup	time	it	reads	the	font
definition	file	from	$QTDIR/etc/fonts/fontdir	(or	/usr/local/etc/qt-
embedded/fonts/fontdir	if	QTDIR	is	undefined).	It	keeps	track	of	all	font
information	and	maintains	a	cache	of	rendered	fonts.	It	also	creates	the	font
factories	-	QFontManager::QFontManager	is	the	place	to	add	constructors	for
new	factories.	It	provides	a	high-level	interface	for	requesting	a	particular	font
and	calls	QFontFactories	to	load	fonts	from	disk	on	demand.	Note	that	this	only
applies	to	BDF	and	TrueType	fonts;	Qt/Embedded's	optimised	.qpf	font	file
format	bypasses	the	QFontManager	mechanism	altogether.

There	should	be	no	need	to	modify	this	class	unless	you	wish	to	change	font
matching	or	cacheing	behaviour.

QDiskFont

This	contains	information	about	a	single	on-disk	font	file	(e.g.	/usr/local/etc/qt-
embedded/times.ttf).	It	holds	the	file	path,	information	about	whether	the	font	is
scalable,	its	weight,	size,	Qt/Embedded	name,	etc.	This	information	is	used	so
that	QFontManager	can	find	the	closest	matching	disk	font	(it	uses	a	scoring
mechanism	weighted	towards	matching	names,	then	whether	the	font's	italic,
then	weight).

There	should	be	no	reason	to	modify	this	class.

QRenderedFont

There	is	one	and	only	one	QRenderedFont	for	every	unique	font	currently	loaded
by	the	system	(that	is,	each	unique	combination	of	name,	size,	weight,	italic	or
not,	anti-aliased	or	not).	QRenderedFonts	are	reference	counted;	once	no	one	is
using	the	QRenderedFont	it	is	deleted	along	with	its	cache	of	glyph	bitmaps.	The
QDiskFont	it	was	loaded	from	remains	opened	by	its	QFontFactory.

There	should	be	no	reason	to	modify	this	class,	unless	you	wish	to	change	the
way	in	which	glyphs	are	cached.

QFontFactory	(and	descendants	QFontFactoryBDF,
QFontFactoryTtf)

These	provide	support	for	particular	font	formats,	for	instance	the	scalable
Truetype	and	Type1	formats	(both	supported	in	QFontFactoryTtf,	which	uses
Freetype	2)	and	the	bitmap	BDF	format	used	by	X.	It's	called	to	open	an	on-disk
font;	once	a	font	is	opened	it	remains	opened	so	that	the	creation	of	new	font
instances	from	the	disk	font	is	fast.	It	can	also	create	a	QRenderedFont	and
convert	from	Unicode	values	to	an	index	into	the	font	file.	For	compactness,
glyphs	are	stored	in	the	order	and	indexes	they	are	defined	in	the	font	rather	than
in	Unicode	order.

There	should	be	no	need	to	modify	this	class,	but	it	should	be	inherited	if	you
wish	to	add	a	different	type	of	font	renderer	(e.g.	for	a	custom	vector	font
format).

QGlyph

This	describes	a	particular	image	of	a	character	from	a	QRenderedFont	-	for
example,	the	letter	'A'	at	10	points	in	Times	New	Roman,	bold	italic,	anti-
aliased.	It	contains	pointers	to	a	QGlyphMetrics	structure	with	information	about
the	character	and	to	the	raw	data	for	the	glyph	-	this	is	either	a	1-bit	mask	or	an
8-bit	alpha	channel.	Each	QRenderedFont	creates	these	on	demand	and	caches
them	once	created	(note	that	this	is	not	currently	implemented	for	TrueType
fonts).

You	would	only	need	to	modify	this	class	if	you	were,	for	example,	modifying
Qt/Embedded	to	support	textured	fonts,	in	which	case	you	would	also	need	to
modify	QGfxRaster.

QMemoryManagerPixmap/QMemoryManager

This	handles	requests	for	space	for	pixmaps	and	also	keeps	track	of	QPF	format
fonts	(these	are	small	'state	dumps'	of	QRenderedFonts,	typically	2-20K	in	size;
they	can	be	mmap'd	direct	from	disk	in	order	to	save	memory).	If	a	QPF	font	is
found	which	matches	a	font	request	no	new	QRenderedFont	need	be	created	for
it.	It's	possible	to	strip	out	all	QFontFactory	support	and	simply	use	QPFs	if	your
font	needs	are	modest	(for	instance,	if	you	only	require	a	few	fixed	point	sizes).
Note	that	no	best-match	loading	is	performed	with	QPFs,	as	opposed	to	those
loaded	via	QFontManager,	so	if	you	don't	have	the	correct	QPF	for	a	point	size
text	in	that	size	will	simply	not	be	displayed.

There	should	be	no	need	to	modify	this	class.

QScreen-->QLinuxFbScreen-->accelerated	screens,
QTransformedScreen-->QVfbScreen

These	encapsulate	the	framebuffer	Qt/Embedded	is	drawing	to,	provide	support
for	mapping	of	coordinates	for	rotating	framebuffers,	allow	manipulation	of	the
colour	palette	and	provide	access	to	offscreen	graphics	memory	for	devices	with
separate	framebuffer	memories.

This	is	used	for	cacheing	pixmaps	and	allowing	accelerated	pixmap->screen
blt's.	QLinuxFbScreen	and	the	accelerated	screens	use	the	Linux	/dev/fb
interface	to	get	access	to	graphics	memory	and	information	about	the
characteristics	of	the	device.	The	framebuffer	device	to	open	is	specified	by
QWS_DISPLAY.	Only	QTransformedScreen	implements	the	support	for	rotated
framebuffers.	QVfbScreen	provides	an	X	window	containing	an	emulated
framebuffer	(a	chunk	of	shared	memory	is	set	aside	as	the	'framebuffer'	and	blt'd
into	the	X	window)	-	this	is	intended	as	a	debugging	device	allowing	users	to
debug	their	applications	under	Qt/Embedded	without	leaving	X.	The	accelerated
screen	drivers	check	to	see	if	they	can	drive	the	device	specified	by
QWS_CARD_SLOT	(which	defaults	to	the	usual	position	of	an	AGP	slot	if	not
specified)	and	mmap	its	on-chip	registers	from	/dev/mem.	They	may	also	do
chip-specific	setup	(initialising	registers	to	known	values	and	so	on).	Finally,
QScreen's	are	used	to	create	new	QScreenCursors	and	QGfxes.

If	you	wish	to	modify	the	way	pixmaps	are	allocated	in	memory,	subclass	or
modify	QLinuxFbScreen.	If	you're	writing	an	accelerated	driver	you	will	need	to
subclass	QScreen	or	QLinuxFbScreen.

QScreenCursor-->accelerated	cursor-->QVfbCursor

This	handles	drawing	the	on-screen	mouse	cursor,	and	saving	and	restoring	the
screen	under	it	for	the	non-accelerated	cursor	types.

Subclassing	QScreenCursor	is	optional	in	an	accelerated	driver	(you	would	only
want	to	do	so	if	the	hardware	supports	a	hardware	cursor).

QGfx-->RasterBase-->Raster-->accelerated	driver-->
QGfxVfb-->QGfxTransformedRaster

This	class	encapsulates	drawing	operations,	a	little	like	a	low-level	QPainter.
QGfxRaster	and	its	descendants	are	specifically	intended	for	drawing	into	a	raw
framebuffer.	They	can	take	an	offset	for	drawing	operations	and	a	clipping
region	in	order	to	support	drawing	into	windows.	You	will	need	to	subclass	the
QGfxRaster	template	in	order	to	implement	an	accelerated	driver.

If	you're	brave,	modifying	QGfxRaster	would	allow	you	to	customise	how
drawing	is	done	or	add	support	for	a	new	bit	depth/pixel	format.

QLock,	QLockHolder

This	encapsulates	a	System	V	semaphore,	used	for	synchronising	access	to
memory	shared	between	Qt/Embedded	clients.	QLockHolder	is	a	utility	class	to
make	managing	and	destroying	QLocks	easier.

There	should	be	no	need	to	modify	this	class	unless	porting	Qt/Embedded	to	an
operating	system	without	System	V	IPC.

QDirectPainter

This	is	a	QPainter	which	also	gives	you	a	pointer	to	the	framebuffer	of	the
window	it's	pointing	to,	the	window's	clip	region	and	so	on.	It's	intended	to
easily	allow	you	to	do	your	own	pixel-level	manipulation	of	window	contents.

There	should	be	no	reason	to	modify	this	class.

QWSSoundServer,	Client

The	Qt/Embedded	server	contains	a	simple	sound	player	and	mixer.	Clients	can
request	the	server	play	sounds	specified	as	files.

There	should	be	no	need	to	modify	this	class	unless	porting	Qt/Embedded	to	an
operating	system	without	a	Linux-style	/dev/dsp.

QWSWindow

This	contains	the	server's	notion	of	an	individual	top	level	window	-	the	region
of	the	framebuffer	it's	allocated,	the	client	that	created	it	and	so	forth.

There	should	be	no	reason	to	modify	this	class.

QWSKeyboardHandler-->subtypes

This	handles	keyboard/button	input.	QWSKeyboardHandler	is	subclassed	to
provide	for	reading	/dev/tty,	an	arbitrary	low-level	USB	event	device	(for	USB
keyboards)	and	some	PDA	button	devices.

Modifying	QWSKeyboardHandler	would	allow	you	to	support	different	types	of
keyboard	(currently	only	a	fairly	standard	US	PC	style	keyboard	is	supported);
subclassing	it	is	the	preferred	way	to	handle	non-pointer	input	devices.

QWSMouseHandler-->QCalibratedMouseHandler--
>mouse	types

This	handles	mouse/touchpanel	input.	Descendants	of
QCalibratedMouseHandler	make	use	of	filtering	code	which	prevents	'jittering'
of	the	pointer	on	touchscreens;	some	embedded	devices	do	this	filtering	in	the
kernel	in	which	case	the	driver	doesn't	need	to	inherit	from
QCalibratedMouseHandler.

Subclassing	QCalibratedMouseHandler	is	preferred	for	touchpanels	without
kernel	filtering;	inheriting	QWSMouseHandler	is	the	way	to	add	any	other	type
of	pointing	device	(pen	tablets,	touchscreens,	mice,	trackballs	and	so	forth).

QWSDisplay

This	class	exists	only	in	the	Qt/Embedded	server	and	keeps	track	of	all	the	top-
level	windows	in	the	system,	as	well	as	the	keyboard	and	mouse.

You	would	only	want	to	modify	this	if	making	deep	and	drastic	modifications	to
Qt/Embedded	window	behaviour	(alpha	blended	windows	for	example).

QWSServer

This	manages	the	Qt/Embedded	server's	Unix-domain	socket	connections	to
clients.	It	sends	and	receives	QWS	protocol	events	and	calls	QWSDisplay	in
order	to	do	such	things	as	change	the	allocation	region	of	windows.

The	only	reason	to	modify	this	would	be	to	use	something	other	than	some	sort
of	socket-like	mechanism	to	communicate	between	Qt/Embedded	applications
(in	which	case	modify	QWSClient	too).	If	you	have	something	like	Unix	domain
sockets,	modify	QWSSocket/QWSServerSocket	instead.	Don't	add	extra	QWS
events	to	communicate	between	applications,	use	QCOP	instead.

QWSClient

This	encapsulates	the	client	side	of	a	Qt/Embedded	connection	and	can	marshal
and	demarshal	events.

There	should	be	no	reason	to	modify	this	except	to	use	something	radically
different	from	Unix	domain	sockets	to	communicate	between	Qt/Embedded
applications.

QWSDisplayData

This	manages	a	client's	QWSClient,	reading	and	interpreting	events	from	the
QWS	server.	It	connects	to	the	QWS	server	on	application	startup,	getting
information	about	the	framebuffer	and	creating	the	memory	manager.	Other
information	about	the	framebuffer	comes	directly	from	/dev/fb	in
QLinuxFbScreen.

There	should	be	no	reason	to	modify	this.

QWSCommands

These	encapsulate	the	data	sent	to	and	from	the	QWS	server.

There	should	be	no	reason	to	modify	them.

QCopChannel

QCop	is	a	simple	IPC	mechanism	for	communication	between	Qt/Embedded
applications.	String	messages	with	optional	binary	data	can	be	sent	to	different
channels.

The	mechanism	itself	is	designed	to	be	bare-bones	in	order	for	users	to	build
whatever	mechanism	they	like	on	top	of	it.

QWSManager

This	provides	Qt/Embedded	window	management,	drawing	a	title	bar	and
handling	user	requests	to	move,	resize	the	window	and	so	on.

There	should	be	no	reason	to	modify	it	but	you	should	subclass	it	if	you	want	to
modify	window	behaviour	(point	to	click	versus	focus	follows	mouse,	for
instance).

QWSDecoration

Descendants	of	this	class	are	different	styles	for	the	Qt/Embedded	window
manager,	for	instance	QWSWindowsDecoration	draws	Qt/Embedded	window
frames	in	the	style	of	Windows	CE.

Subclass	it	in	order	to	provide	a	new	window	manager	appearance	(the
equivalent	of	a	Windows	XP	or	Enlightenment	theme).

QWSPropertyManager

This	provides	the	QWS	client's	interface	to	the	QWS	property	system	(a	simpler
version	of	the	X	property	system,	it	allows	you	to	attach	arbitrary	data	to	top-
level	windows,	keyed	by	an	integer).

There	should	be	no	reason	to	modify	it.

QWSRegionManager

Used	by	both	client	and	server	to	help	manage	top-level	window	regions.

There	should	be	no	reason	to	modify	it.

QWSSocket,	QWSServerSocket

Provides	Unix-domain	sockets.

Modify	this	if	you're	porting	to	a	non-Unix	OS	but	have	something	analogous	to
Unix-domain	sockets	(a	byte-oriented,	reliable,	ordered	transmission
mechanism,	although	you	can	probably	implement	it	with	something	like	a
message	queue	as	well).

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Adding	an	accelerated	graphics
driver	to	Qt/Embedded

Qt/Embedded	has	the	capacity	to	make	use	of	hardware	accelerators.	To	use	a
hardware	accelerator	for	a	PCI	or	AGP	driver,	you	need	to	perform	the	following
steps:

1.	 Define	an	accelerated	descendant	of	QLinuxFbScreen.

This	should	implement	QVoodooScreen::connect()	to	map	its	registers.
Use	qt_probe_bus	to	get	a	pointer	to	the	PCI	config	space.	This	is	where
you	should	check	that	you're	being	pointed	to	the	right	device	(using	the
PCI	device/manufacturer	ID	information).	Then	use	PCI	config	space	to
locate	your	device's	accelerator	registers	in	physical	memory	and	mmap	the
appropriate	region	from	/dev/mem.	There	is	no	need	to	map	the	framebuffer,
QLinuxFbScreen	will	do	this	for	you.	Return	FALSE	if	a	problem	occurs	at
any	point.	QVoodooScreen::initDevice()	will	be	called	only	by	the	QWS
server	and	is	guaranteed	to	be	called	before	any	drawing	is	done	(and	so	is	a
good	place	to	set	registers	to	known	states).	connect()	will	be	called	by
every	connecting	client.

2.	 Define	an	accelerated	descendant	of	QGfxRaster.

This	is	where	the	actual	drawing	code	goes.	Anything	not	implemented	in
hardware	can	be	passed	back	to	QGfxRaster	to	do	in	software.	Use	the
optype	variable	to	make	sure	that	accelerated	and	unaccelerated	operations
are	synchronised	(if	you	start	drawing	via	software	into	an	area	where	the
hardware	accelerator	is	still	drawing	then	your	drawing	operations	will
appear	to	be	in	the	wrong	order).	optype	is	stored	in	shared	memory	and	is
set	to	0	by	unaccelerated	operations;	accelerated	operations	should	set	it	to
1.	When	a	software	graphics	operation	is	requested	and	optype	is	1,
QGfxRaster::sync()	is	called;	you	should	provide	your	own
implementation	of	this	that	waits	for	the	graphics	engine	to	go	idle.	lastop	is
also	available	for	optimisation	and	is	stored	in	the	shared	space	-	this	will
not	be	set	by	the	software-only	QGfx	and	can	be	used	to	store	the	type	of
your	last	operation	(e.g.	drawing	a	rectangle)	so	that	part	of	the	setup	for	the

next	operation	can	be	avoided	when	many	of	the	same	operations	are
performed	in	sequence.

All	drawing	operations	should	be	protected	via	a	QWSDisplay::grab()
before	any	registers,	lastop	or	optype	are	accessed,	and	ungrabbed()	at	the
end.	This	prevents	two	applications	trying	to	access	the	accelerator	at	once
and	possibly	locking	up	the	machine.	It's	possible	that	your	source	data	is
not	on	the	graphics	card	so	you	should	check	in	such	cases	and	fall	back	to
software	if	necessary.	Note	that	QGfxRaster	supports	some	features	not
directly	supported	by	QPainter	(for	instance,	alpha	channels	in	32-bit	data
and	stretchBlt's).	These	features	are	used	by	Qt;	stretchBlt	speeds	up
QPixmap::xForm()	and	drawPixmap()	into	a	transformed	QPainter,	alpha
channel	acceleration	is	supported	for	32-bit	pixmaps.

3.	 If	you	wish,	define	an	accelerated	descendant	of	QScreenCursor.
restoreUnder(),	saveUnder(),	drawCursor()	and	draw()	should	be
defined	as	null	operations.	Implement	set(),	move(),	show()	and	hide().
4k	is	left	for	your	cursor	at	the	end	of	the	visible	part	of	the	framebuffer
(i.e.	at	(width*height*depth)/8)

4.	 Implement	initCursor()	and	createGfx()	in	your	QScreen	descendant.
Implement	useOffscreen()	and	return	TRUE	if	you	can	make	use	of
offscreen	graphics	memory.

5.	 Implement	a	small	function	qt_get_screen_mychip(),	which	simply
returns	a	new	QMychipScreen

6.	 Add	your	driver	to	the	DriverTable	table	in	qgfxraster_qws.cpp,	e.g.

{	"MyChip",	qt_get_screen_mychip,1	},

The	first	parameter	is	the	name	used	with	QWS_DISPLAY	to	request	your
accelerated	driver.

7.	 To	run	with	your	new	driver,

export	QWS_DISPLAY=MyChip	

(optionally	MyChip:/dev/fb<n>	to	request	a	different	Linux	framebuffer
than	/dev/fb0),	then	run	the	program

If	your	driver	is	not	PCI	or	AGP	you'll	need	to	inherit	QScreen	instead	of
QLinuxFbScreen	and	implement	similar	functionality	to	QLinuxFbScreen,	but
otherwise	the	process	should	be	similar.	The	most	complete	example	driver	is
qgfxmach64_qws.cpp;	qgfxvoodoo_qws.cpp	may	provide	a	smaller	and	easier-
to-understand	driver.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Qt/Embedded	environment	variables
Variable Notes

QWS_SW_CURSOR
If	defined,	always	use	a	software	mouse	cursor	even
when	using	an	accelerated	driver	that	supports	a
hardware	cursor

QWS_DISPLAY

Defines	display	type	and	framebuffer,	e.g.	Voodoo3
Mach64:/dev/fb1	Defaults	to	unaccelerated	Linux
framebuffer	driver	on	/dev/fb0.	Valid	drivers	are
QVfb,	VGA16,	LinuxFb	(unaccelerated	Linux
framebuffer),	Mach64	(accelerated	for	ATI	Mach64
cards	such	as	the	Rage	Pro),	Voodoo3	(accelerated
for	the	3dfx	Voodoo	3,	should	also	work	on	Voodoo
Banshee),	Matrox	(should	work	on	all	Matrox
graphics	cards	since	the	Matrox	Millennium),
Transformed(for	rotated	displays),	SVGALIB	and
VNC.	Transformed	displays	have	a	special	format	-
within	the	specification	should	be	a	multiple	of	90
degrees	rotation	specified	as	Rot<x>,	for	instance
Transformed:Rot90.

QTDIR
If	defined	tells	Qt/Embedded	to	where	to	find	its
fonts	-	fontdir	should	be	in	$QTDIR/etc/fonts/.	If
undefined	it's	assumed	to	be	/usr/local/qt-
embedded

QWS_SIZE
If	defined	forces	Qt/Embedded	into	a	window	of
<width>	x	<height>	size	centred	within	the	screen,
e.g.	320x200

QWS_NOMTRR
If	defined,	don't	use	Memory	Type	Range	Registers
to	define	the	framebuffer	as	write-combined	on	x86.
Write-combining	speeds	up	graphics	output.

QWS_CARD_SLOT

Tells	the	accelerated	drivers	which	card	to	attempt	to
accelerate.	This	should	be	a	path	in	/proc/bus/pci.
It	defaults	to	/proc/bus/pci/01/00.0	-	the	first
device	on	the	second	PCI	bus	in	the	system,	which	is
normally	the	AGP	card.

QWS_USB_KEYBOARD

If	defined,	instead	of	opening	/dev/tty	open	the
USB	low-level	event	device	defined	in
QWS_USB_KEYBOARD	(e.g.
/dev/input/event0)	-	this	is	useful	if	you	wish	to
run	X	and	Qt/Embedded	side	by	side	on	different
framebuffers.

QWS_MOUSE_PROTO

Defined	as	<type>:<device>,	e.g.
Microsoft:/dev/ttyS0.	If	you	want	to	use	a	USB
mouse	directly	(separate	from	X)	use
MouseMan:/dev/input/mouse0	or	similar.	Valid
mouse	protocls	are	Auto	(automatically	sense
protocol),	MouseMan,	IntelliMouse,	Microsoft,
QVfbMouse	(only	useful	with	QVfb)	and	TPanel,	a
sample	touch	panel	driver.

QWS_KEYBOARD

Defines	the	keyboard	type.	Multiple	keyboards	can
be	handled	at	once,	input	will	be	read	from	all	of
them.	Valid	values:	Buttons	(an	iPaq	button	device	if
QT_QWS_IPAQ	is	compiled,	otherwise	one	for	the
Cassiopeia),	QVfbKeyboard	(only	useful	with
QVfb),	and	TTY	(either	a	USB	keyboard	or
/dev/tty	depending	if	QWS_USB_KEYBOARD	is
defined)

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Qt/Embedded	as	a	VNC	Server
The	VNC	protocol	allows	you	to	view	and	interact	with	the	computer's	display
from	anywhere	on	the	network.

To	use	Qt/Embedded	in	this	way,	configure	Qt	with	the	-vnc	option,	and	ensure
you	also	enable	16-bit	display	support.	Run	your	application	via:

				application	-display	VNC:0

then,	run	a	VNC	client	pointed	at	the	machine	that	is	running	your	application.
For	example,	using	the	X11	VNC	client	to	view	the	application	from	the	same
machine:

				vncviewer	localhost:0

By	default,	Qt/Embedded	will	create	a	640	by	480	pixel	display.	You	can	change
this	by	setting	the	QWS_SIZE	environment	variable	to	another	size,	e.g.
QWS_SIZE=240x320.

VNC	clients	are	available	for	a	vast	array	of	display	systems	-	X11,	Windows,
Amiga,	DOS,	VMS,	and	dozens	of	others.

The	Qt	Virtual	Framebuffer	is	an	alternative	technique.	It	uses	shared	memory
and	thus	is	much	faster	and	smoother,	but	it	does	not	operate	over	a	network.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.uk.research.att.com/vnc/
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

QEmbed	-	File	and	Image	Embedder
The	QEmbed	tool,	found	in	qt/tools/qembed,	converts	arbitrary	files	into	C++
code.	This	is	useful	for	including	image	files	and	other	resources	directly	into
your	application	rather	than	loading	the	data	from	external	files.

QEmbed	can	also	generate	uncompressed	versions	of	images	that	can	be
included	directly	into	your	application,	thus	avoiding	both	the	external	file	and
the	need	to	parse	the	image	file	format.	This	is	useful	for	small	images	such	as
icons	for	which	compression	is	not	a	great	gain.

Usage
				qembed	[general-files]	[--images	image-files]

general-files

These	files	can	be	any	type	of	file.

--images	image-files

These	files	must	be	in	image	formats	supported	by	Qt.

Output

The	output	from	QEmbed	is	a	C++	header	file	which	you	should	include	in	a
C++	source	file.	In	the	source	file,	you	should	make	a	wrapper	function	that	suits
your	application.	Two	functions	are	provided;	your	wrapper	function	could	just
call	one	of	these,	or	you	can	implement	your	own.	Here's	a	simple	example	of
usage	for	each	of	the	supplied	functions:

qembed_findImage()

				#include	"generated_qembed_file.h"

				QImage	myFindImage(const	char*	name)

				{

								return	qembed_findImage(name);

				}

Just	call	the	generated	function;	name	is	the	original	image	filename	without	the
extension.

qembed_findData()

				#include	"generated_qembed_file.h"

				QByteArray	myFindData(const	char*	name)

				{

								return	qembed_findData(name);

				}

Just	call	the	generated	function;	name	is	the	original	filename	with	the	extension

Alternatively,	look	at	the	output	from	QEmbed	and	write	a	function	tailored	to
your	needs.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

makeqpf
Saves	QPF	font	files	by	rendering	and	saving	fonts.

Usage
makeqpf	[-A]	[-f	spec-file]	[font	...]

-A	-	Render	and	save	all	fonts	in	fontdir
-f	-	File	of	lines:	fontname	character-ranges	e.g.	"smoothtimes	0-ff,20a0-
20af"
font	-	Font	to	render	and	save

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

t8/lcdrange.h	Example	File
/**

**

**	Definition	of	LCDRange	class,	Qt	tutorial	8

**

**/

#ifndef	LCDRANGE_H

#define	LCDRANGE_H

#include	<qvbox.h>

class	QSlider;

class	LCDRange	:	public	QVBox

{

				Q_OBJECT

public:

				LCDRange(QWidget	*parent=0,	const	char	*name=0);

				int	value()	const;

public	slots:

				void	setValue(int);

				void	setRange(int	minVal,	int	maxVal);

signals:

				void	valueChanged(int);

private:

				QSlider		*slider;

};

#endif	//	LCDRANGE_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

t8/lcdrange.cpp	Example	File
/**

**

**	Implementation	of	LCDRange	class,	Qt	tutorial	8

**

**/

#include	"lcdrange.h"

#include	<qslider.h>

#include	<qlcdnumber.h>

LCDRange::LCDRange(QWidget	*parent,	const	char	*name)

								:	QVBox(parent,	name)

{

				QLCDNumber	*lcd		=	new	QLCDNumber(2,	this,	"lcd");

				slider	=	new	QSlider(Horizontal,	this,	"slider");

				slider->setRange(0,	99);

				slider->setValue(0);

				connect(slider,	SIGNAL(valueChanged(int)),

													lcd,	SLOT(display(int)));

				connect(slider,	SIGNAL(valueChanged(int)),

													SIGNAL(valueChanged(int)));

				setFocusProxy(slider);

}

int	LCDRange::value()	const

{

				return	slider->value();

}

void	LCDRange::setValue(int	value)

{

				slider->setValue(value);

}

void	LCDRange::setRange(int	minVal,	int	maxVal)

{

				if	(minVal	<	0	||	maxVal	>	99	||	minVal	>	maxVal)	{

						qWarning("LCDRange::setRange(%d,%d)\n"

															"\tRange	must	be	0..99\n"

															"\tand	minVal	must	not	be	greater	than	maxVal",

															minVal,	maxVal);

						return;

				}

				slider->setRange(minVal,	maxVal);

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

t8/cannon.h	Example	File
/**

**

**	Definition	of	CannonField	class,	Qt	tutorial	8

**

**/

#ifndef	CANNON_H

#define	CANNON_H

#include	<qwidget.h>

class	CannonField	:	public	QWidget

{

				Q_OBJECT

public:

				CannonField(QWidget	*parent=0,	const	char	*name=0);

				int	angle()	const	{	return	ang;	}

				QSizePolicy	sizePolicy()	const;

public	slots:

				void	setAngle(int	degrees);

signals:

				void	angleChanged(int);

protected:

				void	paintEvent(QPaintEvent	*);

private:

				int	ang;

};

#endif	//	CANNON_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

t8/cannon.cpp	Example	File
/**

**

**	Implementation	CannonField	class,	Qt	tutorial	8

**

**/

#include	"cannon.h"

#include	<qpainter.h>

CannonField::CannonField(QWidget	*parent,	const	char	*name)

								:	QWidget(parent,	name)

{

				ang	=	45;

				setPalette(QPalette(QColor(250,	250,	200)));

}

void	CannonField::setAngle(int	degrees)

{

				if	(degrees	<	5)

								degrees	=	5;

				if	(degrees	>	70)

								degrees	=	70;

				if	(ang	==	degrees)

								return;

				ang	=	degrees;

				repaint();

				emit	angleChanged(ang);

}

void	CannonField::paintEvent(QPaintEvent	*)

{

				QString	s	=	"Angle	=	"	+	QString::number(ang);

				QPainter	p(this);

				p.drawText(200,	200,	s);

}

QSizePolicy	CannonField::sizePolicy()	const

{

				return	QSizePolicy(QSizePolicy::Expanding,	QSizePolicy::Expanding);

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

t8/main.cpp	Example	File
/**

**

**	Qt	tutorial	8

**

**/

#include	<qapplication.h>

#include	<qpushbutton.h>

#include	<qlcdnumber.h>

#include	<qfont.h>

#include	<qlayout.h>

#include	"lcdrange.h"

#include	"cannon.h"

class	MyWidget:	public	QWidget

{

public:

				MyWidget(QWidget	*parent=0,	const	char	*name=0);

};

MyWidget::MyWidget(QWidget	*parent,	const	char	*name)

								:	QWidget(parent,	name)

{

				QPushButton	*quit	=	new	QPushButton("Quit",	this,	"quit");

				quit->setFont(QFont("Times",	18,	QFont::Bold));

				connect(quit,	SIGNAL(clicked()),	qApp,	SLOT(quit()));

				LCDRange	*angle	=	new	LCDRange(this,	"angle");

				angle->setRange(5,	70);

				CannonField	*cannonField

								=	new	CannonField(this,	"cannonField");

				connect(angle,	SIGNAL(valueChanged(int)),

													cannonField,	SLOT(setAngle(int)));

				connect(cannonField,	SIGNAL(angleChanged(int)),

													angle,	SLOT(setValue(int)));

				QGridLayout	*grid	=	new	QGridLayout(this,	2,	2,	10);

				//2x2,	10	pixel	border

				grid->addWidget(quit,	0,	0);

				grid->addWidget(angle,	1,	0,	Qt::AlignTop);

				grid->addWidget(cannonField,	1,	1);

				grid->setColStretch(1,	10);

				angle->setValue(60);

				angle->setFocus();

}

int	main(int	argc,	char	**argv)

{

				QApplication	a(argc,	argv);

				MyWidget	w;

				w.setGeometry(100,	100,	500,	355);

				a.setMainWidget(&w);

				w.show();

				return	a.exec();

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

t12/lcdrange.h	Example	File
/**

**

**	Definition	of	LCDRange	class,	Qt	tutorial	12

**

**/

#ifndef	LCDRANGE_H

#define	LCDRANGE_H

#include	<qvbox.h>

class	QSlider;

class	QLabel;

class	LCDRange	:	public	QVBox

{

				Q_OBJECT

public:

				LCDRange(QWidget	*parent=0,	const	char	*name=0);

				LCDRange(const	char	*s,	QWidget	*parent=0,

														const	char	*name=0);

				int									value()	const;

				const	char	*text()		const;

public	slots:

				void	setValue(int);

				void	setRange(int	minVal,	int	maxVal);

				void	setText(const	char	*);

signals:

				void	valueChanged(int);

private:

				void	init();

				QSlider					*slider;

				QLabel						*label;

};

#endif	//	LCDRANGE_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

t12/lcdrange.cpp	Example	File
/**

**

**	Implementation	of	LCDRange	class,	Qt	tutorial	12

**

**/

#include	"lcdrange.h"

#include	<qslider.h>

#include	<qlcdnumber.h>

#include	<qlabel.h>

LCDRange::LCDRange(QWidget	*parent,	const	char	*name)

								:	QVBox(parent,	name)

{

				init();

}

LCDRange::LCDRange(const	char	*s,	QWidget	*parent,

																				const	char	*name)

								:	QVBox(parent,	name)

{

				init();

				setText(s);

}

void	LCDRange::init()

{

				QLCDNumber	*lcd		=	new	QLCDNumber(2,	this,	"lcd");

				slider	=	new	QSlider(Horizontal,	this,	"slider");

				slider->setRange(0,	99);

				slider->setValue(0);

				label	=	new	QLabel("	",	this,	"label");

				label->setAlignment(AlignCenter);

				connect(slider,	SIGNAL(valueChanged(int)),

													lcd,	SLOT(display(int)));

				connect(slider,	SIGNAL(valueChanged(int)),

													SIGNAL(valueChanged(int)));

				setFocusProxy(slider);

}

int	LCDRange::value()	const

{

				return	slider->value();

}

const	char	*LCDRange::text()	const

{

				return	label->text();

}

void	LCDRange::setValue(int	value)

{

				slider->setValue(value);

}

void	LCDRange::setRange(int	minVal,	int	maxVal)

{

				if	(minVal	<	0	||	maxVal	>	99	||	minVal	>	maxVal)	{

								qWarning("LCDRange::setRange(%d,%d)\n"

																		"\tRange	must	be	0..99\n"

																		"\tand	minVal	must	not	be	greater	than	maxVal",

																		minVal,	maxVal);

								return;

				}

				slider->setRange(minVal,	maxVal);

}

void	LCDRange::setText(const	char	*s)

{

				label->setText(s);

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

t12/cannon.h	Example	File
/**

**

**	Definition	of	CannonField	class,	Qt	tutorial	12

**

**/

#ifndef	CANNON_H

#define	CANNON_H

class	QTimer;

#include	<qwidget.h>

class	CannonField	:	public	QWidget

{

				Q_OBJECT

public:

				CannonField(QWidget	*parent=0,	const	char	*name=0);

				int			angle()	const	{	return	ang;	}

				int			force()	const	{	return	f;	}

				QSizePolicy	sizePolicy()	const;

public	slots:

				void		setAngle(int	degrees);

				void		setForce(int	newton);

				void		shoot();

				void		newTarget();

private	slots:

				void		moveShot();

signals:

				void		hit();

				void		missed();

				void		angleChanged(int);

				void		forceChanged(int);

protected:

				void		paintEvent(QPaintEvent	*);

private:

				void		paintShot(QPainter	*);

				void		paintTarget(QPainter	*);

				void		paintCannon(QPainter	*);

				QRect	cannonRect()	const;

				QRect	shotRect()	const;

				QRect	targetRect()	const;

				int	ang;

				int	f;

				int	timerCount;

				QTimer	*	autoShootTimer;

				float	shoot_ang;

				float	shoot_f;

				QPoint	target;

};

#endif	//	CANNON_H

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

t12/cannon.cpp	Example	File
/**

**

**	Implementation	CannonField	class,	Qt	tutorial	12

**

**/

#include	"cannon.h"

#include	<qtimer.h>

#include	<qpainter.h>

#include	<qpixmap.h>

#include	<qdatetime.h>

#include	<math.h>

#include	<stdlib.h>

CannonField::CannonField(QWidget	*parent,	const	char	*name)

								:	QWidget(parent,	name)

{

				ang	=	45;

				f	=	0;

				timerCount	=	0;

				autoShootTimer	=	new	QTimer(this,	"movement	handler");

				connect(autoShootTimer,	SIGNAL(timeout()),

													this,	SLOT(moveShot()));

				shoot_ang	=	0;

				shoot_f	=	0;

				target	=	QPoint(0,	0);

				setPalette(QPalette(QColor(250,	250,	200)));

				newTarget();

}

void	CannonField::setAngle(int	degrees)

{

				if	(degrees	<	5)

								degrees	=	5;

				if	(degrees	>	70)

								degrees	=	70;

				if	(ang	==	degrees)

								return;

				ang	=	degrees;

				repaint(cannonRect(),	FALSE);

				emit	angleChanged(ang);

}

void	CannonField::setForce(int	newton)

{

				if	(newton	<	0)

								newton	=	0;

				if	(f	==	newton)

								return;

				f	=	newton;

				emit	forceChanged(f);

}

void	CannonField::shoot()

{

				if	(autoShootTimer->isActive())

								return;

				timerCount	=	0;

				shoot_ang	=	ang;

				shoot_f	=	f;

				autoShootTimer->start(50);

}

void		CannonField::newTarget()

{

				static	bool	first_time	=	TRUE;

				if	(first_time)	{

								first_time	=	FALSE;

								QTime	midnight(0,	0,	0);

								srand(midnight.secsTo(QTime::currentTime()));

				}

				QRegion	r(targetRect());

				target	=	QPoint(200	+	rand()	%	190,

																					10		+	rand()	%	255);

				repaint(r.unite(targetRect()));

}

void	CannonField::moveShot()

{

				QRegion	r(shotRect());

				timerCount++;

				QRect	shotR	=	shotRect();

				if	(shotR.intersects(targetRect()))	{

								autoShootTimer->stop();

								emit	hit();

				}	else	if	(shotR.x()	>	width()	||	shotR.y()	>	height())	{

								autoShootTimer->stop();

								emit	missed();

				}	else	{

								r	=	r.unite(QRegion(shotR));

				}

				repaint(r);

}

void	CannonField::paintEvent(QPaintEvent	*e)

{

				QRect	updateR	=	e->rect();

				QPainter	p(this);

				if	(updateR.intersects(cannonRect()))

								paintCannon(&p);

				if	(autoShootTimer->isActive()	&&

									updateR.intersects(shotRect()))

								paintShot(&p);

				if	(updateR.intersects(targetRect()))

								paintTarget(&p);

}

void	CannonField::paintShot(QPainter	*p)

{

				p->setBrush(black);

				p->setPen(NoPen);

				p->drawRect(shotRect());

}

void	CannonField::paintTarget(QPainter	*p)

{

				p->setBrush(red);

				p->setPen(black);

				p->drawRect(targetRect());

}

const	QRect	barrelRect(33,	-4,	15,	8);

void	CannonField::paintCannon(QPainter	*p)

{

				QRect	cr	=	cannonRect();

				QPixmap	pix(cr.size());

				pix.fill(this,	cr.topLeft());

				QPainter	tmp(&pix);

				tmp.setBrush(blue);

				tmp.setPen(NoPen);

				tmp.translate(0,	pix.height()	-	1);

				tmp.drawPie(QRect(-35,-35,	70,	70),	0,	90*16);

				tmp.rotate(-ang);

				tmp.drawRect(barrelRect);

				tmp.end();

				p->drawPixmap(cr.topLeft(),	pix);

}

QRect	CannonField::cannonRect()	const

{

				QRect	r(0,	0,	50,	50);

				r.moveBottomLeft(rect().bottomLeft());

				return	r;

}

QRect	CannonField::shotRect()	const

{

				const	double	gravity	=	4;

				double	time						=	timerCount	/	4.0;

				double	velocity		=	shoot_f;

				double	radians			=	shoot_ang*3.14159265/180;

				double	velx						=	velocity*cos(radians);

				double	vely						=	velocity*sin(radians);

				double	x0								=	(barrelRect.right()		+	5)*cos(radians);

				double	y0								=	(barrelRect.right()		+	5)*sin(radians);

				double	x									=	x0	+	velx*time;

				double	y									=	y0	+	vely*time	-	0.5*gravity*time*time;

				QRect	r	=	QRect(0,	0,	6,	6);

				r.moveCenter(QPoint(qRound(x),	height()	-	1	-	qRound(y)));

				return	r;

}

QRect	CannonField::targetRect()	const

{

				QRect	r(0,	0,	20,	10);

				r.moveCenter(QPoint(target.x(),height()	-	1	-	target.y()));

				return	r;

}

QSizePolicy	CannonField::sizePolicy()	const

{

				return	QSizePolicy(QSizePolicy::Expanding,	QSizePolicy::Expanding);

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

t12/main.cpp	Example	File
/**

**

**	Qt	tutorial	12

**

**/

#include	<qapplication.h>

#include	<qpushbutton.h>

#include	<qlcdnumber.h>

#include	<qfont.h>

#include	<qlayout.h>

#include	"lcdrange.h"

#include	"cannon.h"

class	MyWidget:	public	QWidget

{

public:

				MyWidget(QWidget	*parent=0,	const	char	*name=0);

};

MyWidget::MyWidget(QWidget	*parent,	const	char	*name)

								:	QWidget(parent,	name)

{

				QPushButton	*quit	=	new	QPushButton("&Quit",	this,	"quit");

				quit->setFont(QFont("Times",	18,	QFont::Bold));

				connect(quit,	SIGNAL(clicked()),	qApp,	SLOT(quit()));

				LCDRange	*angle		=	new	LCDRange("ANGLE",	this,	"angle");

				angle->setRange(5,	70);

				LCDRange	*force		=	new	LCDRange("FORCE",	this,	"force");

				force->setRange(10,	50);

				CannonField	*cannonField	=	new	CannonField(this,	"cannonField");

				connect(angle,	SIGNAL(valueChanged(int)),

													cannonField,	SLOT(setAngle(int)));

				connect(cannonField,	SIGNAL(angleChanged(int)),

													angle,	SLOT(setValue(int)));

				connect(force,	SIGNAL(valueChanged(int)),

													cannonField,	SLOT(setForce(int)));

				connect(cannonField,	SIGNAL(forceChanged(int)),

													force,	SLOT(setValue(int)));

				QPushButton	*shoot	=	new	QPushButton("&Shoot",	this,	"shoot");

				shoot->setFont(QFont("Times",	18,	QFont::Bold));

				connect(shoot,	SIGNAL(clicked()),	cannonField,	SLOT(shoot()));

				QGridLayout	*grid	=	new	QGridLayout(this,	2,	2,	10);

				grid->addWidget(quit,	0,	0);

				grid->addWidget(cannonField,	1,	1);

				grid->setColStretch(1,	10);

				QVBoxLayout	*leftBox	=	new	QVBoxLayout;

				grid->addLayout(leftBox,	1,	0);

				leftBox->addWidget(angle);

				leftBox->addWidget(force);

				QHBoxLayout	*topBox	=	new	QHBoxLayout;

				grid->addLayout(topBox,	0,	1);

				topBox->addWidget(shoot);

				topBox->addStretch(1);

				angle->setValue(60);

				force->setValue(25);

				angle->setFocus();

}

int	main(int	argc,	char	**argv)

{

				QApplication::setColorSpec(QApplication::CustomColor);

				QApplication	a(argc,	argv);

				MyWidget	w;

				w.setGeometry(100,	100,	500,	355);

				a.setMainWidget(&w);

				w.show();

				return	a.exec();

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QApplication
QApplication

QApplication()
~QApplication()
aboutToQuit()
activeModalWidget()
activePopupWidget()
activeWindow()
addLibraryPath()
allWidgets()
argc()
argv()
beep()
blockSignals()
checkConnectArgs()
child()
childEvent()
children()
className()
clipboard()
closeAllWindows()
closingDown()
colorSpec()
commitData()
connect()
connectNotify()
cursorFlashTime()
customEvent()
defaultCodec()
deleteLater()
desktop()
desktopSettingsAware()
destroyed()
disconnect()

disconnectNotify()
doubleClickInterval()
dumpObjectInfo()
dumpObjectTree()
enter_loop()
event()
eventFilter()
exec()
exit()
exit_loop()
flush()
flushX()
focusWidget()
font()
fontMetrics()
globalStrut()
guiThreadAwake()
hasGlobalMouseTracking()
hasPendingEvents()
highPriority()
horizontalAlignment()
inherits()
insertChild()
installEventFilter()
installTranslator()
isA()
isEffectEnabled()
isSessionRestored()
isWidgetType()
killTimer()
killTimers()
lastWindowClosed()
libraryPaths()
lock()
locked()
loopLevel()
macEventFilter()
mainWidget()
metaObject()

name()
normalizeSignalSlot()
notify()
objectTrees()
overrideCursor()
palette()
parent()
polish()
postEvent()
processEvents()
processOneEvent()
property()
queryList()
quit()
qwsDecoration()
qwsEventFilter()
qwsSetCustomColors()
qwsSetDecoration()
removeChild()
removeEventFilter()
removeLibraryPath()
removePostedEvents()
removeTranslator()
restoreOverrideCursor()
reverseLayout()
saveState()
sendEvent()
sendPostedEvents()
sender()
sessionId()
setColorSpec()
setCursorFlashTime()
setDefaultCodec()
setDesktopSettingsAware()
setDoubleClickInterval()
setEffectEnabled()
setFont()
setGlobalMouseTracking()
setGlobalStrut()

setLibraryPaths()
setMainWidget()
setName()
setOverrideCursor()
setPalette()
setProperty()
setReverseLayout()
setStartDragDistance()
setStartDragTime()
setStyle()
setWheelScrollLines()
setWinStyleHighlightColor()
signalsBlocked()
startDragDistance()
startDragTime()
startTimer()
startingUp()
style()
syncX()
timerEvent()
topLevelWidgets()
tr()
trUtf8()
translate()
tryLock()
type()
unlock()
wakeUpGuiThread()
wheelScrollLines()
widgetAt()
winEventFilter()
winFocus()
winStyleHighlightColor()
winVersion()
x11EventFilter()
x11ProcessEvent()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

A	simple	mail	client
This	example	shows	how	to	use	the	QSocket	class.	The	client	can	only	be	used
to	send	mails.	The	interesting	part	is	the	implementation	of	the	SMTP	protocol.

Header	file	(smtp.h):

/**

**	$Id:		qt/smtp.h			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	SMTP_H

#define	SMTP_H

#include	<qobject.h>

#include	<qstring.h>

class	QSocket;

class	QTextStream;

class	QDns;

class	Smtp	:	public	QObject

{

				Q_OBJECT

public:

				Smtp(const	QString	&from,	const	QString	&to,

										const	QString	&subject,	const	QString	&body);

				~Smtp();

signals:

				void	status(const	QString	&);

private	slots:

				void	dnsLookupHelper();

				void	readyRead();

				void	connected();

private:

				enum	State	{

								Init,

								Mail,

								Rcpt,

								Data,

								Body,

								Quit,

								Close

				};

				QString	message;

				QString	from;

				QString	rcpt;

				QSocket	*socket;

				QTextStream	*	t;

				int	state;

				QString	response;

				QDns	*	mxLookup;

};

#endif

Implementation	(smtp.cpp):

/**

**	$Id:		qt/smtp.cpp			3.0.5			edited	Apr	18	14:18	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"smtp.h"

#include	<qtextstream.h>

#include	<qsocket.h>

#include	<qdns.h>

#include	<qtimer.h>

#include	<qapplication.h>

#include	<qmessagebox.h>

#include	<qregexp.h>

Smtp::Smtp(const	QString	&from,	const	QString	&to,

												const	QString	&subject,

												const	QString	&body)

{

				socket	=	new	QSocket(this);

				connect	(socket,	SIGNAL(readyRead()),

														this,	SLOT(readyRead()));

				connect	(socket,	SIGNAL(connected()),

														this,	SLOT(connected()));

				mxLookup	=	new	QDns(to.mid(to.find('@')+1),	QDns::Mx);

				connect(mxLookup,	SIGNAL(resultsReady()),

													this,	SLOT(dnsLookupHelper()));

				message	=	QString::fromLatin1("From:	")	+	from	+

														QString::fromLatin1("\nTo:	")	+	to	+

														QString::fromLatin1("\nSubject:	")	+	subject	+

														QString::fromLatin1("\n\n")	+	body	+	"\n";

				message.replace(QRegExp(QString::fromLatin1("\n")),

																					QString::fromLatin1("\r\n"));

				message.replace(QRegExp(QString::fromLatin1("\r\n.\r\n")),

																					QString::fromLatin1("\r\n..\r\n"));

				this->from	=	from;

				rcpt	=	to;

				state	=	Init;

}

Smtp::~Smtp()

{

				delete	t;

				delete	socket;

}

void	Smtp::dnsLookupHelper()

{

				QValueList<QDns::MailServer>	s	=	mxLookup->mailServers();

				if	(s.isEmpty()	&&	mxLookup->isWorking())

								return;

				emit	status(tr("Connecting	to	%1").arg(s.first().name));

				socket->connectToHost(s.first().name,	25);

				t	=	new	QTextStream(socket);

}

void	Smtp::connected()

{

				emit	status(tr("Connected	to	%1").arg(socket->peerName()));

}

void	Smtp::readyRead()

{

				//	SMTP	is	line-oriented

				if	(!socket->canReadLine())

								return;

				QString	responseLine;

				do	{

								responseLine	=	socket->readLine();

								response	+=	responseLine;

				}	while(socket->canReadLine()	&&	responseLine[3]	!=	'	');

				responseLine.truncate(3);

				if	(state	==	Init	&&	responseLine[0]	==	'2')	{

								//	banner	was	okay,	let's	go	on

								*t	<<	"HELO	there\r\n";

								state	=	Mail;

				}	else	if	(state	==	Mail	&&	responseLine[0]	==	'2')	{

								//	HELO	response	was	okay	(well,	it	has	to	be)

								*t	<<	"MAIL	FROM:	<"	<<	from	<<	">\r\n";

								state	=	Rcpt;

				}	else	if	(state	==	Rcpt	&&	responseLine[0]	==	'2')	{

								*t	<<	"RCPT	TO:	<"	<<	rcpt	<<	">\r\n";

								state	=	Data;

				}	else	if	(state	==	Data	&&	responseLine[0]	==	'2')	{

								*t	<<	"DATA\r\n";

								state	=	Body;

				}	else	if	(state	==	Body	&&	responseLine[0]	==	'3')	{

								*t	<<	message	<<	".\r\n";

								state	=	Quit;

				}	else	if	(state	==	Quit	&&	responseLine[0]	==	'2')	{

								*t	<<	"QUIT\r\n";

								//	here,	we	just	close.

								state	=	Close;

								emit	status(tr("Message	sent"));

				}	else	if	(state	==	Close)	{

								delete	this;

								return;

				}	else	{

								//	something	broke.

								QMessageBox::warning(qApp->activeWindow(),

																														tr("Qt	Mail	Example"),

																														tr("Unexpected	reply	from	SMTP	server:\n\n")	+

																														response);

								state	=	Close;

				}

				response	=	"";

}

See	also	Network	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

A	Complete	Application	Window
with	Actions

This	example	program	is	just	like	the	application	example,	but	uses	QAction	to
build	the	menu	and	the	toolbar.

The	QAction	related	part	of	the	program	is	covered	in	detail	by	the	QAction
application	walkthrough	whilst	the	Simple	application	walkthrough	deals	with
the	rest.

Header	file:

/**

**	$Id:		qt/application.h			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	APPLICATION_H

#define	APPLICATION_H

#include	<qmainwindow.h>

class	QTextEdit;

class	ApplicationWindow:	public	QMainWindow

{

				Q_OBJECT

public:

				ApplicationWindow();

				~ApplicationWindow();

protected:

				void	closeEvent(QCloseEvent*);

private	slots:

				void	newDoc();

				void	choose();

				void	load(const	QString	&fileName);

				void	save();

				void	saveAs();

				void	print();

				void	about();

				void	aboutQt();

private:

				QPrinter	*printer;

				QTextEdit	*e;

				QString	filename;

};

#endif

Implementation:

/**

**	$Id:		qt/application.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"application.h"

#include	<qimage.h>

#include	<qpixmap.h>

#include	<qtoolbar.h>

#include	<qtoolbutton.h>

#include	<qpopupmenu.h>

#include	<qmenubar.h>

#include	<qtextedit.h>

#include	<qfile.h>

#include	<qfiledialog.h>

#include	<qstatusbar.h>

#include	<qmessagebox.h>

#include	<qprinter.h>

#include	<qapplication.h>

#include	<qaccel.h>

#include	<qtextstream.h>

#include	<qpainter.h>

#include	<qpaintdevicemetrics.h>

#include	<qwhatsthis.h>

#include	<qaction.h>

#include	"filesave.xpm"

#include	"fileopen.xpm"

#include	"fileprint.xpm"

ApplicationWindow::ApplicationWindow()

				:	QMainWindow(0,	"example	application	main	window",	WDestructiveClose)

{

				printer	=	new	QPrinter;

				QAction	*	fileNewAction;

				QAction	*	fileOpenAction;

				QAction	*	fileSaveAction,	*	fileSaveAsAction,	*	filePrintAction;

				QAction	*	fileCloseAction,	*	fileQuitAction;

				fileNewAction	=	new	QAction("New",	"&New",	CTRL+Key_N,	this,	"new");

				connect(fileNewAction,	SIGNAL(activated())	,	this,

													SLOT(newDoc()));

				fileOpenAction	=	new	QAction("Open	File",	QPixmap(fileopen),	"&Open",

																																		CTRL+Key_O,	this,	"open");

				connect(fileOpenAction,	SIGNAL(activated())	,	this,	SLOT(choose()));

				const	char	*	fileOpenText	=	"<p>	"

																					"Click	this	button	to	open	a	new	file.	
"

																					"You	can	also	select	the	Open	command	"

																					"from	the	File	menu.</p>";

				QMimeSourceFactory::defaultFactory()->setPixmap("fileopen",

																										fileOpenAction->iconSet().pixmap());

				fileOpenAction->setWhatsThis(fileOpenText);

				fileSaveAction	=	new	QAction("Save	File",	QPixmap(filesave),

																																		"&Save",	CTRL+Key_S,	this,	"save");

				connect(fileSaveAction,	SIGNAL(activated())	,	this,	SLOT(save()));

				const	char	*	fileSaveText	=	"<p>Click	this	button	to	save	the	file	you	"

																					"are	editing.	You	will	be	prompted	for	a	file	name.\n"

																					"You	can	also	select	the	Save	command	"

																					"from	the	File	menu.</p>";

				fileSaveAction->setWhatsThis(fileSaveText);

				fileSaveAsAction	=	new	QAction("Save	File	As",	"Save	&as",	0,		this,

																																				"save	as");

				connect(fileSaveAsAction,	SIGNAL(activated())	,	this,

													SLOT(saveAs()));

				fileSaveAsAction->setWhatsThis(fileSaveText);

				filePrintAction	=	new	QAction("Print	File",	QPixmap(fileprint),

																																			"&Print",	CTRL+Key_P,	this,	"print");

				connect(filePrintAction,	SIGNAL(activated())	,	this,

													SLOT(print()));

				const	char	*	filePrintText	=	"Click	this	button	to	print	the	file	you	"

																					"are	editing.\n	You	can	also	select	the	Print	"

																					"command	from	the	File	menu.";

				filePrintAction->setWhatsThis(filePrintText);

				fileCloseAction	=	new	QAction("Close",	"&Close",	CTRL+Key_W,	this,

																																			"close");

				connect(fileCloseAction,	SIGNAL(activated())	,	this,

													SLOT(close()));

				fileQuitAction	=	new	QAction("Quit",	"&Quit",	CTRL+Key_Q,	this,

																																		"quit");

				connect(fileQuitAction,	SIGNAL(activated())	,	qApp,

													SLOT(closeAllWindows()));

				//	populate	a	tool	bar	with	some	actions

				QToolBar	*	fileTools	=	new	QToolBar(this,	"file	operations");

				fileTools->setLabel("File	Operations");

				fileOpenAction->addTo(fileTools);

				fileSaveAction->addTo(fileTools);

				filePrintAction->addTo(fileTools);

				(void)QWhatsThis::whatsThisButton(fileTools);

				//	populate	a	menu	with	all	actions

				QPopupMenu	*	file	=	new	QPopupMenu(this);

				menuBar()->insertItem("&File",	file);

				fileNewAction->addTo(file);

				fileOpenAction->addTo(file);

				fileSaveAction->addTo(file);

				fileSaveAsAction->addTo(file);

				file->insertSeparator();

				filePrintAction->addTo(file);

				file->insertSeparator();

				fileCloseAction->addTo(file);

				fileQuitAction->addTo(file);

				menuBar()->insertSeparator();

				//	add	a	help	menu

				QPopupMenu	*	help	=	new	QPopupMenu(this);

				menuBar()->insertItem("&Help",	help);

				help->insertItem("&About",	this,	SLOT(about()),	Key_F1);

				help->insertItem("About	&Qt",	this,	SLOT(aboutQt()));

				help->insertSeparator();

				help->insertItem("What's	&This",	this,	SLOT(whatsThis()),

																						SHIFT+Key_F1);

				//	create	and	define	the	central	widget

				e	=	new	QTextEdit(this,	"editor");

				e->setFocus();

				setCentralWidget(e);

				statusBar()->message("Ready",	2000);

				resize(450,	600);

}

ApplicationWindow::~ApplicationWindow()

{

				delete	printer;

}

void	ApplicationWindow::newDoc()

{

				ApplicationWindow	*ed	=	new	ApplicationWindow;

				ed->show();

}

void	ApplicationWindow::choose()

{

				QString	fn	=	QFileDialog::getOpenFileName(QString::null,	QString::null,

																																															this);

				if	(!fn.isEmpty())

								load(fn);

				else

								statusBar()->message("Loading	aborted",	2000);

}

void	ApplicationWindow::load(const	QString	&fileName)

{

				QFile	f(fileName);

				if	(!f.open(IO_ReadOnly))

								return;

				QTextStream	ts(&f);

				e->setText(ts.read());

				e->setModified(FALSE);

				setCaption(fileName);

				statusBar()->message("Loaded	document	"	+	fileName,	2000);

}

void	ApplicationWindow::save()

{

				if	(filename.isEmpty())	{

								saveAs();

								return;

				}

				QString	text	=	e->text();

				QFile	f(filename);

				if	(!f.open(IO_WriteOnly))	{

								statusBar()->message(QString("Could	not	write	to	%1").arg(filename),

																														2000);

								return;

				}

				QTextStream	t(&f);

				t	<<	text;

				f.close();

				e->setModified(FALSE);

				setCaption(filename);

				statusBar()->message(QString("File	%1	saved").arg(filename),	2000);

}

void	ApplicationWindow::saveAs()

{

				QString	fn	=	QFileDialog::getSaveFileName(QString::null,	QString::null,

																																															this);

				if	(!fn.isEmpty())	{

								filename	=	fn;

								save();

				}	else	{

								statusBar()->message("Saving	aborted",	2000);

				}

}

void	ApplicationWindow::print()

{

				const	int	Margin	=	10;

				int	pageNo	=	1;

				if	(printer->setup(this))	{															//	printer	dialog

								statusBar()->message("Printing...");

								QPainter	p;

								if(!p.begin(printer))														//	paint	on	printer

												return;

								p.setFont(e->font());

								int	yPos								=	0;																				//	y-position	for	each	line

								QFontMetrics	fm	=	p.fontMetrics();

								QPaintDeviceMetrics	metrics(printer);	//	need	width/height

																																																//	of	printer	surface

								for(int	i	=	0	;	i	<	e->lines()	;	i++)	{

												if	(Margin	+	yPos	>	metrics.height()	-	Margin)	{

																QString	msg("Printing	(page	");

																msg	+=	QString::number(++pageNo);

																msg	+=	")...";

																statusBar()->message(msg);

																printer->newPage();													//	no	more	room	on	this	page

																yPos	=	0;																							//	back	to	top	of	page

												}

												p.drawText(Margin,	Margin	+	yPos,

																								metrics.width(),	fm.lineSpacing(),

																								ExpandTabs	|	DontClip,

																								e->text(i));

												yPos	=	yPos	+	fm.lineSpacing();

								}

								p.end();																																//	send	job	to	printer

								statusBar()->message("Printing	completed",	2000);

				}	else	{

								statusBar()->message("Printing	aborted",	2000);

				}

}

void	ApplicationWindow::closeEvent(QCloseEvent*	ce)

{

				if	(!e->isModified())	{

								ce->accept();

								return;

				}

				switch(QMessageBox::information(this,	"Qt	Application	Example",

																																						"The	document	has	been	changed	since	"

																																						"the	last	save.",

																																						"Save	Now",	"Cancel",	"Leave	Anyway",

																																						0,	1))	{

				case	0:

								save();

								ce->accept();

								break;

				case	1:

				default:	//	just	for	sanity

								ce->ignore();

								break;

				case	2:

								ce->accept();

								break;

				}

}

void	ApplicationWindow::about()

{

				QMessageBox::about(this,	"Qt	Application	Example",

																								"This	example	demonstrates	simple	use	of	"

																								"QMainWindow,\nQMenuBar	and	QToolBar.");

}

void	ApplicationWindow::aboutQt()

{

				QMessageBox::aboutQt(this,	"Qt	Application	Example");

}

Main:

/**

**	$Id:		qt/main.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	"application.h"

int	main(int	argc,	char	**	argv)	{

				QApplication	a(argc,	argv);

				ApplicationWindow	*	mw	=	new	ApplicationWindow();

				mw->setCaption("Document	1");

				mw->show();

				a.connect(&a,	SIGNAL(lastWindowClosed()),	&a,	SLOT(quit()));

				return	a.exec();

}

See	also	QAction	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Outliner	to	show	use	of	DOM
This	example	presents	a	small	outliner	program	to	show	the	basic	usage	of	the
DOM	classes.	The	format	of	the	outlines	is	the	OPML	format	as	described	in
http://www.opml.org/spec.

This	example	shows	how	to	load	a	DOM	tree	from	an	XML	file	and	how	to
traverse	it.

Sample	XML	file	(todos.opml):

<?xml	version="1.0"	encoding="ISO-8859-1"?>

<opml	version="1.0">

				<head>

								<title>Todo	List</title>

								<dateCreated>Tue,	31	Oct	2000	17:00:17	CET</dateCreated>

								<dateModified>Tue,	31	Oct	2000	17:00:17	CET</dateModified>

								<ownerName>Arthur	Dent</ownerName>

								<ownerEmail>info@trolltech.com</ownerEmail>

				</head>

				<body>

								<outline	text="Background">

												<outline	text="This	is	an	example	todo	list."/>

								</outline>

								<outline	text="Books	to	read">

												<outline	text="Science	Fiction">

																<outline	text="Philip	K.	Dick">

																				<outline	text="Do	Androids	Dream	of	Electical	Sheep?"/>

																				<outline	text="The	Three	Stigmata	of	Palmer	Eldritch"/>

																</outline>

																<outline	text="Robert	A.	Heinlein">

																				<outline	text="Stranger	in	a	Strange	Land"/>

																</outline>

																<outline	text="Isaac	Asimov">

																				<outline	text="Foundation	and	Empire"/>

																</outline>

												</outline>

												<outline	text="Qt	Books	(in	English)">

																<outline	text="Dalheimer:	Programming	with	Qt"/>

																<outline	text="Griffith:	KDE	2/Qt	Programming	Bible"/>

																<outline	text="Hughes:	Linux	Rapid	Application	Development"/>

																<outline	text="Solin:	Qt	Programming	in	24	hours"/>

																<outline	text="Ward:	Qt	2	Programming	for	Linux	and	Windows	2000"/>

												</outline>

								</outline>

								<outline	text="Shopping	list">

												<outline	text="General">

																<outline	text="Towel"/>

																<outline	text="Hair	dryer"/>

																<outline	text="Underpants"/>

												</outline>

												<outline	text="For	Sunday">

																<outline	text="Beef"/>

																<outline	text="Rice"/>

																<outline	text="Carrots"/>

																<outline	text="Beans"/>

																<outline	text="Beer"/>

																<outline	text="Wine"/>

																<outline	text="Orange	juice"/>

												</outline>

								</outline>

								<outline	text="Write	a	letter	to	Ford">

								</outline>

				</body>

</opml>

Header	file	(outlinetree.h):

/**

**	$Id:		qt/outlinetree.h			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	OUTLINETREE_H

#define	OUTLINETREE_H

#include	<qlistview.h>

#include	<qdom.h>

class	OutlineTree	:	public	QListView

{

				Q_OBJECT

public:

				OutlineTree(const	QString	fileName,	QWidget	*parent	=	0,	const	char	*name	=	0);

				~OutlineTree();

private:

				QDomDocument	domTree;

				void	getHeaderInformation(const	QDomElement	&header);

				void	buildTree(QListViewItem	*parentItem,	const	QDomElement	&parentElement);

};

#endif	//	OUTLINETREE_H

Implementation	(outlinetree.cpp):

/**

**	$Id:		qt/outlinetree.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"outlinetree.h"

#include	<qfile.h>

#include	<qmessagebox.h>

OutlineTree::OutlineTree(const	QString	fileName,	QWidget	*parent,	const	char	*name)

				:	QListView(parent,	name)

{

				//	div.	configuration	of	the	list	view

				addColumn("Outlines");

				setSorting(-1);

				setRootIsDecorated(TRUE);

				//	read	the	XML	file	and	create	DOM	tree

				QFile	opmlFile(fileName);

				if	(!opmlFile.open(IO_ReadOnly))	{

								QMessageBox::critical(0,

																tr("Critical	Error"),

																tr("Cannot	open	file	%1").arg(fileName));

								return;

				}

				if	(!domTree.setContent(&opmlFile))	{

								QMessageBox::critical(0,

																tr("Critical	Error"),

																tr("Parsing	error	for	file	%1").arg(fileName));

								opmlFile.close();

								return;

				}

				opmlFile.close();

				//	get	the	header	information	from	the	DOM

				QDomElement	root	=	domTree.documentElement();

				QDomNode	node;

				node	=	root.firstChild();

				while	(!node.isNull())	{

								if	(node.isElement()	&&	node.nodeName()	==	"head")	{

												QDomElement	header	=	node.toElement();

												getHeaderInformation(header);

												break;

								}

								node	=	node.nextSibling();

				}

				//	create	the	tree	view	out	of	the	DOM

				node	=	root.firstChild();

				while	(!node.isNull())	{

								if	(node.isElement()	&&	node.nodeName()	==	"body")	{

												QDomElement	body	=	node.toElement();

												buildTree(0,	body);

												break;

								}

								node	=	node.nextSibling();

				}

}

OutlineTree::~OutlineTree()

{

}

void	OutlineTree::getHeaderInformation(const	QDomElement	&header)

{

				//	visit	all	children	of	the	header	element	and	look	if	you	can	make

				//	something	with	it

				QDomNode	node	=	header.firstChild();

				while	(!node.isNull())	{

								if	(node.isElement())	{

												//	case	for	the	different	header	entries

												if	(node.nodeName()	==	"title")	{

																QDomText	textChild	=	node.firstChild().toText();

																if	(!textChild.isNull())	{

																				setColumnText(0,	textChild.nodeValue());

																}

												}

								}

								node	=	node.nextSibling();

				}

}

void	OutlineTree::buildTree(QListViewItem	*parentItem,	const	QDomElement

{

				QListViewItem	*thisItem	=	0;

				QDomNode	node	=	parentElement.firstChild();

				while	(!node.isNull())	{

								if	(node.isElement()	&&	node.nodeName()	==	"outline")	{

												//	add	a	new	list	view	item	for	the	outline

												if	(parentItem	==	0)

																thisItem	=	new	QListViewItem(this,	thisItem);

												else

																thisItem	=	new	QListViewItem(parentItem,	thisItem);

												thisItem->setText(0,	node.toElement().attribute("text"));

												//	recursive	build	of	the	tree

												buildTree(thisItem,	node.toElement());

								}

								node	=	node.nextSibling();

				}

}

Main	(main.cpp):

/**

**	$Id:		qt/main.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	"outlinetree.h"

int	main(int	argc,	char	**argv)

{

				QApplication	a(argc,	argv);

				OutlineTree	outline("todos.opml");

				a.setMainWidget(&outline);

				outline.show();

				return	a.exec();

}

See	also	Qt	XML	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QPushButton
QPushButton

QPushButton()
~QPushButton()
accel()
acceptDrops()
adjustSize()
animateClick()
autoDefault()
autoMask()
autoRepeat()
autoResize()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
caption()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clearFocus()
clearMask()
clearWFlags()
clicked()
close()
closeEvent()

cmd()
colorGroup()
connect()
connectNotify()
constPolish()
contextMenuEvent()
create()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawButton()
drawButtonLabel()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()

font()
fontChange()
fontInfo()
fontMetrics()
foregroundColor()
frameGeometry()
frameSize()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
group()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
hitButton()
icon()
iconSet()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
insertChild()
installEventFilter()
isA()
isActiveWindow()
isDefault()
isDesktop()
isDialog()
isDown()
isEnabled()

isEnabledTo()
isEnabledToTLW()
isExclusiveToggle()
isExtDev()
isFlat()
isFocusEnabled()
isHidden()
isMaximized()
isMenuButton()
isMinimized()
isModal()
isOn()
isPopup()
isToggleButton()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()

metric()
microFocusHint()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveEvent()
name()
normalizeSignalSlot()
objectTrees()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
pixmap()
polish()
popup()
pos()
pressed()
property()
queryList()
qwsEvent()
raise()
recreate()
rect()

releaseKeyboard()
releaseMouse()
released()
removeChild()
removeEventFilter()
repaint()
reparent()
resetInputContext()
resize()
resizeEvent()
scroll()
sender()
setAccel()
setAcceptDrops()
setActiveWindow()
setAutoDefault()
setAutoMask()
setAutoRepeat()
setAutoResize()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()
setCursor()
setDefault()
setDisabled()
setDown()
setEnabled()
setEraseColor()
setErasePixmap()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFlat()
setFocus()
setFocusPolicy()
setFocusProxy()

setFont()
setGeometry()
setIcon()
setIconSet()
setIconText()
setIsMenuButton()
setKeyCompression()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setOn()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setPixmap()
setPopup()
setProperty()
setSizeIncrement()
setSizePolicy()
setState()
setStyle()
setTabOrder()
setText()
setToggleButton()
setToggleType()
setUpdatesEnabled()
setWFlags()
show()
showEvent()
showFullScreen()
showMaximized()

showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()
startTimer()
state()
stateChanged()
style()
styleChange()
tabletEvent()
testWFlags()
text()
timerEvent()
toggle()
toggleType()
toggled()
topLevelWidget()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateGeometry()
updateMask()
visibleRect()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()

x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Books	about	GUI
This	is	not	a	comprehensive	list	of	books,	there	are	many	other	books	worth
buying.	This	is	just	a	few	GUI/UI	books	that	don't	gather	dust	in	our	shelves.

Programming	with	Qt	by	Kalle	Dalheimer,	ISBN	1-56592-588-2	is	a	simple
introduction	to	programming	with	Qt.	For	those	wanting	something	more	than
our	short	tutorial,	this	is	it.	(Read	more	or	buy	it.)

The	Design	of	Everyday	Things	by	Donald	Norman,	ISBN	0-38526774-6,	is
one	of	the	classics	of	human	interface	design.	Norman	shows	how	badly
something	as	simple	as	a	kitchen	stove	can	be	designed,	and	everyone	should
read	it	who	will	design	a	dialog	box,	write	an	error	message,	or	design	just	about
anything	else	humans	are	supposed	to	use.	(Read	more	or	buy	it.)

GUI	Design	Handbook	by	Susan	Fowler,	ISBN	0-07-059274-8,	is	an
alphabetical	dictionary	of	widgets	and	other	user	interface	elements,	with
comprehensive	coverage	of	each.	Each	chapter	covers	one	widget	or	other
element,	contains	the	most	important	recommendation	from	the	Macintosh,
Windows	and	Motif	style	guides,	notes	about	common	problems,	comparison
with	other	widgets	that	can	serve	some	of	the	same	roles	as	this	one,	etc.

(Read	more	or	buy	it.)

Macintosh	Human	Interface	Guidelines,	second	edition,	ISBN	0-201-62216-5,
is	worth	buying	for	the	don'ts	alone.	Even	though	you're	not	writing	Macintosh
software,	avoiding	most	of	what	it	advises	against	will	produce	more	easily
comprehensible	software.	Doing	what	it	tells	you	to	do	helps,	too.	(Read	more	or
buy	it.)

This	book	is	now	available	on	the	web	and	there	is	a	Mac	OS	8	addendum.

The	Microsoft	Windows	User	Experience,	ISBN	1-55615-679-0,	is	Microsoft's
look	and	feel	Bible.	Indispensable	for	everyone	who	has	customers	that	worship
Microsoft,	and	it's	quite	good,	too.	(Read	more	or	buy	it.)

Microsoft's	guidelines	are	often	available	on	the	web,	but	have	occasionally	been

http://www.amazon.com/exec/obidos/ASIN/1565925882/trolltech/t
http://www.amazon.com/exec/obidos/ASIN/0385267746/trolltech/t
http://www.amazon.com/exec/obidos/ASIN/0070592748/trolltech/t
http://www.amazon.com/exec/obidos/ASIN/0201622165/trolltech/t
http://developer.apple.com/techpubs/mac/HIGuidelines/HIGuidelines-2.html
http://developer.apple.com/techpubs/mac/HIGOS8Guide/thig-2.html
http://www.amazon.com/exec/obidos/ASIN/0735605661/trolltech/t

hidden	in	an	impenetrable	maze	of	javascript.	Try	and	see.

The	Icon	Book	by	William	Horton,	ISBN	0-471-59900-X,	is	a	perhaps	the	only
thorough	coverage	of	icons	and	icon	use	in	software.	In	order	for	icons	to	be
successful,	people	must	be	able	to	do	four	things	with	them:	decode,	recognize,
find	and	activate	them.	This	book	explains	these	goals	from	scratch	and	how	to
reach	them,	both	with	single	icons	and	icon	families.	Some	500	examples	are
scattered	throughout	the	text,	generally	in	groups	of	four	or	five.	(Read	more	or
buy	it.)

http://msdn.microsoft.com/developer/userexperience/
http://www.amazon.com/exec/obidos/ASIN/047159900X/trolltech/t

Buying	these	books	from	Amazon.com.

These	books	are	made	available	in	association	with	Amazon.com,	our	favorite
on-line	bookstore.	Here	is	more	information	about	Amazon.com's	shipping
options	and	its	customer	service.	When	you	buy	a	book	by	following	one	of
these	links,	Amazon.com	gives	about	15%	of	the	purchase	price	to	Amnesty
International.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.amazon.com/text/
http://www.amazon.com/exec/obidos/subst/help/shipping-policy.html/t
http://www.amazon.com/exec/obidos/subst/help/desk.html/t
http://www.amnesty.org
http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

A	small	client-server	example
This	example	shows	how	two	programs	can	communicate	using	sockets.

Two	simple	example	programs	are	provided,	a	client	program	and	a	server
program.	Both	use	the	QSocket	class,	and	the	server	also	uses	QServerSocket
class.

The	server	listens	on	port	number	4242	and	accepts	incoming	connections.	It
sends	back	every	line	it	receives	from	the	client,	prepended	with	the	line	number.

The	client	tries	to	connect	to	the	server	on	the	host	specified	on	the	command
line	or	to	localhost	if	no	command	line	arguments	are	specified.	You	can	send
single	lines	to	the	server.

Implementation	server	(server.cpp):

/**

**	$Id:		qt/server.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qsocket.h>

#include	<qserversocket.h>

#include	<qapplication.h>

#include	<qvbox.h>

#include	<qtextview.h>

#include	<qlabel.h>

#include	<qpushbutton.h>

#include	<qtextstream.h>

#include	<stdlib.h>

/*

		The	ClientSocket	class	provides	a	socket	that	is	connected	with	a	client.

		For	every	client	that	connects	to	the	server,	the	server	creates	a	new

		instance	of	this	class.

*/

class	ClientSocket	:	public	QSocket

{

				Q_OBJECT

public:

				ClientSocket(int	sock,	QObject	*parent=0,	const	char	*name=0)	:

								QSocket(parent,	name)

				{

								line	=	0;

								connect(this,	SIGNAL(readyRead()),	SLOT(readClient()));

								connect(this,	SIGNAL(connectionClosed()),	SLOT(connectionClosed()));

								setSocket(sock);

				}

				~ClientSocket()

				{

				}

private	slots:

				void	readClient()

				{

								while	(canReadLine())	{

												QTextStream	os(this);

												os	<<	line	<<	":	"	<<	readLine();

												line++;

								}

				}

				void	connectionClosed()

				{

								delete	this;

				}

private:

				int	line;

};

/*

		The	SimpleServer	class	handles	new	connections	to	the	server.	For	every

		client	that	connects,	it	creates	a	new	ClientSocket	--	that	instance	is	now

		responsible	for	the	communication	with	that	client.

*/

class	SimpleServer	:	public	QServerSocket

{

				Q_OBJECT

public:

				SimpleServer(QObject*	parent=0)	:

								QServerSocket(4242,	1,	parent)

				{

								if	(!ok())	{

												qWarning("Failed	to	bind	to	port	4242");

												exit(1);

								}

				}

				~SimpleServer()

				{

				}

				void	newConnection(int	socket)

				{

								(void)new	ClientSocket(socket,	this);

								emit	newConnect();

				}

signals:

				void	newConnect();

};

/*

		The	ServerInfo	class	provides	a	small	GUI	for	the	server.	It	also	creates	the

		SimpleServer	and	as	a	result	the	server.

*/

class	ServerInfo	:	public	QVBox

{

				Q_OBJECT

public:

				ServerInfo()

				{

								SimpleServer	*server	=	new	SimpleServer(this);

								QString	itext	=	QString(

																"This	is	a	small	server	example.\n"

																"Connect	with	the	client	now."

);

								QLabel	*lb	=	new	QLabel(itext,	this);

								lb->setAlignment(AlignHCenter);

								infoText	=	new	QTextView(this);

								QPushButton	*quit	=	new	QPushButton("Quit"	,	this);

								connect(server,	SIGNAL(newConnect()),	SLOT(newConnect()));

								connect(quit,	SIGNAL(clicked()),	qApp,	SLOT(quit()));

				}

				~ServerInfo()

				{

				}

private	slots:

				void	newConnect()

				{

								infoText->append("New	connection\n");

				}

private:

				QTextView	*infoText;

};

int	main(int	argc,	char**	argv)

{

				QApplication	app(argc,	argv);

				ServerInfo	info;

				app.setMainWidget(&info);

				info.show();

				return	app.exec();

}

#include	"server.moc"

Implementation	client	(client.cpp):

/**

**	$Id:		qt/client.cpp			3.0.5			edited	Nov	5	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qsocket.h>

#include	<qapplication.h>

#include	<qvbox.h>

#include	<qhbox.h>

#include	<qtextview.h>

#include	<qlineedit.h>

#include	<qlabel.h>

#include	<qpushbutton.h>

#include	<qtextstream.h>

class	Client	:	public	QVBox

{

				Q_OBJECT

public:

				Client(const	QString	&host,	Q_UINT16	port)

				{

								//	GUI	layout

								infoText	=	new	QTextView(this);

								QHBox	*hb	=	new	QHBox(this);

								inputText	=	new	QLineEdit(hb);

								QPushButton	*send	=	new	QPushButton(tr("Send")	,	hb);

								QPushButton	*close	=	new	QPushButton(tr("Close	connection")	,	this);

								QPushButton	*quit	=	new	QPushButton(tr("Quit")	,	this);

								connect(send,	SIGNAL(clicked()),	SLOT(sendToServer()));

								connect(close,	SIGNAL(clicked()),	SLOT(closeConnection()));

								connect(quit,	SIGNAL(clicked()),	qApp,	SLOT(quit()));

								//	create	the	socket	and	connect	various	of	its	signals

								socket	=	new	QSocket(this);

								connect(socket,	SIGNAL(connected()),

																SLOT(socketConnected()));

								connect(socket,	SIGNAL(connectionClosed()),

																SLOT(socketConnectionClosed()));

								connect(socket,	SIGNAL(readyRead()),

																SLOT(socketReadyRead()));

								connect(socket,	SIGNAL(error(int)),

																SLOT(socketError(int)));

								//	connect	to	the	server

								infoText->append(tr("Trying	to	connect	to	the	server\n"));

								socket->connectToHost(host,	port);

				}

				~Client()

				{

				}

private	slots:

				void	closeConnection()

				{

								socket->close();

								if	(socket->state()	==	QSocket::Closing)	{

												//	We	have	a	delayed	close.

												connect(socket,	SIGNAL(delayedCloseFinished()),

																				SLOT(socketClosed()));

								}	else	{

												//	The	socket	is	closed.

												socketClosed();

								}

				}

				void	sendToServer()

				{

								//	write	to	the	server

								QTextStream	os(socket);

								os	<<	inputText->text()	<<	"\n";

								inputText->setText("");

				}

				void	socketReadyRead()

				{

								//	read	from	the	server

								while	(socket->canReadLine())	{

												infoText->append(socket->readLine());

								}

				}

				void	socketConnected()

				{

								infoText->append(tr("Connected	to	server\n"));

				}

				void	socketConnectionClosed()

				{

								infoText->append(tr("Connection	closed	by	the	server\n"));

				}

				void	socketClosed()

				{

								infoText->append(tr("Connection	closed\n"));

				}

				void	socketError(int	e)

				{

								infoText->append(tr("Error	number	%1	occurred\n").arg(e));

				}

private:

				QSocket	*socket;

				QTextView	*infoText;

				QLineEdit	*inputText;

};

int	main(int	argc,	char**	argv)

{

				QApplication	app(argc,	argv);

				Client	client(argc<2	?	"localhost"	:	argv[1],	4242);

				app.setMainWidget(&client);

				client.show();

				return	app.exec();

}

#include	"client.moc"

See	also	Network	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

An	FTP	client
This	example	implements	a	FTP	client.	It	uses	QUrlOperator	(which	in	turn	uses
QFtp)	to	perform	its	FTP	commands.

The	API	of	the	FtpMainWindow	class	(ftpmainwindow.h):

/**

**	$Id:		qt/ftpmainwindow.h			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	FTPMAINWINDOW_H

#define	FTPMAINWINDOW_H

#include	<qmainwindow.h>

#include	<qurloperator.h>

class	FtpView;

class	QSplitter;

class	QVBox;

class	QSpinBox;

class	QComboBox;

class	QLineEdit;

class	QNetworkOperation;

class	QLabel;

class	QProgressBar;

class	FtpMainWindow	:	public	QMainWindow

{

				Q_OBJECT

public:

				FtpMainWindow();

				QSplitter	*mainSplitter()	const	{

								return	splitter;

				}

private:

				void	setupLeftSide();

				void	setupRightSide();

				void	setupCenterCommandBar();

				void	setup();

private	slots:

				void	slotLocalDirChanged(const	QString	&path);

				void	slotLocalDirChanged(const	QUrlInfo	&info);

				void	slotRemoteDirChanged(const	QString	&path);

				void	slotRemoteDirChanged(const	QUrlInfo	&info);

				void	slotConnect();

				void	slotUpload();

				void	slotDownload();

				void	slotLocalStart(QNetworkOperation	*);

				void	slotLocalFinished(QNetworkOperation	*);

				void	slotRemoteStart(QNetworkOperation	*);

				void	slotRemoteFinished(QNetworkOperation	*);

				void	slotLocalDataTransferProgress(int,	int,	QNetworkOperation	*);

				void	slotRemoteDataTransferProgress(int,	int,	QNetworkOperation	*);

				void	slotLocalMkDir();

				void	slotLocalRemove();

				void	slotRemoteMkDir();

				void	slotRemoteRemove();

				void	slotConnectionStateChanged(int,	const	QString	&msg);

private:

				QSplitter	*splitter;

				QVBox	*mainWidget;

				FtpView	*leftView,	*rightView;

				QComboBox	*localCombo,	*remoteHostCombo,	*remotePathCombo,	*userCombo;

				QLineEdit	*passLined;

				QSpinBox	*portSpin;

				QUrlOperator	localOperator,	remoteOperator,	oldLocal,	oldRemote;

				QLabel	*progressLabel1,	*progressLabel2;

				QProgressBar	*progressBar1,	*progressBar2;

};

#endif

The	Implementation	of	the	FtpMainWindow	class	(ftpmainwindow.cpp):

/**

**	$Id:		qt/ftpmainwindow.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"ftpmainwindow.h"

#include	"ftpview.h"

#include	<qvbox.h>

#include	<qhbox.h>

#include	<qsplitter.h>

#include	<qcombobox.h>

#include	<qlabel.h>

#include	<qspinbox.h>

#include	<qlineedit.h>

#include	<qpushbutton.h>

#include	<qmessagebox.h>

#include	<qprogressbar.h>

#include	<qdir.h>

#include	<qinputdialog.h>

#include	<qapplication.h>

#include	<qstatusbar.h>

FtpMainWindow::FtpMainWindow()

				:	QMainWindow(),

						localOperator("/")

{

				setup();

				//	connect	to	the	signals	of	the	local	QUrlOperator	-	this	will	be	used	to

				//	work	on	the	local	file	system	(listing	dirs,	etc.)	and	to	copy	files

				//	TO	the	local	filesystem	(downloading)

				connect(&localOperator,	SIGNAL(newChildren(const	QValueList<QUrlInfo>	&,	QNetworkOperation	*)),

													leftView,	SLOT(slotInsertEntries(const	QValueList<QUrlInfo>	&)));

				connect(&localOperator,	SIGNAL(start(QNetworkOperation	*)),

													this,	SLOT(slotLocalStart(QNetworkOperation	*)));

				connect(&localOperator,	SIGNAL(finished(QNetworkOperation	*)),

													this,	SLOT(slotLocalFinished(QNetworkOperation	*)));

				connect(leftView,	SIGNAL(itemSelected(const	QUrlInfo	&)),

													this,	SLOT(slotLocalDirChanged(const	QUrlInfo	&)));

				connect(&localOperator,	SIGNAL(dataTransferProgress(int,	int,	QNetworkOperation	*)),

													this,	SLOT(slotLocalDataTransferProgress(int,	int,	QNetworkOperation	*)));

				//	connect	to	the	signals	of	the	remote	QUrlOperator	-	this	will	be	used	to

				//	work	on	the	remote	file	system	(on	the	FTP	Server)	and	to	copy	files

				//	TO	the	ftp	server	(uploading)

				connect(&remoteOperator,	SIGNAL(newChildren(const	QValueList<QUrlInfo>	&,	QNetworkOperation	*)),

													rightView,	SLOT(slotInsertEntries(const	QValueList<QUrlInfo>	&)));

				connect(&remoteOperator,	SIGNAL(start(QNetworkOperation	*)),

													this,	SLOT(slotRemoteStart(QNetworkOperation	*)));

				connect(&remoteOperator,	SIGNAL(finished(QNetworkOperation	*)),

													this,	SLOT(slotRemoteFinished(QNetworkOperation	*)));

				connect(rightView,	SIGNAL(itemSelected(const	QUrlInfo	&)),

													this,	SLOT(slotRemoteDirChanged(const	QUrlInfo	&)));

				connect(&remoteOperator,	SIGNAL(dataTransferProgress(int,	int,	QNetworkOperation	*)),

													this,	SLOT(slotRemoteDataTransferProgress(int,	int,	QNetworkOperation	*)));

				connect(&remoteOperator,	SIGNAL(connectionStateChanged(int,	const	

													this,	SLOT(slotConnectionStateChanged(int,	const	QString

				//	read	the	local	filesystem	at	the	beginning	once

				localOperator.listChildren();

				//	create	status	bar

				(void)statusBar();

}

void	FtpMainWindow::setupLeftSide()

{

				//	Setup	the	left	side	of	the	GUI,	this	is	the	listview

				//	of	the	local	filesystem

				QVBox	*layout	=	new	QVBox(splitter);

				layout->setSpacing(5);

				layout->setMargin(5);

				QHBox	*h	=	new	QHBox(layout);

				h->setSpacing(5);

				QLabel	*l	=	new	QLabel(tr("Local	Path:"),	h);

				l->setFixedWidth(l->sizeHint().width());

				localCombo	=	new	QComboBox(TRUE,	h);

				localCombo->insertItem("/");

				connect(localCombo,	SIGNAL(activated(const	QString	&)),

													this,	SLOT(slotLocalDirChanged(const	QString	&)));

				leftView	=	new	FtpView(layout);

				QHBox	*bottom	=	new	QHBox(layout);

				bottom->setSpacing(5);

				QPushButton	*bMkDir	=	new	QPushButton(tr("New	Directory"),	bottom);

				QPushButton	*bRemove	=	new	QPushButton(tr("Remove"),	bottom);

				connect(bMkDir,	SIGNAL(clicked()),

													this,	SLOT(slotLocalMkDir()));

				connect(bRemove,	SIGNAL(clicked()),

													this,	SLOT(slotLocalRemove()));

				splitter->setResizeMode(layout,	QSplitter::Stretch);

}

void	FtpMainWindow::setupRightSide()

{

				//	Setup	the	right	side	of	the	GUI,	this	is	the	listview

				//	of	the	remote	filesystem	(FTP),	needs	also	lineedits/combos

				//	for	username,	password,	etc.

				QVBox	*layout	=	new	QVBox(splitter);

				layout->setSpacing(5);

				layout->setMargin(5);

				QHBox	*h	=	new	QHBox(layout);

				h->setSpacing(5);

				QLabel	*l	=	new	QLabel(tr("Remote	Host:"),	h);

				l->setFixedWidth(l->sizeHint().width());

				remoteHostCombo	=	new	QComboBox(TRUE,	h);

				l	=	new	QLabel(tr("Port:"),	h);

				l->setFixedWidth(l->sizeHint().width());

				portSpin	=	new	QSpinBox(0,	32767,	1,	h);

				portSpin->setValue(21);

				portSpin->setFixedWidth(portSpin->sizeHint().width());

				remoteOperator.setPort(portSpin->value());

				h	=	new	QHBox(layout);

				h->setSpacing(5);

				l	=	new	QLabel(tr("Remote	Path:"),	h);

				l->setFixedWidth(l->sizeHint().width());

				remotePathCombo	=	new	QComboBox(TRUE,	h);

				h	=	new	QHBox(layout);

				h->setSpacing(5);

				l	=	new	QLabel(tr("Username:"),	h);

				l->setFixedWidth(l->sizeHint().width());

				userCombo	=	new	QComboBox(TRUE,	h);

				l	=	new	QLabel(tr("Password:"),	h);

				l->setFixedWidth(l->sizeHint().width());

				passLined	=	new	QLineEdit(h);

				passLined->setEchoMode(QLineEdit::Password);

				rightView	=	new	FtpView(layout);

				QHBox	*bottom	=	new	QHBox(layout);

				bottom->setSpacing(5);

				QPushButton	*bMkDir	=	new	QPushButton(tr("New	Directory"),	bottom);

				QPushButton	*bRemove	=	new	QPushButton(tr("Remove"),	bottom);

				connect(bMkDir,	SIGNAL(clicked()),

													this,	SLOT(slotRemoteMkDir()));

				connect(bRemove,	SIGNAL(clicked()),

													this,	SLOT(slotRemoteRemove()));

				splitter->setResizeMode(layout,	QSplitter::Stretch);

				connect(remotePathCombo,	SIGNAL(activated(const	QString	&)),

													this,	SLOT(slotRemoteDirChanged(const	QString	&)));

}

void	FtpMainWindow::setupCenterCommandBar()

{

				//	Setup	the	command	bar	in	the	middle	between	the	two	views

				QVBox	*w	=	new	QVBox(splitter);

				splitter->setResizeMode(w,	QSplitter::FollowSizeHint);

				w->setSpacing(5);

				w->setMargin(5);

				QPushButton	*bConnect	=	new	QPushButton(tr("&Connect"),	w);

				(void)new	QWidget(w);

				QPushButton	*bUpload	=	new	QPushButton(tr("==	&Upload	==>"),	w);

				QPushButton	*bDownload	=	new	QPushButton(tr("<==	&Download	=="),	w);

				(void)new	QWidget(w);

				connect(bConnect,	SIGNAL(clicked()),

													this,	SLOT(slotConnect()));

				connect(bUpload,	SIGNAL(clicked()),

													this,	SLOT(slotUpload()));

				connect(bDownload,	SIGNAL(clicked()),

													this,	SLOT(slotDownload()));

}

void	FtpMainWindow::setup()

{

				//	Setup	the	GUI

				mainWidget	=	new	QVBox(this);

				splitter	=	new	QSplitter(mainWidget);

				setupLeftSide();

				setupCenterCommandBar();

				setupRightSide();

				progressLabel1	=	new	QLabel(tr("No	Operation	in	Progress"),	mainWidget);

				progressBar1	=	new	QProgressBar(mainWidget);

				progressLabel2	=	new	QLabel(tr("No	Operation	in	Progress"),	mainWidget);

				progressBar2	=	new	QProgressBar(mainWidget);

				progressLabel1->hide();

				progressBar1->hide();

				progressLabel2->hide();

				progressBar2->hide();

				setCentralWidget(mainWidget);

}

void	FtpMainWindow::slotLocalDirChanged(const	QString	&path)

{

				//	The	user	changed	the	path	on	the	left	side

				oldLocal	=	localOperator;

				localOperator.setPath(path);

				localOperator.listChildren();

}

void	FtpMainWindow::slotLocalDirChanged(const	QUrlInfo	&info)

{

				//	The	user	changed	the	path	on	the	left	side

				oldLocal	=	localOperator;

				localOperator.addPath(info.name());

				localOperator.listChildren();

				localCombo->insertItem(localOperator.path(),	0);

				localCombo->setCurrentItem(0);

}

void	FtpMainWindow::slotRemoteDirChanged(const	QString	&path)

{

				//	The	user	changed	the	path	on	the	right	side

				if	(!remoteOperator.isValid())

								return;

				oldRemote	=	remoteOperator;

				remoteOperator.setPath(path);

				remoteOperator.listChildren();

}

void	FtpMainWindow::slotRemoteDirChanged(const	QUrlInfo	&info)

{

				//	The	user	changed	the	path	on	the	right	side

				oldRemote	=	remoteOperator;

				remoteOperator.addPath(info.name());

				remoteOperator.listChildren();

				remotePathCombo->insertItem(remoteOperator.path(),	0);

				remotePathCombo->setCurrentItem(0);

}

void	FtpMainWindow::slotConnect()

{

				//	The	user	pressed	the	connect	button,	so	let's	connect	to	the

				//	FTP	server

				//	First	we	need	to	set	stuff	(host,	path,	etc.)	which	the	user

				//	entered	on	the	right	side	to	the	remote	QUrlOperator

				//	protocol	+	hostname

				QString	s	=	"ftp://"	+	remoteHostCombo->currentText();

				oldRemote	=	remoteOperator;

				remoteOperator	=	s;

				//	path	on	the	server

				if	(!remotePathCombo->currentText().isEmpty())

								remoteOperator.setPath(remotePathCombo->currentText());

				else

								remoteOperator.setPath("/");

				//	if	nothing	or	"ftp"	or	"anonymous"	has	been	entered	into	the	username	combo,

				//	let's	connect	anonymous,	else	private	with	password

				if	(!userCombo->currentText().isEmpty()	&&

									userCombo->currentText().lower()	!=	"anonymous"	&&

									userCombo->currentText().lower()	!=	"ftp")	{

								remoteOperator.setUser(userCombo->currentText());

								remoteOperator.setPassword(passLined->text());

				}

				//	set	the	port

				remoteOperator.setPort(portSpin->value());

				//	finally	read	the	directory	on	the	ftp	server

				remoteOperator.listChildren();

}

void	FtpMainWindow::slotUpload()

{

				//	the	user	pressed	the	upload	button

				//	if	files	have	been	selected	on	the	left	side	(local	filesystem)

				QValueList<QUrlInfo>	files	=	leftView->selectedItems();

				if	(files.isEmpty())

								return;

				//	create	a	list	of	the	URLs	which	should	be	copied

				QStringList	lst;

				QValueList<QUrlInfo>::Iterator	it	=	files.begin();

				for	(;	it	!=	files.end();	++it)

								lst	<<	QUrl(localOperator,	(*it).name());

				//	copy	the	list	of	selected	files	to	the	directory	in	which	the

				//	remoteOperator	currently	is	(upload)

				remoteOperator.copy(lst,	remoteOperator,	FALSE);

}

void	FtpMainWindow::slotDownload()

{

				//	if	the	user	pressed	the	download	button

				//	if	files	have	been	selected	on	the	right	side	(remote	filesystem)

				QValueList<QUrlInfo>	files	=	rightView->selectedItems();

				if	(files.isEmpty())

								return;

				//	create	a	list	of	the	URLs	which	should	be	downloaded

				QStringList	lst;

				QValueList<QUrlInfo>::Iterator	it	=	files.begin();

				for	(;	it	!=	files.end();	++it)

								lst	<<	QUrl(remoteOperator,	(*it).name());

				//	copy	the	list	of	selected	files	to	the	directory	in	which	the

				//	localOperator	currently	is	(download)

				localOperator.copy(lst,	localOperator,	FALSE);

}

void	FtpMainWindow::slotLocalStart(QNetworkOperation	*op)

{

				//	this	slot	is	always	called	if	the	local	QUrlOperator	starts

				//	listing	a	directory	or	dowloading	a	file

				if	(!op)

								return;

				if	(op->operation()	==	QNetworkProtocol::OpListChildren)	{

								//	start	listing	a	dir?	clear	the	left	view!

								leftView->clear();

				}	else	if	(op->operation()	==	QNetworkProtocol::OpGet)	{

								//	start	downloading	a	file?	reset	the	progress	bar!

								progressBar1->setTotalSteps(0);

								progressBar1->reset();

				}

}

void	FtpMainWindow::slotLocalFinished(QNetworkOperation	*op)

{

				//	this	slot	is	always	called	if	the	local	QUrlOperator	finished

				//	an	operation

				if	(!op)

								return;

				if	(op	&&	op->state()	==	QNetworkProtocol::StFailed)	{

								//	an	error	happend,	let	the	user	know	that

								QMessageBox::critical(this,	tr("ERROR"),	op->protocolDetail

								//	do	something	depending	in	the	error	code

								int	ecode	=	op->errorCode();

								if	(ecode	==	QNetworkProtocol::ErrListChildren	||	ecode	==	QNetworkProtocol::ErrParse	||

													ecode	==	QNetworkProtocol::ErrUnknownProtocol	||	ecode	==	QNetworkProtocol::ErrLoginIncorrect	||

													ecode	==	QNetworkProtocol::ErrValid	||	ecode	==	QNetworkProtocol::ErrHostNotFound	||

													ecode	==	QNetworkProtocol::ErrFileNotExisting)	{

												localOperator	=	oldLocal;

												localCombo->setEditText(localOperator.path());

												localOperator.listChildren();

								}

				}	else	if	(op->operation()	==	QNetworkProtocol::OpPut)	{

								//	finished	saving	the	downloaded	file?	reread	the	dir	and	hide	the	progress	bar

								localOperator.listChildren();

								progressLabel1->hide();

								progressBar1->hide();

				}	else	if	(op->operation()	==	QNetworkProtocol::OpGet)	{

								//	finished	reading	a	file	from	the	ftp	server?	reset	the	progress	bar

								progressBar1->setTotalSteps(0);

								progressBar1->reset();

				}

}

void	FtpMainWindow::slotRemoteStart(QNetworkOperation	*op)

{

				//	this	slot	is	always	called	if	the	remote	QUrlOperator	starts

				//	listing	a	directory	or	uploading	a	file

				if	(!op)

								return;

				if	(op->operation()	==	QNetworkProtocol::OpListChildren)	{

								//	start	listing	a	dir?	clear	the	right	view!

								rightView->clear();

				}	else	if	(op->operation()	==	QNetworkProtocol::OpGet)	{

								//	start	downloading	a	file?	reset	the	progress	bar!

								progressBar2->setTotalSteps(0);

								progressBar2->reset();

				}

}

void	FtpMainWindow::slotRemoteFinished(QNetworkOperation	*op)

{

				//	this	slot	is	always	called	if	the	remote	QUrlOperator	finished

				//	an	operation

				if	(!op)

								return;

				if	(op	&&	op->state()	==	QNetworkProtocol::StFailed)	{

								//	an	error	happend,	let	the	user	know	that

								QMessageBox::critical(this,	tr("ERROR"),	op->protocolDetail

								//	do	something	depending	in	the	error	code

								int	ecode	=	op->errorCode();

								if	(ecode	==	QNetworkProtocol::ErrListChildren	||	ecode	==	QNetworkProtocol::ErrParse	||

													ecode	==	QNetworkProtocol::ErrUnknownProtocol	||	ecode	==	QNetworkProtocol::ErrLoginIncorrect	||

													ecode	==	QNetworkProtocol::ErrValid	||	ecode	==	QNetworkProtocol::ErrHostNotFound	||

													ecode	==	QNetworkProtocol::ErrFileNotExisting)	{

												remoteOperator	=	oldRemote;

												remoteHostCombo->setEditText(remoteOperator.host());

												remotePathCombo->setEditText(remoteOperator.path());

												passLined->setText(remoteOperator.password());

												userCombo->setEditText(remoteOperator.user());

												portSpin->setValue(remoteOperator.port());

												remoteOperator.listChildren();

								}

				}	else	if	(op->operation()	==	QNetworkProtocol::OpListChildren)	{

								//	finished	reading	a	dir?	set	the	correct	path	to	the	pth	combo	of	the	right	view

								remotePathCombo->setEditText(remoteOperator.path());

				}	else	if	(op->operation()	==	QNetworkProtocol::OpPut)	{

								//	finished	saving	the	uploaded	file?	reread	the	dir	and	hide	the	progress	bar

								remoteOperator.listChildren();

								progressLabel2->hide();

								progressBar2->hide();

				}	else	if	(op->operation()	==	QNetworkProtocol::OpGet)	{

								//	finished	reading	a	file	from	the	local	filesystem?	reset	the	progress	bar

								progressBar2->setTotalSteps(0);

								progressBar2->reset();

				}

}

void	FtpMainWindow::slotLocalDataTransferProgress(int	bytesDone,	int	bytesTotal,

																																																			QNetworkOperation

{

				//	Show	the	progress	here	of	the	local	QUrlOperator	reads	or	writes	data

				if	(!op)

								return;

				if	(!progressBar1->isVisible())	{

								if	(bytesDone	<	bytesTotal)	{

												progressLabel1->show();

												progressBar1->show();

												progressBar1->setTotalSteps(bytesTotal);

												progressBar1->setProgress(0);

												progressBar1->reset();

								}	else

												return;

				}

				if	(progressBar1->totalSteps()	==	bytesTotal)

								progressBar1->setTotalSteps(bytesTotal);

				if	(op->operation()	==	QNetworkProtocol::OpGet)

								progressLabel1->setText(tr("Read:	%1").arg(op->arg(0)));

				else	if	(op->operation()	==	QNetworkProtocol::OpPut)

								progressLabel1->setText(tr("Write:	%1").arg(op->arg(0)));

				else

								return;

				progressBar1->setProgress(bytesDone);

}

void	FtpMainWindow::slotRemoteDataTransferProgress(int	bytesDone,	int	bytesTotal,

																																																				QNetworkOperation

{

				//	Show	the	progress	here	of	the	remote	QUrlOperator	reads	or	writes	data

				if	(!op)

								return;

				if	(!progressBar2->isVisible())	{

								if	(bytesDone	<	bytesTotal)	{

												progressLabel2->show();

												progressBar2->show();

												progressBar2->setTotalSteps(bytesTotal);

												progressBar2->setProgress(0);

												progressBar2->reset();

								}	else

												return;

				}

				if	(progressBar2->totalSteps()	!=	bytesTotal)

								progressBar2->setTotalSteps(bytesTotal);

				if	(op->operation()	==	QNetworkProtocol::OpGet)

								progressLabel2->setText(tr("Read:	%1").arg(op->arg(0)));

				else	if	(op->operation()	==	QNetworkProtocol::OpPut)

								progressLabel2->setText(tr("Write:	%1").arg(op->arg(0)));

				else

								return;

				progressBar2->setProgress(bytesDone);

}

void	FtpMainWindow::slotLocalMkDir()

{

				//	create	a	dir	on	the	local	filesystem

				bool	ok	=	FALSE;

				QString	name	=	QInputDialog::getText(tr("Directory	Name:"),	QString::null

				if	(!name.isEmpty()	&&	ok)

								localOperator.mkdir(name);

}

void	FtpMainWindow::slotLocalRemove()

{

}

void	FtpMainWindow::slotRemoteMkDir()

{

				//	create	a	dir	on	the	remote	filesystem	(FTP	server)

				bool	ok	=	FALSE;

				QString	name	=	QInputDialog::getText(tr("Directory	Name:"),	QString::null,	QLineEdit::Normal,	QString::null,	&ok,	this);

				if	(!name.isEmpty()	&&	ok)

								remoteOperator.mkdir(name);

}

void	FtpMainWindow::slotRemoteRemove()

{

}

void	FtpMainWindow::slotConnectionStateChanged(int,	const	QString	&msg)

{

				statusBar()->message(msg);

}

The	API	of	the	FtpViewItem	and	FtpView	classes	(ftpview.h):

/**

**	$Id:		qt/ftpview.h			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	FTPVIEW_H

#define	FTPVIEW_H

#include	<qlistview.h>

#include	<qvaluelist.h>

#include	<qurlinfo.h>

class	FtpViewItem	:	public	QListViewItem

{

public:

				FtpViewItem(QListView	*parent,	const	QUrlInfo	&i);

				int	compare(QListViewItem	*	i,	int	col,	bool	ascending)	const;

				QString	text(int	c)	const;

				const	QPixmap*	pixmap(int	c)	const;

				QUrlInfo	entryInfo()	{

								return	info;

				}

private:

				QUrlInfo	info;

};

class	FtpView	:	public	QListView

{

				Q_OBJECT

public:

				FtpView(QWidget	*parent);

				QValueList<QUrlInfo>	selectedItems()	const;

public	slots:

				void	slotInsertEntries(const	QValueList<QUrlInfo>	&info);

signals:

				void	itemSelected(const	QUrlInfo	&info);

private	slots:

				void	slotSelected(QListViewItem	*item);

};

#endif

Their	Implementation	(ftpview.cpp):

/**

**	$Id:		qt/ftpview.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"ftpview.h"

#include	<qpixmap.h>

#include	<qvaluelist.h>

/*	XPM	*/

static	const	char*	closed_xpm[]={

				"15	15	6	1",

				".	c	None",

				"b	c	#ffff00",

				"d	c	#000000",

				"*	c	#999999",

				"a	c	#cccccc",

				"c	c	#ffffff",

				"...............",

				"..*****........",

				".*ababa*.......",

				"*abababa******.",

				"*cccccccccccc*d",

				"*cbababababab*d",

				"*cabababababa*d",

				"*cbababababab*d",

				"*cabababababa*d",

				"*cbababababab*d",

				"*cabababababa*d",

				"*cbababababab*d",

				"**************d",

				".dddddddddddddd",

				"..............."};

/*	XPM	*/

static	const	char*	file_xpm[]={

				"13	15	5	1",

				".	c	#7f7f7f",

				"#	c	None",

				"c	c	#000000",

				"b	c	#bfbfbf",

				"a	c	#ffffff",

				"..........###",

				".aaaaaaaab.##",

				".aaaaaaaaba.#",

				".aaaaaaaacccc",

				".aaaaaaaaaabc",

				".aaaaaaaaaabc",

				".aaaaaaaaaabc",

				".aaaaaaaaaabc",

				".aaaaaaaaaabc",

				".aaaaaaaaaabc",

				".aaaaaaaaaabc",

				".aaaaaaaaaabc",

				".aaaaaaaaaabc",

				".bbbbbbbbbbbc",

				"ccccccccccccc"};

QPixmap	*folderIcon	=	0;

QPixmap	*fileIcon	=	0;

FtpViewItem::FtpViewItem(QListView	*parent,	const	QUrlInfo	&i)

				:	QListViewItem(parent,	i.name()),	info(i)

{

}

int	FtpViewItem::compare(QListViewItem	*	i,	int	col,	bool	ascending)	const

{

				FtpViewItem	*other	=	(FtpViewItem*)i;

				switch	(col)	{

				case	1:

								if	(info.size()	==	other->info.size())

												return	0;

								else

												return	info.size()	<	other->info.size()	?	-1	:	1;

				case	2:

								if	(info.lastModified()	==	other->info.lastModified())

												return	0;

								else

												return	info.lastModified()	<	other->info.lastModified()	?	-1	:	1;

				default:

								//	use	default	method	for	colum	0	and	others	added	in	the	future

								return	QListViewItem::compare(i,	col,	ascending);

				};

}

QString	FtpViewItem::text(int	c)	const

{

				switch	(c)	{

				case	0:

								return	info.name();

				case	1:

								return	QString::number(info.size());

				case	2:

								return	info.lastModified().toString();

				}

				return	"????";

}

const	QPixmap	*FtpViewItem::pixmap(int	c)	const

{

				if	(!folderIcon)

								folderIcon	=	new	QPixmap(closed_xpm);

				if	(!fileIcon)

								fileIcon	=	new	QPixmap(file_xpm);

				if	(info.isDir()	&&	c	==	0)

								return	folderIcon;

				else	if	(info.isFile()	&&	c	==	0)

								return	fileIcon;

				return	0;

}

FtpView::FtpView(QWidget	*parent)

				:	QListView(parent)

{

				addColumn(tr("Name"));

				addColumn(tr("Size"));

				addColumn(tr("Last	Modified"));

				setColumnAlignment(1,	Qt::AlignRight);

				setShowSortIndicator(TRUE);

				setAllColumnsShowFocus(TRUE);

				setSelectionMode(Extended);

				connect(this,	SIGNAL(doubleClicked(QListViewItem	*)),

													this,	SLOT(slotSelected(QListViewItem	*)));

				connect(this,	SIGNAL(returnPressed(QListViewItem	*)),

													this,	SLOT(slotSelected(QListViewItem	*)));

}

void	FtpView::slotInsertEntries(const	QValueList<QUrlInfo>	&info)

{

				QValueList<QUrlInfo>::ConstIterator	it;

				for(it	=	info.begin();	it	!=	info.end();	++it)	{

								if	((*it).name()	!=	".."	&&	(*it).name()	!=	"."	&&	(*it).name()[0]	==	'.')

												continue;

								FtpViewItem	*item	=	new	FtpViewItem(this,	(*it));

								if	((*it).isDir())

												item->setSelectable(FALSE);

				}

}

void	FtpView::slotSelected(QListViewItem	*item)

{

				if	(!item)

								return;

				FtpViewItem	*i	=	(FtpViewItem*)item;

				if	(i->entryInfo().isDir())

								emit	itemSelected(i->entryInfo());

}

QValueList<QUrlInfo>	FtpView::selectedItems()	const

{

				QValueList<QUrlInfo>	lst;

				QListViewItemIterator	it((QListView*)this);

				for	(;	it.current();	++it)	{

								if	(it.current()->isSelected())	{

												lst	<<	((FtpViewItem*)it.current())->entryInfo();

								}

				}

				return	lst;

}

Main	(main.cpp):

/**

**	$Id:		qt/main.cpp			3.0.5			edited	Nov	6	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	<qnetwork.h>

#include	<qsplitter.h>

#include	"ftpmainwindow.h"

int	main(int	argc,	char	**argv)

{

				QApplication	a(argc,	argv);

				//	call	this	to	register	the	built-in	network	protocols,	e.g.	FTP

				//	and	HTTP.

				qInitNetworkProtocols();

				FtpMainWindow	m;

				a.setMainWidget(&m);

				QValueList<int>	sizes;

				sizes	<<	300	<<	70	<<	300;

				m.mainSplitter()->setSizes(sizes);

				m.resize(800,	600);

				m.show();

				return	a.exec();

}

See	also	Network	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

A	simple	HTTP	daemon
This	example	shows	how	to	use	the	QServerSocket	class.	It	is	a	very	simple
implementation	of	a	HTTP	daemon	that	listens	on	port	8080	and	sends	back	a
simple	HTML	page	back	for	every	GET	request	it	gets.	After	sending	the	page,	it
closes	the	connection.

Implementation	(httpd.cpp):

/**

**	$Id:		qt/httpd.cpp			3.0.5			edited	Nov	6	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<stdlib.h>

#include	<qsocket.h>

#include	<qregexp.h>

#include	<qserversocket.h>

#include	<qapplication.h>

#include	<qmainwindow.h>

#include	<qtextstream.h>

#include	<qvbox.h>

#include	<qlabel.h>

#include	<qtextview.h>

#include	<qpushbutton.h>

//	HttpDaemon	is	the	the	class	that	implements	the	simple	HTTP	server.

class	HttpDaemon	:	public	QServerSocket

{

				Q_OBJECT

public:

				HttpDaemon(QObject*	parent=0)	:

								QServerSocket(8080,1,parent)

				{

								if	(!ok())	{

												qWarning("Failed	to	bind	to	port	8080");

												exit(1);

								}

				}

				void	newConnection(int	socket)

				{

								//	When	a	new	client	connects,	the	server	constructs	a	QSocket	and	all

								//	communication	with	the	client	is	done	over	this	QSocket.	QSocket

								//	works	asynchronouslyl,	this	means	that	all	the	communication	is	done

								//	in	the	two	slots	readClient()	and	discardClient().

								QSocket*	s	=	new	QSocket(this);

								connect(s,	SIGNAL(readyRead()),	this,	SLOT(readClient()));

								connect(s,	SIGNAL(delayedCloseFinished()),	this,	SLOT(discardClient()));

								s->setSocket(socket);

								emit	newConnect();

				}

signals:

				void	newConnect();

				void	endConnect();

				void	wroteToClient();

private	slots:

				void	readClient()

				{

								//	This	slot	is	called	when	the	client	sent	data	to	the	server.	The

								//	server	looks	if	it	was	a	get	request	and	sends	a	very	simple	HTML

								//	document	back.

								QSocket*	socket	=	(QSocket*)sender();

								if	(socket->canReadLine())	{

												QStringList	tokens	=	QStringList::split(QRegExp("[\n\r][\n\r]*"),	socket->

												if	(tokens[0]	==	"GET")	{

																QTextStream	os(socket);

																os.setEncoding(QTextStream::UnicodeUTF8);

																os	<<	"HTTP/1.0	200	Ok\n\r"

																				"Content-Type:	text/html;	charset=\"utf-8\"\n\r"

																				"\n\r"

																				"<h1>Nothing	to	see	here</h1>\n";

																socket->close();

																emit	wroteToClient();

												}

								}

				}

				void	discardClient()

				{

								QSocket*	socket	=	(QSocket*)sender();

								delete	socket;

								emit	endConnect();

				}

};

//	HttpInfo	provides	a	simple	graphical	user	interface	to	the	server	and	shows

//	the	actions	of	the	server.

class	HttpInfo	:	public	QVBox

{

				Q_OBJECT

public:

				HttpInfo()

				{

								HttpDaemon	*httpd	=	new	HttpDaemon(this);

								QString	itext	=	QString(

																"This	is	a	small	httpd	example.\n"

																"You	can	connect	with	your\n"

																"web	browser	to	port	%1"

).arg(httpd->port());

								QLabel	*lb	=	new	QLabel(itext,	this);

								lb->setAlignment(AlignHCenter);

								infoText	=	new	QTextView(this);

								QPushButton	*quit	=	new	QPushButton("quit"	,	this);

								connect(httpd,	SIGNAL(newConnect()),	SLOT(newConnect()));

								connect(httpd,	SIGNAL(endConnect()),	SLOT(endConnect()));

								connect(httpd,	SIGNAL(wroteToClient()),	SLOT(wroteToClient()));

								connect(quit,	SIGNAL(pressed()),	qApp,	SLOT(quit()));

				}

				~HttpInfo()

				{

				}

private	slots:

				void	newConnect()

				{

								infoText->append("New	connection");

				}

				void	endConnect()

				{

								infoText->append("Connection	closed\n\n");

				}

				void	wroteToClient()

				{

								infoText->append("Wrote	to	client");

				}

private:

				QTextView	*infoText;

};

int	main(int	argc,	char**	argv)

{

				QApplication	app(argc,	argv);

				HttpInfo	info;

				app.setMainWidget(&info);

				info.show();

				return	app.exec();

}

#include	"httpd.moc"

See	also	Network	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QWidget
QWidget

QWidget()
~QWidget()
acceptDrops()
adjustSize()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
caption()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clearFocus()
clearMask()
clearWFlags()
close()
closeEvent()
cmd()
colorGroup()
connect()
connectNotify()
constPolish()
contextMenuEvent()

create()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()
fontChange()
fontInfo()
fontMetrics()
foregroundColor()
frameGeometry()
frameSize()
geometry()

getWFlags()
grabKeyboard()
grabMouse()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
insertChild()
installEventFilter()
isA()
isActiveWindow()
isDesktop()
isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()
isPopup()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()

isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveEvent()
name()
normalizeSignalSlot()
objectTrees()
ownCursor()
ownFont()

ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
polish()
pos()
property()
queryList()
qwsEvent()
raise()
recreate()
rect()
releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()
repaint()
reparent()
resetInputContext()
resize()
resizeEvent()
scroll()
sender()
setAcceptDrops()
setActiveWindow()
setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()
setCursor()

setDisabled()
setEnabled()
setEraseColor()
setErasePixmap()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setGeometry()
setIcon()
setIconText()
setKeyCompression()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProperty()
setSizeIncrement()
setSizePolicy()
setStyle()
setTabOrder()
setUpdatesEnabled()
setWFlags()
show()
showEvent()
showFullScreen()

showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()
startTimer()
style()
styleChange()
tabletEvent()
testWFlags()
timerEvent()
topLevelWidget()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateGeometry()
updateMask()
visibleRect()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()

x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Editors	in	a	Qt	main	window
This	example	shows	two	simple	text	editors,	with	most	of	the	program	written	in
Qt.	One	editor	is	a	Qt	QMultiLineEdit,	the	other	is	an	Athena	Widgets	text
widget.	They	are	bound	together	in	a	Qt	main	window.

Implementation:

#include	<qmainwindow.h>

#include	<qmultilineedit.h>

#include	<qpainter.h>

#include	<qmessagebox.h>

#include	<qpopupmenu.h>

#include	<qmenubar.h>

#include	<qsplitter.h>

#include	"qxt.h"

#include	<X11/IntrinsicP.h>

#include	<X11/Shell.h>

#include	<X11/StringDefs.h>

#include	<X11/Xaw/AsciiText.h>

static	const	char*	QTEDMSG	=

				"This	is	a	Qt	widget.\nIt	is	a	QMultiLineEdit.";

static	const	char*	XTEDMSG	=

				"This	is	an	Xt	widget.\nIt	is	an	asciiTextWidgetClass.";

class	EncapsulatedXtWidget	:	public	QXtWidget	{

				Widget	editor;

public:

				EncapsulatedXtWidget(QWidget*	parent)	:

								QXtWidget("shell",	topLevelShellWidgetClass,	parent)

				{

								Arg	args[20];

								Cardinal	nargs=0;

								XtSetArg(args[nargs],	XtNeditType,	XawtextEdit);	nargs++;

								XtSetArg(args[nargs],	XtNstring,	XTEDMSG);							nargs++;

								editor	=	XtCreateWidget("editor",	asciiTextWidgetClass,	xtWidget(),	args,	nargs);

								XtRealizeWidget(editor);

								XtMapWidget(editor);

				}

				void	resizeEvent(QResizeEvent*	e)

				{

								QXtWidget::resizeEvent(e);

								XtResizeWidget(editor,	width(),	height(),	2);

				}

};

class	TwoEditors	:	public	QMainWindow	{

				QMultiLineEdit*	qtchild;

				EncapsulatedXtWidget*	xtchild;

public:

				TwoEditors()	:

								QMainWindow(0,	"mainWindow")

				{

								QPopupMenu*	file	=	new	QPopupMenu(this);

								file->insertItem("E&xit",	qApp,	SLOT(quit()));

								menuBar()->insertItem("&File",	file);

								statusBar();

								QSplitter*	splitter	=	new	QSplitter(this);

								splitter->setOpaqueResize(TRUE);

								setCentralWidget(splitter);

								xtchild	=	new	EncapsulatedXtWidget(splitter);

								qtchild	=	new	QMultiLineEdit(splitter);

								qtchild->setText(QTEDMSG);

				}

};

int	main(int	argc,	char**	argv)

{

				QXtApplication	app(argc,	argv,	"TwoEditors");

				TwoEditors	m;

				app.setMainWidget(&m);

				m.show();

				return	app.exec();

}

See	also	Qt	Xt/Motif	Support	Extension.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Editors	in	an	Xt	form
This	example	shows	two	simple	text	editors,	with	most	of	the	program	written	in
Xt.	One	editor	is	a	Qt	QMultiLineEdit,	the	other	is	an	Athena	Widgets	text
widget.	They	are	bound	together	in	an	Xt	form	widget.

Implementation:

#include	"qxt.h"

#include	<qmultilineedit.h>

#include	<qpainter.h>

#include	<qmessagebox.h>

#include	<X11/Shell.h>

#include	<X11/StringDefs.h>

#include	<X11/Xaw/Form.h>

#include	<X11/Xaw/AsciiText.h>

static	const	char*	QTEDMSG	=

				"This	is	a	Qt	widget.\nIt	is	a	QMultiLineEdit.";

static	const	char*	XTEDMSG	=

				"This	is	an	Xt	widget.\nIt	is	an	asciiTextWidgetClass.";

class	EncapsulatedQtWidget	:	public	QXtWidget	{

public:

				QMultiLineEdit*	mle;

				EncapsulatedQtWidget(Widget	parent)	:

								QXtWidget("editor",	parent,	TRUE)

				{

								mle	=	new	QMultiLineEdit(this);

								mle->setText(QTEDMSG);

				}

				void	resizeEvent(QResizeEvent*	e)

				{

								QXtWidget::resizeEvent(e);

								mle->resize(width(),height());

				}

};

int	main(int	argc,	char**	argv)

{

				XtAppContext	app;

				Widget	toplevel	=	XtAppInitialize(

								&app,	"Editors",

								0,	0,	&argc,	argv,	0,	0,	0);

				QXtApplication	qapp(XtDisplay(toplevel));

				Widget	form	=	XtVaCreateManagedWidget("form",	formWidgetClass,	toplevel,	0);

				EncapsulatedQtWidget	qtchild(form);

				Arg	args[20];

				Cardinal	nargs=0;

				XtSetArg(args[nargs],	XtNwidth,	200);																				nargs++;

				XtSetArg(args[nargs],	XtNheight,	200);																			nargs++;

				XtSetValues(qtchild.xtWidget(),	args,	nargs);

				nargs=0;

				XtSetArg(args[nargs],	XtNeditType,	XawtextEdit);									nargs++;

				XtSetArg(args[nargs],	XtNstring,	XTEDMSG);															nargs++;

				XtSetArg(args[nargs],	XtNwidth,	200);																				nargs++;

				XtSetArg(args[nargs],	XtNheight,	200);																			nargs++;

				XtSetArg(args[nargs],	XtNfromHoriz,	qtchild.xtWidget());	nargs++;

				Widget	xtchild	=	XtCreateManagedWidget("editor",	asciiTextWidgetClass,

								form,	args,	nargs);

				XtRealizeWidget(toplevel);

//					XSetInputFocus(qt_xdisplay(),	qtchild.mle->winId(),	RevertToParent,	CurrentTime);

				//XtAppMainLoop(app);

				//	or	the	equivalent:

				XEvent	xe;

				while	(1)

				{

								XtAppNextEvent(app,	&xe);

								XtDispatchEvent(&xe);

				}

}

See	also	Qt	Xt/Motif	Support	Extension.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Grapher	Plugin
This	example	graphs	data	from	a	simple	text	file.	It	demonstrates	the	use	of	the
QNPInstance::writeReady()	and	QNPInstance::write()	functions.

To	build	the	example,	you	must	first	build	the	Qt	Netscape	Plugin	Extension
library.	Then	type	make	in	extensions/nsplugin/examples/grapher/	and	copy
the	resulting	grapher.so	or	npgrapher.dll	to	the	Plugins	directory	of	your
WWW	browser.

The	text	file	it	accepts	as	input	has	a	title	line,	then	a	sequence	of	lines	with	a
number,	then	a	string.	The	plugin	displays	a	pie	chart	of	the	numbers,	each
segment	labelled	by	the	associated	string.	The	user	can	select	a	bar	chart	view	of
the	same	data	by	selecting	from	the	menu	that	appears	when	they	point	at	the
plugin.

The	HTML	tag	used	to	embed	the	graph	is:

		<EMBED

				SRC=graph.g1n

				ALIGN=LEFT

				WIDTH=49%	HEIGHT=300

				graphstyle=pie	fontfamily=times

				fontsize=18>

Note	that	some	HTML	arguments	(which	we	have	capitalized	here)	are
interpreted	by	the	browser,	while	others	are	used	by	the	plugin.

With	the	simplicity	and	cross-platform	nature	of	Qt-based	plugins,	pages	like
Netcraft's	Server	Graphs	can	be	provided	much	more	efficiently	for	both	the
service	provider	and	consumer.	Data	need	not	be	converted	to	an	image	at	the
server.

Implementation:

//	Include	Qt	Netscape	Plugin	classes.

#include	"qnp.h"

//	Include	other	Qt	classes.

#include	<qpainter.h>

#include	<qtextstream.h>

#include	<qbuffer.h>

#include	<qpixmap.h>

#include	<qmenubar.h>

#include	<qpushbutton.h>

#include	<qptrlist.h>

#include	<qmessagebox.h>

//	Include	some	C	library	functions.

#include	<math.h>

#include	<stdlib.h>

#ifndef	M_PI	//	Some	math.h	don't	include	this.

#define	M_PI	3.14159265358979323846264338327950288

#endif

//

//	GraphModel	is	a	simple	abstract	class	that	describes

//	a	table	of	numeric	and	text	data.

//

class	GraphModel	{

public:

				enum	ColType	{	Numeric,	Label	};

				union	Datum	{

								double	dbl;

http://www.netcraft.com/survey/

								QString*	str;

				};

				virtual	QPtrList<Datum>&	graphData()=0;

				virtual	ColType	colType(int	col)	const=0;

				virtual	int	nCols()	const=0;

};

//

//	Graph	is	a	widget	subclass	that	displays	a	GraphModel.

//	Since	the	widget	is	a	QNPWidget,	it	can	be	used	as	a	plugin	window,

//	returned	by	Grapher::newWindow()	below.

//

class	Graph	:	public	QNPWidget	{

				Q_OBJECT

public:

				//	Constructs	a	Graph	to	display	a	GraphModel

				//

				Graph(GraphModel&);

				~Graph();

				//	Two	styles	are	available	-	Pie	and	Bar	graph

				//

				enum	Style	{	Pie,	Bar	};

				static	const	char*	styleName[];

				void	setStyle(Style);

				void	setStyle(const	char*);

				//	Timer	event	processing	rotates	the	pie	graph

				//

				void	timerEvent(QTimerEvent*);

				//	These	functions	are	provided	by	QNPWidget	-	we	override

				//	them	to	hide	and	show	the	plugin	menubar.

				//

				void	enterInstance();

				void	leaveInstance();

				//	Paint	the	graph...

				//

				void	paintEvent(QPaintEvent*);

				//

				//	...	as	either	a	"Loading"	message,	a	Bar	graph,	a	Pie	graph,

				//	or	an	error	message.

				//

				void	paintWait(QPaintEvent*);

				void	paintBar(QPaintEvent*);

				void	paintPie(QPaintEvent*);

				void	paintError(const	char*);

signals:

				//	Signals	emitted	when	the	Help	menus	are	selected.

				void	aboutPlugin();

				void	aboutData();

private:

				GraphModel&	model;

				QMenuBar	*menubar;

				Style	style;

				QPopupMenu*	stylemenu;

				int	pieRotationTimer;

				int	pieRotation;

				QPixmap	pm;

private	slots:

				void	setStyleFromMenu(int	id);

};

Graph::Graph(GraphModel&	mdl)	:

				model(mdl),

				style(Bar),

				pieRotationTimer(0),

				pieRotation(0)

{

				//	Create	a	menubar	for	the	widget

				//

				menubar	=	new	QMenuBar(this);

				stylemenu	=	new	QPopupMenu;

				stylemenu->setCheckable(TRUE);

				for	(Style	s	=	Pie;	styleName[s];	s	=	Style(s+1))	{

								stylemenu->insertItem(styleName[s],	s+100);

				}

				connect(stylemenu,	SIGNAL(activated(int)),

								this,	SLOT(setStyleFromMenu(int)));

				setStyle(Pie);

				menubar->insertItem("Style",	stylemenu);

				menubar->insertSeparator();

				QPopupMenu*	help	=	new	QPopupMenu;

				help->insertItem("About	plugin...",	this,	SIGNAL(aboutPlugin()));

				help->insertItem("About	data...",	this,	SIGNAL(aboutData()));

				menubar->insertItem("Help",	help);

}

Graph::~Graph()

{

}

void	Graph::setStyle(Style	s)

{

				if	(style	!=	s)	{

								if	(pieRotationTimer)

												killTimer(pieRotationTimer);

								stylemenu->setItemChecked(100+style,	FALSE);

								style	=	s;

								if	(style	==	Pie)

												pieRotationTimer	=	startTimer(80);

								else

												pieRotationTimer	=	0;

								stylemenu->setItemChecked(100+style,	TRUE);

								update();

				}

}

void	Graph::timerEvent(QTimerEvent*)

{

				pieRotation	=	(pieRotation	+	6)	%	360;	repaint(FALSE);

}

void	Graph::setStyle(const	char*	stext)

{

				for	(Style	s	=	Pie;	styleName[s];	s	=	Style(s+1))	{

								if	(qstricmp(stext,styleName[s])==0)	{

												setStyle(s);

												return;

								}

				}

}

void	Graph::enterInstance()

{

				menubar->show();

}

void	Graph::leaveInstance()

{

				menubar->hide();

}

void	Graph::paintError(const	char*	e)

{

				QPainter	p(this);

				int	w	=	width();

				p.drawText(w/8,	0,	w-w/4,	height(),	AlignCenter|WordBreak,	e);

}

void	Graph::paintBar(QPaintEvent*	event)

{

				if	(model.colType(0)	!=	GraphModel::Numeric)	{

								paintError("First	column	not	numeric,	cannot	draw	bar	graph\n");

								return;

				}

				QPtrList<GraphModel::Datum>&	data	=	model.graphData();

				double	max	=	0.0;

				for	(GraphModel::Datum*	rowdata	=	data.first();

								rowdata;	rowdata	=	data.next())

				{

								if	(rowdata[0].dbl	>	max)	max	=	rowdata[0].dbl;

				}

				const	uint	w	=	width();

				const	uint	h	=	height();

				QPainter	p(this);

				p.setClipRect(event->rect());

				if	(w	>	data.count())	{

								//	More	pixels	than	data

								int	x	=	0;

								int	i	=	0;

								QFontMetrics	fm=fontMetrics();

								int	fh	=	fm.height();

								for	(GraphModel::Datum*	rowdata	=	data.first();

												rowdata;	rowdata	=	data.next())

								{

												QColor	c;

												c.setHsv((i	*	255)/data.count(),	255,	255);//	rainbow	effect

												p.setBrush(c);

												int	bw	=	(w-w/4-x)/(data.count()-i);

												int	bh	=	int((h-h/4-1)*rowdata[0].dbl/max);

												p.drawRect(w/8+x,	h-h/8-1-bh,	bw,	bh);

												i++;

												x+=bw;

								}

				}	else	{

								//	More	data	than	pixels

								int	x	=	0;

								int	i	=	0;

								double	av	=	0.0;

								int	n	=	0;

								for	(GraphModel::Datum*	rowdata	=	data.first();	rowdata;

												rowdata	=	data.next())

								{

												int	bx	=	i*w/data.count();

												if	(bx	>	x)	{

																QColor	c;

																c.setHsv((x	*	255)/w,	255,	255);//	rainbow	effect

																p.setPen(c);

																int	bh	=	int(h*av/n/max);

																p.drawLine(x,h-1,x,h-bh);

																av	=	0.0;

																n	=	0;

																x	=	bx;

												}

												av	+=	rowdata[0].dbl;

												n++;

												i++;

								}

				}

}

void	Graph::paintPie(QPaintEvent*	event)

{

				if	(model.colType(0)	!=	GraphModel::Numeric)	{

								paintError("First	column	not	numeric,	cannot	draw	pie	graph\n");

								return;

				}

				QPtrList<GraphModel::Datum>&	data	=	model.graphData();

				double	total	=	0.0;

				GraphModel::Datum*	rowdata;

				for	(rowdata	=	data.first();

								rowdata;	rowdata	=	data.next())

				{

								total	+=	rowdata[0].dbl;

				}

				//	Only	use	first	column	for	pie	chart

				if	(!total)	return;

				int	apos	=	(pieRotation-90)*16;

				const	int	w	=	width();

				const	int	h	=	height();

				const	int	xd	=	w	-	w/5;

				const	int	yd	=	h	-	h/5;

				pm.resize(width(),height());

				pm.fill(backgroundColor());

				QPainter	p(&pm);

				p.setFont(font());

				p.setClipRect(event->rect());

				int	i	=	0;

				for	(rowdata	=	data.first();

								rowdata;	rowdata	=	data.next())

				{

								QColor	c;

								c.setHsv((i	*	255)/data.count(),	255,	255);//	rainbow	effect

								p.setBrush(c);																								//	solid	fill	with	color	c

								int	a	=	int((rowdata[0].dbl	*	360.0)	/	total	*	16.0	+	0.5);

								p.drawPie(w/10,	h/10,	xd,	yd,	-apos,	-a);

								apos	+=	a;

								i++;

				}

				if	(model.colType(1)	==	GraphModel::Label)	{

								double	apos	=	(pieRotation-90)*M_PI/180;

								for	(rowdata	=	data.first();

												rowdata;	rowdata	=	data.next())

								{

												double	a	=	rowdata[0].dbl	*	360	/	total	*	M_PI	/	180;

												int	x	=	int(cos(apos+a/2)*w*5/16	+	w/2	+	0.5);

												int	y	=	int(sin(apos+a/2)*h*5/16	+	h/2	+	0.5);

												//	###	This	causes	a	crash,	so	comment	out	for	now

												/*p.drawText(x-w/8,	y-h/8,	w/4,	h/4,

																WordBreak|AlignCenter,

																rowdata[1].str);/

												apos	+=	a;

								}

				}

				QPainter	p2(this);

				p2.setClipRect(event->rect());

				p2.drawPixmap(0,0,pm);

}

void	Graph::paintWait(QPaintEvent*)

{

				QPainter	p(this);

				p.drawText(rect(),	AlignCenter,	"Loading...");

}

void	Graph::paintEvent(QPaintEvent*	event)

{

				if	(!model.nCols())	{

								paintWait(event);

				}	else	{

								switch	(style)	{

										case	Pie:

												paintPie(event);

												break;

										case	Bar:

												paintBar(event);

												break;

								}

				}

}

void	Graph::setStyleFromMenu(int	id)

{

				setStyle(Style(id-100));

}

const	char*	Graph::styleName[]	=	{	"Pie",	"Bar",	0	};

//

//	Grapher	is	a	subclass	of	QNPInstance,	and	so	it	can	be	returned

//	by	GrapherPlugin::newInstance().		A	QNPInstance	represents	the

//	plugin,	distinctly	from	the	plugin	window.

//

//	Grapher	is	also	a	GraphModel,	because	it	loads	graph	data	from

//	the	net.		When	Grapher	creates	a	window	in	newWindow(),	it	creates

//	a	Graph	widget	to	display	the	GraphModel	that	is	the	Grapher	itself.

//

class	Grapher	:	public	QNPInstance,	GraphModel	{

				Q_OBJECT

public:

				//	Create	a	Grapher	-	all	Grapher	plugins	are	created

				//	by	one	GrapherPlugin	object.

				//

				Grapher();

				~Grapher();

				//	We	override	this	QNPInstance	function	to	create	our

				//	own	subclass	of	QNPWidget,	a	Graph	widget.

				//

				QNPWidget*	newWindow();

				//	We	override	this	QNPInstance	function	to	process	the

				//	incoming	graph	data.

				//

				int	write(QNPStream*	/*str*/,	int	/*offset*/,	int	len,	void*	buffer);

private:

				//	Grapher	is	a	GraphModel,	so	it	implements	the	pure	virtual

				//	functions	of	that	class.

				//

				QPtrList<Datum>&	graphData();

				ColType	colType(int	col)	const;

				int	nCols()	const;

				void	consumeLine();

				QPtrList<Datum>	data;

				QBuffer	line;

				bool	firstline;

				int	ncols;

				ColType	*coltype;

private	slots:

				//	Slots	that	are	connected	to	the	Graph	menu	items.

				//

				void	aboutPlugin();

				void	aboutData();

};

Grapher::Grapher()

{

				data.setAutoDelete(TRUE);

				firstline	=	TRUE;

				ncols	=	0;

				line.open(IO_WriteOnly|IO_Truncate);

}

Grapher::~Grapher()

{

}

QPtrList<GraphModel::Datum>&	Grapher::graphData()

{

				return	data;

}

GraphModel::ColType	Grapher::colType(int	col)	const

{

				return	coltype[col];

}

int	Grapher::nCols()	const

{

				return	ncols;

}

QNPWidget*	Grapher::newWindow()

{

				//	Create	a	Graph	-	our	subclass	of	QNPWidget.

				Graph	*graph	=	new	Graph(*this);

				//	Look	at	the	arguments	from	the	EMBED	tag.

				//			GRAPHSTYLE	chooses	pie	or	bar

				//			FONTFAMILY	and	FONTSIZE	choose	the	font

				//

				const	char*	style	=	arg("GRAPHSTYLE");

				if	(style)	graph->setStyle(style);

				const	char*	fontfamily	=	arg("FONTFAMILY");

				const	char*	fontsize	=	arg("FONTSIZE");

				int	ptsize	=	fontsize	?	atoi(fontsize)	:	graph->font().pointSize();

				if	(fontfamily)	graph->setFont(QFont(fontfamily,	ptsize));

				connect(graph,	SIGNAL(aboutPlugin()),	this,	SLOT(aboutPlugin()));

				connect(graph,	SIGNAL(aboutData()),	this,	SLOT(aboutData()));

				return	graph;

}

void	Grapher::consumeLine()

{

				line.close();

				line.open(IO_ReadOnly);

				QTextStream	ts(&line);

				if	(firstline)	{

								firstline	=	FALSE;

								ncols=0;

								QPtrList<ColType>	typelist;

								typelist.setAutoDelete(TRUE);

								do	{

												QString	typestr;

												ts	>>	typestr	>>	ws;

												ColType*	t	=	0;

												if	(typestr	==	"num")	{

																t	=	new	ColType(Numeric);

												}	else	if	(typestr	==	"label")	{

																t	=	new	ColType(Label);

												}

												if	(t)	typelist.append(t);

								}	while	(!ts.atEnd());

								coltype	=	new	ColType[ncols];

								for	(ColType*	t	=	typelist.first();	t;	t	=	typelist.next())	{

												coltype[ncols++]	=	*t;

								}

				}	else	{

								int	col=0;

								Datum	*rowdata	=	new	Datum[ncols];

								while	(col	<	ncols	&&	!ts.atEnd())	{

												switch	(coltype[col])	{

														case	Numeric:	{

																double	value;

																ts	>>	value	>>	ws;

																rowdata[col].dbl	=	value;

																break;

														}

														case	Label:	{

																QString*	value	=	new	QString;

																ts	>>	*value	>>	ws;

																rowdata[col].str	=	value;

																break;

														}

												}

												col++;

								}

								data.append(rowdata);

				}

				line.close();

				line.open(IO_WriteOnly|IO_Truncate);

}

int	Grapher::write(QNPStream*	/*str*/,	int	/*offset*/,	int	len,	void*	buffer)

{

				//	The	browser	calls	this	function	when	data	is	available	on	one

				//	of	the	streams	the	plugin	has	requested.		Since	we	are	only

				//	processing	one	stream	-	the	URL	in	the	SRC	argument	of	the	EMBED

				//	tag,	we	assume	the	QNPStream	is	that	one.		Also,	since	we	do	not

				//	override	QNPInstance::writeReady(),	we	must	accepts	ALL	the	data

				//	that	is	sent	to	this	function.

				//

				char*	txt	=	(char*)buffer;

				for	(int	i=0;	i<len;	i++)	{

								char	ch	=	txt[i];

								switch	(ch)	{

										case	'\n':

												consumeLine();

												break;

										case	'\r':	//	ignore;

												break;

										default:

												line.putch(ch);

								}

				}

				if	(widget())	{

								widget()->update();

				}

				return	len;

}

void	Grapher::aboutPlugin()

{

				getURL("http://www.trolltech.com/nsplugin/",	"_blank");

}

void	Grapher::aboutData()

{

				const	char*	page	=	arg("DATAPAGE");

				if	(page)

								getURL(page,	"_blank");

				else

								QMessageBox::message("Help",	"No	help	for	this	data");

}

//

//	GrapherPlugin	is	the	start	of	everything.		It	is	a	QNPlugin	subclass,

//	and	it	is	responsible	for	describing	the	plugin	to	the	browser,	and

//	creating	instances	of	the	plugin	when	it	appears	in	web	page.

//

class	GrapherPlugin	:	public	QNPlugin	{

public:

				GrapherPlugin()

				{

				}

				QNPInstance*	newInstance()

				{

								//	Make	a	new	Grapher,	our	subclass	of	QNPInstance.

								return	new	Grapher;

				}

				const	char*	getMIMEDescription()	const

				{

								//	Describe	the	MIME	types	which	this	plugin	can

								//	process.		Just	the	concocted	"application/x-graphable"

								//	type,	with	the	"g1n"	filename	extension.

								//

								return	"application/x-graphable:g1n:Graphable	ASCII	numeric	data";

				}

				const	char	*	getPluginNameString()	const

				{

								//	The	name	of	the	plugin.		This	is	the	title	string	used	in

								//	the	"About	Plugins"	page	of	the	browser.

								//

								return	"Qt-based	Graph	Plugin";

				}

				const	char	*	getPluginDescriptionString()	const

				{

								//	A	longer	description	of	the	plugin.

								//

								return	"A	Qt-based	LiveConnected	plug-in	that	graphs	numeric	data";

				}

};

//

//	Finally,	we	provide	the	implementation	of	QNPlugin::create(),	to

//	provide	our	subclass	of	QNPlugin.

//

QNPlugin*	QNPlugin::create()

{

				return	new	GrapherPlugin;

}

#include	"grapher.moc"

See	also	LiveConnect	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QPixmap
This	is	the	complete	list	of	member	functions	for	QPixmap,	including	inherited
members.

QPixmap()
~QPixmap()
cmd()
convertFromImage()
convertToImage()
createHeuristicMask()
defaultDepth()
defaultOptimization()
depth()
detach()
fill()
grabWidget()
grabWindow()
handle()
height()
imageFormat()
isExtDev()
isNull()
isQBitmap()
load()
loadFromData()
mask()
metric()
operator=()
optimization()
paintingActive()
rect()
resize()
save()
selfMask()
serialNumber()

setDefaultOptimization()
setMask()
setOptimization()
size()
trueMatrix()
width()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
xForm()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Display	Images	in	Qt-supported
Formats

This	example	displays	images	which	are	in	any	format	supported	by	Qt.
Combining	this	with	the	Qt	ImageIO	Extension	adds	PNG	image	support	to	your
browser.	It	demonstrates	the	use	of	the	QNPInstance::streamAsFile()	function.

To	build	the	example,	you	must	first	build	the	Qt	Netscape	Plugin	Extension
library.	Then	type	make	in	extensions/nsplugin/examples/qtimage/	and	copy
the	resulting	qtimage.so	or	npqtimage.dll	to	the	Plugins	directory	of	your	web
browser.

This	plugin	displays	a	PNG	format	image.

New	image	formats	can	be	supported	by	adding	new	image	I/O	handlers	to	the
Qt	library	(see	QImage::defineIOHandler),	thus	providing	the	functionality	in
both	applications	and	WWW	plugins	from	the	same	code.

This	plugin	supports	transparency	and	scaling	of	the	image,	just	like	GIFs	in
most	web	browsers.

http://www.libpng.org/pub/png/

	 	 	

Implementation:

//	Qt	stuff

#include	"qnp.h"

#include	<qpainter.h>

#include	<qimage.h>

#include	<qpixmap.h>

#include	<qmessagebox.h>

#include	<qpopupmenu.h>

#include	"qpngio.h"

#include	<math.h>

#include	<stdlib.h>

#include	<stdio.h>

class	ImageView	:	public	QNPWidget	{

public:

				ImageView()

				{

								popup	=	new	QPopupMenu;

								popup->insertItem("Left	as");

								popup->insertItem("An	exercise");

								popup->insertItem("For	the");

								popup->insertItem("Reader!");

				}

				void	paintEvent(QPaintEvent*	event)

				{

								QPainter	p(this);

								p.setClipRect(event->rect());

								if	(pm.size()	==	size())	{

												p.drawPixmap(0,0,pm);

								}	else	{

												if	(pmScaled.size()	!=	size())	{

																QWMatrix	m;

																m.scale((double)width()/pm.width(),

																								(double)height()/pm.height());

																pmScaled	=	pm.xForm(m);

												}

												p.drawPixmap(0,0,pmScaled);

								}

				}

				void	mousePressEvent(QMouseEvent*	e)

				{

								popup->popup(mapToGlobal(e->pos()));

				}

				void	showImage(const	QImage&	image)

				{

								pm.convertFromImage(image,	QPixmap::Color);

								repaint(FALSE);

				}

private:

				QPixmap	pm;

				QPixmap	pmScaled;

				QPopupMenu*	popup;

};

class	ImageLoader	:	public	QNPInstance	{

				ImageView*	iv;

				QImage	image;

public:

				ImageLoader()	:	iv(0)

				{

				}

				QNPWidget*	newWindow()

				{

								iv	=	new	ImageView;

								imageToIV();

								return	iv;

				}

				void	imageToIV()

				{

								if	(!iv	||	image.isNull())	return;

								iv->showImage(image);

								image.reset();

				}

				bool	newStreamCreated(QNPStream*,	StreamMode&	smode)

				{

								smode	=	AsFileOnly;

								return	TRUE;

				}

				void	streamAsFile(QNPStream*,	const	char*	fname)

				{

								//qInitPngIO();

								image	=	QImage(fname);

								if	(image.isNull())

												fprintf(stderr,	"Could	not	convert	file:	%s\n",	fname);

								imageToIV();

				}

};

class	ImagePlugin	:	public	QNPlugin	{

public:

				ImagePlugin()

				{

				}

				QNPInstance*	newInstance()

				{

								return	new	ImageLoader;

				}

				const	char*	getMIMEDescription()	const

				{

								return	"image/x-png:png:PNG	Image;"

															"image/png:png:PNG	Image;"

															"image/x-portable-bitmap:pbm:PBM	Image;"

															"image/x-portable-graymap:pgm:PGM	Image;"

															"image/x-portable-pixmap:ppm:PPM	Image;"

															"image/bmp:bmp:BMP	Image;"

															"image/x-ms-bmp:bmp:BMP	Image;"

															"image/x-xpixmap:xpm:XPM	Image;"

															"image/xpm:xpm:XPM	Image";

				}

				const	char	*	getPluginNameString()	const

				{

								return	"Qt-based	Image	Plugin";

				}

				const	char	*	getPluginDescriptionString()	const

				{

								return	"Supports	all	image	formats	supported	by	Qt";

				}

};

QNPlugin*	QNPlugin::create()

{

				return	new	ImagePlugin;

}

See	also	LiveConnect	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QObject
QObject

QObject()
~QObject()
blockSignals()
checkConnectArgs()
child()
childEvent()
children()
className()
connect()
connectNotify()
customEvent()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
highPriority()
inherits()
insertChild()
installEventFilter()
isA()
isWidgetType()
killTimer()
killTimers()
metaObject()
name()
normalizeSignalSlot()
objectTrees()
parent()

property()
queryList()
removeChild()
removeEventFilter()
sender()
setName()
setProperty()
signalsBlocked()
startTimer()
timerEvent()
tr()
trUtf8()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QTable

/**

**	$Id:		qt/statistics.cpp			3.0.5			edited	Feb	18	11:55	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"statistics.h"

#include	<qdir.h>

#include	<qstringlist.h>

#include	<qheader.h>

#include	<qcombobox.h>

#include	<stdlib.h>

const	char*	dirs[]	=	{

				"kernel",

				"tools",

				"widgets",

				"dialogs",

				"xml",

				"table",

				"network",

				"opengl",

				"canvas",

				0

};

Table::Table()

				:	QTable(10,	100,	0,	"table")

{

				setSorting(TRUE);

				horizontalHeader()->setLabel(0,	tr("File"));

				horizontalHeader()->setLabel(1,	tr("Size	(bytes)"));

				horizontalHeader()->setLabel(2,	tr("Use	in	Sum"));

				initTable();

				adjustColumn(0);

				//	if	the	user	edited	something	we	might	need	to	recalculate	the	sum

				connect(this,	SIGNAL(valueChanged(int,	int)),

													this,	SLOT(recalcSum(int,	int)));

}

void	Table::initTable()

{

				//	read	all	the	Qt	source	and	header	files	into	a	list

				QStringList	all;

				int	i	=	0;

				QString	qtdir	=	getenv("QTDIR");

				while	(dirs[i])	{

								QDir	dir(qtdir	+	"/src/"	+	dirs[i]);

								QStringList	lst	=	dir.entryList("*.cpp;	*.h");

								for	(QStringList::Iterator	it	=	lst.begin();	it	!=	lst.end();	++it)	{

												if	((*it).contains("moc"))

																continue;

												all	<<	QString(dirs[i])	+	"/"	+	*it;

								}

								++i;

				}

				//	set	the	number	of	rows	we'll	need	for	the	table

				setNumRows(all.count()	+	1);

				i	=	0;

				int	sum	=	0;

				//	insert	the	data	into	the	table

				for	(QStringList::Iterator	it	=	all.begin();	it	!=	all.end();	++it)	{

								setText(i,	0,	*it);

								QFile	f(qtdir	+	"/src/"	+	*it);

								setText(i,	1,	QString::number(f.size()));

								ComboItem	*ci	=	new	ComboItem(this,	QTableItem::WhenCurrent);

								setItem(i++,	2,	ci);

								sum	+=	f.size();

				}

				//	last	row	should	show	the	sum

				TableItem	*i1	=	new	TableItem(this,	QTableItem::Never,	tr("Sum"));

				setItem(i,	0,	i1);

				TableItem	*i2	=	new	TableItem(this,	QTableItem::Never,	QString::number(sum));

				setItem(i,	1,	i2);

}

void	Table::recalcSum(int,	int	col)

{

				//	only	recalc	if	a	value	in	the	second	or	third	column	changed

				if	(col	<	1	||	col	>	2)

								return;

				//	recalc	sum

				int	sum	=	0;

				for	(int	i	=	0;	i	<	numRows()	-	1;	++i)	{

								if	(text(i,	2)	==	"No")

												continue;

								sum	+=	text(i,	1).toInt();

				}

				//	insert	calculated	data

				TableItem	*i1	=	new	TableItem(this,	QTableItem::Never,	tr("Sum"));

				setItem(numRows()	-	1,	0,	i1);

				TableItem	*i2	=	new	TableItem(this,	QTableItem::Never,	QString::number(sum));

				setItem(numRows()	-	1,	1,	i2);

}

void	Table::sortColumn(int	col,	bool	ascending,	bool	/*wholeRows*/)

{

				//	sum	row	should	not	be	sorted,	so	get	rid	of	it	for	now

				clearCell(numRows()	-	1,	0);

				clearCell(numRows()	-	1,	1);

				//	do	sort

				QTable::sortColumn(col,	ascending,	TRUE);

				//	re-insert	sum	row

				recalcSum(0,	1);

}

void	TableItem::paint(QPainter	*p,	const	QColorGroup	&cg,	const	QRect

{

				QColorGroup	g(cg);

				//	last	row	is	the	sum	row	-	we	want	to	make	it	more	visible	by

				//	using	a	red	background

				if	(row()	==	table()->numRows()	-	1)

								g.setColor(QColorGroup::Base,	red);

				QTableItem::paint(p,	g,	cr,	selected);

}

ComboItem::ComboItem(QTable	*t,	EditType	et)

				:	QTableItem(t,	et,	"Yes"),	cb(0)

{

				//	we	do	not	want	this	item	to	be	replaced

				setReplaceable(FALSE);

}

QWidget	*ComboItem::createEditor()	const

{

				//	create	an	editor	-	a	combobox	in	our	case

				((ComboItem*)this)->cb	=	new	QComboBox(table()->viewport());

				QObject::connect(cb,	SIGNAL(activated(int)),	table(),	SLOT(doValueChanged()));

				cb->insertItem("Yes");

				cb->insertItem("No");

				//	and	initialize	it

				cb->setCurrentItem(text()	==	"No"	?	1	:	0);

				return	cb;

}

void	ComboItem::setContentFromEditor(QWidget	*w)

{

				//	the	user	changed	the	value	of	the	combobox,	so	synchronize	the

				//	value	of	the	item	(its	text),	with	the	value	of	the	combobox

				if	(w->inherits("QComboBox"))

								setText(((QComboBox*)w)->currentText());

				else

								QTableItem::setContentFromEditor(w);

}

void	ComboItem::setText(const	QString	&s)

{

				if	(cb)	{

								//	initialize	the	combobox	from	the	text

								if	(s	==	"No")

												cb->setCurrentItem(1);

								else

												cb->setCurrentItem(0);

				}

				QTableItem::setText(s);

}

/**

**	$Id:		qt/main.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"statistics.h"

#include	<qapplication.h>

int	main(int	argc,	char	**argv)

{

				QApplication	a(argc,argv);

				Table	t;

				a.setMainWidget(&t);

				t.show();

				return	a.exec();

}

Copyright	©	2002	Trolltech Trademarks :farfareast Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QButton
QButton

QButton()
~QButton()
accel()
acceptDrops()
adjustSize()
animateClick()
autoMask()
autoRepeat()
autoResize()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
caption()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clearFocus()
clearMask()
clearWFlags()
clicked()
close()
closeEvent()
cmd()

colorGroup()
connect()
connectNotify()
constPolish()
contextMenuEvent()
create()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawButton()
drawButtonLabel()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()

fontChange()
fontInfo()
fontMetrics()
foregroundColor()
frameGeometry()
frameSize()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
group()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
hitButton()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
insertChild()
installEventFilter()
isA()
isActiveWindow()
isDesktop()
isDialog()
isDown()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExclusiveToggle()

isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()
isOn()
isPopup()
isToggleButton()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
minimumHeight()
minimumSize()
minimumSizeHint()

minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveEvent()
name()
normalizeSignalSlot()
objectTrees()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
pixmap()
polish()
pos()
pressed()
property()
queryList()
qwsEvent()
raise()
recreate()
rect()
releaseKeyboard()
releaseMouse()
released()
removeChild()
removeEventFilter()
repaint()

reparent()
resetInputContext()
resize()
resizeEvent()
scroll()
sender()
setAccel()
setAcceptDrops()
setActiveWindow()
setAutoMask()
setAutoRepeat()
setAutoResize()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()
setCursor()
setDisabled()
setDown()
setEnabled()
setEraseColor()
setErasePixmap()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setGeometry()
setIcon()
setIconText()
setKeyCompression()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()

setMicroFocusHint()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setOn()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setPixmap()
setProperty()
setSizeIncrement()
setSizePolicy()
setState()
setStyle()
setTabOrder()
setText()
setToggleButton()
setToggleType()
setUpdatesEnabled()
setWFlags()
show()
showEvent()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()
startTimer()
state()
stateChanged()
style()

styleChange()
tabletEvent()
testWFlags()
text()
timerEvent()
toggle()
toggleType()
toggled()
topLevelWidget()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateGeometry()
updateMask()
visibleRect()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()

x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QFont
This	is	the	complete	list	of	member	functions	for	QFont,	including	inherited
members.

QFont()
~QFont()
bold()
deciPointSize()
defaultFamily()
defaultFont()
dirty()
exactMatch()
family()
fixedPitch()
fromString()
handle()
insertSubstitution()
insertSubstitutions()
isCopyOf()
italic()
key()
lastResortFamily()
lastResortFont()
operator!=()
operator=()
operator==()
pixelSize()
pointSize()
pointSizeFloat()
qwsRenderToDisk()
rawMode()
rawName()
removeSubstitution()
setBold()
setDefaultFont()

setFamily()
setFixedPitch()
setItalic()
setPixelSize()
setPixelSizeFloat()
setPointSize()
setPointSizeFloat()
setRawMode()
setRawName()
setStrikeOut()
setStyleHint()
setStyleStrategy()
setUnderline()
setWeight()
strikeOut()
styleHint()
styleStrategy()
substitute()
substitutes()
substitutions()
toString()
underline()
weight()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QFontMetrics

This	is	the	complete	list	of	member	functions	for	QFontMetrics,	including
inherited	members.

QFontMetrics()
~QFontMetrics()
ascent()
boundingRect()
charWidth()
descent()
height()
inFont()
leading()
leftBearing()
lineSpacing()
lineWidth()
maxWidth()
minLeftBearing()
minRightBearing()
operator=()
rightBearing()
size()
strikeOutPos()
underlinePos()
width()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QVBox
This	is	the	complete	list	of	member	functions	for	QVBox,	including	inherited
members.

QVBox()
acceptDrops()
adjustSize()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
caption()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clearFocus()
clearMask()
clearWFlags()
close()
closeEvent()
cmd()
colorGroup()
connect()
connectNotify()
constPolish()
contentsRect()

contextMenuEvent()
create()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawContents()
drawFrame()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()
fontChange()
fontInfo()
fontMetrics()
foregroundColor()

frameChanged()
frameGeometry()
frameRect()
frameShadow()
frameShape()
frameSize()
frameStyle()
frameWidth()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
insertChild()
installEventFilter()
isA()
isActiveWindow()
isDesktop()
isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()

isHidden()
isMaximized()
isMinimized()
isModal()
isPopup()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
lineWidth()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
margin()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
midLineWidth()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()

mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveEvent()
name()
normalizeSignalSlot()
objectTrees()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
polish()
pos()
property()
queryList()
qwsEvent()
raise()
recreate()
rect()
releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()
repaint()
reparent()
resetInputContext()
resize()
resizeEvent()

scroll()
sender()
setAcceptDrops()
setActiveWindow()
setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()
setCursor()
setDisabled()
setEnabled()
setEraseColor()
setErasePixmap()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setFrameRect()
setFrameShadow()
setFrameShape()
setFrameStyle()
setGeometry()
setIcon()
setIconText()
setKeyCompression()
setLineWidth()
setMargin()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMidLineWidth()

setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProperty()
setSizeIncrement()
setSizePolicy()
setSpacing()
setStretchFactor()
setStyle()
setTabOrder()
setUpdatesEnabled()
setWFlags()
show()
showEvent()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()
startTimer()
style()
styleChange()
tabletEvent()
testWFlags()
timerEvent()
topLevelWidget()
tr()
trUtf8()

unsetCursor()
unsetFont()
unsetPalette()
update()
updateGeometry()
updateMask()
visibleRect()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QLCDNumber

This	is	the	complete	list	of	member	functions	for	QLCDNumber,	including
inherited	members.

QLCDNumber()
~QLCDNumber()
acceptDrops()
adjustSize()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
caption()
checkConnectArgs()
checkOverflow()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clearFocus()
clearMask()
clearWFlags()
close()
closeEvent()
cmd()
colorGroup()

connect()
connectNotify()
constPolish()
contentsRect()
contextMenuEvent()
create()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
display()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawContents()
drawFrame()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()

font()
fontChange()
fontInfo()
fontMetrics()
foregroundColor()
frameChanged()
frameGeometry()
frameRect()
frameShadow()
frameShape()
frameSize()
frameStyle()
frameWidth()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
insertChild()
installEventFilter()
intValue()
isA()
isActiveWindow()
isDesktop()

isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()
isPopup()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
lineWidth()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
margin()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()

microFocusHint()
midLineWidth()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mode()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveEvent()
name()
normalizeSignalSlot()
numDigits()
objectTrees()
overflow()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
polish()
pos()
property()
queryList()
qwsEvent()
raise()
recreate()
rect()

releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()
repaint()
reparent()
resetInputContext()
resize()
resizeEvent()
scroll()
segmentStyle()
sender()
setAcceptDrops()
setActiveWindow()
setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setBinMode()
setCaption()
setCursor()
setDecMode()
setDisabled()
setEnabled()
setEraseColor()
setErasePixmap()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setFrameRect()
setFrameShadow()
setFrameShape()
setFrameStyle()

setGeometry()
setHexMode()
setIcon()
setIconText()
setKeyCompression()
setLineWidth()
setMargin()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMidLineWidth()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMode()
setMouseTracking()
setName()
setNumDigits()
setOctMode()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProperty()
setSegmentStyle()
setSizeIncrement()
setSizePolicy()
setSmallDecimalPoint()
setStyle()
setTabOrder()
setUpdatesEnabled()
setWFlags()
show()
showEvent()
showFullScreen()
showMaximized()
showMinimized()

showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
smallDecimalPoint()
stackUnder()
startTimer()
style()
styleChange()
tabletEvent()
testWFlags()
timerEvent()
topLevelWidget()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateGeometry()
updateMask()
value()
visibleRect()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()

x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QSlider
This	is	the	complete	list	of	member	functions	for	QSlider,	including	inherited
members.

QSlider()
acceptDrops()
addLine()
addPage()
addStep()
adjustSize()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
bound()
caption()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clearFocus()
clearMask()
clearWFlags()
close()
closeEvent()
cmd()
colorGroup()

connect()
connectNotify()
constPolish()
contextMenuEvent()
create()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
directSetValue()
disconnect()
disconnectNotify()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()
fontChange()
fontInfo()

fontMetrics()
foregroundColor()
frameGeometry()
frameSize()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
insertChild()
installEventFilter()
isA()
isActiveWindow()
isDesktop()
isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()

isPopup()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
lineStep()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
maxValue()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
minValue()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()

mouseReleaseEvent()
move()
moveEvent()
name()
normalizeSignalSlot()
objectTrees()
orientation()
ownCursor()
ownFont()
ownPalette()
pageStep()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
polish()
pos()
positionFromValue()
prevValue()
property()
queryList()
qwsEvent()
raise()
rangeChange()
recreate()
rect()
releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()
repaint()
reparent()
resetInputContext()
resize()

resizeEvent()
scroll()
sender()
setAcceptDrops()
setActiveWindow()
setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()
setCursor()
setDisabled()
setEnabled()
setEraseColor()
setErasePixmap()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setGeometry()
setIcon()
setIconText()
setKeyCompression()
setLineStep()
setMask()
setMaxValue()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMinValue()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()

setMouseTracking()
setName()
setOrientation()
setPageStep()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProperty()
setRange()
setSizeIncrement()
setSizePolicy()
setSteps()
setStyle()
setTabOrder()
setTickInterval()
setTickmarks()
setTracking()
setUpdatesEnabled()
setValue()
setWFlags()
show()
showEvent()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
sliderMoved()
sliderPressed()
sliderRect()
sliderReleased()
sliderStart()
stackUnder()
startTimer()

stepChange()
style()
styleChange()
subtractLine()
subtractPage()
subtractStep()
tabletEvent()
testWFlags()
tickInterval()
tickmarks()
timerEvent()
topLevelWidget()
tr()
trUtf8()
tracking()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateGeometry()
updateMask()
value()
valueChange()
valueChanged()
valueFromPosition()
visibleRect()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()

x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QRangeControl
QRangeControl

QRangeControl()
~QRangeControl()
addLine()
addPage()
bound()
directSetValue()
lineStep()
maxValue()
minValue()
pageStep()
positionFromValue()
prevValue()
rangeChange()
setMaxValue()
setMinValue()
setRange()
setSteps()
setValue()
stepChange()
subtractLine()
subtractPage()
value()
valueChange()
valueFromPosition()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QSpinBox
This	is	the	complete	list	of	member	functions	for	QSpinBox,	including	inherited
members.

QSpinBox()
~QSpinBox()
acceptDrops()
addLine()
addPage()
adjustSize()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
bound()
buttonSymbols()
caption()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
cleanText()
clearFocus()
clearMask()
clearWFlags()
close()
closeEvent()

cmd()
colorGroup()
connect()
connectNotify()
constPolish()
contextMenuEvent()
create()
currentValueText()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
directSetValue()
disconnect()
disconnectNotify()
downRect()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
editor()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()

focusProxy()
focusWidget()
font()
fontChange()
fontInfo()
fontMetrics()
foregroundColor()
frameGeometry()
frameSize()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
insertChild()
installEventFilter()
interpretText()
isA()
isActiveWindow()
isDesktop()
isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()

isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()
isPopup()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
lineStep()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTextToValue()
mapTo()
mapToGlobal()
mapToParent()
mapValueToText()
maxValue()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
minValue()

minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveEvent()
name()
normalizeSignalSlot()
objectTrees()
ownCursor()
ownFont()
ownPalette()
pageStep()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
polish()
pos()
positionFromValue()
prefix()
prevValue()
property()
queryList()
qwsEvent()
raise()
rangeChange()
recreate()
rect()

releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()
repaint()
reparent()
resetInputContext()
resize()
resizeEvent()
scroll()
selectAll()
sender()
setAcceptDrops()
setActiveWindow()
setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setButtonSymbols()
setCaption()
setCursor()
setDisabled()
setEnabled()
setEraseColor()
setErasePixmap()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setGeometry()
setIcon()
setIconText()
setKeyCompression()
setLineStep()

setMask()
setMaxValue()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMinValue()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setPrefix()
setProperty()
setRange()
setSizeIncrement()
setSizePolicy()
setSpecialValueText()
setSteps()
setStyle()
setSuffix()
setTabOrder()
setUpdatesEnabled()
setValidator()
setValue()
setWFlags()
setWrapping()
show()
showEvent()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()

sizeHint()
sizeIncrement()
sizePolicy()
specialValueText()
stackUnder()
startTimer()
stepChange()
stepDown()
stepUp()
style()
styleChange()
subtractLine()
subtractPage()
suffix()
tabletEvent()
testWFlags()
text()
textChanged()
timerEvent()
topLevelWidget()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
upRect()
update()
updateDisplay()
updateGeometry()
updateMask()
validator()
value()
valueChange()
valueChanged()
valueFromPosition()
visibleRect()
wheelEvent()
width()
winEvent()

winId()
windowActivationChange()
wrapping()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QPaintEvent

This	is	the	complete	list	of	member	functions	for	QPaintEvent,	including
inherited	members.

QPaintEvent()
erased()
rect()
region()
spontaneous()
type()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QPainter
QPainter

QPainter()
~QPainter()
backgroundColor()
backgroundMode()
begin()
boundingRect()
brush()
brushOrigin()
clipRegion()
device()
drawArc()
drawChord()
drawConvexPolygon()
drawCubicBezier()
drawEllipse()
drawImage()
drawLine()
drawLineSegments()
drawPicture()
drawPie()
drawPixmap()
drawPoint()
drawPoints()
drawPolygon()
drawPolyline()
drawRect()
drawRoundRect()
drawText()
drawTiledPixmap()
drawWinFocusRect()
end()
eraseRect()

fillRect()
flush()
font()
fontInfo()
fontMetrics()
handle()
hasClipping()
hasViewXForm()
hasWorldXForm()
isActive()
lineTo()
moveTo()
pen()
pos()
rasterOp()
redirect()
resetXForm()
restore()
restoreWorldMatrix()
rotate()
save()
saveWorldMatrix()
scale()
setBackgroundColor()
setBackgroundMode()
setBrush()
setBrushOrigin()
setClipRect()
setClipRegion()
setClipping()
setFont()
setPen()
setRasterOp()
setTabArray()
setTabStops()
setViewXForm()
setViewport()
setWindow()
setWorldMatrix()

setWorldXForm()
shear()
tabArray()
tabStops()
translate()
viewport()
window()
worldMatrix()
xForm()
xFormDev()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Trivial	Example
This	example	is	trivial,	and	thus	useful	for	investigating	problems	you	might
have	installing	the	extension.

To	build	the	example,	you	must	first	build	the	Qt	Netscape	Plugin	Extension
library.	Then	type	make	in	extensions/nsplugin/examples/trivial/	and	copy
the	resulting	trivial.so	or	nptrivial.dll	to	the	Plugins	directory	of	your
WWW	browser.

Implementation:

//	Qt	stuff

#include	"qnp.h"

#include	<qpainter.h>

#include	<qmessagebox.h>

class	Trivial	:	public	QNPWidget	{

				Q_OBJECT

public:

				void	mouseReleaseEvent(QMouseEvent*	event)

				{

								QMessageBox::aboutQt(this);

				}

				void	paintEvent(QPaintEvent*	event)

				{

								QPainter	p(this);

								p.setClipRect(event->rect());

								int	w	=	width();

								p.drawRect(rect());

								p.drawText(w/8,	0,	w-w/4,	height(),	AlignCenter|WordBreak,	"Trivial!");

				}

};

class	TrivialInstance	:	public	QNPInstance	{

				Q_OBJECT

public:

				QNPWidget*	newWindow()

				{

								return	new	Trivial;

				}

				void	print(QPainter*	p)

				{

								p->drawText(0,0,"Hello");

				}

};

class	TrivialPlugin	:	public	QNPlugin	{

public:

				QNPInstance*	newInstance()

				{

								return	new	TrivialInstance;

				}

				const	char*	getMIMEDescription()	const

				{

								return	"trivial/very:xxx:Trivial	and	useless";

				}

				const	char	*	getPluginNameString()	const

				{

								return	"Trivial	Qt-based	Plugin";

				}

				const	char	*	getPluginDescriptionString()	const

				{

								return	"A	Qt-based	LiveConnected	plug-in	that	does	nothing";

				}

};

QNPlugin*	QNPlugin::create()

{

				return	new	TrivialPlugin;

}

#include	"trivial.moc"

See	also	LiveConnect	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QRect
QRect

QRect()
addCoords()
bottom()
bottomLeft()
bottomRight()
center()
contains()
coords()
height()
intersect()
intersects()
isEmpty()
isNull()
isValid()
left()
moveBottomLeft()
moveBottomRight()
moveBy()
moveCenter()
moveTopLeft()
moveTopRight()
normalize()
operator&()
operator&=()
operator|()
operator|=()
rBottom()
rLeft()
rRight()
rTop()
rect()
right()

setBottom()
setCoords()
setHeight()
setLeft()
setRect()
setRight()
setSize()
setTop()
setWidth()
setX()
setY()
size()
top()
topLeft()
topRight()
unite()
width()
x()
y()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QVBoxLayout

This	is	the	complete	list	of	member	functions	for	QVBoxLayout,	including
inherited	members.

QVBoxLayout()
~QVBoxLayout()
activate()
add()
addChildLayout()
addItem()
addLayout()
addSpacing()
addStretch()
addStrut()
addWidget()
alignment()
alignmentRect()
autoAdd()
blockSignals()
checkConnectArgs()
child()
childEvent()
children()
className()
connect()
connectNotify()
customEvent()
deleteAllItems()
deleteLater()
destroyed()
direction()
disconnect()
disconnectNotify()

dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
expanding()
findWidget()
geometry()
hasHeightForWidth()
heightForWidth()
highPriority()
inherits()
insertChild()
insertItem()
insertLayout()
insertSpacing()
insertStretch()
insertWidget()
installEventFilter()
invalidate()
isA()
isEmpty()
isEnabled()
isTopLevel()
isWidgetType()
iterator()
killTimer()
killTimers()
layout()
mainWidget()
margin()
maximumSize()
menuBar()
metaObject()
minimumSize()
name()
normalizeSignalSlot()
objectTrees()
parent()
property()

queryList()
removeChild()
removeEventFilter()
resizeMode()
sender()
setAlignment()
setAutoAdd()
setDirection()
setEnabled()
setGeometry()
setMargin()
setMenuBar()
setName()
setProperty()
setResizeMode()
setSpacing()
setStretchFactor()
setSupportsMargin()
signalsBlocked()
sizeHint()
spacerItem()
spacing()
startTimer()
supportsMargin()
timerEvent()
tr()
trUtf8()
widget()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QGridLayout

This	is	the	complete	list	of	member	functions	for	QGridLayout,	including
inherited	members.

QGridLayout()
~QGridLayout()
activate()
add()
addChildLayout()
addColSpacing()
addItem()
addLayout()
addMultiCell()
addMultiCellLayout()
addMultiCellWidget()
addRowSpacing()
addWidget()
alignment()
alignmentRect()
autoAdd()
blockSignals()
cellGeometry()
checkConnectArgs()
child()
childEvent()
children()
className()
colStretch()
connect()
connectNotify()
customEvent()
deleteAllItems()
deleteLater()

destroyed()
disconnect()
disconnectNotify()
dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
expand()
expanding()
findWidget()
geometry()
hasHeightForWidth()
heightForWidth()
highPriority()
inherits()
insertChild()
installEventFilter()
invalidate()
isA()
isEmpty()
isEnabled()
isTopLevel()
isWidgetType()
iterator()
killTimer()
killTimers()
layout()
mainWidget()
margin()
maximumSize()
menuBar()
metaObject()
minimumSize()
name()
normalizeSignalSlot()
numCols()
numRows()
objectTrees()
origin()

parent()
property()
queryList()
removeChild()
removeEventFilter()
resizeMode()
rowStretch()
sender()
setAlignment()
setAutoAdd()
setColStretch()
setEnabled()
setGeometry()
setMargin()
setMenuBar()
setName()
setOrigin()
setProperty()
setResizeMode()
setRowStretch()
setSpacing()
setSupportsMargin()
signalsBlocked()
sizeHint()
spacerItem()
spacing()
startTimer()
supportsMargin()
timerEvent()
tr()
trUtf8()
widget()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QBoxLayout

This	is	the	complete	list	of	member	functions	for	QBoxLayout,	including
inherited	members.

QBoxLayout()
~QBoxLayout()
activate()
add()
addChildLayout()
addItem()
addLayout()
addSpacing()
addStretch()
addStrut()
addWidget()
alignment()
alignmentRect()
autoAdd()
blockSignals()
checkConnectArgs()
child()
childEvent()
children()
className()
connect()
connectNotify()
customEvent()
deleteAllItems()
deleteLater()
destroyed()
direction()
disconnect()
disconnectNotify()

dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
expanding()
findWidget()
geometry()
hasHeightForWidth()
heightForWidth()
highPriority()
inherits()
insertChild()
insertItem()
insertLayout()
insertSpacing()
insertStretch()
insertWidget()
installEventFilter()
invalidate()
isA()
isEmpty()
isEnabled()
isTopLevel()
isWidgetType()
iterator()
killTimer()
killTimers()
layout()
mainWidget()
margin()
maximumSize()
menuBar()
metaObject()
minimumSize()
name()
normalizeSignalSlot()
objectTrees()
parent()
property()

queryList()
removeChild()
removeEventFilter()
resizeMode()
sender()
setAlignment()
setAutoAdd()
setDirection()
setEnabled()
setGeometry()
setMargin()
setMenuBar()
setName()
setProperty()
setResizeMode()
setSpacing()
setStretchFactor()
setSupportsMargin()
signalsBlocked()
sizeHint()
spacerItem()
spacing()
startTimer()
supportsMargin()
timerEvent()
tr()
trUtf8()
widget()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QAccel
QAccel

QAccel()
~QAccel()
activated()
blockSignals()
checkConnectArgs()
child()
childEvent()
children()
className()
clear()
connect()
connectItem()
connectNotify()
count()
customEvent()
deleteLater()
destroyed()
disconnect()
disconnectItem()
disconnectNotify()
dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
findKey()
highPriority()
inherits()
insertChild()
insertItem()
installEventFilter()
isA()
isEnabled()

isItemEnabled()
isWidgetType()
key()
keyToString()
killTimer()
killTimers()
metaObject()
name()
normalizeSignalSlot()
objectTrees()
parent()
property()
queryList()
removeChild()
removeEventFilter()
removeItem()
repairEventFilter()
sender()
setEnabled()
setItemEnabled()
setName()
setProperty()
setWhatsThis()
shortcutKey()
signalsBlocked()
startTimer()
stringToKey()
timerEvent()
tr()
trUtf8()
whatsThis()

Copyright	©	2002	Trolltech Trademarks :allexit Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QTimer
QTimer

QTimer()
~QTimer()
blockSignals()
changeInterval()
checkConnectArgs()
child()
childEvent()
children()
className()
connect()
connectNotify()
customEvent()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
highPriority()
inherits()
insertChild()
installEventFilter()
isA()
isActive()
isWidgetType()
killTimer()
killTimers()
metaObject()
name()
normalizeSignalSlot()

objectTrees()
parent()
property()
queryList()
removeChild()
removeEventFilter()
sender()
setName()
setProperty()
signalsBlocked()
singleShot()
start()
startTimer()
stop()
timeout()
timerEvent()
tr()
trUtf8()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QRegion
This	is	the	complete	list	of	member	functions	for	QRegion,	including	inherited
members.

QRegion()
~QRegion()
boundingRect()
contains()
eor()
handle()
intersect()
isEmpty()
isNull()
operator!=()
operator&()
operator&=()
operator+()
operator+=()
operator-()
operator-=()
operator=()
operator==()
operator^()
operator^=()
operator|()
operator|=()
rects()
subtract()
translate()
unite()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QHBoxLayout

This	is	the	complete	list	of	member	functions	for	QHBoxLayout,	including
inherited	members.

QHBoxLayout()
~QHBoxLayout()
activate()
add()
addChildLayout()
addItem()
addLayout()
addSpacing()
addStretch()
addStrut()
addWidget()
alignment()
alignmentRect()
autoAdd()
blockSignals()
checkConnectArgs()
child()
childEvent()
children()
className()
connect()
connectNotify()
customEvent()
deleteAllItems()
deleteLater()
destroyed()
direction()
disconnect()
disconnectNotify()

dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
expanding()
findWidget()
geometry()
hasHeightForWidth()
heightForWidth()
highPriority()
inherits()
insertChild()
insertItem()
insertLayout()
insertSpacing()
insertStretch()
insertWidget()
installEventFilter()
invalidate()
isA()
isEmpty()
isEnabled()
isTopLevel()
isWidgetType()
iterator()
killTimer()
killTimers()
layout()
mainWidget()
margin()
maximumSize()
menuBar()
metaObject()
minimumSize()
name()
normalizeSignalSlot()
objectTrees()
parent()
property()

queryList()
removeChild()
removeEventFilter()
resizeMode()
sender()
setAlignment()
setAutoAdd()
setDirection()
setEnabled()
setGeometry()
setMargin()
setMenuBar()
setName()
setProperty()
setResizeMode()
setSpacing()
setStretchFactor()
setSupportsMargin()
signalsBlocked()
sizeHint()
spacerItem()
spacing()
startTimer()
supportsMargin()
timerEvent()
tr()
trUtf8()
widget()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QLabel
This	is	the	complete	list	of	member	functions	for	QLabel,	including	inherited
members.

QLabel()
~QLabel()
acceptDrops()
adjustSize()
alignment()
autoMask()
autoResize()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
buddy()
caption()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clear()
clearFocus()
clearMask()
clearWFlags()
close()
closeEvent()
cmd()

colorGroup()
connect()
connectNotify()
constPolish()
contentsRect()
contextMenuEvent()
create()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawContents()
drawFrame()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()

font()
fontChange()
fontInfo()
fontMetrics()
foregroundColor()
frameChanged()
frameGeometry()
frameRect()
frameShadow()
frameShape()
frameSize()
frameStyle()
frameWidth()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
hasScaledContents()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
indent()
inherits()
insertChild()
installEventFilter()
isA()
isActiveWindow()

isDesktop()
isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()
isPopup()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
lineWidth()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
margin()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()

metric()
microFocusHint()
midLineWidth()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveEvent()
movie()
name()
normalizeSignalSlot()
objectTrees()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
picture()
pixmap()
polish()
pos()
property()
queryList()
qwsEvent()
raise()
recreate()

rect()
releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()
repaint()
reparent()
resetInputContext()
resize()
resizeEvent()
scroll()
sender()
setAcceptDrops()
setActiveWindow()
setAlignment()
setAutoMask()
setAutoResize()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setBuddy()
setCaption()
setCursor()
setDisabled()
setEnabled()
setEraseColor()
setErasePixmap()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setFrameRect()
setFrameShadow()
setFrameShape()

setFrameStyle()
setGeometry()
setIcon()
setIconText()
setIndent()
setKeyCompression()
setLineWidth()
setMargin()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMidLineWidth()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setMovie()
setName()
setNum()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setPicture()
setPixmap()
setProperty()
setScaledContents()
setSizeIncrement()
setSizePolicy()
setStyle()
setTabOrder()
setText()
setTextFormat()
setUpdatesEnabled()
setWFlags()
show()
showEvent()

showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()
startTimer()
style()
styleChange()
tabletEvent()
testWFlags()
text()
textFormat()
timerEvent()
topLevelWidget()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateGeometry()
updateMask()
visibleRect()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()

x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QMouseEvent

This	is	the	complete	list	of	member	functions	for	QMouseEvent,	including
inherited	members.

QMouseEvent()
accept()
button()
globalPos()
globalX()
globalY()
ignore()
isAccepted()
pos()
spontaneous()
state()
stateAfter()
type()
x()
y()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QPoint
QPoint

QPoint()
isNull()
manhattanLength()
operator*=()
operator+=()
operator-=()
operator/=()
rx()
ry()
setX()
setY()
x()
y()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QWMatrix

This	is	the	complete	list	of	member	functions	for	QWMatrix,	including	inherited
members.

QWMatrix()
dx()
dy()
invert()
isIdentity()
isInvertible()
m11()
m12()
m21()
m22()
map()
mapRect()
operator!=()
operator*()
operator*=()
operator==()
reset()
rotate()
scale()
setMatrix()
shear()
translate()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QFrame
QFrame

QFrame()
acceptDrops()
adjustSize()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
caption()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clearFocus()
clearMask()
clearWFlags()
close()
closeEvent()
cmd()
colorGroup()
connect()
connectNotify()
constPolish()
contentsRect()
contextMenuEvent()

create()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawContents()
drawFrame()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()
fontChange()
fontInfo()
fontMetrics()
foregroundColor()
frameChanged()

frameGeometry()
frameRect()
frameShadow()
frameShape()
frameSize()
frameStyle()
frameWidth()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
insertChild()
installEventFilter()
isA()
isActiveWindow()
isDesktop()
isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()

isMaximized()
isMinimized()
isModal()
isPopup()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
lineWidth()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
margin()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
midLineWidth()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()

mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveEvent()
name()
normalizeSignalSlot()
objectTrees()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
polish()
pos()
property()
queryList()
qwsEvent()
raise()
recreate()
rect()
releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()
repaint()
reparent()
resetInputContext()
resize()
resizeEvent()
scroll()

sender()
setAcceptDrops()
setActiveWindow()
setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()
setCursor()
setDisabled()
setEnabled()
setEraseColor()
setErasePixmap()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setFrameRect()
setFrameShadow()
setFrameShape()
setFrameStyle()
setGeometry()
setIcon()
setIconText()
setKeyCompression()
setLineWidth()
setMargin()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMidLineWidth()
setMinimumHeight()

setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProperty()
setSizeIncrement()
setSizePolicy()
setStyle()
setTabOrder()
setUpdatesEnabled()
setWFlags()
show()
showEvent()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()
startTimer()
style()
styleChange()
tabletEvent()
testWFlags()
timerEvent()
topLevelWidget()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()

update()
updateGeometry()
updateMask()
visibleRect()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QCanvasView

This	is	the	complete	list	of	member	functions	for	QCanvasView,	including
inherited	members.

QCanvasView()
~QCanvasView()
acceptDrops()
addChild()
adjustSize()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
bottomMargin()
canvas()
caption()
center()
checkConnectArgs()
child()
childAt()
childEvent()
childIsVisible()
childX()
childY()
children()
childrenRect()
childrenRegion()
className()
clearFocus()

clearMask()
clearWFlags()
clipper()
close()
closeEvent()
cmd()
colorGroup()
connect()
connectNotify()
constPolish()
contentsContextMenuEvent()
contentsDragEnterEvent()
contentsDragLeaveEvent()
contentsDragMoveEvent()
contentsDropEvent()
contentsHeight()
contentsMouseDoubleClickEvent()
contentsMouseMoveEvent()
contentsMousePressEvent()
contentsMouseReleaseEvent()
contentsMoving()
contentsRect()
contentsToViewport()
contentsWheelEvent()
contentsWidth()
contentsX()
contentsY()
contextMenuEvent()
cornerWidget()
create()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
dragAutoScroll()

dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawContents()
drawContentsOffset()
drawFrame()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enableClipper()
enabledChange()
ensureVisible()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()
fontChange()
fontInfo()
fontMetrics()
foregroundColor()
frameChanged()
frameGeometry()
frameRect()
frameShadow()
frameShape()
frameSize()
frameStyle()

frameWidth()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
hScrollBarMode()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
hasStaticBackground()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
horizontalScrollBar()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
insertChild()
installEventFilter()
inverseWorldMatrix()
isA()
isActiveWindow()
isDesktop()
isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()

isModal()
isPopup()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
leftMargin()
lineWidth()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
margin()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
midLineWidth()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()

mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveChild()
moveEvent()
name()
normalizeSignalSlot()
objectTrees()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
polish()
pos()
property()
queryList()
qwsEvent()
raise()
recreate()
rect()
releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()
repaint()
repaintContents()
reparent()
resetInputContext()
resize()
resizeContents()

resizeEvent()
resizePolicy()
rightMargin()
scroll()
scrollBy()
sender()
setAcceptDrops()
setActiveWindow()
setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCanvas()
setCaption()
setContentsPos()
setCornerWidget()
setCursor()
setDisabled()
setDragAutoScroll()
setEnabled()
setEraseColor()
setErasePixmap()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setFrameRect()
setFrameShadow()
setFrameShape()
setFrameStyle()
setGeometry()
setHBarGeometry()
setHScrollBarMode()
setIcon()

setIconText()
setKeyCompression()
setLineWidth()
setMargin()
setMargins()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMidLineWidth()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProperty()
setResizePolicy()
setSizeIncrement()
setSizePolicy()
setStaticBackground()
setStyle()
setTabOrder()
setUpdatesEnabled()
setVBarGeometry()
setVScrollBarMode()
setWFlags()
setWorldMatrix()
show()
showChild()
showEvent()
showFullScreen()
showMaximized()
showMinimized()
showNormal()

signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()
startTimer()
style()
styleChange()
tabletEvent()
testWFlags()
timerEvent()
topLevelWidget()
topMargin()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateContents()
updateGeometry()
updateMask()
updateScrollBars()
vScrollBarMode()
verticalScrollBar()
viewport()
viewportPaintEvent()
viewportResizeEvent()
viewportSize()
viewportToContents()
visibleHeight()
visibleRect()
visibleWidth()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()

worldMatrix()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QCanvas
This	is	the	complete	list	of	member	functions	for	QCanvas,	including	inherited
members.

QCanvas()
~QCanvas()
advance()
allItems()
backgroundColor()
backgroundPixmap()
blockSignals()
checkConnectArgs()
child()
childEvent()
children()
chunkSize()
className()
collisions()
connect()
connectNotify()
customEvent()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
drawArea()
drawBackground()
drawForeground()
dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
height()
highPriority()
inherits()

insertChild()
installEventFilter()
isA()
isWidgetType()
killTimer()
killTimers()
metaObject()
name()
normalizeSignalSlot()
objectTrees()
onCanvas()
parent()
property()
queryList()
rect()
removeChild()
removeEventFilter()
resize()
resized()
retune()
sender()
setAdvancePeriod()
setAllChanged()
setBackgroundColor()
setBackgroundPixmap()
setChanged()
setDoubleBuffering()
setName()
setProperty()
setTile()
setTiles()
setUnchanged()
setUpdatePeriod()
signalsBlocked()
size()
startTimer()
tile()
tileHeight()
tileWidth()

tilesHorizontally()
tilesVertically()
timerEvent()
tr()
trUtf8()
update()
validChunk()
width()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QCanvasText

This	is	the	complete	list	of	member	functions	for	QCanvasText,	including
inherited	members.

QCanvasText()
~QCanvasText()
active()
advance()
animated()
boundingRect()
boundingRectAdvanced()
canvas()
collidesWith()
collisions()
color()
draw()
enabled()
font()
hide()
isActive()
isEnabled()
isSelected()
isVisible()
move()
moveBy()
rtti()
selected()
setActive()
setAnimated()
setCanvas()
setColor()
setEnabled()
setFont()

setSelected()
setText()
setTextFlags()
setVelocity()
setVisible()
setX()
setXVelocity()
setY()
setYVelocity()
setZ()
show()
text()
textFlags()
update()
visible()
x()
xVelocity()
y()
yVelocity()
z()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QColor
This	is	the	complete	list	of	member	functions	for	QColor,	including	inherited
members.

QColor()
alloc()
blue()
cleanup()
currentAllocContext()
dark()
destroyAllocContext()
enterAllocContext()
getHsv()
green()
hsv()
initialize()
isValid()
leaveAllocContext()
light()
maxColors()
name()
numBitPlanes()
operator!=()
operator=()
operator==()
pixel()
red()
rgb()
setHsv()
setNamedColor()
setRgb()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QString
QString

QString()
~QString()
append()
arg()
ascii()
at()
compare()
compose()
constref()
contains()
copy()
data()
endsWith()
fill()
find()
findRev()
fromLatin1()
fromLocal8Bit()
fromUtf8()
insert()
isEmpty()
isNull()
latin1()
left()
leftJustify()
length()
local8Bit()
localeAwareCompare()
lower()
mid()
number()
operator	const	char	*()

operator!()
operator+=()
operator=()
operator[]()
prepend()
ref()
remove()
replace()
right()
rightJustify()
section()
setExpand()
setLatin1()
setLength()
setNum()
setUnicode()
setUnicodeCodes()
simplifyWhiteSpace()
sprintf()
startsWith()
stripWhiteSpace()
toDouble()
toFloat()
toInt()
toLong()
toShort()
toUInt()
toULong()
toUShort()
truncate()
unicode()
upper()
utf8()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

A	simple	NNTP	implementation
This	example	shows	how	to	implement	your	own	QNetworkProtocol.	The
protocol	that	was	chosen	for	this	example	is	NTTP.	Please	note	that	this
implementation	is	very	simple	since	it	is	designed	to	be	an	example.	It	should
not	be	used	as	a	real	NNTP	implemention.

Header	file	(nntp.h):

/**

**	$Id:		qt/nntp.h			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	NNTP_H

#define	NNTP_H

#include	<qsocket.h>

#include	<qnetworkprotocol.h>

class	Nntp	:	public	QNetworkProtocol

{

				Q_OBJECT

public:

				Nntp();

				virtual	~Nntp();

				virtual	int	supportedOperations()	const;

protected:

				virtual	void	operationListChildren(QNetworkOperation	*op);

				virtual	void	operationGet(QNetworkOperation	*op);

				QSocket	*commandSocket;

				bool	connectionReady;

				bool	readGroups;

				bool	readArticle;

private:

				bool	checkConnection(QNetworkOperation	*op);

				void	close();

				void	parseGroups();

				void	parseArticle();

protected	slots:

				void	hostFound();

				void	connected();

				void	closed();

				void	readyRead();

				void	error(int);

};

#endif

Implementation	(nntp.cpp):

/**

**	$Id:		qt/nntp.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"nntp.h"

#include	<qurlinfo.h>

#include	<stdlib.h>

#include	<qurloperator.h>

#include	<qstringlist.h>

#include	<qregexp.h>

Nntp::Nntp()

				:	QNetworkProtocol(),	connectionReady(FALSE),

						readGroups(FALSE),	readArticle(FALSE)

{

				//	create	the	command	socket	and	connect	to	its	signals

				commandSocket	=	new	QSocket(this);

				connect(commandSocket,	SIGNAL(hostFound()),

													this,	SLOT(hostFound()));

				connect(commandSocket,	SIGNAL(connected()),

													this,	SLOT(connected()));

				connect(commandSocket,	SIGNAL(connectionClosed()),

													this,	SLOT(closed()));

				connect(commandSocket,	SIGNAL(readyRead()),

													this,	SLOT(readyRead()));

				connect(commandSocket,	SIGNAL(error(int)),

													this,	SLOT(error(int)));

}

Nntp::~Nntp()

{

				close();

				delete	commandSocket;

}

void	Nntp::operationListChildren(QNetworkOperation	*)

{

				//	create	a	command

				QString	path	=	url()->path(),	cmd;

				if	(path.isEmpty()	||	path	==	"/")	{

								//	if	the	path	is	empty	or	we	are	in	the	root	dir,

								//	we	want	to	read	the	list	of	available	newsgroups

								cmd	=	"list	newsgroups\r\n";

				}	else	if	(url()->isDir())	{

								//	if	the	path	is	a	directory	(in	our	case	a	news	group)

								//	we	want	to	list	the	articles	of	this	group

								path	=	path.replace(QRegExp("/"),	"");

								cmd	=	"listgroup	"	+	path	+	"\r\n";

				}	else

								return;

				//	write	the	command	to	the	socket

				commandSocket->writeBlock(cmd.latin1(),	cmd.length());

				readGroups	=	TRUE;

}

void	Nntp::operationGet(QNetworkOperation	*op)

{

				//	get	the	dirPath	of	the	URL	(this	is	our	news	group)

				//	and	the	filename	(which	is	the	article	we	want	to	read)

				QUrl	u(op->arg(0));

				QString	dirPath	=	u.dirPath(),	file	=	u.fileName();

				dirPath	=	dirPath.replace(QRegExp("/"),	"");

				//	go	to	the	group	in	which	the	article	is

				QString	cmd;

				cmd	=	"group	"	+	dirPath	+	"\r\n";

				commandSocket->writeBlock(cmd.latin1(),	cmd.length());

				//	read	the	head	of	the	article

				cmd	=	"article	"	+	file	+	"\r\n";

				commandSocket->writeBlock(cmd.latin1(),	cmd.length());

				readArticle	=	TRUE;

}

bool	Nntp::checkConnection(QNetworkOperation	*)

{

				//	we	are	connected,	return	TRUE

				if	(commandSocket->isOpen()	&&	connectionReady)

								return	TRUE;

				//	seems	that	there	is	no	chance	to	connect

				if	(commandSocket->isOpen())

								return	FALSE;

				//	don't	call	connectToHost()	if	we	are	already	trying	to	connect

				if	(commandSocket->state()	==	QSocket::Connecting)

								return	FALSE;

				//	start	connecting

				connectionReady	=	FALSE;

				commandSocket->connectToHost(url()->host(),

																																		url()->port()	!=	-1	?	url()->port()	:	119);

				return	FALSE;

}

void	Nntp::close()

{

				//	close	the	command	socket

				if	(commandSocket->isOpen())	{

								commandSocket->writeBlock("quit\r\n",	strlen("quit\r\n"));

								commandSocket->close();

				}

}

int	Nntp::supportedOperations()	const

{

				//	we	only	support	listing	children	and	getting	data

				return	OpListChildren	|	OpGet;

}

void	Nntp::hostFound()

{

				if	(url())

								emit	connectionStateChanged(ConHostFound,	tr("Host	%1	found").arg(

				else

								emit	connectionStateChanged(ConHostFound,	tr("Host	found"));

}

void	Nntp::connected()

{

				if	(url())

								emit	connectionStateChanged(ConConnected,	tr("Connected	to	host	%1").arg(

				else

								emit	connectionStateChanged(ConConnected,	tr("Connected	to	host"));

}

void	Nntp::closed()

{

				if	(url())

								emit	connectionStateChanged(ConClosed,	tr("Connection	to	%1	closed").arg(

				else

								emit	connectionStateChanged(ConClosed,	tr("Connection	closed"));

}

void	Nntp::readyRead()

{

				//	new	data	arrived	on	the	command	socket

				//	of	we	should	read	the	list	of	available	groups,	let's	do	so

				if	(readGroups)	{

								parseGroups();

								return;

				}

				//	of	we	should	read	an	article,	let's	do	so

				if	(readArticle)	{

								parseArticle();

								return;

				}

				//	read	the	new	data	from	the	socket

				QCString	s;

				s.resize(commandSocket->bytesAvailable());

				commandSocket->readBlock(s.data(),	commandSocket->bytesAvailable

				if	(!url())

								return;

				//	of	the	code	of	the	server	response	was	200,	we	know	that	the

				//	server	is	ready	to	get	commands	from	us	now

				if	(s.left(3)	==	"200")

								connectionReady	=	TRUE;

}

void	Nntp::parseGroups()

{

				if	(!commandSocket->canReadLine())

								return;

				//	read	one	line	after	the	other

				while	(commandSocket->canReadLine())	{

								QString	s	=	commandSocket->readLine();

								//	if	the		line	starts	with	a	dot,	all	groups	or	articles	have	been	listed,

								//	so	we	finished	processing	the	listChildren()	command

								if	(s[0]	==	'.')	{

												readGroups	=	FALSE;

												operationInProgress()->setState(StDone);

												emit	finished(operationInProgress());

												return;

								}

								//	if	the	code	of	the	server	response	is	215	or	211

								//	the	next	line	will	be	the	first	group	or	article	(depending	on	what	we	read).

								//	So	let	others	know	that	we	start	reading	now...

								if	(s.left(3)	==	"215"	||	s.left(3)	==	"211")	{

												operationInProgress()->setState(StInProgress);

												emit	start(operationInProgress());

												continue;

								}

								//	parse	the	line	and	create	a	QUrlInfo	object

								//	which	describes	the	child	(group	or	article)

								bool	tab	=	s.find('\t')	!=	-1;

								QString	group	=	s.mid(0,	s.find(tab	?	'\t'	:	'	'));

								QUrlInfo	inf;

								inf.setName(group);

								QString	path	=	url()->path();

								inf.setDir(path.isEmpty()	||	path	==	"/");

								inf.setSymLink(FALSE);

								inf.setFile(!inf.isDir());

								inf.setWritable(FALSE);

								inf.setReadable(TRUE);

								//	let	others	know	about	our	new	child

								emit	newChild(inf,	operationInProgress());

				}

}

void	Nntp::parseArticle()

{

				if	(!commandSocket->canReadLine())

								return;

				//	read	an	article	one	line	after	the	other

				while	(commandSocket->canReadLine())	{

								QString	s	=	commandSocket->readLine();

								//	if	the		line	starts	with	a	dot,	we	finished	reading	something

								if	(s[0]	==	'.')	{

												readArticle	=	FALSE;

												operationInProgress()->setState(StDone);

												emit	finished(operationInProgress());

												return;

								}

								if	(s.right(1)	==	"\n")

												s.remove(s.length()	-	1,	1);

								//	emit	the	new	data	of	the	article	which	we	read

								emit	data(QCString(s.ascii()),	operationInProgress());

				}

}

void	Nntp::error(int	code)

{

				if	(code	==	QSocket::ErrHostNotFound	||

									code	==	QSocket::ErrConnectionRefused)	{

								//	this	signal	is	called	if	connecting	to	the	server	failed

								if	(operationInProgress())	{

												QString	msg	=	tr("Host	not	found	or	couldn't	connect	to:	\n"	+	url()->host());

												operationInProgress()->setState(StFailed);

												operationInProgress()->setProtocolDetail(msg);

												operationInProgress()->setErrorCode((int)ErrHostNotFound);

												clearOperationQueue();

												emit	finished(operationInProgress());

								}

				}

}

See	also	Network	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QValueVector

This	is	the	complete	list	of	member	functions	for	QValueVector,	including
inherited	members.

QValueVector()
~QValueVector()
at()
back()
begin()
capacity()
clear()
detach()
empty()
end()
erase()
front()
insert()
operator=()
operator==()
operator[]()
pop_back()
push_back()
reserve()
resize()
size()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QTextStream
QTextStream

QTextStream()
~QTextStream()
atEnd()
device()
eof()
fill()
flags()
operator<<()
operator>>()
precision()
read()
readLine()
readRawBytes()
reset()
setCodec()
setDevice()
setEncoding()
setf()
skipWhiteSpace()
unsetDevice()
unsetf()
width()
writeRawBytes()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QStringList

This	is	the	complete	list	of	member	functions	for	QStringList,	including
inherited	members.

QStringList()
append()
at()
back()
begin()
clear()
contains()
count()
empty()
end()
erase()
find()
findIndex()
first()
fromLast()
fromStrList()
front()
grep()
insert()
isEmpty()
join()
last()
operator!=()
operator+()
operator+=()
operator<<()
operator=()
operator==()
operator[]()

pop_back()
pop_front()
prepend()
push_back()
push_front()
remove()
size()
sort()
split()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QValueList
QValueList

QValueList()
~QValueList()
append()
at()
back()
begin()
clear()
contains()
count()
empty()
end()
erase()
find()
findIndex()
first()
fromLast()
front()
insert()
isEmpty()
last()
operator!=()
operator+()
operator+=()
operator<<()
operator=()
operator==()
operator[]()
pop_back()
pop_front()
prepend()
push_back()
push_front()

remove()
size()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QMainWindow
QMainWindow

QMainWindow()
~QMainWindow()
acceptDrops()
addDockWindow()
addToolBar()
adjustSize()
appropriate()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
bottomDock()
caption()
centralWidget()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clearFocus()
clearMask()
clearWFlags()
close()
closeEvent()
cmd()

colorGroup()
connect()
connectNotify()
constPolish()
contextMenuEvent()
create()
createDockWindowMenu()
cursor()
customEvent()
customWhatsThis()
customize()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
dockWindowPositionChanged()
dockWindows()
dockWindowsMovable()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()

focusProxy()
focusWidget()
font()
fontChange()
fontInfo()
fontMetrics()
foregroundColor()
frameGeometry()
frameSize()
geometry()
getLocation()
getWFlags()
grabKeyboard()
grabMouse()
handle()
hasDockWindow()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
insertChild()
installEventFilter()
isA()
isActiveWindow()
isCustomizable()
isDesktop()
isDialog()
isDockEnabled()

isDockMenuEnabled()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()
isPopup()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
leftDock()
lineUpDockWindows()
lineUpToolBars()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
maximumHeight()
maximumSize()
maximumWidth()
menuAboutToShow()

menuBar()
metaObject()
metric()
microFocusHint()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveDockWindow()
moveEvent()
moveToolBar()
name()
normalizeSignalSlot()
objectTrees()
opaqueMoving()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
pixmapSizeChanged()
polish()
pos()
property()
queryList()
qwsEvent()

raise()
recreate()
rect()
releaseKeyboard()
releaseMouse()
removeChild()
removeDockWindow()
removeEventFilter()
removeToolBar()
repaint()
reparent()
resetInputContext()
resize()
resizeEvent()
rightDock()
rightJustification()
scroll()
sender()
setAcceptDrops()
setActiveWindow()
setAppropriate()
setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()
setCentralWidget()
setCursor()
setDisabled()
setDockEnabled()
setDockMenuEnabled()
setDockWindowsMovable()
setEnabled()
setEraseColor()
setErasePixmap()
setFixedHeight()
setFixedSize()

setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setGeometry()
setIcon()
setIconText()
setKeyCompression()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setOpaqueMoving()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProperty()
setRightJustification()
setSizeIncrement()
setSizePolicy()
setStyle()
setTabOrder()
setToolBarsMovable()
setUpLayout()
setUpdatesEnabled()
setUsesBigPixmaps()
setUsesTextLabel()
setWFlags()
show()
showDockMenu()
showEvent()

showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()
startTimer()
statusBar()
style()
styleChange()
tabletEvent()
testWFlags()
timerEvent()
toolBarPositionChanged()
toolBars()
toolBarsMovable()
toolTipGroup()
topDock()
topLevelWidget()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateGeometry()
updateMask()
usesBigPixmaps()
usesTextLabel()
usesTextLabelChanged()
visibleRect()
whatsThis()
wheelEvent()
width()
winEvent()

winId()
windowActivationChange()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QPopupMenu

This	is	the	complete	list	of	member	functions	for	QPopupMenu,	including
inherited	members.

QPopupMenu()
~QPopupMenu()
aboutToHide()
aboutToShow()
accel()
acceptDrops()
activateItemAt()
activated()
adjustSize()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
caption()
changeItem()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clear()
clearFocus()

clearMask()
clearWFlags()
close()
closeEvent()
cmd()
colorGroup()
columns()
connect()
connectItem()
connectNotify()
constPolish()
contentsRect()
contextMenuEvent()
count()
create()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectItem()
disconnectNotify()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawContents()
drawFrame()
drawItem()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()

event()
eventFilter()
exec()
find()
findItem()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()
fontChange()
fontInfo()
fontMetrics()
foregroundColor()
frameChanged()
frameGeometry()
frameRect()
frameShadow()
frameShape()
frameSize()
frameStyle()
frameWidth()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
highlighted()

icon()
iconSet()
iconText()
iconify()
idAt()
imComposeEvent()
imEndEvent()
imStartEvent()
indexOf()
inherits()
insertChild()
insertItem()
insertSeparator()
insertTearOffHandle()
installEventFilter()
isA()
isActiveWindow()
isCheckable()
isDesktop()
isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isItemActive()
isItemChecked()
isItemEnabled()
isMaximized()
isMinimized()
isModal()
isPopup()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()

itemHeight()
itemParameter()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
lineWidth()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
margin()
maximumHeight()
maximumSize()
maximumWidth()
menuContentsChanged()
menuDelPopup()
menuInsPopup()
menuStateChanged()
metaObject()
metric()
microFocusHint()
midLineWidth()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()

move()
moveEvent()
name()
normalizeSignalSlot()
objectTrees()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
pixmap()
polish()
popup()
pos()
property()
queryList()
qwsEvent()
raise()
recreate()
rect()
releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()
removeItem()
removeItemAt()
repaint()
reparent()
resetInputContext()
resize()
resizeEvent()
scroll()

sender()
setAccel()
setAcceptDrops()
setActiveItem()
setActiveWindow()
setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()
setCheckable()
setCursor()
setDisabled()
setEnabled()
setEraseColor()
setErasePixmap()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setFrameRect()
setFrameShadow()
setFrameShape()
setFrameStyle()
setGeometry()
setIcon()
setIconText()
setId()
setItemChecked()
setItemEnabled()
setItemParameter()
setKeyCompression()
setLineWidth()
setMargin()

setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMidLineWidth()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProperty()
setSizeIncrement()
setSizePolicy()
setStyle()
setTabOrder()
setUpdatesEnabled()
setWFlags()
setWhatsThis()
show()
showEvent()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()
startTimer()
style()
styleChange()
tabletEvent()

testWFlags()
text()
timerEvent()
topLevelWidget()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateGeometry()
updateItem()
updateMask()
visibleRect()
whatsThis()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()

x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QAction
QAction

QAction()
~QAction()
accel()
activated()
addTo()
addedTo()
blockSignals()
checkConnectArgs()
child()
childEvent()
children()
className()
connect()
connectNotify()
customEvent()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
highPriority()
iconSet()
inherits()
insertChild()
installEventFilter()
isA()
isEnabled()
isOn()
isToggleAction()

isWidgetType()
killTimer()
killTimers()
menuText()
metaObject()
name()
normalizeSignalSlot()
objectTrees()
parent()
property()
queryList()
removeChild()
removeEventFilter()
removeFrom()
sender()
setAccel()
setEnabled()
setIconSet()
setMenuText()
setName()
setOn()
setProperty()
setStatusTip()
setText()
setToggleAction()
setToolTip()
setWhatsThis()
signalsBlocked()
startTimer()
statusTip()
text()
timerEvent()
toggle()
toggled()
toolTip()
tr()
trUtf8()
whatsThis()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

A	Tiny	Example	Featuring	a	Toggle
Action

This	example	program	demonstrates	the	use	of	QAction	in	its	incarnation	as	a
toggle	action.

Main:

#include	<qapplication.h>

#include	<qmainwindow.h>

#include	<qtoolbar.h>

#include	<qaction.h>

#include	"labelonoff.xpm"

int	main(int	argc,	char	**argv)

{

				QApplication	app(argc,	argv);

				QMainWindow	*	window	=	new	QMainWindow;

				window->setCaption("Qt	Example	-	Toggleaction");

				QToolBar	*	toolbar	=	new	QToolBar(window);

				QAction	*	labelonoffaction	=	new	QAction(window,	"labelonoff",	TRUE);

				labelonoffaction->setText("labels	on/off");

				labelonoffaction->setAccel(Qt::ALT+Qt::Key_L);

				labelonoffaction->setIconSet((QPixmap)	labelonoff_xpm);

				QObject::connect(labelonoffaction,	SIGNAL(toggled(bool)),

																						window,	SLOT(setUsesTextLabel(bool)));

				labelonoffaction->addTo(toolbar);

				app.setMainWidget(window);

				window->show();

				return	app.exec();

}

See	also	QAction	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QPrinter
This	is	the	complete	list	of	member	functions	for	QPrinter,	including	inherited
members.

QPrinter()
~QPrinter()
abort()
aborted()
cmd()
colorMode()
creator()
docName()
fromPage()
fullPage()
handle()
isExtDev()
margins()
maxPage()
minPage()
newPage()
numCopies()
orientation()
outputFileName()
outputToFile()
pageOrder()
pageSize()
paintingActive()
paperSource()
printProgram()
printerName()
printerSelectionOption()
resolution()
setColorMode()
setCreator()
setDocName()

setFromTo()
setFullPage()
setMinMax()
setNumCopies()
setOrientation()
setOutputFileName()
setOutputToFile()
setPageOrder()
setPageSize()
setPaperSource()
setPrintProgram()
setPrinterName()
setPrinterSelectionOption()
setResolution()
setup()
toPage()
winPageSize()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QActionGroup
QActionGroup

QActionGroup()
~QActionGroup()
accel()
activated()
add()
addSeparator()
addTo()
addedTo()
blockSignals()
checkConnectArgs()
child()
childEvent()
children()
className()
connect()
connectNotify()
customEvent()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
highPriority()
iconSet()
inherits()
insert()
insertChild()
installEventFilter()
isA()

isEnabled()
isExclusive()
isOn()
isToggleAction()
isWidgetType()
killTimer()
killTimers()
menuText()
metaObject()
name()
normalizeSignalSlot()
objectTrees()
parent()
property()
queryList()
removeChild()
removeEventFilter()
removeFrom()
selected()
sender()
setAccel()
setEnabled()
setExclusive()
setIconSet()
setMenuText()
setName()
setOn()
setProperty()
setStatusTip()
setText()
setToggleAction()
setToolTip()
setUsesDropDown()
setWhatsThis()
signalsBlocked()
startTimer()
statusTip()
text()
timerEvent()

toggle()
toggled()
toolTip()
tr()
trUtf8()
usesDropDown()
whatsThis()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

A	Tiny	Example	Featuring
QActionGroup

This	example	program	shows	how	to	use	an	exclusive	action	group.

Detailed	explanations	of	the	code	can	be	found	in	the	walkthrough.

Main:

/*

Id

*/

#include	<qapplication.h>

#include	"editor.h"

int	main(int	argc,	char	**	argv)

{

				QApplication	app(argc,	argv);

				Editor	editor;

				editor.setCaption("Qt	Example	-	Actiongroup");

				app.setMainWidget(&editor);

				editor.show();

				return	app.exec();

}

Header	file:

/*

Id

*/

#ifndef	EDITOR_H

#define	EDITOR_H

#include	<qmainwindow.h>

class	QTextEdit;

class	QAction;

class	Editor	:	public	QMainWindow

{

				Q_OBJECT

public:

				Editor();

private	slots:

				void	setFontColor(QAction	*);

private:

				QTextEdit	*	editor;

				QAction	*	setRedFont;

};

#endif

Implementation:

/*

Id

*/

/*	XPM	*/

static	const	char	*	black_xpm[]	=	{

"32	32	2	1",

"							c	None",

".						c	#020202",

"................................",

"................................",

"................................",

"................................",

"................................",

"................................",

"................................",

"................................",

"................................",

"................................",

"................................",

"................................",

"................................",

"................................",

"................................",

"................................",

"................................",

"................................",

"................................",

"................................",

"................................",

"................................",

"................................",

"................................",

"................................",

"................................",

"................................",

"................................",

"................................",

"................................",

"................................",

"................................"};

/*	XPM	*/

static	const	char	*	red_xpm[]	=	{

"32	32	6	1",

"							c	None",

".						c	#EE0928",

"+						c	#EF0928",

"@						c	#EE0A29",

"#						c	#EE0B2A",

"$						c	#ED0C2B",

"........................+.......",

".+.++++++++++++++++++++++++++++.",

".++++++++++++++++++++++++++++++.",

".++++++++++++++++++++++++++++++.",

".++++++++++++++++++++++++++++++.",

".++++++++++++++++++++++++++++++.",

".++++++++++++++++++++++++++++++.",

".++++++++.+++++++++++++++++++++.",

".++++++++++++++++++++++++++++++.",

"+++++++++++++++++++++++++++++++.",

".++++++++++++++++++++++++++++++.",

".++++++++++++++++++++++++++++++.",

".++++++++++++++++++++++++++++++.",

".++++++.+++++++++++++++++++++++.",

".++++++++++++++++++++++++++++++.",

".++++++++++++++++++++++++++++++.",

".++++++++++++++++++++++++++++++.",

".++++++++++++++++++++++++++++++.",

".++++++++++++++++.+++++++++++++.",

".++++++++++++++++++++++++++++++.",

".++++++++++++++++++++++++++++++.",

".++++++++++++++++++++++++++++++.",

".++++++++++++++++++++++++++++++@",

".+++++++++++++++++++++++++++++.#",

".+++++++++++++++++++++++++.+++.$",

".+++++++++++++++++++++++++++++#$",

".+++++++++++++++++++++++++++++.#",

".+++++++++++++++++++++++++++++.#",

".++++++++.+++++++++++++++++++++@",

".++++++.+++++++++++++++++++++++.",

".++++++++++++++++++++++++++++++.",

"..........+.............+......."};

#include	"editor.h"

#include	<qtextedit.h>

#include	<qmenubar.h>

#include	<qpopupmenu.h>

#include	<qtoolbar.h>

#include	<qaction.h>

Editor::Editor()

				:	QMainWindow(0,	"main	window")

{

				QActionGroup	*	colors	=	new	QActionGroup(this,	"colors",	TRUE);

				QAction	*	setBlackFont	=	new	QAction("black",	QPixmap((const	char**)black_xpm),

																																										"Font	color:	black",	CTRL+Key_B,

																																										colors,	"blackfontcolor",	TRUE);

				setRedFont	=	new	QAction("red",	QPixmap((const	char**)red_xpm),	"Font	color:	red",

																														CTRL+Key_R,	colors,	"redfontcolor",	TRUE);

				QObject::connect(colors,	SIGNAL(selected(QAction	*)),

																						this,	SLOT(setFontColor(QAction	*)));

				QToolBar	*	toolbar	=	new	QToolBar(this,	"toolbar");

				colors->addTo(toolbar);

				QPopupMenu	*	font	=	new	QPopupMenu(this);

				menuBar()->insertItem("&Font",	font);

				colors->setUsesDropDown(TRUE);

				colors->setMenuText("Font	Color");

				colors->addTo(font);

				editor	=	new	QTextEdit(this,	"editor");

				setCentralWidget(editor);

}

void	Editor::setFontColor(QAction	*	coloraction)

{

				if	(coloraction	==	setRedFont)

								editor->setColor(red);

				else

								editor->setColor(black);

}

See	also	QAction	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QToolBar
QToolBar

QToolBar()
acceptDrops()
addSeparator()
adjustSize()
area()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
boxLayout()
caption()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clear()
clearFocus()
clearMask()
clearWFlags()
close()
closeEvent()
closeMode()
cmd()
colorGroup()

connect()
connectNotify()
constPolish()
contentsRect()
contextMenuEvent()
create()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
dock()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawContents()
drawFrame()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
fixedExtent()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()

focusWidget()
font()
fontChange()
fontInfo()
fontMetrics()
foregroundColor()
frameChanged()
frameGeometry()
frameRect()
frameShadow()
frameShape()
frameSize()
frameStyle()
frameWidth()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
insertChild()
installEventFilter()
isA()
isActiveWindow()
isCloseEnabled()

isDesktop()
isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isHorizontalStretchable()
isHorizontallyStretchable()
isMaximized()
isMinimized()
isModal()
isMovingEnabled()
isPopup()
isResizeEnabled()
isStretchable()
isTopLevel()
isUpdatesEnabled()
isVerticalStretchable()
isVerticallyStretchable()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
label()
layout()
leaveEvent()
lineWidth()
lower()
macEvent()
mainWindow()
mapFrom()
mapFromGlobal()

mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
margin()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
midLineWidth()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveEvent()
name()
newLine()
normalizeSignalSlot()
objectTrees()
offset()
opaqueMoving()
orientation()
orientationChanged()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()

paletteChange()
paletteForegroundColor()
parent()
parentWidget()
place()
placeChanged()
polish()
pos()
property()
queryList()
qwsEvent()
raise()
recreate()
rect()
releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()
repaint()
reparent()
resetInputContext()
resize()
resizeEvent()
scroll()
sender()
setAcceptDrops()
setActiveWindow()
setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()
setCloseMode()
setCursor()
setDisabled()
setEnabled()
setEraseColor()

setErasePixmap()
setFixedExtentHeight()
setFixedExtentWidth()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setFrameRect()
setFrameShadow()
setFrameShape()
setFrameStyle()
setGeometry()
setHorizontalStretchable()
setHorizontallyStretchable()
setIcon()
setIconText()
setKeyCompression()
setLabel()
setLineWidth()
setMargin()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMidLineWidth()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setMovingEnabled()
setName()
setNewLine()
setOffset()
setOpaqueMoving()
setOrientation()

setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProperty()
setResizeEnabled()
setSizeIncrement()
setSizePolicy()
setStretchableWidget()
setStyle()
setTabOrder()
setUpdatesEnabled()
setVerticalStretchable()
setVerticallyStretchable()
setWFlags()
setWidget()
show()
showEvent()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()
startTimer()
style()
styleChange()
tabletEvent()
testWFlags()
timerEvent()
topLevelWidget()
tr()
trUtf8()
undock()
unsetCursor()

unsetFont()
unsetPalette()
update()
updateGeometry()
updateMask()
visibilityChanged()
visibleRect()
wheelEvent()
widget()
width()
winEvent()
winId()
windowActivationChange()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QSettings
This	is	the	complete	list	of	member	functions	for	QSettings,	including	inherited
members.

QSettings()
~QSettings()
entryList()
insertSearchPath()
readBoolEntry()
readDoubleEntry()
readEntry()
readListEntry()
readNumEntry()
removeEntry()
removeSearchPath()
subkeyList()
writeEntry()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QMessageBox
QMessageBox

QMessageBox()
~QMessageBox()
about()
aboutQt()
accept()
acceptDrops()
adjustSize()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
buttonText()
caption()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clearFocus()
clearMask()
clearWFlags()
close()
closeEvent()
cmd()
colorGroup()

connect()
connectNotify()
constPolish()
contextMenuEvent()
create()
critical()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
done()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
exec()
extension()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()

font()
fontChange()
fontInfo()
fontMetrics()
foregroundColor()
frameGeometry()
frameSize()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
icon()
iconPixmap()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
information()
inherits()
insertChild()
installEventFilter()
isA()
isActiveWindow()
isDesktop()
isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()

isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()
isPopup()
isSizeGripEnabled()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
maximumHeight()
maximumSize()
maximumWidth()
message()
metaObject()
metric()
microFocusHint()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()

mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveEvent()
name()
normalizeSignalSlot()
objectTrees()
orientation()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
polish()
pos()
property()
query()
queryList()
qwsEvent()
raise()
recreate()
rect()
reject()
releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()
repaint()
reparent()

resetInputContext()
resize()
resizeEvent()
result()
scroll()
sender()
setAcceptDrops()
setActiveWindow()
setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setButtonText()
setCaption()
setCursor()
setDisabled()
setEnabled()
setEraseColor()
setErasePixmap()
setExtension()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setGeometry()
setIcon()
setIconPixmap()
setIconText()
setKeyCompression()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()

setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setOrientation()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProperty()
setResult()
setSizeGripEnabled()
setSizeIncrement()
setSizePolicy()
setStyle()
setTabOrder()
setText()
setTextFormat()
setUpdatesEnabled()
setWFlags()
show()
showEvent()
showExtension()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()
standardIcon()
startTimer()
style()
styleChange()
tabletEvent()

testWFlags()
text()
textFormat()
timerEvent()
topLevelWidget()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateGeometry()
updateMask()
visibleRect()
warning()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()

x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Starting	processes	with	IO	redirection
This	example	shows	you	how	to	start	other	processes	with	Qt	and	how	IO
redirection	is	done.	The	example	tries	to	start	the	uic	(a	tool	that	comes	with	the
Qt	Designer)	on	a	certain	ui	file	and	displays	the	output	of	the	command.

Implementation	(process.cpp):

/**

**	$Id:		qt/process.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qobject.h>

#include	<qprocess.h>

#include	<qvbox.h>

#include	<qtextview.h>

#include	<qpushbutton.h>

#include	<qapplication.h>

#include	<qmessagebox.h>

#include	<stdlib.h>

class	UicManager	:	public	QVBox

{

				Q_OBJECT

public:

				UicManager();

				~UicManager()	{}

public	slots:

				void	readFromStdout();

				void	scrollToTop();

private:

				QProcess	*proc;

				QTextView	*output;

				QPushButton	*quitButton;

};

UicManager::UicManager()

{

				//	Layout

				output	=	new	QTextView(this);

				quitButton	=	new	QPushButton(tr("Quit"),	this);

				connect(quitButton,	SIGNAL(clicked()),

												qApp,	SLOT(quit()));

				resize(500,	500);

				//	QProcess	related	code

				proc	=	new	QProcess(this);

				//	Set	up	the	command	and	arguments.

				//	On	the	command	line	you	would	do:

				//			uic	-tr	i18n	"small_dialog.ui"

				proc->addArgument("uic");

				proc->addArgument("-tr");

				proc->addArgument("i18n");

				proc->addArgument("small_dialog.ui");

				connect(proc,	SIGNAL(readyReadStdout()),

												this,	SLOT(readFromStdout()));

				connect(proc,	SIGNAL(processExited()),

												this,	SLOT(scrollToTop()));

				if	(!proc->start())	{

								//	error	handling

								QMessageBox::critical(0,

																tr("Fatal	error"),

																tr("Could	not	start	the	uic	command."),

																tr("Quit"));

								exit(-1);

				}

}

void	UicManager::readFromStdout()

{

				//	Read	and	process	the	data.

				//	Bear	in	mind	that	the	data	might	be	output	in	chunks.

				output->append(proc->readStdout());

}

void	UicManager::scrollToTop()

{

				output->setContentsPos(0,	0);

}

int	main(int	argc,	char	**argv)

{

				QApplication	a(argc,	argv);

				UicManager	manager;

				a.setMainWidget(&manager);

				manager.show();

				return	a.exec();

}

#include	"process.moc"

See	also	QProcess	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QFileDialog
QFileDialog

QFileDialog()
~QFileDialog()
accept()
acceptDrops()
addFilter()
addLeftWidget()
addRightWidget()
addToolButton()
addWidgets()
adjustSize()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
caption()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clearFocus()
clearMask()
clearWFlags()
close()
closeEvent()

cmd()
colorGroup()
connect()
connectNotify()
constPolish()
contextMenuEvent()
create()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
dir()
dirEntered()
dirPath()
disconnect()
disconnectNotify()
done()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
exec()
extension()
fileHighlighted()
fileSelected()
filesSelected()
filterSelected()

find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()
fontChange()
fontInfo()
fontMetrics()
foregroundColor()
frameGeometry()
frameSize()
geometry()
getExistingDirectory()
getOpenFileName()
getOpenFileNames()
getSaveFileName()
getWFlags()
grabKeyboard()
grabMouse()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
icon()
iconProvider()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()

inherits()
insertChild()
installEventFilter()
isA()
isActiveWindow()
isContentsPreviewEnabled()
isDesktop()
isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isInfoPreviewEnabled()
isMaximized()
isMinimized()
isModal()
isPopup()
isSizeGripEnabled()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()

mapToGlobal()
mapToParent()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mode()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveEvent()
name()
normalizeSignalSlot()
objectTrees()
orientation()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
polish()
pos()
previewMode()

property()
queryList()
qwsEvent()
raise()
recreate()
rect()
reject()
releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()
repaint()
reparent()
rereadDir()
resetInputContext()
resize()
resizeEvent()
resortDir()
result()
scroll()
selectAll()
selectedFile()
selectedFiles()
selectedFilter()
sender()
setAcceptDrops()
setActiveWindow()
setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()
setContentsPreview()
setContentsPreviewEnabled()
setCursor()
setDir()
setDisabled()

setEnabled()
setEraseColor()
setErasePixmap()
setExtension()
setFilter()
setFilters()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setGeometry()
setIcon()
setIconProvider()
setIconText()
setInfoPreview()
setInfoPreviewEnabled()
setKeyCompression()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMode()
setMouseTracking()
setName()
setOrientation()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setPreviewMode()
setProperty()
setResult()

setSelectedFilter()
setSelection()
setShowHiddenFiles()
setSizeGripEnabled()
setSizeIncrement()
setSizePolicy()
setStyle()
setTabOrder()
setUpdatesEnabled()
setUrl()
setViewMode()
setWFlags()
show()
showEvent()
showExtension()
showFullScreen()
showHiddenFiles()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()
startTimer()
style()
styleChange()
tabletEvent()
testWFlags()
timerEvent()
topLevelWidget()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
update()

updateGeometry()
updateMask()
url()
viewMode()
visibleRect()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QFile
QFile

QFile()
~QFile()
at()
atEnd()
close()
decodeName()
encodeName()
exists()
flags()
flush()
getch()
handle()
isAsynchronous()
isBuffered()
isCombinedAccess()
isDirectAccess()
isInactive()
isOpen()
isRaw()
isReadWrite()
isReadable()
isSequentialAccess()
isSynchronous()
isTranslated()
isWritable()
mode()
name()
open()
putch()
readAll()
readBlock()
readLine()

remove()
reset()
resetStatus()
setDecodingFunction()
setEncodingFunction()
setName()
size()
state()
status()
ungetch()
writeBlock()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QMenuData

This	is	the	complete	list	of	member	functions	for	QMenuData,	including
inherited	members.

QMenuData()
~QMenuData()
accel()
activateItemAt()
changeItem()
clear()
connectItem()
count()
disconnectItem()
findItem()
iconSet()
idAt()
indexOf()
insertItem()
insertSeparator()
isItemActive()
isItemChecked()
isItemEnabled()
itemParameter()
menuContentsChanged()
menuDelPopup()
menuInsPopup()
menuStateChanged()
pixmap()
removeItem()
removeItemAt()
setAccel()
setId()
setItemChecked()

setItemEnabled()
setItemParameter()
setWhatsThis()
text()
updateItem()
whatsThis()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QDialog
QDialog

QDialog()
~QDialog()
accept()
acceptDrops()
adjustSize()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
caption()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clearFocus()
clearMask()
clearWFlags()
close()
closeEvent()
cmd()
colorGroup()
connect()
connectNotify()
constPolish()

contextMenuEvent()
create()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
done()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
exec()
extension()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()
fontChange()
fontInfo()
fontMetrics()

foregroundColor()
frameGeometry()
frameSize()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
insertChild()
installEventFilter()
isA()
isActiveWindow()
isDesktop()
isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()
isPopup()

isSizeGripEnabled()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveEvent()

name()
normalizeSignalSlot()
objectTrees()
orientation()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
polish()
pos()
property()
queryList()
qwsEvent()
raise()
recreate()
rect()
reject()
releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()
repaint()
reparent()
resetInputContext()
resize()
resizeEvent()
result()
scroll()
sender()
setAcceptDrops()
setActiveWindow()

setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()
setCursor()
setDisabled()
setEnabled()
setEraseColor()
setErasePixmap()
setExtension()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setGeometry()
setIcon()
setIconText()
setKeyCompression()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setOrientation()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()

setProperty()
setResult()
setSizeGripEnabled()
setSizeIncrement()
setSizePolicy()
setStyle()
setTabOrder()
setUpdatesEnabled()
setWFlags()
show()
showEvent()
showExtension()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()
startTimer()
style()
styleChange()
tabletEvent()
testWFlags()
timerEvent()
topLevelWidget()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateGeometry()
updateMask()
visibleRect()
wheelEvent()

width()
winEvent()
winId()
windowActivationChange()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QCanvasItemList

This	is	the	complete	list	of	member	functions	for	QCanvasItemList,	including
inherited	members.

append()
at()
back()
begin()
clear()
contains()
count()
empty()
end()
erase()
find()
findIndex()
first()
fromLast()
front()
insert()
isEmpty()
last()
operator!=()
operator+()
operator+=()
operator<<()
operator=()
operator==()
operator[]()
pop_back()
pop_front()
prepend()
push_back()

push_front()
remove()
size()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QPen
This	is	the	complete	list	of	member	functions	for	QPen,	including	inherited
members.

QPen()
~QPen()
capStyle()
color()
joinStyle()
operator!=()
operator=()
operator==()
setCapStyle()
setColor()
setJoinStyle()
setStyle()
setWidth()
style()
width()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QCanvasRectangle

This	is	the	complete	list	of	member	functions	for	QCanvasRectangle,	including
inherited	members.

QCanvasRectangle()
~QCanvasRectangle()
active()
advance()
animated()
areaPoints()
areaPointsAdvanced()
boundingRect()
boundingRectAdvanced()
brush()
canvas()
chunks()
collidesWith()
collisions()
draw()
drawShape()
enabled()
height()
hide()
isActive()
isEnabled()
isSelected()
isVisible()
move()
moveBy()
pen()
rect()
rtti()
selected()

setActive()
setAnimated()
setBrush()
setCanvas()
setEnabled()
setPen()
setSelected()
setSize()
setVelocity()
setVisible()
setWinding()
setX()
setXVelocity()
setY()
setYVelocity()
setZ()
show()
size()
update()
visible()
width()
winding()
x()
xVelocity()
y()
yVelocity()
z()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QCanvasPolygonalItem

This	is	the	complete	list	of	member	functions	for	QCanvasPolygonalItem,
including	inherited	members.

QCanvasPolygonalItem()
~QCanvasPolygonalItem()
active()
advance()
animated()
areaPoints()
areaPointsAdvanced()
boundingRect()
boundingRectAdvanced()
brush()
canvas()
collidesWith()
collisions()
draw()
drawShape()
enabled()
hide()
isActive()
isEnabled()
isSelected()
isVisible()
move()
moveBy()
pen()
rtti()
selected()
setActive()
setAnimated()
setBrush()

setCanvas()
setEnabled()
setPen()
setSelected()
setVelocity()
setVisible()
setWinding()
setX()
setXVelocity()
setY()
setYVelocity()
setZ()
show()
update()
visible()
winding()
x()
xVelocity()
y()
yVelocity()
z()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QCanvasItem

This	is	the	complete	list	of	member	functions	for	QCanvasItem,	including
inherited	members.

QCanvasItem()
~QCanvasItem()
active()
advance()
animated()
boundingRect()
boundingRectAdvanced()
canvas()
collidesWith()
collisions()
draw()
enabled()
hide()
isActive()
isEnabled()
isSelected()
isVisible()
move()
moveBy()
rtti()
selected()
setActive()
setAnimated()
setCanvas()
setEnabled()
setSelected()
setVelocity()
setVisible()
setX()

setXVelocity()
setY()
setYVelocity()
setZ()
show()
update()
visible()
x()
xVelocity()
y()
yVelocity()
z()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QResizeEvent

This	is	the	complete	list	of	member	functions	for	QResizeEvent,	including
inherited	members.

QResizeEvent()
oldSize()
size()
spontaneous()
type()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QContextMenuEvent

This	is	the	complete	list	of	member	functions	for	QContextMenuEvent,
including	inherited	members.

QContextMenuEvent()
accept()
consume()
globalPos()
globalX()
globalY()
ignore()
isAccepted()
isConsumed()
pos()
reason()
spontaneous()
state()
type()
x()
y()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QScrollView
QScrollView

QScrollView()
~QScrollView()
acceptDrops()
addChild()
adjustSize()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
bottomMargin()
caption()
center()
checkConnectArgs()
child()
childAt()
childEvent()
childIsVisible()
childX()
childY()
children()
childrenRect()
childrenRegion()
className()
clearFocus()
clearMask()
clearWFlags()
clipper()
close()

closeEvent()
cmd()
colorGroup()
connect()
connectNotify()
constPolish()
contentsContextMenuEvent()
contentsDragEnterEvent()
contentsDragLeaveEvent()
contentsDragMoveEvent()
contentsDropEvent()
contentsHeight()
contentsMouseDoubleClickEvent()
contentsMouseMoveEvent()
contentsMousePressEvent()
contentsMouseReleaseEvent()
contentsMoving()
contentsRect()
contentsToViewport()
contentsWheelEvent()
contentsWidth()
contentsX()
contentsY()
contextMenuEvent()
cornerWidget()
create()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
dragAutoScroll()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawContents()

drawContentsOffset()
drawFrame()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enableClipper()
enabledChange()
ensureVisible()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()
fontChange()
fontInfo()
fontMetrics()
foregroundColor()
frameChanged()
frameGeometry()
frameRect()
frameShadow()
frameShape()
frameSize()
frameStyle()
frameWidth()
geometry()
getWFlags()
grabKeyboard()

grabMouse()
hScrollBarMode()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
hasStaticBackground()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
horizontalScrollBar()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
insertChild()
installEventFilter()
isA()
isActiveWindow()
isDesktop()
isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()
isPopup()
isTopLevel()
isUpdatesEnabled()
isVisible()

isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
leftMargin()
lineWidth()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
margin()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
midLineWidth()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveChild()

moveEvent()
name()
normalizeSignalSlot()
objectTrees()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
polish()
pos()
property()
queryList()
qwsEvent()
raise()
recreate()
rect()
releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()
repaint()
repaintContents()
reparent()
resetInputContext()
resize()
resizeContents()
resizeEvent()
resizePolicy()
rightMargin()
scroll()
scrollBy()

sender()
setAcceptDrops()
setActiveWindow()
setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()
setContentsPos()
setCornerWidget()
setCursor()
setDisabled()
setDragAutoScroll()
setEnabled()
setEraseColor()
setErasePixmap()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setFrameRect()
setFrameShadow()
setFrameShape()
setFrameStyle()
setGeometry()
setHBarGeometry()
setHScrollBarMode()
setIcon()
setIconText()
setKeyCompression()
setLineWidth()
setMargin()
setMargins()
setMask()

setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMidLineWidth()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProperty()
setResizePolicy()
setSizeIncrement()
setSizePolicy()
setStaticBackground()
setStyle()
setTabOrder()
setUpdatesEnabled()
setVBarGeometry()
setVScrollBarMode()
setWFlags()
show()
showChild()
showEvent()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()
startTimer()

style()
styleChange()
tabletEvent()
testWFlags()
timerEvent()
topLevelWidget()
topMargin()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateContents()
updateGeometry()
updateMask()
updateScrollBars()
vScrollBarMode()
verticalScrollBar()
viewport()
viewportPaintEvent()
viewportResizeEvent()
viewportSize()
viewportToContents()
visibleHeight()
visibleRect()
visibleWidth()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()

x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QCursor
This	is	the	complete	list	of	member	functions	for	QCursor,	including	inherited
members.

QCursor()
~QCursor()
bitmap()
cleanup()
handle()
hotSpot()
initialize()
mask()
operator=()
pos()
setPos()
setShape()
shape()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QCanvasEllipse

This	is	the	complete	list	of	member	functions	for	QCanvasEllipse,	including
inherited	members.

QCanvasEllipse()
~QCanvasEllipse()
active()
advance()
angleLength()
angleStart()
animated()
areaPoints()
areaPointsAdvanced()
boundingRect()
boundingRectAdvanced()
brush()
canvas()
collidesWith()
collisions()
draw()
drawShape()
enabled()
height()
hide()
isActive()
isEnabled()
isSelected()
isVisible()
move()
moveBy()
pen()
rtti()
selected()

setActive()
setAngles()
setAnimated()
setBrush()
setCanvas()
setEnabled()
setPen()
setSelected()
setSize()
setVelocity()
setVisible()
setWinding()
setX()
setXVelocity()
setY()
setYVelocity()
setZ()
show()
update()
visible()
width()
winding()
x()
xVelocity()
y()
yVelocity()
z()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QTable
QTable

QTable()
~QTable()
acceptDrops()
activateNextCell()
addChild()
addSelection()
adjustColumn()
adjustRow()
adjustSize()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
beginEdit()
blockSignals()
bottomMargin()
caption()
cellGeometry()
cellRect()
cellWidget()
center()
checkConnectArgs()
child()
childAt()
childEvent()
childIsVisible()
childX()
childY()
children()

childrenRect()
childrenRegion()
className()
clearCell()
clearCellWidget()
clearFocus()
clearMask()
clearSelection()
clearWFlags()
clicked()
clipper()
close()
closeEvent()
cmd()
colorGroup()
columnAt()
columnClicked()
columnIndexChanged()
columnMovingEnabled()
columnPos()
columnWidth()
columnWidthChanged()
connect()
connectNotify()
constPolish()
contentsContextMenuEvent()
contentsDragEnterEvent()
contentsDragLeaveEvent()
contentsDragMoveEvent()
contentsDropEvent()
contentsHeight()
contentsMouseDoubleClickEvent()
contentsMouseMoveEvent()
contentsMousePressEvent()
contentsMouseReleaseEvent()
contentsMoving()
contentsRect()
contentsToViewport()
contentsWheelEvent()

contentsWidth()
contentsX()
contentsY()
contextMenuEvent()
contextMenuRequested()
cornerWidget()
create()
createEditor()
currEditCol()
currEditRow()
currentChanged()
currentColumn()
currentRow()
currentSelection()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
doubleClicked()
dragAutoScroll()
dragEnabled()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
dragObject()
drawContents()
drawContentsOffset()
drawFrame()
drawText()
dropEvent()
dropped()
dumpObjectInfo()
dumpObjectTree()
editCell()
editMode()

enableClipper()
enabledChange()
endEdit()
ensureCellVisible()
ensureVisible()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusStyle()
focusWidget()
font()
fontChange()
fontInfo()
fontMetrics()
foregroundColor()
frameChanged()
frameGeometry()
frameRect()
frameShadow()
frameShape()
frameSize()
frameStyle()
frameWidth()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
hScrollBarMode()
handle()

hasFocus()
hasMouse()
hasMouseTracking()
hasStaticBackground()
height()
heightForWidth()
hide()
hideColumn()
hideEvent()
hideRow()
highPriority()
horizontalHeader()
horizontalScrollBar()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
indexOf()
inherits()
insertChild()
insertColumns()
insertRows()
insertWidget()
installEventFilter()
isA()
isActiveWindow()
isColumnReadOnly()
isColumnSelected()
isColumnStretchable()
isDesktop()
isDialog()
isEditing()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()

isHidden()
isMaximized()
isMinimized()
isModal()
isPopup()
isReadOnly()
isRowReadOnly()
isRowSelected()
isRowStretchable()
isSelected()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
item()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
leftMargin()
lineWidth()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
margin()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()

metric()
microFocusHint()
midLineWidth()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveChild()
moveEvent()
name()
normalizeSignalSlot()
numCols()
numRows()
numSelections()
objectTrees()
ownCursor()
ownFont()
ownPalette()
paintCell()
paintEmptyArea()
paintEvent()
paintFocus()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
pixmap()
polish()
pos()

pressed()
property()
queryList()
qwsEvent()
raise()
recreate()
rect()
releaseKeyboard()
releaseMouse()
removeChild()
removeColumn()
removeColumns()
removeEventFilter()
removeRow()
removeRows()
removeSelection()
repaint()
repaintContents()
repaintSelections()
reparent()
resetInputContext()
resize()
resizeContents()
resizeData()
resizeEvent()
resizePolicy()
rightMargin()
rowAt()
rowHeight()
rowHeightChanged()
rowIndexChanged()
rowMovingEnabled()
rowPos()
scroll()
scrollBy()
selection()
selectionChanged()
selectionMode()
sender()

setAcceptDrops()
setActiveWindow()
setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()
setCellContentFromEditor()
setCellWidget()
setColumnMovingEnabled()
setColumnReadOnly()
setColumnStretchable()
setColumnWidth()
setContentsPos()
setCornerWidget()
setCurrentCell()
setCursor()
setDisabled()
setDragAutoScroll()
setDragEnabled()
setEditMode()
setEnabled()
setEraseColor()
setErasePixmap()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFocusStyle()
setFont()
setFrameRect()
setFrameShadow()
setFrameShape()
setFrameStyle()
setGeometry()

setHBarGeometry()
setHScrollBarMode()
setIcon()
setIconText()
setItem()
setKeyCompression()
setLeftMargin()
setLineWidth()
setMargin()
setMargins()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMidLineWidth()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setNumCols()
setNumRows()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setPixmap()
setProperty()
setReadOnly()
setResizePolicy()
setRowHeight()
setRowMovingEnabled()
setRowReadOnly()
setRowStretchable()
setSelectionMode()
setShowGrid()
setSizeIncrement()
setSizePolicy()

setSorting()
setStaticBackground()
setStyle()
setTabOrder()
setText()
setTopMargin()
setUpdatesEnabled()
setVBarGeometry()
setVScrollBarMode()
setWFlags()
show()
showChild()
showColumn()
showEvent()
showFullScreen()
showGrid()
showMaximized()
showMinimized()
showNormal()
showRow()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
sortColumn()
sorting()
stackUnder()
startDrag()
startTimer()
style()
styleChange()
swapCells()
swapColumns()
swapRows()
tabletEvent()
takeItem()
testWFlags()
text()

timerEvent()
topLevelWidget()
topMargin()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateCell()
updateContents()
updateGeometry()
updateMask()
updateScrollBars()
vScrollBarMode()
valueChanged()
verticalHeader()
verticalScrollBar()
viewport()
viewportPaintEvent()
viewportResizeEvent()
viewportSize()
viewportToContents()
visibleHeight()
visibleRect()
visibleWidth()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()

x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks :farfareast Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

table/bigtable/main.cpp	Example	File
/**

**	$Id:		qt/main.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	<qtable.h>

//	Table	size

const	int	numRows	=	1000000;

const	int	numCols	=	1000000;

class	MyTable	:	public	QTable

{

public:

				MyTable(int	r,	int	c)	:	QTable(r,	c)	{

								items.setAutoDelete(TRUE);

								widgets.setAutoDelete(TRUE);

								setCaption(tr("This	is	a	big	table	with	1.000.000x1.000.000	cells..."));

								setLeftMargin(fontMetrics().width("W999999W"));

				}

				void	resizeData(int)	{}

				QTableItem	*item(int	r,	int	c)	const	{	return	items.find(indexOf(r,	c));	}

				void	setItem(int	r,	int	c,	QTableItem	*i)	{	items.replace(indexOf(r,	c),	i);	}

				void	clearCell(int	r,	int	c)	{	items.remove(indexOf(r,	c));	}

				void	insertWidget(int	r,	int	c,	QWidget	*w)	{	widgets.replace(indexOf(r,	c),	w);		}

				QWidget	*cellWidget(int	r,	int	c)	const	{	return	widgets.find(indexOf(r,	c));	}

				void	clearCellWidget(int	r,	int	c)	{	widgets.remove(indexOf(r,	c));	}

private:

				QIntDict<QTableItem>	items;

				QIntDict<QWidget>	widgets;

};

//	The	program	starts	here.

int	main(int	argc,	char	**argv)

{

				QApplication	app(argc,	argv);

				MyTable	table(numRows,	numCols);

				app.setMainWidget(&table);

				table.show();

				return	app.exec();

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QTableQTableItem

/**

**	$Id:		qt/main.cpp			3.0.5			edited	May	7	17:30	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	<qtable.h>

#include	<qimage.h>

#include	<qpixmap.h>

#include	<qstringlist.h>

//	Qt	logo:	static	const	char	*qtlogo_xpm[]

#include	"qtlogo.xpm"

//	Table	size

const	int	numRows	=	30;

const	int	numCols	=	10;

//	The	program	starts	here.

int	main(int	argc,	char	**argv)

{

				QApplication	app(argc,	argv);

				QTable	table(numRows,	numCols);

				QHeader	*header	=	table.horizontalHeader();

				header->setLabel(0,	QObject::tr("Tiny"),	40);

				header->setLabel(1,	QObject::tr("Checkboxes"));

				header->setLabel(5,	QObject::tr("Combos"));

				header->setMovingEnabled(TRUE);

				QImage	img(qtlogo_xpm);

				QPixmap	pix	=	img.scaleHeight(table.rowHeight(3));

				table.setPixmap(3,	2,	pix);

				table.setText(3,	2,	"A	Pixmap");

				QStringList	comboEntries;

				comboEntries	<<	"one"	<<	"two"	<<	"three"	<<	"four";

				for	(int	i	=	0;	i	<	numRows;	++i){

								QComboTableItem	*	item	=	new	QComboTableItem(&table,	comboEntries,	FALSE);

								item->setCurrentItem(i	%	4);

								table.setItem(i,	5,	item);

				}

				for	(int	j	=	0;	j	<	numRows;	++j)

								table.setItem(j,	1,	new	QCheckTableItem(&table,	"Check	me"));

				app.setMainWidget(&table);

				table.show();

				return	app.exec();

}

Copyright	©	2002	Trolltech Trademarks :farfareast Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QHeader
QHeader

QHeader()
~QHeader()
acceptDrops()
addLabel()
adjustHeaderSize()
adjustSize()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
caption()
cellAt()
cellPos()
cellSize()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clearFocus()
clearMask()
clearWFlags()
clicked()
close()
closeEvent()

cmd()
colorGroup()
connect()
connectNotify()
constPolish()
contextMenuEvent()
count()
create()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()

fontChange()
fontInfo()
fontMetrics()
foregroundColor()
frameGeometry()
frameSize()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
headerWidth()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
icon()
iconSet()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
indexChange()
inherits()
insertChild()
installEventFilter()
isA()
isActiveWindow()
isClickEnabled()
isDesktop()
isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()

isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()
isMovingEnabled()
isPopup()
isResizeEnabled()
isStretchEnabled()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
label()
layout()
leaveEvent()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToActual()
mapToGlobal()
mapToIndex()
mapToLogical()
mapToParent()
mapToSection()
maximumHeight()
maximumSize()
maximumWidth()

metaObject()
metric()
microFocusHint()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveCell()
moveEvent()
moveSection()
moved()
name()
normalizeSignalSlot()
objectTrees()
offset()
orientation()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintSection()
paintSectionLabel()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
polish()
pos()
pressed()

property()
queryList()
qwsEvent()
raise()
recreate()
rect()
releaseKeyboard()
releaseMouse()
released()
removeChild()
removeEventFilter()
removeLabel()
repaint()
reparent()
resetInputContext()
resize()
resizeEvent()
resizeSection()
sRect()
scroll()
sectionAt()
sectionClicked()
sectionPos()
sectionRect()
sectionSize()
sender()
setAcceptDrops()
setActiveWindow()
setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()
setCellSize()
setClickEnabled()
setCursor()
setDisabled()

setEnabled()
setEraseColor()
setErasePixmap()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setGeometry()
setIcon()
setIconText()
setKeyCompression()
setLabel()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setMovingEnabled()
setName()
setOffset()
setOrientation()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProperty()
setResizeEnabled()
setSizeIncrement()
setSizePolicy()
setSortIndicator()
setStretchEnabled()
setStyle()

setTabOrder()
setTracking()
setUpdatesEnabled()
setWFlags()
show()
showEvent()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeChange()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()
startTimer()
style()
styleChange()
tabletEvent()
testWFlags()
timerEvent()
topLevelWidget()
tr()
trUtf8()
tracking()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateGeometry()
updateMask()
visibleRect()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()

x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks :farfareast Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QSpacerItem

This	is	the	complete	list	of	member	functions	for	QSpacerItem,	including
inherited	members.

QSpacerItem()
alignment()
changeSize()
expanding()
geometry()
hasHeightForWidth()
heightForWidth()
invalidate()
isEmpty()
iterator()
layout()
maximumSize()
minimumSize()
setAlignment()
setGeometry()
sizeHint()
spacerItem()
widget()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QComboBox

This	is	the	complete	list	of	member	functions	for	QComboBox,	including
inherited	members.

QComboBox()
~QComboBox()
acceptDrops()
activated()
adjustSize()
autoCompletion()
autoMask()
autoResize()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
caption()
changeItem()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clear()
clearEdit()
clearFocus()
clearMask()

clearValidator()
clearWFlags()
close()
closeEvent()
cmd()
colorGroup()
connect()
connectNotify()
constPolish()
contextMenuEvent()
count()
create()
currentItem()
currentText()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
duplicatesEnabled()
editable()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()

focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()
fontChange()
fontInfo()
fontMetrics()
foregroundColor()
frameGeometry()
frameSize()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
highlighted()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
insertChild()
insertItem()
insertStrList()
insertStringList()

insertionPolicy()
installEventFilter()
isA()
isActiveWindow()
isDesktop()
isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()
isPopup()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
lineEdit()
listBox()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()

maxCount()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveEvent()
name()
normalizeSignalSlot()
objectTrees()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
pixmap()
polish()
popup()
pos()
property()
queryList()

qwsEvent()
raise()
recreate()
rect()
releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()
removeItem()
repaint()
reparent()
resetInputContext()
resize()
resizeEvent()
scroll()
sender()
setAcceptDrops()
setActiveWindow()
setAutoCompletion()
setAutoMask()
setAutoResize()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()
setCurrentItem()
setCurrentText()
setCursor()
setDisabled()
setDuplicatesEnabled()
setEditText()
setEditable()
setEnabled()
setEraseColor()
setErasePixmap()
setFixedHeight()
setFixedSize()

setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setGeometry()
setIcon()
setIconText()
setInsertionPolicy()
setKeyCompression()
setLineEdit()
setListBox()
setMask()
setMaxCount()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProperty()
setSizeIncrement()
setSizeLimit()
setSizePolicy()
setStyle()
setTabOrder()
setUpdatesEnabled()
setValidator()
setWFlags()
show()
showEvent()
showFullScreen()

showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizeLimit()
sizePolicy()
stackUnder()
startTimer()
style()
styleChange()
tabletEvent()
testWFlags()
text()
textChanged()
timerEvent()
topLevelWidget()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateGeometry()
updateMask()
validator()
visibleRect()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()

x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QTableItem
QTableItem

QTableItem()
~QTableItem()
alignment()
col()
colSpan()
createEditor()
editType()
isEnabled()
isReplaceable()
key()
paint()
pixmap()
row()
rowSpan()
rtti()
setCol()
setContentFromEditor()
setEnabled()
setPixmap()
setReplaceable()
setRow()
setSpan()
setText()
setWordWrap()
sizeHint()
table()
text()
wordWrap()

Copyright	©	2002	Trolltech Trademarks :farfareast Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QComboTableItem
QComboTableItem

QComboTableItem()
alignment()
col()
colSpan()
count()
createEditor()
currentItem()
currentText()
editType()
isEditable()
isEnabled()
isReplaceable()
key()
paint()
pixmap()
row()
rowSpan()
rtti()
setCol()
setContentFromEditor()
setCurrentItem()
setEditable()
setEnabled()
setPixmap()
setReplaceable()
setRow()
setSpan()
setStringList()
setText()
setWordWrap()
sizeHint()
table()

text()
wordWrap()

Copyright	©	2002	Trolltech Trademarks :farfareast Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QColorDialog
QColorDialog

accept()
acceptDrops()
adjustSize()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
caption()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clearFocus()
clearMask()
clearWFlags()
close()
closeEvent()
cmd()
colorGroup()
connect()
connectNotify()
constPolish()
contextMenuEvent()
create()

cursor()
customColor()
customCount()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
done()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
exec()
extension()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()
fontChange()
fontInfo()
fontMetrics()

foregroundColor()
frameGeometry()
frameSize()
geometry()
getColor()
getRgba()
getWFlags()
grabKeyboard()
grabMouse()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
insertChild()
installEventFilter()
isA()
isActiveWindow()
isDesktop()
isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()

isModal()
isPopup()
isSizeGripEnabled()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()

move()
moveEvent()
name()
normalizeSignalSlot()
objectTrees()
orientation()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
polish()
pos()
property()
queryList()
qwsEvent()
raise()
recreate()
rect()
reject()
releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()
repaint()
reparent()
resetInputContext()
resize()
resizeEvent()
result()
scroll()
sender()

setAcceptDrops()
setActiveWindow()
setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()
setCursor()
setCustomColor()
setDisabled()
setEnabled()
setEraseColor()
setErasePixmap()
setExtension()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setGeometry()
setIcon()
setIconText()
setKeyCompression()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setOrientation()
setPalette()

setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProperty()
setResult()
setSizeGripEnabled()
setSizeIncrement()
setSizePolicy()
setStyle()
setTabOrder()
setUpdatesEnabled()
setWFlags()
show()
showEvent()
showExtension()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()
startTimer()
style()
styleChange()
tabletEvent()
testWFlags()
timerEvent()
topLevelWidget()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateGeometry()

updateMask()
visibleRect()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QButtonGroup
QButtonGroup

QButtonGroup()
acceptDrops()
addSpace()
adjustSize()
alignment()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
caption()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clearFocus()
clearMask()
clearWFlags()
clicked()
close()
closeEvent()
cmd()
colorGroup()
columns()
connect()

connectNotify()
constPolish()
contentsRect()
contextMenuEvent()
count()
create()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawContents()
drawFrame()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()

fontChange()
fontInfo()
fontMetrics()
foregroundColor()
frameChanged()
frameGeometry()
frameRect()
frameShadow()
frameShape()
frameSize()
frameStyle()
frameWidth()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
icon()
iconText()
iconify()
id()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
insert()
insertChild()
insideMargin()
insideSpacing()
installEventFilter()
isA()

isActiveWindow()
isDesktop()
isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExclusive()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()
isPopup()
isRadioButtonExclusive()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
lineWidth()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
margin()
maximumHeight()

maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
midLineWidth()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveEvent()
moveFocus()
name()
normalizeSignalSlot()
objectTrees()
orientation()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
polish()
pos()
pressed()
property()
queryList()

qwsEvent()
raise()
recreate()
rect()
releaseKeyboard()
releaseMouse()
released()
remove()
removeChild()
removeEventFilter()
repaint()
reparent()
resetInputContext()
resize()
resizeEvent()
scroll()
selected()
sender()
setAcceptDrops()
setActiveWindow()
setAlignment()
setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setButton()
setCaption()
setColumnLayout()
setColumns()
setCursor()
setDisabled()
setEnabled()
setEraseColor()
setErasePixmap()
setExclusive()
setFixedHeight()
setFixedSize()

setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setFrameRect()
setFrameShadow()
setFrameShape()
setFrameStyle()
setGeometry()
setIcon()
setIconText()
setInsideMargin()
setInsideSpacing()
setKeyCompression()
setLineWidth()
setMargin()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMidLineWidth()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setOrientation()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProperty()
setRadioButtonExclusive()
setSizeIncrement()
setSizePolicy()
setStyle()
setTabOrder()

setTitle()
setUpdatesEnabled()
setWFlags()
show()
showEvent()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()
startTimer()
style()
styleChange()
tabletEvent()
testWFlags()
timerEvent()
title()
topLevelWidget()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateGeometry()
updateMask()
visibleRect()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
x()
x11AppCells()

x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QRadioButton

This	is	the	complete	list	of	member	functions	for	QRadioButton,	including
inherited	members.

QRadioButton()
accel()
acceptDrops()
adjustSize()
animateClick()
autoMask()
autoRepeat()
autoResize()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
caption()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clearFocus()
clearMask()
clearWFlags()
clicked()
close()

closeEvent()
cmd()
colorGroup()
connect()
connectNotify()
constPolish()
contextMenuEvent()
create()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawButton()
drawButtonLabel()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()

focusWidget()
font()
fontChange()
fontInfo()
fontMetrics()
foregroundColor()
frameGeometry()
frameSize()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
group()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
hitButton()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
insertChild()
installEventFilter()
isA()
isActiveWindow()
isChecked()
isDesktop()
isDialog()
isDown()
isEnabled()

isEnabledTo()
isEnabledToTLW()
isExclusiveToggle()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()
isOn()
isPopup()
isToggleButton()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()

minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveEvent()
name()
normalizeSignalSlot()
objectTrees()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
pixmap()
polish()
pos()
pressed()
property()
queryList()
qwsEvent()
raise()
recreate()
rect()
releaseKeyboard()
releaseMouse()
released()

removeChild()
removeEventFilter()
repaint()
reparent()
resetInputContext()
resize()
resizeEvent()
scroll()
sender()
setAccel()
setAcceptDrops()
setActiveWindow()
setAutoMask()
setAutoRepeat()
setAutoResize()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()
setChecked()
setCursor()
setDisabled()
setDown()
setEnabled()
setEraseColor()
setErasePixmap()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setGeometry()
setIcon()
setIconText()
setKeyCompression()

setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setOn()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setPixmap()
setProperty()
setSizeIncrement()
setSizePolicy()
setState()
setStyle()
setTabOrder()
setText()
setToggleButton()
setToggleType()
setUpdatesEnabled()
setWFlags()
show()
showEvent()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()

startTimer()
state()
stateChanged()
style()
styleChange()
tabletEvent()
testWFlags()
text()
timerEvent()
toggle()
toggleType()
toggled()
topLevelWidget()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateGeometry()
updateMask()
visibleRect()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()

x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QGroupBox
QGroupBox

QGroupBox()
acceptDrops()
addSpace()
adjustSize()
alignment()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
caption()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clearFocus()
clearMask()
clearWFlags()
close()
closeEvent()
cmd()
colorGroup()
columns()
connect()
connectNotify()

constPolish()
contentsRect()
contextMenuEvent()
create()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawContents()
drawFrame()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()
fontChange()
fontInfo()

fontMetrics()
foregroundColor()
frameChanged()
frameGeometry()
frameRect()
frameShadow()
frameShape()
frameSize()
frameStyle()
frameWidth()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
insertChild()
insideMargin()
insideSpacing()
installEventFilter()
isA()
isActiveWindow()
isDesktop()
isDialog()
isEnabled()

isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()
isPopup()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
lineWidth()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
margin()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
midLineWidth()

minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveEvent()
name()
normalizeSignalSlot()
objectTrees()
orientation()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
polish()
pos()
property()
queryList()
qwsEvent()
raise()
recreate()
rect()
releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()

repaint()
reparent()
resetInputContext()
resize()
resizeEvent()
scroll()
sender()
setAcceptDrops()
setActiveWindow()
setAlignment()
setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()
setColumnLayout()
setColumns()
setCursor()
setDisabled()
setEnabled()
setEraseColor()
setErasePixmap()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setFrameRect()
setFrameShadow()
setFrameShape()
setFrameStyle()
setGeometry()
setIcon()
setIconText()
setInsideMargin()

setInsideSpacing()
setKeyCompression()
setLineWidth()
setMargin()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMidLineWidth()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setOrientation()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProperty()
setSizeIncrement()
setSizePolicy()
setStyle()
setTabOrder()
setTitle()
setUpdatesEnabled()
setWFlags()
show()
showEvent()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()

stackUnder()
startTimer()
style()
styleChange()
tabletEvent()
testWFlags()
timerEvent()
title()
topLevelWidget()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateGeometry()
updateMask()
visibleRect()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()

x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QLayoutItem

This	is	the	complete	list	of	member	functions	for	QLayoutItem,	including
inherited	members.

QLayoutItem()
~QLayoutItem()
alignment()
expanding()
geometry()
hasHeightForWidth()
heightForWidth()
invalidate()
isEmpty()
iterator()
layout()
maximumSize()
minimumSize()
setAlignment()
setGeometry()
sizeHint()
spacerItem()
widget()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QFontDialog
QFontDialog

accept()
acceptDrops()
adjustSize()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
caption()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clearFocus()
clearMask()
clearWFlags()
close()
closeEvent()
cmd()
colorGroup()
connect()
connectNotify()
constPolish()
contextMenuEvent()
create()

cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
done()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
exec()
extension()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()
fontChange()
fontInfo()
fontMetrics()
foregroundColor()
frameGeometry()

frameSize()
geometry()
getFont()
getWFlags()
grabKeyboard()
grabMouse()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
insertChild()
installEventFilter()
isA()
isActiveWindow()
isDesktop()
isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()
isPopup()
isSizeGripEnabled()

isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveEvent()
name()

normalizeSignalSlot()
objectTrees()
orientation()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
polish()
pos()
property()
queryList()
qwsEvent()
raise()
recreate()
rect()
reject()
releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()
repaint()
reparent()
resetInputContext()
resize()
resizeEvent()
result()
scroll()
sender()
setAcceptDrops()
setActiveWindow()
setAutoMask()

setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()
setCursor()
setDisabled()
setEnabled()
setEraseColor()
setErasePixmap()
setExtension()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setGeometry()
setIcon()
setIconText()
setKeyCompression()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setOrientation()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProperty()

setResult()
setSizeGripEnabled()
setSizeIncrement()
setSizePolicy()
setStyle()
setTabOrder()
setUpdatesEnabled()
setWFlags()
show()
showEvent()
showExtension()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()
startTimer()
style()
styleChange()
tabletEvent()
testWFlags()
timerEvent()
topLevelWidget()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateGeometry()
updateMask()
visibleRect()
wheelEvent()
width()

winEvent()
winId()
windowActivationChange()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QValidator
QValidator

QValidator()
~QValidator()
blockSignals()
checkConnectArgs()
child()
childEvent()
children()
className()
connect()
connectNotify()
customEvent()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
fixup()
highPriority()
inherits()
insertChild()
installEventFilter()
isA()
isWidgetType()
killTimer()
killTimers()
metaObject()
name()
normalizeSignalSlot()
objectTrees()

parent()
property()
queryList()
removeChild()
removeEventFilter()
sender()
setName()
setProperty()
signalsBlocked()
startTimer()
timerEvent()
tr()
trUtf8()
validate()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

A	simple	demonstration	of	QFont
member	functions

This	example	demonstrates	the	use	of	various	QFont	member	functions.

It	is	covered	in	detail	by	a	walkthrough.

The	main	window	API	(viewer.h):

/*	Id	*/

#ifndef	VIEWER_H

#define	VIEWER_H

#include	<qwidget.h>

#include	<qfont.h>

class	QTextView;

class	QPushButton;

class	Viewer	:	public	QWidget

{

Q_OBJECT

public:

				Viewer();

private	slots:

				void	setDefault();

				void	setSansSerif();

				void	setItalics();

private:

				void	setFontSubstitutions();

				void	layout();

				void	showFontInfo(QFont	&);

				QTextView	*	greetings;

				QTextView	*	fontInfo;

				QPushButton	*	defaultButton;

				QPushButton	*	sansSerifButton;

				QPushButton	*	italicsButton;

};

#endif

The	main	window	implementation	(viewer.cpp):

/*	Id	*/

#include	"viewer.h"

#include	<qstring.h>

#include	<qstringlist.h>

#include	<qtextview.h>

#include	<qpushbutton.h>

#include	<qlayout.h>

Viewer::Viewer()

							:QWidget()

{

				setFontSubstitutions();

				QString	greeting_heb	=	QString::fromUtf8("\327\251\327\234\327\225\327\235");

				QString	greeting_ru	=	QString::fromUtf8("\320\227\320\264\321\200\320\260\320\262\321\201\321\202\320\262\321\203\320\271\321\202\320\265");

				QString	greeting_en("Hello");

				greetings	=	new	QTextView(this,	"textview");

				greetings->setText(greeting_en	+	"\n"	+

																							greeting_ru	+	"\n"	+

																							greeting_heb);

				fontInfo	=	new	QTextView(this,	"fontinfo");

				setDefault();

				defaultButton	=	new	QPushButton("Default",	this,

																																																			"pushbutton1");

				defaultButton->setFont(QFont("times"));

				connect(defaultButton,	SIGNAL(clicked()),

													this,	SLOT(setDefault()));

				sansSerifButton	=	new	QPushButton("Sans	Serif",	this,

																																																					"pushbutton2");

				sansSerifButton->setFont(QFont("Helvetica",	12));

				connect(sansSerifButton,	SIGNAL(clicked()),

													this,	SLOT(setSansSerif()));

				italicsButton	=	new	QPushButton("Italics",	this,

																																																			"pushbutton3");

				italicsButton->setFont(QFont("lucida",	12,	QFont::Bold,	TRUE));

				connect(italicsButton,	SIGNAL(clicked()),

													this,	SLOT(setItalics()));

				layout();

}

void	Viewer::setDefault()

{

				QFont	font("Bavaria");

				font.setPointSize(24);

				font.setWeight(QFont::Bold);

				font.setUnderline(TRUE);

				greetings->setFont(font);

				showFontInfo(font);

}

void	Viewer::setSansSerif()

{

				QFont	font("Newyork",	18);

				font.setStyleHint(QFont::SansSerif);

				greetings->setFont(font);

				showFontInfo(font);

}

void	Viewer::setItalics()

{

				QFont	font("Tokyo");

				font.setPointSize(32);

				font.setWeight(QFont::Bold);

				font.setItalic(TRUE);

				greetings->setFont(font);

				showFontInfo(font);

}

void	Viewer::showFontInfo(QFont	&	font)

{

				QFontInfo	info(font);

				QString	messageText;

				messageText	=	"Font	requested:	\""	+

																		font.family()	+	"\"	"	+

																		QString::number(font.pointSize())	+	"pt
"	+

																		"Font	used:	\""	+

																		info.family()	+	"\"	"	+

																		QString::number(info.pointSize())	+	"pt<P>";

				QStringList	substitutions	=	QFont::substitutes(font.family());

				if	(!	substitutions.isEmpty()){

								messageText	+=	"The	following	substitutions	exist	for	"	+	\

																							font.family()	+	":";

								QStringList::Iterator	i	=	substitutions.begin();

								while	(i	!=	substitutions.end()){

												messageText	+=	"\""	+	(*	i)	+	"\"";

												i++;

								}

									messageText	+=	"";

				}	else	{

								messageText	+=	"No	substitutions	exist	for	"	+	\

																							font.family()	+	".";

				}

				fontInfo->setText(messageText);

}

void	Viewer::setFontSubstitutions()

{

				QStringList	substitutes;

				substitutes.append("Times");

				substitutes	+=		"Mincho",

				substitutes	<<	"Arabic	Newspaper"	<<	"crox";

				QFont::insertSubstitutions("Bavaria",	substitutes);

				QFont::insertSubstitution("Tokyo",	"Lucida");

}

//	For	those	who	prefer	to	use	Qt	Designer	for	creating	GUIs

//	the	following	function	might	not	be	of	particular	interest:

//	all	it	does	is	creating	the	widget	layout.

void	Viewer::layout()

{

				QHBoxLayout	*	textViewContainer	=	new	QHBoxLayout();

				textViewContainer->addWidget(greetings);

				textViewContainer->addWidget(fontInfo);

				QHBoxLayout	*	buttonContainer	=	new	QHBoxLayout();

				buttonContainer->addWidget(defaultButton);

				buttonContainer->addWidget(sansSerifButton);

				buttonContainer->addWidget(italicsButton);

				int	maxButtonHeight	=	defaultButton->height();

				if	(sansSerifButton->height()	>	maxButtonHeight)

								maxButtonHeight	=	sansSerifButton->height();

				if	(italicsButton->height()	>	maxButtonHeight)

								maxButtonHeight	=	italicsButton->height();

				defaultButton->setFixedHeight(maxButtonHeight);

				sansSerifButton->setFixedHeight(maxButtonHeight);

				italicsButton->setFixedHeight(maxButtonHeight);

				QVBoxLayout	*	container	=	new	QVBoxLayout(this);

				container->addLayout(textViewContainer);

				container->addLayout(buttonContainer);

				resize(700,	250);

}

main()	program	(simple-qfont-demo.cpp):

/*	Id	*/

#include	"viewer.h"

#include	<qapplication.h>

int	main(int	argc,	char	**argv)

{

				QApplication	app(argc,	argv);

				Viewer	*	textViewer	=	new	Viewer();

				textViewer->setCaption("Qt	Example	-	Simple	QFont	Demo");

				app.setMainWidget(textViewer);

				textViewer->show();

				return	app.exec();

}

See	also	QFont	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

A	tiny	SAX2	parser
This	example	presents	a	small	SAX2	reader	that	outputs	the	names	of	all
elements	in	an	XML	document	on	the	command	line.	The	element	names	are
indented	corresponding	to	their	nesting

This	example	is	thoroughly	explained	in	a	walkthrough.

Header	file:

/**

**	$Id:		qt/structureparser.h			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	STRUCTUREPARSER_H

#define	STRUCTUREPARSER_H

#include	<qxml.h>

class	QString;

class	StructureParser	:	public	QXmlDefaultHandler

{

public:

				bool	startDocument();

				bool	startElement(const	QString&,	const	QString&,	const	QString

																							const	QXmlAttributes&);

				bool	endElement(const	QString&,	const	QString&,	const	QString&);

private:

				QString	indent;

};

#endif

Implementation:

/**

**	$Id:		qt/structureparser.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"structureparser.h"

#include	<stdio.h>

#include	<qstring.h>

bool	StructureParser::startDocument()

{

				indent	=	"";

				return	TRUE;

}

bool	StructureParser::startElement(const	QString&,	const	QString&,

																																				const	QString&	qName,

																																				const	QXmlAttributes&)

{

				printf("%s%s\n",	(const	char*)indent,	(const	char*)qName);

				indent	+=	"				";

				return	TRUE;

}

bool	StructureParser::endElement(const	QString&,	const	QString&,	const	

{

				indent.remove(0,	4);

				return	TRUE;

}

Main:

/**

**	$Id:		qt/tagreader.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"structureparser.h"

#include	<qfile.h>

#include	<qxml.h>

#include	<qwindowdefs.h>

int	main(int	argc,	char	**argv)

{

				if	(argc	<	2)	{

								fprintf(stderr,	"Usage:	%s	<xmlfile>\n",	argv[0]);

								return	1;

				}

				for	(int	i=1;	i	<	argc;	i++)	{

								StructureParser	handler;

								QFile	xmlFile(argv[i]);

								QXmlInputSource	source(&xmlFile);

								QXmlSimpleReader	reader;

								reader.setContentHandler(&handler);

								reader.parse(source);

				}

				return	0;

}

See	also	Qt	XML	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

OpenGL	Box	Example
This	example	demonstrates	how	to	use	OpenGL	in	Qt.

Essentially,	all	you	do	is	put	your	OpenGL	code	in	a	class	inherited	from
QGLWidget.	This	class	may	then	be	used	like	any	other	Qt	widget,	including	the
use	of	signals	and	slots	and	geometry	management.

See	$QTDIR/examples/opengl/box	for	the	source	code.

See	also	OpenGL	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

OpenGL	Gear	Example
This	example	demonstrates	how	to	use	OpenGL	display	lists.

See	$QTDIR/examples/opengl/gear	for	the	source	code.

See	also	OpenGL	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

OpenGL	Overlay	Example
This	example	demonstrates	how	to	use	OpenGL	overlays	with	the	Qt	OpenGL
Extension.	It	features	a	QGLWidget	with	a	relatively	expensive	redrawing
operation,	and	rubber-band	drawing	in	the	overlay	plane.	Using	the	overlay	has
the	advantage	that	the	rubber-band	may	be	drawn	and	erased	without	damaging
the	image	in	the	main	plane,	so	costly	redraws	are	avoided.

See	$QTDIR/examples/opengl/overlay	for	the	source	code.

See	also	OpenGL	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

OpenGL	Overlay	X11	Example
Warning:	From	version	5.0	onwards,	the	Qt	OpenGL	Extension	includes	direct
support	for	use	of	OpenGL	overlays.	For	many	uses	of	overlays,	this	makes	the
technique	described	below	redundant.	See	the	overlay	example	program.	The
following	is	a	discussion	on	how	to	use	non-QGL	widgets	in	overlay	planes.

Overlayrubber:	An	example	program	showing	how	to	use	Qt	and	Qt	OpenGL
Extension	with	X11	overlay	visuals.

See	$QTDIR/examples/opengl/overlay_x11	for	the	source	code.

Background	information	for	this	example	can	be	found	in	the	information	on
overlays.

The	example	program	has	three	main	parts:

1.	 GearWidget	-	a	normal,	simple	QGLWidget.	This	renders	the	usual	gears.	It
has	been	modified	to	print	a	debug	message	every	time	it	redraws	(renders)
itself.	Thus,	you	can	easily	confirm	that	drawing	in	the	overlay	plane	does
not	cause	redrawings	in	the	main	plane	where	the	QGLWidget	resides.

2.	 RubberbandWidget	-	Very	simple	standard	(non-GL)	Qt	widget	that
implements	rubberband	drawing.	Designed	for	use	in	an	overlay	plane.	It
takes	the	plane's	transparent	color	as	a	constructor	argument	and	uses	that
for	its	background	color.	Thus,	the	widget	itself	will	be	invisible,	only	the
rubberbands	it	draws	will	be	visible.

3.	 main.cpp	Creates	a	GearWidget	and	a	Rubberbandwidget	and	puts	the	latter
on	top	of	the	former.	Contains	a	routine	that	checks	that	the	default	visual	is
in	an	overlay	plane,	and	returns	the	transparent	color	of	that	plane.

Running	the	Example

Start	the	overlayrubber	executable.	Click	and	drag	with	the	left	mouse	button
to	see	rubberband	drawing.	Observe	that	the	QGLWidget	does	not	redraw	itself
(no	redraw	debug	messages	are	output),	and	yet	the	image	is	not	destroyed.
Marvel	at	the	coolness	of	X11	overlays!

Using	this	technique	in	a	real	application

For	clarity,	this	example	program	has	been	kept	very	simple.	Here	are	some	hints
for	real	application	usage:

All	normal	widgets	are	in	the	overlay	plane.	This	means	that	you	can	put	all
kinds	of	Qt	widgets	(your	own	or	standard	Qt	widgets)	on	top	of	the
OpenGL	image	(widget),	e.g.	pushbuttons	etc.,	and	they	can	be	moved,
resized,	or	removed	without	destroying	the	OpenGL	image.

Using	with	geometry	management.	The	QLayout	classes	don't	permit
putting	one	widget	(the	overlay)	on	top	of	another	(the	OpenGL	widget);
that	would	defy	the	whole	purpose	of	the	automatic	layout.	The	solution	is
to	add	just	one	of	them	to	the	QLayout	object.	Have	it	keep	a	pointer	to	the
other	(i.e.	the	QGLWidget	knows	about	its	overlay	widget	or	vice	versa).
Implement	the	resizeEvent()	method	of	the	widget	you	put	in	the	layout,
and	make	it	call	setGeometry()	on	the	other	widget	with	its	own	geometry
as	parameters,	thus	keeping	the	two	widgets'	geometries	synchronized.

Using	together	with	QPalette	and	QColorGroup.	Instead	of	the	simplistic
setBackgroundColor(transparentColor),	you	can	use	Qt's	QPalette	system
to	make	your	overlay	widgets	use	transparent	color	for	what	you	want.	This
way,	the	normal	Qt	widgets	can	be	used	as	overlays	for	fancy	effects.	Just
create	a	palette	for	them	with	the	transparent	color	for	the	relevant	color
roles,	e.g.	Background	and	Base,	in	the	Normal	and/or	Active	modes.	This
way,	you	can	create	see-through	QPushButtons	etc.

See	also	OpenGL	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

OpenGL	Pixmap	Example
This	example	program	is	an	extension	of	the	OpenGL	Box	example.

It	demonstrates	how	to	render	OpenGL	into	a	QPixmap.

See	$QTDIR/examples/opengl/glpixmap	for	the	source	code.

See	also	OpenGL	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

OpenGL	Shared	Box	Example
This	example	program	is	an	extension	of	the	Box	example.

It	demonstrates	how	to	use	OpenGL	display	list	sharing	with	QGLWidgets.

See	$QTDIR/examples/opengl/sharedbox	for	the	source	code.

See	also	OpenGL	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

OpenGL	Texture	Example
This	example	program	demonstrates	how	to	use	OpenGL	2D	textures.

See	$QTDIR/examples/opengl/texture	for	the	source	code.

See	also	OpenGL	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QTable
QIntDict

/**

**	$Id:		qt/main.cpp			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	<qtable.h>

//	Table	size

const	int	numRows	=	1000000;

const	int	numCols	=	1000000;

class	MyTable	:	public	QTable

{

public:

				MyTable(int	r,	int	c)	:	QTable(r,	c)	{

								items.setAutoDelete(TRUE);

								widgets.setAutoDelete(TRUE);

								setCaption(tr("This	is	a	big	table	with	1.000.000x1.000.000	cells..."));

								setLeftMargin(fontMetrics().width("W999999W"));

				}

				void	resizeData(int)	{}

				QTableItem	*item(int	r,	int	c)	const	{	return	items.find(indexOf(r,	c));	}

				void	setItem(int	r,	int	c,	QTableItem	*i)	{	items.replace(indexOf(r,	c),	i);	}

				void	clearCell(int	r,	int	c)	{	items.remove(indexOf(r,	c));	}

				void	insertWidget(int	r,	int	c,	QWidget	*w)	{	widgets.replace(indexOf(r,	c),	w);		}

				QWidget	*cellWidget(int	r,	int	c)	const	{	return	widgets.find(indexOf(r,	c));	}

				void	clearCellWidget(int	r,	int	c)	{	widgets.remove(indexOf(r,	c));	}

private:

				QIntDict<QTableItem>	items;

				QIntDict<QWidget>	widgets;

};

//	The	program	starts	here.

int	main(int	argc,	char	**argv)

{

				QApplication	app(argc,	argv);

				MyTable	table(numRows,	numCols);

				app.setMainWidget(&table);

				table.show();

				return	app.exec();

}

Copyright	©	2002	Trolltech Trademarks :farfareast Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

SQL	Table
This	example	shows	how	to	use	a	QDataTable	to	browse	data	in	a	SQL	database.

Implementation:

/**

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	<qsqldatabase.h>

#include	<qdatatable.h>

#include	<qsqlcursor.h>

#include	<qmessagebox.h>

/*	Modify	the	following	to	match	your	environment	*/

#define	DRIVER							"QPSQL7"		/*	see	the	Qt	SQL	documentation	for	a	list	of	available	drivers	*/

#define	DATABASE					"simpledb"	/*	the	name	of	your	database	*/

#define	USER									"trond"			/*	user	name	with	appropriate	rights	*/

#define	PASSWORD					"trond"			/*	password	for	USER	*/

#define	HOST									"silverfish.troll.no"	/*	host	on	which	the	database	is	running	*/

class	SimpleCursor	:	public	QSqlCursor

{

public:

				SimpleCursor	()	:	QSqlCursor("simpletable")	{}

protected:

				QSqlRecord*	primeInsert()

				{

								/*	a	real-world	application	would	use	sequences,	or	the	like	*/

								QSqlRecord*	buf	=	QSqlCursor::primeInsert();

								QSqlQuery	q("select	max(id)+1	from	simpletable;");

								if	(q.next())

															buf->setValue("id",	q.value(0));

								return	buf;

				}

};

int	main(int	argc,	char	**	argv)

{

				QApplication	a(argc,	argv);

				QSqlDatabase	*	db	=	QSqlDatabase::addDatabase(DRIVER);

				db->setDatabaseName(DATABASE);

				db->setUserName(USER);

				db->setPassword(PASSWORD);

				db->setHostName(HOST);

				if(!db->open()){

								QMessageBox::information(0,	"Unable	to	open	database",

																																		db->lastError().databaseText()	+	"\nPlease	read	the	README	file	in	the	sqltable	directory	for	more	information.");

								return	1;

				}

				SimpleCursor	cursor;

				QDataTable	table(&cursor);	/*	data	table	uses	our	cursor	*/

				table.addColumn("name",	"Name");

				table.addColumn("address",	"Address");

				table.setSorting(TRUE);

				a.setMainWidget(&table);

				table.refresh();	/*	load	data	*/

				table.show();				/*	show	widget	*/

				return	a.exec();

}

See	also	Qt	SQL	Examples.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QDockWindow
QDockWindow

QDockWindow()
acceptDrops()
adjustSize()
area()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
boxLayout()
caption()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clearFocus()
clearMask()
clearWFlags()
close()
closeEvent()
closeMode()
cmd()
colorGroup()
connect()
connectNotify()

constPolish()
contentsRect()
contextMenuEvent()
create()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
dock()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawContents()
drawFrame()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
fixedExtent()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()

fontChange()
fontInfo()
fontMetrics()
foregroundColor()
frameChanged()
frameGeometry()
frameRect()
frameShadow()
frameShape()
frameSize()
frameStyle()
frameWidth()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
insertChild()
installEventFilter()
isA()
isActiveWindow()
isCloseEnabled()
isDesktop()
isDialog()

isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isHorizontalStretchable()
isHorizontallyStretchable()
isMaximized()
isMinimized()
isModal()
isMovingEnabled()
isPopup()
isResizeEnabled()
isStretchable()
isTopLevel()
isUpdatesEnabled()
isVerticalStretchable()
isVerticallyStretchable()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
lineWidth()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()

margin()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
midLineWidth()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveEvent()
name()
newLine()
normalizeSignalSlot()
objectTrees()
offset()
opaqueMoving()
orientation()
orientationChanged()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()

place()
placeChanged()
polish()
pos()
property()
queryList()
qwsEvent()
raise()
recreate()
rect()
releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()
repaint()
reparent()
resetInputContext()
resize()
resizeEvent()
scroll()
sender()
setAcceptDrops()
setActiveWindow()
setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()
setCloseMode()
setCursor()
setDisabled()
setEnabled()
setEraseColor()
setErasePixmap()
setFixedExtentHeight()
setFixedExtentWidth()
setFixedHeight()

setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setFrameRect()
setFrameShadow()
setFrameShape()
setFrameStyle()
setGeometry()
setHorizontalStretchable()
setHorizontallyStretchable()
setIcon()
setIconText()
setKeyCompression()
setLineWidth()
setMargin()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMidLineWidth()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setMovingEnabled()
setName()
setNewLine()
setOffset()
setOpaqueMoving()
setOrientation()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProperty()

setResizeEnabled()
setSizeIncrement()
setSizePolicy()
setStyle()
setTabOrder()
setUpdatesEnabled()
setVerticalStretchable()
setVerticallyStretchable()
setWFlags()
setWidget()
show()
showEvent()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()
startTimer()
style()
styleChange()
tabletEvent()
testWFlags()
timerEvent()
topLevelWidget()
tr()
trUtf8()
undock()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateGeometry()
updateMask()
visibilityChanged()

visibleRect()
wheelEvent()
widget()
width()
winEvent()
winId()
windowActivationChange()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QImageFormatPlugin

This	is	the	complete	list	of	member	functions	for	QImageFormatPlugin,
including	inherited	members.

QImageFormatPlugin()
~QImageFormatPlugin()
installIOHandler()
keys()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QProgressDialog
QProgressDialog

QProgressDialog()
~QProgressDialog()
accept()
acceptDrops()
adjustSize()
autoClose()
autoMask()
autoReset()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
cancel()
cancelled()
caption()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clearFocus()
clearMask()
clearWFlags()
close()
closeEvent()
cmd()

colorGroup()
connect()
connectNotify()
constPolish()
contextMenuEvent()
create()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
done()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
exec()
extension()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()

font()
fontChange()
fontInfo()
fontMetrics()
forceShow()
foregroundColor()
frameGeometry()
frameSize()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
insertChild()
installEventFilter()
isA()
isActiveWindow()
isDesktop()
isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()

isHidden()
isMaximized()
isMinimized()
isModal()
isPopup()
isSizeGripEnabled()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
labelText()
layout()
leaveEvent()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
minimumDuration()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()

mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveEvent()
name()
normalizeSignalSlot()
objectTrees()
orientation()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
polish()
pos()
progress()
property()
queryList()
qwsEvent()
raise()
recreate()
rect()
reject()
releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()
repaint()
reparent()

reset()
resetInputContext()
resize()
resizeEvent()
result()
scroll()
sender()
setAcceptDrops()
setActiveWindow()
setAutoClose()
setAutoMask()
setAutoReset()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBar()
setBaseSize()
setCancelButton()
setCancelButtonText()
setCaption()
setCursor()
setDisabled()
setEnabled()
setEraseColor()
setErasePixmap()
setExtension()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setGeometry()
setIcon()
setIconText()
setKeyCompression()
setLabel()

setLabelText()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMinimumDuration()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setOrientation()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProgress()
setProperty()
setResult()
setSizeGripEnabled()
setSizeIncrement()
setSizePolicy()
setStyle()
setTabOrder()
setTotalSteps()
setUpdatesEnabled()
setWFlags()
show()
showEvent()
showExtension()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()

sizePolicy()
stackUnder()
startTimer()
style()
styleChange()
tabletEvent()
testWFlags()
timerEvent()
topLevelWidget()
totalSteps()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateGeometry()
updateMask()
visibleRect()
wasCancelled()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()

x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QTableSelection
QTableSelection

QTableSelection()
anchorCol()
anchorRow()
bottomRow()
expandTo()
init()
isActive()
leftCol()
operator!=()
operator==()
rightCol()
topRow()

Copyright	©	2002	Trolltech Trademarks :farfareast Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QAccessible

This	is	the	complete	list	of	member	functions	for	QAccessible,	including
inherited	members.

queryAccessibleInterface()
updateAccessibility()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QDomAttr

This	is	the	complete	list	of	member	functions	for	QDomAttr,	including	inherited
members.

QDomAttr()
~QDomAttr()
appendChild()
attributes()
childNodes()
clear()
cloneNode()
firstChild()
hasAttributes()
hasChildNodes()
insertAfter()
insertBefore()
isAttr()
isCDATASection()
isCharacterData()
isComment()
isDocument()
isDocumentFragment()
isDocumentType()
isElement()
isEntity()
isEntityReference()
isNotation()
isNull()
isProcessingInstruction()
isSupported()
isText()
lastChild()
localName()

name()
namedItem()
namespaceURI()
nextSibling()
nodeName()
nodeType()
nodeValue()
normalize()
operator!=()
operator=()
operator==()
ownerDocument()
ownerElement()
parentNode()
prefix()
previousSibling()
removeChild()
replaceChild()
save()
setNodeValue()
setPrefix()
setValue()
specified()
toAttr()
toCDATASection()
toCharacterData()
toComment()
toDocument()
toDocumentFragment()
toDocumentType()
toElement()
toEntity()
toEntityReference()
toNotation()
toProcessingInstruction()
toText()
value()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QImageFormatType

This	is	the	complete	list	of	member	functions	for	QImageFormatType,	including
inherited	members.

QImageFormatType()
~QImageFormatType()
decoderFor()
formatName()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QPtrCollection
QPtrCollection

QPtrCollection()
~QPtrCollection()
autoDelete()
clear()
count()
deleteItem()
newItem()
setAutoDelete()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QTabletEvent

This	is	the	complete	list	of	member	functions	for	QTabletEvent,	including
inherited	members.

QTabletEvent()
accept()
device()
globalPos()
globalX()
globalY()
ignore()
isAccepted()
pos()
pressure()
spontaneous()
type()
uniqueId()
x()
xTilt()
y()
yTilt()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QAccessibleInterface

This	is	the	complete	list	of	member	functions	for	QAccessibleInterface,
including	inherited	members.

childCount()
clearSelection()
controlAt()
doDefaultAction()
isValid()
navigate()
queryAccessibleInterface()
queryChild()
queryParent()
rect()
role()
selection()
setFocus()
setSelected()
setText()
state()
text()
updateAccessibility()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QDomCDATASection

This	is	the	complete	list	of	member	functions	for	QDomCDATASection,
including	inherited	members.

QDomCDATASection()
~QDomCDATASection()
appendChild()
appendData()
attributes()
childNodes()
clear()
cloneNode()
data()
deleteData()
firstChild()
hasAttributes()
hasChildNodes()
insertAfter()
insertBefore()
insertData()
isAttr()
isCDATASection()
isCharacterData()
isComment()
isDocument()
isDocumentFragment()
isDocumentType()
isElement()
isEntity()
isEntityReference()
isNotation()
isNull()
isProcessingInstruction()

isSupported()
isText()
lastChild()
length()
localName()
namedItem()
namespaceURI()
nextSibling()
nodeName()
nodeType()
nodeValue()
normalize()
operator!=()
operator=()
operator==()
ownerDocument()
parentNode()
prefix()
previousSibling()
removeChild()
replaceChild()
replaceData()
save()
setData()
setNodeValue()
setPrefix()
splitText()
substringData()
toAttr()
toCDATASection()
toCharacterData()
toComment()
toDocument()
toDocumentFragment()
toDocumentType()
toElement()
toEntity()
toEntityReference()
toNotation()

toProcessingInstruction()
toText()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QImageIO

This	is	the	complete	list	of	member	functions	for	QImageIO,	including	inherited
members.

QImageIO()
~QImageIO()
defineIOHandler()
description()
fileName()
format()
gamma()
image()
imageFormat()
inputFormats()
ioDevice()
outputFormats()
parameters()
quality()
read()
setDescription()
setFileName()
setFormat()
setGamma()
setIODevice()
setImage()
setParameters()
setQuality()
setStatus()
status()
write()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QPtrDict
This	is	the	complete	list	of	member	functions	for	QPtrDict,	including	inherited
members.

QPtrDict()
~QPtrDict()
autoDelete()
clear()
count()
deleteItem()
find()
insert()
isEmpty()
newItem()
operator=()
operator[]()
read()
remove()
replace()
resize()
setAutoDelete()
size()
statistics()
take()
write()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QTabWidget

This	is	the	complete	list	of	member	functions	for	QTabWidget,	including
inherited	members.

QTabWidget()
acceptDrops()
addTab()
adjustSize()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
caption()
changeTab()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clearFocus()
clearMask()
clearWFlags()
close()
closeEvent()
cmd()
colorGroup()

connect()
connectNotify()
constPolish()
contextMenuEvent()
count()
create()
currentChanged()
currentPage()
currentPageIndex()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()

font()
fontChange()
fontInfo()
fontMetrics()
foregroundColor()
frameGeometry()
frameSize()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
indexOf()
inherits()
insertChild()
insertTab()
installEventFilter()
isA()
isActiveWindow()
isDesktop()
isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()

isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()
isPopup()
isTabEnabled()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
label()
layout()
leaveEvent()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
margin()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
minimumHeight()
minimumSize()
minimumSizeHint()

minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveEvent()
name()
normalizeSignalSlot()
objectTrees()
ownCursor()
ownFont()
ownPalette()
page()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
polish()
pos()
property()
queryList()
qwsEvent()
raise()
recreate()
rect()
releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()
removePage()
removeTabToolTip()
repaint()

reparent()
resetInputContext()
resize()
resizeEvent()
scroll()
sender()
setAcceptDrops()
setActiveWindow()
setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()
setCurrentPage()
setCursor()
setDisabled()
setEnabled()
setEraseColor()
setErasePixmap()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setGeometry()
setIcon()
setIconText()
setKeyCompression()
setMargin()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMinimumHeight()

setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProperty()
setSizeIncrement()
setSizePolicy()
setStyle()
setTabBar()
setTabEnabled()
setTabIconSet()
setTabLabel()
setTabOrder()
setTabPosition()
setTabShape()
setTabToolTip()
setUpdatesEnabled()
setWFlags()
show()
showEvent()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
showPage()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()
startTimer()
style()
styleChange()
tabBar()

tabIconSet()
tabLabel()
tabPosition()
tabShape()
tabToolTip()
tabletEvent()
testWFlags()
timerEvent()
topLevelWidget()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateGeometry()
updateMask()
visibleRect()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()

x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QAccessibleObject

This	is	the	complete	list	of	member	functions	for	QAccessibleObject,	including
inherited	members.

QAccessibleObject()
~QAccessibleObject()
blockSignals()
checkConnectArgs()
child()
childCount()
childEvent()
children()
className()
clearSelection()
connect()
connectNotify()
controlAt()
customEvent()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
doDefaultAction()
dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
highPriority()
inherits()
insertChild()
installEventFilter()
isA()
isValid()

isWidgetType()
killTimer()
killTimers()
metaObject()
name()
navigate()
normalizeSignalSlot()
object()
objectTrees()
parent()
property()
queryAccessibleInterface()
queryChild()
queryList()
queryParent()
rect()
removeChild()
removeEventFilter()
role()
selection()
sender()
setFocus()
setName()
setProperty()
setSelected()
setText()
signalsBlocked()
startTimer()
state()
text()
timerEvent()
tr()
trUtf8()
updateAccessibility()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QDomCharacterData

This	is	the	complete	list	of	member	functions	for	QDomCharacterData,
including	inherited	members.

QDomCharacterData()
~QDomCharacterData()
appendChild()
appendData()
attributes()
childNodes()
clear()
cloneNode()
data()
deleteData()
firstChild()
hasAttributes()
hasChildNodes()
insertAfter()
insertBefore()
insertData()
isAttr()
isCDATASection()
isCharacterData()
isComment()
isDocument()
isDocumentFragment()
isDocumentType()
isElement()
isEntity()
isEntityReference()
isNotation()
isNull()
isProcessingInstruction()

isSupported()
isText()
lastChild()
length()
localName()
namedItem()
namespaceURI()
nextSibling()
nodeName()
nodeType()
nodeValue()
normalize()
operator!=()
operator=()
operator==()
ownerDocument()
parentNode()
prefix()
previousSibling()
removeChild()
replaceChild()
replaceData()
save()
setData()
setNodeValue()
setPrefix()
substringData()
toAttr()
toCDATASection()
toCharacterData()
toComment()
toDocument()
toDocumentFragment()
toDocumentType()
toElement()
toEntity()
toEntityReference()
toNotation()
toProcessingInstruction()

toText()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QIMEvent

This	is	the	complete	list	of	member	functions	for	QIMEvent,	including	inherited
members.

QIMEvent()
accept()
cursorPos()
ignore()
isAccepted()
spontaneous()
text()
type()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QPtrDictIterator

This	is	the	complete	list	of	member	functions	for	QPtrDictIterator,	including
inherited	members.

QPtrDictIterator()
~QPtrDictIterator()
count()
current()
currentKey()
isEmpty()
operator	type	*()
operator()()
operator++()
operator+=()
toFirst()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QTextBrowser

This	is	the	complete	list	of	member	functions	for	QTextBrowser,	including
inherited	members.

QTextBrowser()
acceptDrops()
addChild()
adjustSize()
alignment()
anchorAt()
append()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
backward()
backwardAvailable()
baseSize()
blockSignals()
bold()
bottomMargin()
caption()
center()
charAt()
checkConnectArgs()
child()
childAt()
childEvent()
childIsVisible()
childX()
childY()

children()
childrenRect()
childrenRegion()
className()
clear()
clearFocus()
clearMask()
clearParagraphBackground()
clearWFlags()
clipper()
close()
closeEvent()
cmd()
color()
colorGroup()
connect()
connectNotify()
constPolish()
contentsContextMenuEvent()
contentsDragEnterEvent()
contentsDragLeaveEvent()
contentsDragMoveEvent()
contentsDropEvent()
contentsHeight()
contentsMouseDoubleClickEvent()
contentsMouseMoveEvent()
contentsMousePressEvent()
contentsMouseReleaseEvent()
contentsMoving()
contentsRect()
contentsToViewport()
contentsWheelEvent()
contentsWidth()
contentsX()
contentsY()
context()
contextMenuEvent()
copy()
copyAvailable()

cornerWidget()
create()
createPopupMenu()
currentAlignmentChanged()
currentColorChanged()
currentFontChanged()
currentVerticalAlignmentChanged()
cursor()
cursorPositionChanged()
customEvent()
customWhatsThis()
cut()
del()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
doKeyboardAction()
documentTitle()
dragAutoScroll()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawContents()
drawContentsOffset()
drawFrame()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enableClipper()
enabledChange()
ensureCursorVisible()
ensureVisible()
enterEvent()
erase()
eraseColor()
erasePixmap()

event()
eventFilter()
family()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()
fontChange()
fontInfo()
fontMetrics()
foregroundColor()
forward()
forwardAvailable()
frameChanged()
frameGeometry()
frameRect()
frameShadow()
frameShape()
frameSize()
frameStyle()
frameWidth()
geometry()
getCursorPosition()
getSelection()
getWFlags()
grabKeyboard()
grabMouse()
hScrollBarMode()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
hasSelectedText()
hasStaticBackground()

height()
heightForWidth()
hide()
hideEvent()
highPriority()
highlighted()
home()
horizontalScrollBar()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
indent()
inherits()
insert()
insertAt()
insertChild()
insertParagraph()
installEventFilter()
isA()
isActiveWindow()
isDesktop()
isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()
isModified()
isOverwriteMode()
isPopup()
isReadOnly()
isRedoAvailable()

isTopLevel()
isUndoAvailable()
isUndoRedoEnabled()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
italic()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
leftMargin()
length()
lineOfChar()
lineWidth()
lines()
linesOfParagraph()
linkClicked()
linkUnderline()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
margin()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()

midLineWidth()
mimeSourceFactory()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
modificationChanged()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveChild()
moveCursor()
moveEvent()
name()
normalizeSignalSlot()
objectTrees()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
paper()
paragraphAt()
paragraphBackgroundColor()
paragraphLength()
paragraphRect()
paragraphs()
parent()
parentWidget()
paste()
pasteSubType()

placeCursor()
pointSize()
polish()
pos()
property()
queryList()
qwsEvent()
raise()
recreate()
rect()
redo()
redoAvailable()
releaseKeyboard()
releaseMouse()
reload()
removeChild()
removeEventFilter()
removeParagraph()
removeSelectedText()
removeSelection()
repaint()
repaintChanged()
repaintContents()
reparent()
resetInputContext()
resize()
resizeContents()
resizeEvent()
resizePolicy()
returnPressed()
rightMargin()
scroll()
scrollBy()
scrollToAnchor()
scrollToBottom()
selectAll()
selectedText()
selectionChanged()
sender()

setAcceptDrops()
setActiveWindow()
setAlignment()
setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setBold()
setCaption()
setColor()
setContentsPos()
setCornerWidget()
setCurrentFont()
setCursor()
setCursorPosition()
setDisabled()
setDragAutoScroll()
setEnabled()
setEraseColor()
setErasePixmap()
setFamily()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setFrameRect()
setFrameShadow()
setFrameShape()
setFrameStyle()
setGeometry()
setHBarGeometry()
setHScrollBarMode()
setIcon()
setIconText()

setItalic()
setKeyCompression()
setLineWidth()
setLinkUnderline()
setMargin()
setMargins()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMidLineWidth()
setMimeSourceFactory()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setModified()
setMouseTracking()
setName()
setOverwriteMode()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setPaper()
setParagraphBackgroundColor()
setPointSize()
setProperty()
setReadOnly()
setResizePolicy()
setSelection()
setSelectionAttributes()
setSizeIncrement()
setSizePolicy()
setSource()
setStaticBackground()
setStyle()
setStyleSheet()
setTabOrder()

setTabStopWidth()
setText()
setTextFormat()
setUnderline()
setUndoDepth()
setUndoRedoEnabled()
setUpdatesEnabled()
setVBarGeometry()
setVScrollBarMode()
setVerticalAlignment()
setWFlags()
setWordWrap()
setWrapColumnOrWidth()
setWrapPolicy()
show()
showChild()
showEvent()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
source()
stackUnder()
startTimer()
style()
styleChange()
styleSheet()
tabStopWidth()
tabletEvent()
testWFlags()
text()
textChanged()
textCursor()
textFormat()

timerEvent()
topLevelWidget()
topMargin()
tr()
trUtf8()
underline()
undo()
undoAvailable()
undoDepth()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateContents()
updateGeometry()
updateMask()
updateScrollBars()
vScrollBarMode()
verticalScrollBar()
viewport()
viewportPaintEvent()
viewportResizeEvent()
viewportSize()
viewportToContents()
visibleHeight()
visibleRect()
visibleWidth()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
wordWrap()
wrapColumnOrWidth()
wrapPolicy()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()

x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()
zoomIn()
zoomOut()
zoomTo()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QDomComment

This	is	the	complete	list	of	member	functions	for	QDomComment,	including
inherited	members.

QDomComment()
~QDomComment()
appendChild()
appendData()
attributes()
childNodes()
clear()
cloneNode()
data()
deleteData()
firstChild()
hasAttributes()
hasChildNodes()
insertAfter()
insertBefore()
insertData()
isAttr()
isCDATASection()
isCharacterData()
isComment()
isDocument()
isDocumentFragment()
isDocumentType()
isElement()
isEntity()
isEntityReference()
isNotation()
isNull()
isProcessingInstruction()

isSupported()
isText()
lastChild()
length()
localName()
namedItem()
namespaceURI()
nextSibling()
nodeName()
nodeType()
nodeValue()
normalize()
operator!=()
operator=()
operator==()
ownerDocument()
parentNode()
prefix()
previousSibling()
removeChild()
replaceChild()
replaceData()
save()
setData()
setNodeValue()
setPrefix()
substringData()
toAttr()
toCDATASection()
toCharacterData()
toComment()
toDocument()
toDocumentFragment()
toDocumentType()
toElement()
toEntity()
toEntityReference()
toNotation()
toProcessingInstruction()

toText()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QInputDialog
QInputDialog

accept()
acceptDrops()
adjustSize()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
caption()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clearFocus()
clearMask()
clearWFlags()
close()
closeEvent()
cmd()
colorGroup()
connect()
connectNotify()
constPolish()
contextMenuEvent()
create()

cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
done()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
exec()
extension()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()
fontChange()
fontInfo()
fontMetrics()
foregroundColor()
frameGeometry()

frameSize()
geometry()
getDouble()
getInteger()
getItem()
getText()
getWFlags()
grabKeyboard()
grabMouse()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
insertChild()
installEventFilter()
isA()
isActiveWindow()
isDesktop()
isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()

isModal()
isPopup()
isSizeGripEnabled()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()

move()
moveEvent()
name()
normalizeSignalSlot()
objectTrees()
orientation()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
polish()
pos()
property()
queryList()
qwsEvent()
raise()
recreate()
rect()
reject()
releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()
repaint()
reparent()
resetInputContext()
resize()
resizeEvent()
result()
scroll()
sender()

setAcceptDrops()
setActiveWindow()
setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()
setCursor()
setDisabled()
setEnabled()
setEraseColor()
setErasePixmap()
setExtension()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setGeometry()
setIcon()
setIconText()
setKeyCompression()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setOrientation()
setPalette()
setPaletteBackgroundColor()

setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProperty()
setResult()
setSizeGripEnabled()
setSizeIncrement()
setSizePolicy()
setStyle()
setTabOrder()
setUpdatesEnabled()
setWFlags()
show()
showEvent()
showExtension()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()
startTimer()
style()
styleChange()
tabletEvent()
testWFlags()
timerEvent()
topLevelWidget()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateGeometry()
updateMask()

visibleRect()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QPtrList
QPtrList

QPtrList()
~QPtrList()
append()
at()
autoDelete()
clear()
compareItems()
contains()
containsRef()
count()
current()
currentNode()
deleteItem()
find()
findNext()
findNextRef()
findRef()
first()
getFirst()
getLast()
inSort()
insert()
isEmpty()
last()
newItem()
next()
operator=()
operator==()
prepend()
prev()
read()
remove()

removeFirst()
removeLast()
removeNode()
removeRef()
setAutoDelete()
sort()
take()
takeNode()
toVector()
write()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QTextCodec

This	is	the	complete	list	of	member	functions	for	QTextCodec,	including
inherited	members.

QTextCodec()
~QTextCodec()
canEncode()
codecForContent()
codecForIndex()
codecForLocale()
codecForMib()
codecForName()
deleteAllCodecs()
fromUnicode()
heuristicContentMatch()
heuristicNameMatch()
loadCharmap()
loadCharmapFile()
locale()
makeDecoder()
makeEncoder()
mibEnum()
mimeName()
name()
setCodecForLocale()
simpleHeuristicNameMatch()
toUnicode()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QDomDocument

This	is	the	complete	list	of	member	functions	for	QDomDocument,	including
inherited	members.

QDomDocument()
~QDomDocument()
appendChild()
attributes()
childNodes()
clear()
cloneNode()
createAttribute()
createAttributeNS()
createCDATASection()
createComment()
createDocumentFragment()
createElement()
createElementNS()
createEntityReference()
createProcessingInstruction()
createTextNode()
doctype()
documentElement()
elementById()
elementsByTagName()
elementsByTagNameNS()
firstChild()
hasAttributes()
hasChildNodes()
implementation()
importNode()
insertAfter()
insertBefore()

isAttr()
isCDATASection()
isCharacterData()
isComment()
isDocument()
isDocumentFragment()
isDocumentType()
isElement()
isEntity()
isEntityReference()
isNotation()
isNull()
isProcessingInstruction()
isSupported()
isText()
lastChild()
localName()
namedItem()
namespaceURI()
nextSibling()
nodeName()
nodeType()
nodeValue()
normalize()
operator!=()
operator=()
operator==()
ownerDocument()
parentNode()
prefix()
previousSibling()
removeChild()
replaceChild()
save()
setContent()
setNodeValue()
setPrefix()
toAttr()
toCDATASection()

toCString()
toCharacterData()
toComment()
toDocument()
toDocumentFragment()
toDocumentType()
toElement()
toEntity()
toEntityReference()
toNotation()
toProcessingInstruction()
toString()
toText()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QIntCache

This	is	the	complete	list	of	member	functions	for	QIntCache,	including	inherited
members.

~QIntCache()
clear()
count()
find()
insert()
isEmpty()
maxCost()
operator[]()
remove()
setMaxCost()
size()
statistics()
take()
totalCost()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QPtrListIterator
QPtrListIterator

QPtrListIterator()
~QPtrListIterator()
atFirst()
atLast()
count()
current()
isEmpty()
operator	type	*()
operator()()
operator*()
operator++()
operator+=()
operator--()
operator-=()
operator=()
toFirst()
toLast()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QTextCodecPlugin

This	is	the	complete	list	of	member	functions	for	QTextCodecPlugin,	including
inherited	members.

QTextCodecPlugin()
~QTextCodecPlugin()
createForMib()
createForName()
mibEnums()
names()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QDomDocumentFragment

This	is	the	complete	list	of	member	functions	for	QDomDocumentFragment,
including	inherited	members.

QDomDocumentFragment()
~QDomDocumentFragment()
appendChild()
attributes()
childNodes()
clear()
cloneNode()
firstChild()
hasAttributes()
hasChildNodes()
insertAfter()
insertBefore()
isAttr()
isCDATASection()
isCharacterData()
isComment()
isDocument()
isDocumentFragment()
isDocumentType()
isElement()
isEntity()
isEntityReference()
isNotation()
isNull()
isProcessingInstruction()
isSupported()
isText()
lastChild()
localName()

namedItem()
namespaceURI()
nextSibling()
nodeName()
nodeType()
nodeValue()
normalize()
operator!=()
operator=()
operator==()
ownerDocument()
parentNode()
prefix()
previousSibling()
removeChild()
replaceChild()
save()
setNodeValue()
setPrefix()
toAttr()
toCDATASection()
toCharacterData()
toComment()
toDocument()
toDocumentFragment()
toDocumentType()
toElement()
toEntity()
toEntityReference()
toNotation()
toProcessingInstruction()
toText()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QIntCacheIterator

This	is	the	complete	list	of	member	functions	for	QIntCacheIterator,	including
inherited	members.

QIntCacheIterator()
atFirst()
atLast()
count()
current()
currentKey()
isEmpty()
operator	type	*()
operator()()
operator++()
operator+=()
operator--()
operator-=()
operator=()
toFirst()
toLast()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QPtrQueue
QPtrQueue

QPtrQueue()
~QPtrQueue()
autoDelete()
clear()
count()
current()
dequeue()
enqueue()
head()
isEmpty()
operator	type	*()
operator=()
read()
remove()
setAutoDelete()
write()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QTextDecoder

This	is	the	complete	list	of	member	functions	for	QTextDecoder,	including
inherited	members.

~QTextDecoder()
toUnicode()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QAsciiCache

This	is	the	complete	list	of	member	functions	for	QAsciiCache,	including
inherited	members.

~QAsciiCache()
clear()
count()
find()
insert()
isEmpty()
maxCost()
operator[]()
remove()
setMaxCost()
size()
statistics()
take()
totalCost()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QDomDocumentType

This	is	the	complete	list	of	member	functions	for	QDomDocumentType,
including	inherited	members.

QDomDocumentType()
~QDomDocumentType()
appendChild()
attributes()
childNodes()
clear()
cloneNode()
entities()
firstChild()
hasAttributes()
hasChildNodes()
insertAfter()
insertBefore()
internalSubset()
isAttr()
isCDATASection()
isCharacterData()
isComment()
isDocument()
isDocumentFragment()
isDocumentType()
isElement()
isEntity()
isEntityReference()
isNotation()
isNull()
isProcessingInstruction()
isSupported()
isText()

lastChild()
localName()
name()
namedItem()
namespaceURI()
nextSibling()
nodeName()
nodeType()
nodeValue()
normalize()
notations()
operator!=()
operator=()
operator==()
ownerDocument()
parentNode()
prefix()
previousSibling()
publicId()
removeChild()
replaceChild()
save()
setNodeValue()
setPrefix()
systemId()
toAttr()
toCDATASection()
toCharacterData()
toComment()
toDocument()
toDocumentFragment()
toDocumentType()
toElement()
toEntity()
toEntityReference()
toNotation()
toProcessingInstruction()
toText()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QIntDict
This	is	the	complete	list	of	member	functions	for	QIntDict,	including	inherited
members.

QIntDict()
~QIntDict()
autoDelete()
clear()
count()
deleteItem()
find()
insert()
isEmpty()
newItem()
operator=()
operator[]()
read()
remove()
replace()
resize()
setAutoDelete()
size()
statistics()
take()
write()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QPtrStack
QPtrStack

QPtrStack()
~QPtrStack()
autoDelete()
clear()
count()
current()
isEmpty()
operator	type	*()
operator=()
pop()
push()
read()
remove()
setAutoDelete()
top()
write()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QTextDrag

This	is	the	complete	list	of	member	functions	for	QTextDrag,	including	inherited
members.

QTextDrag()
~QTextDrag()
blockSignals()
canDecode()
checkConnectArgs()
child()
childEvent()
children()
className()
connect()
connectNotify()
customEvent()
decode()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
drag()
dragCopy()
dragLink()
dragMove()
dumpObjectInfo()
dumpObjectTree()
encodedData()
event()
eventFilter()
format()
highPriority()
inherits()

insertChild()
installEventFilter()
isA()
isWidgetType()
killTimer()
killTimers()
metaObject()
name()
normalizeSignalSlot()
objectTrees()
parent()
pixmap()
pixmapHotSpot()
property()
provides()
queryList()
removeChild()
removeEventFilter()
sender()
serialNumber()
setName()
setPixmap()
setProperty()
setSubtype()
setText()
signalsBlocked()
source()
startTimer()
target()
timerEvent()
tr()
trUtf8()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QAsciiCacheIterator

This	is	the	complete	list	of	member	functions	for	QAsciiCacheIterator,	including
inherited	members.

QAsciiCacheIterator()
atFirst()
atLast()
count()
current()
currentKey()
isEmpty()
operator	type	*()
operator()()
operator++()
operator+=()
operator--()
operator-=()
operator=()
toFirst()
toLast()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QDomElement

This	is	the	complete	list	of	member	functions	for	QDomElement,	including
inherited	members.

QDomElement()
~QDomElement()
appendChild()
attribute()
attributeNS()
attributeNode()
attributeNodeNS()
attributes()
childNodes()
clear()
cloneNode()
elementsByTagName()
elementsByTagNameNS()
firstChild()
hasAttribute()
hasAttributeNS()
hasAttributes()
hasChildNodes()
insertAfter()
insertBefore()
isAttr()
isCDATASection()
isCharacterData()
isComment()
isDocument()
isDocumentFragment()
isDocumentType()
isElement()
isEntity()

isEntityReference()
isNotation()
isNull()
isProcessingInstruction()
isSupported()
isText()
lastChild()
localName()
namedItem()
namespaceURI()
nextSibling()
nodeName()
nodeType()
nodeValue()
normalize()
operator!=()
operator=()
operator==()
ownerDocument()
parentNode()
prefix()
previousSibling()
removeAttribute()
removeAttributeNS()
removeAttributeNode()
removeChild()
replaceChild()
save()
setAttribute()
setAttributeNS()
setAttributeNode()
setAttributeNodeNS()
setNodeValue()
setPrefix()
setTagName()
tagName()
text()
toAttr()
toCDATASection()

toCharacterData()
toComment()
toDocument()
toDocumentFragment()
toDocumentType()
toElement()
toEntity()
toEntityReference()
toNotation()
toProcessingInstruction()
toText()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QIntDictIterator

This	is	the	complete	list	of	member	functions	for	QIntDictIterator,	including
inherited	members.

QIntDictIterator()
~QIntDictIterator()
count()
current()
currentKey()
isEmpty()
operator	type	*()
operator()()
operator++()
operator+=()
toFirst()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QPtrVector
QPtrVector

QPtrVector()
~QPtrVector()
at()
autoDelete()
bsearch()
clear()
compareItems()
contains()
containsRef()
count()
data()
deleteItem()
fill()
find()
findRef()
insert()
isEmpty()
isNull()
newItem()
operator=()
operator==()
operator[]()
read()
remove()
resize()
setAutoDelete()
size()
sort()
take()
toList()
write()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QTextEdit
QTextEdit

QTextEdit()
acceptDrops()
addChild()
adjustSize()
alignment()
anchorAt()
append()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
bold()
bottomMargin()
caption()
center()
charAt()
checkConnectArgs()
child()
childAt()
childEvent()
childIsVisible()
childX()
childY()
children()
childrenRect()
childrenRegion()
className()
clear()

clearFocus()
clearMask()
clearParagraphBackground()
clearWFlags()
clipper()
close()
closeEvent()
cmd()
color()
colorGroup()
connect()
connectNotify()
constPolish()
contentsContextMenuEvent()
contentsDragEnterEvent()
contentsDragLeaveEvent()
contentsDragMoveEvent()
contentsDropEvent()
contentsHeight()
contentsMouseDoubleClickEvent()
contentsMouseMoveEvent()
contentsMousePressEvent()
contentsMouseReleaseEvent()
contentsMoving()
contentsRect()
contentsToViewport()
contentsWheelEvent()
contentsWidth()
contentsX()
contentsY()
context()
contextMenuEvent()
copy()
copyAvailable()
cornerWidget()
create()
createPopupMenu()
currentAlignmentChanged()
currentColorChanged()

currentFontChanged()
currentVerticalAlignmentChanged()
cursor()
cursorPositionChanged()
customEvent()
customWhatsThis()
cut()
del()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
doKeyboardAction()
documentTitle()
dragAutoScroll()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawContents()
drawContentsOffset()
drawFrame()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enableClipper()
enabledChange()
ensureCursorVisible()
ensureVisible()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
family()
find()
focusData()

focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()
fontChange()
fontInfo()
fontMetrics()
foregroundColor()
frameChanged()
frameGeometry()
frameRect()
frameShadow()
frameShape()
frameSize()
frameStyle()
frameWidth()
geometry()
getCursorPosition()
getSelection()
getWFlags()
grabKeyboard()
grabMouse()
hScrollBarMode()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
hasSelectedText()
hasStaticBackground()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
horizontalScrollBar()
icon()

iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
indent()
inherits()
insert()
insertAt()
insertChild()
insertParagraph()
installEventFilter()
isA()
isActiveWindow()
isDesktop()
isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()
isModified()
isOverwriteMode()
isPopup()
isReadOnly()
isRedoAvailable()
isTopLevel()
isUndoAvailable()
isUndoRedoEnabled()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
italic()

keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
leftMargin()
length()
lineOfChar()
lineWidth()
lines()
linesOfParagraph()
linkUnderline()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
margin()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
midLineWidth()
mimeSourceFactory()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
modificationChanged()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()

mousePressEvent()
mouseReleaseEvent()
move()
moveChild()
moveCursor()
moveEvent()
name()
normalizeSignalSlot()
objectTrees()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
paper()
paragraphAt()
paragraphBackgroundColor()
paragraphLength()
paragraphRect()
paragraphs()
parent()
parentWidget()
paste()
pasteSubType()
placeCursor()
pointSize()
polish()
pos()
property()
queryList()
qwsEvent()
raise()
recreate()
rect()

redo()
redoAvailable()
releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()
removeParagraph()
removeSelectedText()
removeSelection()
repaint()
repaintChanged()
repaintContents()
reparent()
resetInputContext()
resize()
resizeContents()
resizeEvent()
resizePolicy()
returnPressed()
rightMargin()
scroll()
scrollBy()
scrollToAnchor()
scrollToBottom()
selectAll()
selectedText()
selectionChanged()
sender()
setAcceptDrops()
setActiveWindow()
setAlignment()
setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setBold()
setCaption()

setColor()
setContentsPos()
setCornerWidget()
setCurrentFont()
setCursor()
setCursorPosition()
setDisabled()
setDragAutoScroll()
setEnabled()
setEraseColor()
setErasePixmap()
setFamily()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setFrameRect()
setFrameShadow()
setFrameShape()
setFrameStyle()
setGeometry()
setHBarGeometry()
setHScrollBarMode()
setIcon()
setIconText()
setItalic()
setKeyCompression()
setLineWidth()
setLinkUnderline()
setMargin()
setMargins()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()

setMidLineWidth()
setMimeSourceFactory()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setModified()
setMouseTracking()
setName()
setOverwriteMode()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setPaper()
setParagraphBackgroundColor()
setPointSize()
setProperty()
setReadOnly()
setResizePolicy()
setSelection()
setSelectionAttributes()
setSizeIncrement()
setSizePolicy()
setStaticBackground()
setStyle()
setStyleSheet()
setTabOrder()
setTabStopWidth()
setText()
setTextFormat()
setUnderline()
setUndoDepth()
setUndoRedoEnabled()
setUpdatesEnabled()
setVBarGeometry()
setVScrollBarMode()
setVerticalAlignment()
setWFlags()
setWordWrap()

setWrapColumnOrWidth()
setWrapPolicy()
show()
showChild()
showEvent()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()
startTimer()
style()
styleChange()
styleSheet()
tabStopWidth()
tabletEvent()
testWFlags()
text()
textChanged()
textCursor()
textFormat()
timerEvent()
topLevelWidget()
topMargin()
tr()
trUtf8()
underline()
undo()
undoAvailable()
undoDepth()
unsetCursor()
unsetFont()
unsetPalette()
update()

updateContents()
updateGeometry()
updateMask()
updateScrollBars()
vScrollBarMode()
verticalScrollBar()
viewport()
viewportPaintEvent()
viewportResizeEvent()
viewportSize()
viewportToContents()
visibleHeight()
visibleRect()
visibleWidth()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
wordWrap()
wrapColumnOrWidth()
wrapPolicy()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()

x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()
zoomIn()
zoomOut()
zoomTo()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QAsciiDict

This	is	the	complete	list	of	member	functions	for	QAsciiDict,	including	inherited
members.

QAsciiDict()
~QAsciiDict()
autoDelete()
clear()
count()
deleteItem()
find()
insert()
isEmpty()
newItem()
operator=()
operator[]()
read()
remove()
replace()
resize()
setAutoDelete()
size()
statistics()
take()
write()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QDomEntity

This	is	the	complete	list	of	member	functions	for	QDomEntity,	including
inherited	members.

QDomEntity()
~QDomEntity()
appendChild()
attributes()
childNodes()
clear()
cloneNode()
firstChild()
hasAttributes()
hasChildNodes()
insertAfter()
insertBefore()
isAttr()
isCDATASection()
isCharacterData()
isComment()
isDocument()
isDocumentFragment()
isDocumentType()
isElement()
isEntity()
isEntityReference()
isNotation()
isNull()
isProcessingInstruction()
isSupported()
isText()
lastChild()
localName()

namedItem()
namespaceURI()
nextSibling()
nodeName()
nodeType()
nodeValue()
normalize()
notationName()
operator!=()
operator=()
operator==()
ownerDocument()
parentNode()
prefix()
previousSibling()
publicId()
removeChild()
replaceChild()
save()
setNodeValue()
setPrefix()
systemId()
toAttr()
toCDATASection()
toCharacterData()
toComment()
toDocument()
toDocumentFragment()
toDocumentType()
toElement()
toEntity()
toEntityReference()
toNotation()
toProcessingInstruction()
toText()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QIntValidator
QIntValidator

QIntValidator()
~QIntValidator()
blockSignals()
bottom()
checkConnectArgs()
child()
childEvent()
children()
className()
connect()
connectNotify()
customEvent()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
fixup()
highPriority()
inherits()
insertChild()
installEventFilter()
isA()
isWidgetType()
killTimer()
killTimers()
metaObject()
name()
normalizeSignalSlot()

objectTrees()
parent()
property()
queryList()
removeChild()
removeEventFilter()
sender()
setBottom()
setName()
setProperty()
setRange()
setTop()
signalsBlocked()
startTimer()
timerEvent()
top()
tr()
trUtf8()
validate()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QTextEncoder

This	is	the	complete	list	of	member	functions	for	QTextEncoder,	including
inherited	members.

~QTextEncoder()
fromUnicode()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QAsciiDictIterator

This	is	the	complete	list	of	member	functions	for	QAsciiDictIterator,	including
inherited	members.

QAsciiDictIterator()
~QAsciiDictIterator()
count()
current()
currentKey()
isEmpty()
operator	type	*()
operator()()
operator++()
operator+=()
toFirst()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QDomEntityReference

This	is	the	complete	list	of	member	functions	for	QDomEntityReference,
including	inherited	members.

QDomEntityReference()
~QDomEntityReference()
appendChild()
attributes()
childNodes()
clear()
cloneNode()
firstChild()
hasAttributes()
hasChildNodes()
insertAfter()
insertBefore()
isAttr()
isCDATASection()
isCharacterData()
isComment()
isDocument()
isDocumentFragment()
isDocumentType()
isElement()
isEntity()
isEntityReference()
isNotation()
isNull()
isProcessingInstruction()
isSupported()
isText()
lastChild()
localName()

namedItem()
namespaceURI()
nextSibling()
nodeName()
nodeType()
nodeValue()
normalize()
operator!=()
operator=()
operator==()
ownerDocument()
parentNode()
prefix()
previousSibling()
removeChild()
replaceChild()
save()
setNodeValue()
setPrefix()
toAttr()
toCDATASection()
toCharacterData()
toComment()
toDocument()
toDocumentFragment()
toDocumentType()
toElement()
toEntity()
toEntityReference()
toNotation()
toProcessingInstruction()
toText()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QIODevice
QIODevice

QIODevice()
~QIODevice()
at()
atEnd()
close()
flags()
flush()
getch()
isAsynchronous()
isBuffered()
isCombinedAccess()
isDirectAccess()
isInactive()
isOpen()
isRaw()
isReadWrite()
isReadable()
isSequentialAccess()
isSynchronous()
isTranslated()
isWritable()
mode()
open()
putch()
readAll()
readBlock()
readLine()
reset()
resetStatus()
size()
state()
status()

ungetch()
writeBlock()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QTextIStream
QTextIStream

QTextIStream()
atEnd()
device()
eof()
fill()
flags()
operator<<()
operator>>()
precision()
read()
readLine()
readRawBytes()
reset()
setCodec()
setDevice()
setEncoding()
setf()
skipWhiteSpace()
unsetDevice()
unsetf()
width()
writeRawBytes()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QBitArray
QBitArray

QBitArray()
assign()
at()
begin()
bsearch()
clearBit()
contains()
copy()
count()
data()
detach()
duplicate()
end()
fill()
find()
isEmpty()
isNull()
nrefs()
operator	const	type	*()
operator!=()
operator&=()
operator=()
operator==()
operator[]()
operator^=()
operator|=()
operator~()
resetRawData()
resize()
setBit()
setRawData()
size()

sort()
testBit()
toggleBit()
truncate()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QDomImplementation

This	is	the	complete	list	of	member	functions	for	QDomImplementation,
including	inherited	members.

QDomImplementation()
~QDomImplementation()
createDocument()
createDocumentType()
hasFeature()
isNull()
operator!=()
operator=()
operator==()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QJisCodec

This	is	the	complete	list	of	member	functions	for	QJisCodec,	including	inherited
members.

canEncode()
codecForContent()
codecForIndex()
codecForLocale()
codecForMib()
codecForName()
deleteAllCodecs()
fromUnicode()
heuristicContentMatch()
heuristicNameMatch()
loadCharmap()
loadCharmapFile()
locale()
makeDecoder()
makeEncoder()
mibEnum()
mimeName()
name()
setCodecForLocale()
simpleHeuristicNameMatch()
toUnicode()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QTextOStream
QTextOStream

QTextOStream()
atEnd()
device()
eof()
fill()
flags()
operator<<()
operator>>()
precision()
read()
readLine()
readRawBytes()
reset()
setCodec()
setDevice()
setEncoding()
setf()
skipWhiteSpace()
unsetDevice()
unsetf()
width()
writeRawBytes()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QBitmap
This	is	the	complete	list	of	member	functions	for	QBitmap,	including	inherited
members.

QBitmap()
cmd()
convertFromImage()
convertToImage()
createHeuristicMask()
defaultDepth()
defaultOptimization()
depth()
detach()
fill()
grabWidget()
grabWindow()
handle()
height()
imageFormat()
isExtDev()
isNull()
isQBitmap()
load()
loadFromData()
mask()
metric()
operator=()
optimization()
paintingActive()
rect()
resize()
save()
selfMask()
serialNumber()
setDefaultOptimization()

setMask()
setOptimization()
size()
trueMatrix()
width()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
xForm()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QDomNamedNodeMap

This	is	the	complete	list	of	member	functions	for	QDomNamedNodeMap,
including	inherited	members.

QDomNamedNodeMap()
~QDomNamedNodeMap()
contains()
count()
item()
length()
namedItem()
namedItemNS()
operator!=()
operator=()
operator==()
removeNamedItem()
removeNamedItemNS()
setNamedItem()
setNamedItemNS()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QKeyEvent

This	is	the	complete	list	of	member	functions	for	QKeyEvent,	including
inherited	members.

QKeyEvent()
accept()
ascii()
count()
ignore()
isAccepted()
isAutoRepeat()
key()
spontaneous()
state()
stateAfter()
text()
type()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QBitVal
This	is	the	complete	list	of	member	functions	for	QBitVal,	including	inherited
members.

QBitVal()
operator	int()
operator=()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QDomNode

This	is	the	complete	list	of	member	functions	for	QDomNode,	including
inherited	members.

QDomNode()
~QDomNode()
appendChild()
attributes()
childNodes()
clear()
cloneNode()
firstChild()
hasAttributes()
hasChildNodes()
insertAfter()
insertBefore()
isAttr()
isCDATASection()
isCharacterData()
isComment()
isDocument()
isDocumentFragment()
isDocumentType()
isElement()
isEntity()
isEntityReference()
isNotation()
isNull()
isProcessingInstruction()
isSupported()
isText()
lastChild()
localName()

namedItem()
namespaceURI()
nextSibling()
nodeName()
nodeType()
nodeValue()
normalize()
operator!=()
operator=()
operator==()
ownerDocument()
parentNode()
prefix()
previousSibling()
removeChild()
replaceChild()
save()
setNodeValue()
setPrefix()
toAttr()
toCDATASection()
toCharacterData()
toComment()
toDocument()
toDocumentFragment()
toDocumentType()
toElement()
toEntity()
toEntityReference()
toNotation()
toProcessingInstruction()
toText()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QKeySequence

This	is	the	complete	list	of	member	functions	for	QKeySequence,	including
inherited	members.

QKeySequence()
~QKeySequence()
operator	QString()
operator	int()
operator!=()
operator=()
operator==()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QRegExp
This	is	the	complete	list	of	member	functions	for	QRegExp,	including	inherited
members.

QRegExp()
~QRegExp()
cap()
capturedTexts()
caseSensitive()
exactMatch()
isEmpty()
isValid()
match()
matchedLength()
minimal()
operator!=()
operator=()
operator==()
pattern()
pos()
search()
searchRev()
setCaseSensitive()
setMinimal()
setPattern()
setWildcard()
wildcard()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QThread
QThread

QThread()
~QThread()
currentThread()
exit()
finished()
msleep()
postEvent()
run()
running()
sleep()
start()
usleep()
wait()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QDomNodeList

This	is	the	complete	list	of	member	functions	for	QDomNodeList,	including
inherited	members.

QDomNodeList()
~QDomNodeList()
count()
item()
length()
operator!=()
operator=()
operator==()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QRegExpValidator

This	is	the	complete	list	of	member	functions	for	QRegExpValidator,	including
inherited	members.

QRegExpValidator()
~QRegExpValidator()
blockSignals()
checkConnectArgs()
child()
childEvent()
children()
className()
connect()
connectNotify()
customEvent()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
fixup()
highPriority()
inherits()
insertChild()
installEventFilter()
isA()
isWidgetType()
killTimer()
killTimers()
metaObject()

name()
normalizeSignalSlot()
objectTrees()
parent()
property()
queryList()
regExp()
removeChild()
removeEventFilter()
sender()
setName()
setProperty()
setRegExp()
signalsBlocked()
startTimer()
timerEvent()
tr()
trUtf8()
validate()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QTime
QTime

QTime()
addMSecs()
addSecs()
currentTime()
elapsed()
fromString()
hour()
isNull()
isValid()
minute()
msec()
msecsTo()
operator!=()
operator<()
operator<=()
operator==()
operator>()
operator>=()
restart()
second()
secsTo()
setHMS()
start()
toString()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QBrush
This	is	the	complete	list	of	member	functions	for	QBrush,	including	inherited
members.

QBrush()
~QBrush()
color()
operator!=()
operator=()
operator==()
pixmap()
setColor()
setPixmap()
setStyle()
style()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QDomNotation

This	is	the	complete	list	of	member	functions	for	QDomNotation,	including
inherited	members.

QDomNotation()
~QDomNotation()
appendChild()
attributes()
childNodes()
clear()
cloneNode()
firstChild()
hasAttributes()
hasChildNodes()
insertAfter()
insertBefore()
isAttr()
isCDATASection()
isCharacterData()
isComment()
isDocument()
isDocumentFragment()
isDocumentType()
isElement()
isEntity()
isEntityReference()
isNotation()
isNull()
isProcessingInstruction()
isSupported()
isText()
lastChild()
localName()

namedItem()
namespaceURI()
nextSibling()
nodeName()
nodeType()
nodeValue()
normalize()
operator!=()
operator=()
operator==()
ownerDocument()
parentNode()
prefix()
previousSibling()
publicId()
removeChild()
replaceChild()
save()
setNodeValue()
setPrefix()
systemId()
toAttr()
toCDATASection()
toCharacterData()
toComment()
toDocument()
toDocumentFragment()
toDocumentType()
toElement()
toEntity()
toEntityReference()
toNotation()
toProcessingInstruction()
toText()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QLayout
This	is	the	complete	list	of	member	functions	for	QLayout,	including	inherited
members.

QLayout()
activate()
add()
addChildLayout()
addItem()
alignment()
alignmentRect()
autoAdd()
blockSignals()
checkConnectArgs()
child()
childEvent()
children()
className()
connect()
connectNotify()
customEvent()
deleteAllItems()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
expanding()
geometry()
hasHeightForWidth()
heightForWidth()
highPriority()

inherits()
insertChild()
installEventFilter()
invalidate()
isA()
isEmpty()
isEnabled()
isTopLevel()
isWidgetType()
iterator()
killTimer()
killTimers()
layout()
mainWidget()
margin()
maximumSize()
menuBar()
metaObject()
minimumSize()
name()
normalizeSignalSlot()
objectTrees()
parent()
property()
queryList()
removeChild()
removeEventFilter()
resizeMode()
sender()
setAlignment()
setAutoAdd()
setEnabled()
setGeometry()
setMargin()
setMenuBar()
setName()
setProperty()
setResizeMode()
setSpacing()

setSupportsMargin()
signalsBlocked()
sizeHint()
spacerItem()
spacing()
startTimer()
supportsMargin()
timerEvent()
tr()
trUtf8()
widget()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QTimeEdit

This	is	the	complete	list	of	member	functions	for	QTimeEdit,	including	inherited
members.

QTimeEdit()
~QTimeEdit()
autoAdvance()
maxValue()
minValue()
sectionFormattedText()
separator()
setAutoAdvance()
setHour()
setMaxValue()
setMinValue()
setMinute()
setRange()
setSecond()
setSeparator()
setTime()
time()
updateButtons()
valueChanged()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QBuffer
QBuffer

QBuffer()
~QBuffer()
at()
atEnd()
buffer()
close()
flags()
flush()
getch()
isAsynchronous()
isBuffered()
isCombinedAccess()
isDirectAccess()
isInactive()
isOpen()
isRaw()
isReadWrite()
isReadable()
isSequentialAccess()
isSynchronous()
isTranslated()
isWritable()
mode()
open()
putch()
readAll()
readBlock()
readLine()
reset()
resetStatus()
setBuffer()
size()

state()
status()
ungetch()
writeBlock()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QDomProcessingInstruction

This	is	the	complete	list	of	member	functions	for	QDomProcessingInstruction,
including	inherited	members.

QDomProcessingInstruction()
~QDomProcessingInstruction()
appendChild()
attributes()
childNodes()
clear()
cloneNode()
data()
firstChild()
hasAttributes()
hasChildNodes()
insertAfter()
insertBefore()
isAttr()
isCDATASection()
isCharacterData()
isComment()
isDocument()
isDocumentFragment()
isDocumentType()
isElement()
isEntity()
isEntityReference()
isNotation()
isNull()
isProcessingInstruction()
isSupported()
isText()
lastChild()

localName()
namedItem()
namespaceURI()
nextSibling()
nodeName()
nodeType()
nodeValue()
normalize()
operator!=()
operator=()
operator==()
ownerDocument()
parentNode()
prefix()
previousSibling()
removeChild()
replaceChild()
save()
setData()
setNodeValue()
setPrefix()
target()
toAttr()
toCDATASection()
toCharacterData()
toComment()
toDocument()
toDocumentFragment()
toDocumentType()
toElement()
toEntity()
toEntityReference()
toNotation()
toProcessingInstruction()
toText()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QDomText

This	is	the	complete	list	of	member	functions	for	QDomText,	including	inherited
members.

QDomText()
~QDomText()
appendChild()
appendData()
attributes()
childNodes()
clear()
cloneNode()
data()
deleteData()
firstChild()
hasAttributes()
hasChildNodes()
insertAfter()
insertBefore()
insertData()
isAttr()
isCDATASection()
isCharacterData()
isComment()
isDocument()
isDocumentFragment()
isDocumentType()
isElement()
isEntity()
isEntityReference()
isNotation()
isNull()
isProcessingInstruction()

isSupported()
isText()
lastChild()
length()
localName()
namedItem()
namespaceURI()
nextSibling()
nodeName()
nodeType()
nodeValue()
normalize()
operator!=()
operator=()
operator==()
ownerDocument()
parentNode()
prefix()
previousSibling()
removeChild()
replaceChild()
replaceData()
save()
setData()
setNodeValue()
setPrefix()
splitText()
substringData()
toAttr()
toCDATASection()
toCharacterData()
toComment()
toDocument()
toDocumentFragment()
toDocumentType()
toElement()
toEntity()
toEntityReference()
toNotation()

toProcessingInstruction()
toText()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QLayoutIterator

This	is	the	complete	list	of	member	functions	for	QLayoutIterator,	including
inherited	members.

QLayoutIterator()
~QLayoutIterator()
current()
deleteCurrent()
operator++()
operator=()
takeCurrent()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QScreen
This	is	the	complete	list	of	member	functions	for	QScreen,	including	inherited
members.

QScreen()
~QScreen()
alloc()
base()
blank()
cache()
clut()
connect()
createGfx()
depth()
deviceHeight()
deviceWidth()
disconnect()
height()
initCursor()
initDevice()
isInterlaced()
isTransformed()
lastOp()
linestep()
mapFromDevice()
mapToDevice()
numCols()
onCard()
opType()
pixelType()
pixmapDepth()
pixmapLinestepAlignment()
pixmapOffsetAlignment()
restore()
save()

screenGfx()
screenSize()
set()
setDirty()
setMode()
shutdownDevice()
supportsDepth()
totalSize()
transformOrientation()
uncache()
width()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Qt/Embedded
These	classes	are	relevant	to	Qt/Embedded	users.

QFontManager Implements	font	management	in	Qt/Embedded
QLock Wrapper	for	a	System	V	shared	semaphore

QScreen And	its	descendants	manage	the	framebuffer	and
palette

QWSDecoration Allows	the	appearance	of	the	Qt/Embedded	Window
Manager	to	be	customized

QWSKeyboardHandler Implements	the	keyboard	driver/handler	forQt/Embedded
QWSMouseHandler Mouse	driver/handler	for	Qt/Embedded
QWSServer Server-specific	functionality	in	Qt/Embedded
QWSWindow Server-specific	functionality	in	Qt/Embedded

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QTimerEvent
QTimerEvent

QTimerEvent()
spontaneous()
timerId()
type()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QDoubleValidator
QDoubleValidator

QDoubleValidator()
~QDoubleValidator()
blockSignals()
bottom()
checkConnectArgs()
child()
childEvent()
children()
className()
connect()
connectNotify()
customEvent()
decimals()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
fixup()
highPriority()
inherits()
insertChild()
installEventFilter()
isA()
isWidgetType()
killTimer()
killTimers()
metaObject()
name()

normalizeSignalSlot()
objectTrees()
parent()
property()
queryList()
removeChild()
removeEventFilter()
sender()
setBottom()
setDecimals()
setName()
setProperty()
setRange()
setTop()
signalsBlocked()
startTimer()
timerEvent()
top()
tr()
trUtf8()
validate()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QScrollBar
QScrollBar

QScrollBar()
acceptDrops()
addLine()
addPage()
adjustSize()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
bound()
caption()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clearFocus()
clearMask()
clearWFlags()
close()
closeEvent()
cmd()
colorGroup()
connect()
connectNotify()

constPolish()
contextMenuEvent()
create()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
directSetValue()
disconnect()
disconnectNotify()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
draggingSlider()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()
fontChange()
fontInfo()
fontMetrics()

foregroundColor()
frameGeometry()
frameSize()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
insertChild()
installEventFilter()
isA()
isActiveWindow()
isDesktop()
isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()
isPopup()

isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
lineStep()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
maxValue()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
minValue()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()

move()
moveEvent()
name()
nextLine()
nextPage()
normalizeSignalSlot()
objectTrees()
orientation()
ownCursor()
ownFont()
ownPalette()
pageStep()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
polish()
pos()
positionFromValue()
prevLine()
prevPage()
prevValue()
property()
queryList()
qwsEvent()
raise()
rangeChange()
recreate()
rect()
releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()
repaint()

reparent()
resetInputContext()
resize()
resizeEvent()
scroll()
sender()
setAcceptDrops()
setActiveWindow()
setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()
setCursor()
setDisabled()
setEnabled()
setEraseColor()
setErasePixmap()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setGeometry()
setIcon()
setIconText()
setKeyCompression()
setLineStep()
setMask()
setMaxValue()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMinValue()

setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setOrientation()
setPageStep()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProperty()
setRange()
setSizeIncrement()
setSizePolicy()
setSteps()
setStyle()
setTabOrder()
setTracking()
setUpdatesEnabled()
setValue()
setWFlags()
show()
showEvent()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
sliderMoved()
sliderPressed()
sliderRect()
sliderReleased()
sliderStart()
stackUnder()

startTimer()
stepChange()
style()
styleChange()
subtractLine()
subtractPage()
tabletEvent()
testWFlags()
timerEvent()
topLevelWidget()
tr()
trUtf8()
tracking()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateGeometry()
updateMask()
value()
valueChange()
valueChanged()
valueFromPosition()
visibleRect()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()

x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QByteArray
QByteArray

QByteArray()
assign()
at()
begin()
bsearch()
contains()
copy()
count()
data()
detach()
duplicate()
end()
fill()
find()
isEmpty()
isNull()
nrefs()
operator	const	type	*()
operator!=()
operator=()
operator==()
operator[]()
resetRawData()
resize()
setRawData()
size()
sort()
truncate()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QDragEnterEvent

This	is	the	complete	list	of	member	functions	for	QDragEnterEvent,	including
inherited	members.

QDragEnterEvent()
accept()
acceptAction()
action()
answerRect()
data()
encodedData()
format()
ignore()
isAccepted()
isActionAccepted()
pos()
provides()
serialNumber()
setAction()
setPoint()
source()
spontaneous()
type()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QLibrary
This	is	the	complete	list	of	member	functions	for	QLibrary,	including	inherited
members.

QLibrary()
~QLibrary()
autoUnload()
isLoaded()
library()
load()
resolve()
setAutoUnload()
unload()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QToolButton
QToolButton

QToolButton()
~QToolButton()
accel()
acceptDrops()
adjustSize()
animateClick()
autoMask()
autoRaise()
autoRepeat()
autoResize()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
caption()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clearFocus()
clearMask()
clearWFlags()
clicked()
close()
closeEvent()

cmd()
colorGroup()
connect()
connectNotify()
constPolish()
contextMenuEvent()
create()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawButton()
drawButtonLabel()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()

font()
fontChange()
fontInfo()
fontMetrics()
foregroundColor()
frameGeometry()
frameSize()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
group()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
hitButton()
icon()
iconSet()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
insertChild()
installEventFilter()
isA()
isActiveWindow()
isDesktop()
isDialog()
isDown()
isEnabled()
isEnabledTo()

isEnabledToTLW()
isExclusiveToggle()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()
isOn()
isPopup()
isToggleButton()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
minimumHeight()

minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveEvent()
name()
normalizeSignalSlot()
objectTrees()
offIconSet()
onIconSet()
openPopup()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
pixmap()
polish()
popup()
popupDelay()
pos()
pressed()
property()
queryList()
qwsEvent()
raise()
recreate()

rect()
releaseKeyboard()
releaseMouse()
released()
removeChild()
removeEventFilter()
repaint()
reparent()
resetInputContext()
resize()
resizeEvent()
scroll()
sender()
setAccel()
setAcceptDrops()
setActiveWindow()
setAutoMask()
setAutoRaise()
setAutoRepeat()
setAutoResize()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()
setCursor()
setDisabled()
setDown()
setEnabled()
setEraseColor()
setErasePixmap()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()

setGeometry()
setIcon()
setIconSet()
setIconText()
setKeyCompression()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setOffIconSet()
setOn()
setOnIconSet()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setPixmap()
setPopup()
setPopupDelay()
setProperty()
setSizeIncrement()
setSizePolicy()
setState()
setStyle()
setTabOrder()
setText()
setTextLabel()
setToggleButton()
setToggleType()
setUpdatesEnabled()
setUsesBigPixmap()
setUsesTextLabel()
setWFlags()

show()
showEvent()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()
startTimer()
state()
stateChanged()
style()
styleChange()
tabletEvent()
testWFlags()
text()
textLabel()
timerEvent()
toggle()
toggleType()
toggled()
topLevelWidget()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateGeometry()
updateMask()
uses3D()
usesBigPixmap()
usesTextLabel()
visibleRect()
wheelEvent()

width()
winEvent()
winId()
windowActivationChange()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QCache
This	is	the	complete	list	of	member	functions	for	QCache,	including	inherited
members.

~QCache()
autoDelete()
clear()
count()
deleteItem()
find()
insert()
isEmpty()
maxCost()
newItem()
operator[]()
remove()
setAutoDelete()
setMaxCost()
size()
statistics()
take()
totalCost()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QDragLeaveEvent

This	is	the	complete	list	of	member	functions	for	QDragLeaveEvent,	including
inherited	members.

QDragLeaveEvent()
spontaneous()
type()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QLineEdit
This	is	the	complete	list	of	member	functions	for	QLineEdit,	including	inherited
members.

QLineEdit()
~QLineEdit()
acceptDrops()
adjustSize()
alignment()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
backspace()
baseSize()
blockSignals()
caption()
characterAt()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clear()
clearFocus()
clearMask()
clearValidator()
clearWFlags()
close()
closeEvent()

cmd()
colorGroup()
connect()
connectNotify()
constPolish()
contentsRect()
contextMenuEvent()
copy()
create()
createPopupMenu()
cursor()
cursorBackward()
cursorForward()
cursorLeft()
cursorPosition()
cursorRight()
cursorWordBackward()
cursorWordForward()
customEvent()
customWhatsThis()
cut()
del()
deleteLater()
deselect()
destroy()
destroyed()
disconnect()
disconnectNotify()
displayText()
dragEnabled()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawContents()
drawFrame()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()

echoMode()
edited()
enabledChange()
end()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()
fontChange()
fontInfo()
fontMetrics()
foregroundColor()
frame()
frameChanged()
frameGeometry()
frameRect()
frameShadow()
frameShape()
frameSize()
frameStyle()
frameWidth()
geometry()
getSelection()
getWFlags()
grabKeyboard()
grabMouse()
handle()
hasFocus()

hasMarkedText()
hasMouse()
hasMouseTracking()
hasSelectedText()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
home()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
insert()
insertChild()
installEventFilter()
isA()
isActiveWindow()
isDesktop()
isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()
isPopup()
isReadOnly()
isRedoAvailable()
isTopLevel()
isUndoAvailable()
isUpdatesEnabled()

isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
lineWidth()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
margin()
markedText()
maxLength()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
midLineWidth()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()

move()
moveEvent()
name()
normalizeSignalSlot()
objectTrees()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
passwordChar()
paste()
polish()
pos()
property()
queryList()
qwsEvent()
raise()
recreate()
rect()
redo()
releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()
repaint()
repaintArea()
reparent()
resetInputContext()
resize()
resizeEvent()
returnPressed()

scroll()
selectAll()
selectedText()
selectionChanged()
sender()
setAcceptDrops()
setActiveWindow()
setAlignment()
setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()
setCursor()
setCursorPosition()
setDisabled()
setDragEnabled()
setEchoMode()
setEdited()
setEnabled()
setEraseColor()
setErasePixmap()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setFrame()
setFrameRect()
setFrameShadow()
setFrameShape()
setFrameStyle()
setGeometry()
setIcon()
setIconText()

setKeyCompression()
setLineWidth()
setMargin()
setMask()
setMaxLength()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMidLineWidth()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setPasswordChar()
setProperty()
setReadOnly()
setSelection()
setSizeIncrement()
setSizePolicy()
setStyle()
setTabOrder()
setText()
setUpdatesEnabled()
setValidator()
setWFlags()
show()
showEvent()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()

sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()
startTimer()
style()
styleChange()
tabletEvent()
testWFlags()
text()
textChanged()
timerEvent()
topLevelWidget()
tr()
trUtf8()
undo()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateGeometry()
updateMask()
validateAndSet()
validator()
visibleRect()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()

x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QSemaphore
QSemaphore

QSemaphore()
~QSemaphore()
available()
operator++()
operator+=()
operator--()
operator-=()
total()
tryAccess()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QToolTip
This	is	the	complete	list	of	member	functions	for	QToolTip,	including	inherited
members.

QToolTip()
add()
clear()
enabled()
font()
group()
hide()
isGloballyEnabled()
maybeTip()
palette()
parentWidget()
remove()
setEnabled()
setFont()
setGloballyEnabled()
setPalette()
textFor()
tip()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QCacheIterator

This	is	the	complete	list	of	member	functions	for	QCacheIterator,	including
inherited	members.

QCacheIterator()
atFirst()
atLast()
count()
current()
currentKey()
isEmpty()
operator	type	*()
operator()()
operator++()
operator+=()
operator--()
operator-=()
operator=()
toFirst()
toLast()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QDragMoveEvent

This	is	the	complete	list	of	member	functions	for	QDragMoveEvent,	including
inherited	members.

QDragMoveEvent()
accept()
acceptAction()
action()
answerRect()
data()
encodedData()
format()
ignore()
isAccepted()
isActionAccepted()
pos()
provides()
serialNumber()
setAction()
setPoint()
source()
spontaneous()
type()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QListBox
This	is	the	complete	list	of	member	functions	for	QListBox,	including	inherited
members.

QListBox()
~QListBox()
acceptDrops()
addChild()
adjustSize()
autoBottomScrollBar()
autoMask()
autoScrollBar()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
bottomMargin()
bottomScrollBar()
caption()
cellHeight()
cellWidth()
center()
centerCurrentItem()
changeItem()
checkConnectArgs()
child()
childAt()
childEvent()
childIsVisible()
childX()
childY()
children()

childrenRect()
childrenRegion()
className()
clear()
clearFocus()
clearMask()
clearSelection()
clearWFlags()
clicked()
clipper()
close()
closeEvent()
cmd()
colorGroup()
columnMode()
connect()
connectNotify()
constPolish()
contentsContextMenuEvent()
contentsDragEnterEvent()
contentsDragLeaveEvent()
contentsDragMoveEvent()
contentsDropEvent()
contentsHeight()
contentsMouseDoubleClickEvent()
contentsMouseMoveEvent()
contentsMousePressEvent()
contentsMouseReleaseEvent()
contentsMoving()
contentsRect()
contentsToViewport()
contentsWheelEvent()
contentsWidth()
contentsX()
contentsY()
contextMenuEvent()
contextMenuRequested()
cornerWidget()
count()

create()
currentChanged()
currentItem()
currentText()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
doLayout()
doubleClicked()
dragAutoScroll()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawContents()
drawContentsOffset()
drawFrame()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enableClipper()
enabledChange()
ensureCurrentVisible()
ensureVisible()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
findItem()
firstItem()
focusData()

focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()
fontChange()
fontInfo()
fontMetrics()
foregroundColor()
frameChanged()
frameGeometry()
frameRect()
frameShadow()
frameShape()
frameSize()
frameStyle()
frameWidth()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
hScrollBarMode()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
hasStaticBackground()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
highlighted()
horizontalScrollBar()
icon()
iconText()
iconify()

imComposeEvent()
imEndEvent()
imStartEvent()
inSort()
index()
inherits()
insertChild()
insertItem()
insertStrList()
insertStringList()
installEventFilter()
invertSelection()
isA()
isActiveWindow()
isDesktop()
isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()
isMultiSelection()
isPopup()
isRubberSelecting()
isSelected()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
item()
itemAt()
itemHeight()
itemRect()

itemVisible()
itemYPos()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
leftMargin()
lineWidth()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
margin()
maxItemWidth()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
midLineWidth()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseButtonClicked()
mouseButtonPressed()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()

move()
moveChild()
moveEvent()
name()
normalizeSignalSlot()
numCols()
numColumns()
numItemsVisible()
numRows()
objectTrees()
onItem()
onViewport()
ownCursor()
ownFont()
ownPalette()
paintCell()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
pixmap()
polish()
pos()
pressed()
property()
queryList()
qwsEvent()
raise()
recreate()
rect()
releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()

removeItem()
repaint()
repaintContents()
reparent()
resetInputContext()
resize()
resizeContents()
resizeEvent()
resizePolicy()
returnPressed()
rightButtonClicked()
rightButtonPressed()
rightMargin()
rowMode()
scroll()
scrollBar()
scrollBy()
selectAll()
selected()
selectionChanged()
selectionMode()
sender()
setAcceptDrops()
setActiveWindow()
setAutoBottomScrollBar()
setAutoMask()
setAutoScrollBar()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setBottomItem()
setBottomScrollBar()
setCaption()
setColumnMode()
setContentsPos()
setCornerWidget()
setCurrentItem()

setCursor()
setDisabled()
setDragAutoScroll()
setEnabled()
setEraseColor()
setErasePixmap()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setFrameRect()
setFrameShadow()
setFrameShape()
setFrameStyle()
setGeometry()
setHBarGeometry()
setHScrollBarMode()
setIcon()
setIconText()
setKeyCompression()
setLineWidth()
setMargin()
setMargins()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMidLineWidth()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setMultiSelection()
setName()
setPalette()

setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProperty()
setResizePolicy()
setRowMode()
setScrollBar()
setSelected()
setSelectionMode()
setSizeIncrement()
setSizePolicy()
setStaticBackground()
setStyle()
setTabOrder()
setTopItem()
setUpdatesEnabled()
setVBarGeometry()
setVScrollBarMode()
setVariableHeight()
setVariableWidth()
setWFlags()
show()
showChild()
showEvent()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
sort()
stackUnder()
startTimer()
style()
styleChange()
tabletEvent()

takeItem()
testWFlags()
text()
timerEvent()
toggleCurrentItem()
topItem()
topLevelWidget()
topMargin()
totalHeight()
totalWidth()
tr()
trUtf8()
triggerUpdate()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateContents()
updateGeometry()
updateItem()
updateMask()
updateScrollBars()
vScrollBarMode()
variableHeight()
variableWidth()
verticalScrollBar()
viewport()
viewportPaintEvent()
viewportResizeEvent()
viewportSize()
viewportToContents()
visibleHeight()
visibleRect()
visibleWidth()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()

x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QServerSocket

This	is	the	complete	list	of	member	functions	for	QServerSocket,	including
inherited	members.

QServerSocket()
~QServerSocket()
address()
blockSignals()
checkConnectArgs()
child()
childEvent()
children()
className()
connect()
connectNotify()
customEvent()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
highPriority()
inherits()
insertChild()
installEventFilter()
isA()
isWidgetType()
killTimer()
killTimers()
metaObject()

name()
newConnection()
normalizeSignalSlot()
objectTrees()
ok()
parent()
port()
property()
queryList()
removeChild()
removeEventFilter()
sender()
setName()
setProperty()
setSocket()
signalsBlocked()
socket()
socketDevice()
startTimer()
timerEvent()
tr()
trUtf8()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QToolTipGroup

This	is	the	complete	list	of	member	functions	for	QToolTipGroup,	including
inherited	members.

QToolTipGroup()
~QToolTipGroup()
blockSignals()
checkConnectArgs()
child()
childEvent()
children()
className()
connect()
connectNotify()
customEvent()
delay()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
dumpObjectInfo()
dumpObjectTree()
enabled()
event()
eventFilter()
highPriority()
inherits()
insertChild()
installEventFilter()
isA()
isWidgetType()
killTimer()
killTimers()

metaObject()
name()
normalizeSignalSlot()
objectTrees()
parent()
property()
queryList()
removeChild()
removeEventFilter()
removeTip()
sender()
setDelay()
setEnabled()
setName()
setProperty()
showTip()
signalsBlocked()
startTimer()
timerEvent()
tr()
trUtf8()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QDragObject

This	is	the	complete	list	of	member	functions	for	QDragObject,	including
inherited	members.

QDragObject()
~QDragObject()
blockSignals()
checkConnectArgs()
child()
childEvent()
children()
className()
connect()
connectNotify()
customEvent()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
drag()
dragCopy()
dragLink()
dragMove()
dumpObjectInfo()
dumpObjectTree()
encodedData()
event()
eventFilter()
format()
highPriority()
inherits()
insertChild()
installEventFilter()

isA()
isWidgetType()
killTimer()
killTimers()
metaObject()
name()
normalizeSignalSlot()
objectTrees()
parent()
pixmap()
pixmapHotSpot()
property()
provides()
queryList()
removeChild()
removeEventFilter()
sender()
serialNumber()
setName()
setPixmap()
setProperty()
signalsBlocked()
source()
startTimer()
target()
timerEvent()
tr()
trUtf8()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QListBoxItem

This	is	the	complete	list	of	member	functions	for	QListBoxItem,	including
inherited	members.

QListBoxItem()
~QListBoxItem()
current()
height()
isCurrent()
isSelectable()
isSelected()
listBox()
next()
paint()
pixmap()
prev()
rtti()
selected()
setCustomHighlighting()
setSelectable()
setText()
text()
width()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QSessionManager

This	is	the	complete	list	of	member	functions	for	QSessionManager,	including
inherited	members.

allowsErrorInteraction()
allowsInteraction()
blockSignals()
cancel()
checkConnectArgs()
child()
childEvent()
children()
className()
connect()
connectNotify()
customEvent()
deleteLater()
destroyed()
discardCommand()
disconnect()
disconnectNotify()
dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
handle()
highPriority()
inherits()
insertChild()
installEventFilter()
isA()
isPhase2()
isWidgetType()

killTimer()
killTimers()
metaObject()
name()
normalizeSignalSlot()
objectTrees()
parent()
property()
queryList()
release()
removeChild()
removeEventFilter()
requestPhase2()
restartCommand()
restartHint()
sender()
sessionId()
setDiscardCommand()
setManagerProperty()
setName()
setProperty()
setRestartCommand()
setRestartHint()
signalsBlocked()
startTimer()
timerEvent()
tr()
trUtf8()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QTranslator

This	is	the	complete	list	of	member	functions	for	QTranslator,	including
inherited	members.

QTranslator()
~QTranslator()
blockSignals()
checkConnectArgs()
child()
childEvent()
children()
className()
clear()
connect()
connectNotify()
contains()
customEvent()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
find()
findMessage()
highPriority()
inherits()
insert()
insertChild()
installEventFilter()
isA()

isWidgetType()
killTimer()
killTimers()
load()
messages()
metaObject()
name()
normalizeSignalSlot()
objectTrees()
parent()
property()
queryList()
remove()
removeChild()
removeEventFilter()
save()
sender()
setName()
setProperty()
signalsBlocked()
squeeze()
startTimer()
timerEvent()
tr()
trUtf8()
unsqueeze()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QDropEvent

This	is	the	complete	list	of	member	functions	for	QDropEvent,	including
inherited	members.

QDropEvent()
accept()
acceptAction()
action()
data()
encodedData()
format()
ignore()
isAccepted()
isActionAccepted()
pos()
provides()
serialNumber()
setAction()
setPoint()
source()
spontaneous()
type()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QListBoxPixmap

This	is	the	complete	list	of	member	functions	for	QListBoxPixmap,	including
inherited	members.

QListBoxPixmap()
~QListBoxPixmap()
current()
height()
isCurrent()
isSelectable()
isSelected()
listBox()
next()
paint()
pixmap()
prev()
rtti()
selected()
setCustomHighlighting()
setSelectable()
setText()
text()
width()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QTranslatorMessage

This	is	the	complete	list	of	member	functions	for	QTranslatorMessage,	including
inherited	members.

QTranslatorMessage()
comment()
commonPrefix()
context()
hash()
operator!=()
operator<()
operator<=()
operator=()
operator==()
operator>()
operator>=()
setTranslation()
sourceText()
translation()
write()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QEditorFactory

This	is	the	complete	list	of	member	functions	for	QEditorFactory,	including
inherited	members.

QEditorFactory()
~QEditorFactory()
blockSignals()
checkConnectArgs()
child()
childEvent()
children()
className()
connect()
connectNotify()
createEditor()
customEvent()
defaultFactory()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
highPriority()
inherits()
insertChild()
installDefaultFactory()
installEventFilter()
isA()
isWidgetType()
killTimer()

killTimers()
metaObject()
name()
normalizeSignalSlot()
objectTrees()
parent()
property()
queryList()
removeChild()
removeEventFilter()
sender()
setName()
setProperty()
signalsBlocked()
startTimer()
timerEvent()
tr()
trUtf8()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QListBoxText

This	is	the	complete	list	of	member	functions	for	QListBoxText,	including
inherited	members.

QListBoxText()
~QListBoxText()
current()
height()
isCurrent()
isSelectable()
isSelected()
listBox()
next()
paint()
pixmap()
prev()
rtti()
selected()
setCustomHighlighting()
setSelectable()
setText()
text()
width()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QSGIStyle

This	is	the	complete	list	of	member	functions	for	QSGIStyle,	including	inherited
members.

QSGIStyle()
~QSGIStyle()
blockSignals()
checkConnectArgs()
child()
childEvent()
children()
className()
connect()
connectNotify()
customEvent()
defaultFrameWidth()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
drawComplexControl()
drawComplexControlMask()
drawControl()
drawControlMask()
drawItem()
drawPrimitive()
dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
highPriority()
inherits()
insertChild()

installEventFilter()
isA()
isWidgetType()
itemRect()
killTimer()
killTimers()
metaObject()
name()
normalizeSignalSlot()
objectTrees()
parent()
pixelMetric()
polish()
polishPopupMenu()
property()
queryList()
querySubControl()
querySubControlMetrics()
removeChild()
removeEventFilter()
scrollBarExtent()
sender()
setName()
setProperty()
setUseHighlightColors()
signalsBlocked()
sizeFromContents()
startTimer()
styleHint()
stylePixmap()
subRect()
tabbarMetrics()
timerEvent()
tr()
trUtf8()
unPolish()
useHighlightColors()
visualRect()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QTsciiCodec

This	is	the	complete	list	of	member	functions	for	QTsciiCodec,	including
inherited	members.

canEncode()
codecForContent()
codecForIndex()
codecForLocale()
codecForMib()
codecForName()
deleteAllCodecs()
fromUnicode()
heuristicContentMatch()
heuristicNameMatch()
loadCharmap()
loadCharmapFile()
locale()
makeDecoder()
makeEncoder()
mibEnum()
mimeName()
name()
setCodecForLocale()
simpleHeuristicNameMatch()
toUnicode()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QErrorMessage
QErrorMessage

QErrorMessage()
~QErrorMessage()
accept()
acceptDrops()
adjustSize()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
caption()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clearFocus()
clearMask()
clearWFlags()
close()
closeEvent()
cmd()
colorGroup()
connect()
connectNotify()
constPolish()

contextMenuEvent()
create()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
done()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
exec()
extension()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()
fontChange()
fontInfo()
fontMetrics()

foregroundColor()
frameGeometry()
frameSize()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
insertChild()
installEventFilter()
isA()
isActiveWindow()
isDesktop()
isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()
isPopup()

isSizeGripEnabled()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
maximumHeight()
maximumSize()
maximumWidth()
message()
metaObject()
metric()
microFocusHint()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()

moveEvent()
name()
normalizeSignalSlot()
objectTrees()
orientation()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
polish()
pos()
property()
qtHandler()
queryList()
qwsEvent()
raise()
recreate()
rect()
reject()
releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()
repaint()
reparent()
resetInputContext()
resize()
resizeEvent()
result()
scroll()
sender()

setAcceptDrops()
setActiveWindow()
setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()
setCursor()
setDisabled()
setEnabled()
setEraseColor()
setErasePixmap()
setExtension()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setGeometry()
setIcon()
setIconText()
setKeyCompression()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setOrientation()
setPalette()
setPaletteBackgroundColor()

setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProperty()
setResult()
setSizeGripEnabled()
setSizeIncrement()
setSizePolicy()
setStyle()
setTabOrder()
setUpdatesEnabled()
setWFlags()
show()
showEvent()
showExtension()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()
startTimer()
style()
styleChange()
tabletEvent()
testWFlags()
timerEvent()
topLevelWidget()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateGeometry()
updateMask()

visibleRect()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QListView

This	is	the	complete	list	of	member	functions	for	QListView,	including	inherited
members.

QListView()
~QListView()
acceptDrops()
addChild()
addColumn()
adjustSize()
allColumnsShowFocus()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
bottomMargin()
caption()
center()
checkConnectArgs()
child()
childAt()
childCount()
childEvent()
childIsVisible()
childX()
childY()
children()
childrenRect()
childrenRegion()

className()
clear()
clearFocus()
clearMask()
clearSelection()
clearWFlags()
clicked()
clipper()
close()
closeEvent()
cmd()
collapsed()
colorGroup()
columnAlignment()
columnText()
columnWidth()
columnWidthMode()
columns()
connect()
connectNotify()
constPolish()
contentsContextMenuEvent()
contentsDragEnterEvent()
contentsDragLeaveEvent()
contentsDragMoveEvent()
contentsDropEvent()
contentsHeight()
contentsMouseDoubleClickEvent()
contentsMouseMoveEvent()
contentsMousePressEvent()
contentsMouseReleaseEvent()
contentsMoving()
contentsRect()
contentsToViewport()
contentsWheelEvent()
contentsWidth()
contentsX()
contentsY()
contextMenuEvent()

contextMenuRequested()
cornerWidget()
create()
currentChanged()
currentItem()
cursor()
customEvent()
customWhatsThis()
defaultRenameAction()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
doAutoScroll()
doubleClicked()
dragAutoScroll()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
dragObject()
drawContents()
drawContentsOffset()
drawFrame()
drawText()
dropEvent()
dropped()
dumpObjectInfo()
dumpObjectTree()
enableClipper()
enabledChange()
ensureItemVisible()
ensureVisible()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()

expanded()
find()
findItem()
firstChild()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()
fontChange()
fontInfo()
fontMetrics()
foregroundColor()
frameChanged()
frameGeometry()
frameRect()
frameShadow()
frameShape()
frameSize()
frameStyle()
frameWidth()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
hScrollBarMode()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
hasStaticBackground()
header()
height()
heightForWidth()
hide()
hideEvent()

highPriority()
horizontalScrollBar()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
insertChild()
insertItem()
installEventFilter()
invertSelection()
isA()
isActiveWindow()
isDesktop()
isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()
isMultiSelection()
isOpen()
isPopup()
isRenaming()
isSelected()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
itemAt()
itemMargin()

itemPos()
itemRect()
itemRenamed()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
lastItem()
layout()
leaveEvent()
leftMargin()
lineWidth()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
margin()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
midLineWidth()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseButtonClicked()
mouseButtonPressed()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()

mouseReleaseEvent()
move()
moveChild()
moveEvent()
name()
normalizeSignalSlot()
objectTrees()
onItem()
onViewport()
ownCursor()
ownFont()
ownPalette()
paintEmptyArea()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
polish()
pos()
pressed()
property()
queryList()
qwsEvent()
raise()
recreate()
rect()
releaseKeyboard()
releaseMouse()
removeChild()
removeColumn()
removeEventFilter()
removeItem()
repaint()
repaintContents()

repaintItem()
reparent()
resetInputContext()
resize()
resizeContents()
resizeEvent()
resizeMode()
resizePolicy()
returnPressed()
rightButtonClicked()
rightButtonPressed()
rightMargin()
rootIsDecorated()
scroll()
scrollBy()
selectAll()
selectedItem()
selectionChanged()
selectionMode()
sender()
setAcceptDrops()
setActiveWindow()
setAllColumnsShowFocus()
setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()
setColumnAlignment()
setColumnText()
setColumnWidth()
setColumnWidthMode()
setContentsPos()
setCornerWidget()
setCurrentItem()
setCursor()
setDefaultRenameAction()

setDisabled()
setDragAutoScroll()
setEnabled()
setEraseColor()
setErasePixmap()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setFrameRect()
setFrameShadow()
setFrameShape()
setFrameStyle()
setGeometry()
setHBarGeometry()
setHScrollBarMode()
setIcon()
setIconText()
setItemMargin()
setKeyCompression()
setLineWidth()
setMargin()
setMargins()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMidLineWidth()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setMultiSelection()
setName()
setOpen()

setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProperty()
setResizeMode()
setResizePolicy()
setRootIsDecorated()
setSelected()
setSelectionMode()
setShowSortIndicator()
setShowToolTips()
setSizeIncrement()
setSizePolicy()
setSorting()
setStaticBackground()
setStyle()
setTabOrder()
setTreeStepSize()
setUpdatesEnabled()
setVBarGeometry()
setVScrollBarMode()
setWFlags()
show()
showChild()
showEvent()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
showSortIndicator()
showToolTips()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
sort()
spacePressed()

stackUnder()
startDrag()
startTimer()
style()
styleChange()
tabletEvent()
takeItem()
testWFlags()
timerEvent()
topLevelWidget()
topMargin()
tr()
trUtf8()
treeStepSize()
triggerUpdate()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateContents()
updateGeometry()
updateMask()
updateScrollBars()
vScrollBarMode()
verticalScrollBar()
viewport()
viewportPaintEvent()
viewportResizeEvent()
viewportSize()
viewportToContents()
visibleHeight()
visibleRect()
visibleWidth()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
x()

x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QShowEvent

This	is	the	complete	list	of	member	functions	for	QShowEvent,	including
inherited	members.

QShowEvent()
spontaneous()
type()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QUriDrag
This	is	the	complete	list	of	member	functions	for	QUriDrag,	including	inherited
members.

QUriDrag()
~QUriDrag()
blockSignals()
canDecode()
checkConnectArgs()
child()
childEvent()
children()
className()
connect()
connectNotify()
customEvent()
decode()
decodeLocalFiles()
decodeToUnicodeUris()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
drag()
dragCopy()
dragLink()
dragMove()
dumpObjectInfo()
dumpObjectTree()
encodedData()
event()
eventFilter()
format()
highPriority()
inherits()

insertChild()
installEventFilter()
isA()
isWidgetType()
killTimer()
killTimers()
localFileToUri()
metaObject()
name()
normalizeSignalSlot()
objectTrees()
parent()
pixmap()
pixmapHotSpot()
property()
provides()
queryList()
removeChild()
removeEventFilter()
sender()
serialNumber()
setEncodedData()
setFileNames()
setFilenames()
setName()
setPixmap()
setProperty()
setUnicodeUris()
setUris()
signalsBlocked()
source()
startTimer()
target()
timerEvent()
tr()
trUtf8()
unicodeUriToUri()
uriToLocalFile()
uriToUnicodeUri()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QCanvasLine

This	is	the	complete	list	of	member	functions	for	QCanvasLine,	including
inherited	members.

QCanvasLine()
~QCanvasLine()
active()
advance()
animated()
areaPoints()
areaPointsAdvanced()
boundingRect()
boundingRectAdvanced()
brush()
canvas()
collidesWith()
collisions()
draw()
drawShape()
enabled()
endPoint()
hide()
isActive()
isEnabled()
isSelected()
isVisible()
move()
moveBy()
pen()
rtti()
selected()
setActive()
setAnimated()

setBrush()
setCanvas()
setEnabled()
setPen()
setPoints()
setSelected()
setVelocity()
setVisible()
setWinding()
setX()
setXVelocity()
setY()
setYVelocity()
setZ()
show()
startPoint()
update()
visible()
winding()
x()
xVelocity()
y()
yVelocity()
z()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QEucJpCodec

This	is	the	complete	list	of	member	functions	for	QEucJpCodec,	including
inherited	members.

QEucJpCodec()
~QEucJpCodec()
canEncode()
codecForContent()
codecForIndex()
codecForLocale()
codecForMib()
codecForName()
deleteAllCodecs()
fromUnicode()
heuristicContentMatch()
heuristicNameMatch()
loadCharmap()
loadCharmapFile()
locale()
makeDecoder()
makeEncoder()
mibEnum()
mimeName()
name()
setCodecForLocale()
simpleHeuristicNameMatch()
toUnicode()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QListViewItem

This	is	the	complete	list	of	member	functions	for	QListViewItem,	including
inherited	members.

QListViewItem()
~QListViewItem()
acceptDrop()
activate()
activatedPos()
cancelRename()
childCount()
compare()
depth()
dragEnabled()
dragEntered()
dragLeft()
dropEnabled()
dropped()
enforceSortOrder()
firstChild()
height()
insertItem()
invalidateHeight()
isEnabled()
isExpandable()
isOpen()
isSelectable()
isSelected()
isVisible()
itemAbove()
itemBelow()
itemPos()
key()

listView()
moveItem()
multiLinesEnabled()
nextSibling()
okRename()
paintBranches()
paintCell()
paintFocus()
parent()
pixmap()
removeItem()
renameEnabled()
repaint()
rtti()
setDragEnabled()
setDropEnabled()
setEnabled()
setExpandable()
setHeight()
setMultiLinesEnabled()
setOpen()
setPixmap()
setRenameEnabled()
setSelectable()
setSelected()
setText()
setVisible()
setup()
sort()
sortChildItems()
startRename()
takeItem()
text()
totalHeight()
width()
widthChanged()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QSignal
This	is	the	complete	list	of	member	functions	for	QSignal,	including	inherited
members.

QSignal()
~QSignal()
activate()
block()
blockSignals()
checkConnectArgs()
child()
childEvent()
children()
className()
connect()
connectNotify()
customEvent()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
highPriority()
inherits()
insertChild()
installEventFilter()
isA()
isBlocked()
isWidgetType()
killTimer()
killTimers()
metaObject()

name()
normalizeSignalSlot()
objectTrees()
parameter()
parent()
property()
queryList()
removeChild()
removeEventFilter()
sender()
setName()
setParameter()
setProperty()
setValue()
signalsBlocked()
startTimer()
timerEvent()
tr()
trUtf8()
value()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QUrl
This	is	the	complete	list	of	member	functions	for	QUrl,	including	inherited
members.

QUrl()
~QUrl()
addPath()
cdUp()
decode()
dirPath()
encode()
encodedPathAndQuery()
fileName()
hasHost()
hasPassword()
hasPath()
hasPort()
hasRef()
hasUser()
host()
isLocalFile()
isRelativeUrl()
isValid()
operator	QString()
operator=()
operator==()
parse()
password()
path()
port()
protocol()
query()
ref()
reset()
setEncodedPathAndQuery()

setFileName()
setHost()
setPassword()
setPath()
setPort()
setProtocol()
setQuery()
setRef()
setUser()
toString()
user()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QCanvasPixmap

This	is	the	complete	list	of	member	functions	for	QCanvasPixmap,	including
inherited	members.

QCanvasPixmap()
~QCanvasPixmap()
cmd()
convertFromImage()
convertToImage()
createHeuristicMask()
defaultDepth()
defaultOptimization()
depth()
detach()
fill()
grabWidget()
grabWindow()
handle()
height()
imageFormat()
isExtDev()
isNull()
isQBitmap()
load()
loadFromData()
mask()
metric()
offsetX()
offsetY()
operator=()
optimization()
paintingActive()
rect()

resize()
save()
selfMask()
serialNumber()
setDefaultOptimization()
setMask()
setOffset()
setOptimization()
size()
trueMatrix()
width()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
xForm()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QEucKrCodec

This	is	the	complete	list	of	member	functions	for	QEucKrCodec,	including
inherited	members.

canEncode()
codecForContent()
codecForIndex()
codecForLocale()
codecForMib()
codecForName()
deleteAllCodecs()
fromUnicode()
heuristicContentMatch()
heuristicNameMatch()
loadCharmap()
loadCharmapFile()
locale()
makeDecoder()
makeEncoder()
mibEnum()
mimeName()
name()
setCodecForLocale()
simpleHeuristicNameMatch()
toUnicode()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QListViewItemIterator

This	is	the	complete	list	of	member	functions	for	QListViewItemIterator,
including	inherited	members.

QListViewItemIterator()
~QListViewItemIterator()
current()
operator++()
operator+=()
operator--()
operator-=()
operator=()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QSignalMapper

This	is	the	complete	list	of	member	functions	for	QSignalMapper,	including
inherited	members.

QSignalMapper()
~QSignalMapper()
blockSignals()
checkConnectArgs()
child()
childEvent()
children()
className()
connect()
connectNotify()
customEvent()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
highPriority()
inherits()
insertChild()
installEventFilter()
isA()
isWidgetType()
killTimer()
killTimers()
map()
mapped()

metaObject()
name()
normalizeSignalSlot()
objectTrees()
parent()
property()
queryList()
removeChild()
removeEventFilter()
removeMappings()
sender()
setMapping()
setName()
setProperty()
signalsBlocked()
startTimer()
timerEvent()
tr()
trUtf8()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QUrlInfo
This	is	the	complete	list	of	member	functions	for	QUrlInfo,	including	inherited
members.

QUrlInfo()
~QUrlInfo()
equal()
greaterThan()
group()
isDir()
isExecutable()
isFile()
isReadable()
isSymLink()
isValid()
isWritable()
lastModified()
lastRead()
lessThan()
name()
operator=()
operator==()
owner()
permissions()
setDir()
setFile()
setGroup()
setLastModified()
setName()
setOwner()
setPermissions()
setReadable()
setSize()
setSymLink()
setWritable()

size()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QCanvasPixmapArray

This	is	the	complete	list	of	member	functions	for	QCanvasPixmapArray,
including	inherited	members.

QCanvasPixmapArray()
~QCanvasPixmapArray()
count()
image()
isValid()
operator!()
readCollisionMasks()
readPixmaps()
setImage()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QEvent
QEvent

QEvent()
spontaneous()
type()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QLocalFs
This	is	the	complete	list	of	member	functions	for	QLocalFs,	including	inherited
members.

QLocalFs()
addOperation()
autoDelete()
blockSignals()
checkConnectArgs()
checkConnection()
child()
childEvent()
children()
className()
clearOperationQueue()
connect()
connectNotify()
connectionStateChanged()
createdDirectory()
customEvent()
data()
dataTransferProgress()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
finished()
getNetworkProtocol()
hasOnlyLocalFileSystem()
highPriority()
inherits()

insertChild()
installEventFilter()
isA()
isWidgetType()
itemChanged()
killTimer()
killTimers()
metaObject()
name()
newChild()
newChildren()
normalizeSignalSlot()
objectTrees()
operationGet()
operationInProgress()
operationListChildren()
operationMkDir()
operationPut()
operationRemove()
operationRename()
parent()
property()
queryList()
registerNetworkProtocol()
removeChild()
removeEventFilter()
removed()
sender()
setAutoDelete()
setName()
setProperty()
setUrl()
signalsBlocked()
start()
startTimer()
stop()
supportedOperations()
timerEvent()
tr()

trUtf8()
url()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QSimpleRichText

This	is	the	complete	list	of	member	functions	for	QSimpleRichText,	including
inherited	members.

QSimpleRichText()
~QSimpleRichText()
adjustSize()
anchorAt()
context()
draw()
height()
inText()
setDefaultFont()
setWidth()
width()
widthUsed()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QUrlOperator

This	is	the	complete	list	of	member	functions	for	QUrlOperator,	including
inherited	members.

QUrlOperator()
~QUrlOperator()
addPath()
blockSignals()
cdUp()
checkConnectArgs()
child()
childEvent()
children()
className()
clearEntries()
connect()
connectNotify()
connectionStateChanged()
copy()
createdDirectory()
customEvent()
data()
dataTransferProgress()
decode()
deleteLater()
deleteNetworkProtocol()
destroyed()
dirPath()
disconnect()
disconnectNotify()
dumpObjectInfo()
dumpObjectTree()
encode()

encodedPathAndQuery()
event()
eventFilter()
fileName()
finished()
get()
getNetworkProtocol()
hasHost()
hasPassword()
hasPath()
hasPort()
hasRef()
hasUser()
highPriority()
host()
info()
inherits()
insertChild()
installEventFilter()
isA()
isDir()
isLocalFile()
isRelativeUrl()
isValid()
isWidgetType()
itemChanged()
killTimer()
killTimers()
listChildren()
metaObject()
mkdir()
name()
nameFilter()
newChildren()
normalizeSignalSlot()
objectTrees()
operator	QString()
operator=()
operator==()

parent()
parse()
password()
path()
port()
property()
protocol()
put()
query()
queryList()
ref()
remove()
removeChild()
removeEventFilter()
removed()
rename()
reset()
sender()
setEncodedPathAndQuery()
setFileName()
setHost()
setName()
setNameFilter()
setPassword()
setPath()
setPort()
setProperty()
setProtocol()
setQuery()
setRef()
setUser()
signalsBlocked()
start()
startTimer()
startedNextCopy()
stop()
timerEvent()
toString()
tr()

trUtf8()
user()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

qnetwork.h	Example	File

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QCanvasPolygon

This	is	the	complete	list	of	member	functions	for	QCanvasPolygon,	including
inherited	members.

QCanvasPolygon()
~QCanvasPolygon()
active()
advance()
animated()
areaPoints()
areaPointsAdvanced()
boundingRect()
boundingRectAdvanced()
brush()
canvas()
collidesWith()
collisions()
draw()
drawShape()
enabled()
hide()
isActive()
isEnabled()
isSelected()
isVisible()
move()
moveBy()
pen()
points()
rtti()
selected()
setActive()
setAnimated()

setBrush()
setCanvas()
setEnabled()
setPen()
setPoints()
setSelected()
setVelocity()
setVisible()
setWinding()
setX()
setXVelocity()
setY()
setYVelocity()
setZ()
show()
update()
visible()
winding()
x()
xVelocity()
y()
yVelocity()
z()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QLock
This	is	the	complete	list	of	member	functions	for	QLock,	including	inherited
members.

QLock()
~QLock()
isValid()
lock()
locked()
unlock()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QSize
QSize

QSize()
boundedTo()
expandedTo()
height()
isEmpty()
isNull()
isValid()
operator*=()
operator+=()
operator-=()
operator/=()
rheight()
rwidth()
setHeight()
setWidth()
transpose()
width()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QSizeGrip
This	is	the	complete	list	of	member	functions	for	QSizeGrip,	including	inherited
members.

QSizeGrip()
~QSizeGrip()
acceptDrops()
adjustSize()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
caption()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clearFocus()
clearMask()
clearWFlags()
close()
closeEvent()
cmd()
colorGroup()
connect()
connectNotify()
constPolish()

contextMenuEvent()
create()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()
fontChange()
fontInfo()
fontMetrics()
foregroundColor()
frameGeometry()
frameSize()

geometry()
getWFlags()
grabKeyboard()
grabMouse()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
insertChild()
installEventFilter()
isA()
isActiveWindow()
isDesktop()
isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()
isPopup()
isTopLevel()
isUpdatesEnabled()
isVisible()

isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveEvent()
name()
normalizeSignalSlot()
objectTrees()
ownCursor()

ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
polish()
pos()
property()
queryList()
qwsEvent()
raise()
recreate()
rect()
releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()
repaint()
reparent()
resetInputContext()
resize()
resizeEvent()
scroll()
sender()
setAcceptDrops()
setActiveWindow()
setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()

setCursor()
setDisabled()
setEnabled()
setEraseColor()
setErasePixmap()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setGeometry()
setIcon()
setIconText()
setKeyCompression()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProperty()
setSizeIncrement()
setSizePolicy()
setStyle()
setTabOrder()
setUpdatesEnabled()
setWFlags()
show()
showEvent()

showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()
startTimer()
style()
styleChange()
tabletEvent()
testWFlags()
timerEvent()
topLevelWidget()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateGeometry()
updateMask()
visibleRect()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()

x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QFileIconProvider

This	is	the	complete	list	of	member	functions	for	QFileIconProvider,	including
inherited	members.

QFileIconProvider()
blockSignals()
checkConnectArgs()
child()
childEvent()
children()
className()
connect()
connectNotify()
customEvent()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
highPriority()
inherits()
insertChild()
installEventFilter()
isA()
isWidgetType()
killTimer()
killTimers()
metaObject()
name()
normalizeSignalSlot()

objectTrees()
parent()
pixmap()
property()
queryList()
removeChild()
removeEventFilter()
sender()
setName()
setProperty()
signalsBlocked()
startTimer()
timerEvent()
tr()
trUtf8()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QMap
This	is	the	complete	list	of	member	functions	for	QMap,	including	inherited
members.

QMap()
~QMap()
begin()
clear()
contains()
count()
detach()
empty()
end()
erase()
find()
insert()
isEmpty()
keys()
operator=()
operator[]()
remove()
replace()
size()
values()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QSizePolicy

This	is	the	complete	list	of	member	functions	for	QSizePolicy,	including
inherited	members.

QSizePolicy()
expanding()
hasHeightForWidth()
horData()
horStretch()
mayGrowHorizontally()
mayGrowVertically()
mayShrinkHorizontally()
mayShrinkVertically()
operator!=()
operator==()
setHeightForWidth()
setHorData()
setHorStretch()
setVerData()
setVerStretch()
verData()
verStretch()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QValueListConstIterator
QValueListConstIterator

QValueListConstIterator()
operator!=()
operator*()
operator++()
operator--()
operator==()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QCanvasSpline

This	is	the	complete	list	of	member	functions	for	QCanvasSpline,	including
inherited	members.

QCanvasSpline()
~QCanvasSpline()
active()
advance()
animated()
areaPoints()
areaPointsAdvanced()
boundingRect()
boundingRectAdvanced()
brush()
canvas()
closed()
collidesWith()
collisions()
controlPoints()
draw()
drawShape()
enabled()
hide()
isActive()
isEnabled()
isSelected()
isVisible()
move()
moveBy()
pen()
points()
rtti()
selected()

setActive()
setAnimated()
setBrush()
setCanvas()
setControlPoints()
setEnabled()
setPen()
setPoints()
setSelected()
setVelocity()
setVisible()
setWinding()
setX()
setXVelocity()
setY()
setYVelocity()
setZ()
show()
update()
visible()
winding()
x()
xVelocity()
y()
yVelocity()
z()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QFileInfo
This	is	the	complete	list	of	member	functions	for	QFileInfo,	including	inherited
members.

QFileInfo()
~QFileInfo()
absFilePath()
baseName()
caching()
convertToAbs()
created()
dir()
dirPath()
exists()
extension()
fileName()
filePath()
group()
groupId()
isDir()
isExecutable()
isFile()
isReadable()
isRelative()
isSymLink()
isWritable()
lastModified()
lastRead()
operator=()
owner()
ownerId()
permission()
readLink()
refresh()
setCaching()

setFile()
size()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QMapConstIterator

This	is	the	complete	list	of	member	functions	for	QMapConstIterator,	including
inherited	members.

QMapConstIterator()
data()
key()
operator!=()
operator*()
operator++()
operator--()
operator==()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QSjisCodec

This	is	the	complete	list	of	member	functions	for	QSjisCodec,	including
inherited	members.

QSjisCodec()
~QSjisCodec()
canEncode()
codecForContent()
codecForIndex()
codecForLocale()
codecForMib()
codecForName()
deleteAllCodecs()
fromUnicode()
heuristicContentMatch()
heuristicNameMatch()
loadCharmap()
loadCharmapFile()
locale()
makeDecoder()
makeEncoder()
mibEnum()
mimeName()
name()
setCodecForLocale()
simpleHeuristicNameMatch()
toUnicode()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QValueListIterator
QValueListIterator

QValueListIterator()
operator!=()
operator*()
operator++()
operator--()
operator==()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QCanvasSprite

This	is	the	complete	list	of	member	functions	for	QCanvasSprite,	including
inherited	members.

QCanvasSprite()
~QCanvasSprite()
active()
advance()
animated()
bottomEdge()
boundingRect()
boundingRectAdvanced()
canvas()
collidesWith()
collisions()
draw()
enabled()
frame()
frameCount()
height()
hide()
image()
imageAdvanced()
isActive()
isEnabled()
isSelected()
isVisible()
leftEdge()
move()
moveBy()
rightEdge()
rtti()
selected()

setActive()
setAnimated()
setCanvas()
setEnabled()
setFrame()
setFrameAnimation()
setSelected()
setSequence()
setVelocity()
setVisible()
setX()
setXVelocity()
setY()
setYVelocity()
setZ()
show()
topEdge()
update()
visible()
width()
x()
xVelocity()
y()
yVelocity()
z()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QFilePreview

This	is	the	complete	list	of	member	functions	for	QFilePreview,	including
inherited	members.

QFilePreview()
previewUrl()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QMapIterator

This	is	the	complete	list	of	member	functions	for	QMapIterator,	including
inherited	members.

QMapIterator()
data()
key()
operator!=()
operator*()
operator++()
operator--()
operator==()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QValueStack

This	is	the	complete	list	of	member	functions	for	QValueStack,	including
inherited	members.

QValueStack()
~QValueStack()
append()
at()
back()
begin()
clear()
contains()
count()
empty()
end()
erase()
find()
findIndex()
first()
fromLast()
front()
insert()
isEmpty()
last()
operator!=()
operator+()
operator+=()
operator<<()
operator=()
operator==()
operator[]()
pop()
pop_back()

pop_front()
prepend()
push()
push_back()
push_front()
remove()
size()
top()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QFocusData

This	is	the	complete	list	of	member	functions	for	QFocusData,	including
inherited	members.

count()
focusWidget()
home()
next()
prev()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QMemArray
QMemArray

QMemArray()
~QMemArray()
assign()
at()
begin()
bsearch()
contains()
copy()
count()
data()
detach()
duplicate()
end()
fill()
find()
isEmpty()
isNull()
nrefs()
operator	const	type	*()
operator!=()
operator=()
operator==()
operator[]()
resetRawData()
resize()
setRawData()
size()
sort()
truncate()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QSocket
QSocket

QSocket()
~QSocket()
address()
at()
atEnd()
blockSignals()
bytesAvailable()
bytesToWrite()
bytesWritten()
canReadLine()
checkConnectArgs()
child()
childEvent()
children()
className()
close()
connect()
connectNotify()
connectToHost()
connected()
connectionClosed()
customEvent()
delayedCloseFinished()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
dumpObjectInfo()
dumpObjectTree()
error()
event()
eventFilter()

flags()
flush()
getch()
highPriority()
hostFound()
inherits()
insertChild()
installEventFilter()
isA()
isAsynchronous()
isBuffered()
isCombinedAccess()
isDirectAccess()
isInactive()
isOpen()
isRaw()
isReadWrite()
isReadable()
isSequentialAccess()
isSynchronous()
isTranslated()
isWidgetType()
isWritable()
killTimer()
killTimers()
metaObject()
mode()
name()
normalizeSignalSlot()
objectTrees()
open()
parent()
peerAddress()
peerName()
peerPort()
port()
property()
putch()
queryList()

readAll()
readBlock()
readLine()
readyRead()
removeChild()
removeEventFilter()
reset()
resetStatus()
sender()
setName()
setProperty()
setSocket()
setSocketDevice()
signalsBlocked()
size()
sn_read()
sn_write()
socket()
socketDevice()
startTimer()
state()
status()
timerEvent()
tr()
trUtf8()
ungetch()
waitForMore()
writeBlock()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QFocusEvent

This	is	the	complete	list	of	member	functions	for	QFocusEvent,	including
inherited	members.

QFocusEvent()
gotFocus()
lostFocus()
reason()
resetReason()
setReason()
spontaneous()
type()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QMenuBar

This	is	the	complete	list	of	member	functions	for	QMenuBar,	including	inherited
members.

QMenuBar()
~QMenuBar()
accel()
acceptDrops()
activateItemAt()
activated()
adjustSize()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
caption()
changeItem()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clear()
clearFocus()
clearMask()
clearWFlags()

close()
closeEvent()
cmd()
colorGroup()
connect()
connectItem()
connectNotify()
constPolish()
contentsRect()
contextMenuEvent()
count()
create()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectItem()
disconnectNotify()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawContents()
drawFrame()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
findItem()

focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()
fontChange()
fontInfo()
fontMetrics()
foregroundColor()
frameChanged()
frameGeometry()
frameRect()
frameShadow()
frameShape()
frameSize()
frameStyle()
frameWidth()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
highlighted()
icon()
iconSet()
iconText()
iconify()
idAt()

imComposeEvent()
imEndEvent()
imStartEvent()
indexOf()
inherits()
insertChild()
insertItem()
insertSeparator()
installEventFilter()
isA()
isActiveWindow()
isDefaultUp()
isDesktop()
isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isItemActive()
isItemChecked()
isItemEnabled()
isMaximized()
isMinimized()
isModal()
isPopup()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
itemParameter()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()

layout()
leaveEvent()
lineWidth()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
margin()
maximumHeight()
maximumSize()
maximumWidth()
menuContentsChanged()
menuDelPopup()
menuInsPopup()
menuStateChanged()
metaObject()
metric()
microFocusHint()
midLineWidth()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveEvent()
name()
normalizeSignalSlot()
objectTrees()
ownCursor()
ownFont()

ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
pixmap()
polish()
pos()
property()
queryList()
qwsEvent()
raise()
recreate()
rect()
releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()
removeItem()
removeItemAt()
repaint()
reparent()
resetInputContext()
resize()
resizeEvent()
scroll()
sender()
separator()
setAccel()
setAcceptDrops()
setActiveWindow()
setAutoMask()
setBackgroundColor()
setBackgroundMode()

setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()
setCursor()
setDefaultUp()
setDisabled()
setEnabled()
setEraseColor()
setErasePixmap()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setFrameRect()
setFrameShadow()
setFrameShape()
setFrameStyle()
setGeometry()
setIcon()
setIconText()
setId()
setItemChecked()
setItemEnabled()
setItemParameter()
setKeyCompression()
setLineWidth()
setMargin()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMidLineWidth()
setMinimumHeight()
setMinimumSize()

setMinimumWidth()
setMouseTracking()
setName()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProperty()
setSeparator()
setSizeIncrement()
setSizePolicy()
setStyle()
setTabOrder()
setUpdatesEnabled()
setWFlags()
setWhatsThis()
show()
showEvent()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()
startTimer()
style()
styleChange()
tabletEvent()
testWFlags()
text()
timerEvent()
topLevelWidget()
tr()
trUtf8()
unsetCursor()

unsetFont()
unsetPalette()
update()
updateGeometry()
updateItem()
updateMask()
visibleRect()
whatsThis()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QSocketDevice

This	is	the	complete	list	of	member	functions	for	QSocketDevice,	including
inherited	members.

QSocketDevice()
~QSocketDevice()
accept()
address()
addressReusable()
at()
atEnd()
bind()
blocking()
bytesAvailable()
close()
connect()
error()
flags()
flush()
getch()
isAsynchronous()
isBuffered()
isCombinedAccess()
isDirectAccess()
isInactive()
isOpen()
isRaw()
isReadWrite()
isReadable()
isSequentialAccess()
isSynchronous()
isTranslated()
isValid()

isWritable()
listen()
mode()
open()
peerAddress()
peerPort()
port()
putch()
readAll()
readBlock()
readLine()
receiveBufferSize()
reset()
resetStatus()
sendBufferSize()
setAddressReusable()
setBlocking()
setError()
setReceiveBufferSize()
setSendBufferSize()
setSocket()
size()
socket()
state()
status()
type()
ungetch()
waitForMore()
writeBlock()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QVariant
This	is	the	complete	list	of	member	functions	for	QVariant,	including	inherited
members.

QVariant()
~QVariant()
asBitArray()
asBitmap()
asBool()
asBrush()
asByteArray()
asCString()
asColor()
asColorGroup()
asCursor()
asDate()
asDateTime()
asDouble()
asFont()
asIconSet()
asImage()
asInt()
asKeySequence()
asList()
asMap()
asPalette()
asPixmap()
asPoint()
asPointArray()
asRect()
asRegion()
asSize()
asSizePolicy()
asString()
asStringList()

asTime()
asUInt()
canCast()
cast()
clear()
isValid()
listBegin()
listEnd()
mapBegin()
mapEnd()
mapFind()
nameToType()
operator!=()
operator=()
operator==()
stringListBegin()
stringListEnd()
toBitArray()
toBitmap()
toBool()
toBrush()
toByteArray()
toCString()
toColor()
toColorGroup()
toCursor()
toDate()
toDateTime()
toDouble()
toFont()
toIconSet()
toImage()
toInt()
toKeySequence()
toList()
toMap()
toPalette()
toPixmap()
toPoint()

toPointArray()
toRect()
toRegion()
toSize()
toSizePolicy()
toString()
toStringList()
toTime()
toUInt()
type()
typeName()
typeToName()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QCDEStyle

This	is	the	complete	list	of	member	functions	for	QCDEStyle,	including
inherited	members.

QCDEStyle()
~QCDEStyle()
blockSignals()
checkConnectArgs()
child()
childEvent()
children()
className()
connect()
connectNotify()
customEvent()
defaultFrameWidth()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
drawComplexControl()
drawComplexControlMask()
drawControl()
drawControlMask()
drawItem()
drawPrimitive()
dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
highPriority()
inherits()
insertChild()

installEventFilter()
isA()
isWidgetType()
itemRect()
killTimer()
killTimers()
metaObject()
name()
normalizeSignalSlot()
objectTrees()
parent()
pixelMetric()
polish()
polishPopupMenu()
property()
queryList()
querySubControl()
querySubControlMetrics()
removeChild()
removeEventFilter()
scrollBarExtent()
sender()
setName()
setProperty()
setUseHighlightColors()
signalsBlocked()
sizeFromContents()
startTimer()
styleHint()
stylePixmap()
subRect()
tabbarMetrics()
timerEvent()
tr()
trUtf8()
unPolish()
useHighlightColors()
visualRect()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QSocketNotifier

This	is	the	complete	list	of	member	functions	for	QSocketNotifier,	including
inherited	members.

QSocketNotifier()
~QSocketNotifier()
activated()
blockSignals()
checkConnectArgs()
child()
childEvent()
children()
className()
connect()
connectNotify()
customEvent()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
highPriority()
inherits()
insertChild()
installEventFilter()
isA()
isEnabled()
isWidgetType()
killTimer()
killTimers()

metaObject()
name()
normalizeSignalSlot()
objectTrees()
parent()
property()
queryList()
removeChild()
removeEventFilter()
sender()
setEnabled()
setName()
setProperty()
signalsBlocked()
socket()
startTimer()
timerEvent()
tr()
trUtf8()
type()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QChar
This	is	the	complete	list	of	member	functions	for	QChar,	including	inherited
members.

QChar()
category()
cell()
combiningClass()
decomposition()
decompositionTag()
digitValue()
direction()
isDigit()
isLetter()
isLetterOrNumber()
isMark()
isNull()
isNumber()
isPrint()
isPunct()
isSpace()
isSymbol()
joining()
latin1()
lower()
mirrored()
mirroredChar()
networkOrdered()
operator	char()
row()
unicode()
upper()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QFontDatabase

This	is	the	complete	list	of	member	functions	for	QFontDatabase,	including
inherited	members.

QFontDatabase()
bold()
families()
font()
isBitmapScalable()
isFixedPitch()
isScalable()
isSmoothlyScalable()
italic()
pointSizes()
scriptName()
scriptSample()
smoothSizes()
standardSizes()
styleString()
styles()
weight()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QSound
QSound

QSound()
~QSound()
available()
blockSignals()
checkConnectArgs()
child()
childEvent()
children()
className()
connect()
connectNotify()
customEvent()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
fileName()
highPriority()
inherits()
insertChild()
installEventFilter()
isA()
isAvailable()
isFinished()
isWidgetType()
killTimer()
killTimers()
loops()

loopsRemaining()
metaObject()
name()
normalizeSignalSlot()
objectTrees()
parent()
play()
property()
queryList()
removeChild()
removeEventFilter()
sender()
setLoops()
setName()
setProperty()
signalsBlocked()
startTimer()
stop()
timerEvent()
tr()
trUtf8()

Copyright	©	2002	Trolltech Trademarks :hackerjun Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QCharRef
This	is	the	complete	list	of	member	functions	for	QCharRef,	including	inherited
members.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QMetaObject

This	is	the	complete	list	of	member	functions	for	QMetaObject,	including
inherited	members.

classInfo()
className()
findProperty()
inherits()
numClassInfo()
numProperties()
numSignals()
numSlots()
property()
propertyNames()
signalNames()
slotNames()
superClass()
superClassName()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QVButtonGroup
QVButtonGroup

QVButtonGroup()
~QVButtonGroup()
acceptDrops()
addSpace()
adjustSize()
alignment()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
caption()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clearFocus()
clearMask()
clearWFlags()
clicked()
close()
closeEvent()
cmd()
colorGroup()
columns()

connect()
connectNotify()
constPolish()
contentsRect()
contextMenuEvent()
count()
create()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawContents()
drawFrame()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()

font()
fontChange()
fontInfo()
fontMetrics()
foregroundColor()
frameChanged()
frameGeometry()
frameRect()
frameShadow()
frameShape()
frameSize()
frameStyle()
frameWidth()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
icon()
iconText()
iconify()
id()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
insert()
insertChild()
insideMargin()
insideSpacing()
installEventFilter()

isA()
isActiveWindow()
isDesktop()
isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExclusive()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()
isPopup()
isRadioButtonExclusive()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
lineWidth()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
margin()

maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
midLineWidth()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveEvent()
moveFocus()
name()
normalizeSignalSlot()
objectTrees()
orientation()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
polish()
pos()
pressed()
property()

queryList()
qwsEvent()
raise()
recreate()
rect()
releaseKeyboard()
releaseMouse()
released()
remove()
removeChild()
removeEventFilter()
repaint()
reparent()
resetInputContext()
resize()
resizeEvent()
scroll()
selected()
sender()
setAcceptDrops()
setActiveWindow()
setAlignment()
setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setButton()
setCaption()
setColumnLayout()
setColumns()
setCursor()
setDisabled()
setEnabled()
setEraseColor()
setErasePixmap()
setExclusive()
setFixedHeight()

setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setFrameRect()
setFrameShadow()
setFrameShape()
setFrameStyle()
setGeometry()
setIcon()
setIconText()
setInsideMargin()
setInsideSpacing()
setKeyCompression()
setLineWidth()
setMargin()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMidLineWidth()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setOrientation()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProperty()
setRadioButtonExclusive()
setSizeIncrement()
setSizePolicy()
setStyle()

setTabOrder()
setTitle()
setUpdatesEnabled()
setWFlags()
show()
showEvent()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()
startTimer()
style()
styleChange()
tabletEvent()
testWFlags()
timerEvent()
title()
topLevelWidget()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateGeometry()
updateMask()
visibleRect()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
x()

x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QCheckBox
QCheckBox

QCheckBox()
accel()
acceptDrops()
adjustSize()
animateClick()
autoMask()
autoRepeat()
autoResize()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
caption()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clearFocus()
clearMask()
clearWFlags()
clicked()
close()
closeEvent()
cmd()
colorGroup()

connect()
connectNotify()
constPolish()
contextMenuEvent()
create()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawButton()
drawButtonLabel()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()
fontChange()

fontInfo()
fontMetrics()
foregroundColor()
frameGeometry()
frameSize()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
group()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
hitButton()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
insertChild()
installEventFilter()
isA()
isActiveWindow()
isChecked()
isDesktop()
isDialog()
isDown()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExclusiveToggle()

isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()
isOn()
isPopup()
isToggleButton()
isTopLevel()
isTristate()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
minimumHeight()
minimumSize()

minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveEvent()
name()
normalizeSignalSlot()
objectTrees()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
pixmap()
polish()
pos()
pressed()
property()
queryList()
qwsEvent()
raise()
recreate()
rect()
releaseKeyboard()
releaseMouse()
released()
removeChild()
removeEventFilter()

repaint()
reparent()
resetInputContext()
resize()
resizeEvent()
scroll()
sender()
setAccel()
setAcceptDrops()
setActiveWindow()
setAutoMask()
setAutoRepeat()
setAutoResize()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()
setChecked()
setCursor()
setDisabled()
setDown()
setEnabled()
setEraseColor()
setErasePixmap()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setGeometry()
setIcon()
setIconText()
setKeyCompression()
setMask()
setMaximumHeight()

setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setNoChange()
setOn()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setPixmap()
setProperty()
setSizeIncrement()
setSizePolicy()
setState()
setStyle()
setTabOrder()
setText()
setToggleButton()
setToggleType()
setTristate()
setUpdatesEnabled()
setWFlags()
show()
showEvent()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()

startTimer()
state()
stateChanged()
style()
styleChange()
tabletEvent()
testWFlags()
text()
timerEvent()
toggle()
toggleType()
toggled()
topLevelWidget()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateGeometry()
updateMask()
visibleRect()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()

x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QFontInfo
This	is	the	complete	list	of	member	functions	for	QFontInfo,	including	inherited
members.

QFontInfo()
~QFontInfo()
bold()
exactMatch()
family()
fixedPitch()
italic()
operator=()
pixelSize()
pointSize()
rawMode()
styleHint()
weight()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QMetaProperty

This	is	the	complete	list	of	member	functions	for	QMetaProperty,	including
inherited	members.

designable()
enumKeys()
isEnumType()
isSetType()
keyToValue()
keysToValue()
name()
reset()
scriptable()
stored()
type()
valueToKey()
valueToKeys()
writable()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QVGroupBox
QVGroupBox

QVGroupBox()
~QVGroupBox()
acceptDrops()
addSpace()
adjustSize()
alignment()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
caption()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clearFocus()
clearMask()
clearWFlags()
close()
closeEvent()
cmd()
colorGroup()
columns()
connect()

connectNotify()
constPolish()
contentsRect()
contextMenuEvent()
create()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawContents()
drawFrame()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()
fontChange()

fontInfo()
fontMetrics()
foregroundColor()
frameChanged()
frameGeometry()
frameRect()
frameShadow()
frameShape()
frameSize()
frameStyle()
frameWidth()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
insertChild()
insideMargin()
insideSpacing()
installEventFilter()
isA()
isActiveWindow()
isDesktop()
isDialog()

isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()
isPopup()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
lineWidth()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
margin()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()

midLineWidth()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveEvent()
name()
normalizeSignalSlot()
objectTrees()
orientation()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
polish()
pos()
property()
queryList()
qwsEvent()
raise()
recreate()
rect()
releaseKeyboard()
releaseMouse()
removeChild()

removeEventFilter()
repaint()
reparent()
resetInputContext()
resize()
resizeEvent()
scroll()
sender()
setAcceptDrops()
setActiveWindow()
setAlignment()
setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()
setColumnLayout()
setColumns()
setCursor()
setDisabled()
setEnabled()
setEraseColor()
setErasePixmap()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setFrameRect()
setFrameShadow()
setFrameShape()
setFrameStyle()
setGeometry()
setIcon()
setIconText()

setInsideMargin()
setInsideSpacing()
setKeyCompression()
setLineWidth()
setMargin()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMidLineWidth()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setOrientation()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProperty()
setSizeIncrement()
setSizePolicy()
setStyle()
setTabOrder()
setTitle()
setUpdatesEnabled()
setWFlags()
show()
showEvent()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()

sizePolicy()
stackUnder()
startTimer()
style()
styleChange()
tabletEvent()
testWFlags()
timerEvent()
title()
topLevelWidget()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateGeometry()
updateMask()
visibleRect()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()

x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QCheckListItem

This	is	the	complete	list	of	member	functions	for	QCheckListItem,	including
inherited	members.

QCheckListItem()
~QCheckListItem()
acceptDrop()
activate()
activatedPos()
cancelRename()
childCount()
compare()
depth()
dragEnabled()
dragEntered()
dragLeft()
dropEnabled()
dropped()
enforceSortOrder()
firstChild()
height()
insertItem()
invalidateHeight()
isEnabled()
isExpandable()
isOn()
isOpen()
isSelectable()
isSelected()
isVisible()
itemAbove()
itemBelow()
itemPos()

key()
listView()
moveItem()
multiLinesEnabled()
nextSibling()
okRename()
paintBranches()
paintCell()
paintFocus()
parent()
pixmap()
removeItem()
renameEnabled()
repaint()
rtti()
setDragEnabled()
setDropEnabled()
setEnabled()
setExpandable()
setHeight()
setMultiLinesEnabled()
setOn()
setOpen()
setPixmap()
setRenameEnabled()
setSelectable()
setSelected()
setText()
setVisible()
setup()
sort()
sortChildItems()
startRename()
stateChange()
takeItem()
text()
totalHeight()
turnOffChild()
type()

width()
widthChanged()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QFontManager

This	is	the	complete	list	of	member	functions	for	QFontManager,	including
inherited	members.

QFontManager()
~QFontManager()
cleanup()
get()
initialize()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QMimeSource

This	is	the	complete	list	of	member	functions	for	QMimeSource,	including
inherited	members.

QMimeSource()
~QMimeSource()
encodedData()
format()
provides()
serialNumber()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QSplitter
This	is	the	complete	list	of	member	functions	for	QSplitter,	including	inherited
members.

QSplitter()
~QSplitter()
acceptDrops()
adjustPos()
adjustSize()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
caption()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clearFocus()
clearMask()
clearWFlags()
close()
closeEvent()
cmd()
colorGroup()
connect()
connectNotify()

constPolish()
contentsRect()
contextMenuEvent()
create()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawContents()
drawFrame()
drawSplitter()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()
fontChange()

fontInfo()
fontMetrics()
foregroundColor()
frameChanged()
frameGeometry()
frameRect()
frameShadow()
frameShape()
frameSize()
frameStyle()
frameWidth()
geometry()
getRange()
getWFlags()
grabKeyboard()
grabMouse()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
icon()
iconText()
iconify()
idAfter()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
insertChild()
installEventFilter()
isA()
isActiveWindow()
isDesktop()
isDialog()

isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()
isPopup()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
lineWidth()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
margin()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()

midLineWidth()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveEvent()
moveSplitter()
moveToFirst()
moveToLast()
name()
normalizeSignalSlot()
objectTrees()
opaqueResize()
orientation()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
polish()
pos()
property()
queryList()
qwsEvent()
raise()
recreate()

rect()
refresh()
releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()
repaint()
reparent()
resetInputContext()
resize()
resizeEvent()
scroll()
sender()
setAcceptDrops()
setActiveWindow()
setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()
setCursor()
setDisabled()
setEnabled()
setEraseColor()
setErasePixmap()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setFrameRect()
setFrameShadow()
setFrameShape()
setFrameStyle()
setGeometry()

setIcon()
setIconText()
setKeyCompression()
setLineWidth()
setMargin()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMidLineWidth()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setOpaqueResize()
setOrientation()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProperty()
setResizeMode()
setRubberband()
setSizeIncrement()
setSizePolicy()
setSizes()
setStyle()
setTabOrder()
setUpdatesEnabled()
setWFlags()
show()
showEvent()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()

size()
sizeHint()
sizeIncrement()
sizePolicy()
sizes()
stackUnder()
startTimer()
style()
styleChange()
tabletEvent()
testWFlags()
timerEvent()
topLevelWidget()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateGeometry()
updateMask()
visibleRect()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()

x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QWaitCondition
QWaitCondition

QWaitCondition()
~QWaitCondition()
wait()
wakeAll()
wakeOne()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QCheckTableItem
QCheckTableItem

QCheckTableItem()
alignment()
col()
colSpan()
createEditor()
editType()
isChecked()
isEnabled()
isReplaceable()
key()
paint()
pixmap()
row()
rowSpan()
rtti()
setChecked()
setCol()
setContentFromEditor()
setEnabled()
setPixmap()
setReplaceable()
setRow()
setSpan()
setText()
setWordWrap()
sizeHint()
table()
text()
wordWrap()

Copyright	©	2002	Trolltech Trademarks :farfareast Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QMimeSourceFactory

This	is	the	complete	list	of	member	functions	for	QMimeSourceFactory,
including	inherited	members.

QMimeSourceFactory()
~QMimeSourceFactory()
addFactory()
addFilePath()
data()
defaultFactory()
filePath()
makeAbsolute()
removeFactory()
setData()
setDefaultFactory()
setExtensionType()
setFilePath()
setImage()
setPixmap()
setText()
takeDefaultFactory()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QSql
QSql

QSql()

Copyright	©	2002	Trolltech Trademarks :tipy Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QWhatsThis
QWhatsThis

QWhatsThis()
~QWhatsThis()
add()
clicked()
display()
enterWhatsThisMode()
inWhatsThisMode()
leaveWhatsThisMode()
remove()
text()
textFor()
whatsThisButton()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QChildEvent

This	is	the	complete	list	of	member	functions	for	QChildEvent,	including
inherited	members.

QChildEvent()
child()
inserted()
removed()
spontaneous()
type()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QMotifPlusStyle

This	is	the	complete	list	of	member	functions	for	QMotifPlusStyle,	including
inherited	members.

QMotifPlusStyle()
blockSignals()
checkConnectArgs()
child()
childEvent()
children()
className()
connect()
connectNotify()
customEvent()
defaultFrameWidth()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
drawComplexControl()
drawComplexControlMask()
drawControl()
drawControlMask()
drawItem()
drawPrimitive()
dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
highPriority()
inherits()
insertChild()
installEventFilter()

isA()
isWidgetType()
itemRect()
killTimer()
killTimers()
metaObject()
name()
normalizeSignalSlot()
objectTrees()
parent()
pixelMetric()
polish()
polishPopupMenu()
property()
queryList()
querySubControl()
querySubControlMetrics()
removeChild()
removeEventFilter()
scrollBarExtent()
sender()
setName()
setProperty()
setUseHighlightColors()
signalsBlocked()
sizeFromContents()
startTimer()
styleHint()
stylePixmap()
subRect()
tabbarMetrics()
timerEvent()
tr()
trUtf8()
unPolish()
useHighlightColors()
visualRect()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QSqlCursor

This	is	the	complete	list	of	member	functions	for	QSqlCursor,	including
inherited	members.

QSqlCursor()
~QSqlCursor()
afterSeek()
append()
at()
beforeSeek()
calculateField()
canDelete()
canInsert()
canUpdate()
clear()
clearValues()
contains()
count()
del()
driver()
editBuffer()
exec()
field()
fieldName()
filter()
first()
index()
insert()
isActive()
isCalculated()
isEmpty()
isGenerated()
isNull()

isReadOnly()
isSelect()
isTrimmed()
isValid()
last()
lastError()
lastQuery()
mode()
name()
next()
numRowsAffected()
operator=()
position()
prev()
primaryIndex()
primeDelete()
primeInsert()
primeUpdate()
remove()
result()
seek()
select()
setCalculated()
setFilter()
setGenerated()
setMode()
setName()
setNull()
setPrimaryIndex()
setSort()
setTrimmed()
setValue()
size()
sort()
toString()
toStringList()
update()
value()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QWheelEvent

This	is	the	complete	list	of	member	functions	for	QWheelEvent,	including
inherited	members.

QWheelEvent()
accept()
delta()
globalPos()
globalX()
globalY()
ignore()
isAccepted()
orientation()
pos()
spontaneous()
state()
type()
x()
y()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QClipboard
QClipboard

blockSignals()
checkConnectArgs()
child()
childEvent()
children()
className()
clear()
connect()
connectNotify()
customEvent()
data()
dataChanged()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
highPriority()
image()
inherits()
insertChild()
installEventFilter()
isA()
isWidgetType()
killTimer()
killTimers()
metaObject()
name()
normalizeSignalSlot()

objectTrees()
ownsClipboard()
ownsSelection()
parent()
pixmap()
property()
queryList()
removeChild()
removeEventFilter()
selectionChanged()
selectionModeEnabled()
sender()
setData()
setImage()
setName()
setPixmap()
setProperty()
setSelectionMode()
setText()
signalsBlocked()
startTimer()
supportsSelection()
text()
timerEvent()
tr()
trUtf8()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QFtp
QFtp

QFtp()
~QFtp()
addOperation()
autoDelete()
blockSignals()
checkConnectArgs()
checkConnection()
child()
childEvent()
children()
className()
clearOperationQueue()
connect()
connectNotify()
connectionStateChanged()
createdDirectory()
customEvent()
data()
dataBytesWritten()
dataClosed()
dataConnected()
dataReadyRead()
dataTransferProgress()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
finished()

getNetworkProtocol()
hasOnlyLocalFileSystem()
highPriority()
inherits()
insertChild()
installEventFilter()
isA()
isWidgetType()
itemChanged()
killTimer()
killTimers()
metaObject()
name()
newChild()
newChildren()
normalizeSignalSlot()
objectTrees()
operationGet()
operationInProgress()
operationListChildren()
operationMkDir()
operationPut()
operationRemove()
operationRename()
parent()
parseDir()
property()
queryList()
readyRead()
registerNetworkProtocol()
removeChild()
removeEventFilter()
removed()
sender()
setAutoDelete()
setName()
setProperty()
setUrl()
signalsBlocked()

start()
startTimer()
stop()
supportedOperations()
timerEvent()
tr()
trUtf8()
url()

Copyright	©	2002	Trolltech Trademarks : Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QMotifStyle

This	is	the	complete	list	of	member	functions	for	QMotifStyle,	including
inherited	members.

QMotifStyle()
blockSignals()
checkConnectArgs()
child()
childEvent()
children()
className()
connect()
connectNotify()
customEvent()
defaultFrameWidth()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
drawComplexControl()
drawComplexControlMask()
drawControl()
drawControlMask()
drawItem()
drawPrimitive()
dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
highPriority()
inherits()
insertChild()
installEventFilter()

isA()
isWidgetType()
itemRect()
killTimer()
killTimers()
metaObject()
name()
normalizeSignalSlot()
objectTrees()
parent()
pixelMetric()
polish()
polishPopupMenu()
property()
queryList()
querySubControl()
querySubControlMetrics()
removeChild()
removeEventFilter()
scrollBarExtent()
sender()
setName()
setProperty()
setUseHighlightColors()
signalsBlocked()
sizeFromContents()
startTimer()
styleHint()
stylePixmap()
subRect()
tabbarMetrics()
timerEvent()
tr()
trUtf8()
unPolish()
useHighlightColors()
visualRect()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QSqlDatabase

This	is	the	complete	list	of	member	functions	for	QSqlDatabase,	including
inherited	members.

QSqlDatabase()
~QSqlDatabase()
addDatabase()
blockSignals()
checkConnectArgs()
child()
childEvent()
children()
className()
close()
commit()
connect()
connectNotify()
contains()
customEvent()
database()
databaseName()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
driver()
driverName()
drivers()
dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
exec()

highPriority()
hostName()
inherits()
insertChild()
installEventFilter()
isA()
isOpen()
isOpenError()
isWidgetType()
killTimer()
killTimers()
lastError()
metaObject()
name()
normalizeSignalSlot()
objectTrees()
open()
parent()
password()
port()
primaryIndex()
property()
queryList()
record()
recordInfo()
removeChild()
removeDatabase()
removeEventFilter()
rollback()
sender()
setDatabaseName()
setHostName()
setName()
setPassword()
setPort()
setProperty()
setUserName()
signalsBlocked()
startTimer()

tables()
timerEvent()
tr()
trUtf8()
transaction()
userName()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QCloseEvent

This	is	the	complete	list	of	member	functions	for	QCloseEvent,	including
inherited	members.

QCloseEvent()
accept()
ignore()
isAccepted()
spontaneous()
type()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QGb18030Codec

This	is	the	complete	list	of	member	functions	for	QGb18030Codec,	including
inherited	members.

canEncode()
codecForContent()
codecForIndex()
codecForLocale()
codecForMib()
codecForName()
deleteAllCodecs()
fromUnicode()
heuristicContentMatch()
heuristicNameMatch()
loadCharmap()
loadCharmapFile()
locale()
makeDecoder()
makeEncoder()
mibEnum()
mimeName()
name()
setCodecForLocale()
simpleHeuristicNameMatch()
toUnicode()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QSqlDriver

This	is	the	complete	list	of	member	functions	for	QSqlDriver,	including
inherited	members.

QSqlDriver()
~QSqlDriver()
beginTransaction()
blockSignals()
checkConnectArgs()
child()
childEvent()
children()
className()
close()
commitTransaction()
connect()
connectNotify()
createQuery()
customEvent()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
formatValue()
hasFeature()
highPriority()
inherits()
insertChild()
installEventFilter()

isA()
isOpen()
isOpenError()
isWidgetType()
killTimer()
killTimers()
lastError()
metaObject()
name()
normalizeSignalSlot()
nullText()
objectTrees()
open()
parent()
primaryIndex()
property()
queryList()
record()
recordInfo()
removeChild()
removeEventFilter()
rollbackTransaction()
sender()
setLastError()
setName()
setOpen()
setOpenError()
setProperty()
signalsBlocked()
startTimer()
tables()
timerEvent()
tr()
trUtf8()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QWidgetFactory

This	is	the	complete	list	of	member	functions	for	QWidgetFactory,	including
inherited	members.

QWidgetFactory()
~QWidgetFactory()
addWidgetFactory()
create()
createWidget()
loadImages()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QGbkCodec

This	is	the	complete	list	of	member	functions	for	QGbkCodec,	including
inherited	members.

QGbkCodec()
canEncode()
codecForContent()
codecForIndex()
codecForLocale()
codecForMib()
codecForName()
deleteAllCodecs()
fromUnicode()
heuristicContentMatch()
heuristicNameMatch()
loadCharmap()
loadCharmapFile()
locale()
makeDecoder()
makeEncoder()
mibEnum()
mimeName()
name()
setCodecForLocale()
simpleHeuristicNameMatch()
toUnicode()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QMoveEvent

This	is	the	complete	list	of	member	functions	for	QMoveEvent,	including
inherited	members.

QMoveEvent()
oldPos()
pos()
spontaneous()
type()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QSqlDriverPlugin

This	is	the	complete	list	of	member	functions	for	QSqlDriverPlugin,	including
inherited	members.

QSqlDriverPlugin()
~QSqlDriverPlugin()
create()
keys()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QWidgetItem

This	is	the	complete	list	of	member	functions	for	QWidgetItem,	including
inherited	members.

QWidgetItem()
alignment()
expanding()
geometry()
hasHeightForWidth()
heightForWidth()
invalidate()
isEmpty()
iterator()
layout()
maximumSize()
minimumSize()
setAlignment()
setGeometry()
sizeHint()
spacerItem()
widget()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QGL
This	is	the	complete	list	of	member	functions	for	QGL,	including	inherited
members.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QMovie
This	is	the	complete	list	of	member	functions	for	QMovie,	including	inherited
members.

QMovie()
~QMovie()
backgroundColor()
connectResize()
connectStatus()
connectUpdate()
disconnectResize()
disconnectStatus()
disconnectUpdate()
finished()
frameImage()
frameNumber()
framePixmap()
getValidRect()
isNull()
operator=()
pause()
paused()
pushData()
pushSpace()
restart()
running()
setBackgroundColor()
setSpeed()
speed()
step()
steps()
unpause()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QSqlEditorFactory

This	is	the	complete	list	of	member	functions	for	QSqlEditorFactory,	including
inherited	members.

QSqlEditorFactory()
~QSqlEditorFactory()
blockSignals()
checkConnectArgs()
child()
childEvent()
children()
className()
connect()
connectNotify()
createEditor()
customEvent()
defaultFactory()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
highPriority()
inherits()
insertChild()
installDefaultFactory()
installEventFilter()
isA()
isWidgetType()
killTimer()

killTimers()
metaObject()
name()
normalizeSignalSlot()
objectTrees()
parent()
property()
queryList()
removeChild()
removeEventFilter()
sender()
setName()
setProperty()
signalsBlocked()
startTimer()
timerEvent()
tr()
trUtf8()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QWidgetPlugin

This	is	the	complete	list	of	member	functions	for	QWidgetPlugin,	including
inherited	members.

QWidgetPlugin()
~QWidgetPlugin()
create()
group()
iconSet()
includeFile()
isContainer()
keys()
toolTip()
whatsThis()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QColorDrag

This	is	the	complete	list	of	member	functions	for	QColorDrag,	including
inherited	members.

QColorDrag()
blockSignals()
canDecode()
checkConnectArgs()
child()
childEvent()
children()
className()
connect()
connectNotify()
customEvent()
decode()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
drag()
dragCopy()
dragLink()
dragMove()
dumpObjectInfo()
dumpObjectTree()
encodedData()
event()
eventFilter()
format()
highPriority()
inherits()
insertChild()

installEventFilter()
isA()
isWidgetType()
killTimer()
killTimers()
metaObject()
name()
normalizeSignalSlot()
objectTrees()
parent()
pixmap()
pixmapHotSpot()
property()
provides()
queryList()
removeChild()
removeEventFilter()
sender()
serialNumber()
setColor()
setEncodedData()
setName()
setPixmap()
setProperty()
signalsBlocked()
source()
startTimer()
target()
timerEvent()
tr()
trUtf8()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QGLayoutIterator

This	is	the	complete	list	of	member	functions	for	QGLayoutIterator,	including
inherited	members.

~QGLayoutIterator()
current()
next()
takeCurrent()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QMutex
QMutex

QMutex()
~QMutex()
lock()
locked()
tryLock()
unlock()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QSqlError

This	is	the	complete	list	of	member	functions	for	QSqlError,	including	inherited
members.

QSqlError()
~QSqlError()
databaseText()
driverText()
number()
operator=()
setDatabaseText()
setDriverText()
setNumber()
setType()
type()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QWidgetStack
QWidgetStack

QWidgetStack()
~QWidgetStack()
aboutToShow()
acceptDrops()
addWidget()
adjustSize()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
caption()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clearFocus()
clearMask()
clearWFlags()
close()
closeEvent()
cmd()
colorGroup()
connect()
connectNotify()

constPolish()
contentsRect()
contextMenuEvent()
create()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawContents()
drawFrame()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()
fontChange()
fontInfo()

fontMetrics()
foregroundColor()
frameChanged()
frameGeometry()
frameRect()
frameShadow()
frameShape()
frameSize()
frameStyle()
frameWidth()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
icon()
iconText()
iconify()
id()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
insertChild()
installEventFilter()
isA()
isActiveWindow()
isDesktop()
isDialog()
isEnabled()
isEnabledTo()

isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()
isPopup()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
lineWidth()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
margin()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
midLineWidth()
minimumHeight()

minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveEvent()
name()
normalizeSignalSlot()
objectTrees()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
polish()
pos()
property()
queryList()
qwsEvent()
raise()
raiseWidget()
recreate()
rect()
releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()
removeWidget()

repaint()
reparent()
resetInputContext()
resize()
resizeEvent()
scroll()
sender()
setAcceptDrops()
setActiveWindow()
setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()
setChildGeometries()
setCursor()
setDisabled()
setEnabled()
setEraseColor()
setErasePixmap()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setFrameRect()
setFrameShadow()
setFrameShape()
setFrameStyle()
setGeometry()
setIcon()
setIconText()
setKeyCompression()
setLineWidth()
setMargin()

setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMidLineWidth()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProperty()
setSizeIncrement()
setSizePolicy()
setStyle()
setTabOrder()
setUpdatesEnabled()
setWFlags()
show()
showEvent()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()
startTimer()
style()
styleChange()
tabletEvent()
testWFlags()

timerEvent()
topLevelWidget()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateGeometry()
updateMask()
visibleRect()
visibleWidget()
wheelEvent()
widget()
width()
winEvent()
winId()
windowActivationChange()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()

x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QColorGroup

This	is	the	complete	list	of	member	functions	for	QColorGroup,	including
inherited	members.

QColorGroup()
~QColorGroup()
background()
base()
brightText()
brush()
button()
buttonText()
color()
dark()
foreground()
highlight()
highlightedText()
light()
link()
linkVisited()
mid()
midlight()
operator!=()
operator=()
operator==()
setBrush()
setColor()
shadow()
text()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QGLColormap

This	is	the	complete	list	of	member	functions	for	QGLColormap,	including
inherited	members.

QGLColormap()
~QGLColormap()
detach()
entryColor()
entryRgb()
find()
findNearest()
isEmpty()
operator=()
setEntries()
setEntry()
size()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QNetworkOperation

This	is	the	complete	list	of	member	functions	for	QNetworkOperation,	including
inherited	members.

QNetworkOperation()
~QNetworkOperation()
arg()
blockSignals()
checkConnectArgs()
child()
childEvent()
children()
className()
connect()
connectNotify()
customEvent()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
dumpObjectInfo()
dumpObjectTree()
errorCode()
event()
eventFilter()
free()
highPriority()
inherits()
insertChild()
installEventFilter()
isA()
isWidgetType()
killTimer()

killTimers()
metaObject()
name()
normalizeSignalSlot()
objectTrees()
operation()
parent()
property()
protocolDetail()
queryList()
rawArg()
removeChild()
removeEventFilter()
sender()
setArg()
setErrorCode()
setName()
setProperty()
setProtocolDetail()
setRawArg()
setState()
signalsBlocked()
startTimer()
state()
timerEvent()
tr()
trUtf8()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QSqlField
This	is	the	complete	list	of	member	functions	for	QSqlField,	including	inherited
members.

QSqlField()
~QSqlField()
clear()
isNull()
isReadOnly()
name()
operator=()
operator==()
setName()
setNull()
setReadOnly()
setValue()
type()
value()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QWindowsMime

This	is	the	complete	list	of	member	functions	for	QWindowsMime,	including
inherited	members.

QWindowsMime()
~QWindowsMime()
all()
canConvert()
cf()
cfFor()
cfToMime()
convertFromMime()
convertToMime()
convertor()
convertorName()
countCf()
initialize()
mimeFor()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QGLContext

This	is	the	complete	list	of	member	functions	for	QGLContext,	including
inherited	members.

QGLContext()
~QGLContext()
chooseContext()
choosePixelFormat()
create()
currentContext()
device()
deviceIsPixmap()
doneCurrent()
format()
initialized()
isSharing()
isValid()
makeCurrent()
overlayTransparentColor()
requestedFormat()
reset()
setFormat()
setInitialized()
setWindowCreated()
swapBuffers()
windowCreated()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QNetworkProtocol

This	is	the	complete	list	of	member	functions	for	QNetworkProtocol,	including
inherited	members.

QNetworkProtocol()
~QNetworkProtocol()
addOperation()
autoDelete()
blockSignals()
checkConnectArgs()
checkConnection()
child()
childEvent()
children()
className()
clearOperationQueue()
connect()
connectNotify()
connectionStateChanged()
createdDirectory()
customEvent()
data()
dataTransferProgress()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
finished()
getNetworkProtocol()

hasOnlyLocalFileSystem()
highPriority()
inherits()
insertChild()
installEventFilter()
isA()
isWidgetType()
itemChanged()
killTimer()
killTimers()
metaObject()
name()
newChild()
newChildren()
normalizeSignalSlot()
objectTrees()
operationGet()
operationInProgress()
operationListChildren()
operationMkDir()
operationPut()
operationRemove()
operationRename()
parent()
property()
queryList()
registerNetworkProtocol()
removeChild()
removeEventFilter()
removed()
sender()
setAutoDelete()
setName()
setProperty()
setUrl()
signalsBlocked()
start()
startTimer()
stop()

supportedOperations()
timerEvent()
tr()
trUtf8()
url()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QSqlFieldInfo

This	is	the	complete	list	of	member	functions	for	QSqlFieldInfo,	including
inherited	members.

QSqlFieldInfo()
~QSqlFieldInfo()
defaultValue()
isCalculated()
isGenerated()
isRequired()
isTrim()
length()
name()
operator=()
operator==()
precision()
setCalculated()
setGenerated()
setTrim()
toField()
type()
typeID()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QWindowsStyle

This	is	the	complete	list	of	member	functions	for	QWindowsStyle,	including
inherited	members.

QWindowsStyle()
blockSignals()
checkConnectArgs()
child()
childEvent()
children()
className()
connect()
connectNotify()
customEvent()
defaultFrameWidth()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
drawComplexControl()
drawComplexControlMask()
drawControl()
drawControlMask()
drawItem()
drawPrimitive()
dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
highPriority()
inherits()
insertChild()
installEventFilter()

isA()
isWidgetType()
itemRect()
killTimer()
killTimers()
metaObject()
name()
normalizeSignalSlot()
objectTrees()
parent()
pixelMetric()
polish()
polishPopupMenu()
property()
queryList()
querySubControl()
querySubControlMetrics()
removeChild()
removeEventFilter()
scrollBarExtent()
sender()
setName()
setProperty()
signalsBlocked()
sizeFromContents()
startTimer()
styleHint()
stylePixmap()
subRect()
tabbarMetrics()
timerEvent()
tr()
trUtf8()
unPolish()
visualRect()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QGLFormat

This	is	the	complete	list	of	member	functions	for	QGLFormat,	including
inherited	members.

QGLFormat()
accum()
alpha()
defaultFormat()
defaultOverlayFormat()
depth()
directRendering()
doubleBuffer()
hasOpenGL()
hasOpenGLOverlays()
hasOverlay()
plane()
rgba()
setAccum()
setAlpha()
setDefaultFormat()
setDefaultOverlayFormat()
setDepth()
setDirectRendering()
setDoubleBuffer()
setOption()
setOverlay()
setPlane()
setRgba()
setStencil()
setStereo()
stencil()
stereo()
testOption()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QNPInstance

This	is	the	complete	list	of	member	functions	for	QNPInstance,	including
inherited	members.

QNPInstance()
~QNPInstance()
arg()
argc()
argn()
argv()
blockSignals()
checkConnectArgs()
child()
childEvent()
children()
className()
connect()
connectNotify()
customEvent()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
getJavaPeer()
getURL()
getURLNotify()
highPriority()
inherits()
insertChild()

installEventFilter()
isA()
isWidgetType()
killTimer()
killTimers()
metaObject()
mode()
name()
newStream()
newStreamCreated()
newWindow()
normalizeSignalSlot()
notifyURL()
objectTrees()
parent()
postURL()
print()
printFullPage()
property()
queryList()
removeChild()
removeEventFilter()
sender()
setName()
setProperty()
signalsBlocked()
startTimer()
status()
streamAsFile()
streamDestroyed()
timerEvent()
tr()
trUtf8()
userAgent()
widget()
write()
writeReady()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QSqlForm
This	is	the	complete	list	of	member	functions	for	QSqlForm,	including	inherited
members.

QSqlForm()
~QSqlForm()
blockSignals()
checkConnectArgs()
child()
childEvent()
children()
className()
clear()
clearValues()
connect()
connectNotify()
count()
customEvent()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
fieldToWidget()
highPriority()
inherits()
insert()
insertChild()
installEventFilter()
installPropertyMap()
isA()
isWidgetType()

killTimer()
killTimers()
metaObject()
name()
normalizeSignalSlot()
objectTrees()
parent()
property()
queryList()
readField()
readFields()
remove()
removeChild()
removeEventFilter()
sender()
setName()
setProperty()
setRecord()
signalsBlocked()
startTimer()
timerEvent()
tr()
trUtf8()
widget()
widgetToField()
writeField()
writeFields()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QWizard
QWizard

QWizard()
~QWizard()
accept()
acceptDrops()
addPage()
adjustSize()
appropriate()
autoMask()
back()
backButton()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
cancelButton()
caption()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clearFocus()
clearMask()
clearWFlags()
close()
closeEvent()

cmd()
colorGroup()
connect()
connectNotify()
constPolish()
contextMenuEvent()
create()
currentPage()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
done()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
exec()
extension()
find()
finishButton()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()

focusPolicy()
focusProxy()
focusWidget()
font()
fontChange()
fontInfo()
fontMetrics()
foregroundColor()
frameGeometry()
frameSize()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
help()
helpButton()
helpClicked()
hide()
hideEvent()
highPriority()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
indexOf()
inherits()
insertChild()
insertPage()
installEventFilter()
isA()
isActiveWindow()

isDesktop()
isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()
isPopup()
isSizeGripEnabled()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layOutButtonRow()
layOutTitleRow()
layout()
leaveEvent()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
maximumHeight()
maximumSize()
maximumWidth()

metaObject()
metric()
microFocusHint()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveEvent()
name()
next()
nextButton()
normalizeSignalSlot()
objectTrees()
orientation()
ownCursor()
ownFont()
ownPalette()
page()
pageCount()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
polish()
pos()
property()
queryList()
qwsEvent()

raise()
recreate()
rect()
reject()
releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()
removePage()
repaint()
reparent()
resetInputContext()
resize()
resizeEvent()
result()
scroll()
selected()
sender()
setAcceptDrops()
setActiveWindow()
setAppropriate()
setAutoMask()
setBackEnabled()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()
setCursor()
setDisabled()
setEnabled()
setEraseColor()
setErasePixmap()
setExtension()
setFinish()
setFinishEnabled()
setFixedHeight()
setFixedSize()

setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setGeometry()
setHelpEnabled()
setIcon()
setIconText()
setKeyCompression()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setNextEnabled()
setOrientation()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProperty()
setResult()
setSizeGripEnabled()
setSizeIncrement()
setSizePolicy()
setStyle()
setTabOrder()
setTitle()
setTitleFont()
setUpdatesEnabled()
setWFlags()
show()
showEvent()

showExtension()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
showPage()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()
startTimer()
style()
styleChange()
tabletEvent()
testWFlags()
timerEvent()
title()
titleFont()
topLevelWidget()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateGeometry()
updateMask()
visibleRect()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()

x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

wizard/wizard.cpp	Example	File
/**

**	Id

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"wizard.h"

#include	<qwidget.h>

#include	<qhbox.h>

#include	<qvbox.h>

#include	<qlabel.h>

#include	<qlineedit.h>

#include	<qpushbutton.h>

#include	<qvalidator.h>

#include	<qapplication.h>

Wizard::Wizard(QWidget	*parent,	const	char	*name)

				:	QWizard(parent,	name,	TRUE)

{

				setupPage1();

				setupPage2();

				setupPage3();

				key->setFocus();

}

void	Wizard::setupPage1()

{

				page1	=	new	QHBox(this);

				page1->setSpacing(8);

				QLabel	*info	=	new	QLabel(page1);

				info->setPalette(yellow);

				info->setText("Enter	your	personal\n"

																			"key	here.\n\n"

																			"Your	personal	key\n"

																			"consists	of	4	digits");

				info->setIndent(8);

				info->setMaximumWidth(info->sizeHint().width());

				QVBox	*page	=	new	QVBox(page1);

				QHBox	*row1	=	new	QHBox(page);

				(void)new	QLabel("Key:",	row1);

				key	=	new	QLineEdit(row1);

				key->setMaxLength(4);

				key->setValidator(new	QIntValidator(1000,	9999,	key));

				connect(key,	SIGNAL(textChanged(const	QString	&)),

													this,	SLOT(keyChanged(const	QString	&)));

				addPage(page1,	"Personal	Key");

				setNextEnabled(page1,	FALSE);

				setHelpEnabled(page1,	FALSE);

}

void	Wizard::setupPage2()

{

				page2	=	new	QHBox(this);

				page2->setSpacing(8);

				QLabel	*info	=	new	QLabel(page2);

				info->setPalette(yellow);

				info->setText("\n"

																			"		Enter	your	personal		\n"

																			"		data	here.		\n\n"

																			"		The	required	fields	are		\n"

																			"		First	Name,	Last	Name	\n"

																			"		and	E-Mail.		\n");

				info->setIndent(8);

				info->setMaximumWidth(info->sizeHint().width());

				QVBox	*page	=	new	QVBox(page2);

				QHBox	*row1	=	new	QHBox(page);

				QHBox	*row2	=	new	QHBox(page);

				QHBox	*row3	=	new	QHBox(page);

				QHBox	*row4	=	new	QHBox(page);

				QHBox	*row5	=	new	QHBox(page);

				QLabel	*label1	=	new	QLabel("	First	Name:	",	row1);

				label1->setAlignment(Qt::AlignVCenter);

				QLabel	*label2	=	new	QLabel("	Last	Name:	",	row2);

				label2->setAlignment(Qt::AlignVCenter);

				QLabel	*label3	=	new	QLabel("	Address:	",	row3);

				label3->setAlignment(Qt::AlignVCenter);

				QLabel	*label4	=	new	QLabel("	Phone	Number:	",	row4);

				label4->setAlignment(Qt::AlignVCenter);

				QLabel	*label5	=	new	QLabel("	E-Mail:	",	row5);

				label5->setAlignment(Qt::AlignVCenter);

				label1->setMinimumWidth(label4->sizeHint().width());

				label2->setMinimumWidth(label4->sizeHint().width());

				label3->setMinimumWidth(label4->sizeHint().width());

				label4->setMinimumWidth(label4->sizeHint().width());

				label5->setMinimumWidth(label4->sizeHint().width());

				firstName	=	new	QLineEdit(row1);

				lastName	=	new	QLineEdit(row2);

				address	=	new	QLineEdit(row3);

				phone	=	new	QLineEdit(row4);

				email	=	new	QLineEdit(row5);

				connect(firstName,	SIGNAL(textChanged(const	QString	&)),

													this,	SLOT(dataChanged(const	QString	&)));

				connect(lastName,	SIGNAL(textChanged(const	QString	&)),

													this,	SLOT(dataChanged(const	QString	&)));

				connect(email,	SIGNAL(textChanged(const	QString	&)),

													this,	SLOT(dataChanged(const	QString	&)));

				addPage(page2,	"Personal	Data");

				setHelpEnabled(page2,	FALSE);

}

void	Wizard::setupPage3()

{

				page3	=	new	QHBox(this);

				page3->setSpacing(8);

				QLabel	*info	=	new	QLabel(page3);

				info->setPalette(yellow);

				info->setText("\n"

																			"		Look	here	to	see	of		\n"

																			"		the	data	you	entered		\n"

																			"		is	correct.	To	confirm,		\n"

																			"		press	the	[Finish]	button		\n"

																			"		else	go	back	to	correct		\n"

																			"		mistakes.");

				info->setIndent(8);

				info->setAlignment(AlignTop|AlignLeft);

				info->setMaximumWidth(info->sizeHint().width());

				QVBox	*page	=	new	QVBox(page3);

				QHBox	*row1	=	new	QHBox(page);

				QHBox	*row2	=	new	QHBox(page);

				QHBox	*row3	=	new	QHBox(page);

				QHBox	*row4	=	new	QHBox(page);

				QHBox	*row5	=	new	QHBox(page);

				QHBox	*row6	=	new	QHBox(page);

				QLabel	*label1	=	new	QLabel("	Personal	Key:	",	row1);

				label1->setAlignment(Qt::AlignVCenter);

				QLabel	*label2	=	new	QLabel("	First	Name:	",	row2);

				label2->setAlignment(Qt::AlignVCenter);

				QLabel	*label3	=	new	QLabel("	Last	Name:	",	row3);

				label3->setAlignment(Qt::AlignVCenter);

				QLabel	*label4	=	new	QLabel("	Address:	",	row4);

				label4->setAlignment(Qt::AlignVCenter);

				QLabel	*label5	=	new	QLabel("	Phone	Number:	",	row5);

				label5->setAlignment(Qt::AlignVCenter);

				QLabel	*label6	=	new	QLabel("	E-Mail:	",	row6);

				label6->setAlignment(Qt::AlignVCenter);

				label1->setMinimumWidth(label1->sizeHint().width());

				label2->setMinimumWidth(label1->sizeHint().width());

				label3->setMinimumWidth(label1->sizeHint().width());

				label4->setMinimumWidth(label1->sizeHint().width());

				label5->setMinimumWidth(label1->sizeHint().width());

				label6->setMinimumWidth(label1->sizeHint().width());

				lKey	=	new	QLabel(row1);

				lFirstName	=	new	QLabel(row2);

				lLastName	=	new	QLabel(row3);

				lAddress	=	new	QLabel(row4);

				lPhone	=	new	QLabel(row5);

				lEmail	=	new	QLabel(row6);

				addPage(page3,	"Finish");

				setFinishEnabled(page3,	TRUE);

				setHelpEnabled(page3,	FALSE);

}

void	Wizard::showPage(QWidget*	page)

{

				if	(page	==	page1)	{

				}	else	if	(page	==	page2)	{

				}	else	if	(page	==	page3)	{

								lKey->setText(key->text());

								lFirstName->setText(firstName->text());

								lLastName->setText(lastName->text());

								lAddress->setText(address->text());

								lPhone->setText(phone->text());

								lEmail->setText(email->text());

				}

				QWizard::showPage(page);

				if	(page	==	page1)	{

								keyChanged(key->text());

								key->setFocus();

				}	else	if	(page	==	page2)	{

								dataChanged(firstName->text());

								firstName->setFocus();

				}	else	if	(page	==	page3)	{

								finishButton()->setEnabled(TRUE);

								finishButton()->setFocus();

				}

}

void	Wizard::keyChanged(const	QString	&text)

{

				QString	t	=	text;

				int	p	=	0;

				bool	on	=	(key->validator()->validate(t,	p)	==	QValidator::Acceptable);

				nextButton()->setEnabled(on);

}

void	Wizard::dataChanged(const	QString	&)

{

				if	(!firstName->text().isEmpty()	&&

									!lastName->text().isEmpty()	&&

									!email->text().isEmpty())

								nextButton()->setEnabled(TRUE);

				else

								nextButton()->setEnabled(FALSE);

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

wizard/wizard.h	Example	File
/**

**	$Id:		qt/wizard.h			3.0.5			edited	Oct	12	2001	$

**

**	Copyright	(C)	1992-2000	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#ifndef	WIZARD_H

#define	WIZARD_H

#include	<qwizard.h>

class	QWidget;

class	QHBox;

class	QLineEdit;

class	QLabel;

class	Wizard	:	public	QWizard

{

				Q_OBJECT

public:

				Wizard(QWidget	*parent	=	0,	const	char	*name	=	0);

				void	showPage(QWidget*	page);

protected:

				void	setupPage1();

				void	setupPage2();

				void	setupPage3();

				QHBox	*page1,	*page2,	*page3;

				QLineEdit	*key,	*firstName,	*lastName,	*address,	*phone,	*email;

				QLabel	*lKey,	*lFirstName,	*lLastName,	*lAddress,	*lPhone,	*lEmail;

protected	slots:

				void	keyChanged(const	QString	&);

				void	dataChanged(const	QString	&);

};

#endif

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QCommonStyle

This	is	the	complete	list	of	member	functions	for	QCommonStyle,	including
inherited	members.

QCommonStyle()
blockSignals()
checkConnectArgs()
child()
childEvent()
children()
className()
connect()
connectNotify()
customEvent()
defaultFrameWidth()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
drawComplexControl()
drawComplexControlMask()
drawControl()
drawControlMask()
drawItem()
drawPrimitive()
dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
highPriority()
inherits()
insertChild()
installEventFilter()

isA()
isWidgetType()
itemRect()
killTimer()
killTimers()
metaObject()
name()
normalizeSignalSlot()
objectTrees()
parent()
pixelMetric()
polish()
polishPopupMenu()
property()
queryList()
querySubControl()
querySubControlMetrics()
removeChild()
removeEventFilter()
scrollBarExtent()
sender()
setName()
setProperty()
signalsBlocked()
sizeFromContents()
startTimer()
styleHint()
stylePixmap()
subRect()
tabbarMetrics()
timerEvent()
tr()
trUtf8()
unPolish()
visualRect()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QGLWidget

This	is	the	complete	list	of	member	functions	for	QGLWidget,	including
inherited	members.

QGLWidget()
~QGLWidget()
acceptDrops()
adjustSize()
autoBufferSwap()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
caption()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clearFocus()
clearMask()
clearWFlags()
close()
closeEvent()
cmd()
colorGroup()

colormap()
connect()
connectNotify()
constPolish()
context()
contextMenuEvent()
convertToGLFormat()
create()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
doubleBuffer()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()

font()
fontChange()
fontInfo()
fontMetrics()
foregroundColor()
format()
frameGeometry()
frameSize()
geometry()
getWFlags()
glDraw()
glInit()
grabFrameBuffer()
grabKeyboard()
grabMouse()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
initializeGL()
initializeOverlayGL()
insertChild()
installEventFilter()
isA()
isActiveWindow()
isDesktop()
isDialog()

isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()
isPopup()
isSharing()
isTopLevel()
isUpdatesEnabled()
isValid()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
lower()
macEvent()
makeCurrent()
makeOverlayCurrent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()

metric()
microFocusHint()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveEvent()
name()
normalizeSignalSlot()
objectTrees()
overlayContext()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintGL()
paintOverlayGL()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
polish()
pos()
property()
qglClearColor()
qglColor()
queryList()
qwsEvent()
raise()

recreate()
rect()
releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()
renderPixmap()
repaint()
reparent()
resetInputContext()
resize()
resizeEvent()
resizeGL()
resizeOverlayGL()
scroll()
sender()
setAcceptDrops()
setActiveWindow()
setAutoBufferSwap()
setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()
setColormap()
setCursor()
setDisabled()
setEnabled()
setEraseColor()
setErasePixmap()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()

setGeometry()
setIcon()
setIconText()
setKeyCompression()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProperty()
setSizeIncrement()
setSizePolicy()
setStyle()
setTabOrder()
setUpdatesEnabled()
setWFlags()
show()
showEvent()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()
startTimer()
style()

styleChange()
swapBuffers()
tabletEvent()
testWFlags()
timerEvent()
topLevelWidget()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateGL()
updateGeometry()
updateMask()
updateOverlayGL()
visibleRect()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()

x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QNPlugin
This	is	the	complete	list	of	member	functions	for	QNPlugin,	including	inherited
members.

QNPlugin()
~QNPlugin()
actual()
create()
getJavaClass()
getJavaEnv()
getMIMEDescription()
getPluginDescriptionString()
getPluginNameString()
getVersionInfo()
newInstance()
unuseJavaClass()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QSqlIndex

This	is	the	complete	list	of	member	functions	for	QSqlIndex,	including	inherited
members.

QSqlIndex()
~QSqlIndex()
append()
clear()
clearValues()
contains()
count()
cursorName()
field()
fieldName()
fromStringList()
insert()
isDescending()
isEmpty()
isGenerated()
isNull()
name()
operator=()
position()
remove()
setCursorName()
setDescending()
setGenerated()
setName()
setNull()
setValue()
toString()
toStringList()
value()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QConstString

This	is	the	complete	list	of	member	functions	for	QConstString,	including
inherited	members.

QConstString()
~QConstString()
string()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QNPStream

This	is	the	complete	list	of	member	functions	for	QNPStream,	including
inherited	members.

QNPStream()
~QNPStream()
complete()
end()
instance()
lastModified()
okay()
requestRead()
seekable()
type()
url()
write()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QSqlPropertyMap

This	is	the	complete	list	of	member	functions	for	QSqlPropertyMap,	including
inherited	members.

QSqlPropertyMap()
~QSqlPropertyMap()
defaultMap()
insert()
installDefaultMap()
property()
remove()
setProperty()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QWorkspace
QWorkspace

QWorkspace()
~QWorkspace()
acceptDrops()
activeWindow()
adjustSize()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
caption()
cascade()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clearFocus()
clearMask()
clearWFlags()
close()
closeEvent()
cmd()
colorGroup()
connect()
connectNotify()

constPolish()
contextMenuEvent()
create()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()
fontChange()
fontInfo()
fontMetrics()
foregroundColor()
frameGeometry()

frameSize()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
insertChild()
installEventFilter()
isA()
isActiveWindow()
isDesktop()
isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()
isPopup()
isTopLevel()
isUpdatesEnabled()

isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveEvent()
name()
normalizeSignalSlot()
objectTrees()

ownCursor()
ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
polish()
pos()
property()
queryList()
qwsEvent()
raise()
recreate()
rect()
releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()
repaint()
reparent()
resetInputContext()
resize()
resizeEvent()
scroll()
scrollBarsEnabled()
sender()
setAcceptDrops()
setActiveWindow()
setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()

setBaseSize()
setCaption()
setCursor()
setDisabled()
setEnabled()
setEraseColor()
setErasePixmap()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setGeometry()
setIcon()
setIconText()
setKeyCompression()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProperty()
setScrollBarsEnabled()
setSizeIncrement()
setSizePolicy()
setStyle()
setTabOrder()
setUpdatesEnabled()

setWFlags()
show()
showEvent()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()
startTimer()
style()
styleChange()
tabletEvent()
testWFlags()
tile()
timerEvent()
topLevelWidget()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateGeometry()
updateMask()
visibleRect()
wheelEvent()
width()
winEvent()
winId()
windowActivated()
windowActivationChange()
windowList()
x()
x11AppCells()

x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QNPWidget

This	is	the	complete	list	of	member	functions	for	QNPWidget,	including
inherited	members.

QNPWidget()
~QNPWidget()
acceptDrops()
adjustSize()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
caption()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clearFocus()
clearMask()
clearWFlags()
close()
closeEvent()
cmd()
colorGroup()
connect()

connectNotify()
constPolish()
contextMenuEvent()
create()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
enterInstance()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()
fontChange()
fontInfo()
fontMetrics()

foregroundColor()
frameGeometry()
frameSize()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
insertChild()
installEventFilter()
instance()
isA()
isActiveWindow()
isDesktop()
isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()

isPopup()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
leaveInstance()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()

moveEvent()
name()
normalizeSignalSlot()
objectTrees()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
polish()
pos()
property()
queryList()
qwsEvent()
raise()
recreate()
rect()
releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()
repaint()
reparent()
resetInputContext()
resize()
resizeEvent()
scroll()
sender()
setAcceptDrops()
setActiveWindow()
setAutoMask()
setBackgroundColor()

setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()
setCursor()
setDisabled()
setEnabled()
setEraseColor()
setErasePixmap()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setGeometry()
setIcon()
setIconText()
setKeyCompression()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProperty()
setSizeIncrement()
setSizePolicy()
setStyle()

setTabOrder()
setUpdatesEnabled()
setWFlags()
show()
showEvent()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()
startTimer()
style()
styleChange()
tabletEvent()
testWFlags()
timerEvent()
topLevelWidget()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateGeometry()
updateMask()
visibleRect()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
x()
x11AppCells()
x11AppColormap()

x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QSqlQuery
QSqlQuery

QSqlQuery()
~QSqlQuery()
afterSeek()
at()
beforeSeek()
driver()
exec()
first()
isActive()
isNull()
isSelect()
isValid()
last()
lastError()
lastQuery()
next()
numRowsAffected()
operator=()
prev()
result()
seek()
size()
value()

Copyright	©	2002	Trolltech Trademarks :tipy Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QWSDecoration

This	is	the	complete	list	of	member	functions	for	QWSDecoration,	including
inherited	members.

QWSDecoration()
~QWSDecoration()
close()
maximize()
menu()
minimize()
paint()
paintButton()
region()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QCopChannel

This	is	the	complete	list	of	member	functions	for	QCopChannel,	including
inherited	members.

QCopChannel()
~QCopChannel()
blockSignals()
channel()
checkConnectArgs()
child()
childEvent()
children()
className()
connect()
connectNotify()
customEvent()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
highPriority()
inherits()
insertChild()
installEventFilter()
isA()
isRegistered()
isWidgetType()
killTimer()
killTimers()

metaObject()
name()
normalizeSignalSlot()
objectTrees()
parent()
property()
queryList()
receive()
received()
removeChild()
removeEventFilter()
send()
sender()
setName()
setProperty()
signalsBlocked()
startTimer()
timerEvent()
tr()
trUtf8()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QGridView

This	is	the	complete	list	of	member	functions	for	QGridView,	including
inherited	members.

QGridView()
~QGridView()
acceptDrops()
addChild()
adjustSize()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
bottomMargin()
caption()
cellGeometry()
cellHeight()
cellRect()
cellWidth()
center()
checkConnectArgs()
child()
childAt()
childEvent()
childIsVisible()
childX()
childY()
children()
childrenRect()

childrenRegion()
className()
clearFocus()
clearMask()
clearWFlags()
clipper()
close()
closeEvent()
cmd()
colorGroup()
columnAt()
connect()
connectNotify()
constPolish()
contentsContextMenuEvent()
contentsDragEnterEvent()
contentsDragLeaveEvent()
contentsDragMoveEvent()
contentsDropEvent()
contentsHeight()
contentsMouseDoubleClickEvent()
contentsMouseMoveEvent()
contentsMousePressEvent()
contentsMouseReleaseEvent()
contentsMoving()
contentsRect()
contentsToViewport()
contentsWheelEvent()
contentsWidth()
contentsX()
contentsY()
contextMenuEvent()
cornerWidget()
create()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()

destroyed()
dimensionChange()
disconnect()
disconnectNotify()
dragAutoScroll()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawContents()
drawContentsOffset()
drawFrame()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enableClipper()
enabledChange()
ensureCellVisible()
ensureVisible()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()
fontChange()
fontInfo()
fontMetrics()
foregroundColor()
frameChanged()

frameGeometry()
frameRect()
frameShadow()
frameShape()
frameSize()
frameStyle()
frameWidth()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
gridSize()
hScrollBarMode()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
hasStaticBackground()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
horizontalScrollBar()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
insertChild()
installEventFilter()
isA()
isActiveWindow()
isDesktop()
isDialog()
isEnabled()
isEnabledTo()

isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()
isPopup()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
leftMargin()
lineWidth()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
margin()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
midLineWidth()

minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveChild()
moveEvent()
name()
normalizeSignalSlot()
numCols()
numRows()
objectTrees()
ownCursor()
ownFont()
ownPalette()
paintCell()
paintEmptyArea()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
polish()
pos()
property()
queryList()
qwsEvent()
raise()
recreate()
rect()

releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()
repaint()
repaintCell()
repaintContents()
reparent()
resetInputContext()
resize()
resizeContents()
resizeEvent()
resizePolicy()
rightMargin()
rowAt()
scroll()
scrollBy()
sender()
setAcceptDrops()
setActiveWindow()
setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()
setCellHeight()
setCellWidth()
setContentsPos()
setCornerWidget()
setCursor()
setDisabled()
setDragAutoScroll()
setEnabled()
setEraseColor()
setErasePixmap()
setFixedHeight()
setFixedSize()

setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setFrameRect()
setFrameShadow()
setFrameShape()
setFrameStyle()
setGeometry()
setHBarGeometry()
setHScrollBarMode()
setIcon()
setIconText()
setKeyCompression()
setLineWidth()
setMargin()
setMargins()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMidLineWidth()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setNumCols()
setNumRows()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProperty()
setResizePolicy()
setSizeIncrement()
setSizePolicy()

setStaticBackground()
setStyle()
setTabOrder()
setUpdatesEnabled()
setVBarGeometry()
setVScrollBarMode()
setWFlags()
show()
showChild()
showEvent()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()
startTimer()
style()
styleChange()
tabletEvent()
testWFlags()
timerEvent()
topLevelWidget()
topMargin()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateCell()
updateContents()
updateGeometry()
updateMask()
updateScrollBars()

vScrollBarMode()
verticalScrollBar()
viewport()
viewportPaintEvent()
viewportResizeEvent()
viewportSize()
viewportToContents()
visibleHeight()
visibleRect()
visibleWidth()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QSqlRecord

This	is	the	complete	list	of	member	functions	for	QSqlRecord,	including
inherited	members.

QSqlRecord()
~QSqlRecord()
append()
clear()
clearValues()
contains()
count()
field()
fieldName()
insert()
isEmpty()
isGenerated()
isNull()
operator=()
position()
remove()
setGenerated()
setNull()
setValue()
toString()
toStringList()
value()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QWSKeyboardHandler

This	is	the	complete	list	of	member	functions	for	QWSKeyboardHandler,
including	inherited	members.

QWSKeyboardHandler()
~QWSKeyboardHandler()
blockSignals()
checkConnectArgs()
child()
childEvent()
children()
className()
connect()
connectNotify()
customEvent()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
highPriority()
inherits()
insertChild()
installEventFilter()
isA()
isWidgetType()
killTimer()
killTimers()
metaObject()
name()

normalizeSignalSlot()
objectTrees()
parent()
processKeyEvent()
property()
queryList()
removeChild()
removeEventFilter()
sender()
setName()
setProperty()
signalsBlocked()
startTimer()
timerEvent()
tr()
trUtf8()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QCString
QCString

QCString()
append()
assign()
at()
begin()
bsearch()
contains()
copy()
count()
data()
detach()
duplicate()
end()
fill()
find()
findRev()
insert()
isEmpty()
isNull()
left()
leftJustify()
length()
lower()
mid()
nrefs()
operator	const	char	*()
operator	const	type	*()
operator+=()
operator=()
operator[]()
prepend()
remove()

replace()
resetRawData()
resize()
right()
rightJustify()
setExpand()
setNum()
setRawData()
setStr()
simplifyWhiteSpace()
size()
sort()
sprintf()
stripWhiteSpace()
toDouble()
toFloat()
toInt()
toLong()
toShort()
toUInt()
toULong()
toUShort()
truncate()
upper()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QObjectCleanupHandler

This	is	the	complete	list	of	member	functions	for	QObjectCleanupHandler,
including	inherited	members.

QObjectCleanupHandler()
~QObjectCleanupHandler()
add()
blockSignals()
checkConnectArgs()
child()
childEvent()
children()
className()
clear()
connect()
connectNotify()
customEvent()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
highPriority()
inherits()
insertChild()
installEventFilter()
isA()
isEmpty()
isWidgetType()
killTimer()

killTimers()
metaObject()
name()
normalizeSignalSlot()
objectTrees()
parent()
property()
queryList()
remove()
removeChild()
removeEventFilter()
sender()
setName()
setProperty()
signalsBlocked()
startTimer()
timerEvent()
tr()
trUtf8()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QSqlRecordInfo

This	is	the	complete	list	of	member	functions	for	QSqlRecordInfo,	including
inherited	members.

QSqlRecordInfo()
contains()
find()
toRecord()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QWSMouseHandler

This	is	the	complete	list	of	member	functions	for	QWSMouseHandler,	including
inherited	members.

QWSMouseHandler()
~QWSMouseHandler()
blockSignals()
calibrate()
checkConnectArgs()
child()
childEvent()
children()
className()
clearCalibration()
connect()
connectNotify()
customEvent()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
highPriority()
inherits()
insertChild()
installEventFilter()
isA()
isWidgetType()
killTimer()
killTimers()

metaObject()
mouseChanged()
name()
normalizeSignalSlot()
objectTrees()
parent()
property()
queryList()
removeChild()
removeEventFilter()
sender()
setName()
setProperty()
signalsBlocked()
startTimer()
timerEvent()
tr()
trUtf8()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QGuardedPtr
QGuardedPtr

QGuardedPtr()
~QGuardedPtr()
isNull()
operator	T	*()
operator!=()
operator*()
operator->()
operator=()
operator==()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QObjectList
QObjectList

QObjectList()
~QObjectList()
append()
at()
autoDelete()
clear()
compareItems()
contains()
containsRef()
count()
current()
currentNode()
deleteItem()
find()
findNext()
findNextRef()
findRef()
first()
getFirst()
getLast()
inSort()
insert()
isEmpty()
last()
newItem()
next()
operator=()
operator==()
prepend()
prev()
read()
remove()

removeFirst()
removeLast()
removeNode()
removeRef()
setAutoDelete()
sort()
take()
takeNode()
toVector()
write()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QSqlResult

This	is	the	complete	list	of	member	functions	for	QSqlResult,	including	inherited
members.

QSqlResult()
~QSqlResult()
at()
data()
driver()
fetch()
fetchFirst()
fetchLast()
fetchNext()
fetchPrev()
isActive()
isForwardOnly()
isNull()
isSelect()
isValid()
lastError()
lastQuery()
numRowsAffected()
reset()
setActive()
setAt()
setForwardOnly()
setLastError()
setQuery()
setSelect()
size()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QWSServer

This	is	the	complete	list	of	member	functions	for	QWSServer,	including
inherited	members.

QWSServer()
~QWSServer()
clientWindows()
closeKeyboard()
closeMouse()
enablePainting()
keyMap()
keyboardHandler()
manager()
mouseHandler()
openKeyboard()
openMouse()
refresh()
screenSaverActivate()
screenSaverActive()
sendKeyEvent()
setDefaultKeyboard()
setDefaultMouse()
setDesktopBackground()
setKeyboardFilter()
setKeyboardHandler()
setMaxWindowRect()
setScreenSaver()
setScreenSaverInterval()
setScreenSaverIntervals()
windowAt()
windowEvent()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QCustomEvent

This	is	the	complete	list	of	member	functions	for	QCustomEvent,	including
inherited	members.

QCustomEvent()
data()
setData()
spontaneous()
type()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QHBox
This	is	the	complete	list	of	member	functions	for	QHBox,	including	inherited
members.

QHBox()
acceptDrops()
adjustSize()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
caption()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clearFocus()
clearMask()
clearWFlags()
close()
closeEvent()
cmd()
colorGroup()
connect()
connectNotify()
constPolish()
contentsRect()

contextMenuEvent()
create()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawContents()
drawFrame()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()
fontChange()
fontInfo()
fontMetrics()
foregroundColor()

frameChanged()
frameGeometry()
frameRect()
frameShadow()
frameShape()
frameSize()
frameStyle()
frameWidth()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
insertChild()
installEventFilter()
isA()
isActiveWindow()
isDesktop()
isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()

isHidden()
isMaximized()
isMinimized()
isModal()
isPopup()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
lineWidth()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
margin()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
midLineWidth()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()

mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveEvent()
name()
normalizeSignalSlot()
objectTrees()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
polish()
pos()
property()
queryList()
qwsEvent()
raise()
recreate()
rect()
releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()
repaint()
reparent()
resetInputContext()
resize()
resizeEvent()

scroll()
sender()
setAcceptDrops()
setActiveWindow()
setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()
setCursor()
setDisabled()
setEnabled()
setEraseColor()
setErasePixmap()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setFrameRect()
setFrameShadow()
setFrameShape()
setFrameStyle()
setGeometry()
setIcon()
setIconText()
setKeyCompression()
setLineWidth()
setMargin()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMidLineWidth()

setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProperty()
setSizeIncrement()
setSizePolicy()
setSpacing()
setStretchFactor()
setStyle()
setTabOrder()
setUpdatesEnabled()
setWFlags()
show()
showEvent()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()
startTimer()
style()
styleChange()
tabletEvent()
testWFlags()
timerEvent()
topLevelWidget()
tr()
trUtf8()

unsetCursor()
unsetFont()
unsetPalette()
update()
updateGeometry()
updateMask()
visibleRect()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QObjectListIt
QObjectListIt

QObjectListIt()
atFirst()
atLast()
count()
current()
isEmpty()
operator	type	*()
operator()()
operator*()
operator++()
operator+=()
operator--()
operator-=()
operator=()
toFirst()
toLast()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QStatusBar
QStatusBar

QStatusBar()
~QStatusBar()
acceptDrops()
addWidget()
adjustSize()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
caption()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clear()
clearFocus()
clearMask()
clearWFlags()
close()
closeEvent()
cmd()
colorGroup()
connect()
connectNotify()

constPolish()
contextMenuEvent()
create()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()
fontChange()
fontInfo()
fontMetrics()
foregroundColor()
frameGeometry()

frameSize()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
hideOrShow()
highPriority()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
insertChild()
installEventFilter()
isA()
isActiveWindow()
isDesktop()
isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()
isPopup()
isSizeGripEnabled()

isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
maximumHeight()
maximumSize()
maximumWidth()
message()
metaObject()
metric()
microFocusHint()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveEvent()

name()
normalizeSignalSlot()
objectTrees()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
polish()
pos()
property()
queryList()
qwsEvent()
raise()
recreate()
rect()
reformat()
releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()
removeWidget()
repaint()
reparent()
resetInputContext()
resize()
resizeEvent()
scroll()
sender()
setAcceptDrops()
setActiveWindow()
setAutoMask()

setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()
setCursor()
setDisabled()
setEnabled()
setEraseColor()
setErasePixmap()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setGeometry()
setIcon()
setIconText()
setKeyCompression()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProperty()
setSizeGripEnabled()
setSizeIncrement()

setSizePolicy()
setStyle()
setTabOrder()
setUpdatesEnabled()
setWFlags()
show()
showEvent()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()
startTimer()
style()
styleChange()
tabletEvent()
testWFlags()
timerEvent()
topLevelWidget()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateGeometry()
updateMask()
visibleRect()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
x()

x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QWSWindow

This	is	the	complete	list	of	member	functions	for	QWSWindow,	including
inherited	members.

QWSWindow()
~QWSWindow()
allocation()
caption()
client()
hide()
isFullyObscured()
isPartiallyObscured()
isVisible()
lower()
name()
raise()
requested()
setActiveWindow()
show()
winId()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QCustomMenuItem

This	is	the	complete	list	of	member	functions	for	QCustomMenuItem,	including
inherited	members.

QCustomMenuItem()
~QCustomMenuItem()
fullSpan()
isSeparator()
paint()
setFont()
sizeHint()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QPaintDevice
QPaintDevice

QPaintDevice()
~QPaintDevice()
cmd()
handle()
isExtDev()
paintingActive()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QStoredDrag

This	is	the	complete	list	of	member	functions	for	QStoredDrag,	including
inherited	members.

QStoredDrag()
~QStoredDrag()
blockSignals()
checkConnectArgs()
child()
childEvent()
children()
className()
connect()
connectNotify()
customEvent()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
drag()
dragCopy()
dragLink()
dragMove()
dumpObjectInfo()
dumpObjectTree()
encodedData()
event()
eventFilter()
format()
highPriority()
inherits()
insertChild()
installEventFilter()

isA()
isWidgetType()
killTimer()
killTimers()
metaObject()
name()
normalizeSignalSlot()
objectTrees()
parent()
pixmap()
pixmapHotSpot()
property()
provides()
queryList()
removeChild()
removeEventFilter()
sender()
serialNumber()
setEncodedData()
setName()
setPixmap()
setProperty()
signalsBlocked()
source()
startTimer()
target()
timerEvent()
tr()
trUtf8()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QXmlAttributes

This	is	the	complete	list	of	member	functions	for	QXmlAttributes,	including
inherited	members.

QXmlAttributes()
~QXmlAttributes()
append()
clear()
count()
index()
length()
localName()
qName()
type()
uri()
value()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QDataBrowser

This	is	the	complete	list	of	member	functions	for	QDataBrowser,	including
inherited	members.

QDataBrowser()
~QDataBrowser()
acceptDrops()
adjustSize()
autoEdit()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
beforeDelete()
beforeInsert()
beforeUpdate()
blockSignals()
boundary()
boundaryChecking()
caption()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clearFocus()
clearMask()

clearValues()
clearWFlags()
close()
closeEvent()
cmd()
colorGroup()
confirmCancel()
confirmCancels()
confirmDelete()
confirmEdit()
confirmEdits()
confirmInsert()
confirmUpdate()
connect()
connectNotify()
constPolish()
contextMenuEvent()
create()
currentChanged()
currentEdited()
cursor()
cursorChanged()
customEvent()
customWhatsThis()
del()
deleteCurrent()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()

enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
filter()
find()
first()
firstRecordAvailable()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()
fontChange()
fontInfo()
fontMetrics()
foregroundColor()
form()
frameGeometry()
frameSize()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
handle()
handleError()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()

icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
insert()
insertChild()
insertCurrent()
installEventFilter()
isA()
isActiveWindow()
isDesktop()
isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()
isPopup()
isReadOnly()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
last()
lastRecordAvailable()

layout()
leaveEvent()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveEvent()
name()
next()
nextRecordAvailable()
normalizeSignalSlot()
objectTrees()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()

paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
polish()
pos()
prev()
prevRecordAvailable()
primeDelete()
primeInsert()
primeUpdate()
property()
queryList()
qwsEvent()
raise()
readFields()
recreate()
rect()
refresh()
releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()
repaint()
reparent()
resetInputContext()
resize()
resizeEvent()
scroll()
seek()
sender()
setAcceptDrops()
setActiveWindow()
setAutoEdit()
setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()

setBackgroundPixmap()
setBaseSize()
setBoundaryChecking()
setCaption()
setConfirmCancels()
setConfirmDelete()
setConfirmEdits()
setConfirmInsert()
setConfirmUpdate()
setCursor()
setDisabled()
setEnabled()
setEraseColor()
setErasePixmap()
setFilter()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setForm()
setGeometry()
setIcon()
setIconText()
setKeyCompression()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setPalette()
setPaletteBackgroundColor()

setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProperty()
setReadOnly()
setSizeIncrement()
setSizePolicy()
setSort()
setSqlCursor()
setStyle()
setTabOrder()
setUpdatesEnabled()
setWFlags()
show()
showEvent()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
sort()
sqlCursor()
stackUnder()
startTimer()
style()
styleChange()
tabletEvent()
testWFlags()
timerEvent()
topLevelWidget()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
update()

updateBoundary()
updateCurrent()
updateGeometry()
updateMask()
visibleRect()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
writeFields()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QHButtonGroup
QHButtonGroup

QHButtonGroup()
~QHButtonGroup()
acceptDrops()
addSpace()
adjustSize()
alignment()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
caption()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clearFocus()
clearMask()
clearWFlags()
clicked()
close()
closeEvent()
cmd()
colorGroup()
columns()

connect()
connectNotify()
constPolish()
contentsRect()
contextMenuEvent()
count()
create()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawContents()
drawFrame()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()

font()
fontChange()
fontInfo()
fontMetrics()
foregroundColor()
frameChanged()
frameGeometry()
frameRect()
frameShadow()
frameShape()
frameSize()
frameStyle()
frameWidth()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
icon()
iconText()
iconify()
id()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
insert()
insertChild()
insideMargin()
insideSpacing()
installEventFilter()

isA()
isActiveWindow()
isDesktop()
isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExclusive()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()
isPopup()
isRadioButtonExclusive()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
lineWidth()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
margin()

maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
midLineWidth()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveEvent()
moveFocus()
name()
normalizeSignalSlot()
objectTrees()
orientation()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
polish()
pos()
pressed()
property()

queryList()
qwsEvent()
raise()
recreate()
rect()
releaseKeyboard()
releaseMouse()
released()
remove()
removeChild()
removeEventFilter()
repaint()
reparent()
resetInputContext()
resize()
resizeEvent()
scroll()
selected()
sender()
setAcceptDrops()
setActiveWindow()
setAlignment()
setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setButton()
setCaption()
setColumnLayout()
setColumns()
setCursor()
setDisabled()
setEnabled()
setEraseColor()
setErasePixmap()
setExclusive()
setFixedHeight()

setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setFrameRect()
setFrameShadow()
setFrameShape()
setFrameStyle()
setGeometry()
setIcon()
setIconText()
setInsideMargin()
setInsideSpacing()
setKeyCompression()
setLineWidth()
setMargin()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMidLineWidth()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setOrientation()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProperty()
setRadioButtonExclusive()
setSizeIncrement()
setSizePolicy()
setStyle()

setTabOrder()
setTitle()
setUpdatesEnabled()
setWFlags()
show()
showEvent()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()
startTimer()
style()
styleChange()
tabletEvent()
testWFlags()
timerEvent()
title()
topLevelWidget()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateGeometry()
updateMask()
visibleRect()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
x()

x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QPaintDeviceMetrics

This	is	the	complete	list	of	member	functions	for	QPaintDeviceMetrics,
including	inherited	members.

QPaintDeviceMetrics()
depth()
height()
heightMM()
logicalDpiX()
logicalDpiY()
numColors()
width()
widthMM()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QStrIList
This	is	the	complete	list	of	member	functions	for	QStrIList,	including	inherited
members.

QStrIList()
~QStrIList()
append()
at()
autoDelete()
clear()
compareItems()
contains()
containsRef()
count()
current()
currentNode()
deleteItem()
find()
findNext()
findNextRef()
findRef()
first()
getFirst()
getLast()
inSort()
insert()
isEmpty()
last()
newItem()
next()
operator=()
operator==()
prepend()
prev()
read()

remove()
removeFirst()
removeLast()
removeNode()
removeRef()
setAutoDelete()
sort()
take()
takeNode()
toVector()
write()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QXmlContentHandler

This	is	the	complete	list	of	member	functions	for	QXmlContentHandler,
including	inherited	members.

characters()
endDocument()
endElement()
endPrefixMapping()
errorString()
ignorableWhitespace()
processingInstruction()
setDocumentLocator()
skippedEntity()
startDocument()
startElement()
startPrefixMapping()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QDataStream
QDataStream

QDataStream()
~QDataStream()
atEnd()
byteOrder()
device()
eof()
isPrintableData()
operator<<()
operator>>()
readBytes()
readRawBytes()
setByteOrder()
setDevice()
setPrintableData()
setVersion()
unsetDevice()
version()
writeBytes()
writeRawBytes()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QXmlDeclHandler

This	is	the	complete	list	of	member	functions	for	QXmlDeclHandler,	including
inherited	members.

attributeDecl()
errorString()
externalEntityDecl()
internalEntityDecl()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QDataTable

This	is	the	complete	list	of	member	functions	for	QDataTable,	including
inherited	members.

QDataTable()
~QDataTable()
acceptDrops()
activateNextCell()
addChild()
addColumn()
addSelection()
adjustColumn()
adjustRow()
adjustSize()
autoDelete()
autoEdit()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
beforeDelete()
beforeInsert()
beforeUpdate()
beginEdit()
beginInsert()
beginUpdate()
blockSignals()
bottomMargin()
caption()
cellGeometry()

cellRect()
cellWidget()
center()
checkConnectArgs()
child()
childAt()
childEvent()
childIsVisible()
childX()
childY()
children()
childrenRect()
childrenRegion()
className()
clearCell()
clearCellWidget()
clearFocus()
clearMask()
clearSelection()
clearWFlags()
clicked()
clipper()
close()
closeEvent()
cmd()
colorGroup()
columnAt()
columnClicked()
columnIndexChanged()
columnMovingEnabled()
columnPos()
columnWidth()
columnWidthChanged()
confirmCancel()
confirmCancels()
confirmDelete()
confirmEdit()
confirmEdits()
confirmInsert()

confirmUpdate()
connect()
connectNotify()
constPolish()
contentsContextMenuEvent()
contentsDragEnterEvent()
contentsDragLeaveEvent()
contentsDragMoveEvent()
contentsDropEvent()
contentsHeight()
contentsMouseDoubleClickEvent()
contentsMouseMoveEvent()
contentsMousePressEvent()
contentsMouseReleaseEvent()
contentsMoving()
contentsRect()
contentsToViewport()
contentsWheelEvent()
contentsWidth()
contentsX()
contentsY()
contextMenuEvent()
contextMenuRequested()
cornerWidget()
create()
createEditor()
currEditCol()
currEditRow()
currentChanged()
currentColumn()
currentRecord()
currentRow()
currentSelection()
cursor()
cursorChanged()
customEvent()
customWhatsThis()
dateFormat()
deleteCurrent()

deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
doubleClicked()
dragAutoScroll()
dragEnabled()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
dragObject()
drawContents()
drawContentsOffset()
drawFrame()
drawText()
dropEvent()
dropped()
dumpObjectInfo()
dumpObjectTree()
editCell()
editMode()
enableClipper()
enabledChange()
endEdit()
ensureCellVisible()
ensureVisible()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
falseText()
fieldAlignment()
filter()
find()
focusData()
focusInEvent()

focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusStyle()
focusWidget()
font()
fontChange()
fontInfo()
fontMetrics()
foregroundColor()
frameChanged()
frameGeometry()
frameRect()
frameShadow()
frameShape()
frameSize()
frameStyle()
frameWidth()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
hScrollBarMode()
handle()
handleError()
hasFocus()
hasMouse()
hasMouseTracking()
hasStaticBackground()
height()
heightForWidth()
hide()
hideColumn()
hideEvent()
hideRow()
highPriority()
horizontalHeader()
horizontalScrollBar()

icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
indexOf()
inherits()
insertChild()
insertColumns()
insertCurrent()
insertRows()
insertWidget()
installEditorFactory()
installEventFilter()
installPropertyMap()
isA()
isActiveWindow()
isColumnReadOnly()
isColumnSelected()
isColumnStretchable()
isDesktop()
isDialog()
isEditing()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()
isPopup()
isReadOnly()
isRowReadOnly()
isRowSelected()
isRowStretchable()
isSelected()

isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
item()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
leftMargin()
lineWidth()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
margin()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
midLineWidth()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()

mousePressEvent()
mouseReleaseEvent()
move()
moveChild()
moveEvent()
name()
normalizeSignalSlot()
nullText()
numCols()
numRows()
numSelections()
objectTrees()
ownCursor()
ownFont()
ownPalette()
paintCell()
paintEmptyArea()
paintEvent()
paintField()
paintFocus()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
pixmap()
polish()
pos()
pressed()
primeDelete()
primeInsert()
primeUpdate()
property()
queryList()
qwsEvent()
raise()

recreate()
rect()
refresh()
releaseKeyboard()
releaseMouse()
removeChild()
removeColumn()
removeColumns()
removeEventFilter()
removeRow()
removeRows()
removeSelection()
repaint()
repaintContents()
repaintSelections()
reparent()
reset()
resetInputContext()
resize()
resizeContents()
resizeData()
resizeEvent()
resizePolicy()
rightMargin()
rowAt()
rowHeight()
rowHeightChanged()
rowIndexChanged()
rowMovingEnabled()
rowPos()
scroll()
scrollBy()
selection()
selectionChanged()
selectionMode()
sender()
setAcceptDrops()
setActiveWindow()
setAutoDelete()

setAutoEdit()
setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()
setCellContentFromEditor()
setCellWidget()
setColumn()
setColumnMovingEnabled()
setColumnReadOnly()
setColumnStretchable()
setColumnWidth()
setConfirmCancels()
setConfirmDelete()
setConfirmEdits()
setConfirmInsert()
setConfirmUpdate()
setContentsPos()
setCornerWidget()
setCurrentCell()
setCursor()
setDateFormat()
setDisabled()
setDragAutoScroll()
setDragEnabled()
setEditMode()
setEnabled()
setEraseColor()
setErasePixmap()
setFalseText()
setFilter()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()

setFocusProxy()
setFocusStyle()
setFont()
setFrameRect()
setFrameShadow()
setFrameShape()
setFrameStyle()
setGeometry()
setHBarGeometry()
setHScrollBarMode()
setIcon()
setIconText()
setItem()
setKeyCompression()
setLeftMargin()
setLineWidth()
setMargin()
setMargins()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMidLineWidth()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setNullText()
setNumCols()
setNumRows()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setPixmap()
setProperty()
setReadOnly()

setResizePolicy()
setRowHeight()
setRowMovingEnabled()
setRowReadOnly()
setRowStretchable()
setSelectionMode()
setShowGrid()
setSize()
setSizeIncrement()
setSizePolicy()
setSort()
setSorting()
setSqlCursor()
setStaticBackground()
setStyle()
setTabOrder()
setText()
setTopMargin()
setTrueText()
setUpdatesEnabled()
setVBarGeometry()
setVScrollBarMode()
setWFlags()
show()
showChild()
showColumn()
showEvent()
showFullScreen()
showGrid()
showMaximized()
showMinimized()
showNormal()
showRow()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
sort()

sortAscending()
sortColumn()
sortDescending()
sorting()
sqlCursor()
stackUnder()
startDrag()
startTimer()
style()
styleChange()
swapCells()
swapColumns()
swapRows()
tabletEvent()
takeItem()
testWFlags()
text()
timerEvent()
topLevelWidget()
topMargin()
tr()
trUtf8()
trueText()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateCell()
updateContents()
updateCurrent()
updateGeometry()
updateMask()
updateScrollBars()
vScrollBarMode()
value()
valueChanged()
verticalHeader()
verticalScrollBar()
viewport()

viewportPaintEvent()
viewportResizeEvent()
viewportSize()
viewportToContents()
visibleHeight()
visibleRect()
visibleWidth()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QHebrewCodec

This	is	the	complete	list	of	member	functions	for	QHebrewCodec,	including
inherited	members.

canEncode()
codecForContent()
codecForIndex()
codecForLocale()
codecForMib()
codecForName()
deleteAllCodecs()
fromUnicode()
heuristicContentMatch()
heuristicNameMatch()
loadCharmap()
loadCharmapFile()
locale()
makeDecoder()
makeEncoder()
mibEnum()
mimeName()
name()
setCodecForLocale()
simpleHeuristicNameMatch()
toUnicode()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QXmlDefaultHandler

This	is	the	complete	list	of	member	functions	for	QXmlDefaultHandler,
including	inherited	members.

QXmlDefaultHandler()
~QXmlDefaultHandler()
attributeDecl()
characters()
comment()
endCDATA()
endDTD()
endDocument()
endElement()
endEntity()
endPrefixMapping()
error()
errorString()
externalEntityDecl()
fatalError()
ignorableWhitespace()
internalEntityDecl()
notationDecl()
processingInstruction()
resolveEntity()
setDocumentLocator()
skippedEntity()
startCDATA()
startDTD()
startDocument()
startElement()
startEntity()
startPrefixMapping()
unparsedEntityDecl()

warning()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QDataView

This	is	the	complete	list	of	member	functions	for	QDataView,	including
inherited	members.

QDataView()
~QDataView()
acceptDrops()
adjustSize()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
caption()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clearFocus()
clearMask()
clearValues()
clearWFlags()
close()
closeEvent()
cmd()
colorGroup()

connect()
connectNotify()
constPolish()
contextMenuEvent()
create()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()
fontChange()
fontInfo()
fontMetrics()

foregroundColor()
form()
frameGeometry()
frameSize()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
insertChild()
installEventFilter()
isA()
isActiveWindow()
isDesktop()
isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()

isPopup()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveEvent()

name()
normalizeSignalSlot()
objectTrees()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
polish()
pos()
property()
queryList()
qwsEvent()
raise()
readFields()
record()
recreate()
rect()
refresh()
releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()
repaint()
reparent()
resetInputContext()
resize()
resizeEvent()
scroll()
sender()
setAcceptDrops()
setActiveWindow()

setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()
setCursor()
setDisabled()
setEnabled()
setEraseColor()
setErasePixmap()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setForm()
setGeometry()
setIcon()
setIconText()
setKeyCompression()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProperty()

setRecord()
setSizeIncrement()
setSizePolicy()
setStyle()
setTabOrder()
setUpdatesEnabled()
setWFlags()
show()
showEvent()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()
startTimer()
style()
styleChange()
tabletEvent()
testWFlags()
timerEvent()
topLevelWidget()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateGeometry()
updateMask()
visibleRect()
wheelEvent()
width()
winEvent()
winId()

windowActivationChange()
writeFields()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QHGroupBox
QHGroupBox

QHGroupBox()
~QHGroupBox()
acceptDrops()
addSpace()
adjustSize()
alignment()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
caption()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clearFocus()
clearMask()
clearWFlags()
close()
closeEvent()
cmd()
colorGroup()
columns()
connect()

connectNotify()
constPolish()
contentsRect()
contextMenuEvent()
create()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawContents()
drawFrame()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()
fontChange()

fontInfo()
fontMetrics()
foregroundColor()
frameChanged()
frameGeometry()
frameRect()
frameShadow()
frameShape()
frameSize()
frameStyle()
frameWidth()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
insertChild()
insideMargin()
insideSpacing()
installEventFilter()
isA()
isActiveWindow()
isDesktop()
isDialog()

isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()
isPopup()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
lineWidth()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
margin()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()

midLineWidth()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveEvent()
name()
normalizeSignalSlot()
objectTrees()
orientation()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
polish()
pos()
property()
queryList()
qwsEvent()
raise()
recreate()
rect()
releaseKeyboard()
releaseMouse()
removeChild()

removeEventFilter()
repaint()
reparent()
resetInputContext()
resize()
resizeEvent()
scroll()
sender()
setAcceptDrops()
setActiveWindow()
setAlignment()
setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()
setColumnLayout()
setColumns()
setCursor()
setDisabled()
setEnabled()
setEraseColor()
setErasePixmap()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setFrameRect()
setFrameShadow()
setFrameShape()
setFrameStyle()
setGeometry()
setIcon()
setIconText()

setInsideMargin()
setInsideSpacing()
setKeyCompression()
setLineWidth()
setMargin()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMidLineWidth()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setOrientation()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProperty()
setSizeIncrement()
setSizePolicy()
setStyle()
setTabOrder()
setTitle()
setUpdatesEnabled()
setWFlags()
show()
showEvent()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()

sizePolicy()
stackUnder()
startTimer()
style()
styleChange()
tabletEvent()
testWFlags()
timerEvent()
title()
topLevelWidget()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateGeometry()
updateMask()
visibleRect()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()

x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QPair
This	is	the	complete	list	of	member	functions	for	QPair,	including	inherited
members.

QPair()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QStrList
This	is	the	complete	list	of	member	functions	for	QStrList,	including	inherited
members.

QStrList()
~QStrList()
append()
at()
autoDelete()
clear()
compareItems()
contains()
containsRef()
count()
current()
currentNode()
deleteItem()
find()
findNext()
findNextRef()
findRef()
first()
getFirst()
getLast()
inSort()
insert()
isEmpty()
last()
newItem()
next()
operator=()
operator==()
prepend()
prev()
read()

remove()
removeFirst()
removeLast()
removeNode()
removeRef()
setAutoDelete()
sort()
take()
takeNode()
toVector()
write()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QXmlDTDHandler

This	is	the	complete	list	of	member	functions	for	QXmlDTDHandler,	including
inherited	members.

errorString()
notationDecl()
unparsedEntityDecl()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QDate
QDate

QDate()
addDays()
addMonths()
addYears()
currentDate()
day()
dayName()
dayOfWeek()
dayOfYear()
daysInMonth()
daysInYear()
daysTo()
fromString()
isNull()
isValid()
leapYear()
longDayName()
longMonthName()
month()
monthName()
operator!=()
operator<()
operator<=()
operator==()
operator>()
operator>=()
setYMD()
shortDayName()
shortMonthName()
toString()
year()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QHideEvent

This	is	the	complete	list	of	member	functions	for	QHideEvent,	including
inherited	members.

QHideEvent()
spontaneous()
type()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QPalette
This	is	the	complete	list	of	member	functions	for	QPalette,	including	inherited
members.

QPalette()
~QPalette()
active()
brush()
color()
copy()
disabled()
inactive()
isCopyOf()
normal()
operator!=()
operator=()
operator==()
serialNumber()
setActive()
setBrush()
setColor()
setDisabled()
setInactive()
setNormal()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QStrListIterator

This	is	the	complete	list	of	member	functions	for	QStrListIterator,	including
inherited	members.

atFirst()
atLast()
count()
current()
isEmpty()
operator	type	*()
operator()()
operator*()
operator++()
operator+=()
operator--()
operator-=()
operator=()
toFirst()
toLast()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QXmlEntityResolver

This	is	the	complete	list	of	member	functions	for	QXmlEntityResolver,
including	inherited	members.

errorString()
resolveEntity()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QDateEdit

This	is	the	complete	list	of	member	functions	for	QDateEdit,	including	inherited
members.

QDateEdit()
~QDateEdit()
autoAdvance()
date()
fix()
maxValue()
minValue()
order()
sectionFormattedText()
separator()
setAutoAdvance()
setDate()
setDay()
setMaxValue()
setMinValue()
setMonth()
setOrder()
setRange()
setSeparator()
setYear()
updateButtons()
valueChanged()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QHostAddress

This	is	the	complete	list	of	member	functions	for	QHostAddress,	including
inherited	members.

QHostAddress()
~QHostAddress()
ip4Addr()
isIp4Addr()
operator=()
operator==()
setAddress()
toString()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QStyle
This	is	the	complete	list	of	member	functions	for	QStyle,	including	inherited
members.

QStyle()
~QStyle()
blockSignals()
checkConnectArgs()
child()
childEvent()
children()
className()
connect()
connectNotify()
customEvent()
defaultFrameWidth()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
drawComplexControl()
drawComplexControlMask()
drawControl()
drawControlMask()
drawItem()
drawPrimitive()
dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
highPriority()
inherits()
insertChild()
installEventFilter()
isA()

isWidgetType()
itemRect()
killTimer()
killTimers()
metaObject()
name()
normalizeSignalSlot()
objectTrees()
parent()
pixelMetric()
polish()
polishPopupMenu()
property()
queryList()
querySubControl()
querySubControlMetrics()
removeChild()
removeEventFilter()
scrollBarExtent()
sender()
setName()
setProperty()
signalsBlocked()
sizeFromContents()
startTimer()
styleHint()
stylePixmap()
subRect()
tabbarMetrics()
timerEvent()
tr()
trUtf8()
unPolish()
visualRect()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QXmlErrorHandler

This	is	the	complete	list	of	member	functions	for	QXmlErrorHandler,	including
inherited	members.

error()
errorString()
fatalError()
warning()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QDateTime
QDateTime

QDateTime()
addDays()
addMonths()
addSecs()
addYears()
currentDateTime()
date()
daysTo()
fromString()
isNull()
isValid()
operator!=()
operator<()
operator<=()
operator==()
operator>()
operator>=()
secsTo()
setDate()
setTime()
setTime_t()
time()
toString()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QHttp
This	is	the	complete	list	of	member	functions	for	QHttp,	including	inherited
members.

QHttp()
~QHttp()
addOperation()
autoDelete()
blockSignals()
checkConnectArgs()
checkConnection()
child()
childEvent()
children()
className()
clearOperationQueue()
connect()
connectNotify()
connectionStateChanged()
createdDirectory()
customEvent()
data()
dataTransferProgress()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
finished()
getNetworkProtocol()
hasOnlyLocalFileSystem()
highPriority()

inherits()
insertChild()
installEventFilter()
isA()
isWidgetType()
itemChanged()
killTimer()
killTimers()
metaObject()
name()
newChild()
newChildren()
normalizeSignalSlot()
objectTrees()
operationGet()
operationInProgress()
operationListChildren()
operationMkDir()
operationPut()
operationRemove()
operationRename()
parent()
property()
queryList()
registerNetworkProtocol()
removeChild()
removeEventFilter()
removed()
sender()
setAutoDelete()
setName()
setProperty()
setUrl()
signalsBlocked()
start()
startTimer()
stop()
supportedOperations()
timerEvent()

tr()
trUtf8()
url()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QPicture
This	is	the	complete	list	of	member	functions	for	QPicture,	including	inherited
members.

QPicture()
~QPicture()
boundingRect()
cmd()
copy()
data()
detach()
handle()
isExtDev()
isNull()
load()
metric()
operator=()
paintingActive()
play()
save()
setData()
size()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()

x11DefaultVisual()
x11Depth()
x11Display()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QStyleFactory

This	is	the	complete	list	of	member	functions	for	QStyleFactory,	including
inherited	members.

create()
keys()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QXmlInputSource

This	is	the	complete	list	of	member	functions	for	QXmlInputSource,	including
inherited	members.

QXmlInputSource()
~QXmlInputSource()
data()
fetchData()
fromRawData()
next()
reset()
setData()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QDateTimeEdit

This	is	the	complete	list	of	member	functions	for	QDateTimeEdit,	including
inherited	members.

QDateTimeEdit()
~QDateTimeEdit()
acceptDrops()
adjustSize()
autoAdvance()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
caption()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clearFocus()
clearMask()
clearWFlags()
close()
closeEvent()
cmd()
colorGroup()

connect()
connectNotify()
constPolish()
contextMenuEvent()
create()
cursor()
customEvent()
customWhatsThis()
dateEdit()
dateTime()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()
fontChange()

fontInfo()
fontMetrics()
foregroundColor()
frameGeometry()
frameSize()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
insertChild()
installEventFilter()
isA()
isActiveWindow()
isDesktop()
isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()

isModal()
isPopup()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()

moveEvent()
name()
normalizeSignalSlot()
objectTrees()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
polish()
pos()
property()
queryList()
qwsEvent()
raise()
recreate()
rect()
releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()
repaint()
reparent()
resetInputContext()
resize()
resizeEvent()
scroll()
sender()
setAcceptDrops()
setActiveWindow()
setAutoAdvance()
setAutoMask()

setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()
setCursor()
setDateTime()
setDisabled()
setEnabled()
setEraseColor()
setErasePixmap()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setGeometry()
setIcon()
setIconText()
setKeyCompression()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProperty()
setSizeIncrement()

setSizePolicy()
setStyle()
setTabOrder()
setUpdatesEnabled()
setWFlags()
show()
showEvent()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()
startTimer()
style()
styleChange()
tabletEvent()
testWFlags()
timeEdit()
timerEvent()
topLevelWidget()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateGeometry()
updateMask()
valueChanged()
visibleRect()
wheelEvent()
width()
winEvent()
winId()

windowActivationChange()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QIconDrag

This	is	the	complete	list	of	member	functions	for	QIconDrag,	including	inherited
members.

QIconDrag()
~QIconDrag()
append()
blockSignals()
canDecode()
checkConnectArgs()
child()
childEvent()
children()
className()
connect()
connectNotify()
customEvent()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
drag()
dragCopy()
dragLink()
dragMove()
dumpObjectInfo()
dumpObjectTree()
encodedData()
event()
eventFilter()
format()
highPriority()
inherits()

insertChild()
installEventFilter()
isA()
isWidgetType()
killTimer()
killTimers()
metaObject()
name()
normalizeSignalSlot()
objectTrees()
parent()
pixmap()
pixmapHotSpot()
property()
provides()
queryList()
removeChild()
removeEventFilter()
sender()
serialNumber()
setName()
setPixmap()
setProperty()
signalsBlocked()
source()
startTimer()
target()
timerEvent()
tr()
trUtf8()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QStyleOption

This	is	the	complete	list	of	member	functions	for	QStyleOption,	including
inherited	members.

QStyleOption()
arrowType()
color()
frameShadow()
frameShape()
isDefault()
lineWidth()
listViewItem()
maxIconWidth()
menuItem()
midLineWidth()
tab()
tabWidth()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QXmlLexicalHandler

This	is	the	complete	list	of	member	functions	for	QXmlLexicalHandler,
including	inherited	members.

comment()
endCDATA()
endDTD()
endEntity()
errorString()
startCDATA()
startDTD()
startEntity()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QDesktopWidget

This	is	the	complete	list	of	member	functions	for	QDesktopWidget,	including
inherited	members.

QDesktopWidget()
~QDesktopWidget()
acceptDrops()
adjustSize()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
caption()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clearFocus()
clearMask()
clearWFlags()
close()
closeEvent()
cmd()
colorGroup()
connect()

connectNotify()
constPolish()
contextMenuEvent()
create()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()
fontChange()
fontInfo()
fontMetrics()
foregroundColor()

frameGeometry()
frameSize()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
insertChild()
installEventFilter()
isA()
isActiveWindow()
isDesktop()
isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()
isPopup()
isTopLevel()

isUpdatesEnabled()
isVirtualDesktop()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveEvent()
name()

normalizeSignalSlot()
numScreens()
objectTrees()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
polish()
pos()
primaryScreen()
property()
queryList()
qwsEvent()
raise()
recreate()
rect()
releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()
repaint()
reparent()
resetInputContext()
resize()
resizeEvent()
screen()
screenGeometry()
screenNumber()
scroll()
sender()
setAcceptDrops()

setActiveWindow()
setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()
setCursor()
setDisabled()
setEnabled()
setEraseColor()
setErasePixmap()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setGeometry()
setIcon()
setIconText()
setKeyCompression()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProperty()

setSizeIncrement()
setSizePolicy()
setStyle()
setTabOrder()
setUpdatesEnabled()
setWFlags()
show()
showEvent()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()
startTimer()
style()
styleChange()
tabletEvent()
testWFlags()
timerEvent()
topLevelWidget()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateGeometry()
updateMask()
visibleRect()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()

x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QIconDragItem

This	is	the	complete	list	of	member	functions	for	QIconDragItem,	including
inherited	members.

QIconDragItem()
~QIconDragItem()
data()
setData()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

iconview/simple_dd/main.cpp
Example	File

/**

**	Id

**

**	Copyright	(C)	1992-2001	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	"main.h"

const	char*	red_icon[]={

"16	16	2	1",

"r	c	red",

".	c	None",

"................",

"................",

"..rrrrrrrrrrrr..",

"..rrrrrrrrrrrr..",

"..rrrrrrrrrrrr..",

"..rrr......rrr..",

"..rrr......rrr..",

"..rrr......rrr..",

"..rrr......rrr..",

"..rrr......rrr..",

"..rrr......rrr..",

"..rrrrrrrrrrrr..",

"..rrrrrrrrrrrr..",

"..rrrrrrrrrrrr..",

"................",

"................"};

const	char*	blue_icon[]={

"16	16	2	1",

"b	c	blue",

".	c	None",

"................",

"................",

"..bbbbbbbbbbbb..",

"..bbbbbbbbbbbb..",

"..bbbbbbbbbbbb..",

"..bbb......bbb..",

"..bbb......bbb..",

"..bbb......bbb..",

"..bbb......bbb..",

"..bbb......bbb..",

"..bbb......bbb..",

"..bbbbbbbbbbbb..",

"..bbbbbbbbbbbb..",

"..bbbbbbbbbbbb..",

"................",

"................"};

const	char*	green_icon[]={

"16	16	2	1",

"g	c	green",

".	c	None",

"................",

"................",

"..gggggggggggg..",

"..gggggggggggg..",

"..gggggggggggg..",

"..ggg......ggg..",

"..ggg......ggg..",

"..ggg......ggg..",

"..ggg......ggg..",

"..ggg......ggg..",

"..ggg......ggg..",

"..gggggggggggg..",

"..gggggggggggg..",

"..gggggggggggg..",

"................",

"................"};

//	ListBox	--	low	level	drag	and	drop

DDListBox::DDListBox(QWidget	*	parent,	const	char	*	name,	WFlags	f)	:

				QListBox(parent,	name,	f)

{

				setAcceptDrops(TRUE);

				dragging	=	FALSE;

}

void	DDListBox::dragEnterEvent(QDragEnterEvent	*evt)

{

				if	(QTextDrag::canDecode(evt))

								evt->accept();

}

void	DDListBox::dropEvent(QDropEvent	*evt)

{

				QString	text;

				if	(QTextDrag::decode(evt,	text))

								insertItem(text);

}

void	DDListBox::mousePressEvent(QMouseEvent	*evt)

{

				QListBox::mousePressEvent(evt);

				dragging	=	TRUE;

}

void	DDListBox::mouseMoveEvent(QMouseEvent	*)

{

				if	(dragging)	{

								QDragObject	*d	=	new	QTextDrag(currentText(),	this);

								d->dragCopy();	//	do	NOT	delete	d.

								dragging	=	FALSE;

				}

}

//	IconViewIcon	--	high	level	drag	and	drop

bool	DDIconViewItem::acceptDrop(const	QMimeSource	*mime)	const

{

				if	(mime->provides("text/plain"))

								return	TRUE;

				return	FALSE;

}

void	DDIconViewItem::dropped(QDropEvent	*evt,	const	QValueList<QIconDragItem>&)

{

				QString	label;

				if	(QTextDrag::decode(evt,	label))

								setText(label);

}

//	IconView	--	high	level	drag	and	drop

QDragObject	*DDIconView::dragObject()

{

		return	new	QTextDrag(currentItem()->text(),	this);

}

void	DDIconView::slotNewItem(QDropEvent	*evt,	const	QValueList<QIconDragItem>&)

{

				QString	label;

				if	(QTextDrag::decode(evt,	label))	{

								DDIconViewItem	*item	=	new	DDIconViewItem(this,	label);

								item->setRenameEnabled(TRUE);

				}

}

int	main(int	argc,	char	*argv[])

{

				QApplication	app(argc,	argv);

				//	Create	and	show	the	widgets

				QSplitter	*split	=	new	QSplitter();

				DDIconView	*iv			=	new	DDIconView(split);

				(void)													new	DDListBox(split);

				app.setMainWidget(split);

				split->resize(600,	400);

				split->show();

				//	Set	up	the	connection	so	that	we	can	drop	items	into	the	icon	view

				QObject::connect(

								iv,	SIGNAL(dropped(QDropEvent*,	const	QValueList<QIconDragItem>&)),

								iv,	SLOT(slotNewItem(QDropEvent*,	const	QValueList<QIconDragItem>&)));

				//	Populate	the	QIconView	with	icons

				DDIconViewItem	*item;

				item	=	new	DDIconViewItem(iv,	"Red",			QPixmap(red_icon));

				item->setRenameEnabled(TRUE);

				item	=	new	DDIconViewItem(iv,	"Green",	QPixmap(green_icon));

				item->setRenameEnabled(TRUE);

				item	=	new	DDIconViewItem(iv,	"Blue",		QPixmap(blue_icon));

				item->setRenameEnabled(TRUE);

				return	app.exec();

}

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QPixmapCache

This	is	the	complete	list	of	member	functions	for	QPixmapCache,	including
inherited	members.

cacheLimit()
clear()
find()
insert()
setCacheLimit()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QStylePlugin

This	is	the	complete	list	of	member	functions	for	QStylePlugin,	including
inherited	members.

QStylePlugin()
~QStylePlugin()
create()
keys()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QXmlLocator

This	is	the	complete	list	of	member	functions	for	QXmlLocator,	including
inherited	members.

QXmlLocator()
~QXmlLocator()
columnNumber()
lineNumber()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QDial
This	is	the	complete	list	of	member	functions	for	QDial,	including	inherited
members.

QDial()
~QDial()
acceptDrops()
addLine()
addPage()
adjustSize()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
bound()
caption()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clearFocus()
clearMask()
clearWFlags()
close()
closeEvent()
cmd()
colorGroup()

connect()
connectNotify()
constPolish()
contextMenuEvent()
create()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
dialMoved()
dialPressed()
dialReleased()
directSetValue()
disconnect()
disconnectNotify()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()

font()
fontChange()
fontInfo()
fontMetrics()
foregroundColor()
frameGeometry()
frameSize()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
insertChild()
installEventFilter()
isA()
isActiveWindow()
isDesktop()
isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()

isMaximized()
isMinimized()
isModal()
isPopup()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
lineStep()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
maxValue()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
minValue()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()

mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveEvent()
name()
normalizeSignalSlot()
notchSize()
notchTarget()
notchesVisible()
objectTrees()
ownCursor()
ownFont()
ownPalette()
pageStep()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
polish()
pos()
positionFromValue()
prevValue()
property()
queryList()
qwsEvent()
raise()
rangeChange()
recreate()
rect()
releaseKeyboard()
releaseMouse()
removeChild()

removeEventFilter()
repaint()
repaintScreen()
reparent()
resetInputContext()
resize()
resizeEvent()
scroll()
sender()
setAcceptDrops()
setActiveWindow()
setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()
setCursor()
setDisabled()
setEnabled()
setEraseColor()
setErasePixmap()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setGeometry()
setIcon()
setIconText()
setKeyCompression()
setLineStep()
setMask()
setMaxValue()
setMaximumHeight()
setMaximumSize()

setMaximumWidth()
setMicroFocusHint()
setMinValue()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setNotchTarget()
setNotchesVisible()
setPageStep()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProperty()
setRange()
setSizeIncrement()
setSizePolicy()
setSteps()
setStyle()
setTabOrder()
setTracking()
setUpdatesEnabled()
setValue()
setWFlags()
setWrapping()
show()
showEvent()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()

startTimer()
stepChange()
style()
styleChange()
subtractLine()
subtractPage()
tabletEvent()
testWFlags()
timerEvent()
topLevelWidget()
tr()
trUtf8()
tracking()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateGeometry()
updateMask()
value()
valueChange()
valueChanged()
valueFromPosition()
visibleRect()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
wrapping()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()

x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QIconSet
This	is	the	complete	list	of	member	functions	for	QIconSet,	including	inherited
members.

QIconSet()
~QIconSet()
clearGenerated()
detach()
iconSize()
isGenerated()
isNull()
operator=()
pixmap()
reset()
setIconSize()
setPixmap()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QPlatinumStyle

This	is	the	complete	list	of	member	functions	for	QPlatinumStyle,	including
inherited	members.

QPlatinumStyle()
blockSignals()
checkConnectArgs()
child()
childEvent()
children()
className()
connect()
connectNotify()
customEvent()
defaultFrameWidth()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
drawComplexControl()
drawComplexControlMask()
drawControl()
drawControlMask()
drawItem()
drawPrimitive()
drawRiffles()
dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
highPriority()
inherits()
insertChild()

installEventFilter()
isA()
isWidgetType()
itemRect()
killTimer()
killTimers()
metaObject()
mixedColor()
name()
normalizeSignalSlot()
objectTrees()
parent()
pixelMetric()
polish()
polishPopupMenu()
property()
queryList()
querySubControl()
querySubControlMetrics()
removeChild()
removeEventFilter()
scrollBarExtent()
sender()
setName()
setProperty()
signalsBlocked()
sizeFromContents()
startTimer()
styleHint()
stylePixmap()
subRect()
tabbarMetrics()
timerEvent()
tr()
trUtf8()
unPolish()
visualRect()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QStyleSheet

This	is	the	complete	list	of	member	functions	for	QStyleSheet,	including
inherited	members.

QStyleSheet()
~QStyleSheet()
blockSignals()
checkConnectArgs()
child()
childEvent()
children()
className()
connect()
connectNotify()
convertFromPlainText()
customEvent()
defaultSheet()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
dumpObjectInfo()
dumpObjectTree()
error()
escape()
event()
eventFilter()
highPriority()
inherits()
insertChild()
installEventFilter()
isA()
isWidgetType()

item()
killTimer()
killTimers()
metaObject()
mightBeRichText()
name()
normalizeSignalSlot()
objectTrees()
parent()
property()
queryList()
removeChild()
removeEventFilter()
scaleFont()
sender()
setDefaultSheet()
setName()
setProperty()
signalsBlocked()
startTimer()
tag()
timerEvent()
tr()
trUtf8()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QXmlNamespaceSupport

This	is	the	complete	list	of	member	functions	for	QXmlNamespaceSupport,
including	inherited	members.

QXmlNamespaceSupport()
~QXmlNamespaceSupport()
popContext()
prefix()
prefixes()
processName()
pushContext()
reset()
setPrefix()
splitName()
uri()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QIconView

This	is	the	complete	list	of	member	functions	for	QIconView,	including	inherited
members.

QIconView()
~QIconView()
acceptDrops()
addChild()
adjustItems()
adjustSize()
arrangeItemsInGrid()
arrangement()
autoArrange()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
bottomMargin()
caption()
center()
checkConnectArgs()
child()
childAt()
childEvent()
childIsVisible()
childX()
childY()
children()
childrenRect()

childrenRegion()
className()
clear()
clearFocus()
clearMask()
clearSelection()
clearWFlags()
clicked()
clipper()
close()
closeEvent()
cmd()
colorGroup()
connect()
connectNotify()
constPolish()
contentsContextMenuEvent()
contentsDragEnterEvent()
contentsDragLeaveEvent()
contentsDragMoveEvent()
contentsDropEvent()
contentsHeight()
contentsMouseDoubleClickEvent()
contentsMouseMoveEvent()
contentsMousePressEvent()
contentsMouseReleaseEvent()
contentsMoving()
contentsRect()
contentsToViewport()
contentsWheelEvent()
contentsWidth()
contentsX()
contentsY()
contextMenuEvent()
contextMenuRequested()
cornerWidget()
count()
create()
currentChanged()

currentItem()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
doAutoScroll()
doubleClicked()
dragAutoScroll()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
dragObject()
drawBackground()
drawContents()
drawContentsOffset()
drawFrame()
drawRubber()
drawText()
dropEvent()
dropped()
dumpObjectInfo()
dumpObjectTree()
emitSelectionChanged()
enableClipper()
enabledChange()
ensureItemVisible()
ensureVisible()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
findFirstVisibleItem()

findItem()
findLastVisibleItem()
firstItem()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()
fontChange()
fontInfo()
fontMetrics()
foregroundColor()
frameChanged()
frameGeometry()
frameRect()
frameShadow()
frameShape()
frameSize()
frameStyle()
frameWidth()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
gridX()
gridY()
hScrollBarMode()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
hasStaticBackground()
height()
heightForWidth()
hide()
hideEvent()

highPriority()
horizontalScrollBar()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
index()
inherits()
insertChild()
insertInGrid()
insertItem()
installEventFilter()
invertSelection()
isA()
isActiveWindow()
isDesktop()
isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()
isPopup()
isRenaming()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
itemRenamed()
itemTextBackground()
itemTextPos()

itemsMovable()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
lastItem()
layout()
leaveEvent()
leftMargin()
lineWidth()
lower()
macEvent()
makeRowLayout()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
margin()
maxItemTextLength()
maxItemWidth()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
midLineWidth()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseButtonClicked()
mouseButtonPressed()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()

mousePressEvent()
mouseReleaseEvent()
move()
moveChild()
moveEvent()
moved()
name()
normalizeSignalSlot()
objectTrees()
onItem()
onViewport()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
polish()
pos()
pressed()
property()
queryList()
qwsEvent()
raise()
recreate()
rect()
releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()
repaint()
repaintContents()
repaintItem()

reparent()
resetInputContext()
resize()
resizeContents()
resizeEvent()
resizeMode()
resizePolicy()
returnPressed()
rightButtonClicked()
rightButtonPressed()
rightMargin()
scroll()
scrollBy()
selectAll()
selectionChanged()
selectionMode()
sender()
setAcceptDrops()
setActiveWindow()
setArrangement()
setAutoArrange()
setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()
setContentsPos()
setCornerWidget()
setCurrentItem()
setCursor()
setDisabled()
setDragAutoScroll()
setEnabled()
setEraseColor()
setErasePixmap()
setFixedHeight()
setFixedSize()

setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setFrameRect()
setFrameShadow()
setFrameShape()
setFrameStyle()
setGeometry()
setGridX()
setGridY()
setHBarGeometry()
setHScrollBarMode()
setIcon()
setIconText()
setItemTextBackground()
setItemTextPos()
setItemsMovable()
setKeyCompression()
setLineWidth()
setMargin()
setMargins()
setMask()
setMaxItemTextLength()
setMaxItemWidth()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMidLineWidth()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()

setPaletteForegroundColor()
setProperty()
setResizeMode()
setResizePolicy()
setSelected()
setSelectionMode()
setShowToolTips()
setSizeIncrement()
setSizePolicy()
setSorting()
setSpacing()
setStaticBackground()
setStyle()
setTabOrder()
setUpdatesEnabled()
setVBarGeometry()
setVScrollBarMode()
setWFlags()
setWordWrapIconText()
show()
showChild()
showEvent()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
showToolTips()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
slotUpdate()
sort()
sortDirection()
sorting()
spacing()
stackUnder()
startDrag()

startTimer()
style()
styleChange()
tabletEvent()
takeItem()
testWFlags()
timerEvent()
topLevelWidget()
topMargin()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateContents()
updateGeometry()
updateMask()
updateScrollBars()
vScrollBarMode()
verticalScrollBar()
viewport()
viewportPaintEvent()
viewportResizeEvent()
viewportSize()
viewportToContents()
visibleHeight()
visibleRect()
visibleWidth()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
wordWrapIconText()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()

x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

iconview/simple_dd/main.h	Example
File

/**

**	Id

**

**	Copyright	(C)	1992-2001	Trolltech	AS.		All	rights	reserved.

**

**	This	file	is	part	of	an	example	program	for	Qt.		This	example

**	program	may	be	used,	distributed	and	modified	without	limitation.

**

***/

#include	<qapplication.h>

#include	<qcursor.h>

#include	<qsplitter.h>

#include	<qlistbox.h>

#include	<qiconview.h>

#include	<qpixmap.h>

class	QDragEnterEvent;

class	QDragDropEvent;

class	DDListBox	:	public	QListBox

{

				Q_OBJECT

public:

				DDListBox(QWidget	*	parent	=	0,	const	char	*	name	=	0,	WFlags	f	=	0);

				//	Low-level	drag	and	drop

				void	dragEnterEvent(QDragEnterEvent	*evt);

				void	dropEvent(QDropEvent	*evt);

				void	mousePressEvent(QMouseEvent	*evt);

				void	mouseMoveEvent(QMouseEvent	*);

private:

				int	dragging;

};

class	DDIconViewItem	:	public	QIconViewItem

{

public:

				DDIconViewItem(QIconView	*parent,	const	QString&	text,	const	QPixmap

								QIconViewItem(parent,	text,	icon)	{}

				DDIconViewItem(QIconView	*parent,	const	QString	&text)	:

								QIconViewItem(parent,	text)	{}

				//	High-level	drag	and	drop

				bool	acceptDrop(const	QMimeSource	*mime)	const;

				void	dropped(QDropEvent	*evt,	const	QValueList<QIconDragItem>&);

};

class	DDIconView	:	public	QIconView

{

				Q_OBJECT

public:

				DDIconView(QWidget	*	parent	=	0,	const	char	*	name	=	0,	WFlags	f	=	0)	:

								QIconView(parent,	name,	f)	{}

				//	High-level	drag	and	drop

				QDragObject	*dragObject();

public	slots:

				void	slotNewItem(QDropEvent	*evt,	const	QValueList<QIconDragItem>&	list);

};

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QPNGImagePacker

This	is	the	complete	list	of	member	functions	for	QPNGImagePacker,	including
inherited	members.

QPNGImagePacker()
packImage()
setPixelAlignment()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QStyleSheetItem

This	is	the	complete	list	of	member	functions	for	QStyleSheetItem,	including
inherited	members.

QStyleSheetItem()
~QStyleSheetItem()
alignment()
allowedInContext()
color()
contexts()
definesFontItalic()
definesFontStrikeOut()
definesFontUnderline()
displayMode()
fontFamily()
fontItalic()
fontSize()
fontStrikeOut()
fontUnderline()
fontWeight()
isAnchor()
lineSpacing()
listStyle()
logicalFontSize()
logicalFontSizeStep()
margin()
name()
numberOfColumns()
selfNesting()
setAlignment()
setAnchor()
setColor()
setContexts()

setDisplayMode()
setFontFamily()
setFontItalic()
setFontSize()
setFontStrikeOut()
setFontUnderline()
setFontWeight()
setListStyle()
setLogicalFontSize()
setLogicalFontSizeStep()
setMargin()
setNumberOfColumns()
setSelfNesting()
setVerticalAlignment()
setWhiteSpaceMode()
styleSheet()
verticalAlignment()
whiteSpaceMode()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QXmlParseException

This	is	the	complete	list	of	member	functions	for	QXmlParseException,
including	inherited	members.

QXmlParseException()
columnNumber()
lineNumber()
message()
publicId()
systemId()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QDict
This	is	the	complete	list	of	member	functions	for	QDict,	including	inherited
members.

QDict()
~QDict()
autoDelete()
clear()
count()
deleteItem()
find()
insert()
isEmpty()
newItem()
operator=()
operator[]()
read()
remove()
replace()
resize()
setAutoDelete()
size()
statistics()
take()
write()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Table	of	Prime	Numbers	2-9999

				2					3					5					7				11				13				17				19				23				29

			31				37				41				43				47				53				59				61				67				71

			73				79				83				89				97			101			103			107			109			113

		127			131			137			139			149			151			157			163			167			173

		179			181			191			193			197			199			211			223			227			229

		233			239			241			251			257			263			269			271			277			281

		283			293			307			311			313			317			331			337			347			349

		353			359			367			373			379			383			389			397			401			409

		419			421			431			433			439			443			449			457			461			463

		467			479			487			491			499			503			509			521			523			541

		547			557			563			569			571			577			587			593			599			601

		607			613			617			619			631			641			643			647			653			659

		661			673			677			683			691			701			709			719			727			733

		739			743			751			757			761			769			773			787			797			809

		811			821			823			827			829			839			853			857			859			863

		877			881			883			887			907			911			919			929			937			941

		947			953			967			971			977			983			991			997		1009		1013

	1019		1021		1031		1033		1039		1049		1051		1061		1063		1069

	1087		1091		1093		1097		1103		1109		1117		1123		1129		1151

	1153		1163		1171		1181		1187		1193		1201		1213		1217		1223

	1229		1231		1237		1249		1259		1277		1279		1283		1289		1291

	1297		1301		1303		1307		1319		1321		1327		1361		1367		1373

	1381		1399		1409		1423		1427		1429		1433		1439		1447		1451

	1453		1459		1471		1481		1483		1487		1489		1493		1499		1511

	1523		1531		1543		1549		1553		1559		1567		1571		1579		1583

	1597		1601		1607		1609		1613		1619		1621		1627		1637		1657

	1663		1667		1669		1693		1697		1699		1709		1721		1723		1733

	1741		1747		1753		1759		1777		1783		1787		1789		1801		1811

	1823		1831		1847		1861		1867		1871		1873		1877		1879		1889

	1901		1907		1913		1931		1933		1949		1951		1973		1979		1987

	1993		1997		1999		2003		2011		2017		2027		2029		2039		2053

	2063		2069		2081		2083		2087		2089		2099		2111		2113		2129

	2131		2137		2141		2143		2153		2161		2179		2203		2207		2213

	2221		2237		2239		2243		2251		2267		2269		2273		2281		2287

	2293		2297		2309		2311		2333		2339		2341		2347		2351		2357

	2371		2377		2381		2383		2389		2393		2399		2411		2417		2423

	2437		2441		2447		2459		2467		2473		2477		2503		2521		2531

	2539		2543		2549		2551		2557		2579		2591		2593		2609		2617

	2621		2633		2647		2657		2659		2663		2671		2677		2683		2687

	2689		2693		2699		2707		2711		2713		2719		2729		2731		2741

	2749		2753		2767		2777		2789		2791		2797		2801		2803		2819

	2833		2837		2843		2851		2857		2861		2879		2887		2897		2903

	2909		2917		2927		2939		2953		2957		2963		2969		2971		2999

	3001		3011		3019		3023		3037		3041		3049		3061		3067		3079

	3083		3089		3109		3119		3121		3137		3163		3167		3169		3181

	3187		3191		3203		3209		3217		3221		3229		3251		3253		3257

	3259		3271		3299		3301		3307		3313		3319		3323		3329		3331

	3343		3347		3359		3361		3371		3373		3389		3391		3407		3413

	3433		3449		3457		3461		3463		3467		3469		3491		3499		3511

	3517		3527		3529		3533		3539		3541		3547		3557		3559		3571

	3581		3583		3593		3607		3613		3617		3623		3631		3637		3643

	3659		3671		3673		3677		3691		3697		3701		3709		3719		3727

	3733		3739		3761		3767		3769		3779		3793		3797		3803		3821

	3823		3833		3847		3851		3853		3863		3877		3881		3889		3907

	3911		3917		3919		3923		3929		3931		3943		3947		3967		3989

	4001		4003		4007		4013		4019		4021		4027		4049		4051		4057

	4073		4079		4091		4093		4099		4111		4127		4129		4133		4139

	4153		4157		4159		4177		4201		4211		4217		4219		4229		4231

	4241		4243		4253		4259		4261		4271		4273		4283		4289		4297

	4327		4337		4339		4349		4357		4363		4373		4391		4397		4409

	4421		4423		4441		4447		4451		4457		4463		4481		4483		4493

	4507		4513		4517		4519		4523		4547		4549		4561		4567		4583

	4591		4597		4603		4621		4637		4639		4643		4649		4651		4657

	4663		4673		4679		4691		4703		4721		4723		4729		4733		4751

	4759		4783		4787		4789		4793		4799		4801		4813		4817		4831

	4861		4871		4877		4889		4903		4909		4919		4931		4933		4937

	4943		4951		4957		4967		4969		4973		4987		4993		4999		5003

	5009		5011		5021		5023		5039		5051		5059		5077		5081		5087

	5099		5101		5107		5113		5119		5147		5153		5167		5171		5179

	5189		5197		5209		5227		5231		5233		5237		5261		5273		5279

	5281		5297		5303		5309		5323		5333		5347		5351		5381		5387

	5393		5399		5407		5413		5417		5419		5431		5437		5441		5443

	5449		5471		5477		5479		5483		5501		5503		5507		5519		5521

	5527		5531		5557		5563		5569		5573		5581		5591		5623		5639

	5641		5647		5651		5653		5657		5659		5669		5683		5689		5693

	5701		5711		5717		5737		5741		5743		5749		5779		5783		5791

	5801		5807		5813		5821		5827		5839		5843		5849		5851		5857

	5861		5867		5869		5879		5881		5897		5903		5923		5927		5939

	5953		5981		5987		6007		6011		6029		6037		6043		6047		6053

	6067		6073		6079		6089		6091		6101		6113		6121		6131		6133

	6143		6151		6163		6173		6197		6199		6203		6211		6217		6221

	6229		6247		6257		6263		6269		6271		6277		6287		6299		6301

	6311		6317		6323		6329		6337		6343		6353		6359		6361		6367

	6373		6379		6389		6397		6421		6427		6449		6451		6469		6473

	6481		6491		6521		6529		6547		6551		6553		6563		6569		6571

	6577		6581		6599		6607		6619		6637		6653		6659		6661		6673

	6679		6689		6691		6701		6703		6709		6719		6733		6737		6761

	6763		6779		6781		6791		6793		6803		6823		6827		6829		6833

	6841		6857		6863		6869		6871		6883		6899		6907		6911		6917

	6947		6949		6959		6961		6967		6971		6977		6983		6991		6997

	7001		7013		7019		7027		7039		7043		7057		7069		7079		7103

	7109		7121		7127		7129		7151		7159		7177		7187		7193		7207

	7211		7213		7219		7229		7237		7243		7247		7253		7283		7297

	7307		7309		7321		7331		7333		7349		7351		7369		7393		7411

	7417		7433		7451		7457		7459		7477		7481		7487		7489		7499

	7507		7517		7523		7529		7537		7541		7547		7549		7559		7561

	7573		7577		7583		7589		7591		7603		7607		7621		7639		7643

	7649		7669		7673		7681		7687		7691		7699		7703		7717		7723

	7727		7741		7753		7757		7759		7789		7793		7817		7823		7829

	7841		7853		7867		7873		7877		7879		7883		7901		7907		7919

	7927		7933		7937		7949		7951		7963		7993		8009		8011		8017

	8039		8053		8059		8069		8081		8087		8089		8093		8101		8111

	8117		8123		8147		8161		8167		8171		8179		8191		8209		8219

	8221		8231		8233		8237		8243		8263		8269		8273		8287		8291

	8293		8297		8311		8317		8329		8353		8363		8369		8377		8387

	8389		8419		8423		8429		8431		8443		8447		8461		8467		8501

	8513		8521		8527		8537		8539		8543		8563		8573		8581		8597

	8599		8609		8623		8627		8629		8641		8647		8663		8669		8677

	8681		8689		8693		8699		8707		8713		8719		8731		8737		8741

	8747		8753		8761		8779		8783		8803		8807		8819		8821		8831

	8837		8839		8849		8861		8863		8867		8887		8893		8923		8929

	8933		8941		8951		8963		8969		8971		8999		9001		9007		9011

	9013		9029		9041		9043		9049		9059		9067		9091		9103		9109

	9127		9133		9137		9151		9157		9161		9173		9181		9187		9199

	9203		9209		9221		9227		9239		9241		9257		9277		9281		9283

	9293		9311		9319		9323		9337		9341		9343		9349		9371		9377

	9391		9397		9403		9413		9419		9421		9431		9433		9437		9439

	9461		9463		9467		9473		9479		9491		9497		9511		9521		9533

	9539		9547		9551		9587		9601		9613		9619		9623		9629		9631

	9643		9649		9661		9677		9679		9689		9697		9719		9721		9733

	9739		9743		9749		9767		9769		9781		9787		9791		9803		9811

	9817		9829		9833		9839		9851		9857		9859		9871		9883		9887

	9901		9907		9923		9929		9931		9941		9949		9967		9973

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QIconViewItem

This	is	the	complete	list	of	member	functions	for	QIconViewItem,	including
inherited	members.

QIconViewItem()
~QIconViewItem()
acceptDrop()
calcRect()
compare()
contains()
dragEnabled()
dragEntered()
dragLeft()
dropEnabled()
dropped()
height()
iconView()
index()
intersects()
isSelectable()
isSelected()
key()
move()
moveBy()
nextItem()
paintFocus()
paintItem()
picture()
pixmap()
pixmapRect()
pos()
prevItem()
rect()

removeRenameBox()
rename()
renameEnabled()
repaint()
rtti()
setDragEnabled()
setDropEnabled()
setItemRect()
setKey()
setPicture()
setPixmap()
setPixmapRect()
setRenameEnabled()
setSelectable()
setSelected()
setText()
setTextRect()
size()
text()
textRect()
width()
x()
y()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QXmlReader

This	is	the	complete	list	of	member	functions	for	QXmlReader,	including
inherited	members.

DTDHandler()
contentHandler()
declHandler()
entityResolver()
errorHandler()
feature()
hasFeature()
hasProperty()
lexicalHandler()
parse()
property()
setContentHandler()
setDTDHandler()
setDeclHandler()
setEntityResolver()
setErrorHandler()
setFeature()
setLexicalHandler()
setProperty()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QDictIterator

This	is	the	complete	list	of	member	functions	for	QDictIterator,	including
inherited	members.

QDictIterator()
~QDictIterator()
count()
current()
currentKey()
isEmpty()
operator	type	*()
operator()()
operator++()
toFirst()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QImage
This	is	the	complete	list	of	member	functions	for	QImage,	including	inherited
members.

QImage()
~QImage()
allGray()
bitOrder()
bits()
bytesPerLine()
color()
colorTable()
convertBitOrder()
convertDepth()
convertDepthWithPalette()
copy()
create()
createAlphaMask()
createHeuristicMask()
depth()
detach()
dotsPerMeterX()
dotsPerMeterY()
fill()
hasAlphaBuffer()
height()
imageFormat()
inputFormatList()
inputFormats()
invertPixels()
isGrayscale()
isNull()
jumpTable()
load()
loadFromData()

mirror()
numBytes()
numColors()
offset()
operator!=()
operator=()
operator==()
outputFormatList()
outputFormats()
pixel()
pixelIndex()
rect()
reset()
save()
scale()
scaleHeight()
scaleWidth()
scanLine()
setAlphaBuffer()
setColor()
setDotsPerMeterX()
setDotsPerMeterY()
setNumColors()
setOffset()
setPixel()
setText()
size()
smoothScale()
swapRGB()
systemBitOrder()
systemByteOrder()
text()
textKeys()
textLanguages()
textList()
valid()
width()
xForm()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QPointArray

This	is	the	complete	list	of	member	functions	for	QPointArray,	including
inherited	members.

QPointArray()
~QPointArray()
assign()
at()
begin()
boundingRect()
bsearch()
contains()
copy()
count()
cubicBezier()
data()
detach()
duplicate()
end()
fill()
find()
isEmpty()
isNull()
makeArc()
makeEllipse()
nrefs()
operator	const	type	*()
operator!=()
operator=()
operator==()
operator[]()
point()
putPoints()

resetRawData()
resize()
setPoint()
setRawData()
size()
sort()
translate()
truncate()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QTab
This	is	the	complete	list	of	member	functions	for	QTab,	including	inherited
members.

QTab()
~QTab()
iconSet()
identifier()
isEnabled()
rect()
setEnabled()
setIconSet()
setIdentifier()
setRect()
setText()
text()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QXmlSimpleReader

This	is	the	complete	list	of	member	functions	for	QXmlSimpleReader,	including
inherited	members.

QXmlSimpleReader()
~QXmlSimpleReader()
DTDHandler()
contentHandler()
declHandler()
entityResolver()
errorHandler()
feature()
hasFeature()
hasProperty()
lexicalHandler()
parse()
parseContinue()
property()
setContentHandler()
setDTDHandler()
setDeclHandler()
setEntityResolver()
setErrorHandler()
setFeature()
setLexicalHandler()
setProperty()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QDir
QDir

QDir()
~QDir()
absFilePath()
absPath()
canonicalPath()
cd()
cdUp()
cleanDirPath()
convertSeparators()
convertToAbs()
count()
current()
currentDirPath()
dirName()
drives()
encodedEntryList()
entryInfoList()
entryList()
exists()
filePath()
filter()
home()
homeDirPath()
isReadable()
isRelative()
isRelativePath()
isRoot()
match()
matchAllDirs()
mkdir()
nameFilter()
operator!=()

operator=()
operator==()
operator[]()
path()
remove()
rename()
rmdir()
root()
rootDirPath()
separator()
setCurrent()
setFilter()
setMatchAllDirs()
setNameFilter()
setPath()
setSorting()
sorting()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QImageConsumer

This	is	the	complete	list	of	member	functions	for	QImageConsumer,	including
inherited	members.

changed()
end()
frameDone()
setFramePeriod()
setLooping()
setSize()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QTabBar
This	is	the	complete	list	of	member	functions	for	QTabBar,	including	inherited
members.

QTabBar()
~QTabBar()
acceptDrops()
addTab()
adjustSize()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
caption()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clearFocus()
clearMask()
clearWFlags()
close()
closeEvent()
cmd()
colorGroup()
connect()
connectNotify()

constPolish()
contextMenuEvent()
count()
create()
currentTab()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()
fontChange()
fontInfo()
fontMetrics()

foregroundColor()
frameGeometry()
frameSize()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
indexOf()
inherits()
insertChild()
insertTab()
installEventFilter()
isA()
isActiveWindow()
isDesktop()
isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()

isModal()
isPopup()
isTabEnabled()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardFocusTab()
keyboardGrabber()
killTimer()
killTimers()
layout()
layoutTabs()
leaveEvent()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()

mousePressEvent()
mouseReleaseEvent()
move()
moveEvent()
name()
normalizeSignalSlot()
objectTrees()
ownCursor()
ownFont()
ownPalette()
paint()
paintEvent()
paintLabel()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
polish()
pos()
property()
queryList()
qwsEvent()
raise()
recreate()
rect()
releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()
removeTab()
removeToolTip()
repaint()
reparent()
resetInputContext()
resize()

resizeEvent()
scroll()
selectTab()
selected()
sender()
setAcceptDrops()
setActiveWindow()
setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()
setCurrentTab()
setCursor()
setDisabled()
setEnabled()
setEraseColor()
setErasePixmap()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setGeometry()
setIcon()
setIconText()
setKeyCompression()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()

setMouseTracking()
setName()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProperty()
setShape()
setSizeIncrement()
setSizePolicy()
setStyle()
setTabEnabled()
setTabOrder()
setToolTip()
setUpdatesEnabled()
setWFlags()
shape()
show()
showEvent()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()
startTimer()
style()
styleChange()
tab()
tabAt()
tabList()
tabletEvent()
testWFlags()
timerEvent()
toolTip()

topLevelWidget()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateGeometry()
updateMask()
visibleRect()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QXtApplication

This	is	the	complete	list	of	member	functions	for	QXtApplication,	including
inherited	members.

QXtApplication()
~QXtApplication()
aboutToQuit()
activeModalWidget()
activePopupWidget()
activeWindow()
addLibraryPath()
allWidgets()
argc()
argv()
beep()
blockSignals()
checkConnectArgs()
child()
childEvent()
children()
className()
clipboard()
closeAllWindows()
closingDown()
colorSpec()
commitData()
connect()
connectNotify()
cursorFlashTime()
customEvent()
defaultCodec()
deleteLater()
desktop()

desktopSettingsAware()
destroyed()
disconnect()
disconnectNotify()
doubleClickInterval()
dumpObjectInfo()
dumpObjectTree()
enter_loop()
event()
eventFilter()
exec()
exit()
exit_loop()
flush()
flushX()
focusWidget()
font()
fontMetrics()
globalStrut()
guiThreadAwake()
hasGlobalMouseTracking()
hasPendingEvents()
highPriority()
horizontalAlignment()
inherits()
insertChild()
installEventFilter()
installTranslator()
isA()
isEffectEnabled()
isSessionRestored()
isWidgetType()
killTimer()
killTimers()
lastWindowClosed()
libraryPaths()
lock()
locked()
loopLevel()

macEventFilter()
mainWidget()
metaObject()
name()
normalizeSignalSlot()
notify()
objectTrees()
overrideCursor()
palette()
parent()
polish()
postEvent()
processEvents()
processOneEvent()
property()
queryList()
quit()
qwsDecoration()
qwsEventFilter()
qwsSetCustomColors()
qwsSetDecoration()
removeChild()
removeEventFilter()
removeLibraryPath()
removePostedEvents()
removeTranslator()
restoreOverrideCursor()
reverseLayout()
saveState()
sendEvent()
sendPostedEvents()
sender()
sessionId()
setColorSpec()
setCursorFlashTime()
setDefaultCodec()
setDesktopSettingsAware()
setDoubleClickInterval()
setEffectEnabled()

setFont()
setGlobalMouseTracking()
setGlobalStrut()
setLibraryPaths()
setMainWidget()
setName()
setOverrideCursor()
setPalette()
setProperty()
setReverseLayout()
setStartDragDistance()
setStartDragTime()
setStyle()
setWheelScrollLines()
setWinStyleHighlightColor()
signalsBlocked()
startDragDistance()
startDragTime()
startTimer()
startingUp()
style()
syncX()
timerEvent()
topLevelWidgets()
tr()
trUtf8()
translate()
tryLock()
type()
unlock()
wakeUpGuiThread()
wheelScrollLines()
widgetAt()
winEventFilter()
winFocus()
winStyleHighlightColor()
winVersion()
x11EventFilter()
x11ProcessEvent()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QDirectPainter

This	is	the	complete	list	of	member	functions	for	QDirectPainter,	including
inherited	members.

QDirectPainter()
~QDirectPainter()
backgroundColor()
backgroundMode()
begin()
boundingRect()
brush()
brushOrigin()
clipRegion()
depth()
device()
drawArc()
drawChord()
drawConvexPolygon()
drawCubicBezier()
drawEllipse()
drawImage()
drawLine()
drawLineSegments()
drawPicture()
drawPie()
drawPixmap()
drawPoint()
drawPoints()
drawPolygon()
drawPolyline()
drawRect()
drawRoundRect()
drawText()

drawTiledPixmap()
drawWinFocusRect()
end()
eraseRect()
fillRect()
flush()
font()
fontInfo()
fontMetrics()
frameBuffer()
handle()
hasClipping()
hasViewXForm()
hasWorldXForm()
height()
isActive()
lineStep()
lineTo()
moveTo()
numRects()
offset()
pen()
pos()
rasterOp()
rect()
redirect()
resetXForm()
restore()
restoreWorldMatrix()
rotate()
save()
saveWorldMatrix()
scale()
setAreaChanged()
setBackgroundColor()
setBackgroundMode()
setBrush()
setBrushOrigin()
setClipRect()

setClipRegion()
setClipping()
setFont()
setPen()
setRasterOp()
setTabArray()
setTabStops()
setViewXForm()
setViewport()
setWindow()
setWorldMatrix()
setWorldXForm()
shear()
size()
tabArray()
tabStops()
transformOrientation()
translate()
viewport()
width()
window()
worldMatrix()
xForm()
xFormDev()
xOffset()
yOffset()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QImageDecoder

This	is	the	complete	list	of	member	functions	for	QImageDecoder,	including
inherited	members.

QImageDecoder()
~QImageDecoder()
decode()
format()
formatName()
image()
inputFormats()
registerDecoderFactory()
unregisterDecoderFactory()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QTabDialog
QTabDialog,

QTabDialog()
~QTabDialog()
aboutToShow()
accept()
acceptDrops()
addTab()
adjustSize()
applyButtonPressed()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
cancelButtonPressed()
caption()
changeTab()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clearFocus()
clearMask()
clearWFlags()
close()
closeEvent()

cmd()
colorGroup()
connect()
connectNotify()
constPolish()
contextMenuEvent()
create()
currentChanged()
currentPage()
cursor()
customEvent()
customWhatsThis()
defaultButtonPressed()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
done()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
exec()
extension()
find()
focusData()
focusInEvent()
focusNextPrevChild()

focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()
fontChange()
fontInfo()
fontMetrics()
foregroundColor()
frameGeometry()
frameSize()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
handle()
hasApplyButton()
hasCancelButton()
hasDefaultButton()
hasFocus()
hasHelpButton()
hasMouse()
hasMouseTracking()
hasOkButton()
height()
heightForWidth()
helpButtonPressed()
hide()
hideEvent()
highPriority()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
insertChild()
insertTab()

installEventFilter()
isA()
isActiveWindow()
isDesktop()
isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()
isPopup()
isSizeGripEnabled()
isTabEnabled()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
maximumHeight()

maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveEvent()
name()
normalizeSignalSlot()
objectTrees()
orientation()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
polish()
pos()
property()
queryList()
qwsEvent()
raise()
recreate()

rect()
reject()
releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()
removePage()
repaint()
reparent()
resetInputContext()
resize()
resizeEvent()
result()
scroll()
selected()
sender()
setAcceptDrops()
setActiveWindow()
setApplyButton()
setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCancelButton()
setCaption()
setCursor()
setDefaultButton()
setDisabled()
setEnabled()
setEraseColor()
setErasePixmap()
setExtension()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()

setFocusProxy()
setFont()
setGeometry()
setHelpButton()
setIcon()
setIconText()
setKeyCompression()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setOkButton()
setOrientation()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProperty()
setResult()
setSizeGripEnabled()
setSizeIncrement()
setSizePolicy()
setStyle()
setTabBar()
setTabEnabled()
setTabOrder()
setUpdatesEnabled()
setWFlags()
show()
showEvent()
showExtension()
showFullScreen()
showMaximized()

showMinimized()
showNormal()
showPage()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()
startTimer()
style()
styleChange()
tabBar()
tabLabel()
tabletEvent()
testWFlags()
timerEvent()
topLevelWidget()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateGeometry()
updateMask()
visibleRect()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()

x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QXtWidget

This	is	the	complete	list	of	member	functions	for	QXtWidget,	including	inherited
members.

QXtWidget()
~QXtWidget()
acceptDrops()
adjustSize()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
caption()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clearFocus()
clearMask()
clearWFlags()
close()
closeEvent()
cmd()
colorGroup()
connect()

connectNotify()
constPolish()
contextMenuEvent()
create()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()
fontChange()
fontInfo()
fontMetrics()
foregroundColor()

frameGeometry()
frameSize()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
insertChild()
installEventFilter()
isA()
isActiveWindow()
isDesktop()
isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()
isPopup()
isTopLevel()

isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveEvent()
name()
normalizeSignalSlot()

objectTrees()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
polish()
pos()
property()
queryList()
qwsEvent()
raise()
recreate()
rect()
releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()
repaint()
reparent()
resetInputContext()
resize()
resizeEvent()
scroll()
sender()
setAcceptDrops()
setActiveWindow()
setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()

setBaseSize()
setCaption()
setCursor()
setDisabled()
setEnabled()
setEraseColor()
setErasePixmap()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setGeometry()
setIcon()
setIconText()
setKeyCompression()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProperty()
setSizeIncrement()
setSizePolicy()
setStyle()
setTabOrder()
setUpdatesEnabled()
setWFlags()

show()
showEvent()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()
startTimer()
style()
styleChange()
tabletEvent()
testWFlags()
timerEvent()
topLevelWidget()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateGeometry()
updateMask()
visibleRect()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()

x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
xtWidget()
y()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Editors	in	a	Motif	form
This	example	shows	two	simple	text	editors,	with	most	of	the	program	written	in
Motif.	One	editor	is	a	Qt	QMultiLineEdit,	the	other	is	a	Motif	text	widget.	They
are	bound	together	in	a	Motif	form	widget.

Implementation:

#include	"qxt.h"

#include	<qmultilineedit.h>

#include	<qpainter.h>

#include	<qmessagebox.h>

#include	<X11/Shell.h>

#include	<X11/StringDefs.h>

#include	<Xm/Form.h>

#include	<Xm/Text.h>

static	const	char*	QTEDMSG	=

				"This	is	a	Qt	widget.\nIt	is	a	QMultiLineEdit.";

static	const	char*	XTEDMSG	=

				"This	is	an	Xt	widget.\nIt	is	an	xmTextWidgetClass.";

class	EncapsulatedQtWidget	:	public	QXtWidget	{

				QMultiLineEdit*	mle;

public:

				EncapsulatedQtWidget(Widget	parent)	:

								QXtWidget("editor",	parent,	TRUE)

				{

								mle	=	new	QMultiLineEdit(this);

								mle->setText(QTEDMSG);

				}

				void	resizeEvent(QResizeEvent*)

				{

								mle->resize(width(),height());

				}

};

int	main(int	argc,	char**	argv)

{

				XtAppContext	app;

				Widget	toplevel	=	XtAppInitialize(

								&app,	"Editors",

								0,	0,	&argc,	argv,	0,	0,	0);

				QXtApplication	qapp(XtDisplay(toplevel));

				Widget	form	=	XtVaCreateManagedWidget("form",

																				xmFormWidgetClass,	toplevel,	0);

				EncapsulatedQtWidget	qtchild(form);

				const	int	marg=10;

				Arg	args[20];

				Cardinal	nargs=0;

				XtSetArg(args[nargs],	XmNwidth,	200);																						nargs++;

				XtSetArg(args[nargs],	XmNheight,	200);																					nargs++;

				XtSetArg(args[nargs],	XmNleftOffset,	marg);																nargs++;

				XtSetArg(args[nargs],	XmNtopOffset,	marg);																	nargs++;

				XtSetArg(args[nargs],	XmNbottomOffset,	marg);														nargs++;

				XtSetArg(args[nargs],	XmNtopAttachment,	XmATTACH_FORM);				nargs++;

				XtSetArg(args[nargs],	XmNbottomAttachment,	XmATTACH_FORM);	nargs++;

				XtSetArg(args[nargs],	XmNleftAttachment,	XmATTACH_FORM);			nargs++;

				XtSetValues(qtchild.xtWidget(),	args,	nargs);

				nargs=0;

				XtSetArg(args[nargs],	XmNeditMode,	XmMULTI_LINE_EDIT);					nargs++;

				XtSetArg(args[nargs],	XmNvalue,	XTEDMSG);																		nargs++;

				XtSetArg(args[nargs],	XmNwidth,	200);																						nargs++;

				XtSetArg(args[nargs],	XmNheight,	200);																					nargs++;

				XtSetArg(args[nargs],	XmNtopOffset,	marg);																	nargs++;

				XtSetArg(args[nargs],	XmNbottomOffset,	marg);														nargs++;

				XtSetArg(args[nargs],	XmNrightOffset,	marg);															nargs++;

				XtSetArg(args[nargs],	XmNtopAttachment,	XmATTACH_FORM);				nargs++;

				XtSetArg(args[nargs],	XmNbottomAttachment,	XmATTACH_FORM);	nargs++;

				XtSetArg(args[nargs],	XmNrightAttachment,	XmATTACH_FORM);		nargs++;

				XtSetArg(args[nargs],	XmNleftAttachment,	XmATTACH_WIDGET);	nargs++;

				XtSetArg(args[nargs],	XmNleftWidget,	qtchild.xtWidget());		nargs++;

				Widget	xtchild	=	XtCreateManagedWidget("editor",	xmTextWidgetClass,

								form,	args,	nargs);

				XtRealizeWidget(toplevel);

				XtAppMainLoop(app);

}

See	also	Qt	Xt/Motif	Support	Extension.

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QDns
This	is	the	complete	list	of	member	functions	for	QDns,	including	inherited
members.

QDns()
~QDns()
addresses()
blockSignals()
canonicalName()
checkConnectArgs()
child()
childEvent()
children()
className()
connect()
connectNotify()
customEvent()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
highPriority()
hostNames()
inherits()
insertChild()
installEventFilter()
isA()
isWidgetType()
isWorking()
killTimer()
killTimers()

label()
mailServers()
metaObject()
name()
normalizeSignalSlot()
objectTrees()
parent()
property()
qualifiedNames()
queryList()
recordType()
removeChild()
removeEventFilter()
resultsReady()
sender()
servers()
setLabel()
setName()
setProperty()
setRecordType()
signalsBlocked()
startTimer()
texts()
timerEvent()
tr()
trUtf8()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QImageDrag

This	is	the	complete	list	of	member	functions	for	QImageDrag,	including
inherited	members.

QImageDrag()
~QImageDrag()
blockSignals()
canDecode()
checkConnectArgs()
child()
childEvent()
children()
className()
connect()
connectNotify()
customEvent()
decode()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
drag()
dragCopy()
dragLink()
dragMove()
dumpObjectInfo()
dumpObjectTree()
encodedData()
event()
eventFilter()
format()
highPriority()
inherits()

insertChild()
installEventFilter()
isA()
isWidgetType()
killTimer()
killTimers()
metaObject()
name()
normalizeSignalSlot()
objectTrees()
parent()
pixmap()
pixmapHotSpot()
property()
provides()
queryList()
removeChild()
removeEventFilter()
sender()
serialNumber()
setImage()
setName()
setPixmap()
setProperty()
signalsBlocked()
source()
startTimer()
target()
timerEvent()
tr()
trUtf8()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QProcess
This	is	the	complete	list	of	member	functions	for	QProcess,	including	inherited
members.

QProcess()
~QProcess()
addArgument()
arguments()
blockSignals()
canReadLineStderr()
canReadLineStdout()
checkConnectArgs()
child()
childEvent()
children()
className()
clearArguments()
closeStdin()
communication()
connect()
connectNotify()
customEvent()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
exitStatus()
highPriority()
inherits()
insertChild()
installEventFilter()

isA()
isRunning()
isWidgetType()
kill()
killTimer()
killTimers()
launch()
launchFinished()
metaObject()
name()
normalExit()
normalizeSignalSlot()
objectTrees()
parent()
processExited()
processIdentifier()
property()
queryList()
readLineStderr()
readLineStdout()
readStderr()
readStdout()
readyReadStderr()
readyReadStdout()
removeChild()
removeEventFilter()
sender()
setArguments()
setCommunication()
setName()
setProperty()
setWorkingDirectory()
signalsBlocked()
start()
startTimer()
timerEvent()
tr()
trUtf8()
tryTerminate()

workingDirectory()
writeToStdin()
wroteToStdin()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	|		|		|		|		|	

QDockArea
QDockArea

QDockArea()
~QDockArea()
acceptDrops()
adjustSize()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
caption()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clearFocus()
clearMask()
clearWFlags()
close()
closeEvent()
cmd()
colorGroup()
connect()
connectNotify()
constPolish()
contextMenuEvent()

count()
create()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
dockWindowList()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()
fontChange()
fontInfo()
fontMetrics()
foregroundColor()
frameGeometry()

frameSize()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
handle()
handlePosition()
hasDockWindow()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
insertChild()
installEventFilter()
isA()
isActiveWindow()
isDesktop()
isDialog()
isDockWindowAccepted()
isEmpty()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()

isModal()
isPopup()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
lineUp()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()

move()
moveDockWindow()
moveEvent()
name()
normalizeSignalSlot()
objectTrees()
orientation()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
polish()
pos()
property()
queryList()
qwsEvent()
raise()
recreate()
rect()
releaseKeyboard()
releaseMouse()
removeChild()
removeDockWindow()
removeEventFilter()
repaint()
reparent()
resetInputContext()
resize()
resizeEvent()
scroll()
sender()

setAcceptDockWindow()
setAcceptDrops()
setActiveWindow()
setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()
setCursor()
setDisabled()
setEnabled()
setEraseColor()
setErasePixmap()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setGeometry()
setIcon()
setIconText()
setKeyCompression()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()

setPaletteForegroundColor()
setProperty()
setSizeIncrement()
setSizePolicy()
setStyle()
setTabOrder()
setUpdatesEnabled()
setWFlags()
show()
showEvent()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()
startTimer()
style()
styleChange()
tabletEvent()
testWFlags()
timerEvent()
topLevelWidget()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateGeometry()
updateMask()
visibleRect()
wheelEvent()
width()
winEvent()

winId()
windowActivationChange()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks :Cavendish Qt	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QImageFormat

This	is	the	complete	list	of	member	functions	for	QImageFormat,	including
inherited	members.

decode()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QProgressBar

This	is	the	complete	list	of	member	functions	for	QProgressBar,	including
inherited	members.

QProgressBar()
acceptDrops()
adjustSize()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
caption()
centerIndicator()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clearFocus()
clearMask()
clearWFlags()
close()
closeEvent()
cmd()
colorGroup()
connect()

connectNotify()
constPolish()
contentsRect()
contextMenuEvent()
create()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawContents()
drawFrame()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()
fontChange()

fontInfo()
fontMetrics()
foregroundColor()
frameChanged()
frameGeometry()
frameRect()
frameShadow()
frameShape()
frameSize()
frameStyle()
frameWidth()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
indicatorFollowsStyle()
inherits()
insertChild()
installEventFilter()
isA()
isActiveWindow()
isDesktop()
isDialog()
isEnabled()

isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()
isPopup()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
lineWidth()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
margin()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
midLineWidth()

minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveEvent()
name()
normalizeSignalSlot()
objectTrees()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
percentageVisible()
polish()
pos()
progress()
progressString()
property()
queryList()
qwsEvent()
raise()
recreate()
rect()
releaseKeyboard()
releaseMouse()

removeChild()
removeEventFilter()
repaint()
reparent()
reset()
resetInputContext()
resize()
resizeEvent()
scroll()
sender()
setAcceptDrops()
setActiveWindow()
setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()
setCenterIndicator()
setCursor()
setDisabled()
setEnabled()
setEraseColor()
setErasePixmap()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setFrameRect()
setFrameShadow()
setFrameShape()
setFrameStyle()
setGeometry()
setIcon()
setIconText()

setIndicator()
setIndicatorFollowsStyle()
setKeyCompression()
setLineWidth()
setMargin()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMidLineWidth()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setPercentageVisible()
setProgress()
setProperty()
setSizeIncrement()
setSizePolicy()
setStyle()
setTabOrder()
setTotalSteps()
setUpdatesEnabled()
setWFlags()
show()
showEvent()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()

sizeIncrement()
sizePolicy()
stackUnder()
startTimer()
style()
styleChange()
tabletEvent()
testWFlags()
timerEvent()
topLevelWidget()
totalSteps()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateGeometry()
updateMask()
visibleRect()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()

x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for	QAsyncIO
This	is	the	complete	list	of	member	functions	for	QAsyncIO,	including	inherited
members.

~QAsyncIO()
connect()
ready()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QDataSink

This	is	the	complete	list	of	member	functions	for	QDataSink,	including	inherited
members.

connect()
eof()
maybeReady()
ready()
readyToReceive()
receive()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QDataSource

This	is	the	complete	list	of	member	functions	for	QDataSource,	including
inherited	members.

connect()
enableRewind()
maybeReady()
ready()
readyToSend()
rewind()
rewindable()
sendTo()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QIODeviceSource

This	is	the	complete	list	of	member	functions	for	QIODeviceSource,	including
inherited	members.

QIODeviceSource()
~QIODeviceSource()
connect()
enableRewind()
maybeReady()
ready()
readyToSend()
rewind()
rewindable()
sendTo()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QDropSite

This	is	the	complete	list	of	member	functions	for	QDropSite,	including	inherited
members.

QDropSite()
~QDropSite()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QSortedList

This	is	the	complete	list	of	member	functions	for	QSortedList,	including
inherited	members.

QSortedList()
~QSortedList()
append()
at()
autoDelete()
clear()
compareItems()
contains()
containsRef()
count()
current()
currentNode()
deleteItem()
find()
findNext()
findNextRef()
findRef()
first()
getFirst()
getLast()
inSort()
insert()
isEmpty()
last()
newItem()
next()
operator=()
operator==()
prepend()

prev()
read()
remove()
removeFirst()
removeLast()
removeNode()
removeRef()
setAutoDelete()
sort()
take()
takeNode()
toVector()
write()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QDataPump

This	is	the	complete	list	of	member	functions	for	QDataPump,	including
inherited	members.

QDataPump()
blockSignals()
checkConnectArgs()
child()
childEvent()
children()
className()
connect()
connectNotify()
customEvent()
deleteLater()
destroyed()
disconnect()
disconnectNotify()
dumpObjectInfo()
dumpObjectTree()
event()
eventFilter()
highPriority()
inherits()
insertChild()
installEventFilter()
isA()
isWidgetType()
killTimer()
killTimers()
metaObject()
name()
normalizeSignalSlot()

objectTrees()
parent()
property()
queryList()
removeChild()
removeEventFilter()
sender()
setName()
setProperty()
signalsBlocked()
startTimer()
timerEvent()
tr()
trUtf8()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QMultiLineEdit

This	is	the	complete	list	of	member	functions	for	QMultiLineEdit,	including
inherited	members.

QMultiLineEdit()
acceptDrops()
addChild()
adjustSize()
alignment()
anchorAt()
append()
atBeginning()
atEnd()
autoMask()
autoUpdate()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
backspace()
baseSize()
blockSignals()
bold()
bottomMargin()
caption()
center()
charAt()
checkConnectArgs()
child()
childAt()
childEvent()
childIsVisible()

childX()
childY()
children()
childrenRect()
childrenRegion()
className()
clear()
clearFocus()
clearMask()
clearParagraphBackground()
clearWFlags()
clipper()
close()
closeEvent()
cmd()
color()
colorGroup()
connect()
connectNotify()
constPolish()
contentsContextMenuEvent()
contentsDragEnterEvent()
contentsDragLeaveEvent()
contentsDragMoveEvent()
contentsDropEvent()
contentsHeight()
contentsMouseDoubleClickEvent()
contentsMouseMoveEvent()
contentsMousePressEvent()
contentsMouseReleaseEvent()
contentsMoving()
contentsRect()
contentsToViewport()
contentsWheelEvent()
contentsWidth()
contentsX()
contentsY()
context()
contextMenuEvent()

copy()
copyAvailable()
cornerWidget()
create()
createPopupMenu()
currentAlignmentChanged()
currentColorChanged()
currentFontChanged()
currentVerticalAlignmentChanged()
cursor()
cursorDown()
cursorLeft()
cursorPoint()
cursorPositionChanged()
cursorRight()
cursorUp()
cursorWordBackward()
cursorWordForward()
customEvent()
customWhatsThis()
cut()
del()
deleteLater()
deselect()
destroy()
destroyed()
disconnect()
disconnectNotify()
doKeyboardAction()
documentTitle()
dragAutoScroll()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawContents()
drawContentsOffset()
drawFrame()
drawText()
dropEvent()

dumpObjectInfo()
dumpObjectTree()
edited()
enableClipper()
enabledChange()
end()
ensureCursorVisible()
ensureVisible()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
family()
find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()
fontChange()
fontInfo()
fontMetrics()
foregroundColor()
frameChanged()
frameGeometry()
frameRect()
frameShadow()
frameShape()
frameSize()
frameStyle()
frameWidth()
geometry()
getCursorPosition()
getMarkedRegion()

getSelection()
getWFlags()
grabKeyboard()
grabMouse()
hScrollBarMode()
handle()
hasFocus()
hasMarkedText()
hasMouse()
hasMouseTracking()
hasSelectedText()
hasStaticBackground()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
home()
horizontalScrollBar()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
indent()
inherits()
insert()
insertAndMark()
insertAt()
insertChild()
insertLine()
insertParagraph()
installEventFilter()
isA()
isActiveWindow()
isDesktop()
isDialog()
isEnabled()

isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()
isModified()
isOverwriteMode()
isPopup()
isReadOnly()
isRedoAvailable()
isTopLevel()
isUndoAvailable()
isUndoRedoEnabled()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
italic()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killLine()
killTimer()
killTimers()
layout()
leaveEvent()
leftMargin()
length()
lineLength()
lineOfChar()
lineWidth()
lines()
linesOfParagraph()
linkUnderline()
lower()

macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
margin()
markedText()
maxLines()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
midLineWidth()
mimeSourceFactory()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
modificationChanged()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveChild()
moveCursor()
moveEvent()
name()
newLine()
normalizeSignalSlot()
numLines()
objectTrees()
ownCursor()
ownFont()

ownPalette()
pageDown()
pageUp()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
paper()
paragraphAt()
paragraphBackgroundColor()
paragraphLength()
paragraphRect()
paragraphs()
parent()
parentWidget()
paste()
pasteSubType()
placeCursor()
pointSize()
polish()
pos()
property()
queryList()
qwsEvent()
raise()
recreate()
rect()
redo()
redoAvailable()
releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()
removeLine()
removeParagraph()
removeSelectedText()

removeSelection()
repaint()
repaintChanged()
repaintContents()
reparent()
resetInputContext()
resize()
resizeContents()
resizeEvent()
resizePolicy()
returnPressed()
rightMargin()
scroll()
scrollBy()
scrollToAnchor()
scrollToBottom()
selectAll()
selectedText()
selectionChanged()
sender()
setAcceptDrops()
setActiveWindow()
setAlignment()
setAutoMask()
setAutoUpdate()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setBold()
setCaption()
setColor()
setContentsPos()
setCornerWidget()
setCurrentFont()
setCursor()
setCursorPosition()
setDisabled()

setDragAutoScroll()
setEdited()
setEnabled()
setEraseColor()
setErasePixmap()
setFamily()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setFrameRect()
setFrameShadow()
setFrameShape()
setFrameStyle()
setGeometry()
setHBarGeometry()
setHScrollBarMode()
setIcon()
setIconText()
setItalic()
setKeyCompression()
setLineWidth()
setLinkUnderline()
setMargin()
setMargins()
setMask()
setMaxLines()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMidLineWidth()
setMimeSourceFactory()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()

setModified()
setMouseTracking()
setName()
setOverwriteMode()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setPaper()
setParagraphBackgroundColor()
setPointSize()
setProperty()
setReadOnly()
setResizePolicy()
setSelection()
setSelectionAttributes()
setSizeIncrement()
setSizePolicy()
setStaticBackground()
setStyle()
setStyleSheet()
setTabOrder()
setTabStopWidth()
setText()
setTextFormat()
setUnderline()
setUndoDepth()
setUndoRedoEnabled()
setUpdatesEnabled()
setVBarGeometry()
setVScrollBarMode()
setVerticalAlignment()
setWFlags()
setWordWrap()
setWrapColumnOrWidth()
setWrapPolicy()
show()
showChild()
showEvent()

showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()
startTimer()
style()
styleChange()
styleSheet()
tabStopWidth()
tabletEvent()
testWFlags()
text()
textChanged()
textCursor()
textFormat()
textLine()
timerEvent()
topLevelWidget()
topMargin()
totalHeight()
totalWidth()
tr()
trUtf8()
underline()
undo()
undoAvailable()
undoDepth()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateContents()
updateGeometry()

updateMask()
updateScrollBars()
vScrollBarMode()
verticalScrollBar()
viewport()
viewportPaintEvent()
viewportResizeEvent()
viewportSize()
viewportToContents()
visibleHeight()
visibleRect()
visibleWidth()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
wordWrap()
wrapColumnOrWidth()
wrapPolicy()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()

x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()
zoomIn()
zoomOut()
zoomTo()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QTextView

This	is	the	complete	list	of	member	functions	for	QTextView,	including	inherited
members.

acceptDrops()
addChild()
adjustSize()
alignment()
anchorAt()
append()
autoMask()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
bold()
bottomMargin()
caption()
center()
charAt()
checkConnectArgs()
child()
childAt()
childEvent()
childIsVisible()
childX()
childY()
children()
childrenRect()
childrenRegion()

className()
clear()
clearFocus()
clearMask()
clearParagraphBackground()
clearWFlags()
clipper()
close()
closeEvent()
cmd()
color()
colorGroup()
connect()
connectNotify()
constPolish()
contentsContextMenuEvent()
contentsDragEnterEvent()
contentsDragLeaveEvent()
contentsDragMoveEvent()
contentsDropEvent()
contentsHeight()
contentsMouseDoubleClickEvent()
contentsMouseMoveEvent()
contentsMousePressEvent()
contentsMouseReleaseEvent()
contentsMoving()
contentsRect()
contentsToViewport()
contentsWheelEvent()
contentsWidth()
contentsX()
contentsY()
context()
contextMenuEvent()
copy()
copyAvailable()
cornerWidget()
create()
createPopupMenu()

currentAlignmentChanged()
currentColorChanged()
currentFontChanged()
currentVerticalAlignmentChanged()
cursor()
cursorPositionChanged()
customEvent()
customWhatsThis()
cut()
del()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
doKeyboardAction()
documentTitle()
dragAutoScroll()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawContents()
drawContentsOffset()
drawFrame()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enableClipper()
enabledChange()
ensureCursorVisible()
ensureVisible()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
family()

find()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()
fontChange()
fontInfo()
fontMetrics()
foregroundColor()
frameChanged()
frameGeometry()
frameRect()
frameShadow()
frameShape()
frameSize()
frameStyle()
frameWidth()
geometry()
getCursorPosition()
getSelection()
getWFlags()
grabKeyboard()
grabMouse()
hScrollBarMode()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
hasSelectedText()
hasStaticBackground()
height()
heightForWidth()
hide()
hideEvent()
highPriority()

horizontalScrollBar()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
indent()
inherits()
insert()
insertAt()
insertChild()
insertParagraph()
installEventFilter()
isA()
isActiveWindow()
isDesktop()
isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()
isModified()
isOverwriteMode()
isPopup()
isReadOnly()
isRedoAvailable()
isTopLevel()
isUndoAvailable()
isUndoRedoEnabled()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()

isWidgetType()
italic()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
layout()
leaveEvent()
leftMargin()
length()
lineOfChar()
lineWidth()
lines()
linesOfParagraph()
linkUnderline()
lower()
macEvent()
mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
margin()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
midLineWidth()
mimeSourceFactory()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
modificationChanged()
mouseDoubleClickEvent()

mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveChild()
moveCursor()
moveEvent()
name()
normalizeSignalSlot()
objectTrees()
ownCursor()
ownFont()
ownPalette()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
paper()
paragraphAt()
paragraphBackgroundColor()
paragraphLength()
paragraphRect()
paragraphs()
parent()
parentWidget()
paste()
pasteSubType()
placeCursor()
pointSize()
polish()
pos()
property()
queryList()
qwsEvent()
raise()

recreate()
rect()
redo()
redoAvailable()
releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()
removeParagraph()
removeSelectedText()
removeSelection()
repaint()
repaintChanged()
repaintContents()
reparent()
resetInputContext()
resize()
resizeContents()
resizeEvent()
resizePolicy()
returnPressed()
rightMargin()
scroll()
scrollBy()
scrollToAnchor()
scrollToBottom()
selectAll()
selectedText()
selectionChanged()
sender()
setAcceptDrops()
setActiveWindow()
setAlignment()
setAutoMask()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()

setBold()
setCaption()
setColor()
setContentsPos()
setCornerWidget()
setCurrentFont()
setCursor()
setCursorPosition()
setDisabled()
setDragAutoScroll()
setEnabled()
setEraseColor()
setErasePixmap()
setFamily()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setFrameRect()
setFrameShadow()
setFrameShape()
setFrameStyle()
setGeometry()
setHBarGeometry()
setHScrollBarMode()
setIcon()
setIconText()
setItalic()
setKeyCompression()
setLineWidth()
setLinkUnderline()
setMargin()
setMargins()
setMask()
setMaximumHeight()
setMaximumSize()

setMaximumWidth()
setMicroFocusHint()
setMidLineWidth()
setMimeSourceFactory()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setModified()
setMouseTracking()
setName()
setOverwriteMode()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setPaper()
setParagraphBackgroundColor()
setPointSize()
setProperty()
setReadOnly()
setResizePolicy()
setSelection()
setSelectionAttributes()
setSizeIncrement()
setSizePolicy()
setStaticBackground()
setStyle()
setStyleSheet()
setTabOrder()
setTabStopWidth()
setText()
setTextFormat()
setUnderline()
setUndoDepth()
setUndoRedoEnabled()
setUpdatesEnabled()
setVBarGeometry()
setVScrollBarMode()
setVerticalAlignment()

setWFlags()
setWordWrap()
setWrapColumnOrWidth()
setWrapPolicy()
show()
showChild()
showEvent()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()
startTimer()
style()
styleChange()
styleSheet()
tabStopWidth()
tabletEvent()
testWFlags()
text()
textChanged()
textCursor()
textFormat()
timerEvent()
topLevelWidget()
topMargin()
tr()
trUtf8()
underline()
undo()
undoAvailable()
undoDepth()
unsetCursor()
unsetFont()

unsetPalette()
update()
updateContents()
updateGeometry()
updateMask()
updateScrollBars()
vScrollBarMode()
verticalScrollBar()
viewport()
viewportPaintEvent()
viewportResizeEvent()
viewportSize()
viewportToContents()
visibleHeight()
visibleRect()
visibleWidth()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
wordWrap()
wrapColumnOrWidth()
wrapPolicy()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()

x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
y()
zoomIn()
zoomOut()
zoomTo()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QtTableView

This	is	the	complete	list	of	member	functions	for	QtTableView,	including
inherited	members.

QtTableView()
~QtTableView()
acceptDrops()
adjustSize()
autoMask()
autoUpdate()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
baseSize()
blockSignals()
caption()
cellHeight()
cellUpdateRect()
cellWidth()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()
className()
clearFocus()
clearMask()
clearTableFlags()
clearWFlags()

close()
closeEvent()
cmd()
colIsVisible()
colXPos()
colorGroup()
connect()
connectNotify()
constPolish()
contentsRect()
contextMenuEvent()
create()
cursor()
customEvent()
customWhatsThis()
deleteLater()
destroy()
destroyed()
disconnect()
disconnectNotify()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawContents()
drawFrame()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
enabledChange()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
findCol()
findRow()

focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()
fontChange()
fontInfo()
fontMetrics()
foregroundColor()
frameChanged()
frameGeometry()
frameRect()
frameShadow()
frameShape()
frameSize()
frameStyle()
frameWidth()
geometry()
getWFlags()
grabKeyboard()
grabMouse()
handle()
hasFocus()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
horizontalScrollBar()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()

imStartEvent()
inherits()
insertChild()
installEventFilter()
isA()
isActiveWindow()
isDesktop()
isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()
isPopup()
isTopLevel()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killTimer()
killTimers()
lastColVisible()
lastRowVisible()
layout()
leaveEvent()
leftCell()
lineWidth()
lower()
macEvent()
mapFrom()
mapFromGlobal()

mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
margin()
maxColOffset()
maxRowOffset()
maxViewX()
maxViewY()
maxXOffset()
maxYOffset()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
midLineWidth()
minViewX()
minViewY()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveEvent()
name()
normalizeSignalSlot()
numCols()
numRows()
objectTrees()
ownCursor()
ownFont()
ownPalette()

paintCell()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
polish()
pos()
property()
queryList()
qwsEvent()
raise()
recreate()
rect()
releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()
repaint()
reparent()
resetInputContext()
resize()
resizeEvent()
rowIsVisible()
rowYPos()
scroll()
sender()
setAcceptDrops()
setActiveWindow()
setAutoMask()
setAutoUpdate()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()

setBaseSize()
setCaption()
setCellHeight()
setCellWidth()
setCursor()
setDisabled()
setEnabled()
setEraseColor()
setErasePixmap()
setFixedHeight()
setFixedSize()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()
setFont()
setFrameRect()
setFrameShadow()
setFrameShape()
setFrameStyle()
setGeometry()
setIcon()
setIconText()
setKeyCompression()
setLeftCell()
setLineWidth()
setMargin()
setMask()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMidLineWidth()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setNumCols()

setNumRows()
setOffset()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProperty()
setSizeIncrement()
setSizePolicy()
setStyle()
setTabOrder()
setTableFlags()
setTopCell()
setTopLeftCell()
setUpdatesEnabled()
setWFlags()
setXOffset()
setYOffset()
setupPainter()
show()
showEvent()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()
startTimer()
style()
styleChange()
tableFlags()
tabletEvent()
testTableFlags()
testWFlags()
timerEvent()

topCell()
topLevelWidget()
totalHeight()
totalWidth()
tr()
trUtf8()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateCell()
updateGeometry()
updateMask()
updateScrollBars()
updateTableSize()
verticalScrollBar()
viewHeight()
viewRect()
viewWidth()
visibleRect()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
x()
x11AppCells()
x11AppColormap()
x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()

x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
xOffset()
y()
yOffset()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

Home	|	All	Classes	|	Main	Classes	|	Annotated	|	Grouped	Classes	|
Functions

Complete	Member	List	for
QtMultiLineEdit

This	is	the	complete	list	of	member	functions	for	QtMultiLineEdit,	including
inherited	members.

QtMultiLineEdit()
~QtMultiLineEdit()
acceptDrops()
adjustSize()
alignment()
append()
atBeginning()
atEnd()
autoMask()
autoUpdate()
backgroundBrush()
backgroundColor()
backgroundMode()
backgroundOrigin()
backgroundPixmap()
backspace()
baseSize()
blockSignals()
caption()
cellHeight()
cellUpdateRect()
cellWidth()
checkConnectArgs()
child()
childAt()
childEvent()
children()
childrenRect()
childrenRegion()

className()
clear()
clearFocus()
clearMask()
clearTableFlags()
clearWFlags()
close()
closeEvent()
cmd()
colIsVisible()
colXPos()
colorGroup()
connect()
connectNotify()
constPolish()
contentsRect()
contextMenuEvent()
copy()
copyAvailable()
copyText()
create()
cursor()
cursorDown()
cursorLeft()
cursorPoint()
cursorPosition()
cursorRight()
cursorUp()
cursorWordBackward()
cursorWordForward()
customEvent()
customWhatsThis()
cut()
defaultTabStop()
del()
deleteLater()
deselect()
destroy()
destroyed()

disconnect()
disconnectNotify()
dragEnterEvent()
dragLeaveEvent()
dragMoveEvent()
drawContents()
drawFrame()
drawText()
dropEvent()
dumpObjectInfo()
dumpObjectTree()
echoMode()
edited()
enabledChange()
end()
enterEvent()
erase()
eraseColor()
erasePixmap()
event()
eventFilter()
find()
findCol()
findRow()
focusData()
focusInEvent()
focusNextPrevChild()
focusOutEvent()
focusPolicy()
focusProxy()
focusWidget()
font()
fontChange()
fontInfo()
fontMetrics()
foregroundColor()
frameChanged()
frameGeometry()
frameRect()

frameShadow()
frameShape()
frameSize()
frameStyle()
frameWidth()
geometry()
getCursorPosition()
getMarkedRegion()
getString()
getWFlags()
grabKeyboard()
grabMouse()
hMargin()
handle()
hasFocus()
hasMarkedText()
hasMouse()
hasMouseTracking()
height()
heightForWidth()
hide()
hideEvent()
highPriority()
home()
horizontalScrollBar()
icon()
iconText()
iconify()
imComposeEvent()
imEndEvent()
imStartEvent()
inherits()
insert()
insertAt()
insertChar()
insertChild()
insertLine()
installEventFilter()
isA()

isActiveWindow()
isDesktop()
isDialog()
isEnabled()
isEnabledTo()
isEnabledToTLW()
isEndOfParagraph()
isExtDev()
isFocusEnabled()
isHidden()
isMaximized()
isMinimized()
isModal()
isOverwriteMode()
isPopup()
isReadOnly()
isTopLevel()
isUndoEnabled()
isUpdatesEnabled()
isVisible()
isVisibleTo()
isVisibleToTLW()
isWidgetType()
keyPressEvent()
keyReleaseEvent()
keyboardGrabber()
killLine()
killTimer()
killTimers()
lastColVisible()
lastRowVisible()
layout()
leaveEvent()
leftCell()
length()
lineLength()
lineWidth()
lower()
macEvent()

mapFrom()
mapFromGlobal()
mapFromParent()
mapTo()
mapToGlobal()
mapToParent()
margin()
markedText()
maxColOffset()
maxLength()
maxLineLength()
maxLineWidth()
maxLines()
maxRowOffset()
maxViewX()
maxViewY()
maxXOffset()
maxYOffset()
maximumHeight()
maximumSize()
maximumWidth()
metaObject()
metric()
microFocusHint()
midLineWidth()
minViewX()
minViewY()
minimumHeight()
minimumSize()
minimumSizeHint()
minimumWidth()
mouseDoubleClickEvent()
mouseGrabber()
mouseMoveEvent()
mousePressEvent()
mouseReleaseEvent()
move()
moveEvent()
name()

newLine()
normalizeSignalSlot()
numCols()
numLines()
numRows()
objectTrees()
ownCursor()
ownFont()
ownPalette()
pageDown()
pageUp()
paintCell()
paintEvent()
paintingActive()
palette()
paletteBackgroundColor()
paletteBackgroundPixmap()
paletteChange()
paletteForegroundColor()
parent()
parentWidget()
paste()
pasteSubType()
polish()
pos()
property()
queryList()
qwsEvent()
raise()
recreate()
rect()
redo()
redoAvailable()
releaseKeyboard()
releaseMouse()
removeChild()
removeEventFilter()
removeLine()
repaint()

reparent()
resetInputContext()
resize()
resizeEvent()
returnPressed()
rowIsVisible()
rowYPos()
scroll()
selectAll()
sender()
setAcceptDrops()
setActiveWindow()
setAlignment()
setAutoMask()
setAutoUpdate()
setBackgroundColor()
setBackgroundMode()
setBackgroundOrigin()
setBackgroundPixmap()
setBaseSize()
setCaption()
setCellHeight()
setCellWidth()
setCursor()
setCursorPosition()
setDefaultTabStop()
setDisabled()
setEchoMode()
setEdited()
setEnabled()
setEraseColor()
setErasePixmap()
setFixedHeight()
setFixedSize()
setFixedVisibleLines()
setFixedWidth()
setFocus()
setFocusPolicy()
setFocusProxy()

setFont()
setFrameRect()
setFrameShadow()
setFrameShape()
setFrameStyle()
setGeometry()
setHMargin()
setIcon()
setIconText()
setKeyCompression()
setLeftCell()
setLineWidth()
setMargin()
setMask()
setMaxLength()
setMaxLineLength()
setMaxLines()
setMaximumHeight()
setMaximumSize()
setMaximumWidth()
setMicroFocusHint()
setMidLineWidth()
setMinimumHeight()
setMinimumSize()
setMinimumWidth()
setMouseTracking()
setName()
setNumCols()
setNumRows()
setOffset()
setOverwriteMode()
setPalette()
setPaletteBackgroundColor()
setPaletteBackgroundPixmap()
setPaletteForegroundColor()
setProperty()
setReadOnly()
setSelection()
setSizeIncrement()

setSizePolicy()
setStyle()
setTabOrder()
setTableFlags()
setText()
setTopCell()
setTopLeftCell()
setUndoDepth()
setUndoEnabled()
setUpdatesEnabled()
setValidator()
setWFlags()
setWordWrap()
setWrapColumnOrWidth()
setWrapPolicy()
setXOffset()
setYOffset()
setupPainter()
show()
showEvent()
showFullScreen()
showMaximized()
showMinimized()
showNormal()
signalsBlocked()
size()
sizeHint()
sizeIncrement()
sizePolicy()
stackUnder()
startTimer()
stringShown()
style()
styleChange()
tableFlags()
tabletEvent()
testTableFlags()
testWFlags()
text()

textChanged()
textLine()
textWidth()
timerEvent()
topCell()
topLevelWidget()
totalHeight()
totalWidth()
tr()
trUtf8()
undo()
undoAvailable()
undoDepth()
unsetCursor()
unsetFont()
unsetPalette()
update()
updateCell()
updateGeometry()
updateMask()
updateScrollBars()
updateTableSize()
validator()
verticalScrollBar()
viewHeight()
viewRect()
viewWidth()
visibleRect()
wheelEvent()
width()
winEvent()
winId()
windowActivationChange()
wordWrap()
wrapColumnOrWidth()
wrapPolicy()
x()
x11AppCells()
x11AppColormap()

x11AppDefaultColormap()
x11AppDefaultVisual()
x11AppDepth()
x11AppDisplay()
x11AppDpiX()
x11AppDpiY()
x11AppScreen()
x11AppVisual()
x11Cells()
x11Colormap()
x11DefaultColormap()
x11DefaultVisual()
x11Depth()
x11Display()
x11Event()
x11Screen()
x11SetAppDpiX()
x11SetAppDpiY()
x11Visual()
xOffset()
y()
yOffset()

Copyright	©	2002	Trolltech Trademarks Qt	version	3.0.5

http://www.trolltech.com
http://www.trolltech.com/trademarks.html

	首页

